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ABSTRACT 

Across all stages of life, infants are amongst the most susceptible to brain injury. This 

vulnerability is particularly pronounced in a condition called Hypoxic Ischemic Encephalopathy 

(HIE), where lack of oxygen during the birthing process leads to encephalopathy and neuronal cell 

death. Clinicians rely on neuromonitoring modalities particularly electroencephalography (EEG) 

and magnetic resonance imaging (MRI) during the first week of life to assess HIE severity and 

detect and manage seizures that result from HIE.  

This body of work focuses on extracting features from MRI and EEG to prognosticate 

infant outcome and detect seizures. In the first part of the project that focuses on prognostication, 

it was found that a combination of cortical insula injury and absence of EEG state change activity 

could predict abnormal outcome in neonates between three and six months of life. It was also 

found that periventricular white matter injury correlated significantly with abnormal seizure 

activity and poor outcomes in term neonates.  

In the second part of the project that focuses on seizure detection, it was found that a 

combination of features from the amplitude-integrated EEG and compressed spectral array could 

detect seizures with high accuracy using an external dataset of 79 patients with heterogenous 

disease etiology. Results also revealed that the algorithm performance was comparable in HIE 

patients within the dataset. A follow-up algorithm validation study using the inhouse cohort of 

term HIE infants, showed that the algorithm could perform well on an independent HIE cohort and 

equally as well if only trained using the subset of external data patients that had HIE due to birth 

asphyxia. In conclusion, this body of work shows that early clinical management for neonatal 

patients can be improved using a combination of features from EEG and MRI to score outcomes 

and a combination of quantitative EEG features to better detect seizures.  
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CHAPTER 1 

 INTRODUCTION 

1.1 Epidemiology and Outcomes of Neonatal HIE 

Hypoxic Ischemic Encephalopathy (HIE) represents a significant global disease burden. 

With an estimated incidence of 1.5 per 1000 births, it accounts for nearly a quarter of infant deaths 

worldwide 1,2. In addition to mortality, nearly 60% of HIE cases result in severe disabilities such 

as cerebral palsy 3,4. Disability Adjusted Life Years (DALYs) are markers used to measure both 

premature mortality rate of a condition and the years of life spent in suboptimal health due to that 

condition5. Birth asphyxia is among the top three global causes of DALYs, and in 2010 was 

estimated to be the cause of 42 million DALYs, which by comparison accounts for twice the 

estimated disability burden of diabetes 6,7. 

 

1.2 Pathophysiology of Neonatal HIE 

HIE in the term infant results from prolonged intrauterine hypoxia 3,4. Hypoxia specifically 

refers to impaired cerebral perfusion that leads to a proinflammatory cascade that causes 

encephalopathy8. Perinatal hypoxia has a variety of causes. These include but are not limited to 

cord prolapse, fetal entrapment, maternal hypotension, and placental abruption3. These events lead 

to loss of cerebral blood flow during the birthing process which precipitates neuronal ischemia. 

HIE pathophysiology can be divided into four stages: Primary Energy Failure, Secondary Energy 

Failure, Latent, and Tertiary 3.  

Primary energy failure occurs immediately after hypoxic injury. In this stage, lack of 

oxygen leads to a shift towards anaerobic metabolism. If hypoxia is prolonged, anaerobic 
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metabolism progresses into excitotoxicity as the Na/K+ pumps fail due to ATP loss 8,9. ATP loss 

precipitates a proinflammatory cascade that leads to intracellular sodium accumulation and 

excessive glutamate release. The result is excitotoxity and neuronal cell death via both apoptosis 

and necrosis8,9. Primary energy failure is followed by the latent phase 9. During the latent phase, 

implementation of neuroprotective interventions can help to reduce the magnitude of neuronal cell 

loss 9.  

The latent phase extends into the beginning of the next stage, which is secondary energy 

failure. Secondary energy failure is characterized by delayed neuronal cell death, cytotoxic edema, 

excitotoxicity, and microglial activation 8,9. Secondary energy failure extends from six to 48 hours 

after injury. The majority of neonatal seizures often occur during this stage10. In a subset of 

patients, tertiary brain injury follows secondary energy failure. Tertiary brain injury includes 

astrogliosis and reduced neuronal cell count that persists in the weeks to years following the initial 

hypoxic event 8,9. 

The neonatal brain is especially susceptible to seizures during this period due to GABA-

mediated excitation 11. This paradoxical excitatory phenomenon has been attributed to relatively 

low expression of the potassium chloride transporter, KCC2, that facilitates chloride export from 

the cell and leads to leads to a buildup of intracellular chloride concentration. The result is that 

ionotropic GABA receptors allow chloride efflux and cause increased neuronal excitability 11. In 

HIE, hypoxic injury leads to energy failure due to diminished ATP, which triggers an 

inflammatory cascade characterized by failure of ion pumps and calcium-mediated excitotoxicity 

3. In this neuronal environment, seizure activity can proliferate.  
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1.3 Therapeutic Hypothermia 

Therapeutic Hypothermia (TH) is the first line of treatment for term infants with HIE 

following the hypoxic event. This treatment involves whole-body cooling to lower infants’ core 

temperature to between 33.5 and 34.5 degrees Celsius for 72 hours12. The goal is to reduce 

secondary injury and the resultant proinflammatory cascade. During TH, clinicians depend on 

EEG and MRI to assess the infant’s disease severity and response to treatment. 

Studies have investigated the efficacy of therapeutic hypothermia for improving long-term 

neurodevelopmental outcomes. The largest of such studies is the Total Body Hypothermia (TOBY) 

Study13. This multicenter, prospective, randomized study tested the influence of therapeutic 

hypothermia on neurodevelopmental outcome in term neonates. They found that term infants with 

hypoxic ischemic encephalopathy who received 72-hour therapeutic hypothermia at less than six 

hours of age saw improvements in the outcomes using the Bayle Scales of Infant Development II. 

TH has also been shown to decrease the risk of poor outcomes such as cortical visual impairment 

in term neonatates14.  

Most studies to date have focused on therapeutic hypothermia for near-term and term 

neonates. The minimum recommended gestational age for therapeutic hypothermia is often either 

36 weeks and above or 35 weeks and above. Studies that have assessed therapeutic hypothermia 

in preterm neonates (33-35 weeks gestational age) have found largely mixed results with both a 

potentially negative effect and no effect15–17. This may be due to the differing metabolic demands 

of the preterm brain and the disruption of oligodendrocyte myelination that is unique to the preterm 

brain in HIE15. Ongoing work is being done particularly by the NICHD Neonatal Research 

Network to conduct a randomized controlled trial (ID.: CN-01540535) to assessed the efficacy of 

therapeutic hypothermia in preterm (33-35 weeks gestational age) infants18.    
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1.4 Bayley Scales of Infant Development 

The severity of HIE outcomes in infants is generally measured using functional outcomes 

metrics. The Bayley Scales of Infant Development (BSID) at 18 to 24 months is currently one of 

the most widely used standardized assessment tool for neurodevelopmental outcomes. This metric 

gauges developmental delay using a series of behavioral tests and patient questionnaires19. A 

child’s development index is compared to normative age-matched samples to assess for 

developmental delay. The Bayley scales were initially developed by Nancy Bayley, a pediatrician, 

in 196919. Since then, the BSID has been revised three times first in 1993, then 2006, and finally 

in 2019 to generate the BSID-II, BSID-III, and BSID-IV respectively19. The papers cited in this 

work use the BSID-II and BSID-III. BSID-II measures both cognitive and motor development 

using a Mental Development Index (MDI) and a Psychomotor Development Index (PDI). Bayley-

III was introduced to include subscales to separate cognitive and language skills in the MDI by 

separately measuring cognitive, receptive language, and expressive language scales20. The PDI 

was also further separated to evaluate fine and gross motor skills independently. The BSID-III is 

still the most widely used, but a notable concern is that it appears to underestimate rates of 

developmental delay20,21.  

One of the major downsides to outcome metrics such as the Bayley Scales is the need for 

follow-up at one to two years of age. Studies have cited follow-up rates among neonates within 

the first year as often well below 40% 22,23. Factors such as loss of contact and socioeconomic status 

have been shown to play a role. High attrition rates are particularly concerning because 

assessments such as the Bayley scales are not objective but based on normative scores from the 

population of children that do receive follow-up care. Orton et al 2015 showed that rates of 

developmental delay were greater among neonates retained in their study compared to those that 
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were retained as part of standard of care23. They argued that high attrition can create a bias in 

developmental outcome scores that are considered standard by clinicians.  

 

1.5 Electroencephalography for Neuromonitoring and Seizure Detection 

Infant brain activity must be monitored in HIE to direct clinical management and follow 

the evolution of hypoxic injury. The gold standard neuromonitoring tool after hypoxic insult and 

especially during therapeutic hypothermia is electroencephalography (EEG). EEG displays brain 

activity using scalp electrodes that measure neuronal postsynaptic potentials24. The electrical 

activity comes primarily from the synchronous postsynaptic potentials of cortical pyramidal 

neurons24. Neonates have higher scalp conductivity than adults25. Increased conductivity may be 

due to both the neonatal skull being thinner and the presence of skull fontanelles – areas where the 

skull has not fused26. The neonatal EEG can be visualized using the standard 10-20 system or a 

modified version of the 10-20 system that concentrates electrode placement near the 

centrotemporal and centroparietal regions of the brain27. Electrode placement is particularly 

important in the centrotemporal area because it captures activity from the Rolandic and peri-

Rolandic cortices, which are known to be among the most metabolically active regions of the term 

neonatal brain28. These regions have also been shown to be more sensitive for capturing important 

clinical events such as seizures29.  

 The normal term and near-term neonatal EEG contains certain patterns of activity that 

indicate adequate brain development. These background patterns include EEG synchrony, 

presence of state changes such as quiet sleep and active sleep, and the presence of specific EEG 

graphoelements such as a trace alternans pattern and enconches frontales30. Term and near-term 

neonatal EEGs should show synchronous and symmetrical EEG activity, which is characterized 



 6 

by equivalent timing of burst activity across both hemispheres and equal hemispheric power 

respectively with a tolerance of 1.5 seconds30. Discontinuity should be primarily seen during the 

trace alternans pattern, which is exemplified by synchronous bursts (50–150µV) with interburst 

amplitudes greater than 25µV 30. Trace alternans pattern is seen during quiet sleep. Thus, while 

discontinuity is not pathologic in neonatal EEGs, term and near-term neonatal EEGs, should have 

brief interburst intervals. Typically, interburst intervals are around six seconds at full term (37 to 

40 weeks) and up to 10 seconds in near term neonates (35 to 37 weeks) 30. In contrast, during active 

sleep, higher amplitude (50–300µV) more continuous activity along with faster theta activity can 

be appreciated30. Finally, the encoches frontales pattern is characteristic of term and near-term 

neonates. Encoches frontales are transient discharges that occur in the frontal electrodes during 

sleep. These discharges are diphasic, synchronous, and symmetric30.  

 In addition to observing the EEG background for evidence of normal brain development, 

clinicians are also tasked with identifying seizure and epileptiform activity using the EEG. 

Neonatal seizures are defined as rhythmic discharges with a clear evolution pattern that last 10 

seconds or more. The evolution pattern typically involves a change in waveform amplitude, 

frequency, and/or morphology30. In contrast, nonseizure epileptiform activity presents as isolated 

sharp activity, brief runs of epileptiform activity, typically rhythmic activity with an evolution 

lasting less than 10 seconds, or periodic discharges, which are rhythmic discharges lasting more 

than 10 seconds but without a clearly evolving pattern30.  

 

1.5.1 Quantitative EEG 

 Despite manual EEG review being the gold standard for both neonatal neuromonitoring 

during therapeutic hypothermia and neonatal seizure detection, manual review has multiple 
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shortcomings. First, neonatal seizure detection is resource intensive. 24-hour long term EEG 

monitoring is the standard for all three days of therapeutic hypothermia, but it generates massive 

amounts of EEG data. To illustrate, long-term EEG monitoring, which is generally displayed with 

20 seconds of EEG per page, generates 12,960 pages of EEG for a single neonate during 

therapeutic hypothermia. This process is also time-consuming because the data must be manually 

reviewed for assessment of background and seizure activity, which will be used to guide clinical 

management and prognosticate possible outcomes. Finally, clinicians with expertise in assessing 

neonatal seizures and background activity are scarce31, which means the demand for sensitive and 

specific review of EEG data greatly exceeds the supply of clinicians equipped with the skills to 

fulfill it. As a result, many facilities are limited by reliance on remote EEG interpretation from an 

overtaxed pool of clinicians.32 This shortage may slow access to care and lead to worsened 

outcomes. Thus, quantitative EEG algorithms (qEEG) have been designed to meet this demand. 

qEEG may expedite clinical management and provide relief for families burdened by the 

uncertainty of their infant’s prognosis.  

 Since the purpose of qEEG algorithms is to simplify and expedite assessment of EEG, 

qEEG trending modalities are often viewed using a reduced electrode montage, specifically the 

two and four channel montage. The recommended limited electrode set up are the central and 

parietal electrodes, specifically C3-P3 and C4-P433. This recommendation exists because the 

central electrodes are more sensitive to seizures especially in comparison the frontal electrodes, 

which are the most contaminated by artefacts and where seizures are more often missed 29,34.  
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1.5.2 Amplitude Integrated EEG 

  Amplitude integrated EEG (aEEG) is currently the most widely used quantitative algorithm 

in Neonatal Intensive Care Units (NICUs). aEEG was first designed by Douglas Maynard in 1969 

for continuous monitoring of adult patients who had been placed under anesthesia or had suffered 

cardiac arrest and were receiving intensive35 . The original monitoring device was referred to as 

the Cerebral Function Monitor. The aEEG algorithm is constructed by band-pass filtering the raw 

EEG generally between 2 and 15 Hz to reduce sweating and high frequency muscle and electrical 

artifact36. Then, a full-wave rectifier is implemented to get the amplitude information of the EEG, 

which is a biphasic signal37. The resultant signal is then smoothed or enveloped using a lowpass 

filter37. Then, it is segmented and placed on a semilogarithmic amplitude scale so higher amplitude 

changes specifically above 10µV (upper margin) appear less exaggerated in comparison to lower 

amplitude changes (lower margin)36,37. Finally, the signal is further time compressed by being 

displayed at 6cm/h at the bedside36.  

Interpretation of the aEEG is based on simple pattern recognition of amplitude fluctuations. 

Thus, the aEEG is easily learned, interpreted, and used by the clinical team.38,39 Since the aEEG 

time compresses the signal, it allows clinicians to assess EEG background patterns over several 

hours at a time. Notably, the aEEG background pattern has been shown to have prognostic efficacy 

in neonates with HIE40,41. This utility exists because the aEEG background can be used to identify 

long period of abnormal voltage activity. Additionally, the aEEG can be used to identify seizures 

using voltage patterns in the upper and lower margins. To do so, clinicians look for an abrupt rise 

in the upper and lower margins to detect windows of time suspicious for seizure activity42.  

Despite these strengths, aEEG has poor sensitivity for seizure detection. In fact, multiple 

studies have cited aEEG as having seizure detection rates of well below 50 percent.34,43–45 
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Additionally, clinicians have cited shorter duration seizures (<30 seconds) as being more difficult 

to detect34,38. Since aEEG is designed to time compress the EEG, the result is loss of accurate 

information concerning the infant’s seizure burden. In addition to the seizure detection problem, 

lack of consensus between proprietary aEEG algorithms makes aEEG less generalizable across 

studies.34,46,47,43 Werther et al found that differences in the moving average filter window primarily 

account for discrepancies in the performance of proprietary aEEG algorithms for computational 

tasks.48 In contrast, for outcome prognostication in HIE, aEEG shows more promise. The main 

downside is that aEEG’s predictive capacity is more variable in neonates that receive cooling 

therapy.49–51  

 

1.5.3 Compressed Spectral Array 

 Another widely used qEEG trending modality is the Compressed Spectral Array (CSA). 

The CSA displays frequency trends using spectral analysis52,53. Clinicians can view patterns of 

power from the delta to beta frequency bands (0.5-30Hz). The CSA is often displayed using a 

color-density spectrogram plot, but it can also be viewed as a waterfall plot. Despite its use in 

neonatal intensive care units, the CSA has primarily been studied in the adult population for long 

term monitoring and seizure detection. Notably, Williamson et al 2014 found that the CSA was 

able to detect 87.9 percent of seizures in a population of 118 critically ill adult patients54. The CSA 

has also been used for seizure detection in children (age range: 0.9-6.8 years) and was found to 

have higher specificity (95%) but lower sensitivity (64.8%) when reviewed by clinicians without 

the accompanying EEG. For the neonatal population, work pioneered by Gotman et al 1993 

showed that spectral features might be viable tools for automated seizure detection in neonates55.  
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1.6 Previous Neonatal Seizure Detection Algorithms 

Neonatal seizure detection is particularly important in neonates with HIE because HIE 

causes the majority of neonatal seizures56. Additionally, seizures must be caught and treated 

quickly to reduce seizure burden and assess clinical management57. Thus, there has been a lot of 

effort aimed at creating algorithms for bedside neonatal seizure detection algorithms particularly 

from research groups from the Netherlands, Ireland, and Finland55,58–60. The primary challenges of 

currently existing algorithms have been reducing the false positive rate while maintaining adequate 

sensitivity and multichannel probabilistic detection of the neonatal seizures. The latter is 

particularly important because most neonatal seizures are focal thus the location of seizures will 

vary across different patients if a full electrode set is implemented for detection.  

Since the focus of this body of work is on currently existing qEEG monitoring efficacy, 

algorithms that assess aEEG and CSA for neonatal seizure detection will be reviewed. While there 

have been a host of studies that manually assess the efficacy of these qEEG algorithms in 

neonates34,43,61,62, only two algorithms will be addressed that attempted to computationally automate 

seizure detection using the aEEG and CSA55,60. The first was conducted by Lommen et al 200760. 

They generated a seizure detection algorithm using changes in the baseline aEEG trace. They 

trained on five neonates and tested on eight. Ten of the infants had birth asphyxia, the other three 

had unknown diagnosis, hypoglycemia, and familial benign seizure. While they observed a 

sensitivity of above 90% with one false positive per hour, their methodology presents some 

caveats. First, they evaluated their algorithm based on seizures labeled by clinicians on the aEEG 

trace not on the EEG. EEG is the gold standard for neonatal seizure detection. Thus, their 

assessments primarily reflect how well their algorithm mimicked aEEG seizure patterns. Secondly, 

their sample size is quite small at only 13 patients total.  
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The second algorithm was an approach pioneered by Gotman in 1997 using 43 patients. 

This algorithm focuses on applying features of the CSA for seizure detection. Gotman assessed 

multiple features from the CSA and compared them across 10-second epochs to generate a 

computer algorithm using a combination of those features. What was key was Gotman’s 

algorithms compared CSA features epochs to those in prior background epochs around 60s earlier. 

Gotman’s best performing set of features detected 71% of seizures with a false detection rate of 

1.7 per hour. With new methodologies such as machine learning that allows for weighted feature 

assessment, a more sensitive combination of spectral features can be extracted and evaluated for 

neonatal seizure detection.  

 

1.7 Magnetic Resonance Imaging in Neonatal HIE 

 Magnetic Resonance Imaging is particularly important in neonates when evaluating 

adequate brain development and identifying lesions in HIE. MRI uses an external magnetic field 

gradient and radiofrequency pulses to generate an image of tissue. This image is based on the 

response time of protons within the tissue to the external electromagnetic field 63,64. The most 

common imaging sequences used for HIE are the T1-Weighted, T2-Weighted, and Diffusion-

Weighted Imaging (DWI)65. T1-weighted imaging is based on the longitudinal relaxation time (T1) 

or the time for protons excited by the external radiofrequency to go back to realigning with the 

external magnetic field. Tissues with shorter T1 such as white and gray matter appear brighter on 

T1-Weighted imaging in comparison to CSF which appears dark64,65. In contrast, T2-Weighted 

imaging is based on the transverse relaxation time (T2), and tissue areas with a longer T2 such as 

CSF will appear brighter than those with a shorter T2 like white and gray matter 64,65. DWI-MRI 

takes a slightly different approach by measuring the rates of diffusion of protons within water 
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using a metric called the apparent diffusion coefficient (ADC). Thus, the ADC is particularly 

important for assessing ischemic neuronal tissue that would be susceptible to cytotoxic edema and 

restricted diffusion to due energy failure66.  

Several areas of the brain have been identified as particularly susceptible in HIE. These 

locations are the basal ganglia, thalamus, internal capsule, periventricular white matter, and cortex 

67. There are two common injury patterns of HIE in term neonates: the basal ganglia-thalamus 

pattern and the watershed pattern. The basal ganglia-thalamus pattern is generally associated with 

a severe, acute hypoxic event67,68. This pattern typically involves the bilateral ventrolateral thalami, 

posterior putamina, perirolandic cortex, and posterior limb of the internal capsule (PLIC). Lesions 

can be seen primarily as hyperintensities on T1-imaging with abnormal T2 hypointensity in the 

PLIC. DWI-MRI within the first week of birth typically shows restricted diffusion in these areas69. 

In contrast, the watershed injury pattern typically occurs after partial and prolonged hypoxia. If 

hypoxia is prolonged, cerebral autoregulation leads to redistribution of cerebral blood flow to areas 

that are most metabolically active in the term neonatal brain. This redistribution leads to injuries 

in the vascular watershed zones supplied by the middle cerebral artery67. These areas include the 

periventricular white matter and in more severe events subcortical white matter.  

While the focus of this study is on term and near-term neonates who receive cooling (>35 

weeks gestational age), preterm infants with HIE have characteristic injury patterns that are worth 

noting. Ostensibly, preterm infants suffer less basal ganglia injury following hypoxic injury and 

much more perirolanadic and white matter injury compared to term infants65,67,69. Basal ganglia 

myelination occurs at 33 to 35 weeks gestational age70,71. Myelination increases the metabolic 

demand, which may cause the basal ganglia to be more susceptible to hypoxic injury. Additionally, 

some studies have hinted that preterm neonates may be less susceptible to cortical glutamate 
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mediated excitotoxicity due to a lower density of Ca2+ permeable AMPA glutamate receptors in 

the preterm cortex72,73.  

 

1.8 Thesis Aims: Addressing Critical Gaps in Knowledge 

The goal of this thesis is to generate algorithms that can be used for neuromonitoring and 

clinical management of term HIE patients particularly during therapeutic hypothermia. This 

objective led us to consider two of the most important clinical objectives following HIE diagnosis 

during cooling therapy: 1. Prognosticating neonatal outcomes and 2. Detecting neonatal seizures. 

This study aims to address the first objective by identifying sensitive electrographic and imaging 

biomarkers of outcome during cooling therapy. The two most important modalities currently used 

for evaluating infant’s brain development during HIE are EEG and MRI. Clinicians synthesize 

important clinical information from both EEG and MRI to guide clinical management and counsel 

families. The first objective was to survey the features that have been shown to be useful for 

prognostication in EEG and MRI and generate a multimodal prognostic algorithm using important 

EEG and MRI features and an in-house cohort of term and near-term neonates with HIE.  

The second objective was to address the ongoing challenge of neonatal seizures detection 

by addressing the shortcomings of currently existing qEEG monitoring algorithms based on aEEG 

and CSA. The approach is to generate seizure detection algorithms by extracting features that 

mimic the manual visual assessment done by clinicians. This study then couples these features 

with supervised machine learning algorithms for training and testing to generate sensitive and 

specific detection algorithms. Currently, no study addresses both aEEG’s algorithm variability and 

poor seizure resolution. Studies that use aEEG often just implement the standard aEEG for manual 

review74,75. Other studies bypass aEEG completely and focus on applying signal analysis and 
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statistical metrics for either seizure detection or outcome prognostication58,76–80. Since both aEEG 

and the CSA are still part of standard care, they remain useful for their ease of implementation and 

familiarity to clinicians. Addressing their shortcomings may help improve their efficacy for 

automated detection. Additionally, while convolutional neural networks and other forms of 

unsupervised machine learning are increasingly being implemented for neonatal seizure detection, 

they present notable downsides76,81,82. The most salient downsides of this approach are the need to 

decode the black box of deep learning to make it more accessible for clinicians. Demystifying deep 

learning algorithms will require explainable artificial intelligence approaches, which are arguably 

still in their nascent stages83. Another is the need for very large datasets to prevent overfitting84. 

For these reasons, this thesis focuses on beginning with supervised machine learning and 

engineering features based on clinician’s assessment’s current qEEG that are part of standard care.  
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CHAPTER 2 

 EARLY EEG AND MRI FEATURES FOR HIE PROGNOSTICATION: A 

SYSTEMATIC REVIEW 

 

2.1 Abstract 

Objective 

To review features in early EEG and MRI features associated with long-term neurological 

outcomes in infants after perinatal HIE.  

 

Methods 

Articles were extracted from PubMed, CINAHL, and SCOPUS. 21 studies were included that 

assessed EEG and/or MRI patterns in neonates who received therapeutic hypothermia and were 

followed to determine their outcomes.  

 

Results  

Abnormal EEG background and burst suppression severity were significantly associated with poor 

outcomes. Higher MRI injury scores in the basal ganglia and thalamus were also correlated with 

poor outcomes. Finally, studies also revealed restricted diffusion and greater lesion size in the 

subcortical gray matter correlated with poor outcome.  

 

Conclusions 

EEG background patterns, MRI scoring, subcortical lesion burden, and MRI diffusivity are 

sensitive metrics for predicting outcome. Both early EEG and MRI features may serve as high 
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fidelity biomarkers for secondary energy failure and for counseling families of neonates at high 

risk for devastating neurologic outcome.  

 

2.2 Introduction 

Neonatal Hypoxic Ischemic Encephalopathy (HIE) results from prolonged intrauterine 

hypoxia and represents a significant global disease burden 3,4. With an estimated incidence of 1.5 

per 1000 births, it accounts for nearly a quarter of infant deaths worldwide1,2. In addition to 

mortality, nearly 60% of HIE cases result in severe disability such as cerebral palsy 3,4. Birth 

asphyxia is among the top three global causes of Disability Adjusted Life Years (DALYs), and in 

2010 caused 42 million DALYs - twice the estimated disability burden of diabetes 6,7. 

HIE pathophysiology can be divided into four stages. In the first stage, primary energy 

failure, anaerobic metabolism predominates in the brain due to lack of oxygen, and if prolonged, 

it progresses to excitotoxicity and neuronal death through failure of Na+/K+ pumps 8,9. After 

primary energy failure, there is a latent phase, a variable-duration period during which therapeutic 

hypothermia can reduce the magnitude of neuronal loss9. During the latent phase, there is a 

transient return of normal cerebral perfusion and partial recovery of neuronal damage85. 

Afterwards, secondary energy failure then ensues, and is characterized by delayed neuronal cell 

death, cytotoxic edema, excitotoxicity, and microglial activation, occurring six to 48 hours after 

injury8,9. Decreased cellular metabolism and widespread neuronal cell death during secondary 

energy failure may manifest on the EEG as burst suppression and/or reduced amplitudes86. The 

majority of neonatal seizures also start during this stage10. In a subset of patients, tertiary brain 

injury follows secondary energy failure, and results in further reduction of neuronal cell counts 

and astrogliosis 8,9.  
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HIE outcome prognostication is important for guiding clinical interventions and counseling 

families. Here, twenty-one articles are reviewed that evaluate prognostic features from Magnetic 

Resonance Imaging (MRI) within the first few weeks of life and EEG during and/or shortly after 

therapeutic hypothermia. This article discusses the various features that have been proposed for 

prognostication with the goal of identifying those found most useful for clinical management of 

infants with HIE. 

 

2.3 Methods 

2.3.1 Search Strategy  

Articles were collected from three databases: PubMed, CINAHL, and SCOPUS using the 

Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) principles 

(Figure 2.1)87. This search was formulated using the Population, Intervention, Comparison, and 

Outcome Framework (PICO) 88. A reproducible search string is shown in Appendix 1. Titles were 

screened by authors S.E. and H.D. using the data extraction and screening tool Covidence 89.  
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Figure 2.1: PRISMA flow diagram depicting article selection criteria. 

 

2.3.2 Inclusion and Exclusion Criteria 

Articles were included if they reported neurodevelopmental outcome at six months of life 

or later for patients who received therapeutic hypothermia and were monitored with EEG and/or 

MRI during the neonatal period. Studies were excluded if they did not report established metrics 

for functional outcome such as Bayley Scales of Infant Development (BSID), Griffiths Mental 

Development Scales, Gross Motor Function Classification System, the development of cerebral 

palsy, or post neonatal epilepsy rate 90–92. Studies with only nonfunctional outcomes, such as length 

of hospital stay or post-neonatal MRI results, were excluded. One article, Trivedi et al 2017, was 

identified from another article, Rusli et al 2019, which was captured by the search criteria 93,94.   
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2.4 Results 

From 498 studies initially screened, 20 met inclusion criteria (Figure 2.1). Seventeen 

studies were retrospective, two were prospective, and one was a multicenter randomized control 

trial (Tables 2.1-2.3). One prospective study, Trivedi et al 2017, was identified from other included 

articles, independent of the search criteria 93. The included articles are presented in three themes: 

1. electrographic (EEG) features associated with HIE outcomes, 2. MRI features associated with 

HIE outcomes, 3. Combination of MRI and electrographic features associated with HIE outcome. 

Most articles (n=15) assessed outcomes using either the BSID-II or BSID-III scores. The BSID 

measures cognitive development with composite scores below 70 in the BSID-II and below 80 in 

the BSID-III signifying risk of poor neurodevelopmental outcome 95. 

 

Table 2.1: Summary of articles assessing EEG features (n=8) 

Author, Year Setting 
(Country) 

 
Patients 
included  

Outcome 
Criteria 

Features 
Assessed 

Important Modality 
Features associated 

with outcome 
(assessment metric) 

Comments 

Csekő 2013 
40 

NICU 
Semmelweis 
University 
(Hungary)  
 

70 term 
Neonates 
GA (>37 
weeks) 

Abnormal 
Outcome = BSID-
II (MDI < 70) or 
death 

aEEG background  
 
SWC on aEEG 

Abnormal aEEG 
background had PPV 
of 0.92 of 60 hours 
for abnormal 
outcome 
 
PPV of no SWC was 
0.73 for abnormal 
outcome  

Retrospective 
Study 
 
Independent and 
blinded reviewers 
 

Dereymaeker 
2019 
96 

NICU of UZ 
Leuven 
(Belgium) 

19 
neonates 
(GA 36-41 
weeks) 

Abnormal 
outcome = Death, 
CP, or BSID-II 
(<70) at 24 
months 

Dynamic IBI 
scored for severity 
from 1 to 4 
 

Dynamic IBI severity 
score from 18-24 
hours of life (AUC = 
0.93) 

Retrospective 
Study 

Fitzgerald 
2018 
97 
 

NICU of 
Children’s 
Hospital of 
Philadelphia 
(United 
States) 
 

93 
neonates 
(mean GA 
38.7 
weeks) 

Abnormal 
Outcome = 
language and 
motor delays at 24 
months  

Epileptic Seizure 
Exposure in EEG 
 
EEG background 

High epileptic seizure 
exposure predicts 
abnormal language 
development 
(p=0.04) 
 
Moderate/severely 
abnormal EEG 
background predicts 
motor delay (p=0.01) 

Retrospective 
Study 
 
Also showed 
seizure exposure 
could predict 
abnormal MRIs 
(p=0.02) 
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Table 2.1: Summary of articles assessing EEG features (n=8) 

Kharoshankaya 
2016 
10 

Cork 
University 
Maternity 
Hospital 
(Ireland) 

47 
neonates 
(median 
GA = 40.7 
weeks) 

Abnormal 
Outcome 
measured via 
BSID-III, GMDS, 
and CP at 24-28 
months 
 

EEG Seizure 
Burden (TSB and 
MSB) 

TSB>40 minutes and 
MSB>13 minutes per 
(p=0.001 and 
p=0.003 respectively) 

Retrospective 
Study 

Koskela 2021 
98 

University 
College 
London 
Hospitals 
(United 
Kingdom) 
 

41 
neonates 
(GA 36.3 
to 41.6 
weeks) 

Abnormal 
Outcome scored 
using BSID-III  

EEG cortical Burst 
Power (8-30Hz) 
recovery at post-
natal day 3 & 
above 
 

High burst power 
associated with 
worsened outcomes 
across channels C3, 
C4, T4, (p<0.05) 
independently of 
MRI 

Retrospective 
Study 
 
Controlled for 
MRI injury 
severity to show 
independence  

Leroy-
Terquem 2017 
99 

Necker-
Enfants 
Malades 
Hospital 
(France) 

40 
neonates 
(GA≥36 
weeks) 

Abnormal 
outcome = WHO 
disability score  

EEG Asynchrony 
within first 7 days 
of life 

EEG asynchrony had 
97% sensitivity and 
80% specificity for 
predicting major 
disability 

Retrospective 
Study 
 
Choice of 1.5 
seconds as 
threshold for burst 
separation could 
be further justified 

Sewell 2018 
41 

Children’s 
National 
Health 
Systems 
(United 
States) 

80 
neonates 
(GA≥35 
weeks)  

Abnormal 
outcome scored 
via BSID-II and 
BSID-III  
  

aEEG background  
  
aEEG latency 
factors 
TTDC, TTN, TTC 

aEEG BG pattern 
(p<0.005) 
 
aEEG latency factors 
predicted outcomes 
(sensitivity= 0.944 
and 
specificity=0.852) 

Prospective Study 
 
Also looked at 
short term 
outcome metrics 
using MRI 
severity as a 
metric 

Takenouchi 
2011 
100 
 

New York-
Presbyterian 
Hospital  
(United 
States)  

29 
neonates 
(GA≥36 
Weeks) 

Outcome based on 
BSID-II MDI & 
ambulation 
without or support 
  

Acquisition of 
SWC during the 
first 144 hours of 
life 
 
 
 

Failure to acquire 
SWC by 120 hours in 
severe HIE neonates 
is associated with 
poor outcomes 
(p=0.02)  

Retrospective 
Study 
 
Also used ROC to 
predict 120 hours 
is most sensitive 
for outcome 
prediction but with 
a low AUC of 0.53 

 
 
Table 2.2: Summary of articles assessing MRI features (n = 9); all studies were retrospective. 
 

Author, Year Setting 
(Country) 

 
Patients 
included 
in Study 

Outcome 
Criteria 

Modalit
ies 

Assesse
d  

Features 
Assessed 

Important Modality 
Features associated 

with outcome 
(assessment metric) 

Comments 

Chang  
2020 
101 

Seoul St. 
Mary’s 
Hospital 
(Korea) 

107 
neonates 
(GA≥35 
weeks) 
  

Abnormal 
Outcome = 
BSID-III 
scores < 85 
or death  
 

MRI 
(DWI) 

Lesions scored 
via NICHD 
scoring system  
 
Lesion size 
(pixels) 

MRI lesion size <100 
and >500 (p<0.05) 
 
MRI lesion counts < 2 
& between 14-40 
(p<0.05) 
 
NICHD stages 0 to 2A 
(p<0.05) 

Retrospectiv
e Study 
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Table 2.2: Summary of articles assessing MRI features (n = 9); all studies were retrospective. 
 

Chintalapati 
2021 
102 
 

St. Louis 
Children’s 
Hospital 
(United 
States) 

50 
neonates 
(GA≥35 
weeks) 

Abnormal 
outcome = 
dystonia or 
spasticity  
 

MRI 
(DWI) 

Striatal and 
Thalamic ADC  

Striatal ADC <1.014 × 
10−3 mm2/s (100% 
specificity and 70% 
sensitivity) 
 
Thalamic ADC <0.973 
× 10−3 mm2/s (100% 
specificity and 80% 
sensitivity) 

Retrospectiv
e Study  
 
Somewhat 
restrictive 
region of 
interest by 
only 
focusing on 
striatal and 
thalamic 
regions 

Hayakawa 
2018 
103 

Red Cross 
Kyoto 
Daiichi 
Hospital 
(Japan) 

17 
neonates 
(mean GA 
= 38.3 
weeks) 

Abnormal 
Outcome 
=major 
disability via 
GMFCS for 
CP & 
standard 
neurologic 
exam 

MRI 
(DWI) 

DWI 
pseudonormali
zation in MRI 
from week 2 of 
life  

Week 2 
pseudonormalization 
negativity (100% 
sensitivity, 100% 
specificity) 

Retrospectiv
e Study  
 
Small 
sample size 

Jung 2015 
104 

Northwester
n 
University:  
(United 
States) 
 

73 
neonates 
(GA≥35) 

Abnormal 
Outcome = 
Post 
Neonatal 
Epilepsy 
within 1 year 
or death 

MRI 
(DWI) 

MRI injury 
location 
 
 
 

9 of 13 neonates with 
brainstem injuries died 
 
Post neonatal epilepsy 
associated BG/T & 
brainstem injury 
(p<0.003)) 

Retrospectiv
e Study 
 
3 late 
preterm 
infants 
 
Neonates 
with only 
subcortical 
white matter 
injury had 
good 
outcomes 

Lakatos 2019 
105 

Semmelweis 
University 
(Hungary)  

108 
(GA≥36 
Weeks) 

Abnormal 
Outcome = 
BSID-II 
score < 85 
 

MRI 
(DWI), 
MRS 

MRI Injury 
Pattern 
 
ICH on MRI 
 
Lac/NAA ratio 

Presence of HIE via 
both MRI and MRS 
significantly associated 
with poor outcomes 
(p = 0.0246)  

Retrospectiv
e Study 
 
Concomitant 
ICH had no 
significant 
effect on 
outcome 

Mastrangelo 
2019 
106 

Sapienza 
University 
of Rome 
(Italy) 

29 
neonates 
(GA≥34 
weeks) 

Abnormal 
Outcome = 
GMDS-III 
global 
quotient <85 
 

MRI 
(DWI) 

MRI scored via 
Bednarek 
severity scores 

PPV of MRI global 
score at 12 & 24 
months = 36.36% and 
50% respectively, 
NPV of MRI at 12 
months = 93.75% 

Retrospectiv
e Study 
 
Included 
single 
neonate with 
GA below 34 
weeks. 

Trivedi 2017 
93 

St. Louis 
Children’s 
Hospital 
(United 
States) 

57 
neonates 
(GA ≥ 35 
Weeks) 

Bayley-III 
score at 18–
24 month 

MRI 
(T1W, 
T2W, 
DWI) 

Injury severity 
score across 
subcortical 
structures, 
white matter, 
cortex, 
cerebellum, & 
brainstem 

Increased MRI injury 
grade was significantly 
associated with poor 
cognitive and motor 
outcomes (p<0.001, 
p<0.012) 

Prospective 
Study 
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Table 2.2: Summary of articles assessing MRI features (n = 9); all studies were retrospective. 
 

Rusli 2019 
94 
 

NICU of 
Universiti 
Kebangsaan 
Malaysia 
Medical 
Center 
(India) 

19 
neonates 
(GA ≥36 
weeks) 

Abnormal 
Outcome = 
death or CP 
by 2 years 
based on 
clinician 
notes 

MRI 
(T1W, 
T2W, 
DWI) 

MRI scored 
using Trivedi 
et al 2017 
scoring system 
 

Trivedi scoring system 
was not significantly 
associated with poor 
outcome (p=0.350) 

Retrospectiv
e Study  
 
Used 
different 
outcome 
metric to 
Trivedi et al 
(Trivedi used 
BSID-III) 
 
 

Takenouchi 
2010 
107 
 

NICU at 
New York-
Presbyterian 
Hospital 
(United 
States)  

34 
neonates  
(GA ≥36 
Weeks) 

Abnormal 
outcome 
BSID-III 
MDI score 
at 18 months 

MRI 
(DWI) 

ADC of 
splenium, 
corpus 
callosum  

Restricted diffusion in 
splenium is 
significantly associated 
with poor outcomes 
(p=0.002) 

Retrospectiv
e Study 
 
 

 
Table 2.3: Summary of articles assessing both EEG and MRI features (n=4) 
 

Author, 
Year 

Setting 
(Country) 

 
Patients 
included 
in Study 

Outcome 
Criteria 

Modali
ties 

Assesse
d  

Features Assessed 

Important 
Modality Features 

associated with 
outcome 

(assessment 
metric) 

Comments 

Basti, 
2020 
108 
 
 

NICU 
San 
Salvatore 
Hospital in 
L’Aquila 
(Italy) 
 

30 Term 
Neonates 

Abnormal 
Outcome = 
death, 
spastic 
quadriplegi
a & 
BSID-III  

aEEG  
 
MRI 
(T1, 
T2, 
DWI) 

Seizure Burden 
 
aEEG background 
(CNV, DNV, BS, LV, 
FT)  
 
MRI Injury Pattern 
(PLIC, multifocal, 
BG/T, WML) 

Significant features 
(p<0.05)  
= High seizure 
burden, abnormal 
aEEG over 48 
hours, & abnormal 
MRI pattern 

Prospective 
Study 
 
MRI taken 
within 4 weeks 
of life (median 
= 17 days) 
 
Used aEEG 
alone to 
identify 
seizures 

Lin 2021 
109 

Seoul St. 
Mary's 
Hospital 
(South 
Korea) 

97 
Neonates 
(GA≥35 
Weeks)  

Abnormal 
Outcome = 
BSID-II 
score < 85 

MRI, 
aEEG 

Clinical Seizures 
(evidence by use of 
AEDs) 
 
aEEG background 
 
NICHD MRI Pattern 

Abnormal aEEG 
associated with 
poor outcome 
(p<0.05) 
 
BG/T and PLIC 
lesion groups in 2A 
and 2b associated 
with abnormal 
outcomes (p<0.001) 

Retrospective 
Study 
 
MRI taken (≤10 
days of life)  
 
Also showed 
seizure severity 
were associated 
with BG/T 
lesions  

Peeples 
2021 
110 

Children’s 
Hospital 
and Medical 
Center 
(United 
States) 

486 
neonates 
(mean GA 
= 38.8 
weeks) 

Abnormal 
Outcome 
based on 
BSID-III & 
GMFCS 
score  
 

EEG, 
aEEG, 
MRI 
(DWI) 

MRI HIE severity 
(either cortical or deep 
gray injury),  
 
EEG Background 
 
aEEG background 

Combo of either 
severe grade HIE or 
abnormal 
aEEG/cEEG at 24 
hours is associated 
with poor outcomes 
(p<0.001) 

Retrospective 
Study 
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Table 2.3: Summary of articles assessing both EEG and MRI features (n=4) 
 

Weeke 
2016 
111 

Wilhelmina 
Children's 
Hospital 
(Netherland
s) 

26 
neonates 
(GA mean 
40.4 
weeks) 
 

Abnormal 
Outcome 
via BSID-
III, CP, 
epilepsy, 
hearing or 
vision loss, 
death 

EEG, 
MRI 
(T1, 
T2, 
DWI)  

EEG TSB and EEG  
 
MRI Pattern via 
Barkovich Score 

EEG Background at 
36 HOL, TSB, and 
MRI all associated 
with outcomes 
(p=0.009, p = 0.036, 
p<0.001 
respectively)  
 

Multicenter 
Randomized 
Trial 
 
No multivariate 
analysis 

Abbreviations: BG/T (Basal Ganglia/Thalamus), aEEG (amplitude-integrated EEG), TH 
(Therapeutic hypothermia therapy), CNV (Continuous Normal Voltage), Discontinuous Normal 
Voltage (DNV), BS (Burst Suppression), LV (Low Voltage), Flat Trace (FT), ADC (Apparent 
Diffusion Coefficient), Mental Developmental Index (MDI), IBI (Interburst Interval), Gross Motor 
Function Classification System (GMFCS), CP (Cerebral Palsy), WHO (World Health 
Organization), HOL (Hour of Life), TSB (Total Seizure Burden), MSB (Maximum Seizure 
Burden), MRS (Magnetic Resonance Spectroscopy), AEDs (Anti-Epileptic Drugs), GFMDS 
(Griffiths Mental Development Scales), PICU (Pediatric Intensive Cre Unit), T1W (T1-Weighted), 
T2W (T2-Weighted), TTDC (time to discontinuous), TTN (time to normalization), TTC (time to 
cycling), RCT (Randomized Control Trial), WML (White Matter Lesion), NICHD (National 
Institute of Child Health and Human Development) 
 

2.4.1 EEG Features Associated with HIE Outcomes 

EEG Qualitative Assessments: Two studies, Weeke et al 2016 and Fitzgerald et al 2018, 

evaluated EEG background qualitatively based on visual assessment during hypothermia 97,111. 

They graded EEG background using ordinal scales. The lowest grade was given to EEGs with mild 

discontinuity (interburst interval duration ≤ 10 seconds) for gestational age while the highest grade 

was given to very abnormal EEG backgrounds with severe discontinuities (interburst interval 

duration ≥ 30 seconds) and attenuated voltage (<25μV). Both articles found that severely abnormal 

EEG background within the first 24 111 and 36 97 hours of life as associated with abnormal 

outcomes.  

Burst and interburst patterns: Koskela et al 2021 assessed EEG bursts quantitatively 98. 

They computed the burst power between 8-30 Hz of EEGs in the hours directly following 

therapeutic hypothermia (≥ postnatal day 3). They found that elevated bilateral central, occipital, 
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and right temporal burst power (across channels C3, C4, O1, O2, and T4) was inversely correlated 

with BSID-III language and motor scores with correlation coefficients (R values) ranging from -

0.49 to -0.31. High burst power directly after hypothermia was therefore associated with worse 

BISID-III scores 98.  

Dereymaker et al 2019 used an automated assessment of interburst intervals (IBIs) to grade 

EEGs during therapeutic hypothermia in 19 neonates 96. These bursts, by definition, are abnormal 

and not the pattern seen in tracé alternant 112. They used a metric called dynamic IBIs (dIBIs), 

which measures both IBI duration and amplitude, to score the severity of EEG abnormality from 

one to five. EEGs with high-amplitude and short-duration IBIs were assigned a low severity score 

while EEGs with low-amplitude and long-duration IBIs were assigned a high severity score. They 

found that at 19-24 hours of life, median IBIs duration < 10 seconds and IBI amplitudes ≥15µV 

were associated with favorable outcome (p<0.001). EEGs with moderately high IBI amplitudes 

and brief IBI durations were less pathologic and predicted better outcomes.  

Amplitude-integrated EEG (aEEG): Five articles evaluated aEEG background during at 

least one hour of therapeutic hypothermia as a tool for outcome prognostication 40,41,108–110. All five 

articles used the BSID-II or BSID-III at 18-24 months as part of their criteria for outcome 

prognostication. Four studies found that any of the most abnormal aEEG patterns, including burst-

suppression (BS), low voltage (LV), or a flat trace (FT), was associated with poor outcome 

(p<0.05) 40,108–110. In addition, Csekő et al reported that an abnormal aEEG at 60 hours of life had a 

positive predictive value of 0.92 for poor outcome 40.  

Interhemispheric Dynamics: Leroy-Terquem et al 2017 evaluated EEG asynchrony as a 

predictor of outcomes using the World Health Organization (WHO) disability score in 40 term 

neonates 99. Asynchrony was defined as a discontinuous background with periods of abnormal 
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burst activity with burst onsets separated by at least 1.5 seconds over both hemispheres 99. EEG 

discontinuities identified were noted to be pathologic and independent of the normal tracé alternant 

pattern observed in the quiet sleep of term neonates 112. Asynchrony was assessed within the first 

48 hours of life and again from another day within the first week of life. Asynchrony during the 

first seven days of life identified neonates who would develop major disabilities with a sensitivity 

of 80% and a specificity of 97%.  

Sleep-Wake Cycles: Takenouchi et al 2011 evaluated EEGs following therapeutic 

hypothermia from 72 to 144 hours of life for evidence of sleep-wake cycles (SWCs) in 29 neonates 

100. Neurocognitive outcomes were based on the BSID-II Mental Development Index (MDI). 

Takenouchi et al classified a neonate as having SWCs if their EEG contained at least two state 

changes across a six-hour EEG epoch. These state changes indicated a transition into quiet sleep 

or into wakefulness. Failure to acquire SWCs within the first 120 hours of life had a sensitivity of 

90% and a specificity of 60% for poor outcome (p=0.02).  

Seizures: Five studies assessed seizures as predictors of functional outcome 10,97,108,109,111. 

Seizure burden was quantified in four of these articles 10,108,109,111. Basti et al 2020 found that 

increasing seizure burden, as assessed on aEEG across 30 neonates, was significantly associated 

with poor outcome (p=0.0004) 108. Fitzgerald et al 2018 used a different method for calculating 

seizure burden, epileptic seizure exposure, which is defined as the total number of seizures in the 

EEG during both hypothermia therapy and rewarming 97. The total duration of EEG varied 

depending on the clinical needs of the child, so seizure rates were not reported. They found that 

high epileptic seizure exposure (≥4 seizures during cooling and rewarming) was associated with 

motor delay (p<0.01) and having ≥3 seizures during cooling and rewarming was associated with 

language delay (p=0.01) using the BSID-III. In conclusion, these studies are consistent in showing 
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that a high seizure burden (>30 minutes per hour or ≥3 seizures total) during therapeutic 

hypothermia is associated with worse outcomes. 

 

2.4.2 MRI Injury Patterns Associated with HIE Outcomes 

Qualitative MRI injury scoring: Nine articles evaluated MRI features alone for 

predicting outcomes 93,94,101–107 (Table 2.2). Five of the studies assessed MRI using published injury 

severity scoring systems 93,94,101,106,109. Two studies applied the NICHD scoring system, which ranks 

lesion severity across the basal ganglia, thalamus, internal capsule, watershed, and cerebral 

hemispheres 113. Injury scores span six categories: 0, 1A, 1B, 2A, 2B, and 3; zero signifying a 

normal MRI and three signifying hemispheric devastation. Chang et al 2020 found that the NICHD 

scoring system had an Area Under Curve (AUC) of 0.756 for predicting poor outcomes at 18-24 

months. Prognostication using the scoring system was marginally better than simply using lesion 

size or lesion count, which had AUCs of 0.718 and 0.705 respectively 101. Lin et al found the 

specific pattern of injury was also predictive of poor outcomes: MRI lesions scored as 2A and 2B, 

which involve basal ganglia/thalamic and posterior limb of internal capsule (PLIC) locations, were 

associated with poor outcomes (p<0.001) while those without were not 109.  

In contrast, Mastrangelo et al used the Bednarek Severity Scoring System – to characterize 

the MRI 114. Like the NICHD score, the Bednarek score measures HIE injury severity, but unlike 

the NICHD, it sums the individual injury scores across the basal ganglia, brainstem, white matter, 

cortex, and cerebellum into a single global injury severity score 114. Mastrangelo et al suggest that 

a global MRI injury score of 55 can be used as a cutoff to separate good from poor outcome groups. 

Bednarek scores below 55 (range 48-55) were associated with better neuromotor outcomes scores 
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at 12 months while Bednarek scores above 55 (range 56-186) were associated with worse 

neuromotor scores (p=0.02) 106.  

One study found that a single MRI-based scoring system might not capture all poor 

neurodevelopmental outcomes. Rusli et al 2019 used the Trivedi MRI scoring system and found 

no significant association between MRI injury score and outcomes of cerebral palsy or death by 

two years of age (p=0.350) 94. Trivedi et al (2017) developed the scoring system that sums MRI 

injury severity across the brainstem, cortex, white matter, and five subcortical locations: the globus 

pallidus, putamen, caudate nucleus, thalamus, and PLIC to generate a composite MRI injury score 

93. Trivedi et al assessed their metric for association with outcomes using the BSID-III across 57 

neonates with HIE. To evaluate their scoring metric, they dichotomized outcomes by labeling 

neonates with BSID-III scores < 85 as poor outcomes and BSID-III scores > 85 as good outcomes. 

Trivedi et al found that their MRI injury score was significantly associated with poor cognitive 

(p<0.001) and motor outcomes (p<0.012). In contrast, Rusli et al only evaluated the scoring system 

using a cohort of 19 neonates and their functional outcome metric was the development of cerebral 

palsy by two years of age. These discrepancies may explain the poor performance of the Trivedi 

scoring system in the study by Rusli et al.  

Two additional studies evaluated MRI injury patterns independently of a specific MRI 

scoring system to prognosticate HIE outcomes 104,105. Jung et al 2015 assessed the MRI for injury 

in specific locations, including the cortex, subcortical white matter, basal ganglia, and thalamus. 

They found that the development of post-neonatal epilepsy was associated with subcortical injuries 

involving the basal ganglia, thalamus, and brainstem. Lakatos 2019 considered both MRI and 

Magnetic Resonance Spectroscopy (MRS) findings as potential predictors of outcome 105. For 

MRI, they considered three patterns of injury: basal ganglia-thalamus, watershed pattern, and total 
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brain injury as well as the presence of concomitant intracerebral hemorrhage (ICH). For MRS, 

they considered a high lactate/N-acetylaspartate (Lac/NAA) ratio on MRS as indicative of injury. 

Outcome was assessed using BSID-II score at 18 to 26 months. On multivariate regression, they 

found that infants with these MRI or MRS patterns of HIE had higher odds of poor outcome (Odds 

Ratio = 6.23; CI95% = [1.26; 30.69], p = 0.025) than those who were HIE negative on both MRS 

and MRI. Interestingly, a concomitant intracerebral hemorrhage was not significantly associated 

with worse outcomes.  

Quantitative scoring for lesion burden: Quantitative MRI measures were also assessed 

as predictors of outcome. In a study of 107 term neonates using diffusion-weighted MR images, 

Chang et al 2020 determined the lesion size and the number of lesions in the NICHD injury score 

locations 101. They found that DWI-MRI lesion sizes >500 pixels and lesion count between 14 and 

40 were both independently associated with poor outcome. Chintalapati et al 2021 and Takenouchi 

et al 2010 assessed diffusion restriction using the apparent diffusion coefficient (ADC) 102,107. 

Chintalapati et al assessed the ADC in the striatum and thalamus and found that an average striatal 

ADC less than 1.014 × 10−3 mm2/s across free-drawn regions of interest in the left and right 

striatum had 100% specificity and 70% sensitivity for the development of dystonic cerebral palsy. 

In addition, an average thalamic ADC of less than 0.973 × 10−3 mm2/s across free-drawn regions 

of interests in both the left and right thalamus had 100% specificity and 80% sensitivity for the 

development of dystonic cerebral palsy. Finally, using a cohort of 34 neonates, Takenouchi et al 

2010 compared infants who had restricted diffusion changes in the splenium of the corpus 

callosum to those without changes. They found that those with restricted diffusion in the splenium 

had higher rates of poor neurocognitive outcomes (p=0.002). Restricted diffusion in the splenium 
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had a positive predictive value of 90% for predicting poor motor outcomes and a negative 

predictive value of 71% 107.  

2.5 Discussion 

This systematic review was conducted to identify features for predicting 

neurodevelopmental outcome in term and near-term neonates with HIE who received therapeutic 

hypothermia. This review focuses on articles that applied EEG and MRI since they are two of the 

most frequently implemented modalities for assessing neonatal brain structure and function in 

clinical practice. Functional outcomes were assessed in the reviewed studies primarily using 

standardized metrics such as the BSID at 18 to 24 months or by evaluating for the presence of 

conditions such as cerebral palsy or post-neonatal epilepsy. Overall, multiple features and 

combinations of features of EEG and MRI were found to be associated with or predictive of 

neurodevelopmental outcomes.  

Four EEG features observed during therapeutic hypothermia were associated with poor 

functional outcome: an abnormal EEG background pattern, interhemispheric asynchrony, lack of 

sleep-wake cycle recovery, and increased seizure burden. In the period after therapeutic 

hypothermia, burst and interburst characteristics were useful predictors. Because these EEG 

features manifest during and shortly after the therapeutic hypothermia window, they may be 

predictive of outcome and even serve as biomarkers of secondary energy failure.  

MRI patterns were a bit more complex to assess, in part because the most widely used MRI 

scoring systems – the NICHD, Barkovich, Rutherford systems – were designed prior to therapeutic 

hypothermia becoming the standard of care 115–117. Thus, these scoring systems were created by 

observing injury patterns in heterogeneous cohorts that contained both neonates that underwent 

therapeutic hypothermia and others who did not. Cooling may cause discrepancies particularly in 
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scoring systems that evaluate MRI diffusivity, due to pseudonormalization 114,118. 

Pseudonormalization occurs when the MRI diffusivity returns to baseline after dipping below 

baseline due to tissue injury 114. Thus, injuries are no longer apparent on the MRI. Non-cooled 

neonates undergo MRI pseudonormalization around 6 to 8 days, whereas cooling pushes 

pseudonormalization out to 10 to 11 days 114,118. Additionally, MRI injury severity scores in the 

basal ganglia and watershed region were found to be significantly lower in cooled neonates than 

noncooled neonates 119. To constrain potential heterogeneity in results, the articles selected in this 

review only included HIE cohorts that received therapeutic hypothermia. These articles showed 

that injury within deep subcortical structures, particularly the basal ganglia and thalamus, were 

consistently associated with poor outcomes. This pattern may exist because the basal ganglia and 

thalamus are among the most metabolically active brain regions in term neonates 120. This finding 

is corroborated by regional hyperperfusion in the basal ganglia and thalamus, which was captured 

using MRI-arterial spin labeling 120. Thus, these structures seem particularly susceptible to changes 

in brain perfusion, with the extent of their damage correlating with the severity of hypoxic injury 

and ultimately the severity of long-term neurological outcomes.  

There is also the question of how EEG compares to MRI for outcome prediction, since 

EEG may be more accessible than MRI in certain conditions and settings, for example, in infants 

not stable enough to be transported for an MRI or in hospital units without ready access to an MRI 

scanner 121. Studies have shown that severe EEG background abnormalities, attenuated EEG 

power, and electrographic seizure burden correlate with MRI injury severity 111,122,123. Despite these 

correlations, it is unclear if EEG patterns can be used to predict specific MRI injury patterns. 

Clarifying these questions will allow clinicians to ascertain the extent to which EEG can serve as 

a biomarker for both MRI injury location and neurodevelopmental outcome.  
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The ultimate goal of identifying the most accurate and useful prognostic features is to 

provide clinicians and families with sound data on which to base care decisions, and to aid 

clinicians in counseling families about their newborn’s probable neurodevelopmental outcome 124. 

Families must make critical decisions in the acute neonatal period that influence the continuation 

of life-sustaining therapies and overall goals of care for the neonate. These decisions often include 

whether to place tracheostomy and gastrostomy tubes, whether to escalate to invasive ventilation, 

and whether to initiate extracorporeal membrane oxygenation (ECMO). These decisions depend, 

in part, on the etiology, severity, and prognosticated outcome of hypoxic ischemic injury. Higher 

fidelity prognostication provided by sensitive and specific biomarkers may allow clinicians to feel 

more confident in the counseling they provide to families and allow families to feel more confident 

in their clinical decisions in the acute setting. 

This review also identified limitations that may serve as opportunities to better characterize 

prognosticators for neonatal HIE in future studies. First, many of the current studies have small 

sample sizes; for example, seven of the twenty articles reviewed had fewer than 30 subjects (Tables 

2.1-2.3). This limits the number of variables that can be assessed in a particular case series and 

raises the risk that a few outliers can bias the results. Larger studies, or even reanalysis of several 

previous datasets with a predefined protocol, may help confirm which markers are the best, 

independent predictors of outcome.  

Additionally, while MRI has been proven important for prognostication, its use must be 

standardized in clinical practice to allow consistent interpretation. For example, MRI 

pseudonormalization after week one of life causes injuries to appear less severe 103. One study, 

Basti et al 2020, assessed MRIs at various time windows (range 5-30 days). MRIs performed after 

one week of life may have been susceptible to the effect of diffusion pseudonormalization, which 
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would underestimate injury severity. This approach may have caused MRI results to vary 108. MRI-

based prognostic features should therefore be defined for a specific imaging time window for 

clinical practice. In addition, most MRI scoring systems focus on scoring the extent of cortical 

injury as opposed to assessing particular areas of cortex that may have differential effect on 

prognosis 93,111,115. There is a need for validated scoring systems that allow prognostication of 

specific types of disability based on injury to particular cortical areas.  

One more subtle limitation of the studies reviewed is the focus on long-term outcome data 

at 18 to 24 months. While this follow-up window likely gives an accurate description of the 

ultimate disability a child will face, it does not capture the full demographic spectrum of those at 

risk. Neonates with less access to clinical care may be more likely to have HIE and are more 

susceptible to follow-up loss 22. Swearingen et al 2020 showed follow-up loss of 62% across a 

cohort of 237 neonatal patients with rates varying significantly across different demographic strata 

such as median income and race. 

2.6 Conclusions 

The objective of this review is to amalgamate clinical features taken from both EEG and 

MRI that are significantly associated with long-term neurodevelopmental outcomes in neonates 

undergoing therapeutic hypothermia for HIE. 72-hour therapeutic hypothermia coupled with 

continuous EEG monitoring and followed by MRI within seven days of hypoxic injury has become 

the standard of care. High fidelity, prognostic EEG and MRI features may help guide clinical 

management of time-sensitive conditions and escalation of care. Ultimately, the various features 

identified will need to be combined into a multimodal model for sensitive and specific outcome 

prediction that can be easily used by clinicians to benefit patients and family members at the NICU 

bedside.  
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CHAPTER 3  
MRI AND EEG FEATURES FOR OUTCOME PROGNOSTICATION IN NEONATES 

WITH HIE 

3.1 Abstract 

Objective 

To determine early EEG and MRI features that are significantly associated with graded, functional 

outcome in infants with hypoxic ischemic encephalopathy (HIE). 

Methods 

EEG characteristics, MRI injury patterns, and outcomes were retrospectively assessed in 23 full-

term neonates (mean gestational age 38 weeks) with HIE. EEG features were extracted from 

recordings made at between 24 and 26 hours of life during therapeutic hypothermia. MRIs within 

the first 1.5 weeks of life were scored for injury. Functional outcomes were graded from 0 (best) 

to 5 (worst) and were assessed at between three and six months of life. The relationships between 

EEG or MRI features and outcomes were evaluated using ordinal logistic regression analysis.  

Results 

Of the features assessed, the absence of EEG state changes at 24 hours of life and insular injury 

on MRI were the most strongly associated with poor outcomes at 3-6 months post-partum. When 

combined in a multivariate model, regression analysis suggested both features were independently 

predictive of outcomes.  

Conclusion 

A lack of EEG state changes during therapeutic hypothermia and insula injury within the first 1.5 

weeks of life are predictive of poor outcomes. 

 



 34 

3.2 Introduction 

Hypoxic Ischemic encephalopathy (HIE) is a major cause of global morbidity and mortality 

in neonates. With an estimated incidence of 1.5 per 1000 births, HIE accounts for nearly a quarter 

of infant deaths worldwide 1,2 and is the cause of approximately 60% of neonatal seizure cases 125. 

HIE is also associated with long-term morbidity such as cerebral palsy 4. Since the severity of long-

term outcomes can range from mild to extreme, accurate algorithms are needed for early 

prognostication of outcome severity.  

Both magnetic resonance imaging (MRI) and continuous electroencephalography (EEG) 

monitoring are routinely used to evaluate patients with HIE. Many studies have considered 

whether individual findings on the EEG or MRI are associated with outcome in neonates with HIE 

97,101. In studies examining EEG, the background pattern appears to carry sensitive prognostic 

information particularly at 24 hours of life 97,126. In infants that receive therapeutic hypothermia, 

this prognostic period may extend to 48 hours of life 100. In addition, injury on MRI may be seen 

clearly within the first 6 to 8 days in normothermic infants and within the first ten days in 

hypothermia-treated infants 118. After this time period, injury on MRI may appear less severe due 

to diffusion pseudonormalization 114. Despite this process, lesions that remain apparent during the 

pseudonormalization period may be particularly severe and thus retain significant prognostic 

accuracy 103. 

While some features predictive of poor outcome have been identified, this study addresses 

two understudied issues. First, previous studies consider predictors of long-term outcomes, defined 

at 2-3 years of age. However, the population at highest risk for HIE has a high follow-up loss rate, 

so long-term outcome studies might miss the highest-risk population. Second, few studies have 

looked to combine both EEG and MRI into multivariate algorithms for outcome prognostication 
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in neonatal HIE 97,127, and none have identified combinations that correlate with outcomes within 

six months. In this study, imaging and electrographic features are used to construct a prognostic 

model for early outcomes in neonates who underwent therapeutic hypothermia for HIE.  

 

3.3 Methods 

3.3.1 Patient Inclusion criteria 

A retrospective chart review was conducted to identify neonatal patients with HIE who 

received therapeutic hypothermia between March 2010 and March 2021. The study was approved 

by the University of Chicago Institutional Review Board. Patients were included if they underwent 

72-hours of therapeutic hypothermia, had MRI within 11 days of birth, had one hour of continuous 

EEG data between hours 24-26 and 48-50 of life, and had follow-up assessments between three 

and six months of life (Figure 3.1). Sarnat stage 1 HIE patients that were included met primary 

physiologic criteria for hypothermia therapy based on the presence of either prolonged 

resuscitation, a sentinel event like cord prolapse before delivery, 10-minute Apgar score ≤ 5, severe 

acidosis (pH ≤ 7.1), or abnormal base excess (≤ - 10 mEq/L) 128. Neonates who underwent the 

hypothermia protocol but who had a normal MRI were excluded to eliminate non-HIE causes of 

encephalopathy like chromosomal or metabolic abnormalities. 
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Figure 3.1. Patient inclusion and exclusion criteria flow chart. 

 

3.3.2 EEG Assessment  

Clinical EEGs were collected in the neonatal intensive care unit of Comer Children’s 

Hospital using Natus or Nicolet One EEG systems with electrodes Fp1, Fp2, T3, T4, C3, C4, O1, 

O2, and Cz and were viewed using the neonatal bipolar and/or common average reference 

montages. One-hour epochs recorded between 24 and 26 hours of life and another between 48 and 

50 hours of life were analyzed. Each EEG was read at 15mm/sec at a 7μV/mm sensitivity. The 

low and high frequency filters were set to 1 and 30 Hz respectively. EEG features were identified 

by a pediatric neurologist specializing in epilepsy (J.H.) and blinded to patient outcomes. EEG 

findings were corroborated using the EEG report in the patient’s chart interpreted at the time of 

care. Each feature was scored as present or absent (0 or 1 respectively). 

  

3.3.3 MRI Injury Scoring 

Structural MRIs were acquired using a General Electric 3T scanner and included diffusion-

weighted images (DWI), T2-FLAIR sequences, and T1 sequences. MRIs were scored using an 
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adaptation of the Rutherford Scoring System using DWI sequences and were confirmed using 

apparent diffusion coefficient (ADC) sequences (Figure 3.2) 129. Scoring was done by a pediatric 

neurologist (H.D.) blinded to patient outcomes. Injury locations were corroborated by injury 

locations listed in each patient’s clinical MRI report; clinical MRI interpretation was performed 

by neuroradiologists at the University of Chicago Medical Center. All MRIs were acquired within 

the first 11 days of life (mean = 5.64 days, median = 5 days). This age range is in accordance with 

findings that cooling therapy prolongs pseudonormalization in hypothermia-treated infants to 11 

– 12 days compared to 6-8 days in normothermic infants 114.  

For this study, the Rutherford MRI scoring system 129 was adapted to ask whether injury in 

individual brain areas correlated with outcomes. The original Rutherford scoring system sums 

injury severity scores across four brain areas: the basal ganglia/thalamus, posterior limb of internal 

capsule (PLIC), periventricular white matter, and the cortex. The current study considers injury to 

each Rutherford area as a separate variable as follows: injury to the basal ganglia/thalamus and 

periventricular white matter are scored from zero to three, with zero indicating no injury, one 

indicating mild focal injury, two indicating multifocal injury, and three indicating widespread 

severe injury. The PLIC is scored from zero to two with zero indicating no injury, one indicating 

equivocal or reduced signal intensity, and two indicating loss of signal intensity. Cortical injury is 

scored as a binary variable (injury or no injury) in three locations: the Central Sulcus, 

Interhemispheric Fissure, and Insula. Thus, six features were extracted from the MRI; each was 

treated as an ordinal variable.  
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Figure 3.2. Example MRI from patients with a good outcome (A) or poor outcome (B). A. 
DWI-MRI of good outcome patient (same patient as Figure 3.2A). Ai. MRI injury locations are 
labeled in the posterior limb of internal capsule (green arrow), periventricular white matter (pink 
arrow), and basal ganglia and thalamus (yellow arrows). Aii. Injury pattern confirmed by ADC. 
Lesions appear dark in ADC and bright in DWI. B. DWI-MRI from a patient with poor outcome 
(same patient as Figure 3.2B). Bi. MRI injury locations in the interhemispheric fissure (orange 
arrows), insula (green arrows), basal ganglia and thalamus (yellow arrows), periventricular white 
matter (pink arrows), and central sulcus (red arrows). Bii. Injury pattern confirmed by ADC.  

 

3.3.4 Outcome Assessment 

Functional outcomes were assessed at three to six months of age. The presence or absence 

of five potentially aberrant neurodevelopmental markers was determined by chart review. These 

markers are the presence of abnormal tone (axial or appendicular hyper- or hypotonia) on 

neurological exam, spasticity (specifically hypertonicity increased by movement), abnormal visual 

tracking behavior, failure of hearing screen, and use of antiepileptic treatments such as 

phenobarbital, levetiracetam, or phenytoin during the follow-up period. The outcome score ranged 

from zero to five based on the number of markers a patient displayed. 
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3.3.5 Statistical Methods 

Statistical analysis was performed using Stata 17 (StataCorp LLC, College Station, TX). 

Each feature was initially assessed using univariate ordered logistic regression. The two most 

significant EEG and/or MRI features were then selected for multivariate assessment. McFadden’s 

pseudo-R2 was used to assess the goodness-of-fit for logistic regression models 130, with values 

between 0.2-0.4 representing an excellent fit 130. 

 

3.4 Results 

 

3.4.1 Patient Demographics and Clinical Features 

23 full-term neonates were included in this study. 52% (n=12) were male (Table 3.1). The 

Sarnat score, 10-minute Apgar score, cord gases (arterial, pCO2 and base deficit) were also 

collected. None of these measurements varied significantly with functional outcomes (Table 3.1).  

Clinical Features (All Numeric) Odds Ratio (95% 

Confidence Interval) 

McFadden’s R2 P-Value  Comments 

Gestational Age (in weeks) 1.05 (0.46, 2.39) 0.0002 0.909 min = 37, max = 41.14, 

mean = 39.46, median = 39.86 

Sarnat Score 1.22 (0.30, 5.04) 0.0012 0.780  n=7 (stage 1), n=13 (stage 2), n=3 

(stage 3) 

Apgar  0.78 (0.54, 1.12) 0.028 0.184 10-minute Apgar 

Cord Gas (Arterial) 10.43 (0.069, 1565) 0.013 0.359 Taken within one hour after 

resuscitation 

Cord Gas (pCO2)  0.97 (0.95, 1.0) 0.062 0.059 Taken within one hour after 

resuscitation 

Cord Gas (Base Deficit) 1.09 (0.95, 1.24) 0.023  0.234 Taken within one hour after 

resuscitation 

Table 3.1. Clinical features for each neonate in the study (n=23).  
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3.4.2 Performance of EEG Features 

Seven EEG features were assessed per patient at both 24 and 48 hours (Table 3.2): Low 

EEG voltage (<25μV), flat trace (<2μV), presence of state changes, hemispheric asynchrony, 

interburst intervals >10s, presence of seizures, and hemispheric asymmetry. Two features were 

significantly associated with outcomes in univariate logistic regression analysis (Figure 3.3, Table 

3.2): presence of EEG state change at 24 hours of life was associated with good outcomes 

(p=0.013) and interburst intervals longer than 10s at 24 hours of life was associated with poor 

outcomes (p=0.018). Figure 3.3 shows an example EEG associated with a good outcome (Figure 

3.3A) and an example EEG associated with poor outcome (Figure 3.3B). Figure 3.4Ai and 3.4Aii 

show the distributions of outcomes for the two significant EEG predictors. 

Presence of EEG state change was ascertained by either evidence of EEG reactivity, the 

appearance of normal graphoelements such as enconches frontales, the appearance of transitions 

between wakefulness, active, or quiet sleep based on EEG amplitude and frequency changes such 

as those seen in transitions between activité moyenne and tracé alternant 131. Infants who had 

prolonged interburst intervals exhibited intervals of attenuated EEG (<25μV) that lasted longer 

than 10-seconds following bursts, which exceeds the maximum normal interburst interval of six-

seconds for term neonates 131.  

Univariate logistic regression analysis was also done to evaluate a possible confounder 

which is whether these predictors were associated with phenobarbital administration during 

therapeutic hypothermia; only interburst interval durations ≥10s at 24 hours of life was 

significantly correlated with phenobarbital administration during the first three days of life 

(p=0.031). Phenobarbital administration alone during hypothermia was not associated with 

outcomes (p=0.339). 
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EEG Predictors (All Binary) Odds Ratio (95% Confidence Interval) McFadden’s R2 P-Value  Comment 

State Change Absence at 24 

Hours  

8.97 (1.58, 51.1) 0.109 0.013  Ie transitions 

into or out of 

wakefulness 

State Change Absence at 48 

hours 

2.50 (0.52, 12.0) 0.0209 0.251 See previous 

row 

Interburst Intervals ≥ 10s at 24 

Hours 

7.80 (1.42, 42.76) 0.0973 0.018  

Interburst Intervals ≥ 10s at 48 

Hours 

5.00 (0.97, 25.79) 0.061 0.055  

Low Voltage at 24 Hours 5.00 (0.96, 25.79) 0.0613 0.055  

Low Voltage at 48 Hours 2.31 (0.51,10.5) 0.0185 0.280  

Asynchrony at 24 Hours  3.97 (0.78, 20.18) 0.0448 0.097  

Asynchrony at 48 Hours 3.47 (0.66, 18.14) 0.0349 0.141  

Presence of Seizure(s) at 24 

Hours 

4.75 (0.70, 32.40) 0.0408 0.112  

Presence of Seizure(s) at 48 

Hours 

2.20 (0.10, 50.31) 0.0038 0.621  

Asymmetry at 24 Hours 2.08 (0.40, 10.81) 0.0118  0.385  

Asymmetry at 48 Hours 2.35 (0.40, 13.9) 0.0138 0.347  

Table 3.2. Univariate assessment of EEG predictors of outcome across all included patients 
(n=23). All features are binary variables indicating presence or absence. Bolded features are 
significant (p<0.05).  
 
 



 42 

 
Figure 3.3. Example EEGs. A. EEG of patient with good outcome. EEG shows continuous normal 
voltage >25μV and state change via presence of normal graphoelements such as encoches 
frontales. B. EEG of patient with poor outcome shows flat EEG with severely attenuated voltage 
and no state changes.  
 

 

Figure 3.4 Patient outcome score distribution with each of the six significant univariate predictors. A. 
Shows the two EEG predictors. B. Shows the four MRI predictors.  
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3.4.3 Performance of MRI Features 

The brain injury pattern was characterized using diffusion-weighted images on MRI scans 

and confirmed using ADC images. The presence and extent of injury was classified using the 

Rutherford scoring system, which included scores for deep gray matter locations (basal 

ganglia/thalamus), the PLIC, periventricular white matter and three neocortical regions – the 

central sulcus, the interhemispheric fissure, and the insula 129. Based on univariate logistic 

regression analysis, injury in any of four brain areas was significantly associated with poor 

outcomes. These areas are the insula (p=0.004), periventricular white matter (p=0.015), basal 

ganglia (0.017), and central sulcus (p=0.022) (Table 3.3). The distributions of outcomes are shown 

as a function of injury for each of these four MRI locations in 3.4B. 

 

MRI Predictors (All Ordinal) Odds Ratio (95% Confidence 

Interval) 

McFadden’s R2  P-Value 

Cortex: Insula Score  

(0 to 1)  

21.20 (2.86, 157.05) 0.181 0.003 

Periventricular White Matter Score 

(0 to 3) 

4.18 (1.32, 13.17) 0.114 0.015 

Basal Ganglia Score 

(0 to 3)  

2.95 (1.22, 7.15) 0.100 0.017 

Cortex: Central Sulcus Score 

(0 to 1)  

9.91 (1.39, 70.74) 0.095   0.022 

Cortex: Interhemispheric Fissure Score 

(0 to 1) 

3.97 (0.78, 20.18) 0.045 0.097 

Posterior Limb of Internal Capsule Score 

(0 to 3) 

0.45 (0.16, 1.31) 0.034 0.143 

Table 3.3. Univariate assessment of MRI predictors of outcome using Rutherford scoring. All 
predictors were treated as ordinal variables. Features found to be significant via univariate 
logistic regression (p<0.05) are bolded.   
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3.4.4 Multivariate Assessment 

With respect to outcome, insula injury was the most significant MRI predictor and the 

presence of state changes on EEG was the most significant EEG feature. When both predictors 

were combined in multivariate and multimodal regression model, both were independent 

predictors of poor outcome (Table 3.4; insula injury, odds ratio = 17.99, p=0.006; EEG state 

change absence, odds ratio = 7.13, p=0.038). A McFadden’s pseudo-R2 of 0.25 indicates a good 

model fit. When patient outcome distribution is assessed using both metrics, patients with neither 

insula injury nor absence of state change tended to have more favorable outcomes (mode outcome 

score 0), while patients with both insula injury and absence of EEG state change had uniformly 

poorer outcomes (Figure 3.5A). Patients with either insula injury or absence of EEG state change, 

but not both, had outcomes that were more dispersed across the range (Figure 3.5A). 

When all significant features were considered, the best overall performing combination 

was insula injury and basal ganglia injury (Table 3.4; insula injury, odds ratio=22.94, p=0.004; 

basal ganglia injury, odds ratio=2.92, p=0.026). The pseudo-R2 value here was 0.27 indicating a 

potentially better model fit. Basal ganglia severity and insula injury presence also appears to be 

able to separate patients into three distributions with patients displaying both insula injury and 

moderate/severe basal ganglia injury experiencing uniformly bad outcomes Figure 4B. In contrast, 

most infants without insula injury and no/mild bad ganglia injury had no markers of abnormal 

outcome. 
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Predictors Used Odds Ratio (95% 

Confidence Interval) 

McFadden’s R2 P-Value  

 

Cortical Insula Injury 

State Change at 24 Hours 

17.99 (2.28, 142.1) 

7.13 (1.11, 45.6) 

0.25 0.006 

0.038 

Cortical Insula Injury 

Basal Ganglia Injury  

22.94 (2.78, 189.6) 

2.92 (1.14, 7.48) 

0.27 0.004  

0.026 

Table 3.4. The two significant and independent multivariate algorithms. Row 1 – Multivariate 
assessment results using the top EEG and MRI predictors: insula injury and absence of EEG state 
change. Row 2 – Multivariate assessment results using the other significant multivariate pair: basal 
ganglia injury score and insula injury score.  
 

 

 

Figure 3.5. Patient outcome distribution based on the two multivariate predictor models. A. 
Distribution using insula injury and EEG state change. B. Distribution using insula injury presence 
and basal ganglia injury severity (none/mild or moderate/severe). 
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3.5 Discussion 

In a cohort of 23 term neonatal patients with HIE, injury to the insula identified by DWI-

MRI and lack of state change on EEG at 24 hours of life were independent multimodal predictors 

of poor outcome at three to six months of age.  

 

3.5.1 Outcome and Feature Parameter Modifications 

Parameterization of the outcome variable and several of the independent variables differed 

from previous studies. Most previous studies 101,107 consider outcome as binary, either good or bad, 

based on a cutoff from developmental scores such as the Bayley Scale of Infant Development-II 

(BSID-II) Mental Development Index. This study instead used an ordinal outcome score taken as 

the number of abnormalities in five domains: the higher the score, the worse the outcome. The 

gradation of outcomes in a multivariate model allows for higher fidelity prognostication compared 

to an outcome model with a single predictor, and thus may be more clinically useful (Figure 3.5). 

In addition, this study adapted the Rutherford MRI injury scoring system. This system 

places an emphasis on lesion severity within deep structures like the basal ganglia and thalamus, 

and it combines lesions from varied cortical areas into a single variable, which would obscure 

whether damage to a particular cortical region predicts poor outcomes129. In the current study, 

injury in three cortical territories was assessed separately, and injury in each area was tested as an 

independent variable in univariate analyses. This yielded the finding that injury to the insula was 

most predictive of poor outcomes. 
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3.5.2 Use of an Early Follow-Up Assessment 

The decision to use an early follow up date within the three-to-six-month window was to 

create a useful prognostic tool that could address the issue of long term follow up loss and reflect 

the window for standard neurological follow-up tests for abnormal movement. Standard clinical 

follow-up for neonates with HIE involves an early follow-up between three to six months and a 

long-term follow-up between one and two years of life 132. However, infants from families with 

limited socioeconomic resources, a population with a high incidence of HIE, are also more likely 

to be lost to follow-up by 18 months 22,133. Studies have found follow-up rates among neonates 

within the first year as well below 40% 22,23. Thus, a major challenge of outcome metrics such as 

the Bayley Scales of Infant Development (BSID) is the need for long term follow. High attrition 

rates are particularly concerning because assessments such as the BSID are based on normative 

scores from the population of children that do receive follow-up care.  

This study aims to bridge that gap by assessing outcome metrics on a graded scale using 

conditions that can be readily observed in early follow-up and that have also been shown to persist 

even in long term follow-up studies. These include the assessment for post-neonatal epilepsy via 

use of antiepileptic medication, early markers of cerebral palsy via appendicular and axial 

abnormal tone markers, and early markers of hearing and vision problems 134–137. 

 

3.5.3 Feature Relevance to HIE Pathophysiology  

In the pathophysiology of HIE, secondary energy failure is thought to occur 6 to 48 hours 

after the initial hypoxic injury, and is characterized by an ATP deficit, excitotoxicity, cytotoxic 

edema, and neuronal cell death 138. An EEG lacking normal graphoelements or reactivity may be 

an electrographic marker of severity of secondary energy failure. Indeed, sleep wake cycles, a form 
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of EEG state change, are present in neonates with more favorable outcome 100. This study shows 

that both absence of EEG state changes after the first 24 hours and prolonged interburst intervals 

at 24 hours were important markers for poor outcome in neonates. These markers could be an 

effect of the underlying pathology of HIE and/or an effect of another confounder like phenobarbital 

treatment 139. However, while phenobarbital administration was associated with prolonged 

interburst interval duration, it was not associated with the presence or absence of state changes. 

 

3.5.4 MRI Injury Predictors  

Prior studies suggest that injury to the basal ganglia/thalamus is the best predictor of poor 

outcome 109,115. This dataset, however, suggests that injury to the cortical insula may better predict 

poor outcome than injury to the neighboring basal ganglia. Both the insula and basal ganglia 

receive blood supply from branches of the middle cerebral artery (MCA), so injury to both regions 

is likely if there is significant compromise of the MCA. Unsurprisingly, outcomes are poor when 

both regions are injured Figure 3.5B. Three patients had insular injury without basal ganglia 

involvement; all had an outcome score of two which signifies moderately poor outcome. Despite 

this, the small number of patients with pure insular injury makes it difficult to determine if insular 

injury alone leads to poor outcomes. Finally, while periventricular white matter injury is the 

characteristic injury pattern in premature infants, this dataset suggests that periventricular white 

matter injury might also play a role in the outcome of term infants. 

Even when univariate logistic regression is applied to only the subset of infants that 

received MRIs on day five of life and below (n=14) to address the potential for post day five MRI 

pseudonormalization as a confounder, injury in the insula (p=0.017), periventricular white matter 

(p=0.019), and basal ganglia (p=0.024) are still significantly associated with outcome. Since 
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outcomes have not been previously associated with injury to specific cortical areas, future studies 

may better delineate the role of injury to the cortical insula as a biomarker for HIE outcomes.  

 

3.5.5 Study Limitations 

The primary study limitation is the small sample size. With 23 neonates, only two 

predictors could be tested in a multivariate model, despite the identification of three significant 

predictors of outcome on univariate analysis. A second limitation is the qualitative nature of the 

EEG and MRI scoring systems deployed. While these assessments can be performed by trained 

clinicians, they may be more difficult to standardize across clinicians, which can lead to poor 

interrater reliability. Additionally, when scoring the MRI regions, cortical regions were scored 

according to presence or absence of injury but not by injury severity, and no distinction was made 

between unilateral or bilateral lesions. Ultimately, a larger, prospective trial would allow additional 

parameters to be tested in a multivariate analysis. 

Follow-up at three to six months may be considered a limitation since this follow-up occurs 

before the milestones of walking or talking emerge. Despite this possibility, earlier follow-up 

allows this study to include a higher risk population that is more likely to be lost to follow-up by 

12 months. 
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3.6 Conclusions 

In a cohort of 23 neonates with HIE from a single center, the combination of absence of 

EEG state change and insular injury on MRI was an indicator of poor short-term outcomes. When 

neither feature was present, outcomes were typically good.  
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CHAPTER 4  
NEONATAL SEIZURE DETECTION USING AEEG AND CSA ENSEMBLE 

ALGORITHM  

4.1 Abstract 

Objective 

To build a clinically translatable neonatal seizure detection algorithm using EEG trending tools 

(aEEG and CSA) that are currently applied at the bedside for manual neuromonitoring with the 

goal of reducing the morbidity associated with uncontrolled neonatal seizures. 

Methods 

Using a public dataset of annotated neonatal EEGs, features of the aEEG and CSA were extracted 

from bipolar channels (C3-P3 and C4-P4). These features were then used to train and test three 

machine learning classifiers, Random Forest, Support Vector Machines, and Artificial Neural 

Networks.  

Results 

The trained RF, SVM and ANN classifiers had an AUC of 0.80, 0.71, and 0.80 and an average 

accuracy of 0.91, 0.90, and 0.92 respectively. Median accuracy scores were higher among non-

HIE patients (median = 1) than HIE patients (median = 0.92, 0.93, 0.93). 

Conclusion 

An aEEG-CSA algorithm is feasible for neonatal seizure detection by extracting clinical features 

and coupling these features with a supervised ML classifier. 
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4.2 Introduction 

Among all age groups, neonates have the highest risk of developing seizures 140,141. Thus, 

neonatal seizure detection is a major challenge. Additionally, most newborns have subclinical 

seizures, so clinicians cannot depend on clear visual clinical cues to detect neonatal seizures 142. 

For this reason, they must rely on long term electroencephalography (EEG) monitoring for seizure 

identification. But 24-hour EEG monitoring, presents the added challenge of generating massive 

volumes of EEG data that must be reviewed by clinicians with specialized expertise. 

Unfortunately, these experts are in short supply 143.  

Despite these challenges, it is imperative that seizures be detected in a timely manner. 

Neonates with seizures have seizure burdens proportional to the length of time allowed to pass 

between their first seizure and the administration of antiepileptic medication 57. High seizure 

burden increases the risk of adverse outcomes 10,56, so prompt and accurate identification of 

seizures using is critical. To expedite EEG review, quantitative EEG (qEEG) trending analysis is 

used to time compress and transform EEG signals, so seizures can be manually identified using 

pattern recognition.  

Amplitude-Integrated EEG (aEEG) and the Compressed Spectral Array (CSA) are two of 

the most used EEG trending analysis tools in Intensive Care Units (ICU). aEEG is the standard 

long term monitoring trending tool used in the neonatal ICU 38,42. The aEEG transforms and time 

compresses the EEG to enable the clinical team to detect seizures by identifying abrupt rises in the 

aEEG upper and lower margins 44,144. Despite its popularity, aEEG has notable drawbacks, which 

include the need for manual review, low sensitivity for seizure detection, variability across 
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different proprietary aEEG algorithms, and the inability to assess seizure burden 34,145. Thus, aEEG 

is often only used as a supplement to the EEG time series. 

The CSA, another qEEG trending tool, displays changes in the EEG power from the delta 

to beta band (0.5-30Hz). Previous studies have shown spectral analysis can be useful for seizure 

detection in adults54,55,146,147, but has not been validated in neonates. The most easily identifiable 

seizure pattern on the CSA is referred to as the flame pattern, which is a sudden increase in power 

across a range of frequencies that contrasts sharply with the background activity 148. In practice, 

the CSA like the aEEG is used alongside the EEG timeseries to expedite review.  

In this study, features of the aEEG and CSA are extracted to train and test supervised 

machine learning (ML) classifiers for neonatal seizure detection. The aim of this work is to serve 

as a proof of concept that a combination of aEEG and CSA can be used for detecting neonatal 

seizures and determining seizure burden. 

 

4.3 Methods 

4.3.1 EEG Preprocessing 

EEG data was collected from a publicly available database of neonatal EEG recordings 

from Helsinki University 149. This dataset contains annotated EEG recordings sampled at 256 Hz 

from 79 neonates, 39 of whom had at least one seizure. EEG recordings were annotated separately 

for seizures by three clinicians. Annotations on seizure location were not included. Each recording 

was evaluated using the consensus (‘and’) of all three reviewer labels for training and testing as it 

provides the most stringent seizure classification. 
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EEGs were bandpass filtered from 0.5 to 40 Hz using a 6-pole Butterworth filter and 

MATLAB function filtfilt for zero-phase distortion.  Bipolar referenced electrode pairs C3-P3 and 

C4-P4, typically used in calculating qEEG trends in neonates, were used. The parietal and central 

electrodes have the greatest sensitivity for detecting neonatal seizures29,33,34. An example raw EEG 

of patient four from the inhouse UChicago cohort is illustrated in Figure 4.1A. EEG channel C4-

P4 with consensus annotation is plotted in Figure 4.1A. All data analysis was completed using 

MATLAB 2022b and GraphPad Prism.  

 

Figure 4.1 Example features extracted from the annotated EEG of patient four along with seizure 
probability scores. A. EEG time series of C4-P4 with seizure onset and offset marked using 
consensus label. B. Lower margin of aEEG A feature shows pattern of a rise in amplitude trend 
during seizure epochs. D. CSA alpha power feature shows increased alpha power during seizure 
windows. E. Random Forest classifier probability scores for each 10-sec window in black with 
consensus labels for each window in red dashed lines. 
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4.3.2 Feature Extraction 

aEEG and CSA Feature Extraction 

 Eleven features were extracted separately from the left and right centroparietal electrodes: 

six aEEG features and five CSA features. 10-second nonoverlapping EEG windows were chosen 

for feature extraction since 10-seconds is the minimum required duration for a neonatal seizure. 

Each 10-second epoch was represented by a vector of features from the aEEG and CSA.  

The procedure of Zhang et al 2013 was adapted to compute  the aEEG margins and aEEG 

envelope 150. Briefly, the EEG was filtered using an asymmetric bandpass filter (2-15Hz), absolute 

value rectified, and smoothed with a moving average filter (Fig. 2B). The EEG was then segmented 

into 10-second windows and the amplitude distribution in each window was calculated to extract 

the upper (93rd % sample) and lower (9th % sample) amplitude values. The amplitudes were 

converted into a semilogarithmic scale, with amplitudes larger than 10 microvolts replaced by the 

base-10 logarithm and those below 10 microvolts kept their value.  

 Two changes were made from the published protocol of Ding and Zhang 2013. One was 

increasing the temporal resolution of the aEEG. While Ding and Zhang 2013 computed the aEEG 

in 5-minute windows to mimic the resolution of the clinical aEEG37, a 10-second window was 

chosen since it is more optimal for capturing neonatal seizures and allows for finer seizure 

resolution. The second change was to generate two aEEGs – aEEG A and aEEG B – that differ by 

the duration of the moving average window (Table 4.1). Werther et al found that the smoothing 

filter accounted for differences in the performance among proprietary aEEG algorithms for various 

computational tasks48.  Thus, six aEEG features were extracted for every 10-second EEG window: 
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the upper margin, lower margin and median envelope using the aEEG A algorithm and aEEG B 

algorithm. 

 

Table 4.1: Documented parameters for generating two versions of the aEEG. 

 

To make a Compressed Spectral Array (CSA), the power spectra across each 10-second 

window of the preprocessed EEG was computed. From each spectrum, the power across each 

clinical band – delta, theta, alpha, and beta was computed from both channels. In addition, the 

spectral slope across the delta to beta (0.5-30Hz) was computed using Matlab’s spectralSlope 

function.  

4.3.3 Artifact Removal and Data Scaling 

To reduce the effect of electrical and movement artifact on seizure detection, any epoch 

with an  aEEG lower margin value below 0.001µV or with total power below 0.001µV2 in the 0.5-

30Hz band was removed. Any epoch with an upper margin or total power greater than five times 

the median value for the patient was removed. Finally, each feature was scaled per patient using 

the median and interquartile range such that each feature had an interquartile range of one.  

 

aEEG 

Version 

 Reference Asymmetric Bandpass Filter (2-15Hz) Enveloping Filter  

aEEG A  Werther et al 2018 Linear Phase FIR filter (Parks-McClellan) 

Filter 2 

Rectangular Moving Average Filter 

(3-second window) 

aEEG B  Werther et al 2018  Linear Phase FIR filter (Parks-McClellan) 

Filter 5 

Rectangular Moving Average Filter 

(0.5-second window) 
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4.3.4 Model Training, Testing, and Post-Processing 

Patients were split into three groups for 3-fold cross validation using a stratified K-Fold to 

ensure the proportion of seizure and non-seizure patients was equivalent across all three-fold 

groups. Three-fold cross validation was chosen because the dataset was relatively small (40,251 

epochs total with 39,335 epochs following artifact removal). Following artifact removal, synthetic 

seizure data was added to the training data using Adaptive Synthetic Oversampling Technique 

(ADASYN) for imbalanced classification 151,152.  

Training and testing were done using three supervised ML algorithms: Random Forest 

(RF), Support Vector Machine (SVM, and an Artificial Neural Network (ANN). The RF, SVM, 

and ANN classifiers were selected for their ability to assess both linear and potentially nonlinear 

decision boundaries between seizure and nonseizure epochs. The RF classifier was generated using 

MATLAB’s fitcensemble function using the bagging method with all 11 feature variables selected 

for sampling per tree. An SVM classifier with a Radial Basis Function kernel was deployed using 

MATLAB’s fitcsvm function 153. SVM using an RBF kernel has been shown to be effective for 

neonatal seizure detection with a different feature set 58. The predictors  were  standardized using 

weighted standardization to improve performance 153. For the ANN, a feedforward neural network  

consisted of three fully connected layers, with a ReLu activation layer applied to the first fully 

connected layer and a SoftMax function applied to the final activation layer 154. Z-score feature 

standardization was selected for each ANN via hyperparameter tuning. The ANN was created and 

deployed using MATLAB’s fitcnet classifier 154.  

Since neonatal seizures are often focal, two models were generated per classifier for 

training and testing – one was trained and tested on features from the left electrode and the other 
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model on the right electrode. Following testing, seizure prediction probability scores were 

smoothed using a 12-point (120 second) moving average filter. The maximum filtered probability 

scores across both electrodes were then compared to consensus seizure labels (Figure 4.1E) and 

used to assess algorithm performance via receiver operating characteristic curve (ROC) analysis. 

The optimal seizure probability threshold per classifier was determined using MATLAB’s 

perfcurve function for ROC analysis. 

 Feature importance analysis was conducted using the RF Out-of Bag permutation entropy 

via MATLAB’s oobPermutedPredictorImportance function 155,156. This method uses the out-of-bag 

error, which measures the RF classifier’s performance on samples not used to train each decision 

tree in the random forest. Features are scored by permuting each feature variable and assessing 

whether removing the feature increases or decreases the error. More important features cause 

greater increases in the error. The mean importance score was taken between the two aEEGs.  

4.4 Results 

4.4.1 Patient-Independent Performance 

The RF and ANN classifiers performed better than did the SVM classifier (Figure 4.2A; 

mean AUC performance across all folds was 0.8, 0.71, and 0.8 for the RF, SVM and ANN 

classifiers respectively). The dataset contained 39,335 non-artifact epochs total, and out of those 

epochs, 4,224 were seizure epochs. Since the data was imbalanced, a precision-recall curve was 

also used to assess performance (Figure 4.2B). When compared to the mean PR-AUC of 0.11 for 

a nonsense classifier, the mean PR-AUC of each classifier was 0.46, 0.28, and 0.5 respectively.  
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Figure 4.2 Patient-independent performance of the aEEG-CSA detection algorithm across the RF, 
SVM, and ANN classifiers. A. Performance measured by ROC AUC for RF (solid line), SVM 
(dashed line), ANN (dash-dot line). The red dashed line represents chance level of classification. 
B. Performance measured by precision-recall curve.  
 

4.4.2 Feature Importance for Seizure Classification 

To determine which features contributed most to classification, we estimated importance 

scores for the RF classifier. The mean out-of-bag permutation importance scores were largest for 

CSA Beta power, the aEEG Lower Margin, and CSA alpha power among. These three features, 

and their association with seizure activity in one case, can be seen in Figure 4.1 panels B, C, and 

D. 

4.4.3 Per Patient Performance Assessments 

 Algorithm performance was also assessed across individual patients. The mean accuracy 

scores mean for the RF, SVM, and ANN classifiers were 0.91,0.90, and 0.92 respectively (Figure 

4.4A). These accuracy scores were determined using the optimal patient-independent probability 

threshold for each classifier based on the ROC curve. These probability thresholds were 0.56, 0.75, 

0.73 for the RF, SVM, and ANN classifiers respectively.  
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Figure 4.3 11 Extracted features scored for importance using RF out-of-bag permutation 
importance estimate. Rankings show that the CSA beta power, aEEG lower margin, and CSA 
alpha power were the three most important features for classification.  
 

Within the group of 79 neonatal EEG used to train and test the classifiers, there were 

various disease etiologies that triggered monitoring. Hypoxic Ischemic Encephalopathy (HIE) due 

to birth asphyxia was the largest subgroup with 35 patients; 24 had seizures. To ascertain if the 

median accuracy scores were significantly different from those without HIE, multiple Wilcoxon 

signed rank tests were applied to compare median accuracy for each classifier. P-values were 

corrected for multiple comparison using the Bonferroni-Dunn correction (Figure 4.4B). Infants 

with HIE due to birth asphyxia diagnosis had significantly lower accuracy scores than those 

without birth asphyxia. 
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Figure 4.4 A. Histogram of accuracy scores for all 79 patients using patient independent seizure 
probability threshold. B. Comparing median accuracy scores for each classifier based on asphyxia 
disease etiology. Black triangles are non-asphyxia patients (n=44) and red circles are patients with 
HIE due to birth asphyxia (n=35). HIE patients have significantly lower median accuracy scores 
(median = 0.92, 0.93, 0.93 for RF, SVM, and ANN) than non-HIE patients (median =1 for all three 
classifiers).  
 

4.4.4 Effect of Seizure Duration on Algorithm Performance  

Seizure duration has been cited as a major cause of poor manual detection by clinicians34,157. 

To determine if seizure duration is also a determinant of detection accuracy with the automated 

algorithms, the effect of seizure duration on performance was tested using the 39 seizure patients 

included in this dataset. The 39 seizure patients were separated into four quartiles based on average 

seizure duration (Figure 4.5). Durations ranged from 10 seconds to 918 seconds with a median of 

87 seconds. There were 10 patients in each group except group 2, where there were only nine 
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patients. Using the Kruskall-Wallis Test, the median AUC of each group was evaluated. While 

Figure 4.5 shows a trend of increasing AUC across groups with higher seizure durations, AUCs 

were only significantly different for groups 1 and group 4 when the ANN classifier was used.  

 
Figure 4.5 Algorithm performance based on seizure duration by grouping the 39 seizure patients 
by average seizure duration. Each classifier shows a trend of increasing AUC as the average seizure 
duration increases. Panels A, B, and C show the results of the RF, SVM, and ANN classifiers, 
respectively. Only the ANN showed a significant difference between the median AUC group 1 
(n=10) and group 4 (n=10) based on the Kruskal-Wallis test.  

 

 

 

4.5 Discussion 

This study generated a neonatal seizure detection algorithm that combined of features from 

the aEEG and CSA. The findings have several implications. First, it showed that neonatal seizure 

detection can be done with the existing qEEG trends despite the problem of low seizure resolution 

during manual implementation. Zhang and Ding et al 2013 used a 5-minute window to calculate 
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the aEEG 150; the good seizure detection rate with 10-second windows  implies that the clinical 

aEEG would struggle to resolve seizures below five minutes, which represents most neonatal 

seizures158. Indeed, shorter duration seizures (<30 seconds) are most often missed entirely on aEEG 

34,157.  In the case of the models used in this study, Figure 4.5 shows that AUC appears to increase 

with patient average seizure, though this association was only significant between patients with 

the shortest average duration (Group 1) and those with the longest average duration (Group 4).  

Additionally, the CSA findings are particularly interesting because they show help 

highlight frequency bands that may be of importance for seizure detection. In a previous study, 

peri-ictal alpha activity was associated with seizure risk and reoccurrence in a small prospective 

cohort of cooled neonates with hypoxic ischemic encephalopathy (HIE) due to birth asphyxia, the 

primary cause of neonatal seizures 159. This study shows that both alpha and beta activity does have 

importance in neonatal seizure detection and should be further studied for their utility in 

identifying infants with seizures and potentially HIE infants specifically during cooling.  

 Finally, the left and right centroparietal electrodes (C3-P3 and C4-P4) were chosen for 

training and testing because they have the greatest sensitivity for capturing seizures 29,160,161 and are 

part of the standard set used for expedited neonatal EEG interpretation. Since the two-channel 

electrode display is the most limited standard setup, it can even be used in both under-resourced 

settings and cases where neonates are too unstable for more electrodes. This study shows that an 

aEEG-CSA algorithm can perform well  despite the challenges of manual assessment using limited 

electrodes such as slight reductions in manual seizure detection 162–164.  
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4.5.1 Potential for Improving Sensitivity and Specificity 

A major challenge in neonatal seizure detection is not only improving algorithm sensitivity 

but also improving specificity. Low specificity leads to a high false positive rate. The next steps 

will be to improve algorithm false positive rates. In comparison to other studies that have several 

hours of nonseizure EEG data per patient 165,166, the amount of true negative nonseizure data to 

learn from was often less than an hour. Thus, there was greater potential for false positives. This 

challenge may be rectified with a larger dataset and longer overall recording times per patient. 

The assessments presented here were stringent in establishing the confusion matrix for 

seizure detection. A true positive was defined as a window of time that was correctly assessed as 

a seizure. A true negative was a nonseizure window period correctly defined as nonseizure. A false 

positive was a nonseizure window incorrectly defined as a seizure window, and a false negative 

was a seizure window incorrectly defined as a nonseizure window. Loosening the definition of a 

true positive to that of a Good Detection where a seizure is considered captured if any single epoch 

or any prespecified number of epochs within the seizure was flagged as seizure will serve to 

increase the sensitivity of the algorithm 55,58. Additionally, allowing for tolerance around the 

seizure boundary times so epochs classified immediately before consensus label are not being 

flagged as a false positive. These modifications will be carried out in future studies with careful 

focus on the clinical utility of the true positive definition and allowable limits of the seizure 

boundary.  
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4.6 Conclusions 

This is a proof-of-concept study to assess whether a combination of extracted clinical aEEG 

and CSA features can be used to capture time periods with seizure occurrence in a heterogeneous 

cohort of neonates. This study demonstrated that a combination of aEEG and CSA features can be 

used to capture periods of neonatal seizure activity with an AUC of 0.8 for the Random Forest and 

ANN classifiers. The CSA beta power, aEEG lower margin and CSA alpha power were the three 

most efficacious features for seizure detection among the seizure patients. Finally, this study also 

showed that performances were higher in infants with shorter duration seizures and infants who 

did not have HIE due to birth asphyxia.  
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CHAPTER 5  
VALIDATION OF aEEG-CSA ENSEMBLE SEIZURE DETECTION ALGORITHM ON 

HIE NEONATES DURING THERAPEUTIC HYPOTHERMIA 

5.1 Abstract 

Objective To validate a neonatal seizure detection algorithm that is based on extracted clinical 

features of the aEEG and CSA on a cohort of neonatal patients with HIE. 

 

Methods 

A seizure detection algorithm was designed using aEEG margin features, CSA Berger Band 

features, trained on a public dataset of 79 neonatal EEGs with three supervised machine learning 

classifiers. It was subsequently tested on an inhouse cohort of 23 neonates with asphyxia whose 

EEGs were collected during hypothermia therapy.  

 

Results  

The trained Random Forest Classifier, Support Vector Machines and Artificial Neural Network 

classifiers had an AUC of 0.79, 0.79, and 0.76 and an average accuracy of 0.85, 0.86, and 0.85 

respectively. Beta power, aEEG lower margin amplitude, and alpha power were the most important 

features for classification. 

 

Conclusion 

A neonatal seizure detection algorithm that uses a combination of aEEG and CSA clinical features 

can capture seizures in HIE patients. Performance was not improved by training on non-HIE 

patients.  
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5.2 Introduction 

Hypoxic Ischemic Encephalopathy (HIE) is the primary cause of neonatal seizures 167. HIE 

is not only responsible for 60 to 80% of neonatal seizures, but it also represents a major global 

disease burden since birth asphyxia is associated with about a quarter of all neonatal deaths 56,167,168. 

Electroencephalography (EEG) is necessary to capture and treat neonatal seizures, but because 

EEG interpretation is time consuming, it slows down clinical management during the time 

sensitive neonatal period. Clinicians are increasingly turning towards quantitative 

electroencephalography (qEEG) tools to expedite seizure detection. Thus, there is a need for 

sensitive and specific seizure detection algorithms especially in infants with HIE to expedite 

clinical management and potentially reduce the morbidity and mortality associated with neonatal 

HIE. 

The objective of this study is to validate a neonatal seizure detection algorithm using EEG 

recordings from a cohort of 23 term neonates with HIE, while they received therapeutic 

hypothermia in the first few days of life. This algorithm implements clinical features extracted 

from the two widely used bedside qEEG trending tools, the amplitude-integrated 

electroencephalography (aEEG) and the Compressed Spectral Array (CSA). Currently, these tools 

require manual assessment by clinicians to find EEG periods that might be suspicious for seizure 

activity. In this study, the clinical features of aEEG and CSA have been extracted and used to 

generate a seizure detection algorithm and quantify seizure burden.  

Seizure burden is particularly important to capture accurately during therapeutic 

hypothermia treatment for HIE because high seizure burden has been associated with poor 

neurocognitive outcome, and infants’ brains are most vulnerable to seizure activity within the first 
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few days of life 11,108. Thus, there is a need for sensitive and specific algorithms that can detect 

seizures especially in HIE patients. The goal of this work is to evaluate the aEEG-CSA algorithm’s 

ability to detect seizures in HIE patients during therapeutic hypothermia when the algorithm is 

trained on all patients in the public dataset or only on the subset of birth asphyxia patients in the 

public dataset.  

5.3 Methods 

5.3.1 Datasets for Training and Testing 

EEG recordings from a cohort of 23 term neonates with HIE were collected retrospectively 

to generate a dataset for testing (Table 5.1). All recordings were taken during hypothermia therapy 

within the first 48 hours of life and extracted from Natus Neuroworks EEG software. For the 

testing set, EEG recordings were annotated by a pediatric neurologist (JH) with extensive expertise 

in neonatal epilepsy and over ten years of experience. Seizure annotations for the testing cohort 

were also cross-referenced with the neonatal EEG chart report taken during hypothermia therapy 

and read by other experienced pediatric neurologists at the UChicago Comer’s children’s hospital.  

The training dataset was taken from a public dataset of neonatal EEG recordings from 

Helsinki University 149. This dataset was annotated by three reviewers. The consensus annotation 

label was used for training in this study. Birth asphyxia was the underlying disease etiology for 35 

patients in the dataset.  
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Patient 
Number 

Gestational Age 
(Weeks) 

Seizure Burden  
(min) 

Recording Duration 
(min) 

1 40.3 10.6 45.3 

2 35.6 46.0 60.7 

3 40.1 0 60.1 

4 37.0 0.97 41.9 

5 40.0 3.40 59.8 

6 40.3 37.6 46.5 

7 40.0 24.2 60.4 

8 41.0 68.6 145.8 

9 38.6 0 60.2 

10 38.0 0 60.1 

11 40.4 60.3 239.2 

12 38.6 0 60.1 

13 38.7 0 60.1 

14 38.1 0 60.1 

15 39.0 0 60.1 

16 40.4 0 60.1 

17 39.9 0 60.1 

18 38.9 0 60.1 

19 38.4 0 60.1 

20 41.1 26.5 193.5 

21 39.3 0 60.0 

22 39.1 96.9 367.1 

23 40.4 0 60.1 

 
Table 5.1: Gestational age, total seizure burden represented by minutes of annotated seizure 
activity, and recording length for patients in HIE inhouse validation group. 
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5.3.2 Preprocessing, aEEG-CSA Neonatal Seizure Detection Algorithm 

 All EEG recordings used were preprocessed by bandpass filtering from 0.5 to 40 Hz using 

a sixth-order Butterworth filter and the Matlab function filtfilt to prevent phase distortion. EEGs 

were placed in the bipolar montage using centroparietal electrodes C3-P3 and C4-P4 (Figure 

5.1A). These electrodes are most sensitive for capturing neonatal seizures 29,33,34. Computations 

were performed using MATLAB 2022b and GraphPad Prism.  

To generate the neonatal seizure detection algorithm, 11 clinical features were extracted 

from the two centroparietal electrodes. Each feature was computed across 10-second 

nonoverlapping EEG windows. Six aEEG clinical features were collected after computing a 

generic aEEG using the procedure adapted from Zhang and Ding et al 2013 37, with 10-second 

windows used for feature extraction instead of the five minutes windows used in the original 

publication. These features are the aEEG upper margin, lower margin, and median envelope for 

two versions of the aEEG (aEEG A and aEEG B). These versions were generated by implementing 

different proprietary domain algorithm parameters extracted from studies published in the 

literature (Table 4.1) 48. For the CSA, five spectral features were collected. These features are the 

power across each of the Berger Bands (delta, theta, alpha, beta) and the spectral slope.  
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Figure 5.1 A. EEG, features, and output from inhouse HIE Patient 20. Channel C4-P4 plotted with 
EEG band-pass filtered from 0.5-40Hz. Seizure onsets and offsets marked using clinician label. 
Panels B, C, and D shows top three features of importance plotted for the same EEG epoch. Each 
features shown increases around seizure epoch.  E. RF Classifier seizure probability scores 
following training and testing in black and true labels in red. 

 

 

5.3.3 Artifact Removal and Data Normalization 

Artifact removal was conducted using the extracted features. Epochs were removed if their 

aEEG lower margin values were less than 0.001µV or total power from 0.5-30Hz was less than 

0.001µV2. Upper threshold artifacts were removed per patient. This process was calculating the 

mean upper margin and mean total power from 0.5-30Hz across all the epochs of a given patient. 

Epochs were removed if their upper margin values or total power were greater than five times 

either of these mean values. Finally, scaling was also done per patient. Scaling was accomplished 

by subtracting each feature by its median and dividing by the interquartile range.  
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5.3.4 Model Training, Testing, and Post-Processing 

 Random Forest (RF), Support Vector Machines (SVM), and feedforward Artificial Neural 

Network (ANN) were used for training and testing on MATLAB. To address the problem of class 

imbalance, synthetic seizure data was added to the training data using Adaptive synthetic Sampling 

169. The RF classifier was deployed using the MATLAB fitcensemble function with bagging 

method selected and using 100 decision trees. To facilitate feature selection assessments, all 11 

variables were included for sampling across every decision tree. The SVM was applied using the 

fitcsvm function using a radial basis function kernel and feature standardization was selected 170. 

The ANN was implemented using the fitcnet function with the default neural network architecture 

used 154. Z-score feature standardization was selected for using hyperparameter tuning.  

Two trained models were generated per classifier. One for the left electrode and the other 

for the right. Each model was tested and the maximum probability score across both models was 

used to evaluate algorithm performance. All classifier probability scores were smoothed using a 

12-epoch moving average window filter (Figure 5.1E). This window length is based on the average 

seizure duration of the training data which was 115 seconds in duration since each epoch in this 

study represented 10-seconds of EEG. It also falls within the range of the average neonatal seizure 

duration that spans anywhere between one to three minutes 171. Additionally, ROC curves and 

patient accuracy scores were assessed using the optimal patient independent probability threshold 

for each classifier extracted using MATLAB’s perfcurve function. 
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5.3.5 Training using Entire dataset vs Subset of Asphyxia Patients  

 The entire training, testing, and model evaluation pipeline was conducted twice. The first 

training and testing assessment was done to evaluate algorithm performance when all 79 patients 

in the external dataset were used for training. Of these patients 39 had seizures. Testing was then 

conducted on the 23 HIE holdout patients from an inhouse dataset. The second training and testing 

assessment was done using models generated and trained on only a subset 35 patient in the external 

dataset who had birth asphyxia and subsequent Hypoxic Ischemic Injury. Within HIE subset 

patients, 24 had seizures. Testing was again done on the 23 HIE inhouse patients. These 

assessments were conducted to see if performance was similar on the HIE validation set by training 

on patients with the same disease etiology, birth asphyxia, despite having 14 fewer seizure patients 

for training.  

5.3.6 Model Evaluation and Feature Importance Analysis 

To promote model explainability, feature importance was also assessed using the out-of 

bag-error 156. The out of bag error is the error of the RF classifier when trees are assessed on 

samples that were not used to train them 156. A feature’s importance can be scored by randomly 

permuting the feature from each decision tree when assessing the out-of-bag error and seeing its 

influence on the error. More important features will increase the error when they are absent. This 

assessment was done using MATLAB’s oobPermutedPredictorImportance function 155. Since there 

are two aEEGs, importance scores were averaged across the same aEEG features to get one score 

for each of the three aEEG features: the lower margin, upper margin, and the median envelope. 
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5.4. Results 

 

5.4.1 Patient-Independent Performance 

The patient-independent performance of the algorithm was first tested using models trained 

on all 79 patients in the external dataset. All three classifiers had an area under the curve (AUC) 

of 0.76 (Figure 5.2Ai). When the precision-recall AUC (PR-AUC) curve was assessed, 

performances were more varied with PR-AUC scores of 0.4, 0.41, and 0.47 for the RF, SVM and 

ANN classifiers respectively (Figure 5.2Aii). These PR-AUC values represent between a 111% to 

147% increase over a no skill random classifier represented by a pr-AUC of 0.19, which is the 

ratio of true positive epochs to total epochs. 

When the patient independent performance was analyzed following training on the subset 

of 35 patients with HIE from birth asphyxia, performances were similar to when the full 79 patients 

were used for training. The AUC of RF, SVM, and ANN classifiers were 0.79, 0.79, and 0.76 

(Figure 5.2Bi.). Additionally, the PR-AUC scores were 0.44, 0.46, and 0.46 which presents 

between 132% to 142% increase of a no skill random classifier (Figure 5.2Bii). 
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Figure 5.2 Patient-independent performances of aEEG and CSA detection algorithm using the RF, 
SVM, and ANN classifiers. A. Performance using all 79 patients in the external dataset for training, 
39 of whom had seizures. Ai. All three classifiers have 0.76 AUC. Aii. PR-AUC is highest in the 
ANN at 0.47 147% above baseline performance of 0.19 PR-AUC. B. Algorithm performance 
following training using only the 35 asphyxia patients within the external dataset, 24 of whom had 
seizures. Bi. RF and SVM have the largest AUC. Bii. PR-AUC scores; SVM and ANN having the 
highest AUC.  

 

5.4.2 Per Patient Performance Assessments 

To ascertain if patient performance was significantly changed on a per patient basis by 

training on only the subset of birth asphyxia patients, the distribution of patient accuracy scores 

was computed for both cases. For classifiers trained on the entire external dataset, the average 

patient accuracy scores (Figure 5.3, black triangles) were 0.85, 0.85, and 0.86 for the RF, SVM, 

and ANN respectively. Accuracy scores were comparable when classifiers were trained on only 

the subset of birth asphyxia patients (Figure 5.3, red circles): 0.86, 0.85, and 0.85 for the RF, SVM 

and ANN. Using Wilcoxon signed rank test and a Bonferroni-Dunn correction for multiple 

comparisons, it was confirmed that the accuracy for each classifier was not significantly different 
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when classifiers were trained on the entire external dataset or just the asphyxia subset (Figure 5.3, 

p>0.990, p.0.99, p>0.904 for RF, SVM, and ANN respectively).  

There were 343 seizures in the training dataset, and 235 of them were from birth asphyxia 

patients. Additionally, there were 654.3 total minutes of seizure training data and 457.8 of them 

were from asphyxia patients.  

 

 

Figure 5.3 Distribution of accuracy scores for 23 HIE patients in the test set. Scores were 
calculated using the optimal threshold for each classifier computed from each classifier’s the 
patient independent ROC from Figure 5.1. Black triangles represent patient accuracy scores after 
algorithm training on the external dataset and red circles represent accuracy scores after training 
on only the HIE subset. P-values of p>0.999, p>0.999 and p>0.904 indicate no significant 
difference. 

 

5.4.3 Feature Importance for Seizure Classification 

To determine the relative importance of features on seizure detection algorithm 

performance, features were scored using Random Forest Out-of-Bag permuted predictor 

importance. The top three features for both models trained on the entire dataset and those trained 

on only on the asphyxia subset were CSA Beta Power, aEEG Lower Margin, and the CSA Alpha 

power (Figure 5.4). When these features are plotted over time, they are found to increase with 
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seizure activity (Figure 5.1-B, C, and D). In the subset of models trained only on birth asphyxia 

patients, CSA beta power decreases in importance and was replaced by the aEEG margin as the 

most important feature.  

 

 

Figure 5.4 Feature importance scores. A. Importance scores when training data consists of all 79 
patients in the external dataset. Beta power is the most important. B. Importance scores when 
training data only consists of the 35 asphyxia patients. The aEEG lower margin is the most 
important.  

 

5.5 Discussion 

This study validates an algorithm used for neonatal seizure detection on an independent 

cohort of 23 infants with HIE. This algorithm was initially assessed in a previous study using only 

patients in the external dataset via K-fold cross validation. The patient independent AUC reported 

in the previous study was 0.8, 0.71, and 0.8 for the RF, SVM, and ANN classifiers respectively. 

The previous study also showed that the algorithm had significantly lower accuracy across the 35 

HIE patients compared to the other 44 patients with various etiologies. That finding motivated 

further assessment of algorithm performance on an independent HIE cohort.  
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The aEEG-CSA algorithm can detect seizures with an AUC ranging from 0.76 to 0.79. The 

study also showed that training models on patients with similar disease etiologies does not appear 

to decrease model performance, despite reducing the total amount of training data. This 

consistency in performance may have been because 70% of the seizure recordings in the Helsinki 

dataset used for training occurred in the subset of patients with birth asphyxia. However, there was 

also a large decrease in the amount of nonseizure data, since training on only the 35 asphyxia 

patients represents a 56% decrease in the number of patients for training. A reduction in precision 

and accuracy might have been expected. This decrease was not seen. Follow-up work with a larger 

cohort is necessary to ascertain the true benefit of more disease-specific training sets.  

Beta Power, aEEG lower margin, and alpha power were the three most important features 

for seizure detection. The relative importance of beta power decreased while aEEG lower margin 

and alpha activity remained the same when only the asphyxia subset was used to train (Figure 

5.4B).   Further studies are necessary to ascertain if beta power importance is due to fast activity 

such as muscle activity or if they relate purely to nonmovement based seizure activity and if this 

feature is more pronounced among HIE patients.   

 

5.6 Conclusions 

The aEEG-CSA algorithm can detect seizures with reasonable sensitivity and specificity. Features 

most important for seizure detection are the Beta Power, aEEG lower margin, and alpha power. 

Beta and alpha power may play a role in classification of neonatal seizure activity specifically in 

infants with HIE. Training models on a smaller subset of patients but with same disease etiology, 

HIE due to birth asphyxia, does not decrease algorithm performance.  
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Chapter 6 

DISCUSSION 

 

6.1 Overview 

The overall objective of this body of work is to generate clinically translatable algorithms 

for neonatal hypoxic ischemic encephalopathy using the two most widely used neonatal brain 

imaging modalities, EEG and MRI. The focus was also placed on using clinically relevant features 

taken from EEG and MRI because they are part of standard care. 

The first objective was to assess which features from EEG and MRI would have the most 

relevance when assessing outcomes in infants with HIE. To accomplish this objective, a systematic 

review was conducted. From this review, EEG and MRI features shown to be consistently 

associated with outcomes were amalgamated. This review also revealed the importance of accurate 

measurements of seizure burden in assessing outcomes since high seizure burden was consistently 

associated with poor outcomes in neonates. This finding corroborated the importance of sensitive 

and specific seizure detection to generate accurate measurements of neonatal seizure burden.  

The second objective was to generate a multimodal model for outcome prognostication in 

neonatal patients with HIE. To accomplish this objective, a cohort of patients with neonatal HIE 

was amalgamated via a retrospective chart review. This initial cohort, was whittled down to 

include patients who received hypothermia therapy, were full term, had neonatal encephalopathy 

specifically due to hypoxic injury no other encephalopathy confounders, received 72-hour 

therapeutic hypothermia, received EEG monitoring during hypothermia therapy, and finally 

received MRI within 11 days. This inclusion criteria generated a cohort of 23 patients whose 

diagnosis reflected the current HIE disease etiology and who received care that reflects the current 
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standard of care for neonatal HIE. Outcome data from this cohort of patients could then be 

assessed.  

The multimodal algorithm generated results based on outcome information between the 3-

to-6-month interval. This interval reflects the general post-neonatal follow-up period where 

standard neurological tests like fidgety movement are assessed172. This period also serves to 

address the gap of follow-up loss that may skew the effects of standard long-term outcome metrics 

like the BSID173,174. Results showed the combination of insula injury and absence of EEG state 

change generated a statistically significant, well-fit multimodal model for outcomes. Results also 

showed that insula injury and basal ganglia injury were independent and significant predictors of 

outcome in this cohort of infants and generated a potentially better predictive model. Finally, 

results also showed that white matter injury may play a role in term neonatal outcome and may 

have an association with seizure activity. 

The third objective was to address the other important features associated with outcome in 

neonatal HIE patients which was seizure burden. The problem of lack of adequate measurements 

for seizure burden was addressed by generating a seizure detection algorithm using long-term 

qEEG monitoring tools that are part of standard care for neonatal patients. These tools are aEEG 

and CSA. The aEEG algorithm was computationally modeled and visual-clinical features were 

extracted across 10-second windows. This assessment window allows for better seizure resolution 

compared to traditional aEEG. This same process was applied for extracting CSA features – 

especially generating a CSA and extracting visual-clinical features from each power spectrum 

across 10 second windows.  

Additionally, an automated artifact removal procedure was also implemented using aEEG 

and CSA to remove any windows that contained excessively high amplitude artifact and 
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excessively low amplitude artifacts. Then, these features were coupled with supervised machine 

learning classifiers and trained and tested on a cohort of neonatal patients with seizures from a 

variety of disease etiologies. Finally, the detection algorithm was validated using the previous 

more homogenous cohort of 23 neonatal patients with HIE.  

 

6.2 Generating a Multimodal Detection Algorithm Using EEG and MRI 

One of the primary interests of this study was to generate a multimodal detection algorithm. 

This objective was pursued to extract information from the current prognostic tools used as 

standard of care – the EEG and MRI. Prognostic assessments currently focus on a single modality 

when assessing outcomes. The objective was to go beyond this pattern by finding useful features 

from both EEG and MRI. A major limitation of this study was the sample size of the HIE cohort 

used. Since only 23 patients fit the inclusion criteria, only two features could be implemented. 

Follow-up studies with a larger cohort may facilitate the use of additional EEG and MRI features 

and improve algorithm performance and generalizability. 

 

6.3 Challenges of the Early Prognostic Algorithm and Future Directions 

The first major challenge to using the generated prognostic algorithm is the assessment of 

outcomes at three to six months. This challenge exists because clinicians are making assessments 

prior to the emergence of important developmental milestones like walking and talking which 

largely emerge after the first year of life. Thus, an argument might be made that these algorithms 

may not accurately gauge neurocognitive development. Additionally, the argument can be made 

that an infant who presents poorly on neurological tests at three to six months may recovery well 

after that time thus, poor outcome may be overestimated. Finally, since outcomes involve early 
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clinical tests such as the neurological exam, another argument concerning the inherent ambiguity 

of early clinical tests can also be made. 

In response, the goal of the prognostic algorithm proposed in this thesis is to have a tool 

that bridges the follow-up gap but also maintains relatively high accuracy. The goal is to capture 

infants who would normally have had poor outcome even at the 18-to-24-month period but fall 

into the cohort of infants >40% of which are lost to follow-up after year one22,23. Thus, this study 

looked to assess outcomes of infants, who normally would have had poor outcomes but are not 

represented among the population of patients surveyed in long-term follow-up tests like the BSID.  

To address the issue of the three to six-month period potentially being less prognostically 

useful, the time range was chosen based on standard follow-up and based on the time range of 

importance for neurological tests that do have prognostic efficacy such as the fidgety movement 

assessment. This assessment is also part of standard early follow-up and studies have shown the 

absence of fidgety movement between three to five months on neurological test is associated with 

poor developmental outcome and cerebral palsy172.  

To address the issue of ambiguity of early clinical tests, the study sought to not only rely 

on neurological tests, but also on the presence of unambiguous and potentially prognostically 

relevant markers like hearing screen failure, on abnormal visual tracking, and on presence of post-

neonatal epilepsy via use of anti-epileptic medication, which are not ambiguous.  

The prognostic study detailed in chapter three also opens many avenues for future 

assessments. One possible future direction involves ascertaining whether there is a strong 

correlation between patients included in the study who showed evidence of poor outcome within 

three to six months and those who have poor long-term outcomes. This assessment will serve to 

demonstrate how well the short-come outcome criteria captured patients who would have been 
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considered developmentally delayed by traditional outcome scoring metrics like the BSID. This 

assessment may also reveal whether the selected short-term outcome criteria correlate with either 

cognitive or motor delay or merely composite developmental delay scores. This stratification is 

particularly important since the current outcome criteria showed strong associations with both 

basal ganglia and cortical injury locations.  

 

6.4 Future Directions of MRI Assessments for Term Neonatal HIE Pathogenesis 

Currently, injury to the basal ganglia has been the primary focus of neonatal HIE 

pathogenesis. This is because basal ganglia injury pattern has been found to be associated with 

early markers of dysfunction and worsened neuromotor outcomes after 30 months based on the 

BSID.175 This contrasts with neonates with watershed injury patterns. This injury pattern involves 

injuries of white matter in the watershed zones such as the periventricular white matter. Under 

more severe hypoxic conditions, these lesions may extend to cortical gray matter areas.175 These 

areas would include structures like the insular cortex. Injuries and changes in volume in these areas 

have also been associated with both long-term intellectual deficits during adolescence and 

language deficits at above 30 months of age176,177. Interestingly, Barkovich et al 1998 found that a 

basal-ganglia watershed pattern between predicted outcome between 3 to 12 months115. This 

finding is consistent with what was seen in chapter three, where the basal-ganglia injury severity 

and insula injury combined, where both associated strongly predictive of outcomes. The study 

listed in chapter three went a step further by assessing injury in a particular cortical location 

combined with the basal ganglia as associated with poor outcome. A future direction would be to 

score the severity of insula injury. Another would also be to ascertain significance of the 
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combination of insula and basal ganglia injury with a larger cohort to see if neonates with insula 

injury independently of basal ganglia injury had more of an intermediate outcome score.  

 In addition, the other pattern that varied significantly with outcome was the periventricular 

white matter injury severity pattern. After further assessments, it was also found that white matter 

injury severity varied significantly with markers of both neonatal and post-neonatal epilepsy in the 

dataset of term neonates. Firstly, white matter injury was associated with the number epilepsy 

medications a patient was on during therapeutic hypothermia. White matter injury was also 

significantly associated with seizures between 24 and 26 hours of life. Finally, white matter injury 

was correlated significantly with anti-epileptic medication usage at the three-to-six-month follow-

up period. Periventricular white matter injury has been primarily noted in preterm neonates as the 

primary injury pattern. The reasoning for this lies in the proliferation of O4+ premyelinating 

oligodendrocytes after 20 weeks gestational.178 These oligodendrocytes are highly sensitive to 

hypoxia and oxidative stress178,179. This sensitivity leads to selective degeneration of these cells in 

preterm HIE179.  

The mechanism of white matter injury in term neonates has not been as clearly elucidated. 

A previous study looked specifically at term neonates and found that gestational age in their cohort 

correlated with non-cystic white matter injury severity180. In the cohort included in the study 

detailed in chapter three, gestational age did not correlate with white matter injury severity. This 

discrepancy may have been due to chapter three’s study focusing on scoring diffuse white matter 

injury using the Rutherford Scoring Metric. Another study published by Kim et al 2020 found that 

diffuse periventricular white matter injuries in a cohort of 13 neonates was seen in neonates with 

seizures. Despite this finding, Kim et al did not include any neonates with HIE181. Mao et al 2016 

also showed that white matter hyperintensities are associated with epilepsy – albeit in a cohort of 
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adults182. They found that exposure to enzyme-inducing antiepileptic drugs (EIAEDs) was 

associated with both more extensive hyperintensities and new epilepsy diagnosis. They mentioned 

that the underlying mechanism for more extensive white matter hyperintensities in epilepsy may 

come from increases in the permeability of the blood-brain-barrier seen in epilepsy183. Finally, 

other studies have shown that cases of rotavirus infection have been associated with 

leukoencephalopathy and subsequent neonatal seizures. Although cursory chart review does not 

point to a viral basis for patients with severe white matter injury, more detailed chart review is 

necessary to ascertain seizures and white matter injury are not due to concomitant viral infection. 

 

6.5 Towards a Purely Computational Prognostic Model for Outcome Assessment 

The prognostic study showed that a combination of EEG and MRI markers can be used to 

predict early outcome. The future objective would be to computationally extract significant 

features from EEG and MRI to generally a purely computational tool. The benefit of such a tool 

would lie in its ability to be used to bridge the gap for potentially under-resourced centers that may 

not have consistent access to skilled neurophysiologists for efficient interpretation of EEG and 

MRI. Additionally, computational assessment may help overcome the challenge of interrater 

reliability between clinicians. Better consensus on the presence or absence of certain features will 

allow for more consistent prognostic assessments which may help increase algorithm sensitivity. 

Despite these benefits, computational assessments still present many challenges. While 

features such as interburst interval duration have already been computed, a more challenging 

endeavor would be computing complex features like EEG state change. A potential answer and 

future assessment would be to compute more general features like delta power over the course of 

several hours to assess for sleep wake cycles. Kota et al 2020 found that median delta power during 
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therapeutic hypothermia was significantly lower between infants with poor outcome vs good 

outcomes. Poor outcome in this study was classified by death or adverse MRI injury. A follow-up 

study would be to model state changes by assessing the rate of change in delta power during 

cooling and evaluate if these varied significantly between infants with good versus poor outcomes. 

Another assessment may also be to try to capture specific graphoelements in the EEG that are 

associated with good outcome. Since term Neonatal EEG has graphoelements like frontal sharps 

and enconches frontales, which present as highly symmetric EEG deflections in the frontal 

electrodes, these patterns may be extracted using computational assessments like EEG phase 

locking index or EEG brain symmetry index specially using the delta band. 

Additionally, MRI features may also be extracted computationally to promote greater 

sensitivity and overcome the challenge of interrater reliability seen in visual MRI assessments. 

The systematic review detailed in chapter two showed that lesion volume can be assessed using 

pixel density and can vary significantly with poor outcome. Additionally, the ADC within 

particular brain areas can also serve as a computational feature. Low ADC values reveal restricted 

diffusion and indicate pathologic processes like cytotoxic edema which are characteristic of 

encephalopathy due to energy failure184. Low ADC values have already been shown in the basal 

ganglia and thalamus in neonatal HIE. One downside of focus on quantitative DWI assessments 

in the basal ganglia is the possibility of basal ganglia and thalamic lesion being more prone to 

pseudonormalization in comparison to cortical areas185. Thus, future studies may focus on 

assessing ADC values in specific cortical areas such as the insular cortex that might have the 

potential for prognostic efficacy that will not be hampered by pseudonormalization. 
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6.6 Neonatal Seizure Detection: Reducing the False Positive Rate 

  A major challenge in generating neonatal seizure detection algorithms is reducing the false 

positive rate. This assessment is particularly important for preventing alarm fatigue. Alarm fatigue 

is potentially detrimental for patients because a high false alarm rate may lead to clinicians 

becoming so desensitized that they may ignore even true instances of a seizure. It was previously 

noted that increases in periictal power were associated with seizures. While these changes often 

occurred during the seizure, sometimes they occurred directly before or after the seizure. These 

changes may increase the false positive rate by causing the algorithm to flag epochs directly before 

or after the seizure label. A future approach would be to implement another parameter like seizure 

onset and offset delay tolerance. This parameter may help to improve the false positive rate.  

 

6.7 aEEG Feature Engineering based on Feature Importance 

 Alpha power, beta power, and the aEEG lower margin activity were shown to be the most 

important features for detection. A future approach may be to modify the underlying aEEG lower 

margin algorithm to extract a potentially more sensitive lower margin by using an asymmetric 

band-ass filter that spans the alpha and beta band instead of the 2-15Hz standard bandpass filter. 

This modification may allow the algorithm to merge importance of trends in the alpha power and 

trends in the lower margin to produce potentially better lower margin feature. This metric could 

be tested to prove non-inferiority to the standard aEEG algorithm. 

 

6.8 Personalized Seizure Detection 

Fully patient-dependent seizure detection algorithms have been shown to perform better 

than patient-independent algorithms186. This performance difference may be due to differences in 
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the seizure probability threshold per patient. Additionally, other factors such as disease etiology, 

gestational age, and hours of life may play a role in generating seizure propensity. For these 

reasons, a future approach would be to improve algorithm performance using both patient 

independent and patient dependent seizure labels. A previous study addressed this challenge by 

combining a patient-independent, SVM-based model and a patient-dependent generative model186. 

They used the SVM to label new unseen data; these SVM labels were then used for real-time 

adaptation of a generative gaussian mixture model. The benefit of an ensemble approach such as 

this would be to allow for continuous adaptation of new patient specific information. Implementing 

a generative model in combination with a discriminative classifier like SVM may help to calibrate 

individual patient seizure probabilities to represent their evolving propensity for seizure activity. 

Finally, the challenge of poorer performance in HIE patients must also be addressed. The 

data presented in this thesis suggests that training HIE patients with those with similar disease 

etiology does not decrease algorithm performance. More work needs to be done on assessing if 

there are unique time and frequency feature combinations that can help distinguish HIE patients 

from non-hie patients from the EEG. Better understanding of these patterns may help demystify if 

training based on disease etiology is indeed superior.  

 

6.9 Conclusions 

 This body of work focused on generating algorithms to address the most common 

challenges faced in neonatal HIE, which are sensitive and specific outcome prognostication and 

accurate seizure detection. In chapter two, a systematic literature search was done to amalgamate 

early electrographic and imaging features that were associated with differential outcome in 

neonatal HIE. For the EEG, these features were the EEG background pattern, interburst interval 
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amplitudes, sleep wake cycle presence, and seizure burden during therapeutic hypothermia. For 

the MRI, these features were the MRI injury location, severity, and lack of week two 

pseudonormalization. These features were then implemented in chapter three to generate a 

multimodal detection algorithm using a cohort of HIE patients. It was found that a combination of 

EEG state change and cortical insula injury score could be predict early outcome. It was also found 

that periventricular white matter injury is also associated with poor outcomes in term infants with 

HIE. Finally, in chapters four and five, the problem of accurately capturing seizures was addressed. 

In chapter it was found that an algorithm that combined clinical features from the amplitude-

integrated EEG and compressed spectral array could be used to detect neonatal seizures in a cohort 

of 79 patients with various disease etiologies. It was also discovered that HIE patients performed 

more poorly. In chapter four, algorithm performance was then validated on the inhouse cohort of 

neonates with HIE, and it was found that performance on this cohort was the same on this holdout 

cohort when patients were trained on only the 35 birth asphyxia patients in comparison to when 

they were trained on all 79 patients.  

  



 90 

REFERENCES 
 

1. Kurinczuk, J. J., White-Koning, M. & Badawi, N. Epidemiology of neonatal encephalopathy 
and hypoxic–ischaemic encephalopathy. Early Hum. Dev. 86, 329–338 (2010). 

 
2. Finder, M. et al. Two-Year Neurodevelopmental Outcomes After Mild Hypoxic Ischemic 

Encephalopathy in the Era of Therapeutic Hypothermia. JAMA Pediatr. 174, 48–55 (2020). 
 
3. Allen, K. A. & Brandon, D. H. Hypoxic Ischemic Encephalopathy: Pathophysiology and 

Experimental Treatments. Newborn Infant Nurs. Rev. NAINR 11, 125–133 (2011). 
 
4. Fatemi, A., Wilson, M. A. & Johnston, M. V. Hypoxic Ischemic Encephalopathy in the Term 

Infant. Clin. Perinatol. 36, 835–vii (2009). 
 
5. Arnesen, T. & Nord, E. The value of DALY life: problems with ethics and validity of disability 

adjusted life years. BMJ 319, 1423–1425 (1999). 
 
6. Murray, C. J. & Lopez, A. D. Global mortality, disability, and the contribution of risk factors: 

Global Burden of Disease Study. The Lancet 349, 1436–1442 (1997). 
 
7. Lee, A. C. et al. Intrapartum-related neonatal encephalopathy incidence and impairment at 

regional and global levels for 2010 with trends from 1990. Pediatr. Res. 74, 50–72 (2013). 
 
8. Kleuskens, D. G. et al. Pathophysiology of Cerebral Hyperperfusion in Term Neonates With 

Hypoxic-Ischemic Encephalopathy: A Systematic Review for Future Research. Front. 
Pediatr. 9, (2021). 

 
9. Nair, J. & Kumar, V. H. S. Current and Emerging Therapies in the Management of Hypoxic 

Ischemic Encephalopathy in Neonates. Children 5, 99 (2018). 
 
10. Kharoshankaya, L. et al. Seizure burden and neurodevelopmental outcome in neonates with 

hypoxic–ischemic encephalopathy. Dev. Med. Child Neurol. 58, 1242–1248 (2016). 
 
11. Kahle, K. T. & Staley, K. J. Neonatal Seizures and Neuronal Transmembrane Ion Transport. 

in Jasper’s Basic Mechanisms of the Epilepsies (eds. Noebels, J. L., Avoli, M., Rogawski, M. 
A., Olsen, R. W. & Delgado-Escueta, A. V.) (National Center for Biotechnology Information 
(US), 2012). 

 
12. Cotten, C. M. & Shankaran, S. Hypothermia for hypoxic–ischemic encephalopathy. Expert 

Rev. Obstet. Gynecol. 5, 227–239 (2010). 
 
13. Azzopardi, D. V. et al. Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. 

N. Engl. J. Med. 361, 1349–1358 (2009). 
 



 91 

14. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane 
Database Syst. Rev. 2013, CD003311 (2013). 

 
15. Herrera, T. I. et al. Outcomes of preterm infants treated with hypothermia for hypoxic-

ischemic encephalopathy. Early Hum. Dev. 125, 1–7 (2018). 
 
16. Rao, R. et al. Safety and Short-Term Outcomes of Therapeutic Hypothermia in Preterm 

Neonates 34-35 Weeks Gestational Age with Hypoxic-Ischemic Encephalopathy. J. Pediatr. 
183, 37–42 (2017). 

 
17. Lademann, H., Abshagen, K., Janning, A., Däbritz, J. & Olbertz, D. Long-Term Outcome after 

Asphyxia and Therapeutic Hypothermia in Late Preterm Infants: A Pilot Study. Healthcare 9, 
994 (2021). 

 
18. NICHD Neonatal Research Network. A Randomized Trial of Targeted Temperature 

Management With Whole Body Hypothermia For Moderate And Severe Hypoxic-Ischemic 
Encephalopathy In Premature Infants 33-35 Weeks Gestational Age. 
https://clinicaltrials.gov/ct2/show/NCT01793129 (2022). 

 
19. Robertson, G. J. Bayley Scales of Infant and Toddler Development. in The Corsini 

Encyclopedia of Psychology 1–2 (John Wiley & Sons, Ltd, 2010). 
doi:10.1002/9780470479216.corpsy0111. 

 
20. Jary, S., Whitelaw, A., Walløe, L. & Thoresen, M. Comparison of Bayley-2 and Bayley-3 

scores at 18 months in term infants following neonatal encephalopathy and therapeutic 
hypothermia. Dev. Med. Child Neurol. 55, 1053–1059 (2013). 

 
21. Anderson, P. J. et al. Underestimation of developmental delay by the new Bayley-III Scale. 

Arch. Pediatr. Adolesc. Med. 164, 352–356 (2010). 
 
22. Swearingen, C., Simpson, P., Cabacungan, E. & Cohen, S. Social disparities negatively impact 

neonatal follow-up clinic attendance of premature infants discharged from the neonatal 
intensive care unit. J. Perinatol. 40, 790–797 (2020). 

 
23. L. Orton, J., McGinley, J. L., Fox, L. M. & Spittle, A. J. Challenges of neurodevelopmental 

follow-up for extremely preterm infants at two years. Early Hum. Dev. 91, 689–694 (2015). 
 
24. Kirschstein, T. & Köhling, R. What is the source of the EEG? Clin. EEG Neurosci. 40, 146–

149 (2009). 
 
25. Odabaee, M. et al. Neonatal EEG at scalp is focal and implies high skull conductivity in 

realistic neonatal head models. NeuroImage 96, 73–80 (2014). 
 
26. Hansman, C. F. Growth of Interorbital Distance and Skull Thickness as Observed in 

Roentgenographic Measurements. Radiology 86, 87–96 (1966). 



 92 

 
27. Shellhaas, R. A. et al. The American Clinical Neurophysiology Society’s Guideline on 

Continuous Electroencephalography Monitoring in Neonates. J. Clin. Neurophysiol. 28, 611–
617 (2011). 

 
28. Takanashi, J. et al. Brain MR Imaging in Neonatal Hyperammonemic Encephalopathy 

Resulting from Proximal Urea Cycle Disorders. AJNR Am. J. Neuroradiol. 24, 1184–1187 
(2003). 

 
29. Wusthoff, C. J., Shellhaas, R. A. & Clancy, R. R. Limitations of single-channel EEG on the 

forehead for neonatal seizure detection. J. Perinatol. 29, 237–242 (2009). 
 
30. Tsuchida, T. N. et al. American Clinical Neurophysiology Society Standardized EEG 

Terminology and Categorization for the Description of Continuous EEG Monitoring in 
Neonates: Report of the American Clinical Neurophysiology Society Critical Care Monitoring 
Committee. J. Clin. Neurophysiol. 30, (2013). 

 
31. Dall, T. M. et al. Supply and demand analysis of the current and future US neurology 

workforce. Neurology 81, 470–478 (2013). 
 
32. Roychoudhury, S. et al. Implementation of Neonatal Neurocritical Care Program Improved 

Short-Term Outcomes in Neonates With Moderate-to-Severe Hypoxic Ischemic 
Encephalopathy. Pediatr. Neurol. 101, 64–70 (2019). 

 
33. Dilena, R. et al. Consensus protocol for EEG and amplitude-integrated EEG assessment and 

monitoring in neonates. Clin. Neurophysiol. 132, 886–903 (2021). 
 
34. Shellhaas, R. A., Soaita, A. I. & Clancy, R. R. Sensitivity of amplitude-integrated 

electroencephalography for neonatal seizure detection. Pediatrics 120, 770–777 (2007). 
 
35. Maynard, D., Prior, P. F. & Scott, D. F. Device for continuous monitoring of cerebral activity 

in resuscitated patients. Br. Med. J. 4, 545–546 (1969). 
 
36. Vries, L. S. de & Hellström-Westas, L. Role of cerebral function monitoring in the newborn. 

Arch. Dis. Child. - Fetal Neonatal Ed. 90, F201-FF207 (2005). 
 
37. Zhang, D. & Ding, H. Calculation of compact amplitude-integrated EEG tracing and upper 

and lower margins using raw EEG data. Health (N. Y.) 5, 885–891 (2013). 
 
38. Glass, H. C., Wusthoff, C. J. & Shellhaas, R. A. Amplitude Integrated EEG: The Child 

Neurologist’s Perspective. J. Child Neurol. 28, 1342–1350 (2013). 
 
39. Hellström-Westas, L., Rosén, I., Vries, L. S. de & Greisen, G. Amplitude-integrated EEG 

Classification and Interpretation in Preterm and Term Infants. NeoReviews 7, e76–e87 (2006). 
 



 93 

40. Csekő, A. J. et al. Accuracy of amplitude-integrated electroencephalography in the prediction 
of neurodevelopmental outcome in asphyxiated infants receiving hypothermia treatment. Acta 
Paediatr. Oslo Nor. 1992 102, 707–711 (2013). 

 
41. Sewell, E. K. et al. Evolution of Amplitude-Integrated Electroencephalogram as a Predictor of 

Outcome in Term Encephalopathic Neonates Receiving Therapeutic Hypothermia. Am. J. 
Perinatol. 35, 277–285 (2018). 

 
42. Hellström-Westas, L., Rosén, I., Vries, L. S. de & Greisen, G. Amplitude-integrated EEG 

Classification and Interpretation in Preterm and Term Infants. NeoReviews 7, e76–e87 (2006). 
 
43. Shah, D. K. et al. Accuracy of bedside electroencephalographic monitoring in comparison with 

simultaneous continuous conventional electroencephalography for seizure detection in term 
infants. Pediatrics 121, 1146–1154 (2008). 

 
44. Mastrangelo, M. et al. Acute neonatal encephalopathy and seizures recurrence: a combined 

aEEG/EEG study. Seizure 22, 703–707 (2013). 
 
45. Rakshasbhuvankar, A., Paul, S., Nagarajan, L., Ghosh, S. & Rao, S. Amplitude-integrated 

EEG for detection of neonatal seizures: a systematic review. Seizure 33, 90–98 (2015). 
 
46. Kadivar, M., Moghadam, E. M., Shervin Badv, R., Sangsari, R. & Saeedy, M. A Comparison 

Of Conventional Electroencephalography With Amplitude-Integrated EEG In Detection Of 
Neonatal Seizures. Med. Devices Auckl. NZ 12, 489–496 (2019). 

 
47. Werther, T. et al. Are All Amplitude-Integrated Electroencephalogram Systems Equal? 

Neonatology 112, 394–401 (2017). 
 
48. Werther, T. et al. Are All Amplitude-Integrated Electroencephalogram Systems Equal? 

Neonatology 112, 394–401 (2017). 
 
49. Merchant, N. & Azzopardi, D. Early predictors of outcome in infants treated with hypothermia 

for hypoxic–ischaemic encephalopathy. Dev. Med. Child Neurol. 57, 8–16 (2015). 
 
50. del Río, R. et al. Amplitude Integrated Electroencephalogram as a Prognostic Tool in Neonates 

with Hypoxic-Ischemic Encephalopathy: A Systematic Review. PLoS ONE 11, (2016). 
 
51. Yuan, X. et al. Prognostic value of amplitude-integrated EEG in neonates with high risk of 

neurological sequelae. Ann. Clin. Transl. Neurol. 7, 210–218 (2020). 
 
52. van Drongelen, W. Chapter 7 - 1-D and 2-D Fourier Transform Applications. in Signal 

Processing for Neuroscientists (Second Edition) (ed. van Drongelen, W.) 119–152 (Academic 
Press, 2018). doi:10.1016/B978-0-12-810482-8.00007-2. 

 
53. Quantitative EEG analysis methods and clinical applications. (Artech House, 2009). 



 94 

 
54. Williamson, C. A., Wahlster, S., Shafi, M. M. & Westover, M. B. Sensitivity of compressed 

spectral arrays for detecting seizures in acutely ill adults. Neurocrit. Care 20, 32–39 (2014). 
 
55. Gotman, J., Flanagan, D., Zhang, J. & Rosenblatt, B. Automatic seizure detection in the 

newborn: methods and initial evaluation. Electroencephalogr. Clin. Neurophysiol. 103, 356–
362 (1997). 

 
56. Kang, S. K. & Kadam, S. D. Neonatal Seizures: Impact on Neurodevelopmental Outcomes. 

Front. Pediatr. 3, (2015). 
 
57. Pavel, A. M. et al. Neonatal Seizure Management: Is the Timing of Treatment Critical? J. 

Pediatr. 243, 61-68.e2 (2022). 
 
58. Temko, A., Thomas, E., Marnane, W., Lightbody, G. & Boylan, G. EEG-based neonatal 

seizure detection with Support Vector Machines. Clin. Neurophysiol. 122, 464–473 (2011). 
 
59. Pavel, A. M. et al. A machine-learning algorithm for neonatal seizure recognition: a 

multicentre, randomised, controlled trial. Lancet Child Adolesc. Health 4, 740–749 (2020). 
 
60. Lommen, C. et al. An algorithm for the automatic detection of seizures in neonatal amplitude-

integrated EEG. Acta Paediatr. 96, 674–680 (2007). 
 
61. Lawrence, R., Mathur, A., Nguyen The Tich, S., Zempel, J. & Inder, T. A pilot study of 

continuous limited-channel aEEG in term infants with encephalopathy. J. Pediatr. 154, 835-
841.e1 (2009). 

 
62. Rakshasbhuvankar, A., Rao, S., Palumbo, L., Ghosh, S. & Nagarajan, L. Amplitude Integrated 

Electroencephalography Compared With Conventional Video EEG for Neonatal Seizure 
Detection: A Diagnostic Accuracy Study. J. Child Neurol. 32, 815–822 (2017). 

 
63. Alger, J. R. Magnetic Resonance Imaging [MRI]. in Encyclopedia of the Human Brain (ed. 

Ramachandran, V. S.) 729–744 (Academic Press, 2002). doi:10.1016/B0-12-227210-2/00222-
3. 

 
64. Grover, V. P. B. et al. Magnetic Resonance Imaging: Principles and Techniques: Lessons for 

Clinicians. J. Clin. Exp. Hepatol. 5, 246–255 (2015). 
 
65. Jisa, K. A., Clarey, D. D. & Peeples, E. S. Magnetic Resonance Imaging Findings of Term and 

Preterm Hypoxic-Ischemic Encephalopathy: A Review of Relevant Animal Models and 
Correlation to Human Imaging. Open Neuroimaging J. 12, 55–65 (2018). 

 
66. Sevick, R. J. et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. 

Radiology 185, 687–690 (1992). 
 



 95 

67. de Vries, L. S. & Groenendaal, F. Patterns of neonatal hypoxic–ischaemic brain injury. 
Neuroradiology 52, 555–566 (2010). 

 
68. Varghese, B. et al. Magnetic resonance imaging spectrum of perinatal hypoxic-ischemic brain 

injury. Indian J. Radiol. Imaging 26, 316–327 (2016). 
 
69. Cabaj, A., Bekiesińska-Figatowska, M. & Mądzik, J. MRI patterns of hypoxic-ischemic brain 

injury in preterm and full term infants – classical and less common MR findings. Pol. J. Radiol. 
77, 71–76 (2012). 

 
70. Barkovich, A. J. & Sargent, S. K. Profound asphyxia in the premature infant: imaging findings. 

AJNR Am. J. Neuroradiol. 16, 1837–1846 (1995). 
 
71. Hasegawa, M. et al. Development of myelination in the human fetal and infant cerebrum: a 

myelin basic protein immunohistochemical study. Brain Dev. 14, 1–6 (1992). 
 
72. Talos, D. M. et al. Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid receptor subunit expression in forebrain and relationship to regional 
susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J. Comp. 
Neurol. 497, 42–60 (2006). 

 
73. McQuillen, P. S. & Ferriero, D. M. Selective vulnerability in the developing central nervous 

system. Pediatr. Neurol. 30, 227–235 (2004). 
 
74. Chen, W., Wang, Y., Cao, G., Chen, G. & Gu, Q. A random forest model based classification 

scheme for neonatal amplitude-integrated EEG. Biomed. Eng. OnLine 13, S4 (2014). 
 
75. Wang, J., Ju, R., Chen, Y., Liu, G. & Yi, Z. Automated diagnosis of neonatal encephalopathy 

on aEEG using deep neural networks. Neurocomputing 398, 95–107 (2020). 
 
76. O’Shea, A., Lightbody, G., Boylan, G. & Temko, A. Neonatal Seizure Detection using 

Convolutional Neural Networks. ArXiv170905849 Cs Stat (2017). 
 
77. Temko, A. & Lightbody, G. Detecting Neonatal Seizures With Computer Algorithms. J. Clin. 

Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 33, 394–402 (2016). 
 
78. Dereymaeker, A. et al. Automated EEG background analysis to identify neonates with 

hypoxic-ischemic encephalopathy treated with hypothermia at risk for adverse outcome: A 
pilot study. Pediatr. Neonatol. 60, 50–58 (2019). 

 
79. Abbasi. Applications of advanced signal processing and machine learning in the neonatal 

hypoxic-ischemic electroencephalogram. https://www.nrronline.org/article.asp?issn=1673-
5374;year=2020;volume=15;issue=2;spage=222;epage=231;aulast=Abbasi. 

 



 96 

80. Kota, S. et al. Prognostic Value of Continuous Electroencephalogram Delta Power in Neonates 
with Hypoxic Ischemic Encephalopathy. J. Child Neurol. 35, 517–525 (2020). 

 
81. Ansari, A. H. et al. Neonatal Seizure Detection Using Deep Convolutional Neural Networks. 

Int. J. Neural Syst. 29, 1850011 (2019). 
 
82. Tanveer, M. A., Khan, M. J., Sajid, H. & Naseer, N. Convolutional neural networks ensemble 

model for neonatal seizure detection. J. Neurosci. Methods 358, 109197 (2021). 
 
83. Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What Clinicians Want: 

Contextualizing Explainable Machine Learning for Clinical End Use. in Machine Learning for 
Healthcare Conference 359–380 (PMLR, 2019). 

 
84. Gavrilov, A., Jordache, A., Vasdani, M. & Deng, J. Preventing Model Overfitting and 

Underfitting in Convolutional Neural Networks. Int. J. Softw. Sci. Comput. Intell. 10, 19–28 
(2018). 

 
85. Iwata, O. et al. “Therapeutic time window” duration decreases with increasing severity of 

cerebral hypoxia–ischaemia under normothermia and delayed hypothermia in newborn piglets. 
Brain Res. 1154, 173–180 (2007). 

 
86. Ching, S., Purdon, P. L., Vijayan, S., Kopell, N. J. & Brown, E. N. A neurophysiological–

metabolic model for burst suppression. Proc. Natl. Acad. Sci. 109, 3095–3100 (2012). 
 
87. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic 

reviews. BMJ n71 (2021) doi:10.1136/bmj.n71. 
 
88. Huang, X., Lin, J. & Demner-Fushman, D. Evaluation of PICO as a Knowledge Representation 

for Clinical Questions. AMIA. Annu. Symp. Proc. 2006, 359–363 (2006). 
 
89. Covidence - Better systematic review management. Covidence https://www.covidence.org/. 
 
90. Balasundaram, P. & Avulakunta, I. D. Bayley Scales Of Infant and Toddler Development. in 

StatPearls (StatPearls Publishing, 2022). 
 
91. Barnett, A. L. et al. Can the Griffiths scales predict neuromotor and perceptual-motor 

impairment in term infants with neonatal encephalopathy? Arch. Dis. Child. 89, 637–643 
(2004). 

 
92. Palisano, R. et al. Development and reliability of a system to classify gross motor function in 

children with cerebral palsy. Dev. Med. Child Neurol. 39, 214–223 (1997). 
 
93. Trivedi, S. B. et al. A validated clinical MRI injury scoring system in neonatal hypoxic-

ischemic encephalopathy. Pediatr. Radiol. 47, 1491–1499 (2017). 
 



 97 

94. Rusli, E. R. M. et al. Neonatal hypoxic encephalopathy: Correlation between post-cooling 
brain MRI findings and 2 years neurodevelopmental outcome. Indian J. Radiol. Imaging 29, 
350–355 (2019). 

 
95. Bos, A. F. Bayley-II or Bayley-III: what do the scores tell us? Dev. Med. Child Neurol. 55, 

978–979 (2013). 
 
96. Dereymaeker, A. et al. Automated EEG background analysis to identify neonates with 

hypoxic-ischemic encephalopathy treated with hypothermia at risk for adverse outcome: A 
pilot study. Pediatr. Neonatol. 60, 50–58 (2019). 

 
97. Fitzgerald, M. P., Massey, S. L., Fung, F. W., Kessler, S. K. & Abend, N. S. High 

electroencephalographic seizure exposure is associated with unfavorable outcomes in neonates 
with hypoxic-ischemic encephalopathy. Seizure 61, 221–226 (2018). 

 
98. Koskela, T. et al. Prognostic value of neonatal EEG following therapeutic hypothermia in 

survivors of hypoxic-ischemic encephalopathy. Clin. Neurophysiol. Off. J. Int. Fed. Clin. 
Neurophysiol. 132, 2091–2100 (2021). 

 
99. Leroy-Terquem, E. et al. Abnormal Interhemispheric Synchrony in Neonatal Hypoxic-

Ischemic Encephalopathy: A Retrospective Pilot Study. Neonatology 112, 359–364 (2017). 
 
100. Takenouchi, T. et al. Delayed onset of sleep-wake cycling with favorable outcome in 

hypothermic-treated neonates with encephalopathy. J. Pediatr. 159, 232–237 (2011). 
 
101. Chang, P. D., Chow, D. S., Alber, A., Lin, Y.-K. & Youn, Y. A. Predictive Values of 

Location and Volumetric MRI Injury Patterns for Neurodevelopmental Outcomes in Hypoxic-
Ischemic Encephalopathy Neonates. Brain Sci. 10, E991 (2020). 

 
102. Chintalapati, K., Miao, H., Mathur, A., Neil, J. & Aravamuthan, B. R. Objective and 

Clinically Feasible Analysis of Diffusion MRI Data can Help Predict Dystonia After Neonatal 
Brain Injury. Pediatr. Neurol. 118, 6–11 (2021). 

 
103. Hayakawa, K. et al. Diffusion pseudonormalization and clinical outcome in term neonates 

with hypoxic–ischemic encephalopathy. Pediatr. Radiol. 48, 865–874 (2018). 
 
104. Jung, D. E., Ritacco, D. G., Nordli, D. R., Koh, S. & Venkatesan, C. Early Anatomical 

Injury Patterns Predict Epilepsy in Head Cooled Neonates with Hypoxic Ischemic 
Encephalopathy. Pediatr. Neurol. 53, 135–140 (2015). 

 
105. Lakatos, A. et al. Neurodevelopmental effect of intracranial hemorrhage observed in 

hypoxic ischemic brain injury in hypothermia-treated asphyxiated neonates - an MRI study. 
BMC Pediatr. 19, 430 (2019). 

 



 98 

106. Mastrangelo, M. et al. Early Post-cooling Brain Magnetic Resonance for the Prediction of 
Neurodevelopmental Outcome in Newborns with Hypoxic-Ischemic Encephalopathy. J. 
Pediatr. Neurosci. 14, 191–202 (2019). 

 
107. Takenouchi, T., Heier, L. A., Engel, M. & Perlman, J. M. Restricted diffusion in the corpus 

callosum in hypoxic-ischemic encephalopathy. Pediatr. Neurol. 43, 190–196 (2010). 
 
108. Basti, C. et al. Seizure burden and neurodevelopmental outcome in newborns with 

hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: A single center 
observational study. Seizure 83, 154–159 (2020). 

 
109. Lin, Y.-K., Hwang-Bo, S., Seo, Y.-M. & Youn, Y.-A. Clinical seizures and unfavorable 

brain MRI patterns in neonates with hypoxic ischemic encephalopathy. Medicine (Baltimore) 
100, e25118 (2021). 

 
110. Peeples, E. S. et al. Predictive Models of Neurodevelopmental Outcomes After Neonatal 

Hypoxic-Ischemic Encephalopathy. Pediatrics 147, e2020022962 (2021). 
 
111. Weeke, L. C. et al. Role of EEG background activity, seizure burden and MRI in predicting 

neurodevelopmental outcome in full-term infants with hypoxic-ischaemic encephalopathy in 
the era of therapeutic hypothermia. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. 
Neurol. Soc. 20, 855–864 (2016). 

 
112. Louis, E. K. S. et al. The Developmental EEG: Premature, Neonatal, Infant, and Children. 

Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal 
Findings in Adults, Children, and Infants [Internet] (American Epilepsy Society, 2016). 

 
113. Shankaran, S. et al. Brain injury following trial of hypothermia for neonatal hypoxic–

ischaemic encephalopathy. Arch. Dis. Child. - Fetal Neonatal Ed. 97, F398–F404 (2012). 
 
114. Bednarek, N. et al. Impact of therapeutic hypothermia on MRI diffusion changes in 

neonatal encephalopathy. Neurology 78, 1420–1427 (2012). 
 
115. Barkovich, A. J. et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation 

of MR scoring systems. AJNR Am. J. Neuroradiol. 19, 143–149 (1998). 
 
116. Shankaran, S. et al. Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic 

Encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005). 
 
117. Rutherford, M., Pennock, J., Schwieso, J., Cowan, F. & Dubowitz, L. Hypoxic-ischaemic 

encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. 
Arch. Dis. Child. - Fetal Neonatal Ed. 75, F145–F151 (1996). 

 
118. Parmentier, C. E. J., de Vries, L. S. & Groenendaal, F. Magnetic Resonance Imaging in 

(Near-)Term Infants with Hypoxic-Ischemic Encephalopathy. Diagnostics 12, 645 (2022). 



 99 

 
119. Corbo, E. T. et al. The effect of whole-body cooling on brain metabolism following 

perinatal hypoxic–ischemic injury. Pediatr. Res. 71, 85–92 (2012). 
 
120. Massaro, A. N. et al. Brain Perfusion in Encephalopathic Newborns after Therapeutic 

Hypothermia. AJNR Am. J. Neuroradiol. 34, 1649–1655 (2013). 
 
121. Singh, E. et al. Improving access to magnetic resonance imaging for the newborn. J. 

Neonatal Nurs. 29, 199–202 (2023). 
 
122. El-Ayouty, M. et al. Relationship between electroencephalography and magnetic 

resonance imaging findings after hypoxic-ischemic encephalopathy at term. Am. J. Perinatol. 
24, 467–473 (2007). 

 
123. Jain, S. V. et al. Prediction of Neonatal Seizures in Hypoxic-Ischemic Encephalopathy 

Using Electroencephalograph Power Analyses. Pediatr. Neurol. 67, 64-70.e2 (2017). 
 
124. Craig, A. K., Gerwin, R., Bainter, J., Evans, S. & James, C. Exploring parent expectations 

of neonatal therapeutic hypothermia. J. Perinatol. Off. J. Calif. Perinat. Assoc. 38, 857–864 
(2018). 

 
125. Volpe, J. J. Neurology of the Newborn E-Book. (Elsevier Health Sciences, 2008). 
 
126. Giampietri, M. & Biver, P. Recovery of aEEG Patterns at 24 Hours of Hypothermia 

Predicts Good Neurodevelopmental Outcome. J. Neonatal Biol. 5, (2016). 
 
127. De Wispelaere, L. ATT. et al. Electroencephalography and brain magnetic resonance 

imaging in asphyxia comparing cooled and non-cooled infants. Eur. J. Paediatr. Neurol. 23, 
181–190 (2019). 

 
128. Lemyre, B. & Chau, V. Hypothermia for newborns with hypoxic-ischemic 

encephalopathy. Paediatr. Child Health 23, 285–291 (2018). 
 
129. Rutherford, M. et al. Assessment of brain tissue injury after moderate hypothermia in 

neonates with hypoxic–ischaemic encephalopathy: a nested substudy of a randomised 
controlled trial. Lancet Neurol. 9, 39–45 (2010). 

 
130. Hemmert, G. A. J., Schons, L. M., Wieseke, J. & Schimmelpfennig, H. Log-likelihood-

based Pseudo-R2 in Logistic Regression: Deriving Sample-sensitive Benchmarks. Sociol. 
Methods Res. 47, 507–531 (2018). 

 
131. Tsuchida, T. N. et al. American clinical neurophysiology society standardized EEG 

terminology and categorization for the description of continuous EEG monitoring in neonates: 
report of the American Clinical Neurophysiology Society critical care monitoring committee. 
J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 30, 161–173 (2013). 



 100 

 
132. Robertson, C. M. & Perlman, M. Follow-up of the term infant after hypoxic-ischemic 

encephalopathy. Paediatr. Child Health 11, 278–282 (2006). 
 
133. Acun, C. et al. Trends of neonatal hypoxic-ischemic encephalopathy prevalence and 

associated risk factors in the United States, 2010 to 2018. Am. J. Obstet. Gynecol. 227, 751.e1-
751.e10 (2022). 

 
134. Pisani, F. et al. Neonatal seizures and postneonatal epilepsy: a 7-y follow-up study. 

Pediatr. Res. 72, 186–193 (2012). 
 
135. Cerebral Palsy. National Institute of Neurological Disorders and Stroke 

https://www.ninds.nih.gov/health-information/disorders/cerebral-palsy. 
 
136. Mercuri, E. et al. Visual function in term infants with hypoxic-ischaemic insults: 

correlation with neurodevelopment at 2 years of age. Arch. Dis. Child. Fetal Neonatal Ed. 80, 
F99–F104 (1999). 

 
137. Chen, D.-Y., Lee, I.-C., Wang, X.-A. & Wong, S.-H. Early Biomarkers and Hearing 

Impairments in Patients with Neonatal Hypoxic–Ischemic Encephalopathy. Diagnostics 11, 
2056 (2021). 

 
138. Allen, K. A. & Brandon, D. H. Hypoxic Ischemic Encephalopathy: Pathophysiology and 

Experimental Treatments. Newborn Infant Nurs. Rev. NAINR 11, 125–133 (2011). 
 
139. Deshpande, P., Jain, A. & McNamara, P. J. Effect of Phenobarbitone on Amplitude-

Integrated Electroencephalography in Neonates with Hypoxic-Ischemic Encephalopathy 
during Hypothermia. Neonatology 117, 721–728 (2020). 

 
140. Padiyar, S., Nusairat, L., Kadri, A., Abu-Shaweesh, J. & Aly, H. Neonatal seizures in the 

U.S. National Inpatient Population: Prevalence and outcomes. Pediatr. Neonatol. 61, 300–305 
(2020). 

 
141. Bassan, H. et al. Neonatal Seizures: Dilemmas in Workup and Management. Pediatr. 

Neurol. 38, 415–421 (2008). 
 
142. Offringa, M. & Kalish, B. T. Subclinical Electrographic Seizures in the Newborn—Is More 

Treatment Better? JAMA Netw. Open 4, e2140677 (2021). 
 
143. Werner, R. M. & Polsky, D. Comparing the supply of pediatric subspecialists and child 

neurologists. J. Pediatr. 146, 20–25 (2005). 
 
144. Zhang, D. et al. The Prognostic Value of Amplitude-Integrated EEG in Full-Term 

Neonates with Seizures. PLoS ONE 8, (2013). 
 



 101 

145. Rakshasbhuvankar, A., Paul, S., Nagarajan, L., Ghosh, S. & Rao, S. Amplitude-integrated 
EEG for detection of neonatal seizures: a systematic review. Seizure 33, 90–98 (2015). 

 
146. Pensirikul, A. D. et al. Density spectral array for seizure identification in critically ill 

children. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 30, 371–375 (2013). 
 
147. Amorim, E. et al. Performance of spectrogram-based seizure identification of adult EEGs 

by critical care nurses and neurophysiologists. J. Clin. Neurophysiol. Off. Publ. Am. 
Electroencephalogr. Soc. 34, 359–364 (2017). 

 
148. Sharma, S., Nunes, M. & Alkhachroum, A. Adult Critical Care Electroencephalography 

Monitoring for Seizures: A Narrative Review. Front. Neurol. 13, (2022). 
 
149. Stevenson, N. J., Tapani, K., Lauronen, L. & Vanhatalo, S. A dataset of neonatal EEG 

recordings with seizure annotations. Sci. Data 6, 190039 (2019). 
 
150. Zhang, D. & Ding, H. Calculation of compact amplitude-integrated EEG tracing and upper 

and lower margins using raw EEG data. Health (N. Y.) 5, 885–891 (2013). 
 
151. He, H., Bai, Y., Garcia, E. A. & Li, S. ADASYN: Adaptive synthetic sampling approach 

for imbalanced learning. in 2008 IEEE International Joint Conference on Neural Networks 
(IEEE World Congress on Computational Intelligence) 1322–1328 (2008). 
doi:10.1109/IJCNN.2008.4633969. 

 
152. ADASYN (improves class balance, extension of SMOTE). 

https://www.mathworks.com/matlabcentral/fileexchange/50541-adasyn-improves-class-
balance-extension-of-smote. 

 
153. Train support vector machine (SVM) classifier for one-class and binary classification - 

MATLAB fitcsvm. https://www.mathworks.com/help/stats/fitcsvm.html#bt9w6j6-
Standardize. 

 
154. Train neural network classification model - MATLAB fitcnet. 

https://www.mathworks.com/help/stats/fitcnet.html#mw_a9fa4524-aecf-4d9b-95ef-
58914f7780f3. 

 
155. Predictor importance estimates by permutation of out-of-bag predictor observations for 

random forest of classification trees - MATLAB. 
https://www.mathworks.com/help/stats/classificationbaggedensemble.oobpermutedpredictori
mportance.html. 

 
156. Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected 

feature importance measure. Bioinformatics 26, 1340–1347 (2010). 
 



 102 

157. Amplitude-integrated EEG Classification and Interpretation in Preterm and Term Infants | 
American Academy of Pediatrics. 
https://neoreviews.aappublications.org/content/7/2/e76?sso=1&sso_redirect_count=4&nfstat
us=401&nfstatus=401&nftoken=00000000-0000-0000-0000-
000000000000&nftoken=00000000-0000-0000-0000-
000000000000&nfstatusdescription=ERROR%3A%20No%20local%20token&nfstatusdescr
iption=ERROR%3A%20No%20local%20token&utm_source=TrendMD&utm_medium=Tre
ndMD&utm_campaign=NeoRev_TrendMD_0. 

 
158. Panayiotopoulos, C. P. Neonatal Seizures and Neonatal Syndromes. The Epilepsies: 

Seizures, Syndromes and Management (Bladon Medical Publishing, 2005). 
 
159. Major, P. et al. Periictal activity in cooled asphyxiated neonates with seizures. Seizure 47, 

13–16 (2017). 
 
160. Shellhaas, R. A. & Clancy, R. R. Characterization of neonatal seizures by conventional 

EEG and single-channel EEG. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 118, 
2156–2161 (2007). 

 
161. Bruns, N. et al. Application of an Amplitude-integrated EEG Monitor (Cerebral Function 

Monitor) to Neonates. J. Vis. Exp. JoVE (2017) doi:10.3791/55985. 
 
162. Tacke, M. et al. Effects of a reduction of the number of electrodes in the EEG montage on 

the number of identified seizure patterns. Sci. Rep. 12, 4621 (2022). 
 
163. Parameswaran, S. et al. COMPARISON OF VARIOUS EEG ELECTRODE 

PLACEMENT SYSTEMS TO DETECT EPILEPTIFORM ABNORMALITIES IN 
INFANTS. Malang Neurol. J. 7, 30–33 (2021). 

 
164. Stevenson, N. J., Lauronen, L. & Vanhatalo, S. The effect of reducing EEG electrode 

number on the visual interpretation of the human expert for neonatal seizure detection. Clin. 
Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 129, 265–270 (2018). 

 
165. Temko, A., Thomas, E., Marnane, W., Lightbody, G. & Boylan, G. EEG-based neonatal 

seizure detection with Support Vector Machines. Clin. Neurophysiol. 122, 464 (2011). 
 
166. Temko, A., Marnane, W., Boylan, G. & Lightbody, G. Clinical implementation of a 

neonatal seizure detection algorithm. Decis. Support Syst. 70, 86–96 (2015). 
 
167. Panayiotopoulos, C. P. Neonatal Seizures and Neonatal Syndromes. in The Epilepsies: 

Seizures, Syndromes and Management (Bladon Medical Publishing, 2005). 
 
168. Black, R. E. et al. Global, regional, and national causes of child mortality in 2008: a 

systematic analysis. The Lancet 375, 1969–1987 (2010). 
 



 103 

169. Haibo He, Yang Bai, Garcia, E. A., & Shutao Li. ADASYN: Adaptive synthetic sampling 
approach for imbalanced learning. in 2008 IEEE International Joint Conference on Neural 
Networks (IEEE World Congress on Computational Intelligence) 1322–1328 (IEEE, 2008). 
doi:10.1109/IJCNN.2008.4633969. 

 
170. Train support vector machine (SVM) classifier for one-class and binary classification - 

MATLAB fitcsvm. https://www.mathworks.com/help/stats/fitcsvm.html. 
 
171. Abend, N. S. & Wusthoff, C. J. Neonatal Seizures and Status Epilepticus. J. Clin. 

Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 29, 441–448 (2012). 
 
172. Einspieler, C., Peharz, R. & Marschik, P. B. Fidgety movements – tiny in appearance, but 

huge in impact. J. Pediatr. (Rio J.) 92, S64–S70 (2016). 
 
173. Callanan, C. et al. Children followed with difficulty: how do they differ? J. Paediatr. Child 

Health 37, 152–156 (2001). 
 
174. Tin, W., Fritz, S., Wariyar, U. & Hey, E. Outcome of very preterm birth: children reviewed 

with ease at 2 years differ from those followed up with difficulty. Arch. Dis. Child. Fetal 
Neonatal Ed. 79, F83–F87 (1998). 

 
175. Miller, S. P. et al. Patterns of brain injury in term neonatal encephalopathy. J. Pediatr. 146, 

453–460 (2005). 
 
176. Shapiro, K. A. et al. Early changes in brain structure correlate with language outcomes in 

children with neonatal encephalopathy. NeuroImage Clin. 15, 572–580 (2017). 
 
177. Lee, B. L. et al. Long-term cognitive outcomes in term newborns with watershed injury 

caused by neonatal encephalopathy. Pediatr. Res. 92, 505–512 (2022). 
 
178. Motavaf, M. & Piao, X. Oligodendrocyte Development and Implication in Perinatal White 

Matter Injury. Front. Cell. Neurosci. 15, (2021). 
 
179. Back, S. A. White Matter Injury in the Preterm Infant: Pathology and Mechanisms. Acta 

Neuropathol. (Berl.) 134, 331–349 (2017). 
 
180. Li, A. M. et al. White Matter Injury in Term Newborns With Neonatal Encephalopathy. 

Pediatr. Res. 65, 85–89 (2009). 
 
181. Clinical and Imaging Findings of Neonatal Seizures Presenting as Diffuse Cerebral White 

Matter Abnormality on Diffusion-Weighted Imaging without any Structural or Metabolic 
Etiology. J. Korean Soc. Radiol. Taehan Ŏngsang Ŭihakhoe Chi 81, 1412–1423 (2020). 

 
182. Mao, Y. et al. White Matter Hyperintensities on Brain Magnetic Resonance Imaging in 

People with Epilepsy: A Hospital-Based Study. CNS Neurosci. Ther. 22, 758–763 (2016). 



 104 

 
183. Marchi, N. & Lerner-Natoli, M. Cerebrovascular remodeling and epilepsy. Neurosci. Rev. 

J. Bringing Neurobiol. Neurol. Psychiatry 19, 304–312 (2013). 
 
184. Moritani, T., Smoker, W. R. K., Sato, Y., Numaguchi, Y. & Westesson, P.-L. A. Diffusion-

Weighted Imaging of Acute Excitotoxic Brain Injury. AJNR Am. J. Neuroradiol. 26, 216–228 
(2005). 

 
185. Forbes, K. P. N., Pipe, J. G. & Bird, R. Neonatal Hypoxic-ischemic Encephalopathy: 

Detection with Diffusion-weighted MR Imaging. AJNR Am. J. Neuroradiol. 21, 1490–1496 
(2000). 

 
186. Temko, A. et al. Toward a Personalized Real-Time Diagnosis in Neonatal Seizure 

Detection. IEEE J. Transl. Eng. Health Med. 5, 1–14 (2017). 
 


