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ABSTRACT

High-throughput sequencing (HTS) techniques such as RNA-seq, ChIP-seq and ATAC-seq

have enabled researchers to investigate complex biological processes in unprecedented detail.

One common feature of HTS data is that they often consist of counts. For example, in RNA-

seq, the counts typically represent the number of times a RNA molecule has been sequenced

and are a proxy for the expression level. Recently, the advent of single-cell sequencing

techniques such as scRNA-seq and scATAC-seq has unveiled the transcriptome at cell-level

resolution. However, the single-cell count data are sparse and come with high levels of

technical noise. With the emergence of large, sparse and noisy sequencing data, there is a

need for rigorous statistical methods that can accurately model these counts.

On the other hand, due to the complex structure of the sequencing data exhibited, the

statistical methods developed for the data should be flexible enough to incorporate differ-

ent assumptions and structural information. For instance, matrix factorization has been

extensively employed to uncover the latent structure of gene expression across a variety of

cell types. The incorporation of sparsity assumptions into these latent structures has been

shown to yield a more parsimonious representation and enhance the interpretability of re-

sults. Consequently, it would be beneficial to integrate sparsity assumptions when modeling

the structure of sequencing data.

In this thesis, we focus on developing flexible empirical Bayes (EB) methods for statistical

modeling and inference in the field of genomics. We first explore EB Poisson mean models as

a fundamental component for developing sophisticated models and as a simple problem for

evaluating different approaches. Then we study EB smoothing methods that can account for

extra variation or over-dispersion in sequencing data, and apply the methods to visualize gene

expression patterns along the genome. We further introduce a general variational inference

method for non-Gaussian data, and develop an EB Poisson matrix factorization method, with

xiii



applications to single cell RNA sequencing data. Finally, we extend Poisson non-negative

matrix factorization methodologies to accommodate spatially-structured or sparse factors

and loadings.
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CHAPTER 1

INTRODUCTION

In recent years, high-throughput sequencing (HTS) techniques such as RNA-seq, ChIP-seq

and ATAC-seq have revolutionized the field of genomics and many other areas of biology.

By producing massive amounts of data, HTS has enabled researchers to investigate complex

biological processes in unprecedented detail. One common feature of HTS data is that they

often consist of counts. The counts represent the number of times a particular event is

observed in the sample. For example the counts in RNA-seq typically represents the number

of times a RNA molecule, usually a transcript or a gene, has been sequenced in a sample.

These counts are a proxy for the abundance or expression level of the corresponding RNA

molecules.

As for the statistical analysis of sequencing count data, some methods model the counts

directly while the others transform them so that one can apply Gaussian distribution-based

methods. For example, in differential expression analysis for bulk RNA-seq data, methods

such as limma-voom (Ritchie et al. [2015], Law et al. [2014]) have focused on transforming the

count data then applying Gaussian linear regression. Methods directly modeling count have

also been developed such as DESeq2 (Love et al. [2014]) and edgeR (Robinson et al. [2010]).

Bulk RNA-seq data typically exhibit large counts, and from a statistical perspective, prop-

erly transforming these large counts can result in a reasonably valid Gaussian distribution

representation. Recently, the advent of single-cell sequencing techniques such as scRNA-seq

and scATAC-seq have enabled researchers to investigate the transcriptome at cell-level reso-

lution. The single-cell count data are sparse and have high levels of technical noise. Sarkar

and Stephens [2021] argued that the Poisson measurement model is preferred from both

theoretical and practical point of view. A number of methods have been developed for di-

rectly modelling single-cell sequencing data using count models, typically assuming Poisson
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or negative binomial distributions (Huang et al. [2018], Vallejos et al. [2015], Wang et al.

[2018], Townes et al. [2019], Eraslan et al. [2019], Lopez et al. [2018], Levitin et al. [2019],

Sun et al. [2019], Risso et al. [2018]).

On the other hand, due to the complex structure of the sequencing data exhibited, the sta-

tistical methods developed for the data should be flexible enough to incorporate different

assumptions and structural information. For instance, sparse matrix factorization (Wang

and Stephens [2021], Witten et al. [2009]) has demonstrated its ability to yield a more parsi-

monious representation and enhance the interpretability of results. Consequently, we could

integrate sparsity assumptions when modelling the structure of sequencing data. Another

example is when modelling RNA-seq data along the genome or ChIP-seq data, the underlying

signal is spatially-structured, which should be considered in the modeling process.

In this thesis, we focus on developing flexible empirical Bayes (EB) methods designed for

count sequencing data analysis. In Chapter 2, we start with an exploration of EB Pois-

son mean models, which are analogous to empirical Bayes normal mean problems (EBNM,

Willwerscheid and Stephens [2021]). The EB Poisson mean model serves as a fundamental

component for the development of more sophisticated models. Chapter 3 gives a comprehen-

sive examination of various EB smoothing methods for count data, allowing for extra vari-

ation or over-dispersion. Subsequently, these methods are applied to de-noise and visualize

gene expression patterns along the genome. In chapter 4, we introduce a novel variational

inference method for non-Gaussian data, and develop an EB Poisson matrix factorization

method (with log link) for scRNA-seq data. In chapter 5, we revisit EB matrix factoriza-

tion (Wang and Stephens [2021]), and EB Poisson matrix factorization (with identity link)

models. Furthermore, we extend these two methodologies to enable factors and/or loadings

to be spatially-structured.

In the rest of this chapter, we review the basic concepts used in this thesis - empirical Bayes
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and variational inference. Then we introduce the variational empirical Bayes method and

show how the two concepts combine to give a flexible framework for statistical modelling

and inference.

1.1 Empirical Bayes

In Bayesian data analysis, a typical model involves an observation model and a prior distri-

bution on the unobserved quantities. Denote y as the observations and µ as the unobserved

quantities, the joint distribution is

p(y,µ) = p(y|µ)g(µ), (1.1)

where g(µ) denotes the prior distribution on µ.

Then the posterior distribution of µ is given as

p(µ|y) = p(y|µ)g(µ)
p(y)

, (1.2)

where p(y) =
∫
p(y|µ)g(µ)dµ. Note that in the posterior calculation we have assumed the

prior distribution g(·) is fully specified.

Empirical Bayes allows for the estimation of unknown parameters in the prior from the

observed data. An empirical Bayes approach typically has two steps. It first estimates the

prior g(·) by maximizing the log marginal likelihood

ĝ = argmax
g∈G

∫
p(y|µ)g(µ)dµ, (1.3)

where G is some specified family of prior distributions. The calculation of posterior distribu-

tion is conditional on the estimated prior ĝ. For a high level review of empirical Bayes and
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its applications, see van de Wiel et al. [2019].

1.2 Variational empirical Bayes

Variational Inference (VI) is a powerful method used in approximate Bayesian inference. It

is particularly useful when dealing with complex models where exact posterior inference is

computationally expensive or analytically intractable. VI turns the inference problem into

an optimization problem by approximating the true posterior with a simpler, more tractable

distribution. A canonical review of VI is given by Blei et al. [2017].

The need for VI often arises when calculating the true posterior distribution often involves

integrating over high-dimensional spaces, which can be difficult or impossible to solve ana-

lytically. Moreover, sampling-based methods like Markov Chain Monte Carlo (MCMC) can

be computationally expensive and slow to converge, especially in large-scale problems such

as matrix factorization for single cell RNA sequencing data. The VI finds

q∗(µ) = argmin
q∈Q

DKL(q(µ)∥p(µ|y)), (1.4)

where Q is a family of approximate densities, and DKL is the Kullback-Leibler (KL) diver-

gence. The family Q determines the complexity of this optimization and is typically selected

to make computation easy while (ideally) being sufficiently adaptable to approximate the

posterior p(µ|y) closely.

Since the true posterior p(µ|y) is unknown, we cannot directly minimize the KL divergence

(1.4). Instead, we maximize the following Evidence Lower Bound (ELBO), which is a lower
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bound on the log marginal likelihood log p(y; g):

F (q; g,y) = log p(y; g)−DKL(q(µ)∥p(µ|y)),

= Eq(µ)(log p(y,µ)− log q(µ)).

(1.5)

F a lower bound of the evidence [log p(y; g)] because KL divergence is non-negative. Min-

imizing the KL divergence in (1.4) over q is equivalent to maximizing the ELBO F (q; g,y)

with respect to q.

Mean-field variational inference is the most prevalent method employed in variational in-

ference, in which the posterior of µ is assumed to factorize over each element. A popular

optimization method for maximizing the ELBO in mean-field variational inference is coordi-

nate ascent variational inference (Jordan et al. [1999]). This method iteratively optimizes the

posterior density for each latent variable while keeping the others fixed. Although straight-

forward to implement, this approach can be inefficient for large-scale models. Alternative

optimization methods have been explored in the literature, such as stochastic variational

inference (Hoffman et al. [2013]), black box variational inference (Ranganath et al. [2014]),

and Markov chain variational inference (Salimans et al. [2015]).

Variational empirical Bayes (VEB) combines variational inference and empirical Bayes in a

single optimization problem, expressed as

q∗(µ), ĝ = argmax
q∈Q,g∈G

F (q, g;y). (1.6)

In contrast to classical empirical Bayes, this method learns the prior ĝ under the approxi-

mated posterior distribution q. Differing from variational inference, the prior g is not fully

specified and is instead estimated from the data. We note that if the family Q includes all

possible densities, then VEB is the same as regular EB, as shown in Lemma 1.2.1.
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Lemma 1.2.1. If the variational family Q includes all possible densities, then the optimal

q∗(µ), ĝ obtained from the VEB optimization problem (1.6) are

ĝ = argmax
g∈G

∫
p(y|µ)g(µ)dµ,

q∗(µ) =
p(y|µ)ĝ(µ)∫
p(y|µ)ĝ(µ)dµ

,

which are the same as the ones from the regular EB procedure.

Proof. For any given g, the optimal q is p(µ|y; g), the exact posterior. This is because

when q(µ) = p(µ|y, g), the ELBO F (q, g;y) is the same as the evidence, i.e. F (q, g;y) =

log p(y; g). Therefore the profiled objective function for g is the evidence, and the optimal

g is ĝ = argmaxg∈G log p(y; g), which is exactly the regular EB estimate. And the optimal

posterior is q∗(µ) = p(µ|y, ĝ), which is also the same as the one from regular EB procedure.
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CHAPTER 2

THE EMPIRICAL BAYES POISSON MEAN PROBLEM WITH

A VEB SOLUTION

2.1 Introduction

The empirical Bayes normal means problem has been extensively studied and applied to var-

ious areas, including shrinkage estimation for mean parameter (Willwerscheid and Stephens

[2021]), nonparametric regression or denoising problem (Xing et al. [2021]), and large-scale

multiple testing (Stephens [2017]). It also serves as a fundamental component for more

complex models, such as regression (Kim et al. [2022]) and matrix factorization (Wang and

Stephens [2021]). However, in real-world applications, data is frequently non-normally dis-

tributed. For instance, RNA sequencing data consists of counts, and DNA methylation data

(Lea et al. [2015]) is typically analyzed as binomial data. As a building block towards devel-

oping models for non-Gaussian data, in this chapter, we explore the empirical Bayes means

problem for these non-Gaussian distributions.

Consider the EB Poisson mean model

yj |µj ∼ Poisson(sj × h(µj)),

µ ∼ g(·),
(2.1)

for j = 1, 2, ..., n, where h−1(·) is a link function, g is a prior distribution to be estimated

and sj is a known positive scaling scalar. Commonly used link functions are the log and

identity links. In this chapter, we consider different variational approaches for estimating

the prior g(·) and performing inference on the posterior of µ, denoted as qµ(·). We refer to

this procedure as the “variational empirical Bayes Poisson mean” (VEBPM) procedure. This
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procedure defines a mapping from (y, s) to (ĝ, q), and we denote such mapping as

(ĝ, q) = VEBPM(y, s). (2.2)

Specifically, we focus mainly on the canonical link function of the Poisson distribution, which

is the log link, h(µ) = exp(µ). The log-likelihood is

l(µ) = log p(y|µ) =
∑
j

yjµj − sj exp(µj) + const . (2.3)

Denote the approximate posterior of µj as qµj , the posterior mean as µ̄j = Eqµj
(µj), and

posterior variance as Vµj = Varqµj (µj). The objective function we are maximizing is the

evidence lower bound (ELBO) defined as,

F (q, g) =
∑
j

(
E log p(yj , µj)− E log qµj

)
,

=
∑
j

(
E log p(yj |µj) + E log

g(µj)

qµj

)
,

(2.4)

where the expectation is over qµj .

In the remaining section of the chapter, we describe and compare several VEB methods for

solving the EB Poisson mean problem (2.1). Though we study the methods for the simple EB

Poisson mean model, more broadly, we are interested in how the methods can be generalized

to more complicated statistical models such as regression and matrix factorization.

We first discuss a direct variational inference method by assuming a specific parametric

form for qµj . A similar approach has been considered in Arridge et al. [2018] for the Poisson

regression problem (log-link), where both the prior and posterior on the regression coefficients
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are multivariate normal distributions. As we will see, this approach is not easily extended

to more complex models. For each model, it requires separate algorithm derivations and

non-trivial software development.

Next, we will study methods for VEBPM that could utilize existing empirical Bayes normal

means (EBNM) methods. These methods typically require approximations of the ELBO

but can be easily extended to other more complicated models, such as regression and matrix

factorization. This is because they reduce the task of solving a Poisson problem to iteratively

solving a normal problem.

Finally, we propose a novel penalty-based formulation of VEBPM, extending the normal

mean penalty studied in Kim et al. [2022], and we show how to solve the optimization problem

using existing solvers. The method can be generalized to other distributions, such as the

Binomial distribution, and can also be extended to regression as well as matrix factorization

problems.

2.2 Parametric VEBPM

In this section, we consider a parametric variational inference method for the VEBPM prob-

lem. We start with a simple case where both prior and posterior are Gaussian distributions.

Then we study a more flexible model where both prior and posterior are mixture of Gaus-

sians.

2.2.1 Gaussian prior and posterior

Consider the EB Poisson mean model (2.1), where the prior on each µj is

g(µj) = N(µj ; θ, σ
2), (2.5)
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and the approximate posterior is

q(µ) =
∏
j

qµj =
∏
j

N(µj ; µ̄j , Vµj ). (2.6)

The ELBO is
∑

j F (µ̄j , Vµj ), where

F (µ̄, Vµ) = yµ̄− seµ̄+Vµ −
µ̄2 + Vµ − 2µ̄θ

2σ2
+

1

2
log Vµ + const. (2.7)

Following the VEB approach, a coordinate ascent variational inference (CAVI) algorithm

iterates among the following steps until convergence:

(a). Update µ̄j , Vµj as argmaxµ̄j ,Vµj
F (µ̄j , Vµj ), for j = 1, 2, ..., n;

(b). Update σ2 ←
∑

j(µ̄
2
j + Vµj − 2µ̄jθ + θ2)/n;

(c). Update θ ←
∑

j µ̄j/n.

2.2.2 Mixture of Gaussians prior and posterior

We assume the prior on each µj as

g(µj) =
K∑
k=0

πkN(µj ; θ, σ
2
k), (2.8)

where σ20 = 0, and σ21, ..., σ
2
K are a large and dense grid of fixed positive values spanning

a range from very small to very large. This is a slightly modified version of the adaptive

shrinkage (ash, Stephens [2017]) prior that the prior mode is θ instead of being fixed at 0.

We introduce latent variables zjk such that p(zjk = 1) = πk and µj |zjk = 1 ∼ N(θ, σ2k). We

restrict the posterior distribution to be a mixture of Gaussians and the posteriors factorize
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Algorithm 1 CAVI algorithm for VEBPM with ash prior and Gaussian mixture posterior
1: Input: y, s
2: Init: θ,π.
3: repeat
4: Update µ̄jk, Vµjk as argmaxµ̄jk,Vµjk

F (µ̄jk, Vµjk), where F is defined as (2.7).

5: Update ϕjk ∝ exp
(
∆jk

)
.

6: Update πk ←
∑

j ϕjk
n .

7: Update θ ←

∑
j,k

ϕjk

σ2
k

µ̄jk∑
j,k

ϕjk

σ2
k

.

8: until Converged
9: Output: θ̂, π̂, and qz, qµ|z.

as

q =
∏
j,k

(q(µj |zjk = 1)ϕjk)
zjk , (2.9)

where q(µj |zjk = 1) = N(µj ; µ̄jk, Vµjk) and ϕjk = q(zjk = 1).

The CAVI algorithm is given in Algorithm 1. The iterations are stopped when the in-

crease of ELBO (A.4) is smaller than a pre-specified tolerance. The initial value of θ is

log(
∑
xj/

∑
j sj) and the initial value of πk is 1/K.

2.3 Solve VEBPM problem via EBNM

In this section, we consider methods that leverage the existing empirical Bayes normal means

(EBNM) problem to solve the EB Poisson mean problem. The EBNM problem has been

extensively studied and a variety of prior classes are available, as well as a unified R package

ebnm (Willwerscheid and Stephens [2021]). By utilizing EBNM, we can avoid developing sep-

arate algorithms for each prior class and take advantage of the fast and exact solutions.

The EBNM problem can be formulated as a mapping from observations to estimated prior
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and posterior. We use the notation introduced in Wang and Stephens [2021] as

(ĝ, q) = EBNM(y, s), (2.10)

where y is the observation vector, s is the standard errors, and ĝ, q are estimated prior and

computed posterior distributions respectively.

2.3.1 Quadratic approximation of log-likelihood

Replacing the Poisson log-likelihood in ELBO (2.4) by its quadratic approximation facilities

the use of Gaussian methods, because of the quadratic form of the Gaussian log-likelihood.

The new objective function is then an approximation of the ELBO. If the quadratic approx-

imation is also a lower bound of the Poisson log-likelihood, then the new objective function

is still a lower bound of the evidence, since it is a lower bound of the ELBO. However, for

Poisson model with log-link function, there is no quadratic lower bound of the log-likelihood,

because of the exp(µ) term.

We consider two existing methods that enable us to solve the VEBPM problem by iteratively

solving an EBNM problem. The first method uses an alternative link function (other than

log-link) and the second method builds on the connection between Poisson and negative

binomial distributions. Seeger and Bouchard [2012] proposed a quadratic lower bound of

Poisson log-likelihood with softplus link function, based on Taylor’s theorem. See Appendix

A.3 for a detailed discussion. Another method is based on the fact that Poisson distribution

is a limiting distribution of negative binomial distribution, and we can solve a negative

binomial mean problem with fixed large r as an approximation to the Poisson mean problem

(See Appendix A.4).
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2.3.2 The splitting variational inference approach

The splitting variational inference method that will be introduced in Chapter 4 can be

applied to solve the EB Poisson mean problem with log-link function. Recall the original

Poisson mean model is

yj |µj ∼ Poisson(exp(µj)),

µ ∼ g(·).
(2.11)

We introduce a splitting variable b, such that the model is

yj |µj ∼ Poisson(exp(µj)),

µj |bj ∼ N(bj , σ
2),

b ∼ g(·).

(2.12)

Assume the posterior factorizes as

q(µ, b) =
∏
j

qµj (µj)qb(b),

where qµj (µj) = N(µj ; µ̄j , Vµj ). The ELBO is

F (qµ, qb, g;σ
2) =

∑
j

E log
p(yi|µj)
qµj (µj)

+
∑
j

E log p(µj |bj) + E log
g(b)

qb(b)
. (2.13)

The splitting variational inference algorithm is given in Algorithm 2. It follows from the

general splitting variational inference framework and a more detailed development is in

Chapter 4.
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Algorithm 2 Splitting variational inference for VEBPM
1: Input: y
2: Init: qb, σ2
3: repeat
4: Given qb and σ2, update qµj by solving a VGA Poisson problem (A.3) with prior mean

E bj and prior variance σ2, for j = 1, 2, ..., n.
5: Given qµ and σ2, update qb, g by solving the EBNM problem (qb, ĝ) = EBNM(µ̄, σ2)

6: Given qµ and qb, update σ2 as σ2 =
∑

j E(µj − bj)2/n.
7: until Converged
8: Output: ĝ, σ̂2, qµ, qb

2.4 Gradient-based VEBPM

Kim et al. [2022] introduced a penalty formulation for the empirical Bayes normal mean

problem, which potentially transforms the maximization of ELBO over distributions to the

minimization of a loss function over parameters that take real values. In this section, we

generalize this method to deal with non-Gaussian observations. Suppose we have observa-

tions yj from a random variable with likelihood p(yj |bj), and the parameters bj are drawn

from a common prior

bj ∼ g(·). (2.14)

We consider performing inference on the posterior of b. Denote the log-likelihood of bj as

l(bj) := log p(yj |bj) and the posterior distribution as qbj (·).

The variational empirical Bayes method finds q, ĝ by maximizing the ELBO

F (q, g) =
∑
j

Eq l(bj)−DKL(qbj ||g(bj)). (2.15)

In the following sections, when working on a single observation, we may omit the subscript

j for notation simplicity.
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2.4.1 Formulation of penalty term

Denote the posterior mean of b as b̄q = Eq(b), and posterior variance as Vq = Varq(b). A

second order Taylor series expansion of l(b) around b̄q gives

l(b) ≈ l̃(b) := l(b̄q) + l′(b̄q)(b− b̄q) +
1

2
l′′(b̄q)(b− b̄q)2. (2.16)

Replacing the log-likelihood in F (q, g) by its Taylor series expansion (2.16), we have the

approximated objective function as

F̃ (q, g) = Eq l̃(b)−DKL(q||g)

= l(b̄q) +
1

2
l′′(b̄q)Vq −DKL(q||g).

(2.17)

To formulate the optimization problem, we begin with re-writing the optimization problem

in two-steps, as

max
q,g

F̃ (q, g) = max
θ,g

max
q:Eq b=θ

F̃ (q, g)

= max
θ,g
−h(θ, g)

= −min
θ,g

h(θ, g),

(2.18)

where

h(θ, g) := min
q:Eq b=θ

−F̃ (q, g)

= −l(θ) + rg(θ),

(2.19)
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and

rg(θ) = min
q:Eq b=θ

(
1

2s2(b̄q)
Vq +DKL(q||g)

)
,

s2(·) = −(l′′(·))−1.
(2.20)

The optimization problem is

min
θ,g

h(θ, g) = −l(θ) + rg(θ). (2.21)

We list the form of s2(·) for commonly used distributions here.

1. Normal y ∼ N(b, s2), where s2 is known. s2(θ) = s2.

2. Poisson y ∼ Poisson(exp(b)). s2(θ) = exp(−θ).

3. Binomial y ∼ Binom
(
n, 1

1+exp(−b)

)
, where n is known. s2(θ) = (1+exp(θ))2

n exp(θ)
.

2.4.2 Evaluation of rg(θ)

We show that the optimal q in the rg(θ), under the mean constraint, is a convolution of

Gaussian density and prior g.

Theorem 2.4.1. The value of rg(θ) is

rg(θ) = −lNM(zg(θ); g, s
2(θ))−

(zg(θ)− θ)2

2s2(θ)
− 1

2
log 2πs2(θ), (2.22)

which is achieved when

q(b) =
g(b)N(z; b, s2(θ))

c(z, s2(θ))
, (2.23)

where lNM (·) is the marginal log-likelihood of normal mean model, c(·) =
∫
g(b)N(z; b, s2)db,

θ = Sg(z, s
2(θ)) and Sg(·, ·) is the posterior mean operator under the normal mean model
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Proof. To solve rg(θ), we formulate the Lagrangian multiplier as

L(q, λ0, λ1) =
1

2s2(θ)

∫
q(b)(b− θ)2 +DKL(q||g) + λ0(

∫
q − 1) + λ1(

∫
bq(b)− θ), (2.24)

where the last two terms come from the constraints that q is a density and its mean is θ.

Taking derivative of L(q, λ0, λ1) with respect to q and set it to 0, we have

− log g(b) + 1 + log q(b) + λ0 + λ1b+
1

2s2(θ)
(b− θ)2 = 0

=⇒ q(b) = g(b)e
− 1

2s2(θ)
(b−θ)2−λ1(θ)b−λ0(θ)−1

.

(2.25)

where λ0(θ), λ1(θ) are solutions to ∂L/∂λ0 = 0, ∂L/∂λ1 = 0 respectively. The optimal q

thus has the form

q(b) =
g(b)N(z; b, s2(θ))

c(z, s2(θ))
, (2.26)

where c(·) =
∫
g(b)N(z; b, s2)db and θ = Sg(z, s

2(θ)). The function Sg(·, ·) is the posterior

mean operator under the normal mean model. Note that we can write z as S−1g (θ), and we

will use notation zg(θ) to highlight it’s a function of θ.

The rg(θ) now evaluates as

rg(θ) = − log c(zg(θ), s
2(θ))−

(zg(θ)− θ)2

2s2(θ)
− 1

2
log 2πs2(θ)

= −lNM(zg(θ); g, s
2(θ))−

(zg(θ)− θ)2

2s2(θ)
− 1

2
log 2πs2(θ).

(2.27)
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Finally the optimization (2.21) has the form

min
θ,g

h(θ, g) = −l(θ)− lNM(zg(θ); g, s
2(θ))−

(θ − zg(θ))2

2s2(θ)
− 1

2
log 2πs2(θ),

:= −l(θ)− 1

2
log 2πs2(θ) + ρg(θ),

(2.28)

where ρg(θ) is a penalty term that shrinks posterior mean θ towards prior mean. We have

transformed variational empirical Bayes problem over distributions into an optimization

problem over real parameters. The new objective function h(θ, g) consists of three parts -

the negative log-likelihood, the negative log observed Fisher information and a penalty term.

This form is analogous to the widely used penalized regression, in which the estimator can

usually be interpreted as the MAP estimator. However, our optimization problem finds the

posterior mean, which is Bayes risk optimal under the squared-error loss function.

Kim et al. [2022] first proposed the penalty for the normal likelihood and it can be easily

verified that for normal distribution, the penalty (2.28) is the same as the one in Lemma 9 of

Kim et al. [2022]. However the derivation of the penalty here is more general and applicable

to non-Gaussian data.

2.4.3 Solving the optimization problem

We consider two possible optimization approaches for finding the posterior mean. The first

approach is called the inversion method, which directly optimizes over the posterior mean θ.

It requires numerically inverting the normal mean operator, i.e., given the prior g and the

posterior mean θ, finding the corresponding data z. The nice feature of this method is that

it is an unconstrained optimization problem and we only need to optimize over θ. However,

the downside is that the inversion operation is required for each iteration in the optimization

algorithm, which can be computationally expensive.
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The second approach is called the compound method that replaces θ by Sg(z, s
2), then

optimizes over z. In this case the optimization problem is

min
z,s2,g

h(z, s2, g) = −l(Sg(z, s2))− lNM(z; g, s2)−
(Sg(z, s

2)− z)2

2s2
− 1

2
log 2πs2

subject to s2 = (−l′′(Sg(z, s2)))−1, s2 > 0.

(2.29)

We can use existing solvers to solve the equality-constrained optimization problem. To avoid

the inequality constraint, we can re-parameterize s2 as s2 = exp(v). The compound method

introduces an additional constraint but avoids the inversion of Sg(z, s2). In our simulations,

we find that the two approaches often give similar results.

Figure 2.1 shows the plots of normal mean penalties in both inversion and compound meth-

ods. The prior is g = π0δ0+π1N(0, σ2) where π0 = 0.9 or 0.5 and σ is 1 or 2. Both penalties

are symmetric, and achieve the minimum at prior mean 0.

In this study, we use “adaptive shrinkage” (ash) prior from Stephens [2017]. Specifically,

the prior is a mixture of normal distributions g(·) = πkN(·; 0, σ2k), and we re-parameterize

πk = exp(ak)/
∑K

l=1 exp(al) so that ak is unconstrained. For the optimization method, we

use L-BFGS-B (Byrd et al. [1995]) for unconstrained optimization problems (the inversion

approach), as implemented in the optim function in R. The inversion step finds the root of

the function Sg(z, s
2(θ)) − θ with respect to z, and we use a bisection method because it’s

stable and fast. For the compound approach, we use gradient-based augmented Lagrangian

method as implemented in the nloptr package in R.

2.4.4 A comparison of the penalized EBNM with ash

We compare the penalized EBNM method with ash (Stephens [2017]) on shrinkage esti-

mation of mean parameters using a simple simulation example. For normal likelihood, the
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Figure 2.1: Compound and inversion (original) penalties for normal mean problem. The
black line is the compound penalty, ρ(S(θ)); the blue dashed line is the inversion (original)
penalty ρ(θ).

20



optimization problems greatly simplify, because the variance term is no longer a function of

θ.

Recall the EBNM model is

yi|bi ∼ N(bi, s
2
i )

bi ∼ g(·),
(2.30)

where si is known standard error.

Following the general optimization form (2.29) for the compound approach, the optimization

problem for EBNM is

min
z,g

h(z, g) =
∑
i

1

2s2i
(yi−Sg,s2i (zi))

2−lNM(zi; g, s
2
i )−

(Sg,s2i
(zi)− zi)2

2s2i
− 1

2
log 2πs2i . (2.31)

where Sg,s2i
(·)) is the posterior mean operator under normal mean model (2.30).

The partial derivative of h(z, g) with respect to zi is

∂h(z, g)

∂zi
=

1

s2i
(Sg,s2i

(zi)− yi)S′g,s2i
(zi) + S′

g,s2i
(zi)

1

s2i
(zi − Sg,s2i (zi))

=
S′
g,s2i

(zi)

s2i
(zi − yi),

(2.32)

where we have used the fact that l′NM (z; g, s2) = (Sg,s2(z) − z)/s
2. Note that S′

g,s2
(z) =

1 + s2l′′NM (z; g, s2). We can show that l′′NM (z; g, s2) ≥ −1/s2 and the equality holds when

g(·) is a point mass. Hence, the optimal zi is actually the observation yi. This is not a very

surprising result. Consider the case where g(·) is known, it’s obvious that the optimal zi is

yi.
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For the inversion method, following the general optimization form (2.28), we have

min
θ,g

h(θ, g) =
∑
i

1

2s2i
(yi − θi)2 − lNM(zg,s2i

(θi); g, s
2
i )−

(θi − zg,s2i (θi))
2

2s2i
− 1

2
log 2πs2i ,

(2.33)

where zg,s2i
(θi) = S−1

g,s2i
(θi).

The partial derivative of h(θ, g) with respect to θi is

∂h(θ, g)

∂θi
=

1

s2i
(θi − yi) +

1

s2i
(S−1

g,s2i
(θi)− θi)

=
1

s2i
(S−1

g,s2i
(θi)− yi).

(2.34)

So the optimal θi is Sg,s2i
(yi), which again is not surprising.

We ran a simple simulation example to illustrate the two approaches, and compare them

with ash. We set n = 200, and b1 = b2, ...,= b180 = 0, and b181 =, ..., b200 = 10. All

s2i are set to be 1. All of the methods are using ash prior, and are provided the same

prior variances σ2k for k = 0, 1, 2, ..., K, which are obtained using ebnm:::get_ashr_grid

function. We used function ash from R package ashr for fitting ash model. For inversion

and compound methods, the initial value of πk is 1/K. The initial value of θ in inversion

method is 0n.

All three methods give identical log-likelihood at −408.2915, and almost identical posterior

mean, as well as fitted prior π̂. Figure 2.2 shows the posterior mean from the three methods.

Though the results of the three methods are very similar, ashr runs the fastest and is the

most stable method while the inversion and compound methods are slower.
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Figure 2.2: Posterior mean from three EBNM methods on simulated data. The grey dots
are samples, grey line is the true mean parameter, and the black line is the posterior mean.

2.4.5 Extension to generalized linear model

We extend the penalty-based formulation of empirical Bayes mean problem to regression

analysis. In particular, we focus on solving empirical Bayes generalized linear model (GLM).

Consider the exponential family distributions,

f(yi; ηi, ϕ) = exp

(
yiηi − b(ηi)

ϕ
+ c(yi, ϕ)

)
, (2.35)

where ηi is the natural parameter and ϕ is the dispersion parameter. With canonical link

function, the natural parameter ηi equates to the linear predictor, ηi = xT
i β, where xi is a
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length p vector and β is the length p coefficients. The prior on βj is

βj
iid∼ g(·). (2.36)

A mean-field variational inference approach assumes the posterior factorizes as q(β) =∏
j qβj (·) and the evidence lower bound ( ELBO) is then

F (q, g) = E
∑
i

l(ηi)−
∑
j

DKL(qβj ||g), (2.37)

where l(ηi) = (yiηi − b(ηi))/ϕ and ηi = xT
i β. Denote the posterior mean of β as β̄, and

posterior variance of βj as Vqβj . The corresponding posterior mean of ηi is then η̄i = xT
i β̄.

To formulate the penalty-based ELBO, we take a second order Taylor series expansion of

l(ηi) around η̄i

l(ηi) ≈ l̃(ηi) = (yiηi − b(η̄i)− b′(η̄i)(ηi − η̄i)−
1

2
b′′(η̄i)(ηi − η̄i)2)/ϕ. (2.38)

Replacing l(ηi) with l̃(ηi) in (2.37), the approximated ELBO is then

F̃ (q, g) = E
∑
i

l̃(ηi)−
∑
j

DKL(qβj ||g)

=
∑
i

l(xT
i β̄)−

∑
j

(
1

2s2j (β̄)
Vqβj

+DKL(qβj ||g)

)
,

(2.39)

where 1/s2j (β̄) =
∑

i b
′′(xT

i β̄)x
2
ij/ϕ. Note that s2j (β̄) is a function of the posterior mean

vector β̄.

Following the similar argument in section 2.4.1, we solve the following optimization to get
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(approximated) posterior mean β, and estimated prior ĝ,

min
θ,g
−
∑
i

l(xT
i θ) +

∑
j

rj(θ, g), (2.40)

where

rj(θ, g) = min
q:Eq=θ

1

2s2j (θ)
Vqβj

+DKL(qβj ||g). (2.41)

2.5 Simulation

We compare the proposed methods on estimating the Poisson mean parameter under different

simulation settings. For comparisons, three additional methods are included - gamma prior,

mixture of exponential prior and Poisson ash with mixture of uniform distributions (Lu

[2018]). The models with the gamma prior and the mixture of exponential prior are described

in https://zihao12.github.io/ebpmf_demo/ebpm.pdf. The performance of each method

is measured by mean squared error (MSE) relative to maximum likelihood estimation (MLE)

for estimating λ and MSE for estimating log(λ). For methods that are developed for log

link function, we do not fix the prior mode and instead allow it to be estimated from the

data. The methods in the comparisons are: the model with Gaussian prior and posterior

(GG), the model with Gaussian mixture prior and posterior (GMGM), the Pólya-Gamma

augmentation approach (nb_pg), Poisson ash using identity link (ash_pois_identity), ebpm

with mixture of exponential distribution as prior (ebpm_exp_mixture), ebpm with gamma

prior(ebpm_gamma), the model with log(1+exp(·)) link function (log1exp), penalized ebpm

compound approach (penalty_compound) and inversion approach (penalty_inversion), as

well as the splitting method (split).

We generate n = 1000 samples from yj ∼ Poisson(λj), with λj generated under the following

different data-generating distributions
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a. λj ∼ Exp(1).

b. λj ∼ Exp(0.1).

c. λj ∼ π0δ0 + π1 Exp(0.1).

We also compare the methods when generating data using a log-link. We generate n = 1000

samples from yj ∼ Poisson(exp(µj)), and µj are generated under the following different

data-generating distributions

d. µj ∼ N(0, 2).

e. µj ∼ 0.8δ0 + 0.2N(0, 2).

f. µj ∼ 0.8δ5 + 0.2N(5, 2).

For each prior, we simulate 30 datasets, and plot the mean run time(log2 base, seconds)

and the MSE for each method. Figure 2.3 displays the results of simulation a, b, and

c, where the mean parameters are sampled from an exponential distribution or a mixture

of point-mass and exponential distribution. Since the link function for data generation is

identity, we expect methods that directly work with the identity link function to generally

perform better. Indeed, the two ebpm methods are positioned at the bottom left corner

of all plots, indicating that they are the fastest and most accurate in terms of MSE. All

other methods, except nb_pg and log1exp, perform similarly in terms of the estimation

accuracy. The two penalized methods and GMGM are very close in the plots. This is

not surprising given that they are different methods for solving the same model – log link

with ash prior. The penalized vebpm with inversion approach seems to be slightly faster

compared to the other two methods. The Pólya-Gamma and log1exp methods are not very

stable across different simulation settings. For the Pólya-Gamma augmentation method, we

set r = 100, and altering r can have influence on the convergence. For log1exp method,
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it uses a constant variance that depends on the maximum observation for pseudo-Gaussian

data. So it is unstable and the convergence is usually very slow. The splitting method falls

in the middle in terms of run time and accuracy, providing almost the same estimation as

the GG method, because the algorithm converges to a local optimum where g(·) for bi is a

point-mass, resulting in an identical model as GG.

Figure 2.4 presents the results of simulation d, e, and f, where the log of mean parameters

are sampled from a normal or a mixture of normal distribution. In simulation d and e, the

prior mode is 0, and we observe that the ebpm with gamma prior performs much worse in

terms of mean parameter estimation, especially in the simulation e. This is likely because

a single gamma distribution is not sufficiently flexible. While the splitting method and

GG remain almost the same in simulation d, the splitting method slightly outperforms

them when the natural parameters are sampled from mixture distributions. In simulation

f, the prior mode is 5. Methods that cannot adapt to the prior mode generally struggle

to provide accurate estimate of the mean parameters. The two penalized methods and the

GMGM are again closely matched and have the smallest MSE. The Poisson ash method

consistently performs well and runs quickly across different simulation settings. The Pólya-

Gamma augmentation and log1exp approaches are again unstable, possibly for the same

reasons mentioned earlier.

2.6 Discussion

In this chapter, we examined and compared variational empirical Bayes methods for solving

EB Poisson mean problems, incorporating different link functions and priors. We focused on

addressing the Poisson mean problem by leveraging existing empirical Bayes normal mean

methods. Additionally, we proposed a novel penalty formulation for the mean inference

problem and presented two approaches for solving the optimization problems.
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Figure 2.3: Run time (log2) and MSE (mean parameter, relative to MLE) in simulation
study of VEBPM. Three plots correspond to simulation a, b, and c.
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Figure 2.4: Run time (log2) and MSE (mean parameter, relative to MLE) in simulation
study of VEBPM. Three plots correspond to simulation d, e, and f.
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Although the two ebpm methods are fast and perform well in specific simulation settings,

their priors are not adequately flexible, especially when the prior mode is not at 0. Moreover,

these methods are tailored specifically to the Poisson mean problem, and generalizing them

to more complex and potentially useful models, such as regression or matrix factorization,

is non-trivial.

The splitting method, among those that leverage existing EBNM methods, performs the

best. Although it may not be the most accurate method for mean estimation, it offers the

advantage of simplicity in terms of algorithm and software development and can be easily

extended to other models. Using the splitting approach, we extended EBMF to the Poisson

distribution in Chapter 4.

Overall, the penalty-based methods, GMGM, and Poisson ash consistently outperform other

methods due to the flexibility of their models and priors. In particular, the ash prior allows

adaptation to the unknown mode and scale of the data. The penalty-based methods are a

promising framework that can be extended to regression problems, as they can utilize existing

optimization solvers and avoid coordinate updates typically found in mean-field variational

inference algorithms.

Code availability

All the Poisson mean algorithms studied in this chapter have been implemented in R package

vebpm, available at https://github.com/DongyueXie/vebpm

Code for plotting the EBNM penalty form is at https://github.com/DongyueXie/gsma

sh/blob/main/analysis/normal_mean_penalty.Rmd, and for comparing ash and penalty-

based EBNM is available at https://dongyuexie.github.io/gsmash/normal_mean_pena

lized_optimization.html.
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Code for running simulations is at https://github.com/DongyueXie/gsmash/blob/main

/code/poisson_mean/simu_thesis.R, and for generating plots is at https://github.com

/DongyueXie/gsmash/blob/main/analysis/vebpm_simu_thesis.Rmd.
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CHAPTER 3

SMOOTHING SEQUENCING COUNT DATA

3.1 Introduction

Sequencing data along the genome motivates the development of spatial/smoothing models

for count data. For example, Figure 3.1 shows the RNA-seq data of the FTH1 gene in

adipose tissue from GTEx. The regions with high counts are the exons, where the expression

is expected to be roughly constant and high. In contrast, low count regions are introns, where

the expression level is mostly very low. Therefore, the underlying true expression is expected

to be spatially-structured, and one may interested in recovering it using a statistical model.

Nonparametric regression is a natural choice, but most methods are developed based on

Gaussian likelihood while RNA-seq data are typically counts. One way to address this issue

is to transform the count data (e.g. square root transformation) and then apply methods

developed for Gaussian data. Alternatively, we can apply nonparametric regression methods

developed for count data directly. For example, Xing et al. [2021] introduced smoothing via

adaptive shrinkage (smash), a flexible empirical Bayes (EB) method. The method is based

on wavelet denoising and can deal with Gaussian (smash-Gaussian) and Poisson (smash-

Poisson) sequences. However, existing methods for Poisson sequence smoothing do not

output smooth estimates of the true expression level when applied to RNA-seq data, mainly

because base-specific effects introduce extra variations. See Figure 3.2 for an example. In

this work, we generalize smash to handle over-dispersed count data.
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Figure 3.1: Scatter plot of gene FTH1 RNA-seq data. The gene encodes the heavy subunit
of ferritin, an iron storage protein.
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Figure 3.2: Smash-Poisson fit to the gene FTH1 RNA-seq data. The fitted curve exhibits a
significant lack of smoothness.

3.2 Model

To recover the underlying smooth signal in sequencing data, we introduce a nugget effect to

account for the extra variations

xi|λi ∼ Poisson(λi), i = 1, 2, ..., n,

h(λi) = µi + ϵi,

µ ∼ gsmooth(·) ∈ Gsmooth,

ϵi
iid∼ N(0, σ2),

(3.1)
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where h(·) is the link function (e.g. log), gsmooth(·) is a smoothness-inducing prior so that

µ = (µ1, ..., µn) is spatially-structured and ϵi are i.i.d Gaussian distributed random vari-

ables sometimes known as the nugget effect. The nugget effect originates from geostatistics

(Carrasco [2010]) and it is used to account for the variation between two closely spaced

samples.

It turns out that fitting the model (3.1) via empirical Bayes approach is nontrivial, mainly due

to the Poisson likelihood and smoothness constraints (priors). We explore two methods to fit

this model. The first method involves approximating the Poisson likelihood by a Gaussian

one and we call it the likelihood expansion approach. The advantages of the method are that

it transforms the problem to the well-studied Gaussian smoothing and it allows us to use

Gaussian smoothing methods. The second method applies the splitting variational inference

introducing in Chapter 4 to solve the smoothing problem (3.1).

Before we introduce the detailed methods, we first define the following EB procedures.

Definition 3.2.1. An EB normal smoothing (EBNS) procedure defines a mapping from

(y, s) to (ĝsmooth, q), under the model

yi|µi ∼ N(µi, s
2
i ),

µ ∼ gsmooth(·),

where y is a vector of observations, s is a vector of standard errors, gsmooth is a smoothness-

inducing prior, ĝsmooth is the estimated prior, and q is the posterior. This mapping is denoted

as

(ĝsmooth, q) = EBNS(y, s).

When s2i is unknown, and is to be estimated within the procedure, we denote the procedure

as (ĝsmooth, ŝ, q) = EBNS(y).
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We highlight the connection between EBNS and empirical Bayes normal mean (EBNM,

Willwerscheid and Stephens [2021]) problem. In EBNM, the prior is usually specified as a

univariate one, µi
iid∼ g(·). While in EBNS, the prior is multivariate and structured.

Definition 3.2.2. An EB Poisson smoothing (EBPS) procedure defines a mapping from y

to (ĝsmooth, q), under the model

yi|λi ∼ Poisson(λi),

λ ∼ gsmooth(·),

where y is a vector of observations, ĝsmooth is the estimated prior, gsmooth is a smoothness-

inducing prior, and q is the posterior. This mapping is denoted as

(ĝsmooth, q) = EBPS(y).

Definition 3.2.3. A variational Bayes Poisson mean (VBPM) procedure defines a mapping

from (y, g) to q, under the model

yi|µi ∼ Poisson(exp(µi)),

µi ∼ g(·).

where y is a vector of observations, g is the (known) prior, and q is the posterior. This

mapping is denoted as

q = V BPM(y, g).

One example of the smoothness-inducing prior gsmooth in EBNS problem is the wavelet prior

(see Appendix B.1). Choosing wavelet prior results in an empirical Bayes wavelet denoising

model. Wavelet denoising has shown its success in removing noises from signals in many
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applications (Donoho [1995], Donoho and Johnstone [1998], Coifman and Donoho [1995]). A

typical wavelet denoising procedure involves decomposing the signal into wavelet coefficients,

shrinking the coefficients, and then reconstructing the smoothed signal. Among the wavelet

smoothing methods, smash (Xing et al. [2021]) is a flexible smoothing method based on

discrete wavelet transformation (DWT) and empirical Bayes shrinkage.

3.3 Likelihood expansion approach

Consider a Poisson distributed random variable x ∼ Poisson(λ), and let η := log λ, then the

log-likelihood is l(η;x) = xη − exp(η). Note that η is the canonical parameter of Poisson

distribution. A second order Taylor series expansion of l(η;x) around η̃ gives

l(η;x) ≈ l̄(η;x, η̃) = l(η̃;x) + (x− exp(η̃))(η − η̃)− exp(η̃)

2
(η − η̃)2. (3.2)

The approximated log-likelihood l̄(η;x, η̃) is quadratic in η and after completing the square,

we have

l̄(η;x, η̃) = − 1

2 exp(−η̃)

(
η̃ +

x− exp(η̃)

exp(η̃)
− η
)2

+ const, (3.3)

This suggests that the pseudo-variable y := η̃ +
x−exp(η̃)
exp(η̃)

admits a Gaussian likelihood with

mean η and variance exp(−η̃) approximately. The log-likelihood l(η;x) and l̄(η;x, η̃) are

equivalent when η = η̃.

We now need to choose η̃. One natural choice is η̃ = log x, where x is the maximum likelihood

estimate of λ. However we have to decide what to do when x = 0 and in practice, the

proportion of zeros could be large. Another choice is to apply an empirical Bayes procedure

to get an estimate of λ using the posterior mean. For example, we can apply Poisson-ash

(Lu [2018]) to all observations and calculate the posterior mean. Here, we choose η̃ to be

log x if x is nonzero and log of the posterior mean obtained from the Poisson-ash (the prior
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on λ is unimodal at 0) if x is 0.

Given the pseudo-data yi, the task is to estimate σ2 and µ in the model yi ∼ N(µi, σ
2+s2i ),

where s2i = exp(−η̃) is known, and µ is spatially-structured. Suppose µ is known, we can use

maximum likelihood estimation method for estimating σ2. The log-likelihood of σ2 is

l(σ2;y) =
n∑

i=1

li(σ
2;y) =

n∑
i=1

−1

2
log(σ2 + s2i )−

1

2

(yi − µi)2

σ2 + s2i
. (3.4)

The estimated σ2 is obtained by solving

l′(σ2;y) =
∑
i

(
1

σ2 + s2i
− (yi − µi)2

(σ2 + s2i )
2

)
= 0, (3.5)

which can be solved numerically. In practice, µ is unknown and we can use the following

two-step algorithm to estimate µ and σ2:

1. estimate µ given σ2 and s2, by applying an EBNS procedure to y;

2. estimate σ2 given µ and s2, by solving (3.5).

Remark. In real data, we observe that nugget effects are more obvious in larger counts. And

for low-count regions, we expect there are less information about the nugget effect. So in the

step 2, when solving (3.5), we can use the top 30% largest counts. Specifically, let the index

set of the top 30% largest counts be L, then σ̂2 = argmaxσ2
∑

i∈L li(σ
2;y).

For the initialization of σ2, we use a second order difference-based method presented in

equation (3) of Brown and Levine [2007], which can be further traced back to Gasser et al.

[1986]. The estimator is

σ̂2 =
2

3(n− 2

n−2∑
i=1

(
1

2
yi − yi+1 +

1

2
yi+2

)2

. (3.6)
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Algorithm 3 Splitting smoothing for count data
1: Input: Count vector x.
2: Init: E bi = log(

∑
i xi/n) for i = 1, 2, ..., n.

3: repeat
4: Update qµi by VBPM(x, g(·; b̄, σ2)), where b̄ = E b;
5: Update qb, gb by EBNS(µ̄, σ), where µ̄ = Eµ;
6: Update σ2 ← E

∑
i(µi − bi)2/n.

7: until Converged
8: Output: Estimated priors ĝb, σ̂2, and fitted posterior qµ and qb.

3.4 Variational splitting method

We use the splitting variational inference method introducing in Chapter 4 for solving the

model (3.1). We re-write the model in the splitting form as

xi|µi ∼ Poisson(exp(µi)), (3.7a)

µi|bi ∼ N(bi, σ
2), (3.7b)

b ∼ gb,smooth(·). (3.7c)

The splitting method involves solving

(i) (3.7a) and (3.7b), a VBPM problem defined in Definition 3.2.3;

(ii) (3.7b) and (3.7c), an EBNS problem.

For step (i), the VBPM problem is solved using a convex optimization algorithm, and is dis-

cussed in detail in Section 4.3.1. In step (ii), we choose the empirical Bayes wavelet smoothing

method studied in Johnstone and Silverman [2005] and Xing et al. [2021]. Specifically we

use smash but use the discrete wavelet transformation (DWT) instead of Non-Decimated

Wavelet Transform (NDWT) because the latter does not have an explicit objective function.

The splitting variational inference algorithm is given in Algorithm 3.
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Figure 3.3: Comparison of two VST transformations.

3.5 Other methods

3.5.1 Variance stabilizing transformation

Variance stabilizing transformation (VST) transforms a random variable such that it has a

constant variance. For a Poisson distributed random variable x ∼ Poisson(λ), the commonly

used transformation is taking the square root of x plus a constant c, y =
√
x+ c. Bartlett

[1936] suggested the square root transformation y =
√
x, with E(y) ≈

√
λ and Anscombe

[1948] suggested y =
√
x+ 3/8, with E(y) ≈

√
λ+ 3/8. Both transformed variables have

approximate constant variance, var(y) ≈ 1
4 . Specifically, Anscombe [1948] showed that

asymptotically

E(y) =
√
λ+ c− 1

8λ1/2
+O(λ−3/2),

var(y) =
1

4
+O(1/λ2).

(3.8)

In addition, when λ is large, the transformed variable is approximately normal distributed.

After the VST, we are working with yi =
√
xi + c ∼ N(

√
λi + c, 14)). Similarly, to account

for over-dispersion, we assume
√
λi + c is drawn from a normal distribution with mean µi

and variance σ2, where µ = (µ1, .., µn) is smooth. Then we can apply Gaussian smoothing
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method to the model y ∼ N(µ, σ2 + 1
4) and get an estimate of µ. One advantage of VST is

that we avoid the complications associated with the computation of the log(0). But when the

λ is small, the actual variance of transformed variable is smaller than 1
4 and the distribution

is not approximately normal distributed. Since the transformed sequence is homogeneous,

we can apply the difference-based estimator (3.6) directly to the sequence y to get variance

estimate (the total variance σ̃2 = σ2 + 1/4), then apply Gaussian smoothing method to y

(with standard error
√

ˆ̃σ2). This method assumes a different link function other than the

log-link, and we include it here due to its simplicity.

3.5.2 A two-step procedure

In the model (3.1), if λ were known, we can simply run an EBNS procedure such as smash

on log(λ) with homogeneous variance. This idea naturally leads to the following two-step

procedures:

1. run EBPS(x) to get λ̂;

2. run EBNS(log λ̂) to get µ̂.

In the second step, when using smash as the EBNS procedure, we can apply smash-Gaussian

with homogeneous or heteroskedastic variance assumptions. With the homogeneous assump-

tion, the variance is estimated using the estimator (3.6). With heteroskedastic variance

assumption, the variances are estimated within smash.gaus function in R package smashr.

The smash-Gaussian with heteroskedastic variance assumes the variances are also spatially-

structured. This assumption is satisfied because the pseudo-data from the two-step procedure

are supposed to have constant variance. Despite the method appearing somewhat ad hoc, it

is very simple and it performs well in practice, as we will see below.
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3.6 Simulation

We compared the methods described in this chapter for the log-link function under various

simulation settings. We considered six different types of smooth signals, namely clipped

blocks, simple blocks, angles, bursts, spikes, and heavy sine waves (Donoho and Johnstone

[1994]). The simple blocks functions are designed to simulate the exon and intron regions,

while the other functions are commonly used in nonparametric regressions (Antoniadis et al.

[2001], Donoho and Johnstone [1994]). We set n = 1024 and used two different signal-to-noise

(SNR) ratios, 1 and 3, where the SNR is defined as var(µ)/σ2 in model (3.1). In addition,

we varied the max-mean-count sizes by choosing three different values: 5, 10, and 100, where

the max-mean-count size is defined as the maximum value of the smooth signal exp(µ). The

min-mean-count is fixed at 0.01. For each combination of settings, we simulated 30 datasets.

We report the run time of each method and evaluate the performance using the rooted mean

squared error (RMSE), which is defined as
√∑

i(λi − λ̂i)2, where λi = exp(µi).

For the likelihood expansion method, we include methods that use all observations (lik_exp)

and use top 30% largest observations for estimating the nugget effect (lik_exp_top). For

the two-step procedure, we apply smash-Gaussian with homogeneous (two_step) and het-

eroskedastic (two_step_hetero) variance assumptions in step 2. For the splitting method, we

include results for using both DWT and NDWT as wavelet smoothing methods. The NDWT

is included for fair comparison because all other methods use NDWT. We also tried two dif-

ferent initialization methods (of Eµi and E bi) for the splitting method - smash-Poisson and

VGA.

Figure 3.4 and Figure 3.5 show the results when the SNR is 1, and the max-mean-count size

is 5 and 100. For the two-step method, after obtaining the pseudo-data, running smash-

Gaussian with heteroskedastic variance gives equally good or better signal estimation than

assuming homogeneous variance in most cases, though it is a bit slower in terms of run
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time. Thus, for the following analysis, we will refer to the methods as their heteroskedastic

version. The performance of the two-step procedure is in the middle among all methods,

both in terms of run time and RMSE.

The likelihood expansion approach appears to produce over-smoothed curves when counts

are small (Figure 3.6a and Figure 3.7a). Additionally, using only the top largest counts for

estimating the nugget effect performs poorly in small-count scenarios. However, when counts

are larger, the opposite is observed. For instance, when the count size is small and the nugget

effect is small (such as in the case of SNR = 3 and max-mean-count size = 5, as shown in

Figure B.2), smash-Poisson can accurately estimate the smooth signal, even though it does

not account for the extra variation. As the nugget effect or count size increases, smash-

Poisson produces less smoothed estimates, resulting in a larger RMSE.

The DWT version of the splitting method uses Haar wavelet which gives piecewise-constant

signal estimation. Therefore, in the simple blocks simulation, the DWT method gives the

lowest RMSE, while the NDWT method has better estimation accuracy in other simulation

settings. We focus on the NDWT version of the splitting method. The two initialization

methods for splitting do not result in significantly different estimations, but the VGA ini-

tialization is usually faster. When the max-mean-count size is 5, the splitting method has

a larger RMSE when estimating burst and spike signals. In general, the splitting method

performs better than the likelihood expansion method when counts are small, but it can be

worse than the two-step procedure in estimating certain signals, such as burst or spike. For

larger counts, the splitting method works equally well or better than the likelihood expan-

sion method as well as the two-step procedure. In Figure 3.6b, the splitting and likelihood

expansion approaches give very similar results.
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Figure 3.4: Plots of run time (log2 seconds) and RMSE when SNR = 1 and max-mean-count
size = 5, in the simulation study of smoothing count data.
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Figure 3.5: Plots of run time (log2 seconds) and RMSE when SNR = 1 and max-mean-count
size = 100, in the simulation study of smoothing count data.
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Figure 3.6: Plots of estimated spike function. SNR = 1. The black line the true mean, the
red line is the fit with minimum RMSE, and the blue line is the fit with largest RMSE.
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Figure 3.7: Plots of estimated simple block function. SNR = 1. The black line the true
mean, the red line is the fit with minimum RMSE, and the blue line is the fit with largest
RMSE.
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3.7 Smooth sequencing data

In this section we apply splitting, likelihood expansion, two-step procedure, and VST to two

sequencing count data – RNA-seq and ChIP-seq.

3.7.1 Smooth RNA-seq data from GTEx

We consider per base pair data for three genes from GTEx. Each sample is from an individual

donor and a specific tissue. For the analysis in this section, we focus on samples collected

from adipose tissue and donor SRR1069097. The three genes are EEF2, FTH1 and FTL.

They have high expressions and the max-count sizes are large, ranging from hundreds to

thousands.

The gene EEF2 is a protein coding gene on Chromosome 19 in humans and it has 15 exons.

In Figure 3.8, we show the recovered expression level by three methods that can potentially

work better for large counts. All the methods are able to capture the exon regions, and the

splitting method gives the most visually appealing curve. The estimated nugget effect by

splitting method is σ̂2 = 1.11. The likelihood expansion and two-step methods give slightly

more ragged estimation than the splitting method, especially in the exon regions. Figure

B.9 shows that the VST method has trouble removing the extra variation, so the estimated

curve is not smooth at all. The results shown in Figure B.11 and B.10 suggest that for the

protein coding genes FTH1 (Chr11, 4 exons) and FTL (Chr19, 4 exons), the conclusions

are similar, with the splitting method giving the most visually appealing recovered gene

expression level.

3.7.2 Smooth ChIP-seq data

ChIP sequencing is a powerful method for identifying genome-wide transcription factors

binding sites. The sites are usually identified by peak-calling methods. The read counts are

47



0
10

0
20

0
30

0
40

0

EEF2

Chr 19

co
un

ts

3976053 3978397 3980740 3983085 3985460

(a) Splitting method.

0
10

0
20

0
30

0
40

0

EEF2

Chr 19

co
un

ts

3976053 3978397 3980740 3983085 3985460

(b) Likelihood expansion method (use top 30% largest counts for nugget estimation).

0
10

0
20

0
30

0
40

0

EEF2

Chr 19

co
un

ts

3976053 3978397 3980740 3983085 3985460

(c) Two-step procedure (heteroskedastic variance).

Figure 3.8: Recovered expression level of gene EEF2 by different smoothing methods.
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a measure of the abundance of DNA fragments and can be used to infer the binding locations

of the transcription factors. Typically, regions with higher read counts are considered to

have a stronger binding signal, and are more likely to be functional elements involved in

gene regulation or other cellular processes (Park [2009]). CTCF is a transcription factor that

plays important roles in gene regulation and the three-dimensional organization of chromatin

in three dimensions. The ChIP-seq data of CTCF from HeLa cells are from Broad Institute

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeBroadH

istone/). The counts are much smaller than the RNA-seq counts and almost all of the

counts are smaller than 10. The count is also very sparse - more than 80% of counts are 0.

In this dataset, there are two biological replicates and each has data from forward and the

reverse strands. We consider the CTCF binding site region Chr1: 110074895 − 110075320,

which is of length 425 bp and has been used as an example of MACE (Wang et al. [2014],

https://chipexo.sourceforge.net/).

Figure 3.9 shows the smoothed ChIP-seq sequencing data of the forward strand. The splitting

and VST methods give very similar estimation of the binding profile of CTCF. Clearly, there

is an enriched region. The likelihood expansion method almost missed the enriched region,

and can potentially lead to false negative. Both smash-Poisson and the two-step methods

give less smoothed estimation than the splitting method.

3.8 Discussion

In this chapter, we studied the model (3.1) for smoothing count sequence with possible ex-

tra variation. Specifically we proposed a variance stabilizing transformation method that

takes square root of the count data, and three methods for the log-link function model (3.1).

We note that in model (3.1), any empirical Bayes nonparametric regression method can be

applied. There is a rich literature on nonparametric regression, and some well-known meth-
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Figure 3.9: Smooth ChIP-seq data. Replicate 1 and 2, forward strand.
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ods include local polynomials, kernels, splines, trend filtering and wavelets. Here we choose

the empirical Bayes wavelet smoothing method because it is fast and spatially-adaptive

(Donoho and Johnstone [1998]). Existing method for smoothing count data while account-

ing for over-dispersion usually takes a generalized additive model (GAM) approach (Hastie

[2017], Stasinopoulos and Rigby [2008]) and usually uses non-locally-adaptive smoothing

methods. Moreover, tuning the smoothing parameter requires extra efforts, especially the

dimension of the basis used to represent the smooth function. This limits the application to

the methods to sequencing data. As an illustration, we fit a penalized spline with negative

binomial distribution using gam function from R package mgcv (Wood [2011]) to the gene

EEF2 RNA-seq data. The results are shown in Figure 3.10.

The simulation study suggests that there’s no one dominating method in all the settings,

and we should probably select methods based on the count size and the variation level.

We have shown that in general when the noise level is small and counts are small, simply

applying smash-Poisson can give satisfactory results. In the ChIP-seq example, the VST

and splitting method give very similar results. In numerical examples we have seen that the

splitting method might miss small smooth spikes. For larger counts, the splitting method

should be the preferred one, as shown in simulations and the RNA-seq examples. To some

extent, the splitting method is a more rigorous solution for the log-link model (3.1), than the

likelihood expansion and the two-step procedure. Because it has a clear objective function

and is derived explicitly following a variational inference approach.

Code and data availability

All the Poisson smoothing methods have been implemented in the R package smashrgen,

available at https://github.com/DongyueXie/smashrgen.

Code for running the simulations is at https://github.com/DongyueXie/gsmash/blob/ma
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Figure 3.10: Recovered expression level of gene EEF2 by fitting GAM. P-spline, negative
Binomial distribution, and varying number (K) of basis functions.
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in/code/poisson_smooth/simu_thesis.R, and for producing the simulation plots as well

as real data analysis results is at https://github.com/DongyueXie/gsmash/blob/main/a

nalysis/poisson_smoothing_benchmark.Rmd.

The GTEx data are available at https://github.com/DongyueXie/gsmash/tree/main/d

ata/CoverageCounts, and the ChIP-seq data are at https://github.com/DongyueXie/sm

ash-gen/tree/master/data/chipseq_examples.
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CHAPTER 4

A SPLITTING VARIATIONAL INFERENCE APPROACH FOR

NON-GAUSSIAN DATA

4.1 Introduction

Single cell RNA sequencing (scRNA-seq, Tang et al. [2009], Jovic et al. [2022], Brennecke

et al. [2013], Cao et al. [2017], Klein et al. [2015]) is a technique used in genomics to analyze

the gene expression profile of individual cells. In a typical statistical analysis of scRNA-

seq, the starting point is a gene expression count matrix where rows correspond to cells

and columns correspond to genes. Matrix factorization has been applied to learn the low-

dimensional structure of the gene expression matrix (Stein-O’Brien et al. [2018], Feng et al.

[2020], Xiang et al. [2021], Townes et al. [2019], Duren et al. [2018], DeBruine et al. [2021],

Kotliar et al. [2019]). The low dimension structures are represented by two matrices, typically

referred to as loadings and factors. The factors represent gene expression programs and

loadings tell the cell membership in each gene expression program.

There are several existing methods for factorizing scRNA-seq matrices, which vary in their

modelling assumptions regarding distributions, link functions, and constraints on the low-

dimensional structure (Argelaguet et al. [2018], Carbonetto et al. [2023], Townes et al. [2019],

Levitin et al. [2019], Sun et al. [2019], Risso et al. [2018], Lopez et al. [2018], Sarkar and

Stephens [2021]). The two most commonly used distributions for scRNA-seq count data

are Poisson and Negative Binomial. Both methods can naturally model count data, with

the latter also accounting for over-dispersion. The Poisson measurement model is typically

preferred for scRNA-seq data from a theoretical standpoint (Sarkar and Stephens [2021]).

One of the most relevant methods to our interest is GLM-PCA (Townes et al. [2019]).

The model extends PCA to the exponential family distribution and can perform dimension
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reduction for count data directly. On the other hand, methods developed primarily for

Gaussian and/or continuous data can also be applied. The current practice for applying a

Gaussian model is to log-transform the counts after the addition of a pseudo-count to deal

with zeros (Ahlmann-Eltze and Huber [2023], Amezquita et al. [2020], Love et al. [2014],

Borella et al. [2022]).

Imposing constraints on loadings and factors can lead to more interpretable structures. For

example, sparse matrix factorization assumes sparsity on loadings and/or factors, leading

to a parsimonious representation (Wang and Stephens [2021], Witten et al. [2009], Zou

et al. [2006]). Non-negative matrix factorization constrains the low dimensional structures

to be non-negative, which can result in part-based decomposition (Lee and Seung [1999],

Carbonetto et al. [2021]). Among all the existing methods, EBMF (Wang and Stephens

[2021]) provides a flexible framework for imposing constraints on low dimensional structures.

The method utilizes an empirical Bayes approach to learn the amount of shrinkage from

data, requiring minimum tuning. Together with variational inference (Blei et al. [2017]),

EBMF is modular and allows the addition of factors one-by-one, followed by backfitting

for refinement. However, the method was originally developed for Gaussian likelihood, and

extending it to a non-Gaussian distribution is non-trivial, especially for Poisson distribution

with a log-link.

In this work, we propose a new variational inference method for non-Gaussian data. The

method enables us to apply well-developed Gaussian empirical Bayes methods for inference

on non-Gaussian models. The algorithm is modular, alternating between a step that handles

the count data and a step that fits the Gaussian model. This results in a general empirical

Bayes method for non-Gaussian factor analysis, allowing for various prior families on both

loadings and factors. It can handle different assumptions about the latent structure, such as

non-negativity and sparsity of factors.
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This chapter is organized as follows. In the next section we introduce the general method

and in section 3, we develop corresponding methods for Poisson and Binomial data. In

section 4, we discuss the empirical Bayes Poisson matrix factorization model. And in the

last two sections, numerical studies are performed to show the benefits of directly modelling

the count using Poisson distribution, and how the new variational inference method gives

flexible and accurate latent structure recovery.

4.2 Method

We start with a simple univariate model,

yi|µi ∼ D(h(µi)), i = 1, 2, ..., n,

µ ∼ f(·),
(4.1)

where D(·) is a distribution in exponential family with canonical parameter µi and link func-

tion h−1(·). Though the model is simple, it is very general and can include mean inference,

regression and matrix factorization problems. Table 4.1 summarizes the different choices of

f(·) that lead to different models. The empirical Bayes normal mean (EBNM) problem for

false discovery rate control has been studied in Stephens [2017] (adaptive shrinkage, ash),

and Willwerscheid and Stephens [2021] provides a thorough study of the EBNM problem

with a wide range of priors. Kim et al. [2022] proposed Mr.ASH, a sparse regression model

with ash prior, and Xing et al. [2021] extended the empirical Bayes selection of wavelet

threshold (Johnstone and Silverman [2005]) to allow for the ash prior. Empirical Bayes

matrix factorization (Wang and Stephens [2021]) is a flexible framework for sparse factor

analysis. Urbut et al. [2019] proposed multivariate adaptive shrinkage (mash) by extending

the ash prior to the multivariate normal mean problem.

A typical empirical Bayes procedure estimates the prior f(·) by maximizing the marginal
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Table 4.1: Choices of prior in model 4.1.

Prior Model Software

µi
i.i.d∼ g(·) univariate mean inference ashr,ebnm

µi = xT
i β,β ∼ g(·) regression smashr, Mr.ASH

µij =
∑

k likfjk, lk ∼ glk(·), fk ∼ gfk(·) matrix factorization flashr, flashier
µ ∼

∑
k πkN(0,Uk) multivariate mean inference mashr

likelihood p(y|f), then compute the posterior p(µi|yi, f̂). All the empirical Bayes Gaussian

methods in table 4.1 are well studied and the corresponding software are well developed,

though they are not necessarily straightforward. For example, the EBMF model relies on

variational inference to estimate the prior and compute the posterior. To extend these

methods to non-Gaussian data, a natural idea is to take advantage of Gaussian likelihood-

based methods. In general, if we could find a quadratic lower bound for the log-likelihood of

a distribution, we would be able to perform inference of a non-Gaussian model by iteratively

solving a Gaussian model. However, for Poisson distribution with log-link function, it is

impossible to find such a quadratic lower-bound for the log-likelihood. On the other hand,

from a modelling perspective, we prefer the log-link function because it gives multiplicative

effects, and the gene expression programs (factors) can be roughly interpreted as log-fold

changes.

Inspired by the splitting technique used in the alternating direction method of multipliers

(ADMM, Boyd et al. [2011]), we introduce a latent splitting variable b, such that

yi|µi ∼ D(h(µi)),

µi|bi ∼ N(bi, σ
2),

b ∼ g(·).

(4.2)

For model (4.2), an empirical Bayes approach estimates the prior g and hyper-parameter σ2

then compute posterior p(µ, b|y, σ̂2, ĝ). However both steps could be non-trivial depending
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on the choice of prior g. To address this challenge, we adopt a variational approach and

assume that the posterior factorizes as

q(µ, b) =
∏
i

qµi(µi)qb(b),

qµi ∈ Qµ,

qb ∈ Qb,

(4.3)

where Qµ,Qb are pre-specified families of distributions. The evidence lower bound is

F (q, g;σ2) =
∑
i

E log
p(yi|h(µi))
qµi(µi)

+
∑
i

E log p(µi|bi, σ2) + E log
g(b)

qb(b)
. (4.4)

A coordinate-ascent algorithm iterates among the updates of qµ, {qb, g(·)}, and σ2. Given

qb, g(·), σ2, the objective function of qµi , i = 1, 2, ..., n is

F (qµi) =
∑
i

E log p(yi|h(µi)) +
∑
i

E log p(µi|b̄i, σ2)−
∑
i

E log qµi(µi), (4.5)

where b̄i = Eq(bi), the posterior mean of bi. Essentially, we are solving n independent

variational Bayes mean inference problems, each with the likelihood p(yi|h(µi)), the prior

µi ∼ N(b̄i, σ
2), and the posterior qµi . We will discuss this sub-problem in more details with

a specific choice of qµi . Given qµ, σ2, the objective function of qb, g is

F (qb, g) =
∑
i

E logN(µ̄i; bi, σ
2) + E log

g(b)

qb(b)
, (4.6)

where µ̄i = Eq(µi), the posterior mean of µi. The objective function corresponds to the

evidence lower bound of a Gaussian model with observations µ̄i, prior distribution g(b),

and posterior qb. Again different choices of prior g(·) lead to different models (see table

4.1).
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Algorithm 4 Splitting Variational Inference for non-Gaussian data
1: Input: y
2: Init: qb, σ2

3: repeat
4: Given qb and σ2, update qµi , i = 1, 2, ..., n, by solving a variational Bayes Poisson

mean (VBPM) problem (4.5) with prior mean b̄i and prior variance σ2
5: Given qµi , i = 1, 2, ..., n and σ2, update qb, g(·) by solving an empirical Bayes normal

(EBN) model (4.6)
6: Given qµ and qb, update σ2 as σ2 =

∑
i Eq(µi − bi)2/n

7: until Converged
8: Output: Estimated prior ĝ, variance σ̂2 and fitted posteriors qb, qµ.

The Gaussian distribution µi|bi ∼ N(bi, σ
2) acts as a bridge between two parts of the

algorithm 4: a variational Bayes mean problem and an empirical Bayes model for Gaussian

data. Each sub-problem is simpler than the original problem, but together they solve a more

complicated one.

Remark. The conditional distribution of µ given b can be interpreted in two ways. Firstly,

we introduced it as a “device” when comparing it to model (4.1) for algorithm development.

Alternatively, we can regard σ2 as an over-dispersion parameter, which is particularly use-

ful in count data analysis. When y follows a Poisson distribution, model (4.2) becomes a

Poisson-LogNormal (PLN, Aitchison and Ho [1989], Chiquet et al. [2021]) model. In the

PLN model, y|µ ∼ Poisson(expµ), µ ∼ N(b, σ2), the expectation of y is E y = exp(b+σ2/2),

and the variance is Var(y) = E y(1 + (exp(σ2)− 1)E y). Clearly the variance is larger than

the expectation. as long as σ2 is not 0. In either case, we refer to this approach as a splitting

approach because by introducing the latent variable b, we split the objective function into two

parts. The algorithm then iterates between solving two simpler problems. The splitting tech-

nique is also widely used in other methods such as ADMM and proximal algorithms (Polson

et al. [2015]).

Obviously, when the variance σ2 is 0, the splitting model (4.2) is equivalent to the original
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model (4.1). In the splitting algorithm the update of σ2 is given by the average of the second

moment of µi− bi. When σ2 converges to 0 in practice, the following Lemma 4.2.1 gives the

posterior distributions and optimal g at convergence.

Lemma 4.2.1. In the Algorithm 4, σ2 → 0 if and only if qµi → δθ̄i
, qbi → δθ̄i

for all i, where

qbi is the marginal posterior density of bi and θ̄i is the posterior mean of µi and bi. When

σ2 → 0, ĝ is the maximum likelihood estimator (MLE) derived from θ̄i, for i = 1, 2, ..., n,

i.e. ĝ = argmaxg∈G log g(θ̄i).

Proof. If σ2 → 0, then E(µi−bi)2 → 0 for each i. Since µi and bi are independent a posteriori,

we have E(µi − bi)2 = Var(µi) + Var(bi) + (Eµi − E bi)2. Given that E(µi − bi)2 → 0, each

term on the right side of the equation must also converge to 0. This implies that Var(µi)

and Var(bi) both converge to 0, and Eµi converges to E bi. Thus, qµi and qbi converge to

the same point-mass δθ̄i , and the point-mass is the posterior mean. The “if” direction is also

obvious. Since the prior g(·) is estimated by maximizing marginal log-likelihood under a

normal likelihood, and the variance σ2 → 0, the ĝ is the MLE derived from θ̄i.

We illustrate the behaviour of qµi and qbi when σ2 → 0 in a Poisson multivariate mean

example. Consider the model

yi ∼ Poisson(exp(bi)),

b ∼ N(θ1,Σ(τ2, l)),

(4.7)

where θ is the unknown prior mean, and Σ(τ2, l) is the square exponential kernel covariance

matrix defined as Σij = τ2 exp(−(xi−xj)2/(2l2)). The xi in the kernel matrix is the location

of yi and we assume observations are on grids with equal spacing, ranging from 0 to 1. The τ2

and l are unknown parameters that control the smoothness of the curve b. In this simulation

example, we set n = 500, xi = i/n, and exp(b) = (sin(2πx)−min(sin(2πx)))× c+0.1. The
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(a) Fitted Poisson Gaussian process. The blue
line is the recovered curve, the posterior mean of
exp(b).
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(b) Point-wise 95% posterior credible interval of
µi, bi at iteration 1.
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(c) Point-wise 95% posterior credible interval of
µi, bi at convergence.

Figure 4.1: Splitting variational inference on Poisson Gaussian process. Figure (a) shows the
fitted curve. Figure (b) and (c) show the posterior mean and variance of µi, bi at iteration
1 and at convergence respectively. The blue region corresponds to qbi , and the red region
corresponds to qµi . The dashed grey line is the true b for simulating the data.
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constant c is for controlling the size of the maximum count and we set c = 200 such that the

maximum mean count is around 400. Note that the minimum mean count is 0.1.

Wt fit the splitting algorithm to the observations y, and initialize each b̄i to be log(yT1/n).

Figure 4.1a shows that the splitting algorithm successfully recovers the underlying smooth

signal. The initial value of σ2 is 2.56, and Figure 4.1b shows the point-wise posterior 95%

credible interval of µi, bi after the first iteration. Apparently, at the very first iteration,

the posterior of µi and bi vary substantially. The σ2 eventually converges to 0.0014 and

Figure 4.1c shows the point-wise posterior 95% credible interval at convergence, when the

the posterior distributions of both µi, bi concentrate around a single point.

4.2.1 The objective function of qb

When σ2 is greater than 0, there are two equivalent views of the splitting model. In the

first case, if we keep the likelihood p(yi|µi) and integrate out the variable b, we obtain an

induced prior on µ as p(µ; g, σ2) =
∫
p(µ|b, σ2)g(b)db. On the other hand, if we keep the

prior b ∼ g(·) and integrate out the variable µ, we obtain an induced likelihood on y. This

is particularly useful when we are dealing with over-dispersed count data, and the parameter

σ2 can account for the extra variation in the data. In this section, we develop theory on the

connection between the mean field posterior q(b,µ) = qbqµ in the splitting model and the

posterior we would obtain if we directly solve the induced models.

We consider the induced model by integrating out the variable µ. WLOG, we focus on

univariate case and drop the subscript i. The marginal distribution of y, by marginalizing

out µ is

p(y|b, σ2) =
∫
p(y|µ)N(µ; b, σ2)dµ. (4.8)

One of the primary goal is to estimate g(·) and compute posterior of b. The most straight-

forward approach is to directly work with the model where y follows a distribution with

62



density p(y|b, σ2), and the prior on b is g(·). However as we have mentioned this is in general

non-trivial. The splitting approach together with the mean-field approach provide a much

easier model fitting procedure. Let the posterior of b be qb, then the ELBO in the induced

model is

F̃ (qb, g;σ
2) = E log p(y|b, σ2) + E log

g(b)

qb
. (4.9)

On the other hand, the profiled ELBO for qb, g, obtained by maxing qµ out in (4.4) is defined

as

F (qb, g;σ
2) = max

qµ
F (qµ, qb; g, σ

2). (4.10)

We show in Theorem 4.2.3 that the profiled ELBO is a lower bound of the marginal ELBO

(4.9). Before introducing the theorem, we first present the following lemma.

Lemma 4.2.2. The second order derivative of log p(y|b, σ2) = log
∫
p(y|µ)N(µ; b, σ2)dµ with

respect to b is lower bounded by −1/σ2.

Proof. Denote f(b) := p(y|b, σ2), the second derivative of log f(b) is

d2 log f(b)

db2
=
f ′′(b)
f(b)

−
(
f ′(b)
f(b)

)2

, (4.11)

where

f ′(b) =
1

σ2
f(b)

∫
p(µ|y, b, σ2)µdµ− b

σ2
f(b) =

1

σ2
f(b)(Eµ− b),

f ′′(b) =
1

(σ2)2
f(b)(Eµ2 − bEµ)− 1

σ2
f(b)− b

σ2
f ′(b)

= f(b)

(
1

(σ2)2
Eµ2 − 2b

(σ2)2
Eµ− 1

σ2
+

b2

(σ2)2

)
,

(4.12)
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and the expectation is under p(µ|y, b, σ2). Then

d2 log f(b)

db2
=

(
1

(σ2)2
Eµ2 − 2b

(σ2)2
Eµ− 1

σ2
+

b2

(σ2)2

)
− 1

(σ2)2
((Eµ)2 − 2bEµ+ b2)

= − 1

σ2
+

1

(σ2)2
(Eµ2 − (Eµ)2)

≥ − 1

σ2
.

(4.13)

Theorem 4.2.3. The profiled ELBO F (qb, g;σ
2) is a lower bound of the marginal ELBO

F̃ (qb, g;σ
2).

Proof. The ELBO F (qµ, qb; g, σ
2) for the splitting model (4.2) is

F (qµ, qb; g, σ
2) = E log p(y|µ) + E log

N(µ; b̄, σ2)

qµ
+ E log

g(b)

qb
−
Vqb
2σ2

, (4.14)

where b̄ = E b and Vqb = E(b− b̄). Then the profiled ELBO for qb, g is

F (qb, g;σ
2) = max

qµ
F (qµ, qb, g;σ

2)

= log p(y|b̄, σ2) + E log
g(b)

qb
−
Vqb
2σ2

.

(4.15)

The ELBO F (qµ, qb, g;σ
2) reaches its maximum over qµ at q∗µ = p(µ|y, b̄, σ2). For the

marginal ELBO F̃ (qb, g;σ
2), a second order Taylor series expansion of log p(y|b, σ2) around
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b̄ gives

F̃ (qb, g;σ
2) = E log p(y|b, σ2) + E log

g(b)

qb

= log p(y|b̄, σ2) + 1

2

(
d2 log p(y|b, σ2)

db2

) ∣∣∣∣
b=b̃

Vqb + E log
g(b)

qb

≥ log p(y|b̄, σ2)− 1

2σ2
Vqb + E log

g(b)

qb

= F (qb, g;σ
2).

(4.16)

where b̃ is between b̄ and b. The inequality is due to Lemma 4.2.2.

The following lemma connects the maximization of F (qb, b;σ2) with the penalty-based for-

mulation of empirical Bayes problem introduced in Section 2.4.1.

Lemma 4.2.4. Let

F̄ (b̄, g;σ2) = max
q:Eq=b̄

(
log p(y|Eq b, σ

2)− (
1

2σ2
Vq +KL(qb||g))

)
,

then it can be written in penalty-based form as

F̄ (b̄, g;σ2) = log p(y|b̄, σ2)− rg(b̄;σ2),

where rg(b̄;σ2) is defined in (2.20).
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Proof. The maximization of objective function F (qb, g;σ2) can be written as

max
qb,g

F (qb, g;σ
2)

=max
b̄,g

max
q:Eq=b̄

(
log p(y|Eq b, σ

2)− (
1

2σ2
Vq +KL(qb||g))

)

=max
b̄,g

(
log p(y|b̄, σ2)− min

q:Eq=b̄

(
1

2σ2
Vq +KL(qb||g)

))

:=max
b̄,g

F̄ (b̄, g;σ2).

(4.17)

Recall the term rg(b̄;σ
2) = minq:Eq=b̄

(
1

2σ2
Vq +KL(qb||g)

)
is the normal mean penalty form

and is evaluated as

rg(b̄;σ
2) = − log p(z(b̄; g, σ2); g, σ2)− (z(b̄; g, σ2)− b̄)2

2σ2
− 1

2
log 2πσ2

= − log p(z(b̄; g, σ2); g, σ2) + logN(z(b̄; g, σ2); b̄, σ2).

(4.18)

where b̄ = Sg,σ2(z) and Sg,σ2(·) is the posterior mean operator in a normal mean problem,

z(b̄; g, σ2) = S−1
g,σ2

(b̄), and p(z; g, σ2) =
∫
g(b)N(z; b, σ2)db. Thus the new objective function

over b̄, g is

F̄ (b̄, g;σ2) = log p(y|b̄, σ2)− rg(b̄;σ2)

= log p(y|b̄, σ2)− log p(z(b̄; g, σ2); g, σ2) + logN(z(b̄; g, σ2); b̄, σ2).

(4.19)

To study the behaviour of qb when σ2 → 0, we consider the profiled ELBO of qb, g, σ2 in

(4.15). Unless qb is a point mass (Vqb = 0), the ELBO F (qb, g, σ
2) goes to −∞ as σ2 → 0,

because of the term −Vqb
σ2

. So the ELBO will not be optimized at σ2 = 0 unless it is also

optimized at Vqb = 0. If qb is a point mass at b̄ (WLOG, let b̄ = 0), then the ELBO is −∞
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unless g also has some mass at 0. In general, if qb is a point mass, the σ2 will be optimized

at:

argmax
σ2

log p(y|0, σ2). (4.20)

To get a clearer understanding of the above argument. Let’s consider a simple normal model,

for i = 1, 2, ..., n,

yi|µi ∼ N(µi, s
2),

µi|bi ∼ N(bi, σ
2),

bi
i.i.d∼ N(0, ϕ2),

(4.21)

where s2 is known, and σ2, ϕ2 are unknown. The profiled ELBO for qbi , ϕ
2, σ2 is

F (qb, ϕ
2, σ2) =

∑
i

E logN(yi; b̄i, s
2 + σ2) +

∑
i

E log
N(bi; 0, ϕ

2)

N(bi; b̄i, Vbi)
− 1

2σ2

∑
i

Vbi

= −n
2
log(s2 + σ2)− 1

2(s2 + σ2)

∑
i

(yi − b̄i)2

− n

2
log ϕ2 − 1

2ϕ2

∑
i

(b̄2i + Vbi) +
1

2

∑
i

log Vbi −
1

2σ2

∑
i

Vbi .

(4.22)

The optimal b̄i, Vbi , ϕ
2 obtained by setting the corresponding partial derivatives to 0 are

b̄i =
ϕ2

ϕ2 + s2 + σ2
yi, (4.23)

Vbi =
ϕ2σ2

ϕ2 + σ2
, (4.24)

ϕ2 =
1

n

∑
i

(b̄2i + Vbi). (4.25)
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The optimal σ2 is the solution to the following root-finding problem:

− n

s2 + σ2
+

1

(s2 + σ2)2

∑
i

(yi − b̄i)2 +
1

(σ2)2

∑
i

Vbi = 0. (4.26)

Thus, σ2 is optimized at 0 if the following two conditions are true: Vbi = 0 for all i, and

1
n

∑
i(yi − b̄i)2 − s2 ≤ 0. The first condition is due to the last term in the LFS of (4.26),

and the second condition is obtained by solving for σ2 after setting Vbi = 0.

Furthermore, if σ2 is optimized at 0, then the ϕ2 = 0 which is obtained by solving for

ϕ2 in (4.25), and the fact that any ϕ2 > 0 leads to the ELBO being −∞. Thus we have

b̄i = 0, Vbi = 0, ϕ2 = 0 and 1
n

∑
i y

2
i ≤ s2 if σ2 is optimized at 0.

4.3 Variational Gaussian posterior approximation

In this section we study the first sub-problem in the splitting algorithm 4 - variational

Gaussian posterior approximation (VGA) for Poisson and Binomial distribution. We have

not specified the form of qµi , and in fact it can be flexible. In this work, we choose a Gaussian

distribution for qµi , specifically qµi = N(µi; µ̄i, vi), due to the Gaussian prior on µi (given

bi) and the computational simplifications this choice offers. While the updates for µ̄i and vi

do not typically have explicit solutions with the chosen qµi , we will demonstrate here that

they can be efficiently optimized using convex optimization algorithms.

The VGA model is defined as

y|µ ∼ D(h(µ)),

µ ∼ N(b̄, σ2),

(4.27)

where b̄ and σ2 are known. The posterior distribution of µ is assumed to follow a Gaussian
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distribution qµ = N(µ; µ̄, v). The aim is to perform variational inference on the posterior

distribution qµ. As we solve n independent variational Gaussian approximation (VGA)

problems in the splitting variational inference, we omit the subscript i in this section and

focus on the univariate case.

4.3.1 Poisson distribution

We study the posterior inference of µ in the model

y|µ ∼ Poisson(s exp(µ)),

µ ∼ N(b̄, σ2),

(4.28)

where s > 0 is a known scaling scalar. The posterior mean and variance can be obtained by

solving the following optimization problem:

(µ̄∗, v∗) = argmax
µ̄,v

F (µ̄, v)

= Eqµ log p(y, µ)− Eqµ log qµ

= Eqµ log p(y|µ) + Eqµ logN(µ; b̄, σ2)− Eqµ logN(µ; µ̄, v)

= Eqµ(yµ− se
µ)− Eqµ

(µ− b̄)2

2σ2
− Eqµ(−

1

2
log v − (µ− µ̄)2

2v
) + const

= yµ̄− seµ̄+v/2 − µ̄2 + v − 2µ̄b̄

2σ2
+

1

2
log v + const,

(4.29)

where we have used E eµ = eµ̄+v/2, which is the mean of the log-Normal distribution. Solv-

ing the optimization problem turns out to be simple because F (µ̄, v) is a concave function (as

shown in Lemma 4.3.1). Therefore, the general results and algorithms for convex optimiza-

tion can be applied. For example, one can use Newton’s method or quasi-Newton method

to solve the optimization problem.

Lemma 4.3.1. Minimizing −F (µ̄, v) is a convex problem.
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Proof. The gradients of function (4.29)(omitting s) are

∂F

∂µ̄
= y − eµ̄+v/2 − (µ̄− b̄)/σ2,

∂F

∂v
= −1

2
eµ̄+v/2 − 1

2σ2
+

1

2v
,

(4.30)

and H is the 2 by 2 Hessian matrix with elements

∂2F

∂2µ̄
= −eµ̄+v/2 − 1/σ2,

∂2F

∂µ̄∂v
= −1

2
eµ̄+v/2,

∂2F

∂2v
= −1

2
eµ̄+v/2 − 1

2v2
.

(4.31)

The Hessian matrix H is negative definite because it is strictly diagonally dominant and the

diagonal elements are negative.

Meanwhile, according to the following lemma, it is possible to express the optimal µ̄ as a

function of optimal v (and vice versa), so that the optimization problem can be reduced to

a univariate problem.

Lemma 4.3.2. Let (µ̄∗, v∗) = argmaxµ̄,v F (µ̄, v), then the following holds,

µ̄∗ = σ2y + b̄+ 1− σ2

v∗
,

v∗ =
σ2

σ2y − µ̄∗ + b̄+ 1
.

(4.32)

Proof. Setting both gradients in 4.30 to 0 and taking their difference, we have

y − µ̄∗ − b̄
σ2

+
1

σ2
− 1

v

∗
= 0. (4.33)

70



Based on Lemma 4.3.2, we can reduce the two-dimensional optimization problem (4.29) to

a univariate one. Let v = σ2

σ2y−µ̄+b̄+1
then the root finding equation for µ̄ is

h(µ̄) = y − se
µ̄+1

2
σ2

σ2y−µ̄+b̄+1 − µ̄

σ2
+

b̄

σ2
= 0. (4.34)

Lemma 4.3.3. The root of h(µ̄) = 0 exists and is unique. Moreover µ̄∗ < b̄+ σ2y.

Proof. Since the exponential term is positive, an upper bound on µ̄∗ is µ̄∗ < b̄ + σ2y. The

function h(µ̄) is a monotonically decreasing function and limµ̄→−∞ h(µ̄)→ +∞, h(b̄+σ2y) <

0, so there’s a guaranteed solution to the root finding problem.

Similarly, the root finding equation for v is

hv(v) =
1

v
− 1

σ2
− seσ

2y+b̄+1−σ2

v +v
2 = 0. (4.35)

Lemma 4.3.4. The root of hv(v) = 0 exists and is unique. Moreover v∗ < σ2.

Proof. Since the exponential term is positive, an upper bound on v∗ is v∗ < σ2. The

function hv(v) is a monotonically decreasing function and hv(0) = +∞, hv(σ2) < 0, so

there’s a guaranteed solution to the root finding problem.

Although the original optimization problem (4.29) is bivariate, in practice we can solve for

either µ̄∗ or v∗ using univariate optimization solver, then obtain another one according to

Lemma 4.3.2. We have found that Newton’s method is more suitable for solving h(µ̄) = 0

due to its fast convergence and the explicit form of h′. On the other hand, the bisection
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method is more reliable for solving hv(v) = 0 because the natural interval for searching the

root is (0, σ2).

Remark. When solving h(µ̄) = 0, to avoid the large exponential term, we take log of both

sides,

y − µ̄

σ2
+

b̄

σ2
= se

µ̄+1
2

σ2

σ2y−µ̄+b̄+1

⇐⇒ h̃(µ̄) = µ̄+
σ2

2(σ2y + b̄− µ̄+ 1)
− log(σ2y + b̄− µ̄) + log sσ2 = 0

(4.36)

The derivative of h̃(µ̄) is

h̃′(µ̄) = 1 +
σ2

2(σ2y + b̄− µ̄+ 1)2
+

1

σ2y + b̄− µ̄
. (4.37)

4.3.2 Binomial distribution

We consider the sub-problem of VGA of Binomial data, with binary data as a special case.

The model is

y|µ ∼ Binom(n, σ(µ)),

µ ∼ N(b̄, σ2),

(4.38)

where σ(·) is the sigmoid function, b̄ and σ2 are known prior mean and variance respectively.

The evidence lower bound is

F (µ̄, v) = yµ̄− nEq log(1 + exp(µ))− µ̄2 + v − 2µ̄b̄

2σ2
+

1

2
log v + const. (4.39)
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There is no close form for expected log(1 + exp(µ)). To evaluate Eq log(1 + exp(µ)), we

consider a Gauss-Hermite quadrature approximation as

E log(1 + exp(µ)) =

∫
1√
π
exp(−µ2) log(1 + exp(

√
2vµ+ µ̄))dµ

≈ 1√
π

∑
j

wj log(1 + exp(
√
2vµj + µ̄)),

(4.40)

where wj , µj are pre-selected fixed sampling points. We have found that usually 10 points

are enough to give accurate numerical values.

We note that the VGA problem for binomial data is more computationally demanding than

the Poisson one due to the numerical approximation required for computing the expectation

of log(1+exp(µ)). However, it is still relatively straightforward to optimize for µ̄ and v using

Newton’s method.

4.4 Empirical Bayes Poisson matrix factorization

We return to the matrix factorization example for scRNA-seq data. We are interested in

modelling scRNA-seq count data using Poisson distribution with a log-link function, while

developing a flexible model and algorithm for different assumptions on the low dimensional

structure. GLM-PCA is one of the model that factorizes UMI count data with a log-link

function. More broadly, there are several existing methods that extend PCA to exponential

family distributions, for example Poisson-PCA (Kenney et al. [2021]), generalizsed PCA

(Landgraf and Lee [2020]), PLNPCA (Chiquet et al. [2018]) and ePCA (Liu et al. [2018]).

These methods are able to factorize count matrices and can be potentially applied to scRNA-

seq data.
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4.4.1 Review of empirical Bayes matrix factorization

Wang and Stephens [2021] introduced empirical Bayes matrix factorization (EBMF), a flex-

ible framework that allows for a wide range of prior families and enables different levels of

sparsity to be exhibited by each component of the matrix factorization. The EBMF model

is

Y =
∑
k

lkf
T
k + E, (4.41)

lk1, ..., lkn ∼ glk , glk ∈ Gl, (4.42)

fk1, ..., fkp ∼ gfk , gfk ∈ Gf , (4.43)

Eij ∼ N(0, 1/τij). (4.44)

The priors on lk and fk can be chosen to reflect the data structure and modeling assumptions.

For example, to induce sparsity, one may use a mixture of point-mass at 0 and a normal

distribution with mean 0 (point-normal) or point-Laplace prior; to constrain the loadings

and/or factors to be non-negative, one may use an exponential distribution prior. Fitting the

EBMF model is done by a combination of variational inference and empirical Bayes approach,

and it has been shown that the variational updates can be further reduced to empirical Bayes

normal mean (EBNM) problems. The model fitting algorithm involves two major steps -

greedy and back-fitting. In the greedy stage, the algorithm adds one factor at each step until

the new factor is not able to increase the objective function. Then the back-fitting procedure

prunes the factors by iteratively refitting each factor given the rest.

4.4.2 Model

We consider a model that combines the benefits of GLM-PCA and EBMF. In particular, we

model the count data using a Poisson distribution with a log link function and introduce
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priors on the loadings and factors. Consider the empirical Bayes Poisson matrix factorization

(EBPMF) model

yij ∼ Poisson(si exp(µij)),

µij |li.,fj. ∼ N

(
fj0 +

∑
k

likfjk, σ
2
ij

)
,

lk ∼ glk(·), k = 1, 2, ..., K,

fk ∼ gfk(·), k = 0, 1, 2, ..., K.

(4.45)

The si is a non-negative scaling scalar. In scRNA-seq UMI count data, si is usually chosen

to reflect the cell size, and is fixed at si =
∑

j yij . The variance σ2ij can be specified as

constant across i, j, row-specific or column-specific. The fj0 is the baseline expression level

of gene j, against which any changes are measured. This baseline is estimated from data and

is unconstrained. We choose a non-sparse prior (such as normal prior) for fj0. If changes can

be positive or negative, then the baseline might be close to the mean or median expression; if

changes are constrained to be positive, then the background is a “low” expression level. Each

factor fk is a gene expression program (GEP), and each loading lk gives the membership of

each GEP for the cells.

We restrict the posterior to have the form

q(µ,L,F ) = qµqLqF

=
∏
i,j

qµij

∏
k

qlk(lk)
∏
k

qfk(fk)

=
∏
i,j

N(µij ; µ̄ij , vij)
∏
k

qlk(lk)
∏
k

qfk(fk).

(4.46)

The splitting variational algorithm follows the general Algorithm 4, and is provided in Al-

gorithm 5.
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Algorithm 5 Splitting Variational Inference for EBPMF

1: Input: Count matrix Y ∈ Nn×p
0

2: Init: L̄ = 0, F̄ = 0 (except f0 = log(Y T1/s))
3: repeat
4: Update µ̄ij , vij by solving variational Gaussian posterior approximation on data yij ,

si, with known prior mean (L̄F̄ T )ij , and known (except for the first iteration) prior
variance σ2, for i = 1, 2, ..., n and j = 1, 2, ..., p.

5: Update qL, gL, qF , gF by fitting EBMF (greedy Kmax = 1 and backfitting iteration
= 1) on matrix M = [µ̄ij ] with known residual variance σ2.

6: Update σ2 as σ2 =
∑

ij Eq(µij − bij)2/(np).
7: until Converged
8: Output: Estimated priors ĝL, ĝF , estimated variance σ̂2 and fitted posteriors qµ, qL, qF

4.5 Numerical examples

In this section, we evaluate the performance of the EBPMF model through a simple simu-

lation example and a simulation based on a real scRNA-seq dataset. We also compare the

method with GLM-PCA and log transformation + EBNMF. Since GLM-PCA only allows

unconstrained low-dimensional structures, we do not include it when comparing models with

non-negative loadings and factors.

4.5.1 A simple example

We assess the EBPMF model in a simple simulation example, alongside GLM-PCA, log-

transformation + EBMF, and Poisson-PCA. We set N = 100, p = 300, K = 3, and indepen-

dently draw factors fjk for j = 1, 2, ..., p, k = 1, 2, ..., K from a standard normal distribution.

The first 20 elements of loading l1 are independently sampled from 1 + Unif(0.5, 1), and all

the remaining elements are 0. For the second loading, l2,21:40 are independently sampled

from −2+Unif(0.5, 1), and all the remaining elements are 0. Similarly, for the third loading,

l3,41:60 are independently sampled from 3+Unif(0.5, 1), and all the remaining elements are 0.

This structure defines three groups (clusters) of samples for the first 60 samples. The remain-

ing 40 samples have all-zero loadings and belong to the fourth group. Observations yij are
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sampled from a Poisson distribution according to model (4.45) (by setting fj0 = 0, si = 1).

We consider two simulation settings when σ2ij = 0 and σ2ij = 1.

We fit EBPMF and EBMF using a mixture of point-mass and normal prior (point-normal

prior) on both loadings and factors, and setting the variance type to be constant across i

and j. For EBMF, we consider two log-transformations on the count data, log(1 + yij) and

log(0.1 + yij). For all methods except EBPMF, we set K to be the true value, while for

EBPMF, we set Kmax = 10 and let the model choose the optimal K. In this simulation

example, EBPMF successfully selects the correct K. Figure 4.2 displays the true and es-

timated loading matrices when σ2ij = 0. Notably, the EBPMF method recovers the true

structure, and the sparsity-inducing prior shrinks the loadings of group 4 towards 0. Differ-

ent log-transformations can lead to varying results when applying EBMF. In this simulation,

the estimated loadings using the log(0.1 + yij) transformation are closer to the true values.

Although GLM-PCA and Poisson-PCA can detect the non-zero loadings for the first three

groups, their interpretations of the loadings may differ from the true ones due to the lack

of sparsity constraints. When σ2ij = 1, accounting for the extra variation and including

the sparsity constraint are crucial for recovering the true low-dimensional structure (Figure

C.1).

In Figure 4.3, we show the the sequences of σ̂2 from the splitting variational algorithm in both

simulations when σ2ij = 0 and 1 for all i, j. It takes many more iterations for the algorithm

to converge when the true σ2 is 0. In the Figure 4.3a, the σ̂2 is 0.039 at iteration 100, and

in the Figure 4.3b, the σ̂2 is 0.98 at iteration 29. This difference in the number of iterations

indicates that the algorithm requires additional iterations to converge when the true σ2 is 0

or close to 0. Despite this sensitivity, the EBPMF method demonstrates robust performance

in recovering the true low-dimensional structure across various simulation settings.
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Figure 4.2: Plot of the loading matrices in simulation example of EBPMF. N = 100, p =
300, K = 3, σ2ij = 0. The signs of loadings are flipped so that the largest element of each
loading is positive, and scaled to be 1 for visualization purpose. In each plot, each column
is a loading, and colors of dots indicate groups.
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Figure 4.3: The sequence of σ̂2ij from the splitting variational algorithm when fitting EBPMF
in the simple simulation examples.

4.5.2 Simulation based on scRNA-seq data from Zheng et al. [2017]

In this study, we conducted a more realistic simulation by fitting the EBPMF model on

a subset of a public available scRNA-seq dataset and then generating data from the fitted

model. The data consists of a selection of PBMC (Donor A) scRNA-seq data described in

Zheng et al. [2017], comprising unique molecular identifier (UMI) counts for 16,791 genes in

3,774 cells. The data is included in the R package fastTopics (Carbonetto et al. [2021],

Dey et al. [2017]). In the pre-processing phase, genes expressed in fewer than 10 cells were

removed, with no further filtering or pre-processing conducted. The final dataset includes

3,774 cells and 11,487 genes, with approximately 94% of the matrix entries being 0. Five

main cell types – B cell, CD14+, CD34+, NK cell, and T cell, and 10 sub-cell types are

present in the data and are sorted by FACS (as shown in Supplementary Figure 6. in Zheng

et al. [2017]).

We fitted the EBPMF model with sparse and non-negative priors (a mixture of point-mass

and exponential distribution, in short point-exponential) on both loadings and factors. The

method identified 8 factors (in addition to the background factors), with the cell membership

in the 8 factors illustrated in the top structure plot in Figure 4.4. Subsequently, data were
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generated from the fitted EBPMF model. We also compared the EBPMF model fit with

the results from log-transformation + EBNMF and log-transformation + NMF (squared

loss). The log-transformation used was ỹij = log
(
1 +

median(si)
0.5

yij
si

)
, where si is the cell size

of cell i. This transformation is derived from log
(
yij
si

+ 0.5
median(si)

)
, while preserving data

sparsity.

The EBPMF method accurately recovers the number of factors, and the structure plot of

the estimated cell membership closely resembles the true one. The EBNMF method on

log-transformed data also manages to recover the main structure, although the loadings

are less sparse and exhibit some spikes, likely due to the transformation. Comparing the

NMF model fit at the bottom of Figure 4.4 with EBPMF, it is clear that EBPMF’s sparsity

constraint results in more interpretable components than those provided by the standard

NMF fits..

4.6 Real data results

We analyze two scRNA-seq UMI count data using EBPMF with point-exponential priors

on both loadings and factors. The first dataset is the full PBMC purified data from Zheng

et al. [2017] with more than 90,000 cells. The second dataset is from Montoro et al. [2018],

where more than 7000 trachea epithelial cells from mice were sequenced by droplet-based 3’

scRNA-seq.

4.6.1 PBMC purified data from Zheng et al. [2017]

We applied the EBPMF model to the purified PBMC scRNA-seq data from Zheng et al.

[2017]. Cell types are provided by the authors, and are sorted by FACS. Thus, they are

treated as true cell type labels. The dataset contains 94,655 cells from five main cell types.

We selected a set of 3,000 most variable genes using the devianceFeatureSelection func-
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Figure 4.4: Structure plots of cell membership (loading matrix) in simulated PBMC data.
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tion in the R package scry (Street et al. [2021]). Afterward, we removed any remaining

genes for which transcripts appeared in fewer than 10 cells. The EBPMF model, with sparse

and non-negative priors, identified seven factors (in addition to the baseline one), and the

cell membership is displayed as a structure plot in Figure 4.5a.

Clearly, many EBPMF factors correspond to one or more cell types: factor 1 is associated

with NK cells and a portion of CD8+ T cells, factor 2 is specific to CD14+ monocyte cells,

factors 3 and 7 are present in T cells, factors 4 and 6 appear in CD34+ cells, and factor 5 is

specific to B cells. An interesting observation is the shared factor 1 by NK cells and some

CD8+ T cells, with the factor being more specific to the former cell type. Indeed, NK cells

are part of the innate immune system that can respond quickly to pathological challenges.

While CD8+ T cells perform specific roles in mediating adaptive immune responses, they

sometimes exhibit “NK-like” properties (Pereira et al. [2020]). This relationship is clearly

captured by the EBPMF model fit. Figure 4.5b presents the scatterplot of factor 1, and we

label the top 10 genes with the highest expression program in this factor. Since the EBPMF

model includes a baseline factor and employs a sparsity-inducing prior on factors, the genes

with the highest expression program in each factor are key driving genes for the underlying

biological processes. The genes appearing in the figure, such as GNLY, GZMB, NKG7, are

clearly related to the immune system, as they encode proteins primarily found in cytotoxic

T cells and natural killer cells.

4.6.2 Trachea epithelial cells scRNA-seq data

We re-examine the scRNA-seq UMI count data from Montoro et al. [2018], which consists

of 7,193 trachea epithelial cells sequenced using droplet-based 3’ scRNA-seq. The original

analysis classified cells into seven distinct clusters, which were annotated post hoc based on

the expression of known marker genes. These clusters were mapped to abundant cell types,

such as basal, club, and ciliated cells, as well as rare cell types, including tuft, neuroendocrine,
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Figure 4.5: EBPMF fit on the PBMC purified scRNA-seq data from Zheng et al. [2017].
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and goblet cells. Note that the cell type labels come from clusters not FACS. The publicly

available dataset (GEO accession GSE103354) contains gene expression profiles for 18,388

genes across 7,193 cells. Around 90.7% of the entries in the data matrix are 0.

We fit the EBPMF model using point-exponential priors on both loadings and factors, and

we set the variances to be gene-specific. The model identifies a total of 14 factors. Figure 4.6a

displays the structure plot of cell membership for all cell types and the top 7 gene expression

programs (GEPs). It is evident that most cells exhibit mixed membership in different GEPs,

while some factors are specific to certain cell types. For instance, basal cells primarily have

membership in GEP 2, ciliated cells in GEP 1, and tuft cells in GEP 3. GEP 6 is specific to

neuroendocrine cells. Rare cell types have fewer samples, so to obtain a clearer view of their

membership, we zoom in on the structure plot for these cells in Figure 4.6b. It is apparent

that GEP 11 is specific to goblet cells, and most ionocyte cells have unique membership in

GEP 9.

For GEPs that are specific to a cell type, we are interested in identifying the corresponding

key driving genes. To do this, we plot the mean gene expression (in log space) across all cells

versus the gene expression program (factor). The top genes appearing in the plot are then

the key driving genes for the corresponding GEP. Figure 4.7 displays the plot for GEP 1, and

the known cell marker genes provided in Montoro et al. [2018] are labeled in black. Clearly,

these marker genes are all genes with high expression programs in GEP 1. Specifically, Cdhr3

is a risk gene for asthma that encodes a rhinovirus receptor and has been linked to severe

childhood asthma exacerbations. We also checked the other genes with high expression

programs, and they match most of the top marker genes provided in Supplemental Table 1

in Montoro et al. [2018], such as AU040972, Ccdc153, Tmem212, and Dynlrb2.

One of the main findings in Montoro et al. [2018] is the detection of a rare cell type, the

ionocyte. Figure 4.8 displays the key driving genes for GEP 9, a factor in which most ionocyte
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cells have a unique membership. Known cell type marker genes provided in Montoro et al.

[2018] (in the Figure 5c and Extended Data Fig. 1d) are labeled in black, while genes

appearing at the top of the plot are labeled in red. The latter also match the top marker

genes identified in a post hoc analysis in Montoro et al. [2018]. A considerable number of

genes highlighted by the authors as crucial to ionocyte function, such as Cftr, Foxi1, and

Ascl3, appear more prominently in this plot. In particular, as pointed out by the authors,

pulmonary ionocytes express the cystic fibrosis transmembrane conductance regulator (Cftr).

Although ionocytes make up only approximately 0.4% of mouse cells profiled through single-

cell RNA sequencing, they express over 54% of all identified Cftr transcripts.

Figure 4.9 shows the marker genes for each sub-cell type of goblet cells. They all appear

at the top of the plot and are more prominently displayed in this context compared to a

list ordered by GEP. In addition, the plots for GEP 6 (neuroendocrine cells), GEP 3 (tuft

cells), and GEP 2 (basal cells) are shown in Figure C.2. These plots confirm that the

EBPMF method successfully identifies cell memberships and the key driving genes for each

GEP.

4.7 Discussion

In this study, we proposed a novel variational inference approach for non-Gaussian data

and developed the empirical Bayes Poisson matrix factorization method for scRNA-seq

data analysis. Our main contribution lies in introducing a modular algorithm that applies

well-established Gaussian empirical Bayes methods to non-Gaussian models. The EBPMF

method allows for different prior families on both loadings and factors, as well as different

assumptions about the latent structure, including non-negativity and sparsity of factors.

This flexibility enables more accurate and interpretable recovery of latent gene expression

patterns and their corresponding cell memberships.
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Simulation studies and real scRNA-seq data analysis demonstrate the superior performance

of the EBPMF method in terms of latent structure recovery, data adaptation, and down-

stream analysis for scRNA-seq data such as key driving gene identification. The method

enables a deeper understanding of the complex biological processes governing cellular func-

tion, which has the potential to drive further advances in the study of cellular heterogeneity

and its implications for health and disease.

Our novel variational inference method can be extended to other types of non-Gaussian

data, such as binomial data, and other statistical models, such as regression analysis. In the

context of regression, developing a variational inference method for sparse generalized linear

regression can be challenging. However, the splitting variational inference method makes it

straightforward to handle various sparsity inducing priors on regression coefficients. Overall,

the versatility and modularity of our splitting variational inference method make it suitable

for application to various combinations of data types and models.

Code and data availability

The EBPMF method is implemented in the R package ebpmf, available at https://github

.com/DongyueXie/ebpmf.

Code for producing the plots for the Poisson Gaussian process is at https://github.com

/DongyueXie/gsmash/blob/main/analysis/pois_gp_split.Rmd. Code for the simulation

and real data analysis is at https://github.com/DongyueXie/ebpmf-paper.

The scRNA-seq PBMC data used in the simulation is from R package fastTopics. The

scRNA-seq PBMC purified data is downloaded from 10x Genomics website. A detailed

preparation guide can be found at https://stephenslab.github.io/single-cell-topic

s/prepare_purified_pbmc.html.
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The droplet scRNA-seq UMI count data from Montoro et al. [2018] is available from GEO

with accession number GSE103354. A detailed preparation guide can be found at https:

//stephenslab.github.io/single-cell-topics/prepare_droplet.html.
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CHAPTER 5

DEVELOPING AND EXTENDING EMPIRICAL BAYES

POISSON NON-NEGATIVE MATRIX FACTORIZATION

5.1 Introduction

Traditional clustering methods partition samples into distinct subgroups, and each sample

belongs to one of the groups. Topic models, also known as grade of membership (GoM)

models, generalize clustering models by allowing each sample to have partial membership in

multiple clusters or factors (Pritchard et al. [2000], Blei et al. [2003]). The model has been

applied to learn and visualize the latent structure of RNA-seq data (Dey et al. [2017]). Gene

expressions can be regarded as the outcome of interactions of several interrelated biological

processes and topic model assigns partial memberships to each sample in multiple biological

clusters.

In this chapter, we study two novel models that enhance the vanilla topic model or the

non-negative matrix factorization (Lee and Seung [1999], Carbonetto et al. [2021]). The

first model allows the loadings (membership) and/or the factors (biological process) to be

smooth so that it potentially fits better to the data that exhibits spatial structures. For

example, sequencing-based assays that measure expression or other traits along the genome.

The second model employs a recently proposed transformation on the count matrix called

biwhitening (Landa et al. [2022]), that enables us to use existing flexible non-negative ma-

trix factorization methods developed for Gaussian models, such as EBNMF (Willwerscheid

[2022]). We show using numerical examples that both models can improve the latent struc-

ture recovery and improve the interpretability of loadings and factors.
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5.2 Smoothed Poisson non-negative matrix factorization

In Xing [2016], a smoothed version of grade of membership model, smoothed GoM, was

proposed to factorize RNA-seq data measured at fine resolution - per base pair along the

genome. Since the read counts are measured along the genome, we expect the underlying

signal to have spatial structure. The method combines a smoothing step with an EM update

of factors. It was found empirically that the method improves the accuracy of latent structure

recovery when compared to the standard topic model.

Though the smoothed GoM has been shown the potential to work in practice, it lacks an

explicit objective function. This is due to the “plug-in” nature of the smoothing step - there’s

no theoretical verification of it. It is unclear whether the algorithm corresponds to a specific

model. In this chapter, we develop smoothed Poisson non-negative matrix factorization

(SPNMF) model, that allows for spatially-structured loadings and/or factors, and derive a

variational empirical Bayes algorithm for model inference. Though the original topic model

has a multinomial likelihood, Carbonetto et al. [2021] showed that one can potentially utilize

algorithms for non-negative matrix factorization (NMF) to improve parameter estimation in

topic models.

In the following sections, we first review a basically framework for empirical Bayes Poisson

matrix factorization with identity link function, then generalize the framework to allow more

flexible priors.

5.2.1 Empirical Bayes Poisson non-negative matrix factorization

The Poisson matrix factorization (PMF) model with identity link function is

xij ∼ Poisson

(∑
k

likfjk

)
, (5.1)
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where lik ≥ 0, and fjk ≥ 0. A Bayesian version of the model has priors on L and F , as

lk ∼ glk(·),fk ∼ gfk(·), (5.2)

where each prior has support on the non-negative real line. We briefly introduce the Bayesian

Poisson matrix factorization framework originally studied in Cemgil [2009], but also allow the

priors glk(·), gfk(·) to be estimated using the variational approach. The variational empirical

Bayes version was studied by Zihao Wang in his unpublished work (https://zihao12.gith

ub.io/ebpmf_demo/ebpmf.pdf). In these existing work, typical choices of g(·) are gamma

distribution due to the conjugacy. For example, lik
iid∼ Gamma(ak, bk). Here we describe a

more general model that allows multivariate prior on the loadings and/or factors. Thus we

can assume smoothness-inducing priors. Choosing the smoothness-inducing prior to be the

multiscale prior introduced in Appendix D.4 is analogous to a model-based version of the

smoothed GoM introduced in Xing [2016]. We first introduce the following procedures as

they will be used in the variational inference algorithm.

Definition 5.2.1. An EB Poisson mean (EBPM) procedure defines a mapping from y, s to

(ĝ, q), under the model

yi|λi ∼ Poisson(siλi),

λ ∼ g(·) ∈ G.

where y is a vector of observations, si is a knwon scaling scalar, ĝ is the estimated prior,

and q is the posterior. This mapping is denoted as

(ĝ, q) = EBPMG(y, s).

We note that when choosing a smoothness-inducing prior for λ in EBPM, i.e. Gsmooth,
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the procedure becomes an EB Poisson smoothing procedure. We denote such procedure as

(ĝsmooth, q) = EBPMGsmooth(y, s).

Rank-1 Model

For simplicity we study the rank-1 model first, by setting k = 1 in (5.1). In matrix form, we

may write the model as Z ∼ Poisson(lfT ) where l = (l1, l2, ..., lN )T and f = (f1, f2, ..., fp)
T ,

l ∼ gl(·) ∈ Gl, f ∼ gf (·) ∈ Gf .

An empirical Bayes procedure estimates priors via ĝl, ĝf = argmaxg log p(Z|gl, gr), then

calculates posterior of l,f . We use mean field variational method to approximate the pos-

terior of l and f . Assume a variational family that the distributions factorize as q(l,f) =

ql(l)qf (f), the evidence lower bound is

F (q, g) = Eq log p(Z|l,f) + Eq log
gl(l)

ql(l)
+ Eq log

gf (f)

qf (f)
. (5.3)

Given qf , gf , the objective function with respect to ql, gl is

F (ql, gl) = Eql

∑
i

∑
j

zij log li − li
∑
j

f̄j

−DKL(ql||gl), (5.4)

We recognize that this is the objective function EBPM problem. Thus the update of ql, gl

can be obtained by EBPMGl(Z1p,
∑

j f̄j), where f̄j = Eq fj . Given ql, gl, the updates

of qf , gf are similar to the ones in updating ql, gl. The corresponding EBPM problem is

EBPMGf (Z
T1N ,

∑
i l̄i), where l̄i = Eq li. The algorithm for fitting rank-1 model is given in

Algorithm 6.

94



Algorithm 6 Rank-1 EBPMF (identity link)
1: Input: Count matrix Z.
2: Init: ql, qf , gl, gf .
3: repeat
4: (ql, ĝl) = EBPMGl(Z1p,

∑
j f̄j);

5: (qf , ĝf ) = EBPMGf (Z
T1N ,

∑
i l̄i).

6: until Converged
7: Output: ql, qf , ĝl, ĝf

Rank-K Model

The extension to rank-K model is straightforward, based on the fact that sum of independent

Poisson random variables are Poisson random variables. The rank-K model can be written

as

X|Z1, ...,ZK =
K∑
k=1

Zk,

Zk|lk,fk ∼ Poisson(lkf
T
k ),

fk ∼ gfk(·),

lk ∼ glk(·),

(5.5)

where we have introduced latent variables Zk, each of which follows a rank-1 model.

Again we use a variational inference approach and assume the posterior factorizes as

q(Z,L,F ) = qZ(Z)qL(L)qF (F )

=
∏
i,j

qzij (zij)
∏
k

qlkqfk .
(5.6)

Given qZ(·), the objective function for qlk(·), glk(·), qfk(·), gfk(·) for k = 1, 2, ..., K can be

95



Algorithm 7 EBPMF (identity link)
1: Input: Count matrix X, rank K.
2: Init: qL, qF , gL, gF , qZ .
3: repeat
4: Update qlk , qfk , glk , gfk by running Algorithm 6 with observation Z̄k for k = 1, 2, ..., K;

5: Update Z̄k according to (D.4).
6: until Converged
7: Output: q̂L, q̂F , ĝL, ĝF , q̂Z

written as a summation of K sub-objective functions

F (·) =
∑
k

Fk(·),

=
∑
k

E log p(Z̄k|lk,fk) + E log
glk(lk)

qlk(lk)
+ E log

gfk(fk)

qfk(fk)
.

(5.7)

where Fk(·) is the objective function for a specific k, and Z̄k := EZk. One can easily verify

that maximizing Fk(·) is equivalent to solving a rank-1 problem with Z̄k as the observations.

The variational inference algorithm is given in Algorithm 7.

5.2.2 Smoothed Poisson non-negative matrix factorization

The smoothed Poisson non-negative matrix factorization (SPNMF) is a special case of the

general model (5.5), and we assume smoothness-inducing priors on loadings and/or factors,

fk ∼ gfk,smooth(·), and lk ∼ glk,smooth(·). To fit the SPNMF model, we only need to

use an EB Poisson smoothing procedure in algorithm 6. Specifically, the procedures are

EBPMGl,smooth and EBPMGf ,smooth .

The extra variation in the count data might lead to non-smooth posterior mean of loadings

and/or factors, even if we assume the smoothness-inducing priors. In this case, we can take

advantage of the model 3.1 introduced in Chapter 3 to obtain smooth results. We focus on

smoothing factors, as each sample is usually collected along spatial coordinates. Specifically,

96



consider the following rank-1 model:

zij |li, fj ∼ Poisson(lifj),

l ∼ gl(·),

fj = exp(µj),

µj |bj ∼ N(bj , σ
2),

b ∼ gb,smooth(·),

(5.8)

for i = 1, 2, ..., N , and j = 1, 2, ..., p. In Chapter 3, we have introduced the nugget effect and

splitting algorithm for smoothing over-dispersed count data. The formulation of f here is

exactly the same, but in a matrix factorization context. We will see below that within the

EBPMF framework as in Algorithm 7, the splitting algorithm for smoothing is involved.

Assume the posterior factorizes as q(l,µ, b) = qlqµqb = qlqb
∏

j qµj , then the evidence lower

bound for the model is

F (q, g, σ2) =
∑
i,j

E
(
zij(log li + µj)− li exp(µj)

)
+ E log

gl
ql

+
∑
j

E log
N(µj |bj , σ2)

qµj
+ E log

gb
qb
.

(5.9)

Given gl, ql, the update of qµj , gb, qb, σ
2 is given by Algorithm 3 in Chapter 3, with obser-

vations
∑

i zij , for j = 1, 2, ..., p, and scaling factor
∑

i l̄i. For a general rank-K SPNMF

model, it can be also reduced to solve K rank-1 problems iteratively, similar to Algorithm

7.

5.2.3 An illustrative example

To illustrate the benefits of using SPNMF over vanilla NMF when the true factors are smooth,

we consider a simple example with n = 45, K = 2, and p = 512. The loadings lik are drawn
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i.i.d. from a mixture of exponential distributions: 1
3 Exp(10) +

1
3 Exp(5) +

1
3 Exp(1). The

factors are step functions, with base level 0.5, shown in Figure 5.1a. In the first simulation,

we set the largest step value of the factors to be 10 and the smaller step size to be 5. As

shown in Figure 5.1, both vanilla NMF and SPNMF are able to recover the true factor

structures because of the relatively strong signals in the factors. In the second simulation,

we set the largest step value of the factors to be 5 and the smaller step size to be 1. In Figure

5.2, vanilla NMF was not able to give a clear recovery of the factors because the smaller

steps seem to be mixed with the variations in the data. On the other hand, SPNMF is able

to recover the true factor structures. Figure 5.2c clearly visualizes the smooth pattern of

factors. This suggests that when the true underlying factors are smooth, incorporating the

smoothness in the model can give more accurate structure recovery, especially when some of

the signals in certain regions are relatively low.

5.2.4 Application to GTEx RNA-seq data

We apply the SPNMF model to bulk RNA-seq data from GTEx. In a previous study, Dey

et al. [2017] applied the topic model to GTEx RNA-seq V6 data on gene-level expression and

visualized the sample memberships by structure plots. In this study, we analyze RNA-seq

data at the base pair resolution within a gene region. Gene regions containing both exons

and introns exhibit spatially-structured underlying gene expression. This organization also

allows for complex regulation of gene expression, for example, through alternative splicing.

Thus, by incorporating the smoothness constraint on the factor, we hope to identify potential

alternative splicing patterns of a gene. Specifically, we look at three genes that exhibit

differentially expressed patterns between muscle and brain tissues.

Figure 5.3a shows the membership of each sample in each of the three factors of gene PKM.

Samples are grouped by tissues, as shown on the left sidebar. Clearly, the muscle skeletal

tissues have much less membership in factor 3 compared to other tissues. The factor 3 and
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Figure 5.1: An illustrative example of SPNMF. The shorter step size is 5, a half of the larger
one.
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Figure 5.2: An illustrative example of SPNMF. The shorter step size is 1, which is one fifth
of the larger one.
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factor 1 mainly differ in the presence of the third and fourth exon. The presence of the fourth

exon is related to muscle functionality. Similar contrasts between muscle and brain tissues

can also be found in gene RTN2 and NDUFA3, and the results are shown in Figure 5.4 and

Figure 5.5. Interestingly, factor 2 in Figure 5.3b shows a potential intron retention pattern

between the second and third exons. Similar potential intron retentions are also observed in

factor 2, as shown in Figure 5.4b, and in factor 3, as depicted in Figure 5.5b.

5.3 Biwhitening EBNMF

Non-negative matrix factorization (NMF), or Poisson matrix factorization (PMF), constrains

the low-dimensional structures to be non-negative. It has been shown that NMF produces

part-based decomposition, thus improving interpretability (Lee and Seung [1999]). Recent

work on NMF has extended the constraints to allow sparsity in latent factors (Hoyer [2004]).

Commonly used penalties for sparsity include the l1 penalty, with a tuning parameter con-

trolling the level of sparsity. However, tuning the parameter itself is non-trivial, and in real

applications, it is more flexible to assume different sparsity levels for each factor, requir-

ing multiple tuning parameters. This, in turn, introduces further difficulties in parameter

tuning.

Empirical Bayes matrix factorization (EBMF, Wang and Stephens [2021]) is a flexible frame-

work for sparse matrix factorization. It allows a wide range of priors on both loadings and

factors, such as sparse, non-negative, and spatial priors. We refer to the EBMF with non-

negative (or sparse and non-negative) priors as EBNMF (Willwerscheid [2022]). However

the method was originally developed for Gaussian likelihood, and direct extension to Pois-

son likelihood is non-trivial. This is mainly due to the non-quadratic nature of the Poisson

log-likelihood, as well as the identity link function used in the model.

In this work, we combine the biwhitening method proposed by Landa et al. [2022], and the
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Figure 5.3: SPNMF fit on gene PKM, K = 3.
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Figure 5.4: SPNMF fit on gene RTN2, K = 4.
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EBMF to develop a flexible framework for sparse Poisson matrix factorization (with identity

link function).

5.3.1 Biwhitening

The method biwhitening was original proposed by Landa et al. [2022] to reveal the rank of

a Poisson matrix, or matrix of other distributions that satisfy a quadratic relation between

the mean and variance. The method involves scaling the rows and columns of the count

matrix so that the corresponding noise spectrum agrees with the Marchenko-Pastur law. The

scaling factors can be estimated directly from the observations using the Sinkhorn-Knopp

algorithm.

Consider the model for a random matrix Y ∈ Rn×p,

Y = X + E, (5.10)

where rank(X) = r, E is a noise matrix with mean 0. When the noise variables are het-

eroskedastic, the rows and columns are scaled such that the noise components are roughly

homogeneous. Specifically, let u and v be positive vectors, then the scaled matrix is given

as

Ỹ = D(u)Y D(v) = X̃ + Ẽ, (5.11)

where D(u) = diag(u) and D(v) = diag(v). The scaling preserves the rank of matrix

X, and the scaled noise random variables ẽij are still independent with mean 0. Though

the variances of ẽij are still not all equal, the scaling procedure can ensure that the mean

variance in each row and each column to be 1. Specifically for Poisson matrix, we find u and

v such that
∑n

i=1 u
2
iXijv

2
j = n, and

∑p
j=1 u

2
iXijv

2
j = p. The Sinkhorn-Knopp algorithm

for finding such scaling vectors are given in Algorithm 2.1 in Landa et al. [2022].
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The biwhitening method can be further generalized to the family of distributions that satisfies

a quadratic relation between the mean and the variance. For example, negative binomial and

gamma distribution. Refer to Algorithm 5.1 in Landa et al. [2022] for finding the optimal

mean-variance relationship, and the scaling vectors.

The distribution of transformed error ẽij is not guaranteed to be Gaussian theoretically,

but its entries have mean 0 and roughly homogeneous variances (the mean variance in each

row and each column is 1). To have a better understanding of the error distributions, we

have performed empirical study to show that the distribution of ẽij is close to Gaussian,

when the mean parameter is large. We use the simulation setting in SM4.2. for producing

Figures 2 and 3 in Landa et al. [2022], with n = 50, p = 100. The mean matrix X is

generated by independent sampling from Unif(1, 2), then multiplied the resulting matrix from

left and right by diagonal matrices whose diagonal entries are sampled independently from

exp(Unif(−2, 2)). The entries of matrix Y are sampled from Poisson distribution with mean

X. We repeat the sampling of Y 1000 times for a given X, and each time the biwhitening

transformation is applied to Y .

In Figure 5.6, we plot the of Poisson variance (entries ofX), and the noise variance (estimated

using 1000 repetitions) after biwhitening, as well as the histogram of transformed noise

variances. We can see that after biwhitening, the variances are more homogeneous and

concentrate around 1. In Figure 5.7, we plot the histograms of ỹij , with different mean

parameter xij . The normal density curves with sample mean and variance are overlaid on

the histogram. When the original mean parameter x is greater than 3, ỹ is approximately

normal distributed; while when the mean parameter is smaller, there are many zero’s in the

corresponding entries hence in the ỹ.
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of X), and the noise variance (estimated using 1000 repetitions) after biwhitening. Lower:
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107



x = 0.02

D
en

si
ty

0 1 2 3 4 5 6

0
2

4
6

8
10

x = 0.11

D
en

si
ty

0 1 2 3 4 5 6

0
2

4
6

8

x = 0.5

D
en

si
ty

0 1 2 3 4 5

0
1

2
3

4
5

6

x = 1.05

D
en

si
ty

0 1 2 3 4

0
1

2
3

x = 2.95

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

x = 5.04

D
en

si
ty

0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

x = 9.62

y~

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

x = 83.37

y~

D
en

si
ty

8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

0.
4
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5.3.2 Biwhitening EBNMF

The biwhitening scales rows and columns such that the mean variance in each row and each

column is 1. After the biwhitening transformation, we can then apply EBNMF to the matrix

Ỹ , to recover the non-negative(and/or sparse) loadings and factors. Specifically, the original

Bayesian Poisson matrix factorization model is

yij ∼ Poisson

(∑
k

likfjk

)
,

lk ∼ glk(·),

fk ∼ gfk(·).

(5.12)

For Poisson distribution, the noise variables eij in the signal plus noise model (5.10) are

centered Poisson with variance
∑

k likfjk.

Applying the biwhitening to the matrix Y, we work with the model

Ỹ = D(û)LFTD(v̂) + Ẽ,

ẽij ∼ N(0, σ2ij),

lk ∼ glk(·),

fk ∼ gfk(·),

(5.13)

where û, v̂ are obtained from the Sinkhorn-Knopp algorithm. We can regard the biwhitening

transformation as a variance stabilizing procedure, while it preserves the rank of the signal,

and more importantly preserves the identity link function. Then we can apply EBNMF to

the matrix Ỹ , with row and column scaling factors û, and v̂. Biwhitening also preserves

the 0’s in the original data matrix so we can exploit the data sparsity for faster algorithms.

Note that the model (5.13) is an extended version of EBMF by allowing the known row and

column scaling matrices. The algorithm for the scaled EBMF is given in Appendix D.3. The
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extension to allow smoothed loadings and/or factors are also straightforward, by combining

the scaled EBMF with smoothness-inducing priors, as shown in Appendix D.2.

The model (5.13) can be further written as

Y = LFT + E ,

ϵij ∼ N(0, σ2ij/(û
2
i v̂

2
j )),

lk ∼ glk(·),

fk ∼ gfk(·),

(5.14)

where E = D−1(û)ẼD−1(v̂). In this model, the matrix Y is the original count matrix, while

the errors are scaled by the û and v̂. This formulation is simpler in that it involves merely

altering the error structures based on a variance-stabilizing procedure, such as biwhitening.

More broadly, one could propose different error structures. For instance, one might scale the

error term with an estimate of the mean of Y .

5.3.3 Numerical examples

We illustrate the benefits of biwhitening EBNMF on a simple simulated example, and com-

pare it with three other NMF models. The first one is the Poisson matrix factorization

model studied in Carbonetto et al. [2021], and we use the function fit_poisson_nmf in R

package fastTopics. The fit_poisson_nmf function does not make sparsity assumption

on loadings and factors. The second NMF model is studied in DeBruine et al. [2021], and we

use the function nmf in R package RcppML. The function has an option to regularize loadings

and factors by l1 penalty but only allows a single one for all loadings and another one for

all factors. The last NMF implementation is due to Gaujoux and Seoighe [2010], and we

use the function nmf in R package NMF. Specifically the algorithm “snmf/l” solves the sparse

NMF model proposed in Kim and Park [2007]. The model uses l1 penalty for inducing spar-
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sity: minL,F 1/2(||Y −LFT ||2F + η||F ||2F + β(
∑

i ||L[i, :]||21)) s.t. L ≥ 0, F ≥ 0. However the

function does not support l1 penalization on both loadings and factors, and difference loss

function than the quadratic loss. To distinguish the two NMF functions, we denote them as

RcppML::nmf and NMF::nmf.

We generate the count matrix as follows. The matrix dimension is set to be n = 99, p = 300,

and there areK = 4 latent factors. The first three loadings are sparse, with non-zero elements

l1,1:33, l2,34:66, l3,67:99 all being 1’s and all other elements are 0’s. The elements of the fourth

loading are sampled from 1+α×Unif(0, 1), where α is a scalar that controls the proportion of

variance explained (PVE) of the fourth factor. For the factors, the first three are sparse, with

non-zero elements f1,1:100,f2,101:200,f3,201:300 sampled from 1+10×Unif(0, 1), and all other

elements are 0’s. The elements of fourth factor are sampled from 1 + α× Unif(0, 1).

For the two NMF models with sparsity constraints, we ran each model 10 times with different

initialization seed, and keep the one with smallest squared error. For RcppML::nmf, we set

the both l1 penalty parameters for L and F to be 0.99 (the allowed range is [0, 1)). For

NMF::nmf, we set the l1 penalty for loading to be β = 0.5. When running the function,

out of the 10 runs, 8 of them are not converged, and the warning message says “Too many

restarts due to too big beta value”. We set α = 3. After the model fittings, we scale the

factors such that each factor fk has norm 1, and multiply the corresponding scaling scalar

for each factor to each lk.

Figure 5.8 shows the true and estimated loadings. The estimated L and F from Poisson

matrix factorization are not sparse because there’s no such penalization in fit_poisson_nmf.

The biwhitening EBNMF is able to recover the sparse loadings and the sparsity patterns

match the true ones. It also stops adding factors at K = 4 thus also selects the true K

automatically. For RcppML::nmf,though we have set the l1 penalty to be near the upper

bound of the allowed range, the estimated L and F from RcppML::nmf are not sparse. For
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NMF::nmf, it gives sparse loadings with β = 0.5. However setting β to be smaller will not give

sparse estimates. Thus the choice of β is important but the package does not have built-in

method for selecting it. The next Figure 5.9 shows the true and estimated factors. Only the

biwhitening EBNMF method was able to recover sparse factors, whereas all other methods

failed, regardless of whether a penalty was applied or not. We also repeat the experiment

with α = 5, and similar results are observed.

In the second numerical study, we revisit the SPNMF example outlined in section 5.2.3.

The data generating process remains the same as in the previous section, but we fit the

biwhitening EBNMF model with a point exponential prior on loadings and a wavelet prior

on factors. It is important to note that the wavelet prior is a smoothness-inducing prior,

but it does not guarantee non-negativity of the factors. For comparison purposes, we have

included results where both the loadings and factors have point exponential priors. We

opt for the NDWT version of the “smash” method to smooth the factors when running

simulations with larger signals, as the NDWT method generally offers a better fit. While

this method lacks a clear objective function, we found in simulations with larger signals that

the ELBO typically increases after every step in greedy and back-fitting in EBMF. However,

this was not the case with simulations involving smaller signals, where we ultimately chose

to use the DWT method to smooth factors. In Figure 5.10, the biwhitening EBNMF with a

wavelet prior on factors successfully recovers the first factor. However, for the second factor,

the estimated factor displays two “lower” negative regions that correspond to the first factor.

This is likely due to the unconstrained smoothing of the factors, which does not guarantee

non-negativity. We observe that the biwhitening EBNMF with sparse non-negative priors

successfully recovers the true factors’ patterns, albeit less smoothly. Similar observations

can be seen in Figure 5.11, where the smoothing helps visualize the small jumps in the

factors.
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Figure 5.8: Simulation example of biwhitening EBNMF. Plot of estimated loadings from
comparing methods.
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Figure 5.9: Simulation example of biwhitening EBNMF. Plot of estimated factors from
comparing methods.
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Figure 5.10: Simulation example of biwhitening EBNMF with smooth factors (uncon-
strained). In the true factor, the shorter step size is 5, a half of the larger one.
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Figure 5.11: Simulation example of biwhitening EBNMF with smooth factors (uncon-
strained). In the true factor, the shorter step size is 1, one fifth of the larger one.
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5.3.4 GTEx data analysis

We compared the biwhitening EBNMF with Poisson NMF fit on GTEx V8 data (dbGaP

Accession phs000424.v8.p2). The dataset was downloaded from GTEx portal, and we ana-

lyzed a subset of genes studied in Dey et al. [2017] and they are available at http://stephe

nslab.github.io/count-clustering/project/utilities/gene_names_all_gtex.txt.

The final data matrix has 15, 153 gene expressions on 17, 382 samples. The samples are from

30 main tissues (and 54 tissues with finer classification).

We fit Poisson NMF with K = 20 using fit_poisson_nmf function, and biwhitening

EBNMF with Kmax = 20. The current implementation of biwhitening EBNMF does not

support back-fitting so the results are from greedy fitting only. For visualization, we use the

structure plot in Dey et al. [2017]. Originally the structure plot is for the loading (member-

ship) matrix in a multinomial topic model. Here we show the structure plot for the loading

matrix, after scaling each factor to have unit norm. For biwhitening EBNMF, we remove the

first factor because it corresponds to a mean factor. Figure 5.12 shows the structure plots

of estimated loadings by biwhitening EBNMF, and Poisson NMF. For tissues that clearly

have their corresponding factor, for example muscle and pancreas, both methods are able

to highlight the factor. The biwhitening EBNMF seems to find more mixture components.

For example, there are mixture of different factors for cultured fibroblasts, and whole blood

found by biwhitening EBNMF while the Poisson NMF finds one dominating factor for these

two tissues. For some tissues, due to sparsity constraint, the biwhitening EBNMF is able to

give a clearer visualization of the membership. For example the artery tissue.

We further ran the models on brain tissue samples only, with 15,147 gene expression in 2,642

samples. There are total 13 tissues from brain. We fit topic model with K = 6 (as done in

Dey et al. [2017]), and biwhitening EBNMF with Kmax = 6. Again we removed the mean

factor from biwhitening EBNMF for visualization. Overall the mixture profiles learned by
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Figure 5.12: Structure plot of estimated loadings by biwhitening EBNMF (left), and Poisson
NMF (right) on GTEx V8 data.
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Figure 5.13: Structure plot of estimated loadings by biwhitening EBNMF (top), and Poisson
NMF (bottom) on brain tissues.

the two models are similar. On the other hand, due to the sparsity constraint, we can clearly

read from the top structure plot in Figure 5.13 that the factor 3 is primarily for Cerebellar

Hemisphere and Cerebellum.

5.4 Discussion

In this chapter, we examined two methods for EB Poisson matrix factorization, and demon-

strated how both frameworks can be extended to accommodate spatially-structured loadings

119



and/or factors. The first method EBPMF directly models count data, and it decomposes

the matrix factorization problem into EBPM problems. The second method builds upon a

recently proposed biwhitening approach for estimating the rank of a count matrix, and we

have shown that it can be potentially viewed as a variance stabilizing transformation. This

reduces the Poisson matrix factorization problem to a Gaussian one, allowing us to apply

the EBNMF method to the transformed data. We have also illustrated the performance of

these models through simulation studies and real data analysis. By incorporating sparse or

smooth constraints on the latent structures, we have been able to achieve more interpretable

results and more visually appealing visualizations.

We have employed the wavelet denoising method when the factors are assumed to be smooth.

This method has been extensively studied and well established, and is particularly attrac-

tive due to its fast computation and local adaptability. However, it also carries certain

assumptions that limit its application to matrix factorization problems. Specifically, the

observations should be equally spaced, and their length must be a power of 2. When these

assumptions are violated, one can employ interpolation and/or reflection. Additionally, it is

typically assumed that the variance of each observation is constant, ensuring that the empir-

ical wavelet coefficients are homogeneous and independent. In the presence of heterogeneity,

the wavelet transformation leads to dependent empirical wavelet coefficients. When applying

the empirical Bayes shrinkage method to empirical wavelet coefficients, a common approach

is to ignore the correlations. However, all these methods for rectifying assumption viola-

tions are approximations and they modify the original objective function. Consequently, the

overall ELBO in the EB matrix factorization problem may not increase after each update in

the variational inference algorithm, potentially leading to issues in model selection and val-

idation. Therefore, a future direction could involve developing other EB normal smoothing

methods, such as the Gaussian process (Seeger [2004]), trend filtering (Kim et al. [2009]),

and splines (Perperoglou et al. [2019]).
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Code and data availability

The SPNMF method is implemented in R package ebpmf at https://github.com/Don

gyueXie/ebpmf. The biwhitening methods are implemented in R package, available at

https://github.com/DongyueXie/funflash.

Code for understanding biwhitening is at https://github.com/DongyueXie/SMF/blob/mas

ter/analysis/biwhitening.Rmd. Code for producing the comparison between biwhitening

EBNMF and other methods is at https://github.com/DongyueXie/SMF/blob/master/an

alysis/biwhitening_PMF.Rmd. Code for producing the biwhitening smoothed EBNMF is

at https://github.com/DongyueXie/SMF/blob/master/analysis/biwhitening_SPMF.

Rmd.

The GTEx data are downloaded from GTEx portal with the release version V8. A detailed

preparation guide is at https://github.com/DongyueXie/SMF/blob/master/analysis/g

tex_v8.Rmd. Code for running the GTEx analysis is at https://github.com/DongyueXi

e/SMF/blob/master/code/GTEx_V8_thesis.R, and the for producing the structure plots is

at https://github.com/DongyueXie/SMF/blob/master/analysis/biwhitening_ebnmf

_gtex.Rmd.
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APPENDIX A

DERIVATIONS OF VEBPM

A.1 Variational Gaussian posterior approximation for Poisson

data

We review the variational Gaussian posterior approximation (VGA) of Poisson data. In this

sub-problem, the prior distribution on µj is Gaussian with known mean and variance, and

the posterior distribution is restricted to a Gaussian distribution. For simplicity we drop the

subscript j and focus on the univariate distribution. The model is

y|µ ∼ Poisson(s exp(µ)),

µ ∼ N(θ, σ2),

(A.1)

where s, θ and σ2 are known scalars, and s > 0.

We restrict the posterior distribution of µ to be a Gaussian distribution, q(µ) = N(µ; µ̄, v).

The posterior mean and variance are estimated by maximizing the ELBO

ˆ̄µ, v̂ = argmax
µ̄,v

F (µ̄, v), (A.2)

where

F (µ̄, v) = E log p(y, µ)− E log q(µ)

= yµ̄− seµ̄+v/2 − µ̄2 + v − 2µ̄θ

2σ2
+

1

2
log v + const.

(A.3)

Minimizing −F (µ̄, v) is a convex problem, and can be solved efficiently with convex opti-

mization methods. It can be further reduced to a univairate optimization problem, as shown
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in Section 4.3.1.

A.2 VEBPM: ash prior and Gaussian mixture posterior ELBO

The ELBO is

FGM,GM =Eq

∑
j

(log p(yj |µj) + log p(µj , zj)− log q(µj , zj))

=
∑
j,k

ϕjk

(
yj µ̄jk − sje

µ̄jk+Vµjk/2
)

+
∑
j,k

ϕjk

(
log πk −

1

2
log σ2k −

1

2σ2k
(µ̄2jk + Vµjk − 2µ̄jkθ + θ2)

)

−
∑
j,k

ϕjk log ϕjk +
∑
j,k

ϕjk
1

2
log Vµjk

:=
∑
j,k

ϕjk∆jk.

(A.4)

A.3 Seeger and Bouchard [2012] lower bound

The key property of the link function is its second derivative is bounded. Consider the

model

yj |µj ∼ Poisson(log(1 + exp(µj))),

µj ∼ g(·).
(A.5)

The negative log-likelihood is f(µ) = − log p(y|µ) = log(1 + eµ) − y log log(1 + eµ). The

function f(µ) is twice differentiable and f ′′(µ) ≤ κ where κ = 0.25 + 0.17ymax, and ymax =

max(y).
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By Taylor’s Remainder Estimation Theorem, an upper bound of f(µ) is

f(µ) ≤ f(µ̃) + f ′(µ̃)(µ− µ̃) + κ

2
(µ− µ̃)2 := h(µ; µ̃). (A.6)

Instead of using log p(y|µ), we can now replace it by h(µ; µ̃) in the ELBO. The parameter µ̃

is a variational parameter and can be optimized together with q, g. The new optimization

problem is

min
q,g,µ̃

Eq h(µ; µ̃) +DKL(q||g). (A.7)

The algorithm iterates between the following two steps until convergence:

1. Update µ̃ = Eq(µ).

2. Update q̂, ĝ = EBNM(µ̃− f ′(µ̃)/κ,
√
1/κ), where f ′(µ) = eµ(−y+log(1+eµ))

(1+eµ) log(1+eµ)
.

The iterations are stopped when the increase of ELBO is smaller than a pre-specified toler-

ance.

A.4 Negative Binomial approximation with fixed r

Poisson distribution is a limiting distribution of negative binomial distribution. Consider a

negative binomial distributed random variable

yj ∼ NB(r, pj), (A.8)

where p(y; r, p) ∝ py(1 − p)r. When r → ∞, NB(r, p) converges to a Poisson distribution

with parameter rp/(1− p).
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We assume a prior on the pj as

log
pj

1− pj
= µj ∼ g(·). (A.9)

Under this specification, the approximated Poisson mean parameter is λ = reµ.

In this section we examine two methods that formulate quadratic ELBO and can take advan-

tage of EBNM results. The first method is based on the Pólya-Gamma (PG) augmentation

proposed by Polson et al. [2013]. The method introduces a latent variable such that the

log-likelihood function of µ is quadratic. The second method is based on the lower bound

introduced by Jaakkola and Jordan [1997] (JJ), which is used for performing variational

inference for logistic regression. For this method, we use the lower bound to solve the neg-

ative binomial mean problem. Durante and Rigon [2019] showed that the JJ lower bound

is equivalent to the ELBO when using PG augmentation for variational inference in logis-

tic regression. At the end of this section, we will show that the objective functions in two

methods are also equivalent for Negative Binomial model.

Pólya-Gamma Augmentation

We introduce a variable ωj ∼ PG(yj + r, 0), and according to Theorem 1 in Polson et al.

[2013], we have

p(y; r, µ) =

(
y + r − 1

y

)
(eµ)y

(1 + eµ)y+r

=

∫ (
y + r − 1

y

)
2−(y+r)e−

ω
2 µ

2+y−r
2 µp(ω)dω

=

∫
p(y, ω; r, µ)dω.

(A.10)
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The joint distribution of y, ω, µ is

p(y, ω, µ) = p(y, ω|µ; r)g(µ) =
(
y + r − 1

y

)
2−(y+r)e−

ω
2 µ

2+y−r
2 µp(ω; y + r, 0)g(µ). (A.11)

We assume the posterior factorizes as

q =
∏
j

qωj (ωj)qµj (µj).

The ELBO is

F (q, g, r) =
∑
j

E
(
−
ωj
2
µ2j +

yj − r
2

µj

)
+
∑
j

E log
pω(ωj)

qωj
+
∑
j

E log
pµ(µj)

qµj

+
∑
j

(log Γ(yj + r)− log Γ(r)− (yj + r) log 2)

(A.12)

We develop the updates in the CAVI algorithm below.

Update qω

According to Theorem 1 in Polson et al. [2013], the update of qωj is

qωj = PG

(
yj + r,

√
µ2j

)
,

where µ2j = Eq µ
2
j .

Update qµ, gµ
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The ELBO for g(µ), qµj is

F (q(µ), g) =
∑
j

E
(
−1

2
ω̄jµ

2
j +

yj − r
2

µj

)
+ E log

g(µ)

qµ
,

=
∑
j

E− 1

2ω̄−1j

(
µj −

yj − r
2ω̄j

)2

+ E log
g(µ)

qµ

(A.13)

where ω̄j = Eq ωj . The objective function is the same as the one for the following EBNM

problem

(q, ĝ) = EBNM

(
yj − r
2ω̄j

,
√
ω̄−1j

)
.

Calculation of the ELBO

We show that the KL divergence between qωj and p(ω) in ELBO (A.12) can be calculated

explicitly. Note that p(ω) = PG(ω; b, 0), q(ω) = PG(ω; b, c) where b = y + r, c =

√
µ2, we

have

E log
p(ω)

q(ω)
= E log

cosh−b(c/2)

e−
c2
2 ω

= log cosh−b(c/2) +
c2

2
Eω. (A.14)

The KL divergence between qµ and g(µ) can be obtained from EBNM objective as the

objective of EBNM is the log marginal likelihood and has explicit form.

Optional: Update r

When solving Poisson mean problem, we may fix r to be a large number. In the context of

negative binomial mean problem, we study if r can be also estimated. The objective function
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F (r) is

F (r) =
∑
j

(
−r
2
µ̄j − r log cosh(

√
µ2j/2) + log

(
yj + r − 1

yj

))
−Nr log 2

= r(∆−N log 2)−N log Γ(r) +
∑
j

log Γ(yj + r),

(A.15)

where

∆ =
∑
j

(
−1

2
µ̄j − log cosh(

√
µ2j/2)

)
.

Its derivative is

F ′(r) = ∆−N log 2−Nψ(r) +
∑
j

ψ(yj + r), (A.16)

where ψ(·) is the digamma function. Thus we can use a standard optimization method to

find optimal r within the CAVI algorithm.

JJ Lower Bound

Jaakkola and Jordan [1997] introduced a lower bound on the log logistic function, by first

writing it as

− log(1 + e−x) =
x

2
− log(exp(x/2) + exp(−x/2)), (A.17)

then lower bound the latter part by a first order Taylor expansion in the variable x2, as

− log(exp(x/2) + exp(−x/2)) ≥ −ξ
2
− log(1 + e−ξ)− 1

2ξ
tanh(ξ/2)(x2 − ξ2). (A.18)

This lower bound is exact whenever ξ2 = x2. The log-likelihood of µ in model (A.8) can
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then be lower bounded by

l(µ) =
∑
j

log p(yj |µj)

=
∑
j

yjµj −
yj + r

2
µj − (yj + r) log(eµj/2 + e−µj/2) + log Γ(yj + r)−N log Γ(r)

≥
∑
j

yjµj −
yj + r

2
µj + (yj + r)(−

ξj
2
− log(1 + e−ξj )− 1

4ξj
tanh(ξj/2)(µ

2
j − ξ

2
j ))

+ log Γ(yj + r)−N log Γ(r)

:=l̃(µ; ξ).

(A.19)

Replacing l(µ) by l̃(µ; ξ) in the ELBO, the new objective function to be maximized is

F (q, g, r, ξ) = Eq

∑
j

l̃(µj ; ξj) +
∑
j

Eq log
g(µj)

qµj
. (A.20)

The variational algorithm iterates over the following two steps until convergence

1. Update ξ2j = Eq(µ
2
j ).

2. Update (q̂, ĝ) = EBNM((yj − r)s2j/2, sj), where s2j = 2ξj/((yj + r) tanh(ξj/2)).

Optional: Update r

The objective function for estimating r is

F (r) = r∆+
∑
j

log Γ(yr + r)−N log Γ(r), (A.21)
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where

∆ =
∑
j

−
ξj
2
− log(1 + e−ξj )− 1

4ξj
tanh(ξj/2)(µ

2
j − ξ

2
j )−

µ̄j
2
.

The next theorem shows the equivalence of using JJ lower bound and PG augmentation in

variational inference.

Theorem A.4.1. The objective functions using PG augmentation and JJ lower bound are

the same when ξj =
√
µ2j .

Proof. Let ξj =
√
µ2j , then

FPG(q, g, r) =
∑
j

E
(
−
ωj
2
µ2j +

yj − r
2

µj

)
+
∑
j

E log
pω(ωj)

qωj
+
∑
j

E log
pµ(µj)

qµj

+
∑
j

(log Γ(yj + r)− log Γ(r)− (yj + r) log 2)

Eq ω
=
∑
j

E
(
−
yj + r

4ξj
tanh(ξj/2)µ

2
j +

yj − r
2

µj

)

+
∑
j

(
−(yj + r) log cosh(ξj/2) +

ξj(yj + r)

4
tanh(ξj/2)

)

+
∑
j

E log
pµ(µj)

qµj
+
∑
j

(log Γ(yj + r)− log Γ(r)− (yj + r) log 2)

cosh(x)=1+e−2x

2e−x
= FJJ (q, g, r, ξ).

(A.22)

A.5 Derivatives in gradient-based VEBPM

A.5.1 Compound method

∂h(z, s2, g)

∂z
= −l′S′ − l′NM −

(S − z)(S′ − 1)

s2
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∂h(z, s2, g)

∂s2
= −l′S′ − l′NM −

2s2(S − z)S′ − (S − z)2

2s4
− 1

2s2

∂h(z, s2, g)

∂g
= −l′S′ − l′NM −

(S − z)S′

s2

A.5.2 Inversion method
∂h(θ, g)

∂θ
=− l′(θ)−

∂lNM(zg(θ); g, s
2(θ))

∂θ

−
2s2(θ)(θ − zg(θ)(1− z′)− (s2(θ))′(θ − zg(θ))2

2(s2(θ))2
− (s2(θ))′

2s2(θ)
,

where
∂lNM(zg(θ); g, s

2(θ))

∂θ
=
∂lNM
∂z

∂z

∂θ
+
∂lNM
s2

∂s2(θ)

θ
.

Taking derivative of both side w.r.t. θ of

θ = Sg(zg(θ), s
2(θ)) = zg(θ) + s2(θ)l′NM(zg(θ); g, s

2(θ)),

gives

1 = z′ + (s2(θ))′l′NM + s2(θ)

(
l′′NMz

′ +
∂l′NM
∂s2

(s2(θ))′
)

=⇒z′ =
1− (s2(θ))′l′NM − s

2(θ)(s2(θ))′
∂l′NM
∂s2

1 + s2(θ)l′′NM
.

∂h(θ, g)

∂g
=−

∂lNM(zg(θ); g, s
2(θ))

∂g
−

2(zg(θ)− θ)
∂zg(θ)
∂g

2s2(θ)
,
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where
∂lNM(zg(θ); g, s

2(θ))

∂g
=
∂lNM
∂z

∂z

∂g
+
∂lNM
g

.

Taking derivative of both side w.r.t. g of

θ = zg(θ) + s2(θ)l′NM(zg(θ); g, s
2(θ)),

gives

∂z

∂g
= −

S2(θ)
∂l′NM
∂g

1 + s2(θ)l′′NM
.

A.5.3 Derivatives when using ash prior

Let f(z;w, s2) =
∑

k wkN(z;µ, σ2k + s2), and lNM(z;w, s2) = log f(z;w, s2).

Partial derivatives w.r.t z:

∂f(z;w, s2)

∂z
= −

∑
k

wk√
2π(σ2k + s2)

e
− (z−µ)2

2(σ2
k
+s2) (z − µ)

σ2k + s2

∂2f(z;w, s2)

∂z2
=
∑
k

wk√
2π(σ2k + s2)

e
− (z−µ)2

2(σ2
k
+s2)

(
(
(z − µ)
σ2k + s2

)2 − 1

σ2k + s2

)

∂3f(z;w, s2)

∂z3
=
∑
k

wk√
2π(σ2k + s2)

e
− (z−µ)2

2(σ2
k
+s2)

(
3(z − µ)
(σ2k + s2)2

− (
(z − µ)
σ2k + s2

)3

)

∂lNM(z;w, s2)

∂z
=

1

f(z;w, s2)

∂f(z;w, s2)

∂z
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∂2lNM(z;w, s2)

∂z2
=

1

f(z;w, s2)

∂2f(z;w, s2)

∂z2
−
(

1

f(z;w, s2)

∂f(z;w, s2)

∂z

)2

∂3lNM(z;w, s2)

∂z3
=
f ′′′

f
− 3f ′f ′′

f2
+

2(f ′)3

f3

Partial derivatives w.r.t s2:

∂f(z;w, s2)

∂s2
=
∑
k

wk

2
√
2π
e
− (z−µ)2

2(σ2
k
+s2) (σ2k + s2)−5/2((z − µ)2 − (σ2k + s2))

∂2f(z;w, s2)

∂z∂s2
=
∑
k

wk(z − µ)(3σ2k + 3s2 − (z − µ)2)
2
√
2π(σ2k + s2)7/2

e
− (z−µ)2

2(σ2
k
+s2)

∂lNM(z;w, s2)

∂s2
=

1

f(z;w, s2)

∂f(z;w, s2)

∂s2

∂2lNM(z;w, s2)

∂z∂s2
= − 1

f2
∂f

∂s2
∂f

∂z
+

1

f

∂2f

∂z∂s2

Partial derivatives w.r.t ak:

Recall wk = exp(ak)/
∑

l exp(al).

∂f

∂ak
=
eak(N(z; 0, σ2k + s2)

∑
l e

al −
∑

l e
alN(z;µ, σ2l + s2))

(
∑

l e
al)2

141



∂2f

∂z∂ak
=

zeak
(∑

l e
al

N(z;µ,σ2l +s2)

σ2l +s2
− N(z;µ,σ2k+s2)

σ2k+s2
∑

l e
al

)
(
∑

l e
al)2

∂lNM
∂ak

=
1

f

∂f

∂ak

∂2lNM
∂z∂ak

= − 1

f2
∂f

∂ak

∂f

∂z
+

1

f

∂2f

∂z∂ak

Derivatives w.r.t µ

∂f(z;w, s2)

∂µ
=
∑
k

wk√
2π(σ2k + s2)

e
− (z−µ)2

2(σ2
k
+s2) (z − µ)

σ2k + s2

∂2f(z;w, s2)

∂z∂µ
=
∑
k

wk√
2π(σ2k + s2)

e
− (z−µ)2

2(σ2
k
+s2)

(
(
(z − µ)
σ2k + s2

)2 − 1

σ2k + s2

)

Derivatives of objective function:

∂h

∂z
= ez+s2l′NM(1 + s2l′′NM)− (y − 0.5)(1 + s2l′′NM)− l′NM − s

2l′NMl
′′
NM

∂h

∂s2
= (ez+s2l′NM − y + 0.5)(l′NM + s2

∂l′NM
∂s2

)− ∂lNM
∂s2

− 1

2
(l′NM(z; g, s2))2 − s2l′NM

∂l′NM
∂s2

142



∂h

∂ak
= (ez+s2l′NM − y + 0.5)(s2

∂l′NM
∂ak

)− ∂lNM
∂ak

− s2l′NM
∂l′NM
∂ak

Derivatives of constraint function:

∂c

∂z
= 1 + evl′′NM

∂c

∂v
= 1 + ev(l′NM +

∂l′NM
∂v

)

∂c

∂ak
= ev

∂l′NM
∂ak

A.6 Additional simulation results

We show the run time and MSE of the log mean parameters here.
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Figure A.1: Run time (log2) and MSE (log mean parameter, relative to MLE) in simulation
study of VEBPM. Two plots correspond to simulation a, and b.
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Figure A.2: Run time (log2) and MSE (log mean parameter, relative to MLE) in simulation
study of VEBPM. Three plots correspond to simulation d, e, and f.
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APPENDIX B

SMOOTHING

B.1 Wavelet prior

A random vector µ of length 2T , T ∈ N is said to have a discrete wavelet prior if

p(Wµ) ∝
T−1∏
t=0

2t∏
ht=1

gt(·), (B.1)

where W is the DWT matrix, t indexes the levels of wavelet coefficients, ht indexes the

position of a wavelet coefficient at level t, and gt(·) is a prior distribution of the wavelet

coefficients at level t. Note that one of the element of Wµ is a scaled summation of µ

and we assume it has a flat prior. Because of the orthogonality of W , priors on wavelet

coefficients imply a unique prior distribution on the random vector µ. The family of discrete

wavelet prior is denoted as Gwavelet.

Suppose yi is normal distributed with mean µi and standard deviation s, for i = 1, 2, ..., 2L,

and µ follows a discrete wavelet prior

yi|µi ∼ N(µi, s
2), (B.2)

µ ∼ g(·), g ∈ Gwavelet. (B.3)

An empirical Bayes wavelet denoising (EBWD) procedure proceeds with the following two

steps:

1. Estimate g by maximizing the marginal likelihood
∫
p(y|µ)g(dµ).

2. Compute the posterior distribution p(µ|y, ĝ).
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B.2 Additional simulation results
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Figure B.1: Plot of run time and RMSE in simulation study of smoothing count data. SNR
= 1, max-mean-count size = 10.
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Figure B.2: Plot of run time and RMSE in simulation study of smoothing count data. SNR
= 3, max-mean-count size = 5.
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Figure B.3: Plot of run time and RMSE in simulation study of smoothing count data. SNR
= 3, max-mean-count size = 10.
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Figure B.4: Plot of run time and RMSE in simulation study of smoothing count data. SNR
= 3, max-mean-count size = 100.
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Figure B.5: Visualization of fitted curves in simulation study of smoothing count data. SNR
= 1, clipped block function.
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Figure B.6: Visualization of fitted curves in simulation study of smoothing count data. SNR
= 1, angles function.
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Figure B.7: Visualization of fitted curves in simulation study of smoothing count data. SNR
= 1, bursts function.
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Figure B.8: Visualization of fitted curves in simulation study of smoothing count data. SNR
= 1, heavi function.
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B.3 Additional results for RNA-seq smoothing
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Figure B.9: Smooth RNA-seq data. VST + smash-Gaussian (heteroskedastic variance)
applied to gene expression RNA-seq data.
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Figure B.10: Smooth RNA-seq data. Recovered expression level of FTL gene.
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(a) Splitting method. σ̂2 = 1.14.
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(b) Likelihood expansion method (top 30% largest counts for nugget estimation).
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(c) Two-step method (heteroskedastic variance).

Figure B.11: Smooth RNA-seq data. Recovered expression level of FTH1 gene.
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B.4 Additional results for ChIP-seq smoothing
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Figure B.12: Smooth ChIP-seq data. Replicate 1 and 2, reverse strand.

158



APPENDIX C

A SPLITTING VARIATIONAL INFERENCE APPROACH

C.1 The objective function of qµ

We consider the induced model by integrating out b while keeps the likelihood. The marginal

density (prior) of µ is

f(µ; g, σ2) =

∫
N(µ|b, σ2)g(b)db. (C.1)

This model might be less interesting compared to the one on b. However we present the

results here for completeness. The ELBO for the induced model is

F̃ (qµ; g, σ
2) = E log

p(y|µ)
qµ

+ E log f(µ; g, σ2). (C.2)

On the other hand, the profiled ELBO for qmu, obtained by maxing qb out in (4.4) is defined

as

F (qµ; g, σ
2) = max

qb
F (qµ, qb; g, σ

2). (C.3)

The following theorem shows that the objective function maximized by splitting approach

is a lower bound of F̃ (qµ;σ2).

Theorem C.1.1. The profiled objective function F (qµ; g, σ
2) = maxqb F (qµ, qb;σ

2) is a

lower bound of F̃ (qµ; g, σ2).
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Proof. A second order Taylor series expansion of f(µ; g, σ2) in F̃ (qµ; g, σ2) around µ̄ gives

F̃ (qµ; g, σ
2) = E log

p(y|µ)
qµ

+ log f(µ̄; g, σ2) +
1

2

(
d2 log f(µ; g, σ2)

dµ2

∣∣∣∣
µ=θ

)
Vµ,

≥ E log
p(y|µ)
qµ

+ log f(µ̄; g, σ2)−
Vµ

2σ2

≥ E log
p(y|µ)
qµ

−
Vµ

2σ2
+max

qb
ELBO(qb; g, σ

2)

= max
qb

E log
p(y|µ)
qµ

−
Vµ

2σ2
− E

(µ̄− b)2

2σ2
− 1

2
log 2πσ2 + E log

g(b)

qb

= max
qb

F (qµ, qb; g, σ
2)

= F (qµ; g, σ
2),

where θ is between µ̄ and µ, and ELBO(qb; g, σ
2) = E logN(µ̄; b, σ2) + E log

g(b)
qb

is the

evidence lower bound for the empirical Bayes normal mean problem. The first inequality

holds due to Lemma 4.2.2, and the second inequality is due to the definition of ELBO.
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C.2 Additional results from the simple simulation
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Figure C.1: Plot of the loading matrices in simulation example of EBPMF. N = 100, p =
300, K = 3, σ2ij = 1. The signs of loadings are flipped so that the largest element of each
loading is positive, and scaled to be 1 for visualization purpose. In each plot, each column
is a loading, and colors of dots indicate groups.

C.3 Additional GEP plots, Trachea epithelial cells
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(a) Factor 2, basal cells.
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(b) Factor 3, tuft cells.
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(c) Factor 6, neuroendocrine cells. Genes showing on top of
the plot are labelled in red, and they also match the ones
detected in Montoro et al. [2018].

Figure C.2: Plot of factor 2 (basal), factor 3 (tuft) and factor 6 (neuroendocrine). Known
marker genes are labelled in black.
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APPENDIX D

EMPIRICAL BAYES MATRIX FACTORIZATION AND

EXTENSIONS

D.1 EBPMF (identity link) rank-K model

The evidence lower bound is for rank-K EBPMF model is

F (q, g) = Eq log p(X,Z|L,F )− EqZ log qZ(Z)−DKL(qL||gL)−DKL(qF ||gF )

=
∑
i,j

Eqzij
log δ

(
xij −

∑
k

zijk

)
+
∑
k

∑
i,j

Eq log p(zijk|lik, fjk)

−
∑
i,j

Eqzij
log qzij −

∑
k

DKL(qlk ||glk)−
∑
k

DKL(qfk ||gfk)

=
∑
i,j,k

z̄ijk(log lik + log fjk − log πijk)−
∑
i,j,k

l̄ikf̄jk

−
∑
k

DKL(qlk ||glk)−
∑
k

DKL(qfk ||gfk),

(D.1)

where log lik := E log lik, log fjk := E log fjk, and z̄ijk := E zijk.

Given qL, qF , conditional on the summation xij , the posterior distribution of zij is multino-

mial, and we have

qzij = Multinom(zij ;xij ,πij), (D.2)

where πij = (πij1, πij2, ..., πijK), and

πijk =
exp(E log lik + E log fjk)∑
k′ exp(E log lik′ + E log fjk′)

. (D.3)
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Thus,

z̄ijk = xijπijk. (D.4)

D.2 Extension of EBMF allowing smoothing loadings and factors

In standard factor analysis, a matrix is factorized to a product of loadings and factors. Here

we consider the case where each factor is spatially-structured and we use a wavelet approach

to account for the smoothness.

Consider the model

Y = LFT + E, (D.5)

where Y is an n × p matrix of observed data, L is an n ×K loading matrix, F is a p ×K

factor matrix and E is an n× p residual matrix.

Wang and Stephens [2021] introduced empirical Bayes matrix factorization(EBMF) that

assumes sparsity-inducing priors on the loadings and factors and estimates prior from the

observed data. The EBMF model is

Y =
∑
k

lkf
T
k + E, (D.6)

lk1, ..., lkn ∼ glk , glk ∈ Gl, (D.7)

fk1, ..., fkp ∼ gfk , gfk ∈ Gf , (D.8)

Eij ∼ N(0, 1/τij). (D.9)

When the rows of EY are spatially-structured so each factor fk is a curve, the prior gfk

should properly impose the smoothness constraint. We consider the well-studied wavelet de-
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noising approach. For simplicity, we assume p = 2T , T ∈ N and E ∼MN(0n×p,Σn×n, Ip×p)

where MN(·) is a matrix normal distribution and Σ is a diagonal matrix with elements

σ2i , i = 1, 2, ..., n.

To induce smoothness on factors, we assume a wavelet prior (B.1) on each factor as

fk ∼ gfk,wavelet(·). (D.10)

The updates of q, g are given in algorithm 1, Wang and Stephens [2021], and they are

obtained by solving an empirical Bayes normal mean (EBNM) problem. In our context,

the only difference is that EBNM problem becomes the empirical Bayes wavelet denoising

problem.

The objective function for updating qfk , gfk is

F (qf , gf ) = Eqfk

−1

2

∑
j

(Akf
2
kj − 2Bjkfkj)

+ Eqfk
log

gfk
qfk

, (D.11)

where Ak =
∑

i τi Eql l
2
ik and Bjk =

∑
i τiR

k
ij Eql lki, R

k
ij = yij −

∑
k′ ̸=k l̄k′if̄k′j .

Due to Lemma 2 in Wang and Stephens [2021], solving the EBWD problem solves

max
qθ,g

FWD(qθ, g),

where

FWD(qθ, g) = Eqθ

(
−1

2

∑
i

(s−2i θ2i − 2xis
−2
i θi)

)
+ Eqθ log

g(θ)

qθ(θ)
. (D.12)

Thus when updating qfk , gfk , we can simply solve the EBWD problem with observations
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Bjk
Ak

for j = 1, 2, ..., p and standard deviation A−1/2k .

D.3 Scaled EBMF

We solve a scaled version of EBMF (Wang and Stephens [2021]). The model is

Y = ALFTB + E + E ,

lk ∼ glk ,

fk ∼ gfk ,

eij ∼ N(0, σ2ij),

ϵij ∼ N(0, s2ij)

A = diag(a1, ..., an),

B = diag(b1, ..., bp)

(D.13)

where A,B are known diagonal scaling matrices, each entry of E is a random Gaussian

variable with zero mean and known variance s2ij , and E is the unknown random error matrix

with mean 0.

One example of the scaling factors is from the transformation of Poisson matrix by the

biwhitening method introduced in Landa et al. [2022].

The objective function ELBO is

F (q) = E log p(Y |L, F ;σ2, s2, A,B) +
∑
k

E log
glk
qlk

+
∑
k

E log
gfk
qfk

(D.14)
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D.3.1 Update variance parameters

The objective function is

F (σ2) = −
∑
i,j

(
log(σ2ij + s2ij) +

R2
ij

σ2ij + s2ij

)
, (D.15)

where

R2
ij = E

(
yij − aibj

∑
k

lkifkj

)2

=

(
yij − aibj

∑
k

l̄kif̄kj

)2

+ a2i b
2
j

(∑
k

l̄2kif̄
2
kj −

∑
k

(l̄ki)
2(f̄kj)

2

) (D.16)

We can assume constant, row-specific, col-specific variances. With the appearance of s2ij , we

need to solve a root-finding problem.

D.3.2 Update loadings and factors

Define Rk
ij = Yij − aibj

∑
k′ ̸=k l̄k′if̄k′j .

The objective function for updating qlk , glk is

F (qlk , glk) = E

(
−1

2

∑
i

(Aikl
2
ki − 2Biklki)

)
+
∑
k

E log
glk
qlk

, (D.17)

where

Aik = a2i
∑
j

b2j f̄
2
jk/(σ

2
ij + s2ij),

Bik = ai
∑
j

Rk
ijbj f̄jk/(σ

2
ij + s2ij).

(D.18)
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Based on the prior of lk, we can solve an ebnm problem with xi = Bik/Aik and s2i =

1/Aik.

For updating qfk , gfk , we have

Ajk = b2j
∑
i

a2i l̄
2
ik/(σ

2
ij + s2ij),

Bjk = bj
∑
i

Rk
ijail̄ik/(σ

2
ij + s2ij).

(D.19)

D.4 Empirical Bayes multiscale Poisson smoothing

For Poisson data, a multiscale decomposition, an analogy to the Haar wavelet transformation

was studied in Kolaczyk [1999] and Timmermann and Nowak [1999]. Suppose we observe

a Poisson sequence xi ∼ Poisson(sλi), for i = 1, 2, ..., n, n = 2J where J is a positive

integer, and s is a known positive scaling scalar. A Haar wavelet like decomposition of the

sequence xi is defined as follows. Let j = 0, 1, ..., J − 1 denote scale and l = 0, 1, ..., 2j − 1

denote location. The Poisson multiscale decomposition of a Poisson sequence is based on

the following properties of Poisson distributions

x1 + x2 ∼ Poisson(s(λ1 + λ2)),

x1|(x1 + x2) ∼ Binom(x1 + x2, λ1/(λ1 + λ2)).

The parameters λ1, λ2 are re-parameterized to µ = λ1 + λ2, p = λ1/(λ1 + λ2). For a

length N = 2J sequences, we can re-parameterize λ to µ = λT1 and binomial probabilities

p = (pjl), where |p| = N − 1. Following this decomposition, we can re-write x in a recursive
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dyadic partition (RDP) way as

xJ,l := xl+1, for l = 0, 1, ..., N − 1,

xj,l := xj+1,2l + xj+1,2l+1.

(D.20)

The likelihood of sequence x is

p(x|λ) =
n∏
i

p(xi|λi)

= p(x0,0|µ)×
J−1∏
j=0

2j−1∏
l=0

p(xj+1,2l|xj,l, pj,l)

= Poisson(x0,0;µ)×
J−1∏
j=0

2j−1∏
l=0

Binom(xj+1,2l;xj,l, pj,l).

(D.21)

One can estimate a spatially-structured λ by shrinkage estimation of p towards 1/2, as in

Kolaczyk [1999] and Timmermann and Nowak [1999]. Or equivalently, shrinkage estimation

of the log odds ratio α = log p
1−p towards 0, as in Xing et al. [2021]. Similar to the wavelet

denoising for homogeneous Gaussian data, current multiscale Bayesian methods transform

original sequence x to empirical multiscale coefficients xj,l and assume a shrinkage prior on

pjl for each scale. Hence for each level, we solve the following problem

xj+1,2l|pj,l ∼ Binom(xj,l, pj,l),

pj,l ∼ gj(·).
(D.22)

After shrinkage estimation of pjl for each scale separately, an estimate of λ can be obtained

by transforming the decomposed sequence back to original space.

The multiscale Bayesian method has been shown to work well in practice, however, it’s un-

clear what the objective function is. In homogeneous Gaussian denoising problem, the DWT
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matrix is orthogonal so the empirical Wavelet coefficients are all independent across scale

and locations. While the Poisson multiscale decomposition is not an orthogonal transforma-

tion and xj,l are clearly not independent across scales. Thus it’s unclear what the objective

function the method is optimizing. Here we re-formulate the problem in a variational Bayes

context and show that the method is maximizing an evidence lower bound.

D.4.1 Empirical Bayes Binomial probability

We first introduce a sub-problem called Empirical Bayes Binomial Probability (EBBP).

Assume the model

xi|pi ∼ Binom(ni, pi)

pi ∼ g(·).
(D.23)

Since our primary goal is to shrink pi towards a half, we put the following mixture of beta

prior (Timmermann and Nowak [1999]) on pi with mode 1/2,

g(·) = π0δ(0.5) +
∑
k

πk Beta(ak, ak), (D.24)

where ak are fixed and span a large grid. The primary reason of the prior choice is its

conjugacy, such that the marginal likelihood and posterior can be expressed in closed forms.

An empirical Bayes procedure proceeds with the following two steps:

1. Estimate π by π̂ = argmaxπ log l(x|π) where l(x|π) =
∫
p(x|p)g(p)dp.

2. Calculate the posterior p(pi|yi, ni, π̂).

170



The log marginal likelihood of x is

l(x|π) =
n∑

i=1

log

π0 Binom(xi|ni,
1

2
) +

K∑
k=1

πk Bb(xi|ak, ak, ni)

 , (D.25)

where Bb(x|α, β, n) is the pdf of Beta-binomial distribution.

The posterior distribution is then

p(pi|xi, ni, π̂) = π̃i0δ1
2
(pi) +

K∑
k=1

π̃ik Beta(pi; ak + xi, ak + ni − xi), (D.26)

where

π̃i0 =
π̂0 Binom(xi|ni, 12)

π̂0 Binom(xi|ni, 12) +
∑K

k=1 π̂k Bb(xi|ak, ak, ni)
,

π̃ik =
π̂k Bb(xi|ak, ak, ni)

π̂0 Binom(xi|ni, 12) +
∑K

k=1 π̂k Bb(xi|ak, ak, ni)
.

(D.27)

For given probability densities on pi, denoted as qi, the objective function ELBO of EBBP

problem is

F (q, g) = Eq

∑
i

log p(xi|pi)−
∑
i

DKL(qi(pi)||g(pi)), (D.28)

where F (q, g) achieves its maximum at q̂i = p(pi|xi, ni, π̂) and ĝ = π̂, and the maximum

value is the marginal likelihood l(x|ĝ). This follows from the definition of ELBO.

D.4.2 Variational Bayes inference for Poisson multiscale smoothing problem

We can write the parameters λ as a function of µ,p

λi = µ

J−1∏
j=0

(pj,l(i))
ϵij (1− pj,l(i))

1−ϵij , (D.29)
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where ϵij = 1 if the λi goes to the left children node at scale j, and l(i) is the location of λi

at scale j. The full model is then

xi ∼ Poisson(sλi),

λi = µ

J−1∏
j=0

(pj,l(i))
ϵij (1− pj,l(i))

1−ϵij ,

pj,l ∼ gj(·).

(D.30)

We refer the prior on λi, induced by Eq.(D.29) and priors on pj,l, as a multiscale prior.

Assume the posterior distribution factorizes as

q(p) =
∏
j,l

qj,l(pj,l). (D.31)

Then the ELBO is

F (q, g) = Eq log p(x|λ)−DKL(q(p)||g(p))

= log p(x0,0; sµ)

+
∑
j

E
∑
l

log Binom(xj+1,2l;xj,l, pj,l)−DKL(qjl(pj,l)||gj(pj,l))

:= log p(x0,0; sµ) +
∑
j

Fj(q, g).

(D.32)

The estimate of µ is µ̂ =
∑

i xi/s. Notice that Fj(·, ·) has the same form as the EBBP

objective function (D.28). To maximize F (q, g), we can perform the EBBP for each scale j,

which is exactly the multiscale Bayesian method. We denote the mapping from (x, s) to (ĝ, q)

by the variational empirical Bayes Poisson multiscale smoothing method as EBMS(x, s) =

(ĝ, q).
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