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Abstract

Genome-wide association studies (GWAS) have identified >300 loci associated with mea-

sures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI,

WHRadjBMI), but few have been identified through screening of the African ancestry

genomes. We performed large scale meta-analyses and replications in up to 52,895 individ-

uals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthro-

pometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to

improve coverage of both common and low frequency variants in the low linkage disequilib-

rium African ancestry genomes. In the sex-combined analyses, we identified one novel

locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10−8:

seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel

locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European

GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL

and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B

and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and

European ancestry. For four of the novel variants, the minor allele frequency was low (<5%).

In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide

significant (P < 0.05 adjusted for effective number of variants per locus) from the African

ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci con-

tained� 20 variants in the credible sets that jointly account for 99% posterior probability of

driving the associations. The lead variants in 13 of these loci had a high probability of being

causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI

GWAS for adiposity in African ancestry
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including up to 71,412 and 27,350 African ancestry individuals, respectively, our results sug-

gest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci

including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping

of putative causal variants in loci shared between the African and European ancestry

populations.

Author summary

Genome-wide association studies (GWAS) have identified >300 genetic regions that

influence body size and shape as measured by body mass index (BMI) and waist-to-hip

ratio (WHR), respectively, but few have been identified in populations of African ancestry.

We conducted large scale high coverage GWAS and replication of these traits in 52,895

and 23,095 individuals of African ancestry, respectively, followed by additional replication

in European populations. We identified 10 genome-wide significant loci in all individuals,

and an additional seven loci by analyzing men and women separately. We combined Afri-

can and European ancestry GWAS and were able to narrow down 43 out of 74 African

ancestry associated genetic regions to contain small number of putative causal variants.

Our results highlight the improvement of applying high density genome coverage and

combining multiple ancestries in the identification and refinement of location of genetic

regions associated with adiposity traits.

Introduction

Obesity is a worldwide public health epidemic, with current US estimates of 37.9% obese and

7.7% morbidly obese adults [1]. Disparities in obesity rates, as well as rates of comorbidities

and mortality, are evident across sex and racial/ethnic groups. Estimates from NHANES for

2013–2014 [1] show that obesity is more prevalent among African Americans (48.5%) than

among non-Hispanic Whites (37.1%). In addition, obesity rates are higher among African

American women (57.2%) than among African American men (38.2%). For comparison, the

obesity rates in non-Hispanic Whites were 38.7% and 35.4%, respectively, for women and

men.

Genome-wide association studies (GWAS) in diverse populations have identified > 300

loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip

ratio (adjusted for BMI, WHRadjBMI) in populations of European [2–9], African [10–12], and

East Asian ancestry [13–15]. The majority of associated variants are common (MAF >5%)

with small effect size, and jointly explain only a fraction of the phenotypic variances [7–8]. It

has long been hypothesized that low frequency (MAF = 0.5–5%) and rare (MAF < 0.5%) vari-

ants may also contribute to variability in complex traits. However, these variants are not well

captured in previous GWAS imputed to the HapMap reference panel [16–17]. The availability

of higher density reference panels such as the 1000 Genomes Project (38M variants in 1092

individuals from phase 1) [18] has demonstrated improved imputation quality in European

populations particularly for low frequency variants (aggregate R2 ~0.6 for MAF = 0.5%). How-

ever its impact is less clear for non-European populations [19]. We took this opportunity to

use higher density imputation to reevaluate our previous GWAS for associations with anthro-

pometric traits in individuals of African ancestry (AA) including African Americans and

Africans.
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The African Ancestry Anthropometry Genetics Consortium (AAAGC) previously identi-

fied seven genome-wide significant loci for BMI in up to 71,412 AA individuals, and an addi-

tional locus when combined with European ancestry (EA) data from the Genetic Investigation

of ANthropometric Traits (GIANT) consortium using GWAS imputed to the HapMap Phase

2 reference panel [11]. No genome-wide significant loci were identified for WHRadjBMI in a

GWAS of up to 27,350 AA individuals [12]. The low yield of discovery in AA studies is likely

due to their relatively smaller sample sizes in comparison to EA studies [7–8], as well as their

lower degree of linkage disequilibrium (LD) and thus poorer imputation quality. Here, we

extended our previous work in the AAAGC to perform meta-analyses and replication of

GWAS imputed to the 1000 Genomes reference panel in up to 52,895 AA individuals for BMI

and up to 23,095 AA individuals for WHRadjBMI. We aimed to 1) discover novel variants, 2)

fine map established loci, and 3) evaluate the coverage and contribution of low frequency vari-

ants in genetic associations in AA populations.

Results

Study overview

We conducted sex-combined and sex-stratified meta-analyses of GWAS summary statistics

across 17 studies for BMI (N = 42,752) and 10 studies for WHRadjBMI (N = 20,384) in AA indi-

viduals in stage 1 discovery (S1 and S2 Tables, S1 Fig). Missing genotypes in individual studies

were imputed to the 1000 Genomes Project cosmopolitan reference panel (Phase I Integrated

Release Version 3, March 2012) [18] using MaCH/minimac [20] or SHAPEIT2/IMPUTEv2

[21–22] (S3 Table). Among all variants with MAF� 0.1% in the largest Women’s Health Ini-

tiative (WHI) study, the average info score was 0.81 and 90.5% had imputation info score�

0.3 (S4 Table). Genomic control corrections were applied to each study and after meta-analysis

(λ = 1.07 for BMI, 1.01 for WHRadjBMI) (S3 Table, S2–S5 Figs). Association results for ~18M

variants for BMI and ~21M variants for WHRadjBMI were subsequently interrogated further.

From stage 1 meta-analyses, variants associated with BMI (3,241 in all, 1,498 in men, 2,922

in women) and WHRadjBMI (2,496 in all, 1,408 in men, 2,827 in women) at P< 1×10−4 were

carried forward for replication in AA and EA. Stage 2 included 10,143 AA (2,458 men and

7,685 women) for BMI and 2,711 AA (981 men and 1,730 women) for WHRadjBMI analyses.

Stage 3 included 322,154 EA (152,893 men and 171,977 women) for BMI and 210,086 EA

(104,079 men and 116,742 women) for WHRadjBMI analyses by imputing HapMap summary

statistics results [7–8] to 1000 Genomes [23] (S1 Fig). Meta-analyses were performed to com-

bine either sex-combined or sex-specific results from AA (stages 1+2, N� 57,895 for BMI,�

23,095 for WHRadjBMI in sex-combined analyses) and both AA and EA (stages 1+2+3, N�

380,049 for BMI,� 233,181 for WHRadjBMI in sex-combined analyses, S6–S9 Figs). Variants

that reached genome-wide statistical significance (P< 5×10−8) were assessed for generalization

of associations with BMI to children in two additional AA cohorts (N = 7,222).

Genome-wide significant loci in meta-analyses

Sex-combined analyses. In the sex-combined meta-analysis of BMI in AA, seven previ-

ously established European or African ancestry-derived loci in/near SEC16B,TMEM18,

GNPDA2, GALNT10,KLHL32, FTO and MC4R reached genome-wide significance (P<
5×10−8) (Table 1, S6 and S10A Figs). The rs7708584 variant at GALNT10 had the lowest

P-value (P = 4.2×10−14) and was the same lead variant as reported in our previous AA study

(S5 Table) [11]. The association at KLHL32 was specific to the AA population as the lead vari-

ant was not statistically significant in EA (P> 0.05), consistent with our previous finding (S5

Table) [11]. No additional novel BMI loci were identified after meta-analysis of AA and EA

GWAS for adiposity in African ancestry
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data. Two previously reported loci in AA, ADCY3 and MIR148A-NFE2L3 [11], did not reach

genome-wide significance in the present study. The previously reported lead variant at

ADCY3, rs7586879, showed weaker effect and association in AA (effect = 0.047, P = 3.60×10−8

[11] vs. effect = 0.032, P = 1.05×10−4, this study). On the other hand, a moderately correlated

(r2 = 0.52 in AFR) variant, rs10203482, show stronger association at P = 3.35×10−7 (S5 Table).

At MIR148A/NFE2L3, the previously reported lead variant identified by meta-analysis of AA

and EA, rs10261878, also showed weaker association in the current study primarily due to

weak association in EA (P = 4.10×10−5 in AA, 4.69×10−3 in EA and 2.10×10−5 in AA+EA) (S5

Table). For WHRadjBMI, an established locus (ADAMTS9-AS2) (S10B Fig) and a novel locus

(TCF7L2/HABP2) (Fig 1A) showed significant associations, the latter lead variant rs116718588

was low frequency (MAF = 0.045, Table 1). Meta-analyses including both AA and EA individ-

uals revealed an additional novel locus at SPRYD7/DLEU2 for WHRadjBMI (Table 1, Fig 1A and

S7 Fig). Overall, all the BMI associated lead variants were present in HapMap and were in high

LD (r2 > 0.5 in 1000 Genomes AFR population) with the lead variants in our previous Hap-

Map imputed data, except for TMEM18 rs62105306 (r2 = 0.17) which is absent in HapMap. In

contrast, all three WHRadjBMI lead variants were absent in HapMap and the lead variants at

ADAMTS9-AS2 and TCF7L2-HABP2were in low LD (r2 < 0.5) with the lead variants in our

previous HapMap imputed data [11–12]. We used conditional and joint association analyses

to examine the genome-wide significant locus for secondary signals, but no additional inde-

pendent signals were found.

Sex-stratified analyses. In the sex-stratified meta-analysis in AA, four established BMI

loci (SEC16B,GALNT10, FTO and MC4R) and one established WHRadjBMI locus (ADAMT-
S9-AS2) were genome-wide significant among women (S6 Table, S8 and S9 Figs). ADAMT-
S9-AS2 showed a stronger association with WHRadjBMI among women than among men

(Phet = 0.02) (S6 Table), consistent with findings among EA [9]. On the other hand, although

our observed SEC16B rs543874 effect size differences (0.064 vs. 0.038, Phet = 0.08) for BMI in

women compared to men were similar to those previously observed among EA (0.060 vs.

0.034, Phet = 5.23×10−5) [7], we did not observe statistically significant differences in effect size,

likely due to a much smaller sample size and thus lower statistical power in our study. All these

five loci were also genome-wide significant in the sex-combined meta-analyses. They were not

further examined in subsequent sex-stratified analyses given their smaller sample sizes com-

pared to the sex-combined analyses. In AA, additional novel loci were observed for association

with BMI; these were variants in IRX4/IRX2 among women, variants in INTS10/LPL and

MLC1 among men (Fig 2), and for WHRadjBMI, variants in SSX2IP and PDE3B among women

(Fig 1B, Table 2). In meta-analyses including both AA and EA, two additional novel loci at

CASC8 and ZDHHC1/HSD11B2were identified for WHRadjBMI in women (Table 2, Fig 1B).

Among all loci, the effect sizes of six variants (IRX4/IRX2, INTS10/LPL,MLC1, ADAMT-
S9-AS2, PDE3B and CASC8) were nominally significant different between men and women in

AA (Phet< 0.05) (S6 Table).

Replication in children. We evaluated the seven sex-combined and three sex-specific

genome-wide significant BMI loci for associations in 7,222 AA children (3,552 boys and 3,670

girls). All lead variants displayed directional consistency, and five of these including SEC16B,

TMEM18, GNPDA2, GALNT10 and MC4R showed nominal associations with BMI (P< 0.05,

Pbinomial = 4.70×10−8) (S7 Table), supporting the role of these loci in modulating adiposity in

AA children. WHRadjBMI data were not available in the cohorts of children.

Functional characterization of novel loci. We used multiple complementary approaches

to elucidate the putative causal genes and/or variants associated with the nine novel BMI and

WHRadjBMI loci from the sex-combined and sex-stratified analyses, including annotating

nearby coding variants, cis-expression quantitative trait loci (cis-eQTL) analyses, and

GWAS for adiposity in African ancestry
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functional regulatory genomic element analyses. One missense variant in PLEKHG4,

rs8044843, was in high LD (r2 = 0.75 in AFR) with rs6499129 associated with WHRadjBMI in

women (S8 Table). We did not identify any coding variants in high LD (r2>0.7) with other

lead variants within the flanking 1Mb-regions. Regulatory element analyses using Regulo-

meDB [24] and HaploReg [25] revealed that proxies (r2 = 0.73–0.84) to lead variants at three

WHRadjBMI loci (SPRYD7/DLEU2, PDE3B, and ZDHHC1/HSD11B2)were associated with

transcription factor binding, DNase peak, promoter or enhancer histone marks (S8 Table). In

addition, the lead variant rs2472591 at SPRYD7/DLEU2 was in high LD (r2 = 0.85) with

rs790943, a cis-eQTL associated with expression of the nearby gene, TRIM13, in blood den-

dritic cells in tuberculosis patients [26] (S9 Table), suggesting the associations at the SPRYD7/
DLEU2 locus may be involved in the regulation of nearby gene expression at TRIM13.

Cross-trait associations of novel loci. We searched the NHGRI-EBI GWAS [27] and

Genome-Wide Repository of Associations Between SNPs and Phenotypes (GRASP) [28] cata-

logs to assess if any of the nine novel lead variants were in high LD with variants that were

genome-wide significantly (P< 5×10−8) or nominally (P< 0.05) associated with related

anthropometric and cardiometabolic traits or gene expression in prior studies. Although a

few lead variants were physically close (<500 kb) to GWAS loci for related traits in the

NHGRI-EBI GWAS Catalog (Figs 1 and 2), none of our lead variants were in high LD with the

previously associated lead variants. Additionally, there were no nearby associations for novel

BMI loci in the GRASP Catalog. Of the novel variants associated with WHRadjBMI, rs2472591

at SPRYD7/DLEU2, rs378854 near MYC, and rs6499129 near ZDHHC1/HSD11B2were in high

LD (r2 > 0.7) with previously-reported WHRadjBMI variants, but they did not reach genome-

wide significance (P> 2×10−5) [3] (S9 Table). Other nearby associations with related cardio-

metabolic traits include chronic kidney disease (CKD), high density lipoprotein cholesterol

(HDL-C), anthropometric traits (BMI, height, and birth weight), blood pressure (systolic

blood pressure and hypertension), diabetes-related traits (blood glucose and HOMA-IR), and

gene expression of several genes (e.g. ATP6V0D1, ZDHHC1, DUS2L, AGRP, GFOD2 and

LRRC29).

Evaluation of established European loci in African ancestry populations

Conditional analysis in GWAS loci. Among the six BMI (SEC16B,TMEM18, GNPDA2,

GALNT10, FTO and MC4R) and one WHRadjBMI (ADAMTS9-AS2) genome-wide significant

loci in AA that were previously reported in EA [7–8], we tested whether the African derived

lead variants were independent of the reported European signals by conditioning on the Euro-

pean lead variants or their surrogates. For three of the BMI loci (SEC16B,GNPDA2 and

MC4R), our lead variants are the same as those reported in the previous literature [7]. For all

other loci, the lead variants demonstrated substantially lower significance upon conditional

analysis, suggesting that the African ancestry results represented the same association signals

as previously reported in GWAS performed predominantly in EA populations (S10 Table).

SNP transferability. We further examined all sex-combined and sex-stratified BMI and

WHRadjBMI loci identified from previous EA studies [7–9] in our AA data. Among 176 EA

lead variants from 170 BMI loci, 119 variants displayed directionally consistent associations

with BMI in our data, 31 of these were nominally significant at P< 0.05 (Pbinomial = 2.2×10−18

among 176 variants). Among 84 EA lead variants from 65 WHRadjBMI loci, 69 variants dis-

played directionally consistent associations with WHRadjBMI, and 23 of these were nominally

significant (Pbinomial = 5.3×10−19 among 84 variants) (S11 Table). EA lead variants in 11 BMI

and 3 WHRadjBMI loci showed directional consistency and significant associations after correc-

tion for multiple comparisons (P< 1.92×10−4). Among the 54 nominally transferable lead

GWAS for adiposity in African ancestry
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Fig 1. Locuszoom plots of six novel waist-to-hip ratio adjusted for BMI (WHRadjBMI) loci: (A) TCF7L2/HABP2 and SPRYD7/DLEU2 in men and women

combined; and (B) SSX2IP, PDE3B, CASC8, and ZDHHC1/HSD11B2 in women only. All plots use AFR LD from the 1000 Genomes phase 1 reference

panel. In each plot, the most significant variant within a 1Mb regional locus is highlighted. P-values for all variants including the most significant variant are

based on the African ancestry discovery phase only (AA-Discovery). In addition, for the most significant variant, P-values are annotated and illustrated from

the African ancestry discovery and replication phases (AA-Discovery+Replication). SNP rs2472591 was available in the Europeans from the GIANT

consortium effort and combined with the African ancestry discovery and replication phases (AA+EA).

https://doi.org/10.1371/journal.pgen.1006719.g001

GWAS for adiposity in African ancestry

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006719 April 21, 2017 9 / 25

https://doi.org/10.1371/journal.pgen.1006719.g001
https://doi.org/10.1371/journal.pgen.1006719


variants for BMI and WHRadjBMI, 45% and 43% of the effect sizes, respectively, were larger in

the EA than the AA populations. In addition, 65% of the frequencies of the trait-raising alleles

were higher in the EA populations for both traits. The correlations of both effect sizes and

allele frequency of the transferable variants were high (0.74 and 0.79, respectively) for BMI but

weak (0.19 and 0.37, respectively) for WHRadjBMI (S11 Fig). The significant but low proportion

of lead variants that were transferable from EA to AA (18% for BMI and 27% for WHRadjBMI)

suggests either that many loci are not implicated in AA or population differences in LD mask

the detection of associated variants in AA. On the other hand, those variants that were trans-

ferable explain similar levels of variances for BMI in both populations, but not for WHRadjBMI.

Locus transferability. We further investigated locus transferability in EA loci derived

from sex-combined and sex-stratified analyses by considering varying LD between EA and AA

populations. S12 Table reports the most significant lead regional variants in our AA sex-com-

bined and sex-stratified data within 0.1cM region of the previously published EA loci (from

176 BMI and 84 WHRadjBMI lead variants) [7–8]. Forty-five (26%) lead regional variants from

Fig 2. Locuszoom plots for three novel BMI loci: (A) IRX4/IRX2 in women only; and (B) INTS10/LPL and MLC1 in men only. All plots use AFR LD from the

1000 Genomes phase 1 reference panel. In each plot, the most significant variant within a 1Mb regional locus is highlighted. P-values for all variants

including the most significant variant are based on the African ancestry discovery phase only (AA-Discovery). In addition, for the most significant variant, P-

values are annotated and illustrated from the African ancestry discovery and replication phases (AA-Discovery+Replication).

https://doi.org/10.1371/journal.pgen.1006719.g002
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BMI loci remained significant (Plocus< 0.05) after adjustment for the number of independent

variants tested at each locus. Sixteen (36%) and 22 (49%) of these 45 lead regional variants are

in LD (r2>0.2) with the EA BMI lead variants using 1000 Genomes AFR and CEU LD, respec-

tively. Twenty-five of these variants are highly correlated with EA lead variants(r2>0.7 in

CEU) or had�1 standard error decrease in effect sizes after conditional analyses, representing

same association signals as in EA populations. Twenty-one (32%) lead regional variants for

WHRadjBMI loci remained significant. Nine (43%) and seven (33%) of the 21 lead regional vari-

ants was in LD with the EA lead variant using 1000 Genomes AFR and CEU LD, respectively.

Seven of these variants represented the same EA association in conditional analyses (S12

Table).

Fine mapping of novel AA loci and EA-AA transferable established loci

Among the locus-wide significant established loci (44 for BMI given two of 45 lead regional

variants were identical in two loci, and 21 for WHRadjBMI), and novel loci (three for BMI and

six for WHRadjBMI) derived from the sex-combined and sex-stratified analyses, we performed

fine mapping to localize putative causal variants. We constructed 99% credible sets containing

variants that jointly account for 99% posterior probability of driving the association in a locus

using the corresponding sex-combined or sex-stratified meta-analysis results from AA, EA

and combined ancestry (S13 Table). A smaller number of variants in a credible set represent a

higher resolution of fine mapping and we considered a credible set containing� 20 variants as

“tractable’ for follow up. The credible sets in the EA analyses were generally smaller than those

in the AA given their larger sample size. As compared to the EA analyses, the number of tracta-

ble loci in the meta-analyses of AA and EA increased from 23 to 26 for BMI, and from 14 to 17

for WHRadjBMI.

Among these 43 tractable loci, the lead variants in the combined ancestry analyses had pos-

terior probability� 0.95 in six BMI loci (SEC16B,TLR4, STXBP6,NLRC3, FTO and MC4R)

and seven WHRadjBMI loci (DCST2, PPARG, ADAMTS9, SNX10, KLF13, CMIP and PEMT)

(S13 Table). Functional characterization of variants within the tractable credible sets revealed

two loci contain nonsynonymous variants (ADCY3: rs11676272 S107P; SH2B1: rs7498665

T484A from the ATP2A1 locus), but they had low posterior probability to drive the respective

associations (0.02 and 0.15, respectively) (S14 Table). On the other hand, the ADCY3non-cod-

ing variants rs10182181 and rs6752378 had higher posterior probability (0.26–0.72) and are

cis-eQTLs of ADCY3 and nearby genes. Several BMI loci including MTCH2,MAP2K5, NLRC3
and ATP2A1, and WHRadjBMI loci including TBX15-WARS2 and FAM13A, also contained cis-

eQTL variants regulating nearby gene expression in subcutaneous and/or visceral adipose tis-

sue (S14 Table).

Discussion

In our large-scale meta-analyses of GWAS in up to 52,895 and 23,095 individuals of African

ancestry for BMI and WHRadjBMI, respectively, we identified three novel (IRX4/IRX2, INTS10/
LPL and MLC1) and seven established (SEC16B,TMEM18, GNPDA2, GALNT10,KLHL32,

FTO and MC4R) BMI loci, as well as three novel (TCF7L2/HABP2, SSX2IP and PDE3B) and

one established (ADAMTS9-AS2) WHRadjBMI loci in either sex-combined or sex-stratified

analyses. By employing a recently developed method [23] to impute European GWAS sum-

mary statistics to the denser 1000 Genomes reference panel, followed by meta-analyses of both

African and European ancestry individuals, we also identified three additional novel loci

(SPRYD7/DLEU2, CASC8 and ZDHHC1/ HSD11B2) for WHRadjBMI. While all lead variants

from established loci are common (MAF� 5%), four of the nine lead variants from novel loci
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were low frequency (0.5%�MAF < 5%). In addition, the lead variants from established loci

including TMEM18 and ADAMTS9-AS2were absent in HapMap. Overall, these results suggest

the deeper genome coverage and/or improved imputation quality using 1000 Genomes, and

complemented with additional sex-stratified analyses, facilitate the discovery of novel loci and

identification of variants with stronger effects in established loci.

Among the novel sex-specific BMI loci (IRX4/IRX2, INTS10/LPL and MLC1), we did not

identify any putative coding variants or regulatory regions underlying our association signals.

Additionally, no associations have been reported with other metabolic traits in these novel

BMI-associated signals. The first lead variant rs112778462 is located between the IRX4 and

IRX2 genes which are members of the Iroquois homeobox gene family. IRX2 expression has

been associated with deposition of fat in the subcutaneous abdominal adipose tissue but no sex

difference was observed [29–30]. Irx4 knock out mice demonstrated cardiomyopathy with

compensated increased Irx2 expression [31]. The second lead variant rs149352150 is located

between the INTS10 and LPL genes. LPL encoded lipoprotein lipase is expressed in several tis-

sues including adipose to mediate triglyceride hydrolysis and lipoprotein uptake. The serum

LPL mass [32] and LPL activity and fat cell size of adipose tissues at gluteus and thigh [33]

have been reported to be higher in women than in men. Previous GWAS demonstrated associ-

ation of LPL with triglycerides and HDL cholesterol [34–35]. However, the reported lead vari-

ant rs12678919 was not in strong LD with rs149352150 (r2 = 0.005 in AFR and 0.006 in EUR).

The third lead variant rs56330886 is located in a gene-rich region on chromosome 22q13

including MLC1. No biological candidates are identified in this region, therefore further analy-

ses may be needed to explain the causative mechanism for this association signal.

Among the novel WHRadjBMI loci, rs116718588 is located between TCF7L2 and HABP2.

TCF7L2 is the most significant type 2 diabetes locus in African Americans [36] and other pop-

ulations [37]. However, rs116718588 was not in LD (r2 < 0.01 in AFR) with the reported type

2 diabetes associated variants. The second lead variant rs2472591 is located near SPRYD7,

DLEU2 and TRIM13. This locus was associated with height in previous GWAS [6], but

rs2472591 was not associated with height in our study (P> 0.05), suggesting different variants

in this locus regulate different measures of body size. In addition, a surrogate of rs2472591,

rs790943, is a cis-eQTL for TRIM13 [26] suggesting it may be the target gene. TRIM13 encodes

an E3 ubiquitin-protein ligase involved in endoplasmic reticulum-associated degradation. The

third lead variant rs140858719 is located between SSX2IP and LPAR3. LPAR3 is a plausible

candidate as it encodes a receptor for lysophosphatidic acid (LPA). The autotaxin/LPA path-

way mediates diverse biological actions including activation of preadipocyte proliferation [38],

suppression of brown adipose differentiation [39], and promotion of systematic inflammation

[40] which lead to increased risk for cardiometabolic diseases including obesity and insulin

resistance [41–42]. LPA receptor 1 which is highly expressed in adipocytes and the gut primar-

ily mediates these effects [43]. It has also been reported that LPA, via LPA1 and LPA3 recep-

tors, mediated leukocytes recruitment and pro-inflammatory chemokine secretion during

inflammation [44]. The fourth lead variant rs185693786 is located at intron 2 of PDE3B. The

association signal spanned a large genomic region and harbors GWAS loci for adiponectin

and height. Phosphodiesterase 3B is critical for mediating insulin/IGF-1 inhibition of cAMP

signaling in adipocytes, liver, hypothalamus and pancreatic β cells [45]. Pde3b-knockout mice

exhibited multiple alterations in regulation of lipolysis, lipogenesis, and insulin secretion, as

well as signs of peripheral insulin resistance [46]. PDE3B expression has been reported to be

higher in microvascular endothelial cell culture derived from skeletal muscles from male rats

than in female rats [47]. The fifth lead variant rs6499129 is located intergenic between

ZDHHC1 and HSD11B2.HSD11B2 encodes 11β-hydroxysteroid dehydrogenase type 2 which

converts the active glucocorticoids to inactive metabolites. HSD2 activity was elevated in
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severe obesity and negatively associated with insulin sensitivity [48]. HSD2 expression is

higher in omental than abdominal subcutaneous adipose tissue which may contribute to adi-

pocyte hypertrophy and visceral obesity [49]. The sixth lead variant rs378854 is located at the

long non-coding RNA CASC8. Associations of variants at CASC8 have been reported for vari-

ous cancers [50–52] but no association was reported for cardiometabolic traits.

In our SNP and locus transferability analyses, a moderate number of EA-derived BMI and

WHRadjBMI associated variants shared the same trait-raising alleles and displayed nominally

significant associations in AA individuals, similar to previous findings [11–12]. While the

BMI variants were similar in terms of their effect sizes and frequencies of trait-raising alleles

between EA and AA populations, there were more discrepancies for WHRadjBMI variants. In

addition, a substantial proportion of lead regional variants in AA were not in strong LD with

EA lead variants, suggesting AA populations either have different association signals or the

results may be spurious. Taken together, only <30% of EA loci were associated with BMI and

WHRadjBMI in AA.

Trans-ethnic fine mapping improved resolution to refine putative causal variant(s) in some

loci as compared to using EA studies alone. In the meta-analyses of AA and EA GWAS, four

BMI loci (SEC16B, STXBP6, FTO and MC4R) and six WHRadjBMI loci (PPARG, ADAMTS9,

SNX10, KLF13, CMIP and PEMT) only contained one variant in the 99% credible sets. Among

16 BMI and 3 WHRadjBMI loci that were examined in both the previous trans-ethnic meta-

analysis studies using HapMap imputation [7–8] and the present study, the number of variants

and the interval of credible sets were either the same or lower in the present study for 13 and

15 loci, respectively. The majority of credible variants are non-coding in those sets containing

� 20 variants. Several of them located at the MTCH2,MAP2K5, NLRC3, ATP2A1, TBX15-
WARS2 and FAM13A loci are cis-eQTL variants regulating nearby gene expression in subcuta-

neous and/or visceral adipose tissue, suggesting the putative causal variants may have a regula-

tory role instead of directly altering protein structure and function. Despite the low posterior

probabilities, the coding changes of credible variants at ADCY3 and SH2B1 suggest that they

may be the causal genes in the respective loci modulating BMI. Further studies are warranted

to delineate putative causal variants including functional annotation in trans-ethnic fine map-

ping efforts [53].

Our large-scale GWAS meta-analyses in African ancestry individuals imputed to the 1000

Genomes reference panel, complemented by imputation of European GWAS using summary

statistics and additional sex-stratified analyses, boosts the study power and improves resolu-

tion, leading to the identification of nine novel loci and fine mapping 37 loci with tractable

credible sets. We observed significant associations for variants with MAF� 0.5%, but rare var-

iants were unlikely to be detected due to limited power and poor imputation quality. Large

scale sequencing studies are needed to evaluate the contribution of rare variants in modulating

complex traits such as BMI and WHR. Given the substantially larger sample size in European

than in African ancestry samples, the trans-ethnic fine mapping results are largely driven by

variants showing strong associations in Europeans. Future trans-ethnic studies including addi-

tional non-European populations will further improve the fine mapping effort.

Materials and methods

Study design

We used a three-stage design to evaluate genetic associations with BMI and WHRadjBMI in sex-

combined and sex-stratified samples (S1 Fig). Stage 1 included GWAS meta-analyses in AA

individuals and stage 2 included replication of top associations from stage 1. Stage 3 included

meta-analysis of top associations from stages 1 and 2 AA studies and EA meta-analysis results.
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In the discovery stage 1 of AAAGC, 17 GWAS of up to 42,752 AA individuals (16,559 men

and 26,193 women; 41,696 African Americans and 1,056 Africans) were included for the BMI

analyses. A total of 10 GWAS of up to 20,384 AA individuals (4,783 men and 15,601 women;

all African Americans) were included for the WHRadjBMI analyses. For variants with P<
1×10−4 in either the sex-combined or the sex-stratified meta-analyses, stage 2 replication was

performed in additional AA individuals from AAAGC (N = 10,143 for BMI, N = 2,711 for

WHRadjBMI), followed by meta-analysis with EA individuals from the GIANT consortium

(322,154 for BMI, 210,086 for WHRadjBMI). Variants that reached genome-wide significance

(P< 5×10−8) were assessed for associations with BMI in two cohorts of children (N = 7,222).

All AA participants in these studies provided written informed consent for the research, and

approval for the study was obtained from the ethics review boards at all participating institu-

tions. Detailed descriptions of each participating study and measurement and collection of

height, weight, waist and hip circumferences are provided in S1 Text, S1 and S2 Tables.

Genotyping, imputation and quality control

Genotyping in each study was performed with Illumina or Affymetrix genome-wide SNP

arrays. Pre-phasing and imputation of missing genotypes in each study was performed using

MaCH/ minimac [20] or SHAPEIT2/IMPUTEv2 [21–22] using the 1000 Genomes Project

cosmopolitan reference panel (Phase I Integrated Release Version 3, March 2012) [18]. The

details of the array, genotyping and imputation quality-control procedures and sample exclu-

sions for each study are listed in S3 Table. In general, samples reflecting duplicates, low call

rates, gender mismatch, or population outliers were excluded. Variants were excluded by the

following criteria: call rate< 0.95, minor allele count (MAC)� 6, Hardy-Weinberg Equilib-

rium (HWE) P< 1×10−4, imputation quality score < 0.3 for minimac or < 0.4 for IMPUTE,

or absolute allele frequency difference > 0.3 compared with expected allele frequency (calcu-

lated as 1000 Genomes frequency of AFR × 0.8 + EUR × 0.2).

Performance of 1000 Genomes imputation in African ancestry

We evaluated the performance of 1000 Genomes imputation using the largest study, the Wom-

en’s Health Initiative (WHI) (N = 8,054). A total of 25.1 million variants with MAF� 0.1%

were imputed to the 1000 Genomes reference panel. Of these, 98.1% (8.8 million) common

variants, 95.4% (9.3 million) low frequency variants (0.5%�MAF < 5%), and 72.5% (4.6 mil-

lion) rare variants (0.1%�MAF < 0.5%) were well imputed with IMPUTE info scores� 0.3

(S4 Table). Notably, these frequencies are slightly lower than those obtained by imputation

using 1000 Genomes phase 1 interim reference panel in Europeans [54]. However, 72.6%,

95.5% and 99.5% of the common, low frequency and rare variants, respectively, from the 1000

Genomes reference panel were not present in the HapMap and therefore demonstrate deeper

coverage of the genome, particularly for the low frequency and rare variants.

Study-level association analyses

At all stages, genome-wide association analyses were performed by each of the participating

studies. BMI was regressed on age, age squared, principal components and study site (if

needed) to obtain residuals, separately by sex and case-control status, if needed. WHR was

regressed on age, age squared, principal components, BMI and study site to obtain residuals,

separately by sex and case-control status. Principal components were included to adjust for

admixture proportion and population structure within each study. Residuals were inverse-nor-

mally transformed to obtain a standard normal distribution with mean of zero and standard

deviation of one. For studies with unrelated subjects, each variant was tested assuming an
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additive genetic model with each trait by regressing the transformed residuals on the number

of copies of the variant effect allele. The analyses were stratified by sex and case-control status

(if needed). For studies that included related individuals, family based association tests were

conducted that took into consideration the genetic relationships among the individuals. Sex

stratified, case-control stratified and combined analyses were performed. Association results

with extreme values (absolute beta coefficient or standard error� 10), primarily due to small

sample sizes and/or low minor allele count, were excluded for meta-analysis.

Imputation of European GWAS summary statistics to 1000 Genomes

The latest summary statistics of sex-combined and sex-stratified meta-analyses of BMI and

WHRadjBMI imputed to the HapMap reference panel in EA from the Genetic Investigation of

ANthropometric Traits (GIANT) consortium were obtained from http://www.broadinstitute.

org/collaboration/giant/index.php/GIANT_consortium_data_files [7–8]. These association

summary statistics were used to impute z-scores of unobserved variants at the 1000 Genomes Proj-

ect EUR reference panel (Phase I Integrated Release Version 3) using the ImpG program [23]. In

brief, palindromic variants (AT/CG) and variants with allele mismatch with the reference were

removed from the data. Using the ImpG-Summary method, the z-score of an unobserved variant

was calculated as a linear combination of observed z-scores weighted by the variance-covariance

matrix between variants induced by LD within a 1 Mb window from the reference haplotypes. The

sample size of each unobserved variant was also interpolated from the sample sizes of observed var-

iants using the same weighting method for z-score as Ni ¼
Xt¼T

t¼1

jwi;t jX
jwi;t j

Nt . Here, t = 1,2,. . ..,T,

where T is the number of observed variants, wi,t is the element of the covariance matrix Si,t for the

unobserved variant i and the observed variant t within window. The performance of imputation

was assessed by r2pred, with similar characteristics as the standard imputation accuracy metric

r2hat [20]. Results of variants with r2pred� 0.6 were used in subsequent analyses.

Meta-analysis

In the discovery stage 1, association results were combined across studies in sex-combined and

sex-stratified samples using inverse-variance weighted fixed-effect meta-analysis implemented

in the program METAL [55]. The study-specific λ values of association ranged from 0.97 to

1.05 for BMI, and 0.98 to 1.05 for WHRadjBMI (S3 Table). Genomic control correction [56] was

applied to each study before meta-analysis, and to the overall results after meta-analysis (λ =

1.07 for BMI, 1.01 for WHRadjBMI). Variants with results generated from < 50% of the total

sample size for each trait were excluded. After filtering, the numbers of variants reported in

the meta-analyses were 17,972,087 for BMI, and 20,502,658 for WHRadjBMI.

Variants with P< 1×10−4 in stage 1 sex-combined or sex-stratified meta-analyses were car-

ried forward for replication in additional AA individuals (stage 2) and EA individuals (stage

3). For each of the replication AA studies, trait transformation and association were performed

as in stage 1 and results were meta-analyzed using the inverse-variance method in METAL. For

the replication study in EA, HapMap imputed summary statistics of each trait from the GIANT

consortium were used to impute z-scores of unobserved variants at the 1000 Genomes.

In stages 1 and 2, meta-analysis results of AA studies were combined using the inverse-vari-

ance weighted method. In all stages including both AA and EA studies, meta-analysis results

expressed as signed z-scores were combined using the fixed effect sample size weighted

method in METAL due to the lack of beta and standard error estimates from the ImpG pro-

gram [23]. Evidence of heterogeneity of allelic effects between males and females, within and

across stages were assessed by the I2 statistic in METAL. Genome-wide significance was
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declared at P< 5×10−8 from each of the sex-combined and sex-stratified meta-analysis includ-

ing AA and/or combined AA and EA individuals. Difference in effects between men and

women was assessed using Cochran’s Q test and nominal Phet< 0.05 declared as significant. A

lead variant in a locus was defined as the most significant variant within a 1 Mb region. A

novel locus was defined as a lead variant with distance> 500 kb from any established lead vari-

ants reported in previous studies. By convention, a locus was named by the closest gene(s) to

the lead variant.

Conditional and joint analyses of summary statistics

For the genome-wide significant loci identified in sex-combined and sex-stratified analyses in

AA (stages 1+2), we used the program GCTA [57–58] to select the top independent associated

variants from summary statistics of the meta-analyses. This method uses the LD correlations

between variants estimated from a reference sample to perform an approximate conditional

association analysis. We used 8,054 unrelated individuals of African ancestry from the WHI

cohort with ~15.7M variants available as the reference sample for LD estimation. To select

the top independent variants in the discovery and replication meta-analysis results, we first

selected all variants that had P< 5×10−8 and conducted analysis conditioning on the selected

variants to search for the top variants iteratively via a stepwise model to select the independent

variants from this list. Then we proceeded to condition the rest of the variants that had P>
5×10−8 on the list of independent variants in the same fashion until no variant had conditional

P that passed the significance level P< 5×10−8. Finally, all the selected variants were fitted

jointly in the model for effect size estimation.

We also tested if the genome-wide significant variants identified from sex-combined

GWAS in AA and the locus-wide significant variants identified from sex-combined and sex-

specific locus transferability studies in AA were independent from nearby established loci

identified from EA studies [7–8]. First, the published lead variants from EA studies were used

to search for all surrogate variants that were in high LD (r2>0.8 in 1000 Genomes Project EUR

population). Second, these variants were pruned to select only variants in low LD in AA

(r2<0.3 in the 1000 Genomes Project AFR population) to avoid collinearity in conditional

analysis. Third, association analysis was conducted on the AA significant variants conditioned

on the selected EA lead and surrogate variants, using the program GCTA and estimated LD

correlation from the WHI cohort. For genome-wide significant loci, an AA derived association

signal is considered as independent from the established EA signals when the difference in–

logP<3 and difference in effect size < 1 standard error after conditional analysis. For locus-

wide significant loci, given the lower level of significance, independence is only considered as

difference in effect size < 1 standard error after conditional analysis.

SNP and locus transferability analyses

We investigated the transferability of EA BMI and WHR associated variants and loci in AA

individuals from stage 1 sex-combined and sex-stratified meta-analyses. First, we tested for

replication of lead variants previously reported to be associated with BMI (176 variants from

170 loci) and WHRadjBMI (84 variants from 65 loci) at genome-wide significance in sex-com-

bined and sex-stratified analyses from the GIANT consortium studies [7–9]. We defined SNP

transferability as an EA lead variant sharing the same trait-raising allele at nominal P< 0.05 in

AA individuals. To account for differences in local LD structure across populations, we also

interrogated the flanking 0.1cM regions of the lead variants to search for the best variants with

the smallest association P in AA individuals. Locus-wide significance was declared as Plocus<
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0.05 by Bonferroni correction for the effective number of tests within a locus, estimated using

the Li and Ji approach [59].

Fine mapping analyses

We compared the credible set intervals of established loci that showed locus-wide significance

(Plocus< 0.05) in the sex-combined or sex-specific analyses from this study in summary statis-

tics datasets including the 1000 Genomes imputed results from GIANT, AAAGC and meta-

analysis of GIANT and AAAGC. In each dataset, a candidate region is defined as the flanking

0.1cM region of the lead variant reported by the GIANT consortium. Under the assumption

of one causal variant in a region of M variants, the posterior probability of a variant j with

association statistics Z driving the association, P(Cj|Z), was calculated using the formula

P CjjZ
� �

¼
expð1

2
z2
j Þ

PM

j¼1
exp 1

2
z2
j

� �. A 99% credible set was constructed by ranking all variants by their

posterior probability, followed by adding variants until the credible set has a cumulative poste-

rior probability > 0.99 [53].

Bioinformatics

Functional annotation of novel variants. To determine whether any of our nine novel

GWAS lead variants identified in the sex-combined and sex-specific analyses might be tagging

potentially functional variants, we identified all variants within 1 Mb and in LD (r2 > 0.7, 1000

Genomes AFR) with our lead variants. As such, we identified 137 variants and annotated each

of them using ANNOVAR [60]. The predicted functional impact for coding variants were

assessed via the Exome Variant Server (http://evs.gs.washington.edu/EVS/) for PhastCon,

GERP [61], and PolyPhen [62], as well as SIFT [63].

We further characterized the variants that were in LD with the novel variants using the

web-based tool RegulomeDB (http://regulomedb.org/) [24]. The variants that were likely to

affect binding and linked to expression of a gene target (scores 1a-1f) based on “eQTL, tran-

scription factor (TF) binding, matched TF motif, matched DNase footprint and DNase peak”

or were only likely to affect binding (scores 2a-2c) based on “TF binding, matched TF motif,

matched DNase footprint and DNase peak” were selected. For these variants, the sequence

conservation (GERP and SiPhy [64]), the epigenomic data from the Roadmap Epigenomic

project (ChromHMM states corresponding to enhancer or promoter elements, histone modi-

fication ChIP-seq peaks, and DNase hypersensitivity data peaks), the regulatory protein bind-

ing from the ENCODE project, the regulatory motifs based on commercial, literature and

motif-finding analysis of the ENCODE project, and the eQTLs from Genotype-Tissue Expres-

sion (GTEx) project [65] were extract from web-based HaploReg v4 [25]. For variants within

the tractable credible sets in the fine mapping analyses, similar analyses were also conducted.

Cross-trait associations. To assess whether the novel loci identified in the sex-combined

and sex-specific analyses were associated with any related cardiometabolic and anthropomet-

ric traits, or may be in high LD with known eQTLs, we examined the NHGRI-EBI GWAS Cat-

alog [27] and the GRASP (Genome-Wide Repository of Associations Between SNPs and

Phenotypes) catalog [28] for reported variant-trait associations near our lead variants. We sup-

plemented the catalogs with additional genome-wide significant associations of interest from

the literature [7–9,66]. We used PLINK to identify variants within 1 Mb of lead variants. All

variants within the specified regions with r2 > 0.7 (1000 Genomes AFR) were retained from

the catalogs for further evaluation.
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Power analysis

Given our sample sizes in the discovery and replication stages in our African ancestry popula-

tions, we have>80% power to detect variants explaining 0.08% variance for BMI that corre-

sponds to effect sizes of 0.09 and 0.20 SD units for MAF of 0.05 and 0.01, respectively. For

WHRadjBMI, we have>80% power to detect variants explaining 0.18% variance that corre-

sponds to effect sizes of 0.14 and 0.30 SD units for MAF of 0.05 and 0.01, respectively.
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