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A method and apparatus is provided to generate a multi­
resolution image having at least two regions with different 
pixel pitches. The multiresolution image is reconstructed 
using projection data having various pixel pitches corre­
sponding to the pixel pitches of the multiresolution image. 
By using a higher resolution inside regions of interest 
(ROis) in both the image and projection domains and lower 
resolution outside the ROis, fast image reconstruction can 
be performed while avoiding truncation artifacts, which 
result imaging is limited to an ROI excluding attenuation 
regions. Further, those regions of greater clinical relevance 
and greater structural variance within the reconstructed 
images can be selected to be within the RO Is to improve the 
clinical benefit of the multiresolution image. The multireso­
lution image can be reconstructed using an iterative recon­
struction method in which the high- and low-resolution 
regions are uniquely evaluated. 
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MULTIRESOLUTION ITERATIVE 
RECONSTRUCTION FOR REGION OF 

INTEREST IMAGING IN X-RAY 
CONE-BEAM COMPUTED TOMOGRAPHY 

2 
For example, a first category of algorithms attempts to 

overcome the ROI artifact by estimating the data outside the 
ROI. A technique can be used to extrapolate the truncated 
data. In some implementations, the extrapolation procedure 

FIELD 

This disclosure relates to reconstructing images in com­
puted tomography (CT) using various regions of different 
resolution in the image domain and corresponding regions of 
different resolution in the sinogram/projection domain, and, 
more particularly, to selecting the regions of high resolution 

5 can be incorporated into the convolution step of a filtered 
back-projection (FBP), or by using a smooth function to 
improve reconstruction inside the ROI. These estimated or 
eliminated projections may not model the objects outside the 
ROI accurately, resulting in residual artifacts. Moreover, 

10 these techniques do not provide image information outside 
the ROI, which image information can provide visual con­
text for the image in the ROI, making it easier for clinical 
practitioners to interpret the reconstructed image. in the image and sinogram/projection domains to correspond 

with regions of high spatial frequencies and/or regions 
15 

identified to have clinical significance. 

BACKGROUND 

Certain other methods of solving the truncation artifact 
problem use two passes, a first pass corresponding to a full 
field of view and a second pass using a limited or restricted 
field of view. For example, ROI image reconstruction can be 
performed by using iterative reconstruction (IR) by using 

Computed tomography (CT) systems and methods are 
widely used, particularly for medical imaging and diagnosis. 
CT systems generally create images of one or more sectional 
slices through a subject's body. A radiation source, such as 
an X-ray source, irradiates the body from one side. At least 
one detector on the opposite side of the body receives 
radiation transmitted through the body. The attenuation of 
the radiation transmitted through the body is measured by 
processing electrical signals received from the detector. 

20 two-pass IR and one projection subtraction in-between the 
two passes. Two options for implementing this method are: 
(i) a coarse grid size is applied in the first pass and a fine grid 
size is applied in the second pass; and (ii) a fine grid size is 
used in both passes, but a shrunken image volume is applied 

25 in the second-pass by reducing number of voxels. The 
two-pass method can decrease the truncation artifact, but at 
the cost of increased complexity and time to perform the 
second scan and perform additional reconstruction steps. 

These extrapolation methods and two-pass methods fail to A CT sinogram indicates attenuation through the body as 
a function of position along a detector array and as a 
function of the projection angle between the X-ray source 
and the detector array for various projection measurements. 
In a sinogram, the spatial dimensions refer to the position 
along the array of X-ray detectors. The time/angle dimen­
sion refers to the projection angle of X-rays, which changes 
as a function of time during a CT scan. The attenuation 
resulting from a portion of the imaged object (e.g., a 
vertebra) will trace out a sine wave around the vertical axis. 
Those portions farther from the axis of rotation correspond 

30 sufficiently mitigate the truncation artifact without increas­
ing the computational time to reconstruct an image. How­
ever, increasing the computational time is not feasible in 
certain clinical applications when clinical practitioners rely 
on rapid feedback based in the imaging for task, such as 

35 positioning and arranging a stent or a medical device in a 
patient. Thus, an improved method of multi scale imaging is 
desired. 

to sine waves with larger amplitudes, and the phases of the 40 

sine waves correspond to the angular positions of objects 
around the rotation axis. Performing an inverse Radon 
transform----or any other image reconstruction method­
reconstructs an image from the projection data in the sino­
gram. 45 

In clinical applications, a given sub-region within the 
body might have greater importance for a particular scan of 
a particular patient. For example, in interventional CT, a 
stent or other medical device might be inserted into a patient, 
and the region immediately surrounding the placement of 50 

the medical device is of primary importance. To achieve 
higher resolution in this area, a smaller diameter X-ray beam 
can be focused on the relevant region of interest for a CT 
scan. However, the reconstructed image from this smaller 
region of interest can result in truncation error. On the other 55 

hand, a reconstructed image with a larger field of view will 
either result in poorer resolution or require significantly 
more time and computational resources to reconstruct from 
the projection data. 

In a CT scan, truncation error and artifacts result when a 60 

small diameter X-ray beam occupies less than the entire 
cross-section of a patient. Since incomplete data is available 
outside the region of interest (ROI) illuminated by the X-ray 
beam, the reconstruction can suffer from severe artifacts 
potentially rendering the image useless. Different 65 

approaches have been proposed to reduce these artifacts by 
estimating or determining data outside the ROI. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete understanding of this disclosure is 
provided by reference to the following detailed description 
when considered in connection with the accompanying 
drawings, wherein: 

FIG. 1 shows a flow diagram of a first implementation of 
a multiresolution iterative reconstruction (IR) method, 
according to one implementation; 

FIG. 2 shows high-resolution and low-resolution regions 
within projection data and within a reconstructed image 
generated from the projection data, according to one imple­
mentation; 

FIG. 3 shows an example of a reconstructed image in 
which a low-frequency and a high-frequency region of 
interest (ROI) have been superimposed on the reconstructed 
image, according to one implementation; 

FIG. 4 shows an example of a reconstructed image in 
which multiple low-frequency ROis and multiple high­
frequency ROis have been superimposed on the recon­
structed image, according to one implementation; 

FIG. 5 shows a flow diagram of a step performing a 
forward projection of a high-resolution ROI in the image 
domain onto the projection domain, according to one imple­
mentation; 

FIG. 6 shows a flow diagram of a step to reconstruct/ 
refine a multiresolution image using different resolutions 
(i.e., pixel pitches) inside and outside of the ROis in the 
image domain, according to one implementation; 
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FIG. 7A shows a diagram of an example of a projection 
of a three-dimension object OBJ onto a two-dimensional 
detector array, according to one implementation; 

4 
image can become prohibitive, especially when high-reso­
lution reconstruction for the ROI is desired, and the same 
high-resolution is used for the entire volume of the recon-

FIG. 7B shows a diagram of an example of a projection 
of a head phantom onto a two-dimensional detector array to 5 

generate projection data; 

structed image. 
The computational time for iterative image reconstruction 

is often dominated by the forward-projection operations and 
back-projection operations. This is because often IR algo­
rithms converge to the reconstructed image using multiple 
steps of iteration, and each step can include both a forward­
projection operation and a back-projection operation. The 
number of floating point operations for each of these opera-

FIG. 7C shows a diagram of an example of a forward 
projection of an image-domain ROI onto a projection 
domain to determine a projection of the ROI; 

FIG. 7D shows the projection of the ROI superposed on 10 

the projection data of the head phantom; 
FIG. 8 shows an example of a projection-domain ROI 

being determined from a projection of the image-domain 
ROI when a ratio between the pixel pitch inside and outside 
the ROI is two; 

FIG. 9 shows an example of a projection-domain ROI 
being determined from a projection of the image-domain 
ROI when a ratio between the pixel pitch inside and outside 
the ROI is four; 

tions can be of the order of the number of voxels in the 
image domain times the number of pixels in the projection/ 
sinogram domain. As used herein, the terms "sinogram 

15 domain" and "projection domain" are used interchangeable. 
Thus, doubling the resolution without changing the size of 
the image or projection domains can result in a 25 =32 times 
increase in the computational time for each forward- and 
back-projection operation. 

FIG. 10 shows a diagram of an X-ray projection mea- 20 

surement onto a flat panel detector (FPD), according to one 
implementation; 

Accordingly, for a large image volume with fine resolu-
tion the computational complexity can escalate rapidly, 
which is why for clinical applications in which high reso­
lution is desired for the ROI, minimizing the ROI is advan­
tageous. However, as mentioned above, when the ROI 

FIG. llA shows a cross-sectional view of a reconstructed 
image of a stent being used in an interventional clinical 
application, 

FIG. llB shows a projection image of a side view of the 
stent; 

FIG. 12 shows an example of a reconstructed image of a 
head exhibiting a subarachnoid hemorrhage in a space 
between the brain cortex and the cranium; 

FIG. 13 shows an example of an image being partitioned 
into four regions of various resolutions, according to one 
implementation; 

FIG. 14 shows a flow diagram of a second implementation 
of a multiresolution IR method, according to one implemen­
tation; and 

FIG. 15 shows a schematic of an implementation of a CT 
scanner. 

DETAILED DESCRIPTION 

In computed tomography (CT) and cone-beam CT 
(CBCT), region of interest (ROI) reconstruction is used to 
obtain high-resolution images within a designated ROI. This 
technique can also be referred to as zoomed ROI recon­
struction, and uses a smaller image voxel size for represen­
tation of anatomic features in the designated ROI. Further, in 
certain implementations, ROI reconstruction can also gen­
erate coarse-resolution images and information for regions 
outside the ROI. The methods and apparatus described 
herein provide computational and other advantages over 
more conventional methods by, among other things, using 
different pixel pitches for the projection data corresponding 

25 excludes portions of the object, truncation artifacts result 
from the unknown X-ray attenuation attributable to those 
portions of the object excluded from the imaging region. 

Full field-of-view (FOY) projection data can be used to 
provide information regarding the X-ray attenuation for 

30 those regions of the object OBJ excluded from the ROI, thus 
eliminating truncation artifacts. Accordingly, if the full FOY 
is represented in the projection data, the entire object OBJ is 
represented in the forward-projection and back-projection 
operations in IR, and the truncation effects are reduced. In 

35 high-resolution imaging such as cone beam CT (CBCT) 
used in interventional radiology, the native detector resolu­
tion for the projection data can be rather high, i.e., a small 
pixel pitch, which is defined as the distance between nearest 

40 

neighbour pixels. 
Full FOY projection data with native detector resolution 

could impose a high computational burden, especially when 
only a small ROI in the image domain requires the highest 
resolution possible based on the native resolution. Thus, full 
FOY images can be reconstructed by down sampling the 

45 projection data from the native resolution to a coarser 
detector resolution (i.e., larger pixel pitch). This downsam­
pling can be achieved, for example, by grouping the pixels 
into groups corresponding to larger pixels (e.g., 2-by-2 
squares including four native pixels, or 2-by-3 rectangles 

50 including six native pixels) and summing or averaging over 
the intensity/count value for the respective native pixels in 
each grouping of native pixels to determine the down­
sampled projection data corresponding to the coarse-reso-
lution pixels. 

Alternatively, any size, shape, and dimension of coarse 
projection data can be obtained by mapping from the native 
resolution grid to a coarse-resolution grid using any known 
interpolation, extrapolation, and/or integration method. 
Downsampling the projection data by a pixel-pitch ratio of 

to regions outside the ROI relative to the pixel pitch used for 
regions projecting through the ROI. In contrast, more con- 55 

ventional methods do not use multiple pixel pitches within 
the projection data for a single CT scan. Further, methods 
described herein perform ROI reconstruction using iterative 
reconstruction based on a single scan, rather than multiple 
scans such as are used in a two-pass method. 60 2 with a commensurate change to the image-domain reso­

lution can result in a factor of 25=32 decrease in the Often for CT using iterative reconstruction (IR), the entire 
imaged object OBJ is within the image volume of the CT 
scanner. This reduces the truncation effect. However, when 
high-resolution images are being reconstructed, decreasing 
the imaged region to a small ROI can reduce the computa- 65 

tional burden for reconstructing an image of the object OBJ. 
Otherwise the time required to reconstruct a high-quality 

computational time to perform the forward-projection and 
back-projection operations, resulting in a drastic increase in 
efficiency for the IR algorithm. 

To achieve both fast image reconstruction with the full 
FOY while also achieving high resolution within a ROI, the 
image domain can be partitioned into a low-resolution 
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region outside of the ROI and a high-resolution region inside 
of the ROI, as described in U.S. Pat. No. 8,625,870, incor­
porated herein by reference in its entirety. However, the 
efficiency of the IR algorithm can be further enhanced by not 
only partitioning the image domain into high- and low- 5 

resolution regions, but also partitioning the sinogram 
domain, i.e., the projection data, into high- and low-resolu­
tion regions. Returning to the example in which downsam­
pling is performed by a factor of two change in the pixel 
pitch, changing the pixel pitch of voxels only (voxels are 10 

volume pixels in the image domain) only decreases the 
computational burden by a factor of 23 =8. The total 
improvement by a factor of 25=32 requires both the voxels 

6 
larization term. In certain implementations using an IR 
method, the IR method can be performed for a predefined 
number of iterations, rather than being performed until 
convergence. The IR method can also use various accelera­
tion and other techniques to improve convergence, includ­
ing, e.g., ordered subsets, Nesterov's acceleration, and sepa-
rable quadratic surrogates. Further, the IR method can be 
initialized using a FBP or FDK reconstructed image. Various 
combinations of CT reconstruction can also be used, as 
would be understood by a person of ordinary skill in the art. 

As discussed above, the down-sampling of the projection 
data can be achieved by grouping the fine-resolution pixels 
into pixel groups corresponding to the coarse-resolution 
pixels of the downsampled data, and then averaging or in the image domain and the pixels in the projection data be 

downsampled by a pixel-pitch ratio of two. 
Referring now to the drawings, wherein like reference 

numerals designate identical or corresponding parts 
throughout the several views, FIG. 1 shows flow diagram of 

15 s=ing the values of the respective pixel groups of the 
fine-resolution pixels to generate the values of the coarse­
resolution pixels. Alternatively, the fine-resolution pixels 
can be resampled onto a grid or other pixel pattern for the 

an IR method using downsampled regions in both the image 
and sinogram domains for pixels and voxels outside of the 20 

ROI. 

coarse-resolution pixels using interpolation, extrapolation, 
and/or integration from the fine-resolution grid onto the 
coarse-resolution grid. 

FIG. 2 shows an example in which both the voxels in the 
image domain and the pixels in the projection data are at a 
native resolution in regions corresponding to the ROI and 
are downsampled by a pixel-pitch ratio of 4 for regions 
outside the ROI. For simplicity, FIG. 2 shows only a single 
high-resolution (HR) region in the image and sinogram 
domains. In general, multiple high-resolution ROis can be 
selected within the full FOY, as discussed later. Further, the 
resolution for each ROI can be separately specified in 
accordance with the type of anatomic features represented in 
the ROI and the desired resolution for the given clinical 
application. To obtain multiple high-resolution ROis, as 
discussed herein, the higher resolution within the respective 
ROis can be achieved by initializing the entire FOY at a low 
resolution for both voxels and pixels and then imposing the 
finer resolution in the projection domain and iteratively 
solving the IR algorithm to refine the resolution in the image 
domain. When more than one ROI is designated in the full 
FOY, the improved resolution within the ROis can be 
achieved serially or in parallel as discussed herein. In serial, 
the switch from coarse to fine resolution in both the sino­
gram and image domains is performed in series for each of 
the respective ROis, such that the resolution of a current 
ROI is refined through the IR method before moving onto 
the next ROI and refining the resolution in the next ROI 
using the IR method. In parallel, the resolution for all of the 
ROis is refined simultaneously. 

Returning to FIG. 1, method 100 performs a multireso­
lution reconstruction of an object OBJ. 

In step 110 of method 100, the projection data is obtained. 

In step 130 of method 100, an ROI can be determined 
within the initial image. The ROI can be a region in which 
high-resolution image reconstruction is desired. The process 

25 for determining the ROI can be automated or include user 
input, e.g., using a graphical user interface (GUI), to deter­
mine features and or regions of clinical relevance. For 
example, automated determination of the ROI can include 
using an edge-detection method to determine regions having 

30 a high degree of high-spatial-frequency (HF) content, such 
as at boundaries between organs and bone. These high­
frequency regions benefit more from high-resolution image 
reconstruction than regions with more uniform low-spatial­
frequency (LF) content. The ROI can be a three-dimensional 

35 shape or a two-dimensional-shape that is extruded along a 
given length in the third dimension. In certain implementa­
tions the ROI can be determined using a threshold-and­
region-growing method. Pixels corresponding to an edge or 
high-frequency measurement above a predefined threshold 

40 can seed the threshold-and-region-growing method. 
After the various ROis are determined with their corre-

sponding pixel pitches, the voxel values of the initial image 
can be mapped using interpolation onto voxels having the 
desired pixel pitch within each respective ROI, as indicated 

45 in FIG. 2. 
Various edge or high-frequency measurements can be 

used as indicia that high-resolution is appropriate for a given 
neighborhood of pixels. For example, an absolute value of a 
convolution between the initial image and a derivative 

50 function can be normalized by the average attenuation 
within the neighborhood of each pixel to generate a measure 
of the derivative. This measure of the derivative will be 
larger in regions of the initial image exhibiting significant 

This projection data can be obtained by performing a CT 
scan using a CT scanner such as the CT scarmer described 
herein. Also, the projection data can be obtained by recalling 
from computer memory projection data that has been pre- 55 

viously obtained. The obtained projection data can be at the 
native resolution of the X-ray detectors of the CT scarmer. 

spatial variations in the attenuation, indicating regions that 
can benefit from higher resolution. 

Further, another measure of which regions can benefit 
from high-resolution image reconstruction can be generated 
using a spatially windowed standard deviation normalized 
by the localized mean. The normalized standard deviations 
provides a measure of which regions are highly textured. 

In step 120 of method 100, an initial reconstructed image 
can be determined. The initial image can be generated using 
downsampled projection data and using an image resolution 60 

for the initial image that is commensurate with the down­
sampled projection data. The initial image can be generated 
using any known CT reconstruction method, including fil­
tered back-projection (FBP), a Feldkamp-Davis-Kress 
(FDK) reconstruction method, and an IR method using, e.g., 65 

using an objective function with a least-squares or a penal­
ized-weighted-least-squares data-fidelity term and a regu-

Similarly, a spatially windowed and mean frequency of 
the power spectral density would also provide a measure of 
which regions are highly textured. Also, the percentage of 
attenuation represented by high-frequency components of a 
wavelet-based transformation would similarly provide a 
measure indicating regions benefiting from higher resolu-
tion. This is also true for other measurements based on a 
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pyramid decomposition of the reconstructed image ( e.g., a 
Gaussian or Laplacian pyramid decomposition or a wavelet 
transform decomposition). Many other measures of the 
regions exhibiting high spatial variations are also contem­
plated, as would be understood by a person of ordinary skill 5 

in the art. Any edge-detection method or method for detect­
ing differences in texture or spatial variation/structure 
among different regions can be used. 

In certain implementations, selection of regions of low­
and high-resolution images can be determined by analyzing 10 

the initial image, such that regions of the image amenable to 
denoising or smoothing can be assigned a coarse resolution 
while remaining regions can be assigned high resolution. 

Further, different regularizers can be assigned within the 
15 

various regions, according to their determined statistical 
properties. For example, in the high-resolution regions, 
edge-preserving or edge-enhancing regularizers can be 
applied, whereas a smoothing regularizer can be applied in 
coarse-resolution regions. In certain implementations, all 20 

regions use the same regularizer, e.g., a total variation (TV) 
minimization regularizer. 

In certain implementations, a dedicated GUI can be used 
for the selection of regions of low and high resolution within 
the initial image. The GUI can display the initial image, and 25 

a user can specify the ROis of high resolution within the 
GUI. 

8 
whereas a medium resolution can be applied in undesignated 
regions and a low resolution can be applied in regions 
designated to be LF-ROis. 

FIG. 4 shows a cross-sectional slice of a reconstructed 
head image in which two HF ROis are identified and two LF 
ROis are identified. The HF ROis can have the same 
resolution, or they can have different resolutions. Similarly, 
the LF ROis can have the same or different resolutions. 
Thus, multiple different resolutions can be applied. For 
example, the resolution within a given ROI can be tuned 
automatically to achieve an optimum resolution. If the rate 
of change (i.e., spatial derivative) of detected edges within 
the ROI are determined to be approximately equal to the 
resolution limit of the pixel pitch within the ROI, then the 
pixel pitch can be incrementally decreased towards the 
native resolution of the X-ray detectors, until the pixel pitch 
is sufficient to resolve the sharpest features in the HF ROI or 
the native resolution is reached. 

In certain implementations, if the current pixel pitch 
within an ROI is sufficient to resolve some features but not 
others, a sub-ROI can be determined within the ROI, the 
sub-ROI corresponding to those features requiring a smaller 
pixel pitch. Then the smaller pixel pitch can be applied to the 
sub-ROI, and the IR method can be performed to refine the 
resolution within the sub-ROI in order to resolve the edges 
and fine features within the sub-ROI. Further verification 
and testing can be performed using the above-discussed 
edge and structure measurements, e.g., to determine whether 

Further, in certain implementations, the user can also 
specify the ROis of low resolution within the GUI. 

30 
the smaller pixel pitch is adequate to resolve the finest 
features in the sub-ROI. If even finer resolution is required 
to resolve these features, then the pixel pitch within the 
entire sub-ROI can be further decreased. 

In certain implementations, segmentation into multiple 
resolutions can be performed automatically using prior input 
from a user or using defaults settings. Based on these inputs 
and/or default settings, criteria of image segmentation are set 
for the determination of the regions of high (low) resolution. 
Various techniques of image segmentation can be imple- 35 

mented based on the criteria to find targets of the high 
resolution regions. Those techniques can involve both auto­
matic and semi-automatic techniques. When a semi-auto­
matic approach is applied, a GUI can be involved so that 
initial seeds or cropping can be provided by the user. 

Alternatively, if some edges and features in the sub-ROI 
are adequately resolved within the sub-ROI while other 
edges and features are not, then the sub-ROI can be further 
sub-divided to obtain a sub-sub-ROI, and so forth until all of 
the features in the ROI are adequately resolved or the native 
resolution is reached. This iterative process can be realized 

40 
by iterating through steps 130, 140, 150, and 155 until the 
stopping criteria are satisfied, as described below. In certain implementations, a Laplacian-decomposition 

approach can be used. In the Laplacian-decomposition 
approach a Laplacian filter is used as an analysis filter bank 
operating on the initial image, resulting in a Laplacian 
pyramid of the sub-band architecture. Each sub-band vol- 45 

ume image can be processed using an interactive reconstruc­
tion, but with a scale-related pixel pitch. The reconstruction 
of high-frequency sub-bands, which have more details of 
image features, employs a smaller pixel pitch, while the low 
frequency sub-band reconstruction employs a coarser grid. 50 

The final output is the synthesis of the reconstructed sub­
band images. 

In certain implementations, a wavelet-based approach can 

In step 140 of method 100, the various ROis in the image 
domain are forward projected onto the sinogram domain. 
FIG. 5 shows a flow diagram of one implementation of step 
140 to forward project the ROis from the image domain to 
the sinogram domain. Further, FIGS. 7A, 7B, 7C, and 7D 
illustrate the forward projection from the image domain to 
the sinogram domain, and FIGS. 8 and 9 illustrate deter­
mining, based on the forward projection, which pixels in the 
sinogram domain are in the sinogram-domain ROI, and 
which are out of the sinogram-domain ROI. 

The reconstructed image, f, and the projection data, g, are 
related by the system-matrix equation 

wherein A is the forward-projection operator/matrix, repre­
senting the Radon transform or projections of the object OBJ 
onto the detector plane. In certain implementations, this 
forward-projection operator A can be referred to as the 

be used. Similarly to the Laplacian-decomposition 
approach, a wavelet transformation can be applied to the 55 

initial image, forming a wavelet pyramid of a sub-band 
architecture. High-resolution features are reconstructed 
from the high-frequency sub-bands by using finer resolution 
grids, while low-resolution regions are reconstructed from 
the low-frequency sub-bands. 

FIG. 3 shows a cross-section of a reconstructed image in 
which an HF ROI is designated. Also, FIG. 3 shows a LF 
ROI, which uses coarser resolution than the HF ROI. 
Method 100 is not limited to only two levels of resolution, 
but multiple resolutions can be used in various regions. For 65 

example, a high resolution can be applied for regions 
designated as clinically relevant or designated as HF ROis, 

60 ray-driven forward projection. A corresponding pixel-driven 
back-projection, B, can also be defined. FIG. 7A illustrates 
the physical mechanism of X-rays traversing an object 
having a spatial profile f to forward project f onto a detector 
array, generating the projection image g. FIG. 7B shows the 
forward projection of a head phantom, and FIG. 7C shows 
a ROI corresponding to a portion of the spinal cord of the 
phantom being forward projected. Finally, FIG. 7D illus-
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trates the overlap between the projection image of the 
phantom and the projection of the image-domain ROI onto 
the image domain. 

10 
another predefined value (e.g., the value 0). Then the sino­
gram-domain ROI can be determined to include only those 
pixels whose forward projection value lies within a pre-
defined range of values (e.g., greater than zero, one, or ten). 

The pixel values of the projection data within the sino­
gram-domain ROI can be obtained using, e.g., the projection 
data with the native resolution of the X-ray detectors. Thus, 
multiresolution projection data can be generated. 

FIG. 5 shows a flow diagram of one implementation of 
10 step 140. 

FIG. 7 A shows the geometry of a projective measurement 
for CT imaging. An object OBJ for which the X-ray attenu- 5 

ation as a function of position is given by the function 
f(X,Y,Z) is positioned such that X-rays traverse the object 
OBJ before being detected by a detector array. An X-ray 
beam propagates along the z-axis, which is at a projection 
angle cp relative to the Z-axis. Multiple projection images are 
taken at several different projection angles cp. In each 
projection image the X-rays pass through the image object 
and continue to propagate until the X-rays impinge upon the 
detector array. The detector array can include an array of 
pixels to detect the X-ray intensity at discrete locations 15 

across the detector array. These measurements give rise to a 
map of the projected intensity/attenuation g(x',y') across the 
detector, which is recorded using a computer memory and 
later processed to create a CT image of the image object 
OBJ. In FIG. 7A the detector is shown to be a distance d 
from the closest boundary of the image volume. The axes x, 

In step 510 of step 140, the image-domain HF-ROI (i.e., 
the image-domain ROI) is forward projected to generate the 
HF-ROI projections (i.e., projection of the image-domain 
ROI). 

In step 520 of step 140, coarse-resolution pixels having a 
predefined overlap ratio with the HF-ROI projections are 
identified as being the part of the project HF ROI (i.e., the 
sinogram-domain ROI). 

In step 530 of step 140, a grid for the projection data is 

y, and z define the coordinate system of the object OBJ, 
whereas the axes X, Y, and Z define the coordinate system 

20 determined having a high-resolution pixel pitch in the sino­
gram-domain ROI. Then, the projection data within sino­
gram-domain ROI is populated to have a resolution com­
mensurate with this high-resolution pixel pitch, e.g., using 

of the X-ray scanner, which rotates relative to the object OBJ 
and x' and y' define the coordinates of the pixel array for the 25 

X-ray detector. 
FIG. 7B shows generation of a projection image from a 

head phantom, and FIG. 7C shows a virtual projection of an 
image-domain ROI by forward projecting the ROI onto a 
projection plane corresponding to the pixels of the detector 30 

array. FIG. 7D shows a superposition of the projection of the 
ROI over the projection image of the head phantom. It can 
be observed that the projection of the ROI overlaps those 
pixels for which a greater pixel pitch is desired in order to 
generate a higher-resolution reconstructed image. On the 35 

other hand, high-resolution projection data is not needed for 
pixels not overlapping the projection of the ROI because 
these pixels correspond to low-resolution portions of the 
reconstructed image. 

In certain implementations, the coarse-resolution pixels 40 

(i.e., the pixels outside of the sinogram-domain ROI) are 
determined as being those coarse-resolution pixels that do 
not overlap the projection of the image-domain ROI, and the 
ROI in the sinogram domain includes all remaining pixels of 
the projection data. The ROI in the sinogram-domain will 45 

have a smaller pixel pitch, as shown in FIGS. 8 and 9. In 
FIGS. 8 and 9, the circumference of the circle represents a 
projection of the image-domain ROI onto the sinogram 
domain. In FIG. 8 the ratio between pixel pitches inside and 
outside the sinogram-domain ROI is two, whereas in FIG. 9 50 

the ratio between pixel pitches inside and outside the sino­
gram-domain ROI is four. The coarse-resolution pixels 
outside the ROI (i.e., the white region) have the respective 
resolutions shown in the upper left corner of the grids shown 

the projection data having the native detector resolution. 
In step 150 of method 100, the resolution of the ROI in the 

image domain is refined by performing an IR method using 
the multiresolution projection data. The system-matrix equa­
tion for multiple resolution data can be split into low- and 
high-resolution parts, as represented by 

wherein f H is the reconstructed image having a higher 
resolution and being inside the image-domain ROI, f L is the 
reconstructed image having a lower resolution and being 
outside the image-domain ROI, gH is the projection data 
having a higher resolution and being within the sinogram­
domain ROI, and gL is the projection data having a lower 
resolution and being outside the sinogram-domain ROI. 

In certain implementations, iterations to optimize the 
high- and low-resolution reconstructed images can be per­
formed separately, and, once the low-resolution recon­
structed image converges to a stable solution, the low­
resolution reconstructed image can be maintained constant 
while the IR method continues to optimize the high-resolu­
tion reconstructed image inside the ROI. For example, the 
isolated low-resolution image reconstruction problem can be 
expressed as 

in FIGS. 8 and 9, whereas the pixels with the ROI (i.e., the 55 

grey region) have the smaller resolution represented by the 
grid. In FIGS. 8 and 9, the boundary of the sinogram-domain 
ROI is selected to eliminate all overlap between the coarse­
resolution pixels and the projection of the image-domain 
ROI. 

wherein g'H=g1rAH.H f Hand g'L=gL-AH.r,f Hand the high­
resolution image f H is held constant. Additionally, the iso-

60 lated low-resolution image reconstruction problem can be 
expressed as Alternatively, the boundary of the sinogram-domain ROI 

can be chosen to instead exclude only those coarse-resolu­
tion pixels overlapping with the projection of the image­
domain ROI by more than a predefined ratio. 

In certain implementations, voxels inside the image- 65 

domain ROI are assigned a predefined value (e.g., the value 
1) and regions outside the image-domain ROI are assigned 
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wherein g"H=g1rALHfL and g"L=A.LfL and the low-reso­
lution image f L is held constant. Further, different regular­
ization terms can be used for the low- and high-resolution 
image f L and f H Any known method can be used to 
optimize the corresponding objective functions with their 5 
corresponding data-fidelity and regulation terms. 

In step 620 of step 150, the multiresolution image is 
further refined by minimizing one or more additional objec­
tive functions. For example, cpH can be minimized indepen­
dently. 

Alternatively, a new sub-ROI can be defined with a 
smaller pixel pitch than the ROI, and a new objective 
function for the sub-ROI can be minimized while holding all 
other regions outside the sub-ROI constant. 

In certain implementations, the data-fidelity or regulation 
terms can operate as a constraint, rather than an optimization 
term. 

In certain implementations, the minimization of the objec-
10 

tive function combining both high- and low-resolution 
images can be given by 

Further, in certain implementations, multiple ROis and 
resolutions are possible, and each ROI can have its own 
corresponding objective function. Then, the objective func­
tions for each of these ROis can be minimized, either in 
parallel or serially, as discussed above. 

argmin,oTotat(fL, fH) 
h.fH 

wherein the total objective function is given by 

U JAf H) is the regularization function for the high-resolution 
image, U L(f L) is the regularization function for the low­
resolution images, T represent the matrix transpose, and ~H 

and ~Lare respective regularization constants applying rela­
tive weights to the regularization terms in the objective 
function. 

In certain implementations, the high- and low-resolution 
regularization function can be the same, and can even be 
unified into a single function. Any known regularization 
function can be used. 

In certain implementations, separate high- and low-reso­
lution objective functions can be minimized, and the IR 
method can iterate between optimizing the high- and low­
resolution objective functions. Also, after a stable solution 
has been obtained for the low-resolution image, then the 
high-resolution objective function can be optimized inde­
pendently. The high-resolution objective function can be 
given by 

The low-resolution objective function can be given by 

FIG. 6 shows a flow diagram of one implementation of 
step 150. 

In step 610 of step 150, the multiresolution image is 
optimized by minimizing a first objective function, or a 
combination of objective functions. For example, cpr

0
, 01 can 

be minimized for a predefined number of iterations or until 
the low-resolution image has satisfied a convergence criteria 
and stabilized. Alternatively, the combination of cpH and cpL 
can be minimized iteratively to satisfy a predefined conver­
gence criterion. In certain implementations, only cpL is mini­
mized in step 610. 

Generally, iterative reconstruction using multiple resolu-
15 tions for the image and the projection data can be viewed as 

blending separate iterative reconstructions each involving 
different resolutions for the images in respective ROis and 
for the projection data in respective ROis. The above 
description can also be straightforwardly extended to the 

20 case of more than two resolutions and/or more than one ROI 
with high resolution, as would be understood by a person of 
ordinary skill in the art. Moreover, the parameters applied in 
the IR method can be tuned separately for each ROI by 
treating each ROI as a separate reconstruction problem with 

25 its own unique image, projection data, and resolution. 
Implementation of ray-driven forward projection can be 

achieved by calculating the contribution of the respective 
voxels along a given ray incident on a given pixel by 
determining the overlap between the ray and the respective 

30 voxels. Thus, the relative contribution to the ray integral 
depends on the size/resolution of the respective voxels 
through which it passes ( e.g., a high-resolution voxel will be 
smaller and contribute proportionately less, but this is offset 
by the fact that the number of high-resolution voxels will be 

35 proportionately greater, such that the contribution as a 
function of length is conserved). 

Similarly, the pixel-driven back-projections, which rep­
resent the contribution of the pixels to the respective voxels, 
will also depend on the size/overlap of the voxels and pixels 

40 represented by terms represented by respective matrix ele­
ments of the back-projection operation, as would be under­
stood by a person of ordinary skill in the art. Thus, for the 
implementation of the pixel-driven backprojection, each 
voxel in an image ROI is back-projected in accordance with 

45 the volume of rays from the X-ray source to the respective 
pixels (e.g., this volume will be roughly proportional to the 
cross-sectional area of the corresponding pixel). 

Returning to FIG.1, in step 155 of method 100, an inquiry 
is performed whether the stopping criteria have been satis-

50 fled. If the stopping criteria have not been satisfied, method 
100 proceeds from step 155 to step 130 and the iterative loop 
beginning from step 130 and continuing through step 150 is 
repeated. Otherwise, method 100 is complete. 

In certain implementations, when step 130 is repeated, the 
55 determination of the FIR ROI is performed on the multi­

resolution image rather than on the initial image, and a 
sub-ROI can be defined within the ROI. Thus, ROis, sub­
ROis, and sub-sub-ROis can be constructed one upon 
another in a nested fashion. The stopping criteria can include 

60 a resolution criterion that inquires whether features within 
the ROI might be rendered more sharply by using a smaller 
pixel pitch, or if a smaller pixel pitch is unlikely to signifi­
cantly improve the image quality of the multiresolution 
reconstructed image. For example, this inquiry might be 

65 realized using a difference between the forward projection of 
the multiresolution reconstructed image and the native­
resolution projection data. Regions in which the difference 
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is large can indicate that the features in these regions are 
under resolved, and, during the next iteration, a higher 
resolution (up to the native resolution) can be applied to 
these under-resolved regions. 

14 
within a clinically relevant time frame by sacrificing reso­
lution outside of the ROis in order to generate a multireso­
lution image using an IR algorithm. 

FIG. 10 shows an example of acquiring a projection 
In certain implementations, the stopping criteria can be 

satisfied when a pixel pitch within the projection data and 
the multiresolution image reach the native resolution of the 
X-ray detectors. 

In certain implementations, the stopping criteria can also 
be satisfied when a maximum number of iterations of the IR 
method is reached. 

5 image using a small FPD. Thus, the imaged object OBJ is 
larger than the imaged region, which is shown as a white 
circle superimposed on imaged object OBJ. Using a small 
image volume creates a potential for truncation artifacts in 
a reconstructed image due to the attenuation of the projec-

Method 100 has several advantages over more conven­
tional methods. First, the resolution for regions within the 
reconstructed image regions can be consistent over iterations 

10 tion data arising from portions of the object OBJ outside of 
the imaged region. The smaller size of the FPD can result in 
data truncation during data acquisition for three-dimensional 
reconstruction. This is illustrated in FIG. 10 representing an 
X-ray acquisition using an FPD. For some projection angles, 

15 the acquisition FOY fails to completely span the object OBJ, 
such that data that would make it possible to perfectly 
characterize the object OBJ is missing due to the limited 
extent of the FPD. The missed data will reduce the amount 

of the IR method. Second, parameters used in the IR method 
can also be consistent over IR iterations. This contrasts with 
the two-pass ROI IR method, for example, in which a 
different set of IR parameters is needed when the image 
resolution is changed for the second-pass of the IR method. 
Third, image information outside an ROI is preserved in the 20 

multiresolution image, and can be displayed, albeit with a 
coarser resolution, to provide context for the anatomy dis­
played in the ROI. Fourth, the computing overhead for 
image/data outside the ROI is significantly reduced. Fifth, 
multiple ROis with different resolutions can be recon- 25 

structed. Sixth, truncation artifacts can be minimized even 
when the ROI is much smaller than the attenuating object 
OBJ. 

of known projection data g available to reconstruct the 
image based on the system-matrix equation Afaeg (e.g., IR 
algorithms can be understood as iterative algorithms to solve 
this system-matrix equation). When the FOY includes less 
than the entire object OBJ, the system-matrix equation tends 
to be underdetermined. That is, as a result of the system­
matrix being modeled using a forward projection A, the 
image inside the FOY is more constrained by the equations 
than the image outside FOY. Accordingly, the image inside 
FOY tends to converge to the true solution, while an image 
outside FOY tends to diverge away from the true solution Now exemplary clinical applications and implementa­

tions are provided of the multiresolution image reconstruc­
tion method using both multiresolution representations in 
the image and sinogram domains. 

30 since its solution space is huge as a result of not being 
constrained by the system-matrix equation as a result of 
incomplete projection data. 

For clinical applications, the imaged region for recon­
struction limits what can be displayed, and, as described 

In certain implementations, IR algorithms are used in 
clinical computed tomography (CT). For example, IR algo­
rithms have demonstrated advantages in clinical applica­
tions by reducing radiation dose and improving image 
quality. For example, in rotational C-arm cone-beam CT 
(CBCT) for interventional procedures, three-dimensional 
imaging features such as low-contrast imaging (LCI, which 
can also be referred to as CT-like imaging) and three­
dimensional digital subtraction angiography (3D-DSA) can 
benefit from the advantages of reconstructing images using 

35 above, a small FOY can result in a small imaged region, 
especially for filtered back-projection (FBP) reconstruction. 
However, whereas FBP constrains the imaged region, the 
imaged region can be larger when an IR algorithm is used. 
The IR algorithm can minimize the least square of the 

40 system-matrix equation (e.g., the data fidelity term), which 
can encompass a larger imaged region than the imaged 
region used for FBP. Accordingly, the IR algorithm can use 
a larger image volume, which encompasses the entire object 
OBJ, in order to reach a solution as close as possible to 

an IR algorithm to improve image quality and to reduce 
artifacts. With rapid advances in GPU technology, the com­
putational time required to generate an IR image has been 
significantly reduced to the point of becoming clinically 
feasible during interventional procedures. This is significant 
because, for interventional procedures, information is 
needed to be rapidly available if it is to be useful for guiding 
decisions for clinical procedures. Unlike clinical CT, C-arm 50 

CBCT equipped with a flat-panel detector (FPD) is designed 

45 accurately representing the object OBJ without artifacts due 

to conduct 2D imaging and to be flexible and mobile in order 
to rotate to convenient angles in an operation room. Further, 
an FPD usually has a smaller field of view (FOY) relative to 
a typical CT detector, and FPDs typically have higher 55 

detector resolution suitable for high-resolution imaging. 
Therefore, CT reconstructed images obtained using the 
combination of an IR algorithm with C-arm CBCT using an 
FPD has not been used in the interventional applications 
because the computational time for image reconstruction 60 

would be too long to be clinically relevant. This long 
computational time results from the combination of the FOY 
and the high-resolution of the detectors. Nevertheless, if the 
computational times for image reconstruction can be 
reduced, this combination can be advantageous. The meth- 65 

ods described herein provide a path whereby images with 
high resolutions in the regions of interest can be generated 

to truncation. 
As a result of using a larger imaging region, more voxels 

are used, resulting in a greater number of image variables in 
the reconstructed image f. Further, truncation correction 
such as extrapolation on the projection data can be appended 
to the boundaries of projection data g, to extrapolate pro­
jection data representing the entire object OBJ, which would 
also increase the dimension of the problem by increasing the 
number of pixels in the projection data g. Even a small 
increase (e.g., a 30% increase) in the length r of each 
dimension of the imaged region and a small increase (e.g., 
a 20% increase) in the length 1 of each dimension of the 
projection data can cause a substantial increase in the size of 
the system matrix problem and the corresponding compu­
tational time ( e.g., the computational time is of order O(r3x 
12

) such that a 30% increase in r and a 20% increase in 1 
results in a 216% increase in the time, i.e., l.33 xl.22 =3.16). 
Thus, increasing the size of the reconstructed image and 
projection data without changing their respective resolutions 
(i.e., pixel pitches) can dramatically increase the image­
reconstruction time, potentially making the expanded image 
regions unsuitable for certain clinical applications such as 
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interventional imaging, which benefits from rapid image 
reconstruction. The ratios of a 30% increase in the volume 
length and 20% increase in the projection length are repre­
sentative of practice for using an IR algorithm for a head 
scan in a neuro interventional procedure. Thus, without the 
time savings achieved through the multiresolution IR meth­
ods described herein, even a small increase of the dimen­
sions in image and projection domains results in a substan­
tial increase of the IR computational time, causing this 
computational time to balloon beyond acceptable bounds for 
various clinical applications. 

Neuro interventional procedures of deploying a stent in a 
blood vessel is one example of clinical CT imaging in which 
it is beneficial to use the method described herein in order to 
achieve fast image reconstruction using an IR algorithm 
including both high-resolution and low-resolution regions. 
For example, FIGS. llA and llB illustrate a neuro inter­
ventional procedure for the placement of a stent using a CT 
image of a head. FIG. llA shows a reconstructed image of 
a cross-section of a head including a circular cross-section of 
a stent. FIG. llB shows a side view of the stent with markers 
at the top and bottom. This stent has diameter of around 3 to 
4 mm and length 20 to 30 mm. 

16 
the resolution images along the edge of the cranium in order 
to better resolve and differentiate the SAH region between 
brain cortex and cranium. 

As discussed above, C-arm CBCT with FPD usually has 
5 a smaller imaging FOY and is equipped with high-resolution 

imaging capability. Fast image reconstruction is beneficial in 
order to achieve reasonable reconstruction time in order that 
the results will be useful and adopted by clinical practitio­
ners in the field. However, reconstructing an image that is 

10 uniformly at the native resolution of the FPD could result in 
a clinically unfeasible increase to the IR reconstruction time. 
Accordingly, a fast multiresolution IR algorithm is adopted 
to generate a multiresolution image in which only certain 

15 
ROis are reconstructed at a high resolution and the remain­
ing regions are reconstructed at a low-resolution to conserve 
computational resources. 

According to one implementation, the reconstruction 
problem can be formulated as an IR method that minimizes 

20 
an objective function including a low-resolution image 
representing a background ( e.g., everything except the ROI) 
and a high-resolution image representing the ROI. The data 
fidelity term represents the system-matrix equation Af"'g 
bifurcated into high-resolution and low-resolution parts in As discussed above, in addition to LCI in three-dimen­

sional imaging, C-arm CBCT using a FPD is also capable of 
high-resolution imaging. However, three-dimensional imag­
ing represents an expansion of more conventional uses of 
FPD, which was originally designed for two-dimensional 
imaging for devices such as guide wires, catheters, and 
stents. The native resolution of FPD is conventionally less 30 

than 200 micrometers. Because of this high resolution, in 
ordinary circumstances the high-resolution imaging in 
C-arm CBCT with FPD is limited to a small region in order 

25 
the image domain: 

Further, as discussed above the sinogram (projection) 
domain is also bifurcated into high-resolution and low­
resolution parts, as demonstrated by the system-matrix equa­
tion to avoid overburdening the CPU with intensive computation 

for reconstruction of the image and greatly increasing the 35 

image reconstruction time. 
A typical high-resolution application for neuro interven­

tional procedure is imaging the stent as in FIGS. llA and 
llB to monitor the stent's placement. A stent is deployed 
inside a vessel and expanded against vessel walls. Proper 40 

execution of this procedure requires that the struts of the 
stent have complete apposition against to the vessel walls to 
prevent the stent from sliding out of position. FIG. llA 
shows region of interest (ROI) reconstruction using FBP. 
The cross-section of the stent can be recognized as being a 45 

circular shape near the center of FIG. llA. FIG. llB shows 
a side view of the stent, which has a shape of a circular tube. 

Another clinical application benefiting from the combi­
nation of improved speed and localized high-resolution of a 
multiresolution method is the treatment of a subarachnoid 50 

The insights informing the use of multiple resolutions in 
the sinogram (projection) include the following two obser­
vations. First, it can be observed that the coarse projection 
data outside of the re-projected ROI does not contribute to 
the high-resolution ROI in the image domain. Second, it can 
be observed that projection extrapolation for truncation 
correction is used to provide a smooth transition of truncated 
projection boundary, and does not need to be represented at 
a high-resolution. Accordingly, in the context of the IR 
algorithm, multiple resolutions in projection data can be 
used without sacrificing information of clinical significance. 

The extension of a single-resolution IR method to a 
multiresolution IR method, which uses multiple resolutions 
in the sinogram (projection) domain, can be understood as a 

hemorrhage, as shown in FIG. 12. This application is 
benefited by having a ROI with high-resolution in order to 
better resolve and differentiate among tissues, such as bleed­
ing chunks, and bones. FIG. 12 shows an image of bleeding 
into the subarachnoid space surrounding the brain cortex. 
This phenomenon is called a subarachnoid hemorrhage 
(SAH). When the subarachnoid space between the brain 
cortex and cranium is very small, the region in the image 
representing the bleeding can blend in with the bone, espe­
cially if the image resolution is insufficient to resolve the 
space between the blood and the bone. LCI using the 
above-described three-dimensional imaging features is usu­
ally designed to create a good contrast-to-noise image but at 
a single lower resolution. The multiresolution image meth­
ods described herein can overcome the limitations of the 
conventional single resolution image generated in LCI. 
Thus, a multiresolution image would be helpful to increase 

55 partitioning of a single reconstruction problem into multiple 
inter-related reconstruction problems, each having its own 
resolution. This extension is realized using the fact that, for 
each partitioned sub-problem corresponding to a single­
resolution and for each iteration of the IR algorithm, there is 

60 one ray-driven forward-projection operation and one pixel 
driven back-projection operation. Bifurcating the IR algo­
rithm into multiple regions (e.g., ROis and regions outside 
of the ROis) can be performed by partitioning the forward­
projection and back-projection operations of the IR algo-

65 rithm according to their respective resolutions. The forward­
projection and back-projection operations corresponding to 
the low-resolution regions, which are often more volumi-
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nous than the spatially limited ROis, will be more compu­
tationally efficient because of the lower resolution. Accord­
ingly, the multiresolution IR algorithm can reduce 
computational cost of ray-driven forward-projection opera­
tions (i.e., the number of rays depends on the resolution of 5 

projection data) without significantly impacting the image 
quality inside the ROis. 

In certain implementations, the objective function used to 
implement the multiresolution IR method is expressed by 
the constrained optimization problem 10 

18 
For example, high-resolution ROis can be selected to 

correspond to regions with abrupt transitions and edges, 
such as edges presented by interventional devices or ana­
tomical structure such as bones. In addition to applications 
with just two resolutions, i.e., a high resolution and a low 
resolution, multiple high-resolution ROis can be selected, 
each being characterized by a unique resolution (i.e., pixel 
pitch). Accordingly, the methods described herein can 
improve image resolution of LCI images near sharp ana­
tomical edges within a reconstructed image while maintain­
ing a desired contrast to noise ratio (CNR) for soft tissues. 
For example, in FIG. 12, a higher image resolution is desired 
near the subarachnoid space between cranium and cortex. 
The abrupt changes in the attenuation can be used to [1;; l . . fl = argnunJlfH llrv + tll!Lllrv, subiect to 

15 determine the ROI in which high resolution is desirable, and 
this change in the attenuation can be detected using one of 
several methods, including, e.g., edge detection, segmenta­
tion, and wavelet, Laplacian, Gaussian, or other multiscale 
decomposition. 

In certain implementations, the high-resolution ROI can 
be defined using a binary mask image in which a value of 
one indicates a ROI pixel and a value of zero indicates a 
non-ROI pixel. 

FIG. 13 shows a non-limiting example of partitioning an 

wherein A 1 and A2 are constituent system matrices of the 20 
system matrix A corresponding respectively to the high- and 
low-resolution regions in the projection domain, i.e. A=[A1 

A2 ], 11·11 is a Euclidean distance, and t (s) is the ratio between 
the low-resolution pixel (voxel) size and high-resolution 
pixel (voxel) size in the image (projection) domain. The 
multipliers t and s are used to compensate for the effects on 
resolution diversity to make the parameter tuning consistent, 

25 image into four regions: an outer low-resolution region 
1330, a middle-resolution region 1350, a high-resolution 
region 1340, and an inner low-resolution region 1360. In this 
example, an outer boundary 1310 and an inner boundary 
1320 are used to define the high-resolution region. For 

as if image resolution is uniform. This optimization problem 
can be solved using any known IR techniques and methods. 
The expression of the optimization problem uses an objec­
tive function that differs in some respects from the objective 
function discussed above. For example, the objective func­
tion discussed above minimizes the data fidelity and regu­
larization terms simultaneously, whereas this expression of 
the optimization problem minimizes the regularization terms 
subject to constraints on the data fidelity terms and a 
constraint that the attenuation be non-negative. 

30 example, the outer boundary 1310 and the inner boundary 
1320 can be respective boundaries of a bone region, such as 
a cranium, which has sharp features. The high-resolution 
region 1340 region has a resolution equal to the native 
resolution of the detectors. The low-resolution regions 1330 

Additionally, in certain implementations, the optimization 
problem could be posed as minimizing the data fidelity 
terms subject to a constraint on the regularization terms. 
Also, in certain implementations, the regularization terms 
could be omitted from the optimization problem. 

35 and 1360 correspond to parts of the image that are relatively 
uniform, such as brain tissue. In FIG. 13, the pixel pitch in 
the low-resolution regions 1330 and 1360 is four times that 
in the high-resolution region 1340. The middle-resolution 
region 1350 can include features having a spatial structure 

40 with characteristics intermediate between those in the high­
and low-resolution regions. In FIG. 13, the middle-resolu­
tion region 1350 also functions as a buffer between the high­
and low-resolution regions, and has a pixel pitch that is The selection of high-resolution and low-resolution 

regions within the multiresolution reconstructed image can 
depend on which regions need to be resolved into finer 45 

details for better, more refined resolution. The selection of 
high-resolution and low-resolution regions in the projection 
domain can then flow from the forward projection of the 
high- and low-resolution regions in the image domain. For 
example, the resolution (i.e., pixel pitch) of a pixel in the 50 

projection domain can correspond to the finest resolution 
voxel which X-rays incident on the pixel pass through. 

Determining the resolution of various regions in the 
image domain can be achieved using the automated, semi­
automated, and user-driven mechanisms described above, 55 

including, e.g., displaying an image in a GUI and having the 
user select regions within the displayed image, edge-detec­
tion methods, spatial-frequency threshold methods, signal 
processing to differentiate regions having predefined char­
acteristics, which are determined to be clinically relevant, 60 

and a combination of the above. For example, in an inter­
ventional procedure inserting a device, which has predefined 
attenuation characteristics, a user input can indicate the 
predefined attenuation characteristics such that an auto­
mated algorithm can detect regions having the predefined 65 

attenuation characteristics and flag those regions for high­
resolution image reconstruction. 

twice that of the high-resolution region 1340. 
FIG. 14 shows a flow diagram of method 800 for multi­

resolution iterative reconstruction. Method 800 is an alter­
native implementation to method 100 shown in FIG. 1. 
Method 800 shows how the projection data and recon­
structed image can be partitioned into ROis, which are 
addressed uniquely, according to their respective resolu­
tions. In certain implementations of method 800, the mul-
tiresolution image and projection data can be automatically 
partitioned into ROis. 

In step 810 of method 800, the original projection data is 
obtained at the native resolution of the detectors. The native 
resolution projection data g 812 can be downsampled to a 
lower resolution (i.e., a larger pixel pitch corresponding to 
coarse-resolution pixels) from which a low-resolution seed/ 
initial image is reconstructed. For example, the low-resolu-
tion seed image can be reconstructed using FBP or an IR 
method (with or without iterating to convergence). 

In step 820 of method 800, the seed image is denoised, 
e.g., using linear smoothing filters, anisotropic diffusion, 
non-local means, or nonlinear filters. 

Linear smoothing filters remove noise by convolving the 
original image with a mask that represents a low-pass filter 
or smoothing operation. For example, the Gaussian mask 
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determine the ROI. For example, the choice of detection 
algorithm can depend on the region of the body being 
imaged, the clinical application, the CT scanner used, and/or 
user inputs. 

In certain implementations, the ROis can be detected 
based on predefined features and characteristics using signal 
processing. The regions which are detected as exhibiting the 
predefined features and characteristics can then be encom-
passed by boundary boxes or otherwise enclosed by a 
three-dimensional surface demarking the boundary of the 
ROis. 

comprises elements determined by a Gaussian function. This 
convolution brings the value of each pixel into closer 
agreement with the values of its neighbors. In general, a 
smoothing filter sets each pixel to the average value, or a 
weighted average, of itself and its nearby neighbors; the 5 

Gaussian filter is just one possible set of weights. Disad­
vantageously, smoothing filters tend to blur an image 
because pixel intensity values that are significantly higher or 
lower than the surrounding neighborhood are smeared or 
averaged across their neighboring area. Sharp boundaries 10 

become fuzzy. Generally, local linear filter methods assume 
that local neighbourhoods are homogeneous, and local linear 
filter methods, therefore, tend to impose homogeneity on the 
image obscuring non-homogeneous features, such as lesions 

In step 850 of method 800, the high resolution partition f H 

can be upsampled and interpolated to generate a high-
15 resolution image f H having the desired pixel pitch. or organ boundaries. 

Anisotropic diffusion removes noise while preserving 
sharp edges by evolving an image under a smoothing partial 
differential equation similar to the heat equation. If the 
diffusion coefficient were spatially constant, this smoothing 
would be equivalent to linear Gaussian filtering, but when 20 

the diffusion coefficient is anisotropic according to the 
presence of edges, the noise can be removed without blur­
ring the edges of the image. 

A median filter is an example of a nonlinear filter and, if 
properly designed, a nonlinear filter can also preserve edges 25 

and avoid blurring. A median filter operates, for example, by 
evaluating each pixel in the image, sorting the neighboring 
pixels according to intensity, and replacing the original value 
of the pixel with the median value from the ordered list of 
intensities. The median filter is one example of a rank- 30 

conditioned rank-selection (RCRS) filter. For example, 
median filters and other RCRS filters can be applied to 
remove salt and pepper noise from an image without intro­
ducing significant blurring artifacts. 

In step 860 of method 800, the ROI is forward projected 
from the image domain onto the projection domain. This 
forward projection determining a ROI in the projection 
domain can be performed using any of the methods 
described for step 140 of method 100. 

For example, a binary mask can be created to represent 
the ROI in the image domain. The binary mask can have 
voxels with values of 1 inside the ROI and values of 0 
outside the ROI. The ROI in the projection domain can be 
those pixels for which the forward projection of the binary 
mask is greater than zero. 

Also, step 860 can include extrapolating projection data 
for regions outside of the measured projection data by 
forward projecting the seed image. For example, FIG. 10 
shows an image in which a projection image does not 
completely span the imaged object OBJ. However, the edges 
of the object OBJ not sampled for the projection angle 
shown in FIG. 10 can be sampled at other projection angles. 
Therefore, the unsampled regions of object OBJ in FIG. 10 
are at least partially represented in the projection data. 
Accordingly, a reconstructed image can be generated for an 
expanded imaging region, which is larger than the imaged 
region shown in FIG. 10, as discussed above. By forward 

In addition a filter using a total-variation (TV) minimi- 35 

zation regularization term can be used where it is assumed 
that the areas being imaged are uniform over discrete areas 
with relatively sharp boundaries between the areas. A TV 
filter can also be used as another example of a nonlinear 
filter. 40 projecting the reconstructed image for this expanded imag­

ing region, projection data can be extrapolated beyond the 
edges of the FPD shown in FIG. 10, such that the extrapo­
lated projection data completely spans the object OBJ. This 
extrapolated data can improve the image quality of the 

In non-local means filtering, rather than performing a 
weighted average of pixels according to their spatial prox­
imity, pixels are determined to be a weighted average 
according to the similarity between patches within the 
images. Thus, noise is removed based on non-local averag­
ing of all the pixels in an image-not just the neighboring 
pixels. In particular, the amount of weighting for a pixel is 
based on the degree of similarity between a small patch 
centered near that pixel and another small patch centered on 
the pixel being denoised. 

In step 830 of method 800, a seed image can be prepared 
to determine the ROI in which higher resolution is desirable. 
These preparations can include the segmentation of the 
image (e.g., segmenting the bone volumes), edge detection, 
and/or performing a multiscale decomposition. In certain 
implementations, a low resolution FBP seed image f is 
processed using a bone-segmentation and/or an edge detec­
tion algorithm, which is performed after denoising the seed 
image. 

In step 840 of method 800, the seed image f is decom­
posed and partitioned into a low-resolution partition f v 
which is outside the ROI, and high resolution partition f H, 

which is inside the ROI. The low-resolution partition of the 
seed image f L can be supplied directly to the proposed 
multiresolution IR algorithm in step 880 to solve the above 
optimization problem by minimizing the objective function. 
Any type of ROI detection algorithm can be applied to 

45 multiresolution image by mitigating the truncation effect. 
This extrapolation can be performed either in step 860 or in 
step 870. 

In step 870 of method 800, the high-resolution or native­
resolution projection data is downsampled to generate the 

50 low-resolution projection data outside the ROI in the pro­
jection domain, which is determined in step 860. 

For example, after the projection-domain ROI is deter­
mined by forward projecting a binary mask image created 
from the high-resolution image f H' a second binary mask is 

55 created corresponding to the projection-domain ROI. This 
second binary mask is applied to projection data g 812 that 
has a native detector resolution, and designates the high­
resolution projection data gH inside of the ROI. In certain 
implementations, no additional processing is required to the 

60 high-resolution projection data gH because the projection 
data g 812 is at the desired resolution for the ROI, such that 
it passes directly to the multiresolution IR algorithm per­
formed in step 880. To generate the low-resolution projec­
tion data gv down-sampling is performed on the native-

65 resolution projection data g 812 outside of the projection­
domain ROI, which is designated by the second binary mask 
to create low-resolution projection data gL. 
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In certain implementations, the projection data g 812 can 
be preprocessed data with raw data normalization, beam­
hardening correction, scatter correction, and ring artifact 
correction, for example. 

In certain implementations, to improve computational 5 
efficiency, the projection data g 812 can be downsampled 
prior to generating the low-resolution projection data for the 
reconstruction of the seed image. Then, additional down­
sampling need not be performed in step 870, and the 
originally downsampled projection data for the seed image, 

10 
which is outside the ROI in the projection domain, can be 
used as the low-resolution projection data gL. 

Accordingly, the region outside the image-domain ROI in 
the image domain, which is the image outside of the ROI 
844, is the low-resolution image f L and can be obtained 
directly from the seed image without any additional pro- 15 

cessing. On the other hand, the image inside of the image­
domain ROI 842 is initialized by upsampling the seed image 
and/or interpolating in step 850 to obtain the initial voxel 
values for the high-resolution image f H The high-resolution 
projection data gH are those projection data inside the 20 

projection-domain ROI. The low-resolution projection data 
gL are generated in step 870 by down-sampling the projec­
tion data inside the projection-domain ROI. Thereby, the 
low and high-resolution seed images f Land f Hand the low­
and high-resolution projection data gL and gH are obtained 25 
and supplied to step 880 for reconstructing the multireso­
lution image by solving the optimization problem discussed 
above. 

In step 880 of method 800, the low- and high-resolution 
seed images f L and f H and the low- and high-resolution 

30 
projection data gL and gH are used to iteratively reconstruct 
a multiresolution image by optimizing the arguments of the 
above-described objective function subject to the above 
described constraints. 

In certain implementations, during the optimization of the 
35 

multiresolution IR problem, fL and f Hare iteratively and 
simultaneously updated in each iteration until convergence 
in order to obtain the optimal images 

22 
In step 895 of method 800, an inquiry is performed as to 

whether the stopping criteria have been satisfied. If the 
stopping criteria are satisfied, then method 800 is complete. 
Otherwise, method 800 repeats the steps of determining a 
ROI and further refining the resolution in the ROI by 
returning to step 840. The stopping criteria can include 
whether additional regions would be improved by further 
refining the resolution. 

If the stopping criteria are not satisfied then another ROI 
can be determined and the resolution within this other ROI 
can be refined by returning to step 840 of method 800. 

In certain implementations, method 800 can proceed from 
step 895 to step 830, rather than proceeding directing to step 
840. 

Also, in certain implementations, if the high-resolution 
projection data has not yet reached the native resolution of 
the X-ray detector array, then repeating steps 840, 850, 860, 
and 870 can include using a smaller pixel pitch for the 
high-resolution image and projection-domain ROis. 

FIG. 15 illustrates an implementation of the radiography 
gantry included in a CT apparatus or scanner. As shown in 
FIG. 15, a radiography gantry 1000 is illustrated from a side 
view and further includes an X-ray tube 1001, an annular 
frame 1002, and a multi-row or two-dimensional-array-type 
X-ray detector 1003. The X-ray tube 1001 and X-ray detec­
tor 1003 are diametrically mounted across an object OBJ on 
the annular frame 1002, which is rotatably supported around 
a rotation axis RA. A rotating unit 1007 rotates the annular 
frame 1002 at a high speed, such as 0.4 sec/rotation, while 
the object OBJ is being moved along the axis RA into or out 
of the illustrated page. 

The first embodiment of an X-ray computed tomography 
(CT) apparatus according to the present inventions will be 
described below with reference to the views of the accom­
panying drawing. Note that X-ray CT apparatuses include 
various types of apparatuses, e.g., a rotate/rotate-type appa-
ratus in which an X-ray tube and X-ray detector rotate 
together around an object to be examined, and a stationary/ 
rotate-type apparatus in which many detection elements are 

40 arrayed in the form of a ring or plane, and only an X-ray tube 
rotates around an object to be examined. The present inven­
tions can be applied to either type. In this case, the rotate/ 
rotate type, which is currently the mainstream, will be 

In certain implementations during the optimization of the 
multiresolution IR problem, f L and f H are iteratively 45 

updated simultaneously in each iteration until the low­
resolution image f L stabilizes. Then, the low-resolution 
image f Lis held constant while the high-resolution image f H 

exemplified. 
The multi-slice X-ray CT apparatus further includes a 

high voltage generator 1009 that generates a tube voltage 
applied to the X-ray tube 1001 through a slip ring 1008 so 
that the X-ray tube 1001 generates X-rays. The X-rays are 
emitted towards the object OBJ, whose cross sectional area is iteratively updated to the obtain optimal images 

In certain implementations, the seed image is initially 
iteratively reconstructed to convergence. Then, during the 
optimization of multiresolution IR problem, the low-reso­
lution image f L * is obtained from the seed image and is held 
constant while the high-resolution image f H is iteratively 
updated to obtain the optimal images 

50 is represented by a circle. For example, the X-ray tube 1001 
having an average X-ray energy during a first scan that is 
less than an average X-ray energy during a second scan. 
Thus, two or more scans can be obtained corresponding to 
different X-ray energies. The X-ray detector 1003 is located 

55 at an opposite side from the X-ray tube 1001 across the 
object OBJ for detecting the emitted X-rays that have 
transmitted through the object OBJ. The X-ray detector 1003 
further includes individual detector elements or units. 

The CT apparatus further includes other devices for 
60 processing the detected signals from X-ray detector 1003. A 

data acquisition circuit or a Data Acquisition System (DAS) 
1004 converts a signal output from the X-ray detector 1003 
for each channel into a voltage signal, amplifies the signal, 
and further converts the signal into a digital signal. The 

65 X-ray detector 1003 and the DAS 1004 are configured to 
handle a predetermined total number of projections per 
rotation (TPPR). 
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puter-readable instructions that perform the functions 
described herein, the program being stored in any of the 
above-described non-transitory electronic memories and/or 
a hard disk drive, CD, DVD, FLASH drive or any other 

The above-described data is sent to a preprocessing 
device 1006, which is housed in a console outside the 
radiography gantry 1000 through a non-contact data trans­
mitter 1005. The preprocessing device 1006 performs cer­
tain corrections, such as sensitivity correction on the raw 
data. A memory 1012 stores the resultant data, which is also 
called projection data at a stage immediately before recon­
struction processing. The memory 1012 is connected to a 
system controller 1010 through a data/control bus 1011, 
together with a reconstruction device 1014, input device 
1015, and display 1016. The system controller 1010 controls 
a current regulator 1013 that limits the current to a level 
sufficient for driving the CT system. 

5 known storage media. Further, the computer-readable 
instructions may be provided as a utility application, back­
ground daemon, or component of an operating system, or 
combination thereof, executing in conjunction with a pro­
cessor, such as a Xenon processor from Intel of America or 

10 an Opteron processor from AMD of America and an oper­
ating system, such as Microsoft VISTA, UNIX, Solaris, 
LINUX, Apple, MAC-OS and other operating systems 
known to those skilled in the art. Further, CPU can be 
implemented as multiple processors cooperatively working The detectors are rotated and/or fixed with respect to the 

patient among various generations of the CT scanner sys­
tems. In one implementation, the above-described CT sys­
tem can be an example of a combined third-generation 
geometry and fourth-generation geometry system. In the 
third-generation system, the X-ray tube 1001 and the X-ray 
detector 1003 are diametrically mounted on the annular 20 

frame 1002 and are rotated around the object OBJ as the 
annular frame 1002 is rotated about the rotation axis RA. In 
the fourth-generation geometry system, the detectors are 
fixedly placed around the patient and an X-ray tube rotates 
around the patient. In an alternative embodiment, the radi­
ography gantry 1000 has multiple detectors arranged on the 
annular frame 1002, which is supported by a C-arm and a 
stand. 

15 in parallel to perform the instructions. 
In one implementation, the reconstructed images can be 

displayed on a display 1016. The display 1016 can be an 
LCD display, CRT display, plasma display, OLED, LED or 
any other display known in the art. 

The memory 1012 can be a hard disk drive, CD-ROM 
drive, DVD drive, FLASH drive, RAM, ROM or any other 
electronic storage known in the art. 

While certain implementations have been described, these 
implementations have been presented by way of example 

The memory 1012 can store the measurement value 
representative of the irradiance of the X-rays at the X-ray 
detector unit 1003. Further, the memory 1012 can store a 
dedicated program for executing method 100. 

25 only, and are not intended to limit the teachings of this 
disclosure. Indeed, the novel methods, apparatuses and 
systems described herein may be embodied in a variety of 
other forms; furthermore, various omissions, substitutions 
and changes in the form of the methods, apparatuses and 

30 systems described herein may be made without departing 
from the spirit of this disclosure. 

The reconstruction device 1014 can execute method 100. 
Further, reconstruction device 1014 can execute pre-recon­
struction processing image processing such as volume ren- 35 

dering processing and image difference processing as 
needed. 

The pre-reconstruction processing of the projection data 
performed by the preprocessing device 1006 can include 
correcting for detector calibrations, detector nonlinearities, 40 

and polar effects, for example. Further, the pre-reconstruc­
tion processing can include various steps of method 100. 

Post-reconstruction processing performed by the recon­
struction device 1014 can include filtering and smoothing 
the image, volume rendering processing, and image differ- 45 

ence processing as needed. The image reconstruction pro­
cess can implement various steps of method 100. The 
reconstruction device 1014 can use the memory to store, 
e.g., projection data, reconstructed images, calibration data 
and parameters, and computer programs. 50 

The reconstruction device 1014 can include a CPU (pro­
cessing circuitry) that can be implemented as discrete logic 
gates, as an Application Specific Integrated Circuit (ASIC), 
a Field Programmable Gate Array (FPGA) or other Complex 
Programmable Logic Device (CPLD). An FPGA or CPLD 55 

implementation may be coded in VHDL, Verilog, or any 
other hardware description language and the code may be 
stored in an electronic memory directly within the FPGA or 
CPLD, or as a separate electronic memory. Further, the 
memory 1012 can be non-volatile, such as ROM, EPROM, 60 

EEPROM or FLASH memory. The memory 1012 can also 
be volatile, such as static or dynamic RAM, and a processor, 
such as a microcontroller or microprocessor, can be pro­
vided to manage the electronic memory as well as the 
interaction between the FPGA or CPLD and the memory. 

Alternatively, the CPU in the reconstruction device 1014 
can execute a computer program including a set of com-

65 

The invention claimed is: 
1. An apparatus, comprising: 
circuitry configured to 

obtain projection data representing an intensity of 
radiation detected at a plurality of detector elements, 

downsample the projection data to generate low-reso­
lution projection data; 

reconstruct a low-resolution image using the generated 
low-resolution projection data; 

select a region within the low-resolution image to 
generate a first image-domain region of interest 
(ROI), 

generate a first sinogram-domain ROI using a forward 
projection of the first image-domain ROI, 

obtain, using the projection data, first ROI projection 
data representing the intensity of the radiation 
detected within the first sinogram-domain ROI, 
wherein the first ROI projection data has a smaller 
pixel pitch than the low-resolution projection data, 
and 

reconstruct a multiresolution image having a low­
resolution pixel pitch outside the first image-domain 
ROI and a first pixel pitch inside the first image­
domain ROI, wherein the low-resolution pixel pitch 
is greater than the first pixel pitch. 

2. The apparatus according to claim 1, wherein the 
circuitry is further configured to 

select a second image-domain ROI within the low-reso­
lution image, wherein the second image-domain ROI is 
disjoint from the first image-domain ROI, 

forward project the second image-domain ROI to generate 
a second sinogram-domain ROI, 

obtain, form the projection data, second ROI projection 
data representing the intensity of the radiation detected 
within the second sinogram-domain ROI, wherein the 
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second ROI projection data has a pixel pitch different 
than the low-resolution projection data, and 

reconstruct the multiresolution image having the low­
resolution pixel pitch outside the first image-domain 
region and outside the second image-domain region, 5 

having the first pixel pitch within the first image­
domain region, and having a second pixel pitch within 
the second image-domain region, wherein the low­
resolution pixel pitch is different than the second pixel 
pitch. 10 

3. The apparatus according to claim 2, wherein the 
circuitry is further configured to 

select the pixel pitch of the second sinogram-domain ROI 
to be equal to the pixel pitch of the first sinogram-

15 
domain ROI, and 

select the first pixel pitch to be equal to the second pixel 
pitch. 

4. The apparatus according to claim 1, wherein the 
circuitry is further configured to 

select a second image-domain ROI within the multireso­
lution image, wherein the second image-domain ROI 
overlaps the first image-domain ROI, 

forward project the second image-domain ROI to generate 
a second sinogram-domain ROI, 

20 

25 

obtain, using one of the projection data, the first ROI 
projection data, and a combination of the projection 
data and the first ROI projection data, second ROI 
projection data representing the intensity of the radia­
tion detected within the second sinogram-domain ROI, 30 

wherein the second ROI projection data has a smaller 
pixel pitch than the first ROI projection data, 

update the first image-domain ROI to exclude the second 
image-domain ROI, 

update the first ROI projection data to correspond with the 
updated first image-domain ROI, and 

35 

reconstruct another multiresolution image having the low­
resolution pixel pitch outside the first image-domain 
ROI and outside the second image-domain ROI, having 40 

the first pixel pitch within a region corresponding to the 
first image-domain ROI minus the second image-do­
main ROI, and having a second pixel pitch within the 
second image-domain region, wherein the low-resolu­
tion pixel pitch is greater than the first pixel pitch, and 45 

the first pixel pitch is greater than the second pixel 
pitch. 

5. The apparatus according to claim 1, wherein the 
circuitry is further configured to reconstruct a low-resolution 
image by one of 

performing a predefined number of iterations of an itera­
tive reconstruction method, 

50 
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7. The apparatus according to claim 6, wherein the 

circuitry is further configured to select the first image­
domain ROI by 

applying the localized measure of spatial variation, 
wherein the localized measure is one of a Laplacian­
pyramid method, a Gaussian-pyramid method, a wave­
let-based method, an edge-detection method, a signal­
processing method, and a Fourier transform based 
method. 

8. The apparatus according to claim 6, wherein the 
circuitry is further configured to select the first image­
domain ROI by 

obtaining a user input, and 
selecting the first image-domain ROI in accordance with 

the user input. 
9. The apparatus according to claim 1, wherein the 

circuitry is further configured to 
reconstruct the low-resolution image, wherein the low­

resolution image represents a volume enveloping and 
including an object positioned within an aperture of a 
computed tomography scanner, thereby to mitigate 
truncation effects, and 

extrapolate projection data at boundaries of the obtained 
projection data from the plurality of detector elements, 
when the obtained projection data corresponding pro­
jection angles does not span the object, and the extrapo­
lated projection data is included in the low-resolution 
projection data. 

10. The apparatus according to claim 1, wherein the 
circuitry is further configured to reconstruct the multireso­
lution image using an iterative-reconstruction method by 

optimizing a first objective function by performing at least 
one iteration of the iterative-reconstruction method 
using the first objective function to generate a first 
update of the multiresolution image, and 

optimizing a second objective function by performing at 
least one iteration of the iterative-reconstruction 
method starting from the first update of the multireso­
lution image and using the second objective function to 
generate a second update of the multiresolution image. 

11. The apparatus according to claim 10, wherein the 
circuitry is further configured to reconstruct the multireso­
lution image using an iterative-reconstruction method by 

optimizing the first objective function by adjusting an 
argument including the multiresolution inside and out­
side of the first image-domain ROI, and 

optimizing the second objective function by adjusting an 
argument including the multiresolution inside of the 
first image-domain ROI, wherein the multiresolution 
outside of the first image-domain ROI is maintained 
constant. performing iterations of the iterative reconstruction 

method until a predefined convergence criterion 1s 
satisfied, 

performing a filter back-projection method, and 
performing a Feldkamp-Davis-Kress method. 
6. The apparatus according to claim 1, wherein the 

circuitry is further configured to select the first image­
domain ROI by 

12. The apparatus according to claim 10, wherein the 
55 circuitry is further configured to reconstruct the multireso­

lution image using an iterative-reconstruction method by 
optimizing the first objective function, which includes a 

first regularization term, 

applying a localized measure of spatial variation within 
the low-resolution image to generate measure data 
representing a desirability of higher resolution within 
respective regions of the low-resolution image, and 

60 

assigning to the first image-domain ROI those regions 65 

within the low-resolution image for which the corre­
spond measure data exceeds a predefined threshold. 

optimizing the second objective function, which includes 
a second regularization term, and 

the first regularization term imposes a different type of 
constraint than the second regularization term. 

13. The apparatus according to claim 1, wherein the 
circuitry is further configured to reconstruct the multireso­
lution image using an iterative-reconstruction method by 

optimizing an objective function, the objective function 
including 
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a data fidelity term representing the multiresolution 
image inside and outside of the first image-domain 
ROI, 

a first regularization term representing a constraint 
imposed on the multiresolution image inside of the 5 

first image-domain ROI, and 
a second regularization term representing a constraint 

imposed on the multiresolution image outside of the 
first image-domain ROI. 

14. The apparatus according to claim 13, wherein the 10 

circuitry is further configured to reconstruct the multireso­
lution image using an iterative-reconstruction method by 
optimizing the objective function including regularization 
terms subject to a constraint on data fidelity terms. 

15 
15. The apparatus according to claim 1, wherein the 

circuitry is further configured to 
iteratively reconstruct an updated multiresolution image 

from the multiresolution image, the updated multireso­
lution image having nested regions of interest, wherein 20 

each nested ROI has a smaller pixel pitch than an 
immediately surrounding nested ROI, and the updated 
multiresolution image being iteratively reconstructed 
by 
selecting a next nested ROI within a current nested ROI 25 

of the updated multiresolution image, 
forward projecting the next nested ROI to generate a 

next sinogram-domain ROI, 
obtaining, from the projection data, next projection data 

representing the intensity of the radiation detected 30 

within the next sinogram-domain ROI, wherein the 
next projection data has a smaller pixel pitch than a 
current projection data corresponding to a current 
sinogram-domain ROI outside of the next sinogram­
domain ROI, and 35 

updating the multiresolution image to have a pixel pitch 
inside the next nested ROI corresponding to a pixel 
pitch of the next sinogram-domain ROI. 

16. The apparatus according to claim 1, wherein the 
circuitry is further configured to downsample the projection 40 

data by 
performing one of 

partitioning pixels of the projection data the into groups 
of adjacent pixels, the groups of adjacent pixels 
corresponding to respective pixels of the low-reso- 45 

lution projection data, and summing pixel values 
within each group to generate respective values of 
the low-resolution projection data, 

partitioning the pixels of the projection data the into the 
groups of adjacent pixels, the groups of adjacent 50 

pixels corresponding to the respective pixels of the 
low-resolution projection data, and averaging the 
pixel values within each group to generate the 
respective values of the low-resolution projection 
data, and 55 

obtaining respective areas of the pixels of the low­
resolution projection data, and integrating an inter­
polation of values of the pixels of projection data 
within the respective areas of the pixels of the 
low-resolution projection data to generate the low- 60 

resolution projection data. 
17. An apparatus, comprising: 
an X-ray source configured to transmit X-rays; 
a plurality of detector elements arranged diametrically 

across an aperture of the apparatus to the X-ray source, 65 

wherein the plurality of detector elements is configured 
to generate projection data representing an intensity of 

28 
the X-rays detected at respective detector elements of 
the plurality of detector elements, and 

circuitry configured to 
obtain projection data representing an intensity of 

radiation detected at the plurality of detector ele­
ments, 

downsample the projection data to generate low-reso­
lution projection data; 

reconstruct a low-resolution image using the low-reso­
lution projection data; 

select a region within the low-resolution image to 
generate a first image-domain region of interest 
(ROI), 

generate a first sinogram-domain ROI using a forward 
projection of the first image-domain ROI, 

obtain, using the projection data, first ROI projection 
data representing the intensity of the radiation 
detected within the first sinogram-domain ROI, 
wherein the first ROI projection data has a smaller 
pixel pitch than the low-resolution projection data, 
and 

reconstruct a multiresolution image having a low­
resolution pixel pitch outside the first image-domain 
ROI and a first pixel pitch inside the first image­
domain ROI, wherein the low-resolution pixel pitch 
is greater than the first pixel pitch. 

18. A method, comprising: 
obtaining projection data representing an intensity of 

radiation detected at a plurality of detector elements, 
downsampling the projection data to generate low-reso­

lution projection data; 
reconstructing a low-resolution image using the low­

resolution projection data; 
selecting a region within the low-resolution image to 

generate a first image-domain region of interest (ROI), 
generating a first sinogram-domain ROI using a forward 

projection of the first image-domain ROI, 
obtaining, from the projection data, first ROI projection 

data representing the intensity of the radiation detected 
within the first sinogram-domain ROI, wherein the first 
ROI projection data has a smaller pixel pitch than the 
low-resolution projection data, and 

reconstructing a multiresolution image having a low­
resolution pixel pitch outside the first image-domain 
ROI and a first pixel pitch inside the first image-domain 
ROI, wherein the low-resolution pixel pitch is greater 
than the first pixel pitch. 

19. The method, according to claim 18, further compris­
ing: 

iteratively reconstructing an updated multiresolution 
image from the multiresolution image, the updated 
multiresolution image having nested regions of interest, 
wherein each nested ROI has a smaller pixel pitch than 
an immediately surrounding nested ROI, and the 
updated multiresolution image being iteratively recon­
structed by 
selecting a next nested ROI within a current nested ROI 

of the updated multiresolution image, 
forward projecting the next nested ROI to generate a 

next sinogram-domain ROI, 
obtaining, from the projection data, next projection data 

representing the intensity of the radiation detected 
within the next sinogram-domain ROI, wherein the 
next projection data has a smaller pixel pitch than a 
current projection data corresponding to a current 
sinogram-domain ROI outside of the next sinogram­
domain ROI, and 
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updating the multiresolution image to have a pixel pitch 
inside the next nested ROI corresponding to a pixel 
pitch of the next sinogram-domain ROI. 

20. A non-transitory computer readable storage medium 
including executable instruction, wherein the instructions, 5 

when executed by circuitry, cause the circuitry to perform 
the method according to claim 18. 

* * * * * 

30 


