
Haizi Yu | University of Chicago, Chicago, IL 60637 USA
| E-mail: haiziyu@uchicago.edu

Lav R. Varshney , Senior Member, IEEE | University of Illinois Urbana-
Champaign, Urbana, IL 61801 USA | E-mail: varshney@illinois.edu

Heinrich Taube | University of Illinois Urbana-Champaign, Urbana, IL
61801 USA | E-mail: taube@illinois.edu

James A. Evans | University of Chicago, Chicago, IL 60637 USA
| E-mail: jevans@uchicago.edu

(Re)discovering Laws of Music
Theory Using Information Lattice
Learning

Abstract—Information lattice learning (ILL) is a novel
framework for knowledge discovery based on group-
theoretic and information-theoretic foundations, which
can rediscover the rules of music as known in the canon
of music theory and also discover new rules that have
remained unexamined. Such probabilistic rules are fur-
ther demonstrated to be human-interpretable. ILL itself
is a rediscovery and generalization of Shannon’s lattice
theory of information, where probability measures are
not given but are learned from training data. This article
explains the basics of the ILL framework, including both
how to construct a lattice-structured abstraction uni-
verse that specifies the structural possibilities of
rules, and how to find the most informative rules by per-
forming statistical learning through an iterative stu-
dent–teacher algorithmic architecture that optimizes
information functionals. The ILL framework is finally
shown to support both pedagogy and novel patterns of
music co-creativity.

Introduction
Is it possible for an artificial intelligence (AI) system to learn
the laws of music theory in the same human-interpretable
form as a textbook? How little prior knowledge and how lit-
tle data is needed to do so? Do novel conceptual discoveries
also emerge, or is the system restricted to rediscovery
(where algorithm designers’ conscious and unconscious

biases might have helped [1])? Can the underlying approach
to such knowledge discovery also provide representations
that make it easy for people to decompose and recompose
novel music as a form of social co-creativity?

At the Royal Society on September 27, 1950, Claude Shannon
presented “The Lattice Theory of Information” as part of the
first London Symposium on Information Theory [2]. He
aimed to describe the fundamental nature of information
beyond just characterizing its amount, as in his seminal 1948
paper [3]. The basic idea he developed was that all transla-
tions or ways of describing the same information should be
regarded as equivalent. Initially, unbeknownst to us, we dis-
covered a generalization of Shannon’s lattice theory of infor-
mation in the context of music intelligence [4], [5], [6], and
have used it to build AI systems that can indeed rediscover
much of the music theory curriculum at the University of Illi-
nois Urbana-Champaign in the same basic form as a text-
book [7], [8], [9], find new laws of music that music theorists
find compelling [9], and support a co-creativity platform we
are building to compose completely new music via a novel
language of music fragments [10]. Moreover, all of this can
be done with no musical knowledge built in (just universal
priors consistent with human innate cognition—the Core
Knowledge priors in cognitive science [11]), and on the basis
of just the sheet music from 370 chorales by Johann Sebas-
tian Bach, a German composer and musician of the late
Baroque period.

In a sense, the knowledge discovery algorithms we develop in
our information lattice learning (ILL) framework yield results
that parallel the celebrated theoretical book Gradus ad Parnas-
sum (1725) by Johann Joseph Fux, an Austrian music theorist
and pedagogue of the late Baroque period. Since the ILL
approach is directly human-interpretable (neither inscrutable
nor nonintuitive [12]), it can also be used to teach people music
theory. Indeed, the compositional rules that emerge by distilling
sheet music can be used to deliver personalized lessons on

This work is licensed under a Creative Commons Attribution 4.0
License. For more information, see https://creativecommons.org/
licenses/by/4.0/
Digital Object Identifier 10.1109/MBITS.2022.3205288
Date of publication 9 September 2022; date of current version 8
December 2022.

Feature

58 THE INFORMATION THEORY MAGAZINE OCTOBER 2022

mailto:haiziyu@uchicago.edu
https://orcid.org/0000-0003-2798-5308
https://orcid.org/0000-0003-2798-5308
https://orcid.org/0000-0003-2798-5308
https://orcid.org/0000-0003-2798-5308
https://orcid.org/0000-0003-2798-5308
mailto:varshney@illinois.edu
mailto:taube@illinois.edu
mailto:jevans@uchicago.edu


music composition, to enhance content-based music search, to
support creative music composition, and to discover newmusic
knowledge about different styles/genres. Interestingly, Shannon
himself was both very musical (e.g., playing jazz clarinet in
Greenwich Village [13]) and believed “the most promising new
developments in information theory will come from work on
very complex machines, especially from research into artificial
intelligence” [14]. So it is very appropriate that we find informa-
tion lattices arising in an automatic music theorist, pedagogue,
and composer.

Musicology is the scholarly analysis and research-based study of
music, and its subdisciplines of historical musicology and ethno-
musicology tend to focus on performances, traditions, genres,
and the people who produce and engage with them, such as
musicians and composers. Systematic musicology, on the other
hand, refers to these specific realizations but tends to focus on
more general questions aboutmusic by analyzing empirical data
and developing theory. Indeed, music theory is often cast as the
study of possibilities inmusic. As noted inTheOxford Companion
to Music, music theory includes rudiments of music notation,
scholars’ views onmusic from antiquity to the present, and defi-
nitions of processes and general principles in music. The high-
level idea is that the starting point is not individual works or per-
formances, but the “fundamental materials from which it is
built” [15]. There has been little priorwork on automatingmusic
theory, besides our own [16]. Indeed work in AI for automatic
theory development has focused on physical sciences, cf., [1],
[17], [18], rather than humanities or social sciences (which
some regard as more complicated). Notwithstanding, much of
music theory is quite mathematical, drawing on statistical and
information-theoretic concepts, together with geometric, topo-
logical, and algebraic ones.

Whether in music or in these other domains (like chemis-
try [9], genetics [19], and quantum physics), ILL aims to

solve the basic question of what makes a given object that
object, as a form of conceptual knowledge discovery. It
emphasizes the what in explaining the object rather than
focusing on the ability to generate similar objects as in gener-
ative modeling or predicting labels for the object as in super-
vised learning. ILL explains a signal to people via human-like
and human-interpretable abstractions of that signal called
rules. As a signal may be viewed from several different per-
spectives, one should aim to find several rules that collec-
tively explain most of the signal, with each rule explaining a
unique aspect. Solving this fundamental question enables
rule-based knowledge discovery designed to help people
understand complex signals. Note that whereas classic
machine learning problems (classification or generation)
may sometimes reveal knowledge during the classification
or generation process, their central target is not knowledge
discovery, nor its interpretability. That is, a music AI that
classifies concertos by composer or generates new concertos
that mimic a given composer does not necessarily produce
human insight about what makes a concerto a concerto or
the best rules a novice composer might employ to write one.
The rules we seek may be used in classification later, but
they are primarily built for understanding. So, instead of
optimizing a task-specific objective like classification error,
ILL balances among objectives favoring fewer, simpler rules
for interpretability, as well as more essential rules for
effectiveness.

The mathematical intuition behind ILL is to break the whole
into simple pieces, somewhat akin to decomposing a signal into
its Fourier representation (see Figure 1). Whereas Fourier
analysis decomposes a signal in a Hilbert space via the inner
product (i.e., projection to orthonormal basis) and synthesizes
it via a weighted sum, ILL decomposes a signal in a hierarchical
space called a lattice. We aim for human-like, hierarchical rule
abstraction-and-realization via signal decomposition-and-

Figure 1
Fourier analysis decomposes a signal into simple components in an orthogonal basis with coefficients fcng whereas ILL breaks a signal

into human-interpretable rules that are part of a lattice-structured human-interpretable hierarchy.
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synthesis in a lattice, called projection-and-lifting, resulting in
more than the sum of parts.

As noted, the ILL approach generalizes Shannon’s original
information lattices to a hierarchical distribution of repre-
sentations and importantly brings statistical learning into
the lattice. Shannon’s original work (further formalized by Li
and Chong [20]) assumed a probability space with a given
probability measure, rather than allowing statistical learning.
Moreover, numerous hierarchical decompositions of infor-
mation have been proposed in the literature that all assume
a fixed probability measure. Examples include lattices of
Huffman codes ordered with respect to code tree imbal-
ance [21]; partition lattices stemming from submodular
functions in the context of multivariate information meas-
ures [22]; integrated information lattices in the temporal
decomposition of information in complex systems [23]; and
information hierarchies in economics considering Blackwell
partial ordering in decision making [24].

There are two phases to ILL. First, the information lattice (a
kind of abstraction universe) is algorithmically constructed
from group-theoretic foundations using techniques from
computational group theory [6], [25]. Second, the learning
algorithm is realized by an iterative discovery cycle that has
a student-teacher architecture. The iterative structure is
reminiscent of other student-teacher approaches to concep-
tual learning [26], [27], but specifically operates on the
lattice through alternating optimization of information
measures.

In the remainder of this article, we will start with an exposi-
tion of information lattices and then get into the ILL frame-
work for self-exploratory and self-explanatory AI. After that
preparation, we will get into human-interpretable music
knowledge discovery, teaching, and creativity.

As a separate line of research, note that there is a signifi-
cant history of computer-based music composition, largely
drawing on ideas from stochastic processes [28]. As an
example, Betty Shannon and John Pierce wrote a 1949 Bell
Labs technical memorandum on “Composing Music by a
Stochastic Process” which (at the time unknowingly)
expanded on works by W. A. Mozart, J. Haydn, M. J. K. D.
Stadler, and K. P. E. Bach. It introduced stochastic models
to describe the generating process of the chord progres-
sion in four-part harmonies by using known music theory
rules and was implemented using three specially made
dice and a table of random numbers [28], [29]. The ILLIAC
Suite, a 1957 composition for string quartet coming from
a program by Lejaren Hiller and Leonard Issacson for the
ILLIAC I computer at the University of Illinois Urbana-
Champaign, is generally agreed to be the first score com-
posed by an electronic computer [30]; like the Shannon–
Pierce work, it also followed a rule-based Markov genera-
tive process. These approaches were highly dependent on

the rules used, and further did not capture long-range
dependence. Later work in computer music composition
focused on imitating particular styles and drew on much
more intricate hand-designed rule sets [31]. Modern deep
learning methods for music composition, such as the Music
Transformer [32], capture much longer ranges of depen-
dence than simple Markov models through their attention
mechanisms, but may lack the strong ability for human
creative control. Yet, human intentionality is central to cre-
ativity [33], [34]. The ILL framework focuses on learning
the laws of music theory from data—rather than relying
on hand-designed rules—that can then be used in a
human-approachable way for music composition [35],
whether by stochastically sampling or by much more
human-controllable methods of co-creativity.

Information Lattices and Learning
In his 1950 work, Claude Shannon attempted to describe the
nature of information beyond just quantifying its amount [2].
With the specific context of communication problems in
mind, he developed the term information element to denote
the nature of information, which is invariant under “(lan-
guage) translations” or different encoding–decoding schemes.
He further introduced a partial order between a pair of infor-
mation elements, eventually yielding a lattice of information
elements, the information lattice.

Here, we first briefly review Shannon’s original work and
then cast the information lattice in our abstraction-genera-
tion framework without needing to introduce information-
theoretic functionals, such as entropy, or even probability
spaces ðV;F ; P Þ with sample spaces V, s-algebras F , and
probability measures P . Our abstraction-generation frame-
work for knowledge discovery not only generalizes Shan-
non’s information lattice, but more importantly presents a
generating chain that brings learning into the picture. This
eventually opens up the opportunity for data-driven concept
learning, which aims to discover human-interpretable rules
from data.

Theoretical Generalization: A
Separation of Clustering and
Statistics
Consider Shannon’s original work and a follow-up work [20]
that formalizes Shannon’s idea in a more principled way. Is
the nature of information an

information element or chance variable? (1)

We say two chance variables are informationally equiva-
lent if they induce the same s-algebra (of the sample
space). An information element is an equivalence class of
chance variables (of a common sample space) with
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respect to the “being-informationally-equivalent” relation.
Under this definition, the notion of an information ele-
ment—essentially a probability space—is more abstract
than that of a chance variable: an information element
can be realized by different chance variables. The rela-
tionship between different but informationally equivalent
chance variables and their corresponding information ele-
ment is analogous to the relationship between different
faithful translations (say, Chinese and Hindi) of a message
and the actual content/meaning of that message. Since
different but faithful translations are viewed as different
ways of describing the same information, the information
itself is then regarded as the equivalence class of all
translations or ways of describing the same information.
Therefore, the notion of the information element is said
to reveal the fundamental nature of the information.

The idea of information lattices can be given a group-theo-
retic interpretation:

information lattice ! partition lattice !
subgroup lattice (! interpretation). (2)

An information lattice is a lattice of information elements,
where the partial order is defined by x � y,HðxjyÞ ¼ 0
where H denotes the conditional Shannon entropy. The join
of two information elements x _ y ¼ xþ y is called the total
information of x and y; the meet of two information elements
x ^ y ¼ xy is called the common information of x and y, and
is in fact the G�acs–K€orner common information [20], [36]. By
definition, every information element can be uniquely deter-
mined by its induced s-algebra. Also, it is known that every
s-algebra of a countable sample space can be uniquely deter-
mined by its generating (via union operation) sample-space-
partition. Thus, an information lattice has a one-to-one corre-
spondence to a partition lattice. Further, given a partition of
a sample space, [20] constructed a unique permutation sub-
group whose group action on the sample space produces
orbits that coincide with the given partition. Therefore,
under this specific construction, any partition lattice has a
one-to-one correspondence to the constructed subgroup lat-
tice (see the General Isomorphism Theorem in [20]). This
yields the abovementioned Chain (2) which further achieves
group-theoretic interpretations of various information-theo-
retic results, bringing together information theory and group
theory [37].

Now, we cast the abovementioned results into our frame-
work and point out the key differences. Is the nature of
abstraction

clustering or classification? (3)

Generalizing Shannon’s insight on (1) reveals an essential
difference between clustering and classification in machine
learning. Following the “being-informationally-equivalent”

relation, we can similarly define an equivalence relation on
the set of all classifications where two classifications are
equivalent if they yield the same set of classes and only differ
by class labels. For example, given a set of animals, classify-
ing them into {fish, amphibians, reptiles, birds, mammals} is
equivalent to classifying them into {poisson, amphibians,
reptiles, oiseaux, mammif�eres}, where the different class
labels are only English and French translations of the same
animal classes. So, the relationship between clustering and
classification is analogous to that between information ele-
ments and chance variables. Clustering rather than classifica-
tion captures the nature of abstraction. This explains why we
formalize abstraction and knowledge discovery as a cluster-
ing problem in ILL.

We summarize major connections between a partition lattice
and an information lattice in Table 1. The differences are
rooted in the separation of clustering from statistics, so
roughly speaking, a partition lattice—which is measure-

TABLE 1. Partition Lattice and Information
Lattice: The Main Difference Comes From

the Fact that a Partition Lattice is not
Coupled with a Measure; Whereas an
Information Lattice is Coupled with a

Probability Measure, so Both the Partial
Order and the Metric can be Defined in

Terms of Entropies

Partition lattice Information lattice

Element

Partition ðPÞ; Information
element ðxÞ;

Clustering
ðX;PÞ;

Probability space
ðX;S; P Þ;

Equiv. class of
classifications

Equiv. class of
chance variables

Partial
order

P � Q x � y,HðxjyÞ ¼
0

Join P _ Q xþ y

Meet P ^ Q xy

Metric Undefined
rðx; yÞ ¼

HðxjyÞ þHðyjxÞ
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free—can be thought of as an information lattice without
probability measure. In this sense, abstraction is a more gen-
eral concept than information by not being specific to com-
munication problems, and in particular, is not attached to
stochastic processes or information-theoretic functionals
such as entropy.

This leads to our view of group-theoretic learning

subgroup lattice ! partition lattice !
information lattice (! learning): (4)

The separation of clustering and statistics is important since
it opens the opportunity for interpretable statistical learning,
where interpretability is achieved by the explicit construction
of a partition lattice (symmetry-generated hierarchical clus-
tering), and learning is achieved by subsequent statistical
inference on this lattice.

This is more precisely presented in Chain (4) aiming for
learning, which at first glance, is just a reverse process of
Chain (2) aiming for reinterpretation. However, the subgroup
lattices in both chains are in stark contrast: the subgroups
considered in Chain (4) are based on certain symmetries—
the underlying mechanism of abstraction for knowledge dis-
covery—whereas the subgroups considered in Chain (2) are
merely (isomorphic) restatements of the given partitions.
That is to say, among many possible subgroups that generate
the same partition, we only pick the one that provides us
explanations using the types of symmetries under consider-
ation. The preservation of interpretable symmetries through
Chain (4) makes the subsequent learning transparent. There-
fore, when abstraction does meet statistics, it will yield inter-
pretable machine learning and knowledge discovery, which
is beyond simply a reinterpretation of known results.

Constructing Abstraction Universes
and Learning on Lattices
We formalize ILL as a single optimization problem and then
solve it practically in two phases. Given a signal/dataset to
explain, optimize over rule sets such that the best rule set a)
recovers the signal well and b) is simple. Since exact recov-
ery may not always be possible, use a divergence function
like relative entropy (Kullback–Leibler divergence) to mea-
sure loss, which is to be minimized. Information loss may
occur if the abstraction universe is insufficient, or if we make
algorithmic choices like favoring uniformity inappropriately.
We say a rule set is simpler if it has fewer and simpler rules;
whereas a rule is informationally simpler if it has smaller
entropy, so it is more deterministic, easier to remember, and
closer to common notions of a “rule.” Note that the lattice
structure induces a tradeoff between the two goals, which is
hard to address computationally since full partition lattices

are superexponential in size. Our two-phase approach is as
follows.

Constructing Abstraction Universes
The first phase is to construct a restricted partition lattice
based on group-theoretic foundations and using domain-spe-
cific or domain-agnostic priors on which symmetries might
be most relevant. The need for restriction is to ensure human
interpretability: not every set partition is easily explained
but those that come, e.g., from group-theoretic invariances
are naturally explained by the mechanism of the group
action. Moreover, since there are a superexponential Bell
number of possible set partitions (also patterns in universal
source coding [38]) to say nothing of the subgroup structure
that relates them to one another in the lattice, working with
all possibilities would be computationally infeasible.

Lattice construction plays a role similar to building a func-
tion class in machine learning, which is sometimes called
metalearning. While its importance is commonly understood,
the construction phase in many data-driven models is often
treated cursorily—using basic templates and/or ad hoc pri-
ors—leaving most computation to the learning phase. In con-
trast, we put substantial computational and mathematical
effort into our prior-driven construction phase. Pursuing
generality and interpretability, we want universal, simple
priors that are domain-agnostic and close to innate human
cognition [39]. Thus, we draw from Core Knowledge in
cognitive science [11], [40], where we have studied the fol-
lowing two main categories:

“the (small) natural numbers and elementary arith-
metic prior,” and

“the elementary geometry and topology prior”

which largely correspond to isometries (rigid body transfor-
mations) in group theory.

We have developed computational group theory algorithms,
which we detail elsewhere [6], [25] to construct abstractions
from these priors, and consider such a construction prior-
efficient if it is interpretable, expressive, and systematic. The
main technical problem addressed by our algorithms is as
follows: given an input space and a class of symmetries,
explicitly compute a hierarchical family of symmetry-driven
abstractions of the input space.

To go from mathematically formalized abstractions to compu-
tationally explicit abstractions, we introduce two general prin-
ciples—a top-down approach and a bottom-up approach—to
algorithmically generate hierarchical abstractions from hierar-
chical symmetries enumerated in a systematic way. The two
principles leverage different dualities developed in the formal-
ism and lead to practical algorithms that realize the abstrac-
tion-generating process.
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In the top-down approach, we start from all possible symme-
tries and gradually restrict to certain types of symmetries.
For example, symmetries common in crystallography, sym-
metries induced from affine transformations, or isometries
that are all human-interpretable as per Core Knowledge. In
these examples, a large symmetry-enumeration problem not
only decomposes into smaller enumeration subproblems,
but also suggests ways of adding restrictions to obtain
desired symmetries. This approach from general symmetries
to more restrictive ones corresponds to top-down paths in
the symmetry hierarchy.

In the bottom-up approach, we start from a set of atomic
symmetries (the seeds, corresponding to simple functions
like sort or mod12) and generate all symmetries that are
seeded from the given set. A strong duality result we develop
yields an induction algorithm to compute a hierarchical fam-
ily of abstractions without explicitly enumerating the corre-
sponding symmetries. This induction algorithm allows
abstractions to be made from earlier abstractions and is
therefore more efficient than generating all abstractions
from scratch. This approach from atomic symmetries to
more complicated ones corresponds to bottom-up paths in
the symmetry hierarchy.

The explicitly constructed partition lattice is the universe of
possible abstractions that are considered in the second
phase, the statistical learning phase.

Learning on Lattices
The learning phase of the ILL framework starts with the con-
structed partition lattice and a (small) data set, such as a
small number of chorales by J. S. Bach, which are canonical in
music theory. Learning in an information lattice means
searching for a minimal subset of simple rules from the infor-
mation lattice of a signal (dataset) to best explain that signal
(dataset). We adopt a (greedy) idea much like principal com-
ponent analysis by first finding the most essential rule in
explaining the signal, then the second most essential rule in
explaining the rest of the signal, and so on. Learning in the
lattice proceeds iteratively, as depicted in Figure 2 according
to a student–teacher architecture. The student is a music
generator and the teacher is a discriminator. The two compo-
nents form a loop where the teacher guides the students
toward a target style (using the input dataset, e.g., Bach)
through iterative feedback and exercise, which map onto the
process of extracting and applying rules. As detailed else-
where [5], [8], [9], this is done by optimizing information
functionals in the two components. Namely, the student tries
to find the most random (largest entropy) probability distri-
bution under the current rule set, whereas the teacher tries
to find the most discriminative (largest relative entropy) rule
to add to the rule set, which satisfies lattice-structured con-
straints, ensuring the added rule is not redundant with
existing rules, and trying to find rules that have highly

concentrated probability mass (e.g., low entropy). This itera-
tive procedure aims to solve the optimization problem of
searching for a minimal subset of simple rules from the infor-
mation lattice of a signal so as to best explain that signal.

More specifically, we start with an empty rule set. Then the
teacher (discriminator) takes as input the student’s latest
style p

hk�1i
stu and the input style p from the training corpus

and identifies a feature through which the two styles mani-
fest the largest gap Dðphk�1i

stu kpÞ, subject to the rule corre-
sponding to the feature not already being in the rule set or
being too hierarchically close to a rule in the rule set. The
identified feature is then made into a rule Gk and is added to
the rule set fGigki¼1. Adding the rule that maximizes diver-
gence to the rule set tends to minimize the original objective.
Computationally this maximization is a discrete optimization,
which also corresponds to the optimization of a divergence
quantity called Bayesian surprise. The student (generator)
takes as input the augmented rule set to update its writing

style into p
hki
stu and favors creativity, i.e., more possibilities, by

maximizing the entropy subject to the rule constraints.
When the entropy function is taken as the Tsallis entropy,
the problem is least-squares optimization for which there
are efficient algorithms.

In short, the teacher extracts rules while the student applies
rules; both perform their tasks by solving optimization prob-
lems. ILL outputs not just a human-interpretable hierarchy of
human-interpretable rules, where the hierarchy is interpret-
able due to the lattice structure and the rules are interpret-
able due to their mechanistic explanation from symmetries. It
also outputs a rule trace comprising an evolving sequence of
rules, rule sets, and recovered signals, which is useful as a cur-
riculum for teaching, among other uses.

Automatic Music Theorist
Let us return to the real application in music, where we build
an automatic music theorist to develop a hierarchy of music
theory rules and further to teach students personalized
lessons on music composition [4], [29]. It implements the
“student Ð teacher” model in the music setting: the student
is a music generator and the teacher is a music discriminator.
The two components form a loop where the teacher guides
the students toward a target style through iterative feedback
and exercise, which map onto our process of extracting and
applying rules. This application reaches beyond basic illus-
trations by considering:

many music voices (or channels), so signals are in
higher dimensions and rules are on more complex
chord structure; and

temporal structure, so signals include various (un)condi-

tional chord distributions (i.e., n-grams for n ¼ 1; 2; . . .),
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yielding both context-free and context-dependent rules,
but new challenges too, namely rare contexts/condition-
als and contradictory rules.

ILL’s core idea of abstraction makes rare context common
and a redesigned lifting operator solves contradiction [35].
Further, ILL parameters are made into knobs for human
learners to personalize pace.

User Interface
We designed a web interface (see Figure 3) for the music
application so users can more easily control the rule-learning
process and how the learned results are displayed. Users
learn music rules—each rendered as a histogram over a
tagged partition (i.e., machine-codified music concepts)—
and personalize their learning pace using knobs in the inter-
face. These include rule difficulty, satisfactory level (a high
value indicates high fidelity of the recovered signal to the
original), and deviation level (a high value indicates a larger
perturbation to the rule). Their set values are automatically
converted to internal parameters.

Music is highly contextual. To model context, we consider
more than one signal simultaneously, including multiple
n-grams with varying n values and varying conditionals. In
this way, ILL projects n-grams to lattices and aims for rules
that characterize not only individual chord formation but
also melodic and harmonic progression. Accordingly, ILL
produces both context-free and context-dependent rules,
each indexed by a partition and a conditional under that par-
tition. For example, given a partition that abstracts chords
into roman numerals and conditioned on the previous two
chords being I64 ! V, an ILL rule specifies the probability
distribution of the next roman numeral rather than the next
chord, and in this case, reproduces the music rule on Caden-
tial-64. Note that in a context-dependent rule, not only is
the query chord abstracted, but also the conditional. This

abstracted n-gram differs from plain n-gram models. The lat-
ter may suffer from rare context, i.e., a conditional occurs
very few or even zero times in the training set. Yet, the core

Figure 2
Student–teacher iterative structure for learning an information lattice, given a partition lattice and a music input dataset p. The
student tries to be most random by maximizing an entropic quantity under the current rule set fGigki¼1 to produce a probability

distribution p
hki
stu. The teacher tries to find the most discriminative rule Gk by maximizing a relative entropy between the most recent

student probability phk�1i
stu and the music input p under constraints from the lattice and from the desire for concentrated rules.

Figure 3
Music web interface has (a) a rule histogram and (b) a user

control panel.
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idea of abstraction makes small data large and rare contexts
common. Under appropriately discovered equivalence clas-
ses, rare things become prevalent: a theorist might think that
“Although I have never seen this exact chord progression
before, I have seen this type.” Figure 4 exemplifies two con-
text-free rules and a context-dependent one. These rule his-
tograms are generated by ILL based on 370 of Bach’s four-
part chorales.

Knowledge Rediscovery
Making use of the music application’s web interface, we con-
duct studies to evaluate two important performance metrics
of an ILL application, or indeed a knowledge-discovery task
in general, namely rule-learning capability and human-
interpretability. The first study assesses both how much-
known knowledge an AI can reproduce (common in auto-
matic knowledge discovery settings, such as [41] and [42])
and how much new it can discover. The second dimension
normally involves studies with human evaluators, which we
return to in the next section. Figure 5 summarizes the main
results for both performance dimensions.

To assess rule-learning capability, let us compare machine-
discovered rules with human-codified domain knowledge to
identify how much is rediscovered and also what new can be
discovered. In our context, we compare ILL-distilled rules to
the standard undergraduate music theory curriculum at the

University of Illinois Urbana-Champaign. The initial idea is to
use known theory as a benchmark. Yet, we emphasize the
ultimate goal is not to use known theory as supervision
to reconstruct only what we know, but also to discover
new rules, new understandings of existing rules, and new
composition possibilities, and to teach rules in a person-
alized way.

Before proceeding, note three major differences between
human-codified music theory and ILL-generated rules.

Raw music representation (input): Known music the-
ory is derived from all aspects of sheet music whereas
ILL-generated rules are currently derived only from
MIDI pitches and their durations in digital sheet
music. This is because we currently study ILL as a
general framework. One can later include more music
raw information, such as spelling, meter, measure,
beaming, and articulation.

Rule format (output): Known music theory and ILL-
generated rules have two different styles. The former
is more descriptive and absolute (hard), whereas the
latter is more numerical and stochastic (soft). For
instance, a music rule that strictly bans consecutive

Figure 4
Examples of ILL rules: (a), (b) context-free; (c) context-

dependent, where the w½�� window operator selects voices
(soprano, alto, tenor, bass).

Figure 5
Assessments of ILL on knowledge-discovery tasks. (a) Trained
on 370 chorales, ILL explicitly reproduced 66% and implicitly
hinted at 26% of a standard music theory curriculum. (b) In
an interpretation-focused assignment, the majority (2/3) of
the music theory students who did the assignment succeeded

(w.r.t. 30/50 passing score) in interpreting ILL-discovered
rules. (c) ILL revealed a new way of building chords, namely
figured soprano, which is confirmed independently by other
music theorists. More examples of new rules are in the text.

THE INFORMATION THEORY MAGAZINE OCTOBER 2022 65



fifths is softened in an ILL rule that assigns a small
non-zero probability. So, while it is possible to “trans-
late” a probabilistic rule in ILL to a verbal rule in
known theory, it may not make sense to “translate”
the other way. Furthermore, it may not be wise to
hard-code known rules as categorical labels in a
supervised setting, as music rules are inherently flexi-
ble and hard-coding may lead to a rule-based AI that
generates “mechanical”music like the Illiac Suite [30].

Dataset specificity: Music theory is often intended for
educational purposes, rather than to reflect the style
of a musical oeuvre. For instance, while consecutive
fifths are banned in homework and exams, they are
used in the real-world composition. Even in our
dataset of Bach’s chorales, which are supposed to
follow the known rules quite well, we see some
consecutive perfect intervals. ILL-generated rules
are specific to the input data set. We may find
datasets that follow the known rules quite well
(e.g., Bach’s chorales), but others that break known
rules and set their own.

Keeping these three differences in mind and isolating them
from the comparison results, we discuss the remaining dif-
ferences due to the rule-learning process itself. To come up
with the benchmark, we compiled a comprehensive syllabus
of laws from music theory taught in our music school’s the-
ory review course, which runs through the full series of the-
ory classes at a fast pace. This human-codified music
knowledge is organized as a running list of 75 topics and
subtopics indexed by lecture number. On the other hand,
ILL-generated rules are indexed by partition (ID) and
n-gram (n).

Results are summarized in Table 3, where the colored
crosses in the last column indicate topics missed by ILL for
different reasons. Among the total 75 topics in Table 3, we
first ignore seven of them (red crosses), which require raw
music representations beyond MIDI pitches and durations
(e.g., accents and enharmonic respellings of some augmented
sixth chords). ILL covered 45 out of the remaining 68 topics,
i.e., 66%. Among the 23 missed topics, 18 (blue crosses) are
related to deeper-level temporal abstractions, such as har-
monic functions (the tendency of certain chords to progress
to other chords or to remain at rest) and forms (long-range
structure of a musical composition). These temporal abstrac-
tions may be better modeled as abstractions of transitions,
which are implicitly captured but not explicitly recovered
from our current multiabstraction multi-n-gram language
model, modeling only transitions of abstractions. The other
five missed topics (black crosses) are tricky and require ad
hoc encodings, not explicitly learnable, but may be implicitly
captured from our current ILL implementation. Accordingly,
the 30 ¼ 7þ 18þ 5 uncovered topics suggest three future
directions to raise ILL’s rule-learning capacity:

1) include more raw music representations;

2) model abstractions of transitions; and

3) make music-specific adjustments to ILL (or find a more
expressive and general framework).

Recall, however, that the goal here is not to reproduce
what we know but also to augment it. We may stop after
enabling abstractions of transitions, which may improve
coverage to 84% (i.e., 93% of the topics from MIDI notes
only) and may be sufficient for meaningful understanding
and training.

TABLE 2. Comparison of ILL’s Symmetry-Induced Rule Abstractions to Music OPTIC

Operation Music description Subgroup

Octave shift “Move any note into a new octave.” hft12eeeeeee1111111 ; t12eeeeeee2222222 ; t12eeeeeee3333333 ; t12eeeeeee4444444gi ✓

Permutation “Reorder the object, changing which voice is assigned to which note.” hfrP ð1;2Þ ; rP ð2;3Þ ; rP ð3;4Þ gi ✓

Transposition
“Transpose the object, moving all of its notes in the same direction by the

same amount.”
hft1111111gi ✓

Inversion “Invert the object by turning it ‘upside down’.” hfr�Igi ✓

Cardinality
Change

“Add a new voice duplicating one of the notes in the object.” ✗
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TABLE 3. Comparison of ILL-Generated Rules to Human-Codified Laws of Music Theory Taught
in Standard Undergraduate Music Theory Courses. Checks (45) in the Last Column Denote

Topics Recovered by ILL

Lecture Music theory Partition IDs n-gram

1 Music accents ✗

2 Pitch 1–4 1 ✓

2 Pitch class 16–19 1 ✓

2 Interval 31–36 1 ✓

2 Interval class 97–102 1 ✓

3 Stepwise melodic motion (counterpoint) 1–4 2 ✓

3 Consonant harmonic intervals (counterpoint) 97–102 1 ✓

3 Beginning scale degree (counterpoint) 16–19 2 ✓

3 Ending scale degree (counterpoint) 16–19 2 ✓

3 Beginning interval class (counterpoint) 97–102 2 ✓

3 Ending interval class (counterpoint) 97–102 2 ✓

3 Parallel perfect intervals (counterpoint) 97–102 2 ✓

3 Directed perfect intervals (counterpoint) ✗

3 Law of recovery (counterpoint) 1–4 �3 ✓

3 Contrapuntal cadence (counterpoint) 1–4, 97–102 2,3 ✓

3 Melodic minor ascending line (counterpoint) ✗

4 Triads and seventh chords 26–30 1 ✓

4 Triads and seventh chords: quality 140–144 1 ✓

4 Triads and seventh chords: inversion 113–117 1 ✓

5 Figured bass 113–117 1,2 ✓
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TABLE 3. (Continued ) Comparison of ILL-Generated Rules to Human-Codified Laws of Music
Theory Taught in Standard Undergraduate Music Theory Courses. Checks (45) in the Last

Column Denote Topics Recovered by ILL

Lecture Music theory Partition IDs n-gram

5 Roman numerals 81–85,129–133 1 ✓

6 Melodic reduction (Schenkerian analysis) ✗

7 Passing tone (tones of figuration) 1–4, 134–144 3 ✓

7 Neighbor tone (tones of figuration) 1–4, 134–144 3 ✓

7 Changing tone (tones of figuration) 1–4, 134–144 4 ✓

7 Appoggiatura (tones of figuration) 1–4, 134–144 3 ✓

7 Escape tone (tones of figuration) 1–4, 134–144 3 ✓

7 Suspension (tones of figuration) 1–4, 134–144 3 ✓

7 Anticipation (tones of figuration) 1–4, 134–144 3 ✓

7 Pedal point (tones of figuration) 1–4 � 3 ✓

7 (Un)accented (tones of figuration) ✗

7 Chromaticism (tones of figuration) ✗

8 Tonic (function) ✗

8 Dominant (function) ✗

8 Authentic cadence 1,4,81–85,129–133 2,3 ✓

8 Half cadence 81–85,129–133 2,3 ✓

9 Voice range (four-part texture) 1–4 1 ✓

9 Voice spacing (four-part texture) 31–41 1 ✓

9 Voice exchange (four-part texture) 20–25 2 ✓

9 Voice crossing (four-part texture) 53–63 1 ✓
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TABLE 3. (Continued ) Comparison of ILL-Generated Rules to Human-Codified Laws of Music
Theory Taught in Standard Undergraduate Music Theory Courses. Checks (45) in the Last

Column Denote Topics Recovered by ILL

Lecture Music theory Partition IDs n-gram

9 Voice overlapping (four-part texture) ✗

9 Tendency tone (four-part texture) 16–19 1,2 ✓

9 Doubling (four-part texture) 86–91 1 ✓

10 Harmonic reduction (second-level analysis) ✗

11 Expansion chord ✗

12 Predominant (function) ✗

13 Phrase model ✗

14 Pedal or neighbor (six-four chord) 4,113–117 3 ✓

14 Passing (six-four chord) 4,113–117 3 ✓

14 Arpeggiated (six-four chord) ✗

14 Cadential (six-four chord) 85,113–117,133 3,4 ✓

15 Embedded phrase model ✗

16 Nondominant seventh chord (function) ✗

17 Tonic substitute (submediant chord) ✗

17 Deceptive cadence (submediant chord) 81–85,129–133 2,3 ✓

18 Functional substitute (mediant chord) ✗

19 Back-relating dominant 81–85,129–133 2,3 ✓

20 Period (I) ✗

21 Period (II) ✗

22 Period (III) ✗
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Let us also consider another music theory source focused on
music symmetries [43]. We compare ILL-generated rules
with a set of commonly used music operations, known as the
OPTIC operations: octave shifts (O), permutations (P), trans-
positions (T), inversions (I), and cardinality changes (C). As
summarized in Table 2, ILL covers the major four types of
operations (OPTI). The C operation is not recovered because

it is not a transformation in the mathematical sense of being
unambiguous and bijective. Notationally, tv denotes a trans-
lation by the translation vector v, i.e., tvðxÞ :¼ xþ v; rA
denotes a rotation (can be proper or improper) by the rota-
tion matrix A, i.e., rAðxÞ :¼ Ax As a special type of rotation
matrix, P ð���Þ denotes a permutation matrix where the super-
script is the cycle notation of a permutation. Note that ILL, as

TABLE 3. (Continued ) Comparison of ILL-Generated Rules to Human-Codified Laws of Music
Theory Taught in Standard Undergraduate Music Theory Courses. Checks (45) in the Last

Column Denote Topics Recovered by ILL

Lecture Music theory Partition IDs n-gram

23 Applied chords (I) 81–85,129–133 2,3 ✓

24 Applied chords (II) 81–85,129–133 2,3 ✓

25 Applied chords (III) 81–85,129–133 2,3 ✓

26 Modulation (I) ✗

27 Modulation (II) ✗

28 Binary form (I) ✗

29 Binary form (II) ✗

30 Modal mixture ✗

31 Neapolitan 81–85,129–133 1 ✓

32 Italian sixth chord 140–144 1 ✓

32 French sixth chord 144 1 ✓

32 German sixth chord ✗

32 Swiss sixth chord ✗

33 Ternary form ✗

34 Sonata form ✗

Notes: Red crosses (7) denote topics not recoverable from our raw music representations; blue crosses (18) denote topics not recoverable from
our n-gram transitions of abstractions/partitions; black crosses (5) denote topics not recoverable from the constructed lattice of abstractions.
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a general framework, considers a much larger universe of
generic symmetries (from Core Knowledge) beyond those
already considered in music. Therefore, ILL not only recovers
existing music symmetries, but also suggests new symme-
tries to be exploited in new styles.

New Knowledge Discovery
Besides the rediscovery of existing music theory knowledge,
the ILL approach also discovers new knowledge. We mention
a few new rules discovered by ILL that piqued the interest of
our colleagues in the School of Music.

a) Tritone resolution plays a key role in tonal music and is
an epitome of many more general harmonic resolutions.
However, in Bach’s chorales, tritones sometimes do not
resolve in typical ways, but rather consistently transition
to other dissonances, such as a minor seventh, behaving
like a harmonic version of an escape or changing tone.

b) A new notion of “the interval of intervals” has been con-
sistently extracted in several ILL-generated rule traces.
This “second derivative,” like acceleration in mechanics,
might suggest a new microscopic chord structure that
has not been considered before.

c) New symmetry patterns reveal new harmonic founda-
tions, hence new composition possibilities. As a parallel
concept of harmony traditionally built on figured bass
(the dominant pattern in Bach’s chorales, as confirmed
by ILL), ILL reveals the presence of “figured soprano”
as the next alternative in explaining Bach’s music
[see Figure 5(c)]. Although not the best way to explain
Bach’s chorales according to ILL and also not included in
any standard music theory class, it may be a more effi-
cient perspective to view or create music starting deviat-
ing from classical (e.g., in Jazz). Indeed, this idea was
developed, contemporaneously with us, by Casey
Sokol [44], a music professor at York University, which
we quote in the following: “The idea of Figured Soprano
is simply a way of taking this thinking from the top-down
and bringing it into greater prominence as a creative ges-
ture. So these exercises are not anything new in their ide-
ation, but they can bring many new ideas, chord
progressions and much else. It’s a somewhat neglected
area of harmonic study and it’s a lot of fun to play with.”

Human Interpretability
To assess human interpretability, we ask people to interpret
machine-generated rules. Such human evaluation is consid-
ered the gold standard in the human–computer interaction
(HCI) and explainable AI literatures. In particular, to charac-
terize the degree to which ILL-generated rules are interpret-
able, we assess human-generated verbal interpretations of
ILL rules, which are originally sophisticated symbolic and
numeric objects. Let us detail the collection and assessment
procedure.

The evaluation was conducted in the form of a two-week
assignment for 23 students from the CS+Music degree pro-
gram at the University of Illinois Urbana-Champaign. Each
student had a basic knowledge of computer science, math,
and music theory, but no student had read any ILL-generated
rules before. By interpretability, we mean interpretable to
these students.

The assignment had three parts. Part I gave detailed instruc-
tions on the format of rules as shown in Figure 4, including
both feature-related and probability-related instructions
(symmetries were excluded from tags because group theory
is unfamiliar to these students). We provided verbal defini-
tion, mathematical representation, and typical examples for
each of the following terms: chord, window (for coordinate
selection), seed feature, feature, rule, n-gram, histogram, and
dataset. An understanding of these eight terms was the only
prerequisite for the assignment. The estimated reading time
of instructions was one hour.

Part II had eleven 1-gram rules—a histogram specified by
window and seed feature(s); Part III contained 14 2-gram
rules—a histogram specified by the window, seed feature(s),
and additionally, a conditional. Students were asked to write
what they saw in each of the histograms in response to the
following two prompts:

Does the histogram agree/disagree with any of the
music rules and concepts you know (write in music-
theoretic terms when possible)?

Does the histogram suggest something new (i.e., nei-
ther an agreement nor a disagreement, with no clear
connection to anything you know)?

Responses to each of the 25 rules were to be given as text,
containing word descriptions that “decode” the histogram.
Students were explicitly instructed that a literal repetition of
the histogram (e.g., taking a modulo 12 of a chord results in a
91.2% chance of being 0,0,4,7) was unacceptable and only
qualitative descriptions to reveal the music behind the math
was requested. Students were also specifically instructed to
only attend to the relative values of the probabilities (e.g.,
what are most likely, more likely, or nearly impossible). This
students were asked to complete the assignment indepen-
dently with no group work or office hours.

The assignment was designed such that every rule histogram
encoded at least one music concept/rule consistent with
standard music theory. In addition, every histogram con-
tained either one additional known music rule or something
strange that either conflicted with a known rule or repre-
sented something new. Each rule was scored as two points.

To score the assignments, we prepared an initial rubric
containing the (authoritative) music keywords used to
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describe every rule histogram. To ensure the credibility
and fairness of the initial rubric, we held a discussion
session (after the assignment was submitted) with all stu-
dents and teaching staff, as a form of peer review. During
that session, we discussed all 25 rules individually. For
each, we first announced keywords in the initial rubric
and explained that these keywords would later be used to
score their assignment. Every student was encouraged to
object to any of our announced keywords or to propose
new keywords accompanied with a convincing explana-
tion. New/modified keywords commonly agreed upon by
the students and teaching staff were added to the initial
rubric. By the end of the discussion, there was a more
inclusive rubric containing broadly accepted keywords.
This rubric-generating process was transparent to all stu-
dents. Every student’s response sheet was scored against
keywords in the inclusive rubric, and the resulting scores
are summarized in Figure 5(b). Besides not doing the
assignment, a major score deduction was due to misunder-
standing the n-gram (e.g., the probability of the present
condition on the past was mistakenly interpreted as the
probability of the past conditioned on the present). This
may be largely due to unfamiliarity with the n-gram mod-
els for new CS+Music students. Notwithstanding, most stu-
dents that completed the assignment succeeded in
exceeding a 30/50 score, and several received perfect
scores. This provides evidence for the interpretability of
ILL rules.

Co-Creativity
Creativity is powerful. Regarded as one of our most sophisti-
cated cognitive skills, this ability drives human progress by
allowing us to perform nonroutine tasks, take advantage of
novel opportunities, and invent new solutions to problems
facing the world. Creativity is the hallmark of art and science,
as well as engineering and technology that benefits wide
swaths of society. Music composition is often thought of as
an exemplary form of creativity, especially since music is
engaging and central to human self-expression and culture.
Creativity often builds on a knowledge base like music
theory.

Although popular culture tends to lionize the lone genius and
music composers traditionally work alone, group creativity
often trumps individual creativity. Work in numerous crea-
tive domains is largely carried out by teams rather than
heroic solo inventors, but comes with its own dynamics.
Effective collaboration requires not only cooperation, i.e.,
having aligned goals, but also coordination mechanisms to
enable effective alignment and adjustment to teammates’
actions. Yet, group creativity is difficult: individual creative
contributions are fundamentally complex and co-dependent;
their combination requires more intelligence than a simple
summation or independent voting. How to disaggregate/

aggregate disparate contributions in complex tasks, such as
composing music, has been an open question in HCI [45] and
collective intelligence [46].

Based on the human-interpretable ILL framework for music,
we have built a platform to support people working together
with others and with AI to co-create new music, while pre-
serving the autonomy of individual human contributors. The
use of the ILL framework also enables a more abstract lan-
guage by which creative communication can take place. For
example, one might want to extract the melody and harmony
from the song Happy Birthday and the rhythm and texture
from Mozart’s K545 piano sonata, and combine them
together into a new song, specified just at this level, without
note-by-note editing. To do so, we have developed lattice-
based operations to decompose music into more abstract
fragments, such as just the harmony, as well as ways to
recompose several abstract fragments together. The decom-
position operations go down the information lattice from
raw representations to deeper-level abstractions as a lattice
join operation, whereas recomposition operations go up the
information lattice from abstractions to realize complete
music in full raw representation as a lattice meet operation.
This is a much more controlled alternative to simple stochas-
tic sampling from the student phase of the iterative learning
algorithm, which also leads to mellifluous results when a suf-
ficient number of rules have been learned.

Outreach work with several youth groups focused on Hip
Hop music is demonstrating the ease and engagement from
ILL-based co-creativity, as well as the possible human well-
being from social creativity activities [10].

Discussion
Music can be described in many different ways: in effusive
and subjective statements such as “Haydn’s Symphony No.
45, ‘Farewell,’ is a classic example of his Sturm und Drang
writing (literally, storm and stress), wherein marvelously
inventive and varied music is by turns dramatic and sub-
lime,” as well as in technical and clinically objective state-
ments such as “The first movement of Haydn’s Symphony
No. 45, Allegro assai, is in 3/4 time and begins on the tonic of
F# minor, cast in the sonata form and giving us Sturm und
Drang.” Such contrasting descriptions reveal two distinct
types of languages for different audiences: the former is
widely understood by a general audience but somewhat
vague, whereas the latter—filled with music theory terms—
is more precise but also likely to be restricted to conversa-
tions among musicians.

The centuries-long effort in developing music theory aims to
make music concepts precise and introduce tools/methods
for people to describe, to understand, and further to make
music in a more guided manner. In particular, theories on
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tonality have been well established as de facto standard
materials taught in music conservatories, especially in the
Western tradition. The precision gained through the lan-
guage of music theory on the objective nature of music ena-
bles people who are miles away or even decades away to
freely exchange their musical ideas.

It is noteworthy that modern music theory has stepped
beyond its origins in the music community. There is a desire
to make music theory more rigorous through mathematics
and a desire to automate its development through informa-
tion processing techniques. Indeed, modern music theory
incorporates more advanced mathematics, such as set the-
ory, abstract algebra, as well as geometry, and topology.
Mathematical models of music concepts allow further funda-
mental discoveries, which embed known theory into a larger
framework. Musically, this larger view suggests “gaps” in the-
ory that further lead to new possibilities in composition,
yielding exactly what we see in contemporary and modern
music experimentation, as well as in new renderings of clas-
sic music.

Music in the sheet music symbolic (discrete) representation is
unique to its compositional core since the same Haydn’s Sym-
phony No. 45 can be played by different orchestras and
recorded by different means. If the goal were to appreciate the
performance as a whole from a listener’s perspective, one
should faithfully study the specific sound recordings. However,
if the focus is composition, as in this article, we should instead
place less attention on the variations introduced by performers
and recorders. As the music theorist Dmitri Tymoczko put it,
“There is a potential for real divergence between what we
might call composer’s grammar and listener’s grammar.” This
article focuses on interpretable music concepts that comprise
the composer’s grammar, but there are many theoretical ques-
tions on the listener side that remainwide open.

Operating on sheet music rather than audio signals, we have
presented a framework to automatically learn the principles of
music theory in a human-interpretable form. Such machine
learning algorithms for symbolic music support a variety of
applications in music pedagogy, music composition, music
retrieval, musicology, and computational creativity for music.
We have shown initial results in this new area of research that
is promising, but also suggest new future opportunities for
information processing researchers and practitioners.

Indeed, as music has entered the digital age, the idea of
computational music has reshaped musical activities. The
popularization of notation software has dramatically shifted
composition from its traditional pencil-and-paper origins,
makingmusic much easier to share and reproduce in a variety
of newways. Amongmusic applications, we have seen the rise
of automatic composers that not only create music indistin-
guishable from works by people, but also establish modern
pioneering styles. Music education has benefited from

automatic music teachers (e.g., Harmonia), which deliver
music theory lessons and exercises to students, producing
grades and feedback in less than a second. The ILL framework
is also enabling creative music composition support through
a music mixing platform from Kocree, Inc. Going forward,
there are numerous possibilities for not only information
processing research on music, but also the application of
information processing techniques to music applications.
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