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Abstract: High-speed fluid flows over roughened surfaces occur in many engineering applications;
one important application involves high velocity water flows in pipelines with roughened interior
walls where the wall roughness affects head loss estimates necessary for engineering design purposes.
The present analysis provides an analytical solution of the fluid physics underlying the induced
static pressure profile resulting from high Froude number supercritical velocity through duct with
random wall roughness. The analytic solution of the hyperbolic governing small perturbation velocity
potential equation subject to high Froude number flows brings forward characteristic wave solutions
that determine the static pressure profile in a duct with random height wall roughness. While current
engineering practice utilizes semi-empirical engineering equations employing test data to determine
the friction factor, velocity and static pressure profiles and head loss for different roughness types in
different sized ducts as a function of Reynolds number (as summarized in a later section of the paper),
the present analysis provides a new analytical method to determine the fluid physics involved in the
static pressure change induced by wall random roughness in ducts subject to high Froude number
supercritical flows.

Keywords: supercritical flow; Froude number; roughened walls; pressure profile; characteristics

1. Introduction

Wall roughness on duct walls subject to high speed, high Froude number convective
flows has a significant influence on induced pressure and velocity patterns, as well as heat
transfer effectiveness. Wall roughness influences and generates perturbations in velocity
and as well as static pressure profiles which affect surface drag force, turbulence levels
and heat transfer in duct flows. Numerous modern fluid mechanics applications of rough
wall flow pattern analysis influencing design and efficiency improvement of mechanical
engineering structures, such as turbine flow passageways, turbine blade geometry, piping
networks and gas and liquid flows, in machinery systems exist in the literature [1–22].
In addition, applications involving aerodynamic laminar and turbulent boundary layer
flow over rough walls [23,24] that influence trajectories and flow resistance changes for
aircraft and reentry space vehicles have been studied. Similarly, ocean transport vessels
with hull surface roughness operating at high speed experience additional frictional drag
effects requiring increased power output affecting their economic efficiency. While surface
roughness effects on flows are largely considered to generate negative dissipative energy
and increased frictional resistance effects, it has been noted that increased heat transfer
also occurs for turbulent flows over roughened walls—this is a positive effect for heat
transfer cooling applications of importance to the computer industry where heat produc-
tion in small, confined device spaces must be controlled to eliminate high temperature
excursions. On larger scale applications of flows over roughened surfaces, atmospheric
winds flowing around multistory city buildings can be regarded as a situation in which
roughness elements influence wind forces on city buildings, that upon analysis, require
structural design changes for survivability. On an even larger global scale, mountain ranges
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such as the North American Rocky Mountains can be considered as surface roughness that
can influence wind and temperature patterns. With the current focus on climate change
and global warming effects involving ENSO El Niño and La Niña Pacific Ocean warming,
altered wind patterns carrying water vapor have been shown to influence North American
coastal hurricane intensities and occurrence frequencies as well as influencing Atlantic
Ocean current flows, which in turn affect European countries’ climate through land and
ocean environments subject to elevated temperatures [21]. Many of these modern-day
applications involving small to large scale surface roughness effects on fluid flow patterns
can be analyzed from use semi-empirical test equations and CFD analysis. However,
high-speed water flows over roughened wall surfaces at different scale sizes continue
to present new challenges to understand the fluid physics involved—as demonstrated
by copious references addressing problems of this type in the open literature, such as in
references [1–20,22–29]. Even in ancient times, the water engineers of the pre-Columbian
Peruvian Chimú society (800-1465 CE) recognized that large sidewall roughness elements
placed in water transport channels altered flow patterns and eliminated rotation and vortex
generation in channel bends, which promoted erosion in unlined channel walls [21]. For
this ancient world example, empirical observations made by their water engineers, together
with their ingenuity to observe roughness effects on water flow in irrigation channels,
provided the continuity to sustain irrigation agriculture over centuries of that society’s
existence. Further ancient world recognition of wall roughness effects originating from cal-
cium carbonate deposits (sinter) influenced the flow rate in the main channel of the Roman
Pont du Gard aqueduct in France. These effects were observed following the deliberate
widening of the main channel, done in anticipation of the channel’s contraction in time
due to sinter deposits [30]. Yet further recognition of wall roughness effects derived from
choking sinter deposits were observed at the main Siq pipeline at the Nabataean site of
Petra in Jordan (100 BC–300 AD) resulting in the removal of pipeline top halves to convert
water flows to open channel type flows—this was recognized by their water engineers as
a more efficient way to maintain a vital water flow to the city center [31]. Thus, surface
roughness problems influencing water flow patterns have a long history of importance to
many different world societies throughout time, that depended upon understanding water
flow usage for urban, agricultural and industrial use.

Given the importance of different physical scale applications involving the influence
of surface roughness on air and fluid flow patterns in industrial, living standard, climate
change and other applications, many investigations [1–20] involving analytical methods
have been conducted to understand the fluid physics derived from wall roughness effects
of fluid flow patterns Many investigations involve both laboratory and field experiments
to gain an empirical understanding of surface roughness effects on fluid flows. While
the reliance on laboratory tests provides usable relevance for many industrial fluid trans-
fer applications, theoretical studies contend with limited theoretical understanding of
roughness-induced turbulence evolution and production effects. Furthermore, the accuracy
of different theoretical governing equations solutions are challenged to match laboratory
test solutions for a wide variety of flow and wall roughness conditions. To address these
issues, a theoretical approach leading to a better understanding of the fluid physics in-
volved from wall roughness effects on high Froude number (Fr) fluid flows is needed.
A new analysis method is proposed for flows for which inertial flow effects dominate
gravitational wave effects; this is noted as Fr >> 1 in the discussion to follow. Such flows
can be analyzed by a new theory that emphasizes wave structure creation originating
from rough wall structures, that carries pressure and velocity information downstream to
influence flow patterns.

The present paper examines two-dimensional fluid flow between roughened duct
walls at high supercritical Froude numbers (Fr >> 1). The duct is two dimensional and
with random-roughened walls located at y = ±ao/2 + ε N(x) from the duct centerline at
y = 0. The N(x) term represents a wall random roughness function, together with ε, the
small roughness height factor (ε << 1) representing the roughness height range on the
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upper and lower duct walls. The application considered for analysis represents an initial
high-speed supercritical flow entry velocity, U∞, at pressure P0 entering the duct. The object
of the analysis is to determine the mean square static pressure distribution induced by the
wall roughness. Unlike subcritical Froude number conditions, for which disturbances are
spatially damped and upstream influence of wall roughness exists, supercritical flow dis-
turbances emanating from wall roughness exist in the form of Froude waves that originate
and propagate downstream from the roughened duct walls. These waves further influence
the static pressure and velocity distributions downstream of their roughness origins on
duct walls. For supercritical Froude number flows with a free surface, surface waves
originating from a disturbance location on the free surface can be observed as forming an
acute V-shaped wave structure downstream of the surface disturbance origin point, whose
half-angle is given by θ = sin−1 (I/Fr), as noted in the literature [1–3]. Roughened walls of
channels, with flow in the x direction and random roughness patterns with heights in the y
direction, influence both the fluid static pressure and velocity distribution throughout the
duct interior space.

Of note, references [1–4,6] illustrate the effect of the Froude number on free surface
flow patterns over a lower wall obstacle in which the governing equation is (1 − Fr2)
dy/dx + dz/dx = 0, where y is the elevated obstacle height and z is the water height over
the submerged obstacle in a channel with a free fluid surface. When Fr > 1, dz/dx must
be positive requiring local surface elevation over the obstacle; when Fr < 1, dz/dx must
be negative requiring a depressed free surface location above the submerged obstacle.
Clearly, the Froude number value (less than or more than unity) has a significantly different
influence on the free surface shape and the internal flow pressure and velocity distribution.
Unlike subcritical (Fr < 1) flows where upstream influence exists to generate downstream
disturbances, supercritical Fr >> 1 flow in ducts with upper and lower roughened wall
obstacles with an internal flow between the walls produces Froude wave structures that
carry static pressure and velocity change information downstream with no upstream
influence. The Froude number (Fr) is defined as Fr = V/(g d)1/2 where V is the flow
velocity, g is the gravitational constant and d is a given effective geometric dimension.
For (Fr)2, the numerator is indicative of flow inertial energy while the denominator is
indicative of gravitational wave energy. Thus, for a subcritical Fr < 1 value in duct flow,
gravitational wave energy exceeds the inertial energy-producing upstream influence in
the flow from the wall roughness disturbance effects. For supercritical Fr >> 1 duct
flows, gravitational wave effects on the flow are much less than flow inertial effects; thus,
gravitational effects do not significantly influence the flow and flow inertial effects dominate
the flow pattern, with no upstream roughness disturbance effects influencing downstream
flows. For the present analysis, supercritical (Fr >>1) duct flow is characterized by small
wall roughness height given by y = ±ao/2 + ε N(x) (with ε << 1), and static pressure
disturbances carried by Froude waves originating from wall roughness disturbances are
assumed to determine static pressure information. The N(x) stochastic term is characterized
by zero autocorrelation in roughness elements, and thus, is termed random roughness. The
prediction of the mean square static pressure distribution, <P(1) P(1)>, follows as a function
of the y distance from the duct walls to the duct centerline at y = 0, from the analysis to
follow, given the flow characteristics described above.

For high-speed gas flows, the use of equations involving Mach number (M) and Mach
waves to analyze supersonic gas flow over and within structures is well known. From
references [1–3], a similar hyperbolic equation that governs small perturbation effects on
fluid flow originating from wall roughness structures governed by wave transmission
structures that influence pressure and velocity change can be utilized for water flows. This
is done by substituting Fr for M in the linearized governing small perturbation equation that
governs static pressure and velocity perturbations, derived from wall roughness origins,
and by the use of Froude waves to analyze supercritical water flow in ducts. For Mach
number (M = V/a) gas flow applications, V is the gas flow speed over (or through) an
obstacle and a is the sound speed, that depends upon temperature and air density. For
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Froude number (Fr = V/(g d)1/2) applications, fluid temperature-dependent flow viscosity
and density is present and involves the properties of the working fluid to support wave
structure transmission, thus, affecting static pressure and velocity change. For applications
involving high-speed (M >> 1) gas flow, the governing equations use Mach number notation;
for applications involving high-speed (Fr >> 1) water flows, the governing equation uses
Froude number notations, as observed in Equation (1) in the 2.0 analysis section.

For the present analysis, Equation (1) is used with Froude number notation to analyze
water flow in a duct with upper and lower duct wall roughness to obtain the mean square
pressure distribution induced by the duct wall roughness. As duct wall random roughness
elements under Fr >>1 conditions serve as the disturbances to produce downstream Froude
waves carrying downstream static pressure change information, the duct velocity profile
is likewise influenced by wall roughness Froude waves. The analysis to follow presents a
new method to determine the mean square static pressure distribution, <P(1) P(1)> profile,
as a function of the y distance from the duct wall to the duct centerline given the fluid
mechanics effects of the duct wall’s random roughness pattern.

2. Analysis

The small-perturbation equation for supercritical water flow in the roughened walled
duct is:

α 2ϕxx + ϕyy = 0 , (1)

where α = i (Fr∞
2 − 1)1/2 = i β1. The quantity ϕ is the velocity potential, Fr is the free

stream Froude number and i = (−1) 1/2 is the imaginary number designation. From [6], the
solution satisfying Equation (1) is:

ϕ(x, y) = iκ(1)
∞∫
−∞

Ñ′(ω)[sin(ωyβ1)/ω cos(ωβ1ao/2)]dω, (2)

where κ(1) = 2/U∞ β1
−1 and Ñ’(ω) represents the Fourier transform of the derivative of

the wall roughness amplitude function. Following [6,24] (p. 327), the nondimensionalized
static pressure distribution, P(1), is given as

p(1)/ρU∞
2 ≡ P(1) = −U∞

−1ϕx(1) = P0
(1)
(

f *g
)
= P0

(1)
∞∫
−∞

g(ω; y)f(x−ω)dω (3)

where ρ is the freestream density, U∞ the freestream velocity, p(1) is the static pressure, P0
(1)

is defined in Equation (3) and the * notation denotes the convolution product.
In Equation (3),

f(x − ω) = N’ (x − ω) (4)

In addition,

g(x, y) = −2iP
∞∫
−∞

[sin(β1ωy)cos(ωx)/ωcos(β1ωao/2)]dω (5)

where P denotes the principal value. Evaluation of the integral by contour integration [24]
for g(x, y) is by means of the RI contour (Figure 1) x ± β1y > 0 and the contour R11 for
x ± β1y < 0 for x-axis polesωn = (2n + 1)π/β1 ao, n = ±1, ±2, ±3,. . . leads to the result:

g(x, y) = (i/2){π+ 4
∞
∑

n=0
(−1)n+1/(2n + 1)·[(x + β1y)cosπ(2n + 1)/(a0β1)]

−(x− β1y)cosπ(2n + 1)/(aoβ1)]}H(x± β1y)
(6)
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where H(t) = 1 for t > 0, H(t) = −1 for t < 0 and H(t) = 0 for t = 0. Note that P(1) is real
because κ(1) and g(x, y) are both imaginary quantities; i.e., the perturbation pressure is a
real quantity. From Equation (6), it follows that on the characteristics x + β1y and x − β1y,
the quantity g(x, y) has a constant value, as to be expected, as pressure is constant on a
characteristic Froude wave. For a supersonic gas flow, a similar analysis would yield a
constant pressure on a characteristic Mach wave. For the present analysis, the Mach-Froude
analog can be extended to supercritical perfect fluids, as the current analysis indicates with
pressure constant on a Froude wave.
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Figure 1. Integration contours for Equation (5) on theω plane.

In Figure 1, simple poles from Equation (5) continue along the positive and negative
x-axis. Note that contour lines RI and RII extend in different directions to accommodate
wave structures in regions above and below the duct centerline at y = 0. The Equation (5)
integral is determined in Equation (6) by the standard 2πi (sum of the residues) Cauchy
integration procedure [24].

The expression of the mean square pressure <P(1) P(1)> is given [3] in terms of the
stochastic average by:

< p(1)p(1) >= (P0
(1))

2
∞∫
−∞

∞∫
−∞

g(ξ1; y)g(ξ2; y)RN′(ξ1 − ξ2)dξ1dξ2 (7)

where RN’ (ξ1 − ξ2) is the autocorrelation function of the wall roughness derivative, here
taken as the Dirac delta function, to ensure a random roughness wall structure. This
case represents the random roughness wall case. Substitution into Equation (5) yields
Equation (8):

< p(1)p(1) >= 32(P0
(1))

2
S0

∞∫
−∞
{

∞
∑
−∞

(−1)n+1/(2n + 1)·[(ξ1 + β1y)+

cosπ(2n + 1)/(aoβ1)− (ξ1 + β1y)− ·cosπ(2n + 1)/(aoβ1)

−(ξ1 − β1y)+·cosπ(2n + 1)/(aoβ1) + (ξ1 − β1y)− ·cosπ(2n + 1)/(aoβ1)]}2dξ1

(8)
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where S0 is the constant spectral density of the wall roughness derivative distribution. The +
and − signs on the (ξ1 + β1y)+ and (ξ1 − β1y)− terms denote the two planar characteristics
emanating from a point in the two dimensional flow. The physical interpretation of
Equation (8) is aided by the following equality:

−π/4, nπ < x < [(2n + 1)/2]π, n = 0, 1, 2, 3, . . .
∞
∑

n=0
(−1)n+1/(2n + 1)·cosx(2n + 1) = 0, x = (2n + 1)π/2, n = 0, 1, 2, 3, . . .

+π/4, [(2n + 1)/2]π < x < (n + 1)π, n = 0, 1, 2, 3, . . .

(9)

The integrand of Equation (7) represents a periodic structure of Froude waves of
slopes +β1

−1 and −β1
−1 over |×| < ∞, through each of which, a jump of +π/2 alternates

with a jump of −π/2 after a constant x length behind a Froude number front dictated
by Equation (9). The + and − notation on arguments of the cosine functions denotes that
arguments greater or less than zero denotes the range of (ξ ± β1y). Two classes of Froude
waves are represented by Equation (8)—those with slope−β1 that originate from the upper
duct wall surface y = ao/2, and those with slope +β1 that originate from y = −ao/2 wall.
These waves originate from the statistically roughened upper and lower walls, respectively.
For the supercritical Fr >> 1 case, there is no damping of waves in the y direction (as would
exist for the Fr < 1 subcritical case); however, the same waveforms are from the upper
wall propagated undamped along characteristics of slopes +β1

−1 from the lower wall and
−β1

–1 from the upper wall. From the linearity of the Equation (1) formulation, there is no
interaction between characteristics of slopes +β1

−1 and −β1
−1. For flows at critical Fr = 1

or Fr < 1 subcritical conditions, additional nonlinear terms must be added to Equation (1)
that cancel the linearity of the governing equation used for the analysis.

Spatial averaging for the periodic function is next performed over a wavelength. The
second and fourth terms which represent the x < 0 extension of the periodic function are
next dropped, and then subject to Parseval’s theorem, applied to Equation (8) to yield the
mean squared pressure distribution shown in Figure 1:

< p(1)p(1) >= (256/π2)(P0
(1))

2
S0β1

∞

∑
n=0

(2n + 1)−2[(sinπ(2n + 1)/2)·(2y/ao)]
2 (10)

Substitution for P0
(1) in Equation (10) reveals that the mean square pressure varies

as the β1-1 angle. As supercritical Froude number increases further toward infinity, the
slope of the Froude waves emanating from the roughness disturbances on the duct walls
approaches zero. This results in continuance of the nearly undisturbed initial flow in
the duct as the domain of influence of the characteristics emanating from wall distur-
bances contracts to zero area, and therefore the disturbance, <p(1) p(1)> is consistent with
Equation (10). Essentially, the rough wall disturbances are localized close to the roughened
walls for Fr >> 1 flows. The maximum mean square pressure increase occurs on the duct
walls for all supercritical Froude numbers as Figure 2 indicates. Unlike for the Fr < 1 case,
the Fr > >1 supercritical flow case is characterized by Froude waves emanating from the
small wall roughness elements; such waves carry pressure disturbances throughout the
duct. Of note [6] is the observation that <P(1) P(1)> increases from lower values in the sub-
critical range as Fr→1; from the present case, <P(1) P(1)> also increases from lower values
in the supercritical range as Fr→ 1. Consequently, the maximum <P(1) P(1)> value must
necessarily be in the transonic Fr ≈ 1 range, and therefore requires a nonlinear analysis for
accurate transonic flow analysis.
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3. Alternate Empirical Determination of Flow Patterns Originating from
Surface Roughness

Among the many ways to analyze fluid flows in roughened wall pipelines and ducts
for practical engineering use, wall roughness effects on flows within pipelines have been
analyzed by semi-empirical means using experimental data [1] (pp. 56–106) using the
relationship Hf = f (L/D)(V2/2g), where Hf is the head loss, f is a friction factor, L is the
pipeline length, V is the flow velocity, g is the gravitational constant and D is an equivalent
diameter. Friction factors are available for specific laminar and turbulent flow regimes [1]
(p. 105), roughness geometries and heights over a large Reynolds number (Re) range, with
f given for rough inner wall pipelines by:

F−1/2 − 2 log10 (R/λ) = 1.75, (11)

with R the equivalent pipe radius and λ the longitudinal close spacing of small height
roughness elements. The use of empirical Equation (11), together with test data from
wide ranges of key parameters, has wide usage in current pipeline system design practice.
A further friction factor determinant employing test data is the Fanning friction factor:
f = Hf/(L/D) (V2/2g) which is useful for large Re values for pipeline wall roughness char-
acterized by equivalent sand grain size inner pipeline wall roughness (ε/d) to determine
flow head loss Hf for a known input velocity V and Reynolds number. With test-determined
graphs involving these parameters [1] (pp. 56–106), the appropriate friction factor can
be determined with ε/d, Re and V specified for different laminar and turbulent flow
regimes to determine the pipeline head loss Hf. Although flow head loss determination
from Equations (11) and (12) have wide use, further equations relying upon semi-empirical
methods [7–22,26–29] utilizing log-law structures typical of Equations (11) and (12) are
practical and useful for pipeline engineering design work. Little detail of the fluid physics
origins that determine the pressure and velocity profiles induced by wall roughness for in
sub- and supercritical regimes exists to understand what lies within the test results incorpo-
rated in the Equations (11) and (12) empirical approaches, which are only useful for limited
range Reynolds number values. Typical of other log-law empirical approaches [29] is
Equation (12), originating from von Kármán’s original research in the 1930s. This equation
is given by:

u/u* = k − 1 ln [(y + hs/hL)] + C (12)
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where u* = the shear velocity, k is the von Kármán constant (0.4), y is the distance
above the wall shear layer, hs is the wall roughness geometric specification, hL is the
lower wall height and C is a test-related constant. This equation serves in many pipeline
head loss studies involving different rough wall types for velocity profile determination
and is in use in the present day to support studies involving rough wall effects in fluid
flow [8,11–15,18,19,26,27].

The present Section 2 analytical study, therefore, serves to examine and further un-
derstand details of the fluid physics underlying the wall roughness effect on the mean
square static pressure distribution profile and the velocity profile for supercritical Fr >>1
flows. This adds to prior analysis [5] done for M < 1 subcritical gas flow analysis—as an
extension to subcritical Froude number fluid flows, the above analysis can be advanced by
replacing iβ1 by β1 and the presence of Fr in Equation (1), together with similar analysis
methods shown in Section 2. The supercritical flow regime analysis thus far presented in
Section 2 provides insight as to how flow head losses originate from wall roughness effects,
particularly for high speed (Fr >> 1) supercritical flows where inertial effects far exceed
gravity wave effects. The Froude wave analysis analyzed in the above Section 2 determines
the static mean square pressure profile, and thus provides detail on the origin of empirical
friction factors derived from wall roughness effects for supercritical flows. Turbulent flows
involving large viscosity effects for ducts with rough wall structures are termed ‘hyper
turbulent flows’, whose analysis to determine the friction factor is given in references [1]
(pp. 85–88).

4. Conclusions

The analysis presented examines the effects of small duct wall random roughness
variations on a supercritical (Fr >> 1) water flow within the duct to determine the mean
square static pressure profile within the duct. The evolved mean square velocity profile can
be estimated from the Bernoulli equation

(Hu = Vm2/2g + pm/ρ), where Vm is the mean square velocity distribution, Hu
is the total head per unit duct length, ρ is the water density and pm is the <P(1) P(1)>
static pressure distribution shown in Figure 2. This is to be applied in the duct area
where the wall roughness starts downstream of the unlined smooth wall duct entry area
to determine the mean squared velocity profile and head loss, using the mean square
static pressure variation induced by the wall roughness. The <P(1) P(1)> static pressure is
maximal, and the water velocity is minimal at the duct walls, while mean square static
pressure is minimal and velocity maximal on the y = 0 duct centerline for Fr >> 1 flows.
Given that the Fr >>1 supercritical perturbation flow is governed by Equation (1), analysis
results are applicable only for high speed supercritical flow. For cases where Fr is close to
a critical unity value (Fr ≈ 1), additional terms to Equation (1) must be considered as the
flow is highly nonlinear. For subcritical (Fr < 1) flows where upstream influence from wall
roughness exists, additional terms and analysis methods must be employed to determine
pressure and velocity profiles.

The near-wall mean square static pressure <P(1) P(1)> from Figure 2 achieves a maxi-
mum value of the perturbation static pressure on the roughened walls of:

<P(1) P(1)> = 1.85 (256) π−2 S0 (P0
(1))2 ε2 β1 (13)

and a near zero value toward the duct centerline. This is to be expected, as when Fr >> 1,
the β1 characteristics carrying static pressure information fold closer into the wall, leaving
little trace of static pressure perturbation information to affect flows at the duct centerline.
As the flow is viscous, the near wall velocity is correspondingly low due to interaction with
roughness elements, while the centerline velocity closely retains its input U∞ value. Thus,
for Fr >> 1 supercritical flows in roughened wall ducts, the input flow conditions remain
largely undisturbed over most of the duct cross sectional area, given small ε values.
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As characteristic wave structure proceeds from hyperbolic Equation (1) for
α2 = (1 − Fr∞

2) < 0 for supercritical Fr >> 1, it can be shown [25] that characteristic angles
in the x- y plane emanating from a disturbance are given by:

dy/dx = ± (Fr∞
2 −1)1/2/(1 − Fr∞

2), (14)

which, for Fr∞ >> 1, becomes dy/dx ≈ ±(1/Fr∞). This is similar in kind to the previously
noted θ = sin−1 (1/Fr∞) for observed free surface wave V-shaped structures produced
from a surface disturbance. With narrowing β angle wave structures, for Fr >> 1 inter-
nal duct fluid flows, pressure and velocity disturbances emanating from the domain of
influence associated with wall roughness appear largely confined to the vicinity of small
wall roughness elements leading to no or little disturbance of central duct flow regions as
Figure 2 indicates. The presence of wave structures as transmitters of pressure and velocity
information to the flow from Section 2 analysis, therefore, is consistent with the hyperbolic
nature of Equation (1).

A further practical application of the analysis, beyond the Section 1 examples, is that
of ship hulls moving at high speeds, with harbor marine hull inclusions characterized as
‘roughness elements’, which produce additional hull drag that requires higher propulsion
energy input to overcome. The present analysis, with large a0 values, gives details of local
static pressure and velocity changes induced by the wall roughness that can be used to
determine the additional hull roughness drag additions to add to the smooth hull shape
drag coefficient. For submerged ocean objects traveling at high speed, static pressure
depends on body shape, and wall roughness effects can alter local surrounding object
pressures to limit (or enhance) the occurrence of cavitation vapor bubbles. For military
marine environment applications, very high-speed flows over submerged roughened
surface vehicles can induce a water vapor envelope environment, through which a vehicle
flies under the control of aerodynamic control surfaces. Here, vapor bubble formation
proceeds from regions of high stagnation pressures, followed by low pressures that induce
vapor bubbles. In this situation, the presence of surface roughness can help to create
additional regions of water vapor production to enable the ‘flight’ of a submerged object
moving at high speed. This mixed-flow regime is typical to that created by ship propellor
blades rotating at high rotational speeds, that induce vapor bubbles seen in the wake
of a passing ship. A further important application of the flow physics associated with
surface roughness involves submerged concrete bridge support structures subject to river
flows; here wall roughness effects may contribute to erosion of concrete structures through
localized surface static pressure fluctuation changes derived from river water velocity
fluctuations; this erosion effect is particularly high when river water contains sediments.
Further understanding of these and other high Froude number applications are now
possible through the use of Section 1 analysis methods.

In summary, there are many practical applications in which flow pressure and velocity
changes are induced by a rough wall surface, beyond those described in this and Section 1;
many of which, involve roughened walls subject to high Fr >>1 flows. While semi-empirical
test methods are used to evaluate design responses to counter flow-induced problems
involving roughened surfaces, the flow physics creating ‘body forces’ originating from
different geometric and surface rough wall conditions is somewhat obscured from test-only
laboratory results designed to produce results from scaling laws. To provide aspects of the
flow physics producing pressure and velocity profiles originating from rough walls subject
to high velocity fluid flow, the Section 2 analysis increases the knowledge on aspects of flow
physics involved in relating wall random roughness to induced static pressure and velocity
changes affecting the design of a particular structure. For example, an analysis of different
types of roughness geometries other than random roughness used in Section 2 may be
analyzed by specifying N(x) roughness shapes; this together with Equation (1) provides
a method to find a minimum roughness patterns to lower object drag or for heat transfer
applications, the optimum roughness pattern to induce a maximum (or minimum) heat
transfer coefficient. Given the methodology involved in Section 2, further theoretical studies



Water 2023, 15, 2849 10 of 11

may be conducted to understand how different types of roughness can be theoretically
analyzed to achieve a desired result, which can later be verified through test results. This,
then, is the benefit of the given analysis method.
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