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Abstract
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ucts. Our counting large deviation estimates address a
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1 INTRODUCTION

Let𝜇 be a probabilitymeasure on𝐺 = GL𝑑(ℝ) and (𝑋𝑖)𝑖∈ℕ be a sequence of independent𝐺-valued
random variables with distribution 𝜇. Let 𝑌𝑛 denote the 𝑛th-step of the random product 𝑋𝑛 …𝑋1.
The theory of randommatrix products is concerned with studying the asymptotic behavior of 𝑌𝑛,
for example, by investigating limit theorems (law of large numbers, central limit theorem [CLT],
large deviations, etc.) for numerical quantities associated to matrices such as the operator norm‖𝑌𝑛‖ or spectral radius. The most intricate part of the theory is when the probability measure
𝜇 is finitely or countably supported say inside a countable group Γ < 𝐺. In that case, one has to
deal with the possible singular behavior of the countable subgroup Γ inside the ambient group
GL𝑑(ℝ). After pioneering works of Furstenberg, Kesten [31, 32], and several others, significant
progress was made by Le Page [50] in early 1980s; however many open questions still persist.
The theory of random matrix products provides a way to express asymptotic behavior of large

elements of Γ inGL𝑑(ℝ). Indeed, for a finitely supported probabilitymeasure 𝜇 as above, the prob-
abilistic description of the asymptotic behavior of 𝑌𝑛 is a problem of symbolic counting, that is,
counting with certain multiplicities. A related but different way to study the asymptotic behavior
of elements of Γ, perhaps more directly related to group Γ itself rather than its symbolic rep-
resentation, would be to study statistics of asymptotics of actual elements of Γ. However, due
to disparate algebraico-combinatorial structure of different countable groups Γ < GL𝑑(ℝ) such
a general description is notoriously harder to obtain. Accordingly, such counting asymptotics
results are much less developed compared to the theory of random matrix products.
In this article, we will be interested in describing counting asymptotics and boundary limit laws

for representations of Gromov-hyperbolic groups. These include virtually free groups, cocompact
isometry groups of negatively curved geodesic spaces, groups with small cancellation property,
and so on. From another perspective, in some probabilistic models (e.g., random groups [41]),
most finitely presented groups are Gromov-hyperbolic. We shall prove four main limit theorems.

∙ Law of large numbers for subadditive functions: This is of more general nature compared to the
following results, it holds for any real-valued subadditive function on Γ.
The next results concern matrix representations of Gromov-hyperbolic groups, they hold

under the standard (strong) irreducibility and proximality assumptions of random matrix
products theory:
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 3

∙ Exponential large deviation estimates for counting: This one refines the aforementioned
law of large numbers in the setting of matrix representations and addresses a question
raised by Kaimanovich–Kapovich–Schupp [46, Problem 9.3]. Apart from representations, we
also prove counting large deviation estimates for isometric actions on Gromov-hyperbolic
spaces.

∙ Counting CLT with Berry–Esseen type error term.
∙ Convergence of normalized interpolations along geodesic rays under a Patterson–Sullivan mea-
sure to the standard Brownian motion: This one is of a different nature, it pertains to a measure
on the boundary rather than counting. In fact, the first three points above also have corre-
sponding boundary analogues that, beyond interest in themselves, serve as a tools to prove
them.

Somewhat ironically, the keymechanism that will allow us to obtain these deterministic count-
ing asymptotics is the inherent dynamical or probabilistic structure of the Gromov-hyperbolic
groups. Indeed, as realized by Cannon [19] and Gromov [40], the geodesics on such a group can
be coded by a finite state automaton. This makes it possible to approach the deterministic data of
these groups by (a collection of) well-behaved stochastic processes, namely Markov chains. For
example, for the last three results mentioned above, it enables us to employ probabilistic results
of Markovian random matrix products (mainly due to Bougerol [10–12] and Guivarc’h [43]; we
also develop some of them further) to the deterministic counting results. This transfer, however,
requires handling some difficulties that we manage to do by, among others, elaborating on tech-
niques developed by Calegari–Fujiwara [18] (generally) and Gekhtman–Taylor–Tiozzo [34] (for
the CLT). The deterministic nature of our results, in particular the fact that we do not induce ran-
domness using an external source (like a subshift of finite type [18, 59] ) is of particular interest.
We shall comment more on each of our results and on the past works below, let us now continue
by stating our theorems and remarks more precisely.
Let Γ be a finitely generated group and 𝑆 a generating set for Γ, all considered generating sets

will be assumed to be finite and symmetric. The choice of 𝑆 makes Γ into a metric space by
considering the associated length function on Γ, namely |g|𝑆 = min{𝑛 ∈ ℕ | 𝑠1 … 𝑠𝑛 = g , 𝑠𝑖 ∈ 𝑆}
and for g , ℎ ∈ Γ setting the (left) metric to be 𝑑𝑆(g , ℎ) = |g−1ℎ|𝑆 . Recall that for Δ ⩾ 0, by a Δ-
hyperbolic metric space (𝑀, 𝑑), we understand a metric space such that for every 𝑥, 𝑦, 𝑧, 𝑜 ∈ 𝑀,
we have (𝑥, 𝑦)𝑜 ⩾ (𝑥, 𝑧)𝑜 ∧ (𝑧, 𝑦)𝑜 − Δ, where (⋅, ⋅)⋅ is the Gromov product given by (𝑥, 𝑦)𝑜 =
1
2
(𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑦)). The group Γ is said to be Gromov-hyperbolic if there exists a real

constantΔ ⩾ 0 and a generating set 𝑆 such that the associatedmetric space isΔ-hyperbolic. Given
a generating set 𝑆 ⊆ Γ, we write 𝑆𝑛 for the sphere of radius 𝑛 for the associated metric, namely
𝑆𝑛 ∶= {g ∈ Γ ∶ |g|𝑆 = 𝑛}. Finally, a Gromov-hyperbolic group Γ is said to be nonelementary if it is
not virtually cyclic, that is, does not contain a cyclic subgroup of finite index.

1.1 Convergence of subadditive spherical averages

A real-valued function 𝜑 on a group Γ is called subadditive, if for every g , ℎ ∈ Γ, we have 𝜑(gℎ) ⩽

𝜑(g) + 𝜑(ℎ). The following is our first result.

Theorem 1.1 (Weak law of large numbers for subadditive spherical averages). Let Γ be a nonele-
mentary Gromov-hyperbolic group endowed with a generating set 𝑆 and 𝜑 ∶ Γ → ℝ is subadditive
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4 CANTRELL and SERT

function on Γ. Then, there exists Λ ⩾ 0 such that for any 𝜖 > 0,

lim
𝑛→∞

1
#𝑆𝑛

#

{
g ∈ 𝑆𝑛 ∶

||||𝜑(g)
𝑛

− Λ
|||| > 𝜖

}
= 0.

In particular,

lim
𝑛→∞

1
𝑛

∑
|g|𝑆=𝑛

1
#𝑆𝑛

𝜑(g) = Λ.

This result is due to Kaimanovich–Kapovich–Schupp [46] when Γ is a free group and 𝑆 is a
free generating set. We note that the first statement above is precisely a weak law of large num-
bers, whereas the second one corresponds to convergence in expectation (for a strong law, see
Theorem 1.10). Notice also the curious analogy with the classical Fekete lemma that matches this
convergence in expectation when Γ = ℕ and 𝑆 = {1}.
Unlike our other results below where we will specialize to linear representations, the general-

ity of subadditive functions in the previous result goes far beyond; we now briefly comment on
various settings where such functions arise.

Remark 1.2 (Examples of subadditive functions). Two large classes of subadditive functions
contain the following.

(1) (Seminorms on groups) Let 𝐻 be any group endowed with a seminorm | ⋅ | and 𝜌 ∶ Γ → 𝐻 a
homomorphism (cf. [46]). The function 𝜑(𝛾) ∶= |𝜌(𝛾)| is clearly a subadditive function on Γ
and this construction encompasses many examples.
(1a) Already in the case𝐻 = Γ, 𝜌 = id and | ⋅ | any length function on Γ, the previous theorem

applied to 𝜑(⋅) = | ⋅ | yields an asymptotic ratioΛ between | ⋅ |𝑆 and | ⋅ |. Note thatΛ > 0
if, for example, | ⋅ | comes from a finite generating set. More generally, let (𝑋, 𝑑) be a
metric space, 𝑜 ∈ 𝑋 and Γ↷𝑋 by isometries. Then 𝜑(𝛾) = 𝑑(𝛾 ⋅ 𝑜, 𝑜) is a subadditive
function.

(1b) Let𝐻 = GL𝑑(ℝ), ‖ ⋅ ‖ an operator norm on the algebraMat𝑑(ℝ) ofmatrices and 𝜌 ∶ Γ →
𝐻 a representation. Then, 𝜑(𝛾) ∶= log ‖𝜌(𝛾)‖ is an example of a subadditive function.

(2) (Quasi-morphisms) Another class of examples comes from the observation that Theorem 1.1
remains valid for any function 𝜑′ on Γ such that |𝜑 − 𝜑′| is bounded. In view of this, the
previous result applies to any quasi-morphism (see [46, Theorem A]). For those, it is not hard
to see that Λ = 0.

Remark 1.3 (Possible extensions). Using different methods that rely on the topological flow intro-
duced byMineyev [55] and studied by Tanaka in [65], itmight be possible to prove that Theorem 1.1
holds when we count with respect to some other hyperbolic metrics that are not necessarily word
metrics (see [23, Theorem 3.12]). We have decided not to present the proof of this result as it is not
clear how to obtain more refined counting limit laws below in this more general setting.

We note that Theorem 1.1 and its almost sure version (Theorem 1.10) generalize several previous
works. For example, [33, Theorem7.3] and [65, Theorem7.4] follow from the particular casewhere
𝜑 is a displacement function associated to an isometric group actionwith additional requirements.
It also generalizes (without error term) [21, Theorem 1.1]. See also Subsection 1.3.1.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 5

It would be interesting to characterize when the constantΛ appearing in Theorem 1.1 is strictly
positive. For a subadditive function 𝜑 coming from a seminorm (Remark 1.2(1)) one can typically
say more, see Proposition 3.3. We will also see a characterization below in the case of strongly
irreducible representations.
The rest of our counting results (except Theorem 1.7) concern finite-dimensional representa-

tions Γ → GL𝑑(ℝ) of Gromov-hyperbolic groups and we now specialize to this setting.

1.2 Counting limit theorems for representations

Recall that a representation 𝜌 ∶ Γ → GL𝑑(ℝ) is said to be strongly irreducible if there does not exist
a finite collection of proper nontrivial subspaces of ℝ𝑑 whose union is invariant under the action
of 𝜌(Γ). It is said to be proximal if there exists a sequence of elements g𝑛 ∈ 𝜌(Γ) such that g𝑛‖g𝑛‖
converges to a rank-one linear transformation.

1.2.1 Positivity of average growth rate

In what follows, whenever a representation 𝜌 ∶ Γ → GL𝑑(ℝ) of a Gromov-hyperbolic group Γ
(equipped with a generating set) is understood,Λ denotes the average growth rate given by apply-
ing Theorem 1.1 to 𝜑(g) = log ‖𝜌(g)‖. Clearly, Λ does not depend on the choice of the operator
norm. The following result gives a characterization of when Λ is positive.

Proposition 1.4. Let Γ be a nonelementary Gromov-hyperbolic group, 𝑆 a generating set for Γ and
𝜌 ∶ Γ → GL𝑑(ℝ) a strongly irreducible representation. Then the constant Λ ⩾ 0 is strictly positive if
and only if 𝜌(Γ) is not relatively compact in PGL𝑑(ℝ).

This result is ultimately a consequence of Furstenberg’s result [31] on positivity of the top Lya-
punov exponent for independent and identically distributed random products. However, for this
statement, we additionally (need to) exploit the symmetry of the generating set because positivity
of top Lyapunov exponent may fail for random products in GL𝑑(ℝ).
Combinedwith Theorem 1.1, this result already implies that if such a Γ is Zariski-dense in a real

semisimple linear Lie group 𝐺, the word metric 𝑑𝑆 and any left-𝐺-invariant Riemannian metric
𝑑𝐺 are Lipschitz equivalent when restricted to a large (i.e., full asymptotic density in the spheres
𝑆𝑛) subset of Γ. We discuss this more in the large deviation part in Subsection 1.2.2 and in detail
in Subsection 9.2.

1.2.2 Exponential large deviation estimates

Establishing the next result was one of the earlier motivations of our work. In [46], Kaimanovich–
Kapovich–Schupp asked whether exponential large deviation estimates can be obtained for free
groups equipped with certain generating sets. The following therefore provides a class of such
examples with considerably less restrictions on the underlying group and generating set (see
Section 9).
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6 CANTRELL and SERT

Theorem 1.5. Let Γ be a nonelementary Gromov-hyperbolic group, 𝑆 a generating set and 𝜌 ∶ Γ →
GL𝑑(ℝ) a strongly irreducible and proximal representation. Then for every 𝜖 > 0,

lim sup
𝑛→∞

1
𝑛

log

(
1

#𝑆𝑛
#

{
g ∈ 𝑆𝑛 ∶

|||| log ‖𝜌(g)‖𝑛
− Λ

|||| > 𝜖

})
< 0.

Here Λ > 0 is the constant obtained from applying Theorem 1.1.

This result is analogous to a result of Le Page [50] (see [13, Theorem 6.2]) for independent and
identically distributed randommatrix products. A multidimensional version of this result (which
is a consequence thereof) shows the uniqueness of maximum of the growth indicator function
considered in [62]. See Subsection 9.1 where we discuss these in detail.
Theorem 1.5 will be deduced from an almost-sure version of it (with respect to geodesic

rays following Patterson–Sullivan measure class on boundary) that we will discuss below
(Theorem 1.11).
As we will explain in Subsection 9.2, it follows from Theorem 1.5 and positivity of Λ that, when

Γ is a Zariski-dense subgroup of a real linear semisimple Lie group 𝐺, the word-metric 𝑑𝑆 on Γ
and and left-𝐺-invariant Riemannian metric 𝑑𝐺 on 𝐺 coming from a Killing form are Lipschitz
equivalent when restricted to an 𝑆-exponentially generic subset of Γ†.

Theorem 1.6. Let Γ be a Zariski-dense, nonelementary Gromov-hyperbolic subgroup of a real
semisimple linear Lie group 𝐺. Then, for every finite symmetric generating set 𝑆 of Γ and constant
𝜖 > 0, there exists a subset 𝑇𝜖 of Γ with the property that

#(𝑆𝑛 ⧵ (𝑇𝜖 ∩ 𝑆𝑛))

#𝑆𝑛
= 𝑂(𝑒−𝛼𝑛)

for some 𝛼 > 0, and there exists a constantΛ = Λ(𝑆) > 0 such that for every 𝑛 ∈ ℕ and g ∈ 𝑆𝑛 ∩ 𝑇𝜖,
we have

𝑛(Λ − 𝜖) ⩽ 𝑑𝐺(g , id) ⩽ 𝑛(Λ + 𝜖).

This is restated and proved in Subsection 9.2, see Corollary 9.3. Itmay be tempting to try to prove
this result (or the previous one) using a random walk approach. However, to do this, one would
need to construct a probability measure 𝜇 on 𝑆 for which we have the equality ℎ𝜇 = 𝓁𝜇 log 𝜆 in
the fundamental inequality ℎ𝜇 ⩽ 𝓁𝜇 log 𝜆 of Guivarc’h (here, ℎ𝜇 is the asymptotic (Avez) entropy
of 𝜇, 𝓁𝜇 is its drift and 𝜆 exponential growth rate of 𝑆-spheres in Γ, see, e.g., [39]). The reason for
this is that a probability measure 𝜇 with ℎ𝜇 < 𝓁𝜇 log 𝜆 will only see an exponentially small part of
the spheres of 𝑆. On the other hand, as shown in [39, Theorem 1.3], the equality case ℎ𝜇 = 𝓁𝜇 log 𝜆
is very rigid and forces the ambient group to be virtually free.
The following result establishes exponential counting large deviation estimates in another set-

ting, that of isometric actions on Gromov-hyperbolic spaces. This setting has recently attracted
much attention both from probabilistic [3, 4, 7, 14, 38, 54] and counting [18, 21–23, 33, 34, 68]

†Notice that in general even ifΓ is a (nonuniform) lattice in𝐺, one cannot hope to have this Lipschitz equivalence onwhole
of Γ. On the other hand, by an important result of Lubotzky–Mozes–Raghunathan, such a global Lipschitz equivalence
holds for higher rank irreducible lattices [52, 53] that are of course not Gromov-hyperbolic.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 7

perspectives. To state our result, recall that the action of a groupΓ on aGromov-hyperbolic space𝐻
by isometries is said to be nonelementary if it there exists 𝛾1, 𝛾2 ∈ Γ acting as loxodromic elements
(see Subsection 4.5) with disjoint pairs of fixed points on the Gromov boundary of𝐻.

Theorem 1.7. Let Γ be a Gromov-hyperbolic group, 𝑆 a generating set of Γ and (𝐻, 𝑑) a geodesic
Gromov-hyperbolic space and 𝑜 ∈ 𝐻 a basepoint. Suppose that Γ acts on 𝐻 by isometries and that
the action is nonelementary. Then, there exists a constant Λ > 0 such that for every 𝜖 > 0, we have

lim sup
𝑛→∞

1
𝑛

log

(
1

#𝑆𝑛
#

{
g ∈ 𝑆𝑛 ∶

||||𝑑(g ⋅ 𝑜, 𝑜)
𝑛

− Λ
|||| > 𝜖

})
< 0.

This result is analogous to themain result of the recent work [14] (see also [38]) in the setting of
independent and identically distributed randomwalks on Gromov-hyperbolic spaces. As for The-
orem 1.5,wewill deduceTheorem 1.7 froma corresponding boundary limit theorem (Theorem6.4)
for Patterson–Sullivan measures. To prove the latter, we crucially make use of the large deviation
estimates that we develop from the work of Benoist–Quint [6], for cocycles over random prod-
ucts of group elements in Markovian dependence (these tools also serve us in the Berry–Esseen
estimate as explained above). We defer the statement of Theorem 6.4 to Section 6.

Remark 1.8. Recently, Cantrell and Tanaka [23, Theorem 4.23] proved a global large deviation
principle that implies Theorem 1.7 when Γ acts on𝐻 = Γ bymultiplication and 𝑑 is a left-invariant
hyperbolic metric that is quasi-isometric to a word metric.

1.2.3 Central limit theorem with Berry–Esseen type error term

Equipped with a law of large numbers, we now state the first refined limit theorem for counting
statistics in representations:

Theorem 1.9. Let Γ be a nonelementary Gromov-hyperbolic group, 𝑆 a generating set and 𝜌 ∶ Γ →
GL𝑑(ℝ) a strongly irreducible and proximal representation. Fix an operator norm ‖ ⋅ ‖ onMat𝑑(ℝ).
Then, there exists a constant 𝐶 > 0 such that for every 𝑡 ∈ ℝ

|||||| 1
#𝑆𝑛

#

{
g ∈ 𝑆𝑛 ∶

log ‖𝜌(g)‖ − 𝑛Λ√
𝑛

⩽ 𝑡

}
−

1√
2𝜋𝜎 ∫

𝑡

−∞
𝑒−𝑠2∕2𝜎2

𝑑𝑠

|||||| ⩽
𝐶 log 𝑛√

𝑛
,

where Λ > 0 is as in Theorem 1.1 and 𝜎2 > 0 are strictly positive constants.

In the sequel, whenever a strongly irreducible and proximal representation is fixed, 𝜎2 will
denote the variance in the above CLT.
The proof of this result requires several ingredients. We first prove a Berry–Esseen CLT for

the norm of Markovian random matrix products (Theorem 4.8) based on the analogous result of
Bougerol [11] for the norm cocycle. To do this, we use an idea due to Xiao–Grama–Liu from their
recent work [67]. The core of the argument is based on large deviation estimates from Benoist–
Quint [8] that we develop (Theorem 4.3) for the Markovian setting by elaborating on other work
due to Benoist–Quint [6] that concerns large deviation estimates for cocycles. Equipped with
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8 CANTRELL and SERT

these results as well as techniques developed by Calegari–Fujiwara [18], we employ a quanti-
tative version of an argument from recent work of Gekhtman–Taylor–Tiozzo [34] to carry out
our proof.

1.3 Boundary limit theorems for representations

As previously mentioned, limit theorems with respect to Patterson–Sullivan measures on the
boundary will play a key role in our work: on the one hand, we will prove new results for them
(such as Theorem 1.12 on convergence to the Brownian motion), on the other hand, they will
be used to prove the counting law of large numbers (Theorem 1.1) and large deviation theo-
rems (Theorems 1.5 and 1.7). More specifically, we will describe the growth rate of subadditive
functions (and the log-norm function for linear representations) along Patterson–Sullivan typ-
ical geodesic rays. We achieve this by comparing Markov measures on a Cannon coding with
Patterson–Sullivan measures on the boundary of our considered group. Along with techniques
from ergodic theory and geometric group theory, this will allow us to translate results con-
cerning Markovian random products to asymptotic behavior along Patterson–Sullivan typical
geodesic rays.
In the statements of our boundary limit theorems (and throughout this work), we will consider

the boundary 𝜕Γ of Γ equipped with generating set 𝑆 to be the collection of | ⋅ |𝑆 geodesic rays up
to the usual bounded distance equivalence. For 𝜉 ∈ 𝜕Γ, we use the notation 𝜉𝑛 → 𝜉 to indicate
that (𝜉𝑛)𝑛∈ℕ is a geodesic ray in the class of 𝜉 (see Section 2).

1.3.1 Law of large numbers for the Patterson–Sullivan measure class

Here is the strong law underlying Theorem 1.1:

Theorem 1.10 (Strong law of large numbers). Let Γ be a nonelementary Gromov-hyperbolic group
endowed with a generating set 𝑆 and 𝜑 ∶ Γ → ℝ is subadditive function on Γ. Let 𝜈 be a probability
measure on 𝜕Γ in the Patterson–Sullivan measure class. Then, there exists a constant Λ ⩾ 0 such
that

lim
𝑛→∞

𝜑(𝜉𝑛)

𝑛
= Λ

for 𝜈-almost every 𝜉 ∈ 𝜕Γ and every representative 𝜉𝑛 → 𝜉.

This result generalizes [46, Theorem A]. The reason we call it a strong law is that, roughly
speaking, the Patterson–Sullivan measures can be viewed as the law of a process for which the
uniform counting measures correspond to finite time distributions. This is also the spirit of the
deduction of Theorem 1.1 from the previous result.

1.3.2 Large deviations for Patterson–Sullivan measures

The quantitative analogue of Theorem 1.10 for linear representations is the following result.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12550 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 9

Theorem 1.11. Let Γ be a nonelementary Gromov-hyperbolic group, 𝑆 a generating set and 𝜌 ∶ Γ →
GL𝑑(ℝ) a strongly irreducible and proximal representation. Let 𝜈 be a Patterson–Sullivan measure
on 𝜕Γ for the 𝑆 word metric and Λ ⩾ 0 be the constant from Theorem 1.10. Then, for any 𝜖 > 0,

lim sup
𝑛→∞

1
𝑛

log 𝜈

(
𝜉 ∈ 𝜕Γ ∶ for all 𝜉𝑚 → 𝜉 with 𝜉0 = id,

||||| log ‖𝜌(𝜉𝑛)‖
𝑛

− Λ
||||| > 𝜖

)
< 0.

Here, when we say the 𝜈 is a Patterson–Sullivan measure, we mean that it is constructed as a
weak limit as in (1.2) or (2.1). We note that any two measures obtained in this way are mutually
absolutely continuous and their densities are bounded away from 0 (and infinity).
The proof makes use of Bougerol’s results [11] that are translated to the group theoretic set-

ting using techniques due to Calegari–Fujiwara [18] and extensions of these techniques due to
Cantrell [22]. The scheme of proof, somewhat common to the next Theorem 1.12, is expounded in
Subsection 1.4.

1.3.3 Convergence to the Wiener measure and law of iterated logarithm

We now turn to our last result that is an invariance principle and functional law of iterated log-
arithm (LIL) with respect to Patterson–Sullivan measures. We first need some notation. Suppose
Γ is a Gromov-hyperbolic group endowed with a generating set 𝑆 and that 𝜌 ∶ Γ → GL𝑑(ℝ) is
a strongly irreducible, proximal representation. Let 𝐶([0, 1]) denote the continuous real valued
functions on [0,1] equipped with the Borel 𝜎-algebra for the topology of uniform convergence.
We define a sequence of random variables (𝑆𝑛)𝑛∈ℕ on 𝜕Γ taking values in 𝐶([0, 1]) as follows. For
each 𝜉 ∈ 𝜕Γ, integer 𝑛 ⩾ 1 and 𝑡 ∈ [0, 1], we define 𝑆𝑛𝜉(𝑡) to be

min
𝜉𝑚→𝜉

1

(𝑛𝜎2)1∕2
(
log ‖𝜌(𝜉⌊𝑡𝑛⌋)‖ − 𝑛𝑡Λ + (𝑛𝑡 − ⌊𝑛𝑡⌋)(log ‖𝜌(𝜉⌊𝑡𝑛⌋+1)‖ − log ‖𝜌(𝜉⌊𝑡𝑛⌋)‖)), (1.1)

where Λ and 𝜎2 > 0 are the mean and variance from Theorem 1.9. The reason we consider the
minimum over the set of representatives is only practical, it allows to define the random variables
𝑆𝑛 on 𝜕Γ; replacingminwithmax will not alter the asymptotic behavior (and hence the results to
follow) because any two representatives of a boundary point 𝜉 ∈ 𝜕Γ stay at bounded distance. We
denote by the Wiener measure on 𝐶([0, 1]). Recall that this is the distribution of the standard
Brownian motion 𝐵(⋅) ∈ 𝐶([0, 1]) which is characterized [48] by 𝐵(0)

𝑎.𝑠.
= 0, and for every 𝑝 ∈ ℕ

and reals 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑝, the real-valued random variables 𝐵(𝑡1), 𝐵(𝑡2) − 𝐵(𝑡1), … , 𝐵(𝑡𝑝) −
𝐵(𝑡𝑝−1) are independent and distributed with the Gaussian distribution, respectively,  (0, 𝑡𝑖 −
𝑡𝑖−1).
We will prove the convergence to Wiener measure with respect to the Patterson–Sullivan

measure obtained as the weak limit

𝜈 = lim
𝑛→∞

∑|g|𝑆⩽𝑛 𝜆−|g|𝑆𝛿g∑|g|𝑆⩽𝑛 𝜆−|g|𝑆 . (1.2)

Here 𝜆 ∈ (1,∞) denotes the exponential growth rate of the cardinality of 𝑆𝑛 = {g ∈ Γ ∶ |g|𝑆 = 𝑛}.
The fact that the limit (1.2) exists will be explained in Subsection 2.1.We prove the following result.
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10 CANTRELL and SERT

Theorem 1.12. Let Γ be a nonelementary Gromov-hyperbolic group, 𝑆 a generating set and 𝜌 ∶ Γ →
GL𝑑(ℝ) a strongly irreducible and proximal representation. Let 𝜈 be the Patterson–Sullivanmeasure
defined in (1.2). Then,

(1) under 𝜈, the sequence (𝑆𝑛)𝑛∈ℕ of 𝐶([0, 1])-valued random variables converges in distribution to
 ; and

(2) for 𝜈-almost every 𝜉 ∈ 𝜕Γ, the set of limit points of the sequence (
𝑆𝑛𝜉

2 log log 𝑛
)𝑛∈ℕ of elements of

𝐶([0, 1]) is equal to the following compact subset of 𝐶([0, 1]):{
𝑓 ∈ 𝐶([0, 1]) ∶ 𝑓 is absolutely continuous, 𝑓(0) = 0,∫

1

0
𝑓′(𝑡)2𝑑𝑡 ⩽ 1

}
.

Two immediate corollaries of this result are the classical CLT and LIL with respect to the
Patterson–Sullivan measure 𝜈 (Corollary 7.2).

1.4 Outline of the arguments

We briefly outline the overarching argument used to prove Theorem 1.12 which is also valid to
some extent for the proof of Theorem 1.11 (see below for other limit theorems).

(i) We begin by introducing multiple Markov chains based on the Cannon coding for our group
Γ and generating set 𝑆.

(ii) We formulate and, in some cases, further develop Bougerol’s results [10, 11] for random
matrix products in Markovian dependence.

(iii) Using work of Goldsheid–Margulis [36] and Gouëzel–Mathéus–Maucourant [39], we show
that our assumptions on the representations (strongly irreducible and proximal) allow us to
apply the results of (ii) to the Markovian products introduced in (i).

(iv) We then use an argument of Calegari–Fujiwara [18] to show that the means Λ and vari-
ances 𝜎2 coming from the limit theorems obtained in (iii) of different Markovian products
introduced in (i) coincide (and equal the limiting average Λ obtained from Theorem 1.1).

(v) We compare the stationary distributions on the Markov chains to a Patterson–Sullivan mea-
sures on the boundary of the group. With some additional work, this allows us to prove that
along geodesic rays in the Cayley graph of (Γ, 𝑆), the log-norm function satisfies the corre-
sponding limit theoremwith respect to Patterson–Sullivanmeasure on theGromovboundary
𝜕Γ.

For counting limit theorems (Theorems 1.1, 1.5, and 1.7), we ultimately use the boundary results
obtained in (v) above together with regularity estimates on Patterson–Sullivan measures to get
counting limit theorems.
As discussed above, our tactic for proving counting CLT with error term (Theorem 1.9) is a

little bit different (without passing by a boundary limit theorem to optimize the Berry–Esseen
error term), see a more detailed description in Section 8.

1.5 Previous works

Here we briefly comment on some previous related works in the literature.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 11

In [46] (see also [47]), Kaimanovich–Kapovich–Schupp study generic asymptotic behavior (in
the sense of Theorems 1.1 and 1.10) of elements in countable groups Γ where genericity is under-
stood with respect to the uniform counting measure in a free group F (with a free generating
set) when Γ is seen as a quotient of F. This point of view lies in between the two extremes,
namely the symbolic counting point of view of probability theory (i.e., group invariant random
walks on groups) and our deterministic counting viewpoint. In vague terms, our approach agree
with that of Kapovich–Kaimanovich–Schupp when the underlying group is a free group and
generating set is free† and these two together agree with the probabilistic (independent and
identically distributed random walks) approach when the underlying algebraic object is a free
semigroup.
Coming back to counting asymptotics, there has recently been significant interest in counting

limit theorems on hyperbolic groups, see, for example, [18, 21, 23, 25, 33, 34, 44, 45, 58, 68]. In some
of these works, techniques from thermodynamic formalism (tracing back to [15, 64], see also [49])
are used. Although these techniques are powerful and allow for stronger results to be obtained,
they usually require strong assumptions on the studied potentials. In this work, our assumptions
are tooweak to allow us to apply techniques from thermodynamic formalism. In others, including
ours, ideas from Markov chain or random walk theory (in a sense initiated in this context by
[18]) are used instead of thermodynamic techniques. For example, in [34] the authors deduce
a (qualitative) counting CLT for displacement functions on Gromov-hyperbolic spaces‡ from a
CLT for centerable cocycles. Using ideas of Benoist–Quint [6] relying on solving a cohomological
equation, itmight be possible to do so in our setting aswell. However, our approach relying instead
on results of Bougerol coming from analytic perturbation theory, yields more quantitative results
(such as the Berry–Esseen bounds). It was indeed one of our goals to get quantitative results as it
seems particularly in line with the spirit of counting problems.
Finally, we alsomention that in the upcomingworkwithCipriano andDougall, we obtainmore

precise limit laws for the both the spectral radius and norm potentials under the assumption that
our representation is Anosov (or dominated). In this setting, we will be able to exploit ideas from
thermodynamic formalism.

1.5.1 Further directions

In this work, we restricted our attention to Gromov-hyperbolic groups. Our approach relies on the
existence of a nice combinatorial structure (Cannon coding) and stochastic results on this struc-
ture. Various generalizations of the notion of the Canon coding have been studied, both from a
combinatorial perspective [20]§ and geometric perspective [34]. It seems possible to find exam-
ples of nonhyperbolic groups equipped with certain specific (in some cases abstract) generating
sets (see [34]) for which our counting results will hold. In some settings (e.g., relatively hyper-
bolic groups) it may also be possible to find analogues of our boundary limit theorems. It would
be interesting to characterize the widest class of groups (equipped with any generating set) for
which our results hold.

†Accordingly, our Theorem 1.10 generalizes [46, Theorem A.1].
‡ See Section 9 for a consequence of our large deviation results for the displacement function on symmetric spaces of
noncompact type.
§ See [46] for some considerations toward this direction, but the results therein do not readily yield counting estimates.
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12 CANTRELL and SERT

2 HYPERBOLIC GROUPS AND AUTOMATIC STRUCTURES

2.1 Gromov-hyperbolic groups

Let Γ be a finitely generated group and 𝑆 a (finite, symmetric) generating set. As in the intro-
duction, for g , ℎ ∈ Γ, |g|𝑆 denotes the word length of g with respect to 𝑆 and 𝑑𝑆(g , ℎ) = |g−1ℎ|𝑆
defines a left-invariantmetric onΓ. TheGromov product of g , ℎ ∈ Γ is defined as ⟨g , ℎ⟩ = 1

2
(|g|𝑆 +|ℎ|𝑆 − |g−1ℎ|𝑆). The group Γ is said to be Gromov-hyperbolic if (Γ, 𝑑𝑆) is a Gromov-hyperbolic

metric space. We recall that a metric space (𝐻, 𝑑) is said to be Gromov-hyperbolic if there exists
Δ > 0 such that for every 𝑜, 𝑥, 𝑦, 𝑧 ∈ 𝐻,

(𝑥, 𝑧)𝑜 ⩾ min{(𝑥, 𝑦)𝑜, (𝑦, 𝑧)𝑜} − Δ,

where (𝑥, 𝑦)𝑜 ∶= 1
2
(𝑑(𝑥, 𝑜) + 𝑑(𝑦, 𝑜) − 𝑑(𝑥, 𝑦)) denotes the Gromov-product. Although the con-

stant Δ > 0 may depend on the generating set 𝑆, Gromov-hyperbolicity of Γ does not depend
on 𝑆.
Fix a Gromov-hyperbolic group Γ and a generating set 𝑆. A geodesic ray is a sequence of ele-

ments 𝜉𝑛 ∈ Γ such that |𝜉−1
𝑛 𝜉𝑚|𝑆 = 𝑚 − 𝑛 for each𝑚, 𝑛 ∈ ℕ with𝑚 ⩾ 𝑛. The Gromov boundary

𝜕Γ is the set of equivalence classes of geodesic rays where two rays 𝜉 and 𝜉′ are equivalent if
sup𝑛⩾1 |𝜉−1

𝑛 𝜉′
𝑛|𝑆 is finite. As the action of Γ on itself by left-multiplication is by isometries (with

respect to 𝑑𝑆), the natural action on the set of geodesic rays factors through this equivalence rela-
tion and defines an action of Γ on its Gromov boundary 𝜕Γ. It is well-known that the set Γ ∪ 𝜕Γ
carries a compact metrizable topology extending the (discrete) topology of Γ such that Γ is open
and dense in Γ ∪ 𝜕Γ and the Γ-action is by homeomorphisms.
We can extend the Gromov product to 𝜕Γ × Γ by setting

⟨𝜉, g⟩ = sup{lim inf
𝑛→∞

⟨𝜉′
𝑛, g⟩ ∶ 𝜉′

𝑛 → 𝜉},

where the supremum is taken over geodesic rays 𝜉′
𝑛 with 𝜉′

𝑛 → 𝜉; the latter notation denotes the
fact that 𝜉′

𝑛 is a geodesic ray in the equivalence class corresponding to 𝜉. Using this extended
Gromov product, for 𝑅 > 0 and g ∈ Γ, we define the 𝑅-shadow based at g to be the following
subset of 𝜕Γ:

𝑂(g , 𝑅) = {𝜉 ∈ 𝜕Γ ∶ ⟨𝜉, g⟩ > |g|𝑆 − 𝑅}

To prove our law of large numbers (Theorem 1.1), a key ingredient will be the study of the
growth rate of subadditive functions along typical geodesic rays in Γ. In particular, we will be
interested in the behavior of our functions along Patterson–Sullivan typical geodesic rays. Recall
that a Patterson–Sullivan measure for the length function | ⋅ |𝑆 on Γ is obtained as a weak limit of
the following sequence of measures on the compact Γ ∪ 𝜕Γ∑

g∈Γ 𝜆−𝑠|g|𝑆𝛿g∑
g∈Γ 𝜆−𝑠|g|𝑆 (2.1)

as 𝑠 ↘ 1 where 𝜆 > 1 is the exponential growth rate of the cardinality of 𝑆𝑛 = {g ∈ Γ ∶|g|𝑆 = 𝑛}. Alternatively, we can obtain a Patterson–Sullivan measure as the weak limit of the
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 13

sequence ∑|g|𝑆⩽𝑛 𝜆−|g|𝑆𝛿g∑|g|𝑆⩽𝑛 𝜆−|g|𝑆 (2.2)

as 𝑛 → ∞ (see [18, section 4]). Any measure 𝜈 constructed using either of the above two methods
yields a Radon measure supported on 𝜕Γ such that the Γ action preserves its measure class and
is ergodic. In this setting, ergodic means that Γ-invariant subsets of 𝜕Γ have either full or null
𝜈-measure. An important property exhibited by Patterson–Sullivanmeasures is the so-called qua-
siconformal property: for each 𝑅 > 0 sufficiently large, there exists a constant 𝐶 > 1 depending
only on 𝑅 and the hyperbolicity constant of Γ such that

𝐶−1𝜆−|g|𝑆 ⩽ 𝜈(𝑂(g , 𝑅)) ⩽ 𝐶𝜆−|g|𝑆 (2.3)

for all g ∈ Γ.
Before we move on to discuss the strongly Markov structure of hyperbolic groups, we record

a basic property of subadditive functions that we will use implicitly throughout our work. Recall
that the left and right word metrics associated to a generating set 𝑆 on Γ are

𝑑𝑆(g , ℎ) = |g−1ℎ|𝑆 and 𝑑𝑅(g , ℎ) ∶= |gℎ−1|𝑆.
We will repeatedly (and sometimes implicitly) use the fact that subadditive functions 𝜑 ∶ Γ → ℝ

are Lipschitz in these metrics metrics as noted in the next result.

Lemma 2.1. Fix a finite symmetric generating set 𝑆 for Γ and let 𝜑 ∶ Γ → ℝ be subadditive. Then,
𝜑 is Lipschitz in the left and right word metrics.

Proof. It suffices to show that there exist a constant 𝐶 > 0 such that

|𝜑(g) − 𝜑(𝑠g)| ⩽ 𝐶 and |𝜑(g) − 𝜑(g𝑠)| ⩽ 𝐶

for all g ∈ Γ and 𝑠 ∈ 𝑆. It follows easily from the definition of subadditivity that𝐶 = max𝑠∈𝑆 |𝜑(𝑠)|
works. □

2.2 Markov structure of Gromov-hyperbolic groups

It was realized by Cannon [19] that certain Kleinian groups enjoy a strong coding property:
the elements of metric spheres in the Cayley graph can be bijectively represented by admis-
sible words of corresponding length in a finite automaton (which we will refer to as strongly
Markov property, see Definition 2.2). It was indicated by Gromov [40] and proved by Coornaert–
Delzant–Papadopoulos [27] and Ghys–de la Harpe [35] that general Gromov-hyperbolic groups
with arbitrary finite generating sets enjoy the strongly Markov property. We now discuss this cru-
cial property that will allow us to associate a subshift of finite type to a Gromov-hyperbolic group
equipped with a generating set.
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14 CANTRELL and SERT

Definition 2.2. A group Γ is strongly Markov if given any generating set 𝑆 for Γ, there exists a
finite directed graph with vertex set𝑉 and directed edge set𝐸 ⊂ 𝑉 × 𝑉 that exhibit the following
properties.

(i) 𝑉 contains a vertex ∗ such that (𝑥, ∗) does not belong to 𝐸 for any 𝑥 ∈ 𝑉.
(ii) There exists a labeling 𝜆 ∶ 𝐸 → 𝑆 such that the map sending a path (starting

at ∗) with concurrent edges (∗, 𝑥1), (𝑥1, 𝑥2), … , (𝑥𝑛−1, 𝑥𝑛) to the group element
𝜆(∗, 𝑥1)𝜆(𝑥1, 𝑥2)… 𝜆(𝑥𝑛−1, 𝑥𝑛), is a bijection.

(iii) The above bijection preserves word length; if |g| = 𝑛, then the finite path corresponding to
g has length 𝑛.

To simplify notation later on, we augment the above strongly Markov structure by introducing
an additional vertex labeled 0 to 𝑉. We also add directed edges from every vertex 𝑥 ∈ 𝑉 to 0 and
define 𝜆(𝑥, 0) = id (the identity in Γ) for every 𝑥 ∈ 𝑉. We will assume that every strongly Markov
structure has been augmented in this way and will abuse notation by labeling the augmented
structure, its edge and vertex set by , 𝑉 and 𝐸, respectively. This directed graph  allows us to
introduce a subshift of finite type as we now explain.

2.2.1 Shift spaces

Let𝐴 be a 𝑘 × 𝑘matrix consisting of zeros and ones. We use the notation𝐴𝑖,𝑗 to denote the (𝑖, 𝑗)th
entry of 𝐴. The subshift of finite type associated to 𝐴 is the space

Σ𝐴 = {(𝑥𝑛)
∞
𝑛=0 ∶ 𝑥𝑛 ∈ {1, 2, … , 𝑘}, 𝐴𝑥𝑛,𝑥𝑛+1

= 1, 𝑛 ∈ ℤ⩾0}.

Given 𝑥 in Σ𝐴 we write 𝑥𝑛 for the 𝑛th coordinate of 𝑥. The shift map 𝜎 ∶ Σ𝐴 → Σ𝐴 sends 𝑥 to
𝑦 = 𝜎(𝑥) where 𝑦𝑛 = 𝑥𝑛+1 for all 𝑛 ∈ ℤ⩾0.
The mixing properties of (Σ𝐴, 𝜎) are determined by the structure of the matrix 𝐴.

Definition 2.3. We say that a 𝑘 × 𝑘 zero-one matrix 𝐴 is irreducible if for every (𝑖, 𝑗) (𝑖, 𝑗 ∈
{1, 2, … , 𝑘}), there exists 𝑛 ∈ ℕ such that (𝐴𝑛)𝑖,𝑗 > 0. We say that 𝐴 is primitive (irreducible and
aperiodic) if there exists 𝑛 ∈ ℕ such that (𝐴𝑛)𝑖,𝑗 > 0 for all 𝑖, 𝑗.

It is a standard fact that if 𝐴 is irreducible then (Σ𝐴, 𝜎) is (topologically) transitive, and if 𝐴 is
primitive then (Σ𝐴, 𝜎) is mixing. Further, if 𝐴 is irreducible then there exists a natural number
𝑝 ⩾ 1 known as the period of 𝐴 such that the alphabet {1, … , 𝑘} of 𝐴 is partitioned into 𝑝 disjoint
subsets 𝐴𝑖 and Σ𝐴 has a cyclic decomposition

Σ𝐴 =
𝑖−1⨆
𝑘=0

Σ𝐴(𝑖),

where Σ𝐴(𝑖) is the subset of Σ𝐴 starting with elements from𝐴𝑖 . The shift map 𝜎 ∶ Σ𝐴 → Σ𝐴 sends
Σ𝐴(𝑖) to Σ𝐴(𝑖 + 1) where 𝑖, 𝑖 + 1 are taken modulo 𝑝 and for each 𝑖 = 0, … , 𝑝 − 1 the subshifts
(Σ𝐴(𝑖), 𝜎𝑝) are mixing.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 15

2.2.2 Shift space associated to a Markov structure

Suppose now that  is a strongly Markov structure associated to a Gromov-hyperbolic group Γ
and generating set 𝑆. We can describe  using a zero-one matrix 𝐴: we label the vertices of  by
0, ∗, 1, 2, … , 𝑘 ∈ ℕ (where 0 and ∗ are distinguished vertices described above) and set 𝐴𝑖,𝑗 = 1 if
and only if there is a directed edge from vertex 𝑖 to vertex 𝑗 and otherwise we set 𝐴𝑖,𝑗 = 0. We can
then construct a subshift of finite type Σ𝐴 as described in the previous paragraph. We will write
𝐴′ for the matrix obtained from 𝐴 by discarding the row and column corresponding to the vertex
0 and 𝐴′′ for the one where we also discard the vertex ∗.
We will write Σ0

𝐴
for the collection of sequences in Σ𝐴 that contains an occurrence of 0.

Note that, by construction, if a sequence (𝑥𝑛)
∞
𝑛=0 has 𝑥𝑘 = 0 for some 𝑘 then 𝑥𝑙 = 0 for all

𝑙 ⩾ 𝑘. We will use the notation (𝑥0, … , 𝑥𝑛−1, 0̇) to express sequences that start with the vertices
𝑥0, 𝑥1, … , 𝑥𝑛−1 and then end with infinitely many zeros. Note that Σ0

𝐴
is dense in Σ𝐴 when Σ𝐴

is endowed with the restriction of the product topology on 𝑉ℕ. We define a map 𝑖 ∶ Γ → Σ0
𝐴
by

𝑖(g) = (∗, 𝑥1, … , 𝑥𝑛, 0̇) where (∗, 𝑥1, … , 𝑥𝑛, 0̇) is the unique sequence belonging to Σ𝐴 such that
g = 𝜆(∗, 𝑥1)𝜆(𝑥1, 𝑥2)⋯ 𝜆(𝑥𝑛−1, 𝑥𝑛) (and |g|𝑆 = 𝑛).
For certain hyperbolic groups and generating sets (i.e., for a free group equipped with a free

generating set) one can find a stronglyMarkov structure  such that the correspondingmatrix𝐴′′

is primitive. However, for general hyperbolic groups and generating sets it is not known whether
it is always possible to find a Markov structure such that the matrix 𝐴′′ is primitive or even irre-
ducible. After relabeling (i.e., permuting) the columns and rows of 𝐴′′, we may assume that 𝐴′′

has the form

𝐴′′ =

⎛⎜⎜⎜⎜⎝
𝐵1,1 0 … 0
𝐵2,1 𝐵2,2 … 0
⋮ ⋮ ⋱ ⋮

𝐵𝑚′,1 𝐵𝑚′,2 … 𝐵𝑚′,𝑚′

⎞⎟⎟⎟⎟⎠
,

where thematrices𝐵𝑖,𝑖 are irreducible. Thematrices𝐵𝑖,𝑖 are known as the irreducible components
of 𝐴′′ and the corresponding vertex sets in  are the irreducible components of . By property (3)
in Definition 2.2, it is easy to see that the spectral radius of each 𝐵𝑖,𝑖 is bounded above by the
growth rate 𝜆 of the group Γ. Moreover, by the same token, there must be at least one compo-
nent that has 𝜆 as an eigenvalue. We call an irreducible componentmaximal if the corresponding
matrix 𝐵𝑖,𝑖 has spectral radius 𝜆. We relabel the irreducible components so that maximal compo-
nents correspond to 𝐵𝑖,𝑖 for 𝑖 = 1, … ,𝑚, which we will denote as 𝐵𝑖 . An important property of  is
that the maximal components of  are disjoint. That is, there does not exist a path in  from one
maximal component to another. This is a consequence of a result of Coornaert [26] which asserts
that for a nonelementary hyperbolic group (and any generating set 𝑆) the growth of #𝑆𝑛 is purely
exponential, that is, for Γ, 𝑆 as above there exist 𝐶 > 1 and 𝜆 > 1 such that for all 𝑛 ∈ ℤ⩾0.

𝐶−1𝜆𝑛 ⩽ #𝑆𝑛 ⩽ 𝐶𝜆𝑛. (2.4)

3 LAWOF LARGE NUMBERS

The goal of this section is to prove Theorems 1.1 and 1.10. The former is a general (weak) law of
large numbers for subadditive functions on hyperbolic groups, whereas the latter can be seen as
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16 CANTRELL and SERT

the corresponding strong law that asserts the existence of a common growth rate of a subaddi-
tive function along almost every geodesic with respect to the Patterson–Sullivan measure. The
preliminary material introduced in Subsection 3.1 will serve as a tool throughout the article.

3.1 Markov measures for Gromov-hyperbolic groups

We summarize here a construction of a Markov chain on the strongly Markov structure of a
Gromov-hyperbolic group and its connection with the Patterson–Sullivan measure (both due to
Calegari–Fujiwara [18] in this setting). We also include some further related observations from
Cantrell [22]; other more specific ones will be included/proven in later sections where they
are needed.

3.1.1 Patterson–Sullivan measures seen in the strongly Markov structure

Wekeep the notation fromSection 2: letΓ be a nonelementaryGromov-hyperbolic group endowed
with a generating set 𝑆. Fix a stronglyMarkov structure. Let 𝜆 > 1 be the exponential growth rate
of Γwith respect to 𝑆. Denote by 𝜈 the Patterson–Sullivan probability measure (see [18, Definition
4.14]) obtained as the limit of the sequence of probabilities 𝜈𝑛 on Γ ∪ 𝜕Γ, where

𝜈𝑛 ∶=

∑|g|𝑆⩽𝑛 𝜆−|g|𝑆𝛿g∑|g|𝑆⩽𝑛 𝜆−|g|𝑆 . (3.1)

Let 𝑌 = [∗] be the (cylinder) set of sequences (𝑥𝑛) in Σ𝐴 that starts with the symbol ∗, that is,
𝑥0 =∗. Let𝑌𝑛 ⊆ 𝑌 ∩ Σ0

𝐴
be the subset of𝑌 consisting of sequences (𝑥𝑚) such that 𝑥𝑚 = 0 for every

𝑚 ⩾ 𝑛 + 1. In view of Definition 2.2, the set 𝑌𝑛 is in bijection with the ball of radius 𝑛 and hence
the measures 𝜈𝑛 on Γ defined in (3.1) can be considered as measures on 𝑌𝑛, we denote them by
𝜈𝑛. We note that this definition varies slightly from the one given in [18, Section 4]. Specifically
our 𝜈𝑛 measures are normalized to be probability measures unlike in [18]. Passing to the limit 𝜈
on Γ ∪ 𝜕Γ, one gets a limiting measure 𝜈 = lim𝑛→∞ 𝜈𝑛 supported on 𝑌 and giving zero measure
to each 𝑌𝑛. The fact that the limit exists follows from a direct calculation: the 𝜈𝑛 measure of each
cylinder set (which are open and closed sets the collection of which generates the algebra on
𝑌∞) converges to a finite limit. The fact that 𝜈 assigns zero measure to each 𝑌𝑛 corresponds to
the fact that 𝜈 on Γ ∪ 𝜕Γ is supported on the compact 𝜕Γ (i.e., gives zero mass to Γ). Alternatively,
denoting𝑌∞ ∶= 𝑌 ⧵ (∪𝑛⩾0𝑌𝑛) it is easy to see that there is a BorelmapΨ ∶ 𝑌∞ → 𝜕Γ that takes an
infinite path not ending with 0’s to the equivalence class of the corresponding (infinite) geodesic
ray in 𝜕Γ and which pushes 𝜈 forward to 𝜈 (see [17, section 3.5] for a similar description and more
details). Simple topological observations show that Ψ is continuous, surjective and finite-to-one
([17, Lemma 3.5.1]). It follows that 𝜈 = lim𝑛→∞ Ψ∗𝜈𝑛 and so 𝜈 is obtained as the weak limit of the
sequence 𝜈𝑛 defined in (3.1).

3.1.2 Parry measure of the strongly Markov structure

It is well-known since the work of Shannon [63] and Parry [57] that given an irreducible subshift
of finite type Σ𝐵 (i.e., a subshift associated to an irreducible matrix 𝐵 consisting of zeros and ones,
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 17

see Subsection 2.2.1) there is a unique 𝜎-invariant probability measure 𝜇 on Σ𝐵 for which the cor-
respondingmeasure theoretic entropy ℎ𝜇(𝜎) is maximal among all 𝜎-invariant (Borel) probability
measures, that is, ℎ𝜇(𝜎) = sup𝑚 ℎ𝑚(𝜎) where the supremum is over all 𝜎-invariant probability
measures on Σ𝐵. Moreover this measure is a Markov measure in the sense that denoting by 𝐸
the alphabet of Σ𝐵, the matrix 𝐵 gives rise to a transition kernel 𝑃 and a probability 𝜇∙ on 𝐸 such
that 𝜇∙ is 𝑃-stationary (see Subsection 4.1.1) and 𝜇 = ℙ𝜇∙

. It is an ergodic probability measure
(with respect to the shift transformation 𝜎). We call this measure 𝜇 = ℙ𝜇∙

themeasure of maximal
entropy (also called the Parry measure of Σ𝐵).
Even though the shift space Σ𝐴 associated to the strongly Markov structure  of a Gromov-

hyperbolic group Γ (endowed with a generating set 𝑆) is not irreducible, one can run a
Parry-like construction [18, section 4.2] to obtain a shift-invariant Markovian probability mea-
sure 𝜇 on Σ𝐴 with the properties discussed below. We do not include the standard construction to
avoid repetition.
A key property of the Parry-like measure 𝜇 is that by [18, Lemma 4.19] (more precisely by [22,

Proposition 4.6]), it is closely related to the measure 𝜈 on 𝑌 ⊆ Σ𝐴 constructed above using the
Patterson–Sullivan measure 𝜈: we have

lim
𝑛→∞

1
𝑛

𝑛∑
𝑘=1

𝜎𝑘
∗𝜈 = 𝜇, (3.2)

where the convergence holds (in fact with a speed estimate) in total variation distance.
On the other hand, by [22, Proposition 4.2] the Parry-like measure 𝜇 is nothing but a linear

combination of the Parry measures of maximal irreducible components of Σ𝐴: for each maximal
component (𝐵𝑗)𝑗=1,…,𝑚, there exists 𝛼𝑗 > 0 such that

∑𝑚
𝑗=1 𝛼𝑗 = 1 and

𝜇 =
𝑚∑

𝑗=1

𝛼𝑗𝜇𝑗, (3.3)

where 𝜇𝑗 is the Parry measure of the maximal component 𝐵𝑗 of .
As pointed out in [18, section 4.3], one can be more precise about the relation between 𝜈 and 𝜇

(than the mere relation (3.2)). We record the following statement from [22] which is an instance
of this more precise relation and which will be useful later on.

Lemma 3.1 ([22, Lemma 4.5]). For each 𝑣 ∈ 𝑉 with 𝜇[𝑣] > 0 and 𝑘 ∈ ℤ⩾0 there exists 𝛼𝑘
𝑣 ⩾ 0 such

that

𝜎𝑘
∗𝜈|[𝑣] = 𝛼𝑘

𝑣𝜇|[𝑣].
There exists a length 𝑘 path from ∗ to 𝑣 if and only if 𝛼𝑘

𝑣 > 0. □

3.2 Proofs of Theorems 1.1 and 1.10

We first prove Theorem 1.1 using Theorem 1.10. The latter will be proven subsequently.

Proof of Theorem 1.1. We begin by establishing the existence of the limit in the theorem. Nonneg-
ativity of the limit will then be deduced as a consequence. Let Λ ∈ ℝ be the constant given by
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18 CANTRELL and SERT

Theorem 1.10. For each 𝜖 > 0, define

𝐴𝜖 =

{
g ∈ Γ ∶

||||𝜑(g)|g|𝑆 − Λ
|||| > 𝜖

}
.

We need to show that for each 𝜖 > 0 the density of 𝐴𝜖 on 𝑆𝑛 vanishes as 𝑛 → ∞. Fix a Patterson–
Sullivan measure, that is, the one given by the limit of (2.2). Note that for any fixed sufficiently
large 𝑅 > 0, there exist positive constants 𝐶1 and 𝐶2 such that for every 𝑛 ∈ ℕ, we have

#(𝑆𝑛 ∩ 𝐴𝜖)

#𝑆𝑛
⩽ 𝐶1

∑
𝑥∈𝑆𝑛∩𝐴𝜖

𝜈(𝑂(𝑥, 𝑅)) ⩽ 𝐶2 𝜈

( ⋃
𝑥∈𝑆𝑛∩𝐴𝜖

𝑂(𝑥, 𝑅)

)
. (3.4)

The first inequality follows from (2.3) and (2.4) while the second follows from the fact that, due
to hyperbolicity, 𝑂(𝑥, 𝑅) for 𝑥 ∈ 𝑆𝑛 covers 𝜕Γ up to uniformly bounded multiplicity.
Now note that if 𝜉 ∈

⋃
𝑥∈𝑆𝑛∩𝐴𝜖

𝑂(𝑥, 𝑅), then there is a representative geodesic ray (𝜉𝑚)∞𝑚=0 with
𝜉0 = id and 𝐶 > 0 such that for every 𝑛 ⩾ 1

||||| log ‖𝜌(𝜉𝑛)‖
𝑛

− Λ
||||| ⩾ 𝜖 −

𝐶
𝑛
. (3.5)

Using hyperbolicity, (the fact that geodesic rays with the same end point remain within bounded
distance) by enlarging 𝐶 we can assume that (3.5) holds for all geodesic representatives of 𝜉 ∈⋃

𝑥∈𝑆𝑛∩𝐴𝜖
𝑂(𝑥, 𝑅). Therefore, we deduce by Theorem 1.10 that

𝜈

( ⋃
𝑥∈𝑆𝑛∩𝐴𝜖

𝑂(𝑥, 𝑅)

)
⟶
𝑛→∞

0.

Plugging this into (3.4), the first conclusion of Theorem 1.1 follows.
To deduce the second conclusion, note that for every positive𝑛 ∈ ℕ and g ∈ 𝑆𝑛, by subadditivity

of 𝜑, we have |𝜑(g)| ⩽ 𝐷𝑛, where 𝐷 = maxg∈𝑆 |𝜑(g)|. We write
|||||| 1
#𝑆𝑛

∑
g∈𝑆𝑛

𝜑(g)
𝑛

− Λ

|||||| ⩽
|||||| 1
#𝑆𝑛

∑
g∈𝑆𝑛∩𝐴𝜖

(
𝜑(g)
𝑛

− Λ

)|||||| +
|||||| 1
#𝑆𝑛

∑
g∈𝑆𝑛⧵𝐴𝜖

(
𝜑(g)
𝑛

− Λ

)||||||
⩽

#(𝑆 ∩ 𝐴𝜖)

#𝑆𝑛
(𝐷 + Λ) +

#(𝑆𝑛 ⧵ 𝐴𝜖)

#𝑆𝑛
𝜖.

As #(𝑆𝑛⧵𝐴𝜖)

#𝑆𝑛
→ 1 and #(𝑆𝑛∩𝐴𝜖)

#𝑆𝑛
→ 0 as 𝑛 → ∞ and 𝜖 > 0 is arbitrary, the second statement of

Theorem 1.1 follows.
It remains to show that Λ is nonnegative. To see this note that as |g|𝑆 = |g−1|𝑆 for every g ∈ Γ,

we have

2
1

#𝑆𝑛

∑
g∈𝑆𝑛

𝜑(g)
𝑛

=
1

#𝑆𝑛

∑
g∈𝑆𝑛

𝜑(g) + 𝜑(g−1)

𝑛
⩾

1
#𝑆𝑛

∑
g∈𝑆𝑛

𝜑(id)

𝑛
=

𝜑(id)

𝑛
,

where id ∈ Γ is the identity element. The result follows by taking the limit as 𝑛 → ∞. □
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 19

Remark 3.2. Notice that we proved that the constant Λ appearing in Theorems 1.1 and 1.10 is the
same. One deduces that the constant Λ given by Theorem 1.10 is nonnegative.

We now prove Theorem 1.10. To do so, we follow the argument used Cantrell in [22] employing
additionally the subadditive ergodic theorem and properties of subadditive functions. The general
tactic is to exploit the ergodicity of the Patterson–Sullivan measure to connect the behavior of
different maximal components for the strongly Markov structure, a key idea due to Calegari–
Fujiwara [18]. Before starting the proof, note that as different constructions of Patterson–Sullivan
measures yield measures in the same measure class, Theorem 1.10 does not depend on which
construction we choose to work with.

Proof of Theorem 1.10. Let  be a strongly Markov structure associated to the tuple (Γ, 𝑆) and
Σ𝐴 the shift space defined over symbols corresponding to the vertices of . Let 𝐵 be a maximal
component (among𝐵1, … , 𝐵𝑚, see Subsection 2.2.1) of and let (Σ𝐵, 𝜎) denote the subshift defined
over this component. Let 𝜇𝐵 denote the measure of maximal entropy on this subshift.
For every 𝑛 ∈ ℕ, let 𝑓𝑛 ∶ Σ𝐵 → ℝ be the function given by

𝑓𝑛(𝑥) = 𝜑(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛)).

As 𝜑 ∶ Γ → ℝ is subadditive, the sequence (𝑓𝑛)𝑛∈ℕ constitutes a subadditive cocycle in the sense
that 𝑓𝑛+𝑚(𝑥) ⩽ 𝑓𝑛(𝑥) + 𝑓𝑚(𝜎𝑛𝑥). As the Parry measure 𝜇𝐵 is ergodic, Kingman’s subadditive
ergodic theorem therefore yields that there exists Λ ∈ ℝ such that

lim
𝑛→∞

𝑓𝑛(𝑥)

𝑛
= Λ for 𝜇𝐵-almost every 𝑥 ∈ Σ𝐵. (3.6)

Now consider the set

𝐸 =

{
𝜉 ∈ 𝜕Γ ∶ lim

𝑛→∞

𝜑(𝜉𝑛)

𝑛
= Λ

}
.

By Lemma 2.1, this set is well-defined and Γ-invariant. The conclusion of our theorem is equiva-
lent to the fact that 𝜈(𝐸) = 1, where 𝜈 denotes the Patterson–Sullivan probability measure (2.2).
As the measure (class of) 𝜈 is ergodic with respect to the Γ-action [26], it suffices to show that
𝜈(𝐸) > 0.
Recall from Subsection 3.1.1 that we have a surjective, continuous map Ψ ∶ 𝑌∞ → 𝜕Γ which

pushes 𝜈 forward to 𝜈. Now fix an integer 𝑘 and vertex 𝑣 ∈ 𝐵 such that there exists a length 𝑘 path
in  from ∗ to a 𝑣. By combining (3.3) and Lemma 3.1, one gets that there exists a constant 𝛼 > 0
such that 𝜎𝑘

∗𝜈|[𝑣] = 𝛼𝜇𝐵|[𝑣]. In particular, by (3.6) we have that
𝜎𝑘
∗𝜈|[𝑣]{𝑥 ∈ Σ𝐵 ∶ lim

𝑛→∞

𝑓𝑛(𝑥)

𝑛
= Λ

}
> 0.

Using the basic relation |𝜙(gℎ) − 𝜙(ℎ)| ⩽ |𝜙(g)| + |𝜙(g−1)| valid for any subadditive function 𝜙 ∶
Γ → ℝ and every g , ℎ ∈ Γ, one readily sees that the convergence 𝑓𝑛(𝑥)∕𝑛 → Λ only depends on
the tail of the sequence 𝑥: if 𝑥 and 𝑦 are two sequences such that 𝑥𝑛1+𝑘 = 𝑦𝑛2+𝑘 for some 𝑛1, 𝑛2 ∈ ℕ

and all 𝑘 ∈ ℕ, then the convergence holds either for both of 𝑥, 𝑦 or neither of them.
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20 CANTRELL and SERT

This implies that the set

𝐸𝑌 ∶=

{
𝑥 ∈ 𝑌 ∶ lim

𝑛→∞

𝑓𝑛(𝑥)

𝑛
= Λ

}
satisfies 𝜈(𝐸𝑌) > 0.

As 𝜈 pushes forward to 𝜈 under Ψ and Ψ−1(𝐸) = 𝐸𝑌 , we have that 𝜈(𝐸) = Ψ∗𝜈(𝐸) = 𝜈(𝐸𝑌) > 0
and the conclusion follows. □

The following is a consequence of the above proof regarding positivity of the constant Λ based
on the Markov property (see, e.g., [33, 60] for similar uses of this idea in close contexts).

Proposition 3.3. Let 𝐻 be a group endowed with a seminorm | ⋅ |, 𝜌 ∶ Γ → 𝐻 a morphism and
𝜑(⋅) = |𝜌(⋅)| the associated subadditive function on Γ. Suppose that every probability measure with
finite exponential moment and with support that generates a finite index subgroup of Γ, has strictly
positive | ⋅ |-drift. Then the constant Λ given by Theorem 1.1 is strictly positive.

The hypotheses of this proposition are a little awkward but are satisfied in many cases:

∙ (Furstenberg [31])𝐻 = SL𝑑(ℝ) and the 𝜌(Γ) is a strongly irreducible and nonrelatively compact,
∙ (Guivarc’h [42]) the image of Γ is nonamenable and has at most exponential | ⋅ |-growth (see
more precisely Kaimanovich–Kapovich–Schupp [46, Proposition 2.5]),

∙ (Maher–Tiozzo [54]) the group Γ acts nonelementarily on a geodesic Gromov-hyperbolic space.

As we have already used similar arguments involving the renewal measures in Section 4 we
will provide a brief proof of the above result.

Proof. It follows from (3.6) thatΛ is realized as the linear growth rate of 𝜑 along almost-sure (with
respect to 𝜇𝐵) Markovian trajectories (𝛾1, 𝛾2, …) on Γℕ. Now fix an edge (𝑣0, 𝑣1) in the maximal
component 𝐵 and consider the induced (renewal) measure 𝜈 on Γ obtained by return times the
vertices 𝑣0 and 𝑣1 consecutively (see, e.g., [60, Definition 3.4]). Then, by the Markov property,
the induced law on Γℕ of this Markovian random walk along the return times to (𝑣0, 𝑣1) is the
Bernoulli law 𝜈ℕ on Γ𝑁 (see, e.g., [60, Lemma 3.5]). In particular, as the state space is finite, 𝜈ℕ is
absolutely continuous with respect to 𝜇𝐵. Denoting by 𝜏0 the expectation of return times (which
has a finite exponential moment because the state space is finite and the chain is irreducible), the| ⋅ |-drift Λ𝜈 of 𝜈 satisfies Λ𝜈 = 𝜏0Λ. Finally, by the same argument that we will see in Lemma 5.1
(relying on [39, Theorem 4.3]), the support of 𝜈 generates a finite index subgroup of Γ and hence
Λ𝜈 > 0 by hypothesis. The result follows. □

We end this section by justifying Remark 1.2(2): it clear that if the conclusions of Theorems 1.1
and 1.10 hold for a function 𝜑 and 𝜑′ ∶ Γ → ℝ is such that |𝜑 − 𝜑′| is bounded, then they also
hold for 𝜑′. In particular, if 𝜑′ is almost-subadditive in the sense that 𝜑′(gℎ) ⩽ 𝜑′(g) + 𝜑′(ℎ) + 𝐶
for some 𝐶 > 0 and for all g , ℎ ∈ Γ, then the conclusions of Theorems 1.1 and 1.10 hold for 𝜑′:
indeed, in this case the function 𝜑′ + 𝐶 is subadditive. As a quasi-morphism (i.e., a function 𝑓 ∶
Γ → ℝ satisfying |𝑓(gℎ) − 𝑓(g) − 𝑓(ℎ)| ⩽ 𝐶 for some 𝐶 > 0 and for every g , ℎ ∈ Γ) on a group Γ
is almost-subadditive, Theorems 1.1 and 1.10 apply. Notice that for a quasi-morphism, the limit Λ
is necessarily zero.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 21

4 MARKOVIAN RANDOMMATRIX PRODUCTS

This section is mostly independent of the rest of the paper and it is devoted to limit theorems
for norms of Markovian random matrix products (which will be important ingredients of our
counting results): simplicity of Lyapunov exponents, invariance principle, functional LIL, large
deviation estimates and Berry–Esseen bounds.

∙ Simplicity of Lyapunov exponents (Subsection 4.2): We will briefly recall the work of Bougerol
[12] (see also Virtser [66] and Royer [61]) generalizing previous work of Guivarc’h [43] and
ultimately the key result of Furstenberg [31] on positivity of the top Lyapunov exponent.

∙ Invariance principle and LIL (Subsection 4.3): We will recall the work of Bougerol [10, 11] gen-
eralizing corresponding results in the independent and identically distributed setting due to Le
Page [50].

∙ Large deviation estimates (Subsections 4.4 and 4.5):Wewill prove large deviation estimates both
for Markovian matrix products and Markovian random walks on Gromov-hyperbolic spaces.
The former result is contained in Bougerol’s work [11], however, we will give a different proof
using an approach of Benoist–Quint [6]. We have two reasons for giving a different proof: the
first one is that the tools developed for this proof will be used in the large deviation ingredient
of the Berry–Esseen estimate (which we could not directly obtain from Bougerol’s work), the
second one is that this approach is more general and gives also the corresponding results for
Markovian random walks on Gromov-hyperbolic spaces. The latter will be used later to give
another setting providing a positive answer to a question of Kaimanovich–Kapovich–Schupp
[46] (see Section 9).

∙ Berry–Esseen estimates (Subsection 4.6):Wewill prove Berry–Esseen estimates formatrix norms
log ‖𝑀𝑛‖ using the corresponding estimates of Bougerol [11] for log ‖𝑀𝑛𝑣‖ by adapting the
approach of Xiao–Grama–Liu [67] and using our large deviation estimates.

Before proceeding, we mention that we will restrict ourselves to Markovian random matrix
products over countable state Markov chains. The general state space cases are typically treated
using similar ideas but with heavier machinery (see Guivarc’h [43] and Bougerol [11, 12] for nice
expositions). Although we will only need to apply these results to the finite state space case, we
include the countable setting because it does not introduce any serious additional difficulties and
as we believe that this generality could be useful for works in contexts close to ours (e.g., for
extensions of our counting results).

4.1 Basic definitions

We start by setting our notation, brief recalls and defining Markovian random walks on groups
and Markovian random matrix products.

4.1.1 Reminders on the theory of Markov chains on countable state spaces

Let 𝐸 be a countable set and 𝑃 a probability transition kernel on 𝐸. By (standard) abuse of nota-
tion, let 𝑃 also denote the associated Markov operator and its dual: given a real-valued function
𝑓 on 𝐸, 𝑃𝑓(𝑥) = ∫ 𝑓(𝑦)𝑃(𝑥, 𝑑𝑦) whenever the integral makes sense. We shall write 𝜇𝑃 for the
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22 CANTRELL and SERT

action of 𝑃 on probability measures on 𝐸. Given a probability measure 𝜈 on 𝐸, the distribution
of the associated Markov chain on 𝐸ℕ is denoted by ℙ𝜈. We will usually denote the sequence of
coordinate functions by 𝑧𝑛 for 𝑛 = 0, 1, …. We say that the probability kernel 𝑃 is irreducible if for
every 𝑥, 𝑦 ∈ 𝐸, there exists 𝑛 ∈ ℕ such that 𝑃𝑛(𝑥, 𝑦) > 0. For an irreducible kernel 𝑃, its period is
defined to be gcd{𝑛 ∈ ℕ ∶ 𝑃𝑛(𝑥, 𝑥) > 0} for some (equivalently all) 𝑥 ∈ 𝐸. An irreducible kernel is
said to be aperiodic (or primitive) if its period is one. In general, if the period is 𝑝 ∈ ℕ, there exists
a partition 𝐸1, … , 𝐸𝑝 of the state space 𝐸 such that for every 𝑥 ∈ 𝐸𝑖 , 𝑃(𝑥, 𝐸𝑖+1) = 1 (𝑖 mod 𝑝). If
𝑃 is irreducible and has period 𝑝, then 𝑃𝑝 defines an irreducible aperiodic kernel on 𝐸𝑖 for every
𝑖 = 1, … , 𝑝.
A probability measure 𝜋 on 𝐸 is called 𝑃-stationary if it satisfies 𝜋𝑃 = 𝜋. An irreducible tran-

sition kernel 𝑃 is said to be positively recurrent if it admits a stationary probability measure 𝜋, in
which case this probability measure is unique. If 𝑃 has period 𝑝 ∈ ℕ, we have 𝜋 = 1

𝑝

∑𝑝
𝑖=1

𝜋|𝐸𝑖

and 𝜋|𝐸𝑖
𝑃 = 𝜋|𝐸𝑖+1

(𝑖 mod 𝑝), where 𝑝𝜋|𝐸𝑖
is the unique stationary probability measure of the

irreducible aperiodic kernel 𝑃𝑝 on 𝐸𝑖 . The Markov chain (𝑧𝑛) is said to be uniformly geometrically
ergodic if there exist a 𝑃-stationary probability measure 𝜋 on 𝐸 and constants 𝐶 > 0 and 𝜌 ∈ (0, 1)
such that for every 𝑧 ∈ 𝐸 and 𝑛 ∈ ℕ, we have ‖𝑃𝑛(𝑧, ⋅) − 𝜋(⋅)‖𝑇𝑉 ⩽ 𝐶𝜌𝑛, where ‖ ⋅ ‖𝑇𝑉 denotes
the total variation or equivalently the 𝓁1-norm (note that this condition forces 𝑃 to be irreducible
and aperiodic). This is automatically satisfied if 𝑃 satisfies the Doeblin condition (i.e., there exist
𝑛 ∈ ℕ, 𝑧 ∈ 𝐸 and 𝛿 > 0 such that for every 𝑦 ∈ 𝐸, 𝑃𝑛(𝑦, 𝑧) ⩾ 𝛿) and in particular if 𝐸 is finite and
𝑃 is primitive.

4.1.2 Markovian matrix products associated to a Markov chain

Let𝐸 be a countable state space, 𝑃 a transition kernel on𝐸 and Γ a group. Given amap𝑋 ∶ 𝐸 → Γ,
the associated Markovian random walk on Γ is defined as the process 𝑀𝑛 = 𝑋(𝑧𝑛)⋯𝑋(𝑧1). We
will often write 𝑋𝑛 = 𝑋(𝑧𝑛) for the 𝑛th-step of the associated Markovian random walk. When
Γ ⩽ GL𝑑(ℝ), we will mostly refer to it as a Markovian randommatrix product. In this section, we
will always require that the transition kernel 𝑃 be irreducible and positive recurrent. For Marko-
vian random matrix products, we will always ask that the map 𝑋 has the following integrability
conditionwith respect to the stationary probabilitymeasure𝜋 of 𝑃: 𝔼𝜋[log𝑁(𝑋1)] < ∞, where for
a matrix g ∈ GL𝑑(ℝ) and a choice of norm ‖ ⋅ ‖ on ℝ𝑑, we write 𝑁(g) = max{log ‖g‖, log ‖g−1‖}.
Note that the integrability condition does not depend on the choice of norm.
We will briefly refer to all these data as a Markovian random walk or Markovian (random

matrix) product and denote it by (𝑀𝑛).

4.2 Simplicity of Lyapunov exponents

Given aMarkovian product (𝑀𝑛), it follows from the Furstenberg–Kesten theorem (or subadditive
ergodic theorem) that for every 𝑘 = 1,… , 𝑑 there exist constants 𝜆1 ⩾ … ⩾ 𝜆𝑑 such that ℙ𝜋-almost
surely we have

1
𝑛

log ‖ ∧𝑘 𝑀𝑛‖ ⟶
𝑛→∞

𝑘∑
𝑖=1

𝜆𝑖. (4.1)

These numbers are called the Lyapunov exponents of the Markovian product (𝑀𝑛). Clearly, they
do not depend on the choice of the norm onMat(∧𝑘ℝ𝑑).
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 23

We will now see a result characterizing certain situations where these exponents are distinct
from each other. We first need some definitions.
We say that a subset 𝑇 of GL𝑑(ℝ) is 𝑟-proximal with 𝑟 ∈ {1, … , 𝑑 − 1} if there exists a sequence

(g𝑛) of elements in 𝑇 such that g𝑛‖g𝑛‖ converges in Mat𝑑(ℝ) to a linear transformation of rank at
most 𝑟. Sometimes, we shall simply write proximal instead of 1-proximal.
Given a Markovian product (𝑀𝑛), for 𝑥0 ∈ 𝐸, let 𝑇𝑥0

∶= {𝑀 ∈ GL𝑑(ℝ) ∶ ∃𝑛 ∈ ℕ, 𝑥1, … , 𝑥𝑛 ∈
𝐸 such that 𝑃(𝑥𝑖, 𝑥𝑖+1) > 0 and 𝑀 = 𝑋(𝑥𝑛)…𝑋(𝑥1)}, where the indices 𝑖 in the condition
𝑃(𝑥𝑖, 𝑥𝑖+1) > 0 ranges from 0 to 𝑛 − 1. Moreover, for 𝑥 ∈ 𝐸, let 𝑇𝑥0

(𝑥) ∶= {𝑀 ∈ GL𝑑(ℝ) ∶ ∃𝑛 ∈
ℕ, 𝑥1, … , 𝑥𝑛 = 𝑥 ∈ 𝐸 such that 𝑃(𝑥𝑖, 𝑥𝑖+1) > 0 and 𝑀 = 𝑋(𝑥𝑛)…𝑋(𝑥1)}. Note that for every 𝑥 ∈
𝐸, 𝑇𝑥(𝑥) is a semigroup in GL𝑑(ℝ) contained in the set 𝑇𝑥.
The Markovian product (𝑀𝑛) is said to be 𝑟-contracting if there exists 𝑥 ∈ 𝐸 such that 𝑇𝑥

is 𝑟-proximal. We say that a Markovian product (𝑀𝑛) is irreducible if for any 𝑟 ∈ {1, … , 𝑑 −
1} there does not exist a map 𝑉 ∶ 𝐸 → Gr𝑟(ℝ

𝑑) (where Gr𝑟 denotes the Grassmanian of 𝑟-
dimensional subspaces) such that for every 𝑥0 ∈ 𝐸 and 𝑛 ∈ ℕ, ℙ𝑥0

-almost surely 𝑀𝑛𝑉(𝑧0) =
𝑉(𝑧𝑛). Finally, we say that aMarkovian product (𝑀𝑛) is strongly irreducible if for any 𝑟 ∈ {1, … , 𝑑 −
1} there does not exist a finite number of maps 𝑉𝑖 ∶ 𝐸 → Gr𝑟(ℝ

𝑑) (say, 𝑖 = 1, … , 𝑡) such that
for 𝑥 ∈ 𝐸, denoting 𝑊(𝑥) = ∪𝑡

𝑖=1
𝑉𝑖(𝑥), we have, for every 𝑥0 ∈ 𝐸 and 𝑛 ∈ ℕ, ℙ𝑥0

-almost surely
𝑀𝑛𝑊(𝑧0) = 𝑊(𝑧𝑛).
The following particular case of a result of Bougerol [12, Theorem 1.6] gives a characterization

of the so-called simplicity of Lyapunov spectrum in our setting.

Theorem 4.1 (Simplicity of Lyapunov spectrum, Guivarc’h [43] and Bougerol [12]). Let (𝑀𝑛) be
a strongly irreducible Markovian product. Then, for 𝑟 = 1,… , 𝑑 − 1, we have 𝜆1 > 𝜆𝑟+1 if and only
if𝑀𝑛 is 𝑟-contracting.

This result will be a crucial ingredient for the upcoming limit theorems (Theorems 4.2 and 4.8).
It will also be used in the proof of positivity ofΛ in Proposition 1.4 (however, this can alternatively
be deduced from Proposition 3.3 relying directly on the earlier positivity result of Furstenberg).

4.3 Invariance principle and functional LIL

Here we briefly discuss two limit theorems due to Bougerol [11]: the first one is an analogue of
the classical invariance principle due to Donsker which is a generalization of the CLT. The second
one is the analogue of Strassen’s functional LIL generalizing theHartman–Wintner LIL. For these
results (and others to follow), we will need further assumptions on the Markovian product (𝑀𝑛)
that we now discuss.
Following Bougerol [11, section 3] (see also [10]), we shall say that a Markovian randommatrix

product (𝑀𝑛) satisfies

Condition (𝐴1): if the Markov chain (𝑧𝑛) is uniformly geometrically ergodic; and
Condition (𝐴2): if there exist positive constants 𝑎, 𝐵 such that 𝔼𝑥[𝑒

𝑎𝑁(𝑀1)] ⩽ 𝐵 for every 𝑥 ∈ 𝐸.

Notice that both are automatically satisfied if 𝐸 is finite and (𝑧𝑛) is primitive.

Theorem 4.2 (Convergence to the Wiener process and LIL, Bougerol [11]). Let (𝑀𝑛) be a 1-
contracting irreducible Markovian random matrix product satisfying condition (𝐴1) and (𝐴2).
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24 CANTRELL and SERT

For 𝜎0 > 0 and 𝑡 ∈ [0, 1] and 𝑛 ∈ ℕ, let 𝑆𝑛(𝑡) denote 𝐶([0, 1])-valued random variable defined
by

𝑆𝑛(𝑡) =
1

(𝑛𝜎2
0)

1∕2

(
log ‖𝑀⌊𝑡𝑛⌋‖ − 𝑛𝑡𝜆1 + (𝑛𝑡 − ⌊𝑛𝑡⌋)(log ‖𝑀⌊𝑡𝑛⌋+1‖ − log ‖𝑀⌊𝑡𝑛⌋‖)). (4.2)

Then, there exists a constant 𝜎0 = 𝜎 > 0 such that for every 𝑥 ∈ 𝐸

(1) under ℙ𝑥 , the sequence (𝑆𝑛)𝑛∈ℕ of 𝐶([0, 1])-valued random variables converges in distribution
to ; and

(2) forℙ𝑥-almost every𝜔, the set of limit points of the sequence (
(𝑆𝑛(𝑡))(𝜔)

2 log log 𝑛
)𝑛∈ℕ of elements of𝐶([0, 1])

is equal to the following compact subset of 𝐶([0, 1]):{
𝑓 ∈ 𝐶([0, 1]) ∶ 𝑓 is absolutely continuous, 𝑓(0) = 0,∫

1

0
𝑓′(𝑡)2𝑑𝑡 ⩽ 1

}
.

We indicate how to deduce this version from Bougerol’s original statement which concerns
log ‖𝑀𝑛𝑣‖ for a nonzero vector 𝑣 ∈ ℝ𝑑.

Proof. In view of Theorem 4.1, our assumptions on the Markovian product (𝑀𝑛), namely, 1-
contracting and irreducible, imply that the condition [11, (A3)] is satisfied (see [11, Definition 2.7]
and thereafter). Therefore, [11, Theorem 4.5] implies both statements when log ‖𝑀𝑛‖ is replaced
by log ‖𝑀𝑛𝑣‖ for some nonzero 𝑣 ∈ 𝑅𝑑. Note that positivity of the variance follows from [11,
Proposition 4.9]. The statements for log ‖𝑀𝑛‖ then follow from [11, Proposition 2.8]: the sec-
ond conclusion directly follows and the first one follows by appealing to a standard fact, see, for
example, [48, Problem 4.16]. □

4.4 Large deviation estimates for Markovian randommatrix
products

In this part, we prove the following theorem by using some ideas that we adapt from the work
of Benoist–Quint [6]. The developed tools will also serve as an ingredient in the proof of Berry–
Esseen estimates.

Theorem 4.3 (Markovian random matrix products). Let (𝑀𝑛) be a strongly irreducible and 1-
contracting randommatrix product satisfying (𝐴1) and (𝐴2). Let ‖ ⋅ ‖ be a fixed norm on ℝ𝑑 . Then,
for every 𝜖 > 0, there exist 𝛼 > 0 and𝐶 > 0 such that for every 𝑥 ∈ 𝐸 and 𝑛 ∈ ℕ, and nonzero 𝑣 ∈ 𝑉,
we have

ℙ𝑥(| log ‖𝑀𝑛𝑣‖ − 𝑛𝜆1| ⩾ 𝑛𝜖) ⩽ 𝐶𝑒−𝛼𝑛 and ℙ𝑥(| log ‖𝑀𝑛‖ − 𝑛𝜆1| ⩾ 𝑛𝜖) ⩽ 𝐶𝑒−𝛼𝑛.

This result is not new; it follows fromBougerol’s [11, Theorem 4.3]. However, we give a different
proof. The tools developed for this proof, beyond their aforementioned utility in the Berry–Esseen
estimate, will also allow us to prove Theorem 4.6 in the next part. The rest of Subsection 4.4 is
devoted to its proof.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 25

4.4.1 Large deviations in Breiman’s LLN

Following Benoist–Quint [6], we adopt a slighly more general setting. Let 𝐶 be a compact metriz-
able space and 𝐸 a Polish space. We say that a Markov-Feller transition kernel 𝑄 on 𝑌 = 𝐸 × 𝐶
covers a Markovian transition kernel 𝑃 on 𝐸, if the following diagram commutes

(4.3)

Here, (𝐸) (resp., (𝐸 × 𝐶)) denotes the set of probability measures on 𝐸 (resp., on 𝐸 × 𝐶), 𝜋1 ∶
𝐸 × 𝐶 → 𝐸 is the projection map and 𝜋1∗ is the induced pushforward map.
Given a bounded continuous function 𝜑 ∶ 𝑌 → ℝ, we set

𝓁+
𝜑 = sup

𝜂 ∫ 𝜑 𝑑𝜂 and 𝓁−
𝜑 = inf

𝜂 ∫ 𝜑 𝑑𝜂

where the supremum and infimum are taken over 𝑄-invariant probability measures on 𝑌.
Let us say that a Markov–Feller kernel 𝑃 on 𝐸 is uniformly positive recurrent if for every

𝜖 > 0, there exists a compact set 𝐾 ⊆ 𝐸 and 𝑁 ∈ ℕ such that for every 𝑥 ∈ 𝐸 and 𝑛 ⩾ 𝑁, we
have 1

𝑛

∑𝑛
𝑗=1(𝛿𝑥𝑃

𝑗)(𝐾) > 1 − 𝜖. Such a kernel has a unique stationary probability measure that
we denote by 𝜋. The following result is a more general version of [6, Proposition 3.1] that one can
derive from its proof with a small variation explained below.

Proposition 4.4 (Benoist–Quint). Let𝑄 be a Markov–Feller transition kernel on 𝑌 = 𝐸 × 𝐶 cover-
ing a transition kernel𝑃 on𝐸. Suppose that𝑃 is uniformly positive recurrent. Then, for every bounded
continuous function 𝜑 ∶ 𝑌 → ℝ and 𝜖 > 0, there exists 𝐶0 > 0 and 𝛼0 > 0 such that for every 𝑦 ∈ 𝑌
and 𝑛 ∈ ℕ, we have

ℚ𝑦

{
(𝑦0, …) ∈ 𝑌ℕ ∶

1
𝑛

𝑛∑
𝑘=1

𝜑(𝑦𝑘) ∈ [𝓁−
𝜑 − 𝜖,𝓁+

𝜑 + 𝜖]

}
> 1 − 𝐶0𝑒

−𝛼0𝑛.

Proof. The proof of [6, Proposition 3.1] goes through: the uniform convergence [6, (3.2)] is the only
point that needs care in our noncompact case and it follows from the uniform positive recurrence
assumption we imposed on the transition kernel 𝑃 on 𝐸. Indeed, suppose that the convergence
max(𝓁+

𝜑 , 1
𝑛

∑𝑛
𝑘=1 𝑄

𝑘𝜑) → 𝓁+
𝜑 is not uniform. Then, one finds a sequence 𝑦𝑛 of points and 𝜖0 > 0

such that for every𝑛 ∈ ℕ, 1
𝑛

∑𝑛
𝑘=1 𝑄

𝑘𝜑(𝑦𝑛) ⩾ 𝓁+
𝜑 + 𝜖0. By the uniformpositive recurrence property

of 𝑃, any limit point 𝜂 of 1
𝑛

∑𝑛
𝑘=1 𝛿𝑦𝑛

𝑄𝑘 projects to the 𝑃-invariant measure 𝜋 and as 𝐶 is compact,
𝜂 gives full mass to 𝑌. Hence, it is a 𝑄-invariant probability measure on 𝑌 satisfying ∫ 𝜑 𝑑𝜂 ⩾

𝓁+
𝜑 + 𝜖0, a contradiction. □

Wenowprove a large deviation result for cocycles associated to group actions (cf. [6, Proposition
3.2]). Let Γ be a locally compact second countable group acting continuously on 𝐶. Let𝑋 ∶ 𝐸 → Γ
be a continuous map and 𝑃 be a Markov–Feller transition kernel on 𝐸. We consider the Markov–
Feller transition kernel on𝑌 defined as follows: for Borel subsets𝐴 ⊂ 𝐸 and 𝐵 ⊂ 𝐶 and 𝑦 = (𝑥, 𝑐),
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26 CANTRELL and SERT

we set

𝑄(𝑦,𝐴 × 𝐵) ∶= 𝑃(𝑥,𝐴) 1𝐵(𝑋(𝑥)𝑐). (4.4)

By construction the kernel𝑄 covers the transition kernel 𝑃 in the sense of (4.3). For 𝑦0 = (𝑥0, 𝑐) ∈
𝑌, we will denote byℚ𝑦0

the probabilitymeasure on𝑌ℕ determined by the kernel𝑄 and the initial
distribution 𝛿𝑦0

. Note that ℚ𝑦0
is the pushforward of ℙ𝑥0

by

𝐸ℕ → 𝑌ℕ

(𝑥𝑖) ↦ ((𝑥0, 𝑐), (𝑥1, 𝑋(𝑥0)𝑐), (𝑥2, 𝑋(𝑥1)𝑋(𝑥0)𝑐), … , 𝑦𝑛, …),
(4.5)

where 𝑦𝑛 = (𝑥𝑛, 𝑋(𝑥𝑛−1)…𝑋(𝑥0)𝑐).
A continuous cocycle 𝜎 ∶ Γ × 𝐶 → ℝ is said to have uniform exponential moment if there exists

𝛼2 > 0 and 𝐶2 > 0 such that for every 𝑥 ∈ 𝐸, 𝔼𝑥[sup𝑐∈𝐶 𝑒𝛼2𝜎(𝑋(𝑧1),𝑐)] ⩽ 𝐶2.

Proposition 4.5. Under the assumptions of Proposition 4.4, given a continuous cocycle𝜎 ∶ Γ × 𝐶 →
ℝ with uniform exponential moment for every 𝜖 > 0, there exist 𝐶 > 0 and 𝛼 > 0 such that for every
𝑥 ∈ 𝐸, 𝑐 ∈ 𝐶, and 𝑛 ∈ ℕ, we have

ℙ𝑥

{
(𝑥0, …) ∶

1
𝑛

𝑛∑
𝑘=1

𝜎(𝑋(𝑥𝑘), 𝑋(𝑥𝑘−1)…𝑋(𝑥0)𝑐) ∈ [𝓁− − 𝜖,𝓁+ + 𝜖]

}
⩾ 1 − 𝐶𝑒−𝛼𝑛,

where 𝓁+ = sup𝜂 ∫ 𝜎(𝑋(𝑥), 𝑐) 𝑑𝜂(𝑥, 𝑐), with the supremum taken over Borel probability measures
on 𝑌 that are 𝑄-invariant (and the lower average 𝓁− is defined similarly with inf instead of sup).

Proof. We will write the sum
∑𝑛

𝑘=1 𝜎(𝑋(𝑥𝑘), 𝑋(𝑥𝑘−1)…𝑋(𝑥0)𝑐) as a sum of two quantities for
which we have exponential concentration bounds, one of them due to Proposition 4.4 and the
other due to Azuma type concentration bounds for sums of martingale differences (see, e.g., [51,
Theorem 1.1]).
To do this, let 𝜉 ∶ 𝑌 → ℝ be defined for 𝑦 = (𝑥, 𝑐) as 𝜉(𝑦) = ∫ 𝜎(𝑋(𝑧), 𝑋(𝑥)𝑐) 𝑑𝑃𝑥(𝑧). Note that

𝜉 is continuous (as 𝑃 is Markov–Feller and 𝜎 is continuous) and bounded (thanks to the uni-
form exponential moment hypothesis). Furthermore, having fixed 𝑐 ∈ 𝐶, let 𝜙𝑛 be the sequence
of functions defined on 𝐸ℕ by

𝜙𝑛((𝑥𝑖)) = 𝜎(𝑋(𝑥𝑛), 𝑋(𝑥𝑛−1)…𝑋(𝑥0)𝑐) − ∫ 𝜎(𝑋(𝑧), 𝑋(𝑥𝑛−1)…𝑋(𝑥0)𝑐)) 𝑑𝑃𝑥𝑛−1
(𝑧).

We then have

𝑛∑
𝑘=1

𝜎(𝑋(𝑥𝑘), 𝑋(𝑥𝑘−1)…𝑋(𝑥0)𝑐) =
𝑛∑

𝑘=1

𝜙𝑘((𝑥𝑖)) +
𝑛−1∑
𝑘=0

𝜉(𝑦𝑘), (4.6)

where we recall that 𝑦𝑘 = (𝑥𝑘, 𝑋(𝑥𝑘−1)…𝑋(𝑥0)𝑐) and 𝑦0 = (𝑥0, 𝑐).
One now readily checks that for every (𝑥, 𝑐) ∈ 𝑌, under ℙ𝑥, 𝜙𝑘 is a martingale difference

sequence with respect to the canonical filtration 𝑛 on 𝐸ℕ. Indeed, for ℙ𝑥0
-almost every (𝑥𝑖), we
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 27

have that 𝔼𝑥(𝜙𝑛|𝑛−1)((𝑥𝑖)) is equal to

𝔼𝑥𝑛−1
[𝜎(𝑋(𝑧𝑛), 𝑋(𝑥𝑛−1)…𝑋(𝑥0)𝑐)] − ∫ 𝜎(𝑋(𝑧), 𝑋(𝑥𝑛−1)…𝑋(𝑥0)𝑐) 𝑑𝑃𝑥𝑛−1

(𝑧) = 0 (4.7)

Thanks to the uniform exponential moment assumption, we can apply [51, Theorem 1.1] and
deduce that for every 𝜖 > 0, there exists 𝐶1 > 0 and 𝛼1 > 0 such that for every (𝑥, 𝑐) ∈ 𝑌 and 𝑛 ∈
𝑁, we have

ℙ𝑥

{
(𝑥𝑖) ∶

1
𝑛

𝑛∑
𝑘=1

𝜙𝑘((𝑥𝑖)) ⩾ 𝜖

}
⩽ 𝐶1𝑒

−𝛼1𝑛. (4.8)

On the other hand, by Proposition 4.4 applied to the function 𝜉 and thanks to the relation (4.5),
we obtain that for every 𝜖 > 0, there exists 𝐶0 > 0 and 𝛼0 > 0 such that for every (𝑥, 𝑐) ∈ 𝑌 and
𝑛 ∈ ℕ, we have

ℙ𝑥

{
(𝑥𝑖) ∶

1
𝑛

𝑛−1∑
𝑘=0

𝜉(𝑥𝑘, 𝑋(𝑥𝑘−1)…𝑋(𝑥0)𝑐) ∈ [𝓁−
𝜉

− 𝜖,𝓁+
𝜉

+ 𝜖]

}
⩾ 1 − 𝐶0𝑒

−𝑛𝛼0 , (4.9)

where 𝓁+
𝜉

= sup𝜂 ∫ ∫ 𝜎(𝑋(𝑧), 𝑋(𝑥)𝑐) 𝑑𝑃𝑥(𝑧)𝑑𝜂(𝑥, 𝑐) = sup𝜂 ∫ 𝜎(𝑋(𝑥), 𝑐) 𝑑𝜂(𝑥, 𝑐) because 𝜉 = 𝑄𝜎

and 𝜂 is 𝑄-stationary. In view of (4.6), the result now follows by (4.8) and (4.9). □

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. We start by proving the first inequality. We will basically show that we can
apply Proposition 4.5 and that in that result, we have 𝓁− = 𝓁+ = 𝜆1.
Let 𝐶 be the (𝑑 − 1)-dimensional real projective space 𝐏(ℝ𝑑) endowed with the usual action

of GL𝑑(ℝ). We take Γ = GL𝑑(ℝ) and 𝑋 as the map 𝐸 → GL𝑑(ℝ) in the data of the Markovian
product (𝑀𝑛). Let𝑄 be theMarkov–Feller transition kernel on𝑌 ∶= 𝐸 × 𝐶 constructed as in (4.4)
covering the kernel 𝑃 on 𝐸. Moreover, let 𝜎 ∶ Γ × 𝐏(ℝ𝑑) → ℝ be the continuous cocycle given by
𝜎(g , [𝑣]) = log ‖g𝑣‖‖𝑣‖ where 𝑣 is any nonzero element in ℝ𝑑 and [𝑣] denotes its projection to 𝐏(ℝ𝑑).
Thanks to condition (𝐴1), the kernel 𝑃 is uniformly positively recurrent and thanks to condition
(𝐴2), 𝜎 has a uniform exponential moment. Therefore, Proposition 4.5 yields that for every 𝜖 > 0,
there exist 𝐶 > 0 and 𝛼 > 0 such that for every 𝑥 ∈ 𝐸, nonzero 𝑣 ∈ ℝ𝑑 and 𝑛 ∈ ℕ, we have

ℙ𝑥

(
1
𝑛

log
‖𝑀𝑛𝑣‖‖𝑣‖ ∉ [𝓁− − 𝜖,𝓁+ + 𝜖]

)
⩽ 𝐶𝑒−𝛼𝑛. (4.10)

We will now see that there exists a unique 𝑄-stationary probability measure on 𝑌 and deduce
that 𝓁− = 𝓁+. To this end, let 𝜂 be a 𝑄-stationary probability measure on 𝐸 × 𝐶. As 𝑄 covers the
kernel 𝑃, the projection of 𝜂 to 𝐸 is a 𝑃-stationary probability measure, which is therefore equal
to 𝜋 (because 𝜋 is the unique 𝑃-stationary probability measure on 𝐸). Hence, we can write 𝜂 =
∫ 𝛿𝑥 ⊗ 𝜈𝑥 𝑑𝜋(𝑥), where 𝜈𝑥 is a probability measure on 𝐶. By [5, Lemma 3.4], 𝜈𝑥 is the stationary
probability measure for theMarkov operator𝑄𝑥 induced by𝑄 on {𝑥} × 𝐶. But as 𝑥 is a single state
in the state space 𝐸, 𝑄𝑥 is the Markov operator induced by a probability measure 𝜇𝑥 on Γ (the
renewal measure defined by 𝜇𝑥(g) = ℙ𝑥(𝑋(𝑧𝜏𝑥−1)…𝑋(𝑧1)𝑋(𝑥) = g), where 𝜏𝑥 is the return time
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28 CANTRELL and SERT

to 𝑥, see [60, section 3.1]), that is, 𝑄𝑥((𝑥, 𝑐), 𝐴 × 𝐵) = 𝛿𝑥(𝐴) ⋅ (𝜇𝑥 ∗ 𝛿𝑐(𝐵)) for 𝐴 ⊆ 𝐸 and 𝐵 ⊆ 𝐶.
By construction, the semigroup generated by the renewal measure 𝜇𝑥 is precisely the semigroup
𝑋(𝑥)−1𝑇𝑥(𝑥)𝑋(𝑥) ([60, page 15]). It follows from [12, Theorem 5.3.(ii)] that for every 𝑥 ∈ 𝐸, the
semigroup 𝑇𝑥(𝑥) in GL𝑑(ℝ) is strongly irreducible and proximal. Therefore, by [13, section III,
Theorem 3.1], 𝜈𝑥 is the unique stationary probability measure of 𝜇𝑥 and hence it does not depend
on 𝜂. This shows that 𝑄 has a unique stationary probability measure 𝜂 on 𝑌. In particular, 𝓁− =
𝓁+ =∶ 𝓁 in (4.10). Choosing a basis 𝑣1, … , 𝑣𝑑 with unit vectors, applying (4.10) with each 𝑣𝑖 , one
gets by Borel–Cantelli that for every 𝑥 ∈ 𝐸, ℙ𝑥 almost surely

sup
𝑖=1,…,𝑑

1
𝑛

log ‖𝑀𝑛𝑣𝑖‖ ⟶
𝑛→∞

𝓁.

As the supremum over a basis with unit vectors defines a norm on Mat𝑑(ℝ) comparable to an
operator norm, one gets by the subadditive ergodic theorem (see (4.1)) that 𝓁 = 𝜆1. □

4.5 Large deviation estimates for Markovian randomwalks on
Gromov-hyperbolic spaces

We introduce some basic definitions from metric geometry to state Theorem 4.6.
Let (𝐻, 𝑑) be a separable Gromov-hyperbolicmetric space and 𝑜 ∈ 𝐻 a basepoint. Given 𝑥 ∈ 𝐻,

let ℎ𝑥 ∈ Lip1
𝑜(𝐻) denote the function defined by ℎ𝑥(𝑦) = 𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑜), where Lip1

𝑜(𝐻) is the
set of 1-Lipschitz functions on𝐻 vanishing at 𝑜, endowed with the pointwise topology. By taking
the closure in Lip1

𝑜(𝐻), we get a compactification 𝐻
ℎ
of 𝐻, called the horofunction compactifica-

tion. The compact 𝐻
ℎ
is metrizable because 𝐻 is separable. The map 𝑥 ↦ ℎ𝑥 is injective on 𝐻

and we usually identify 𝐻 with its image in 𝐻
ℎ
. The Busemann cocycle 𝜎 ∶ Isom(𝐻) × 𝐻

ℎ
→ ℝ

is defined by 𝜎(𝛾, ℎ) = ℎ(𝛾−1𝑜). Note that for 𝑜 ∈ 𝐻 ⊆ 𝐻
ℎ
, 𝜎(𝛾, 𝑜) = 𝑑(𝛾𝑜, 𝑜) =∶ 𝜅(𝛾) is the dis-

placement functional. Recall finally that an element 𝛾 ∈ Isom(𝐻) is called loxodromic if it has
precisely two fixed points on the Gromov boundary 𝜕𝐻 of𝐻.
We say that a Markovian random walk (𝑀𝑛) on Isom(𝐻) is nonelementary if there does not

exist a finite number of maps 𝑉𝑖 (say, 𝑖 = 1, … , 𝑡) from 𝐸 to the Gromov boundary 𝜕𝐻 such that
for 𝑥 ∈ 𝐸, denoting 𝑊(𝑥) = ∪𝑡

𝑖=1
𝑉𝑖(𝑥), we have, for every 𝑥0 ∈ 𝐸 and 𝑛 ∈ ℕ, ℙ𝑥0

-almost surely
𝑀𝑛𝑊(𝑧0) = 𝑊(𝑧𝑛). Moreover, we say that the Markovian random walk (𝑀𝑛) satisfies Condition
(𝐴′

2) if there exist positive constants 𝑎 and 𝐵 such that 𝔼𝑥[𝑒
𝑎𝜅(𝑀1)] ⩽ 𝐵 for every 𝑥 ∈ 𝐸.

Theorem 4.6 (Markovian random walks on Gromov-hyperbolic spaces). Let 𝐻 be a separa-
ble geodesic Gromov-hyperbolic space and (𝑀𝑛) be a nonelementary Markovian random walk on
Isom(𝐻) satisfying (𝐴1) and (𝐴′

2). Then, there exists a constant 𝓁Λ ⩾ 0 such that for every 𝜖 > 0,

there exists 𝛼 > 0 and 𝐶 > 0 such that for every 𝑥 ∈ 𝐸, 𝜉 ∈ 𝐻
ℎ
and 𝑛 ∈ ℕ, we have

ℙ𝑥(|𝜎(𝑀𝑛, 𝜉) − 𝑛𝓁Λ| ⩾ 𝑛𝜖) ⩽ 𝐶𝑒−𝛼𝑛.

The constant𝓁Λ is called the drift of theMarkovian randomwalk (𝑀𝑛).Wenote that specializing
to 𝜉 = 𝑜 ∈ 𝐻, the above statement boils down to large deviation estimates for the displacement
function 𝜅(⋅).
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 29

This result generalizes the assertion concerning the uniqueness of zero in the recent work
[14] in the independent and identically distributed setting (let us note that even more recently,
Gouëzel [38] managed to get rid of the exponential moment assumption in the same setting). In
the independent and identically distributed case, the dependence of 𝛼 on 𝜖 has been specified
and quantitative estimates have been recently obtained when 𝐻 is proper (see [1, 3]). Finally, see
also the recent work of Goldsborough–Sisto [37] for another perspective on Markovian random
products of isometries.

Proof. We aim to apply Proposition 4.5. To this end, let 𝐶 = 𝐻
ℎ
and Γ be the countable group

generated by the image of the map 𝑋 ∶ 𝐸 → Isom(𝐻) in the data of the Markovian random walk
(𝑀𝑛). Recall that the group of isometries Isom(𝐻) acts on 𝐻

ℎ
by homeomorphisms given, for

𝛾 ∈ Isom(𝐻), ℎ ∈ 𝐻
ℎ
and 𝑦 ∈ 𝑀, by (𝛾 ⋅ ℎ)(𝑦) = ℎ(𝛾−1𝑦) − ℎ(𝛾−1𝑜) and the Busemann cocycle

is a continuous cocycle over this action. Let 𝑄 be the Markov–Feller transition kernel on 𝑌 ∶=
𝐸 × 𝐶 constructed as in (4.4) covering the kernel 𝑃 on 𝐸. Thanks to condition (𝐴1), the kernel
𝑃 is uniformly positively recurrent and thanks to condition (𝐴2), 𝜎 has a uniform exponential
moment. Therefore, Proposition 4.5 implies that for every 𝜖 > 0, there exist 𝐶 > 0 and 𝛼 > 0 such
that for every 𝑥 ∈ 𝐸, 𝜉 ∈ 𝐻

ℎ
and 𝑛 ∈ ℕ, we have

ℙ𝑥

( 1
𝑛
𝜎(𝑀𝑛, 𝜉) ∉ [𝓁− − 𝜖,𝓁+ + 𝜖]

)
⩽ 𝐶𝑒−𝛼𝑛.

We now let 𝓁Λ be the constant given by the subadditive ergodic theorem as the ℙ𝜋 almost sure
limit of 1

𝑛
𝜅(𝑀𝑛) as 𝑛 → ∞. It remains to show that 𝓁+ = 𝓁− = 𝓁Λ. If 𝓁Λ = 0 this equality is easy to

see (using the fact that the cocycle 𝜎 is bounded in absolute value by 𝜅, one controls the behavior
of 𝜎 for any stationary measure covering 𝑃 with the asymptotic behavior of 𝜅), so we suppose that
𝓁Λ > 0. Here, we will employ a slightly different argument compared to the corresponding part in
the proof of Theorem 4.3 replacing the proof of uniqueness of𝑄-stationary probabilitymeasure on
𝑌 (which may also be the case in the current setting). Let 𝜂 be a 𝑄-stationary probability measure
on 𝑌. By the Chacon–Ornstein ergodic theorem,

𝜂

{
(𝑥, 𝑐) ∈ 𝑌 ∶

1
𝑛

𝑛−1∑
𝑘=0

𝑄𝑘𝜎(𝑥, 𝑐) ⟶
𝑛→∞ ∫ 𝜎 𝑑𝜂

}
= 1.

By specializing to such (𝑥0, 𝑐), using the fact that for every 𝑦 = (𝑥′, 𝑐′), ℚ𝑦 is the pushforward of
ℙ𝑥′ by the map (4.5), we get that

lim
𝑛→∞

1
𝑛
𝔼𝑥0

[𝜎(𝑋(𝑧𝑛−1)…𝑋(𝑧1)𝑋(𝑥0), 𝑐)] = ∫ 𝜎𝑑𝜂. (4.11)

For 𝑛 ⩾ 1, let 𝜏𝑥(𝑛) denote the random variable, defined on 𝐸ℕ, which is given by 𝑛th-return time
to 𝑥. Thanks to condition 𝐴1, 𝜏𝑥(1) (equivalently 𝜏𝑥(𝑛) for every 𝑛 ∈ ℕ) has a finite exponential
moment. For 𝑥 ∈ 𝐸 let 𝜇𝑥 be the renewal measure 𝜇𝑥(g) = ℙ𝑥(𝑋(𝑧𝜏𝑥(1)−1) …𝑋(𝑧1)𝑋(𝑥) = g). It is
easy to see that 𝜇𝑥 has a finite exponential moment, that is, ∫ 𝑒𝛽𝜅(g)𝑑𝜇𝑥(g) < ∞ for some 𝛽 > 0.
The support of 𝜇𝑥 is the subsemigroup 𝑋(𝑥)−1𝑇𝑥(𝑥)𝑋(𝑥) of Γ defined in the same way as in Sub-
section 4.2. As theMarkovian product (𝑀𝑛) is nonelementary andhas positive drift, the semigroup
𝑇𝑥(𝑥) is clearly unbounded (as the random product, which grows at linear rate, belongs to this

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12550 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



30 CANTRELL and SERT

semigroup at return times to 𝑥). Moreover, it follows from the same argument as in the proof
of [12, Lemma 4.6, Theorem 5.3.(ii)] that 𝑇𝑥(𝑥) does not stabilize a finite collection of points in
the Gromov boundary 𝜕𝐻. Now, [24, Proposition 3.1] implies that the group generated by 𝑇𝑥(𝑥)
contains two independent loxodromics and then [30, Theorem 6.2.3 and Proposition 6.2.14] imply
that the semigroup 𝑇𝑥(𝑥) is nonelementary (i.e., contains two independent loxodromics).
For the rest, on the one hand, it is not hard to deduce from (4.11) that

1
𝑛
𝔼𝜇𝑥0

[𝜎(g𝑛 … g1, 𝑐)] → 𝔼[𝜏𝑥0
(1)]∫ 𝜎 𝑑𝜂 (4.12)

(where g𝑛 … g1 is an independent and identically distributed randomwalk on Γ for 𝜇𝑥0
) and as 𝜇𝑥0

is nonelementary and has a finite exponential moment, it follows from [1, Lemma 3.8] and (4.12)
that

1
𝑛
𝔼𝜇𝑥0

[𝜅(g𝑛 … g1)] → 𝔼[𝜏𝑥0
(1)]∫ 𝜎 𝑑𝜂. (4.13)

On the other hand, the left-hand side of (4.12) converges to 𝔼[𝜏𝑥0
(1)]𝓁Λ and 𝔼[𝜏𝑥0

(1)] > 0 thanks
to positive recurrence. This shows that ∫ 𝜎𝑑𝜂 = 𝓁Λ. As 𝜂 is an arbitrary 𝑄-stationary probability
measure, this shows that 𝓁+ = 𝓁− = 𝓁Λ, completing the proof. □

Remark 4.7. We remark that in Theorem 4.6, we cannot exclude the possibility that 𝓁Λ = 0. How-
ever, a handy characterization of when 𝓁Λ > 0 follows from the previous proof. Indeed, let 𝑥 ∈ 𝐸
and 𝑇𝑥(𝑥) be the semigroup above. As in the proof above, as the Markovian product (𝑀𝑛) is
nonelementary, the semigroup 𝑇𝑥(𝑥) does not stabilize a finite collection of points in the Gromov-
boundary 𝜕𝐻. Moreover, as shown above if 𝑇𝑥(𝑥) is unbounded, 𝑇𝑥(𝑥) contains two independent
loxodromics. The linear escape result in [54] implies that the drift of 𝜇𝑥 is positive and hence
from the proof above, we get 𝓁Λ > 0. On the other hand, it is easy to see that 𝓁Λ = 0 if for some
(equivalently all) 𝑥 ∈ 𝐸, the semigroup 𝑇𝑥(𝑥) is bounded.

4.6 Central limit theoremwith Berry–Esseen type estimates

Specializing to 𝑡 = 1 in (4.2), Theorem 4.2(1) says that the CLT holds: for every 𝑥 ∈ 𝐸 and 𝑎 ∈ ℝ,
we have

ℙ𝑥

(
log ‖𝑀𝑛‖ − 𝑛𝜆1 ⩽ 𝑎

√
𝑛
)

⟶
𝑛→∞

1

𝜎
√

2𝜋 ∫
𝑎

−∞
𝑒
− 𝑠2

2𝜎2 𝑑𝑠. (4.14)

In the following result, we give the Berry–Esseen type bound for the convergence rate in (4.14).
Our main interest in the Berry–Esseen bound is that it will be used to obtain a quantitative count-
ing CLT on spheres of the Cayley graph of a Gromov-hyperbolic group. Unlike Theorem 4.2, it
is not simple to deduce the Berry–Esseen type bound for log ‖𝑀𝑛‖ from that of log ‖𝑀𝑛𝑣‖, the
latter was proven by Bougerol [11]. Indeed, even in the independent and identically distributed
case, although the Berry–Esseen bound for log ‖𝑀𝑛𝑣‖ has been known since the work of Le Page
[50], the bounds for the matrix norm were only recently studied [28, 29, 67]. Below, we give a ver-
sion of these results for the Markovian case adapting the approach of Xiao–Grama–Liu [67] and
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 31

using our large deviation estimates (replacing the large deviation ingredient of [67] from [8] in the
independent and identically distributed case).

Theorem 4.8 (Berry–Esseen bound in CLT). Let (𝑀𝑛) be a strongly irreducible and 1-contracting
Markovian product satisfying (𝐴1) and (𝐴2). Let ‖ ⋅ ‖ be a fixed norm on ℝ𝑑 . Then, there exists a
constant 𝐷 > 0 such that for every 𝑥 ∈ 𝐸, 𝑎 ∈ ℝ, and 𝑛 ∈ ℕ, we have

||||||ℙ𝑥

(
log ‖𝑀𝑛‖ − 𝑛𝜆1 ⩽ 𝑎

√
𝑛
)

−
1

𝜎
√

2𝜋 ∫
𝑎

−∞
𝑒
− 𝑠2

2𝜎2 𝑑𝑠

|||||| ⩽
𝐷 log 𝑛√

𝑛
.

Regarding the CLT, we signal that in view of the more recent progress of Benoist–Quint [6,
7] (see also [29] for Berry–Esseen estimates) optimizing the moment hypothesis in the CLT for
the independent and identically distributed case (respectively, improving the Berry–Esseen esti-
mates), it is probable that (4.14) and some Berry–Esseen type estimates hold under a polynomial
moment hypothesis (we do not pursue these directions).
To prove the Berry–Esseen estimate in Theorem 4.8, we will need some further results on large

deviation estimates which are given in the next two lemmas.

Lemma 4.9. Under the assumptions of Theorem 4.8, for every 𝜖 > 0, we have

lim sup
𝑛→∞

1
𝑛

logℙ𝑥

(
1
𝑛

log
‖𝑀𝑛‖2‖ ∧2 𝑀𝑛‖ ⩽ 𝜆1 − 𝜆2 − 𝜀

)
< 0,

uniformly in 𝑥 ∈ 𝐸.

Proof. As the top Lyapunov exponent of theMarkovian product (∧2𝑀𝑛) is 𝜆1 + 𝜆2 and (∧2𝑀𝑛) sat-
isfies (𝐴1) and (𝐴2), by Theorem 4.3, it suffices to show that for every 𝜖 > 0, we have the following
uniformly in 𝑥 ∈ 𝐸:

lim sup
𝑛→∞

1
𝑛

logℙ𝑥

( 1
𝑛

log ‖ ∧2 𝑀𝑛‖ ⩾ 𝜆1 + 𝜆2 + 𝜀
)

< 0. (4.15)

To prove this, wewill apply Proposition 4.5. Let𝐶 = ℙ(∧2ℝ𝑑) and𝐺 = GL𝑑(ℝ) and𝑋 as themap
𝐸 → GL𝑑(ℝ) in the data of the Markovian product (∧2𝑀𝑛), let 𝑄 be the Markov–Feller transition
kernel on 𝑌 ∶= 𝐸 × 𝐶 constructed as in (4.4) covering the kernel 𝑃 on 𝐸. Moreover, let 𝜎 ∶ 𝐺 ×

𝐏(∧2ℝ𝑑) → ℝ be the continuous cocycle given by 𝜎(g , [𝑣 ∧ 𝑤]) = log ‖∧2g(𝑣∧𝑤)‖‖𝑣∧𝑤‖ where 𝑣 ∧ 𝑤 is a
line in ∧2ℝ𝑑 and [𝑣 ∧ 𝑤] denotes its projection to 𝐏(∧2ℝ𝑑). Thanks to condition (𝐴1), the kernel
𝑃 is uniformly positively recurrent and thanks to condition (𝐴2), 𝜎 has a uniform exponential
moment. Therefore, we can apply Proposition 4.5 and deduce that for every 𝜖 > 0, there exists
𝐶 > 0 and 𝛼 > 0 such that for every 𝑥 ∈ 𝐸, nonzero 𝑣 ∧ 𝑤 ∈ ∧2ℝ𝑑 and 𝑛 ∈ ℕ, we have

ℙ𝑥

(
1
𝑛

log
‖ ∧2 𝑀𝑛(𝑣 ∧ 𝑤)‖‖𝑣 ∧ 𝑤‖ ∉ [𝓁− − 𝜖,𝓁+ + 𝜖]

)
⩽ 𝐶𝑒−𝛼𝑛.

By choosing a basis of ∧2ℝ𝑑 as in the proof of Theorem 4.3, we only need to show that 𝓁+ ⩽

𝜆1 + 𝜆2. Let 𝛿 > 0 be given and 𝜂 be a 𝑄-stationary and ergodic probability measure on 𝑌 with
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32 CANTRELL and SERT

∫ 𝜎 𝑑𝜂 ⩾ 𝓁+ − 𝛿. By the Chacon–Ornstein ergodic theorem, we have

𝜂

{
(𝑥, 𝑐) ∈ 𝑌 ∶

1
𝑛

𝑛−1∑
𝑘=0

𝑄𝑘𝜎(𝑥, 𝑐) ⟶
𝑛→∞ ∫ 𝜎𝑑𝜂

}
= 1.

By specializing to such (𝑥0, 𝑐), using the fact that for every 𝑦 = (𝑥′, 𝑐′), ℚ𝑦 is the pushforward of
ℙ𝑥 by the map (4.5), we get that

𝓁+ − 𝛿 ⩽ ∫ 𝜎𝑑𝜂 = lim
𝑛→∞

1
𝑛
𝔼𝑥0

[𝜎(𝑋(𝑥𝑛−1)…𝑋(𝑥0), 𝑐)]

⩽ lim
𝑛→∞

1
𝑛
𝔼𝑥0

[log ‖ ∧2 𝑋(𝑥𝑛−1)…𝑋(𝑥0)‖].
It remains to observe that the last term is bounded above by 𝜆1 + 𝜆2. In fact we claim that
it is equal to 𝜆1 + 𝜆2. Indeed, by subadditive ergodic theorem, ℙ𝜋-almost surely

1
𝑛
log ‖ ∧2

𝑋(𝑥𝑛−1)…𝑋(𝑥0))‖ → 𝜆1 + 𝜆2. As ℙ𝑥0
is absolutely continuous with respect to ℙ𝜋, this conver-

gence also holds trueℙ𝑥0
-almost surely. As the sequence 1

𝑛
log ‖ ∧2 𝑋(𝑥𝑛−1)…𝑋(𝑥0)‖ is uniformly

integrable (thanks to condition (𝐴2)), the result follows. □

The next lemma is the Markovian version of [8, Lemma 17.8] which was used to deduce a local
limit theorem for the norms log ‖𝑀𝑛‖ from a local limit theorem for vector norms log ‖𝑀𝑛𝑣‖ in
the independent and identically distributed setting. Thanks to our above large deviation estimates,
Benoist–Quint’s proof applies in our setting as we indicate below.

Lemma 4.10. Under the assumptions of Theorem 4.8, for every 𝜖 > 0, there exists 𝓁0 ∈ ℕ, and 𝑐 > 0
such that for every 𝑛 ⩾ 𝓁 ⩾ 𝓁0 and nonzero 𝑣 ∈ ℝ𝑑 and 𝑥 ∈ 𝐸, we have

ℙ𝑥

(||||log ‖𝑀𝑛‖ − log
‖𝑀𝑛𝑣‖‖𝑀𝓁𝑣‖ − log ‖𝑀𝓁‖|||| > 𝑒−𝜖𝓁

)
< 𝑒−𝑐𝓁 .

Proof. We can apply the proof of the result [8, Lemma 17.8 and (17.9)] which makes use of var-
ious large deviation estimates all of which are established in our more general setting. Namely,
the ingredient [8, Proposition 14.3] is similarly obtained in our setting using Theorem 4.3 and
Lemma 4.9 which we proved for this purpose. Once equipped with this ingredient, Benoist–Quint
only use the independent and identically distributed version of Lemma 4.9 (see [8, (17.10)]) and
the linear algebraic lemma [8, Lemma 14.2] and hence this part of the proof goes through in our
setting as well. We omit the details in order not to burden the exposition with many more linear
algebraic notions that will only be used in a repetitive proof. □

Equipped with the previous two lemmas, we can give the proof of Theorem 4.8 adapting the
approach of [67].

Proof. Let 𝐹 denote the cumulative distribution function of the Gaussian (0, 1), and for 𝑛 ⩾ 1,
𝑥 ∈ 𝐸 and 𝑡 ∈ ℝ, set

𝐼𝑥,𝑛(𝑡) = ℙ𝑥

(
log ‖𝑀𝑛‖ − 𝑛𝜆1

𝜎
√

𝑛
⩽ 𝑡

)
.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 33

As for any 𝑣 ∈ ℝ𝑑 of unit norm, we have ‖𝑀𝑛𝑣‖ ⩽ ‖𝑀𝑛‖, for any 𝑣 ∈ ℝ𝑑 with ‖𝑣‖ = 1, by [11,
Theorem 4.1], we have

𝐼𝑥,𝑛(𝑡) ⩽ ℙ𝑥

(
log ‖𝑀𝑛𝑣‖ − 𝑛𝜆1

𝜎
√

𝑛
⩽ 𝑡

)
⩽ 𝐹(𝑡) +

𝐶√
𝑛
.

The nontrivial bound is therefore the lower bound for 𝐼𝑥,𝑛(𝑡) which we now turn to. By
Lemma 4.10, for any 𝜖 > 0, there exist 𝓁0 ∈ ℕ and 𝑐 > 0 such that for every 𝑛 ⩾ 𝓁 ⩾ 𝓁0, we have

𝐼𝑥,𝑛(𝑡) ⩾ ℙ𝑥

(
log ‖𝑀𝑛‖ − 𝑛𝜆1

𝜎
√

𝑛
⩽ 𝑡 and

||||log ‖𝑀𝑛‖ − log
‖𝑀𝑛𝑣‖‖𝑀𝓁𝑣‖ − log ‖𝑀𝓁‖|||| ⩽ 𝑒−𝜖𝓁

)

⩾ ℙ𝑥

(
log ‖𝑀𝑛𝑣‖ − log ‖𝑀𝓁𝑣‖ + log ‖𝑀𝓁‖ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
⩽ 𝑡

)
− 𝑒−𝑐𝓁 .

(4.16)

By Theorem 4.3, for every 𝜆′ > 𝜆1, there exists 𝑐′ > 0 such that for every 𝓁 ⩾ 1, for every 𝑥 ∈ 𝐸,
we have

ℙ𝑥(log ‖𝑀𝓁‖ ⩾ 𝓁𝜆′) ⩽ 𝑒−𝑐′𝓁 .

Therefore, it follows from (4.16) that for every 𝑥 ∈ 𝐸 and 𝑛 ⩾ 𝓁 ⩾ 𝓁0, we have

𝐼𝑥,𝑛(𝑡) ⩾ ℙ𝑥

(
log ‖𝑀𝑛𝑣‖ − log ‖𝑀𝓁𝑣‖ + 𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
⩽ 𝑡

)
− 𝑒−𝑐′𝓁 − 𝑒−𝑐𝓁 . (4.17)

Notice now that we can rewrite log ‖𝑀𝑛𝑣‖ − log ‖𝑀𝓁𝑣‖ as log ‖𝑋𝑛 …𝑋𝓁+1𝑣‖, where 𝑣 =
𝑀𝓁𝑣‖𝑀𝓁𝑣‖ .

To exploit this cocycle property, for 𝓁 ∈ ℕ, let 𝓁 denote the 𝜎-algebra generated by the first 𝓁
steps 𝑧1, … , 𝑧𝓁 of the Markov chain on 𝐸. Conditioning on the first 𝓁-steps, we have

ℙ𝑥

(
log ‖𝑀𝑛𝑣‖ − log ‖𝑀𝓁𝑣‖ + 𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
⩽ 𝑡

)

= 𝔼𝑥

(
ℙ𝑥

(
log ‖𝑀𝑛𝑣‖ − log ‖𝑀𝓁𝑣‖ + 𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
⩽ 𝑡|𝓁

))

⩾ 𝔼𝑥

(
inf

𝑣∈ℝ𝑑,‖𝑣‖=1
ℙ𝑧𝓁

(
log ‖𝑀𝑛−𝓁𝑣‖ + 𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
⩽ 𝑡

))

= 𝔼𝑥

(
inf

𝑣∈ℝ𝑑,‖𝑣‖=1
ℙ𝑧𝓁

(
log ‖𝑀𝑛−𝓁𝑣‖ − (𝑛 − 𝓁)𝜆1

𝜎
√

𝑛 − 𝓁
⩽ 𝑇𝑛

))
,

(4.18)

where 𝑇𝑛 is the random variable

𝑇𝑛 =

√
𝑛 −

√
𝑛 − 𝓁

𝜎
√

𝑛(𝑛 − 𝓁)
log ‖𝑀𝑛−𝓁𝑣‖ −

𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
+ 𝑡 −

𝜆1

√
𝑛 − 𝓁
𝜎

.
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34 CANTRELL and SERT

By Theorem 4.3, up to possibly reducing 𝑐′ > 0, we have that for every 𝑛 ⩾ 𝓁 ⩾ 1, for every 𝑣 ∈ ℝ𝑑

with ‖𝑣‖ = 1 and 𝑦 ∈ 𝐸,

ℙ𝑦(log ‖𝑀𝑛−𝓁𝑣‖ > 𝜆′(𝑛 − 𝓁)) ⩽ 𝑒−𝑐′(𝑛−𝓁)

so that by (4.18), we have

ℙ𝑥

(
log ‖𝑀𝑛𝑣‖ − log ‖𝑀𝓁𝑣‖ + 𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
⩽ 𝑡

)

⩾ 𝔼𝑥

(
inf

𝑣∈ℝ𝑑,‖𝑣‖=1
ℙ𝑧𝓁

(
log ‖𝑀𝑛−𝓁𝑣‖ − (𝑛 − 𝓁)𝜆1

𝜎
√

𝑛 − 𝓁
⩽ 𝑡𝑛

))
− 𝑒𝑐

′(𝑛−𝓁),

(4.19)

where 𝑡𝑛 is the constant

𝑡𝑛 =

√
𝑛 −

√
𝑛 − 𝓁

𝜎
√

𝑛(𝑛 − 𝓁)
𝜆′(𝑛 − 𝓁) −

𝓁𝜆′ − 𝑛𝜆1 + 𝑒−𝜖𝓁

𝜎
√

𝑛
+ 𝑡 −

𝜆1

√
𝑛 − 𝓁
𝜎

.

Now applying once more [11, Theorem 4.1] to (4.19) and combining it with (4.17), we get that for
every 𝑛 ⩾ 𝓁 ⩾ 𝓁0 and 𝑥 ∈ 𝐸

𝐼𝑥,𝑛(𝑡) ⩾ 𝐹(𝑡𝑛) −
𝐶√
𝑛 − 𝓁

− 𝑒−𝑐′(𝑛−𝓁) − 2𝑒−𝑐′′𝓁

with 0 < 𝑐′′ ∶= max{𝑐, 𝑐′}. Now using the expression of 𝑡𝑛 above, one gets that for any 𝑟 > 0 fixed,
letting 𝓁 = ⌊𝑟 log 𝑛⌋, we have |𝑡 − 𝑡𝑛| ⩽ 𝐷𝑟 log 𝑛√

𝑛
for some 𝐷𝑟 ∈ (0,∞) and every 𝑛 ∈ ℕ and 𝑡 ∈ ℝ.

Using this and the fact that 𝐹 is the cumulative distribution function of the standard Gaussian
 (0, 1), one deduces by elementary calculus that choosing 𝓁 = ⌊ 1

𝑐′′
log 𝑛⌋, we have that there

exists 𝐷 ∈ (0,∞) such that for every 𝑛 ∈ ℕ, 𝑥 ∈ 𝐸 and 𝑡 ∈ ℝ, we have

𝐼𝑥,𝑛(𝑡) ⩾ 𝐹(𝑡) −
𝐷 log 𝑛√

𝑛
,

as required. □

4.7 Finite state versions without condition (𝑨𝟏)

In our applications, we will need to deal with Markovian products associated to Markov chains
on finite state spaces that are irreducible but not necessarily aperiodic. Such chains never satisfy
the uniform recurrence condition (𝐴1). However, it is not hard to deduce versions of above limit
theorems for such finite state chains by considering the Markovian products along periodic times
(𝑝𝑛)𝑛∈ℕ, where 𝑝 ∈ ℕ denotes the period of the Markov chain. The goal of this part is to briefly
record these versions of the above limit theorems for later use.
Let 𝐸 be a finite state space and 𝑃 an irreducible Markovian transition kernel on 𝐸. We denote

by 𝑝 ∈ ℕ the period of 𝑃 and, for 𝑖 = 0, … , 𝑝 − 1, by 𝐸𝑖 the periodic components of 𝐸. Let a map
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 35

𝑋 ∶ 𝐸 → Γ to a group Γ be given and (𝑀𝑛) be the associated Markovian product (recall that
𝑀𝑛 = 𝑋(𝑧𝑛)…𝑋(𝑧1), where (𝑧𝑛)𝑛⩾0 denotes the Markov chain on 𝐸). The Markovian product
(𝑀𝑛) does not necessarily satisfy condition (𝐴1); wewill associate some auxiliaryMarkovian prod-
ucts that will satisfy it. To do this, for 𝑖 = 0, … , 𝑝 − 1, let 𝐸𝑖 be the set of length 𝑝-paths based at 𝐸𝑖 ,
that is,

𝐸𝑖 ∶= {(𝑥1, … , 𝑥𝑝) ∶ 𝑃(𝑥𝑗, 𝑥𝑗+1) > 0 for 𝑗 = 1,… , 𝑝 − 1, and 𝑥1 ∈ 𝐸𝑖+1},

where 𝑗’s are considered modulo 𝑝. We introduce a Markovian transition kernel 𝑃𝑖 on 𝐸𝑖 by
setting, for (𝑥1, … , 𝑥𝑝) and (𝑦1, … , 𝑦𝑝) in 𝐸𝑖 ,

𝑃𝑖((𝑥1, … , 𝑥𝑝), (𝑦1, … , 𝑦𝑝)) = 𝑃(𝑥𝑝, 𝑦1)
𝑝−1∏
𝑗=1

𝑃(𝑦𝑗, 𝑦𝑗+1).

It is easily checked that 𝑃𝑖 defines an irreducible and aperiodic Markovian kernel. Now, consider
the map

𝑋 ∶ 𝐸𝑖 → Γ,

𝑋(𝑥1, … , 𝑥𝑝) ↦ 𝑋(𝑥𝑝)…𝑋(𝑥1).

Weconstruct aMarkovian product (�̂�𝑖
𝑛) for each 𝑖 = 0, … , 𝑝 − 1 in the usualway.As𝑃𝑖 is primitive

and 𝐸𝑖 is finite, theMarkovian product (�̂�𝑖
𝑛) automatically satisfies conditions (𝐴1) and (𝐴2) (and

(𝐴′
2) in the setting of Theorem4.6).Moreover, for every 𝑖 = 0, … , 𝑝 − 1 and (𝑥1, … , 𝑥𝑝) ∈ 𝐸𝑖 , under

𝑃𝑖
(𝑥1,…,𝑥𝑝)

, the distribution of (�̂�𝑖
𝑛) is the same as the distribution of (𝑀𝑝𝑛) allowing us to use the

products (�̂�𝑖
𝑛) to control the product (𝑀𝑛).

We therefore aim to apply the above limit theorems to theMarkovian products (�̂�𝑖
𝑛) and deduce

the corresponding limit theorems for the products (𝑀𝑝𝑛)𝑛∈ℕ, and then use the fact that the opera-
tor norm log ‖ ⋅ ‖ and the displacement 𝜅(⋅) (in the setting of Theorem4.6) is subadditive to deduce
the same limit theorems for the Markovian product (𝑀𝑛) along all times 𝑛 ∈ ℕ. To this end, we
also need to relate 1-contracting and strong irreducibility assumptions on (𝑀𝑛) and (�̂�𝑖

𝑛).

Lemma 4.11. The Markovian product (𝑀𝑛) is 1-contracting/strong irreducible/nonelementary
if any only if the Markovian product (�̂�𝑖

𝑛) is, respectively, 1-contracting/ strong
irreducible/nonelementary for some (equivalently all) 𝑖 = 0, … , 𝑝 − 1.

The proof is elementary, we briefly indicate the argument.

Proof. Suppose (𝑀𝑛) is 1-contracting, then there exists 𝑥 ∈ 𝐸 and a sequence g𝑛 ∈ 𝑇𝑥 such that
g𝑛∕‖g𝑛‖ converges to a rank one linear transformation. Writing g𝑛 as a product of elements 𝑋(𝑦)
for 𝑦 ∈ 𝐸 and discarding the last elements to make the length divisible by the period 𝑝, we find a
finite set𝐹 and for each 𝑛 ∈ ℕ an element ℎ𝑛 ∈ 𝐹 such that, if necessary passing to a subsequence,
ℎ−1
𝑛 g𝑛 belongs to𝑇(𝑥,𝑥1,…,𝑥𝑝−1)

for some𝑥1, … , 𝑥𝑝−1 ∈ 𝐸. Up to further passing to a subsequence,ℎ𝑛

stabilizes and ℎ−1
𝑛 g𝑛∕‖ℎ−1

𝑛 g𝑛‖ converges to a rank one transformation. The converse implication
(and the statement that some 𝑖 is equivalent to all 𝑖) is clear.
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36 CANTRELL and SERT

Suppose now that for some 𝑖 = 0, … , 𝑝 − 1, (�̂�𝑖
𝑛) is not strongly irreducible. Then for every

(𝑥1, … , 𝑥𝑝) ∈ 𝐸𝑖 , there exists a union of a finite collection of proper subspaces𝑊(𝑥1, … , 𝑥𝑝) such
that 𝑃𝑖

(𝑥1,…,𝑥𝑝)0
almost surely �̂�𝑖

𝑛𝑊((𝑥1, … , 𝑥𝑝)0) = 𝑊((𝑥1, … , 𝑥𝑝)𝑛). Using this, first, one verifies

that 𝑊(𝑥1, … , 𝑥𝑝) only depends on 𝑥𝑝. We set 𝑊(𝑥𝑝) ∶= 𝑊(𝑥1, … , 𝑥𝑝) for any (𝑥1, … , 𝑥𝑝) ∈ 𝐸𝑖

which is hence well-defined. Second, one checks that for any 𝑥𝑘 ∈ 𝐸𝑖+𝑘 (𝑖 + 𝑘 consideredmodulo
𝑝), the union of subspaces𝑊(𝑥𝑘) ∶= 𝑋(𝑥𝑘)…𝑋(𝑥1)𝑊(𝑥𝑝)where 𝑃(𝑥𝑝, 𝑥1) > 0 and 𝑃(𝑥𝑖, 𝑥𝑖+1) >
0 for every 𝑖 = 1, … , 𝑘 − 1, is well-defined (i.e., does not depend on the path (𝑥1, … , 𝑥𝑝−1). Finally,
one verifies that for every 𝑥0 ∈ 𝐸, ℙ𝑥0

almost surely 𝑀𝑛𝑊(𝑥0) = 𝑊(𝑥𝑛), that is, (𝑀𝑛) is not
strongly irreducible. The other implications are clear and the statement about nonelementariness
is proven in the same way as strong irreducibility. □

Combining the constructions above and the previous lemma, one readily deduces the following
from Theorems 4.2 and 4.3.

Theorem 4.12. Let 𝐸 be a finite set, 𝑃 an irreducible Markovian transition kernel on 𝐸, 𝑋 ∶ 𝐸 →
GL𝑑(ℝ) a map, and (𝑀𝑛) the associated Markovian product on Γ. Suppose that (𝑀𝑛) is strongly
irreducible and 1-contracting. Then there exist constantsΛ ⩾ 0 and 𝜎 > 0 such that for every 𝑥 ∈ 𝐸

(1) the sequence of 𝐶([0, 1])-valued random variables defined by

𝑆𝑛(𝑡) =
1

(𝑛𝜎2)1∕2
(
log ‖𝑀⌊𝑡𝑛⌋‖ − 𝑛𝑡Λ + (𝑛𝑡 − ⌊𝑛𝑡⌋)(log ‖𝑀⌊𝑡𝑛⌋+1‖ − log ‖𝑀⌊𝑡𝑛⌋‖)) (4.20)

converges to the Wiener measure as 𝑛 → ∞;
(2) forℙ𝑥-almost every𝜔, the set of limit points of the sequence (

(𝑆𝑛(𝑡))(𝜔)

2 log log 𝑛
)𝑛∈ℕ is the compact set given

in Theorem 4.2(2); and
(3) for every 𝜖 > 0,

ℙ𝑥(| log ‖𝑀𝑛‖ − 𝑛Λ| ⩾ 𝑛𝜖) ⩽ 𝐶𝑒−𝛼𝑛.

Remark 4.13. Similarly, using Theorem 4.6 one obtains the following statement for a nonelemen-
tary Markovian product on Isom(𝐻) associated to a finite irreducible Markov chain: there exists
𝓁Λ > 0 such that for every 𝜖 > 0 and 𝑥 ∈ 𝐸, we have

lim sup
𝑛→∞

1
𝑛

logℙ𝑥(|𝑑(𝑀𝑛 ⋅ 𝑜, 𝑜) − 𝑛𝓁Λ| ⩾ 𝑛𝜖) < 0.

The proof is very similar to the proof of the previous result and it is omitted.

Proof of Theorem 4.12.

(1) Thanks to Lemma 4.11, we can apply Theorem 4.2 to each (�̂�𝑖
𝑛) and get that for every 𝑖 =

0, … , 𝑝 − 1, there exist constants 𝜎𝑖 > 0 and Λ𝑖 ∈ ℝ such that for every 𝑥 = (𝑥1, … , 𝑥𝑝) ∈ 𝐸𝑖 ,
we have that under ℙ𝑥,

1

(𝑛𝜎2
𝑖
)1∕2

(
log ‖�̂�𝑖⌊𝑡𝑛⌋‖ − 𝑛𝑡Λ𝑖 + (𝑛𝑡 − ⌊𝑛𝑡⌋)(log ‖�̂�𝑖⌊𝑡𝑛⌋+1

‖ − log ‖�̂�𝑖⌊𝑡𝑛⌋‖)) 
⟶
𝑛→∞

 . (4.21)
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 37

Recall that the distribution (denoted ℙ(𝑥1,…,𝑥𝑝)
(�̂�𝑖

𝑛)) of �̂�𝑖
𝑛 under ℙ(𝑥1,…,𝑥𝑝)

is equal to
that of 𝑀𝑛𝑝 under ℙ𝑥𝑝

for each 𝑛 ∈ ℕ (i.e., ℙ𝑥𝑝
(𝑀𝑛𝑝)). Therefore, specializing to 𝑡 = 1

in the previous displayed equation, this implies that for 𝑥 ∈ 𝐸𝑖 , under ℙ𝑥, the sequence
1

(𝑛𝜎𝑖)2
(log ‖𝑀𝑛𝑝‖ − 𝑛Λ𝑖) converges in distribution to the Gaussian (0, 1) as 𝑛 → ∞. Thanks

to the inequality

| log ‖gℎ‖ − log ‖g‖| ⩽ max{log ‖ℎ‖, log ‖ℎ−1‖}, (4.22)

we get that under ℙ𝑥,
1

(𝑛𝜎𝑖)2
(log ‖g𝑀𝑛𝑝‖ − 𝑛Λ𝑖)


⟶
𝑛→∞

 (0, 1) for any fixed g ∈ GL𝑑(ℝ).
Now using the fact that ℙ𝑥

(𝑀𝑛𝑝+1) =
∑

𝑦∈𝐸𝑖+1
𝑃(𝑥, 𝑦)ℙ𝑦

(𝑋(𝑦)𝑀𝑛𝑝), we easily deduce that
Λ𝑖 = Λ0 and 𝜎𝑖 = 𝜎0 for every 𝑖 = 0, … , 𝑝 − 1. Therefore, (4.21) together with the equality
ℙ(𝑥1,…,𝑥𝑝)

(�̂�𝑖
𝑛) = ℙ𝑥𝑝

(𝑀𝑛𝑝) implies that for every 𝑥 ∈ 𝐸, under ℙ𝑥

1

(𝑛𝜎2
0)

1∕2

(
log ‖𝑀𝑝⌊𝑡𝑛⌋‖ − 𝑛𝑡Λ0 + (𝑛𝑡 − ⌊𝑛𝑡⌋)(log ‖𝑀𝑝⌊𝑡𝑛⌋+𝑝‖ − log ‖𝑀𝑝⌊𝑡𝑛⌋‖)) 

⟶
𝑛→∞

 .

Once more using (4.22) together with the fact that the state space is finite, one gets that for
every 𝑥 ∈ 𝐸, under 𝑃𝑥, ‖𝑆𝑛 − 𝑆𝑛𝑝‖∞ → 0 in probability (as 𝑛 → ∞), where 𝑆𝑛 is defined in
(4.20) with 𝜎 ∶= 𝜎0∕

√
𝑝 and Λ ∶= Λ0∕𝑝. This implies (see, e.g., [48, Problem 4.16]) that for

every 𝑥 ∈ 𝐸, under ℙ𝑥

𝑆𝑛𝑝


⟶
𝑛→∞

 . (4.23)

Oncemore using the inequality (4.22) and the fact that 𝜎 > 0, we observe that for every 𝑘 ∈ ℕ,

and 𝑥 ∈ 𝐸, under ℙ𝑥, ‖𝑆𝑛𝑝 − 𝑆𝑛𝑝+𝑘‖ → 0 in probability and hence (4.23) implies that 𝑆𝑛


⟶
𝑛→∞ as required.

The proofs of (2) and (3) are proven using the same ideas and are omitted to avoid repetition. □

5 LIMIT THEOREMS FOR THE STRONGLYMARKOV STRUCTURE

In Subsection 5.1.1, we associate Markovian products to strongly Markov structure  of a couple
(Γ, 𝑆) and representation 𝜌 ∶ Γ → GL𝑑(ℝ). We then deduce certain properties (1-contracting and
irreducible) of the Markovian product from those of 𝜌. In Subsection 5.2, we single out the conse-
quence of Theorem 4.12 for these chains. In Subsection 5.3, we prove that theMarkovian products
associated to differentmaximal components of  satisfy limit theoremswith the same parameters.
Finally in Subsection 5.4, we indicate the analogous results for isometries.

5.1 Markovian products associated to the Markov structure of a
Gromov-hyperbolic group

5.1.1 Construction of Markovian products

We will extensively use the notation and terminology introduced in Sections 2 and 4. We fix a
Gromov-hyperbolic group Γ, a generating set 𝑆 ⊂ Γ and an associated strongly Markov structure
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38 CANTRELL and SERT

. Denote by (𝐵𝑗)𝑗=1,…,𝑚 the maximal components of . For each maximal component, let 𝐸𝑗

denote the set of edges between two vertices of 𝑉𝑗 , the set of vertices in 𝐵𝑗 . The Parry construc-
tion discussed in Subsection 3.1.2 gives rise to an irreducible Markovian transition kernel 𝑃𝑣,𝑗 on
the state space𝑉𝑗 and the Parry measure denoted 𝜇𝑗 is the unique shift invariant probability mea-
sure of maximal entropy on the associated trajectory space (subshift). We denote its restriction to
𝑉𝑗 by 𝜇𝑣,𝑗 . This is a 𝑃𝑣,𝑗-stationary measure on 𝑉𝑗 and in accordance with our notation of tra-
jectory measures we have 𝜇𝑗 = ℙ𝜇𝑣,𝑗

†. To define a Markovian product using the strongly Markov
structure, we pass to the associated edge Markov chain: we consider the transition kernel 𝑃𝑒,𝑗

on 𝐸𝑗 defined by 𝑃𝑒,𝑗((𝑣1, 𝑣2), (𝑣3, 𝑣4)) = 𝑃𝑣,𝑗(𝑣2, 𝑣3)𝑃𝑣,𝑗(𝑣3, 𝑣4). It is also irreducible and has the
unique stationary measure 𝜇𝑒,𝑗 given by 𝜇𝑒,𝑗(𝑣1, 𝑣2) = 𝜇𝑣,𝑗(𝑣1)𝑃𝑣,𝑗(𝑣1, 𝑣2).
Having fixed a representation 𝜌 ∶ Γ → GL𝑑(ℝ), we consider the map 𝑋 defined on the state

space 𝐸𝑗 by the map 𝜆(⋅, ⋅) in the strongly Markov structure (see Definition 2.2) and transpose
of the representation 𝜌, that is, 𝑋((𝑣1, 𝑣2)) ∶= 𝑡𝜌(𝜆(𝑣1, 𝑣2)). These define the data of our Marko-
vian product that we will denote by (𝑀𝑗

𝑛) for every 𝑗 = 1,… ,𝑚. We denote the corresponding
Lyapunov exponents by Λ1(𝑗) ⩾ Λ2(𝑗) ⩾ … ⩾ Λ𝑑(𝑗) and will sometimes write Λ(𝑗) = Λ1(𝑗) to
simplify notation.
Finally, we write (𝑀𝑛) for the stationary Markovian product obtained from the Markov chain

(𝑧𝑛) on the state space ∪𝑚
𝑗=1

𝐸𝑗 and with transition kernel 𝑃 defined in the natural way from the
𝑃𝑒,𝑗 ’s. Note that in general we will deal with the case𝑚 > 1 so (𝑧𝑛) is not an ergodicMarkov chain
with any starting distribution that is a nontrivial linear combination of 𝜇𝑒,𝑗 ’s.

5.1.2 Proximality and strong irreducibility of Markovian products

In the following lemma, we use the notation and constructions of the previous paragraph
and show that proximal and strongly irreducible representations give rise to proximal and
strongly irreducible Markovian products. This relies on key ingredients from the works of
Goldsheid–Margulis [36] and Gouëzel–Mathéus–Maucourant [39].

Lemma 5.1. Suppose that 𝜌 ∶ Γ → GL𝑑(ℝ) is a proximal and strongly irreducible representation.
Then, for each 𝑗 = 1,… ,𝑚, the Markovian product (𝑀𝑗

𝑛) is 1-contracting and strongly irreducible.

Recall that a semigroup Λ < GL𝑑(ℝ) is irreducible (resp., strongly irreducible) if there does
not exist a nontrivial proper Λ-invariant subspace (resp., a finite collection of such subspaces
whose union is Λ-invariant). It is not hard to see (see the proof of [12, Theorem 5.3 (ii)]) for
every 𝑗 = 1,… ,𝑚, (𝑀𝑗

𝑛) is 1-contracting or strongly irreducible, if and only if, there exists 𝑥 ∈
𝐸𝑗 such that the semigroup 𝑇𝑥(𝑥) < GL𝑑(ℝ) (see Subsection 4.2) is, respectively, proximal or
strongly irreducible.

Proof. Fix 𝑗 ∈ {1, … ,𝑚} and 𝑥 ∈ 𝐸𝑗 . It suffices to show that the semigroup 𝑇𝑥(𝑥) is proximal and
strongly irreducible.
Let us first show that 𝑇𝑥(𝑥) is strongly irreducible. Let 𝑣1, 𝑣2 ∈ 𝑉𝑗 such that 𝑥 = (𝑣1, 𝑣2) and

denote by 𝑝𝑗 ∈ ℕ the period of the kernel 𝑃𝑒,𝑗 on 𝐸𝑗 . Then by definition 𝑇𝑥(𝑥) = 𝑡𝜌(Γ𝑥), where

Γ𝑥 ∶= {𝜆(𝑣2, 𝑣3) … 𝜆(𝑣𝑝𝑗𝑛
, 𝑣1)𝜆(𝑣1, 𝑣2) ∶ 𝑛 ∈ ℕ and (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸𝑗 ∀𝑖 = 1,… , 𝑝𝑗𝑛}.

†We stress this point to avoid any confusion. In the sequel, we will often use 𝜇𝑗 instead of ℙ𝜇𝑣,𝑗
to simplify the notation.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 39

We recall that in the preceding, 𝜆(⋅, ⋅) denotes the labeling map in the definition of strongly
Markov structure  (Definition 2.2 (ii)). By the property (iii) in Definition 2.2, we have that
the subset of Γ𝑥 consisting of elements of Γ𝑥 of 𝑆-length 𝑝𝑗𝑛 is in bijection with the set
𝑝𝑗𝑛

(𝑥) paths of vertices of length 𝑝𝑗𝑛 in  that are loops around the vertex 𝑣1. As 𝑣1 belongs
to the maximal component 𝐵𝑗 , there exists 𝑐 > 0 such that #𝑝𝑗𝑛

(𝑥) ⩾ 𝑐𝜆𝑝𝑗𝑛, where 𝜆 > 1

is the growth rate of the group Γ. We therefore have that #(Γ𝑥 ∩ 𝑆𝑝𝑗𝑛
) ⩾ 𝑐𝜆𝑝𝑗𝑛 and thanks

to the purely exponential growth property (2.4) of Gromov-hyperbolic groups, it follows that
the upper asymptotic density of the semigroup Γ𝑥 over the spheres 𝑆𝑝𝑗𝑛

is strictly positive,
that is,

lim sup
𝑛→∞

#(𝑆𝑛𝑝𝑗
∩ Γ𝑥)

#𝑆𝑛𝑝𝑗

> 0.

As a consequence, by a result of Gouëzel–Mathéus–Maucourant [39, Theorem 4.3], we get that
the subgroup Γ±

𝑥 generated by Γ𝑥 has finite index in Γ. As 𝜌(Γ) < GL𝑑(ℝ) is strongly irreducible
and Γ±

𝑥 < Γ is finite index, 𝜌(Γ±
𝑥 ) is also strongly irreducible. As the transpose semigroup

𝑡Λ
of a strongly irreducible semigroup Λ < GL𝑑(ℝ) is also strongly irreducible, it follows that the
semigroup 𝑡𝜌(Γ𝑥) = 𝑇𝑥(𝑥) is strongly irreducible, as required.
It remains to show that 𝑡𝜌(Γ𝑥) = 𝑇𝑥(𝑥) < GL𝑑(ℝ) is a proximal semigroup. It suffices to show

again that the transpose semigroup 𝜌(Γ𝑥) is proximal. By a result of Goldsheid–Margulis [36] (for
a version we use, see [8, Lemma 6.23]), it suffices to show that the Zariski-closure𝐻 ∶= 𝜌(Γ𝑥)

𝑍
<

GL𝑑(ℝ) is proximal. Recall that the Zariski-closure of a semigroup is a group and so𝐻 = 𝜌(Γ±
𝑥 )

𝑍
.

But as Γ±
𝑥 has finite index in Γ, denoting by 𝐺 = 𝜌(Γ)

𝑍
, we have the equality of connected compo-

nents 𝐺𝑜 = 𝐻𝑜. As 𝜌(Γ) is proximal by hypothesis so is 𝐺𝑜 and consequently 𝐻, completing the
proof. □

5.2 Limit theorems for the maximal components of the strongly
Markov structure

Wenow put together the construction ofMarkovian products (𝑀𝑗
𝑛) in Subsection 5.1.1, Lemma 5.1,

and Theorem 4.12 to deduce the following limit laws on the maximal components of the strongly
Markov structure. For easier referencing, we state them separately.

Proposition 5.2 (Large deviations on maximal components). Under the assumptions of
Theorem 1.11, for each 𝑗 = 1,… ,𝑚 and for every 𝑥 ∈ 𝐸𝑗 ,

lim sup
𝑛→∞

1
𝑛

logℙ𝑥(| log ‖𝑀𝑗
𝑛‖ − 𝑛Λ(𝑗)| > 𝑛𝜀) < 0,

where Λ(𝑗) is the top Lyapunov exponent of the Markovian product (𝑀𝑗
𝑛).

Proposition 5.3 (Convergence to the Wiener measure on maximal components). Under the
assumptions of Theorem 1.12, for every 𝑗 = 1,… ,𝑚, 𝜎 > 0, Λ ∈ ℝ, 𝑡 ∈ [0, 1] and 𝑛 ∈ ℕ, let 𝑆𝑗

𝑛(𝑡)
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40 CANTRELL and SERT

denote 𝐶([0, 1])-valued random variable defined by

𝑆𝑗
𝑛(𝑡) =

1

(𝑛𝜎2)1∕2

(
log ‖𝑀𝑗⌊𝑡𝑛⌋‖ − 𝑛𝑡Λ + (𝑛𝑡 − ⌊𝑛𝑡⌋)(log ‖𝑀𝑗⌊𝑡𝑛⌋+1

‖ − log ‖𝑀𝑗⌊𝑡𝑛⌋‖)). (5.1)

Then, there exists 𝜎 = 𝜎𝑗 > 0 such that for Λ = Λ(𝑗) ∈ ℝ and for every 𝑥 ∈ 𝐸𝑗 , under ℙ𝑥 , the
sequence (𝑆𝑗

𝑛)𝑛∈ℕ of 𝐶([0, 1])-valued random variables converges in distribution to .

Finally, we record the following.

Proposition 5.4 (Law of iterated logarithm on maximal components). Keep the hypotheses and
notation of Proposition 5.3 and let𝜎𝑗 > 0andΛ(𝑗) ∈ ℝ be the constants given by that result. Then, for

every 𝑗 = 1,… ,𝑚, 𝑥 ∈ 𝐸𝑗 , for ℙ𝑥-almost every 𝜔, the set of limit points of the sequence (
(𝑆𝑗

𝑛(𝑡))(𝜔)

2 log log 𝑛
)𝑛∈ℕ

of elements of 𝐶([0, 1]) is equal to the following compact subset of 𝐶([0, 1]):{
𝑓 ∈ 𝐶([0, 1]) ∶ 𝑓 is absolutely continuous, 𝑓(0) = 0,∫

1

0
𝑓′(𝑡)2𝑑𝑡 ⩽ 1

}
.

5.3 Comparing means and variances

To upgrade Propositions 5.2, 5.3, and 5.4 to the corresponding limit theorems on the full strongly
Markov structure , we first need to show that the Lyapunov exponents Λ𝑘(𝑗) and variances 𝜎2

𝑗
obtained in the previous section all agree (i.e., they do not depend on 𝑗 = 1,… ,𝑚). This result
is also needed to prove the positivity of the top Lyapunov exponent. These are the two goals of
this paragraph.
To compare these Lyapunov exponents and variances across maximal components we imple-

ment the approach of Calegari–Fujiwara [18] (more precisely, its adaptation by Cantrell [21,
Proposition 4.8]). The argument crucially relies on the ergodicity of the Patterson–Sullivan mea-
sure to compare typical growth rates of appropriately constructed functions along geodesic
rays.

Proposition 5.5.

(1) There exists constantsΛ1 ⩾ Λ2 ⩾ … ⩾ Λ𝑑 such that for every 𝑗 = 1,… ,𝑚 and 𝑖 = 1, … , 𝑑wehave
Λ𝑖(𝑗) = Λ𝑖 .

(2) There exists a constant 𝜎 > 0 such that for every 𝑗 = 1,… ,𝑚, we have 𝜎2
𝑗
= 𝜎2.

In the sequel, whenever there is no risk of confusion, we will denote Λ1 by Λ.

Proof.

(1) The proof is similar to that of Theorem 1.10 and hence omitted to avoid repetitive exposition
of the same idea.

(2) Fix a maximal component 𝐵𝑗 and define 𝑆𝑗 ⊂ 𝜕Γ to be Borel measurable subset of 𝜕Γ
consisting of boundary elements 𝜉 that have a geodesic representative (𝜉𝑛) such that for
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 41

each 𝑡 ∈ ℝ

lim
𝑛→∞

lim sup
𝑚→∞

1
𝑚

#

{
0 ⩽ 𝑘 ⩽ 𝑚 ∶

log ‖𝜌(𝜉−1
𝑘

𝜉𝑘+𝑛)‖ − Λ𝑛√
𝑛

< 𝑡

}
=

1

𝜎𝑗

√
2𝜋 ∫

𝑡

−∞
𝑒
− 𝑠2

2𝜎2
𝑗 𝑑𝑠.

The set 𝑆𝑗 is well-defined and Γ-invariant. Given 𝑡 ∈ ℝ and 𝑛 ∈ ℤ⩾0, we also define the set

𝐹(𝑡, 𝑛) =

{
𝑥 ∈ Σ𝐵𝑗

∶
log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖ − Λ𝑛√

𝑛
< 𝑡

}
.

Here, without loss of generality, we choose the norm ‖ ⋅ ‖ to be the operator norm induced by
the Euclidean norm so that it is invariant under passing to the transpose of amatrix.Moreover,
for 𝑧 ∈ Σ𝐴 and𝑚 ∈ ℤ⩾0, we set

𝜇(𝑧,𝑚) =
1
𝑚

𝑚−1∑
𝑘=0

𝛿𝜎𝑘𝑧.

As the indicator functions 1𝐹(𝑡,𝑛) are continuous and𝐶(Σ𝐴) separable, using Birkhoff’s ergodic
theorem for the shift space (Σ𝐵𝑗

, 𝜇𝑗)where 𝜇𝑗 is the (ergodic) Parry measure of Σ𝐵𝑗
, we find a

set Σ′
𝐵𝑗

⊂ Σ𝐵𝑗
of full 𝜇𝑗 measure such that for every 𝑧 ∈ Σ′

𝐵𝑗
, 𝑡 ∈ ℝ and 𝑛 ∈ ℕ, we have

lim
𝑚→∞∫Σ𝐵𝑗

1𝐹(𝑡,𝑛) 𝑑𝜇(𝑧,𝑚) = 𝜇𝑗(𝐹(𝑡, 𝑛)). (5.2)

Notice that, as in the first part of the proof, if 𝑧 ∈ Σ𝐵𝑗
satisfies the convergence (5.2), then any

pre-image in 𝜎−𝑘(𝑧) (for any 𝑘 ⩾ 1) also satisfies the same convergence. Hence, thanks to (3.3)
and Lemma 3.1, we can find 𝑘 ⩾ 1 and a subset Σ𝑜

𝐵𝑗
= 𝜎−𝑘(Σ′

𝐵𝑗
) ⊂ Σ𝐴 such that 𝜈(Σ𝑜

𝐵𝑗
) > 0 and

for every 𝑧 ∈ Σ𝑜
𝐵𝑗
, 𝑡 ∈ ℝ and 𝑛 ∈ ℕ, we have

lim
𝑚→∞∫ 1𝐹(𝑡,𝑛) 𝑑𝜇(𝑧,𝑚) = 𝜇𝑗(𝐹(𝑡, 𝑛)).

Notice that by construction of the edge-chain in Subsection 5.1.1 from the vertex chain, we
have

𝜇𝑗(𝐹(𝑡, 𝑛)) = ℙ𝜇𝑒,𝑗

{
((𝑥0, 𝑥1), …) ∈ 𝐸𝑗 ∶

log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖ − Λ𝑛√
𝑛

< 𝑡

}
. (5.3)

As the operator norm is invariant under transpose, by construction of the Markovian random
product (𝑀𝑗

𝑛), the right-hand side of (5.3) is equal to ℙ𝜇𝑒,𝑗
(
log ‖𝑀𝑛‖−Λ𝑛√

𝑛
< 𝑡). Using the CLT

implied by Proposition 5.3 (e.g., by specializing to 𝑡 = 1 in (5.1) and using the definition of the
Wiener measure) then implies that

lim
𝑛→∞

lim
𝑚→∞∫ 1𝐹(𝑡,𝑛) 𝑑𝜇(𝑧,𝑚) = lim

𝑛→∞
𝜇𝑗(𝐹(𝑡, 𝑛)) =

1

𝜎𝑗

√
2𝜋 ∫

𝑡

−∞
𝑒
− 𝑠2

2𝜎2
𝑗 𝑑𝑠
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42 CANTRELL and SERT

for 𝑡 ∈ ℝ. Therefore, we deduce that Ψ(Σ𝑜
𝐵𝑗

) ⊂ 𝑆𝑗 , where Ψ is the function Ψ ∶ 𝑌∞ → 𝜕Γ

defined in Subsection 3.1.1. In particular, we have 𝜈(𝑆𝑗) > 0 and by the ergodicity of 𝜈 this
implies that 𝜈(𝑆𝑗) = 1 and so 𝜎2

𝑗
does not depend on 𝑗 = 1,… ,𝑚, as required. □

A direct consequence of the previous result is the following.

Corollary 5.6. Propositions 5.2, 5.3, and 5.4 hold when (𝑀𝑗
𝑛) is replaced by (𝑀𝑛) (see Subsection

5.1.1) and the constants Λ(𝑗) and 𝜎2
𝑗
are replaced by Λ and 𝜎2 for each 𝑗 = 1,… ,𝑚.

In Proposition 5.5, we assumed that our representation 𝜌 is both strongly irreducible and proxi-
mal. However, the argument used to prove the first part of this proposition does not require either
the strongly irreducible or proximal assumption. We obtain the following which applies to any
representation of a Gromov-hyperbolic group into GL𝑑(ℝ).

Lemma 5.7. Let 𝜌 ∶ Γ → GL𝑑(ℝ) be a representation of a hyperbolic group Γ (which is equipped
with a generating set). Then the Borel subset 𝐵 ⊆ 𝜕Γ consisting of elements 𝜉 having a geodesic
representative (𝜉𝑛) satisfying

1
𝑛

log

‖‖‖‖‖‖
𝑘⋀

𝜌(𝜉𝑛)

‖‖‖‖‖‖ ⟶
𝑛→∞

𝑘∑
𝑖=1

Λ𝑖

for every 𝑘 = 1,… , 𝑑, is well-defined, Γ-invariant and has full 𝜈-mass. □

We can now characterize the positivity of Λ for strongly irreducible representations as claimed
in the introduction.

Proof of Proposition 1.4. To prove the necessity, note that if the image of Γ in PGL𝑑(ℝ) is relatively
compact, then we can modify the norm ‖ ⋅ ‖ so that the map Γ ∋ 𝛾 → log ‖𝜌(𝛾)‖ ∈ ℝ is additive.
Now using Lemma 5.7 and Remark 3.2, we realize Λ as a counting average (as in Theorem 1.1)
with respect to an additive function. The symmetry of 𝑆 readily implies that this counting average
is zero.
Let us now show the remaining implication. Suppose that the image of Γ is not-relatively

compact in PGL𝑑(ℝ). As 𝜌(Γ) < GL𝑑(ℝ) is (strongly) irreducible, it follows that the semi-
group 𝜌(Γ) is 𝑟-proximal for some 𝑟 ∈ {1, … , 𝑑 − 1} (this is standard, see, e.g., [56, Lemma
3.6]). It then follows by the same argument in Lemma 5.1 that (𝑀𝑗

𝑛) is 𝑟-contracting for each
𝑗 = 1,… ,𝑚. Therefore, since by Proposition 5.5, the Λ𝑖 ’s are the Lyapunov exponents of the
Markovian product (𝑀1

𝑛) (which satisfies the assumptions of Theorem 4.1) there exists 𝑟 ∈
{1, … , 𝑑 − 1} such that Λ𝑟 > Λ𝑟+1. We now relate these Lyapunov exponents with spherical
averages to exploit symmetry of the generating set 𝑆 to get positivity. To this end, we apply
Theorem 1.10 for the subadditive functions 𝜙1(⋅) = log ‖𝑡𝜌(⋅)‖ and 𝜙det(⋅) = log det(𝜌(⋅)) and
denote the corresponding averages by Λ̃1 and Λ̃det, respectively. In view of Lemma 5.7, we
have Λ̃1 = Λ1 and Λ̃det =

∑𝑑
𝑖=1 Λ𝑖 . Now, on the one hand by Remark 3.2, Λ1 and

∑𝑑
𝑖=1 Λ𝑖 are

nonnegative, and on the other hand, we have Λ1 ⩾ … ⩾ Λ𝑟 > Λ𝑟+1 ⩾ … ⩾ Λ𝑑. It follows that
Λ = Λ1 > 0. □
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 43

5.4 The case of isometries

Here we briefly indicate how to associate a Markovian product (and the result corresponding to
Proposition 5.2 and Corollary 5.6) in the analogous situation where, instead of a representation
Γ → GL𝑑(ℝ), we are given a nonelementary isometric action of Γ on a Gromov-hyperbolic space
(𝐻, 𝑑).
For eachmaximal component 𝐵𝑗 𝑗 = 1,… ,𝑚, the underlyingMarkov chain (𝐸𝑗, 𝑃𝑒,𝑗) described

in Subsection 5.1.1 remains the same. One onlymodifies themap𝑋. We define𝑋 ∶ 𝐸𝑗 → Isom(𝐻)

by 𝑋((𝑣1, 𝑣2)) = 𝜆(𝑣1, 𝑣2)
−1. We similarly denote by (𝑀𝑗

𝑛) the associated Markovian product on
Isom(𝐻) and (𝑀𝑛) the Markovian product induced by the Markov chain (𝑧𝑛) on the state space
∪𝑚

𝑗=1
𝐸𝑗 and with transition kernel 𝑃 defined in the natural way from the 𝑃𝑒,𝑗 ’s.

Fix 𝑗 = 1,… ,𝑚 and 𝑥 ∈ 𝐸𝑗 . One checks exactly as in the same way as Lemma 5.1 that the
semigroup 𝑇𝑥(𝑥) < Isom(𝐻) is nonelementary. This implies that the Markovian product (𝑀𝑗

𝑛) in
Isom(𝐻) is nonelementary and has positive drift (see Remark 4.7). Moreover, being defined over
an irreducible Markov chain with finite state space, it clearly satisfies Conditions (𝐴1) and (𝐴′

2).
In view of Remark 4.13, we deduce that there exists a constant 𝓁Λ𝑗

> 0 such that for every 𝜖 > 0,

there exists 𝛼 > 0 and 𝐶 > 0 such that for every 𝑥 ∈ 𝐸𝑗 , 𝜉 ∈ 𝐻
ℎ
and 𝑛 ∈ ℕ, we have

ℙ𝑥(|𝜎(𝑀𝑗
𝑛, 𝜉) − 𝑛𝓁Λ𝑗

| ⩾ 𝑛𝜖) ⩽ 𝐶𝑒−𝛼𝑛. (5.4)

Specializing to 𝜉 = 𝑜, the previous inequality shows by Borel–Cantelli (or directly by the subaddi-
tive ergodic theorem) thatℙ𝑥-almost surely

1
𝑛
𝑑(𝑀𝑗

𝑛 ⋅ 𝑜, 𝑜) → 𝓁Λ𝑗
. Now, the proof of Proposition 5.5

goes through and shows that on one hand the constant 𝓁Λ𝑗
does not depend on themaximal com-

ponent 𝐵𝑗 for 𝑗 = 1,… ,𝑚 (and hence we denote this constant by 𝓁Λ), and on the other hand,
it coincides with the constant Λ given by Theorem 1.10 applied with the subadditive function
𝜙(𝛾) = 𝑑(𝛾 ⋅ 𝑜, 𝑜) (as Lemma 5.7). The former fact together with (5.4) gives the following analogue
of Corollary 5.6 (the result corresponding to large deviations, that is, Proposition 5.2):

Proposition 5.8. There exists a constant 𝓁Λ > 0 such that for every 𝜖 > 0 and 𝑥 ∈ ∪𝑚
𝑗=1

𝐸𝑗 , we have

lim sup
𝑛→∞

1
𝑛

logℙ𝑥

(|||| 1𝑛𝑑(𝑀𝑛 ⋅ 𝑜, 𝑜) − 𝓁Λ

|||| > 𝜖

)
< 0. □

6 LARGE DEVIATION THEOREMS

In Subsection 6.1, we first prove our counting large deviation theorem (Theorem 1.5) assuming
Theorem 1.11. We subsequently prove our boundary large deviation result (Theorem 1.11) with
respect to the Patterson–Sullivanmeasure, obtaining a quantitative version of our boundary strong
law of large numbers (Theorem 1.10) in the current setting. In Subsection 6.2, we indicate the
proofs of the analogous results in the case of isometries of Gromov-hyperbolic spaces.

6.1 Large deviations for representations

We now give the proof of Theorem 1.5 using Theorem 1.11 which will be proven subsequently.
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44 CANTRELL and SERT

Proof of Theorem 1.5. Let Λ be given by Theorem 1.11 and let 𝜖 > 0 be fixed. Recall from (3.4) that
for any sufficiently large 𝑅 > 0, there exist positive constants𝐶1 and𝐶2 such that for every 𝑛 ∈ ℕ,

#(𝑆𝑛 ∩ 𝐴𝜖)

#𝑆𝑛
⩽ 𝐶1

∑
𝑥∈𝑆𝑛∩𝐴𝜖

𝜈(𝑂(𝑥, 𝑅)) ⩽ 𝐶2 𝜈

( ⋃
𝑥∈𝑆𝑛∩𝐴𝜖

𝑂(𝑥, 𝑅)

)
,

where

𝐴𝜖 =

{
g ∈ Γ ∶

|||| log ‖𝜌(g)‖|g|𝑆 − Λ
|||| > 𝜖

}
.

As in the proof of Theorem 1.1, if 𝜉 ∈
⋃

𝑥∈𝑆𝑛∩𝐴𝜖
𝑂(𝑥, 𝑅), then there is 𝐶 > 0 such that for any

representative geodesic ray (𝜉𝑚)∞𝑚=0 of 𝜉 with 𝜉0 = id and every 𝑛 ⩾ 1

||||| log ‖𝜌(𝜉𝑛)‖
𝑛

− Λ
||||| ⩾ 𝜖 −

𝐶
𝑛
. (6.1)

In particular for all sufficiently large 𝑛,

#(𝑆𝑛 ∩ 𝐴𝜖)

#𝑆𝑛
⩽ 𝐶2 𝜈

( ⋃
𝑥∈𝑆𝑛∩𝐴𝜖

𝑂(𝑥, 𝑅)

)

⩽ 𝐶2 𝜈

(
𝜉 ∈ 𝜕Γ ∶ for all 𝜉𝑚 → 𝜉 with 𝜉0 = id,

||||| log ‖𝜌(𝜉𝑛)‖
𝑛

− Λ
||||| > 𝜖

2

)
.

The result now follows from Theorem 1.11. □

The rest of this section is devoted to the proof of Theorem 1.11 which will make key use of
Bougerol’s Theorem 4.3 in the form of Proposition 5.2 (and Corollary 5.6).

Proof of Theorem 1.11. Let Λ be the constant given by Theorem 1.10 applied with the function
𝜙(𝛾) = log ‖𝜌(𝛾)‖, where ‖ ⋅ ‖ is the operator norm induced by the Euclidean norm on ℝ𝑑 (in
particular, it is invariant under the transpose). For any 𝜖 > 0 and 𝑛 ⩾ 1, we define the sets

𝑈𝑛(𝜖) =

{
𝜉 ∈ 𝜕Γ ∶ for all 𝜉𝑚 → 𝜉 with 𝜉0 = id,

||||| log ‖𝜌(𝜉𝑛)‖
𝑛

− Λ
||||| > 𝜖

}

and

𝐸𝑛(𝜖) =

{
(𝑥𝑚)∞𝑚=0 ∈ 𝑌∞ ∶

||||| log ‖𝜌(𝜆(∗, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖
𝑛

− Λ
||||| > 𝜖

}
.

Note that Ψ−1(𝑈𝑛(𝜖)) ⊆ 𝐸𝑛(𝜖) and consequently 𝜈(𝑈𝑛(𝜖)) ⩽ 𝜈(𝐸𝑛(𝜖)). Therefore, to prove Theo-
rem 1.11 it suffices to show that for every 𝜖 > 0, 𝜈(𝐸𝑛(𝜖)) → 0 exponentially quickly as 𝑛 → ∞,
which is what we shall prove in the sequel.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 45

To proceed, for every integer 𝑖 ⩾ 1, we define

𝐴𝑖 =

(
𝜎−𝑖

(
𝑚⋃

𝑗=1

Σ𝐵𝑗

)
∖

𝑖−1⋃
𝑘=0

𝜎−𝑘

(
𝑚⋃

𝑗=1

Σ𝐵𝑗

))
∩ 𝑌 (6.2)

where, as before, 𝐵𝑗 for 𝑗 = 1,… ,𝑚 denote the maximal components. Intuitively, each𝐴𝑖 consists
of elements in𝑌 that correspond to a path in that starts at ∗, enters amaximal component exactly
on its 𝑖th step and then never leaves this component. For each 𝑛 ∈ ℕ, we let 𝜈𝑛 to be the measure
on 𝑌 given by the restriction of 𝜈 on

⋃𝑛
𝑖=1 𝐴𝑖 , that is, for every Borel set 𝑅 ⊆ 𝑌,

𝜈𝑛(𝑅) = 𝜈

(
𝑅 ∩

𝑛⋃
𝑖=1

𝐴𝑖

)
. (6.3)

We then have the following.

Lemma 6.1 (Lemma 4.8 [22]). There exists 0 < 𝜃 < 1 such that ‖𝜈𝑛 − 𝜈‖𝑇𝑉 = 𝑂(𝜃𝑛), as 𝑛 → ∞.

It follows from this lemma that for any 𝜖′ > 0 there exist constants 0 < 𝜃 = 𝜃(𝜖′) < 1 and𝐶0 > 0
such that

𝜈(𝐸𝑛(𝜖)) ⩽ 𝜈𝜖′𝑛(𝐸𝑛(𝜖)) + 𝐶0𝜃
𝑛 ⩽

𝑛𝜖′∑
𝑘=1

𝜈(𝐸𝑛(𝜖) ∩ 𝐴𝑘) + 𝐶0𝜃
𝑛 (6.4)

for every 𝜖 > 0 and 𝑛 ∈ ℕ. Here and throughout the rest of this section we write 𝜖′𝑛 instead of⌊𝜖′𝑛⌋ to simplify notation. We now turn our attention to studying each 𝜈(𝐸𝑛(𝜖) ∩ 𝐴𝑘).

Lemma 6.2. For every 𝜖 > 0, there exist positive constants 𝜖′ and 𝐶1 such that for all 𝑛 ∈ ℕ, 𝑛𝜖′ ⩾

𝑘 ⩾ 1, we have

𝜈(𝐸𝑛(𝜖) ∩ 𝐴𝑘) ⩽ 𝐶1 𝜇

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}
.

Proof. Given 𝜖 > 0, fix 𝜖′ > 0 so that 2𝜖′ max𝑠∈𝑆{log ‖𝜌(𝑠)‖} < 𝜖∕2. Then, for each 𝑛𝜖′ ⩾ 𝑘 ⩾ 1, we
have that 𝐸𝑛(𝜖) ∩ 𝐴𝑘 is given by{

𝑥 ∈ 𝑌∞ ∶
||||| log ‖𝜌(𝜆(∗, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖 , 𝜎𝑘𝑥 ∈ ∪𝑗Σ𝐵𝑗
, 𝜎𝑘−1𝑥 ∉ ∪𝑗Σ𝐵𝑗

}

⊆

{
𝑥 ∈ 𝑌∞ ∶

||||| log ‖𝜌(𝜆(𝑥𝑘, 𝑥𝑘+1)… 𝜆(𝑥𝑘+𝑛−1, 𝑥𝑘+𝑛))‖
𝑛

− Λ
||||| > 𝜖

2
, 𝜎𝑘𝑥 ∈ ∪𝑗Σ𝐵𝑗

}

= 𝑌∞ ∩ 𝜎−𝑘

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}
.

(6.5)

The inclusion above follows from Lemma 2.1 (due to the submultiplicativity of the operator
norm) and the choice of 𝜖′. Letting 𝑉max denote the collection of vertices belonging to a maximal
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46 CANTRELL and SERT

component, it follows that

𝜈(𝐸𝑛(𝜖) ∩ 𝐴𝑘) ⩽ 𝜎𝑘
∗𝜈

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}

=
∑

𝑣∈𝑉max

𝜎𝑘
∗𝜈|[𝑣]

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}

=
∑

𝑣∈𝑉max

𝛼𝑘
𝑣𝜇|[𝑣]

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}
,

where 𝛼𝑘
𝑣 are the constants from Lemma 3.1. We recall now (from the construction of the Parry

measure 𝜇) that a vertex 𝑣 belongs to 𝑉max if and only if 𝜇[𝑣] > 0. In particular, for 𝑣 ∈ 𝑉max ,

𝛼𝑘
𝑣 =

𝜈(𝜎−𝑘[𝑣])

𝜇([𝑣])
⩽ max

𝑣∈𝑉max

1
𝜇([𝑣])

< ∞

and so we deduce that there exists 𝐶1 > 0 such that

𝜈(𝐸𝑛(𝜖) ∩ 𝐴𝑘) ⩽ 𝐶1 𝜇

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}

as required. □

We now complete the proof of Theorem 1.11. Fix 𝜖 > 0 and let 𝜖′ > 0 be as in Lemma 6.2. By
(6.4), there exist constants 0 < 𝜃 < 1 and 𝐶0 > 0 such that

𝜈(𝐸𝑛(𝜖)) ⩽

𝑛𝜖′∑
𝑘=1

𝜈(𝐸𝑛(𝜖) ∩ 𝐴𝑘) + 𝐶0𝜃
𝑛

and so by Lemma 6.2 there is 𝐶1 > 0 such that

𝜈(𝐸𝑛(𝜖)) ⩽ 𝐶1𝑛𝜖
′ 𝜇

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶
||||| log ‖𝜌(𝜆(𝑥0, 𝑥1)… 𝜆(𝑥𝑛−1, 𝑥𝑛))‖

𝑛
− Λ

||||| > 𝜖
2

}
+ 𝐶0𝜃

𝑛. (6.6)

Recall that by Lemma 5.7 (and Corollary 5.6), the constantΛ is also the top Lyapunov exponent of
the Markovian product (𝑀𝑛). We now apply Corollary 5.6 (statement corresponding to Proposi-
tion 5.2) which says precisely that the 𝜇-measure of the set in the first term of the right-hand side
of (6.6) decays exponentially fast in 𝑛, concluding the proof. □

Remark 6.3. It is also possible to prove Theorem 1.5 using an approximation argument in which
one compares the Markov measures on  to the counting measures on 𝑆𝑛. This method, which
would avoid proving Theorem 1.11, is used in Section 8 to prove our counting CLT. We presented
the above proof instead as we believe Theorem 1.11 is interesting in its own right.
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 47

6.2 Large deviations for isometries

This section is devoted to the proof of Theorem 1.7. As in the proof of Theorem 1.5, we deduce
Theorem 1.7 from a boundary large deviation result: Theorem 6.4.
The proof of Theorem 1.7 (resp., Theorem 6.4) follows a very a similar line as the proof of

Theorem 1.5 (resp., Theorem 1.11). Therefore, for brevity, we will only point out the needed
modifications in the proofs. Let us start with the boundary version.

Theorem 6.4. Let Γ be a Gromov-hyperbolic group, 𝑆 a generating set of Γ and (𝐻, 𝑑) a geodesic
Gromov-hyperbolic space and 𝑜 ∈ 𝐻 a basepoint. Suppose that Γ acts on 𝐻 by isometries and that
the action is nonelementary. Let 𝜈 be a Patterson–Sullivanmeasure on 𝜕Γ for the 𝑆wordmetric. Then
there exists a constant Λ > 0 such that for any 𝜖 > 0,

lim sup
𝑛→∞

1
𝑛

log 𝜈

(
𝜉 ∈ 𝜕Γ ∶ for all 𝜉𝑚 → 𝜉 with 𝜉0 = id,

||||𝑑(g ⋅ 𝑜, 𝑜)
𝑛

− Λ
|||| > 𝜖

)
< 0.

This result implies Theorem 1.7. The proof of this implication is precisely as in the proof of
Theorem 1.5, one only needs to replace the occurrences of log ‖𝜌(⋆)‖ by 𝑑(⋆ ⋅ 𝑜, 𝑜).
For Theorem 6.4, similarly, the proof of Theorem 1.11 goes through until the point at the end

where we applied Corollary 5.6. One only has to replace this result by Proposition 5.8: the analo-
gous Markovian limit law but for the isometric actions (instead of representations) that we now
consider. This completes the proof.

7 WIENER PROCESS AND THE LAWOF THE ITERATED
LOGARITHMON THE BOUNDARY

The goal of this section is to prove Theorem 1.12: convergence to the Wiener process and the
functional LIL.
Before starting the proof, we recall the notion of tightness that will be used therein. For 𝑡 ∈

[0, 1], let 𝐸𝑡 ∶ 𝐶([0, 1]) → ℝ denote the map that evaluates a function at 𝑡. We say that a sequence
of probability measures 𝜂𝑛 on 𝐶([0, 1]) is tight if

(i) sup𝑛∈ℕ 𝐸0∗𝜂𝑛(ℝ ⧵ [−𝜆, 𝜆]) → 0 as 𝜆 → +∞; and
(ii) lim𝛿→0 sup𝑛∈ℕ 𝜂𝑛(sup|𝑡−𝑠|⩽𝛿 |𝑋(𝑡) − 𝑋(𝑠)| ⩾ 𝜖) = 0 for every 𝜖 > 0, where𝑋 denotes a random

variable with distribution 𝜂𝑛 and 𝑡, 𝑠 range over [0,1].

In the proof below, the distribution 𝜂𝑛 will correspond to the pushforward of the Patterson–
Sullivan measure 𝜈 by the map 𝑆𝑛 defined in (1.1).

Proof of Theorem 1.12.

(1) To prove the first statement we need to show that the laws of the sequence (𝑆𝑛) is a tight
family and also that finite-dimensional distributions of this sequence converge to the finite-
dimensional distributions of the Wiener measure on 𝐶([0, 1]) (see, e.g., [48, Theorem 4.15]).
Without loss of generality, we can assume that the operator norm in the definition of (𝑆𝑛) is
induced by the Euclidean norm.
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48 CANTRELL and SERT

Let us start by showing that the distributions of (𝑆𝑛) constitute a tight family ofmeasures on
𝐶([0, 1]). Notice that we only need to check the second condition in the definition of tightness
above, since by construction 𝑆𝑛𝜉(0) = 0 for 𝜈-almost every 𝜉 ∈ 𝜕Γ. Fix 𝜖 > 0. For every 𝛿 > 0,
define

𝑈𝑛(𝜖, 𝛿) =

{
𝜉 ∈ 𝜕Γ ∶ sup|𝑡−𝑠|<𝛿

|𝑆𝑛𝜉(𝑡) − 𝑆𝑛𝜉(𝑠)| > 𝜖

}
.

For 𝑥 ∈ Σ𝐴, let 𝑆𝑛𝑥 denote the element of 𝐶([0, 1]) defined in the same way as in (1.1) where
for 𝑘 ∈ ℕ, 𝜌(𝜉𝑘) is replaced by 𝜌(𝜆(𝑥0, 𝑥1), … , 𝜆(𝑥𝑘−1, 𝑥𝑘)). Let us also similarly define

𝐸𝑛(𝜖, 𝛿) =

{
𝑥 ∈ 𝑌∞ ∶ sup|𝑡−𝑠|<𝛿

|𝑆𝑛𝑥(𝑡) − 𝑆𝑛𝑥(𝑠)| > 𝜖

}
. (7.1)

As any two representatives 𝜉𝑚 and 𝜉′
𝑚 of an element 𝜉 ∈ 𝜕Γ stay at bounded 𝑆-distance, it

is easy to check that there exists 𝑛0 = 𝑛0(𝜖) ∈ ℕ such that for every 𝑛 ⩾ 𝑛0 and 𝛿 > 0, we have
Ψ−1(𝑈𝑛(𝜖, 𝛿)) ⊆ 𝐸𝑛(𝜖∕2, 𝛿). Consequently, for every 𝑛 ⩾ 𝑛0 and 𝛿 > 0, we have 𝜈(𝑈𝑛(𝜖, 𝛿)) ⩽

𝜈(𝐸𝑛(𝜖∕2, 𝛿)). Therefore, to show that the set of distributions of 𝑆𝑛 is tight, it suffices to prove
that lim𝛿→0 sup𝑛∈ℕ 𝜈(𝐸𝑛(𝜖∕2, 𝛿)) = 0.
We use the following strategy to complete the proof of tightness: we show that for large

𝑛 ∈ ℕ, the distributions of 𝑆𝑛 (under 𝜈) are approximated by that of the Markovian products
in Proposition 5.3 (or more generally Corollary 5.6) which themselves constitute a tight family
(as they converge to theWienermeasure) and for small 𝑛 ∈ ℕwe exploit the fact that jumps of
𝑆𝑛(𝜉)(𝑡) are bounded (for 𝑛 bounded) because they are normalized matrix norms of bounded-
length products of elements of the finite set 𝑆.
It follows from Lemma 6.1 that there exist constants 𝐶0 > 0 and 𝜃 ∈ (0, 1) such that for

every𝑚 ∈ ℕ, we have

𝜈(𝐸𝑛(𝜖∕2, 𝛿)) ⩽ 𝜈𝑚(𝐸𝑛(𝜖∕2, 𝛿)) + 𝐶0𝜃
𝑚 =

𝑚∑
𝑘=1

𝜈(𝐸𝑛(𝜖∕2, 𝛿) ∩ 𝐴𝑘) + 𝐶0𝜃
𝑚, (7.2)

where the measures 𝜈𝑚 and sets 𝐴𝑘 are as defined in (6.2) and (6.3). We will now require the
following observation which is an analogue of Lemma 6.2.

Lemma 7.1. There exist constants 𝑐 > 0 and 𝐶1 > 0 such that for every 𝑛 ∈ ℕ, 𝑐𝑛1∕2 ⩾ 𝑘 ⩾ 1 and
𝛿 > 0, we have

𝜈(𝐸𝑛(𝜖∕2, 𝛿) ∩ 𝐴𝑘) ⩽ 𝐶1 𝜇

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶ sup|𝑡−𝑠|<𝛿
|𝑆𝑛𝑥(𝑡) − 𝑆𝑛𝑥(𝑠)| > 𝜖∕4

}
.

Proof. Fix 𝑐 > 0 so that 2𝑐max𝑠∈𝑆{log ‖𝜌(𝑠)‖} < 𝜖∕4. Then, for each 𝑐𝑛1∕2 ⩾ 𝑘 ⩾ 1, the set
𝐸𝑛(𝜖∕2, 𝛿) ∩ 𝐴𝑘 satisfies{

𝑥 ∈ 𝑌∞ ∶ sup|𝑡−𝑠|<𝛿
|𝑆𝑛𝑥(𝑡) − 𝑆𝑛𝑥(𝑠)| > 𝜖∕2 , 𝜎𝑘𝑥 ∈ ∪𝑗Σ𝐵𝑗

, 𝜎𝑘−1𝑥 ∉ ∪𝑗Σ𝐵𝑗

}
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 49

⊆

{
𝑥 ∈ 𝑌∞ ∶ sup|𝑡−𝑠|<𝛿

|𝑆𝑛𝑥(𝑡) − 𝑆𝑛𝑥(𝑠)| > 𝜖∕4 , 𝜎𝑘𝑥 ∈ ∪𝑗Σ𝐵𝑗

}

= 𝑌∞ ∩ 𝜎−𝑘

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶ sup|𝑡−𝑠|<𝛿
|𝑆𝑛𝑥(𝑡) − 𝑆𝑛𝑥(𝑠)| > 𝜖∕4

}
.

The inclusion in the second line above follows from Lemma 2.1 (due to the submultiplicativity of
the operator norm) and the choice of 𝑐. From this point on, the proof follows the same lines as the
proof of Lemma 6.2. We omit it to avoid repetition. □

From the previous lemma, we deduce the analogue of (6.6) which reads as follows: for every
𝑛 ∈ ℕ, 𝛿 > 0, 𝑐𝑛1∕2 ⩾ 𝑚 ⩾ 1, we have

𝜈(𝐸𝑛(𝜖∕2, 𝛿)) ⩽ 𝐶1𝑚 𝜇

{
𝑥 ∈ ∪𝑗Σ𝐵𝑗

∶ sup|𝑡−𝑠|<𝛿
|𝑆𝑛𝑥(𝑡) − 𝑆𝑛𝑥(𝑠)| > 𝜖∕4

}
+ 𝐶0𝜃

𝑚. (7.3)

Let 𝜂 > 0 be arbitrary. Fix 𝑚 ∈ ℕ large enough so that 𝐶0𝜃
𝑚 < 𝜂∕2. Now, by Corollary 5.6 (as

the operator norm is invariant under the transpose) the pushforward of 𝜇 by 𝑆𝑛 converges to the
Wiener measure. These pushforwards are tight and hence we can choose 𝛿1 > 0 small enough so
that for every 𝑛 ⩾ 1, the 𝜇-measure on the right-hand side of (7.3) is less than 𝜂

2𝐶1𝑚
for every 𝑛 ⩾

(𝑚∕𝑐)2. Now observe from the definition (7.1) of 𝐸𝑛(𝜖∕2, 𝛿) that for every 𝑛 ∈ ℕ such that 𝜖∕2 >
𝛿𝑛1∕2(

3𝑀0+Λ

𝜎
), we have 𝐸𝑛(𝜖∕2, 𝛿) = ∅, where𝑀0 = max𝑠∈𝑆 log ‖𝜌(𝑠)‖. Therefore, up to reducing

𝛿1 > 0 to 𝛿0 > 0 so that any 𝑛 ⩽ (𝑚∕𝑐)2 satisfies 𝜖∕2 > 𝛿0𝑛
1∕2(

3𝑀0+Λ

𝜎
), we get that for every 𝛿 ∈

(0, 𝛿0), 𝑛 ∈ ℕ, we have 𝜈(𝐸𝑛(𝜖∕2, 𝛿)) ⩽ 𝜂, proving that the laws of 𝑆𝑛 constitute a tight family.
We now turn to proving that the finite-dimensional distributions of (𝑆𝑛) converge to those of

the Wiener measure. Fix 0 = 𝑡0 < 𝑡1 < 𝑡2 < … < 𝑡𝑑 ⩽ 1. Let 𝐹𝑛,𝑡1,…,𝑡𝑑
(𝑥) for 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑

denote the cumulative distribution function

𝐹𝑛,𝑡1,…,𝑡𝑑
(𝑥) = 𝜈

(
𝜉 ∈ 𝜕Γ ∶ 𝑆𝑛𝜉(𝑡1, … , 𝑡𝑑) ∈

𝑑∏
𝑖=1

(−∞, 𝑥𝑖]

)
,

where

𝑆𝑛𝜉(𝑡1, … , 𝑡𝑑) ∶= (𝑆𝑛𝜉(𝑡1), 𝑆𝑛𝜉(𝑡2) − 𝑆𝑛𝜉(𝑡1), … , 𝑆𝑛𝜉(𝑡𝑑) − 𝑆𝑛𝜉(𝑡𝑑)).

We would like to prove that 𝐹𝑛,𝑡1,…,𝑡𝑑
(𝑥) converges as 𝑛 → ∞ to the cumulative distribution

function 𝐹𝑡1,…,𝑡𝑑
(𝑥) of the multidimensional normal distribution 𝑁(0, 𝜔) with 𝑑 × 𝑑 diagonal

covariance matrix 𝜔 with entries 𝜔𝑖𝑖 = 𝑡𝑖 − 𝑡𝑖−1, [9, section 1]. Recall that the Patterson–Sullivan
measure 𝜈 on 𝜕Γ is given by Ψ∗𝜈, where Ψ ∶ 𝑌∞ → 𝜕Γ is continuous, surjective and finite-to-
one. Moreover, using the fact that any two geodesic ray representing 𝜉 stays at bounded distance
depending only on the hyperbolicity constant, it follows that there exists a sequence 𝜂𝑛 converg-
ing to zero as 𝑛 → ∞ such that for every 𝜉 ∈ 𝜕Γ, for any 𝑦 ∈ Ψ−1(𝜉), we have ‖𝑆𝑛𝜉(𝑡1, … , 𝑡𝑑) −
𝑆𝑛𝑦(𝑡1, … , 𝑡𝑑)‖∞ ⩽ 𝜂𝑛. As a consequence, it suffices to show that for every 𝑥 ∈ ℝ𝑑

𝐹𝑛,𝑡1,…,𝑡𝑑
(𝑥) = 𝜈

(
𝑦 ∈ 𝑌 ∶ 𝑆𝑛𝑦(𝑡1, … , 𝑡𝑑) ∈

𝑑−1∏
𝑖=1

(−∞, 𝑥𝑖]

)

converges to 𝐹𝑡1,…,𝑡𝑑
(𝑥) as 𝑛 → ∞, where 𝑆𝑛𝑦(𝑡1, … , 𝑡𝑑) is defined analogously to 𝑆𝑛𝜉(𝑡1, … , 𝑡𝑑).
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50 CANTRELL and SERT

We define 𝐸𝑛,𝑡1,…,𝑡𝑑
(𝑥) = {𝑦 ∈ ∪𝑗Σ𝐵𝑗

∶ 𝑆𝑛𝑦(𝑡1, … , 𝑡𝑑) ∈
∏𝑑

𝑖=1(−∞, 𝑥𝑖]} ⊂ Σ𝐴. Recall from (3.2)
that the Cesaró averages of 𝜈 under the shift map converges to the Parry-like measure 𝜇 in
the total variation distance. It follows from (3.2) and Corollary 5.6 (statement corresponding to
Proposition 5.3) that for every 𝑥 ∈ ℝ𝑑

lim
𝑛→∞

1

𝑛1∕4

𝑛1∕4∑
𝑘=0

𝜎𝑘
∗𝜈(𝐸𝑛,𝑡1,…,𝑡𝑑

(𝑥)) = lim
𝑛→∞

𝜇

(
𝑦 ∈ Σ𝐴 ∶ 𝑆𝑛𝑦(𝑡1, … , 𝑡𝑑) ∈

𝑑∏
𝑖=1

(−∞, 𝑥𝑖]

)
= 𝐹𝑡1,…,𝑡𝑑

(𝑥).

Defining

𝐶±
𝑛,𝑡1,…,𝑡𝑑

(𝑥) = 𝐸𝑛,𝑡1,…,𝑡𝑑
(𝑥 ± 𝐶𝑛−1∕4(1, 1, … , 1)),

where 𝐶 > 0 is some positive constant, we see that

lim
𝑛→∞

1

𝑛1∕4

𝑛1∕4∑
𝑘=0

𝜎𝑘
∗𝜈(𝐶

⋆
𝑛,𝑡1,…,𝑡𝑑

(𝑥)) = 𝐹𝑡1,…,𝑡𝑑
(𝑥), (7.4)

for each 𝑥 ∈ ℝ𝑑 and ⋆ ∈ {+,−}. Similarly to (6.5) if 𝐶 > 0 is taken sufficiently large (depending
only on max𝑠∈𝑆 log ‖𝜌(𝑠)‖ and the variance 𝜎2 > 0), by inclusion of the corresponding sets, we
have

𝜎𝑘
∗𝜈(𝐶

−
𝑛,𝑡1,…,𝑡𝑑

(𝑥)) ⩽ 𝜈𝑘(𝐸𝑛,𝑡1,…,𝑡𝑑
(𝑥)) ⩽ 𝜎𝑘

∗𝜈(𝐶
+
𝑛,𝑡1,…,𝑡𝑑

(𝑥)) (7.5)

for all integers 𝑛 ⩾ 1 and 𝑛1∕4 ⩾ 𝑘 ⩾ 1. We deduce from (7.4) and (7.5) that

1

𝑛1∕4

𝑛1∕4∑
𝑘=0

𝜈𝑘(𝐸𝑛,𝑡1,…,𝑡𝑑
(𝑥)) = 𝐹𝑡1,…,𝑡𝑑

(𝑥).

Finally, by Lemma 6.1, this implies that 𝐹𝑛,𝑡1,…,𝑡𝑑
(𝑥) also converges to 𝐹𝑡1,…,𝑡𝑑

(𝑥) as 𝑛 → ∞. From
our above discussion, this concludes the proof of 1.

(2) We need to show that the set 𝑈 of 𝜉 ∈ 𝜕Γ such that the conclusion of 2. holds has full 𝜈-
measure. To this end, let 𝐸 be the set of 𝑦 ∈ 𝑌∞ such that the conclusion holds when 𝑆𝑛𝜉
is replaced by 𝑆𝑛𝑦 and 𝐵 be the set of 𝑥 ∈ ∪𝑗Σ𝐵𝑗

such that the same conclusion again holds
with 𝑆𝑛𝑥. Note that the set 𝑈 is well-defined because its defining property does not depend
on the choice of the representing geodesic ray and all these sets are Borel measurable. As,
given 𝜉 ∈ 𝑈, we have that any 𝜉′ with the property 𝜉𝑚 = 𝜉′

𝑚+𝑘
for certain 𝑘 ∈ ℤ and every

𝑚 ∈ ℕ large enough also belongs to 𝑈, the set 𝑈 is Γ-invariant. By Γ-ergodicity of 𝜈, all we
need to show is 𝜈(𝑈) > 0. As 𝐸 ⊆ Ψ−1(𝑈) and Ψ∗𝜈 = 𝜈, it suffices to show that 𝜈(𝐸) > 0. Let,
as before, 𝑉max denote the set of vertices belonging to a maximal component and 𝑣 ∈ 𝑉max .
Let 𝑘 ∈ ℕ be such that there exists a path of length 𝑘 from ∗ to 𝑣. By Lemma 3.1, there exists
𝛼𝑘
𝑣 > 0 such that

𝜎𝑘
∗𝜈|[𝑣] = 𝛼𝑘

𝑣𝜇|[𝑣]. (7.6)
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 51

Now thanks to Corollary 5.6 (statement corresponding to Proposition 5.4), the set 𝐵 has full 𝜇
measure. Therefore, by (7.6), we have 𝜎𝑘

∗𝜈(𝐵) = 𝜈(𝜎−𝑘(𝐵)) > 0. But as for any 𝑘 ∈ ℕ, we have
𝜎−𝑘(𝐵) ∩ 𝑌∞ ⊆ 𝐸, we obtain 𝜈(𝐸) > 0, as desired. □

As an immediate consequence, we record the following more classical results, namely the CLT
and LIL. The latter one provides a refinement of Theorem 1.10 in the current setting.

Corollary 7.2 (Boundary CLT and LIL). Let 𝜌 ∶ Γ → GL𝑑(ℝ) be a strongly irreducible proxi-
mal representation of a hyperbolic group Γ. Equip Γ with a finite generating set 𝑆 and let 𝜈 be
the Patterson–Sullivan measure defined in (1.2). Let Λ, 𝜎2 > 0 be the mean and variance from
Theorem 1.12. Then,

(1) for each 𝑛 ⩾ 1 and 𝑥 ∈ ℝ, denoting

𝑛(𝑥) ∶=

{
𝜉 ∈ 𝜕Γ ∶ for any representative 𝜉𝑚 → 𝜉 with 𝜉0 = 𝑜,

log ‖𝜌(𝜉𝑛)‖ − Λ𝑛√
𝑛

⩽ 𝑥

}
we have

lim
𝑛→∞

𝜈(𝑛(𝑥)) =
1√
2𝜋𝜎 ∫

𝑥

−∞
𝑒−𝑡2∕2𝜎2

𝑑𝑡 ; and (7.7)

(2) for 𝜈 almost every 𝜉 ∈ 𝜕Γ and for any representative 𝜉𝑚 → 𝜉,

lim inf
𝑛→∞

log ‖𝜌(𝜉𝑛)‖ − 𝑛Λ√
2𝜎𝑛 log log 𝑛

= −1 and lim sup
𝑛→∞

log ‖𝜌(𝜉𝑛)‖ − 𝑛Λ√
2𝜎𝑛 log log 𝑛

= 1.
□

Remark 7.3 (Speed and uniformity in boundary CLT). Using Theorem 4.8, it is possible to give
a speed estimate in (7.7) that is uniform over 𝑥 ∈ ℝ. However, we will not pursue this direction
as this would be a (somewhat lengthy and technical) diversion from the main goals in the article
(see [22, sections 4 and 5]).

8 COUNTING CLT AND ERROR TERMS

In this section, after briefly commenting on our approach, we prove Theorem 1.9.
Similar to the schemes we followed in the proofs of weak law of large numbers (Section 3) and

large deviation results for counting (Section 6), one could try to obtain a corresponding counting
CLT (with or without error term) directly from Corollary 7.2(1). However there are difficulties in
implementing this approach for the CLT. The main issue stems from the fact that when we com-
pare the asymptotic density of sets with the Patterson–Sullivan measure of certain boundary sets
(e.g., as in the proof of Theorem 1.5), we do so up to a bounded multiplicative constant. Such a
constant is inconsequential when proving large deviation type results, however it destroys the pre-
cise limiting behavior that we need for a CLT to hold. To overcome this issue (and, importantly, to
prove a CLT with the Berry–Esseen type error term) we will directly compare the uniform count-
ing measures on 𝑆𝑛 with the Markov measures on Σ. This method will make use of a quantified
version of an argument from a recent work of Gehktman–Taylor–Tiozzo [34].
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52 CANTRELL and SERT

More precisely, using the stronglyMarkov structure, up to a periodicity issue, wewill consider a
geodesic factorization of an element g ∈ Γ chosen uniformly from the sphere of length 𝑛 as g0g1g2
with g0 and g2 of size approximately log 𝑛. It will then suffice to show a CLT with error term for
the middle factor g1. We will show (Lemma 8.5) that the distribution of this middle factor g1 is
approximated (with speed) by the length ∼ (𝑛 − 2 log 𝑛) path distribution of a Markov chain. We
can then associate a Markovian randommatrix product to this chain and bring back (Lemma 8.2)
the relevant result (Theorem 4.8) from theMarkovianmatrix products to establish a counting CLT
with error term (Proposition 8.8). The proof is then completed by resolving the periodicity issue.
We now start collecting the necessary ingredients for the proof of Theorem 1.9. We will heavily

use the constructions from Section 2. Fix a nonelementary Gromov-hyperbolic group Γ, a gener-
ating set 𝑆 ⊂ Γ and strongly Markov structure . Let 𝐴 be the transition matrix as introduced in
Subsection 2.2.2. Let 𝑝 be an integer that is divisible by the periods of each maximal component
of 𝐴 so that the nonnegative matrix 𝐴𝑝 has a unique (necessarily real) eigenvalue 𝜆𝑝 of maximal
modulus. To deduce Theorem 1.9 wewill first study the convergence of our counting distributions
along the subsequence 𝑛𝑝.
For a positive 𝑘 ∈ ℕ, we will define a Markov chain on the state space

Ω𝑘𝑝 ∶= {(𝑤0, … ,𝑤𝑘𝑝) ∶ 𝑤𝑖 ∈ , 𝐴𝑤𝑖,𝑤𝑖+1
= 1}

of length-𝑘𝑝 paths in the strongly Markov structure . To define a transition kernel and a
stationary measure on Ω𝑘𝑝, we lset

𝑝𝑖 = lim
𝑛→∞

𝑒𝑇
𝑖
𝐴𝑛𝑝1

𝜆𝑛𝑝
and 𝑢𝑖 = lim

𝑛→∞

𝑒𝑇∗𝐴
𝑛𝑝𝑒𝑖

𝜆𝑛𝑝
, (8.1)

where 𝑒𝑖 and 𝑒∗ correspond to the vectors that have the entry 1 in the index corresponding to the
vertices 𝑣𝑖 and ∗, respectively, and 0 elsewhere.

Remark 8.1. Before proceeding further, we remark that, by our choice of 𝑝, the limits above defin-
ing each𝑝𝑖 and 𝑢𝑖 converge exponentially quickly. This is because thematrix𝐴𝑝 exhibits a spectral
gap from its leading (real positive) eigenvalue to the rest of the spectrum.

Now let 𝜋𝑘𝑝 be the measure on Ω𝑘𝑝, defined by

𝜋𝑘𝑝(𝑤0, … ,𝑤𝑘𝑝) =
𝑢𝑤0

𝑝𝑤𝑘𝑝

𝜆𝑘𝑝𝑝∗

.

It is readily checked that 𝜋𝑘𝑝 defines a probability measure. Let 𝑁𝑘𝑝 be the transition kernel
defined by

𝑁𝑘𝑝((𝑤0, … ,𝑤𝑘𝑝), (𝑤
′
0, … ,𝑤′

𝑘𝑝)) =

⎧⎪⎨⎪⎩
𝑝𝑤′

𝑘𝑝

𝜆𝑘𝑝𝑝𝑤′
0

if 𝑝𝑤′
0
> 0 and 𝑤𝑘𝑝 = 𝑤′

0

0 otherwise.

Unfolding the definitions, one also readily checks that𝑁𝑘𝑝 is a stochastic matrix and 𝜋𝑘𝑝 is𝑁𝑘𝑝-
stationary (i.e., a left eigenvector with eigenvalue one). Let Ω̃𝑘𝑝 ⊆ Ωℕ

𝑘𝑝
be the subshift associated
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 53

to this Markov chain and ℙ̃𝑘𝑝 be the associated Markovian measure on Ω̃𝑘𝑝. Finally, for 𝑘 ⩾ 1

and 𝑧1, … , 𝑧𝑘 ∈ Ω𝑝, let [𝑧1, … , 𝑧𝑘] be the associated cylinder set in Ω̃𝑝 and (𝑧1, … , 𝑧𝑘) be the cor-
responding element ofΩ𝑘𝑝. Observe that by an easy calculation using the definitions of 𝜋𝑘𝑝’s and
𝑁𝑝, we have

𝜋𝑘𝑝((𝑧1, … , 𝑧𝑘)) = ℙ̃𝑝([𝑧1, … , 𝑧𝑘]). (8.2)

The nonnegative matrix𝐴𝑝 is not necessarily irreducible and hence we decompose it into con-
nected components (aswe did to obtain𝐴′′ from𝐴 in Subsection 2.2.2). Some of these components
will have spectrum with simple eigenvalue 𝜆𝑝. We label these finitely many 𝐴𝑝 maximal compo-
nents 𝐶1, … , 𝐶𝑚0

. Note that each of the vertex sets for 𝐶1, … , 𝐶𝑚0
are subsets of the vertex sets of

themaximal components of𝐴. Notice from definitions of the constants𝑝𝑖 and 𝑢𝑖 ’s in (8.1) and that
of the stationary measure 𝜋𝑘𝑝 that 𝜋𝑘𝑝(𝑤0, … ,𝑤𝑘𝑝) > 0 if any only of 𝑤0 and 𝑤𝑘𝑝 belong to the
same maximal component of 𝐴𝑝. Moreover, the transition kernel 𝑁𝑘𝑝 sends a path (𝑤0, … ,𝑤𝑘𝑝)
in a maximal component 𝐶𝑖 to a path in 𝐶𝑖 . Therefore, the Markov chain defined above is not
ergodic if 𝑚0 ⩾ 2. Its ergodic components are simply given by the maximal components 𝐶𝑖 for
𝑖 = 1, … ,𝑚0: the restriction of the transition kernel 𝑁𝑘𝑝 to the set Ω𝑖

𝑘𝑝
paths of length 𝑘𝑝 with

initial and end vertex belonging to a single 𝐶𝑖 (together with the normalized restriction of 𝜋𝑘𝑝

to Ω𝑖
𝑘𝑝
) gives an ergodic Markov chain. Moreover, by the choice of 𝑝 (a common multiple of the

periods of maximal component of 𝐴), these Markov chains are primitive.
We now proceed precisely as in Section 5 to deduce a CLT with Berry–Esseen bounds along

periodic products from Σ𝐴. As the procedure is the same, we only outline the steps.

(i) As in Subsection 5.1.1, we associate aMarkovian randommatrix product (𝑀𝑖
𝑛) to the primitive

finite state Markov chains on Ω𝑖
𝑝.

(ii) As in Lemma 5.1, we check the 1-contracting and strong irreducibility assumptions for these
Markovian products.

(iii) By applying Theorem 4.8, we deduce a CLT with mean Λ𝑖 and variance 𝜎2
𝑖
> 0 and with

Berry–Esseen error term of order 𝑂( log 𝑛√
𝑛
).

(iv) We check exactly as in Proposition 5.5 that the means Λ𝑖 and variances 𝜎2
𝑖
do not depend on

𝑖 = 1, … ,𝑚0. Set Λ = Λ𝑖 and 𝜎2 = 𝜎2
𝑖
.

From these, analogous to Corollary 5.6, we deduce the following.

Lemma 8.2. There exists a constant 𝐷 > 0 such that for every 𝑛 ⩾ 1 and 𝑡 ∈ ℝ

||||||ℙ̃𝑝

(
(𝑧1, …) ∈ Ω̃𝑝 ∶

log ‖𝜌(𝜆(𝑧1)) … 𝜌(𝜆(𝑧𝑛))‖ − 𝑛𝑝Λ√
𝑛𝑝

⩽ 𝑡

)
−

1

𝜎
√

2𝜋 ∫
𝑡

−∞
𝑒
− 𝑠2

2𝜎2 𝑑𝑠

||||||
is bounded above by 𝐷 log 𝑛√

𝑛
where for 𝑧 = (𝑤0, … ,𝑤𝑝) belonging to Ω𝑝, we write 𝜆(𝑧) =

𝜆(𝑤0, 𝑤1)… 𝜆(𝑤𝑝−1, 𝑤𝑝).

Remark 8.3. Keeping the notation of the previous lemma, notice that in view of (8.2), the first term
in the previous lemma is equal to

𝜋𝑛𝑝

{
(𝑧1, … , 𝑧𝑛) ∶

log ‖𝜌(𝜆(𝑧1)) … 𝜌(𝜆(𝑧𝑛))‖ − 𝑛𝑝Λ√
𝑛𝑝

⩽ 𝑡

}
.
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54 CANTRELL and SERT

Having obtained Lemma 8.2, to prove Theorem 1.9, we now follow the ideas used in [34, sec-
tions 6–7]. However, we need to quantify various rates of convergence to obtain the error term in
Theorem 1.9.
We start by defining a probability measure 𝜇𝑞 on each sphere 𝑆𝑞 that will help us deal with the

periodicity issue at the end. Fix an integer 0 ⩽ 𝑟 ⩽ 𝑝 − 1. We define a measure on the set 𝑆𝑟 (or
equivalently the set of paths of length 𝑟 in  starting from the vertex ∗) in the following way. For
g ∈ 𝑆𝑟 we set

𝜇𝑟(g) =
𝑒𝑇
𝑖
𝐴∞1

𝑒𝑇∗𝐴
𝑟𝐴∞1

= lim
𝑛→∞

𝑒𝑇
𝑖
𝐴𝑛𝑝1

𝑒𝑇∗𝐴
𝑟𝐴𝑛𝑝1

,

where 𝐴∞ = lim𝑛→∞ 𝐴𝑛𝑝∕𝜆𝑛𝑝 and 𝑖 is the end vertex of the path in  starting at 𝑣∗ corre-
sponding to g . Here the limit defining 𝐴∞ exists because by choice of 𝑝 ∈ ℕ so that 𝜆𝑝 is the
unique eigenvalue of maximal modulus of 𝐴𝑝. For the same reason, the limit defining 𝜇𝑟(g)
converges exponentially quickly. One easily checks that

∑|g|=𝑟 𝜇𝑟(g) = 1. We extend the defini-
tion of 𝜇𝑞 on 𝑆𝑞 for 𝑞 ⩾ 𝑝 as follows: given integers 𝑛 ⩾ 1 and 𝑞 = 𝑛𝑝 + 𝑟 with 0 ⩽ 𝑟 ⩽ 𝑝 − 1,
we define 𝜇𝑛𝑝+𝑟 on 𝑆𝑛𝑝+𝑟 (equivalently, on the set of paths of length 𝑛𝑝 + 𝑟 in  starting from
the vertex ∗) as follows: given g ∈ 𝑆𝑛𝑝+𝑟, let (∗, 𝑤1, … ,𝑤𝑛𝑝+𝑟) be the unique path in  such that
g = 𝜆(∗, 𝑤1)… 𝜆(𝑤𝑛𝑝+𝑟−1, 𝑤𝑛𝑝+𝑟). Setℎ = 𝜆(∗, 𝑤1)… 𝜆(𝑤𝑟−1, 𝑤𝑟) and let𝜇𝑛𝑝+𝑟(g) = 𝜇𝑟(ℎ)

1
𝑒𝑇𝑤𝑟

𝐴𝑛𝑝1
.

Note that the denominator in the last expressions is the number of length 𝑛𝑝-paths starting at the
vertex𝑤𝑟. Let 𝜏𝑛 denote the uniform probability measure on the sphere 𝑆𝑛. We have the following

Lemma8.4. For each 𝑟 = 0,… , 𝑝 − 1we have that ‖𝜏𝑛𝑝+𝑟 − 𝜇𝑛𝑝+𝑟‖𝑇𝑉 = 𝑂(𝜃𝑛) for some 0 < 𝜃 < 1
as 𝑛 → ∞.

Proof. Take a set 𝑅 ⊂ Γ, let 𝑅𝑛𝑝+𝑟 = 𝑅 ∩ 𝑆𝑛𝑝+𝑟 and write 𝑅+
𝑛𝑝+𝑟 = 𝑅𝑛𝑝+𝑟 ∩

⋃
g∈𝑆+

𝑟
[g] where [g]

denotes all group elements that have corresponding path in  that start with g and 𝑆+
𝑟 = 𝑆𝑟 ∩ {g ∈

𝑆𝑟 ∶ 𝜇𝑟(g) > 0}. From the definition of 𝜇𝑛𝑝+𝑟 we see that if 𝜇𝑛𝑝+𝑟(𝑅) = 0 then 𝑅+
𝑛𝑝+𝑟 = ∅ and

𝜏𝑛𝑝+𝑟(𝑅) decays to 0 exponentially quickly, independently of 𝑅. Otherwise, 𝜇𝑛𝑝+𝑟(𝑅) ≠ 0 and
denoting by 𝑣g the last vertex in  of the path from ∗ corresponding to g , we have

𝜇𝑛𝑝+𝑟(𝑅) =
∑
g∈𝑆+

𝑟

𝜇𝑟(g)#(𝑅𝑛𝑝+𝑟 ∩ [g])

𝑒𝑇𝑣g𝐴
𝑛𝑝1

=
1

𝑒𝑇∗𝐴
𝑛𝑝+𝑟1

⎛⎜⎜⎝
∑
g∈𝑆+

𝑟

𝜇𝑟(g)#(𝑅𝑛𝑝+𝑟 ∩ [g])

𝑒𝑇𝑣g𝐴
𝑛𝑝1∕𝑒𝑇∗𝐴

𝑛𝑝+𝑟1

⎞⎟⎟⎠
=
⎛⎜⎜⎝ 1
𝑒𝑇∗𝐴

𝑛𝑝+𝑟1

∑
g∈𝑆+

𝑟

#(𝑅𝑛𝑝+𝑟 ∩ [g])
⎞⎟⎟⎠ + 𝑂(𝜃𝑛)

= 𝜏𝑛𝑝+𝑟(𝑅
+
𝑛𝑝+𝑟) + 𝑂(𝜃𝑛)

for some 0 < 𝜃 < 1 independent of 𝑅. In the penultimate line, we used the fact that
𝑒𝑇𝑣g𝐴

𝑛𝑝1∕𝑒𝑇∗𝐴
𝑛𝑝+𝑟1 converges to 𝜇𝑟(g) exponentially quickly as 𝑛 → ∞. To conclude the proof
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 55

we note that, from the construction of 𝜇𝑟, |𝜏𝑛𝑝+𝑟(𝑅) − 𝜏𝑛𝑝+𝑟(𝑅
+
𝑛𝑝+𝑟)| converges to 0 exponentially

quickly and that this rate of convergence is independent of 𝑅. □

We now, following [34], define probability measures that will determine the law of the middle
factor g1 of a 𝑛-long product g written in geodesic factorization g0g1g2 where g0 and g2 are of
logarithmic length. Consequently, we show that these measures can be approximated by the path
distribution of a Markov chain. Let 𝑐 > 0 be a positive constant. For a path 𝛾 in  of length 𝑛𝑝 −
2𝑝⌊𝑐 log 𝑛⌋ starting at 𝑣𝑖 ending at 𝑣𝑗 , we set

�̃�𝑐
𝑛𝑝(𝛾) =

𝑒𝑇∗𝐴
𝑝⌊𝑐 log 𝑛⌋𝑒𝑖 𝑒𝑇𝑗 𝐴𝑝⌊𝑐 log 𝑛⌋1

𝑒𝑇∗𝐴
𝑛𝑝1

.

Intuitively �̃�𝑐
𝑛𝑝 assigns a path 𝛾 probability 𝑠 if the proportion of length 𝑛𝑝 paths starting at ∗ that

have 𝛾 as a sub-path from the 𝑝⌊𝑐 log 𝑛⌋ to the 𝑛𝑝 − 𝑝⌊𝑐 log 𝑛⌋ vertex is 𝑠.
Lemma 8.5. For every fixed 𝑐 > 0 sufficiently large, we have

‖𝜋𝑝𝑛−2𝑝⌊𝑐 log 𝑛⌋ − �̃�𝑐
𝑛𝑝‖𝑇𝑉 = 𝑂

(
1√
𝑛

)
as 𝑛 → ∞.

Proof. By Remark 8.1, there exists 𝛿 > 0 such that for every vertex 𝑣𝑖 in  we have

𝑝𝑖 =
𝑒𝑇
𝑖
𝐴𝑛𝑝1

𝜆𝑛𝑝
+ 𝑂

(
𝜆−𝛿𝑛) and 𝑢𝑖 =

𝑒𝑇∗𝐴
𝑛𝑝𝑒𝑖

𝜆𝑛𝑝
+ 𝑂

(
𝜆−𝛿𝑛)

as 𝑛 → ∞. It follows that for any 𝑐 > (2𝛿 log 𝜆)−1, we have

𝑝𝑖 =
𝑒𝑇
𝑖
𝐴⌊𝑐 log 𝑛⌋𝑝1
𝜆⌊𝑐 log 𝑛⌋𝑝 + 𝑂

(
𝑛−1∕2

)
and 𝑢𝑖 =

𝑒𝑇∗𝐴
⌊𝑐 log 𝑛⌋𝑝𝑒𝑖

𝜆⌊𝑐 log 𝑛⌋𝑝 + 𝑂
(
𝑛−1∕2

)
(8.3)

as 𝑛 → ∞. Fix such a constant 𝑐 > 0. Let 𝑣𝑖 and 𝑣𝑗 be two vertices in  that belong to the same
maximal component of 𝐴𝑝 and such that 𝑢𝑖 > 0. Let 𝛾 be a path of length 𝑛′ = 𝑛𝑝 − 2𝑝⌊𝑐 log 𝑛⌋
from 𝑣𝑖 to 𝑣𝑗 . Then,

𝜋𝑛′(𝛾)

�̃�𝑐
𝑛𝑝(𝛾)

=
𝑢𝑖𝑝𝑗

𝜆𝑛′𝑝∗

𝑒𝑇∗𝐴
𝑛𝑝1

𝑒𝑇∗𝐴
𝑝⌊𝑐 log 𝑛⌋𝑒𝑖 𝑒𝑇𝑗 𝐴𝑝⌊𝑐 log 𝑛⌋1

=
𝑢𝑖𝑝𝑗

𝑝∗

𝜆𝑝⌊𝑐 log 𝑛⌋
𝑒𝑇∗𝐴

𝑝⌊𝑐 log 𝑛⌋𝑒𝑖
𝜆𝑝⌊𝑐 log 𝑛⌋

𝑒𝑇
𝑗
𝐴𝑝⌊𝑐 log 𝑛⌋1

𝑒𝑇∗𝐴
𝑛𝑝1

𝜆𝑛𝑝
.

Now by the estimates (8.3) and Remark 8.1, we see that this quotient is equal to

𝑢𝑖𝑝𝑗

𝑝∗
⋅
(

1
𝑢𝑖

+ 𝑂(𝑛−1∕2)

)
⋅
(

1
𝑝𝑗

+ 𝑂(𝑛−1∕2)

)
⋅ (𝑝∗ + 𝑂(𝜃𝑛)) = 1 + 𝑂(𝑛−1∕2) (8.4)

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12550 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



56 CANTRELL and SERT

for some 0 < 𝜃 < 1. Here we have used that 𝑢𝑖 > 0 and 𝑝𝑗 > 0 (the former is assumed, the latter
follows because 𝑣𝑗 is assumed to belong to maximal component of 𝐴𝑝). As there are only finitely
many vertices in  and the left-hand side of (8.4) only depends on vertices of , we deduce that

sup
𝛾

|||||𝜋𝑛′(𝛾)

�̃�𝑐
𝑛𝑝(𝛾)

− 1
||||| = 𝑂(𝑛−1∕2) (8.5)

where the supremum is taken over all paths of length 𝑛′ that lie entirely in a single 𝐴𝑝 maximal
component. Now note that, given arbitrary two vertices 𝑣𝑖 and 𝑣𝑗 , if 𝑆

𝑖𝑗
𝑛′ denotes the set of paths

of length 𝑛′ from 𝑣𝑖 to 𝑣𝑗 then

�̃�𝑐
𝑛𝑝(𝑆

𝑖𝑗
𝑛′ ) =

(𝑒𝑇
𝑖
𝐴𝑛′

𝑒𝑗)(𝑒
𝑇
∗𝐴

𝑝⌊𝑐 log 𝑛⌋𝑒𝑖)(𝑒𝑇𝑗 𝐴𝑝⌊𝑐 log 𝑛⌋1)
𝑒𝑇∗𝐴

𝑛𝑝1

⩽
(𝑒𝑇

𝑖
𝐴𝑛′

1)(𝑒𝑇∗𝐴
𝑝⌊𝑐 log 𝑛⌋𝑒𝑖)(𝑒𝑇𝑗 𝐴𝑝⌊𝑐 log 𝑛⌋1)
𝑒𝑇∗𝐴

𝑛𝑝1
= 𝑝𝑖𝑢𝑖𝑝𝑗∕𝑝∗ + 𝑂(𝑛−1∕2),

(8.6)

as 𝑛 → ∞, where the last equality follows (as in (8.4)) by our estimates (8.3) and Remark 8.1. The
limit 𝑝𝑖𝑢𝑖𝑝𝑗∕𝑝∗ in (8.6) is equal to 0 unless both 𝑣𝑖, 𝑣𝑗 belong to the same𝐴𝑝 maximal component
and 𝑢𝑖 > 0. Letting 𝐿𝑛 denote all paths of length 𝑛′ that lie entirely in an 𝐴𝑝 maximal component
and start at any vertex 𝑣𝑖 with 𝑢𝑖 > 0. We have, for any set 𝑅 consisting of length 𝑛′ paths,

|𝜋𝑛′(𝑅) − �̃�𝑐
𝑛𝑝(𝑅)| ⩽ ∑

𝛾∈𝑅∩𝐿𝑛

|𝜋𝑛′(𝛾) − �̃�𝑐
𝑛𝑝(𝛾)| + �̃�𝑐

𝑛𝑝(𝑅∖𝐿𝑛).

Here we have used that 𝜋𝑛′(𝑅∖𝐿𝑛) = 0 which we can see holds from the definition of 𝜋𝑛′ . To
conclude the proof we note that, from (8.6), �̃�𝑐

𝑛𝑝(𝑅∖𝐿𝑛) = 𝑂(𝑛−1∕2) and

∑
𝛾∈𝑅∩𝐿𝑛

|𝜋𝑛′(𝛾) − �̃�𝑐
𝑛𝑝(𝛾)| = ∑

𝛾∈𝑅∩𝐿𝑛

|||||𝜋𝑛′(𝛾)

�̃�𝑐
𝑛𝑝(𝛾)

�̃�𝑐
𝑛𝑝(𝛾) − �̃�𝑐

𝑛𝑝(𝛾)
|||||

⩽ sup
𝛾∈𝑅∩𝐿𝑛

|||||𝜋𝑛′(𝛾)

�̃�𝜖
𝑛(𝛾)

− 1
||||| = 𝑂(𝑛−1∕2),

where we used (8.5) in the last equality and implied error term constants are independent of the
𝑅. This completes the proof. □

Remark 8.6. So far this section has been concerned with comparing the measures 𝜋𝑛𝑝, 𝜏𝑛𝑝 and
�̃�𝑐
𝑛𝑝. Each of these measures are constructed with the ∗ vertex as their “base point,” that is, 𝜋𝑛𝑝

is constructed using the 𝑒∗ vector and 𝜏𝑛𝑝, �̃�𝑐
𝑛𝑝 can be seen as counting measures on the paths

in  starting at ∗ (as indicated in their constructions). If we replace the ∗ vertex with any other
vertex 𝑣0 of large growth, that is a vertex 𝑣0 such that 𝑒𝑇𝑣0𝐴

𝑛1 ⩾ 𝐶𝜆𝑛 for some 𝐶 > 0 and all 𝑛 ⩾ 1,
then we can construct measures analogous to 𝜋𝑛𝑝, 𝜏𝑛𝑝 and �̃�𝑐

𝑛𝑝 but with 𝑣0 being the new “base
point”. To do this, one replaces 𝑒∗ with 𝑒𝑣 in the construction of 𝜋𝑛𝑝 and alters 𝜏𝑛𝑝 and �̃�𝑐

𝑛𝑝 so
that they count with respect to paths starting at 𝑣0 instead of ∗. This new construction will yield
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 57

different measures however all of the results that we have seen so far in this section will also hold
for these measures.

We can now prove a counting CLT with error term for the sequence of spheres (𝑆𝑛𝑝)𝑛∈ℕ.

Proposition 8.7. There exists Λ, 𝜎2 > 0 such that

𝜏𝑛𝑝

(
g ∈ Γ ∶

log ‖𝜌(g)‖ − Λ|g|√|g| ⩽ 𝑡

)
= 𝑁(𝑡, 𝜎) + 𝑂

(
log 𝑛√

𝑛

)
as 𝑛 → ∞.

Proof. Let Ω denote the set of finite paths in  and for g ∈ Ω let g denote the group element
corresponding to g via the labeling map. For 𝑡 ∈ ℝ, let 𝐸(𝑡) and 𝐸(𝑡) be the sets{

g ∈ Γ ∶
log ‖𝜌(g)‖ − Λ|g|√|g| ⩽ 𝑡

}
and

{
g ∈ Ω ∶

log ‖𝜌(g)‖ − Λ|g|√|g| ⩽ 𝑡

}
,

respectively, and let 𝑐 > 0 be a constant given by Lemma 8.5. For each 𝑛 ∈ ℕ, we factorize each
path (or element) g of length 𝑛𝑝 as a concatenation (resp., product) g0g1g2 where g0, g1 and g2 are
the sub-paths (resp., factors) of g of length 𝑝⌊𝑐 log 𝑛⌋, 𝑛𝑝 − 2𝑝⌊𝑐 log 𝑛⌋ and 𝑝⌊𝑐 log 𝑛⌋, respec-
tively. Writing 𝜏𝑛𝑝(𝐸(𝑡)) = 𝜏𝑛𝑝(g = g0g1g2 ∈ 𝐸(𝑡)) and using submultiplicativity of the matrix
norm ‖ ⋅ ‖ we deduce that there exists 𝐶 > 0 such that 𝜏𝑛𝑝(𝐸(𝑡)) is bounded above and below
by

𝜏𝑛𝑝(g = g0g1g2 ∶ g1 ∈ 𝐸(𝑡 + 𝐶𝑛−1∕2 log 𝑛)) and 𝜏𝑛𝑝(g = g0g1g2 ∶ g1 ∈ 𝐸(𝑡 − 𝐶𝑛−1∕2 log 𝑛)),

respectively. Now note that by the definition of �̃�𝑐
𝑛𝑝 and by Lemma 8.5

𝜏𝑛𝑝{g = g0g1g2 ∶ g1 ∈ 𝐸(𝑡 ± 𝐶𝑛−1∕2 log 𝑛)} = �̃�𝑐
𝑛𝑝(𝐸(𝑡 ± 𝐶𝑛−1∕2 log 𝑛))

= 𝜋𝑝𝑛−2𝑝⌊𝑐 log 𝑛⌋(𝐸(𝑡 ± 𝐶𝑛−1∕2 log 𝑛)) + 𝑂(𝑛−1∕2).

On the other hand, by Lemma 8.2 and Remark 8.3, we get that

𝜋𝑝𝑛−2𝑝⌊𝑐 log 𝑛⌋(𝐸(𝑡 ± 𝐶𝑛−1∕2 log 𝑛)) = 𝑁(𝑡 ± 𝐶𝑛−1∕2 log 𝑛, 𝜎) + 𝑂

(
log 𝑛√

𝑛

)

= 𝑁(𝑡, 𝜎) + 𝑂

(
log 𝑛√

𝑛

)

as 𝑛 → ∞ uniformly in 𝑡 ∈ ℝ. The last line follows from the fact that the normal distribution
has uniformly bounded derivative. The proof is completed by combining the last two displayed
equations. □
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58 CANTRELL and SERT

Using the same ideas, we can also prove the following. Given a vertex 𝑣 in  recall that we say
that 𝑣 is of large growth if the number of length 𝑛 paths in  starting at 𝑣 grows at least like 𝐶𝜆𝑛

for some 𝐶 > 0, that is, 𝑒𝑇𝑣 𝐴
𝑛1 ⩾ 𝐶𝜆𝑛.

Proposition 8.8. Suppose 𝑣 is a vertex of large growth. Suppose 𝜏𝑣
𝑛𝑝 is the uniform countingmeasure

on the paths in  of length 𝑛𝑝 starting at 𝑣. Let Λ, 𝜎2 > 0 be the constants in Proposition 8.7. Then

𝜏𝑣
𝑛𝑝

(
g ∈ Ω ∶

log ‖𝜌(g)‖ − Λ|g|√|g| ⩽ 𝑥

)
= 𝑁(𝑥, 𝜎) + 𝑂

(
log 𝑛√

𝑛

)

as 𝑛 → ∞ where Ω represents the set of finite paths in  and for g ∈ Ω, g ∈ Γ is the group element
corresponding to multiplying the edge labelings in g .

Proof. When 𝑣 =∗ this proposition is precisely Proposition 8.7. The proof of this more general
result follows the same method used to prove Proposition 8.7 but we consider the “initial vertex”
to be 𝑣 instead of ∗. We define the counting measures �̃�𝑐

𝑛𝑝 and 𝜋𝑘𝑝 as before, but we replace the
vector 𝑒∗ with the vector 𝑒𝑣 in their definitions, see Remark 8.6. We can then prove analogous
results, such as Lemma 8.5 for these measures and then carry out the same proof. □

Finally, we are in a position to prove our CLT.

Proof of Theorem 1.9. For 𝑡 ∈ ℝ, let𝐸(𝑡) denote the set defined in Proposition 8.7. Fix 𝑟 ∈ {0, … , 𝑝 −
1}. For each g0 ∈ Γ with |g0|𝑆 = 𝑟 let 𝑡(g0) denote the terminal vertex in the path corresponding
to g0 that begins with ∗ in . It follows from the definition of 𝜇𝑟 that if 𝑡(g0) is not a vertex of large
growth then 𝜇𝑟(g0) = 0. Then, by definition of the measure 𝜇 and Proposition 8.8

𝜇𝑛𝑝+𝑟(𝐸(𝑡)) =
∑
|g0|=𝑟

𝜇𝑟(g0)𝜏
𝑡(g0)
𝑛𝑝 (g1 ∶ g0g1 ∈ 𝐸(𝑡))

=
∑
|g0|=𝑟

𝜇𝑟(g0)

(
𝑁(𝑡, 𝜎) + 𝑂

(
log 𝑛√

𝑛

))

= 𝑁(𝑡, 𝜎) + 𝑂

(
log 𝑛√

𝑛

)

𝑛 → ∞ and where the implied constant is independent of 𝑡 ∈ ℝ. It then follows from Lemma 8.4
that 𝜏𝑛𝑝+𝑟(𝐸(𝑡)) = 𝑁(𝑡, 𝜎) + 𝑂(𝑛−1∕2 log 𝑛). As this holds for each 𝑟 = 0,… , 𝑝 − 1, our theorem
follows. □

9 ON A QUESTION OF KAIMANOVICH–KAPOVICH–SCHUPP

Here we briefly discuss some consequences of our results which pertain to the growth
indicator functions, and make a connection between these and a result of Lubotzky–Mozes–
Raghunathan [52, 53]. These consequences provide an affirmative answer to a question of
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COUNTING AND BOUNDARY LIMIT THEOREMS FOR GROMOV-HYPERBOLIC GROUPS 59

Kaimanovich–Kapovich–Schupp [46] that was also raised in our precise setting in Sert’s thesis
[62].

9.1 Unique maximum of growth indicator

We will formulate the consequences using the language of reductive real linear algebraic groups.
For definitions of the notions and objects we use, we refer the reader to [8]. The reader is invited
to consider the case 𝐺 = SL𝑑(ℝ) or GL𝑑(ℝ) in which case we will specify the relevant objects.
Let 𝐺 be the group of real points of a connected reductive affine algebraic group defined overℝ

(we will shortly refer to such a group as a real reductive Lie group). Let 𝔞+ be a Weyl chamber in
a Cartan subspace of the Lie algebra of 𝐺 and 𝜅 ∶ 𝐺 → 𝔞+ the associated Cartan projection. For
the case of 𝐺 = GL𝑑(ℝ) or SL𝑑(ℝ), one can define for g ∈ 𝐺,

𝜅(g) = (log 𝜎1(g), … , log 𝜎𝑑(g)),

where 𝜎𝑖(g)’s are the singular values of g in decreasing order and 𝔞+ to be the cone inℝ𝑑 given by
𝑥1 ⩾ … ⩾ 𝑥𝑑 in the case of GL𝑑(ℝ) and the intersection of this cone with the subspace 𝑥1 +⋯ +
𝑥𝑑 = 0 in the case of SL𝑑(ℝ). Denote by𝔞++ the interior of𝔞+.We clarify that these definitions only
differ by a linear change of coordinates from the more standard definitions in [8] and the results
discussed below are independent of the choice of coordinates up to affine transformations.
A direct corollary of Theorem 1.1 is the following.

Corollary 9.1. Let 𝐺 be a real reductive Lie group, 𝜅 ∶ 𝐺 → 𝔞+ a Cartan projection of 𝐺. Let Γ be
a Gromov-hyperbolic group, 𝜌 ∶ Γ → 𝐺 a representation with Zariski-dense image. For every finite
symmetric generating set 𝑆 of Γ, there exists Λ⃗ ∈ 𝔞++ such that

1
𝑛

∑
𝛾∈𝑆𝑛

1
#𝑆𝑛

𝜅(𝜌(𝛾)) ⟶
𝑛→∞

Λ⃗.

Proof. The convergence is a straightforward consequence of [8, Lemmas 8.15 and 8.17] together
with Theorem 1.1. The fact that Λ⃗ ∈ 𝔞++ is obtained using additionally Proposition 1.4. The details
are standard and omitted. □

It might be possible to prove the above convergence under the same assumptions when we
replace the Cartan projection 𝜅 with the Jordan projection 𝜆. However, even in the case of Marko-
vian random matrix products, the law of large numbers for the spectral radius may fail (see [2])
and one has to deal with this difficulty. On the other hand, in ongoing work with Cipriano and
Dougall, we show that the above convergence holds for both 𝜅 and 𝜆 with a speed estimate under
the assumption that the representation 𝜌 is Anosov (with respect to an appropriate sense parabolic
subgroup). Finally, in the previous result, one may prove the stronger statement that Λ⃗ belongs
to the interior of the joint spectrum 𝐽(𝑆) of 𝑆 (see [16]). We will however content with the above
version for brevity.
We now turn to a consequence of our large deviation estimate Theorem 1.5, its connection to the

uniqueness of themaximum of the growth indicator function and the connection between the lat-
ter and a question of Kaimanovich–Kapovich–Schupp [46, Problem 9.3]. In the latter, the authors
proved (see also an earlier related consideration in [47]) that if in Theorem 1.1, one considers Γ to
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60 CANTRELL and SERT

be a free group with a free generating set 𝑆 and having fixed an automorphism 𝜙 ∶ 𝐹 → 𝐹, one
takes𝜑 ∶ 𝐹 → ℝ to be the function𝑤 ↦ |𝜙(𝑤)|𝑆 , then the convergence in Theorem 1.1 is exponen-
tial. In [46, Problem 9.3], the authors ask the question of whether there are other examples where
this convergence is exponential for a map on a free group. Theorems 1.5 and 1.7 clearly provide
positive answers in a more general (both for underlying groups and generating sets) setting. The
existence of this kind of phenomenon was also asked in [62, Introduction 7.4.3] with the language
of growth indicator of a finite set, a notion that was introduced therein (see also a forthcoming
paper by Sert). We now briefly recall this notion and formulate the consequence of our counting
large deviation result.
Let𝐺 be a real reductive Lie group, 𝔞+ aWeyl chamber of𝐺,Γ < 𝐺 a finitely generated subgroup

and 𝑆 be a finite generating set Γ. We define the growth indicator of 𝑆 as:

𝜑𝑆 ∶ 𝔞+ → [0,∞) ∪ {−∞}

𝛼 ↦ inf
𝛼∈𝑂

lim sup
𝑛→∞

1
𝑛

log#
{

g ∈ 𝑆𝑛 | 1
𝑛
𝜅(g) ∈ 𝑂

}
,

where𝑂 ranges over neighborhoods of 𝛼 in theWeyl chamber 𝔞+. If Γ is Zariski-dense, the closure
of the locus of points 𝑥 ∈ 𝔞+ on which 𝜑𝑆 takes values in [0,∞) is contained in the joint spectrum
of 𝑆 ([16]), which is a convex body in 𝔞+. On the other hand, denoting by 𝜆𝑆 > 1 the exponential
growth rate of the cardinality of 𝑆𝑛, the function 𝜑𝑆 is bounded above by log 𝜆𝑆 . Moreover, it is
not hard to see that the value log 𝜆𝑆 is always attained by 𝜑𝑆 . In this general setting, the locus of
maxima, that is, the description of the set𝜑−1

𝑆
({log 𝜆𝑆}) remains to be studied. Thanks to our Theo-

rem 1.5,we candescribe it in the setting ofCorollary 9.1. Indeed, the conclusion of the latter implies
that 𝜑𝑆(Λ⃗) = log 𝜆𝑆 where Λ⃗ ∈ 𝔞++ is given by that corollary and the following consequence of
Theorem 1.5 says that 𝜑𝑆 attains its maximum only on Λ⃗ which is precisely the aforementioned
positive answer to [46, Problem 9.3].

Corollary 9.2. Let 𝐺 be a real reductive Lie group, 𝜅 ∶ 𝐺 → 𝔞+ a Cartan projection, Γ < 𝐺 a
Zariski-dense Gromov-hyperbolic subgroup and 𝑆 a finite symmetric generating set of Γ. Let 𝜑𝑆 ∶
𝔞+ → [0,∞) ∪ {−∞} be the growth indicator of 𝑆. Then, the Weyl chamber element Λ⃗ ∈ 𝔞++ given
by Corollary 9.1 is the unique point where 𝜑𝑆 reaches its maximum value log 𝜆𝑆 . □

9.2 A connection to the work of Lubotzky–Mozes–Raghunathan

Here we let 𝐺 be a connected semisimple real Lie group and Γ < 𝐺 a finitely generated Zariski-
dense subgroup, endowed with a finite symmetric generating set 𝑆. Let 𝐾 < 𝐺 be a maximal
compact subgroup and 𝑑𝐺 a left-𝐺-invariant and bi-𝐾-invariant Riemannianmetric on𝐺 induced
by the Killing form. If Γ is a uniform lattice in 𝐺, then it is not hard to see that the word-
metric 𝑑𝑆 is Lipschitz equivalent 𝑑𝐺 (see, e.g., [53, Proposition 3.2]). The situation is much less
clear for nonuniform lattices. Confirming a conjecture of Kazhdan (see [40]), Lubotzky–Mozes–
Raghunathan [53] have shown that if 𝐺 has ℝ-rank at least two and Γ is an irreducible lattice in
𝐺, then 𝑑𝑆 and 𝑑𝐺 are Lipschitz equivalent. In other words, there is a constant 𝐶 > 1 such that for
every 𝑛 ∈ ℕ and g ∈ 𝑆𝑛, we have

𝐶−1𝑛 ⩽ 𝑑𝐺(g , id) ⩽ 𝐶𝑛.
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This equivalence breaks down for rank-one simple Lie groups in which case the word-metric
𝑑𝑆 of a (nonuniform) lattice can be exponentially distorted in the terminology of [40, section 3].
This is for example the case for SL2(ℤ) < SL2(ℝ). When Γ is only required to be Zariski-dense, the
connection between 𝑑𝑆 and 𝑑𝐺 is much less clear. In many cases (e.g., if Γ is not discrete), it does
not make sense to ask for Lipschitz equivalence of every element of Γ as there can be elements of
Γ with arbitrarily large 𝑑𝑆-length but small 𝑑𝐺-length.
One way to study the connection between 𝑑𝑆 and 𝑑𝐺 , despite the fact they can not be Lipschitz

equivalent, is to ask whether there is an equivalence 𝑑𝑆 ∼ 𝑑𝐺 for most of the elements of Γ. Our
counting large deviation Theorem 1.5 (and Corollary 9.2) then have the following consequence
that establishes such a statistical relation between 𝑑𝑆 and 𝑑𝐺 for Gromov-hyperbolic groups.

Corollary 9.3. Let Γ be a Zariski-dense, nonelementary Gromov-hyperbolic subgroup of a real
semisimple Lie group 𝐺. Then, for every finite symmetric generating set 𝑆 of Γ and constant 𝜖 > 0,
there exists a subset 𝑇𝜖 of Γ with the property that

#(𝑆𝑛 ⧵ (𝑇𝜖 ∩ 𝑆𝑛))

#𝑆𝑛
= 𝑂(𝑒−𝛼𝑛) (9.1)

for some 𝛼 > 0, and there exists a constantΛ = Λ(𝑆) > 0 such that for every 𝑛 ∈ ℕ and g ∈ 𝑆𝑛 ∩ 𝑇𝜖,
we have

𝑛(Λ − 𝜖) ⩽ 𝑑𝐺(g , id) ⩽ 𝑛(Λ + 𝜖). (9.2)

A subset of Γ satisfying (9.1) can be called 𝑆-exponentially generic in Γ in the terminology of
[46].

Proof. It suffices to work with the symmetric space𝐺∕𝐾 and the𝐺-invariant metric 𝑑𝐺∕𝐾 induced
by the Killing form. Let 𝔞+ be a Weyl chamber in a Cartan subspace 𝔞 of the Lie algebra 𝔤 of 𝐺
such that we have the Cartan decomposition 𝐾 exp(𝔞+)𝐾. Denoting by ‖ ⋅ ‖ the norm induced by
the Killing form on 𝔞, by [8, section 6.7.4], for any g ∈ 𝐺, we have ‖𝜅(g)‖ = 𝑑𝐺∕𝐾(g ⋅ 𝑜, 𝑜). The
result now follows from Corollary 9.2. □

Remark 9.4. By replacing the use of Theorem 1.5 (in the form of Corollary 9.2) by Theorem 1.1,
one can obtain a version of Corollary 9.3 valid for any left-𝐺-invariant Riemannian metric 𝑑 on 𝐺
but 𝑇𝜖 being only 𝑆-generic for Γ instead of 𝑆-exponentially generic. Here, by 𝑆-generic for Γ, we
understand a subset satisfying (9.1) with 𝑂(𝑒−𝛼𝑛) replaced by 𝑜(1)).
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