
THE UNIVERSITY OF CHICAGO

PROPERTIES OF SCHRAMM LOEWNER EVOLUTION AND SUPERCRITICAL

LIOUVILLE QUANTUM GRAVITY METRIC EXPONENTS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

BY

STEPHEN GLENN YEARWOOD-DAVIDSON

CHICAGO, ILLINOIS

AUGUST 2023



Copyright © 2023 by Stephen Glenn Yearwood-Davidson

All Rights Reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Initial Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Self-Avoiding walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Loop erased random walk . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Loewner Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Schramm Loewner Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Chordal SLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Radial SLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Phases of SLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Gaussian free field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 A NEW PROOF OF THE REVERSIBILITY OF SLEκ FOR κ ≤ 4 . . . . . . . . 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 SLE in H from x1 to x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Local commutation relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Proof of main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Proof of Lemma 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 RANDOMNESS OF THE TOPOLOGY SLEκ FOR κ > 4 . . . . . . . . . . . . . 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Initial Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Proof of Theorem 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 STRICT MONOTONICITY OF THE SUPERCRITICAL LIOUVILLE QUANTUM
GRAVITY METRIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Basic notation and definitions . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . 73

iii



5.2.3 Statement of main result . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.4 Initial estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Upper bound for Dh in terms of D̃ϵ
h . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Upper bound for D̃ϵ
h in terms of Dh . . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



LIST OF FIGURES

3.1 Growing paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Commutative Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Comparison of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Commutation relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 SLE bubble types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Periodicity of bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Illustration of a single crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Independent instances of SLE crossings . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Relationships between relevant quantities . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Geometric argument for geodesic behavior . . . . . . . . . . . . . . . . . . . . . 82
5.3 Geodesic annular crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



ACKNOWLEDGMENTS

I would like to thank my advisor, Gregory Lawler, for all his patience and attention over the

years, and for working so closely with me on some very interesting problems. I would also

like to thank my second advisor, Ewain Gwynne, for his constant help, advice, and generosity

with his time.

I have been very fortunate to have highly supportive colleagues and friends in the depart-

ment, including Bill Cooperman, Nixia Chen, Sehyun Ji, Nikiforos Mimikos-Stamatopoulos,

Thomas Hameister, Jinwoo Sung, Chloe Avery, Rosemary Elliott Smith, Joshua Mundinger,

Sam Quinn, and many others. I am extremely grateful for their support, and the many

conversations about Mathematics (and otherwise) that we have had over the years.

My deepest gratitude goes out to my family, and in particular my mother, Glenis. Thank

you for your undying love and support throughout this journey.

vi



ABSTRACT

Schramm–Loewner Evolution (SLE) is a family of random curves in the plane, indexed by

a parameter κ ≥ 0. These non-crossing curves are the fundamental tool used to describe

the scaling limits of a plethora of natural probabilistic processes in two dimensions, such as

critical percolation interfaces, loop erased random walks, and (in conjecture) self-avoiding

walks. Their introduction by Oded Schramm in 1999 was a milestone of modern probability

theory. The first part of this thesis will focus mainly on two key properties of SLE; namely,

reversibility and topological invariance.

For γ ∈ (0, 2), U ⊂ C, and an instance h of the Gaussian free field (GFF) on U , the

γ-Liouville quantum gravity (LQG) surface associated with (U, h) is formally described by the

Riemannian metric tensor eγh(dx2 + dy2) on U . It is known that one can define a canonical

metric (distance function) Dh on U associated with a γ-LQG surface. We show that this

metric is conformally covariant in the sense that it respects the coordinate change formula for

γ-LQG surfaces. We consider a discrete analog of this metric, and show, in the final chapter

of the present work, that it has the same distance exponent as in the continuum case.
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CHAPTER 1

INTRODUCTION

1.1 Initial Overview

One of the main objectives of statistical physics and probability theory is to examine

macroscopic systems that comprise a large number of small, random microscopic components,

which become more significant as the number of components increases towards infinity. There

are two possible outcomes: in the limit, the behavior of the macroscopic system can either

become deterministic (known as ‘law of large number’ outcomes), with large deviations

that can be used to some extent within this framework, or random. Brownian motion is a

prototype for continuous random objects that manifest as the scaling limit of finite systems.

Notably, it is the scaling limit of a wide range of random walks, which makes it more universal

than the discrete model (simple random walk) since it doesn’t require specifying a lattice or

jump-distribution. Rather, it captures the general properties of walks, such as stationary

increments and mean zero. The central objects studied in this thesis, Schramm Loewner

evolution and Liuoville quantum gravity, also exhibit this universality in that these objects

arise as the scaling limits of several discrete models.

The Schramm Loewner evolution (SLEκ) describes a one parameter family of probability

measures on curves in the plane that stand as the only reasonable conformally invariant

scaling limits of several discrete lattice models, given certain conditions are met. SLEκ lies at

the intersection of probability and complex analysis, as these curves arise as one-parameter

families of solutions to the Loewner differential equation driven by a Brownian motion.

SLEκ describes the random growth of a set Kt, as seen through a conformal map gt(z)

on the complement of this set. This map is the solution of the Loewner differential equation

driven by a Brownian motion, whose “speed” is determined by a single parameter κ. Rohde

and Schramm in [40] showed that for κ ̸= 8, a.s. there is a (unique) continuous path
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η : [0,∞) → H such that for each t > 0 the set Kt is the union of η[0, t] and the bounded

connected components of H \ η[0, t]. This was later extended to κ = 8 [30]. We call the path

η the SLE trace or SLE curve. We will need the following facts about the curve[40]:

• If κ ≤ 4, then η is simple with η(0,∞) ⊂ H.

• If 4 < κ < 8, then η(0,∞) has double points and intersects R.

• If κ ≥ 8, the curve is space-filling.

There are three variants of SLE : chordal SLE, which connects two boundary points (prime

ends) in a given domain; radial SLE, which connects a boundary point to an interior point;

and whole-plane SLE, which connects two points on the Riemann sphere. We will provide

preliminary details on the chordal and radial cases in the next chapter; see [28, 3, 45] for

some expository work on SLE which go into further details.

The study of canonical probability measures on the space of two dimensional Riemannian

manifolds is often called “two-dimensional quantum gravity”. The final chapter of the thesis

focuses on the study Liouville quantum gravity, which realizes one natural way to produce a

“random geometry” from the Gaussian free field. Recall that the Riemann uniformization

theorem states that every smooth simply connected Riemannian manifold can be conformally

mapped to either the unit disc, the complex plane, or the complex sphere. In other words, M

can be parametrized by points z = ix+ y in one of these spaces such that the metric takes

the form eλ(z)(dx2 + dy2) for some real-valued function λ. LQG shows a way to extend this

parametrization to a setting where λ is a generalized function (or a random distribution).

In Liouville quantum gravity, one takes λ to be a multiple of the GFF and seeks to

define a measure µh = eγh(z)dz where h is an instance of the Gaussian free field on a simply

connected domain D ⊂ C and γ ∈ (0, 2]. Since h is a distribution, not a function, we require

a regularization procedure to make this precise. One natural approach is to consider averages

of the GFF over a given region, and then take a limit. For example, we can set hϵ(z) be the
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average value of h on the circle of radius ϵ centered at z (or an analogous average defined using

a bump function supported inside that circle) and then write µh = limϵ→0 ϵ
γ2
2 eγhϵ(z)d(z).

We interpret the pair (D,µ) as describing a“random surface” W conformally parametrized

by D with area measure µh.

We may also parameterize the same surface with a different domain, under the LQG

coordinate change rule. If φ : D̃ → D is a conformal map, one can write

h̃ = h ◦ φ+Q log |φ′|, (1.1)

where Q = 2
γ

+ γ

2 . The measure µh̃ on D̃ is then a.s. equivalent to the pullback via φ−1 of

the measure µh on D. It is known that the coordinate change rule a.s. holds simultaneously

for all possible φ. Two domain/field pairs (D, h), (D̃, h̃) are said to be equivalent as LQG

surfaces if they are related as in (1.1). An LQG surface is an equivalence class of domain/field

pairs with respect to this equivalence relation. We think of two equivalent pairs as being two

embeddings of the same surface. We remark that the set of pairs (D,µh) obtained from the

set of pairs (D, h) in an equivalence class is itself an equivalence class with respect to the

usual measure pullback relation

It is known that LQG surfaces admit a canonical metric, i.e., a distance function Dh. This

metric is realized as a continuum limit of a family of random metrics known as the ϵ-Liouville

first passage percolation (LFPP). This metric is characterized by a specific set of axioms, and

obeys a coordinate change rule similar to that of the measure, at least for specific choices of

the parameter γ. See [19], for example, for introductory material on the study of LQG.

1.2 Discrete models

While we will focus primarily on SLE, which is the continuum model, familiarity with some

of the discrete models aids greatly in understanding it. Thus, we will present some of these
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discrete models. Through the application of conformal invariance assumptions, we will derive

certain properties that we expect the continuum measure to exhibit. For example, we know

that the chordal SLE6 is the scaling limit of the lattice interface of the site percolation on the

triangular lattice where one imposes monochromatic boundary conditions on R+ and R− [44];

chordal SLE8 is the scaling limit of uniform spanning tree Peano curve [30]; chordal SLE4 is

the scaling limit of the contour line of the two-dimensional discrete Gaussian free field with

appropriate boundary values [41]; chordal SLE2 is the scaling limit of loop erased random

walk with two marked points, started at one and conditioned to leave the domain near the

other [27]. There is also strong mathematical evidence in support of SLE8/3 realizing the

scaling limit of the self avoiding walk.

1.2.1 Self-Avoiding walk

A self-avoiding walk (SAW) of length n on the integer lattice Z2 = Z + iZ is a sequence

of lattice points ω = [ω0, . . . , ωn] where |ωj − ωj−1| = 1 for j = 1, . . . , n, and ωj ̸= ωk for

j < k. We denote by Jn the number of SAWs of length n with ω0 = 0. It is known that

as n approaches infinity, Jn grows exponentially with n and log Jn ≍ βn. We call eβ the

connective constant. We define the exponent ν by saying that the typical diameter (with

respect to the uniform probability measure on SAWs of length n with ω0 = 0) of a SAW

is of order nν . We remark that we would expect the fractal dimension of the paths in the

continuum limit to be d = 1
ν .

To take a continuum limit, we scale the lattice by letting δ > 0 and defining ωδ(jδd) =

δω(j), where ωδ is a SAW on the lattice δZ2 parametrized so that it goes a distance of order

one in time of order one. Linear interpolation allows us to make ωδ(t) a continuous curve.

Fix D ⊂ Z2. We can then consider a finite measure on continuous curves γ : (0, tγ) → D

with γ(0+) = z, γ(tγ) = w for each integer N . This measure is obtained by giving measure

e−βn to each SAW ω of length n in Z2 with ω0 = −N , ωn = N and ω1, . . . , ωn−1 ∈ ND,
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where we identify ω with ω1/N . This gives a measure on curves in D from z to w, with total

mass

Z(D; z, w) :=
∑

ω:Nz→Nw; ω⊂ND

e−β|ω|.

It is conjectured that as N → ∞, ZN (D; z, w) is asymptotic to C(D; z, w)N−2b, where b is

a constant. Re-scaling by N2b and taking a limit yields a limiting measure µD(z, w) of total

mass C(D; z, w) supported on simple (non self-intersecting) curves from z to w in D. The

dimension of these curves will be d = 1/ν.

It is believed that this scaling limit obeys conformal invariance, the domain Markov

property, and a restriction property. Specifically, if D1 ⊂ D, then the measure µD1(z, w) is

obtained by restricting µD(z, w) to paths that lie in D1. If this limit exists, then it is known

that it must be SLE8/3.

1.2.2 Loop erased random walk

For any ω = [ω0, . . . , ωm], we define the loop-erasure L(ω) of ω inductively as follows:

L0 = ω0, and for all j ≥ 0, we define inductively nj = max{n ≤ m : xn = Lj} and

Lj+1 = (ω1+nj
, . . . , ωm) until j = σ where Lσ := ωm. In other words, we have erased the

loops of ω in chronological order. The number of steps σ of L is not fixed.

Suppose that (Xn, n ≥ 0) is a recurrent Markov chain on a discrete state-space S started

from X0 = x. Suppose that A ⊂ S is non-empty, and let τA denote the hitting time of A by

X. Let p(x, y) denote the transition probabilities for the Markov chain X. We define the

loop-erasure L = L(X[0, τA]) = LA of X up to its hitting time of A. We call σ the number

of steps of LA. For y ∈ A such that with positive probability LA(σ) = X(τA) = y, we call

L(x, y;A) the law of LA conditioned on the event {LA(σ) = y}. In other words, it is the law

of the loop-erasure of the Markov chain X conditioned to hit A at y.

We can prove a Markovian property for Loop erased random walks, as a means of
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significantly restricting the candidate pool for its possible scaling limits. More precisely,

consider y0, . . . , yj ∈ S so that with positive probability for L(x, y0;A),

{Lσ = y0, Lσ−1 = y1, . . . , Lσ−j = yj}.

Then, the conditional law of L[0, σ − j] given this event is L(x, yj ;A ∪ y1, . . . , yj). This

property shows that it is in fact fairly natural to index the loop-erased path backwards (define

γj = LA
σ−j , so that γ starts on A and goes back to γσ = x). Then, the time-reversal of

loop-erased (conditioned and stopped) Markov chains have themselves a Markovian-type

property.

Let us now come back to our two-dimensional setting: Suppose that ω is a simple random

walk on the grid δZ2 (we will then let the mesh δ of the lattice go to 0) that is started from

0. Let D ⊊ C be a simply connected domain, and let Dδ = δZ2 ∩D, A = Aδ = δZ2 \D.

We are interested in the law of γδ as δ → 0, which is defined as the time-reversed

loop-erasure of ω[0, τA]. Note that the law of ωτA converges to the harmonic measure on ∂D

from 0, so that it is possible to study the behavior of γδ conditional on the value of {γδ = yδ
0}

where yδ
0 → y ∈ ∂D as δ → 0. It is natural to keep in mind that simple random walk

converges to planar Brownian motion which is conformally invariant, and that on the other

hand the chronological loop-erasing procedure is purely geometrical, and so it it reasonable

to guess that when δ → 0, the law of γδ should converge to a conformal invariant curve that

should be the loop-erasure of planar Brownian motion.

This doesn’t quite work as the geometry of planar Brownian motion becomes far too

complicated. Indeed, there is no simple (even random) algorithm to loop-erase a Brownian

path in chronological order. Yet, the previous heuristic strongly suggests the law of γδ should

converge, and that the limiting law is invariant under conformal transformations: The scaling

limit of LERW in D should be (modulo timechange) identical to the conformal image of the

scaling limit of LERW in D′.
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Again, we are looking for a continuum limiting measure on paths µD(z, w) with paths of

dimension d (not the same d as for SAW). The limit should satisfy:

• Conformal covariance

• Domain Markov property

However, we would not expect the limit to satisfy the restriction property. The reason is

that the measure given to each self-avoiding walk ω by this procedure is determined by the

number of ordinary random walks which produce ω after loop erasure. If we make the domain

smaller, then we lose some random walks that would produce ω and hence the measure would

be smaller. In terms of Radon-Nikodym derivatives, we would expect:

dµD1(z, w)
dµD(z, w) < 1.

1.2.3 Percolation

Suppose that every point in the triangular lattice in the upper half plane is colored black or

white independently with each color having equal probability.

We introduce a boundary condition on the bottom row such that it is entirely black on

one side of the origin and entirely white on the other side. For any color realization, there

exists a unique path called the percolation exploration process that starts at the bottom

row and has all white vertices on one side and all black vertices on the other side. Similarly,

we can start with a domain D and two boundary points z, w, where one arc has a black

boundary condition and the other has a white boundary condition. We then place a fine

triangular lattice inside D, color vertices independently in black or white with probability

1/2, and consider the path connecting z and w. We hope for a continuous interface in the

limit. Unlike the previous examples, the total mass of the lattice measures is 1, meaning

b = 0. We assume that the curve is conformally invariant and satisfies the domain Markov
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property. Additionally, the scaling limit of percolation satisfies the locality property, which

is stronger than the restriction property satisfied by SAW. If D1 is a subset of D and z,

w ∈ ∂D ∩ ∂D1, and only an initial segment of γ is visible, then to determine the measure

of the initial segment, we only need to observe the percolation cluster’s value at vertices

adjoining γ. As a result, the measure of the path is the same whether it is considered a curve

in D1 or a curve in D.
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CHAPTER 2

PRELIMINARIES

In this chapter, we discuss a number of known results about SLE that are needed in proving

results about the SLE trace.

2.1 Loewner Chains

Let H denote the upper half plane and let γ : (0,∞) → H be a continuous curve starting at

the origin such that |γt| → ∞ as t → ∞. We set Kt := γ(0, t], and let Ht be the unbounded

component of H \ Kt. As Ht is a simply connected domain, thus the Riemann Mapping

theorem says there is a conformal transformation

gt(z) : Ht → H,

satisfying the hydrodynamic normalization at infinity, i.e, as z → ∞,

gt(z) = z + a(t)
z

+ O(z−2). (2.1)

Notice this uniquely determines gt among conformal transformations from Ht to the upper

half plane. The quantity a(t) is known as the half plane capacity of γt, written as hcap(γt),

and functions as a natural parametrization for the curve. Moreover, the map t 7→ hcap(γt)
2 is a

non-decreasing homeomorphism on [0, T ) and so we may reparametrize so that hcap(γt) = 2t.

The chordal Loewner equation establishes a one-to-one correspondence between continuous

valued paths (Ut)t>0 and increasing families (Kt)t>0 of compact H-hulls having a certain

local growth property.

Definition 2.1.1. Let (Kt)t>0 be a family of increasing H-hulls. For Kt+ = ⋂
s>tKs and
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for s < t, set Ks,t = gKs
(Kt \Ks). We say that (Kt)t>0 has the local growth property if

rad(Kt,t+h) → 0 as h → 0 uniformly on compact sets in t,

where

rad(K) := inf{r ≥ 0 : K ⊂ rD + x for some x ∈ R}.

The first connection between the family of growing compact H-hulls and the real-valued

path (Ut)t>0 is done in the following proposition.

Proposition 2.1.1. Let (Kt)t>0 be an increasing family of compact H-hulls having the local

growth property. Then, Kt+ = Kt for all t, and the mapping t 7→ hcap(Kt) is continuous

and strictly increasing on [0,∞). Moreover, for all t > 0, there is a unique Ut ∈ R such that

Ut ∈ Kt,t+h for all h > 0, and the process (Ut)t>0 is continuous.

The process (Ut)t>0 is called the driving function of (Kt)t>0. We note that the map

t 7→ hcap(Kt)
2 is a non-decreasing homeomorphism on [0, T ) and so we may reparametrize so

that hcap(Kt) = 2t.

Theorem 2.1.2. Let (Kt)t>0 be a family of increasing compact hulls in H satisfying the

local growth property with hcap(Kt) = 2t. Let (Ut)t>0 be its driving function. Set gt = gKt

and T (z) = inf{t > 0 : z ∈ Kt}. Then, for all z ∈ H, the function (gt(z) : t ∈ [0, T (z))) is

differentiable with respect to t and satisfies the Loewner differential equation

ġt(z) = 2
gt(z) − Ut

, g0(z) = z. (2.2)

Here, ġt(z) denotes the derivative of gt(z) with respect to t. Moreover, if T (z) < ∞, then

|gt(z) − Ut| → 0 as t → T (z).

We note that the converse of the above statement is also true, i.e., we may recover the

family of hulls (Kt)t>0 from the driving function.
10



Theorem 2.1.3. Let Ut be a continuous, real-valued function. For all z ∈ C \ {U0}, there

exists a unique time Tz ∈ (0,∞) and a unique continuous map (gt(z) : t ∈ [0, Tz)) in

H \Kt = Ht such that, for all t ∈ [0, Tz), we have gt(z) ̸= Ut and

gt(z) = z +
∫ t

0
2 ds

gs(z) − Us
,

and such that |gt(z) − Ut| → 0 as t → T (z) whenever Tz < ∞. Set TU0 = 0, and define

Ht = {z ∈ H : Tz > t}.

Then, for all t > 0, Ht is open and gt : Ht → H is conformal onto H. Moreover, the family

of sets Kt = {z ∈ H : T (z) ≤ t} is an increasing family of compact H-hulls having the local

growth property with hcap(Kt) = 2t, and gKt
= gt, for all t.

We can make sense of Theorem 2.1.3 as follows. Suppose t 7→ Ut is a continuous, real-

valued function. For each z ∈ H, if we define gt(z) as the solution to (2.4), then one can show

that the solution exists up to some time Tz ∈ (0,∞]. If Ht = {z ∈ H : Tz > t} as defined

previously, then it can be shown that gt is a conformal transformation of Ht onto H with

gt(z) − z = o(1) as z → ∞. We would like to define a curve γ by the limit

γ(t) = g−1
t (Ut) = lim

y→0+
g−1

t (Ut + iy). (2.3)

The quantity g−1
t (Ut + iy) always makes sense, but it is not true that the limit can be taken

for every continuous Ut. The “problem” functions Ut have the property that they move faster

along the real line than the hull is growing. From the simple example above, we see that if

the driving function remains constant, then in time O(t) the hull grows at rate O(
√
t). If

Ut = o(
√
t) for small t, then we are fine. In fact, the following holds.
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Theorem 2.1.4. [28]

• There exists c0 > 0 such that if Ut satisfies |Ut+s − Ut| ≤ c0
√
s for all s sufficiently

small, then the curve γ exists and is a simple curve.

• There exists c1 < ∞ and a function Ut satisfying |Ut+s − Ut| ≤ c1
√
s for all t, s for

which the limit (2.3) does not exist for some t.

Definition 2.1.2. Suppose t 7→ Ut is a driving function. We say that Ut generates the curve

γ : [0,∞) → H if for each t, Dt is the unbounded component of H \ γ(0, t].

2.2 Schramm Loewner Evolution

We now work our way to the definition of SLE, which we view as a measure on curves in

H; see [28, 40, 3] for a more thorough treatment of basic properties of SLE. To make things

precise, we highlight the assumptions needed on these probability measures on curves γt,

namely scale invariance and the domain Markov property. That is, for a probability measure

P on curves γ : [0,∞) → H we require the following the following:

• (Scale Invariance) If r > 0 and Pr denotes the probability measure obtained by scaling

the curve γ, i.e. considering the curve rγ, then Pr = P.

• (Conformal Markov Property) Suppose the segment γ[0, t] is known, and we let g :

Ht → H be a conformal transformation defined in the previous section with g(γ(t)) = 0

and g(∞) = ∞. Then the conditional distribution of g(γ(t,∞)) given γ[0, t] is P.

2.2.1 Chordal SLE

Consider a scale invariant measure P satisfying the domain Markov property, and supported

on curves γt that are parametrized by hcap. For our choice of gt defined in the previous

12



section, Theorem 2.1.2 implies that

∂tgt(z) = 2
gt(z) − Ut

, g0(z) = z. (2.4)

Conformal invariance and the domain Markov property imply that Ut must be a continuous,

real-valued function with stationary, independent increments. This implies that Ut must be a

standard one-dimensional Brownian motion, with drift m and variance κ. Scale invariance

forces m = 0, and thus we are left with a one-parameter collection of maps {gt}. This gives

us a precise definition of SLE; a one-parameter family of solutions to the Loewner equation

driven by a Brownian motion. For ease of notation we will reparametrize the Loewner

equation under the time change t 7→ t
κ so that (2.4) becomes

∂tgt(z) = a

gt(z) − Ũt
g0(z) = z, (2.5)

where the parameter a = 2
κ and Ut := Ut/κ, which is a standard Brownian motion. This

allows us to formally define SLE as follows.

Definition 2.2.1. Suppose a = 2
κ > 0 and Ut := −Bt is a standard Brownian motion. Let

gt solve

∂tgt(z) = a

gt(z) − Ut
, g0(z) = z (2.6)

Then gt is called the Schramm Loewner Evolution with single parameter κ from 0 to ∞ in H.

The parametrized family of maps {gt}t≥0 is called chordal SLEκ.

Remark 2.2.1. The above definition exploits a particular parametrization, but often times

it is more convenient, for the sake of analyzing the curves, to reparametrize by other natural

quantities. For example, when illustrating the various phases of the SLE curves (which, for

now, we assume exists), it is convenient to parametrize by conformal radius, so that a two

dimensional problem can be reduced to a simpler, one dimensional radial Bessel equation.

13



Let

ft(z) := g−1
t (z), f̃t(z) := ft(z + Ut).

Then we may define the SLE curve (which is often referred to as the SLE trace) as the

(formal) limit lim
z↓0

f̃t(z), where z tends to 0 in H.

Theorem 2.2.2. Chordal SLEκ is generated by a continuous curve.

This was proved in [40] for κ ̸= 8. The κ = 8 case is more delicate, and was proved by

showing that the measure is obtained as a limit of measures on discrete curves [30].

Proposition 2.2.3.

(i) SLEκ is scale invariant in the following sense. For r > 0, the process (t, z) 7→ r−1gr2t(rz)

is distributed as the process (t, z) 7→ gt(z)

(ii) Let t0 > 0. The map (t, z) 7→ g̃t(z) := gt+t0 ◦ g−1
t0 (z+Ut0) is distributed as (t, z) 7→ gt(z).

2.2.2 Radial SLE

Another form of SLE is radial SLE which, unlike the previous case, is concerned about

connecting boundary points to a distinguished point on the interior of a given domain. There

are many ways we can construct this, but we start with the most natural way, which deals

with a process connecting a boundary point on the unit disc to the origin. The half-plane

capacity parametrization is convenient for curves going from one boundary point to another

(∞ is a boundary point of H). When considering paths going from a boundary point to an

interior point, it is convenient to consider the radial parametrization which is another kind of

capacity parametrization. We expect this to be true for all simply connected Domains by

conformal invariance, so it suffices to consider paths from the boundary of the unit disc to

the origin.

Definition 2.2.2. If D ⊂ C is a simply connected domain and z ∈ D, then the conformal
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radius of z in D is defined to be |f ′(0)| where f : D → D is a conformal transformation with

f(0) = z. We let ΥD(z) denote one-half times the conformal radius.

By definition, ΥD(0) = 1/2 and a straightforward calculation shows that ΥH(z) = Im(z).

If γ is a simple curve, let Dt = D \ γ(0, t].

Definition 2.2.3. The curve γ has a radial parametrization (with respect to z) if

log ΥDt
(z) = −at+ r,

for some a, r ∈ R.

Suppose γ : (0,∞) → D \ {0} is a simple curve with γ(0+) = w ∈ ∂D, and γ(∞) = 0. For

each t, let gt be the unique conformal transformation of Dt onto D with gt(0) = 0, g′
t(0) > 0.

We assume that the curve has the radial parametrization with log[2Υ(Dt(0))] = −2at. In

other words, g′
t(0) = e2at. With this setup, we may state the following theorem.

Theorem 2.2.4. Suppose γ is a simple curve as above. Then for z ∈ D, gt(z) satisfies the

differential equation
∂gt(z)
∂t

= a

2gt(z)
gt(z) + e2iUt

gt(z) − e2iUt
, g0(z) = z,

where e2iUt = gt(γ(t)) = limw′→γ(t) gt(w′). Moreover, the function t 7→ Ut is continuous. If

z /∈ γ(0,∞), then the equation is valid for all t. If z = γ(s), then the equation is valid for

t < s.

Definition 2.2.4. For κ > 0, radial SLE is defined to be the solution to the differential

equation

∂tgt(z) = 2agt(z)
e2iUt + gt(z)
e2iUt − gt(z)

, (2.7)

with Ut = −Bt a standard Brownian motion.
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Originally, radial SLE was defined with the parametrization that gives conformal radius

e2iUt , so that the conformal maps gt are just defined as solutions to

∂tgt(z) = gt(z)
Ut + gt(z)
Ut − gt(z)

, (2.8)

for z ∈ D. The sets Kt and Ht are defined as in the chordal case.

2.2.3 Phases of SLE

The next theorem shows the three “phases” of SLE from the perspective of a point z ∈ H.

Recall that one can scale a standard Brownian motion, either in time or space, to obtain a

Brownian motion of any diffusivity. In a sense, all Brownian motions “look the same”, with

different rates of growth. SLE, on the other hand, exhibits markedly different behaviour as

the parameter κ is varied. In particular, SLE runs through three phases which we summarize

below; see [40] for a proof of this result.

Theorem 2.2.5. Suppose γ is a chordal SLEκ in H.

• If κ ≤ 4, then γ is a simple curve with γ(0,∞) ⊂ H.

• If 4 < κ < 8, then γ has double points and γ(0,∞) ∩ R ̸= ∅. The curve is not

plane-filling, that is to say, H \ γ(0,∞) ̸= ∅.

• If κ ≥ 8, then the curve is space-filling, that is, γ[0,∞) = H.

2.3 Gaussian free field

There is a strong connection between SLE and the Gaussian free field (GFF). In particular,

SLE curves are realized as flow lines of the GFF, as seen in [31, 32, 33, 34]. Here we discuss

the basic construction of the field, from the viewpoint of indexing a family of Gaussian

random variables by continuous, compactly supported functions. We follow the construction
16



given in [42]. Let D ⊆ C be a simply connected domain. Consider the real L2 space with the

inner product

(f, g) :=
∫
D
f(z)g(z) dµ(z), f, g ∈ L2(D),

where µ(z) is the Lebesgue measure on C; dµ(z) =
√

−1 dz dz̄/2. Let ∆ be the Dirichlet

Laplacian acting on L2(D). In Then −∆ has positive discrete eigenvalues so that −∆en =

λnen, en ∈ L2(D), n ∈ N. We assume that the eigenvalues are labeled in non-decreasing order;

0 < λ1 ≤ λ2 ≤ . . . . The system of eigenfunctions {en}n∈N forms a countable orthonormal

basis of L2(D). The asymptotic behavior of eigenvalues obeys Weyl’s formula:

lim
n→∞

λn

n
= O(1).

For f, g ∈ C∞
c (D), the Dirichlet inner product is defined by

(f, g)∆ := 1
2π

∫
D

∇f(z)∇g(z) dµ(z). (2.9)

The Hilbert space completion of C∞
c (D) with respect to (·, ·)∆ will be denoted by W(D).

We write ∥f∥∆ =
√

(f, f)∆. If we set un =
√

2π
λn
en, n ∈ N, then integration by parts tells us

that {un}n∈N forms a countable orthonormal basis of W(D).

Let Ĥ(D) be the space of formal infinite series in {un}n∈N, which is obviously isomorphic to

RN by setting Ĥ(D) ∋
∑
n∈N

fnun 7→ {fn}n∈N. As a subspace of Ĥ(D), W(D) is isomorphic to

ℓ2(N) ⊂ RN. For two formal series f =
∑
n∈N

fnun, g =
∑
n∈N

gnun, such that
∑
n∈N

|fngn| < ∞,

we define their pairing (f, g) :=
∑
n∈N

fngn. In the case when f, g ∈ W(D), their pairing, of

course, coincides with the Dirichlet inner product (2.9).

Notice that, for any a ∈ R, the operator (−∆)a acts on Ĥ(D) as (−∆)a
∑
n∈N

fnun :=∑
n∈N

λa
nfn, {fn}n∈N ∈ RN. Using this fact, we define Ha(D) := (−∆)aW(D), a ∈ R, each

of which is a Hilbert space with the inner product (f, g)a := ((−∆)−af, (−∆)−ag)∇, f, g ∈
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Ha(D). We can prove that Ha(D) ⊂ Hb(D) for a < b using Weyl’s formula for {λn}n∈N,

and that the dual space of Ha(D) is given by H−a(D).

Define E(D) :=
⋃

a>1
2

Ha(D). Then, its dual Hilbert space is identified with E(D)∗ :=

⋂
a<−1

2

Ha(D)) and so E(D)∗ ⊂ W(D) ⊂ E(D) is established. Here (E(D), E(D)∗,W(D)) is

called a Gel’fand triple. We set ΣE(D) := σ({(·, f)∇ : f ∈ E(D)∗}). On such a setting, the

following is proved.

Theorem 2.3.1 (Bochner–Minlos theorem). Let ϕ be a positive, continuous function on

W(D), such that ϕ(0) = 1. Then there exists a unique probability measure P on (E(D),ΣE(D))

such that

ϕ(f) =
∫
E(D)

e
√

−1(h,f)∇ P(dh), f ∈ E(D)∗ (2.10)

With this, we may state the following definition.

Definition 2.3.1 (Dirichlet boundary GFF). Let D ⊊ C be a simply connected domain.

A Dirichlet boundary GFF in D is an isomatry h : W(D) → (ΩGFF
D ,FGFF

D ,PGFF
D ), where

(ΩGFF
D ,FGFF

D ,PGFF
D ) is a probability space for which each h(f), f ∈ W(D) is a mean-zero

Gaussian random variable [31].

One can construct such an isometry relying on the Bochner-Minlos theorem that is an

analogue of Bochner’s theorem applicable to the case when the source Hilbert space is infinite

dimensional. It is also known that, in this construction, the sigma field FGFF
D is generated

by the image of W(D) under h, i.e., h is full.

Thus, we may view the zero-boundary GFF on D as a random sum of the form h =
∞∑

i=1
ζiui,

where ζi are i.i.d. standard normal random variables and {ui}i≥0 an orthonormal basis for

W(D). This sum almost surely diverges within W(D); however, it does converge almost

surely in the space of distributions — that is, as n → ∞, the limit of
n∑

i=1
ζi(ui, ρ)∇ exists

almost surely for all ρ ∈ C∞
c (D), and we may define (h, ρ) :=

∞∑
i=1

ζi(ui, ρ)∇. The limiting
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value as a function of ρ is almost surely a continuous functional on C∞
c (D). In general, for

any harmonic function h0 on D, we define the GFF with boundary data h0 by h := h̃+ h0

where h̃ is the zero-boundary GFF on D. For a thorough treatment on this construction, see

[42].

We will also present a more intuitive construction of the Dirichlet GFF on a given

domain. Let D ⊂ C be a domain on which the Green’s function GD(z, w) is well defined and

finite. Intuitively, we view the field as a collection of centered Gaussian random variables

{h(z) : z ∈ D} with covariance E[h(z)h(w)] = GD(z, w). Note that GD(z, z) is infinite and

hence h(z) is a “Gaussian random variable with infinite variance”. We can still make sense of

this viewpoint as follows. If ρ is a smooth function with compact support on D, we write

formally

h(ρ) =
∫
D
h(z)ρ(z)dµ(z).

More precisely, h(ρ) is a centered Gaussian random variable with variance

GD(ρ) :=
∫
D

∫
D
GD(z, w)ρ(z)ρ(w)dµ(z)dµ(w),

where

GD(ρ)(z) =
∫
D
GD(z, w)ρ(w)dµ(w) = Ez

[∫ τD

0
ρ(Bt)dt

]
.

Here Bt is a complex Brownian motion and τD is the exit time from the domain D. Recall

that
1
2∆GD(ρ)(z) = −ρ(z).

Definition 2.3.2. The Gaussian free field on D is a centered Gaussian process {h(ρ)} indexed

by smooth functions with compact support on D satisfying linearity,

h(a1ρ1 + a2ρ2) = a1h(ρ1) + a2h(ρ2), a1, a2 ∈ R, (2.11)
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with covariance

E[h(ρ)h(ψ)] = GD(ρ, ψ) :=
∫
D

∫
D
GD(z, w)ρ(dz)ψ(dw).

Remark 2.3.2. If h satisfies (2.11), then to show that h is a Gaussian free field in D, it

suffices to show that for each ρ, h(ρ) is a centered Gaussian random variable with variance

GD(ρ). Indeed, since
n∑

j=1
cjh(ρj) = h

 n∑
j=1

cjρj

 ,
this implies that every finite linear combination has a normal distribution and hence {GD(ρ)}

has a joint Gaussian distribution. The covariance formula follows from

GD(ρ+ ψ) = GD(ρ) +GD(ψ) + 2GD(ρ, ψ).

Remark 2.3.3. As in the previous construction, we can extend to the Hilbert space completion

of C∞
c (D) under the inner product GD(·, ·). Indeed, we can consider (signed) measures µ

with the property that GD(|µ|) < ∞. If Q is a closed subspace of W(D), φ ∈ C∞
c (D), and φ̂

is the projection of φ onto Q, then φ̂ and φ− φ̂ are orthogonal, and hence h(φ̂) and h(φ− φ̂)

are independent random variables.
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CHAPTER 3

A NEW PROOF OF THE REVERSIBILITY OF SLEκ FOR κ ≤ 4

In thie chapter, we give a new proof of the reversibility of the Schramm Loewner evolution

for κ ≤ 4. The main ideas used in the proof are similar to those used in the original proof of

this result, given by Zhan [47].

3.1 Introduction

While SLE is a model for curves in equilibrium, the definition uses conditional probabilities

given the path up to a certain time and hence adds an artificial dynamic. One disadvantage

is that some properties that are expected of the limit curve, in particular reversibility, do not

follow immediately. Zhan showed this to be true [47] for κ ≤ 4, while Miller and Sheffield

were able to extend these results to κ ∈ (0, 8) [31, 32, 33] by realizing SLEκ curves as flow

lines of the Gaussian free field.

The purpose of this chapter is to give a new proof of reversibility for κ ≤ 4; we hope in

future work to extend this to 4 < κ < 8 to give a proof that does not make use of the tools

of the Gaussian free field. While we say that it is a new proof, the basic idea of the proof

is the same as that given by Zhan. Our hope is that our argument simplifies some of the

details. We write SLE for SLEκ.

• We compare SLE from 0 to x in H to SLE from x to 0. These are probability measures

on bounded curves γ with hcap(γ) < ∞. While hcap(γ) is a random quantity, it is

almost immediate from the definition that the distribution of hcap(γ) is the same for

SLE in both directions.

• We view SLE connecting two points in R as a probability measure on the final mapping-

out functions gγ .
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• We then focus on SLE from 0 to x and x to 0 conditioned to have a specific half-plane

capacity. We show that these two probability measures agree on the conformal maps

gγ for each value of hcap[γ]. By scaling it suffices to prove this for all x assuming

hcap[γ] = a.

• For each r ∈ [0, 1] we consider the probability measure µr which corresponds to the

following:

– Take SLE from 0 to x conditioned to have hcap = a stopped at time r, that is,

when hcap = ra giving γ1.

– Given γ1, let γ2 be SLE from x to γ1(r) in H \ γ1 conditioned so that hcap(γ1 ∪

γ2) = a.

– Output gγ where γ = γ1 ⊕ γ̃ where γ̃ is the reversal of γ2.

This gives a probability measure on transformations gγ with hcap[γ] = a which we

denote by µr.

• We consider this as a measure on continuous functions on a fixed closed ballK = Kh ⊂ H

where h is large enough so that Im[gγ(z)] ≥ a for all z ∈ K and hcap[γ] = a. We show

that the Prokhorov distance between µr and µs is less than c|s− r|1+δ for some δ > 0.

We conclude that µs is a constant function of s. In particular, µ0 = µ1 which is the

main result.

• The main local commutation relation which is similar to the relations in [47] and [12] is

expressed in terms of Radon-Nikodym derivatives of independent SLE paths tilted by

a Brownian loop term. This relation is nicest for κ ≤ 4, but we discuss the κ < 8 case

here in order to prepare for future work.

The chapter is organized as follows. In Section 3.2, we review SLE connecting two points

on the boundary, together with some other basic notation, and then we state the main
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theorem of this chapter. In Section 3.3, we describe the commutation relation, and show

explicitly that the measures under consideration have the same Radon-Nikodym derivative

with respect to a particular measure. In Section 5.2.1 we prove the main theorem in a

sequence of steps, relying on a few Loewner chain estimates. Finally, in Section 3.5, we give

the (delayed) proof of a basic Bessel process fact.

Throughout this chapter we fix κ = 2/a ∈ (0, 8) and allow constants, both implicit and

explicit, to depend on κ. We write just SLE for SLEκ. For a number of the results, we need

κ ≤ 4 and we say that. Let

b = 6 − κ

2κ = 3a− 1
2

be the boundary scaling exponent.

3.2 SLE in H from x1 to x2

There are several equivalent characterizations of SLE connecting two real points; here we

will take the perspective of SLE from 0 to x ∈ R \ {0} as SLE from 0 to ∞ in H tilted

by the partition function Ψ. For simply connected domains and locally analytic boundary

points z, w, the partition function for SLE is ΨD(z, w) = H∂D(z, w)b. Here H∂D(z, w) is the

boundary Poisson kernel normalized so that HH(0, x) = x−2. We also define ΨH(x,∞) = 1

for all x ∈ H. The partition function satisfies the scaling rule: if f : D → f(D) is a conformal

transformation, then

ΨD(z, w) = |f ′(z)|b |f ′(w)|b Ψf(D)(f(z), f(w)).

Although this definition of ΨD(z, w) requires that z, w be locally analytic boundary points,

ratios of partition functions can often be defined using the scaling rule as we will see below.

Suppose that gt satisfies (4.1) where Ut = −Bt is a standard Brownian motion defined on

a probability space (Ω,F ,P). Let γ(t) denote the corresponding SLEκ curve and we write
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γt = γ(0, t]. Under the measure P, γ has the distribution of an SLEκ path from 0 to ∞.

We will tilt the measure P using an appropriate local martingale to get SLE from 0 to x.

Suppose x ∈ R \ {0}, and let Xt = gt(x) − Ut and T = Tx = inf{t > 0 : Xt = 0}. For t < T ,

let Dt be the unbounded component of H \ γt, and define the local martingale Mt formally by

Mt = x1−3a ΨHt
(γ(t), x)

ΨDt
(γ(t),∞) , t < T.

The partition functions on the right-hand side are not well defined but the ratio is well defined

using the scaling rule,

ΨDt
(γ(t), x)

ΨDt
(γ(t),∞) =

∣∣∣g′(γt)
∣∣∣b g′(x)b ΨDt

(Ut, gt(x))
|g′(γt)|b g′(∞) ΨH(Ut,∞)

= g′
t(x)bX1−3a

t .

While this is formal, this shows that we can define

Mt =
(
Xt

X0

)1−3a

g′
t(x)b, t < T

and one can use Itô’s formula and the Loewner equation to see that Mt is a local martingale

satisfying M0 = 1 and

dMt = 1 − 3a
Xt

Mt dBt, 0 ≤ t < T. (3.1)

Let P∗ be the measure obtained by tilting by Mt. More precisely, if τ < T is a stopping time

such that Mt∧τ is a martingale and V is an event measurable with respect to Ft∧τ , then

P∗(V ) = E[Mt∧τ 1V ]. The Girsanov theorem states that

dBt = 1 − 3a
Xt

dt+ dWt, 0 ≤ t < T,
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where Wt is a standard Brownian motion with respect to P∗ and hence

dXt = 1 − 2a
Xt

dt+ dWt, 0 ≤ t < T.

The following is well known.

Proposition 3.2.1. Suppose 0 < x and gt is the solution to the Loewner equation (4.1)

where Ut = gt(x) −Xt and Xt satisfies

dXt = 1 − 2a
Xt

dt+ dWt, X0 = x, 0 ≤ t < T, (3.2)

where Wt is a standard Brownian motion and T = inf{t : Xt = 0}. Then γ(t), 0 ≤ t ≤ T

has the distribution of SLEκ from 0 to x parametrized by half plane capacity from infinity

stopped at the time that γT disconnects x from infinity. In particular, hcap[γT ] = aT .

Indeed to verify this, one needs only check that the conformal image of SLE from 0 to

∞ by a conformal transformation F : H → H with F (0) = 0, F (∞) = x gives the same

distribution on the driving function as (3.2).

Similarly, if Xt satisfies (3.2) and we define Ũt = gt(0) −Xt with corresponding curve γ̃,

then γ̃(t), 0 ≤ t ≤ T has the distribution of SLEκ from x to 0 parametrized by half plane

capacity from infinity stopped at the time that γT disconnects 0 from infinity.

While we may use the same Xt for SLE in both directions, the distribution of the driving

functions Ut, Ũt are different. Indeed, U0 = x, Ũ0 = 0. For this reason, we cannot conclude

the reversibility immediately from this fact. One thing that does follow is that the distribution

of the stopping time T is the same for SLE from 0 to x as for SLE from x to 0. It is the

same as the time to reach the origin for the Bessel process (3.2). Since a > 1/4 the process

reaches the origin in finite time.

There is a significant difference between κ ∈ (0, 4] and κ ∈ (4, 8). Let us consider SLE

from 0 to x with x > 0 stopped at time T . The following statements are with probability
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one with respect to the tilted measure P∗.

• If 0 < κ ≤ 4, then γ(t), 0 ≤ t ≤ T is a simple curve with γ(0) = 0, γ(T ) = x, γ(0, T ) ⊂

H.

• If 4 < κ < 8, then γ(T ) ∈ (x,∞). Although the SLE curve continues after time T ,

D∞, the unbounded connected component of H \ γ is the same as the unbounded

connected component of H \ γT .

In particular, for κ ≤ 4, the domain D∞ determines the entire curve while for 4 < κ < 8, the

domain D∞ gives only the “curve as viewed from infinity”, that is γ ∩D∞. We will prove

reversibility for the domain D∞. In this chapter, we do the κ ≤ 4 case reproving Zhan’s

result.

Theorem 3.2.2. If κ ≤ 4, the distribution of D∞, is the same for SLE from x1 to x2 and

for SLE from x2 to x1. Equivalently, the distribution of the conformal transformation g∞ is

the same.

Our proof is in the same spirit as Zhan’s proof. One novel aspect is that we choose a

realization of the Bessel process (3.2) in a two step process: we first choose a value T = t0

and then given T we run the Bessel process conditioned so that T = t0.

If Xt satisfies (3.2) where Wt is a P∗-Brownian motion, then the transition probability of

the process killed at the origin is

qs(x, y) = y

x4a+1 s2a+1
2

exp
{

−x2 + y2

2s

}
h
(
xy

s

)
,

where h = ha is an entire function with h(0) > 0. The density of T in the measure P∗ is a

constant times

ϕ(x, t) := x4a−1 t−
1
2−2a exp

{
−x2

2t

}
. (3.3)
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The Bessel process conditioned so that T = t0 is this process tilted by the P∗-martingale

Nt := ϕ(Xt, t0 − t), 0 ≤ t < t0 (3.4)

which satisfies

dNt = Nt

[
4a− 1
Xt

− Xt

t0 − t

]
dWt. (3.5)

Formally one can write ϕ(Xt, t0 − t) = E∗[1T=t0 |Xt] which can be thought of as a Doob

martingale in the measure P∗. Otherwise, the unconvinced reader may engage in a brief

Itô calculus exercise to derive (3.5). Since Mt is a P local martingale and Nt is a P∗ local

martingale, we can see that M̃t := MtNt is a P local martingale. Again, one can check this

again using Itô calculus. If we let

M̃t = M̃t,t0 = MtNt = x1−3aX3a−1
t g′

t(x)(3a−1)/2 ϕ(Xt, t0 − t), 0 ≤ t < t0,

then using (3.1) and (3.4) we see that M̃t, 0 ≤ t < t0 is a P-martingale satisfying

dM̃t =
[
a

Xt
− Xt

t0 − t

]
M̃t dBt, 0 ≤ t < t0.

If we tilt in the Girsanov sense as above by M̃t giving the new measure P̂ we have

dBt =
[
a

Xt
− Xt

t0 − t

]
dt+ dW̃t,

dXt = d[gt(x) +Bt] =
[

2a
Xt

− Xt

t0 − t

]
dt+ dW̃t,

where W̃t is a P̃-Brownian motion.

Definition 3.2.1. Suppose x1, x2 are distinct real numbers, 0 < κ < 8, and 0 < t0 < ∞.

Then SLEκ from x1 to x2 in H of time duration t0 is defined to be the solution of (4.1)
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where the driving function Ut = gt(x2) −Xt, and Xt satisfies

dXt =
[

2a
Xt

− Xt

t0 − t

]
dt+ dWt, X0 = x2 − x1, (3.6)

Ut = gt(x2) −Xt = x2 +
∫ t

0
a ds

Xs
−Xt,

where Wt is a standard Brownian motion.

If qt(x, y) denotes the transition probability for a Bessel process satisfying (3.2), killed

upon reaching the origin, then the density for a process satisfying (3.6) is

ψt(x, y; t0) = qt(x, y) ϕ(y, t0 − t)
ϕ(x, t0) .

We will need one very believable fact about this process. The proof uses standard techniques

but we delay the proof to Section 3.5. This estimate is not optimal but will be more than

sufficient for our purposes.

Proposition 3.2.3. For every 0 < κ < 8, there exists c < ∞, u > 0 such that if Xt satisfies

(3.6), then for all r > 0,

P
{

max
0≤t≤t0

|Ut − x1| ≥
√
t0 (|x2 − x1| + r2)

}
≤ c e−ur.

We denote the corresponding probability measure on paths (modulo reparametrization)

by µ#(x1, x2; t0). Assuming x1 < x2, we have the following:

• γ(0) = x1, T = t0;

• hcap[γt] = at, 0 ≤ t ≤ T ;

• If κ ≤ 4, then γT is a simple curve with γ(0, t0) ⊂ H and γ(t0) = x2. Moreover,

∂D∞ ∩ H = γ(0, t0);
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• If 4 < κ < 8, then

γ(T ) = x+ := max{y ∈ R : y ∈ γt0} > x2,

x− := min{y ∈ R : y ∈ γt0} < x1.

Indeed, ∂D∞ ∩ H is a curve connecting x− to x+.

To prove Theorem 3.2.2 it suffices to prove the following.

Theorem 3.2.4. If κ ≤ 4 then for every t0 > 0 and x1 < x2, the measure µ#(x1, x2; t0) is the

same as µ#(x2, x1; t0) if considered as probability measures on the conformal transformation

g = gt0.

By scaling and translation invariance it suffices to prove this with x1 = 0, x2 = x > 0 and

t0 = 1.

Fix x > 0 and consider the measure µr = µr,x, 0 ≤ r ≤ 1 obtained as follows:

• Grow the curve γ under the measure µ#(0, x; 1) until time r giving curve γr and

corresponding map gr. Let z1 = gr(γ(r)), w1 = gr(1).

• Given γr, let γ̃ be SLE from x to γ(r) in H \ γr conditioned so that hcap[γr ∪ γ̃] = a.

Equivalently, let η be chosen from µ#(w1, z1; 1 − r) and let γ̃ = g−1
r ◦ η. Let h = gη

and g = h ◦ gr.

Note that µ0 = µ#(0, x; 1), µ1 = µ#(x, 0; 1). We will prove the following stronger result,

Proposition 3.2.5. If κ ≤ 4 and x > 0, then for all 0 ≤ r ≤ 1, µr = µ0.

Since hcap[γ1] = a, we know that γ1 ⊂ {z : Im(z)2 ≤ 2a} and hence with probability one

for each µr, D∞ ⊃ {z : Im(z)2 > 2a}. Let I = {z : |z − (
√

8a + 1)i| ≤ 1}. Let S denote

the set of continuous functions from I to C endowed with the supremum norm ∥ · ∥. We
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also write ρ for the corresponding Prokhorov metric on probability measures on S. Since the

conformal map g is determined by its values on I, it suffices to prove that for every ϵ > 0

and 0 ≤ r < s ≤ 1, ρ(µr, µs) < ϵ. We will show the following.

Proposition 3.2.6. For every K < ∞, there exists c, δ such that if 0 < x ≤ K and

0 ≤ r ≤ s ≤ 1, we can couple (g, g̃) on the same probability space such that g has distribution

µr, g̃ has distribution µs and

P{∥g − g̃∥ ≥ c (s− r)1+δ} ≤ c (s− r)δ,

P{∥g − g̃∥ ≥ c (s− r)} ≤ c (s− r)1+δ.

We state it this way in preparation for later work in the 4 < κ < 8 case. For 0 < κ ≤ 4,

we do significantly better by giving a coupling that satisfies ∥g − g̃∥ ≤ c (s− r) for all (g, g̃)

and such that P{∥g − g̃∥ ≥ (s− r)5/4} decays faster than every power of s− r.

Note that Proposition 3.2.6 implies that there exist c, δ

ρ(µr, µs) ≤ c (s− r)1+δ.

This shows that µr is Hölder continuous of order 1 + δ in r and a standard argument shows

that this means that µr is a constant function of r and hence Proposition 3.2.5 holds.

3.3 Local commutation relation

In this section we will state the basic “commutation” relation that we will use. In order to

state the relation precisely we will set up some notation. Although we only use it for κ ≤ 4 in

this chapter, we will also give a result that holds for all 4 < κ < 8. We fix x1 ̸= x2 and t0 > 0.

Suppose γ : [0, t0] → H is a non-crossing curve parametrized by capacity from x1 to x2 in H.

Let γ̂R denote the reversed curve from x2 to x1 defined by γ̂R(t) = γ(t0 − t), 0 ≤ t ≤ t0.
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Although γ̂R is not parametrized by capacity, we can reparametrize it γR(t) = γ̂R(σ(t)) so

that for each t, hcap[γR
t ] = at. The total time duration of γR is the same as that of γ, t0.

If 0 < s1 < s2 < t0, we can write

γ = γs1 ⊕ γ[s1, s2] ⊕ γ[s2, t0],

Let us write γ1 for γs1 and γ2 for the reversal of γ[s2, t0], so that we have

γ = γ1 ⊕ η ⊕ (γ2)R. (3.7)

Let us view this at the moment as a decomposition modulo reparametrization but still

remember that hcap[γ] = at0 and we assume that

hcap[γ1 ∪ (γ2)R] = hcap[γ1 ∪ γ2] < at0.

We will also assume that

γ1 ∩ γ2 = ∅.

If κ ≤ 4, this will happen with probability one since SLEκ is supported on simple curves,

but for κ > 4 this is a nontrivial constraint.

Suppose r1 + r2 ≤ t0, V1, V2 fixed subsets of C, and τ1, τ2 are stopping times for γ1, γ2 of

the form

τj = min{s : hcap[γj
s ] = a rj or γj

s ̸∈ Vj}.

We view probability measures on curves from x1 to x2 of half-plane capacity at0 as probability

measures on ordered pairs

γ = (γ1, γ2) := (γ1
τ1 , γ

2
τ2).

Here γ1, γ2 are parametrized by capacity, that is, hcap[γj
s ] = as. Note that if γ1, γ2 are
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Figure 3.1: We grow SLE from 0 to x until we reach hcap ar (note that, by our choice of
parametrization, this corresponds to time r). We then start SLE from x to γ1(r) stopped
before its hcap reaches a(1 − r). The difference in the construction of the measures P∗

1 and
P2

2 comes in the middle piece, which we may construct in two ways.

nontrivial, then

hcap[γ1 ∪ γ2] < hcap[γ1] + hcap[γ2] ≤ a(r1 + r2) = t0,

and hence the η in (3.7) is nontrivial. We will also assume that the stopping time is such

that with probability one, γ1 ∩ γ2 = ∅. If κ ≤ 4, t since η is not trivial. For κ > 4, we will

guarantee it by choosing stopping times such that γ1 ⊂ V1, γ2 ⊂ V2 for some deterministic

V1, V2 with V1 ∩ V2 = ∅. We now let P∗
j be the probability measure on γ given by

• Choose γj from SLEκ from xj to x3−j , conditioned to have total capacity at0, stopped

at time τj . Let zj = γj(τj).

• Given γj , choose γ3−j from SLEκ from x3−j to zj in H \ γj , conditioned to that the

total capacity of the union of the curve and γj is at0, stopped at time τ3−j .

The commutation result is that P∗
1 = P∗

2. We sketch the proof by giving the Radon-Nikodym

derivative of each of the measures with respect to P, the measure obtained from independent

SLEκ paths. To state this we give some notation. Let Dj = H \ γj , D = H \ γ. Let gj , g

be the corresponding conformal maps; let zj = γj(τj), U j = gj(zj) and define h2, h1 by

h2 ◦ g1 = g = h1 ◦ g2.
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Figure 3.2: The maps g1, g2, h1 and h2 exhibit a commutative relation.

Proposition 3.3.1. The Radon-Nikodym derivative of P∗
j with respect to P, the measure

obtained from independent SLE paths from 0 to infinity stopped at times τ1, τ2, is given by

dP∗
j

dP
(γ) = h′

1(U2)b h′
2(U1)b exp

{c
2 mH(γ1, γ2)

}

× |g(z2) − g(z1)|2b

|x2 − x1|2b

ϕ(|U2 − U1|, t0 − τ1 + τ2)
ϕ(|x2 − x1|, 1) .

Here b = (6 − κ)/2κ is the boundary scaling exponent, c = (6 − κ)(3κ− 8)/2κ is the central

charge, and mH(γ1, γ2) denotes the Brownian loop measure of loops in H that intersect both

γ1 and γ2 and ϕ is as in (3.3). In particular, P∗
1 = P∗

2.

Proof. Without loss of generality, we assume t0 = 1. We will prove the result for j = 1.

• We start by choosing γ1 using SLEκ from x1 to x2 stopped at time τ1. Here we are not

conditioning on the total time duration of the path. The Radon-Nikodym derivative of

this with respect to SLE from 0 to infinity, restricted to the event that the total time

duration is greater than τ1 is

g′
1(x2)b |g1(x2) − U1

t |2b

|x2 − x1|2b
.
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Let η2 = g1 ◦ γ2.

• Given γ1, we will choose γ2 using SLE from x2 to z1 in the domain D1. We will do

this in two steps.

• We first choose γ2 using SLE from x2 to infinity in D1. Using the basic martingale of

the restriction property this gives Radon-Nikodym derivative

exp
{c

2 mD(γ1, γ2)
}
h′

1(U2)b

g′
1(x2)b

.

Note that η2 := g1 ◦ γ2 is an SLE from g1(x2) to infinity.

• We now tilt again so that η2 := g1 ◦ γ2 is an SLE from g1(x2) to U1. This gives a

Radon-Nikodym derivative

h′
2(U1)b |h2(η2(τ2)) − h2(U1)|2b

|g1(x2) − U1|2b
= h′

2(U1)b |g(z2) − g(z1)|2b

|g1(x2) − U1|2b
.

• Multiplying the last two gives

exp
{c

2 mD(γ1, γ2)
}
h′

1(U2)b h′
2(U1)b

g′
1(x2)b

|g(z2) − g(z1)|2b

|g1(x2) − U1|2b
.

• We thus have that the Radon-Nikodym derivative restricted to the event that the total

time duration is greater than τ1 + τ2 is given by:

h′
1(U2)b h′

2(U1)b exp
{c

2 mD(γ1, γ2)
} |g(z2) − g(z1)|2b

|x2 − x1|2b
.

• If we now condition so that the total time duration is one we get
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Figure 3.3: The difference in the construction comes in the curves η and η̃. Given this, we
may sample from µr and µr+ϵ respectively, allowing us to conclude using basic facts about
the Loewner equation.

h′
1(U2)b h′

2(U1)b exp
{c

2 mD(γ1, γ2)
} |g(z2) − g(z1)|2b

|x2 − x1|2b

ϕ(|U2 − U1|, 1 − (τ1 + τ2))
ϕ(|x2 − x1|, 1) .

3.4 Proof of main Theorem

We will use some basic facts about the Loewner equation.

Proposition 3.4.1. [28, Proposition 3.46] There exists c < ∞ such that if D = H \K is a

simply connected domain with r = sup{|z| : z ∈ K} and h = hcap(K), then the corresponding
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conformal map g : D → H satisfies for |z| ≥ 2r,

∣∣∣∣∣gD(z) − z − h

z

∣∣∣∣∣ ≤ c rh

|z|2
.

In particular, if K, K̃ are two such hulls with h = h̃, then for |z| ≥ 2(r ∧ r̃),

|g(z) − g̃(z)| ≤ c (r + r̃)h
|z|2

.

Proposition 3.4.2. [28, Proposition 4.13] There exists c < ∞, such that if Ut is a driving

function with U0 = 0 and γt is the corresponding curve, then

diam[γt] ≤ c

[√
t+ max

0≤s≤t
|Us|

]
.

We also need some easy estimates about our Bessel process conditioned to reach the origin

at a given time.

Lemma 3.4.3. If K < ∞, there exists ϵ0 > 0 such that if Xt satisfies (3.6) with t0 = 1 and

|x2 − x1| ≤ K, then as ϵ → 0,

P
{
|X1−ϵ| ≥

√
ϵ log(1/ϵ)

}

decays faster than every power of ϵ.

Proof. By a coupling argument, the probability on the left restricted to |x2 − x1| ≤ K is

maximized when x2 − x1 = K. In this case, we can look at the transition probability.

We write ϵ = s− r. We decompose a simple path γ from 0 to x with hcap[γ] = a as

γ = γ1 ⊕ η ⊕ (η′)R ⊕ (γ2)R,
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where the decomposition is defined by

hcap[γ1] = ra, hcap[γ1 ∪ η] = sa, hcap[γ1 ∪ γ2] = (t0 − ϵ)a.

Using the definition and the conformal Markov property, we can see that when we sampling

from µs we choose the paths in order γ1, η, γ2, η′. When we sample from µr we use the order

γ1, γ2, η′, ηR. In each case the distribution is SLE to the endpoint of the other curve in the

domain slit by the curves at that point, conditioned to have the appropriate total half-plane

capacity and stopped as specified above.

We now use Proposition 3.3.1 to say that another way to sample from µs is to choose the

paths in order γ1, γ2, η, η′. Hence we can write the sampling as follows. Steps 1 and 2 are

the same for both sampling methods. Step 3a is used for µs and Step 3b is used for µr.

• Step 1: Choose γ1 from SLE from 0 to x0 conditioned to have total half-plane

capacity a stopped at time r, that is, stopped when hcap[γ1] = ar. Let z1 = γ(r), let

ĝ : H \ γ1 → H be the corresponding transformation, and let y1 = ĝ(z1), x1 = ĝ(x0).

• Step 2: Choose η from SLE from x1 to y1 conditioned to have total half-plane

capacity a(1 − r) stopped at time 1 − s, that is, stopped when hcap[η] = a(1 − s). Let

h : H\η → H be the corresponding transformation, and let y2 = h(y1), x2 = h(η(1−s)).

Let γ2 = ĝ−1◦η and w1 = g−1(η(1−s)). Let ĥ = h◦g and note that ĥ : H\(γ1∪γ2) → H

is the corresponding conformal transformation which satisfies ĥ(z1) = y2, ĥ(w1) = x2.

• Step 3a: Choose ω1 from SLE from y2 to x2 conditioned to have total half-plane

capacity aϵ stopped at the first time that

hcap[h−1 ◦ ω1] = aϵ.
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This is the same as the first time that

hcap[γ1 ∪ ĥ−1 ◦ ω1] = as.

Let this time be u and let ϕ : H \ ω1 → H be the corresponding transformation with

y3 = ϕ(ω1
u), x3 = ϕ(x2). Let ω̃2 be chosen from SLE from x3 to y3 conditioned to have

half-plane capacity a(ϵ− u) giving conformal map ϕ̂ and let ω2 = ϕ̂−1 ◦ ω̃2 and

ω = ω1 ⊕ [ω2]R.

Let ψ : H \ ω → H be the corresponding conformal transformation.

• Step 3b Choose ω∗ from SLE from x2 to y2 conditioned to have total half-plane

capacity aϵ and set

ω̂ = [ω∗]R.

Let ψ̂ : H \ ω̂ → H be the corresponding conformal transformation.

In our coupling we use the complete coupling for steps 1 and 2. Hence we write

g = ψ ◦ h, g̃ = ψ̃ ◦ h,

where h is the same in both cases. If z ∈ I, then Im(h(z)) ≥
√

4a. Except for an event of

probability that decays faster than every power of ϵ, we have x2 − y2 ≤ ϵ1/2 log(1/ϵ). Using

this, we see that in step 3a and in step 3b we get a curve with the same initial and terminal

points, of half plane capacity aϵ and such that, except for an event of probability that decays

faster than every power of ϵ, has diameter bounded by ϵ1/2 log2 ϵ. Let ψ, ψ̃ be the conformal

transformations. Then if Im(z) ≥
√
a we have

|ψ(z) − ψ̃(z)| ≤ c ϵ,
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Figure 3.4: A schematic showing the full picture, though not drawn to scale (in particular,
the yellow and blue segments ought not to have comparable lengths). The dotted arrows on
the right correspond to the commutation relation, and together with some Loewner estimates,
we may conclude that the laws of the measures obtained, regardless of the path one chooses
in the schematic, are the same.
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and, except for an event of probability that decays faster than every power of ϵ,

|ψ(z) − ψ̃(z)| ≤ ϵ5/4.

Therefore, in this coupling, with probability one ∥g − g̃∥ ≤ c ϵ and

P{∥g − g̃∥ ≥ ϵ5/4} ≤ c ϵ3.

3.5 Proof of Lemma 3.2.3

We fix a > 1/4 and allow constants to depend on a. We assume that Xt satisfies (3.6). For

ease we will assume x > 0 but the proof with x < 0 is essentially the same.

The proof follows from the easy estimate

−Xt ≤ Ut ≤
∫ t

0
a

Xs
ds

and the following two lemmas that handle the two sides of the inequality. For the lower

bound, we get a somewhat sharper estimate.

Lemma 3.5.1. There exists c < ∞ such that if Xt satisfies (3.6) with X0 = x0
√
t0 > 0,

then for all r > 0,

P
{

max
0≤t≤t0

(Xt/
√
t0) ≥ x0 + r

}
≤ c exp

{
−r2

4

}
.

Proof. We may assume that r2 ≥ 1+4a and by scaling we may assume t0 = 1. Let y = x0 +r

and let σ = inf{t : Xt = y}. The equation (3.6) can be obtained by starting with Xt satisfying

(3.2) where Wt is a P∗ Brownian motion and then tilting by the martingale Nt as in (3.5) to
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get the measure P. Hence,

P{σ < 1} ≤ M−1
0 E∗ [Mσϵ ;σϵ < ∞] .

Note that

M0 = x4a−1
0 exp

{
−x2

0
2

}
,

and if σ < 1,

Mσ ≤ max
0≤t≤1

y4a−1 (1 − t)−1
2−2a exp

{
− y2

2(1 − t)

}
= y4a−1 e−y2/2.

The equality uses r2 ≥ 1 + 4a. Therefore,

Mσ

M0
≤
[
1 + log(1/ϵ)

x0

]4a−1
exp

{
−x0 r − r2

2

}
≤ c exp

{
−r2

4

}
.

Lemma 3.5.2. If a > 1/4, there exist u > 0 and c < ∞ such that for any x > 0 and t0 > 0

if Xt satisfies (3.6), then for all r > 0,

Px

{∫ t0

0
ds

Xs
dy ≥ r

√
t0

}
≤ c e−ur.

Proof. Let

In =
∫ 1

0
ds

Xs
1{2−n ≤ Xs < 2−n+1} ds.

Our first goal is to show that there exists c∗ < ∞ such that for all x, t0, n,

Ex[In] ≤ c∗ 2−n, Px{In ≥ c∗ 2−n+1} ≤ 1
2 . (3.8)

The second follows from the first by the Markov property; by scaling, It suffices to show the
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first inequality for n = 0. By the strong Markov property, we may assume that 1 ≤ x ≤ 2;

otherwise, we first run the process until it reaches [1, 2]. Also, note that

Ex[I0] ≤
∫ 2

1

∫ t0

0
ϕt(x, y; t0) dt dy.

Using the immediate estimate

∫ 2

1

[∫ t0

t0−1
ϕt(x, y; t0) dt+

∫ 1

0
ϕt(x, y; t0) dt

]
dy ≤ 2,

we see that it suffices to show that there exists c such that for all 1 ≤ x, y ≤ 2 and t0 ≥ 1,

∫ t0−1

1
ϕt(x, y; t0) dt ≤ c.

This can be done in a straightforward way by looking at the transition probability. Indeed, if

1 ≤ s ≤ t0 − 1 and 1 ≤ x, y ≤ 2,

ϕt(x, y; t0) ≤ c

[
t0

t0 − t

]2a+1
2 1
t2a+1

2
.

For t < t0/2 we estimate this by c t−(2a+1
2 ) and for t ≥ t0/2, we estimate this by c (t0 −

t)−(2a+1
2 ). Provided that a > 1/4 we see that this integral is uniformly bounded in t0. This

gives (3.8).

By scaling it suffices to prove our main result for t0 = 1. Note that

∫ 1

0
ds

Xs
ds ≤ 1 +

∞∑
n=1

In,

where

In =
∫ 1

0
ds

Xs
1{2−n ≤ Xs < 2−n+1} ds.
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By iterating (3.8) using the strong Markov property, we see that for all positive integers k,

P{In ≥ 2k c∗ 2−n} ≤ 2−k and hence for all r > 0,

P{In ≥ r 2−n} ≤ c′ e−ur,

where u = (log 2)/(2c∗), c′ = eu. In particular,

P


∞∑

n=1
In ≥ 2r

 ≤
∞∑

n=1
P {In ≥ r(2/3)n} ≤ c′

∞∑
n=1

exp {−ur(4/3)n} ≤ c e−2u(2r)/3.
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CHAPTER 4

RANDOMNESS OF THE TOPOLOGY SLEκ FOR κ > 4

In this chapter, we study the topology of SLE curves for κ > 4. More precisely, we show

that, a.s., there is no homeomorphism Φ : H → H, taking the range of one independent SLE

curve to another for κ ∈ (4, 8). Furthermore, we extend the result to κ ≥ 8 by showing that

there is no homeomorphism taking one SLE curve to another, when viewed as curves modulo

parametrization.

4.1 Introduction

4.1.1 Initial Overview

Most works on SLE have focused on its geometric and probabilistic properties, e.g., Hausdorff

dimensions of various subsets of the curves, formulas for the probabilities of various events,

and connections to other random objects. In this work, we will address a very basic question

about the topology of SLE: namely, is the topology of the curve deterministic? Said differently,

if we have two independent chordal SLEκ curves η1 and η2 (viewed as curves modulo time

parametrization), does there a.s. exist a homeomorphism H → H taking η1 to η2?

Since SLEκ is a simple curve for κ ≤ 4, the answer to the above question is clearly

affirmative in this case. For κ > 4, however, the answer is less obvious. On the one hand,

many events for SLEκ occur with probability strictly between 0 and 1 (see Section 2 of

[36]) so there are many opportunities for one of η1 or η2 to do something that the other

does not. On the other hand, it is common for seemingly very different fractal sets to be

homeomorphic. For example, if K1 and K2 are compact, non-empty, totally disconnected

subsets of C without isolated points (e.g., Cantor-type sets), then there is a homeomorphism

from C to C which takes K1 to K2 [37]. The main results of this chapter show that the

topology of SLEκ is random for κ > 4. Indeed, for κ ∈ (4, 8), we show that the topology of
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the range is random. The results of this chapter are in a similar vein to those of [35], which

shows that an SLEκ curve for κ ∈ (4, 8) is not determined by its range. Both this chapter

and [35] answer an easily posed question about SLE whose answer is much less obvious than

one might initially expect.

4.1.2 Summary of results

The following theorem assets that the topology of SLEκ is not deterministic for κ ∈ (4, 8).

Theorem 4.1.1. Suppose κ ∈ (4, 8), and let η1 and η2 be two independent SLEκ curves in

H. Then a.s. there is no homeomorphism on H taking the range of η1 to the range of η2.

We consider the left and right boundaries of an SLE curve η (which are boundary-

touching SLE16/κ(ρ̄) curves, to be defined later). These curves form ‘bubbles’ in H (which

we characterize explicitly in a later section) which we use as the primary observable to prove

Theorem 5.3.1.

The result also holds for κ ≥ 8, except the curves are viewed modulo time parametrization.

The proof is similar, though a bit more work is needed in the setup.

Theorem 4.1.2. Consider two independent SLEκ curves, η1 and η2 in H. Then a.s. there

is no reparametrization of η2, and no homeomorphism Φ : H → H such that Φ(η1) = η2.

Remark 4.1.3. Notice that in Theorem 5.4.1, we care about parametrized curves, because

preservation of ranges in this setting makes less sense. Recall SLE in this instance is plane

filling.

As a natural extension, one can think about the behavior of these curves for varying κ.

Conjecture 4.1.4. Let κ1, κ2 > 4 be distinct. Let (η1, η2) be any coupling of a chordal

SLEκ1 and a chordal SLEκ2. Almost surely, there is no homeomorphism Φ : H → H such

that Φ(η1) = η2 viewed as curves modulo time parametrization. If one of κ1 or κ2 is in (4, 8),

a.s., there is no such homeomorphism which takes the range of η1 to the range of η2.
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The conjecture says, roughly speaking, that the topologies of SLEκ1 and SLEκ2 are

mutually singular. We expect that this conjecture can be proved using similar ideas to the

ones in this chapter, but one would have to explicitly compute some of the quantities involved

to show that they are κ-dependent.

4.2 Preliminaries

Here we recall a few SLE basics as well as how one defines the more general SLEκ(ρ̄) processes.

We write H := {z ∈ C : Im(z) > 0}. If K is a bounded closed subset of H such that H \K

is simply connected, then we call K a hull in H w.r.t. ∞. For such K, there is a unique

gK that maps H \K conformally onto H such that gK(z) = z + a

z
+O

( 1
z2

)
as z → ∞, for

some real a. The quantity a is known as the half plane capacity of K, and is denoted

by hcapK. It can be shown that a ≥ 0. The map gK is said to satisfy the hydrodynamic

normalization at infinity. For a real interval I, let C(I) denote the real-valued continuous

functions on I. Suppose U ∈ C([0, T ]) for some T ∈ (0,∞]. For each z ∈ H \ {0}, let gt(z)

be the solution of the ordinary differential equation

ġt(z) = 2
gt(z) − Ut

, g0(z) = z. (4.1)

Note that for z ∈ C \ 0, the solution to (4.1) holds ∀ t < Tz where

Tz = sup
t

{min{|gs(z) − Us| : 0 ≤ s ≤ t} > 0}.

Set

Kt := {z ∈ H : Tz ≤ t}.
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The sets Kt are the chordal Loewner hulls, and the collection of maps {gt : t ≥ 0} are called

the chordal Loewner maps driven by Ut. Suppose that for every t ∈ [0, T ),

ηt := lim
z∈H,z→Ut

g−1
t (z) ∈ H ∪ R

exists, and η[0, T ) is a continuous curve. Then for every t ∈ [0, T ), Kt is the complement of

the unbounded component of H \ η((0, t]). We call η the chordal Loewner trace driven by Ut.

In general, however, such a curve may not exist depending on the choice of driving function.

An SLEκ in H from 0 to ∞ is defined by the random family of conformal maps gt obtained

by solving the Loewner ODE driven by Brownian motion. In particular, we let Ut =
√
κBt,

where Bt is a standard Brownian motion. An SLEκ connecting boundary points x and y of

an arbitrary simply connected Jordan domain can be constructed as the image of an SLEκ on

H under a conformal transformation Ψ: H → D sending 0 to x and ∞ to y. SLE curves are

characterized by scale invariance and the domain Markov property, and are viewed modulo

reparametrization. It is shown in [40, 30] that the SLEκ processes are generated by curves.

SLE(κ; ρ̄), which is often written as SLEκ(ρ̄L; ρ̄R), is the stochastic process one obtains

by solving (4.1) with a modification on the driving process Ut, which we now discuss. It is a

natural generalization of SLEκ in which one keeps track of additional marked points which

are called force points. In this chapter, we need only the two force point regime, but the

following definitions are easily extended to the multiple force point setting. Fix x1 < 0 < x2.

We associate with each xi for i ∈ {1, 2} a weight ρi ∈ R. An SLEκ(ρ1; ρ2) process with force

points (x1;x2) is the measure on continuously growing compact hulls Kt generated by the

Loewner chain with Ut given by the solution to the system of SDEs given by

dUt = ρ1
Ut − V 1

t
dt+ ρ2

Ut − V 2
t
dt+

√
κ dBt, (4.2)

dV i
t = 2

V i
t − Ut

dt; V i
0 = xi, i ∈ {1, 2}. (4.3)
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The existence and uniqueness of solutions to this SDE is discussed in [41], and follows from

results in [39]. These results are extended to the more general setting of multiple force points

in [31].

For κ > 4, there is also significant interest in the hulls that are generated by the SLEκ

curves. Duplantier conjectured in [15, 16] the duality between SLEκ and SLE16/κ, which

says that the boundary of an SLEκ hull behaves like an SLE16/κ curve, for κ > 4. Many

versions of this duality have been shown in [46, 48, 12, 31, 34].

Lemma 4.9 in [31] asserts that, for κ > 4, the outer boundary η′ of an SLEκ curve is an

SLEκ(ρ̄) process. This is done in the setting of imaginary geometry, in which the SLE curves

(for κ ∈ (0, 4)), are realized as flow lines of the Gaussian free field (i.e SLEκ(ρ̄) curves

coupled with the Gaussian free field in H), with the outer boundaries, themselves SLE curves

(for κ ∈ [4,∞)) described as counterflow lines (in which the coupling is done with the

negation of the Gaussian field). Though we do not need this machinery as presented in [31]

and [36], it serves as an excellent framework for proving some general properties of SLEκ(ρ̄),

some of which we rely on to prove the main results. We state one such fact as follows:

Lemma 4.2.1. Fix κ > 0. Suppose that η is an SLEκ(ρ̄L; ρ̄R) process in H from 0 to ∞ with

force points located at (x̄L; x̄R) with x1,L = 0− and x1,R = 0+ (possibly by taking ρ1,q = 0 for

q ∈ {L,R}). Assume that ρ1,L, ρ1,R > −2. Fix k ∈ N such that ρ =
k∑

j=1
ρj,R ∈ (κ

2 − 4, κ
2 − 2)

and ϵ > 0. There exists p1 > 0 depending only on κ, maxi,q|ρi,q|, ρ, and ϵ such that if

|x2,q| ≥ ϵ for q ∈ {L,R}, xk+1,R − xk,R ≥ ϵ, and xk,R ≤ ϵ−1 then the following is true.

Suppose that γ : [0, T ] → H is a simple curve starting from 0, terminating in [xk,R, xk+1,R],

and otherwise does not hit ∂H, for some T ∈ [0,∞). Let A(ϵ) be the ϵ-neighborhood of

γ([0, T ]) and let

σ1 = inf{t ≥ 0 : η(t) ∈ (xk,R, xk+1,R)} and σ2 = inf{t ≥ 0 : η(t) /∈ A(ϵ)}.

Then P[σ1 < σ2] ≥ p1.
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Intuitively, Lemma 4.2.1 tells us that an SLEκ(ρ̄L; ρ̄R) process has a positive chance to

stay close to any fixed deterministic curve for a positive amount of time.

Proof. This is Lemma 2.5 in [36].

4.3 Proof of Theorem 4.1.1

Consider the left and right boundaries of the SLE curve η, which are boundary-touching

SLE16
κ

(ρ) curves, with force points starting at 0. In fact, the left boundary of SLEκ turns out

to be SLE16/κ(16
κ − 4; 8

κ − 2) and by symmetry, the right boundary is SLE16/κ( 8
κ − 2; 16

κ − 4).

This can be deduced from Theorem 5.3 in [46]. These curves are shown in Figure 4.1. The

open region between the left and right boundaries has countably many connected components,

which are separated by the intersection points of the left and right boundaries, i.e., the cut

points of η. These connected components have a total ordering, and come in four types:

• Type 0: Neither the left nor the right boundary of the component intersects the real

line.

• Type 1: Only the right boundary intersects the real line.

• Type 2: Only the left boundary intersects the real line.

• Type 3: The left and right boundaries both intersect the real line.

Note that η is a continuous curve that travels between the positive and negative real axes

between any two consecutive components of type 3. This shows that the components of type

3 form a discrete set, to which we may assign a labeling by the integers - written as

(. . . U−1, U0, U1, U2, . . . )

uniquely, modulo index shift. For concreteness, we choose the indexing for the sequence so
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Figure 4.1: We view the complement of the SLE curve as the union of two boundary-touching
SLEκ(ρ̄) processes. We observe ‘bubbles’ of four types, which we use in constructing the
observable invariant.

that U0 is the first type 3 bubble which has Euclidean diameter at least 1. We remark here

that our construction relies on a few tail triviality arguments, and so we require the following:

Lemma 4.3.1. Suppose t > 0 and let at (resp. bt) be the last time before t at which η hits

the left (resp. right) boundary. Then η|[0,t] determines the set of bubbles (i.e. connected

components of the region between the left and right boundaries) which are formed before time

min{at, bt} as well as their types.

Proof. This follows from the fact that η cannot cross itself and η([min{at, bt}, t]) disconnects

all of the bubbles formed before time min{at, bt} from η(t).

Between pairs of consecutive type 3 bubbles, Ui and Ui+1, we might observe type 1 or

type 2 bubbles. Let Ei be the event that there is a type 1 or type 2 bubble between Ui and

Ui+1, and define

X = (. . .1E−1 ,1E0 ,1E1 ,1E2 , . . . )

the bi-infinite sequence of 0’s and 1’s consisting of the indicators of the Ei’s.

Lemma 4.3.2. For any fixed deterministic bi-infinite sequence of 0’s and 1’s x, we have

P[X = x] = 0.

In order to prove Lemma 4.3.2 we must first introduce some notation, and prove a few

preliminary results. The proof requires a few key observations which we discuss below.
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Consider a left-infinite sequence y = (. . . y−2, y−1, y0). For k ∈ N, let Ak be the event that

{. . . X−k−1, X−k = y}. We wish to show that P[A0] = 0. We will argue this by contradiction,

but we first require a bit of setup. For r ∈ R>0, n ∈ N, let K(n)
r be the nth smallest k such

that the Euclidean diameter of Uk is at least r. Now, we claim that P[A
K

(n)
1

] = 0 for all n.

We argue to the contrary, and so we assume that there exists some n such that P
[
A

K
(n)
1

]
> 0.

Note that by scale invariance, P
[
A

K
(n)
r

]
is independent of r, and so depends only on n.

Consider the event

An :=
∞⋂

i=0

⋃
m≥i

A
K

(n)
1
m

.

We claim that, for every n, An is a tail event for the Brownian motion that drives the

SLE. Indeed, Lemma 4.3.1 implies that for each t, Ft determines A
K

(n)
r

for each r which is

small enough so that the bubble U
K

(n)
r

is formed before time min{at, bt}. With this, and by

continuity from above, we note that

P [An] ≥ P
[
A

K
(n)
1

]
> 0,

and so the Blumenthal 0 − 1 law implies that, a.s., there exists a sequence {rj} → 0 such

that the events A
K

(n)
rj

occur for all j. This implies that there exist infinitely many k such

that Ak occurs. Thus, it follows that a.s., ∃ infinitely many k such that

(. . . X−k−1, X−k) = y

forcing the sequence y to be periodic. We claim that this implies that the sequence {Xk}

is periodic. Indeed, let m be the period of y. Since there are arbitrarily large k for which

(...X−k−1, X−k) = y and y is periodic, it follows that with probability tending to 1 as r → 0,

the sequence

(...X
−K

(n)
r −1

, X
−K

(n)
r

) is equal to (...y−j−1, y−j) for some j = 1, ...,m. By scale invariance,
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the probability that this is the case for all values of r is equal to 1. Thus, as r → ∞, we see

that the entire sequence {Xk} is equal to y, shifted by some j = 1, ...,m. This means that

if we observe (...X−k−1, X−k) for some k, we can determine the rest of the sequence {Xk},

forcing this sequence to be itself periodic.

For t > 0, we have that by Lemma 4.3.1 Ft determines the sequence (. . . X−l−1, X−l)

for some l, which by periodicity is enough to determine the sequence {Xk}. Thus, by

Lemma 4.3.1, Ft determines {Xk} modulo an index shift for each t > 0, and hence the

sequence {Xk} is deterministic modulo an index shift. The goal now is to recursively apply

Lemma 4.2.1 to arrive at a contradiction.

Proposition 4.3.3. Let Z be a finite sequence of 0’s and 1’s which does not appear in y,

with |Z| = m. Then it must hold that

P [{X1, X2, . . . , Xm} = {Z1,Z2, . . . ,Zm}] > 0.

Note that the existence of such a Z follows from the periodicity of y. With this result,

we can conclude that the sequence {Xk} can contain any finite sequence of 0’s and 1’s with

positive probability, and hence cannot be periodic and deterministic modulo index shift. We

delay the proof of the proposition to state the following key lemma, which uses the fact that

the outer boundaries of the curve are SLEκ(ρL; ρR) processes, and more specifically the right

boundary, ηR, conditioned on the left boundary, ηL, has distribution of SLE16
κ

(− 8
κ ; 16

κ − 4)

(see Lemma 7.1 in [31]):

Lemma 4.3.4. Let τ be a stopping time for ηR given ηL, at which ηR forms a type 3 bubble

denoted Ukτ
. Let Ekτ

be the event that there is a type 1 or type 2 bubble between Ukτ
and

Ukτ +1, as defined previously. Then,

0 < P
[
Ekτ

∣∣∣∣ ηL, ηR
|[0,τ ]

]
< 1.
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Figure 4.2: We condition on the left boundary (pictured as the orange curve) and run the
right boundary until we first form a type 3 bubble of diameter at least 1 (blue). At this time
(denoted ηR(τ)), we have two options: either the right boundary hits [0,∞) before hitting
the left boundary again (green), thus forming a type 3 bubble, or it hits the left boundary
first (red), forming a type 1 bubble before forming the next type 3 bubble. These events each
occur with positive probability.

Proof. With some setup, this is a straightforward application of Lemma 4.2.1. Indeed, let

zτ := ηR(τ) and define Czτ to be the connected component of ηL \ R containing zτ . Set

s1 := inf{t > τ : ηR ∩ [0,∞) ̸= ∅}, s2 := inf{t > τ : ηR ∩ ηL \ (Czτ ∪ (−∞, 0]) ̸= ∅.}

By Lemma 4.2.1, we have that

P
[
s2 > s1

∣∣∣∣ ηL, ηR
|[0,τ ]

]
> 0; P

[
s2 ≤ s1

∣∣∣∣ ηL, ηR
|[0,τ ]

]
> 0

where the second inequality follows from symmetry considerations. Indeed, we can simply

apply Lemma 4.2.1 to the curve ηR, under the conditional law given ηL. In this case, an

interval on the left boundary corresponds to a segment of ηL. Note that these probabilities

are strictly less than 1 as they are both positive and complementary. With this, and appealing

to the setting of Fig. 4.2, we have that ηR[τ,∞), conditioned on ηL, ηR
|[0,τ ]

, will either first

intersect the left boundary and form a type 1 bubble before forming another type 3 bubble, or

it will intersect [0,∞) before hitting the left boundary again, forming another type 3 bubble.

53



In particular, the event that a type 1 bubble is formed after Ukτ
occurs with probability

strictly between 0 and 1 as desired.

Proof of Proposition 4.3.3. We define a sequence of stopping times as follows: For a given

bubble Ui, let τi be the corresponding time at which Ui is formed. By our choice of indexing

of the type 3 bubbles, we have that

τ0 := 1st time we form a type 3 bubble of Euclidean diameter at least 1

τ1 := 1st time after τ0 we form a type 3 bubble

...

τm := 1st time after τm−1 we form a type 3 bubble.

Note that Ekτi
is measurable with respect to ηL and ηR|[0,τi+1], and for each i ∈ {1, 2, . . . ,m},

we have that by Lemma 4.3.4,

0 < P
[
Ekτi

∣∣∣∣ ηL, ηR
|[0,τi]

]
< 1.

Thus, it follows that

P[Xi = Zi|X1 = Z1, ..., Xi−1 = Zi−1] > 0.

To finish the proof, we note that since {Xj = Zj} is determined by ηL and ηR|[0,τi] for i < j,

so

P[X1 = Z1, ..., Xi = Zi] = E
[
P[Xi = Zi | ηL, ηR|[0,τi]]1X1=Z1,...,Xi−1=Zi−1

]
.

The probability within the expectation on the right hand side is always positive, and so

inducting on i (and setting i = m as a final step) yields the desired result.
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Proof of Lemma 4.3.2. By Proposition 4.3.3, we see that {Xk} can contain any finite sequence

of 0’s and 1’s not contained in y, implying that {Xk} cannot be deterministic modulo index

shift. This is a contradiction. Thus, P[A
K

(n)
1

] = 0 for every n.

Thus, by scale invariance we see that P[A
K

(n)
r

] = 0 for every r and n. Note that every k

is equal to K(n)
r for some rational r and some n. Indeed, every kth bubble has some positive

diameter, and there are at most finitely many bubbles before it of larger diameter. Thus, we

can set n to be the number of bubbles before the kth bubble with diameter exceeding that of

the kth bubble, and simply let r be any rational number slightly smaller than this diameter.

From this, it follows that

P[∃ k such that Ak occurs ] ≤ P

 ⋃
n∈N

⋃
r∈Q>0

A
(n)
Kr

 = 0.

In particular, we have that P[A0] = 0.

Proof of Theorem 4.1.1. Now let η1 and η2 be two independent SLE’s. In order for η1 ∪ R

and η2 ∪ R to be homeomorphic via a homeomorphism that takes R to R, it must be the

case that the corresponding bi-infinite sequences X1 and X2 differ by at most an index

shift. Indeed, any homeomorphism has to preserve the bi-infinite sequence of connected

components lying between the left and right boundaries of the curve, as well as the types of

these components. Thus, by the above argument, the probability that X1 is equal to any of

the countably many possible index shifted versions of X2 is zero. Hence the probability that

η1 ∪ R and η2 ∪ R are homeomorphic, via a homeomorphism that takes R to R, is 0.

4.4 Proof of Theorem 4.1.2

Here, we require a more subtle argument that relies on a less obvious observable. In this

section, we fix κ ≥ 8. Let η be an instance of SLEκ in H. We are interested in the successive
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crossing times (about the origin) of the curve η, i.e., the times at which η hits the real line

again, just after having hit it on the opposite side of the origin. Consider one such crossing

time, i.e., a single left right crossing about the origin. The SLE goes back and forth between

the left and right boundaries of this crossing at some times, and the set of times when it does

so has to be a discrete set since the SLE is continuous. As pictured below in Fig. 4.3, these

left and right crossings (within the curve) define a sequence of marked points {Xk} along the

boundary, which accumulate only at the tip of the curve. Via the corresponding Loewner

map g
η
t , we may conformally map this configuration as shown in Fig. 4.3, so that the tip

goes to 0, and we obtain a sequence of marked points along the left boundary. Notice these

marked points are determined by the past, so we can condition on (all of) their locations,

and the future will still be an SLE by the Markov property.

A bit more care is needed in defining these quantities. Let τ(t) be the last time before t

such that η(t) ∈ R. Define the sets

T− := {t : η(τ(t)) < 0} T+ := {t : η(τ(t)) > 0}

and set S = T̄− ∩ T̄+. Notice that S is a discrete set since η is continuous, and so it cannot

cross back and forth between (−∞, 0) and (0,∞) infinitely many times during any compact

time interval contained in (0,∞). Thus, we may index the elements of S as a countable

sequence of well defined crossing times {τj}.

Notice that these are not stopping times (which poses a problem in applying the strong

Markov property), but this can be addressed by adopting some notation from the previous

section as follows. Let ηj := η|[τj−1,τj ], which is the jth left-right crossing around 0 that

we observe, i.e., the crossing of index j ∈ Z. For r > 0, let J(n)
r be the nth smallest j for

which the Euclidean diameter of ηj is at least r. It is not difficult to see that the set of times

{τ
J

(n)
r

} is indeed a set of stopping times. To see this, let t > 0. If one sees η|[0,t], then one

can determine the set {τj : τj ≤ t}. This follows from the definition of the times {τj} as the
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intersection points of T− and T+, as shown previously. Hence η|[0,t] determines the set of

excursions {ηj : τj ≤ t}. We have τ
J

(n)
r

≤ t if and only if this set of excursions includes at

least n elements which have Euclidean diameter at least r. Hence {τ
J

(n)
r

≤ t} is determined

by η|[0,t], which holds for any choice of t.

Figure 4.3: The top picture illustrates a single left-right crossing around 0, with x0 = η(τJ )
and the corresponding triangulation in red, determined by the (past) piece of the curve
making boundary crossings. The marked points Xk define the locations of the tips of the
triangles in the triangulation, after conformally mapping to the real line via gη

t . We thus
consider intervals [Xk+1, Xk] in which the tips of future triangles, obtained by left right
crossings about 0, may lie. Some intervals may have multiple, while some may have none.

We fix some r and some n, and set J := J
(n)
r . Between the outer boundaries of the

crossing ηJ , we can keep track of the times at which {ηt : t < τJ} sequentially hits these

boundaries. More precisely, we let LJ be the outer boundary of η[0, τJ ]. We define our

sequence of crossing times inductively as follows:

σJ,1 := min{t > τJ−1 : ηt ∩ LJ ̸= ∅}
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σ̃J,1 := min{t > σJ,1 : ηt ∩ LJ−1 ̸= ∅}

...

σ̃J,k := min{t > σJ,k : ηt ∩ LJ−1 ̸= ∅}

σJ,k+1 := min{t > σ̃J,k : ηt ∩ LJ ̸= ∅}

and so on. The sequences {σJ,k}k≥1 and {σ̃J,k}k≥1 define two discrete sets of times that our

curve successively hits the outer boundaries LJ and LJ−1 respectively. We assume without

loss of generality that the Jth excursion goes from left to right. By considering only the outer

boundary LJ (as a priori τJ is a well-defined stopping time), we can construct a sequence of

marked points {XJ,k}k≥1 along the negative real axis, via the (shifted) Loewner map which

sends η(τJ ) to 0. That is to say, XJ,k := gτJ (η(σJ,k)) − UτJ . As we are considering a fixed

J , we may write XJ,k := Xk for ease.

Consider the points where the future of the SLE process, η|[τJ ,∞), hits the negative real

axis after having hit the real line to the right of 0, which we call crossing endpoints. More

precisely, we define these crossing endpoint times as follows:

σ∗
1 := min{t > τJ : ηt ∩ R>0 ̸= ∅}

σ̃∗
1 := min{t > σ∗

1 : ηt ∩ R<0 ̸= ∅}

...

σ̃∗
i := min{t > σ∗

i : ηt ∩ R<0 ̸= ∅}

σ∗
i+1 := min{t > σ̃∗

i : ηt ∩ R>0 ̸= ∅}

and so on. We let

Nk = # {i : σ̃∗
i ∈ [Xk+1, Xk]} .
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In other words, we are looking at η′ := gτJ (η|[τJ ,∞)) − UτJ as it successively makes left-right

crossings about 0, conditioned on the past, and for each interval we are keeping track of how

many crossing endpoints it contains. We wish to show that for every deterministic sequence

of integers {nk}k∈N, we have that

P[Nk = nk; ∀ k] = 0. (4.4)

It suffices to show that there are arbitrarily large k such that P[Nk = nk] is bounded away from

1. Indeed, the event {Nk = nk for all sufficiently large k} is a tail event for the Brownian

motion driving the SLE, and the Blumenthal 0 − 1 law implies that this has probability 0 or

1. Thus, being bounded away from 1 guarantees that we have (5.2.1). We do this in cases as

follows:

Case 1 : Assume there exist arbitrarily large k such that nk ̸= 0. We claim that there

exists q > 0 such that

P[Nk = n] ≤ 1 − q ∀n ≥ 1.

To see this, we consider the segment of the curve η′ , just after the (n− 1)th crossing about

0 is completed. Let Tn denote the nth time we have a crossing in the interval [Xk+1, Xk].

Thus Tn is a stopping time, and conditioned on what we have seen up until this time, the

future of the curve is still SLE. The goal is to have an upper bound on the probability that

there are exactly n crossings, and we do so by comparing the harmonic measure (from ∞)

Figure 4.4: We stop the SLE after it has made its (n− 1)th crossing in the interval shown.
Under the map g̃, we send the tip of the curve to the origin, and analyze the likelihood of
either observing two more crossings in the red interval of length a, or no more crossings, in
which case the interval is swallowed.
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of the interval [Xk+1, η
′(Tn−1)], to that of the outer boundary of the curve η′[0, Tn−1](and

more precisely, this is the harmonic measure from ∞ in H \ η′[0, Tn−1]) . These quantities

are denoted a and b respectively, as shown in Fig. 4.4.

The proof relies on the following intuitive argument which we formalize later: If a is

larger than b, then with positive probability we observe 2 further crossings, hence n + 1

total crossings. If a is smaller than b, then, with positive probability, we expect the interval

[Xk+1, η
′(Tn−1)] to be covered before we observe the next crossing. In other words, there is

always a positive chance that we observe either n− 1 crossings or n+ 1 crossings, and so

P[Nk ̸= n] > 0.

Proposition 4.4.1. Let η be an SLEκ from 0 to ∞ in H with κ > 4. For marked points

a < 0 < c along the real line, let Ea,c be the event that the chordal SLEκ trace visits [c,∞)

before (−∞, a]. Then

P
[
Ea,c

]
= F

( −a
c− a

)
where F (x) = 1

Zκ

∫ x

0
du

u
4
κ (1 − u)

4
κ

and Zκ is chosen so that F (1) = 1.

Proof. This is Theorem 10 in [2], which is a generalized restatement of Theorem 3.2 in

[29].

Remark 4.4.2. It is possible to get an estimate which is weaker than Theorem 3 above, but

which is still sufficient for our purposes, via the following elementary argument. For x ∈ R,

let tx := inf[t ≥ 0 : η(t) = x]. If we let P (n) = P[tn < t−1], a bit of thought shows that

P (n) ≥ P (n− 1)[1 − P (n)]
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which thus implies that

P (n) ≥ P (n− 1)
1 + P (n− 1) .

The equality case can be realized as P (n) = 1
n+ 1, the details of which we omit. By

considering f(x) = x

x+ 1, which is increasing on R≥0, we find that

P (n) ≥ f(P (n− 1)) ≥ f (2)(P (n− 2) · · · ≥ f (n)
(1

2

)
= 1
n+ 1

which gives a rough (yet easy to compute) estimate. Note, for our purposes, we only require

a positive probability.

We return to the notation introduced in Fig. 4.4, and we consider the the behavior of the

SLE curve given the relative quantities a and b. In particular, we require the following two

key lemmas to prove the original claim:

Lemma 4.4.3. If a ≤ b, it holds with conditional probability at least 1
2 , given η′|[0,Tn−1], that

η′|[Tn−1,∞) hits Xk+1 before [b,∞).

Proof. Notice that by symmetry, there is a positive chance that we disconnect [Xk+1, η
′(Tn−1)]

before hitting b. Indeed, this follows from the fact that P[t−1 < t1] = 1
2 .

Lemma 4.4.4. There exists a deterministic κ-dependent constant c > 0 such that if a > b, it

holds with conditional probability at least c given η′|[0,Tn−1] that η′|[Tn−1,∞) crosses between

(−∞, 0) and (0,∞) at least twice before hitting Xk+1.

Proof. If a > b, then we can apply the estimate given in Proposition 4.4.1 via a two step

process. We retain the notation from Remark 4.4.2, and define t−a and tb as discussed, after

having mapped η′([0, Tn−1]) to the real line via the map g̃. Note that Proposition 4.4.1

implies that ∃ p > 0 such that P[tb < t−a/2] ≥ p. In fact, we have assumed a > b, so p in

this instance can be thought of as a universal bound. We condition on this event occurring,
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and we look at the harmonic measure of the outer boundary curve η̃ of this most recent

crossing. Note that hmH\η̃(∞, η̃) is bounded above by the harmonic measure of the outer

boundary at the time we hit −a

2. This follows from the fact that the harmonic measure can

only increase, as we observe more of the curve. Moreover, the law of this harmonic measure,

divided by a, is independent of a by scale invariance, and is almost surely finite. This implies

that ∃C = C(p) > 0 such that

P
[
hmH\η̃(∞, η̃) ≤ Ca

]
≥ 1 − p

2

from which it follows that

P
[
hmH\η̃(∞, η̃) ≤ Ca, tb < t−a/2

]
≥ p

2 .

This bound guarantees a positive probability that, after we have observed the first crossing,

the harmonic measure of the outer boundary is not too large. Now we condition on this

event, and we apply Proposition 4.1 to the quantities Ca and a

2. In particular, This yields a

positive κ-dependent constant lower bound for the probability that η′|[Tn−1,∞) has at least

two crossings before hitting Xk+1.

Case 2 : nk = 0 for all but finitely many k.

This condition implies that the SLE travels a positive distance of time without any left-

right crossings, which happens with probability 0. This shows that for any fixed deterministic

sequence {nk}k∈N with only finitely many non-zero elements, we have that

P[{Nk} = {nk}] = 0.
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Figure 4.5: We observe two instances of SLE, η1 and η2, stopped after the m1th and m2th

crossings respectively. Any homeomorphism between the two should send one tip to the other,
and retain the structure of the future crossings (i.e., preserve the corresponding sequences
{N j

k}).

21‘

Proof of Theorem 4.1.2. Consider two instances of SLEκ in H, η1 and η2, with corresponding

sequences of points {X1
m1,k}k∈N and {X2

m2,k}k∈N respectively, for fixed indicies m1,m2 ∈ S,

corresponding to the m1th crossing of η1 and m2th crossing of η2 respectively. Here, we

indicate objects associated with ηj for j ∈ {1, 2} by a superscript j. Note that by construction,

m1 = J
(n1),1
r1 and m2 = J

(n2),2
r2 for some n1, n2 and (rational) r1, r2. Each sequence of points

{Xj
k}k∈N generates a sequence {N j

k}k∈N for j ∈ {1, 2} and so by the independence of η1 and

η2, as well as (5.2.1), we have that for any choice of m1,m2 and number l

P
[
N1

k = N2
k+l; ∀ k

]
= P

[
N1

k = N2
k+l; ∀ k | η2] = 0.

This implies that

P
[
∃ l s.t N1

k = N2
k+l; ∀ k

]
= 0 (4.5)

as there are countably many possible choices of l, meaning we can apply this very argument

for each fixed choice of l, and apply the union bound.

Observe that a homeomorphism from H to itself taking η1 to η2, modulo time parametriza-

tion, must preserve the number of left right crossings of the ‘future’ curves, which correspond

to the sequences {N j
k}, and it must take η1(τ1

m1) to η2(τ2
m2) for some m2. In particular, as

in the setting of Figure 4, for any fixed m1 and m2 there is no homeomorphism which takes
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η1 to η2 and η1(τ1
m1) to η2(τ2

m2) by (4.5). As the set S of crossing times is discrete, this

holds for any choice of indices m1and m2 , where there are only countably many choices.

Thus, it must hold that,

P
[
∃ a homeomorphism Φ : H → H taking η1 to η2] = 0.
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CHAPTER 5

STRICT MONOTONICITY OF THE SUPERCRITICAL

LIOUVILLE QUANTUM GRAVITY METRIC

Recent works have shown that for each ξ > 0, one can define a metric (distance function)

on the plane obtained by weighting lengths of paths by eξh, where h is the planar Gaussian

free field. This metric is related to Liouville quantum gravity with matter central charge

cM = 25 − 6Q(ξ)2 < 25, where Q = Q(ξ) is a non-explicit function of ξ. We show that Q(ξ)

is a strictly decreasing function of ξ, and hence that there is a one-to-one correspondence

between ξ and cM for the whole parameter range (previously, this was known only for

ξ < 0.07). To do this, we relate ξ to the dyadic subdivision model for supercritical LQG

introduced by Gwynne, Holden, Pfeffer, and Remy (2018).

5.1 Introduction

Liouville quantum gravity (LQG) is a family of random surfaces that realize a coupling of two-

dimensional quantum gravity with conformal matter fields, depending on a single parameter.

It was first introduced in physics by Polyakov [38] to define a “sum over Riemannian metrics” in

two dimensions within the context of bosonic string theory. To define LQG, we select a central

charge cM ∈ (−∞, 25) which comes from the conformal field theory (CFT) associated with

the matter fields. For a compact surface D with Riemannian metric g, and the corresponding

Laplace-Beltrami operator ∆g, we may define (at least informally) an LQG surface with

central charge cM as a random surface that is sampled from the measure on Riemannian

metric tensors g on D, whose probability density with respect to the “Lebesgue measure on

the space of metrics g on D” is proportional to (det ∆g)−cM/2. Of course, this is far from

rigorous as this space of metric tensors is infinite-dimensional, and so any notion of uniform

measure on this space is far from obvious. The determinant (det ∆g)−cM/2 can be thought of
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as the partition function of a statistical mechanics model, which is described by a CFT with

central charge cM in the scaling limit.

The notions of area and distance are natural quantities that come into question when

considering these ‘random Riemannian surfaces’. We restrict to the case cM ≤ 1, and let h be

an instance of the Gaussian Free Field (GFF) on D. Let γ ∈ (0, 2] be the unique solution of

the equation

cM = 25 − 6Q2 where Q = 2
γ

+ γ

2 . (5.1)

We may think of the LQG surface associated with (D, h), with parameter γ, as the random

Riemannian manifold parametrized by D, endowed with the ‘random metric’ eγh(dx2 + dy2),

where dx2 + dy2 is the usual Euclidean metric tensor. Of course, this definition is also far

from rigorous as h itself is a distribution rather than a function, and so formalizing the notion

of the exponential of h is highly nontrivial. Note that (5.1) gives us a bijection between

cM ∈ (−∞, 1] and γ ∈ (0, 2], and so we may parametrize LQG surfaces by γ, yielding the

more canonical characterization γ-LQG surfaces. We describe the phases of LQG surfaces,

however, via their central charges as follows.

Definition 5.1.1. LQG with cM ∈ (−∞, 1), cM = 1, and cM ∈ (1, 25), is referred to as

subcritical, critical and supercritical respectively.

One major motivation for studying LQG surfaces is that they arise, in many cases in

conjecture, as the scaling limits of various planar map models. Some of these convergence

results have been shown in the subcritical and supercritical cases, and can be better understood

through expository works done in [4, 21, 19]. The supercritical case has proven to be a bit

more mysterious, at least in the more geometric sense. Nevertheless, it is still expected that

supercritical LQG, in some sense, corresponds to some random geometry related to the GFF.

See [20] for an overview of various motivations and conjectures coming from the physics

literature of supercritical LQG.
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Figure 5.1: Table of relationships between the values of the matter central charge cM, the
background charge Q, and the constant γ. When cM ≤ 1, all three parameters are real.
When cM ∈ (1, 25), γ is complex, but Q is real and nonzero.

It was shown in a series of papers [6, 24, 22, 25, 13, 14] that subcritical LQG surfaces

admit a canonical distance function, i.e., there is a (unique) metric associated to these

surfaces. This was later proven in the critical and supercritical cases in [11, 9]. One of the

main ideas presented in these constructions is the Liouville first passage percolation (LFPP)

with parameter ξ > 0, which describes a one-parameter family of random metrics. Indeed,

the DDK ansatz suggests constructing a random metric associated to LQG as a limit of

regularized versions of the heuristic metric

(z, w) → inf
P :z→w

∫ 1

0
eξh(P (t))|P ′(t)| dt,

for a constant ξ := ξ(cM) which depends on the central charge. More precisely, for s > 0 and

z ∈ C, let ps(z) := 1
2πs exp

{
−|z|2

2s

}
be the usual heat kernel. For ϵ > 0, we consider the

modified version of the GFF

hϵ(z) := (h ∗ pϵ2/2)(z) =
∫
C
h(w)pϵ2/2(z − w) dw,
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as realized as a mollification of the field with the heat kernel. We consider a parameter ξ

which will be later chosen to depend on the central charge.

Definition 5.1.2. Let ξ > 0. Liouville first passage percolation with parameter ξ is the

family of random metrics {dϵ
h}ϵ>0 given by

dϵ
h(z, w) := inf

P :z→w

∫ 1

0
eξhϵ(P (t))|P ′(t)| dt,

where the infimum is over all piecewise continuously differentiable paths from z to w.

We define the re-scaled LFPP as the family of random metrics {a−1
ϵ dϵ

h}ϵ>0. The normal-

izing factor is given by

aϵ := median of inf
{∫ 1

0
eξhϵ(P (t))|P ′(t)| dt : P (t) is a left-right crossing of [0, 1]2

}
,

where left-right crossings refer to (differentiable) paths connecting the left and right boundaries

of the unit square. This choice is somewhat arbitrary, but it is through this rescaling that

one extracts a meaningful limit. The value of aϵ is not known explicitly, but one can see

[10, 1, 26, 5] for estimates of this quantity. It is shown that these re-scaled metrics converge in

probability to a random metric Dh on C, with respect to the topology of lower semicontinuous

functions on C×C. This limiting candidate Dh is thus shown to satisfy a collection of axioms

that characterize the LQG metric.

It was shown in [5] and [9] that, for every ξ > 0, there exists a Q = Q(ξ) > 0 with

aϵ = ϵ1−ξQ−oϵ(1) as ϵ → 0.

The relationship between the LFPP parameter ξ and the LQG central charge cM is discussed

in [8, 11]. It is known that the function ξ → Q(ξ) is continuous, with Q(ξ) → ∞ as ξ → 0

and Q(ξ) → 0 as ξ → ∞, strictly decreasing on (0, 0.7), and thus injective on this interval
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[26]. Furthermore, the quantity Q appears in the metric analog of the LQG coordinate change

formula from [18], but restricted to translation and scaling [11]. More precisely, Let U, Ũ ⊂ C

be open and let ϕ : U → Ũ be a complex affine map. Then, a.s.,

Dh(ϕ(z), ϕ(w); Ũ) = Dh◦ϕ+Q log |ϕ′|(z, w;U), ∀ z, w ∈ C.

We note that with ξcrit chosen so that Q(ξcrit) = 2, we call LFPP for ξ ∈ (0, ξcrit) the

subcritical phase and LFPP for ξ ∈ (ξcrit,∞) the supercritical phase. Equivalently, if we

associate LFPP with parameter ξ to the value of matter central charge associated with

background charge Q(ξ), then the subcritical phase of LFPP corresponds to cM < 1, and the

supercritical phase of LFPP corresponds to cM ∈ (1, 25), where cM satisfies

cM := cM(ξ) = 25 −Q(ξ)2. (5.2)

In the critical case ξ = ξcrit, the limiting metric Dh for the re-scaled LFPP induces the same

topology as the Euclidean metric [7], and can be thought of as the Riemannian distance

function associated with critical (γ = 2) LQG. In the supercritical case ξ > ξcrit, the limiting

metric does not induce the Euclidean topology on C. Indeed, a.s. there exists an uncountable,

Euclidean-dense set of singular points z ∈ C such that

Dh(z, w) = ∞,∀w ∈ C \ {z}.

It is known, however, that for each fixed z ∈ C, a.s. z is not a singular point, so the set of

singular points has zero Lebesgue measure. Moreover, any two non-singular points lie at

finite Dh-distance from each other [9]. One can think of singular points as infinite “spikes”

which Dh paths must avoid.

The main idea of this chapter is to prove the injectivity of the map ξ → Q(ξ) on (0,∞),
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through analysis of a (modified) discrete model of LQG in the supercritical phase. Note that

injectivity implies that there is a unique value of ξ (hence a unique metric) for each value

of cM. The model, which was introduced in [20], takes the form of a one-parameter family

of random planar maps, indexed by cM ∈ (−∞, 25), which are defined as the adjacency

graphs of a family of dyadic tilings of the plane constructed from the Gaussian free field.

It is expected that, in this supercritical regime, the tiling should converge in some sense

to supercritical continuum LQG model. In particular, the graph distance on the adjacency

graph of squares should converge to the LQG metric.

5.2 Preliminaries

In this section, we introduce the basic notation used throughout the chapter, as well as a

few basic definitions. In particular, we provide an axiomatic characterization of weak LQG

metrics.

5.2.1 Basic notation and definitions

If f : (0,∞) → R and g : (0,∞) → (0,∞), we say that f(ϵ) = Oϵ(g(ϵ))) (resp. f(ϵ) =

oϵ(g(ϵ)))) as ϵ → 0 if f(ϵ)/g(ϵ) remains bounded (resp. tends to zero) as ϵ → 0. We similarly

define O(·) and o(·) errors as a parameter goes to infinity.

For z ∈ C and r > 0, we write Br(z) for the open Euclidean ball of radius r centered at z.

More generally, for X ⊆ C, we write Br(X) = ⋃
z∈X Br(z). Topological concepts such as

“open”, “closed”, “boundary”, etc., are always defined with respect to the Euclidean topology

unless otherwise stated. For X ⊆ C, we write X for its Euclidean closure, X̊ for its interior,

and ∂X for its Euclidean boundary.

An annular region is a bounded open set A ⊂ C such that A is homeomorphic to an open,

closed, or half-open Euclidean annulus. If A is an annular region, then ∂A has two connected

components, one of which disconnects the other from ∞. We call these components the outer
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and inner boundaries of A, respectively.

Definition 5.2.1. Let (X, d) be a metric space, with d allowed to take on infinite values.

1. A curve in (X, d) is a continuous function P : [a, b] → X for some interval [a, b].

2. For a curve P : [a, b] → X, the d-length of P is defined by

len(P ; d) := sup
T

#T∑
i=1

d(P (ti), P (ti−1))

where the supremum is over all partitions T : a = t0 < · · · < t#T = b of [a, b] which,

by convention, may be infinite. In particular, the d-length of P is infinite if there are

times s, t ∈ [a, b] such that d(P (s), P (t)) = ∞.

3. We say that (X, d) is a length space if for each x, y ∈ X and each ε > 0, there exists a

curve of d-length at most d(x, y) + ε from x to y. If d(x, y) < ∞, a curve from x to y

of d-length exactly d(x, y) is called a geodesic.

4. For Y ⊆ X, the internal metric of d on Y is defined by

d(x, y;Y ) := inf
P⊆Y

len(P ; d), ∀x, y ∈ Y

where the infimum is over all curves P in Y from x to y. Note that d(·, ·;Y ) is a metric

on Y , except that it is allowed to take infinite values.

5. If X ⊆ C, we say that d is a lower semicontinuous metric if the function (x, y) 7→ d(x, y)

is lower semicontinuous with respect to the Euclidean topology. We equip the set of

lower semicontinuous metrics on X with the topology on lower semicontinuous functions

on X ×X, and the associated Borel σ-algebra.

6. If A is an annular region, we define the d-distance across A as the distance between
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the inner and outer boundaries of A, and the d-distance around A as the infimum of

the d-distances of closed paths that separate the inner and outer boundaries of A.

Definition 5.2.2 (Weak LQG metric). Let M′(C) be the space of distributions (generalized

functions) on C, equipped with the usual weak topology. For each ξ > 0, we define a weak

LQG metric with parameter ξ as a measurable function h 7→ Dh from M′(C) to the space of

lower semicontinuous metrics on C such that the following is true whenever h is a whole-plane

GFF plus a continuous function.

i. Length space. Almost surely, (C, Dh) is a length space.

ii. Locality. For each deterministic open set U ⊂ C, the Dh-internal metric Dh(·, ·;U) is

determined almost surely by h|U .

iii. Weyl scaling. If f : C → R is a continuous function, then almost surely Dh+f = eξfDh,

where

(eξf ·Dh)(z, w) = inf
P :z→w

∫ len(P ;Dh)

0
eξf(P (t))dt, ∀z, w ∈ C, (5.3)

where the infimum is taken over all paths from z to w parametrized by Dh-length.

iv. Scale and translation covariance. Let Q be the LQG background charge. For each

fixed deterministic r > 0 and z ∈ C, a.s.

Dh(ru+ z, rv + z) = Dh(r · u+ z) +Q log r (u, v) ∈ C2

v. Finiteness. Let U ⊂ C be a deterministic, open, connected set, and let K1, K2 ⊂ U be

disjoint, deterministic, compact, connected sets which are not singletons. Almost surely,

Dh(K1, K2;U) < ∞.
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5.2.2 Description of the model

We refer to [41, 42, 43] for introductory details on the GFF. Fix Q > 0 and let cM ∈ (−∞, 25)

be the corresponding matter central charge. Let h be a whole plane GFF. We will define a

dyadic tiling associated with h as a realization of a graph approximation to an LQG surface

with central charge cM.

For a square S ⊂ C, we write |S| to be the side length of the square, and vS to be its

center. By convention, we say that a square S is dyadic if, for some n ∈ N, |S| = 2−n, and

its corners lie on 2−nZ2. For a square S ⊂ C, we define

Mh(S) := eh|S|/2(vS)|S|Q, (5.4)

where hr(z) is the circle average of the GFF over ∂Br(z). Again, we omit details regarding

circle averages, but the interested reader can see [17], for example. For ϵ > 0, let

Sϵ
h(C) := {Dyadic squares S ⊂ C with Mh(S) ≤ ϵ and Mh(S′) > ϵ

∀ dyadic ancestors C ⊃ S′ ⊃ S.}
(5.5)

We write Sϵ
h := Sϵ

h(C). For z, w ∈ C, we let Dϵ
h(z, w) be the minimal Sϵ

h graph distance from

a square containing z to a square containing w. By convention, we set this infimum equal

to ∞ if either z or w is not contained in a square belonging to Sϵ
h. We remark that Sϵ

h is

locally finite in the regime Q ≥ 2, but not in the Q ∈ (0, 2) regime. For basic properties of

this discrete LQG distance, see Section 1.2 of [20].

We say that z ∈ C is a singularity of Sϵ
h if z is not contained in any square of Sϵ

h. We

observe that if z ∈ C is fixed, then a.s. z is not a singularity of Sϵ
h. Indeed, if h is a whole-plane

GFF normalized so that h1(0) = 0, then since each h|S|/2(vS) is Gaussian with variance

log(2/|S|) +O(1), the desired statement is easily seen from the Gaussian tail bound and a

union bound over the dyadic squares (contained in some bounded domain) which contain
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z. The corresponding statement for other variants of the GFF follows by local absolute

continuity. From this, it is easily seen that a.s. every singularity is an accumulation point of

arbitrarily small squares of Sϵ
h. Given this, we will consider a modified version of this metric

that establishes a minimal allowable side length for Sϵ
h squares in a given path. To that end,

let

N ϵ :=
(

log 1
ϵ

)7/5
(5.6)

and define

D̃ϵ
h(z, w) := inf

P :z→w
#P (5.7)

where the infimum is taken over all paths P = (S0, S1, . . . , S#P ) with Si ∈ Sϵ
h, |Si| ≥ 2−N ϵ

for all i, Si is adjacent to Si−1 for all i (i.e., they intersect along a non-trivial connected line

segment), z ∈ S0, and w ∈ S#P . The main focus of this chapter will be to establish upper

and lower bounds for this modified metric, in terms of the limiting LQG metric Dh.

5.2.3 Statement of main result

Throughout this subsection, we assume that h is a whole-plane GFF normalized so that its

circle average over ∂D is zero.

Theorem 5.2.1. Suppose ξ > 0 is such that Q(ξ) = Q is the parameter for the square tiling

model, as defined previously. Fix a bounded open set D ⊂ C with connected boundary and a

compact, connected set K, with non-empty interior, contained in D. Then, with probability

tending to 1 as ϵ → 0,

D̃ϵ
h(K, ∂D) = ϵ−ξ+oϵ(1), (5.8)

i.e., the distance exponent for the square tiling model is ξ. In particular, the function ξ → Q(ξ)

is strictly decreasing on (0,∞).

We remark that the ϵ-square tiling model, a priori, depends on the parameter Q, while
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the equality seen in (5.8) recovers ξ as the distance exponent. This implies that we have

constructed an inverse to the continuous mapping ξ → Q(ξ), from which strict monotonicity

of this mapping follows. We prove the result in two main steps. The main idea is to give

both an upper and a lower bound for the number of squares in the Sϵ
h tiling, by appealing to

a few results already shown in the literature. The main result is similar to the relationship

between LFPP and Liouville graph distance proven in [5], but applies in the supercritical case.

Moreover, the relationship was conjectured in Section 2.3 of [20]. Indeed, see the paragraph

in that section about LFPP.

5.2.4 Initial estimates

We begin by showing that the squares of Sϵ
h are not macroscopic. The following lemma

asserts that the maximum size of the squares of Sϵ
h that intersect a fixed bounded set will

converge to zero as ϵ → 0. We state this result more precisely, and we note that the proof

follows from two key lemmas in [20].

Lemma 5.2.2. Let U be a fixed bounded open set in C, and let Q(ξ) = Q be the parameter

for the square tiling model. Then, for each ζ ∈ (0, 1), it holds with probability 1 as ϵ → 0 that

max {|S| : S ∈ Sϵ
h and S ∩ U ̸= ∅} ≤ ϵ

1
2+Q−ζ

.

Proof. Lemmas 4.3 and 4.4 in [20] imply that, with probability tending to 1 as ϵ → 0,

max {|S| : S ∈ Sϵ
h and S ∩ [0, 1]2} ≤ ϵ

1
2+Q−ζ

and so the desired result follows from the fact that U can be covered by finitely many

(translated) copies of [0, 1]2.

Next, we require the following concentration bounds for LQG distances around and across
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annili. Recall the last item of Definition 5.2.1.

Lemma 5.2.3. Let ξ > 0, let h be the whole-plane GFF, and let Dh be a weak LQG metric.

Let A be a bounded subset of the plane with the topology of a Euclidean annulus, and with the

property that both the inner and outer boundaries of A are non-singleton. There are constants

c0, c1 > 0 depending on A such that the following is true. For each r > 0 and each R > 3,

P
{
Dh(across rA) < R−1eξhr(0)rξQ

}
≤ c0e

−c1(log R)2
, (5.9)

and

P
{
Dh(around rA) > Reξhr(0)rξQ

}
≤ c0e

−c1(log R)2
log log R . (5.10)

Proof. This is an immediate consequence of Lemma 2.1 in [7].

5.3 Upper bound for Dh in terms of D̃ϵ
h

In this section, we fix a bounded open set D ⊂ C with connected boundary and a compact,

connected set K with non-empty interior, contained in D.

Theorem 5.3.1. Suppose ξ = ξ(cM) is such that Q = Q(ξ) is the parameter for the square

tiling model. Then, with probability tending to 1 as ϵ → 0,

Dh(K, ∂D) ≤ ϵξ+oϵ(1)D̃ϵ
h(K, ∂D).

In particular, D̃ϵ
h(K, ∂D) ≥ ϵ−ξ+oϵ(1) with probability tending to 1 as ϵ → 0.

Given a D̃ϵ
h-geodesic in the Sϵ

h tiling, we may use (5.10) to construct a new path whose

Dh length is upper bounded. We view the geodesic as a minimum length path of squares in

the Sϵ
h tiling. For this construction, we require that ϵ be sufficiently small so that the paths

around the squares have small enough Euclidean diameter, which forces them to intersect

the compact sets.
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Lemma 5.3.2. Almost surely, every small enough dyadic square S that intersects D can

be enclosed by a loop, which is contained in B|S|(S) \ S, and whose Dh-length is at most

(Mh(S))ξ e
(log 1

|S| )
2/3
.

Proof. Let d = diam(D). Fix n ∈ N and consider dyadic squares of side length 2−n. Let

Rn = en2/3
, so that

∑
n≥1

22n e
−(log Rn)2
log log Rn < ∞. Using the estimate (5.10) and a simple union

bound, we see that

P


⋃

S∩D≠∅
|S|=2−n

{
Dh(aroundB|S|(S) \ S) > Rn(Mh(S))ξ

}


≤
∑

S∈D
|S|=2−n

P
[
Dh(aroundB|S|(S) \ S) > Rn(Mh(S))ξ

]

< d2 22ne
−n4/3

2/3 log n ,

which follows from the fact that any tiling can admit at most (2nd)2 squares of side length

2−n. Observe that the final term obtained in the above string of inequalities is summable

over all values of n, and so the proof is concluded via Borel-Cantelli.

Let P ϵ be an Sϵ
h-geodesic connecting ∂D and K. Our goal is to construct a new path

that is realized as a concatenation of loops around annuli containing squares that are hit by

P ϵ. This new path will have bounded Dh length by Lemma 5.3.2, and this, in turn, would

give us a lower bound for the number of squares in the square-tiling geodesic P ϵ. To make

this construction, we prove the following topological fact.

Lemma 5.3.3. Let J = J(K) := diam(K). For ζ ∈ (0, 1), and for ϵ ≤ J
2+Q

1−ζ(2+Q) , consider

the path P ϵ, viewed as a minimal length path of Sϵ
h squares between K and ∂D. For each square

S in this path, let P̃S be a bounded Dh-path around B|S|(S) \ S, as realized in Lemma 5.3.2.

Then, the union of the paths P̃S , S ∈ P ϵ contains a connected path from K to ∂D.
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Proof. We follow the proof of Lemma 4.3 in [23]. Observe that the union of the sets bounded

by the paths P̃S , S ∈ P ϵ realizes a cover for P ϵ. We denote these sets by AP̃S
for ease. We

then select a sub-collection of squares S which admit a minimal cover, in the sense that

P ϵ ⊂
⋃

S∈S
AP̃S

, and P ϵ is not covered by any proper subset of the sets containing the squares

in S. Since P ϵ is connected, it follows that ⋃S∈S AP̃S
is connected. Indeed, if this set had

two proper disjoint open subsets, then each would have to intersect P ϵ (by minimality) which

would contradict the connectedness of P ϵ. Moreover, by minimality, no path surrounding

any square in S is properly contained in another path surrounding a different square in S.

We claim that ⋃S∈S ∂AP̃S
= ⋃

S∈S P̃S is connected. Assume to the contrary, and partition

S = S1
⊔S2 so that S1 and S2 are non-empty, and the corresponding sets AP̃S

are such that⋃
S∈S1 P̃S and ⋃S∈S2 P̃S are disjoint. Since our chosen cover is minimal, no corresponding

set AP̃S
surrounding a square in S2 can be contained in ⋃

S∈S1 ∂AP̃S
. Furthermore, since⋃

S∈S1 P̃S and ⋃S∈S2 P̃S are disjoint, it cannot be the case that any set containing a square in

S2 intersects both ⋃S∈S1 AP̃S
and C \ ⋃S∈S1 AP̃S

. Therefore, ⋃S∈S AP̃S
and ⋃S∈S2 P̃S are

disjoint. Since no set containing an element of S1 can be contained in ⋃S∈S2 AP̃S
, we get that⋃

S∈S1 AP̃S
and ⋃

S∈S2 AP̃S
are disjoint. This contradicts the connectedness of ⋃S∈S AP̃S

,

and therefore supports our claim.

Since the initial and terminal sets of the form AP̃S
intersect K and ∂D respectively given

our choice of ϵ, the desired claim follows.

Proof of Theorem 5.3.1. Define P ϵ and P̃S as in Lemma 5.3.3, and let S be a sub-collection

of P ϵ squares such that the union of the sets bounded by the paths P̃S , S ∈ S, admits a

minimal cover of P ϵ. Lemma 5.3.3 tells us that we can construct a connected path P ∗ between

K and ∂D realized as a union of segments of (bounded) Dh-paths around B|S|(S) \ S, for

S ∈ P ϵ. Thus, by the triangle inequality, we have that
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Dh(K, ∂D) ≤
∑

S∈S
P ∗∩B|S|(S)\S ̸=∅

Dh( segment of P ∗ contained in B|S|(S) \ S)

≤
∑

S∈S
Dh(aroundB|S|(S) \ S)

≤
N ϵ∑

n=1

∑
S∈P ϵ

|S|=2−n

Dh(aroundB|S|(S) \ S),

where the last inequality follows from the fact that, by definition of the model, the squares have

minimal side length of 2−N ϵ
, where N ϵ = (log 1

ϵ )7/5. By Lemma 5.3.2, it holds with probability

tending to 1 as ϵ → 0, that for all S ∈ P ϵ, Dh(aroundB|S|(S) \ S) ≤ (Mh(S))ξe
(log 1

|S| )
2/3

and by definition, each such square satisfies Mh(S) ≤ ϵ. With this, and the fact that the

multiplicative error, in the worst case, equals e(log 2Nϵ)2/3 = ϵoϵ(1) by construction, we obtain

the inequality

Dh(K, ∂D) ≤ ϵξ+oϵ(1)D̃ϵ
h(K, ∂M).

The Dh distance on the LHS of the above inequality is a finite random variable that does not

depend on ϵ, and so it follows that D̃ϵ
h(K, ∂D) ≥ ϵ−ξ+oϵ(1) with probability tending to 1 as

ϵ → 0.

5.4 Upper bound for D̃ϵ
h in terms of Dh

In this section, we aim to upper bound the number of Sϵ
h-squares that the continuum geodesic

can intersect. As in the previous section, we fix a bounded open set D ⊂ C with connected

boundary and a compact, connected set K with non-empty interior, contained in D. We

state this more precisely as follows.

Theorem 5.4.1. Suppose ξ = ξ(cM) is such that Q = Q(ξ) is the parameter for the square
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tiling model. Then, with probability 1 as ϵ → 0,

Dh(K, ∂D) ≥ ϵξ+oϵ(1)D̃ϵ
h(K, ∂D).

In particular, D̃ϵ
h(K, ∂D) ≤ ϵ−ξ+oϵ(1) with probability 1 as ϵ → 0.

We adopt a slightly different strategy, in that we start with a Dh-geodesic, and using the

estimate (5.9), we can find an upper bound for the number of squares in the Sϵ
h-tiling hit

by the Dh-geodesic, and thus giving an upper bound for the D̃ϵ
h distance between two sets

in the tiling. To do this we begin by showing that the Dh-geodesic avoids extremely small

squares, which relies on estimates similar to Lemma 5.3.2.

Lemma 5.4.2. Almost surely, every dyadic ancestor S′ of every small enough dyadic square S

intersecting D has the property that both the Dh distance around the annulus B100|S′|(S′) \S′,

and the Dh distance across B|S′|(S′) \ S′ are at least (Mh(S′))ξ e−(log(1/|S′|)2/3).

Proof. In the spirit of Lemma 5.3.2, n ∈ N, and let Rn = en2/3 so that
∑
n≥1

22n e−(log Rn)2
<

∞. Observe that, with this choice of Rn, we must have that R−1
n = e−(log 1/|S′|)2/3 . The rest

of the proof is exactly as in Lemma 5.3.2.

We will show that the geodesic avoids tiny squares in a sequence of steps. We first give a

lower bound for the length of a Dh-path η which disconnects the inner and outer boundaries

of B|S|α(S) \B100|S|(S) for a fixed square S in S ∈ Sϵ
h, and some α ∈ (0, 1). Then, using a

key lemma in [8], we give an upper bound for the Dh-distance around B|S|α(S) \ S, and in

turn this allows us to give the desired lower bound on the size of the squares the Dh-geodesic

actually sees.

Lemma 5.4.3. For each α ∈ (0, 1) and S ∈ Sϵ
h intersecting D let η be a Dh-path disconnecting

the inner and outer boundaries of B|S|α(S) \ B100|S|(S). Then, a.s. for each δ > 0 and ϵ

80



small enough, there exists a dyadic ancestor S′ of S such that

len(η) ≥ ϵξ|S′|−δξ,

where ξ is an in Lemma 5.4.2.

Proof. We first claim that there exists a dyadic ancestor S′ of S such that either η ⊂

B100|S′|(S′) \ S′, or η crosses from S′ to ∂B|S′|(S′). Indeed, let T be the smallest ancestor of

S with the property that T∩η ̸= ∅, and let S̃ be the immediate dyadic offspring of T containing

S. Note that the condition imposed on η guarantees that S̃ ̸= S. If η ∩ ∂B25|T |(T ) ̸= ∅, then

we simply let S′ = T , as indeed, η must cross from ∂T to ∂B|T |(T ) for this to happen. If

η ⊂ B25|T |(T ), then certainly η ⊂ B100|S̃|(S̃). In this case, we simply let S′ = S̃. Thus, we

have the following cases.

• Suppose η ⊂ B100|S′|(S′) \ S′ for some dyadic ancestor S′of S. Then, by Lemma 5.4.2,

under the formulation for distances around annuli, we have

len(η) ≥ Dh(aroundB100|S′|(S′) \ S′)

≥ Dh(aroundB|S′|(S′) \ S′)

≥ (Mh(S′))ξ|S′|−δξ

≥ ϵξ|S′|−δξ,

as each dyadic ancestor has LQG size greater than ϵ.

• Suppose η crosses from S′ to ∂B|S′|(S′), for some dyadic ancestor S′of S. Then, by

Lemma 5.4.2 we have

len(η) ≥ Dh(acrossB|S′|(S′) \ S′) ≥ (Mh(S′))ξ|S′|−δξ ≥ ϵξ|S′|−δξ,

and this concludes the proof.
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Figure 5.2: A schematic of the geometric argument given in Lemma 5.4.3. The case where η
intersects the boundary of the inner (blue) circle gives us the result automatically. In the case
that it does not, then in η is contained in the ball of radius 100|S̃|(S̃), and is thus contained
in B100|S̃|(S̃) \ S̃.

Lemma 5.4.4. For each ζ > 0 and α ∈ (0, 1), there exists β = β(α) > 0 such that for each

Euclidean-bounded open set U ⊂ C, the following holds with probability tending to 1 as ζ → 0.

Suppose z ∈ U, x, y ∈ C \Bζα(z), and s > 0 such that there is a Dh-geodesic P from x to y

with P (s) ∈ Bζ(z). Then

Dh(aroundBζα(z) \Bζ(z)) ≤ ζβs.

Roughly speaking, the lemma implies that if a Dh-geodesic does hit a square in Sϵ
h, then

the Dh distance around an annulus containing that square is bounded above.

Proof. This is Corollary 3.7 in [8].

Proposition 5.4.5. Let D′ be a bounded open set with D ⊂ D′, and fix a compact, non-

singleton set K ′ ⊂ K̊. Let η be a Dh geodesic between K ′ and ∂D′, and let δ, β be defined as

in Lemma 5.4.3 and Lemma 5.4.4 respectively. Then, with probability tending to 1 as ϵ → 0,

η does not hit any Sϵ
h squares S intersecting D \K, with |S| < ϵ

ξ
β+δξ (len(η))−1.
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We remark that the proof of the above proposition relies on Lemma 5.4.4. The lemma

specifies that the marked points between which the geodesic traverses remain outside of a

ball of given radius, and so the introduction of the sets D′ and K ′ allow for this.

Proof. Let S be an Sϵ
h square intersecting both η and D \K, with ϵ sufficiently small. For

α ∈ (0, 1), Lemma 5.4.3 tells us that, a.s., there exists a dyadic ancestor S′ ⊃ S with the

property that

Dh(aroundB|S′|α(S′) \ S′) ≥ ϵξ|S′|−δξ,

for some δ > 0. On the other hand Lemma 5.4.4 implies that, with probability tending to 1

as ϵ → 0,

Dh(aroundB|S′|α(S′) \ S′) ≤ |S′|β len(η),

for some β = β(α). Should these two inequalities be satisfied, we must have that |S′|β len(η) ≥

ϵξ|S′|−δξ. Rearrangement yields the inequality |S′| ≥ ϵ
ξ

β+δξ (len(η))−1 and the desired claim

follows.

Proof of Theorem 5.4.1. We begin by making the following geometric observations about the

interactions of a Dh- geodesic η (as in Proposition 5.4.5), and the Sϵ
h tiling.

• If η hits a square S ∈ Sϵ
h, then certainly η crosses from ∂B|S′|(S′) \ S′ to ∂S, traverses

S (and possibly one of the other squares adjacent to it), and crosses this annulus again.

We can lower bound the Dh lengths of the segments of η contained in this annulus by

twice the distance across it.

• The possible side lengths for the squares in a given Sϵ
h path are 2−n for n ∈ (c log 1

ϵ , Nϵ),

as the side length of the squares is upper bounded by Lemma 5.2.2, and lower bounded

by the definition of the model. Thus, if we let Sn := {S ∈ Sϵ
h : |S| = 2−n, S ∩ η ̸= ∅},
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we see that there must exist a number k ∈ N such that

#Sk ≥
#{S ∈ Sϵ

h : S ∩ η ̸= ∅}
N ϵ ,

and so it suffices to upper bound #Sk. Observe that, for every square S such that

|S| = 2−n, there are at most 8 other squares S̃ with |S̃| = 2−n such that S̃∩B|S|(S) ̸= ∅.

Figure 5.3: A schematic of a Dh-geodesic entering the annulus around S′, traversing the
smaller cells, and leaving it. The segments in blue are the crossing segments.

Let M ϵ be the number of Sϵ
h− squares that the Dh geodesic η intersects, and define S∗

k

to be the set of dyadic parents of the squares in Sk. Using the observation above, we deduce

84



that the following inequalities hold with probability going to 1 as ϵ → 0.

Dh(K, ∂D) ≥ 1
32

∑
S′∈S∗

k

Dh(segment of η contained in B|S′|(S′) \ S′)

≥ 1
32

∑
S′∈S∗

k

2Dh(acrossB|S′|(S′) \ S′) (by discussion preceding Fig. 5.3)

≥ 1
16

∑
S′∈S∗

k

ϵξe−(log(1/|S′|)2/3) (by Lemma 5.4.2)

≥ 1
16

∑
S′∈S∗

k

ϵξϵ
( ξ

β+δξ )oϵ(1) (Dh(K ′, ∂D′))−1 (by Proposition 5.4.5)

≥ 1
16ϵ

ξ+oϵ(1) (Dh(K ′, ∂D′))−1 #Sk

≥ 1
16(N ϵ)−1ϵξ+oϵ(1) (Dh(K ′, ∂D′))−1M ϵ (by discussion preceding Fig. 5.3)

= 1
16ϵ

ξ+oϵ(1) (Dh(K ′, ∂D′))−1M ϵ (as N ϵ = ϵoϵ(1) by definition).

Again, Dh(K, ∂D) and Dh(K ′, ∂D′) are random variables independent of ϵ, and so we must

have that M ϵ ≤ ϵ−ξ+oϵ(1).
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