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An apparatus and method are provided for computed tomog­
raphy (CT) imaging to reduce artifacts due to objects outside 
the field of view (FOY) of a reconstructed image. The 
artifacts are suppressed by using an iterative reconstruction 
method to minimize a cost function that includes a de­
emphasis operator. The de-emphasis operator operates in the 
data domain, and minimizes the contributions of data incon­
sistencies arising from attenuation due to objects outside the 
FOY. This can be achieved by penalizing images that 
manifest indicia of artifacts due to outside objects especially 
those outside objects have high-attenuation densities and 
minimizing components of the data inconsistency likely 
attributable to the outside object. 
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METHOD AND APPARATUS TO REDUCE 
ARTIFACTS IN A 

COMPUTED-TOMOGRAPHY (CT) IMAGE 
BY ITERATIVE RECONSTRUCTION (IR) 

USING A COST FUNCTION WITH A 
DE-EMPHASIS OPERATOR 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is based upon and claims the benefit of 
priority to provisional U.S. Application No. 62/581,465, 
filed Nov. 3, 2017, the entire contents of which are incor­
porated herein by reference. 

FIELD 

The illustrative embodiments described herein relate to 
suppressing artifacts in images reconstructed by computed 
tomography (CT), and, more particularly, to reducing arti­
facts due to X-ray attenuation at one or more projection 
angles by an object outside of the field of view of the 
reconstructed image, the reduction in the artifacts attribut­
able to an iterative reconstruction method that de-empha­
sizes attenuation due to objects outside the FOY, especially 
high-contrast objects. 

BACKGROUND 

Computed tomography (CT) systems and methods are 
widely used, particularly for medical imaging and diagnosis. 
CT systems generally create images of one or more sectional 
slices through a subject's body. A radiation source, such as 
an X-ray source, irradiates the body from one side. A 
collimator, generally adjacent to the X-ray source, limits the 
angular extent of the X-ray beam, so that radiation imping­
ing on the body is substantially confined to a planar region 
(i.e., an X-ray projection plane) defining a cross-sectional 
slice of the body. At least one detector (and generally many 
more than one detector) on the opposite side of the body 
receives radiation transmitted through the body substantially 
in the projection plane. The attenuation of the radiation that 
has passed through the body is measured by processing 
electrical signals received from the detector. 

Making projective measurements at a series of different 
projection angles through the body, a sinogram can be 
constructed from the projection data, with the spatial dimen­
sion of the detector array along one axis ( e.g., the vertical 
axis) and the projection angle dimension along the other axis 
(e.g., the horizontal axis). The attenuation resulting from a 
particular volume with the body (e.g., a vertebra) will trace 
out a sine wave for the spatial dimension along the detector 
perpendicular to the rotation axis of the CT system. Volumes 

2 
several methods including: back-projection methods (e.g., 
filtered back-projection), iterative reconstruction methods 
( e.g., the algebraic reconstruction technique (ART) method 
and the total variation minimization regularization meth-

5 ods), Fourier-transform-based methods (e.g., direct Fourier 
method), and statistical methods (e.g., maximum-likelihood 
expectation-maximization algorithm based methods). 

10 

Often the image reconstruction problem will be formu­
lated as a matrix equation 

where p are the projection measurements of the X-rays 
transmitted through an object space that includes the object 

15 OBJ, A is the system matrix describing the discretized line 
integrals (i.e., the Radon transforms) of the X-rays through 
the object space, and x is the image of object OBJ (i.e., the 
quantity to be solved for by solving the system matrix 
equation). The image x is a map of the attenuation as a 

20 function of position. The image x can be reconstructed from 
the projection data p using one of many reconstruction 
methods, including, a filtered-back-projection (FBP) 
method, a Feldkamp-Davis-Kress (FDK) method, and an 
iterative reconstruction (IR) method. Unfortunately, recon-

25 structed image can include artifacts degrading the image 
when the projections include attenuation from objects 
located outside of the field of view (FOV) of the recon­
structed image. For example, the artifacts can be especially 
significant when the outside objects are highly attenuating, 

30 such as in an interventional procedure in which all or part of 
a medical device is located outside the FOV but in the path 
of the X-rays and the medical device includes metal parts. 

The above situation is not uncommon. For example, 
C-arm cone-beam computed tomography (CBCT) has been 

35 used increasingly as an imaging tool in surgical suites. 
CBCT has the benefit of rapidly providing detailed 3D 
anatomical information. Further, CBCT can also be used 
generate images with high spatial resolution, and, therefore, 
C-arm CBCT has been widely used in numerous imaging 

40 applications of high-contrast structures such as the sinuses, 
teeth, spines and contrast-enhanced vasculatures. However, 
in conventional analytical image reconstruction, soft-tissue 
imaging using C-arm CBCT remains challenging due to 
relatively poor low-contrast detectability of the detectors 

45 and high levels of noise and artifacts. Further, conventional 
CBCT systems have a limited field of view (FOV), and, 
therefore, current clinical C-arm CBCT often suffers from 
truncation artifacts, for the reason discussed above. Com­
monly, this limited field of view (FOV) results in a situation 

50 during an interventional procedure that a medical device or 
wire is in the X-ray path but outside the FOY, resulting in 
strong attenuation and compounding the artifacts due to 
truncation. 

of the body farther from the center of rotation correspond to 
sine waves with greater amplitudes than those corresponding 55 

to volumes nearer the center of rotation. The phase of each 
sine wave in the sinogram corresponds to the relative 
angular positions with respect to the rotation axis. Perform­
ing an inverse Radon transform ( or an equivalent image 
reconstruction method) reconstructs an image from the 60 

projection data in the sinogram, where the reconstructed 
image corresponding to a cross-sectional slice of the body. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the disclosed inventions 
and the many attendant advantages thereof will be readily 
obtained as the same becomes better understood by refer­
ence to the following detailed description when considered 
in connection with the accompanying drawings, wherein: 

FIG. 1 shows a diagram of a computed tomography 
(CT)-scanner in which truncation artifacts arise due to both 
the imaged object being smaller than the field of view (FOV) 
of the reconstructed image and an outside object, such as a 
wire or medical device, being outside of the FOY, according 
to one implementation; 

The projection data is used for image reconstruction. 
Having obtained and corrected the projection data for mea­
surement and detector artifacts, the projection data is pre- 65 

pared to reconstruct an image of an object OBJ. Generally, 
the image reconstruction problem can be solved using any of 
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FIG. 2A shows a projection image of a head phantom, 
according to one projection angle for which an outside 
object is in the X-ray path; 

FIG. 2B shows a projection image of the head phantom, 
according to another projection angle for which the outside 5 

object is not in the X-ray path; 
FIG. 3A shows a first cross-section of an image recon­

structed using a Feldkamp-Davis-Kress (FDK) algorithm, 
according to one implementation; 

FIG. 3B shows a second cross-section of the image 10 

reconstructed using the FDK algorithm, according to one 
implementation; 

FIG. 3C shows a third cross-section of the image recon­
structed using the FDK algorithm, according to one imple-

15 
mentation; 

4 
facts. Further, in certain implementations, a Chambolle­
Pock (CP) algorithm is applied to solving the optimization 
program. 

The following non-limiting example illustrates how the 
above-discussed artifacts arise in the application of C-arm 
CBCT to three-dimensional (3D) low contrast imaging 
(LCI). In 3D-LCI acquisitions, a 3D image (i.e., volume 
pixel data, also referred to as voxels) is generated for doctors 
to monitor conditions of patients and make follow-up checks 
and diagnoses of patients. To accommodate these uses, the 
C-arm system is often mobile and can perform 3D scans in 
flexible positions and orientations. Because of these advan­
tageous attributes, 3D-LCI is often used in interventional 
procedure such as neuroradiology interventional procedures. 

In these procedures, high-contrast objects such as metal 
devices, patient monitor wires, guide wires, and catheters 
can be used. During the procedure, these devices and wires 
can be variously positioned in and around the patient's body 
within the path of the X-ray radiation but outside of the FOY 

FIG. 4 shows a flow diagram of a method of reconstruct­
ing a CT image while suppressing artifacts due to outside 
objects (i.e., outside the FOY), according to one implemen­
tation; 

FIG. SA shows a first cross-section of an image recon­
structed using an iterative reconstruction (IR) method with 
a de-emphasis operator, according to one implementation; 

FIG. SB shows a second cross-section of the image 
reconstructed using the IR method with the de-emphasis 
operator, according to one implementation; 

20 of the reconstructed image. Because high-density objects 
such as medical devices can cause X-ray photon starvation 
and beam hardening effects, those pixels of the projection 
data corresponding to ray trajectories through a metal device 
might not be salvageable/recoverable through beam-hard-

FIG. SC shows a third cross-section of the image recon­
structed using the IR method with the de-emphasis operator, 
according to one implementation; 

25 erring or other corrections. Consequently, these unrecover­
able pixels might not accurately represent the attenuation 
along their respective ray trajectories, and, therefore, their 
contribution to reconstructing an image might introduce 
artifacts and degrade the reconstructed image. That is, these 

FIG. 6 shows a diagram of a CT seamier, according to one 
implementation; and 

30 pixels tended to create a data inconsistency for the 3D image 
reconstruction. 

FIG. 7 shows a diagram of a C-arm CT seamier, according 
to one implementation. 

Referring now to the drawings, wherein like reference 
numerals designate identical or corresponding parts 
throughout the several views, FIG. 1 shows a diagram of an 

DETAILED DESCRIPTION 35 X-ray projection system with a flat panel detector (FPD). In 
this diagram the imaged region is smaller than the imaged 
object OBJ and an outside object is arranged outside the 
imaged region (i.e., the FOY of the reconstructed image). As 
shown in FIG. 1, a projection image is acquired using a 

The methods and apparatus described herein reduce the 
above-discussed artifacts arising from outside objects (out­
side objects are those objects that are outside the field of 
view (FOY) of a reconstructed image). These artifacts are 
suppressed, for example, by using an iterative reconstruction 
(IR) method to minimize a cost function that includes a 
de-emphasis operator that de-emphasizes or otherwise filter 
out the attenuation due to the outside objects ( e.g., by 
penalizing image solutions exhibiting features/artifacts cor­
responding to attenuation by outside objects or by de­
emphasizing pixel values of the projection data correspond­
ing to inconsistencies in the projection data caused by 
outside objects). This method and its consequent suppres­
sion of artifacts are beneficial for many applications includ- 50 

ing monitoring interventional and surgical procedures. 

40 small FPD. Thus, the imaged object OBJ is larger than the 
imaged region, which is shown as a white circle superim­
posed on imaged object OBJ. Using a small image volume 
creates a potential for truncation artifacts in a reconstructed 
image due to the attenuation of the projection data arising 

45 from portions of the object OBJ outside of the imaged 
region. The smaller size of the FDP can result in data 
truncation during data acquisition for three-dimensional 
reconstruction. 

C-arm cone-beam CT (CBCT) is increasingly being used 
for imaging and guidance during interventional and surgical 
procedures. However, measured CBCT data are truncated 
often due to the limited detector size especially in the 55 

presence of additional interventional devices outside the 
imaging field of view (FOY). To remedy these problems, the 
methods described herein use optimization-based image 
reconstruction to reduce truncation artifacts commonly 
observed in clinical reconstructions. In certain implementa- 60 

tions, the reconstruction problem is formulated as a con­
strained optimization program in which a de-emphasis 
operator suppresses artifacts in the solution of the con­
strained optimization. In certain implementations, the recon­
struction problem is formulated as a constrained optimiza- 65 

tion program in which the de-emphasis operator includes a 
data-derivative fidelity term to suppress the truncation arti-

For some projection angles, the acquisition FOY fails to 
completely span the object OBJ, such that data that would 
make it possible to perfectly characterize the object OBJ is 
missing due to the limited extent of the FDP. The missed 
data will reduce the amount of known projection data p 
available to reconstruct the image based on the system-
matrix equationAx"'p ( e.g., IR algorithms can be understood 
as iterative algorithms to solve this system-matrix equation). 
When the FOY includes less than the entire object OBJ, the 
system-matrix equation tends to be underdetermined. That 
is, as a result of the system-matrix being modeled using a 
forward projection A, the image inside the FOY is more 
constrained by the equations than the image outside FOY, 
resulting in artifacts in the reconstructed image. 

Further, artifacts will be generated due to the outside 
object (e.g., a wire, catheter, or medical device) that is also 
outside of the FOY, and these artifacts can be especially 
detrimental to the image quality of the reconstructed image 
because the outside object often strongly attenuates the 
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X-rays, as described above. The dashed lines show the 
trajectories of X-rays passing through the outside object, and 
the pixels of the FPD corresponding to these trajectories are 
the pixels affected by the outside object. De-emphasizing 
these affected pixels or otherwise filtering out or penalizing 
image solutions representing the attenuation due to the 
outside object will suppress the artifacts due to the outside 
object. And this is variously achieved by the IR method 
using the types of de-emphasis operators described herein. 

When the metal devices or wires are within the FOY, 
certain methods can be used to reduce the artifacts arising 
therefrom, but these methods are not available when the 
metal devices or wires are outside the FOY. For example, for 
high-density objects inside the FOY metal artifact reduction 
algorithms can be used. In certain implementations, metal 
artifact reduction for inside objects (i.e., high contrasts 
objects inside the FOY) is achieved by, in the image domain, 
segmenting the metal image and replacing the metal regions 
in the projection domain with a more accurate projection 
data using interpolation and re-projection of the recon­
structed 3D image. A more detailed description of a metal 
artifact reduction algorithm is provided in U.S. patent appli­
cation Ser. No. 14/746,012, incorporated herein by reference 
in its entirety. In contrast to the above segmentation method 
in the image domain, the de-emphasis operators described 
herein operate in the data domain ( also referred to as the 
sinogram domain or the domain of the projection data). 

6 
reconstructing an image of outside object and then forward 
projecting the reconstructed image to identify the metal 
projection are insufficient. 

The problem of outside objects is illustrated in FIGS. 2A 
5 and 2B, in which a wire is placed at the side of the phantom 

so that the wire is scanned at a projection angle of -60 
degrees (shown in FIG. 2A), but the wire is completely 
outside the X-ray beam trajectories at a projection angle of 
0 degrees (shown in FIG. 2B). FIGS. 3A, 3B, and 3C show 

10 that, using conventional reconstruction methods image, the 
outside object results in streak artifacts in the reconstructed 
image. FIGS. 3A, 3B, and 3C respectively show three 
orthogonal cross-sections of a 3D image that was recon­
structed, using an FDK algorithm, from projection data that 

15 includes the projection images shown in FIGS. 2A and 2B. 
The streak artifacts are reduced using a reconstruction 

method that includes an operator to de-emphasize in the 
projection domain the projection data representing an incon­
sistency relative to the remaining projection data ( e.g., 

20 pixels corresponding to the outside object). For example, the 
proposed solution to reduce the artifacts due to outside 
objects is to reconstruct the image using an iterative recon­
struction algorithm that applies a de-emphasis operator in 
the data domain. In certain implementations, the cost func-

25 tion for the iterative reconstruction algorithm is expressed as 

f(x)~fIR(x)+IID(Ax-p)ll 2
, 

Additionally, pre-reconstruction data processing such as 
data extrapolation can be used to partially address the 30 

truncation issue, but pre-reconstruction data processing is 
not completely effective and can introduce other artifacts. 
That is, while some pre-reconstruction data processing may 
help reduce data truncation artifacts in some situations, it 

35 
can introduce additional artifacts due to the inadequate data 
estimation, especially when some high-contrast interven­
tional devices outside the imaging FOY are present. In 
contrast to pre-reconstruction data processing, the de-em­
phasis operators described herein operate during the image 40 

wherein D is an enhancement operator (also referred to a 
de-emphasis operator). The function of the de-emphasis 
operator D can be understood by considering that when there 
is data inconsistency in p ( e.g., due to an outside object that 
affects a limited set of views/projection angles) minimizing 
a cost function that includes only a data fidelity term, 
ll(Ax-p )11 2 results in streak artifacts in the image x (as shown 
in FIGS. 3A, 3B, and 3C). In the presence of significant data 
inconsistency in the projection domain, D is configured to 
favour convergence to a solution that de-emphasize data 
inconsistencies arising from high-density objects. For 
example, D can filter out data inconsistencies bearing indicia 
that they arise from an outside or high-contrast object, or by 
penalizing image solutions bearing indicia of artifacts aris-reconstruction. 
ing from outside or high-contrast object. Thus, the recon­
structed image xis robust to and effectively disregards those 
data inconsistencies arising from the outside object, with the 

To improve artifact suppression, the methods described 
herein use optimization-based reconstruction to compensate 
for data-degrading factors, including data truncation. These 
optimization-based reconstruction methods are demon­
strated to reduce image artifacts observed in clinical recon­
structions when applied to reconstruction CT images from 
truncated data. This achievement is achieved, e.g., by for­
mulating the reconstruction problem as a constrained opti­
mization program in which a de-emphasis operator is used 
to suppress the truncation artifacts. 

45 effect that the reconstructed image derives from attenuation 
due to the object inside the FOY and therefore represents the 
object inside the FOY with outside attenuation suppressed. 

As discussed above, in certain implementations, an 
unconstrained cost function is used for iterative reconstruc-

50 tion with de-emphasis operator 

FIGS. 2A and 2B illustrate projection images of the 
projection at two different angles. In the view (i.e. projection 
angle) shown in FIG. 2A shows a view in which some 
trajectories pass through a high-contrast object outside of the 55 

FOY of the reconstructed image. For the view shown in FIG. 
2B none of the X-ray trajectories pass through the high­
contrast outside object. If high-density objects are outside 
the FOY, they are partially imaged at a certain range of 
rotational angle. Accordingly, approaches for reducing metal 60 

artifacts that work when the metal is in the FOY are difficult 

f(x)~fIR(x)+'-IID(Ax-p)ll2 , 

wherein f IR(x) is an unconstrained cost function of iterative 
reconstruction (any known cost function including, e.g., any 
known data fidelity term and/or regularization terms), A is a 
weighting factor to balance the relative contributions 
between the term f IR(x) and the de-emphasis term, x is an 
image to be solved for by iterative updates to search for a 
minimum of the cost function, A is system matrix which 
models interaction ofx-ray beam with scarmed objects, pis 
acquired projection data (e.g., from C-arm CBCT scanner). 
The unconstrained cost function llIR(x) can be, e.g., an 
objective function that includes a least-squares or a penal­
ized-weighted-least-squares data-fidelity term and a regu-

to perform. For example, reconstructing metal images of the 
outside object might be difficult, preventing segmentation 
and re-projection of the metal image because the high­
density outside objects can, at best, be only partially recon­
structed from insufficient frames. Thus, a new metal artifact 
reduction algorithm is desirable because methods based on 

65 larization term. The optimization problem can be expressed 
as 

x~min f(x). 
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FIG. 4 shows a method 100 of generating a reconstructed 
image x using an IR method with a de-emphasis operator. 

8 
ation are smooth. This is the case for a low-contrast image, 
such as for the head phantom shown in FIGS. 2A and 2B. 
Thus, the data consistency can be suppressed by penalizing 
solutions corresponding to sharp spatial changes in the data 

In step 110, the projection data is obtained. This projec­
tion data can be obtained by performing a CT scan using a 
CT scanner such as the CT scanner described herein. Also, 
the projection data can be obtained by recalling from com­
puter memory projection data that has been previously 
obtained. 

5 domain, especially sharp changes data inconsistency as 
expressed in the difference between the forward projection 
of the image and the projection data (i.e., Ax-p ). 

Accordingly, in certain implementations, the de-emphasis 
operator D is realized by performing an operation of edge In the non-limiting example shown in FIGS. 2A and 2B, 

the projection data was collected with a C-arm system 
(Toshiba Infinix-i™), with an X-ray source and a flat-panel 
detector mounted onto the opposing ends of the C-arm. The 
distances from X-ray source to the rotation center and to the 
detector are 700 mm and 1100 mm, respectively. The 
flat-panel detector consists of a 1024x1024 array with a 0.29 
mm pitch (rebinned to an 512x512 array with a bin size of 
0.58x0.58 mm), forming a FOY of size 18.7 cm, which 
might be insufficient to cover the entire transverse cross 
section of a scanned subject. For example, the FOY might be 
too small to cover all attenuating objects especially when 
injection-devices and/or contrast objects are present outside 
the body contour, leading to streak artifacts in clinical 
images as discussed above. Such artifacts may obscure 
low-contrast soft-tissue anatomy in the applications of clini­

10 and sharpness enhancement to Ax-p to enhance boundaries 
of a high-density object region in Ax-p, and then the region 
of high-density object region in Ax-p is de-emphasized by 
using the result of the edge and sharpness enhancement to 
Ax-p to penalize an image for which is data inconsistency 

15 has sharp spatial edges/features. For example, sharp spatial 
edges/features in the data domain can be indicia of streak 
artifacts due to high-contrast objects outside the FOY. 

Additionally, in certain implementations, the de-emphasis 
operator D performs operation of high-pass filter to the 

20 data-inconsistency term Ax-p, and the result is used to 
penalize solutions with significant high-frequency content in 
the data-inconsistency term. 

Further, in certain implementations, the de-emphasis 
operator D includes a first-order derivative to the data-

25 inconsistency term Ax-p, and the result is used to penalize 
solutions with large first-order derivatives in the data-incon-

cal interest ( e.g., intracranial hemorrhages might be 
obscured by the streak artifacts). The projection data in 
FIGS. 2A and 2B was obtained using a C-arm CBCT data 
scan of a physical head phantom. Prior to reconstruction 
using the projection data in FIGS. 2A and 2B, scatter 
correction and beam-hardening correction were performed. 30 

In step 120 of method 100, an initial reconstructed image 
can be determined. Preferably the initial image is generated 
using a method that is fast and uses relatively little compu­
tational resources. For example, the initial image can be 
generated using downsampled projection data and using an 35 

image resolution for the initial image that is commensurate 
with the downsampled projection data. The initial image can 
be a defaults image, or can be generated using any known 
CT reconstruction method, including filtered back-projec­
tion (FBP), a Feldkamp-Davis-Kress (FDK) reconstruction 40 

method, and an IR method using (although not necessarily 
to convergence). In certain implementations using an IR 
method, the IR method can be performed for a predefined 
number of iterations, rather than being performed until 
convergence, and the IR method can use acceleration meth- 45 

ods such as ordered subsets (OS), separable quadratic sur­
rogate (SQS), and Nesterov's momentum acceleration. Fur­
ther, the initial reconstructed image can be generated using 

sistency term. 
In some the above examples, the attenuation due to the 

outside object has been effectively de-emphasized, albeit 
indirectly, by emphasizing/penalizing the indicia of artifacts 
arising from the attenuation due to the outside object. Thus, 
in certain implementations, the de-emphasis operator has the 
effect of de-emphasizing the attenuation due to the outside 
object relative to the attenuation arising from objects inside 
the FOY, even if the de-emphasis operator does not operate 
directly to decrease, in the data-inconsistency term, those 
components of the attenuation attributable to the outside 
object. Nevertheless, a same objective is achieved (e.g., 
making the reconstructed image in the FOY robust against 
outside objects), whether the de-emphasis operator acts on 
the data-inconsistency to reduce components attributable to 
the outside object or the de-emphasis operator acts on the 
data-inconsistency to penalize images exhibiting indicia of 
artifacts attributable to the outside object ( e.g., the sharp 
edges and high-frequency content of the streak artifacts). 

To complete the iterative reconstruction method, the 
image x is iteratively updated and the convergence of the 
updated image x is monitored according to some stopping 
criteria. In the non-limiting example of method 100, this is a combination of IR methods and FBP or FDK methods 

(e.g., the IR method can be initialized using a FBP or FDK 
reconstructed image). Accordingly, various combinations of 
CT reconstruction can be used, as would be understood by 
a person of ordinary skill in the art. 

In one non-limiting example, FIGS. 3A, 3B, and 3C were 
reconstructed from the projection data illustrated in FIGS. 
2A and 2B using an FDK algorithm. The image arrays of 
sizes N=700x560x512 were used for the physical head 
phantom, in which the voxel size is 0.47 mm. 

50 achieved using steps 140 and 145. In step 140, the cost 
function of the updated image x is calculated. Then in step 
145 the stopping criteria are evaluated. If the stopping 
criteria have not been satisfied, method 100 proceeds from 
step 145 to step 130 and the iterative loop beginning from 

55 step 130 and continuing through step 140 is repeated. 

In step 130 of method 100, the image xis updated. The 
updated image x is generated using the cost function that 60 

includes the de-emphasis operator D in the projection 
domain ( also referred to as the data domain as opposed to the 
image domain), as discussed above. The de-emphasis opera-
tor D can take various forms, depending on the implemen-

Otherwise, method 100 is complete. The stopping criteria 
can include for example a convergence criterion (e.g., based 
on a difference between successive iterations of the image x) 
and a criterion for a maximum number of iterations. 

For example, the reconstructed images in FIGS. SA, 5B, 
and SC were obtained by iteratively reconstructing a cost 
function that includes a de-emphasis operator. FIGS. SA, 
5B, and SC show cross-section respectively corresponding 
to FIGS. 3A, 3B, and 3C. Comparing FIGS. SA, 5B, and SC 

tation. 
For example, in certain implementations, it can be 

assumed that, in the data domain, spatial changes in attenu-

65 with FIGS. 3A, 3B, and 3C demonstrates that, whereas 
severe streak artifacts in the FDK reconstruction obscure the 
low-contrast objects in the phantom, the reconstruction 
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method used in FIGS. SA, SB, and SC suppresses the streak 
artifacts and the low-contrast objects can be easily identified. 

10 
image is predominantly uniform over large regions with 
sharp transitions at the boundaries of the uniform regions. 
When the a priori model corresponds well to the image 
object, these regularized iterative reconstruction algorithms 

When the sinogram of the projection data is displayed 
with projection angle along the horizontal axis and the 
detector direction perpendicular to the projection axis along 
the vertical axis, attenuation due to the object inside the 
FOY will correspond to sinusoids along the horizontal axis 
for which the maximum amplitude is limited by the radius 

5 can produce impressive images even though the reconstruc­
tion problem is significantly underdetermined (e.g., the 
few-view scenario), missing projection angles, or the data is 
noisy. The optimization problem with TV regularization can 
be expressed as 

10 

of the FOY. The sinusoids corresponding to objects outside 
the FOY will have amplitudes greater than this maximum 
corresponding to the FOY. One consequence of these large 
amplitudes is that the slope of the sinusoid around the 
isocenter will be greater for outside objects than objects 
inside the FOY. Thus, by considering the data-inconsistency 
term Ax-p as a sinogram, the de-emphasis operator can 15 

selectively minimize sinusoid components corresponding to 
amplitudes greater than the maximum sinusoid amplitude 
within the FOY. Alternatively, the de-emphasis operator can 
selectively minimize linear components having slopes 
around the isocenter (i.e., the slope being change in hori- 20 

zontal pixel position as a function of projection angle) 
greater than the maximum slope for the maximum sinusoid 
amplitude within the FOY 

In general, the cost function including the de-emphasis 
operator D can be minimized using any known iterative 25 

method to solve for the reconstructed image x. Examples of 
iterative methods for minimizing a cost function include, but 
are not limited to, gradient descent methods, OS methods, 
SQS methods, Nesterov's momentum acceleration methods, 
and combinations therefore. And these can include various 30 

corrections, including, e.g., scatter and beam hardening 
corrections. As mentioned above the cost function can 
include terms such as a data-derivative term (or other 
variation of de-emphasis operator), a data-divergence term 
(also referred to as data fidelity term), and a regularization 35 

term (or a regularization constraint). 
When the matrix equation is cast as an optimization 

problem, any of a number of iterative algorithms can be used 

wherein the last term, the 11 -norm of the gradient-magnitude 
image, is the isotropic TV semi-norm. The spatial-vector 
image Vx represents a discrete approximation to the image 
gradient. The expression IVxl is the gradient-magnitude 
image, an image array whose pixel values are the gradient 
magnitude at the pixel location. 

Having formulated the optimization problem, there are 
many choices of algorithms for solving the optimization 
problem, some of which are more efficient than others, 
depending on the details of the optimization problem. For 
example, the dual-primal Chambolle-Pock (CP) algorithm 
can be efficient for solving certain image reconstruction 
optimization problems. 

Two other related methods for iteratively solving optimi­
zation problems are the alternating direction method of 
multipliers (ADMM) and the augmented Lagrangian multi­
plier methods. These two methods are examples of splitting­
based iterative algorithms. These splitting-based iterative 
methods exhibit the efficiencies introduced by subdividing a 
single optimization problem into a series of subproblems 
that can be solved in an iterative manner. 

Although it can be developed in a slightly more general 
form, the following problem formulation is sufficient for 
most applications of the ADMM: 

min f(x) + g(Mx) 
xcin 

where, M is an mxn matrix, often assumed to have full 
column rank, and f and g are convex functions on in and im, 
respectively. In addition to values in, the functions f and g 
can also have the value +oo, so that constraints may be 
"embedded" in f and g, in the sense that if f(x)=oo or 
g(Mx)=oo, then the point x is considered to be infeasible. 

to solve the optimization problem. For example, the alge­
braic reconstruction technique (ART) uses an iterative 40 

method of affine projections by refining estimates of the 
image x through a succession of projections onto each of the 
affine spaces defined by the rows of the system matrix 
equation. Performing this series of affine projections and 
then repeating them again and again causes the image 45 

estimate to converge to a solution of the system matrix 
equation. Interjecting a regularization condition/term 
between series of affine projections imposes constraints on 
the solution, and ensures that the reconstructed image con­
verges to a physically meaningful and realistic solution. For 50 

example, bodies are known to absorb radiation, making gain 
through a body (i.e., negative attenuation) an unphysical 
result. Therefore, a non-negative regularization condition 
can be imposed to eliminate unphysical gain regions in the 
reconstructed image. 

Iterative reconstruction algorithms augmented with regu­
larization conditions can produce high-quality reconstruc­
tions using only a few views even in the presence of 
significant noise. For few-view, limited-angle, and noisy 
projection scenarios, the application of regularization opera- 60 

tors between reconstruction iterations seeks to tune the final 
result to be consistent with a certain a priori model. For 
example, enforcing positivity, as discussed above, is a 
simple but common regularization scheme. 

By appropriate use of infinite values for f or g, a very 
wide range of convex problems may be modeled by this 
optimization problem. To make the discussion more con­
crete, however, herein is described a simple illustrative 

55 
example that fits very readily into this form without any use 
of infinite function values, and resembles in basic structure 
many of applications responsible for the resurgence of 
interest in the ADMM: the "lasso" or "compressed sensing" 

A second regularization condition is total variation (TV) 65 

minimization in conjunction with projection on convex sets 
(POCS). The TV-minimization algorithm assumes that the 

problem. This problem takes the form 

where A is a pxn matrix, bEiP, and v>O is a given scalar 
parameter. The idea of the model is find an approximate 



US 10,789,738 B2 
11 

solution to the linear equations Ax=b, but with a preference 
for making the solution vector xEin sparse; the larger the 
value of the parameter v, the more the model prefers sparsity 
of the solution versus accuracy of solving Ax=b. While this 
model clearly has limitations in terms of finding sparse 
near-solutions to Ax=b, it serves as a good example appli­
cation of the ADMM; many other now-popular applications 
have a similar general form, but may use more complicated 
norms in place 11·11 1 ; for example, in some applications, xis 
treated as a matrix, and one uses the nuclear norm (the sum 
of singular values) in the objective to try to induce x to have 
low rank. 

Now, the classical augmented Lagrangian method and the 
ADMM are described for this optimization problem. First, 
note that the optimization problem can be rewritten, intro­
ducing an additional decision variable zEim as 

min f(x)+g(z) 

ST Mx~z 

The classical augmented Lagrangian algorithm, is described 
in the case of the above formulation by the recursions 

(x'+1
, /+1

) E argmin{J(x) + g(z) + (J.', Mx-z) + ~11Mx-zll2
} 

XE/nZE/m 

where, {t/} is a sequence of estimates of the Lagrange 
multipliers of the constraints Mx=z, while { (x\ z")} is a 
sequence of estimates of the solution vectors x and z, and 
{ ck} is a sequence of positive scalar parameters bounded 
away from 0. The notation <a,b> denotes the usual Euclid­
ean inner product arb. 

In this setting, the standard augmented Lagrangian algo­
rithm is not very attractive because the minimizations off 
and g in the second subproblem in the above expression are 
strongly coupled through the term 

c, 2 

2
11Mx-zll, 

and hence the subproblems are not likely to be easier to 
solve than the original problem. In contrast, the alternating 
direction method of multipliers (ADMM) is formulated into 
subproblems that are easier to solve. The ADMM problem 
takes the form 

Clearly, the constant terms g(z") and f(xk+l) as well as some 
other constants, may be dropped from the respective mini­
mands in the above expressions. Unlike the classical aug­
mented Lagrangian method, the ADMM essentially 
decouples the functions f and g. In many situations, this 
decoupling makes it possible to exploit the individual struc­
ture of the f and g so that the above expressions may be 
computed in an efficient and perhaps highly parallel manner. 

12 
FIG. 6 illustrates an implementation of the radiography 

gantry included in a CT apparatus or scanner. As shown in 
FIG. 6, a radiography gantry 1000 is illustrated from a side 
view and further includes an X-ray tube 1001, an annular 

5 frame 1002, and a multi-row or two-dimensional-array-type 
X-ray detector 1003. The X-ray tube 1001 and X-ray detec­
tor 1003 are diametrically mounted across an object OBJ on 
the annular frame 1002, which is rotatably supported around 
a rotation axis RA. A rotating unit 1007 rotates the annular 

10 frame 1002 at a high speed, such as 0.4 sec/rotation, while 
the object OBJ is being moved along the axis RA into or out 
of the illustrated page. 

The first embodiment of an X-ray computed tomography 
(CT) apparatus according to the present inventions will be 

15 described below with reference to the views of the accom­
panying drawing. Note that X-ray CT apparatuses include 
various types of apparatuses, e.g., a rotate/rotate-type appa­
ratus in which an X-ray tube and X-ray detector rotate 
together around an object to be examined, and a stationary/ 

20 rotate-type apparatus in which many detection elements are 
arrayed in the form of a ring or plane, and only an X-ray tube 
rotates around an object to be examined. The present inven­
tions can be applied to either type. In this case, the rotate/ 
rotate type, which is currently the mainstream, will be 

25 exemplified. 
The multi-slice X-ray CT apparatus further includes a 

high voltage generator 1009 that generates a tube voltage 
applied to the X-ray tube 1001 through a slip ring 1008 so 
that the X-ray tube 1001 generates X-rays. The X-rays are 

30 emitted towards the object OBJ, whose cross sectional area 
is represented by a circle. For example, the X-ray tube 1001 
having an average X-ray energy during a first scan that is 
less than an average X-ray energy during a second scan. 
Thus, two or more scans can be obtained corresponding to 

35 different X-ray energies. The X-ray detector 1003 is located 
at an opposite side from the X-ray tube 1001 across the 
object OBJ for detecting the emitted X-rays that have 
transmitted through the object OBJ. The X-ray detector 1003 
further includes individual detector elements or units. 

40 The CT apparatus further includes other devices for 
processing the detected signals from X-ray detector 1003. A 
data acquisition circuit or a Data Acquisition System (DAS) 
1004 converts a signal output from the X-ray detector 1003 
for each channel into a voltage signal, amplifies the signal, 

45 and further converts the signal into a digital signal. The 
X-ray detector 1003 and the DAS 1004 are configured to 
handle a predetermined total number of projections per 
rotation (TPPR). 

The above-described data is sent to a preprocessing 
50 device 1006, which is housed in a console outside the 

radiography gantry 1000 through a non-contact data trans­
mitter 1005. The preprocessing device 1006 performs cer­
tain corrections, such as sensitivity correction on the raw 
data. A memory 1012 stores the resultant data, which is also 

55 called projection data at a stage immediately before recon­
struction processing. The memory 1012 is connected to a 
system controller 1010 through a data/control bus 1011, 
together with a reconstruction device 1014, input device 
1015, and display 1016. The system controller 1010 controls 

60 a current regulator 1013 that limits the current to a level 
sufficient for driving the CT system. 

The detectors are rotated and/or fixed with respect to the 
patient among various generations of the CT scanner sys­
tems. In one implementation, the above-described CT sys-

65 tern can be an example of a combined third-generation 
geometry and fourth-generation geometry system. In the 
third-generation system, the X-ray tube 1001 and the X-ray 
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The memory 1012 can be a hard disk drive, CD-ROM 
drive, DVD drive, FLASH drive, RAM, ROM or any other 
electronic storage known in the art. 

FIG. 7 shows an example of a CT apparatus 100 or 

detector 1003 are diametrically mounted on the annular 
frame 1002 and are rotated around the object OBJ as the 
annular frame 1002 is rotated about the rotation axis RA. In 
the fourth-generation geometry system, the detectors are 
fixedly placed around the patient and an X-ray tube rotates 
around the patient. In an alternative embodiment, the radi­
ography gantry 1000 has multiple detectors arranged on the 
annular frame 1002, which is supported by a C-arm and a 
stand. 

5 radiography gantry, wherein the apparatus uses a C-arm 
configuration. As shown in FIG. 7, the CT apparatus 200 
includes an X-ray tube 202, X-ray detector 204, C-arm 206, 
stand 208, high-voltage generator 210, bed 212, and X-ray 

The memory 1012 can store the measurement value 10 

representative of the irradiance of the X-rays at the X-ray 
detector unit 1003. Further, the memory 1012 can store a 
dedicated program for executing method 100. 

The reconstruction device 1014 can execute method 100. 

stop device 214. 
The high-voltage generator 210 generates a high voltage 

to be applied between the electrodes of the X-ray tube 202, 
and also generates a filament current to be supplied to the 
cathode filament of the X-ray tube 202. Upon receiving the 
high voltage and filament current, the X-ray tube 202 

Further, reconstruction device 1014 can execute pre-recon­
struction processing image processing such as volume ren­
dering processing and image difference processing as 
needed. 

The pre-reconstruction processing of the projection data 
performed by the preprocessing device 1006 can include 
correcting for detector calibrations, detector nonlinearities, 
and polar effects, for example. Further, the pre-reconstruc­
tion processing can include various steps of method 100. 

15 generates X-rays. The X-ray stop device 214 shapes X-rays 
generated by the X-ray tube 202. The X-ray detector 204 can 
be a two-dimensional array of a plurality of detection 
elements (pixels) that directly or indirectly convert incident 
X-rays into electric charges. The X-ray tube 202 is mounted 

20 on, for example, one end of the floor type C-arm 306. The 
X-ray detector 204 is mounted on the other end of the C-arm 
206. The X-ray detector 204 faces the X-ray tube 202 
through an object OBJ to be examined which is placed on 
the bed 212. The C-arm 206 is rotatably supported on the Post-reconstruction processing performed by the recon­

struction device 1014 can include filtering and smoothing 
the image, volume rendering processing, and image differ­
ence processing as needed. The image reconstruction pro­
cess can implement various steps of method 100. The 
reconstruction device 1014 can use the memory to store, 
e.g., projection data, reconstructed images, calibration data 30 

and parameters, and computer programs. 

25 stand 208. Repeating radiography with respect to the object 
OBJ while rotating the C-arm 206 makes it possible to 
acquire X-ray frames (projection data) in many directions 
which are required for three-dimensional image reconstruc­
tion. 

Radiography control circuitry controls the rotation of the 
C-arm 206, the application of high voltages from the high­
voltage generator 210 to the X-ray tube 202, and reading of 
signals from the X-ray detector 204 in order to execute 
rotational radiography and generate X-ray projection data. 

The reconstruction device 1014 can include a CPU (pro­
cessing circuitry) that can be implemented as discrete logic 
gates, as an Application Specific Integrated Circuit (ASIC), 
a Field Programmable Gate Array (FPGA) or other Complex 
Programmable Logic Device (CPLD). An FPGA or CPLD 
implementation may be coded in VHDL, Verilog, or any 
other hardware description language and the code may be 
stored in an electronic memory directly within the FPGA or 
CPLD, or as a separate electronic memory. Further, the 
memory 1012 can be non-volatile, such as ROM, EPROM, 
EEPROM or FLASH memory. The memory 1012 can also 

35 Although FIG. 7 does not show processing circuitry to 
perform the steps of method 100, the reconstruction of a CT 
image to suppress artifacts arising from outside objects 
according to the methods described herein can be performed 
using similar processing circuitry ( e.g., a CPU) to what is 

40 described with reference to FIG. 6. 

be volatile, such as static or dynamic RAM, and a processor, 
such as a microcontroller or microprocessor, can be pro­
vided to manage the electronic memory as well as the 45 

interaction between the FPGA or CPLD and the memory. 
Alternatively, the CPU in the reconstruction device 1014 

can execute a computer program including a set of com­
puter-readable instructions that perform the functions 
described herein, the program being stored in any of the 50 

above-described non-transitory electronic memories and/or 
a hard disk drive, CD, DVD, FLASH drive or any other 
known storage media. Further, the computer-readable 
instructions may be provided as a utility application, back­
ground daemon, or component of an operating system, or 55 

combination thereof, executing in conjunction with a pro­
cessor, such as a Xenon processor from Intel of America or 
an Opteron processor from AMD of America and an oper­
ating system, such as Microsoft VISTA, UNIX, Solaris, 
LINUX, Apple, MAC-OS and other operating systems 60 

known to those skilled in the art. Further, CPU can be 
implemented as multiple processors cooperatively working 
in parallel to perform the instructions. 

In one implementation, the reconstructed images can be 
displayed on a display 1016. The display 1016 can be an 65 

LCD display, CRT display, plasma display, OLED, LED or 
any other display known in the art. 

While certain implementations have been described, these 
implementations have been presented by way of example 
only, and are not intended to limit the scope of this disclo­
sure. The novel devices, systems and methods described 
herein may be embodied in a variety of other forms; fur­
thermore, various omissions, substitutions, and changes in 
the form of the devices, systems and methods described 
herein may be made without departing from the spirit of this 
disclosure. The accompanying claims and their equivalents 
are intended to cover. 

The invention claimed is: 
1. A computed tomography (CT) imaging apparatus to 

reduce artifacts in reconstructed CT images, the apparatus 
comprising: 

processing circuitry configured to 
obtain projection data representing an intensity of 

radiation detected at a plurality of detector elements, 
the radiation having been transmitted through a 
space including a first object, which is at least 
partially within a field of view (FOY) of a recon­
structed image, 

generate an image representing an attenuation of the 
radiation within the FOY, 

determine difference data including a difference 
between a forward projection of the image and the 
projection data, and 



US 10,789,738 B2 
15 

iteratively reconstruct the image by updating the image 
to minimize a cost function of the image, the cost 
function including a de-emphasis operator operating 
on the difference data, wherein 

the de-emphasis operator decreases a contribution of the 5 

difference data arising from attenuation outside the 
FOY relative a contribution of the difference data 
arising from attenuation within the FOY. 

2. The apparatus according to claim 1, wherein the 
processing circuitry is further configured to iteratively 10 

reconstruct the image, wherein the difference data has one or 
more indicia of an artifact arising from the attenuation 
outside the FOY, and the de-emphasis operator shifts a 
minimum of the cost function towards the image for which 

15 
the one or more indicia are minimized. 

3. The apparatus according to claim 2, wherein the one or 
more indicia represent a degree of sharp features in a spatial 
distribution of the difference data. 

4. The apparatus according to claim 1, wherein the 20 

processing circuitry is further configured to iteratively 
reconstruct the image by the de-emphasis operator perform­
ing edge-enhancement of the difference data, high-pass 
filtering the difference data, and/or a first-order derivative of 
the difference data. 25 

5. The apparatus according to claim 1, wherein the 
processing circuitry is further configured to iteratively 
reconstruct the image by the de-emphasis operator operating 
on the difference data to decrease a low-frequency compo-
nent of the difference data. 30 

6. The apparatus according to claim 1, wherein the 
processing circuitry is further configured to iteratively 
reconstruct the image, wherein the cost function includes a 
sum of a data fidelity term and a second term including a 

35 
power of a p-norm of the de-emphasis operator operating on 
the difference data. 

16 
processing circuitry configured to 

generate an image representing an attenuation of the 
radiation within the FOY, 

determine difference data including a difference 
between a forward projection of the image and the 
projection data, and 

iteratively reconstruct the image by updating the image 
to minimize a cost function of the image, the cost 
function including a de-emphasis operator operating 
on the difference data, wherein 

the de-emphasis operator decreases a contribution of the 
difference data arising from attenuation outside the 
FOY relative a contribution of the difference data 
arising from attenuation within the FOY. 

11. A method, comprising: 
obtaining projection data representing an intensity of 

radiation detected at a plurality of detector elements, 
the radiation having been transmitted through a space 
including a first object, which is at least partially within 
a field of view (FOY) of a reconstructed image; 

generating an image representing an attenuation of the 
radiation within the FOY, 

determining difference data including a difference 
between a forward projection of the image and the 
projection data; and 

iteratively reconstructing the image by updating the image 
to minimize a cost function of the image, the cost 
function including a de-emphasis operator operating on 
the difference data, wherein 

the de-emphasis operator decreases a contribution of the 
difference data arising from attenuation outside the 
FOY relative a contribution of the difference data 
arising from attenuation within the FOY. 

12. The method according to claim 11, wherein the 
iteratively reconstructing the image includes that the differ­
ence data has one or more indicia of an artifact arising from 
the attenuation outside the FOY, and the de-emphasis opera­
tor shifts a minimum of the cost function towards the image 
for which the one or more indicia are minimized. 

13. The method according to claim 12, wherein the one or 
more indicia include sharp edges and/or high-spatial-fre­
quency components in the difference data. 

7. The apparatus according to claim 2, wherein the 
processing circuitry is further configured to iteratively 
reconstruct the image by the de-emphasis operator evaluat- 40 

ing the difference data to emphasize components of the 
difference data corresponding to sinusoids of a sinogram 
having amplitudes less than a predefined amplitude. 14. The method according to claim 11, wherein the 

iteratively reconstructing the image includes that the de-
45 emphasis performs edge-enhancement of the difference data, 

high-pass filtering the difference data, and/or a first-order 
derivative of the difference data. 

8. The apparatus according to claim 2, wherein the 
processing circuitry is further configured to iteratively 
reconstruct the image by evaluating the difference data to 
emphasize linear components of the difference data in a 
sinogram corresponding to lines less than a predefined slope. 15. The method according to claim 11, wherein the 

iteratively reconstructing the image includes that the de­
emphasis operator operates on the difference data to 
decrease a low-frequency component of the difference data. 

9. The apparatus according to claim 2, wherein the one or 
more indicia of the artifact correspond to an artifact caused 50 

by the one or more second objects having a high-attenuation 
density and a sharp edge. 16. The method according to claim 11, wherein the 

iteratively reconstructing the image includes that the cost 
function comprises a sum of a data fidelity term and a second 

55 term including a power of a p-norm of the de-emphasis 
operator operating on the difference data. 

10. A computed tomography (CT) scanner, comprising: 
an X-ray source fixed to an end of a C-arm and configured 

to emit X-rays in a cone beam; 
an X-ray detector fixed to another end of the C-arm, the 

X-ray detector being configured diametrically opposed 
to the X-ray source to detect, using a plurality of 
detector elements, the X-rays emitted in the cone beam, 
and generating projection data representing an intensity 60 

of the X-rays detected at the plurality of detector 
elements; 

an opening provided between the X-ray source and the 
X-ray detector to accommodate a first object, which is 
at least partially within a field of view (FOY) of a 65 

reconstructed image to be reconstructed from the pro­
jection data; and 

17. The method according to claim 12, wherein the 
iteratively reconstructing the image includes that the de­
emphasis operator operates on the difference data to empha­
size components of the difference data corresponding to 
sinusoids of a sinogram having amplitudes less than a 
predefined amplitude. 

18. The method according to claim 12, wherein the 
iteratively reconstructing the image includes that the de­
emphasis operator operates on the difference data to empha­
size linear components of the difference data in a sinogram 
corresponding to lines less than a predefined slope. 
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19. The method according to claim 12, wherein the one or 
more indicia include an artifact caused by the one or more 
second objects having a high-attenuation density and a sharp 
edge. 

20. A non-transitory computer-readable medium storing 5 

executable instructions, wherein the instructions, when 
executed by processing circuitry, cause the processing cir­
cuitry to perform the method according to claim 11. 

* * * * * 
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