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ABSTRACT

Genome-wide association studies (GWAS) have allowed us to successfully identify thousands

of common genetic variants underlying a number of diseases, but it has been difficult to un-

derstand how mechanism of action because the vast majority of these loci are located in

non-coding regions of the genome. Because it is estimated that only 25% of disease associ-

ated genetic variants contribute to disease by affecting steady-state gene expression levels,

it will be important to establish a more comprehensive understanding of alternative mecha-

nisms through which genetic variants act to contribute to disease, such as RNA processing

and RNA modification. Motivated by this, this dissertation outlines the development of

computational methods and assessment of existing tools to profiles various RNA process-

ing and RNA modification events across individuals, cell types, and developmental stages,

which can ultimately be applied to large disease-cohort datasets in future studies. In the first

chapter, we provide primers on quantitative genetics and RNA processing and modifications

to put this work in context. In the second chapter, we demonstrate that combining large

quantities of RNA-seq data with small quantities of specialized data, including 3’-Seq and

single-molecule real-time (SMRT) isoform sequencing (Iso-Seq), allows one to study alter-

native cleavage and polyadenylation, without compromising affordability or accuracy. We

apply this approach to explore inter-individual variation in polyadenylation site choice. In

the third chapter, we profile the role of the RNA modification N6-methyladenosine (m6A)

in oligodendrocyte lineage progression and its potential impacts in human diseases, such

as multiple sclerosis. Finally, in the fourth chapter, we develop a method to examine how

genetic variants that increase risk of disease reduce the fidelity of RNA splicing.
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CHAPTER 1

INTRODUCTION

1.1 A primer on quantitative genetics

Quantitative traits, such as height [93], or molecular phenotypes, such as gene expression,

vary continuously, and often follow a normal distribution. In fact, most observable or phe-

notypic variation between individuals in a population tends to be quantitative. The field

of quantitative genetics aims to understand the genetic factors that contribute to pheno-

typic variation in a population. The process of identifying genetic loci that are associated

with phenotypic variation is known as quantitative trait loci (QTL) mapping [93]. Over the

last twenty years, QTL mapping has been used extensively in a wide variety of biological

contexts, including agriculture, medical genetics, evolution, and functional genomics [93].

Unlike linkage-baed QTL mapping [93], which leans on small pedigree data to allow re-

searchers to study the transmission of a particular locus within a family, association mapping

of a sample of individuals from a large population is now routine, particularly at a genome-

wide scale (i.e. genome-wide association studies (GWAS). The intuition behind this shift

in approach is that, at the population level, a larger number of recombination events are

able to reduce linkage disequilibrium (LD), which would normally restrict the resolution of

QTL mapping of individual loci. Therefore, association studies allow for much finer reso-

lution mapping of QTL. In fact, within the last decade, GWAS have successfully identified

thousands of common genetic variants, or single nucleotide polymorphisms (SNPs) [2, 22],

associated with complex traits and diseases [130, 1, 189, 80].

One limitation of GWAS is that they do not reveal which genes or mechanisms may

causally link these common genetic variants to a trait or disease. Moreover, elucidating the

mechanisms underlying complex traits or diseases requires detailed understanding of how loci

implicated in GWAS impact the disease in the relevant cell type(s), which is often difficult

1



to discern. Because it is estimated that over 90% of disease-associated variants identified by

GWAS are in non-coding regions of the genome [114], it is likely that these genetic variants

act through gene regulatory mechanisms.

1.1.1 Understanding disease pathogenesis by integrating GWAS hits with

functional data

One successful approach to investigate the mechanisms by which noncoding genetic variants

act to contribute to phenotypic variation is molecular QTL mapping, whereby one is able

to identify associations between SNPs and molecular phenotypes, such as gene expression,

chromatin accessibility, and protein levels. In 2010, through intersections of GWAS and

molecular QTL data, Nicolae and colleagues identified strong enrichment of common genetic

variants that affect gene expression levels (i.e. expression QTL (eQTL)) [126]. This enrich-

ment implies that SNPs that contribute to variation in phenotypic outcomes do so by either

increasing or decreasing gene expression.

This motivated a number of follow-up studies that identified and integrated eQTL with

disease associated GWAS hits [136, 94] across different tissues, cell-types, and contexts, in

the hope of improving our understanding of how trait-associated variants mechanistically act

to affect disease. Such work has successfully identified a subset of SNPs that directly disrupt

cis-regulatory elements, such as promoters and enhancers, for example, by disrupting tran-

scription factor binding [94, 119, 20, 37] and chromatin accessibility (as measured by DNase

I sensitivity or H3K27ac) [14, 40, 118], contributing to gene expression level dysregulation.
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1.1.2 A putative mechanism underlying disease pathogenesis: disruption of

RNA processing events

In 2016, Li and colleagues systematically explored the effects of genetic variation across

all stages of gene regulation, from chromatin to protein, in the HapMap/1000 Genomes

Yoruba collection of lymphoblastoid cell lines (LCLs) [104, 34, 118]. Interestingly, the authors

determined that there are several mechanisms, in addition to gene expression regulation at

the promoter and enhancer level, that play important roles in linking genetic variation to

complex traits and disease risk. Moreover, a study published the year after estimated that up

to 75% of the time the causal variant that underlies variation in a particular trait is distinct

from the causal variant that underlies variation in gene expression [29]. This implies that

the majority of these disease-associated variants may act independently of promoters and

enhancers, functioning through a gene regulatory mechanism distinct from gene expression.

To obtain models of how genetic variation impacts complex traits and disease and to

predict the functional impact of non-coding genetic variants, we need a better understand-

ing of regulatory mechanisms acting at every stage of the gene regulatory cascade, not just

gene expression. It is plausible that a substantial number of single nucleotide polymor-

phisms (SNPs) that do not contribute to variation in gene expression affect disease risk by

disrupting the regulation of various RNA processing events, such as alternative splicing or

alternative polyadenylation, resulting in shifts in the relative proportions of mRNA isoforms

produced. By identifying common genetic variants that affect alternative splicing or alter-

native polyadenylation by mapping QTL for these molecular phenotypes, one might be able

to better understand the mechanisms through which these SNPs act, such as disrupting of

splice sites or polyadenylation signal sites, to contribute to variation in disease outcomes.
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1.2 A primer on RNA processing events

A central question in genetics is how diversity in the human transcriptome is achieved de-

spite the human genome only encoding 20,000 protein coding genes [45]. Over the last

two decades, it has become increasingly apparent that the astonishing complexity within

the human transcriptome can be attributed to RNA processing events, such as the use of

alternative transcription start sites, alternative splicing, and alternative polyadenylation,

allowing for a single gene to encode a repertoire of at least 200,000 unique transcripts

[45]. RNA processing events, which allow for the transcriptome to vary dynamically across

different tissues, developmental stages, and disease states, have been recent targets of system-

atic study, which has been aided tremendously by one of the most significant technological

breakthroughs in genomics, the development of RNA-sequencing (RNA-seq) [91]. RNA-seq

has allowed researchers to, without a priori knowledge of gene annotations, quantitatively

measure gene expression, discover novel transcripts, and measure the relative abundance of

distinct transcript isoforms.

1.2.1 Alternative polyadenylation

Alternative polyadenylation (APA), or the process by which a single gene is able to pro-

duce multiple mRNA isoforms with distinct 3’ ends (e.g. mRNA species of different 3’

untranslated regions (UTRs) is a critical RNA processing event that allows a single gene to

encode multiple mRNA transcripts. In fact, APA also can affect the stability, localization,

transport, and translation of mRNA [168]. APA involves a four component multi-protein

complex, including CPSF (Cleavage and Polyadenylation Specificity Factor), CstF (Cleav-

age stimulation Factor), CFI and II (Cleavage Factors I and II), poly(A) polymerase (PAP),

and accessary factors [141]. The assembly of this 3’ end processing complex on pre-mRNA

involves the interaction of CPSF with the degenerate polyadenylation signal site (PAS),

AAUAAA, which is located 20-30 nucleotides upstream of the cleavage site, and CstF with
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the downstream U/GU-rich sequence [141]. This results in cleavage and subsequent addition

of a polyA tail that can vary in length [166].

Usage of a particular poly(A) site over another is determined by the relative strength of

the PAS, similar to usage of splice sites based on their strength. Moreover, the auxiliary fac-

tors involved in PAS choice are analogous to RNA binding proteins that also help mediate

splicing choice. For example, knockdown of the termination factors Pcf11 and Fip1 con-

tributes to increased usage of proximal sites over distal sites in a wide range of genes [101].

By using different PASs, genes can either shorten or extend, for example, their 3’UTRs,

which allows a transcript to contain distinct cis-regulatory elements, such as miRNA bind-

ing sites or RNA-binding protein sites [115], which can be important in the regulation of

normal development [8, 162], or mis-regulation in disease [95].

Early studies mapping APA were done on single genes; one motivating example is the

gene encoding the immunoglobulin M heavy chain (IgM H chain) [8, 162, 133]. The first

antibodies produced by nave or memory B cells are not secreted, and instead are inserted

into the plasma membrane, where they serve as antigen receptors. However, upon B cell

activation by an antigen, the B cell proliferates and differentiates into an antibody secreting

effector cell, namely, a plasma cell, which produces soluble, or secreted antibodies. However,

for a long time, immunologists did not have a deep, mechanistic understanding of what drove

this shift in antibody localization, despite the cells still encoding antibodies specific for the

same antigen. It was later elucidated that intronic (proximal) versus 3’UTR (distal) PAS

usage in the antibody-encoding gene, IgM H, during B cell differentiation is what drives

antibody localization or solubility, and specifically this is known to be mediated by the

differences in the concentration of the CstF. CstF concentration is low in undifferentiated

B cells such that it will preferentially bind the stronger GU sequence adjacent to the distal

PAS, allowing for splicing out of the intervening intronic sequences and resulting in a longer,

membrane bound IgM. In contrast, upon differentiation, in plasma cells, the concentration
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of CstF is high such that CstF is able to bind the weaker GU sequence at the proximal

PAS, not allowing for splicing out of said intron, resulting in a shorter, secreted form of IgM

[162]. This example highlights the critical importance of APA in mediating the production

of the correct isoform, membrane bound or secreted, of IgM in the correct cell type along a

particular differentiation trajectory.

Recent efforts have been made in the context of cancer biology and immunobiology to

better understand PAS choice or usage in distinct cellular contexts more broadly across the

human genome [141, 117, 158]. Specifically, RNA-seq studies have revealed that at least

70% of genes in the human genome have multiple polyadenylation sites, some of which are

in introns, and most of which are in the 3’ UTR [42]. Because APA, like alternative splicing,

seems to be a pervasive RNA processing phenomenon that is critical in cell-type specific

regulation, an important next step will be to characterize how SNPs can impact PAS choice,

and how this can lead to variation in phenotypic outcomes. For example, Cannovo et al.

studied the effect of genetic variation on post-transcriptional 3’ RNA processing regulation

across multiple stages of metazoan development in wild Drosophila isolates [23]. The authors

discovered thousands of alternative polyadenylation QTL (apaQTL), which were enriched

outside of enhancers, highlighting the importance of studying gene regulatory mechanisms

beyond genetic elements that impact gene expression levels. To date, very few studies have

quantified APA in human population samples and detected variants implicated in genome-

wide APA variation [99].

1.2.2 RNA methylation

Epigenetic regulation spans both DNA and RNA [56]. The recent discovery of reversible

mRNA methylation has revealed a new dimension of post-transcriptional gene regulation

[192]. m6A is a chemical derivative of adenosine (A) in RNA, and it is the most abundant

RNA modification observed in mammals across both polyadenylated mRNA and non-coding
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RNA, occurring at a frequency of 1-2% per nucleotide [85]. However, due to limitations

associated with techniques currently utilized to study m6A the number of m6A marked

transcripts is likely underestimated [47].

The m6A modification plays a critical role in a myriad of regulatory processes, including

mRNA export [148], mRNA stability[177], and translation [178][202][96]. Levels of m6A are

dynamically regulated by both writers, namely m6A methyltransferase complexes like the

METTL3-METTL14 complex [109], and erasers, namely m6A demethylases as ALKBH5

[201] and FTO [81]. The m6A reader proteins m6A-modified RNAs. Some m6A readers

proteins contain the YT521-B homology (YTH) domain while others include several of the

heterogeneous nuclear ribonucleoproteins (HNRNPs) [184] [187]. RNA metabolism, includ-

ing stability, translation, localization, and splicing, can be regulated by m6A [147]. Despite

the appreciation of m6A’s role in health and disease, very few studies have been conducted

to understand the impact of variation in RNA editing on complex genetic diseases. In a

recent study, Zhang et al. discovered that m6A QTLs are enriched for risk variants of a

range of complex traits, particularly autoimmune diseases and blood cell-related traits [197].

1.2.3 Alternative splicing

The vast majority of human genes contain multiple short exons and long, intervening introns

that must be removed from the nascent transcript during mRNA maturation. The exons

are joined to form a mRNA that can be translated into a functional protein. The excision

of introns from pre-mRNA and the joining of exons is directed by sequences at intron-exon

boundaries called splice sites (SS). The GU dinucleotide within the consensus sequence at

the 5’ end of an intron marks the 5’ SS. Near the other end of the intron, there is a branch

point, a polypyrimidine tract, and a terminal AG that marks the 3’ SS [112]. With this,

splicing is carried out by the multiprotein complex called the spliceosome that catalyzes the

two transesterification steps of splicing. Specifically, in the first transesterification step, the
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2’-hydroxyl of the A nucleotide at the branch point attacks the phosphate at the 5’ SS,

resulting in cleavage of the 5’ exon from the intron and ligation of the intron 5’ end with the

branch point (e.g. lariat) [112]. The second transesterification step involves the exposed 3’-

hydroxyl of the detached exon attacking the phosphate at the 3’ end of the intron, allowing

for ligation of the two exons and the release of the intron in lariat form [112].

Alternative splicing of pre-mRNA is the process by which use of alternative 5’ splice sites,

alternative 3’ splice sites, casette-exon inclusion or skipping, and intron retention result in

the production of distinct, mature transcript isoforms [127, 87]. In fact, it is estimated that

at least 95% of human multi-exon genes undergo alternative splicing [174], which is important

for diversifying the transcriptome and proteome. The fidelity of splicing is achieved by combi-

natorial recognition of specific sequences by protein factors within precursor mRNA at many

steps during the splicing process [152]. Because about one-third of the human genome is

comprised of introns [82], which is a large sequence space containing many sequence elements

similar to consensus motifs of canonical splice sites, or cryptic splice sites, it is important that

tight quality control mechanisms are in place to prevent the production of a large number

of aberrant transcripts. Thus, splicing fidelity is thought to be achieved by a combination of

kinetic and thermodynamic mechanisms, including kinetic proofreading which the spliceo-

some actively rejects suboptimal substrates or sequence elements through ATP-dependent

mechanisms mediated by DEAD/H-box ATPases [152]. The thermodynamic mechanism is

involved in the catalytic stages of splicing in which the spliceosome preferentially sequesters

suboptimal substrates into non-productive conformations that are in equilibrium with the

catalytic conformations of the spliceosome [159]. This ultimately prevents the extensive use

of suboptimal, or cryptic splice sites, such that it is estimated that the splicing error rate,

per intron, is approximately 0.7% [137]. These low-abundance, non-functional transcripts,

which tend not to be conserved over evolutionary time, are produced by a process known as

noisy splicing, or error-prone use of cryptic splice sites [137].
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Li et al. recently showed the critical importance of splicing as a link between genetic

variation and disease [104]. Genetic variants can impact RNA splicing by disrupting sequence

or directly impacting recognition of canonical splice sites or splicing regulatory elements

[195], which can result in aberrant mRNA transcripts, which can cause a large array of human

diseases [129, 107]. For example, patients with monotonic dystrophy type 1 have an expanded

CUG repeat in the 3’UTR of the DM protein kinase gene, which results in the sequestration

of splicing regulators in the muscle-blind protein family, disrupting a number of muscle-

blind-dependent splicing events [83, 151]. Thus, mapping common genetic variants that

affect RNA splicing (i.e. mapping splicing QTL (sQTL), like mapping eQTL, may lead us

to improve the functional interpretation of non-coding disease variants [103]. In fact, several

studies have underscored this point by identifying sQTL in high linkage disequilibrium with

GWAS associations for a number of different diseases, including Type 2 diabetes, Alzheimer’s

disease, and schizophrenia [51, 143, 163].

1.3 Dissertation overview

Gene regulation includes a wide range of mechanisms that together allow proper expression

of RNA and proteins in a cell-type and developmental-specific manner. Thus far, genetic

studies of disease associated variants have primarily focused on effects on steady-state gene

expression levels, but these, on average, only account for 25% of disease single nucleotide

polymorphisms (SNPs) [29]. Therefore, in this dissertation, I will present my work to study

alternative mechanisms, with a focus on RNA processing. Chapter 1 presents a primer

on quantitive genetics and RNA processing and modification. Chapter 2 evaluates various

methods and tools that facilitate the study of alternative polyadenylation. We apply a com-

bination of approaches to explore inter-individual variation in polyadenylation site choice.

The work present in this chapter also appears in the journal article Ankeeta Shah, Briana

E Mittleman, Yoav Gilad, Yang I Li. Benchmarking sequencing methods and tools that
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facilitate the study of alternative polyadenylation. Benchmarking computational tools and

methods that facilitate the study of alternative polyadenylation.Genome Biology 22 (1), 1-21,

(2021). Chapter 3 investigates the potential role of the m6A mark in regulating differential

splicing during oligodendrocyte development. Some of this work also appears in the journal

article Huan Xu, Yulia Dzhashiashvili, Ankeeta Shah, Rejani B. Kunjamma, Yi-lan Weng,

Benayahu Elbaz, Qili Fei, Joshua S. Jones, Yang I. Li, Xiaoxi Zhuang, Guo-li Ming, Chuan

He, and Brian Popko. m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation

and CNS Myelination. Neuron. 105 (2), 293-309. e5 (2020). Chapter 4 presents a method

to study splicing fidelity and its impact on complex traits and diseases.

In the appendix, I have attached abstracts of one book chapter, of which I am the

first author, and one additional publications, of which I am a co-author. The book chapter

outlines recent progress made and methods used to discover putative regulatory regions

associated with complex traits, with a focus on mapping splicing quantitive trait loci (sQTL)

using Yoruba LCL samples as a motivating example. I build upon this work in Chapter 3.

The publication provides a comprehensive resource for human structural variants (SVs).

10



CHAPTER 2

BENCHMARKING SEQUENCING METHODS AND TOOLS

THAT FACILITATE THE STUDY OF ALTERNATIVE

POLYADENYLATION

2.1 Abstract

Alternative cleavage and polyadenylation (APA), an RNA processing event, occurs in over

70% of human protein-coding genes. APA results in mRNA transcripts with distinct 3’ ends,

particularly found in 3’ UTRs, which harbor regulatory elements that can impact mRNA

stability, translation, and localization. APA can be profiled using a number of established

computational tools that infer polyadenylation sites from standard RNA-seq datasets. Here,

we benchmarked such cutting-edge short-read tools -- TAPAS, QAPA, DaPars2, GETUTR,

and APATrap -- that take standard, short-read RNA-seq as input in their ability to identify

polyadenylation sites and quantify polyadenylation site usage against 3’-Seq, a specialized

RNA-seq protocol that enriches for reads at the 3’ ends of genes, and Iso-Seq, a PacBio single-

molecule full-length RNA-seq method. We demonstrate that 3’-Seq and Iso-Seq are able to

identify and quantify the usage of polyadenylation sites more reliably than computational

tools that use short-read RNA-seq as input. However, we find that running one such tool,

QAPA, with a set of polyadenylation site annotations derived from small quantities of 3’-

Seq or Iso-Seq can reliably quantify variation in APA across samples and genotypes, as

demonstrated by the successful mapping of alternative polyadenylation quantitative trait loci

(apaQTL). We envision that our analyses will shed light on the advantages of studying APA

with more specialized sequencing protocols, such as 3’-Seq or Iso-Seq, and the limitations of

studying APA with short-read RNA-seq. We provide a computational pipeline to aid in the

identification of APA events using Iso-Seq data.
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2.2 Introduction

Although the human genome only harbors about 20,000 protein-coding genes, the human

transcriptome encodes ten times that number, or 200,000, of unique transcripts [35]. Over

the last two decades, it has become increasingly apparent that RNA processing events, such

as alternative splicing, alternative transcription start site usage, and alternative polyadeny-

lation, are drivers of the human transcriptome’s astonishing complexity, allowing single genes

to encode a repertoire of transcript isoforms [45]. Alternative polyadenylation (APA), the

process by which a single gene is able to produce multiple mRNA isoforms with distinct 3’

ends, is a critical RNA processing event that affects the stability, localization, transport, and

translation of mRNA [168, 183, 57, 79, 121, 44].

The cleavage and polyadenylation reaction is controlled by sequence elements upstream

and downstream of the cleavage and polyadenylation (PAS) site. Coordinated recognition of

the signal site, a hexameric A[A/U]UAAA sequence or variant thereof, ∼ 20-30 nucleotides

upstream of the PAS site [165, 60], and a GU-rich downstream sequence element, ∼ 10-

30 nucleotides downstream of the PAS site [44, 76, 26], is mediated by the cleavage and

polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes.

In addition to harboring alternative splice sites, genes can also harbor alternative PAS sites.

By using different PAS sites, mRNA transcripts are produced with varying 3’UTR lengths,

which can contain distinct cis-regulatory elements, such as miRNA binding sites or RNA

binding protein sites [116, 162], and can therefore be important in the regulation of normal

differentiation and development [8? ] or mis-regulation in the context of disease [95].

The rise of next generation, high-throughput RNA sequencing (RNA-seq) [92] has allowed

researchers to, without a priori knowledge of gene annotations, quantitatively measure gene

expression, discover novel transcripts, and measure the relative abundance of distinct tran-

script isoforms. Studies using standard RNA-seq estimate that ∼ 70% of genes in the human

genome harbors multiple PAS sites, most of which are localized within 3’ UTRs [42]. To
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study the effect of APA on gene regulation, a number of research groups have developed

computational tools that leverage standard RNA-seq data to identify PAS sites and quantify

polyadenylation site usages (PAUs). The growing number of such tools is a result of the

extensive availability of short-read RNA-seq data across multiple cell types, individuals, and

organisms [61, 185, 11].

Some existing approaches for studying alternative polyadenylation from short-read RNA-

seq rely on estimating PAU based on transcript-level abundance [62, 84] (Fig. 2.1a). For

example, QAPA calculates the relative proportion of every isoform in a gene using a com-

bination of existing tools, namely Sailfish [132] and Salmon [131], and PAS site annotation

files [62]. The use of annotations may be a drawback as PAS sites found in certain databases

are often incomplete. In particular, PAS site databases may currently be missing annotation

information in particular cell types or organisms of interest, biasing analyses comparing PAU

across conditions. Other methods perform de novo identification of PAS sites by using a

change-point model, which is based on a generalized likelihood ratio statistic of identifying

transcript length changes [185, 11, 100] (Fig. 2.1a). For example, DaPars2 infers the location
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of a single proximal PAS site within 3 UTRs [185, 100, 53]. GETUTR identifies multiple

PAS sites within 3’ UTRs using kernel density estimation [89]. APATrap identifies multiple

PAS sites within novel 3’UTRs and 3’UTR extensions using a mean squared error model

[190]. Finally, TAPAS infers PAS sites within and upstream of 3’ UTRs [12].

While these methods have provided valuable insights into the landscape of APA in a

myriad of biological contexts, there are a number of challenges associated with studying APA

with short-read RNA-seq. Generally, estimation of isoform abundance from short-read RNA-

seq is statistically challenging because short-read protocols tend to sample small portions of

transcripts, and alternative transcripts often have substantial overlap [103]. Specific biases

exist due to the fact that standard RNA-seq protocols include multiple PCR amplification

steps during library preparation [5]. There is also bias in sequencing repetitive regions [172]

and the issue of short reads not aligning uniquely within a reference genome of interest [33].

Most importantly, coverage of RNA-seq at the 3’ end of mRNA transcripts is often limited,

which makes estimation of the PAU particularly difficult. 3’ end sequencing (3’-Seq), which

enrich for reads covering the 3’ ends of genes [105], overcomes the issue of limited coverage

but suffers from some of the other biases associated with standard RNA-seq, such as mapping

errors associated with reads derived from repetitive regions in the genome (Fig. 2.1b).

Because of the biases and analytical challenges associated with short-read sequencing

protocols and their variants, we took advantage of the Pacific Biosciences (PacBio) single-

molecule isoform-sequencing (Iso-Seq) [144] to more precisely identify PAS sites and quantify

PAUs. We reasoned that because Iso-Seq enables sequencing through polyA tails [144] , some

but not all of the biases associated with studying APA using 3’-Seq and short-read RNA-

seq data would be minimized. Supporting this view, a recent study surveyed the sorghum

transcriptome using single-molecule long reads, allowing for enhanced sorghum gene isoform

annotation without the need for transcript reconstruction [4]. In this study, we benchmarked

the ability to study APA on a genome-wide scale in humans using short-read RNA-seq-based
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computational tools – TAPAS [12], DaPars2 [185, 100, 53], QAPA [62], GETUTR [89], and

APATrap [190] against 3’-Seq and PacBio Iso-Seq. While there are many computational tools

available that allow one to study APA, we chose these tools specifically because they leverage

distinct approaches for studying APA. Notably, some of these tools leveraging annotation

databases and estimating PAU based on transcript-level abundance while others make use of

change-point-based detection methods. We aimed to highlight the relative advantages and

disadvantages of each tool to inform the scientific community about which method may best

serve study goals.

2.3 Results

2.3.1 Identification and quantification of polyadenylation sites using

PacBio Iso-Seq long-read sequencing

To define the set of PAS sites to benchmark against, we compiled eight polyA-selected PacBio

Iso-Seq lymphoblastoid cell line (LCL) libraries. Specifically, we generated five libraries for

Yoruba (YRI) LCLs GM18501, GM18504, GM19144, GM19239, and GM19153 [58] and

obtained three previously published Central European (CEU) LCL libraries for GM12878,

GM12891, and GM12892 [58, 169]. High quality consensus circular sequences (CCS) were

mapped to the hg19 human reference genome using minimap2 (v2.2.15) [97] separately for

each of the eight libraries (Fig. 2.2a). In order to maximize power to subsequently identify

PAS sites, aligned reads from the eight libraries were pooled together, resulting in a total of

2.83 million reads that were used in all downstream analyses (the “Methods” section).

Aligned reads containing polyA tails were extracted from the alignment files after per-

forming a series of filtering steps, including filtering based on the length and adenosine

composition of polyA tails and filtering for internal priming or mispriming to minimize false

positive PAS identification (Fig. 2.2a). In brief, because Iso-seq reads should contain polyA
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tails that are not encoded in the genomic DNA, reads that contained a stretch of at least

six As were retained. Moreover, reads with putative polyA tails due to mispriming were

assessed by scanning the 10 nucleotides flanking either side of putative cleavage site in the

genome for a stretch of at least six As and subsequently filtered out (the “Methods” section).

After filtering, we were left with 1.58 million reads with polyA tails and likely not mis-

primed. Using these 1.58 million reads, PAS sites were individually defined as a window

between the putative cleavage site and 100 nucleotides upstream. In addition, this set of

PAS sites was refined further by filtering out sites localized in the 3’ UTR that did not have

reads spanning an upstream exon. To define PAU, we computed the ratio of the number of

reads mapping to a PAS site divided by the number of reads mapping to all PAS sites in the

same gene. This resulted in a set of 27,233 PAS sites within 12,280 genes, 22,311 of which

had PAUs > 5% (the “Methods” section). Our Iso-seq data analysis pipeline is available on-

line (the “Availability of data and materials” section). We validated that the set of PAS sites

that we obtained was consistent with previously defined PAS site signatures. For example,

we observed enrichment of hexameric signal site motifs, such as AATAAA and ATTAAA, 20-

30 nucleotides upstream of the cleavage site [165, 60, 13, 167] (Fig. 2.2b, one-sided Fisher’s

exact test, OR = 2.16, p < 2.2e6, Fig. 2.7b) and enrichment of GT-rich sequences 10-30

nucleotides downstream of the cleavage site [76] (Fig. 2.7c, one-sided Fisher’s exact test, OR

= 6.03, p < 2.2e6). Finally, we considered the distribution of the filtered set of reads across

all genes in the genome and restricted following analyses to 2,862 genes with a read coverage

of ≥ 40Iso-Seq reads with a polyA tail to obtain a final set of 4,446 high confidence PAS

sites with PAUs > 5% (Fig. 2.2c, Fig. 2.7a).

To validate the biological utility of the aforementioned pipeline to identify PAS sites

from Iso-Seq data, we applied said pipeline to previously published brain and liver Iso-Seq

datasets [9] given that most other studies of APA have focused on identifying PAS sites

and calculating PAUs to study differential expression of 3’ UTRs across conditions, such as
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across tissues. Given that read coverage across most genes in brain and liver datasets was

poor (Fig. 2.8a), we restricted our analysis to 138 genes supported by at least one read that

was informative with regard to the location of a PAS in the 3’ UTR in both the brain and

liver datasets. We observed that 30% of genes exhibited preferential usage of more distal

PAS sites in the brain (at least 500 bp of distance between sites, or 20% for sites at least

1 kb apart) as compared to the liver, for which just 12% of genes used a more distal site

(at least 500 bp difference, or 8% for sites at least 1 kb apart, Fig. 2.8b). This result is

consistent with observations made previously that highlight a global lengthening of 3’ UTRs

in the brain [116].

2.3.2 Assessing PAS site features across APA detection methods

We assessed the ability of QAPA [62], DaPars2 [108, 100], TAPAS [11], GETUTR [89], and

APATrap [190], 3’-Seq [106] and Iso-Seq to recapitulate known features of PAS sites. In

brief, the five computational tools that leverage RNA-seq work as follows: QAPA extracts 3’

UTRs for all genes from GENCODE. In addition, QAPA incorporates 3’ UTR and PAS site

annotation information from GENCODE [65] and the PolyASite database [71], respectively.

Alternatively, a user may provide custom PAS site annotations. QAPA will then quantify

PAUs by applying Sailfish [132] to resolve RNA-seq reads that map to loci containing multiple

transcript isoforms. DaPars2 is a method that identifies PAS sites de novo and quantifies

PAU without annotations. DaPars2 first identifies a distal PAS site for every gene based on

where the RNA-seq coverage ends. From this, DaPars2 assumes that a single proximal PAS

site exists, and it detects this proximal PAS site as an optical fitting point that can best

explain a localized dip in read-density. DaPars2 then quantifies the PAU of proximal and

distal PAS sites by adding read counts. TAPAS extracts all 3’ UTRs in a gene according to

a genome annotation. It then estimates the read coverage of every 3’ UTR, which is given

as input to the time-series data Pruned Exact Linear Time (PELT) algorithm [88] to infer
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change points in a gene where the read coverage increases or decreases the most. TAPAS

then filters all change points to define a true set of PAS sites, and PAUs are quantified as

previously described [171]. GETUTR extracts reads that map to annotated 3’ UTRs from a

reference genome, makes a density function of RNA-seq data using kernel density estimation

with a Gaussian kernel, and identifies PAS sites after using techniques that smooth read

coverage. APATrap uses a mean squared error model to identify PAS sites. Finally, as

mentioned previously, 3’-Seq is a method that enriches for reads covering the 3’ end of

genes.

In total, we ran TAPAS, DaPars2, QAPA, GETUTR, and APATrap using 89 RNA-seq

samples from YRI LCLs as input and used our in-house pipelines (the “Methods” section) to

process 54 3’-Seq YRI LCL samples and the aforementioned eight Iso-Seq YRI LCL samples.

We compared the overall number of PAS sites identified by these five methods and identified

26,545, 22,062, 14,251, 46,169, 12,555, 32,286, and 22,311 PAS sites defined by TAPAS,

DaPars2, QAPA, GETUTR, APATrap, 3’-Seq, and Iso-Seq, respectively (PAU > 5 %). In

addition, we observed that many PAS sites, regardless of which method they were defined

by, were previously annotated in the database PolyA DB 3 [176] (Fig. 2.3a).

Greater than half of the 12,280 genes expressed in LCLs harbor multiple PAS sites, or

undergo APA, with 79.8% harboring ≥ 2 PAS sites, as defined by Iso-Seq (Fig.2.3a, 9,799

genes). Of note, although DaPars2 defines at most two PAS sites per gene, we found that

8% of genes harbored more than two PAS sites as defined by DaPars2 (Fig. 2.3b). This

slight discrepancy is due to the re-assignment of PAS sites to genes using hg19 RefSeq gene

annotations in order to be able to consistently compare PAS sites across TAPAS, DaPars2,

QAPA, GETUTR, APATrap, 3’-Seq, and Iso-Seq in subsequent analyses.

Next, we wanted to assess the distribution of PAS sites across genic locations. We

observed that while all methods agreed that most PAS sites are localized within 3’ UTRs

of genes, 3’-Seq identified a substantial fraction of PAS sites in introns as well (Fig. 2.3c,
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Figure 2.3: Features of PAS sites. (a) Barplot showing the percentage of PAS sites
annotated in the PolyA DB 3 database [176]. (b) Cumulative density of the number of
identified PAS sites identified. (c) Barplot representing the genic location - 3’ and 5’ UTRs,
introns, exons, and intergenic regions - of PAS sites as defined by HOMER [69] (left), and the
genomic locations of PAS sites defined using ChromHMM annotations [50] (right). For the
latter, the four annotations represented are enhancer, promoter, repressed, and transcription
(txn) elongation. Eleven other annotations were collapsed together as “Other” (see the
“Methods” section).

22%). This is consistent with the notion that 3’-Seq is more sensitive to APA events with

low PAUs. Indeed, PAS sites in introns were used significantly less frequently than PAS site

in 3’ UTRs (68% and 24% of PAS sites in introns and 3’UTRs, respectively, with PAUs 20%,

two proportions Z-test, χ2 = 4329.5, p = 2.2e16). We also observed conservation upstream

of the PAS site more frequently for those in 3’ UTRs than those in introns or other genic

locations, which is consistent with previous findings (Fig. 2.9a) [10]. Notably, most PAS sites

(range of 31.4-59.3%) defined by all methods were associated with transcription elongation

(59.3% of Iso-Seq PAS sites were associated with transcription elongation and 25.1% were

associated with other chromatin features, two proportions Z-test, χ2 = 6.221, p = 6.3e3),

highlighting the importance of local chromatin architecture in PAS site selection (Fig.2.3d),

as documented previously [145]. Altogether, these results suggest that all methods define

PAS sites with at least one established PAS site signature, with Iso-Seq and 3’-Seq identifying

more PAS sites with multiple PAS site signatures than the standard RNA-seq methods.
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2.3.3 Benchmarking short-read methods against PacBio Iso-seq to identify

PAS sites and quantify PAUs

To fairly and directly compare PAS sites defined by TAPAS, DaPars2, QAPA, and 3’-Seq

with PAS sites defined by Iso-Seq, we restricted our analyses to the 2,862 genes with a read

coverage of ≥ 40 Iso-Seq reads. Of the 4,446 Iso-Seq PAS sites (PAU > 5%), 78.7% were also

defined as 3’-Seq PAS sites (Fig. 2.4a, 3,500 PAS sites recovered). In comparison, TAPAS,

DaPars2, QAPA, GETUTR, and APATrap were able to recover fewer Iso-Seq PAS sites, at

most, 56.6% (Fig. 2.4a, TAPAS).

To assess if there were observable differences in PAUs between PAS sites within the same

gene, we restricted to two PASs within the 3’ UTR of every gene within our set of 2862 genes

(≥ 40 Iso-Seq reads), the furthest upstream (i.e., proximal) and furthest downstream PAS site

(i.e., distal). Interestingly, we observed little difference in proximal and distal PAUs identified

by Iso-Seq and 3’-Seq (Fig. 2.9c). In contrast, TAPAS, DaPars2, QAPA, GETUTR, and

APATrap exhibited significant PAU differences between proximal and distal PAS sites (Fig.

2.9c, prop.test, P = 1.088543e44). This was expected given that different sequence isoforms

can contain a significant amount of sequence overlap, and short RNA-seq reads assigned may

be assigned to the incorrect isoform. Therefore, short-read-based methods may overestimate

proximal PAU. Indeed, TAPAS and DaPars2 identified a significant number of distal PAS

sites with lower PAUs; 74.7% of distal PAS sites identified by TAPAS exhibited PAUs ≤

50%, and 61.6% of distal PAS sites identified by DaPars2 exhibited PAUs ≤ 50% (Fig. 2.9c).

Interestingly, QAPA identified slightly more proximal PAS sites with lower PAUs (Fig. 2.9c).

This may be a result of the fact that QAPA was run with additional annotation information

as compared to TAPAS and DaPars2.

Next, we compared PAUs across the different methods at the gene-level. More precisely,

if two methods called the same PAS sites for a specific gene, we computed the difference in

their usages and summed across the differences for all PAS sites within that gene (Fig. 2.4b,
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Figure 2.4: Comparing PAS site identification and PAU quantification across
methods. (A) Barplot showing the proportion of Iso-seq PAS sites across 2,862 genes that
were identified by short-read sequencing methods, 3’-Seq, QAPA, DaPars2, and TAPAS.
These methods are able to identify, at best, ∼ 75% PAS sites identified by Iso-Seq. (B)
Comparison of PAU calls across methods. Error(Sum |Delta PAU|) refers to the concor-
dance in calls between two methods, A and B (as outlined in the schematic). The solid and
dotted lines represent comparison of all methods against Iso-Seq, and 3’-Seq, respectively.
(C) Receiver operating characteristic (ROC) curves. True positives are instances in which
Iso-Seq with PAUs > 5% have analogous PAS sites defined by other methods with PAUs
> 0%. False positives are PAS sites defined by other methods with PAUs > 5%, but lack
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Fig. S4b). We defined this as the amount of “error” or difference between PAUs estimated

by different methods (Fig. 2.4b). Examples of low error include cases in which two methods

define the same PAS sites per gene but might estimate PAUs to be slightly different. In

contrast, examples of high error include cases in which two methods may define completely

different PAS sites per gene. When comparing 3’-Seq, TAPAS, DaPars2, QAPA, GETUTR,

and APATrap against Iso-Seq (Fig. 2.4b, Fig. 2.10b “Concordance with Iso-Seq”), 3’-Seq

was most concordant. GETUTR was least concordant, with 78.6% of genes tested having an

error > 1.0, suggesting a large discrepancy between GETUTR-defined PAUs and Iso-Seq-

defined PAUs. All standard RNA-seq-based tools, TAPAS, DaPars2, QAPA, GETUTR, and

APATrap, were similarly concordant with 3’-Seq (Fig. 2.4b, Fig. 2.10b “Concordance with

3’-Seq”).

We generated a receiver operating characteristic (ROC) curve to highlight the tradeoff

between sensitivity and specificity of 3’-Seq, TAPAS, DaPars2, QAPA, GETUTR, and AP-

ATrap as compared to the Iso-Seq sites, which, for the purpose of this analysis, were the

ground truth (Fig. 2.4c). We did not simulate synthetic datasets for this analysis as, to

date, there are very few methods that can simulate Iso-Seq data, and the methods that do

exist simulate reads lacking polyA tails, rendering them uninformative for the study of APA.

We defined a true positive as an instance in which a method defines an analogous PAS site

that overlaps the Iso-Seq PAS by at least a single base with a PAU > 5%. In contrast, we

defined a false positive to be an instance in which a PAS site is defined by 3’-Seq, TAPAS,

QAPA, GETUTR, APATrap, or DaPars2 with a PAU > 5%, but there does not exist an

overlapping PAS site defined by Iso-Seq. Overall, 3’-Seq outperformed all other methods, as

measured by the area under the curve (Fig.2.4c, AUC = 0.66). In contrast, the AUCs for

TAPAS, QAPA, DaPars2, GETUTR, and APATrap were 0.46, 0.50, 0.20, 0.17, and 0.20,

respectively. We repeated this analysis with the 3’-Seq PAS sites as the ground truth and

observed similar results (Fig. 2.10e).
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To showcase the complexity of PAS site identification and PAU quantification, we high-

light H3F3B as an example in which Iso-Seq and 3’-Seq identified five PAS sites with (PAUs

> 1%), with comparable PAUs (Fig. 2.4d). In contrast, the standard RNA-seq based meth-

ods identified overall fewer PAS sites, on average, with PAUs that did not agree with Iso-Seq

and 3’-Seq.

2.3.4 Evaluating the study of inter-individual variation in PAS site choice

using different sequencing methods

We have demonstrated thus far that 3’-Seq PAS site identification and PAU quantification

is superior to that of RNA-seq-based methods. Nevertheless, a large number of RNA-seq

datasets are publicly available, which can be readily used to study APA. Therefore, we

sought to evaluate the possibility of combining short-read RNA-seq with a set of PAS site

annotations derived from small quantities of 3’-Seq or Iso-Seq to study variation in APA

across samples.

As a possible test-case, we set out to use human population-scale RNA-seq data alongside

3’-Seq and Iso-Seq PAS site annotations to study the impact of genetic variation on PAU.

While previous studies have focused on comparing PAU across conditions, such as cell types,

tissues, or species, we note that studying the impact of genetic variation on PAU is simply

another type of comparison of PAU across conditions. In this case, there are three conditions,

each one a possible genotype. Moreover, to date, very few studies have quantified APA in

a human population samples and detected genetic variants implicated in genome-wide APA

variation [100, 122], although this may change in the future.

Given that studying the impact of genetic variation on variation in PAU across diverse

human populations necessitates the use of well-powered datasets with samples collected

from many individuals, and the fact that many such datasets are based on standard, short-

read RNA-seq protocols, we first wished to compare the ability to call APA quantitative
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Figure 2.5: Studying the impact of genetic variation on variation in PAS site choice
using different sequencing methods. (A) Barplot showing the number of apaQTL (FDR
< 10%) identified across the short-read RNA-Seq-based methods and 3’-Seq. (B) Heatmap
showing sharing of apaQTLs across sequencing methods using Storey’s π1 statistic.

trait loci (apaQTL), which link variations in PAU to genotype, accurately using PAS sites

defined by TAPAS, DaPars2, QAPA, GETUTR, and APATrap by benchmarking against

apaQTL we identified based on PAS sites defined by 3’-Seq. We next ascertained whether

the reliability and reproducibility of apaQTL called using RNA-seq-based tool PAS sites

as input, in particular QAPA, could be improved when given custom PAS site annotations

based on small quantities of specialized datasets, such as 3’-Seq and Iso-Seq.

In order to map apaQTL, we restricted our analysis to samples with genotype information:

87 YRI LCLs for which we had access to short-read RNA-seq data and 51 YRI LCLs for

which we had access to 3’-Seq data (the “Methods” section). We did not map apaQTL

using Iso-Seq data because data from only 8 individuals were available to us, much fewer

than the 50 individuals that are typically required for QTL analysis.Briefly, per individual,

we defined PAUs for each PAS site defined by every APA method separately, as described

previously, now including PAS sites with PAUs < 5%. We quantile normalized these ratios
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and tested for the association between PAU and single nucleotide polymorphisms (SNPs)

within 25 kb of the associated PAS site using FastQTL [128]. Significant SNP-PAS pairs were

defined as apaQTL (FDR <10%). We were able to identify hundreds of apaQTL, but the

exact number of apaQTL mapped varied greatly between methods and tools (Fig.2.5a). In

particular, we noted a substantial increase in the number of apaQTL called using PAS sites

defined by QAPA run with Iso-Seq or 3’-Seq annotations as compared to QAPA run with

the combination of GENCODE and PolyASite annotations, which is the default (Fig. 2.5a,

635 and 685 versus 102 apaQTL called by QAPA run with Iso-Seq, 3’-Seq, and GENCODE

and PolyASite annotations, respectively). The number of apaQTL called using PAS sites

defined by QAPA run with Iso-Seq or 3’-Seq annotations is comparable in number to that

of 3’-Seq (Fig. 2.5a, 635 and 685 versus 536 apaQTL called by QAPA run with Iso-Seq and

3’-Seq annotations, respectively). We observed enrichment of apaQTL near cleavage sites,

suggesting that all methods and tools were able to identify apaQTL that likely enhance or

disrupt recognition of signal sites (Fig. S5b).

To assess what fraction of apaQTL called by the various tools could be recapitulated

by other tools, we estimated sharing of apaQTLs using Storey’s π1 statistic and restricted

to PAS-SNP pairs within 3’ UTRs, as some of the short-read RNA-seq-based tools do not

identify PAS sites upstream of 3’ UTRs. Interestingly, very few apaQTL called using PAS

site defined by TAPAS, GETUTR, and APATrap were shared with apaQTL called by other

methods (Fig. 2.5b), suggesting potential false positives. We also observed that while only

4% of apaQTL identified by 3’-Seq were shared with those identified by QAPA run with

GENCODE and the PolyASite database annotations, 28% and 39% of apaQTL were shared

by QAPA run with Iso-Seq or 3’-Seq PAS site annotations, respectively (Fig. 2.5b). For

example, rs7029002 (C>G) is an apaQTL identified using 3’-Seq data that was shared with

QAPA run with Iso-Seq and 3’-Seq PAS site annotations. As apaQTL represent associations

between genotype and PAU, at this locus, individuals with more G alleles at rs7029002
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exhibit higher PAUs associated with the PAS site at the end of the 3’ UTR of the DDX58

gene as compared to individuals with more C alleles (Fig. 2.6). While this apaQTL is also

significant when called using PAU quantifications from TAPAS and DaPars2, significance

is greatly diminished. Moreover, the estimated effect size is reversed for DaPars2, meaning

that in this case, individuals with C alleles, instead of G alleles, exhibit higher PAU of the

PAS site at the end of the 3’ UTR (Fig. 2.6). Interestingly, rs7029002 is upstream of the PAS

site it is associated with, suggesting that it is tagging a genetic variant that likely disrupts

recognition of the cleavage site, either directly or indirectly. Some apaQTL were exclusively

identified by 3’-Seq, such as rs72836634 near the gene CASC3 (Fig. 2.12). Nevertheless, a

large fraction of apaQTL called using 3’-Seq could be identified using QAPA with Iso-Seq

or 3’-Seq annotations (Fig. 2.5b, π1 = 0.28 and 0.39), suggesting that running QAPA with

Iso-Seq or 3’-Seq annotations derived from a small number of individuals is a reasonable

alternative to performing 3’-Seq in all individuals for apaQTL mapping.

Lastly, we quantified sharing of apaQTL called using PAS-defined by the different tools

with expression quantitative trait loci (eQTL), which can serve as a proxy for function. For

example, shared apaQTL and eQTL include cases in which one PAS may provide more sta-

bilility to a transcript over another, preventing the transcript from being subject to degrada-

tion. In such an example, high gene expression might serve as a proxy for transcript stability.

Overall, we observed that sharing of apaQTL with associated gene-SNP pairs was indeed

relatively high (Fig. 2.11d, π1 between 0.09 and 0.36). In particular, sharing between eQTL

and apaQTL identified using 3’-Seq (π1 = 0.36) is very similar to that between eQTLs and

apaQTLs identified using QAPA run with 3’-Seq (π1 = 0.39) or run with Iso-Seq annotations

(π1 = 0.36) (Fig. 2.11d). This observation suggests that the apaQTL identified using these

three methods are likely to have similar functional impacts on gene regulation.

Overall, these observations suggest that, indeed, under circumstances in which APA-

related specialized datasets cannot be generated for a large sample of individuals, QAPA, run
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Figure 2.6: Example of a shared apaQTL in the gene DDX58 defined by 3’-Seq and
shared by QAPA run with Iso-Seq or 3’-Seq PAS site annotations. We highlight
a gene track displaying read coverage and PAS sites. The gray vertical track directly below
rs7029002 represents the position of the strongest apaQTL SNP, and the surrounding gray
track represents the most strongly affected PAS site. PAUs for every PAS site were stratified
by genotype, as shown on the right, in which individuals with the G allele have increased
PAU of the highlighted, gray PAS site. The bottom highlights boxplots of the PAU at this
PAS site, stratified by genotype and APA detection method.
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with custom PAS site annotations derived from small quantities of such specialized datasets,

recapitulates PAS sites and apaQTL that would otherwise be identified using population-

scale 3’-Seq data.

2.4 Discussion

Short-read RNA-seq has become central in the assessment of transcriptional and post-

transcriptional gene regulatory mechanisms, such as APA, which contributes substantially to

the amount of diversity in the human transcriptome and proteome by increasing the number

of isoforms produced through differences in PAS site selection. However, given the limited

size of RNA-seq sequence fragments and inherent complexity of the human transcriptome, it

remains difficult to accurately reconstruct full-length transcripts with short-read RNA-seq.

3’-Seq, a specialized RNA-seq protocol that enriches for reads at the 3’ ends of genes is a bet-

ter, well-established alternative for the study of APA. Moreover, single-molecule long-read

RNA-seq, such as PacBio Iso-Seq, offers a considerable advantage over short-read sequencing

to more precisely identify PAS sites and quantify PAUs across mammalian transcriptomes

because this protocol allows for capture of full-length transcripts, including polyA tails, thus

obviating the need for transcript reconstruction entirely.

In this study, we identified 22,311 PAS sites (PAU > 5%) across 12,280 genes, 38.7%

of which are novel, using Iso-Seq data derived from eight LCL samples. We observed that

APA detection methods, such as those that take short-read RNA-seq as input, including as

TAPAS, DaPars2, QAPA, GETUTR, and APATrap, as well as 3’-Seq, were able to identify

comparable numbers of PAS sites. Importantly, PAS sites identified by all methods exhibited

well-characterized features of PAS sites, including enrichment of signal site motifs upstream

of cleavage sites, enrichment within 3’ UTRs, and association with transcription elongation.

We benchmarked the ability to study APA using all tools against 3’-Seq and Iso-Seq.

We estimated that 78.6% of PAS sites identified by 3’-Seq overlap with Iso-Seq-defined PAS
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sites whereas, at best, 56.6% PAS sites identified by one of the RNA-seq-based methods,

QAPA, overlap with Iso-Seq-defined PAS sites. Moreover, as expected, there is reasonable

concordance in identification of PAS sites and estimation of PAUs between 3’-Seq and Iso-

Seq, with some differences. This is in contrast to the greater discordance between RNA-seq-

based tools and Iso-Seq, likely because PAS site identification and PAU quantification among

the RNA-seq-based tools can be highly variable. Overall, this suggests that researchers

should carefully assess which RNA-seq-based tools might serve them best based on the exact

biological questions they may be interested in answering. Moreover, 3’-Seq should be the

method of choice for studying APA when such data can be generated or are available.

We acknowledge that it is not necessarily practical or cost-effective to generate specialized

datasets to study APA, especially given that a plethora of short-read RNA-seq already exist

for a large number of samples. Through our analysis of inter-individual variation in APA

as a test-case, it is apparent that QAPA, an isoform-based RNA-seq method to study APA,

paired with PAS site annotations derived using small quantities of specialized sequencing

data, such as 3’-Seq and Iso-Seq, may offer a considerable advantage in studying APA in a

cost-effective manner in the near term until it becomes more accessible and inexpensive to

study APA extensively using full-length, long-read sequencing.

2.4.1 Conclusions

This study demonstrates that current methods to study RNA processing events, such as APA,

with short-read RNA-seq data suffer from limitations. However, combining large quantities

of RNA-seq data with small quantities of specialized data, in this case, 3’-Seq or Iso-Seq,

strikes an attractive balance between affordability and accuracy in the study of APA.
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2.5 Methods

2.5.1 Cell culture and RNA sample preparation

We cultured 5 Epstein-Barr Virus transformed lymphoblastoid cell lines (LCLs) at 37 C

and 5% CO2. These LCLs -- GM18501, GM18504, GM19144, GM19239, and GM19153 --

were derived from the Yoruba (YRI) individuals from the International HapMap Consor-

tium. The Coriell Cat #:Research Resource Identifiers (RRIDs) are GM18501:CVCL P458,

GM18504:CVCL P460, GM19144:CVCL P525, GM19239:CVCL 9634, and GM19153:CVCL

P531.

These lines were authenticated and tested for mycoplasma contamination. Cell culture

and RNA extraction were performed as described previously [122]. In brief, cells were grown

in a glutamine depleted RPMI [RPMI 1640 1X from Corning (15-040 CM)] with 15% FBS,

2 mM GlutaMAX (from gibco (35050-061), 100 IU/mL Penicillin, and 100 ug/mL Strep-

tomycin. The lines were passaged 3 times, maintained at 8105 cells, and grown to a con-

centration of 1106 cells per mL before RNA extraction, which was performed as described

previously [122]. In brief, cells from each line were spun down and pelleted at 200 g at 500

RPM at 4C for 2 min, washed with cold phosphate-buffered saline (PBS), and spun down

again before aspirating the PBS. RNA was extracted using the miRNeasy kit (Qiagen) ac-

cording to the manufacturer’s instructions, including the DNase step to remove potentially

contaminating genomic DNA.

2.5.2 Long-read RNA-sequencing data mapping, filtering, and quality

control

We processed a total of 8 polyA-selected PacBio Iso-Seq LCL libraries [54] Five SMRT bell

libraries were generated for the aforementioned YRI LCLs, GM18501, GM18504, GM19144,

GM19239, and GM19153, as per the PacBio Iso-Seq protocol described previously [135]. In
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brief, cDNA synthesis was performed in triplicate, with each reaction starting with 800-1000

ng of total RNA. The samples were sequenced using 4 SMRTcells. We generated consensus

circular sequences (CCS), removed primers, demultiplexed samples, and converted to fastqs

[154]. In addition to the 5 YRI LCL samples we generated, we leveraged previously published

the Central European (CEU) LCL libraries, GM12878, GM12891, and GM12892 (NCBI SRA

SRP036136) [170].

Reads were mapped to the hg19 human reference genome using minimap2 (version 2.2.15)

separately for every library [97], using the specific parameters minimap2 -ax splice -uf -C5

hg19.fa ¡file>.fastq > ¡file>.sam. In order to increase power to call PAS sites, aligned reads

from the eight libraries were pooled together.

To identify Iso-Seq reads that capture cleavage and polyadenylation events, we searched

for reads that contained stretches of adenosines (i.e., polyA tails). PolyA stretches needed

to be located immediately after the 3’ end of the alignment (i.e., starts at the base within

the read that does not map to the hg19 reference genome, which is otherwise known as the

portion of the read that is “softclipped”). We assessed if the softclipped portion of every

read contained a stretch of adenosines. We retained the reads if their softclipped segments

were < 20 nucleotides in length and were composed of 95% adenosines. Moreover, if the

length of the softclipped segment of a read was ≥ 20 nucleotides, we assessed if the first 20

nucleotides of the softclipped segment was composed of 80% adenosines and if the following

20 nucleotides of the softclipped segment was composed of 95% adenosines and retained

these reads as containing a stretch of adenosines.

Next, reads with stretches of adenosines were filtered for internal priming or mispriming

using an approach similar to what has been described previously [102]. In brief, we ex-

tracted 20 base pairs of the genomic sequence flanking the cleavage site (i.e., 10 nucleotides

upstream and 10 nucleotides downstream of the base at which the softclipping segment be-

gan) and discarded reads that contained 6 out of 10 adenosines upstream or 6 out of 10
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adenosines downstream. We considered this final set of reads as having reliable polyA tails,

and therefore, we used this set for downstream analyses.

To ensure the validity of our filtering steps, we verified that the set of final reads showed

enrichment of hexameric polyadenylation signals (e.g., AAUAAA), as described previously

[26, 13, 102]. In addition, we also verified for enrichment of other sequence elements that are

known to play an important role in correct cleavage site recognition, namely a downstream

element that contains GU-rich sequences [44, 76, 26].

2.5.3 Iso-Seq PAS site identification and PAU quantification

Putative PAS sites were defined as the ends of the mapped portion (i.e. the cleavage site) of

reads and 100 nucleotides upstream. We then refined the set of reads used to define every

putative PAS site by filtering out reads that did not map to annotated 3’ UTRs and that did

not also span an upstream exon. We then refined this set of PAS sites by restricting to those

in annotated genes using the annotatePeaks.pl script (HOMER v4.11) [69]. This script also

annotates with information about the genic location, such as the 5’ or 3’ UTR, intron, and

exon of a peak, or in this case a PAS site. We restricted to PAS sites that fell within genes

with ≥ 40 Iso-Seq reads with a polyA tail. PAUs were quantified by counting the number of

reads that ended at a particular PAS site divided by the total number of reads that ended

at any PAS site within the same gene. For downstream analyses, we restricted to PAU > 5

% (Additional file 2).

2.5.4 3’-Seq PAS site identification and PAU quantification

We used 3’-Seq data that were generated from 54 LCLs previously (NCBI Sequence Read

Archive Accession (SRA) SRP223759, total fraction) [122]. Reads were aligned to the hg19

reference genome using STAR v2.6 [46]. Next, reads were filtered for internal priming or

mispriming by locating a stretch of 6 adenosines in a 22 nucleotide window surrounding
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the cleavage site (10 nucleotides upstream and 12 nucleotides downstream), similar to [105].

As was done in for the Iso-seq data, we evaluated enrichment of AAUAAA upstream of the

cleavage site. From this final set of reads, peaks were identified as described previously [105].

In brief, peaks were identified by convolving the read coverage with the second derivative of

a Gaussian filter such that the lowest convolved read coverage value was defined as the peak

center. The peak was then extended 100 nucleotides upstream. Peaks supported by fewer

than an average of 5 reads were discarded. This set of peaks was then refined by restricting

to those in annotated genes as per the annotatePeaks.pl script from HOMER [69], and PAUs

were quantified as described previously for Iso-Seq PAS sites. For downstream analyses, we

restricted to PAU > 5% (Additional file 3).

2.5.5 Short-read RNA-sequencing and 3’ end sequencing data processing

and mapping

Standard, short-read RNA-seq data for 89 LCLs (NA18486, NA18487, NA18488, NA18489,

NA18498, NA18499, NA18500, NA18502, NA18505, NA18508, NA18510, NA18511, NA18517,

NA18519, NA18520, NA18858, NA18861, NA18867, NA18868, NA18870, NA18873, NA1897,

NA18907, NA18908, NA18909, NA18910, NA18912, NA18916, NA18917, NA18923, NA18933,

NA18934, NA19093, NA19095, NA19096, NA19098, NA19099, NA19102, NA19107, NA19108,

NA19113, NA19114, NA19116, NA19117, NA19118, NA19119, NA19121, NA19129, NA19130,

NA19131, NA19137, NA19138, NA19141, NA19143, NA19144, NA19146, NA19147, NA19149,

NA19150, NA19152, NA19153, NA19159, NA19160, NA19171, NA19172, NA19175, NA19184,

NA19185, NA19189, NA19190, NA19197, NA19198, NA19200, NA19201, NA19204, NA19206,

NA19207, NA19209, NA19210, NA19213, NA19214, NA19222, NA19223, NA19225, NA19235,

NA19236, NA19247, NA19248, NA19256, and NA19257) was obtained from the GEUVADIS

project (EBI ArrayExpress, under the accession E-GEUV-1). In brief, reads were mapped to

the hg19 human reference genome using STARv2.6 [46]. Aligned reads were used as input for
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different tools that allow for identification of PAS sites from RNA-seq data. Because QAPA is

an annotation-based method, we used QAPA’s pre-compiled hg19 annotation library (https:

//zenodo.org/record/1222196/files/qapa_3utrs.gencode.hg19.tar.gz), which is de-

rived from GENCODE [65] and the PolyASite database [71] together, as was done previously

[61]. In addition, we also ran QAPA with two other annotation files, namely the BED files of

Iso-Seq PAS sites and 3’-Seq PAS sites that we generated, separately. When running QAPA

with these custom annotation files, we extended the 3’ UTRs extracted from the hg19 GEN-

CODE gene prediction annotation tables by 1 kb in order to avoid QAPA not identifying

PAS sites that were present in our custom annotation files.

Moreover, all RNA-seq based tools output estimates of PAU separately for every individ-

ual. Therefore, we averaged PAU across all individuals for downstream comparisons. The

PAS sites were re-annotated with HOMER as described previously, and PAUs for every gene

were re-scaled to sum to 1.0 if any PAS sites were omitted because they could not be anno-

tated by HOMER. For downstream analyses, we restricted to PAU¿5% (Additional files 4,

5, 6, 7, 8, 9 and 10).

2.5.6 Assessing the number of PAS sites within annotated PAS site

databases

We used hg19 PAS site annotations derived from PolyA DB 3 (release 3.2, August 2018)

[176] to assess the proportion of PAS sites that were previously annotated.

2.5.7 Conservation analysis

In the analysis of sequence conservation, we used phyloP scores generated on the 46-way

vertebrate alignment, restricting to placental mammals. These were downloaded from the

UCSC Genome Browser [140].
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2.5.8 Benchmarking short-read RNA-seq tools and 3’-Seq against Iso-Seq

To assess the concordance between PAS site location and PAU quantification defined by the

RNA-seq based tools and 3’-Seq as compared to those defined by Iso-Seq, we restricted to

PAS sites that fell within the set of 2862 genes with Iso-Seq read coverage ≥ 40. In addition,

we restricted to Iso-Seq PAS sites with PAUs > 5%.

We directly assessed the overlap of PAS sites called by different methods using BEDTools

[142]. We defined an error metric, Error(Sum | Delta PAU | ), which measures the concor-

dance in PAU calls between two methods, A and B. This measure jointly assesses PAS site

localization and PAU quantification concordance. In brief, for every gene, we summed over

the differences in PAUs between all PAS sites defined by methods A and B.

2.5.9 Sensitivity and specificity analysis

ROC curves were generated to assess the sensitivity and specificity of the RNA-seq tools and

3’-Seq in accurately identifying PAS sites. Specifically, the Iso-Seq PAS sites with PAUs >

5% were used as the ground truth. True positives are instances in which Iso-Seq PAS sites

with PAUs > 5% have analogous PAS sites defined by other methods with PAUs > 0%.

False positives are PAS sites defined by other methods with PAUs > 5%, but lack analogous

PAS sites defined by Iso-Seq.

2.5.10 apaQTL mapping

We mapped apaQTL separately for all methods except Iso-Seq, for which we were lacking

power to call QTL given our small sample size of eight individuals. For the RNA-seq methods,

we removed two individuals, NA18500 and NA18908 due to low confidence in their annotated

identity (a remaining total of 87 individuals). For the 3’-Seq, we removed these same two

individuals as well as NA19092 due to lack of genotype information (a remaining total of

51 individuals). We analyzed all PAS sites defined by each of these methods, regardless of
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PAU.

We standardized all PAU measurements across individuals and then quantile-normalized

them to fit a standard normal distribution, as described previously degner2012dnase, van2015wasp.

We used principal components analysis (PCA) to regress out confounders. We regressed out

four PCs. To map apaQTL, we ran FastQTL and used all SNPs with MAF > 0.05 within

25kb of PAS sites [64]. As input, we used SNPs from GEUVADIS [94, 104]. A P -value from

a standard linear regression was extracted from the FastQTL output for every SNP-PAS

pair. In addition, the lead SNP-PAS association for every PAS site was obtained from the

1,000 permutations performed by FastQTL [27]. apaQTL were defined as SNPs from this

set with FDR < 10%.

2.5.11 eQTL mapping

We mapped eQTL in a fashion analogous to apaQTL, now with the molecular phenotype

as gene expression instead of PAU. The same set of RNA-seq data from 87 individuals were

used. The same set of SNPs, with MAF > 0.05 were used, now within 1MB of genes.

2.5.12 Estimation of QTL sharing

To estimate sharing between apaQTL mapped using PAS site derived from different methods,

we used Storey’s π1 method (otherwise known as qvalue()), which considers the P -value of

the lead SNP-PAS pair from method A in method B [38]. Similarly, we also estimated

sharing between QTL for the molecular traits APA and gene expression in an analogous

fashion in which we considered the P -value of the association between the lead SNP-PAS

pair and gene expression level.
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2.5.13 Data and code availability

The datasets supporting the conclusions of this article are available: the 89 YRI LCL RNA-

seq dataset was generated by the GEUVADIS project and is available in the EBI Array-

Express repository, E-GEUV-1 [46]. The 54 YRI LCL 3’-Seq dataset was generated by

Mittleman et al. 2020 and is available in the NCBI Sequence Read Archive Accession (SRA)

repository, SRP223759 (total fraction). The 3 CEU LCL PacBio Iso-Seq dataset was gener-

ated by Tilgner et al. 2014 and is available in the NCBI Sequence Read Archive Accession

(SRA) repository, SRP036136. The 5 YRI LCL PacBio Iso-Seq dataset was generated in

the current study and is available in the NCBI Sequence Read Archive Accession (SRA)

repository, PRJNA762669 [154].

All reproducible scripts can be found through Zenodo. A more detailed Iso-Seq analysis

pipeline is available on GitHub: https://github.com/ankeetashah/Benchmarking-APA under

an MIT license. All other scripts are available upon request.

2.6 Acknowledgments

This work was completed in part with resources provided by the University of Chicago’s Re-

search Computing Center. We thank The University of Chicago Genomics Facility (RRID:SCR 019196),

especially Pieter W. Faber and Mikala Marchuk, for their assistance with PacBio Iso-Seq

cDNA synthesis, library preparation, and SMRT Iso-Seq. This work was supported by the

US National Institutes of Health (R01GM130738 to Y.I.L and T32GM007197 to A.S.).

2.7 Acknowledgement of work performed

The work presented in this chapter was adapted from the journal article: Ankeeta Shah,

Briana E Mittleman, Yoav Gilad, Yang I Li. Benchmarking sequencing methods and tools

that facilitate the study of alternative polyadenylation. Benchmarking computational tools

38

https://zenodo.org/record/5500430#.Y0b_LuzMJpQ


and methods that facilitate the study of alternative polyadenylation.Genome Biology 22 (1),

1-21, 2021

I would like to acknowledge the individuals who contributed to this work. The analyses

presented in this chapter were conceived, generated, and visualized by Ankeeta Shah. Briana

Mittleman extracted RNA.

39



2.8 Supplementary information

2.8.1 Supplemental figures

0%

1%

2%

3%

−100−50 0 50 100

AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
GATAAA
AAAAAA

0%

1%

2%

3%

−100−50 0 50 100

AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
GATAAA
AAAAAA

0%

1%

2%

3%

−100−50 0 50 100

AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
GATAAA
AAAAAA

0%

1%

2%

3%

−100−50 0 50 100

AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
GATAAA
AAAAAA

0%

1%

2%

3%

−100−50 0 50 100

AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
GATAAA
AAAAAA

Reads without 
stretches of As

Reads with 
stretches of As

Reads with 
stretches of As 
and mispriming

Reads with 
stretches of As 
without mispriming

Signal sites

Distance between signal site and putative PAS

M
ot

if 
en

ric
hm

en
t

Cleavage 
site

0%
0%
1%
1%

−100 −50 0 50 100

GTTGTGTGTGTTG
GTGTGTGTTTTG
GTGTGUGTTTG
GTGTGTGTTG
TGTGTGTT
GTGTGTGT
GTGTGTG

CstF-64 binding site

Distance between CstF-64  
binding site and putative PAS

Cleavage 
site

a b

c

Motif enrichmentAverage number of PAS sites 
identified, stratified by Iso-Seq 
coverage

0%

1%

2%

3%

−100−50 0 50 100

AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
GATAAA
AAAAAA

Figure 2.7: Iso-Seq data filtering criteria for the study of APA. (a) Boxplot showing
the average number of PAS sites identified per gene, binned by coverage. We observed that
genes with coverage ≥ 40 Iso-Seq reads consistently have, on average, 2-3 PAS sites. (b)
Meta-gene plots showing enrichment of signal site motifs, AATAAA, ATTAAA, AGTAAA,
TATAAA, CATAAA, and GATAAA, 20-30 nucleotides upstream of the putative cleavage
site within filtered reads. AAAAAA serves as a negative control. (c) Meta-gene plot showing
the enrichment of the GT-rich binding site of CstF-64 10-30 nucleotides downstream of the
putative cleavage site.
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b Differential expression of 3’UTRs between tissues

Figure 2.8: Differential expression of alternative 3’UTRs between tissues. (a) Read
coverage supporting PAS sites in the 3’UTRs of genes derived from previously published
brain and liver Iso-Seq datasets [9] (b) Among 138 genes with a PAS site supported by at
least one read, we observed that 30% exhibited use of more distal PAS sites (i.e. longer
3’UTRs, 30% at least 500bp difference, or 20% for sites at least 1kb apart) as compared to
liver, which exhibited increased use of more proximal sites (i.e. short 3’UTRs, at least 500kb
apart, or 8% for sites at least 1kb apart).
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b Enrichment of PAS sites across a comprehensive set  
of genomic features (ChromHMM annotations)
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Figure 2.9: PAS site genic, genomic, and usage features. (a) Mean phyloP scores
of PAS sites, stratified by localization (3’ UTRs, introns, or other genic regions labeled as
Other). PAS sites localized within 3’ UTRs tend to be more conserved than those in introns.
(b) Barplots showing the genomic locations of PAS sites using 15 ChromHMM annotations
[50]. (c) For every gene within our set of 2,862 genes with ≥ 40 Iso-Seq read coverage, we
selected PAS sites within 3’ UTRs with maximum distance between them and defined the
PAS site upstream as the proximal PAS site and the PAS site downstream as the distal
PAS site. The proximal and distal PAUs were plotted against varying usage cutoffs. (d)
We binned the distal and proximal PAS sites within 3’UTRs among the 2,862 genes with ≥
40 Iso-Seq read coverage by distance (500 bp windows). We observed no evidence of PAU
estimation bias for short versus long isoforms using Iso-Seq.
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Figure 2.10: PAS site identification and PAU quantification across Iso-seq and
short-read methods, including QAPA run with different PAS site annotations.
(a) Proportion of PAS sites across 2,862 genes identified by short-read sequencing methods,
3’-Seq, QAPA run with three different PAS site annotations, DaPars2, TAPAS, GETUTR,
and APATrap that are also identified by Iso-Seq. Bars with dotted lines represent the % of
Iso-Seq PAS sites recovered in 3’UTRs only. (b) Comparison of PAU calls across methods.
Error(Sum| Delta PAU | ) refers to the concordance in calls between two methods, as per
Figure 4. The left compares all methods against Iso-Seq. The right compares all methods
against 3’-Seq. (c) Error(Sum | Delta PAU | ) receiver operating characteristic (ROC)
curve, stratified by distinct QAPA runs using different PAS site annotations, including with
GENCODE and PolyASite, Iso-Seq, and 3’-Seq. True positives are instances in which Iso-
Seq PAS sites with PAUs > 5% have analogous PAS sites defined by other methods with
PAUs > 5%. False positives are PAS sites defined by other methods with PAUs > 5%, but
lack analogous PAS sites defined by Iso-Seq with PAUs >5%. (d) Proportion of PAS sites
across 2,862 genes identified by Iso-Seq and short-read sequencing methods, QAPA run with
three different PAS site annotations, DaPars2, TAPAS, GETUTR, and APATrap that are
also identified by 3’-Seq. (e) Receiver operating characteristic (ROC) curves. True positives
are instances in which 3’-Seq PAS sites with PAUs > 5% have analogous PAS sites defined
by other methods with PAUs > 0%. False positives are PAS sites defined by other methods
with PAUs > 5%, but lack analogous PAS sites defined by Iso-Seq.
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Figure 2.11: Comparison of apaQTL between APA methods. (a) QQ-plot showing
apaQTL signals, stratified by method. (b) Location of the lead apaQTL SNP relative to
its associated PAS site, stratified by method. (c) Quantification of sharing of the impact
of genetic variation on APA across sequencing methods using Storey’s π1 statistic. This
analysis includes apaQTL linked to PAS sites within and upstream of 3’UTRs. (d) Storey’s
π1 statistics quantifying the sharing between the lead apaQTL across the methods and most
significant Gene-SNP pair. (e) Storey’s π1 statistics quantifying the sharing between the
lead eQTL and most significant PAS-SNP pair per gene (2,864 eQTL, FDR < 10%).
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Figure 2.12: Example of an apaQTL in the CASC3 gene defined by 3’-Seq exclu-
sively.

2.9 Supplemental tables

Table 2.1: Iso-Seq.PAS.sites. Iso-Seq PAS sites with PAU > 5% (BED format). See
supplementary file associated with Shah et al., Genome Biology, 2021 [154].

Table 2.2: 3-Seq.PAS.sites. 3’-Seq PAS sites with PAU > 5% (BED format). See supple-
mentary file associated with Shah et al., Genome Biology, 2021 [154].

Table 2.3: TAPAS.PAS.sites. TAPAS PAS sites with PAU > 5% (BED format). See
supplementary file associated with Shah et al., Genome Biology, 2021 [154].

Table 2.4: DaPars2.PAS.sites. DaPars2 PAS sites with PAU > 5% (BED format). See
supplementary file associated with Shah et al., Genome Biology, 2021 [154].
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Table 2.5: QAPA.GENCODE.PolyASite.PAS.sites. QAPA (run with GENCODE and
PolyASite annotations) PAS sites with PAU > 5% (BED format). See supplementary file
associated with Shah et al., Genome Biology, 2021 [154].

Table 2.6: QAPA.Iso-Seq.PolyASite.PAS.sites. QAPA (run with Iso-Seq and PolyASite
annotations) PAS sites with PAU > 5% (BED format). See supplementary file associated
with Shah et al., Genome Biology, 2021 [154].

Table 2.7: QAPA.3-Seq.PolyASite.PAS.sites. QAPA (run with 3-Seq and PolyASite
annotations) PAS sites with PAU > 5% (BED format). See supplementary file associated
with Shah et al., Genome Biology, 2021 [154].

Table 2.8: GETUTR.PAS.sites. GETUTR PAS sites with PAU > 5% (BED format). See
supplementary file associated with Shah et al., Genome Biology, 2021 [154].

Table 2.9: APATrap.PAS.sites. APATrap PAS sites with PAU > 5% (BED format). See
supplementary file associated with Shah et al., Genome Biology, 2021 [154].
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CHAPTER 3

M6A MRNA METHYLATION IS ESSENTIAL FOR

OLIGODENDROCYTE MATURATION AND CNS

MYELINATION

3.1 Abstract

The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells re-

main unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most

common internal RNA modification of mammalian mRNA, plays a critical role in various

developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is

accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo con-

ditional inactivation of an essential m6A writer component, METTL14, results in decreased

oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell

(OPC) numbers are normal. in vitro Mettl14 ablation disrupts postmitotic oligodendrocyte

maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover,

the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA

transcripts, including those that encode the essential paranodal component neurofascin 155

(NF155). Together, our findings indicate that dynamic RNA methylation plays an important

regulatory role in oligodendrocyte development and CNS myelination.

3.2 Introduction

Oligodendrocytes are glial cells that are responsible for myelination in the central nervous

system (CNS). Myelin is a multilayered membrane sheath that insulates axons and is im-

portant for a myriad of CNS functions, including providing metabolic support to axons and

allowing for rapid and efficient propagation of electrical signals. Recent studies suggest that

47



myelin sheath plays a critical and active role in CNS functions, including being implicated in

sensory experience, aging, memory, and motor skill learning [25]. Defects in myelination are

associated with developmental disorders and neurodegenerative diseases, such as multiple

sclerosis (MS) [17].

During development, oligodendrocyte progenitor cells (OPCs) arise from neuroepithelial

cells in the ventricular zone in mice at embryonic day 12.5 (E12.5) and in humans during ges-

tational week 6.5 ( E45) [16]. By E15 in mice, the OPCs proliferate and migrate to their final

destination, where they terminally differentiate into mature, myelinating oligodendrocytes

(Bergles and Richardson, 2015). Several factors have been identified as critical regulators

of oligodendrocyte development. For example, OPCs express several transcription factors,

including OLIG2, SOX10, NKX2.2, ZFP24, and MYRF, as they migrate and mature into

oligodendrocytes [49] [120]. Several signaling pathways are also critical for oligodendrocyte

lineage progression and maturation [66].

Epigenetic mechanisms, including DNA methylation, histone modification, ATP-dependent

chromatin remodeling, and gene silencing by non-coding RNAs, including long noncoding

RNAs and microRNAs, have also been implicated [98] [113] [123]. For example, in MS

patients, the DNMT family is upregulated and TET families are downregulated in the hip-

pocampus [28]. A study conducted on MS brains highlighted that oligodendrocyte survival

genes were hypermethylated and lowly expressed as compared to those in control brains [78].

In comparison, proteolytic processing genes were hypomethylated and highly expressed, re-

vealing that DNA methylation changes are possible contributors of MS occurrence. In con-

trast to the study of reversible chemical modification of DNA, the study of RNA modifications

as regulators of gene expression has only recently been initiated [56] [192], and its role in

oligodendrocyte development remains elusive.

N6-methyladenosine (m6A) is the most abundant internal RNA modification, deposited

on both polyadenylated mRNA and non-coding RNA, occurring at a frequency of 1-2% per
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nucleotide [85] Levels of m6A are regulated by m6A methyltransferase complexes, or reader

proteins, m6A demethylases, or writer proteins [56]. Methyltransferase-like 3 (METTL3) was

discovered to be the core catalytic subunit of the m6A mRNA methyltransferase complex

[18] [43] [67]. Other subunits that were subsequently identified include methyltransferase-

like 14 (METTL14), which facilitates binding of the methyltransferase complex to the RNA

[109], and Wilms tumor 1-associating protein (WTAP), which recruits the METTL3-14 het-

erodimer [109] [139]. Two m6A erasers, ALKBH5 and FTO, have been identified [180] [81].

Most reader proteins contain a YT521-B homology (YTH) domain, which binds RNA in an

m6A-dependent manner [47]. RNA metabolism, including stability, translation, localization,

and splicing, can be regulated by m6A [147].

Moreover, in contrast to DNA and protein methylation, m6A methylation has the po-

tential to have a very rapid influence on transcriptome changes during cell state transitions,

such as cell differentiation and development [55] [198]. A recent study in neural stem cells

revealed that conditional inactivation METTL14 disrupts cortical neurogenesis [191], thus

highlighting the critical role that m6A plays in the CNS. Nevertheless, the impact of m6A

on oligodendrocyte lineage regulation has remained unclear. Therefore, in this study, we and

our collaborators sought to better understand the role that m6A plays in oligodendrocyte

lineage progression by conditionally inactivating Mettl14 in OPCs using a Mettl14 condi-

tional (floxed) mouse line in combination with oligodendrocyte Cre driver lines. In vitro,

OPCs lacking Mettl14 did not properly differentiate into mature oligodendrocytes, sug-

gesting that m6A plays a critical role in oligodendrocyte differentiation. RNA sequencing

(RNA-seq) and SMART-Seq m6A-seq revealed that OPC and oligodendrocyte transcripts

encoding transcription factors, DNA epigenetic regulators, and signaling pathways that are

critical for oligodendrocyte lineage progression were m6A marked and differentially affected

by the Mettl14 deletion. We also found pervasive aberrant mRNA splicing in the Mettl14-

deleted OPCs and oligodendrocytes. Importantly, we discovered that the critical paranode
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component NF155 is differentially spliced and significantly disrupted during myelination in

the Mettl14-ablated mutants.

3.3 Methods

For a full list of methods, please see Xu et al., Neuron, 2020 [188]. Methods included below

are methods specific to analyses presented in this dissertation.

3.3.1 Total protein and RNA isolation

Protein from cells and snap frozen half-brain was isolated as previously described [31] Protein

concentration was determined using a BCA Protein Assay Kit (Thermo Fisher Scientific,

cat# 23255). RNA from cells and snap frozen half-brain was isolated as previously described

[179]. RNA quality was confirmed by 2100 Bioanalyzer using a model 6000 Nano kit (Agilent

technologies, cat# 5067-1511). Samples with an RNA integrity number ≥ 8 were used.

3.3.2 RNA-seq and analysis

Bulk RNA-seq was performed on RNA isolated from cultured OPCs and oligodendrocytes

as previously described [3]. Libraries were prepared and sequenced using the Illumina HiSeq

4000 at the University of Chicago Genomics Core facility. Reads were mapped using both

STAR v2.6.1a and Kallisto v.0.44.0 using bowtie 2 aligner [19] [46]. Mapped reads were

further analyzed with the Bioconductor suite v3.7 by the University of Illinois at Chicago

Bioinformatics Core facility [77]. Q-values were determined as false discovery rate adjusted

p-values using the method previously described [15]. Results were compared with the m6A-

SMART-Seq analysis and visualized in R v.3.5.1 using the plot.ly, ggplot2, and venn.diagram

packages. Values for expression, fold change and statistical significance were adapted for

visualization using a log2 transformation. Thresholds were set to 1, +/-1.5, and 0.001,
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respectively.

3.3.3 m6A-SMART-seq and analysis

mRNA from total RNA of OPCs and oligodendrocytes was purified with Dynabeads Oligo

(dT) (Thermo Fisher Scientific). The purified mRNA was then processed for m6A-SMART-

seq and analyzed as previously described [182]. Z scores were calculated for each m6A mark

and filtered with a threshold value of 0.

3.3.4 Differential alternative splicing analysis

Differential splicing analysis was performed between OPCs versus OPCs lacking Mettl14

and oligodendrocytes versus oligodendrocytes lacking Mettl14. In brief, exon-exon junctions

from mapped RNA-seq reads, which are representative of introns that are removed from pre-

mRNA, were extracted. Next, alternatively excised introns, which are comprised of two more

overlapping introns (e.g., introns that share a splice site), were clustered together. Finally,

differential intron excision events across conditions were tested using LeafCutter [103].

3.3.5 Data Availability

The sequencing data have been deposited to the National Center for Biotechnology Infor-

mation Gene Expression Omnibus (GEO) database under accession number: GSE124244.
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3.4 Results

3.4.1 Oligodendrocyte lineage progression is accompanied by changes in

m6A modification on numerous transcripts

RNA modification by the m6A mark has emerged as an important mechanism to regulate

gene expression during cell lineage development [55]. To profile m6A and its impact on

gene expression during oligodendrocyte lineage progression, our collaborators in the Popko

lab collected m6A-seq and RNA-seq data from purified OPCs and oligodendrocytes. Their

manuscript provides more information on the purification process [188]. Bulk m6A-seq was

difficult to perform given the insufficient mRNA yield. Therefore, our collaborators used

a SMART2 single cell RNA-seq method, m6A-SMART-seq, for sensitive full-length m6A

profiling in single cells [134] [182]. They detected 3,554 transcripts bearing m6A in OPCs

and 2,606 transcripts bearing m6A in oligodendrocytes (Xu et al., Neuron, 2020). Gene

ontology analyses indicated that these m6A marked transcripts are important functions for

cell development in both OPCs and oligodendrocytes (Xu et al., Neuron, 2020 [188]) (log2

(CPM) ≥ 1, Z score ≥ 0). Of the 11,502 genes expressed in both OPCs and oligodendrocytes,

23 transcripts bore m6A in both OPCs and oligodendrocytes, 2,806 transcripts bore the m6A

in OPCs exclusively, and 1,626 transcripts bore m6A in oligodendrocytes exclusively (Xu et

al., Neuron, 2020 [188]).

3.4.2 Mettl14 ablation differentially alters OPC and oligodendrocyte

transcriptomes

Our collaborators generated mouse lines in which METTL14, an essential m6A writer

component, was conditionally inactivated, in both developing oligodendrocyte lineage cells

(Mettl14fl/fl;Olig2-Cre) and postmitotic, maturing oligodendrocytes (Mettl14fl/fl;CNP-Cre).

The manuscript outlines additional details on the mouse crosses [188].
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To determine the effects of m6A on gene expression during oligodendrocyte lineage pro-

gression, our collaborators collected RNA-seq data from purified OPCs and oligodendrocytes

with both purified OPCs and cultured mature oligodendrocytes from Mettl14fl/fl;Olig2-Cre

control and mutant mice. See their manuscript for more information on the purification

process [188].

They detected 11,809 transcripts present in the OPCs, of which 586 were significantly up-

regulated in mutant cells and 177 were significantly downregulated in mutant cells. Among

the 12,542 transcripts present in mature oligodendrocytes, 1,388 transcripts were signifi-

cantly upregulated and 1,247 were significantly downregulated in the mutant cells (Xu et al.,

Neuron, 2020 [188]). Importantly, the significantly downregulated transcripts are normally

expressed in myelinating oligodendrocytes and encode myelin-protein expression factors, such

as Mbp, Mog, Mag, Plp1, and Cnp.

Upon comparing the m6A-seq data and RNA-seq data, our collaborators found that of

the 3,554 m6A marked OPC transcripts, 46 were significantly downregulated in mutant cells

and 108 were significantly upregulated in mutant cells (Xu et al., Neuron, 2020 [188], Figure

6C). Of 2,606 m6A marked oligodendrocyte transcripts, 221 were significantly downregulated

in mutant cells and 217 were significantly upregulated in mutant cells (Xu et al., Neuron,

2020 [188]). Gene ontology analysis indicated many important functions such as glia cell

development in OPCs (Xu et al., Neuron, 2020 [188]) and myelination in oligodendrocytes

(Xu et al., Neuron, 2020 [188]). These results suggest that the m6A mark differentially

regulates the OPC and oligodendrocyte transcriptomes.

3.4.3 Mettl14 regulates transcripts that encode transcription factors that

are critical for oligodendrocyte lineage progression

In order to elucidate how the m6A mark regulates oligodendrocyte lineage development, our

collaborators compared m6A-seq and RNA-seq datasets across OPCs and oligodendrocytes
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upon METTL14 ablation to identify transcripts marked by m6A that encode transcription

factors known to be involved in oligodendrocyte lineage progression. For example, it is known

that transcription factors, such as Nkx-2.2, Olig1, Olig2, Sox10, Myrf, and ZFP24, are the

major determinants of oligodendrocyte differentiation and myelination [49] [120].

Our collaborators identified that transcripts encoding Hey1, Klf19, Sox2, Sox5, Srebf1

,Tcf19, Zeb2 were marked by m6A in OPCs but not in oligodendrocytes. Notably, mis-

regulation of SOX2 can impair OL differentiation [74]. Moreover, sterol regulatory element

binding proteins (SREBPs), including Srebf1, control fatty acid and cholesterol metabolism,

and recent studies suggest that SREBPs enable myelin lipid synthesis in oligodendrocytes

and are controlled by the mammalian target of rapamycin (mTOR) pathway [54]. There-

fore, impaired SREBP would result in impaired myelination. ZEB2 plays a role in OPC

differentiation and reduces the number of OLs upon impairment [181].

They also discovered that transcripts encoding Hes1, Nkx6.2, Olig2 and Yy1 were marked

by m6A in oligodendrocytes but not in OPCs. Notably, upon impairment, YY1 arrests OL

differentiation as they exit the cell cycle [68]. Phenotypically, this is presented as defective

myelination, ataxia, and tremor. At the molecular level, YY1 normally recruits histone

deacetylase-1 to the promoters of of transcriptional inhibitors of myelin genes during oligo-

dendrocyte differentiation, thus repressing these inhibitors, however, upon impairment, these

transcriptional inhibitors are expressed and these myelin genes remain downregulated.

3.4.4 Mettl14 regulates transcripts that encode histone acetyltransferases,

methyltransferases, lysine demethylases that are critical for

oligodendrocyte lineage progression

Epigenetic regulation drives oligodendrocyte lineage progression and myelination. Previous

studies have demonstrated DNA epigenetic regulation mechanisms, including histone modi-

fications, are important for oligodendrocyte lineage progression [90]. These sequencing anal-
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yses were concordant with previous studies in that they similarly revealed that transcripts

encoding histone modification regulators bear m6A and were significantly differentially ex-

pressed in mutants. Our collaborators discovered transcripts of histone writers, such as

histone acetyltransferases (HATs) Hat1, histone methyltransferases (HMTs) Smyd2, Prdm2,

Setdb1, Suv39h1, Ash1l, Dot1l, histone erasers, such as histone deacetylases (HDACs) Hdac3,

Hdac7, Hdac8, Hdac9, and lysine demethylases (KDMs) Kdm2b, Kdm5c, Kdm3b , Kdm4a,

Kdm4c, Kdm6a.

Normally, these transcripts encode proteins with important regulator functions in oligo-

dendrocyte development [70]. Interestingly, recent evidence has also demonstrated an es-

sential functional role of m6A on RNA modification on histone modifications in regulating

embryonic neural stem cell self-renewal in the CNS [182]. Thus, our findings suggest a pos-

sible link between m6A RNA modification and histone modifications in the regulation of

oligodendrocyte lineage development.

3.4.5 Mettl14 regulates transcripts that encode key signaling pathway

molecules that are critically involved in oligodendrocyte lineage

progression

Transcripts that were significantly altered by Mettl14 ablation encoded molecules involved in

signaling pathways and their signaling molecules. These included bone morphogenetic pro-

teins (BMPs), ERK/MAPK, fibroblast growth factor families (FGFs), Notch/Delta, Sonic

hedgehog (Shh), and Wnt signaling pathways in OPCs, and P13K/AKT/mTOR, BMPs,

ERK/MAPK, insulin-like growth factor-1 (IGF-1), Notch/Delta, Shh, and Wnt signaling

pathways in oligodendrocytes. These pathways have previously been associated with oligo-

dendrocyte development and myelination regulation [66]. Our collaborators observed that

many transcripts encoding critical components of these signaling pathways harbored the

m6A mark, suggesting that m6A may regulate these signaling pathways to promote oligo-
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dendrocyte lineage progression.

3.4.6 Mettl14’s possible mechanisms of action in oligodendrocyte lineage

cells

Various studies have demonstrated that m6A influences various aspects of mRNA metabolism,

including stability, translation, localization, and splicing [147] [177] [186] [199] [203]. The

influence of m6A on these processes is mediated by RNA-binding proteins. For example, the

YTH domain-containing proteins were first identified as m6A readers, which bind RNA in

an m6A-dependent manner [47] [193] [205]. Additionally, m6A recruits RNA-binding pro-

teins indirectly to execute functions, such as by altering RNA folding structures to influence

RNA-binding protein access to the transcript and binding efficiency [110].

Given this, we aimed to explore potential mechanisms of action of the m6A mark in

regulating oligodendrocyte lineage cell development and function, in addition to the direct

effects on gene expression, which we described previously. Previous studies have demon-

strated that transcripts bearing m6A have reduced stability [182] [191] [194]. Indeed, in our

animal models lacking transcripts bearing m6A given ablation of Mettl14, we and our collab-

orators did observe higher expression levels of Hey1, Sox5, Hac9, and Setd1b in OPCs and

Hes1, Nkx6.2, Yy1, Hdac7, Kdn4c, and Hat1 in oligodendrocytes. However, a substantial

number of transcripts did not demonstrate differences in stability, suggesting that indirect

mechanisms might contribute to gene expression changes.

Previous studies have demonstrated that transcripts bearing m6A have increased transla-

tional efficiency [36] [157]. Upon comparing transcriptional and translational levels of m6A

marked transcripts that encode proteins critical for oligodendrocyte development – Myrf,

Olig2, Mbp, and Mag – we and our collaborators observed decreased levels of these proteins

[21] [204]. Interestingly, these observed reductions correlated with the reductions in m6A

found in the oligodendrocyte transcriptome, suggesting that translational regulation may

56



not be a key feature of m6A gene regulation in oligodendrocyte lineage cells.

3.4.7 Mettl14 ablation does not disrupt Mbp transport

Different isoforms of myelin proteins are generated by alternative splicing, and the different

isoforms ensure precise oligodendrocyte lineage progression [196] [200]. Previous studies have

demonstrated that m6A plays a critical role in regulating mRNA splicing [200]. In order

to investigate the potential role of m6A in regulating differential splicing during oligoden-

drocyte development specifically, we used LeafCutter [103] to identify altered splicing events

in OPC and oligodendrocyte transcriptomes. LeafCutter identifies alternatively excised in-

tron clusters and compares differentially excised intron levels between controls and mutants.

Differential splicing is measured by changes in the percent spliced in (or delta, dPSI) [103].
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Table 3.1: Top 10 dPSI aberrantly spliced transcripts (oligodendrocytes and
OPCs). LeafCutter analysis showing aberrantly spliced transcripts in Mettl14fl/fl;Olig2-
Cre mutant oligodendrocytes and OPCs. Listed are the top 10 transcripts that have the
highest dPSI values, with their chromosome intron locations and Log2 effect sizes. (dPSI:
changes/or delta in the percent spliced in; n=3)

We observed that the m6A mark had a pervasive impact on OPC and oligodendrocyte

mRNA alternative splicing (Table 3.1). Interestingly, we observed that m6A impacted alter-

native splicing of the family of RNA binding proteins, heterogeneous nuclear ribonucleopro-

tein in oligodendrocytes (hnRNPs). Previous studies have demonstrated that hnRNPs are

m6A readers [147]. Moreover, additional studies have demonstrated that hnRNPs are regu-

lators of splicing [86] Therefore, this suggests that m6A might be able to indirectly impact

the alternative splicing of transcripts through different hnRNP isoforms. For example, an

isoform of hnRNPA2, hnRNPA2B1, which is expressed in oligodendrocyte lineage cells, is an

m6A reader [6]. Upon recognition of transcripts bearing m6A in the nucleus, hnRNPA2B1

enables proper splicing of these transcripts [6].
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Figure 3.1: Mettl14 ablation differentially alters hnRNPA2 alternative splicing.
Schematic view of differentially spliced sites in the hnRNPA2B1 gene in control versus
Mettl14fl/fl;Olig2-Cre mutant day5 oligodendrocytes (N=3). Each cluster (i.e., abbreviated
as clu) represents a group of introns that display alternative excision events. Specifically,
these are introns that share a donor site (canonical 50 splice site, AT) or acceptor site (canon-
ical 30 splice site, GA). Red curves represent cases with more splicing events in the mutants
(p ≤ 0.05). This cluster highlights exon 10 (middle) of hnRNPA2B1.

The m6A mark has also been shown to play a role in intracellular mRNA transport [147],

and this could be mediated indirectly through m6A and alternative splicing. Myelin basic

protein (Mbp) is critical myelin protein that is translated locally in the myelin compartment

[32] [24]. MBP requires active transport of its mRNA from the nucleus to the cytoplasm,
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which is mediated by the hnRNPA2 splicing isoform, hnRNPA2B1 [73] [125]. Specifically,

hnRNPA2B1 recognizes the A2 response element (A2RE), a cis-acting signal present in

certain trafficked mRNAs, including the mRNA that encodes Mbp [64]. We aimed to assess if

m6A might have a role in regulating Mbp mRNA transport in oligodendrocytes, as mediated

by hnRNPA2B1. We observed differential splicing of hnRNPA2B1 between controls and

Mettl14 ablated oligodendrocyte mutants (Figure 3.1), although these differences were not

statistically significant. For example, exon 10 of hnRNPA2B1 was more frequently spliced

out in mutants, and this exon plays a critical role in hnRNPA2B1’s recognition of A2RE

signals to transport mRNAs [64]. Given this, we hypothesized that Mbp transport to the

cytoplasm might be disrupted in mutants.

To assess if Mbp transport had been disrupted, our collaborators used RNAscope, which

is an in situ hybridization assay for detection of target RNA within intact cells, to determine

the distribution of Mbp distribution in oligodendrocytes of the corpus callosum [175]. Inter-

estingly, in mouse models with Mettl14 ablated, our collaborators observed reduced levels of

Mbp mRNA overall but did not observe that their distribution had been altered as compared

to controls. These results suggest that the while the absence m6A had altered the splicing

of hnRNPA2, it had not disrupted sub-cellular transport of the Mbp mRNA in the myelin

compartment.

3.4.8 Mettl14 ablation differentially alters Nfasc155 alternative splicing

At the global level, we observed that 1,372 splicing events across 364 genes in OPCs and

1,930 splicing events across 485 genes in oligodendrocytes that were differentially spliced

upon Mettl14 ablation (q < 0.01). A number of these significantly differentially alternative

spliced transcripts have previously been shown to encode proteins with important functions

in the myelinating process. Notably, Nfasc had one of the most significantly altered isoforms

and bore one of the highest differential dPSI level in the oligodendrocyte transcriptome
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(Table 3.1).

Nfasc is essential in the establishment and maintenance of node of Ranvier domains [75]

[138] [155]; [164] [206]. The mouse Nfasc gene contains 39 exons, and inclusion or exclusion

of different exons results in transcripts that encode functionally distinct isoforms [160]. For

example, Nfasc186 is expressed by neurons and is critical for node assembly. In contrast,

Nfasc155 is expressed by the myelinating cells and is critical for the stability of the paranodal

domain [75].
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Figure 3.2: Mettl14 ablation differentially alters Nfasc155 alternative splicing.
(A) Schematic view of differentially spliced sites in the Nfasc gene in control versus
Mettl14fl/fl;Olig2-Cre mutant day5 oligodendrocytes. The 39 Nfasc exons are labeled above
the exons. Each cluster (i.e., abbreviated as “clu X”) represents a group of introns that
display alternative excision events. Specifically, these are introns that share a donor site
(canonical 50 splice site, AT) or acceptor site (canonical 30 splice site, GA). Blue curves
represent cases that have fewer splicing events in the mutants, while the red curves represent
cases with more splicing events in the mutants (p ≤ 0.05).
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Figure 3.2 (cont’d): (B) Differentially spliced Nfasc isoforms were detected by RT-PCR and
agarose gel electrophoresis in the Mettl14fl/fl;Olig2-Cre day5 oligodendrocyte mutants (218
kb). Primers used: Forward, ACTGGGAAAGCAGATGGTGG; Reverse, ACATGAGCC-
CGATGAACCAG. (C-E) Western blot results of NFASC (P30, P180). (F-H) Quantifi-
cation of NFASC155 expression( P30, P180). NFASC155 expression level was normalized
to GAPDH expression level. NFASC155 had significant reduction in both P30 and P180
Mettl14fl/fl;Olig2-Cre mutants.
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Figure 3.3: Mettl14 ablation differentially alters Nfasc155 (exon 25)alternative
splicing. The magnified window shows the sample cluster (clu 5208) that we examined
for the presence of aberrant spliced isoforms in the mutants in (Figure 3.2. This cluster
highlights exon 25 of Nfasc155.

The disruption of Nfasc isoform distribution can result in pathological changes in myeli-

nated axons [75] [138] [164]. Notably, we observed that exon 25 in cluster 5208, a cluster

of introns important for Nfasc155 isoform, was spliced out in Mettl14 ablated animals as

compared to controls (Figure 3.3A). Our collaborators performed RT-PCR to confirm the

abundance of differentially spliced Nfasc isoforms (Figure 3.2) in purified oligodendrocyte

mRNA from mutants and controls. Our collaborators performed additional experiments to

examine Nfasc155 expression levels at different developmental stages. Western blot results

revealed that 1 month old (P30) and adult (P180) animals showed significantly decreased

Nfasc155 levels as compared to controls (Figure 3.2).

Interestingly, exon 25, which was spliced out in mutants, is what encodes the extra fi-

bronectin type 3 (FNIII) repeat that is unique to the Nfasc155 isoform and is missing from
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Nfasc186. FNIII is critical for enabling paranodal axoglial contacts and junction formation

[161]. To assess if Mettl14 ablation resulted in aberrant node and paranodes, our collabora-

tors performed immunohistochemistry with antibodies against voltage gated sodium channel

(NaCh) and Caspr to identify the nodal and paranodal domains, respectively. They observed

that Mettl14 ablation resulted in in aberrant node and paranodes, both in terms of numbers

and morphology in the adult (P180) animals (Fig 2.8 E-G). This suggests that loss of m6A

results in pathological changes at the nodes of Ranvier. Moreover, the aberrant nodes of Ran-

vier observed in the Mettl14-deficient mice were reminiscent of Nfasc155-deficient mice [138].

These results indicate that m6A regulates Nfasc155 splicing and plays a role in establishing

and maintaining normal function of critical axonal-oligodendrocyte interactions.

We and our collaborators did not assess the relationship between m6A and the RNA

binding protein quaking (QKI) in the context of the aberrant nodes of Ranvier observed

in the Mettl14-deficient mice. QKI is involved in paranodal axoglial junction formation;

specifically, it normally promotes the inclusion of exon 25 through its binding of Nfasc RNA

[39]. Lack of m6A marking the Nfasc transcript might have occluded QKI from binding,

either directly or indirectly, which would need to validated by methods that allow one to

map protein-RNA interactions, such as cross-linking and immunoprecipitation (CLIP) [63].

It would also be useful to confirm that aberrant nodes of Ranvier observed in the Mettl14-

deficient and Nfasc155-deficient mice are similar to those observed in QKI-deficient mice.

3.5 Discussion

RNA modifications have recently emerged as critical post-transcriptional regulatory mecha-

nism to modulate gene expression [55]. m6A is the most abundant RNA modification found

in eukaryotes [192]. Our study demonstrates that m6A RNA modification is essential for

normal oligodendrocyte maturation and CNS myelination. We highlight that the m6A plays

an important role in regulating various aspects of gene expression in oligodendrocyte lineage
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cells, with the most profound effects on alternative splicing.

We and our collaborators observed dynamic changes of m6A marked status in the tran-

scripts that are expressed in both OPC and maturation stages, which suggests that m6A

RNA methylation accompanies differentiation and maturation. To understand the mecha-

nisms of m6A’s role in regulating oligodendrocyte development, we compared the transcrip-

tomes of both purified OPCs and mature oligodendrocyte mutants and controls. We observed

dramatic differences of differentially expressed transcripts in these two lineage stages and

determined that m6A regulates the transcriptomes in OPCs and mature oligodendrocytes.

In addition, we discovered many oligodendrocyte lineage regulators, including as signaling

pathways and histone modifiers.

Notably, we examined m6A’s impact on alternative splicing during oligodendrocyte mat-

uration and identified many aberrantly transcribed transcripts in Mettl14 ablated animals.

Nfasc155, a glia isoform that encodes essential protein in the establishment and maintenance

of node of Ranvier domains, was among the transcripts identified. We experimentally val-

idated Nfasc155’s transcriptional and translational levels and consequences of its aberrant

splicing at various developmental stages in mutant animals. Our results confirmed that

m6A plays an important role in establishing and maintaining normal function of critical

axonal-oligodendrocyte interactions.
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CHAPTER 4

GENETIC CONTROL OF NOISY SPLICING UNDERLIES

UNEXPLAINED ASSOCIATIONS TO COMPLEX TRAITS

4.1 Abstract

RNA splicing is an error-prone process, which can generate a number of spurious transcripts

that are unlikely to be functional. Specific mis-splicing events are rare and are broadly

ignored in data analysis because they are assumed to be inconsequential. However, we

demonstrate that the amount of error-prone splicing, or noisy splicing, is largely determined

by genetic sequence and is optimized for highly expressed genes. By applying an updated

version of LeafCutter to the GEUVADIS Consortium lymphoblastoid cell lines, we identified

3,269 splicing fidelity QTL (sfQTL) that correlate with noisy splicing levels at 10% false

discovery rate (FDR). Notably, we discovered that sfQTLs colocalize with signals from several

genome-wide association studies (GWAS), including inflammatory bowel diseases (IBD).

Thus, sfQTLs aid in the interpretation of functional variants beyond standard molecular

QTL and can be readily identified by applying an updated version of LeafCutter on existing

RNA-seq datasets.

4.2 Introduction

The mammalian transcriptome harbors hundreds of thousands of mRNA transcripts, many

of which serve critical functions. Indeed, faithful and specific pre-mRNA splicing is criti-

cal for the accurate expression of genes and the production of protein isoforms that have

been associated with a myriad of biological functions. The fidelity of splicing is achieved

by combinatorial recognition of splice sites and RNA binding protein (RBP) motifs by the

multimeric protein complex known as the spliceosome and auxiliary splicing regulators, re-
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spectively [152]. Achieving high specificity is an important yet daunting task for the cell as

about one-third of the human genome is comprised of introns [137], which is a large sequence

space containing many sequence elements similar to consensus splice sites and RBP motifs.

Moreover, while many sequences in the mammalian genome match the consensus, they might

not be recognized as real splice sites, for example, and how the spliceosome makes a choice

amongst splice sites during kinetic competition between splicing and transcription is poorly

understood [149]. Tight quality control mechanisms must be in place to prevent the produc-

tion of a large number of aberrantly spliced transcripts. While the fidelity of splicing is a

tightly regulated process, mediated by a number of trans-acting protein factors [152], splicing

errors may still occur, albeit less than 1% of the time per intron [137]. Error-prone splicing

gives rise to a number of low-abundance, non-functional, and unconserved transcripts, which

we consider to be noisy splicing events [137].

A previous study demonstrated that mRNA splicing is a primary mechanism that links

genetic variation to disease [104]. Genetic variants can impact RNA splicing by disrupting

recognition of canonical splice sites or splicing regulatory elements, resulting in aberrant

mRNA transcripts, which can cause a large array of human diseases [151]. For example,

patients with monotonic dystrophy type 1 have an expanded CUG repeat in the 3’UTR of

the DM protein kinase gene, which results in the sequestration of splicing regulators in the

muscle-blind protein family, disrupting a number of muscle-blind-dependent splicing events

[83] [107]. Moreover, several other studies have underscored this point by identifying splicing

quantitative trait loci (sQTL), which are genetic variants associated with splicing, in linkage

disequilibrium with genome-wide association (GWAS) hits for a number of diseases, includ-

ing Type 2 diabetes, Alzheimer’s disease, and schizophrenia [51, 143, 163]. This suggests

that SNPs affecting splicing have the potential to be tagging causal variants underlying a

substantial number of GWAS hits.

One limitation of sQTL analysis is that it is often difficult to interpret the direction of
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effect for sQTL because two splicing events are often negatively correlated. Thus, the field

generally believes that a SNP that promotes the production of transcripts from one functional

splicing isoform also reduces the production of transcripts from another functional splicing

isoform. This is traditionally what we think of as alternative splicing. However, we believe

that a substantial fraction of sQTL act through distinct mechanisms. For example, it is also

possible that a SNP can disrupt the recognition of a canonical splice site, either by directly

altering splice sites or by indirectly altering splicing regulatory sequences, thus leading to an

opportunity for a number of weaker, cryptic splice sites to be chosen, rather than a different

canonical splice site getting chosen. Moreover, a SNP might directly enhance the recognition

of a cryptic splice site such that it can actively compete for recognition with the canonical

splice site. In both of these situations, one will observe an increase in the usage of cryptic

splice sties, thus resulting in increased production of non-functional transcripts, or we simply

see a reduction in the functional transcript being produced. This is possible as long introns

in human transcripts provide ample sequence space for mutations to arise that result in the

creation of new and sometimes cryptic splice sites and exonization.

If there existed a systematic way to study noisy splicing, it would be relatively straightfor-

ward to interpret if a subset of SNPs was acting to contribute to variation in splicing by reduc-

ing the production of functional transcripts and increasing the production of non-functional

transcripts. Our hypothesis is that SNPs that increase disease risk through splicing often do

so by reducing splicing accuracy, resulting in the production of a number of non-functional

mRNA transcripts. Therefore, in this study, we developed a method to characterize noisy

splicing or splicing fidelity, which will provide the field with a better understanding of the

molecular mechanisms underlying sQTL activity and help in contextualizing sQTL effect

sizes in the context of disease.
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4.3 Results

4.3.1 Defining noisy splicing events

We worked with RNA-seq data from the panel of 364 Central European (CEU) lymphoblas-

toid cell lines (LCLs) from the GEUVADIS Consortium [34, 94] to identify noisy splicing

events. In order to do this, we adapted a tool our lab routinely uses to study differential

splicing events and map sQTL, LeafCutter [103]. In brief, LeafCutter identifies and quan-

tifies annotated and novel splicing events by focusing on alternatively excised introns, and

it does not rely on existing annotations. The intuition behind this ”intron-centric” method

is that mRNA splicing occurs through the step-wise removal of introns from nascent pre-

mRNA, resulting in ligated exon-exon junctions in the mature mRNA. LeafCutter uses the

junction reads that are captured from RNA-seq, which are representative of intron splicing or

intron excision events, to identify all possible junctions. LeafCutter then groups together all

overlapping intron excision events into clusters and assigns an intron excision ratio to every

single intron excision event within a cluster (defined as the number of reads supporting that

splicing event versus all splicing events in the same cluster). One can then perform differen-

tial splicing analysis to compare intron excision events between two different conditions or

map sQTL by associating individual intron excision ratios with SNPs within a user-defined

distance.

Two main approaches have been used to distinguish noisy splicing from functional splic-

ing. First, because the RNA splicing process is associated with a small, but nonzero, error

rate, one way to distinguish noisy splicing events from functional ones is on the basis rare

usage (one caveat of LeafCutter is that it discards intron excision events that are observed

< 5% of the time as compared to all other splicing events in the same cluster. Because

noisy splicing events are expected to be observed at low frequencies, we did not filter such

low-frequency intron excision events out of intron clusters). Second, because functional splic-
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ing events are generally conserved across species, another way to distinguish noisy splicing

events from functional ones is on the basis of low conservation across species.

We defined an intron or splicing junction to be noisy using the following three criteria:

(i) the use of the intron relative to introns that share a splice site must be less than 0.1 in

the analyzed sample, (ii) if the intron is detected in GTEx consortium [33] samples then

its relative usage in GTEx samples from 54 tissues must be less than 0.1 in at least 95% of

GTEx samples (the 5th percentile of usage must be less than 0.1), and (iii) the intron must

not be annotated in more than two isoforms as annotated in the GENCODE V37 database.

These parameters were chosen to reduce error rates in classifying a functional intron as noisy,

and also to limit the number of noisy introns classified as functional.

We reasoned that noisy splicing events result in split RNA-seq reads demarcating introns

that are rarely used and often not annotated. Thus, to establish a list of putative mis-

spliced introns, we first searched for introns that are rarely used across samples. To do

this, we clustered introns from samples from 54 tissues from the GTEx consortium and then

estimated a relative usage of every intron based on the number of split reads supporting

the intron relative to the number of split reads supporting other introns within the same

cluster. As such, an intron is rarely used if it has a very low relative usage across all samples

across all tissues (i.e. noisy introns are those with a 95th percentile usage less than 0.1). As

expected, unannotated splice sites demarcating these rarely used introns are also depleted in

evolutionarily conserved introns, consistent with being products of noisy splicing. Although

our cutoff might be overly conservative, the number of introns classified to be mis-spliced

exceeds that of annotated introns and likely represents true mis-spliced introns with no

function.

We aimed to identify features that are predictive of an intron’s level of splicing error. For

example, we confirmed that longer introns exhibit higher levels of splicing error (Figure 4.1

A). In addition, highly expressed genes exhibit less error-prone splicing (Figure 4.1 B). These
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Figure 4.1: Features of noisy splicing events. (A) Splicing error, or noise, correlates with
intron length. Introns were placed in100 bins based on length. In each bin, we calculated
the mean fraction of sequencing reads from either splice site to an unconserved splice site
and plotted against mean intron length. (B) Highly expressed genes exhibit less error-prone
splicing. We assigned splicing junctions to genes and calculated transcripts per million
(TPM) as (junction reads in gene) / (total junction reads) x 1 million.(C) Noisy splicing
junctions are less likely to be evolutionarily conserved. We plotted the phyloP between the
3’ and 5’ splice sites. The gray vertical line is a phyloP cutoff of 1.75.
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results are consistent with what a previous study of noisy splicing identified [137]. We also

hypothesized that unannotated splice sites and their associated splicing junctions would be

less likely to be evolutionarily conserved. In order to assess this, we compared the sequence

conservation across placental mammals, using the phyloP score [140], between the noisy

splicing junction, as defined previously, and functional or optimal splicing junctions. Indeed,

we confirmed that noisy splicing junctions are less likely to be evolutionarily conserved

(Figure 4.1 C).

4.3.2 The impact of inter-individual variation on splicing fidelity

To study inter-individual variation in alternative slicing and noisy splicing, we defined a noisy

splicing event as the aggregate of all noisy introns within a cluster of introns. Specifically, we

added the usage ratios per individual of all noisy introns in a cluster, quantile normalized,

and used this as the phenotype in mapping splicing fidelity QTL (sfQTL). Controlling the

false-discovery rate at 10%, we tested 82,843 noisy splicing events across 364 CEU LCLs

and identified 3,269 sfQTL (within a 100kb window). Additionally, in the same cohort of

individuals, we identified 11,138 sQTL (FDR< 10%).

We hypothesized that sQTL could be explained by SNPs that affect canonical splice sites

either by directly altering their strength or by affecting RNA binding protein or splicing

enhancer motifs that regulate splice site choice. SNPs that disrupt canonical splice sites

may increase noisy splicing. In other words, the expectation is that the production of non-

functional, noisy transcripts may be a mechanism underlying a large fraction of sQTL, which

is easily interpretable. An sfQTL with a positive effect size (i.e. a SNP that increases noisy

splicing as a function of the number of minor alleles that an individual bears) that is also

an sQTL with a negative effect size (i.e. a SNP that decreases how frequently a particular

intron gets excised) can be interpreted mechanistically as a SNP that disrupts a canonical

splice site, as described previously. Moreover, some SNPs that affect splicing through the
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Figure 4.2: Properties of sfQTL. (A) QTLs for splicing fidelity are more likely to be sQTLs
than matched SNPs within intron clusters. (B) Enrichment of QTL in genic and functional
element annotations. Blue represents sfQTL. Red represents sQTL. Variant annotations
were derived from SnpEff [30]. OR = odds ratio.
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production of non-functional transcripts may also contribute to gene expression differences.

For example, a SNP that increases the amount of noisy splicing (a sfQTL with a positive

effect size) may enable the production of non-functional transcripts that are degraded by

nonsense mediated decay (NMD), leading to decrease in gene expression (i.e. an eQTL with

a negative effect size).

In order to begin to elucidate the mechanisms by which sfQTL might act, we used SnpEff

[30] a variant annotation and effect prediction tool. In brief, Snpeff compares SNPs against

known variants, such as those in dbSNP [156], and leverages genome annotations to predict

information about SNPs, such as if they are over-represented in splice sites, alter amino acid

sequences, and so forth. As expected, sfQTL were enriched in both 5’ and 3’ splice sites

(Figure 4.2, OR = 2.1, 1.9, respectively). However, there was no statistically significant

difference between sfQTL and sQTL enrichment in these variant annotations (Figure 4.2).

4.3.3 Understanding the role of noisy splicing in disease

We next aimed to identify examples of SNPs that impact splicing fidelity. As an example,

we focused on the gene IFI44L, which is a type 1 interferon-stimulated gene known to inhibit

human hepatitis virus replication [150]. Previously, others have demonstrated that IFI44L

splicing is influenced by rs1333973, which can result in the inclusion or exclusion of the

second exon of IFI44L [146]. Here, we determined that individuals with the G allele at

rs273261 (G > A), which is within the first intron of the gene, exhibit impaired splicing

fidelity (Figure 4.3 B, P < 6.43e − 89; β = −1.41). In comparison, individuals with the

alternative A allele splice out this intron and exhibit intact splicing fidelity. As expected,

rs273261 is also a sQTL, with more A alleles resulting in increased intron excision of this first

intron (Figure 4.3 C, P < 1.55e− 91; β = 1.31). Indeed, this is an example in which IFI44L

has an sQTL that is difficult to interpret initially given that the two splicing events are

negatively correlated. In this case, individuals with more G alleles promote skipping of the
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Figure 4.3: Example of individuals with G alleles exhibiting a decrease in splicing
fidelity but no decrease in gene expression. (A) Shashimi plot of rs273261 (G > A)
within IFI44L. (B) Boxplot of the representative sfQTL (sfQTL: P < 6.43e−89; β = −1.41).
Individuals with the alternative A allele splice out the first intron in IFI44L. In contrast,
individuals with the G allele exhibit impaired splicing fidelity and usage of cryptic splice
sites within the first intron. (C) Boxplot of the associated sQTL (sQTL: P < 1.55e − 91;
β = 1.31).
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Figure 4.4: rs273261 promotes the usage of multiple cryptic splice sites to impair
splicing fidelity. Multiple individual noisy introns that promote the usage of cryptic splice
sites drive the production of non-functional IFI44L transcripts (two out of six introns).
Boxplots of two representative sfQTL (P < 6.43e − 89; β = −1.41 and P < 1.55e − 91;
β = 1.31).
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Figure 4.5: rs10844626 is a shared casual variant underlying variation in splicing
fidelity and IBD. (A) Boxplot of a representative sfQTL, rs10844626 (T> A,C), in which
the alternative allele promotes impaired splicing fidelity. (B) Posterior probability hypothesis
4 or PP.H4 ≤ 0.75 signifies that both the variant, in this case rs10844626, and the trait, in
this case IBD, are associated and share a single causal variant.
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second exon of IFI44L, but this appears to also be driven in part by the use of cryptic splice

sites in the upstream exon, which would not have been identified without characterizing

splicing fidelity.
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In order to assess if an individual noisy intron or multiple noisy introns were driving

splicing noise, we mapped sfQTL for all introns independently, or in a non-aggregated fashion.

We discovered that two noisy introns out of six this cluster were driving the production of

some non-functional IFI44L transcripts (Figure 4.4 C and Figure 4.4 D). Specifically, it

appears as though rs273261 might be tagging a SNP in the first intron of IFI44L that either

promotes usage of several cryptic splice sites in the middle of this IFI411 intron, either

directly or indirectly, or a SNP that promotes retention of the first intron (Figure 4.3 A).

In addition, we expected that in certain cases increasing the production of non-functional

transcripts would also result in decreased gene expression. However, in this example, signif-

icant gene expression changes in IFI44L were not correlated with rs1333973 (nominal eQTL

P < 0.26; β = −0.07).

To ascertain the role of noisy splicing in the context of disease, we compiled a set of

72 well-powered GWAS, including 14 for autoimmune diseases (11 unique disease types),

36 blood traits, and 22 other traits, as previously described [124], and used COLOC [59]

to evaluate colocalization of GWAS hits and sfQTL signals. The idea behind approximate

Bayes factor analysis is that the association between each trait with SNPs in a region may

be summarized by a vector of 0s and, at most, a single 1. The single 1 is indicative of the

causal variant or SNP, if we assume that a single causal variant underlies every trait. The

posterior probability of each possible configuration can be calculated and so can the posterior

probabilities that the traits share their configurations. Posterior probability hypothesis 4 (or

PP.H4 ≤ 0.75) signifies that, in our case, a LCL-derived sfQTL and a trait share a single

causal variant. Indeed, we identified an example of a shared causal variant, rs10844626,

underlying variation in splicing fidelity and irritable bowel syndromes (IBD) (Figure 4.5).
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4.3.4 Discussion and future directions

Li et al. previously showed that mRNA splicing is a primary mechanism that links genetic

variation to disease. Several other studies have underscored this point by identifying sQTL

in LD with GWAS hits for a number of diseases [104]. This suggests that SNPs affecting

splicing have the potential to be causal variants underlying a substantial number of GWAS

hits. However, one limitation is that the direction of effect for sQTL is difficult to interpret

because alternatively spliced introns and exons are often correlated. Therefore, it is crucial

to understand the mechanisms by which sQTL may disrupt function. We hypothesized that

SNPs might increase disease risk by reducing splicing accuracy, resulting in the production of

non-functional mRNA transcripts (i.e. noisy splicing). To test this hypothesis, we adapted

LeafCutter to detect and map noisy splicing events and sfQTL. With this, we gained some

intuition around the disruption of splicing accuracy as a potential mechanism underlying

sQTL activity. In the future, it will be imperative to understand how sQTL and sfQTL act

to contribute to disease phenotypes, which can be assessed through a variety of additional

analyses.

We reported a systematic genetic analysis of splicing fidelity. Our analysis revealed in-

sights into noisy splicing, highlighting that noisy splicing correlates with features such as

intron length, gene expression, and sequence conservation. In addition, our analysis sup-

ported a role of splicing fidelity as a link between genetic variation and phenotypic variation,

as evidenced by our integrated analysis of sfQTL with GWAS hits. We assessed enrichment

of sfQTL in functional annotations to begin to characterize how sfQTL may act impact splice

sites or RBPs. In the future, for each SNP within the sequence of an annotated splice site,

we could compute a score based on how many differences there are between this modified

splice site and the annotated splice site, such that a higher score reflects greater weakening

of splice site strength. In addition, we could quantify enrichment of sfQTL within predicted

RBP motifs from mCross for 112 RBPs from ENCODE eCLIP data (from K526 and HepG2
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cell lines) [52] and use the DeepBind model [7] to predict the effect of these SNPs on RNA

binding protein-RNA binding. DeepBind takes RNA sequences as input and outputs Deep-

Bind scores, which quantify the binding specificity of different RBPs for the input sequences.

DeepBind scores can be used to generate mutation maps, which visually display the impact

of genetic variants on RBP-RNA binding. This would deepen our understanding of how

sfQTL mechanisms of action.

To assess what fraction of sQTL can be explained by sfQTL and what fraction of SNPs

that are sQTL and sfQTL are also eQTL, we could formally tested the sharing of effects

between the two molecular phenotypes separately using Storey’s π 1 statistic. We would

expect that a large fraction of sQTL to be explained SNPs that affect noisy splicing, and

approximately 25% of SNPs would also be eQTL. First, we could take the top SNPs for all

sQTL and marked the associations between those SNPs and noisy splicing events. We could

then compare the minimum P-values of the marked associations to the minimum p-value

from 1,000 permutations of sample labels to compute an empirical p-value, which would

represent the association between each sQTL and at least one noisy splicing event (q-value).

From this, we could use Storey’s π 0 statistic to compute the proportion of null associations,

which is the sharing of sQTL and sfQTL.

It is worth noting that while we believe looking at the overlap between sQTL, sfQTL,

and eQTL will be informative in understanding the mechanism of action for some SNPs

associated with variation in splicing, evaluating the relative contribution of various other

molecular phenotypes and pathways to RNA splicing variation will be important to obtain

a more comprehensive understanding of sQTL mods of action. Though beyond the scope

of this study, the following could be done. For example, in order to understand the relative

contribution of chromatin phenotypes on variation in RNA splicing, one could quantify

chromatin activity from ENCODE data to identify peaks of activity for various histone

marks (e.g. H3K4me3, H3K27ac, H3K27me3, H3K36me3) and transcription factor binding.
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I can then test whether these chromatin-level phenotypes are associated with variation in

splicing, as Li et al. has done previously [104]. It is worth nothing that the authors identified

a sQTL, rs6269 (A> G) that is associated with variation in CTCF binding and other aspects

of chromatin, such as DNAse I hypersensitivity and methylation. However, the mechanism of

action that affects splicing remains unclear. It is possible that by increasing CTCF binding,

which has been shown to slow down RNA polymerase II transcription rate, may result in

inefficient recognition of a canonical 3’SS, resulting in the use of a more upstream, alternative

3’SS. However, this putative mechanism would need to be tested experimentally with slow

and fast RNA polymerase II mutants. For example, in G/G individuals expressing fast RNA

polymerase II mutants, one would expect to see rescued use of the canonical 3’SS (i.e. in

other words, the effect of this SNP on splicing would disappear).

We could further test the hypothesis that SNPs that increase disease risk through splic-

ing likely do so by reducing splicing accuracy, resulting in the production of a number

of non-functional mRNA transcripts, by performing transcriptome-wide association studies

(TWASs), which have been developed to leverage expression data by imputing gene expres-

sion across a large cohort of genotyped individuals to identify target genes associated with

disease phenotypes of interest [111]. In brief, for a given gene, TWAS is a test of local ge-

netic association between gene expression and GWAS risk. Under a direct model in which a

SNP acts to alter gene expression that leads to disease risk, TWAS will identify genes whose

genetically regulated expression is associated with disease risk. Because we are interested in

the role of splicing in disease, we could perform splicing TWAS and splicing fidelity TWAS

to identify introns and noisy splicing events whose genetically regulated splicing is associ-

ated with disease risk. In order to perform splicing TWAS and noisy splicing TWAS, we

could leverage RNA-seq data from a number of disease-relevant tissues to impute genetically-

regulated splicing and noisy splicing across a large cohort of genotyped individuals. To do

this, we would need to assess if there is high sharing of genetically-regulated splicing events
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and noisy splicing events across disease-relevant tissues.

4.4 Materials and methods

4.4.1 Noising splicing events

We aligned and processed RNA-seq dataset from 4 species (rhesus, chimp, rat, and mouse)

and calculated relative intron usage after lifting over to the human genome [72]. We reasoned

that functional introns should be used at higher levels as compared to noisy introns, which

should not be used in other species. Thus, we used the quantified intron usage in the 4 non-

human species as a way to evaluate our noisy intron classification under different choices of

parameters. We evaluated a range of possible cutoff parameters for noisy intron classification

by asking about the number and fraction of introns in each category that have measurable

usage in the four aforementioned species. The optimal parameters are such that intron

classified as noisy are not used in other species, and intron classified as functional are used

highly in other species. As expected, a more inclusive (lower) PSI cutoff for which introns

are classified as functional result in a smaller percentage of them being used in other species.

This is simply due to misclassification of noisy introns as functional. A more inclusive PSI

cutoff for functional introns also result in a smaller fraction of introns classified to be noisy

that are used in other species because it reduces the likelihood that functional introns are

classified as noisy. Thus, our choice of parameter should reflect a balance that maximizes

the number of introns classified as noisy, while minimizing the chance that we classify a

functional intron as noisy. Using a PSI cutoff from 0.01 to 0.1 at 1-, 5-, 10-, 20- percentiles

resulted in similar classification performance. Using our chosen PSI cutoff of 0.1 at the 5th

percentile resulted in 50X more introns classified as functional that are used (> 0.1 PSI) in

other species than compared to introns classified as noisy. Thus, 0.1 cutoff at the 5-percentile

achieves our goal to identify noisy introns with minimal false positive function introns.
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4.4.2 eQTL and sQTL mapping

Standard, short-read RNA-seq data for 364 CEU LCLs was obtained from the GEUVADIS

project (EBI ArrayExpress, under the accession E-GEUV-2). Reads were mapped to the

hg38 human reference genome using STARv2.6 [46], and WASP was used to filter out allele-

specific reads that map with a bias [173]. We followed the QTL mapping pipelines that we

established in previous studies of similar data [153]. In brief, in the context of eQTL analysis,

to quantify gene expression levels, we used Kallisto [48] and added the transcript per million

(TPM) estimates of all GENCODE v37 isoforms to obtain a gene-level TPMs. The gene-

level TPMs were then scaled and quantile-quantile normalized as described previously [103].

We identified potential covariates by running principal component analysis (PCA) (prcomp

function in R) and regressed out the top ten PCs using a linear model. In the context of

sQTL analysis, normalized intron excision ratios calculated by LeafCutter [103] were used as

phenotypes for sQTL mapping. Similarly, identified potential covariates by running principal

component analysis (PCA) and regressed out the top ten PCs using a linear model.

QTLtools [41], an updated version of FastQTL [128], was used to test for association

between SNPs within a cis-region of +-100kb of the gene or intron cluster and intron ratios

within cluster (1000 permutations) and the phenotypes of interest. We used the VCF file

from GEUVADIS (445 samples, GRCH38.20170514, with variants filtered at minor allele

frequency, MAF < 0.01). Beta approximated permutation p values were then multiple test

corrected using the q-value Storey and Tibshirani FDR correction. We defined eQTLs and

sQTL at FDR < 10%.

4.4.3 sfQTL mapping

In order to map splicing fidelity QTL (sfQTL), we defined a noisy splicing event as the

aggregate of all unannotated introns, or noisy introns, within a cluster. Specifically, we added

the usage ratios, per individual, of all noisy introns in a cluster, quantile normalized, and will
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used this as the phenotype in sfQTL mapping. We identified potential covariates by running

principal component analysis (PCA) and regressed out the top 10 PCs using a linear model.

We tested the association between the phenotype described (i.e. an aggregated, noisy intron

excision ratio per cluster) and all SNPs within 100kb of the intron cluster using QTLtools

[41]. We also repeated this analysis on individuals noisy introns (i.e. non-aggregated). We

defined sfQTLs at FDR < 10%.

4.4.4 Colocalization analysis of molecular QTLs and GWAS variants

Our colocalization analysis was performed using the Approximate Bayes Factor (ABF) test

implemented in software COLOC [59].

Coloc computes five posterior probabilities (PP0, PP1, PP2, PP3 and PP4), each corre-

sponding to a hypothesis: H0: no association with either trait; H1: association with trait 1,

not with trait 2; H2: association with trait 2, not with trait 1; H3: association with trait 1

and trait 2, two independent SNPs; H4: association with trait 1 and trait 2, one shared SNP.

We ran coloc incorporated in the FUSION pipeline with default parameters (using the R

function Fusion.assoc test.R in FUSION software with - -coloc P flag) and used PP4 to assess

evidence of colocalization. We visualized the colocalization of sfQTL QTL and GWAS asso-

ciations using LocusCompareR package (https://github.com/boxiangliu/locuscomparer).
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APPENDIX A

ADDITIONAL PUBLICATIONS

Identification and quantification of splicing quantitative trait loci

Shah A., Li Y.I.

Springer. In:Shi X. (eds) eQTL Analysis: Methods and Protocols, 51-62 (2020)

Abstract

Most complex traits, including diseases, have a large genetic component. Identifying the

genetic variants and genes underlying phenotypic variation remains one of the most impor-

tant objectives of current biomedical research. Unlike Mendelian or familial diseases, which

are usually caused by mutations in the coding regions of individual genes, complex diseases

are thought to result from the cumulative effects of a large number of variants, of which, the

vast majority are noncoding. Therefore, to discern the genetic underpinnings of a complex

trait, we must first understand the impact of noncoding variation, which presumably affects

gene regulation. In this chapter, we outline the recent progress made and methods used to

discover putative regulatory regions associated with complex traits. We will specifically focus

on mapping splicing quantitative trait loci (sQTL) using Yoruba samples from GEUVADIS

as a motivating example.

Characterizing the major structural variant alleles of the human genome

Audano P.A., Sulovari A.A,Graves-Lindsay T.A., Cantsilieris S., Sorensen M., Welch

A.E., Dougherty M.L., Nelson B.J., Shah A., Dutcher S.K., Warren W.C., Magrini V.,

McGrath S.D., Li Y.I., Wilson R.K., and Eichler E.E

Cell. 176(3), 663-675 (2019)
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Abstract

In order to provide a comprehensive resource for human structural variants (SVs), we

generated long-read sequence data and analyzed SVs for fifteen human genomes. We se-

quence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that

are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the

majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional

genomes confirms the most common SVs in unique euchromatin are now sequence resolved.

We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55%

of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome.

We identify SVs affecting coding and noncoding regulatory loci improving annotation and

interpretation of functional variation. These data provide the framework to construct a

canonical human reference and a resource for developing advanced representations capable

of capturing allelic diversity.
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