
c12) United States Patent
Lukman et al.

(54) MODEL CHECKER FOR FINDING
DISTRIBUTED CONCURRENCY BUGS

(71) Applicants:Futurewei Technologies, Inc., Plano,
TX (US); University of Chicago,
Chicago, IL (US)

(72) Inventors: Jeffrey Lukman, Chicago, IL (US);
Huan Ke, Chicago, IL (US); Haryadi
Gunawi, Chicago, IL (US); Feng Ye,
Mississauga (CA); Chen Tian, Union
City, CA (US); Shen Chi Chen, San
Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 15/962,873

(22) Filed:

(65)

Apr. 25, 2018

Prior Publication Data

US 2019/0332518 Al

(51) Int. Cl.

Oct. 31, 2019

G06F 11136 (2006.01)
(52) U.S. Cl.

CPC G06F 1113632 (2013.01); G06F 1113688
(2013.01); G06F 1113692 (2013.01)

(58) Field of Classification Search

(56)

CPC .. G06F 11/36; G06F 11/3632; G06F 11/3688;
G06F 11/3692

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,009,269 A * 12/1999 Burrows G06F 9/524
714/38.1

7,797,669 Bl* 9/2010 Rehof G06F 11/3668
717/100

500

"'

I 1111111111111111 1111111111 111111111111111 111111111111111 IIIIII IIII IIII IIII
USO 10599552B2

(IO) Patent No.:
(45) Date of Patent:

US 10,599,552 B2
Mar.24,2020

7,917,909 B2 * 3/2011 Stall G06F 11/3632

CN
WO

8,510,304 Bl
8,862,942 B2
8,966,453 Bl

8/2013 Briggs et al.
10/2014 Jalbert et al.
2/2015 Zamfir et al.

(Continued)

FOREIGN PATENT DOCUMENTS

103645961 A
2004025514 A2

3/2014
3/2004

OTHER PUBLICATIONS

718/106

"An Effect-Oriented Approach to Concurrency-Bug Detection and
Recovery," CERES----Center for Unstoppable Computing, The Uni
versity of Chicago, 2017, 77 pages.

(Continued)

Primary Examiner - Ziaul A Chowdhury
(74) Attorney, Agent, or Firm - Conley Rose, P.C.

(57) ABSTRACT

Described herein are systems and methods for distributed
concurrency (DC) bug detection. The method includes iden
tifying a plurality of nodes in a distributed computing
cluster; identifying a plurality of messages to be transmitted
during execution of an application by the distributed com
puting cluster; determining a set of orderings of the plurality
of messages for DC bug detection, the set of orderings
determined based upon the plurality of nodes and the
plurality of messages; removing a subset of the orderings
from the set of orderings based upon one or more of a state
symmetry algorithm, a disjoint-update independence algo
rithm, or a zero-crash-impact reordering algorithm; and
performing DC bug detection testing using the set of order
ings after the subset of the orderings is removed from the set
of orderings.

21 Claims, 4 Drawing Sheets

~------------~510

identifying a plurality of nodes in a distributed computing cluster

identifying a plurality of messages to be transmitted during execution of

an applicatioo by the distributed computing cluster,

detennining a set of orderings of the plurality of messages for DC bug

detection, the set of orderings determined based upon the plurality of

nodes and the plurality of messages;

removing a subset of the orderings from the set of orderings based upon 54o
one or more of a state symmetry algorithm, a disjoint-update

independence algorithm, or a zero-crash-impact reordering algorithm;

performing DC bug detection testing using the set of orderings after the

subset of orderings is removed from the set of orderings

US 10,599,552 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

9,032,259 Bl* 5/2015 Hood G06F 11/3692
714/57

9,176,834 B2 11/2015 Griffith et al.
9,235,497 B2 1/2016 Ma
9,501,340 B2 11/2016 Dautenhahn et al.
9,720,753 B2 8/2017 Joshi et al.

2008/0271042 Al * 10/2008 Musuvathi G06F 11/3688
718/108

2009/0235262 Al* 9/2009 Ceze G06F 9/52
718/102

2010/0107017 Al 4/2010 Munjal et al.
2010/0125758 Al 5/2010 Yang et al.
2010/0169888 Al 7/2010 Hare et al.
2011/0093745 Al 4/2011 Zlotnick et al.
2011/0131550 Al 6/2011 Burckhardt et al.
2011/0219208 Al 9/2011 Asaad et al.
2012/0102470 Al* 4/2012 Yang. G06F 11/3632

7 l 7 /130
2012/0124431 Al 5/2012 Bauer et al.
2012/0144372 Al* 6/2012 Ceze G06F 8/314

7 l 7 /124
2012/0151271 Al 6/2012 Ganai
2012/0167162 Al 6/2012 Raleigh et al.
2012/0174074 Al 7/2012 Ganai
2012/0278658 Al 11/2012 Han et al.
2012/0278660 Al* 11/2012 Mangold. G06F 11/3688

714/38.1
2013/0232118 Al 9/2013 Reid et al.
2013/0297978 Al * 11/2013 Jalbert G06F 11/3632

714/49
2014/0007054 Al* 1/2014 Wu G06F 11/36

7 l 7 /124
2014/0033174 Al 1/2014 Farchi et al.
2014/0380101 Al 12/2014 Yu
2015/0019901 Al 1/2015 Gounares et al.
2015/0081243 Al* 3/2015 Ganai G06F 11/3688

702/123
2015/0134795 Al 5/2015 Theimer et al.
2015/0161030 Al 6/2015 Wu et al.
2016/0224447 Al * 8/2016 Nakao . G06F 11/008
2016/0283345 Al 9/2016 Gounares et al.
2016/0306922 Al 10/2016 van Rooyen et al.
2016/0364315 Al 12/2016 Lee et al.
2017/0039371 Al 2/2017 Lukacs et al.
2017/0123929 Al* 5/2017 Helleren G06F 11/1441
2017/0161073 Al* 6/2017 Chen. G06F 11/3632
2017/0177737 A9 6/2017 Hu et al.
2017/0193012 Al 7/2017 Gupta et al.
2017/0242414 Al 8/2017 Coote
2018/0046565 Al * 2/2018 Lu. G06F 11/3632

OTHER PUBLICATIONS

Leesatapornwongsa, et al., "TaxDC: A Taxonomy of Non
Deterministic Concurrency Bugs in Datacenter Distributed Sys
tems," Proceedings of the 21th ACM International Conference on
Architectural Support for Programming Languages andOperating
Systems (ASPLOS '16), 2016, 14 pages.
Burckhardt, et al., "A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs," ASPLOS'l0, Mar. 13-17, 2010,
Pittsburgh, Pennsylvania, USA., 12 pages.
Flanagan, et al., "Dynamic Partial-Order Reduction for Model
Checking Software," POPL'05, Jan. 12-14, 2005, Long Beach,
California, USA, pp. 1-12.
"Exploring the Challenges and Opportunities of Cloud Stacks in
Dynamic Resource Environments," IEEE Computer Society, Feb. 8,
2018, 3 pages.
Leesatapornwongsa, et al., "Scalability Bugs: When 100-Node
Testing is Not Enough," HotOS '17, May 8-10, 2017, Whistler, BC,
Canada, 6 pages.
Deligiannis, et al. "Uncovering Bugs in Distributed Storage Sys
tems during Testing (Not in Production!)," Proceedings of the 14th

Usenix Conference on File and Storage Technologies (FAST '16),
Feb. 22-25, 2016, Santa Clara, CA, USA, 15 pages.
Leesatapornwongsa, et al., "SAMC: Semantic-Aware Model Check
ing for Fast Discovery of Deep Bugs in Cloud Systems," Proceed
ings of the 11th Usenix Symposium on Operating Systems Design
and Implementation (OSDI '14), 2014, pp. 1-16.
Kasikci, et al., "Lazy Diagnosis of In-Production Concurrency
Bugs," SOSP '17, Oct. 28, 2017, Shanghai, China, 17 pages.
Gunawi, et al., "Why Does the Cloud Stop Computing? Lessons
from Hundreds of Service Outages," SoCC '16, Oct. 5-7, 2016,
Santa Clara, CA, USA., 16 pages .
"Understanding cloud computing," Redhat, https://www.redhat.com/
en/topics/cloud, downloaded from the Internet Feb. 2, 2018, pp.
1-13.
Farchi,et al., "Concurrent Bug Patterns and How to Test Them,"
IEEE, 2003, 7 pages.
Wuhib, et al., "Dynamic Resource Allocation with Management
Objectives-Implementation for an OpenStack Cloud," 8th Inter
national Conference on Network and Service Management (CNSM
2012): Mini-Conference, 2012, pp. 309-315.
Machine Translation and Abstract of Chinese Publication No.
CN103645961, Mar. 19, 2014, 9 pages.
Foreign Communication From A Counterpart Application, Interna
tional Application No. PCT/CN2017/096505, International Search
Report dated Nov. 8, 2017, 3 pages.
Office Action dated Aug. 9, 2018, 42 pages, U.S. Appl. No.
15/668,469, filed Aug. 3, 2017.
Office Action dated Feb. 26, 2019, 43 pages, U.S. Appl. No.
15/668,469, filed Aug. 3, 2017.
Bertot, Y., et al., "Interactive Theorem Proving and Program Devel
opment," Coq' Art: The Calculus of Inductive Constructions,
ISBN:3540208542, 2004, 508 pages.
Lamport, L., "Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers," ISBN:032114306X, 2002,
381 pages.
Deng, D., et al., "Fixing, preventing, and recovering from concur
rency bugs," Review, Soecial Focus on High-Cinfidence Software
Technologies, col. 58, May 2015, 18 pages.
Alagappan, R., et al., "Correlated Crash Vulnerabilities," Usenix
Symposium on Operating Systems Design and Implementation,
Nov. 2-4, 2016, pp. 151-167.
Alvaro, P., et al., "Automating Failure Testing Research at Internet
Scale," SoCC '16 Proceedings of the Seventh ACM Symposium on
Cloud Computing, Oct. 5-7, 2016, 12 pages.
Alvaro, P., "Lineage-driven Fault Interjection," SIGMOD, May
31-Jun. 4, 2015, 16 pages.
Bhandari, K., et al., "Makalu: Fast Recoverable Allocation of
Non-volatile Memory," Proceedings of the 2016 ACM SIG PLAN
International Conference on Object-Oriented Progranuning, Sys
tems, Languages, and Applications, Nov. 2-4, 2016, 18 pages.
Brutschy, L., et al., "Serializability for Eventual Consistency: Cri
terion, Analysis, and Applications," Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Progranuning Languages,
Jan. 15-21, 2017, 15 pages.
Chen, F., et al., ')Predictor: A Predictive Runtime Analysis Tool for
Java," ACM/IEEE 30th International Conference on Software Engi
neering, May 10-18, 2008, pp. 221-230.
Datapath.io, "Recent AWS outage and how you could have avoided
downtime," Mar. 9, 2017, 6 pages.
Dean, J., "Designs, Lessons and Advice from Building Large
Distributed Systems," Google, Keynote from LADIS, 2009, 73
pages.
Deligiannis, P., et al., "Asynchronous Progranuning, Analysis and
Testing with State Machines," Proceedings of the 36th ACM
SIGPLAN Conference on Progranuning Language Design and
Implementation, Jun. 13-17, 2015, 11 pages.
Ganesan, A., et al., "Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and
Corruptions," Proceedings of the 15th Usenix Conference on File
and Storage Technologies, Feb. 27-Mar. 2, 2017, pp. 149-165.

US 10,599,552 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Gunawi, H., et al., "Fate and Destini: A Framework for Cloud
Recovery Testing," Proceedings of the 8th Usenix Symposium on
Networked Systems Design and Implementation, Mar. 2011, 14
pages.
Gunawi, H., et al., "EIO: Error Handling is Occasionally Correct,"
6th Usenix Conference on File and Storage Technologies, Dec.
2008, pp. 207-222.
Guo, H., et al., "Practical Software Model Checking via Dynamic
Interface Reduction," Proceedings of the Twenty-Third ACM Sym
posium on Operating Systems Principles, Oct. 23-26, 2011, 14
pages.
Guo, Z., et al., "Failure Recovery: When the Cure Is Worse Than the
Disease," Proceedings of the 14th Usenix conference on Hot Topics
in Operating Systems, May 2013, 6 pages.
Hawblitzel, C., et al., "IronFleet: Proving Practical Distributed
Systems Correct," Proceedings of the ACM Symposium on Oper
ating Systems Principles, Oct. 4-7, 2015, 17 pages.
Huang, R., et al., "Non-Race Concurrency Bug Detection Through
Order-Sensitive Critical Sections," Proceedings of the 40th Annual
International Symposium on Computer Architecture, Jun. 23-27,
2013, 12 pages.
"Wala Wiki," http://wala.sourceforge.net/wiki/index. php/Main_
page, Mar. 5, 2018, 2 pages.
"Javassist," http://jboss-javassist.github.io/javassist, Mar. 5, 2018, 2
pages.
Joshi, P., et al., "Setsudo: Perturbation-based Testing Framework for
Scalable Distributed Systems," Proceeding of the Conference on
Timely Results in Operating Systems, Nov. 3, 2013, 14 pages.
Killian, C., et al., "Life, Death, and the Critical Transition: Finding
Liveness Bugs in Systems Code," Proceedings of the 4th Usenix
conference on Networked Systems Design & Implementation, Apr.
11-13, 2007, pp. 243-256.
Kolli, A., et al., "High-Performance Transactions for Persistent
Memories," High-Performance Transactions for Persistent Memo
ries, Apr. 2-6, 2016, 13 pages.
Koskinen, E., et al., "Reducing Crash Recoverability to Reach
ability," Proceedings of the 43rdAnnual ACM SIGPLAN-SIGACT
Symposium on Principles of Progranuning Languages, Jan. 20-22,
2016, pp. 97-108.
Laadan, 0., et al., "Pervasive Detection of Process Races in
Deployed Systems," Proceedings of the Twenty-Third ACM Sym
posium on Operating Systems Principles, Oct. 23-26, 2011, pp.
353-367.
Lamport, L., "Time, Clocks, and the Ordering of Events in a
Distributed Systems," Communications of the ACM, vol. 21, No. 7,
Jul. 1978, pp. 558-565.
Lantz P., et al., "Yat: A Validation Framework for Persistent Memory
Software," Proceedings of Usenix ATC '14: 2014 Usenix Annual
Technical Conference, Jun. 19-20, 2014, 7 pages.
Leesatapornwongsa, T., et al., "TaxDC: A Taxonomy of Non
Deterministic Concurrency Bugs in Datacenter Distributed Sys
tem," Proceedings of the 21th ACM International Conference on
Architectural Support for Progranuning Languages and Operating
Systems, Apr. 2-6, 2016, 14 pages.
Li K., et al., "ReproLite: A Lightweight Tool to Quickly Reproduce
Hard System Bugs," Proceedings of the ACM Symposium on Cloud
Computing, Nov. 3-5, 2014, 13 pages.
Liu, H., "DCatch: Automatically Detecting Distributed Concur
rency Bugs in Cloud Systems," Proceedings of the Twenty-Second
International Conference on Architectural Support for Progranuning
Languages and Operating Systems, Apr. 8-12, 2017, 15 pages.

"Businesses Loosing $700 Billion a Year to IT Downtime, Says IHS
I IHS Online Newsroom," Jan. 25, 2016, 4 pages.
Mashitzadeh, A., et al., "Towards Practical Default-On Multi-Core
Record/Replay," Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages
and Operating Systems, Apr. 8-12, 2017, 16 pages.
Netzer, R., et al., "Improving the Accuracy of Data Race Detection,"
Proceedings of the third ACM SIG PLAN symposium on Principles
and practice of parallel progranuning, Apr. 21-24, 1991, pp. 133-
144.
"Virtua!Box-Oracle VM Virtua!Box," Mar. 5, 2018, 1 page.
Pelley, S., et al., "Memory Persistency," Proceeding of the 41st
annual international symposium on Computer architecuture, Jun.
14-18, 2014, pp. 265-276.
Rubio-Gonzalez, C., et al., "Error Propagation Analysis for File
Systems," Proceedings of the 30th ACM SIG PLAN Conference on
Progranuning Language Design and Implementation, Jun. 15-20,
2009, 11 pages.
Saha, S., et al., "Hector: Detecting Resource-Release Omission
Faults in Error-Handling Code for Systems Software," 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, Jun. 24-27, 2013, 12 pages.
Savage, S., et al., "Eraser: A Dynamic Data Race Detector for
Multithreaded Programs," ACM Transactions on Computer Sys
tems, vol. 15, No. 4, Nov. 1997, pp. 391-411.
Simsa, J., et al., "dBug: Systematic Evaluation of Distributed
Systems," Proceedings of the 5th international conference on Sys
tems software verification, Oct. 6-7, 2010, 9 pages.
Tian, C., et al., "Dynamic Recognition of Synchronization Opera
tions for Improved Data Race Detection," Proceedings of the 2008
international symposium on Software testing and analysis, Jul.
20-24, 2008, 11 pages.
Volos, H., et al., "Mnemosyne: Lightweight Persistent Memory,"
Proceedings of the sixteenth international conference on Architec
tural support for progranuning languages and operating systems,
Mar. 5-11, 2011, 13 pages.
Wilcox, J., et al., "Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems," Proceedings of the 36th
ACM SIGPLAN Conference on Progranuning Language Design
and Implementation, Jun. 13-17, 2015, pp. 357-368.
Xiong, W., et al., "Ad Hoc Synchronization Considered Harmful,"
Proceedings of the 9th Usenix conference on Operating systems
design and implementation, Oct. 4-6, 2010, 14 pages.
Yang, J., "EXplode: a Lightweight, General System for Finding
Serious Storage System Errors," Proceedings of the 7th Usenix
Symposium on Operating Systems Design and Implementation, vol.
7, Nov. 6-8, 2006, 16 pages.
Yang, J., et al., "Using Model Checking to Find Serious File System
Errors," 6th Symposium on Operating Systems Design and Imple
mentation, vol. 24, No. 4, Nov. 2006, pp. 273-287.
Yuan, D., et al., "Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed Data-intensive
Systems," 11th Usenix Symposium on Operating Systems Design
and Implementation, Oct. 6-8, 2014, pp. 249-265.
Zheng, M., et al., "Tourturing Databases for Fun and Profit,"
Proceedings of the 11th Usenix Symposium on Operating Systems
Design and Implementation, Oct. 6-8, 2014, pp. 449-464.
"FCatch: Automatically detecting time-of-fault bugs in cloud sys
tems," ASPLOS Submission #376, 2018, 14 pages.
Office Action dated Oct. 18, 2019, 19 pages, U.S. Appl. No.
15/938,841, filed Mar. 28, 2018.

* cited by examiner

U.S. Patent Mar.24,2020 Sheet 1 of 4

100

"' 104 106

node A node B
102

FIG.1

200

"' 202 204

Af Bf A B A B

0 0 0 0

bl 0 1 1 0 al

a2 2 1 1 2

b2 2 2 2 2 a2

al 2 2 2 2

202

Af

US 10,599,552 B2

Model checking
server

110

204

Bf

b2

bl

"----~ ___ / "---- ___,./ "----~ ___ /
V V V

210 230 220

FIG. 2

U.S. Patent

300

"' 310

A/

400

"' 410

a2

Mar.24,2020 Sheet 2 of 4 US 10,599,552 B2

320

Bf

420

func msgVote (int vote){
if (node.vote< vote)

{

al node.vote= vote;
}

}

func msglnsertData
(String key, String value)

{
a2

value;

FIG. 3

Single Flips:
(1) al a2 bl b2 b3 b4
(2) al a2 bl b2 b4 b3
(3) al a2 bl b4 b2 b3

430

FIG. 4

node.data [key] =

}

Parallel Flips:
(1) al al bl b2 b3 b4
(2) al al bl b2 b4 b3
(3) a2 al bl b4 b2 b3

440

330

I/

340

I/

U.S. Patent Mar.24,2020 Sheet 3 of 4 US 10,599,552 B2

500

"' 510

identifying a plurality of nodes in a distributed computing cluster f

5 20
identifying a plurality of messages to be transmitted during execution of f

an application by the distributed computing cluster;

1f

5 30
determining a set of orderings of the plurality of messages for DC bug f detection, the set of orderings determined based upon the plurality of

nodes and the plurality of messages;

1 •

removing a subset of the orderings from the set of orderings based upon
5

f one or more of a state symmetry algorithm, a disjoint-update

40

independence algorithm, or a zero-crash-impact reordering algorithm;

1 •

5 50
performing DC bug detection testing using the set of orderings after the f

subset of orderings is removed from the set of orderings.

FIG. 5

U.S. Patent

600

Ingress
Ports

610

Mar.24,2020 Sheet 4 of 4

Netw-◊rk Device

630

m""""""""""' J m"""""""'"•

Processor

660

FIG. 6

US 10,599,552 B2

Egress
Ports

650

,....._________ J

US 10,599,552 B2
1

MODEL CHECKER FOR FINDING
DISTRIBUTED CONCURRENCY BUGS

TECHNICAL FIELD

The disclosure is related to the technical field of distrib
uted computing, in particular detection of distributed con
currency bugs in a distributed computing system.

BACKGROUND

Cloud computing systems such as distributed computing
frameworks, storage systems, lock services, and cluster
managers are the backbone engines of many software based
applications. Cloud computing systems typically include
many nodes physically distributed and connected via a
network, e.g., the Internet. The nodes store, manage, and
process data. Groups of nodes are often referred to as
clusters. The complexities and intricacies of the cloud com
puting systems make them difficult to manage. One issue is
the problem of distributed concurrency (DC) bugs which are
caused by concurrent distributed events occurring in a
nondeterministic order. DC bugs can cause harmful conse
quences in cloud computing systems including system
crashes, failed jobs, node/cluster unavailability, data loss,
and data inconsistency. For example, a cloud computing
system is configured to transmit messages A, B, and C to or
from one of nodes 1, 2, and 3. The messages are transmitted
in response to completion of a task or operation at the node
that transmits the message. When node 2 receives message
A, node 3 receives message B, and then node 2 receives
message C from node 3, the system functions as expected.
When the ordering of the messages is changed, e.g., node 3
receives message B and then transmits message C to node 2
prior to node 2 receiving message A from node 1, a failure
will happen at node 2. A DC bug has occurred by changing
the order of the messages received at node 2.

SUMMARY

In an embodiment, the disclosure includes a method for
distributed concurrency (DC) bug detection. The method
includes identifying, by a computing device, a plurality of
nodes in a distributed computing cluster; identifying, by the
computing device, a plurality of messages to be transmitted
during execution of an application by the distributed com
puting cluster; determining, by the computing device, a set
of orderings of the plurality of messages for DC bug
detection, the set of orderings determined based upon the
plurality of nodes and the plurality of messages; removing,
by the computing device, a subset of the orderings from the
set of orderings based upon one or more of a state symmetry
algorithm, a disjoint-update independence algorithm, or a
zero-crash-impact reordering algorithm; and performing, by
the computing device, DC bug detection testing using the set
of orderings after the subset of the orderings is removed
from the set of orderings.

Optionally, in any of the preceding aspects, removing the
subset of the orders from the set of orderings based upon the
state symmetry algorithm comprises includes comparing a
first state transition of a first node of a first ordering of the

2
Optionally, in any of the preceding aspects, removing the

subset of the orders from the set of orderings based upon the
disjoint-update independence algorithm includes comparing
a first variable in a first message of a first ordering of the set

5 of orderings with a second variable in a second message of
the first ordering of the set of orderings; and adding a second
ordering to the subset of the orderings when the first variable
and the second variable are different and the second ordering

10

comprises the first message and the second message.
Optionally, in any of the preceding aspects, the method

further includes determining, prior to performing the DC
bug detection, one or more parallel flip orderings, each of the
parallel flip orderings comprising a first plurality of mes
sages for a first node and a second plurality of messages for

15 a second node, wherein the first plurality of messages are
independent of the second plurality of messages, and
wherein the first plurality of messages and the second
plurality of messages are reordered in each of the parallel
flip orderings; and prioritizing the parallel flip orderings

20 when performing the DC bug detection.
Optionally, in any of the preceding aspects, the zero

crash-impact reordering algorithm includes a crash-after
discard reduction or a consecutive-crash reduction.

Optionally, in any of the preceding aspects, removing the
25 subset of the orders from the set of orderings based upon

crash-after-discard reduction includes determining a first
message of a first ordering will be discarded by a node;
determining a second message of the first ordering causes a
crash of the node; and adding a second ordering comprising

30 the first message and the second message to the subset of the
orderings.

Optionally, in any of the preceding aspects, removing the
subset of the orders from the set of orderings based upon
consecutive-crash reduction includes determining a first

35 message of a first ordering causes a crash of a node;
determining a second message of the first ordering causes
another crash of the node; and adding a second ordering
comprising the first message and the second message to the

40

subset of the orderings.
Optionally, in any of the preceding aspects, the set of

orderings includes unique orderings for each permutation of
the plurality of messages received at each of the plurality of
nodes.

Optionally, in any of the preceding aspects, the method
45 further includes determining the subset of the orderings

based upon each of the state symmetry algorithm, the
disjoint-update independence algorithm, the zero-crash-im
pact reordering algorithm, and a parallel flips algorithm.

In an embodiment, the disclosure includes a device. The
50 device includes a memory storage comprising instructions;

and a processor in communication with the memory. The
processor executes the instructions to identify a plurality of
nodes in a distributed computing cluster; identify a plurality
of messages to be transmitted during execution of an appli-

55 cation by the distributed computing cluster; determine a set
of orderings of the plurality of messages for distributed
concurrency (DC) bug detection, the set of orderings deter
mined based upon the plurality of nodes and the plurality of
messages; remove a subset of the orderings from the set of

60 orderings based upon one or more of a state symmetry
algorithm, a disjoint-update independence algorithm, or a
zero-crash-impact reordering algorithm; and perform DC
bug detection testing using the set of orderings after the set of orderings with a second state transition of a second

node of a second ordering of the set of orderings; and adding
the second ordering to the subset of the orderings when the 65

first state transition and the second state transition are
symmetrical.

subset of the orderings is removed from the set of order.
Optionally, in any of the preceding aspects, the instruc

tions to remove the subset of the orders from the set of
orderings based upon the state symmetry algorithm include

US 10,599,552 B2
3 4

instructions to compare a first state transition of a first node
of a first ordering of the set of orderings with a second state
transition of a second node of a second ordering of the set
of orderings; and add the second ordering to the subset of the
orderings when the first state transition and the second state 5

transition are symmetrical.

rithm, or a zero-crash-impact reordering algorithm; and
perform DC bug detection testing using the set of orderings
after the subset of the orderings is removed from the set of
orderings.

Optionally, in any of the preceding aspects, the instruc-
tions that cause the processor to remove the subset of the
orders from the set of orderings based upon the state
symmetry algorithm include instructions that cause the
processor to compare a first state transition of a first node of

Optionally, in any of the preceding aspects, the instruc
tions to remove the subset of the orders from the set of
orderings based upon the disjoint-update independence
algorithm include instructions to compare a first variable in
a first message of a first ordering of the set of orderings with
a second variable in a second message of the first ordering

10 a first ordering of the set of orderings with a second state
transition of a second node of a second ordering of the set
of orderings, and add the second ordering to the subset of the
orderings when the first state transition and the second state of the set of orderings, and add a second ordering to the

subset of the orderings when the first variable and the second
variable are different and the second ordering comprises the 15

first message and the second message.

transition are symmetrical.
Optionally, in any of the preceding aspects, the instruc-

tions that cause the processor to remove the subset of the
orders from the set of orderings based upon the disjoint
update independence algorithm include instructions that
cause the processor to compare a first variable in a first

Optionally, in any of the preceding aspects, the processor
further executes the instructions to determine, prior to per
forming the DC bug detection, one or more parallel flip
orderings, each of the parallel flip orderings comprising a
first plurality of messages for a first node and a second
plurality of messages for a second node, wherein the first
plurality of messages are independent of the second plurality
of messages, and wherein the first plurality of messages and
the second plurality of messages are reordered in each of the
parallel flip orderings, and prioritize the parallel flip order
ings when performing the De bug detection.

Optionally, in any of the preceding aspects, the zero
crash-impact reordering algorithm includes a crash-after
discard reduction or a consecutive-crash reduction.

Optionally, in any of the preceding aspects, instructions to
remove the subset of the orders from the set of orderings
based upon the crash-after-discard reduction include instruc
tions to determine a first message of a first ordering will be
discarded by a node, determine a second message of the first
ordering causes a crash of the node, and add a second
ordering comprising the first message and the second mes
sage to the subset of the orderings.

20 message of a first ordering of the set of orderings with a
second variable in a second message of the first ordering of
the set of orderings, and add a second ordering to the subset
of the orderings when the first variable and the second
variable are different and the second ordering comprises the

25 first message and the second message.
Optionally, in any of the preceding aspects, the instruc

tions further cause the processor to determine, prior to the
DC bug detection, one or more parallel flip orderings, each
of the parallel flip orderings comprising a first plurality of

30 messages for a first node and a second plurality of messages
for a second node, wherein the first plurality of messages are
independent of the second plurality of messages, and
wherein the first plurality of messages and the second
plurality of messages are reordered in each of the parallel

35 flip orderings, and prioritize the parallel flip orderings when
performing the DC bug detection.

Optionally, in any of the preceding aspects, the zero
crash-impact reordering algorithm is a crash-after-discard
reduction or a consecutive-crash reduction.

Optionally, in any of the preceding aspects, the instruc-
tions that cause the processor to remove the subset of the
orders from the set of orderings based upon the crash-after
discard reduction include instructions that cause the proces
sor to determine a first message of a first ordering will be

Optionally, in any of the preceding aspects, instructions to
remove the subset of the orders from the set of orderings 40

based upon the consecutive-crash reduction includes
instructions to determine a first message of a first ordering
causes a crash of a node, determine a second message of the
first ordering causes another crash of the node, and add a
second ordering comprising the first message and the second
message to the subset of the orderings.

45 discarded by a node, determine a second message of the first
ordering causes a crash of the node, and add a second
ordering comprising the first message and the second mes
sage to the subset of the orderings.

Optionally, in any of the preceding aspects, the set of
orderings includes unique orderings for each permutation of
the plurality of messages received at each of the plurality of
nodes.

Optionally, in any of the preceding aspects, the processor
further executes the instructions to determine the subset of
the orderings based upon each of the state symmetry algo
rithm, the disjoint-update independence algorithm, the zero
crash-impact reordering algorithm, and a parallel flips algo
rithm.

In an embodiment, the disclosure includes a non-transi
tory computer readable medium storing computer instruc
tions, that when executed by a processor, causes the pro
cessor to perform identify a plurality of nodes in a
distributed computing cluster; identify a plurality of mes
sages to be transmitted during execution of an application by
the distributed computing cluster; determine a set of order
ings of the plurality of messages for distributed concurrency
(DC) bug detection; remove a subset of the orderings from
the set of orderings based upon one or more of a state
symmetry algorithm, a disjoint-update independence alga-

Optionally, in any of the preceding aspects, the instruc-
50 tions that cause the processor to remove the subset of the

orders from the set of orderings based upon the consecutive
crash reduction include instructions that cause the processor
to determine a first message of a first ordering causes a crash
of a node, determine a second message of the first ordering

55 causes another crash of the node, and add a second ordering
comprising the first message and the second message to the
subset of the orderings.

Optionally, in any of the preceding aspects, the set of
orderings includes unique orderings for each permutation of

60 the plurality of messages received at each of the plurality of
nodes.

Optionally, in any of the preceding aspects, the instruc
tions further cause the processor to determine the subset of
the orderings based upon each of the state symmetry algo-

65 rithm, the disjoint-update independence algorithm, the zero
crash-impact reordering algorithm, and a parallel flips algo
rithm.

US 10,599,552 B2
5

For the purpose of clarity, any one of the foregoing
embodiments may be combined with any one or more of the
other foregoing embodiments to create a new embodiment
within the scope of the present disclosure.

These and other features will be more clearly understood
from the following detailed description taken in conjunction
with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure,
reference is now made to the following brief description,
taken in connection with the accompanying drawings and
detailed description, wherein like reference numerals repre
sent like parts.

FIG. 1 is a diagram of an embodiment of DC bug
detection architecture.

FIG. 2 is a diagram of an embodiment of permutations
used in state symmetry reductions.

FIG. 3 is a diagram of an embodiment of disjoint-update
independence.

FIG. 4 is a diagram of an embodiment of parallel flips
testing.

FIG. 5 is a diagram of an embodiment of a method for DC
bug detection.

FIG. 6 is a schematic diagram of a network device
according to an embodiment of the disclosure.

DETAILED DESCRIPTION

It should be understood at the outset that, although an
illustrative implementation of one or more embodiments are
provided below, the disclosed systems and/or methods may
be implemented using any number of techniques, whether
currently known or in existence. The disclosure should in no
way be limited to the illustrative implementations, drawings,
and techniques illustrated below, including the exemplary
designs and implementations illustrated and described
herein, but may be modified within the scope of the
appended claims along with their full scope of equivalents.

Cloud computing involves performing operations across a
network of nodes. The operations may be performed respon
sive to execution of a software application (or "applica
tion"). As used herein, an application includes instructions
or operations that will be executed in a cloud based system.
Cloud based systems include nodes physically distributed
and connected via a network, e.g., the Internet. The nodes of
a cloud based system can store, manage, and process data.
The data storage, management, and processing capabilities

6
able. Sometimes the second node may crash or experience
other performance issues if the message from the node that
executed the operation is incompatible with the current state
of the second node. As used herein distributed concurrency

5 (DC) bugs may refer to an error resulting from the order and
timing transmission and receipt of messages, between two or
more nodes in a cloud computing system.

Embodiments of the present disclosure are directed to
methods, systems, and apparatuses for detecting DC bugs in

10 a cloud computing system. In an embodiment, a distributed
system model checker may implement algorithms for
improving the ability to detect DC bugs. In some embodi
ments, the algorithms may reduce the search space of testing
the permutations of message ordering in a cloud based

15 system. A message ordering includes a time ordered
sequence of messages arriving at one or more nodes during
execution of an application. Permutations of message order
ings includes several message orderings with a varied time
sequence of arrival of the messages in each permutation. In

20 some embodiments, the algorithms may prioritize certain
permutations to decrease the time required for testing. The
algorithms may include a state symmetry algorithm, a dis
joint-update independence algorithm, a parallel flips algo
rithm, and/or a zero-crash-impact reordering algorithm, each

25 of which are described in greater detail herein.
FIG. 1 is a diagram of an embodiment of DC bug

detection architecture 100. The DC bug detection architec
ture 100 includes a model checking server 110, node A 104,
and node B 106. In other embodiments, more than two nodes

30 may be present in the architecture. The number of nodes
depends upon the characteristics of the cloud based system
where the application under test is executed. NodeA104 and
node B 106 are be grouped as a cluster 102. By way of
illustration, cluster 102 executes an application under test

35 wherein the application can send several messages: al, a2,
bl, and b2. While four messages are depicted in this
illustration, an application under test may transmit and
receive many more messages depending upon the function
ality of the application. The number of permutations of

40 messages may be equal to the number of messages factorial.
In this illustration, the number of permutations of messages
is four factorial or twenty-four possible permutations. The
model checking server 110 may enable the messages in each
of the possible permutations and monitor the results of the

45 various permutations of messages. Enabling a message may
include the model checking server 110 sending a message or
the model checking server 110 causing a node to send a
message. The model checking server 110 tracks permuta
tions that have been executed and permutations that are

50 to-be executed. A permutation is considered executed after
all of the messages in the permutation have been sent, i.e.,
enabled, according to the message ordering in the permuta
tion. For permutations that have been executed, the model
checking server 110 tracks whether or not there was an error

of the nodes of the cloud based system can be shared to
perform computing tasks. Instructions or operations of an
application executed by a cloud based system may distrib
uted across one or more of the nodes. Cloud based systems
include distributed computing frameworks, storage systems,
lock services, and cluster managers. When an operation is
executed, the state of the node that executes the operation
may change. A change in state of the node may occur based
upon the operation performed or the current state of the
node. In some cases, an operation may not cause the state of
the node to change. Other nodes may or may not be aware 60

of the current state of the node that executed the operation.
The node that executed the operations may send a message
comprising a command or data to a second node. Messages
include instructions or operations sent from one node of the
cloud based system to another node of the cloud based 65

system. For example, messages can include instructions to
update a variable, perform a calculation, or display a vari-

55 in relation to that particular permutation of messages. While
the model checking server 110 is depicted as communicating
with node B 106, model checking server 110 can commu
nicate with all or some of the nodes under test in a distrib-
uted computing environment. In some embodiments, algo
rithms are used to determine that certain permutations need
not to be tested. Those algorithms will be discussed in detail
below.

In some embodiments, a state symmetry algorithm can be
executed to reduce the number of permutations that need to
be tested. The state symmetry algorithm can identify pairs of
permutations that result in symmetrical state transitions. For
pairs of permutations with symmetrical state transitions,

US 10,599,552 B2
7

only one of the permutations may need to be tested. FIG. 2
is a diagram of an embodiment of a permutations 200 used
in state symmetry reductions. By way of illustration, FIG. 2
represents the first phases of a leader election implementa
tion with two concurrent updates from node A 202 and node
B 204. While the state symmetry algorithm can be used with
other distributed computing protocols, leader election is
used here as an example to illustrate the state symmetry
algorithm. Leader election is a process of designating a node
or process as the organizer of a task distributed among
multiple nodes, in this case, node A 202 and node B 204.
Node A 202 broadcasts 'prepare' messages al and bl while
node B 204 broadcasts 'prepare' messages a2 and b2. The
messages arrive at their destinations at different times based

8
can include a write of the 'key' variable, for example. The
variable updated by message al is different than the variable
updated by message a2. When messages update unrelated
variables, a disjoint-update can occur. When different vari-

5 ables are updated by two messages, the order of arrival of the
messages at the node may not be relevant to the final state
of the node. For example, the value of 'vote' at node A 310
will have the same final value whether message al is
received first or message a2 is received first. Likewise, the

10 value of variable 'key' at nodeA310 will have the same final
value whether message al is received first or message a2 is
received first. In this case, message ordering al, a2 and a2,
al result in a same final state of node A 310, thus one of the
orderings may be discarded.

Disjoint-update independence 300 can be further
described in light of the following. For messages ni and nj
sent to a node N, a static analysis can be used to build live
variable sets: readSet, updateSet and persistSet. The static
analysis includes identifying variables in the messages of

on a number of factors, e.g., network configuration and/or 15

network loading. Message flow 210 represents a first per
mutation of message arrivals and message flow 220 repre
sents a second permutation of message arrivals. Table 230
depicts the state of each node after a message is received,
e.g., state transition of the nodes when messages are
received. The left colunm of table 230 corresponds to
message flow 210 and the right column of table 230 corre
sponds to message flow 220. Message flow 210 receives
messages at their respective destinations in the following
order: bl, a2, b2, al. Message flow 220 receives messages

20 two or more permutations. The readSet includes to-be-read
variables in the messages, i.e., variables that will be read
when a message is transmitted. The updateSet includes
to-be-updated variables in the messages, i.e., variables that
will be read when a message is transmitted. The persistSet

25 includes to-be-persisted variables, i.e., variables that will be
unchanged when a message is transmitted. The live variable
sets reflect changes in ni's and nj's read, update, and send
sets as node N transitions to a different state after receiving
message ni or nj. Given such information, ni and nj are

at their respective destinations in the following order: al, b2,
a2, bl. The messages may include a ballot number in this
example. In the context of leader election, a ballot number
is an identifier for a round of a leader election. Outside the
context of leader election, a ballot number can be an
identifier for a particular process to be distributed in a
consensus. Messages with a '1', e.g., al, bl, can represent
a ballot number of 1. Messages with a '2' e.g., a2, b2, can
represent a ballot number of 2. Each row of table 230
represents a particular time and the states of the nodes with
respect to receipt messages al, a2, bl, and b2 at that time.
The first row represents an initial state where both nodes are
all zeroes. At the second row, message flow 210 receives
message bl at node B 204 and the state on the left colunm
of table 230 is set to zero for node A 202 and one for node
B 204. Also at the second row, message flow 220 receives
message al at node A 202 and the state on the right column
of table 230 is set to one for node A 202 and zero for node
B 204. At the completion of message flow 210 and message
flow 220, the state changes tracked in table 230 of node A
202 with respect to message flow 210 are the same as the
state changes tracked in table 230 of node B 204 for message
flow 220. Likewise, the state changes tracked in table 230 of
node B 204 with respect to message flow 210 are the same
as the state changes of node A 202 with respect to message
flow 220. Thus, the results are considered to have symmetry
and one of the permutations can be omitted from testing in
a leader election process. By identifying which permutations
result in state symmetry, the identified permutations can be
eliminated from testing and the test time will be reduced
thusly.

In further embodiments, a disjoint-update independence
algorithm can be utilized to reduce the number of permu
tations that need to be tested. The disjoint-update indepen
dence algorithm detects permutations with messages that
update different variables. If the messages update different
variables, then testing both permutations may be unneces
sary. FIG. 3 is a diagram of an embodiment of disjoint
update independence 300. Node B 320 concurrently trans
mits messages al and a2 to node A 310. Message content
330 of message al can include a read and write of the 'vote'
variable, for example. Message content 340 of message a2

30 marked disjoint-update independent if ni's readSet, update
Set, and persistSet do not overlap with nj's updateSet, and
vice versa. I.e., nj's udateSet does not reflect an update to
any of ni's live variable sets, and vice versa. Thus, the
ordering of message ni and nj may have the same result as

35 reordering nj and ni, and one of the orderings may be
skipped during testing.

In further embodiments, a parallel flips algorithm can be
used to speed up testing relative to existing model checking
systems. The parallel flips algorithm includes identifying

40 independent messages in a permutation involving at least
two nodes. The independent messages may be flipped, e.g.,
reordered, in parallel for the two or more nodes in a single
permutation. FIG. 4 is a diagram of an embodiment of
parallel flips testing example test 400. In this example, node

45 A 410 receives messages al and a2, and node B 420 receives
messages bl, b2, b3, and b4. Single flip orderings 430
represent a portion of the permutations tested in single flip
testing of node A 410 and node B 420 with respect to
messages al, a2, bl, b2, b3, and b4. Parallel flip orderings

50 440 represent a portion of the permutations tested in parallel
flip testing of node A 410 and node B 420 with respect to
messages al, a2, bl, b2, b3, and b4. As shown, only one
message, b4, is flipped (e.g., reordered) from permutation
(1) to permutation (2) in single flips orderings 430. For

55 parallel flips, two messages, b4 and a2, are flipped (e.g.,
reordered) from permutation (1) to permutation (2) in par
allel flips orderings 440. Parallel flips algorithm can speed
up testing by flipping pairs of messages that are independent
of each other. For example, message a2 arrives at node A 410

60 and is independent of message b4 which arrives at node B
420. Therefore, the messages can be flipped in parallel rather
than one at a time, thereby speeding up the testing of the
nodes. Parallel flips orderings can be prioritized over single
flips orderings in order to more quickly test the messages.

65 For example, a parallel flip ordering tests two messages
arrival at two nodes simultaneously. The same testing using
single flips may require at least two testing cycles. In some

US 10,599,552 B2
9

embodiments, orderings with a single flip that is tested using
a parallel flip may be skipped during testing.

A zero-crash-impact reduction algorithm may be executed

10
prioritize certain orderings during testing. By prioritizing
parallel flip orderings, testing time may be reduced.

At block 550, the model checking server performs DC
bug detection testing using the set of orderings after the to reduce the number of permutations that need to be tested.

The zero-crash impact reduction algorithm identifies per
mutations that result in a crash and removes permutations
that include the crash from further testing. Zero-crash
impact reduction includes two cases where certain reorder
ings that cause a node to crash may be discarded from
testing. The two cases may include crash-after-discard
reduction and consecutive-crash reduction. Crash-after-dis
card reduction may include cases where 'mx' is a reordering.
Message 'm' may be discarded after received by the node,
e.g., message 'm' may not change the state of the node where

5 subset of the orderings is removed from the set of orderings.
When the set of orderings has been optimized by removing
the orderings identified by the algorithms, the testing can be
performed with increased efficiency.

FIG. 6 is a schematic diagram of a network device 600
10 (e.g., a model checking server) according to an embodiment

of the disclosure. The network device 600 is suitable for

it is received before being discarded. Message 'x' may be a 15

message that causes a crash on the same node. Reordering
is unnecessary as 'm' does not create any state change and
'x' always causes a crash. Hence the reordering 'mx' may be
removed. Consecutive-crash reduction may include cases
where 'xy' is a reordering, where message 'x' and message 20

'y' are both crashes. In this case reordering is unnecessary as
two consecutive crashes are equivalent to one in terms of
system state. Hence reordering 'xy' may be removed from
testing.

FIG. 5 is a diagram of an embodiment of a method 500 for 25

DC bug detection. The method 500 begins at block 510
where a model checking server identifies a plurality of nodes
in a distributed computing cluster. The plurality of nodes can
be identified using one or more of a number of network
discovery techniques. For example, a listing of the nodes can 30

be progrannned into the model checking server and/or the
model checking server can interact with a networking device
to learn the topology of the distributed computing cluster.

At block 520, the model checking server identifies a
plurality of messages that result from execution of an 35

application by the distributed computing cluster. For
example, an application comprises a number of operations
that can be performed at one or more of the nodes in the
distributed computing cluster. The operations can provide
data to other nodes in order to perform a subsequent opera- 40

tion of the application. The data can be provided in messages
that are transmitted between nodes.

At block 530, the model checking server determines a set

implementing the disclosed embodiments as described
herein. In an embodiment, the network device 600 is a model
checking server. The network device 600 comprises ingress
ports 610 and receiver units (Rx) 620 for receiving data; a
processor, logic unit, or central processing unit (CPU) 630
to process the data; transmitter units (Tx) 640 and egress
ports 650 for transmitting the data; and a memory 660 for
storing the data. The network device 600 may also comprise
optical-to-electrical (OE) components and electrical-to-op
tical (EO) components coupled to the ingress ports 610, the
receiver units 620, the transmitter units 640, and the egress
ports 650 for egress or ingress of optical or electrical signals.

The processor 630 can be implemented by hardware
and/or software. The processor 630 can be implemented as
one or more CPU chips, cores (e.g., as a multi-core proces
sor), field-programmable gate arrays (FPGAs), application
specific integrated circuits (ASICs), and digital signal pro
cessors (DSPs). The processor 630 is in communication with
the ingress ports 610, receiver units 620, transmitter units
640, egress ports 650, and memory 660. The processor 630
comprises a model checking module 670. The model check
ing module 670 implements the disclosed embodiments
described above. For instance, the model checking module
670 implements, processes, prepares, or provides the various
algorithms described herein. The inclusion of the model
checking module 670 therefore provides a substantial
improvement to the functionality of the network device 600
and effects a transformation of the network device 600 to a
different state. Alternatively, the model checking module
670 is implemented as instructions stored in the memory 660
and executed by the processor 630.

The memory 660 comprises one or more disks, tape
drives, and solid-state drives and can be used as an over-flow of orderings of the plurality of messages for use in DC bug

detection. An ordering may be an arrival sequence of the
messages of the application at one or more nodes, i.e., a
permutation of messages. Each ordering can be a unique
sequence of message arrival at one or more of the nodes of
the distributed computing cluster. The set of orderings can
include all possible sequences of message arrival for each of
the plurality of nodes in the distributed computing cluster.
By testing all sequences, DC bugs can be detected for
sequences that cause performance issues in the distributed
computing cluster, e.g., degraded performance and/or node
crashes.

45 data storage device, to store programs when such programs
are selected for execution, and to store instructions and data
that are read during program execution. The memory 660
can be volatile and/or non-volatile and can be read-only
memory (ROM), random access memory (RAM), ternary

At block 540, the model checking server removes a subset
of the orderings from the set of orderings based upon one or
more of a state symmetry algorithm, a disjoint-update inde
pendence algorithm, or a zero-crash-impact reordering algo
rithm. The model checking server executes one or more of
the algorithms in order to reduce the number of orderings
that need to be tested for DC bug detection. Removing some
of the orderings from the set of orderings reduces the testing
time required for DC bug detection. As described above, the
algorithms can determine orderings that are redundant and
don't need to be tested. Optionally at block 540, the model
checking server may execute a parallel flips algorithm to

50 content-addressable memory (TCAM), and/or static ran
dom-access memory (SRAM).

A method for distributed concurrency (DC) bug detection
including means for identifying a plurality of nodes in a
distributed computing cluster; identifying a plurality of

55 messages to be transmitted during execution of an applica
tion by the distributed computing cluster; determining a set
of orderings of the plurality of messages for DC bug
detection, the set of orderings determined based upon the
plurality of nodes and the plurality of messages; removing a

60 subset of the orderings from the set of orderings based upon
one or more of a state symmetry algorithm, a disjoint-update
independence algorithm, or a zero-crash-impact reordering
algorithm; and performing DC bug detection testing using
the set of orderings after the subset of the orderings is

65 removed from the set of orderings.
A memory storage means comprising instructions; and a

processor means in communication with the memory means.

US 10,599,552 B2
11

The processor means executes the instructions to identify a
plurality of nodes in a distributed computing cluster; identify
a plurality of messages to be transmitted during execution of
an application by the distributed computing cluster; deter
mine a set of orderings of the plurality of messages for 5

distributed concurrency (DC) bug detection, the set of
orderings determined based upon the plurality of nodes and
the plurality of messages; remove a subset of the orderings
from the set of orderings based upon one or more of a state
symmetry algorithm, a disjoint-update independence alga- 10

rithm, or a zero-crash-impact reordering algorithm; and
perform DC bug detection testing using the set of orderings
after the subset of the orderings is removed from the set of
order.

A non-transitory computer readable medium means star- 15

ing computer instructions, that when executed by a proces
sor means, causes the processor means to perform identify
a plurality of nodes in a distributed computing cluster;
identify a plurality of messages to be transmitted during
execution of an application by the distributed computing 20

cluster; determine a set of orderings of the plurality of
messages for distributed concurrency (DC) bug detection;
remove a subset of the orderings from the set of orderings
based upon one or more of a state symmetry algorithm, a
disjoint-update independence algorithm, or a zero-crash- 25

impact reordering algorithm; and perform DC bug detection
testing using the set of orderings after the subset of the
orderings is removed from the set of orderings.

While several embodiments have been provided in the
present disclosure, it should be understood that the disclosed 30

systems and methods might be embodied in many other
specific forms without departing from the spirit or scope of
the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the inten
tion is not to be limited to the details given herein. For 35

example, the various elements or components can be com
bined or integrated in another system or certain features can
be omitted, or not implemented.

In addition, techniques, systems, subsystems, and meth
ods described and illustrated in the various embodiments as 40

discrete or separate can be combined or integrated with other
systems, modules, techniques, or methods without departing
from the scope of the present disclosure. Other items shown

12
independence algorithm, and a zero-crash-impact reor
dering algorithm, where the zero-crash-impact reorder
ing algorithm is a crash-after-discard reduction or a
consecutive-crash reduction, and where the consecu
tive-crash reduction comprises determining a first mes
sage of a first ordering causes a crash of a node,
determining a second message of the first ordering
causes another crash of the node, and adding a second
ordering comprising the first message and the second
message to the subset of the orderings; and

performing, by the computing device, DC bug detection
testing using the set of orderings after the subset of the
orderings is removed from the set of orderings.

2. The method of claim 1, wherein removing the subset of
the orders from the set of orderings based upon the state
symmetry algorithm comprises:

comparing a first state transition of a first node of a first
ordering of the set of orderings with a second state
transition of a second node of a second ordering of the
set of orderings; and

adding the second ordering to the subset of the orderings
when the first state transition and the second state
transition are symmetrical.

3. The method of claim 1, wherein removing the subset of
the orders from the set of orderings based upon the disjoint
update independence algorithm comprises:

comparing a first variable in a first message of a first
ordering of the set of orderings with a second variable
in a second message of the first ordering of the set of
orderings; and

adding a second ordering to the subset of the orderings
when the first variable and the second variable are
different and the second ordering comprises the first
message and the second message.

4. The method of claim 1, further comprising:
determining, prior to performing the DC bug detection,

one or more parallel flip orderings, each of the parallel
flip orderings comprising a first plurality of messages
for a first node and a second plurality of messages for
a second node, wherein the first plurality of messages
are independent of the second plurality of messages,
and wherein the first plurality of messages and the
second plurality of messages are reordered in each of
the parallel flip orderings; and

prioritizing the parallel flip orderings when performing
the DC bug detection.

or discussed as coupled can be directly coupled or can be
indirectly coupled or communicating through some inter- 45

face, device, or intermediate component whether electri
cally, mechanically, or otherwise. Other examples of
changes, substitutions, and alterations are ascertainable by
one skilled in the art and could be made without departing
from the spirit and scope disclosed herein.

5. The method of claim 1, wherein removing the subset of
the orders from the set of orderings based upon crash-after-

50 discard reduction comprises:
What is claimed is:
1. A method for distributed concurrency (DC) bug detec

tion, the method comprising:
identifying, by a computing device, a plurality of nodes in

a distributed computing cluster;
identifying, by the computing device, a plurality of mes

sages to be transmitted during execution of an appli
cation by the distributed computing cluster;

determining, by the computing device, a set of orderings
of the plurality of messages for DC bug detection, the
set of orderings determined based upon the plurality of
nodes and the plurality of messages;

removing, by the computing device, a subset of the
orderings, where each ordering comprises a unique
sequence of message arrival at one or more of the
nodes, from the set of orderings based upon one or
more of a state symmetry algorithm, a disjoint-update

55

determining a first message of a first ordering will be
discarded by a node;

determining a second message of the first ordering causes
a crash of the node; and

adding a second ordering comprising the first message
and the second message to the subset of the orderings.

6. The method of claim 1, wherein the set of orderings
comprises unique orderings for each permutation of the
plurality of messages received at each of the plurality of

60 nodes.
7. The method of claim 1, further comprising determining

the subset of the orderings based upon each of the state
symmetry algorithm, the disjoint-update independence algo
rithm, the zero-crash-impact reordering algorithm, and a

65 parallel flips algorithm.
8. A device comprising:
a memory storage comprising instructions; and

US 10,599,552 B2
13

a processor in connnunication with the memory, wherein
the processor executes the instructions to:
identify a plurality of nodes in a distributed computing

cluster;
identify a plurality of messages to be transmitted during 5

execution of an application by the distributed com
puting cluster;

determine a set of orderings of the plurality of mes
sages for distributed concurrency (DC) bug detec
tion, the set of orderings determined based upon the 10

plurality of nodes and the plurality of messages;
remove a subset of the orderings, where each ordering

comprises a unique sequence of message arrival at
one or more of the nodes, from the set of orderings

15
based upon one or more of a state synnnetry algo
rithm, a disjoint-update independence algorithm, and
a zero-crash-impact reordering algorithm, where the
zero-crash-impact reordering algorithm is a crash
after-discard reduction or a consecutive-crash reduc- 20

tion, and where the consecutive-crash reduction
comprises determining a first message of a first
ordering causes a crash of a node, determining a
second message of the first ordering causes another
crash of the node, and adding a second ordering 25

comprising the first message and the second message
to the subset of the orderings; and

perform DC bug detection testing using the set of
orderings after the subset of the orderings is removed
from the set of orderings. 30

9. The device of claim 8, wherein the instructions to
remove the subset of the orders from the set of orderings
based upon the state synnnetry algorithm comprise instruc
tions to:

compare a first state transition of a first node of a first
ordering of the set of orderings with a second state
transition of a second node of a second ordering of the
set of orderings; and

35

add the second ordering to the subset of the orderings 40

when the first state transition and the second state
transition are synnnetrical.

10. The device of claim 8, wherein the instructions to
remove the subset of the orders from the set of orderings
based upon the disjoint-update independence algorithm 45

comprise instructions to:

14
12. The device of claim 8, wherein instructions to remove

the subset of the orders from the set of orderings based upon
the crash-after-discard reduction comprise instructions to:

determine a first message of a first ordering will be
discarded by a node;

determine a second message of the first ordering causes a
crash of the node; and

add a second ordering comprising the first message and
the second message to the subset of the orderings.

13. The device of claim 8, wherein the set of orderings
comprises unique orderings for each permutation of the
plurality of messages received at each of the plurality of
nodes.

14. The device of claim 8, wherein the processor is further
configured to determine the subset of the orderings based
upon each of the state synnnetry algorithm, the disjoint
update independence algorithm, the zero-crash-impact reor
dering algorithm, and a parallel flips algorithm.

15. A non-transitory computer readable medium storing
computer instructions, that when executed by a processor,
causes the processor to perform:

identify a plurality of nodes in a distributed computing
cluster;

identify a plurality of messages to be transmitted during
execution of an application by the distributed comput
ing cluster;

determine a set of orderings of the plurality of messages
for distributed concurrency (DC) bug detection;

remove a subset of the orderings, where each ordering
comprises a unique sequence of message arrival at one
or more of the nodes, from the set of orderings based
upon one or more of a state synnnetry algorithm, a
disjoint-update independence algorithm, and a zero
crash-impact reordering algorithm, where the zero
crash-impact reordering algorithm is a crash-after-dis-
card reduction or a consecutive-crash reduction, and
where the consecutive-crash reduction comprises deter
mining a first message of a first ordering causes a crash
of a node, determining a second message of the first
ordering causes another crash of the node, and adding
a second ordering comprising the first message and the
second message to the subset of the orderings; and

perform DC bug detection testing using the set of order
ings after the subset of the orderings is removed from
the set of orderings.

compare a first variable in a first message of a first
ordering of the set of orderings with a second variable
in a second message of the first ordering of the set of
orderings; and

add a second ordering to the subset of the orderings when
the first variable and the second variable are different
and the second ordering comprises the first message
and the second message.

16. The non-transitory computer readable medium of
claim 15, wherein the instructions that cause the processor
to remove the subset of the orders from the set of orderings

50 based upon the state synnnetry algorithm comprise instruc
tions that cause the processor to perform:

11. The device of claim 8, wherein the processor further 55

executes the instructions to:
determine, prior to performing the DC bug detection, one

or more parallel flip orderings, each of the parallel flip
orderings comprising a first plurality of messages for a
first node and a second plurality of messages for a 60

second node, wherein the first plurality of messages are
independent of the second plurality of messages, and
wherein the first plurality of messages and the second
plurality of messages are reordered in each of the
parallel flip orderings; and 65

prioritize the parallel flip orderings when performing the
De bug detection.

compare a first state transition of a first node of a first
ordering of the set of orderings with a second state
transition of a second node of a second ordering of the
set of orderings; and

add the second ordering to the subset of the orderings
when the first state transition and the second state
transition are synnnetrical.

17. The non-transitory computer readable medium of
claim 15, wherein the instructions that cause the processor
to remove the subset of the orders from the set of orderings
based upon the disjoint-update independence algorithm
comprise instructions that cause the processor to perform:

compare a first variable in a first message of a first
ordering of the set of orderings with a second variable
in a second message of the first ordering of the set of
orderings; and

US 10,599,552 B2
15

add a second ordering to the subset of the orderings when
the first variable and the second variable are different
and the second ordering comprises the first message
and the second message.

18. The non-transitory computer readable medium of 5

claim 15, wherein the instructions further cause the proces
sor to perform:

determine, prior to the DC bug detection, one or more
parallel flip orderings, each of the parallel flip orderings
comprising a first plurality of messages for a first node 10

and a second plurality of messages for a second node,
wherein the first plurality of messages are independent
of the second plurality of messages, and wherein the
first plurality of messages and the second plurality of
messages are reordered in each of the parallel flip 15

orderings; and
prioritize the parallel flip orderings when performing the

DC bug detection.
19. The non-transitory computer readable medium of

claim 15, wherein instructions that cause the processor to

16
remove the subset of the orders from the set of orderings
based upon the crash-after-discard reduction comprise
instructions that cause the processor to perform:

determine a first message of a first ordering will be
discarded by a node;

determine a second message of the first ordering causes a
crash of the node; and

add a second ordering comprising the first message and
the second message to the subset of the orderings.

20. The non-transitory computer readable medium of
claim 15, wherein the set of orderings comprises unique
orderings for each permutation of the plurality of messages
received at each of the plurality of nodes.

21. The non-transitory computer readable medium of
claim 15, wherein the instructions further cause the proces
sor to determine the subset of the orderings based upon each
of the state symmetry algorithm, the disjoint-update inde
pendence algorithm, the zero-crash-impact reordering algo
rithm, and a parallel flips algorithm.

* * * * *

