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(57) ABSTRACT 

States are identified in a time ordered sequence of data that 
have a temporal component. Data that includes a plurality of 
snapshots is received. Each snapshot of the plurality of 
snapshots includes a plurality of sensor measurements cap­
tured from distinct sensors at a common time point. The 
plurality of snapshots are time ordered. Root mean square 
error (RMSE) values are computed between successive pairs 
of the plurality of snapshots in time order. A peak is 
identified in the computed RMSE values. A valley is iden­
tified in the computed RMSE values. A stable state is 
determined as occurring from the identified peak to the 
identified valley. The determined stable state is output. 
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STATE IDENTIFICATION IN DATA WITH A 
TEMPORAL DIMENSION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

The present application claims the benefit of 35 U.S.C. § 
119(e) to U.S. Provisional Patent Application No. 62/131, 
094 filed on Mar. 10, 2015, and to U.S. Provisional Patent 
Application No. 62/213,818 filed on Sep. 3, 2015, the entire 
contents of which are hereby incorporated by reference. 

BACKGROUND 

The rapid growth of large-scale, high-spatial resolution 
neuroimaging technology has advanced the understanding 
of the neural underpinnings of various complex cognitive 
and social processes. For instance, work in cognitive and 
social neuroscience has identified the neural correlates of 
information processing operations, ranging from basic per­
ceptual processing (e.g., checkerboard) to more complex 
cognitive (e.g., object or face recognition, decision making, 
action understanding, embodied cognition) and social pro­
cessing (e.g., pair bonding, love, empathy, cooperation). 

A key theoretical objective in neuroscience and medicine 
is not only to specify what brain areas are recruited during 

2 
computing device, cause the computing device to identify 
states in a time ordered sequence of data that have a 
temporal component. 

In an example embodiment, a method of identifying states 
5 in a time ordered sequence of data that have a temporal 

component is provided. 
Other principal features of the disclosed subject matter 

will become apparent to those skilled in the art upon review 
of the following drawings, the detailed description, and the 

10 appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Illustrative embodiments of the disclosed subject matter 
15 will hereafter be described referring to the accompanying 

drawings, wherein like numerals denote like elements. 
FIG. 1 depicts a block diagram of a data processing device 

in accordance with an illustrative embodiment. 
FIGS. 2A-2D and 3 depict flow diagrams of example 

20 operations performed by the data processing device of FIG. 
1 in accordance with an illustrative embodiment. 

25 

FIG. 4 illustrates an identification of stable states and a 
transition state in accordance with an illustrative embodi-
ment. 

FIG. 5 illustrates a similarity evaluation relative to a mean 
template map in accordance with an illustrative embodi­
ment. 

a behavioral task, but also to specify when and in what 
specific combinations they are activated. By providing 
detailed information about the relationship between neu- 30 

ronal activity (i.e., post-synaptic dendritic potentials of a 
considerable number of neurons that are activated in pattern 
that yield a dipolar field) and the temporal resolution (mil­
lisecond by millisecond) of each component information 
processing operation required for behavioral performance, 35 

high-density electroencephalographic (EEG) recordings and 
averaged EEG (event-related potentials, ERPs) provide a 
tool in investigations of brain function. EEG/ERP analyses 
are performed in sensor space with high-density sensor 
recordings producing more detailed information about 40 

changes in brain activity measured across time and sensor 

FIG. 6A shows an event-related potential (ERP) recorded 
over the left occipital region of the brain in accordance with 
an illustrative embodiment. 

FIG. 6B shows an event-related potential (ERP) recorded 
over the right occipital region of the brain in accordance 
with an illustrative embodiment. 

FIG. 7 shows the results of an RMSE analysis routine 
applied to the grand mean of 22 simulated individual's ERPs 
in accordance with an illustrative embodiment. 

FIG. 8 shows the results of a GFP analysis routine applied 
to the grand mean of 22 simulated individual's ERPs in 
accordance with an illustrative embodiment. 

FIG. 9Ashows a s=ary of the results ofl000 bootstrap 
RMSE analyses to identify locations of peaks in accordance 
with an illustrative embodiment. space. 

SUMMARY 

In an example embodiment, a computer-readable medium 
is provided having stored thereon computer-readable 
instructions that, when executed by a computing device, 
cause the computing device to identify states in a time 
ordered sequence of data that have a temporal component. 
Data that includes a plurality of snapshots is received. Each 
snapshot of the plurality of snapshots includes a plurality of 
sensor measurements captured from distinct sensors at a 
common time point. The plurality of snapshots are time 
ordered and associated with a subject. Root mean square 
error (RMSE) values are computed between successive pairs 
of the plurality of snapshots in time order. A peak is 
identified in the computed RMSE values. A valley is iden­
tified in the computed RMSE values. A stable state is 
determined as occurring from the identified peak to the 
identified valley. The determined stable state is output for 
the subject. 

In yet another example embodiment, a computing device 

FIG. 9B shows a s=ary of the results ofl 000 bootstrap 
RMSE analyses to identify locations of valleys in accor-

45 dance with an illustrative embodiment. 
FIGS. l0A-lOI show summary statistics of the distribu­

tion of peaks/valleys found in bootstrap analysis within ±5% 
time windows around the locations of a peak/valley identi­
fied in the analysis of the overall RMSE in accordance with 

50 an illustrative embodiment. 
FIG. llA shows a summary of the results of 1000 

bootstrap GFP analyses to identify locations of peaks in 
accordance with an illustrative embodiment. 

FIG. llB shows a summary of the results of 1000 
55 bootstrap GFP analyses to identify locations of valleys in 

accordance with an illustrative embodiment. 
FIGS. 12A-12F show s=ary statistics of the distribu­

tion of peaks/valleys found in bootstrap analysis within ±5% 
time windows around the locations of a peak/valley identi-

60 fled in the analysis of the overall GFP in accordance with an 
illustrative embodiment. 

is provided. The system includes, but is not limited to, a 
processor and a computer-readable medium operably 65 

coupled to the processor. The computer-readable medium 
has instructions stored thereon that, when executed by the 

FIG. 13 shows tabular results of the RMSE and GFP 
computed based on the curves of FIGS. 7 and 8 in accor­
dance with an illustrative embodiment. 

FIG. 14 shows tabular results of the GFP computed based 
on the curves of FIG. 8 in accordance with an illustrative 
embodiment. 
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FIG. 15 shows tabular results summanzmg a cosine 
distance between template maps for the results shown in 
FIGS. 7, 8, 13, and 14 in accordance with an illustrative 
embodiment. 

4 
cessing device 100 and/or a distributed computing system 
128 using communication interface 106. 

Computer-readable medium 108 is an electronic holding 
place or storage for information so the information can be 

FIG. 16 shows tabular results summarizing a standard 
deviation and a confidence interval for the cosine distance 
between template maps for the results shown in FIGS. 7, 8, 
13, and 14 in accordance with an illustrative embodiment. 

FIG. 17 shows tabular results summarizing a template 
map membership for the results shown in FIGS. 7, 8, 13, and 
14 in accordance with an illustrative embodiment. 

5 accessed by processor 110 as understood by those skilled in 
the art. Computer-readable medium 108 can include, but is 
not limited to, any type of random access memory (RAM), 
any type of read only memory (ROM), any type of flash 
memory, etc. such as magnetic storage devices ( e.g., hard 

10 disk, floppy disk, magnetic strips, ... ), optical disks (e.g., 
compact disc (CD), digital versatile disc (DVD), ... ), smart 
cards, flash memory devices, etc. Data processing device 
100 may have one or more computer-readable media that use 

FIG. 18 shows a graphical user interface window for 
selecting process options in accordance with an illustrative 
embodiment. 

FIG. 19 shows sample output at seven steps in accordance 
with an illustrative embodiment. 

DETAILED DESCRIPTION 

15 
the same or a different memory media technology. For 
example, computer-readable medium 108 may include dif­
ferent types of computer-readable media that may be orga­
nized hierarchically to provide efficient access to the data 
stored therein as understood by a person of skill in the art. 

Referring to FIG. 1, a block diagram of a data processing 
device 100 is shown in accordance with an illustrative 
embodiment. Data processing device 100 may include an 
input interface 102, an output interface 104, a communica­
tion interface 106, a computer-readable medium 108, a 
processor 110, a data analytic application 122, data 124, and 
state data 126. Fewer, different, and/or additional compo­
nents may be incorporated into data processing device 100. 

20 As an example, a cache may be implemented in a smaller, 
faster memory that stores copies of data from the most 
frequently/recently accessed main memory locations to 
reduce an access latency. Data processing device 100 also 
may have one or more drives that support the loading of a 

25 memory media such as a CD, DVD, an external hard drive, 
etc. One or more external hard drives further may be 
connected to data processing device 100 using communica­
tion interface 106. 

Input interface 102 provides an interface for receiving 
information from the user for entry into data processing 30 

device 100 as understood by those skilled in the art. Input 
interface 102 may interface with various input technologies 
including, but not limited to, a keyboard 112, a camera 113, 
a mouse 114, a microphone 115, a display 116, a track ball, 
a keypad, one or more buttons, etc. to allow the user to enter 35 

information into data processing device 100 or to make 
selections presented in a user interface displayed on the 
display. The same interface may support both input interface 
102 and output interface 104. For example, display 116 
comprising a touch screen provides user input and presents 40 

output to the user. Data processing device 100 may have one 

Processor 110 executes instructions as understood by 
those skilled in the art. The instructions may be carried out 
by a special purpose computer, logic circuits, or hardware 
circuits. Processor 110 may be implemented in hardware 
and/or firmware. Processor 110 executes an instruction, 
meaning it performs/controls the operations called for by 
that instruction. The term "execution" is the process of 
running an application or the carrying out of the operation 
called for by an instruction. The instructions may be written 
using one or more programming language, scripting lan­
guage, assembly language, etc. Processor 110 operably 
couples with input interface 102, with output interface 104, 
with communication interface 106, and with computer-
readable medium 108 to receive, to send, and to process 
information. Processor 110 may retrieve a set of instructions 
from a permanent memory device and copy the instructions 

or more input interfaces that use the same or a different input 
interface technology. The input interface technology further 
may be accessible by data processing device 100 through 
communication interface 106. 45 in an executable form to a temporary memory device that is 

generally some form of RAM. Data processing device 100 
may include a plurality of processors that use the same or a 
different processing technology. 

Output interface 104 provides an interface for outputting 
information for review by a user of data processing device 
100 and/or for use by another application. For example, 
output interface 104 may interface with various output 
technologies including, but not limited to, display 116, a 50 

speaker 118, a printer 120, etc. Data processing device 100 
may have one or more output interfaces that use the same or 

Data analytic application 122 performs operations asso­
ciated with determining state data 126 from data 124. Data 
124 may include a time ordered sequence of data snapshots 
captured at discrete times. State data 126 may include 
distinct states identified in data 124. Some or all of the 
operations described herein may be embodied in data ana-

a different output interface technology. The output interface 
technology further may be accessible by data processing 
device 100 through communication interface 106. 55 lytic application 122. The operations may be implemented 

using hardware, firmware, software, or any combination of 
these methods. Referring to the example embodiment of 
FIG. 1, data analytic application 122 is implemented in 

Communication interface 106 provides an interface for 
receiving and transmitting data between devices using vari­
ous protocols, transmission technologies, and media as 
understood by those skilled in the art. Communication 
interface 106 may support communication using various 60 

transmission media that may be wired and/or wireless. Data 
processing device 100 may have one or more communica­
tion interfaces that use the same or a different communica­
tion interface technology. For example, data processing 
device 100 may support communication using an Ethernet 65 

port, a Bluetooth antenna, a telephone jack, a USB port, etc. 
Data and messages may be transferred between data pro-

software ( comprised of computer-readable and/or computer­
executable instructions) stored in computer-readable 
medium 108 and accessible by processor 110 for execution 
of the instructions that embody the operations of data 
analytic application 122. Data analytic application 122 may 
be written using one or more programming languages, 
assembly languages, scripting languages, etc. Data analytic 
application 122 may be a plug-in to another application that 
provides additional functionality. 
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further may be exposed to the common plurality of different 
stimuli a plurality of times and the ERP data averaged across 
the multiple exposures. 

Referring to FIGS. 2A-2D and 3, example operations 

Data analytic application 122 may be implemented as a 
Web application. For example, data analytic application 122 
may be configured to receive hypertext transport protocol 
(HTTP) responses and to send HTTP requests. The HTTP 
responses may include web pages such as hypertext markup 
language (HTML) documents and linked objects generated 
in response to the HTTP requests. Each web page may be 
identified by a uniform resource locator (URL) that includes 
the location or address of the computing device that contains 
the resource to be accessed in addition to the location of the 
resource on that computing device. The type of file or 
resource depends on the Internet application protocol such 

5 associated with data analytic application 122 are described. 
Additional, fewer, or different operations may be performed 
depending on the embodiment. The order of presentation of 
the operations of FIGS. 2A-2D and 3 is not intended to be 
limiting. Although some of the operational flows are pre-

as the file transfer protocol, HTTP, H.323, etc. The file 
accessed may be a simple text file, an image file, an audio 
file, a video file, an executable, a common gateway interface 
application, a Java applet, an extensible markup language 
(XML) file, or any other type of file supported by HTTP. 

10 sented in sequence, the various operations may be per­
formed in various repetitions, concurrently (in parallel, for 
example, using threads), and/or in other orders than those 
that are illustrated. For example, a user may execute data 
analytic application 122, which causes presentation of a first 

Data 124 includes a plurality of time ordered sequences of 
data snapshots, with each time ordered sequence including 
a plurality of time points. A data snapshot includes, but is not 
limited to, data captured at an approximately common time 
point. A video clip may be stored in a file and define a series 

15 user interface window, which may include a plurality of 
menus and selectors such as drop down menus, buttons, text 
boxes, hyperlinks, etc. associated with data analytic appli­
cation 122 as understood by a person of skill in the art. The 
plurality of menus and selectors may be accessed in various 

20 orders. An indicator may indicate one or more user selec­
tions from a user interface, one or more data entries into a 
data field of the user interface, one or more data items read 
from computer-readable medium 108 or otherwise defined 
with one or more default values, etc. that are received as an 

of data snapshots. The data stored in data 124 may include 
any type of content represented using any computer-read­
able format such as binary, alphanumeric, numeric, markup 
language, etc. Data 124 may be stored in computer-readable 
medium 108 or on computer-readable media on or acces­
sible by one or more other computing devices, such as 
distributed computing system 128, and accessed using com­
munication interface 106. Data 124 may be stored using 30 

various structures as known to those skilled in the art 

25 input by data analytic application 122. 
Referring to FIG. 2A, in an operation 200, a first indicator 

is received that indicates data 124 to transform to state data 
126. For example, the first indicator indicates a location of 
data 124. As an example, the first indicator may be received 
by data analytic application 122 after selection from a user 
interface window or after entry by a user into a user interface 
window. In an alternative embodiment, the data to transform 
may not be selectable. For example, a most recently created 
data set may be used automatically. The first indicator 

including a file system, a relational database, a system of 
tables, a structured query language database, etc. For 
example, data 124 may be stored in a cube distributed across 
a grid of computers as understood by a person of skill in the 
art. As another example, data 124 may be stored in a 
multi-node Hadoop® cluster or in a cloud of computing 
devices, as understood by a person of skill in the art. 

35 further may indicate a subset of data 124 to process. For 
example, the subset may be selected based on a specified 
time interval, based on a specified experiment, based on 
specified one or more subjects, based on specified one or 

Data 124 may include sensor data captured at a plurality 
of times with a measurement for each sensor captured at an 40 

approximately common time to create a snapshot that 
includes a plurality of sensor data measurements, one mea­
surement for each sensor. Thus, a snapshot may be a vector 

more conditions, etc. 
In an operation 202, a second indicator is received that 

indicates a baseline interval. The baseline interval defines a 
time interval within data 124 that is used to estimate noise 
statistics such as a mean and a standard deviation of the 
noise. The second indicator may indicate a start time, a stop 
time, and/or a duration of the baseline interval. A default 
value for the baseline interval may further be stored, for 
example, in computer-readable medium 108. Merely for 
illustration, a baseline interval of 400 milliseconds (ms) may 
be stored and used to define a duration of the baseline 

50 interval as 400 ms from a time associated with the first 

of sensor measurements taken at an approximately common 
time point. Other information such as a capture time, a 45 

subject identifier, a condition identifier, etc. further may be 
stored in association with the snapshot. For example, the 
sensors may capture data for production output quality 
control, cell processing, medical imaging, satellite imaging, 
security imaging, weather formation imaging, etc. The sen­
sors may capture measures in the form of infrared signals, 
radio frequency signals, thermal signals, magnetic field 
signals, electrical field signals, electromagnetic signals, 
magnetic resonance signals, optical signals, electrical cur­
rent signals, electrical voltage signals, sound wave signals, 55 

etc. Data 124 further may be captured for one or more 
subjects (people, places, or things) and under one or more 
conditions. 

For illustration where data 124 includes EEG/ERP data, 
the EEG data may be captured for a plurality of individuals 60 

who are experiencing a common plurality of different 
stimuli. A plurality of EEG time ordered sequences of data 
snapshots may be captured for each subject and condition 
combination for comparison. ERP data may be computed 
from the EEG data and may be computed for each indi- 65 

vidual, averaged across stimuli, averaged across individuals, 
averaged across stimuli and individuals, etc. Each individual 

snapshot stored in data 124. Of course, the baseline interval 
may be labeled or selected in a variety of different manners 
by the user. The same or a different baseline interval may be 
defined for each subject. 

In an operation 204, a third indicator is received that 
indicates a lag value of a lag parameter. The lag value 
defines a distance between snapshots that are to be com­
pared. For illustration where data 124 includes EEG/ERP 
data, the lag value may be defined as a minimum duration of 
a putative microstate. A minimum duration of an exogenous 
(stimulus driven) ERP microstate may be shorter than a 
minimum duration of an endogenous ERP microstate. For 
example, a lag value of approximately 8 ms may be appro­
priate for basic visual tasks; whereas, a lag value of approxi­
mately 12 ms may be appropriate for a more complex 
cognitive task. A default value for the lag value may further 
be stored, for example, in computer-readable medium 108. 
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Of course, the lag value may be labeled or selected in a 
variety of different manners by the user. For illustration 
where data 124 includes EEG/ERP data, the lag value may 
be selected by identifying the complexity of the task per­
formed while the EEG/ERP data was captured, where times 5 

associated with different complexities of tasks are stored, for 
example, in computer-readable medium 108. 

In an operation 206, a fourth indicator is received that 
indicates a microstate confidence parameter value. The 
microstate confidence parameter value, Mc, may be defined 10 

based on a combination of a confidence interval and a type 

8 
In an operation 210, a sixth indicator is received that 

indicates a number of sensors used to generate each snapshot 
included in data 124. A default value for the number of 
sensors may further be stored, for example, in computer­
readable medium 108. For example, a default value may be 
128. For illustration where data 124 includes EEG/ERP data, 
the number of sensors may be the number of electrodes used 
to capture the data. 

In an operation 212, data 124 may be pre-processed. For 
illustration where data 124 includes EEG/ERP data, data 124 
may be inspected for artifacts or bad channels in the record­
ings and EEG epochs containing eye blinks or other tran­
sient muscular and/or electric noise may be removed. 

In an operation 214, a mean of a root mean square value 
(RMSE) may be computed for the time ordered sequence of 
data snapshots that occur during the baseline interval indi­
cated in operation 202. For example, the RMSE may be 
computed using 

n 

~ (x; -x;J2 
RMSE= 

i=l 

n 

where n is the number of sensors indicated in operation 210, 
x, is a voltage at electrode i in a snapshot occurring at a first 
time during the baseline interval, and x, is a voltage at 

of statistical distribution. For illustration, when the micro­
state confidence parameter value is defined, the confidence 
interval and the distribution indicator need not be defined 

15 
because the confidence interval and the distribution indicator 
are used to compute the microstate confidence parameter 
value. For illustration, a microstate confidence parameter 
value equal to 1.96 may be input by a user and received in 
operation 206, or a confidence interval equal to 95% and a 20 

distribution indicator indicating standard normal distribution 
may be input by a user and received in operation 206. The 
microstate confidence parameter value may be computed 
based on the confidence interval and the distribution indi­
cator as understood by a person of skill in the art. A default 25 

value for the microstate confidence parameter value may 
further be stored, for example, in computer-readable 
medium 108. For example, a default value may be 2.575, 
which is associated with a 99% confidence interval and the 
standard normal distribution. Of course, other statistical 
distributions may be used. 

30 electrode i in a snapshot occurring at a subsequent time 
during the baseline interval. The RMSE computed for suc­
cessive pairs of snapshots during the baseline interval are 
averaged to compute the mean of the RMSE, RMSEM Each 
snapshot is a vector that includes the voltage at each 

In an operation 208, a fifth indicator is received that 
indicates a similarity metric confidence parameter value. 
The similarity metric confidence parameter value, M,, may 
be defined based on a combination of a confidence interval 
and a type of statistical distribution. For illustration, when 
the similarity metric confidence parameter value is defined, 
the confidence interval and the distribution indicator need 
not be defined because the confidence interval and the 
distribution indicator are used to compute the similarity 
metric confidence parameter value. For example, a micro­
state confidence parameter value equal to 1.96 may be input 

35 electrode captured at the same time. 
In an operation 216, a standard deviation of the RMSE 

may be computed for the time ordered sequence of data 
snapshots that occur during the baseline interval indicated in 
operation 202 by computing the square root of the sum of the 

40 square of the difference between each RMSE of a snapshot 
and RMSEM divided by n. 

by a user and received in operation 208, or a confidence 
interval equal to 95% and a distribution indicator indicating 
standard normal distribution may be input by a user and 45 

received in operation 208. The similarity metric confidence 
parameter value may be computed based on the confidence 
interval and the distribution indicator as understood by a 
person of skill in the art. A default value for the similarity 
metric confidence parameter value may further be stored, for 50 

example, in computer-readable medium 108. For example, a 
default value may be 2.575, which is associated with a 99% 
confidence interval and the standard normal distribution. Of 
course, other statistical distributions may be used. 

For illustration, referring to FIG. 18, a user interface 55 

window 1800 provides a mechanism by which a user may 
define the second indicator, the third indicator, the fourth 
indicator, and the fifth indicator. For example, the user may 
enter a value for a start time of the baseline interval in a first 
text box 1802 and a value for an end time of the baseline 60 

In an operation 218, a first non-baseline snapshot is 
selected from data 124. 

In an operation 220, a next snapshot is selected from data 
124. The next snapshot is separated from the first non­
baseline snapshot, or previous snapshot, by at least the lag 
value indicated in operation 204. 

In an operation 222, an RMSE value is computed between 
the first non-baseline snapshot, or previous snapshot, and the 
next snapshot using 

n 

~ (x; -x;J2 
RMSE= 

i=l 

n 

where n is the number of sensors indicated in operation 210, 
x, is a voltage at electrode i in the next snapshot, and x, is a 
voltage at electrode i in the first non-baseline snapshot, or 
previous snapshot, when data 124 includes EEG/ERP data. interval in a second text box 1803. The user may enter the 

lag value of the lag parameter in a third text box 1804. The 
user may select the microstate confidence parameter value 
by selecting between a first radio button 1806 and a second 
radio button 1808. The user may select the similarity metric 
confidence parameter value by selecting between a third 
radio button 1810 and a fourth radio button 1812. 

In an operation 224, the computed RMSE value may be 
output, for example, by storing in computer-readable 
medium 108, by displaying in a table or graph on display 

65 116, by printing in a table or graph by printer 120, etc. For 
illustration, referring to FIG. 4, values of RMSE are shown 
for 16 time ordered snapshots. 
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In an operation 226, a determination is made concerning 
whether or not data 124 includes another snapshot to pro­
cess. If data 124 includes another snapshot to process, 
processing continues in operation 220 to select a next 
snapshot and to compute the RMSE between the newly 
selected next snapshot and the previously selected next 
snapshot, which becomes the previous snapshot. If data 124 
does not include another snapshot to process, processing 
continues in an operation 228. 

In operation 228, parameters are initialized. For example, 
a confidence interval parameter value, CI, may be defined as 
the microstate confidence parameter value, Mc, determined 

10 
Referring to FIG. 2C, in operation 256, states are deter­

mined from the maxima and minima identified in operations 
234-254. For example, a stable state may be defined as 
occurring from a peak (maxima) to a subsequent valley 

5 (minima), inclusive. Successive peaks to valleys are indi­
cated as different stable states. A transition state may be 
defined as from the valley (minima) to the subsequent peak 
(maxima), exclusive. Information describing the determined 
states may be output, for example, by storing in computer-

IO readable medium 108, by displaying in a table or graph on 
display 116, by printing in a table or graph by printer 120, 
etc. The state information may include a list of the snapshots 
included in each state based on a start time associated with in operation 206 multiplied by the standard deviation deter­

mined in operation 216. As another example, a prior peak, 
15 

Pp, and a prior valley, Pr, may be initialized to RMSEM 

the peak and a stop time associated with the subsequent 
valley for stable states, and based on a start time associated 
with the valley and a stop time associated with the subse­
quent peak for transition states. A state type indicator may 
indicate whether each state is a stable state or a transition 

In an operation 230, local maxima and local minima are 
identified in the stored RMSE data. For example, an array 
may be stored in computer-readable medium 108 that 
includes values oflocal maxima and local minima, a capture 20 

time of the snapshot associated with the local maxima or 
local minima, and an indicator indicating whether or not the 
value is a local maxima or a local minima. 

state. 
Referring again to FIG. 4, snapshots 1-6 may define a first 

stable state, snapshots 7-10 may define a first transition state, 
and snapshots 11-16 may define a second stable state with a 
lag value of 5 and a sampling period of 1. Point 400 reflects 
an onset of a transition period from a hypothetical stable In an operation 232, a first local extrema, X 1 , is selected 

from the identified local maxima and local minima. 
Referring to FIG. 2B, in an operation 234, a determination 

is made concerning whether or not first local extrema X 1 is 

25 state to a second state. Point 402 ( a first peak) defines a start 
of a next state, which extends either to the end of the 
recording epoch or until a valley and another peak occur (not 
shown). The timing of each microstate is peak-to-valley, a local maxima. If first local extrema X 1 is a local maxima, 

processing continues in an operation 236. If first local 
extrema X 1 is not a local maxima, processing continues in an 30 

operation 244. 
In operation 236, a determination is made concerning 

whether or not X 1>Pr+CI. IfX1>Pr+CI, processing contin­
ues in an operation 238. IfX1sPr+CI, processing continues 
in an operation 252. 

In operation 238, a next RMSE value, RMSE2 , is selected 
from the stored RMSE data, for example, using the capture 
time of the snapshot associated with the local maxima. Of 
course, RMSE2 may be stored in the array in association 
with the local maxima. 

In operation 240, a determination is made concerning 
whether or not X 1-RMSE2>CI. IfX1-RMSE2>CI, process­
ing continues in an operation 242. If X 1 -RMSE2 sCI, pro­
cessing continues in operation 252. 

inclusive. 
Referring to FIG. 7, information describing the deter­

mined states may be output in a first chart 700 that shows the 
RMSE as a function of time with downward arrows indi­
cating a start time of a stable state interval and upward 
arrows indicating an end time of the stable state interval. 

35 First chart 700 may include an RMSE curve 702, a baseline 
RMSE mean curve 704, and an RMSE confidence interval 
curve 706. RMSE curve 702 provides the RMSE value as a 
function of time as computed in operation 222. Baseline 
RMSE mean curve 704 provides the mean RMSE value 

40 computed for the baseline interval in operation 214. RMSE 
confidence interval curve 706 provides the RMSE value 
computed for the baseline interval plus a value, such as 
confidence interval parameter value, CI, computed in opera-
tion 228. 

In operation 242, X 1 is stored as a maxima or peak in the 45 

RMSE data. 
Referring again to FIG. 2C, in an operation 258, a global 

field power may be computed for each non-baseline interval 
snapshot using In operation 244, a determination is made concerning 

whether or not PP-X1>CI. If PP-X1>CI, processing contin­
ues in an operation 246. If PP-X1 sCI, processing continues 
in operation 252. 

Similar to operation 238, in operation 246, a next RMSE 
value, RMSE2 , is selected from the stored RMSE data. 

50 

In operation 248, a determination is made concerning 
whether or not RMSE2-X1>CI. IfRMSE2-X1>CI, process­
ing continues in an operation 250. If RMSE2 -X1 sCI, pro- 55 

cessing continues in operation 252. 
In operation 250, X 1 is stored as a minima or valley in the 

RMSE data. 
In operation 252, a determination is made concerning 

whether or not there is another identified extrema. If there is 60 

GFP= 

£; (x; -x;)2 

i=l 

n 

where n is the number of sensors indicated in operation 210, 
x, is a voltage at electrode i in each non-baseline interval 
snapshot, and x is an average voltage of each electrode i in 
the non-baseline interval snapshot when data 124 includes 
EEG/ERP data. 

In an operation 260, the computed GFP values are stored, 
for example, in computer-readable medium 108. another identified extrema, processing continues in an 

operation 254. If there is not another identified extrema, 
processing continues in an operation 256. 

In operation 254, a next local extrema value is selected as 
X 1 and processing continues in operation 234. 

Similar to operation 214, in an operation 262, a mean of 
the GFP, GFP M' may be computed for the time ordered 
sequence of data snapshots that occur during the baseline 

65 interval indicated in operation 202. 
Operations 234-254 may be used to remove local 

maxima/minima that represent noise in the RMSE data. 
Similar to operation 216, in an operation 264, a standard 

deviation of the GFP may be computed for the time ordered 
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sequence of data snapshots that occur during the baseline 
interval indicated in operation 202. 

12 

Similar to operation 228, in operation 266, parameters are 
initialized. For example, a confidence interval parameter 
value, CIG, may be defined as the microstate confidence 5 

parameter value determined in operation 206 multiplied by 
the standard deviation determined in operation 264. Of 
course, a different value for the microstate confidence 
parameter value may be used for the GFP computations in 
an alternative embodiment. Prior peak, PP, and prior valley, 10 

Pr, may be initialized to GFP M" 

peaks and valleys. The determined GFP states may differ in 
number and timing relative to the states determined in 
operation 256. 

For illustration, referring to FIG. 8, information describ­
ing the determined GFP states may be output in a second 
chart 800 that shows the GFP as a function of time with 
downward arrows indicating a peak time and upward arrows 
indicating a valley time. Second chart 800 may include a 
GFP curve 802, a baseline GFP mean curve 804, and a GFP 

Similar to operation 230, in an operation 268, local 
maxima and local minima are identified in the stored GFP 
data. 

Similar to operation 232, in an operation 270, a first local 
extrema, Xi, is selected from the identified local maxima 
and local minima. 

Similar to operation 234, in an operation 272, a determi­
nation is made concerning whether or not first local extrema 
X 1 is a local maxima. If first local extrema X 1 is a local 
maxima, processing continues in an operation 274. If first 
local extrema X 1 is not a local maxima, processing continues 
in an operation 282. 

Similar to operation 236, in operation 274, a determina­
tion is made concerning whether or not X 1>Py+CIG. If 
X 1>Py+CIG, processing continues in an operation 276. If 
X 1 sP r+CIG, processing continues in an operation 290. 

Similar to operation 238, in operation 276, a next GFP 
value, GFP 2 , is selected from the stored GFP data. 

Similar to operation 240, in operation 278, a determina­
tion is made concerning whether or not X 1-GFP2 >CIG. If 
X 1 -GFP 2>CIG, processing continues in an operation 280. If 
X 1 -GFP 2 sCIG, processing continues in operation 290. 

Similar to operation 242, in operation 280, X 1 is stored as 
a maxima or peak and processing continues in operation 
290. 

Referring to FIG. 2D, similar to operation 244, in opera­
tion 282, a determination is made concerning whether or not 
PP-X1>CIG. If PP-X1>CIG, processing continues in an 
operation 284. If PP-X1 sCIG, processing continues in opera­
tion 290. 

Similar to operation 238, in operation 284, a next GFP 
value, GFP 2 , is selected from the stored GFP data. 

Similar to operation 248, in operation 286, a determina­
tion is made concerning whether or not GFP2 -X1>CIG. If 
GFP 2-X1>CIG, processing continues in an operation 288. If 
GFP2-X1sCIG, processing continues in operation 290. 

Similar to operation 250, in operation 288, X 1 is stored as 
a minima or valley. 

Similar to operation 250, in operation 290, a determina­
tion is made concerning whether or not there is another 
identified extrema. If there is another identified extrema, 
processing continues in an operation 292. If there is not 
another identified extrema, processing continues in an 
operation 294. 

Similar to operation 254, in operation 292, a next local 
extrema value is selected as X 1 and processing continues in 
operation 272. Operations 272-292 may be used to remove 
local maxima/minima that represent noise. 

confidence interval curve 806. GFP curve 802 provides the 
GFP value as a function of time computed in operation 258. 
Baseline GFP mean curve 804 provides the mean GFP value 
computed for the baseline interval in operation 262. GFP 

15 
confidence interval curve 806 provides the mean GFP value 
computed for the baseline interval plus a value, such as 
confidence interval parameter value, CIG, computed in 
operation 266. 

As another illustrative output of the determined states, 

20 referring to FIG. 13, a first table 1300 includes a start time 
value ("Start"), an end time value ("End"), a maximum GFP 
value ("Max GFP"), an average GFP value ("Avg GFP"), 
and a standard deviation value ("Stddev GFP") determined 
for the baseline and five additional states graphically 

25 depicted by RMSE curve 702 of FIG. 7. The start time 
values correspond with the downward arrows and the end 
time values correspond with the upward arrows included on 
RMSE curve 702 of FIG. 7. The maximum GFP value, the 
average GFP value, and the standard deviation value are 

30 included in first table 1300 for each state including the 
baseline interval. 

As another illustrative output of the determined GFP 
states, referring to FIG. 14, a second table 1400 includes a 
time value ("Time") and an amplitude value ("Amplitude") 

35 determined for the GFP states graphically depicted by GFP 
curve 802 of FIG. 8. The valley time values correspond with 
the upward arrows and the peak time values correspond with 
the downward arrows included on GFP curve 802 of FIG. 8 
excluding the start and stop times. The amplitude in the 

40 tables indicates the GFP value in microvolts (µ V) deter­
mined for each valley and each peak in operation 258. 

Referring to FIG. 3, in an operation 302, a mean template 
map is computed for each stable state determined in opera­
tions 234-254. Using the example of FIG. 4, a first mean 

45 template map is computed for the first stable state as an 
average of each sensor measurement of snapshots 1-6; a 
second mean template map is computed for the second 
stable state as an average of each sensor measurement of 
snapshots 11-16. The mean template maps may be output by 

50 storing in computer-readable medium 108, by displaying in 
a table or graph on display 116, by printing in a table or 
graph by printer 120, etc. 

For illustration, referring to FIG. 5, a snapshot includes 
two sensor measurements and the stable state includes a first 

55 snapshot vector 500, a second snapshot vector 502, a third 
snapshot vector 504, and a fourth snapshot vector 506. A 
mean template map vector 508 is computed as the average 
of the first sensor measurements and an average of the 
second sensor measurements. 

60 

Similar to operation 256, in operation 294, GFP states are 
determined from the maxima and minima identified in 
operations 272-292. Information describing the determined 
GFP states may be output, for example, by storing in 
computer-readable medium 108, by displaying in a table or 65 

graph on display 116, by printing in a table or graph by 
printer 120, etc. The information may include locations of 

Referring again to FIG. 3, in an operation 304, a standard 
deviation is computed for each state as 

SD= 

L sim(t;, T) 2 

i=l 

m 
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-continued 
A-B 

where Sim(A, B) = 1 - cos(0J = 1 - IIAIIIIBII' 

T is the mean template map for the stable state, m is the 
number of snapshots includes in the stable state, and t, is the 
snapshot vector. 

In an operation 306, a similarity metric interval parameter 
value, Cl,m, may be defined as the similarity metric confi­
dence parameter value, M,, determined in operation 208 
multiplied by the standard deviation determined in operation 
304 for each stable state. 

In an operation 310, a first mean template map is selected. 
In an operation 312, a next mean template map is selected. 
In an operation 314, a similarity is computed between the 

first mean template map and the next mean template map as 

A-B 
Sim(A, B) = 1 - cos(0J = 1 - IIAIIIIBII' 

where A is the first, or previous, mean template map vector 
and B is the next mean template map vector. 

In an operation 316, a determination is made concerning 
whether or not the states have a similar configuration. If the 
states have a similar configuration, processing continues in 
an operation 318. If the states do not have a similar con­
figuration, processing continues in an operation 320. 

14 
In operation 324, a next mean template map is selected. 

Processing continues in operation 314 with the selected next 
mean template map and the previously used next mean 
template map as the first, or previous, mean template map 

5 vector. 
In operation 326, information related to the stable states, 

GFP states, template maps, and/or configurations is output. 
The information may be output, for example, by storing in 
computer-readable medium 108, by displaying in a table or 

10 graph on display 116, by printing in a table or graph by 
printer 120, etc. For illustration, referring again to FIG. 18, 
user interface window 1800 may also provide a mechanism 
by which a user may indicate whether or not the template 
maps are output by selecting between a fifth radio button 

15 1814 and a sixth radio button 1816. User interface window 
1800 further may provide a mechanism by which a user may 
indicate whether or not preliminary results are graphed by 
selecting between a seventh radio button 1818 and an eighth 
radio button 1820. The preliminary results may reference 

20 output describing changes in GFP. The preliminary results 
include information about microstates before they are 
merged using the multi-dimensional cosine similarity metric 
based on the cosine distance function that determines 
whether template maps for successive brain microstates 

25 differ in configuration of brain activity. The final results 
include results after the merging of the brain microstates. 

For illustration, as already described the information may 
be presented in charts such as first chart 700 of FIG. 7, 
second chart 800 of FIG. 8, first table 1300 of FIG. 13, 

30 second table 1400 of FIG. 14, etc. As further illustration, 
FIGS. 15-17 provide quantitative information about the 
cosine distance between template maps, the standard devia­
tion of cosine distances of topographic maps (i.e., the 

For example, to determine the states have a similar 
configuration, Sim(A,B)<CI,m or Sim(A,B)sCI,m, and to 
determine the states do not have a similar configuration, 
Sim(A,B);;,;Cism or Sim(A,B)>Cism· For illustration, refer­
ring again to FIG. 5, this comparison has the effect of 35 

determining if B is between a maximum vector 510 and a 
minimum vector 512 computed relative to A or separated by 

average evoked potentials at a given recording bin across 
n-dimensional sensor space where n the number of EEG 
recording channels) in each template map, and a member-
ship identification code for the template maps, respectively. 
FIG. 15 shows a third table 1500 that surmnarizes a cosine 
distance between template maps for the results shown in 
FIGS. 7, 8, 13, and 14 in accordance with an illustrative 
embodiment; FIG. 16 shows a fourth table 1600 that sum-

an angle less than a maximum angle 514. 

marizes a standard deviation and a confidence interval for 
the cosine distance between template maps for the results 
shown in FIGS. 7, 8, 13, and 14 in accordance with an 

In operation 318, the first, or previous, mean template 
40 

map vector and the next mean template map vector are 
indicated as having the same configuration. In operation 
320, the first, or previous, mean template map vector and the 
next mean template map vector are indicated as having 
different configurations. 

When data 124 includes EEG/ERP data, Cl,m specifies a 
cosine distance (representing the angles around A) within 
which a subsequent configuration of brain activity across the 
n-dimensional sensor space is evaluated as equivalent or 
similar to the microstate (stable state) represented by A. 50 

Specifically, the next mean template map vector for the 
successive event-related microstate is compared to the pre­
ceding microstate, A, by calculating the cosine distance 
between B and A. If this value falls outside tCism around A, 
microstate B is interpreted, with the specified confidence, as 55 

representing a significantly different configuration of brain 
activity-that is, a distinct microstate whether or not GFP 
also changed between the two microstates. In this way, the 
n-dimensional cosine distance metric makes it possible to 
determine whether template maps for successive brain 60 

microstates differ in configuration of brain activity, GFP, or 

45 illustrative embodiment; and FIG. 17 shows a fifth table 
1700 that surmnarizes a template map membership for the 
results shown in FIGS. 7, 8, 13, and 14 in accordance with 
an illustrative embodiment. 

a combination of the two. 
In an operation 322, a determination is made concerning 

whether or not there is another stable state template map. If 
there is another stable state template map, processing con­
tinues in an operation 324. If there is not another stable state 
template map, processing continues in an operation 326. 

For example, third table 1500 provides a value of the 
cosine metric between each unique pairs of states including 
the baseline interval. Fourth table 1600 provides a value of 
the standard deviation computed for each state in operation 
304, and a value of the similarity metric interval parameter 
value, Cism' computed for each state in operation 306. Fifth 
table 170 provides a surmnary of which values did and did 
not fall outside tCism with the specified confidence for each 
unique pair of microstates. A value of "1" indicates that the 
pair of micro states do not represent a significantly different 
configuration of brain activity, and a value of"*" indicates 
that the pair of microstates do represent a significantly 
different configuration of brain activity. 

In operation 328, the state determinations are evaluated 
for robustness. For example, when data 124 includes EEG/ 
ERP data, the states evoked across conditions or across 

65 subjects may be evaluated for homogeneity using a boot­
strapping procedure to identify heterogeneities in the timing 
or number of states as well as their representative template 
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maps across analysis trials, runs, or participants. The boot­
strapping procedure can be performed either within-subjects 
or across groups of subjects (between-subjects). In the case 

16 
ascertained by a detailed ananmesis. The experimental 
design was a 2 (Task instructions: passive viewing versus 
active visual search)x2 (Counterbalanced Order) between­
subjects factorial design. The data from the passive viewing of within-subject bootstrapping, at each iteration a unique 

ERP is "bootstrapped" by a process of random selection 
from the available trials in a given subject's EEG recording 
for a given condition, with the selected trials then averaged 

5 condition was the focus because it replicates the instruc­
tional condition in the checkerboard reversal task. In this 

to generate an ERP for that subject and condition. In 
between-subjects bootstrapping, a pre-processing step may 
be performed in which each subject's EEG recordings for a 10 

given condition are reduced to a within-subject ERP by 
averaging. The remainder of the between-subjects bootstrap­
ping procedure is the same as the within-subjects procedure, 
but, instead of performing a random selection from the set 
of one subject's available trials, the bootstrapped ERP is 15 

generated by selecting from the set of all subjects ERPs for 
the given condition. In either case, a random sample of r 
(without replacement) of the available N possibilities is used 
to generate the bootstrapped ERP. 

Following each bootstrap ERP generation phase, the 20 

resulting ERP (either within- or between-subjects) is sub­
jected to the state determination described by one or more of 
the operations of FIGS. 2A-2D and 3. The operations may 
be repeated a large number of times. For example, a total 
number of unique bootstrapped ERPs (i.e., unique combi- 25 

nations of samples of size r from a population of size N) is 
given by (N choose r), as 

condition, participants were instructed to passively view the 
center of a reversing checkerboard. 

The checkerboards had a spatial frequency of 1 cycle/deg, 
covered 5 .4x5 .57° of visual angle and were reversed every 
500 ms. A red cross of 1 ° of visual angle was placed in the 
top center of the monitor, and the participants were 
instructed to fixate this cross throughout visual stimulation. 
Stimuli were displayed in black and white on a monitor 
screen, with a refresh rate of 60 hertz (Hz). Visual stimuli 
were presented on a computer display, which provides 
control of display durations and accurate recordings of 
reaction times. Participants were comfortably seated 100 
centimeters (cm) away from the screen in which the stimuli 
were presented centrally. The task consisted of 250 check­
erboard reversals. 

Continuous surface electroencephalogram (EEG) was 
recorded from 128 AgAgCl carbon-fiber coated electrodes 
using an Electric Geodesic Sensor Net, where the EEG 
electrodes were arrayed in a regular distribution across the 
head surface and the inter-sensor distance is approximately 
3 cm. The EEG was digitized at 250 Hz ( corresponding to 
a sample period of 4 ms), with a bandwidth of0.01-200 Hz, 
with the vertex electrode (Cz) serving as an on-line record-

(N) N! 
r = r!(N-r)!. 

30 ing reference. Impedances were kept below 100 kilo-ohms 
(kQ). Data was collected in two sessions with brief inter­
vening rest periods for the participant. The data were band 
pass filtered between 1 and 30 Hz with a roll-off slope of 12 

For instance, if N=50 participants in a study and r=30 
participants in each bootstrapped ERP, the total number of 35 

unique bootstrapped ERPs that can be calculated across 
these 50 participants is 50!/(30!*20!)=47,129,212,246,893. 
Bootstrapping can be performed on a subset of perhaps 
several thousand of these more than 47 trillion combinations 

decibels ( dB)/Octave. 
Electrophysiological data were first pre-processed at the 

individual level. All trials were visually inspected for oculo­
motor (saccades and blinks), muscles, and other artifacts. 
Channels with corrupted signals were interpolated. Surviv­
ing epochs of EEG were averaged for each participant to 

40 calculate the ERP. The ERP is illustrated in FIG. 6A for the or the entire population of bootstrapped ERPs can be gen­
erated and analyzed. The results from each run may be 
aggregated to determine the distribution of solutions and the 
robustness of the solution derived when performing the 
analysis on all N participants (i.e., the grand average solu­
tion). A unimodal, leptokurtic distribution of solutions for a 45 

given microstate centered on the grand average solution 
increases the confidence in the overall solution, whereas a 
multimodal, platykurtic distribution of solutions for a micro­
state signals that the microstate lacks robustness (e.g., sig­
nificant unidentified sources of variance or moderator vari- 50 

ables are operating). The replicability of a microstate and the 
performance of source localization algorithms should be 
superior for robust as opposed to non-robust microstates. 

An empirical study of the operations of FIGS. 2A-2D and 
3 was conducted using a basic visual paradigm, the reversal 55 

checkerboard task, in which a pattern reverses every 500 ms. 
The checkerboard task is common because there is consid­
erable inter-subject reliability in terms of the visual ERP that 
it elicits. Specifically, a negative peak appears at a latency of 
about 70-95 ms, a larger amplitude positive peak appears at 60 

about 100-120 ms, a more variable negative peak appears 
around 140-160 ms, and a later, smoother positive peak 
around 200 ms. 

01 recording sites and in FIG. 6B for the 02 recording sites. 
The ERP morphology observed over the 01 and 02 sensor 
sites was similar to that observed previously, with a negative 
peak around 96 ms, a larger positive peak around 128 ms, a 
second negative peak around 180 ms, and a smoother 
positive peak around 240 ms. 

The RMSE and the GFP segmentation algorithms of 
FIGS. 2A-2D and 3 were applied to the high-density ERP 
grand average recorded across the scalp. The lag value was 
specified as 8 ms, a 99% confidence interval for the micro­
state confidence parameter value was used to construct 
thresholds for the RMSE and GFP analyses, and a 95% 
confidence interval for the similarity metric confidence 
parameter value was used for the similarity metric analyses. 
FIG. 7 shows the RMSE as a function of time. The RMSE 
results identified: (a) a stable baseline configuration from the 
start of the baseline (-152 ms) to stimulus onset at Oms, (b) 
a first stable state from 92-100 ms, ( c) a second stable state 
from 116-132 ms, (d) a third stable state from 144-164 ms, 
(e) a fourth stable state from 180-208 ms, and (f) a fifth 
stable state from 224-436 ms as summarized in first table 
1300 of FIG. 13. 

FIG. 8 shows the GFP as a function of time. The GFP 
Participants were 22 volunteers (8 females) with a mean 

age of 23.18 (a=3.92) years. All were right-handed and had 
normal or corrected to-normal visual acuity. None had any 
prior or current neurological or psychiatric impairment as 

results identified a first valley at 48 ms, a first peak at 96 ms, 
65 a second valley at 108 ms, a second peak at 128 ms, a third 

valley at 188 ms, and a third peak at 236 ms as summarized 
in second table 1400 of FIG. 14. 
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A 128-dimensional similarity metric analysis was per­
formed next to determine whether each successive state 
represented a significant change from the preceding state in 
the overall configuration of electrical activity across the 
sensor space. The cosine distance between each contiguous 5 

pair of states fell outside the 95% confidence interval for the 
earlier of the two stable states, indicating five distinct stable 
states as summarized in third table 1500 of FIG. 15. Spe­
cifically, the cosine distance between stable state 1 and 
stable state 2 was 1.82, which fell well outside the 95% 10 

confidence interval for stable state 1 of 0.011. Similarly, the 
95% confidence interval and cosine distance between each 

FIG. 101 shows an onset of stable state 5 at t=224 ms. The 
time-weighted mean of valleys is 225.0 ms in the ±5% 
windows. Bootstrap results indicate a peak in 44.4% of the 
runs within the ±5% time windows. The end of the recording 
interval was uniformly identified as the offset of stable state 
5. 

The results indicated more robust state identification for 
early than late stable states, as would be expected. Specifi­
cally, in the first 2 stable states the bootstrapping indicated 
98-100% homogeneity; whereas, in the last 2 stable states, 
the bootstrapping indicated homogeneity had dropped to 
50-60%. The bootstrapping also indicated that five stable 
states were identified in only 26.8% of the runs. Although 

of the succeeding stable states was (i.e., stable states 2 and 
3, stable states 3 and 4, stable states 4 and 5) fell outside the 
95% confidence interval of the earlier of the two stable states 
(Sim(A,B)=0.114, 1.76, and 1.24, respectively; Clsm =0.003, 
0.113, and 0.449, respectively). 

FIG. 9A shows the between-subjects bootstrapping results 
for the RMSE peak analysis with 1000 bootstrap RMSE 
analyses to identify the onsets and offsets of the states. FIG. 
9B shows the between-subjects bootstrapping results for the 
RMSE valley analysis with 1000 bootstrap RMSE analyses 
to identify the onsets and offsets of the states. In each 
application of the bootstrap routine, 11 out of the available 
22 individual ERPs were selected at random, averaged 
together, and the resulting ERP subjected to the RMSE state 
identification operations 214-256 of FIGS. 2A to 2C. Tem­
poral locations of peaks/valleys were accumulated over the 
1000 iterations and normalized by the number of iterations 
to compute the percentage of bootstrap runs in which a 
peak/valley is identified at a specific sampling bin. 

FIGS. l0A-lOI show a summary of the distribution of a 
time of occurrence of peaks/valleys found in bootstrap 
analysis within ±5% time windows around the stable state 
onset (or offset) identified in the analysis of the overall 
RMSE curve. FIG. l0A shows an onset of stable state 1 at 
t=92 ms. The time-weighted mean of peaks in the ±5% 
windows is 91.74 ms. Bootstrap results indicate a peak in 
97 .9% of the runs within the ±5% time windows. 

FIG. l0B shows an offset of stable state 1 at t=l00 ms. 
The time-weighted mean of valleys in the ±5% windows is 
100.08 ms. Bootstrap results indicate a valley in 98.3% of 
the runs within the ±5% time windows. 

FIG. lOC shows an onset of stable state 2 at t=ll 6 ms. The 
time-weighted mean of peaks in the ±5% windows is 115.9 
ms. Bootstrap results indicate a peak in 100% of the runs 
within the ±5% time windows. 

FIG. l0D shows an offset of stable state 2 at t=132 ms. 
The time-weighted mean of valleys in both the ±5% and 
±10% windows is 130.8 ms. Bootstrap results indicate a 
valley in 100% of the runs within the ±5% time windows. 

FIG. l0E shows an onset of stable state 3 at t=144 ms. The 
time-weighted mean of peaks in the ±5% windows is 142.3 
ms. Bootstrap results indicate a peak in 99.9% of the runs 
within the ±5% time windows. 

FIG. lOF shows an offset of stable state 3 at t=164 ms. The 
time-weighted mean of valleys is 164.62 ms in the ±5% 
windows. Bootstrap results indicate a valley in 77.6% of the 
runs within the ±5% time windows. 

FIG. l0G shows an onset of stable state 4 at t=180 ms. 
The time-weighted mean of peaks is 179.34 ms in the ±5% 
windows. Bootstrap results indicate a peak in 77.4% of the 
runs within the ±5% time windows. 

FIG. l0H shows an offset of stable state 4 at t=208 ms. 

15 
this was the modal solution, four stable states were identified 
in 20.3% of the runs, six stable states were identified in 
23.1 % of the runs, and seven stable states were identified in 
14.4% of the runs. The remaining 15.4% of the runs iden­
tified various numbers of stable states ranging from two to 

20 ten. Together, these results suggest that all participants may 
not be showing the same stable state structure during the 
reverse checkerboard task, and specifically that any such 
individual differences in the neural responses to this task are 
especially likely to be emerging after the second stable state 

25 (i.e., after 132 ms). 
Inspection of the GFP function shown in FIG. 8 indicates 

three distinct epochs during which time the GFP changed. 
The GFP increased from basal levels beginning at 48 ms 
post-stimulus, peaking at 96 ms, falling to a valley at 108 

30 ms, increasing to a second peak at 128 ms, falling to a valley 
at 188 ms, rising to a third (but lower) peak at 236 ms where 
it remained fairly stable through the rest of the recording 
period as summarized in second table 1400. 

Between-subjects bootstrapping was performed to inves-
35 ti gate how robust these changes in GFP were across subjects. 

The GFP analysis was performed on the same bootstrapped 
ERPs used in the RMSE analyses. The results are presented 
in FIG. llA for the peaks and in FIG. llB for the valleys. 

Summary statistics of the distribution of peaks/valleys 
40 found in bootstrap analysis within ±5% time windows 

around the locations of a peak/valley identified in the 
analysis of the overall GFP curve are presented in FIGS. 
12A-12F. FIG. 12A shows the GFP valley at t=48 ms. The 
time-weighted mean of valleys in the ±5% windows was 

45 49.67 ms. Bootstrap results indicate a valley in 30.1 % of the 
runs within the ±5% time windows. 

FIG. 12B shows the GFP peak at t=96 ms. The time­
weighted mean of peaks in the ±5% time windows was 
95.69 ms. Bootstrap results indicate a peak in GFP in 99.7% 

50 of the runs within the ±5% windows. 

55 

FIG. 12C shows the GFP valley at t=108 ms. The time­
weighted mean of valleys in the ±5% time windows was 
106.93 ms. Bootstrap results indicate a valley in GFP in 
99.7% of the runs within the ±5% windows. 

FIG. 12D shows the GFP peak at t=128 ms. The time­
weighted mean of peaks in the ±5% windows was 127.14 
ms. Bootstrap results indicate a peak in 100% of the runs 
within the ±5% windows. 

FIG. 12E shows the GFP valley at t=188 ms. The time-
60 weighted mean of valleys in the ±5% time windows was 

186.87 ms. Bootstrap results indicate a valley in GFP in 
54.9% of the runs within the ±5% windows. 

The time-weighted mean of valleys is 208.23 ms in the ±5% 65 

windows. Bootstrap results indicate a valley in 50.8% of the 
runs within the ±5% time windows. 

FIG. 12F shows the GFP peak at t=236 ms. The time­
weighted mean of peaks in the ±5% time windows was 
235.9 ms. Bootstrap results indicate a peak in GFP in 76.5% 
of the runs within the ±5% windows. The results paralleled 
those for RMSE, with the overall analysis showing reason-
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ably robust results with increasing variability during the 
latter segments of the post-stimulus period. 

When data 124 includes EEG/ERP data, microstates are 
conceptualized as a time-limited information processing 
operation in the brain. The determined states identify quasi- 5 

stable, non-periodic, event-related microstates of the brain 
based on changes in the pattern of global electrical activity 
as measured by high-density EEG. An RMSE metric is 
applied to high-density ERP data to identify the transition 
states across discrete event-related brain states, and the GFP 10 

time series is analyzed to identify changes in the overall 
level of activation of the brain. To determine whether the 
microstates identified by the RMSE metric differ in the 
configuration of brain activity, the GFP, or a combination of 
the two, an n-dimensional cosine distance similarity metric 15 

may be used to determine whether the template map for a 
putative microstate differs from the template map from the 
preceding microstate as described previously with reference 
to operations 302-324 of FIG. 3. A bootstrapping procedure 
may be used to assess the extent to which the determined 20 

states are robust (reliable, generalizable). 
Similar to operation 326, in an operation 330, information 

related to the stable states, GFP states, template maps, and/or 
configurations of the bootstrapping results may be output. 
Example output bootstrapping results data includes the 25 

results presented in FIGS. 9A, 9B, l0A-lOI, llA, 11B, and 
12A-12I. The information may be output, for example, by 
storing in computer-readable medium 108, by displaying in 
a table or graph on display 116, by printing in a table or 
graph by printer 120, etc. 30 

The transition between microstates need not be all or 
none, but rather may be incremental. For this reason, the 
micro-segmentation improves the specification of the con­
figuration, number, timing, and duration of event-related 
microstates by distinguishing among microstates, transition 35 

states, and changes in GFP. The resulting parameters each 
reflect unique information about brain function, and each 
can be subjected to statistical analysis to determine the 
effects of various within-subjects and between-subjects fac­
tors to investigate information processing in the normal, 40 

waking human brain. Moreover, hypothesis testing is 
improved by eliminating confirmatory bias that results from 
an investigator specifying a priori how many event-related 
microstates should be observed, and by increasing the ways 
in which empirical evidence can disconfirm an investigator's 45 

a priori hypotheses, improve replicability, and promote 
empirically grounded hypothesis generation. 

The results of the simulation studies confirmed that the 
micro-segmentation process correctly identified stable peri­
ods and changes in the overall pattern of brain activity 50 

independent of GFP. For example, if the location of activa­
tion across the scalp changed, but the overall activity did not 
change, the micro-segmentation process correctly identified 
this as a new micro state. On the other hand, if the location 
of activation did not change, but the overall activity did, the 55 

micro-segmentation process correctly identified this as a 
change in activity (power), but not a change in microstate. 

The transition states may be of considerable interest as 
they putatively represent the transfer of information between 
microstates. The transition states, therefore, may provide 60 

information about the nature and timing of this information 
transfer through the brain. Second, information extracted 
early in the processing of a stimulus is consistent with a 
range of possible responses, and each of these responses 
receives initial activation. As information continues to accu- 65 

mulate, activation continues to accumulate in response chan­
nels that remain viable. A given response is evoked when the 

20 
activation of its chamiel exceeds a criterion. Importantly, 
continuous flow models of information processing reject the 
notion that information proceeds in a step-by-step fashion in 
which the computations performed at any given step ( or 
microstate) are completed before any information is passed 
onto the next step ( or micro state). Instead, information 
processing is depicted as proceeding through a series of 
computations in a semi-continuous fashion. It is conceivable 
that the transition states provide a means of investigating the 
effects of experimental conditions on this information flow. 

Users can use data analytic application 122 to form, test, 
and interpret a priori statistical contrasts between experi­
mental conditions based on orthogonal contrasts comparing 
pairs of event-related ERP waveforms. For a factor with two 
levels, this is simply a contrast between the ERP waveforms 
between the two levels; for a factor with three levels, this 
means specifying a priori two orthogonal contrasts (e.g., 
level 1 vs. level 2; level 3 vs. mean oflevel 1 & level 2; etc.). 

Considering a two-factor mixed model with A (al, a2)xB 
(bl, b2), in which A serves as a between-subject factor and 
B serves as a within-subject factor, procedures for a one­
factor between-subjects design for a main effect for Factor 
A involves the following steps though the steps need not be 
performed sequentially unless a specific order is indicated 
based on a need for a previous computation: 

(1) Average albl snapshots (i.e., n-dimensional ERP 
waveform) and alb2 snapshots to create a snapshot for 
Mn_al. 

(2) Average the a2bl and a2b2 snapshots to create a 
snapshot for Mn_a2. 

(3) Compute a difference snapshot between the Mn_al 
and Mn_a2 snapshots to create a snapshot Dmn for the 
Main Effect for A. 

( 4) Average the Mn_al and Mn_a2 snapshots to create a 
snapshot Gnm for a Grand Mean. 

(5) Determine the stable and transition states for Mn_al. 
(6) Determine the stable and transition states for Mn_a2. 
(7) Determine the stable and transition states for Gnm to 

determine the periods of time in which the brain states 
did not differ as a function of Factor A. 

(8) Determine the stable and transition states for Dnm to 
identify the periods of time in which the ERP waveform 
did and did not differ significantly as a function of 
Factor A. 

(9) For the time period(s) identified in Step 8 that show no 
significant differences in ERP waveform as a function 
of Factor A, refer to the results from Step 7 to charac­
terize the evoked brain microstates across Factor A. 
That is, for the time period(s) that the ERP waveform 
did not differ as a function of Factor A, identify the 
microstate structure based on the results of Step 7 (i.e., 
Grand Mean, Gnm) and perform brain source localiza­
tion on each of these microstate(s). 

(10) For the time period(s) identified in Step 8 that show 
significant differences in ERP waveform as a function 
of Factor A, refer to the results from Step 5 and Step 6 
to characterize the distinct evoked brain microstates 
within each level of Factor A. That is, for the time 
period(s) that the ERP waveform did differ as a func­
tion of Factor A, identify the microstate structure 
separately for each level of Factor A (i.e., Step 5 and 
Step 6 above) and perform brain source localization on 
each of these microstate(s ). 

Procedures for a one-factor within-subjects design for a 
main effect for Factor B may involve the following steps 
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though the steps need not be performed sequentially unless 
a specific order is indicated based on a need for previous 
computations: 

(1) Average the albl snapshots (i.e., n-dimensional ERP 
waveform) and a2bl snapshots to create a snapshot for 5 

Mn_bl. 
(2) Average the alb2 and a2b2 snapshots to create a 

snapshot for Mn_b2. 
(3) Compute a difference snapshot between the Mn_bl 

and Mn_b2 snapshots to create a snapshot DmnB for 10 

the Main Effect for B. 
(4) Average the Mn_bl and Mn_b2 snapshots to create a 

snapshot GnmB for a Grand Mean. 
(5) Determine the stable and transition states for Mn_bl. 
(6) Determine the stable and transition states for Mn_b2. 15 

(7) Determine the stable and transition states for GnmB to 
identify the periods of time in which the brain micro­
states did not differ as a function of Factor B. 

(8) Determine the stable and transition states for DnmB to 
identify the periods of time in which the ERP waveform 20 

did and did not differ significantly as a function of 
Factor B. 

(9) For the time period(s) in which Step 8 shows no 
significant differences in ERP waveform as a function 
of Factor B, refer to the results from Step 7 to charac- 25 

terize the evoked brain microstates across Factor B. 
That is, for the time period(s) that the ERP waveform 
did not differ as a function of Factor B, identify the 
microstate structure based on the results of Step 7 (i.e., 
Grand Mean, GnmB) and perform brain source local- 30 

ization on each of these microstate(s ). 
(10) For the time period(s) in which Step 8 shows 

significant differences in ERP waveform as a function 
of Factor B, refer to the results from Step 5 and Step 6 
to characterize the distinct evoked brain microstates 35 

within each level of Factor B. That is, for the time 
period(s) that the ERP waveform did differ as a func­
tion of Factor B, identify the microstate structure 
separately for each level of Factor B (i.e., Step 5 and 
Step 6 above) and perform brain source localization on 40 

each of these microstate(s ). 
In the following example, Factor A is a between-subjects 

factor and Factor B is a within-subjects factor, so the simple 
main effect tests may be calculated within each level of A. 
The procedure may involve the following steps though the 45 

steps need not be performed sequentially unless a specific 
order is indicated based on a need for previous computa­
tions: 

(1) Compute a difference snapshot between the albl and 
alb2 snapshots to create snapshots for the simple main 50 

effect for al. 
(2) Compute a difference snapshot between the a2bl and 

a2b2 snapshots to create snapshots for the simple main 
effect for a2. 

(3) Compute a difference snapshot between the simple 55 

main effects snapshots for al and for a2 to create the 
snapshots fortheAxB interaction (i.e., the difference of 
the differences). 

(4) Average the Mn_al and Mn_a2 snapshots to create a 
snapshot GnmB for a Grand Mean. 60 

(5) Determine the stable and transition states for the 
simple main effect for al. 

(6) Determine the stable and transition states for the 
simple main effect for a2. 

(7) Determine the stable and trans1t10n states for the 65 

simple main effects for al and a2. The output of this 
step specifies the periods of time during which Factors 
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A and B interacted significantly (at an alpha-level 
determined by the confidence interval (CI) used­
typically a 99% CI, producing an alpha-level of 0.01) 
to produce the observed brain microstates. 

(8) Determine the stable and transition states for GmnB 
for the AxB interaction created in Step 4 to identify the 
periods of time in which Factors A and B did not 
interact to produce the brain microstates. 

(9) For the epochs in which the results of Step 7 show no 
significant differences, refer to the results of Step 8 to 
characterize the evoked brain microstates. If main 
effects were also absent for this epoch, source local­
ization may be performed on the observed microstate(s) 
during this epoch in the Grand Mean. If the main effect 
for Factor A and/or for Factor B is significant for this 
epoch, refer to the results above to characterize the 
evoked brain microstate(s) observed during this epoch. 

(10) For the epochs in which the results of Step 7 show 
significant differences in the waveforms, refer to the 
results of Step 5 and Step 6 to characterize the distinct 
evoked brain micro states as a function of Factors A and 
B. For such an epoch, source localization may be 
performed on the observed microstate(s) during this 
epoch separately for the microstates identified and in 
Step 5 and in Step 6. Stable and transition states may 
be determined and source localization within each cell 
(e.g., albl, alb2, a2bl, & a2b2) may also be performed 
as a means of breaking down the interaction to all 
possible pairwise comparisons. 

Compared to existing methods (such as those based on 
k-clustering methods), the described micro-segmentation 
approach provides several advantages, including a data­
driven (automatic) detection of non-periodic, quasi-stable 
states. Data-driven detection is achieved by using the base­
line (period of time prior to the occurrence of an event) as 
a measure of an error variance to identify potential stable 
and discrete states that occur after the baseline. The method 
described herein provides a robust, reliable, and generaliz­
able assessment for empirically deriving additional hypoth­
eses. 

The identification of the distinct, evoked brain micro states 
elicited by a stimulus makes it possible to investigate robust 
changes in the configuration of activation in electrical neu­
roimaging data, where a configuration of activation is 
defined as a topographical map-the average evoked poten­
tials at a given recording bin across n-dimensional sensor 
space where n the number of EEG recording chamiels. The 
goal of the brain microstate approach is to provide infor­
mation about the brain activity associated with the sequence 
of discrete information processing operations evoked by the 
presentation (or anticipation) of a stimulus within the con­
text of a particular experimental task, with exogenous ERP 
components sensitive to the characteristics of the stimulus 
and endogenous ERP components sensitive to the stimulus 
in the context of the task. This sequence of information 
processing is composed of a series of stable brain activities, 
called brain microstates, each of which is characterized by 
the performance of specific cognitive computations and a 
relatively stable spatial distribution of brain activity. 

The notion underlying the brain microstate approach is 
that each microstate refers to a time-limited information 
processing operation. Consistent with this notion, a growing 
body of studies shows that the presence of different brain 
microstates is associated with distinct cognitive operations. 
This approach suggests that the global pattern of brain 
electrical activity is modeled as being composed of a time 
sequence of decomposable brain microstates. Each brain 
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microstate may remain significantly stable for a certain 
amount of time (e.g., for tens to hundreds of milliseconds), 
and then changes into another brain microstate that remains 
stable again. The notion of identifying stable brain micro­
states based on the spatiotemporal information represents an 
important insight into the understanding of the chronoarchi­
tecture of brain processes, but the utility and adoption of this 
brain micro state approach were limited in part by constraints 
in the quantitative methods used by investigators to identify 
and interpret brain microstates. 

Data analytic application 122 may include instructions to 
compute a difference waveform configuration between two 
n-dimensional ERPs by subtracting the ERP waveform 
elicited by one condition (e.g., ERP _A) from the ERP 
waveform elicited by another condition (ERP _B). The out­
put of this difference waveform function is computed as 
ERP _A-ERP _B, which results in a Txn matrix with T as the 
number of timeframes and n as the number of electrodes. 
The difference waveform putatively represents physiologi­
cal processes that are different between two conditions. The 
difference waveform function may be used as a first step 
towards the identification of differential stable microstates 
between two conditions that are better understood through 
the high performance microsegmentation of each condition, 
respectively. 

A typical trial structure is: (i) jittered, variable-length 
baseline, (ii) stimulus onset, and (iii) post-stimulus period 
during which evoked microstates are identified and investi­
gated. If the event-related anticipatory microstates are of 
interest, the trial structure could be modified as: (i) jittered, 
variable-length baseline, (ii) a fixed-interval pre-stimulus 
period that makes it possible for the subject to anticipate the 
stimulus onset (and during which evoked anticipatory 
microstates can be identified and investigated), (iii) stimulus 
onset, and (iv) post-stimulus period (during which evoked 
microstates can be identified and investigated). 

A script may allow users to perform various steps with a 
single button click. In the case of an experimental design 
with two conditions (CONDITION I and CONDITION II), 
the script allows users to perform eight steps at once with 
sample output for steps 1-7 shown in FIG. 19 in accordance 
with an illustrative embodiment: 

1) Perform a difference wave function; 
2) Perform a high-performance microsegmentation suite 

CONDITION 1; 
3) Perform a high-performance microsegmentation suite 

of CONDITION 2; 
4) Perform a high-performance microsegmentation suite 

of the grand mean 
5) Output the brain microstates specific to CONDITION 

1; 
6) Output the brain microstates common to both CON­

DITION 1 & CONDITION 2; 
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to identify changes in the overall level of activation of the 
brain. The one or more analytic tools may be integrated. 

The RMSE analysis performed by data analytic applica­
tion 122 may identify significant changes in the stable 

5 event-related pattern of EEG activation across the n-dimen­
sional sensor space. However, there are two reasons such a 
change in the RMSE function may occur: (1) a different 
stable event-related microstate was elicited, typically inter­
preted as meaning that one or more of the cortical sources 

10 underlying the prior event-related microstate had changed; 
or (2) the same stable event-related microstate was main­
tained, but GFP increased ( or decreased), typically inter­
preted as meaning that the level of activation of the set of 

15 
cortical sources underlying the event-related microstate had 
increased (or decreased). Once the putative stable micro­
states have been identified using the RMSE, each topo­
graphical map within a microstate can be expressed within 
a n-dimensional (e.g., 128-dimensional) vector space, the 

20 mean template map for the microstate can be expressed in 
this microstate, and a confidence interval region can be 
determined around this template map in 128-dimensional 
space. If the succeeding event-related microstate identified 
by RMSE is the result of a change in the location of the 

25 underlying neural sources of the n-dimensional event-re­
lated waveform, the cosine metric between the template map 
for an event-related microstate and the template map for the 
succeeding micro state should differ. This is because different 
configurations of activity produce different vector angles in 

30 n-dimensional vector space. However, if the succeeding 
event-related microstate identified by RMSE is the result of 
a change in the level of neural activation (i.e., GFP) rather 
than a change in source location, then the representation of 

35 
these microstates inn-dimensional vector space differ in the 
length of the vector, but not in the angle of the vector. 

A comparison of these outputs permits identification of 
which microstates identified by the RMSE analysis are 
determined by the analysis based on the cosine metric as the 

40 same microstate, but at a different GFP. Changes in GFP 
levels within the same microstate are provided in the GFP 
outputs for the microstates in the preliminary results that 
were merged in the final results. 

By analyzing time-varying activity in a multi-dimensional 
45 sensor space ( across the entire scalp) rather than in a single 

vector space (at specific electrode positions), data analytic 
application 122 makes it possible to investigate possible 
neural organizations underlying baseline states even in the 
absence of a clear morphological peak or trough. Because 

50 the results differentiate stable brain microstates from tran-
sitions between states, data analytic application 122 pro­
vides a better basis for source localization algorithms used 
to investigate the underlying neural correlates for these 

7) Output the brain microstates specific to CONDITION 55 

2; and 

microstates. This, in turn, may lead to the identification of 
more defined biomarkers for various neuropsychiatric and 
neurologic diseases. 

8) Create template map files including results from steps 
5-7. 

The processing supported by data analytic application 122 
as described herein may be distributed between one or more 
analytic tools. For example, a first analytic tool may use the 
RMSE to identify stable states and transition states across 
discrete event-related brain microstates. A second analytic 
tool may use the similarity metric based on cosine distance 
inn dimensional sensor space to determine whether template 
maps for successive brain micro states differ in configuration 
of brain activity. A third analytic tool may use GFP metrics 

The word "illustrative" is used herein to mean serving as 
an example, instance, or illustration. Any aspect or design 
described herein as "illustrative" is not necessarily to be 

60 construed as preferred or advantageous over other aspects or 
designs. Further, for the purposes of this disclosure and 
unless otherwise specified, "a" or "an" means "one or 
more". Still further, using "and" or "or" in the detailed 
description is intended to include "and/or" unless specifi-

65 cally indicated otherwise. The illustrative embodiments may 
be implemented as a method, apparatus, or article of manu­
facture using standard programming and/or engineering 
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techniques to produce software, firmware, hardware, or any 
combination thereof to control a computer to implement the 
disclosed embodiments. 

The foregoing description of illustrative embodiments of 
the disclosed subject matter has been presented for purposes 5 

of illustration and of description. It is not intended to be 
exhaustive or to limit the disclosed subject matter to the 
precise form disclosed, and modifications and variations are 
possible in light of the above teachings or may be acquired 
from practice of the disclosed subject matter. The embodi- 10 

ments were chosen and described in order to explain the 
principles of the disclosed subject matter and as practical 
applications of the disclosed subject matter to enable one 
skilled in the art to utilize the disclosed subject matter in 
various embodiments and with various modifications as 15 

suited to the particular use contemplated. 

What is claimed is: 
1. A non-transitory computer-readable medium having 

stored thereon computer-readable instructions that when 20 

executed by a computing device cause the computing device 
to: 

receive data, wherein the data includes a plurality of 
snapshots, wherein each snapshot of the plurality of 
snapshots includes a plurality of sensor measurements 25 

captured from distinct sensors at a common time, 
wherein the plurality of snapshots are time ordered and 
associated with a subject; 

compute first root mean square error (RMSE) values 
between successive pairs of the plurality of snapshots 30 

in time order that occur during a predefined baseline 
interval; 

compute a mean value of the computed first RMSE 
values; 

compute a standard deviation value of the computed first 35 

RMSE values using the computed mean value; 
compute a confidence interval parameter value using the 

computed standard deviation value and a predefined 
state confidence parameter value; 

compute second RMSE values between successive pairs 40 

of the plurality of snapshots in time order that occur 
after the predefined baseline interval; 

26 
mined as occurring from a peak of the plurality of peaks to 
a subsequent valley of the plurality of valleys. 

5. The non-transitory computer-readable medium of claim 
4, wherein a plurality of transition states are determined, 
wherein each transition state is determined as occurring 
from a valley of the plurality of valleys to a subsequent peak 
of the plurality of peaks. 

6. The non-transitory computer-readable medium of claim 
4, wherein each stable state is determined as occurring from 
the peak of the plurality of peaks to the subsequent valley of 
the plurality of valleys, inclusive. 

7. The non-transitory computer-readable medium of claim 
4, wherein the computer-readable instructions further cause 
the computing device to: 

compute a mean template map for each stable state of the 
plurality of stable states, wherein the mean template 
map includes the sensor measurements captured from 
distinct sensors averaged across the snapshots that 
occur between the peak and the subsequent valley of a 
respective stable state; 

compute a standard deviation for each stable state of the 
plurality of stable states using the computed mean 
template map and the sensor measurements captured 
from distinct sensors for the snapshots that occur 
between the peak and the subsequent valley for the 
respective stable state; 

compute a confidence value for each stable state of the 
plurality of stable states using the computed standard 
deviation for the respective stable state and a similarity 
metric confidence value; 

compute a similarity value between successive stable 
states of the plurality of stable states; and 

indicate the successive stable states are similar when the 
computed similarity value is less than the computed 
confidence value for a stable state of the successive 
stable states. 

8. The non-transitory computer-readable medium of claim 
7, wherein the similarity value is computed using 

A-B 
Sim(A, B) = 1 - IIAIIIIBII' 

identify a peak in the computed second RMSE values 
based on a first comparison with the computed confi­
dence interval parameter value; 45 where A is a first stable state of the successive stable states 

identify a valley in the computed second RMSE values 
based on a second comparison with the computed 
confidence interval parameter value; 

determine a stable state as occurring from the identified 
peak to the identified valley; and 

output a start time and a stop time for the determined 
stable state for the subject based on the start time being 
associated with the identified peak and on the stop time 
being associated with the identified valley. 

50 

2. The non-transitory computer-readable medium of claim 55 

1, wherein the successive pairs of the plurality of snapshots 
in time order are separated by a pre-defined lag value. 

3. The non-transitory computer-readable medium of claim 
1, wherein a plurality of peaks are identified in the computed 
second RMSE values and a plurality of valleys are identified 60 

in the computed second RMSE values, wherein the peak is 
included in the plurality of peaks and the valley is included 
in the plurality of valleys. 

4. The non-transitory computer-readable medium of claim 
3, wherein a plurality of stable states are determined, 65 

wherein the determined stable state is included in the 
plurality of stable states, wherein each stable state is deter-

and Bis a second stable state of the successive stable states. 
9. The non-transitory computer-readable medium of claim 

1, wherein each RMSE value of the first RMSE values and 
the second RMSE values is computed using 

n 

~ (x; -x;J2 
RMSE= 

i=l 

n 

where n is a number of the distinct sensors, x, is a sensor 
measurement value at sensor i in a current snapshot, and x, 
is a sensor measurement value at sensor i in a previous 
snapshot. 

10. The non-transitory computer-readable medium of 
claim 9, wherein the current snapshot and the previous 
snapshot are separated in time by a pre-defined lag value. 

11. The non-transitory computer-readable medium of 
claim 1, wherein the peak is identified in the computed 
second RMSE values after removing local maxima that 
represent noise. 
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12. The non-transitory computer-readable medium of 
claim 1, wherein the valley is identified in the computed 
second RMSE values after removing local minima that 
represent noise. 

13. The non-transitory computer-readable medium of 5 

claim 1, wherein identifying the peak comprises computer­
readable instructions that further cause the computing device 
to: 

identify a local maxima in the computed second RMSE 
values; 10 

define a previous valley value; and 
when a value of the identified local maxima is greater than 

the defined previous valley value plus the computed 
confidence interval parameter value and the value of 
the identified local maxima minus a subsequent RMSE 
value is greater than the computed confidence interval 
parameter value, the identified local maxima is the 
identified peak. 

14. The non-transitory computer-readable medium of 
claim 13, wherein the previous valley value is initialized to 
the computed mean value. 

15 

20 

15. The non-transitory computer-readable medium of 
claim 13, wherein identifying the valley comprises com­
puter-readable instructions that further cause the computing 
device to: 

25 

identify a local minima in the computed RMSE values; 
define a previous peak value; and 
when the defined previous peak value minus a value of the 

identified local minima is greater than the computed 
confidence interval parameter value and a subsequent 
RMSE value minus the value of the identified local 
minima is greater than the computed confidence inter­
val parameter value, the identified local minima is the 
identified valley. 

16. The non-transitory computer-readable medium of 
claim 15, wherein the previous peak value is initialized to 
the computed mean value. 

17. The non-transitory computer-readable medium of 
claim 15, wherein the defined previous peak value is a value 
of the identified peak. 

18. The non-transitory computer-readable medium of 
claim 15, wherein the previous valley value is redefined as 
a value of the identified valley. 

19. A computing device comprising: 
a processor; and 

30 

35 

40 

45 

a non-transitory computer-readable medium operably 
coupled to the processor, the computer-readable 
medium having computer-readable instructions stored 
thereon that, when executed by the processor, cause the 50 
computing device to 
receive data, wherein the data includes a plurality of 

snapshots, wherein each snapshot of the plurality of 
snapshots includes a plurality of sensor measure­
ments captured from distinct sensors at a common 55 
time, wherein the plurality of snapshots are time 
ordered and associated with a subject; 

compute first root mean square error (RMSE) values 
between successive pairs of the plurality of snap­
shots in time order that occur during a predefined 60 
baseline interval; 

compute a mean value of the computed first RMSE 
values; 

28 
compute a standard deviation value of the computed 

first RMSE values using the computed mean value; 
compute a confidence interval parameter value using 

the computed standard deviation value and a pre­
defined state confidence parameter value; 

compute second RMSE values between successive 
pairs of the plurality of snapshots in time order that 
occur after the predefined baseline interval; 

identify a peak in the computed second RMSE values 
based on a first comparison with the computed 
confidence interval parameter value; 

identify a valley in the computed second RMSE values 
based on a second comparison with the computed 
confidence interval parameter value; 

determine a stable state as occurring from the identified 
peak to the identified valley; and 

output a start time and a stop time for the determined 
stable state for the subject based on the start time 
being associated with the identified peak and on the 
stop time being associated with the identified valley. 

20. A method of identifying states in a time ordered 
sequence of data that have a temporal component, the 
method comprising: 

receiving data, wherein the data includes a plurality of 
snapshots, wherein each snapshot of the plurality of 
snapshots includes a plurality of sensor measurements 
captured from distinct sensors at a common time 
wherein the plurality of snapshots are time ordered and 
associated with a subject; 

computing, by a computing device, first root mean square 
error (RMSE) values between successive pairs of the 
plurality of snapshots in time order that occur during a 
predefined baseline interval; 

computing, by the computing device, a mean value of the 
computed first RMSE values; 

computing, by the computing device, a standard deviation 
value of the computed first RMSE values using the 
computed mean value; 

computing, by the computing device, a confidence inter­
val parameter value using the computed standard devia­
tion value and a predefined state confidence parameter 
value; 

computing, by the computing device, second RMSE val­
ues between successive pairs of the plurality of snap­
shots in time order that occur after the predefined 
baseline interval; 

identifying, by the computing device, a peak in the 
computed second RMSE values based on a first com­
parison with the computed confidence interval param­
eter value; 

identifying, by the computing device, a valley in the 
computed second RMSE values based on a second 
comparison with the computed confidence interval 
parameter value; 

determining, by the computing device, a stable state as 
occurring from the identified peak to the identified 
valley; and 

outputting, by the computing device, a start time and a 
stop time for the determined stable state for the subject 
based on the start time being associated with the 
identified peak and on the stop time being associated 
with the identified valley. 

* * * * * 


