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A.lgo1ithm 1: handling an incoming read request 

Require: The read request is over a contiguous segment oJ'the backing store 

Require: .e, I:' <-- read request lengt.h 

Require:!\<-- master secret 

Require: nilutex <-- first nugget index to be read 

1: data ,-. empty 

2: wlrlle: f * 0 do 

3: 

4: 

5: 

6: 

7: 

«. ,>. 

9: 

10: 

Fetch nugget keycount nkc from Kcycount Store. 

Calculate indict":s touch;;xi by rt":quest: fnrst, !iast 

il_r/alm/r;I. <- ReadFlakes(!j·;rsl. , ... , Ji"st) 

for fcurnmt = fr;i-st to fim't do 

tagfc,.,·,-ent ~ GenMac(k.rc,rrmie' npakedat.ffcurrentD 

Verify tag1"c,,,.rP.nr in Merk.le Tree. 

t>(*) denotes requested sabset of nugget data 

11: data +- data + Decrypt ( * nflakedat, kn""'"·'' nk,J 

IA return data 

Ensure: lldata!I <"" -l" 

:Ensure: f = 0 

FIG. 6A 



U.S. Patent Oct. 5, 2021 Sheet 7 of 18 US 11,139,959 B2 

Algorithm 2: handling an incoming write request 

Require: ·n1e write request is to a c:ontigwms segment of the backing store 

Require: f, r ..- write requested length 

Require: I\ .- master secret 

Require: data ..- cleartext data to be vvritten 

Require: nindex ..- first nugget index to be affected 

1: Increment secure counter: by 2 if recovering from a crash, ehc 1 

2: while: f * 0 do 

3: 

4: 

5: 

6: 

7: 

<o. ,>. 

9: 

10: 

lL 

13: 

14: 

15: 

16: 

17: 

18: 

Calculate indices touefo;d by r-:qu-:st: ftirst, fiast 

it' Transaction Journal entries for fitrst, ... , fiosr * 0 then 

Trigger rckeying procedme (see: Algorithm 3). 

continue 

Set Transaction Journal entries for fttrst, ... , ftasi. to 1 

Fetch nugget keycmmi nkc fr(m1 Key.::ount Store. 

for fru.rrent = f['irst to ftast do 

nna1,eaat ,._ empty 

if f~~un,mt == frFrst 11 h,w-r,mt == fiast then 

Update new tag1~'""'"'"' in Jvlerkle Tree. 

WriteFlake(t~trrrent, nfia/,:edat) 

19: t>(*) denotes requested subset of nugget data if applicable-

20: -f ..- f - II* nf/nkedat II 

22: Update and cornmit metadata and heackrs 

Ensure: f =O 

FIG. 68 



U.S. Patent Oct. 5, 2021 Sheet 8 of 18 US 11,139,959 B2 

Algorithm 3: rekeying process. 

Require: 11,e original write applied to a contiguous backing store segment 

Require; f ._ write requested length 

Require: l'l: '- master secret 

Require: data ~ deartext data to he <;vritten 

Re11uire: nind<>x ~ nugget rekeying target 

I> Read in and decrypt the entire nugget 

1: n,wgget.dat ~ C1-yptedRead(NSIZE, X, n1w1ex) 

2: Calculate indices touched by request: fnrsu .f1.a.,t 

3: \.Vrite data into n,w.gget,Jut at proper oflsei with length f. 

4: Set Transaction Journal entries for f(irst, ... , fiu,1 to 1 

5: kn;,,,r,.,- ._ GenKey,wg_get(11tndex, l'\) 

6: Fet..::h nugget keycount nkr: from Keycount Stnrc. Increment ii by one. 

7· n,mggm.dat ~ Encrypt(n,wg_gei"cl,u.• kn,n<tex' nkc) 

8: Commit n,rnpgetdot to the backing store-

t> Iterate ovc-r all flakes in the nuggc-t 

9: for all flakes f~«rrent in n,ntte,t do 

l 0: k1;,,,,rn,r: ._ GenKeyflairnCkn;,,,1ex' f~urrrmt• 111cc) 

11: Copy f cw-rent data. from 11nug,9etdat ➔ nr1a1,:edat 

l "· tagfrv.n·e·,,t +- GenMac(krc-m·rnHf' nflt,kedat) 

13: Update new tagicumnt in t\-krkle Tree. 

14: Update and commitmetadata and headers. 

FIG. 6C 
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B ri unencrypted F2FS/reads ~ i;i StrongBox F2FS/reads a □ dm-crypt Ext4/reads 
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B El AES-XTS/reads 
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1100 
\ 

"'I 

RECEIVING A REQUEST TO WRITE DATA TO A MEMORY UNIT, WHEREIN THE MEMORY UNIT 
IS DIVIDED INTO ONE OR MORE LOGICAL BLOCKS, EACH OF THE LOGICAL BLOCKS 

SUBDIVIDED INTO GROUPS OF SUB-BLOCKS, WHEREIN EACH OF THE LOGICAL BLOCKS MAPS 
TO ONE OR MORE PHYSICAL SECTORS OF THE MEMORY UNIT, WHEREIN ANY OF THE SUB-
BLOCKS BEING USED TO STORE INFORMATION ARE ENCRYPTED IN ACCORDANCE WITH A 

STREAM CIPHER, WHEREIN THE MEMORY UNIT MAINTAINS A TRANSACTION JOURNAL THAT 
MARKS EACH SUB-BLOCK AS EITHER DIRTY OR CLEAN, AND WHEREIN THE MEMORY UNIT 

STORES KEYCOUNT VALUES FOR EACH OF THE LOGICAL BLOCKS 
,; 

1102 \ 
<i" 

I 
DETERMINING THAT THE REQUEST SEEKS TO WRITE A PORTION OF THE DATA TO A ) PARTICULAR SUB-BLOCK OF THE GROUPS OF SUB-BLOCKS 

1104 \ 
' , 

l DETERMINING THAT THE PARTICULAR SUB-BLOCK IS MARKED AS DIRTY IN THE ) TRANSACTION JOURNAL 

1106 \ 
'I' 

READING A PARTICULAR LOGICAL BLOCK CONTAINING THE PARTICULAR SUB-BLOCK FROM 
THE MEMORY UNIT 

~ 

1108 \ 
' 

DECRYPTING THE PARTICULAR LOGICAL BLOCK IN ACCORDANCE WITH THE STREAM CIPHER) 

1110 \ 
' 

WRITING THE PORTION OF THE DATA TO THE PARTICULAR SUB-BLOCK ) 
_j_ 
(~) 

FIG. 11A 
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( A ) 

1112 \ . 
r ·~ 

INCREMENTING THE KEYCOUNT VALUE ASSOCIATED WITH THE PARTICULAR LOGICAL BLOCK) 

1114 \ 
' 

GENERATING A KEY FOR THE PARTICULAR LOGICAL BLOCK IN ACCORDANCE WITH THE 

J STREAM CIPHER 
'-

1116 \ 
'~ 

" l ENCRYPTING THE PARTICULAR LOGICAL BLOCK USING THE STREAM CIPHER, THE KEY, AND j 
THE KEYCOUNT VALUE AS INCREMENTED 

~ ., 

1118 \ 
'~ 

l WRITING THE PARTICULAR LOGICAL BLOCK AS ENCRYPTED TO THE MEMORY UNIT 1 ., 

FIG. 11 B 
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STREAM CIPHERS FOR DIGITAL STORAGE 
ENCRYPTION 

2 
based on a stream cipher. Nonetheless, certain types of block 
ciphers that mimic aspects of stream ciphers or exhibit 
behavior that is in some ways similar to that of stream 
ciphers (e.g., AES-CTR) could advantageously employ the CROSS-REFERENCE TO RELATED 

APPLICATION 5 embodiments herein. 

This application claims priority to U.S. provisional patent 
application No. 62/625,148, filed Feb. 1, 2018, which is 
hereby incorporated by reference in its entirety. 

BACKGROUND 

Full drive encryption (FDE) protects the privacy of data 
at rest. For mobile devices, maintaining data privacy is 
especially important, as these devices contain sensitive 15 

personal and financial data yet are easily lost or stolen. The 
current standard for securing data at rest is to use the 
Advanced Encryption Standard (AES) cipher in XOR-En­
crypt-XOR Tweaked CodeBook with Ciphertext Stealing 
(XTS) mode (referred to herein as AES-XTS). However, 20 

employing AES-XTS can increase read/write latency by up 

Experimental results establish that the embodiments dis­
closed herein, when compared to AES-XTS implementa­
tions, reduce read latencies by as much as a factor of 2 (with 
a 1.6x mean improvement), and achieve near parity or 

10 provide an improvement in observed write latencies in the 
majority of benchmarks (a 1.2x mean improvement). This 
write performance is attained despite having to maintain 
more metadata. 

to 3-5 times compared to unencrypted storage. 
Authenticated encryption using stream ciphers, such as 

ChaCha20, is faster than using AES. Indeed, some entities 
now use a stream cipher for Secure HyperText Transport 25 

Protocol (HTTPS) connections to obtain better performance. 
Stream ciphers are not used for FDE, however, for reasons 
of confidentiality and performance. Regarding confidential­
ity, when applied naively to stored data, stream ciphers are 
vulnerable to attacks, including many-time pad and rollback 30 

attacks, that reveal plaintext by overwriting a secure storage 
location using the same key. Further, it has been assumed 
that adding the metadata required to resist these attacks 
would ruin the stream cipher's performance advantage. 
Thus, the conventional wisdom is that FDE necessarily 35 

incurs the overhead of AES-XTS or a similar technique. 

SUMMARY 

Two technological shifts in mobile device and other 40 

hardware overturn this conventional wisdom, enabling con­
fidential, high-performance storage with stream ciphers. 
First, these devices commonly use Log-structured File Sys­
tems (LFSs) or functionally equivalent constructions in 
hardware/firmware and/or software to increase the lifetime 45 

Furthermore, these advances are accompanied by a stron-
ger integrity guarantee than AES-XTS. Whereas XTS mode 
only randomizes plaintext when the ciphertext is altered the 
embodiments herein provide the security of standard authen­
ticated encryption. 

Accordingly, a first example embodiment may involve 
receiving a request to write data to a memory unit. The 
memory unit may be divided into one or more logical 
blocks, each of the logical blocks subdivided into groups of 
sub-blocks. Each of the logical blocks maps to one or more 
physical sectors of the memory unit. Any of the sub-blocks 
being used to store information are encrypted in accordance 
with a stream cipher. The memory unit maintains a trans­
action journal that marks each sub-block as either dirty or 
clean. The memory unit stores keycount values for each of 
the logical blocks. A cryptography software module may 
perform steps including: determining that the request seeks 
to write a portion of the data to a particular sub-block of the 
groups of sub-blocks, determining that the particular sub-
block is marked as dirty in the transaction journal, reading 
a particular logical block containing the particular sub-block 
from the memory unit, decrypting the particular logical 
block in accordance with the stream cipher, writing the 
portion of the data to the particular sub-block, incrementing 
the keycount value associated with the particular logical 
block, generating a key for the particular logical block in 
accordance with the stream cipher, encrypting the particular 
logical block using the stream cipher, the key, and the 
keycount value as incremented, and writing the particular 
logical block as encrypted to the memory unit. 

In a second example embodiment, a method may be used 
to perform operations in accordance with the first example 
embodiment. 

In a third example embodiment, an article of manufacture 
may include a non-transitory computer-readable medium, 
having stored thereon program instructions that, upon 
execution by a computing system, cause the computing 
system to perform operations in accordance with the first 

55 
example embodiment. 

In a fourth example embodiment, a system may include 
various means for carrying out each of the operations of the 
first example embodiment. 

of their flash memory devices (e.g. solid state drives 
(SSDs)). Second, mobile devices now support trusted hard­
ware, such as Trusted Execution Environments (TEEs) and 
secure storage areas. The use of LFSs limits overwrites to 
the same drive sectors; most writes are simply appended to 50 

a log, reducing the opportunity for attacks based on over­
writes. The presence of secure hardware means that drive 
encryption modules have access to persistent, monotonically 
increasing counters that can be used to prevent rollback 
attacks when overwrites do occur. 

Given these trends, the embodiments herein introduce a 
new method for securing data at rest. These embodiments 
may be implemented as a drop-in replacement for AES­
XTS-backed FDE modules (i.e., no interface changes). The 
primary challenge is that even with an LFS running above an 
SSD, filesystem blocks will occasionally be overwritten; 
e.g., by segment cleaning or garbage collection. The 
embodiments overcome this challenge by using a fast stream 
cipher for confidentiality and performance with MAC tags 
and a secure, persistent hardware counter to ensure integrity 
and prevent attacks. The result is a system design enabling 
the first confidential, high-performance drive encryption 

These as well as other embodiments, aspects, advantages, 

60 and alternatives will become apparent to those of ordinary 
skill in the art by reading the following detailed description, 
with reference where appropriate to the accompanying 
drawings. Further, this summary and other descriptions and 
figures provided herein are intended to illustrate embodi-

65 ments by way of example only and, as such, that numerous 
variations are possible. For instance, structural elements and 
process steps can be rearranged, combined, distributed, 
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eliminated, or otherwise changed, while remaining within 
the scope of the embodiments as claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a schematic drawing of a computing 
device, in accordance with example embodiments. 

FIG. 2 illustrates a schematic drawing of a server device 
cluster, in accordance with example embodiments. 

FIG. 3 depicts performance improvements of the embodi­
ments herein over traditional file system structures. 

FIG. 4 is a block diagram representing an FDE mecha­
nism, in accordance with example embodiments. 

FIG. 5 is a block diagram representing a backing store of 
the FDE mechanism, in accordance with example embodi­
ments. 

FIG. 6A depicts an algorithm for handling a request to 
read from encrypted storage, in accordance with example 
embodiments. 

FIG. 6B depicts an algorithm for handling a request to 
write to encrypted storage, in accordance with example 
embodiments. 

FIG. 6C depicts an algorithm for rekeying, in accordance 
with example embodiments. 

4 
that the aspects of the present disclosure, as generally 
described herein, and illustrated in the figures, can be 
arranged, substituted, combined, separated, and designed in 
a wide variety of different configurations. For example, the 

5 separation of features into "client" and "server" components 
may occur in a number of ways. 

Further, unless context suggests otherwise, the features 
illustrated in each of the figures may be used in combination 
with one another. Thus, the figures should be generally 

10 viewed as component aspects of one or more overall 
embodiments, with the understanding that not all illustrated 
features are necessary for each embodiment. 

Additionally, any enumeration of elements, blocks, or 
steps in this specification or the claims is for purposes of 

15 clarity. Thus, such enumeration should not be interpreted to 
require or imply that these elements, blocks, or steps adhere 
to a particular arrangement or are carried out in a particular 
order. 
I. Example Computing Devices and Cloud-Based Comput-

20 ing Environments 
The following embodiments describe architectural and 

operational aspects of example computing devices and sys­
tems that may employ the disclosed FDE implementations, 
as well as the features and advantages thereof. 

FIG. 7 A illustrates performance results, m accordance 25 

with example embodiments. 
FIG. 1 is a simplified block diagram exemplifying a 

computing device 100, illustrating some of the components 
that could be included in a computing device arranged to 
operate in accordance with the embodiments herein. Com­
puting device 100 could be a client device (e.g., a device 

FIG. 7B illustrates performance results, m accordance 
with example embodiments. 

FIG. SA illustrates performance results, m accordance 
with example embodiments. 

FIG. SB illustrates performance results, m accordance 
with example embodiments. 

FIG. SC illustrates performance results, m accordance 
with example embodiments. 

30 actively operated by a user), a server device (e.g., a device 
that provides computational services to client devices), or 
some other type of computational platform. Some server 
devices may operate as client devices from time to time in 

FIG. SD illustrates performance results, in accordance 35 

with example embodiments. 

order to perform particular operations, and some client 
devices may incorporate server features. 

In this example, computing device 100 includes processor 
102, memory 104, network interface 106, and an input/ 
output unit 108, all of which may be coupled by a system bus 
110 or a similar mechanism. In some embodiments, com-

FIG. 9A illustrates performance results, m accordance 
with example embodiments. 

FIG. 9B illustrates performance results, m accordance 
with example embodiments. 

FIG. 10 illustrates performance results, m accordance 
with example embodiments. 

FIGS. llA and llB depict a flow chart, in accordance 
with example embodiments. 

40 puting device 100 may include other components and/or 
peripheral devices ( e.g., detachable storage, printers, and so 
on). 

FIG. 12A illustrates performance results, in accordance 45 

with example embodiments. 

Processor 102 may be one or more of any type of 
computer processing element, such as a central processing 
unit (CPU), a co-processor ( e.g., a mathematics, graphics, or 
encryption co-processor), a digital signal processor (DSP), a 

FIG. 12B illustrates performance results, in accordance 
with example embodiments. 

FIG. 12C illustrates performance results, in accordance 
with example embodiments. 

FIG. 12D illustrates performance results, in accordance 
with example embodiments. 

DETAILED DESCRIPTION 

Example methods, devices, and systems are described 
herein. It should be understood that the words "example" 
and "exemplary" are used herein to mean "serving as an 
example, instance, or illustration." Any embodiment or 
feature described herein as being an "example" or "exem­
plary" is not necessarily to be construed as preferred or 
advantageous over other embodiments or features unless 
stated as such. Thus, other embodiments can be utilized and 
other changes can be made without departing from the scope 
of the subject matter presented herein. 

Accordingly, the example embodiments described herein 
are not meant to be limiting. It will be readily understood 

network processor, and/or a form of integrated circuit or 
controller that performs processor operations. In some cases, 
processor 102 may be one or more single-core processors. In 

50 other cases, processor 102 may be one or more multi-core 
processors with multiple independent processing units. Pro­
cessor 102 may also include register memory for temporar­
ily storing instructions being executed and related data, as 
well as cache memory for temporarily storing recently-used 

55 instructions and data. 
Memory 104 may be any form of computer-usable 

memory, including but not limited to random access memory 
(RAM), read-only memory (ROM), and non-volatile 
memory. This may include flash memory, hard disk drives, 

60 solid state drives, re-writable compact discs (CDs), re­
writable digital video discs (DVDs), and/or tape storage, as 
just a few examples. Computing device 100 may include 
fixed memory as well as one or more removable memory 
units, the latter including but not limited to various types of 

65 secure digital (SD) cards. Thus, memory 104 represents both 
main memory units, as well as long-term storage. Other 
types of memory may include biological memory. 
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Memory 104 may store program instructions and/or data 
on which program instructions may operate. By way of 
example, memory 104 may store these program instructions 
on a non-transitory, computer-readable medium, such that 
the instructions are executable by processor 102 to carry out 5 

any of the methods, processes, or operations disclosed in this 
specification or the accompanying drawings. 

As shown in FIG. 1, memory 104 may include firmware 
104A, kernel 104B, and/or applications 104C. Firmware 
104Amay be program code used to boot or otherwise initiate 10 

some or all of computing device 100. Kernel 104B may be 
an operating system, including modules for memory man­
agement, scheduling and management of processes, input/ 
output, and communication. Kernel 104B may also include 

15 
device drivers that allow the operating system to commu­
nicate with the hardware modules (e.g., memory units, 
networking interfaces, ports, and busses ), of computing 
device 100. Applications 104C may be one or more user­
space software programs, such as web browsers or email 20 

clients, as well as any software libraries used by these 
programs. Memory 104 may also store data used by these 
and other programs and applications. 

Network interface 106 may take the form of one or more 
wireline interfaces, such as Ethernet (e.g., Fast Ethernet, 25 

Gigabit Ethernet, and so on). Network interface 106 may 
also support communication over one or more non-Ethernet 
media, such as coaxial cables or power lines, or over 
wide-area media, such as Synchronous Optical Networking 
(SONET) or digital subscriber line (DSL) technologies. 30 

Network interface 106 may additionally take the form of one 
or more wireless interfaces, such as IEEE 802.11 (Wifi), 
BLUETOOTH®, global positioning system (GPS), or a 
wide-area wireless interface. However, other forms of physi-
cal layer interfaces and other types of standard or proprietary 35 

communication protocols may be used over network inter­
face 106. Furthermore, network interface 106 may comprise 
multiple physical interfaces. For instance, some embodi­
ments of computing device 100 may include Ethernet, 
BLUETOOTH®, and Wifi interfaces. 40 

Input/output unit 108 may facilitate user and peripheral 
device interaction with example computing device 100. 
Input/output unit 108 may include one or more types of input 
devices, such as a keyboard, a mouse, a touch screen, and so 
on. Similarly, input/output unit 108 may include one or more 45 

types of output devices, such as a screen, monitor, printer, 
and/or one or more light emitting diodes (LEDs). Addition­
ally or alternatively, computing device 100 may communi­
cate with other devices using a universal serial bus (USB) or 
high-definition multimedia interface (HDMI) port interface, 50 

for example. 
In some embodiments, one or more instances of comput­

ing device 100 may be deployed to support a clustered 
architecture. The exact physical location, connectivity, and 
configuration of these computing devices may be unknown 55 

and/or unimportant to client devices. Accordingly, the com­
puting devices may be referred to as "cloud-based" devices 
that may be housed at various remote data center locations. 

FIG. 2 depicts a cloud-based server cluster 200 in accor­
dance with example embodiments. In FIG. 2, operations of 60 

a computing device (e.g., computing device 100) may be 
distributed between server devices 202, data storage 204, 
and routers 206, all of which may be connected by local 
cluster network 208. The number of server devices 202, data 
storages 204, and routers 206 in server cluster 200 may 65 

depend on the computing task(s) and/or applications 
assigned to server cluster 200. 

6 
For example, server devices 202 can be configured to 

perform various computing tasks of computing device 100. 
Thus, computing tasks can be distributed among one or more 
of server devices 202. To the extent that these computing 
tasks can be performed in parallel, such a distribution of 
tasks may reduce the total time to complete these tasks and 
return a result. For purpose of simplicity, both server cluster 
200 and individual server devices 202 may be referred to as 
a "server device." This nomenclature should be understood 
to imply that one or more distinct server devices, data 
storage devices, and cluster routers may be involved in 
server device operations. 

Data storage 204 may be data storage arrays that include 
drive array controllers configured to manage read and write 
access to groups of hard disk drives and/or solid state drives. 
The drive array controllers, alone or in conjunction with 
server devices 202, may also be configured to manage 
backup or redundant copies of the data stored in data storage 
204 to protect against drive failures or other types of failures 
that prevent one or more of server devices 202 from access­
ing units of cluster data storage 204. Other types of memory 
aside from drives may be used. 

Routers 206 may include networking equipment config­
ured to provide internal and external communications for 
server cluster 200. For example, routers 206 may include 
one or more packet-switching and/or routing devices (in­
cluding switches and/or gateways) configured to provide (i) 
network communications between server devices 202 and 
data storage 204 via cluster network 208, and/or (ii) network 
communications between the server cluster 200 and other 
devices via communication link 210 to network 212. 

Additionally, the configuration of cluster routers 206 can 
be based at least in part on the data communication require­
ments of server devices 202 and data storage 204, the 
latency and throughput of the local cluster network 208, the 
latency, throughput, and cost of communication link 210, 
and/or other factors that may contribute to the cost, speed, 
fault-tolerance, resiliency, efficiency and/or other design 
goals of the system architecture. 

As a possible example, data storage 204 may include any 
form of database, such as a structured query language (SQL) 
database. Various types of data structures may store the 
information in such a database, including but not limited to 
tables, arrays, lists, trees, and tuples. Furthermore, any 
databases in data storage 204 may be monolithic or distrib­
uted across multiple physical devices. 

Server devices 202 may be configured to transmit data to 
and receive data from cluster data storage 204. This trans­
mission and retrieval may take the form of SQL queries or 
other types of database queries, and the output of such 
queries, respectively. Additional text, images, video, and/or 
audio may be included as well. Furthermore, server devices 
202 may organize the received data into web page repre­
sentations. Such a representation may take the form of a 
markup language, such as the hypertext markup language 
(HTML), the extensible markup language (XML), or some 
other standardized or proprietary format. Moreover, server 
devices 202 may have the capability of executing various 
types of computerized scripting languages, such as but not 
limited to Perl, Python, PHP Hypertext Preprocessor (PHP), 
Active Server Pages (ASP), JavaScript, and so on. Computer 
program code written in these languages may facilitate the 
providing of web pages to client devices, as well as client 
device interaction with the web pages. 
II. Using Stream Ciphers with FDE 

One of the motivations for the embodiments herein is the 
speed of stream ciphers compared to other types of ciphers, 
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such as block ciphers. In general, block ciphers operate on 
fixed-length blocks of bits, each encoded using the same 
transformation and symmetric key. AES is an example of a 
block cipher. For FDE applications, various modifications to 
block ciphers has been proposed and put into use. As an 
example, XTS mode uses cipher block chaining (CBC) to 
combine (typically by way of an XOR operation) the pre­
vious block's ciphertext with the current block's plaintext. 
Thus, the decryption of one block depends on the decryption 
of all previous blocks. XTS mode also used different keys 
for encryption of the initial block and later blocks of the 
plaintext. In practice, however, XTS mode does not support 
detection of tampering in and of itself, and can be suscep­
tible to traffic analysis, replay and randomization attacks. 

5 

10 

In contrast, a stream cipher involves plaintext digits being 15 

combined with a pseudorandom cipher digit stream (referred 
to as a keystream). Each plaintext digit is encrypted with the 
corresponding digit of the keystream, to give a digit of the 
resulting ciphertext stream. Thus, encryption of each digit is 
dependent on the current state of the cipher (in some 20 

variations, the encryption may also depend upon previously­
processed ciphertext digits). In practice, a digit is typically 
a bit and the combining operation is typically an XOR. The 
keystream can be generated serially from a random seed 
value using digital shift registers. The seed value serves as 25 

the cryptographic key for decrypting the ciphertext stream. 
To be secure, the keystream should be virtually indistin­
guishable from random noise. 

One of the main advantages of stream ciphers over other 
types of ciphers is speed. An Exynos Octa processor with an 30 

ARM big.LITTLE architecture was used to compare AES­
XTS to the stream cipher ChaCha20+Polyl305. Particularly, 
250 megabytes of randomly-generated bits were encrypted 
and decrypted three times, and the median time for each of 
encryption and decryption was recorded. Use of the stream 35 

cipher resulted in a 2.7x reduction of run time, as illustrated 
in FIG. 3. 

8 
ing file system, whereas LogFS, NILFS, and F2FS are LFSs. 
A journaling file system provides a separate log for tracking 
changes in files, but overwrites files in place. 

TABLE 1 

File System Total Write Operations Overwrites 

Ext4 16,756 10,787 
LogFS 4,244 32 
NILFS 4,199 24 
F2FS 2,107 2 

The number of total writes to the underlying block device 
and the number of times data was overwritten for each file 
system was counted and is shown in Table 1. In the results, 
Ext4 exhibits the highest number of writes, but many of 
those are small writes for book-keeping purposes. Ext4 also 
has the largest number of overwrites, as almost 65% of the 
writes are to a previously written location in the backing 
store (here, the backing store is the underlying memory 
device). In contrast, all three log-structured file systems have 
very few overwrites. 

Use of a stream cipher has the advantage of being more 
than twice as fast as AES-XTS, while providing the same 
confidentiality guarantee. The problem is that the stream 
cipher is not secure if the same key is used to overwrite the 
same storage location. Fortunately, the LFSs rarely over­
write the same location. This makes stream ciphers a good 
candidate for securing data stored in an LFS. Nonetheless, 
overwrites to an LFS do occur. While Table 1 shows 
overwrites are rare during normal operation, they will occur 
when garbage collecting the LFS. Thus, the embodiments 
here may use metadata to track writes and ensure that data 
is re-keyed if overwrites occur. 

Overall, there are three main challenges to replacing AES 
with a stream cipher for FDE: (i) tracking writes to the 
memory to ensure that the same location is not overwritten 
with the same key, (ii) ensuring that the metadata that tracks 
these writes is secure and not subject to leaks or rollback 

Still, stream ciphers are not designed to encrypt data at 
rest. In a naive implementation ofFDE with a stream cipher, 
overwriting the same memory location with the same key 
would trivially allow an attacker to recover the secret key. 
Thus, stream ciphers may be better suited for encrypting 
block devices using Log-structured File Systems (LFSs). 

40 attacks, (iii) accomplishing these tasks efficiently so that the 
performance advantage of the stream cipher is maintained. 

These challenges can be met by using a secure, persistent 
counter supported in modem mobile hardware; e.g., for 
limiting password attempts. This counter can track writes, A traditional file system writes files to a storage medium 

in order to leverage spatial and temporal locality-of-refer­
ence, as well as to be able to make in-place changes to data 
structures. On the other hand, an LFS divides the storage 
medium into segments and writes files to each segment in 
the form of logs. Rather than overwrite an existing location, 
the LFS places new writes at the end of the log, and reclaims 
storage space through garbage collection on older log 
entries. As a result, multiple versions of a file can be 
supported, and storage integrity activities after a crash are 
simpler. 

45 and thus versions of the encrypted data. If an attacker tried 
to roll back the file system to overwrite the same location 
with the same key, the implementation detects that the local 
version number is out of sync with the global version 
number stored in the secure counter. In that case, the system 

50 refuses to initialize, and the attack fails. The use of the 
hardware-supported secure counter significantly raises the 
bar when it comes to rollback attacks, requiring a costly and 
non-discrete physical attack on the hardware itself to be 
effective. Nonetheless, the actual structure of the metadata 

55 required to track writes and maintain integrity is more 
complicated than simply implementing a counter and is 
described in detail below. 

Since LFSs are designed to append data to the end of a log 
rather than overwrite data, they are a good fit for stream 
ciphers, as it is highly unlikely that the same memory 
location would be overwritten using the same key. In prac­
tice, some overwrites occur; e.g., in metadata, but they are 
small in number during normal execution. Notably, although 60 

some of the embodiments herein and the associated experi­
mental results assume an LFS, the embodiments can be used 
with and are likely to produce improvements when 
employed on other types of file systems as well. 

As an example, 800 megabytes of random data was 65 

written directly to a memory module using four different file 
systems: Ext4, LogFS, NILFS, and F2FS. Ext4 is a journal-

An additional challenge is that of crash recovery. The 
embodiments herein rely on the overlying filesystem to 
manage data recovery in the event of a crash that leaves user 
data in an inconsistent state. Metadata recovery is addressed 
after a crash by giving the root user the option to accept the 
current metadata state as the new consistent state, i.e., "force 
mounting" the filesystem. An attacker might try to take 
advantage of this feature by modifying the memory, forcing 
an inconsistent state, and hoping the root user will ignore it 
and force mount the system anyway. The embodiments 
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defend against this attack by preventing force mounts when 
the metadata state is wildly inconsistent with the global 
version counter. Otherwise, the root user is warned if they 
attempt a force mount. Thus, attacking by forcing a crash 
can only be successful if the attacker also has root permis- 5 

sion, in which case security is already compromised. 

of one or more physical disk blocks, depending on its 
configured size. Each nugget is subdivided into a constant 
number of sub-blocks referred to as flakes. The reason for 
these nugget/flake divisions are two-fold: (i) to limit the 
maximum length of any plaintext operated on by the cryp­
tographic driver, decreasing the overhead incurred per I/O 

III. Example Architecture operation, and (ii) to track, detect, and handle overwrites. 
When a request comes in to write to one or more flakes in 

a nugget, the affected flakes are marked "dirty." Here, the 
10 marking of dirty implies that another write to some portion 

of that flake would constitute an overwrite. If a new request 
comes in to write to one or more of those same flakes another 
time, a rekeying procedure over the entire nugget is trig-

The embodiments herein act as a translation layer placed 
between the disk and the operating system. They provide 
confidentiality and integrity guarantees while mitigating 
performance loss due to metadata management overhead. 
This is accomplished by leveraging the speed of stream 
ciphers over the AES block cipher and taking advantage of 
the append-mostly nature of Log-Structured Filesystems 15 

(LFS) and modem Flash Translation Layers (FTL). 

gered to safely overwrite the old data in those flakes. This 
rekeying procedure may be time consuming, adding to the 
overhead of overwrites. 

Header 

VERSION 

SALT 

TABLE 2 

Length Description 

4 bytes Specifies tbe version of tbe encryption software used to 
initialize the backing store. 

MTRH 
TPMGLOBALVER 

16 bytes The salt used in part to derive tbe global master secret. 
32 bytes Hash of tbe Merkle Tree root. 

8 bytes The monotonic global version count, in hardware­
supported secure storage. 

VERIFICATION 

NUMNUGGETS 
FLAKESPERNUGGET 
FLAKE SIZE 
INITIALIZED 

32 bytes Used to determine if tbe key derived from a password is 
correct. 

4 bytes The number of nuggets contained by tbe backing store. 
4 bytes The number of flakes per nugget. 
4 bytes The size of each flake, in bytes. 
1 byte Used to determine whetber tbe backing store has been 

properly initialized. 
REKEYING 

Hence, there are several locations where the implemen-
35 

4 bytes The index of tbe nugget in need of rekeying if tbere is a 
pending rekeying procedure. 

tation could be positioned in the system stack. It could be 
integrated into an LFS filesystem module itself, e.g., F2FS, 
specifically leveraging the flexibility of the Virtual Filesys­
tem Switch (VFS). Alternatively or additionally, it could be 40 

The head of the backing store contains the metadata 
written to disk during initialization. These headers govern 
operation and are described in more detail in Table 2. After 
the headers, two byte arrays are stored in the Head section. 
One is an array of N 8-byte integer keycounts and one of N 
[P/8] byte transaction journal entries, where N is the number 
of nuggets and P is the number of flakes per nugget. The 
Rekeying Journal is stored at the end of the Head section. 
The rekeying journal is where nuggets and their associated 

implemented as an actual block device or virtual block 
device layered atop a physical block device (the latter is 
where the implementation described herein operates). Alter­
natively or additionally, it could even be implemented within 
the on-disk SSD controller managing the flash translation 
layer (scatter gather, garbage collection, wear-leveling, etc.). 

FIG. 4 depicts an example design. The metadata is encap­
sulated in four components: an in-memory Merkle Tree and 
two disk-backed byte arrays, the keycount store and the 
transaction journal, and a persistent monotonic counter 
(implemented with the replay protected memory block, or 
RPMB). All four are integrated with the Cryptographic 
Driver, which handles data encryption, verification, and 
decryption during interactions with the underlying backing 
store. These interactions take place while fulfilling high­
level I/O requests received from the overlying LFS. The 
Device Controller handles low-level I/O between the Cryp­
tographic Driver and the backing store. 

A. Backing Store Function and Layout 
FIG. 5 depicts a possible backing store layout. In the body 

section of the backing store, application data is partitioned 
into a series of same-size logical blocks. These logical 
blocks are distinct from the concept of physical disk blocks, 
which are collections of one or more disk sectors. To make 
this distinction clear, the logical blocks are referred to as 
nuggets, marked NUG in FIG. 5. Hence, a nugget consists 

45 metadata are transiently written, so that rekeying can be 
resumed in the event that it is interrupted. 

B. Metadata-Aware Cryptographic Driver 
The cryptographic driver coordinates the system's dispa­

rate components. Its primary function is to map incoming 
50 reads and writes to their proper destinations in the backing 

store, applying the chosen stream cipher and message 
authentication code to encrypt, verify, and decrypt data on 
the fly with consideration for metadata management. 

When a read request is received, it is first partitioned into 
55 affected nuggets; i.e., a read that spans two nuggets is 

partitioned in half. For each nugget affected, the flakes 
touched by the request are determined. Then, the contents of 
those flakes are verified. If all the flakes are valid, whatever 
subset of data that was requested by the user is decrypted 

60 and returned. Algorithm 1 as shown in FIG. 6A details the 
read operation. 

Like reads, when a write request is received, the request 
is first partitioned with respect to affected nuggets. For each 
affected nugget, which flakes are touched by the request are 

65 determined. These flakes are checked if any are marked as 
dirty in the transaction journal. If one or more of them have 
been marked dirty, rekeying for these specific nuggets is 
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triggered. Rekeying is detailed in Algoritlnn 3 in FIG. 6C. 
Otherwise, the touched flakes are marked as dirty in the 
transaction journal. Then, the touched flakes are iterated 
over. For the first and last flakes touched by the write 
request, an internal read request is executed (Algoritlnn 1 in 5 

FIG. 6A) to both obtain the flake data and verify that data 
with the Merkle Tree. Then, every touched flake is over­
written with the data from the requested operation, the 
Merkle Tree is updated to reflect this change, and the new 
flake data is written and encrypted. Then, all corresponding 10 

metadata is committed. Algoritlnn 2 in FIG. 6B details the 
write operation. 

Herein, a Merkle Tree may be referred to as a hash tree. 

12 
handled specially in that the bit vectors are MACed and the 
result is appended to the Merkle Tree. This is done to save 
space. 

3. Keycount Store 
To prevent a many-time pad attack, each nugget is 

assigned its own form of nonce referred to as a keycount. 
The keycount store in FIG. 4 represents a byte-array con­
taining N 8-byte integer keycounts indexed to each nugget. 
Along with acting as the per-nugget nonce consumed by the 
stream cipher, the keycount is used to derive the per-flake 
unique subkeys used in MAC tag generation. 

4. Rekeying Procedure 
When a write request would constitute an overwrite, the 

In such a tree, each leaf node contains a cryptographic hash 
15 

system triggers a rekeying process instead of executing the 
write normally. This rekeying process allows the write to 
proceed without causing a catastrophic confidentiality vio­
lation. 

of a flake, and every non-leaf node contains a cryptographic 
hash of its child nodes. This allows efficient verification of 
large amounts of data. The cryptographic hash may be any 
one-way function that maps an input bit string (potentially of 
arbitrary size) to an output bit string (potentially of fixed 20 

size). Regardless, the embodiments herein are not limited to 
using Merkle Trees or hash trees, and other types of data 
verification mechanisms may be used. For instance, an 
SHA-based c-struct implementation, a Tiger tree, a Fletcher­
based tree of pointers, other Merkle Tree variations, or any 25 

other algoritlnn that can unify the state of all tags such that 
any change is immediately evident can be used. 

1. Transaction Journal 

When rekeying begins, the nugget in question is loaded 
into memory and decrypted. The target data is written into 
its proper offset in this decrypted nugget. The nugget is then 
encrypted, this time with a different nonce (keycount+l), 
and written to the backing store, replacing the outdated 
nugget data. Algoritlnn 3 in FIG. 6C details this procedure. 

C. Defending Against Rollback Attacks 
To prevent making overwrites, the status of each flake is 

tracked and overwrites trigger a rekeying procedure. Track­
ing flake status alone is not enough, however. An attacker 
could take a snapshot of the backing store in its current state An overwrite breaks the security guarantee offered by any 

stream cipher. To prevent this failure, the embodiments 
herein track incoming write requests to prevent overwrites. 
This tracking is done with the transaction journal of FIG. 4. 

30 and then easily rollback to a previously valid state. At this 
point, the attacker could have the system make writes that it 
does not recognize as overwrites. 

With AES-XTS, the threat posed by rolling the backing 
store to a previously valid state is outside of its threat model. The transaction journal consists of N [P/8]-byte bit vec­

tors, where N is the number of nuggets and P is the number 
of flakes per nugget. A bit vector v contains at least P 
bits=b0b1b2 , ... , bp_1 , ... , with extra bits ignored. Each 
vector is associated with a nugget and each bit with a flake 
belonging to that nugget. When an incoming write request 
occurs, the corresponding bit vector is updated (set to 1) to 
reflect the new dirty state of those flakes. 

35 Despite this, data confidentiality guaranteed by AES-XTS 
holds in the event of a rollback, even if integrity is violated. 
The embodiments herein use a monotonic global version 
counter to detect rollbacks. When a rollback is detected, the 
system refuses to initialize unless forced, using root permis-

40 sion. Whenever a write request is completed, this global 
version counter is committed to the backing store, commit­
ted to secure hardware, and updated in the in-memory 
Merkle Tree. 

The transaction journal is referenced during each write 
request, where it is updated to reflect the state of the nugget 
and checked to ensure the operation does not constitute an 
overwrite. If the operation does constitute an overwrite, a 45 

rekeying procedure is triggered for the entire nugget before 
safely completing the request. 

2. Merkle Tree 

D. Recovering From Inconsistent State 
If the system is interrupted during operation, the backing 

store----consisting of user data and metadata----can be left in 
an inconsistent state. The system relies on the overlying 
filesystem (e.g., F2FS) to manage user-data recovery, which 
is what these filesystems are designed to do and do well. The Tracking writes with the transaction journal may stymie a 

passive attacker by preventing explicit overwrites, but a 
sufficiently motivated active attacker could resort to all 
manner of cut-and-paste tactics with nuggets, flakes, and 
even blocks and sectors. If, for example, an attacker pur­
posefully zeroed-out the transaction journal entry pertaining 

50 system handles its own inconsistent metadata. 

to a specific nugget in some out-of-band manner, such as 55 

when the system is shut down and then later re-initialized 
with the same backing store, the system would consider any 
successive incoming writes as if the nugget were in a 
completely clean state, even though it actually is not. This 
attack would force compromising overwrites. To prevent 60 

such attacks, it can be ensured that the backing store is 
always in a valid state. More concretely, there should be an 
integrity guarantee on top of a confidentiality guarantee. 

The system uses a Message Authentication Code (MAC) 
algoritlnn and each flake's unique key to generate a per-flake 65 

MAC tag. Each tag is then appended to the Merkle Tree 
along with metadata. The transaction journal entries are 

Let c be the value of the on-chip monotonic global version 
counter and d be the value of the on-disk global version 
counter header (TPMGLOBALVER). Consider the follow­
ing cases. 

Case 1:c==d and MTRH is consistent: The system is 
operating normally and will mount without issue. 

Case 2:c<d or c==d but MTRH is inconsistent: Since the 
global version counter is updated before any write, this case 
cannot be reached unless the backing store was manipulated 
by an attacker. So, the system refuses to initialize and cannot 
be force mounted. 

Case 3:c>d+l: Since the global version counter is updated 
once per write, this case cannot be reached unless the 
backing store was rolled back or otherwise manipulated by 
an attacker. In this case, the root user is warned and the 
system refuses to initialize and cannot be force mounted 
unless the MTRH is consistent. The root user can force 
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mount if the root user initiated the rollback themselves, such 
as when recovering from a disk backup. 

14 
this implementation, the system interacts with TPM/TEE 
secure storage only at mount time, where the authentication 
key can be retrieved and cached for the duration of the 
system's lifetime. With the cached key on hand, the imple-

Case 4:c==d+l: In this case, the system likely crashed 
during a write, perhaps during an attempted rekeying. If the 
rekeying journal is empty or the system cannot complete the 
rekeying and/or bring the MTRH into a consistent state, the 
root user is warned and allowed to force mount. Otherwise, 
the system will not initialize 

5 mentation makes traditional IOCTL calls to read and write 
global version counter data to the RPMB eMMC partition, 
enforcing the invariant that it only increase monotonically. 

For subsequent rekeying efforts in the latter two cases, 
rather than incrementing the corresponding keystore coun- 10 

ters by 1 during rekeying, they are incremented by 2. This 
is done to prevent potential reuse of any derived nugget keys 
that might have been in use right before the system crashed. 

The design is not dependent on the eMMC standard, 
however. Trusted hardware mechanisms other than the 
eMMC RPMB partition, including TPMs, support secure, 
persistent storage and/or monotonic counters directly. These 
can be adapted for use as well. Further, any interface that 
makes secure monotonic counters available can be used. For 
example, if a future operating system or hypervisor provided 
secure monotonic counters, that could be used instead. 

There are two practical concerns to be addressed while 
implementing the secure counter: wear and performance 
overhead. Wear is a concern because the counter is imple­
mented in non-volatile storage. The RPMB implements all 

Thus, when the system can detect tampering, it will not 
initialize. When the system cannot distinguish between 15 

tampering and a crash, it offers the root user a choice to force 
mount. Thus, an attacker could force a crash and use root 
access to force mount. It is assumed, however, that if an 
attacker has root access to a device, its security is already 
compromised. 20 the same wear protection mechanisms that are used to store 

user-data. Additionally, the system writes to the global 
version counter once per write to user-data. Given that the 
eMMC implements the same wear protection for the RPMB 

IV. Example Implementation 
An example implementation of the embodiments 

described herein is comprised of 5000 lines of C code. 
Libraries used include OpenSSL version 1.0.2 and LibSo­
dium version 1.0.12 for its ChaCha20, Argon2, Blake2, and 25 

AES-XTS implementations, likewise implemented in C. 
The SHA-256 Merkle Tree implementation is borrowed 
from the Secure Block Device library. To reduce the com­
plexity of the experimental setup and allow execution in user 
space, a virtual device interface is provided through the 30 

BUSE virtual block device layer, itself based on the Network 
Block Device (NBD). 

A. Deriving Subkeys 
The cryptographic driver uses a shared master secret. The 

derivation of this master secret is implementation specific 35 

and has no impact on performance as it is completed during 
initialization. The implementation uses the Argon2 KDF to 
derive a master secret from a given password with an 
acceptable time-memory trade-off. 

To assign each nugget its own unique keystream, each 40 

nugget uses a unique key and associated nonce. These 
nugget subkeys are derived from the master secret during 
initialization. To guarantee the backing store's integrity, 
each flake is tagged with a MAC. In this example imple­
mentation, the Polyl305 MAC is used, accepting a 32-byte 45 

one-time key and a plaintext of arbitrary length to generate 
tags. These one-time flake subkeys are derived from their 
respective nugget subkeys. In alternative embodiments, a 
hash-based message authentication code (HMAC), message 
authentication code based on universal hashing (UMAC), 50 

vhash-based message authentication code (VMAC), non­
keyed hashing function ( e.g., SHA2), or any other algorithm 
that can securely map a block of data to a unique tag could 
be used. 

and user data, and that the ratio of writes to these areas is 1: 1, 
it is expected that the system places no additional wear 
burden on the hardware. Further, with the JEDEC spec 
suggesting RPMB implementations use more durable and 
faster single-level NAND flash cells rather than cheaper and 
slower multi-level NAND flash cells, the RPMB partition 
will likely outlive and outperform the user-data portion of 
the eMMC. 

In terms of performance overhead, updating the global 
version counter involves making one 64-bit authenticated 
write per user-data write. As user-data writes are almost 
always substantially larger, there is no significant overhead 
from the using the RPMB to store the secure counter. 

C. LFS Garbage Collection 
An LFS attempts to write to a drive sequentially in an 

append-only fashion, as if writing to a log. This requires 
large amounts of contiguous space, called segments. Since 
any backing store is necessarily finite, an LFS can only 
append so much data before it runs out of space. When this 
occurs, the LFS triggers a segment cleaning algorithm to 
erase outdated data and compress the remainder of the log 
into as few segments as possible. This procedure is kuown 
more broadly as garbage collection. 

In the context of the embodiments herein, garbage col-
lection could potentially incur high overhead. The procedure 
itself would, with its every write, require a rekeying of any 
affected nuggets. Worse, every proceeding write would 
appear to the system as if it were an overwrite, since there 
is no way for the system to kuow that the LFS triggered 
garbage collection internally. 

In practice, modem production LFSes are optimized to 
B. A Secure, Persistent, Monotonic Counter 
The target platform uses an embedded Multi-Media Card 

( eMMC) as a backing store. In addition to boot and user data 
partitions, the eMMC standard includes a secure storage 
partition called a Replay Protected Memory Block (RPMB). 
The RPMB partition's size is configurable to be at most 16 
megabytes (32 megabytes on some devices). All read and 
write commands issued to the RPMB are authenticated by a 
key burned into write-once storage (typically eFUSE) during 

55 perform garbage collection as few times as possible. Further, 
they often perform garbage collection in a background 
thread that triggers when the filesystem is idle and only 
perform expensive on-demand garbage collection when the 
backing store is nearing capacity. Garbage collection was 

60 turned on for all tests and there was no substantial perfor­
mance degradation from this process because it is scheduled 
not to interfere with user I/O. 

a one-time, secure initialization process. 
To implement rollback protection on top of the RPMB, 65 

the key for authenticating RPMB commands can be con­
tained in TEE sealed storage or derived from the TPM. For 

D. Overhead 
The system stores metadata on the drive it is encrypting 

(see FIG. 5). This metadata should be small compared to the 
user data. The implementation uses 4-kilobyte flakes, 256 
flakes/nugget, and 1024 nuggets per gigabytes of user data. 
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AES-XTS as its full-disk encryption algorithm. All other 
parameters were left at their default values. 

FIGS. 7A and 7B compare the embodiments herein to 
dm-crypt under the F2FS filesystem. The gamut of result 

Given the flake and nugget overhead, this configuration 
requires just over 40 kilobytes of metadata per 1 gigabyte of 
user data. There is an additional, single static header that 
requires just over 200 bytes. Thus, the system's overhead in 
terms of storage is less than one hundredth of a percent. 5 sets over different filesystems can be seen in FIG. SA-SD. 

V. Experimental Evaluation 
A. Setup 
A prototype was implemented on a Hardkernel Odroid 

XU3 ARM big.LITTLE system (Samsung Exynos 5422 Al 5 
and A7 quad core CPUs, 2 gigabytes of LPDDR3 RAM, 10 

eMMC5.0 HS400 backing store) running Ubuntu Trusty 
14.04 LTS, kernel version 3.10.58. 

B. Methodology 
To evaluate the performance of the embodiments herein, 

the latency (seconds/milliseconds per operation) of both 15 

sequential and random read and write I/O operations across 
four different standard Linux filesystems was measured. 
These filesystems are NILFS2, F2FS, Ext4 in ordered jour­
naling mode, and Ext4 in full journaling mode. The I/O 
operations were performed using file sizes between 4 kilo- 20 

bytes and 40 megabytes. These files were populated with 
random data. The experiments were performed using a 
standard Linux ramdisk (tmpfs) as the ultimate backing 
store. 

FIGS. 9A and 9B compare Ext4 with dm-crypt to F2FS with 
the embodiments herein. In these figures, an implementation 
of the embodiments herein is referred to as "StrongBox". 
However, other implementations are possible. 

C. Read Performance 
FIGS. 7A and 7B show the read performance of the 

embodiments herein in comparison to dm-crypt, both 
mounted with the F2FS filesystem. The disclosed embodi­
ments improve on the performance of dm-crypt's AES-XTS 
implementation across sequential and random read opera­
tions on all file sizes. Specifically, the improvements are 
2.07x for sequential 40-megabyte reads, 2.08x for sequen­
tial 5-megabyte reads, 1.85x for sequential 512-kilobyte 
reads, and 1.03x for sequential 4-kilobyte reads. 

FIGS. SA and SC provide an expanded performance 
profile, testing a gamut of filesystems broken down by 
workload file size. For sequential reads across all filesystems 
and file sizes, the implementations herein outperform dm­
crypt. This is true even on the non-LFS Ext4 filesystems. 

Ext4's default mode is ordered journaling mode 
( data=ordered), where metadata is committed to the filesys­
tem' s journal while the actual data is written through to the 
main filesystem. In the case of a crash, the filesystem uses 
the journal to avoid damage and recover to a consistent state. 
Full journaling mode ( data journal) journals both metadata 
and the filesystem's actual data-essentially a double write­
back for each write operation. In the case of a crash, the 
journal can replay entire I/O events so that both the filesys­
tem and its data can be recovered. Both modes of Ext4 were 

25 Specifically, read performance improvements over dm-crypt 
AES-XTS for 40-megabyte sequential reads are 2.02x for 
NILFS, 2.07x for F2FS, 2.09x for Ext4 in ordered journaling 
mode, and 2.06x for Ext4 in full journaling mode. For 
smaller file sizes, the performance improvement is less 

30 pronounced. For 4-kilobyte reads, the improvements are 
1.28x for NILFS, 1.03x for F2FS, 1.07x for Ext4 in ordered 
journaling mode, and 1.04x for Ext4 in full journaling mode. 
When it comes to random reads, there are virtually identical 

considered to further explore the impact of frequent over- 35 

writes. 
The experiment consists of reading and writing each file 

in its entirety 30 times sequentially, and then reading and 
writing random portions of each file 30 times. In both cases, 
the same amount of data is read and written per file. The 40 

median latency is taken per result set. The choice of 30 
read/write operations (10 read/write operations repeated 
three times each) was to handle potential variation. The 
Linux page cache is dropped before every read operation, 
each file is opened in synchronous I/O mode via O_SYNC, 45 

and non-buffered read( )/write( ) system calls were used. A 
high-level I/O size of 128 kilobytes was used for all read and 
write calls that impact the filesystems; however, the I/O 
requests being made at the block device layer varied 
between 4 kilobytes and 128 kilobytes depending on the 50 

filesystem under test. 
The experiment was repeated on each filesystem in three 

different configurations. The first configuration is unen­
crypted. The filesystem is mounted atop a BUSE virtual 
block device set up to immediately pass through any incom- 55 

ing I/O requests straight to the backing store. This is the 
baseline measurement of the filesystem's performance with­
out any encryption. The second configuration uses the 
embodiments herein. The filesystem is mounted atop a 
BUSE virtual block device, provided by the implementation 60 

described above, to perform full-disk encryption. The third 
configuration uses dm-crypt. The filesystem is mounted atop 
a Device Mapper higher-level virtual block device provided 
by dm-crypt to perform full-disk encryption, which itself is 
mounted atop a BUSE virtual block device with pass 65 

through behavior identical to the device used in the baseline 
configuration. The dm-crypt module was configured to use 

results save for 4-kilobyte reads, where dm-crypt proved 
very slightly more performant under the NILFS LFS at 
1.12x. This behavior is not observed with the more modern 
F2FS. 

D. Write Performance 
FIGS. 7A and 7B show the performance of the embodi­

ments herein in comparison to dm-crypt under the modern 
F2FS LFS broken down by workload file size. Similar to 
read performance under the F2FS, these embodiments 
improve on the performance of dm-crypt's AES-XTS imple­
mentation across sequential and random write operations on 
all file sizes. Hence, the embodiments herein under F2FS are 
holistically faster than dm-crypt under F2FS. Specifically, 
the improvements are 1.33x for sequential 40-megabyte 
writes, 1.21x for sequential 5-megabyte writes, 1.15x for 
sequential 512-kilobyte writes, and 1.19x for sequential 
4-kilobyte writes. 

FIGS. SB and SD show an expanded performance profile, 
testing a gamut offilesystems broken down by workload file 
size. Unlike read performance, write performance under 
certain filesystems shows some improvements but not for all 
tests. For 40-megabyte sequential writes, the embodiments 
herein outperform dm-crypt's AES-XTS implementation by 
1.33x for F2FS and 1.18x for NILFS. When it comes to 
Ext4, write performance drops, with a 3.6x slowdown for 
both ordered journaling and full journaling modes. For 
non-LFS 4-kilobyte writes, the performance degradation is 
even more pronounced with a 8.09x slowdown for ordered 
journaling and 14.5x slowdown for full journaling. 

This slowdown occurs in Ext4 because, while writes from 
non-LFS filesystems have a metadata overhead that is com­
parable to that of forward writes in an LFS filesystem, Ext4 
is not an append-only or append-mostly filesystem. This 
means that, at any time, Ext4 will initiate one or more 
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overwrites anywhere on the disk (see Table 1). As described 
above, overwrites, once detected, trigger the rekeying pro­
cess, which is a relatively expensive operation. Multiple 
overwrites compound this expense further. This makes Ext4 
and other filesystems that do not exhibit at least append- 5 

mostly behavior likely unsuitable for use with the embodi­
ments herein. 

abstractions. Efficient memory use was not a goal of the 
implementation. In an implementation aiming to be produc­
tion ready, much more memory efficient data structures 
would be utilized. 

It is also for this reason that populating the Merkle Tree 
necessitates a rather lengthy mounting process. In tests, a 
I-gigabyte backing store on the Odroid system can take as 
long as 15 seconds to mount. For both sequential and random 4-kilobyte writes among 

the LFSs, the performance improvement over dm-crypt's 
AES-XTS implementation for LFSs deflates. For the more 10 

modern F2FS atop the embodiments herein, there is a 1.19x 
improvement. For the older NILFS filesystem atop the 
embodiments herein, there is a 2.38x slowdown. This is 
where the overhead associated with tracking writes and 

15 
detecting overwrites potentially becoming problematic, 
though the overhead is negligible depending on choice of 
LFS and workload characteristics. 

F. ChaCha20 vs. AES Performance 
FIGS. 7A-8D give strong evidence for general perfor­

mance improvement over dm-crypt not being an artifact of 
filesystem choice. Excluding Ext4 as a non-LFS filesystem, 
tests show that the embodiments herein outperform dm­
crypt under an LFS filesystem in the vast majority of 
outcomes. 

FIG. 10 depicts the relationship between ChaCha20, the 
stream cipher used in the tested implementation, and the 
AES cipher. The dm-crypt module implements AES in XTS 
mode to provide full-disk encryption functionality. Swap-These results show that the embodiments herein are 

sensitive to the behavior of the LFS that is mounted atop it, 
and that any practical use would require an extra profiling 
step to determine which LFS works best with a specific 
workload. With the correct selection of LFS, such as F2FS 
for workloads dominated by small write operations, poten­
tial slowdowns when compared to mounting that same 
filesystem over dm-crypt's AES-XTS can be effectively 
mitigated. 

E. Replacing dm-crypt and Ext4 
FIGS. 9A and 9B show the performance benefit of using 

the embodiments herein with F2FS over the popular dm­
crypt with Ext4 in ordered journaling mode combination for 
both sequential and random read and write operations of 
various sizes. Other than 4-kilobyte write operations, which 
is an instance where baseline F2FS without modification is 
simply slower than baseline Ext4 without dm-crypt, the 
embodiments herein with F2FS outperforms dm-crypt's 
AES-XTS implementation with Ext4. 

These results show that configurations taking advantage 
of the popular combination of dm-crypt, AES-XTS, and 
Ext4 could see a significant improvement in read perfor-

Attack 

20 ping out ChaCha20 for AES-CTR (AES in CTR mode 
makes AES act as if it was a stream cipher) resulted in 
slowdowns of up to 1.33x for reads and 1.15x for writes 
across all configurations, as shown in FIG. 10. 

Finally, tests were carried out to determine whether the 
25 general performance improvement can be attributed to the 

implementation of the embodiments herein rather than the 
choice of stream cipher. This was tested by implementing 
AES in XTS mode on top of the embodiments herein using 
OpenSSL EVP. This use of OpenSSLAES-XTS experiences 

30 slowdowns of up to 1.6x for reads and 1.23x for writes 
across all configurations compared to using ChaCha20. 
Interestingly, while significantly less performant, this slow­
down is not entirely egregious, and suggests that perhaps 
there are parts of the dm-crypt code base that would benefit 

35 from further optimization. 
G. Threat Analysis 
Table 3 lists possible attacks and their results. It can be 

inferred from these results and the design described herein 
that the threat model is addressed and confidentiality and 
integrity guarantees are maintained. 

TABLE 3 

Result Explanation 

Nugget user data in backing 
store is mutated out-of-band 
online. 

The system immediately fails The MTRH is inconsistent. 
with exception on successive 
1/0 request. 

Header metadata in backing 
store is mutated out-of-band 
online, making tbe MTRH 

The system immediately fails The MTRH is inconsistent. 
with exception on successive 
1/0 request. 

inconsistent. 
Backing store is rolled back to The system immediately fails 
a previously consistent state with exception on successive 
while online. 1/0 request. 
Backing store is rolled back to The system refuses to mount; 
a previously consistent state allows for force mount with 
while oflline, RPMB secure root access. 
counter wildly out of sync. 
MTRH made inconsistent by The system refuses to mount. 
mutating backing store out-of-
band while oflline, RPMB 
secure counter in sync. 

H. Improvements Summarized 

TPMGLOBALVER and 
RPMB secure counter out of 
sync. 
TPMGLOBALVER and 
RPMB secure counter out of 
sync. 

TPMGLOBALVER and 
RPMB secure counter are in 
sync, yet illegal data 
manipulation occurred. 

mance without a degradation in write performance except in 
cases where small (>512 kilobyte) writes dominate the 
workload. 

Note, however, that several implicit assumptions exist in 
the above design. For one, it is presumed that there is ample 
memory at hand to house the Merkle Tree and all other data 

The conventional wisdom is that securing data at rest 
requires that one must pay the high performance overhead of 

65 encryption with AES is XTS mode. The embodiments herein 
demonstrate that technological trends overturn this conven­
tional wisdom: log-structured file systems and hardware 
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containing the second particular sub-block from the memory 
unit, decrypting the second particular logical block in accor­
dance with the stream cipher, writing the portion of the 
second data to the second particular sub-block, generating a 

support for secure counters make it practical to use a stream 
cipher to secure data at rest. In particular, an implementation 
which uses the ChaCha20 stream cipher and the Poly1305 
MAC to provide secure storage can be used as a drop-in 
replacement for dm-crypt. Empirical results show that under 
F2FS, a modern, industrial-strength log-structured file sys­
tem, the embodiments herein provide upwards of 2x 
improvement on read performance and 1.21x improvement 
on write performance. In fact, these results show such a 
system provides a higher performance replacement for Ext4 
backed with dm-crypt. 

5 second key for the second particular logical block in accor­
dance with the stream cipher, encrypting the second particu­
lar logical block using the stream cipher, second key, and a 
second keycount value associated with the second particular 
logical block, and writing the second particular logical block 

10 as encrypted to the memory unit. 

VI. Example Operations 
In some embodiments, a hash tree contains hash outputs 

of each of the sub-blocks, and further steps may involve: 
after reading the particular logical block from the memory 
unit, validating the particular sub-block with the hash output 

FIGS. llA and 11B depict a flow chart illustrating an 
example embodiment. The process illustrated by FIGS. llA 
and 11B may be carried out by a computing device, such as 
computing device 100, and/or a cluster of computing 
devices, such as server cluster 200. However, the process 
can be carried out by other types of devices or device 
subsystems. For example, the process could be carried out 
by a portable computer, such as a laptop or a tablet device, 
or a smartphone. 

15 associated with the particular sub-block, and after writing 
the particular logical block as encrypted to the memory unit, 
calculating a new hash output for the particular sub-block 
and updating the hash tree to associate the new hash output 
with the particular sub-block. The hash tree may be stored in 

20 the memory unit. The hash tree may be a Merkle Tree. 

The embodiments of FIGS. llA and 11B may be simpli­
fied by the removal of any one or more of the features shown 
therein. Further, these embodiments may be combined with 
features, aspects, and/or implementations of any of the 25 

previous figures or otherwise described herein. 
In this section, a nugget is referred to as a "logical block" 

and a flake is referred to as a "sub-block." This terminology 
is used for clarity and precision. 

In some embodiments, the memory unit also maintains a 
rekeyingjournal that temporarily stores the particular logical 
block as decrypted until the particular logical block as 
encrypted is written to the memory unit. 

Some embodiments may also include a replay protected 
memory block (RPMB) that stores a persistent monotonic 
counter, and further steps may involve: after writing the 
particular logical block as encrypted to the memory unit, 
updating the persistent monotonic counter in the RPMB, and 

30 storing a copy of the persistent monotonic counter in the 
memory unit. In some embodiments, the system may not 
initialize for non-privileged users if the persistent monotonic 
counter in the RPMB is not identical to the copy of the 

In FIG. llA, step 1100 involves receiving a request to 
write data to a memory unit. The memory unit may be 
divided into one or more logical blocks, each of the logical 
blocks subdivided into groups of sub-blocks. Each of the 
logical blocks maps to one or more physical sectors of the 
memory unit. Any of the sub-blocks being used to store 35 

information are encrypted in accordance with a stream 
cipher. The memory unit maintains a transaction journal that 
marks each sub-block as either dirty or clean. The memory 
unit stores keycount values for each of the logical blocks. 

persistent monotonic counter in the memory unit. 
Some embodiments may also include an operating system 

configured to access the memory unit by way of the cryp­
tographic software module. The operating system may over­
lay a log-structured file system (or other types of file 
systems) atop of the memory unit. The file system may be 

Step 1102 involves determining that the request seeks to 
write a portion of the data to a particular sub-block of the 
groups of sub-blocks. 

40 based on F2FS. 

Step 1104 involves determining that the particular sub­
block is marked as dirty in the transaction journal. 

Step 1106 involves reading a particular logical block 45 

containing the particular sub-block from the memory unit. 
Step 1108 involves decrypting the particular logical block 

in accordance with the stream cipher. 
Step 1110 involves writing the portion of the data to the 

particular sub-block. 
Turning to FIG. 11B, step 1112 involves incrementing the 

keycount value associated with the particular logical block. 
Step 1114 involves generating a key for the particular 

logical block in accordance with the stream cipher. 

50 

Step 1116 involves encrypting the particular logical block 55 

using the stream cipher, the key, and the keycount value as 
incremented. 

Step 1118 involves writing the particular logical block as 
encrypted to the memory unit. 

Some embodiments may involve further steps of: receiv- 60 

ing a second request to write second data to the memory unit, 
determining that the second request seeks to write a portion 
of the second data to a second particular sub-block of the 
groups of sub-blocks, determining that the second particular 
sub-block is not marked as dirty in the transaction journal, 65 

marking the second particular sub-block as dirty in the 
transaction journal, reading a second particular logical block 

Some embodiments may involve a master secret, and 
generating the key for the particular logical block in accor­
dance with the stream cipher may involve generating the key 
based in part on the master secret. The stream cipher may be 
based on ChaCha20, for example. 
VII. Additional Embodiments and Performance Results 

The additional embodiments described in this section can 
be combined with any one or more of the previously­
described embodiments. 

In the embodiments above, it was shown that recent 
developments in mobile hardware invalidate the assumption 
that stream ciphers are unsuitable for FDE. Thus, fast stream 
ciphers can be used to dramatically improve the perfor­
mance ofFDE. In particular, modern mobile devices employ 
solid-state storage with FTL, which operate similarly to an 
LFS. They also include trusted hardware such as TEEs and 
secure storage areas. Embodiments using the ChaCha20 
stream cipher leveraged these two trends to outperform 
dm-crypt, the de-facto Linux FDE endpoint. 

In this section, embodiments using stream ciphers beyond 
ChaCha20 and AES-CTR are explored. Specifically, the 
following eSTREAM profile 1 stream ciphers (suitable for 
software applications with high throughput requirements) 
were considered: Sosemanuk, Rabbit, Salsa20, Salsa12, and 
Salsas. ChaChaS/12 are not considered eSTREAM ciphers 
and so were not included in this comparison (but were 
included in later experimental implementations). Further, 



US 11,139,959 B2 
21 

eSTREAM profile 2 stream ciphers were not explicitly 
considered but could potentially produce improved perfor­
mance as well. In various embodiments, other stream 
ciphers or block ciphers with stream-cipher-like character­
istics may be used. 

A. Experimental Setup 

22 
is most likely due to the new software layer used to facilitate 
cipher switching that was added for the measurements of 
FIGS. 12A-12D. Fortunately, the slowdown only seems to 
affect writes. The performance win with ChaCha20 reads 

5 over dm-crypt remains nearly two-to-one. One solution that 
immediately presents itself is to improve these embodiments 
by offloading I/O operations to an (un)bounded thread pool, 
which is a distinct advantage the production-ready dm-crypt 

Experiments were performed on a Hardkernel Odroid 
XU3 ARM big.LITTLE system (Samsung Exynos5422 Al 5 
andA7 quad core CPUs, 2Gbyte LPDDR3 RAM, eMMC5.0 
HS400 backing store) running Ubuntu Trusty 14.04 LTS, 10 

kernel version 3.10.5S. To evaluate performance under these 
new ciphers, measurements included the latency (time per 
operation) of sequential read and write I/O operations 
against the F2FS LFS. The I/O operations were performed 
using 1 KiB and 5 MiB file sizes (where 1 KiB=210 bytes 
and 1 MiB=220 bytes). These files were populated with 
random data. The experiments are conducted using a stan­
dard Linux ramdisk (tmpfs) as the ultimate backing store. 
The I/O size used was the maximum that the Odroid XU3 

software current employs. 
The SalsaX (Salsa20, Salsa12, SalsaS) functions outper-

forming ChaCha20 by a small factor in most instances above 
comes with a heavy caveat: increased or otherwise unusual 
energy/power use. In several cases, such as with FIG. 12C, 
the performance win might be entirely outweighed by the 

15 efficiency loss, depending on the use case scenario. This was 
not entirely unexpected, since the reasons for the ChaChaX 
family of alternative implementations being created in the 
first place included increased energy efficiency. The ramifi-
cations of cipher selection on total system energy use are of 
paramount concern in many practical scenarios. kernel version 3.10.5S supports, selected by the operating 20 

system automatically. VIII. Conclusion 
B. Evaluation 
For each of the figures in this section, the metrics indicate 

averages (medians) of 10 runs over the whole size of the file. 
Note that, except in the case of Salsa12, in figures where 
energy/power data is missing is due to the coarse timing 
resolution of current energy monitoring tools. Unfortunately, 
these specific tools cannot be easily made to operate at a 
faster frequency. 

FIG. 12A shows the performance of dm-crypt for 1 KiB 
whole file reads in comparison to the previous embodiments 
herein (which are again referred to interchangeably as 
"StrongBox") implemented with several stream ciphers, 
including use of the original ChaCha20 stream cipher. 
ChaCha20 is on average 1.09x faster than dm-crypt for reads 
at this file size, which is congruous with the results above. 
Sosemanuk is the worst performer, being 1.15x slower than 
ChaCha20. ChaCha20 is 1.01 x faster than Salsa20 but 1.01 x 
slower than Salsas and virtually maintains latency parity 
with Salsa 12. ChaCha20 is 1.05x faster than Rabbit. 

FIG. 12B shows the performance of dm-crypt for 1 KiB 
whole file writes in comparison to the embodiments herein 
implemented with several stream ciphers. On average, dm­
crypt is 1.41 x faster than ChaCha20 for writes at this file 
size. Still, ChaCha20 is 1.05x faster than Rabbit, and 1.36x 
faster than Sosemanuk. Salsa20 is slightly slower than 
ChaCha20 at 1.0lx. Salsa12 is 1.07x faster than ChaCha20. 
Salsas is 1.07x faster than ChaCha20. 

Similar to FIG. 12A, FIG. 12C shows the performance of 
dm-crypt against the embodiments herein, but for 5 MiB 
whole file reads. ChaCha20 is 1.95x faster than dm-crypt for 
reads at this file size, which is congruous with the results 
above. The only cipher faster than ChaCha20 at this size is 
Salsas, which is 1.03x faster than ChaCha20. Sosemanuk 
virtually maintains latency parity with dm-crypt in that it is 
1.95x slower than ChaCha20 at this size. ChaCha20 is 1.04x 
faster than Salsa12. ChaCha20 is 1.lSx faster than Salsa20. 
ChaCha20 is 1.3 Sx faster than Rabbit. 

The present disclosure is not to be limited in terms of the 
particular embodiments described in this application, which 
are intended as illustrations of various aspects. Many modi-

25 fications and variations can be made without departing from 
its scope, as will be apparent to those skilled in the art. 
Functionally equivalent methods and apparatuses within the 
scope of the disclosure, in addition to those described herein, 
will be apparent to those skilled in the art from the foregoing 

30 descriptions. Such modifications and variations are intended 
to fall within the scope of the appended claims. 

The above detailed description describes various features 
and operations of the disclosed systems, devices, and meth­
ods with reference to the accompanying figures. The 

35 example embodiments described herein and in the figures 
are not meant to be limiting. Other embodiments can be 
utilized, and other changes can be made, without departing 
from the scope of the subject matter presented herein. It will 
be readily understood that the aspects of the present disclo-

40 sure, as generally described herein, and illustrated in the 
figures, can be arranged, substituted, combined, separated, 
and designed in a wide variety of different configurations. 

With respect to any or all of the message flow diagrams, 
scenarios, and flow charts in the figures and as discussed 

45 herein, each step, block, and/or communication can repre­
sent a processing of information and/or a transmission of 
information in accordance with example embodiments. 
Alternative embodiments are included within the scope of 
these example embodiments. In these alternative embodi-

50 ments, for example, operations described as steps, blocks, 
transmissions, communications, requests, responses, and/or 
messages can be executed out of order from that shown or 
discussed, including substantially concurrently or in reverse 
order, depending on the functionality involved. Further, 

55 more or fewer blocks and/or operations can be used with any 
of the message flow diagrams, scenarios, and flow charts 
discussed herein, and these message flow diagrams, sce­
narios, and flow charts can be combined with one another, 
in part or in whole. 

A step or block that represents a processing of information 
can correspond to circuitry that can be configured to perform 
the specific logical functions of a herein-described method 
or technique. Alternatively or additionally, a step or block 
that represents a processing of information can correspond 

Similar to FIG. 12B, FIG. 12D shows the performance of 
dm-crypt against the embodiments herein for 5 MiB whole 60 

file writes. Here, ChaCha20 is 1.02x faster than dm-crypt for 
writes at this file size. ChaCha20 is 1.1 Ox faster than Rabbit. 
ChaCha20 is 1.25x faster than Sosemanuk. ChaCha20 is 
1.04x faster than Salsa20. Salsa12 is 1.02x faster than 
ChaCha20, while Salsas is 1.04x faster than ChaCha20. 65 to a module, a segment, or a portion of program code 

(including related data). The program code can include one 
or more instructions executable by a processor for imple-

Evident from the above is the fact that writes have slowed 
down for StrongBox based implementations. This slowdown 
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menting specific logical operations or actions in the method 
or technique. The program code and/or related data can be 
stored on any type of computer readable medium such as a 
storage device including RAM, a disk drive, a solid state 
drive, or another storage medium. 

The computer readable medium can also include non­
transitory computer readable media such as computer read­
able media that store data for short periods of time like 
register memory and processor cache. The computer read­
able media can further include non-transitory computer 10 

readable media that store program code and/or data for 
longer periods of time. Thus, the computer readable media 
may include secondary or persistent long term storage, like 
ROM, optical or magnetic disks, solid state drives, compact­
disc read only memory (CD-ROM), for example. The com- 15 

puter readable media can also be any other volatile or 
non-volatile storage systems. A computer readable medium 
can be considered a computer readable storage medium, for 
example, or a tangible storage device. 

Moreover, a step or block that represents one or more 20 

information transmissions can correspond to information 
transmissions between software and/or hardware modules in 
the same physical device. However, other information trans­
missions can be between software modules and/or hardware 
modules in different physical devices. 25 

24 
generating a key for the particular logical block in 

accordance with the stream cipher, 
encrypting the particular logical block using the 

stream cipher, the key, and the keycount value as 
incremented, and 

writing the particular logical block as encrypted to 
the memory unit. 

2. The system of claim 1, wherein the cryptography 
software module is further configured to perform operations 
comprising: 

receiving a second request to write second data to the 
memory unit; 

determining that the second request seeks to write a 
portion of the second data to a second particular 
sub-block of the groups of sub-blocks; 

determining that the second particular sub-block is not 
marked as dirty in the transaction journal; and 

based on the second particular sub-block being not 
marked as dirty: 
marking the second particular sub-block as dirty in the 

transaction journal; 
reading a second particular logical block containing the 

second particular sub-block from the memory unit; 
decrypting the second particular logical block in accor­

dance with the stream cipher; 
writing the portion of the second data to the second 

particular sub-block; 
encrypting the second particular logical block in accor­

dance with the stream cipher; and 
writing the second particular logical block as encrypted 

to the memory unit. 

The particular arrangements shown in the figures should 
not be viewed as limiting. It should be understood that other 
embodiments can include more or less of each element 
shown in a given figure. Further, some of the illustrated 
elements can be combined or omitted. Yet further, an 30 

example embodiment can include elements that are not 
illustrated in the figures. 3. The system of claim 1, wherein the cryptography 

software module has access to a hash tree that contains hash 
outputs of each of the sub-blocks, and wherein the cryptog-

35 raphy software module is further configured to perform 

While various aspects and embodiments have been dis­
closed herein, other aspects and embodiments will be appar­
ent to those skilled in the art. The various aspects and 
embodiments disclosed herein are for purpose of illustration 
and are not intended to be limiting, with the true scope being 
indicated by the following claims. 

What is claimed is: 
1. A system comprising: 40 

operations comprising: 
after reading the particular logical block from the memory 

unit, validating the particular sub-block with the hash 
output associated with the particular sub-block; and 

after writing the particular logical block as encrypted to 
the memory unit, calculating a new hash output for the 
particular sub-block and updating the hash tree to 
associate the new hash output with the particular sub­
block. 

4. The system of claim 3, wherein the hash tree is stored 
in the memory unit. 

5. The system of claim 3, wherein the hash tree is a 
Merkle Tree. 

a memory unit divided into one or more logical blocks, 
each of the logical blocks subdivided into groups of 
sub-blocks, wherein each of the logical blocks maps to 
one or more physical sectors of the memory unit, 
wherein any of the sub-blocks being used to store 45 

information are encrypted in accordance with a stream 
cipher, wherein the memory unit maintains a transac­
tion journal that marks each sub-block as either dirty or 
clean, and wherein the memory unit stores keycount 
values for each of the logical blocks; and 

6. The system of claim 1, wherein the memory unit also 
50 maintains a rekeying journal that temporarily stores the 

particular logical block as decrypted until the particular 
logical block as encrypted is written to the memory unit. 

a cryptography software module, configured to perform 
operations comprising: 
receiving a request to write data to the memory unit, 
determining that the request seeks to write a portion of 

the data to a particular sub-block of the groups of 55 

sub-blocks, 
determining that the particular sub-block is marked as 

dirty in the transaction journal, and 
based on the particular sub-block being marked as 

dirty: 
reading a particular logical block containing the 

particular sub-block from the memory unit, 
decrypting the particular logical block in accordance 

with the stream cipher, 

60 

writing the portion of the data to the particular 65 

sub-block, incrementing the keycount value asso­
ciated with the particular logical block, 

7. The system of claim 1, further comprising a replay 
protected memory block (RPMB) that stores a persistent 
monotonic counter, wherein the cryptography software 
module is further configured to perform operations compris-
ing: 

after writing the particular logical block as encrypted to 
the memory unit, updating the persistent monotonic 
counter in the RPMB; and 

storing a copy of the persistent monotonic counter in the 
memory unit. 

8. The system of claim 7, wherein the cryptography 
software module will not initialize for non-privileged users 
if the persistent monotonic counter in the RPMB is not 
identical to the copy of the persistent monotonic counter in 
the memory unit. 
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9. The system of claim 1, further comprising: 
an operating system configured to access the memory unit 

by way of the cryptographic software module. 
10. The system of claim 9, wherein the operating system 

overlays a log-structured file system atop of the memory 5 

unit. 
11. The system of claim 10, wherein the log-structured file 

system is based on F2FS. 
12. The system of claim 1, wherein the cryptographic 

software module has access to a master secret, and wherein 10 

generating the key for the particular logical block in accor­
dance with the stream cipher comprises generating the key 
based in part on the master secret. 

13. The system of claim 1, wherein the stream cipher is 
based on ChaCha20. 15 

14. A computer-implemented method comprising: 

26 
encrypting the second particular logical block in accor­

dance with the stream cipher; and 
writing the second particular logical block as encrypted 

to the memory unit. 
16. The computer-implemented method of claim 14, 

wherein a hash tree contains hash outputs of each of the 
sub-blocks, the method further comprising: 

after reading the particular logical block from the memory 
unit, validating the particular sub-block with the hash 
output associated with the particular sub-block; and 

after writing the particular logical block as encrypted to 
the memory unit, calculating a new hash output for the 
particular sub-block and updating the hash tree to 
associate the new hash output with the particular sub-
block. 

17. The computer-implemented method of claim 14, 
wherein the memory unit also maintains a rekeying journal 
that temporarily stores the particular logical block as 
decrypted until the particular logical block as encrypted is 

receiving a request to write data to a memory unit, 
wherein the memory unit is divided into one or more 
logical blocks, each of the logical blocks subdivided 
into groups of sub-blocks, wherein each of the logical 
blocks maps to one or more physical sectors of the 
memory unit, wherein any of the sub-blocks being used 

20 written to the memory unit. 

to store information are encrypted in accordance with a 
stream cipher, wherein the memory unit maintains a 
transaction journal that marks each sub-block as either 25 

dirty or clean, and wherein the memory unit stores 
keycount values for each of the logical blocks; 

determining that the request seeks to write a portion of the 
data to a particular sub-block of the groups of sub­
blocks; 

determining that the particular sub-block is marked as 
dirty in the transaction journal; and 

30 

18. The computer-implemented method of claim 14, 
wherein a replay protected memory block (RPMB) stores a 
persistent monotonic counter, the method further compris­
ing: 

after writing the particular logical block as encrypted to 
the memory unit, updating the persistent monotonic 
counter in the RPMB; and 

storing a copy of the persistent monotonic counter in the 
memory unit. 

19. The computer-implemented method of claim 18, 
wherein a cryptography software module performs all reads 
to and writes from the memory unit, and wherein the 
cryptography software module will not initialize for non­
privileged users if the persistent monotonic counter in the 

based on the particular sub-block being marked as dirty: 
reading a particular logical block containing the par­

ticular sub-block from the memory unit; 
decrypting the particular logical block in accordance 

with the stream cipher; 

35 RPMB is not identical to the copy of the persistent mono­
tonic counter in the memory unit. 

writing the portion of the data to the particular sub­
block; 

incrementing the keycount value associated with the 40 

particular logical block; 
generating a key for the particular logical block in 

accordance with the stream cipher; 
encrypting the particular logical block using the stream 

cipher, the key, and the keycount value as incre- 45 

mented; and 
writing the particular logical block as encrypted to the 

memory unit. 
15. The computer-implemented method of claim 14, fur­

ther comprising: 
receiving a second request to write second data to the 

memory unit; 
determining that the second request seeks to write a 

portion of the second data to a second particular 
sub-block of the groups of sub-blocks; 

determining that the second particular sub-block is not 
marked as dirty in the transaction journal; and 

based on the second particular sub-block being not 
marked as dirty: 

50 

55 

marking the second particular sub-block as dirty in the 60 

transaction journal; 
reading a second particular logical block containing the 

second particular sub- block from the memory unit; 
decrypting the second particular logical block in accor­

dance with the stream cipher; 
writing the portion of the second data to the second 

particular sub-block; 

65 

20. An article of manufacture including a non-transitory 
computer-readable medium, having stored thereon program 
instructions that, upon execution by a computing system, 
cause the computing system to perform operations compris­
ing: 

receiving a request to write data to a memory unit of the 
computing system, wherein the memory unit is divided 
into one or more logical blocks, each of the logical 
blocks subdivided into groups of sub-blocks, wherein 
each of the logical blocks maps to one or more physical 
sectors of the memory unit, wherein any of the sub­
blocks being used to store information are encrypted in 
accordance with a stream cipher, wherein the memory 
unit maintains a transaction journal that marks each 
sub-block as either dirty or clean, and wherein the 
memory unit stores keycount values for each of the 
logical blocks; 

determining that the request seeks to write a portion of the 
data to a particular sub-block of the groups of sub­
blocks; 

determining that the particular sub-block is marked as 
dirty in the transaction journal; and 

based on the particular sub-block being marked as dirty: 
reading a particular logical block containing the par­

ticular sub-block from the memory unit; 
decrypting the particular logical block in accordance 

with the stream cipher; 
writing the portion of the data to the particular sub­

block; 
incrementing the keycount value associated with the 

particular logical block; 
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generating a key for the particular logical block in 
accordance with the stream cipher; 

encrypting the particular logical block using the stream 
cipher, the key, and the keycount value as incre-
mented; and 

5 

writing the particular logical block as encrypted to the 
memory unit. 

* * * * * 

28 


