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BACKGROUND 

Artificial neural networks (ANNs) may be used for a 
variety of machine learning (ML) and artificial intelligence 
(AI) tasks, such as image recognition or machine vision, 
speech recognition (e.g., speech-to-text), speech synthesis 
( e.g., text-to-speech), and pattern recognition, to name a few. 

2 
statistical certainty if the runtime data includes or represents 
new (previously unobserved) examples of the given class. In 
the context of this example description, training the ANN on 
known objects from one or more classes may be considered 

5 to represent training the ANN for a particular "task," and 
training the same ANN on known objects from one or more 
other classes may be considered training the ANN for a 
different task. It will be appreciated that not all ANN tasks 
are necessarily ones of strictly recognition, or ones that 

10 produce an output result that answers a question of recog­
nition. 

It is possible for the same ANN to perform multiple, 
different tasks, provided the ANN can be trained for the 
different tasks. For example, in some instances, recognizing 

15 cats and dogs in digital images may be considered one task, 
while recognizing motorcycles and cars in digital images 
may be considered a different task. As another example, for 
an ANN-based language translation, translating text or 
speech from English to French may be considered one task, 

20 and translating text or speech from English to German may 
be considered a different task. A common ANN may also be 
used for more diverse tasks, such as recognition of diverse 
objects in images and recognition of speech in digital audio 
data. While some different tasks may share common aspects, 

25 such as recognition of types of objects in digital images, they 
may still be considered different at least to the extent that an 
ANN must be trained separately for each. Thus, in order to 
perform more than one, different task, an ANN needs to be 
trained for each different task. In this disclosure, two or more 

In a typical scenario, an ANN may be "trained" to recognize 
features and/or characteristics of a class of input objects as 
represented in input data in order to later be able to receive 
previously unknown data, and in it identify ( or rule out the 
identity of) particular objects of the class with some statis­
tical certainty. For example an ANN may be trained to 
recognize cats in digital images, so that the ANN may later 
identify images of cats from among previously unseen (by 35 

the ANN) input images. 

30 ANN tasks are considered different if the ANN needs to be 
trained separately for each of the two or more ANN tasks. 

A significant challenge in training an ANN for multiple 
tasks is that, because each training may adjust the param­
eters of the ANN, successive task trainings may tend to 
change the parameter values determined from one or more 
previous task trainings. As a result, the ANN may tend to 

An ANN may be implemented as computer-executable 
instructions on a computing device (e.g., computer, smart­
phone, server, etc.). In a common arrangement, an ANN may 
include an array of neurons (e.g., as computational units), 40 

each of which may receive input data from one or more 
sources (e.g., input data, or other neurons), compute a 
mathematical function using the input data, and output the 
computational result to one or more other neurons, or as 
output data from the ANN. Neurons of an ANN may be 45 

configured in a multiplicity of ANN layers, and are typically 
interconnected one layer to the next from neuron outputs to 
neuron inputs. The mathematical function of each neuron 
generally includes one or more parameters that may be 
adjusted in order to "train" the ANN to perform a given task 50 

with a prescribed level of accuracy. 

SUMMARY 

"forget" parameters from earlier task trainings, leading to 
degradation of runtime performance of the ANN on earlier­
trained tasks. The larger the number of distinct tasks for 
which an ANN is sequentially trained, the worse the ANN 
performs for tasks trained earlier in the sequence of task 
trainings. 

More specifically, as described below, a given neuron 
typically computes a mathematical function, referred to an 
"activation function," of its input data, then outputs the 
resulting activation function value. The output of a neuron in 
one layer of an ANN may be connected to the input of each 
of one or more neurons in the next layer, and the input of 
each neuron in one layer may be connected to the outputs of 
one or more neurons in the previous layer. Each connection 
may be associated with a respective weight, which may be 
applied to the output value when it is supplied to the input 
of the connected neuron. The input data of a given neuron 
may thus consist of multiple, weighted input values. The 

Training usually involves providing the ANN with input 
"training data" that includes samples of known objects of a 
given class, and tuning or adjusting the parameters of the 
neurons' respective mathematical functions so that the 
ANN's predicted identifications match the known identifi­
cations of the objects to some degree of statistical certainty. 

55 neuron sums the weighted input values together with a bias 
term, computes the activation function of the sum, and 
outputs the activation function to the next layer or as output 
from the ANN. It is the weights and biases of all the 
connections of the ANN that are adjusted or tuned during 

60 training. And because the weights and biases for one task 
may be different from those of another task, sequential 
training may change previously-determined values from 
earlier-trained tasks. This phenomenon is sometimes 

In this approach, the samples of the known objects may 
serve as examples for the ANN. By training on a sufficient 
number and/or sufficient quality of samples, the ANN may 
thus learn, through adjustment of its parameters, to recog­
nize objects of the given class. Later, at "runtime," the ANN 65 

may receive runtime input data-e.g., data that the ANN has 
not previously seen-and be able to determine to some 

referred to as "catastrophic forgetting" in ANNs. 
One attempted approach to reduce catastrophic forgetting 

in multi-task training of ANNs is to determine a computa­
tional importance of each weight to the performance of the 
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ANN for a given task, and inhibit adjustment of weights 
during subsequent training in proportion to ( or as a function 
of) the determined importance of the weights to the given 
task. This technique, referred to herein as "weight stabili­
zation," an example of which is sometimes referred to in 5 

research contexts as "synaptic stabilization," has been 
shown empirically to reduce or alleviate catastrophic for­
getting to a limited degree. In particular, after a relatively 
small number of sequential task trainings, the predictive 
(statistical) accuracy of the ANN for earlier-trained tasks 10 

was observed to fall off more slowly than sequential training 
without weight stabilization. The actual number may range 
from 10 to !Os or larger, depending on the complexity of the 
tasks and the size of the ANN. However, beyond the range 

ANNs. Also by way of example, trammg and runtime 
operations may be described herein for image recognition 
tasks. However, it should be understood that these are just 
examples of the types of different tasks to which the tech­
niques may be applied. 

Thus, in one respect, example embodiments may involve 
a method, carried out by a computing device, for computa­
tionally training an artificial neural network (ANN) imple­
mented in the computing device. The method may involve, 
at the computing device, receiving a first set of training data 
for training the ANN to predict output data for a first type of 
task. The method may further involve, at the computing 
device, training the ANN with the first set of training data by 
adjusting values of only those weights associated with a first 
subset of neurons of the ANN, where the first subset of 
neurons is selected based on an identity of the first type of 
task. The method may additionally involve, at the computing 
device, receiving a second set of training data for training 

of the observed slow drop in accuracy, significant perfor- 15 

mance degradation was still observed for many multiples of 
sequential task trainings, the actual number for this more 
severe degradation depending, again, on the complexity of 
the tasks and the size of the ANN. 

The inventors have devised a novel approach to reduce 
catastrophic forgetting that selects different subsets of an 
ANN's neurons to be activated during training and runtime 
operations for different tasks. The neurons of each subset are 
selected randomly from among the neurons of the ANN (but 
generally exclude neurons of the input and output layers, as 
described below), and each subset is associated with a 
different one of multiple tasks for which the ANN is trained. 
Neurons that are activated for a given task function as usual, 
while those not in the subset for the given task are rendered 
inactive by "gating" their inputs or outputs. Thus, during 
training for a given task, only a subset of weights are subject 
to adjustment, while all the others-those of "gated" neu­
rons-remain unchanged, thereby lessening the impact of 
subsequent training on previously-determined weights. In 
view of the association of each subset with a different one of 
multiple tasks or "contexts," this technique is referred to 
herein as "context-dependent gating." 

The inventors have determined empirically that context­
dependent gating by itself yields results similar to those of 
weight stabilization, with the predictive (statistical) accu­
racy of the ANN for earlier-trained tasks dropping more 
slowly than sequential training without context-dependent 
gating for a range of sequential task trainings similar to the 
range observed for weight stabilization. Again, further per­
formance degradation was observed for multiples of sequen­
tial task trainings. 

However, in an unexpected discovery, the inventors found 
that applying both context-dependent gating and weight 
stabilization during sequential training of multiple tasks 
yielded not only much higher accuracy of ANN prediction at 
runtime for all tasks (including the earlier-trained tasks) than 
either technique by itself, but also yielded a much slower 
drop-off in predictive accuracy of the ANN after many 
multiples of sequential trainings than either technique by 
itself. And the drop-off in accuracy appeared to slow down 
beyond the range that degradation set in. Thus, the inventors 
have discovered that when used together, context-dependent 
gating and weight stabilization provide complementary 
improvements to alleviating catastrophic forgetting in multi­
task sequential ANN training that are significantly beyond 
any additive effect that might otherwise have been expected. 

Accordingly, methods and systems are disclosed herein 
for applying both context-dependent gating and weight 
stabilization to sequentially training ANNs for multiple, 
different tasks. Example embodiments may be described in 
terms of feed-forward ANNs, though the techniques 
described herein are not limited or restricted only to such 

20 the ANN to predict output data for a second type of task, 
where the second type of task is different from the first type 
of task. The method may also involve, at the computing 
device, training the ANN with the second set of training data 
by adjusting values of only those weights associated with a 

25 second subset of neurons of the ANN, where the second 
subset of neurons is selected based on an identity of the 
second type of task. Further, during training of the ANN for 
any given type of task, adjusting of the value of any given 
weight associated with neurons of the ANN may involve: if 

30 the ANN has been previously trained for one or more task 
types different from the given type, computationally biasing 
adjustment of the value of the given weight according to a 
respective importance of the given weight to a predictive 
capability of the ANN for the one or more task types, and if 

35 the ANN has not been previously trained for any task types 
different from the given type, computationally adjusting the 
value of the given weight without bias. 

In another respect, example embodiments may involve a 
computing device. The computing device may include one 

40 or more processors and memory configured to store com­
puter-executable instructions that, when executed by the one 
or more processors, cause the computing device to carry out 
operations. The operations may involve receiving a first set 
of training data for training an artificial neural network 

45 (ANN) implemented on the one or more computing devices 
to predict output data for a first type of task. The operations 
may also involve training the ANN with the first set of 
training data by adjusting values of only those weights 
associated with a first subset of neurons of the ANN, where 

50 the first subset of neurons is selected based on an identity of 
the first type of task. The operations may further involve 
receiving a second set of training data for training the ANN 
to predict output data for a second type of task, where the 
second type of task is different from the first type of task. 

55 Additionally, the operations may involve training the ANN 
with the second set of training data by adjusting values of 
only those weights associated with a second subset of 
neurons of the ANN, where the second subset of neurons is 
selected based on an identity of the second type of task. 

60 Further, during training of the ANN for any given type of 
task, adjusting of the value of any given weight associated 
with neurons of the ANN may involve: if the ANN has been 
previously trained for one or more task types different from 
the given type, computationally biasing adjustment of the 

65 value of the given weight according to a respective impor­
tance of the given weight to a predictive capability of the 
ANN for the one or more task types, and if the ANN has not 
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been previously trained for any task types different from the 
given type, computationally adjusting the value of the given 
weight without bias. 

In still another respect, example embodiments may 
involve an article of manufacture comprising non-transitory 5 

computer readable media having computer-readable instruc­
tions stored thereon that, when executed by one or more 
processors of a computing device, cause the computing 
device to carry out operations. The operations may involve 
receiving a first set of training data for training an artificial 10 

neural network (ANN) implemented on the one or more 
computing devices to predict output data for a first type of 
task. The operations may further involve training the ANN 
with the first set of training data by adjusting values of only 
those weights associated with a first subset of neurons of the 15 

ANN, where the first subset of neurons is selected based on 
an identity of the first type of task. The operations may also 
involve receiving a second set of training data for training 
the ANN to predict output data for a second type of task, 
where the second type of task is different from the first type 20 

of task. Additionally, the operations may involve training the 
ANN with the second set of training data by adjusting values 
of only those weights associated with a second subset of 
neurons of the ANN, where the second subset of neurons is 
selected based on an identity of the second type of task. 25 

Further, during training of the ANN for any given type of 
task, adjusting of the value of any given weight associated 
with neurons of the ANN may involve: if the ANN has been 
previously trained for one or more task types different from 
the given type, computationally biasing adjustment of the 30 

value of the given weight according to a respective impor­
tance of the given weight to a predictive capability of the 
ANN for the one or more task types, and if the ANN has not 
been previously trained for any task types different from the 
given type, computationally adjusting the value of the given 35 

weight without bias. 
These as well as other embodiments, aspects, advantages, 

and alternatives will become apparent to those of ordinary 
skill in the art by reading the following detailed description, 
with reference where appropriate to the accompanying 40 

drawings. Further, this summary and other descriptions and 
figures provided herein are intended to illustrate embodi­
ments by way of example only and, as such, that numerous 
variations are possible. For instance, structural elements and 
process steps can be rearranged, combined, distributed, 45 

eliminated, or otherwise changed, while remaining within 
the scope of the embodiments as claimed. 

BRIEF DESCRIPTION OF DRAWINGS 

6 
FIG. 4B illustrates an example of training an artificial 

neural network on an example task Busing weight stabili­
zation after training on example task A using weight stabi­
lization, in accordance with example embodiments. 

FIG. SA illustrates an example of training an artificial 
neural network on an example task A using context-depen­
dent gating, in accordance with example embodiments. 

FIG. SB illustrates an example of training an artificial 
neural network on an example task Busing context-depen­
dent gating after training on example task A using context­
dependent gating, in accordance with example embodi­
ments. 

FIG. SC illustrates an example gating table for determin­
ing which neurons of an artificial neural network to gate 
during training and runtime, in accordance with example 
embodiments. 

FIG. SD illustrates an alternative example gating table for 
determining which neurons of an artificial neural network to 
gate during training and runtime, in accordance with 
example embodiments. 

FIG. 6A illustrates an example of training an artificial 
neural network on an example task A using context-depen­
dent gating and weight stabilization, in accordance with 
example embodiments. 

FIG. 6B illustrates an example of training an artificial 
neural network on an example task Busing context-depen­
dent gating and weight stabilization after training on 
example task A using context-dependent gating and weight 
stabilization, in accordance with example embodiments. 

FIG. 7 illustrates a machine learning system, in accor­
dance with example embodiments. 

FIG. 8 is a flow chart of an example method, in accor­
dance with example embodiments. 

DETAILED DESCRIPTION 

Example methods, devices, and systems are described 
herein. It should be understood that the words "example" 
and "exemplary" are used herein to mean "serving as an 
example, instance, or illustration." Any embodiment or 
feature described herein as being an "example" or "exem­
plary" is not necessarily to be construed as preferred or 
advantageous over other embodiments or features unless 
stated as such. Thus, other embodiments can be utilized and 
other changes can be made without departing from the scope 
of the subject matter presented herein. 

Accordingly, the example embodiments described herein 
are not meant to be limiting. It will be readily understood 

FIG. 1 depicts a simplified block diagram of an example 
computing device, in accordance with example embodi­
ments. 

FIG. 2 is a conceptual illustration of an artificial neural 
network, in accordance with example embodiments. 

50 that the aspects of the present disclosure, as generally 
described herein, and illustrated in the figures, can be 
arranged, substituted, combined, separated, and designed in 
a wide variety of different configurations. For example, the 
separation of features into "client" and "server" components 

FIG. 3A illustrates an example of training an artificial 
neural network on an example task A, then using the trained 
artificial neural network to perform task A at runtime, in 
accordance with example embodiments. 

FIG. 3B illustrates an example of training an artificial 
neural network on an example task B after training on 
example task A, then using the trained artificial neural 
network to perform task B at runtime, in accordance with 
example embodiments. 

FIG. 4A illustrates an example of training an artificial 
neural network on an example task A using weight stabili­
zation, in accordance with example embodiments. 

55 may occur in a number of ways. 
Further, unless context suggests otherwise, the features 

illustrated in each of the figures may be used in combination 
with one another. Thus, the figures should be generally 
viewed as component aspects of one or more overall 

60 embodiments, with the understanding that not all illustrated 
features are necessary for each embodiment. 

Additionally, any enumeration of elements, blocks, or 
steps in this specification or the claims is for purposes of 
clarity. Thus, such enumeration should not be interpreted to 

65 require or imply that these elements, blocks, or steps adhere 
to a particular arrangement or are carried out in a particular 
order. 
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I. Introduction 

Humans and other advanced animals are capable of 
learning large numbers of tasks during their lifetime, without 
necessarily forgetting previously learned information. This 5 

ability to learn and not forget past knowledge, customarily 
referred to as continual learning, presents a significant 
challenge in the design of artificial neural networks (ANN s) 
that can build upon previous knowledge to solve new tasks. 
One reason is that when ANNs are trained on several tasks 10 

sequentially, using conventional techniques, they often suf-
fer from "catastrophic forgetting," wherein learning new 
tasks degrades performance on previously learned tasks. 
This occurs because learning a new task can alter connection 

15 
weights away from optimal solutions learned for previous 
tasks. 

Among approaches tried for alleviating catastrophic for­
getting in ANNs are stabilization techniques mentioned 
above. In some studies, applying these stabilization tech- 20 

niques has allowed ANN s to learn several (sl 0) sequentially 
trained tasks with only a small loss in accuracy. 

8 
forgetting is beyond what would otherwise have been 
expected from additive improvements of the individual 
techniques by themselves. 

II. Example Computing Devices 

FIG. 1 is a simplified block diagram of a computing 
device 100, in accordance with example embodiments. As 
shown, the computing device 100 may include processor(s) 
102, memory 104, network interface(s) 106, and an input/ 
output unit 108. By way of example, the components are 
communicatively connected by a bus 110. The bus could 
also provide power from a power supply (not shown). In 
particular, computing device 100 may be configured to 
perform at least one function of and/or related to compo-
nents of artificial neural network 200, gating table 500 
and/or 502, machine learning system 700, and/or method 
800, all of which are described below. 

Memory 104 may include firmware, a kernel, and appli-
cations, among other forms and functions of memory. As 
described, the memory 104 may store machine-language 
instructions, such as programming code or non-transitory 
computer-readable storage media, that may be executed by 

However, after large numbers (>> 100) of different tasks, 
stabilization alone still suffers from forgetting. Conse­
quently, the inventors have recognized the need to address 
whether utilizing multiple complementary algorithms can be 
more effective in supporting continual learning in ANNs 
than any one technique by itself. 

In particular, the inventors have proposed a novel 
approach to alleviating catastrophic forgetting in ANN s 
based on a context dependence oflearning observed in brain 
studies. Specifically, the inventors have undertaken to devise 

25 the processor 102 in order to carry out operations that 
implement the methods, scenarios, and techniques as 
described herein and in accompanying documents and/or at 
least part of the functionality of the example devices, 
networks, and systems described herein. In some examples, 

30 memory 104 may be implemented using a single physical 
device (e.g., one magnetic or disc storage unit), while in 
other examples, memory 104 may be implemented using 
two or more physical devices. In some examples, memory 
104 may include storage for one or more machine learning 

a mechanism in ANNs, referred to herein as "context­
dependent gating" of neurons of an ANN. For demonstration 
purposes and by way of example, the inventors implemented 
and tested a simplified version of context-dependent gating 
involving sparse and mostly non-overlapping sets of units 
(neurons) that are active for any one task. Example embodi­
ments employ an algorithm that includes an additional signal 
that is unique for each task, and that is projected onto all 40 

hidden neurons. In particular, this algorithm is simple to 
implement and requires little extra computational overhead 
compared with conventional techniques that do not address 
catastrophic forgetting, as well as stabilization techniques 
that attempt to. 

35 systems and/or one or more machine learning models as 
described herein. 

Processors 102 may include one or more general purpose 
processors and/or one or more special purpose processors 
( e.g., digital signal processors (DSPs) or graphics processing 
units (GPUs). Processors 102 may be configured to execute 
computer-readable instructions that are contained in 
memory 104 and/or other instructions as described herein. 

Network interface(s) 106 may provide network connec­
tivity to the computing system 100, such as to the internet or 

45 other public and/or private networks. Networks may be used 
to connect the computing system 100 with one or more other 
computing devices, such as servers or other computing 
systems. In an example embodiment, multiple computing 

Example embodiments herein are described in terms of a 
system and method for implementing feedforward networks 
trained on 100 sequential Modified National Institute of 
Standards and Technology (MNIST) permutations and on 
the ImageNet dataset split into 100 sequential tasks. The 50 

inventors established that both context-dependent gating and 
synaptic stabilization, when used alone, are each partially 
effective at alleviating forgetting across the 100 tasks. How­
ever, in an unexpected discovery, the inventors found that 
when context-dependent gating is utilized together with 55 

synaptic stabilization, their merged operation enables an 
ANN to successfully learn all 100 tasks with little forgetting. 
Furthermore, utilizing context-dependent gating jointly with 
stabilization allows recurrent neural networks (RNNs), 
trained by using either supervised or reinforcement learning, 60 

to sequentially learn 20 tasks commonly used in cognitive 
and systems neuroscience experiments with high accuracy. 
Thus, in accordance with example embodiments, context­
dependent gating, when used in tandem with stabilization 
methods, may dramatically increase the ability of ANNs to 65 

learn large numbers of tasks without forgetting previous 
knowledge. The improvement in alleviating catastrophic 

systems could be communicatively connected, and example 
methods could be implemented in a distributed fashion. 

Client device 112 may be a user client or terminal that 
includes an interactive display, such as a GUI. Client device 
112 may be used for user access to programs, applications, 
and data of the computing device 100. For example, a GUI 
could be used for graphical interaction with programs and 
applications described herein. In some configurations, the 
client device 112 may itself be a computing device; in other 
configurations, the computing device 100 may incorporate, 
or be configured to operate as, a client device. 

Database 114 may include input data, such as images, 
text, etc., that could be acquired for processing and/or 
recognition by a neural network, including artificial neural 
network 200 and context-dependent gating network 704. 
The data could additionally or alternatively be training data, 
which may be input to a neural network, including artificial 
neural network 200 and context-dependent gating network 
704, for training, such as determination of weighting factors 
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applied at various layers of the neural network. Database 114 
could be used for other purposes as well. 

III. Example Artificial Neural Networks 

Artificial neural networks (ANNs) are computational 
models in which a number of relatively simple functional 
units, customarily referred to as neurons, are combined to 
solve complex problems. ANNs may be represented graphi­
cally as a number of connected nodes, where each node is a 
neuron, and the neurons are arranged in layers, with con­
nections between the nodes (neurons) of adjacent layers. 
While ANN s may have a fixed structure and may be trained 

10 
for a task. Non-limiting examples of loss functions may 
include hinge loss, square loss, 0/1 loss, cross-entropy, or 
some other metric. A cost function could then be used to 
average the loss functions over all training examples asso-

5 ciated with the training data for a task while adding model 
complexity penalties. Once the output of the cost function is 
determined, weights of the connections may be updated by 
propagating the error one layer at a time through ANN 200 
in an attempt to reduce the error. This form of updating is 

10 customarily referred as backpropagation, and may be based 
on the derivative of the activation function. 

The training process for a task on ANN 200 may continue 

to solve one task at a time, example embodiments herein 
relate to trainingANNs with dynamic structures that solve a 15 

plurality of tasks without forgetting previously trained tasks. 

until the training values of weights converge. For example, 
convergence may occur when the error determined by the 
cost function is less than a predetermined threshold value, 
the change in the error determined by the cost function is 

In example embodiments, ANNs may be implemented as 
machine language instructions executable on a computing 
device, such as computing device 100. 

FIG. 2 is a simplified architectural representation illus- 20 

trating an artificial neural network (ANN) 200, in accor­
dance with example embodiments. By way of example, the 
neurons of ANN 200 are arranged in four layers: input layer 
202 made up ofN neurons Il, 12, 13, ... , IN; hidden layer 
204 made up of L neurons Hl 1 , Hl2 , Hl3 , H14 , Hl5 , ... , 25 

HlL; hidden layer 206 made up ofL neurons H2i, H22 , H23 , 

H24 , H25 , ... , H2L; and output layer 208 made up of M 
neurons 01, 02, ... , IN. For this example, the two hidden 
layers have the same number of neurons (L ), while the input 
and output layer have N and M neurons respectively, where 30 

N and M signify two numbers that need not be the same 
( although they could be, and either or both could be equal to 
L). 

sufficiently small between consecutive iterations of training, 
or a predetermined maximum number of iterations has been 
reached. At this point, ANN 200 may be considered 
"trained" on a particular task, and may be applied at runtime 
to new inputs for runtime data associated with the particular 
task in order to predict runtime values. 

In the current disclosure, ANN 200 may be used to 
illustrate the techniques and concepts as described herein. 
That is, each scenario as described herein may utilize a new, 
untrained instance of ANN 200 to exemplify one or more 
techniques. Moreover, while ANN 200 may be represented 
as a feed-forward multilayer neural network, the structures 
and principles herein may be used with convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and 
other ANN architectures. Additionally, while ANN 200 is 
shown as a fully-connected network, non-fully connected 
networks may be possible within the context of the current 
disclosure. 

FIGS. 3A and 3B illustrate example scenarios for training 
ANN 200 with a first task and then training ANN 200 with 
a second task. For purposes of discussion herein, the two 
tasks are referred to as "task A" and "task B." Task A may 
represent any supervised learning or reinforcement learning 

In operation, each neuron of the input layer may receive 
the input data 201 for a task, and data may then flow from 35 

one layer to the next. This is represented in FIG. 2 by 
directed arrows connecting neuron outputs in one layer to 
neuron inputs in the next layer. By way of example, ANN 
200 is a fully-connected network, where the output of each 
neuron in one layer is connected to the input of each neuron 40 task, for example. Task B may represent any supervised 

learning or reinforcement learning task that is different from 
the task A. Non-limiting examples of tasks may include 
identifying a motorcycle given an image, identifying a 
country given a set of general population statistics, and/or 

in the next layer, except for output layer 208, in which the 
neuron outputs represent the output data 203 of the ANN for 
the task. 

As described above, each neuron computes an activation 
function of its inputs and outputs the result to each neuron 
in the next layer to which it is connected. Non-limiting 
examples of activation function include tanh, ReLu, and 
sigmoid; other suitable functions may be used as well. Each 
connection may be associated with a respective weight that 
may be applied (e.g. as a multiplier or scale factor) to the 
output value of a neuron. When making a prediction for a 
task, each neuron performs an operation on its input values 
prior to applying the activation function. This operation may 
involve a dot-product (or inner product) sum of the input 
values with their associated weights applied and a bias term, 
b, added. The activation function may then be applied to the 
dot-product sum to produce the final output value of a 
neuron. 

45 other similar learning tasks In both FIGS. 3A and 3B, only 
a portion of ANN 200 is depicted; specifically, only the first 
two neurons in each layer. Namely, I1 and 12 in input layer 
202; Hli, Hl2 in hidden layer 204; H2 1 , H22 in hidden layer 
206; and 01 and 02 in output layer 208. Vertical ellipses in 

50 each figure represent the continuation of neurons in each 
layer. The top panel in each figure (above the horizontal 
dotted line) represents training of ANN 200 for a given task, 
and the bottom panel in each figure (below the horizontal 
dotted line) represents runtime operation of ANN 200 for a 

55 given task. For the depicted portions of ANN 200 in each 
panel of FIGS. 3A and 3B, each of the connections between 
the neurons is displayed with an associated weight. As 
shown, the weights are labeled W1 , W2 , W3 , ... , W12. In 
addition, bias values are displayed for each hidden layer of Training ANN 200 on a task may involve inputting 

"training data" to the ANN 200 during training in order to 
learn values of weights, such that the ANN 200 may 
subsequently accurately predict output values when later 
given "runtime data" input values for the task. Learning 
weights may be accomplished using a loss function to 
compute an error between the produced output values and 65 

ground truth output values (e.g., known, correct values) for 

60 the depicted portion of ANN 200. As shown, the biases are 
labeled b1 and b2 . The values of the weights and biases in 
each depicted portion of ANN 200 may be considered 
arbitrary numbers that serve as examples of the present 
discussion. 

The top panel of FIG. 3A illustrates training of ANN 200 
for task A. During training, input training data 301 are input 
to the input layer of ANN 200. As shown, input training data a single training example associated with the training data 
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of the changes in the weights and biases after training for 
task B, the accuracy of predicted runtime values for task A 
runtime input data may be diminished, and performance of 
ANN 200 when applied to task A runtime data subsequent to 

value T(A)_IN 1 is input at ( or received by) I1 of the input 
layer, and input training data value T(A)_IN2 is input at (or 
received by) 12 of the input layer. During training, ANN 
output training data 303 are output by the output layer of 
ANN 200. As shown, output training data value T(A)_OUT 1 

is output by 01 of the output layer, and output training data 
value T(A)_OUT2 is output at 02 of the output layer. 
Through backpropagation ( or some other tuning/adjustment 
procedure), the weights W i, W 2 , W 3 , ... , W 12 and biases 
b 1 and b2 are adjusted until ANN 200 is determined by some 
predefined criteria to be trained. The values of the weights 
and biases in the top panel of FIG. 3Amay be considered the 
final, trained values for task A. 

5 training for task B may be degraded. Catastrophic forgetting 
for task A may become more severe after training ANN 200 
for additional tasks, such as task C, task D, and so on. 
Similarly, the predictive accuracy of ANN 200 for task B 
may degrade as ANN 200 is trained for additional tasks. In 

10 general, it may be expected that the earlier in a sequence of 
task trainings the training for a given task is carried out, the 
more severe the degradation of predictive capability of ANN 
200 for the given task, though this may not necessarily be the The bottom panel of FIG. 3A illustrates runtime operation 

of ANN 200 for task A after training has been accomplished. 15 

More particularly, input runtime data 305 are input to the 
input layer of ANN 200. As shown, input runtime data value 
R(A)_IN 1 is input at ( or received by) I1 of the input layer, 
and input runtime data value R(A)_IN2 is input at (or 
received by) 12 of the input layer. During runtime, output 20 

runtime data 307 are output by the output layer of ANN 200. 
As shown, output runtime data value R(A)_OUT1 is output 
by 01 of the output layer, and output runtime data value 
R(A)_OUT2 is output at 02 of the output layer. The values 

case. 
The weights and biases determined from training an 

ANN, such as ANN 200, may not necessarily represent the 
only configuration of weight values that yield acceptable 
predictive performance of the ANN for a given task. In 
practice, there may be a plurality of configurations of task A 
weights and task B weights that may yield high accuracies 
for task A and task B, respectively. In analytical terms, task 
A may contain an optimal region of parameter space for 
ANN 200, where all sets of weight values in the optimal 
region yield at least a threshold accuracy score when apply­
ing ANN 200 on task A input values. Similarly, task B may 
also contain an optimal region of parameter space for ANN 
200, where all sets of weight values in the optimal region 
yield at least a threshold accuracy score when applying ANN 

of the weights and biases during runtime are the same as 25 

those determined by training for task A, as may be seen by 
inspection of the top and bottom panels of FIG. 3A. For 
runtime operation, the runtime outputs represent predicted 
values for task A. The accuracy of those predicted values is 
therefore associated with the trained weights for task A. 30 200 on task B input values. In some cases, the optimal 

regions of task A and task B may overlap and may contain 
one or more sets of weight values that achieve at least a 
threshold accuracy score when applying ANN 200 on both 

The two panels of FIG. 3B show corresponding training 
and runtime operation of ANN 200 for task B. During 
training, input training data 309 are input to the input layer 
of ANN 200, and output training data 311 are output by the 
output layer of ANN 200. The input training values are 35 

labeled T(B)_IN1 and T(B) IN2 , corresponding to task B 
training data. Similarly, output training values are labeled 
T(B)_ OUT 1 and T(B)_ OUT 2 , corresponding to training pre­
dictions for task B. Backpropagation ( or some other tuning/ 
adjustment procedure) may again be used to determine the 40 

weights W i, W 2 , W 3 , ... , W 12 and biases b 1 and b2 , but this 
time for task B. The values of the weights and biases in the 
top panel of FIG. 3B may be considered the final, trained 
values for task B. 

The bottom panel of FIG. 3B illustrates runtime operation 45 

of ANN 200 for task B after training has been accomplished. 
During runtime, input runtime data 313 are input to the input 
layer of ANN 200, and output runtime data 315 are output 
by the output layer of ANN 200. The input runtime values 
are labeled R(B)_IN1 and R(B)_IN2 , corresponding to task 50 

B runtime data. Similarly, output runtime values are labeled 
R(B)_OUT1 and R(B)_OUT2 , and these correspond to run­
time predictions for task B. The values of the weights and 
biases during runtime are the same as those determined by 
training for task B, as may be seen by inspection of the top 55 

and bottom panels of FIG. 3B. For runtime operation, the 
runtime outputs represent predicted values for task B. The 
accuracy of those predicted values is therefore associated 
with the trained weights for task B. 

As may be seen by comparing FIGS. 3A and 3B, the 60 

values of the weights and biases of ANN 200 after training 
for task B have changed from those after training for task A. 
(Again, the actual values shown for both tasks are arbitrary 
and illustrative only.) The differences between the respective 
values for the two tasks are meant to demonstrate how ANN 65 

200 may be subject to catastrophic forgetting of its task A 
training after it has been trained for task B. Thus, as a result 

task A and task B input values. In accordance with example 
embodiments, high accuracy, overlapping regions of ANN 
200 may be identified so as to achieve high accuracies when 
ANN 200 is applied to both task A and task B input values. 

In further accordance with example embodiments, high 
accuracies for sequential tasks A and B, as well as possibly 
for additional sequential task trainings, may be achieved 
using techniques for constraining adjustment of selected 
weight values of an ANN, such as ANN 200, during sequen­
tial trainings of multiple tasks, such as task A and task B. In 
particular, by judicious application of constrained adjust­
ment during training, it may be possible to identify high 
accuracy, overlapping regions that give low error predictions 
for one task, such as task B, without incurring a significant 
loss in accuracy for another earlier-trained task, such as task 
A. 

IV. Context-Dependent Gating and Weight 
Stabilization 

One approach to alleviating or mitigating catastrophic 
forgetting in ANN s is to determine an "importance" of each 
weight to the predictive capability of the ANN for a given 
task, and bias adjustment of each weight during subsequent 
task trainings in proportion to, or as a function of, the 
determined importance. The adjustment bias for a given 
weight thus acts to computationally inhibit adjustment of the 
given weight based, at least in part, on the importance of the 
weight to one or more other tasks for which the ANN has 
previously been trained. Note that in this context, the bias 
applied to adjusting weights during training should not be 
confused with the bias parameters of the ANN. In view of 
the resistance to adjustment of weights with high importance 
to previously-trained tasks, this approach is referred to 
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herein as "weight stabilization," and may be considered a 
more general example of "synaptic stabilization" as men­
tioned above. 

14 
By way of example, only three weights in FIG. 4A are 

explicitly shown as having importance scores. Namely, W5 , 

with an importance score of 3; W 8 , with an importance score 
of 1 0; and W 10, with an importance score of 1. Importance The importance of a given weight to the predictive 

capability of the ANN for a given task may be signified by 5 scores for the other weights are omitted for the sake of 
clarity in FIG. 4A. The importance scores determined for 
task A may then be used in weight stabilization when ANN 
200 is trained for task B. 

an "importance score" that measures the effect that changing 
the given weight from its optimal (trained) value has on the 
predictive capability of the ANN for the given task. In 
example embodiments, the larger the importance score, the 
more deleterious the effect of changing the given weight 10 

from its optimal value. A high importance score may be 
indicative of how quickly the predictive capability of the 
ANN deteriorates with a change of the given parameter, 
and/or how much the ANN deteriorates with a given amount 
change of the given parameter. In practice, an importance 15 

score may be assigned to all or a subset of weights of an 
ANN, and the effect of changes to the weights may be 
determined in aggregate. Importance scores for a given task 
may be applied as scale factors, or some other function, in 
order to determine the overall effect on the predictive 20 

capability of the ANN of adjusting the ANN weights during 
training for other tasks. 

By including importance scores as a scaling factors or 
some other function, it may be possible to determine how 
changes to weights between tasks affect the overall predic- 25 

tive capability for ANN 200 for previous tasks. For example, 
large or even moderate or small changes to weights with 
high importance scores for task A may cause runtime 
performance on task A to decrease drastically, whereas large 
changes to weights with low important scores for task A may 30 

cause only a small or nominal decrease to the runtime 
performance on task A. In accordance with example embodi­
ments, important scores may be utilized by a loss function 

Training for task B is illustrated in FIG. 4B. The impor­
tance scores for weights determined for task A are now 
shown in FIG. 4B with dotted lines; a legend at the lower left 
of FIG. 4B indicates the importance scores of task A weights 
according to thickness of the dotted lines. As a conceptual 
illustration of weight stabilization, the task A weights have 
changed after training for task B in accordance with their 
respective task A importance. For this illustration, W5 , with 
a task A importance of 3, has changed from 0.40 to 0.38; W8 , 

with a task A importance of 10, has not changed at all; and 
W 10, with a task A importance of 1, has changed from 0.48 
to 0.43. In addition, other weights trained for task B may 
also be assigned importance scores. This is indicated by way 
of example for weight W3 and weight W12 . 

As mentioned above and summarized below, weight sta­
bilization, or synaptic stabilization, by itself provides only 
limited improvement in ANN performance after multiple 
sequential trainings for different tasks. To increase accuracy 
for large numbers of tasks, ANN 200 may be configured to 
retain a "pool" of low importance weights that may be 
adjusted by sufficient amounts to learn new tasks. This pool 
of weights may be obtained, for example, by restricting the 
training of ANN 200 for each task to respective predeter-
mined subsets of units, thus allowing ANN 200 to retain 
weights that have not been previously used or have been 
used sparingly during the training of previous tasks. This 
restriction, referred to herein as "gating," may allow ANN 
200 to maintain low importance weights that may be 
adjusted by large amounts when training for new tasks, 
without disrupting performance on previous tasks. 

In accordance with example embodiments, subsets of 

of ANN 200 to determine the weight changes for ANN 200 
that minimize global error ( e.g., error across the current task 35 

being trained on ANN 200 and previous tasks that have been 
trained on ANN 200). To accomplish this, the loss function 
may be constructed so as to place high penalties for large 
shifts to the weights identified as important for any previous 
tasks. 40 neurons may be gated ( or not gated) during training based on 

identification of the task for which the ANN is being trained. 
Association of neuron subsets for gating with respective 
tasks is referred to herein as "context dependent gating." It 
will be appreciated that subsets of neurons of an ANN may 

In accordance with example embodiments, importance 
scores may be applied to weight adjustment as a sort of 
penalty that computationally inhibits weight adjustment in 
dependence on the importance scores. The greater the 
importance score of a previously trained weight, the greater 
the penalty of adjusting that weight during a subsequent 
training, and the greater the computational inhibition of 
adjusting the weight during the subsequent training. 

45 be defined either by whether they are gated or not gated. 
Thus, if the subset specifies gated neurons, then neurons of 
the subset will remain inactive during training, while those 
not in the subset will remain active during training. Alter­
natively, if the subset specifies ungated neurons, then neu-FIGS. 4A and 4B are conceptual illustrations of weight 

stabilization during sequential training of ANN 200 for tasks 
A and B. Each figure depicts the same portion of ANN 200 
as FIGS. 3A and 3B, namely the first two neurons of each 
layer. The input training and output training data in FIGS. 
4A and 4B are also the same as in FIGS. 3A and 3B, as are 
the input and output neurons. 

50 rans of the subset will remain active during training, while 
those not in the subset will remain inactive (gated) during 
training. For either definition, the total number of neurons 
under consideration will be the number in the subset and 
those not in the subset. 

FIG. 4A shows the depicted portion of ANN 200 after 
training for task A. The indicated weight values are the same 

55 

as those in FIG. 3A. In addition, FIG. 4A indicates impor­
tance scores as ovals encircling labeled weights and values. 
The thickness of the line of each oval signifies the impor- 60 

tance of the weight to the predictive capability of ANN 200 
to task A. A legend in FIG. 4A shows example importance 
scores, 1, 2, 3, ... , 10, associated with different line 
thicknesses. It will be appreciated that the legend is just a 
convenient conceptual representation of importance scores, 65 

and not intended to be limiting with respect to example 
embodiments or techniques described herein. 

FIGS. SA and SB are conceptual illustrations of context­
dependent gating during sequential training of ANN 200 for 
tasks A and B. In these figures, the entire ANN 200 as 
depicted in FIG. 2 is shown in order to better illustrate the 
distribution of gated and ungated neurons during training. In 
accordance with example embodiments, context-dependent 
gating may be applied only to neurons in the hidden layers. 
However, this is not necessarily a requirement for all 
embodiments. 

In both FIGS. SA and SB a digital electronics gating 
symbol is used to signify which neurons are gated. For 
example in FIG. SA, neurons Hl2 , H14 , HlD H2i, H23 , H24 , 

and H25 of the hidden layers are gated during training for 
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task A. The remammg neurons of the hidden layer are 
ungated. Thus, during training for task A-i.e., the context 
for gating----only the ungated neurons will be active, so that 
only the weights of the ungated neurons will be subject to 
adjustment during training for task A. By way of example, 5 

the gating is accomplished by gating the outputs of each 
gated neuron. This is represented by depicting the outputs of 
the gated neurons as dashed lines, while the outputs of the 
ungated neurons are depicted as solid lines. In practice, 
output gating can be implemented by multiplying the output 10 

activations of the gated neurons by zero. Gating can also be 
implemented by zeroing the inputs to gated neurons (input 
gating), or by zeroing both inputs and outputs of gated 
neurons (input/output gating). As a result of the gating 
shown in FIG. SA, the weights of gated neurons will be 15 

unchanged by training. 
In FIG. SB, neurons Hl 1 , Hl3 , H14 , Hl 5 , H21 , H23 , and 

H2L of the hidden layers are gated during training for task B. 
The remaining neurons of the hidden layer are ungated. 
Thus, during training of task B-i.e., the context for gat- 20 

ing----only the ungated neurons will be active, so that only 
the weights of the ungated neurons will be subject to 
adjustment during training for task B. In particular, the task 
B weights of the output connections of the gated neurons 
will not be changed during training for task B. Again, gating 25 

is represented by depicting the outputs of the gated neurons 
as dashed lines, while the outputs of the ungated neurons are 
depicted as solid lines. 

In accordance with example embodiments, neurons iden­
tified for gating ( or not gating) for each task may be selected 30 

at random from among the hidden layers. Further, the 
number of gated neurons may be determined as a fraction or 
percentage of the total number of neurons under consider­
ation for gating (e.g., those of the hidden layers). For 
example, if the fraction of gated neurons is given by x, 35 

where x<l, the fraction ofungated neurons will be given by 
1-x; in percentage terms, X=l00x % will be gated and 
(100-X) % will be ungated. For each of multiple tasks, X (or 
x) may be the same, while the actual neurons gated may be 
selected at random for each task. In testing and demonstra- 40 

tions, X in an approximate range of 80-90% was used. 
However, different values may be used, and optimal values 
may be determined through testing, for example. 

Also in accordance with example embodiments, the 
selected subsets of ungated neurons for each task may be 45 

recorded and stored in one or another form of memory, so 
that the subset associated with each given task may be 
quickly and reliably identified for training and/or runtime 
operation for each task. In one example, the subsets may be 
recorded in the form of a gating table having one row for 50 

each task and one colunm for each hidden-layer neuron. 
Each entry of gating table may then be a 1 or 0 depending 
on whether the neuron of the associated colunm is ungated 
or gated for the task of the associated row. 

FIG. SC illustrates an example such a gating table 500. As 55 

shown, the rows are labeled as (example) tasks A, B, 
C, ... , Q, and the columns are labeled as neurons Hl 1 , Hl2 , 

Hl3 , H14 , Hl5 , ... , HlL; H21 , H22 , H23 , H24 , H25 , ... , 

H2L. The entries in the rows for tasks A and B correspond 
to the gated neurons (0) and ungated neurons (1) shown in 60 

FIGS. SA and SB. The entries shown for tasks C, ... , Q 
specify what the gating arrangement would be for these 
tasks. 

In another example embodiment, the gating table can take 
the form of a three-dimensional table in which one dimen- 65 

sion corresponds to the multiple tasks, and the other two 
dimensions are colunms that correspond to hidden layer 

16 
position in the ANN, and rows that correspond to neuron 
position in the hidden layer. An example of this form of 
gating table is illustrated in FIG. SD as gating table 502. 
Each entry of gating table 502 may then be a 1 or 0 
depending on whether the neuron at the associated position 
(row) and associated hidden layer (column) is ungated (1) or 
gated (0). For each task shown (A and Bin the example), the 
gating table for the task can act as a sort of mask on the 
neuron configuration of the hidden layers, picking out gating 
or not gating according to the entry value. 

As also mentioned above and summarized below, context­
dependent gating by itself may provide limited improvement 
in ANN performance after multiple sequential trainings for 
different tasks. However, the inventors discovered that using 
both context-dependent gating and weight stabilization dur­
ing training not only improved overall predictive accuracy 
of an ANN trained for multiple tasks, but significantly 
reduced the degradation of performance after 1 00s of 
sequential trainings for multiple tasks. In addition, the 
degradation that was observed in experiments appeared to 
level off rather than continue to drop. 

FIGS. 6A and 6B are conceptual illustrations of jointly 
using both context-dependent gating and weight stabiliza­
tion during training of ANN 200 for tasks A and B. As in 
some previous figures, only the portion of ANN 200 with the 
first two neurons of each layer is depicted in FIGS. 6A and 
6B. Training for task A is shown in FIG. 6A. By way of 
example, neurons Hl2 and H21 are shown to be gated, and 
weights W5 , W6 , Wu, and W12 are shown to have impor­
tance scores of 3, 1, 1, and 10, respectively, after training. 
Note that the values of weights W 7 , W 8 , W 9 , and W 10 are 
shown as question marks ("?") to signify that they are not 
adjusted during training because they are outputs of gated 
neurons. A legend in FIG. 6A indicates for each of weights 
W5 , W6 , W7 , W8 , W9 , W10, Wu, and W12 the trained value, 
whether or not its activation neuron is gated, and whether 
and how much it is stabilized against adjustment in subse­
quent trainings. 

For example, W5 has a trained value of0.40, is the output 
of an ungated neuron, and has "moderate" stabilization 
(importance score of 3 ). Similarly, W 12 has a trained value 
of0.51, is the output of an ungated neuron, and has "strong" 
stabilization (importance score of 10). Note that weights W 7 , 

W 8 , W 9 , and W 10 have no trained values because they are the 
outputs of gated neurons. For the same reason, they have no 
importance scores ("NIA") in the legend. The importance 
scores ofW5 , W6 , Wu, and W12 may be used when training 
for task B, as described next. 

Training for task B is shown in FIG. 6B. By way of 
example, neurons Hl 1 and H21 are shown to be gated, and 
weight W 8 is shown to have an importance score of 3 after 
training. The values of weights W 5 and W 6 are shown to be 
unchanged from their task A trained values. This is because 
these weights are outputs of a gated neuron (Hl 1) during 
task B training. Weights W 9 , and W 10 are shown as question 
marks ("?") to signify that they are not adjusted during 
training because they are outputs of gated neurons and had 
no initial values prior to training. And weight W 12 is also 
unchanged during task B training. But this is because weight 
W 12 has an importance score of 10 from its task A training, 
and was thus strongly stabilized against adjustment. This 
illustrates how both context-dependent gating and weight 
stabilization are operational during task B training. 

A legend in FIG. 6B indicates for each of weights W5 , W6 , 

W7 , W8 , W9 , W10, Wu, and W12 the trained value, whether 
or not its activation neuron is gated, whether or not a 
previously trained value was changed and for what reason, 
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and whether and how much it is stabilized from training on 
task B. Weight values shown in curly brackets ("{ }") 
indicate weight values unchanged from values determined 
from a previous training. 

The conceptual illustrations of FIGS. 6A and 6B are not 
intended to be complete. Rather they show how both con­
text-dependent gating and weight stabilization may be 
operational during training an ANN for multiple tasks in 
multiple, sequential trainings. The significant degree of 
improvement over applying either one of these techniques 
by themselves observed during tests and experimental trials 
was unexpected. Accordingly, the inventors' discovery of 
the advantages of using both techniques together represents 
a significant and unanticipated advancement in efforts to 
alleviate catastrophic forgetting in ANNs trained for mul­
tiple tasks. 

V. Example Architecture 

18 
network 706 may receive prediction request 710 and respon­
sively provide output predictions 712. 

Context storage 708 may include one or more storage 
devices configured to store one or more gating tables/ 

5 matrices associated with neurons on context-dependent gat­
ing network 704, such as those previously described with 
respect to FIGS. SC-SD. For example, context storage 708 
may take the form of a static file, a key-value database, or 
random access memory (RAM). In some cases, context-

IO dependent gating network 704 and context storage 708 may 
be jointly implemented on a single computing device. At 
runtime time, context storage 708 may be utilized by trained 
network 706 to access gating table/matrices and identify 

15 
whether to gate specific neurons when executing prediction 
request 710. By gating neurons, trained network 706 may 
provide prediction request 710 with an ANN structure that 
resembles the ANN structure used when training for the task 
associated with prediction request 710. 

Example embodiments described above could be imple- 20 

mented in the context of a machine learning system, which 
could be constructed from one or more software, hardware, 
and/or firmware application programs configured for execu­
tion on a computing device, such as computing device 100, 

Prediction request 710 may include one or more input 
requests each associated with a task previously trained on 
context-dependent gating network 704. Each input request 
may include a feature vector and a context indication 
identifying the particular task associated with the input 

25 request. For example, context indication may be a one hot 
vector the size of the number of tasks previously trained on 
trained network 706, with the task being requested indicated 
as on ( e.g., 1) and the rest of the tasks indicated as off ( e.g., 

a server, or other form of computing system. FIG. 7 illus­
trates an example machine learning system 700, in accor­
dance with example embodiments. Machine learning system 
700 may use techniques as described herein to train an 
artificial neural network, such as ANN 200, to detect pat­
terns and provide output predictions on a plurality of tasks. 30 

In example embodiments, components of machine learning 
system 700 may take the form of computing device 100 
and/or database 114. Additionally, components of machine 
learning system 700 may be replicated across a plurality of 
computing devices and/or databases to provide data dupli­
cation and increase capability of services. For example, the 
computing devices and/or databases may be located at 
different physical locations to ensure availability in the event 

0). 
Output predictions 712 may include one or more infer-

ences and/or predictions made by trained network 706 about 
prediction request 710. Output predictions 712 may be a 
single prediction or may be multiple predictions with like­
lihood probabilities associated with each of the multiple 

35 predictions. 

VI. Example Methods 

of failure at one location. 
Training data 702A may include one or more databases 

designed to receive and store training data associated with 
task A and provide the training data to train context-depen­
dent gating network 704. For example, training data 702A 
may include relational databases (e.g., SQL), key value 
databases (e.g., Redis), document databases (e.g., Mon­
goDB), colunm databases (e.g., Cassandra) and/or other 
database models. 

Training data 702B may include one or more databases 
designed to receive and store training data associated with 
task B and provide the training data to train context­
dependent gating network 704. For example, training data 
702B may include relational databases (e.g., SQL), key 
value databases ( e.g., Redis ), document databases ( e.g., 
MongoDB), colunm databases ( e.g., Cassandra) and/or other 
database models. 

Context-dependent gating network 704 may include one 
or more processes that utilize machine learning techniques 

Example methods may be implemented as machine lan-
40 guage instructions stored one or another form of the com­

puter-readable storage, and accessible by the one or more 
processors of a computing device and/or system, and that, 
when executed by the one or more processors cause the 
computing device and/or system to carry out the various 

45 operations and functions of the methods described herein. 
By way of example, storage for instructions may include a 
non-transitory computer readable medium. In example 
operation, the stored instructions may be made accessible to 
one or more processors of a computing device or system. 

50 Execution of the instructions by the one or more processors 
may then cause the computing device or system to carry 
various operations of the example method. 

FIG. 8 is a flow chart of an example method 800, 
according to example embodiments. As described above, the 

55 example method could be implemented as machine language 
instructions stored, for example in the memory 104, and 
executed by the processor(s) 102. By way of example, the 
method 800 is described as being carried out by a computing 
device. 

to train an ANN configured with gating and synaptic ( or 
weight) stabilization, such as ANN 200 as described with 
respect to FIGS. 4A-4B, SA-SB, and/or 6A-6B. In particular, 60 

context-dependent gating network 704 may be configured to 
At step 802, the computing device receives a first set of 

training data for training the ANN to predict output data for 
a first type of task. be trained first with training data 702A and then with 

training data 702B. The resulting ANN may be referred to as 
a trained ANN. For example, machine learning system 700 
illustrates context-dependent gating network 704 being 
trained on training data 702A and then training data 702B to 
become trained network 706. During runtime time, trained 

At step 804, the ANN is trained with the first set of 
training data by adjusting values of only those weights 

65 associated with a first subset of neurons of the ANN. The 
first subset of neurons is selected based on an identity of the 
first type of task. 
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At step 806, the computing device receives a second set 
of training data for training the ANN to predict output data 
for a second type of task, where the second type of task is 
different from the first type of task. 

Finally, at step 808, the ANN is trained with the second set 
of training data by adjusting values of only those weights 
associated with a second subset of neurons of the ANN. The 
second subset of neurons is selected based on an identity of 
the second type of task. 

In accordance with example embodiments, during train-
ing of the ANN for any given type of task, adjusting of the 
value of any given weight associated with neurons of the 
ANN entails weight stabilization that depends on whether 
there has been any training for one or more previous tasks. 
Specifically, if the ANN has been previously trained for one 
or more task types different from the given type, then 
adjusting of the value of any given weight associated with 
neurons of the ANN entails the computationally biasing 
adjustment of the value of the given weight according to a 
respective importance of the given weight to a predictive 
capability of the ANN for the one or more task types. If the 
ANN has not been previously trained for any task types 
different from the given type, then adjusting of the value of 
any given weight associated with neurons of the ANN 
entails computationally adjusting the value of the given 
weight without bias. 

In some embodiments, selecting the first subset of neu­
rons based on the identity of the first type of task includes 
consulting stored information that associates the first subset 
of neurons with the identity of the first type of task. Further, 
in such embodiments, selecting the second subset of neurons 
based on the identity of the second type of task includes 
consulting stored information that associates the second 
subset of neurons with the identity of the second type of task. 

In some embodiments, the ANN comprises an input layer, 
an output layer, and one or more intermediate hidden layers. 

20 
In some embodiments, the gating table is a three-dimen­

sional table including a collection of like-sized two-dimen­
sional gating matrices stacked in a third dimension that 
corresponds to types of tasks, including the first and second 

5 types of tasks. For each of the two-dimensional gating 
matrices: (i) each colunm corresponds to a different one of 
the one or more intermediate hidden layers of the ANN, and 
(ii) each row corresponds to a different neuron position 

10 
within the intermediate hidden layers. 

In some embodiments, adjusting the values of only those 
weights associated with the first subset of neurons of the 
ANN includes gating all neurons of the ANN during training 
for the first type of task except those of the first subset, 
where adjusting the values of only those weights associated 

15 with the second subset of neurons of the ANN includes 
gating all neurons of the ANN during training for the second 
type of task except those of the second subset. Further, in 
such embodiments, gating any given neuron during training 
includes computationally suppressing adjustment of weights 

20 associated with the given neuron during training. 
In some embodiments, computationally suppressing 

adjustment of the weights associated with the given neuron 
during training includes at least one of: multiplying one or 
more inputs of the given neuron by zero, or multiplying one 

25 or more outputs of the given neuron by zero. 
In some embodiments, computationally biasing adjust­

ment of the value of the given weight according to the 
respective importance of the given weight to the predictive 
capability of the ANN for the one or more task types 

30 includes applying a penalty that computationally inhibits 
changing the value, the penalty increasing with increasing 
respective importance of the given weight to the predictive 
capability of the ANN for the one or more task types. 
Further, in such embodiments, computationally adjusting the 

35 value of the given weight without bias includes adjusting the 
value without applying any computational penalty. 

In some embodiments, applying the penalty that compu­
tationally inhibits changing the value includes applying 
synaptic stabilization to the ANN during training. 

Some embodiments involve, subsequent to training the 
ANN with both the first set of training data and the second 
set of training data; receiving runtime data associated with 
the first type of task; and applying the ANN to the runtime 
data associated with the first type of task to predict runtime 

In such embodiments, each neuron of the ANN resides in 
one of the layers of the ANN, and selecting either one of the 
first subset of neurons or the second subset of neurons 40 

includes applying a gating table to the one or more inter­
mediate hidden layers to pick out neurons according to 
either one of the first or second types of tasks. Further, in 
such embodiments, the gating table correlates neurons of the 
ANN with types of tasks, each entry in the gating table is a 
binary assignment of whether a neuron associated with the 
entry should be either active or gated for a particular type of 
task during training of the ANN. 

45 output data for the first type of task, where only the first 
subset of neurons of the ANN are activated when applying 
the ANN to the runtime data associated with the first type of 
task. Such embodiments may further involve receiving 
runtime data associated with the second type of task and In some embodiments, the binary assignment of whether 

a neuron should be either active or gated for the particular 
type of task during training of the ANN is based in part on 
a predefined optimal percentage of neurons to gate in the 
ANN for the particular type of task. 

50 applying the ANN to the runtime data associated with the 
second type of task to predict runtime output data for the 
second type of task, where only the second subset of neurons 
of the ANN are activated when applying the ANN to the 

In some embodiments, the predefined optimal percentage 
is determined according to at least one of: the size of the 55 

ANN, the number of layers in the ANN, or the number of 
task types upon which the ANN is trained. 

runtime data associated with the second type of task. 
In some embodiments, subsequent to training the ANN 

with both the first set of training data and the second set of 
training data, a predictive accuracy of the ANN for the first 
type of task is higher than that of an alternatively-trained 
ANN trained, where alternative training comprises training 

Some embodiments involve determining the gating table 
prior to training the ANN for any task types, where deter­
mining the gating table includes, for each type of task, 
randomly selecting neurons for gating. 

60 for both the first type task and the second type of task 
without selecting either first or second subsets of neurons, 
and without biasing adjustment of any neurons. In some embodiments, the gating table is a two-dimen­

sional table. Each row of the gating table corresponds to a 
different one of multiple types of tasks, including the first 
and second types of tasks. Further, each colunm of the table 65 

corresponds to a different neuron from among the interme­
diate hidden layers of the ANN. 

VII. Representative Testing and Results 

Example methods and systems above have been imple­
mented by the inventors in one or more test environments 
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and/or with one or more test beds in order to demonstrate 
practical aspects of the systems and techniques, as well as to 
evaluate efficiency and effectiveness of the techniques in 
alleviating catastrophic forgetting in ANNs trained for mul­
tiple tasks through multiple, sequential trainings. For at least 5 

some the testing, the publically-available Modified National 
Institute of Standards and Technology (MNIST) database 
served as test image data. This section summarizes some 
representative tests and results. 

22 
are not meant to be limiting. Other embodiments can be 
utilized, and other changes can be made, without departing 
from the scope of the subject matter presented herein. It will 
be readily understood that the aspects of the present disclo­
sure, as generally described herein, and illustrated in the 
figures, can be arranged, substituted, combined, separated, 
and designed in a wide variety of different configurations. 

With respect to any or all of the message flow diagrams, 
scenarios, and flow charts in the figures and as discussed 

a. Synaptic Stabilization Approach 10 herein, each step, block, and/or communication can repre­
sent a processing of information and/or a transmission of 
information in accordance with example embodiments. 
Alternative embodiments are included within the scope of 

To demonstrate an ANN utilizing only synaptic stabiliza­
tion, an ANN was trained on permutations of the MNIST 
task under two synaptic stabilization methods: "synaptic 
intelligence" (SI) and "elastic weight consolidation" (EWC). 
Mean classification accuracies for networks with EWC were 15 

95.3% and 70.8% after 10 and 100 permutations, respec­
tively, and mean classification accuracies for networks with 
synaptic intelligence were 97.0% and 82.3% after 10 and 
100 permutations, respectively. Although both stabilization 
methods successfully mitigated forgetting, mean classifica- 20 

tion accuracy after 100 permutations was still far below 
single-task accuracy. 

b. Context-Dependent Gating Approach 
A context-dependent gating was tested for an ANN in 

which the activity ofX % of hidden units, randomly chosen, 25 

was multiplied by O (gated), while the activity of the other 
(100-X) % was left unchanged. When context-dependent 
gating was used alone, mean accuracy was 97 .1 % after 10 
tasks and 61.4% across all 100 permutations. However, 
when context-dependent gating was utilized together with 30 

synaptic intelligence or EWC, mean classification accuracy 
was 95.4% for both stabilization methods, greater than any 
of the discussed methods alone. For the permuted MNIST 
task, the mean classification accuracy peaked between 80% 
and 86.7% of units gated (values of 95.4% and 95.5%, 35 

respectively). 
Utilizing context-dependent gating with synaptic stabili­

zation allowed networks to learn 100 sequentially trained 
tasks with minimal loss in performance, with accuracy 
dropping from 98.2% on the first task to a mean of 95.4% 40 

across all 100 tasks. For 500 sequentially trained tasks, 
context-dependent gating used together with stabilization 
allowed for continual learning with only a gradual loss of 
accuracy over 500 tasks (context-dependent gating used 
together with synaptic intelligence=90.7%). In comparison, 45 

mean accuracy for stabilization alone decreased more 
severely (synaptic intelligence=54.9%). 

VIII. Conclusion 

these example embodiments. In these alternative embodi­
ments, for example, operations described as steps, blocks, 
transmissions, communications, requests, responses, and/or 
messages can be executed out of order from that shown or 
discussed, including substantially concurrently or in reverse 
order, depending on the functionality involved. Further, 
more or fewer blocks and/or operations can be used with any 
of the message flow diagrams, scenarios, and flow charts 
discussed herein, and these message flow diagrams, sce­
narios, and flow charts can be combined with one another, 
in part or in whole. 

A step or block that represents a processing of information 
can correspond to circuitry that can be configured to perform 
the specific logical functions of a herein-described method 
or technique. Alternatively or additionally, a step or block 
that represents a processing of information can correspond 
to a module, a segment, or a portion of program code 
(including related data). The program code can include one 
or more instructions executable by a processor for imple­
menting specific logical operations or actions in the method 
or technique. The program code and/or related data can be 
stored on any type of computer readable medium such as a 
storage device including RAM, a disk drive, a solid state 
drive, or another storage medium. 

The computer readable medium can also include non­
transitory computer readable media such as computer read­
able media that store data for short periods of time like 
register memory and processor cache. The computer read-
able media can further include non-transitory computer 
readable media that store program code and/or data for 
longer periods of time. Thus, the computer readable media 
may include secondary or persistent long term storage, like 
ROM, optical or magnetic disks, solid state drives, or 
compact-disc read only memory (CD-ROM), for example. 
The computer readable media can also be any other volatile 
or non-volatile storage systems. A computer readable 

Example embodiments herein demonstrate alleviating 
catastrophic forgetting in artificial neural networks (ANNs) 
using context-dependent gating of neurons of an ANN. 

50 medium can be considered a computer readable storage 
medium, for example, or a tangible storage device. 

The present disclosure is not to be limited in terms of the 
particular embodiments described in this application, which 55 

are intended as illustrations of various aspects. Many modi­
fications and variations can be made without departing from 
its scope, as will be apparent to those skilled in the art. 
Functionally equivalent methods and apparatuses within the 
scope of the disclosure, in addition to those described herein, 60 

will be apparent to those skilled in the art from the foregoing 
descriptions. Such modifications and variations are intended 
to fall within the scope of the appended claims. 

The above detailed description describes various features 
and operations of the disclosed systems, devices, and meth- 65 

ods with reference to the accompanying figures. The 
example embodiments described herein and in the figures 

Moreover, a step or block that represents one or more 
information transmissions can correspond to information 
transmissions between software and/or hardware modules in 
the same physical device. However, other information trans­
missions can be between software modules and/or hardware 
modules in different physical devices. 

The particular arrangements shown in the figures should 
not be viewed as limiting. It should be understood that other 
embodiments can include more or less of each element 
shown in a given figure. Further, some of the illustrated 
elements can be combined or omitted. Yet further, an 
example embodiment can include elements that are not 
illustrated in the figures. 

While various aspects and embodiments have been dis­
closed herein, other aspects and embodiments will be appar­
ent to those skilled in the art. The various aspects and 
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embodiments disclosed herein are for purpose of illustration 
and are not intended to be limiting, with the true scope being 
indicated by the following claims. 

What is claimed is: 
1. A computer-implemented method, carried out by a 5 

computing device, for computationally training an artificial 
neural network (ANN) implemented in the computing 
device, the method comprising: 

at the computing device, receiving a first set of training 
data for training the ANN to predict output data for a 10 

first type of task; 
at the computing device, training the ANN with the first 

set of training data by adjusting values of only those 
weights associated with a first subset of neurons of the 
ANN, wherein the first subset of neurons is selected 15 

based on an identity of the first type of task; 
at the computing device, receiving a second set of training 

data for training the ANN to predict output data for a 
second type of task, wherein the second type of task is 
different from the first type of task; and 20 

24 
be either active or gated for the particular type of task during 
training of the ANN is based in part on a predefined optimal 
percentage of neurons to gate in the ANN for the particular 
type of task. 

5. The computer-implemented method of claim 4, 
wherein the predefined optimal percentage is determined 
according to at least one of: a size of the ANN, a number of 
layers in the ANN, or a number of task types upon which the 
ANN is trained. 

6. The computer-implemented method of claim 3, further 
comprising determining the gating table prior to training the 
ANN for any task types, wherein determining the gating 
table comprises: for each type of task, randomly selecting 
neurons for gating. 

7. The computer-implemented method of claim 3, 
wherein the gating table is a two-dimensional table, 

and wherein: (i) each row of the gating table corresponds 
to a different one of multiple types of tasks, including 
the first and second types of tasks, and (ii) each column 
of the table corresponds to a different neuron from 
among the intermediate hidden layers of the ANN. at the computing device, training the ANN with the 

second set of training data by adjusting values of only 
those weights associated with a second subset of neu­
rons of the ANN, wherein the second subset of neurons 
is selected based on an identity of the second type of 
task; 

8. The computer-implemented method of claim 3, 
wherein the gating table is a three-dimensional table com­
prising a collection of like-sized two-dimensional gating 

25 matrices stacked in a third dimension that corresponds to 
types of tasks, including the first and second types of tasks, 

wherein, during training of the ANN for any given type of 
task, adjusting of the value of any given weight asso­
ciated with neurons of the ANN comprises: 

and wherein, for each of the two-dimensional gating 
matrices: (i) each colunm corresponds to a different one 
of the one or more intermediate hidden layers of the 
ANN, and (ii) each row corresponds to a different 
neuron position within the intermediate hidden layers. 

if the ANN has been previously trained for one or more 30 

task types different from the given type, computa­
tionally biasing adjustment of the value of the given 
weight according to a respective importance of the 
given weight to a predictive capability of the ANN 
for the one or more task types, 

9. The computer-implemented method of claim 1, 
wherein adjusting the values of only those weights associ­
ated with the first subset of neurons of the ANN comprises 

35 gating all neurons of the ANN during training for the first 
type of task except those of the first subset, and if the ANN has not been previously trained for any 

task types different from the given type, computa­
tionally adjusting the value of the given weight 
without bias. 

2. The computer-implemented method of claim 1, 40 

wherein selecting the first subset of neurons based on the 
identity of the first type of task comprises consulting stored 
information that associates the first subset of neurons with 
the identity of the first type of task, 

and wherein selecting the second subset of neurons based 45 

on the identity of the second type of task comprises 
consulting stored information that associates the sec­
ond subset of neurons with the identity of the second 
type of task. 

3. The computer-implemented method of claim 1, 50 

wherein the ANN comprises an input layer, an output layer, 
and one or more intermediate hidden layers, 

wherein each neuron of the ANN resides in one of the 
layers of the ANN, 

and wherein selecting either one of the first subset of 55 

neurons or the second subset of neurons comprises 
applying a gating table to the one or more intermediate 
hidden layers to pick out neurons according to either 
one of the first or second types of tasks, 

and wherein adjusting the values of only those weights 
associated with the second subset of neurons of the 
ANN comprises gating all neurons of the ANN during 
training for the second type of task except those of the 
second subset, 

wherein gating any given neuron during training com­
prises computationally suppressing adjustment of 
weights associated with the given neuron during train­
ing. 

10. The computer-implemented method of claim 9, 
wherein computationally suppressing adjustment of the 
weights associated with the given neuron during training 
comprises at least one of: multiplying one or more inputs of 
the given neuron by zero, or multiplying one or more outputs 
of the given neuron by zero. 

11. The computer-implemented method of claim 1, 
wherein computationally biasing adjustment of the value of 
the given weight according to the respective importance of 
the given weight to the predictive capability of the ANN for 
the one or more task types comprises applying a penalty that 
computationally inhibits changing the value, the penalty 
increasing with increasing respective importance of the 
given weight to the predictive capability of the ANN for the 
one or more task types, wherein the gating table correlates neurons of the ANN 60 

with types of tasks, and wherein computationally adjusting the value of the 
given weight without bias comprises adjusting the 
value without applying any computational penalty. 

12. The computer-implemented method of claim 11, 
65 wherein applying the penalty that computationally inhibits 

changing the value comprises applying synaptic stabiliza­
tion to the ANN during training. 

and wherein each entry in the gating table is a binary 
assignment of whether a neuron associated with the 
entry should be either active or gated for a particular 
type of task during training of the ANN. 

4. The computer-implemented method of claim 3, 
wherein the binary assignment of whether a neuron should 
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13. The computer-implemented method of claim 1, fur­
ther comprising: 

26 
16. The computing device of claim 15, wherein selecting 

the first subset of neurons based on the identity of the first 
type of task comprises consulting stored information that 
associates the first subset of neurons with the identity of the 

subsequent to training the ANN with both the first set of 
training data and the second set of training data: 
receiving runtime data associated with the first type of 

task; 
5 first type of task, 

applying the ANN to the runtime data associated with 
the first type of task to predict runtime output data for 
the first type of task, wherein only the first subset of 
neurons of the ANN are activated when applying the 10 

ANN to the runtime data associated with the first 
type of task; 

receiving runtime data associated with the second type 
of task; and 

15 
applying the ANN to the runtime data associated with 

the second type of task to predict runtime output data 
for the second type of task, wherein only the second 
subset of neurons of the ANN are activated when 
applying the ANN to the runtime data associated 20 

with the second type of task. 
14. The computer-implemented method of claim 1, 

wherein subsequent to training the ANN with both the first 

and wherein selecting the second subset of neurons based 
on the identity of the second type of task comprises 
consulting stored information that associates the sec­
ond set of neurons with the identity of the second type 
of task. 

17. The computing device of claim 15, wherein the ANN 
comprises an input layer, an output layer, and one or more 
intermediate hidden layers, 

wherein each neuron of the ANN resides in one of the 
layers of the ANN, 

and wherein selecting either one of the first subset of 
neurons or the second subset of neurons comprises 
applying a gating table to the one or more intermediate 
hidden layers to pick out neurons according to either 
one of the first or second types of tasks, 

wherein the gating table correlates neurons of the ANN 
with types of tasks, 

and wherein each entry in the gating table is a binary 
assignment of whether a neuron associated with the 
entry should be either active or gated for a particular 
type of task during training of the ANN. 

set of training data and the second set of training data, the 
predictive capability of the ANN for the first type of task is 25 

higher than that of an alternatively-trained ANN trained, 
wherein alternative training comprises training for both the 
first type task and the second type of task without selecting 
either first or second subsets of neurons, and without biasing 
adjustment of any neurons. 

18. The computing device of claim 17, wherein the binary 
assignment of whether a neuron should be either active or 

30 gated for the particular type of task during training of the 
ANN is based in part on a predefined optimal percentage of 
neurons to gate in the ANN for the particular type of task. 

15. A computing device comprising: 
one or more processors; and 
memory configured to store computer-executable instruc­

tions that, when executed by the one or more proces­
sors, cause the computing device to carry out opera- 35 

tions including: 
receiving a first set of training data for training an artificial 

neural network (ANN) implemented on the one or more 
computing devices to predict output data for a first type 
of task; 

training the ANN with the first set of training data by 
adjusting values of only those weights associated with 
a first subset of neurons of the ANN, wherein the first 
subset of neurons is selected based on an identity of the 
first type of task; 

receiving a second set of training data for training the 
ANN to predict output data for a second type of task, 
wherein the second type of task is different from the 
first type of task; and 

40 

45 

training the ANN with the second set of training data by 50 

adjusting values of only those weights associated with 
a second subset of neurons of the ANN, wherein the 
second subset of neurons is selected based on an 
identity of the second type of task; 

wherein, during training of the ANN for any given type of 55 

task, adjusting of the value of any given weight asso­
ciated with neurons of the ANN comprises: 
if the ANN has been previously trained for one or more 

task types different from the given type, computa­
tionally biasing adjustment of the value of the given 60 

weight according to a respective importance of the 
given weight to a predictive capability of the ANN 
for the one or more task types, 

and if the ANN has not been previously trained for any 
task types different from the given type, computation- 65 

ally adjusting the value of the given weight without 
bias. 

19. The computing device of claim 15, wherein adjusting 
the values of only those weights associated with the first 
subset of neurons of the ANN comprises gating all neurons 
of the ANN during training for the first type of task except 
those of the first subset, 

and wherein adjusting the values of only those weights 
associated with the second subset of neurons of the 
ANN comprises gating all neurons of the ANN during 
training for the second type of task except those of the 
second subset, 

wherein gating any given neuron during training com­
prises computationally suppressing adjustment of 
weights associated with the given neuron during train­
ing. 

20. An article of manufacture comprising non-transitory 
computer readable media having computer-readable instruc­
tions stored thereon that, when executed by one or more 
processors of a computing device, cause the computing 
device to carry out operations including: 

receiving a first set of training data for training an artificial 
neural network (ANN) implemented on the one or more 
computing devices to predict output data for a first type 
of task; 

training the ANN with the first set of training data by 
adjusting values of only those weights associated with 
a first subset of neurons of the ANN, wherein the first 
subset of neurons is selected based on an identity of the 
first type of task; 

receiving a second set of training data for training the 
ANN to predict output data for a second type of task, 
wherein the second type of task is different from the 
first type of task; and 

training the ANN with the second set of training data by 
adjusting values of only those weights associated with 
a second subset of neurons of the ANN, wherein the 
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second subset of neurons is selected based on an 
identity of the second type of task; 

wherein, during training of the ANN for any given type of 
task, adjusting of the value of any given weight asso-
ciated with neurons of the ANN comprises: 5 

if the ANN has been previously trained for one or more 
task types different from the given type, computa­
tionally biasing adjustment of the value of the given 
weight according to a respective importance of the 
given weight to a predictive capability of the ANN 10 

for the one or more task types, 
and if the ANN has not been previously trained for any 

task types different from the given type, computation­
ally adjusting the value of the given weight without 
bias. 15 

* * * * * 

28 


