
I 1111111111111111 1111111111 11111 11111 1111111111 1111111111111111 IIII IIII IIII
US011139959B2

c12) United States Patent
Dickens, III et al.

(IO) Patent No.:
(45) Date of Patent:

US 11,139,959 B2
Oct. 5, 2021

(54) STREAM CIPHERS FOR DIGITAL STORAGE
ENCRYPTION

(56) References Cited

(71)

(72)

Applicant: The University of Chicago, Chicago,
IL (US)

Inventors: Bernard Dickens, III, Chicago, IL
(US); Haryadi Gunawi, Chicago, IL
(US); Ariel Feldman, Chicago, IL
(US); Henry Hoffmann, Chicago, IL
(US) WO

U.S. PATENT DOCUMENTS

4,316,055 A
6,862,354 Bl

2/1982 Feistel
3/2005 McGrew et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO-2017195324 Al * 11/2017 G06F 3/0604

(73) Assignee: The University of Chicago, Chicago,
IL (US)

OTHER PUBLICATIONS

"BUSE-A block device in user space for Linux", Github­

acozzette I BUSE, 2 pages, downloaded from the Internet on Feb.
1, 2019.

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 427 days.

(21)

(22)

(65)

(60)

(51)

(52)

(58)

Appl. No.: 16/264,991

Filed: Feb. 1, 2019

Prior Publication Data

US 2019/0238312 Al Aug. 1, 2019

(Continued)

Primary Examiner - John B King

(74) Attorney, Agent, or Firm - McDonnell Boehnen
Hulbert & Berghoff LLP

(57) ABSTRACT

Related U.S. Application Data
An embodiment involves receiving a request to write data to
a memory unit. The memory unit is divided into one or more
logical blocks, each subdivided into groups of sub-blocks
encrypted in accordance with a stream cipher. The memory
unit maintains a transaction journal that marks each sub­
block as dirty or clean. The memory unit stores keycount
values for each of the logical blocks. The embodiment also
involves: determining that the request seeks to write a
portion of the data to a particular sub-block marked as dirty
in the transaction journal, decrypting the particular logical
block in accordance with the stream cipher, writing the
portion of the data to the particular sub-block, incrementing
the keycount value of the particular logical block, encrypt­
ing the particular logical block using the stream cipher, a
key, and the keycount value, and writing the particular
logical block to the memory unit.

Provisional application No. 62/625,148, filed on Feb.
1, 2018.

Int. Cl.
H04L 29106
H04L 9/06

U.S. Cl.

(2006.01)
(2006.01)

(Continued)

CPC H04L 9/065 (2013.01); G06F 3/064
(2013.01); G06F 3/0604 (2013.01);

(Continued)
Field of Classification Search
CPC H04L 9/065; H04L 9/0656; H04L 9/0861;

H04L 9/0643; H04L 9/0618;

(Continued) 20 Claims, 18 Drawing Sheets

1100 \

RECEIVING A REQUEST TO WRITE DATA TO A MEMORY UNIT, WHEREIN THE MEMORY UNIT
IS DIVIDED INTO ONE DR MORE LOGICAL BLOCKS, EACH OF THE LOGICAL BLOCKS

SUBDIVIDED INTO GROUPS OF SUB-BLOCKS, WHEREIN EACH OF THE LOGICAL BLOCKS MAPS
TO ONE OR MORE PHYSICAL SECTORS OF THE MEMORY UNIT, WHEREIN ANY OF THE SUB­
BLOCKS BEING USED TO STORE INFORMATION ARE ENCRYPTED IN ACCORDANCE WITH A

STREAM CIPHER, WHEREIN THE MEMORY UNIT MAINTAINS A TRANSACTION JOURNAL THAT
MARKS EACH SUB-BLOCK AS EITHER DIRTY OR CLEAN, AND WHEREIN THE MEMORY UNIT

STORES KEYCOUNT VALUES FOR EACH OF THE LOGICAL BLOCKS

1102 \ 1
DETERMINING THAT THE REQUEST SEEKS TO WRITE A PORTION OF THE DATA TO A

PARTICULAR SUB-BLOCK OF THE GROUPS OF SUB-BLOCKS

1104 , l

1106 \ l

1108 \ l
DECRYPTING THE PARTICUlAR LOGICAL BLOCK IN ACCORDANCE WITH THE STREAM CIPHER

1110 \ l
dJ

US 11,139,959 B2
Page 2

(51) Int. Cl.
H04L 9/08
G06F 21160
G06F 3/06
G06F 16118

(52) U.S. Cl.

(2006.01)
(2013.01)
(2006.01)
(2019.01)

CPC G06F 3/0659 (2013.01); G06F 3/0673
(2013.01); G06F 1611815 (2019.01); G06F
211602 (2013.01); H04L 9/0618 (2013.01);

H04L 9/0643 (2013.01); H04L 9/0656
(2013.01); H04L 9/0861 (2013.01); H04L

2209/38 (2013.01)
(58) Field of Classification Search

CPC . H04L 2209/38; G06F 21/602; G06F 3/0673;
G06F 16/1815; G06F 3/0604; G06F

3/064; G06F 3/0659; G06F 21/72
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,983,049 B2 1/2006 Wee et al.
7,372,962 B2 5/2008 Fujimoto et al.
8,300,824 Bl * 10/2012 McGrew. H04W 12/033

380/277
9,313,023 Bl* 4/2016 Murray H04L 9/0618

2001/0002478 Al* 5/2001 Grun G06F 3/0689
711/114

2002/0101995 Al* 8/2002 Hashimoto G06F 21/72
380/277

2003/0037182 Al* 2/2003 Bentley G06F 16/10
719/328

2011/0296440 Al 12/2011 Laurich et al.
2012/0079175 Al* 3/2012 Flynn. GllC 7/1012

711/103
2012/0166576 Al 6/2012 Orsini et al.
2012/0331088 Al 12/2012 O'Hare et al.
2014/0297921 Al* 10/2014 Chang G06F 3/064

711/103
2015/0052300 Al* 2/2015 Piekarski G06F 3/0665

711/114
2015/0254104 Al* 9/2015 Kessler G06F 3/0631

711/170
2018/0143765 Al* 5/2018 Piekarski G06F 3/0689
2019/0107949 Al* 4/2019 Piekarski G06F 3/0667

OTHER PUBLICATIONS

"Full-Disk Encryption-Android Open Source Project", https://web.

archive.org/web/20171203224317 /https://source.android.com/security/
encryption/full-disk, printed Feb. 1, 2019, 13 pages.
Bernstein, "The Poly1305-AES message-authentication code", Depart­
ment of Mathematics, Statistics, and Computer Science, The Uni­
versity of Illinois at Chicago, 2005, 18 pages.
Bernstein, "ChaCha, a variant of Salsa20", Department of Math­
ematics, Statistics, and Computer Science, The University of Illinois
at Chicago, 2008, 6 pages.
Chakraborty et al., "STES: A Stream Cipher Based Low Cost
Scheme for Securing Stored Data", downloaded from the Internet
on Feb. 1, 2019.
Cornwell, "Anatomy of a Solid-state Drive", ACM, 2012, 7 pages,
downloaded from the Internet on Feb. 1, 2019.
Van Dijk et al., "Oflline Untrusted Storage with Immediate Detec­
tion of Forking and Replay Attacks", ACM, STC 2007, 8 pages.
"eSTREAM: the ECRYPT Stream Cipher Project", The eSTREAM
Portfolio, last updated Mar. 2012, http://www.ecrypt.eu.org/stream,
1 page.

Ferraiuolo et al., "Verification of a Practical Hardware Security
Architecture Through Static Information Flow Analysis", ACM,
ASPLOS 2017, 555-568.
"Trusted Platform Module (TPM) Summary", Trusted Computing
Group, 2008, 3 pages.
Halevi et al., "A Tweakable Enciphering Mode", Advances in
Cryptology-CRYPTO '03, Lecture Notes in Computer Science,
vol. 2729, 2003, 33 pages.
Hein et al., "Secure Block Device-Secure, Flexible, and Efficient
Data Storage for ARM TrustZone Systems", IEEE, 2015, 222-229.
Hicks et al., "SPECS: A Lightweight Runtime Mechanism for
Protecting Software from Security-Critical Processor Bugs", ACM,
ASPLOS 2015, 517-529.
Kirovski et al., "Enabling Trusted Software Integrity", ACM, ASPLOS
2002, 13 pages.
Kinoshi et al., "The Linux Implementation of a Log-structured File
System", ACM SIGOPS Operating Systems Review, vol. 40 Issue
3, Jul. 2006, 102-107.
Lee et al., "F2FS: A New File System for Flash Storage", Proceed­
ings of the 13th USENIX Conference on File and Storage Tech­
nologies (FAST '15), 2015, 273-286.
Li et al., "Sapper: A Language for Hardware-Level Security Policy
Enforcement", ACM, ASPLOS 2014, 15 pages.
"ARM Security Technology: Building a Secure System using TrustZone
Technology", ARM Limited, 2005-2009, 108 pages.
Cryptsetup: Cryptsetup and LUKS----open-source disk encryption,
https://web.archive.org/web/20170915104800/https:/ /gitlab.com/
cryptsetup/cryptsetup, Apr. 7, 2015-Jan. 12, 2019, 4 pages.
Oracle Jeff Bonwick's Blog, "ZFS End-to-End Data Integrity",
https://blogs.oracle.com/bonwick/zfs-end-to-end-data-integrity, 2005,
6 pages .
Dworkin, "Recommendation for Block Cipher Modes of Operation:
The XTS-AES Mode for Confidentiality on Storage Devices",
National Institute of Standards and Technology, 2010, 12 pages.
Reddy et al., "Mobile Secure Data protection using eMMC RPMB
Partition", International Conference on Computing and Network
Communications, IEEE, 2015, 946-950.
Device-mapper Resource Page, https://web.archive.org/web/
20171222014802/https://sourceware.org/drn/, Apr. 8, 2005-Dec.22,
2018, 2 pages.
Rogaway et al., "Efficient Instantiations ofTweakable Blockciphers
and Refinements to Modes OCB and PMAC", 2004, 30 pages.
Rosenblum et al., "The Design and Implementation of a Log­
Structured File System", paper appearing in Proceedings of the 13th
ACM Symposium on Operating Systems Principles and Feb. 1992
ACM Transactions on Computer Systems, 1991, 15 pages .
Sarkar, "Tweakable Enciphering Schemes From Stream Ciphers
With IV", Applied Statistics Unit, Kolkata, India, 12 pages, down­
loaded from the Internet Feb. 1, 2019 .
GlobalPlatform Device Technology: TEE Client API Specification
Version 1.0, 2010, 58 pages.
IEEE Pl619™/Dl6: Standard for Cryptographic Protection of Data
on Block-Oriented Storage Devices, 2007, 38 pages.
Tiwari et al., "Crafting a Usable Microkernel, Processor, and I/O
System with Strict and Provable Information Flow Security", ACM,
2011, 11 pages.
ImperialViolet: TLS Symmetric Crypto, 2014, 5 pages.
Inspection-Resistant Memory Architectures, IEEE, 2013, 21 pages.
Wang et al., "HCTR: A Variable-Input-Length Enciphering Mode",
CISC, LNCS 3822, 2005, 175-188.
Xu et al., "Design and Implementation of Secure Embedded Sys­
tems Based on Trustzone", IEEE, 2008, 136-141.
Zhang et al., "Identifying Security Critical Properties for the Dynamic
Verification of a Processor", ACM, ASPLOS 2017, 541-554.
JEDEC Standard, Embedded MultiMediaCard(e•MMC) e•MMC/
Card Product Standard, High Capacity, including Reliable Write,
Boot, Sleep Modes, Dual Data Rate, Multiple Partitions Supports,
Security Enhancement, Background Operation and High Priority
Interrupt (MMCA, 4.41), JESD84-A441, JEDEC Solid State Tech­
nology Association, 2010, 234 pages.

* cited by examiner

U.S. Patent

0
0

0

(

r
N
0

Oct. 5, 2021

1 1

0:::
0 en
en w
(.)
0
0:::
a..

Sheet 1 of 18 US 11,139,959 B2

!::
:z
::::,
I-
::::,
a..
I-
::::,
0 -r I-
::::,

co a..
0 :z -

■

(!) -LL

:::.::: w
0::: (.)
0 <(

~ ffi w I-r :z :z -
CD
0

U.S. Patent Oct. 5, 2021 Sheet 2 of 18

208

SERVER CLUSTER
200

~ I
I SERVER DEVICES I
I 202 I

I L ___________ _

~ I
I DATA STORAGE I
I 204 I

I L ___________ _

~ I
I ROUTERS I
I 206 I

- I L ___________ _

210

NETWORK 212

FIG. 2

US 11,139,959 B2

U.S. Patent Oct. 5, 2021 Sheet 3 of 18 US 11,139,959 B2

L.C>
c:::>
CV?

>--
C>

D.....
-+-
cu

--= C>
cu

--= C>

~ c3.... M 2:--
c...>

~
a.> " c:::::l (!) c3....
2:-- -c...> LL = LU

er.,
I:--
><
er.,
LU
<C

D
CJ

= U:'":>

(s) 9W!l

,--,
: StrongBox
I

/j I
i

Merkle Tree
I
I
I
I

I

I

----~(--j 1/0 Request ! - Metadata-aware Keycount Store I - Crypto Driver I

' I
I ' ' Transaction Journal I '
I

' I
I
I
I
I

I I
I

RPMB
I
I
I
I

1 ' I
I
I

Device Controller
I
I
I
I
I
I l __________________________________ -----------------------------------

1 r

: ~)\-\.·(--/i-: ~)\-\.·(--/i-_: ~)\-\.·(--/i-_:. ~~~K!N~·:srq~~G_E _·---;-:._: ~ }\-\.·(--/i-_: ~)\-\.·(--/i-_: ~)\-\.·(--i

FIG. 4

e
•
00
•
~
~
~
~ = ~

0
(') ...

"'Ul
N
0
N

rJJ
=­('D
('D
.i;...

0
QO

d
r.,;_

"'""'
"'""' "'
"'""' w
\0
\0
UI
\0

= N

U.S. Patent Oct. 5, 2021 Sheet 5 of 18 US 11,139,959 B2

ni
c:: -:::::s C> --,
CD
c:: ·s;:.,.
G>

.!>I::
G>

0:::::

en LO -G> " ""'C
n:s
G>

::c •
C) • LL •

c::
C>_

,:,;::::. n:s c., c:: n:s -en :::::s
c:: C> n:s --, -1-- El

El
G> -C> -U> -c::
:::::s
C>
c.,

~I
:::::,..
G>
~

El
it El

U.S. Patent Oct. 5, 2021 Sheet 6 of 18 US 11,139,959 B2

A.lgo1ithm 1: handling an incoming read request

Require: The read request is over a contiguous segment oJ'the backing store

Require: .e, I:' <-- read request lengt.h

Require:!\<-- master secret

Require: nilutex <-- first nugget index to be read

1: data ,-. empty

2: wlrlle: f * 0 do

3:

4:

5:

6:

7:

«. ,>.

9:

10:

Fetch nugget keycount nkc from Kcycount Store.

Calculate indict":s touch;;xi by rt":quest: fnrst, !iast

il_r/alm/r;I. <- ReadFlakes(!j·;rsl. , ... , Ji"st)

for fcurnmt = fr;i-st to fim't do

tagfc,.,·,-ent ~ GenMac(k.rc,rrmie' npakedat.ffcurrentD

Verify tag1"c,,,.rP.nr in Merk.le Tree.

t>(*) denotes requested sabset of nugget data

11: data +- data + Decrypt (* nflakedat, kn""'"·'' nk,J

IA return data

Ensure: lldata!I <"" -l"

:Ensure: f = 0

FIG. 6A

U.S. Patent Oct. 5, 2021 Sheet 7 of 18 US 11,139,959 B2

Algorithm 2: handling an incoming write request

Require: ·n1e write request is to a c:ontigwms segment of the backing store

Require: f, r ..- write requested length

Require: I\ .- master secret

Require: data ..- cleartext data to be vvritten

Require: nindex ..- first nugget index to be affected

1: Increment secure counter: by 2 if recovering from a crash, ehc 1

2: while: f * 0 do

3:

4:

5:

6:

7:

<o. ,>.

9:

10:

lL

13:

14:

15:

16:

17:

18:

Calculate indices touefo;d by r-:qu-:st: ftirst, fiast

it' Transaction Journal entries for fitrst, ... , fiosr * 0 then

Trigger rckeying procedme (see: Algorithm 3).

continue

Set Transaction Journal entries for fttrst, ... , ftasi. to 1

Fetch nugget keycmmi nkc fr(m1 Key.::ount Store.

for fru.rrent = f['irst to ftast do

nna1,eaat ,._ empty

if f~~un,mt == frFrst 11 h,w-r,mt == fiast then

Update new tag1~'""'"'"' in Jvlerkle Tree.

WriteFlake(t~trrrent, nfia/,:edat)

19: t>(*) denotes requested subset of nugget data if applicable-

20: -f ..- f - II* nf/nkedat II

22: Update and cornmit metadata and heackrs

Ensure: f =O

FIG. 68

U.S. Patent Oct. 5, 2021 Sheet 8 of 18 US 11,139,959 B2

Algorithm 3: rekeying process.

Require: 11,e original write applied to a contiguous backing store segment

Require; f ._ write requested length

Require: l'l: '- master secret

Require: data ~ deartext data to he <;vritten

Re11uire: nind<>x ~ nugget rekeying target

I> Read in and decrypt the entire nugget

1: n,wgget.dat ~ C1-yptedRead(NSIZE, X, n1w1ex)

2: Calculate indices touched by request: fnrsu .f1.a.,t

3: \.Vrite data into n,w.gget,Jut at proper oflsei with length f.

4: Set Transaction Journal entries for f(irst, ... , fiu,1 to 1

5: kn;,,,r,.,- ._ GenKey,wg_get(11tndex, l'\)

6: Fet..::h nugget keycount nkr: from Keycount Stnrc. Increment ii by one.

7· n,mggm.dat ~ Encrypt(n,wg_gei"cl,u.• kn,n<tex' nkc)

8: Commit n,rnpgetdot to the backing store-

t> Iterate ovc-r all flakes in the nuggc-t

9: for all flakes f~«rrent in n,ntte,t do

l 0: k1;,,,,rn,r: ._ GenKeyflairnCkn;,,,1ex' f~urrrmt• 111cc)

11: Copy f cw-rent data. from 11nug,9etdat ➔ nr1a1,:edat

l "· tagfrv.n·e·,,t +- GenMac(krc-m·rnHf' nflt,kedat)

13: Update new tagicumnt in t\-krkle Tree.

14: Update and commitmetadata and headers.

FIG. 6C

U.S. Patent Oct. 5, 2021 Sheet 9 of 18 US 11,139,959 B2

B ~ StrongBox/reads C ~ dm-crypl/reads
Q Q StrongBox/writes □ □ dm-crypl/writes

4 -------------i4-w-.2 __ 5..,;;,-.5 ___ -----.-

-= 2
Cl..
2:--
<..:>
= 3 Q>
= =

...8
-= Q>
_r---1
cu
E
c5 2 ~
::>-.
<..:>
= 2 cu

___J

4K 512K 5M 40M Mean
File Size (bytes)

FIG. 7A

4 __________ 47 ___ -----.-

4K 512K 5M 40M Mean
File Size (bytes)

FIG. 78

U.S. Patent Oct. 5, 2021

B [j NILFS/reads ~ ~ F2FS/reads
□ □ Ext4OJ/reads B e1 Ext4F J/reads

2 - ----------------- -

15_

[1. 5 - ---------------------------------
--=
..8
--= CD -~ 1 ____________
E
c5
~

::>-.

~ 0. 5 - --- - - - -- - --- ~
cu
__J

0L.....J..l~MIL..l..l'l~,!aL....L.

4K 512K 5M 40M
File Size (bytes)/ Sequential Reads

FIG. BA

2 - ----------------- -

15_
::>-.

Y 1. 5 - ---------------------------------
E --=
..8
--= CD

-~ 1 -~- --------~
E
c5
~

::>-.

~ 0.5 - --- - - -- ---
cu
__J

0L.....J.JLl!.kL....!.lll.&l....!../lll.dhL..l..lllL..i...-L.

4K 512K 5M 40M
File Size (bytes)/ Random Reads

FIG. BC

Sheet 10 of 18 US 11,139,959 B2

□ □ NILFS/writes □ rJ F2FS/writes
D □ Ext4OJ/writes ~ B Ext4F J/writes

8.1 5.3 2.4 3.6

2 2.414.5 2.9 2.5 3.6

15_

[1.5 ---
--=
..8
--= CD

-~ 1 -
E
c5
~

::>-.

~ 0.5
cu
__J

15_
2:--

0
4K 512K 5M 40M

File Size (bytes)/ Sequential Writes

FIG. 88

10.3 4.5 2.7 3.6

2
_].98.Q_ 3.0 __ 2.5 __ 3.6 __

~ 1.5 - --- ---- --- L..

--=
..8
--= l:!3
-cu 1 -.__ -1&.l---oli..l-- --

E
c5
~

::>-.

~ 0.5 - --- - ---~
cu
__J

0 ...,___,_,.,..............,.............., _._
4K 512K 5M 40M

File Size (bytes)/ Random Writes

FIG. 8D

U.S. Patent Oct. 5, 2021 Sheet 11 of 18 US 11,139,959 B2

B ri unencrypted F2FS/reads ~ i;i StrongBox F2FS/reads a □ dm-crypt Ext4/reads
□ □ unencrypted F2FS/writes □ □ StrongBox F2FS/writes □ □ dm-crypt Ext4/writes

3.5 _____________________ 4.2 5.6 ____________ _

~ 3.0
><

LU

B 2.5

2

g 1.5
<D
cu
__J

4K 512K 5M 40M Mean
File Size (bytes)/ Sequential 1/0

FIG. 9A

3.5 --------------------- 4.7 -------------

~ 3.0
><

LU

B 2.5

g 1.5
2
cu

__J

4K 512K 5M 40M Mean
File Size (bytes)/ Random 1/0

FIG. 9B

U.S. Patent Oct. 5, 2021 Sheet 12 of 18 US 11,139,959 B2

B El AES-XTS/reads
~ 8 AES-XTS/writes

~ □ AES-CTR/reads
□ D AES-CTR/writes

2 ---

~ 1.5 -------------------------- -------- ---------------
-= <..:>
cu -= <..:>
.8
--=
-~
cu
E
c5
~

g 0.5
<D
cu
__J

0L.--~11...&.--~-.....1&1..!.,t~-...r.....i.L&~-!o.~-------L..

4K 512K 5M 40M Mean
File Size (bytes)/ F2FS Sequential 1/0

FIG. 10

U.S. Patent Oct. 5, 2021 Sheet 13 of 18 US 11,139,959 B2

1100
\

"'I

RECEIVING A REQUEST TO WRITE DATA TO A MEMORY UNIT, WHEREIN THE MEMORY UNIT
IS DIVIDED INTO ONE OR MORE LOGICAL BLOCKS, EACH OF THE LOGICAL BLOCKS

SUBDIVIDED INTO GROUPS OF SUB-BLOCKS, WHEREIN EACH OF THE LOGICAL BLOCKS MAPS
TO ONE OR MORE PHYSICAL SECTORS OF THE MEMORY UNIT, WHEREIN ANY OF THE SUB-
BLOCKS BEING USED TO STORE INFORMATION ARE ENCRYPTED IN ACCORDANCE WITH A

STREAM CIPHER, WHEREIN THE MEMORY UNIT MAINTAINS A TRANSACTION JOURNAL THAT
MARKS EACH SUB-BLOCK AS EITHER DIRTY OR CLEAN, AND WHEREIN THE MEMORY UNIT

STORES KEYCOUNT VALUES FOR EACH OF THE LOGICAL BLOCKS
,;

1102 \
<i"

I
DETERMINING THAT THE REQUEST SEEKS TO WRITE A PORTION OF THE DATA TO A) PARTICULAR SUB-BLOCK OF THE GROUPS OF SUB-BLOCKS

1104 \
' ,

l DETERMINING THAT THE PARTICULAR SUB-BLOCK IS MARKED AS DIRTY IN THE) TRANSACTION JOURNAL

1106 \
'I'

READING A PARTICULAR LOGICAL BLOCK CONTAINING THE PARTICULAR SUB-BLOCK FROM
THE MEMORY UNIT

~

1108 \
'

DECRYPTING THE PARTICULAR LOGICAL BLOCK IN ACCORDANCE WITH THE STREAM CIPHER)

1110 \
'

WRITING THE PORTION OF THE DATA TO THE PARTICULAR SUB-BLOCK)
j
(~)

FIG. 11A

U.S. Patent Oct. 5, 2021 Sheet 14 of 18 US 11,139,959 B2

(A)

1112 \ .
r ·~

INCREMENTING THE KEYCOUNT VALUE ASSOCIATED WITH THE PARTICULAR LOGICAL BLOCK)

1114 \
'

GENERATING A KEY FOR THE PARTICULAR LOGICAL BLOCK IN ACCORDANCE WITH THE

J STREAM CIPHER
'-

1116 \
'~

" l ENCRYPTING THE PARTICULAR LOGICAL BLOCK USING THE STREAM CIPHER, THE KEY, AND j
THE KEYCOUNT VALUE AS INCREMENTED

~ .,

1118 \
'~

l WRITING THE PARTICULAR LOGICAL BLOCK AS ENCRYPTED TO THE MEMORY UNIT 1 .,

FIG. 11 B

baseline.ram, 1 k-f2fs-dmcrypt

baseline.ram, 1 k-f2fs-vanilla

chacha20.ram.1 k-f2fs-strongbox

,, rabbit.ram.1 k-f2fs-strongbox - ""'!
G) CD en

"
--< en

~
ro
3

~
en

)> salsa12.ram.1 k-f2fs-strongbox

salsa20.ram.1 k-f2fs-strongbox

salsa8.ram.1 k-f2fs-strongbox

sosemanuk.ram.1 k-f2fs-strongbox

' ---->,.

6
<.Tl

Energy u) I Power u/s)

= = <.Tl

en -...J -...J ex:, ex:, = =
<.Tl = <.Tl = <.Tl = <.Tl ======= ,::::: ,::::: ,::::: ,::::: ,::::: ,::::: ,:::::

Duration (seconds)

,-: DJ 177
L-~ L,tj

c:::J -u rn
c:: C> = ---. ::;E CD
o.:> CD ---.
6 --s ~ =

--<

ZH 6S6'6tl'II Sil 81 JO SI J.l.lQS IZOZ 's ·po 1uaJt?d ·s·n

"'TI
G)

...,,,,..Ii.

"' OJ

""'!
CD en

--< en ro
3
en

' ---->,.

baseline.ram, 1 k-f2fs-dmcrypt

'

c:::::::,
<.Tl

Energy u), Power u/s)

= = <.Tl

baseline.ram, 1 k-f2fs-vanilla :

chacha20.ram.1 k-f2fs-strongbox

rabbit.ram.1 k-f2fs-strongbox

salsa12.ram.1 k-f2fs-strongbox

salsa20.ram.1 k-f2fs-strongbox

salsa8.ram.1 k-f2fs-strongbox

sosemanuk.ram.1 k-f2fs-strongbox

'

= = = = = c::::, c::::, c::::, c::::, c::::,
---->,. "-'.> c,-:, ...i::,,. <.Tl

Duration (seconds)

,-: [] 177
L-_,. L.L1
c:::J -u rn
c:: C> = ----. ::;E CD
S:U CD ----.
d --s ~ =

--<

ZH 6S6'6tl'II Sil 81 JO 91 J.l.lQS lZOZ 's ·po 1uaJt?d ·s·n

,, -G)

~

"->
(")

""'!
CD en

--< en

Energy u), Power u/s)

= ---->,. I"-.:> C>.> ...i:,..

baseline.ram,5m-f2fs-dmcrypt Vi , , , , , , , , , •

baseline.ram,5m-f2fs-vanilla

chacha20.ram.5m-f2fs-strongbox

rabbit.ram.5m-f2fs-strongbox h ,,, '"' , , +-, , , , , , .., , , , , , , ,+-, , ,

f salsa12.ram.5m-f2fs-strongbox

salsa20.ram.5m-f2fs-strongbox h ,,, , "' , , h , , , , , .., , ,1, , , , h , , , , ,.

salsa8.ram.5m-f2fs-strongbox h .~ ·",, 1,,, ... , ,, , , , , , , ,, , , , , , , ,., , , ,.

sosemanuk.ram.5m-f2fs-strongbox 1-r" f., ff.,. ff ff ff a,.+ f ..

= = = ---->,. i--...:>
<..T1

Duration (seconds)

= i--...:>
<..T1

,-: [D □ •-~
c:::J --u rn
c:: C> = ----. ::;E CD
S:U CD ----.
d --s ~ =

--<

ZH 6S6'6tl'II Sil 81 JO l I J.l.lQS IZOZ 's ·po 1uaJt?d ·s·n

,, -G')

~

~
C

""'!
CD en

--< en

Energy u), Power u/s)

= I"-.:> C>.> ...i:,..

baseline.ram,5m-f2fs-dmcrypt 1~ • r •• • ••• , , •••

baseline.ram,5m-f2fs-vanilla K' ,,r, ,•,,,,,,,,, ,,, 1,,,,,,, ,,,,,,,,, 1, 1

chacha20.ram.5m-f2fs-strongbox

rabbit.ram.5m-f2fs-strongbox 1 ,, • r •• • •• , ••• •• , •

~ salsa12.ram.5m-f2fs-strongbox 1," , r, ,,, , " , f , ••• •, , • "

salsa20.ram.5m-f2fs-strongbox 1-r 4 ., -f--r ,4., 4 ., -h.,., .,,., ~.,.,,

salsa8.ram.5m-f2fs-strongbox 1-r 4., .f--, .,4., 4., -h.,., .,,., ~.,.,,

sosemanuk.ram.5m-f2fs-strongbox iii , jC, ,£, , ,, , jC, ,£, , ,, , ~, , , , , ,,

====== i---..:> w ~ c...n en ::......i

Duration (seconds)

:--: [D 177
L-.. L_.L1

c:::J ---u rn
c:: C> = ----. ::;E CD
o.:> CD ----.
d --s ~ =

--<

ZH 6S6'6tl'II Sil 81 JO 81 J.l.lQS lZOZ 's ·po 1uaJt?d ·s·n

US 11,139,959 B2
1

STREAM CIPHERS FOR DIGITAL STORAGE
ENCRYPTION

2
based on a stream cipher. Nonetheless, certain types of block
ciphers that mimic aspects of stream ciphers or exhibit
behavior that is in some ways similar to that of stream
ciphers (e.g., AES-CTR) could advantageously employ the CROSS-REFERENCE TO RELATED

APPLICATION 5 embodiments herein.

This application claims priority to U.S. provisional patent
application No. 62/625,148, filed Feb. 1, 2018, which is
hereby incorporated by reference in its entirety.

BACKGROUND

Full drive encryption (FDE) protects the privacy of data
at rest. For mobile devices, maintaining data privacy is
especially important, as these devices contain sensitive 15

personal and financial data yet are easily lost or stolen. The
current standard for securing data at rest is to use the
Advanced Encryption Standard (AES) cipher in XOR-En­
crypt-XOR Tweaked CodeBook with Ciphertext Stealing
(XTS) mode (referred to herein as AES-XTS). However, 20

employing AES-XTS can increase read/write latency by up

Experimental results establish that the embodiments dis­
closed herein, when compared to AES-XTS implementa­
tions, reduce read latencies by as much as a factor of 2 (with
a 1.6x mean improvement), and achieve near parity or

10 provide an improvement in observed write latencies in the
majority of benchmarks (a 1.2x mean improvement). This
write performance is attained despite having to maintain
more metadata.

to 3-5 times compared to unencrypted storage.
Authenticated encryption using stream ciphers, such as

ChaCha20, is faster than using AES. Indeed, some entities
now use a stream cipher for Secure HyperText Transport 25

Protocol (HTTPS) connections to obtain better performance.
Stream ciphers are not used for FDE, however, for reasons
of confidentiality and performance. Regarding confidential­
ity, when applied naively to stored data, stream ciphers are
vulnerable to attacks, including many-time pad and rollback 30

attacks, that reveal plaintext by overwriting a secure storage
location using the same key. Further, it has been assumed
that adding the metadata required to resist these attacks
would ruin the stream cipher's performance advantage.
Thus, the conventional wisdom is that FDE necessarily 35

incurs the overhead of AES-XTS or a similar technique.

SUMMARY

Two technological shifts in mobile device and other 40

hardware overturn this conventional wisdom, enabling con­
fidential, high-performance storage with stream ciphers.
First, these devices commonly use Log-structured File Sys­
tems (LFSs) or functionally equivalent constructions in
hardware/firmware and/or software to increase the lifetime 45

Furthermore, these advances are accompanied by a stron-
ger integrity guarantee than AES-XTS. Whereas XTS mode
only randomizes plaintext when the ciphertext is altered the
embodiments herein provide the security of standard authen­
ticated encryption.

Accordingly, a first example embodiment may involve
receiving a request to write data to a memory unit. The
memory unit may be divided into one or more logical
blocks, each of the logical blocks subdivided into groups of
sub-blocks. Each of the logical blocks maps to one or more
physical sectors of the memory unit. Any of the sub-blocks
being used to store information are encrypted in accordance
with a stream cipher. The memory unit maintains a trans­
action journal that marks each sub-block as either dirty or
clean. The memory unit stores keycount values for each of
the logical blocks. A cryptography software module may
perform steps including: determining that the request seeks
to write a portion of the data to a particular sub-block of the
groups of sub-blocks, determining that the particular sub-
block is marked as dirty in the transaction journal, reading
a particular logical block containing the particular sub-block
from the memory unit, decrypting the particular logical
block in accordance with the stream cipher, writing the
portion of the data to the particular sub-block, incrementing
the keycount value associated with the particular logical
block, generating a key for the particular logical block in
accordance with the stream cipher, encrypting the particular
logical block using the stream cipher, the key, and the
keycount value as incremented, and writing the particular
logical block as encrypted to the memory unit.

In a second example embodiment, a method may be used
to perform operations in accordance with the first example
embodiment.

In a third example embodiment, an article of manufacture
may include a non-transitory computer-readable medium,
having stored thereon program instructions that, upon
execution by a computing system, cause the computing
system to perform operations in accordance with the first

55
example embodiment.

In a fourth example embodiment, a system may include
various means for carrying out each of the operations of the
first example embodiment.

of their flash memory devices (e.g. solid state drives
(SSDs)). Second, mobile devices now support trusted hard­
ware, such as Trusted Execution Environments (TEEs) and
secure storage areas. The use of LFSs limits overwrites to
the same drive sectors; most writes are simply appended to 50

a log, reducing the opportunity for attacks based on over­
writes. The presence of secure hardware means that drive
encryption modules have access to persistent, monotonically
increasing counters that can be used to prevent rollback
attacks when overwrites do occur.

Given these trends, the embodiments herein introduce a
new method for securing data at rest. These embodiments
may be implemented as a drop-in replacement for AES­
XTS-backed FDE modules (i.e., no interface changes). The
primary challenge is that even with an LFS running above an
SSD, filesystem blocks will occasionally be overwritten;
e.g., by segment cleaning or garbage collection. The
embodiments overcome this challenge by using a fast stream
cipher for confidentiality and performance with MAC tags
and a secure, persistent hardware counter to ensure integrity
and prevent attacks. The result is a system design enabling
the first confidential, high-performance drive encryption

These as well as other embodiments, aspects, advantages,

60 and alternatives will become apparent to those of ordinary
skill in the art by reading the following detailed description,
with reference where appropriate to the accompanying
drawings. Further, this summary and other descriptions and
figures provided herein are intended to illustrate embodi-

65 ments by way of example only and, as such, that numerous
variations are possible. For instance, structural elements and
process steps can be rearranged, combined, distributed,

US 11,139,959 B2
3

eliminated, or otherwise changed, while remaining within
the scope of the embodiments as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic drawing of a computing
device, in accordance with example embodiments.

FIG. 2 illustrates a schematic drawing of a server device
cluster, in accordance with example embodiments.

FIG. 3 depicts performance improvements of the embodi­
ments herein over traditional file system structures.

FIG. 4 is a block diagram representing an FDE mecha­
nism, in accordance with example embodiments.

FIG. 5 is a block diagram representing a backing store of
the FDE mechanism, in accordance with example embodi­
ments.

FIG. 6A depicts an algorithm for handling a request to
read from encrypted storage, in accordance with example
embodiments.

FIG. 6B depicts an algorithm for handling a request to
write to encrypted storage, in accordance with example
embodiments.

FIG. 6C depicts an algorithm for rekeying, in accordance
with example embodiments.

4
that the aspects of the present disclosure, as generally
described herein, and illustrated in the figures, can be
arranged, substituted, combined, separated, and designed in
a wide variety of different configurations. For example, the

5 separation of features into "client" and "server" components
may occur in a number of ways.

Further, unless context suggests otherwise, the features
illustrated in each of the figures may be used in combination
with one another. Thus, the figures should be generally

10 viewed as component aspects of one or more overall
embodiments, with the understanding that not all illustrated
features are necessary for each embodiment.

Additionally, any enumeration of elements, blocks, or
steps in this specification or the claims is for purposes of

15 clarity. Thus, such enumeration should not be interpreted to
require or imply that these elements, blocks, or steps adhere
to a particular arrangement or are carried out in a particular
order.
I. Example Computing Devices and Cloud-Based Comput-

20 ing Environments
The following embodiments describe architectural and

operational aspects of example computing devices and sys­
tems that may employ the disclosed FDE implementations,
as well as the features and advantages thereof.

FIG. 7 A illustrates performance results, m accordance 25

with example embodiments.
FIG. 1 is a simplified block diagram exemplifying a

computing device 100, illustrating some of the components
that could be included in a computing device arranged to
operate in accordance with the embodiments herein. Com­
puting device 100 could be a client device (e.g., a device

FIG. 7B illustrates performance results, m accordance
with example embodiments.

FIG. SA illustrates performance results, m accordance
with example embodiments.

FIG. SB illustrates performance results, m accordance
with example embodiments.

FIG. SC illustrates performance results, m accordance
with example embodiments.

30 actively operated by a user), a server device (e.g., a device
that provides computational services to client devices), or
some other type of computational platform. Some server
devices may operate as client devices from time to time in

FIG. SD illustrates performance results, in accordance 35

with example embodiments.

order to perform particular operations, and some client
devices may incorporate server features.

In this example, computing device 100 includes processor
102, memory 104, network interface 106, and an input/
output unit 108, all of which may be coupled by a system bus
110 or a similar mechanism. In some embodiments, com-

FIG. 9A illustrates performance results, m accordance
with example embodiments.

FIG. 9B illustrates performance results, m accordance
with example embodiments.

FIG. 10 illustrates performance results, m accordance
with example embodiments.

FIGS. llA and llB depict a flow chart, in accordance
with example embodiments.

40 puting device 100 may include other components and/or
peripheral devices (e.g., detachable storage, printers, and so
on).

FIG. 12A illustrates performance results, in accordance 45

with example embodiments.

Processor 102 may be one or more of any type of
computer processing element, such as a central processing
unit (CPU), a co-processor (e.g., a mathematics, graphics, or
encryption co-processor), a digital signal processor (DSP), a

FIG. 12B illustrates performance results, in accordance
with example embodiments.

FIG. 12C illustrates performance results, in accordance
with example embodiments.

FIG. 12D illustrates performance results, in accordance
with example embodiments.

DETAILED DESCRIPTION

Example methods, devices, and systems are described
herein. It should be understood that the words "example"
and "exemplary" are used herein to mean "serving as an
example, instance, or illustration." Any embodiment or
feature described herein as being an "example" or "exem­
plary" is not necessarily to be construed as preferred or
advantageous over other embodiments or features unless
stated as such. Thus, other embodiments can be utilized and
other changes can be made without departing from the scope
of the subject matter presented herein.

Accordingly, the example embodiments described herein
are not meant to be limiting. It will be readily understood

network processor, and/or a form of integrated circuit or
controller that performs processor operations. In some cases,
processor 102 may be one or more single-core processors. In

50 other cases, processor 102 may be one or more multi-core
processors with multiple independent processing units. Pro­
cessor 102 may also include register memory for temporar­
ily storing instructions being executed and related data, as
well as cache memory for temporarily storing recently-used

55 instructions and data.
Memory 104 may be any form of computer-usable

memory, including but not limited to random access memory
(RAM), read-only memory (ROM), and non-volatile
memory. This may include flash memory, hard disk drives,

60 solid state drives, re-writable compact discs (CDs), re­
writable digital video discs (DVDs), and/or tape storage, as
just a few examples. Computing device 100 may include
fixed memory as well as one or more removable memory
units, the latter including but not limited to various types of

65 secure digital (SD) cards. Thus, memory 104 represents both
main memory units, as well as long-term storage. Other
types of memory may include biological memory.

US 11,139,959 B2
5

Memory 104 may store program instructions and/or data
on which program instructions may operate. By way of
example, memory 104 may store these program instructions
on a non-transitory, computer-readable medium, such that
the instructions are executable by processor 102 to carry out 5

any of the methods, processes, or operations disclosed in this
specification or the accompanying drawings.

As shown in FIG. 1, memory 104 may include firmware
104A, kernel 104B, and/or applications 104C. Firmware
104Amay be program code used to boot or otherwise initiate 10

some or all of computing device 100. Kernel 104B may be
an operating system, including modules for memory man­
agement, scheduling and management of processes, input/
output, and communication. Kernel 104B may also include

15
device drivers that allow the operating system to commu­
nicate with the hardware modules (e.g., memory units,
networking interfaces, ports, and busses), of computing
device 100. Applications 104C may be one or more user­
space software programs, such as web browsers or email 20

clients, as well as any software libraries used by these
programs. Memory 104 may also store data used by these
and other programs and applications.

Network interface 106 may take the form of one or more
wireline interfaces, such as Ethernet (e.g., Fast Ethernet, 25

Gigabit Ethernet, and so on). Network interface 106 may
also support communication over one or more non-Ethernet
media, such as coaxial cables or power lines, or over
wide-area media, such as Synchronous Optical Networking
(SONET) or digital subscriber line (DSL) technologies. 30

Network interface 106 may additionally take the form of one
or more wireless interfaces, such as IEEE 802.11 (Wifi),
BLUETOOTH®, global positioning system (GPS), or a
wide-area wireless interface. However, other forms of physi-
cal layer interfaces and other types of standard or proprietary 35

communication protocols may be used over network inter­
face 106. Furthermore, network interface 106 may comprise
multiple physical interfaces. For instance, some embodi­
ments of computing device 100 may include Ethernet,
BLUETOOTH®, and Wifi interfaces. 40

Input/output unit 108 may facilitate user and peripheral
device interaction with example computing device 100.
Input/output unit 108 may include one or more types of input
devices, such as a keyboard, a mouse, a touch screen, and so
on. Similarly, input/output unit 108 may include one or more 45

types of output devices, such as a screen, monitor, printer,
and/or one or more light emitting diodes (LEDs). Addition­
ally or alternatively, computing device 100 may communi­
cate with other devices using a universal serial bus (USB) or
high-definition multimedia interface (HDMI) port interface, 50

for example.
In some embodiments, one or more instances of comput­

ing device 100 may be deployed to support a clustered
architecture. The exact physical location, connectivity, and
configuration of these computing devices may be unknown 55

and/or unimportant to client devices. Accordingly, the com­
puting devices may be referred to as "cloud-based" devices
that may be housed at various remote data center locations.

FIG. 2 depicts a cloud-based server cluster 200 in accor­
dance with example embodiments. In FIG. 2, operations of 60

a computing device (e.g., computing device 100) may be
distributed between server devices 202, data storage 204,
and routers 206, all of which may be connected by local
cluster network 208. The number of server devices 202, data
storages 204, and routers 206 in server cluster 200 may 65

depend on the computing task(s) and/or applications
assigned to server cluster 200.

6
For example, server devices 202 can be configured to

perform various computing tasks of computing device 100.
Thus, computing tasks can be distributed among one or more
of server devices 202. To the extent that these computing
tasks can be performed in parallel, such a distribution of
tasks may reduce the total time to complete these tasks and
return a result. For purpose of simplicity, both server cluster
200 and individual server devices 202 may be referred to as
a "server device." This nomenclature should be understood
to imply that one or more distinct server devices, data
storage devices, and cluster routers may be involved in
server device operations.

Data storage 204 may be data storage arrays that include
drive array controllers configured to manage read and write
access to groups of hard disk drives and/or solid state drives.
The drive array controllers, alone or in conjunction with
server devices 202, may also be configured to manage
backup or redundant copies of the data stored in data storage
204 to protect against drive failures or other types of failures
that prevent one or more of server devices 202 from access­
ing units of cluster data storage 204. Other types of memory
aside from drives may be used.

Routers 206 may include networking equipment config­
ured to provide internal and external communications for
server cluster 200. For example, routers 206 may include
one or more packet-switching and/or routing devices (in­
cluding switches and/or gateways) configured to provide (i)
network communications between server devices 202 and
data storage 204 via cluster network 208, and/or (ii) network
communications between the server cluster 200 and other
devices via communication link 210 to network 212.

Additionally, the configuration of cluster routers 206 can
be based at least in part on the data communication require­
ments of server devices 202 and data storage 204, the
latency and throughput of the local cluster network 208, the
latency, throughput, and cost of communication link 210,
and/or other factors that may contribute to the cost, speed,
fault-tolerance, resiliency, efficiency and/or other design
goals of the system architecture.

As a possible example, data storage 204 may include any
form of database, such as a structured query language (SQL)
database. Various types of data structures may store the
information in such a database, including but not limited to
tables, arrays, lists, trees, and tuples. Furthermore, any
databases in data storage 204 may be monolithic or distrib­
uted across multiple physical devices.

Server devices 202 may be configured to transmit data to
and receive data from cluster data storage 204. This trans­
mission and retrieval may take the form of SQL queries or
other types of database queries, and the output of such
queries, respectively. Additional text, images, video, and/or
audio may be included as well. Furthermore, server devices
202 may organize the received data into web page repre­
sentations. Such a representation may take the form of a
markup language, such as the hypertext markup language
(HTML), the extensible markup language (XML), or some
other standardized or proprietary format. Moreover, server
devices 202 may have the capability of executing various
types of computerized scripting languages, such as but not
limited to Perl, Python, PHP Hypertext Preprocessor (PHP),
Active Server Pages (ASP), JavaScript, and so on. Computer
program code written in these languages may facilitate the
providing of web pages to client devices, as well as client
device interaction with the web pages.
II. Using Stream Ciphers with FDE

One of the motivations for the embodiments herein is the
speed of stream ciphers compared to other types of ciphers,

US 11,139,959 B2
7

such as block ciphers. In general, block ciphers operate on
fixed-length blocks of bits, each encoded using the same
transformation and symmetric key. AES is an example of a
block cipher. For FDE applications, various modifications to
block ciphers has been proposed and put into use. As an
example, XTS mode uses cipher block chaining (CBC) to
combine (typically by way of an XOR operation) the pre­
vious block's ciphertext with the current block's plaintext.
Thus, the decryption of one block depends on the decryption
of all previous blocks. XTS mode also used different keys
for encryption of the initial block and later blocks of the
plaintext. In practice, however, XTS mode does not support
detection of tampering in and of itself, and can be suscep­
tible to traffic analysis, replay and randomization attacks.

5

10

In contrast, a stream cipher involves plaintext digits being 15

combined with a pseudorandom cipher digit stream (referred
to as a keystream). Each plaintext digit is encrypted with the
corresponding digit of the keystream, to give a digit of the
resulting ciphertext stream. Thus, encryption of each digit is
dependent on the current state of the cipher (in some 20

variations, the encryption may also depend upon previously­
processed ciphertext digits). In practice, a digit is typically
a bit and the combining operation is typically an XOR. The
keystream can be generated serially from a random seed
value using digital shift registers. The seed value serves as 25

the cryptographic key for decrypting the ciphertext stream.
To be secure, the keystream should be virtually indistin­
guishable from random noise.

One of the main advantages of stream ciphers over other
types of ciphers is speed. An Exynos Octa processor with an 30

ARM big.LITTLE architecture was used to compare AES­
XTS to the stream cipher ChaCha20+Polyl305. Particularly,
250 megabytes of randomly-generated bits were encrypted
and decrypted three times, and the median time for each of
encryption and decryption was recorded. Use of the stream 35

cipher resulted in a 2.7x reduction of run time, as illustrated
in FIG. 3.

8
ing file system, whereas LogFS, NILFS, and F2FS are LFSs.
A journaling file system provides a separate log for tracking
changes in files, but overwrites files in place.

TABLE 1

File System Total Write Operations Overwrites

Ext4 16,756 10,787
LogFS 4,244 32
NILFS 4,199 24
F2FS 2,107 2

The number of total writes to the underlying block device
and the number of times data was overwritten for each file
system was counted and is shown in Table 1. In the results,
Ext4 exhibits the highest number of writes, but many of
those are small writes for book-keeping purposes. Ext4 also
has the largest number of overwrites, as almost 65% of the
writes are to a previously written location in the backing
store (here, the backing store is the underlying memory
device). In contrast, all three log-structured file systems have
very few overwrites.

Use of a stream cipher has the advantage of being more
than twice as fast as AES-XTS, while providing the same
confidentiality guarantee. The problem is that the stream
cipher is not secure if the same key is used to overwrite the
same storage location. Fortunately, the LFSs rarely over­
write the same location. This makes stream ciphers a good
candidate for securing data stored in an LFS. Nonetheless,
overwrites to an LFS do occur. While Table 1 shows
overwrites are rare during normal operation, they will occur
when garbage collecting the LFS. Thus, the embodiments
here may use metadata to track writes and ensure that data
is re-keyed if overwrites occur.

Overall, there are three main challenges to replacing AES
with a stream cipher for FDE: (i) tracking writes to the
memory to ensure that the same location is not overwritten
with the same key, (ii) ensuring that the metadata that tracks
these writes is secure and not subject to leaks or rollback

Still, stream ciphers are not designed to encrypt data at
rest. In a naive implementation ofFDE with a stream cipher,
overwriting the same memory location with the same key
would trivially allow an attacker to recover the secret key.
Thus, stream ciphers may be better suited for encrypting
block devices using Log-structured File Systems (LFSs).

40 attacks, (iii) accomplishing these tasks efficiently so that the
performance advantage of the stream cipher is maintained.

These challenges can be met by using a secure, persistent
counter supported in modem mobile hardware; e.g., for
limiting password attempts. This counter can track writes, A traditional file system writes files to a storage medium

in order to leverage spatial and temporal locality-of-refer­
ence, as well as to be able to make in-place changes to data
structures. On the other hand, an LFS divides the storage
medium into segments and writes files to each segment in
the form of logs. Rather than overwrite an existing location,
the LFS places new writes at the end of the log, and reclaims
storage space through garbage collection on older log
entries. As a result, multiple versions of a file can be
supported, and storage integrity activities after a crash are
simpler.

45 and thus versions of the encrypted data. If an attacker tried
to roll back the file system to overwrite the same location
with the same key, the implementation detects that the local
version number is out of sync with the global version
number stored in the secure counter. In that case, the system

50 refuses to initialize, and the attack fails. The use of the
hardware-supported secure counter significantly raises the
bar when it comes to rollback attacks, requiring a costly and
non-discrete physical attack on the hardware itself to be
effective. Nonetheless, the actual structure of the metadata

55 required to track writes and maintain integrity is more
complicated than simply implementing a counter and is
described in detail below.

Since LFSs are designed to append data to the end of a log
rather than overwrite data, they are a good fit for stream
ciphers, as it is highly unlikely that the same memory
location would be overwritten using the same key. In prac­
tice, some overwrites occur; e.g., in metadata, but they are
small in number during normal execution. Notably, although 60

some of the embodiments herein and the associated experi­
mental results assume an LFS, the embodiments can be used
with and are likely to produce improvements when
employed on other types of file systems as well.

As an example, 800 megabytes of random data was 65

written directly to a memory module using four different file
systems: Ext4, LogFS, NILFS, and F2FS. Ext4 is a journal-

An additional challenge is that of crash recovery. The
embodiments herein rely on the overlying filesystem to
manage data recovery in the event of a crash that leaves user
data in an inconsistent state. Metadata recovery is addressed
after a crash by giving the root user the option to accept the
current metadata state as the new consistent state, i.e., "force
mounting" the filesystem. An attacker might try to take
advantage of this feature by modifying the memory, forcing
an inconsistent state, and hoping the root user will ignore it
and force mount the system anyway. The embodiments

US 11,139,959 B2
9 10

defend against this attack by preventing force mounts when
the metadata state is wildly inconsistent with the global
version counter. Otherwise, the root user is warned if they
attempt a force mount. Thus, attacking by forcing a crash
can only be successful if the attacker also has root permis- 5

sion, in which case security is already compromised.

of one or more physical disk blocks, depending on its
configured size. Each nugget is subdivided into a constant
number of sub-blocks referred to as flakes. The reason for
these nugget/flake divisions are two-fold: (i) to limit the
maximum length of any plaintext operated on by the cryp­
tographic driver, decreasing the overhead incurred per I/O

III. Example Architecture operation, and (ii) to track, detect, and handle overwrites.
When a request comes in to write to one or more flakes in

a nugget, the affected flakes are marked "dirty." Here, the
10 marking of dirty implies that another write to some portion

of that flake would constitute an overwrite. If a new request
comes in to write to one or more of those same flakes another
time, a rekeying procedure over the entire nugget is trig-

The embodiments herein act as a translation layer placed
between the disk and the operating system. They provide
confidentiality and integrity guarantees while mitigating
performance loss due to metadata management overhead.
This is accomplished by leveraging the speed of stream
ciphers over the AES block cipher and taking advantage of
the append-mostly nature of Log-Structured Filesystems 15

(LFS) and modem Flash Translation Layers (FTL).

gered to safely overwrite the old data in those flakes. This
rekeying procedure may be time consuming, adding to the
overhead of overwrites.

Header

VERSION

SALT

TABLE 2

Length Description

4 bytes Specifies tbe version of tbe encryption software used to
initialize the backing store.

MTRH
TPMGLOBALVER

16 bytes The salt used in part to derive tbe global master secret.
32 bytes Hash of tbe Merkle Tree root.

8 bytes The monotonic global version count, in hardware­
supported secure storage.

VERIFICATION

NUMNUGGETS
FLAKESPERNUGGET
FLAKE SIZE
INITIALIZED

32 bytes Used to determine if tbe key derived from a password is
correct.

4 bytes The number of nuggets contained by tbe backing store.
4 bytes The number of flakes per nugget.
4 bytes The size of each flake, in bytes.
1 byte Used to determine whetber tbe backing store has been

properly initialized.
REKEYING

Hence, there are several locations where the implemen-
35

4 bytes The index of tbe nugget in need of rekeying if tbere is a
pending rekeying procedure.

tation could be positioned in the system stack. It could be
integrated into an LFS filesystem module itself, e.g., F2FS,
specifically leveraging the flexibility of the Virtual Filesys­
tem Switch (VFS). Alternatively or additionally, it could be 40

The head of the backing store contains the metadata
written to disk during initialization. These headers govern
operation and are described in more detail in Table 2. After
the headers, two byte arrays are stored in the Head section.
One is an array of N 8-byte integer keycounts and one of N
[P/8] byte transaction journal entries, where N is the number
of nuggets and P is the number of flakes per nugget. The
Rekeying Journal is stored at the end of the Head section.
The rekeying journal is where nuggets and their associated

implemented as an actual block device or virtual block
device layered atop a physical block device (the latter is
where the implementation described herein operates). Alter­
natively or additionally, it could even be implemented within
the on-disk SSD controller managing the flash translation
layer (scatter gather, garbage collection, wear-leveling, etc.).

FIG. 4 depicts an example design. The metadata is encap­
sulated in four components: an in-memory Merkle Tree and
two disk-backed byte arrays, the keycount store and the
transaction journal, and a persistent monotonic counter
(implemented with the replay protected memory block, or
RPMB). All four are integrated with the Cryptographic
Driver, which handles data encryption, verification, and
decryption during interactions with the underlying backing
store. These interactions take place while fulfilling high­
level I/O requests received from the overlying LFS. The
Device Controller handles low-level I/O between the Cryp­
tographic Driver and the backing store.

A. Backing Store Function and Layout
FIG. 5 depicts a possible backing store layout. In the body

section of the backing store, application data is partitioned
into a series of same-size logical blocks. These logical
blocks are distinct from the concept of physical disk blocks,
which are collections of one or more disk sectors. To make
this distinction clear, the logical blocks are referred to as
nuggets, marked NUG in FIG. 5. Hence, a nugget consists

45 metadata are transiently written, so that rekeying can be
resumed in the event that it is interrupted.

B. Metadata-Aware Cryptographic Driver
The cryptographic driver coordinates the system's dispa­

rate components. Its primary function is to map incoming
50 reads and writes to their proper destinations in the backing

store, applying the chosen stream cipher and message
authentication code to encrypt, verify, and decrypt data on
the fly with consideration for metadata management.

When a read request is received, it is first partitioned into
55 affected nuggets; i.e., a read that spans two nuggets is

partitioned in half. For each nugget affected, the flakes
touched by the request are determined. Then, the contents of
those flakes are verified. If all the flakes are valid, whatever
subset of data that was requested by the user is decrypted

60 and returned. Algorithm 1 as shown in FIG. 6A details the
read operation.

Like reads, when a write request is received, the request
is first partitioned with respect to affected nuggets. For each
affected nugget, which flakes are touched by the request are

65 determined. These flakes are checked if any are marked as
dirty in the transaction journal. If one or more of them have
been marked dirty, rekeying for these specific nuggets is

US 11,139,959 B2
11

triggered. Rekeying is detailed in Algoritlnn 3 in FIG. 6C.
Otherwise, the touched flakes are marked as dirty in the
transaction journal. Then, the touched flakes are iterated
over. For the first and last flakes touched by the write
request, an internal read request is executed (Algoritlnn 1 in 5

FIG. 6A) to both obtain the flake data and verify that data
with the Merkle Tree. Then, every touched flake is over­
written with the data from the requested operation, the
Merkle Tree is updated to reflect this change, and the new
flake data is written and encrypted. Then, all corresponding 10

metadata is committed. Algoritlnn 2 in FIG. 6B details the
write operation.

Herein, a Merkle Tree may be referred to as a hash tree.

12
handled specially in that the bit vectors are MACed and the
result is appended to the Merkle Tree. This is done to save
space.

3. Keycount Store
To prevent a many-time pad attack, each nugget is

assigned its own form of nonce referred to as a keycount.
The keycount store in FIG. 4 represents a byte-array con­
taining N 8-byte integer keycounts indexed to each nugget.
Along with acting as the per-nugget nonce consumed by the
stream cipher, the keycount is used to derive the per-flake
unique subkeys used in MAC tag generation.

4. Rekeying Procedure
When a write request would constitute an overwrite, the

In such a tree, each leaf node contains a cryptographic hash
15

system triggers a rekeying process instead of executing the
write normally. This rekeying process allows the write to
proceed without causing a catastrophic confidentiality vio­
lation.

of a flake, and every non-leaf node contains a cryptographic
hash of its child nodes. This allows efficient verification of
large amounts of data. The cryptographic hash may be any
one-way function that maps an input bit string (potentially of
arbitrary size) to an output bit string (potentially of fixed 20

size). Regardless, the embodiments herein are not limited to
using Merkle Trees or hash trees, and other types of data
verification mechanisms may be used. For instance, an
SHA-based c-struct implementation, a Tiger tree, a Fletcher­
based tree of pointers, other Merkle Tree variations, or any 25

other algoritlnn that can unify the state of all tags such that
any change is immediately evident can be used.

1. Transaction Journal

When rekeying begins, the nugget in question is loaded
into memory and decrypted. The target data is written into
its proper offset in this decrypted nugget. The nugget is then
encrypted, this time with a different nonce (keycount+l),
and written to the backing store, replacing the outdated
nugget data. Algoritlnn 3 in FIG. 6C details this procedure.

C. Defending Against Rollback Attacks
To prevent making overwrites, the status of each flake is

tracked and overwrites trigger a rekeying procedure. Track­
ing flake status alone is not enough, however. An attacker
could take a snapshot of the backing store in its current state An overwrite breaks the security guarantee offered by any

stream cipher. To prevent this failure, the embodiments
herein track incoming write requests to prevent overwrites.
This tracking is done with the transaction journal of FIG. 4.

30 and then easily rollback to a previously valid state. At this
point, the attacker could have the system make writes that it
does not recognize as overwrites.

With AES-XTS, the threat posed by rolling the backing
store to a previously valid state is outside of its threat model. The transaction journal consists of N [P/8]-byte bit vec­

tors, where N is the number of nuggets and P is the number
of flakes per nugget. A bit vector v contains at least P
bits=b0b1b2 , ... , bp_1 , ... , with extra bits ignored. Each
vector is associated with a nugget and each bit with a flake
belonging to that nugget. When an incoming write request
occurs, the corresponding bit vector is updated (set to 1) to
reflect the new dirty state of those flakes.

35 Despite this, data confidentiality guaranteed by AES-XTS
holds in the event of a rollback, even if integrity is violated.
The embodiments herein use a monotonic global version
counter to detect rollbacks. When a rollback is detected, the
system refuses to initialize unless forced, using root permis-

40 sion. Whenever a write request is completed, this global
version counter is committed to the backing store, commit­
ted to secure hardware, and updated in the in-memory
Merkle Tree.

The transaction journal is referenced during each write
request, where it is updated to reflect the state of the nugget
and checked to ensure the operation does not constitute an
overwrite. If the operation does constitute an overwrite, a 45

rekeying procedure is triggered for the entire nugget before
safely completing the request.

2. Merkle Tree

D. Recovering From Inconsistent State
If the system is interrupted during operation, the backing

store----consisting of user data and metadata----can be left in
an inconsistent state. The system relies on the overlying
filesystem (e.g., F2FS) to manage user-data recovery, which
is what these filesystems are designed to do and do well. The Tracking writes with the transaction journal may stymie a

passive attacker by preventing explicit overwrites, but a
sufficiently motivated active attacker could resort to all
manner of cut-and-paste tactics with nuggets, flakes, and
even blocks and sectors. If, for example, an attacker pur­
posefully zeroed-out the transaction journal entry pertaining

50 system handles its own inconsistent metadata.

to a specific nugget in some out-of-band manner, such as 55

when the system is shut down and then later re-initialized
with the same backing store, the system would consider any
successive incoming writes as if the nugget were in a
completely clean state, even though it actually is not. This
attack would force compromising overwrites. To prevent 60

such attacks, it can be ensured that the backing store is
always in a valid state. More concretely, there should be an
integrity guarantee on top of a confidentiality guarantee.

The system uses a Message Authentication Code (MAC)
algoritlnn and each flake's unique key to generate a per-flake 65

MAC tag. Each tag is then appended to the Merkle Tree
along with metadata. The transaction journal entries are

Let c be the value of the on-chip monotonic global version
counter and d be the value of the on-disk global version
counter header (TPMGLOBALVER). Consider the follow­
ing cases.

Case 1:c==d and MTRH is consistent: The system is
operating normally and will mount without issue.

Case 2:c<d or c==d but MTRH is inconsistent: Since the
global version counter is updated before any write, this case
cannot be reached unless the backing store was manipulated
by an attacker. So, the system refuses to initialize and cannot
be force mounted.

Case 3:c>d+l: Since the global version counter is updated
once per write, this case cannot be reached unless the
backing store was rolled back or otherwise manipulated by
an attacker. In this case, the root user is warned and the
system refuses to initialize and cannot be force mounted
unless the MTRH is consistent. The root user can force

US 11,139,959 B2
13

mount if the root user initiated the rollback themselves, such
as when recovering from a disk backup.

14
this implementation, the system interacts with TPM/TEE
secure storage only at mount time, where the authentication
key can be retrieved and cached for the duration of the
system's lifetime. With the cached key on hand, the imple-

Case 4:c==d+l: In this case, the system likely crashed
during a write, perhaps during an attempted rekeying. If the
rekeying journal is empty or the system cannot complete the
rekeying and/or bring the MTRH into a consistent state, the
root user is warned and allowed to force mount. Otherwise,
the system will not initialize

5 mentation makes traditional IOCTL calls to read and write
global version counter data to the RPMB eMMC partition,
enforcing the invariant that it only increase monotonically.

For subsequent rekeying efforts in the latter two cases,
rather than incrementing the corresponding keystore coun- 10

ters by 1 during rekeying, they are incremented by 2. This
is done to prevent potential reuse of any derived nugget keys
that might have been in use right before the system crashed.

The design is not dependent on the eMMC standard,
however. Trusted hardware mechanisms other than the
eMMC RPMB partition, including TPMs, support secure,
persistent storage and/or monotonic counters directly. These
can be adapted for use as well. Further, any interface that
makes secure monotonic counters available can be used. For
example, if a future operating system or hypervisor provided
secure monotonic counters, that could be used instead.

There are two practical concerns to be addressed while
implementing the secure counter: wear and performance
overhead. Wear is a concern because the counter is imple­
mented in non-volatile storage. The RPMB implements all

Thus, when the system can detect tampering, it will not
initialize. When the system cannot distinguish between 15

tampering and a crash, it offers the root user a choice to force
mount. Thus, an attacker could force a crash and use root
access to force mount. It is assumed, however, that if an
attacker has root access to a device, its security is already
compromised. 20 the same wear protection mechanisms that are used to store

user-data. Additionally, the system writes to the global
version counter once per write to user-data. Given that the
eMMC implements the same wear protection for the RPMB

IV. Example Implementation
An example implementation of the embodiments

described herein is comprised of 5000 lines of C code.
Libraries used include OpenSSL version 1.0.2 and LibSo­
dium version 1.0.12 for its ChaCha20, Argon2, Blake2, and 25

AES-XTS implementations, likewise implemented in C.
The SHA-256 Merkle Tree implementation is borrowed
from the Secure Block Device library. To reduce the com­
plexity of the experimental setup and allow execution in user
space, a virtual device interface is provided through the 30

BUSE virtual block device layer, itself based on the Network
Block Device (NBD).

A. Deriving Subkeys
The cryptographic driver uses a shared master secret. The

derivation of this master secret is implementation specific 35

and has no impact on performance as it is completed during
initialization. The implementation uses the Argon2 KDF to
derive a master secret from a given password with an
acceptable time-memory trade-off.

To assign each nugget its own unique keystream, each 40

nugget uses a unique key and associated nonce. These
nugget subkeys are derived from the master secret during
initialization. To guarantee the backing store's integrity,
each flake is tagged with a MAC. In this example imple­
mentation, the Polyl305 MAC is used, accepting a 32-byte 45

one-time key and a plaintext of arbitrary length to generate
tags. These one-time flake subkeys are derived from their
respective nugget subkeys. In alternative embodiments, a
hash-based message authentication code (HMAC), message
authentication code based on universal hashing (UMAC), 50

vhash-based message authentication code (VMAC), non­
keyed hashing function (e.g., SHA2), or any other algorithm
that can securely map a block of data to a unique tag could
be used.

and user data, and that the ratio of writes to these areas is 1: 1,
it is expected that the system places no additional wear
burden on the hardware. Further, with the JEDEC spec
suggesting RPMB implementations use more durable and
faster single-level NAND flash cells rather than cheaper and
slower multi-level NAND flash cells, the RPMB partition
will likely outlive and outperform the user-data portion of
the eMMC.

In terms of performance overhead, updating the global
version counter involves making one 64-bit authenticated
write per user-data write. As user-data writes are almost
always substantially larger, there is no significant overhead
from the using the RPMB to store the secure counter.

C. LFS Garbage Collection
An LFS attempts to write to a drive sequentially in an

append-only fashion, as if writing to a log. This requires
large amounts of contiguous space, called segments. Since
any backing store is necessarily finite, an LFS can only
append so much data before it runs out of space. When this
occurs, the LFS triggers a segment cleaning algorithm to
erase outdated data and compress the remainder of the log
into as few segments as possible. This procedure is kuown
more broadly as garbage collection.

In the context of the embodiments herein, garbage col-
lection could potentially incur high overhead. The procedure
itself would, with its every write, require a rekeying of any
affected nuggets. Worse, every proceeding write would
appear to the system as if it were an overwrite, since there
is no way for the system to kuow that the LFS triggered
garbage collection internally.

In practice, modem production LFSes are optimized to
B. A Secure, Persistent, Monotonic Counter
The target platform uses an embedded Multi-Media Card

(eMMC) as a backing store. In addition to boot and user data
partitions, the eMMC standard includes a secure storage
partition called a Replay Protected Memory Block (RPMB).
The RPMB partition's size is configurable to be at most 16
megabytes (32 megabytes on some devices). All read and
write commands issued to the RPMB are authenticated by a
key burned into write-once storage (typically eFUSE) during

55 perform garbage collection as few times as possible. Further,
they often perform garbage collection in a background
thread that triggers when the filesystem is idle and only
perform expensive on-demand garbage collection when the
backing store is nearing capacity. Garbage collection was

60 turned on for all tests and there was no substantial perfor­
mance degradation from this process because it is scheduled
not to interfere with user I/O.

a one-time, secure initialization process.
To implement rollback protection on top of the RPMB, 65

the key for authenticating RPMB commands can be con­
tained in TEE sealed storage or derived from the TPM. For

D. Overhead
The system stores metadata on the drive it is encrypting

(see FIG. 5). This metadata should be small compared to the
user data. The implementation uses 4-kilobyte flakes, 256
flakes/nugget, and 1024 nuggets per gigabytes of user data.

US 11,139,959 B2
15 16

AES-XTS as its full-disk encryption algorithm. All other
parameters were left at their default values.

FIGS. 7A and 7B compare the embodiments herein to
dm-crypt under the F2FS filesystem. The gamut of result

Given the flake and nugget overhead, this configuration
requires just over 40 kilobytes of metadata per 1 gigabyte of
user data. There is an additional, single static header that
requires just over 200 bytes. Thus, the system's overhead in
terms of storage is less than one hundredth of a percent. 5 sets over different filesystems can be seen in FIG. SA-SD.

V. Experimental Evaluation
A. Setup
A prototype was implemented on a Hardkernel Odroid

XU3 ARM big.LITTLE system (Samsung Exynos 5422 Al 5
and A7 quad core CPUs, 2 gigabytes of LPDDR3 RAM, 10

eMMC5.0 HS400 backing store) running Ubuntu Trusty
14.04 LTS, kernel version 3.10.58.

B. Methodology
To evaluate the performance of the embodiments herein,

the latency (seconds/milliseconds per operation) of both 15

sequential and random read and write I/O operations across
four different standard Linux filesystems was measured.
These filesystems are NILFS2, F2FS, Ext4 in ordered jour­
naling mode, and Ext4 in full journaling mode. The I/O
operations were performed using file sizes between 4 kilo- 20

bytes and 40 megabytes. These files were populated with
random data. The experiments were performed using a
standard Linux ramdisk (tmpfs) as the ultimate backing
store.

FIGS. 9A and 9B compare Ext4 with dm-crypt to F2FS with
the embodiments herein. In these figures, an implementation
of the embodiments herein is referred to as "StrongBox".
However, other implementations are possible.

C. Read Performance
FIGS. 7A and 7B show the read performance of the

embodiments herein in comparison to dm-crypt, both
mounted with the F2FS filesystem. The disclosed embodi­
ments improve on the performance of dm-crypt's AES-XTS
implementation across sequential and random read opera­
tions on all file sizes. Specifically, the improvements are
2.07x for sequential 40-megabyte reads, 2.08x for sequen­
tial 5-megabyte reads, 1.85x for sequential 512-kilobyte
reads, and 1.03x for sequential 4-kilobyte reads.

FIGS. SA and SC provide an expanded performance
profile, testing a gamut of filesystems broken down by
workload file size. For sequential reads across all filesystems
and file sizes, the implementations herein outperform dm­
crypt. This is true even on the non-LFS Ext4 filesystems.

Ext4's default mode is ordered journaling mode
(data=ordered), where metadata is committed to the filesys­
tem' s journal while the actual data is written through to the
main filesystem. In the case of a crash, the filesystem uses
the journal to avoid damage and recover to a consistent state.
Full journaling mode (data journal) journals both metadata
and the filesystem's actual data-essentially a double write­
back for each write operation. In the case of a crash, the
journal can replay entire I/O events so that both the filesys­
tem and its data can be recovered. Both modes of Ext4 were

25 Specifically, read performance improvements over dm-crypt
AES-XTS for 40-megabyte sequential reads are 2.02x for
NILFS, 2.07x for F2FS, 2.09x for Ext4 in ordered journaling
mode, and 2.06x for Ext4 in full journaling mode. For
smaller file sizes, the performance improvement is less

30 pronounced. For 4-kilobyte reads, the improvements are
1.28x for NILFS, 1.03x for F2FS, 1.07x for Ext4 in ordered
journaling mode, and 1.04x for Ext4 in full journaling mode.
When it comes to random reads, there are virtually identical

considered to further explore the impact of frequent over- 35

writes.
The experiment consists of reading and writing each file

in its entirety 30 times sequentially, and then reading and
writing random portions of each file 30 times. In both cases,
the same amount of data is read and written per file. The 40

median latency is taken per result set. The choice of 30
read/write operations (10 read/write operations repeated
three times each) was to handle potential variation. The
Linux page cache is dropped before every read operation,
each file is opened in synchronous I/O mode via O_SYNC, 45

and non-buffered read()/write() system calls were used. A
high-level I/O size of 128 kilobytes was used for all read and
write calls that impact the filesystems; however, the I/O
requests being made at the block device layer varied
between 4 kilobytes and 128 kilobytes depending on the 50

filesystem under test.
The experiment was repeated on each filesystem in three

different configurations. The first configuration is unen­
crypted. The filesystem is mounted atop a BUSE virtual
block device set up to immediately pass through any incom- 55

ing I/O requests straight to the backing store. This is the
baseline measurement of the filesystem's performance with­
out any encryption. The second configuration uses the
embodiments herein. The filesystem is mounted atop a
BUSE virtual block device, provided by the implementation 60

described above, to perform full-disk encryption. The third
configuration uses dm-crypt. The filesystem is mounted atop
a Device Mapper higher-level virtual block device provided
by dm-crypt to perform full-disk encryption, which itself is
mounted atop a BUSE virtual block device with pass 65

through behavior identical to the device used in the baseline
configuration. The dm-crypt module was configured to use

results save for 4-kilobyte reads, where dm-crypt proved
very slightly more performant under the NILFS LFS at
1.12x. This behavior is not observed with the more modern
F2FS.

D. Write Performance
FIGS. 7A and 7B show the performance of the embodi­

ments herein in comparison to dm-crypt under the modern
F2FS LFS broken down by workload file size. Similar to
read performance under the F2FS, these embodiments
improve on the performance of dm-crypt's AES-XTS imple­
mentation across sequential and random write operations on
all file sizes. Hence, the embodiments herein under F2FS are
holistically faster than dm-crypt under F2FS. Specifically,
the improvements are 1.33x for sequential 40-megabyte
writes, 1.21x for sequential 5-megabyte writes, 1.15x for
sequential 512-kilobyte writes, and 1.19x for sequential
4-kilobyte writes.

FIGS. SB and SD show an expanded performance profile,
testing a gamut offilesystems broken down by workload file
size. Unlike read performance, write performance under
certain filesystems shows some improvements but not for all
tests. For 40-megabyte sequential writes, the embodiments
herein outperform dm-crypt's AES-XTS implementation by
1.33x for F2FS and 1.18x for NILFS. When it comes to
Ext4, write performance drops, with a 3.6x slowdown for
both ordered journaling and full journaling modes. For
non-LFS 4-kilobyte writes, the performance degradation is
even more pronounced with a 8.09x slowdown for ordered
journaling and 14.5x slowdown for full journaling.

This slowdown occurs in Ext4 because, while writes from
non-LFS filesystems have a metadata overhead that is com­
parable to that of forward writes in an LFS filesystem, Ext4
is not an append-only or append-mostly filesystem. This
means that, at any time, Ext4 will initiate one or more

US 11,139,959 B2
17 18

overwrites anywhere on the disk (see Table 1). As described
above, overwrites, once detected, trigger the rekeying pro­
cess, which is a relatively expensive operation. Multiple
overwrites compound this expense further. This makes Ext4
and other filesystems that do not exhibit at least append- 5

mostly behavior likely unsuitable for use with the embodi­
ments herein.

abstractions. Efficient memory use was not a goal of the
implementation. In an implementation aiming to be produc­
tion ready, much more memory efficient data structures
would be utilized.

It is also for this reason that populating the Merkle Tree
necessitates a rather lengthy mounting process. In tests, a
I-gigabyte backing store on the Odroid system can take as
long as 15 seconds to mount. For both sequential and random 4-kilobyte writes among

the LFSs, the performance improvement over dm-crypt's
AES-XTS implementation for LFSs deflates. For the more 10

modern F2FS atop the embodiments herein, there is a 1.19x
improvement. For the older NILFS filesystem atop the
embodiments herein, there is a 2.38x slowdown. This is
where the overhead associated with tracking writes and

15
detecting overwrites potentially becoming problematic,
though the overhead is negligible depending on choice of
LFS and workload characteristics.

F. ChaCha20 vs. AES Performance
FIGS. 7A-8D give strong evidence for general perfor­

mance improvement over dm-crypt not being an artifact of
filesystem choice. Excluding Ext4 as a non-LFS filesystem,
tests show that the embodiments herein outperform dm­
crypt under an LFS filesystem in the vast majority of
outcomes.

FIG. 10 depicts the relationship between ChaCha20, the
stream cipher used in the tested implementation, and the
AES cipher. The dm-crypt module implements AES in XTS
mode to provide full-disk encryption functionality. Swap-These results show that the embodiments herein are

sensitive to the behavior of the LFS that is mounted atop it,
and that any practical use would require an extra profiling
step to determine which LFS works best with a specific
workload. With the correct selection of LFS, such as F2FS
for workloads dominated by small write operations, poten­
tial slowdowns when compared to mounting that same
filesystem over dm-crypt's AES-XTS can be effectively
mitigated.

E. Replacing dm-crypt and Ext4
FIGS. 9A and 9B show the performance benefit of using

the embodiments herein with F2FS over the popular dm­
crypt with Ext4 in ordered journaling mode combination for
both sequential and random read and write operations of
various sizes. Other than 4-kilobyte write operations, which
is an instance where baseline F2FS without modification is
simply slower than baseline Ext4 without dm-crypt, the
embodiments herein with F2FS outperforms dm-crypt's
AES-XTS implementation with Ext4.

These results show that configurations taking advantage
of the popular combination of dm-crypt, AES-XTS, and
Ext4 could see a significant improvement in read perfor-

Attack

20 ping out ChaCha20 for AES-CTR (AES in CTR mode
makes AES act as if it was a stream cipher) resulted in
slowdowns of up to 1.33x for reads and 1.15x for writes
across all configurations, as shown in FIG. 10.

Finally, tests were carried out to determine whether the
25 general performance improvement can be attributed to the

implementation of the embodiments herein rather than the
choice of stream cipher. This was tested by implementing
AES in XTS mode on top of the embodiments herein using
OpenSSL EVP. This use of OpenSSLAES-XTS experiences

30 slowdowns of up to 1.6x for reads and 1.23x for writes
across all configurations compared to using ChaCha20.
Interestingly, while significantly less performant, this slow­
down is not entirely egregious, and suggests that perhaps
there are parts of the dm-crypt code base that would benefit

35 from further optimization.
G. Threat Analysis
Table 3 lists possible attacks and their results. It can be

inferred from these results and the design described herein
that the threat model is addressed and confidentiality and
integrity guarantees are maintained.

TABLE 3

Result Explanation

Nugget user data in backing
store is mutated out-of-band
online.

The system immediately fails The MTRH is inconsistent.
with exception on successive
1/0 request.

Header metadata in backing
store is mutated out-of-band
online, making tbe MTRH

The system immediately fails The MTRH is inconsistent.
with exception on successive
1/0 request.

inconsistent.
Backing store is rolled back to The system immediately fails
a previously consistent state with exception on successive
while online. 1/0 request.
Backing store is rolled back to The system refuses to mount;
a previously consistent state allows for force mount with
while oflline, RPMB secure root access.
counter wildly out of sync.
MTRH made inconsistent by The system refuses to mount.
mutating backing store out-of-
band while oflline, RPMB
secure counter in sync.

H. Improvements Summarized

TPMGLOBALVER and
RPMB secure counter out of
sync.
TPMGLOBALVER and
RPMB secure counter out of
sync.

TPMGLOBALVER and
RPMB secure counter are in
sync, yet illegal data
manipulation occurred.

mance without a degradation in write performance except in
cases where small (>512 kilobyte) writes dominate the
workload.

Note, however, that several implicit assumptions exist in
the above design. For one, it is presumed that there is ample
memory at hand to house the Merkle Tree and all other data

The conventional wisdom is that securing data at rest
requires that one must pay the high performance overhead of

65 encryption with AES is XTS mode. The embodiments herein
demonstrate that technological trends overturn this conven­
tional wisdom: log-structured file systems and hardware

US 11,139,959 B2
19 20

containing the second particular sub-block from the memory
unit, decrypting the second particular logical block in accor­
dance with the stream cipher, writing the portion of the
second data to the second particular sub-block, generating a

support for secure counters make it practical to use a stream
cipher to secure data at rest. In particular, an implementation
which uses the ChaCha20 stream cipher and the Poly1305
MAC to provide secure storage can be used as a drop-in
replacement for dm-crypt. Empirical results show that under
F2FS, a modern, industrial-strength log-structured file sys­
tem, the embodiments herein provide upwards of 2x
improvement on read performance and 1.21x improvement
on write performance. In fact, these results show such a
system provides a higher performance replacement for Ext4
backed with dm-crypt.

5 second key for the second particular logical block in accor­
dance with the stream cipher, encrypting the second particu­
lar logical block using the stream cipher, second key, and a
second keycount value associated with the second particular
logical block, and writing the second particular logical block

10 as encrypted to the memory unit.

VI. Example Operations
In some embodiments, a hash tree contains hash outputs

of each of the sub-blocks, and further steps may involve:
after reading the particular logical block from the memory
unit, validating the particular sub-block with the hash output

FIGS. llA and 11B depict a flow chart illustrating an
example embodiment. The process illustrated by FIGS. llA
and 11B may be carried out by a computing device, such as
computing device 100, and/or a cluster of computing
devices, such as server cluster 200. However, the process
can be carried out by other types of devices or device
subsystems. For example, the process could be carried out
by a portable computer, such as a laptop or a tablet device,
or a smartphone.

15 associated with the particular sub-block, and after writing
the particular logical block as encrypted to the memory unit,
calculating a new hash output for the particular sub-block
and updating the hash tree to associate the new hash output
with the particular sub-block. The hash tree may be stored in

20 the memory unit. The hash tree may be a Merkle Tree.

The embodiments of FIGS. llA and 11B may be simpli­
fied by the removal of any one or more of the features shown
therein. Further, these embodiments may be combined with
features, aspects, and/or implementations of any of the 25

previous figures or otherwise described herein.
In this section, a nugget is referred to as a "logical block"

and a flake is referred to as a "sub-block." This terminology
is used for clarity and precision.

In some embodiments, the memory unit also maintains a
rekeyingjournal that temporarily stores the particular logical
block as decrypted until the particular logical block as
encrypted is written to the memory unit.

Some embodiments may also include a replay protected
memory block (RPMB) that stores a persistent monotonic
counter, and further steps may involve: after writing the
particular logical block as encrypted to the memory unit,
updating the persistent monotonic counter in the RPMB, and

30 storing a copy of the persistent monotonic counter in the
memory unit. In some embodiments, the system may not
initialize for non-privileged users if the persistent monotonic
counter in the RPMB is not identical to the copy of the

In FIG. llA, step 1100 involves receiving a request to
write data to a memory unit. The memory unit may be
divided into one or more logical blocks, each of the logical
blocks subdivided into groups of sub-blocks. Each of the
logical blocks maps to one or more physical sectors of the
memory unit. Any of the sub-blocks being used to store 35

information are encrypted in accordance with a stream
cipher. The memory unit maintains a transaction journal that
marks each sub-block as either dirty or clean. The memory
unit stores keycount values for each of the logical blocks.

persistent monotonic counter in the memory unit.
Some embodiments may also include an operating system

configured to access the memory unit by way of the cryp­
tographic software module. The operating system may over­
lay a log-structured file system (or other types of file
systems) atop of the memory unit. The file system may be

Step 1102 involves determining that the request seeks to
write a portion of the data to a particular sub-block of the
groups of sub-blocks.

40 based on F2FS.

Step 1104 involves determining that the particular sub­
block is marked as dirty in the transaction journal.

Step 1106 involves reading a particular logical block 45

containing the particular sub-block from the memory unit.
Step 1108 involves decrypting the particular logical block

in accordance with the stream cipher.
Step 1110 involves writing the portion of the data to the

particular sub-block.
Turning to FIG. 11B, step 1112 involves incrementing the

keycount value associated with the particular logical block.
Step 1114 involves generating a key for the particular

logical block in accordance with the stream cipher.

50

Step 1116 involves encrypting the particular logical block 55

using the stream cipher, the key, and the keycount value as
incremented.

Step 1118 involves writing the particular logical block as
encrypted to the memory unit.

Some embodiments may involve further steps of: receiv- 60

ing a second request to write second data to the memory unit,
determining that the second request seeks to write a portion
of the second data to a second particular sub-block of the
groups of sub-blocks, determining that the second particular
sub-block is not marked as dirty in the transaction journal, 65

marking the second particular sub-block as dirty in the
transaction journal, reading a second particular logical block

Some embodiments may involve a master secret, and
generating the key for the particular logical block in accor­
dance with the stream cipher may involve generating the key
based in part on the master secret. The stream cipher may be
based on ChaCha20, for example.
VII. Additional Embodiments and Performance Results

The additional embodiments described in this section can
be combined with any one or more of the previously­
described embodiments.

In the embodiments above, it was shown that recent
developments in mobile hardware invalidate the assumption
that stream ciphers are unsuitable for FDE. Thus, fast stream
ciphers can be used to dramatically improve the perfor­
mance ofFDE. In particular, modern mobile devices employ
solid-state storage with FTL, which operate similarly to an
LFS. They also include trusted hardware such as TEEs and
secure storage areas. Embodiments using the ChaCha20
stream cipher leveraged these two trends to outperform
dm-crypt, the de-facto Linux FDE endpoint.

In this section, embodiments using stream ciphers beyond
ChaCha20 and AES-CTR are explored. Specifically, the
following eSTREAM profile 1 stream ciphers (suitable for
software applications with high throughput requirements)
were considered: Sosemanuk, Rabbit, Salsa20, Salsa12, and
Salsas. ChaChaS/12 are not considered eSTREAM ciphers
and so were not included in this comparison (but were
included in later experimental implementations). Further,

US 11,139,959 B2
21

eSTREAM profile 2 stream ciphers were not explicitly
considered but could potentially produce improved perfor­
mance as well. In various embodiments, other stream
ciphers or block ciphers with stream-cipher-like character­
istics may be used.

A. Experimental Setup

22
is most likely due to the new software layer used to facilitate
cipher switching that was added for the measurements of
FIGS. 12A-12D. Fortunately, the slowdown only seems to
affect writes. The performance win with ChaCha20 reads

5 over dm-crypt remains nearly two-to-one. One solution that
immediately presents itself is to improve these embodiments
by offloading I/O operations to an (un)bounded thread pool,
which is a distinct advantage the production-ready dm-crypt

Experiments were performed on a Hardkernel Odroid
XU3 ARM big.LITTLE system (Samsung Exynos5422 Al 5
andA7 quad core CPUs, 2Gbyte LPDDR3 RAM, eMMC5.0
HS400 backing store) running Ubuntu Trusty 14.04 LTS, 10

kernel version 3.10.5S. To evaluate performance under these
new ciphers, measurements included the latency (time per
operation) of sequential read and write I/O operations
against the F2FS LFS. The I/O operations were performed
using 1 KiB and 5 MiB file sizes (where 1 KiB=210 bytes
and 1 MiB=220 bytes). These files were populated with
random data. The experiments are conducted using a stan­
dard Linux ramdisk (tmpfs) as the ultimate backing store.
The I/O size used was the maximum that the Odroid XU3

software current employs.
The SalsaX (Salsa20, Salsa12, SalsaS) functions outper-

forming ChaCha20 by a small factor in most instances above
comes with a heavy caveat: increased or otherwise unusual
energy/power use. In several cases, such as with FIG. 12C,
the performance win might be entirely outweighed by the

15 efficiency loss, depending on the use case scenario. This was
not entirely unexpected, since the reasons for the ChaChaX
family of alternative implementations being created in the
first place included increased energy efficiency. The ramifi-
cations of cipher selection on total system energy use are of
paramount concern in many practical scenarios. kernel version 3.10.5S supports, selected by the operating 20

system automatically. VIII. Conclusion
B. Evaluation
For each of the figures in this section, the metrics indicate

averages (medians) of 10 runs over the whole size of the file.
Note that, except in the case of Salsa12, in figures where
energy/power data is missing is due to the coarse timing
resolution of current energy monitoring tools. Unfortunately,
these specific tools cannot be easily made to operate at a
faster frequency.

FIG. 12A shows the performance of dm-crypt for 1 KiB
whole file reads in comparison to the previous embodiments
herein (which are again referred to interchangeably as
"StrongBox") implemented with several stream ciphers,
including use of the original ChaCha20 stream cipher.
ChaCha20 is on average 1.09x faster than dm-crypt for reads
at this file size, which is congruous with the results above.
Sosemanuk is the worst performer, being 1.15x slower than
ChaCha20. ChaCha20 is 1.01 x faster than Salsa20 but 1.01 x
slower than Salsas and virtually maintains latency parity
with Salsa 12. ChaCha20 is 1.05x faster than Rabbit.

FIG. 12B shows the performance of dm-crypt for 1 KiB
whole file writes in comparison to the embodiments herein
implemented with several stream ciphers. On average, dm­
crypt is 1.41 x faster than ChaCha20 for writes at this file
size. Still, ChaCha20 is 1.05x faster than Rabbit, and 1.36x
faster than Sosemanuk. Salsa20 is slightly slower than
ChaCha20 at 1.0lx. Salsa12 is 1.07x faster than ChaCha20.
Salsas is 1.07x faster than ChaCha20.

Similar to FIG. 12A, FIG. 12C shows the performance of
dm-crypt against the embodiments herein, but for 5 MiB
whole file reads. ChaCha20 is 1.95x faster than dm-crypt for
reads at this file size, which is congruous with the results
above. The only cipher faster than ChaCha20 at this size is
Salsas, which is 1.03x faster than ChaCha20. Sosemanuk
virtually maintains latency parity with dm-crypt in that it is
1.95x slower than ChaCha20 at this size. ChaCha20 is 1.04x
faster than Salsa12. ChaCha20 is 1.lSx faster than Salsa20.
ChaCha20 is 1.3 Sx faster than Rabbit.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-

25 fications and variations can be made without departing from
its scope, as will be apparent to those skilled in the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, in addition to those described herein,
will be apparent to those skilled in the art from the foregoing

30 descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims.

The above detailed description describes various features
and operations of the disclosed systems, devices, and meth­
ods with reference to the accompanying figures. The

35 example embodiments described herein and in the figures
are not meant to be limiting. Other embodiments can be
utilized, and other changes can be made, without departing
from the scope of the subject matter presented herein. It will
be readily understood that the aspects of the present disclo-

40 sure, as generally described herein, and illustrated in the
figures, can be arranged, substituted, combined, separated,
and designed in a wide variety of different configurations.

With respect to any or all of the message flow diagrams,
scenarios, and flow charts in the figures and as discussed

45 herein, each step, block, and/or communication can repre­
sent a processing of information and/or a transmission of
information in accordance with example embodiments.
Alternative embodiments are included within the scope of
these example embodiments. In these alternative embodi-

50 ments, for example, operations described as steps, blocks,
transmissions, communications, requests, responses, and/or
messages can be executed out of order from that shown or
discussed, including substantially concurrently or in reverse
order, depending on the functionality involved. Further,

55 more or fewer blocks and/or operations can be used with any
of the message flow diagrams, scenarios, and flow charts
discussed herein, and these message flow diagrams, sce­
narios, and flow charts can be combined with one another,
in part or in whole.

A step or block that represents a processing of information
can correspond to circuitry that can be configured to perform
the specific logical functions of a herein-described method
or technique. Alternatively or additionally, a step or block
that represents a processing of information can correspond

Similar to FIG. 12B, FIG. 12D shows the performance of
dm-crypt against the embodiments herein for 5 MiB whole 60

file writes. Here, ChaCha20 is 1.02x faster than dm-crypt for
writes at this file size. ChaCha20 is 1.1 Ox faster than Rabbit.
ChaCha20 is 1.25x faster than Sosemanuk. ChaCha20 is
1.04x faster than Salsa20. Salsa12 is 1.02x faster than
ChaCha20, while Salsas is 1.04x faster than ChaCha20. 65 to a module, a segment, or a portion of program code

(including related data). The program code can include one
or more instructions executable by a processor for imple-

Evident from the above is the fact that writes have slowed
down for StrongBox based implementations. This slowdown

US 11,139,959 B2
23

menting specific logical operations or actions in the method
or technique. The program code and/or related data can be
stored on any type of computer readable medium such as a
storage device including RAM, a disk drive, a solid state
drive, or another storage medium.

The computer readable medium can also include non­
transitory computer readable media such as computer read­
able media that store data for short periods of time like
register memory and processor cache. The computer read­
able media can further include non-transitory computer 10

readable media that store program code and/or data for
longer periods of time. Thus, the computer readable media
may include secondary or persistent long term storage, like
ROM, optical or magnetic disks, solid state drives, compact­
disc read only memory (CD-ROM), for example. The com- 15

puter readable media can also be any other volatile or
non-volatile storage systems. A computer readable medium
can be considered a computer readable storage medium, for
example, or a tangible storage device.

Moreover, a step or block that represents one or more 20

information transmissions can correspond to information
transmissions between software and/or hardware modules in
the same physical device. However, other information trans­
missions can be between software modules and/or hardware
modules in different physical devices. 25

24
generating a key for the particular logical block in

accordance with the stream cipher,
encrypting the particular logical block using the

stream cipher, the key, and the keycount value as
incremented, and

writing the particular logical block as encrypted to
the memory unit.

2. The system of claim 1, wherein the cryptography
software module is further configured to perform operations
comprising:

receiving a second request to write second data to the
memory unit;

determining that the second request seeks to write a
portion of the second data to a second particular
sub-block of the groups of sub-blocks;

determining that the second particular sub-block is not
marked as dirty in the transaction journal; and

based on the second particular sub-block being not
marked as dirty:
marking the second particular sub-block as dirty in the

transaction journal;
reading a second particular logical block containing the

second particular sub-block from the memory unit;
decrypting the second particular logical block in accor­

dance with the stream cipher;
writing the portion of the second data to the second

particular sub-block;
encrypting the second particular logical block in accor­

dance with the stream cipher; and
writing the second particular logical block as encrypted

to the memory unit.

The particular arrangements shown in the figures should
not be viewed as limiting. It should be understood that other
embodiments can include more or less of each element
shown in a given figure. Further, some of the illustrated
elements can be combined or omitted. Yet further, an 30

example embodiment can include elements that are not
illustrated in the figures. 3. The system of claim 1, wherein the cryptography

software module has access to a hash tree that contains hash
outputs of each of the sub-blocks, and wherein the cryptog-

35 raphy software module is further configured to perform

While various aspects and embodiments have been dis­
closed herein, other aspects and embodiments will be appar­
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purpose of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims.

What is claimed is:
1. A system comprising: 40

operations comprising:
after reading the particular logical block from the memory

unit, validating the particular sub-block with the hash
output associated with the particular sub-block; and

after writing the particular logical block as encrypted to
the memory unit, calculating a new hash output for the
particular sub-block and updating the hash tree to
associate the new hash output with the particular sub­
block.

4. The system of claim 3, wherein the hash tree is stored
in the memory unit.

5. The system of claim 3, wherein the hash tree is a
Merkle Tree.

a memory unit divided into one or more logical blocks,
each of the logical blocks subdivided into groups of
sub-blocks, wherein each of the logical blocks maps to
one or more physical sectors of the memory unit,
wherein any of the sub-blocks being used to store 45

information are encrypted in accordance with a stream
cipher, wherein the memory unit maintains a transac­
tion journal that marks each sub-block as either dirty or
clean, and wherein the memory unit stores keycount
values for each of the logical blocks; and

6. The system of claim 1, wherein the memory unit also
50 maintains a rekeying journal that temporarily stores the

particular logical block as decrypted until the particular
logical block as encrypted is written to the memory unit.

a cryptography software module, configured to perform
operations comprising:
receiving a request to write data to the memory unit,
determining that the request seeks to write a portion of

the data to a particular sub-block of the groups of 55

sub-blocks,
determining that the particular sub-block is marked as

dirty in the transaction journal, and
based on the particular sub-block being marked as

dirty:
reading a particular logical block containing the

particular sub-block from the memory unit,
decrypting the particular logical block in accordance

with the stream cipher,

60

writing the portion of the data to the particular 65

sub-block, incrementing the keycount value asso­
ciated with the particular logical block,

7. The system of claim 1, further comprising a replay
protected memory block (RPMB) that stores a persistent
monotonic counter, wherein the cryptography software
module is further configured to perform operations compris-
ing:

after writing the particular logical block as encrypted to
the memory unit, updating the persistent monotonic
counter in the RPMB; and

storing a copy of the persistent monotonic counter in the
memory unit.

8. The system of claim 7, wherein the cryptography
software module will not initialize for non-privileged users
if the persistent monotonic counter in the RPMB is not
identical to the copy of the persistent monotonic counter in
the memory unit.

US 11,139,959 B2
25

9. The system of claim 1, further comprising:
an operating system configured to access the memory unit

by way of the cryptographic software module.
10. The system of claim 9, wherein the operating system

overlays a log-structured file system atop of the memory 5

unit.
11. The system of claim 10, wherein the log-structured file

system is based on F2FS.
12. The system of claim 1, wherein the cryptographic

software module has access to a master secret, and wherein 10

generating the key for the particular logical block in accor­
dance with the stream cipher comprises generating the key
based in part on the master secret.

13. The system of claim 1, wherein the stream cipher is
based on ChaCha20. 15

14. A computer-implemented method comprising:

26
encrypting the second particular logical block in accor­

dance with the stream cipher; and
writing the second particular logical block as encrypted

to the memory unit.
16. The computer-implemented method of claim 14,

wherein a hash tree contains hash outputs of each of the
sub-blocks, the method further comprising:

after reading the particular logical block from the memory
unit, validating the particular sub-block with the hash
output associated with the particular sub-block; and

after writing the particular logical block as encrypted to
the memory unit, calculating a new hash output for the
particular sub-block and updating the hash tree to
associate the new hash output with the particular sub-
block.

17. The computer-implemented method of claim 14,
wherein the memory unit also maintains a rekeying journal
that temporarily stores the particular logical block as
decrypted until the particular logical block as encrypted is

receiving a request to write data to a memory unit,
wherein the memory unit is divided into one or more
logical blocks, each of the logical blocks subdivided
into groups of sub-blocks, wherein each of the logical
blocks maps to one or more physical sectors of the
memory unit, wherein any of the sub-blocks being used

20 written to the memory unit.

to store information are encrypted in accordance with a
stream cipher, wherein the memory unit maintains a
transaction journal that marks each sub-block as either 25

dirty or clean, and wherein the memory unit stores
keycount values for each of the logical blocks;

determining that the request seeks to write a portion of the
data to a particular sub-block of the groups of sub­
blocks;

determining that the particular sub-block is marked as
dirty in the transaction journal; and

30

18. The computer-implemented method of claim 14,
wherein a replay protected memory block (RPMB) stores a
persistent monotonic counter, the method further compris­
ing:

after writing the particular logical block as encrypted to
the memory unit, updating the persistent monotonic
counter in the RPMB; and

storing a copy of the persistent monotonic counter in the
memory unit.

19. The computer-implemented method of claim 18,
wherein a cryptography software module performs all reads
to and writes from the memory unit, and wherein the
cryptography software module will not initialize for non­
privileged users if the persistent monotonic counter in the

based on the particular sub-block being marked as dirty:
reading a particular logical block containing the par­

ticular sub-block from the memory unit;
decrypting the particular logical block in accordance

with the stream cipher;

35 RPMB is not identical to the copy of the persistent mono­
tonic counter in the memory unit.

writing the portion of the data to the particular sub­
block;

incrementing the keycount value associated with the 40

particular logical block;
generating a key for the particular logical block in

accordance with the stream cipher;
encrypting the particular logical block using the stream

cipher, the key, and the keycount value as incre- 45

mented; and
writing the particular logical block as encrypted to the

memory unit.
15. The computer-implemented method of claim 14, fur­

ther comprising:
receiving a second request to write second data to the

memory unit;
determining that the second request seeks to write a

portion of the second data to a second particular
sub-block of the groups of sub-blocks;

determining that the second particular sub-block is not
marked as dirty in the transaction journal; and

based on the second particular sub-block being not
marked as dirty:

50

55

marking the second particular sub-block as dirty in the 60

transaction journal;
reading a second particular logical block containing the

second particular sub- block from the memory unit;
decrypting the second particular logical block in accor­

dance with the stream cipher;
writing the portion of the second data to the second

particular sub-block;

65

20. An article of manufacture including a non-transitory
computer-readable medium, having stored thereon program
instructions that, upon execution by a computing system,
cause the computing system to perform operations compris­
ing:

receiving a request to write data to a memory unit of the
computing system, wherein the memory unit is divided
into one or more logical blocks, each of the logical
blocks subdivided into groups of sub-blocks, wherein
each of the logical blocks maps to one or more physical
sectors of the memory unit, wherein any of the sub­
blocks being used to store information are encrypted in
accordance with a stream cipher, wherein the memory
unit maintains a transaction journal that marks each
sub-block as either dirty or clean, and wherein the
memory unit stores keycount values for each of the
logical blocks;

determining that the request seeks to write a portion of the
data to a particular sub-block of the groups of sub­
blocks;

determining that the particular sub-block is marked as
dirty in the transaction journal; and

based on the particular sub-block being marked as dirty:
reading a particular logical block containing the par­

ticular sub-block from the memory unit;
decrypting the particular logical block in accordance

with the stream cipher;
writing the portion of the data to the particular sub­

block;
incrementing the keycount value associated with the

particular logical block;

US 11,139,959 B2
27

generating a key for the particular logical block in
accordance with the stream cipher;

encrypting the particular logical block using the stream
cipher, the key, and the keycount value as incre-
mented; and

5

writing the particular logical block as encrypted to the
memory unit.

* * * * *

28

