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Abstract

Continued improvements to superconducting architectures have placed them as one of the

leading quantum systems. In particular, circuit quantum electrodynamics (cQED) combines

the strong interactions and controllability of superconducting circuits with the high coherence

times of 3D cavities. These features readily allow for the implementation a hardware-efficient

quantum processor, even with only a single nonlinear device. In this thesis, we explore one

such system that consists of a superconducting transmon qubit coupled to a 3D multimode

flute cavity that supports 9 modes with qubit-mode cooperativities exceeding 1 billion and

mode lifetimes ∼2 ms. First, we describe the system and demonstrate how to characterize it,

determining the parameters necessary to effectively generate and manipulate quantum states.

Next, we expand the cQED toolbox by extending state preparation techniques like photon

blockade and quantum optimal control to multiple modes, implementing qudits and a pure

multimodal interaction that can engineer the modes’ Hilbert space. We use this interaction

to easily generate entangled W states, which we demonstrate for up to 5 modes. Finally,

to accurately characterize our complex states, we develop a generalized Wigner tomography

method that functions even with imperfect parity measurements. We also introduce a new

Wigner tomography sampling method whose required number of observations scales poly-

nomially with subspace size, avoiding the traditional exponential scaling with mode number

for certain states and thereby allowing for much more efficient state reconstruction. The

developments presented in this work enables further study of complicated quantum states,

especially multimode ones, with applications in quantum simulation, quantum optics, and

quantum information.
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Chapter 1

Introduction

1.1 Quantum hardware and scaling up to a quantum

computer

Development of a quantum computer is one of the frontiers in contemporary technology.

This device promises computational capabilities that cannot be achieved with classical com-

puters, and has motivated intensive scientific investigation into quantum phenomena. The

fundamental building block of a quantum computer is the qubit, analogous to a classical bit,

with the main distinction being that instead of being exactly 0 or 1, the qubit can be in

any superposition between them. This can be experimentally implemented on any hardware

that supports a two-level system, such as atoms, superconducting circuits, trapped ions,

spins, and diamond vacancy centers, to name just a few. While the platforms may vary, the

long-term end goals are the same: to implement a quantum processor capable of demon-

strating quantum advantage, and to use that device to accomplish useful operations beyond

the capabilities of classical computers. Although the full realization of this technology is still

quite a ways out, steps are being taken every day to improve our understanding and ability

to manipulate quantum systems.

One category of challenges in developing quantum technology is effectively scaling up

the size of quantum systems. Like with a classical computer, we will need many qubits to

implement quantum algorithms. However, each additional qubit introduces extra sources of

error. On a related note, figuring out the geometry of how to physically contain or place

multiple qubits in a single device while retaining the ability to control all of them can be

another source of difficulty. Furthermore, effectively controlling the qubits while avoiding

1



unwanted stray couplings or interactions between them is another obstacle. These are large,

overarching problems that are only a small subset of the issues that will be overcome on the

way to developing a working quantum computer. With addressing some of these challenges

as motivation, throughout this thesis we will discuss a quantum device that offers a potential

avenue for efficiently scaling up the size of a quantum system.

1.2 Circuit Quantum Electrodynamics (cQED)

The specific hardware platform that we utilize in this thesis is superconducting circuits and

cavities. The study of the combination of these two types of devices is commonly referred to

as circuit quantum electrodynamics (cQED). This will be discussed in more detail in Chapter

2, but we provide a brief overview here.

As the name suggests, superconducting circuits are the quantum analog of classical cir-

cuits, and are essentially artificial atoms that can implement a qubit. This is accomplished

by combining a Josephson junction, which can be modeled as a nonlinear inductor, with

a capacitive element. The nonlinearity of the junction shifts the energy levels of this LC

oscillator so that they are no longer harmonic or equally spaced. Instead, there is some an-

harmonicity that allows us to target a single transition, such as the one between the ground

state and first excited state, to implement a two-level system that defines the qubit. These

artificial atoms are typically on the scale of hundreds of nanometers, and are operated at

microwave frequencies (∼GHz), though there are some prominent superconducting qubits

such as fluxonium or millimeter wave designs that deviate from these parameters.

Superconducting qubits have several advantages that have made them one of the leading

platforms for quantum computing. These features are the ability to create custom device

geometries and arbitrarily set the qubit transition frequency. In general, we can fabricate

these artificial atoms in whatever configuration and with whatever parameters we want,
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providing a great amount of flexibility in circuit design and optimization. Additionally, by

modifying the circuit layout, we can control the interaction strength or coupling of these

qubits with other components in our system. This can be used to engineer specific setups

such as chains or grids of qubits, and adjust or tune the coupling between each qubit pair

to obtain almost completely arbitrary connectivity that is limited only by the amount of

physical space available. Creating our own artificial atoms leads to these degrees of freedom

in the parameters of our quantum system and the Hamiltonian that defines it, offering

adjustable large anharmonicities, a wide range of tunability, and controllable interaction

strengths. These features make superconducting qubits an excellent candidate for creating

manipulable, large scale quantum devices.

The other main component in superconducting quantum systems is superconducting

cavities. Unlike qubits, they are intrinsically linear, and can be treated as a classical LC

harmonic oscillator. Nevertheless, they are still very useful in quantum systems, as they are

commonly used to couple to qubits and protect them from the environment and error sources

such as thermal noise. This is accomplished by modifying the measurement procedure to

observe the state of the cavity, which will be affected by the state of the qubit, instead

of directly measuring the qubit itself. This indirect readout process exposes the qubit to

fewer sources of error that are on resonance with its transition frequency and suppresses

the magnitude of such errors, thereby increasing the lifetimes or coherences of quantum

information stored in the device. For most effective operation, the qubit and cavity will

often be off-resonant with one another, such that the detuning is much larger than the

coupling between them. For ease of control, they will both usually still be in the microwave

frequency range.

Another application of superconducting cavities is their ability to act as a quantum mem-

ory or storage. Although they are intrinsically classical devices, by coupling to a qubit, they

can inherit some of its nonlinearity and support non-classical, quantum states. By engineer-

3



ing these resonators to have electromagnetic fields that live primarily in a lossless cavity

volume, we can create cavities with photon lifetimes that are an order of magnitude or more

longer than superconducting qubits, significantly enhancing the amount of time we have to

manipulate and work with quantum states prepared in them. Additionally, the large Hilbert

spaces of these cavities can be used for quantum error correction by encoding information

in specific states where certain types of errors are easily detectable and correctable. This

can further push the coherence of quantum information stored in these systems to increas-

ingly longer times. Finally, perhaps the most important feature with regards to scaling up a

quantum system is the hardware efficiency potential of superconducting cavities, in partic-

ular 3D cavities. These waveguide resonators can support a large forest of modes or cavity

sites at different microwave frequencies on a single physical device, and can be engineered

to create a naturally multiplexed architecture that only requires a few control lines. Like

superconducting qubits, these cavities are highly customizable, and we can design them for

whatever readout or storage parameters we desire.

By combining these components, we leverage the controllability of superconducting qubits

with the long lifetimes and hardware efficiency of superconducting cavities to create a highly

customizable, scalable quantum processor system. We couple our artificial atom with 3D

resonator modes through a dipole antenna. On this platform, we utilize a single qubit to

simultaneously and universally control many cavity modes, with the ability to easily generate

many-body and higher-order interactions between the modes. Besides using the cavity to

encode the state of the qubit as described earlier, we use this device for experiments in

quantum information processing, quantum simulation, and quantum metrology. As a final

note, treating these devices as modules and combining multiple copies of them offers a

promising avenue for increasing the size of an overall quantum system and scaling up to a

quantum computer.
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1.3 Overview of Thesis

In this thesis, we start in Chapter 2 by introducing our quantum hardware system and the as-

sociated control electronics and cryogenic setup. With a number of hardware innovations, we

are able to effectively operate a coupled superconducting transmon qubit and 3D multimode

flute cavity with lifetimes in excess of 100 µs and 2 ms, respectively, and with cooperativ-

ities > 109. In Chapter 3, we will describe the experiments necessary to fully calibrate the

parameters of this quantum system. This includes developing full control over the qubit

and cavity, as well as several operations that involve both components and can be used to

effectively engineer quantum states. After finishing the calibrations that allow us to precisely

control our hardware, in Chapter 4 we will discuss photon blockade, one specific control tool

that we apply to manipulate our system and generate interactions between photons that

live in distinct cavity modes. With this interaction, we can easily partition the multimode

cavity’s bosonic Hilbert space based on total photon number. We apply this tool to prepare

entangled multimode W states—states with a single photon shared between multiple cavity

modes—with only constant drives on the qubit and cavity. For more complicated controls,

we turn to Chapter 5 on quantum optimal control (QOC), the general term for numerically

optimizing pulses that achieve a target quantum state or gate. We summarize two particular

methods, GRAPE and PICO, and demonstrate QOC by preparing Fock states on a variety

of system Hamiltonians, such as a qubit and single cavity mode, a qubit and multiple cavity

modes, and a qutrit with a Hamiltonian engineered by the blockade. Finally, in Chapter 6

we describe how we efficiently measure the state of our quantum cavities with Wigner tomog-

raphy. We describe a technique that allows us to perform the tomography even in imperfect

conditions, which we apply to simultaneously measure multiple modes. We then present a

tomography sampling method with improved efficiency that scales only polynomially rather

than exponentially with the subspace size and thus number of modes for some states. This is

5



accomplished by utilizing information about the expected state in a chosen basis. We apply

this tomography to our multimode W states and observe the expected improvement with

mode number. This method enables us to maintain the tractability of state measurement,

even for increasingly large multimode states. Ultimately, these control techniques and mea-

surement developments facilitate the future generation and characterization of progressively

more complicated quantum states.
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Chapter 2

3D Circuit Cavity System Hardware

A number of engineering and design innovations have gone into the construction of our

quantum device and hardware system [1, 2]. This chapter will discuss the processes that

we used to create our transmon and multimode cavity, as well as provide a summary of the

cryogenics and control electronics required to successfully perform quantum experiments.

2.1 3D Transmon

2.1.1 Transmon Background

The transmon is one of the many types of superconducting circuits that utilize Josephson

junctions to form a nonlinear device [1, 3]. The design consists of a single junction with a

large shunting capacitance, forming a circuit depicted in Fig. 2.1 that can be described by

the Hamiltonian:

Ĥ = 4EC(n̂ − ng)2 +EJ cos ϕ̂, (2.1)

where EC and EJ are the charging and Josephson energies, n̂ and ϕ̂ are the normalized

charge and phase operators across the junction, and ng is the offset gate charge. Due to the

cosine potential EJ cos ϕ̂, the transmon will have energy levels that are not equally spaced, in

contrast to the harmonic oscillator levels of a purely quadratic potential, as shown in Fig. 2.1.

The main advantage of the transmon compared to other types of nonlinear devices is that it

is insensitive to charge noise, i.e. fluctuations in ng. In particular, the sensitivity to charge

noise is suppressed exponentially by the ratio EJ/EC , and for the transmon, 1≪ EJ/EC ≪

5 × 104 [1]. The first inequality condition guarantees the charge noise suppression, while the

second ensures that the nonlinearity between energy levels (anharmonicity) α ≃ −EC is not
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ωge ωc

|g⟩

|e⟩

|f⟩

ωge

ωge + α

U = EJ cosϕ

|0⟩

|1⟩

|2⟩

ωc

ωc

Figure 2.1: Transmon and cavity circuits and potentials. Due to the cosine potential,
the transmon (black) has nonlinear, unevenly spaced energy levels. This is in contrast to
the harmonic oscillator cavity (orange), which has a quadratic potential with evenly spaced
levels. The transmon portion is outlined by the gray dashed box, and features a nonlinear
Josephson junction with a shunting capacitance. The cavity portion is outlined by the dashed
orange box, and can be represented as an LC oscillator.

so small as to inhibit or prevent qubit operations. Additionally, the qubit frequency between

the ground state ∣g⟩ and first excited state ∣e⟩ is ωge ≈
√
8EJEC . The first few energy levels

∣g⟩ , ∣e⟩ , ∣f⟩ are represented in Fig. 2.1.

In our device, we targeted an anharmonicity α ≈ 150 MHz and qubit frequency ωge ≈ 5

GHz. To create an appropriate design and determine the physical dimensions that would

accomplish this (such as the size of the junction and its coupling pads), we used simulation

software like Ansys HFSS (High Frequency Structure Simulator) or Python packages like

PyEPR [4, 5]. These simulations are usually able to get us within roughly 20% of our targets,

and provide a good starting point for fabrication of the device, which will be described in

detail in the following subsection. With that level of accuracy in mind, it was often useful to

vary the target design size when creating different copies of the device in the same fabrication

run (i.e. changing the junction dimensions across different copies of the chip on the same

wafer) for the best chances of creating a usable device within our target parameter range.

This could also help compensate for potential changes between fabrication runs, such as

fluctuations in instrument parameters or human error and deviations during the several

days long fabrication process.
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2.1.2 Transmon Fabrication

Our transmon qubit was fabricated on a 430µm thick C-plane (0001) sapphire wafer with

a 50.8mm diameter. First, the wafer was cleaned with organic solvents (Toluene, Acetone,

Methanol, Isopropanol, and DI water) in an ultrasonic bath to remove contamination, with

frequencies varied at 104, 72, and 40 kHz, in that order, for 1 minute and 40 seconds each,

resulting in 5 minutes of sonication total in each solvent. Varying the frequencies was meant

to target and break up particles of different sizes. Afterwards, the wafer was annealed at

1200 ○C for 1.5 hours in atmosphere. To reach the target temperature, the furnace required

several ramp up steps: one going to 700 ○C at a rate of 350 ○C/hr, step two going to 1000 ○C at

a rate of 250 ○C/hr, and step three going to 1200 ○C at a rate of 100 ○C/hr. After the annealing,

the furnace turned off and passively cooled until roughly 50 ○C, at which point the wafer was

removed. Prior to deposition of a base aluminum film in a Plassys Evaporator, the wafer

underwent a second clean with organic solvents (Toluene, Acetone, Methanol, Isopropanol,

and DI water) in an ultrasonic bath with the same parameters as the initial clean.

The junction was made out of aluminum using a combination of optical and electron-

beam lithography. The base layer of the device, which includes the capacitor pads for the

transmon, consists of 120 nm of Al deposited via electron-beam evaporation at 1
○
A /s. The

pads and chip features were defined via optical lithography using AZ MiR 703 photoresist and

exposure by a Heidelberg MLA150 Direct Writer. After writing, the resist was developed for

1 minute in AZ MIF 300 1:1. The features were then etched in a Plasma-Therm inductively

coupled plasma (ICP) etcher using chlorine based etch chemistry (30 sccm Cl2, 30 sccm

BCl2, 10 sccm Ar). This was followed by a second layer of optical patterning and thermal

evaporation of 50 nm of Au for the alignment marks used in the electron-beam lithography.

The resist was subsequently removed by leaving the wafer in 80 ○C N-Methyl-2-pyrrolidone

(NMP) for at least 4 hours, and specifically for our device, 19 hours into the next day.
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Figure 2.2: Fabricated transmon device. The final rectangular chip is a clear 430 µm
thick sapphire substrate with two 120 µm thick aluminum coupling pads and the Manhattan
style transmon junction. The area of the junction is roughly 170 x 170 nm, as shown in
the Scannning Electron Microscope (SEM) image shown in the red zoomed in box. The
vertical line of aluminum far from the transmon and coupling pads was used to confirm
proper alignment of the transmon chip in the whole device.

The junction mask was defined through electron-beam lithography of a bi-layer resist

(MMA-PMMA) in the Manhattan pattern using a Raith EBPG5000 Plus Electron-Beam

Writer, with overlap pads that allow for direct galvanic contact to the optically defined

capacitors. After the lithography, the resist stack was developed for 1.5 minutes in a 120

mL solution of 3 parts IPA and 1 part DI water. Before the aluminum junction deposition

in the Plassys Evaporator, the overlap regions on the pre-deposited capacitors were milled

in-situ with an argon ion mill for 1 minute and 15 seconds to remove the native oxide.

The junction was then deposited with a three-step electron-beam evaporation and oxidation

process. First, an initial 35 nm layer of Al was deposited at 1 nm/s at an angle of 29○ relative

to the normal of the substrate, azimuthally parallel to one of the fingers in the Manhattan

pattern. Next, the junction was exposed for 12 minutes to 20 mBar of a high-purity mixture

of Ar and O2 in an 80:20 ratio to allow the first layer to grow a native oxide. Finally, a

second 120 nm layer of Al was deposited at 1 nm/s at the same 29○ angle relative to the

normal of the substrate, but azimuthally orthogonal to the first layer of Al.
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After evaporation and before liftoff of the resist layers, the individual junction chip was

cut out from the wafer using a Disco DAD3240 Dicing Saw. Prior to the dicing, a layer of

AZ 1518 photoresist was applied to the wafer to protect the now exposed junctions. After

cutting, the chip was left in 80 ○C NMP for 1 hour and 20 minutes to liftoff the MMA,

PMMA, and AZ 1518 resists. To further clean the chip, it was transferred to a fresh beaker

of 80 ○C NMP for 15 minutes, and then a beaker of IPA for 5 minutes. Finally, the chip

was dried with a nitrogen gun and stored next to an ion-producing fan to avoid electrostatic

discharge of the junction. An image of the final transmon chip and zoom in on the transmon

is shown in Fig. 2.2. Besides the junction, the chip also contains two aluminum coupling

pads that are used to couple the transmon to the 3D readout and storage cavities, which will

be discussed in the following section. We call the transmon 3D because it couples to the 3D

cavities through antenna pads, and there is no metal base layer on the transmon chip, such

that besides the junction and pads, the chip consists solely of the bare sapphire substrate.

2.2 3D Multimode Cavity

2.2.1 Cavity Background

A single mode of a 3D superconducting cavity can be represented by an LC oscillator circuit.

An example is depicted in Fig. 2.1. We can write the Hamiltonian of this circuit as

Ĥ = Φ̂2

2L
+ Q̂

2

2C
, (2.2)

where Φ is the flux through the inductor and Q is the charge stored on the capacitor. We

can rewrite Φ and Q in terms of the annihilation and creation operators â and â† as

Φ̂ =
√

h̵Z0

2
(â + â†), Q̂ = i

√
h̵

2Z0

(â† − â), (2.3)

11



where Z0 =
√
L/C is the characteristic impedance and the operators satisfy the commutation

relations [â, â†] = 1 and [Q̂, Φ̂] = ih̵. We can now rewrite our original Hamiltonian in

Eqn. (2.2) in terms of â and â†, which gives

Ĥ = h̵ωc (â†â + 1

2
) , (2.4)

where ωc = 1/
√
LC is the frequency of the LC oscillator. We re-zero the ground state energy

h̵ωc/2, so that we can drop the 1/2 from Eqn. (2.4). From this expression, we see that we

have equally spaced harmonic oscillator energy levels at each nonnegative integer value of

N̂ = â†â, as shown in Fig. 2.1. This generalizes to the multimode case as a sum of multiple

copies of this single mode Hamiltonian, with different frequencies ωcj and operators âj for

each mode.

We implement our readout and multimode storage cavities using the seamless flute

method [2, 6], which involves drilling two offset sets of cylindrical holes on either end of

a block of material. The resulting roughly rectangular cavity volume is set by the overlap

between the holes from opposite ends. This allows for highly controllable cavity parameters,

such as mode frequencies and mode dispersion. In general, a rectangular cavity will sup-

port multiple transverse electric (TEijk) and transverse magnetic (TMijk) modes which are

sorted and labeled according to their field profiles and frequencies. We control which modes

are dominant and the lowest energy mode by changing the dimensions of the cavity. For

example, we choose the dimensions of the readout cavity such that only one (TE101) mode

is supported in our range of operating frequencies (< 8 GHz), so that we can effectively treat

it as a single mode cavity. Before discussing the multimode storage cavity, we address a

possible concern with this flute method, the presence of the many holes required to form

the cavity volume. These holes act as waveguides that couple to the external environment,

providing a potential source of loss. However, we will now show that this is not a large effect.
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For a single circular waveguide, the propagation constant is:

β11 =

√

k2 − (p
′
11

r
)
2

, (2.5)

where we utilize the fact that we are considering the dominant TE11 mode, and r is the

radius of the waveguide, p′11 is the first root of J ′1(x), and k = ω
√
µϵ. Here, J ′1(x) indicates

the derivative of a Bessel function of the first kind, ω is the frequency of the waveguide mode,

and ϵ and µ are the permittivity and permeability. Note that β11 is imaginary for frequencies

below the cutoff frequency ωc = p′11/(r
√
µϵ). Consequently, the external coupling of a mode

with frequency ω < ωc will be exponentially suppressed with the length of the waveguide,

i.e. the hole depth. Therefore, we choose a hole radius r such that ωc is much larger than

the frequencies of our cavity modes, causing the holes to be evanescent and their external

coupling not to be a limiting factor on the internal quality factor of our cavity. The effect

of each hole on the cavity is a decrease in the mode frequency or effective increase in mode

volume [7], which can be calculated and compensated [6].

The main advantage of the flute method is the elimination of seams and thus seam loss.

This has historically been a difficult engineering problem, as it is much easier to remove

material to form a cavity volume by splitting it into two or more parts, which will then have

a seam when put back together. Seam loss can be caused by surface imperfections at the

seam or the formation of a resistive metal oxide layer between the cavity parts. We can

model the seam as a boundary with conductance G, or conductance per unit length g = G/l.

The resulting quality factor is Qseam = g/yseam, where

yseam = ∫l ∣H⃗∣∣∣2dl
ωµ ∫V ∣H⃗ ∣2dV

(2.6)

is the seam admittance for a magnetic field H⃗ [7, 8]. With the flute method, we avoid this
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source of loss entirely. Additionally, the flute method’s evanescent holes do not introduce

radiative losses as long as we stay well below the cutoff frequency ωc, as the imaginary

propagation constant will cause the radiated energy to also be imaginary.

We now proceed to the storage cavity. For the multimode flute, we utilize the TE10m

modes of the rectangular cavity formed by the overlapping evanescent holes. These modes

will have frequencies

f10m =
c

2
√
µϵ

√
(1
h
)
2

+ ( 0
w
)
2

+ (m
l
)
2

= c

2
√
µϵ

√
(1
h
)
2

+ (m
l
)
2

,

(2.7)

where w < h ≪ l are the width, height, and length of the cavity. We now encounter two

challenges. To have the maximum number of usable modes in our multimode cavity, we

would like the modes to be equally spaced, but currently, for the lowest order modes m, the

mode frequency spacing f10(m+1) − f10m is changing. Additionally, the electric field profile of

each mode m will have m−1 nodes at different locations along the length of the cavity, which

may make it difficult to find a suitable spot to place the transmon to effectively couple it to

many modes. Fortunately, we can handle both of these issues simultaneously by adjusting

the depth of the holes that make up the cavity. In particular, if we gradually decrease the

height of a portion of the cavity by reducing the overlap between the sets of opposite holes,

we replace cavity volume with evanescent hole volume. This changes the field profile, since it

can now only evanescently decay into the section with reduced overlap. The cavity frequency

remains roughly the same, as it is balanced by the decrease in frequency caused by the holes

and the increase in frequency caused by a shorter effective propagation length. We choose

the height adjustment to achieve a linear mode spacing, which we now derive. Expanding
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(a)

(b)

(c)

(d)

(e)

Figure 2.3: Field profiles of a non-tapered and tapered multimode flute cavity.
(a) Electric field profile of the fundamental mode of a non-tapered cavity. (b) Electric field
profile of the 9th mode of a non-tapered cavity. The field of each higher frequency mode
contains an additional node. (c) Electric field profile of the fundamental mode of a tapered
cavity. Along the length x of the cavity, the depth of the holes changes such that the amount
of overlap and effective height of the cavity decreases as x2. The shape of the field changes
when compared to a non-tapered cavity, and is contained primarily in the region with larger
cavity height. (d) Electric field profile of the 9th mode of a tapered cavity. (e) Comparison
of the mode frequencies of a non-tapered (red, dashed) and tapered (blue, solid) cavity. The
mode spacing of the non-tapered cavity changes, while the tapered cavity has the desired
equally spaced modes.
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Eqn. (2.7) for small m for the lowest modes, we have, to leading order in h/l:

f10m ∝
1

h
+ m

2h

2l2
. (2.8)

We can see that the mode frequency spacing will become linear when the mth cavity mode

has an effective propagation length proportional to
√
m. This is accomplished when we

choose h(x) = h0 − ax2, where h(x) is the hole overlap height at distance x along the length

of the cavity. Tapering the cavity quadratically in this way generates the desired constant

mode spacing and also allows us to more easily find a suitable location to couple the transmon

to the cavity. A comparison between a tapered and non-tapered cavity is shown in Fig. 2.3.

We see in Fig. 2.3(e) that the tapered cavity has equally spaced modes, and the tapered field

profiles shown in Fig. 2.3(c) and Fig. 2.3(d) are more concentrated on one end of the cavity

such that we could place the transmon on that end and effectively couple it to many modes,

despite the addition of a node for each successively higher mode frequency. More details and

an in-depth discussion of the multimode flute cavity can be found in [2] or Andrew Oriani’s

thesis [6].

2.2.2 Cavity Fabrication

The readout cavity and multimode storage cavity are machined together from a single rect-

angular block of 5N5 aluminium (purity > 99.999%). Following the procedure of the seamless

flute method [2], offset holes are drilled from either end of the aluminum block, such that

the distance between the centers of opposing consecutive holes (l0/2 = 3.015 mm) is less than

the hole diameter (2r = 4.76 mm). After both sets of holes are drilled, there is an additional

reaming step to ensure the accuracy of the final hole dimensions and the hole straightness,

as well as to make the machined surfaces more uniform. Finally, a series of honing steps with

progressively finer grit are performed on both sets of holes, further smoothing the surface
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(a) (b) (c) (d)

Figure 2.4: Steps in the flute cavity fabrication method. (a) A set of separate holes is
drilled from one end of the aluminum block that will become the 3D cavity. (b) An offset set
of holes is drilled from the opposite end of the block. The distance between the centers of
opposing holes is less than the diameter of the holes, which ensures that there is an overlap
volume inside the block that will form the cavity volume. (c) A reaming step removes surface
imperfections created during the hole drilling, and ensures the accuracy of the final hole sizes.
(d) A series of honing steps with 3 successively finer grits further smooths the surface while
removing burrs.

and removing any burrs. A schematic illustrating this process can be found in Fig. 2.4.

After the machining, the cavity undergoes several cleaning and etching steps. First,

the cavity is degreased, then sonicated in a series of organic solvents (Toluene, Acetone,

Methanol, Isopropanol, and DI water) to remove leftover oils and particle contaminants.

The frequency of the sonicating bath is varied for each solvent to target particles of different

size. Following these cleaning steps, the cavity is chemically etched to remove defects and

impurities caused by the machining process. We use Transene Aluminum Etchant Type

A, a combination of phosphoric acid (H3PO4) acid, nitric acid (HNO3), and acetic acid

(CH3COOH), at 50 ○C. This mixture targets the aluminum oxide instead of the base alu-
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minum [9, 10]. The cavity was placed in the etchant while on a hot plate, and initially etched

for 2 hours. Then, the etchant was replaced to ensure a more uniform etch rate. This was

followed by four 30 minute etching periods with the etchant replaced again between periods.

The total etching time was therefore 4 hours, and the total amount of removed material was

roughly 100 µm. This removal reduces the effective surface damage suffered by the cavity,

such as defects that would decrease the effective mean-free path of Cooper pairs and lead to

a longer London-penetration length and greater participation of the supercurrent with lossy

magnetic defects [11]. After the etching, the cavity roughness is inspected. We find that

the post-etch roughness is much less than the wavelength of the cavity modes, such that

deviations do not significantly affect the mode frequencies or cause unwanted scattering.

2.3 Coupling the Transmon and Multimode Cavity

We start by considering the interaction between the transmon and a single cavity or readout

mode. The corresponding circuit is represented in Fig. 2.1, with the transmon and cavity

capacitively coupled, as shown in purple. This system can be described by the Jaynes-

Cummings Hamiltonian,

ĤJC = ωcâ
†â +∑

j

ωj ∣j⟩ ⟨j∣ + gj(â + â†) (∣j⟩ ⟨j + 1∣ + ∣j + 1⟩ ⟨j∣) , (2.9)

where ωc is the bare cavity mode frequency, ωj is the energy of each transmon level and g is

the coupling strength between the cavity and transmon. In our system, g ∼ d⃗ ⋅ E⃗ comes from

the interaction between the dipole moment of the qubit antenna pad and the electric field

of the cavity. We can alternatively express the Hamiltonian as

ĤJC = ωcâ
†â + ωq b̂

†b̂ + αb̂†b̂(b̂†b̂ − 1) + g(â + â†)(b̂ + b̂†), (2.10)
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where now ωq is the bare ∣g⟩ − ∣e⟩ qubit frequency, α is the anharmonicity, and b̂ is the

annihilation operator acting on the transmon. We operate in the dispersive limit, ∣g/∆∣ ≪ 1,

where ∆ = ωq − ωc. In this regime, we can eliminate the interaction term g(â + â†)(b̂ + b̂†)

through a transformation Ĥ ′ = D̂ĤD̂†, where D̂ = exp(Ŝ − Ŝ†) with Ŝ = (g/∆)âb̂† [3]. The

resulting Hamiltonian to second leading order becomes

Ĥ = (ωc +
g2

∆
) â†â + (ωge −

g2

∆
) b̂†b̂ + αb̂†b̂(b̂†b̂ − 1) + χâ†âb̂†b̂ + k

2
â†â(â†â − 1), (2.11)

where k is the self-Kerr nonlinearity of the cavity inherited from the transmon and χ = g2α
∆(∆+α)

is the dispersive shift between the cavity and transmon. Generalizing to multiple modes, our

final Hamiltonian becomes

Ĥ = ωgeb̂
†b̂ + α

2
b̂†b̂(b̂†b̂ − 1)

+∑
j

ωj â
†
j âj + +χâ

†
j âj b̂

†b̂ +
kjj
2
â†
j âj(â

†
j âj − 1) + ∑

j′≠j
kjj′ â

†
j′ âj′ â

†
j âj,

(2.12)

where ωj is the frequency of cavity mode j and kj′j is the cross-Kerr interaction between two

cavity modes inherited from their shared coupling to the transmon. Additionally, we note

that ωge and ωj are corrected from the bare qubit and cavity frequencies by ∓∑j g
2
j /∆j, but

for practical purposes, the corrected values are the only ones accessible in the system, so

we treat them as the transmon and cavity frequencies of interest. A schematic illustrating

our final 3D transmon-cavity system is shown in Fig. 2.5(a). The two pads connected to

the transmon couple it to the readout and storage cavities, as the transmon chip is inserted

on one end of both cavities such that the pads overlap with the cavity volumes. An image

of a multimode flute cavity is also presented, with mode frequencies visible as the peaks in

the transmission spectrum in Fig. 2.5(b). The cavity volume is curved back a few times

to allow it to fit in a more compact space, rather than keeping it in a single line, which

would be impossible to contain inside our cryogenic hardware. We performed simulations
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Transmon

(a) (b)

Figure 2.5: Schematic of the coupled 3D transmon and cavity system. (a) The
transmon chip (blue) is inserted on one end of the readout cavity (green) and storage cavity
(red), and couples to those cavities through their electric fields. An image of an aluminum
multimode flute cavity is also shown. The storage cavity wraps around to reduce the amount
of space and material required to contain it. The curvature is chosen through simulation by
ensuring that the cavity does not interfere with itself and its performance is comparable to
a purely linear one. (b) Example frequencies for a multimode flute cavity in such a system
are visible as the peaks in the transmission spectrum. The modes are evenly spaced using
the tapering techniques previously discussed.

using Ansys HFSS to ensure that this modification did not adversely alter the cavity fields

or behavior. For the device used to perform the experiments presented throughout this

work, the readout and storage cavities were CNC machined out of the same high-purity 5N5

(99.9995%) aluminum block.

2.4 Auxiliary Setup

2.4.1 Cryogenic Hardware and Wiring

The multimode cavity device is heat sunk to an OFHC copper plate connected to the base

stage of a Bluefors LD-400 dilution refrigerator (8–11 mK). The sample is surrounded by a
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can containing two layers of µ-metal shielding, with the inside of the inner layer connected

to a can made out of copper shim that is painted on the inside with Berkeley black and

attached to the copper can lid. A schematic of the cryogenic setup and device wiring is

shown in Fig. 2.6, with the base stage highlighted by the yellow shaded region. Each drive

line that accesses the device has on it a handmade Eccosorb CR-110 IR low-pass filter. The

output from the device is first amplified by a Josephson Parametric Amplifier (JPA) [12, 13].

The JPA is a quantum noise limited amplifier [14–17] which we operate in four-wave mixing

(charge pump) mode that gives us ∼ 20 dB gain in a bandwidth of 10 MHz [18]. For

controlling the JPA, we use a Quantum Machines OPX Ultra-Fast Quantum Controller to

implement the JPA pump and an SRS SIM928 voltage/current source to tune the JPA flux.

2.4.2 Control Electronics

The control pulses are digitally synthesized using a four-channel, 64 GSa/s arbitrary wave-

form generator (Keysight M8195A), resulting in an effective sampling rate of 16 GSa/s for

each channel. The channel distribution is as follows: one for strong qubit drives, one for

strong direct cavity drives, one for weak qubit and cavity drives, and one for sideband drives.

The channel allocated for weak qubit and cavity drives allows for more dynamic range in

our drive controls, as the M8195A has 8 bits of amplitude control. All drive channels are

input through the readout cavity, except for the strong cavity drive line, which goes to a port

that couples directly to the multimode cavity. The combined signals are sent to the device

after being attenuated at each of the thermal stages, as shown in Fig. 2.6. The transmit-

ted signal coming out from the readout resonator passes through three cryogenic circulators

(thermalized at the base stage) and is amplified using a JPA and an LNF 4–8 GHz HEMT

amplifier (anchored at 4K). Between the circulators and the HEMT, the wires are made of

NbTi. Outside the fridge, the signal is filtered with a tunable narrow band YIG filter with

a bandwidth of 80 MHz and further amplified. The amplitude and phase of the resonator
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Figure 2.6: System wiring diagram. The schematic, from top to bottom, shows: the
control instrumentation, microwave wiring and filtering, and cryogenic setup.
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transmission signal are obtained through a homodyne measurement, with the transmitted

signal demodulated using an IQ mixer and a local oscillator (Keysight MXG N5183B) at

the readout resonator frequency. The homodyne signal is amplified (SRS preamplifier) and

recorded using a fast ADC card (Keysight M3102A PXIe 500 MSa/s digitizer).
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Chapter 3

Calibration of the System Hamiltonian

With the quantum hardware established in the previous chapter, we now need to operate

on the system. The three components of the device are a readout cavity, a multimode

storage cavity, and a 3D transmon that bridges the two cavities and couples to them. This

chapter will discuss time-domain experiments that can be used to determine the component

parameters that are necessary for effective control and measurement. After obtaining values

for these parameters, we describe some additional useful experiments and control techniques.

3.1 Readout Cavity

To accurately determine the frequency of the readout cavity, we perform a resonator spec-

troscopy experiment. This consists of varying the frequency of a drive tone and measuring

the response of the readout, which will produce a peak centered at the readout frequency. In

the low-power limit, the quality factor of the resonator can be determined from the linewidth

κ of the peak, as Q = ω/κ. After calibrating a transmon qubit ∣g⟩ − ∣e⟩ π pulse, which we

will describe in the next section, this experiment can be repeated after first exciting the

transmon to the ∣e⟩ state. The center of the resonator peak will change, corresponding to

the dispersive shift χr between the qubit and readout.

We can optimize our readout frequency with several considerations. First, perhaps the

most important condition is that we want the measured voltage values of ∣g⟩ and ∣e⟩ to be

as distinct as possible. This minimizes the overlap between the two and the probability of

confusing them, thereby improving our readout fidelity. For applications that utilize the

transmon second excited state ∣f⟩ level, it may also be useful to be able to distinguish that

value from ∣g⟩ and ∣e⟩, although in some cases we can map ∣f⟩ to either ∣g⟩ or ∣e⟩ and avoid
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Figure 3.1: Resonator spectroscopy and readout-storage cross-Kerr. (a) We sweep
the readout frequency and measure the response in I (solid) and Q (dashed), the two quadra-
tures of the measurement result. We perform the experiment when the transmon is in the
ground state ∣g⟩ (red), and when it is in the first excited state ∣e⟩ (blue). In the above, we
have rotated the quadratures such that I roughly corresponds to phase, and Q to magnitude.
From the frequency difference between the centers of the ∣g⟩ and ∣e⟩ Q peaks (dashed vertical
lines), we calculate the dispersive shift of the readout χr = −1.2 MHz. Additionally, from
the ∣g⟩ peak (dashed, red), we calculate the quality factor of our readout Q = 12000. We
choose the readout frequency at the solid black line, as the response changes minimally as
the strength of the cross-Kerr interaction between the readout and storage cavities (which
is negative) increases. (b) Effect of the cross-Kerr between the readout and storage cavities
while measuring ∣g⟩. As the population ∣α∣ of the storage cavity increases, the shift in readout
frequency will also increase. From (a), we see that the voltage value corresponding to ∣g⟩
changes as the readout frequency moves left of the black line, which we observe as a shift
from the ideal value of 0.

the need for that, as we will see later in this chapter. The next consideration is that we

want to choose a frequency where the readout response is minimally sensitive to the storage
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cavity population. As we can see from Eqn. (2.12), due to the coupling with the transmon,

there will be a cross-Kerr term between the readout and storage cavities that causes cavity

population to shift the readout frequency. To minimize the effects of this, we choose a readout

frequency around which the Resonator Spectroscopy responses of ∣g⟩ and ∣e⟩ are as flat as

possible, as shown in Fig. 3.1. Fortunately, if the storage cavity frequencies are all on the

same side of the readout cavity frequency (all lower or all higher), the cross-Kerr will all be

in the same direction, so we can place the readout frequency on one end of the relatively flat

band. We can also reduce the effective magnitude of the cross-Kerr by lowering the readout

power, although this will also likely decrease the base readout fidelity through reducing the

contrast between ∣g⟩ and ∣e⟩. Depending on the experiment we wish to perform, we give

these considerations different weights to achieve the best possible readout parameters.

3.2 Transmon Qubit

We start by roughly estimating the transmon qubit ground to first excited state (∣g⟩ − ∣e⟩)

frequency, ωge, by performing a Pulse Probe Spectroscopy experiment. This is done by

sweeping the frequency of a drive tone around the expected value of ωge and reading out.

When the qubit is excited by the tone driving on or near resonance, the readout response

will change due to their dispersive interaction. This change is a measurable effect, and will

generate a peak around ωge. The pulse sequence and an example data set are shown in

Fig. 3.2(a). We observe a negative peak, although in general the peak can be either positive

or negative depending on the ∣g⟩ and ∣e⟩ voltage values.

After obtaining a rough estimate of ωge, we can obtain qubit π pulse and π/2 pulse

parameters with a Rabi experiment. Here, depending on the hardware setup and which is

easier, we either vary the length of a qubit drive tone or vary its amplitude before reading

out. We expect to observe Rabi oscillations as the qubit is driven between its ∣g⟩ and ∣e⟩
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states. An example of a Length Rabi experiment (where the length of the drive is varied)

is presented in Fig. 3.2(b), with the y-axis already calibrated such that ∣g⟩ corresponds to 0

and ∣e⟩ corresponds to 1.

With a π/2 pulse in hand, we can now measure more the qubit frequency more precisely

with a Ramsey experiment. This involves a qubit π/2 pulse, followed by a variable wait time

τ , followed by another π/2 pulse and readout. With this procedure, if the pulses are exactly

on resonance and share the same phase, the qubit will end in ∣e⟩ regardless of the value of

τ . However, if the estimated qubit frequency is not exact (which is very likely the case), the

excited part of the qubit state will precess and accumulate some phase before the second

π/2 pulse, resulting in a final state that differs depending on the accumulated phase ϕ. If,

for example, ϕ = π, the second π/2 pulse will put the qubit in ∣g⟩ instead of ∣e⟩. Since ϕ

depends on τ , as we vary τ , we observe an oscillation at the difference frequency between

the frequency of the π/2 pulses and ωge. However, if the π/2 pulses have the same phase, we

cannot distinguish whether we are above or below ωge, since either sign would produce the

same frequency oscillation. We avoid this by advancing the phase ϕRam of the second π/2

pulse corresponding to a chosen Ramsey frequency ωRam, such that ϕRam = τωRam. We note

that with this phase advancing, we can distinguish difference frequencies up to modulo ωRam,

while difference frequencies greater than ωRam will be aliased. The Ramsey experiment is

represented in Fig. 3.2. Like with the Rabi experiment, the y-axis is calibrated to values

between 0 and 1. The target Ramsey frequency was ωRam = 2π × 50 kHz, which ideally

corresponds to 2.5 oscillations over the measurement length of 50 µs. Since the observed

oscillation frequency is slightly off, we calculate the frequency difference and use that to more

accurately estimate the real qubit frequency. From this measurement, we also determine the

decay-limited phase coherence T ∗2 = 160µs.

After obtaining a more accurate qubit frequency, it is often useful to repeat the Rabi

experiment to calibrate more accurate qubit pulses, followed by repeating the Ramsey ex-
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Figure 3.2: Calibration of a transmon qubit. (a) Pulse sequence and example data for
a Pulse Probe Spectroscopy experiment. We use this experiment to obtain a rough estimate
of the transmon qubit frequency, ωge. In this case, the pulse sequence is just a drive with
varying frequency around the expected value of ωge followed by measuring. The fit to a
Gaussian peak is shown in red, with the center frequency marked by the dashed vertical
line. (b) A Rabi experiment with varying drive pulse length. Driving at the estimated qubit
frequency ωge, we observe oscillations that we fit (red) to determine the times for a πge/2
and πge pulse, marked by the vertical left and right dashed lines. The drive pulse shape has
an approximate Gaussian envelope that goes ±2σ around the mean, so the total pulse length
is 4σ. (c) A Ramsey experiment, which we use to obtain a more accurate estimate of ωge.
The phase of the second π/2 pulse is advanced corresponding to ϕ = τωRam. The oscillation
gives us a correction to ωge and an estimate of the decay-limited phase coherence T ∗2 .
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periment again and iterating until reaching a stable point. In this process, to avoid aliasing

in the Ramsey experiment, we initially sweep a shorter range of τ values with smaller time

steps to allow for a larger ωRam. In further iterations, we increase the time step and lower

ωRam to obtain a more precise value for ωge.

We now have a well-calibrated qubit. This allows us to perform a Histogram measurement

and determine our readout fidelity. Here, we measure the distribution of many singleshot I

and Q voltage values, first with the qubit in ∣g⟩, and then in ∣e⟩, as shown in Fig. 3.3. We then

calculate a singleshot readout fidelity based on the overlap between the two distributions.

This fidelity serves as a metric that we can use to optimize our readout parameters, such as

the length and amplitude of the readout pulse. Furthermore, this measurement allows us to

determine an angle by which to rotate our I and Q values during data processing such that

all information about the qubit state is transferred entirely into one of those quadratures.

We then only have to observe that channel, instead of both, as shown in Fig. 3.3(b) and (c),

where all information about the state has been rotated into I. In addition to our readout

fidelity of 0.82, another useful result produced by this measurement is the voltage values

that correspond to ∣g⟩ and ∣e⟩, which allows us to linearly transform our measured voltage

values into the range between 0 (for ∣g⟩) and 1 (for ∣e⟩).

To judge the performance of our transmon qubit, we measure its coherences by performing

T1 and Ramsey Echo experiments. The pulse sequences and example data are presented in

Fig. 3.4(a) and (b). For the T1 experiment, we excite the qubit into the ∣e⟩ state using a π

pulse and observe an exponential decay by varying the wait time before we readout. The

Ramsey Echo is very similar to the Ramsey experiment, but with the addition of a qubit π

pulse in the middle of the wait time between the two π/2 pulses. Any slow noise effects that

occur before the π pulse will have the opposite effect after the π pulse, thereby cancelling out

if the wait times are equal. In our case, the π pulse cancels any noise originating from the

π/2 pulses being slightly inexact, as well as any other slow noise that could occur during the

29



0.004 0.002 0.000 0.002 0.004
I (V)

0.026

0.024

0.022

0.020

0.018
Q 

(V
)

Original Data
g
e
f

0.004 0.002 0.000 0.002 0.004
I

0.026

0.024

0.022

0.020

0.018

Q

Gaussian Fits
g
e
f

0.008 0.010 0.012 0.014 0.016
I (V)

0.022

0.020

0.018

0.016

0.014

Q 
(V

)

Rotated Data
g
e
f

0.008 0.010 0.012 0.014 0.016
I

0.022

0.020

0.018

0.016

0.014

Q

g
e
f

0.008 0.010 0.012 0.014 0.016
I(V)

0

50

100

150

200

Nu
m

be
r

I Histogram
g
e

0.022 0.020 0.018 0.016 0.014
Q(V)

0

50

100

150

Nu
m

be
r

Q Histogram
g
e

0.008 0.010 0.012 0.014 0.016
I(V)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ad

ou
t F

id
el

ity

0.022 0.020 0.018 0.016 0.014
Q(V)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ad

ou
t F

id
el

ity

(a)

(b)

(c)

(d)

Figure 3.3: Readout fidelity histogram experiment. (a) Data showing each measured
single shot I/Q voltage corresponding to the transmon in ∣g⟩ (red), ∣e⟩ (blue), and ∣f⟩ (yellow).
The resulting blobs are fit to Gaussians with means and standard deviations shown in the
right plot. For these readout parameters, ∣g⟩ and ∣e⟩ are separated, but ∣e⟩ and ∣f⟩ are highly
overlapping and thus harder to distinguish. (b) Rotated version of the raw data such that
the line between the means of the Gaussian fits of ∣g⟩ and ∣e⟩ is cast to the I axis. This
ensures that the information that distinguishes those states is contained entirely in I, so we
only have to look at that quadrature during our measurements. (c) Histograms showing the
binned shots. As expected, the Q histograms are entirely overlapping, reflecting the fact
that we have rotated all state information to the I quadrature. (d) Readout fidelity obtained
from the overlap between the histograms. This is calculated by subtracting the cumulative
distribution function (CDF) of the ∣g⟩ histogram from the CDF of the ∣e⟩ histogram. This
data gives a final readout fidelity of 0.82 for the I quadrature.
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Figure 3.4: Qubit coherence experiments. We present pulse sequences and example data.
(a) T1 experiment that measures the decay lifetime of the qubit. Red dashed lines mark 1/e
and the fit (red) T1 = 118µs. (b) Echo experiment that measures the qubit T2 = 189µs.
Comparing to a Ramsey, we have T2 > T ∗2 due to no longer being T1-limited. (c) Qubit
temperature experiment. By using the transmon ∣f⟩ level, we fit to the initial ∣e⟩ population
(blue) compared to ∣g⟩ (black). The contrast is 0.018, corresponding to a qubit temperature
of 54 mK.
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sequence. We measure the coherences of our system to be T1 = 108 ± 10µs, T ∗2 = 140 ± 13µs,

and T2 = 180 ± 14µs.

Now that the ∣g⟩ − ∣e⟩ space is well-characterized, we can perform similar experiments on

the next excited state of the transmon, the ∣f⟩ level and the ∣e⟩−∣f⟩ space. The measurement

sequences are very similar to the ones previously discussed, but with the addition of an initial

∣g⟩ − ∣e⟩ π pulse to start the qubit in ∣e⟩, as well as final pulses that cast the result to the ∣g⟩

and ∣e⟩ subspace, if desired. Starting with an EF Pulse Probe Spectroscopy experiment, we

roughly measure the frequency of the ∣e⟩ − ∣f⟩ transition, and therefore the anharmonicity

α = ωef − ωge of the transmon. In this experiment, the final transmon state will be in

a superposition of ∣e⟩ and ∣f⟩. If distinguishing between those two states is difficult, we

can add a πge right before the measurement to cast ∣e⟩ to ∣g⟩, so that we instead need to

differentiate between ∣g⟩ and ∣f⟩.

To continue calibrating the transmon, we perform and iterate on EF Rabi and EF Ramsey

experiments to get α more precisely and calibrate πef and π/2ef pulses. With these pulses,

we can measure the coherences of the ∣f⟩ level. Additionally, with a calibrated πef pulse, we

can now fully cast a superposition of ∣e⟩ and ∣f⟩ to a superposition of ∣g⟩ and ∣e⟩, by applying

a πge pulse followed by a πef pulse at the end of experiments (right before measuring).

This can be useful if some pair of ∣g⟩, ∣e⟩, and ∣f⟩ are difficult to distinguish, and allows

us to perform these multilevel transmon experiments while only having to optimize a single

readout space, such as ∣g⟩ and ∣e⟩. Alternatively, knowing πef pulse parameters allows us to

add the ∣f⟩ level to the Histogram experiment and simultaneously optimize the readout to

distinguish all 3 of ∣g⟩ , ∣e⟩, and ∣f⟩.

Furthermore, with the EF transmon pulses, we are able to perform a Qubit Temperature

experiment. This allows us to determine how excited the qubit is when we are not operating

on it. This consists of two successive EF Rabi experiments: the first (E1) a normal EF Rabi,

and the second (E2) without an initial πge pulse, as shown in Fig. 3.4(c). The contrast of the

32



πge

ωef + dω

πge

4810 4820 4830 4840
Frequency (MHz)

60

65

70

I (
ar

b.
)

EF Pulse Probe

πge

︸ ︷︷ ︸
4σ

ωef πge πef

0 10 20 30 40 50
 (ns)

0.0

0.2

0.4

0.6

0.8

1.0

P

EF Rabi

πge
πef

2 τ
πef

2
πge πef

0 2 4 6 8 10
 ( s)

0.2

0.4

0.6

0.8

1.0

P

EF Ramsey

T *
2 = 70 s

(a)

(b)

(c)

Figure 3.5: Calibration of transmon ∣e⟩ − ∣f⟩ levels. The primary differences between
these experiments and those for the ∣g⟩ − ∣e⟩ space are the addition of an initial πge pulse to
start the transmon in ∣e⟩, and optional additional πge and πef pulses right before measuring
that cast the transmon back to the ∣g⟩ − ∣e⟩ space. (a) Pulse sequence and example data
for an EF Pulse Probe Spectroscopy experiment. We use this experiment to obtain a rough
estimate of the transmon qubit frequency, ωef , marked by the dashed vertical line. (b) An
EF Rabi experiment with varying pulse length. We observe oscillations that we fit (red) to
determine the drive times for a πef/2 and πef pulse, marked by the vertical left and right
dashed lines. Like in the GE Rabi, we use pulses with approximately Gaussian envelopes
with total length 4σ. (c) An EF Ramsey experiment, which we use to obtain a more accurate
estimate of ωef . We also measure the coherence of the ∣f⟩ level to be T ∗2 = 70µs.
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Parameter Hamiltonian/Liouvillian Term Quantity Value

Transmon frequency ωq b̂†b̂ ωq/(2π) 4.97 GHz

Transmon anharmonicity α
2 (b̂†b̂)(b̂†b̂ − 1) α/(2π) -143 MHz

Readout frequency ωra
†
rar ωr/(2π) 7.79 GHz

Readout dispersive shift χra
†
rar ∣e⟩ ⟨e∣ χr/(2π) -1.2 MHz

Transmon ∣e⟩ → ∣g⟩ relaxation 1
T q
1
(1 + n̄)D[ ∣g⟩ ⟨e∣ ] T q

1 108 ± 10 µs

Transmon ∣g⟩ − ∣e⟩ dephasing ( 1
T q
2
− 1

2T q
1
)D[ ∣e⟩ ⟨e∣ ] T q

2 180 ± 14 µs

Readout linewidth κrD[ar] κr/(2π) 0.52 MHz

Transmon thermal population n̄
T q
1
D[ ∣e⟩ ⟨g∣ ] n̄ 1.8 ± 0.4 %

Table 3.1: Transmon and readout system parameters.

first experiment corresponds to the initial population of ∣g⟩, while the second corresponds to

the initial population of ∣e⟩. The qubit temperature is given by

kBTge =
h̵ωge

log(R)
, (3.1)

where R is the ratio of the E1 to E2 oscillation magnitudes. From the temperature, we

calculate the base population of the ∣e⟩ state as:

Pe = (exp(
h̵ωge

kBTge
) + 1)

−1

. (3.2)

In our system, we find a qubit temperature of 54±3 mK, corresponding to an initial ∣e⟩ state

population of 1.8 ± 0.4%.

We could continue these calibrations to higher transmon levels, such as the next (third)

excited state, the ∣h⟩ level. In principle, we could go further to excited states that are as high

as we desire until limited by hardware or coherence constraints, as we expect the lifetimes

of the nth excited state to be n times shorter than those of ∣e⟩. A summary of our system’s

transmon and readout cavity parameters can be found in Table 3.1.
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For high fidelity operations in the ∣g⟩−∣e⟩ subspace, it is important to minimize populating

the ∣f⟩ level off-resonantly. It is therefore helpful to consider the frequency components of

our drive pulse, and to choose a pulse shape that minimizes any unwanted components. For

this reason, we avoid using a constant amplitude envelope (square) drive tone, as the Fourier

transform of a square pulse will be the absolute value of a sinc function, ∣ sin(x)/(x)∣, which

has an infinite number of peaks and significant off-resonance features. We instead prefer to

use a drive tone with a Gaussian envelope, as its Fourier transform will be another Gaussian

with exponentially suppressed off-resonant contributions. However, an exact Gaussian would

be a pulse of infinite length, so we instead use an approximate Gaussian shape with the

amplitude envelope

a(t) = a0 exp(−
(t − 2σ)2

2σ2
) (3.3)

where 0 ≤ t ≤ 4σ is the time during which the drive pulse is on and a0 is the maximum

drive amplitude. This pulse goes ±2σ around the mean and thus captures 95% of the exact

Gaussian’s integrated amplitude. We choose ±2σ to gain most of the benefits of the Gaussian

pulse envelope while also balancing its duration. One of the trade-offs of having a non-square

pulse envelope is that drives of the same magnitude will necessarily require more time, and

we do not want the drive to take so long to where additional decoherence effects outweigh

the benefits of the envelope.

Due to the Gaussian envelope only being approximate, it is possible that the drive com-

ponent at an unwanted frequency like the ∣e⟩ − ∣f⟩ transition will not be exponentially sup-

pressed, and in the worst case may be at a local maximum of the the Fourier spectrum. This

is because the small jump from 0 to the start of the approximate Gaussian will still produce

features similar to the sinc function. To mitigate this and further improve the fidelity of

our transmon pulses, we can implement Derivative Removal by Adiabatic Gate (DRAG)

pulses [19–21]. These pulses operate by adding the derivative of the primary Gaussian pulse

35



4.7 4.8 4.9 5.0 5.1
Freq. (GHz)

10 2

10 1

100

101

102

M
ag

ni
tu

de

no DRAG
DRAG
g-e
e-f

1.5 1.2 0.9

0.46

0.48

0.50

0.52

0.54
P Y + 2 X

X + 2 Y

(a) (b)

Figure 3.6: DRAG pulse calibration and implementation. (a) Calibration experiment
used to determine the DRAG coefficient β. We measure the effect of changing β on two
individual qubit experiments: the first, a πy pulse followed by a πx/2 pulse (purple), and the
second, a πx pulse followed by a πy/2 pulse (black). The two experiments have opposite error
syndrome and thus opposite slope, and intersect at a population of 0.5, the expected value
for a π pulse followed by a π/2 pulse. The optimal value obtained from the intersection is
β = −1.15. (b) Fourier transform comparison for the DRAG pulse (orange) and the original
pulse (blue). At the qubit frequency ωge (blue right dashed line), the two pulses have the
same magnitude. However, at ωef (left right dashed line), the magnitude of the DRAG pulse
is roughly an order of magnitude less than the original pulse, demonstrating that the DRAG
pulse is accomplishing the goal of reducing unwanted driving of the ∣f⟩ level.

to its orthogonal quadrature, and help correct for phase errors induced by higher transmon

levels. Specifically, for our qubit drive pulses, we modulate the envelope in Eqn. (3.3) by

cos(ωget+ϕ) for pulse phase ϕ. Adding the orthogonal derivative part gives the total DRAG

pulse

ΩDRAG(t) = a0 exp(−
(t − 2σ)2

2σ2
) cos(ωget + ϕ)

+ βa0
−(t − 2σ)

σ2
exp(−(t − 2σ)

2

2σ2
) sin(ωget + ϕ),

(3.4)

where β is a constant DRAG coefficient. We calibrate β experimentally following the proce-

dure outlined in [21]. We sweep the value of β while performing two experiments: the first
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with a qubit πx pulse followed by a πy/2, and the second with a qubit πy followed by a πx/2,

where each pulse is of the form in Eqn. (3.4) and there is a 90○ phase difference between

the x and y pulses. As β changes, the effective error will change proportionally. Since we

have chosen two sets of pulses with opposite error syndrome, these experiments will produce

two lines that intersect at the optimal value of β. Experimental data obtained from this

procedure is shown in Fig. 3.6(a). As expected, the fitted lines intersect near a qubit popu-

lation of 0.5, the ideal expected value corresponding to a π pulse followed by a π/2 pulse. In

Fig. 3.6(b), we see the effect of the DRAG pulse compared to the original one by looking at

the Fourier transforms of the pulses. At the qubit frequency ωge (blue right dashed line), the

magnitude of the Fourier transform is the same for the two pulses. More importantly, at ωef

(red left dashed line), the magnitude of the DRAG pulse is roughly an order of magnitude

less than the original, demonstrating that the DRAG pulse is serving its intended purpose.

The above discussion also applies when we are operating in the ∣e⟩ − ∣f⟩ subspace and want

to avoid driving the ∣g⟩ − ∣e⟩ transition. The calibration sequence is similar, except with

preparing the qubit in ∣e⟩ and acting πef or πef/2 pulses rather than πge or πge/2 ones.

3.3 Multimode Cavity

3.3.1 Initial Cavity Parameters

One method for roughly measuring the frequency ωc of a cavity mode is by using a similar

approach to the Pulse Probe Spectroscopy, but with a drive sweeping around the cavity

frequency instead of the qubit frequency. Due to the cross-Kerr between the readout and

storage cavity mode, populating the storage cavity mode will change the frequency of the

readout and thereby alter its response at the original readout frequency. Alternatively, with a

well calibrated qubit, we can perform a Resolved Cavity Frequency Spectroscopy experiment,
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where the drive around the expected cavity frequency is followed by a narrow-bandwidth,

resolved qubit π pulse before the readout measurement. Due to the dispersive interaction

χa†ab†b, populating the cavity will shift the qubit frequency and take the resolved π pulse

off resonance. This experiment produces an observable peak, as the qubit ends in ∣e⟩ for

drive frequencies far from ωc, and ends at least partially in ∣g⟩ for drive frequencies near ωc.

This is depicted in Fig. 3.7(a). In our system, we prefer to use this latter method, as the

dispersive interaction (∼MHz) is a much larger effect than the cross-Kerr (∼kHz). For best

results and the most easily observed peak, the π pulse should be slow enough such that its

bandwidth is < χ.

With an estimate of ωc, we proceed to estimating the dispersive shift χ and the strength

of our cavity drive by perform a Photon Number Resolved Spectroscopy experiment. This

experiment is shown in Fig. 3.7(b). We first apply a cavity drive and then sweep the frequency

of a slow, narrow bandwidth qubit π pulse. The π pulse response will change at frequencies

ωge + nχ, when the final qubit state will be ∣e⟩ instead of ∣g⟩. This will produce photon

number resolved peaks, allowing us to estimate χ from the frequency difference between

the peak centers, particularly the 0 (vacuum) and 1 photon peak [22]. A rough estimate of

the cavity self-Kerr can be obtained in this manner by calculating the difference frequency

between the 2 and 1 photon peak and the 1 and 0 photon peak, although the difference can

be small (∼kHz) and difficult to resolve with this approach. Additionally, simply driving the

cavity in this manner will produce a coherent state α where the distribution of the cavity

photon populations (peak heights) follows a Poisson distribution [22, 23]. By fitting to this

distribution P (α,n) = ∣α∣2ne−∣α∣2/n!, we measure the magnitude ∣α∣ of the coherent state

and thus our drive strength. Even if χ is small and the photon number peaks are not well

resolved, we can still obtain an estimate of χ by fitting to the peak shape [24].

Analogously to the case of the transmon, we measure ωc more precisely by performing a

Cavity Ramsey experiment. Much like the qubit Ramsey, here we apply a small displacement
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Figure 3.7: Initial cavity calibrations. We present pulse sequences, with cavity pulses
in orange and qubit pulses in black, as well as example data. (a) We roughly estimate
the cavity frequency ωc through Resolved Cavity Frequency Spectroscopy. The π pulse
should be slow relative to the qubit-cavity dispersive shift χ, so that the frequency change
caused by that interaction produces an observable peak from taking the qubit off resonance.
(b) Photon Number Resolved Qubit Spectroscopy populates the cavity, allowing us to see
individual photon number peaks when sweeping the frequency of the slow πge probe pulse.
We fit the coherent state magnitude ∣α∣ by comparing to a Poisson distribution as marked
by the blue dashed line. For this state, ∣α∣ = 1.01. We also estimate χ = −1.09 MHz as
the distance between peak centers. (c) The Cavity Ramsey experiment lets us determine
ωc more accurately. The displacements are sufficiently small so that primarily only the ∣0⟩
and ∣1⟩ states are populated. The resulting oscillation contrast will be lower, but this will
approximate a two-level system, allowing us to perform the Ramsey.
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α to the cavity, wait for a variable time τ , and apply a small displacement with the same

magnitude but opposite phase −α to the cavity before adding a resolved π pulse at the cavity

0 photon peak (ωge) and measuring, as shown in Fig. 3.7(c). We choose a small value of α such

that the majority of the cavity population remains in the 0 and 1 photon subspace. Although

this reduces the maximum possible contrast as probed by the π pulse, it ensures that the

cavity approximates a two-level system, despite being a bosonic oscillator. Similarly to the

qubit Ramsey, if the initial displacement pulse is exactly equal to ωc, then in the frame of

the cavity rotating at ωc, the cavity state will always be restored back to the vacuum state

regardless of τ . However, if the displacement is slightly off resonance, phase ϕ = τδ will

accrue, where δ is the difference between ωc and the frequency of the displacement drive.

Varying τ will produce an oscillation with frequency δ, which we fit to obtain ωc precisely.

Like for the qubit, in this process we advance the phase of the second cavity displacement

in the experiment corresponding to a chosen ωRam,c. This removes any ambiguity in the sign

of δ, as the oscillation will now have frequency ωRam,c + δ. After obtaining this more precise

value for ωc, it is useful (again like in the case of the qubit) to iterate the Photon Number

Resolved Qubit Spectroscopy experiment and this Cavity Ramsey experiment to improve

the precision of the parameters until reaching a stable point.

To measure the higher-order self-Kerr k of the cavity, we repeat the Cavity Ramsey

experiment for many displacement amplitudes. As the amplitudes increase, the resulting

oscillations will be increasingly nonlinear as a result of the larger photon number cavity

states becoming populated and introducing additional frequencies, and in particular those

set by the self-Kerr [25, 26]. The final population of the qubit can be fit to the expression:

P0(α, t) = ∣ exp(−∣α∣2)∑
n

1

n!
∣α∣2n exp(−itn(ωc − kn/2))∣2 (3.5)

which we use to extract the best fit value of k [27]. This calibration measurement is shown
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Figure 3.8: Cavity self-Kerr calibration. The spectrum is obtained by performing Cavity
Ramsey experiments with different displacement magnitudes ∣α∣ and wait times τ . As ∣α∣ and
τ increase, the comb-like structure becomes increasingly nonlinear as higher cavity photon
levels become significantly populated and introduce additional frequencies and thus phase
accrual rates. These effects are reflective of the self-Kerr k of the cavity, and allow us to fit
the spectrum and determine k = 2π × −2.9 kHz.

in Fig. 3.8. As ∣α∣ increases and higher photon numbers of the cavity become populated,

the wait times τ at which the cavity mostly returns to ∣0⟩ have increasingly narrow ranges,

producing the observed comb-like spectrum. This narrowing and the tilting of the fingers

of the comb as τ increases reflect the effect of the self-Kerr k. For larger τ , the different

photon numbers of the cavity have more time for their accrued phases to become disparate.

This also causes the observed effect of the maximum amplitude of the fingers decreasing,

as the final displacement can no longer fully restore the state to ∣0⟩. From this spectrum,

we can see that the values of ∣α∣ that work best for using the Cavity Ramsey to accurately

determine ωc is roughly ∣α∣ ≲ 0.4, as the horizontal slice remains approximately linear in that

region.

We determine the base population of our cavity mode through a Cavity Temperature

experiment. Here, we perform two successive qubit Rabi experiments with resolved drive
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tones: the first on resonance with ωge, and the second at ωge + χ. As with the other cavity

experiments, the drive is sufficiently weak with narrow bandwidth (≪ χ) such that when at

one of those frequencies, it will not drive the other. The oscillation magnitude of the first of

these experiments will correspond to the population of ∣0⟩, while the second will correspond

to the population of ∣1⟩. We use Eqn. (3.1) to determine the cavity temperature, and the

cavity population will be given by

Pcav = exp(−
h̵ωcav

kBTcav
) . (3.6)

An example of the two oscillations that make up the cavity temperature experiment is shown

in Fig. 3.12(c), and the cavity populations n̄j for the modes j in our system can be found in

Table 3.2.

3.3.2 Sideband Experiments

With knowledge of the cavity and transmon frequencies, we can now calibrate a sideband type

interaction between the two. This is a four-wave mixing process that transfers excitations

between the transmon and cavity [28–30]. We derive this interaction in our system as follows:

the Hamiltonian of the device with readout cavity (b̂), transmon (ĉ), and storage cavity (â)

is:

Ĥ = ωgeĉ
†ĉ + α

2
(ĉ†ĉ)(ĉ†ĉ − 1) + ωrb̂

†b̂ + ωcâ
†â + gc(â + â†)(ĉ + ĉ†) + gr(b̂ + b̂†)(ĉ + ĉ†)

+ ϵ cos(ωdt)(b̂ + b̂†),
(3.7)

where gc and gr are the coupling between the transmon and storage cavity and transmon

and readout cavity, respectively, and the final term is a drive input through the readout.

Excluding the drive term, we can diagonalize the Hamiltonian and go from these bare states
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into dressed states:

Ĥdressed = ω̃ge
ˆ̃c†ˆ̃c + ω̃r

ˆ̃b†ˆ̃b + ω̃c
ˆ̃a†ˆ̃a + α

2
[(ˆ̃c† + gc

∆c

ˆ̃a† + gr
∆r

ˆ̃b†)(ˆ̃c + gc
∆c

ˆ̃a + gr
∆r

ˆ̃b)]
2

+ ϵ cos(ωdt)) (ˆ̃b + ˆ̃b† +
gr
∆r

(ˆ̃c + ˆ̃c†)) ,
(3.8)

where ∆j = ωj − ωge is the difference between the respective cavity frequency and the qubit

frequency, and we include terms up to 4th order in g/∆. We now go into the rotating frame

at each of the system components’ frequencies, Û = e−iĤ0t, with Ĥ0 = ω̃ge
ˆ̃c†ˆ̃c + ω̃r

ˆ̃b†ˆ̃b + ω̃c
ˆ̃a†ˆ̃a.

The resulting Hamiltonian is:

Ĥ ′ = α
2
((ˆ̃c†eiωget + gc

∆c

ˆ̃a†eiωct + gr
∆r

ˆ̃b†eiωrt)(ˆ̃ce−iωget + gc
∆c

ˆ̃ae−iωct + gr
∆r

ˆ̃be−iωrt))
2

+ ϵ cos(ωdt) (ˆ̃be−iωrt + ˆ̃b†eiωrt + gr
∆r

(ˆ̃ce−iωget + ˆ̃c†eiωget)) .
(3.9)

Focusing on the drive term, we make a rotating wave approximation

Ĥd(t) = ϵ cos(ωdt) (ˆ̃be−iωrt + ˆ̃b†eiωrt + gr
∆r

(ˆ̃ce−iωget + ˆ̃c†eiωget))

≈ ϵ
2
(ˆ̃beiδrt + gr

∆r

ˆ̃ceiδget + c.c.) ,
(3.10)

where δj = ωd −ωj and we have dropped the terms oscillating quickly at the sum frequencies

ωd + ωr and ωd + ωge. Now, we apply the displacement transformation D̂ = eξ(t)ˆ̃b+η(t)ˆ̃c−c.c.,

which will act on the annihilation operators as D̂ˆ̃bD̂† = ˆ̃b + ξ(t) and D̂ˆ̃cD̂† = ˆ̃c + η(t). Under

this transformation,

Ĥ ′ → D̂Ĥ ′D̂† − iD̂D̂†

= (Ĥ ′ − Ĥd(t)) [ˆ̃c + η(t), ˆ̃a, ˆ̃b + ξ(t)] +
ϵ

2
(ˆ̃beiδrt + gr

∆r

ˆ̃ceiδget + c.c.)

− i(ξ̇ˆ̃b† − ξ̇∗ˆ̃b) − i (η̇ˆ̃c† − η̇∗ˆ̃c) ,

(3.11)
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where the brackets indicate that we replace ˆ̃c, ˆ̃a, and ˆ̃b with the terms inside the brackets

in the expression for Ĥ ′, excluding Ĥd(t), which is not affected. In other words, we make

those substitutions and only include the first line of Eqn. (3.9). By choosing ξ(t) and η(t),

we can cancel out the drive term Ĥd(t). In particular, using Eqn. (3.11), we accomplish this

by choosing:

ξ(t) = ϵ

2δr
e−iδrt, η(t) = ϵ

2δge

gr
∆r

e−iδget. (3.12)

With these definitions, the transformed Hamiltonian becomes

Ĥ ′′ = α
2

⎛
⎝
((ˆ̃c† + η∗(t)) eiωget + gc

∆c

ˆ̃a†eiωct + gr
∆r

(ˆ̃b† + ξ∗(t)) eiωrt)

((ˆ̃c + η(t)) e−iωget + gc
∆c

ˆ̃ae−iωct + gr
∆r

(ˆ̃b + ξ(t)) e−iωrt)
⎞
⎠

2

.

(3.13)

We further simplify this expression using the definitions of ξ(t) and η(t) to arrive at our

final Hamiltonian:

Ĥ ′′ = α
2

⎛
⎝
(ˆ̃c†eiωget + gc

∆c

ˆ̃a†eiωct + gr
∆r

ˆ̃b†eiωrt + ϵ
2

gr
∆r

( 1
δr
+ 1

δge
) eiωdt)

(ˆ̃ce−iωget + gc
∆c

ˆ̃ae−iωct + gr
∆r

ˆ̃be−iωrt + ϵ
2

gr
∆r

( 1
δr
+ 1

δge
) e−iωdt)

⎞
⎠

2

.

(3.14)

We can now match terms to see what interactions we can generate and what their expected

strengths are. For example, a resonant ∣f0⟩ − ∣g1⟩ sideband is possible when we choose

ωd = ωf −ωc, where ωf = ωge +ωef is the frequency difference between the ∣g⟩ and ∣f⟩ levels of

the transmon. Furthermore, we can calculate the rate of the interaction by computing the

coefficient of the â†ĉ2 term. Other similar examples of sideband interactions are ∣h0⟩ − ∣e1⟩

and ∣e0⟩ − ∣g2⟩.

The following discussion will focus on the ∣f0⟩ − ∣g1⟩ sideband, although similar proce-
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Figure 3.9: ∣f0⟩ − ∣g1⟩ sideband experiments. Transmon pulses are shown in black/gray
and sideband pulses are purple. (a) Sideband Frequency Spectroscopy is used to determine
the frequency of the sideband interaction ωf0−g1 ≈ 2ωc − (2ωge + α), marked by the dashed
vertical line. The pulse sequence has an optional πef pulse at the end that would cast the
final state from the ∣g⟩ and ∣f⟩ space back to ∣g⟩ and ∣e⟩. (b) Sideband Rabi experiment.
The dashed vertical lines indicate the π/2 time and π time of the oscillation, which prepare
(∣0⟩ + ∣1⟩)/

√
2 and ket1 in the cavity, respectively. The sideband dephases the transmon

by off-resonantly populating the readuot cavity, producing the noticeable oscillation decay
despite the relatively short time scale.

dures will work for other sideband types. We experimentally determine the resonant side-

band frequency by performing a Sideband Frequency Spectroscopy experiment, as shown in

Fig. 3.9(a). The measurement sequence involves initializing the transmon in the ∣f⟩ state

by applying a πge and πef pulse, then sweeping the frequency of a drive tone around the ex-

pected sideband frequency and reading out. This expected frequency is ωf0−g1 ≈ 2ωge+α−ωc,
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corresponding to the frequency difference from the transmon transitioning from ∣g⟩ to ∣e⟩,

then ∣e⟩ to ∣f⟩, minus a cavity excitation (in our system 2ωge +α > ωc). When the tone is on

resonance, it will drive the qubit from ∣f⟩ to ∣g⟩, generating an observable change. If ∣f⟩ and

∣g⟩ are not distinguishable, we can apply an additional πef pulse after the drive tone so that

the final qubit state is instead in a superposition of ∣e⟩ and ∣g⟩.

After obtaining the sideband frequency, we perform a Sideband Rabi experiment. Anal-

ogously to the Rabi experiment on the transmon, here we first prepare the transmon in ∣f⟩

before varying the length or amplitude of the sideband drive tone. We observe oscillations as

the final state of the qubit moves between ∣f⟩ and ∣g⟩ (or ∣e⟩ and ∣g⟩ if we apply a πef pulse

after the drive). By fitting to the period of this oscillation, we determine the drive time that

corresponds to putting the transmon fully in ∣g⟩, and thus prepares a single photon in the

cavity. This experiment is presented in Fig. 3.9(b). With a well-calibrated sideband, we can

easily create Fock states in the cavity. This is a useful tool that expands our experimental ca-

pabilities. For example, preparing the cavity Fock state ∣1⟩ enables us to perform additional

experiments that determine our cavity parameters more precisely and measure its coher-

ences, as we will see in the next section. We can prepare higher Fock states by sequentially

applying sideband drives of the form ∣fn⟩−∣g(n + 1)⟩. After obtaining a πf0−g1 pulse, we then

calibrate the ∣f1⟩− ∣g2⟩ transition, and continue similarly to higher Fock states ∣n⟩. Further-

more, since each of these transitions has a slightly different frequency due to the dispersive

interaction between the transmon and the cavity, we can start with a πf0−g1/2 pulse, then

drive the ∣1⟩ part of the state to ∣4⟩ without affecting ∣0⟩. This prepares (∣0⟩+ ∣4⟩)/
√
2, which

is one of the logical states of the binomial code [31, 32, 28, 33] (along with ∣2⟩, which is also

easily prepared with sideband drives) with applications in quantum error correction. These

particular states can be generated even more immediately with ∣en⟩ − ∣g(n + 2)⟩ sidebands

instead of ∣fn⟩ − ∣g(n + 1)⟩, demonstrating the flexibility of this kind of interaction.
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3.3.3 Cavity Single Photon Experiments

The experiments in this section utilize the ability to prepare a single photon in the cavity.

There are a number of techniques that can accomplish this, such as the ∣f0⟩ − ∣g1⟩ sideband

described in the previous section, or through the use of photon blockade or optimal control,

which will be described in later chapters. Regardless of the method, we assume that we have

the ability to initialize the transmon-cavity state ∣g1⟩.

First, we measure the dispersive shift χ more precisely by performing a χge Ramsey

experiment. Here, we prepare ∣g1⟩, then perform a Ramsey measurement on the qubit, as

shown in Fig. 3.10(a). We advance the phase of the second π/2 pulse by ϕge = τ(ωRam+χge,est)

for wait time τ , where χge,est is our current estimate for χge and ωRam is a chosen artificial

Ramsey frequency. If χge,est = χge, we observe a oscillation between ∣g⟩ and ∣e⟩ with frequency

ωRam. Otherwise, any deviation from that frequency will give us a correction to χge,est.

Similarly to the Ramsey with just the transmon, we repeat this experiment multiple times

for increasingly larger ranges of τ and correspondingly lower ωRam to measure χge accurately.

The χge values for our multimode cavity modes are shown in Fig. 3.11(a), indexed from 0–8

from low to high frequency for the 9 modes that lie between the qubit (ωge = 4.97 GHz) and

readout cavity (ωr = 7.79 GHz) frequencies. The frequencies of these modes are given in

Table 3.2.

By slightly modifying this procedure, we also calibrate a Parity Measurement. As the

name suggests, this sequence detects whether a cavity mode has an even or odd number of

photons [27, 34], and has a variety of applications in state preparation, measurement, and

error correction [35–37]. In the context of this thesis, it is a crucial component of Wigner

tomography [38], which we will expand upon in Chapter 6. The Parity Measurement consists

of 2 qubit π/2 pulses with π relative phase separated by a wait time τparity = π/(2χ). These

choices cause the qubit to end in ∣e⟩ if there is an odd number 2n+1 of photons in the cavity,
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Figure 3.10: Cavity calibrations that utilize single photon state preparation. The
initialized state before the pulses shown (qubit, black and cavity, orange) is assumed to be
∣g1⟩. (a) A χge Ramsey experiment allows us to accurately determine the dispersive shift
term. Like with other Ramsey experiments, the offset frequency between the expected and
observed oscillation gives us the correction to χge. (b) Parity Measurement Calibration. We
expect the parity time to be τ = π/(2χ). However, the actual time may be slightly different.
The pulse sequence is similar to the χge Ramsey, but the phase of the second π/2 pulse is 0
(the same as the initial one), rather than being advanced proportional to τ . The shown data
gives a parity time of 602 ns, compared to the χge = 2π × −0.359 MHz. (c) Cavity self-Kerr
(right) and cross-Kerr (left) calibrations. The probe π pulse is at the single photon frequency
of mode j, and produces peaks centered at the cross-Kerr and self-Kerr values.
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Figure 3.11: Multimode cavity dispersive shift and Kerr values. (a) χge values be-
tween the qubit and each cavity mode (red crosses, left axis) and the corresponding coupling
g’s to the qubit (blue circles, right axis) are shown. Modes are indexed from 0–8 in order of
increasing frequency, and are the 9 modes between our qubit (ωge = 4.97 GHz) and readout
(ωr = 7.79 GHz). (b) Matrix of self-Kerr and cross-Kerr values of our multimode cavity,
which are all on the order of a few kHz. We observe that the matrix is nearly symmetric, as
we would ideally expect

as the qubit will accrue a phase 2π(2n+1)χ/(2χ) ≡ π during the wait time that cancels with

the relative phase. On the other hand, the qubit will end in ∣g⟩ if there is an even number

2n of photons in the cavity, as the accrued phase will be 2nπ ≡ 0. We could flip these results

by setting the relative phase between the two qubit pulses to be 0 instead of π. In practice,

we observe τparity directly by performing a Parity Measurement Calibration. Emulating the

above procedure, after preparing a photon in the cavity, we sweep the wait time between two

π/2 pulses with relative phase π, which is shown in Fig. 3.10(b). We observe an oscillation

between ∣g⟩ and ∣e⟩, and can calculate τparity from its π pulse time.

Just as how we accurately determine χge, we use a similar measurement to precisely

measure χef and χgf , the dispersive shift interactions between the ∣e⟩ − ∣f⟩ and ∣g⟩ − ∣f⟩

levels of the transmon. For χef , we prepare a photon in the cavity, then perform am EF

Ramsey measurement on the transmon. Similarly, for χgf , we initialize ∣g1⟩, then perform

a GF Ramsey measurement. This consists of a πge/2 pulse, πef pulse, varied wait time τ ,

πef pulse, and πge/2 pulse with advanced phase, so that the oscillation with respect to τ
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provides a correction to χgf . If desired, we could perform similar calibrations for higher

levels of the transmon (∣h⟩ and above) and precisely determine any of the transmon-cavity

dispersive interaction terms.

Considering the multimode nature of the cavity, we now measure the cross-Kerr interac-

tion kija
†
iaib

†
jbj between the cavity modes. This Cross-Kerr Calibration experiment involves

preparing a photon in mode i, then sweeping the frequency of a weak drive tone near the

original frequency ωj of mode j before performing a resolved π pulse on the qubit. We shift

the center frequency of this resolved π pulse by χge,j, the dispersive shift of mode j, so that

when mode j is unpopulated, the final qubit state will be ∣g⟩. The result of this experiment

will be a peak whose center frequency is shifted from ωj, the frequency of cavity mode j, by

kij, allowing us to determine the value of the cross-Kerr coefficient kij. Performing this ex-

periment when i = j gives us another way to determine the value of the self-Kerr. These Kerr

calibrations are shown in Fig. 3.10(c), and the measured values are presented in Fig. 3.11(b).

Due to the experimental procedure, the cross-Kerr calibration will produce positive peaks, as

mode j is initially unpopulated, so the resolved πge pulse at ωge +χj will have no effect until

it becomes populated near ωj. Conversely, the self-Kerr calibration will produce negative

peaks, as now i = j, the mode is initially populated and the qubit will be in ∣e⟩ when the

drive tone frequency is far from ωj. In this case, when the cavity is driven, its population

in ∣1⟩ will shrink (moving either to ∣0⟩ or ∣2⟩ and higher Fock states depending on the phase

of the drive), reducing the final transmon ∣e⟩ population. Determining the self-Kerr in this

way produces consistent results with the Cavity Drive Ramsey approach shown in Fig. 3.8.

Finally, we measure the coherences of our cavity with Cavity T1 and Cavity T2 Ramsey

experiments. For the T1 experiment, after preparing ∣g1⟩, we wait for a time τ and perform a

resolved π pulse on the single photon peak at frequency ωge +χ. We observe an exponential

decay based on the T1 time. For the T2 Ramsey, we instead prepare an equal superposition

of ∣0⟩ and ∣1⟩ in the cavity, (∣0⟩ + ∣1⟩)/
√
2 (for example, by driving for half the length that
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Figure 3.12: Cavity coherence experiments. (a) Cavity T1. Our maximum measurable
τ is limited by our AWG memory and its pulse implementation; nevertheless, we observe
an exponential decay that we fit to obtain T1 = 2.136 ms. This corresponds to a mode
quality factor of Q = 76.7 million. (b) Cavity T2. The πcav/2 pulses indicate preparing the
state (∣0⟩ + ∣1⟩)/

√
2 for the first pulse, then driving that pulse with opposite phase for the

second pulse. The decay of the oscillation gives us T2 = 2.91 ms. (c) Cavity Temperature
experiment. We fit to the initial ∣1⟩ population (blue) compared to ∣0⟩ (black) by driving
the transmon with narrow bandwidth pulses at those two number resolved frequencies. To
help resolve the ∣1⟩ oscillation, we use the fact that the oscillation frequency should be the
same as that of ∣0⟩. The contrast is 0.005, corresponding to a cavity temperature of 56 mK.
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Figure 3.13: Multimode cavity coherences and Qs. (a) T1’s (red circles) and T2’s (blue
squares) are roughly 2–3 ms, and have errorbars obtained from fitting to either the expo-
nential T1 decay or the T2 oscillation decay. (b) Corresponding quality factors Q, calculated
as Q = ωcT1.

produced the single photon), wait for a variable time τ , then act that equal superposition

pulse again with an advanced phase before applying a resolved qubit π pulse at ωge + χ

and measuring. Like the transmon Ramsey experiments, this will produce an oscillation

whose amplitude decays exponentially depending on the T2 of the cavity. Examples of these

experiments are presented in Fig. 3.12. For the data shown, we obtain T1 = 2.14 ± 0.05 ms

and T2 = 2.9±0.3 ms. The coherences for all 9 of our cavity modes with frequencies between

our qubit and readout frequencies are shown in Fig. 3.13(a). The T1’s are mostly around

2 ms, while the T2’s range from 2–3 ms. We also present the corresponding mode quality

factors in Fig. 3.13(b), which primarily range from 70–95 million.
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Parameter Quantity Values

Frequency (GHz) ωm/(2π) 5.461, 5.716, 5.965, 6.223, 6.469, 6.727, 6.989, 7.247, 7.51

Dispersive shift (MHz) χm/(2π) see Fig. 3.11

Self-Kerr (kHz) km/(2π) ”

Cross-Kerr kmn/(2π) ”

Relaxation (ms) Tm
1 see Fig. 3.13

Dephasing (ms) Tm
2 ”

Cavity Population (%) n̄ 0.44, 0.62, 0.30, 0.39, 0.93, 0.91, 1.01, 0.99, 0.44

Table 3.2: Multimode cavity system parameters.

3.3.4 Cavity Beamsplitter Experiments

We are able to generate beamsplitter type interactions in our multimode cavity of the form:

ĤBS = g(t)â†
1â2 + g∗(t)â1â

†
2. (3.15)

This control has applications in manipulating coupled system components for quantum in-

formation processing [39–41], quantum simulation [42, 43], and studies of entanglement [44].

Based on the form of Eqn. (3.14), if we consider the readout cavity as another storage cavity

mode and add a second drive tone, a cavity swap is possible when ωd2 −ωd1 = ωc2 −ωc1. This

interaction is specifically derived in [45, 46], which we summarize in the following. Starting

with the Hamiltonian for two cavity modes coupled to a transmon with two drive tones, we

have

Ĥ = ω1â
†
1â1 + ω2â

†
2â2 + ωgeĉ

†ĉ −EJ(cos(ϕ̂) +
ϕ̂2

2
)

+ ϵ1 cos(ωd1t)(â1 + â†
1) + ϵ2 cos(ωd2t)(â2 + â†

2),
(3.16)

where ϕ̂ is the phase across the junction and can be expressed as

ϕ̂ = ϕa1(â1 + â
†
1) + ϕa2(â2 + â

†
2) + ϕc(ĉ + ĉ†), (3.17)
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where ϕj is the zero-point fluctuation of the phase for each system component. For example,

for the transmon, ϕ4
c ∼ 2EC/EJ . We then perform the rotating frame transformation at the

system frequencies, Û = e−iĤ0t with Ĥ0 = ω1â
†
1â1+ω2â

†
2â2+ωgeĉ†ĉ, followed by the displacement

transformation D = exp ((ξ1e−iωd1t + ξ2e−iωd2t)ĉ) that takes ĉ → ĉ + ξ1e−iωd1t + ξ2e−iωd2t, with

effective drive strengths ξj = ϵj/(ωge − ωdj). These transformations are similar to the ones

that we performed for the sideband earlier in this chapter. We also consider the drives to be

sufficiently off resonant, such that the detunings in the denominators of ξj are much greater

than the linewidth of the transmon transitions, so that the transmon is only virtually excited

by the drives.

We now obtain the beamsplitter Hamiltonian by expanding the cos(ϕ̂) in Eqn. (3.16)

to 4th order with the rotating wave approximation and ωd2 − ωd1 = ω2 − ω1. The remaining

non-rotating terms are:

Ĥfinal = ĤStark + ĤKerr + Ĥint (3.18)

ĤStark = −EJϕ
4
c(∣ξ1∣2 + ∣ξ2∣2)ĉ†ĉ = −2α(∣ξ1∣2 + ∣ξ2∣2)ĉ†ĉ (3.19)

ĤKerr = −EJ(ϕ2
a1ϕ

2
a2 â

†
1â1â

†
2â2 + ϕ2

a1ϕ
2
c â

†
1â1ĉ

†ĉ + ϕ2
a2ϕ

2
c â

†
2â2ĉ

†ĉ)

− EJ

4
(ϕ4

a1 â
†
1â

†
1â1â1 + ϕ4

a2 â
†
2â

†
2â2â2 + ϕ4

c ĉ
†ĉ†ĉĉ)

(3.20)

Ĥint = −EJϕ
2
cϕa1ϕa2(ξ1ξ∗2 â

†
1â2 + ξ∗1 ξ2â1â

†
2). (3.21)

Here, ĤStark describes the shift in transmon frequency caused by the drives, ĤKerr describes

the cavity mode nonlinearities inherited from the transmon, which are independent of the

drives and whose calibration was discussed earlier in this chapter, and Ĥint describes our

desired beamsplitter interaction. We can rewrite the coupling strength in Eqn. (3.15) as

g(t) = EJϕaϕbϕ
2
cξ1ξ2 =

√
χ1χ2ξ1ξ2, (3.22)

where χj is the dispersive shift of mode j. From the expression for ξj, we see that the
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beamsplitter rate is dependent on the detuning from the transmon, with drive tones closer

to the qubit frequency ωge producing stronger rates. Therefore, to maximize the rate, we

choose ωge to be approximately the center of our two drive tones, such that ωd1 ≈ ωge+δ21 and

ωd2 ≈ ωge−δ21, where δ21 = ω2−ω1. We find that these choices of ωd1 and ωd2 are sufficiently far

away from ωge and ωef to generate the beamsplitter interaction without unwanted excitation

of the transmon’s ∣e⟩, ∣f⟩, or higher levels.

We calibrate the beamsplitter using experiments similar to the Sideband and Photon

Number Resolved Spectroscopy Experiments. First, we need to determine the frequencies

of our drive tones with a Cavity Swap Frequency Scan. For this, we prepare either a single

photon or a coherent state in the first cavity mode, as the beamsplitter will work on both

of these states. Coherent states are more easily prepared by driving the cavity, but a single

photon will produce a sole population peak with maximum contrast. After the preparation,

we turn on the two drive tones, holding one of the frequencies fixed while sweeping the second

one. We then apply a resolved qubit π pulse at the frequency corresponding to the prepared

single photon peak (ωge+χ1), or whatever photon number is most populated for the coherent

state. The single photon version of this experiment is shown in Fig. 3.14(a). When the two

tones are on resonance with the beamsplitter interaction, we observe a peak corresponding

to a decrease in population of the original mode and increase in the population of the second

mode. After determining the frequencies of the tones that work best for the beamsplitter,

we find the swap time through a Cavity Swap Rabi experiment, where we prepare either

initial state in the first cavity, turn on the two tones for a variable amount of time, apply

the resolved π pulse at the photon number frequency of interest, and measure. For example,

for a single photon, we observe complementary oscillations for π pulses applied at ωge + χ1

and ωge + χ2, as shown in Fig. 3.14(b) for two adjacent modes in our cavity. We use the

beamsplitter to generate interactions between modes and transfer states between mode pairs.

Like the sideband interaction, this gives us another way to control our multimode cavity.
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Figure 3.14: Cavity beamsplitter calibration experiments. (a) Cavity Swap Frequency
Spectroscopy. We sweep the frequency of one of the beamsplitter drives while observing the
population of the prepared photon state. The population will be moved from the observed
mode to the swap mode when the drive is on resonance (dashed vertical line), producing a
negative peak. This resonant frequency is what we then set as the frequency of the swept
drive. (b) Cavity Swap Rabi experiment. Starting with a photon in mode index 3 of our
multimode cavity (red), we transfer the photon to mode 4 (blue) using the beamsplitter.
The swap time is indicated by the dashed vertical line. We also observe the population of
∣0⟩ (black) as an indicator for the excitation of the transmon.

In this chapter, we have demonstrated the methods that we use to determine the inter-

action strengths and parameters of our coupled transmon, readout cavity, and multimode

storage cavity system. With relatively straightforward on/off drive pulses, we have fully

calibrated our transmon and cavity Hamiltonian (Eqn. (2.12)) and characterized the perfor-

mance of our devices by measuring their coherences. Using this system information, we have
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also implemented pulse shaping techniques like DRAG pulses to improve the fidelity of our

operations, as well as control techniques like four-wave mixing sidebands and beamsplitter

interactions that can be used to engineer the cavity’s quantum state. Looking ahead, in fu-

ture chapters we discuss additional, more complicated control and measurement techniques

that rely on the information obtained here.
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Chapter 4

Cavity Photon Blockade

Photon blockade is a useful technique for engineering a cQED system. By applying a constant

qubit drive at a frequency that targets a specific cavity photon number, we modify the

cavity’s energy level spacing and effectively partition its Hilbert space [47, 48, 27]. The

blockade can also be thought of as a measurement of the photon number, and is intimately

related to Quantum Zeno Dynamics [49–57]. This chapter will describe how to implement

photon blockade and demonstrate some of its applications in controlling a single mode or

multiple modes simultaneously.

4.1 Blockade Derivation

We start by considering the system of a single cavity mode coupled to a qubit. In the lab

frame, this has the Hamiltonian

Ĥlab = ωge ∣e⟩ ⟨e∣ + ωcâ
†â + k

2
â†â (â†â − 1) , (4.1)

where we assume the energy of the ground state ∣g0⟩ is 0, ωge and ωc are the qubit and

cavity mode frequencies, χ is the dispersive shift interaction, and k is the self-Kerr of the

cavity. We perform the rotating frame transformation at the qubit and cavity frequencies

with Û = e−itĤ0 , where Ĥ0 = ωge ∣e⟩ ⟨e∣ + ωcâ†â, and add in drives on the qubit and cavity, so

that

Ĥ = χâ†â ∣e⟩ ⟨e∣ + k
2
â†â (â†â − 1) + {Ω(t) ∣g⟩ ⟨e∣ + ϵ(t)â + c.c.} , (4.2)

where Ω(t) and ϵ(t) are the qubit and cavity drive terms, respectively. When choosing a

photon number ∣n0⟩ to blockade, we apply a qubit blockade drive at frequency ωge + n0χ.
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With this in mind, we can express Ω(t) = Ωe−in0χt. We now go into the frame of the drive

and eliminate the time-dependence of this Ω(t) term by applying the frame transformation

Û = e−iχ∣e⟩⟨e∣n0t, which gives

˜̂
H = χ (â†â − n0) ∣e⟩ ⟨e∣ +

k

2
â†â (â†â − 1) + {Ω ∣g⟩ ⟨e∣ + ϵ(t)â + c.c.} . (4.3)

We further manipulate this Hamiltonian by individually diagonalizing each photon number

subspace (∣gn⟩, ∣en⟩). The blockade drive is resonant with ∣gn0⟩ − ∣en0⟩, splitting those levels

by 2Ω and equally mixing them. For Fock states ∣n⟩ above or below ∣n0⟩, the dressing between

∣gn⟩ and ∣en⟩ is proportional to Ω/ (χ (n − n0)), to leading order in Ω/χ. We take the leading

order in this case because the blockade Hamiltonian
˜̂
H is only valid in the regime where

ϵ
√
n0 < Ω < χ. The first of these conditions limits the maximum cavity drive strength to

prevent leakage to ∣g̃n0⟩ , ∣ẽn0⟩ and past the blockaded level ∣n0⟩, while the second ensures

that the qubit drive selectively blockades the ∣gn0⟩ − ∣en0⟩ transition and minimally affects

transitions corresponding to other photon numbers. The blockade can act as an upper or

lower boundary (so that the Hamiltonian applies for n < n0 or n > n0. In the remainder of

this derivation and in our experiments, we choose n < n0. The Hamiltonian can be rewritten

in terms of these dressed states, as

˜̂
H − χ (â†â − n0) ∣e⟩ ⟨e∣ −

k

2
â†â (â†â − 1) = ∑

n<n0

ξ(t) (
√
n + 1 ∣g̃n⟩ ⟨ ̃g(n + 1)∣ + c.c + . . .)

+ ∑
n<n0

√
χ2 (n − n0)2 /4 +Ω2( ∣ẽn⟩ ⟨ẽn∣ − ∣g̃n⟩ ⟨g̃n∣ ),

(4.4)

where ξ(t) is the effect of ϵ(t) on the dressed states. In the above, we have dropped the

drive terms that couple the dressed ground and excited states ∣g̃n⟩ and ∣ẽn⟩, as these terms

are off-resonant and suppressed by Ω/χ. The physics of the blockade can be approximated

within a truncated Hilbert space that involves only the dressed transmon ground state and
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not the excited one, described by the following Hamiltonian:

Ĥtrunc ≈ ∑
n<n0

([κ
2
n(n − 1) + χ(n − n0) −

√
χ2 (n − n0)2 /4 +Ω2] ∣g̃n⟩ ⟨g̃n∣

+ξ(t) (
√
n + 1 ∣g̃n⟩ ⟨ ̃g(n + 1)∣ + c.c))

≈ ∑
n<n0

([k
2
n(n − 1) − Ω2

χ (n − n0)
] ∣g̃n⟩ ⟨g̃n∣

+ξ(t) (
√
n + 1 ∣g̃n⟩ ⟨ ̃g(n + 1)∣ + c.c)) .

(4.5)

We can see that the dressed cavity Fock state energies are corrected by the original self-Kerr

k of the cavity, and by a new photon number dependent Stark shift induced by the blockade

drive. Overall, the effect of the blockade drive is to hybridize the ∣g, n0⟩ , ∣e, n0⟩ levels and

shift them by ≈ ±Ω, thereby engineering the energy spacing of the cavity mode.

Despite no direct occupation of the transmon, state preparation fidelity using photon

blockade is limited by transmon decay and dephasing (in the limit of much smaller cav-

ity loss). This infidelity is due to a combination of leakage to the dressed ∣n0⟩ state and

subsequent decay via the transmon,

Eleakage =
ϵ

Ω2T q
, (4.6)

and Purcell decay of the cavity states from additional dressing caused by the off-resonant

blockade drive,

EPurcell =
Ω2

ϵχ2T q
(4.7)

for the ∣n0 − 1⟩ state. Here, T q = min(T q
1 , T

q
2 ) denotes the limiting qubit decoherence time.

From Eqn. (4.6), Eqn. (4.7), and considering the regime where the blockade Hamiltonian is

valid, we choose ϵ and Ω such that ϵ≪ Ω≪ χ. However, we do not want ϵ to be too small,

as that will force longer state preparation times with larger decoherence errors. In the case
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Figure 4.1: Photon blockade infidelity. We plot the infidelity due to the leakage and
Purcell decays from Eqns. 4.6 and 4.7, as well as cavity decay Ecav = 1/(ϵT cav

1 ), as a function
of the blockade cavity drive strength ϵ for various values of the blockade dressing drive
strength Ω. In this plot, all frequencies are in linear units. The dashed line indicates the
infidelity of SNAP gates, ∼1/(χT q). The dominant loss effect for lower values of Ω is the
cavity decay, which increases the minimum infidelity (blue, orange, green). For larger values
of Ω (red, purple, brown), the minimum infidelity asymptotes to a value set by the leakage
and Purcell losses.

of blockading ∣n0 = 2⟩, optimizing the cavity drive strength results in a minimum infidelity

of ∼ 1/(χT q) when preparing ∣1⟩ (blockade cavity π pulse). This infidelity is comparable

to the error (primarily from qubit decoherence) in other state preparation techniques, like

optimized SNAP gates [58–61], which is indicated by the dashed black line in Fig. 4.1.

There, we also show calculated infidelities for different values of ϵ and Ω when including

intrinsic cavity decay Ecav = 1/(ϵT cav
1 ). The effect of cavity decay will generally be larger

for state preparation via photon blockade than SNAP due to the weaker cavity drives and

correspondingly longer pulse times. For lower values of Ω, cavity decay is the dominant

loss source, while for larger values of Ω, the leakage and Purcell losses limit the minimum

infidelity. In practice, another consideration is that the cavity drive strength ϵ sets the rate

of state preparation. To perform state operations quickly, we want ϵ to be as large as possible
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without adversely affecting the overall blockade infidelity. In some cases, such as performing

sequential gates, this may mean that we sacrifice a small amount of fidelity for a larger ϵ.

However, this is primarily a future consideration and is not an issue for the experiments

presented in the remainder of this chapter.

4.2 Generating the Blockade

To implement photon blockade on a single cavity mode, we perform several necessary calibra-

tion experiments. These are presented in Fig. 4.2. From Eqn. (4.5), we see that the blockade

drive generates a Stark shift on the cavity drive frequency. We determine the new cavity

drive frequency by performing a Blockade Cavity Spectroscopy experiment, where we turn on

the blockade tone and sweep the frequency of a simultaneous cavity drive before applying a

resolved qubit pi pulse and measuring. The result of this experiment is shown in Fig. 4.2(a).

In this case, we probe the ∣1⟩ level, which starts empty and can only be populated when we

successfully drive the cavity. The center of the resulting peak, which for a square drive pulse

will be the absolute value of a sinc function, will give us the desired cavity drive frequency.

In Fig. 4.2(b), we see that the photon blockade succeeds in disallowing cavity population

beyond the chosen photon number (in this case ∣n0 = 2⟩). Rather than generating a coherent

state, a constant weak cavity drive will instead generate a Rabi oscillation between the two

accessible Fock states ∣0⟩ and ∣1⟩. In (c), we show the experimentally measured cavity Stark

shift and blockade splittings, which are consistent with the expressions from Eqn. (4.4) and

Eqn. (4.5).

As mentioned in the previous section, one application of photon blockade is to prepare

a single photon ∣1⟩ in the cavity by applying the blockade at ∣n0 = 2⟩. To calibrate this, we

perform a Blockade Rabi experiment. Similarly to the qubit Rabi experiment, we vary the

time for which the simultaneous blockade and cavity drive tones are on before performing a
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Figure 4.2: Blockade calibrations. (a) A Blockade Cavity Spectroscopy Experiment gives
the new cavity frequency after it is Stark shifted by the blockade dressing drive. We probe the
∣n = 1⟩ level while sweeping the frequency of the cavity drive, and adjust the cavity frequency
based on the center of the peak (black dashed line). (b) A Blockade Rabi experiment
demonstrates the effect of photon blockade, in this case for a blockade at ∣2⟩. With the
constant blockade dressing drive and a constant weak cavity drive, we are unable to populate
the cavity Fock states at and beyond the blockaded level. (c) An expanded cavity spectrum
showing the energy splitting of the ∣2±⟩ levels due to the blockade as well as the Stark shift
of the ∣0⟩− ∣1⟩ transition (central vertical blue line). The theoretical curves for the Rabi split
∣1⟩ − ∣2±⟩ transition are indicated by the dashed black lines, and asymptotically approach Ω.

resolved qubit π pulse at the frequency of the photon number resolved peak that we want

to measure. If we start in the ground state ∣g0⟩, we observe an oscillation between ∣0⟩ and

∣1⟩, and the π time will correspond to the preparation of ∣1⟩. This is shown in Fig. 4.3. In

(a), we provide a diagram illustrating the transmon-cavity energy levels and the effect of the

blockade at ∣n0 = 2⟩ to shift the ∣2⟩ level. In (b), we present Blockade Rabi data for a few

different photon numbers, with the blockade π time marked by the vertical line. In (c), we

present Wigner tomography of the cavity at the π time, which is a phase space representation

of the cavity state [62] and will be explained more thoroughly in Chapter 6.

We use a similar procedure to prepare ∣2⟩ and higher Fock states. After preparing ∣1⟩,

we turn off the blockade at ∣2⟩, and instead blockade ∣0⟩ and ∣3⟩ simultaneously, as shown

in Fig. 4.4(a). Now, performing a Blockade Rabi and driving the cavity like in Fig. 4.4(b)

will generate an oscillation between ∣1⟩ and ∣2⟩, as those are the only reachable states in the
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Figure 4.3: Blockade preparation of ∣1⟩. (a) Energy level diagram corresponding to the
blockade at ∣2⟩. The photon number splitting χ = 2π × −1.09 MHz allows us to implement
a dressing drive of strength Ω = 2π × 108 kHz that targets only the ∣g2⟩ − ∣e2⟩ transition,
hybridizing those states and generating a splitting by roughly Ω, as indicated by the green
dashed lines. Then, a weak cavity drive (red squiggly arrow) can drive from the ∣0⟩ state to
∣1⟩, but not ∣1⟩ to ∣2⟩, creating the blockade. (b) Blockade Rabi data for the blockade at ∣2⟩.
Because there are only 2 accessible states ∣0⟩ and ∣1⟩, a constant cavity drive ϵ = 2π × 20 kHz
produces an oscillation over time with higher photon numbers unpopulated. The drive time
τ = 25µs that prepares ∣1⟩ in the cavity is marked by the dashed vertical line. (c) Wigner
tomography of the state prepared at the vertical line in (b). This measurement gives us a
state preparation of ∣1⟩ with fidelity 0.99 ± 0.005.

blockaded space. There will therefore be a drive time that corresponds to exactly preparing

∣2⟩ in the cavity. Before performing the Blockade Rabi, we need to redo the Blockade

Cavity Spectroscopy experiment to find the cavity frequency in this situation, as the two

blockade dressing drives at different frequencies will produce a different overall Stark shift.

Nevertheless, we could continue this process for successively higher ∣n⟩, where we first prepare

∣n − 1⟩, turn on two blockade tones at ∣n − 2⟩ and ∣n + 1⟩, and drive the cavity into ∣n⟩.

Additionally, we can implement qudits by applying a blockade tone at ∣d⟩. For the

simplest case of d = 2, we achieve universal control just with the cavity drive [63]. For larger

d, we can achieve universal control in the blockaded qudit subspace of {∣0⟩ , ..., ∣d − 1⟩} as well,

although rather than just the on/off cavity drive, we need to use more complicated optimal

control pulses [27, 64, 65]. We discuss this in more detail in Chapter 5. Overall, photon

blockade allows us to easily and effectively control the state of a cavity mode. With just
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Figure 4.4: Blockade preparation of ∣2⟩. (a) Energy level diagram showing a simultaneous
blockade at ∣0⟩ and ∣3⟩. The blockade drives Ω = 2π × 108 kHz (green) target the ∣g0⟩ − ∣e0⟩
and ∣g3⟩− ∣e3⟩ selectively due to photon number splitting χ = 2π×−1.09 MHz. Starting from
∣g1⟩, a cavity drive ϵ = 2π × 20 kHz (red squiggly arrow) can only access the ∣g2⟩ state. (b)
Blockade Rabi oscillation when starting in ∣1⟩ while blockading ∣0⟩ and ∣3⟩. Since the only
two accessible states are ∣1⟩ and ∣2⟩, we observe a Rabi oscillation between those two states
when applying a constant cavity drive ϵ in the presence of the two blockade dressing drives.
All the other photon numbers are unpopulated. The ∣2⟩ state is prepared in the cavity at
the time indicated by the dashed vertical line. (c) Wigner tomography of the state prepared
at the vertical line in (b). Compared to ∣1⟩, it has an additional node or fringe, which is a
feature of cavity Fock states. We are able to prepare ∣2⟩ using this approach with fidelity
0.985 ± 0.009.

a constant qubit drive, we partition the accessible space of Fock states. Applying different

or multiple blockade tones with cavity drives in succession gives us even greater control

of the cavity state, which we can use to prepare arbitrary Fock states ∣n⟩ or Fock state

superpositions.
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4.3 Multimode Blockade

We now move beyond a single mode and apply photon blockade to multiple modes. The

blockade acts as an many-body interaction across M modes that we can utilize for quan-

tum state preparation. Generating this interaction requires shifting the energies of multiple

multimode states. Due to its photon number selectivity, the implementation and effective-

ness of the blockade will depend on the dispersive shifts χj of each of the modes. We first

consider the case where they are equal, χj = χ for all modes j. In this case, a drive tar-

geted at photon number n will blockade all of the corresponding multimode Fock states. For

example, for n = 3 and M = 2 modes, the energy levels of ∣03⟩ , ∣12⟩ , ∣21⟩, and ∣30⟩ will all

be shifted. If we start in the vacuum or ground state, ∣00⟩, the only accessible states will

be ∣00⟩ , ∣01⟩ , ∣10⟩ , ∣02⟩ , ∣11⟩ and ∣20⟩. In this case, the multimode blockade works essentially

the same as for a single mode. A single drive tone and frequency will partition the effective

Hilbert space by addressing the different energy levels that are all on resonance. If desired,

we could also apply multiple of these resonant drives to further adjust the reachable states

and restrict the space to some subset of photon numbers.

Even if the χj are not initially the same, if they are close, we can use χ-engineering

techniques to make them effectively equal. For example, we can accomplish this by applying

off-resonant sideband drives [66]. By driving a sideband near the ∣h0⟩ − ∣e1⟩ transition with

a detuning δ, we Stark shift the level ∣e1⟩ inversely proportional to δ [28, 67]. The drive

also slightly shifts the other energy levels involved in calculating the dispersive shift, as

χ = ωe1−g1 − ωe0−g0. By choosing the detuning, its sign, and the strength of the drive, we

induce an adjustment to one χj and make it match another χj′ . An example of this χ-

engineering is shown in Fig. 4.5. This can work well for low mode number M and low

photon number n; however, each additional mode will require an additional sideband drive,

and the drives will affect each other and complicate the calibration process. Consequently,

66



6 4 2 0
Detuning (MHz)

0.3

0.2

0.1

0.0

0.1

0.2

 (M
Hz

)

Figure 4.5: Sideband χ dressing. By applying a drive near the ∣h0⟩ − ∣e1⟩ transition with
a chosen detuning, we Stark shift the transmon-cavity energy levels and thereby modify the
dispersive shift by δχ. This can be used to match the χ between multiple modes when they
are initially different. In practice, we often choose larger detunings at the cost of smaller δχ
to minimize odd effects near resonance. Dashed lines are shown at 0 detuning and 0 shift.

while sideband χ-engineering is a useful technique, we do not utilize it to equalize our χj in

our experiments.

We now consider the case where the χj are not all equal. The difference here is that a

blockade tone that is on resonance with one mode will now be off resonance for another. One

approach to implement the blockade at photon number n would be to apply a drive tone at

each distinct frequency ωge + nχj. However, as we can see from Eqn. (4.5) and Eqn. (4.7),

each of these drives will produce a Stark shift on the cavity drive, and each additional drive

tone will contribute to the blockade infidelity. These effects will limit the effectiveness of

the blockade and our state preparation, especially as the number of modes and distinct χj

increases. Furthermore, having many drive tones that are close in frequency will produce

beats that may have unwanted effects.

Instead, we can achieve the desired effects of the blockade with a single drive tone,

assuming the χj are sufficiently close to each other. There are several criteria that must be
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satisfied for a blockade drive at ωd = ωge+ δωb. As in the single-mode case, the drive must be

weak enough to satisfy Ω ≪ δωb − ∣χj ∣ for all modes j, so as to avoid dressing states with a

different total photon number. On the other hand, the drive must also be strong enough to

simultaneously blockade all multimode Fock states with a total of n photons. This requires

Ω > ∣δχ∣ = n∣χi−χj ∣ across all pairs of modes {i, j}. In our system, this criteria can be satisfied

for all mode pairs that are nearest neighbours in frequency for at least n = 3; the mode pairs

with the most disparate δχ’s can still satisfy this condition for n = 3, while modes with more

similar χi, χj can satisfy it for larger n. Additionally, even if a target multimode state is off

resonant from the blockade drive, it can still be disallowed based on the drive-induced Stark

shift Ω2/(4∆d), where ∆d is the detuning between the blockade drive and the state. Driving

any of the cavity modes with sufficiently weak drives (ϵ <min(Ω,Ω2/(4∆d))) in the presence

of the blockade interaction results in constrained multimode dynamics within the space of

states with total photon number < n when starting from the vacuum state. This way, as

shown in Fig. 4.6 for 3 modes and n = 2, we have implemented a hyper-plane of blockaded

multimode Fock states with the same total photon number, whose energies are all shifted,

defining the multimode many-body interaction. This interaction acts when a state would

normally be driven into the blockaded hyper-plane, and effectively partitions the space of

states that are accessible by cavity drives weaker than the interaction strength.

One class of states that we prepare with our multimode photon blockade is W states.

These are entangled states of the form

∣WM⟩ =
1√
M

M

∑
j=1
eiϕj ∣0..01j0...0⟩ , (4.8)

that are an equal superposition of a single photon in each of the M modes. To create

W states, we apply a single blockade drive tone targeted at photon number n = 2. We

choose a drive frequency offset from the qubit frequency by the average dispersive shifts of
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Figure 4.6: Hilbert space partition implemented by multimode photon blockade.
In this diagram, each gray point represents a multimode Fock state, and each axis corresponds
to increasing photon number in one of the modes. For the case of blockading n = 2 on 3
modes, all states with total photon number 2 marked by the green hyperplane have their
energies shifted. For a sufficiently weak cavity drive, when starting from the vacuum ground
state (∣000⟩) the only remaining accessible states are ∣000⟩ (orange), ∣001⟩ (purple), ∣010⟩
(blue), and ∣100⟩ (red).

combinations of adding 2 photons, i.e.,

ωd = ωge +
2

M

M

∑
j=1
χj. (4.9)

The resulting blockaded hyper-plane is shown in Fig. 4.6 for 2 photons and 3 modes. The

blockaded states (in green) will be of similar form for other numbers of modes, but with

different numbers of 0’s. With this blockade tone, simultaneously driving the cavity modes

with equal strengths for an appropriate time prepares W states.

We first demonstrate the multimode blockade interaction with qubit spectroscopy. In

the absence of the blockade drive, independent weak drives in each mode produce coherent

states with occupation in the two photon levels ∣200⟩ , ∣020⟩ or ∣002⟩ (and higher), as shown in
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Figure 4.7: Demonstrating the blockade with spectroscopy. Photon number resolved
spectroscopy data is shown for 3 modes with and without a blockade at n = 2. (a) When the
blockade is off, driving any of the 3 modes produces classical coherent states. In particular,
there is visible population at each of the 2-photon resolved peaks (green). (b) The blockade
is applied at the frequency corresponding to the vertical green line, with dressing drive
strength indicated by the shaded green band. Now, population of the 2-mode Fock states is
disallowed, and we instead prepare an entangled 3-mode W state. Dashed horizontal lines
indicate population of 1/3, which we expect for that state. We attribute the peaks being
slightly below the ideal 1/3 to a combination of imperfect state preparation (fidelity < 1) and
decay of the transmon during the resolved πge probe pulse, as due to the need for bandwidth
narrow enough to distinguish between χj, we required a probe pulse of length 10.8 µs, a
sizable portion of the transmon T1 time.

Fig. 4.7(a). However, in the presence of the blockade, the states with more than 1 photon have

no occupation, as shown in Fig. 4.7(b). Here, 3 modes are driven simultaneously with equal

strengths for the time required to prepare a W state, resulting in peaks only at ∣100⟩ , ∣010⟩

and ∣001⟩. Using the peak heights from spectroscopy, we measure the population oscillations

as a function of time in Fig. 4.8 for 2–5 modes. We see that most of the population remains

in the 0 and 1 photon multimode subspace, and that the populations are consistent with a
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W state at the times when the vacuum state (orange circles) is emptied. By observing the

return of the vacuum state oscillation, we see that the W state preparation fidelity decreases

with increasing mode number, as it becomes increasingly difficult to stay in the regime where

the blockade Hamiltonian is valid with a single drive tone when there are more χj’s that are

increasingly disparate. Nevertheless, these W states were created using some of the modes

with most different χj in our system, so we expect that their fidelities represent a worst case,

and could be improved by using different sets of modes with more similar χj. The reason

why we chose a set with more different χj is that their individual populations are more easily

distinguished in spectroscopy experiments.

Continuing to larger n, the next case we examine is blockading the n = 3 photon level

for 2 modes. Compared to the blockade at n = 2, we have increased the size of the allowed

Hilbert space and the number of blockaded multimode Fock states. The maximum frequency

difference between levels that the blockade will need to dress is n(χ2 −χ1), where χ2 and χ1

are the dispersive shifts of the 2 modes of interest. An implementation of this blockade is

shown in Fig. 4.9. As expected, none of the levels with photon number ≥ 3 are populated,

and there are now 6 total 0-photon, 1-photon, and 2-photon levels in the accessible Hilbert

space. Additionally, unlike the case of n = 2, driving with constant, equal cavity drives does

not result in a time at which the original ground state population is restored. Instead, we

observe that the two modes begin with similar population evolutions, but after hitting and

interacting with the blockade, those evolutions begin to deviate due to the modes’ different

χ. In general, with these equal cavity drive strengths, there will be no time for which the

state fully returns to vacuum. Nevertheless, the ability to implement this kind of interaction

could be useful as a tool for preparing certain kinds of quantum states across multiple modes.

In combination with different blockade parameters, changing the cavity drive strengths such

as by making them unequal can produce completely different entangled states that are all

still contained in a desired subspace of photon number levels.
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Figure 4.8: W state preparation Rabi oscillations. We are able to effectively prepare
multimode entangled W states in up to 5 modes by applying multimode photon blockade
at n = 2. In all plots, the values are normalized such that the beginning population of the
vacuum state is 1; this compensates for any decay during the long 10.8 µs qubit probe pulse.
For M modes, the dashed line at 1/M indicates the expected population of each of the
single-photon multimode Fock states when the vacuum state (orange circles) is emptied. (a)
2-mode W state. (b) 3-mode W state. (c) 4-mode W state. (d) 5-mode W state. In this
case, the rising populations of the n ≥ 2 levels (gray) indicate that the single blockade drive
tone is struggling to forbid all of those states.
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Figure 4.9: Blockading n = 3 for 2 modes. (a) Spectroscopy of a state created by the
blockade. There are now 6 allowed levels that can be populated, and levels beyond those are
disallowed. The blockade drive frequency is marked by the vertical green line, with dressing
drive strength indicated by the shaded green band. (b) Populations over time of the 2-mode
Fock states. The evolution of the states of the 2 modes begin similarly, before deviating after
interacting with the blockade around the time when the ∣00⟩ evolution reaches its minimum.
The dashed line indicates the time at which the spectroscopy in (a) was performed.

In summary, we have applied photon blockade to simultaneously dress multiple cav-

ity modes, creating a pure many-body interaction. The system remains linear and non-

interacting until we reach the blockade number, at which point the modes interact strongly.

Through this interaction, they can become entangled and, in the case of a blockade at n = 2,

create W states. For blockades at larger n, we can similarly prepare entangled states between

modes with population at higher multimode Fock states. Using only simple on/off cavity
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and qubit dressing drives, we are able to use the blockade to partition the accessible Hilbert

space of our bosonic modes, which can be leveraged for state preparation and generating

entanglement. Overall, we have contributed to the multimode cQED toolbox with a scheme

to realize these higher-order, exotic blockade interactions and state preparation techniques

that generalize to arbitrary numbers of modes.
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Chapter 5

Quantum Optimal Control in 3D cQED

Optimal control is a method to engineer the state of a quantum system. In this technique,

control pulses are numerically optimized with a given Hamiltonian to produce a desired

unitary gate or target quantum state. There are several approaches to solve these optimiza-

tion problems, such as GRadient Ascent Pulse Engineering (GRAPE) [64, 65, 68], trajecto-

ries [69], Selective Number-dependent Arbitrary Phase (SNAP) pulses [58–61], Krotov for

closed systems [70, 71], proprietary approaches like Q-CTRL’s Boulder Opal [72], and re-

cently developed methods like Echoed Conditional Displacement (ECD) gates [73] and Pade

Integrator COllocation (PICO) [74], to name a few. There are a steadily growing number of

these distinct quantum optimal control (QOC) algorithms that each claim different benefits.

Rather than attempt to go into detail about every one of these methods, which could fill a

book in itself, in this chapter we highlight some of the more common features shared between

these algorithms. We also describe how we implement optimal control on our transmon and

multimode cavity cQED system for a few different effective Hamiltonians.

5.1 Overview of Optimal Control Algorithms

This section will provide an overview of the structure of a QOC problem and its mathematical

formulation. Afterwards, we give a brief summary of some of the different ways to solve the

problem, and highlight some of the important considerations in the process.

A general QOC problem can be viewed as an optimization process that is subject to

dynamics described by a Hamiltonian (or Liouvillian). The optimization is performed with

respect to some set of time-dependent control fields uk(t), and aims to minimize deviations

from a target state or target unitary. Assuming the action of the kth control on the system
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is given by Ĥk, we can express the total Hamiltonian with the controls as

Ĥ = Ĥ0 +∑
k

uk(t)Ĥk, (5.1)

where H0 is the static or intrinsic part of the system. As part of the optimization, we choose

a time interval [0, T ] such that T is the maximum duration of the controls. To make the

problem tractable, we then discretize this period into N time steps of size ∆t to numerically

model the evolution of the state of the system, ∣ψ(tj)⟩ or ρ(tj), and the controls uk(tj). If

we have a total of M real controls, this will become an optimization problem over M ⋅N real

numbers. Depending on the framework of the problem, the form of the objective function

that quantifies the optimization can vary.

We consider two main types of objectives for the optimal control problem: a target state

or a target unitary. These represent a state optimization and a unitary optimization problem,

respectively. State problems are more efficient in situations where we only care about how

the controls acts on one or a few states, while unitary problems are most appropriate for

implementing gates. For example, if we seek a set of controls that prepares ∣3⟩ when starting

in ∣0⟩ in a cavity mode, and we do not care about what the controls do to ∣1⟩ or ∣2⟩, we should

frame this as a state problem. On the other hand, if we are trying to implement a CNOT

gate between two qubits, we should set that up as a unitary problem, as we care about the

action of the controls on every basis state. In state optimization, the objective function is

given by the infidelity between the target state and the final state generated by the controls

u⃗, and can be expressed as

C(ψN(u⃗)) = 1 − ∣⟨ψT ∣ψN(u⃗)⟩∣2, (5.2)

where ψT is the ideal target state and ψN is the state produced at time T after evolving

under Eqn. 5.1 with u⃗. Similarly, for a unitary problem, the objective function for a target
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K̂T is given by

C(K̂N) = 1 −
1

D
∣tr(K̂T K̂N)∣ (5.3)

where D is the size of the Hilbert space of the problem. We numerically compute ψN or K̂N

by propagating the controls over the total time interval using our discretized time steps [65].

The evolution up to time tn = n∆t is given by the propagator

K̂n = ÛnÛn−1...Û1Û0, (5.4)

where Ûn = exp(−iĤn∆t) is the propagator for the time interval [tn, tn+1 ≡ tn +∆t] and

Ĥn = Ĥ0 +∑
k

uk,nĤk (5.5)

is the discretized version of Eqn. (5.1) and is set by the values of the controls over that same

nth time interval. Thus, we can express our final optimization problem as

minimize
u⃗1∶N−1

J(u⃗1∶N−1) = C(ψN(u⃗1∶N−1)) or C(K̂N(u⃗1∶N−1)), (5.6)

depending on whether we have a target state or unitary.

In practice, it is often necessary to impose additional constraints on the optimization

problem. These could be due to hardware limitations, such as a maximum possible drive

amplitude, or physics considerations, such as smoothness or Fourier components of the drives

and ensuring that the conditions required for the modeled Hamiltonian remain satisfied. The

controls should be producible in the lab and ideally avoid large amplitude fluctuations and

rapid variations so that they are more robust to noise in the control instrumentation [65].

One way to impose these soft constraints is to add terms to the cost function J(u⃗1∶N−1), such

that solutions that rely on any undesirable control features are penalized. For example, to
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reduce the amount of fluctuation in the optimized controls, we apply the cost function

C1(u⃗) = ∑
k,n

∣uk,n − uk,n−1∣2, (5.7)

which acts as a penalty to the first derivative of the controls and thus suppresses the amount

of rapid variations that they have. Another useful cost function serves to limit the population

of some subset of chosen forbidden states in the Hilbert space. For each forbidden state ∣ψF ⟩,

this can be written as

C2(u⃗) = ∑
n

∣⟨ψF ∣ψn⟩∣2. (5.8)

This can be used to avoid occupation of higher energy, potentially lossier states during the

optimized time interval. This is beneficial in reducing the chance of a spontaneous relaxation

or decoherence event occurring while the controls are active. Perhaps most importantly, this

cost is crucial for accurately modeling Hilbert spaces of large or infinite dimension, such as

a bosonic cavity mode. In those cases, it is necessary to truncate the space at some level to

model it with finite computational resources. However, the highest level in the model will

then have an infinite anharmonicity, even though this is not really the case. To ensure the

accuracy of our model and prevent the optimizer from utilizing this artificial nonlinearity,

we forbid population of the highest level or two. Finally, depending on the problem type,

each of these cost functions can be scaled by different weights to have more or less emphasis

when performing the optimization.

Another way to implement constraints is to add inequalities or equations to the QOC

problem. We reformulate the problem as a trajectory optimization [69], given by

minimize
x⃗1∶N−1,u⃗1∶N−1

J(x⃗1∶N−1, u⃗1∶N−1)

subject to g⃗n(x⃗n, u⃗n) ≤ 0⃗ ∀n

h⃗k(x⃗n, u⃗n) = 0⃗ ∀n,

(5.9)
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where g⃗ and h⃗ are vectors of constraints and x⃗n is the state vector at time step n. We

generally treat x⃗ and u⃗ as augmented state and control vectors, so that they contain all the

relevant variables in the optimization problem, not just the quantum states and controls [69].

An example of an important inequality constraint is imposing a maximum amplitude for

each of the controls, which can depend on hardware capabilities or may be informed by

approximations that were made in developing the system Hamiltonian. Equality constraints

can be used to force the beginning and end of the controls to 0 to ensure smoothness and

prevent sudden jumps on either side. Constraints of this type can also be used to implement

bandwidth limitations by forcing certain Fourier components to 0. This can be used to

restrict unwanted transitions, such as to the higher excited states ∣f⟩ or ∣h⟩ of a transmon.

Besides these examples, the ability to impose constraints of this form and the previously

discussed cost functions offer a large amount of flexibility in QOC problems that gives the

best chance of producing controls that will operate successfully on quantum hardware.

As mentioned previously, there are a multitude of different approaches to solving QOC

problems. We highlight two different ones here: GRAPE [64, 65] and PICO [74]. As sug-

gested by its name, GRAPE is a gradient-based method. Starting with an initial guess

for the controls, in the first iteration of the optimization, the final state and intermediate

states are computed using the propagator given by Eqn. (5.4). With the state information,

we compute the total cost function J and update the controls via the method of steepest

descent, given by

u⃗new = u⃗ − β∇u⃗J, (5.10)

where β is a constant that is typically referred to as the learning rate. We iterate on this

process, continually updating the controls u⃗ until we reach a desired value of J or the change

in u⃗ becomes negligible. The choice of β can vary for each iteration, and typically decreases

with iteration number to assist with steady convergence to a minimum. This is shown
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Figure 5.1: Schematic of GRAPE algorithm. Starting with an initial guess for the
controls (gray circles), GRAPE modifies the controls by some learning rate times the gradient
of the cost function J . In both plots presented, the rate decreases with each iteration
(individual arrow). (a) A relatively small initial learning rate results in a smooth convergence
to the minimum value of J . (b) A relatively large initial learning rate can still produce the
same solution, although the value of the cost function may jump around slightly more. If
the learning rate is too large or monotonically increases, the value of J will struggle or fail to
converge. Some adaptive schemes occasionally increase the learning rate to generate faster
convergence or help with escaping a local minimum.

schematically in Fig.5.1 for two different initial values of β. One simple form for β is an

exponential decay, β(m) = β0e−m/c for some constant c for each iteration number m. There

are also a number of schemes that adaptively determine β(m), with some examples being

L-BFGS-B [75] or ADAM [76]. These adaptive approaches can help the optimizer converge

in fewer iterations and reduce the chance of getting stuck in a local minimum, which is

a regular concern with gradient-based algorithms. GRAPE falls into the class of indirect

solvers, in that the optimization treats the final state as a function of the controls such that

only the controls (and not the states) are the decision variables.

On the other hand, PICO is a direct solver. In addition to the controls, it also treats

the states as variables. Consequently, we can evaluate the objective or total cost function

J more directly, as the quantum states are built into the optimization process and do not

need to be computed with a propagator, like in indirect methods. One notable difference

of direct methods is that because the states are variables, the dynamics of the system are
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not strictly imposed during the solve, but are instead enforced as equality constraints in

the problem [74]. The numerical solver can thus violate the dynamics during intermediate

iterations before satisfying them at convergence, offering an increased flexibility that can

improve the efficiency of the solve [69]. Similarly, the initial guess for the state can be

unfeasible. Like in GRAPE, updates occur based on a learning rate β times the derivatives

or gradients of J with respect to all the decision variables, like in Eqn. (5.10). The difference

is that now the states are included in addition to the controls. Additionally, due to the

possibly nonphysical starting state, the algorithm is less dependent on the quality of the

initial guess and is less susceptible to getting stuck in local minima. At the end of the

optimization, we must confirm that the final solution indeed satisfies the dynamics defined

by the system Hamiltonian.

Now that we have summarized the mathematical formulation of a QOC problem and

presented some examples of QOC solvers, in the following sections we consider some example

problems and effective Hamiltonians that we implement on our cQED hardware. The main

solvers that we use are the GRAPE package developed in [65] and the PICO solver from [74].

5.2 Optimal Control of a Transmon and Cavity Mode

Arguably the simplest system that we could start with is just a transmon. However, if we

ignore pulse features that are sometimes desired, like frequency robustness or bandwidth

limitations [69], universal control of a transmon can be effectively implemented with con-

stant on/off drives. Numerically optimized pulses can still be very useful in these systems

for speeding up operations or reducing sensitivity to different types of noise, but in many

cases, like ours, it is not strictly necessary for preparing target states or gates. The next

most straightforward system that we consider on our hardware is a transmon coupled to a

single cavity mode. Due to the cavity mode being a bosonic oscillator with nearly equal
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transitions between all energy levels (photon numbers), implementing arbitrary operations

is much harder. There are some analytical approaches for quantum state preparation, like

applying transmon-cavity sidebands as discussed in Chapter 3, photon blockade as discussed

in Chapter 4, or SNAP pulses [58, 59]. Nevertheless, numerical optimal control techniques

can improve upon these by finding faster pulses or determining the drive coefficients needed

to reach a target state in those schemes. The remainder of this section will discuss the

coupled transmon-cavity system and QOC that we implement on it.

5.2.1 Developing the System Hamiltonian

As part of setting up a QOC problem, we must first determine the Hamiltonian that accu-

rately models the real system while also being as efficient as possible to help speed up the

optimization process. We first consider a system with a transmon coupled to a single cavity

mode. Starting with the Hamiltonian in Eqn. (2.12), we reduce to a single mode and add

drive terms on our transmon and cavity mode to get:

Ĥ = ωgeb̂
†b̂ + α

2
b̂†b̂(b̂†b̂ − 1) + ωcâ

†â + χâ†âb̂†b̂ + k
2
â†â(â†â − 1)

+ ϵq(t)(b̂ + b̂†) + ϵc(t)(â + â†),
(5.11)

where ϵq(t) and ϵc(t) are complex, time-dependent drives on the transmon and cavity, re-

spectively. Next, we go into the rotating frame at the transmon and cavity frequencies by

applying the transformation Û = e−iĤ0t, with Ĥ0 = ωgeb̂†b̂ + ωcâ†â. This reduces the maxi-

mum frequencies in our system from a few GHz (ωge, ωc) to a few hundred MHz (α). If we

model the transmon as a two-level system, which is often still accurate, the maximum sys-

tem frequency reduces even further to only a few MHz (χ) or tens of MHz depending on the

maximum allowed values for ϵq(t), ϵc(t). With lower maximum system frequencies, we can

retain the accuracy of our model with a larger simulated time step for the optimal control
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pulse, reducing the total number of steps required and thus the complexity of the problem.

This also reduces the amount of real time needed to generate the pulse. The Hamiltonian in

this frame becomes:

Ĥrot =
α

2
b̂†b̂(b̂†b̂ − 1) + χâ†âb̂†b̂ + k

2
â†â(â†â − 1)

+ ϵq(t)(b̂e−iωget + b̂†eiωget) + ϵc(t)(âe−iωct + â†eiωct).
(5.12)

Now, it is useful to express the drive terms as ϵq(t) = ϵ∗q(t) cos (ωget + ϕq(t)) for the qubit

and ϵc(t) = ϵ∗c(t) cos(ωct + ϕc(t)) for the cavity mode. With these substitutions, we rewrite

our rotating frame Hamiltonian as:

Ĥrot =
α

2
b̂†b̂(b̂†b̂ − 1) + χâ†âb̂†b̂ + k

2
â†â(â†â − 1)

+
ϵ∗q(t)
2
(b̂eiϕq(t) + b̂†e−iϕq(t)) + ϵ

∗
c(t)
2
(âeiϕc(t) + â†e−iϕc(t)) ,

(5.13)

where we have expanded the cosines and used the rotating wave approximation to drop

terms rotating at 2ωge or 2ωc, assuming ϕq(t) ≪ ωge and ϕc(t) ≪ ωc. We rearrange this

Hamiltonian by expanding the ϕj(t) exponentials and grouping by cos(ϕj(t)) or sin(ϕj(t))

to get our final Hamiltonian,

Ĥrot =
α

2
b̂†b̂(b̂†b̂ − 1) + χâ†âb̂†b̂ + k

2
â†â(â†â − 1)

+ ϵq,x(t)(b̂ + b̂†) + ϵq,y(t)i(b̂† − b̂) + ϵc,x(t)(â + â†) + ϵc,y(t)i(â† − â),
(5.14)

where ϵj,x(t) =
ϵ∗j (t)
2 cos(ϕ(t)) and ϵj,y(t) = −

ϵ∗j (t)
2 sin(ϕ(t)). We have a static Hamiltonian

given by the first line of Eqn. (5.14), and a total of four drive terms that represent the real

and imaginary quadratures of the transmon and cavity drives. We use these four drives to

run any QOC problem in this rotating frame. Furthermore, this gives us a prescription for
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returning from the rotating frame back to the lab frame:

ϵq(t) = ϵq,x(t) cos(ωget) − ϵq,y(t) sin(ωget),

ϵc(t) = ϵc,x(t) cos(ωct) − ϵc,y(t) sin(ωct).
(5.15)

In the above, we have used the fact that we are in the limit where ϕj(t) ≪ ωge, ωc, and we

have applied cosine and sine sum-to-product formulas. Before we apply the Hamiltonian

given by Eqn. (5.14) to generate optimal control pulses and test them on our hardware, we

must first perform several calibration experiments to ensure that we accurately generate the

pulses.

5.2.2 Calibration Experiments

To effectively implement optimal control pulses, we require precise knowledge of our drive

lines and drive parameters. In our system, and for the pulses that will be discussed later in

this chapter, we have two primary system components that we drive and manipulate, and

therefore need to calibrate: our transmon and storage cavity.

First, we need to convert our dimensionless AWG amplitudes to a drive strength in

frequency units, and vice versa. We measure this conversion with the experiments shown

in the insets in Fig. 5.2. For the transmon, we vary the AWG amplitude in a series of

Rabi experiments and observe the resulting oscillation frequencies. These directly reflect the

transmon drive strength, and are shown in Fig. 5.2(a). The cavity calibration is slightly more

complicated. Due to being a bosonic oscillator, we do not observe an oscillation between two

energy levels when driving it. Instead, we vary the time and amplitude of a cavity drive pulse

and measure the resolved photon number populations that it produces. These populations

will follow a Poisson distribution that we fit to obtain the magnitude of the coherent state

α produced in the cavity, as described in Chapter 3.3.1 and by Eqn. (3.5) with t = 0. We
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Figure 5.2: Qubit and cavity drive calibrations. In both cases, the relationship is
slightly nonlinear, especially at low values, reflecting the bit resolution of the AWG. We
develop an interpolation function to convert from AWG amplitudes to drive strengths (green
lines). (a) Qubit drive calibration. Drive strengths corresponding to each AWG amplitude
are obtained by performing a Rabi experiment (inset) at that amplitude and fitting to the
resulting oscillation frequency. (b) Cavity drive calibration. Drive strengths corresponding
to each AWG amplitude are obtained by performing a series of spectroscopy experiments
(inset) that allow us to fit the photon number populations to a Poisson distribution. In each
series, we sweep the length of the cavity drive with a fixed amplitude, and the slope of the
resulting line gives us the value of the drive strength for that amplitude.

perform this measurement at 4 distinct time steps for each fixed AWG amplitude, as shown

in Fig. 5.2(b). Fitting to the slope of the line produced by those 4 points gives us the

magnitude of the cavity drive strength that corresponds to that amplitude.

We repeat these experiments for multiple AWG amplitudes instead of just one. Ideally, we

could measure the drive strength corresponding to a single amplitude and fit to a proportional

relationship that should give us the full transfer function. However, in Fig. 5.2 we see that
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Figure 5.3: Cavity drive Fourier transform comparison. The measured points (blue)
were collected by sweeping the carrier frequency of the cavity drives, with the AWG am-
plitude to drive strength transfer function measured at the resonant cavity frequency. The
data is consistent with the simulated pulse (green line), indicating that the response of our
drive lines is frequency-independent near our cavity mode frequency.

the fits are not proportional or even linear, and instead have some significant curvature,

especially at low AWG amplitudes. The reason for this behavior is the finite bit resolution

of the AWG. In our case, the M8195A AWG has an 8-bit amplitude resolution, with 1 bit

reserved for the sign. The remaining 7 bits therefore cover the entirety of the 0-1 amplitude

magnitude range, giving us a bit resolution of 1/27 = 1/128. Rounding and the way the

AWG handles values near these bit resolutions produces the observed nonlinear behavior.

Additionally, it can be useful to regularly redo these full amplitude calibrations, as the

calibration tends to drift over time.

The previous calibration experiments involved resonantly driving the qubit and cavity.

However, most optimal control solves produce drive pulses that have have significant off-

resonant contributions that are crucial to their performance. Consequently, we must also

measure our experimental drive response off resonance. Ideally, the response at our device

will be the same regardless of the drive frequency, so that we can continue to use our existing

fixed-frequency calibration. However, depending on the hardware wiring and filtering, the
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response may be slightly frequency-dependent. Our calibration experiments involve varying

the modulation frequency of the qubit or cavity pulses obtained from QOC. We apply each

set individually, so that when calibrating the qubit we do not apply the cavity pulses, and

vice versa. After the pulse, we observe the qubit or cavity population and compare with

simulation. An example of this measurement for the cavity is shown in Fig. 5.3. Like in the

previous calibration, the coherent state magnitudes ∣α∣ were obtained from fitting the photon

number populations to Poisson distributions. We compare the Fourier transform of the ideal

pulse to the measured magnitudes from sweeping the cavity carrier frequency. Discrepancies

can be attributed to the aforementioned effects of a slightly frequency-dependent response, or

small systematic errors like AWG quantization that originate from the finite bit resolution of

our control electronics. Nevertheless, the results are generally in good agreement, indicating

that our fixed-frequency AWG amplitude calibrations will work well for our optimal control

pulses.

5.2.3 Preparing Fock states

On our system of a transmon and a single cavity mode, we primarily use QOC to prepare

Fock states. This class of states has a clear form of increasingly complexity (increasing

photon number), which allows us to test how QOC performs on successively more difficult

target states. Preparation of higher Fock states enhances the emission of cavity photons,

and has applications in axion dark matter detection [77, 78, 18].

One important consideration in the QOC setup is the number of cavity levels to model.

We prefer to include as few levels as possible to improve the runtime of the solve, but we

must retain enough levels to accurately reflect the system. In particular, we need to model

more levels if we utilize stronger cavity drives that can quickly populate the cavity. For

cavity drive strengths on the order of a few MHz, we typically model 15-20 levels, such that

the expected population of higher levels beyond that is negligible. After generating a set of
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controls, we can verify this behavior by simulating the state evolution with a larger number

of levels. This single simulation will be much less costly than including the greater number

of levels throughout the entire QOC problem.

In our optimization, the additional cost functions that we add to the objective are a

penalty on the slope of the controls with respect to time (in the form given in Eqn. (5.7)),

a constraint forcing the endpoints to be zero, and a penalty on population of the highest

modeled cavity photon number (in the form given in Eqn. (5.8)). The first two conditions

improve the smoothness of the controls and thus the accuracy with which our control elec-

tronics can reproduce them, while the last condition improves the accuracy of our model by

ensuring that the optimizer does not take advantage of the artificial infinite anharmonicity

of the highest cavity level.

We present QOC pulses that prepare Fock states up to ∣4⟩. These pulses are shown in

Fig. 5.4. For generating the ∣1⟩ pulse, we use the PICO algorithm [74], while for the higher

Fock states ∣2⟩ − ∣4⟩ we use the GRAPE package from [65]. The solutions are fundamentally

different, as the pulses for ∣1⟩ in Fig. 5.4(a) and (b) were found with a stronger maximum cav-

ity drive strength than the other Fock states (c)–(h). This produces a qualitatively different

solution where the cavity drive strength fluctuates more and the qubit drive oscillates slightly

less. For increasing photon numbers from ∣2⟩ − ∣4⟩, the higher Fock states have increasingly

more complex features and additional fluctuations in the pulse, reflecting the difficulty in

preparing those states. Even though PICO and GRAPE are vastly different algorithms, (the

former is direct and the latter is indirect), they are both able to find solutions to the QOC

problem with final simulated fidelities near 99%. PICO was able to find a shorter time solu-

tion, in roughly 981 ns instead of 2000 ns, although that may partially be from preparing a

lower photon number state and having a minimum-time function built in, which our GRAPE

package did not. Implementing these pulses produces the results shown in Fig. 5.5. With a

resolved spectroscopy experiment, we measure the fidelities of Fock states ∣1⟩ − ∣4⟩ prepared
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Figure 5.4: QOC Fock state preparation on a cavity mode. We show controls and
transmon and cavity populations over time for pulses that prepare (a),(b) ∣1⟩; (c),(d) ∣2⟩;
(e),(f) ∣3⟩, and (g),(h) ∣4⟩.
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Figure 5.5: QOC Fock state preparation results. A resolved spectroscopy experiment
allows us to fit peak heights corresponding to the fidelities of our QOC pulses that prepare
∣1⟩ − ∣4⟩. We are able to produce ∣1⟩ (blue circles) with fidelity 0.988 ± 0.011, ∣2⟩ (orange
squares) with fidelity 0.983 ± 0.015, ∣3⟩ (green triangles) with fidelity 0.962 ± 0.024, and ∣4⟩
(pink diamonds) with fidelity 0.950 ± 0.021. Vertical dashed lines indicate the χ photon
number resolved peaks for ∣0⟩ − ∣5⟩ from right to left.

by our QOC pulses to be 0.988±0.011, 0.983±0.015, 0.962±0.024, and 0.950±0.021, respec-

tively. The corresponding simulated fidelities are 0.997, 0.993, 0.994, and 0.974, respectively.

We attribute the discrepancies to slight calibration errors in the self-Kerr parameter k, slight

drive calibration changes over time, and AWG quantization errors. In particular, in Fig. 5.5

the pulse for ∣4⟩ has a visible nonzero baseline, indicating that the qubit is still partially

excited, rather than being fully returned to ∣g⟩. The decreasing fidelities can also be seen in

the progressively lower peak heights.

As a final note for this discussion, there are other meaningful QOC problems to solve

besides Fock states. Another class of problems that QOC could be used for is quantum error

correction encodings. For example, to encode a qubit state using the binomial code [31, 32,

28, 33], we would want controls that simultaneously take ∣g0⟩ → ∣g⟩ ⊗ (∣0⟩ + ∣4⟩)/
√
2 ≡ ∣0⟩L

and ∣e0⟩ → ∣g2⟩ ≡ ∣1⟩L. Additionally, to correct a photon loss during this encoding, we would

want another pulse that performs ∣g3⟩ → ∣0⟩L and ∣g1⟩ → ∣1⟩L. QOC can determine controls

that implement these operations, giving it applications in quantum error correction. Beyond
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that, QOC can be applied to really any problem, and can offer shorter-time solutions that

minimize decay and decoherence effects in quantum systems.

5.3 Optimal Control with Photon Blockade

Besides the bare undressed transmon-cavity Hamiltonian, we perform optimal control in the

dressed frame generated with photon blockade. In this case, we start with the Hamiltonian

in Eqn. (4.3), which we reproduce here. For a single blockade tone that targets the photon

transition ∣n0⟩, our system is defined by

Ĥ = χ (â†â − n0) ∣e⟩ ⟨e∣ +
k

2
â†â (â†â − 1) + {Ω ∣g⟩ ⟨e∣ + ϵ(t)â + c.c.} , (5.16)

where Ω is the strength of the dressing drive and ϵ(t) is the time-dependent drive that we

give to the optimizer. We rewrite this Hamiltonian as:

Ĥ = χâ†â ∣e⟩ ⟨e∣ + δωb ∣e⟩ ⟨e∣ +
k

2
â†â (â†â − 1) + {Ω ∣g⟩ ⟨e∣ + ϵ(t)â + c.c.} , (5.17)

where δωb = ωb−ωge ≡ −n0χ is the difference between the qubit and blockade drive frequencies.

In contrast to the previous transmon and cavity case, we now only have a cavity drive. We

apply the blockade dressing drive on the qubit, but its magnitude is time-independent, so

it is not part of the optimization process (outside of its effect on the system Hamiltonian).

Additionally, we must ensure that we remain in the regime where the blockade is valid during

the optimal control process, which requires ϵmax ≪ Ω ≪ χ, where ϵmax is the maximum

magnitude of ϵ(t).

Like before, to help perform the optimal control, we solve the problem in the rotating

frame and split ϵ(t) into its real and imaginary quadratures, ϵx(t)(â+ â†) and ϵy(t)i(â† − â),

and treat the two drives independently in the optimization process. However, if we want to
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keep the same ϵmax from the lab frame, we must adjust the maximum drive amplitudes of

these quadratures to ϵmax/
√
2. Similarly, to reconstruct the lab frame pulse, we apply the

modulation given by Eqn. (5.15).

One application of optimal control in this scheme is to generate qudits in our cavity

modes. Since photon blockade partitions the accessible Hilbert space, we can easily imple-

ment a space with d levels. The remaining challenge, and the reason why optimal control

is necessary, is to demonstrate universal control on those d levels. For this purpose, we use

optimal control to generate pulses that take cavity Fock states ∣0⟩ → ∣1⟩ , ..., ∣0⟩ → ∣d − 1⟩ to

control all d levels of the qudit. For d = 2, we can accomplish this with a constant cavity

drive and do not need more complicated optimal control pulses. We present the next highest

case of a qutrit (d = 3) in Fig. 5.6. In Fig. 5.6(a), we show the energy level diagram that

corresponds to the blockade at ∣n0 = 3⟩, restricting the accessible Hilbert space to three levels.

We show pulses that take ∣0⟩ → ∣1⟩ (Fig. 5.6(c) and (g)) and ∣0⟩ → ∣2⟩ ((d) and (h)), as well

as a constant cavity drive ((b) and (f)) for comparison. The pulses that prepare the Fock

states have nontrivial, numerically determined shapes that generate ∣1⟩ and ∣2⟩ with fidelities

0.953 ± 0.022 and 0.965 ± 0.022, respectively. Additionally, the maximum amplitudes of the

lab frame drive pulses will be roughly ϵmax = 2π
√
202 + 202 ≈ 2π × 28.3 kHz, which satisfies

our required condition that ϵmax ≪ Ω≪ χ, as Ω = 2π×108 kHz and χ = 2π×−1.08 MHz. The

Wigner tomography plots in Fig. 5.6(f)–(h) are a phase space representation of the cavity

state, and will be discussed further in Chapter 6. The pulses that prepare ∣1⟩ and ∣2⟩ each

produce a state that is symmetric around the origin, which is a feature of Fock states, while

the uniform pulse prepares some superposition of all three photon number states that make

up the qutrit (∣0⟩ , ∣1⟩ , ∣2⟩). Thus, optimal control combined with photon blockade allows for

universal control of qutrits implemented on our cavity modes. This can be extended fur-

ther to higher dimensional qudits. We have therefore added a class of pulses to the optimal

control tool box in cQED.

92



2 0 2
Re ( )

2

0

2

Im
 (

)

-2/ 0 2/

q

q + i

q + 2 i

q + 3 i

0.0 s

Constant
Prep |1
Prep |2

5.0 s 10.0 s 15.0 s 20.0 s 25.0 s

10
0

10

x
y

20

0

20

x,
y (

2
×

kH
z)

0 25Time ( s)
20

0

20

|g0i〉

|g1i〉

|g2i〉

|g3i〉

|e0i〉

|e1i〉

|e2i〉

|e3i〉
Ω

3χi

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Prep |1〉
Prep |2〉

Figure 5.6: Universal control of a qudit using optimal control. In the pulse plots
((b)–(h)), the uniform pulse is presented in the black boxes, ∣1⟩ is in the purple boxes, and
∣2⟩ is in the orange ones. (a) Energy level diagram for photon blockade of ∣n0 = 3⟩. The
blockade drive with Rabi strength Ω resonant with ∣g3⟩ − ∣e3⟩ causes those two levels to
hybridize and shift by ±Ω (dashed green lines). A resonant cavity drive (red arrows) drives
the cavity in the qutrit space formed by the three levels of ∣0⟩ , ∣1⟩ , ∣2⟩, with ∣3⟩ remaining off-
resonant and unoccupied. Higher photon numbers are also inaccessible. To implement the
blockade, we apply Ω = 2π×108 kHz with χ = 2π×−1.08 MHz. (b)–(d) The two quadratures
of the pulses for a uniform cavity drive and the two optimal control pulses that prepare ∣1⟩
and ∣2⟩ from ∣0⟩. The optimal control pulses are generated using the GRAPE algorithm.
(e) Spectroscopy of the population evolution over time for the 3 prior pulses. Dashed lines
indicate the qubit frequencies corresponding to n = 0−3 photons. The thick horizontal green
line near the top of the plots marks the frequency of the blockade tone, which is equal to
the dispersive shift frequency corresponding to 3 photons. (f)–(h) Wigner tomography over
time of the uniform drive and optimal control pulses shown in (b)–(d), in the same order.
The dashed green circle indicates the location (in phase space) of the blockade drive. The
blockade acts as a wall that constrains the region of allowed occupation, with the states
prepared by interference from the resulting reflections. We prepare ∣1⟩ and ∣2⟩ with fidelities
0.953 ± 0.022 and 0.965 ± 0.022, respectively. ∣1⟩ and ∣2⟩ have tomography plots that are
symmetric around the origin, which is a feature of Fock states, while the state produced by
the uniform pulse has a more complicated plot caused by being some superposition of all
three of the qutrit states ∣0⟩ , ∣1⟩, and ∣2⟩. For these experiments, we used cavity mode index
3 of our system.
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Due to the blockade, optimal control in this scheme is noticeably different from the

previous case of an undressed transmon and cavity mode. For one, our pulses take much

longer (25 µs instead of ≈ 1µs), as we are limited by the blockade regime condition ϵ≪ Ω≪ χ.

This causes our prepared states to have slightly lower fidelities, as there is more time for decay

and decoherence effects. On the other hand, the optimization process itself can be performed

much more quickly, as the blockade forbids cavity population beyond the targeted photon

number. Even if we include an extra level or two to allow for leakage past the blockade,

we only need to model 5 total cavity levels, compared to 15 for the undressed cavity mode.

Additionally, we only have the cavity drive and no transmon drive. This decreases the size

of the Hilbert space that we need to accurately model the system dynamics, and reduces the

complexity of the QOC problem, allowing us to obtain solutions more quickly. Some of this

improvement is lost to modeling a longer pulse time, but we often have coarser time steps

because of the lower dominant frequency in the system, which is set by χ for the blockade,

but is often set by the optimized pulse drive strengths for the undressed Hamiltonian.

QOC succeeds in preparing quantum states even with the engineered Hamiltonian im-

plemented by photon blockade, reflecting the fact that it is a numerical process that can be

applied to any quantum system. In the next section, we will move from this relatively small

blockaded Hilbert space with two independent controls to a more complicated multimode

problem that has both more controls and a larger problem size.

5.4 Multimode Optimal Control

In this section, we extend our existing optimal control discussion to a larger multimode

system. Generalizing the transmon and single cavity mode Hamiltonian in Eqn. (5.14) to
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multiple modes, we have

Ĥrot =
α

2
b̂†b̂(b̂†b̂ − 1) +∑

j

[χj â
†
j âj b̂

†b̂ +
kj
2
â†
j âj(â

†
j âj − 1) +∑

i≠j
kij â

†
i âiâ

†
j âj]

+ ϵq,x(t)(b̂ + b̂†) + ϵq,y(t)i(b̂† − b̂) +∑
j

[ϵcj ,x(t)(âj + â
†
j) + ϵcj ,y(t)i(â

†
j − âj)] ,

(5.18)

where kij is the cross-Kerr interaction between modes. Besides the cross-Kerr and the

transmon anharmonicity, we have multiple copies of the cavity mode that we discussed

earlier, each with their own χj and κj, and a corresponding pair of drive quadratures to

optimize. For M modes, we have a total of 2M + 2 drives that we treat independently to

implement our target operation.

One of the main challenges in multimode optimal control is the problem size. With

each additional cavity mode, we need to model another set of 10 or more mode levels,

increasing the dimension of the Hilbert space by at least an order of magnitude. In particular,

that dimension will scale exponentially with the number of modes, rapidly increasing the

computational complexity of the QOC problem. As a result, we have limited our hardware

implementation to a low photon count target state and relatively weak cavity drives that

allow us to model fewer levels. In principle, with sufficient computational resources or time,

we could continue on to solve QOC problems in even larger multimode spaces. Another

possible approach would be to develop QOC algorithms that can better handle these large

matrices by taking advantage of sparsity or some other feature to efficiently perform the

matrix calculations involved in the optimization.

The simplest multimode state that we prepare is the 2-mode Fock state ∣11⟩. Even though

this state is not entangled, it serves as a demonstration of how optimal control can realize this

state in a different manner than, for example, sequentially preparing a photon in one mode

followed by another. To generate the control pulse, we use the GRAPE package in [65]. The

controls produced by solving the QOC problem and the resulting data are shown in Fig. 5.7.
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Figure 5.7: QOC multimode preparation of ∣11⟩. (a) Resolved spectroscopy of the state
prepared by QOC pulses. The fidelity extracted from the fit peak height is 0.976 ± 0.009.
The dashed vertical black line indicates the frequency shift corresponding to χ1 + χ2, the
rightmost dashed vertical gray line indicates the original qubit frequency, and the red and
blue dashed lines indicate the frequency shifts of the two individual modes, i.e. multiples of
χ1 and χ2. (b) Control pulses that prepare ∣11⟩ from ∣00⟩. There are 6 total, corresponding
to the real and imaginary quadratures of 3 drives: one on the transmon, and one on each of
the two cavity modes. (c) State evolutions over time for the transmon and each of the two
cavity modes.

With these pulses, we are able to produce the ∣11⟩ state with fidelity 0.976 ± 0.009, which

agrees with the simulated fidelity of 0.983. We chose a total control time of 4µs, although

this is likely not the minimum time solution, since none of the controls are limited by their

maximum bounds, as shown in Fig. 5.7(b). In Fig. 5.7(c), we see that the state preparation
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is not strictly sequential, as there is simultaneous population of various Fock states in both

of the cavity modes.

Ultimately, we have demonstrated the flexibility of optimal control to operate on a variety

of system Hamiltonians. They all involve a nonlinear device coupled to one or more bosonic

oscillator modes. We implemented the optimized pulses on our superconducting cQED

system, but the same procedure can be applied to other hardware platforms as well. QOC

is an ever-expanding field with new algorithms regularly being developed and applied to

increasingly complex problems, serving as a promising avenue for efficiently implementing

quantum states and gates.
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Chapter 6

State Characterization and Tomography

In previous chapters, we have demonstrated several quantum state preparation and control

techniques on a 3D cQED system. An important related aspect is accurate state reconstruc-

tion. This is generally referred to as quantum state tomography (QST), and is a fundamental

part of quantum information processing. Here, we focus on QST of one or more cavity modes.

We have already seen some figures that feature one method for cavity QST, Wigner tomog-

raphy. This chapter will go into detail about how we use Wigner tomography for faithful

cavity state reconstruction.

6.1 Wigner Tomography

Wigner tomography provides a way to measure the density matrix of a cavity through dis-

placements and parity measurements, allowing for complete characterization of the oscilla-

tor’s quantum state [38]. The Wigner operator is defined as

Ŵ(α) = 2

π
D̂(α)Π̂D̂(−α), (6.1)

where D̂(α) = eαâ†−α∗â is the displacement operator for complex α and Π̂ = eiπâ†â is the parity

operator for a single mode. If α = 0, then Ŵ(α) ∝ Π̂. We can express the Wigner operator

in the Fock basis [62, 79] as

Ŵ(α)(∣n⟩ ⟨m∣) = 2

π
e−2∣α∣

2

√
m!

n!
(−1)m−1(2α)n−mLn−m

m (4∣α∣2), (6.2)
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where Ln−m
m is a generalized Lagurre polynomial. Measurements of the Wigner operator on

a state ρ can be expressed as

x = Tr (Ŵ(α)ρ) . (6.3)

We must perform multiple measurements of this form for different values of α in order to

reconstruct the state and determine the underlying ρ. However, even before that, we can

use the results of a Wigner tomography measurement x to make conclusions about the state.

For example, a completely classical coherent state ∣αprep⟩ will produce a positive value of x

for any displacement α, while non-classical Fock states, such as the single photon state ∣1⟩,

will have regions where x will be negative, as shown in Fig. 6.1. In general, if the Wigner

operator is negative anywhere, the underlying state must be quantum. Also, the result of the

Wigner tomography with zero displacement (α = 0+0i) alternates between its maximum and

minimum values for increasing Fock states ∣0⟩−∣3⟩, corresponding to the parity measurement

flipping between 1 and -1 based on the even/odd number of photons in the cavity.

We now describe how to use Wigner tomography to identify a prepared state ρ. The

measurement sequence for a single α involves preparing ρ, then acting Ŵ(α) by displacing the

cavity by α, followed by a parity measurement Π̂. By repeating this procedure for multiple

displacements, we go from a set of Wigner tomography measurements x⃗ to a reconstructed

state through the matrix inversion technique in [79], which we summarize here. We can

express the results of our measurements as

x⃗ =M∣ρ⟫, (6.4)

where ∣ρ⟫ is the vectorized form of ρ (matrix flattened into a vector) and M is the matrix

representing all the measurement operators. In our case, M will correspond to the Wigner

operators of each displacement α up to the maximum dimension D of our Hilbert space, so

its total size will be N ×D2, where N is the number of α’s that we measure. If N is exactly
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Figure 6.1: Wigner tomography examples. State labels are shown above each of the
plots. The x and y axes are the real and imaginary parts of the cavity displacement α.
For purely classical coherent states ∣α⟩, the Wigner tomography is strictly positive, and
the center of the Gaussian phase space distribution (red) is located at coordinates (Re[α],
Im[α]). On the other hand, Fock states are non-classical, and thus have regions of negativity
(blue). The value of the tomography at the center of each plot corresponds to the result
of a parity measurement of the state, and therefore alternates between the maximum and
minimum values for even/odd Fock states.

equal to the number of elements in ρ (N =D2), we can directly invert this equation. However,

the resulting state matrix may not satisfy physicality constraints (unit trace and positive

semidefinite eigenvalues). Additionally, we would like to have the freedom to perform more

measurements, as more observations should improve the reconstruction accuracy. Then, an

exact solution does not exist, and we instead need to solve a maximum likelihood problem

to minimize the error ∣∣M∣ρ⟫ − x⃗∣∣ over all physical ρ. This requires solving the expanded

problem:

⎛
⎜⎜
⎝

MTM ∣I⟫

⟪I ∣ 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

∣ρtr1⟫

λ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

MT x⃗

1

⎞
⎟⎟
⎠
, (6.5)
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Figure 6.2: Sets of optimized Wigner tomography displacements. Generated sets of
Wigner displacements minimize the condition number κ of the ideal measurement matrixM.
The Hilbert space dimension is truncated at different maximum photon numbers Nmax, cor-
responding to maximum displacement magnitudes of roughly

√
Nmax marked by the dashed

circles. Larger Nmax require more points to achieve the same κ. The sets are Nmax = 7 with
75 displacements and κ = 1.51 (orange circles), Nmax = 4 with 75 displacements and κ = 1.04
(purple squares), and Nmax = 3 with 19 displacements and κ = 1.12 (black diamonds).

where ∣I⟫ is the vectorized identity matrix and λ is a Lagrange multiplier. The first equation

from the matrix sets up the minimization problem, while the second enforces the unit trace

constraint. We multiply both sides by the inverse of the leftmost matrix to solve for the

ρTr1 matrix, which might not be positive semidefinite. To find the closest (minimum 2-norm

distance) physical ρ to our ρTr1, we apply the method in [80] where the eigenvalues of ρTr1 are

sorted from high to low and any negative eigenvalues have their weight distributed equally to

the others until they are all nonnegative. This way, the trace is preserved and we ultimately

produce a physical ρ.

To reduce the total number of measurements required to determine ρ, we optimize the

set of α that we choose with the techniques presented in [79]. The optimal set will minimize
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the condition number κ of the measurement matrixM, where

κ(M) = ∣λmax(M)
λmin(M)

∣ (6.6)

is the ratio of the maximum to minimum eigenvalues of M, so that κ ≥ 1. The condition

number bounds the error amplification, so that initial error ϵ is magnified to no more than

κϵ. Consequently, minimizing the condition number minimizes the error and makes the to-

mography most efficient [81]. Examples of this optimization are shown in Fig. 6.2. The ideal

distribution of measurement displacements depends on the maximum photon number of the

state that we expect to observe; that is, states with population at higher Fock states require

larger displacements to accurately reconstruct, and need more measurements to achieve the

same condition number.

The two components we need to implement the Wigner operator are a well-calibrated

parity measurement and a cavity drive with controllable amplitude and phase, which we

discussed in Chapters 3 and 5. We need phase control of the cavity drive to implement

complex values of α, and we use the qubit to perform the parity measurement. As a reminder,

the parity measurement consists of 2 qubit π/2 pulses with π relative phase separated by a

wait time τparity ≈ π/(2χ). An additional calibration that can be useful is a Parity Bandwidth

Calibration, which is shown in Fig. 6.3. In this experiment, we prepare some state in the

cavity, then perform two subsequent πge/2 pulses with no intermediate wait time. For one

case, we keep them the same phase so that the ideal final state of the qubit is ∣e⟩, and for

the other case, we give them opposite phase so that the qubit should end in ∣g⟩. However,

due to the dispersive interaction between the qubit and cavity, the qubit frequency will

shift depending on the cavity population. This may force the π/2 pulses in the parity

measurement off resonance so that they no longer act as true π/2 pulses. The effect of

this will be a reduction in the range of possible averaged parity measurement results. For
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Figure 6.3: Parity measurement bandwidth. As we increase the magnitude ∣α∣ of a
coherent state prepared in mode j of the cavity, the qubit frequency will shift by a propor-
tional amount dictated by the dispersive shift χj. This can take the π/2 pulses in the parity
measurement off resonance. Then, two subsequent π/2 pulses with the same phase (blue up
arrows), which should ideally always leave the qubit in ∣e⟩, may leave the qubit partially
in ∣g⟩. Similarly, two π/2 pulses with opposite phase (orange down arrows) may leave the
qubit partially in ∣e⟩. The y-axis is calibrated such that ∣e⟩ corresponds to 1 and ∣g⟩ to 0.
To correct this effect, we project the reduced range back to the maximum range of 0 to 1
during the data analysis. This calibration will change depending on both the prepared state
and the cavity displacement in the Wigner tomography sequence, as they both contribute
to the overall frequency shift.

example, rather than having limits of 0 and 1 (which is later projected to a range of ±2/π for

the Wigner operator), the limits might be reduced to 0.1 to 0.9 for exactly even or odd parity,

respectively. This may introduce a source of systematic error to the experiment results. This

is especially relevant for Wigner tomography measurements, as we prepare some state that

we want to measure in the cavity, then drive it further by a displacement α to enact the

Wigner operator. This range reduction can be partially alleviated by using a faster (and

thus larger bandwidth) π/2 pulse. However, we also want to avoid driving too strongly and

populating the transmon ∣f⟩ level. These effects must be balanced to implement the most

accurate parity measurement and thus the best Wigner tomography measurement.
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6.2 Generalized Multimode Wigner Tomography

We extend Wigner tomography to multiple modes in a seemingly straightforward way. The

multimode Wigner operator for M modes is:

Ŵ(α⃗) = ( 2
π
)
M

D̂(α⃗)Π̂D̂(−α⃗), (6.7)

where now D̂(α⃗) = e∑j αj â
†
j−α

∗
j âj ≡ ⊗j D̂(αj) is the multimode displacement operator and α⃗ is

a vector of complex displacements for each cavity mode. Similarly, Π̂ is now the joint parity

operator Π̂ = eiπ∑j â
†
j âj = eiπ∑j Nj . The main challenge in performing multimode tomogra-

phy is the joint parity measurement. Due to the Ramsey style of our parity measurement

sequence, adding a photon in mode m causes the qubit to accrue a phase θm = χmτR. For

a single mode, we can always choose τR = π/χm such that θm = π to realize the parity op-

erator. However, in the multimode case, since our χm’s are different, there is in general no

wait time that corresponds to a joint parity measurement. This is shown for three of the

modes in our system in Fig. 6.4. Previous tomography schemes have addressed this issue by

using sideband χ-engineering [66], as discussed in Chapter 4, or through the use of higher

transmon levels [82]. However, while χ-engineering can change the effective χm of some of

the modes to match them, applying detuned drives near the ∣h0m⟩ − ∣e1m⟩ transition could

interfere with the system state, as the ∣e1m⟩ level will likely populated during the joint parity

measurement. Another concern in our case was that the sideband drives were input through

our readout cavity. As a result, the large drive strengths needed to sufficiently shift the

χm resulted in off-resonantly populating the readout to a level that significantly dephased

the qubit (T ∗2 ∼ 1 − 6µs) through their dispersive interaction. Utilizing ∣f⟩ or other higher

transmon levels also did not work in our system. The storage cavity mode frequencies were

all located between our qubit and readout cavity frequency, resulting in the χge,m, χgf,m, and
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Figure 6.4: Parity measurement times for multiple modes Three modes (orange cir-
cles, purple squares, black diamonds) adjacent to each other in our multimode system have
different dispersive interactions with the transmon χj and thus different parity measurement
times, as listed in the legend. The experiment sequence involves preparing a photon in the
cavity mode, then performing two π/2 pulses separated by a wait time τR, as described in
Chapter 3. The parity measurement times are the π times of the oscillations, and are marked
by the dashed vertical lines.

χef,m interaction terms all having the same behavior. That is, if two storage modes {i, j}

satisfied ∣χge,i∣ > ∣χge,j ∣, then they also satisfied ∣χgf,i∣ > ∣χgf,j ∣ and ∣χef,i∣ > ∣χef,j ∣. Thus, there

was no solution for time t1 spent in the ∣g⟩ − ∣e⟩ space and t2 in the ∣g⟩ − ∣f⟩ or ∣e⟩ − ∣f⟩ that

would satisfy t1∣χge,i∣ + t2∣χgf,i∣ = t1∣χge,j ∣ + t2∣χgf,j ∣ or t1∣χge,i∣ + t2∣χef,i∣ = t1∣χge,j ∣ + t2∣χef,j ∣. We

needed to develop a different approach.

To perform our multimode tomography, we relax the condition that the joint parity

measurement be perfect, in the sense that each photon in any of the modes contributes phase

π to the operator. Instead, we allow different modes to have different phase contributions. We

use the fact that a qubit Ramsey experiment for a time τR corresponds to the measurement

of a known generalized operator Θ̂ = cos(∑m θmN̂m) acting on the cavity modes, where

θm = χmτR need not equal π. We still prefer to keep the angles as close to π as possible, as

they offer the largest qubit Ramsey contrast and thus provide the most information about

105



the state. In the extreme worst case, if θm = 2π for one of the modes, this operator would

give us no information about the state of that mode. Values of θm near π will also be the

least sensitive to errors in the calibration of θm. Additionally, if θm = π for all the modes,

this generalized operator reduces to the usual perfect joint parity operator. Replacing the

joint parity operator with this one, our generalized multimode Wigner operator becomes

ˆ̃W(α⃗, θ⃗) = ( 2
π
)
M

D̂(α⃗)Θ̂D̂(−α⃗). (6.8)

One potential downside of this change is that the components of this Wigner operator are

no longer generalized Laguerre polynomials. However, they can still be computed numeri-

cally following the formula given in Eqn. (6.8) and using the definitions of the displacement

operator D̂(α⃗) and Θ̂. We use this generalized Wigner operator to perform the multimode

Wigner tomography measurements presented in the next section.

6.3 Tomography of W states

The main category of states for which we demonstrate our multimode Wigner tomography

is W states. These entangled states generalize to any number of modes, as we can see from

Eqn. (4.8). We prepare these states using photon blockade and constant cavity drives for up

to 5 modes, as discussed in Chapter 4. Here, we present Wigner tomography of these states

for up to 4 modes.

We start with the simplest case of a 2-mode W state. This can also be thought of as a

Bell state or dual rail state, and has the form

∣W2(ϕ)⟩ =
1√
2
(∣01⟩ + eiϕ ∣10⟩) , (6.9)

for some angle ϕ. We control the ϕ with which we prepare this state by changing the phase
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of one of the cavity drives. To generate a set of Wigner displacements to measure, we

apply the methods discussed previously in this chapter to minimize the condition number

of the measurement matrix corresponding to a single mode. We choose an Nmax = 3 to

allow for leakage past the blockade in the W state preparation, and a total of 19 distinct

displacements, as shown by the black points in Fig. 6.2. Then, we take every combination of

those displacements over 2 modes, giving us 192 = 361 total pairs of displacements at which

to perform the Wigner tomography. The results of the tomography are shown in Fig. 6.5.

Since we have 4 quadratures that are the real and imaginary components of the displacement

for either of the 2 modes, we have a total of (42) = 6 different 2D tomography slices. Using

the results of these measurements, we reconstruct the density matrix of our prepared state,

as shown in Fig. 6.6, which also compares the reconstructed state to the ideal and simulated

states. The simulations include the effects of qubit and cavity decay and dephasing, as well

as blockade preparation errors. For simplicity, we present the absolute value of ρ rather than

the separate real and imaginary parts, which can be found in Fig. 6.5. We prepare a 2-mode

W state with a fidelity of 98.4±0.5% with ϕ = −0.222, which is consistent with the simulated

fidelity of 98.7%. The main sources of error are leakage outside the blockaded subspace and

slightly unequal cavity state populations caused by their dispersive shifts.

We now continue to the 3-mode W state. We can explicitly express this state with phases

on its state components as:

∣W3(ϕ1, ϕ2)⟩ =
1√
3
(∣100⟩ + eiϕ1 ∣010⟩ + eiϕ2 ∣001⟩) . (6.10)

We perform measurements at the same set of optimized displacements as in the single and

2-mode cases. This gives us a total of 193 = 6859 total Wigner tomography displacement

vectors. The results of the 3-mode tomography are shown in Fig. 6.7, from which we also

determine the phases of each multimode Fock state component of the W state. Since there
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Figure 6.5: 2-mode W state Wigner tomography. We show the real and imaginary
parts of the density matrix of the reconstructed 2-mode state. ϕ = −0.222 for the state
(∣10⟩ + eiϕ ∣01⟩)/

√
2 is determined from the maximum fidelity projection, and is shown in

the inset with the dashed red line marking the fit value. The corresponding state fidelity is
0.984 ± 0.005. We also present the 6 orthogonal 2D slices of the two-mode Wigner function,
with all combinations of the real and imaginary quadratures of both modes. Maximum
values of the Wigner tomography range from ±(2/π)2.

are the real and imaginary parts of the displacements for each of the 3 modes, we have a total

of 6 unique quadratures and thus (62) = 15 different 2D slices of the phase space. There are two

qualitatively different patterns: a ring of slightly positive values around a negative center,

similar to the Wigner tomography of a single photon (∣1⟩), and a tilted positive-negative-

positive fringe symmetric around a rotated line. The exact quadratures that produce each of

these plots will change depending on the phase values ϕ1, ϕ2. Reconstructing the state with

our Wigner tomography measurements gives us a 3-mode W state fidelity of 0.945 ± 0.012

and ϕ1 = −2.497, ϕ2 = −2.980. This agrees with the simulated fidelity of 0.954. A comparison

of the prepared, simulated, and ideal W states is shown in Fig. 6.8. Like in the 2-mode

case, we show the absolute value of the density matrix rather than the individual real and

imaginary parts, which are shown in Fig. 6.7. The majority of the deviation between the

ideal and experimentally prepared states is caused by one of the modes, the one indexed
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Figure 6.6: Reconstructed 2-mode W state density matrix. Absolute value of the
2-mode W state density matrix. Populations are represented with colors ranging from red to
blue. The multimode Fock states that should ideally be populated have red labels. Dashed
black boxes indicate the ideal W state populations, while yellow boxes show the simulated
populations. Simulations use the experimental drive parameters and account for the effects
of cavity and transmon decoherence and decay, as well as blockade preparation errors.

by ∣001⟩, which is likely due to the fact that the χj of that mode is farthest away from the

frequency of the blockade tone. We also see this effect reflected in the simulation.

For 4 modes, we again use the set of 19 displacements with optimized condition number.

This continues to scale exponentially with the number of modes, requiring 194 = 130321

measurements to scan these displacements across all 4 modes. This exponential increase in

the size of the problem and the number of required measurements is a feature of the typical

formulation for state reconstruction using Wigner tomography [83–85]. In the next section,
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Figure 6.7: 3-mode W state Wigner tomography. We show the real and imaginary
parts of the density matrix of the reconstructed two-mode state. The values of ϕ1 = −2.497
and ϕ2 = −2.980 of the prepared state (∣100⟩ + eiϕ1 ∣010⟩ + eiϕ2 ∣001⟩)/

√
3 are determined from

the maximum fidelity projection, and is shown in the inset with fit values marked by the
dashed red lines. The corresponding state fidelity is 0.945 ± 0.012. We also present the 15
orthogonal 2D slices of the two-mode Wigner function, with all combinations of the real
and imaginary quadratures of the three modes. Which mode quadratures produce the two
qualitatively different plots (rings vs. fringes) depends on the values of ϕ1 and ϕ2. Since
there are 3 modes, the maximum values of the tomography range from ±(2/π)3.
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Figure 6.8: Reconstructed 3-mode W state density matrix. Absolute value of the
3-mode W state density matrix. The multimode Fock states that should ideally be pop-
ulated have red labels. Dashed black boxes indicate the ideal W state populations, while
yellow boxes show the simulated populations obtained with the drive parameters used in
the experiment after accounting for blockade preparation errors and the effects of cavity and
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we will see how to reduce this to a polynomial scaling with mode number for our W states.

Nevertheless, for now, because of the increasingly large number of required measurements,

although we demonstrate preparing W states of up to 5 modes with spectroscopy data, we

only perform Wigner tomography on up to 4 modes. Even for 4 modes, because this number

of measurements can be prohibitive to collect in a reasonable amount of time, we instead

choose a subset of 37000 of these 130321 4-tuples of displacements to measure the Wigner

tomography. This subset is chosen randomly from the total ordered list and inspected

111



0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

00
0000
0100
1000
1101
0001
0101
1001
1110
0010
0110
1010
1111
0011
0111
1011
11

|
|

0.0

0.1

0.2

0.3

0 0.15 0.3

Figure 6.9: Reconstructed 4-mode W state density matrix. Absolute value of the
4-mode W state density matrix. The multimode Fock states that should ideally be pop-
ulated have red labels. Dashed black boxes indicate the ideal W state populations, while
yellow boxes show the simulated populations obtained with the drive parameters used in
the experiment after accounting for blockade preparation errors and the effects of cavity and
transmon decoherence and decay. We are able to produce the 4-mode W state with a fidelity
of 0.906 ± 0.018 and reconstructed angles ϕ1 = −1.57, ϕ2 = −2.36, and ϕ3 = 0.78.

afterwards to ensure that we are effectively sampling the entire set of 19 displacements for

all 4 modes, and not missing some of those displacements or requiring all 193 measurements

before moving on to the next displacement for one of the modes. This reduction leads to

larger error bars in our final measurement, but we are still able to obtain a reasonable result.

In particular, with this subset, we are able to reconstruct our prepared state and measure

the fidelity of our 4-mode W state as 0.906 ± 0.018. The reconstructed angles are ϕ1 =

−1.57, ϕ2 = −2.36, and ϕ3 = 0.78 when writing the W state as W4 = (∣1000⟩ + eiϕ1 ∣0100⟩ +
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Figure 6.10: Entanglement witness for W states of 2-4 modes. The value of the
witness over time for 2 modes (purple) is presented over time from the reconstructed density
matrices from Wigner tomography measurements (circles) and from simulation (line). For 3
(orange, star) and 4 (green, triangle) modes, we perform the tomography only at the time
corresponding to the W state preparation, although we plot the simulated value (lines) over
the whole time range. The measured values agree with the simulation for all cases.

eiϕ2 ∣0010⟩ + eiϕ3 ∣0001⟩)/
√
4. The absolute value of the density matrix is shown in Fig. 6.9.

The fidelity is lower than the 3-mode and 2-mode cases, as we would expect, since the χj’s

of the four modes span a larger range than for lower mode numbers, which could result in

a less effective blockade of one of the modes by the dressing drive tone. We see this in the

reconstructed density matrices, as the elements corresponding to one of the modes deviates

more from the ideal values than the others. In the 3-mode case, this is the rightmost mode

index, while in the 4-mode case, this is the leftmost mode index. This is consistent with

what we expect, as the modes’ χj change monotonically, so the least effectively blockaded

χj should be on either extreme relative to the blockade dressing tone.

We verify that we have indeed generated entangled W states by measuring an entangle-

ment witness [86, 87]. For multimode states, this metric measures the amount of entangle-
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ment generated. For an M -mode W state, this is given by

WM =
M − 1
M

− FM , (6.11)

where FM = Tr (∣WM⟩ ⟨WM ∣ρ) is the overlap fidelity between our prepared state and the

ideal M -mode W state. Entangled states will have WM < 0. We show this in Fig. 6.10 for

two modes over the course of one W state preparation oscillation, and three and four modes

at the time when the 3-mode or 4-mode W state is prepared. We can see that we have

indeed generated our entangled W states in the regions where the points are negative, and

that our measured values of the witness are in good agreement with the simulated values for

all three mode numbers, which are obtained from evaluating Eqn. (6.11) for the simulated

states over time. Consequently, our multimode Wigner tomography allows us to characterize

our prepared states and quantitatively test their agreement with ideal entangled W states.

6.4 Efficient Tomography Sampling: DEMESST

As we have seen, Wigner tomography provides full state information, but in its usual formu-

lation requires a number of measurements that scales exponentially with the Hilbert space

size and thus the number of modes [88, 89]. Matrix inversion-based methods like the one we

used in the previous section require at least D2 observations, where D = NM is the dimen-

sion of the Hilbert space for M modes with population in up to N levels. This produces the

exponential scaling with mode numberM that we seek to avoid. In this section, we present a

Wigner tomography sampling method that scales polynomially with subspace size and thus

the number of modes for certain states, like our W states. In the following discussion, we

refer to the inversion-based Wigner tomography method that scales exponentially as Winv.

We primarily use it as a baseline for comparison.
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A number of proposed theoretical methods are able to extract multimode state informa-

tion while circumventing the observation number scaling exponentially with mode number.

These include techniques that apply additional unitaries between modes as part of the mea-

surement process [90], perform local measurements with polynomial post-processing [90],

make use of ancillary modes [91], or employ operators based on the ability to implement

excitation counting [92]. However, none of these approaches are based solely on Wigner

tomography. We add to this space of efficient measurement schemes with an approach based

on Wigner tomography.

6.4.1 Outlining the DEMESST Sampling Method

Here, we introduce the Direct Extraction of (Density) Matrix Elements from Subspace Sam-

pling Tomography (DEMESST) method and describe how it can demystify quantum states

with a sampling requirement that scales polynomially with the dimension of the subspace [93].

For certain multimode states, the total measurement number will therefore depend polynomi-

ally on the number of modes, rather than exponentially. This can be especially advantageous

when a state lives in a subspace of interest that is much smaller than the full space.

The procedure for DEMESST is as follows: first, the Wigner function corresponding to

a matrix element in the chosen basis, such as the multimode Fock state basis, is normalized

to a probability distribution based on its absolute value, so that negative regions have pos-

itive weight. Then, displacement vectors to apply to the bosonic cavity modes are sampled

from the resulting cumulative distribution function (CDF) by uniformly selecting a value

between 0 and 1 and inverting to find the corresponding angular and radial values of the

displacements. This calculation can be performed efficiently by utilizing Laguerre functions

and their inverses. Additionally, each displacement vector will have the original sign of its

Wigner function value preserved, so that if the Wigner function was negative at that point,

the final measured value will be multiplied by -1. Observing a set of these will provide an
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Figure 6.11: DEMESST tomography sampling method schematic and theoretical
scaling. (a) Schematic representing the advantage of the DEMESST method. Rather than
sampling an entire multimode Hilbert space (3D axes), if a state lives in some number of
subspaces (blue plane), the sampling can be done on each of those instead. The Ô basis
operators can be of the form Ôn⃗,n⃗′ ∝ ∣n⃗⟩ ⟨n⃗′∣ +h.c. for basis states ∣n⟩ , ∣n′⟩. This can improve
the overall efficiency of the sampling, especially for states with support across large numbers
of modes. (b) Number of measurements required for the DEMESST (purple, circles) and
Winv (orange, squares) methods to reach a 90% state reconstruction fidelity on W states of
up to 7 modes, assuming perfect state preparation. Winv scales exponentially with the size
of the Hilbert space (and therefore the number of modes M), while DEMESST scales only
polynomially.

estimate of the chosen density matrix element. Repeating this for multiple elements will

thus produce the density matrix of the prepared state.

The DEMESST tomography method scales polynomially for states with a known max-

imum excitation number, rather than exponentially with the number of modes. This is

accomplished by leveraging that information, and rather than sampling displacements corre-

sponding to all possible basis states (such as the multimode Fock basis), only sampling points

corresponding to those that are expected to support the state. For example, if a 3-mode

state has a maximum of 2 photons, we can reconstruct the unknown state by measuring the

matrix elements associated with the basis of the subspace, namely ∣000⟩ , ∣001⟩ , ∣011⟩ , ∣002⟩,

and permutations (as schematically illustrated in Fig. 6.11(a)). These matrix elements can

be obtained by sampling methods similar to direct fidelity estimation [88, 94], and without
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introducing bias. This way, we avoid extracting irrelevant information about unnecessarily

high photon number states (such as ∣111⟩ or ∣012⟩ in this example), thereby improving the

efficiency and lowering the total measurement number required for an accurate result. Al-

though each set of measurements estimates a single basis element of the multimode density

matrix, if that basis has polynomial size, the overall number of observations required for an

accurate state reconstruction is similar to the Winv approach for 2 modes, while demonstrat-

ing a noticeable improvement at larger mode numbers (≥ 3).

Furthermore, measuring independent density matrix elements can reduce the size of the

sampling problem to a lower number of modes or smaller dimension when some of the modes

are in their vacuum state. We accomplish this by projecting out those unpopulated modes.

For example, for the 3-mode Fock state ∣001⟩ ⟨010∣, we can project out the first mode and

reduce the measurement to the 2-mode state ∣01⟩ ⟨10∣. This allows us to reduce the total

number of observations required to estimate each of the density matrix elements in our

multimode W state reconstructions.

Another advantage of the DEMESST sampling method when compared to Winv is its

self-consistency. In particular, individual density matrix elements for any multimode state

can be measured independently, without needing to choose a cutoff maximum photon num-

ber or Hilbert space size that could subject the reconstructed state to inversion errors. This

eliminates the risk of obtaining an inaccurate tomography result if, for example, the pre-

pared state contains population beyond the space spanned by the chosen basis for the Winv

sampling. We demonstrate this effect later in this section, in Fig. 6.16.

For different mode numberM , we simulate Wigner tomography measurements ofM -mode

W states. W states are excellent candidates for testing our tomography sampling methods

because they have a clearly defined photon number and are irreducible multimode states

that generalize straightforwardly to any number of modes. The theoretical performance

of DEMESST and Winv is shown in Fig. 6.11(b). Assuming perfect state preparation, we
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compare the number of observations required to accurately reconstruct the W state with

90% fidelity. In contrast with the exponential scaling of Winv, the DEMESST methods

scales polynomially with M , an advantage which becomes clear at large M . For two modes,

Winv actually performs better due to some overhead required for the DEMESST approach.

However, for larger M , DEMESST requires fewer measurements to converge to the same

level of fidelity, and scales much more efficiently than Winv.

6.4.2 DEMESST Derivation

Here, we derive the advantageous polynomial scaling with mode number of DEMESST [93].

We consider a system with M modes and maximum total photon number N between those

modes. This restricts the dimension of the Hilbert space to (M+NN
). We focus on the scaling

of the sampling overhead (number of samples required) vs. mode number M , in the limit

where M is much larger than 2N , and show that this overhead scales polynomially vs. M

with bounded photon number N , demonstrating the efficiency of the DEMESST approach

as M increases.

Let Ô be the basis operator whose Wigner function we measure. Like for the multimode

Fock basis, we assume that Ô can be expressed in one of the forms:

On⃗,n⃗ = ∣n⃗⟩ ⟨n⃗∣ ,

OR
n⃗,n⃗′ =

∣n⃗⟩ ⟨n⃗′∣ + ∣n⃗′⟩ ⟨n⃗∣√
2

(n⃗ ≠ n⃗′),

OI
n⃗,n⃗′ = i

∣n⃗⟩ ⟨n⃗′∣ − ∣n⃗′⟩ ⟨n⃗∣√
2

(n⃗ ≠ n⃗′).

(6.12)

Here, ∣n⃗⟩ = ⊗M
m=1 ∣nm⟩ and ∣n⃗′⟩ = ⊗M

m=1 ∣n′m⟩ are Fock basis states that satisfy ∑M
m=1 nm ≤ N

and ∑M
m=1 n

′
m ≤ N . For a system with M modes and maximum total photon number N , we

have (M+NN
)2 of these operators. One essential observation is that, when M > 2N , for any

(n⃗, n⃗′) pair, there are at least (M − 2N) elements in the set S ≡ S(n⃗,n⃗′) = {m∣nm = n′m = 0}.
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We also denote S̄ = {1,2, . . . ,M}/S. Because of this, we can decompose the basis operator:

Ô = ( ⊗
m∈S
∣0⟩ ⟨0∣m ) ⊗ ÔS̄, (6.13)

where ÔS̄ has support on the modes with index m ∈ S̄. The number of elements in S̄ is no

greater than 2N , and independent of M . We now denote

ˆ̃Wρ(α⃗, θ⃗) = Tr [D̂(α⃗) cos(ϕ(α⃗) +∑
m

θmN̂m) D̂(−⃗α)ρ] , (6.14)

such that ˆ̃W is the generalized Wigner function from Eqn. (6.8) without the 2/π factors and

an additional phase ϕ that is acted on ρ. Now, the generalized Wigner function of such an

operator Ô satisfies

ˆ̃WÔ(α⃗, θ⃗) = ( ∏
m∈S

ˆ̃W∣0⟩⟨0∣(αm, θm)) ⋅ ˆ̃WÔS̄
(α⃗S̄, θ⃗S̄), (6.15)

where α⃗S̄, θ⃗S̄ contain those elements in α⃗, θ⃗ whose mode index m ∈ S̄. Again, ˆ̃WÔS̄
(α⃗S̄, θ⃗S̄)

is independent of M .

The expectation value of our state ρ with a basis operator Ô is given by Tr(ρÔ). We

want to determine the number of measurements required to obtain a precise estimate of

Tr(ρÔ). We can express this quantity [88] as:

Tr(ρÔ) = ∫
d2M α⃗

πM
Ŵρ(α⃗,−θ⃗)ŴÔ(α⃗, θ⃗)

= CM ∫ d2M α⃗ ˆ̃Wρ(α⃗,−θ⃗) ˆ̃WÔ(α⃗, θ⃗),
(6.16)

where CM = ∏M
m=1(2(1 − cos θm)/π) is a prefactor that comes from using the generalized

Wigner function instead of the typical ideal one. We rewrite this in the form of a probability
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distribution as

Tr(ρÔ) = CM ∫ d2M α⃗ p(α⃗)
ˆ̃WÔ(α⃗, θ⃗)
p(α⃗)

ˆ̃Wρ(α⃗,−θ⃗). (6.17)

We can model a measurement as a set of binomial outcomes A
(k)
j ∈ {1,−1}, where k denotes

indices of different displacement vectors α⃗ and j denotes repetitions at each displacement.

Then, we obtain an estimate of Tr(ρÔ) by measuring an average value of CM

ˆ̃WÔ(α⃗
(k),θ⃗)

p(α⃗(k)) A
(k)
j .

For the DEMESST method, we choose

p(α⃗) =
∣ ˆ̃WÔ(α⃗, θ⃗)∣

ZÔ

, (6.18)

where ZÔ = ∫ d
2M α⃗ ∣ ˆ̃WÔ(α⃗, θ⃗)∣. Therefore, we average CMZÔA

(k)
j over sampling vectors α⃗(k)

and the possible binomial outcomes from the qubit measurement for each sampling vector.

In the limit where we do one qubit measurement per α⃗(k), we can use Hoeffding’s inequality

to estimate the number of samples Nspl required to reach an accuracy ϵ1 with probability

1 − δ1 to be

P
⎛
⎝

RRRRRRRRRRR

CMZÔ

Nspl

Nspl

∑
k=1

A(k) −Tr(ρÔ)
RRRRRRRRRRR
≥ ϵ1
⎞
⎠
≤ δ1 (6.19)

when

Nspl ≥ ⌈
2C2

MZ
2
O

ϵ21
ln(2/δ1)⌉. (6.20)

We can see that in general, Nspl ∝ (CMZÔ)2, so we focus on that quantity. We have

CMZÔ = (
M

∏
m=1

2(1 − cos θm)
π

)∫ d2M α⃗ ∣ ˆ̃WÔ(α⃗, θ⃗)∣

= ∏
m∈S
(2(1 − cos θm)

π ∫ d2α⃗ ∣ ˆ̃W∣0⟩⟨0∣(αm, θm)∣) ⋅CS̄ ∫ d2∣S̄∣α⃗S̄ ∣
ˆ̃WOS̄
(α⃗S̄, θ⃗S̄)∣

= 2M−∣S̄∣CS̄ZOS̄
,

(6.21)

where CS̄ = ∏m∈S̄[2(1 − cos θm)/π]. Since ÔS̄ is supported on at most 2N modes, which is
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independent of M when M > 2N , the only M -dependence in CMZO comes from the 2M

factor. However, this still scales exponentially. To resolve this, we introduce the projection

operator P̂S = ⊗m∈S ∣0⟩ ⟨0∣m and denote ρS̄ = TrS(ρP̂S), where TrS(●) indicates the partial

trace over all modes with m ∈ S. Since ÔS̄ is supported on the modes contained in S̄, we

have Tr(ρÔ) = Tr(ρS̄ÔS̄). Here, ρS̄ and ÔS̄ are entirely supported on modes in S̄, which

contains at most 2N elements. Thus, we can reduce the problem from estimating Tr(ρÔ)

to instead estimating Tr(ρS̄ÔS̄). In the experiment, we use projection to the transmon ∣f⟩

level to restrict the cavity state to ρS̄. Now, we again use Hoeffding’s inequality, which gives

us

P
⎛
⎝

RRRRRRRRRRR

CS̄ZÔS̄

Nspl

Nspl

∑
k=1

A(k) −Tr(ρS̄ÔS̄)
RRRRRRRRRRR
≥ ϵ2
⎞
⎠
≤ δ2 (6.22)

when

Nspl ≥ ⌈
2C2

S̄
Z2

OS̄

ϵ22
ln(2/δ2)⌉. (6.23)

When N is bounded, CS̄ZÔS̄
is independent of mode number M when M > 2N . Therefore,

Nspl in Eqn. (6.23) scales as

Nspl ∼ OM(
f(N)
ϵ22

ln(2/δ2)), (6.24)

where OM indicates that we focus only on the scaling over M in the large M limit, and

f(N) = 2C2
S̄
Z2

OS̄
is a function that depend solely on N and the specific form of Ô from

Eqn. (6.12).

To reconstruct the density matrix, we must perform the above sampling for all operators

Ô with form given in Eqn. (6.12). Because the dimension of the Hilbert space is restricted

to (M+NN
), we have at most (M+NN

)2 of these operators. Consequently, the total measurement

number Nspl will be scaled by this factor, which depends polynomially on M . Therefore, we

are able to fully reconstruct our state without an exponential sampling requirement with the
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number of modes, and instead only a polynomial one. In the next section, we demonstrate

this experimentally on W states from 2–4 modes, which satisfy the M > 2N condition for 3

and 4 modes.

6.4.3 Experimental and Simulated Results

The tomography sampling methods use the same generalized Wigner tomography sequence

shown in Fig. 6.12(a), where each cavity mode is displaced before performing a generalized

parity measurement on the transmon [27]. For the DEMESST method, depending on the

number of modes and the state or density matrix element being measured, there may also be

a conditional pi pulse followed by an ef pi pulse on the transmon. These pulses perform the

projection operation that reduces the size of the sampling problem. Besides these possible

pi pulses, the measurement is the same as our previously discussed generalized Wigner

tomography. In Fig. 6.12(b), we show some of the points that were sampled for the two

methods for one of the modes. The locations in the displacement phase space where the

points are most concentrated depends on the basis state being measured for the DEMESST

approach, while the Winv attempts to measure the entire basis at once and thus has points

more heavily concentrated around rings corresponding to Fock state numbers.

We compare the state reconstruction results obtained from the DEMESST method with

Winv, which we present first and use as a baseline. Due to the time difference between per-

forming these experiments and the ones presented previously, the fidelity numbers are slightly

different. Using theWinv approach, we measure W state fidelities of 0.966±0.005,0.949±0.004,

and 0.912±0.007 for the 2-, 3-, and 4-mode W states, respectively. These are consistent with

or very close to the simulated fidelities obtained from modeling state preparation with the

blockade, which are 0.971, 0.956, and 0.912 for the 2-, 3-, and 4-mode cases, respectively.

The simulations include error sources such as transmon or cavity decoherence and blockade

imperfections such as leakage outside of the blockaded subspace.
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DEMESST

Figure 6.12: DEMESST tomography sequence and sampling points. (a) Wigner
tomography pulse sequence for the DEMESST sampling method. Initial cavity displacements
and a final generalized multimode parity measurement implement the tomography, while
optional conditional pi pulses (gray) project target modes out of the transmon ∣g⟩ − ∣e⟩
subspace for the DEMESST approach. An additional angle ϕ can be applied between the
π/2 pulses of the parity measurement to project it onto the real axis. (b) Cavity displacement
plots for the Winv (orange) and DEMESST (purple) sampling methods. The Winv has ring
features corresponding to measurement of larger Fock states, while DEMESST point density
depends on the basis state being measured.

For the DEMESST approach, we reconstruct the density matrices for 2–4 modes by mea-

suring every multimode Fock state with up to 2 photons, but with at most one in a single

mode. For 2 modes, these are the Wigner functions corresponding to states of the form:

{ ∣i⟩ ⟨j∣ ∣i, j ∈ {00,01,10,11}}. The basis states for larger mode numbers are similar, but

padded with more zeros. We measure sets of states of this form, instead of just single pho-

ton states, to capture state preparation imperfections like leakage outside of the blockaded

subspace. These observations directly provide the values of each density matrix element.

From the density matrix, we obtain the phase angles ϕj of our prepared W states by calcu-

lating the phase angle value that best matches the resulting data. These angles are checked
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Figure 6.13: DEMESST and Winv W state density matrix reconstructions. Absolute
value of the final density matrices determined using the DEMESST tomography sampling
method (top row) and the Winv method (bottom row) for W states of (a) 2, (b) 3, and (c) 4
modes. The results for DEMESST and Winv are in good agreement.

to verify that they match with the ones obtained from the Winv approach. These fits allow

us to obtain our final fidelity numbers.

Our reconstructed density matrices are shown in Fig. 6.13. We plot the absolute values of

the density matrix elements so that we can investigate a single matrix for each combination

of tomography method and mode number. The two methods are in good agreement, with

the largest visible deviation being in the 3-mode case for Fock basis elements with nonzero

population in the second (middle) cavity mode. Nevertheless, the Frobenius norm distances

between the final matrices obtained from the two methods is low, at 0.05 for the 2-mode case,

0.22 for the 3-mode case, and 0.30 for the 4-mode case. These are all below the corresponding

minimum distances at our maximum total measurement number when splitting our data into

independent sets. Consequently, these differences do not significantly affect those results,
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which we show in Fig. 6.14.

Besides some slight deviations in the measured populations of individual density matrix

elements, the remaining distance between the final reconstructed matrices can be explained

by small differences in the fit phase angles of the W states. For the 2-mode W state ∣W2⟩ =

(∣10⟩+eiϕ ∣01⟩)/
√
2, we measure ϕD = 0.04 using the DEMESST method, and ϕinv = 0.03 using

theWinv method. In the 3-mode case, for the W state ∣W3⟩ = (∣100⟩+eiϕ1 ∣010⟩+eiϕ2 ∣001⟩)/
√
3,

we measure ϕ1,D = −0.19 and ϕ2,D = 1.57, while ϕ1,inv = −0.12 and ϕ2,inv = 1.57. Similarly

to what we see in the populations, the deviation is primarily caused by the middle mode.

Finally, for 4 modes and ∣W4⟩ = (∣1000⟩ + eiϕ1 ∣0100⟩ + eiϕ2 ∣0010⟩ + eiϕ3 ∣0001⟩)/
√
4, we find

ϕ1,D = −1.36, ϕ2,D = −2.90, and ϕ3,D = 0.60, while ϕ1,inv = −1.38, ϕ2,inv = −3.02, and ϕ3,inv =

0.63. These angles are obtained by discretely sweeping the ϕj values over the full 2π range for

each of the modes and determining which set of ϕj gives the largest fidelity when compared

to an ideal W state with those phases.

We now compare the performance of DEMESST and Winv vs. the number of sampled

displacements. The results are shown in Fig. 6.14, in the form of reconstructed fidelity

((a)–(c)) and Frobenius norm matrix distance ((d)–(f)) from the final reconstructed state

vs. measurement number for both the DEMESST and Winv sampling methods. The final

fidelities using the DEMESST approach at the maximum observation number are 0.96±0.01,

0.955 ± 0.004, and 0.911 ± 0.007 for the 2-, 3-, and 4-mode W states, respectively, which are

consistent with the Winv results. Error bars are obtained from the results of 10 independent

sets of 10 repetitions of tomography measurements for each sampled displacement. In other

words, we took 100 observations at each displacement vector, split that into 10 distinct

groups, and analyzed each of those data sets independently. Therefore, the number of

distinct displacements for theWinv method equals the Total Measurement Number shown on

the x-axis divided by 10. For the DEMESST method, the number of distinct displacements

is further divided by the number of different measured basis elements. Given a fixed total
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Figure 6.14: Fidelities and matrix distances for DEMESST and Winv sampling
methods vs. measurement number. We sampled approximate entangled W states of 2–
4 modes for different numbers of displacements. The top panels (a)–(c) show fidelities vs. an
ideal W state for 2–4 modes, with dashed horizontal lines indicating the final converged
fidelity obtained from the Winv method. These final fidelities are, for 2–4 modes, 0.966 ±
0.005,0.949±0.004, and 0.912±0.007 for Winv and 0.96±0.01,0.954±0.004, and 0.911±0.007
for DEMESST, and are in good agreement. The bottom panels (d)–(f) show Frobenius norm
matrix distances between the state at a given measurement number vs. the final measured
state. The convergence rates are close to 1/

√
x or a power of -0.5, as expected. As the mode

number increases, the DEMESST method performs increasingly more efficiently by requiring
fewer measurements to reach a given level of convergence or error threshold.

measurement number (number of distinct sets of cavity displacements, times the number of

repetitions of each displacement), we would gain the most information from maximizing the

number of distinct displacements and measuring each a single time. We choose instead to

average each measurement 10 times due to our imperfect readout fidelity. This allows us

to minimize our average number while still being able to obtain accurate results. We then

choose to repeat this process 10 times to obtain statistics, resulting in a total of 100 averages

for each distinct displacement. This choice lets us balance this theoretical maximum of

information from singleshot measurements with our measurement errors. For the 2-mode W
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state, the two methods perform similarly, while for 3 and 4 modes, the DEMESST begins to

perform better than Winv with faster convergence to the final state fidelity.

This improvement is most evident in the matrix distance comparisons. The distances are

computed using the Frobenius norm, with error bars again obtained from 10 independent

sets of 10 repetitions for each displacement. The final state density matrix against which

the distances are computed is obtained by considering all 100 repetitions at once (Fig. 6.13),

which is why the final distances do not completely vanish. The behavior of both sampling

methods is very similar for the 2-mode W state. However, for the 3-mode case, DEMESST

has noticeably faster convergence vs. total measurement number x, in the sense that the

matrix distance d to the final state is smaller, as seen by the fit coefficient to d = axb (1.1±0.1

for DEMESST vs. 1.71 ± 0.02 for Winv). This effect is further enhanced in the 4-mode case.

The ratio of the Winv to DEMESST fit values scales roughly geometrically, from 0.96 ± 0.02

to 1.55 ± 0.1 to 2.3 ± 0.2 for 2,3, and 4 modes, respectively. This reflects the exponential

scaling of Winv compared to the polynomial scaling of DEMESST vs. total measurement

number. In all cases, the distances fall off roughly as x−1/2, as expected.

To further confirm these results, we perform simulations of the matrix distances shown

in Fig. 6.14(d)–(f). In particular, we obtain the density matrix of an imperfect W state pre-

pared by photon blockade, with errors from transmon and cavity decoherence and leakage

through the blockade. We then simulate Wigner tomography measurements on that state

using the same cavity displacement samples that we applied to our experiment, and recon-

struct the density matrix while including readout and bit flip error. These simulated results

are shown in Fig. 6.15. As expected, the DEMESST method performs increasingly more

efficiently with larger mode number. Overall, the simulated and experimental results are

similar, albeit with some slight differences. For example, the measurement number at which

the simulated distance reaches roughly 0.1 for 2 modes is slightly less than 105, while we

observe a distance slightly above 0.1 at that point number in our data. For the 3-mode case,
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Figure 6.15: Simulated matrix distances for vs. measurement number for
DEMESST and Winv. (a) DEMESST and (b) Winv. The distance is computed as the
Frobenius norm between the reconstructed state at a given measurement number and a final
simulated W state with state preparation errors from photon blockade and decoherences.
Error bars are obtained from repeating the simulation multiple times while including read-
out bit flip errors. The distances decrease to lower values more quickly for the DEMESST
approach, especially for larger mode numbers.

in the experiment, we observe a distance of roughly 0.3 at 105 measurements for DEMESST

and 0.4 for Winv. These values are close to the simulated distances of roughly 0.25 and 0.3,

respectively. For the 4-mode case, we measure a distance of 0.4 at roughly 2 × 105 measure-

ments for DEMESST, compared to a simulated distance of roughly 0.2, and a distance of

roughly 1.0 vs 0.8 for Winv at that measurement number. We attribute the discrepancies to

fluctuations over time in the readout error that may affect the accuracy of our simulation.

This effect is particularly pronounced for the 4-mode case, where more measurements are

required, forcing the measurement process to last multiple days. Nevertheless, the trend is

clear: the DEMESST method requires fewer measurements for the same level of accuracy as

the Winv approach, especially for larger mode numbers.

Additionally, we verify that the DEMESST tomography sampling method leads to self-

128



0 4 8
0.50

0.75

1.00

1.25
Tr

ac
e

2-mode

0 8 16

3-mode

0 15 30
Total Measurement Number (×104)

4-mode

0 4 8

Subspace of 4-mode
(a) (b) (c) (d)

Figure 6.16: Self-consistency verification for the DEMESST method. We investigate
the trace vs. point number for prepared (a) 2-mode, (b) 3-mode, and (c) 4-mode W states.
Error bars are shown for every fourth point, as well as the final one. As expected, the traces
converge to values near unity. (d) Trace vs. point number when measuring only a 2-mode
subspace of a prepared 4-mode W state. Due to only measuring half of the populated space,
the trace converges to 0.5. This demonstrates that the DEMESST sampling method is self-
consistent and does not depend on the chosen measurement subspace.

consistent measurement results. For this purpose, we investigate the traces of our prepared

W states to compare them with unity, a property required for physical states. This test allows

us to confirm that our prepared state indeed lives in our chosen measured Hilbert space. The

results are shown in Fig. 6.16, in the form of average trace vs. observation number. Like

before, the averages are taken over 10 independent sets of 10 measurement repetitions for

each sampled displacement in the tomography. We find that in all cases, the observed traces

are near one, and get closer with more samples. Deviations from unity for low measurement

numbers can be attributed to noise and statistics, while the final traces being slightly less

than one can be attributed to imperfect state preparation that produces population outside

our measured subspace. We perform a further check by considering only a 2-mode subspace

of a prepared 4-mode W state. This is shown in Fig. 6.16(d). As expected, the measured

trace converges to a value near 0.5, as we are effectively observing half of the total state.

This demonstrates that the DEMESST method does not rely on the choice of measured
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space, and can provide accurate results independently. In particular, we can identify when

we have measured insufficient basis elements to fully characterize a state, such as when the

state lives partially (or entirely) outside our measured space. This is a useful capability that

lets us detect when we have made incorrect assumptions about our state preparation.

6.4.4 W 2 Tomography Sampling

As another consistency confirmation, we implement another Wigner tomography sampling

method: the W 2 method, which was first proposed in [88]. In this approach, sets of coher-

ent cavity displacements αi are chosen using rejection sampling. This approach computes

the overlap between a prepared state and a desired ideal state ρI , and can be used for di-

rect fidelity estimation. For M modes, a cutoff c and a displacement vector (β1, ..., βM)

is randomly sampled from a uniform distribution between 0 and a maximum value of

∣W(α1, ..., αM)∣2∏M
i=1 ∣αi∣, where W denotes the Wigner function of ρI . We keep the vec-

tor if ∣W(β1, ..., βM)∣2∏M
i=1 ∣βi∣ > c. This ensures that we measure cavity displacements

that provide the most information about the state, while also avoiding displacements with

large magnitude or Wigner values near zero, which are more susceptible to experimental

errors. After measuring a set of n of these vectors, the final overlap fidelity is computed

as 1
n ∑

n
i=1Wexp(Ð→αi)/Wideal(Ð→αi). The W 2 method can be used in a similar manner to the

DEMESST, where the fidelity estimation is performed with respect to multimode Fock state

basis elements. Repeating for multiple elements measures a reconstructed density matrix.

Experimentally, we use the W 2 method for direct fidelity estimation of our prepared

W states. We set the ideal state to be the multimode W state with ϕ’s determined from

the DEMESST and Winv methods. The results are shown in Fig. 6.17. The fidelities at

the maximum observation number are 0.972 ± 0.013, 0.95 ± 0.35, and 0.90 ± 0.08 for the

2-, 3-, and 4-mode W states respectively. These averages are consistent with the results

of the previous DEMESST and Winv methods, with the Winv fidelities indicated by the
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Figure 6.17: Experimental results for the W 2 tomography sampling method. (a)
State reconstruction fidelities for 2- (purple circles), 3- (orange triangles), and 4-mode (blue
squares) W states. Horizontal lines indicate the fidelities obtained from the Winv method,
which are consistent with the W 2. (b) Error magnitudes for the fidelities shown in (a). All
results follow a roughly 1/

√
x relationship vs. total measurement number, as expected.

horizontal lines in Fig. 6.17(a). The data converges quickly to the expected fidelity obtained

from those two approaches, although with large uncertainties, as shown in Fig. 6.17(b).

One reason for these errors is the relatively low total measurement number compared with

the other methods. However, an odd behavior is that the 3-mode data has much greater

uncertainties than even the 4-mode case, when we would expect the uncertainties to increase

monotonically with mode number. Some possible explanations for this behavior could be

a particularly low readout fidelity during data collection or fluctuations in drive strength

during the measurement sequence that modify the effective Wigner operator differently for

distinct sets of cavity mode displacements. These might have affected the 3-mode data but
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not the 4-mode due to the measurements being performed on different days. Another reason

could be the choice in cutoff c, which will introduce some amount of systematic bias that

could lead to the massive error bars [88, 93]. All the uncertainties have the expected 1/
√
x

dependence on total observation number.

In summary, in this chapter, we have discussed Wigner tomography, a prominent tech-

nique for performing QST to determine quantum states. To assist with implementing the

measurements on multimode systems with non-uniform parameters, we have developed a

generalized version of the Wigner operator that can be applied flexibly. With a focus on

multimode states, and using W states as an example class of states, we have introduced the

DEMESST sampling method and applied it to multimode Wigner tomography. DEMESST is

most appropriate for multimode states that have population contained in a few basis elements

of an overall Hilbert space. DEMESST outperforms traditional optimized inversion-based

methods like Winv for states of that type, by scaling polynomially rather than exponentially

with subspace size and thus mode number. We have demonstrated that improvement on W

states of 2–4 modes. Here, we have presented comparisons using the multimode Fock basis

on W states, but in principle DEMESST can be applied to different bases that more readily

support other states. This tomography method can even be used for direct fidelity estimation

by choosing as a basis the intended target state. While Wigner tomography was presented

in this work, the method can operate beyond the bosonic Wigner function. Additionally, our

methods can work without requiring coupling gates between modes, which will for example

be useful for calibrating entangled states over distributed quantum networks. We also imple-

ment another Wigner tomography method, the W 2 approach, as a direct fidelity estimator,

and confirm that it agrees with DEMESST and Winv. The DEMESST sampling method

enables efficient measurement of large multimode states, which will be crucial as the size of

quantum hardware systems increases and larger, more complicated states are generated and

applied to quantum simulation, bosonic logical state encoding, and error correction.
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Chapter 7

Conclusion

In this thesis, we have described a multimode 3D cQED quantum hardware system that

lives in a class of promising platforms for researching quantum phenomena. The advantages

of this system are long coherence times, high qubit-cavity cooperativities, and a design that

is both hardware-efficient and modular which easily lends itself to scaling up and creating

even larger systems. In particular, the entire device can be controlled with as few as two

control lines: one input and one output. We have discussed how to fully calibrate the qubit

and multimode cavity with time-domain measurements that allow us to measure all the

relevant system parameters. We have applied this information to implement a number of

control techniques for efficient manipulation of our system, enabling us to prepare arbitrary

quantum states and generate interactions between different cavity modes. These include four-

wave mixing sideband interactions, cavity beamsplitters, multimode photon blockade, and

quantum optimal control. In conjunction with these controls, we have developed tomography

and measurement approaches with improved efficiency to handle larger, more complicated

quantum states.

Moving forward, this platform can serve as a starting point for a number of further

improvements. For example, as much as the interaction between qubit and cavity is what

allows us to achieve our quantum controls, there are times where we would like to turn it

off, such as during the measurement process, or when we do not want the population of

some number of cavity modes to affect how we control others. This interaction “switch”

can be implemented by including an additional intermediary cavity and a tunable coupling

element between our qubit and main multimode cavity, and would facilitate easier control

and measurement of a large multimode system. Other innovations could be coupling two or

more of these systems to fully demonstrate their modular nature, or increasing the number
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of modes manipulated in a single version. Both of these additions would aim to further scale

up the size of the system, and would be necessary as control and measurement techniques

build on what we have developed in the discussion here and evolve further.

Ultimately, this work is an addition to the burgeoning field of quantum research and

quantum information science. Our multimode cQED system can be treated as a quantum

processor, with the qubit acting as the central processor and each of the cavity modes

acting as memory sites. Ongoing developments that build on this one, while also pushing

in other related areas, will strive to further explore quantum science and eventually achieve

a useful, working quantum computing device. On the way, there will be a great variety

of meaningful results that are compelling in their own right and move the field forward.

Quantum science and the exploration of quantum phenomena has and will continue to be

an exciting environment for technological development and discovery.
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