
I 1111111111111111 1111111111 1111111111 1111111111 1111111111 111111111111111111
US011205097B2

c12) United States Patent
Masse et al.

(IO) Patent No.:
(45) Date of Patent:

US 11,205,097 B2
Dec. 21, 2021

(54) TRAINING ARTIFICIAL NEURAL
NETWORKS USING CONTEXT-DEPENDENT
GATING WITH WEIGHT STABILIZATION

(56) References Cited

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

PUBLICATIONS

Applicant: The University of Chicago, Chicago,
IL (US)

Serra et al, "Overcoming Catastrophic Forgetting with Hard Atten­
tion to the Task", 2018, Proceedings of the 35 th International

Conference on Machine Learning, Stockholm, Sweden, PMLR 80,
10 pages (Year: 2018).*

Inventors: Nicolas Y. Masse, Chicago, IL (US);
Gregory D. Grant, Chicago, IL (US);
David J. Freedman, Chicago, IL (US) Aljundi et al, "Memory Aware Synapses: Learning what (not) to

forget", 2018, Proceedings of the European Conference on Com­
puter Vision (ECCV), 16 pages (Year: 2018).* Assignee: THE UNIVERSITY OF CHICAGO,

Chicago, IL (US) Abadi, M., et al., "Tensorflow: Large-scale machine learning on
heterogeneous distributed systems," arXiv: 1603.04467v2 (2016).
Aljundi, R., et al., "Memory aware synapses: Learning what (not)
to forget," arXiv: 1711.09601 (2017).

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 137 days. (Continued)

Appl. No.: 16/774,343 Primary Examiner - David F Dunphy

Filed: Jan. 28, 2020

Prior Publication Data

(74) Attorney, Agent, or Firm - McDonnell Boehnen
Hulbert & Berghoff LLP

(57) ABSTRACT

US 2020/0250483 Al Aug. 6, 2020 A computing device may receive a first set of training data
for training an ANN to predict output data for a first task, and
may train the ANN with the first set of training data by only
adjusting values of weights associated with a first subset of
neurons, the first subset selected based on an identity of the
first task. The computing device may receive a second,
different set of training data for training the ANN to predict
output data for a second task, and may train the ANN with
the second set of training data by only adjusting values of
weights associated with a second subset of neurons, the
second subset selected based on an identity of the second
task. During training, adjusting of the value of any weight
may entail weight stabilization that depends on whether
there has been any training for one or more previous tasks.

Related U.S. Application Data

Provisional application No. 62/800,167, filed on Feb.
1, 2019.

Int. Cl.
G06K 9162
G06N 3/00
G06N 3/04
U.S. Cl.
CPC

(2006.01)
(2006.01)
(2006.01)

G06K 916257 (2013.01); G06K 916228
(2013.01); G06N 3/04 (2013.01)

Field of Classification Search
CPC G06K 9/6257; G06K 9/6228; G06N 3/04
See application file for complete search history. 20 Claims, 14 Drawing Sheets

RECEIVE A FIRST SET OF TRAINING DATA FOR TRAINING THE
ANN TO PREDICT OUTPUT DATA FORA FIRST TYPE OF TASK

TRAIN THE ANN WITH THE FIRST SET OF TRAINING DATA BY

.,._802

w~~J~SFi~Ns; ~~~~~~ ~~ ~~~~6~~~EF ~~~~~~.A;~~~~1J~~E .-- 804

FIRST SUBSET OF NEURONS IS SELECTED BASED ON AN
IDENTITY OF THE FIRST TYPE OF TASK

RECEIVE A SECOND SET OF TRAINING DATA FOR TRAINING THE
ANN TO PREDICT OUTPUT DATA FOR A SECOND TYPE OF TASK, ...-806
WHEREIN THE SECOND TYPE OF TASK IS DIFFERENT FROM THE

FIRST TYPE OF TASK

TRAIN THE ANN WITH THE SECOND SET OF TRAINING DATA BY
ADJUSTING VALUES OF ONLY THOSE WEIGHTS ASSOCIATED

WITH A SECOND SUBSET OF NEURONS OF THE ANN, WHEREIN
THE SECOND SUBSET OF NEURONS IS SELECTED BASED ON AN

IDENTITY OF THE SECOND TYPE OF TASK,- 808
WHEREIN TRAINING THE ANN FOR ANY GIVEN TASK ENTAILS

BIASING ADJUSTMENT OF WEIGHTS ACCORDING TO THEIR
RESPECTIVE IMPORTANCE TO PREDICTIVE CAPABILITIES OF THE

ANN FOR PREVIOUSLY TRAINED TASKS

US 11,205,097 B2
Page 2

(56) References Cited

PUBLICATIONS

Barto, A. G., et al., "Neuronlike adaptive elements that can solve
difficult learning control problems," IEEE Transactions on Systems,
Man, and Cybernetics, vol. 13, No. 5, pp. 834-846 (1983).
Bassett, D. S., et al. "Dynamic reconfiguration of human brain
networks during learning," PNAS, vol. 108, No. 18, pp. 7641-7646
(2011).
Cichon, J, et al., "Branch-specific dendritic Ca2+ spikes cause
persistent synaptic plasticity," Nature, vol. 520, pp. 180-185 (2015).
Deng, J., et al., "Imagenet: A large-scale hierarchical image data­
base," IEEE Conference on Computer Vision and Pattern Recog­
nition (IEEE, Piscataway, NJ), pp. 248-255 (2009).
Engel, A. K., et al., "Dynamic predictions: Oscillations and syn­
chrony in top-down processing," Nat Rev Neurosci vol. 2, pp.
704-716 (2001).
Fernando, C., et al., "PathNet: Evolution channels gradient descent
in super neural networks," arXiv:1701.08734vl (2017).
Fischer, M., et al., "Rapid actin-based plasticity in dendritic spines,"
Neuron, vol. 20, pp. 847-854 (1998).
Goodfellow, I. J., et al., "An empirical investigation of catastrophic
forgetting in gradient-based neural networks," arXiv:1312.62llv3
(2013).
He, X., et al., "Overcoming catastrophic interference by concep­
tors," arXiv: 1707 .04853v2 (2017).
Hochreiter, S., et al., "Long short-term memory," Neural Compu­
tation, 9, 1735-1780 (1997).
Johnston, K., et al., "Top-down control-signal dynamics in anterior
cingulate and prefrontal cortex neurons following task switching,"
Neuron, 53, 453-462 (2007).
Kasai, H., et al., "Structure-stability-function relationships of dendritic
spines." TRENDS Neurosciences, vol. 26, No. 7, pp. 360-368
(2003).
Kingma, D. P., et al., Adam: A method for stochastic optimization,
arXiv:1412. 6980v9 (2014).
Kirkpatrick, J., et al., "Overcoming catastrophic forgetting in neural
networks," PNAS, vol. 114, No. 13, pp. 3521-3526 (2017).
Kuchibhotla, K. V., et al., "Parallel processing by cortical inhibition
enables context-dependent behavior," Nature Neuroscience, vol. 20,
No. 1, pp. 62-71 (2017).
Kukushkin, N. V., et al., "Memory takes time," Neuron, 95, pp.
259-279 (2017).
Lake, B. M., et al., "One-shot learning by inverting a compositional
causal process," Advances in Neural Information Processing Sys­
tems, eds Burges CJC, Bottou L, Welling M, Ghaluamani Z,
Weinberger KQ (Curran Assoc, Red Hook, NY), pp. 2526-2534
(2013).

Li, Z., et al., "Learning without forgetting," IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, No. 12, (2018).
Mallya, A., et al., "Packnet: Adding multiple tasks to a single
network by iterative pruning," arXiv: 1711.05769 (2017).
Miller, E. K., et al., "An integrative theory of prefrontal cortex
function," Annu Rev. Neurosci. 24:167-202 (2001).
Nguyen, C. V., et al., "Variational continual learning," arXiv:1710.
10628v3 (2018).
Otazu, G. H., et al., "Engaging in an auditory task suppresses
responses in auditory cortex," Nature Neuroscience, vol. 12, pp.
646-654 (2009).
Rusu, A. A., et al., "Progressive neural networks," arXiv:1606.
0467lv3 (2016).

Santoro, A, et al., "One-shot learning with memory-augmented
neural networks," arXiv:1605.06065vl (2016).
Schulman, J., et al., "High-dimensional continuous control using
generalized advantage estimation," arXiv: 1506.02438v6 (2018).
Serra, J., et al., "Overcoming catastrophic forgetting with hard
attention to the task," arXiv:1801.01423v3 (2018).

Srivastava, N., et al., "Dropout: A simple way to prevent neural
networks from overfitting," J Machine Learn Res 15:1929-1958
(2014).

Tononi, G., et al., "Sleep and the price of plasticity: From synaptic
and cellular homeostasis to memory consolidation and integration,"
Neuron 81:12-34 (2014).
Velez, R., et al., "Diffusion-based neuromodulation can eliminate
catastrophic forgetting in simple neural networks," arXiv: 1705.
07241 (2017).
Xu, T., et al., "Rapid formation and selective stabilization of
synapses for enduring motor memories," Nature vol. 462, pp.
915-919 (2009).

Yang, G, et al., "Stably maintained dendritic spines are associated
with lifelong memories," Nature, vol. 462, pp. 920-924 (2009).
Yang, R. G., et al., "Clustering and compositionality of task
representations in a neural network trained to perform many cog­
nitive tasks," bioRxiv:183632. (2017).
Yoshihara, Y., et al., "Dendritic spine formation and stabilization,"
Current Opinion Neurobiology 19:146-153 (2009).

Yuste, R., et al., "Morphological changes in dendritic spines asso­
ciated with long-term synaptic plasticity," Annu Rev Neurosci
24: 1071-1089 (2001).
Zenke, F., et al., "Continual learning through synaptic intelligence,"
International Conference on Machine Learning (International Machine
Learning Society, Princeton), pp. 3987-3995 (2017).

* cited by examiner

U.S. Patent

r
N

0
0

w
u
> w
C
I-
:z
w
:J
u

0

(

r
..:I'
0

r
N
0

Dec. 21, 2021

..:I'

r-1r-1r-1
lw 11 11~ I

~ I~ 11~ 11e I
0 Is 11~ 11~ I ~
w I~ 11 ~ 11 £[I ~

I u.. 11 11 ~ I
I_JI_JI_J

-(J) -0:::
0
(J)
(J)
w
u
0 r 0:::
a.. CD

0

Sheet 1 of 14 US 11,205,097 B2

w
(J)
<(
co
~
<(
C

!:::
:z
::::,
I-
::::,
a..
I-
::::,
0 -r I-
::::,

■

C)
co a.. -0 :z - LL

-(J) ~-0::: w
OU

~~
WW
:z I-

:z -

U.S. Patent Dec. 21, 2021 Sheet 2 of 14 US 11,205,097 B2

z 0::
w w col C >- o ----.
Q <(N
::c: ...J

N
■

C) -LL
z 0::

w w""'I C >- o ----.

~~N

I- 0::

=> w "'I CL >- o ____.
~~N

INPUT
TRAINING DATA

301

•
IT(A)_IN, I

I T(A}_IN2 I

•
•
•

INPUT
RUNTIME DATA

305

•

•1 11
~

► 12

- --

•
•
•

I R(A)_IN, I ►:

IR(A)_IN,I ► 1
12

•
•
•

•
•
•

W1=0.15

W2=0.20

W3=0.25

W4=0.30

W1=0.15

I TRAINING: TASK A I

b1=0.35

Ws=0.40
. H11 .
\ .

Ws=0.45

c.~ W7=0.50

~12 Ws=0.55

•
•
•

[RUNTIME: TASK A

b1=0.35

b2=0.60

{_-°'\, Wg=0.45 /--°'\,
, H2'.)~ 7' 01)
\...__, W10=0.48 \...__,

W12=0.51

• •
• •
• •

b2=0.60

OUTPUT
TRAINING DATA

303

•
►IT(A)_OUT1 1

► IT(A)_ OUT21

•
•
•

OUTPUT
RUNTIME DATA

307

•
w5=0.40 /.~~°'\ w9=0.45 /..~~°'\ I I

\ H1,),,, 7 H2/k 7 01) ►-R(ALOUT,
Ws=0.45 \...__, W10=0.48 \...__,

W3=0.25 ~---~,c.~
W4=0.30 ~12

W7=0.50 '"""'\ W11=0.43

_ H22)/ ~ j ►IR(A)_ OUT21
Ws=0.55 \...._/ W12=0.51

• •
• •
• •

FIG. 3A

•
•
•

•
•
•

e
•
00
•
~
~
~
~ = ~

c
('D

~
N
~

N
0
N

rJJ

=­('D
('D
~

0
.i;...

d
r.,;_

"'""'
"'""' 'N = UI = \0
-....l

= N

INPUT
TRAINING DATA

309

•
I T(B)_IN, I

I T(B}_IN2 I

•
•
•

INPUT
RUNTIME DATA

313

•

•1 11
~

► 12

- --

•
•
•

I R(B)_IN, I ►:

IR(B)_IN,I ► 1
12

•
•
•

•
•
•

W1=0.30

W2=0.15

W3=0.40

W4=0.25

W1=0.30

I TRAINING: TASK B I

b1=0.45

Ws=0.35
. H11 •
\ .

Ws=0.25

c.~ W7=0.55

~12 Ws=0.15

•
•
•

[RUNTIME: TASK B

b1=0.45

b2=0.35

{_-°'\, Wg=0.50 /--°'\,
, H2'.)~ 7' 01)
\...__, W10=0.25 \...__,

W12=0.35

• •
• •
• •

b2=0.35

OUTPUT
TRAINING DATA

311

•
►IT(B)_OUT1 1

► IT(B)_ OUT21

•
•
•

OUTPUT
RUNTIME DATA

315

•
w5=0.35 /.~~°'\ w9=0.50 /..~~°'\ I I

\ H1,),,, 7 H2/k 7 01) ►-R(BLOUT,
Ws=0.25 \...__, W10=0.25 \...__,

W3=0.40 ~---~,c.~
W4=0.25 ~12

W7=0.55 '"""'\ W11=0.20

_ H22)/ ~ j ►IR(B)_ OUT21
Ws=0.15 \...._/ W12=0.35

• •
• •
• •

FIG. 3B

•
•
•

•
•
•

e
•
00
•
~
~
~
~ = ~

c
('D

~
N
~

N
0
N

rJJ

=­('D
('D
.i;...

0
.i;...

d
r.,;_

"'""'
"'""' 'N = UI = \0
-....l

= N

TRAINING WITH WEIGHT STABILIZATION: TASK A

INPUT
TRAINING DATA

301

•
(._~, w1=0.15

.\ 11
- ~ w2=Q.20

W3=0.25

I T(A}_IN2 I • \ 12
W4=0.30

•
•
•

•
•
•

Importance Scores for
Task A Weights

--1

--2

-3

-10

b1=0.35

(.--...., W7=0.50
1 H1 2 .

\..__.

•
•
•

b2=0.60

•
•
•

FIG. 4A

=0.43

W12=0.51

OUTPUT
TRAINING DATA

303

•
,T(A)_OUT11

,T(A)_ OUT21

• •
• •
• •

e
•
00
•
~
~
~
~ = ~

c
('D

~
N
~

N
0
N

rJJ

=­('D
('D
Ul

0
.i;...

d
rJl.

"'""'
"'""' 'N = UI = \0
-....l

= N

INPUT
TRAINING DATA

309

•
I T(BUN1 I

I T(B}_IN2 I
•
•
•

TRAINING WITH WEIGHT STABILIZATION: TASK B

b1=0.45 b2=0.35

r:~, W1=0.30
• 11

.,__ _.,,.. ., ~\ Wg=0.50
1),><:_"" ---••• \

~ W2=0.15

' •(
\
' --

•
•
•

r:
W4=0.25

~ H1 -~ \

I '-- ---•
•
•

•
•
•

(w10=0.43\
...... ., ,.~~n.,..,,./~l

Stabilized Task A Weights
(Importance Scores)

Importance Scores for
Task B Weights

------------ 1 --1

-------- 2 --2

-----■ 3 -3

: 10 --1 -10

FIG. 4B

OUTPUT
TRAINING DATA

311

• d •IT(B)_OUT1I

•
•
•

I •IT(B)_OUT2I

•
•
•

e
•
00
•
~
~
~
~ = ~

c
('D

~
N
~

N
0
N

rJJ

=­('D
('D
O'I

0
.i;...

d
r.,;_

"'""'
"'""' 'N = UI = \0
-....l

= N

U.S. Patent Dec. 21, 2021 Sheet 7 of 14 US 11,205,097 B2

<(

~
u,

~
C)
z

<C ~
<(
t!) u,
I-
z ■ w C) C
z
w -CL LL w
C

I

I-
>< w
I-
z
0 u

U.S. Patent Dec. 21, 2021 Sheet 8 of 14 US 11,205,097 B2

en
~
u,

~
C)
z m ~
<(
t!) u,
I-
z ■ w C) C
z
w -CL LL w
C

I

I-
>< w
I-
z
0 u

U.S. Patent

o/
0
Lt)

z
0
0::
=>
w
z

...J
N
::c:
. . .
.,

N
::c:

...
N
::c:

"' N
::c:

"' N
::c:

N
::c:

...J ...
::c:

. . .
., ...

::c:

... ...
::c:

"' ...
::c:

"' ...
::c:

~ ...
::c:

~
u,

~

Dec. 21, 2021

... 0

.
0 ...
0 ...
0 0

... ...
0 0

0 ...
.
... 0

0 0

... 0

0 ...
... 0

<(en

Sheet 9 of 14

0 ··· l_
.
~ ...

0 0 -... ... 0 -...
0 0

1-----...
0 0

-...
0 ... 0

~ -... ... 0 -
0

C"""""""""""'

0
-... ... 0 -... ... 0

u ... 0

US 11,205,097 B2

0 u,
■

-LL

U.S. Patent Dec. 21, 2021

z 0::

ili
...

Ww
C >-
~~ ...

en
zZ
oQ

~ 0:: I- ... N u, => -
~

w u,
z~

z 0::
N

0 ...
Ww ::c:
C >-
Q <(... ::c: ...J ::c: ... 0

<(

z,:
o ,2
0:: - ... N
=> I~

~ :~

Sheet 10 of 14

•
•
•

0
0 0 0 ...

M ""' Lt) ...

0 0 0 ...
... 0

M ""' Lt) ...

US 11,205,097 B2

0

,..............

...

...J

...
,..............

0

...J

C
u,

■

C) -LL

TRAINING WITH CONTEXT-DEPENDENT GATING AND WEIGHT STABILIZATION: TASK A

b1=0.35 b2=0.60

IT(A)_IN, I
(:\ W1=0.15 •1 11
\.,.__ W2=0.20

H11 » Wg=? ~~ ~~·· :,~.·~~·. ~~

,,,-~--~ W3=0.25 ES~r=;,~? I T(AUNi I • t 12
' W4=0.30

• • • • •
• • • • •
• • • • •

Task A Weights After Training

Weight Value Gated? Stabilized?

Ws 0.40 No Moderate

w6 0.45 No Weak

W1 -- Yes N/A

Ws -- Yes N/A

W9 -- Yes N/A

W10 -- Yes N/A

W11 0.43 No Weak

W12 0.51 No Strong

FIG. 6A

;

•IT(A)_OUT11

•IT(A)_OUT21

•
•
•

e
•
00
•
~
~
~
~ = ~

c
('D

~
N
~

N
0
N

rJJ

=­('D
('D
0
.i;...

d
r.,;_

"'""'
"'""' 'N = UI = \0
-....l

= N

I T(B}_IN1 I

I T(BUNi I
•
•
•

TRAINING WITH CONTEXT-DEPENDENT GATING AND WEIGHT STABILIZATION: TASK B

-~\
W1=0.30

\.,. __ / W2=0.15

W3=0.40
'

•<\ 12
W4=0.25

•
•
•

Weight

Ws

w6

W1

Ws

W9

W10

W11

W12

b1=0.45 b2=0.35

/""

5

-~~-~~L----~:--""~=;?:=--- -::--~:~ o.0 •IT(B)_OUT11
I - ·, {w6=0.45} ~• w 10=? '-

Value

{0.40}

{0.45}

0.55

0.15

--
--

0.20

{0.51}

X ··.
W7=0.55 ··--.... __ W11=0.20 ···-..... . "'' 1/e <~)i ~<~0 +ll)_OUT,

1 \....__,.,./ Ws=0.15 '---.__ ~ 12=0.5~ ··,_ --• • •
•
•

•
•

Task B Weights After Training

Gated?
Previous Training Value

Chanaed?

Yes No: this training gated

Yes No: this training gated

No Yes

No Yes

Yes No: this training gated

Yes No: this training gated

No Yes

No
No: pervious value

stabilized

FIG. 6B

Stabilized?

N/A

N/A

Weak

Moderate

N/A

N/A

Weak

N/A

•
•

•
•
•

e
•
00
•
~
~
~
~ = ~

c
('D

~
N
~

N
0
N

rJJ
=­('D
('D
N
0
.i;...

d
rJl.

"'""'
"'""' 'N = UI = \0
-....l

= N

U.S. Patent

700

~

CONTEXT
STORAGE

708

Dec. 21, 2021

TRAINING
DATA A

702A

Sheet 13 of 14

TRAINING
DATAB

702B

CONTEXT DEPENDANT GATING

Nijf
TRAINED NETWORK 706

OUTPUT PREDICTIONS 712

FIG. 7

US 11,205,097 B2

PREDICTION
REQUEST 710

U.S. Patent Dec. 21, 2021 Sheet 14 of 14 US 11,205,097 B2

800

✓

r 'I

RECEIVE A FIRST SET OF TRAINING DATA FOR TRAINING THE
ANN TO PREDICT OUTPUT DATA FOR A FIRST TYPE OF TASK

.,_802

'-.. ~

'
r "I

TRAIN THE ANN WITH THE FIRST SET OF TRAINING DATA BY
ADJUSTING VALUES OF ONLY THOSE WEIGHTS ASSOCIATED

WITH A FIRST SUBSET OF NEURONS OF THE ANN, WHEREIN THE
.,_804

FIRST SUBSET OF NEURONS IS SELECTED BASED ON AN
IDENTITY OF THE FIRST TYPE OF TASK

\.. ~

,
r RECEIVE A SECOND SET OF TRAINING DATA FOR TRAINING THE"

ANN TO PREDICT OUTPUT DATA FOR A SECOND TYPE OF TASK, .-sos
WHEREIN THE SECOND TYPE OF TASK IS DIFFERENT FROM THE

FIRST TYPE OF TASK
\.. ~

r 'I

TRAIN THE ANN WITH THE SECOND SET OF TRAINING DATA BY
ADJUSTING VALUES OF ONLY THOSE WEIGHTS ASSOCIATED

WITH A SECOND SUBSET OF NEURONS OF THE ANN, WHEREIN
THE SECOND SUBSET OF NEURONS IS SELECTED BASED ON AN

IDENTITY OF THE SECOND TYPE OF TASK, .-sos
WHEREIN TRAINING THE ANN FOR ANY GIVEN TASK ENTAILS

BIASING ADJUSTMENT OF WEIGHTS ACCORDING TO THEIR
RESPECTIVE IMPORTANCE TO PREDICTIVE CAPABILITIES OF THE

ANN FOR PREVIOUSLY TRAINED TASKS
\... ~

FIG. 8

US 11,205,097 B2
1

TRAINING ARTIFICIAL NEURAL
NETWORKS USING CONTEXT-DEPENDENT

GATING WITH WEIGHT STABILIZATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 62/800,167, filed on Feb. 1, 2019, the which
is incorporated herein in its entirety by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with govermnent support under
grants EY019041 and MH092927 awarded by the National
Institutes of Health, and grant NCS 1631571 awarded by the
National Science Foundation. The government has certain
rights in the invention.

BACKGROUND

Artificial neural networks (ANNs) may be used for a
variety of machine learning (ML) and artificial intelligence
(AI) tasks, such as image recognition or machine vision,
speech recognition (e.g., speech-to-text), speech synthesis
(e.g., text-to-speech), and pattern recognition, to name a few.

2
statistical certainty if the runtime data includes or represents
new (previously unobserved) examples of the given class. In
the context of this example description, training the ANN on
known objects from one or more classes may be considered

5 to represent training the ANN for a particular "task," and
training the same ANN on known objects from one or more
other classes may be considered training the ANN for a
different task. It will be appreciated that not all ANN tasks
are necessarily ones of strictly recognition, or ones that

10 produce an output result that answers a question of recog­
nition.

It is possible for the same ANN to perform multiple,
different tasks, provided the ANN can be trained for the
different tasks. For example, in some instances, recognizing

15 cats and dogs in digital images may be considered one task,
while recognizing motorcycles and cars in digital images
may be considered a different task. As another example, for
an ANN-based language translation, translating text or
speech from English to French may be considered one task,

20 and translating text or speech from English to German may
be considered a different task. A common ANN may also be
used for more diverse tasks, such as recognition of diverse
objects in images and recognition of speech in digital audio
data. While some different tasks may share common aspects,

25 such as recognition of types of objects in digital images, they
may still be considered different at least to the extent that an
ANN must be trained separately for each. Thus, in order to
perform more than one, different task, an ANN needs to be
trained for each different task. In this disclosure, two or more

In a typical scenario, an ANN may be "trained" to recognize
features and/or characteristics of a class of input objects as
represented in input data in order to later be able to receive
previously unknown data, and in it identify (or rule out the
identity of) particular objects of the class with some statis­
tical certainty. For example an ANN may be trained to
recognize cats in digital images, so that the ANN may later
identify images of cats from among previously unseen (by 35

the ANN) input images.

30 ANN tasks are considered different if the ANN needs to be
trained separately for each of the two or more ANN tasks.

A significant challenge in training an ANN for multiple
tasks is that, because each training may adjust the param­
eters of the ANN, successive task trainings may tend to
change the parameter values determined from one or more
previous task trainings. As a result, the ANN may tend to

An ANN may be implemented as computer-executable
instructions on a computing device (e.g., computer, smart­
phone, server, etc.). In a common arrangement, an ANN may
include an array of neurons (e.g., as computational units), 40

each of which may receive input data from one or more
sources (e.g., input data, or other neurons), compute a
mathematical function using the input data, and output the
computational result to one or more other neurons, or as
output data from the ANN. Neurons of an ANN may be 45

configured in a multiplicity of ANN layers, and are typically
interconnected one layer to the next from neuron outputs to
neuron inputs. The mathematical function of each neuron
generally includes one or more parameters that may be
adjusted in order to "train" the ANN to perform a given task 50

with a prescribed level of accuracy.

SUMMARY

"forget" parameters from earlier task trainings, leading to
degradation of runtime performance of the ANN on earlier­
trained tasks. The larger the number of distinct tasks for
which an ANN is sequentially trained, the worse the ANN
performs for tasks trained earlier in the sequence of task
trainings.

More specifically, as described below, a given neuron
typically computes a mathematical function, referred to an
"activation function," of its input data, then outputs the
resulting activation function value. The output of a neuron in
one layer of an ANN may be connected to the input of each
of one or more neurons in the next layer, and the input of
each neuron in one layer may be connected to the outputs of
one or more neurons in the previous layer. Each connection
may be associated with a respective weight, which may be
applied to the output value when it is supplied to the input
of the connected neuron. The input data of a given neuron
may thus consist of multiple, weighted input values. The

Training usually involves providing the ANN with input
"training data" that includes samples of known objects of a
given class, and tuning or adjusting the parameters of the
neurons' respective mathematical functions so that the
ANN's predicted identifications match the known identifi­
cations of the objects to some degree of statistical certainty.

55 neuron sums the weighted input values together with a bias
term, computes the activation function of the sum, and
outputs the activation function to the next layer or as output
from the ANN. It is the weights and biases of all the
connections of the ANN that are adjusted or tuned during

60 training. And because the weights and biases for one task
may be different from those of another task, sequential
training may change previously-determined values from
earlier-trained tasks. This phenomenon is sometimes

In this approach, the samples of the known objects may
serve as examples for the ANN. By training on a sufficient
number and/or sufficient quality of samples, the ANN may
thus learn, through adjustment of its parameters, to recog­
nize objects of the given class. Later, at "runtime," the ANN 65

may receive runtime input data-e.g., data that the ANN has
not previously seen-and be able to determine to some

referred to as "catastrophic forgetting" in ANNs.
One attempted approach to reduce catastrophic forgetting

in multi-task training of ANNs is to determine a computa­
tional importance of each weight to the performance of the

US 11,205,097 B2
3 4

ANN for a given task, and inhibit adjustment of weights
during subsequent training in proportion to (or as a function
of) the determined importance of the weights to the given
task. This technique, referred to herein as "weight stabili­
zation," an example of which is sometimes referred to in 5

research contexts as "synaptic stabilization," has been
shown empirically to reduce or alleviate catastrophic for­
getting to a limited degree. In particular, after a relatively
small number of sequential task trainings, the predictive
(statistical) accuracy of the ANN for earlier-trained tasks 10

was observed to fall off more slowly than sequential training
without weight stabilization. The actual number may range
from 10 to !Os or larger, depending on the complexity of the
tasks and the size of the ANN. However, beyond the range

ANNs. Also by way of example, trammg and runtime
operations may be described herein for image recognition
tasks. However, it should be understood that these are just
examples of the types of different tasks to which the tech­
niques may be applied.

Thus, in one respect, example embodiments may involve
a method, carried out by a computing device, for computa­
tionally training an artificial neural network (ANN) imple­
mented in the computing device. The method may involve,
at the computing device, receiving a first set of training data
for training the ANN to predict output data for a first type of
task. The method may further involve, at the computing
device, training the ANN with the first set of training data by
adjusting values of only those weights associated with a first
subset of neurons of the ANN, where the first subset of
neurons is selected based on an identity of the first type of
task. The method may additionally involve, at the computing
device, receiving a second set of training data for training

of the observed slow drop in accuracy, significant perfor- 15

mance degradation was still observed for many multiples of
sequential task trainings, the actual number for this more
severe degradation depending, again, on the complexity of
the tasks and the size of the ANN.

The inventors have devised a novel approach to reduce
catastrophic forgetting that selects different subsets of an
ANN's neurons to be activated during training and runtime
operations for different tasks. The neurons of each subset are
selected randomly from among the neurons of the ANN (but
generally exclude neurons of the input and output layers, as
described below), and each subset is associated with a
different one of multiple tasks for which the ANN is trained.
Neurons that are activated for a given task function as usual,
while those not in the subset for the given task are rendered
inactive by "gating" their inputs or outputs. Thus, during
training for a given task, only a subset of weights are subject
to adjustment, while all the others-those of "gated" neu­
rons-remain unchanged, thereby lessening the impact of
subsequent training on previously-determined weights. In
view of the association of each subset with a different one of
multiple tasks or "contexts," this technique is referred to
herein as "context-dependent gating."

The inventors have determined empirically that context­
dependent gating by itself yields results similar to those of
weight stabilization, with the predictive (statistical) accu­
racy of the ANN for earlier-trained tasks dropping more
slowly than sequential training without context-dependent
gating for a range of sequential task trainings similar to the
range observed for weight stabilization. Again, further per­
formance degradation was observed for multiples of sequen­
tial task trainings.

However, in an unexpected discovery, the inventors found
that applying both context-dependent gating and weight
stabilization during sequential training of multiple tasks
yielded not only much higher accuracy of ANN prediction at
runtime for all tasks (including the earlier-trained tasks) than
either technique by itself, but also yielded a much slower
drop-off in predictive accuracy of the ANN after many
multiples of sequential trainings than either technique by
itself. And the drop-off in accuracy appeared to slow down
beyond the range that degradation set in. Thus, the inventors
have discovered that when used together, context-dependent
gating and weight stabilization provide complementary
improvements to alleviating catastrophic forgetting in multi­
task sequential ANN training that are significantly beyond
any additive effect that might otherwise have been expected.

Accordingly, methods and systems are disclosed herein
for applying both context-dependent gating and weight
stabilization to sequentially training ANNs for multiple,
different tasks. Example embodiments may be described in
terms of feed-forward ANNs, though the techniques
described herein are not limited or restricted only to such

20 the ANN to predict output data for a second type of task,
where the second type of task is different from the first type
of task. The method may also involve, at the computing
device, training the ANN with the second set of training data
by adjusting values of only those weights associated with a

25 second subset of neurons of the ANN, where the second
subset of neurons is selected based on an identity of the
second type of task. Further, during training of the ANN for
any given type of task, adjusting of the value of any given
weight associated with neurons of the ANN may involve: if

30 the ANN has been previously trained for one or more task
types different from the given type, computationally biasing
adjustment of the value of the given weight according to a
respective importance of the given weight to a predictive
capability of the ANN for the one or more task types, and if

35 the ANN has not been previously trained for any task types
different from the given type, computationally adjusting the
value of the given weight without bias.

In another respect, example embodiments may involve a
computing device. The computing device may include one

40 or more processors and memory configured to store com­
puter-executable instructions that, when executed by the one
or more processors, cause the computing device to carry out
operations. The operations may involve receiving a first set
of training data for training an artificial neural network

45 (ANN) implemented on the one or more computing devices
to predict output data for a first type of task. The operations
may also involve training the ANN with the first set of
training data by adjusting values of only those weights
associated with a first subset of neurons of the ANN, where

50 the first subset of neurons is selected based on an identity of
the first type of task. The operations may further involve
receiving a second set of training data for training the ANN
to predict output data for a second type of task, where the
second type of task is different from the first type of task.

55 Additionally, the operations may involve training the ANN
with the second set of training data by adjusting values of
only those weights associated with a second subset of
neurons of the ANN, where the second subset of neurons is
selected based on an identity of the second type of task.

60 Further, during training of the ANN for any given type of
task, adjusting of the value of any given weight associated
with neurons of the ANN may involve: if the ANN has been
previously trained for one or more task types different from
the given type, computationally biasing adjustment of the

65 value of the given weight according to a respective impor­
tance of the given weight to a predictive capability of the
ANN for the one or more task types, and if the ANN has not

US 11,205,097 B2
5

been previously trained for any task types different from the
given type, computationally adjusting the value of the given
weight without bias.

In still another respect, example embodiments may
involve an article of manufacture comprising non-transitory 5

computer readable media having computer-readable instruc­
tions stored thereon that, when executed by one or more
processors of a computing device, cause the computing
device to carry out operations. The operations may involve
receiving a first set of training data for training an artificial 10

neural network (ANN) implemented on the one or more
computing devices to predict output data for a first type of
task. The operations may further involve training the ANN
with the first set of training data by adjusting values of only
those weights associated with a first subset of neurons of the 15

ANN, where the first subset of neurons is selected based on
an identity of the first type of task. The operations may also
involve receiving a second set of training data for training
the ANN to predict output data for a second type of task,
where the second type of task is different from the first type 20

of task. Additionally, the operations may involve training the
ANN with the second set of training data by adjusting values
of only those weights associated with a second subset of
neurons of the ANN, where the second subset of neurons is
selected based on an identity of the second type of task. 25

Further, during training of the ANN for any given type of
task, adjusting of the value of any given weight associated
with neurons of the ANN may involve: if the ANN has been
previously trained for one or more task types different from
the given type, computationally biasing adjustment of the 30

value of the given weight according to a respective impor­
tance of the given weight to a predictive capability of the
ANN for the one or more task types, and if the ANN has not
been previously trained for any task types different from the
given type, computationally adjusting the value of the given 35

weight without bias.
These as well as other embodiments, aspects, advantages,

and alternatives will become apparent to those of ordinary
skill in the art by reading the following detailed description,
with reference where appropriate to the accompanying 40

drawings. Further, this summary and other descriptions and
figures provided herein are intended to illustrate embodi­
ments by way of example only and, as such, that numerous
variations are possible. For instance, structural elements and
process steps can be rearranged, combined, distributed, 45

eliminated, or otherwise changed, while remaining within
the scope of the embodiments as claimed.

BRIEF DESCRIPTION OF DRAWINGS

6
FIG. 4B illustrates an example of training an artificial

neural network on an example task Busing weight stabili­
zation after training on example task A using weight stabi­
lization, in accordance with example embodiments.

FIG. SA illustrates an example of training an artificial
neural network on an example task A using context-depen­
dent gating, in accordance with example embodiments.

FIG. SB illustrates an example of training an artificial
neural network on an example task Busing context-depen­
dent gating after training on example task A using context­
dependent gating, in accordance with example embodi­
ments.

FIG. SC illustrates an example gating table for determin­
ing which neurons of an artificial neural network to gate
during training and runtime, in accordance with example
embodiments.

FIG. SD illustrates an alternative example gating table for
determining which neurons of an artificial neural network to
gate during training and runtime, in accordance with
example embodiments.

FIG. 6A illustrates an example of training an artificial
neural network on an example task A using context-depen­
dent gating and weight stabilization, in accordance with
example embodiments.

FIG. 6B illustrates an example of training an artificial
neural network on an example task Busing context-depen­
dent gating and weight stabilization after training on
example task A using context-dependent gating and weight
stabilization, in accordance with example embodiments.

FIG. 7 illustrates a machine learning system, in accor­
dance with example embodiments.

FIG. 8 is a flow chart of an example method, in accor­
dance with example embodiments.

DETAILED DESCRIPTION

Example methods, devices, and systems are described
herein. It should be understood that the words "example"
and "exemplary" are used herein to mean "serving as an
example, instance, or illustration." Any embodiment or
feature described herein as being an "example" or "exem­
plary" is not necessarily to be construed as preferred or
advantageous over other embodiments or features unless
stated as such. Thus, other embodiments can be utilized and
other changes can be made without departing from the scope
of the subject matter presented herein.

Accordingly, the example embodiments described herein
are not meant to be limiting. It will be readily understood

FIG. 1 depicts a simplified block diagram of an example
computing device, in accordance with example embodi­
ments.

FIG. 2 is a conceptual illustration of an artificial neural
network, in accordance with example embodiments.

50 that the aspects of the present disclosure, as generally
described herein, and illustrated in the figures, can be
arranged, substituted, combined, separated, and designed in
a wide variety of different configurations. For example, the
separation of features into "client" and "server" components

FIG. 3A illustrates an example of training an artificial
neural network on an example task A, then using the trained
artificial neural network to perform task A at runtime, in
accordance with example embodiments.

FIG. 3B illustrates an example of training an artificial
neural network on an example task B after training on
example task A, then using the trained artificial neural
network to perform task B at runtime, in accordance with
example embodiments.

FIG. 4A illustrates an example of training an artificial
neural network on an example task A using weight stabili­
zation, in accordance with example embodiments.

55 may occur in a number of ways.
Further, unless context suggests otherwise, the features

illustrated in each of the figures may be used in combination
with one another. Thus, the figures should be generally
viewed as component aspects of one or more overall

60 embodiments, with the understanding that not all illustrated
features are necessary for each embodiment.

Additionally, any enumeration of elements, blocks, or
steps in this specification or the claims is for purposes of
clarity. Thus, such enumeration should not be interpreted to

65 require or imply that these elements, blocks, or steps adhere
to a particular arrangement or are carried out in a particular
order.

US 11,205,097 B2
7

I. Introduction

Humans and other advanced animals are capable of
learning large numbers of tasks during their lifetime, without
necessarily forgetting previously learned information. This 5

ability to learn and not forget past knowledge, customarily
referred to as continual learning, presents a significant
challenge in the design of artificial neural networks (ANN s)
that can build upon previous knowledge to solve new tasks.
One reason is that when ANNs are trained on several tasks 10

sequentially, using conventional techniques, they often suf-
fer from "catastrophic forgetting," wherein learning new
tasks degrades performance on previously learned tasks.
This occurs because learning a new task can alter connection

15
weights away from optimal solutions learned for previous
tasks.

Among approaches tried for alleviating catastrophic for­
getting in ANNs are stabilization techniques mentioned
above. In some studies, applying these stabilization tech- 20

niques has allowed ANN s to learn several (sl 0) sequentially
trained tasks with only a small loss in accuracy.

8
forgetting is beyond what would otherwise have been
expected from additive improvements of the individual
techniques by themselves.

II. Example Computing Devices

FIG. 1 is a simplified block diagram of a computing
device 100, in accordance with example embodiments. As
shown, the computing device 100 may include processor(s)
102, memory 104, network interface(s) 106, and an input/
output unit 108. By way of example, the components are
communicatively connected by a bus 110. The bus could
also provide power from a power supply (not shown). In
particular, computing device 100 may be configured to
perform at least one function of and/or related to compo-
nents of artificial neural network 200, gating table 500
and/or 502, machine learning system 700, and/or method
800, all of which are described below.

Memory 104 may include firmware, a kernel, and appli-
cations, among other forms and functions of memory. As
described, the memory 104 may store machine-language
instructions, such as programming code or non-transitory
computer-readable storage media, that may be executed by

However, after large numbers (>> 100) of different tasks,
stabilization alone still suffers from forgetting. Conse­
quently, the inventors have recognized the need to address
whether utilizing multiple complementary algorithms can be
more effective in supporting continual learning in ANNs
than any one technique by itself.

In particular, the inventors have proposed a novel
approach to alleviating catastrophic forgetting in ANN s
based on a context dependence oflearning observed in brain
studies. Specifically, the inventors have undertaken to devise

25 the processor 102 in order to carry out operations that
implement the methods, scenarios, and techniques as
described herein and in accompanying documents and/or at
least part of the functionality of the example devices,
networks, and systems described herein. In some examples,

30 memory 104 may be implemented using a single physical
device (e.g., one magnetic or disc storage unit), while in
other examples, memory 104 may be implemented using
two or more physical devices. In some examples, memory
104 may include storage for one or more machine learning

a mechanism in ANNs, referred to herein as "context­
dependent gating" of neurons of an ANN. For demonstration
purposes and by way of example, the inventors implemented
and tested a simplified version of context-dependent gating
involving sparse and mostly non-overlapping sets of units
(neurons) that are active for any one task. Example embodi­
ments employ an algorithm that includes an additional signal
that is unique for each task, and that is projected onto all 40

hidden neurons. In particular, this algorithm is simple to
implement and requires little extra computational overhead
compared with conventional techniques that do not address
catastrophic forgetting, as well as stabilization techniques
that attempt to.

35 systems and/or one or more machine learning models as
described herein.

Processors 102 may include one or more general purpose
processors and/or one or more special purpose processors
(e.g., digital signal processors (DSPs) or graphics processing
units (GPUs). Processors 102 may be configured to execute
computer-readable instructions that are contained in
memory 104 and/or other instructions as described herein.

Network interface(s) 106 may provide network connec­
tivity to the computing system 100, such as to the internet or

45 other public and/or private networks. Networks may be used
to connect the computing system 100 with one or more other
computing devices, such as servers or other computing
systems. In an example embodiment, multiple computing

Example embodiments herein are described in terms of a
system and method for implementing feedforward networks
trained on 100 sequential Modified National Institute of
Standards and Technology (MNIST) permutations and on
the ImageNet dataset split into 100 sequential tasks. The 50

inventors established that both context-dependent gating and
synaptic stabilization, when used alone, are each partially
effective at alleviating forgetting across the 100 tasks. How­
ever, in an unexpected discovery, the inventors found that
when context-dependent gating is utilized together with 55

synaptic stabilization, their merged operation enables an
ANN to successfully learn all 100 tasks with little forgetting.
Furthermore, utilizing context-dependent gating jointly with
stabilization allows recurrent neural networks (RNNs),
trained by using either supervised or reinforcement learning, 60

to sequentially learn 20 tasks commonly used in cognitive
and systems neuroscience experiments with high accuracy.
Thus, in accordance with example embodiments, context­
dependent gating, when used in tandem with stabilization
methods, may dramatically increase the ability of ANNs to 65

learn large numbers of tasks without forgetting previous
knowledge. The improvement in alleviating catastrophic

systems could be communicatively connected, and example
methods could be implemented in a distributed fashion.

Client device 112 may be a user client or terminal that
includes an interactive display, such as a GUI. Client device
112 may be used for user access to programs, applications,
and data of the computing device 100. For example, a GUI
could be used for graphical interaction with programs and
applications described herein. In some configurations, the
client device 112 may itself be a computing device; in other
configurations, the computing device 100 may incorporate,
or be configured to operate as, a client device.

Database 114 may include input data, such as images,
text, etc., that could be acquired for processing and/or
recognition by a neural network, including artificial neural
network 200 and context-dependent gating network 704.
The data could additionally or alternatively be training data,
which may be input to a neural network, including artificial
neural network 200 and context-dependent gating network
704, for training, such as determination of weighting factors

US 11,205,097 B2
9

applied at various layers of the neural network. Database 114
could be used for other purposes as well.

III. Example Artificial Neural Networks

Artificial neural networks (ANNs) are computational
models in which a number of relatively simple functional
units, customarily referred to as neurons, are combined to
solve complex problems. ANNs may be represented graphi­
cally as a number of connected nodes, where each node is a
neuron, and the neurons are arranged in layers, with con­
nections between the nodes (neurons) of adjacent layers.
While ANN s may have a fixed structure and may be trained

10
for a task. Non-limiting examples of loss functions may
include hinge loss, square loss, 0/1 loss, cross-entropy, or
some other metric. A cost function could then be used to
average the loss functions over all training examples asso-

5 ciated with the training data for a task while adding model
complexity penalties. Once the output of the cost function is
determined, weights of the connections may be updated by
propagating the error one layer at a time through ANN 200
in an attempt to reduce the error. This form of updating is

10 customarily referred as backpropagation, and may be based
on the derivative of the activation function.

The training process for a task on ANN 200 may continue

to solve one task at a time, example embodiments herein
relate to trainingANNs with dynamic structures that solve a 15

plurality of tasks without forgetting previously trained tasks.

until the training values of weights converge. For example,
convergence may occur when the error determined by the
cost function is less than a predetermined threshold value,
the change in the error determined by the cost function is

In example embodiments, ANNs may be implemented as
machine language instructions executable on a computing
device, such as computing device 100.

FIG. 2 is a simplified architectural representation illus- 20

trating an artificial neural network (ANN) 200, in accor­
dance with example embodiments. By way of example, the
neurons of ANN 200 are arranged in four layers: input layer
202 made up ofN neurons Il, 12, 13, ... , IN; hidden layer
204 made up of L neurons Hl 1 , Hl2 , Hl3 , H14 , Hl5 , ... , 25

HlL; hidden layer 206 made up ofL neurons H2i, H22 , H23 ,

H24 , H25 , ... , H2L; and output layer 208 made up of M
neurons 01, 02, ... , IN. For this example, the two hidden
layers have the same number of neurons (L), while the input
and output layer have N and M neurons respectively, where 30

N and M signify two numbers that need not be the same
(although they could be, and either or both could be equal to
L).

sufficiently small between consecutive iterations of training,
or a predetermined maximum number of iterations has been
reached. At this point, ANN 200 may be considered
"trained" on a particular task, and may be applied at runtime
to new inputs for runtime data associated with the particular
task in order to predict runtime values.

In the current disclosure, ANN 200 may be used to
illustrate the techniques and concepts as described herein.
That is, each scenario as described herein may utilize a new,
untrained instance of ANN 200 to exemplify one or more
techniques. Moreover, while ANN 200 may be represented
as a feed-forward multilayer neural network, the structures
and principles herein may be used with convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and
other ANN architectures. Additionally, while ANN 200 is
shown as a fully-connected network, non-fully connected
networks may be possible within the context of the current
disclosure.

FIGS. 3A and 3B illustrate example scenarios for training
ANN 200 with a first task and then training ANN 200 with
a second task. For purposes of discussion herein, the two
tasks are referred to as "task A" and "task B." Task A may
represent any supervised learning or reinforcement learning

In operation, each neuron of the input layer may receive
the input data 201 for a task, and data may then flow from 35

one layer to the next. This is represented in FIG. 2 by
directed arrows connecting neuron outputs in one layer to
neuron inputs in the next layer. By way of example, ANN
200 is a fully-connected network, where the output of each
neuron in one layer is connected to the input of each neuron 40 task, for example. Task B may represent any supervised

learning or reinforcement learning task that is different from
the task A. Non-limiting examples of tasks may include
identifying a motorcycle given an image, identifying a
country given a set of general population statistics, and/or

in the next layer, except for output layer 208, in which the
neuron outputs represent the output data 203 of the ANN for
the task.

As described above, each neuron computes an activation
function of its inputs and outputs the result to each neuron
in the next layer to which it is connected. Non-limiting
examples of activation function include tanh, ReLu, and
sigmoid; other suitable functions may be used as well. Each
connection may be associated with a respective weight that
may be applied (e.g. as a multiplier or scale factor) to the
output value of a neuron. When making a prediction for a
task, each neuron performs an operation on its input values
prior to applying the activation function. This operation may
involve a dot-product (or inner product) sum of the input
values with their associated weights applied and a bias term,
b, added. The activation function may then be applied to the
dot-product sum to produce the final output value of a
neuron.

45 other similar learning tasks In both FIGS. 3A and 3B, only
a portion of ANN 200 is depicted; specifically, only the first
two neurons in each layer. Namely, I1 and 12 in input layer
202; Hli, Hl2 in hidden layer 204; H2 1 , H22 in hidden layer
206; and 01 and 02 in output layer 208. Vertical ellipses in

50 each figure represent the continuation of neurons in each
layer. The top panel in each figure (above the horizontal
dotted line) represents training of ANN 200 for a given task,
and the bottom panel in each figure (below the horizontal
dotted line) represents runtime operation of ANN 200 for a

55 given task. For the depicted portions of ANN 200 in each
panel of FIGS. 3A and 3B, each of the connections between
the neurons is displayed with an associated weight. As
shown, the weights are labeled W1 , W2 , W3 , ... , W12. In
addition, bias values are displayed for each hidden layer of Training ANN 200 on a task may involve inputting

"training data" to the ANN 200 during training in order to
learn values of weights, such that the ANN 200 may
subsequently accurately predict output values when later
given "runtime data" input values for the task. Learning
weights may be accomplished using a loss function to
compute an error between the produced output values and 65

ground truth output values (e.g., known, correct values) for

60 the depicted portion of ANN 200. As shown, the biases are
labeled b1 and b2 . The values of the weights and biases in
each depicted portion of ANN 200 may be considered
arbitrary numbers that serve as examples of the present
discussion.

The top panel of FIG. 3A illustrates training of ANN 200
for task A. During training, input training data 301 are input
to the input layer of ANN 200. As shown, input training data a single training example associated with the training data

US 11,205,097 B2
11 12

of the changes in the weights and biases after training for
task B, the accuracy of predicted runtime values for task A
runtime input data may be diminished, and performance of
ANN 200 when applied to task A runtime data subsequent to

value T(A)_IN 1 is input at (or received by) I1 of the input
layer, and input training data value T(A)_IN2 is input at (or
received by) 12 of the input layer. During training, ANN
output training data 303 are output by the output layer of
ANN 200. As shown, output training data value T(A)_OUT 1

is output by 01 of the output layer, and output training data
value T(A)_OUT2 is output at 02 of the output layer.
Through backpropagation (or some other tuning/adjustment
procedure), the weights W i, W 2 , W 3 , ... , W 12 and biases
b 1 and b2 are adjusted until ANN 200 is determined by some
predefined criteria to be trained. The values of the weights
and biases in the top panel of FIG. 3Amay be considered the
final, trained values for task A.

5 training for task B may be degraded. Catastrophic forgetting
for task A may become more severe after training ANN 200
for additional tasks, such as task C, task D, and so on.
Similarly, the predictive accuracy of ANN 200 for task B
may degrade as ANN 200 is trained for additional tasks. In

10 general, it may be expected that the earlier in a sequence of
task trainings the training for a given task is carried out, the
more severe the degradation of predictive capability of ANN
200 for the given task, though this may not necessarily be the The bottom panel of FIG. 3A illustrates runtime operation

of ANN 200 for task A after training has been accomplished. 15

More particularly, input runtime data 305 are input to the
input layer of ANN 200. As shown, input runtime data value
R(A)_IN 1 is input at (or received by) I1 of the input layer,
and input runtime data value R(A)_IN2 is input at (or
received by) 12 of the input layer. During runtime, output 20

runtime data 307 are output by the output layer of ANN 200.
As shown, output runtime data value R(A)_OUT1 is output
by 01 of the output layer, and output runtime data value
R(A)_OUT2 is output at 02 of the output layer. The values

case.
The weights and biases determined from training an

ANN, such as ANN 200, may not necessarily represent the
only configuration of weight values that yield acceptable
predictive performance of the ANN for a given task. In
practice, there may be a plurality of configurations of task A
weights and task B weights that may yield high accuracies
for task A and task B, respectively. In analytical terms, task
A may contain an optimal region of parameter space for
ANN 200, where all sets of weight values in the optimal
region yield at least a threshold accuracy score when apply­
ing ANN 200 on task A input values. Similarly, task B may
also contain an optimal region of parameter space for ANN
200, where all sets of weight values in the optimal region
yield at least a threshold accuracy score when applying ANN

of the weights and biases during runtime are the same as 25

those determined by training for task A, as may be seen by
inspection of the top and bottom panels of FIG. 3A. For
runtime operation, the runtime outputs represent predicted
values for task A. The accuracy of those predicted values is
therefore associated with the trained weights for task A. 30 200 on task B input values. In some cases, the optimal

regions of task A and task B may overlap and may contain
one or more sets of weight values that achieve at least a
threshold accuracy score when applying ANN 200 on both

The two panels of FIG. 3B show corresponding training
and runtime operation of ANN 200 for task B. During
training, input training data 309 are input to the input layer
of ANN 200, and output training data 311 are output by the
output layer of ANN 200. The input training values are 35

labeled T(B)_IN1 and T(B) IN2 , corresponding to task B
training data. Similarly, output training values are labeled
T(B)_ OUT 1 and T(B)_ OUT 2 , corresponding to training pre­
dictions for task B. Backpropagation (or some other tuning/
adjustment procedure) may again be used to determine the 40

weights W i, W 2 , W 3 , ... , W 12 and biases b 1 and b2 , but this
time for task B. The values of the weights and biases in the
top panel of FIG. 3B may be considered the final, trained
values for task B.

The bottom panel of FIG. 3B illustrates runtime operation 45

of ANN 200 for task B after training has been accomplished.
During runtime, input runtime data 313 are input to the input
layer of ANN 200, and output runtime data 315 are output
by the output layer of ANN 200. The input runtime values
are labeled R(B)_IN1 and R(B)_IN2 , corresponding to task 50

B runtime data. Similarly, output runtime values are labeled
R(B)_OUT1 and R(B)_OUT2 , and these correspond to run­
time predictions for task B. The values of the weights and
biases during runtime are the same as those determined by
training for task B, as may be seen by inspection of the top 55

and bottom panels of FIG. 3B. For runtime operation, the
runtime outputs represent predicted values for task B. The
accuracy of those predicted values is therefore associated
with the trained weights for task B.

As may be seen by comparing FIGS. 3A and 3B, the 60

values of the weights and biases of ANN 200 after training
for task B have changed from those after training for task A.
(Again, the actual values shown for both tasks are arbitrary
and illustrative only.) The differences between the respective
values for the two tasks are meant to demonstrate how ANN 65

200 may be subject to catastrophic forgetting of its task A
training after it has been trained for task B. Thus, as a result

task A and task B input values. In accordance with example
embodiments, high accuracy, overlapping regions of ANN
200 may be identified so as to achieve high accuracies when
ANN 200 is applied to both task A and task B input values.

In further accordance with example embodiments, high
accuracies for sequential tasks A and B, as well as possibly
for additional sequential task trainings, may be achieved
using techniques for constraining adjustment of selected
weight values of an ANN, such as ANN 200, during sequen­
tial trainings of multiple tasks, such as task A and task B. In
particular, by judicious application of constrained adjust­
ment during training, it may be possible to identify high
accuracy, overlapping regions that give low error predictions
for one task, such as task B, without incurring a significant
loss in accuracy for another earlier-trained task, such as task
A.

IV. Context-Dependent Gating and Weight
Stabilization

One approach to alleviating or mitigating catastrophic
forgetting in ANN s is to determine an "importance" of each
weight to the predictive capability of the ANN for a given
task, and bias adjustment of each weight during subsequent
task trainings in proportion to, or as a function of, the
determined importance. The adjustment bias for a given
weight thus acts to computationally inhibit adjustment of the
given weight based, at least in part, on the importance of the
weight to one or more other tasks for which the ANN has
previously been trained. Note that in this context, the bias
applied to adjusting weights during training should not be
confused with the bias parameters of the ANN. In view of
the resistance to adjustment of weights with high importance
to previously-trained tasks, this approach is referred to

US 11,205,097 B2
13

herein as "weight stabilization," and may be considered a
more general example of "synaptic stabilization" as men­
tioned above.

14
By way of example, only three weights in FIG. 4A are

explicitly shown as having importance scores. Namely, W5 ,

with an importance score of 3; W 8 , with an importance score
of 1 0; and W 10, with an importance score of 1. Importance The importance of a given weight to the predictive

capability of the ANN for a given task may be signified by 5 scores for the other weights are omitted for the sake of
clarity in FIG. 4A. The importance scores determined for
task A may then be used in weight stabilization when ANN
200 is trained for task B.

an "importance score" that measures the effect that changing
the given weight from its optimal (trained) value has on the
predictive capability of the ANN for the given task. In
example embodiments, the larger the importance score, the
more deleterious the effect of changing the given weight 10

from its optimal value. A high importance score may be
indicative of how quickly the predictive capability of the
ANN deteriorates with a change of the given parameter,
and/or how much the ANN deteriorates with a given amount
change of the given parameter. In practice, an importance 15

score may be assigned to all or a subset of weights of an
ANN, and the effect of changes to the weights may be
determined in aggregate. Importance scores for a given task
may be applied as scale factors, or some other function, in
order to determine the overall effect on the predictive 20

capability of the ANN of adjusting the ANN weights during
training for other tasks.

By including importance scores as a scaling factors or
some other function, it may be possible to determine how
changes to weights between tasks affect the overall predic- 25

tive capability for ANN 200 for previous tasks. For example,
large or even moderate or small changes to weights with
high importance scores for task A may cause runtime
performance on task A to decrease drastically, whereas large
changes to weights with low important scores for task A may 30

cause only a small or nominal decrease to the runtime
performance on task A. In accordance with example embodi­
ments, important scores may be utilized by a loss function

Training for task B is illustrated in FIG. 4B. The impor­
tance scores for weights determined for task A are now
shown in FIG. 4B with dotted lines; a legend at the lower left
of FIG. 4B indicates the importance scores of task A weights
according to thickness of the dotted lines. As a conceptual
illustration of weight stabilization, the task A weights have
changed after training for task B in accordance with their
respective task A importance. For this illustration, W5 , with
a task A importance of 3, has changed from 0.40 to 0.38; W8 ,

with a task A importance of 10, has not changed at all; and
W 10, with a task A importance of 1, has changed from 0.48
to 0.43. In addition, other weights trained for task B may
also be assigned importance scores. This is indicated by way
of example for weight W3 and weight W12 .

As mentioned above and summarized below, weight sta­
bilization, or synaptic stabilization, by itself provides only
limited improvement in ANN performance after multiple
sequential trainings for different tasks. To increase accuracy
for large numbers of tasks, ANN 200 may be configured to
retain a "pool" of low importance weights that may be
adjusted by sufficient amounts to learn new tasks. This pool
of weights may be obtained, for example, by restricting the
training of ANN 200 for each task to respective predeter-
mined subsets of units, thus allowing ANN 200 to retain
weights that have not been previously used or have been
used sparingly during the training of previous tasks. This
restriction, referred to herein as "gating," may allow ANN
200 to maintain low importance weights that may be
adjusted by large amounts when training for new tasks,
without disrupting performance on previous tasks.

In accordance with example embodiments, subsets of

of ANN 200 to determine the weight changes for ANN 200
that minimize global error (e.g., error across the current task 35

being trained on ANN 200 and previous tasks that have been
trained on ANN 200). To accomplish this, the loss function
may be constructed so as to place high penalties for large
shifts to the weights identified as important for any previous
tasks. 40 neurons may be gated (or not gated) during training based on

identification of the task for which the ANN is being trained.
Association of neuron subsets for gating with respective
tasks is referred to herein as "context dependent gating." It
will be appreciated that subsets of neurons of an ANN may

In accordance with example embodiments, importance
scores may be applied to weight adjustment as a sort of
penalty that computationally inhibits weight adjustment in
dependence on the importance scores. The greater the
importance score of a previously trained weight, the greater
the penalty of adjusting that weight during a subsequent
training, and the greater the computational inhibition of
adjusting the weight during the subsequent training.

45 be defined either by whether they are gated or not gated.
Thus, if the subset specifies gated neurons, then neurons of
the subset will remain inactive during training, while those
not in the subset will remain active during training. Alter­
natively, if the subset specifies ungated neurons, then neu-FIGS. 4A and 4B are conceptual illustrations of weight

stabilization during sequential training of ANN 200 for tasks
A and B. Each figure depicts the same portion of ANN 200
as FIGS. 3A and 3B, namely the first two neurons of each
layer. The input training and output training data in FIGS.
4A and 4B are also the same as in FIGS. 3A and 3B, as are
the input and output neurons.

50 rans of the subset will remain active during training, while
those not in the subset will remain inactive (gated) during
training. For either definition, the total number of neurons
under consideration will be the number in the subset and
those not in the subset.

FIG. 4A shows the depicted portion of ANN 200 after
training for task A. The indicated weight values are the same

55

as those in FIG. 3A. In addition, FIG. 4A indicates impor­
tance scores as ovals encircling labeled weights and values.
The thickness of the line of each oval signifies the impor- 60

tance of the weight to the predictive capability of ANN 200
to task A. A legend in FIG. 4A shows example importance
scores, 1, 2, 3, ... , 10, associated with different line
thicknesses. It will be appreciated that the legend is just a
convenient conceptual representation of importance scores, 65

and not intended to be limiting with respect to example
embodiments or techniques described herein.

FIGS. SA and SB are conceptual illustrations of context­
dependent gating during sequential training of ANN 200 for
tasks A and B. In these figures, the entire ANN 200 as
depicted in FIG. 2 is shown in order to better illustrate the
distribution of gated and ungated neurons during training. In
accordance with example embodiments, context-dependent
gating may be applied only to neurons in the hidden layers.
However, this is not necessarily a requirement for all
embodiments.

In both FIGS. SA and SB a digital electronics gating
symbol is used to signify which neurons are gated. For
example in FIG. SA, neurons Hl2 , H14 , HlD H2i, H23 , H24 ,

and H25 of the hidden layers are gated during training for

US 11,205,097 B2
15

task A. The remammg neurons of the hidden layer are
ungated. Thus, during training for task A-i.e., the context
for gating----only the ungated neurons will be active, so that
only the weights of the ungated neurons will be subject to
adjustment during training for task A. By way of example, 5

the gating is accomplished by gating the outputs of each
gated neuron. This is represented by depicting the outputs of
the gated neurons as dashed lines, while the outputs of the
ungated neurons are depicted as solid lines. In practice,
output gating can be implemented by multiplying the output 10

activations of the gated neurons by zero. Gating can also be
implemented by zeroing the inputs to gated neurons (input
gating), or by zeroing both inputs and outputs of gated
neurons (input/output gating). As a result of the gating
shown in FIG. SA, the weights of gated neurons will be 15

unchanged by training.
In FIG. SB, neurons Hl 1 , Hl3 , H14 , Hl 5 , H21 , H23 , and

H2L of the hidden layers are gated during training for task B.
The remaining neurons of the hidden layer are ungated.
Thus, during training of task B-i.e., the context for gat- 20

ing----only the ungated neurons will be active, so that only
the weights of the ungated neurons will be subject to
adjustment during training for task B. In particular, the task
B weights of the output connections of the gated neurons
will not be changed during training for task B. Again, gating 25

is represented by depicting the outputs of the gated neurons
as dashed lines, while the outputs of the ungated neurons are
depicted as solid lines.

In accordance with example embodiments, neurons iden­
tified for gating (or not gating) for each task may be selected 30

at random from among the hidden layers. Further, the
number of gated neurons may be determined as a fraction or
percentage of the total number of neurons under consider­
ation for gating (e.g., those of the hidden layers). For
example, if the fraction of gated neurons is given by x, 35

where x<l, the fraction ofungated neurons will be given by
1-x; in percentage terms, X=l00x % will be gated and
(100-X) % will be ungated. For each of multiple tasks, X (or
x) may be the same, while the actual neurons gated may be
selected at random for each task. In testing and demonstra- 40

tions, X in an approximate range of 80-90% was used.
However, different values may be used, and optimal values
may be determined through testing, for example.

Also in accordance with example embodiments, the
selected subsets of ungated neurons for each task may be 45

recorded and stored in one or another form of memory, so
that the subset associated with each given task may be
quickly and reliably identified for training and/or runtime
operation for each task. In one example, the subsets may be
recorded in the form of a gating table having one row for 50

each task and one colunm for each hidden-layer neuron.
Each entry of gating table may then be a 1 or 0 depending
on whether the neuron of the associated colunm is ungated
or gated for the task of the associated row.

FIG. SC illustrates an example such a gating table 500. As 55

shown, the rows are labeled as (example) tasks A, B,
C, ... , Q, and the columns are labeled as neurons Hl 1 , Hl2 ,

Hl3 , H14 , Hl5 , ... , HlL; H21 , H22 , H23 , H24 , H25 , ... ,

H2L. The entries in the rows for tasks A and B correspond
to the gated neurons (0) and ungated neurons (1) shown in 60

FIGS. SA and SB. The entries shown for tasks C, ... , Q
specify what the gating arrangement would be for these
tasks.

In another example embodiment, the gating table can take
the form of a three-dimensional table in which one dimen- 65

sion corresponds to the multiple tasks, and the other two
dimensions are colunms that correspond to hidden layer

16
position in the ANN, and rows that correspond to neuron
position in the hidden layer. An example of this form of
gating table is illustrated in FIG. SD as gating table 502.
Each entry of gating table 502 may then be a 1 or 0
depending on whether the neuron at the associated position
(row) and associated hidden layer (column) is ungated (1) or
gated (0). For each task shown (A and Bin the example), the
gating table for the task can act as a sort of mask on the
neuron configuration of the hidden layers, picking out gating
or not gating according to the entry value.

As also mentioned above and summarized below, context­
dependent gating by itself may provide limited improvement
in ANN performance after multiple sequential trainings for
different tasks. However, the inventors discovered that using
both context-dependent gating and weight stabilization dur­
ing training not only improved overall predictive accuracy
of an ANN trained for multiple tasks, but significantly
reduced the degradation of performance after 1 00s of
sequential trainings for multiple tasks. In addition, the
degradation that was observed in experiments appeared to
level off rather than continue to drop.

FIGS. 6A and 6B are conceptual illustrations of jointly
using both context-dependent gating and weight stabiliza­
tion during training of ANN 200 for tasks A and B. As in
some previous figures, only the portion of ANN 200 with the
first two neurons of each layer is depicted in FIGS. 6A and
6B. Training for task A is shown in FIG. 6A. By way of
example, neurons Hl2 and H21 are shown to be gated, and
weights W5 , W6 , Wu, and W12 are shown to have impor­
tance scores of 3, 1, 1, and 10, respectively, after training.
Note that the values of weights W 7 , W 8 , W 9 , and W 10 are
shown as question marks ("?") to signify that they are not
adjusted during training because they are outputs of gated
neurons. A legend in FIG. 6A indicates for each of weights
W5 , W6 , W7 , W8 , W9 , W10, Wu, and W12 the trained value,
whether or not its activation neuron is gated, and whether
and how much it is stabilized against adjustment in subse­
quent trainings.

For example, W5 has a trained value of0.40, is the output
of an ungated neuron, and has "moderate" stabilization
(importance score of 3). Similarly, W 12 has a trained value
of0.51, is the output of an ungated neuron, and has "strong"
stabilization (importance score of 10). Note that weights W 7 ,

W 8 , W 9 , and W 10 have no trained values because they are the
outputs of gated neurons. For the same reason, they have no
importance scores ("NIA") in the legend. The importance
scores ofW5 , W6 , Wu, and W12 may be used when training
for task B, as described next.

Training for task B is shown in FIG. 6B. By way of
example, neurons Hl 1 and H21 are shown to be gated, and
weight W 8 is shown to have an importance score of 3 after
training. The values of weights W 5 and W 6 are shown to be
unchanged from their task A trained values. This is because
these weights are outputs of a gated neuron (Hl 1) during
task B training. Weights W 9 , and W 10 are shown as question
marks ("?") to signify that they are not adjusted during
training because they are outputs of gated neurons and had
no initial values prior to training. And weight W 12 is also
unchanged during task B training. But this is because weight
W 12 has an importance score of 10 from its task A training,
and was thus strongly stabilized against adjustment. This
illustrates how both context-dependent gating and weight
stabilization are operational during task B training.

A legend in FIG. 6B indicates for each of weights W5 , W6 ,

W7 , W8 , W9 , W10, Wu, and W12 the trained value, whether
or not its activation neuron is gated, whether or not a
previously trained value was changed and for what reason,

US 11,205,097 B2
17

and whether and how much it is stabilized from training on
task B. Weight values shown in curly brackets ("{ }")
indicate weight values unchanged from values determined
from a previous training.

The conceptual illustrations of FIGS. 6A and 6B are not
intended to be complete. Rather they show how both con­
text-dependent gating and weight stabilization may be
operational during training an ANN for multiple tasks in
multiple, sequential trainings. The significant degree of
improvement over applying either one of these techniques
by themselves observed during tests and experimental trials
was unexpected. Accordingly, the inventors' discovery of
the advantages of using both techniques together represents
a significant and unanticipated advancement in efforts to
alleviate catastrophic forgetting in ANNs trained for mul­
tiple tasks.

V. Example Architecture

18
network 706 may receive prediction request 710 and respon­
sively provide output predictions 712.

Context storage 708 may include one or more storage
devices configured to store one or more gating tables/

5 matrices associated with neurons on context-dependent gat­
ing network 704, such as those previously described with
respect to FIGS. SC-SD. For example, context storage 708
may take the form of a static file, a key-value database, or
random access memory (RAM). In some cases, context-

IO dependent gating network 704 and context storage 708 may
be jointly implemented on a single computing device. At
runtime time, context storage 708 may be utilized by trained
network 706 to access gating table/matrices and identify

15
whether to gate specific neurons when executing prediction
request 710. By gating neurons, trained network 706 may
provide prediction request 710 with an ANN structure that
resembles the ANN structure used when training for the task
associated with prediction request 710.

Example embodiments described above could be imple- 20

mented in the context of a machine learning system, which
could be constructed from one or more software, hardware,
and/or firmware application programs configured for execu­
tion on a computing device, such as computing device 100,

Prediction request 710 may include one or more input
requests each associated with a task previously trained on
context-dependent gating network 704. Each input request
may include a feature vector and a context indication
identifying the particular task associated with the input

25 request. For example, context indication may be a one hot
vector the size of the number of tasks previously trained on
trained network 706, with the task being requested indicated
as on (e.g., 1) and the rest of the tasks indicated as off (e.g.,

a server, or other form of computing system. FIG. 7 illus­
trates an example machine learning system 700, in accor­
dance with example embodiments. Machine learning system
700 may use techniques as described herein to train an
artificial neural network, such as ANN 200, to detect pat­
terns and provide output predictions on a plurality of tasks. 30

In example embodiments, components of machine learning
system 700 may take the form of computing device 100
and/or database 114. Additionally, components of machine
learning system 700 may be replicated across a plurality of
computing devices and/or databases to provide data dupli­
cation and increase capability of services. For example, the
computing devices and/or databases may be located at
different physical locations to ensure availability in the event

0).
Output predictions 712 may include one or more infer-

ences and/or predictions made by trained network 706 about
prediction request 710. Output predictions 712 may be a
single prediction or may be multiple predictions with like­
lihood probabilities associated with each of the multiple

35 predictions.

VI. Example Methods

of failure at one location.
Training data 702A may include one or more databases

designed to receive and store training data associated with
task A and provide the training data to train context-depen­
dent gating network 704. For example, training data 702A
may include relational databases (e.g., SQL), key value
databases (e.g., Redis), document databases (e.g., Mon­
goDB), colunm databases (e.g., Cassandra) and/or other
database models.

Training data 702B may include one or more databases
designed to receive and store training data associated with
task B and provide the training data to train context­
dependent gating network 704. For example, training data
702B may include relational databases (e.g., SQL), key
value databases (e.g., Redis), document databases (e.g.,
MongoDB), colunm databases (e.g., Cassandra) and/or other
database models.

Context-dependent gating network 704 may include one
or more processes that utilize machine learning techniques

Example methods may be implemented as machine lan-
40 guage instructions stored one or another form of the com­

puter-readable storage, and accessible by the one or more
processors of a computing device and/or system, and that,
when executed by the one or more processors cause the
computing device and/or system to carry out the various

45 operations and functions of the methods described herein.
By way of example, storage for instructions may include a
non-transitory computer readable medium. In example
operation, the stored instructions may be made accessible to
one or more processors of a computing device or system.

50 Execution of the instructions by the one or more processors
may then cause the computing device or system to carry
various operations of the example method.

FIG. 8 is a flow chart of an example method 800,
according to example embodiments. As described above, the

55 example method could be implemented as machine language
instructions stored, for example in the memory 104, and
executed by the processor(s) 102. By way of example, the
method 800 is described as being carried out by a computing
device.

to train an ANN configured with gating and synaptic (or
weight) stabilization, such as ANN 200 as described with
respect to FIGS. 4A-4B, SA-SB, and/or 6A-6B. In particular, 60

context-dependent gating network 704 may be configured to
At step 802, the computing device receives a first set of

training data for training the ANN to predict output data for
a first type of task. be trained first with training data 702A and then with

training data 702B. The resulting ANN may be referred to as
a trained ANN. For example, machine learning system 700
illustrates context-dependent gating network 704 being
trained on training data 702A and then training data 702B to
become trained network 706. During runtime time, trained

At step 804, the ANN is trained with the first set of
training data by adjusting values of only those weights

65 associated with a first subset of neurons of the ANN. The
first subset of neurons is selected based on an identity of the
first type of task.

US 11,205,097 B2
19

At step 806, the computing device receives a second set
of training data for training the ANN to predict output data
for a second type of task, where the second type of task is
different from the first type of task.

Finally, at step 808, the ANN is trained with the second set
of training data by adjusting values of only those weights
associated with a second subset of neurons of the ANN. The
second subset of neurons is selected based on an identity of
the second type of task.

In accordance with example embodiments, during train-
ing of the ANN for any given type of task, adjusting of the
value of any given weight associated with neurons of the
ANN entails weight stabilization that depends on whether
there has been any training for one or more previous tasks.
Specifically, if the ANN has been previously trained for one
or more task types different from the given type, then
adjusting of the value of any given weight associated with
neurons of the ANN entails the computationally biasing
adjustment of the value of the given weight according to a
respective importance of the given weight to a predictive
capability of the ANN for the one or more task types. If the
ANN has not been previously trained for any task types
different from the given type, then adjusting of the value of
any given weight associated with neurons of the ANN
entails computationally adjusting the value of the given
weight without bias.

In some embodiments, selecting the first subset of neu­
rons based on the identity of the first type of task includes
consulting stored information that associates the first subset
of neurons with the identity of the first type of task. Further,
in such embodiments, selecting the second subset of neurons
based on the identity of the second type of task includes
consulting stored information that associates the second
subset of neurons with the identity of the second type of task.

In some embodiments, the ANN comprises an input layer,
an output layer, and one or more intermediate hidden layers.

20
In some embodiments, the gating table is a three-dimen­

sional table including a collection of like-sized two-dimen­
sional gating matrices stacked in a third dimension that
corresponds to types of tasks, including the first and second

5 types of tasks. For each of the two-dimensional gating
matrices: (i) each colunm corresponds to a different one of
the one or more intermediate hidden layers of the ANN, and
(ii) each row corresponds to a different neuron position

10
within the intermediate hidden layers.

In some embodiments, adjusting the values of only those
weights associated with the first subset of neurons of the
ANN includes gating all neurons of the ANN during training
for the first type of task except those of the first subset,
where adjusting the values of only those weights associated

15 with the second subset of neurons of the ANN includes
gating all neurons of the ANN during training for the second
type of task except those of the second subset. Further, in
such embodiments, gating any given neuron during training
includes computationally suppressing adjustment of weights

20 associated with the given neuron during training.
In some embodiments, computationally suppressing

adjustment of the weights associated with the given neuron
during training includes at least one of: multiplying one or
more inputs of the given neuron by zero, or multiplying one

25 or more outputs of the given neuron by zero.
In some embodiments, computationally biasing adjust­

ment of the value of the given weight according to the
respective importance of the given weight to the predictive
capability of the ANN for the one or more task types

30 includes applying a penalty that computationally inhibits
changing the value, the penalty increasing with increasing
respective importance of the given weight to the predictive
capability of the ANN for the one or more task types.
Further, in such embodiments, computationally adjusting the

35 value of the given weight without bias includes adjusting the
value without applying any computational penalty.

In some embodiments, applying the penalty that compu­
tationally inhibits changing the value includes applying
synaptic stabilization to the ANN during training.

Some embodiments involve, subsequent to training the
ANN with both the first set of training data and the second
set of training data; receiving runtime data associated with
the first type of task; and applying the ANN to the runtime
data associated with the first type of task to predict runtime

In such embodiments, each neuron of the ANN resides in
one of the layers of the ANN, and selecting either one of the
first subset of neurons or the second subset of neurons 40

includes applying a gating table to the one or more inter­
mediate hidden layers to pick out neurons according to
either one of the first or second types of tasks. Further, in
such embodiments, the gating table correlates neurons of the
ANN with types of tasks, each entry in the gating table is a
binary assignment of whether a neuron associated with the
entry should be either active or gated for a particular type of
task during training of the ANN.

45 output data for the first type of task, where only the first
subset of neurons of the ANN are activated when applying
the ANN to the runtime data associated with the first type of
task. Such embodiments may further involve receiving
runtime data associated with the second type of task and In some embodiments, the binary assignment of whether

a neuron should be either active or gated for the particular
type of task during training of the ANN is based in part on
a predefined optimal percentage of neurons to gate in the
ANN for the particular type of task.

50 applying the ANN to the runtime data associated with the
second type of task to predict runtime output data for the
second type of task, where only the second subset of neurons
of the ANN are activated when applying the ANN to the

In some embodiments, the predefined optimal percentage
is determined according to at least one of: the size of the 55

ANN, the number of layers in the ANN, or the number of
task types upon which the ANN is trained.

runtime data associated with the second type of task.
In some embodiments, subsequent to training the ANN

with both the first set of training data and the second set of
training data, a predictive accuracy of the ANN for the first
type of task is higher than that of an alternatively-trained
ANN trained, where alternative training comprises training

Some embodiments involve determining the gating table
prior to training the ANN for any task types, where deter­
mining the gating table includes, for each type of task,
randomly selecting neurons for gating.

60 for both the first type task and the second type of task
without selecting either first or second subsets of neurons,
and without biasing adjustment of any neurons. In some embodiments, the gating table is a two-dimen­

sional table. Each row of the gating table corresponds to a
different one of multiple types of tasks, including the first
and second types of tasks. Further, each colunm of the table 65

corresponds to a different neuron from among the interme­
diate hidden layers of the ANN.

VII. Representative Testing and Results

Example methods and systems above have been imple­
mented by the inventors in one or more test environments

US 11,205,097 B2
21

and/or with one or more test beds in order to demonstrate
practical aspects of the systems and techniques, as well as to
evaluate efficiency and effectiveness of the techniques in
alleviating catastrophic forgetting in ANNs trained for mul­
tiple tasks through multiple, sequential trainings. For at least 5

some the testing, the publically-available Modified National
Institute of Standards and Technology (MNIST) database
served as test image data. This section summarizes some
representative tests and results.

22
are not meant to be limiting. Other embodiments can be
utilized, and other changes can be made, without departing
from the scope of the subject matter presented herein. It will
be readily understood that the aspects of the present disclo­
sure, as generally described herein, and illustrated in the
figures, can be arranged, substituted, combined, separated,
and designed in a wide variety of different configurations.

With respect to any or all of the message flow diagrams,
scenarios, and flow charts in the figures and as discussed

a. Synaptic Stabilization Approach 10 herein, each step, block, and/or communication can repre­
sent a processing of information and/or a transmission of
information in accordance with example embodiments.
Alternative embodiments are included within the scope of

To demonstrate an ANN utilizing only synaptic stabiliza­
tion, an ANN was trained on permutations of the MNIST
task under two synaptic stabilization methods: "synaptic
intelligence" (SI) and "elastic weight consolidation" (EWC).
Mean classification accuracies for networks with EWC were 15

95.3% and 70.8% after 10 and 100 permutations, respec­
tively, and mean classification accuracies for networks with
synaptic intelligence were 97.0% and 82.3% after 10 and
100 permutations, respectively. Although both stabilization
methods successfully mitigated forgetting, mean classifica- 20

tion accuracy after 100 permutations was still far below
single-task accuracy.

b. Context-Dependent Gating Approach
A context-dependent gating was tested for an ANN in

which the activity ofX % of hidden units, randomly chosen, 25

was multiplied by O (gated), while the activity of the other
(100-X) % was left unchanged. When context-dependent
gating was used alone, mean accuracy was 97 .1 % after 10
tasks and 61.4% across all 100 permutations. However,
when context-dependent gating was utilized together with 30

synaptic intelligence or EWC, mean classification accuracy
was 95.4% for both stabilization methods, greater than any
of the discussed methods alone. For the permuted MNIST
task, the mean classification accuracy peaked between 80%
and 86.7% of units gated (values of 95.4% and 95.5%, 35

respectively).
Utilizing context-dependent gating with synaptic stabili­

zation allowed networks to learn 100 sequentially trained
tasks with minimal loss in performance, with accuracy
dropping from 98.2% on the first task to a mean of 95.4% 40

across all 100 tasks. For 500 sequentially trained tasks,
context-dependent gating used together with stabilization
allowed for continual learning with only a gradual loss of
accuracy over 500 tasks (context-dependent gating used
together with synaptic intelligence=90.7%). In comparison, 45

mean accuracy for stabilization alone decreased more
severely (synaptic intelligence=54.9%).

VIII. Conclusion

these example embodiments. In these alternative embodi­
ments, for example, operations described as steps, blocks,
transmissions, communications, requests, responses, and/or
messages can be executed out of order from that shown or
discussed, including substantially concurrently or in reverse
order, depending on the functionality involved. Further,
more or fewer blocks and/or operations can be used with any
of the message flow diagrams, scenarios, and flow charts
discussed herein, and these message flow diagrams, sce­
narios, and flow charts can be combined with one another,
in part or in whole.

A step or block that represents a processing of information
can correspond to circuitry that can be configured to perform
the specific logical functions of a herein-described method
or technique. Alternatively or additionally, a step or block
that represents a processing of information can correspond
to a module, a segment, or a portion of program code
(including related data). The program code can include one
or more instructions executable by a processor for imple­
menting specific logical operations or actions in the method
or technique. The program code and/or related data can be
stored on any type of computer readable medium such as a
storage device including RAM, a disk drive, a solid state
drive, or another storage medium.

The computer readable medium can also include non­
transitory computer readable media such as computer read­
able media that store data for short periods of time like
register memory and processor cache. The computer read-
able media can further include non-transitory computer
readable media that store program code and/or data for
longer periods of time. Thus, the computer readable media
may include secondary or persistent long term storage, like
ROM, optical or magnetic disks, solid state drives, or
compact-disc read only memory (CD-ROM), for example.
The computer readable media can also be any other volatile
or non-volatile storage systems. A computer readable

Example embodiments herein demonstrate alleviating
catastrophic forgetting in artificial neural networks (ANNs)
using context-dependent gating of neurons of an ANN.

50 medium can be considered a computer readable storage
medium, for example, or a tangible storage device.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which 55

are intended as illustrations of various aspects. Many modi­
fications and variations can be made without departing from
its scope, as will be apparent to those skilled in the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, in addition to those described herein, 60

will be apparent to those skilled in the art from the foregoing
descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims.

The above detailed description describes various features
and operations of the disclosed systems, devices, and meth- 65

ods with reference to the accompanying figures. The
example embodiments described herein and in the figures

Moreover, a step or block that represents one or more
information transmissions can correspond to information
transmissions between software and/or hardware modules in
the same physical device. However, other information trans­
missions can be between software modules and/or hardware
modules in different physical devices.

The particular arrangements shown in the figures should
not be viewed as limiting. It should be understood that other
embodiments can include more or less of each element
shown in a given figure. Further, some of the illustrated
elements can be combined or omitted. Yet further, an
example embodiment can include elements that are not
illustrated in the figures.

While various aspects and embodiments have been dis­
closed herein, other aspects and embodiments will be appar­
ent to those skilled in the art. The various aspects and

US 11,205,097 B2
23

embodiments disclosed herein are for purpose of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims.

What is claimed is:
1. A computer-implemented method, carried out by a 5

computing device, for computationally training an artificial
neural network (ANN) implemented in the computing
device, the method comprising:

at the computing device, receiving a first set of training
data for training the ANN to predict output data for a 10

first type of task;
at the computing device, training the ANN with the first

set of training data by adjusting values of only those
weights associated with a first subset of neurons of the
ANN, wherein the first subset of neurons is selected 15

based on an identity of the first type of task;
at the computing device, receiving a second set of training

data for training the ANN to predict output data for a
second type of task, wherein the second type of task is
different from the first type of task; and 20

24
be either active or gated for the particular type of task during
training of the ANN is based in part on a predefined optimal
percentage of neurons to gate in the ANN for the particular
type of task.

5. The computer-implemented method of claim 4,
wherein the predefined optimal percentage is determined
according to at least one of: a size of the ANN, a number of
layers in the ANN, or a number of task types upon which the
ANN is trained.

6. The computer-implemented method of claim 3, further
comprising determining the gating table prior to training the
ANN for any task types, wherein determining the gating
table comprises: for each type of task, randomly selecting
neurons for gating.

7. The computer-implemented method of claim 3,
wherein the gating table is a two-dimensional table,

and wherein: (i) each row of the gating table corresponds
to a different one of multiple types of tasks, including
the first and second types of tasks, and (ii) each column
of the table corresponds to a different neuron from
among the intermediate hidden layers of the ANN. at the computing device, training the ANN with the

second set of training data by adjusting values of only
those weights associated with a second subset of neu­
rons of the ANN, wherein the second subset of neurons
is selected based on an identity of the second type of
task;

8. The computer-implemented method of claim 3,
wherein the gating table is a three-dimensional table com­
prising a collection of like-sized two-dimensional gating

25 matrices stacked in a third dimension that corresponds to
types of tasks, including the first and second types of tasks,

wherein, during training of the ANN for any given type of
task, adjusting of the value of any given weight asso­
ciated with neurons of the ANN comprises:

and wherein, for each of the two-dimensional gating
matrices: (i) each colunm corresponds to a different one
of the one or more intermediate hidden layers of the
ANN, and (ii) each row corresponds to a different
neuron position within the intermediate hidden layers.

if the ANN has been previously trained for one or more 30

task types different from the given type, computa­
tionally biasing adjustment of the value of the given
weight according to a respective importance of the
given weight to a predictive capability of the ANN
for the one or more task types,

9. The computer-implemented method of claim 1,
wherein adjusting the values of only those weights associ­
ated with the first subset of neurons of the ANN comprises

35 gating all neurons of the ANN during training for the first
type of task except those of the first subset, and if the ANN has not been previously trained for any

task types different from the given type, computa­
tionally adjusting the value of the given weight
without bias.

2. The computer-implemented method of claim 1, 40

wherein selecting the first subset of neurons based on the
identity of the first type of task comprises consulting stored
information that associates the first subset of neurons with
the identity of the first type of task,

and wherein selecting the second subset of neurons based 45

on the identity of the second type of task comprises
consulting stored information that associates the sec­
ond subset of neurons with the identity of the second
type of task.

3. The computer-implemented method of claim 1, 50

wherein the ANN comprises an input layer, an output layer,
and one or more intermediate hidden layers,

wherein each neuron of the ANN resides in one of the
layers of the ANN,

and wherein selecting either one of the first subset of 55

neurons or the second subset of neurons comprises
applying a gating table to the one or more intermediate
hidden layers to pick out neurons according to either
one of the first or second types of tasks,

and wherein adjusting the values of only those weights
associated with the second subset of neurons of the
ANN comprises gating all neurons of the ANN during
training for the second type of task except those of the
second subset,

wherein gating any given neuron during training com­
prises computationally suppressing adjustment of
weights associated with the given neuron during train­
ing.

10. The computer-implemented method of claim 9,
wherein computationally suppressing adjustment of the
weights associated with the given neuron during training
comprises at least one of: multiplying one or more inputs of
the given neuron by zero, or multiplying one or more outputs
of the given neuron by zero.

11. The computer-implemented method of claim 1,
wherein computationally biasing adjustment of the value of
the given weight according to the respective importance of
the given weight to the predictive capability of the ANN for
the one or more task types comprises applying a penalty that
computationally inhibits changing the value, the penalty
increasing with increasing respective importance of the
given weight to the predictive capability of the ANN for the
one or more task types, wherein the gating table correlates neurons of the ANN 60

with types of tasks, and wherein computationally adjusting the value of the
given weight without bias comprises adjusting the
value without applying any computational penalty.

12. The computer-implemented method of claim 11,
65 wherein applying the penalty that computationally inhibits

changing the value comprises applying synaptic stabiliza­
tion to the ANN during training.

and wherein each entry in the gating table is a binary
assignment of whether a neuron associated with the
entry should be either active or gated for a particular
type of task during training of the ANN.

4. The computer-implemented method of claim 3,
wherein the binary assignment of whether a neuron should

US 11,205,097 B2
25

13. The computer-implemented method of claim 1, fur­
ther comprising:

26
16. The computing device of claim 15, wherein selecting

the first subset of neurons based on the identity of the first
type of task comprises consulting stored information that
associates the first subset of neurons with the identity of the

subsequent to training the ANN with both the first set of
training data and the second set of training data:
receiving runtime data associated with the first type of

task;
5 first type of task,

applying the ANN to the runtime data associated with
the first type of task to predict runtime output data for
the first type of task, wherein only the first subset of
neurons of the ANN are activated when applying the 10

ANN to the runtime data associated with the first
type of task;

receiving runtime data associated with the second type
of task; and

15
applying the ANN to the runtime data associated with

the second type of task to predict runtime output data
for the second type of task, wherein only the second
subset of neurons of the ANN are activated when
applying the ANN to the runtime data associated 20

with the second type of task.
14. The computer-implemented method of claim 1,

wherein subsequent to training the ANN with both the first

and wherein selecting the second subset of neurons based
on the identity of the second type of task comprises
consulting stored information that associates the sec­
ond set of neurons with the identity of the second type
of task.

17. The computing device of claim 15, wherein the ANN
comprises an input layer, an output layer, and one or more
intermediate hidden layers,

wherein each neuron of the ANN resides in one of the
layers of the ANN,

and wherein selecting either one of the first subset of
neurons or the second subset of neurons comprises
applying a gating table to the one or more intermediate
hidden layers to pick out neurons according to either
one of the first or second types of tasks,

wherein the gating table correlates neurons of the ANN
with types of tasks,

and wherein each entry in the gating table is a binary
assignment of whether a neuron associated with the
entry should be either active or gated for a particular
type of task during training of the ANN.

set of training data and the second set of training data, the
predictive capability of the ANN for the first type of task is 25

higher than that of an alternatively-trained ANN trained,
wherein alternative training comprises training for both the
first type task and the second type of task without selecting
either first or second subsets of neurons, and without biasing
adjustment of any neurons.

18. The computing device of claim 17, wherein the binary
assignment of whether a neuron should be either active or

30 gated for the particular type of task during training of the
ANN is based in part on a predefined optimal percentage of
neurons to gate in the ANN for the particular type of task.

15. A computing device comprising:
one or more processors; and
memory configured to store computer-executable instruc­

tions that, when executed by the one or more proces­
sors, cause the computing device to carry out opera- 35

tions including:
receiving a first set of training data for training an artificial

neural network (ANN) implemented on the one or more
computing devices to predict output data for a first type
of task;

training the ANN with the first set of training data by
adjusting values of only those weights associated with
a first subset of neurons of the ANN, wherein the first
subset of neurons is selected based on an identity of the
first type of task;

receiving a second set of training data for training the
ANN to predict output data for a second type of task,
wherein the second type of task is different from the
first type of task; and

40

45

training the ANN with the second set of training data by 50

adjusting values of only those weights associated with
a second subset of neurons of the ANN, wherein the
second subset of neurons is selected based on an
identity of the second type of task;

wherein, during training of the ANN for any given type of 55

task, adjusting of the value of any given weight asso­
ciated with neurons of the ANN comprises:
if the ANN has been previously trained for one or more

task types different from the given type, computa­
tionally biasing adjustment of the value of the given 60

weight according to a respective importance of the
given weight to a predictive capability of the ANN
for the one or more task types,

and if the ANN has not been previously trained for any
task types different from the given type, computation- 65

ally adjusting the value of the given weight without
bias.

19. The computing device of claim 15, wherein adjusting
the values of only those weights associated with the first
subset of neurons of the ANN comprises gating all neurons
of the ANN during training for the first type of task except
those of the first subset,

and wherein adjusting the values of only those weights
associated with the second subset of neurons of the
ANN comprises gating all neurons of the ANN during
training for the second type of task except those of the
second subset,

wherein gating any given neuron during training com­
prises computationally suppressing adjustment of
weights associated with the given neuron during train­
ing.

20. An article of manufacture comprising non-transitory
computer readable media having computer-readable instruc­
tions stored thereon that, when executed by one or more
processors of a computing device, cause the computing
device to carry out operations including:

receiving a first set of training data for training an artificial
neural network (ANN) implemented on the one or more
computing devices to predict output data for a first type
of task;

training the ANN with the first set of training data by
adjusting values of only those weights associated with
a first subset of neurons of the ANN, wherein the first
subset of neurons is selected based on an identity of the
first type of task;

receiving a second set of training data for training the
ANN to predict output data for a second type of task,
wherein the second type of task is different from the
first type of task; and

training the ANN with the second set of training data by
adjusting values of only those weights associated with
a second subset of neurons of the ANN, wherein the

US 11,205,097 B2
27

second subset of neurons is selected based on an
identity of the second type of task;

wherein, during training of the ANN for any given type of
task, adjusting of the value of any given weight asso-
ciated with neurons of the ANN comprises: 5

if the ANN has been previously trained for one or more
task types different from the given type, computa­
tionally biasing adjustment of the value of the given
weight according to a respective importance of the
given weight to a predictive capability of the ANN 10

for the one or more task types,
and if the ANN has not been previously trained for any

task types different from the given type, computation­
ally adjusting the value of the given weight without
bias. 15

* * * * *

28

