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Abstract:    The knowledge economy is  a  complex and dynamical  system, where knowledge and skills  are
discovered  through  research,  diffused  via  education,  and  deployed  by  industry.  Dynamically  aligning  the
supply  of  new knowledge with  the  demand for  practical  skills  through education  is  critical  for  developing
national  innovation  systems  that  maximize  human  flourishing.  In  this  paper,  we  evaluate  the  complex
alignment  of  skills  across  the  knowledge  economy by  creating  an  integrated  semantic  model  that  neurally
encodes  invented,  instructed,  and  instituted  skills  across  three  major  datasets:  research  abstracts  from  the
Web of Science, teaching syllabi from the Open Syllabus Project, and job advertisements from Burning Glass.
Analyzing the high dimensional knowledge and skills space inscribed by these data, we draw critical insight
about systemic misalignment between the diversity of skills supplied and demanded in the knowledge economy.
Consistent  with  insights  from economic  geography,  demand  for  skills  from industry  exhibits  high  entropy
(diversity) at local, regional, and national levels, demonstrating dense complementarities between them at all
levels of the economy. Consistent with the economics and sociology of innovation, we find low entropy in
the invention of new knowledge and skills through research, as specialist researchers cluster within universities.
We provide new evidence, however, for the low entropy of skills taught at local, regional, and national levels,
illustrating a massive mismatch between diversity in skills supplied versus demanded. This misalignment is
sustained by the spatial and institutional mismatch in the organization of education by researchers at the site
of  skill  invention  over  use.  Our  findings  suggestively  trace  the  societal  costs  of  tethering  education  to
researchers with narrow knowledge rather than students with broad skill needs.
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processing; data science and society

1    Introduction

The  knowledge  economy  represents  the “production
and  services  based  on  knowledge-intensive  activities
that  contribute  to  an  accelerated  pace  of  technical  and

scientific  advance,  as  well  as  rapid  obsolescence”[1].
The  dynamic  components  of  a  knowledge-based
economy are based on intelligent and knowledge-based
capabilities  and  products  as  opposed  to  natural
resources  and  physical  inputs,  and  trace  a  shift  in  the
USA  and  Europe  from  agriculture  and  mining  to
manufactured  products  to  increasingly  sophisticated
knowledge-based  services.  Broadly,  three  sets  of
institutions play distinctive roles within the knowledge
economy:  private  and  public  research  centers  and
laboratories  discover  new  knowledge  and  skills;
universities,  institutes,  and  academies  disseminate
established  and  emerging  skills  through  instruction;
and  private  companies  deploy  those  skills  through  the
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organization of industrious action.
While  research,  teaching,  and  production  represent

stable roles within national  innovation systems[2],  they
do not flow linearly from one to the next just as science
does  not  linearly  mature  into  technology[3, 4].  Jobs
forged  through  the  capitalist  process  of  creative
destruction—entrepreneurship  and  industrial
competition—are  just  as  likely  to  generate  new
combinations  of  skills  than  research  that  invents  new
capacities  from  theory  as  the  converse[5].  Framed  in
this  way,  one  of  the  greatest  challenges  for  advancing
human flourishing  through  the  knowledge  economy is
to  improve  the  alignment  of  skills  invented  through
research,  supplied  via  teaching,  and  demanded  by
industry.  In  this  paper,  we  align  the  diversity  of  skills
across  levels  of  the  US  knowledge  economy  to
understand the potential for education to better service
job needs.

The  US  academic  and  industrial  institutions  vary
substantially  in  the  amount  and  character  of  research,
teaching,  and  goods  or  services  they  produce.  As
knowledge-intensive  services  and  products  come  to
represent  an  increasing  share  in  major  economies,  we
must  better  understand  and  manage  the  dynamics,
distribution,  and  alignment  of  knowledge  and  skills
across  the  knowledge  economy.  Here  we  explore  the
potential  for  knowledge  and  skills  alignment  across
geographic scales,  from cities  to regions to the United
States as a whole. The study of industrial innovation[6]

and  the  knowledge  economy  has  long  attended  to  the
importance of geography, largely due to the emergence
of high output  knowledge-based products  and services
in  dense  geographic  clusters[7, 8].  With  modern  cities
being  the  hubs  of  innovation  around  the  world[9−11],
they represent a critical interface between the supply of
knowledge  and  skills  and  demand  for  them  in  the
economy[12],  with  scaling  relationships  observed
between  population  size,  density,  and  productive
outputs  like  the  number  of  patents,  Gross  Domestic
Product,  and  highly  skilled  professionals[13−16].  These
scaling  properties  are  attributed  to  the  fundamentally
social nature of knowledge-based industries, which rely
on  intensive  human  engagement  to  invent,  transfer,
deploy,  and  update  knowledge-intensive  skills.  Next,
we consider the region, operationalized as the US states,
all  of  which  share  a  policy  environment  and  possess
both  educational  supply  and  employment  demand.

Finally,  we  consider  national  innovation  systems  that
account  for  broader  educational  and  employment
migration, which is increasingly common in knowledge-
based  economies[2].  Nevertheless,  few  studies  have
considered  the  alignment  of  skill  discovery,
dissemination,  and  deployment  across  these  levels,  as
we do here.

We  study  alignment  in  terms  of  the  diversity  of
knowledge and skills produced at each scale within the
national  innovation  system  in  order  to  identify  the
potential  for  cities,  regions,  and  the  US as  a  whole  to
supply  skills  required  by  the  workforce.  We  consider
knowledge  at  the  stages  of  discovery  (research),
dissemination (teaching), and deployment (industry) to
be  aligned  with  respect  to  its  skills  if  there  exist
comparable  measures  of  diversity  for  each  stage.  A
consequence  of  the  systematic  misalignment  of  skill
diversity  at  each  of  these  stages  would  result  in
workers  unprepared for  the  complex and diverse  tasks
that  they  are  expected  to  perform.  While  scaling
relationships  between  population  size  and  skill
diversity have been demonstrated within cities[14], they
have  never  been  explored  across  sectors  and  scales
using  the  semantic  content  of  the  documents  that
natively  signify  it—titles  and  abstract  for  research,
course  syllabi  for  teaching,  and  employment
advertisements  for  jobs.  Semantic  diversity[17] can  be
measured  in  a  straightforward  way  using  natural
language  processing  tools  that  encode  documents  to
allow the estimation of precise distances between them.

In  this  paper,  we  extend  the  geographic  and  scaling
approach  to  understand  the  capacity  for  alignment
across the knowledge economy through the lens of text
as data and the diversity of knowledge-based content [18].
Semantic  diversity  has  often  been  explored  through
natural language processing with a focus on inter-word
and  inter-document  distances  based  on  a  large  corpus
of  documents[19].  By  representing  words  in  a  high
dimensional space based on co-occurrence in text[17, 20],
it  is  possible  to  measure  distances  between words  and
documents,  and to construct  well-behaved metrics that
capture word ambiguity and diversity.  By using large-
scale  datasets,  we  can  create  semantic  vector
representations  of  corpora  that  simultaneously  capture
knowledge-based  skills  discovery  through  research,
skills  dissemination  through  syllabi,  and  skills
deployment through job ads in the knowledge economy.
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By using  the  Web of  Science  for  research  abstracts,
the  Open  Syllabus  Project  for  teaching  syllabi,  and
Burning Glass＊ for job demands, all embedded within
a  unified,  self-normalizing  space,  we  create  aggregate
vectors  that  represent  the  semantic  content  of  these
three major pillars of the knowledge economy. We use
the popular  doc2vec[21] method to  create  these  vectors
for  each  individual  document,  and  aggregate  them
based  on  their  organizational  association  (e.g.,
University  of  Chicago  and  Microsoft  Research)  and
geographic  location  (Metropolitan  Statistical  Area
(MSA)  and  State,  e.g.,  Chicago  MSA  and  Illinois).
With  these  aggregate  research,  teaching,  and  job
demand  vectors,  we  can  use  straightforward  distance
metrics between entity vectors to measure the diversity
and aggregation patterns across the landscape of the US
knowledge economy.

Using  aggregate  entity  vectors,  we  find  that  job  ads
are  more  diverse  than research,  which is  more  diverse
than  course  syllabi  at  all  levels  of  aggregation,
reflecting  the  interconnection  between  diverse  skills
required for a local economy to run. Further, while jobs
and teaching are equally diverse at different geographic
levels,  research  is  clustered  within  cities  and  states,
such that  similar  semantic  content  reflects  specialized,
geographically  localized  clusters  of  skill  investigation
and  discovery.  We  also  examine  scaling  relationships
between  volume  and  semantic  diversity  for  research,
teaching,  and  jobs  within  MSA  populations.  This
reflects  the  balance  of  supply  and  demand  for  local
skilled  persons.  We  observe  a  super-scaling
relationship  in  the  number  of  job  ads,  and  find  that
while  research  and  teaching  increase  in  semantic
diversity with city size, job demands specialise for the
largest cities.

2    Related Computational Work
Textual  data  have  been  used  in  many  contexts  for
social  scientific  analysis  and  to  quantitatively  validate
and  extend  qualitative  research.  Such  methods  can  be
used to explore content across a wide variety of contexts.
Text  is  produced  as  a  natural  byproduct  of
communication  in  social  life,  ranging  from
conversation transcripts, political and legal proceedings,
and historical documents to news, cultural programming,
and social media. Here we use granular text describing
discrete  articles,  courses,  and  jobs,  linking  these

artifacts  by  their  qualities  to  quantitatively  trace  the
flow of skill supply and demand across the knowledge
economy.  Combining  relevant  data  sources  for
longitudinal comparison allows us to go beyond simply
classifying  or  annotating  text  to  unraveling  complex
social processes such as networks and hierarchies[22, 23],
temporal  shifts  in  language  and  meaning[24, 25],  and
dynamics in conversation and debate[26, 27].  The use of
text  as  data  in  the  realm  of  complex  social  and
economic  phenomena  is  recent[18, 24] and  we  aim  to
contribute to this growing literature.

Many  recent  attempts  have  used  word  embeddings
and  high-dimensional  semantic  spaces  for  knowledge
representation  and  discovery.  Embeddings  built  from
corpora  of  common  chemicals  and  material  science
documents  can  approximate  chemical  knowledge
sufficient  to  uncover  the  underlying  structure  of  the
periodic  table[28],  capture  structure-property
relationships in materials[29],  and predict materials that
will  be  discovered  in  the  future  to  possess  a  given
property.  By  identifying  the  semantic  dimensions  of
semantic spaces, Kozlowski et al.[30] demonstrated how
cultural  dimensions  such  as  race,  gender,  and  class
learned from word embeddings correspond to attitudes
elicited  directly  from  contemporary  cultural  surveys,
while tracing historical stereotypes[31], implicit cultural
biases[32],  and  representations  of  human  knowledge[33]

with  word  embeddings.  This  research  validates  that
relationships  emergent  in  these  learned  spaces
correspond  in  direction  and  magnitude  with  widely
shared cultural meanings.

These  attempts  to  chart  semantic  and  knowledge
structures  using  embedding  methods  have  paved  the
way for further explorations in the social sciences, and
specifically, the knowledge economy. There have been
early  attempts  to  use  deep  learning  to  predict
knowledge  economy  indices[34],  manage  collective
knowledge[35],  and  explore  the  relationship  between
diversity  and  performance  in  knowledge-producing
teams[36].  Nevertheless,  existing work on text data and
the  knowledge  economy  has  been  limited  to  studying
gaps  between  education  and  occupation[37],  and
between  education  and  innovation[38].  These  recent
papers  attempt  to  use  a  text  representation  to  measure
the alignment and gap between different domains. Here,
rather  than  focus  on  the  gap  between  domains,  we
rather focus on the diversity within each, and their (mis)
alignment.＊burning-glass.com (https://www.burning-glass.com)
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Our attempt is the first simultaneous characterization
of  semantic  diversity  among  different  aspects  of  the
knowledge  economy,  as  well  as  the  geographic  and
scaling  properties  of  knowledge  and  skills  in  that
economy.

3    Data and Computing

We use three major  datasets  to  create  semantic  spaces
covering  time  slices  during  2010−2018.  For  the
research  component  of  the  knowledge  space,  we  use
research article abstracts from Web of Science dataset;
for  the  teaching  component,  we  use  online  syllabi
collected  online  through  the  Open  Syllabus  Project;
and  for  the  jobs  component,  we  use  advertisements
curated  by  Burning  Glass  from  all  major  online  job
boards in the United States. We detail each dataset below.

The  motivation  for  using  these  three  datasets  is  that
they  offer  a  way  to  measure  multiple  relationships
within  the  knowledge  economy.  Research,  teaching,
and  jobs  also  allow  us  to  view  the  emergent  role  that
skills play in the knowledge economy. With a view of
research  as  inventing  skills,  teaching  as  disseminating
skills, and industry as deploying skills (Fig. 1), we can
measure  the  diversity  of  the  skill  space  at  different
geographic  levels,  and  their  potential  alignment  or
misalignment.  By  embedding  these  documents
simultaneously in the same vector space,  the distances
are naturally normalized—diversity among job ads will
be  on  the  same scale  as  that  among research  abstracts
and  course  syllabi.  We  note  that  these  data  represent
the  richest  textual  traces  of  the  US research,  teaching,
and jobs of which we are aware.

We  aggregate  vectors  for  each  entity  by  averaging
over  all  the  constituent  document  vectors  associated
with  that  entity.  We  use  the  doc2vec  method  of
distributed  representations  to  create  our  embeddings
and associated document vectors.
 

Ventity =
1

N1

N1∑
n=0

Vdocumentn (1)

N1

Vdocumentn

where  is  the  total  number  of  documents  associated
with each entity, and Ventity and  are the vector
representations of the entity and document, respectively.

3.1    Web of Science

To  measure  the  research  outputs  of  universities,  we
draw  on  the  widely  used  Web  of  Science  dataset[39].
We  concatenate  title  and  abstract  as  article
representations  to  build  our  semantic  space;  then  we
use  metadata  on  the  city,  state,  and  institutional
affiliations  of  the  research  paper  to  index  the  article.
The  vector  centroids  of  article  samples  allow  us  to
aggregate  research  papers  for  each  city,  state,  and
institution (e.g., university).

The  dataset  contains  articles  published  across  the
world,  predominantly  in  English.  For  the  purpose  of
our  study we extract  only  papers  published during the
years  2010−2018  in  the  United  States  of  America.
Because each abstract is linked to both a university and
a  city,  we  create  both  university  and  city  vectors  of
research.  In  the  case  of  multi-authored  papers,  the
abstract  is  linked  to  cities  and  universities  affiliated
with each author. After removing data from institutions
with fewer than 100 associated publications,  we retain
a total of 49 911 in the United States, which host a total
of 2 808 749 abstracts. These institutions are not equally
distributed  across  the  US,  with  higher  aggregation  in
certain  states  (Texas,  New  York,  and  California)  and
cities (Chicago, New York, and Boston).

3.2    Open Syllabus Project

We  use  syllabus  data  to  represent  skills  instruction  in
universities  and  cities.  Syllabus  data  have  been
collected and organised by the Open Syllabus Project†,
undertaken  by  researchers  at  Columbia  University,
using  a  combination  of  web  scraping  and  soliciting/
receiving data from departments themselves. This is an
ongoing  project,  it  has  received  a  fair  amount  of
attention from the press‡, and proves to be a promising
way for measuring what is being taught at universities
across  America  (and  the  world).  To  ensure  that  text
particular  to  syllabi  in  general  is  not  included  (e.g.,
timetable and misconduct policies), we comprehensively
cleaned  the  syllabi  data.  We use  a  JSON dump of  the
syllabi  data  that  was  gathered  in  2018,  using  data
during the years 2010−2018.

We  aggregated  data  similar  to  our  process  for  the
Web  of  Science  (WoS)  dataset  with  syllabi  linked  to

 

 
Fig. 1    Transformation of skills.

 

†Link to website (https://blog.opensyllabus.org/)
‡Nature  article  (https://www.nature.com/articles/539125a),  Digital
Science article (https://www.digital-science.com/news/worlds-first-open-
syllabus-project-expand-new-languages-awarded-global-innovation-
grant-digital-science/)
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both  cities  and  universities.  After  removing  data  from
institutions  that  have  less  than  100  associated  syllabi,
we  retain  a  total  of  1192 entities  in  the  United  States,
representing a total of 860 539 syllabi.

3.3    Burning Glass job postings

Burning  Glass  Technologies  is  an  analytics  company
that  tracks  job  openings,  advertisements,  and  related
data  to  conduct  analysis  and  serve  information  about
the labor market.  The dataset  we use was provided by
the  company;  we  use  all  job  postings  collected  by  the
company from virtually all wide-distribution digital US
job  boards,  2010−2018.  Using  a  python  script,  we
extract  the contents of the job posting and pre-process
them,  while  registering  the  location  of  the  job  posting
and  the  organisation  associated  with  it.  Similar  to
research and teaching vectors,  we create “job demand”
vectors in the shared semantic space, resulting in a total
of 40 857 job entities and 7 971 173 job postings in total.

We  note  that  job  demands  are  somewhat  more
diverse  than  research  and  teaching  datasets.  This  is
from  diversity  in  the  kinds  of  jobs  being  posted.
Research  and  teaching  have  a  higher  proportion  of
scientific  and  technical  content,  while  the  jobs  vary
widely to include technical, but also manufacturing and
service-based employments.

Moreover,  while  job  demands  represent  one  critical
aspect of the industry space, another important addition
might  include  patents,  which  link  research  and  jobs
directly  through  an  alternative  pathway  of  technology
invention.  While  we  have  not  constructed  an  aligned
patent space for this particular analysis,  it  represents a
natural next step.

3.4    Methods and resources used

We  built  pipelines  to  clean  and  organise  our  three
diverse  data  sources,  estimated  a  common  doc2vec
embedding  model  of  dimension  size  100,  in  the
distributed memory training paradigm (PV-DM), using
all three sources in order to construct a common, year-
specific semantic space. Data were cleaned by removing:
(1)  words  that  appeared  with  disproportionate
frequency  for  the  corpus,  (2)  common  stop  words
specific to the domain (e.g., “timetable” in syllabi), and
(3) punctuation and numbers. The lemmatized form of
each resulting word was added to the modeled document.
We  document  our  code,  data,  and  results  on  GitHub,

and  link  to  our  GitHub  repository§.  The  repository
contains  information  on  data  pre-processing  and
cleaning, embedding space creation, vector aggregation,
results, and visualisations. The provided cleaning code,
trained doc2vec model, and aggregate vectors allow for
reproducibility.

gensim

We refer to each aggregate vector associated with an
institution  (e.g.,  university  or  company)  or  political
agglomeration (e.g., city or state) with the word “entity”.
Examples  of  entities  include “University  of  Chicago”,
“Houston”, and “Texas”. Examples of domain-specific
vectors include “Columbia University Research Vector”
or “Seattle Teaching Vector”. Entity vectors are created
by  aggregating  all  texts  associated  with  that  aspect  of
the  knowledge  space  for  a  given  year;  for  example,  a
research  vector  is  calculated  by  first  creating  a  high
dimensional  representation  of  each  document
associated  with  that  entity  in  the  Web  of  Science
dataset  (in  conjunction  with  all  other  syllabi  and  jobs
from the same year) and averaging. The method used to
create the embedding is the doc2vec[21] implementation
in . While there exist more powerful contextual
neural  methods  such  as  ELMo[40] and  BERT-based
sentence  embeddings[41],  we  find  the  noncontextual
doc2vec  model  to  be  more  stable  and  consistent  in
creating  embeddings  for  paragraph-length  documents
normalized by each other’s length and content. Moreover,
our  purpose  is  not  to  project  documents  within  a  pre-
trained  semantic  space,  but  to  project  to  a  space
entirely  shaped  by  our  temporally  tagged  text  for
precise  measurement.  We  used  noncontextual  rather
than contextual  embeddings[40, 41] because of  the time-
based specificity required for the semantic distances we
estimate.  Contextual  embeddings  improve  semantic
distance estimates, but are notoriously difficult to fine-
tune  or  pre-train  to  a  specific  semantic  and  temporal
context[42].  The  benefits  of  contextual  embedding  are
lost  because  of  the  deviance  between  our  own
documents  and  the  nonspecific  web-based  corpora  on
which  they  were  pre-trained.  We  use  cosine  distance
for  all  of  our  distance-based  measures  involving
aggregate embeddings.

Our  semantic-relational  framework  is  formed  from
entities  and  their  associated  research,  teaching,  and
jobs vectors.  The semantic aspect of our framework is
defined by the high dimensional vector associated with
each  entity,  domain,  and  year;  the  relational  aspect
§GitHub  link  (https://github.com/bhargavvader/knowledge-economy-
diversity)
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involves  the  rich  landscape  of  distances  between
various  social,  geographical,  and  economic
aggregates—as  between  medical  institutions  and
community colleges, large and small cities, eastern and
western states, etc.

Technical details of code and data

NumPy scipy

matplotlib
Jupyter/IPython

gensim
spaCy

scikit-learn keras

We release all of our code and the aggregated entity
vectors on GitHub¶. All the code was written in python,
the  pipelines  use [43] and  [44] to  perform
computation  and  linear  algebra  operations,

[45] to  perform visualisations,  and  analysis
was  done  using  notebooks[46] .  The
NLP  libraries  primarily  used  are [47] and

[48]:  their  usage  in  NLP  related  pipelines  is
described in Ref. [49]. [50] and [51]

are used for machine learning and deep learning tasks.
To create the aggregate doc2vec model, we use the pre-

processed,  cleaned  text  from  all  three  datasets,  with  a
vector  dimension  size  of  100.  Our  GitHub  page
organises  the  code  so  as  to  easily  find  code  for
embedding creation, vector creation, vector aggregation,
analysis, plots, and validations.

To  validate  the  textual  representations,  we  calculate
cosine differences within and between syllabi fields for
the Open Syllabus Project corpus. We find the average
cosine  difference  within  the  same field  to  be  64°,  and
for  different  82°,  and  the  Kolmogorov-Smirnov  2-
sample  test  between  the  distributions  of  differences
results  in  a  statistic  value of  0.54 with  extremely high
significance.

3.5    Dataset limitations

It  is  important to note limitations of our datasets,  with
the  Open  Syllabus  Project  biased  towards  syllabi
posted  online,  and  the  Web  of  Science  representing
engineering and science disciplines at higher rates than
social  science  and  the  humanities.  The
institutionalisation of research and syllabi formats also
mean that there is less variance, while job postings are
more  diverse.  Future  work  should  account  for  bias  in
representation,  either  by  sampling  or  weighting
different disciplines. While we used only text to create
entity  vectors,  multi-modal  and  more  complex
embedding  methods  can  be  used  to  incorporate  a
variety of data for more nuanced representation.

We  also  note  that  while  our  question  was  to  better

understand  the  knowledge  economy  and  knowledge
flows, that picture can never be fully portrayed without
accounting  for  community-oriented  knowledge[52],
knowledge spread by word of mouth and passed down
through  families[53],  street  knowledge,  and  tacit
knowledge  propagated  without  record[54].  All  of  these
constitute valid forms of knowledge unmeasured in our
framework,  which is  restricted to universities  and labs
that publish research and syllabi available on the web.
Even for institutions from which we are able to harvest
data, disciplines remain unequally represented. In some
disciplines,  papers  are  published  at  a  slower  rate,
contributing less to the creation of an entity’s semantic
representation,  which  might  not  fully  capture  the
contribution  of  that  discipline  to  the  knowledge
economy.
3.5.1    Open Syllabus Project
According  to  Open  Syllabus  Project  (OSP)  metrics,
their  dataset  includes  5%−10% of  the  Anglophone
curricular universe over the last 10 years. Naturally, the
dataset  focuses  on  assigned  texts:  syllabi  that  have
clear assigned texts represent over 50% of the collection,
although  this  varies  by  institution.  Some  departments
have  a  majority  of  all  of  their  syllabi  available  freely
online, and others far less (e.g., elite business schools).
Because  the  syllabi  represented  cannot  provide  the
complete  picture,  we  must  be  very  tentative  when
drawing  conclusions.  We  also  note  that  all  web
scraping  was  done  by  OSP  from  websites  that
permitted web scraping.
3.5.2    Web of Science
Limitations  of  the  WoS  dataset  include  its  imperfect
representation  of  research  output,  due  to  factors
ranging from publishing norms in individual disciplines
(e.g., frequency of publishing, preference of books over
papers  in  history,  or  conferences  proceedings  over
articles  in  computer  science,  etc.)  to  the  database
coverage of only the most established and highly cited
venues,  both  of  which  are  generally  biased  towards
greater  coverage in  the medical  and physical  sciences,
as compared to the social sciences and humanities. For
example,  the  proportion  of  papers  in  fields  such  as
chemistry  (7.3%),  engineering  (5.4%),  neurosciences
(6%),  and  physics  (5%)  is  much  higher  than  those  in
fields  like  sociology  (0.66%),  anthropology  (0.54%),
linguistics  (0.54%),  and  archaeology  (0.17%).  As  a
result,  differences  in  certain  research  areas/trends  will

¶GitHub  link  (https://github.com/bhargavvader/knowledge-economy-
diversity)
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likely be more visible than others.
3.5.3    Burning Glass
Burning  Glass  (BG)  collects  information  from  more
over 40 000 job boards and company websites. Despite
representing  the  largest  dataset  about  the  US  labor
market[55],  not  all  job  ads  appear  online.  Online
recruitment represents a growing share of labor market
search,  even  for  jobs  historically  associated  with
informal  recruitment  and  offline  recruitment,  but  a
2013  study  estimated  that  only  60%−70% jobs  were
posted  online[56],  growing  to  approach  85%[57].  To
verify the representativeness of BG data on the US job
market,  recent  work  calculated  occupational  demand,
pay  level,  and  education  requirements  using  BG  data
and  found  these  values  highly  correlated  with  BLS
statistics  in  2010  and  2018[58],  justifying  the  overall
consistency and credibility of BG data during the time
period of our analysis, despite coverage limitations[55].

4    Vector Exploration and Validation

Once  we  complete  our  aggregation  of  entity  vectors
associated  with  skill  discovery  (research),
dissemination  (teaching),  and  deployment  (jobs),  our
entity vectors become the focus of analysis. To validate
the consistency of  our vectors,  we compute the cosine
similarity  between  a  search  vector  and  the  full  set  of
entity  vectors  within  that  domain.  To  explore  how
clusters  of  entities  relate  to  each  other,  we  perform  a
tSNE[59] plot  on  each  search  vector  and  its  7  closest
vectors in doc2vec space. In Figs. 2–4, we plot the 0th
and  1st  dimension  of  the  tSNE  dimensionality
reduction  algorithm,  to  visualize  how  the  entities  are
related.

We  see  that  research  vectors  in Fig.  2 for  entities
with a focus on technology (e.g., MIT, IIT, and GATech)
cluster  together,  those for  health-focused entities  (e.g.,
Johns Hopkins and University of Houston Health Center)
cluster  together,  and  high,  general  research-output
schools  such  as  Yale,  UPenn,  and  University  of
Chicago cluster together.

For  teaching  entities  in Fig.  3,  community  colleges
and  Texas  state  schools  cluster,  while  larger  research-
focused state schools and private universities cluster at
a distinct locus.

For jobs, each entity is also mapped to a location and
in  most  cases,  singular  enterprise  entities  tend  to  post
similar jobs across their varied locations, which cluster

together  in  semantic  space.  We also  see  in Fig.  4 that
distinct industries cluster in distinct parts of the space,
such  as  those  hosting  jobs  defined  by  computational
skills  (e.g.,  Microsoft  and  Amazon),  biomedical  skills
(e.g.,  Marine  Biological  Lab  and  Bio-Rad  Labs),  and
construction  skills  (e.g.,  Granite  Construction
Incorporated).
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Fig. 2    Clustering of similar research entities.
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Fig. 3    Clustering of similar teaching entities.
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Fig. 4    Clustering of similar industrial entities.
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Visualisations  of  entity  clusters  confirm  our  coarse-
grained  expectations  associated  with  entity  research,
teaching,  and  industrial  outputs.  We  now  analyze
the  diversity  of  entities  in  different  geographic  and
domain-based  categories  to  draw  conclusions  about
diversity  and  patterns  of  aggregation  among  these
entities across the knowledge economy.

Validating text as a representation of skills
A  key  concern  here  may  be  the  validity  of  using

textual  content  as  a  proxy  for  skills,  and  whether
difference in text  vector  representations may represent
difference  in  skills  required.  Reference  [5]  has
previously aligned research, syllabi, and job ads textual
data on skill mentions, and has demonstrated coherence
within  areas.  We  perform  an  additional  validation,
where  we  study  similarities  within  the  fields  (e.g.,
chemistry,  history,  and  computer  science)  marked  by
the  Open  Syllabus  Project.  We  sample  differences  in
doc2vec  vectors  within  a  syllabus’ field,  and  between
syllabi  fields,  and  find  that  syllabi  within  a  field  are
substantially and statistically significantly more similar
than between fields||.

For  external  validation,  we  use  words  within
organizational  entities  (e.g., “Medical”,  “Technology”,
and “Community” )  as  natural  labels  and  clustered
entities to demonstrate how technological, medical, and
community  colleges  cluster  such  that  distances  within
each  category  are  substantially  and  statistically
significantly smaller than distances between them.

5    Analyzing  Patterns  of  Diversity  Within
Research, Teaching, and Industry

Our primary mode of analysis  includes the calculation
of  normalized  distances  between  our  aggregate  entity
vectors.  We  create  our  measures  by  sampling  pairs  of
entities  from  our  pool  of  research,  teaching,  and  jobs
entity vectors. In total, we have 49 911 research entities,
1192  teaching  entities,  and  340  857  job  entities.  We
constructed nonparametric confidence/credible intervals
by  sampling  1000  pairs  with  their  corresponding
differences.  To  identify  whether  two  samples  of
differences  come  from  the  same  distribution,  we  use
the Kolmogorov-Smirnov test for goodness of fit.

Differences  in  localisation,  diversity,  and  the
relationships  between  research,  teaching,  and
industry

Table  1 lists  statistics  for  the  1000  cosine  distances

sampled  from  pairs  of  entities  belonging  to  different
groups.  We  calculated  means  with  upper  and  lower
intervals based on sub-sampling[60, 61].

We  see  that  average  cosine  distance  for  pairs  of
research  entities  and  pairs  of  industrial  entities  are
nearly  25°  higher  than  for  teaching,  suggesting  that
research  and  job  demands  are  more  dissimilar  than
teaching  for  a  random  pair  of  entities  selected  at  the
country level. At the state level, average values drop by
20° for research, but only 4° for teaching, and 1° for jobs.
We  see  the  highest  average  differences  between
enterprises  with  respect  to  jobs,  suggesting  that  they
have  the  highest  degree  of  institutional  specialization,
yielding  collective  diversity  in  semantic  content.  Job
demands  are  equally  diverse  at  distinct  geographic
levels  of  aggregation,  suggesting  that  while  firms
specialize,  geographies  generalize  with  similar
diversity  at  city,  state,  and  national  levels.  In  short,
cities  approximate  the  skills  diversity  present  at  the
level  of  the  entire  economy,  while  research  tends  to
specialize more intensively within region.

These  results  point  towards  research  and  job
demands being more diverse than teaching. Research or
the invention of  knowledge economy skills  aggregates
at  MSA  and  state  levels,  with  nested,  clustered
similarities,  which  both  significantly  diverge  from||Further information can be found in the GitHub repository.

 

Table  1    Upper  and  lower  intervals  of  average  cosine
differences at different regional levels.
Entity differences in
geographic aggregation

Upper
interval (°)

Lower
interval (°)

Research differences country 72.321 70.447
Teaching differences country 47.213 45.361
Job differences country 79.661 78.019
Research differences states 51.933 49.506
Teaching differences states 43.576 41.785
Job differences state 78.697 77.188
Research differences MSA 52.127 49.763
Teaching differences MSA 43.294 41.466
Job differences MSA 78.240 76.259
Research differences technology 72.414 70.236
Teaching differences technology 48.986 47.392
Job differences technology 76.574 75.172
Research differences medical
organisation 67.789 65.703

Teaching differences medical school 56.072 54.613
Job differences medical organisation 74.681 73.338
Teaching differences community
college 40.810 37.424

Job differences within organisation 52.420 49.739
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nation-wide  averages.  Teaching  and  jobs—the
distribution  and  deployment  of  skills  that  lie  behind
supply and demand, manifest spatial aggregation much
less pronounced than for research. In short, institutions
specialize  in  research  and  jobs;  but  only  regions
specialize  in  research.  This  sheds  light  on  the
knowledge economy—regional specialization is critical
for the intensive invention of new knowledge and skills,
but their dissemination across persons and deployment
across  jobs  must  be  distributed  such  that  each  sub-
economy  (e.g.,  each  city  and  state)  contains  the  full
diversity of complementary skills.

We  see  similar  patterns  for  technology  and  medical
schools,  although  technology  institutions  manifest  a
larger  research-teaching  gap.  For  community  colleges,
we find that average teaching differences are the lowest
among any grouping, reflecting their goal to supply the
full-diversity  of  job-relevant  skills  to  their  local
populations. We note that within a job organisation, the
average  distance  between job  demands  is  significantly
lower.  By observing the  semantic  diversity  among the
job postings within an organisation, we characterize its
function  within  the  broader  economy.  Examples
include  Microsoft  and  Amazon with  diversities  of  63°
and  57°,  respectively,  and  Burger  King  and  Burger
Lounge with 4° and 10°, respectively.

⩽

We  now  compare  distributions  of  difference  across
domains  and  geographies,  allowing  us  to  pose  and
answer  questions  about  how  the  semantic  diversity  is
distributed  at  different  levels  of  aggregation. Table  2
contains  the  Kolmogorov-Smirnov  (KS)  statistics  and
p-values  for  distributions  of  cosine  distances  between
vectors from different domains across the country. We
note  almost  all  pairs  of  distributions  are  statistically
significant (p  0.05), with a range of values for the D-
statistic,  the  absolute  max  distance  (supremum)
between the CDFs of the two samples.  The closer this
number is to 0 the more likely it is that the two samples
were drawn from the same distribution.

We  begin  by  comparing  distributions  of  differences

among research, teaching, and jobs across the country.
We see in Table 2 that the D-statistics for research and
teaching,  and  jobs  and  teaching  are  high,  suggesting
that  the  distribution  of  differences  for  teaching  is
significantly  different  than  it  is  for  research  and  jobs.
We can also see this in the average statistics for teaching,
where  the  average  difference  between  syllabi  vectors
for two institutions is far less than it is for research or jobs.
This  suggests  that  while  institutions  and  regions
specialize in their research and jobs, they generalize in
their  teaching.  We  run  the  same  KS  test  for  research,
teaching,  and  jobs  at  different  geographic  levels.  We
see  the  highest  D-statistic  value  (0.582)  for
comparisons  between  community  colleges  and  other
syllabi  because  community  colleges  manifest  more
similar  syllabi  vectors,  which  remain  highly  distinct
from those  in  medical  institutions,  consistent  with  our
average statistics.

For  tests  about  the  same  domain  at  different
geographic  levels,  we  see  that  research  angle
differences at the country level are quite different from
research  at  state  and  MSA  levels.  This  is  consistent
with  average  statistics  reported  above  suggesting  that
research at the country level is much more diverse than
within  a  state  or  MSA,  where  regional  specialization
supports  the  genesis  of  new-to-the-world  knowledge
and  skills.  We  also  see  that  for  teaching  and  jobs  the
distributions  of  differences  are  similar  at  different
geographic groupings.

Our  main  findings  are  that  distributions  of  research,
teaching,  and  job  cosine  distances  are  significantly
different, with research being more diverse than teaching,
and  jobs  being  more  diverse  than  both.  Research  and
teaching also specialise/localise in different ways, with
research  aggregating  at  smaller  geographical  units
(state and MSA). Teaching does not differ much at any
aggregate  level.  For  jobs,  we  find  that  differences  in
diversity  at  the  national,  state,  and  MSA  level  are
similar (Table 1). This is largely due to diversity in the
content  of  job  advertisements,  as  it  includes  a  wider
range  of  industries  and  vocations  compared  with
research  and  teaching,  which  are  constrained  in  their
semantic  regions.  We  see  a  small  decrease  in  average
differences as we move from national and state to MSA
level,  and we see that  similar  industries  (i.e.,  medical)
have  more  similar  job  advertisements,  but  the
distribution of these angles of difference is similar. The

 

Table 2    KS test D-statistic value and p-value for similarity
of distribution of differences at different aggregation levels.

Geographic aggregation D-statistic p-value
Research country & teaching country 0.826 0.0

Research country & jobs country 0.403 0.0
Job country & teaching country 0.937 0.0
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lowest  diversity  grouping  for  job  demands  remains
within the entity across different geographic locations.
Even  within  this  category,  there  is  high  variation;
Burger  King  has  an  average  semantic  diversity  of
nearly  5°,  whereas  Microsoft  Corporation  has  a
semantic diversity of 63°.

These  findings  provide  suggestive  evidence  of  a
misalignment in the diversity of skills  across research,
teaching,  and  jobs.  The  misalignment  here  is  twofold,
and can be explained by the structure of knowledge and
skills  discovery,  diffusion,  and  deployment  across  the
United  States.  First,  we  see  how  jobs,  at  every
geographic level are far more diverse than research and
teaching,  as  a  result  of  the  need  to  combine  diverse
technologies,  skills,  and  knowledge  in  driving  the
economy of a modern city, and all scales above. These
findings  are  consistent  with  insights  from  economic
geography that demonstrate demand for knowledge and
skills from industry exhibits high entropy and diversity
at  local,  regional,  and  national  levels[62].  This
reinforces  how  dense  complementarities  between
skills are required at all levels of the economy. In stark
contrast, however, we find low entropy in the invention
of  new  knowledge  and  skills  through  research,  as
specialist  researchers  cluster  within  universities  and
their  corresponding  cities.  While  inter-  and  multi-
disciplinarity  enrich  rare  and  surprising  results[63],  the
vast  majority  of  research  production  reflects  deep,
within-discipline  specialization,  which  is  consistent
with  the  economics  and  sociology  of  innovation  and
demonstrates  discrimination  against  interdisciplinarity
in  funding[64].  Our  findings  provide  striking  new
evidence  for  the  low  entropy  and  diversity  of  skills
taught  at  local,  regional,  and  national  levels.  In  short,
skills teaching is not customized to the worksite for at
least two reasons. First, the site of learning is spatially
distant  from the  worksite.  Second,  the  organization  of
education  is  institutionally  distant  from  the  worksite
and  typically  staffed  by  researchers,  with  deep
specialization irrelevant to the vast majority of jobs that
their  students  will  enter.  These  findings  suggestively
trace  the  societal  cost  of  tethering  education  to
researchers with narrow skill knowledge rather than to
their students with broad skill needs.

We note here that these experiments and results only
measure  the  semantic  diversity  and similarity  between
aspects of the knowledge economy, and do not provide
causal  association.  Our  results,  however,  are  robust  to

sampling different pairs of entities within each category,
but  from  concerns  that  misalignment  could  be
explained  by  city  size,  we  explore  this  relationship  in
detail.

6    Knowledge Diversity Scales with City Size

Here  we  explore  how  Metropolitan  Statistical  Areas
(MSAs)  scale  for  different  metrics  associated with  the
knowledge  economy.  We  first  observe  total  counts  of
research papers (Fig. 5),  research and teaching entities
(e.g.,  universities,  schools,  and  institutes),  and  syllabi
(Fig.  6)  across  MSA  population  size.  While  larger
cities  are  associated  with  a  larger  number  of  entities,
research  papers,  and  syllabi,  the  presence  of  high
research  and  teaching  output  university  and  college
towns  means  that  we  do  not  see  a  clear  superscaling
property  for  MSAs.  This  is  an  exception  to  the  super
scaling property we would expect for knowledge-based
goods and services. For research and teaching, notable
outliers include the MSAs of Durham-Chapel Hill (UNC-
Chapel  Hill,  a  major  state  university),  New  Haven
(Yale  University),  Ithaca  (Cornell  University),  and
College  Station  (Texas  AM  University),  all  of  which
have  an  abstract  or  syllabi  count  in  the  top  15  but
proportionately  lower  populations.  We  note  here  that
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Fig. 5    log-log  plot  of  the  number  of  research  abstracts
versus the population size for MSAs.
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Fig. 6    log-log plot of the number of teaching syllabi versus
the population size for MSAs.
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these  are  exceptions  because  they  are  historic  college
towns  that  have  crystallized  to  focus  on  research  and
teaching, but that job demands have not matched their
research and teaching output.

We see the best  fit  for  total  number of  job demands
versus MSA population (Fig. 7). Job demands in a city
must  be  diverse  and  increase  superlinearly  with
population to draw persons into cities from surrounding
areas, fueling their dense and interconnected economic
activities.

These  scaling  results  further  demonstrate  the
misalignment  between  the  diversity  of  skills  across
research,  teaching,  and  industry  settings.  Jobs  skill
vectors  superscale  with  city  size,  but  research  and
teaching do not.  This  is  because all  skills  are  required
present  in  complementarity  for  the  knowledge
economy  to  run.  Every  business  environment  requires
contract lawyers, accountants, insurance professions, etc.
By contrast, not all research and teaching environments
require  all  skills  invention  or  instruction  based  on  the
clustered,  disciplinary  nature  of  research  and  the
organization  of  teaching.  Moreover,  the  spatial
mismatch between dense  research  and teaching within
college towns, and sometime their under-representation
in  dense,  industrial  urban  environments  breaks  this
scaling,  and  highlights  the  limited  potential  for
feedback from the non-local economy and the teaching
that serves it.

Semantic coverage
We  measure  the  semantic  coverage  of  an  MSA  by

measuring its proximity to the center of mass vector of
our  entire  dataset,  which  we  construct  by  aggregating
all normalised US MSA vectors. This measure suggests
how much the  semantic  space  an  MSA covers.  A low
cosine  distance  (or  high  coverage)  suggests  that  an
MSA vector is similar to the center of mass vector that

encapsulates  all  semantic  areas  captured  by  the
aggregate  vector.  We  characterise  the  center  of  mass
vector by averaging over all documents in a domain.
 

Vcenter o f mass =
1

N2

N2∑
n=0

Vdocumentn (2)

N2where  is the total number of documents within each
domain of research, teaching, and jobs. We thus create
a center of mass vector for each domain.

We can see in Figs. 8 and 9 that as MSAs increase in
population,  they  grow  more  similar  to  the  center  of
mass  vector.  Because  vectors  are  normalised,  a  larger
MSA  does  not  contribute  any  more  to  the  center  of
mass than a smaller MSA. MSAs with high populations
have  more  universities,  papers  published,  and  syllabi
listed, and this leads to high population MSAs covering
more  parts  of  the  semantic  space,  leading  to  more
diverse  options  for  skill  discovery  and  dissemination.
However,  we  see  outliers  for  all  three  categories  that
further showcase the misalignment.

For  job demands which we see  in Fig.  10,  we see  a
similar overall trend with larger cities covering more of
the  center  of  mass,  although  we  note  outliers.  This
observation  is  consistent  with  the  economies  of  some
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Fig. 7    log-log plot of the number of job demands versus the
population size for MSAs.
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Fig. 8    log-log  plot  of  the  cosine  distances  between  the
vectors for MSAs and the center of mass for research.
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Fig. 9    log-log  plot  of  the  cosine  distances  between  the
vectors for MSAs and the center of mass for teaching.
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large  metropolitan  areas  that  specialise  in  areas  that
serve the entire country,  such as finance in New York
City,  entertainment in Los Angeles,  and technology in
the  Bay  Area,  which  make  them  deviate  from  the
center of mass vector.

For  research  and  teaching,  we  see  high  semantic
coverage  for  many  smaller  sized  MSAs,  a  pattern  we
do not  see for  job demands.  These smaller  sized,  high
coverage  MSAs  are  the  college  towns  and  research
centers previously mentioned.

7    Discussion

7.1    Finding

In this paper we use research abstracts, teaching syllabi,
and  job  advertisements  to  create  entities  that  chart  the
discovery,  dissemination,  and  deployment  of  skills  in
research,  teaching,  and  industry,  respectively.  We
validate the semantic consistency of these embeddings
and find clusters of similar entities in each domain. We
then  use  two  approaches  to  study  distinct  aspects  of
this semantic model of the knowledge economy.

In  the  first,  we  use  institutional  and  geographic
entities  and  the  cosine  differences  between  them  to
sample angles of difference within semantic categories.
We then compute average statistics for distributions of
difference, then calculate the Kolmogorov-Smirnov test
to  evaluate  whether  pairs  of  distributions  are  similar.
We  find  that  job  demands  are  the  most  semantically
diverse as they map a wide range of industrial activity
(knowledge  and  technology  based  products,
manufacturing,  and services)  widely distributed within
all levels of the economy, followed by research, which
clusters  not  only  by  institutions,  but  also  by  region.
Both  are  significantly  more  diverse  than  teaching.
Research  is  more  similar  at  smaller  geographic  units,

confirming  how  the  semantic  space  of  novel  skill
discovery manifests intensive geographic localisation.

In  our  second  approach,  we  measure  semantic
coverage for different city (MSA) population sizes. To
do this, we create a system-level (United States) Center
of  Mass  vector  by  averaging  and  normalising  all
entities  within  a  domain.  We  then  measure  cosine
differences between each MSA and the Center of Mass,
plotting this versus population size. We observe a weak
super-scaling  property  of  MSAs  for  coverage  of
teaching and industry, with larger cities being closer to
the  Center  of  Mass.  The  largest  cities,  however,
specialise  for  job  demands  with  industries  such  as
finance,  healthcare,  and  technology.  For  research,  the
presence of smaller university towns with high research
output does not allow for super scaling, although we do
observe  larger  cities  covering  more  semantic  content.
We  also  find  that  total  job  demands  manifest  super-
scaling with population, while teaching and research do
not,  largely  due  to  the  presence  of  smaller  population
research  and  teaching  focused  MSAs  such  as  Los
Alamos  (for  research),  and  College  Station,  TX  (for
teaching).  These  research-focused  and  college/
university  towns  are  exceptions  to  the  super-scaling
paradigm  we  may  expect  to  observe  for  knowledge-
based  goods  and  services.  This  follows  from  how  the
creation  of  knowledge  and  skills  and  their  embedding
within persons can be specialized, and does not need to
distribute  geographically  as  knowledge  and  skills
deployment does within the economy. In the economy,
every  geographical  aggregation,  from  city  to  country,
needs  virtually  all  kinds  of  knowledge  and  skills  to
create  the  complex  complementarities  required  for
modern commerce.

Together, our analysis provides a novel, system-level
view  of  the  misalignment  between  the  diversity  of
knowledge and skills across research, teaching, and the
economy.  The  knowledge  economy  is  a  complex,
dynamical system, but here we reveal limited feedback
between  the  diversity  of  skill  deployment  in  the
workplace  and  skill  provision  through  education.
Specifically,  our  findings  suggestively  trace  the
massive  social  and  economic  costs  of  tethering
education to researchers with narrow knowledge rather
than  workers  with  broad  skill  needs.  The  lack  of
diversity  in  education  facilitates  the  reproduction  of
courses and the maintenance of programs and curricula,
while  allowing  research  specialization.  In  short,
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Fig. 10    log-log  plot  of  the  cosine  distances  between  the
vectors for MSAs and the center of mass for job demands.
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standardized  courses  enable  specialists  in  research  to
appear experts at education by narrowing the provision
of  education  far  beyond  its  potential  for  relevance  to
the  diversity  of  student  needs  as  they  approach  their
work in the economy. This validates and extends to the
21st  century  early  warnings  by  William  James[65] and
other  education  scholars  regarding  liabilities  in
collocation of teaching with research.

7.2    Future work

While it remains difficult to quantify all aspects of the
knowledge economy, with textual content we now have
a window into its semantic topology and geometry. Our
findings  are  consistent  with  and  validate  existing
theory  on  geographic  aggregation  of  knowledge-based
goods  and  services,  while  revealing  novel  scaling
relationships. With our GitHub release, all embeddings
and  entity  vectors  can  be  used  for  replication  and
independent exploration. Promising avenues for further
exploration  include  the  discovery  of  regional  clusters
(greater  than  MSAs  and  cross-cutting  states),  the
identification  of  optimal  aggregation  within  research,
teaching,  and  jobs  for  productivity  and  prosperity,
introducing  multi-modal  representations  of  the
knowledge  economy,  the  incorporation  of  technology
(e.g., patent), product, and service data in order to trace
more  dense  interlinkages  underlying  the  knowledge
economy,  and  a  more  fine-grained  analysis  of
temporality  associated  with  waves  of  discovery  and
obsolescence in the knowledge economy.
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