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Single-cell genomics improves the discovery
of risk variants and genes of atrial fibrillation

Alan Selewa1,7, Kaixuan Luo2,7, MichaelWasney 3, Linsin Smith4, Xiaotong Sun2,
Chenwei Tang5, Heather Eckart 3, Ivan P. Moskowitz 2,6, Anindita Basu3 ,
Xin He 2,8 & Sebastian Pott 3,8

Genome-wide association studies (GWAS) have linked hundreds of loci to
cardiac diseases. However, in most loci the causal variants and their target
genes remain unknown. We developed a combined experimental and analy-
tical approach that integrates single cell epigenomics with GWAS to prioritize
risk variants and genes. We profiled accessible chromatin in single cells
obtained from human hearts and leveraged the data to study genetics of Atrial
Fibrillation (AF), themost common cardiac arrhythmia. Enrichment analysis of
AF risk variants using cell-type-resolved open chromatin regions (OCRs)
implicated cardiomyocytes as the main mediator of AF risk. We then per-
formed statistical fine-mapping, leveraging the information in OCRs, and
identified putative causal variants in 122 AF-associated loci. Taking advantage
of the fine-mapping results, our novel statistical procedure for gene discovery
prioritized 46 high-confidence risk genes, highlighting transcription factors
and signal transduction pathways important for heart development. In sum-
mary, our analysis provides a comprehensive map of AF risk variants and
genes, and a general framework to integrate single-cell genomics with genetic
studies of complex traits.

Cardiac diseases are a leading cause of mortality across the world1,2.
GWAS of cardiac traits have uncovered a large number of associa-
tions, including more than 100 loci linked to atrial fibrillation (AF)3–7.
However, in most loci the disease-driving causal variants remain
unknown. Given that most trait-associated variants are located in
non-coding regions8, researchers often use regulatory and epige-
nomic datasets to annotate possible effects of variants, and to
prioritize putative causal variants8–10. Existing datasets, however,
were often collected from bulk tissue samples that represent com-
plex mixtures of cell types11,12, while disease-causing variants often
act in specific cell types. Thus, lack of cell type-resolved epigenomic
data in disease-related tissues limits our ability of variant annotation
and prioritization. Another challenge of post-GWAS analysis is that

long-range gene regulation is common, making it difficult to link
non-coding variants with their target genes.

Despite these challenges, researchers have made attempts to
identify putative risk variants and genes underlying the AF genetics.
One study used epigenomic and gene expression data in the human
heart to nominate putative risk genes in 104 AF-associated loci. This
study, however, did not use rigorous statistical analysis to fine-map
causal variants and insteadused relatively lenient cutoffs andanadhoc
scoring scheme to rank putative target genes13. This study nominated
nearly 300 genes in these loci, many of which are likely not causal
genes. Another study used STARR-seq to map regulatory regions and
variants to nominate risk variants in 12 AF-associated loci14. But the
majority of AF-associated loci were not investigated in the study.
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A more recent study collected single-cell RNA-seq and ATAC-seq data
in the human heart, and performed fine-mapping in AF-associated
loci15. The study identified 38 putative risk variants in heart cis-
regulatory elements (CREs). Nevertheless, few nominated variants
reach high confidence and inmost loci the risk genes remainunknown.

To address these challenges in the context of heart diseases, we
developed an integrated framework that unifies advances in single cell
epigenomics, computational fine-mapping and a novel procedure for
risk gene discovery. Specifically, we performed single-cell chromatin
accessibility profiling to map open chromatin regions (OCRs) across
major cell types in the heart. Our statistical fine-mapping method
utilizes these candidate CREs to infer disease-relevant cell types and
takes advantage of this information to identify putative causal variants.
Our novel gene-mapping approach then aggregates information of all
fine-mapped SNPs to predict the risk genes, considering multiple
sources of information such as distance and chromatin loops between
enhancers and promoters. Application of this framework to AF
revealed a number of putative risk variants and genes, highlighting
biological processes important to the genetics of AF.

An unexpected finding from our study is that the majority of risk
variants of AF we discovered did not colocalize with heart eQTLs.
Taking advantage of our cell-type resolved epigenomic data, we found
that this was largely due to the lack of power of bulk eQTL studies to
identify regulatory variants with cell-type specific effects. This finding
thus sheds light on the common strategy of annotating GWAS results
using eQTLs.

Results
Overview of the experimental and computational approach
Our approach combines single-cell genomics with novel computa-
tional procedures to study genetics of cardiac traits (Fig. 1). Using
single nucleus RNA-sequencing16–18 (snRNA-seq) and single-cell ATAC-
seq (scATAC-seq)19,20, we obtained transcriptome and open chromatin
regions (OCRs) across all major cell types in the adult human heart
(Fig. 1, step 1). These OCR profiles allow us to discover cell types
enriched with the genetic risks of traits of interest. To identify specific
causal variants in trait-associated loci, we performed Bayesian statis-
tical fine-mapping. Fine-mapping is a technique that aims to identify
one or few causal variants that explain all the associations in a locus. It
avoids the use of arbitrary LD cutoffs in selecting candidate variants
and is able to quantify the uncertainty of each nominated variant.
Recent fine-mapping techniques are also able to incorporate func-
tional information of variants, such as regulatory activities in trait-
related cell types9,21,22. Because of these benefits, fine-mapping tech-
niques have been successfully applied to many common traits such as
Type 2 Diabetes23, Schizophrenia24 and autoimmune disorders25. Our
fine-mapping method takes advantage of the cell-type-resolved chro-
matin data to favor variants located in OCRs of enriched cell types
(Fig. 1, step 2). After fine-mapping, the candidate SNPs and their
associated cell-type information allow us to assign the cell type(s)
through which the causal variants are likely to act.

Finally, we developed a procedure to infer causal genes at each
locus (Fig. 1, step 3), addressing some common challenges. In “gene
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Fig. 1 | Overview of our experimental and computational framework. Left:
snRNA-seq and scATAC-seq profiling to cluster cells and obtain open chromatin
regions (OCRs) in each cell type. Schematic of theheart is providedbyOpenClipart-
Vectors via Pixabay. Middle: Using OCRs and GWAS summary statistics to assess
variant enrichment in cell-type-resolved OCRs. The enrichment results then pro-
vide prior for Bayesian statistical fine-mapping. The resulting Posterior Inclusion
Probabilities (PIPs) represent the probabilities of variants being causal. The likely
cell types through which the causal signals at each locus act can be identified by

considering cell type information of likely causal variants. We may not always be
able to identify a single cell type per locus, so we assign probabilities to cell types.
Right: Computational gene-mappingusing PIPs fromSNPfine-mapping andSNP-to-
gene links to obtain gene level PIPs. Note that the PIP of a SNP is partitioned into
nearby genes in a weighted fashion, with more likely target genes receiving higher
weights (as indicated by thicker arrows). Prioritized genes can be further assessed
through external evidence such as gene networks and expression.
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association tests” researchers test if the set of SNPs near a gene col-
lectively show disease association26,27. These types of methods, how-
ever, cannot distinguish between multiple genes close to disease-
associated variants. Alternatively, researchers may perform fine-
mapping first, then link the high-confidence SNPs to target genes
using additional information. However, fine-mapping alone rarely
leads to a single, or even a few, high confidence SNPs at associated
loci23, therefore this approach also has limited utility. In contrast, our
procedure aggregates information of all fine-mapped variants in a
locus to nominate risk genes. To see its benefit, suppose fine-mapping
in a locus implicates 10 putative causal variants without any single one
reaching high confidence; however, if all 10 SNPs likely target the same
gene, we can be confident of the causal gene. We developed a statis-
tical procedure to implement this idea, and estimated a score, called
gene PIP (Posterior Inclusion Probability), for each gene. Under certain
assumptions, we showed that the gene PIP estimates the probability of
a gene being causal. The details are described below and in “Methods”.

Single-cell transcriptome and chromatin accessibility profiling
reveals multiple cell types in the human heart
We performed snRNA-seq and scATAC-seq using the Chromium plat-
form (10x Genomics) (Fig. 1, step 1). The heart samples were obtained

from the left and right ventricles (LV and RV), the interventricular
septum, and the apex of three adult male donors (Supplementary
Data 1). After quality control, we retained data of 49,359 cells in snRNA-
seq and 26,714 cells in scATAC-seq, respectively (Supplementary Figs. 1
and 2).

We characterized cell populations with clustering analysis in both
snRNA-seq and scATAC-seq datasets. From snRNA-seq28, we identified
eight major cell types based on marker genes and comparison to
published single-cell heart atlas data17 (Fig. 2a, left, Supplementary
Fig. 3a), with ~70%of cells fromcardiomyocytes (CMs), fibroblasts, and
endothelial cells. Clustering based on scATAC-seq data29 revealed
similar cell populations (Fig. 2a, right).We computationally transferred
cluster labels from snRNA-seq onto scATAC-seq clusters28 (“Methods”)
and unambiguously identified matching cell types (Supplementary
Fig. 3b, c). Indeed, expression and chromatin accessibility near marker
genes showed high cell-type specificity (Fig. 2b, c). Across the eight
clusters, gene scores inferred from scATAC-seq, a metric that sum-
marizes the chromatin accessibility near a gene29 (Methods), were
highly correlated with transcript levels in the matched clusters (Sup-
plementary Fig. 3d).We also foundgood agreement between cell types
identified in our scATAC-seq data and a recent study (Hocker et al.15),
the only differences in annotation between these two studies was that

Fig. 2 | Mapping cell types in the human heart. a UMAP projection of individual
cells from snRNA-seq and scATAC-seq colored by cell types. Stacked barplots on
the right represent the proportions of cell-types from each of the three donors.
b UCSC genome browser track plots of chromatin accessibility at selected marker

genes across cell types. The bottompart shows the gene track (RefSeq annotation).
Shown are two marker genes, TNNT2: cardiomyocyte marker; DCN: fibroblast
marker. c Stacked violin plots of marker gene expression (log-normalized expres-
sion values) in each cell type.
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we did not detect atrial cardiomyocytes, owing to our use of ven-
tricular samples, and that we detected separate pericytes and smooth
muscle clusters (Fig. 2a), whereasHocker et al. annotated a single large
cluster as “smooth muscle”. These results supported our cell-type
assignments in both modalities.

Analysis of scATAC-seq data identifies cell-type-specific
regulatory elements and their regulators
Wepooled cells of the same cell type and identifiedOCRs separately in
each cell type. Combining samples of the same cell type (Supple-
mentary Fig. 4a, b), we detected 45,000–150,000 OCRs per cell type
(Supplementary Fig. 4c) yielding a union set of 352,904OCRs.K-means
clustering of these regions based on their accessibility suggested that
most OCRs are active in specific cell types (Fig. 3a). Using differential
accessibility (DA) analysis, we identified 173,782 (49%) OCRs with cell-

type-specific accessibility (“Methods”). We divided the remaining
179,122 (51%) OCRs into three categories based on their detection
across cell types: shared in 2–3 cell types, shared in ≥4 cell types
(denoted as Shared 2-3 and Shared 4), and remaining ones, denoted as
“non-DA OCRs”, which mostly comprise peaks with low read counts
(“Methods”). In agreement with previous observations, shared OCRs
were enriched in promoter regions30 (Fig. 3b, c).

We compared our OCRs to regulatory regions identified in mul-
tiple tissues in ENCODE12. As expected, a large fraction of OCRs from
major heart cell types (e.g., CMs, endothelial, fibroblasts) overlapped
with DNase Hypersensitive sites (DHS) from ventricles (Fig. 3d, top,
Supplementary Fig. 5a). In contrast, the proportions ofOCRs from rare
cell types (e.g., myeloid) overlapping with bulk DHS were significantly
smaller, suggesting that scATAC-seq is more sensitive and detects
more regulatory elements specific to rare cell types compared to bulk
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Fig. 3 | Discovery of OCRs and transcriptional regulators in the human heart.
a Row-normalized accessibility of OCRs across all cell types. bNumber of cell-type-
specific and shared OCRs and their genomic distributions. c Density plot of the
log10 distance to nearest gene for all cell-type-specific and shared OCRs. Colors of
the lines for cell-type-specific OCRs follow the same convention as in Fig. 2a. Gray
and black lines represent shared 2-3 and shared 4 OCRs. d Proportions of cell-type
specific OCRs that overlap with DHS (upper panel). Bar graph (lower panel) shows
the proportions of cell-type specific OCRs that overlap with H3K27ac regions (LV
left ventricle, RV right ventricle). Smooth muscle cells and neuronal cells are not
shown due to the small numbers of peaks in these cell types. e Enrichment of TF
motifs in the OCRs specific to each cell type. Shown are 76 TFs with FDR< 1% from

motif enrichment analysis in at least one cell-type, and correlation between motif
enrichment and gene activity >0.5. Enrichment analysis was performed using the
peakAnnoEnrichment function in ArchR, which uses the hypergeometric test to
assess the enrichment of the number of times a motif overlaps with a given set of
peaks, compared to random expectation. After correcting for multiple testing
within each cell-type, we used FDR< 1% to ascertain a set of motifs and their
enrichment. f Gene scores (from ArchR) and motif accessibility scores calculated
with chromVar in OCRs for MEF2A (top) and TBX5 (bottom) across all cells.
Abbreviations for cell types: CM cardiomyocyte, Sm.Mus. smooth muscle, Peri
pericyte, Endoendothelial, Fibrofibroblast, Neuroneuronal, Lymph lymphoid,Mye
myeloid.
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DHS (Fig. 3d, top, Supplementary Fig. 4d). This can be seen in several
cell-type-specific OCRs near marker genes of rare cell types, which
were largely undetected in the pseudo-bulk sample (Supplementary
Fig. 6). Additionally, 60–80% of OCRs from major cell types over-
lapped with H3K27ac regions from LV and RV, suggesting enhancer
activities (Fig. 3d, bottom, Supplementary Fig. 5b). Together, these
results showed that scATAC-seq identified cell-type-specific regulatory
elements. We also compared cell-type-specific OCRs identified in our
study to peaks identified by an earlier single-cell study in heart15 and
found that OCRs showed good agreement across studies (Supple-
mentary Fig. 7). Importantly, more than 75% of OCRs detected in our
CMs were also detected in ventricular CMs by Hocker et al. (Supple-
mentary Fig. 7).

Chromatin accessibility is largely controlled by lineage-specific
transcription factors (TFs)31. To identify these TFs, we assessed the
enrichment of TF motifs in OCRs specific to each cell type and iden-
tified 260 significantly enriched motifs (“Methods”). Because TFs of
the same family may share similar motifs, we performed additional

analysis to infer the exact TFs driving the enrichment, assuming that
for these TFs, their motif enrichment should correlate with gene
expression across cells. To test this, we correlated motif accessibility
scores of TFs calculated by chromVar32 with their accessibility-derived
gene scores, a proxy for gene expression29 (Methods). This analysis
yielded 76 TFs with enriched motifs and correlation >0.5 (Fig. 3e and
Supplementary Data 2). Many of these TFs are cell type-specific
(Fig. 3e) and include known CM regulators, such as TBX5, GATA4, and
MEF2A33 (Fig. 3f). These results provided a compendium of putative
transcriptional regulators across major cell types in the human heart.

Open chromatin regions in CMs are enriched with risk variants
of heart diseases and inform statistical fine-mapping
Using our cell-type-resolved OCRs, we assessed the contributions of
different cell types to genetics of heart-related traits34. Risk variants of
AF were almost exclusively enriched (>10-fold) in OCRs from CMs
(Fig. 4a). Similar findings were reported in an earlier study15. Interest-
ingly, the variants associated with the PR interval showed a similar

Fig. 4 | Statistical fine-mapping of loci associated with the AF risk. a Log2 fold
enrichment (from the tool TORUS) of risk variants of various traits in cell-type-
specific OCRs. b Comparison of AF fine-mapping results under the informative
prior usingOCRs (Y-axis) vs. the results under the uniformprior (X-axis). Eachdot is
a SNP, and color represents the annotation of SNPs. Dashed line has a slope of 1.
c Summary of PIPs of variants. d Summary of credible set sizes from fine-mapping
of AF. e Trackplot at the HCN4 locus and the fine-mapped variant rs7172038
(PIP = 0.99). The top two tracks represent the -log10 p-value of SNPs from AFGWAS
(with color representing LD with the lead SNP) and their PIPs from SNP-level fine-
mapping. Middle three tracks represent cell-type aggregated ATAC-seq signals
(CM: red, endothelial: green; fibroblast: purple), followed by heart H3K27ac and
fetal DHS peak calls. The bottom track represents ABC scores from the heart

ventricle. Abbreviations for cell types: CM cardiomyocyte, Endo endothelial, Fibro
fibroblast. f Proportions of summed PIPs in disjoint functional annotation cate-
gories among all the loci. g Proportion of summed PIPs in disjoint functional
annotation categories at each individual locus. h Proportion of summed PIPs into
cell type-specific OCRs at each individual locus, for loci with summed PIPs in
OCR ≥0.25. Highlighted are two loci with high proportions in non-CM cells: fibro-
blast, lymphoid specific OCRs. i Chromatin accessibility and additional functional
genomic annotations of all SNPs with PIP ≥0.5. j Reporter activities in cardiac cells
(HL-1) of regions containing selected SNPs, with both reference and alternative
alleles. Data are from 5 replicates for each construct. Error bars represent
mean +/− SE. P values were calculated using a paired two-sided t test comparing
each alternative allele to the reference allele.
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enrichment pattern, suggesting a genomic link between PR interval
and AF risk for future investigation35 (Fig. 4a). In contrast, risk variants
of cardiovascular traits and diseases, and blood pressure, were enri-
ched acrossmultiple cell types (Fig. 4a). As control, non-cardiovascular
traits showed little or no enrichment in heart cell types (Fig. 4a). We
also checked the enrichment of genetic risk of AF at open chromatin
regions at individual cells, using themethodSCAVENGE36. This analysis
confirms that the vast majority of cells enriched with AF risk are CMs
(Supplementary Fig. 8). Together, these results suggest distinct cell
type origins of different heart-related traits, highlighting CMs as the
main cell type underlying AF.

This observation motivated us to take advantage of the epige-
nomic data to statistically fine-map causal variants in 122 approxi-
mately independent AF-associated loci37. We first used TORUS21 to
estimate how putative risk variants are enriched in multiple functional
annotations, including protein-coding regions, conserved sequences,
and OCRs in CMs (Supplementary Fig. 9a, “Methods”)21. This infor-
mation was used to set prior probabilities of variants being causal. We
then performed fine-mapping analysis of all AF-associated loci with
SuSiE38. Compared to fine-mapping that treats all variants equally
(uniform prior), this procedure increased the number of high-
confidence risk variants. In total, we identified 68 variants whose
probabilities of being causal variants, denoted as PIP, are 0.5 or higher,
compared with 44 at PIP ≥0.5 under the uniform prior (Fig. 4b, c,
Supplementary Data 3, and Supplementary Fig. 9b, c). Across 122 loci,
our procedure narrowed down putative causal variants to 5 or fewer
SNPs in 51 loci (Fig. 4d).

We highlighted the advantage of our functionally informed fine-
mapping with some examples. In the locus containing HCN4, several
SNPs are in high LD with similar GWAS association statistics (Fig. 4e,
top). Our procedure identified a single SNP, rs7172038, as the most
likely causal variant (PIP = 0.99) in the locus (Fig. 4e, middle). This SNP
is inside a CM-specific OCR, and H3K27ac region in the heart. Inter-
estingly, the Activity-by-contact (ABC) method39 predicted a loop
between the SNP and the HCN4 gene. HCN4 is an ion channel and has
been implicated in the genetics of AF14. In another example, we
nominated a likely causal variant (PIP = 0.96) among several high LD
variants in the locus containing GATA4 (Supplementary Fig. 9d), an
important TF for AF40.

A recent study nominated putative causal variants in 12 AF-
associated loci by detecting regulatory variants using STARR-seq14. We
compared these variants with our fine-mapped variants (Supplemen-
tary Data 4). Among the 9 loci where fine-mapping identifies one var-
iant at PIP > 0.5, the fine-mapped variants agree with allele-specific
variants from STARR-seq in two loci. In the remaining cases, the dis-
agreement is driven by two sources. Most of the allele-specific variants
fromSTARR-seqhavemuch lowerGWAS association thanfine-mapped
variants, suggesting that statistically they are unlikely to be causal
variants (see examples in Supplementary Fig. 10). In addition, STARR-
seq tested variant functions in vitro, and a few of allelic variants have
no regulatory annotations in vivo (Supplementary Data 4). These
results added to the emerging picture that in a trait-associated locus,
multiple variants may show regulatory effects in vitro41. But to identify
true causal variants, we believe one should consider both regulatory
information and the strength of GWAS evidence.

The fine-mapping results inform how the risk variants are parti-
tioned into various functional categories, such as exons and OCRs in
different cell types. The sum of PIPs of all SNPs assigned to a category
can be interpreted as the expected number of causal variants in that
category.We found that >50%of causal signals are fromOCRs and 30%
of signals from CM-specific OCRs, highlighting the key role of CMs in
AF (Fig. 4f). As expected, exons and UTRs explain only 3% of causal
signals.

The same PIP summation approach can also be applied to each
locus, with the PIP sum of a functional category, e.g., OCRs or exons,

now interpreted as the probability that the causal variant in that locus
falls into that category. Using this approach, we estimate that at more
than half of all loci, causal variants have >50% probability to localize to
OCRs (Fig. 4g). Further partitioning of OCRs into cell-type-level cate-
gories (Fig. 3b), we identified 37 loci where the causal signals almost
entirely (>90%) come from CM-OCRs (Fig. 4h). With the only excep-
tions of two loci, CMOCRsexplain the causal signals inmost of the loci,
based on OCR annotations (Fig. 4h and Supplementary Data 5).
Together these results highlighted that our approach could identify
cell type contexts of individual loci.

Fine-mapped variants are supported by regulatory annotations
and experimental validation
We characterized the regulatory functions of 68 specific variants at
PIP ≥0.5. The majority (42/68) were located in CM-OCRs (Fig. 4i and
Supplementary Data 3). 60% (41/68) of all variants and 86% (36/42) of
variants in CM-OCRs overlapped H3K27ac marks in the heart, sug-
gesting enhancer activities (Fig. 4i). 40%of variants (27/68) overlapped
with fetal DHS12, suggesting that these variantsmay act across fetal and
adult stages (Fig. 4i). Additionally, 22% of variants were linked to pro-
moters through chromatin loops in Promoter-capture HiC (PC-HiC)
from iPSC-derived CMs42 (Fig. 4i). Using mouse ChIP-seq datasets of
three key cardiac TFs (GATA4, TBX5, NKX2-5)33, we found that five
candidate variants are located in human orthologous regions of TF
binding sites, representing 4-fold enrichment over expectation by
chance (Supplementary Fig. 9e). We also found that 22% (15/68) SNPs
alter bindingmotifs (Fig. 4i) of one of the 76 TFs we identified as likely
transcriptional regulators in heart cell types (Fig. 3e). Together, these
results supported regulatory functions of many fine-mapped variants.

We experimentally tested six non-exonic variants with PIP > 0.95
that were located inside CM-OCRs and overlapped with putative
enhancers marked by H3K27ac or H3K4me1/3 (Fig. 4j and Supple-
mentary Data 6). Four out of six variant-containing OCRs induced
reporter gene expression in mouse cardiac cells (HL-1 cell line)43,44

(Supplementary Fig. 11a, “Methods”), but not in a fibroblast line (3T3),
suggesting cell-type-specific activity of the four OCRs (Supplementary
Fig. 11b). Three out of these four variants showed allelic changes of
reporter activities in cardiac cells, for at least one alternative allele
(Fig. 4j). The most striking effect was observed for rs7172038. Two
alternative alleles of this SNP (A and G) strongly reduced activation.
The enhancer containing this SNP interacts with the promoter ofHCN4
located about 5 kb away, according to Activity-by-Contact (ABC)
score39 (SupplementaryData 3).HCN4 is a well-knownAF risk gene and
is physiologically implicated in cardiac rhythm control45. Consistent
with these results, deletion of a syntenic 20 kb region in mice con-
taining this enhancer significantly reduced the expression of HCN414.
Notably, in two out of three SNPs with allelic effects, the use of func-
tional information in fine-mapping significantly boosted their PIPs to
≥0.95 (PIP = 0.40 for rs7172038 and 0.41 for rs1152591 under the uni-
form prior). These experimental results supported regulatory func-
tions of our high confidence variants.

In principle, we expect regulatory variants to affect transcript
levels of target genes. Using GTEx eQTL data from the left ventricle
(LV), we found that only 31% (21/68) variants are eQTLs (Supplemen-
tary Data 7). And only in four cases, the eQTLs showed plausible evi-
dence of colocalization (PP4 >0.5 using coloc46) with the AF risk
(Supplementary Data 7). The small overlap of fine-mapped variants
with heart eQTLs suggests a limitation of bulk eQTL data to identify
regulatory variants, an issue we will address in more detail below.

A novel computational procedure utilizes fine-mapping results
to identify AF risk genes
Despite our fine-mapping efforts, there remained considerable
uncertainty of causal variants in most loci (Fig. 4d). Even if the causal
variants are known, assigning target genes can be difficult due to long-
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range regulation of enhancers47. We developed a novel procedure,
called Mapgen, to address these problems (Fig. 5a, top): (1) For every
putative causal SNP, we assign a weight to each nearby gene, con-
sidering multiple ways the SNP may affect a gene (see below). The
weight of a gene can be viewed as the probability that the SNP affects
that gene. (2) For each gene, we then aggregate the causal evidence of
all SNPs likely targeting this gene, expressed as the weighted sum of
the PIPs of all these SNPs. To ensure that the causal evidence of a
variant is not counted multiple times when it targets multiple genes,

we normalize the SNP-to-geneweights in this calculation. The resulting
“gene PIP” approximates the probability of a gene being causal
(“Methods”). Similar to variant-level fine-mapping, we also define a
“credible gene set,” the set of genes that capture the causal signal at a
locus with high probability (“Methods”).

The weights of SNP-gene pairs reflect the strength of biological
evidence linking SNPs to genes (Fig. 5a, bottom). For a SNP in an exon
or in a regulatory region linked to a particular gene, we assign a weight
of 1 to that gene. When a SNP cannot be linked to any gene in these
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ways, its target genes are assigned using a distance weighted function
so that nearby genes receive higher weights (“Methods”).

We identified 46 genes with gene PIP ≥0.8, and 87 with gene
PIP ≥0.5 (Fig. 5b, SupplementaryData 8, and Table 1 for top prioritized
genes). At each locus, we obtained credible gene sets that captured at
least 80% of the causal signal. These credible gene sets contained a
single gene in 42 out of 122 blocks, and two genes in 34 blocks (Fig. 5c
and Supplementary Data 9). The genes at PIP ≥0.8 included many
known AF risk genes (Supplementary Data 10), such as TFs involved in
cardiac development and atrial rhythm control (e.g., TBX540 and
PITX248), ion channels (e.g. KCNN349), and genes involved in muscle
contraction (e.g., TTN).

Wenote that a key benefit ofMapgen is that even in the absenceof
high-confidence causal variants, itmay still identify putative risk genes.
In 14 out of 46 genes at PIP≥0.8, the SNP level PIPs were diffused, i.e.,
no single SNP reached PIP ≥0.5 (Supplementary Data 8). As an exam-
ple, GJA5, a known AF risk gene50, was supported by seven SNPs
(highest PIP = 0.22), five of which were linked to GJA5 by PC-HiC loops.
This led to the gene PIP of 0.80 for GJA5 (Fig. 5d and Supplementary
Data 3).NKX2-5, encoding a well-known transcription factor important
for heart development51, was supported by four SNPs (highest PIP =
0.37), all likely targeting NKX2-5. This led to a gene level PIP = 0.99
(Supplementary Fig. 12 and Supplementary Data 3). These examples
highlighted the advantage of aggregating information from all puta-
tive causal variants.

We benchmarked the performance of Mapgen to nominate risk
genes against alternative methods. Given the absence of a compre-
hensive list of known AF risk genes, we used, as a proxy, a set of Gene
Ontology (GO) terms previously linked to AF5. A gene annotated with

oneormoreof these termswouldbe considered as a “true” gene inour
evaluation, and otherwise a “false” gene. We considered several
methods: nearest gene to GWAS lead SNPs (nearest), Activity-by-
contact (ABC) score linking enhancers topromoters (ABC-max), a gene
association testmethod (MAGMA), and heart eQTLs linking variants to
genes. Additionally, we included a recent study that nominated risk
genes in AF-associated loci based on functional genomic data in heart
(denoted as van Ouwerkerk13). We found that all these alternative
methods, except ABC, have precision below or near 50% (Fig. 5e). ABC
score has a precision at 60%, but its sensitivity is low, detecting only a
few genes. Mapgen, at the threshold of gene PIP > 0.8, reaches a pre-
cision of 76%, while detecting nearly 50 genes. These results thus
demonstrated the advantages of Mapgen for risk gene discovery.

We next examined specific loci in detail to gain insights of the
weaknesses of existingmethods, andhowMapgen addresses them.We
focused on the three commonly used methods, nearest gene method,
the use of chromatin interaction data, and eQTL. Among the 46 genes
at PIP ≥0.8, 8 (17%) were not the nearest genes, by distance to TSS, to
the top GWAS SNPs. Some of these genes have been implicated in AF
and related phenotypes, including KCNN3, TTN and HCN4. Most of the
other genes have plausible functions such as CALU52, SSPN, and PKP2
(Supplementary Data 11). Most of the nearest genes in these loci, in
contrast, showed limited or no functional relevance (Supplementary
Data 11). As an example, in the locus containingCALU, the nearest gene
of the top SNP, rs55985730 (PIP 0.91) is OPN1SW, an opsin gene with
function in color vision, but no clear relevance to AF. This SNP is linked
to a distal gene CALU in PC-HiC data (Fig. 5f), allowing Mapgen to
identify CALU as the likely risk gene. CALU is a calcium-binding protein
and involved in alleviation of endoplasmic reticulum (ER) stress in

Table 1 | Top 15 prioritized genes

Gene Gene PIP Supporting SNPs SNP PIP Link Method OMIM CM-specific
expression

Known AF
risk gene

Reference [PMID]

SYNPO2L 1.113 rs60632610 0.971 Exon ✓ [20215401, 33768119]

HCN4 1.095 rs7172038 0.989 ABC ✓ ✓ [29987112]

ASAH1 1.061 rs7508 1 Exon ✓ [32015399]

ATXN1 1.000 rs59430691 0.809 PC-HiC [21475249, 22306179]

ERBB4 1.000 rs6738011 0.12 Distance ✓ [19632177]

KCNN2 1.000 rs337705
rs337708

0.528
0.113

Distance
Distance

✓ [19139040]

RPL3L 1.000 rs140185678 1 Exon [32870709, 32514796]

TUBA8 1.000 rs464901
rs361834

0.886
0.114

Nearby OCR
Nearby OCR

[31398994]

EPHA3 0.999 rs35124509
rs6771054
rs2117137

0.345
0.172
0.117

Exons
Distance
Distance

[17046737]

THRB 0.999 rs73041705
rs73032363
rs9841040
rs1865712

0.177
0.139
0.130
0.119

Distance
Distance
Distance
Distance

✓ [28740583]

ETV1 0.998 rs55734480
rs12154315
rs12112152

0.403
0.338
0.218

Distance
Distance
Distance

✓ [27775552, 29930145]

BEND5 0.997 rs11590635 0.973 Distance

PITX2 0.997 rs1906615
rs7689774

0.798
0.15

Distance
Distance

✓ [28217939, 29367545,
32309338]

TBX5 0.997 rs7312625
rs883079
rs7955405

0.511
0.194
0.126

Distance
Exon
PC-HiC

✓ ✓ [28057264]

PKP2 0.992 rs12809354
rs2045172

0.771
0.211

PC-HiC
PC-HiC

✓ [28740174]

In the Supporting SNPs column, only SNPs that contribute a fractional PIP (SNP PIP multiplied by the weight of the SNP to that gene) of 0.1 or more are shown. EFNA5 (gene PIP = 1) is not included
because it does not have any SNPs with fractional PIP ≥0.1. Nearby OCR is defined as OCR within 20 kb of active promoter of the gene. Reference column shows the PMIDs of the relevant papers
supporting the connections of the genes to AF or heart physiology.
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cardiomyocytes53. ER stress has a critical role in the pathophysiology of
AF54. These results suggest that by using chromatin loop information,
Mapgen is able to identify distal risk genes.

We also considered the use of chromatin conformation in resol-
ving target genes of high PIP SNPs. We found that while chromatin
interaction data were useful, as shown in the CALU example above,
using such information alone may miss many potential risk genes.
Among 68 SNPs at PIP ≥0.5, only five showed chromatin interactions
with promoters based on ABC scores39, and 18 if we included both ABC
and PC-HiC data. Additionally, it is common to observe multiple
chromatin loops at a single SNP. Among the 18 SNPs with chromatin
interactions, 50% (9/18) contact more than one promoter (Supple-
mentary Data 3), highlighting the uncertainty of target genes from
chromatin looping data.

Use of expression QTLs is another common strategy for linking
SNPs to genes. However, as reported above, few fine-mapped variants
colocalizedwith eQTLs. Even if a GWAS SNP is also an eQTL, it may not
identify the correct target gene. For example, in the TTN locus, the top
SNP (rs3731746) is an eQTL of FKBP7, but the true risk gene is very
likely TTN55,56.

Altogether, these results demonstrated the improved ability of
Mapgen to nominate plausible candidate genes compared to alter-
native approaches linking SNPs to genes.

Putative AF risk genes are supported by multiple lines of
evidence
We evaluated our candidate genes using multiple sources of data.
Consistent with enrichment of AF variants in CM-OCRs, candidate
genes (PIP ≥0.8) tended to have higher expression in CMs, compared

with other genes in the AF-associated loci (Fig. 6a). Among 46 loci with
PIP proportion ≥50% in cardiomyocyte OCR, the likely target genes
(gene PIP ≥0.5) were highly enriched (nearly tenfold) in cardiomyo-
cyte differentially expressed genes (Supplementary Fig. 13a). Addi-
tionally, high PIP genes were enriched in AF-related Mendelian
disorders (Supplementary Data 12 and Fig. 6b). We also compared our
genes with those prioritized by earlier work that used additional
functional data such as AF-related gene ontology and heart gene
expression5,13. While such functional data was not used in our analysis,
the genes at PIP≥0.8 scored on average substantially higher in two
earlier studies than low PIP genes (Supplementary Fig. 13b–d), and 32
of them (71%) were supported by at least one study (Supplemen-
tary Data 8).

We next assessed the functions of candidate genes using Gene
Ontology (GO) and gene networks57. GO analysis showed enrichment
of Biological Processes related to heart development and cardiac
function, and of Molecular Functions such as ion channels, hormone
binding and protein tyrosine kinase (Fig. 6c and Supplementary
Data 13). For network analysis, we used the STRING gene network built
with genes at a relaxed PIP threshold of 0.5 (87 genes) to increase the
number of interactions. This analysis highlighted some well-known
processes in AF, such as ion channels, and structure components of
heart muscle (Fig. 6d). A prominent subnetwork consisted of key TFs,
includingGATA4, TBX5, NKX2-5andHAND2, implicatedpreviously in AF
genetics and/or heart development40,58–60 (Fig. 6d). Two other TFs in
the network, PITX2 and ZFHX3, are also well-known AF genes40. Com-
bined with the fact that putative causal variants were enriched in
binding sites of TBX5, NKX2-5 and GATA4 (Fig. 4i and Supplementary
Fig. 9e), these results suggested that perturbation of transcriptional

Fig. 6 | Functional support of putative AF risk genes. a Log-normalized CM
expression of genes at PIP ≥0.8 vs. other genes from the AF loci (n = 580 for control
genes and n = 42 for genes at PIP ≥0.8). The center line of a box represents the
median; the lower and upper hinges of a box correspond to the first and third
quartiles; the upper/lower whisker extends from the hinge to the largest/smallest
value no further than 1.5× inter-quartile range from the hinge. b Percentage of

Mendelian disease genes from OMIM in each gene PIP bin. c Top 5 Biological
Processes (BP) and Molecular Functions (MF) GO terms from gene-set enrichment
analysis of the 46 genes with PIP ≥0.8. dGene interaction network of candidate AF
genes (PIP ≥0.5) using STRING. Only genes with interactions are shown. Interac-
tions are defined using a confidence threshold of 0.7 by STRING. Node sizes
represent gene PIPs. Colors of genes indicate their shared molecular functions.
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regulatory networks consisting of TFs and their targets, plays a critical
role in the genetics of AF. Additionally, the interaction network high-
lighted signal transduction pathways, including MAPK signaling and
Ephrin signaling (Fig. 6d). Both processes are important in heart
development61–64. Indeed, 19 out of 87 genes at PIP ≥0.5 were anno-
tated by the GO term “regulation of intracellular signal transduction”
(FDR <0.02) (Supplementary Data 14).

Finally, we found additional literature support for the candidate
genes. 39 out of 46 (85%) genes at PIP ≥0.8 have reported roles in
cardiac processes and/or diseases from literature (Supplementary
Data 10). The top 15 genes with literature support, as well as their
supporting SNPs, are shown in Table 1. The majority of these genes
have not been established as AF risk genes through functional studies,
representing novel yet biologically plausible risk genes.

Cell-type-specific epigenomes reveal insights to lack of
colocalization of GWAS signals to heart eQTLs
While a large fraction of fine-mapped AF SNPs fell inside CM-specific
OCRs (Fig. 4f), most of them did not colocalize with heart eQTLs
(Supplementary Data 7). This result adds to the growing evidence that
eQTLs may explain a relatively small percent of GWAS signals of
complex traits65,66. It is unclear, however, why this is the case67.We took
advantage of our cell-type-resolved transcriptomic and epigenomic
data to investigate this issue. We hypothesized that the heart eQTLs
missed a large fractionof regulatory variants specific toCMs, thuswere
depleted of AF risk variants. To assess this hypothesis, we focused on
1216 heart (LV) eQTLs from GTEx where the causal variants (known as
eQTNs) were fine-mapped with high confidence (PIP≥0.8) (Supple-
mentary Data 15).

Given that the heart eQTL study was performed on bulk tissues,
the cell types where these eQTLs act are unknown. We used eQTL
information in other tissues to infer whether the eQTLs are likely CM-
specific. Our reasoning is that eQTLs that were found across many
tissues are likely to be functional in cell types shared across tissues,
thus not specific to CMs. We found that the majority of eQTLs were
highly shared, i.e., found in >30 tissues in GTEx (Fig. 7a). Less than 10%
of heart eQTLs were found in 5 or fewer tissues. These results thus
suggest that the detected heart eQTLs are highly biased towards var-
iants with effects in cell types shared across tissues.

This finding thus confirms our hypothesis that the detected heart
eQTLs are generally not specific to CMs, even though CMs constitute a
relatively large fraction of heart cells (20–30%, Fig. 2a). To understand
these results, we divided the heart eQTLs into different categories
based on the location of the eQTNs, including exons, UTRs, introns,
OCRs in specific cell types, and OCRs shared with varying numbers of
cell types. We analyzed the tissue-sharing pattern of each category
separately. The overall sharing pattern of all eQTLs would depend on
the sharing pattern of each category, and the percent of eQTLs in each
category (see “Methods”). This analysis would thus allow us to
understand what drives the high degree of observed eQTL sharing
across tissues.

As expected, eQTLs falling into OCRs shared inmultiple cell types
were extensively shared across tissues (Fig. 7b). On the other hand,
eQTLs in cell-type-specific OCRs showed variable levels of sharing.
Fibroblast-eQTLs (eQTLs in fibroblast-specific OCRs) and myeloid-
eQTLs were highly shared (median 31 and 43 tissues, respectively), but
most CM-eQTLs were found in <10 tissues (Fig. 7b). We believed this
variability reflected different degrees of cell type sharing between the
heart and other tissues. To test this, we compared heart eQTLs with
those from the brain and whole blood. As expected, heart eQTLs from
immune cell OCRs had the highest sharing with whole blood, while
eQTLs of all heart cell types have low sharing with the brain (Fig. 7c).
Together, these results highlighted considerable variability of tissue
sharing patterns of heart eQTLs, depending on their likely cell-type
origins.

We next assessed the proportions of heart eQTLs in functional
categories, focusing on eQTLs in OCRs, whose cell-type origins could
be inferred. A large proportion of those eQTLswere fromOCRs shared
in multiple cell types, with eQTLs in CM-specific OCRs only explain
<10% of heart eQTLs (Fig. 7d). Given that different categories of OCRs
havedifferent genome sizes, we compared the proportions of eQTLs in
each category with random expectation (Methods). While eQTLs in
OCRs from single cell types showed 2–9-fold enrichment, those shared
with 4 or more cell types showed 26-fold enrichment (Fig. 7d). Indeed,
the enrichment is highly correlated with the number of cell types in
which anOCR is detected (Fig. 7e).We thus concluded that discovered
eQTLs are biased towards those with broad effects across multiple
cell types.

Altogether, our results suggest that eQTLs that are likely CM-
specific are under-represented in the data, constituting <10% of all
heart eQTLs.Most of the remaining eQTLs have effects acrossmultiple
cell types; or have effects in cell types shared across other tissues. As a
result, the overall level of tissue sharing of heart eQTLs is very high.
Given that AF risk variants are specifically enriched in CM-specific
OCRs (Fig. 4a), the depletion of CM-specific eQTLs explains why heart
eQTL data fail to explain most GWAS signals.

We reason that this depletion of cell-type-specific regulatory
variants in eQTLs can be explained by the nature of bulk eQTL studies.
When the effect of aneQTLon a gene is limited to a single cell type, but
the gene is expressed inother cell types, the effect of the variant on the
bulk gene expression would be diluted, leading to lower power of
detecting this eQTL. This argument was supported by the observation
that gene expression was less cell-type-specific than accessibility of
regulatory elements. In heart eQTLs localized to CM-specificOCRs, the
expression of corresponding genes in CMs were only modestly higher
than their expression in other cell types (Supplementary Fig. 14a). We
performed simulations to investigate the power loss in detecting cell-
type-specific eQTLs. When the cell type of interest is 20% of the bulk
tissue, we estimate that the power of detecting eQTL specific in this
cell type is only about 8-40% of the power of detecting eQTLs with
shared effects across cell types (Supplementary Notes and Supple-
mentary Fig. 14b). This analysis demonstrated that the low power of
detecting cell-type specific eQTLs is a key limitation of bulk eQTL
studies.

Discussion
While GWAS have been successful in a range of complex traits, the
causal variants, their target genes, and their mechanisms in disease-
related cell types have been elucidated in few cases47. In this work, we
established a cell-type-resolved atlas of chromatin accessibility and
transcription of the human heart to study the genetics of heart-related
traits, focusing on AF3–5. We statistically fine-mapped AF-associated
loci, and experimentally validated some of the candidate variants.
Using a novel computational procedure, we identified 46 high con-
fidence genes, implicating key biological processes, in particular TFs
and signaling pathways important for heart development. Motivated
by our observation that the putative AF variants often were not colo-
calizedwith eQTLs,we investigated howheart eQTLs are shared across
tissue types. Our analysis suggests that eQTLs with cell-type-specific
effects are under-detected and that this is likely a factor explaining
both high tissue-sharing of eQTLs and the lack of eQTLs in GWAS
variants.

Compared with several recent studies that aimed to identify risk
variants and genes in AF13,15, our studyhas a fewkey advantages. Hocker
et al. intersected fine-mapped variants with cell-type-resolved OCRs to
nominate putative regulatory variants. Their work and related studies68

demonstrated the utility of single cell ATAC-seq data for interpretation
of non-coding variants from GWAS. Our work extends these studies by
using a computational procedure that leverages the strong enrichment
of genetic signals in CM-specific OCRs to fine-map causal variants,
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identifying 68 high confidence SNPs at PIP > 0.5, including 42 in CM
OCRs, compared to five nominated by Hocker et al. 15 (Fig. 4b). Our
gene-mapping procedure effectively leverages fine-mapping results
and multiple sources of information linking SNPs to putative targets.
This avoids the bias of previous work that only considers one metric,
e.g., distance, to link SNPs to genes, and increases the sensitivity of
detecting risk genes. As a result, we found high confidence genes
(PIP ≥0.8) in more than 1/3 of known AF-associated loci.

Our set of 46 candidate genes shed light on the genetics of AF.
Earlier linkage studies implicated ion channels and structural proteins,
as well as a few TFs69. Our results confirmed these earlier findings and
showed an even larger role of regulatory genes, including TFs and
signaling proteins. In total, we identified 13 TFs with PIP ≥0.8 (Sup-
plementary Data 10), and 18 at PIP ≥0.5. These included known AF
genes, TBX5 (PIP 0.99), NKX2-5 (0.99), PITX2 (0.99), ZFHX3 (0.85) and
GATA4 (0.57), as well as TFs with roles in heart development such as
HAND2 (0.87), ZEB2 (0.98), and PRRX1 (0.72). Our results also

highlighted signal transduction pathways, including MAPK signaling61,
Ephrin signaling62–64 (Fig. 6d), G-protein coupled receptor signaling70,
Wnt signaling71 (Supplementary Data 13) and FGF signaling72,73 (FGF9,
PIP = 0.94 and FGF5 PIP = 0.53), all previously implicated in heart
development.

Despite the advances described above, our study has a few lim-
itations. Our experimental data were limited to four anatomical loca-
tions of the ventricles, while some AF risk variants might act through
atrial-specific CMs. However, it is worth noting that a recent study,
using scRNA-seq based cellular atlas of the heart including all anatomic
locations, found that AF candidate genes were strongly enriched in
ventricular CMs17. Additionally, our data were from adult hearts, and
thus may miss regulatory elements acting transiently during devel-
opment. Our computational procedure relied on statistical fine-map-
ping, which may provide mis-calibrated results in practice74. To
prioritize genes, we used a set of heuristic rules to link variants to
genes. This worked reasonably well in our data, but without

Fig. 7 | Tissue-sharing patterns of heart (LV) eQTLs from GTEx. a Number of
tissueswhere LV-eQTLs are detected at local false sign rate (LFSR) < 1%.bViolinplot
showing the number of tissues in which a specific eQTL is detected. Each row
represents a different class of eQTLs, assigned based on their overlap with OCRs
categories and other genomic locations. Unassigned: eQTLs that cannot be
assigned to any functional class. The center line in the box represents the median;
the left and right hinges of a boxcorrespond to thefirst and thirdquartiles. The thin
black line extending from it represents the smallest and largest values in the data.
c Proportion of LV-eQTLs located in OCRs of selected cell types (Cardiomyocytes,
Endothelial cells, Fibroblast, and Immune cells) that were also detected as eQTLs in
a second tissue. d Proportion of LV-eQTLs (n = 1216) in each functional class. For

comparison, the proportions of random SNPs in all the classes are also shown. The
numbers near the bars represent the fold enrichment in heart eQTLs compared to
random SNPs. The numbers of eQTLs in the categories are the same as in (b).
e EnrichmentofGTExheart eQTLs inOCRsvarywith thenumber of cell typeswhere
the OCRs are active. Lower panel shows the proportion of eQTLs (light blue) and
control SNPs (dark blue, chosen tomatch eQTLs in LDandMAF) overlappingOCRs.
The OCRs are divided into 4 categories, based on the degree of sharing across cell
types in heart: 1 = not shared, 4+ = shared in ≥4 cell types. The upper panel shows
the enrichment of eQTLs in each OCR class compared to expectation based on
control SNPs. Abbreviations for cell types: CM cardiomyocyte, Endo endothelial,
Fibro fibroblast, Lymph lymphoid, Mye myeloid, Peri pericyte.
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comprehensive evaluation it is difficult to know how well it will per-
form in other settings. This challenge is exacerbated by the lack of a
gold standard dataset to evaluate risk genes from GWAS. Lastly, we
showed that bulk eQTLs largely missed the effects of our fine-mapped
variants andour analysis suggested thatone factormaybe the reduced
power of detecting cell type specific regulatory effects. We cannot,
however, exclude other explanations. For example, many variantsmay
act during cardiomyocyte differentiation and therefore would not be
detected as eQTLs in adult samples. We believe future eQTL studies
across multiple cell types and different developmental stages would
help bridge the gap of our understanding.

In conclusion, by combining novel experimental and computa-
tional approaches, our study identified a number of risk variants and
genes and revealed key insights of the genetics of AF. These data
provide a rich resource for future functional studies. Importantly, our
analytic framework, including the software for fine-mapping and risk
gene identification,may provide a generalmodel for the study of other
complex phenotypes.

Methods
Data collection
Nuclei isolation from adult heart tissue. Heart tissue samples were
obtained fromNationalDisease Research Interchange (NDRI) andwere
stored at −80 °C and kept on dry ice whenever outside of the freezer.
University of Chicago IRB reviewed the study and determined that this
research does not constitute HumanSubjects Research (IRB19-1429, 9/
6/2019).We included samples from 4 regions (left and right ventricles,
interventricular septum, apex) from 3 male individuals (Supplemen-
tary Data 1). Aliquots of each heart sample were prepared from frozen
heart tissue using a tissue pulverizer, which was cooled prior to pul-
verization for 20minutes over dry ice. Aliquots assayed in this study
ranged from 86.7mg to 141.6mg. Prior to library preparation, we
purified nuclei using fluorescence-activated cell sorting (FACS) to
remove debris and minimize contamination from ambient RNA.

Single nuclei isolation was performed on the heart tissue aliquots
as described in Litvinukova et al.17, with some modifications. Single
heart aliquots were kept on dry ice until being transferred into a pre-
cooled 2mL dounce homogenizer (Sigma) with 2ml homogenization
buffer (250mM sucrose, 25mM KCl, 5mM MgCl2, 10mM Tris-HCl,
1mM dithiothreitol (DTT), 1× protease inhibitor, 0.4U/µl, RNaseIn,
0.2 U/µl SUPERaseIn, 0.1% Triton X-100 in nuclease-free water). Sam-
ples were dounced 25 times with pestle A (loose) and 15 times with
pestle B (tight), filtered through a 40-µm cell strainer, and centrifuged
(500 × g, 5min, 4 °C). Supernatant was discarded and the nuclei pellet
was suspended in nuclei resuspension buffer (1× PBS, 1% BSA, 0.2 U/µl
RnaseIn) and stained with NucBlue Live ReadyProbes Reagents
(ThermoFisher). Hoechst-positive nuclei were enriched using
fluorescence-activated cell sorting (FACS) on the FACSAria (BD Bios-
ciences), obtaining between 172,500 and 350,000 nuclei while tar-
geting a maximum of 350,000. Nuclei were sorted into 0.75ml of
resuspension buffer. Flow-sorted nuclei were counted in a C-Chip
Disposable Hemocytometer, Neubauer Improved (INCYTO) before
commencing with library preparation.

snRNA-seq library preparation and sequencing. A portion of the
sorted nuclei suspensionwas removed and brought to a concentration
of between 700 and 1200 nuclei per microliter. An appropriate num-
ber of nuclei were loaded on the Chromium controller (10× genomics)
in order to target between 6000–8000 nuclei, according to V3 of the
manufacturer’s instructions for the ChromiumNext GEM Single Cell 3ʹ
Reagent Kits (10X Genomics)75. 3’ gene expression libraries were
amplified with 15 cycles during sample index PCR. QC was performed
on 3’ gene expression cDNA and final libraries using a Qubit Fluo-
rometer (ThermoFisher) and an Agilent 2100 Bioanalyzer (Agilent).
Libraries were sequenced on the NovaSeq 6000 (Illumina) or the

NextSeq 500 (Illumina) at the University of Chicago’s Genomics
Facility using paired-end sequencing.

scATAC-seq library preparation and sequencing. scATAC-seq
libraries were prepared according to v1 of the manufacturer’s guide-
lines for the Chromium Next GEM Single Cell ATAC Reagent Kits (10×
Genomics), with themodification thatwe started fromnuclei thatwere
isolated as described above. Between 9300 and 25,000 nuclei were
tagmentedusingTranspositionMix (10×Genomics) at 37 °C for 1 h and
loaded on the Chromium controller. We targeted between 6000 and
10,000 nuclei for library preparation. QC was performed on final
ATAC-seq libraries using a Qubit Fluorometer and an Agilent 2100
Bioanalyzer. Libraries were sequenced on the NovaSeq6000 or the
NextSeq500 at the University of Chicago’s Genomics Facility using
paired-end sequencing.

Single-cell genomic data analysis
snRNA-seq pre-processing. FastQ files from 12 sequencing experi-
ments were individually processed using an in-house scRNA-seq
pipeline dropRunner76. Briefly, dropRunner utilizes FastQC77,78 to
obtain quality control metrics followed by fast and efficient alignment
to human reference genome hg38 using STARsolo 2.6.179 in GeneFull
mode with other parameters set to default. STARsolo performs align-
ment and quantification of gene expression in one package. We
quantified expression at the gene level using Gencode v29 gene
annotations80 utilizing both intronic and exonic reads to improve
clustering and downstream analyses of the snRNA-seq data. We
extracted the raw gene-by-barcode expression matrices output by
STARsolo for downstream analyses. We used Seurat 3.2.181 in R to
analyze the snRNA-seq data. We combined all 12 expression matrices
into a single Seurat object together with the corresponding metadata
such as donor and anatomical region. To filter low-quality nuclei, we
removed barcodes that contained less than 1000 UMI. We also used
DoubletFinder 2.0.382 with pN=0.015 and pK =0.005 to account for
doublets, which works by generating in-silico doublets and performs
clustering to identify nuclei that fall in the neighborhood of the gen-
erated doublets. After quality control, we retained a total of 49,359
nuclei.

scATAC-seq pre-processing. FastQ files from 12 sequencing experi-
ments were individually processed using 10× Genomics CellRanger-
atac 1.2.083. We used the command cellranger-atac count to align the
fastq files to human reference genome hg38, followed bymarking and
removing duplicate reads, and producing a fragment file containing
the mapped location of each unique fragment in each nucleus. We
used ArchR 0.9.529 to further pre-process the data and perform
downstream analyses of the scATAC-seq data. Using ArchR, we con-
verted the fragments file into a tile matrix, which is a bin-by-barcode
Tn5 insertion count matrix, using a bin-size of 500bp. We also gen-
erated a gene score count matrix using the “model 42” from ArchR,
which aggregates Tn5 insertion signals from the entire gene body,
scales signals with bi-directional exponential decays from the TSS
(extended upstream by 5 kb) and the transcription termination site,
and accounts for neighboring gene boundaries. Gene annotations
were obtained from Gencode v29. To filter low quality nuclei, we kept
nucleiwith at least 5000unique fragments and aTSS enrichment score
of 6. We also used ArchR’s doublet removal approach with default
parameters, which is based on in-silico doublet generation. We
removed nuclei with a doublet enrichment score >1. After quality
control, we retained a total of 26,714 nuclei.

Cell-type identification from snRNA-seq and scATAC-seq. We per-
formed normalization, dimensionality reduction, and unsupervised
clustering on snRNA-seq and scATAC-seq data in order to identify cell-
types. For snRNA-seq, we used Seurat’s workflow which begins with
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converting counts to log2 TP10k values using the NormalizeData
function. Next, we found the top 2000 variable genes using FindVar-
iableGenes and used these genes as input features for Principal Com-
ponent Analysis (PCA).We computed the top 30principal components
(PCs) for each cell and used these for downstream analyses. We
observed batch effects due to different donors, and corrected this
batch effect. This was done using the RunHarmony function from the
Harmony 1.084 package with default parameters to regress out the
donor variable from the PCs. Next, we used the FindClusters in Seurat
with a resolution of 0.2 on the harmony-corrected PCs to define
clusters. We also computed the corresponding UMAP to visualize the
harmony-corrected PCs in two dimensions. We used previously
established cell-type markers in order to map clusters to cell types17,18.

We performed cell-typemapping for scATAC-seq using the ArchR
package. We performed dimensionality reduction on the tile matrix
using the top 20,000 bins in terms of count across all cells. We used
the function addIterativeLSIwith 2 iterations inorder toperform latent
semantic indexing (LSI) on the scATAC-seq tilematrix and retained the
top 50 LSI vectors. Similar to snRNA-seq, we observed batch effects
across different donors, and removed this effect using the RunHar-
mony function. We used addClusters with resolution = 0.2 in order to
cluster nuclei based on the harmony-corrected LSI vectors. addUMAP
with min.dist = 0.4 was used to compute a two-dimensional repre-
sentation of the harmony-corrected LSI vectors. We visualized gene
activity scores, as defined in ArchR, using the samemarker genes as in
snRNA-seq to assign clusters to cell types.

Defining and classifying open chromatin regions
Insertion read counts were aggregated across all cells in each cell-type
to form a cell-type pseudo-bulk and peak calling was performed on
pseudo-bulk data of each cell-type. Using the function addReprodu-
ciblePeakSet in ArchR in conjunction with MACS285, a union set of
352,900peakswerecalled in total across all cell-types at FDR <0.1. This
set of peaks, called union set, were used for all downstream analyses.

In order to discover cell-type specific regulatory elements, a
single-cell insertion count matrix was created using the function
addPeakMatrix in ArchR. Cells were grouped into their respective cell-
types and differential accessibility (DA) analysis was performed in a
one-vs-all fashion, i.e., one cell type vs. all other ones. To perform DA,
we used getMarkerFeatures in ArchR with default parameters, which
uses theWilcoxon rank-sum test on the log-normalized insertion count
matrix. To control for technical variation, cells from the cell-type
group and the group of remaining cell types are matched in terms of
TSS enrichment and number of fragments. Using FDR < 10% and log2
fold-change >1, we found about 47% of the union set to be cell-type
specific.

For OCRs that were not differentially accessible, we reasoned that
these are more likely to be shared. To further stratify these OCRs into
different classes, based on sharing among different cell types, we used
a simple quantile-based method. First, we aggregated the ATAC-seq
counts across all cells within each cell type for each non-DA peak and
normalized the counts by the total sum of counts in each cell type.
Next, we binarized the peaks within each cell type based on whether
they are in the top 25% or not in terms of their normalized counts. In
this way, we identify the top 25% accessible peaks in each cell type.
Finally, we count how many times a peak is 1, or highly accessible,
across cell-types. Through this strategy, we defined three disjoint sets:
shared in 2–3 cell types, shared in 4+ cell types and the remaining
peaks denoted as “non-DA.” The last category corresponds to peaks
that are only highly accessible (top 25%) in one cell type but are not
found to be differentially accessible based on our criteria above.

Comparing snRNA-seq and scATAC-seq
We calculated correlation scores of gene expression levels from
snRNA-seq and gene activities from scATAC-seq in the following

manner: First, we selected genes that were up-regulated in each cell
type according to differential expression analysis of snRNA-seq data.
Approximately 3000 genes were identified in this manner. For each
gene, the ATAC-seq gene scores and RNA-seq transcript counts,
respectively, were aggregated across all cells in each cell-type cluster,
followed by a log transformation. We then used the log-transformed
pseudo-bulkgene scores andnormalized expression levels to calculate
Pearson correlation between gene scores and expression across
cell types.

Comparing the cell labels in our study with Litviňuková’s et al.
Label transferwas performedusing Seurat to compare the labels inour
study with that of Litviňuková et al.17. The processed scRNA-seq data
from Litviňuková et al. were downloaded from https://www.
heartcellatlas.org/#DataSources. LoadH5Seurat from Seurat R pack-
age was used to convert the h5ad format into a Seraut object. Next,
anchors were identified using the FindIntegrationAnchors function
and used as reference, which takes the earlier Seurat object as input.
Then, we predicted the labels of our cells with the TransferData
function, which used the anchors and our scRNA-seq data (also a
Seurat object) as inputs and returned the predicted labels for each cell
in our dataset. We summarized the number of matched cells with a
heatmap, showing the proportion of matched cells in each cluster.

Comparing the OCRs in our study with Hocker et al.
We compared the OCRs from our dataset with Hocker et al.15 using
peak sets called on individual cell-type clusters. Cell-type level peaks
identified by Hocker et al. were obtained from their CARE portal
(http://cepigenomics.org/CARE_portal/Cell_Type_Diversity.html). We
only included their peak set from ventricular CMs to match our cell
types. For each cell type,we computed a simple overlap betweenpeaks
from both datasets using GenomicRanges findOverlaps86 in R. Over-
laps for each cell type were represented as Venn diagrams generated
with the eulerr R package.

Identifying putative TFs regulating chromatin accessibility
We used a set of 870 human motif sequence instances from CisBP87.
These motif annotations were added onto the ArchR object using the
addMotifAnnotations function. Next, enrichment analysis was per-
formed for eachmotif in each cell-type-specific set of peaks, using the
peakAnnoEnrichment function in ArchR. The function uses the
hypergeometric test to assess the enrichment of the number of times a
motif overlaps with a given set of peaks, compared to random
expectation. After correcting formultiple testingwithin each cell-type,
we used FDR < 1% to ascertain a set of motifs and their enrichment.

Motif enrichment analysis may find multiple TFs with similar
motifs. To reduce the redundancy and identify true TFs that drive gene
regulation, we correlated the motif accessibility with gene score
activity of each TF, expecting that for true TFs, their expression levels
should be positively correlated with accessibility of their motifs across
cells. We obtained motif accessibility scores from chromVAR32 (using
the addDeviationsMatrix function in ArchR) for eachTF across all cells.
We obtained the corresponding TF gene activity scores using the
“model 42” by ArchR (see “scATAC-seq pre-processing”). These single-
cell-levelmotif accessibility scores and gene scores, however, are noisy
given the sparsity of data at individual cells. We thus used a strategy
similar to Cicero88, by aggregating cells into “metacells” based on
similarity using a k-nearest neighbor approach. Specifically, we found
the k nearest neighbors to each cell using the LSI vectors of the single-
cell ATAC-seq data. We only retained sets of metacells that shared a
maximumof 25% of constituting cells.Metacells that sharedmore than
25% of cells were removed at random. Using k = 100, we created about
200 non-redundant meta-cells based on these criteria and averaged
the motif accessibility scores and gene scores across cells within each
meta-cell. We then computed Pearson’s correlation between the gene
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scores and the motif accessibility scores across meta-cell. We selected
all TFs with a Pearson’s correlation >0.5.

SCAVENGE analysis
SCAVENGE36 was used to calculate for each cell a trait relevance score
(TRS) for atrial fibrillation. SCAVENGE was run under default settings,
with ATAC-seq peak matrix and fine-mapping results (under the uni-
form prior) as inputs.

Testing enrichment of GWAS risk variants in functional
annotations
We obtained harmonized GWAS summary statistics for cardiovascular
and some non-cardiovascular traits from the IEU OpenGWAS project.
We removed SNPs with missing values, SNPs on non-autosomal chro-
mosomes, and indels. Utilizing approximately independent linkage
disequilibrium (LD) blocks generated by ldetect37, we assigned each
SNP to one of 1700 LD blocks.

WeusedTORUS34 to estimate the genome-wide enrichmentof risk
variants of GWAS traits in various functional annotations, including
cell-type specific OCRs obtained from DA testing, and some generic
annotations including coding, retrieved from UCSC Genome Browser
database, and conserved sequences from Lindblad-Toh et al. 89. We ran
TORUS on each annotation, one at a time, to get the marginal
enrichment reported in Fig. 4a.P values for enrichmentwereestimated
from the 95% confidence intervals returned by TORUS and were
adjusted for multiple testing across all traits/cell-types using the
Benjamini–Hochberg approach.

Fine-mapping causal variants in AF-associated loci
We start with a general description of statistical fine-mapping analysis.
We assume the trait of interest, Y , is related to the genotypes of all
variants in a locus by a linear model. Let Xj be the genotype of the j-th
variant, we have: Y =

P
jX j βj + ϵ, where βj is the effect size of the j-th

variant. Because causal variants in a locus are generally “sparse”, it is
often assumed thatmost βj’s would be zero. It is easy to see that, under
this model, even if a single variant has βj≠0, other variants in LD with
this variant would appear associated with the trait in the standard
single-variant association analysis. But in the joint regression model
here, once we choose the correct causal variant(s), conditioned on
them, the non-causal variants in LDwould no longer be associatedwith
the trait. The goal of fine-mapping is then to select as few variants with
βj≠0 as possible to explain all associations in the locus. This “variable
selection” step is often accomplished using a Bayesian spike-and-slab
prior, which assumes that βj follows a mixture distribution of point
mass at 0, and a normal distribution. The mixture proportion of the
point mass is typically very large (close to 1), ensuring that at most a
few variants would have non-zero effects. Inference of this model is
computationally difficult.WeusedSuSiE inour analysis38. SuSiE uses an
efficient variational Bayes procedure, and generally outperforms other
fine-mapping tools. The main output of SuSiE is the posterior prob-
ability that βj≠0, denoted as PIP.

To run SuSiE on ourGWAS summary statistics, wefirst partitioned
the genotype into LD blocks using LDetect37,38. Then, we ran the sus-
ie_rss() function on each LD block. The input of this function includes
GWAS z-scores and the LD matrix for the SNPs in a block. The GWAS
summary statistics were available publicly. For the LD matrix, we used
out-of-sample genotype information from 1000GenomeProject90. We
ran SuSiE with L = 1, which allows a single causal signal for each LD
block and is robust to mismatching LD patterns. We fine-mapped a
total of 122 LD blocks in the AF GWAS, each containing at least 1 SNP at
genome-wide significance (P < 5 × 10−8).

To incorporate functional information of variants in fine-map-
ping, we allowed SNPs to have different prior probabilities in SuSiE.
Specifically, each SNP has a different prior distribution of βj , with the
prior probability that βj≠0, denoted asπj, dependent on the functional

information of that SNP. These prior probabilities are estimated using
TORUS21. Briefly, TORUS assumes that πj is related to the annotations
of the SNP through a logistic regressionmodel. These annotationsmay
include, for example, whether a SNP is located in an OCR in CMs, or in
an evolutionarily conserved region. The parameter of an annotation in
the model encodes the extent to which causal variants are enriched in
this annotation. TORUS uses the entire GWAS data of all variants in the
genome to estimate these parameters. We included the following
annotations in TORUS: CM specific OCRs, CM shared OCRs, CM non-
DA OCRs, non-CM OCRs, UCSC conserved, coding, or fine-
mapped eQTLs.

Annotating putative AF causal variants with additional
functional data
Fetal DHS and heart H3K27ac data were obtained from ENCODE. PC-
HiC interactions were obtained from an earlier study conducted in
iPSC derived CMs42. Only interactions found in at least twoout of three
replicates were included. Motif analysis was performed using R
motifbreak package91. Only “strong” effects onmotif scores, according
to the package, were considered.

Assessing regulatory effects of candidate variants by
Luciferase assay
Candidate regulatory elements were designed from CM-specific
accessibility in hg38 and synthesized by IDT, with either the refer-
ence allele or alternative allele(s) (Supplementary Data 6). Sequence
was verified and then cloned into the pGL4.23 enhancer luciferase
response vector with a minimal promoter. HL-1 cardiomyocytes
(received from Claycomb WC92) or 3T3 mouse embryonic fibroblasts
(ThermoFisher) were co-transfected with luciferase response vector
and a pRL control using Lipofectamine 3000, cultured for 48 h after
transfection, then lysed and assayed using the Dual-Luciferase
Reporter Assay system (Promega). For each construct reporter gene
activity was assayed in 5 replicates in HL-1 cells and at least 3 replicates
in 3T3 cells.

Gene mapping procedure with Mapgen
We used the PIPs generated by SuSiE to calculate a gene-level PIP,
reflecting the probability that a gene is a risk gene. We assume there is
a single causal gene per disease associated locus. Let Zg be an indicator
variable describing whether gene g is causal (Zg = 1) or not (Zg =0) for
the trait. Assuming a single causal SNP per locus, the probability that
the gene is causal, which is denoted as “gene PIP”, can be then related
to the probabilities of SNPs being causal variants:

PðZg = 1jDÞ=
X

i

PðZg = 1jγi = 1ÞPðγi = 1jDÞ, ð1Þ

where γi is the indicator variable for whether SNP i is causal or not, and
D is the GWAS summary statistics. The term PðZg = 1jγi = 1Þ is the
probability that g is the causal gene if the causal SNP is SNP i, and the
term Pðγi = 1jDÞ is simply the PIP of SNP i, or PIPi. So the gene PIP of a
gene is a weighted sum of PIPs of all SNPs, weighted by howmuch that
gene is supported by each SNP (see below). Since the PIPs of all SNPs in
a block sum to 1, the gene PIP has an upper-boundof 1. In the rare cases
where a gene spans two nearby blocks - e.g. when a gene has large
introns, the gene PIP may exceed 1, which can be interpreted as the
expected number of causal variants targeting the gene g.

To calculate the term PðZg = 1jγi = 1Þ, we consider the location of
the SNP iwith relation to the gene g, aswell as functional genomic data
linking SNP i with gene g. These data were used to assign the weights,
denoted aswig , between SNP i andgene g, reflecting how likely the SNP
i affects gene g. For example, if a SNP is inside an exon of a gene, then
the SNP-gene will have weight 1. We note that wig and PðZg = 1jγi = 1Þ
havedifferent semantics: it is possible that a SNP affectsmultiplegenes
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with weights all equal to 1, but there is only a single causal gene sup-
ported by any SNP. In other words, for a causal SNP i, the conditional
probabilities PðZg = 1jγi = 1Þ should sum to 1 across all nearby genes g.
So we need to normalize wig with:

P γi = 1
� �

=
wigP
gwig

ð2Þ

To assign the weight terms, wig , we follow these four steps cap-
turing several scenarios where a SNPmay affect a gene: (1) If a SNP is in
an exon or active promoter (promoter overlapping with OCR) of a
gene,weassign the SNP to that genewithweightwig = 1. (2) If a SNP can
be linked to a gene’s promoter via “enhancer loops”, we assign the
linked gene with weight wig = 1. Here, “enhancer loops” are defined
based on Activity-By-Contact (ABC) scores (constructed from heart
ventricle data with ABC scores ≥0.015)39 and promoter-capture HiC
data (from iPSC-CMs)42. Considering the fact thatHi-C and PC-HiCmay
miss contacts between close regions due to technical reasons, we also
consider a SNP in OCR within 20 kb of an active promoter as an
“enhancer loop”. (3) If a SNP is in a UTR but not in OCRs, suggesting
that the SNP likely regulates the containing gene through RNA pro-
cessing mechanisms, e.g. RNA stability or alternative polyadenylation,
we will assign the SNP to the UTR-containing gene with weight wig = 1.
(4) If a SNP is not linked to any gene via the criteria above, we use a
distance-based weighting to assign it to all genes within 1Mb. The
weights followan exponential decay function as below,wheredig is the
SNP–gene distance:

wig = e
�dig=5× 10

4 ð3Þ

The parameter of this weight function, 50 kb, was chosen based
on the fact that most enhancers, estimated to be 84% using CRISPR
deletion experiments93, are located within 100 kb of the target pro-
moters. Using a weight of 50 kb here would lead to 87% of weights
within 100 kb, with a simple area-under-curve calculation of theweight
function above.

At any locus, having PIPs for all the genes in the locus allows us to
define the “credible gene set” of the locus, much like the use of the
term for SNPs38. Simply speaking, the credible set at the 80% level
means the minimum set of genes in the locus whose sum of PIPs is
greater than or equal to 80%. One complication is that some of the
genes in the locusmay span another nearby locus, as described above.
In this case, while the final reported gene PIP is computed from both
loci, we only use the PIP of the gene from the locus of interest to define
the credible gene set of that locus.

Benchmarking performance of different methods for risk gene
identification
We compared the accuracy of Mapgen (gene PIP ≥0.8), and several
other commonly used methods that nominate risk genes from GWAS
(see below). Given thatwedonot have a gold standard list of knownAF
genes, we used a set of Gene Ontology (GO) terms that have been
associated with AF genetics (using DEPICT method) from an earlier
study (Nielsen et al.5 and Supplementary Table 7). We used FDR < 5%
and required three ormore genes in a gene set, to select 173 GO terms.
We call a candidate gene “plausible”, if the gene is annotated with any
of those GO terms. Then we compared the precision of the methods,
calculated as the number of plausible genes divided by the total
number of nominated genes.

We included the followingmethods in the comparison: (1) Nearest
gene to the top GWAS SNP (based on distance to gene TSS). (2) eQTL,
linking gene to the topGWAS SNP in each locus using GTEx eQTL from
the left ventricle (LV). (3) Activity-by-Contact (ABC) scores, linking
promoters with enhancers based on chromatin-looping data. Follow-
ing Nasser et al.39, we used the ABC-max approach, linking each top

SNP to the gene with the maximum ABC score. (4) Multi-marker Ana-
lysis of GenoMic Annotation (MAGMA), a gene association test
method27. We ran MAGMA gene analysis and identified genes with
Bonferroni adjusted p value < 0.05. (5) In addition to the above
methods, we also included the nominated genes (gene score ≥11) from
van Ouwerkerk et al.13.

Gene interaction network analysis
We used the STRING database (STRING 11.5)94 to construct gene net-
work. The analysis was done using Cytoscape 3.8.295. The input genes
are those at PIP≥0.5 from our gene-mapping analysis. To create the
gene network (Fig. 6d), we use all default settings except that we use
the recommended threshold for high-confidence interactions (0.700)
for interaction scores. Singletons, i.e., genes not having any interac-
tions with other ones, were not shown from the output network. We
also used STRING to run functional enrichment analysis based on
sources including Gene Ontology96,97, Reactome Pathways98, and
KEGG99.

eQTL tissue sharing analysis
We started with the rationale of our eQTL tissue sharing analysis. For
simplicity, consider eQTLs found in one tissue (heart in our case), and
we study the sharing of these eQTLs in a second tissue. Let p denote
the probability of eQTLs in the first tissue being shared in the second
tissue. Assuming we have several functional categories of eQTLs, e.g.
regulatory elements specific in a cell type, or shared across cell types,
we can then break down p into several categories with the simple
relation:

p =
X

c

pcwc, ð4Þ

where c denotes a category, pc is the probability of tissue sharing in
eQTLs fromcategory c, andwc is theproportionof eQTLs in category c.
We hypothesize that different eQTLs categories have distinct mole-
cular mechanisms of modulating transcript levels, and thus different
tissue sharing patterns. This simple analysis thus suggests that bothwc

and pc are important for our understanding of tissue sharing. For
instance, some categories may have a highly tissue-specific pattern
(low pc), but may constitute a small proportion of all eQTLs (low wc),
thus these categories would have limited contribution to the overall
level of tissue sharing among eQTLs.

Summary statistics of GTEx heart eQTLs. Summary statistics of
eQTLs from the left ventricle were obtained from the GTEX v8
release100. We also obtained fine-mapping results using DAP-G21. The
variants with PIP >0.8 were kept for downstream analyses. We refer to
these putative causal variants as eQTLs henceforth. The total number
of eQTL-gene pairs that passed the threshold is 1216. Tissue sharing
data on the same eQTLs were also obtained from GTEx100. These data
provide information of whether these heart eQTLs are also associated
with gene expression in the other tissues in GTEx.

Defining functional categories of heart eQTLs. eQTLs were inter-
sected with genomic features. To obtain a set of disjoint genomic
features, we used a combination of the union peak set and generic
annotations. For generic annotations, the longest transcript was cho-
sen for each gene body, and its corresponding exons, UTRs, and
introns were obtained for all protein coding genes. We partitioned the
union peak set into cell-type-specific categories based on the differ-
ential accessibility (DA) analysis, as well as the shared categories
defined using the quantile approach, as described earlier.We note that
DA analysis does not guarantee disjoint sets of features. Indeed, we
find that cell types such as lymphoid and myeloid share about 6% of
theirDApeaks,whileCMs share atmost 1%with theother cell-types. To
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make these cell-type DA sets disjoint, we moved any DA peaks that
occurred in multiple cell types from DA analysis, to the “Shared 2-3”
and “Shared 4+” categories (see “Defining and classifying OCRs”)
depending on the number of cell types in which it occurred. A small
percentage of peaks (<1%) were affected by this step. The eQTLs in
OCRs that overlap with exons or UTRs, or eQTLs in non-DA OCRs, are
ambiguous to assign, so they were filtered from our analysis. The
eQTLs in intronic OCRs were assigned based on the OCR categories.
Those eQTLs not intersecting with any functional category were
designated in an “unassigned” category.

Estimating extent of tissue sharing in different categories of heart
eQTLs. GTEx has performed eQTL mapping jointly across all tissues.
Using these results, we call a SNP an eQTL in a given tissue, if it passes
the local false sign rate (LFSR) threshold of 1%. For any eQTL, we can
thus determine the number of tissues where it is active.

Estimating eQTL enrichment in functional categories. All the fine-
mapped heart eQTLs are assigned to our set of categories. The
proportion of eQTLs in each category is then compared with
the expected proportion by chance to obtain enrichment reported in
Fig. 7d, e. We used SNPsnap101 to create a set of random control SNPs
that match our eQTLs in LD and minor allele frequency. The LD data
are obtained from the European population genotypes from 1000
Genomes. We generated 1000 random SNPs which is roughly how
many high-confidence eQTLs were used. The proportion of random
SNPs in each category is then used as our estimated proportion by
chance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The snRNA-seq and scATAC-seqdata generated in this study have been
deposited in the GEO repository under accession code GSE224997.

Code availability
Mapgen R package is available from https://github.com/xinhe-lab/
mapgen. Codes for data processing and analyses are available at
https://github.com/xinhe-lab/aFib_heart_atlas_mapgen_paper102.
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