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I dedicate this dissertation to all the ambitious young women who did, do, and will find

themselves in STEM. May we continue to break the mold and redefine what it looks like

to be a scientist.



"The universe constantly and obediently answers to our conceptions; whether we travel

fast or slow, the track is laid for us. Let us spend our lives in conceiving then."

-Henry David Thoreau, Walden
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ABSTRACT

Though biomolecular interactions regulate virtually all cell processes, controlling biomolec-

ular interactions, both for the purposes of scientific inquiry and for correcting aberrant

interactions, remains a difficult challenge. In the first chapter of my dissertation, I high-

light the ways that current directed evolution platforms have been able to generate tools

to control interactions among the biomolecules in the central dogma and suggest current

challenges and future opportunities. As others have noted in their deeming of protein-

protein interactions (PPIs) as "undruggable," PPIs have proven particularly challenging

to modulate, not only due to their complex and varied biophysical properties, but also

because hitting off-target interactions routinely poses an issue. In chapter 2, I describe

a platform I developed that aims to address such specificity issues by enabling the di-

rected evolution of specific protein binders. We use the technology, termed PPI specificity

phage-assisted continuous evolution (PACE), to evolve varied binding profiles of extant

and ancestral BCL-2 family proteins, which enabled further insight regarding the roles of

chance and contingency in the evolution of this protein family. I went on to adapt the PPI

specificity PACE technology to directly select for inhibition of a PPI rather than protein

binding alone, a property that does not always confer inhibition. This work is detailed

in the creation of PANCS-PPIi in chapter 3, where I establish platform parameters with

3 distinct model PPIs and go on to both improve PPI inhibition of an existing inhibitor

and also identify a de novo PPI inhibitor. I conclude in chapter 4 by summarizing and

contextualizing my work and looking to future opportunities in the field.
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CHAPTER 1

METHODS FOR THE DIRECTED EVOLUTION OF BIOMOLECULAR

INTERACTIONS

Noncovalent interactions between biomolecules such as proteins and nucleic acids

coordinate all cellular processes through changes in proximity. Tools that perturb these

interactions are and will continue to be highly valuable for basic and translational sci-

entific endeavors. By taking cues from natural systems, such as the adaptive immune

system, we can design directed evolution platforms that can generate proteins that bind

to biomolecules of interest. In recent years, the platforms used to direct the evolution of

biomolecular binders have greatly expanded the range of types of interactions one can

evolve. Herein, we review recent advances in methods to evolve protein-protein, protein-

RNA, and protein-DNA interactions.

1.1 The importance of manipulating biomolecular interactions

Noncovalent interactions between biomolecules DNA, RNA, proteins, lipids, and sug-

ars underlie all biophysical processes in the cell. Biological signaling is largely driven by

proximity between biomolecules1,2 ; therefore, whether biomolecules are near one an-

other, interacting, or critically, not interacting, is central to the organization and function

of the cell. Moreover, aberrant interactions between biomolecules are often the drivers

of disease and can be targeted with inhibitors for therapeutic development. For exam-

ple, the interactions between BCL-2 family proteins and their binders can be blocked by

a proteinprotein interaction (PPI) inhibitor to treat cancer3,4 . Biomolecular interactions

can also be reprogrammed for beneficial purposes, exemplified by the recent explosion

of chimeric antigen receptor (CAR-T) cell therapies5 and proteolysis targeting chimeras

(PROTACs)6 , which engineer cells to respond to novel antigens and redirect protein

1



degradation pathways to target proteins, respectively. As such, methods to understand,

reprogram, and create de novo biomolecular interactions are increasingly important to

understanding molecular biology and creating biotechnologies.

In this chapter, I detail the use of directed evolution as a method to modulate biomolec-

ular interactions. In particular, I highlight continuous evolution, and most prominently

phage-assisted continuous evolution (PACE), as a powerful technology for evolving pro-

teins to interact with proteins and nucleic acids. I also describe additional methods that

can engineer proteins to interact with DNA, RNA, and other proteins, as well as experi-

mental campaigns to create multipartner, or higher-order, interactions.

1.2 Directed evolution as a technique to evolve biomolecular inter-

actions

Advances in structural methods, such as cryo-electron microscopy (cryoEM), paired

with advances in machine learning-based computational approaches such as AlphaFold2

and RoseTTAFold, have led to a dramatic increase in our ability to study and predict the

structures of biomolecules7–10 . By contrast, understanding whether and how a given

set of biomolecules interact11 or reprogramming their interaction though defined muta-

tions, remains challenging. However, one technology for the creation of PPIs, evolved by

nature, has proven wildly successful as an engineering tool: the immune system. The

mammalian immune system is capable of rapidly creating antibodies that bind to a target

antigen, often another protein, as part of the bodys defense system. The basis for the im-

mune systems capacity to solve these complex biophysical puzzles is its use of evolution,

essentially, selecting for antibodies that bind to a given epitope. The rapid diversification,

selection, and amplification of antibodies allows for the immune system to identify high-

affinity interactions12,13 . This process can and has been harnessed to create antibodies

2



for a given epitope of interest, revolutionizing basic science and medicine in turn14,15 .

However, this natural evolutionary process cannot be used to evolve biomolecules other

than antibodies. To fill this technological gap, researchers must engineer experimental

evolution approaches in the laboratory.

Early work toward harnessing evolution in the laboratory focused on selection meth-

ods for enzymes and PPIs. In recognition of this foundational work, the 2018 Nobel Prize

in Chemistry was awarded for the directed evolution of enzymes to Francis Arnold and for

the phage display of peptides and antibodies to George Smith and Sir Gregory Winter.

Arnolds work, which focuses on engineering enzymes by library generation and screen-

ing to catalyze new chemical reactions, illuminated how screening individual mutants can

be used not only to endow biomolecules with improved or even novel functions16–18 ,

but also to uncover fundamental knowledge about how the biomolecules function and

evolve19,20 . The use of evolution in biocatalysts has been extensively reviewed else-

where21–23 . Phage display, invented by Smith, Winter and colleagues, is analogous to

the selection of antibodies by the immune system and uses enrichment of phage-encoded

protein libraries as a method for identifying novel binders or ligands24,25 . Phage display

was subsequently expanded to related technologies, such as yeast display26 , mRNA dis-

play27 , and ribosome display28 . These early approaches toward harnessing evolution in

the laboratory highlight the power of technologies that can properly and specifically focus

evolution on a desired outcome, which is referred to as directed evolution29–32 .

Experimental evolution approaches can generally be categorized as screens, which

involve performing individual assays on each variant, often using robotics, or selections,

where a fitness advantage is used to enrich variants with desired activities (Figure 1.1).

Formally, evolution is the process of repeated rounds of diversification and selection. By

adding a round of mutagenesis or further diversification to a screen and performing a

second round of screening, as is often done in the context of enzyme engineering, such a

3



process would then be classified as directed evolution. Selections entail testing a library

of variants simultaneously, where some experimental process is used to enrich variants

with a given fitness level. Selection methods can be further subdivided into isolation-

based methods, where target variants are physically separated from the population [e.g.,

display technologies or FACS (fluorescence-activated cell sorting)], or growth-based se-

lection approaches, where organismal or viral fitness and/or growth are directly tied to

the fitness of the target molecule. Likewise, selections can be run either with or without

re-diversification/mutagenesis to identify fit variants within the starting library. Whether by

screening or selection, several rounds of diversification and identification of active variants

allows for the directed evolution of a biomolecule toward a new function.
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Figure 1.1 Overview of screening and selection methods used for the directed evo-
lution of biomolecular interactions.
(A) Methods to identify mutants with a specific function include (left) screening individual
variants to characterize function and selecting to enrich variants with the desired function
either by isolation or growth. Experimental evolution (right) can be carried out by repeating
rounds of diversification and identification of active variants either with screens or selec-
tions. (B) Types of surface display methods. In general, the bait target is immobilized
to a surface, and prey (binding entities) are displayed in various manners, for example,
on the surface of phage, yeast, bacteria, etc., and flowed over the immobilized targets.
(C) Biosensors enable function to be linked to fitness when surface immobilization is not
used. Transcription-based biosensors such as the one-, two-, and three-hybrid constructs
induce the localization of RNAP to the promoter region of a reporter gene (i.e., fluorescent
protein or luciferase) for screens and isolation-based selections or a gene required for host
fitness (i.e., antibiotic resistance cassettes or gIII in PACE) for growth-based selections.
Additionally, protein complementation can be used in a similar manner for isolation-based
selections (e.g., split fluorescent protein or luciferase) and growth-based selection (split
RNAP). Abbreviations: PACE, phage-assisted continuous evolution; RNAP, RNA poly-
merase.
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Selections offer several benefits over screens: assaying larger libraries, having tun-

able fitness thresholds, in some cases featuring negative selections that allow for assess-

ing multiple characteristics of a biomolecule at once, and in general, fewer labor- and

instrument-intensive processes. However, the construction of the selection platform is

critical to successful directed evolution campaigns. The primary challenges in designing

a selection platform are (i) linking the genotype of the evolving biomolecule to a func-

tion of interest and (ii) linking the function of interest to the fitness of the genotype. For

example, phage are well-suited hosts for the creation of a selection platform to evolve

peptide and protein binders: phage genomes are naturally tied to the peptides/proteins

they encode (linking genotype to the biomolecule); phage coat proteins can be fused to

the evolving peptide/protein to facilitate phage binding to a target protein via the displayed

peptide/protein (linking the biomolecule to function); and finally, bound phage can be iso-

lated from nonbinding phage (linking function to fitness). While powerful, phage display is

an example of noncontinuous evolution, requiring researcher intervention to replicate and

possibly mutagenize the phage-encoded biomolecules for additional rounds of selection;

this constraint limits these evolutions to only a few rounds of selection.

Continually generating diversity while enriching fit variants via growth-based selec-

tions is referred to as continuous evolution. Due to the challenges of linking the fitness

of a host to a desired function of a biomolecule, continuous evolution approaches were,

until recently, limited to selections that directly link fitness to function, such as selecting for

antibiotic resistance33,34 , and in vitro systems, such as self-replicating RNA ligases35 .

However, the past decade has brought about an explosion of new continuous evolution

technologies to solve this challenge36–45 For instance, PACE links phage propagation

(host fitness) in Escherichia coli carrying a mutagenesis plasmid to the phenotype (func-

tion) of a gene within the phage (Figure 1.2A )38,46 . The link between phage fitness and

target activity is established by the inducible expression of pIII, a required phage protein,
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which is provided by the host E. coli cells. PACE, once developed for a desired function

of interest (that is, once a robust link between target activity and pIII expression is engi-

neered), can enable hundreds of rounds of selection in days with minimal researcher inter-

vention. For additional information on current continuous in vivo evolution methods, see

Box 1. As mature display-based technologies continue to find new applications and novel

continuous evolution systems continue to develop, an expansive experimental evolution

toolkit for probing and engineering biomolecular interactions is emerging. This review

sets out to highlight recent advances in approaches that use evolution to probe the in-

teractions between biomolecules, organized by technologies for engineering interactions

with proteins, interactions with RNA, interactions with DNA, and molecules that influence

the interactions of pairs of biomolecules (higher-order interactions). In each case, these

directed evolution approaches are leading to basic insights into how biomolecular interac-

tions have evolved and to novel biotechnologies and therapeutic approaches.
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Figure 1.2 (A) Phage-assisted continuous evolution (PACE) biosensors for the evo-
lution of biomolecular interactions, including (B) specific proteinprotein interac-
tions (PPIs), (C) DNA binders, and (D) PPI glues.
(A) General schematic for how PACE works. Bacteriophage carry a plasmid that encodes
an evolving protein of interest. Phage infect host Escherichia coli cells that contain plas-
mids that encode a transcription-based biosensor that drives pIII to produce infectious
phage for positive selection and a dominant negative form of pIII (pIIIneg) to create non-
infectious phage for negative selection. (B) Phage carry an evolving protein fused to the
N-terminus of proximity-dependent split RNAP. Host E. coli cells express two proteins
fused to two orthogonal C-terminal T7 RNAP fragment variants with different promoter
specificities. If the evolving protein variant interacts with the target protein of interest, this
reconstitutes an RNAP that binds to the CGG promoter, which triggers pIII production
and phage replication. If the variant binds the counterselection protein, it reconstitutes
an RNAP that binds the T7 promoter and leads to the production of a dominant negative
phage protein, pIIIneg, which lowers phage fitness. (C) Proteins that bind DNA, including
transcription factors and Cas9 effectors, can be evolved by fusing them to the subunit of
an RNAP and encoding the fusion in phage. Positive selection is driven by the protein
binding to a specific sequence upstream of the RNAP promoter to drive pIII expression,
and negative selection can be driven via nonspecific binding triggering pIIIneg production.
(D) A genetically encoded bifunctional molecule is expressed by phage and can drive
pIII production and phage propagation if it binds to two partners fused to split halves of
the split RNAP biosensor to reconstitute active RNAP. Abbreviations: RNAP, RNA poly-
merase; DBP, DNA-binding protein.
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1.3 Engineering interactions between proteins

Along with phage display, many other surface display technologies have been de-

veloped that can evolve peptides and proteins to bind protein targets. These include

mRNA47 , ribosome3 , yeast48,49 , and bacteria display50 (Figure 1.1B). Display tech-

nologies have proven particularly fruitful for the evolution of antibodies, as covered in a

recent review51 , and each display technology has its advantages and drawbacks. For in-

stance, while phage display can attain larger library sizes, bacteria and yeast display can

accommodate larger proteins. Additionally, certain protein targets are more compatible

with yeast display, such as those that are insoluble when expressed by bacteria or those

containing post-translational modifications specific to eukaryotic hosts. For more details

on display technologies, see a recent review by Park52 .

Although display methods can work well for engineering extracellular interactions, as

in discovering ligands for G-protein coupled receptors (GPCRs)53 and plasma proteins54

, one drawback is that they do not evolve proteins to function in an intracellular context.

Biomolecular interactions can depend on a variety of cellular factors, from metabolite

concentrations to localization; thus, evolution in a more native biological context is ad-

vantageous. For this reason, in vivo evolution systems have gained popularity in recent

years, and those that select for binding generally use biosensors that adhere to an n-

hybrid or protein complementation assay approach (Figure 1.1C). In these methods, a

protein of interest (bait) and the protein under selection pressure (prey) are each fused

to additional proteins, and binding of the prey to the bait protein results in bringing these

components into close proximity which assemble to form some sort of selection output.

As illustrated in Figure 1.1C, n-hybrid systems typically involve the localization of an RNA

polymerase (RNAP) or other transcription inducer to a reporter gene such as GFP. Sim-

ilarly, protein complementation approaches can utilize split fluorescent proteins or other

optical reporters for assays by screening or isolation via FACS for selections, or a DNA-
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binding protein/transcription factor pair or split RNAP to produce a protein that allows for

survival in a growth-based selection. Biosensors have been widely used for analyzing and

screening PPIs, which has been highlighted in previous reviews55,56 . For example, two

hybrid-based systems have been used to extensively map potential interactions between

the proteome57 , and recent split luciferase reporter systems enabled the rapid screen-

ing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies58 and

endosomal disruption stimuli59 . Protein complementation technologies have also been

employed in directed evolution campaigns to yield useful binders for applied purposes

and advanced study of evolution itself, biochemistry, and structural biology60 .

Both display and complementation technologies have been linked to viral replica-

tion to create powerful in vivo experimental evolution platforms that can generate protein

binders (Table 1.1). The PACE technology incorporates protein complementation when

used to evolve protein binders. For example, by fusing an insect receptor protein to a

DNA-binding domain and Bacillus thuringiensis -endotoxin (Bt toxin) to an RNAP sub-

unit, the Liu laboratory used PACE to evolve Bt toxin to bind the insect receptor and

overcome resistance61 . A recently published paper from the laboratory also now en-

ables the evolution of binders that contain disulfide bonds62 . Additionally, our laboratory

developed a protein binder PACE system based on complementation of split RNAP63 .

We performed deep mutational scanning of the Ras/Raf interaction, by generating a li-

brary of Raf variants and enriching for Ras binding without mutagenesis a technique we

dubbed phage-assisted continuous selection (PACS)64 . Technologies are also emerging

for experimental evolution in eukaryotic cells. For instance, autonomous hypermutation

yeast surface display, deemed AHEAD, combines yeast display with OrthoRep to facilitate

continuous evolution of protein binders in yeast48 . It has been used to evolve camelid

single-domain antibodies, or nanobodies, that bind to targets such as the SARS-CoV-2

S glycoprotein. Moreover, efforts at directed evolution in mammalian cells (reviewed by
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Hendel and Shoulders) are aiming to use adenovirus or RNA virus variants as a vector,

analogous to the role of phage in PACE32 . While the field still faces challenges, these

technologies do have potential for evolving a variety of activities, including protein binders.

Indeed, in its premier paper, viral evolution of genetically actuating sequences, or VEGAS,

was used to evolve nanobodies that bind to GPCRs41 .

All the aforementioned approaches measure, select for, or evolve a desired PPI. How-

ever, preventing interactions with an undesired protein is often just as critical as interacting

with a desired protein, both in terms of understanding the emergence of molecular recog-

nition through evolution and for developing selective biotechnologies. Counterselections

or secondary screens can be deployed, but they are then decoupled from activity evolved

in the primary evolution/screen. For example, in a recent work which will be described in

detail in Chapter 2, we developed a new PACE-based system for evolving selective PPIs65

(Figure 1.2B). To accomplish this, we employed two separate RNAP-based protein com-

plementation systems using our groups proximity-dependent split RNAP biosensor tech-

nology63,66 . In this system, the phage-encoded protein of interest is simultaneously and

continuously evolving to interact with a target protein and to not interact with a non-target

protein. We used this platform to explore the roles of chance and contingency in the evo-

lution of binding specificity of the BCL-2 family proteins. However, the core platform can,

in principle, be used to engineer novel specificity into PPIs of interest. Another recent

example of PACE with negative selection was used to reprogram the binding specificity

of proteases67 , a class of proteins that both interact with and cleave specific proteins

based on sequence motifs. Though improving the enzymatic activity of proteases is often

a focus, engineering specificity in their interactions with their protein targets has proven

difficult to achieve until now.
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Table 1.1 Examples of continuous evolution methods to evolve binders to nucleic
acids and proteins.

Binding
partner

Method Application Evolution
environ-
ment

Refs

Protein PACE Evolve a binder of an insect re-
ceptor to prevent antibiotic resis-
tance

E. coli [62]

Protein PACE Evolve specific BCL-2 family
protein binders to study the evo-
lution of PPI specificity

E. coli [66]

Protein PACE Evolve a disulfide bond-
containing protein binder to
Her2

E. coli [63]

Protein OrthoRep Evolve SARS-CoV-2 S glyco-
protein nanobodies

Yeast [49]

Protein Adenoviral
PACE/VE-
GAS

Evolve GPCR nanobodies Mam-
malian
cells

[40,41]

DNA PACE Evolve RNAPs with different pro-
moter specificities

E. coli [83,84]

DNA PACE Evolve DNA-binding proteins to
bind various sequence motifs

E. coli [8587]

DNA PACE Evolve dCas9 variants with
broadened PAM compatibility

E. coli [99,100]

Higher-
order
interac-
tions

PACE Evolve bifunctional binder to a
zipper peptide and ULK1

E. coli [103]

1.4 Engineering interactions with RNA

In its simplest form, engineering interactions between nucleic acids such as RNA and

DNA can be very straightforward. For instance, binding to a single-stranded DNA (ssDNA)

sequence can be achieved via a complementary single-stranded DNA or RNA molecule

through easily programmable WatsonCrickFranklin base-pair interactions. However, en-

gineering proteinnucleic acid interactions can be quite challenging, as there is no easily
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decipherable code to program proteins to interact with a specific nucleic acid. In nature,

proteins have evolved to recognize specific RNA motifs through interactions with specific

base sequences, the chemical modification states of bases, and through interactions with

RNA structures. These RNA binding proteins are involved in regulating RNA turnover,

translation, localization, splicing, and post-transcriptional modifications68 . Directed evo-

lution techniques have been applied to alter the binding specificity of proteins with each

type of proteinRNA interaction using both in vitro binding methods, such as phage dis-

play, and in vivo three-hybrid biosensors (Figure 1.1C). These studies have been used to

engineer novel RNA specific binding interactions, as well as to study the evolution of RNA

binding proteins.

Pumilio and FBF homology (PUF) proteins can recognize single-stranded RNA (ss-

RNA) through sequence-specific interactions. Typically, PUF proteins are composed of

eight 36-amino acid repeat Pumillo homology (PUM) domains flanked by N- and C-

terminal regions; these domains form a crescent shape with eight ssRNA nucleotides

binding to the concave face of the protein. Each PUM domain recognizes a specific RNA

base via three conserved side chains [a tbipartite recognition motif (TRM)], and thus,

the specific PUM domains and their order dictate the sequence specificity of the PUF

protein69 . Site-directed mutagenesis of the TRM followed by screening variants via elec-

trophoretic mobility shift assays (EMSAs) has facilitated the interconversion of PUM do-

mains that bind to adenine, uracil, and guanine70 ; however, naturally occurring cytosine

PUM domains have not been discovered. Filipovska et al. used site-directed random mu-

tagenesis paired with a yeast three-hybrid growth-based screening assay to identify PUM

domain mutants capable of binding to cytosine and thus, created a universal code for RNA

recognition by PUF proteins71 . These sequence-specific PUF proteins have been used

in a wide variety of applications, such as the development of a sequence-specific RNA

endonuclease72 . Selection-based techniques have been used to determine the RNA

13



sequence specificity for other PUF proteins73 and to study the evolution of homologs that

recognize different lengths of RNA sequences (810 nt)74 .

RNA can form well-defined structures that proteins in nature have evolved to recog-

nize, and directed evolution can be used to evolve proteins that bind specific RNA struc-

tures. For example, phage display has been used to evolve antibody fragments (Fabs)

that bind to the internal ribosome entry site (IRES) of hepatitis C virus (HCV)75 and com-

petitively inhibit binding of ribosomal proteins to the HCV IRES. Yeast display was utilized

to reprogram the human protein U1A to bind a structured element from the HIV viral RNA

genome76 , and this proteinRNA interaction serves as a key building block for our groups

CIRTS platform for engineering RNA regulatory proteins77,78 . A weakly active dCas13a

variant was diversified using random mutagenesis and then selected by FACS to improve

the ability of dCas13a to target and repress translation of mRNA targets79 . Lastly, with

similar goals as the counter selections employed to evolve specificity into PPIs, novel

selection strategies, such as library-versus-library selection, have been used to evolve

orthogonal RNARNA binding protein pairs80 .

In addition to evolving proteins that bind to mRNA, directed evolution has also been

used to evolve tRNAaminoacyl-tRNA synthetase (aaRS) pairs81 . In this study, the au-

thors first computationally identified potential orthogonal tRNAs and tested for orthogo-

nality against natural aaRS proteins in E. coli and for function with their cognate aaRS in

an E. coli host. However, when the tRNAs that passed these screens were recoded for an

amber suppression codon, they no longer functioned with their cognate aaRS. Thus, di-

rected evolution was performed, generating libraries of aaRS variants followed by screen-

ing for fluorescence, which occurs if an aaRS interacts with the modified tRNA to enable

translation though a GFP stop codon. This yielded additional orthogonal tRNAaaRS pairs

that can be used to further assist genetic code expansion efforts.
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1.5 Engineering interactions with DNA

Categories of proteins that naturally interact with DNA include polymerases, nucle-

ases, and transcription factors. In the initial report on PACE, the system was shown

to be capable of evolving several proteinDNA interactions, including a recombinase and

T7 RNAP38 . In each example, the key property needed to drive pIII production, and

thus phage replication, is binding of an evolving protein to DNA. Since these initial stud-

ies, PACE has been used to evolve RNAPs with orthogonal promoter specificity82,83 and

sequence-specific DNA-binding proteins called TALENs (transcription activator-like effec-

tor nucleases)84 . PACE has also recently been used in combination with rational design

to engineer a DNA E-box motif binder based on the Myc/Max transcription factors85,86

(Figure 2C). In this paper, the PACE platform used a one-hybrid approach to evolve a

DNA binder, which proved superior to previous yeast and bacterial one-hybrid noncontin-

uous evolution campaigns in that increasing the selection pressure over time was used to

combat false positives.

CRISPR-Cas proteins have found widespread use in the development of DNA edit-

ing technologies, yet they tend to have substantial off-target activity and require a PAM

recognition motif at the target DNA87–90 . While RNA guide optimization and the crystal-

lization of Cas9 have enabled rational design efforts to improve specificity91–95 , several

directed evolution campaigns have also been carried out to improve the utility of these sys-

tems. The more specific Sniper-Cas9 variant was generated by creating Cas9 libraries

via error-prone PCR and XL1-red competent cells and screening them in E. coli cells for

cell survival, which depended on them targeting an exact guide match and not targeting

a close mismatch that was encoded in the genomic DNA96 . Screening for on- and off-

target activity among error-prone PCR-generated Cas9 libraries was also used to create

evoCas9 with improved specificity97 . In this report, screens were done in yeast where

targeting an exact guide match led to cell survival and targeting a mismatch led to white
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colonies, whereas no off-target activity created red colonies. PACE has also been used

to evolve Cas9 with increased specificity for a specific PAM and for variants with broader

PAM compatibility using a similar one-hybrid approach as was employed for the DNA box

motif directed evolution46,98 (Figure 1.2C).

Though generating technologies that regulate DNA has been a large focus in the field

of evolving DNA interactions, progress has also been made in understanding the evolution

of natural biological interactions with DNA. For example, multireplicate PACE evolutions

of T7 RNAP to achieve novel promoter specificities led to insights into how path depen-

dence impacts evolutionary trajectories82,83 . In another example, ancestral sequence

reconstruction combined with deep mutational scanning revealed how an ancient tran-

scription factor evolved to achieve novel DNA specificities99 . This study found that many

alternative protein sequences conferred the given functions, further highlighting the role

of contingency through permissive mutations that emerged in history.

1.6 Engineering higher-order interactions

Thus far in this chapter, I have focused on evolution technologies that engineer two-

partner interactions. However, evolution is also able to solve more complex problems,

such as engineering multipartner interactions100 . One recent example from our labora-

tory introduced an experimental evolution system to engineer proteinprotein interaction

glues molecules that bind to two different target proteins to bring them in proximity to

each other101 . The evolution strategy, termed re-PPI-G, mimics our previous PACE de-

signs: two proteins are fused to the N- and C-terminal halves of the split RNAP biosensor

(Figure 1.2D). These fragments are both expressed in the E. coli host cell, and thus,

do not undergo evolution. Rather, another glue fragment is encoded in phage, which

evolves to bring the two proteins together, promoting RNAP reassembly and subsequent

pIII production and phage replication. After optimization, we tested the system by evolv-
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ing a zipper peptide fused to ULK1 to better interact with both the partner zipper peptide

and ULK1s partner, GABARAP. This technology holds promise as a means to rewire

proteinprotein interaction networks, just as current small-molecule PROTAC technologies

do6 .

Coevolving biomolecular interactions has been an exciting field in recent years as

well. Coevolution has primarily been achieved through mutating each partner individu-

ally followed by screening to assess changes in activity, though selection platforms are

emerging as well102 , and advances in deep mutational scanning technologies have en-

abled further progress. To date, coevolution technologies have advanced biochemical

knowledge of PPIs and allowed the generation of orthogonal binding partners and signal-

ing pathways103,104 . However, though real-time whole organism evolution experiments

by nature enable continuous coevolution105,106 , directed experimental continuous co-

evolution has yet to be achieved.

Additional higher-order interactions include protein packaging, which occurs when

viral capsids encapsulate their RNA or DNA genomes. Directed evolution was used to

create a nonviral protein cage based on Aquifex aeolicus lumazine synthase (AaLS) build-

ing blocks that could package a tagged HIV protease107 . To do this, error-prone PCR

was used to create a library of AaLS building blocks, which were then screened in E.

coli for their ability to encapsulate HIV protease, which is otherwise toxic to the cell. The

cage was subsequently evolved using similar directed evolution campaigns to package its

own mRNA108 and more efficiently protect the enclosed RNA from nucleases, resulting

in a structure that mimics those found in natural viruses109 . Computational approaches

have also been used to generate de novo nonviral icosahedral capsid scaffolds based on

viral structures to address the basic scientific question of what is necessary for capsid

formation110,111 . Computationally derived scaffolds were then mutagenized by Kunkel

mutagenesis and screened in E. coli for the ability to encapsulate and protect their own

17



RNA from challenges such as heat and other environments, where survivors could then

be harvested and sequenced to link genotype to successful phenotype. The evolution

campaigns found capsids that achieved RNA packaging activity in cellulo and in mouse

models111 , and an additional deep mutational scanning library provided insight into bio-

chemically important characteristics of nucleocapsids, for example, hydrophobic cores

and positively charged capsid interiors. This series of events spectacularly highlights a

trend present in this review: the synergy between computational approaches followed by

experimental evolution to generate robust biomolecular interactions. Just as molecular

docking has proved a powerful technique in small-molecule inhibitor development, so too

could computational methods provide potential starting points for evolving new interac-

tions.

Although this chapter has focused on evolving proteins to interact with components of

the central dogma (Figure 1.3), it is also worth noting a few related advances. Biomolecules

can be decorated with various modifications that go beyond nucleotides and natural amino

acids. Examples where directed evolution has been used to generate proteins that rec-

ognize such modifications include proteins that can bind proteins with glycan and sulfo-

tyrosine additions112,113 and the reprogramming of RNA reverse transcriptase to interact

with specific nucleic acid methylation sites114 . Moreover, systematic evolution of ligands

by exponential enrichment (SELEX) technologies create DNA and RNA aptamers capa-

ble of binding proteins and small molecules and are often used for detection purposes114

. Just as recent advances have highlighted additional roles that nucleic acids can play

other than the traditionally ascribed role of information storage and transfer, progress has

also been made in engineering nucleic acidnucleic acid interactions that go beyond that of

simple base pairing. Efforts to expand the genetic code have required experimental evo-

lutions of tRNAribosome interactions to enable quadruplet codons115,116 . While others

have focused on engineering orthogonal tRNAtRNA synthetase pairs, self-aminoacylating
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tRNA ribozymes, dubbed Flexizymes, were evolved, which allow for genetic code expan-

sion117 , and evolution of the ribosome itself is being done to allow further expansion of

what types of synthetic proteins can be made115,118,119 . Furthermore, DNA enzymes,

which are not known to exist in nature, have been evolved for a variety of purposes over

the past 2030 years, as reviewed elsewhere120 .

Figure 1.3 Directed evolution has been employed, or could in principle be em-
ployed, to evolve proteins that interact with DNA, RNA, and other proteins to fa-
cilitate biomolecular interactions in the above areas.

1.7 Concluding remarks

As our understanding of the diverse interactomes of the biomolecules of life contin-

ues to expand, so too has our ability to evolve biomolecular interactions. Experimental

evolution can approximate replaying the tape of life and thus give insight into the molec-

ular basis of evolving interactions, and it can also generate new or improved interactions

for use in studying biology and creating novel biotechnologies. Despite significant suc-

cesses and advances over the past 30 years, the full potential of evolution has still not

been harnessed as a design approach for evolving biomolecular interactions. The devel-

opment of biosensor technologies has spurred advances in evolving different interaction

types and promises to continue to do so (see Box 2 for outstanding questions). Novelty is
19



certainly important for progress, yet efficiency and selectivity are also paramount. Easily

deployable methodologies, robust continuous evolution systems, advanced automation,

and computational approaches for improved library design will ensure that experimental

evolution becomes more accessible and successful in the coming years.

1.8 Supplementary notes

1.8.1 Eukaryotic continuous directed evolution

Like PACE, eukaryotic continuous directed evolution efforts aim to evolve biomolecules

by linking a desired activity to survival and, critically, to focus the evolution on a desired

gene. One approach that has been developed is to engineer a native retrotransposon

to elevate mutation rates of its corresponding cargo39 . Additionally, OrthoRep uses an

orthogonal error-prone DNA polymerase that specifically drives replications and muta-

tions of a gene expressed in a plasmid in yeast45 . A similar platform is seen in the

recently realized compatibility of EvolvR for use in bacteria and yeast; here, dCas9 is

linked to an error-prone DNA polymerase such that targeted mutagenesis is possible121

. As in PACE, the challenge then becomes linking activity to fitness, which can be done

though employing various biosensors to evolve activities such as catalysis and binding.

Though the replication rate of yeast is lower than that of phage, meaning the evolutionary

process in principle takes longer than PACE to achieve the same number of rounds of

mutagenesis and selection a noteworthy advantage of yeast continuous evolution is that

activity can be evolved in a eukaryotic cellular context, which is arguably more suited to

evolving biomolecules that can function in humans than the bacterial environment. Ad-

vances such as combining OrthoRep with automated continuous culture technologies122

and with yeast surface display48 showcase the great potential of using yeast as a conduit

for directed evolution.
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Continuous directed evolution in mammalian cells is also a fast-growing yet challeng-

ing area of research. Like PACE, mammalian cell continuous evolution approaches seek

to use viruses as a conduit for directed evolution, in one method by a double-stranded

DNA adenovirus40 and in another by a single-stranded RNA Sindbis alphavirus, the latter

of which is known as VEGAS41 . For a recent perspective on this field, please see ref32 .

1.8.2 Outstanding questions

How does nature compare to laboratory evolution, and how can the lessons of natural

evolution inform how to better deploy evolutionary principles in the laboratory?

Can we employ multiple negative and/or positive selections simultaneously to evolve

more than one characteristic in a molecule (e.g., allostery)?

What methods can be used to evolve biomolecular interactions not yet amenable to

directed evolution, such as interactions with lipids, in vivo continuous coevolution, and

proteinprotein interaction inhibitors? I address the latter in Chapter 3 with my recent

advent of PANCS-PPIi.

Can we evolve biomolecular interactions radically different than those found in na-

ture (e.g., synthetic translational machinery for sequence defined polymers and protein

materials, control of phase transition/protein condensates)?

Current continuous evolution techniques generally require some small level of activity

how can one generate truly novel function without pre-existing function (e.g., with robust

de novo libraries) using continuous evolution techniques?

As a continuous evolution technology, PACE has been expanded to evolve a vari-

ety of interactions can we adapt similar selection strategies for yeast and mammalian

continuous technologies?.
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CHAPTER 2

CONTINGENCY AND CHANCE ERASE NECESSITY IN THE

EXPERIMENTAL EVOLUTION OF ANCESTRAL PROTEINS

The roles of chance, contingency, and necessity in evolution are unresolved because

they have never been assessed in a single system or on timescales relevant to histori-

cal evolution. My colleagues and I combined ancestral protein reconstruction and a new

continuous evolution technology to mutate and select proteins in the B-cell lymphoma-2

(BCL-2) family to acquire proteinprotein interaction specificities that occurred during an-

imal evolution. By replicating evolutionary trajectories from multiple ancestral proteins,

we found that contingency generated over long historical timescales steadily erased ne-

cessity and overwhelmed chance as the primary cause of acquired sequence variation;

trajectories launched from phylogenetically distant proteins yielded virtually no common

mutations, even under strong and identical selection pressures. Chance arose because

many sets of mutations could alter specificity at any timepoint; contingency arose be-

cause historical substitutions changed these sets. Our results suggest that patterns of

variation in BCL-2 sequences and likely other proteins, too are idiosyncratic products of

a particular and unpredictable course of historical events.

2.1 Introduction

The extent to which biological diversity is the necessary result of optimization by nat-

ural selection or the unpredictable product of random events and historical contingency

is one of evolutionary biologys most fundamental and unresolved questions123–126 . The

answer would have strong implications not only for our understanding of evolutionary pro-

cesses but also for how we should analyze the particular forms of variation that exist

today. For example, if diversity primarily reflects a predictable process of adaptation to
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distinct environments, then a central goal of biology would be to explain how the charac-

teristics of living things help to execute particular functions and improve fitness127 . By

contrast, if diversity reflects chance sampling from a set of similarly fit possibilities, then

the variation itself is of little interest because it does not affect biological properties or

shape future evolutionary outcomes; the goal of biology would be to identify the invariant

characteristics of natural systems and explain how they contribute to function128–131 .

Finally, if diversity reflects contingency a strong dependence of future outcomes on initial

conditions or subsequent events, also known as path-dependence then the outcomes

of evolution would be predictable only given complete knowledge of the constraints and

opportunities specific to each set of conditions106,132–134 ; the goal of biology would then

be to characterize these constraints and opportunities, their mechanistic causes, and the

historical events that shaped them.

Many studies have provided insight into the ways that chance, contingency, and ne-

cessity can affect the evolution of molecular sequences and functions, but the relative

importance of these factors during evolutionary history remains unresolved because they

have never been measured in the same system, and their effects over long evolutionary

time scales have not been characterized. For example, experiments on ancestral proteins

have shown that particular historical mutations have different effects when introduced into

different ancestral backgrounds suggesting contingency but they do not reveal the extent

to which context-dependence actually influenced evolutionary outcomes; further, these

historical trajectories happened only once, so they cannot elucidate the effect of con-

tingency relative to chance135–144 . Experimental evolution studies could, in principle,

characterize both chance and contingency if they had sufficient replication from multiple

starting points, but to date no study has done so; furthermore, no study has imposed se-

lection on historical proteins to acquire functions that changed during history, so their rele-

vance to historical evolution is not clear83,145–156 . Studies of phenotypic convergence in
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nature suggest some degree of repeatability at the genetic level (reviewed in refs157–160

, but these studies rarely involve replicate lineages from the same starting genotypes,

and evolutionary conditions are seldom identical; as a result, similarities and differences

among lineages cannot be attributed to chance, contingency, or necessity. Furthermore,

these studies have typically involved closely related species or populations and therefore

do not measure the effects of chance and contingency that might be generated during

long-term evolution.

The ideal experiment to determine the relative roles of chance, contingency, and ne-

cessity in historical evolution would be to travel back in time, re-launch evolution multiple

times from each of various starting points that existed during history, and allow these

trajectories to play out under historical environmental conditions123 . By comparing out-

comes among replicates launched from the same starting point, we could estimate the

effects of chance; by comparing those from different starting points, we could quantify

the effects of contingency that was generated along historical evolutionary paths (Figure

2.1). Necessity would be apparent if the same outcome recurred in every replicate, ir-

respective of the point from which evolutionary trajectories were launched and changes

that occurred subsequently: in that case, evolution would be both deterministic (free of

chance) and insensitive to initial and intervening conditions (noncontingent). Although

time travel is currently impossible, we can approximate this ideal design by reconstructing

ancestral proteins as they existed in the deep past161 and using them to launch replicated

evolutionary trajectories in the laboratory under selection to acquire the same molecular

functions that evolved during history.
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Figure 2.1 Assessing the effects of chance and contingency during evolution.
Each panel (A-D) shows the capacity of one experimental design to detect chance and
contingency; the quadrants within each panel show evolutionary scenarios with varying
degrees of chance and contingency. Chance (y-axis within each panel) is defined as
random occurrence of events from a probability distribution in which multiple events have
probability > 0 given some defined starting point; in the absence of chance, evolution is
deterministic because a single outcome always occurs from any starting genotype. Con-
tingency (x-axis within each panel) is defined as differences in this probability distribution
given different starting or subsequent conditions; in the absence of contingency, outcomes
are insensitive to these conditions, and all starting points lead to the same outcome or set
of outcomes. Lines connect starting genotypes (white circles) to evolutionary outcomes.
Quadrants show evolution under the influence of chance (orange), contingency (blue), or
both (black); outcomes are necessary (brown, with dotted line) when neither chance nor
contingency is important. Potential trajectories that are not observed because of deficien-
cies in experimental design are shown with reduced opacity. Thick black lines between
quadrants in (AD) separate evolutionary scenarios that can be distinguished from each
other given each design. (A) Assessing one evolutionary replicate from one starting point
provides no information about the extent to which chance, contingency, or necessity shape
the outcome. (B) Assessing multiple replicates from one starting point can detect chance
but provides no information about contingency. (C) Assessing one replicate each from
multiple starting points can detect necessity or its absence, but cannot not distinguish
between chance and contingency. (D) Studying multiple replicates from multiple starting
genotypes allows chance, contingency, and necessity to be distinguished.
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Here we implement this strategy using the B-cell lymphoma-2 (BCL-2) protein family

as a model system and the specificity of proteinprotein interactions (PPIs) as the target of

selection. BCL-2 family proteins are involved in the regulation of apoptosis162–165 through

PPIs with coregulators166–169 . Although there are many dimensions to BCL-2 family

proteins cellular effects, different binding specificities for coregulator proteins are a critical

determinant of their particular biological functions. Among BCL-2 family members, the

myeloid cell leukemia sequence 1 protein (MCL-1) class strongly binds both the BID and

NOXA coregulators, whereas the BCL-2 class (a subset of the larger BCL-2 protein family)

strongly binds BID but not NOXA (Figure 2.2A)170 . The two classes share an ancient

evolutionary origin: both are found throughout the Metazoa171,172 and are structurally

similar, using the same cleft to interact with their coregulators (Figure 2.2B, Figure 2.3),

despite having only 20% sequence identity.
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Figure 2.2 BID specificity was acquired during vertebrate BCL-2 evolution.
(A) Protein binding specificities of extant BCL-2 family members. Human MCL-1 (hsMCL-
1, purple) strongly binds BID (blue) and NOXA (red), while human BCL-2 (hsBCL-2,
green) strongly binds BID but not NOXA. (B) Crystal structures of MCL-1 (purple) bound
to NOXA (red, PDB 2nla), and BCL-xL (green, a closely related paralog of BCL-2) bound
to BID (blue, PDB 4qve). (C) Reduced maximum likelihood phylogeny of BCL-2 family
proteins. Purple bar, MCL-1 class; green bar, BCL-2 class. The phylogeny was rooted
using as outgroups the paralogs BOX, BAK, and BAX (black bar). Heatmaps indicate
BID (blue) and NOXA (red) binding measured using the luciferase assay. Each shaded
box shows the normalized mean of three biological replicates. Red dotted lines, inter-
val during which NOXA binding was lost, yielding BID specificity in the BCL-2 proteins
of vertebrates (green box). Purple box, vertebrate MCL-1. Silhouettes, representative
species in each terminal group. AncMB1-M and -B are alternative reconstructions using
different approaches to alignment ambiguity (see Materials and methods). For complete
phylogeny, see Figure 2.5.
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Figure 2.3 BCL-2 family proteins are structurally similar but have different binding
profiles.
Crystal structures and overlays of BCL-xL (a vertebrate paralog of BCL-2, light green)
bound to BID (light blue; PDB: 4qve); BCL-2 (green) bound to BAX (a protein with a
BID-like binding profile, blue; PDB: 2xa0); MCL-1 (purple) bound to BAX (blue; PDB:
3pk1); and MCL-1 bound to NOXA (red; PDB: 2nla). The BCL-2 family proteins bind the
coregulator proteins at the same interface.

To drive the evolution of new PPI specificities, we developed a new high-throughput

phage-assisted continuous evolution (PACE) system38 that can simultaneously select for

and against particular PPIs63,173 . We applied this technique to a series of reconstructed

ancestral BCL-2 family members, repeatedly evolving each starting genotype to acquire

PPI specificities found among extant family members. By comparing sequence outcomes

among PACE replicates from the same starting point, we quantified the role of chance in

the evolution of historically relevant molecular functions under strong and identical selec-
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tion pressures; by comparing outcomes of PACE initiated from different starting points,

we quantified the effect of contingency generated by the sequence changes that accu-

mulated during these proteins histories. This design also allowed us to characterize how

these factors have changed over phylogenetic time and dissect the underlying genetic

basis by which they emerged.

2.2 Results

2.2.1 BID specificity is derived from an ancestor that bound both BID and

NOXA

We first characterized the historical evolution of PPI specificity in the BCL-2 family

using ancestral protein reconstruction (Figure 2.4). We inferred the maximum likelihood

phylogeny of the family, which recovered the expected sister relationship between the

metazoan BCL-2 and MCL-1 classes (Figure 2.2C, Figure 2.5). We then reconstructed

the most recent common ancestor (AncMB1) of the two classes a gene duplication that

occurred before the last common ancestor (LCA) of all animals and 11 other ancestral

proteins that existed along the lineages leading from AncMB1 to human BCL-2 (hsBCL-2)

and to human MCL-1 (hsMCL-1) (Supplementary file 1).

Figure 2.4 Ancestral sequence reconstruction procedure in schematic form.
(1) Sequences are collected, including those of proteins conferring different functions (red
v. blue)and others with unknown functions (black). These sequences may be orthologs
from various species, paralogs related by gene duplication events, or both. (2) Sequences
are aligned. (3) A phylogeny is inferred. (4) Using the inferred phylogeny, the aligned
sequences, and a model of sequence evolution, the most likely state at each ancestral
node is determined. (5) Ancestral sequences are synthesized and tested for function. (6)
Functional differences among successive ancestral proteins indicate functional changes
during evolutionary history (red bar).
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Figure 2.5 Maximum likelihood phylogeny of BCL-2 family proteins.
Light green, vertebrate BCL-2; light-medium and dark-medium green, vertebrate BCLX
and BCLW, respectively; dark green, non-vertebrate sequences most closely related to
vertebrate BCL-2; red, vertebrate MCL-1; maroon, vertebrate BFL1; light purple, verte-
brate NRH; dark purple, non-vertebrate sequences most closely related to vertebrate
MCL-1; dark blue, BAX; medium blue, BAK; light blue, BOK; black, ctenophore se-
quences. Parentheses, number of sequences in each clade. Black squares, ancestral
sequences reconstructed and tested. Node labels, approximate likelihood ratio statistics
and transfer bootstrap values. Asterisks, nodes constrained to be congruent with known
taxonomic relationships.
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We synthesized genes coding for these proteins and experimentally assayed their

ability to bind BID and NOXA using a proximity-dependent split RNA polymerase (RNAP)

luciferase assay (Figure 2.6).63 AncMB1 bound both BID and NOXA, as did all ancestral

proteins in the MCL-1 clade and hsMCL-1 (Figure 2.2C, Supplementary file 1). An-

cestral proteins in the BCL-2 clade that existed before the LCA of deuterostomes also

bound both BID and NOXA, whereas BCL-2 ancestors within the deuterostomes bound

only BID, just as hsBCL-2 does. This reconstruction of history was robust to uncertainty

in the ancestral sequences: experiments on AltAll proteins at each ancestral node which

combine all plausible alternative amino acid states (posterior probability > 0.2) in a single

worst-case alternative reconstruction also showed that BID specificity arose within the

BCL-2 clade (Figure 2.6, Supplementary file 2).
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Figure 2.6 Binding of BID and NOXA to extant and ancestral proteins.
(A) Schematic of the luciferase reporter assay to assess PPIs. If a BCL-2 family protein
(black) binds a coregulator protein (blue), the split T7 RNAP biosensor (gray) assembles
and drives luciferase expression. If a coregulator (pink) is not bound, no luciferase is
expressed. (B) Interactions of human BCL-2 and MCL-1 with BID (blue bars) and NOXA
(red) in the luciferase assay, compared to no-coregulator control (gray). Activity is scaled
relative to no-coregulator control with no-BCL-2 protein. Columns and error bars, mean
± SD of three biological replicates (circles). Shaded boxes above show the same data in
heatmap form: BID activity is normalized relative to hsBCL-2 with BID; NOXA activity is
normalized to hsMCL-1 with NOXA. (C) Interactions of ancestral reconstructed proteins
with BID (blue) and NOXA (red) in the luciferase assay, compared to no-coregulator con-
trol (gray). Activity is scaled relative to no-coregulator control with no-BCL-2 family pro-
tein. Columns and error bars, mean ± SD of three biological replicates. hsBCL-2 with BID
(dashed blue line). hsMCL-1 with NOXA (dashed red line). (D) Same as (C), but for ex-
tant species Hydra magnapapillata (Cnidaria), Octopus bimaculoides (Lophotrochozoa),
Saccoglossus kowalevskii (Hemichordata), Branchiostoma belcheri (Cephalochordata),
Trichoplax adhaerens (Placozoa), and Stegodyphus mimosarum (Ecdysozoa). (E) Same
as (C), but contains alternative reconstructions (Alt) for each ancestral protein, which
combine all plausible alternative amino acid states (PP > 0.2) in a single worst-case alter-
native reconstruction. (F) Same as (C), but contains multiple alternative reconstructions
for AncMB1_B. In each case, all plausible alternative amino acid states with PP greater
than the listed value are included in a single worst-case alternative reconstruction.
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To further test this inferred history, we characterized the coregulator specificity of ex-

tant BCL-2 class proteins from taxonomic groups in particularly informative phylogenetic

positions. Those from Cnidaria were activated by both BID and NOXA, whereas those

from protostomes and invertebrate deuterostomes were BID-specific (Figure 2.2C, Fig-

ure 2.6, Supplementary file 1). These results corroborate the inferences made from

ancestral proteins, indicating that BID specificity evolved when the ancestral ability to

bind NOXA was lost between AncB2 (in the ancestral eumetazoan) and AncB4 (in the

ancestral deuterostome).

2.2.2 A directed continuous evolution system for rapid changes in PPI

specificity

To rapidly evolve BCL-2 family proteins to acquire the same PPI specificities that

existed during the familys history, we developed a new PACE system (Figure 2.7A-B,

Figure 2.8)38 . Previous PACE systems have evolved binding to new protein partners

using a bacterial 2-hybrid approach61 , but evolving PPI specificity requires simultane-

ous selection for a desired PPI and against an undesired PPI. For this purpose, we used

two orthogonal proximity-dependent split RNAPs that recognize different promoters in

the same cell and if reconstituted by a PPI activate transcription of positive and nega-

tive selectable markers. Specifically, the N-terminal fragment of RNAP was fused to the

BCL-2 protein of interest and encoded in the phage genome, and two C-terminal RNAP

fragments (RNAPc), each fused to a different BCL-2 coregulator, were encoded on host

cell plasmids. One RNAPc is fused to the selected-for coregulator and drives expression

of an essential viral gene (gIII) when reconstituted by binding to the BCL-2 protein; the

other RNAPc, fused to the counter-selected coregulator, drives expression of a dominant-

negative version of gIII (Pu et al., 2017a). Phage containing BCL-2 variants that bind the

positive selection protein but not the counterselection protein produce infectious phage.
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After optimizing this system, we used activity-dependent plaque assays and phage growth

assays to confirm that it imposes strong selection for the PPI specificity profiles of extant

hsBCL-2 and hsMCL1 (Figure 2.7D).

34



Figure 2.7 Continuous directed evolution of specificity in modern and ancestral
BCL-2 family proteins.
(A) Top: Components of the PACE system for evolving PPI specificity. The protein tar-
geted for altered specificity (black) is fused to the N-terminus of RNAP (RNAPN, dark
gray) and placed into the phage genome (SP, selection plasmid). Host cells carry acces-
sory plasmids (+AP and AP) that contain the C-terminus of RNAP (RNAPc) fused to pep-
tides for which specificity is desired (blue, positive selection protein; pink, counterselection
protein). Binding of the target protein to either the selection protein or counterselection
protein reconstitutes a functional RNAP. Binding of RNAP to the corresponding promoter
results in the expression of either gIII (teal) or gIIIneg (gold). gIII is necessary to pro-
duce infectious phage. gIIIneg is a dominant-negative version of gIII which results in the
production of non-infectious phage. An arabinose-inducible mutagenesis plasmid in the
system (MP) increases the mutation rate of the evolving protein. Bottom: PACE schemes
for evolving PPI specificities. (B) Plasmid maps of the SP, APs, and MP. (C) Selection for
protein variants with the desired specificity. Infection by a phage carrying a protein vari-
ant that (Upper left) binds neither the positive selection nor the counterselection protein
results in production of little to no progeny phage, (Upper right) binds only the positive
selection protein results in expression of gIII and production of infectious phage, (Lower
left) binds only the counterselection protein results in expression of gIIIneg and production
of non-infectious phage, (Lower right) binds the positive selection and counterselection
proteins results in expression of both gIII and gIIIneg, leading to production of primarily
non-infectious phage. (D) Phage growth assays to assess selection and counterselec-
tion. Detection limit 103 PFU/mL. Bars show mean ± SD of three replicates (circles). (E)
Phylogenetic relations of starting genotypes used in PACE.
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Figure 2.8 Using PACE to evolve target PPI specificity of BCL-2 family proteins.
(A) Schematic of a PACE experiment. Davis Rich carboy media flows into the chemostat,
which contains E. coli with the positive selection (+AP), counterselection (AP), and mu-
tagenesis plasmids (MP). The cells then flow into the lagoons, which contain phage with
the evolving BCL-2 family protein. Arabinose is pumped into the lagoons to induce the
mutagenesis plasmid in the E. coli. Both chemostats and lagoons are connected to the
waste to maintain proper volume, cell density, and flow rate. (B) Picture of representative
PACE experiment from this work.

The simplicity of this platform allowed us to drive extant and reconstructed ancestral

proteins to recapitulate or reverse the historical evolution of the BCL-2 familys PPI speci-

ficity in multiple replicates in just days, without severe experimental bottlenecks. Three

proteins that bound both BID and NOXA hsMCL-1, AncM6, and AncB1 were selected

to acquire the derived BCL-2 phenotype, retaining BID binding and losing NOXA binding.

Conversely, hsBCL-2, AncB5, and AncB4 were evolved to gain NOXA binding, revert-

ing to the ancestral phenotype (Figure 2.7C,E, Figure 2.9). For each starting genotype,

we performed four replicate experimental evolution trajectories (Supplementary file 3).

Each experiment was run for 4 days, corresponding to approximately 100 rounds of viral

replication38 . All trajectories yielded the target PPI specificity, which we confirmed by

experimental analysis of randomly isolated phage clones using activity-dependent plaque

assays and in vivo and in vitro binding assays (Figure 2.9, Figure 2.10A,B, Figure 2.11).

As in prior PACE experiments, variation in the selected phenotype was observed among
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individual phage isolates within the final populations83 , presumably because of large

populations, high mutation rates, and/or inadequate time for fixation.

Figure 2.9 Selection schemes and phage titers for changes in PPI specificity.
(A) Timeline of PACE experiments when hsMCL-1, AncM6, and AncB1 were evolved to
lose NOXA binding. ZBneg is a control zipper peptide. (B) Phage titers (PFU/mL) over
time (bottom) and activity-dependent phage titers at the end of the PACE experiments
(top) when hsMCL-1 was evolved to lose NOXA binding. Activity-dependent plaque as-
says used plasmids 28-46 and Jin 487. (C) Same as (E) for AncM6. dim means plaques
were visible but weak, and therefore not quantifiable. (D) Same as (E) for AncB1. (E)
Timeline of PACE experiments when hsBCL-2, AncB5, and AncB4 were evolved to gain
NOXA binding. (F) Phage titers (PFU/mL) over time (bottom) and activity-dependent
phage titers at the end of the PACE experiments (top) when hsBCL-2 was evolved to
gain NOXA binding. Activity-dependent plaque assays used plasmids 2848 and 2939.
(G) Same as (H) for AncB5. (H) Same as (H) for AncB4.
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Figure 2.10 Chance and contingency shape evolutionary outcomes.
(A) Phenotypic outcome of PACE experiments when proteins with MCL-1-like specificity
were selected to maintain BID and lose NOXA binding. For each starting genotype, the
BID (blue) and NOXA (red) binding activity of the starting genotype and three phage
variants isolated from each evolved replicate (number) are shown as heatmaps. (B) Phe-
notypic outcome of PACE experiments when proteins with BCL-2-like specificity were se-
lected to gain NOXA binding. (C) Frequency of acquired states in PACE experiments when
proteins with MCL-1-like specificity were selected to maintain BID and lose NOXA binding.
Rows, outcomes of each replicate trajectory. Columns, sites that acquired one or more
non-wild-type amino acids (letters in cells) at frequency >5%; color saturation shows the
frequency of the acquired state. Site numbers and wild-type amino acid (WT AA) states
are listed. Gray, sites that do not exist in AncB1. (D) Frequency of acquired states when
BCL-2-like proteins were selected to gain NOXA binding. (E) Repeatability of acquired
states across replicates. The 100 non-WT states acquired in all experiments were cate-
gorized as occurring in 1 or >1 replicate trajectory from 1 or >1 unique starting genotype,
with the number in each category shown. The vast majority of states evolved in just one
replicate from one starting point (black). (F) Historical substitutions that contributed to
the change in PPI specificity rarely occur or revert during PACE. Rows, substitutions that
historically occurred between AncB1 and AncB4, the ancestral proteins that flank the loss
of NOXA on the phylogeny. For each substitution, columns show whether the historical
ancestral or derived state was acquired in PACE trajectories from each ancestral starting
point. Purple and green boxes, PACE acquisition of ancestral or derived state, respec-
tively, in each replicate. White boxes, neither state acquired.
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Figure 2.11 Fluorescence polarization of PACE-evolved variants.
(A) BID fluorescence polarization for hsMCL-1 variants evolved to lose NOXA binding.
Bars are the mean of three replicates; error bars, SD. mFP, normalized measured fluo-
rescent polarization. Kd estimates are shown below in the table. (B) Same as (A), but
for NOXA binding. (C) BID fluorescence polarization for hsBCL-2 variants evolved to gain
NOXA binding. (D) Same as (C), but for NOXA binding.

2.2.3 Chance and contingency erase necessity in the evolution of PPI

specificity

We used deep sequencing to compare the sequence outcomes of evolution across

trajectories initiated from the same and different starting points (Figure 2.12). Necessity

was almost entirely absent. Across all trajectories, 100 mutant amino acid states at 75

different sites evolved to frequency > 5% in at least one replicate (Figure 2.10C,D, Fig-

ure 2.13, Supplementary file 4). Of these acquired states, 73 appeared in only a single

trajectory, and only four arose in more than one replicate from multiple starting points

(Figure 2.10E, Figure 2.14). When selection was imposed for binding to both BID and

NOXA, no states were predictably acquired in all trajectories from all starting points. The

only mutation universally acquired under any selection regime was a nonsense mutation
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at codon 271, which was acquired in all trajectories selected for BID specificity, but ex-

perimental analysis of this mutation shows that it has no detectable effect on coregulator

binding (Figure 2.15).

Figure 2.12 MiSeq library preparation.
After isolation of phage DNA, the coding region of the evolving BCL-2 family protein was
amplified in three overlapping fragments, each of which was smaller than 300 bp. The
DNA fragments were then amplified using sequence-specific primers. MiSeq adapters
were added in a second PCR step. These fragment libraries were combined and used
for MiSeq sequencing. Blue, target gene coding region. Gray, adjacent vector sequence.
Green, forward adapter and barcode sequence. Orange, reverse adapter and barcode
sequence. Magenta, index one sequence. Purple, index two sequence.
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Figure 2.13 Frequency of insertions and deletions during PACE.
(A) Allele frequency of frameshifts in replicate PACE experiments started from hsMCL-
1, AncM6, and AncB1 evolved to lose NOXA binding. Site numbers and wild-type (WT)
amino acid states are listed above each sequence. Each row represents an indepen-
dent replicate population. Non-wild-type insertions and deletions that reached >5% in
frequency are shown, with frequency proportional to color saturation. Split cells show
populations with multiple non-WT states > 5%. Plus (+) indicates an addition of a nu-
cleotide. Delta (∆) indicates a deletion of a nucleotide. (B) Same as (A), but for replicate
PACE experiments of hsBCL-2, AncB5, and AncB4 evolved to gain NOXA binding.
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Figure 2.14 Categories of the 100 non-WT states observed for each non-WT state.
Black box with white letters, mutant states observed in only one replicate. Teal, mutant
states observed in multiple replicates from the same starting genotype. Orange, mutant
states observed in a single replicate from multiple different starting genotypes. Brown,
mutant states observed in multiple replicates from the same starting genotype and in at
least one other replicate from a different starting genotype. Black box outline, mutant
states observed in multiple replicates from the same starting genotype and from multiple
replicates from a different starting genotype. Gray boxes are sites that do not exist in a
particular sequence.
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Figure 2.15 Effect of w271* mutation on BID and NOXA binding.
Activity is scaled relative to the control experiment with no- BCL-2 family protein and no-
coregulator peptide. Bars show the mean ± SD of three biological replicates (circles).
Gray bar, no-coregulator peptide. Blue bar, BID. Red bar, NOXA. Blue dotted lines mark
the average signal of hsBCL-2 with BID, and red dotted lines mark the average signal of
hsMCL-1 with NOXA.

Both chance and contingency contributed to this pervasive unpredictability. Pairs

of trajectories launched from the same starting point differed, on average, at 78% of

their acquired states, indicating a strong role for chance. Pairs that were launched from

different starting points (but selected for the same PPI specificity) differed at an average

of 92% of acquired states, indicating an additional role for contingency.

These starting points are separated by different amounts of evolutionary divergence,

so to understand the extent of contingency over the timescale of metazoan evolution, we

compared trajectories launched from AncB1 to those launched from hsMCL-1 (the two

most distant genotypes that were selected for BID specificity). Of 34 states acquired

in these experiments, only three occurred in at least one trajectory from both starting

points. Of 40 states acquired in trajectories launched from AncB4 and hsBCL-2 (the two
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most distant proteins that were selected to gain NOXA binding), only one occurred in

any trajectories from both starting points. Together, contingency generated across long

phylogenetic timescales and chance therefore make sequence evolution in the BCL-2

family almost entirely unpredictable.

These experiments indicate an almost complete lack of necessity in the evolution of

PPI specificity in PACE. To gain insight into the extent of necessity in the historical evo-

lution of BCL-2 PPI specificity, we asked whether substitutions that occurred during the

phylogenetic interval when NOXA binding was lost (between AncB1 and AncB4) were ei-

ther repeated or reversed during PACE trajectories to lose or regain NOXA binding from

any starting point (Figure 2.10F, Figure 2.16, Figure 2.17). In PACE experiments to lose

NOXA binding from proteins that initially bound both peptides, none of the acquired states

recapitulated substitutions from the branch on which NOXA binding was historically lost.

In PACE experiments to reacquire NOXA binding from proteins with BCL2-like specificity

for BID, only two states reversed historical substitutions that occurred on that branch.

Both of these reacquisitions occurred in PACE trajectories launched from AncB4, the

immediate daughter node of this branch, suggesting that in other proteins, contingency

accumulated over phylogenetic time restricted their accessibility. Furthermore, both of

these states were acquired in only a subset of trajectories from AncB4, indicating a role

for chance even from this starting point. Some substitutions that occurred during other

historical intervals were recapitulated or reversed during PACE trajectories, indicating that

these states are compatible with BCL-2 family protein functions, but these substitutions

could not have contributed to historical changes in PPI specificity, which remained un-

changed on these branches. Our experiments therefore suggest strong effects of chance

and contingency in the historical evolution of BCL-2’s derived PPI specificity.
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Figure 2.16 Historical distribution of PACE mutations.
Historical WT states for each starting genotype are listed. Green, hsBCL-2 like func-
tion. Purple, hsMCL-1 like function. Solid vertical line, historical interval in which function
changed. Dashed vertical line, location of the phylogeny root. For each PACE muta-
tion, the genotype on which it arose is in a square. The nearest historical state that the
mutation matches is in a circle. PACE mutations can either recapitulate historical sub-
stitutions, revert to historical states, or switch to a state found in a sister lineage. PACE
mutations that revert historical states that changed during the interval at the same time
as the change in function or outlined in red.
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Figure 2.17 Phylogenetic recapitulation of PACE mutations.
Mutation state and position are given above each cladogram. Lowercase letters, WT state
for PACE. Uppercase letters, mutant state for PACE. Each cladogram shows the estimated
most likely state for each ancestral node and the majority state for each extant clade. Gray
boxes; same WT state as the sequence in which the PACE mutation emerged. Black
boxes; same WT state as the PACE mutation. Arrows point from the starting genotype for
PACE (larger font) to the closest genotype with the PACE mutation. Red boxes show the
two instances in which substitutions that occurred during the historical interval in which
NOXA specificity was lost (red hash marks on phylogeny) also occurred during PACE.
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2.2.4 Historical contingency is the major cause of sequence variation un-

der selection for new functions

We next sought to directly quantify the relative effects of chance and historically gen-

erated contingency on sequence outcomes in our experiments. We analyzed the genetic

variance defined as the probability that two variable sites, chosen at random, are different

in state within and between trajectories from the same and different starting genotypes.

To estimate the effects of chance, we compared the genetic variance between replicates

initiated from the same starting genotype (Vg) to the within-replicate genetic variance (Vr).

We found that Vg was on average 30% greater than Vr, indicating that chance causes evo-

lution to produce divergent genetic outcomes between independent lineages even with

strong selection for a change in function (Figure 2.18A). We quantified contingency by

comparing the pooled genetic variance among replicates from different starting genotypes

(Vt) to that among replicates from the same starting genotype (Vg). Contingencys effect

was even larger than that of chance, increasing Vt by an average of 80% across all pairs

of starting points compared to Vg when selecting for a new function. Together, chance

and contingency had a multiplicative effect, increasing the genetic variance among tra-

jectories from different starting genotypes (Vt) by an average of 2.4-fold compared to the

genetic variance within trajectories (Vr). The effects of chance and contingency were

not significantly different between PACE experiments in which protein interactions were

gained and those in which they were lost (Figure 2.19).
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Figure 2.18 Effects of chance and contingency.
(A) Variation in evolutionary sequence outcomes caused by chance (orange), contingency
(teal), and both (black). Inset: schematic for estimating the effects of chance and contin-
gency. Chance was estimated as the average genetic variance among replicates from the
same starting genotype (Vg) divided by the within-replicate genetic variance (Vr). Con-
tingency was estimated as the average genetic variance among replicates from different
starting genotypes (Vt) divided by the average genetic variance among replicates from
the same starting genotype (Vg). Combined effects of chance and contingency were
estimated as the average genetic variance among replicates from different starting geno-
types (Vt) compared to the within-replicate genetic variance (Vr). Genetic variance is
the probability that two randomly drawn alleles are different in state. Error bars, 95%
confidence intervals on the mean by bootstrapping PACE replicates. (B) Change in the
effects of chance and contingency over phylogenetic distance. Each point is for a pair
of starting proteins used for PACE, comparing the phylogenetic distance (the total length
of branches separating them, in substitutions per site) to the effects of chance (orange),
contingency (teal), or both (black), when PACE outcomes are compared between them.
Solid lines, best-fit linear regression. Letters indicate the phylogenetic branch indexed
in Figure 2.7E. The combined effect of chance and contingency increased significantly
with phylogenetic distance (slope=0.19, p=2x105), as did the effect of contingency alone
(slope=0.11, p=0.007). The effect of chance alone did not depend on phylogenetic dis-
tance (slope=0.02, p=0.5). The combined effect of chance and contingency increased
significantly faster than the effect of contingency alone (slope=0.08, p=0.04). Arrow, phy-
logenetic distance between extant hsMCL-1 and hsBCL-2 proteins, which share AncMB1
as their most recent common ancestor.

48



Figure 2.19 Change in chance and contingency over time.
(A) Relationship between phylogenetic distance between pairs of starting genotypes for
experimental evolution (ancestral or extant proteins, as the total branch lengths separat-
ing them) and the effects of chance (orange), contingency (teal), or both (black) on the
outcomes of evolution between them. Lines are best fits from linear models. Circles
are observed values. Diamonds are averages of 1000 permutations of starting geno-
type labels. This shuffling of genotype labels results in more genetic variance among
samples from the same starting genotype than the observed data, and less genetic vari-
ance between samples from different starting genotypes than the observed data. Letters
indicate the specific branch from Figure 3E. (B) Change in chance over time. Green,
both starting genotypes had BCL-2 like function. Purple, both starting genotypes had
MCL-1 like function. Black, starting genotypes differed in function. Phylogenetically in-
dependent comparison are shown as diamonds. The effect of chance did not change
with phylogenetic distance when restricting analysis to comparisons that are phylogenet-
ically independent (slope=0.042, p=0.71) and genotypes selected for the same function
(slope=0.029, p=0.82). (C) Change in contingency over time. Green, both starting geno-
types had BCL-2 like function. Purple, both starting genotypes had MCL-1 like function.
Black, starting genotypes differed in function. Phylogenetically independent comparison
are shown as diamonds. The effect of contingency increased with phylogenetic distance
and was marginally significant when restricting analysis to comparisons that are phyloge-
netically independent (slope=0.31, p=0.07), and genotypes selected for the same func-
tion (slope=0.42, p=0.05). (D) Change in the combined effect of chance and contingency
over time. Green, both starting genotypes had BCL-2 like function. Purple, both starting
genotypes had MCL-1 like function. Black, starting genotypes differed in function. Phy-
logenetically independent comparison are shown as diamonds. The combined effect of
chance and contingency increased with phylogenetic distance when restricting analysis
to comparisons that are phylogenetically independent (slope=0.50, p=0.009) and geno-
types selected for the same function (slope=0.63, p=0.01). (E) Effects of chance and
contingency do not depend on the selection regime. Each column shows the portion of
genetic variance among trajectories that was caused by chance or contingency, relative
to the within-population variance (see Figure 2.18A). Green, trajectories in which BCL-2
like starting genotypes were selected to gain NOXA binding. Purple, trajectories in which
MCL-1 like starting genotypes were selected to lose NOXA binding but maintain BID bind-
ing (purple). Error bars, 95% confidence intervals on the mean. p-values estimated by
t-test.
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The preceding analyses do not account for phylogenetic structure or the extent of

divergence between starting points. We therefore assessed how chance and contingency

changed with phylogenetic distance using linear regression (Figure 2.18B, Figure 2.19).

We found that the effect of contingency on genetic variance increased significantly with

phylogenetic divergence among starting points. The effect of chance did not increase

with divergence, but the combined effect of contingency and chance increased even more

rapidly than contingency alone because the total impact on genetic variance of these two

factors is multiplicative by definition.

We next compared the impact of contingency to that of chance as phylogenetic di-

vergence increases. On the timescale of metazoan evolution, contingencys effect (an

increase in genetic variance by about 100%) was three times greater than that of chance

when evolution was launched from extant starting points whose LCA was AncMB1, near

the base of Metazoa (Figure 2.18B). The combined effect of chance and contingency

on this timescale was a 3.2-fold increase in variance among single trajectories launched

from these starting points. Even across the shortest phylogenetic intervals we studied,

contingencys effect was larger than that of chance, although to a smaller extent. Taken to-

gether, these data indicate that contingency, magnified by chance, steadily increases the

unpredictability of evolutionary outcomes as protein sequences diverge across history.

2.2.5 Contingency is caused by epistasis between historical substitutions

and specificity-changing mutations

Contingency is expected to arise in our experiments if historical substitutions (which

separate ancestral starting points) interact epistatically with mutations that occur during

PACE, causing the mutations that can confer selected PPI specificities to differ among

starting points. To experimentally test this hypothesis and characterize underlying epistatic

interactions, we first identified sets of candidate causal mutations that arose repeatedly
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during PACE replicates from each starting genotype. We then verified their causal ef-

fect on specificity by introducing only these mutations into the protein that served as the

starting point for the PACE experiment in which they were observed and measuring their

effects on BID and NOXA binding. We found that all sets were sufficient to confer the

selected-for specificity in their native background (Figure 2.20A,B).

Figure 2.20 Sources of contingency.
(A) Epistatic incompatibility of PACE mutations in other historical proteins. Effects on
activity are shown when amino acid states acquired in PACE under selection to acquire
NOXA binding (red arrows) are introduced into ancestral and extant proteins. The listed
mutations that occurred during PACE launched from each starting point (rows) were intro-
duced as a group into the protein listed for each column. Observed BID (blue) and NOXA
(red) activity in the luciferase assay for each mutant protein are shown as heatmaps (nor-
malized mean of three biological replicates). Letters indicate the phylogenetic branch
in Figure 3E that connects the PACE starting genotype to the recipient genotype. Plus
and minus signs indicate whether mutations were introduced into a descendant or more
ancestral sequence, respectively. (B) Effects on activity when amino acids acquired in
PACE under selection to lose NOXA binding and acquire BID binding are introduced into
different ancestral and extant proteins, represented as in (A). (C) Epistatic interactions
between historical substitutions and PACE mutations. Restrictive historical substitutions
(X) cause mutations that alter PPI specificity in an ancestor to abolish either BID (blue)
or NOXA (red) activity when introduced into later historical proteins. Permissive substitu-
tions (+) cause PACE mutations that alter PPI specificity in a descendent to abolish either
BID or NOXA activity in an ancestor. Arrow, gain or maintenance of binding. Blunt bar,
loss of binding. Mutations that confer selected functions in PACE are shown in the boxes
at the end of solid arrows or bars. Solid lines, functional changes under PACE selection.
Dashed lines, functional effects different from those selected for when PACE-derived mu-
tations are placed on a different genetic background.

We then introduced these mutations into the other starting proteins that had been

subject to the same selection regime and performed the same assay (Figure 2.20A,B).
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Eleven of 12 such swaps failed to confer the PPI specificity on other proteins that they

conferred in their native backgrounds. These swaps compromised binding of BID, failed

to confer the selected-for gain or loss of NOXA binding, or both. The only case in which

the mutations that conferred the target phenotype during directed evolution had the same

effect in another background was the swap into AncB4 of mutations that evolved in AncB5

the most similar genotypes of all pairs of starting points in the analysis. Contingency

therefore arose because historical substitutions that occurred during the intervals between

ancestral proteins made specificity-changing mutations either deleterious or functionally

inconsequential when introduced into genetic backgrounds that existed before or after

those in which the mutations occurred.

To characterize the timing and effect of these epistatic substitutions during histor-

ical evolution, we mapped the observed incompatibilities onto the phylogeny (Figure

2.20C). We inferred that restrictive substitutions evolved on a branch if mutations that

arose during directed evolution of an ancestral protein compromised coregulator binding

when swapped into descendants of that branch. Conversely, we inferred that permis-

sive substitutions evolved on a branch if mutations that arose during directed evolution

compromised coregulator binding when swapped into more ancient ancestral proteins.

We found that both permissive and restrictive epistatic substitutions occurred on al-

most every branch of the phylogeny and affected both BID and NOXA binding. The only

exception was the branch from AncB4 to AncB5, on which only restrictive substitutions

affecting NOXA binding occurred. This is the branch immediately after NOXA function

changed during history; it is also the shortest of all branches examined and the one with

the smallest effect of contingency on genetic variance (Figure 2.18B). Even across this

branch, however, the PACE mutations that restore the ancestral PPI specificity in AncB4

can no longer do so in AncB5. These results indicate that the paths through sequence

space leading to historical PPI specificities changed repeatedly during the BCL-2 familys
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history, even during intervals when the proteins PPI binding profiles did not evolve.

2.2.6 Chance is caused by degeneracy in sequence-function relation-

ships

For chance to strongly influence the outcomes of adaptive evolution, multiple paths

to a selected phenotype must be accessible with similar probabilities of being taken. This

situation could arise if several different mutations (or sets of mutations) can confer a new

function or if mutations that have no effect on function accompany function-changing mu-

tations by chance. To distinguish between these possibilities, we measured the functional

effect of different sets of mutations that arose in replicates when hsMCL-1 was evolved

to lose NOXA binding (Figure 2.21A, Figure 2.22). One mutation (v189G) was found at

high frequency in all four replicates, but it was always accompanied by other mutations,

which varied among trajectories. We found that v189G was a major contributor to the

loss of NOXA binding, but it had this effect only in the presence of the other mutations,

which did not decrease NOXA binding on their own. Mutation v189G therefore required

permissive mutations to occur during directed evolution, and there were multiple sets of

mutations with the potential to exert that effect; precisely which permissive mutations oc-

curred in any replicate was a matter of chance. All permissive mutations were located

near the NOXA binding cleft, suggesting a common mechanistic basis (Figure 2.21B).
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Figure 2.21 Sources of chance.
(A) Dissecting the effects of sets of mutations (white boxes) that caused hsMCL-1 to lose
NOXA binding during four PACE trajectories. Filled boxes show the effect of introducing
a subset of mutations into hsMCL-1 (normalized mean relative from three biological repli-
cates). Solid lines show the effect of introducing v189G, which was found in all four sets.
Dotted lines, effects of the other mutations in each set. (B) Structural location of muta-
tions in (A). Alpha-carbon atom of mutated residues are shown as purple spheres on the
structure of MCL-1 (light gray) bound to NOXA (red, PDB 2nla). (C) Location of repeated
mutations when hsMCL-1, AncM6, and AncB1 were selected to lose NOXA binding (pur-
ple spheres), represented on the structure of MCL-1 (gray) bound to NOXA (red, PDB
2nla). (D) Location of repeated mutations when hsBCL-2, AncB5, and AncB4 were se-
lected to gain NOXA binding (green spheres), on the structure of hsBCL-xL (gray) bound
to BID (blue, PDB 4qve).

54



Figure 2.22 Effects on NOXA binding of hsMCL-1 PACE-derived mutations.
Each panel shows NOXA binding (y-axis) for a unique variant as additional mutations are
added (x-axis). Values are the mean of three biological replicates. Heatmaps show the
effects of each mutation on BID (blue) and NOXA (red) activity, and each shaded box rep-
resents the normalized mean of three biological replicates. Lines connect genotypes that
differ by a single mutation. Solid lines show the effects of the v189G mutation. Dashed
lines show the effects of all other mutations. Mutations come from variants L1-1 (A), L3-1
(B), L3-3 (C), and L4-3 (D).

Other starting genotypes showed a similar pattern of multiple sets of mutations ca-

pable of conferring the selected function (Figure 2.23). In addition, when mapped onto

the protein structure, all sites that were mutated in more than one replicate either di-

rectly contacted the bound peptide or were on secondary structural elements that did so

(Figure 2.21CD), suggesting a limited number of structural mechanisms by which PPIs
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can be altered. Taken together, these results indicate that chance arose because from

each starting genotype, there were multiple mutational paths to the selected specificity;

partial determinism arose because the number of accessible routes was limited by the

structure-function relationships required for peptide binding in this family of proteins.

Figure 2.23 Phenotypic effects of reverting frequent PACE-derived mutations.
Individual variants were isolated from PACE experiments that selected for the gain of
NOXA binding in hsBCL-2 (A) and AncB4 (B) and the loss of NOXA binding in hsMCL-
1 (C), AncM6 (D), and AncB1 (E). For each variant, non-WT states are colored. Sites
and WT amino state are indicated at top. Heatmaps on the left show binding to BID and
NOXA in the luciferase assay for each variant and their corresponding mutant without
the key mutation. Each shaded box represents the normalized mean of three biological
replicates.
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2.2.7 Partial determinism is attributable to a limited number of function-

changing mutations

We next analyzed the genetic basis for the limited degree of determinism that we

observed in our experiments. Specifically, we sought to distinguish whether, from a given

BID-specific starting point, only a few genotypes can confer NOXA binding while retaining

BID binding or, alternatively, whether there are many such genotypes, but under strong

selection a few are favored over others.

We performed PACE experiments in which we selected hsBCL-2 to retain its BID

binding, without selection for or against NOXA binding; we then screened for variants

that fortuitously gained NOXA binding using an activity-dependent plaque assay (Figure

2.24A,B). All four replicate populations produced clones that neutrally gained NOXA bind-

ing at a frequency of 0.1% to 1% lower than when NOXA binding was directly selected

for but five orders of magnitude higher than when NOXA binding was selected against

(Figure 2.24A, Figure 2.25). From each replicate, we then sequenced three NOXA-

binding clones and found that all but one of them contained mutation r165L (Figure

2.24B), which also occurred at high frequency when the same protein was selected to

gain NOXA binding (Figure 2.26). We introduced r165L into hsBCL-2 and found that it

conferred significant NOXA binding with little effect on BID binding (Figure 2.27). Several

other mutations appeared repeatedly in clones that fortuitously acquired NOXA binding,

and these mutations were also acquired under selection for NOXA binding (Figure 2.24B,

Figure 2.27). A similar pattern of common mutations was observed in AncB4 and AncB5

clones that fortuitously or selectively evolved NOXA binding (Figure 2.28). These ob-

servations indicate that the partial determinism we observed arises because from these

starting points only a few mutations have the potential to confer NOXA binding while re-

taining BID binding.
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Figure 2.24 Sources of determinism.
(A) Evolution of NOXA-binding phage under various selection regimes. Frequency was
calculated as the ratio of plaque forming units (PFU) per milliliter on E. coli cells that
require NOXA binding to the PFU on cells that require BID binding to form plaques. Wild-
type hsBCL-2 (green) and hsMCL-1 (purple) are shown as controls. Arrow, positive se-
lection for function. Bar, counterselection against function. Blue, BID. Red, NOXA. Bars
are the mean of four trajectories for each condition (points). (B) Phenotypes and geno-
types of hsBCL-2 variants that evolved NOXA binding under selection to maintain only
BID binding. Sites and WT amino state are indicated at top. For each variant, non-WT
states acquired are shown in green. Heatmaps show binding to BID and NOXA in the
luciferase assay for each variant (normalized mean of three biological replicates).

58



Figure 2.25 Selection schemes and phage titers for fortuitous NOXA binding of hs-
BCL2.
(A) Timeline of PACE experiments when hsBCL-2 was evolved with positive selection to
maintain only BID binding. Selection conditions shown as arrows and blunt bars: arrow,
selection for binding to BID (blue); blunt bar, selection against binding to ZBneg (gray). (B)
Phage titers (PFU/mL) over time (bottom) and activity-dependent phage titers on NOXA
at the end of the PACE experiment (top) when hsBCL-2 was evolved to maintain BID
binding. Activity-dependent plaque assays used plasmid 2848. (C) Timeline of PACE
experiments when hsBCL-2 was evolved with positive selection to maintain BID binding
and negative selection against NOXA binding. Selection conditions shown as arrows and
blunt bars: arrow, selection for binding to BID (blue); gray blunt bar, selection against
binding to Zbneg; red blunt bar, selection against binding to NOXA. (D) Same as (B), but
for hsBCL-2 evolved to bind BID and not NOXA. Activity-dependent plaque assays used
plasmids 28-48 and Jin 487.
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Figure 2.26 Allele frequency of non-wt states during PACE.
Allele frequency of non-wild-type states when hsBCL-2 was evolved to maintain BID bind-
ing (top) or when hsBCL-2 was evolved to simultaneously maintain BID binding and lose
NOXA binding (middle). For comparison, the same sites are also shown for when hsBCL-
2 was evolved to gain NOXA binding (bottom). Site numbers and wild-type (WT) amino
acid states are listed above each sequence. Each row represents an independent repli-
cate population. Non-wild-type amino acids that reached > 5% in frequency are shown,
with frequency proportional to color saturation.
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Figure 2.27 Effect on NOXA binding of the key r165L mutation.
Bars are the mean ± SD of three biological replicates (circles). Solid lines show the
effects of the r165L mutation while dotted lines show the effect of a frameshift (fs) at site
262.
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Figure 2.28 Selection and phage titers for fortuitous NOXA binding of AncB4 and
AncB5.
(A) Timeline of PACE experiments when AncB4 was evolved with positive selection to
maintain only BID binding. Selection conditions shown as arrows and blunt bars: arrow,
selection for binding to BID (blue); blunt bar, selection against binding to ZBneg (gray).
(B) Phage titers (PFU/mL) over time when AncB4 was evolved to maintain BID binding.
(C) Phenotypes and genotypes of individual AncB4 variants that were isolated from PACE
when selecting for BID binding and screened for the gain of NOXA binding. Site numbers
and wild-type (WT) amino acid states are indicated at the top. Heatmaps on the left show
binding to BID (blue) and NOXA (red) in the luciferase assay for each variant, and each
shaded box represents the normalized mean of three biological replicates. (D) Non-wild-
type amino acid states that reached >5% in frequency are shown for PACE when AncB4
was evolved to gain NOXA binding, for comparison with (C). Frequency is proportional to
color saturation. Split cells show populations with multiple non-WT states > 5%. Each
row represents an independent replicate lagoon. Color of WT state indicate if the mu-
tation was seen among multiple replicates of the same starting genotype (teal), a single
replicate from multiple starting genotypes (orange), or in multiple replicates and multiple
starting genotypes (brown). Black box outline indicates mutant states observed in multiple
replicates from the same starting genotype and from multiple replicates from a different
starting genotype. (E) Same as (A) but for AncB5. (F) Same as (B) but for AncB5. (G)
Same as (C) but for AncB5. (H) Same as (D) but for AncB5.
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2.2.8 Contingency can affect accessibility of new functions

Although we found that chance and contingency strongly influenced sequence out-

comes in our experiments, all trajectories acquired the historically relevant PPI specifici-

ties that were selected for, indicating strong necessity at the level of protein function. This

was true whether evolution began from more promiscuous starting points that bound both

BID and NOXA or from more specific proteins that bound only BID.

To further probe the evolutionary accessibility of new functions, we used PACE to se-

lect for a PPI specificity that never arose during historical evolution binding of NOXA but

not BID. We found that trajectories launched from hsMCL-1 (which binds both coregula-

tors) readily evolved the selected phenotype, but two PACE-evolved variants of hsBCL-2,

which had acquired the same PPI profile as hsMCL-1, went extinct under the same selec-

tion conditions (Figure 2.29, Figure 2.30). The inability of the derived hsBCL-2 genotypes

to acquire NOXA specificity was not attributable to a general lack of functional evolvability

by these proteins because they successfully evolved in a separate PACE experiment to

lose their NOXA binding but retain BID binding (Figure 2.31). These results establish that

contingency can influence the accessibility of new functions and that the sequence by

which a specific functional phenotype is encoded can play important roles in subsequent

phenotypic evolution.
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Figure 2.29 Contingency affects the evolution of novel specificity.
Starting genotypes that can bind both BID and NOXA (left) were selected to lose only BID
or NOXA binding. Heatmaps show binding to BID and NOXA in the luciferase assay for
each starting genotype (on the left) and for three individual variants picked at the end of
one or more PACE trajectories (index numbers). Each box displays the normalized mean
of three biological replicates for one variant. Trajectories initiated from starting points
produced by PACE (green) and then selected for a non-historical function (loss of BID
binding) went extinct.
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Figure 2.30 Selection scheme and phage titers for the gain of NOXA specificity.
(A) Timeline of PACE experiments where hsMCL-1 and two previously evolved NOXA-
binding hsBCL-2 variants were evolved to maintain NOXA binding and lose BID binding.
Selection conditions: arrow, selection for binding NOXA (red); blunt bar, selection against
binding a specific peptide (BID [blue] or ZBneg [gray]). (B) Phage titers (PFU/mL) over
time (bottom) and activity-dependent phage titers at the end of the PACE experiment (top)
where hsMCL-1 and NOXA-binding hsBCL-2 variants were evolved for binding NOXA and
against BID. Activity-dependent plaque assays used plasmids 28-48 and Jin 518. Limit of
detection = 103 PFU/mL. (C) Allele frequency of non-wild-type states after hsMCL-1 was
evolved to maintain NOXA binding and lose BID binding. Site numbers and wild-type (WT)
amino acid states are listed above each sequence. Each row represents an independent
replicate lagoon. Non-wild-type amino acid frameshifts that reached >5% in frequency
are shown, with frequency proportional to color saturation.
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Figure 2.31 Selection scheme and phage titers for the regain of BID specificity.
Phage titers (PFU/mL) over time (bottom) and activity-dependent phage titers at the end
of the PACE experiment (top) where NOXA-binding hsBCL-2 variants were evolved to lose
NOXA binding. Activity-dependent plaque assays used plasmids 2846 and Jin 487.

2.3 Discussion

The two major paradigms of 20th-century evolutionary biology-the adaptationist pro-

gram127 and the neutral theory of molecular evolution174 - focus on either necessity or

chance, respectively, as the primary mode of causation that produces natural variation in

molecular sequences. Neither of these schools of thought admits much influence from
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contingency or history. From an adaptationist perspective, variation is caused by natural

selection, which generates optimal forms under different environmental conditions. Dif-

ferences in protein sequence or other properties are interpreted as the result of adaptive

changes that improved a molecules ability to perform its function in the species particular

environment175–178 . For neutralists, variation reflects the influence of chance in choos-

ing among biologically equivalent possibilities, and conservation reflects purifying selec-

tion, both of which are viewed as largely unchanging across sequences in an alignment.

For example, conserved portions of molecular sequences are interpreted as essential to

structure and function, whereas differences in sequence alignments reflect a lack of con-

straint179–181 . In neither worldview, does the particular state of a system strongly reflect

its past or shape its evolutionary future. Recent work has shown that contingency might

affect the sequence outcomes of evolution135,136,141,143,146,182–187 , echoing themes

raised in paleontology123,124 and developmental biology188,189 . Despite these recent

findings, the dominance of the adaptationist and neutralist worldviews, and the continu-

ing rhetorical battle between them190,191 , has obscured the possibility that contingency

might join selection, drift, and mutation as a primary factor shaping the outcomes of evo-

lution.

We found that contingency generated by sequence change over phylogenetic timescales

plays a profound role in BCL-2 family protein sequence evolution under laboratory selec-

tion for new functions. The mutations that rose to high frequency during experimental

evolution were almost completely different among evolutionary trajectories initiated from

historical starting points separated by long phylogenetic distances. We observed a strong

role for chance (because trajectories launched from the same starting point evolved ex-

tensive differences from each other) and an even greater effect of contingency (because

pools of trajectories launched from different starting genotypes evolved even greater dif-

ferences). When combined, chance and contingency erased virtually all traces of neces-
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sity between individual trajectories initiated from distantly related starting points. With the

exception of a single truncation mutation that does not affect the selected-for function, the

only predictable sequence states were those that remained unchanged from the starting

point in all trajectories, presumably because they are unconditionally necessary for both

PPIs tested and were therefore conserved by purifying selection.

Contingency and chance are distinct but interacting modes of causality; our experi-

ments allowed us to disentangle their individual effects and interactions. By calculating

genetic variance among replicates from the same starting point and among pooled repli-

cates from different starting points, we quantified the effect of chance and contingency,

respectively. The total effect of chance and contingency together, that is, genetic variance

among replicates from different starting points, is by definition the product of the separate

effects of chance and contingency. This quantitative relationship reflects the intrinsic inter-

action between chance and contingency in evolutionary processes133,192 . At any point

in history, numerous sets of mutations were accessible, and chance determined which

ones occurred. These chance events then determined the steps that could be taken dur-

ing future intervals, because of contingency. Without chance, contingency - dependence

of the accessibility of future trajectories on the proteins state - would never be realized

or observed: all phylogenetic lineages launched from a common ancestor would always

lead to the same intermediate steps and thus the same ultimate outcomes. Conversely,

without contingency, chance events would have no impact on the accessibility of other

mutations because every path that was ever open would remain forever so, irrespective of

the random events that happen to take place. The outcomes of evolution from a common

ancestral starting point are therefore unpredictable when intermediate steps shape future

possibilities (contingency), and those intermediate steps cannot be predicted because

multiple possibilities are accessible at any point in history (chance).

Our experimental design approximates but does not quite achieve the ideal design of
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multireplicate evolution from ancestral starting points under historical conditions, because

the conditions we imposed during PACE differ in several ways from those that pertained

during historical evolution. Many factors that give rise to chance, contingency, and ne-

cessity are likely to be similar between history and our experiments. For example, factors

related to a proteins sequence-structure-function relations, such as the number of mu-

tations that can produce a particular function and the nature of epistasis among them,

play a key role in chance and contingency and are shared between PACE and history.

Other aspects of our design may underestimate the effects of chance and contingency

during history. For example, the population genetic parameters in our experimental con-

ditions favor determinism because they involve very large population sizes, strong selec-

tion pressures, and high mutation rates, all directed at a single gene. If population sizes

during historical BCL-2 family evolution involved smaller populations, weaker selection,

lower mutation rates, and a larger genetic target size for adaptation, as seems likely, then

chance would have played an even larger role during history than in our experiments. In

addition, we used human BID and NOXA as fixed binding partners, but during real evo-

lution these proteins would have varied in sequence as well, introducing opportunities for

chance and contingency to further affect the sequence outcomes of BCL-2 evolution.

Some differences between our design and the biological setting of historical BCL-2

family evolution could have overestimated chances historical role. We selected for PPI

interactions with two particular peptides, leaving out many potential cellular binding part-

ners. PACE takes place in the cytosol of E. coli cells, but BCL-2 evolution occurred in

animal cells, and natural BCL-2 proteins are partially membrane-bound. These addi-

tional dimensions of BCL-2 biological function could have imposed additional selective

constraints on the evolution of BCL-2 family proteins historically, reducing the number of

functionally equivalent genotypes available to chance. We used peptide fragments from

coregulator proteins rather than full-length BID and NOXA; however, the peptide-binding
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cleft is cytosolic, and recent work indicates that relative affinity of BCL-2 family proteins is

similar between peptides and full-length coactivators, although absolute affinity is typically

higher in the latter case164 . Whether these differences quantitatively affect chance and

contingency in PACE versus historical evolution is unknown. Finally, because our experi-

mental design imposed selection for new PPI specificities, it does not reveal the effects of

chance and contingency under different selective regimes, such as purifying selection to

maintain an existing function, which may or may not be similar.

We studied a particular protein family as a model, but we expect that qualitatively

similar results may apply to many other proteins. Epistasis is a common feature of protein

structure and function, so the accumulating effect of contingency across phylogenetic time

in the BCL-2 family will probably be a general feature of protein evolution, although its rate

and extent are likely to vary among protein families and timescales138,187,193,194 . The in-

fluence of chance depends upon the existence of multiple mutational sets that can confer

a new function; this kind of degeneracy is likely to pertain in many cases: greater deter-

minism is expected for functions with very narrow sequencestructurefunction constraints,

such as catalysis150,151,160,195–197 , than those for which sequence requirements are

less strict, such as substrate binding99,146,156,198 . Consistent with this prediction, when

experimental evolution regimes have imposed diffuse selection pressures on whole or-

ganisms, making loci across the entire genome potential sources of adaptive mutations,

virtually no repeatability has been observed among replicates155,199 .

The method that we developed for rapid evolution of PPI specificity has several ad-

vantages that can be extended to other protein families. First, by using PACE, many

replicates can be evolved in parallel across scores or hundreds of generations in just

days, with minimal need for intervention by the experimentalist38 . Second, our split

RNAP design for acquiring new PPIs has fewer components than previous methods for

this purpose, such as two-hybrid designs; this makes it considerably easier to tune and
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optimize and therefore to extend to other protein systems. Third, unlike approaches that

attempt to evolve specific PPIs by alternating selection and counterselection through time,

our platform simultaneously imposes selection and counterselection within the same cell,

thus selecting for specificity directly. By combining these elements in a single system, our

platform should allow rapid multireplicate evolution of new cytosolic PPI specificities in a

variety of protein families.

Our results have implications for efforts to engineer proteins with desired properties.

We found no evidence that ancestral proteins were more or less evolvable than extant

proteins: the selected-for phenotypes readily evolved from both extant and ancestral pro-

teins with the same starting binding capabilities. Moreover, chances effect was virtually

constant across 1 billion years of evolution, indicating that the number of accessible

mutations in the deep past that could confer a selected-for function was apparently no

greater than it is now. Nevertheless, the strong effect of contingency that we observed

on sequence evolution and its partial role in the acquisition of new functions per se sug-

gests that efforts to produce proteins with new functions by design or directed evolution

will be most effective and will lead to more diverse sets of sequence outcomes, if they use

multiple different protein sequences as starting points, ideally separated by long intervals

of sequence evolution. Ancestral proteins can be useful for this purpose simply because

they provide routes to functions that were inaccessible from extant protein, even if those

routes are not fundamentally different in number or kind.

Finally, our work has implications for understanding the processes of protein evolu-

tion and the significance of natural sequence variation. Our observations suggest that

sequencestructurefunction associations apparent in sequence alignments are to a signifi-

cant degree the result of contingent constraints that were transiently imposed or removed

by chance events during history99,137,138,143 . Evolutionary explanations of sequence

diversity and conservation must therefore explicitly consider the historical trajectories by
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which sequences evolved, in contrast to the largely history-free approaches of the dom-

inant schools of thought in molecular evolution. Our findings suggest that present-day

BCL-2 family proteins and potentially many others, as well are largely physical anec-

dotes of their particular unpredictable histories: their sequences reflect the interaction of

accumulated chance events during descent from common ancestors with necessity im-

posed by physics, chemistry, and natural selection. Apparent design principles in the

pattern of variability and conservation in extant proteins reflect not how things must be to

perform their functions, or even how they can best do so. Rather, todays proteins reflect

the legacy of opportunities and limitations that they just happen to have inherited.
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2.4 Materials and methods

Table 2.1 Key resources table.

Reagent type or
resource

Designation Source or refer-
ence

Identifiers

E. coli strain S1030 ref200

E. coli strain 1059 ref200

E. coli strain NEB 10-beta NEB Cat#C3019I
E. coli strain BCL21 (DE3) NEB Cat#C2530H
Peptide, recom-
binant protein

BID GenScript This study- human BID
peptide used for fluores-
cence polarization

Peptide, recom-
binant protein

NOXA Genscript This study- human NOXA
peptide used for fluores-
cence polarization

Commercial as-
say or kit

DNA clean and
concentrator kit

Zymo Cat#D4013

Commercial as-
say or kit

MiSeq Reagent
Kit v3

Illumina Cat#MS-1023003

Chemical com-
pound, drug

Q5 DNA Poly-
merase

NEB Cat#M0491

Chemical com-
pound, drug

Phusion DNA
polymerase

ThermoFisher
Scientific

Cat#F518L

Chemical com-
pound, drug

IPTG bioWORLD Cat#21530057

Chemical com-
pound, drug

His60 Ni Super-
flow Resin

Takara Cat#635660

Software, algo-
rithm

Geneious Geneious 10.1.3

Software, algo-
rithm

R CRAN 3.5.1

Software, algo-
rithm

RStudio RStudio 1.1.456

Software, algo-
rithm

PROT Test ref201 3.4.2

Software, algo-
rithm

RAXML-ng ref202 0.6.0
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2.4.1 Phylogenetics

Amino acid sequences of the human BCL-2, BCLW, BCL-xL, MCL-1, NRH, BFL1,

BAK, BAX, and BOK paralogs were used as starting points for identifying BCL-2 family

members in other species. For each paralog, tblastn and protein BLAST on NCBI BLAST

were used to identify orthologous sequences between January and March of 2018203

. Sequences for each paralog were aligned using MAFFT (G-INS-I) with the allowshift

option and unalignlevel set at 0.1. For each paralog, phylogenetic structure was deter-

mined using fasttree 2.1.11 within Geneious 10.1.3. Missing clades based on known

species relationships were then identified, and specific tblastn searches were used within

Afrotheria (taxid:311790), Marsupials (taxid:9263), Monotremes (taxid:9255), Squamata

(taxid:8509), Archosauria (taxid:8492), Testudinata (taxid:8459), Amphibia (taxid:8292),

Chondrichthyes (taxid:7777), Actinopterygii (taxid:7898), Dipnomorpha (taxid:7878), Ac-

tinistia (taxid:118072), Agnatha (taxid:1476529), Cephalochordata (taxid:7735), and Tuni-

cata (taxid:7712) as needed. Additional sequences were added by downloading genome

and transcriptome data for tuatara204 , sharks and rays205 , gar206 , 2018), ray-finned

fish207 , lamprey208 , hagfish209 , Ciona savignyi206 , tunicates210 , echinoderms211 ,

porifera212 , and ctenophores213 . In each case, local BLAST databases were created in

Geneious and searched using tblastn. Finally, we used BCL-2DB to add missing groups

as needed214 .

After collection of sequences, each paralog was realigned using MAFFT (G-INS-I)

with the allowshift option and unalignlevel set at 0.1. Based on known species relation-

ships, lineage-specific insertions were removed and gaps manually edited. Only a sin-

gle sequence was kept among pairs of sequences differing by a single amino acid and

sequences with more than 25% of missing sites were removed. For difficult to align se-

quences, sequences were modeled on the structures of human BCL-2 family members

using SWISS-Model to identify likely locations of gaps215 . Finally, paralogs were profile
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aligned to each other, and paralog-specific insertions were identified.

In total, 151 amino acid sites from 745 taxa were used to infer the phylogenetic rela-

tionships among BCL-2 family paralogs. PROT Test 3.4.2 was used to identify the best-fit

model among JTT, LG, and WAG, with combinations of observed amino acid frequen-

cies (+F), gamma distributed rate categories (+G), and an invariant category (+I)201 .

From this, JTT + G + F had the highest likelihood and lowest Aikake Information Crite-

rion score. RAXML-ng 0.6.0 was then used to identify the maximum likelihood tree using

JTT+G12+F0 (12 gamma rate categories with maximum likelihood estimated amino acid

frequencies)202 . Finally, we enforced monophyly within each paralog for the following

groups: lobe-finned fish (n = 9), ray-finned fish (n = 9), jawless fish (n = 5), cartilaginous

fish (n = 8), tunicates (n = 4), branchiostoma (n = 4), chordates (n = 5), ambulacraria (n =

5, hemichordata +echinodermata), deuterostomia (n = 5), protostomia (n = 5), cnidaria (n

= 5), and porifera (n = 4) (values in parenthesis are number of identified paralogs in each

group) and used RAXML-ng with JTT + G12 + F0 to identify the best tree given these

constraints (Supplementary Data Phylogenetic.Data.zip).

Overall, we recovered three clades: a pro-apoptotic clade; a clade containing the

BCL-2, BCLW, and BCLX vertebrate paralogs and BCL non-vertebrate sequences; and a

clade containing the MCL-1, BFL1, and NRH vertebrate paralogs and MCL non-vertebrate

sequences. We used the pro-apoptotic clade as the outgroup to the two anti-apoptotic

clades. Within the BCL-2 clade, the majority of vertebrates contained all three copies.

However, the exact relationship among the paralogs was unclear; only two copies were

identified within jawless fish and their phylogenetic placement had weak support. Non-

vertebrate clades tended to have good support and only a single copy. However, support

for these groups following established species relationships was often limited. The MCL-1

clade contained the fastest evolving paralogs of the BCL-2 family. As with the BCL-2-like

clade, only two copies were found within the jawless fish and the exact sister relationships
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among paralogs was unclear. Non-vertebrates contained only a single copy, but as with

the BCL-2-like clade, support for relationships following established species relationships

was often weak.

The BCL-2-like and MCL-1-like paralogs formed a clade with the BHP1 and BHP2

sequences from porifera. The sister relationships among these four clades were unre-

solved. In addition, we recovered a sister relationship between the BAK and BAX par-

alogs. While both paralogs contained copies from porifera, these clades evolved quickly

and had relatively low support, and they may be artifactual. We identified only a single

clade of ctenophores. Finally, the placement of BOK was unresolved; BOK may be sister

to the BAK/BAX clade or an outgroup to all clades and the most ancient copy of the BCL-2

family.

2.4.2 Ancestral reconstruction

Posterior probabilities of each amino acid at each site were inferred using Lazarus216

to run codeml within PAML. We used the same model and alignment as used to infer

the phylogeny. We used the branch lengths and topology of the constrained maximum

likelihood phylogeny found by raxml-ng.

We first reconstructed the LCAs of all BCL-2 and MCL-1 like sequences, AncMB1-

M, using the maximum likelihood state for each alignable site. We then reconstructed

a series of ancestors from AncMB1 to modern human MCL-1. These included AncM1

(LCA of MCL-1-related sequences), AncM2 (LCA of MCL-1- related deuterostomes and

protostomes), AncM3 (LCA of MCL-1-related deuterostomes), AncM4 (LCA of MCL-1-

related urochordates and chordates), AncM5 (LCA of MCL-1, BFL1, and NRH like copies

in vertebrates), AncM6 (LCA of MCL-1 and BFL1 like copies), AncMCL-1 (LCA of MCL-

1 like copies), AncMCL-1-G (LCA of MCL-1 like Gnathostomes), AncMCL-1-O (LCA of

MCL-1 like Osteichthyes), and AncMCL-1-T (LCA of MCL-1 like Tetrapods), AncMCL-1-
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A (LCA of MCL-1 like Amniotes), and AncMCL-1-M (LCA of MCL-1 like Mammals). In

each case, the sequence of each ancestor used the maximum likelihood state at each

site, with gaps inserted based on parsimony. We used the modern sequences of human

MCL-1 to fill in portions of the sequence that showed poor alignment and could not be

reconstructed, including both the N and C terms, as well as the loop between the first

and second alpha helices. Average posterior probabilities for ancestors in the MCL-1

clade ranged from 0.73 (AncM6) to 0.98 (AncMCL-1-M) with an average of 0.83 (sd 0.08)

(Supplementary file 2).

For the BCL-2 like clade, we also reconstructed AncMB1, this time using human

BCL-2 sequence to fill in the N and C terms and the loop between the first and second

alpha helices (AncMB1-B). We then reconstructed sequences from AncMB1 to modern

human BCL-2. These included AncB1 (LCA of BCL-2-related sequences), AncB2 (LCA

of BCL-2-related Bilaterian and Cnidaria), AncB3 (LCA of BCL-2-related deuterostomes

and protostomes), AncB4 (LCA of BCL-2 deuterostomes), AncB5 (LCA of BCL-2, BCLW,

and BCLX like copies in vertebrates), AncBCL-2 (LCA of BCL-2 like copies), AncBCL-

2-G (LCA of BCL-2 like gnathostomes), AncBCL-2-O (LCA of BCL-2 like osteichthyes),

and AncBCL-2-T (LCA of BCL-2 like tetrapods), using human BCL-2 sequences for the N

and C terms and the loop between the first and second alpha helices. Average posterior

probabilities for ancestors in the BCL-2 clade ranged from 0.87 (AncB1) to 0.95 (AncBCL-

2-T) with an average of 0.9 (sd 0.04).

2.4.3 Test of robustness of ancestral inference

To determine the robustness of our conclusions on the phenotype of ancestral se-

quences, we synthesized and cloned alternative reconstructions for key ancestors. In

each case, sequences contained the most likely alternative state with posterior probabil-

ity > 0.2 for all such sites where such a state existed. Alternative reconstructions con-
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tained an average of 24 alternative states and represent a conservative test of function

(min: 4, max: 44, Supplementary file 2). In our luciferase assay, all but two alternative

reconstructions retained similar BID and NOXA binding as the maximum likelihood an-

cestral sequences. The first alternative reconstruction that differed from the maximum

likelihood reconstruction was AltAncB3, which bound both BID and NOXA, while the ML

for AncB3 bound BID, but NOXA only weakly. As a result, the exact branch upon which

NOXA binding was lost historically is not resolved by this data.

The second alternative reconstruction that differed from the ML reconstruction was

AltAncMB1-B, which had weaker NOXA binding than the ML reconstruction. To fur-

ther test the robustness of AncMB1-B to alternative reconstructions, we synthesized and

tested additional reconstructions that included only alternative amino acids with posterior

probabilities greater than 0.4 (n = 3), 0.35 (n = 7), 0.3 (n = 13), and 0.25 (n = 18), and

compared these to AncMB1-B and the 0.2 AltAncMB1-B (n = 21) (values in parentheses

are number of states that differ from the ML state). We found that the 0.4, 0.35, and 0.3

alternative reconstructions bound both BID and NOXA, while the 0.25 and 0.2 alternative

reconstructions had diminished NOXA binding.

Finally, we synthesized and tested modern sequences from key groups to determine

the robustness of our inference on the timing of NOXA binding loss. These included BCL-

2-related sequences from groups that diverged prior to the predicted loss of NOXA binding

(Trichoplax adhaerens and Hydra magnapapillata), sequences from groups that diverged

around the time of predicted NOXA binding loss (Octopus bimaculoides and Stegodyphus

mimosarum), or sequences from groups predicted to have diverged after NOXA binding

lost (Saccoglossus kowalevskii and Branchiostoma belcheri). In each case, we used hu-

man BCL-2 sequence to replace extant N and C terms and the loop between the first and

second alpha helices. The T. adhaerens and B. belcheri sequences were non-functional in

our luciferase assays, binding neither BID nor NOXA. However, recent work has compre-
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hensively characterized binding in BCL-2 family members within T. adhaerens, finding that

the BCL copy can bind both BID and NOXA as predicted217 . H. magnapapillata bound

both BID and NOXA in our assay and the remaining sequences bound only BID, suggest-

ing a loss of NOXA binding prior to the divergence of protostomes and deuterostomes in

the BCL-2 related clade, consistent with the conclusion drawn using reconstructed pro-

teins.

2.4.4 Escherichia coli strains

E. coli 10-beta cells were used for cloning and were cultured in 2xYT media. E. coli

BL21 (BE3) cells were used for protein expression and were cultured in Luria-Bertain (LB)

broth. E. coli S1030 cells cultured in LB broth were used for activity-dependent plaque

assays, phage growth assays, and luciferase assays. S1030 cells cultured in Davis Rich

media were used for PACE experiments200 . E. coli 1059 cells were used for cloning

phage and assessing phage titers and were cultured in 2xYT media.

2.4.5 Cloning and general methods

Plasmids were constructed by using Q5 DNA Polymerase (NEB) to amplify fragments

that were then ligated via Gibson Assembly. Primers were obtained from IDT, and all plas-

mids were sequenced at the University of Chicago Comprehensive Cancer Center DNA

Sequencing and Genotyping Facility. Vectors and gene sequences used in this study are

listed in Supplementary file 5, with links to fully annotated vector maps on Benchling. Key

vectors are deposited at Addgene, and all vectors are available upon request. The fol-

lowing working concentrations of antibiotics were used: 50 µg/mL carbenicillin, 50 µg/mL

spectinomycin, 40 µg/mL kanamycin, and 33 µg/mL chloramphenicol. Protein structures

and alignments were generated using the program PyMOL218 .
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2.4.6 Luciferase assays

Cloned expression vectors contained the following: (1) a previously evolved, iso-

propyl -D-1-thiogalactopyranoside (IPTG)-inducible N-terminal half of T7 RNAP? fused

to a BCL-2 family protein; (2) the C-terminal half of T7 RNAP fused to a peptide from a

BH3-only protein; and (3) T7 promoter-driven luciferase reporter. Chemically competent

S1030 E. coli cells200 were prepared by culturing to an OD600 of 0.3, washing twice with

a calcium chloride-HEPES solution (60 mM CaCl2, 10 mM HEPES pH 7.0, 15% glycerol),

and then resuspending in the same solution. Vectors were transformed into chemically

competent S1030 cells via heat shock at 42◦C for 45 s, followed by 1 hr recovery in 2xYT

media, and then plated on agar with the appropriate antibiotics (carbenicillin, spectino-

mycin, and chloramphenicol) to incubate overnight at 37◦C. Individual colonies (three to

four biological replicates per condition) were picked and cultured in 1 mL of LB media

containing the appropriate antibiotics overnight at 37◦C in a shaker. The next morning, 50

µL of each culture was diluted into 450 µL of fresh LB media containing the appropriate

antibiotics, as well as 1 µM of IPTG. The cells were incubated in a shaker at 37◦C, and

OD600 and luminescence measurements were recorded between 2.5 and 4.5 hr after the

start of the incubation. Measurements were taken on a Synergy Neo2 Microplate Reader

(BioTek) by transferring 150 ţL of the daytime cultures into Corning black, clear-bottom

96-well plates. Data were analyzed in Microsoft Excel and plotted in GraphPad Prism, as

previously reported63 .

2.4.7 Protein purification

Protein expression hsBCL-2, hsMCL-1, and evolved variants were constructed as N-

terminal 6xHis-GST tagged proteins. The recombinant proteins were expressed in BL21

E. coli (NEB) and purified following standard Ni-NTA resin purification protocols (Ther-

moFisher Scientific)114 . Briefly, BL21 E. coli containing an N-terminal 6xHis-GST tagged
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BCL-2 family protein were cultured in 5 mL LB with carbenicillin overnight. The following

day, the culture was added to 0.5 L of LB with carbenicillin, incubated at 37◦C until it

reached an OD600 of 0.6, induced with IPTG (final concentration: 200 ţM), and cultured

overnight at 16◦C. The cell pellet was harvested by centrifugation followed by resuspen-

sion in 30 mL of lysis buffer (50 mM Tris 1 M NaCl, 20% glycerol, 10 mM TCEP, pH 7.5)

supplemented by protease inhibitors (200 nM Aprotinin, 10 ţM Bestatin, 20 ţM E-64, 100

ţM Leupeptin, 1 mM AEBSF, 20 ţM Pepstatin A). Cells were lysed via sonication and were

then centrifuged at 12,000 g for 40 min at 4◦C. Solubilized proteins, located in the super-

natant, were incubated with His60 Ni Superflow Resin (Takara) for 1 hr at 4◦C, and the

protein was eluted using a gradient of imidazole in lysis buffer (50250 mM). Fractions with

the protein, as determined by SDS-PAGE, were concentrated in Ulta-50 Centrifugal Filter

Units (Amicon, EMD Millipore). Proteins were purified via a desalting column with stor-

age buffer (50 mM TrisHCl [pH 7.5], 300 mM NaCl, 10% glycerol, 1 mM DTT) and further

concentrated. The concentration of the purified BCL-2 family proteins was determined by

BCA assay (ThermoFisher Scientific), and they were flash-frozen in liquid nitrogen and

stored at 80◦C.

2.4.8 Fluorescence polarization binding assays

Fluorescent polarization (FP) was used to measure the affinity of BCL-2 family pro-

teins with peptide fragments of the BH3-only proteins in accordance with previously de-

scribed methods219 . hsBCL-2, hsMCL-1, and evolved variants were purified as de-

scribed above. The fluorescent NOXA and BID peptides (95+% purity) were synthesized

by GenScript and were N-terminally labeled with 5-FAM-Ahx and C-terminally modified

by amidation. These peptides were dissolved and stored in DMSO. Corning black, clear-

bottom 384-well plates were used to measure FP, and three replicates were prepared for

each data point. Each well contained the following 100 ţL reaction: 20 nM BH3-only pro-
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tein, 0.05 nM to 3 ţM of BCL-2 family protein (1/3 serial dilutions), 20 mM Tris (pH 7.5), 100

mM NaCl, 1 mM EDTA, and 0.05% pluronic F-68. FP values (in milli-polarization units;

mFP) of each sample were read by a Synergy Neo2 Microplate Reader (BioTek) with the

FP 108 filter (485/530) at room temperature 5-15 min after mixing all the components.

Data were analyzed in GraphPad Prism 8, using the following customized fitting equation,

to calculate Kd
114 :

= B + C(D +Kd + x−
√
(D +Kd + x)2 − 4Dx)

where y is normalized measured FP, x is the concentration of BCL-2 protein, D is the

concentration of the BH3-only protein, B and C are parameters related to the FP value of

free and bound BH3-only protein, and Kd is the dissociation constant.

2.4.9 Phage-assisted continuous evolution

PACE was used to evolve hsBCL-2, hsMCL-1, and ancestral proteins in accord with

previously reported technical methods38,63,173,200 using a new vector system. Briefly,

combinations of accessory plasmids and the MP6 mutagenesis plasmid36 were trans-

formed into S1030 E. coli., plated on agar containing the appropriate antibiotics (carbeni-

cillin, kanamycin, and chloramphenicol) and 10 mM glucose, and incubated overnight at

37◦C. Colonies were grown overnight in 5 mL of LB containing the appropriate antibiotics

and 20 mM glucose. Davis Rich media was prepared in 510 L carboys and autoclaved,

and the PACE flasks and corresponding pump tubing were autoclaved as well. The follow-

ing day, PACE was set up in a 37◦C environmental chamber (Forma 3960 environmental

chamber, ThermoFisher Scientific). For each replicate, an overnight culture was added to

150 mL of Davis Rich carboy media in chemostats and grown for 23 hr until reaching an

OD600 of approximately 0.6. Lagoons containing 20 µL of phage from saturated phage

82



stocks (108-9 phage) were then connected to the chemostat. Magnetic stir bars were used

to agitate chemostats and lagoons. The chemostat cultures were flowed into the lagoons

at a rate of approximately 20 mL/h. Waste output flow rates were adjusted to maintain a

constant volume of 20 mL in the lagoons, 150 mL in the chemostat, and an OD600 close

to 0.6 in the chemostat. A 10% w/v arabinose solution was pumped into the lagoons at a

rate of 1 mL/h. If the experiment included a mixing step (two separate chemostats flowed

together into one lagoon for a mixed selection pressure), a chemostat was prepared the

next day (as described above) and connected to the lagoons. During this step, lagoon vol-

umes were increased to 40 mL, and the arabinose inflow rate was increased to 2 mL/h.

After disconnecting the first chemostat the next day, the lagoon volumes and arabinose

inflow were both lowered to 20 mL and 1 mL/h, respectively. During the experiment, sam-

ples were collected from the lagoons every 24 hr and centrifuged at 13,000 rpm for 3 min

to collect the phage-containing supernatant, as well as the cell pellet for DNA extraction.

PACE experiments are listed in Supplementary file 3. A single replicate of AncB5 was

removed because of contamination. No statistical method was used to determine the

number of replicates as only four independent replicate experiments could be performed

simultaneously. During PACE, the media volume of each lagoon turned over once per

hour for 4 days, or 100 times. For a phage population to survive this amount of dilution,

a similar number of generations must have occurred between the starting phage and the

phage in the lagoon at the end of the experiment38 . This is expected to be a conser-

vative estimate; as a more fit phage rises in frequency in the population, it will undergo

a greater number of generations than less-fit phage in the population. The mutagenesis

plasmid MP6 induces a mutation rate of approximately 6x106 per bp per generation. The

BCL-2 family proteins used in the PACE experiments were 230 amino acids long, indicat-

ing that a mutation occurred on average every 250 phage replications. Phage population

sizes ranged from 105 per mL to 1010 per mL over the course of a PACE experiment,
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indicating a rate of 40040,000,000 new mutations every generation. Conservative esti-

mates thus suggest that a during each individual replicate, phage populations sampled at

least 40,000 mutations, and upwards of 4 Œ 109 mutations. While not all mutations were

equally likely each generation because MP6 enriches for transitions (i.e. GA, AG, CT, and

TC), the high number of mutations sampled suggests that the vast majority of possible

single point mutations (approximately 230x3x4 = 2760 potential mutations) were sampled

over the course of each experiment, with higher population sizes generating all potential

single point mutations each generation.

2.4.10 Plaque assays

Plaque assays were performed on 1059 E. coli cells84,200 , which supply gene III

(gIII) to phage in an activity-independent manner, to measure phage titers. Additionally,

activity-dependent plaque assays were done on S1030 E. coli containing the desired

accessory plasmids to determine the number of phage encoding a BCL-2 family protein

with a given peptide-binding profile. All cells were grown to an OD600 of approximately

0.6 during the day. Four serial dilutions were done in Eppendorf tubes by serially pipetting

1 L of phage into 50 ţL of cells to yield the following dilutions: 1/50, 1/2500, 1/125,000, and

1/6,250,000. 650 ţL of top agar (0.7% agar with LB media) was added to each tube, which

was then immediately spread onto a quad plate containing bottom agar (1.5% agar with

LB media). Plates were incubated overnight at 37◦C. Plaques were counted the following

day, and plaque forming units (PFU) per mL was calculated using the following equation:

PFU = 1000× A× 504-B

where A is the number of plaques in a given quadrant, and B is the quadrant number

where the phage were counted, in which one is the least dilute quadrant and four is the
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most dilute quadrant.

2.4.11 Phage growth assays

Phage growth assays were performed by adding the following to a culture tube and

shaking at 37◦C for 6 hr: 1 mL of LB with the appropriate antibiotics (carbenicillin and

kanamycin), 10 ţL of saturated S1030 E. coli containing the accessory plasmids of inter-

est, and 1000 phage. Phage were then isolated by centrifugation at 13,000 rpm for 3

min, and PFU was determined by plaque assays using 1059 E. coli and the plaque assay

protocol described above.

2.4.12 High-throughput sequencing library construction

PACE samples were collected from each lagoon every 24 hr. The lagoon samples

were centrifuged at 13,000 rpm for 3 min on a bench top centrifuge to separate super-

natant and cell pellet. The phage-containing supernatants were stored at 4◦C prior to the

creation of sequencing libraries. To prepare Illumina sequencing libraries, each phage

sample was cultured overnight with 1059 E. coli cells, followed by phage DNA purifica-

tion (Qiagen plasmid purification reagent buffer), P1 (catalog number 19051), P2 (catalog

number 19052), N3 (catalog number 19064), PE (catalog number 19065), and spin col-

umn for DNA (EconoSpin, catalog number 1920250). The resulting DNA concentration

was 50 ng/µL. Freshly generated DNA samples were then used as template for PCR

amplification. For each library sample, we amplified three overlapping fragments of the

BCL-2 family protein, which are 218241 bp in length (Figure 2.12). Each primer also in-

cluded 69 Ns to introduce length variation (Supplementary file 4). In total, 12 PCRs were

used for each library. Phusion DNA polymerases and buffers (ThermoFisher Scientific,

catalog number F518L) were used in the first PCR round to amplify all three fragments for
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all library sequencing. The 25 µL reaction contained: 0.5 µL of 50 mM MgCl2, 0.75 µL of

10 mM dNTP, 0.75 µL Phusion DNA polymerase, 20 ng library DNA, and 0.5 µL of 10 µM

primer (each). The PCR were run on a C1000 Touch Thermal Cycler (Bio-Rad), with the

following parameters: 98◦C for 1 min, followed by 16 cycles of 98◦C for 12 s, 58◦C for 15

s and 72◦C for 45 s, and finally 72◦C for 5 min. PCR were purified using the ZYMO DNA

clean and concentrator kit (catalog number D4013) and 96 well filter plate (EconoSpin,

catalog number 2020001). The DNA products were dissolved in 30 µL ddH2O. All 12

reactions for each library were combined, and 1 ţL was used as the template for a second

PCR round. PCR components and thermocycler parameters were the same as above,

except that the annealing temperature was 56◦C, and only 15 rounds of amplification

were conducted. The primer and sample combinations are listed in Supplementary file 4.

PCRs were then purified following the same procedure as previous step. Equal volumes

of all 72 library samples were combined and concentration was measured using a Qubit

4 Fluorometer. The total DNA sample was 2.68 ng/µL (equivalent to 10 nM, according

to the average length of PCR fragments). DNA samples were diluted to 4 nM from step

4 following the Illumina MiSeq System Denature and Dilute Libraries Guide and then di-

luted to 12 pM for high-throughput sequencing. The final sample contained 100 ţL of 20

pM PhiX spike-in plus 500 ţL of the 12 pM library sample. Sequencing was performed on

the Illumina MiSeq System using MiSeq Reagent Kit v3 (600-cycle) with paired-end reads

according to the manufacturers instructions.

2.4.13 Processing of Illumina data

Illumina sequencing yielded 22 million reads, 13 million of which could be matched

to a specific sample (Supplementary file 4). One replicate for AncB5 was found to be

contaminated and removed from further analysis. To process the remaining data, we first

used Trim Galore with default settings to trim reads based on quality (https://www.bioin-
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formatics.babraham.ac.uk/projects/trim_galore/). Then, we used BBMerge, a script in

BBTools (https://jgi.doe.gov/data-and-tools/bbtools/), to merge paired-end reads. Next,

we used Clumpify to remove repeated barcode sequences. We then used Seal to identify

and bin reads by sample and fragment. Finally, we used BBDuk to remove any primer

or adapter sequence present. Scripts and reference sequences are available on Github

(Thornton, 2021).

2.4.14 Illumina sequencing analysis

Reads were binned by experiment and then aligned to the appropriate WT sequence

using Geneious (low sensitivity, five iterations, gaps allowed). Sequences were then pro-

cessed in R to remove sequences containing Ns or that were not full length. Insertions

found in less than 1% of the population and sites that extended outside of the coding

region were removed from all sequences. Remaining gaps were standardized among

replicates and within an experiment. Finally, allele frequencies were calculated for each

site and amino acid, as well as remaining insertions and deletions.

2.4.15 Quantifying the effects of chance and contingency on the out-

comes of evolution

See ref65

2.4.16 Data availability

The high throughput sequencing data of evolved BCL-2 family protein variants were

deposited in the National Center for Biotechnology Information (NCBI) Sequence Read

Archive (SRA) databases. They can be accessed via BioProject: PRJNA647218. The

processed sequencing data are available on Dryad (https://doi.org/10.5061/dryad.866t1g1ns).
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The coding scripts and reference sequences for processing the data are available on

Github (https://github.com/JoeThorntonLab/BCL2.ChanceAndContingency).

The following data sets were generated Xie VCPu JMetzger BPHThornton JWDickin-

son BC (2020) NCBI Bioproject ID PRJNA647218. Experimental evolution of BCL2 fam-

ily ancestral proteins. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA647218 Xie VCPu

JMetzger BPHThornton JWDickinson BC (2020) Dryad Digital Repository BCL2-Chance

and Contingency. https://doi.org/10.5061/dryad.866t1g1ns

2.5 Supplementary files

See ref65
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CHAPTER 3

AN IN VIVO PHAGE-ASSISTED DIRECTED EVOLUTION PLATFORM

TO DIRECTLY IDENTIFY PROTEIN-PROTEIN INTERACTION

INHIBITORS

Though the mis-regulation of protein-protein interactions (PPIs) has been linked to

many diseases, the scientific community lacks tools that specifically perturb a given PPI,

and the process of identifying or creating such a molecule often takes years. We set

out to address this technological gap by developing a rapid system for the selection of

PPI inhibitors (PPIis). We designed and optimized a phage-assisted continuous evo-

lution (PACE)-based platform that directly selects for genetically encoded PPI inhibitors

through utilizing a split RNA polymerase (RNAP) biosensor. Upon establishing our sys-

tems compatibility with a set of clinically relevant PPIs, we optimized the platform for se-

lecting binders of the KRas-Raf, P53-MDM2, and MYC-MAX interactions and performed a

deep-mutational scan of a Raf-based inhibitor for the KRas-Raf interaction We then used

the platform to discover a de novo affibody inhibitor of the P53/MDM2 interaction, which

we found bound to MDM2 and inhibited the interaction in a mammalian cell-based assay

as well. Based on this model study, we believe this platform can be used with a variety

of targets to rapidly generate PPI inhibitors for use in biological research and as starting

points for drug development.

3.1 Introduction

An estimated 130,000 human protein-protein interactions (PPIs)220 regulate virtually

every cellular process, including replication221–223 , translation224,225 , and signal trans-

duction226–229 . Advances in unbiased proteome-wide PPI mapping methods such as

2-hybrid screens230–232 , proximity labeling technologies233–236 , and advanced imag-
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ing237–239 have enabled an unparalleled look at which proteins interact with one another

in a cell. Dysregulation of specific PPIs drive pathology in humans240–244 , and there-

fore represent therapeutic targets for disease intervention245,246 . As such, molecules

that specifically disrupt target PPIs are critical for both assigning functional significance

to mapped PPIs as well as for creating next-generation therapeutics. However, discovery

and development of PPI inhibitors is challenging, due to the observed inherent difficulty in

discovering selective inhibitors of protein complexes, thereby rendering many PPIs to be

considered undruggable targets247–250 .

The most common approach for PPI inhibitor discovery entails finding a competi-

tive binding partner to one of the proteins involved in the interaction, usually through

binding at the PPI interface. This can be done via high-throughput screening251–253 ,

rational design254 , computational modeling255 , and binding-based directed evolution

platforms256–258 . However, the underlying issue for all these approaches is that bind-

ing does not necessarily confer inhibition; the function selected for is not the desired end

function. For instance, these techniques often discount the possibility of finding alternative

modes of inhibition, such as allostery. Phenotypic screening provides a mechanistically-

agnostic alternative to identify PPI inhibitors259 , but lacks generalizability and remains

relatively low-throughput, and, once again, the functional readout is not the same as the

desired property of PPI inhibition. An optimal strategy to discover inhibitors would be both

high-throughput and directly select for inhibition of a preformed PPI in a mechanistically-

agnostic manner.

By linking PPI inhibition to in vivo selection systems, advances in directed evolution

platforms can enable high-throughput, direct, and mechanistically-agnostic identification

of PPI inhibitors. For example, a bacterial reverse 2-hybrid system was used to link inhibi-

tion of a PPI to cell survival, which enabled discovery of a compound that inhibits the HIV

p6 and human TSG101 interaction from a 106-member lanthipeptide library screen260 .
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Additionally, a yeast reverse 2-hybrid was used to develop an assay to detect inhibitors of

the p53-MDM2 PPI261 . However, despite being first described over 27 years ago262 ,

relatively few successes of in vivo screening campaigns using reverse 2-hybrid systems

have been reported263–265 .

While powerful, existing in vivo reverse 2-hybrid systems often suffer from false posi-

tive (non-specific or off-target inhibitors) and false negatives (incomplete library sampling),

and are often therefore technically limited to screening libraries of 106 molecules. On the

contrary, continuous in vivo evolution technologies, which link viral replication to defined

functions of interest of molecules encoded in the viral genome, have led to advanced gene

editing platforms98 , reprogrammed proteases67 , engineered tRNAs266 , and improved

and diversified enzymes267,268 . Recently, we established the first in vivo continuous

evolution platform that can select for specific PPIs65 using our proximity-dependent split

RNAP biosensor technology63,269 as an alternative to a traditional 2-hybrid. The critical

advantages of our split RNAP biosensor approach are: 1) a broad dynamic range, both

in terms of RNA output and linear sensitivity to an array of PPI affinities64 ; 2) detec-

tion of multiple interactions simultaneously in cells270 , allowing for careful focusing of

the selection pressure on a single target interaction; and 3) extremely facile engineering,

analogous to a FRET or split luciferase sensor101,271 . Therefore, we sought to develop

a new in vivo PPI inhibitor selection system using the principles of Phage-Assisted Con-

tinuous Evolution (PACE)38,200 that leverages our split RNAP biosensors to enable com-

prehensive screening of large phage-encoded libraries of peptides or proteins for novel

PPI inhibitors.

In this work, we develop Phage-Assisted Non-Continuous Selection for PPI inhibitors

(PANCS-PPIi), which directly links the life cycle of an M13 bacteriophage to the selective

disruption of a target PPI. After optimizing PANCS-PPIi for the detection of inhibitors of

three PPIs related to human health (KRas-Raf, P53-MDM2, and MYC-MAX), we show-
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case in mock selections that the system can reproducibly and efficiently enrich one active

inhibitor from a pool of 109 inactive inhibitors, encoded in phage, in a few days, simply

by serially diluting the phage populations on engineered selection E. coli cells. We then

use PANCS-PPIi to perform a deep mutational scan (DMS) of a cell-penetrating peptide

fused to Raf as a competitive inhibitor of the KRas-Raf complex, which revealed novel

mutations that modulate this interaction. Finally, we performed a de novo selection of an

affibody protein library against the P53-MDM2 interaction, which yielded a novel inhibitor.

Together, this work showcases the capacity of PANCS-PPIi for robust, rapid, and mecha-

nistically agnostic discovery of novel PPI inhibitors from 108-9-member phage libraries.

3.2 Results

3.2.1 Design of PANCS-PPIi

PACE-based platforms control the fitness of M13 bacteriophage by removal of the

necessary pIII coat protein from the phage genome, rendering the phage unable to repli-

cate on E. coli cells. Upon infection of engineered E. coli cells, the needed pIII is supplied

to the phage through an inducible promoter, such that the phage propagate at a rate that

corresponds to the ability of a phage-encoded evolving proteins ability to activate that pro-

moter (Figure 3.1). For additional control, a dominant negative form of pIII, pIIIneg, can

also be produced from a separate inducible system, which lowers the phage replication

rate200 , thereby allowing for both positive (on-target) and negative (off-target) selections.

Focusing in vivo selection pressures in a system like PACE to inhibit of single target PPI

and avoid cheaters (i.e. variants which can survive the selection pressure but do not have

the desired activity) requires a system that can monitor multiple PPIs at once. We recently

developed a PACE system that uses our split RNAP-based biosensors to evolve proteins

to selectively bind to one target over another, by using the capacity of the split RNAP
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technology to measure multiple PPIs simultaneously65 . We reasoned that we could build

from this split RNAP dual PPI biosensor selection to devise a new selection scheme that

focuses the selection pressure on specific inhibition of a single target PPI.

Figure 3.1 In vivo phage-assisted directed evolution platforms, in general.
In vivo phage-assisted directed evolution platforms function by encoding a gene of interest
(black) into the phage genome (SP) in place of the essential gIII. gIII (teal) is instead en-
coded in an accessory plasmid (AP) in the E. coli and placed under control of an inducible
promoter. The researcher must engineer a biosensor to link desired protein activity with
the induction of gIII. In this case, phage with proteins with the desired activity will be able
to propagate on these engineered E. coli cells.

After attempting several strategies (see Supplementary Note), we devised PANCS-

PPIi, which links the production of an inhibitor for a target PPI (PPI partner 1 and PPI

partner 2) to viral replication (Figure 3.2A,B). In PANCS-PPIi, one accessory plasmid

(AP1) encodes for: 1) constitutively expressed zipper peptide 2 (ZP2) fused to zipper

peptide A (ZA) and PPI partner 1, 2) constitutively expressed zipper peptide B (ZB) fused

to the C-terminal half of the split CGG RNAP (RNAPC(CGG)), which transcribes from the

CGG promoter (PCGG) when activated, and 3) PCGG-driven gIII, which encodes for the pIII

protein. A second accessory plasmid (AP2) encodes for: 1) constitutively expressed PPI

partner 2 fused to the C-terminal half of the split T7 RNAP (RNAPC(T7)), which transcribes
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from the T7 promoter (PT7) when activated, and 2) PT7-driven gIIIneg, which encodes for

the pIIIneg protein. Prior to phage infection, ZA and ZB form a PPI, and PPI partner

1 and PPI partner 2 form a PPI, but neither gIII or gIIIneg are transcribed, because the

RNAP N-terminal split fragment is not present in the system. We then engineered M13

bacteriophage that express: 1) the evolved RNAP N-terminal fragment (RNAPN) fused

to zipper peptide 1 (ZP1), which binds ZP2, and 2) a potential inhibitor molecule of the

target PPI. Upon phage infection, ZP1 binds to the ZP2 complexes, triggering both gIII

and gIIIneg production, thus inhibiting phage replication. However, if the inhibitor encoded

by the phage disrupts the target PPI, gIIIneg production is blocked, allowing that phage

variant to replicate. Critically, the only difference between the two trimolecular complexes

is the target PPI versus ZA-ZB, so inhibitors of the RNAP biosensor or ZA-ZB will prevent

phage growth by not allowing the production of pIII; therefore, the selection pressure is

entirely focused on disruption of the target PPI. With the conceptual framework of PANCS-

PPIi established, we next sought to optimize the system and assess its performance

characteristics as a selection platform for PPI inhibitors.
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Figure 3.2 Overview of PANCS-PPIi.
(A) Schematic of the genetically-encoded components of PANCS-PPIi. (Left) Two acces-
sory plasmids (APs) are encoded in S1030 E. coli cells. AP1 encodes 1) zipper peptide
2 (ZP2, light orange) fused to zipper peptide A (ZA, light blue) and PPI partner 1 (red);
2) zipper peptide B (ZB, dark blue) fused to the C-terminal half of the RNAP that binds
to the CGG promoter (RNAPC(CGG), light gray); and 3) Gene III (gIII, teal) under the
control of the CGG promoter (PCGG). AP2 encodes 1) PPI partner 2 (pink) fused to the
C-terminal half of the RNAP that binds to the T7 promoter (RNAPC(T7), light brown) and 2)
a dominant negative form of gene III (gIIIneg, brown) under the control of the T7 promoter
(PCT7). (Right) The phage genome includes a portion that expresses 1) the N-terminal
half of the RNAP (RNAPN, dark gray) fused to zipper peptide 1 (ZP1, dark orange) and
2) a genetically-encoded inhibitor (purple). (Bottom) The key interactions that take place
in the system include the binding of 1) PPI partner 1 to PPI partner 2; 2) ZP1 to ZP2;
and 3) ZA to ZB. (B) (Top) Prior to phage infection, the components of AP1 and AP2 are
expressed such that a mixture of two complexes are formed. Upon phage infection, both
RNAPN-ZP2 and inhibitor are expressed. (Left) If the inhibitor does not inhibit any of the
key interactions, RNAPN will be brought into proximity with RNAPC(CGG) and RNAPC(T7),
and both gIII and gIIIneg will be expressed, leading to the production of non-infectious
phage. (Right) If the inhibitor only inhibits the binding of PPI partner 1 and PPI partner
2, RNAPN will only be brought into proximity with RNAPC(CGG) such that only gIII will be
expressed, which will lead to the propagation of phage with this encoded inhibitor.
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3.2.2 Split RNA polymerase biosensors can detect PPI inhibitors

We selected three well-studied, clinically important, yet biophysically-distinct PPIs

around which we developed the PANCS-PPIi platform: KRas-Raf, P53-MDM2, and MYC-

MAX (Figure 3.3A). We first assessed whether each PPI could be detected by the split

RNAP system in E. coli using a luciferase reporter assay (Figure 3.3B)101 . We found en-

hanced luminescence signal, as triggered by PPI-dependent transcription, of each known

PPI pair, but not for pairs that do not interact (Figure 3.3C,D,E). We also tested and con-

firmed the binding of Raf to two highly-prevalent yet challenging oncogenic mutants of

KRas: G12D and G12V (Figure 3.4)272,273 . These data confirm that the split RNAP

biosensors can detect a range of disease-relevant PPIs in E. coli and control gene ex-

pression outputs based on each target PPI.
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Figure 3.3 In vivo E. coli luciferase assays to assess PPIs and PPI inhibition.
(A) Crystal structures of the 3 model PPIs used in this study. (B) Schematic of the
genetically-encoded components of the binding luciferase (lux) assay. One plasmid en-
codes PPI partner 1 fused to RNAPN. Another plasmid encodes 1) PPI partner 2 fused to
RNAPC(CGG) and 2) a PCGG-driven luciferase component (luxAB). If PPI partner 1 binds
to PPI partner 2, then the RNAPCGG will be reconstituted and drive luminescence. If PPI
partner 1 does not bind to PPI partner 2, the RNAPCGG will not be reconstituted; thus,
no luminescence will result. (C,D,E) The E. coli luciferase binding assay when testing
binding across the 3 model PPIs. (F) Schematic of the genetically-encoded components
of the inhibitor lux assay. Both of the plasmids from (B) are present as well as a vec-
tor with a genetically-encoded inhibitor under the control of an IPTG-inducible promoter
(PLac). If the inhibitor does not prevent the binding of PPI partner 1 to PPI partner 2, then
the RNAPCGG will be reconstituted and drive luminescence. If the inhibitor does prevent
PPI partner 1 binding to PPI partner 2, the RNAPCGG will not be reconstituted; thus, no
luminescence will result. (G,H,I) The E. coli luciferase inhibitor assay when testing known
genetically-encoded inhibitors across the 3 model PPIs. Bars show mean ± SD of four
replicates (circles).
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Figure 3.4 In vivo E. coli luciferase binding assays for KRas mutants.
The E. coli luciferase binding assay when testing binding of (A) KRas(G12D) and (B)
KRas(G12V) for Raf, P53, and MDM2. Bars show mean ± SD of four replicates (circles).

Next, we aimed to assess whether the split RNAP PPI detection system could detect

PPI inhibitors. We modified the luciferase assay to detect for PPI inhibition by adding

an additional plasmid that encodes for an IPTG-driven expressed protein that may or

may not inhibit the target PPI. In this system, if the additional protein successfully in-

hibits the target PPI, this will prevent the split RNAP from reconstituting, and therefore

decrease the production of luciferase (Figure 3.3F). We used the KRas-Raf PPI as the

first model system and found that expression of Raf(R89L), which does not bind KRas

and is therefore not a competitive inhibitor, had no impact on the activity in the reporter,

which therefore served as a negative control (Figure 3.5). However, we found that ex-

pression of Raf(K84A) or Raf(Q66A), which are weak KRas binders and therefore likely

weak competitive inhibitors, knocked down the signal by 50%, while expression of Raf, a

20 nM KRas binder, knocked down the signal by 70% (Figure 3.3G). We then tested en-

gineered Raf-based inhibitors, including cRaf-v1 (a 3.2 nM binder) and Pen-cRaf-v1 (a 34
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nM binder)274 , which showed even more inhibition. Finally, we found a Raf affibody a 1.9

µM binder)275 also knocked down the signal. We performed analogous assays with the

KRas(G12D)-Raf and KRas(G12V)-Raf PPIs as well. (Figure 3.6). Taken together, these

data show that the split RNAP reporter can read out KRas-Raf PPI inhibition in changes

in gene expression across a range of inhibitor strengths.

Figure 3.5 In vivo E. coli luciferase inhibitor assays to assess negative controls.
The E. coli luciferase inhibitor assays when testing a selection of negative controls for the
inhibition of (A) KRas-Raf, (B) KRas(G12D)-Raf, (C) KRas(G12V)-Raf, (D) P53-MDM2,
and (E) MYC-MAX. Bars show mean ± SD of four replicates (circles).
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Figure 3.6 In vivo E. coli luciferase inhibitor assays for KRas mutants.
The E. coli luciferase inhibitor assay when testing known inhibitors of (A) KRas(G12D)-
Raf and (B) KRas(G12V)-Raf. Bars show mean ± SD of four replicates (circles).

To confirm the generality of this result, we also tested whether P53-MDM2 inhibitors

can be detected. Again, compared to expression of a Raf affibody as a negative control,

expression of either P53 or MDM2, or an engineered chymotrypsin inhibitor 2 protein (CI2)

binder of MDM2276 , inhibits the signal (Fig. 3.3H). Likewise, we found that expression of

either MYC or MAX as a competitive inhibitor in the MYC-MAX PPI detection system also

inhibited the signal compared to the Raf affibody negative control (Figure 3.3I). Taken

together, these data indicate the split RNAP sensor can detect the inhibition of range of

disease-relevant PPIs in E. coli and encode that inhibition information in changes in gene
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expression. We next sought to deploy the biosensors in the PANCS-PPIi system.

3.2.3 Mock selections to validate PANCS-PPIi

We first tested the assembly of our trimolecular complexes in our PANCS-PPIi system

via luciferase assay and found it functioned as designed (Figure 3.7). We then cloned and

optimized the components of PANCS-PPIi using competitive inhibitors of KRas-Raf, P53-

MDM2, and MYC-MAX as models to validate the system. Broadly speaking, we would

expect that phage encoding an active PPI inhibitor for a target PPI of interest should have

a faster replication rate than phage without an inhibitor, and only replicate on cells con-

taining the AP for the on-target PPI for that inhibitor. To quantify phage replication rates,

we performed overnight phage growth assays (Figure 3.8A). In this assay 1000 phage

are added to 1 mL LB cultures along with 10 µL of saturated S1030 cells containing

PANCS-PPIi APs (106-7 cells) and are incubated overnight at 37◦C, and then the phage

population is measured by plaque assay. Using this assay, we varied the strengths of the

ribosomal binding site (RBS) of each component of the system to alter the concentrations

of the fused proteins and the output of gIII and gIIIneg to optimize phage propagation in

the presence of each known inhibitor, using the range of inhibitor strengths to determine

the optimal conditions (Figure 3.9,10,11,12,13,14). Under the optimized conditions, pos-

itive control phage, which replicate by bypassing the selection system, propagate from

1000 input phage to 1011 phage overnight (107-fold growth), while empty phage, which

turn on the selection but do not encode an inhibitor, do not replicate at all (1000 input

and 1000 are present after overnight incubation). Critically, phage that encode strong

inhibitors for each of the three target PPIs restore phage replication to 1010 phage dur-

ing the overnight growth assay, representing a 10,000,000-fold growth fitness advantage

based on the presence of the PPI inhibitor (Figure 3.8B). Critically, the substantial growth

fitness advantage is only observed when an inhibitor matches the target PPI of the APs,
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indicating the selection pressure is focused on inhibition of the target PPI.

ZP2-ZA-Raf ZP2-Raf ZA-Raf ZP2-ZA-P53

0

2

4

6

N
or

m
al

iz
ed

 lu
m

in
es

ce
nc

e

KRas(WT)-C(CGG)

MDM2-C(CGG)

ZB-C(CGG)

RNAPN-ZP1

RNAPC
KRas
(WT) MDM2 ZB KRas

(WT) MDM2 ZB KRas
(WT) MDM2 ZB KRas

(WT) MDM2 ZB

Figure 3.7 In vivo E. coli luciferase binding assays to assess trimolecular complex
formation.
The E. coli luciferase binding assay when testing for trimolecular complex formation
among the following component: 1) RNAPN-ZP1; 2) KRas, MDM2, or ZB-RNAPC(CGG);
and 3) ZP2-ZA-Raf, ZP2-Raf, ZA-Raf, and ZP-ZA-P53. Bars show mean ± SD of four
replicates (circles).
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Figure 3.8 Validation of the PANCS-PPIi platform.
(A) Schematic demonstrating the process of a phage growth assay. 1000 phage with
SP and 106 E. coli with APs are added to 1 mL LB, shaken overnight at 37◦C, followed
by phage isolation and population measurement by plaque assay. (B) Phage growth
assays with 2 control phage and 3 known inhibitor-encoding phage grown on the plasmids
encoding the 3 model PPIs (same as reported in (D)). Number reported is phage forming
units per mL (PFU/mL) of one replicate. (C) Schematic demonstrating the process of
a mock PANCS. 10 inhibitor-encoded phage, 1010 empty phage, and 106 E. coli with
APs are added to 1 mL LB and shaken overnight at 37◦C. The following day, phage are
isolated and a fraction of that population is added to a fresh LB with 106 E. coli with
APs and shaken overnight at 37◦C. The process is repeated and analyzed by PCR, as
shown in (D). (D) (Top left) Relevant plasmid maps of the inhibitor-encoded phage and
empty phage. Black arrow indicates forward primer binding site. Blue arrow indicates
reverse primer binding site. The PCR product of the inhibitor-encoded phage is longer
than that of the empty phage. Gels with PCR products of passages from the mock PANCS
of Raf-binding Affibody-encoded phage on Raf-KRas APs of (Top right), phage with a
chymotrypsin inhibitor 2 (CI2)-based binder of MDM2 on P53-MDM2 APs (Bottom left),
and MAX-encoded phage on MYC-MAX APs. *Empty phage do not encode an inhibitor.
** +control phage replicate by bypassing the selection conditions.
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59-43, sd8, sd8 1.00E+11 1.00E+10 1.00E+10 1.00E+10 
59-42, SD8, sd8 1.00E+11 1.00E+10 1.00E+10 1.00E+10 
66-82 SD8, SD8 1.00E+11 1.00E+07 1.00E+09 1.00E+10 
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28-67 SD8, SD8 1.00E+11 1.00E+07 1.00E+08 1.00E+11 

 

Figure 3.9 A set of control phage growth assays to test PANCS-PPIi.
Plasmid maps are shown above corresponding phage growth assay data. Number re-
ported is PFU/mL of one replicate.
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66-95, 
sd5, 
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1.00E+11 1.00E+08 1.00E+10 1.00E+10 1.00E+10 1.00E+08 1.00E+11 1.00E+11 

66-94, 
sd8, 
sd5 

1.00E+11 5.00E+07 1.00E+10 5.00E+08 1.00E+10 1.00E+08 1.00E+11 1.00E+11 

59-43, 
sd8, 
sd8 

1.00E+11 1.00E+05 1.00E+10 1.00E+09 1.00E+07 1.00E+05 5.00E+06 1.00E+09 

59-42, 
SD8, 
sd8  

1.00E+11 5.00E+04 1.00E+10 1.00E+09 5.00E+05 5.00E+04 1.00E+06 1.00E+10 

66-82, 
SD8, 
SD8  

1.00E+11 3.00E+03 2.50E+06 7.50E+06 6.00E+03 <10^3 4.00E+03 9.50E+04 

 

 

Figure 3.10 Phage growth assays on Raf-KRas APs.
Number reported is PFU/mL of one replicate.
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1.00E+11 1.00E+08 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 

73-
124, 
sd8, 
sd8 

1.00E+11 5.00E+04 1.00E+08 1.00E+08 5.00E+07 1.00E+08 1.00E+08 1.00E+08 

32-10, 
SD8, 
sd8 

1.00E+11 3.00E+03 1.00E+07 7.50E+07 4.00E+04 5.00E+04 1.00E+04 1.00E+10 

32-11, 
SD8, 
SD8 

1.00E+11 <10^3 1.30E+04 4.40E+04 1.00E+03 1.00E+03 <10^3 4.00E+04 

 

 

Figure 3.11 Phage growth assays on Raf-KRas(G12D) APs.
Number reported is PFU/mL of one replicate.
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72-26, 
sd8, 
sd8 

1.00E+11 8.00E+04 1.00E+08 1.00E+08 1.00E+09 1.00E+09 5.00E+08 1.00E+10 

72-27, 
SD8, 
sd8 

1.00E+11 1.70E+04 5.00E+06 1.75E+06 6.00E+05 3.80E+04 4.40E+04 2.50E+08 

72-28, 
SD8, 
SD8 

1.00E+10 2.00E+03 1.00E+06 1.00E+06 1.00E+04 3.60E+04 1.00E+03 1.00E+06 

 

 

Figure 3.12 Phage growth assays on Raf-KRas(G12V) APs.
Number reported is PFU/mL of one replicate.
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71-134, sd5, sd2 1.00E+11 1.00E+10 1.00E+11 1.00E+10 1.00E+10 
71-135, sd8, sd2 1.00E+11 1.00E+09 5.00E+09 1.00E+11 1.00E+11 
71-136, SD8, sd2 1.00E+11 5.00E+09 1.00E+11 1.00E+11 1.00E+11 
71-140, sd5, sd5 1.00E+11 1.00E+05 5.00E+06 1.00E+07 1.00E+10 
71-141, sd8, sd5 1.00E+11 1.00E+04 1.00E+05 1.00E+07 1.00E+10 
66-169, sd8, sd8 1.00E+11 <10^3 7.00E+03 <10^3 <10^3 
66-168, SD8, sd8 1.00E+11 <10^3 3.00E+03 <10^3 5.00E+04 
66-167, SD8, SD8 5.00E+10 <10^3 <10^3 1.00E+03 1.00E+05 

 

 

Figure 3.13 Phage growth assays on P53-MDM2 APs.
Number reported is PFU/mL of one replicate.
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71-189, SD8, sd8 1.00E+11 5.00E+04 1.75E+06 1.00E+10 1.00E+11 1.00E+08 

71-186, SD8, SD8 1.00E+11 3.00E+03 4.00E+04 1.00E+10 1.00E+10 1.80E+04 

 

 

Figure 3.14 Phage growth assays on MYC-MAX APs.
Number reported is PFU/mL of one replicate.

Given the dramatic growth rate differences of the PPI inhibitor-encoding phage in the

PANCS-PPIi system, we postulated that simple serial dilutions would allow enrichment of

phage encoding PPI inhibitors from pools of phage without inhibitors. Given that typical

phage libraries contain 109 variants based on cloning approaches277 , we aimed to

optimize the system to enrich 1 active variant in a sea of 109 inactive variants to ensure

we comprehensively cover typical libraries. To perform mock selections, we mixed 1010

negative control phage with 10 phage encoding a target inhibitor, and then grew those

mixed phage populations up on E. coli the optimized vectors for PANCS-PPIi. After 16

hours of growth, we then reseeded fresh tubes of engineered E. coli cells with phage in a

serial dilution, allowed them to grow up again for 16 hours, and repeated this serial dilution

process up to 8 times over 3-5 days (Figure 3.8C). We monitored the phage population

distribution at each step by PCR using primers that land up and downstream of the site in

the phage genome where the inhibitor is encoded or not, which yields a larger size PCR
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product for phage encoding an inhibitor. The initial input library only shows inactive phage

by PCR, as the 10 active phage are below the limit of detection. However, after just 3-8

rounds of serial dilutions, the inactive phage populations de-enrich for each target PPI,

and the active, PPI-encoding, phage appear (Figure 3.8D, Figure 3.15), representing at

least a 1014-fold relative enrichment of PPI inhibitor-encoding phage over non-inhibitor

control phage in just a few days (starting with 1 active/109 inactive, ending with at least

109/105). Given the strong performance of PANCS-PPIi in these mock selections, we

next aimed to challenge the system with PPI inhibitor libraries encoded in phage.

Figure 3.15 Additional mock PANCS-PPIi experiments.
Gels with PCR products of passages from the mock PANCS of (A) Pen-cRaf-v1-encoding
phage on one set of Raf-KRas APs starting with 100 Pen-cRaf-v1 phage (Top), 10 Pen-
cRaf-v1 phage (Middle), or 0 Pen-cRaf-v1 phage (Bottom); (B) Pen-Raf-encoding phage
on another set of Raf-KRas APs, (C) P53 phage on P53-MDM2 APs, and (D) MYC phage
on MYC-MAX APs.
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3.2.4 Deep mutational scan of Raf-based inhibitors of KRas-Raf

We next tested whether PANCS-PPIi could be used to perform a deep mutational

scan of a competitive PPI inhibitor, targeting Raf-based inhibitors of the KRas-Raf inter-

action as a model. While cell-penetrating peptides (Pen) can be used to enhance the

uptake of protein-based KRas-Raf inhibitors, appending a Pen onto Raf, or engineered

variants of Raf, decreases its affinity for KRas and its ability to inhibit the complex274

. We hypothesized that mutations near the interface could enhance KRas-Raf inhibition

by modulating KRas binding in the context of the cell-penetrating peptide. We there-

fore selected 4 positions at the PPI interface to randomize on Pen-Raf (Figure 3.16A,

PDB: 6VJJ), using NNK degenerate codons. Because this library theoretically consists

of 194,481 unique protein variants and our transformation efficiency was 106-8, we are

confident that we could sample essentially every variant to perform a comprehensive

mutational scan of these sites. Furthermore, we subcloned out 10 random variants and

found that each which were different mutants and all were worse inhibitors than the parent

Pen-Raf (Figure 3.16B), which is expected based on the library size.

With the Pen-Raf phage library in hand, we performed 8 passages of the library on

the KRas-Raf PANCS-PPIi system with 2 different AP combination strengths. At the first

round of each selection, we also started with mixture of 109 phage from the library and

109 empty phage. This empty phage spike in enables us to track the de-enrichment of

phage that do not encode a functional inhibitor by PCR, so that we can track the progress

of the selections in terms of de-enriching inactive variants. After 4-6 rounds of selec-

tion, both conditions resulted in complete de-enrichment of the negative control phage

(Figure 3.16C,D), indicating the selections were successful and complete. Phage popu-

lation numbers and activity-dependent plaque assays further suggested that the ending

populations largely contained functional inhibitors (Figure 3.17). We then cloned out 10

random variants from each library at the end of the selection and assessed their ability
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to inhibit KRas-Raf using the PPI inhibitor lux assay (Figure 3.16E,F). Although each

variant had a different genotype, 100% of the variants were active inhibitors, and ex-

citingly, all were equivalent or better inhibitors than the parent Pen-Raf. We are in the

process of further characterizing the activity of these variants by in vitro binding assays

and assessing the population throughout the selections via high-throughput sequencing

to identify advantageous and disadvantageous residues. Taken together, this DMS exper-

iment showed that PANCS-PPIi can enrich activate variants from phage-encoded inhibitor

libraries and can engineer improved inhibition properties of protein variants, all while pro-

viding high-throughput mutational data.
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Figure 3.16 A deep mutational scan of Pen-Raf as an inhibitor of KRas-Raf using
PANCS-PPIi
(A) Schematic demonstrating the process of PANCS-PPIi with the Pen-Raf library. Four
residues, located at the KRas binding interface in the KRas-Raf crystal structure (PDB:
6VJJ), were randomized using NNK degenerate codons. 109 Pen-Raf library phage, 109

empty phage, and 106 E. coli with APs were added to 1 mL LB and shaken overnight at
37◦C. The following day, phage were isolated and a fraction of that population was added
to a fresh LB with 106 E. coli with APs and shaken overnight at 37◦C. The process was
repeated for a total of 8 passages and analyzed by PCR, as shown in (C) and (D). (B)
The E. coli luciferase inhibitor assay when testing 10 random variants from the starting
Pen-Raf library. (C) Gel with PCR products of passages from the Pen-Raf PANCS-PPIi
experiments with condition 1. (D) Gel with PCR products of passages from the Pen-Raf
PANCS-PPIi experiments with condition 2. (E) The E. coli luciferase inhibitor assay when
testing 10 random variants from passage 8 from condition 1. (F) The E. coli luciferase
inhibitor assay when testing 10 random variants from passage 8 from condition 2. For E.
coli luciferase inhibitor assay graphs, the residues corresponding to each randomized site
are shown below the bar for the corresponding variant. The bolded left-most column is
the wildtype Pen-Raf, and the bolded right-most column corresponds to the site number
in full-length Raf. Bars show mean ± SD of four replicates (circles).
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Figure 3.17 Activity-dependent plaque assays of populations from the Pen-Raf
PANCS-PPIi experiments.
Number reported is PFU/mL of one replicate.

3.2.5 De novo selection of a P53-MDM2 PPI inhibitor

Rather than starting from a library of an active PPI inhibitor and targeting improve-

ment, we next assessed whether PANCS-PPIi could discover PPI inhibitors from random

libraries, de novo. For the inhibitor library, we decided to use an affibody scaffold278 , due

to its small size and robust folding capability. After cloning an affibody scaffold into the

inhibitor position on the SP, we cloned an affibody library in the phage by randomizing 17

positions on the protein scaffold, chosen based on previous work for protein binder dis-

covery (Figure 3.18A)279 . Theoretically, this library consists of 1014 variants, but based

on cloning estimates, the final phage library contained 108 individual variants.
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Figure 3.18 PANCS-PPIi identifies a de novo affibody inhibitor of the P53-MDM2 in-
teraction.
(A) Schematic demonstrating the process of PANCS-PPIi with the affibody library.
Residues in two alpha-helices along one face of the affibody scaffold were randomized.
109 affibody library phage, 109 empty phage, and 106 E. coli with APs were added to
1 mL LB and shaken overnight at 37◦C. The following day, phage were isolated and a
fraction of that population was added to a fresh LB with 106 E. coli with APs and shaken
overnight at 37◦C. The process was repeated for a total of 8 passages and analyzed by
PCR, as shown in (B). (C) The E. coli luciferase inhibitor assay when testing the dominant
variant (1318) that emerged from PANCS-PPIi. (D) The E. coli luciferase binding assays
when testing the dominant variant (1318) that emerged from PANCS-PPIi. (E) An Al-
phafold2-generated prediction of the 1318 affibody (pink) binding to MDM2 (dark green).
The affibody sequence is shown below, with the randomized sites highlighted in pink and
the FXXX motif in bold. (F) (Left) Schematic of the genetically-encoded components of
the inhibitor mammalian luciferase (lux) assay. One plasmid encodes PPI partner 1 fused
to the large NanoBiT fragment as well as PPI partner 2 fused to the small NanoBiT frag-
ment. Another plasmid contains a genetically-encoded inhibitor. If PPI partner 1 binds to
PPI partner 2, then the luciferase protein will be reconstituted and produce luminescence.
If the inhibitor prevents the binding of PPI partner 1 and PPI partner 2, the luciferase pro-
tein will not be reconstituted; thus, no luminescence will result. (Right) The mammalian
luciferase inhibitor assay when testing the dominant variant (1318) that emerged from
PANCS-PPIi.
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With the affibody inhibitor library in hand, we subjected it to PANCS-PPIi for P53-

MDM2 inhibitors. As we did for the DMS, we initiated each selection with the library alone

as well as a 1:1 ratio of library (109) and empty (109) phage, so that we could use PCR

to determine if/when the negative control phage (and other non-functional library phage)

were effectively de-enriched. After 8 passages, we found the negative control phage

were non-detectable by PCR, while the affibody populations remained strong (Figure

3.18B). We used activity-dependent plaque assays to further confirm that the populations

at passage 8 contained active inhibitors (Table 3.1).

Table 3.1 Activity-dependent plaque assays of populations from the affibody
PANCS-PPIi experiment. Number reported is PFU/mL of one replicate.

Affibody library P0 Affibody library P8
Population 8.75 x 109 2.8 x 107

Population with activity on target
PPI APs (71-111/71-141)

3.5 x 105 1.8 x 107

We next cloned six random affibody variants from the phage at the end of the selec-

tion into the PPI inhibitor assay vector, which revealed the libraries had largely converged

on a single genotype, "1318." We tested whether 1318 is a P53-MDM2 inhibitor using the

E. coli PPI inhibitor, which confirmed 1318 is a P53-MDM2 inhibitor (Figure 3.18C). To de-

cipher the mechanism of action of 1318, we then tested whether it binds to P53 or MDM2

directly using the luciferase binding assay, which revealed strong MDM2 binding, but no

P53 binding (Figure 3.18D). Indeed, AlphaFold2 predicted a high-confidence structure

of the interaction between 1318 and MDM2, showing key interaction of a FXXXW motif

on 1318 with MDM2 (Figure 3.18E, Figure 3.19)280 , a well-known recognition motif for

this protein281 . Furthermore, 1318 showed inhibition of the P53-MDM2 interaction in

HEK293T cells in a split NanoLuc reporter assay (Figure 3.18F), which demonstrates its

biological activity outside of E. coli cells and in a more native mammalian environment.

Taken together, these results confirm that PANCS-PPIi can discover PPI inhibitors de
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novo from random libraries.

Figure 3.19 Predicted local distance difference test (IDDT) per position of Al-
phafold2-generated model of affibody 1318 binding to MDM2.
Left corresponds to MDM2, and right corresponds to 1318 affibody.

3.3 Discussion

Here, we developed PANCS-PPIi, an in vivo phage-based directed evolution platform

that selects directly for molecules that disrupt PPIs. We showcased the ability of PANCS-

PPIi to search through large libraries of 108 or more genetically encoded molecules and

identify PPI inhibitors, in just a few days. Moreover, the selection process simply involves

serial dilutions on E. coli cells, with each round of selection taking less than 5 minutes

worth of researcher work and without any specialized equipment. Finally, we showed

PANCS-PPIi is robust, and can reproducibly enrich active variants and reproducibly drive
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extinction events of active variants, avoiding the pitfalls of cheaters and background that

often plaque traditional selection-based methods. We found PANCS-PPIi can not only the

enrich 1 active inhibitor in a population of 1 billion non-functional inhibitors after just a few

rounds of selection, but the de-enrichment of the non-functional inhibitors was complete.

This extinction of inactivate variants is a key strength of the method, as ascertaining

whether a selection worked or not is as simple as determining whether the phage sur-

vived. PANCS-PPIi therefore provides a high-throughput method to directly select for PPI

inhibitors.

In this work, we demonstrated the compatibility of PANCS-PPIi in terms of PPI targets

across three distinct, clinically important PPIs. The platform should be broadly applica-

ble for any PPI that functions in E. coli. For each new compatible target, we outlined a

straightforward method to tune the selection pressures of the system by adjusting gene

expression via altering the RBSs of the promoters on the APs, using simple phage repli-

cation assays to assess the selection pressures. For the targets presented here, we

demonstrated a range of tunability such that inhibitors of varying strengths could be se-

lected for, depending on the properties of the the library and target PPI. In terms what

can be screened for, PANCS-PPIi allows any genetically encoded biomolecule to act as

an inhibitor. Though in this work we used protein scaffolds, a variety of scaffolds could

be used, including small molecules such as cyclic peptides or other natural product-like

molecular scaffolds282 .

The selection itself is technically easy to carry out. No proteins need to be purified;

the researcher only needs to clone the APs and SPs needed, and the selection simply

consists of passaging phage, which can be done in a medium-throughput manner with

replicates and conditions via the use of deep-well plates and multichannel pipettes. With

the use of the empty phage spike-in, the selections are also easily and quickly monitored

via PCR. Depending on the target and conditions, one could isolate functional inhibitors in
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as few as 3 passages. Since passages can be as short as 6 hours, this means one could

go from a library to a confident inhibitor hit in less than 24 hours, as we demonstrated in

the case of the P53-MDM2 and MYC-MAX interactions (Figure 3.8D).

An advantage of this PANCS-PPIi over display technologies is the system directly se-

lects for PPI disruption, rather than simply binding to one of the two PPI partners. While in

this work the inhibitors discovered functioned as competitive binders, this mechanistically

agnostic selection should allow for the discovery if inhibitors with novel mechanisms of in-

hibition, such as through interactions with allosteric sites. Another advantage of PANCS-

PPIi is that the inhibitor is expressed without a tag, which could impede or enhance the

activity and is not feasible for some molecular scaffolds, and that the inhibitor must func-

tion in E. coli, amongst a sea of other potential off-targets. In this work, we used a simple

zipper peptide pair (ZA-ZB) as the counter-selection off-target PPI, which is critical for

focusing the selection pressure on the target PPI and avoiding things like RNAP inhibitors

or other cheaters. However, the counter-selection, off-target PPI could in principle be

any desired off-target PPI of interest (Figure 3.20), allowing for the screening of mutant-

or isoform-selective inhibitors, as we demonstrated recently in a related PPI selectivity

technology65 . In conclusion, PANCS-PPIi is a simple to execute and robust method to

directly select for inhibitors of PPIs in a mechanistically-agnostic manner, which will open

up new opportunities for the discovery of inhibitors for use as biological tools or as leads

in drug discovery campaigns.
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72-28, SD8, SD8 5.00E+03 <10^3 <10^3 1.00E+04 

 

 
 
 

Figure 3.20 Phage growth assays on AP combinations that select for inhibitors of
KRas(G12D)-Raf but not KRas-Raf (top) and of KRas(G12V)-Raf but not KRas-Raf
(bottom).
Number reported is PFU/mL of one replicate.
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3.4 Methods

3.4.1 General methods

Protein structures were generated using UCSF ChimeraX283 . E. coli 10-beta cells

(NEB) were used for cloning and were cultured in 2xYT media. E. coli BL21 (BE3) cells

(NEB) were used for protein expression and were cultured in Luria-Bertain (LB) broth.

E. coli S1030 cells200 were used for activity-dependent plaque assays, phage growth

assays, luciferase assays, and selections and were cultured in LB broth. E. coli 1059

cells200 were used for cloning phage and plaque assays and were cultured in 2xYT media

for cloning and LB for plaque assays. The following working concentrations of antibiotics

were used: 50 µg/mL carbenicillin, 40 µg/mL kanamycin, and 33 µg/mL chlorampheni-

col. Human embryonic kidney (HEK) cell line 293T (female, ATCC) was maintained at

37◦C with 5% carbon dioxide in DMEM ( L-glutamine, high glucose, sodium pyruvate,

phenol red, Corning) with 10% fetal bovine serum (FBS, Gemini Benchmark) and 1x

penicillin/streptomycin (GIBCO/Life Technologies). Cells were passaged at a ratio of 1:10

to 1:20 every 2-3 days when at approximately 90-100% confluency by washing with Dul-

becco’s phosphate-buffered saline (PBS) and treating with Trypsin-EDTA 0.25% (GIBCO)

to lift.

3.4.2 Cloning

Plasmids were constructed by amplifying fragments using Q5 DNA Polymerase (NEB)

and ligating the fragments via Gibson Assembly. Primers were obtained from IDT, and all

plasmids were sequenced at the University of Chicago Comprehensive Cancer Center

DNA Sequencing and Genotyping Facility. The plasmids used in this study are available

upon request.
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3.4.3 Luciferase assays

For the E. coli luciferase binding assays, one vector contained the following the

previously-evolved N-terminal half of RNAP (Zinkus-Boltz et al., 2019) fused to one pro-

tein, and another vector encoded both the C-terminal half of CGG RNAP fused to one

protein and the CGG promoter-driven luciferase reporter. The E. coli luciferase inhibitor

assays contained both vectors above as well as a vector containing an isopropyl -D-1-

thiogalactopyranoside (IPTG)-inducible inhibitor, and the trimolecular complex binding as-

say likewise contained both vectors above as well as a vector containing an isopropyl -D-

1-thiogalactopyranoside (IPTG)-inducible entity with various protein fusions. Chemically

competent S1030 E. coli cells were prepared by culturing to an OD600 of 0.3, washing

twice with a calcium chloride/HEPES solution (60 mM CaCl2, 10 mM HEPES pH 7.0,

15% glycerol), resuspending in the same solution, and flash-freezing in liquid nitrogen

and storing at -80◦C. Vectors were transformed into chemically competent S1030 cells

via heat shock at 42◦C for 45 s, followed by 1 hr recovery in 3Œ volume of 2xYT media,

and then plated on agar with the appropriate antibiotics and left to incubate overnight at

37◦C. Individual colonies (three to four biological replicates per condition) were picked and

cultured in 1 mL of LB media containing the appropriate antibiotics overnight at 37◦C in a

shaker. The next morning, 50 µL of each culture was diluted into 450 µL of fresh LB me-

dia containing the appropriate antibiotics. For cells containing the IPTG-inducible inhibitor

plasmid, each culture also contained 1 mM of IPTG, and for cells containing the IPTG-

inducible trimolecular complex fragment, each culture contained 0.1 mM of IPTG. The

cells were incubated in a shaker at 37◦C, and OD600 and luminescence measurements

were recorded between 3 and 4 hours after the start of the incubation. Measurements

were taken on a Synergy Neo2 Microplate Reader (BioTek) by transferring 125 µL of the

daytime cultures into Corning black, clear-bottom 96-well plates. Data were analyzed in

Microsoft Excel and plotted in GraphPad Prism, as previously reported63 .
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3.4.4 Plaque assays

Plaque assays to assess total phage population were performed on 1059 E. coli

cells, which supply gene III (gIII) to phage in an activity-independent manner. Addition-

ally, activity-dependent plaque assays were done on S1030 E. coli containing the desired

accessory plasmids (APs) to determine the number of phage in a population that could

replicate on those APs and therefore had the activity needed to confer desired PPI in-

hibition. All cells were grown to an OD600 of approximately 0.6 during the day. Four

serial dilutions were done in 1.2 mL 12-well tube strips (VWR) by serially pipetting 1 µL

of phage into 50 µL of cells to yield the following dilutions: 1/50, 1/2500, 1/125,000, and

1/6,250,000. 650 µL of top agar (0.7% agar with LB media) was added to each tube,

which was then immediately spread onto a quad plate containing already-solidified bot-

tom agar (1.5% agar with LB media). Plates were incubated overnight at 37◦C. Plaques

were counted the following day, and plaque forming units (PFU) per mL was calculated

using the following equation:

PFU = 1000× A× 504-B

Where A is the number of plaques in a given quadrant, and B is the quadrant number

where the phage were counted, in which one is the least dilute quadrant and four is the

most dilute quadrant.

3.4.5 Phage growth assays

Phage growth assays were performed by adding the following to a culture tube and

shaking overnight at 37◦C: 1 mL of LB with the appropriate antibiotics, 10 µL of saturated

S1030 E. coli containing the accessory plasmids of interest, and 1000 phage. Phage

were then isolated by centrifugation at 16,000 rcf for 3 min, and PFU was determined by
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plaque assays using 1059 E. coli and the plaque assay protocol described above.

3.4.6 Phage-Assisted Non-Continuous Selection (PANCS)

Phage-assisted non-continuous selection took place by doing successive phage growth

assays, using phage dilutions for each passage. To begin, the following were added to

each well of a 96 deep well plate (Fisherbrand), which was then shaken overnight at

37◦C: 1 mL of LB with the appropriate antibiotics, 10 µL of saturated S1030 E. coli con-

taining the accessory plasmids of interest, and 109 library-containing phage. An identical

96 deep well plate was likewise made and cultured that contained the above plus 109

empty phage in each well in order to monitor non-functional phage de-enrichment. (For

the mock PANCS experiments, one plate was run with 10 phage with a functional inhibitor

encoded and 1010 empty phage.) The next day, the phage were collected by centrifuging

the deep well plates at 3000 g for 5 minutes and collecting the supernatant from each

well. To being a new passage, the following were added to each well of a 96 deep well

plate (Fisherbrand), which was then shaken for at least 6 hours at 37◦: 1 mL of LB with

the appropriate antibiotics, 10 µL of saturated S1030 E. coli containing the accessory

plasmids of interest, and either a 1:10 (100 µL) or 1:100 dilution (10 µL) of phage from

the previous passage. The selections were monitored by Phusion PCR (NEB, 50 uL re-

actions) using 1 µL of phage from the samples from the plate that contained the empty

phage spike in control using the following primers: BR76 and JD1060, which result in a

735 bp fragment when used on just the empty phage and an at least 931 kb fragment

when used on inhibitor-encoding phage (exact length depends on the inhibitor).
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3.4.7 Protein purification

Proteins were cloned with a 6xHis-tag fused to their N-termini. The proteins were

expressed in BL21 E. coli (NEB) and purified following standard Ni-NTA resin purifica-

tion protocols (ThermoFisher Scientific)114 . Briefly, BL21 E. coli containing the protein-

encoded plasmid of interest were cultured in 5 mL LB with kanamycin overnight. The

following day, the culture was added to 0.5 L of LB with kanamycin, incubated at 37◦C

until it reached an OD600 of 0.6, induced with IPTG (final concentration: 200 µM), and

cultured overnight at 16◦C. The cell pellet was harvested by centrifugation followed by

resuspension in 30 mL of lysis buffer (50 mM Tris, 500 mM NaCl, pH 7.5) supplemented

by protease inhibitors (200 nM Aprotinin, 10 µM Bestatin, 20 µM E-64, 100 µM Leupeptin,

1 mM AEBSF, 20 µM Pepstatin A). Cells were lysed via sonication (90% amplitude for 1

second on and 1 second off for 1 minute, followed by resting on ice for 2 minutes and

then another cycle) total and were then centrifuged at 12,000 g for 40 min at 4◦C. Sol-

ubilized proteins, located in the supernatant, were incubated with His60 Ni Superflow

Resin (Takara) for 1 hr at 4◦, and the protein was eluted using a gradient of imidazole in

lysis buffer (50250 mM). Fractions with the protein, as determined by SDS-PAGE, were

concentrated in Centrifugal Filter Units (Amicon, EMD Millipore). Proteins were further

purified via a desalting column with storage buffer (50 mM Tris, 500 mM NaCl, 3 mM

MgCl2, pH 7.5) and further concentrated. The concentrations of the purified proteins

were determined by BCA assay (ThermoFisher Scientific), and they were flash-frozen in

liquid nitrogen and stored at 20◦.

3.4.8 Split NanoLuc mammalian cell assays

HEK293T cells were passaged into black 96-well clear bottom plates. Following 16

hours post-passaging, the cells reached 60% confluency, and each was transfected with

60 ng of the split reporter plasmid and 360 ng of the inhibitor expression plasmid in 20
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uL Opti-MEM I Reduced Serum Medium (ThermoFisher Scientific) and 0.5 uL of Lipo-

fectamine 2000. After 48 hours, media was replaced with 100 uL Opti-MEM I Reduced

Serum Medium, and each well was treated and mixed with 25 uL of Nano-Glo Live Cell

Reagent (Promega N2011) and luminescence measurements were immediately taken on

a Synergy Neo2 Microplate Reader (BioTek). Data were analyzed in Microsoft Excel and

plotted in GraphPad Prism.

3.5 Supplementary notes

Design 1: We first attempted to create the PANCS-PPIi platform by using the same

SP and APs as the PACE platform we designed to evolve PPIs, but also adding the ge-

netically encoded inhibitor into the SP (Figure 3.21). However, we found that even out

of a theoretically monoclonal phage population of 109 phage, cheaters existed, purport-

edly through chance natural mutagenesis, that rendered the PPI partner 1 in the phage

non-functional, thus bypassing the negative selection. Even when we had 2 copies of PPI

partner 1 in the phage, there still existed cheater phage that removed the PPI partner 1

genes, thus bypassing the selection.

Figure 3.21 Schematic showing supplementary note, design 1.

Example 1: We added 109 of the following phage to S1030 E. coli cells with the

following APs and performed 4 passages with 1:20000 dilution rate of phage (Figure

3.22) . The phage population over all passages was 1011 and phage variants at the

end contained Raf variants in the phage that had the following inactivating mutations:
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Q66taa(stop) and R89C.

Figure 3.22 Plasmid maps corresponding to supplementary note, design 1, example
1.

Example 2: We added 109 of the following phage to S1030 E. coli cells with the

following APs and performed 4 passages with 1:20000 dilution rate of phage (Figure

3.23) . The phage population over all passages was 1011 and phage variants at the

end all contained the first Raf deleted and some also contained the Q66taa(stop) in the

second Raf.
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Figure 3.23 Plasmid maps corresponding to supplementary note, design 1, example
2.

Design 2: We then attempted to modify this platform by removing the RNAPN-ZA-

PPI partner 1 from the phage and encoding into an AP (Figure 3.24). However, this

enabled the E. coli to produce gIII prior to phage infection, which is known to prevent

phage infection and thus prohibit our selection to take place284 . We experimentally saw

this to be the case as well.
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Figure 3.24 Schematic showing supplementary note, design 2.

Example: Overnight phage growth assays starting with 1000 phage resulted in the

following (Figure 3.25):

Figure 3.25 Plasmid maps and phage growth assays corresponding to supplemen-
tary note, design 2.
Number reported is PFU/mL of one replicate.
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CHAPTER 4

SUMMARY AND PERSPECTIVES

4.1 Summary

Just as with people and our relationships with one another, biomolecules and their

interactions are complex, and interactions gone awry can lead to adverse consequences.

Similarly, understanding and correcting aberrant interactions cannot be contained to a

"one size fits all" approach. Specific tools are needed to modulate specific biomolecular

interactions, and the number needed to control each interaction in the immense protein

interactome alone is staggering. The task for finding even one tool for a protein-protein

interaction (PPI) is so challenging, largely due to their biophysical properties, that PPIs

were once deemed "undruggable." Though recent technological advances now render

PPIs "challenging" rather than completely "undruggable," the term "challenging" magnifies

when one accounts for how many interactions exist.

The work undertaken in this dissertation seeks to find tools to alleviate the chal-

lenges plaguing PPI modulation. One such challenge is the inability of current directed

evolution platforms to directly identify specific binders. (Display platforms can do this in-

directly through successive campaigns with different targets, yet this indirect method is

liable to experimental bottlenecks along the way.) Therefore, the first project, described

in Chapter 2, seeks to overcome this challenge and therefore demonstrates the advent of

a new technological platform for finding specific protein binders. By adapting the phage-

assisted continuous evolution (PACE) platform for use with a multi-dimensional split RNA

polymerase (RNAP) biosensor, we were able to evolve proteins to bind one target but not

another, even with biophysically-similar targets. The ability to evolve specificity represents

the key advance provided in this platform, a novel activity distinct from evolving binding

alone. We demonstrated the utility of the platform by conducting multi-replicate evolution
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campaigns with multiple modern-day and ancestral protein starting points to alter their

binding profiles. The advent of our technology combined with the power of ancestral

sequence reconstruction and high-throughput sequencing to afford the unique ability to

decouple the roles of chance and contingency in the evolution of the model protein family.

In the second project, described in Chapter 3, I set out to create another technology

that endows activity beyond binding alone: here, in PPI inhibition. As has been men-

tioned, many platforms exist that select for protein binding (and now one also exists that

selects for specific protein binding), and, in some cases, binding to one protein does con-

fer inhibition of the interaction of that protein with its native binding partner. However,

binding does not guarantee inhibition; a binder merely offers a chance of achieving inhi-

bition via competitive binding or allostery.

The lack of a broadly-applicable platform for directly identifying inhibitors of PPIs

motivated the creation of PANCS-PPIi. PANCS-PPIi takes inspiration from the PPI speci-

ficity PACE technology in Chapter 2, though getting the system to technically-function

required some creative design (see Chapter 3, Supplementary Note as well as Figure

3.2). We demonstrated compatibility with 3 clinically-relevant, biophysically-distinct PPIs

and robustness in the ability to not only enrich one functional inhibitor out of 1 billion

non-functional inhibitors, but also in the ability to essentially eliminate the non-functional

inhibitor population. We showed the ability of PANCS-PPIi to not only improve existing

inhibitor activity, as seen in the deep mutational scan of a Raf-based inhibitor, but also to

identify a novel inhibitor from a library de novo. Both Chapters 2 and 3, therefore, detail

novel directed evolution technologies with the power to address critical unmet needs in

PPI understanding and PPI modulator discovery.
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4.2 Future Directions

In the PPI specificity PACE project described in Chapter 2, we also performed an

evolution campaign and did successfully obtain a protein with a novel binding profile,

not currently possessed by any protein in nature (nor any other synthetic protein, to our

knowledge). Indeed, there is great potential for this technology to develop novel specific

protein binders for a variety of targets. This potential has recently been further realized

by the Dickinson lab and will hopefully be publicly available later in 2023 or 2024. The

technology could also be pushed to its limits in finding isoform-specific binders with the

ability to bind or not bind due to a single amino acid difference at a single protein site.

Designing specificity around a single site has been notoriously difficult in the case of

KRas isoforms, yet this technology would provide a unique approach in its ability to test

for specific binding among billions of genetically-encoded molecules at a time.

While we claim that the PPI specificity PACE platform can evolve specific PPIs, we

technically mean it can evolve one component (i.e. protein) of a specific PPI. Co-evolution

has long been of fascination to evolutionary biologists, yet co-evolution is difficult to

achieve in the lab, aside from tracking the evolution of whole viruses, cells, or organisms.

Indeed, only a few instances of directed co-evolution are known102,285 , and they typi-

cally are limited to only a few rounds of evolution. The PPI specificity PACE could prove

amenable to facilitating the directed co-evolution of both proteins involved in a PPI, and,

to the delight of evolutionary biologists who desire longer timeframes, could do so with

hundreds of rounds of evolutions in just days. I have done some preliminary experiments

to showcase the potential of this project, as shown in Figure 4.1.
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Figure 4.1 E. coli luciferase assay to test co-evolution of MCL-1 and BID feasibility.
(Left) Table detailing the plasmids used in (right) E. coli luciferase assay. 1 µM of IPTG
was used to induce the PLac plasmid. Bars show mean ś SD of four replicates.

The PANCS-PPIi platform established in Chapter 3 is also primed and ready for future

novel inhibitor discovery. I am planning to continue making genetically-encoded libraries

and running PANCS-PPIi experiments on a variety of targets during the rest of my time

in the Dickinson lab, and my co-author will do the same even beyond my time. Due to

its mechanistically-agnostic approach, we anticipate the ability of the platform to identify

allosteric inhibitors, which would lead to further insight into this complex mechanism of

inhibition. Because of its ease-of-use yet robustness, we anticipate that PANCS-PPIi can

be used by any lab versed in molecular biology and cloning to generate inhibitors on-

demand for use as biological tools or as starting points for drug development.

4.3 Perspectives

This thesis highlights two important applications of directed evolution platforms; di-

rected evolution can be used as a tool for studying evolution and for the discovery and

development of novel molecules. The latter is perhaps more commonly thought-of among
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scientists: many pharmaceutical companies now have entire departments devoted to us-

ing directed evolution platforms like phage display for drug development purposes. That

said, directed evolution can also offer insights into evolutionary processes, principles, and

trajectories, as shown in Chapter 2. The expansion of directed evolution platforms should

thus not only be of interest to those using it as a tool for molecular development, but also

to evolutionary biologists looking for better experimental set-ups. The converse is true as

well: scientists involved in directed evolution would do well to stay attuned to emerging

developments from the evolutionary biology world to inform how to improve and diversity

directed evolution development.

The two main projects of my dissertation have also allowed me to probe two divisions

of directed evolution: continuous and non-continuous platforms. With rapid developments

and expansions in both areas, the field too has taken note and attempted to assess the

strengths and drawbacks of each29,30,37 . In the context of my work, I view the distinctions

as detailed in Table 4.1. In summary, I increasingly see the power of non-continuous

directed evolution to identify de novo activity. It excels at the proverbial "finding a needle

in a haystack" challenge. Perhaps because the continuous aspect of continuous directed

evolution provides a harsher selection pressure, continuous evolution excels not at finding

de novo activity, but at improving existing activity, perhaps the "sharpening the needle"

challenge. To identify robust, novel molecules, it seems the optimal method is to first use

non-continuous directed evolution to identify some activity, and then improve activity by

continuous directed evolution. There was a series of papers from David Liu’s lab where

they followed this trajectory for developing base editors286,287 , and, if things progress as

they are, similar papers will likely come from the Dickinson lab as well.
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Table 4.1 Continuous versus non-continuous directed evolution methods in this
thesis.

Continuous directed
evolution

Non-continuous di-
rected evolution

Rounds of evolution
in 4 days

100s 8̃

Researcher interven-
tion

Minimal Manually perform
passages

Set-up Elaborate Easy
Overall strength Improves existing ac-

tivity
Finds 1 winner in a
billion non-winners

Both main projects in my dissertation offer a few key advantages and disadvantages

to be considered. Both rely on a biosensor, here a split RNAP biosensor, which poses

an advantage in that it renders the system amenable to a variety of inputs and outputs

and to a large range of tunability. Furthermore, both operate as a selection rather than

a screen and function by linking activities to growth and depletion. On one hand, this

allows for larger libraries (i.e. more possibilities) to be assessed, yet the linking of activity

to growth currently limits the entities being evolved to only those that can be encoded

genetically. Lastly, activity is assessed in a biological context, here in the E. coli cyto-

plasm, which offers an advantage in that the activity must take place amidst a myriad of

other process that it could either be impacted by or impact itself. The E. coli cytoplasm

does not accommodate all proteins equally- those that are membrane-bound or reliant on

mammalian post-translational modifications for proper functioning are notable examples

of incompatibility.

That said, technologies are continually being developed that overcome apparent in-

compatibilities: disulfide-bond containing proteins were thought to be incompatible with

PACE, until periplasm PACE was developed62 . Unnatural amino acid incorporation tech-

nologies288 , engineered ribosomes289 , and the like are continually expanding our tool-

box and capabilities in E. coli as well. Furthermore, yeast and mammalian directed evo-
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lution platforms, which are continually developing and improving, could one day prove

amenable to the PPI specificity PACE and PANCS-PPIi platforms. Overall, I am hopeful

that the platforms I developed and reported in this thesis will not only be used to aid in

discovery efforts as they are, but will also continue to be reimagined into more robust

technologies themselves.
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