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Abstract

A pedestrian crossing a street during rush hour often looks and listens for potential danger.

When they hear several different horns, they localize the cars that are honking and decide

whether or not they need to modify their motor plan. How does the pedestrian use this audi-

tory information to pick out the corresponding cars in visual space? The integration of distrib-

uted representations like these is called the assignment problem, and it must be solved to

integrate distinct representations across but also within sensory modalities. Here, we iden-

tify and analyze a solution to the assignment problem: the representation of one or more

common stimulus features in pairs of relevant brain regions—for example, estimates of the

spatial position of cars are represented in both the visual and auditory systems. We charac-

terize how the reliability of this solution depends on different features of the stimulus set

(e.g., the size of the set and the complexity of the stimuli) and the details of the split repre-

sentations (e.g., the precision of each stimulus representation and the amount of overlap-

ping information). Next, we implement this solution in a biologically plausible receptive field

code and show how constraints on the number of neurons and spikes used by the code

force the brain to navigate a tradeoff between local and catastrophic errors. We show that,

when many spikes and neurons are available, representing stimuli from a single sensory

modality can be done more reliably across multiple brain regions, despite the risk of assign-

ment errors. Finally, we show that a feedforward neural network can learn the optimal solu-

tion to the assignment problem, even when it receives inputs in two distinct representational

formats. We also discuss relevant results on assignment errors from the human working

memory literature and show that several key predictions of our theory already have support.

Author summary

Human and animal behavior relies on the integration of distinct sources of information

about the same objects in the world—for instance, social behavior requires the correct

integration of people with their words, even when multiple people are talking over each
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other. We formalize this integration process and show that it relies on at least partial

redundancy between these different sources of information. In the case of integrating

vocalizations with their source, this redundancy could be provided by the distinct repre-

sentations of spatial position in the visual and auditory systems. Then, we show that the

necessity of this integration process produces a trade-off between the representation of

redundant information (for reliable integration) and the representation of non-redundant

information (which is to be integrated), with implications for modular organization in the

brain. Finally, we show that a simple feedforward neural network can integrate as reliably

as predicted by our theory—as well as make predictions from our theory that can be tested

in neural data. Overall, this work provides insight into how the brain makes sense of its

distributed and sometimes distinct representations of the world.

1 Introduction

Coherent behavior in complex natural environments requires extensive and reliable integra-

tion of different forms of information about the world. For instance, a pedestrian crossing a

crosswalk during rush hour attends to the flow of traffic around the intersection—if they hear

honking, it is important to quickly localize that honking to cars in visual space and decide

whether they need to change their motor plan. While navigating cluttered multisensory envi-

ronments like this one often appears effortless for humans and other animals, it requires two

highly non-trivial computations: Object segmentation and representation assignment. For

object segmentation, the continuous sensory world must be segmented into distinct objects—

that is, each car has to be recognized as a distinct entity, separated from both the other cars

and background objects, such as buildings. The primitive rules that humans and other animals

use to segment objects have been studied extensively as part of gestalt psychology [1] and

related subfields [2, 3], as well as in machine learning [4, 5]. In the brain, this segmentation

process is thought to be represented by border ownership cells, such as those observed in the

primate visual system [6, 7]. However, even once this difficult object segmentation problem is

solved, the resulting object representations are often still incomplete: An object representation

in one brain region contains only a part of all the information about that object that is present

in the entire brain. The integration of these distributed representations is referred to as repre-

sentation assignment [8]—and is analogous to the extensively studied assignment problem

from combinatorial optimization [9]. In the example above, the representations of the cars

from the visual system need to be integrated with the representations of the cars from the audi-

tory system, as both sensory systems provide information that is necessary to guide the pedes-

trian’s motor plan.

The integration of these distinct, parallel representations of the world has been previously

studied in three principle ways. First, the integration of distinct features within the visual sys-

tem has been studied in the context of feature integration theory [10, 11]. In feature integra-

tion theory, spatial attention is used to bind features together due to their spatial proximity.

Spatial attention is deployed to different locations in sequence and only a single object is

bound at a time. However, experimental work has shown that errors can occur in this inte-

gration process [12, 13], in which some of the features from two different locations are

assigned to each other. We refer to these kinds of errors as an assignment errors, though they

are also referred to as illusory conjunctions, swap errors, and misbinding errors. Assignment

errors produce representations—such as a barking cat and meowing dog, see Fig 1A—that

can be particularly catastrophic for coherent behavior. While feature integration theory
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provides a qualitative description of the assignment process using a common representation

of spatial position to link different feature representations together, it does not provide a

mechanistic explanation of how assignment errors depend on the qualities of the underlying

neural representations.

Fig 1. The assignment problem arises from distributed representations of multiple stimuli. A A schematic of the assignment problem. The

brain receives both visual and auditory information about a dog and a cat, this information is initially separated in the brain. When combining

the two sets of representations (auditory and visual), there are two possible integrations, one that correctly reconstructs a barking dog and

meowing cat (left) and the other that incorrectly constructs a barking cat and meowing dog (right). The right is an example of an assignment

error. B Schematic of the assignment process as selecting a mapping between two sets of representations. C (left) The assignment problem can

be solved by the representation of a common stimulus feature in both brain regions. In our example, the auditory (top) and visual (bottom)

representations can be integrated through a shared representation of azimuthal position (the shared x-axis). (right) The N × N cost matrix (here,

each element is given by the distance in the shared feature space across representations from the two regions) for the correct (top) and incorrect

(middle) mappings. The most likely assignment minimizes the trace of the matrix (bottom). D Assignment errors occur when the estimate of

the common feature value for two stimuli cross over each other in one region, but not the other (middle, red arrow). The distribution around

each point is the local MSE (DX and DY). E (left) The probability that this crossing over occurs is high for nearby stimuli and low for distant

stimuli, and increasing estimator variance makes assignment errors more likely at all distances. (right) For stimuli that are uniformly distributed

in the full feature space, the distance between pairs of stimuli follows a triangular distribution with one commonly represented feature (C = 1). F

The overall assignment error rate is the product of the two functions on the left—the assignment error probability at each distance weighted by

the probability that there is a pair of stimuli at that distance. Dashed line: theory from Eq 3; solid line: simulations.

https://doi.org/10.1371/journal.pcbi.1011327.g001
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Second, related to feature integration theory, the assignment problem has been studied as

part of the literature on working memory capacity. Here, participants are asked to remember

an array of multi-feature stimuli (e.g., oriented and colored bars at different spatial locations)

across a delay period, before being cued by a single feature (e.g., position) to report one of the

other features (e.g., color) [14–17]. In this setting, the cue must be assigned to the correct

representation from the set of remembered stimuli. Here, the assignment problem is solved

across two distinct time points rather than two distinct brain regions, but the underlying prin-

ciples are the same. This literature shows that assignment errors increase with the number of

stimuli that need to be remembered [15, 16] and that they become more likely when remem-

bered stimuli are close together in the feature that is used to cue a stimulus for report (from

above, spatial position) [16, 17]. The assignment error rate also depends on the precision of

the representation of the cued feature [17]. Further, a neural model has been developed to

explain these behavioral findings, which links the assignment error rate to neural population

codes [16]. Our work builds on the theoretical work from the time-assignment setting by con-

sidering multiple common (i.e., cue) features [18] (but see [19]), as well as through its focus on

assignment across (and within, as in feature integration theory) distinct brain regions at a sin-

gle time point.

Third, representation assignment has also been studied in the context of multisensory inte-

gration [8, 20–23]. In this literature, both experiment and theory have primarily focused on

the integration of multisensory representations of a single stimulus. This work has demon-

strated that shared information is crucial to reliable integration. In particular, integration of

auditory and visual information appears to rely on the shared representation of azimuthal

position derived from both sensory systems [21]. That is, whether or not an auditory and visual

stimulus are integrated depends on the variance in estimates of azimuthal position from both

sensory systems [21]. We refer to the variance of estimates from these individual representa-

tions as the local variance.

Here, we extend this analysis to sets of multiple objects and develop a general framework

that demonstrates how the likelihood of assignment errors depends on the number of com-

mon features that are represented across multiple brain regions (such as azimuthal position)

and the local variance of those feature representations. We show that there is a tradeoff

between highly redundant representations that produce low assignment error rates, but higher

local variance, and less redundant representations that risk more assignment errors but have

generally lower local variance. To make this tradeoff concrete, we analyze a receptive field

model of neural representations, similar to those found in many sensory areas [24–28] and

related to models explored in the working memory literature [16]. With this model and when

keeping constant the total metabolic resources (i.e., number of neurons and spikes) used by

the model, we show that the lowest total error (combined local variance and assignment

errors) can sometimes be achieved by systems that split into distinct modules, despite the fact

that such systems risk assignment errors. Thus, our framework provides a potential explana-

tion for the extensive modularity and parallel processing thought to exist in the primate visual

system [29–32] and other sensory systems [33–36]. Finally, we demonstrate that the assign-

ment problem can be solved optimally by a feedforward neural network. In the feedforward

network, we also show how the integrated stimuli can be reliably represented: through nonli-

nearly mixed representations of the integrated features, which follows from previous work on

representations of multiple stimuli [16, 37, 38]. Finally, we discuss predictions for neural data,

and link our results in more detail to behavioral results from the human working memory lit-

erature. Overall, this work demonstrates a general solution to the representation assignment

problem, which arises whenever a distributed neural system represents multiple stimuli—

within single brain regions, across parallel brain regions, and across different time points.
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2 Results

2.1 Redundant information is necessary to solve the assignment problem

Here, we investigate the assignment problem that arises when each of N stimuli have represen-

tations that are split across two brain regions, RX and RY—in combinatorial optimization, this

is referred to as the balanced assignment problem [9]. We want to correctly integrate the dis-

tributed representations of these N stimuli, which we formalize as finding the correct one-to-

one mapping between the representations in RX and the representations in RY. To give an

example: a dog and a cat will be represented in at least two distinct regions of the brain, an

auditory region RX and a visual region RY (Fig 1a). The set of representations in RX, referred to

as X̂ , will consist of representations of each of the animals’ vocalizations—similarly, Ŷ in RY
consists of representations of each animals’ visual features (see Methods in Definition of the

representations for more details). Many behaviors rely on integrated information about both

the visual features and vocalizations of the animals (for instance, when deciding which animal

to approach, it is useful to know whether they are barking or meowing).

So, we want to choose the correct one-to-one map M between X̂ and Ŷ (Fig 1b). We show

that if X̂ and Ŷ are independent, then all maps are equally likely (see Methods in Definition of

assignment errors). In this case, assignment errors will occur with probability 1 − 1/N!. Thus,

redundancy between the representations in RX and RY is necessary to reliably solve the assign-

ment problem. More concretely, the case where X̂ and Ŷ are independent would be like the

case where, in a working memory study similar to the ones discussed in the Introduction, we

ask the participant to remember the color and orientation of a collection of bars, then cue

them with a spatial frequency. Without additional instruction or extensive learning, the partic-

ipant could do no better than chance—just as our system here could solve the assignment

problem no more reliably than by guessing.

The required redundancy can take many forms. We will focus on the case where the redun-

dancy manifests as a linear dependence between some of the features represented in RX and

some of the features represented in RY. In the working memory task example, this is similar to

remembering both the color and orientation of each stimulus in an array. Then, being asked to

report the color of the stimulus that had a particular orientation. Our analysis can also be

extended to some kinds of nonlinear mappings between between the features in RX and RY
(see Fig B in S1 Text).

One specific kind of nonlinear redundancy between the two regions is prior information

about which stimuli are more or less likely. For example, someone familiar with cats and dogs

could infer that a meowing noise likely belongs to the cat they see in front of them, while the

barking likely belongs to the dog. While such inferences are likely extremely important for

behavior, they require the prior information to be learned over experience with these particu-

lar stimuli. We focus our analyses here on solving the assignment problem without this learn-

ing process (as for novel stimuli) and where such differences in prior likelihood are not

available (e.g., assigning two different barks to two different novel dogs).

Finally, throughout this work we organize our discussion using the concept of distinct

brain regions, by which we mean distinct populations of neurons that may share information

with each other through anatomical connections. We primarily use this concept for simplic-

ity of exposition. In general, all of the same principles apply when different features (or com-

binations of features) are represented in distinct subspaces of the same neural population

activity. That is, the assignment problem will also need to be solved to integrate across these

distinct subspaces, even though the subspaces do not correspond to distinct populations of

neurons.
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2.2 The assignment error rate depends on the precision of the common

feature representation

Here, we study redundancy between RX and RY that results from the representation of one or

more of the same stimulus features (e.g., azimuthal position in both the visual and auditory

systems, Fig 1c, left). These C common, or linearly related, features define a C-dimensional

common feature space. Importantly, we do not yet make any assumptions about the represen-

tational format of these features—and while the common features are assumed to be the same

(or, at least, correlated) across the two regions, the format of their representation need not be.

Then, following the combinatorial assignment problem, we show that the most likely map-

ping is the one that minimizes the sum squared distance between integrated pairs in this com-

mon feature space (Fig 1c, right: top matrix is the the correct mapping, MC, bottom matrix is

the incorrect mapping MAE, the sum of distances between integrated pairs in the two map-

pings are shown below). If the estimates of the common features in both regions are exactly

correct, then this sum will be zero—an exact matching (Fig 1c). However, in general, we

assume that each feature represented in RX is decoded with Gaussian-distributed local variance

DX (Fig 1d). Further, we show that assignment errors occur precisely when the representation

of one object crosses over the representation of another object in one region but not the other

(Fig 1d, red lines). For two objects at distance δ from each other in the common feature space

space, the probability of an assignment error between those two stimuli is approximated by

FðdÞ � Q
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

þ Q
� d
ffiffiffiffiffiffiffiffi
2DY

p

 !

ð1Þ

where Q(x) is the cumulative density function for the standard normal distribution (Fig 1e,

left)—for the full expression and derivation, see Methods in Probability of assignment errors.

The overall probability of an assignment error also relies on the probability that two objects

are at distance δ from each other in the common space PC(δ) (Fig 1e, right for C = 1) and on

the number of stimuli N. Incorporating these, we show that the overall probability of an assign-

ment error is upper bounded by,

AEC �
N
2

� �Z

dd PCðdÞ FðdÞ ð2Þ

For one overlapping stimulus feature (C = 1) and for stimuli that are uniformly distributed in

feature space, we show that,

AE1 �
N
2

� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX þ DY
p

s
ffiffiffi
p
p ð3Þ

where s is the size of the feature space for the commonly represented feature. This approxima-

tion (dashed lines, Fig 1f) closely matches the empirical assignment error rate (solid lines)

across different numbers of stimuli (different colors; see Methods in Assignment error rate

approximation for C = 1 for a full derivation of this expression). Now, using this formalization,

we show that the assignment error rate decreases with additional commonly represented fea-

tures C> 1 in the next section. We also show that the assignment error rate increases if the fea-

tures are represented with asymmetric variance across the two brain regions—i.e., if DX 6¼ DY

(see Fig A in S1 Text).
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2.3 Additional commonly represented features decrease the assignment

error rate

While distinct sensory systems tend to have fixed amounts of overlapping information, such as

a common estimate of azimuthal position across the auditory and visual systems (which has

been shown to be crucial for single stimulus integration [21]), within a single sensory system

information is distributed across multiple brain regions, and those brain regions can represent

variable amounts of overlapping information about the stimuli. In our framework, we show

that increasing the number of commonly represented stimulus features across the two brain

regions C decreases the assignment error rate.

In particular, increasing the number of commonly represented features C increases the

average distance between pairs of points in the common feature space (Fig 2a). This change is

captured by changes in the pC(δ) term in Eq 2. Increasing the number of commonly repre-

sented features moves the probability mass of this distribution away from zero (Fig 2b). The

increase in the number of overlapping features from C to C + 1 leads to an orders of magnitude

decrease of the assignment error rate at the mean distance (Fig 2c). As a result of this shift to

the right in pC(δ) and the fact that Eq 1 is strictly (and exponentially) decreasing in δ, the inte-

gral in Eq 2 will also be strictly decreasing as C is increased. Thus, increasing C decreases the

overall probability of assignment errors when holding local variance constant (Fig 2d).

However, increasing C while holding local variance constant comes with a significant cost.

In particular, increasing the number of commonly represented stimulus features also increases

the redundancy in information represented by the two brain regions. As discussed above, it is

precisely this redundancy that allows the assignment problem to be solved (and solved more

reliably for more overlapping features). Yet, in neural systems with limited metabolic

resources, this redundancy reduces the efficiency of neural representations. We show that the

redundancy between the two regions depends on both the number of overlapping features and

the local variance (Fig 2e),

R ¼ IðX;YÞ ¼ HðXÞ � HðXjYÞ

¼
C
2
log

s2

DX þ DY

where I(.; .) is the mutual information and H(.) is the Shannon entropy, and s is the extent of

the overlapping features (see Methods in Calculating the redundancy between representations

for more details). Thus, as the assignment error rate is reduced by increased C, the redundancy

of the representation is increased—we make the consequences of this explicit below.

Further, we show that a similar tradeoff holds for asymmetric feature representations (Fig

A in S1 Text). On one hand, the common features can be represented with the same precision

in both regions. This is the maximally redundant representation for a given C, and therefore

leads to the lowest assignment error rate. On the other hand, the common feature can be rep-

resented asymmetrically (with high variance in one region and low variance in the other). This

is a less redundant representation, and is associated with a higher assignment error rate.

2.4 Redundancy reduces the precision of the neural code

Now, we make our theory more concrete by making an assumption about the format of the

neural representations in RX and RY. This assumption allows us to quantify how the assign-

ment error rate and local variance both depend on the metabolic energy available to the code,

in the form of spikes and neurons. To begin, we analyze the errors made by a population of

neurons with randomly positioned Gaussian receptive field (RF) responses (Fig 3a, top). This

PLOS COMPUTATIONAL BIOLOGY Redundant representations for the integration of complex stimuli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011327 August 9, 2023 7 / 31

https://doi.org/10.1371/journal.pcbi.1011327


kind of neural code is thought to be used for a variety of different sensory features [24–28],

including spatial position in the visual system (but, interestingly, not in the mammalian audi-

tory system [39–42]). While we assume that RX and RY both use the same representational for-

mat, this is not required by our theory of assignment errors—and we explore the case in which

RX and RY have different representational formats below.

Recent work has shown that RF codes make two kinds of errors [43]. The first kind of error

is local, and is equivalent to the local variance we have discussed so far. In this case, the

decoder maps the noisy response to a nearby position on the stimulus representation manifold

(Fig 3a, bottom, “local error”). This local variance is captured by the Fisher information of the

code [43–49]. The second kind of error is non-local, and is referred to as a threshold (or cata-

strophic) error [43, 50]. Catastrophic errors occur when the noisy response is mapped to a dis-

tant region on the stimulus manifold, due to large noise that points toward one of these

regions of response space (Fig 3a, bottom, “threshold error”). In a noisy system, every response

will give rise to some local variance (Fig 3b, “local”); threshold errors only occur for a subset of

responses, but their magnitude has the same order as the size of the stimulus space (Fig 3b,

“threshold”).

These two kinds of error are in tension with each other. To see this, we begin by deriving

the average Fisher information of a random RF code with a particular number of neurons and

Fig 2. Increasing the number of commonly represented features decreases the assignment error rate, but increases

the level of redundancy between the representations. The color legend is the same throughout the plot, and provided

in D. A Schematic showing that the distance between two points increases with the dimensionality of the space that

they are in. B The distribution of distances between two uniformly distributed points in a space of one, two, and three

dimensions. The distribution shifts to the right (toward larger distances) as the dimensionality of the space increases.

This is true for points with any distribution that has non-zero variance. C At the average distance between two points

(dashed lines), the probability of an assignment error decreases by orders of magnitude as the dimensionality of the

commonly represented space increases, without changing the estimator variance for the representations DXY = 10. D

The overall assignment error rate also decreases by orders of magnitude as the dimensionality of the commonly

represented feature space increases, while holding DXY constant. The difference becomes even larger as the precision

ratio increases. E The redundancy between representations X̂ and Ŷ also increases as the dimensionality of the

commonly represented feature space increases—again, the difference is increased at larger precision ratios. Thus, the

assignment error rate is driven down at the cost of additional redundancy.

https://doi.org/10.1371/journal.pcbi.1011327.g002
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Fig 3. The efficiency of random receptive field codes. A A random Gaussian receptive field population. The width of

the RFs are chosen to minimize the total MSE of the population. B A histogram of errors made by an example RF code.

While the majority of errors are local (left, grey), a small proportion of errors are non-local threshold errors (right,

red). C The two kinds of errors made by RF codes. Threshold errors dominate at small RF sizes, while local errors

dominate elsewhere. We choose the RF size for our codes based on the combined error rate. D The dependence of total

MSE on population SNR for fixed population size. The solid line is from simulations, the dashed line is the prediction

of our theory, and the dotted line is local MSE only. E The dependence of total MSE on population size for fixed

population SNR. The different line types are the same as D. F (above) Schematic of the situation being investigated. A

K = 4 dimensional stimulus is represented across two distinct populations of neurons RX and RY. Each population of

neurons has 10, 000 units and an SNR varying between 5 and 10. (left) The average local MSE across the two codes and

the redundancy across the two regions of the code schematized above, shown for different numbers of overlapping

features C. The grey lines connect points with the same SNR across the different overlap levels. (right) The same as on

the left, but for the assignment error rate.

https://doi.org/10.1371/journal.pcbi.1011327.g003
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a particular average level of activity across the whole population (i.e., a budget of metabolic

energy to be used for spiking),

FI �
V

s2
Nw2

1

2

ffiffiffi
p
p
� w

ffiffiffi
p
p
� w

�
V

2s2
Nw2

¼
SNR2

2w2

ð4Þ

where V is the sum squared activity across the population (i.e., the average response energy),

σN is the standard deviation of the Gaussian noise added to the responses, SNR2 ¼ V=s2
N is the

population signal-to-noise ratio, and w is the width of the receptive fields, which is assumed to

be small (see Methods in Random gaussian receptive field codes for the full derivation). We

can see that the Fisher information increases when V increases or when w decreases (Fig 3c,

local). However, the total error of the code is given by,

Err � ð1 � pthrÞ
1

FI
þ pthr

1

6

where pthr is the probability of a threshold error, and this probability increases as w decreases

(Fig 3c, threshold). All else held equal, decreasing the width of the RFs in the code will reduce

the local variance of the code (Fig 3c, local), while simultaneously increasing the probability of

threshold errors (Fig 3c, threshold). In the following, we choose the RF width that minimizes

the total error of the code (Fig 3c, combined; see Methods in Random gaussian receptive field

codes for more details).

Using this framework, we show how this total error scales with both population signal-to-

noise ratio (SNR ¼
ffiffiffiffi
V
p

=sN) and population size. In particular, we show that, for high SNRs,

the total error is explained primarily by the local variance (Fig 3d, solid vs dotted line). This

results from the fact that the threshold error rate decreases exponentially with SNR (Methods

in Random gaussian receptive field codes). Second, we show that increasing the population

size while holding the SNR constant leads to a smaller decrease in total error (Fig 3e). That is,

while increasing the population size pushes smaller RFs to be optimal, thereby decreasing the

local variance, the tension between local and threshold errors causes the decrease in optimal

RF size to be small. We also show that, as expected, requiring the code to represent K = 2

instead of K = 1 features causes higher error rates (Fig 3d and 3E, different lines).

Next, we link these RF codes to our theory of assignment errors. The local variance of the

RF code is equivalent to the local variance in our framework. However, the threshold errors

have no clear analogue in our current theory. Since the inferred stimulus produced from a

threshold error is uniformly distributed across the whole stimulus space, they are extremely

disruptive to assignment: The optimal strategy is not to integrate the threshold error represen-

tation during the assignment process at all. This unbalanced version of the assignment prob-

lem has been studied in combinatorics [9], but is beyond the scope of the current work.

However, threshold errors are typically unlikely once the optimal RF width has been chosen.

In particular, we find that codes with non-negligible threshold error rates also tend to have

high total error. To proceed, we exclude codes with high total error, both due to the issues

described for threshold errors and because our analytic calculation for the assignment error

rate assumes local variance that is small relative to the size of the stimulus space.

Finally, we analyze the case of K = 4 total features represented across two different brain

regions, with C = 1, 2, and 3 overlapping features. We show that the increase in overlapping
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features leads to an increase in both the redundancy between the two representations and the

local variance of the code (Fig 3f, left, purple lines show constant SNR). Then, we show that, as

anticipated, the increase in the number of overlapping features also leads to a decrease in the

assignment error rate at these higher redundancy levels (Fig 3f, right). Thus, this modeling

approach allows us to quantify the consequences of different levels of redundancy in a biologi-

cally plausible neural code.

2.5 Modularity has benefits for encoding high-dimensional stimuli

So far, to motivate the importance of the assignment problem, we have focused on the case of

stimulus features that are encoded by separate brain regions as a consequence of being

received by distinct sensory systems—such as the pitch of a sound and the spatial frequency of

an image. In this case, modularity is unavoidable and the assignment problem must be solved

to integrate the disparate percepts. However, there is extensive evidence for modularity in the

brain even within single sensory systems (e.g., [30], though these modules are at least partially

redundant [51]). In our framework, this comes with a clear drawback when decisions have to

be made based on combinations of features represented in different regions: Making those

decisions reliably requires the assignment problem to be solved (e.g., identifying which of sev-

eral cats just hissed or the car in a line of traffic that just honked), and this means that those

brain regions must have some redundancy with each other.

Here, we contrast receptive field (RF) codes for relatively high-dimensional stimuli (K = 8)

that are distributed across one, two, or three brain regions (Fig 4a). For example, a two-region

code for the K = 8-dimensional stimulus could encode KX,Y = 4 features in each region. How-

ever, such a code would make assignment errors at chance levels when presented with multiple

stimuli. Thus, we consider codes which represent at least one redundant feature for every two

brain regions (e.g., one region could represent four features and the other five, as in Fig 4a,

middle). In every case where we compare multi-region codes to each other, the total code (that

is, summing across brain regions) is constrained to have the same number of neurons and the

same total population power.

Within each region, we use the random RF codes described in the previous section. We use

the local variance of each region code (Fig 4b, top) to compute the assignment error rate when

integrating across regions (Fig 4b, middle), as developed earlier in the paper. Together, these

lead to a total error that accounts for local variance and catastrophic assignment errors (Fig 4b,

bottom). Codes with total error that exceeds half the size of the stimulus space are excluded

from this analysis for the reasons discussed above.

We show that representing the K-dimensional stimuli in multiple brain regions can pro-

duce representations with lower total error, even when accounting for assignment errors. As a

result, this work provides a justification for the modularity observed in the brain from the per-

spective of reliable and efficient neural codes. For stimuli with K = 8 features and smaller neu-

ral population sizes or population SNRs, then the lowest total error is achieved by a single

region code (Fig 4c, bottom and left). In this case, avoiding catastrophic assignment errors is

crucial. However, for larger neural population sizes and population SNRs, codes that distribute

the representation over two or even three regions can provide lower total error than the single

region code (Fig 4f, top right).

This results from a combination of two factors: First, the multi-region codes must represent

redundant information to reliably solve the assignment problem. Thus, they have a disadvan-

tage compared to the single region code, which need not represent any redundant informa-

tion. However, second, lower-dimensional RF codes tend to produce smaller errors than

higher-dimensional codes, especially very high-dimensional codes. In particular, the local
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variance of an RF code depends on RF width, and not directly on dimensionality (Eq 4). Thus,

if low- and high-dimensional codes have the same RF width, then they could, in principle,

have the same local variance. In practice, though, the high-dimensional code will require expo-

nentially more neurons than the low-dimensional code to achieve full coverage of the stimulus

space at that width (and to control threshold errors). In our setting, the single region, higher-

dimensional codes do have more neurons, but only by a factor of two or three—not enough to

achieve equivalent local variance to the lower-dimensional RF codes. Thus, multi-region codes

begin to outperform single-region codes when the gains from their inherent efficiency become

larger than the losses from their required redundancy.

We also observe that the difference in total error between these different coding strategies is

relatively small (Fig 4b, bottom). While our current theory does not provide a guarantee of this

in all cases, it points to an interesting potential invariance: The increase in redundancy

required to represent a set of stimuli across multiple regions appears to be largely compensated

for by the increase in efficiency of the constituent codes. Thus, many different coding strategies

appear to provide similar performance.

Fig 4. Multiple-region representations minimize error in many conditions. A Schematic of three different

possibilities for representing a K = 8-dimensional stimulus. The features can all be represented in a single population

(left); they can be distributed across two populations (middle); they can be distributed across three populations (right).

The two and three population codes must represent some features redundantly to avoid assignment errors. B (top) The

scaling of local MSE for the three codes above with population SNR (left) and the total number of units (right). The

colors are the same as in A and C. (middle) The same as top but showing the scaling of the assignment error rate.

(bottom) The same as top but showing the scaling of the total MSE. C The number of regions that minimizes the total

distortion of the representation of K = 8 features for different numbers of neural units and population SNR. The white

parts of the plot are when no representational scheme achieved total MSE< .5.

https://doi.org/10.1371/journal.pcbi.1011327.g004
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Finally, while we assume that the features are interchangeable with each other, this is often

not the case. In general, we believe that the assignment problem is solved to make decisions

that require the linking of two or more stimulus features (e.g., asking what the value of feature

X is for stimuli with a particular value of feature Y, as in the human working memory studies

discussed above). So, one structural way to reduce the likelihood of assignment errors is to

instead represent features X and Y in the same region, while representing the features that are

relevant to a different decision in another region. The primate dorsal and ventral visual

streams have been argued to follow this form: where the dorsal stream is thought to underly

the planning of visually guided actions and the ventral stream is thought to underly perceptual

decisions [31, 52]. However, a single division is unlikely to work for all decisions—and, in

some cases, this simply shifts the need of solving the assignment problem to an earlier stage of

processing. Thus, we believe that the simplified scenario we have analyzed here still provides a

useful intuition.

2.6 Feedforward neural networks can solve the assignment problem

In the previous section, we analyzed the best-case assignment error rate for populations of

neurons with randomly positioned RFs. However, there is no guarantee that a readout from

the neural population will be able to achieve this best-case error rate without extensive and

potentially metabolically expensive computations. In particular, solutions to the assignment

problem used in combinatorial optimization are often framed as linear programming prob-

lems and require operations that have no clear neural analog [9].

Here, we focus on the case with two stimuli that are described by three total features

(K = 3). The stimuli are initially represented by two distinct populations RX and RY—each of

which encode two features (Fig 5a, left). For both populations, one feature is unique to that

population and the other is common across both populations (C = 1). We train a feedforward

neural network model (Fig 5b) to take noisy input representations (Fig 5a, right) from RX and

RY and produce a representation of the two unique features from RX and RY in an output pop-

ulation, which is also structured as a random RF code (Fig 5a, right). To do this reliably, the

network must solve the assignment problem.

First, we train networks to perform this integration (of the two inputs) and marginalization

(of the common feature) directly, without a hidden layer (Fig 5b, only RX, RY, and “output”).

Then, we quantify whether the activity in the output network is more similar to the correctly

or incorrectly assigned representation (Fig 5d). The network without any hidden layers does

not learn to assign the stimuli correctly (Fig 5d, end-to-end learning with no integration

layer).

This implies that representations of features from multiple sensory modalities (e.g., the

expression of a speaker and their words) may need to be derived from higher-dimensional rep-

resentations that also incorporate the linking, common feature (e.g., estimates of spatial posi-

tions in the previous case). However, this does not imply that all of the features of an object

must be represented at once: only those that need to combined, along with however many

common features are required to achieve reliable assignment. This two-stage computation (a

dimensionality expansion followed by a dimensionality reduction) has been shown to useful

for other computations, such as representation frame-of-reference recoding [20].

Second, we show that networks trained to first reconstruct the three dimensional stimulus

representations (Fig 5c) and then marginalize out the common feature achieve the minimal

assignment error rate, while networks trained directly to construct the marginalized represen-

tations achieve low, but not minimal assignment error rates (Fig 5e, end-to-end learning com-

pared to integration learning). While full understanding of this performance difference would
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Fig 5. The assignment problem can be solved with one feedforward layer. A Example of the input, first without (left) and then with (right)

additive noise. The visualization shows the activity level of units in the random RF population. Each point is one unit, and the point is

positioned at the unit’s RF location. The color shows the level of activity. The two inputs share one common feature (x-axis, C = 1) and each

have one unique feature (y-axis). B Schematic of the feedforward integration, then marginalization network. In the full network, the input layers

are followed by two hidden layers, then an integration layer, then the output layer. The output layer constructs a representation of only the two

originally unique features of the stimuli, marginalizing out the common feature. C Example of target activity in the integration layer. The three

features of the stimuli are represented together. The visualization is the same as A. D Example of a correct output (top) and an output with an

assignment error (bottom). The output produced by an example network is shown on the left; the right shows the target output (top) or the

prototypical assignment error (bottom). E (left) Both RX and RY use the random Gaussian receptive field input developed in the previous

sections. (right) The assignment error rates for stimuli with different distances in the common feature, using several variations on the network

described in B. The end-to-end learning models are trained to reconstruct the marginalized representation from the inputs, either with or

without intervening hidden and integration layers. The integration learning models are trained to construct both the integrated representation

and the output target, with or without intervening hidden layers. F The same as E except RY uses an auditory-like input format, where the

common feature (putatively, position) is encoded through a linear ramp.

https://doi.org/10.1371/journal.pcbi.1011327.g005
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require extensive investigation of the representations in the integration layer that are outside

of the scope of this paper, this result emphasizes the importance of the integration step. Fur-

ther, it demonstrates that random RF codes can be used to solve the assignment problem in an

optimally reliable way and that they outperform representations learned through

backpropagation.

Finally, while assignment between two representations that both use Gaussian receptive

fields is analogous to assignment between parallel regions in visual cortex, there is evidence

that neurons in the auditory system primarily represent spatial position using ramp-like rather

than Gaussian-like tuning functions [39–42] (and see Methods in Random ramp codes).

While our theory does not depend on the assumption of a specific representational format, it

is possible that solving the assignment problem may be more difficult for a simple neural net-

work when the formats of the involved representations are different. To test this, we studied

the case where RX had the same receptive field tuning as before, while RY was composed of

neurons that had a linear response to the common feature and Gaussian tuning to the unique

feature (Fig 5f, left RX). This mirrors that ramp-like position and restricted pitch tuning

observed in auditory cortex. Despite this difference in format between the two inputs, the

results were qualitatively similar to before, with the best networks nearly saturating the bound

on performance provided by our theory (Fig 5f, right). However, average performance was fur-

ther from the bound in this case, indicating that the difference in format does increase the dif-

ficulty of the task.

3 Discussion

We have described a neural instantiation of the assignment problem, which must be solved

when the brain integrates distributed representations of multiple stimuli. We showed that

assignment errors depend on the distance between stimuli in the shared representation space,

and that increasing the dimensionality of that shared space will—on average—decrease their

probability. However, this shared space comes at the cost of redundancy between the distrib-

uted representations. To make this cost more concrete, we studied assignment errors in ran-

dom receptive field codes. In these codes, we showed an advantage for modular

representations of high-dimensional stimuli in some conditions, which is consistent with

modularity observed in cortex [29–36] (e.g., in the primate ventral and dorsal visual streams).

Further, we showed that a simple neural network can reliably (and optimally) solve the assign-

ment problem.

This work extends previous work on the assignment problem in several ways. First, previ-

ous studies have considered either a single stimulus in both modalities (one auditory and one

visual stimulus in [21]) or a single stimulus that must be assigned to one stimulus from a larger

array (using a cue to select a single stimulus from a remembered array in [16, 37]). Here, we

have shown how the rate of assignment errors scales as more stimuli need to be integrated.

Second, previous work used a single common feature for binding [16, 21, 37], while we have

shown how assignment error rates scale for additional common features. Third, the formula-

tion of the neural code that we use is similar to that used in [16]; however, we have derived

novel closed form expressions for the total, local, and threshold error rates of these codes—

using these expressions we investigate a wider variety of different neural architectures (e.g.,

splitting representations across different regions) than have been considered in previous work.

Finally, we believe that our neural network approach to producing assigned representations is

novel, as previous work only characterized the error rates that would be expected from an

ideal observer [16, 21, 37]. Thus, we believe that this work contributes to our understanding of

the assignment problem, building on top of this foundational work.
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Our work produces several predictions for experimental data. First, efficient coding dictates

that the redundancy in representations of the sensory world should be reduced as much as

possible [53, 54]. However, our work shows that redundancy between the stimulus representa-

tions present in different brain regions is necessary to disambiguating multiple stimuli—other

potentialy benefits of redundancy across and within brain regions are robustness to noise [50],

damage, and interference [55]. As a result, we predict that brain regions that commonly repre-

sent multiple stimuli (e.g., sensory regions) will all have some redundancy with other brain

regions. In some cases, the redundant information between two regions may be clear due to

experimental design. However, in cases where redundant features are not readily identifiable,

population analyses can be used to discover redundant information directly by building mod-

els that explain the activity in one region in terms of the activity in the other. Then the activity

explained by this approach can be modeled in terms of known experimental variables. For

instance, in this way, common features across the parallel ventral and dorsal visual streams in

the primate visual system can be discovered (though some features, such as spatial position,

have already been shown to be redundant across the two streams [51]).

Second, our work shows that explicit bound representations of the integrated and common

features may be a necessary step in solving the assignment problem. Following previous work

[16, 37, 38] and our neural network results, we believe that these bound representations will be

instantiated through a conjunctive population geometry for the bound features—similar to the

multi-dimensional receptive fields used above (though the representation need not have

exactly this form). Thus, for a multi-sensory classification task, we expect to find these bound

representations in multi-sensory association areas (such as posterior parietal cortex [56, 57],

ventrolateral prefrontal cortex [58], and polysensory areas in the superior temporal sulcus

[59]; also see [60]). For complex visual decision-making tasks where integration across the

dorsal and ventral visual streams is required, we expect to find bound representations in brain

regions receiving input from both streams (such as prefrontal and posterior parietal cortex

[61, 62]) as well as regions within each stream that receive information from the other stream.

For instance, recent work has shown combined representations of visual form and motion in

the inferotemporal cortex [63], though their geometry was not characterized (i.e., it is

unknown whether the representations are bound). Similar integrated representation of visual

form and motion have also been found in the superior temporal polysensory area [64] (and in

the middle [65] and body-selective patches within [66] the superior temporal sulcus).

In general, we expect that these intermediate representations will emerge prior to a pure

representation of the decision variable—both in brain regions that are earlier in an established

processing hierarchy as well as temporally earlier within brain regions that ultimately express

representations of the decision variable. While the results from our neural network study

underline the importance of this bound representation for computing the decision variable

(Fig 5), a single neural population could simultaneously represent these distinct forms of infor-

mation in separate subspaces of activity. These bound representations have also been identified

as important for representation recoding [20]. Future work could identify whether these

recoding and assignment operations can be performed simultaneously in the same integrated

representation.

Third, our framework also makes predictions that can be tested with population recordings

from uni-sensory brain regions, during the performance of a multi-sensory task (or, at least, a

task that is believed to involve assignment). Our work predicts that behavioral assignment

errors—i.e., a swap error [15–17], described above—will be correlated with errors in the repre-

sentation of the common features specifically in the direction of other stimuli. For instance, in

a visual-auditory integration task with multiple stimuli, we expect that trials in which a posi-

tion decoder for one of the stimuli makes errors toward another stimulus will also be

PLOS COMPUTATIONAL BIOLOGY Redundant representations for the integration of complex stimuli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011327 August 9, 2023 16 / 31

https://doi.org/10.1371/journal.pcbi.1011327


associated with a greater probability of behavioral assignment errors. We do not expect errors

in the representation of non-common features to have this same correlation with assignment

errors—instead, we expect that they will be associated with local variance in the animal’s report

and would be detectable in continuous report tasks, such as [67].

Fourth, our work makes several predictions for what kinds of assignment errors will be

more or less likely, many of which already have behavioral support in the time-assignment

context from working memory experiments in humans. In particular, our framework predicts

that the assignment error rate will increase for stimuli that are nearby in the common feature

space, which is validated in [16, 17] (and see the related theoretical work in [16]). It also pre-

dicts that assignment error rates will decrease with the inclusion of additional features in the

common feature space, which is validated here [18] (but see [19]). Finally, our framework pre-

dicts that the assignment error rate will increase with the number of stimuli, which is validated

here [15, 16]. While this support is qualitative rather than quantitative, we believe that it lends

strength to our predictions for neural data. Further, we believe that a strength of our frame-

work is that it unifies several different types of assignment, including integration across dis-

tinct time points—as in the behavioral work here—and integration across distinct brain

regions. However, these forms of integration are likely to differ to some degree in practice,

even if only due to the kinds of redundant information available. Future work will be necessary

to characterize what these potential differences mean for patterns of errors in different assign-

ment contexts.

The simultaneous representation of multiple stimuli in neural activity is not fully under-

stood. In particular, while we have provided a solution to the assignment problem, which must

be solved when integrating representations of multiple stimuli that are distributed across dif-

ferent brain regions, distinct neural population subspaces within a single brain region, or even

time points. However, the assignment problem is only one of several difficulties that arise

when multiple stimuli are represented simultaneously. One additional problem is the segmen-

tation, or clustering, of sensory information into a discrete set of causes (i.e., stimuli or

objects). While there is extensive work on this process in psychology [1–3] and in machine

learning [4, 5], the neural mechanisms are not fully understood (but see [6, 68]). A second

additional problem that we have already mentioned is the representation of bound stimulus

features in a single population of neurons; in this work, we have assumed that this representa-

tional problem has already been solved, perhaps by the conjunctive feature representations

posited by other work [16, 37, 38] (but see [69–72] for alternatives). In the real brain, each of

these problems is likely solved at many different stages of sensory processing (or even simulta-

neously), where lower-level components are clustered into higher-level features (e.g., combin-

ing points into an edge), a correct binding of those features is inferred (e.g., that edge is

combined with a representation of its motion), then that bound set of features is represented

(and can become a new, higher-level feature itself—e.g., perhaps the edge is part of a running

dog). While we have focused on one part of this process, future work can integrate these parts

and more fully explore how they interact—both with each other, and with other concerns

(such as how multiple representations in a single neural population interact with each other,

see [73]). This unifying work will be necessary to develop a full understanding of the rich ways

that simultaneously representing multiple stimuli constrains the neural code.

We have also discussed the case of balanced assignment between two brain regions, where

each region represents the same number of stimuli and there is a correct one-to-one mapping

between those stimuli. However, this is a simplification: in many cases, there may be more rep-

resentations in one region than the other (e.g., speakers who are not visible). Or, even when

there are the same number of representations, a one-to-one mapping may not be correct (e.g.,

a speaker behind the subject and another person in view who is not speaking). This latter
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situation has been studied for a single auditory and single visual stimulus [21, 74, 75]. This

work found evidence that human observers infer a single cause for the two percepts only when

they are nearby in space; otherwise, they infer independent causes—and further shows that

this process is well-modeled by Bayesian inference, depending on the local variance of auditory

and visual position estimates as well as the prior rate of common relative to distinct causes

[21]. Future work can combine our approach to the assignment problem with this inference of

the number of distinct causes in the environment. This could be achieved by considering more

potential mappings between the sets of representations, along with a prior giving the strength

of the expectation that each representation will be integrated. This generalization of our frame-

work would lead to additional predictions for experimental data with unbalanced numbers of

stimuli across distinct sensory modalities.

In summary, we have developed a general framework for understanding how the brain

makes sense of distributed representations of multiple objects—that is, how the brain solves

the representation assignment problem. This framework also points to several new directions

in the study of neural codes: directions that explicitly contextualize neural representations in a

distributed network of brain regions as well as move toward understanding how neural codes

can be made suitable for encoding heterogeneous, multi-object environments.

4 Methods

4.1 Definition of the objects

An object set S of size N is N independent samples from the multidimensional probability dis-

tribution p(s)—thus, pðSÞ ¼
QN

i pðsiÞ. Each si is a vector of length K, so p(s) is a probability dis-

tribution over a K-dimensional space. Each of these dimensions represents a feature of the

object, such as color, spatial frequency, pitch, or orientation. In the majority of the paper, we

assume that the objects are uniformly distributed in the space—that is, each point in the K-

dimensional volume is equally likely to occur.

4.2 Definition of the representations

We focus on the representation of our K-dimensional objects in two brain regions, RX and RY.

We assume that both regions have some common and some unique information. That is, nei-

ther region encodes all K object features. This is guaranteed to be the case when RX and RY rep-

resent early sensory areas from different sensory modalities—and there is evidence that a

balance of unique and common information is preserved across hierarchies of sensory brain

regions even within single modalities, such as in the primate visual system [29–32].

Formally, RX encodes a subset of the K total object features, denoted as FX—and similarly

for RY. Each of the features can be identified by their index from 1 to K, and region RX is said

to encode feature i 2 {1, 2, . . ., K} with local distortion Di
X, which is the variance of an optimal

estimator for the value of feature i from the neural activity in region RX—and, again, similarly

for RY.

Thus, the subset of features represented in RX that are not represented in RY are the unique

information from RX—that is, FX \ FY. When RX is an auditory region and RY is a visual region,

then these unique features might include representations of pitch and timbre. Further, the sub-

set of features represented in both RX and RY are the common information, which is essential

for solutions to the assignment problem. The size of this intersection |FX \ FY| = CXY = C has

important consequences for the assignment error rate, and the achievable local distortion

when the representation capacity is constrained.
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Here, we study the reliability of inferences about the original set of N objects S, each of

which are described by K feature dimensions, from the neural activity in two distinct regions,

RX and RY, which both encode some common and some unique information about the objects.

Inferring the original object set from two distinct representations requires the two sets of rep-

resentations to be combined with each other, which we refer to as assignment.

4.3 Definition of assignment errors

As mentioned above, to make inferences about the whole object set from two distinct sources

of information (i.e., RX and RY), the two sets of representations must be integrated with each

other. When there is only one object (N = 1), then this integration is trivial as there is only one

possible one-to-one mapping between the two sets of representations, and this mapping is cor-

rect. However, when there is more than one object (N> 1), then assignment errors become

possible. In particular, for N objects, there are N! possible one-to-one mappings (i.e., assign-

ments) between the two sets of representations, X̂ and Ŷ . Thus, if there is no information

about which mapping to select, assignment errors have the probability 1 − 1/N!, which is near

1 for even relatively small N.

Formally, we can frame the mapping selection problem as an inference about which of

the possible maps M is most likely to account for the observed representations X̂ and Ŷ in

RX and RY, respectively. This can be written as,

pðMjX̂ ; Ŷ Þ ¼
pðX̂ ; Ŷ jMÞpðMÞ

pðX̂ ; Ŷ Þ

/ pðX̂ jŶ ;MÞpðŶ jMÞ

/ pðX̂ jŶ ;MÞ

ðM1Þ

where we proceed by first assuming that the prior probability of each map is the same (i.e.,

p(M) is uniform) and that the representations in one region do not depend on the map (i.e.,

pðŶ jMÞ ¼ pðŶ Þ, and similarly for X̂). Thus, we are left with a single term, pðX̂ jŶ ;MÞ, that

gives the likelihood of the representations observed in one region (here, X̂ , but X and Y are

interchangeable) conditioned on a particular map M and the representations observed in

the other region (Ŷ ). If X̂ and Ŷ are independent of each other, then pðX̂ jŶ ;MÞ ¼ pðX̂Þ, as

above, and all maps are equally likely. So, it is dependence between the representations in

RX and RY that enables the correct assignment to be selected at a rate better than chance.

Thus, dependence between those representations is necessary for a reliable solution to the

assignment problem. In general, this observation already indicates to us that we should

expect pairs of brain regions to encode some common information—so that the assignment

problem can be solved—and some unique information—due to both distinct sensory sys-

tems, but also due to considerations related to efficient coding, which we make explicit

below.

4.3.1 Probability of assignment errors. Given the above inference process, we can now

characterize the likelihood that an assignment error occurs given different levels of common

information shared between X̂ and Ŷ . From our formalization of the representations above,

we know that each object feature i is estimated from the activity of neurons in region RX with

variance Di
X, and similarly for RY. Here, we assume that these estimates are unbiased and

Gaussian distributed, with mean equal to the true value of the object feature and variance as

given. The Gaussian distribution is the maximum entropy distribution for fixed mean and var-

iance, which means that these estimates will contain less information about the true value of
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the object feature than any other distribution with the same mean and variance—thus, this

assumption represents an upper bound on the difficulty of the integration task.

Using this formalization, we can write an explicit form for Eq M1,

pðMjX̂ ; Ŷ Þ /
YN

i

YC

j

exp �
ðx̂ji � MiŷjÞ

2

2ðDX þ DYÞ

� �

logðpðMjX̂ ; Ŷ ÞÞ / �
XN

i

XC

j

ðx̂ji � Miŷ
jÞ

2

ðM2Þ

where x̂ j
i and ŷji are the values of feature j for object i from the N × C estimation matrix of the C

commonly represented features for each of the N objects. The common features are ordered

consistently across x̂ and ŷ, while the N different objects are not. The map M is an N × N per-

mutation matrix. Thus, in finding the most likely map, we would search over the N
2

� �
possible

permutation matrices to find the one that maximizes Eq M2. This is equivalent to finding the

permutation matrix that minimizes the sum squared distance between integrated object repre-

sentation pairs in the C-dimensional shared feature space.

From the above, it follows that an assignment error occurs precisely when the representa-

tion of two objects cross over each other in one of the two brain regions, but not in both—as

schematized in Fig 1C, red arrow and assignment lines. For the commonly represented feature

values of two objects, xc
1

and xc
2
, the probability that this crossover happens in RX depends on

the distribution of the distances between their estimates,

x̂c
2
� x̂c

1
� N ðd; 2DXÞ

where δ is the distance between the true values of xc
1

and xc
2

(i.e., d ¼ xc
2
� xc

1
) and we assume,

without loss of generality, that xc
1
< xc

2
. Since δ is still Gaussian distributed, we write the proba-

bility that the estimate of the first object becomes greater than the estimate of the second object

(i.e., that x̂c
1
> x̂c

2
) as

Pðcross in RXÞ ¼ Q
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

where Q(.) is the cumulative distribution function for the standard Gaussian distribution.

Following this, the full probability of an assignment error incorporates the probability that

the cross occurs in RX or RY as well as that it occurs in both (which would not result in an

assignment error). We write this probability as,

FðdÞ ¼ Q
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

þ Q
� d
ffiffiffiffiffiffiffiffi
2DY

p

 !

� Q
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

Q
� d
ffiffiffiffiffiffiffiffi
2DY

p

 !

where the final term is the probability that a cross occurs in both regions. While we have dis-

cussed a single common feature here, this expression is general, and applies for any value of C,

so long as the local distortion DX and DY for all of the common features is the same within

each region, which we assume in the majority of the text. This expression already gives us

insight into how assignment errors depend on DX and DY for stimuli at some distance δ in a

common feature space. However, in general, assignment errors also depend on how likely it is

that two stimuli at a particular distance will be observed—that is, on pC(δ). In the main text,

we develop this dependence, as well as a dependence on the number of objects, which results

in Eq 2.
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4.3.2 Assignment error rate approximation for C = 1. For one overlapping object feature

(C = 1), we derive an approximate closed form for Eq 2. The derivation is as follows,

AE1 �
N
2

� �Z s

0

dd pCðdÞ FðdÞ

¼
N
2

� �Z s

0

dd
2ðs � dÞ

s2
Q

� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

þ Q
� d
ffiffiffiffiffiffiffiffi
2DY

p

 !

� Q
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

Q
� d
ffiffiffiffiffiffiffiffi
2DY

p

 ! !

�
N
2

� �Z s

0

dd
2ðs � dÞ

s2
Q

� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

þ Q
� d
ffiffiffiffiffiffiffiffi
2DY

p

 ! !

¼
N
2

� �
2

s2

Z s

0

dd ðs � dÞQ
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

þ ðs � dÞQ
� d
ffiffiffiffiffiffiffiffi
2DY

p

 !

since the two terms in this sum are analogous to each other, we deal with them separately

before combining.

So, for the first part of each term,

Z s

0

dd s Q
� d
ffiffiffiffiffiffiffi
2Di

p

 !

¼ � s
ffiffiffiffiffiffiffi
2Di

p
�

d
ffiffiffiffiffiffiffi
2Di

p Q �
d
ffiffiffiffiffiffiffiffi
2DX

p

 !

þ � �
d
ffiffiffiffiffiffiffiffi
2DX

p

 ! !�
�
�
�

s

0

¼ � s
ffiffiffiffiffiffiffi
2Di

p
� �

s
ffiffiffiffiffiffiffi
2Di

p

 !

�
s
ffiffiffiffiffiffiffi
2Di

p Q �
s
ffiffiffiffiffiffiffi
2Di

p

 ! !

þ s
ffiffiffiffiffi
Di

p

r

� s
ffiffiffiffiffi
Di

p

r

where ϕ is the standard normal density function and the approximation in the last line holds

when s� Di, which is the regime we focus on for the main text.

Now, for the second part of each term,

�

Z s

0

dd dQ
� d
ffiffiffiffiffiffiffiffi
2DX

p

 !

¼ � 4Di

 
d

2

2Di
� 1

!

Q �
d
ffiffiffiffiffiffiffi
2Di

p

 !

�
d
ffiffiffiffiffiffiffi
2Di

p � �
d
ffiffiffiffiffiffiffi
2Di

p

 ! !�
�
�
�

s

0

¼ � 4Di

 
s2

2Di
� 1

!

Q �
s
ffiffiffiffiffiffiffi
2Di

p

 !

�
s
ffiffiffiffiffiffiffi
2Di

p � �
s
ffiffiffiffiffiffiffi
2Di

p

 ! !

� 2Di

� � 2Di

where, again, the approximation in the last line holds when s� Di.

Then, combining the two expressions above,

2

s2

Z s

0

dd ðs � dÞQ �
d
ffiffiffiffiffiffiffi
2Di

p

 !

�
2

s

ffiffiffiffiffi
Di

p

r

�
4

s2
Di
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Before, finally, combining the terms corresponding to DX and DY gives,

AE1 �
N
2

� �
2
ffiffiffiffiffiffi
DX
p

s
ffiffiffi
p
p �

4DX

s2
þ

2
ffiffiffiffiffiffi
DY
p

s
ffiffiffi
p
p �

4DY

s2

� �

¼
N
2

� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX þ DY
p

s
ffiffiffi
p
p �

4ðDX þ DYÞ

s2

� �

�
N
2

� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX þ DY
p

s
ffiffiffi
p
p

This final form is given as Eq 3 in the main text.

4.3.3 Assignment error simulations. We compare the theory developed above to simula-

tions from a generative process that follows many of the assumptions made above. In particu-

lar, we sample N stimuli as described above. Then, we add normally distributed noise, with

variance DX and DY, to the features represented in each of the two regions (including common

features). Then, we build a distance matrix from the pairwise distances in the common feature

space between all stimuli. Finally, we solve the balanced assignment problem for this distance

matrix using a standard algorithm (implemented in scipy [76]). A sample is counted as an

error if there is at least one incorrect assignment.

4.4 Random Gaussian receptive field codes

We consider codes for a uniformly distributed K-dimensional stimulus. Without loss of gener-

ality, we take the features of the stimulus to be between 0 and 1. The code consists of N units

with Gaussian receptive fields. We assume that all units have the same field widths w and

height P, but random centers μi. In particular, the response of a neuron i is given by

riðxÞ ¼ P exp �
XK

j

ðxj � mijÞ
2

2w2
j

" #

þ n

where n � N ð0; sNÞ and, here, we assume that w = wj8j.
We model the response to multiple stimuli as the sum of responses to each individual stim-

ulus, so that

RiðXÞ ¼
X

x2X

riðxÞ þ n

where X is a set of stimuli. Note that the noise ν is only added once.

4.4.1 The spiking energy of the code. First, we compute the average squared L2-norm of

the code response across all stimuli, which we will refer to as V and which we use as a measure

of the spiking metabolic energy used by the code,

V ¼ Ex

"
XN

i

r2

i ðxÞ

#

¼
XN

i

Z

dx1 . . .

Z 1

0

dxKpðxÞriðxÞ
2

¼
XN

i

Z 1

0

dx1 . . .

Z 1

0

dxKpðxÞP exp �
XK

j

ðxj � mjÞ
2

w2

" #

¼ P2
XN

i

YK

j

Z 1

0

dyjpðyjÞ exp �
y2
j

w

� �

¼ P2
XN

i

YK

j

Z 1

0

dyjð2 � 2yjÞ exp �
y2
j

w

� �

ðM3Þ
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where Eq M3 changes y2
j ¼ ðxj � mjÞ

2
. Because both xj and μj are uniformly distributed ran-

dom variables, we know that |xj − μj| = yj* T(0, 1, 0) where T(a, b, c) is a triangular

distribution.

We then split the above into two terms. For the first,

Z 1

0

dxj2 exp �
y2
i

w2

� �

¼
ffiffiffi
p
p

werf
y
b

� �
j
1

0

¼
ffiffiffi
p
p

werf
1

w

� �

and the second,

Z 1

0

dxj2yi exp �
y2
i

w2

� �

¼ � w2 exp �
x2

w2

� �

j
1

0

¼ w2 1 � exp �
1

w2

� �� �

So, together,

V ¼ P2
XN

i

YK

j

ffiffiffi
p
p

werf
1

w

� �

� w2 1 � exp �
1

w2

� �� �

¼ NP2
YK

j

ffiffiffi
p
p

werf
1

w

� �

� w2 1 � exp �
1

w2

� �� �

¼ NP2

�
ffiffiffi
p
p

werf
1

w

� �

� w2 1 � exp �
1

w2

� �� ��K

and, further, we will tend to deal with w< .5, so,

V � NP2 ½
ffiffiffi
p
p

w � w2�
K

and

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

N½
ffiffiffi
p
p

w � w2�
K

s

4.5 The Fisher information of the code

We will use the Fisher information as a measure of the magnitude of local errors via the Cra-

mer-Rao bound. In our framework, the Fisher information along a particular dimension j is

given by

IjðxÞ ¼ Er

�
@

@xj
log pðrjxÞ

�2
" #

¼ Er

�

�
@

@xj

ðr � �rðxÞÞ2

2s2
N

�2
" #

We want to use the Fisher information to understand the average code performance across

the whole stimulus space, rather than only for single points in the stimulus space. There is a

complication here: the Fisher information is related to the MSE of an optimal, unbiased
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estimator by the Cramer-Rao bound, which states:

MSEðxjÞ �
1

IjðxÞ

so, we would really like to evaluate

Ex½MSEðxjÞ� � Ex
1

IjðxÞ

" #

However, we were not able to evaluate this analytically. Instead, we evaluate

Ex½MSEðxjÞ� �
1

Ex½IjðxÞ�

which provides a good approximation of the former quantity so long as the variance of Ij (x)

over x is small relative to the mean.

So,

Ij ¼ Ex½IjðxÞ� ¼
P
s2
N

XN

i

YK

k

Z 1

0

dykpðykÞ exp
�

�
y2
k

w2

� Z 1

0

dyjpðyjÞ
y2
j

w2
exp �

y2
j

w2

� �

¼ N
P2

s2
Nw4

�
ffiffiffi
p
p

werf
1

w

� �

� w2 1 � exp �
1

w2

� �� ��K� 1

1

2
w2

ffiffiffi
p
p

werf
1

w

� �

� 2 exp �
1

w2

� �� �

� w2 w2 � ðw2 þ 1Þ exp �
1

w2

� �� �� �

following a similar sequence as above for V. For small relatively small w (roughly, w< .5), we

can approximate this expression as

I �
NP2

s2
Nw4

� ffiffiffi
p
p

w � w2
�K� 1

�
1

2
w3

ffiffiffi
p
p
� w4

�

¼
NP2

s2
N

wK� 2
� ffiffiffi
p
p
� w

�K� 1

�
1

2

ffiffiffi
p
p
� w

�

¼
V
s2
N

wK� 2

½
ffiffiffi
p
p

w � w2�
K

� ffiffiffi
p
p
� w

�K� 1

�
1

2

ffiffiffi
p
p
� w

�

¼
V

s2
Nw2

½
ffiffiffi
p
p
� w�K� 1

½
ffiffiffi
p
p
� w�K

�
1

2

ffiffiffi
p
p
� w

�

¼
V

s2
Nw2

1

2

ffiffiffi
p
p
� w

ffiffiffi
p
p
� w

4.5.1 The threshold error rate of the code. We compute the rate of threshold errors by

following the derivations from [43, 50]. In particular, threshold errors occur when the

response in the neural population is closer to a non-stimulus representation than the current

stimulus representation. To proceed, we discretize the population response, such that there are

1/S(w, K) distinct subpopulations, only one of which is active for a given stimulus, where S(w,

K) is the volume of a K-dimensional sphere with radius 2w. Importantly, this ratio increases

both as K increases and w decreases. Since we know the L2-norm of the code is
ffiffiffiffi
V
p

, we know
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that the distance between the representation of the correct stimulus and the representation of a

random, distant stimulus is
ffiffiffiffiffiffi
2V
p

. So, we need to find the probability that the noise crosses half

that distance, to become closer to the representation of the distant stimulus. This is given by

pswitch ¼ Q �

ffiffiffiffiffiffi
2V
p

2sN

� �

¼
1

2
erfc �

ffiffiffiffi
V
p

2sN

� �

�
1

2
exp �

V
4s2

N

� �
2sNffiffiffiffiffiffiffi
Vp
p

¼
sNffiffiffiffiffiffiffi
Vp
p exp �

V
4s2

N

� �

where the third line follows from an approximation of the error function for large argument.

Then, by a union bound, we find that,

pthr �
1

Sðw;KÞ
sNffiffiffiffiffiffiffi
Vp
p exp �

V
4s2

N

� �

However, we find in simulations that this underestimates the probability of threshold

errors. The reason is simple:
ffiffiffiffi
V
p

represents the average L2-norm. However, in the random RF

code, there is significant variance around this average for different stimuli. As a consequence,

stimuli with low L2-norms will be exponentially more likely to have threshold errors, but this

is not accounted for by our equation. To incorporate this, we replace V with Vλ, where,

Vl ¼ maxðV � lsVðwÞ; 0Þ

where σλ(w) is the standard deviation of V across stimuli for a random RF code, and it depends

on w. This quantity is approximated analytically in the supplement (see S1 Text).

Given this correction and setting λ = 2, we find good agreement between the resulting total

predicted MSE and the empircal MSE (Fig 3D and 3E).

4.5.2 Total MSE of the code. Finally, we can write the total approximate MSE for small w
as follows,

MSE �
2w2s2

N

V
þ pthrðw;V; sVÞ

1

6

where the 1

6
is the average squared size of a threshold error, calculated from the triangle distri-

bution. We find that this expression has good agreement with the MSE estimated from simula-

tions (Fig 3D and 3E).

4.5.3 RF code simulations. To generate the simulation traces for the RF codes, we sam-

pled stimuli from a uniform distribution over K dimensions, then obtained the representations

of those stimuli in a particular instantiations of random RF codes (depending on the number

of regions in the code). Then, within each code, we used maximum likelihood decoding to

obtain an estimated stimulus and compared that estimate with the true stimulus.

PLOS COMPUTATIONAL BIOLOGY Redundant representations for the integration of complex stimuli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011327 August 9, 2023 25 / 31

https://doi.org/10.1371/journal.pcbi.1011327


4.6 Random ramp codes

To explore a situation more similar to representations in the mammalian auditory system, we

also use neural representations with the following form:

riðxÞ ¼ 2P xR �
1

2

� �

� uR exp �
XKG

j

ðxG;j � mijÞ
2

2w2
j

" #

þ n

where the stimulus x is now divided into dimensions that are encoded with ramp-like tuning

xR and receptive field-like tuning xG. The neuron is also assumed to have a preferred axis uR in

the space of features encoded with ramp-like tuning. In our simulations, uR is chosen to be a

random unit vector.

In the case of the auditory system, single neurons are thought to respond to a specific fre-

quency band (i.e., a receptive field-like representation) while having the intensity of their

response modulated by the position of the sound (i.e., a ramp-like representation) [39–42].

4.7 Calculating the redundancy between representations

We quantify the redundancy between RX and RY as the mutual information between X̂ and Ŷ ,

R ¼ IðX;YÞ ¼ HðXÞ � HðXjYÞ

¼ KX
1

2
log 2ps2 � ðKX � CÞ

1

2
log 2ps2 � C

1

2
log 2pðDX þ DYÞ

¼ C
1

2
log 2ps2 � C

1

2
log 2pðDX þ DYÞ

¼
C
2
log

s2

DX þ DY

¼
C
2
log

s2ð1 � DD2Þ

4D2
S

where R is the redundancy between the representations in region X and Y (in nats). As dis-

cussed throughout this work, this redundancy is crucial for solving the assignment problem.

The redundancy is proportional to the number of commonly represented features C—so,

increasing C will produce relatively large increases in redundancy, and, as we have seen, can be

expected to effectively reduce assignment errors. Further, increasing the asymmetry of feature

representations ΔD reduces the level of redundancy between the RX and RY—so, as anticipated,

increasing this asymmetry will increase the assignment error rate.

This redundancy represents the cost of our solution to the assignment problem. Thus, we

desire a solution to the assignment problem that achieves a particular assignment error rate

and local distortion magnitude while using as few bits—and, in particular, as few redundant

bits—as possible.

4.8 The random RF integration model

The stimuli for the integration model are described by K = 3 dimensions. On each “trial,” we

sample two uniformly distributed, random stimuli. Two features are represented in each of the

two input populations. The two populations each represent C = 1 overlapping and one unique

feature, with N = 400 units. Each population is noisy and has SNR ¼
ffiffiffiffiffi
20
p

.

When present, the integration layer has N = 2000 units. The training targets are generated

by obtaining representations from a K = 3-dimensional random RF code. When present, the

hidden layers are two layers of 500 units, with no specific training target. The output
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population is N = 400 units, and the training target is given by samples from a random RF

code for the two unique features in the input representation.

4.8.1 End-to-end learning. The network is trained to produce the output population

directly. The different network architectures (integration or no integration, hidden layers or

no hidden layers) indicate how many and what kind of intervening layers are present; the

training objective does not change.

4.8.2 Integration learning. The network is trained to produce the activity from a random

RF code in the integration layer (i.e., the full K = 3-dimensional representation). The output is

learned as a second objective for backpropagation.

4.8.3 Training procedure. The nonlinear layers are learned by backpropagation with sto-

chastic gradient descent, using the Keras Tensorflow [77] environment and the Adam opti-

mizer. The batch size is set to 200 and the network is trained for a maximum of 200 epochs on

50000 input samples with early stopping (if performance on a validation set stops improving

for 2 epochs). In practice, the early stopping is often triggered after around 20 epochs.

Supporting information

S1 Text. Additional results and derivations, including two supplementary figures. In the

supplementary text, we include additional detail on several points discussed in the main text as

well as explore several related topics. In particular, we

1. Consider the case of asymmetric feature representations.

2. Consider the case of nonlinear mappings between the two feature representations.

3. Derive an expression for the variance of spiking energy of the RF codes.

(PDF)

Acknowledgments

We are thankful to Stephanie Palmer, Ji Xia, and Matteo Alleman for their comments on an

earlier version of this work. We are also thankful to Allison Ong, Mahham Fayyaz, and Stepha-

nie Hoker for administrative support.

Author Contributions

Conceptualization: W. Jeffrey Johnston, David J. Freedman.

Formal analysis: W. Jeffrey Johnston.

Funding acquisition: W. Jeffrey Johnston, David J. Freedman.

Investigation: W. Jeffrey Johnston.

Methodology: W. Jeffrey Johnston.

Project administration: David J. Freedman.

Resources: David J. Freedman.

Supervision: David J. Freedman.

Visualization: W. Jeffrey Johnston.

Writing – original draft: W. Jeffrey Johnston.

Writing – review & editing: W. Jeffrey Johnston, David J. Freedman.

PLOS COMPUTATIONAL BIOLOGY Redundant representations for the integration of complex stimuli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011327 August 9, 2023 27 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011327.s001
https://doi.org/10.1371/journal.pcbi.1011327


References
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