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ABSTRACT 

Uncovering information hidden within brain networks can be a daunting task, especially 

in the cases of abnormal, disrupted neural networks, such as epilepsy. Here, I present a 

multifaceted approach that combines signal processing, computational neuroscience, and 

theoretical and mathematical modeling to investigate the mechanisms and structure that underlie 

neuronal activity in both time and space. First, I show that there is a mathematical symmetry in 

the temporal and spatial domains if the spike-centered averages (a novel second-order metric of 

the action potential spike-LFP relationship) resemble sinc functions in human focal seizures. I 

then advance network analysis by presenting a novel approach to characterize neural networks 

using third-order motifs, which are sufficient to completely and uniquely characterize networks 

in both time and space. Furthermore, these third-order motifs are classified according to their 

sequencing depending on the combination of up to two lags in time and space, yielding fourteen 

qualitatively distinct motif classes that can embody well-studied neural network properties, such 

as synchrony, feedback, divergence, and convergence. Building from triple correlation, I then 

develop a novel quantitative metric that captures overall network activity: the 4D entropy based 

on the spatiotemporal lag distribution computed from triple correlation. Applying this metric to 

rat cortical cultures from microelectrode arrays, I demonstrate the enhanced value of 4D entropy, 

which is based on third-order structure, in that it captures the underlying dynamics in comparison 

to 2D, or pairwise, entropy. Lastly, I develop and implement a Hodgkin-Huxley simulation of 

excitatory-inhibitory population activity to model the first three stages of a focal seizure and use 

triple correlation to show that the network represented by the model is a good fit for the network 

of the patient data.  
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CHAPTER 1 

INTRODUCTION 
 

Epilepsy is a neurological disorder characterized by recurrent, spontaneous seizures. 

Between 1-2% of people are diagnosed with epilepsy in the US, and approximately 65 million 

people are diagnosed worldwide (Fiest et al., 2017). The word “epilepsy” is derived from the 

Greek word epilambanein, which means “to be seized” (Cule, 1973; Patel & Moshe, 2020), and 

the word “seizure” is derived from the Latin word sacire, meaning “to take possession of” 

(Bromfield et al., 2006). Even though these terms have been around for many centuries, defining 

and diagnosing epilepsy is not a trivial task. This can be attributed to the fact that epilepsy 

constitutes a multitude of disorders, each with varied combinations of symptoms, causes, 

prognoses, and treatments. While each epileptic pathology offers a plethora of intriguing 

research questions to study, the work presented in this dissertation mainly focuses on evaluating 

the spatiotemporal characteristics and mechanisms underlying human focal seizures by utilizing 

novel computational neuroscience and signal processing tools.   

1.1 Clinical Aspects of Epilepsy 

1.1.1 Diagnosis 

Diagnosing epilepsy is not a straightforward task, as epilepsy is a complex and multi-

faceted disorder. Detailed medical and family history is crucial, and a clinical epileptologist will 

determine whether the seizure is epileptic or not, based on signs, symptoms, and presentation 

(Thijs et al., 2019).  To diagnose epilepsy and identify seizure type, neurologists analyze 

electroencephalogram (EEG) signals for epileptic activity, such as interictal events, 

electrographic seizures, and background abnormalities. However, misdiagnosis of epilepsy by 

using EEG can occur. In these cases, clinicians may over-read or misinterpret normal 
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background fluctuations as abnormal rhythms in EEG (Ferrie, 2006). Furthermore, between 25 to 

30% of patients who were administered a first-line anti-epileptic medication do not actually have 

epilepsy (Amin & Benbadis, 2019). This highlights the importance of diagnostic guidelines. The 

diagnostic conditions of epilepsy as defined by the ILAE include the following (repeated below 

from Fisher et al., 2014):  

(1) “At least two unprovoked (or reflex) seizures occurring >24 hr apart 

(2) One unprovoked (or reflex) seizure and a probability of further seizures similar to the 

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over 

the next 10 years 

(3) Diagnosis of an epilepsy syndrome” 

An unprovoked seizure is one that does not have a temporary or reversible cause (Fisher 

et al., 2014). Thus, “provoked” seizures, such as those caused by hypoglycemia, hypoxia, 

infection, injury, drugs/medications, hypertension, alcohol withdrawal, among others (Huff & 

Murr, 2022), would not be diagnosed as epilepsy (Fisher et al., 2014).  

1.1.2 Anti-seizure medications and drug resistance 

For most patients with epilepsy, anti-seizure medications (ASMs) are the first-line 

options. Most ASMs primarily either target sodium channels with an overall goal of reducing the 

excitability of the neuron or increase GABA transmission with an overall goal of increasing 

neuronal inhibition (Davies, 1995). These include phenytoin, carbamazepine, valproate, 

oxcarbazepine, among others (Czapinski et al, 2005).  While ASMs tend to be efficacious in 

reducing seizure burden, approximately 1/3rd of epilepsy patients does not respond to these 

drugs, which is called pharmacoresistant or drug-resistant epilepsy (DRE) (Fattorusso et al., 
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2021). While the mechanisms that lead to DRE are not well-established, DRE is thought to be 

caused by multiple mechanisms acting in congruence. Some of these mechanisms include:  

(1) Transporter hypothesis: The increased expression of specific transporters (e.g. ATP-

binding cassette transporters) and P-glycoprotein at the blood brain barrier reduces the 

effectiveness of ASMs, and thus, leads to DRE (Tang et al., 2017; Fattorusso et al., 2021; 

Czornyj et al., 2022) 

(2)  Pharmacokinetic hypothesis: The increased expression of these transporters in peripheral 

organs (e.g. colon, liver, and kidney) takes up the ASM in plasma, and thus decreasing 

the amount of ASM to reach the brain (Tang et al., 2017; Fattorusso et al., 2021; Czornyj 

et al., 2022).  

(3) Target hypothesis: The structure or function of the molecular targets of ASMs becomes 

altered, and thus reduces the efficacy of the ASMs (Remy & Beck, 2006). For example, 

during prolonged status epilepticus, patients can develop resistance to benzodiazepines 

due to GABAA receptor internalization at the postsynaptic terminal (Goodkin et al., 2007; 

Wasterlain & Chen, 2008; Rogawski 2013). 

Researchers continue to investigate these hypotheses, the causes of drug resistance in epilepsy, 

and the development of novel treatments that compensate for these proposed mechanisms of 

drug resistance.  

1.1.3 Surgical resection 

 For patients with pharmacoresistant focal epilepsy, surgical resection may be a treatment 

option. Patients first undergo presurgical evaluation to determine if surgical resection would be 

appropriate and effective. This involves the following steps: (1) identify potential surgical 

candidates who would benefit from presurgical evaluation, and (2) determine whether surgery 
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outweighs the potential risks for the surgical candidate (Ryvlin & Rheims, 2008). For the first 

step, there are three criteria that must be considered: (a) the patient must provide informed 

consent (the patient understands the goal of presurgical evaluation and surgical treatment); (b) 

the patient must have pharmacoresistant epilepsy that impacts the social and familial aspects of 

the patient’s life; and (c) imaging and clinical data should indicate that surgical resection could 

reduce seizure burden (Ryvlin & Rheims, 2008).  

The goal of presurgical evaluation is to identify the seizure onset zone (SOZ), which is 

the region of the brain from which the seizures originate (Ryvlin & Rheims, 2008). The SOZ is 

utilized as a potential surrogate for the epileptogenic zone (EZ), which is a theoretical construct 

(as there is no method for direct measurement) and is defined as the minimum brain area that 

should be resected for the patient to achieve seizure freedom (Luders et al., 1993; Ryvlin & 

Rheims, 2008). In addition, several other cortical zones have been previously described: the 

irritative zone generates interictal spikes; the symptomatogenic zone generates the initial signs 

and symptoms of a seizure; and the functional deficit zone is the brain area that does not function 

correctly during the interictal period (Ryvlin & Rheims, 2008; Jayakar et al., 2018; Jehi, 2018). 

These cortical zones can be described independently or may overlap with the EZ and with each 

other, and thus, are not necessarily mutually exclusive.  

After the patient is deemed a good candidate during presurgical evaluation, the next step 

is to identify the SOZ (Ryvlin & Rheims, 2008). Precise localization of the SOZ is critical to 

provide an opportunity for surgical resection to be effective (Ryvlin & Rheims, 2008). This is 

performed using monitoring modalities, such as EEG, stereo-EEG, or intracranial EEG (for more 

details regarding these recording techniques, refer to Section 1.3 – Multiscale Recording 

Modalities) (Ryvlin & Rheims, 2008). In addition, identifying the SOZ with high spatial 
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resolution becomes especially critical if the seizures are thought to originate from brain regions 

near eloquent cortex regions, which are brain areas responsible for language, motor control, 

cognition, memory, and sensory perception (Kahn et al., 2017). If the putative SOZ is identified 

and is outside of eloquent cortex, an interdisciplinary team of neurologists, neurosurgeons, 

clinical neurophysiologists, radiologists, among others work to develop a surgical plan. Surgical 

resection involves cutting out the brain tissue responsible for causing the seizures and 

minimizing the damage to surrounding healthy tissue (Ryvlin & Rheims, 2008). After the 

surgery is complete, the clinical team will closely monitor the patient in the Epilepsy Monitoring 

Unit and follow-up to assess the patient’s progress, whether the patient needs additional 

medication, and whether the patient has achieved seizure freedom (Ryvlin & Rheims, 2008).  

1.1.4 Psychiatric comorbidities and epilepsy-related structural changes 

An epilepsy diagnosis can significantly affect the quality of life physically, socially, and 

psychologically, including effects on driving, independent living, and work opportunities 

(Hermann & Seidenberg, 2007). Furthermore, progressive damage from epilepsy can lead to 

neurocognitive impairment, memory difficulties, and attention deficits (Hermann & Seidenberg, 

2007). Because epilepsy results in pathological neural networks that are characterized by 

disrupted neuronal communication (Bromfield, 2006), it can eventually lead to reorganization of 

neural circuits (Eyo et al., 2017). Due to this, patients can experience psychiatric and mood 

disorders in conjunction with epilepsy (Jenson, 2011; Salpekar, 2016). The prevalence of 

psychiatric comorbidities (of which depression and anxiety are the most frequent) in patients 

with epilepsy ranges from 25-50%, which is much higher than that of the general population 

(LaFrance et al., 2008; Hellwig et al., 2012; Salpekar, 2016). Several potential etiologies link 

depression to epilepsy, such as psychological, familial, and social stressors associated with an 
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epilepsy disorder. In addition, anti-seizure medications, such as phenobarbital, have been linked 

to causing depressive symptoms (Vining, 1986; Brent et al., 1990). This can be attributed to 

increased overall inhibitory transmission and decreased excitatory activity. Furthermore, several 

studies have noted changes in anatomical structures within the temporal lobe for patients with 

both epilepsy and depression. Specifically, a structurally smaller hippocampus and a larger 

amygdala have been identified using neuroimaging techniques in these subset of patients (van 

Elst et al., 2001; Kanner, 2004; Briellman et al., 2007; Shamim et al., 2009; Taylor et al., 2015). 

This currently remains an active area of research in identifying structural changes in neuronal 

circuitry due to epilepsy.  

1.1.5 Seizure classification 

The International League Against Epilepsy (ILAE) has continually made efforts to refine 

the classification of different types of epilepsy. Current guidelines involve a multi-level 

classification of (I) seizure type (focal onset, generalized onset, and unknown onset), (II) 

epilepsy type (focal, generalized, combined generalized and focal, and unknown), and (III) 

epilepsy syndrome (Scheffer et al., 2017). Seizure type refers to the characteristics of the seizure. 

The two most described seizure types amongst adults are generalized and focal (partial) seizures. 

Generalized seizures occur bilaterally across the brain and can be further subdivided into primary 

and secondary. Focal seizures begin in a distinct cortical region, can spread across the brain, and 

can progress into secondary generalized seizures (Scheffer et al., 2017). These seizures can be 

further sub-divided into focal aware (does not involve loss of consciousness) and focal impaired 

awareness (involves the loss of consciousness) (Thijs et al., 2019). The four epilepsy types 

include focal, generalized, combined generalized & focal, and unknown, and can be determined 

after the patient has an epilepsy diagnosis (Scheffer et al., 2017). Epilepsy syndrome accounts for 
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the seizure type and epilepsy type and refers to the overall characteristics of the disorder 

(Scheffer et al., 2017). While there are a multitude of epilepsy syndromes (e.g., Dravet 

syndrome, infantile spasms, Doose syndrome (Berg et al., 2010)), the work presented in this 

dissertation focuses on uncovering spatiotemporal relationships and mechanisms in 

pharmacoresistant focal epilepsy.  

1.2 Multiscale Recording Modalities 

Investigating epileptic seizure dynamics can involve multiple scales: microscale (µm), 

mesoscale (mm), and macroscale (cm). For these reasons, various recording modalities and the 

locations of placement for these recording modalities will capture underlying neural activities at 

these scales, such as electroencephalogram (EEG), electrocorticogram (ECoG), and 

microelectrode arrays (MEA), among others (Fig. 1.1A). One of the most important recording 

and diagnostic tools for epilepsy is the electroencephalogram (EEG). EEG has significantly 

advanced contributions to investigate epileptiform mechanisms. Briefly, Richard Caton, an 

English scientist, first utilized galvanometers to measure electrical potentials in animals in 1875. 

This has since sparked subsequent discoveries in the field of neuroscience. Hans Berger, a 

German psychiatrist, published his seminal work on discovering the EEG in 1929 (Berger, 

1929). The EEG has since been extensively used to describe seizure dynamics (Gibbs & Gibbs, 

1952; Penfield & Jasper, 1954; Fisher et al., 2005; Fisher et al., 2014).  The fundamental 

principle underlying EEG is differential amplification: measuring the change in voltage between 

two pairs of electrodes (Britton et al. ,2016). Large groups of neurons firing together leads to the 

generation of electrical currents, which are detected by EEG electrodes placed on the scalp, 

typically using the standardized 10-20 placement system (Britton et al., 2016). In epilepsy, 

different types of EEG recording modalities are utilized. Some examples include: (1) scalp EEG 
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is the most commonly utilized noninvasive method in which electrodes are placed on the scalp 

(Berger 1929; Haider et al., 2008); (2) stereo-EEG involves the placement of intracranial 

electrodes into specific brain regions and is often used to facilitate identification of the seizure 

onset zone (Isnard, 2004); and (3) intracranial EEG involves the placement of depth electrodes 

into specific brain regions (Spencer, 2002). Electrocorticogram (ECoG) is an additional invasive 

recording modality in which grids or strips of ECoG electrodes are placed directly on the surface 

of the brain for monitoring (Bernabei et al., 2021). These intracranial EEG methods and ECoG 

electrodes offer increased spatial resolution, which may facilitate identification of the seizure 

onset zone and eloquent cortex. For detection of activity at the single-neuron scale, 

microelectrode arrays (MEAs) can be utilized. Utah arrays, a type of MEA, are a 4 mm x 4 mm, 

96-channel, 10x10 grid of electrodes placed onto the putative seizure onset zone. Implantation of 

Utah arrays for temporal lobe epilepsy patients have significantly increased our understanding of 

single-neuron dynamics on the millimeter-scale, including identification of seizure sub-territories 

(Schevon et al., 2012; Weiss et al., 2013), neuronal waveform changes due to recruitment 

(Merricks et al., 2015; Merricks et al., 2021), characterization of the spatiotemporal dynamics of 

the action potential spike-LFP relationship (Lee et al., 2023), and cell-type interactions both 

within the millimeter scale (unpublished results, Chapter 5) and across scales (Eissa et al., 2017). 

Previous studies have used the terms “recruited territory” and “unrecruited territory” to describe 

two types of seizure sub-territories1 (Schevon et al., 2012; Weiss et al., 2013; Merricks et al., 

2015; Merricks et al., 2021; Lee et al., 2023). The recruited territory is characterized by high 

 

1The terms “core” and “penumbra” were initially used to describe the two seizure sub-

territories (Schevon et al., 2012; Weiss et al., 2013), but “recruited territory” and 

“unrecruited territory” have since been utilized to account for the dynamic nature of these 

sub-territories (Merricks et al., 2015; Merricks et al., 2021; Lee et al., 2023). 
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spiking activity and synchronized bursting, while the unrecruited territory is the surrounding 

territory characterized by non-synchronous, lower spiking activity (Schevon et al., 2012; Weiss 

et al., 2013). Over time, more neurons are recruited into recruited territory by the propagating 

ictal wavefront (Fig. 1.1B). Furthermore, the macroscopic low frequency component of the LFP 

is correlated with multi-unit spiking activity in recruited territory as far as 10 cm away, 

suggesting that there is an interaction among scales (Eissa et al., 2017).  

1.3 Excitation and Inhibition Imbalance 

While the exact mechanisms that govern epilepsy are yet to be fully determined, one of 

the fundamental principles of epileptic pathology is the imbalance of excitation and inhibition. 

Epileptic seizures are associated with uncontrolled hyperexcitability, hypersynchrony, and 

disrupted network communication (Tryba et al., 2019). Hyperexcitation is excessive neural 

activity associated with large deflections in EEG & high firing rates, and hypersynchrony is 

synchronous activity across neural populations associated with high amplitude signals (Tryba et 

al., 2019). These concepts may seem contradictory: hyperexcitation seems to favor E over I, 

while hypersynchrony suggests that the balance instead alternates between E and I (Tryba et al., 

2019). The E/I imbalance may be explained by acquired insults (e.g. structural alterations in 

circuitry due to head trauma (Stafstrom & Carmant, 2015)) or genetic factors, like abnormal 

circuitry in cortical dysplasia or ion channel mutations in benign familial neonatal epilepsy 

(Poduri & Lowenstein, 2011; Berkovic, 2015). Several candidate mechanisms have been 

proposed to explain ictal hyperexcitation and failure of inhibition (Tryba et al., 2019): 1) 

increased extracellular K+ concentration, which results in depolarization and a further increase in 

excitation (Rutecki et al., 1985; Ying et al., 2015); 2) increased intracellular Cl- concentration in 

excitatory neurons, which reduces inhibitory efficacy by decreasing the hyperpolarizing effect of 
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GABAA receptors (Staley, 2006; Glykys et al., 2017); 3) decreased local extracellular Ca2+ 

concentrations at seizure onset (Han et al., 2015; Rajakulendran and Hann, 2016); and 4) 

paroxysmal depolarizing shift (PDS) (Fig. 1.1C) . PDS is considered an intracellular correlate of 

seizure activity and results from enhanced synchronization of the neuronal population 

(Matsumoto & Marsan, 1964; Greiner et al., 2003; Hotka & Kubista, 2019; Tryba et al., 2019). 

PDS is characterized by: (1) a burst of action potentials with decreasing amplitudes, (2) 

sustained, plateau-like depolarization, followed by (3) repolarization and termination (Fig. 1.1C) 

(Matsumoto & Marsan, 1964; Greiner et al., 2003; Hotka & Kubista, 2019; Tryba et al., 2019). 

Investigating this E-I imbalance is currently an active area of research. It is well-established that 

failure of inhibition at the local, mesoscale allows the ictal wavefront to propagate in focal 

seizures (Schevon et al., 2012; Meijer et al., 2015; Eissa et al., 2017). In addition, one study 

investigated the relationship between mesoscopic and macroscopic network properties and found 

that failure of inhibition at the ictal wavefront allows for propagation, yet activation of 

feedforward inhibition on a macroscopic scale allows the waveform to propagate in a distinct 

dynamical pathway (Eissa et al., 2017). These results suggest that inhibition plays different roles 

across multiple scales during ictal activity. 
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Figure 1.1: Schematics of multi-scale recording modalities, recruited and unrecruited 

territories, and paroxysmal depolarizing shift. A) Multiscale recording modalities in epilepsy 

include scalp electroencephalogram (EEG), electrocorticogram (ECoG), and microelectrode 

arrays (MEA). A schematic of the Utah array, which is a 10x10 grid, 96-channel, 4 mm x 4 mm 

MEA, is placed on the putative seizure onset zone, as shown by the recruited territory. B) The 

recruited territory is characterized by increased neuronal firing and highly synchronous activity 

(yellow), while unrecruited territory is characterized by lower neuronal firing (blue). The edge of 

the recruited territory is the expanding ictal wavefront and consists of the most intense neuronal 

firing activity (panel adapted from Weiss et al., 2013). C) Paroxysmal depolarizing shift (PDS) 

can be simulated using a Hodgkin-Huxley model of a single neuron in response to increasing 

current, which shows decreasing action potential spike amplitudes and eventually depolarization.  
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1.4 Computational Models in Epilepsy Research 

Computational models can range from the single neuron (microscopic) level, which 

usually involves the Hodgkin-Huxley model or some modification thereof, to the population 

(mesoscopic and macroscopic) scale, which accounts for neural activity across groups of 

neurons, typically modeled by a set of mathematical equations (e.g. neural mass models, Wilson-

Cowan model). Utilization of various computational models across these multiples scales have 

resulted in significant and meaningful findings in epileptic seizure research.  

1.4.1 Cellular models 

Many cellular and sub-cellular models at the single neuron scale have been used to 

investigate epilepsy. These models typically focus on the biophysical properties and/or 

electrochemical properties of neurons, such as ion channel dynamics and synapses. One of the 

most famous and consequential cellular models in neuroscience was developed by Alan Hodgkin 

and Andrew Huxley in 1952. The Hodgkin-Huxley (HH) model consists of four nonlinear 

differential equations that describe the dynamics of the action potential by modeling the resulting 

change in membrane potential due to sodium channel activation & inactivation and potassium 

channel activation. The HH model has been used extensively to investigate seizure activity. One 

of the early studies to do so used an HH network model of 100 hippocampal neurons to show 

that neuronal synchronization could lead to interictal spiking activity (Traub & Wong, 1982). 

Conductance-based models and modifications thereof have since lead to significant insights into 

understanding the mechanisms and markers of epileptic activity, such as synchronicity of 

neuronal activity (Traub et al., 1991), synchronized oscillations and propagating waves 

(Destexhe et al., 2001), interictal epileptic activity (Wendling et al., 2002), and the effects of 

different pharmacological treatments (Lytton, 1998).  
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There have since been several simplifications to the HH model, namely the Fitzhugh-

Nagumo model, the Morris-Lecar model, and the Izhikevich model. These models reduce the 

number of variables and equations from the HH model while still retaining the essential 

properties. The Fitzhugh-Nagumo (FN) model, developed by Richard Fitzhugh in 1961 and later 

extended by J. Nagumo in 1962, reduces the four nonlinear differential equations of the HH 

model into a set of two ordinary differential equations (Fitzhugh, 1961; Nagumo et al., 1962). 

Due to its simplicity and computational efficiency, the FN model has been used extensively in 

epileptic seizure research (Gerster et al., 2020; Ibrahim et al., 2021; Salfenmoser et al., 2022). 

Furthermore, with specific parameters, the FN model can generate limit cycle oscillations, which 

can reflect the sustained and rhythmic activity characteristic of epileptic seizures. The Morris-

Lecar (ML) model is also a two-dimensional simplification of the HH model, and it describes the 

flow of potassium and calcium across the membrane potential (Morris & Lecar, 1981). Similar to 

the FN model, the ML model can exhibit a variety of dynamical behaviors, such as periodic 

oscillations and steady-state resting potentials, depending on the combinations of input 

parameters (Morris & Lecar, 1981). As such, the ML model has been used for epileptic seizure 

modeling to simulate seizure-like activity across multiple scales, ranging from individual 

neurons (Ermentrout et al., 2008) to neuronal networks (Naze et al., 2008). The Izhikevich model 

is another two-dimensional simplification of the HH model, which was developed by Eugene M. 

Izhikevich in 2003 (Izhikevich, 2003). This model can exhibit a variety of spiking patterns and 

behaviors, such as regular spiking, bursting, chattering, etc; and for this reason, multiple studies 

have used this model to study seizure dynamics in neuronal networks (Izhikevich, 2003; Strack 

et al., 2013; Tryba et al., 2019; Depannemaecker et al., 2021).   
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1.4.2 Population-scale models 

Population-scale models can be used to gain insights into the complex mechanisms 

underlying seizures. With this approach, mesoscopic and macroscopic scales of neuronal 

networks can be used to simulate patterns exhibited by large groups of neurons. This allows for 

investigation into mechanisms that drive seizure onset, propagation, and termination, as well as 

insights into how changes in overall connectivity between E-I populations can govern seizure 

dynamics. A neural mass model is one type of population model that simulates the overall 

behavior of a group of neurons from one specific brain region. This model is particularly useful 

for evaluating large-scale brain activity and for investigating seizure mechanisms (Wendling et 

al., 2002; Eissa et al., 2017). The Wilson-Cowan model was introduced in 1972 to describe 

macroscopic brain dynamics by considering the interactions between E-I populations (Wilson & 

Cowan, 1972). The Wilson-Cowan model is a mean-field model, meaning it approximates the 

numerous and complex interactions between individual neurons by considering the average 

effect of each population (Wilson & Cowan, 1972; Destexhe et al., 1998; Brunel, 2000). This 

consequential model laid the groundwork for population-scale modeling efforts and has been 

extensively used to investigate seizure dynamics, especially with respect to neuronal 

synchronization and oscillations (Borisyuk et al., 1995; Campbell & Wang, 1996) and large-

scale brain dynamics using EEG (Keeley et al., 2013; Li et al., 2022).  

1.5 Overview of Dissertation 

 The overarching goal of the work presented in this dissertation is to uncover information 

hidden within brain networks. We apply a combination of signal processing, mathematical 

modeling, and computational methods to ultimately bridge the gap between signals recorded 

from the brain and extracting and interpreting pertinent information from those signals. Chapter 
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2 demonstrates that for human focal seizures, there is a mathematical symmetry between the 

temporal and spatial domains of the spatiotemporal spike-centered averages (st-SCA) if the st-

SCAs resemble sinc functions. Chapter 3 presents a novel theoretical framework to capture 

neural network activity completely and uniquely using triple correlation, which relates three 

nodes in space and time. Chapter 4 builds upon the approach from Chapter 3 to develop a novel 

quantitative metric of network activity by computing the entropy from the triple correlation 

spatiotemporal lag distribution. Chapter 5 provides insights underlying the mechanisms of cell-

type activity during human focal seizures by utilizing modeling approaches. Lastly, I explore the 

translational implications and future directions of this work in Chapter 6.  
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CHAPTER 2 

 

SPATIOTEMPORAL SPIKE-CENTERED AVERAGING REVEALS 

SYMMETRY OF TEMPORAL AND SPATIAL COMPONENTS OF THE 

SPIKE-LFP RELATIONSHIP DURING HUMAN FOCAL SEIZURES1 
 

2.1 Summary 

The electrographic manifestation of neural activity can reflect the relationship between 

the faster action potentials of individual neurons and the slower fluctuations of the local field 

potential (LFP). This relationship is typically examined in the temporal domain using the spike2-

triggered average. In this study, we add a novel spatial component to this relationship. Here we 

first derive a theoretical model of the spike-LFP relationship across a macroelectrode. This 

mathematical derivation showed a special symmetry in the spike-LFP relationship wherein a sinc 

function in the temporal domain predicts a sinc function in the spatial domain. We show that this 

theoretical result is observed in a real-world system by characterizing the spike-LFP relationship 

 
1This chapter is reproduced from the following publication under the Creative Commons 

Attribution 4.0 International License from: Lee S*, Deshpande SS*, Merricks EM, Schlafly 

E, Goodman R, McKhann GM, Eskandar EN, Madsen JR, Cash SS, van Putten MJAM, 

Schevon CA, van Drongelen W. Spatiotemporal spike-centered averaging reveals symmetry 

of temporal and spatial components of the spike-LFP relationship during human focal 

seizures. Commun Biol. 2023 Mar 25;6(1):317. *equal contribution 

 

Link to Creative Commons license: http://creativecommons.org/licenses/by/4.0/ 

 

Attestation Statement: The work presented in this chapter was a collaborative effort with 

Somin Lee in the Wim van Drongelen lab. Somin and I contributed equally to both research 

and authorship and share first-authorship.  

 
2Note: For the entirety of this dissertation chapter (unless explicitly noted otherwise), the 

terms “spike” or “ictal spike” refer to action potentials.   

 

The format of this chapter differs from the other chapters in this dissertation in that the 

Results and Discussion sections are presented before the Methods section. This ordering 

facilitates the storyline and flow of the results presented. 
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using microelectrode array (MEA) recordings of human focal seizures. To do this, we present a 

novel approach, termed the spatiotemporal spike-centered average (st-SCA), that allows for 

visualization of the spike-LFP relationship in both the temporal and spatial domains. We applied 

this method to 25 MEA recordings obtained from seven patients with pharmacoresistant focal 

epilepsy.  Of the five patients with MEAs implanted in recruited territory, three exhibited 

spatiotemporal patterns consistent with a sinc function, and two exhibited spatiotemporal 

patterns resembling deep wells of excitation. These results suggest that in some cases 

characterization of the spike-LFP relationship in the temporal domain is sufficient to predict the 

underlying spatial pattern. Finally, we discuss the biological interpretation of these findings and 

propose that the sinc function may reflect the role of mid-range excitatory connections during 

seizure activity.  

2.2 Introduction 

Spatiotemporal patterns of brain electrical activity reflect neural mechanisms 

underpinning different brain pathologies. Consequently, temporal and spatial patterns observed 

in electrographic recordings are frequently employed to guide diagnostic and therapeutic 

approaches in the treatment of epilepsy. During surgical evaluation of patients with epilepsy, a 

variety of electrodes are used to record brain electrical activity across different scales. For 

example, large-scale (cm-range) global activity can be recorded by macroelectrodes at the scalp 

or cortex, and mesoscale (mm-range) and microscale (sub-mm range) activity can be recorded by 

intracranial arrays or bundles of microelectrodes (Eissa et al., 2017; Eissa et al., 2016; Schevon 

et al., 2012). Despite the heavy reliance on electrophysiology in clinical practice, the relationship 

between neural activity across scales and the mechanistic implications of the observed 

spatiotemporal patterns remain poorly characterized.  



18 

 

One important question in understanding cortical seizure dynamics is how the activity of 

individual neurons relates to local and global network activity in ictal and interictal states. The 

interactions of neural networks during human focal seizures across micro-, meso- and 

macroscopic scales have been characterized by other recent studies (Eissa et al., 2017). 

Specifically, one study showed that the spike-triggered average (STA) of the ongoing low 

frequency component of the local field potential (LFP) could be approximated by a sine cardinal 

(sinc) function (Eissa et al., 2018). Furthermore, filtering a train of ictal action potentials with a 

rectangular (brick wall) filter generated an output that correlated well with the observed seizure, 

consistent with the fact that the Fourier transform of a rectangular function is the sinc function 

(Boashash, 2016). While the ictal STA was determined in the temporal and frequency domains, 

the spatial component of the relationship between action potentials and low frequency LFP was 

not characterized.  

Similarly, most previous studies that describe the relationship between single spiking 

activity and the surrounding LFP have focused primarily on temporal descriptions using the STA 

(Bazelot et al., 2010; Glickfeld et al., 2009). The few studies that have investigated the spatial 

component of this relationship do so by incorporating spatial information into the STA through 

the addition of spatial filters (Telenczuk et al., 2017) or use a covariance-based approach (Rust et 

al., 2004). None so far have directly visualized the full spatial topography of LFP associated with 

spiking activity.  

In this study, we present a mathematical model describing an ictal spike as measured by a 

macroelectrode to show that in special cases, the temporal and spatial features of the spike-

associated LFP can predict one another. We hypothesize that this spatiotemporal relationship is 

governed by the network state (ictal vs. non-ictal) and the location in the network (recruited vs. 
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unrecruited seizure territory). To test whether this relationship can be observed in real 

electrographic recordings of human seizures, we developed a novel approach, termed the 

spatiotemporal spike-centered average (st-SCA), in which the spatial topography of spike-

associated LFP can be visualized by calculating a spatial average of the LFP centered around the 

location of individual spikes. Calculation of this topography results in a powerful tool that allows 

for the visualization of both the spatial and temporal components of the spike-LFP relationship. 

This visualization confirmed that in a subset of patients, a 1D-sinc function in the temporal 

domain was associated with a pattern consistent with a 2D sinc function in the spatial domain. 

This result suggests that in these special cases, the underlying spatial activation pattern can be 

inferred from temporal measurements alone. In the discussion, we propose that the temporal sinc 

function can be adequately described by data from sparse sampling, opening up the possibility 

that these spatial patterns can be inferred without the use of gridded microelectrode arrays. 

Finally, we explore the biological mechanisms and clinical implications of the newly observed 

spatiotemporal properties in the context of pharmacoresistant focal epilepsy.  

2.3 Results 

2.3.1 Theoretical model of the spike-LFP relationship 

 To generate a theoretical prediction of the temporal and spatial components of the spike-

LFP relationship, we first introduce a mathematical model of a macroelectrode that measures the 

network LFP response to a single spike (Fig. 2.1). In this model, a single ictal action potential is 

generated at the center under a macroelectrode that covers a cortical surface bounded by [−𝑅, 𝑅], 

and the associated LFP is measured. If the spike is represented by a unit impulse, the delta 

function 𝛿(𝑟, 𝜏), the correlation between the spike and LFP can be described as a unit impulse 

response (UIR), 𝑈𝐼𝑅(𝑟, 𝜏), that is governed by some function 𝑓(𝑟, 𝜏) of space (𝑟) and time (𝜏).  
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 We first evaluate the UIR in the time domain, 𝑈𝐼𝑅(𝜏). Because the potential of cortical 

generators attenuates sharply with distance, we assume that we may ignore contributions 

associated with the centrally located impulse in areas not directly under the macroscopic 

electrode. Under this assumption, the electrode’s signal can be approximated by summing the 

contributions over only the neocortical area under the electrode:  

 𝑈𝐼𝑅(𝜏) ≈ ∫ 𝑓(𝑟, 𝜏) 𝑑𝑟
𝑅

−𝑅
=  ∫ 𝑟𝑒𝑐𝑡(−𝑅, 𝑅) 𝑓(𝑟, 𝜏) 𝑑𝑟

∞

−∞
 (Equation 2.1) 

where 𝑟𝑒𝑐𝑡(−𝑅, 𝑅) represents a rectangular window bounded by [−𝑅, 𝑅].   

Similarly, we can find the UIR in the spatial domain, 𝑈𝐼𝑅(𝑟), by integration over a fixed time 

epoch, [−𝑇, 𝑇]: 

 𝑈𝐼𝑅(𝑟) ≈  ∫ 𝑓(𝑟
𝑇

−𝑇
, 𝜏) 𝑑𝜏 = ∫ 𝑟𝑒𝑐𝑡(−𝑇, 𝑇) 𝑓(𝑟, 𝜏) 𝑑𝜏

∞

−∞
 (Equation 2.2) 

 In most cases, the underlying function 𝑓(𝑟, 𝜏) cannot be simply derived by measuring 

𝑈𝐼𝑅(𝜏) and 𝑈𝐼𝑅(𝑟). There is a special case, however, where this derivation is possible. Note 

that in Eissa et al. (2018), the temporal UIR of an ictal network was characterized and was 

shown to have the following relationship: 

 𝑈𝐼𝑅(𝜏)  ∝  𝑠𝑖𝑛𝑐(𝜏)  (Equation 2.3) 

Substituting this relationship into Eq. 1 results in the following: 

 𝑠𝑖𝑛𝑐(𝜏)  ≈ ∫ 𝑓(𝑟, 𝜏) 𝑑𝑟 
𝑅

−𝑅
=  ∫ 𝑟𝑒𝑐𝑡(−𝑅, 𝑅) 𝑓(𝑟, 𝜏) 𝑑𝑟

∞

−∞
 (Equation 2.4) 

Because the sinc function is the Fourier transform of a rectangular function, the relationship 

between time and space parallels a time-frequency Fourier-transform-pair (Supplementary Text: 

The sine cardinal (sinc) function, Fig. 2.7) (Boashash, 2016). Thus, in the special case where 

𝑈𝐼𝑅(𝜏) is described by a sinc function, we find:   

  𝑓(𝑟, 𝜏)  ∝ 𝑒𝑗𝑟𝜏 (Equation 2.5) 

The identification of 𝑓(𝑟, 𝜏) above now enables us to find the spatial UIR 𝑈𝐼𝑅(𝑟): 
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𝑈𝐼𝑅(𝑟) ∝ ∫ 𝑓(𝑟, 𝜏)𝑑𝑡
𝑇

−𝑇
 =  ∫ 𝑟𝑒𝑐𝑡(−𝑇, 𝑇)𝑓(𝑟, 𝜏) 𝑑𝜏

∞

−∞
= ∫ 𝑟𝑒𝑐𝑡(−𝑇, 𝑇)𝑒𝑗𝑟𝜏 𝑑𝜏

∞

−∞
= 𝑠𝑖𝑛𝑐(𝑟) 

  (Equation 2.6) 

Thus, we find that the temporal and spatial components of the ictal UIR are symmetric and both 

described by sinc functions. Note that in our model we assume that 𝑓 only depends on the 

distance 𝑟 from the unit impulse. Thus, while the temporal sinc function 𝑠𝑖𝑛𝑐(𝜏) has one 

dimension (time), the spatial sinc function 𝑠𝑖𝑛𝑐(𝑟) is a two-dimensional function that covers a 

flat surface. Fig. 2.7 shows examples of 1D and 2D sinc functions.  

 

Figure 2.1: Mathematical model of the spike-LFP relationship. The electrode covers an area 

of one-dimensional cortex where we record the effect related with a single ictal action potential 

at location 𝑟 = 0 and time 𝜏 = 0, represented by the unit impulse δ(𝑟, 𝜏). In this scenario, the 

macroelectrode measures the underlying network's temporal component of the UIR, 𝑈𝐼𝑅(𝜏). 

This measurement can be approximated by an unknown spatiotemporal cortical function, 𝑓(𝑟, 𝜏) 

associated with the action potential, integrated over the spatial range [−𝑅, 𝑅] covered by the 

electrode. 

 

 

2.3.2 Characterization of the spike-LFP relationship in microelectrode arrays 

Next, we asked whether the results of the above theoretical derivation could be observed 

in a real-world system, specifically in human seizures recorded by microelectrode arrays (MEA; 

Fig. 2.2A). To do this, we develop a calculation that we have termed the spatiotemporal spike-
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centered average (st-SCA). The st-SCA builds upon the more typically utilized spike triggered 

average (STA) by accounting for both the timing and location of the spikes.  

The spike-LFP relationship can be characterized in the temporal domain by calculating 

the cross-correlation 𝐶(𝜏) between the spiking activity and associated LFP. This cross-

correlation 𝐶(𝜏) is mathematically equivalent to and frequently referred to as the STA (Ito, 

2015). To find an expression for 𝐶(𝜏), we first represent a multi-unit spike train with 𝑁 spikes 

occurring at times 𝑡𝑖 as a series of delta functions: 

 ∑ 𝛿(𝑡 − 𝑡𝑖)
𝑁
𝑖=1   (Equation 2.7) 

We then take the average LFP in a temporal window defined by a positive or negative lag 

𝜏 around the spike times 𝑡𝑖. This results in the following: 

 𝐶(𝜏)  =  
1

𝑁
∫ (∑ 𝛿(𝑡 − 𝑡𝑖)

𝑁
𝑖=1 )𝐿𝐹𝑃(𝑡 + 𝜏) 𝑑𝑡

∞

−∞
 =  

1

𝑁
∑ 𝐿𝐹𝑃(𝑡 + 𝜏)𝑁

𝑖=1  (Equation 2.8) 

To expand this expression to include a spatial component, we must account for both the 

spikes’ timing (𝑡) and location in the cortical plane (𝑥, 𝑦). We first represent a multi-unit spike 

train with 𝑁 spikes occurring at times 𝑡𝑖 and at locations (𝑥𝑖, 𝑦𝑖) as a series of delta functions: 

∑ 𝛿(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖, 𝑡 − 𝑡𝑖)
𝑁
𝑖=1                (Equation 2.9) 

We then take the average LFP in a temporal window defined by a positive or negative lag 𝜏 

around spike times 𝑡𝑖 and a spatial window defined by the plane (𝜉, 𝜓) around locations (𝑥𝑖, 𝑦𝑖). 

This produces the expression for the normalized spatiotemporal cross-correlation 𝐶(𝜉, 𝜓, 𝜏) 

between the LFP and action potential:  

           𝐶(𝜉, 𝜓, 𝜏) =
1

𝑁
∭ (∑ 𝛿(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖, 𝑡 − 𝑡𝑖)) 𝐿𝐹𝑃(𝑥 + 𝜉, 𝑦 + 𝜓, 𝑡 + 𝜏)𝑁

𝑖=1  𝑑𝑥 𝑑𝑦 𝑑𝑡 

             (Equation 2.10) 
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To evaluate this expression, we interchange the integration and summation operations and 

integrate over the spatiotemporal domain. The resulting expression is what we have termed as 

the spatiotemporal spike-centered average (st-SCA): 

𝐶(𝜉, 𝜓, 𝜏) =
1

𝑁
∑ 𝐿𝐹𝑃(𝑥𝑖 + 𝜉, 𝑦𝑖 + 𝜓, 𝑡𝑖 + 𝜏)  =  𝑠𝑡-𝑆𝐶𝐴(𝜉, 𝜓, 𝜏) 𝑁

𝑖=1          (Equation 2.11) 

Note that if we set the range of (𝜉, 𝜓) equal to the area covered by a fixed spatial range, we 

obtain the well-known temporal STA as in Eq. 1 (Fig. 2.2B). In contrast, if we set 𝜏 to a fixed 

temporal range, we obtain purely the spatial component of the st-SCA for that epoch, conform 

Eq. 2. In the following, we describe the computational steps to determine the st-SCA in MEA 

recordings. 

2.3.3 Application of st-SCA to clinical microelectrode array recordings 

 To apply the st-SCA to microelectrode array (MEA) recordings, we must account for the 

irregular timing and location of spiking activity across the array. A simplified analogy of this 

approach is to visualize spiking activity as stones being tossed into water. Consider throwing a 

single stone into water and analyzing the consequent effects by observing the resulting water 

ripples. We can simulate multiple sources by dropping identical stones from the same height but 

at different times and locations across the horizontal plane of the water surface, resulting in a 

complex landscape. To determine the contribution of a single stone to this landscape, we can 

take a field of view centered around individual stones. According to Eq. 11, averaging across all 

stones gives the stone’s characteristic spatiotemporal perturbation.  

To apply this to the analysis of MEA recordings, spikes are detected for each channel in 

the MEA (Fig. 2.2C, left column), and the low frequency LFP associated with each spike is 

determined (Fig. 2.2C, middle column). This LFP is then spatially translated such that the 

associated spike position (𝑥, 𝑦) is at the origin of a new axes (𝜉, 𝜓) (Fig 2.2C, right column). 
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This spike detection and LFP translation process is then applied to all channels. Averaging the 

results across all channels results in a field of view of the spike-associated LFP that is (1) 

centered around individual spikes and (2) approximately four times larger than the area of the 

MEA (Fig. 2.2C, right panel). This field is then calculated for time points 𝜏 to result in the st-

SCA. 
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Figure 2.2: Method to compute the st-SCA. A) Diagram of the microelectrode array (MEA) 

placement, a 10x10 grid of electrodes of 4 mm x 4 mm in size, was implanted in either recruited 

territory (blue shading; Patients 1-5) or unrecruited territory (green shading; Patients 6-7).  

Recruited territory involves a seizure passing through and invading the local cortical tissue, and 

unrecruited territory is tissue outside the recruited territory but may still be characterized by 

strong, local synaptic activity (Schevon et al., 2012; Merricks et al., 2021). B) During seizure 

activity, the LFPs within the area of the electrode array (the summed LFP of the microelectrode 

array is depicted in the black signal traces) are associated with a multi-unit action potential train. 

The LFP’s relationship to the spike is considered over time 𝜏 relative to the spike events. C) For 

each spike across the MEA, its associated spatiotemporal LFP is determined. The red circle in 

the middle column indicates the spike position on the MEA. Next, the (𝑥, 𝑦) axes of the LFP are 

translated into the (𝜉, 𝜓) axes, such that the spike position is at the origin. Finally, the results in 

the right column are averaged to create a matrix that contains the st-SCA. Note that the corners 

of the average are undefined because the MEA does not have electrodes in the corner positions. 
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2.3.4 Visualization of spatial and temporal components of the spike-LFP relationship 

We applied the st-SCA method to analyze microelectrode recordings of 19 focal seizures 

across seven patients undergoing epilepsy surgery evaluation (Table 2.1). These recordings were 

obtained from 96-channel, 4x4mm Utah microelectrode arrays (MEA) (Schevon et al., 2012; 

Truccolo et al., 2011) (Methods). Although the MEA was implanted in the seizure onset zone as 

determined during clinical assessment for all patients, five patients were determined to have 

arrays implanted in recruited seizure territory (Patients 1-5), and two patients had arrays 

implanted in unrecruited seizure territory (Patients 6-7) (Fig. 2.2A). As previously described 

(Schevon et al., 2012; Truccolo et al., 2011), recruited seizure territory is an area of tissue that is 

invaded by the ictal wavefront throughout the course of a seizure. The ictal wavefront is defined 

by high rates of firing that are highly correlated with overlying low frequency rhythms. 

Unrecruited territory sees no invasion of the ictal wavefront but still shows rhythmic EEG 

activity due to local synaptic activity (Merricks et al., 2021; Schevon et al., 2012). Both ictal and 

interictal recordings were evaluated, where interictal was defined as being at least two hours 

away from any known ictal activity. Filtering was used to extract local multi-unit neural firing 

activity and the associated low frequency component of the LFP of the surrounding network 

(Methods).  

Representative ictal and interictal signals and STAs calculated across ictal and interictal 

states for two recruited territory recordings and one unrecruited territory recording are depicted 

in Fig. 2.3. The black lines in Fig. 2.3C-H represent the STAs, the red lines represent the 

associated noise estimates, and the vertical dotted lines indicate 𝑡 = 0, i.e., the timing of the 

spike trigger. For both recruited and unrecruited territory recordings, the amplitudes of the ictal 

STAs (Fig. 2.3C, E, G) were larger than the corresponding interictal STAs (Fig. 2.3D, F, H). The 
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amplitude for the unrecruited ictal STA (Fig. 2.3G), however, was much smaller than the 

recruited ictal STAs (Fig. 2.3C, E).   

Patients with the MEA located in recruited seizure territory showed STAs with different 

morphologies (Fig. 2.8A-E), but all had a dominant negative peak around 𝑡 = 0. Consistent with 

previous findings, we found that the STA for Patients 1-3 resembled a sinc function with a peak 

embedded in a weak oscillatory component (Fig. 2.3C, 2.4C, 2.8A-C) (Eissa et al., 2018). In 

contrast, the STA for Patients 4 and 5 did not resemble a sinc function as Patient 4 showed a 

dominant peak embedded in a strong oscillation (Fig. 2.8D) while Patient 5 showed no 

oscillatory component (Fig. 2.3E, Fig. 2.4D, 2.8E). The STAs calculated from MEAs implanted 

in unrecruited territory (Patients 6 and 7) were weak with a smaller amplitude deflection around 

to 𝑡 = 0 (Fig. 2.3G, Fig. 2.8F, G).  

We then evaluated the relationship between spiking activity and the LFP in the 

spatiotemporal domain by computing the st-SCA over the entire MEA (𝜉, 𝜓) and times 𝜏 =

±1ms (Fig. 2.4E, F). This 2ms interval averaged across to yield a 2D spatial topography. In the 

ictal phase for Patients 1-3, we observed a centrally located trough surrounded by a pair of rings 

with apparent radial symmetry, a shape that is consistent with the center of a 2D sinc function 

(Fig. 2.4E, 2.9A). The distance between the center and the region indicated by the inner circle 

was ~1.5mm, and the distance between center and the region indicated by the outer circle was 

~2.5mm (Fig. 2.4E). In contrast, the ictal phase for Patients 4 and 5 showed a deep well of 

stronger negative activity (Fig. 2.4F, 2.8D, E). The st-SCAs during the interictal phase as well as 

the results obtained in unrecruited territories showed different patterns with relatively smaller 

amplitude signals (Fig. 2.9B, D, E, F). The temporal and spatial results across seizures within 
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each patient were consistent. Representative st-SCAs for each patient are depicted in Fig. 2.8. 

Representative noise estimates are shown in Fig. 2.10. 

In sum, three of five patients with recordings from recruited territories (Patients 1-3) 

showed STAs with sinc function morphology and st-SCAs with a “donut-ring” pattern that was 

consistent with the center of a 2D sinc function (Fig. 2.4C, E, 2.8A-C). In Patients 4 and 5, the 

STAs did not have a sinc morphology, and the st-SCAs showed deep and diffuse wells of 

negative activity (Fig. 2.4D, F; 2.8D, E).  

Note that these observations were not attributable to widespread correlations among 

MEA electrodes. To demonstrate that the observed st-SCA patterns are representative of the 

spike-LFP relationship and not the global correlations among network LFPs, we showed that 

STAs in unrecruited territory show a large and significant oscillatory component only when 

triggered by spikes from recruited territories (Fig. 2.11B), and not when triggered by spikes from 

unrecruited territories (Fig. 2.11C). This result is a replication of previous studies (Eissa et al., 

2017). Furthermore, randomizing the spike times detected across the MEA resulted in complete 

destruction of the observed st-SCA patterns, emphasizing the importance of spike timing as the 

driver for these spatiotemporal patterns (Fig. 2.12). Finally, calculation of the st-SCA after 

applying a spatial filter to decorrelate LFP signals across MEA channels did not qualitatively 

alter the st-SCA patterns (Methods, Fig. 2.13).  



29 

 

 

Figure 2.3: STAs in recruited and unrecruited seizure territories. The black traces are the 

signals, and the red traces represent the associated noise estimates. Vertical stippled lines 

represent the zero of the time-axis. A-B) Example signal trace of average ictal and interictal LFP 

activity across MEA channels. C-F) The STA (black trace) in the recruited territories show an 

evolution towards a characteristic negative peak, with or without surrounding oscillations, during 

the ictal phase. The ictal phase amplitudes are also much higher than those of the interictal phase. 

Noise estimates are shown in red. G-H) The results in the unrecruited territory show 

comparatively low amplitudes as compared to the recruited STAs. 
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Figure 2.4: Examples of the st-SCA computation for two patients. A-B) Representative traces 

of the average LFP activity across the microelectrode array for Patient 1 and Patient 5. C-D) The 

temporal average (black trace) is calculated by averaging the st-SCA over all spatial 

contributions (±3.6mm). Noise estimates are shown in red. E-F) A 3D view (azimuth = 0°, 

elevation = 70°) of the 3D st-SCA summed over time 𝜏 =±35ms. The center (𝜉, 𝜓 = 0,0) is 

indicated by the red dot. The two concentric circles in (e) are drawn to indicate that the center is 

surrounded by two rings. Note the apparent radial symmetry of the st-SCA pattern in Patient 1. 

The 𝜉-axis and 𝜓-axis represent the spatial dimensions of the MEA, and the third dimension (z-

axis) in this topological view represents microvolt (μV) units. The grayscale corresponds to the 

z-axis and is in μV units. 

 

2.3.5 Quantification of the peak-to-peak distance of spatial patterns 

Next, we aimed to more quantitatively describe the donut-shaped activity observed in 

Fig. 2.4E. Taking advantage of the qualitatively observed radial symmetry observed in the st-

SCA, we converted the Cartesian coordinates (𝜉, 𝜓) into polar coordinates (𝑟, 𝜃) and focused on 
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the spatial relationship with respect to 𝑟 (Fig. 2.5A). This enabled us to depict the st-SCA in two 

dimensions, (𝑟, 𝜏) (Fig. 2. 5B), similar to function 𝑓(𝑟, 𝜏) in Fig. 2.1. A detail of that relationship 

is depicted in Fig. 2. 5C, and the summed values across this two-dimensional detail are plotted 

along its margins. These summed values are the two components as a function of space and time 

(𝑟 and 𝜏). Note that the graph in the bottom margin of Fig. 2.5C represents the central trough 

(𝜏 =  ± 35ms) of the function shown in Fig. 2.4C. As anticipated by the outcome in Eq. 6 we 

observed a spatial component (Fig. 2.5C, left margin) that shows a central trough with smaller 

amplitude side lobes—a pattern consistent with the shape of a sinc function. Note that the 

resolution and range of the spatial component (𝑟 =  ±3.6mm) is limited by the size of the MEA 

(Methods, Fig. 2.2C). Consistent with the donut-shaped rings observed in Fig. 2.4E, the peaks of 

the function shown in the left margin of Fig. 2. 5C were separated by ~2.5mm (blue arrows, Fig. 

2.5C).  
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Figure 2.5: Method to compute 2D st-SCA. A) The Cartesian coordinates (𝜉, 𝜓) from the 3D 

st-SCA are converted into polar coordinates (𝑟, 𝜃), resulting in a 2D st-SCA. B) A color 

representation of st-SCA(𝑟, 𝜏). The temporal component of the st-SCA(𝜏) (black trace) is 

obtained by the sum of st-SCA(𝑟, 𝜏) over 𝑟 (same as the signal in Fig. 2. 4e). Amplitude and 

color scales are in μV. C) Detail of the central part of Panel B. The left margin shows the 

resulting wave from summation over time, generating the spatial component of st-SCA. The blue 

arrows on the left indicate the distance (~2.5mm) between the peaks seen in this function. The 

bottom margin depicts the resulting wave from summation over space, generating the temporal 

component of the st-SCA. 
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2.4 Discussion 

A key result of this study is that there exists a mathematical symmetry between the 

temporal and spatial domains of the spike-LFP relationship in the special case where both 

domains resemble a sinc function. By characterizing the spatiotemporal components of the spike-

LFP relationship in microelectrode array (MEA) recordings of human focal seizures, we showed 

that this mathematical symmetry is not confined to the theoretical realm. Of the five patients with 

recruited territory recordings, three showed temporal and spatial patterns consistent with this 

symmetric relationship. The existence of this symmetry in clinical recordings offers an 

interesting implication: in some cases, the underlying spatial pattern of the spike-LFP 

relationship may be inferred by characterization of the temporal pattern alone. Specifically, a 

sinc pattern observed in the temporal domain predicts a 2D sinc pattern in the spatial domain 

(Eq. 2.4-2.6; Fig. 2.1; Fig. 2.6A).  

This predictive power is important in the context of clinical microelectrode recordings 

because it suggests that it may be possible to characterize spatial patterns without the use of 

gridded MEAs. While MEAs are advantageous for monitoring and studying seizure activity with 

high temporal and spatial resolution, their current clinical utility is limited as they cannot be 

easily used to sample from multiple cortical areas. Interestingly, we found that the sinc function 

can be characterized in the temporal domain by using spiking and LFP information from a 

random subset of only eight electrodes (Fig. 2.6B). Although the spatial pattern is impossible to 

discern with just eight electrodes, the underlying spatial pattern may be inferred to be a 2D sinc 

function since the associated temporal pattern is a sinc function. This suggests that the st-SCA 

may be characterized by using neocortical microelectrodes that allow for recording from multiple 

areas by reducing the number of channels per probe. The development of such electrodes is 
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technologically feasible as similar probes are already used clinically for the monitoring of deep 

brain structures such as Behnke-Fried depth electrodes (Misra et al., 2014).  

A natural and necessary question to ask at this junction is whether the 2D sinc function in 

the spatial domain has any biological meaning. While the exact mechanisms underlying temporal 

and spatial sinc patterns are beyond the scope of this study, we propose here that the concentric 

“donut-ring” pattern in the spatial component of the spike-LFP relationship may reflect the 

engagement of mid-range horizontal connections during seizure initiation and propagation. 

Under physiological conditions, synaptic activity is a major contributor to the 

extracellular potential field (Nunez et al., 2006). Other contributors may include intrinsic 

membrane currents, gap junctions, neuron-glia interactions, and ephaptic effects (Buzsaki et al., 

2012; Herreras, 2016). While the relative contributions of these different mechanisms during 

pathological states such as seizures have not been fully elucidated, a non-zero cross-correlation 

between action potentials and LFPs is expected because synaptic currents are a major component 

in the compound activities observed in ictal states.  

In our discussion of the biological implications of the observed st-SCAs, we adopt the 

interpretation for our specific electrode configuration as previously described (Eissa et al., 2017) 

by assigning a net excitation to negative deflections and net inhibition to positive deflections. 

This interpretation is also in line with previous studies of the ictal core and propagation (Schevon 

et al., 2012; Tryba et al., 2019). Accordingly, our st-SCA analyses (Fig. 2.3, 2.4) show that in 

the recruited ictal territory, the spike-LFP correlation at small lags is dominated by net excitation 

during seizures in all patients. The activity level in the excitatory center, representing the activity 

at the ictal wave, is excessively high, possibly due to saturation of the local inhibitory population 

(Tryba et al., 2019). In Patients 1-3 we also observe a ring of reduced excitation at a distance 
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~1.5mm around the excitatory center (Fig. 2.4E, 2.8A-C). In turn, the ring of reduced excitation 

is surrounded by a second ring at an additional distance of ~1mm where excitation increases 

again. For these patients, this donut-shaped st-SCA is specific to the recruited seizure territory in 

the ictal phase (Fig. 2.8A-C, 2.9A). This observation suggests that the ictal wave in the recruited 

territory, represented by the excitatory center (𝜉, 𝜓 = 0,0), creates an escape of hyperexcitation 

via a jump that engages mid-range connectivity in the millimeter range. Decorrelation of the LFP 

prior to the st-SCA calculations yielded similar spatiotemporal patterns (Telenczuk et al., 2017) 

(Fig. 2.13), further corroborating the importance of local millimeter range excitatory connections 

in focal seizures. 

A question that remains is whether there is any biological evidence that supports this type 

of connectivity. Histological studies have shown that there are indeed excitatory mid-range 

connections at the millimeter scale mediated by axon collaterals within the gray matter in the 

neocortex in addition to short-range excitatory and inhibitory connections at a scale of hundreds 

of μm (Fig. 2.6C) (Nieuwenhuys, 1994; Oberlaender et al., 2011; Pichon et al., 2012; Zhang & 

Deschênes, 1997). Additionally, previous studies of ictal wave dynamics provide direct evidence 

that mm-range connections are invoked during seizure activity (Schevon et al., 2012). An 

example of this jump in action potential activity is depicted in the spatial plot in Fig. 2.6C (a 

snapshot of the multiunit activity across the MEA), in which there are multiple areas of 

simultaneously increased neural activity across the MEA, separated by mm-range gaps. This is 

consistent with the distance between the excitatory center and outer ring we observe in the 

donut-shaped spatial cross-correlation depicted in Fig. 2.4E. This pathological escape of 

uncontrolled excitation across cortex could be considered a candidate mechanism in seizure 

recruitment and propagation (Supplementary Materials: Mechanisms for Focal Seizures). 
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Figure 2.6: Summary of key findings and biological/clinical implications of results. A) There 

exists a special mathematical symmetry between the temporal and spatial domains if they 

resemble sinc functions. Panels ai and aii show simulated results, and Panels aiii and aiv show 

results from the clinical st-SCA analysis for Patient 1. B) Spike-triggered average (STA) 

calculated from using spike timing and LFP activity from a random subset of eight electrodes for 

Patient 1. The sinc function may be characterized in the temporal domain using signals from only 

eight channels across the MEA. C) Panel ci: Diagram of gray matter excitatory connections of a 

neocortical pyramidal cell showing the short-range connections (order of 100s of μm) and mid-

range connections (order of mm) via the pyramidal cell axon collaterals (based on Fig. 2. 5 in 

Nieuwenhuys, 1994. Panel cii: Snapshot of multiunit activity across the MEA depicting the 

propagation of ictal multi-unit action potentials across part of a Utah array. The black arrows 

show multiple contiguously active areas that are separated by a mid-range mm-sized distance, 

supporting that the excitatory axon collateral connections are invoked for propagation of the ictal 

activity. Color scale represents the number of spikes per second. 



37 

 

 

Not all patients with implants in recruited territory showed spatiotemporal patterns 

resembling a sinc function, and the clinical etiologies for these patients may offer some clues 

about why this is the case. The diffuse depressions observed in the spatial domains for both 

Patients 4 and 5 (Fig. 2.4F, 2.8D, E, 2.9C) seem consistent with a local flood of excitation. 

Indeed, the seizures in both patients were characterized as secondarily generalized (Table 4.1). 

This suggests that in generalized seizures, the mid-range excitatory connectivity structure (as 

represented by the sinc function) may play a diminished role in comparison to other mechanisms 

of ictal propagation, such as local excitation or engagement of white matter tracts (Fig. 2.6C). 

Furthermore, a unique case is Patient 3, who was diagnosed with cortical dysplasia (Table 4.1). 

The STA is sinc-like, and the st-SCA partially resembles a sinc function (Fig. 2.8C). Cortical 

dysplasias have been shown to be associated with functional connectivity defects (Hong et al., 

2017; Jeong et al., 2014; Rezayev et al., 2018), which may explain the partial donut ring of 

activity in the st-STA (Fig. 2.8C). If indeed st-STA patterns reflect underlying pathologies, 

clinicians could potentially use these spatiotemporal characterizations to target specific 

mechanisms underlying a patient’s seizures and choose appropriate therapeutic strategies. For 

example, removal of horizontal interactions on a mm-scale has been the rationale for performing 

subpial transections in patients with intractable epilepsy (Morrel et al., 1989). In these cases, 

characterization of the st-SCA may inform the appropriateness of such interventions in 

personalized patient treatment plans. Furthermore, because this novel method includes the spatial 

domain, the st-SCA method can be used for a broad scope of applications, such as MEA cultures 

(Cotterill et al., 2016; Kapucu et al., 2022), Utah arrays implanted in monkeys completing tasks 

(Brochier et al., 2018; Dickey et al., 2009; Manyakov & Van Hulle, 2010), MEAs implanted in 
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humans for sleep (Le Van Quyen et al., 2016), and for brain-computer interfaces (Maynard et al., 

1997; Woeppel et al., 2021). 

2.5 Methods 

2.5.1 Patients 

Seven patients with pharmacoresistant focal epilepsy underwent chronic intracranial EEG 

studies to help identify the epileptogenic zone for subsequent removal. Patients 1, 4, 6, and 7 

were recruited at Columbia University Medical Center, and Patients 2, 3, and 5 were recruited 

from Massachusetts General Hospital/Brigham and Women's Hospitals (Table 2.1). The entirety 

of the ictal segments and two-minute interictal segments were used in these analyses (Table 2.1). 

Procedures were approved by the Internal Review Board committees at Columbia University 

Medical Center, The University of Chicago Comer Children's Hospital, and Massachusetts 

General Hospital/Brigham and Women's Hospitals. The patients' surgeries and treatment plans 

were not directed by or altered as a result of these studies. All ethical regulations were followed, 

and all patients provided informed consent regarding the use of their data for research purposes.  

2.5.2 Signal acquisition and pre-processing 

A 96-channel, 4 x 4mm MEA (Utah array; Blackrock Microsystems) was implanted into 

neocortical gyri along with subdural electrodes (ECoG). The 96 microelectrodes were 1mm in 

length and arranged in a regular 10x10 grid pattern with empty corners, defacterized prior to 

implantation. Expanded and complete details of study enrollment, clinical evaluation of the SOZ, 

surgical procedures, and recording parameters have been previously published (Schevon et al., 

2012; Truccolo et al., 2014). Signals from the MEA were acquired continuously at a sample rate 

of 30 kHz per channel (0.3-7500Hz bandpass, 16-bit precision, range ±8 mV). The reference was 

epidural. Up to three seizures from each patient were selected for detailed analysis to avoid 
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biasing the dataset from the patients from whom many seizures were recorded. Categorization of 

seizure recordings as recruited or unrecruited territory was determined (Fig. 2.2A) (Schevon et 

al., 2012). Channels and time periods with excessive artifact or low signal-to-noise ratio were 

excluded. Recordings were obtained during the presurgical evaluation of the patients.  

Unit activity was identified using filtered 0.3-3kHz signals with spikes defined as 

deflections ≥4 standard deviations below the mean. The low frequency component of the local 

field potential (LFP) activity across the array was created by averaging the artifact-free LFP 

activity from all micro-electrode signals filtered 2-50Hz. The averaged LFP procedure has been 

shown to generate signals that are representative of and comparable to nearby 

electrocorticography signals (Eissa et al., 2017; Eissa et al., 2018). 

2.5.3 st-SCA calculations and signal analysis 

All signal processing and statistical analyses were performed in MATLAB (MATLAB, 

Natick, MA, USA). The spatiotemporal spike-centered average (st-SCA) was determined using 

the following steps (Fig. 2. 1). Each broadband signal of the 10×10 MEA was bandpass filtered 

for the low frequency component (2-50Hz) of the local field potential (LFP) and for spike 

detection (0.3–3kHz) (Eissa et al., 2017; Eissa et al., 2018). Spikes were detected in the multi-

unit activity as negative deflections that exceeded four standard deviations of the filtered signal. 

A complete list of spike detection results can be found in Table 2.2. For each spike the 10 × 10 

frames of the LFP data were collected for ±𝑛 sample times representing ±5s around the spike 

time, and the timescale of the frames was set such that the spike occurred at time zero, 𝜏 = 0. All 

LFP frames associated with a single spike were translated such that the spike location was at the 

origin of the new spatial coordinate system 𝜉, 𝜓 = 0,0. Note that this spatial translation is 

necessarily spike specific because spikes do occur at different locations.  Next, the translated 
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10 × 10 × (2𝑛 + 1) frames were put into a three dimensional 19 × 19 × (2𝑛 + 1) 

configuration with the spatiotemporal origin (𝜉, 𝜓, 𝜏 = 0,0,0) is at position 10,10, 𝑛 + 1. This 

step was done to keep the LFP frames compatible across spikes. For each spike, these frames 

were summed into a three dimensional 19 × 19 × (2𝑛 + 1) matrix. For each position in the 

19 × 19 × (2𝑛 + 1) matrix, the total number of contributions 𝑁 was counted. Finally, to obtain 

the spatiotemporal cross-correlation, the sum obtained in step 6 was divided by the 𝑁 obtained in 

step 7 for each position. This resulted in the discrete spatiotemporal estimate of 𝐶(𝜉, 𝜓, 𝜏), as 

shown in Eq. (3). This method to determine spatiotemporal patterns is based on a spike trigger 

that is not constrained spatially because an ictal action potential can occur across the spatial 

dimension of the MEA.  

Evidence of radial symmetry of the st-SCA (Fig. 2. 4e) allowed conversion from 

Cartesian coordinates (𝜉, 𝜓) coordinates to polar coordinates (𝑟, 𝜃). By ignoring the minor 

deviations from radial symmetry, we focused on the spatial component of the st-SCA with 

respect to 𝑟 (Fig. 2. 5A), which enabled us to depict the spatiotemporal properties in two 

dimensions (Fig. 2. 5). Furthermore, if we compute the sum across space, we obtain purely the 

temporal component of the st-SCA, which is equivalent to the STA. Similarly, summation over 

time 𝜏 generates the spatial component of the st-SCA. With these results, we can assess to what 

extent our model of the ictal network, a linear time-invariant (LTI) system with unit impulse 

response 𝐶(𝜏) ∝ 𝑠𝑖𝑛𝑐(𝑟, 𝜏), fits the data.  

2.5.4 Spatial filtering 

For calculations involving the spatial filtering of LFP signals, we applied the spatial 

whitening process as described in Hyvärinen et al. (2001) and Telenczuk et al. (2017). As 
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previously published, a signal is spatially filtered by matrix multiplication with a whitening 

matrix 𝑾, where 𝑾 is the inverse square root of the signal’s covariance matrix, 𝑪:  

𝑾 =  𝑪𝑠𝑖𝑔𝑛𝑎𝑙
−1/2

=  𝑬𝑫−1/2𝑬𝑇    (Equation 2.12) 

where 𝑬 is a matrix of eigenvectors of 𝑪𝑠𝑖𝑔𝑛𝑎𝑙,and 𝑫 is a diagonal matrix with inverse square 

roots of eigenvalues 𝜆𝑖on its diagonal, such that 𝑫𝑖𝑖 =
1

𝜆𝑖
 and 𝑫𝑖𝑗 = 0 (Telenczuk et al., 2017). In 

this study, the signals being transformed were the MEA channel signals bandpass filtered at 2-

50Hz.   

2.5.5 Statistics and reproducibility 

The number of analysis segments (both ictal and interictal) per patient, epoch length, and 

number of spikes are shown in Table 2.2. Replicates are defined by the number of seizures per 

patient. The signal-to-noise ratio (SNR) was computed for each st-SCA by estimating the 

residual noise using the plus-minus averaging approach. We implemented this by employing the 

above eight steps while keeping two three-dimensional 19 × 19 matrices: one summed the even 

contributions for each location and the other summed the odd ones. To obtain the averages for 

the odd and even components, each position in the matrix was then divided by its number of 

contributions. The sum of the even and odd averages is the same result obtained in step 8 above. 

In contrast, the difference between the even and odd averages cancels the consistent component 

(i.e., the signal) while preserving the random noise estimate (4). The 𝑆𝑁𝑅 was estimated by 

computing the root mean square (rms) of the signals and the rms of their noise estimates, leading 

to a signal-to-noise ratio, 𝑆𝑁𝑅 =  20 𝑙𝑜𝑔 (
𝑟𝑚𝑠𝑠𝑖𝑔𝑛𝑎𝑙

𝑟𝑚𝑠𝑛𝑜𝑖𝑠𝑒
) dB. Average ratios for the st-SCAs across 

space and time all were >30dB.  
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An example of the total number of contributions per each position in the 19x19 grid is 

shown in Table 2.3. The average values in each pixel of the 19x19 image is based on variable 

numbers of trials, with less trials towards the corners of the picture (e.g., Table 2.3). Due to these 

unequal number of contributions, the signal-to-noise ratio also varies across the image (Table 

4.4), but with the exception of very few pixels (four in Table 2.4), all locations satisfy the so-

called Rose criterion, namely that in order to distinguish image features reliably, the signal’s 

amplitude must be 4-5 times (12-14 dB) the amplitude of the associated noise (Rose, 1973; 

Bushberg et al., 2012). Finally, in our spatial images, we excluded the corners of the image from 

our analyses because there are no observations in these parts of the image (NaN in Table 2.4). 

2.6 Supplementary Materials 

2.6.1 The sine cardinal (sinc) function 

 The observation that the spatial average over a small-time interval resembles a sinc 

function in Patients 1-3 is used for the interpretation of the relationship between spatial and 

temporal STAs. The central part of the reasoning is that, in general, the relationship between a 

rectangular function and the sinc function (Fig. 2.7) can be written in the form: 

 𝑠𝑖𝑛𝑐(𝑦) ∝ ∫ 𝑟𝑒𝑐𝑡(−𝑋, 𝑋) 𝑒𝑗𝑥𝑦𝑑𝑥
∞

−∞
 (Equation 2.13) 

Here 𝑥, 𝑦 are a pair of dimensions (e.g. time and space or time and frequency) and 𝑟𝑒𝑐𝑡(−𝑋, 𝑋) 

is a rectangular function over (−𝑋, 𝑋); 𝑗 = √−1. 

Based on the definition of the Fourier transform and its inverse, the sinc function and rectangle 

function are Fourier transform pairs (Boashash, 2016). 
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Figure 2.7: Simulated 1-dimensional (D) and 2D sinc functions.  A) Simulation of a 1D sinc 

function, 𝑠𝑖𝑛𝑐(𝑥). B) Top view of a simulated 2D sinc function. 

 

 The property in Eq. 2.13 is used to model the spatiotemporal relationship of the electrical 

activity recorded by a macroelectrode (Fig. 2.1). Because of Eq. 2.13, the spatiotemporal activity 

function in Fig. 2.1, 𝑓(𝑟, 𝜏) can be approximated by 𝑒𝑗𝑟𝜏. The spatiotemporal symmetry as 

outlined in the first section of the results follows from this. In summary, in this situation, spatial 

and temporal aspects of the ongoing activity under the macroelectrode are coupled. 

2.5.2 The st-SCA as a unit impulse response 

Computation of the spatiotemporal spike-centered average (st-SCA) using ictal 

recordings presents a challenge because the occurrence of action potentials across a seizing 

network is not experimentally controlled, unlike the scenario in which the location and timing of 

the neuronal activities are evoked by external stimuli. The approach as outlined in Eqs. S2-S5 

addresses this problem and demonstrates that the st-SCA is spatiotemporal analog of well-known 

spike-triggered average (STA). For convenience, we repeat here that (𝑥, 𝑦, 𝑡) are the 

spatiotemporal components of the signals; (𝑥𝑖, 𝑦𝑖, 𝑡𝑖) are the spatiotemporal coordinates of spike 

𝑖 and (𝜉, 𝜓, 𝜏) are the spatiotemporal components of the signal relative to the spike. Using a 

similar approach as in (Eissa et al., 2018), we now extend the model of the ictal network as a 

linear time invariant (LTI) system with the multi-unit action potential activity as input, the LFP 



44 

 

as its output (note that this LTI system isn’t necessarily causal), and the network’s unit impulse 

response (UIR) (see Main Text Eq. 5) defined as the LFP associated with a single unit impulse 

(𝛿): 

𝑈𝐼𝑅 = 𝑠𝑡-𝑆𝐶𝐴 = 𝐶(𝜉, 𝜓, 𝜏)   (Equation 2.14) 

We now can recover the network output 𝑍 using the convolution of the 𝑈𝐼𝑅 and the network’s 

input, i.e. the spikes: 

𝑍 =  ∭ 𝐶(𝜉, 𝜓, 𝜏) {
1

𝑁
∑ 𝛿(𝑥 − 𝑥𝑖 − 𝜉, 𝑦 − 𝑦𝑖 − 𝜓, 𝑡 − 𝑡𝑖 − 𝜏)𝑁

𝑖=1 }  𝑑𝜉 𝑑𝜓 𝑑𝜏 

 (Equation 2.15) 

Note that we used the 
1

𝑁
 scaled version of the input here. Plugging in the expression for 𝐶(𝜉, 𝜓, 𝜏) 

(see Eq. 11) results in: 

𝑍 = ∭ {
1

𝑁
∑ 𝐿𝐹𝑃(𝑥𝑖 + 𝜉, 𝑦𝑖 + 𝜓, 𝑡𝑖 + 𝜏

𝑁

𝑖=1

)} . .. 

. . . {
1

𝑁
∑ 𝛿(𝑥 − 𝑥𝑖 − 𝜉, 𝑦 − 𝑦𝑖 − 𝜓, 𝑡 − 𝑡𝑖 − 𝜏)𝑁

𝑖=1 } 𝑑𝜉 𝑑𝜓 𝑑𝜏    

(Equation 2.16) 

Exchange of the summation and integration operations and evaluation of the triple integral gives 

the model’s estimate of the spatiotemporal 𝐿𝐹𝑃 from the LTI system: 

𝑍 =
1

𝑁2
 ∑ ∑ 𝐿𝐹𝑃(𝑥, 𝑦, 𝑡)𝑁

𝑖=1
𝑁
𝑖=1  =  𝐿𝐹𝑃(𝑥, 𝑦, 𝑡)  (Equation 2.17) 

As shown in (Eissa et al., 2018), the time domain component of this linear estimate produces a 

close approximation of the ongoing seizure activity with significant correlation (p < 0.01) 

between recorded and estimated activity. 
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2.5.3 Mechanisms involved in focal seizures 

By combining current and previous findings on ictal dynamics, we can outline the 

following summary for an evolving neocortical focal seizure. At the micro and meso-scales, an 

ictal wave of action potential activity propagates at a velocity of ~1 mm/s by invoking excitation 

via the local connections over distances < 1 mm. This wave of hyperexcitation propagates locally 

when the inhibition in front of this wave fails to constrain the excitation (Eissa et al., 2017; 

Schevon et al., 2012; Tryba et al., 2019). In this context, it is interesting to note that this 

propagation process seems compatible with the evolution of the clinically observed Jacksonian 

march first described by Hughlings Jackson in 1870 (Extercatte et al., 2015). We now find 

evidence that, in addition to the slow propagation process, the ictal wave excites cortical areas 

farther than 1 mm away, probably via axon collaterals within the gray matter, which allows 

excitation to ‘escape,’ and enables recruitment of additional cortical territory (Fig. 2.6C). This 

activation of areas > 1 mm away might also explain modular propagation of ictal activity, a 

property previously observed in experimental seizures (Trevelyan et al., 2006). At the 

macroscale, white matter intracortical connections are invoked, spreading ictal activity across a 

cm-sized territory. The activity in this macroscale territory is still highly correlated with the 

action potential activity in the ictal wave located in the recruited territory rather than the local 

action potential activity located in the non-recruited areas (Fig. 2.11) (Eissa et al., 2017). In 

addition, while local inhibition fails at the ictal wavefront, longer range inhibition remains intact 

and plays a critical role in sustaining the synchronous oscillatory component of the ongoing 

seizure at the macroscale (Eissa et al., 2017; Eissa et al., 2018).   
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2.5.4 Supplemental figures and tables 

 

Figure 2.8: Representative st-SCAs for each patient. Patients 1-5 had microelectrode arrays 

(MEAs) implanted in recruited territory, and Patients 6-7 had MEAs implanted in unrecruited 

territory. Grayscale is in μV units. A-B) Patients 1-3 resemble sinc functions in the temporal and 

spatial domains. The black traces are the signals, and the red traces are the noise estimates. D-E) 

Patients 4-5 do not resemble sinc functions in the temporal domain and resemble deep wells of in 

the spatial domain. F-G) Patients 6-7 are characterized by comparatively much smaller 

amplitude signals in both the temporal and spatial components.  
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Figure 2.9: Spatial component of the st-SCAs. The st-SCA in panels a and c represent the 

same spike-LFP relationship as depicted in Fig. 2.4e and f, respectively. In all patients, the ictal 

signal (a, c, e) is stronger than the interictal one (b, d, f). In Patient 1 (a), the two rings 

surrounding the center are indicated by the circles. Patient 5 (c) instead shows a deep well of 

negative activity. The dynamics in unrecruited territories (e-f) are markedly different and are also 

much smaller in amplitude. Grayscale is in μV units. 
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Figure 2.10: Noise estimates of the st-SCA. The SNR of the signals is well above 14dB in each 

panel (as per application of the so-called five sigma rule).  a) Detail of the temporal component 

of the st-SCA from Fig. 2.4C (black) and its noise estimate (red). The signal-to-noise ratio (SNR) 

of the depicted data is 45dB.  b) The spatial component of the st-SCA depicted in Fig. 2.4E and 

its estimated noise component. The location specific SNR of the depicted data range is 26 – 

80dB, with an average of 38dB. The units for the grayscale are identical for both maps and 

identical to the scale in Fig. 2.4e, 2.8a, 2.9A. c) The 2D st-SCA from Fig. 2.5C and its noise 

estimate. The SNR of the depicted data is 39dB. The units for the color scale are identical for 

both maps and the same as in Fig. 2.5. 
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Figure 2.11: STAs based on LFP from recruited & unrecruited territories. The STA of the 

LFP in the recruited area triggered by spikes in the recruited area (A) show a large negative peak 

at the time of the trigger. The STA in the unrecruited areas have a relatively strong signal 

component when triggered by spikes in from the recruited areas (B), but not if triggered by 

spikes in the unrecruited area (C). The black traces are the signals, and the red traces are the 

noise estimates.  
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Figure 2.12. Representative st-SCAs after randomizing spike triggers. No spatial patterns are 

seen, highlighting the importance of spike timing in the st-SCA calculation. Grayscale is in 

arbitrary units (A.U.). The average signal-to-noise ratios (SNR) are listed per patient.  
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Figure 2.13: Representative st-SCAs after spatial filtering. The spatially filtered st-SCAs 

resemble similar patterns to non-whitened st-SCAs, albeit a smaller amplitude signal. Grayscale 

is in arbitrary units (A.U.). The average signal-to-noise ratios (SNR) are listed per patient. 
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Table 2.1. Patient Table: Demographics and Clinical Features  

 

Patient 

(age/ 

sex) 

Patient 1             

(25yo/F) 

Patient 2            

(19yo/F) 

Patient 3            

(21yo/M) 

Patient 4             

(32yo/M) 

Patient 5             

(45yo/M) 

Patient 6             

(30yo/M) 

Patient 7             

(39yo/M) 

Implant 

location 

Left 

lateral 

and sub 

temporal 

Right 

lateral 

and sub 

temporal, 

parietal, 

occipital 

Left 

lateral 

frontal, 

sub 

frontal, 

temporal, 

sub 

temporal 

Left 

lateral 

temporal, 

sub 

temporal, 

parietal, 

frontal 

Right 

lateral 

temporal, 

parietal, 

frontal 

Left 

lateral 

frontal, 

mesial 

frontal, 

temporal 

Left 

lateral 

and 

mesial 

frontal 

MEA 

location 

Left 

inferior 

temporal 

gyrus 2.5 

cm from 

anterior 

temporal 

pole 

Right 

posterior 

temporal, 

1 cm 

inferior 

to 

angular 

gyrus 

Left 

middle 

temporal 

gyrus 1–2 

cm 

posterior 

to the 

temporal 

tip 

Left 

superior 

temporal 

gyrus 

Right 

superior 

temporal 

gyrus 

Left 

suppleme

ntary 

motor 

area, 3 cm 

superior 

to Broca’s 

area 

Left 

lateral 

frontal 2 

cm 

superior 

to 

Broca's 

area 

Seizure 

onset 

zone 

Left 

basal/ 

anterior 

temporal  

Right 

posterior 

lateral 

temporal 

Left 

mesial 

temporal 

Left 

anterior 

fronto-

temporal  

Right 

anterior 

temporo-

parieto-

occipital 

Left supp-

lementary 

motor 

area  

Left 

frontal 

oper- 

culum  

(3 × 3-cm 

cortical 

area) 

No. of 

seizures  
3 1 3 3 3 3 3 

Seizure 

type(s) 

Complex 

partial 

Complex 

partial 

with sec-

ondary 

generaliz

ation 

Complex 

partial 

Complex 

partial 

Complex 

partial 

with 

secondary 

generaliza

-tion 

Complex 

partial/ 

tonic 

Complex 

partial 
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Table 2.2. Patient Table: Seizure Recording and Spike Detection Information 

 Epoch Length (sec) n spikes* spikes/s* 

PATIENT 1 

Interictal 180 7720 43 

Seizure 1 58 78479 1353 

Seizure 2 80 77788 972 

Seizure 3 102 153063 1501 

PATIENT 2 

Interictal 180 181116 1006 

Seizure 1 29 110896 3824 

PATIENT 3 

Interictal 180 16582 92 

Seizure 1 52 162707 3129 

Seizure 2 88 274656 3121 

Seizure 3 57 193733 3399 

PATIENT 4 

Interictal** 180 23881 133 

Seizure 1 82 385978 4707 

Seizure 2 102 366705 3595 

Seizure 3 96.23 322148 3348 

PATIENT 5 

Interictal 180 52998 294 

Seizure 1 102 304058 2981 

Seizure 2 101 314402 3113 

Seizure 3 73 349189 4783 

PATIENT 6 

Interictal 180 24438 136 

Seizure 1 12 3471 289 

Seizure 2 13 4902 377 

Seizure 3 6 1635 273 

PATIENT 7 

Seizure 1 20 17157 858 

Seizure 2 23 7778 338 

Seizure 3 31 7065 228 

 

*Across all channels of the MEA. 

**Due to limitations in available recordings, this interictal clip is 12 minutes away from the 

nearest known ictal activity 
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Table 2.3. st-SCA contributions per each position for Patient 1. 

 

 

Table 2.4. SNR values per each position for Patient 1.  
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CHAPTER 3 

THIRD-ORDER MOTIFS ARE SUFFICIENT TO FULLY AND 

UNIQUELY CAPTURE SPATIOTEMPORAL NEURAL NETWORK 

ACTIVITY1 
 

3.1 Summary 

Neuroscientific analyses balance between capturing the brain’s complexity and 

expressing that complexity in meaningful and understandable ways. Here we present a novel 

approach that fully characterizes neural network activity and does so by uniquely transforming 

raw signals into easily interpretable and biologically relevant metrics of network behavior. We 

first prove that third-order (triple) correlation describes network activity in its entirety using the 

triple correlation uniqueness theorem. Triple correlation quantifies the relationships among three 

events separated by spatial and temporal lags, which are triplet motifs. Classifying these motifs 

by their event sequencing leads to fourteen qualitatively distinct motif classes that embody well-

studied network behaviors including synchrony, feedback, feedforward, convergence, and 

divergence. Within these motif classes, the summed triple correlations provide novel metrics of 

network behavior, as well as being inclusive of commonly used analyses. We demonstrate the 

 
1This chapter is reproduced from the following publication under the Creative Commons 

Attribution 4.0 International License from: Deshpande SS*, Smith GA*, van Drongelen W. 

Third-order motifs are sufficient to fully and uniquely characterize spatiotemporal neural 

network activity. Sci Rep. 2023 Jan 5;13(1):238. *equal contribution 

 

Link to Creative Commons license: http://creativecommons.org/licenses/by/4.0/ 

 

Attestation Statement: The work presented in this chapter was a collaborative effort with 

Graham Smith in the Wim van Drongelen lab. Graham and I contributed equally to both 

research and authorship and share first-authorship.  

 

Note: For the entirety of this dissertation chapter (unless explicitly noted otherwise), the term 

“spike” refers to an action potential.   



56 

 

power of this approach on a range of networks with increasingly obscured signals, from ideal 

noiseless simulations to noisy experimental data. This approach can be easily applied to any 

recording modality, so existing neural datasets are ripe for reanalysis. Triple correlation is an 

accessible signal processing tool with a solid theoretical foundation capable of revealing 

previously elusive information within recordings of neural networks. 

3.2 Introduction 

Meaningfully capturing the complexity of neural networks is a daunting task: a range of 

different approaches are currently in use to quantify network behavior (e.g. Abeles and Gerstein, 

1988; Dechery and MacLean, 2018; Schneidman et al., 2006; Jiang et al., 2017; Sporns and 

Kötter, 2004; Jovanović and Rotter, 2016; Milo et al., 2002; Buzsáki and Draguhn, 2004). 

Intuitively, we assume that completely characterizing this complexity should require correlations 

of such high-order as to be incomprehensible, perhaps even unenumerable (Yu et al., 2011). 

However here we show that third-order correlations fully characterize even the most complex 

neural recordings. This full characterization arises from the unique correspondence between a 

dataset and its triple correlation, per the triple correlation uniqueness (TCU) theorem. Introduced 

decades ago in optical sciences (Bartelt et al., 1984), this theorem states that any finite image has 

unique triple correlation. The TCU theorem has since languished, but we hope to bring triple 

correlation to the forefront of data analysis with one simple observation: any finite dataset can be 

interpreted as an "image." In neuroscience, this encompasses any completed recording of neural 

activity: functional magnetic resonance imaging, local field potential, single-unit 

electrophysiology, multi-electrode array electrophysiology, voltage-sensitive dye imaging, etc. 

Beyond these, the TCU theorem applies to any finite dataset in any field.  
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Here, we bring the TCU theorem into the heart of neuroscience with a focus on analysis 

of spike rasters as the representation of neuronal population activity. We propose that the activity 

patterns of a neural network can be ideally characterized by its triple correlation, 𝑐3. We begin 

by defining 𝑐3, which comprises triplet motifs, the relationships among three events. We briefly 

summarize the proof of the uniqueness of 𝑐3 and explore the implications of this uniqueness for 

neural data. We then classify the triplet motifs by event sequencing and neuron recruitment to 

derive a natural summary of 𝑐3 in fourteen motif classes. This summary falls out naturally and 

maps onto network properties of both computational and biological interest, including 

synchrony, feedback, feedforward, convergence, and divergence. We illustrate the utility of that 

simple summary with some straightforward simulations and apply our analysis to experimental 

recordings. In sum, we present a novel, theory-based approach to quantifying network activity.  

3.3 Methods 

We worked with a multi-neuron raster of spikes (Fig. 3.1A) to outline our approach, 

though the analysis works the same for any finite dataset (see section A.2.5). 

3.3.1 Defining triple correlation 

Unlike pairwise correlation (a function of one lag between two spikes), triple correlation 

characterizes three-way interactions as a function of two lags among three spikes (Fig. 3.1B). We 

will call 𝐶3 the triple correlation transform, which transforms a spatiotemporal raster into its 

triple correlation. So for a spatiotemporal raster, 𝑟(𝑛, 𝑡) (𝑛, 𝑠𝑝𝑎𝑐𝑒;  𝑡, 𝑡𝑖𝑚𝑒) the triple correlation 

𝑐3 is a function of four variables: 

 𝐶3[𝑟] = 𝑐3(𝑛1, 𝑡1, 𝑛2, 𝑡2) =   〈𝑟(𝑛, 𝑡) ∗ 𝑟(𝑛 + 𝑛1, 𝑡 + 𝑡1) ∗ 𝑟(𝑛 + 𝑛2, 𝑡 + 𝑡2)〉𝑛,𝑡  

(Equation 3.1) 
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The operation  〈. . . 〉𝑛,𝑡 computes the average over all bins in the raster. The argument ... is 1 

when (𝑛, 𝑡)  is part of a spiking triplet with lags (𝑛1, 𝑡1, 𝑛2, 𝑡2), and 0 otherwise. In practice, we 

only calculate the triple correlation up to a certain maximum spatiotemporal lag which we 

determine based on experimental and computational considerations on a per-experiment basis 

(noted in each figure). In most cases calculating the full 𝑐3 would be a needless computational 

expense as usually the triple correlations with longer lags become more likely to be dominated 

by chance. See subsection A.2.4 "Computing the triple correlation" for implementation details. 

 

Figure 3.1: Application of the fourteen motif classes to spike rasters. For a given raster 

(Panel A), second- order correlations can relate activity within a neuron (auto-correlation, AC; 

Panel B) or between neurons (cross- correlation, CC; Panel B). Triple correlation (TC; Panel B) 

relates three bins, separated by up to two temporal and two spatial lags. Three particular spike 

bins constitute a triplet motif (e.g. as shown in Panel B). We classify these motifs into fourteen 

motif classes by the motif's spike sequence (Panel C; see section A.2.5 for a complete 

derivation). Dot: a single spike bin. Horizontal red dashed arrow: intraneuronal spike bins, i.e. 

space lag= 0, e.g. I and II. Vertical stippled line: synchronous spike bins, i.e. time lag = 0, e.g. III 

and IV. Solid blue arrow: interneuronal spike bins (e.g. V). These 14 motif classes can also 

embody well-known neuronal processing properties (such as synchrony, feedback, convergence, 

divergence, and feedforward) in both the time (listed adjacent to the motif class) and frequency 

domains (listed within parentheses). First- (0) and second-order (I, III, and V) motif classes are 

highlighted in green and yellow, respectively. The second-order motif classes I, III, and V are 

constituent motif classes that comprise the third-order motifs. The remaining ones are third-order 

motif classes. 
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3.3.2 Overview of uniqueness proof 

To prove uniqueness, we apply the Triple Correlation Uniqueness (TCU) theorem, 

originally applied in optical sciences (Bartelt et al., 1984; Yellott and Iverson, 1992; Yellott, 

1993). It states that if we have two images 𝑥 and 𝑦 with equal triple correlations (𝐶3[𝑥] =

𝐶3[𝑦]), then the images themselves must be equal (x = y). The TCU theorem applies to any finite 

bounded dataset, including continuous signals and multi-dimensional data-a fact that can be 

understood by interpreting any dataset as an image-so we apply it to a spike raster. We begin 

with two rasters 𝑥 and 𝑦 whose triple correlations are equal. This implies that the triple 

correlations' Fourier transforms (bispectra) are equal, which we can write as equality between the 

product of three characteristic functions. Characteristic functions are the Fourier transform of 

probability distributions and are well-known in statistics to have certain nice properties (Feller, 

1950). Using those properties, we perform simple algebraic manipulations of that equality to 

derive that the Fourier transform of 𝑥 equals the Fourier transform of y times an exponential 

function, 𝐹[𝑥](𝜎)  =  𝐹[𝑦](𝜎)𝑒𝑗𝑎𝜎, where 𝜎 is frequency, 𝑗 is the imaginary number, and 𝑎 is 

some constant. This means that raster 𝑥 equals raster 𝑦 translated by some constant 𝑎. Thus, 

rasters with equal triple correlations are themselves equal up to translation. See section A.2 for 

the full proof, both in the two dimensions of a typical raster and in the fully general 𝑁 

dimensions. Because of this result, spiking activity can in principle be recovered in its entirety 

from triple correlation (see "Reconstruction Algorithms for Finite Images" in Yellott and 

Iverson, 1992). 

3.3.3 Summarizing triple correlation with motif classes 

To better interpret triple correlation, we summarized it along lines meaningful to the 

underlying neural dynamics, combining the motifs into qualitatively distinct motif classes, 𝑀𝑖. 
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To do this, we asked what differences between three-spike motifs constitute fundamental 

differences. First, we grouped motifs according to whether their lags are zero or non-zero, 

producing 24 = 16 groups for the four spatiotemporal lags. Next, we distinguished within these 

groups according to the signs of the lags, which expanded those 16 groupings into 169 lag-sign 

motifs (proven in subsection 3.5.6 "The number of lag-sign motifs"; enumerated in Table 3.1). 

These 169 lag-sign motifs enumerate all possible shapes of the motifs where the identity of each 

node matters, and where space is ordered. However, for our purposes many of these shapes are 

functionally the same. For example, we only distinguished between zero and non-zero spatial 

lags: zero meaning "intra-neuronal" and non-zero meaning "inter-neuronal." Further, node 

identity is irrelevant. Using these considerations, we grouped together these 169 lag-sign motifs 

according to those invariant under reflecting over the horizontal axis and node identity 

permutation. As a result, we found fourteen motif classes (Fig. 3.1C; proven in subsection 3.5.7 

"The number of motif classes"). 

3.3.4 Controlling for expected contributions 

When using motif classes to quantify network patterns, it is essential to distinguish 

between the occurrence of these motif classes due to underlying network behavior versus due to 

chance. Based on simple combinatorics, we expect contributions for each motif class to differ by 

orders of magnitude. For example, motif classes I and III each have only one varying lag, 

whereas motif class XIII has four. So, if 𝜆 is the maximum lag between spikes in a motif, the 

expected contributions of motif classes I and III are 𝑂(𝜆), while the expected contribution of 

motif class XIII is 𝑂(𝜆4). Intuitively, we also expect the motif class contributions to vary 

depending on the number of spikes required in the motif: while there are more motifs in motif 

class XIII, the chances of any one of them occurring is lower than motif class I because a motif 
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needs three spikes for motif class XIII but only two for motif class I. So given a fixed spike rate 

𝑝, we calculated the theoretically expected motif class contributions under the simplifying 

assumption that every neuron is a Poisson process with rate 𝑝 per bin: 𝐸[𝑀𝑖 | 𝑝, 𝜆]  =

 𝑁𝑇#(𝑀𝑖| 𝜆)𝑝𝑛𝑖, where 𝑁𝑇 is the size of the raster, #(𝑀𝑖| 𝜆) is the number of motifs given 

maximum lags 𝜆, and 𝑛𝑖 is the number of events in a motif in motif class 𝑖. (See subsection A.2.8 

"Expected contributions per motif class" for case-by-case calculation) 

We note that the higher-order motifs are composed of lower-order motifs, e.g. looking at 

motif class X in Fig. 3.1C, it is constructed of two kinds of arrows: those of motif classes I and 

V. We say that motif classes I and V are constituent motif classes of motif class X (see also Fig. 

3.4 for more explicitly deconstructed examples). We want to control also for this dependency. 

By computing the expected relationship between the contribution of a higher-order motif class 

and the contributions of its lower-order constituent motif classes, we derived 𝐸𝑐[𝑀𝑖] which is the 

expected motif-class contributions given a spike rate and controlling for lower-order constituent 

motif-class contributions (constituent-controlled expectation). For lower order motifs, this is the 

same (e.g. 𝐸𝑐[𝑀𝐼]  =  𝐸[𝑀𝐼]), but for higher order motifs this reflects the expected contribution 

in a raster of Poisson processes with the observed contributions of its constituent motifs, i.e. 

𝐸𝑐[𝑀𝑋]  ≈  𝐸[𝑀𝑋 | 𝑀𝐼 𝑀𝑌 ]),. We report (
𝑀𝑖

𝐸𝑐
) − 1 so that positive values indicate higher 

contribution than expected, negative indicate less, and zero indicates contributions in line with 

those expected due to noise and the observed lower-order constituent motif-class contributions. 

3.4 Results 

Our principal goal is to bring triple correlation into general usage, with the triple 

correlation uniqueness theorem providing theoretical foundation for its use. Since triple 

correlation is entirely untested in the field, we approached it as we would any new tool: we 
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showed that it works in the simplest possible case, before adding noise and testing it across the 

whole gamut of possible patterns. After these checks, we applied triple correlation to open-

source real-world data. 

3.4.1 Application of triple correlation summary 

For a simple example to test this approach, we simulated a network spike raster with 

synchronous, periodic firing at a frequency of 𝑓 =  0.08 arbitrary units (Fig. 3.2A). From this 

raster, we determined contributions of all motif classes by summing the raster's triple correlation 

across all motifs in each motif (𝑀 =  {𝑀𝑖}, where {𝑀𝑖}  =  ∑ 𝑐3(𝑚) 𝑓𝑜𝑟 motifs 𝑚 in motif 

class 𝑖. We also simulated rate-matched pure-noise rasters (Fig. 3.2B) as surrogates and 

calculated their motif-class contributions. These surrogates were simulated Poisson processes 

with identical firing rates for every neuron. In addition, we calculated a theoretical value, the 

constituent-controlled expectation (µ𝑐; see Methods). We plotted all three quantities for each 

motif class (Fig. 3.2C). These quantities on their own are difficult to read: any difference 

between motif classes is completely overshadowed by the inevitable combinatorial differences in 

the number of triplet motifs per motif class. To account for these expected combinatorics and 

effectively report the contribution of each motif class, we calculated the constituent-controlled 

ratio ((
𝑀

µ𝑐
) − 1; Fig. 3.2D), which highlights the deviation of each motif-class contribution from 

that expected due to noise and lower-order constituent motif class contributions. To demonstrate 

that the contributions from surrogate rasters do not differ much from the constituent- controlled 

expectation, we plotted the estimated-to-constituent-controlled ratio (
µ̂

µ𝑐
) − 1 for all n = 100 

surrogate rasters (Fig. 3.2E). 

We see that our summary of the triple correlation reflects the simple underlying structure: 

motif-classes III and IV, which correspond purely to neural synchrony, are highest above the 
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expected contributions. Motif-classes VI, VII, XI, and XII, which each includes a synchronous 

component, are also above chance expectations (Fig. 3.2D). Thus, as a single facet of our 

analysis, we can detect not only second-order synchrony (motif class III), which is considered 

important in neuroscience research (Roscoe et al., 1985; Kreuz et al., 2011, 2013), but also third-

order synchrony (motif class IV). We recognize that this is an ideal case, in which the syn- 

chronicity is also visibly apparent from the raster itself. We will now proceed to show that this 

particular detection works in the face of noise, and that all the other facets of our analysis (i.e. 

the other motif classes) also work. 
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Figure 3.2: Motif-class contributions to the raster's triple correlation. A) 150 x 150 spike 

raster generated by thresholding an 0.08 AU frequency sine wave. B) Surrogate raster generated 

by randomly shuffling the periodic raster in panel A. C) Various motif-class summary metrics 

calculated from a triple correlation using lags up to 20 bins in time and space: the actual 

contributions per motif class (M, red circles); the constituent-controlled theoretically expected 

contributions (µc, black diamond) conditioning on spike rate and controlling for the observed 

contributions of lower-order motifs; surrogate contributions (µc, blue boxplots visible as 

horizontal lines due to relatively small variance) the average motif-class contributions across n = 

100 shuffled surrogate rasters. D) The constituent-controlled ratios (M/µc - 1) per motif class. 

M/µc - 1 for purely synchronous motif classes III and IV are highest; motif classes VI, VII, XI, 

and XII (which all consist of an element of synchrony) also show positive M/µc - 1 values. Note 

that motif class 0 always has zero signal because motif class 0 is the spike rate, which is 

controlled for by both N and T. E) The estimated-to-constituent-controlled ratios (µ/µc - 1) for 

100 noise simulations fluctuate around 0 for all motif classes and are shown as box-and-whisker 

plots. The centerline is the median, the bottom and top edges of the box are the first and third 

quartiles, and the whiskers extend to the minimum and maximum values. 

 

3.4.2 Resistance to noise 

We explored the effects of increasing noise on detecting network structure using faster 

synchronous firing with added uniform noise input (f = 0.12 AU, SNR = 0 dB; Fig. 3.3A). 

Similar to the results of those with slower synchronous firing (Fig. 3.2D), motif classes III, IV, 

VI, VII, XI, and XII (those with elements of synchrony) are found more often than chance (Fig. 
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2.3B). We increased noise (SNR = -9dB; Fig. 3.3C), resulting in lower magnitude signals across 

all motif classes, yet still detecting synchronous signals (Fig. 3.3D). In this case, the underlying 

network structure is still overtly present in the raster. We then increased the noise such that the 

synchronous network structure in the raster is not overtly present (SNR = -17 dB; Fig. 3.3) and 

found that while all signals move even closer to 0, those with synchrony are still elevated (Fig. 

3.3F). Thus, triple correlation reflects underlying structure in the face of added noise. Finally, we 

show that in an extremely noisy raster (SNR = -40dB; Fig. 3.3G), the synchronous signals are no 

longer detected as all motif classes now show even lower magnitude signals, approaching 0 (Fig. 

3.3H). In this overwhelmingly noisy simulation, the motif-class spectrum is dominated by 

chance.  
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Figure 3.3: Detecting synchrony amidst increasing noise. A) The 150x150 spike raster plot is 

generated by thresholding a 0.12 AU frequency sine wave with added noise. The noise consists 

of uniform noise scaled to give the desired signal-to-noise ratio (SNR = 0 dB). B) The motif-

class contributions (M) of the above raster relative to chance (M/μc−1). These were calculated 

from a triple correlation using lags up to 14 bins in time and space. These values show increased 

contributions of motif classes with synchronous elements, as expected. C) The periodic signal is 

embedded in more noise (SNR = −9 dB), albeit still visible from the raster. D) Same as panel B 

with lower magnitude signals. E) The synchronous structure is embedded in more noise (SNR = 

− 17 dB), but now not overtly apparent to the naked eye. F) Same as panels B) and D) with lower 

magnitude signals. All motif-class contributions are closer to 0, but motif classes with 

synchronous elements are still detected. G) The synchronous structure is now embedded in 

extreme noise (SNR = − 40 dB). H) Same as panels (B, D, and F), but now other motif-class 

signals are also detected (and not just those with synchronous elements) due to chance. All motif 

classes have even lower magnitude signals, approaching pure noise. 
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3.4.3 Detecting various spiking sequences 

Next, we tested that our method correctly detects various isolated spike sequences 

(triplets). Our approach correctly detected third-order motifs by the appropriate motif class. We 

illustrate six simulations, each including only one repeated triplet across the raster. In addition to 

motif class 0, all motif classes are composed of one or more constituent motif classes (I, III, 

and/or V). Of the simulations depicted, the first three show triplets whose motif classes are 

purely composed of a single constituent motif class (Fig. 3.4A-C), and the other three show motif 

classes composed of a mix of two different constituent motifs (Fig. 3.4D-F). Fig. 3.4A-C show 

that the second- and third- order motifs for local dynamics (Fig. 3.4A; I & II), synchrony (Fig. 

3.4B; III & IV), and feedforward (Fig. 3.4C; V & XIII) are correctly detected. Note that motif 

class V (simple second-order cross-correlation, which we describe as "spike propagation") is in 

fact a constituent part of every third-order motif other than those in motif classes II and IV, and 

so was detected at lower levels in every subsequent test. Fig. 3.4D-F shows the other three cases: 

feedback (IX; composed of I and V), divergence (XI; composed of III and V), and convergence 

(XII; composed of III and V). 
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Figure 3.4: Detecting motif classes in individual patterns. We simulated 150 x 150 rasters, 

each consisting of a single repeated triplet. Row 1: the motif class of the repeated triplet. Row 2: 

the motif class' constituent motif classes. Row 3: the simulated raster. Row 4: the motif-class 

contributions (M/µc - 1) calculated from the row 3 raster's triple correlation, using lags of up to 

14 bins (which is less than the separation between motifs in the raster). In all cases, the highest-

order motif with a non-zero contribution is the motif class, and the remaining non-zero 

contributions are the constituent motif classes. Note the changing y-axis scale: motif classes I 

and III are far less likely to occur from chance than motif class V. 



69 

 

In every case, including those not depicted, the tested triplets were reflected by the 

correct motif-class contribution (along with the triplets' constituent parts). For example, a 

feedback triplet elevates the contribution from motif-class IX, along with contributions from 

motif-classes I and V, which together constitute motif-class IX (Fig. 3.4D). Note that the 

particular summary used in this approach does not depend on quantitative details. Because of 

this, our detector works purely on 1) the qualitative spike sequencing that defines the motif-class, 

and 2) the presence of that motif class anywhere within the raster. 

3.4.4 Application to experimental data 

We further tested our approach using open-source, publicly available network data 

recorded from rat cortical cultures (details of this dataset are described in Hyvarinen et al., 

(2019) and obtained from Kapucu et al., (2022)). Briefly, rat cortical neurons were cultured in 

microelectrode array (MEA) well plates consisting of 16 (4x4 array) electrodes. Data were 

collected at 22 days in vitro. The datasets consisted of already-detected spike time data from 

baseline wells (n = 35 wells) and from wells treated with the following pharmacological agents 

(n = 35 wells): 

1. Control (n=7 wells) 

2. y-aminobutyric acid (GABA, 10 µM, n=7 wells) 

3. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 50 µM, n=7 wells), an amino-3- hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist 

4. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5, 50 µM, n=7 wells), which is an N-

methyl-D-aspartate (NMDA) receptor antagonist 

5. Gabazine (30 µM, n=7 wells), a GABAA receptor antagonist 



70 

 

The raw data were sampled at 12,500 samples/channel, and the spikes were detected by 

the researchers as described in Kapucu et al., (2022). We downsampled the spike rasters to 500 

samples/channel. Where multiple spikes were occasionally binned together, we counted them as 

a single spike. Representative 1-minute snippets of each raster per condition are depicted in 

Figure 3.6. We computed the triple correlation for each well of the MEA plate with temporal lags 

of -50ms:50ms and spatial lags that cover the entirety of the dataset in each of the two 

dimensions of the 4x4 array. We first show that the results from the triple correlation approach to 

quantify spike rate (contributions of motif class 0, Fig. 3.5A) concur with the results reported in 

Hyvarinen et al., (2019) (their Fig. 7C). Then for each pair of baseline and treatment wells, we 

calculated the ratio between M/µc- 1 for the treatment well over the baseline well and reported 

these values with a boxplot for each treatment (Fig. 3.5B-D). In these box-and-whisker plots, the 

center line represents the median (50th percentile), the bottom and top edges of the box represent 

the first (25th percentile) and third (75th percentile) quartiles, the whiskers represent the 

minimum and maximum range of data not considered outliers, and individual data points outside 

of the box-and-whisker plot represent outliers. 

The drugs used in this study provide specific levers to control synaptic activity: GABA 

increases and gabazine decreases inhibitory synaptic function; CNQX blocks faster excitatory 

synapses (AMPA/kainate); and D-AP5 blocks slower excitatory synapses (NMDA). These have 

broadly straightforward effects on the network's firing rate: potentiating inhibitory synapses or 

blocking excitatory synapses de- creases the firing rate, while blocking inhibitory synapses 

increases the firing rate (Fig. 3.5A; Hyvarinen et al., (2019)) Modulating the inhibitory synapses 

has a similar gross effect: excess inhibition suppresses contributions throughout, while 

decreasing inhibition leads to an increase in structured firing across the motif-class spectrum 
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(Fig. 3.5B). When antagonizing particular excitatory receptors-with either faster or slower post-

synaptic potentials-the triple correlation reflects changes in network behavior beyond simple 

firing rate modulation. On top of the gross reduction in firing, antagonizing faster excitatory 

AMPA/kainate receptors results in a decrease in synchrony and (most) higher-order motifs 

involving synchrony (Fig. 3.5C). On the other hand, antagonizing slower excitatory NMDA 

synapses, creating a network in which excitation is governed by faster synapses, results in a 

marked increase across the motif-class spectrum, despite the overall reduction in activity. The 

particularly high prevalence of third-order synchrony (motif class IV) reflects the fact that the 

remaining firing is overwhelmingly synchronous, well above the expectation governed by chance 

(Fig. 3.5D, Fig. 3.6). These results agree with the connectivity graphs comparing faster and 

slower correlations in AMPA and NMDA networks (Suresh et al., 2016, their Fig. 9). 
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Figure 3.5: Application of the triple correlation approach to experimental data. We 

determined motif-class contributions in an open-source dataset of rat cortical cultures. Networks 

(n=70 wells; n=35 baseline and n=35 treated) were cultured on microelectrode array (MEA) well 

plates—each well configured with 4x4 electrodes. The treated wells were exposed to the 

following experimental conditions (n=7 wells per condition): control (black), GABA (red), 

gabazine (blue), CNQX (magenta), and D-AP5 (green). Each treatment well was matched to an 

untreated baseline well. For each motif class, we depict the distribution of ratios between the 

treatment and baseline wells. In these box-and-whisker plots, the centerline is the median, the 

bottom and top edges of the box are the first and third quartiles, and the whiskers extend to the 

minimum and maximum values. A) The normalized spike counts relative to baseline 

(contributions of motif class 0) are shown for each experimental condition. The table shows the 

effect of each of the experimental conditions. B) M/μc−1 values are shown for control-, GABA-, 

and gabazine-treated cultures. Note that some motif classes (IV, VI, VII, XI, XII) do not show 

values for GABA treatment due to lack of spiking. C) Results for control- and CNQX-treated 

cultures. D) The motif-class spectra for control and D-AP5-treated cultures indicate increased 

network structure for the latter, while its level of activity was reduced (Panel A). 
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Figure 3.6: Representative 1-min epochs of rat cortical spike rasters. Rat cortical cultures 

from microelectrode array well plates were exposed to the following pharmacological agents: 

baseline (A; black), control (B; black), GABA (C; red), CNQX (D; magenta), D-AP5 (E; green), 

and gabazine (F; blue). Note that we present the raster in two dimensions here while in our 

analysis for Fig. 3.5 we used the two spatial dimensions of the MEA and one temporal 

dimension. 

 

 

3.5 Discussion 

The essence of this study is the introduction of a new analytical tool that fully 

characterizes network activity using triplet motifs. Our mathematically unique statistical analysis 
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not only encompasses typical first- and second-order analyses (e.g. auto-correlation, cross-

correlation; Fig. 3.1), but also includes third-order correlations that are reflective of nonlinear 

network behaviors. In the preceding section, we demonstrated the robustness of our approach 

with networks of escalating complexity: in a simple synchronous test case (Fig. 3.2), in the face 

of substantial noise (Fig. 3.3), and in an experimental dataset (Fig. 3.5). We also validated our 

simple summary metric in response to all computationally relevant motif classes (Fig. 3.4). The 

beauty of this approach lies in its flexible application to a multitude of finite data sets, including 

spike raster plots, fMRI images, local field potential (LFP), electroencephalogram (EEG), and 

data analyses in many other disciplines. Thus, we are excited to introduce this new analytical 

approach and eagerly anticipate its use as a tool to uncover new insights into network behavior. 

Historically, neural network activity has been an important topic of investigation 

(McCulloch and Pitts, 1943). Hebb's foundational idea of cell assemblies, which aimed to link 

physiology and function (Hebb, 1949), have often been investigated by searching for repeated 

patterns of spiking. Typically, these cell assemblies are investigated in the context of searching 

for multispike pattern activation that may not be time-locked to any external stimulus or action, 

as "would be the case for internal processes like recalling a memory or planning a movement" 

(Abeles and Gerstein, 1988). The field has expanded considerably over the decades, fostering 

research in precise zero-phase lag synchronization (Abeles, 1991; Singer, 1999; Russo and 

Durstewitz, 2017), temporally-coded sequential patterns (Skaggs and McNaughton, 1996; 

Buzsaki and Draguhn, 2004), and synfire chain-like structures (Abeles, 1982; Hertz and Prügel-

Bennett, 1996; Diesmann et al., 1999; Ikegaya et al., 2004). Our approach builds on this active 

area of research by integrating across multiple patterns within spatiotemporal motifs. Much as 

multispike patterns are putatively reflective of cell assemblies, these spatiotemporal motifs are 
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potentially reflective of underlying structure, and thus, changes in structure could be indicative 

of network state shift, for example: the transition between normal and seizure states (Jirsa et al., 

2014), preparation-to-movement in monkeys (Riehle et al., 1997), sleep/wake states (Saper et al., 

2010), or neuromodulation in response to pharmacological agents (Iorio et al., 2013). 

  When applying our approach to investigate a particular hypothesis, there are two critical 

questions that should be asked: 1) what choice of spatiotemporal lags is relevant for the dataset 

(e.g. are there a priori synaptically relevant temporal lags?); and 2) depending on the null 

hypothesis, what choice of method for random chance firing is best suited for the dataset? The 

former presents an exciting and unexplored frontier that allows researchers to tailor this approach 

to a variety of hypotheses. The latter can be informed by prior literature either on null hypothesis 

distributions (to calculate theoretical expectations) or surrogate generation (to estimate the 

same). In order to present a foundational concept, we used Poisson processes to model our 

neurons, both in theory and in surrogate datasets. For future applications, when testing specific 

hypotheses using experimental data, a more nuanced surrogate (e.g. Stella et al., (2022); Baker 

and Lemon (2000); Grun (2009)) should be used: e.g. a stimulated neuron will not obey a simple 

Poisson process. Thus, the particular surrogate would depend on the hypothesis being tested and 

must match the null hypothesis. 

Among signal processing tools, a prominent example of another unique trans- form of 

neural data is the Fourier transform, with amplitudes and phases of frequencies as fundamental 

units (van Drongelen, 2018). Much of medical imaging relies on the uniqueness of the Fourier 

transform, including computerized tomography (CT) and magnetic resonance imaging (MRI), 

which uses the Fourier transform to generate images (van Drongelen, 2018). In EEG and LFP 

research, application of Fourier transform has progressed our understanding based in the 
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frequency spectrum (van Drongelen, 2018). Since triple correlation also constitutes a unique 

characterization of neural data, we present our approach as a more complex yet still useful tool, 

as it is not only nonlinear and higher-order, but also comprises fundamental units, triplet motifs, 

that are still intuitively informative. Analogous to the typical summary of the Fourier transform's 

frequency spectrum into frequency bands (alpha, beta, gamma, etc.), we summarize the triple 

correlation's motifs into a spectrum of fourteen motif classes. However, unlike the EEG 

frequency bands, which depend on clinically defined ranges, the motif-class spectrum arises 

directly from theory and is purely derived from possible spike sequences. It is a natural 

summary, and the classes themselves reflect their parsimony: they distinguish fundamental 

properties of computation, such as synchrony (motif classes III and IV), feedback (motif class 

IX), etc. (Fig. 3.1C). Furthermore, the constituent motif classes (I, III, and V) capture the well-

known second-order correlations in analyzing neural spike data. Thus, while there are many 

alternative summaries, ours is both natural and useful in quantifying activity patterns (as 

exemplified in Figs. 3.2-3.5). Curiously, these theoretically defined fundamental units agree with 

previously data-driven work that has pointed to the primacy of third-order network motifs 

(Bojanek et al., 2020; Dechery and MacLean, 2018; Schneidman et al., 2006; Jiang et al., 2017). 

Not only is triple correlation unique in the time domain, but its own Fourier transform, 

the bispectrum, is unique in the frequency domain. The bispectrum of the spike raster includes 

the well-known power spectrum and cross-spectrum (and coherence), the Fourier transform of 

autocorrelation (I) and cross-correlation (V) respectively for binary data (e.g. van Drongelen, 

2018). The bispectrum's uniqueness gives theoretical weight to the growing consensus among 

researchers that in- sights about neural signals are encoded in the bispectrum (Bou Assi et al., 

2018; Gagliano et al., 2019). Specifically, this underscores the importance of the fundamental 
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elements of the bispectrum, which are the relationships between frequencies' amplitudes and 

phases. In some cases, as in our simulated rasters (Figs. 3.2-3.4), the spatial frequencies may not 

be relevant due to the arbitrary ordering of neuron rows in the rasters. In other cases, where the 

spatial dimension has a real ordering (e.g. our MEA dataset; Fig. 3.5) the spatial frequency bands 

can be an untapped source of insight. 

Both triplet motifs and inter-frequency analyses are already important topics of 

investigation in neuroscience (e.g. Jovanovic and Rotter, 2016; Milo et al., 2002; Bojanek et al., 

2020; Dechery and MacLean, 2018; Sporns and Kotter, 2004; Jansen et al., 2021). Here, we have 

provided a direct avenue for these investigations and proven the fundamental importance of these 

topics to any spatiotemporal neural data. Furthermore, the success of using the bispectrum as an 

input to artificial neural network seizure classifiers (Bou Assi et al., 2018) suggests that the 

equivalently unique and also-meaningful triple correlation might also prove a good feature space 

on which to train machine learning algorithms. While we applied triple correlation to simulated 

and experimental spiking activity, our methodology can extend beyond spike rasters to even 

higher dimensionality rasters and to continuous-valued signals, such as multi-electrode LFP data 

or EEG recordings (see proof section "Proof in Online Materials"). Ultimately, just as frequency 

bands have been considered fundamental components of brain activity with Fourier transform, 

here we propose triplet motifs as new fundamental building blocks, one step more complex, that 

hold promise as an innovative approach to analyzing spatiotemporal neural activity across the 

breadth of recording modalities. 
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CHAPTER 4 

INSIGHTS INTO NEURAL NETWORK BEHAVIOR USING 4D 

ENTROPY: A NOVEL QUANTITATIVE METRIC OF NETWORK 

ACTIVITY BASED ON TRIPLE CORRELATION1  

 

4.1 Summary  

 The human brain comprises an intricate web of connections, which in sum, generate 

complex neural networks capable of storing and processing information. This information 

depends on multiple factors, including underlying network structure, connectivity, and 

interactions; and thus, methods to characterize neural networks typically aim to unravel and 

interpret a combination of these factors. We have previously shown that third-order motifs are 

sufficient to characterize neural network activity fully and uniquely from the Triple Correlation 

Uniqueness (TCU) theorem (Deshpande et al., 2023). Triple correlation relates three nodes 

separated by up to four spatiotemporal lags (n1, n2, t1, & t2), generating fourteen qualitatively 

distinct motif classes (Deshpande et al., 2023). Here, we build from this approach to develop a 

method to compute the 4D entropy from the spatiotemporal lag probability distribution function 

(PDF). Given a spike2 raster, we compute the triple correlation by iterating over time and space, 

and if a three-node configuration (motif) is found, we store the spatiotemporal lag combination 

that determined that motif. Counting the frequency of these motifs over each of the lags 

 
1This chapter builds from the following abstract that will be presented at the 32nd Annual 

Computational Neuroscience (CNS) conference in July 2023: 

  

Deshpande SS, Smith GA, van Drongelen W. Computing PDFs and Entropy from Triple 

Correlation: Insights into Neural Network Behavior. 32nd Annual Computational 

Neuroscience Meeting. 15-19 July 2023; Leipzig, Germany.  

 
2Note: For the entirety of this dissertation chapter (unless explicitly noted otherwise), the 

term “spike” refers to an action potential.   
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generates a spatiotemporal lag distribution, from which we estimate a PDF and compute the 4D 

entropy. We first simulate isolated feedforward motif-class patterns to validate our approach. We 

then apply this methodology to spiking activity recorded from rat cortical cultures to measure 

functional connectivity over time and compare our results to previously published results of 

pairwise (2D) correlated entropy over time (days in vitro (DIV)). From 2-35 DIV, the following 

triple correlation metrics demonstrate comparable trends to the published pairwise 2D entropy: 

spike rate (motif class 0), second-order spike propagation (motif class V; cross-correlation), and 

feedforward motifs (motif class XIII). However, the 4D entropy computation reveals a greater 

depth of underlying network organization. While the published 2D entropy values decrease from 

31-35 DIV, the 4D entropy values do not show this decrease, but instead plateau. The difference 

between 4D entropy and published 2D entropy highlights the enhanced value of 4D entropy, 

which is derived from triple correlation, to capture overall network activity. As such, first- and 

second-order metrics (e.g. spike rate, CorSE, and cross-correlation) do not fully capture the 

network dynamics reflected in the 4D entropy and the motif-class spectrum. 

 

4.2 Introduction 

4.2.1 Methods to characterize neural networks 

Network characterization is an important frontier in neuroscience, evolving rapidly to 

further uncover information hidden within the brain. Currently, there are multiple methods to 

characterize neural networks, and they typically do so by analyzing network dynamics and 

structure. Commonly utilized techniques in neuroscience include: (1) network topology & graph 

theory analysis, (2) functional connectivity analysis, and (3) information theory. These 

techniques are not necessarily mutually exclusive and are often employed together to 
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characterize networks (e.g. functional connectivity analyses can involve network topology, graph 

theory, and information theory approaches).  

Network topology and graph theory approaches aim to characterize networks based on 

their underlying structure (using nodes and edges) and employ metrics such as clustering 

coefficient and average path length to provide insights into organization of network connectivity 

(Sporns & Zwi, 2004; Rubinov & Sporns, 2010). Clustering coefficient quantifies the extent to 

which nodes tend to group together (Watts & Strogatz, 1998); as such, a high clustering 

coefficient would indicate that the nodes are densely connected and form localized communities 

(Watts & Strogatz, 1998). The average path length quantifies the number of steps required to 

travel between two nodes and is determined by the average of all the shortest connections 

between each pair of nodes (Sporns & Tononi, 2000). One notable property used for these 

investigations is small-world networks (Watts & Strogatz, 1998), which are characterized by 

both high clustering and short path lengths (indicating rapid communication pathways which 

allow for efficient information processing) (Watts & Strogatz, 1998). Small-world characteristics 

have also been used to investigate anatomical and functional connectivity of the brain (Bassett & 

Bullmore, 2006; Bullmore & Sporns, 2009). In addition to clustering coefficient and average 

path length, other network properties utilized in graph theory approaches include degree 

centrality and rich-club organization. Degree centrality measures the number of connections for a 

node within the network; a high degree centrality indicates a node with multiple connections, 

which may act as a “hub” or a crucial brain region for information processing (Sporns et al., 

2000; van den Heuvel & Sporns, 2011). Building from this, rich club organization indicates that 

brain regions with high degree centrality form densely connected hubs, allowing for rapid 

information flow among brain regions (van den Heuvel & Sporns, 2011; Mišić et al., 2014). 
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These metrics, as employed by network topology and graph theory approaches, analyze 

information processing in terms of underlying network architecture.  

Functional connectivity analyses involve untangling the temporal correlations and 

statistical dependencies between populations of neurons or brain regions (Friston, 1994; Lang et 

al., 2012). These methods investigate interactions among brain regions to decipher information 

flow and processing, identify regions of coordinated activity, and assess the strength of 

underlying network architecture. Researchers have investigated functional connectivity under 

different states, such as resting-state (evaluating spontaneous neural activity in the absence of 

external input) (Biswal et al., 1995) and task- or state-based cases (assessing how network 

behaviors change in response to specific tasks or stimulation) (Cole et al., 2014).  

Information theory methods quantify the amount of information contained within the 

network and typically employ metrics such as entropy and mutual information to do so 

(Shannon, 1948; Rieke et al., 1997).  The goal of information theory is to assess how information 

is encoded and decoded (Panzeri, 1999). Shannon’s entropy, as described in his consequential 

paper “A Mathematical Theory of Communication,” is a metric of the amount of uncertainty 

contained in a probability distribution function (PDF) (Shannon, 1948). Shannon’s entropy is 

defined as: 

𝐻(𝑥) =  − ∑ 𝑝𝑖(𝑥) 𝑙𝑜𝑔2 [𝑝𝑖(𝑥)]𝑛
𝑖=1        (Equation 4.1) 

where 𝑝𝑖 is the PDF, 𝑥 is a discrete variable, and 𝑙𝑜𝑔2 is the base-2 logarithm (Shannon, 1948). 

This measurement has since become a crucial element of information theory with applications to 

multiple fields, including computer science, economics, and biology. In addition, Shannon’s 

entropy has been used as a powerful tool in neuroscience, with respect to investigating neural 

information coding (Quiroga et al., 2004; Quiroga & Panzeri, 2009), functional connectivity 
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(Sporns et al., 2000; Friston et al., 2003; Pereda et al., 2005), complexity (Tognoli et al., 2014), 

neural variability (Masquelier, 2017), and information flow (Kaminski et al., 1991; Tewarie et 

al., 2016).   

4.2.2 Overview of triple correlation approach 

Triple correlation is a signal processing tool that relates three nodes: one reference node 

and up to two other nodes separated by up to two lags in both space (n1 & n2) and time (t1 & t2). 

Given a spike raster (Fig 4.1A, taken from Deshpande et al., 2023), 𝑟(𝑛, 𝑡), where 𝑛 is space and 

𝑡 is time, triple correlation (𝑐3) is defined as:  

𝑐3(𝑛1, 𝑡1, 𝑛2, 𝑡2) =   〈𝑟(𝑛, 𝑡) ∗ 𝑟(𝑛 + 𝑛1, 𝑡 + 𝑡1) ∗  𝑟(𝑛 + 𝑛2, 𝑡 + 𝑡2)〉𝑛,𝑡   (Equation 4.2) 

This generates 169 possible three-node (motif) configurations (Fig. 4.1B, taken from Deshpande 

et al., 2023).  These 169 motif configurations can be collapsed into fourteen qualitatively distinct 

motif classes based on symmetries that occur in time and space (Fig. 4.1C, taken from 

Deshpande et al., 2023). From Panel C of Fig. 4.1, these motif classes can embody well-studied 

neuronal processing properties, such as synchrony (motif classes III-IV), feedback (motif class 

IX), divergence (motif class XI), convergence (motif class XII), and feedforward (motif class 

XIII). We have previously developed a metric of quantifying network structure using triple 

correlation: (
𝑀

µ𝑐
) − 1, in which 𝑀 is the prevalence of motif classes and µ𝑐 is the conditioned 

theoretical expectation value which is takes into account the prevalence of first-order (motif class 

0: spike rate; green highlighted box in Fig. 4.1C) and second-order motif classes (motif class I: 

autocorrelation; motif class III: synchrony; and motif class V: cross correlation; yellow 

highlighted areas in Fig. 4.1C) (Deshpande et al., 2023).  For example, computing µ𝑐 for motif 

class VI is based on the prevalences of motif classes 0, I, III, and V (as motif class VI is 
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comprised of each of these lower-order classes). Hence, values of (
𝑀

µ𝑐
) − 1 greater than 0 

indicate the presence of network structure whereas values of  (
𝑀

µ𝑐
) − 1 less than 0 indicate 

network activity comparable to chance levels. Network activity across each of these fourteen 

motif classes is termed the motif-class spectrum.  

 

Figure 4.1 (from Deshpande et al., 2023): The fourteen motif classes from triple correlation. 

A) Given a spike raster, B) autocorrelation (AC) relates two nodes separated by one temporal lag, 

cross-correlation (CC) relates two nodes separated by one spatial and one temporal lag, and triple 

correlation (TC) relates three nodes separated by up to two spatial and two temporal lags. These 

three-node configurations can be collapsed into C) fourteen motif classes which can embody well-

studied neuronal processing properties. This figure is also presented in Chapter 3 (Fig. 3.1) of this 

dissertation.  

 

4.3 Methods 

4.3.1 Estimating 4D PDF and computing the 4D entropy 

 Here, we build from the triple correlation approach and compute the entropy of a network 

from its spatiotemporal lag distribution. Given a spike raster (Fig. 4.2A), we compute the triple 

correlation by iterating through each spatial and temporal lag. If the triple correlation is nonzero 
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(e.g. if a motif configuration is found) in the raster, we store the spatial and temporal lag 

combination that determined that configuration. After iterating over the entire raster, we count 

the frequency of spatial and temporal lag combinations, generating a four dimensional (4D) 

spatiotemporal lag distribution (n1, n2, t1, t2). From this distribution, we estimate a 4D probability 

distribution function (PDF; Fig. 4.2B). We can generate the marginal PDFs by summing the PDF 

over each lag variable (n1, n2, t1, t2), which results in a marginal PDF of the remaining three lag 

variables; doing so for each lag variable combination generates four marginal PDFs. The PDF of 

the product of the marginal distributions (Fig. 4.2C) can be useful for analysis as it provides 

insight into the independence of the discrete variables. Following a similar procedure, we can 

also generate a PDF for a spike-rate matched surrogate (or noise) raster (Fig. 4.2D-E; n=100 

iterations), in which the events of the raster are shuffled over time and space. Lastly, we can 

generate a PDF of a uniform distribution, in which all values of the PDF are equal (Fig. 4.1F). 

From these 4 PDFs (Panel B: the network PDF; Panel C: the product of the marginal 

distributions; Panel C: mean surrogate PDF; and Panel D: uniform PDF), we can compute 

Shannon’s entropy (Panel G). Note that for purely visualization purposes, we show a 2D PDF 

(one spatial lag and one temporal lag) in Panels B, C, E, and F of Fig. 4.2, whereas the PDF and 

associated entropy from the spatiotemporal lag distribution is four dimensional. From Panel G, 

the entropy of the feedforward network is lowest, as expected, given the isolated motif class 

network structure. The entropy of the product of the marginal distribution is higher, but not as 

high as the entropy of the uniform distribution, which is defined by maximal entropy as all 

events are decorrelated. The entropy generated from the surrogate distribution is higher than that 

of the raster, but not equivalent to that of the uniform distribution, suggesting that the surrogate 

raster does not decorrelate all events. Comparing the entropy of the raster to that of the product 
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of the marginal distributions provides insight into the statistical independence of the variables. 

This ideal simulated raster of isolated feedforward motifs (Fig. 4.2A) was used to validate our 

methodology. We then sought to test this approach on real-world experimental dataset.  

 

 

Figure 4.2: Overview of method to compute PDF and entropy. A) Given a spike raster of 

isolated feedforward motif class patterns, we compute triple correlation across the spike raster 

and B) generate a probability distribution function (PDF). From this PDF, we take the sum 

across each lag, generating a marginal probability distribution for each dimension, shown in the 

margins of Panel B. C) If the PDF of the product of the marginal distributions is equal to the 

PDF of the network, it suggests that the discrete variables (the lags in this case) are statistically 

independent. D) A spike-rate matched surrogate (noise) raster can be generated by shuffling the 

spikes across time and space, generating E) a mean surrogate PDF (n=100 iterations) using a 

similar protocol. F) The PDF of a uniform distribution is one in which all elements are equal. G) 

From each of these PDFs, Shannon’s entropy can be computed. Note that the entropy of the 

feedforward raster is the lowest value, the entropy of the product of the marginal distributions is 

higher, and the entropy of the uniform distribution is the maximum (by definition). In addition, 

we can appreciate that the entropy of the surrogate distribution is not equivalent to that of the 

uniform distribution, which suggests that the surrogate distribution does not decorrelate all 

elements of the network.  
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4.4 Results 

4.4.1 Rat cortical cultures: 4D entropy and motif-class spectrum over time 

 We then applied our approach to an open-source dataset of spiking activity from 

microelectrode array recordings of rat cortical neurons (Hyvärinen et al., 2017; Kapucu et al., 

2022). Briefly, cortical tissue was extracted from rat embryos (embryonic days 17-18) and plated 

on MEA well plates (12 wells per plate; 8x8 array of 64 electrodes per well) (Hyvärinen et al., 

2017; Kapucu et al., 2022). Spiking activity was recorded from 2-35 days in vitro (DIV). Triple 

correlation was computed across the spike raster using spatial lags that cover all 64 electrodes 

and temporal lags from -50 ms:50 ms. This temporal window of 100 ms covers monosynaptic 

excitatory (AMPA- & peak of NMDA-mediated) postsynaptic potentials and inhibitory 

(GABAA- & GABAB-mediated) postsynaptic potentials. The published spike rate (Fig. 4.3A), 

the spike rate computed by triple correlation (Fig. 4.3B), the published pairwise (2D) correlated 

spectral entropy (CorSE) (Fig. 4.3C), and the prevalence of motif class V (a pairwise, 2D metric 

of spike propagation) (Fig. 4.3D) show similar trends in that the activity gradually increases, 

peaks around 24-28 DIV, and decreases from 31-35 DIV. Following the procedure described in 

Section 4.3.1, the spatiotemporal lag PDF and associated 4D entropy (Fig. 4.3E) were computed 

using triple correlation, which also yielded the fourteen individual motif-class profiles (Fig. 

4.3F). The 4D entropy (Fig. 4.3E) shows a plateau from 31-35 DIV, instead of a decrease in 

values, as observed by the trends in the first-order and second-order metrics (Fig. 4.3A-D). 

Furthermore, several third-order motifs (motif classes II and VII) show an overall increase across 

time, instead of a peak around 24-28 and a slight decrease around 31-35 DIV (as shown by the 

remaining motif classes except for motif class VI) (Fig. 4.4).   
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Figure 4.3: Characterizing network activity of rat cortical cultures over time. A) The spike 

rate from the published data (B) and triple correlation (motif class 0) show similar trends from 2-

35 days in vitro (DIV) to that of the published pairwise 2D correlated spectral entropy (CorSE) 

as well as (D) the prevalence of motif class V (pairwise 2D spike propagation). E) The 4D 

entropy computation based on triple correlation shows a comparable trend from 2-28 DIV but 

plateaus from 31-35 DIV, even though the spike rate (A-B) and second-order pairwise metrics 

(C-D) show a decrease from 31-35 DIV.  
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Figure 4.4: The motif-class spectrum for rat cortical neurons over time. The fourteen motif-

class profiles from triple correlation provide insight into individual network patterns. Motif 

classes V (cross-correlation; same as Panel D) and XIII (feedforward spike propagation) show 

similar trends to that of the published 2D CorSE values in that they gradually increase, peak 

around 24-28 DIV, and then decrease to network activity comparable to chance. Motif classes 

XI-XII also peak around 24-28 and decrease from 31-35 DIV, but do not revert to activity 

comparable to chance from 31-35. In addition, motif classes II and VII (both third-order metrics) 

show that over time, these network patterns increase.  

 

4.5 Discussion 

4.5.1 Overview 

 Here, we present a novel method to compute the entropy of a neural network based on the 

4D spatiotemporal probability distribution function (PDF) generated from triple correlation. This 

4D entropy metric is based on the triple correlation spatiotemporal lag PDF, which captures 

network activity full and uniquely as leveraged by the Triple Correlation Uniqueness theorem 

(Deshpande et al., 2023). We first validate our approach on a spike raster with isolated 
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feedforward motif-class patterns. We then apply this approach to an open-source dataset of 

spiking activity recorded from rat cortical cultures and demonstrate that the 4D entropy value 

captures underlying network activity from 31-35 DIV, whereas the published 2D entropy shows 

a decrease.  In addition, the trends for motif classes 0 (spike rate), V (cross-correlation), and XIII 

(feedforward) align with that of the pairwise 2D correlated spectral entropy values. These trends 

also align with excitatory networks in hippocampal cell cultures, in which maximum excitatory 

network activity peaks between 14-20 DIV in sparse cultures and between 8-14 DIV for dense 

cultures (Suresh et al., 2023). Overall, we propose a dual presentation for neural network 

characterization: 1) 4D entropy as a metric of overall network activity and 2) the fourteen motif-

class profiles as metrics of individual network patterns underlying structure.  

4.5.2 Limitations and future directions 

 Like most signal processing tools, there are certain limitations to the application and 

interpretation of the 4D entropy metric presented in this chapter. The sampling rate as well as 

and noise embedded within the data are two important criteria to consider prior to analysis: are 

the data sufficiently sampled to represent the network, and is the signal obscured by noise? These 

questions, however, are not unique to computing triple correlation or 4D entropy – they should 

be accounted for with any signal processing and analysis pipeline. Furthermore, while we have 

developed our metric based on Shannon’s entropy and triple correlation, the researcher should 

choose the entropy metric based on the question being asked, the type of data, and subsequent 

analysis. Other entropy metrics include permutation entropy, transfer entropy, and spectral 

entropy. Permutation entropy is a metric of the predictability of the order of values within the 

time domain and is particularly useful for analyzing nonlinear signals (Bandt & Pompe, 2000; 

Paluš & Vejmelka; 2007). Transfer entropy quantifies the flow of information between two 
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signals by measuring the information from one system to the future behavior of another; thus, 

this value can help identify causal relationships (Schreiber, 2000). Spectral entropy works in the 

frequency domain by quantifying the distribution of power across different frequency 

components (Pincus, 1991). Thus, the choice of entropy, the data type, and the parameters for 

subsequent processing should be carefully considered before embarking on neural network 

analysis.  

Moreover, interpretation of the entropy metric can be challenging.  For example, there 

have been several studies that interpret higher entropy values as a measure of increased 

complexity or a measure of functional connectivity within the network (Friston et al., 1994; 

Achard et al., 2006; Honey et al., 2007; Deco et al., 2008; Pineda-Pardo et al., 2014). Other 

studies interpret higher entropy values as metrics of randomness and uncertainty (Shannon, 

1948; Harris, 2005; Stam et al., 2007; Wu et al., 2008; Tagliazucchi et al., 2012; Betzel et al., 

2016). While this is an ongoing question in the literature (how the complexity of a system relates 

to its entropy), it is important to consider the research question and the context of interpreting 

entropy values. The work presented in this chapter presents multiple normalization metrics to 

interpret entropy: entropy of the network relative to that of the product of the marginal 

distributions, entropy of the network relative to that of the uniform distribution, and entropy of 

the network relative to that of a surrogate distribution. If the entropy of the network equals the 

entropy of the product of the marginal distributions, then the discrete variables are statistically 

independent. Furthermore, we show that entropy of a surrogate distribution, one in which the 

events of the raster are shuffled across time and space, does not entirely decorrelate all events as 

the entropy is not maximized from this distribution (Fig. 4.2, Panel G).  
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Entropy values are typically also intrinsically reductionist – as reducing the complex 

neural activity to a single scalar value may overlook the intricate dynamics occurring within 

neural networks. For these reasons, we posit that complementing the 4D entropy value (a 

measure of the overall network activity) with the individual network-based metrics (the fourteen 

individual motif-class profiles) provides a more holistic view of network dynamics.  

 Lastly, future applications of this work abound. The 4D entropy metric can be used to 

identify distinct dynamical states as well as to map neural networks at multiple scales (from 

small local circuits with small world properties (Watts & Strogatz, 1998) to large-scale whole 

brain networks), which could facilitate identification of hubs of brain activity (e.g. rich club 

organization (van den Heuvel & Sporns, 2011)). In addition, identifying the spatiotemporal lag 

combination that best captures neural activity from the 4D PDF can guide researchers in 

evaluating the spatial and temporal scales of activity (e.g. precision of spike timing, 

synchronization, individual channel activity, and cross-scale activity). In sum, the work 

presented in this chapter provides an extension of the triple correlation methodology presented in 

Chapter 3 to ultimately gain insight into overall network structure. 
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CHAPTER 5 

MODELING AND CHARACTERIZING EXCITATORY-INHIBITORY 

NETWORK ACTIVITY DURING HUMAN FOCAL SEIZURES 
 

 

5.1 Summary 

Computational modeling can serve as a powerful tool to evaluate epileptic mechanisms 

and can offer valuable insights into the complex and multifaceted phenomena underlying 

seizures. The goal of the work presented in this chapter is to implement and characterize a 

Hodgkin-Huxley model of the first three stages of the ictal period: 1) at seizure onset, excitatory 

and inhibitory populations begin firing in-phase; 2) the inhibitory population then begins to 

transiently enter and exit neuronal saturation, leading to out-of-phase firing and eventually 

failure of inhibition; and 3) after excitation dominates, the excitatory populations begins to enter 

and exit neuronal saturation, generating a characteristic triphasic waveform as observed in 

multiunit activity recordings. Here, we model the inhibitory population as fast-spiking1 resonator 

type neurons and the excitatory population as regular-spiking integrator type neurons. We show 

that a single-unit Hodgkin-Huxley (HH) model of the first two modeling stages during the ictal 

pre-recruitment period corroborates the observed transition into out-of-phase firing. Furthermore, 

we then sought to quantify the network characteristics of the model and of the patient data, and 

we show agreement between the quantitative network characteristics of the model and patient 

data. Next, we aimed to replicate the triphasic waveform in multi-unit spike recordings of 

patients of the third modeling phase during ictal recruitment period. We developed and 

implemented a multi-unit HH model of the microelectrode, which shows a similar triphasic 

 

 
1Note: For the entirety of this dissertation chapter (unless explicitly noted otherwise), the terms 

“spike” or “ictal spike” refer to action potentials.   
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waveform. These results suggest that neuronal saturation plays an important role during the three 

modeling stages: the inhibitory population first undergoes neuronal saturation during the ictal 

pre-recruitment period, leading to the eventual out-of-phase bursting and uncontrolled excitation. 

Then, the excitatory population undergoes neuronal saturation during the recruitment period, 

leading to the characteristic triphasic waveform.  

5.2 Introduction 

5.2.1 Regular-spiking and fast-spiking cell types 

Cortical networks consist of 80% excitatory (E) neurons and 20% inhibitory (I) neurons 

(Meinecke & Peters, 1987; Wonders & Anderson, 2006). Neuronal subtypes within these E-I 

populations can be diverse in structure, function, electrical & chemical signatures, and firing 

patterns. Two of these subtypes are termed “regular” spiking (RS) excitatory neurons and “fast” 

spiking (FS) inhibitory neurons, which are characterized by differences in firing properties and 

the shape of the action potential waveform (e.g., Izhikevich, 2005). FS inhibitory neurons fire 

action potentials at higher frequencies and typically have shorter interspike intervals (Izhikevich, 

2005). These differences are ultimately determined by the expression of certain ion channels in 

the cell membranes. Inward currents such as the Kv3.1/Kv3.2 potassium channels expressed in 

FS inhibitory neurons allow for this sustained high frequency of firing via rapid repolarization of 

the membrane potential (Erisir et al., 1999; Boddum et al., 2017).  The shape of the action 

potential waveform and firing patterns reflect overall local neuronal activity, and thus, analyses 

of these neuronal firing patterns can inform us about brain function and structure (Merricks et 

al., 2015).  
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5.2.2 Overview of spike sorting 

The shape of the action potential waveform is critical for spike sorting. Spike sorting is 

the process of separating individual action potential spikes in extracellular recordings from 

multi-unit activity and sorting these individual action potential spikes into groups of putative 

classes or types of spikes. There is a plethora of methods that have been developed for spike 

sorting, such as template matching, clustering, and supervised learning methods. Template 

matching involves matching the shape of an individual action potential spike to a pre-defined 

reference (template) waveform (Zhang et al., 2004). Clustering methods involve grouping action 

potential spikes based on waveform characteristics, such as amplitude or spike width (Takahashi 

et al., 2003; Quiroga et al., 2004). One of the most utilized clustering-based methods is principal 

component analysis (PCA). PCA is a method of dimensional reduction and works by 

transforming the dataset to determine the direction of maximum variance in the data distribution 

(Pearson, 1901).  In addition to PCA, additional clustering methods such as k-means clustering 

and Gaussian mixture models have been utilized to separate groups of action potential spike 

waveforms (Caro-Martín et al., 2018; Souza et al., 2019). Supervised learning methods involve 

training a machine learning program to group spikes based on pre-labeled examples (Lewicki, 

1998; Chung et al., 2017). Even in measurements with high signal-to-noise levels, these spike 

sorting methods, however, do not result in accurate sorting of ictal spikes. This failure can be 

attributed to 1) interference between spike waveforms due to synchrony; and 2) intrinsic changes 

in waveform morphology features, such as amplitude and spike duration, at the start of the ictal 

period due to neuronal saturation (Merricks et al., 2015; Merricks et al., 2021).  Traditional spike 

sorting methods depend on reliable, stable spike waveforms, and thus, these methods would not 

be suitable for ictal spike sorting.  
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In order to overcome these limitations, a recent study published a novel method to sort 

spikes from the ictal period (Merricks et al., 2021). Briefly, spike sorting was first performed on 

the peri-ictal periods (defined as 10 minutes of pre-ictal and 10 minutes of post-ictal periods), as 

the action potential spikes during these periods are stable. To sort ictal spikes, ictal waveforms 

were then template matched to their corresponding putative peri-ictal neuron using template 

matching (Merricks et al., 2021). A 3D convex hull was fit around each single peri-ictal unit in 

principal component space. The ictal spikes corresponding to the channel of the peri-ictal unit 

that fit within the convex hull was then template matched to their corresponding peri-ictal unit. A 

probability density function (PDF) was generated for each sample time point for the peri-ictal 

waveforms. The ictal waveforms were template-matched to the peri-ictal PDF. Thus, each ictal 

spike waveform was assigned a match confidence from 0 to 1 (e.g. a higher probability indicates 

a stronger template match, and a lower probability indicates a weaker template match) (Merricks 

et al., 2021).  

5.2.3 Defining the phases of the ictal period 

 For human focal seizures, previous studies have proposed the terms pre-recruitment, 

recruitment, post-recruitment, and pre-termination to describe phases of the ictal period 

(Schevon et al., 2012; Smith et al., 2016). The ictal wavefront invading the local cortical tissue is 

known as recruitment, and this phase is characterized by increased neuronal firing and 

hypersynchronous activity (Fig. 5.1 A-B) (Schevon et al., 2012; Weiss et al., 2013; Smith et al., 

2016). The period that precedes recruitment is known as pre-recruitment, and the period that 

proceeds recruitment is known as post-recruitment (Fig. 5.1A-B). Fig. 5.1A shows a schematic 

of the first three phases with the expanding ictal wavefront highlighted in red (indicative of 

recruitment). The surrounding unrecruited territory is indicative of pre-recruitment (highlighted 
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in the blue color), and the green highlighted color is the brain region that has already been 

recruited, indicative of post-recruitment (Fig. 5.1A). Multiunit spiking activity recorded from 

patients implanted with microelectrode arrays showed that during the ictal recruitment period, 

there is a characteristic triphasic waveform characteristic by a (1) shorter burst of increased firing 

activity, followed by a (2) period of quiescence, and eventually (3) re-emergence of prolonged 

lower firing activity (Schevon et al., 2012) (Fig. 5.1B). Analyses of spike sorted results showed 

that during the ictal pre-recruitment period (the time from seizure onset to recruitment), the 

excitatory-inhibitory populations begin by bursting in-phase, and eventually, the inhibitory 

population transitions into an out-of-phase firing (credit: Dr. Edward Merricks at Columbia 

University, unpublished results) (Fig. 5.1C).  

In summary, the overall goal of the work presented in this dissertation chapter is to model 

the first three stages of cortical seizure activity (Fig. 5.1B-C):  

• Stage A: The seizure begins; E-I populations are activated and begin firing in-phase.  

• Stage B: As ictal activity progresses, inhibition starts to fail because the inhibitory 

neurons saturate due to the high levels of activity. This leads the inhibitory neurons to 

begin firing out-of-phase.  

• Stage C: Failure of inhibition is established, and hyperexcitation dominates. The activity 

patterns are now mainly determined by the excitatory population, which is also subject to 

neuronal saturation, generating a characteristic triphasic waveform.  

Stages A-B (the ictal pre-recruitment period) was modeled with a small population of excitatory 

and inhibitory neurons (in a ratio of 4:1), and Stage C (the ictal recruitment period) was modeled 

with an excitatory neuron population captured by a single microelectrode in the MEA.  



97 

 

 
Figure 5.1: Defining the phases of the ictal period. A) (Panel adapted from Smith et al., 2016) 

The recruitment period involves the expanding ictal wavefront (red) invading cortical territory. 

The region that has not yet been invaded by the seizure wavefront is unrecruited (blue) and is 

called pre-recruitment. The region that has already been recruited (green) is called post-

recruitment. These phases can also be identified on multiunit activity recordings from the 

microelectrode array (B – Panel from Schevon et al., 2012). The recruitment period (highlighted 

in the red box) shows a characteristic triphasic waveform. The pre-recruitment period 

(highlighted in the blue box) shows that (C – Panel generated by Dr. Ed Merricks) the inhibitory 

population begins transitioning to out-of-phase firing as the seizure progresses. 
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5.2.4 Overview of triple correlation2 

One aspect of the work presented in this chapter is modeling: specifically, modeling of 

the first three stages of focal seizure activity. The other aspect of the work presented in this 

chapter is network characterization. We do so by implementing triple correlation, a signal 

processing tool that relates three nodes: one reference node and up to two other nodes separated 

by up to two lags in both space (n1 & n2) and time (t1 & t2). This generates 169 possible three-

node (motif) configurations (Deshpande et al., 2023).  These 169 motif configurations can be 

collapsed into fourteen qualitatively distinct motif classes based on symmetries that occur in time 

and space (Fig. 5.1, from Deshpande et al., 2023). These motif classes can embody well-studied 

neuronal processing properties, such as synchrony (motif classes III-IV), feedback (motif class 

IX), divergence (motif class XI), and convergence (motif class XII).  These fourteen motif 

classes are the motif-class spectrum.  

 

Figure 5.2:  The fourteen motif classes generated from triple correlation. Figure from 

Deshpande et al., 2023 and Chapter 3 of this dissertation. 

 

 
2This overview of the triple correlation is summarized from Deshpande et al., 2023 and 

Chapter 3 of this dissertation. A similar summary is provided in Chapter 4 as well.  
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5.3 Methods 

5.3.1 Hodgkin-Huxley formalism 

 The Hodgkin-Huxley formalism describes the action potential generated by the squid’s 

giant axon. The equation3 is as follows:  

𝐼 =  𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝑔̅𝐾𝑛4(𝑉𝑚 − 𝑉𝐾) + 𝑔̅𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔̅𝐿(𝑉𝑚 − 𝑉𝐿) + 𝑔𝑠𝑦𝑛(𝑉𝑚 − 𝑉𝑠𝑦𝑛)   

          (Equation 5.1) 

in which 𝐼 is current, 𝐶𝑚 is the membrane capacitance, 𝑔̅ is the maximal conductance, and 𝑉𝑚 is 

the reversal potential, and 𝑛, 𝑚, and ℎ are dimensionless values associated with potassium 

channel activation, sodium channel activation, and sodium channel inactivation, respectively.  

Hodgkin classified neuronal excitability by the following classes: Type I, Type II, and 

Type III neural excitability (Hodgkin, 1948; Izhikevich, 2005). Type I neurons can generate 

action potential spikes that continuously increases from zero injected current, and Type II 

neurons can generate action potential spikes within a certain frequency band and is discontinuous 

from zero (Hodgkin, 1948; Izhikevich, 2005). Type III neurons generate a single action potential 

in response to a current pulse (Hodgkin, 1948; Izhikevich, 2005). Type I neurons (integrators) 

include excitatory pyramidal neurons, and Type II neurons (resonators) include fast-spiking 

inhibitory neurons (Hodgkin, 1948; Izhikevich, 2005). Tables 5.1 and 5.2 list the parameters and 

equations we used to model resonator and integrator type behavior.  

 

 
3We note that this model is of a single compartment, in which the electrical properties and ion 

channel densities are uniform throughout the neuron. This differs from a multicompartmental 

model (De Schutter and Bower, 1994), in which various compartments represent a different 

part of the neuron (e.g. dendritic structure, soma, axon, etc) (Section 29.3 of van Drongelen, 

2018).   
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Table 5.1: Cellular parameters used in Hodgkin-Huxley model. Values reproduced/scaled 

from Bukoski et al., 2015.  

Cellular Parameters 

 Resonator Integrator Units 

Capacitance 1 3 μF/cm2 

ENa 55 50 mV 

EK -72 -95 mV 

EL -49.4 -63.7 mV 

gNa 120 25 mS/cm2 

gK 36 5 mS/cm2 

gL 0.3 0.1 mS/cm2 

 

 

Table 5.2: Gating equations for resonator and integrator classes. This table is 

reproduced/scaled from Bukoski et al., 2015.  

Symbol Resonator Integrator 

∝n(V) 0.01(V + 50)/{1 − exp[−(V + 50)/10]} −0.032(V + 50)/{exp[−(V + 50)/5] − 1} 

∝m(V) 0.1(V + 35)/{1 − exp[−(V + 35)/10]} − 0.0053(V + 52)/{exp[−(V + 52)/4] − 1} 

∝h(V) 0.07 exp[−(V + 60)/20] 0.128 exp[−(V + 48)/18] 

βn(V) 0.125 exp[−(V + 60)/80] 0.084 exp[−(V + 55)/40] 

βm(V) 4 exp[−(V + 60)/18] 0.28(V + 25)/{exp[(V + 25)/5] − 1} 

βh(V) 1/{exp[−(V + 30)/10] + 1} 4/{exp[−(V + 25)/5] + 1} 

The model neurons were placed in a 10-neuron network (Fig. 5.3). The synaptic currents in the 

network were determined by the following equation: 

𝐼𝑠𝑦𝑛 = 𝑔𝑠𝑦𝑛(𝑉𝑚 − 𝑉𝑠𝑦𝑛)         (Equation 5.2) 

in which 𝐼𝑠𝑦𝑛  is the synaptic current, 𝑔𝑠𝑦𝑛 is the synaptic conductance, and 𝑉𝑠𝑦𝑛 is the synaptic 

reversal potential.  

5.3.2 Modeling synaptic conductance 

Synaptic conductance (𝑔𝑠𝑦𝑛) can be modeled as the sum of functions that depend on the 

timing of a presynaptic spike. This can be modeled by the following equation: 

 𝑔𝑠𝑦𝑛(𝑡) =  𝑔̅𝑠𝑦𝑛 ∑ δ𝑛 (𝑡 − 𝑡𝑛)                  (Equation 5.3) 

where ∑ δ𝑛  is the Dirac delta function modeling the arrival of the nth spike at time 𝑡𝑛.  
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The alpha function can be used to model 𝑔𝑠𝑦𝑛 and can be determined by the following general 

form of the equation (Lopes da Silva et al., 1980; Shefchyk & Jordan, 1985; van Drongelen, 

2018; Tryba et al., 2019): 

𝑔𝑠𝑦𝑛 =  𝛼𝛽𝑡𝑒−𝛼𝛽𝑡          (Equation 5.4) 

in which 𝛼 and 𝛽 are synapse-specific constants. This can be expressed as the following second-

order ODE (Lopes da Silva et al., 1980; van Drongelen, 2018; Tryba et al., 2019): 

𝑦̈(𝑡) = 𝛼𝛽𝑥(𝑡) − 2𝛽𝑦̇(𝑡) −  𝛽2𝑦(𝑡)        (Equation 5.5) 

in which 𝑥(𝑡) is the presynaptic spike train modeled by the Dirac delta function. Equation 5.5 

can be expressed as the following coupled first-order ODEs: 

𝑦̇(𝑡) = 𝑧(𝑡)           (Equation 5.6) 

𝑧̇(𝑡) = 𝛼𝛽𝑥(𝑡) − 2𝛽𝑧(𝑡) − 𝛽2𝑦(𝑡)        (Equation 5.7) 

For an excitatory synapse, α = 25 and β=0.3 ms-1. For an inhibitory synapse, α = 3 and β=0.1   

ms-1 (Tryba et al., 2019). 

 

5.4 Results 

5.4.1 Stages A-B: Modeling E-I network activity during ictal pre-recruitment 

Using previously established parameter sets (Bukoski, 2015), we implemented fast-

spiking/resonator behavior for the inhibitory cell type and regular-spiking/integrator activity for 

the excitatory cell type (Tables 5.1, 5.2; Fig. 5.3A). These cell types were configured in a 4:1 

ratio for excitatory and inhibitory neurons respectively (Fig. 5.3B). The cortical model was 

placed in a passing ictal wave and rhythm, modeled as an exponential growth function and a 

sinusoidal waveform respectively, and the resulting activity was determined. Assuming an 

extracellular electrode equidistant from the model neurons, the extracellular network activity (the 
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population firing rates) was determined as the signal proportional to the sum of the second 

derivatives of all membrane potentials, representing the transmembrane currents (Clark and 

Plonsey, 1968). Fig. 5.3C (top row) shows that the extracellular response of the model mimics 

the observed behavior depicted in Fig. 5.1C: at seizure onset, the inhibitory and excitatory cells 

burst synchronously in-phase, followed by a phase shift in inhibitory bursting activity, and 

ultimately leading to out-of-phase inhibitory bursting that begins at 12.0 seconds. Afterwards, 

the excitatory population begins to enter tonic firing at 14.4 seconds. Intracellularly, we see that 

the inhibitory population is characterized by decreasing spike amplitudes within bursts starting at 

10 seconds as well as decreasing spike amplitudes overall starting at 12 seconds (Fig. 5.3D), 

indicative of the inhibitory population transiently entering and exiting neuronal saturation. 
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Figure 5.3: Model of the ictal pre-recruitment period corroborates clinical patterns. A) Cell 

type response characteristics for fast-spiking resonator (inhibitory) type neurons (red) and 

regular-spiking integrator (excitatory) type neurons (black). Fast-spiking resonator type neurons 

will saturate prior to regular-spiking integrator type neurons at lower input currents. B) Model 

schematic of the 10-neuron model, with excitatory and inhibitory cells in a 4:1 ratio. C) The 

extracellular network activity of the model corroborates the extracellular network activity of the 

patient data. At seizure onset, the inhibitory and excitatory populations burst in-phase. As the 

seizure progresses towards ictal recruitment, the inhibitory population begins to burst out-of-

phase. This can be attributed to neuronal saturation of the inhibitory population, which can be 

observed by the decreasing spike amplitudes within bursts and overall in the intracellular 

membrane potential. D) These phenomena can be observed in the zoomed-in view from 12 to 14 

seconds.  

 

 The results presented in Fig. 5.3 offer a mechanistic basis to qualitatively explain the 

transition of inhibitory in-phase to out-of-phase firing. Given these results, the next natural 

extension would be to make a quantitative comparison between the model and patient networks.  

In order to do so, triple correlation was computed across one second epochs of the spike raster 

throughout the 15 seconds of the pre-recruitment period (sampled at 500 Hz), with a spatial 
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window that covered the entirety of the dataset and a temporal window of 100 ms (lags from -50 

ms:50 ms). The ratio of late phase (from 9-15 seconds of the pre-recruitment period) motif-class 

contributions to the early phase (from 1-6 seconds of the pre-recruitment period) motif-class 

contributions was determined for both the model (blue) and patient (red) networks (Fig. 5.4). 

Comparison of these networks across the motif-class spectra shows that there is no significant 

difference between the model and the patient networks (Fig. 5.4A; Mann Whitney U test, 

p>0.054 for all 14 motif classes). In addition, these ratios were then collapsed across the motif-

class spectra for both the model and patient networks, and there was no significant difference 

between these distributions (Fig. 5.4B; Kolmogorov-Smirnov test, p>0.054). This quantitative 

analysis using triple correlation shows agreement between the model and patient networks within 

individual motif classes as well as overall network profiles.  

We then aimed to show that the phase ratios between the excitatory (EXC) and inhibitory 

(INH) population firing rates are comparable between the model and patient recordings. To do 

so, the population firing rates were demeaned to remove the DC component and then filtered 

using a narrow finite impulse response (FIR) bandpass filter (frequency band: 3-5.5 Hz; 500th 

order FIR1 filter in Matlab). The Hilbert transform was then applied to the filtered population 

firing rates, from which the phase angles were computed. The ratio of the phase angles 

(EXC/INH phase) was determined for both the patient recordings and model over time. The 

cross-correlation of the phase ratios showed a significant correlation between the patient 

recording and the model (Fig. 5.5; correlation coefficient (r) = 0.63; p<0.001), albeit with a small 

temporal shift of 39 ms.  

 
4The p-values are greater than 0.05 for the Mann-Whitney U test and the Kolmogorov-

Smirnov test; hence, we accept the null hypothesis that there is not enough evidence to show 

that the difference between the two distributions (model and patient recordings) is statistically 

significant.   
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Figure 5.4: Quantitative network comparison using triple correlation. A) There was no 

significant difference between the ratio of the late-phase (from 9-15 seconds of the ictal pre-

recruitment period) motif-class prevalences to the early-phase (from 1-6 seconds of the ictal pre-

recruitment period) motif-class prevalences between the model (blue) and patient networks (red) 

(Mann Whitney U test, p>0.05 for all 14 motif classes). B) Collapsing the ratios across all motif 

classes generates a distribution for the model network and a distribution for the patient network. 

There is no significant difference between these two distributions (Kolmogorov-Smirnov test, 

p>0.05).  
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Figure 5.5: Cross-correlation of the phase angle ratios using Hilbert transform.  The phase 

ratios (determined from the excitatory/inhibitory population firing rates) between the model and 

patient recordings shows a significant correlation (r=0.63; p<0.001), albeit with a small temporal 

shift of 39 ms.  

 

We then sought to investigate the effects of adjusting the strength of the connections in 

the model (as governed by the synaptic weights). There are four synaptic connections in the 

model: E→E, E→I, I→E, and I→I. These are represented by the synaptic weight variables 

𝑤𝐸𝐸 , 𝑤𝐸𝐼 , 𝑤𝐼𝐸 , and 𝑤𝐼𝐼, respectively. We evaluated the mean firing rate in response to changes in 

the cross-synaptic weights (𝑤𝐸𝐼 & 𝑤𝐼𝐸) (Fig. 5.6). By strengthening 𝑤𝐸𝐼, the inhibitory 

population shows a sharp decrease in firing rate from 10-15 seconds (Fig. 5.6A). This can be 

attributed to the inhibitory population entering and exiting neuronal saturation quicker, and 

hence, decreasing the inhibitory firing rate overall. By increasing  𝑤𝐼𝐸, the excitatory population 

decreases in firing rate, as expected (Fig. 5.6B). These phenomena can be further appreciated by 

the snapshots of the population firing rates with specific combinations of the cross-synaptic 

weights, which are shown in Fig. 5.6C-E.   
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Figure 5.6: Effects of adjusting the cross-synaptic weights. (A) The mean firing rate for the 

inhibitory (B) and excitatory populations were measured after adjusting the cross-synaptic 

weights, 𝑤𝐸𝐼 & 𝑤𝐼𝐸, from 0 to 3 and 0 to 6, respectively. The inhibitory population firing rate is 

strongly affected by the strength of E→I synapses as it rapidly decreases when 𝑤𝐸𝐼 ranges from 

0 to 2. The excitatory population firing rate is mainly dependent on the strength of I→E 

synapses. Representative snapshots of various combinations of synaptic weights are shown in 

Panels C-E. Panel E is the combination of synaptic weights that is shown in Figure 5.3.  
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5.4.2 Stage C: Simulating excitatory network activity during ictal recruitment 

 The ictal recruitment period follows the pre-recruitment period and is characterized by 

invasion of the local tissue by the ictal wavefront, which brings strong excitatory drive to the 

region (Schevon et al., 2012; Smith et al., 2016). At this stage, inhibition has failed and 

hyperexcitation dominates (Schevon et al., 2012). In patient recordings, this period is 

characterized by a triphasic waveform as observed by the multi-unit spiking activity. The three 

phases of this waveform can be described as follows: 1) a shorter period of higher firing activity, 

followed by a 2) period of quiescence, and then eventually 3) emergence of a longer but lower 

firing activity (Schevon et al., 2012). The goal of the following work is to use modeling efforts 

to explain this pattern.  

A Hodgkin-Huxley model representative of a single microelectrode of excitatory neurons 

(model parameters from Chapter 29 of van Drongelen, 2018) placed in a passing ictal wave 

(modeled by increasing excitatory drive to the microelectrode) showed that the extracellular 

network activity of the model resembles the triphasic waveform as seen in clinical recordings 

(Fig. 5.7). The scope of neural activity captured by the microelectrode is modeled as a sphere 

with a radius of 200 µm (Fig. 5.7A-B), and the signal captured by the microelectrode attenuates 

exponentially with distance (e.g., the signals from excitatory neurons farther away from the 

microelectrode contribute less to the overall signal) (Fig. 5.7C). The extracellular multi-unit 

activity voltage trace from the model was determined from the first derivative of the sum of the 

attenuated intracellular membrane potentials across the microelectrode array (as the weighted 

contributions are proportional to 𝐶
𝑑𝑉

𝑑𝑡
) (Anastassiou et al., 2015; López-Jury et al., 2018). The 

signal trace from the patient recordings (Fig. 5.7D – Panel from Schevon et al., 2012) resembles 

the extracellular signal from the model during the recruitment period. Specifically, the model 
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trace captures each component of the triphasic waveform as seen in the patient recordings (Fig. 

5.7C-D).  

 

 
Figure 5.7: Model of the ictal recruitment period.  A) Schematic of the microelectrode sphere 

model: the scope of neural activity is captured with the radius of the sphere, which is placed in a 

passing ictal wavefront (velocity ~0.9 mm/s). B) View of one microelectrode (cube) with a 

sphere radius of 200 µm in three dimensions. C) The current contributions from each neuron are 

weighted according to an exponentially modeled attenuation factor based on the distance from 

the center of the microelectrode (the farther the neuron from the center of the microelectrode, the 

lower the contribution and vice versa). The ictal recruitment pattern of a triphasic waveform as 

exhibited by patient recordings (D) is corroborated by the extracellular signal of the model (E).  

 

 

 

 



110 

 

5.5 Discussion 

5.5.1 Overview 

 Overall, the modeling work presented in this chapter reflects the first three stages of ictal 

activity during human focal seizures: Stages A-B capture the transition from in-phase firing of 

the excitatory-inhibitory populations to out-of-phase firing of the inhibitory population as the 

seizure progresses during the ictal pre-recruitment period and inhibitory function begins to fail. 

In addition, Stage C captures the triphasic waveform, characteristic of the ictal recruitment 

period. In summary, the inhibitory neurons saturate first prior to ictal recruitment, leading to out-

of-phase firing characterized by decreasing spike amplitudes within bursts and overall, which 

eventually results in failure of inhibition during recruitment. Then, the uncontrolled activity of 

the excitatory neurons enters and exits saturation during recruitment. Stages A-B were modeled 

by a small population of excitatory and inhibitory neurons in a 4:1 ratio (consistent with the 

80:20 putative ratio of E-I populations in the brain), and Stage C, resulting from failed inhibition, 

was modeled by a larger population of excitatory neurons as captured by one model 

microelectrode. Both models (of ictal pre-recruitment and ictal recruitment) reflect activity 

within the ictal core as the ictal wavefront is invading the neuronal populations.   

5.5.2 Limitations and future directions 

 While the work presented in this chapter offers valuable insights into the mechanisms 

underlying excitatory-inhibitory population activity, there are several limitations. First, we note 

that parvalbumin-positive interneurons are known as the “fast-spiking” inhibitory cells and 

consist of ~40% of the inhibitory neurons present in the brain (Rudy et al., 2011). The remaining 

60% of inhibitory neurons include somatostatin-positive (SST+) and ionotropic serotonin 5-

HT3a-positive interneurons (Rudy et al., 2011). These neurons have different firing 
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characteristics (Izhikevich, 2005), and thus, a resonator type neuron would not be suitable to 

model these other inhibitory neurons. As such, the model of the ictal pre-recruitment period, 

which incorporates Hodgkin’s Type I (integrator) and Type II (resonator) classes of neural 

spiking, does not account for other inhibitory neuron behaviors. One approach to address this 

limitation would be to incorporate an Izhikevich-type model, which consists of six fundamental 

classes of firing patterns (Izhikevich, 2005). For the excitatory population, these classes include 

regular spiking, chattering, and intrinsically bursting (Izhikevich, 2005). For the inhibitory 

population, these classes include fast spiking, low-threshold spiking (which can be used to model 

SST+ interneurons), and late spiking (Izhikevich, 2005).  

The shape of the characteristic triphasic waveform during ictal recruitment is also 

indicative of underlying neuronal activity. The model triphasic waveform in Fig. 5.6E appears to 

have a “bump” towards the tail end of the signal, which could be indicative of activity consistent 

with post-recruitment discharges (as are visible in the signal trace in Fig. 5.6D). We can 

appreciate from Fig. 5.1B that various microelectrodes exhibit different qualitative ictal 

recruitment patterns (as the shapes of the triphasic waveforms in these four microelectrodes are 

all slightly different), which would explain the slight qualitative differences between the model 

and patient triphasic waveforms (Fig. 5.7D-E). As such, one limitation of this model of the ictal 

recruitment period is that it only consists of neuronal activity generated from one single 

microelectrode placed in recruited territory. Future work may involve modeling the ictal 

recruitment period across the entire Utah array (10x10, 96-microelectrodes, 4 mm x 4 mm grid) 

to simulate signals during neuronal recruitment across multiple microelectrodes and for the 

entirety of the seizure.  
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 Furthermore, we have previously shown in Chapter 2 that human focal seizures may 

activate mid-range excitatory connections (on the millimeter scale) in the gray matter if the 

spatiotemporal dynamics resemble sinc-like functions (Lee et al., 2023). This was also 

corroborated by the multiunit spiking activity across the microelectrode array, in which the 

propagating ictal wavefront will activate neuronal activity several millimeters away (Schevon et 

al., 2012; Lee et al., 2023). The modeling work presented in this chapter of the three stages 

incorporate only short-range synaptic connections (on the microscale). While the models show 

similar qualitative and quantitative network behavior to that of the patient data (Fig. 5.3, 5.4, 5.5, 

5.7), future work may involve adding more parameters to model the effects of connections on the 

mesoscale (mm-range) and macroscale (cm-range).  
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CHAPTER 6 

CONCLUSIONS 
 

While the contents of the chapters in this dissertation span a range of research topics, 

there is a common theme among all of them: how can I characterize and model brain networks in 

time and space? Overall, the work presented in this dissertation was motivated by the 

overarching goals of 1) furthering our understanding of epileptiform mechanisms to improve 

treatment options for drug-resistant epilepsy patients, and 2) unraveling pertinent information 

from data recording modalities which may have previously been elusive. I tackle these goals 

from multiple angles by ultimately asking the following questions: what are the spatiotemporal 

characteristics and mechanisms underlying human focal seizures: 

• within the ictal period vs. outside the ictal period (time)?  

• within the seizure onset zone and outside the seizure onset zone (space)?  

• within excitatory and inhibitory populations (type)? 

As such, the main takeaways from this dissertation are: 1) There exists a mathematical 

symmetry between time and space if the spatiotemporal spike-centered averages (a novel second-

order metric of the spike-LFP relationship that considers both spike timing and location across 

the microelectrode array) resemble sinc functions. This is also explained by a mathematical 

model of the underlying network unit impulse response of a macroelectrode of cortex. 2) The 

novel classification of third-order motifs and the subsequent quantitative network metrics that 

arise from triple correlation (as presented in Chapter 3) offer a complete and unique 

characterization of network activity, indicating that there is a one-to-one relationship between the 

network itself and its transformed triple correlation. 3) Measuring functional connectivity of rat 
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cortical cultures using 4D entropy, which is a novel quantitative metric derived from the 

spatiotemporal lag PDF from triple correlation, shows that there is added value in the 4D entropy 

metric compared to published 2D (pairwise) entropy. Since the 4D spatiotemporal PDF and the 

4D entropy are derived from triple correlation (which is a complete and unique representation of 

network activity per the Triple Correlation Uniqueness theorem), these two metrics can capture 

more comprehensive information regarding network behavior. 4) Lastly, I culminate the work in 

this thesis by addressing the overarching goals together in Chapter 5, where I implement a 

Hodgkin-Huxley model to gain mechanistic insight into underlying cell-type network behavior 

during human focal seizures. The results from the modeling efforts point to neuronal saturation 

as the underlying mechanism for E-I population activity during the first three stages of the ictal 

period.  

While the primary motivation for the development of the novel signal processing tools in 

this dissertation was to investigate seizure mechanisms, these methods can be applied to a 

multitude of datasets to broadly investigate neural activity.  Chapter 2 presents a second-order 

metric for focal epilepsy patients implanted with microelectrode arrays (MEA) for epileptic 

monitoring and identification of the seizure onset zone. This method can also be applied to 

MEAs implanted in monkeys to investigate the spike-LFP relationship in response to reach-to-

grasp motor tasks (Brochier et al., 2018) or MEAs implanted in humans for intracortical brain-

computer interfaces (Homer et al., 2014). Chapter 3 presents a third-order metric that can be 

applied to much broader recording modalities as triple correlation can be applied to any finite, 

bounded dataset that can be interpreted as an image, including but not limited to: MEA, EEG, 

ECoG, and LFP recordings in neuroscience, image analyses, spread of infectious disease, and 

social networks. Lastly, Chapter 4 presents two metrics of quantitative network activity (4D 
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spatiotemporal PDF and its associated entropy) based on the triple correlation spatiotemporal lag 

distribution and can be utilized to analyze spike rasters in terms of underlying behavior, such as 

functional connectivity, network topology, and information processing. These novel signal 

processing tools address the gap between current methods of recording signals (especially in the 

case of seizures) and our ability to interpret and differentiate physiological and pathological 

states. Furthermore, the proposed methods can be used to study the functional interactions 

between mesoscale and macroscale networks. The significance of these innovations is that while 

the tools to acquire data remain the same (EEG, ECoG, and MEA), the results and information 

achieved from the proposed methods are novel and valuable. Lastly, because the proposed 

methods work within the scope of already utilized and approved data acquisition tools (EEG, 

ECoG, and MEA), these methods can be translated to clinical care for a more individualized 

treatment plan for patients, which is especially relevant for drug-resistant focal epilepsy patients. 

6.1 Translational Implications and Future Directions 

 The work presented in this dissertation offers valuable insights into neural network 

analyses. Chapters 2 and 5 involve modeling and characterization of brain networks in 

pathological seizure states, specifically human focal seizures. These data were acquired by 

implanting microelectrode arrays and electrocorticography electrodes onto the putative seizure 

onset zone of cortex. We found that there exists a mathematical symmetry between the temporal 

and spatial domains of the spatiotemporal spike-centered average (st-SCA) if they resemble sinc 

functions. From this, focal seizures that are spatiotemporally characterized by sinc functions 

could involve the engagement of mid-range excitatory connections. We found that the st-SCAs 

of focal seizures with secondary generalization do not resemble sinc functions, but rather a 

strong excitatory signal centered around the action potential spike. We also show that applying 
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the st-SCA method to a random subset of 8 microelectrode arrays results in a signal resembling a 

sinc function in the temporal domain. A natural follow-up question from these findings is: how 

can we use the information obtained from this tool to guide treatment for pharmacoresistant focal 

epilepsy? Our results point to the potential of utilizing subpial transections that target mid-range 

excitatory connections in the gray matter without disrupting the white matter (long-range, cm-

scale) tracts (Morrell et al., 1989; Hufnagel et al., 1997) for patients who have st-SCAs 

resembling sinc functions.  

 The triple correlation approach presented in Chapter 3 offers a complete and unique 

characterization of neural networks. For this reason, scientific and translational applications 

abound. Triple correlation has been used to detect neonatal seizures from EEG recordings (Smith 

et al., 2023), to characterize electrocorticography (ECoG) signals in epilepsy patients in response 

to stimulation (unpublished results, collaboration with Dr. Schevon at Columbia University, New 

York, NY), and to characterize differential network responses between male and female cortical 

cultures in response to hypoxia (unpublished results, collaboration with Dr. van Putten at the 

University of Twente, The Netherlands). Indeed, because this approach offers quantitative 

metrics of underlying network structure that is conditioned to the lower-order constituent motifs, 

we can gain insight into actual network structure, and not just network activity that can be 

explained by chance. In addition, the 4D entropy value presented in Chapter 4 can be utilized to 

gain insight into the complexity and underlying network structure as entropy is considered a 

fundamental concept in information theory. This 4D entropy value can be used to differentiate 

physiological states from pathological states (such as seizures), track network activity over time, 

and facilitate identification of markers of disease states (such as changes in the spike-LFP 

relationship during seizures).  
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As a physician-scientist in-training, I hope that the contributions presented in this 

dissertation not only advance our understanding of neural network science, but also lay the 

foundation for the development of novel therapies, detection tools, and predictive biomarkers for 

pathological brain states. In conclusion, I am enthusiastic to present these contributions in the 

context of the broader framework of current neuroscientific knowledge and medical practices as 

well as the potential they hold for future applications. 
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APPENDIX 

A.1 Application of Triple Correlation to MEA Spiking Activity 

A.1.1 Rhesus macaques completing an instructed, reach-to-grasp task 

 Since the publishing of Chapter 3, we have been working on applying the triple 

correlation work to various datasets. One such open-source dataset is of action potential spiking 

activity recorded from a Utah array (10x10, 96-channel, 4 mm x 4 mm array) implanted in motor 

cortex of rhesus macaques completing a reach-to-grasp task (Brochier et al., 2018). Triple 

correlation was computed across four conditions: the cue period, delay period, reaction time, and 

reach-to-grasp time (Fig. A.1). Motif classes I & II (indicative of second-order and third-order 

autocorrelation) show the highest values, suggesting that individual channel activity mostly 

governs the underlying network structure. In addition, motif classes III (second-order 

synchrony), IV (third-order synchrony), V (spike propagation), XI (divergence), XII 

(convergence), and XIII (feedforward) fluctuate around 0 for each of the four conditions, which 

indicate that these network structures are comparable to chance. Lastly, while the reach-to-grasp 

period does show the highest network structure for motif classes VI-X (which are triplet motifs), 

they do not deviate from 0 as much as motif class I & II, which suggests that inter-channel 

interactions do not govern the overall network activity as much as individual channel activity. 

This could be attributed to inter-electrode distance among the microelectrodes within the Utah 

array; the microelectrodes are spaced ~400 µm apart. These preliminary results suggest that 

MEAs with smaller inter-electrode distances (as shown in the culture data from Fig. 3.5 in 

Chapter 3 and Fig. 4.3 in Chapter 4) would capture inter-neuronal or inter-channel network 

structure.  
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Figure A.1: Network characterization of monkey spiking activity from completing a reach-

to-grasp task using triple correlation. A) Example spike raster and sum of raster for each of 

the four conditions. B) Triple correlation shows the highest network structure during the reach-

to-grasp time for all fourteen motif classes (one-way ANOVA, *p<0.05). In addition, network 

dynamics are highest for motif classes I & II, indicative of individual channel activity.   

 

A.2 Supplemental Materials for Triple Correlation1 

A.2.1 Uniqueness of Triple Correlation for Network Spiking Activity 

We represent neuronal activity as a typical two-dimensional raster, 𝑥(𝑛, 𝑡), where 𝑛 is 

neuron location and 𝑡 is time. We assume that the raster is a binary (black and white, cf. Fig. 

1A), meaning 𝑥(𝑛, 𝑡) = 1 if neuron 𝑛 fires at time 𝑡, and 𝑥(𝑛, 𝑡) = 0 otherwise. We note that the 

reasoning in the proofs below works just as well for any raster taking bounded values analogous 

to a greyscale image, such as would be the case with local field potential recordings or the 

electroencephalogram. The reasoning below applies to any finite bounded dataset. The triple 

correlation of 𝑥(𝑛, 𝑡) is: 

 

 

1The mathematics derived in Sections A.2.1, A.2.2, A.2.3, A.2.8, A.2.9, and A.2.10 were 

generated by Graham Smith (a fellow lab member in van Drongelen lab) and are included 

here in the Appendix for reference purposes as a continuation from Chapter 3.  
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𝑐3(𝜈1, 𝜏1, 𝜈2, 𝜏2) = ∬ 𝑥(𝑛, 𝑡)𝑥(𝑛 + 𝜈1, 𝑡 + 𝜏1)𝑥(𝑛 + 𝜈2, 𝑡 + 𝜏2)d𝑛d𝑡            (Equation A.2) 

for spatial lags 𝜈1, 𝜈2 and temporal lags 𝜏1, 𝜏2. This is the triple correlation function that the TCU 

theorem shows uniquely characterizes the spike raster. We define ℱ[𝑐3] as the Fourier transform 

of 𝑐3, which means:  

ℱ[𝑐3](𝜎1, 𝜔1, 𝜎2, 𝜔2) =

⨌𝑐3(𝜈1, 𝜏1, 𝜈2, 𝜏2)𝑒−𝑗𝜎1𝜈1𝑒−𝑗𝜔1𝜏1𝑒−𝑗𝜎2𝜈2𝑒−𝑗𝜔2𝜏2d𝜈1d𝜏1d𝜈2d𝜏2

 

           (Equation A.3) 

We can rewrite this integral in terms of the Fourier transform of 𝑥 by substituting Equation A.2 

into Equation A.3 and rearranging the integration order to find 

ℱ[𝑐3](𝜎1, 𝜔1, 𝜎2, 𝜔2)

= ⨌ 𝑥(𝑛, 𝑡)𝑥(𝑛 + 𝜈2, 𝑡 + 𝜏2) [∬ 𝑥(𝑛 + 𝜈1, 𝑡 + 𝜏1)𝑒−𝑗𝜎1𝜈1𝑒−𝑗𝜔1𝜏1d𝜈1d𝜏1]

    𝑒−𝑗𝜎2𝜈2𝑒−𝑗𝜔2𝜏2d𝜈2d𝜏2d𝑛d𝑡

 

            (Equation A.4) 

The part in between the [. . . ] in Equation A.4 can be rewritten as 𝑒𝑗𝜔1𝑡𝑒𝑗𝜎1𝑛𝑋(𝜎1, 𝜔1), with 

𝑋(𝜎1, 𝜔1) denoting the two dimensional Fourier transform of 𝑥(𝜈1, 𝜏1). Similarly, the part of 

Equation A.4 for 𝜈2 and 𝜏2 and their double integral can be arranged to evaluate to 

𝑒𝑗𝜔2𝑡𝑒𝑗𝜎2𝑛𝑋(𝜎2, 𝜔2). Substitution of these results in Equation A.4 results in: 

ℱ[𝑐3](𝜎1, 𝜔1, 𝜎2, 𝜔2) = 𝑋(𝜎1, 𝜔1)𝑋(𝜎2, 𝜔2)∬ 𝑥(𝑛, 𝑡)𝑒𝑗(𝜔1+𝜔2)𝑡𝑒𝑗(𝜎1+𝜎2)𝑛d𝑛d𝑡 (Equation A.5) 

The double integral evaluates to 𝑋(−𝜎1 − 𝜎2, −𝜔1 − 𝜔2) = 𝑋∗(𝜎1 + 𝜎2, 𝜔1 + 𝜔2), where the 

asterisk denotes a complex conjugate. Thus we see that the Fourier transform of 𝑐3 is the 

bispectrum: 

ℱ[𝑐3(𝜈1, 𝜏1, 𝜈2, 𝜏2)] = 𝑋(𝜎1, 𝜔1)𝑋(𝜎2, 𝜔2)𝑋∗(𝜎1 + 𝜎2, 𝜔1 + 𝜔2)   (Equation A.6) 
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This relationship between triple correlation and the bispectrum is the third-order equivalent of 

the Wiener-Khinchin-Einstein theorem. 

Since images have a finite support and all of the above integration limits are implicitly at 

(−∞, ∞), we can modify the results for finite support by multiplying the spatiotemporal domain 

data by a two-dimensional boxcar window, 𝑤, limited between (−𝛴, 𝛴, −𝛺, 𝛺) (or any other 

window with that support): = x𝑤. The frequency domain results are then characterized by the 

Fourier transforms convolved (denoted by ⊛) with the boxcar’s Fourier transform (𝑊) (or that 

of the window applied) denoted by: = X ⊛ 𝑊. By using this notation, the results in equations 

A.3-A.2 would be adapted by adding the b and B subscripts. 

Yellott and Iverson (1992) show in a constructive proof that a finite image (in our case a 

spike raster of a finite size) can be uniquely reconstructed from its third-order correlation. These 

authors also show and discuss how this does not hold for images of infinite size. Here we do not 

further discuss this aspect because the size of a spike raster (or a snapshot of any modality of 

neural activity) is always finite. 

One critically important message of this paper is that the time domain’s triple correlation 

and the corresponding bispectrum in the frequency domain uniquely determine the firing pattern 

of a network. Yellott (1993) presents this as the TCU theorem. If we apply Yellott’s TCU 

theorem to a spike raster, we get the following. 

Theorem 1. If 𝑥(𝑛, 𝑡) is a raster with bounded support and another raster 𝑦(𝑛, 𝑡) has the same 

triple correlation function as that of 𝑥, then 𝑦(𝑛, 𝑡) = 𝑥(𝑛 + 𝑎, 𝑡 + 𝑏) for a pair of constants 𝑎, 𝑏. 
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Theorem 2. If 𝑥(𝐬) is a raster with bounded support in 𝑁 spatial dimensions and another raster 

𝑦(𝐬) has the same triple correlation function as that of 𝑥, then 𝑦(𝐬) = 𝑥(𝐬 + 𝐚) for a vector of 

constants 𝐚. 

Here we present proofs in line with the proof in Yellott and Iverson’s (1992) for two- and N-

dimensional spatiotemporal data. 

A.2.2 Proof of Theorem 1 (two dimensions) 

Given the equality of third-order correlation functions, we can use Equation A.2 to find that 

X(𝜎1, 𝜔1)X(𝜎2, 𝜔2)X(−𝜎1 − 𝜎2, −𝜔1 − 𝜔2) =

Y(𝜎1, 𝜔1)Y(𝜎2, 𝜔2)Y(−𝜎1 − 𝜎2, −𝜔1 − 𝜔2)
 

           (Equation A.7) 

To borrow some convenient results from probability theory (see any introductory text, e.g. ), we 

note that 𝑋 and 𝑌 can be considered characteristic functions since we can consider 𝑥 and 𝑦 

probability distributions: as finite images, 𝑥 and 𝑦 are bounded and nonnegative, and without 

loss of generality we can normalize them such that their integral is 1. Characteristic functions 

(the Fourier transforms of probability distributions) have two properties that are convenient for 

our purposes, the first of which is that they are non-zero in a region around the origin, thus 

allowing us the following division (for further considerations of rigor in the one-dimensional 

case, see Moszner, 1980): 

X(𝜎1, 𝜔1)X(𝜎2, 𝜔2)

Y(𝜎1, 𝜔1)Y(𝜎2, 𝜔2)
=

Y(−𝜎1 − 𝜎2, −𝜔1 − 𝜔2)

X(−𝜎1 − 𝜎2, −𝜔1 − 𝜔2)
 

(Equation A.8) 

Next we rewrite both complex functions in terms of their amplitude and phase, i.e. 𝑋(𝜎, 𝜔)  =

 |𝑋(𝜎, 𝜔)| 𝑒𝑗𝜙(𝑋(𝜎, 𝜔)), where 𝜙 gives the phase. So we can rewrite the right-hand side of 

Equation A.8 as:  
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X(𝜎1, 𝜔1)X(𝜎2, 𝜔2)

Y(𝜎1, 𝜔1)Y(𝜎2, 𝜔2)
=

|𝑌(−𝜎1  −  𝜎2, −𝜔1  −  𝜔2)|𝑒𝑗𝜙(𝑌(−𝜎1 − 𝜎2,−𝜔1 − 𝜔2))

|𝑋(−𝜎1  −  𝜎2, −𝜔1  −  𝜔2)|𝑒𝑗𝜙(𝑋(−𝜎1 − 𝜎2,−𝜔1 − 𝜔2))
  

(Equation A.9) 

Here we use the second convenient property of characteristic functions, namely 

that they are Hermitian, i.e. 𝑋(−𝜎, −𝜔)  =  𝑋 ∗ (𝜎, 𝜔). By setting 𝜎2  =  0, 𝜔2  =  0 in (A.9), 

we can use this Hermitian property to derive the fact that |𝑋(𝜎1, 𝜔1)|2 =  |𝑌(𝜎1, 𝜔1)|2 

for any 𝜎1, 𝜔1. In particular, |𝑋(−𝜎1  −  𝜎2, −𝜔1  −  𝜔2)|  =  |𝑌(−𝜎1  −  𝜎2, −𝜔1  −  𝜔2)| so 

we can flip those terms. 

=
|𝑋(−𝜎1  −  𝜎2, −𝜔1  −  𝜔2)|𝑒𝑗𝜙(𝑌(−𝜎1 − 𝜎2,−𝜔1 − 𝜔2))

|𝑌(−𝜎1  −  𝜎2, −𝜔1  −  𝜔2)|𝑒𝑗𝜙(𝑋(−𝜎1 − 𝜎2,−𝜔1 − 𝜔2))
 

         (Equation A.10) 

We can also rewrite those same terms thanks to the same Hermitian property. 

=
|𝑋∗(𝜎1 +  𝜎2, 𝜔1 + 𝜔2)|𝑒𝑗𝜙(𝑌∗(𝜎1+ 𝜎2 ,𝜔1+ 𝜔2))

|𝑌∗(𝜎1 +  𝜎2, 𝜔1 +  𝜔2)|𝑒𝑗𝜙(𝑋∗(𝜎1+ 𝜎2 ,𝜔1+ 𝜔2))
 

         (Equation A.11) 

Simple complex properties are |𝑋| =  |𝑋∗|𝑎𝑛𝑑 𝜙(𝑋) =  −𝜙(𝑋∗), which give us 

=
|𝑋(𝜎1 +  𝜎2, 𝜔1 +  𝜔2)|𝑒𝑗𝜙(𝑌(𝜎1+ 𝜎2 ,𝜔1+ 𝜔2))

|𝑌(𝜎1 +  𝜎2, 𝜔1 +  𝜔2)|𝑒𝑗𝜙(𝑋(𝜎1+ 𝜎2 ,𝜔1+ 𝜔2))
 

         (Equation A.12) 

Next, we return from the amplitude and phase notation to the complex functions themselves: 

=
𝑋(𝜎1 +  𝜎2, 𝜔1 +  𝜔2)

𝑌(𝜎1 +  𝜎2, 𝜔1 +  𝜔2)
 

          (Equation A.13) 

 

Now we define 𝐻(𝜎, 𝜔) =
X(𝜎,𝜔)

Y(𝜎,𝜔)
 so we can rewrite Equation A.13 as 
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𝐻(𝜎1, 𝜔1)𝐻(𝜎2, 𝜔2) = 𝐻(𝜎1 + 𝜎2, 𝜔1 + 𝜔2)              (Equation A.14) 

Therefore, by a basic result of complex analysis 𝐻(𝜎, 𝜔) = 𝑒𝑗(𝑎𝜎+𝑏𝜔), and thus 

Y(𝜎, 𝜔) = X(𝜎, 𝜔)𝑒𝑗(𝑎𝜎+𝑏𝜔)                 (Equation A.15) 

This holds in a region near the origin, and another property of characteristic functions is that, if 

their probability distribution has finite support, the probability distribution is uniquely 

determined by the value of the characteristic function in a region of the origin. Thus, in the 

spatiotemporal domain, 

y(𝑛, 𝑡) = x(𝑛 + 𝑎, 𝑡 + 𝑏) with constants 𝑎, 𝑏              (Equation A.16) 

 

A.2.3 Proof of Theorem 2 (N dimensions) 

Here we extend the preceding proof to 𝑁 dimensions. This would be necessary for 

analysing many clinical and experimental data sources, e.g. the plane of a two-dimensional 

micro-electrode array produces 2 + 1 dimensional data (as in our example presented in Fig. 

A.5). Even higher dimensions may be useful in the case where long-range connections can be 

represented as a hidden dimension (e.g. orientation tuning in V1). The proof is generic enough 

that in practice the result applies to all finite datasets. 

Note that the number of motifs (i.e. the size of the triple correlation matrix) scales with exponent 

2𝑁 + 2. 

We define the 𝑁 + 1-dimensional spatiotemporal vector variable 𝐬 = (𝑥1, 𝑥2, … , 𝑥𝑁 , 𝑡). 

Then we notate the triple correlation of an 𝑁 dimensional raster as 𝑐𝑇(𝐬1, 𝐬2). We notate the 𝑁 +

1-dimensional variable’s Fourier transform as 

ℱ[𝐬] = 𝛀 = (𝜎1, 𝜎2, … , 𝜎𝑁 , 𝜔)                          (Equation A.17) 

and the corresponding bispectrum as 𝑐𝑇(𝛀1, 𝛀2). 
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Since the properties of characteristic functions that are key to this proof still hold in 𝑁 

dimensions (see any introductory probability theory text, e.g. Feller, 1950), the proof proceeds 

identically to that in two dimensions, but with vector notation. 

Given the equality of third-order correlation functions, we can use Equation A.17 to find 

that X(𝛀1)X(𝛀2)X(−𝛀1 − 𝛀2) = Y(𝛀1)Y(𝛀2)Y(−𝛀1 − 𝛀2)                       (Equation A.18) 

To borrow some convenient results from probability theory, we note that 𝑋 and 𝑌 can be 

considered characteristic functions since we can consider 𝑥 and 𝑦 probability distributions: as 

finite images, 𝑥 and 𝑦 are bounded and nonnegative, and without loss of generality we can 

normalize them such that their integral is 1. Characteristic functions (the Fourier transforms of 

probability distributions) have two properties that are convenient for our purposes, the first of 

which is that they are non-zero in a region around the origin, thus allowing us the following 

division (for further considerations of rigor in the one-dimensional case, see Moszner, 1980): 

X(𝛀1)X(𝛀2)

Y(𝛀1)Y(𝛀2)
=

Y(−𝛀1−𝛀2)

X(−𝛀1−𝛀2)
      (Equation A.19) 

Next, we rewrite both complex functions in terms of their amplitude and phase, i.e.  

i.e. 𝑋(𝛺)  =  |𝑋(𝛺)| 𝑒𝑗𝜙(𝑋(𝛺)), where 𝜙 gives the phase. So then we can rewrite the 

right-hand side of Equation A.19:  

X(𝛀1)X(𝛀2)

Y(𝛀1)Y(𝛀2)
=

|Y(−𝛀1−𝛀2)|𝑒𝑗𝜙(𝑋(−𝛀1−𝛀2))

|X(−𝛀1−𝛀2)|𝑒𝑗𝜙(𝑌(−𝛀1−𝛀2))
         (Equation A.20) 

Here we use the second convenient property of characteristic functions, namely that they 

are Hermitian, i.e. 𝑋(−𝛺)  =  𝑋∗(𝛺). By setting 𝛺2 =  0 in (A.20), we can use this Hermitian 

property to derive the fact that |𝑋(𝛺1)|2 =  |𝑌(𝛺1)|2 for any 𝛺1. In particular, |𝑋(−𝛺1– 𝛺2)| =

 |𝑌(−𝛺1– 𝛺2)| so we can flip those terms: 
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=
|X(−𝛀1−𝛀2)|𝑒𝑗𝜙(𝑌(−𝛀1−𝛀2))

|Y(−𝛀1−𝛀2)|𝑒𝑗𝜙(𝑋(−𝛀1−𝛀2))
          (Equation A.21) 

We can also rewrite those same terms thanks to the same Hermitian property. 

=
|𝑋∗(𝛀1+𝛀2)|𝑒

𝑗𝜙(𝑌∗(𝛀1+𝛀2))

|𝑌∗(𝛀1+𝛀2)|𝑒𝑗𝜙(𝑋∗(𝛀1+𝛀2))
                 (Equation A.22) 

 

Simple complex properties are |𝑋| =  |𝑋∗|𝑎𝑛𝑑 𝜙(𝑋) =  −𝜙(𝑋∗), which give us: 

=
|𝑋(𝛀1+𝛀2)|𝑒𝑗𝜙(𝑋(𝛀1+𝛀2))

|𝑌(𝛀1+𝛀2)|𝑒𝑗𝜙(𝑌(𝛀1+𝛀2))
                             (Equation A.23) 

Next, we return from the amplitude and phase notation to the complex functions themselves: 

                                                            =
𝑋(𝛀1+𝛀2)

𝑌(𝛀1+𝛀2)
                                               (Equation A.24) 

Now we define 𝐻(𝛀) =
X(𝛀)

Y(𝛀)
 so we can rewrite Equation A.24 as 

                                                𝐻(𝛀1)𝐻(𝛀2) = 𝐻(𝛀1 + 𝛀2)                               (Equation A.25) 

Therefore, by a basic result of complex analysis 𝐻(𝛀) = 𝑒𝑗𝐤⋅𝛀, and thus 

Y(𝛀) = X(𝛀)𝑒𝑗𝐤⋅𝛀                               (Equation A.26) 

  

This holds in a region near the origin, and another property of characteristic functions is that, if 

their probability distribution has finite support, the probability distribution is uniquely 

determined by the value of the characteristic function in a region of the origin. Thus, in the 

spatiotemporal domain, 

y(𝐬) = x(𝐬 + 𝐚) with vector of constants 𝐚              (Equation A.27) 

A.2.4 Computing the triple correlation 

For computational applications presented here, we consider third-order correlation 

analysis applied to a discrete raster with neuron rows 𝑛, 1:N, and time columns 𝑡, 1:T, where 

each pixel 𝑟(𝑛, 𝑡) is filled with a 0 (white for no activity) or 1 (black for spike). The complete 

triple correlation function, while formally requisite, incurs substantial computational cost while 
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adding increasingly noisy information. We limit our computation to lag windows −𝑊𝑡: 𝑊𝑡 and 

−𝑊𝑛: 𝑊𝑛 chosen such that two local synaptic connections could not take longer than 𝑊𝑡, and two 

neurons are unlikely to be connected further than 𝑊𝑛. With this restricted lag window, we do not 

zero pad our raster (as in Yellot and Iverson, 1992) but instead use boundary conditions periodic 

in space (since our spatial ordering was already arbitrary) and restrict our calculation to a subset 

of time such that no motifs extend beyond time zero or the raster’s duration. In this case, discrete 

equivalent 𝑐𝑑3 of the triple correlation expression 𝑐3 (Equation A.1) or the short form reported in 

the main text, 𝑐3(𝑛1, 𝑡1, 𝑛2, 𝑡2) = ⟨𝑟(𝑛, 𝑡)𝑟(𝑛 + 𝑛1, 𝑡 + 𝑡1)𝑟(𝑛 + 𝑛2, 𝑡 + 𝑡2)⟩𝑛,𝑡, is 

𝑐𝑑3(𝑛1 , 𝑡1, 𝑛2, 𝑡2) =

1

#(𝑊𝑛, 𝑊𝑡, 𝑁, 𝑇)
∑ ∑

𝑁

𝑛=1

𝑇−𝑊𝑡

𝑡=1+𝑊𝑡

  𝑟(𝑛, 𝑡)𝑟((𝑛 + 𝑛1 − 1)%𝑁 + 1, 𝑡 + 𝑡1)𝑟((𝑛 + 𝑛2 − 1)%𝑁 + 1, 𝑡 + 𝑡2)

 

    (Equations A.28-

29) 

We scale by the number of spike bins in the summation: 

#(𝑊𝑛, 𝑊𝑡, 𝑁, 𝑇) = (𝑇 − 2𝑊𝑡)(𝑁)                (Equation A.30) 

Equations A.28 and A.30 were used in all our simulations. 

Note that in the text we report triple correlations “using lags up to 𝑋 in time and space.” This 

corresponds to 𝑊𝑛 = 𝑋/2 and 𝑊𝑡 = 𝑋/2. When 𝑋 is odd, we use the more general lag windows 

−𝑓𝑙𝑜𝑜𝑟(𝑋/2): 𝑐𝑒𝑖𝑙(𝑋/2), with corresponding changes to the summation bounds and scaling 

instead by (𝑇 − 𝑋)(𝑁). We report the maximum lag as 𝑋 because, e.g., 𝑐𝑑3(−10, 𝑡1, 10, 𝑡2) has 

a maximum temporal separation between spikes of 20, despite the fact that technically the lag 

arguments are at most 10. 
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A.2.5 Summarizing triple correlation into motif classes 

We summarized the triple correlation as fourteen motif-classes (Fig. 3.1). The main text 

discusses the reasoning for this particular choice, and here we describe the details. 

Let [𝑛1, 𝑡1|𝑛2, 𝑡2] denote a motif, i.e. an argument to triple correlation, which would have a 

value 𝑐3(𝑛1, 𝑡1, 𝑛2, 𝑡2). We want to group together these motifs according to what we can 

qualitatively distinguish. We only hold two qualitative distinctions: 

1. temporal: we distinguish between before, simultaneous, and after (temporal coordinate less 

than, equal to, or greater) 

2. spatial: we distinguish between the same and different (spatial coordinate equal and spatial 

coordinate not equal) 

We will interpret the motif as a three-node graph: one base node implicitly (0,0), and two 

other nodes, (𝑛1, 𝑡1) and (𝑛2, 𝑡2). Note that neither of our qualitative distinctions involves node 

identity. So, for example, we would not distinguish between [0,1|0,2] and [0,2|0,1], even though 

one the first node follows the second, and in the other the reverse is true. In both, the motif 

includes nodes at the same spatial coordinate in sequence, so we do not distinguish between 

them. 

By grouping motifs that are indistinguishable under these criteria, we develop motif classes. 

We enumerate these motif classes in Table A.1. From that enumeration, it is clear that no motif 

can belong to two motif classes. To show that this enumeration is complete (there are no more 

motif classes and all motifs fall into one of these classes), we count the number of motif classes 

below. To begin, we count “lag-sign” motifs, which is to say, if we only care about the sign of 

the lags, how many motifs are there. This first step avoids some of the small complications in our 
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definition, i.e. the different treatments of space and time, as well as the subtle ways they interact 

when we discard node identity. Having counted lag-sign motifs, we then reduce these lag-sign 

motifs by discounting spatial direction and node identity to finally arrive at the number of motif 

classes. 

A.2.6 The number of lag-sign motifs 

Given that three node combinations determine 𝑐3, we want to know how many ways there 

are to order them in time and space, with the caveat that we may also place one node on top of 

another in either time, or space, or both (to account for zero lag). To count this, we divide the 

cases according to how many different temporal and spatial bins the nodes have between them. 

For example, if all the nodes are completely distinct in time and space, then there are both three 

spatial bins and three temporal bins between the three nodes. On the other hand, if we overlap all 

three nodes in both time and space, then there is only one spatial bin and one temporal bin 

between them. All the cases are labeled in Table A1. Note that the cases are symmetric, so we 

will calculate the values as if in the lower left half of the table, i.e. where the number of spatial 

bins is greater than or equal to the number of time bins. The arrangement of this table is the same 

as in Figure 3.1C. As described above, we call this arrangement of nodes separated by lags a 

motif. When we only note the sign of the lags, we call it a lag-sign motif. 

1. In the case where no nodes share a spatial bin (neuron), there are 3! ways to order them in 

space. Similarly if the nodes share no time bins, then there are 3! ways to order the time 

bins. So, if no spatial bins nor time bins are shared, then there are 3! 3! = 36 orderings. 

2. Given that the nodes only have two distinct spatial bins between them, there are three ways 

to choose which nodes share the same spatial bin, and then two ways to choose whether the 

remaining node has a spatial bin before or after the identical nodes’ spatial bin, for 3 ⋅ 2 = 6 
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spatial orderings. As above, if no time bins are identical, then there are 3! temporal 

orderings. So there are 3 ⋅ 2 ⋅ 3! = 36 orderings. 

3. If nodes share the same spatial bin, then there is only one way to order that neuron. As 

above, if no time bins are identical then there are 3! temporal orderings, giving a total of 1 ⋅

3! = 6 orderings. The same is true in the symmetric case when the nodes share the same 

time bin, but all have different neurons. 

4. We already established that for the case where two spatial bins are the same, there are 3 ⋅

2 = 6 orderings. The same is true when the nodes only have two distinct time bins. So there 

are 3 ⋅ 2 ⋅ 3 ⋅ 2 = 36 orderings. 

5. We already established that for the case where two spatial bins are the same, there are 3 ⋅

2 = 6 orderings, and for the case where all time bins are the same, there is only one 

ordering. So there are 3 ⋅ 2 ⋅ 1 = 6 orderings. 

6. In the case where all spatial bins and all time bins are the same, there is only one ordering. 

We sum up the table: 𝐴 + 2𝐵 + 2𝐶 + 𝐷 + 2𝐸 + 𝐹 = 36 + 2 ⋅ 36 + 2 ⋅ 6 + 36 + 2 ⋅ 6 + 1 =

169 lag-sign motifs. 
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Table A.1: Counting the number of lag-sign motifs per motif class. The number of possible 

orderings in space and time given two possible time lags and two possible spatial lags, which 

corresponds to up to three possible bins in both time and space. Note that in case of a spike raster 

of single unit activity, each spatial bin corresponds to one neuron. This table corresponds to Fig. 

3.1C. 

 

 

A.2.7 The number of motif classes 

To complete our summary, we reduce the 169 lag-sign motifs listed in Table A.2 by 

appealing to two symmetries: one in space, and one in permutation. The spatial one is 

straightforward: since we have not assigned meaning to space, reordering the spatial bins does 

not change our interpretation. The permutation symmetry is more technical: the way triple 

correlation is calculated, the ordering of the nodes matters. In second-order correlation (call it 𝜌), 
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this is even symmetry: 𝜌(𝑥) = 𝜌(−𝑥). More generally, a motif has some polygonal structure (or 

possibly a point or a line; treat these as straightforward special cases of the following argument). 

Each vertex of the polygon has a node identity: in the triple correlation case, one is the base 

node, one is the first node, given by the base node plus (𝑛1, 𝑡1), and one is the second node, 

given by the base node plus (𝑛2, 𝑡2). But we don’t actually care which is the base, which is the 

first, and which is the second node: triple correlation is invariant under permutation of these 

nodes. We reduce the number of lag-sign motifs by accounting for these symmetries. Again 

working from Table A.1: 

• There are 3! ways to permute node identity, and 3! ways to permute neuron identity, 

independently, giving a product of 36 permutations. So all 36 lag-sign motifs in category A 

reduce to 1 motif class (Fig. 3.1C, XIII). 

• For category B with two time bins, there are 3! node permutations, and only 3 spatial 

permutations: two spatial bins share a time bin, and the third spatial bin may appear above, 

between, or below these two spatial bins (due to the fact that we are reducing from lag-sign 

motifs, not from lag-motifs). The product is 18 total permutations, so the 36 lag-sign motifs 

in category B reduce to 2 motif classes (Fig. 3.1C, XI and XII). 

• For category B with two spatial bins, there are only two spatial permutations: one spatial bin 

has two time bins, and the remaining spatial bin can either be above or below. There are still 

3! node permutations, leading to a total of 12 permutations. Therefore, the 36 lag-sign 

motifs in category B reduce to 3 motif classes (Fig. 3.1C, VIII, IX, and X). 

• By the same argument as in B, there are two spatial permutations, and again 3! node 

permutations, leading to a total of 12 permutations. Therefore the 36 lag-sign motifs in 

category D reduce to 3 motif classes (Fig. 3.1C, V, VI, and VII). 
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• When there is only one time bin, spatial permutation is the same as node permutation, so 

there are only the 3! = 6 permutations. Therefore the 6 lag-sign motifs in category C(1T) 

reduce to 1 motif class (Fig. 3.1C, IV). 

• As in C, all 6 reduce to 1 motif class (Fig. 3.1C, III). 

• When there is only one spatial bin, the lag-sign motifs have no spatial permutations, only 

node permutations, so the 6 lag-sign motifs in category C reduce to 1 motif class (Fig. 3.1C, 

II). 

• As in C, all 6 reduce to 1 motif class (Fig. 3.1C, I) 

• In the case where all lags are zero, triple correlation has no symmetric entries but the zero 

entry, so there are no permutations, and the 1 lag-sign motif (which also contains only one 

lag-motif) remains 1 motif class (Fig. 3.1C, 0). 

The above sum to 14 motif classes, as depicted in Figure A.1. 

A.2.8 Expected contributions per motif class 

Because it is important to assess how these motif-class contributions be explained by 

chance (or not), we simulate 100 activity matched noise rasters for each raster under 

investigation, and compare the raster’s motif-class spectrum with that of its noise matched 

rasters. In the following, we derive the theoretical expectations for rasters governed by noise. 

Let 𝑟 be a raster with 𝑁 neurons and 𝑇 time bins. In a binary raster, a spike is indicated 

by 𝑟(𝑛, 𝑡) = 1, else 𝑟(𝑛, 𝑡) = 0. We calculate the triple correlation 𝑐3 over the whole raster with 

periodic boundary conditions (i.e. 𝑟(𝑛 + 𝜂, 𝑡 + 𝜏) = 𝑟((𝑛 + 𝜂) mod 𝑁, (𝑡 + 𝜏) mod 𝑇), with an 

additional 1 offset). Define 𝜋(𝐱, 𝛌) = 𝑟(𝐱)𝑟(𝐱 + 𝛌1)𝑟(𝐱 + 𝛌2) and for shorthand 𝜋(𝛌) =

𝜋(0, 𝛌). In general with lags 𝛌 = (𝜂1, 𝜏1, 𝜂2, 𝜏2) 
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𝑐3(𝛌) = 𝑐3(𝜂1, 𝜏1, 𝜂2, 𝜏2)

= ∑ 𝑟
(𝑛,𝑡)∈𝐼(𝑟)

(𝑛, 𝑡)𝑟(𝑛 + 𝜂1, 𝑡 + 𝜏1)𝑟(𝑛 + 𝜂2, 𝑡 + 𝜏2)

= ∑ 𝜋

𝐱∈𝐼(𝑟)

(𝐱, 𝛌)

 

where 𝐼(𝑟) is the set of all indices of 𝑟, in this case 𝐼(𝑟) = (1: 𝑁) × (1: 𝑇). We are interested in 

the motif class contributions, which are the sums of triple correlations for lags that constitute 

each of the fourteen motifs. So, if 𝛌 ∈ 𝛥(𝑀𝑖) denotes that the lags 𝛌 constitute a triplet in motif 

class 𝑖, then we define the motif class contribution as 

𝑀𝑖(𝑟) = ∑ 𝑐3

𝛌∈𝛥(𝑀𝑖)

(𝛌) 

The expectation then is given by 

⟨𝑀𝑖(𝑟)⟩ = ⟨ ∑ 𝑐3

𝛌∈𝛥(𝑀𝑖)

(𝛌)⟩

= ⟨ ∑ ∑ 𝜋

𝑥∈𝐼(𝑟)𝛌∈𝛥(𝑀𝑖)

(𝑥, 𝛌)⟩

= ∑ ∑ ⟨𝜋(𝑥, 𝛌)⟩

𝑥∈𝐼(𝑟)𝛌∈𝛥(𝑀𝑖)

= ∑ ∑ ⟨𝜋(𝑥, 𝛌)⟩

𝛌∈𝛥(𝑀𝑖)𝑥∈𝐼(𝑟)

= 𝑁𝑇 ∑ ⟨𝜋(𝛌)⟩

𝛌∈𝛥(𝑀𝑖)

 

In fact, ⟨𝜋(𝛌)⟩ is constant for all 𝛌 ∈ 𝛥(𝑀𝑖) for a given 𝑖, so 

⟨𝑀𝑖(𝑟)⟩ = 𝑁𝑇#(𝛥(𝑀𝑖))⟨𝜋(𝜆𝑖)⟩. 

We can easily calculate ⟨𝜋(𝛌)⟩ if we assume independent bins. See below for the calculation in 

each of the cases of independent Bernoullis. 
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#(𝛥(𝑀𝑖)) is the more challenging problem, which we calculate case-by-case below in the 

section “The number of triplet motifs.” 

A.2.9 Independent spiking with constant probability (Bernoulli) 

For a simple spiking raster, we assume all bins have independent probability 𝑝 of spiking, i.e. 

they are all independent Bernoullis, which also indicates that all the neurons are simulated 

Poisson processes with identical rates. 

 This lets us substitute the following probabilities 

⟨𝜋(𝛌0)⟩ = 𝑝

⟨𝜋(𝛌𝑖)⟩ = 𝑝2  for 𝑖 = 𝐼, 𝐼𝐼𝐼, 𝑉

⟨𝜋(𝛌𝑖)⟩ = 𝑝3  for 𝑖 = 𝐼𝐼, 𝐼𝑉, 𝑉𝐼, 𝑉𝐼𝐼, 𝑉𝐼𝐼𝐼, 𝐼𝑋, 𝑋, 𝑋𝐼, 𝑋𝐼𝐼, 𝑋𝐼𝐼𝐼

 

where 𝛌𝑖 is a representative triplet of motif class 𝑖. This representative is sufficient because the 

expectation of the product of bins purely depends on the number of distinct bins multiplied. 

Within a motif class, all triplets have the same number of distinct bins, with motif class 0 having 

only one spike, motif classes 𝐼, 𝐼𝐼𝐼,and𝐼𝑉 having two spikes, and the remaining motif classes 

having three spikes. Knowing these values, we have the expectations of each motif class. 

A.2.10 The number of triplet motifs 

The quantity #(𝛥(𝑀𝑖)) simply counts the number of motifs in a given motif class. This is 

independent of the data’s distribution, but dependent on the data’s shape. Let 𝛬𝑡 be the number 

of time lags considered and let 𝛬𝑡
±, 𝛬𝑡

+, and 𝛬𝑡
− be the number of time lags that are nonzero, 

positive, and negative respectively. Similarly define 𝛬𝑛, 𝛬𝑛
±, 𝛬𝑛

+, and 𝛬𝑛
−. 

Our first step for each motif class will be to define 𝛥(𝑀𝑖), for which purpose we will define a 

notation to indicate the sign and equality of each part of the two spatiotemporal lags (the third 

lag implicitly zero). For example, in the case of motif class XIII, we write 𝛥(𝑀𝑋𝐼𝐼𝐼) =
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[𝑥±, 𝑡± ∣ 𝑦±, 𝑠±]. This indicates that all four lags are nonzero (± superscript) and none are equal 

(𝑥 ≠ 𝑦 and 𝑡 ≠ 𝑠). In contrast, we could write [0, 𝑡+ ∣ 0, 𝑡+] to indicate both spatial lags are zero, 

and the temporal lags are both positive and equal. We add a coefficient “2” to indicate that we 

want to additionally include set of lags symmetric with the notated lag, i.e. flipping which lag is 

first and which is second, e.g. 2[0,0 ∣ 0, 𝑡±] = [0,0 ∣ 0, 𝑡±] + [0, 𝑡± ∣ 0,0]. 

I. Motif class I consists in lags 𝛥(𝑀𝐼) = 2[0,0 ∣ 0, 𝑡±] + [0, 𝑡± ∣ 0, 𝑡±]. We count these as 

follows: there is only one way to choose the (0,0) lag, and 𝛬𝑡
± ways to choose a (0, 𝑡±) lag. 

Therefore there are 1 ⋅ 𝛬𝑡
± lags in [0,0 ∣ 0, 𝑡±]. By symmetry there are the same number in 

[0, 𝑡± ∣ 0,0], so the coefficient 2 works as advertised, giving 2𝛬𝑡
± lags in 2[0, 𝑡± ∣ 0,0]. For 

the second addend, there are 𝛬𝑡
± ways to choose the (0, 𝑡±) lag. Since the lags are equal 

there is only one choice for the second lag, leading to a 𝛬𝑡
± lags in [0𝑡± ∣ 0𝑡±]. In total then, 

there are 3𝛬𝑡
± lags in 𝛥(𝑀𝐼) = 2[0,0 ∣ 0, 𝑡±] + [0𝑡± ∣ 0𝑡±]. We write this 

#(𝛥(𝑀𝐼)) = #(2[0,0 ∣ 0, 𝑡±] + [0𝑡± ∣ 0𝑡±])

= 2(1 ⋅ 𝛬𝑡
±) + (𝛬𝑡

± ⋅ 1)

= 3𝛬𝑡
±

 

II. For motif class II, we have 𝛥(𝑀𝐼𝐼) = [0, 𝑡± ∣ 0, 𝑠±]. This time for our second lag, we 

have one fewer choice because we must have that the temporal lags do not equal. So we 

find 

#(𝛥(𝑀𝐼𝐼)) = #([0, 𝑡± ∣ 0, 𝑠±])

= 𝛬𝑡
±(𝛬𝑡

± − 1)
 

III. For motif class III, the situation is the same as motif class I, but with 𝑛 rather than 𝑡, so 

𝛥(𝑀𝐼𝐼𝐼) = 2[0,0 ∣ 𝑥±, 0] + [𝑥±, 0 ∣ 𝑥±, 0], giving 
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#(𝛥(𝑀𝐼𝐼𝐼)) = #(2[0,0 ∣ 𝑥±, 0] + [𝑥±, 0 ∣ 𝑥±, 0])

= 2(1 ⋅ 𝛬𝑛
±) + (𝛬𝑛

± ⋅ 1)

= 3𝛬𝑛
±

 

  . 

IV. Similarly motif class IV has #(𝛥(𝑀𝐼𝐼𝐼)) = 𝛬𝑛
±(𝛬𝑛

± − 1). 

V.  

𝛥(𝑀𝑉) = 2[0,0 ∣ 𝑥±, 𝑡±] + [𝑥±, 𝑡± ∣ 𝑥±, 𝑡±]

#(𝛥(𝑀𝑉)) = 2𝛬𝑛
±𝛬𝑡

± + 𝛬𝑛
±𝛬𝑡

±

= 3𝛬𝑛
±𝛬𝑡

±

 

VI.  

𝛥(𝑀𝑉𝐼) = 2[0, 𝑡+ ∣ 𝑥±, 0] + 2[𝑥±, 0 ∣ 𝑥±𝑡+] + 2[0, 𝑡− ∣ 𝑥±𝑡−]

#(𝛥(𝑀𝑉𝐼)) = 2(𝛬𝑡
+𝛬𝑛

±) + 2(𝛬𝑛
±𝛬𝑡

+) = 2(𝛬𝑡
−𝛬𝑛

±)

= 4(𝛬𝑛
±𝛬𝑡

+) + 2(𝛬𝑛
±𝛬𝑡

−)

 

VII. By symmetry with VI, 

#(𝛥(𝑀𝑉𝐼𝐼)) = 4(𝛬𝑛
±𝛬𝑡

−) + 2(𝛬𝑛
±𝛬𝑡

+) 

 

VIII.  

𝛥(𝑀𝑉𝐼𝐼𝐼) = [𝑥±, 𝑡+ ∣ 𝑥±, 𝑠+] + 2[𝑥±, 𝑡− ∣ 0, 𝑠+] + 2[𝑥±, 𝑡− ∣ 0, 𝑠−(> 𝑡−)]

#(𝛥(𝑀𝑉𝐼𝐼𝐼)) = 𝛬𝑛
±𝛬𝑡

+(𝛬𝑡
+ − 1) + 2𝛬𝑛

±𝛬𝑡
−𝛬𝑡

+ + 2𝛬𝑛
± ∑ #

𝛬𝑡
−<𝑡−<−1

𝑠: 𝑡− < 𝑠 < 0

= 𝛬𝑛
±𝛬𝑡

+(𝛬𝑡
+ − 1) + 2𝛬𝑛

±𝛬𝑡
−𝛬𝑡

+ + 2𝛬𝑛
± ∑ |𝑡−|

−𝛬𝑡
−<𝑡−<−1

− 1

= 𝛬𝑛
±𝛬𝑡

+(𝛬𝑡
+ − 1) + 2𝛬𝑛

±𝛬𝑡
−𝛬𝑡

+ + 2𝛬𝑛
± ∑ 𝑡

(−𝛬𝑡
−−1)>𝑡>1

= 𝛬𝑛
±𝛬𝑡

+(𝛬𝑡
+ − 1) + 2𝛬𝑛

±𝛬𝑡
−𝛬𝑡

+ + 2𝛬𝑛
±(𝛬𝑡

− − 1)
(𝛬𝑡

− − 1) + 1

2
= 𝛬𝑛

±𝛬𝑡
+(𝛬𝑡

+ − 1) + 2𝛬𝑛
±𝛬𝑡

−𝛬𝑡
+ + 𝛬𝑛

±𝛬𝑡
−(𝛬𝑡

− − 1)

 

IX.  
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𝛥(𝑀𝐼𝑋) = 2[0, 𝑡+ ∣ 𝑥±, 𝑠+ < 𝑡+] + 2[0, 𝑡− ∣ 𝑥±, 𝑠− > 𝑡−] + 2[𝑥±, 𝑡− ∣ 𝑥±, 𝑠+]

#(𝛥(𝑀𝐼𝑋)) = 2𝛬𝑛
± ∑ (𝑡 − 1)

1≤𝑡≤𝛬𝑡
+

+ 2𝛬𝑛
± ∑ (|𝑡| − 1)

−𝛬𝑡
−≤𝑡≤−1

+ 2𝛬𝑛
±𝛬𝑡

−𝛬𝑡
+

= 2𝛬𝑛
± (𝛬𝑡

+
(𝛬𝑡

+ − 1) + 0

2
) + 2𝛬𝑛

± (𝛬𝑡
−

(𝛬𝑡
− − 1) + 0

2
) + 2𝛬𝑛

±𝛬𝑡
−𝛬𝑡

+

= 𝛬𝑛
±𝛬𝑡

+(𝛬𝑡
+ − 1) + 𝛬𝑛

±𝛬𝑡
−(𝛬𝑡

− − 1) + 2𝛬𝑛
±𝛬𝑡

−𝛬𝑡
+

 

X. By symmetry with VIII 

𝛥(𝑀𝑋) = [𝑥±, 𝑡− ∣ 𝑥±, 𝑠−] + 2[𝑥±, 𝑡+ ∣ 0, 𝑠−] + 2[𝑥±, 𝑡+ ∣ 0, 𝑠+(< 𝑡+)]

#(𝛥(𝑀𝑋)) = 𝛬𝑛
±𝛬𝑡

−(𝛬𝑡
− − 1) + 2𝛬𝑛

±𝛬𝑡
+𝛬𝑡

− + 𝛬𝑛
±𝛬𝑡

+(𝛬𝑡
+ − 1)

 

XI.  

𝛥(𝑀𝑋𝐼) = [𝑥±, 𝑡+ ∣ 𝑦±, 𝑡+] + 2[𝑥±, 0 ∣ 𝑦±, 𝑡−]

#(𝛥(𝑀𝑋𝐼)) = 𝛬𝑛
±(𝛬𝑛

± − 1)𝛬𝑡
+ + 2𝛬𝑛

±(𝛬𝑛
± − 1)𝛬𝑡

−  

XII.  

𝛥(𝑀𝑋𝐼𝐼) = [𝑥±, 𝑡− ∣ 𝑦±, 𝑡−] + 2[𝑥±, 0 ∣ 𝑦±, 𝑡+]

#(𝛥(𝑀𝑋𝐼𝐼)) = 𝛬𝑛
±(𝛬𝑛

± − 1)𝛬𝑡
− + 2𝛬𝑛

±(𝛬𝑛
± − 1)𝛬𝑡

+  

XIII.  

𝛥(𝑀𝑋𝐼𝐼𝐼) = [𝑥±, 𝑡± ∣ 𝑦±, 𝑠±]

#(𝛥(𝑀𝑋𝐼𝐼𝐼)) = 𝛬𝑛
±𝛬𝑡

±(𝛬𝑛
± − 1)(𝛬𝑡

± − 1)
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Table A.2: The 169 possible lag-sign motifs. In the triple correlation equation, there are 

four lags that can be either zero or non-zero. Accordingly, the rows in this table are ordered 

in 16 (24) groups while the subgroups within these groups, represent the arrangement of 

the non-zero lags. The total number of rows is 169 lag-sign motifs for three-node motifs 

with distinct lag signs. Each row represents a single three-node lag-sign motif, which are 

differentiated by the spike sequencing. The base node implicitly has lags 𝑛0  =  0 and 𝑡0  =
 0, and the four lags of the other two nodes (𝑛1,  𝑛2,  𝑡1,  𝑡2) are those in Equation 3.1. In the 

lag columns, `0' entries denote that the lag is zero while `+' entries denote a positive value, 

and `-' entries denote a negative value (respectively greater or less relative to the base 

node's spatiotemporal position). Note that in case where one modality (space or time) 

shares the same (non-zero) sign, we need additional constraints to specify the spike 

sequence, given by the column "Constraints.'' The 14 motif classes are labelled by Roman 

numerals in the third column group, "Motif Class''. The "Configuration'' column illustrates 

a representative schematic of the lag-motif, where the solid dot, small open circle, and 

large open circle indicate the base, second, and third nodes, respectively. 
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Table A.2 continued:  
 

 

4.1 0 - 0 0 
 

I 
 

 

5.0.0 0 + 0 + |t1| = |t2| I 
 

 

5.0.1 0 + 0 + |t1| > |t2| II 
 

 

5.0.2 0 + 0 + |t1| < |t2| II 
 

 

5.1 0 + 0 - 
 

II 
 

 

5.2 0 - 0 + 
 

II 
 

 

5.3.0 0 - 0 - |t1| = |t2| I 
 

 

5.3.1 0 - 0 - |t1| > |t2| II 
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Table A.2 continued:  
 
 

5.3.2 0 - 0 - |t1| < |t2| II 

6.0 0 + + 0 

 

VI 

 

6.1 

 

0 

 

+ 

 

- 

 

0 

  

VI 

 

6.2 

 

0 

 

- 

 

+ 

 

0 

  

VII 

 

6.3 

 

0 

 

- 

 

- 

 

0 

  

VII 

 

7.0.0 

 

0 

 

+ 

 

+ 

 

+ 

 

|t1| = |t2| 

 

VII 

 

7.0.1 

 

0 

 

+ 

 

+ 

 

+ 

 

|t1| > |t2| 

 

IX 

 

7.0.2 

 

0 

 

+ 

 

+ 

 

+ 

 

|t1| < |t2| 

 

X 

 
7.1 

 
0 

 
+ 

 
+ 

 
- 

  
VIII 

 
7.2.0 

 
0 

 
+ 

 
- 

 
+ 

 

|t1| = |t2| 
 

VII 

 

7.2.1 

 

0 

 

+ 

 

- 

 

+ 

 

|t1| > |t2| 

 

IX 

 
7.2.2 

 
0 

 
+ 

 
- 

 
+ 

 
|t1| < |t2| 

 
X 

 

7.3 

 

0 

 

+ 

 

- 

 

- 

  

VIII 
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Table A.2 continued:  
 

7.4 0 - + + 

 

X 

 

7.5.0 

 

0 

 

- 

 

+ 

 

- 

 

|t1| = |t2| 

 

VI 

 

7.5.1 

 

0 

 

- 

 

+ 

 

- 

 

|t1| > |t2| 

 

IX 

 
7.5.2 

 
0 

 
- 

 
+ 

 
- 

 

|t1| < |t2| 
 

VIII 

 
7.6 

 
0 

 
- 

 
- 

 
+ 

  
X 

 
7.7.0 

 
0 

 
- 

 
- 

 
- 

 

|t1| = |t2| 
 

VI 

 

7.7.1 

 

0 

 

- 

 

- 

 

- 

 

|t1| > |t2| 

 

IX 

 

7.7.2 

 

0 

 

- 

 

- 

 

- 

 

|t1| < |t2| 

 

VIII 

 

8.0 

 

+ 

 

0 

 

0 

 

0 

  

III 

 

8.1 

 

- 

 

0 

 

0 

 

0 

  

III 

 

9.0 

 

+ 

 

0 

 

0 

 

+ 

  

VI 

 

9.1 

 

+ 

 

0 

 

0 

 

- 

  

VII 
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Table A.2 continued:  
 
 

 

9.2 

 

- 

 

0 

 

0 

 

+ 

  

VI 

 

9.3 

 

- 

 

0 

 

0 

 

- 

  

VII 

 

10.0.0 

 

+ 

 

0 

 

+ 

 

0 

 

|n1| = |n2| 

 

III 

 
10.0.1 

 
+ 

 
0 

 
+ 

 
0 

 

|n1| > |n2| 

 
IV 

 
10.0.2 

 
+ 

 
0 

 
+ 

 
0 

 
 

|n1| < |n2| 

 
IV 

 
10.1 

 
+ 

 
0 

 
- 

 
0 

 

 
IV 

 
10.2 

 
- 

 
0 

 
+ 

 
0 

 

 
IV 

 
10.3.0 

 
- 

 
0 

 
- 

 
0 

 
|n1| = |n2| 

 
III 

 
10.3.1 

 
- 

 
0 

 
- 

 
0 

 

|n1| > |n2| 

 
IV 
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Table A.2 continued:  
 
 

 

10.3.2 

 

- 

 

0 

 

- 

 

0 

 

 
|n1| < |n2| 

 

IV 

 
11.0.0 

 
+ 

 
0 

 
+ 

 
+ 

 
|n1| = |n2| 

 
VI 

 
11.0.1 

 
+ 

 
0 

 
+ 

 
+ 

 
|n1| > |n2| 

 
XII 

 
11.0.2 

 
+ 

 
0 

 
+ 

 
+ 

 
 

|n1| < |n2| 

 
XII 

 
11.1.0 

 
+ 

 
0 

 
+ 

 
- 

 
|n1| = |n2| 

 
VII 

 
11.1.1 

 
+ 

 
0 

 
+ 

 
- 

 

|n1| > |n2| 

 
XI 

 
11.1.2 

 
+ 

 
0 

 
+ 

 
- 

 
 

|n1| < |n2| 

 
XI 

 
11.2 

 
+ 

 
0 

 
- 

 
+ 

 

 
XII 

 
11.3 

 
+ 0 - - 

 
XI 
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Table A.2 continued:  
 
 

 
11.4 

 
- 

 
0 

 
+ 

 
+ 

 

 
XII 

 
11.5 

 
- 

 
0 

 
+ 

 
- 

 
 

XI 

 
11.6.0 

 
- 

 
0 

 
- 

 
+ 

 
|n1| = |n2| 

 
VI 

 
11.6.1 

 
- 

 
0 

 
- 

 
+ 

 
|n1| > |n2| 

 
XII 

 
11.6.2 

 
- 

 
0 

 
- 

 
+ 

 

|n1| < |n2| 

 
XII 

 
11.7.0 

 
- 

 
0 

 
- 

 
- 

 
|n1| = |n2| 

 
VII 

 

11.7.1 

 

- 

 

0 

 

- 

 

- 

 

|n1| > |n2| 

 

XI 

 
11.7.2 

 
- 

 
0 

 
- 

 
- 

 
 

|n1| < |n2| 

 
XI 

 
12.0 

 
+ 

 
+ 

 
0 

 
0 

  
V 

 

12.1 

 

+ 

 

- 

 

0 

 

0 

  

V 



163 

 

Table A.2 continued:  
 
 

 

12.2 

 

- 

 

+ 

 

0 

 

0 

  

V 

 

12.3 

 

- 

 

- 

 

0 

 

0 

  

V 

 
13.0.0 

 
+ 

 
+ 

 
0 

 
+ 

 

|t1| = |t2| 
 

VII 

 

13.0.1 

 

+ 

 

+ 

 

0 

 

+ 

 

|t1| > |t2| 

 

X 

 

13.0.2 

 

+ 

 

+ 

 

0 

 

+ 

 

|t1| < |t2| 

 

IX 

13.1 + + 0 - 

 

X 

 
13.2 

 
+ 

 
- 

 
0 

 
+ 

  
VIII 

 

13.3.0 

 

+ 

 

- 

 

0 

 

- 

 

|t1| = |t2| 

 

VI 

 
13.3.1 

 
+ 

 
- 

 
0 

 
- 

 
|t1| > |t2| 

 
VIII 

 
13.3.2 

 
+ 

 
- 

 
0 

 
- 

 

|t1| < |t2| 
 

IX 

 

13.4.0 

 

- 

 

+ 

 

0 

 

+ 

 

|t1| = |t2| 

 

VII 

 
13.4.1 

 
- 

 
+ 

 
0 

 
+ 

 
|t1| > |t2| 

 
X 
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Table A.2 continued:  
 
 

13.4.2 - + 0 + 

 

|t1| < |t2| IX 

 
13.5 

 
- 

 
+ 

 
0 

 
- 

  
X 

 
13.6 

 
- 

 
- 

 
0 

 
+ 

  
VIII 

 

13.7.0 

 

- 

 

- 

 

0 

 

- 

 

|t1| = |t2| 

 

VI 

 
13.7.1 

 
- 

 
- 

 
0 

 
- 

 
|t1| > |t2| 

 
VIII 

 

13.7.2 

 

- 

 

- 

 

0 

 

- 

 

|t1| < |t2| 

 

IX 

14.0.0 + + + 0 

 

|n1| = |n2| VI 

 
14.0.1 

 
+ 

 
+ 

 
+ 

 
0 

 
|n1| > |n2| 

 
XII 

 
14.0.2 

 
+ 

 
+ 

 
+ 

 
0 

 

|n1| < |n2| 

 
XII 

 

14.1 

 

+ 

 

+ 

 

- 

 

0 

  

XII 
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Table A.2 continued:  
 
 

 
14.2.0 

 
+ - 

 
+ 

 
0 

 
|n1| = |n2| 

 
VII 

 
14.2.1 

 
+ - 

 
+ 

 
0 

 
|n1| > |n2| 

 
XI 

 
14.2.2 

 
+ - 

 
+ 

 
0 

 
|n1| < |n2| 

 
XI 

 

14.3 

 

+ - 

 

- 

 

0 

  

XI 

 

14.4 

 

- + 

 

+ 

 

0 

  

XII 

 
14.5.0 

 
- + 

 
- 

 
0 

 
|n1| = |n2| 

 
VI 

 
14.5.1 

 
- + 

 
- 

 
0 

 
|n1| > |n2| 

 
XII 

 
14.5.2 

 
- + 

 
- 

 
0 

 
|n1| < |n2| 

 
XII 

 
14.6 

 
- - 

 
+ 

 
0 

  
XI 
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|n1| = |n2| 

 

 
|n1| > |n2| 

 
 
 
 

|n1| < |n2| 

 

|n1| = |n2| 

|t1| = |t2| 
 

|n1| = |n2| 

|t1| > |t2| 

|n1| = |n2| 

|t1| < |t2| 

 

|n1| > |n2| 

|t1| = |t2| 

 
 

|n1| > |n2| 

|t1| > |t2| 

 
 
 

|n1| > |n2| 

|t1| < |t2| 

 

 
|n1| < |n2| 

|t1| = |t2| 

VII 

 

XI 

  

 

XI  

 

V   

VIII   
 

VIII 
  

 

XI   

 

XIII  

 

XIII  

XI 

14.7.0 - - - 0 

 
14.7.1 

 
- 

 
- 

 
- 

 
0 

 
14.7.2 

 
- 

 
- 

 
- 

 
0 

 
15.0.0 

 
+ 

 
+ 

 
+ 

 
+ 

15.0.1 + + + + 

15.0.2 + + + + 

 
15.0.3 

 
+ 

 
+ 

 
+ 

 
+ 

 
15.0.4 

 
+ 

 
+ 

 
+ 

 
+ 

 
15.0.5 

 
+ 

 
+ 

 
+ 

 
+ 

 
15.0.6 

 
+ 

 
+ 

 
+ 

 
+ 
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Table A.2 continued:  

 

 

 

 

 
15.1.0 

|n1| < |n2| 

|t1| > |t2| 

 

|n1| < |n2| 

|t1| < |t2| 

 
 

+ + + - |n1| = |n2| 

XIII 
 

XIII 

 

 

IX 

 

 
15.1.1 

 
+ 

 
+ 

 
+ 

 
- 

 

|n1| > |n2| 

 
XIII 

 
15.1.2 

 
+ 

 
+ 

 
+ 

 
- 

 
|n1| < |n2| 

 
XIII 

 
15.2.0 

 
+ 

 
+ 

 
- 

 
+ 

 
|t1| = |t2| 

 
XI 

 
15.2.1 

 
+ 

 
+ 

 
- 

 
+ 

 

|t1| > |t2| 

 
XIII 

 
15.2.2 

 
+ 

 
+ 

 
- 

 
+ 

 

|t1| < |t2| 

 
XIII 

 
15.3 

 
+ + - - 

 
XIII 

15.0.7 + + + + 

 
15.0.8 

 
+ 

 
+ 

 
+ 

 
+ 
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Table A.2 continued: 

 

|n1| = |n2| 

 

 
|n1| > |n2| 

 
 
 

|n1| < |n2| 

 

|n1| = |n2| 

|t1| = |t2| 
 

|n1| = |n2| 

|t1| > |t2| 
 

|n1| = |n2| 

|t1| < |t2| 

 
|n1| > |n2| 

|t1| = |t2| 

 
 
 

|n1| > |n2| 

|t1| > |t2| 

 

 

|n1| > |n2| 

|t1| < |t2| 

 
 
 

|n1| < |n2| 

|t1| = |t2| 

IX 

 

XIII 

  

 

XIII  
 

V    

 

X  

 

X 
 

XII   

 

XIII    

XIII 

 

 
XII 

15.4.0 + - + + 

 
15.4.1 

 
+ 

 
- + 

 
+ 

 
15.4.2 

 
+ 

 
- + 

 
+ 

15.5.0 + - + - 

 

15.5.1 

 

+ 

 

- + 

 

- 

 

15.5.2 

 

+ 

 

- + 

 

- 

 
15.5.3 

 
+ 

 
- + 

 
- 

 
15.5.4 

 
+ 

 
- + 

 
- 

 
15.5.5 

 
+ 

 
- + 

 
- 

 
15.5.6 

 
+ 

 
- + 

 
- 
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Table A.2 continued:  

 
15.5.7 

 

 
15.5.8 

 

+ - + - 
|n1| < |n2| 

|t1| > |t2| 

 

 

+ - + - 
|n1| < |n2| 

|t1| < |t2| 

 
XIII 

 

 
XIII 

 
15.6 

 
+ - - + 

  
XIII 

 
15.7.0 

 
+ - - - 

 
|t1| = |t2| 

 
XII 

 
15.7.1 

 
+ - - - 

 
|t1| > |t2| 

 
XIII 

 
15.7.2 

 
+ - - - 

 

|t1| < |t2| 

 
XIII 

 
15.8.0 

 
- + + + 

 
|t1| = |t2| 

 
XI 

 
15.8.1 

 
- + + + 

 
|t1| > |t2| 

 
XIII 
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Table A.2 continued: 
 

 

 

15.8.2 

 

 
15.9 

 

15.10.0 

- + + + |t1| < |t2| 

 

 
- + + - 

 
|n1| = |n2| 

|t1| = |t2| 

|n1| = |n2| 

|t1| > |t2| 

|n1| = |n2| 

|t1| < |t2| 

XIII 

 

 
XIII 

 
V  

 

VIII 
 

VIII 

 
 

|n1| > |n2| 

|t1| = |t2| 

 
|n1| > |n2| 

|t1| > |t2| 

 
 

|n1| > |n2| 

|t1| < |t2| 

 

 

|n1| < |n2| 

|t1| = |t2| 

 

 
|n1| < |n2| 

|t1| > |t2| 

XI 

 

XIII 

  

 

XIII 

XI 

  

XIII 

- + - + 

15.10.1 - + - + 

15.10.2 - + - + 

 
15.10.3 

 
- + 

 
- 

 
+ 

 
15.10.4 

 
- + 

 
- 

 
+ 

 
15.10.5 

 
- + 

 
- 

 
+ 

 
15.10.6 

 
- + 

 
- 

 
+ 

 
15.10.7 

 
- + 

 
- 

 
+ 
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Table A.2 continued:  

 
15.10.8 - + - + 

|n1| < |n2| 

|t1| < |t2| 

 
XIII 

15.11.0 - + - - 

 

|n1| = |n2| IX 

 
15.11.1 

 
- + 

 
- 

 
- 

 
|n1| > |n2| 

 
XIII 

 
15.11.2 

 
- + 

 
- 

 
- 

 

|n1| < |n2| 

 
XIII 

 
15.12 

 
- - 

 
+ 

 
+ 

 
 

XIII 

 
15.13.0 

 
- - 

 
+ 

 
- 

 
|t1| = |t2| 

 
XII 

 
15.13.1 

 
- - 

 
+ 

 
- 

 
|t1| > |t2| 

 
XIII 

 
15.13.2 

 
- - 

 
+ 

 
- 

 
|t1| < |t2| 

 
XIII 

 

15.14.0 

 

- - 

 

- 

 

+ 

 

|n1| = |n2| 

 

IX 

15.14.1 - - - + |n1| > |n2| XIII 
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Table A.2 continued: 

 

15.14.2 

 
15.15.0 

 
15.15.1 

 
15.15.2 

 
 

15.15.3 

 

 
15.15.4 

 

 
15.15.5 

 

 
15.15.6 

 

15.15.7 

 
 

15.15.8 

- - - + |n1| < |n2| 

 
|n1| = |n2| 

|t1| = |t2| 

|n1| = |n2| 

|t1| > |t2| 

|n1| = |n2| 

|t1| < |t2| 

 

|n1| > |n2| 

|t1| = |t2| 

 
 

|n1| > |n2| 

|t1| > |t2| 

 
 

|n1| > |n2| 

|t1| < |t2| 

 

 
|n1| < |n2| 

|t1| = |t2| 

 

|n1| < |n2| 

|t1| > |t2| 

 

|n1| < |n2| 

|t1| < |t2| 

XIII 

 

V  
 

X  

 

X 
 

XII   

 

XIII  

 

XIII  

 

XII 

 
XIII 

 

XIII 

- - - - 

- - - - 

- - - - 

- - - - 

- - - - 

- - - - 

- - - - 

- - - - 

- - - - 


