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LIST OF FIGURES

Patterning activity in an actin liquid crystal leads to spatially confined flows
and topological defects. A) Polarization image of actin filaments forming a
—i—% (top) and —% (bottom) defect. Brighter (darker) pixels in the image are
regions in which filaments are vertical (horizontal). Red lines indicate the lo-
cal average orientation of filaments (director). Scale bar, 5um. B) Schematic
of the experimental setup. Actin is crowded onto an oil-water interface by
methylcellulose (not pictured) where engineered myosin motors generate ac-
tive stress. C) Schematic illustrating the gear-shifting motors. The tetrameric
myosin motors are constructed with engineered lever arms that contain the
light-sensitive LOV2 domain from Avena sativa. Top (dark state): in the ab-
sence of blue light, the LOV2 domain adopts a folded conformation (blue
squares), acting as a mechanical element with some rigidity. Bottom (lit state):
upon absorption of 470 nm light (downward kinetic arrow) part of the LOV2
undocks and becomes disordered, now acting as a flexible linker (blue link-
ages). The undocked LOV2 reverts back to the folded conformation in a ther-
mally activated process (upward kinetic arrow), with motors re-populating the
dark state. The light-dependent conformational changes of the lever arm alter
the working stroke of the motors; in the context of cross-linked actin filaments
we propose that this results in a higher sliding velocity in the lit state (‘high
activity’) than in the dark state (‘low activity’), corresponding to the velocity
change seen in gliding filament assays Ruijgrok et al. [2021]. D) Experimen-
tal polarization microscopy snapshot of fluorescently tagged actin driven by
MyLOVChar4 1R TET. Gear-shifting motors were stimulated only within the
red box labelled ‘+hv’. Topological defects as described above are indicated
by yellow dots. Scale bar 20um. E) Histogram of snapshots of the defect den-
sity along the x-axis over time shown in (D). Darker colours indicate later time
points. F) Velocity field corresponding to the frame in (D). Scale bars in (F)
and (G) 20um. G) The —1—% defect trajectories for the first 400s of stimulation for
the experiment excerpted in (D). H) Example of a trajectory in which a defect
‘deflects’” off of the boundary of the stimulated region. The defect is marked
by a yellow chevron. Scalebar 10 um. . . . . . . ... ... ... .. .......
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2.5

Simulations of defect behaviour in a patterned active nematic. A-D) Snap-
shot of the director field near the boundary between the higher and lower
activity regions, located at x = 0 (A), its corresponding velocity field (B), de-
fect density profile (averaged over ten ensembles of duration 1,0007) (C) and
defect trajectories (D). The active region is coloured light red in a—c. The back-
ground in (A,B) is coloured with the nematic order parameter S, with dark red
indicating defect locations. E) Defect density interfacial width, wp, as a func-
tion of relative activity, %. F) Scalar order parameter P,(n - v) characterizing
the anchoring effect at different locations with respect to the boundary of the
activity pattern. The error bars in (E) and (F) represent the standard deviations
over 100 ensembles. . . . . ... ...
Simulations of defect-pair creation using activity pattern. A,B) Sequential
images of an initially uniform active nematic with a rectangular (A) and a
triangular (B) pattern at an activity level « = 3. Initial configurations are
shown in the insets of (A) and (B). The triangular (rectangular) region has a
base (height) b = 14 and a height (width) i = 50. C) Threshold activity for dif-
ferent pattern sizes at a fixed aspect ratio % = 3 is shown as triangle symbols.
Spontaneous undulation wavelengths at a given activity are shown as circle
symbols. Open symbols indicate no defect generation; filled symbols indicate
defect generation. . . . ... ... ..
Simulations of defect deflection by a rectangular activity pattern. A) Sequen-
tial images showing defect deflection at activity « = 0.2ap and box tilt angle
¢ = 45°. Initial defect separation is 250. A rectangle size (290 x 80) is cho-
sen such that the pattern length can cover the two defects when horizontally
placed, and the width is neither too narrow, so that the activity can still drive
the defect, nor too wide so as to lose guidance. Defects are marked to aid the
eye. B) Defect trajectories for different tilt angles at &« = 0.2ag. The activity pat-
tern is shown as a dashed box for ¢ = 45°. C) The aligning order parameter
sech(¢y — ¢) as a function of the imposed angle ¢ for various activities where
¢ is the angle of the asymptotic trajectory with respectto +x. . . ... ... ..
Targeted activation can be used to direct defect trajectories in experiment
and simulation. A) Series of experimental images showing a +% defect (cir-
cled in blue) moving within the active pattern (red outline). The trajectory of
the defect is shown as a tail on the defect in the last frame. B) Series of snap-
shots from simulations showing the motion of a defect in an activity pattern
that mimics the experiment shown in (A). C) Trajectories for five independent
experimental samples from two different days (scatterplot) in relation to the
activated region. D) PDF for a given change in vector angle, 6, for the trajecto-
ries in (C). Inset is a schematic of the method for quantifying the angle change.
The grey dashed line indicates an angle of 0°. E) PDF of change in vector an-
gle. The time lag in both (D) and (E) is 25s, see Methods for a full treatment of
the turn angle. Scale bars are 20um. . . . .. ... ... ... . L.
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3.1

3.2

Observation and Characterization of elasticity bands in active nematics A)
Schematic representation of the experiment showing F-actin (grey) crowded
to an oil-water interface using methylcellulose (circles). Inset shows myosin
IT motors (red) translocating short F-actin, with capping protein (yellow) indi-
cating the F-actin barbed end. B-C) Images of fluorescent F-actin in LC of low
elasticity (K11 = 0.26 pN, K33 = 0.13 pN) (B) and high elasticity LC (K1 = 0.52
PN, K33 = 1.04 pN) (C). The local director field superposed with the colorbar
showing how the intensity variations map to the local nematic field. A pair of
+1/2 defects are separated by a region of bend deformation (band) outlined
by solid black lines. D) Maximum band length (/},,,;) and mean defect spac-
ing (Igefect) for the two nematics shown above. E) Probability distribution of
the bend and splay elastic distortion for the two nematics described above.
The higher elasticity nematic, plotted with open symbols, exhibits a heavy tail
corresponding to bands. F) The variation of the director field across an elastic
band as shown in the inset. The band width, w, is determined by distance over
which the director field orientation 6 changes linearly. . . . . .. ... ... ...
Formation and structure of branched bands A) Schematic of topologically
neutral structure containing a simple band. B) Schematic of a topologically
neutral structure of a branched band. Note how the +1/2 defect that is not at-
tached to the band opposes the branch point to maintain topological neutrality.
C) Time series of experimental snapshots of a branched band forming in a ne-
matic with (Kq1 = 0.52 pN, K33 = 1.04 pN). An initially aligned region (purple
line) adjacent to an extant band buckles towards a -1/2 defect (red trefoil). As
the bend distortion increases, a +1/2 defect appears opposing the branch point
similar to the schematic in (B). D) Time series snapshots of a band forming in
hydrodynamic simulation. As the local bend distortion (yellow color) in the
nascent band increases, a +1/2 defect approaches the branch point, stabilizing
thestructure. . . . ... ... ...
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Increased bend elasticity promotes band formation at intermediate activi-
ties A) Optical images of actin LC containing a sparse concentration of mi-
crotubules in red with bend modulus K33 = 1.04 pN. B) The same nematic as
in (A) after the addition of myosin-II. Note the long band reminiscent of Fig.
3.1C. C) Band index (¢), defined as the area fraction occupied by bands, plot-
ted as a function of root mean squared velocity, (vyms). While for low K33 no
significant population of bands is observed, nematics with high elasticity only
exhibit large area fractions of bands below a certain critical v;y;s (black dashed
line). D) Bend distortion (Ep,,q = |(V x n)|?da) in a high elasticity nematic
plotted as a function of vy;s. The purple region corresponds to the right hand
side of the black line in (C). The black dased line here corresponds to the onset
of an energetic plateau. E) Total bend elastic distortion plotted as a function
of vyms for K33 = 0.13 pN. The purple region beyond 0.12 ym/s indicates the
region of defect creation. F) State diagram summarizing the dynamic states
observed as a function of K33 and v;;s. The data points are from three sam-
ples K11=0.26 and varying K33 over a range of activities and are color coded
for regimes with no defect creation (open black diamonds), elastic bands (ma-
genta stars) and defect creation (blue squares). The transition from gray to blue
shading indicates a crossover to active stresses sufficient for defect creation. . .
Band stability is a history dependent phenomenon A) Simulation snapshot
of fully developed active turbulence stemming from random initial conditions
(inset). With these initial conditions, bands (yellow) are relatively short. B)
Simulation snapshot of stable structures formed in a nematic at the same ac-
tivity level stemming from uniform initial conditions (inset). Note that the
bands arising from these initial conditions are a stable series of oppositely di-
rected bands that span the space of the simulation box. C) Steady state elastic
energy plotted over time for simulations with random initial conditions across
a range of activities. D) Steady state elastic energy for simulations stemming
from uniform initial conditions. The dashed purple curve is the highest ac-
tivity level that does not produce defect pairs and only exhibits stable bands.
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3.5

4.1

‘Catapulting’ of +1/2 defects through elasticity bands A)Time-series of flu-
orescent images of actin LC (Ky1 = 0.52 pN, K33 = 1.04 pN) showing a +1/2
defect (blue chevron) moving along a band leaving a uniformly aligned region
in its wake. B) Time series of images showing a band severing event. The band
separates near its thinnest point into a &= 1/2 defect pair after which dynamics
proceed as in (A). C) Distribution of speeds of +1/2 defects in the movies from
which A & B originated. The blue line coreresponds to a Gaussian fit of the
data (black circles). The second peak (outlined in gray) deviates significantly
from this single Gaussian fit and corresponds to defects we term ’"catapulted’.
D) The speed of +1/2 defects within bands tracked over multiple experiments.
Defect speed scales inversely with the band strength defined in Fig. 3.1F. The
data includes actin LCs driven by both myosin-II (red squares) as well as syn-
thetic myosin-VI motors (blue circles). The solid line is the fit to the analytical
model. . ...

Measuring directionally rectified correlations reveals response functions in
active materials. A,B) Displacement fields measured by optical flow from flu-
orescence microscope images of an active nematic liquid crystal composed of
actin filaments at t = 0s (A) and t = 12s (B). Displacements measured over
At = 2s. (i) Schematic of coordinate transformation and ensemble formation
for the response of the two dimensional displacement field u to various per-
turbation fields p. p is either the displacement field itself (C), the vorticity
field (D), or the shear field (E). (ii) Equal time two dimensional correlated dis-
placement field. The response of the displacement field in (A) to each of the
respective perturbations. Ensembles are constructed such that the Y axis in
(i) is the same as (ii). Streamlines indicate the direction of the resulting cor-
relation field and color indicates the magnitude; scale bars are S5um. (iii) The
T = 12s time delayed correlated displacement fields. The perturbation coor-
dinate system is set at T = Os and the response is measured at T = 12s. (iv)
One dimensional profiles of the fields calculated at various lag times. Lighter
colors indicate longer lag times. C,iv) One dimensional profile is constructed
by tracing along the major axis (blue). Note that the azimuthal average is sim-
ply the average of the major axis trace and the minor axis trace (red). D,iv)
One dimensional profile is constructed by azimuthally averaging. Model free
characteristic deformation U* and length R* scales at the various lag times in-
dicated by open circles. E,iv) One dimensional profile constructed as a trace
along the Y axis. The origin symmetry of the field shown is unique to diver-
gence free systems. Note the large characteristic length scale in comparison to
vortical deformation fields. . . . ... ... ... .. ... . 0 0oL
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4.2

4.3

Response functions identify key dynamical consequences of contraction in
in vitro actomyosin networks. i) Micrographs of fluorescent actin (gray) over-
laid with scaled velocity vectors (blue) for the active gel at various diver-
gences (A-C). Colors correspond to divergences indicated in (D), each box
is 100x100um? of the field of view. ii) Equal time shear response for the ve-
locity fields in (i). iii) Normal (compression) response for the velocity fields
in (i). Streamlines indicate the direction of the resulting correlation field and
color indicates the magnitude; scale bars are 5um. D) Divergence of the ve-
locity field (black circles) as a function of time for a contractile active gel. The
azimuthal average of the isotropic shear response at R = Rg per unit area
Us iso(R5) /RS (solid black line) agrees with the calculated divergence. The
green, blue, and red dashed lines indicate the points taken as characteristic of
the gel before contraction, at the onset of contraction, and deep in the contrac-
tile regime. Numerical labels indicate the value of divergence at these points.
Ratio of characteristic length scales R;;/Rg as a function of time (solid blue
line, open blue squares) presage the onset of contractility. Time axis indicates
elapsed time after the addition of myosin motors. (E) One dimensional traces
of the symmetric Ug ;5, (solid lines), and anisotropic Ug ,,is, (dashed lines)
decomposition of the shear response function in (ii). The symmetric response
gets stronger and propagates to larger distances and the asymmetric response
becomes non-zero as the magnitude of contraction increases. (F) One dimen-
sional traces of the normal (compressional) response function in (iii). . . . . . .
Temporal dependence of correlated displacement field reveals characteris-
tic time scales of active materials. A) Normalized correlated displacement
tields for a nematic (black) and active gel (red) at T = 0s (open symbols) and
T = 10s (closed symbols). B) Normalized strain correlated displacement as a
function of delay time T at different spatial scales with respect to the critical
length scale R* showing different scaling at various length scales. Experimen-
tal data in indicated with symbols solid lines are fit to stretched exponential.
C) Dynamic structure function D(g, T) (open circles) measured with differen-
tial dynamic microscopy (DDM) as a function of spatial scale (circle color). q2
and g scaling at low T indicate ballistic and diffusive like scaling respectively.
Characteristic time scales T as a function of spatial scale g for DDM (black)
and displacements correlated with monopolar (green), dipolar(red), or vorti-
cal (blue) perturbations. . . . . ... ... ... Lo L
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4.4 Spatiotemporal features of response functions differentiate complex defor-
mation modalities in living cells. (i) Micrographs of the actin fibers (grey)
overlaid with myosin displacement vectors (blue) for different contractile modal-
ities. The modalities considered are A) transverse arcs (in a U20S cell), B)
ventral stress fibers (in an NIH 3T3), and C) optogenetically activated ventral
stress fibers (NIH 3T3). 1 out of 6 displacement vectors are shown. The orange
box in (C,i) indicates the region of optogenetic activation. (ii) Shear response
Us for the displacement fields shown in (i). Streamlines indicate the direction
of the response and color indicates the magnitude. (iii, iv) One dimensional
traces of the anisotropic, Ug 45, (iii), and isotropic Usg ;5, (iv), parts of the
shear response shown in (ii) measured at lag times of T = 0s (red) and T = 10s

5.1 [ATP] and activity can be related through a microscopic model. A) Schematic
of the experiments. We study synthetic motors with controlled numbers of
myosin XI enzymatic heads binding to and sliding actin filaments of length 2
pm at an oil-water interface. Due to the polarized binding of the dye to actin
filaments, regions with predominantly vertical orientation in the lab frame ap-
pear brighter than those oriented horizontally Kumar et al. [2022, 2018]. The
experimental images are analyzed by optical flow to estimate the horizontal
and vertical components of the velocity at each pixel. From the velocity field,
we calculate the average flow speed, vrms and average vortex radius £yt as
in Molaei et al. [2023]. B) We model the catalytic cycle of myosin XI with three
states: (1) unbound with ATP (top), (2) bound with ADP (right), and (3) bound
while nucleotide free (left). Rate constants are tuned to correspond to repro-
duce single-filament speed and run length (Fig. S1). We extend the model to
two filaments as described in the text and compute the filament extension rate,
g, and the probability of crosslinking, P,;. These quantities are used to compute
the nematic speed and correlation length as v = VKa and ¢ = K/ «, respec-
tively. C) P,; and D) e from two-filament simulations for a cluster with four
heads. E) Predicted scaling of v (magenta) and ¢ (black) for activity derived
from (D) assuming constant elasticity, K = 0.001. . ... ... ... .......

5.2 Motor crosslinking modulates nematic elasticity. A) Polarized fluorescence
micrographs of nematics (gray scale) driven by 100pM tetrameric motor clus-
ters from Schindler et al. [2014] containing 6, 40 or 100 M ATP with corre-
sponding optical flow estimated velocity fields underneath (red arrows). Scale
arrows are 3um/s. B) Average flow speed vyms for the full series of experi-
ments in (A). Error bars represent the standard deviation of speed over 100s
of steady state activity. C) Critical vorticity length scale ¢;,,+ as measured in
Molaei et al. [2023] for the experiments plotted in (B). D) Normalized v as a
function of ATP for tetrameric motors calculated from scaling relationships
with various ratios of x to K. E) Normalized nematic length scale ¢ calculated
as in (D). Blue curves utilize the parameters we use moving forward; x = 10K

and B=0.1. . . ...



5.3 Motor valency tunes nematic dynamics. A) Normalized ¢ measured from
kinetic simulation as a function of ATP concentration for clusters of variable
valency. Trimers (n = 3, cyan), tetramers (n = 4, blue), or octamers (n = 8§,
black). B) Normalized P,; for the same range of oligomers considered in (A).

C) State space of normalized v from scaling predictions as a function of ATP
concentration and cluster valency. Black dotted line straces the location of the
peak in nematic speed. D) Normalized ¢ for the state space considered in (C).
E) vrms for a range of ATP concentrations and cluster valencies; n = 3 (cyan),
n = 4 (blue), or n = 8 (black) measured in experiment. Colored dots in (C)
correspond to peak locations here. F) ;,,+ measured for the experiments in (E). 97

5.4 Microscopic crosslinking alters nematic energy distribution. A) Normalized
e and P (inset) measured for trimeric motors in filament simulation. B) Nor-
malized v as a function of ATP from scaling predictions incorporating cyxt = 0
(cyan), 0.008 (blue), or 0.015 (black) in the calculation of K. C) Experimental
Urms as a function of ATP concentration for trimeric driven nematics with 0
(cyan), 0.4 (blue), or 2 nM (black) filamin (FLN) added. D) ¢, for the exper-
iments in (C). E) Polarized fluorescence micrographs (gray) with correspond-
ing flow fields below (red arrows) for trimeric driven nematics at 100 uM ATP
with 0, 0.4 or 2 nM filamin (FLN) added. Scale arrow is 3yms_1. ........ 99
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ABSTRACT

Active materials are those in which individual, uncoordinated local stresses drive the ma-
terial out of equilibrium on a global scale. Examples of such assemblies can be seen across
scales from schools of fish to the cellular cytoskeleton and underpin many important bi-
ological processes. Synthetic experiments that recapitulate the essential features of such
active systems have been the object of study for decades as their simple rules allow us
to elucidate the physical underpinnings of collective motion. One system of particular
interest has been active nematic liquid crystals (LCs). Because of their well understood
passive physics, LCs provide a rich platform to interrogate the effects of active stress. The
flows and steady-state structures that emerge in active LCs have been understood to re-
sult from a competition between nematic elasticity and the local activity. However most
investigations of such phenomena consider only the magnitude of the elastic resistance
and active drive and not their microscopic origins. In this thesis we utilize experiments
as well as computer simulations and novel analytical techniques to investigate how the
microscopic origins of activity and elasticity in a LC affect the resultant flow. Specifically
we query a liquid crystal composed of short actin filaments — the load bearing protein
fibers inside of cells — that are driven by myosin motors. We show that by limiting mo-
tor activity to one region of the LC we can constrain and direct otherwise chaotic flows.
We show that increases in the nematic’s bend elasticity caused by alterations in filament
length drive the material into an exotic steady state where "elasticity bands" dominate
the structure and dynamics. Furthermore, we introduce a novel analytical technique that
extends the method of correlation functions to measure material responses from exper-
imental data. Finally, we show that the very nature of the action of a molecular motor

inextricably couples activity and material elasticity.
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CHAPTER 1
INTRODUCTION

Non-equilibrium systems are an important frontier in science. Not only does some of our
basic physical intuition break down far from equilibrium but life, as the famous saying
goes, does not exist at equilibrium. Understanding the essential physics of out of equilib-
rium systems provides insight into not only abiological phenomena but also provides a
window into the physical constraints within which life has evolved. Amongst the many
ways a system can leave equilibrium one of the most fascinating and visually striking
is the independent motion of many constituents (Ramaswamy [2010]). In biology this
type of phenomenon is exemplified by flocks of birds or schools of fish (Cavagna and
Giardina [2014], Marchetti et al. [2013]). While in these systems evolved behavior plays a
large role in the dynamics, purely physical models can recapitulate the long range order
and coherent motion of biological flocks (Nitin Kumar and Sood [2014]). Understand-
ing, then, what rules govern abiological flocking provides insight into the limitations and
possibilities about which these behaviors evolved. The possible dynamical states for such
physical systems in which many components move independently — termed active matter
— are myriad from dynamical phase separation to giant number fluctuations and turbu-
lent flows (Wensink et al. [2012], Ramaswamy et al. [2003], del Junco et al. [2018]). The
particular phenomena a specific active matter system exhibits is determined largely by its
underlying symmetry and hydrodynamic milieu (Giomi [2013], Marchetti et al. [2013]).
A great deal of theoretical and experimental work over the past few decades have
shed much light onto how these different contributions affect flows (Doostmohammadi
et al. [2016], Duclos et al. [2017]). However while many hydrodynamic scale properties
of these systems are well understood there are gaps in our knowledge. In particular the
multi-scale nature of active problems means that it is difficult to map the microscopic

properties of individual components on to longer, much more well understood scales
1



(Gao et al. [2015]). In order to address this multi-scale problem, we will couple experi-
mental perturbations of LC dynamics with simulaiton methodologies at multiple scales.
Specifically, in this thesis we utilize nematic liquid crystals composed of short actin fila-
ments that are driven by various forms of the molecular motor mysoin as an exceptionally
tunable active material within which we may begin to map the microscopic properties of
an active system onto the hydrodynamic picture of its mesoscopic flows.

Actin is a naturally occurring semi-flexible protein polymer, which can be found in-
side of cells from bacteria to humans (Gardel et al. [2004]). Actin architectures provide
structure for cells as well as a template for ATP consuming myosin motors to impart
force and induce motion (Hotulainen and Lappalainen [2006], Tojkander et al. [2012]). As
it underpins cellular motility the interaction between actin and myosin is one of the most
fundamental active processes in biology. Constructing an active material from these com-
ponents provides insight into this fundamental interaction as well as fluid immersed ac-
tive materials as a whole. The typical dynamics of actomyosin active materials are largely
dictated by the length of the actin filaments. When long actin filaments and myosin mo-
tors are combined in vitro filament buckling results in irreversible contraction (Murrell
and Gardel [2012], Stam et al. [2017]). Such an outcome, while interesting in and of it-
self, has limited applicability to the study of active materials as a whole as the system
never reaches steady state. One way to overcome this limitation is to limit the length of
filaments via the addition of the naturally occurring F-actin capping protein (Palmgren
et al. [2001]). When actin is limited to around two micrometers it behaves essentially as a
rigid rod (Zhang et al. [2017]). These rods do not buckle under myosin stress. Instead the
actomyosin forms an extensile nematic liquid crystal (Kumar et al. [2018]). Nematic lig-
uid crystals, or simply nematics, are formed when many elongated components interact
at sufficient concentration such that excluded volume interactions cause components to

align along their long axis (Gennes and Prost [1993]). This alignment begets a state with



long-range structure in which individual elements can still flow past each other. This
combination of structure and fluidity is the hallmark of a liquid crystal.

Liquid crystals are an incredibly useful system in which to ask questions about ac-
tive matter as their equilibrium physics is well characterized. Since we are interested in
nonequilibrium phenomenon it behooves us to study a system in which the equilibrium
behavior is well characterized. That way when we push it out of equilibrium we know
how the passive forces in the system relax internal stress. We will have much to say about
the precise forces at work throughout this thesis, but for now let us summarize the essen-
tials. Without the addition of any activity, liquid crystal structure is dictated by two vital
quantities; elasticity and viscosity. Because of the alignment of individual components, a
liquid crystal resists long-range distortions to the field with an effective elastic constant
(Zhang et al. [2017], Doostmohammadi et al. [2018]). The upshot of such elasticity is that
if we were to leave an initially disordered liquid crystal for a long time we would find
that it approaches a state where every individual filament is aligned with every other fil-
ament. The rate at which the system approaches this lowest-energy state is dictated by
the magnitude of the elastic constant and its viscosity (Gennes and Prost [1993], Thampi
et al. [2014b]). Nematic elasticity and viscosity are the passive forces against which activ-
ity in the liquid crystal pushes. In the case of actin and myosin, activity is generated by
the sliding of adjacent filament pairs which results in the net extension of the ends of the
pairs relative to each other (Giomi [2015]). Thus we can schematize the action of a myosin
motor as generating dipolar force pointing along the local direction of the liquid crystal.
We term this outward force extensile stress. Thus we refer to a collection of short actin
tilaments driven by myosin motors as an extensile liquid crystal. Actin and myosin are
a particularly attractive system within which to probe the basis of nematic dynamics as
each component is highly tunable. In particular, changing the concentration of capping

protein varies the length distribution of filaments within the liquid crystal while advances



in the engineering of synthetic myosin motors allow specific control of individual motor
properties (Schindler et al. [2014], Nakamura et al. [2014], Zhang et al. [2017]). These tools
allow us to query exactly how filament length or motor properties affect the long-range
flows produced in the nematic.

In this thesis we utilize actin based nematic liquid crystals as a system in which to test
how microscopic properties of system components effect flows in active systems. Specifi-
cally we utilize motors that change their speed in response to optical stimulation to show
how spatially varied activity can be utilized as an engineering tool to harness otherwise
chaotic active flows. We then utilize the flexibility afforded by our actin based material
to systematically alter the length of the filaments that compose the liquid crystal and
demonstrate that in the long filament limit a dynamical state emerges that is dominated
by material bending deformations independent of the type of motor used to drive said
deformations. In order to further understand the turbulent flows produced in an ac-
tive liquid crystal we also introduce a novel analytical method that recasts correlation
functions such that they capture the local material response to a specific perturbation.
Finally we bring to bear all of our insights into active liquid crystals and demonstrate
through controlled perturbations to the driving myosin that the modality of activity in
these systems — the sliding of filament pairs by myosin motors— inherently links active
drive and passive material properties through motor cross-linking. Altogether then our
results, while focused around extensile liquid crystals, provide tools and important con-

ceptual frameworks with which to understand other active systems.



CHAPTER 2
SPATIOTEMPORAL CONTROL OF LIQUID CRYSTAL STRUCTURE
AND DYNAMICS THROUGH ACTIVITY PATTERNING

2.1 Introduction

Soft materials in which individual components convert ambient free energy into mechan-
ical work are commonly referred to as active matter (Marchetti et al. [2013], Ramaswamy
[2010]). These systems are compelling in that their relatively simple rules of propulsion
and inter-particle interactions can give rise to intriguing collective behaviours and pattern
formation across length scales (Vicsek and Zafeiris [2012], Sokolov et al. [2019a]). Active
components underpin coherence in a wide range of natural processes. They play a critical
role in cellular migration, flocking and long-range flows in dense bacterial suspensions
(Saw et al. [2017], Kawaguchi et al. [2017], Bricard et al. [2013], Nitin Kumar and Sood
[2014], Dombrowski et al. [2004], Li et al. [2019]). These behaviours are not just interest-
ing in and of themselves, but hold promise as the basis for the design of novel, functional
materials (Vizsnyiczai et al. [2017], Needleman and Dogic [2017]). The central challenge
of engineering functionality in active materials is that active flows are often turbulent
(Sanchez et al. [2012], Wensink et al. [2012], Giomi et al. [2014], Zhou et al. [2014], Ellis
et al. [2018]). Efforts to control these flows thus far have utilized physical boundaries to
constrain the material, and rely on spontaneous symmetry breaking to yield steady states
and coherent dynamics over large scales (Keber et al. [2014], Guillamat et al. [2016], Wu
etal. [2017], Opathalage et al. [2019], Duclos et al. [2018]). While these works have demon-
strated that a degree of control in active systems is indeed possible, the dependence on
physical barriers and spontaneous symmetry breaking limits the amount of control that
can be exerted. We seek a different control parameter with which we may direct the flow

and dynamics of an active material without the malice of forethought. Ideally, this more
5



flexible control parameter could direct the material asymmetrically and thus allow for
the programming of more complex behaviours in active systems. In this chapter, we in-
troduce spatially dependent activity as this flexible control parameter, and demonstrate
both in experiment and simulations how it can be leveraged to direct defect dynamics

and control long-range flows in an active nematic liquid crystal.

2.2 Results

2.2.1 High activity regions in nematics are self-contained

Nematic liquid crystals (nematics) are a phase of matter in which extended components
— mesogens — align along their long axis to form a material with long-range orienta-
tional order, but which can flow like a liquid (Gennes and Prost [1993]). Structural dis-
order in these systems is stored in distinct regions of discontinuity termed topological
defects (Gennes and Prost [1993]). In two dimensions, topological defects carry a ‘charge’
of either —i—% or — %, defined by the winding number about the defect core (Fig. 1a). When
extensile stress is introduced along the orientation of the mesogens, the asymmetric +%
defects are propelled along their axis of symmetry (Giomi [2013]). The interplay between
the active and elastic stress leads to a steady-state nucleation, motion and annihilation
of defects, resulting in a state known as ‘active turbulence’ (Giomi [2015], Wensink et al.
[2012], Doostmohammadi et al. [2018]). One useful class of active liquid crystals is those
formed by cytoskeletal polymers (Sanchez et al. [2012], Kumar et al. [2018]). Activity
is readily introduced to these systems via the addition of molecular motor proteins that
slide adjacent filaments past each other, thereby generating extensile stresses along the
nematic orientation (Thampi et al. [2013b]). In this work we construct a nematic liquid
crystal by crowding short ( 1 um in length) actin filaments (F-actin) onto an oil-water in-

terface (Kumar et al. [2018]) (Fig. 1b). Because of the fluorescent dye and the polarized



laser used in these experiments, filaments that are vertical in the experimental frame ap-
pear brighter than those which are horizontal. Thus, pixel intensity tells us about the local
orientation of the nematic field (Kinosita et al. [1991], Sase et al. [1997]) (see Fig. 1a and
Methods section). While previous realizations of cytoskeletal liquid crystals have har-
nessed the power of naturally occurring motor proteins (Sanchez et al. [2012], Wu et al.
[2017], Kumar et al. [2018]), in this work we produce spatially structured activity by ex-
ploiting motor proteins engineered with light-dependent gliding velocities (Nakamura
et al. [2014], Ruijgrok et al. [2021]). This strategy is distinct from that employed in earlier
work, where optically controlled reversible cross-linking of motors or inhibitor deactiva-
tion was used to induce stress in cytoskeletal assemblies (Ross et al. [2019], Linsmeier et al.
[2016]). The light-activated gear-shifting myosin motors used here are constructed from
myosin XI catalytic heads and a lever arm containing the light-sensitive LOV2 domain.
The stimulated unfolding of this LOV2 domain changes the geometry and effective length
of the lever arm, conferring optical modulation of motor velocity on the biopolymer F-
actin (Nakamura et al. [2014]). To generate local stress on antiparallel F-actin, engineered
oligomerization domains are utilized to create motor tetramers (Ruijgrok et al. [2021],
Schindler et al. [2014]) (Fig. 1c). These tetramers, when added to actin liquid crystals,
produce higher defect densities and a greater average nematic speed upon stimulation.
To target this increase in activity to just one region of the liquid crystal a micromirror ar-
ray is used to selectively target the stimulation wavelength of 470 nm to one portion of
the sample, while confocal fluorescence imaging is used to visualize fluorescently tagged
actin. We selectively illuminate a large region ( 2,000 um?) (Fig. 1d, red box) in a lig-
uid crystal containing gear-shifting motors. Upon stimulation, the density of topological
defects remains low outside of the stimulated region while the activity within leads to
defect proliferation (Fig. 1d, yellow circles). This transition from low to high defect den-

sity is sharp, occurring within several micrometres of the boundary (Fig. 1e). Moreover,



the nematic spontaneously flows within the illuminated region, with an instantaneous
velocity that is threefold larger than that outside the bounds (Fig. 1f). While large when
compared with the unstimulated region, this flow is hampered when compared with an
unconstrained nematic driven by the same motors. That defect density and nematic ve-
locity sharply decrease as one leaves the stimulated region implies a sort of confinement
of activity within the stimulated region. This confinement can be visualized by track-
ing the location of +% defects over time. These trajectories are largely contained within
the illuminated region over 400s, only rarely crossing over from one region to another
(Fig. 1g). This observation holds promise for engineering applications, particularly for
the control of individual defect dynamics. Consider the example in Fig. 1h: as the de-
tfect approaches the border it is deflected. That is, it undergoes a sharp reorientation such
that it never crosses the boundary. This implies that a judicious choice of border geometry
could allow for the design of motile defect trajectories. This key observation motivated us
to explore the extent to which patterned activity could be harnessed to control the prolif-
eration and deflection of defects in active nematics. With this, we envision the capability

to arbitrarily pattern active flows and manipulate transport.
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Figure 2.1: Patterning activity in an actin liquid crystal leads to spatially confined flows
and topological defects. A) Polarization image of actin filaments forming a +% (top) and

—% (bottom) defect. Brighter (darker) pixels in the image are regions in which filaments
are vertical (horizontal). Red lines indicate the local average orientation of filaments (di-
rector). Scale bar, 5um. B) Schematic of the experimental setup. Actin is crowded onto an
oil-water interface by methylcellulose (not pictured) where engineered myosin motors
generate active stress. C) Schematic illustrating the gear-shifting motors. The tetrameric
myosin motors are constructed with engineered lever arms that contain the light-sensitive
LOV2 domain from Avena sativa. Top (dark state): in the absence of blue light, the LOV2
domain adopts a folded conformation (blue squares), acting as a mechanical element with
some rigidity. Bottom (lit state): upon absorption of 470 nm light (downward kinetic ar-
row) part of the LOV2 undocks and becomes disordered, now acting as a flexible linker
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(blue linkages). The undocked LOV2 reverts back to the folded conformation in a ther-
mally activated process (upward kinetic arrow), with motors re-populating the dark state.
The light-dependent conformational changes of the lever arm alter the working stroke of
the motors; in the context of cross-linked actin filaments we propose that this results in
a higher sliding velocity in the lit state (‘high activity’) than in the dark state ('low activ-
ity”), corresponding to the velocity change seen in gliding filament assays Ruijgrok et al.
[2021]. D) Experimental polarization microscopy snapshot of fluorescently tagged actin
driven by MyLOVChar4 1R TET. Gear-shifting motors were stimulated only within the
red box labelled “4-hv’. Topological defects as described above are indicated by yellow
dots. Scale bar 20um. E) Histogram of snapshots of the defect density along the x-axis
over time shown in (D). Darker colours indicate later time points. F) Velocity field corre-

sponding to the frame in (D). Scale bars in (F) and (G) 20um. G) The +% defect trajectories
for the first 400s of stimulation for the experiment excerpted in (D). H) Example of a tra-
jectory in which a defect “deflects’ off of the boundary of the stimulated region. The defect
is marked by a yellow chevron. Scale bar 10 pm.

2.2.2  Relative activity is key for defect confinement

The above experimental observations demonstrate how the difference between the activ-
ity in the stimulated and unstimulated regions can be used to spatially confine topological
defects. To further understand the extent and utility of such an effect for the precise con-
trol of defects, we turn to comprehensive hydrodynamic simulations of active liquid crys-
tals. Our model is based on a Q-tensor representation of the nematic liquid crystal that
incorporates hydrodynamic interactions (Beris and Edwards [1994], Marenduzzo et al.
[2007b]). The activity a is introduced as a local force dipole such that the active stress
in an incompressible active liquid crystal is Il = —aQ (Aditi Simha and Ramaswamy
[2002]). Previously, we and others have considered a to be constant (Giomi [2013], Kumar
et al. [2018], Thampi et al. [2013a], Marenduzzo et al. [2007a], Zhang and Pablo [2016]).
We now consider « as a spatial variable, which gives rise to a new stress term due to the
gradient of . Here, a hybrid lattice Boltzmann approach is used to solve the governing
equations (see the Simulation model section). This method has been shown to be success-
ful in capturing active nematic behaviours over a range of activities (Kumar et al. [2018],

Zhang and Pablo [2016]), including the high activity ‘active turbulent’ regime in which
10



topological defects are continuously generated, propelled and annihilated to generate
chaotic-like flows (Wensink et al. [2012], Giomi [2015], Doostmohammadi et al. [2018]).
While more work is needed to quantitatively relate a to the biophysical properties of ac-
tomyosin motors, our experiments show that when optogenetic myosins are switched
between low-velocity and high-velocity states, the resulting characteristics of the nematic
are consistent with increasing « (Kumar et al. [2018]). As such, we can rely on nemato-
hydrodynamic simulations to explore how spatial variation in activity can be used as a
tool to control active matter.

We first consider a nematic comprised of two regions of differing activity, a1 and a5y,
with a flat interface at x = 0. For x < 0 the nematic has a uniform activity of magnitude
a1, and for x > 0 the activity is ap. Figure 2a,b shows snapshots of the dynamic steady-
state configurations of the nematic order (lines) and instantaneous velocity, respectively,
for simulations with #; = 0.0001 and ap = 0.005. All simulation data are shown in lat-
tice units where the unit length is chosen to be the mesogen length (see the Simulation
model section). We identify an interfacial region x; < x < x, within which the —% defect
density deviates from that expected for an active nematic of uniform activity equivalent
to a1 and ay; that is, for x > xp the —% defect density equals that for a bulk nematic with
activity ap (Fig. 2c). As in experiment, the trajectories of the —1—% defects created in the
x > 0 region rarely cross into the low activity region x < 0 (Fig. 2d). To consider the
transition between these two regions, we plot the spatial profile of the both -1—% and —%
defects across the interface (Fig. 2c). In simulations where a7y = 0.0001 and ap = 0.005
the density profile for —% topological defects exhibits a pronounced peak near the inter-
face. By contrast, the distribution function for —f—% defects is flatter and extends into the
less active side. The accumulation of defects at the interface gives rise to a topological-
charge dipole moment, similar to a recent theoretical calculation for a dry active nematic

(Shankar and Marchetti [2019]), and not unlike that encountered at the interface between
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charged species of different dielectric permittivity (Shen et al. [2017]). As defects try to
cross from a high (xp) to a low (aq) active region, they lose mobility and appear to ex-
perience an elastic attraction from the opposite-charge defects in the active region. This
prevents them from straying deeper into the low-activity side. To quantify the sharpness
of these defect-density distributions, we identify the transition region, wy, = x, — x1, the
ends of which are those points where the defect density deviates from that expected for
a nematic with uniform activity (Fig. 2d). This width, wy, is effectively a measure of the
confinement induced by the difference in activity at the interface.

To determine how changes in relative activity impact confinement, we explore how the
width of the transition region varies as a function of a1, for simulations with fixed ap =
0.005. We find that w,, is of the same order of magnitude, and approximately 100-fold that
of the nematic coherence length (the liquid crystal’s intrinsic length scale that is associated
with its defect core size), for all relative activities % < 0.5 (Fig. 2e). As aq approaches
«y, the interfacial width wp increases (see Fig. 2e). Likewise, for a given set of activities,
the interfacial width is also quite sensitive to the friction, increasing as the friction is
decreased. Thus, both friction and relative activity can be tuned to construct a sharp
interface for defect confinement. Note that friction is introduced by the viscous damping
of the flow by the confining surfaces where there is a no-slip hydrodynamic boundary
condition. This is equivalent to setting a length scale beyond which hydrodynamic forces
are screened. One could imagine that this might cor- respond to the amount of fluid that
an experimental sample advects due to the thickness of the sample.

In simulations, we also find that the emergence of defect confinement is accompanied
by a preferential mesogen orientation perpendicular to the boundary, creating a so-called
‘anchoring effect’ driven by activity gradients. As seen in Fig. 2a, the directors on the low-

activity side adopt a normal orientation to the interface. To characterize the anchoring

near to and at the interface, we define an order parameter, P,(n-v) = (3(n-v)? —1)/2
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, where n is the director field, v is the interfacial normal of the activity boundary, and ()
denotes an ensemble average. At x = 0, no anchoring is observed for any relative activity
levels (Fig. 2f, blue squares). However, at x = x1, normal anchoring becomes prominent
for relative activitiesless than 0.1 when the interface is prominent (Fig. 2f, red triangles).
Thus, a sharp gradient in activity simultaneously constrains defects to the region of higher
activity and anchors the director field in the low-activity region in the direction normal
to the interface. Together, these results further suggest that structured activity is a means
to control nematics regionally, at scales much larger than the defect spacing, potentially
providing more flexibility than that previously demonstrated with physical barriers (Wu

et al. [2017], Opathalage et al. [2019]).
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Figure 2.2: Simulations of defect behaviour in a patterned active nematic. A-D) Snap-
shot of the director field near the boundary between the higher and lower activity regions,
located at x = 0 (A), its corresponding velocity field (B), defect density profile (averaged
over ten ensembles of duration 1,0007) (C) and defect trajectories (D). The active region
is coloured light red in a—c. The background in (A,B) is coloured with the nematic or-
der parameter S, with dark red indicating defect locations. E) Defect density interfacial
width, wp, as a function of relative activity, %. F) Scalar order parameter P, (n - v) char-
acterizing the anchoring effect at different locations with respect to the boundary of the
activity pattern. The error bars in (E) and (F) represent the standard deviations over 100
ensembles.
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2.2.3 Structured stresses can yield controlled defect nucleation

We next use simulations to explore the minimum length scale at which structured activity
can be used to manipulate liquid crystals. In particular, the extent to which spatially struc-
tured activity can be utilized to create and manipulate defects. In nematics with homo-
geneous activity, defect creation arises from instabilities in bending undulations (Giomi
et al. [2014], Thampi et al. [2013a]). The level of active stress sets the undulation wave-
length A and, therefore, sets a length scale required for defect nucleation (Giomi [2013]).
We first consider the effects of adding activity (x = 0.03) within a rectangular region,
with dimensions slightly larger than this natural length scale %, with K being the elas-
tic constant, in an initially uniform nematic (Fig. 3a, inset). Because of the mirror or D,
symmetry of the rectangular pattern, the resulting elastic distortions and hydrodynamic
flows preserve such symmetry. Therefore, two bending undulations emerge at the two
sides of the activity pattern with equal strength. Each of them gives rise to a pair of i%
defects simultaneously (Fig. 3a). The direction of the initial undulations can be under-
stood by analysing the contribution of the activity gradient at the defect pattern. Note
that for an even higher activity level, more than two defect pairs can be generated using
this activity pattern. While creating defects in this manner is promising, we desire asym-
metric control such that we can create single pairs of defects. To break the symmetry of
the rectangle, we consider a triangular region with a base b and height h of similar dimen-
sions to the rectangle (Fig. 3b). In what follows, the length unit ¢ of these dimensions is
omitted for conciseness. Here, activity-induced bending instabilities incline towards the
triangle tip and lead to the formation of a single pair of i% defects. To determine how
defect-pair creation depends on the triangle size and activity level, we perform simula-
tions over a range of activities and pattern size b, for a given aspect ratio % = 3. For a
given size b, we map out the threshold activity required to generate a defect pair (Fig.

3c). When b > 50, the pattern becomes sufficiently large that it surpasses the bending
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undulation wavelength in a uniform nematic (Fig. 3c, dashed line). Here the threshold
level of activity, ag, required to generate a defect pair is similar to that found in a ne-
matic with homogeneous activity and, as may be expected, more than one defect pair can
be created. For b < 50, the activity level required to generate a defect pair increases as
the required length scale decreases (Fig. 3c, red triangles). However, we find the stress
needed is less than would be required for defect generation in the absence of structured
activity (Fig. 3c, filled black circles). Indeed, the activity gradient creates an additional
stress that contributes to defect nucleation. By changing the geometry of the pattern, the
threshold activity of defect generation can be varied. Thus, a judicious choice of activity
and geometry allows for control of the nematic field at the scale of individual topological

defects.
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Figure 2.3: Simulations of defect-pair creation using activity pattern. A,B) Sequential
images of an initially uniform active nematic with a rectangular (A) and a triangular (B)
pattern at an activity level &« = 3x(. Initial configurations are shown in the insets of
(A) and (B). The triangular (rectangular) region has a base (height) b = 14 and a height

(width) h = 50. C) Threshold activity for different pattern sizes at a fixed aspect ratio

% = 3 is shown as triangle symbols. Spontaneous undulation wavelengths at a given

activity are shown as circle symbols. Open symbols indicate no defect generation; filled
symbols indicate defect generation.

2.2.4  Confinement affords control of defect trajectories

Having demonstrated the potential for control over defect creation, we next use simula-
tions to consider the extent to which local activity gradients can control the movement of
pre-existing defects. First, we consider a passive nematic in which a —i—% defect is oriented
towards a —% defect and is separated by a distance d = 250, as shown in Fig. 4a. With
this geometry, a low amount of uniform activity (x = 0.2a, where xy denotes the activity
required to nucleate a defect pair) induces the horizontal motion of the +% defect owing
to the asymmetric distribution of active stress (Giomi [2013]). Eventually, this leads to
annihilation of the defect pair. It is therefore of interest to explore how activity gradients
could drive motion that deviates from this behaviour. Using the same initial conditions,
we selectively activate a rectangular region of dimensions 290x80 around the —|—% defect
and consider the effect of rotating the rectangle by an angle ¢. In Fig. 4a, we show a time

sequence of the simulations for ¢ = 45° and show that the +% defect reorients to follow
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the long axis of the rectangle and deflects its trajectory. This is consistent with the defect
deflection observed experimentally (Fig. 1g). Next, we explore how varying the angle
¢ impacts defect trajectories: we find that defects are faithfully guided up to a threshold
angle of 60° (Fig. 4b). Above this, defects are no longer reoriented by the patterned ac-
tivity (Fig. 4c, purple triangles). We then consider how this threshold angle depends on
the active stress by systematically varying the activity. Because an activity value greater
than ag will result in defect creation and not simply redirection, we consider only activi-
ties that are less than ay. When the activity is increased from 0.2« to 0.3a¢ and 0.5, the
threshold angle decreases to 45 and 30°, respectively. This can be understood both by the
increased defect speed at higher activities and by the effect of activity on the local bend
distortion that limits the reorientation of the —i—% defect. Thus, as the structured activity
approaches «(, the ability to manipulate individual +% defects becomes limited. Together
with Fig. 3, these data demonstrate how the shape and magnitude of structured activity
can be exploited for individual defect generation and manipulation.

To experimentally test for control over individual defects, we construct quarter-annulus
regions in which we stimulate the local activity (Fig. 5a). We performed these experi-
ments under conditions resulting in a low defect density, and no creation of defects upon
light stimulus. We start with a —i—% defect at the top left and find that the defect moves
and reorients as it follows the pattern (Fig. 5a). This motion results in the defect travel-
ling to the other side of the pattern, rotated 90° from its initial alignment (see Fig. 5a).
This behaviour can be recapitulated both in simulations and in a number of indepen-
dent samples (Fig. 5b,c). In the case of simulations, one can directly see that the pattern
alters the defect’s trajectory from what it would be in the case of uniform activity. Fur-
thermore, the rotation angle probability density function (PDF) of experimental defects in
this pattern shows a pronounced, asymmetric peak (Fig. 5d), which indicates that, for the

tive independent defects considered here, the annulus indeed imposes a preferred turn
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angle on defects within the region (Burov et al. [2013]). This is in sharp contrast with
a similar histogram constructed from the trajectories obtained from full field activation,
which shows a relatively uniform, and notably symmetric, distribution at a number of
time lags (see Fig. 5e). The observation that the trajectories from the annulus pattern pro-
duce a markedly asymmetric angle-change distribution, while a large stimulated region
begets a relatively symmetric PDEF, provides further evidence that defects are constrained
and directed by the pattern. Such defect deflection events, predicted in simulations and
observed in experiments, can be understood theoretically by considering the energetic

contribution of an activity gradient at the pattern boundary.
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Figure 2.4: Simulations of defect deflection by a rectangular activity pattern. A) Sequen-
tial images showing defect deflection at activity « = 0.2ay and box tilt angle ¢ = 45°.
Initial defect separation is 250. A rectangle size (290 x 80) is chosen such that the pat-
tern length can cover the two defects when horizontally placed, and the width is neither
too narrow, so that the activity can still drive the defect, nor too wide so as to lose guid-
ance. Defects are marked to aid the eye. B) Defect trajectories for different tilt angles at
a = 0.2ap. The activity pattern is shown as a dashed box for ¢ = 45°. C) The aligning
order parameter sech(¢; — ¢) as a function of the imposed angle ¢ for various activities
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where ¢ is the angle of the asymptotic trajectory with respect to +x.
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Figure 2.5: Targeted activation can be used to direct defect trajectories in experiment
and simulation. A) Series of experimental images showing a +% defect (circled in blue)
moving within the active pattern (red outline). The trajectory of the defect is shown as a
tail on the defect in the last frame. B) Series of snapshots from simulations showing the
motion of a defect in an activity pattern that mimics the experiment shown in (A). C) Tra-
jectories for five independent experimental samples from two different days (scatterplot)
in relation to the activated region. D) PDF for a given change in vector angle, 6, for the
trajectories in (C). Inset is a schematic of the method for quantifying the angle change.
The grey dashed line indicates an angle of 0°. E) PDF of change in vector angle. The time
lag in both (D) and (E) is 25s, see Methods for a full treatment of the turn angle. Scale bars
are 20um.
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2.3 Conclusions

Spatially structured activity presents a promising direction for engineering structure and
transport in an active matter at multiple length scales. For one, defects, and the flows
they generate, can be confined on a scale larger than the average defect spacing. This re-
sults in steady-state defect-density distributions and promises the types of confined flows
seen throughout this work. However, the main promise of this approach is not its ability
to merely control bulk flow, but its theoretical specificity at a smaller scale. The number
and distribution of defects are key state variables of any nematic system. The ability to
specifically nucleate a single defect pair and similarly to be able to manipulate the posi-
tions of pre-existing defects are steps along the road to controlling these variables. One
could imagine composing these two operations spatially to arbitrarily control the entire
nematic director. On a wider scale, the flexibility of spatially structured activity is what
excites us the most when thinking of its applications in active systems in general. The
ability to exert control in both space and time and across length scales opens the door for
programming complex behaviours into active systems. Experimentally, future instances
of this system may be tuned by making use of optogenetic motors with varied modu-
lation depths (Nakamura et al. [2014], Ruijgrok et al. [2021]), or by taking advantage of
the dose-dependent responses of populations of motors to select sub-maximal activation
levels (Ruijgrok et al. [2021]). One can imagine leveraging such temporal and spatial con-
trol of activity to achieve complex transport tasks or induce novel non-equilibrium steady
states. Much work has yet to be done to exert such truly multi-scale control, but we hope

that the results presented here may serve as the groundwork for future endeavours.
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2.4 Methods

2.4.1 Protein purification

Monomeric actin was purified from rabbit skeletal muscle acetone powder (Pel-Freez Bi-
ologicals) as described previously Spudich and Watt [1971] and stored in G-buffer (2 mM
Tris buffer pH 8, 0.2 mM ATP, 0.5 mM dithiothreitol, 0.1 mM CaCl2, 1 mM NaN3, pH to
8). Actin was labelled with tetramethylrhodamine — 6 — maleimide (TMR; Life Tech-
nologies). F-actin Capping Protein (CP) was a gift from the laboratory of D. Kovar and
was purified according to the method in ref. Palmgren et al. [2001]. The optically gear-
shifting engineered tetrameric myosin motors were the based on the myosin XI construct
MyLOVChar4 1R TET described in ref. Ruijgrok et al. [2021], and a variant with the same
lever-arm structure but with mutations to an actin-binding loop in the catalytic domain of
myosin XI (MyLOVChar4;, 4y IR TET). The mutations introduce four positive charges
to actin-binding loop 2, denoted as the mutation L2(+4) in ref. Ito et al. [2009], modifying
the wild-type loop sequence FPADEGTKAPSKFMSIG into
FPADEGGGKKGGTKAPSKKKFMSIG (with positive charges in bold, altered amino
acids in italic). These mutations to loop 2 have been reported to result in an eightfold
increase of apparent actin binding affinity in actin-activated ATPase assays, and a four-
fold decrease of velocity in gliding motility assayslto et al. [2009]. The myosin proteins
were purified as described Ruijgrok et al. [2021], flash frozen in small aliquots and stored
at —80°C. Upon removal from the —80°C freezer, aliquots were used immediately as
described below. The myosin constructs include a HaloTag and were labelled with the

Alexa 660 fluorophore during purification (Halotag Alexa Fluor 660 Ligand, Promega).
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2.4.2  Assay conditions

Actin filaments were polymerized at a concentration of 2 uM in 50 ul of various assay
buffers. All experiments contained oxygen-scavenging reagents [2.7 mg ml~! glucose
oxidase (catalogue no. 345486, Calbiochem), 1700 U ml—1 catalase (catalogue no. 02071,
Sigma), 4.5 mg ml~! glucose, 0.5% v /v B-mercaptoethanol, prepared at 50x in 1x F-buffer
and 2% glycerol] and 0.3% w/v methylcellulose (viscosity 15 cP) as a crowding agent.
Experiments were buffered with either F-buffer (10 mM imidazole, 1 mM MgCl2, 50 mM
KCl, 0.2 mM egtazic acid, pH 7.5) (Fig. 1) or F-buffer-HEPES (10 mM HEPES, 1 mM
MgCl12, 50 mM KCl, 0.2 mM egtazic acid, 1 mM imidazole, pH 7.5) (Fig. 5) with 100 um
ATP, in the presence of 20 nM CP. The actin mixture that was polymerized contained
a 1:5 ratio of TMR-labelled to unlabelled monomers. To ensure that the polymerization
was complete, mixtures were incubated on ice for one hour before imaging. The imaging
chamber was created by first rinsing a small glass cloning cylinder (catalogue no. 09-552-
20, Corning) with ethanol and then attaching it to an activated coverslip with two-part
epoxy resin. To prevent the actin from sticking and to maintain fluidity the coverslip was
tirst coated with a thin layer of Novec 7500 Engineered Fluid (3M) that included PFPE-
PEG-PFPE surfactant (catalogue no. 008, RAN Biotechnologies) at 2% w/v to stabilize
the oil-water interface. To coat the chamber, 4 ul of the oil and surfactant mixture was
pipetted into the bottom of the chamber and then quickly removed. To minimize evap-
oration, the polymerized actin and methylcellulose mixture was quickly added to the
coated chamber. After addition, the actin mixture was allowed to sit for 20 min so that
the actin was given time to crowd onto the oil-water interface and form the liquid crystal.
Gear-shifting motors MyLOVChar4 1R TET (Fig. 1) were first diluted into F-buffer and
then pipetted directly into the sample chamber. MyLOVChar4 1R TET motors (Fig. 5)
were diluted fivefold into 1x F-buffer-HEPES and 5% v/v glycerol. Two microlitres of

this dilution was pipetted into the sample chamber.
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The sample was imaged using an Eclipse-Ti inverted microscope (Nikon) in confocal
mode utilizing a spinning disk (CSU-X; Yokagawa Electric) and a CMOS camera (Zyla-4.2
USB 3; Andor). The experiment in Fig. 1 was imaged using a x60, 1.20 numerical aperture
multi-immersion objective (Nikon) whereas the data in Fig. 5 were collected using a x40,
1.15 numerical aperture water immersion objective (Nikon). The TMR fluorophore was
excited using a 561 nm continuous wave fibre laser (VFL-P series; MPB Communications)
at a rate of one frame every four seconds (for x60 experiments) or one frame every five
seconds (for x40 objective experiments). Microscope components were controlled via the
software package MetaMorph (Molecular Devices). Activation was achieved by illumi-
nating the sample with a 400 mW, 470 nm light-emitting diode (ThorLabs) targeted to
the region outlined in red in Figs. 1 and 5 using a mosaic micromirror array (Andor).
During the period of activation the sample was exposed to the activation wavelength
continuously for two seconds of the four-second frame rate or for three seconds of the

five-second frame rate.

2.4.3 Image and data analysis.

Velocity fields were calculated using the method of optical flow detailed in ref. Sun
et al. [2010] using the Matlab code available at (https:// ps.is.mpg.de/code/secrets-of-
optical-flow-code-for-various-methods) and the ‘classic+nl-fast” method. Velocity plots
were generated using Matlab. The defect density and defect trajectories were plotted us-
ing the Matplotlib library in Python. The PDF of the relative angle change given a time lag
was calculated using the method detailed in ref. Burov et al. [2013] with a modified defi-
nition of the angle. To summarize, we first construct the vector V(t,A) = X(t+ A) — X(t)
from the trajectory of a defect given by X(t). The angle between adjacent vectors is cal-

. V(t,A)xV(t+A,A))-2 A
culated as 6 = sin~! << ((|V(3SJ)C||‘S(;F+1)|))> Z) where (V(t,A)xV(t + A, A)) - 2 denotes the

magnitude of the cross product, |V (t)| denotes the Euclidean norm, and sin~! denotes
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the inverse sine function. The probability density of 0 is shown in Fig. 5c,d with n = 15
bins evenly spaced between —90 and 90°. The velocity correlation length is calculated as
v;(0),v;(r)

&=/ er where i,j denotes the inner product.
ilvj

2.4.4  Defect localization and tracking.

In two dimensions, the core of a defect is a point where we cannot define the local director
tield, which is the average orientation of all filaments in that region and is denoted by the
unit vector 7. The charge of a defect is given by 2§+7qu>, where ¢ is the angle between
i1 and a reference vector. 27t The intensity of any given pixel in the image is given by
I; = Iy + cos?(¢; — w), where wis the angle of the polarization of the laser, ¢; is the angle
of the local director field and Iy accounts for the fact that orthogonal directions do not
truly exhibit zero intensity. The cosine squared function induces a symmetry such that
two angles at the same distance from the polarization axis (that is, 8 & €) exhibit the same
intensity. Because of this polarization symmetry, assigning a director field to every pixel
algorithmically is difficult. Thus, in this work we focus instead on the position of defects,
which can be readily identified because they are surrounded by all angles of the director
field and thus both the highest and lowest pixel intensities in the frame. Defects in these
movies have a characteristic shape and look like triangular wedges of either bright (dark)
pixels extending into a patch of dark (bright) pixels. We can assign charge by considering
the wedge. If the intensity of the wedge indicates that the filaments in this region are
aligned along (against) the axis of the wedge, the defect in question carries a charge of
+1/2(—1/2). Defects are tracked manually using the manual tracking plugin in Image]J

(https:/ /imagej.nih. gov/ij/plugins/track/track.html, 2005 version).
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Active Nematohydrodynamics and Lattice Boltzmann Simulation

Simulation data for training and testing was generated using a hybrid lattice Boltzmann
method which has been used in prior studies of active nematics Zhang et al. [2017], Ku-
mar et al. [2018], Zhang et al. [2016]. The symmetric and traceless tensorial order param-

eter of the nematic is defined as
Q = S(nn—1/3) (2.1)

with S being the scalar order parameter, n being the unit vector describing the local ne-
matic orientation, and I being an identity tensor. The following governing equation of the

nematic microstructure, namely Beris-Edwards equation (2.2) reads
(9 +u-V)Q - S(W,Q) =TH (2.2)

where u is the velocity vector and I' is related to the rotational viscosity y{ vial' = 252 /9,

Here, the generalized advection term S(W, Q) is defined as

S(W,Q) = (FA+m)(Q+1/3)
+(Q+1/3)((A —m) (23)
—2Z(Q+1/3)) Tr(QA))

with A = (Vu + (Vu)T) /2 being the strain rate tensor, m = (Vu — (Vu)T)/2 being
the vorticity, and ¢ being a flow-alignment parameter setting the Leslie angle. The molec-
ular field H is a symmetric, traceless projection of the functional derivative of the free

energy of the nematic. Its index form reads

1 [ 6F  OF dij 6F
H.: == + — —Tr 2.4
72 <‘5Qij 5Qﬁ> 3 (5%) 9
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in which the free energy functional is F = [, fdV. Its density f takes the following form:

A u Al
f= 70 (1 — §> QijQij — %Qiijkai

(2.5)
AgU 1
+ TTT(QijQz’j)z + 5 L0k Qij0r Q)
where A, U are material constants and L is related to the Frank elastic constant under
the one-constant-approximation. Eq.2.2 is solved using a finite difference method.

The hydrodynamic flow is governed by a momentum equation:

p(0t + u;0;)u; = o:11;;
J7T T R (2.6)
+ 178]' aiuj + ajui +(1- 3apP0)87u7(5ij]
where p is density,  is the isotropic viscosity, and Py = pT — f is the hydrostatic pressure
with T being the temperature. The additional stress has two contributions, I;; = Hfj +
H?j' where the first term is passive in its nature accounting for the anisotropy, and is

defined as .
HZ- = — Podij — CHjx (ij + 5%’)

1
—¢ (Qik + g‘sik) Hy;
1 (2.7)
+2¢ (Qij + §5zj> QrrHy
d oF Hkj—H
- ijzm + QikHkj — Hix Qyj
The active stress that drives the system out-of-equilibrium reads
H?j = _“Qij (28)

in which & > 0 describes an extensile active nematic, as is the case for the experimental
systems discussed in this manuscript. Eq.2.6 is solved simultaneously via a lattice Boltz-

mann method over a D3Q15 grid Guo et al. [2002a]. Additional details on this method
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can be found in Zhang et al. [2016].
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CHAPTER 3
CATAPULTING OF TOPOLOGICAL DEFECTS THROUGH
ELASTICITY BANDS IN ACTIVE NEMATICS

3.1 Introduction

Active materials are those in which components locally break detailed balance (Ramaswamy
[2010], Marchetti et al. [2013]). This local energy injection coupled with both local and
global dissipative mechanisms—which depend on the exact material properties—leads
to complex dynamical states (Ramaswamy [2010], Needleman and Dogic [2017], Hat-
walne et al. [2004], Sokolov and Aranson [2009], Rafai et al. [2010], Wensink et al. [2012],
Nitin Kumar and Sood [2014], Fodor et al. [2016], Solon et al. [2015], Cates and Tailleur
[2015], Kumar et al. [2019]). Understanding how the interplay between local force gener-
ation and specific material viscoelasticity control the emergent structure and dynamics is
an outstanding challenge in active matter. Generalized hydrodynamic approaches have
proven successful in understanding active fluids at large length and time scales (Marchetti
et al. [2013], Joanny and Prost [2009]). However, the peculiarities of specific systems can
lead to exotic dynamical states at more immediate scales.

Due to their intrinsic and tunable elasticity, nematic liquid crystals (LC) are an ideal
system to answer questions about the interplay of elastic dissipation and active driving
(Gennes and Prost [1993]). Formed from dense packings of rod-like constituents, LCs
elastically resist distortions to their mesoscopic order while remaining locally fluid like.
When an extensile (contractile) active stress outcompetes this nematic restoring force, the
material is rendered bend (splay) unstable and can be deformed. Sufficient deformation
of this kind results in the nucleation of & 1/2 topological defect pairs (Aditi Simha and
Ramaswamy [2002], Giomi et al. [2014], Thampi et al. [2013a], DeCamp et al. [2015]). Once

defects are created, LCs driven by extensile (contractile) stresses results in the propulsion
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of comet-like +1/2 defects along (against) their orientation. At sufficiently high activity
level, an “active turbulent” state develops. In this regime, topological defects constantly
form, move, and annihilate creating complex hydrodynamic flows (Narayan et al. [2007],
Kumar et al. [2018], Thampi et al. [2014a]). In well developed turbulence, the dynami-
cal properties of the active nematic are well described by hydrodynamic models (Giomi
[2013], Giomi et al. [2014], Zhang and Pablo [2016], Thampi et al. [2014b]). These mod-
els show that when elastic force is much less than the active force, hydrodynamic effects
dominate the dynamics. At lower activity levels, however, one expects elasticity to play
an greater role in the dynamics and for emergent structural patterns to potentially deviate
from those predicted in the hydrodynamic limit. Indeed, one example of such a structure
is found in transient, elongated bend deformations which have been observed at low ac-
tivity levels in numerical and experimental systems generally preceding from globally
aligned initial states (Zhou et al. [2014], Martinez-Prat et al. [2019], Sokolov et al. [2019b],
Patelli et al. [2019], Chandrakar et al. [2020], Senoussi et al. [2019], Nejad et al. [2021]).
Here we explore structure and dynamics in active nematics where active and elastic
stresses are similar in magnitude. We exploit a highly tunable biomolecular nematic LC
that is comprised of the biopolymer F-actin and driven by the molecular motor myosin
II (Kumar et al. [2018]). In this system, modulation of nematic elasticity can be achieved
either through control over F-actin length, I, or by the addition of small quantities of
microtubule biopolymers, which are 100-fold stiffer than F-actin (Zhang et al. [2017]).
Further, time-dependent variation in myosin II concentration facilitates exploration of
nematic structure and dynamics over a large range of activities. Recently, we showed
that, for high activity, this system is well described by a hydrodynamic model of active
nematics (Kumar et al. [2018]). However, for LC with high bend elasticity and at inter-
mediate activity, we observe a dynamical steady state comprised of elongated "bands" of

bend deformations. These “elasticity bands” undergo continuous creation and destruc-
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tion, with highly variable length and width. The presence and persistence of these struc-
tures is highly dependent on nematogen length, indicating an important role of nematic
elasticity in their formation. To isolate the contributions of splay and bend elasticity, we
perform experiments where we selectively modify bend elasticity and find its increase to
be sufficient to control band formation. Measuring the elastic distortion within the ne-
matic as a function activity, we find that bands observed at intermediate activity coincide
with a state of maximal elastic distortion. This likely reflects the increased energetic bar-
rier for defect creation in LC with high bend elasticity. This observation is confirmed with
hydrodynamic simulations, which also reveal that the elastic distortion of high elasticity
LC increases non-monotonically with activity in a history dependent manner. Finally, we
show that the elastic distortion stored in bands is relieved by a rapid motion, or “cata-
pulting”, of +1/2 defects. Taken together, our results demonstrate a new dynamic steady

state in active nematics governed by the interplay of activity and bend elasticity.

3.2 Results

3.2.1 Observation of elasticity bands in F-actin based active nematics

A thin nematic LC was formed by crowding short (~ ym) F-actin to a surfactant-stabilized
oil-water interface using the depletant methylcellulose and waiting 30-45 minutes (Fig.
1A). The average F-actin length () is controlled by varying the concentration of F-actin
capping protein (CP) (Palmgren et al. [2001], Weirich et al. [2017]). Our previous work
showed that the splay (K1) and bend (K33) elasticity of such a nematic can be varied as
~ I and ~ I3, respectively (Zhang et al. [2017]). Utilizing this tool, we investigate the
activity of liquid crystals with three different elasticities: / =1 ym (K17 = 0.26 pN, K33 =
0.13pN), [ =1.5 ym (K11 =0.44 pN, K33 =0.56 pN) and [ =2 ym (K;1 = 0.52 pN, K33 =1.04
PN) (Zhang et al. [2017]). Active stress is introduced to the system by the addition of the
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molecular motor myosin-II. Upon their addition, myosin-II motors slide antiparallel actin
tilaments past each other resulting in net extensile stresses in the LC. This activity results
in the spontaneous creation of topological defect pairs and emergent complex flows with
a typical active state shown in Fig. 3.1B. The optical contrast in these panels arises from
the polarized excitation laser stimulating fluorophores that label the length of the actin
tilament (Kinosita et al. [1991], Sase et al. [1997]). Thus, this optical contrast provides a
direct readout of the local nematic director field up to a symmetry factor (Zhang et al.
[2021]). The bright and dark regions of the image correspond to actin filaments aligned in
the vertical and horizontal directions, respectively (see colorbar in Fig. 3.1B). From these
images, the local nematic director field is determined (Kumar et al. [2018]), and indicated
by the blue lines. The local nematic director field is utilized to identify important features
such as & 1/2 topological defects, points of vanishing nematic order, in the LC. Such a
defect pair is shown in Fig. 3.1B with a schematic of their shapes.

In addition to point-like topological defects we notice—in certain cases—extended two
dimensional structures that we term "elasticity bands". Elasticity bands, or simply bands,
are extended regions between a pair of defects that are perpendicular to the surrounding
director field. An example of an elasticity band in a nematic with K;; = 0.26 pN and K33
= 0.13 pN is outlined by black solid lines in Fig. 3.1B. To understand the structure of
these interesting features we measure the director field orientation across a line segment
locally perpendicular to the band with coordinate d. A plot of the director field angle 6
as a function of d is shown in Fig. 3.1F and reveals a region where 6 varies linearly as
a function of d flanked by regions of constant 8. We then can define the width as the
distance over which theta varies linearly. One can also measure the length of a band
as the distance between the flanking defects. When we do so for nematics of varying
elasticity we notice that higher elasticity LCs sport bands of dramatically increased length

as seen in Fig. 3.1C. The band length, I;;,4, and defect spacing, I, fec, for nematics at low
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and high elasticity are shown in Fig. 3.1D. For nematics with shorter filaments and thus
lower elasticity, the band length is similar to the mean defect spacing. By contrast, in
high elasticity nematics, the bands can be much longer than the mean defect spacing and
become more prominent features. While variable elasticity clearly changes the structures
present we also quantified the differences in these active nematics by measuring their

elastic energy distributions, E V -n)|%da and Ep,,; = [(V x n)|%da, for splay

splay = |(
and bend respectively. Fig 3.1E shows the probability distribution function (PDF) of local
splay and bend distortions in the nematic. For the low elasticity nematic (K11 = 0.26 pN,
K33 = 0.13 pN), the PDFs of the splay and bend energies both decay as power law with an
exponent n =~ 1.7, consistent with hydrodynamic simulations for active nematics. For the
higher elasticity nematic (K11 = 0.52 pN, K33 = 1.04 pN), the PDFs for both splay and bend
distortions deviate significantly from the power law at high energies indicating that this

high elasticity nematic is more likely to store energy structurally than its low elasticity

cousin.
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Figure 3.1: Observation and Characterization of elasticity bands in active nematics
A) Schematic representation of the experiment showing F-actin (grey) crowded to an
oil-water interface using methylcellulose (circles). Inset shows myosin II motors (red)
translocating short F-actin, with capping protein (yellow) indicating the F-actin barbed
end. B-C) Images of fluorescent F-actin in LC of low elasticity (Ki1 = 0.26 pN, K33 = 0.13
pPN) (B) and high elasticity LC (K11 = 0.52 pN, K33 = 1.04 pN) (C). The local director field
superposed with the colorbar showing how the intensity variations map to the local ne-
matic field. A pair of +1/2 defects are separated by a region of bend deformation (band)
outlined by solid black lines. D) Maximum band length (I3,,,7) and mean defect spacing
(Igefect) for the two nematics shown above. E) Probability distribution of the bend and
splay elastic distortion for the two nematics described above. The higher elasticity ne-
matic, plotted with open symbols, exhibits a heavy tail corresponding to bands. F) The
variation of the director field across an elastic band as shown in the inset. The band width,
w, is determined by distance over which the director field orientation 6 changes linearly.

3.2.2  Bands form topologically neutral branches

In addition to the increased band length, we also observe an increase in their structural
complexity. Previous observations of similar structures have noted not only the simple
structures such as the schematic shown in Fig. 3.2A but also branching phenomena such
as that shown in Fig. 3.2B (Sokolov et al. [2019b]). These schematics of topologically

neutral structures indicates how a stable branch might be formed. In its simplest form
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a band is anchored on either side by a &= 1/2 defect pair. Thus even though the length
of the band is perpendicular to the surrounding director field, the structure as a whole
is topologically neutral. The schematic in Fig. 3.2B demonstrates that if a band were to
branch, the three free ends would all be anchored by defects as one might expect, but
to maintain local topological neutrality a fourth defect that is not "attached" to the band
must nonetheless be associated with the structure and oppose the branch point.

Such a prediction bears out when we observe the branching of a band in experiment.
Fig. 3.2C shows a series of experimental snapshots where an initial band, anchored on
one side by a +1/2 defect, branches towards the -1/2 defect initially visible on the left
hand side of the image. This branching proceeds from an initially aligned region (purple
line) which appears to buckle as the movie proceeds, steadily reducing in width. A sim-
ilar pattern of region buckling and band width reduction can be seen in hydrodynamic
simulations shown in Fig. 3.2D where the color underneath the director field is a measure
of nematic order with a darker color indicating less ordered regions. In this series of sim-
ulation snapshots we can see, just as in the experiment, an initially aligned region begin
to buckle and the resultant band reduce in width over time. In both experiment and sim-
ulation, the final mature branched structures exhibit +1/2 defects pointed "towards" the
branch point as in the schematic in Fig. 3.2B. Having examined the geometry of a band

we now ask how the mechanics of the LC might contribute to their formation.

36



- - _ Blll\lll\ljllll/’-jll
T ., - I//)’}\\\\ l"/l /—/Q(\\ !
_ 7/ / s o~ _ \
% - \ |
| | | ll — I\ /0~ - N\
- >~ I N
— - _ = — | lll | l//l\ I [ |

N 1/
A AN PR

Figure 3.2: Formation and structure of branched bands A) Schematic of topologically
neutral structure containing a simple band. B) Schematic of a topologically neutral struc-
ture of a branched band. Note how the +1/2 defect that is not attached to the band op-
poses the branch point to maintain topological neutrality. C) Time series of experimental
snapshots of a branched band forming in a nematic with (K{; = 0.52 pN, K33 = 1.04 pN).
An initially aligned region (purple line) adjacent to an extant band buckles towards a-1/2
defect (red trefoil). As the bend distortion increases, a +1/2 defect appears opposing the
branch point similar to the schematic in (B). D) Time series snapshots of a band forming
in hydrodynamic simulation. As the local bend distortion (yellow color) in the nascent
band increases, a +1/2 defect approaches the branch point, stabilizing the structure.

3.2.3 Increasing bend modulus leads to band formation

To isolate the role of bending modulus in the formation of elasticity bands, we build a
composite LC, formed by a low elasticity actin nematic (/=1 ym) sparsely doped with

microtubules (1:84 molar ratio) and shown in Fig. 3.3A. As previously described, the
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inclusion of microtubules, due to their higher bending rigidity, increases K33 without
influencing Ky (Zhang et al. [2017]). Thus, while the undoped nematic had splay and
bend moduli of K;1=0.26 pN and K33=0.13 pN respectively, the doped sample exhibited
K11 =0.26 pN and K33 = 1.04 pN. This difference is particularly striking when activity is
added. Whereas the undoped sample featured bands only of approximately the length of
average defect spacing (Fig. 3.1B), the doped sample sample supported bands that were
much longer (Fig. 3.3B). Active nematic dynamics arise from the competition between
elasticity and activity. Thus, in order to fully understand the consequences of increased
bend rigidity we consider the state of the nematic over a range of activities.

Thus far we have focused only on a narrow range of activities. We now exploit the
time-dependent variation in motor concentration to explore how changes in activity im-
pact band formation (Kumar et al. [2018]). We track the magnitude of active flows mea-
sured in terms of root mean squared velocity, v,s = 1/ (v2) where v is the local velocity
measured by particle imaging velocimetry (PIV) as a function of time. Since vy;s is pro-
portional to active stress, the activity in our system can be conveniently expressed in
terms of vyys (Doostmohammadi et al. [2016], Kumar et al. [2018]). To quantify the mag-
nitude of banding in our experiments, we define the band index ¢ as the area occupied by
bands in the experimental field of view divided by the total area (see Methods). This in-
dex is low for all velocities in the nematic with low bend elasticity (Fig. 3.3C). By contrast,
when K33 = 1.04 pN the band index is high for low velocities and then drops suddenly to
a lower value for vy > 0.14 ym s~ 1

To further understand this, we track the amount of bend distortion as a function of
Urms. For the low K3, this distortion is minimal for the lowest velocities and, beyond a
threshold v;y,s shows a monotonic increase (Fig. 3.3D). The threshold beyond which dis-
tortion increases is the minimal energy needed for new defect creation. For the high K33

case, we find that elastic distortion increases even at low v;;s and, there exists a range

38



of activities where the elastic distortion plateaus (Fig. 3.3E). This plateau corresponds
with the range of activities at which bands are a long lived phenomenon. At even higher
activities, the bend distortion abruptly drops. Here the activity is high enough that de-
fect nucleation dominates the dynamics and any bands that form are short lived. This
suggests that, for nematics with high bend elasticity, bands are an energy barrier which
the nematic must cross before reaching the well known turbulent regime. This is in con-
trast to nematics with low bend elasticity where there is a direct transition to turbulence
without ever creating long bend deformations. We summarize these results in Fig. 3.3F
through a state diagram of K33 and vyy;s which shows that the width of the stable band
regime is strongly dependent on the strength of bend elasticity K33. This phase diagram—
while not precisely the same-bears notable resemblance to one previously predicted from
simulation (Srivastava et al. [2016]). To further explore the stability of bands we turn to

hydrodynamic simulations of active nematics.
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Figure 3.3: Increased bend elasticity promotes band formation at intermediate activities
A) Optical images of actin LC containing a sparse concentration of microtubules in red
with bend modulus K33 = 1.04 pN. B) The same nematic as in (A) after the addition of
myosin-II. Note the long band reminiscent of Fig. 3.1C. C) Band index (¢), defined as
the area fraction occupied by bands, plotted as a function of root mean squared velocity,
(vrms). While for low K33 no significant population of bands is observed, nematics with
high elasticity only exhibit large area fractions of bands below a certain critical v (black
dashed line). D) Bend distortion (Epeg = |(V x n)|?da) in a high elasticity nematic
plotted as a function of vyys. The purple region corresponds to the right hand side of
the black line in (C). The black dased line here corresponds to the onset of an energetic
plateau. E) Total bend elastic distortion plotted as a function of v;s for K33 = 0.13 pN.
The purple region beyond 0.12 ym/s indicates the region of defect creation. F) State
diagram summarizing the dynamic states observed as a function of K33 and v;;;s. The
data points are from three samples K{1=0.26 and varying K33 over a range of activities
and are color coded for regimes with no defect creation (open black diamonds), elastic
bands (magenta stars) and defect creation (blue squares). The transition from gray to
blue shading indicates a crossover to active stresses sufficient for defect creation.

3.2.4 Band stability is initial condition dependent

The model we employ here has proven successful in understanding many of active ne-
matic phenomena in lyotropic systems, including actin, microtubule and living-liquid-
crystal systems (Zhang and Pablo [2016], Kumar et al. [2018], Sokolov et al. [2019b]). To
understand the stability of elasticity bands and their relationship with defects, we pre-
pare the initial director field in two ways, one random and the other uniform (Fig. 3.4A,B,
inset). For a random initial configuration, simulations show that at sufficient high activity
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when active turbulence is fully developed, short and transient elasticity bands are seen
(Fig. 3.4A). In contrast, at the same activity level, a simulation instantiated with uniform
initial conditions exhibits a series of oppositely directed bands that span the simulation
box (Fig. 3.4A). To understand the differences between these two cases we plot the sys-
tem’s steady-state elastic energy as a function of time (Fig. 3.4C,D). We find that in simu-
lations stemming from random initial conditions two basic trends hold. First, we observe
that the average steady state value of the elastic energy monotonically increases with ac-
tivity. Similarly, we find that the frequency of fluctuations in elastic energy increases with
activity (Fig. 3.4C). These trends can be understood simply in terms of defect dynamics.
As activity increases, the average number of defects at steady state increases while the
frequency of creation and annihilation events experiences a similar increase. With this
in mind, it is notable that in simulations stemming from uniform initial conditions, the
average steady state energy is in fact not a monotonic function of activity (Fig. 3.4D). In
fact, what we see is that the elastic energy increases with activity to a point (dashed black
line) and then decreases. This decrease corresponds to the emergence of fluctuations in
the steady state elastic energy and thus the emergence of defects. Previous studies have
pointed out that elasticity bands are formed from a uniform director field due to bend-
driven hydrodynamic instabilities, and are precursors to the defect state. Interestingly,
our results show that the longevity of bands in simulations with uniform initial condi-
tions is a consequence of the symmetry of the initial state and that breaking this symme-
try leads to the breakdown of bands at much lower activities. This breakdown of bands
is due to their decomposition into and interactions with topological defects which have

very interesting consequences for the dynamics of the system.
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Figure 3.4: Band stability is a history dependent phenomenon A) Simulation snapshot
of fully developed active turbulence stemming from random initial conditions (inset).
With these initial conditions, bands (yellow) are relatively short. B) Simulation snapshot
of stable structures formed in a nematic at the same activity level stemming from uniform
initial conditions (inset). Note that the bands arising from these initial conditions are a
stable series of oppositely directed bands that span the space of the simulation box. C)
Steady state elastic energy plotted over time for simulations with random initial condi-
tions across a range of activities. D) Steady state elastic energy for simulations stemming
from uniform initial conditions. The dashed purple curve is the highest activity level that
does not produce defect pairs and only exhibits stable bands.

3.2.5 Bands catapult defects through nematics

Bands are highly dynamic and, much like defects, undergo spontaneous creation and
annihilation. While bands are created from a "buckling’ of the director field as in Fig. 3.2C,
they are annihilated by the motion of defects. Due to their compatible geometries, a +1/2

defect moving along a band—such as the schematic Fig. 3.2A-will lead to a shortening of
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the band. This can be clearly seen in the experimental snapshots in Fig. 3.5A wherea +1/2
defect moves along a band leaving an aligned director field in its wake. Band shortening
in this manner can also proceed after a severing event. As bands mature, they thin to a
width set by the competition between activity and elasticity. If bands become sufficiently
thin, they can sever via the formation of a &= 1/2 defect pair as seen in Fig. 3.5B. These
nascent defect pairs move quickly through the band leading to rapid annihilation after
nucleation. To understand this phenomenon, we plot the probability density of +1/2
defect speeds in the nematic. We find that while most defects are distributed gaussianly
around a single speed, a small population move significantly faster resulting in a bimodal
distribution of defect speeds, Fig. 3.5C. This anomalous defect speed is the result of the
release of stored elastic energy from the band in the form of defect motion. To see this
point concretely we plot the speed of defects moving through bands as a function of
band strength, A6/w, as defined in Fig. 3.1F, in Fig. 3.5D. The data from experiments
with myosin-II can be seen in blue and clearly show that thinner bands result in faster
defect propulsion. To ensure that such an effect is indeed due to the bands themselves
and is not in fact a product of motor driven activity, we perform experiments with a
synthetic myosin-VI motor (Schindler et al. [2014]). We find that band-associated defects
in this system follow the same trend as in the myosin-II nematic. This indicates that the
catapulting of defects through bands is indeed a product of stored bend elasticity in the
material and not the specifics of motor propulsion. In this manner, the presence of bands
in the nematic system leads to a novel dynamical steady state where defects are propelled

not only by molecular motors but also by stored elastic energy.
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Figure 3.5: “Catapulting” of +1/2 defects through elasticity bands A)Time-series of flu-
orescent images of actin LC (Ky1 = 0.52 pN, K33 = 1.04 pN) showing a +1/2 defect (blue
chevron) moving along a band leaving a uniformly aligned region in its wake. B) Time se-
ries of images showing a band severing event. The band separates near its thinnest point
into a + 1/2 defect pair after which dynamics proceed as in (A). C) Distribution of speeds
of +1/2 defects in the movies from which A & B originated. The blue line coreresponds to
a Gaussian fit of the data (black circles). The second peak (outlined in gray) deviates sig-
nificantly from this single Gaussian fit and corresponds to defects we term ’catapulted’.
D) The speed of +1/2 defects within bands tracked over multiple experiments. Defect
speed scales inversely with the band strength defined in Fig. 3.1F. The data includes actin
LCs driven by both myosin-II (red squares) as well as synthetic myosin-VI motors (blue
circles). The solid line is the fit to the analytical model.

3.3 Conclusions

Here we explored the effect of nematic bend elasticity on emergent flows in active nemat-
ics. By utilizing experimental control over specifically bend elasticity, we found a novel
dynamical phase where defects and elongated elasticity bands coexist and interact to al-

ter the nature of complex flows. We described the structure of these bands in terms of
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their width and the change in director angle from one side to the other. Furthermore, we
saw that bands can exist not only in their simplest linear form but also in higher order
branched structures. We showed that increases in the bend elastic modulus are sufficient
to control band formation. This further strengthens previous findings that disparate elas-
tic constants (i.e. K;1 # Ks3) not only play an important role in determining the shape of
topological defects (Zhang et al. [2017]) and defect density (Kumar et al. [2018]), but also
in predicting the dynamics of complex active flows.

Previous work has suggested that active nematics are endowed with a characteristic
length scale which depends on the ratio of elasticity to activity given by K and « respec-
tively. In this framework, an increased K corresponds to a higher energy barrier required
to undergo defect formation. While our system does not map perfectly onto this de-
scription due to disparate elastic constants, we nonetheless see similar phenomena with
bands. Bands are less prevalent at high activities and low bend elasticities. Furthermore,
at intermediate activity and high bend elasticity, a state occurs in which bands are long
lived, corresponding to the increased barrier for defect creation at these high elasticity
values. When the activity is increased further however we find a state that is dominated
by defects, akin to the active turbulence described previously.

Bands are not a stranger in the active nematic literature, however discrepancies have
existed between the long lived structures described in simulations at low activity (Fig.3.4D)
and the transient structures in experiments (Fig.3.5B). Here we showed that this discrep-
ancy can be explained by initial conditions. We found that simulations started from uni-
form initial conditions supported long lived bands over a very large range of activities
and resulted in a decrease in stored elastic energy upon their disintegration. Meanwhile,
simulations that proceeded from random initial conditions showed monotonic energy
scaling and shorter lived bands. This further underlines how bands are not merely a

structural quirk but an important player in the LC dynamics.

45



When bands are present in a system with intermediate activity, they play a central
role in the dynamics. For one, bands dictate the path of +1/2 defects in the system as they
‘zips” up bands, leaving a uniformly aligned director field in their wake. Furthermore, a
band itself can not only nucleate a defect pair but also convert stored bend elastic energy
into motion in the form of catapulting defects. The combination of these effects leads
to an exotic dynamical state when bend elasticity is about equal in strength to extensile
activity.

Overall then, bands are an example of a situation in which the interplay of nematic
elasticity and activity produces a novel dynamical state. While the state described in this
work is due to the competition between specifically bend elasticity and extensile stress,
one could imagine that different combinations of stress modalities and specific elasticities

might result in many interesting states.

3.4 Methods

3.4.1 Experimental methods

Proteins

We purify monomeric actin purified from rabbit skeletal muscle acetone powder pur-
chased from Pel-Freez Biologicals, Rogers, AR) Spudich and Watt [1971] and stored at
—80°C in G-buffer containing 2mM Tris HCL pH 8.0, 0.2 mM APT, 0.2 mM CaCly,, 0.2 mM
DTT, 0.005% NaN3). For fluorescence microscopy, we label G-actin with Tetramethylrho-
damine — 6 — maleimide dye (Life Technologies, Carlsbad, CA). Capping protein (with
a His-tag) is used to regulate actin filament length purified from bacteria (plasmid gifted
by Dave Kovar lab, The University of Chicago) Palmgren et al. [2001]. Mictotubules are
polymerized in PEM-100 buffer at 37° C (100mM Na-PIPES, 1ImM MgSO,, 1ImM EGTA,

pH 6.8) in the 1:10 ratio of fluorescently labeled tubulin (Cytoskeleton, cat# TL488M) and
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unlabeled tubulin (Cytoskeleton, cat# HTS03) in the presence of 1 mM GMPCPP (Jena
Biosciences, cat # NU-405L). They are later stabalized by adding 50 yM Taxol. The mi-
crotubule length is shortened by shearing through Hamilton Syringe (Mfr # 81030, Item #
EW-07939-13). Skeletal muscle myosin II is purified from chicken breast Margossian and
Lowey [1982] and labeled with Alexa-642 maleimide (Life Technologies, Carlsbad, CA)
Murrell and Gardel [2012]. Synthetic myosin-VI motors were purified from the construct

M6DIg162RTET from Schindler et al. [2014] and were a gift from the lab of Zev Bryant.

Experimental assay and microscopy

Actin from frozen stocks stored in G-buffer is added to a final concentration of 2 yM with a
ratio 1:5 TMR-maleimide labeled:unlabeled actin monomer. We polymerize actin in 1X F-
buffer (10 mM imidazole, pH 7.5, 50mM KCL, 0.2mM EGTA, ImM MgCl; and 1mM ATP).
To minimize photobleaching, an oxygen scavenging system (4.5 mg/mL glucose, 2.7
mg/mL glucose oxidase(cat#345486, Calbiochem, Billerica, MA), 17000 units/mL cata-
lase (cat #02071, Sigma, St. Louis, MO) and 0.5 vol. % B-mercaptaethanol is added. We
use 0.3 wt % 15 cP methylcellulose as the crowding agent for actin filaments. Frozen cap-
ping protein stocks are thawed on ice and are added at the same time (6.7 and 3.3 nM for
1 ym and 2 pym long actin filaments respectively). Myosin-II is mixed with phalloidin-
stabilized F-actin at a 1:4 myosin/actin molar ratio in spin-down buffer and centrifuged
for 30 min at 100,000 x g. The supernatant containing myosin with low affinity to F-actin
is used in experiments whereas the high-affinity myosin is discarded. For experiments
with microtubules, taxol-stabilized microtubules are added to the final concentration of 1
ug/mL, a 1:84 ratio of microtubules to actin.

We use a glass cylinder (cat# 09-552-22, Corning Inc.) glued to a coverslip as an ex-
perimental sample same as Kumar et al. [2018]. Coverslips are cleaned by sonicating in

water and ethanol. To create a hydrophobic surface, they are further treated with tri-
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ethoxy(octyl)silane in isopropanol. For creating an oil-water interface, PFPE-PEG-PFPE
surfactant (cat # 008, RAN biotechnologies, Beverly, MA) is dissolved in Novec-7500 En-
gineered Fluid (3M, St Paul, MN) to a concentration of 2% wt/volume. To prevent bulk
flows at the surface, a small 2 x 2 mm teflon mask is placed on the treated coverslip be-
fore exposing it to UV /ozone for 10 minutes. A glass cylinder thouroughly cleaned with
water and ethanol and is glued to the coverslip using instant epoxy. 3 uL of oil-surfactant
solution is added into the chamber, and quickly pipetted out (3 s) to leave a thin oil coat-
ing. The polymerization mixture is immediately added afterwards. 30—60 minutes later,
a thin layer of actin LC is formed. The sample is always imaged in the middle of the film
over the camera field of view, which is approximately 200 ym x 250 pm to make sure that
the sample remains in focus over this area, which is far away from the edges. Myosin II
or tetrameric myosin motors are added to the polymerization mixture at 5—10 nM and
200 pM respectively.

The sample is imaged using an inverted microscope (Eclipse Ti-E; Nikon, Melville,
NY) with a spinning disk confocal head (CSU-X, Yokagawa Electric, Musashino, Tokyo,
Japan), equipped with a CMOS camera (Zyla-4.2 USB 3; Andor, Belfast, UK). A 40X
1.15 NA water-immersion objective (Apo LWD; Nikon) was used for imaging. Images
were collected using 491 nm, 568 nm and 642 nm excitation for microtubules, actin, and
myosin-II respectively. Image acquisition was controlled by Metamorph (Molecular De-

vices, Sunnyvale, CA).

PIV and root-mean-squared velocity

The active flows are quantified using particle image velocimetry (available at www.ocea
nwave. jp/softwares/mpiv/) to extract local velocity field, v. The images were processed
through unsharped masking and then background subtraction using built-in plugins in

Image] software Rasband [1997]. The grid size of 2.4 ym was used for PIV vector calcula-
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tion and images were separated by a time-interval of 5 s.

Band Characterization and Band Index

To identify bands in fluorescent images, we perform a series of image processing algo-
rithms in Image]J software. We first enhance the contrast of our images using the CLAHE
plugin. Later we use "shape index map" plugin to separate the bands which are later
outlined using "edge detection" plugin. This image is then thresholded which marks the
band outlines and separate them from the rest of the image. Using this, we then calculate

the area inside the bands and divide it by the total area to calculate ¢.

3.4.2 Numerical methods

Continuum Model

The total free energy of the nematic LC, F, consists of a bulk and a surface term:

F= /V debulk+/<9V dsfsurf

3.1)
= /VdV(deG + fer) +/avd5fswf'

where f1 ;¢ is the short-range free energy, f,; is the long-range elastic energy, and f;,, r is
the surface free energy associated with preferred nematic orientation. f} ;. is the Landau-

de Gennes in the Doi formGennes and Prost [1993]:

fuc = 20 - De(@) - (@) + MM r(@?)2. 62
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Parameter U controls the magnitude of gy, namely the equilibrium scalar order parameter

via gg = 411 + %, /1— 3% The elastic energy f,; is written as (Q;; x means 0;Q;;):

1 1
fer =311QijaQije + 5 L2QsikQjt (3.3)

1 1
+ 5L3QijQu1,i Q1 j + 5LaQik 1 Qj k-

If the system is uniaxial, the above equation is equivalent to the Frank Oseen elastic en-

ergy expression:

1 1 1
fe = 5K (V-n)* + - Kp(n-V xn)?+ -Kgs(n x (V x n))?
. (3.4)
— §K24V -[n(V-n)+nx (V xn)].
The L’s in Eq. 3.3 can then be mapped to the K’s in Eq. 3.4 via
1 1
L= |K+ 5(Kss —Ku1) |,
7o
1
Ly = — (K11 — Kog),
qg (3.5)
Ly = —(K33 — K11),
2q;
1
Ly = —(Kpq — K22).
7o

Point wise, n is the eigenvector associated with the greatest eigenvalue of the Q-tensor at
each lattice point.

To simulate active LC’s dynamics, a hybrid lattice Boltzmann method is used to simul-
taneously solve a Beris-Edwards equation and a momentum equation which accounts

for the hydrodynamic flows. By introducing a velocity gradient W;; = d;u;, strain rate
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A = (W+WT)/2, vorticity m = (W — WT) /2, and a generalized advection term

S(W,Q) =(CA+m)(Q+1/3)+(Q+1/3)(CA —m)

(3.6)
—2¢(Q+1/3) tr(QW),
one can write the Beris-Edwards equationBeris and Edwards [1994] according to
(3 +u-V)Q - S(W,Q) =TH. (3.7)

The constant ¢ is related to the material’s aspect ratio, and I’ is related to the rotational
viscosity 1 of the system by I' = 2q(2) /7y1Denniston et al. [2001b]. The molecular field H,

which drives the system towards thermodynamic equilibrium, is given by

st
L 68

where [...]* is a symmetric and traceless operator. When velocity is absent, i.e. u(r) = 0,

Besris-Edwards equation Eq. 3.7 reduce to Ginzburg-Landau equation:
0:Q =TH.

To calculate the static structures of +1/2 defects, we adopt the above equation to solve
for the Q-tensor at equilibrium.

Degenerate planar anchoring is implemented through a Fournier-Galatola expres-
sionFournier and Galatola [2005] that penalizes out-of-plane distortions of the Q tensor.

The associated free energy expression is given by

fsurf =W(Q- QJ_)ZI 3.9)
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where Q = Q + (qo/3)Iand Q1 = PQP. The evolution of the surface Q-field is governed
byZhang et al. [2016]:

0Q
E— FS< Lv VQ+

afsurf !
0 ] ) ) (3.10)

where I's = I'/¢n with ¢ = \/L1/Ap, namely nematic coherence length.
Using an Einstein summation rule, the momentum equation for the nematics can be

written asDenniston et al. [2001a, 2004a]

p(at + Ll]'aj)ul‘ :a]'Hij + 178] [aiu]- + ajui + (1 — 38PPO)87u75ij]. (3-11)

The stress

I1=T11° + 117
consists of a passive and an active part. The passive stress I'1” is defined as

1 1
P _ . (O ) = Qi + 20, Hoy i
[ = = Podij = GHin (Qyj + 3047) = 8(Qiy + 307 Hyy

1 OF
+26(Qij + 30i) QyeHye = 9jQye

+ QinHyj — HiyQyjs

where 77 is the isotropic viscosity, and the hydrostatic pressure P is given byFukuda et al.

[2005]

Po =T = fouik- (3.13)

The temperature T is related to the speed of sound cs by T = c2. The active stress
readsMarenduzzo et al. [2007b]

H?j = —DéQi]', (3.14)
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in which « is the activity in the simulation. The stress becomes extensile when « > 0 and

contractile when a < 0.

Numerical Details

We solve the evolution equation Eq. 3.7 using a finite-difference method. The momentum
equation Eq. 3.11 is solved simultaneously via a lattice Boltzmann method over a D3Q15
gridGuo and Shu [2013]. The implementation of stress follows the approach proposed by
Guo et al.Guo et al. [2002a]. The units are chosen as follows: the unit length a is chosen to
bea = ¢ = 1 um, characteristic of the filament length, the characteristic viscosity is set to
v1=0.1 Pa-s, and the force scale is made to be Fj = 10~ 1 N. Other parameters are chosen
tobe Ag =0.1,K=0.1,¢ =08T =0.13,7 = 0.33,and U = 3.5 leading to g5 ~ 0.62. The
simulation is performed in a rectangular box. The boundary conditions in the xy plane
are periodic with size [Ny, Ny| = [250, 250]. Two confining walls are introduced in the
z dimension, with strong degenerate planar anchoring, ensuring a quasi 2D system with
z-dimension N; = 9. We refer the reader to Ref. Zhang et al. [2016] for additional details

on the numerical methods employed here.

3.4.3 Estimate Viscosity

To understand defect’s high velocity in the elastic band, we build on elasticity theory at
over-dumped limit. Say an elastic band has width b and depth ¢ (thickness of the 2D
film). Given the one-elastic-constant K, the elastic force that drives the defect motion can
be written as

1
E, = E1<n2t/b.
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The viscous drag force is written asKleman and Lavrentovich [2007]
F; = my1k?vIn(3.6/Er)t,

where 71 is the rotational viscosity, k is the topological charge of the defect, v is the defect
velocity, and Er = yjur./K is the defect core’s Ericksen number with ¢ the core radius.
At steady state, the above two forces are equal. We find a rigorous formulus for the defect

velocity:
2K
0 —

’ylb In (%)
At low Ericksen number or low defect velocity when Er < 3.6, one has v o« 1/b. To
extract rotational viscosity of the nematic in the experiment, we fit the measured data

with the above equation with two fitting parameters 1 and K.
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CHAPTER 4
RESPONSE FUNCTION OF ACTIVE MATERIALS

4.1 Introduction

Active systems can be found at various scales across the natural world. From flocks of
birds and schools of fish (Cavagna and Giardina [2014], Marchetti et al. [2013]), to swarms
of bacteria (Dombrowski et al. [2004], Wensink et al. [2012]) and the protein filaments in-
side of cells (Needleman and Dogic [2017]), a system is considered active if individual
agents— birds or molecular motors— locally convert energy into mechanical work (Ra-
maswamy [2010]). These small local injections of energy combine in complex ways to
produce long range flows and striking non-equilibrium patterns (Giomi [2015], Gao et al.
[2015]). While all active systems share an underlying character, the flow patterns and scal-
ing behaviors exhibited by each is a consequence of their specific mechanisms of energy
injection, long range structural interactions, hydrodynamic milieu, and boundary condi-
tions (Marchetti et al. [2013]). Understanding the interactions between these factors and
how they lead to the emergent phenomena we observe is an important challenge not just
for understanding complex natural systems but also for designing novel and potentially
autonomous materials. At the heart of active systems are multiple important length and
time scales within the dynamics. These scales and the spectral properties thereof help
us to characterize and compare various active systems that are often turbulent or chaotic
(Koch and Wilczek [2021]).

One of the most prevalent and powerful tools in the analysis of active systems is the
construction of correlation functions Kadanoff and Martin [1963]. These analytical tools
allow us to measure the decay and propagation of some important relationship in space
or time. Perhaps the most classic example of this type of analysis is the velocity autocor-
relation function which measures the similarity of a velocity field to itself as a function

55



of distance or time (Forster [2018]). Traditional interpretations of these functions usu-
ally seek to extract a correlation length or time scale from a one dimensional projection
(Thampi et al. [2013b]). Frustratingly, there is no guaranteed scaling in such functions.
Therefore, fitting a decay function and extracting, say, an exponent to compare between
correlation functions is impossible. As there is no consistent scaling amongst all of these
functions, the length scales extracted from such analysis must come from some ansatz —
such as the length at which the correlation reaches half its maximum value — and can be
ambiguous and difficult to compare or interpret. To overcome these shortcomings, meth-
ods have been introduced in recent years to extract unambiguous quantities like average
vortex size (Martinez-Prat et al. [2021]) or temporal decorrelation time from experimental
measurements in active systems (Reufer et al. [2012]). These methods unfortunately can
require different raw inputs or assumptions about an underlying dynamical model. Of
great utility then would be a method that meaningfully extracts unambiguous length and
time scales for active materials from a single method in a model free manner.

Here we introduce just such a method. We build off of recent work that extends the
utility of correlation functions in thermally driven systems by taking into account the in-
ternal directions of a velocity field to extract the maximal amount of information from
the correlation (Molaei et al. [2021]). We extend these directionally rectified correlation
and introduce a generalized cross correlation function that effectively measures material
response functions in active systems from data. Specifically, we set our function to work
interpreting two dimensional displacement fields from a number of materials composed
of the biopolymer F-actin driven by molecular motors from the myosin family. In these
systems we show that this framework extracts model-free, unambiguous length scales
as well as interpretable timescales from these easily accessible experimental fields. We
show that the variety of measurements that can be made from our method are consis-

tent with multiple, disparate established methods. Utilizing this technique we extract a
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number of critical length and time scales that quantify complex dynamics, characterize
disparate modes of relaxation, and presage incipient dynamical transitions across these

diverse materials from liquid crystals to cells.

4.2 Method and Results

4.2.1 Measurement of response functions in 2D active materials

To begin, let us consider in the abstract the displacement field for a two dimensional
active material. Fig. 5.1A shows one such field from an experimental active system. We
will deal with the specifics of this experimental system in the next section but for now
will treat it simply as some displacement field we wish to analyze. As typical active
materials contain a number of length and time scales, our approach here will be to extract
as much information as we can from this important dynamical field. To do so, we will
approach correlation analysis not as conventional autocorrelation but as generalized cross
correlation between some important field p and the displacement field u. The real trick
here will be to take special notice of any directional information in p. This directional
information will help the correlation to represent an averaged response of u to the specific
perturbation represented by p.

Because p could in principle be a high rank tensor field and interpreting high ranked

correlation functions is difficult, we introduce the general correlation function Xp-

xp(RT) = (p(r1, )u(ra, t +T)6(R = 112))ry 1y 1 (4.1)

here p is the scalar magnitude of the field p which renders x, the same rank as . (-);, s, t
denotes averaging over space and time. Since p and u are often discrete measurements,
the average is computed by binning our data over a window of chosen size, which is

represented by the finite width delta function . R is the location in a new Euclidean
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space with the same dimensionality as u. Finally, r}, is the distance vector between p and
u, which will be constructed in this new coordinate system to report on the location of
u(rp) with respect to the position and heading of p(r;). The purpose of ¥}, is to center the
average such that each p(rq) is located at the origin of R. In practice, we will be dealing
not with y itself but rather the normalized correlation field U, = xp/ \/(;972> . In tandem
with the field p the choice of coordinate system in which 7}, is measured is a critical one
and has important ramifications for how we interpret these correlations. To see why let
us consider a concrete example.

Let us consider the displacement-displacement auto-correlation function in this new
setting; Uy = xu/ Vu2. Our objective is to understand how the displacement field re-
sponds to each specific #(r1). This means we want to take into account not only the
location 7y but also the heading of u(r1). To do so, we set up a new coordinate sys-

tem whose Y axis aligns with u(r). That is, we define rj, = M(r —r1), where M =

cos(01) —sin(6q)
is the rotation matrix in which 6; is the angle between u(r) and
sin(07) cos(67)

the Y axis of the lab frame. By defining r{, in this way, U, reports on the correlation
of the displacement field with a perturbing vector pointing along the Y axis. By nor-
malizing by 4/ (u2) this correlation reports on the average behavior of the displacement
tield with respect to an impulse of defined direction and magnitude, (Fig. 5.1C). Put
differently, the function U, reports on the averaged response of the displacement field
u to a perturbation of unit magnitude along the Y axis. This procedure is closely re-
lated to what was utilized recently to measure the Stokeslet flow induced by Brown-
ian motion of passive colloids at an interface (Molaei et al. [2021]). By taking this di-
rectional information into account, the resulting response function is not radially sym-
metric as one would expect from traditional auto-correlation. Rather, the resulting dis-
placement response function is reflectively symmetric about the Y axis and anticorre-

lated about the X axis (Fig. 5.1C,ii). As one might expect, the response to a displace-
58



ment along one axis decays at different rates for different angles with respect to that im-
pulse. The response in the longitudinal direction U, | = U|x—o propagates over the
largest distance and in the transverse direction, U, | = Uly—( over the shortest dis-
tance (Fig. 5.1C,ii). The difference between these two length scales is mainly related
to the hydrodynamic coupling of the active material to the viscous bulk fluids (Levine
and MacKintosh [2002], Chisholm and Stebe [2021], Martinez-Prat et al. [2021]). The ra-
tio of these two length scales quantifies the ratio of the kinetic energy that is dissipated
within the 2d system (active nematic in this case) and kinetic energy dissipated exter-
nally. These two spatial length scales, however, get convoluted when calculating conven-
tional displacement auto-correlation function Cy.yy = (u(r) - u(r + R))r//(u(r) - u(r)),
as all perturbations u are treated identically regardless of heading. In fact, this tradi-
tional auto-correlation function is equal to the azimuthal average of the response func-
tion we consider, Cy.y = 1/27 f02n Uy(R)d8 = (U + LIH)/2; where 6 is the angle in
polar coordinates. By taking into account the headings of each element of the displace-
ment field as we construct the correlation function we are able to access important two
dimensional features of flow responses. Unfortunately, while this description of the auto-
correlation response contains more information than the previous version, determining
a length scale from these functions still requires a model. This stems from the fact that
any auto-correlation function must inherently be maximally correlated with itself at the
origin. Without any universal scaling describing the decay of this correlation in active
systems we are left to approximate. We will show that such ambiguity may not exist in
higher order response functions.

To capture the response of the displacement field to high order modes of deformation,
we explore the response of the displacement field to its own gradients, Vu. In a linear
system, we begin by decomposing displacement gradient tensor d;u; into the anisotropic

symmetric traceless strain rate tensor, 5;; = (o;u it 8]-ui) /2 — kg lij/ 2, the isotropic sym-
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metric strain rate tensor D;; = dyuyl;;/2, and the circulation tensor €);; = (aiu]- — 8]~ul-) /2.
Here, I is an identity tensor with the same rank of E)iuj. As we will see, this choice of
decomposition has great physical utility as in two dimensions it corresponds to sepa-
rating the contributions of pure shear, normal, and vortical deformation from one an-
other. Having performed this decomposition, we construct a family of response functions
Ug, Up, Uq corresponding to the response of the deformation field to the different pertur-
bations, each of which quantifies different flow structures in u. We will defer the physical
interpretation of these response functions in the various systems for the later sections but
will focus here on the methodology for constructing each. Specifically, let us focus on the
critical question of how to choose a coordinate system.

Among these tensors, D — which quantifies bulk contraction or extension — does not
have a unique eigendirection and can be fully described by its first principal invariant.
Therefore it can be treated as scalar field, D. As scalar fields do not have headings, we
cannot choose a meaningful angle about which to rotate. In such cases, we default to a
translation of the lab frame (Fig. 5.1D,i). More precisely, in the case of a scalar perturba-
tion field we simply take 7}, = (r2 —r1). A similar situation arises with the circulation
tensor () in two dimensions. This tensor has only one pseudovector which is normal
to the plane of observation with rotation rate equal to vorticity v = é; - V x u. As the
pseudovector of (2 provides no extra information, we will use the scalar vorticity field,
v, throughout this work and choose the simple translation of the lab frame as our coor-
dinate system (Fig. 5.1D,i). In the case of both D and v, the resulting response function
is radially symmetric which is a product of the lab frame coordinate that we have cho-
sen (Fig. 5.1D,ii). Intuitively also, we expect a system’s response to vortical perturbation,
U, or normal deformation to be radially symmetric which is the case in the measured
responses (Fig. 5.1Dii).

Unlike its cousins, S is not a scalar field and thus requires more care when choosing co-

60



ordinates. S possesses two eigenvectors which identify pure shear directions with eigen-
values £ indicating shear rate. To construct x g in this case we setup a coordinate system
similar to the case of displacement auto-correlation where the Y axis is aligned with the
eigendirection corresponding to the positive eigenvalue, (Fig. 5.1E,i). It is important to
note here that it does not truly matter which eigenvector we choose so long as we are
consistent while constructing the response function. As a convention we have chosen the
eigenvector associated with positive shear as we will eventually turn this method on an
extensile system. The eigenvalue of S in this direction, A, is used as the scalar field which
normalizes the correlation. The shear response function we construct, Us = xg/ VAZ is
therefore the response function of the system to a pure extensile shear perturbation at the
origin pointing outwards along the Y axis as seen in Fig. 5.1E,i. Since S is a symmetric and
traceless tensor, the resulting response function Ug is symmetric about both X and Y axes
(Fig. 5.1E,ii). This is the high rank extension of what we have seen already. Scalar fields,
having no internal directions in the plane, form radially symmetric correlation functions
while vector fields yield only one axis of symmetry. This response to a second rank tensor
which represents bidirectional motion yields a response function that is symmetric about
two separate axes.

So far we have only measured equal-time response functions. Evaluating the response
after some lag time however is straightforward. Taking a perturbation field p(rq) at time
t the delayed response function is constructed from u measured after some delay time
t + 7. A snapshot of the velocity field from Fig. 5.1A measured at T = 12s is shown in
Fig. 5.1B. From these two displacement fields corresponding response functions Uy(7),
Uy, (1), and Ug(7) are computed at T = 12s (Fig. 5.1C-E,iii). The spatiotemporal response
functions as measured here provide useful information about spectral properties of the
dynamics of active matter in the time domain to which has proven challenging so far to

gain access to (Alert et al. [2022]).
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Thus far then we have focused solely on technical implementation. We have demon-
strated that by taking into account internal headings of a perturbing filed, we can use
the familiar language of correlation functions to construct functions that report on the
response of a displacement field to these specific perturbations. After decomposing the
displacement gradient tensor into constituent parts we demonstrated how to construct
similar response functions for various ranks of perturbing inputs. Finally we have seen a
simple procedure to extend this framework into the time domain. Having detailed these
technical steps, we now turn our analysis on a few real systems. We will ask what infor-
mation our method can give us and compare to previously established methods for a few

well characterized active systems.
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Figure 4.1: Measuring directionally rectified correlations reveals response functions
in active materials. A,B) Displacement fields measured by optical flow from fluores-
cence microscope images of an active nematic liquid crystal composed of actin filaments
att = 0s (A) and t = 12s (B). Displacements measured over At = 2s. (i) Schematic of co-
ordinate transformation and ensemble formation for the response of the two dimensional
displacement field u to various perturbation fields p. p is either the displacement field
itself (C), the vorticity field (D), or the shear field (E). (ii) Equal time two dimensional
correlated displacement field. The response of the displacement field in (A) to each of
the respective perturbations. Ensembles are constructed such that the Y axis in (i) is the
same as (ii). Streamlines indicate the direction of the resulting correlation field and color
indicates the magnitude; scale bars are 5um. (iii) The T = 12s time delayed correlated
displacement fields. The perturbation coordinate system is set at T = 0Os and the response
is measured at T = 12s. (iv) One dimensional profiles of the fields calculated at various
lag times. Lighter colors indicate longer lag times. C,iv) One dimensional profile is con-
structed by tracing along the major axis (blue). Note that the azimuthal average is simply
the average of the major axis trace and the minor axis trace (red). D,iv) One dimensional
profile is constructed by azimuthally averaging. Model free characteristic deformation
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U* and length R* scales at the various lag times indicated by open circles. E,iv) One di-
mensional profile constructed as a trace along the Y axis. The origin symmetry of the field
shown is unique to divergence free systems. Note the large characteristic length scale in
comparison to vortical deformation fields.

4.2.2  Flow Structures Reveal Characteristic Length Scales in 2D Active

Nematics

We will begin analyzing the dynamics of real active systems by analyzing the flow struc-
tures of an active nematic liquid crystal. Nematic liquid crystals, or simply nematics, are
materials composed of elongated components called nematogens that interact through
excluded volume. At sufficient concentration nematogens locally align which yields a
material with long range structure (Gennes and Prost [1993]). However, because the ne-
matogens are not bound to each other, individual components and even entire structures
can flow and move within the material. These temporal dynamics are particularly in-
teresting when local stresses drive the nematic out of thermal equilibrium leading to an
active state (Doostmohammadi et al. [2018]). Here we consider a nematic composed of
short actin filaments into which activity can readily be introduced via the addition of
mysoin motors which slide antiparallel pairs of filaments past each other generating local
extensile stresses (Kumar et al. [2018]). These stresses propel and nucleate topological de-
fects within the nematic and result in long range flows (Giomi et al. [2014]). Figure 5.1A
presents a snapshot of displacement field # measured over At = 2s for one instance of
such a system.

Nematics are an attractive system to test our method as their steady state dynamics in
two dimensions feature well studied length and time scales (Thampi et al. [2014a]). As
we saw earlier, using our formulation of U, we see a difference in decay length between
in the directions parallel and perpendicular to the motion heading (Fig. 1C,ii). How-

ever, as already discussed, these traces unfortunately do not allow for the extraction of
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an unambiguous length scale as quantifying the decay would require a model or ansatz,
Fig. 5.1C,ii. Luckily, not all of the response functions we constructed monotonically decay.

One such example is the vortical response function U,. When we azimuthally average
the vortical response function and plot the resulting one dimensional projection, Uy (R),
we find a clear maximal value (Fig. 5.1D,iv). Since the helicity (v(r)u(r)), in a 2D ne-
matic field is zero—at least in the linear region where there is no energy transfer across
scales (Alert et al. [2020])- Uy, starts from zero at the origin and rises to the characteristic
value before decaying at large distances due to various viscous and frictional dissipation
mechanisms. The peak of this function gives a critical magnitude U, at a characteris-
tic distance of R} which we interpret as the characteristic magnitude and length scale of
vortically driven flows (Fig. 5.1D,iv). In the case of the nematic considered here the crit-
ical length scale is R}, = 14.1um. In order to put this number in the context of previous
work, we compare this length scale to the average vortex size in the nematic. We measure
the distribution of vortex sizes in the current system using the standard Okubo-Weiss pa-
rameter and velocity winding number (Lemma et al. [2019], Giomi [2015], Guillamat et al.
[2017]). In 2D active nematics, it is expected that vortex area follows an exponential distri-
bution with rate parameter of average vortex size a;, (Lemma et al. [2019]). Applying this
assumption to our distribution we find an average vortex area of a}; = 688 4= 9um?. This
average vortex size is in close agreement with vortex area calculated from our model free
vorticity length scale which gives 77(R*)? = 624um?. As we expected, the length scale
that this response function returns is that of high order flow structures arising from the
specific perturbation considered. Specifically in this case, the vortical response function
sports a critical length scale that is commensurate with the radius of an average vortex in
the system. Given this meaningful response, we now turn to the flow structures associ-
ated with higher order, shear deformations.

The shear response function Ug measures the response of the material to shear stresses
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at the origin (Fig. 5.1E,ii). One striking feature of Ug in the context of an active nematic
is the high degree of reflective symmetry. In this case Ug is symmetric about not only
the X and Y axes as we would expect from the response to a second order tensor, but
also the diagonal Y = X. As we will see, this diagonal symmetry is not general to every
system. In fact, this symmetry arises from the incompressibility of the nematic film which
is critical for its dynamics. This incompressibility is also why the normal response Up is
insignificant in this context as there is no significant contraction and thus the response of
the system to this negligible perturbation is itself negligible. As in the case of the vortical
response, we want to consider a simplified one dimensional representation of this two
dimensional function. Because Ug is diagonally symmetric, we can consider only the one
dimensional trace along the Y axis (Fig. 5.1E, iv). Similarly to the vortical response, this
one dimensional trace rises from zero at small length scales and decays due to various
dissipation mechanisms giving a critical magnitude, Ug, and length scale, R, of flow
structures associated with shear perturbation. In this case, this one dimensional response
trace starts from zero at the origin because inertial advection # - Vu at small length scales
in an active nematic is zero.

It is interesting to note that while both U, and Ug have characteristic length scales
these two scales are disparate. In fact, we find that in general Rg > Rj. This is because the
shear deformation field Ug is coupled to pressure gradients in the system while the vorti-
cal deformation field, in the absence of inertial effects, is not (Batchelor [2000], Marchetti
et al. [2013]). Vortical perturbation at the origin only propagates by the curl of force den-
sity due to elastic, flow-alignment, and active stresses and thus is dictated in large part by
the systems shear rheology (Martinez-Prat et al. [2021]). While the characteristic length
scales quantifies the size of the flow structures, the characteristic displacement scales Ug
and U, identify the energy level within these flow structures.

Together model-free characteristic deformation scales, U*, and length scales, R* pro-
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vide scaling factors that map high order flow structures on unified interpretable profiles.
Here we have focused on how to extract and interpret these scales for a single system.
However, because these scales are model-free and unambiguous they easily allow for
comparisons between experiments. For example, the normalized correlated deformation
profiles U’ = U/U* plotted as a function of the normalized distance R’ = R/R* for ac-
tive nematics with different levels of activity exhibit a scaling law across length scales.
Scaling laws in active turbulence have been an ongoing topic of scientific discussions in
recent years (Alert et al. [2020], Koch and Wilczek [2021]) and we hope the generality of
our framework will prove a useful tool in their investigation. We will next turn our at-
tention to a system that is in many ways more complicated than a nematic; a contractile

gel.

4.2.3  Spatial features of deformation fields reveal the onset of contractile
instability in an active gel

Thus far we have only considered an active nematic which is an incompressible material
with steady state dynamics. To test the broad applicability of our method to dynam-
ics not necessarily at steady state we now turn to a different type of active actomyosin
material; a contractile actin gel. Unlike ordered nematics formed by short, rigid actin fila-
ments, disordered gels are formed by networks of long semi-flexible filaments (Gardel
et al. [2004]). Because the filaments in these gels are semi-flexible the application of
myosin stresses leads in general not to extensile stresses but rather contraction (Murrell
and Gardel [2012], Lenz et al. [2012]). Irreversible local contraction is mediated by local
filament buckling which at a large scale manifests as macroscopic structural changes and
unstable contractile flow (Stam et al. [2017]). These structural rearrangements can be seen
in the accumulation of actin fluorescence in micrographs of the system and cluster forma-
tion of associated myosin motors (Fig. 5.2 A-C,i, actin fluorescence in grey scale, myosin

67



fluorescence in magenta). The contractile flow can be seen in the increased coherence of
the displacement field (Fig. 5.2 A-C,i, cyan arrows). This qualitative metric of contractility
can be quantified by measuring the divergence of the displacement field (V - u) (Fig.5.2D,
black circles). One interesting feature of this system is that after the addition of myosin
motors the system does not contract immediately. Rather as myosin filaments settle onto
the network and stresses slowly build up, the divergence of the system remains negligi-
ble for a time before rapidly decreasing as the system irreversibly contracts (Fig. 5.2D).
This delay has been a particular focus of studies on active gels, specifically the relation
between the buildup and spectrum of internal stresses and the stability or contractility
of the system (Marchetti et al. [2013]). To capture this interesting temporal evolution in
detail we consider the system at three different stages of contractility with divergences
(V -u) of ~ 0, ~ 0.01, and ~ 0.1 and measure the shear response, Ug and normal re-
sponse Up at these stages (Fig. 5.2D, time points analyzed labeled upper axis). As we
should expect, the normal response increases with increasing divergence (Fig. 5.2A-C,iii).
While this result straightforwardly corresponds to our intuition, something more inter-
esting arises in the case of shear response. Note here that whereas in the extensi