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METHOD FOR COMPUTER-AIDED 
DETECTION OF THREE-DIMENSIONAL 
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ence. 

DISCUSSION OF THE BACKGROUND 

Studies show that early detection and removal of lesions 
in human organs can reduce the risk of cancer, and decrease 
the overall mortality rate from various forms of cancer [1]. 
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Moreover, computer-aided detection of lesions based on 
radiographic images of a target organ is becoming an 
important medical tool to assist radiologists [2]. 

In particular, colon cancer is the second leading cause of 
cancer deaths in the United States, with approximately 5 

60,000 deaths per year [1, 3]. Early detection and removal 
of polyps can reduce the risk of colon cancer and thus result 
in a decrease in the mortality rate from colorectal cancer [ 4]. 
Computed-tomographic colonography (CTC) or virtual 
colonoscopy is a technique for detecting colorectal neo- 10 

plasms by using a CT scan of the cleansed and air-distended 
colon [5-7]. Current CT technology allows a single image 
set of the colon to be acquired in 20-30 seconds, which 
translates into an easier, more comfortable examination than 
is available with other screening tests. Therefore, CTC has 15 

been advocated as a promising technique for providing mass 
screening for colorectal carcinoma [ 5-7]. 

For CTC to be a clinically practical means of screening 
for colon cancers, the technique must be feasible for inter­
preting a large number of images in a time-effective fashion, 20 

and for detecting polyps and masses with high accuracy. 
Currently, however, interpretation of an entire CTC exami­
nation is time-consuming [5, 8, 9]. A typical CTC exami­
nation produces 150-350 axial CT images each for the 
supine and prone imaging data sets, yielding a total of 25 

300-700 images per patient. Despite the recent advances in 
image-display techniques [10], studies show that the case 
interpretation time is still between 15 and 40 minutes even 
when reading is done by experts in abdominal imaging [5, 
6, 11]. The interpretation time for an entire CTC examina- 30 

tion should be reduced substantially before CTC can be 
translated from the research area to routine clinical practice, 
and especially to the screening setting [12]. In addition, the 
diagnostic performance of CTC currently remains undeter­
mined and prone to perceptual errors. Several studies have 35 

showed a high sensitivity of 80-100% and a specificity of 
80-90% in the detection of polyps [9, 13, 14], whereas others 
reported a relatively low sensitivity of 40-70% and a speci­
ficity of 70-80% [8, 15]. It has been suggested that the 
reported differences in sensitivity and specificity for CTC 40 

are partly based on the undefined learning curve for the 
interpretation of CTC [15]. Moreover, the visibility and 
conspicuity of polyps, and thus the accuracy of polyp 
detection, may depend on the image acquisition parameters 
and display methods, both of which are still under investi- 45 

gation. These factors increase the perceptual error even for 
experienced radiologists. 

Computer-aided detection (CAD) of polyps is attractive 
because it has the potential to overcome the above difficul­
ties with CTC [ 16-18]. A CAD scheme automatically detects 50 

polyps and masses in CTC images, and it provides the 
locations of suspicious polyps to the radiologists. The "sec­
ond opinion" offered by a CAD scheme has the potential to 
(1) reduce radiologists' interpretation time, and (2) increase 
the radiologists' diagnostic performance in the detection of 55 

polyps. 
Reduction of interpretation time can be achieved if radi­

ologists focus on the small number of regions indicated by 
the CAD scheme. Radiologists can quickly survey a large 
portion of the colon that is likely to be normal. An improve- 60 

ment in the detection performance can be achieved because 
CAD can reduce radiologists' perceptual errors. These per­
ceptual errors can be caused by the presence of normal 
structures that mimic polyps and by variable conspicuity of 
polyps, depending on the display methods used [11, 19]. The 65 

absence of visual cues which normally exist with colonos­
copy, such as mucosa! color changes, and a large number of 

6 
images for each patient, also makes image interpretation 
tedious and susceptible to perceptual error. Perceptual errors 
due to the large number of images are becoming more 
important as there is a tendency to use thinner collimation 
and reconstruction intervals for production of high-quality 
images [20]. Furthermore, CAD schemes can also provide 
objective and consistent results, which can be useful for 
reducing differences in skill and experience among radiolo­
gists in identifying polyps in CTC. 

In the past several years, investigators have developed 
prototype CAD schemes [16-18, 21-24]. These schemes 
showed a potential to detect polyps in CTC because they 
gave a high detection performance when they were applied 
to simulated polyps. However, these existing schemes suf­
fered from either a low sensitivity or a high false-positive 
rate when they were applied to clinical cases. Among CAD 
prototypes that were evaluated based on clinical cases, 
Summers et al. [21, 25] developed a CAD scheme based on 
the curvature of the surface of the colonic wall. The scheme 
yielded a sensitivity of 64% at the rate of 6 false-positive 
(FP) detections per colon based on 20 patients with 28 
polyps larger than 1 cm. The sensitivity could be 71 % when 
only polyps in well-distended segments are considered. The 
FP rate could be reduced to 3.5 FP detections per patient by 
use of a CT attenuation feature. Paik et al. [26, 27] proposed 
a CAD scheme based on the contour normal method that is 
based on the directions of the normal vectors from air to 
tissue, and evaluated their scheme based on 51 patients with 
14 polyps larger than 8.5 mm. Their scheme yielded a 
sensitivity of 92.9% at 7 .9 FP detections per colon. Giiktuirk 
et al. [22] applied the random orthogonal shape section 
method to the scheme to reduce the number of FP detections 
substantially. Vining et al. [24] developed a CAD scheme 
based on surface curvature and wall thickness. In an analysis 
of 10 patients with 15 polyps larger than 5 mm, the sensi­
tivity was 73% with approximately 50 FP detections per 
patient. Kiss et al. [23] reported a CAD scheme based on 
convexity and sphericity. Their scheme yielded 80% sensi­
tivity at 8.2 FP detections per data set for 15 polyps larger 
than 5 mm in 18 patients. Yoshida et al. [16-18] developed 
a CAD scheme on 3-dimensionally derived geometric and 
volumetric features. In their methods, first a thick volumetric 
region encompassing the entire colon was extracted from the 
CTC data. Then polyp candidates were extracted using the 
geometric and volumetric features. Finally, false positives 
were removed by use of texture features and a statistical 
classifier. In an analysis of71 cases, including 14 cases with 
polyps larger than 5 mm and 57 cases without polyps, our 
scheme yielded 100% sensitivity with 2.0 FPs per case. 

In parallel to the efforts for developing CAD schemes, 
several methods for segmentation of the colon have been 
developed [28-32]. Most of the previously proposed meth­
ods use a surface-generation method for extraction of the 
inner surface of the colonic wall [28, 30]; this has the risk 
oflosing a part of a polyp, in particular, the internal structure 
of the polyp. Moreover, most of methods rely on manually 
placed seed points, and thus they are semi-automatic. Only 
a few fully automated methods have been reported [28, 29] 
except for the methods disclosed in this invention. 

One method used a region-growing technique to segment 
the colon, in which the automated selection of seed voxels 
was based on the use of a distance transform [29]. The 
method was evaluated with twenty datasets reconstructed at 
1.0-2.5 mm intervals, with colonic fluid enhanced by an oral 
contrast agent. The colon was reportedly segmented satis­
factorily, but a small amount of bowel or stomach was 
present in a majority of the segmentations, and the unopti-
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mized version of the technique took sixty minutes to com­
pute. In another method, the voxels of the CT volume are 
labeled by vector quantization, and the colonic walls are 
segmented by region-growing based on the labeled voxels 
[28]. The method was evaluated with 21 CTC data sets 5 

reconstructed at a one mm interval, with colonic stool and 
fluid enhanced by ingested contrast. The segmentation was 
satisfactory in fifteen data sets, but there were problems in 
six datasets. 

8 
of segmentation voxels; and (3) determining an intersection 
of the first set of segmentation voxels and the second set of 
segmentation voxels to obtain the set ofvoxels representing 
the volumetric region encompassing the inner surface, the 
outer surface, and the intervening tissue of the target organ. 
A system and computer program product, each configured to 
execute the above steps, is also provided. 

According to the present invention, the method of detect­
ing a set of candidate lesions based on geometric feature 
values of each voxel in the set of voxels representing the 
thick volumetric region comprises: (1) calculating geometric 
feature values for each voxel in the set ofvoxels represent­
ing the volumetric region; (2) generating a set of initial 
candidate lesions using the geometric feature values calcu­
lated in the calculating step; and (3) clustering the set of 
initial candidate lesions to form the set of candidate lesions. 
A system and computer program product, each configured to 
execute the above steps, is also provided. 

Nappi et al. developed a knowledge-guided segmentation 10 

method, which is designed for fully automated extraction of 
the thick region encompassing the entire colon [32]. The first 
step of their method removes the normal structures that are 
not connected to the colon for extraction of colonic wall 
[31]. The second step applies a self-adjusting volume grow- 15 

ing method to the colonic lumen surrounded by the colonic 
wall identified in the first step. Intersection of this volume­
grown region and the colonic wall removes these adhering 
extra-colonic structures, and thus determines the final region 
encompassing only the colon. 

According to the present invention, the method of select-
20 ing a set of true-positive lesions from the set of candidate 

lesions based on three-dimensional volumetric feature val-
SUMMARY OF THE INVENTION 

Accordingly, it is an object of the present invention to 
provide a method, system, and computer program product 
for processing a set of cross-sectional images defining a 
volumetric region encompassing an inner surface, an outer 
surface, and intervening tissue of a target organ. 

ues of each lesion in the set of candidate lesions comprises: 
(1) calculating at least one feature value for each voxel in a 
set of voxels representing the set of candidate lesions; (2) 

25 calculating statistics of the at least one feature value for each 
lesion in the set of candidate lesions; and (3) partitioning the 
set of candidate lesions into a set of false-positive lesions 
and the set of true-positive lesions based on analysis of the 

Another objective of the present invention is to provide a 
method, system, and computer program product for per- 30 

forming segmentation of the target organ. 
Another objective of the present invention is to provide a 

method, system, and computer program product for detect­
ing a set of candidate lesions based on three-dimensional 
geometric feature values of each voxel in a set of voxels 35 

representing a thick volumetric region encompassing a tar­
get organ. 

Another objective of the present invention is to provide a 
method, system, and computer program product for select­
ing a set of true-positive lesions from the set of candidate 40 

lesions based on at least one of volumetric feature values and 
morphologic feature values of each candidate lesion in the 
set of candidate lesions. 

statistics of the at least one feature value calculated in the 
preceding calculating step. A system and computer program 
product, each configured to execute the above steps, is also 
provided. 

According to the present invention, the method of iden­
tifying at least one three-dimensionally extended lesion from 
a set ofvoxels representing a volumetric region encompass­
ing an inner surface, an outer surface, and intervening tissue 
of a target organ, comprises: (1) detecting a set of candidate 
lesions based on three-dimensional geometric feature values 
of each voxel in the set of voxels representing the volumetric 
region; (2) selecting the at least one three-dimensionally 
extended lesion from the set of candidate lesions based on 
volumetric feature values of each lesion in the set of 
candidate lesions; and (3) outputting a set of voxels repre-Another objective of the present invention is to provide a 

method, system, and computer program product for identi­
fying at least one three-dimensionally extended lesion from 
a set ofvoxels representing a volumetric region encompass­
ing an inner surface, an outer surface, and intervening tissue 

45 senting the at least one three-dimensionally extended lesion 
selected in the selecting step. A system and computer 
program product, each configured to execute the above 
steps, is also provided. 

of a target organ. 
A further object is to provide an image signal representing 50 

a segmentation of a colon of a patient. 
The above and other objects are achieved according to the 

present invention by providing a method, system, and com­
puter program product for processing a set of cross-sectional 
images defining a volumetric region encompassing an inner 55 

surface, an outer surface, and intervening tissue of a target 
organ, comprising (1) obtaining a set ofvoxels representing 
a total scarmed volume from a set of cross-sectional images 
of the target organ; (2) performing segmentation to extract 
a set ofvoxels representing the thick volumetric region from 60 

the set of voxels representing the total scarmed volume. 
According to the present invention, the method of per­

forming segmentation comprises: (1) generating a first set of 
segmentation voxels by thresholding the set of voxels rep­
resenting the total scanned volume with a value character- 65 

istic of the target organ; (2) performing organ-based analysis 
of the first set of segmentation voxels to obtain a second set 

In addition, the present invention also provides an image 
signal representing a three-dimensional segmentation of an 
organ. The image signal is derived from a set of cross­
sectional images of said organ and comprises: (1) a first 
signal portion representing an internal surface of said organ; 
(2) a second signal portion representing an external surface 
of said organ; and (3) a third signal portion representing 
tissue located between said internal surface and said external 
surface of said organ. 

Further, the present invention provides an image signal 
representing a segmentation of an organ, wherein the image 
signal is formed by executing the steps of: (1) obtaining a set 
of cross-sectional images of said organ; (2) determining 
corresponding pixels on adjacent images in the set of 
cross-sectional images; (3) connecting said corresponding 
pixels to obtain a set of voxels representing a total scarmed 
volume; and (4) extracting a set of voxels representing a 
three-dimensional segmentation of said organ from the set of 
voxels representing the total scarmed volume. 
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An aspect of the present invention is the computation of 
novel three-dimensionally derived geometric features for the 
detection of lesions. These geometric features are employed 
specifically for differentiating lesions from folds and from 
the target organ wall, and thus they can be effective in 
maximizing sensitivity. 

Another aspect of the present invention is the calculation 

10 
determination of the spatial location of the spine at the top 
five axial slices of the segmented bone region, as indicated 
by label (1); 

FIG. 11 is an illustration of a secondary segmentation 
5 method (yellow) that could exclude small disconnected 

regions of the colon such as the rectum (arrow), while the 
preferred ABE step ( cyan) includes the rectum correctly in 
the segmented region and produces a larger volume of of a novel three-dimensionally derived volumetric feature, 

directional gradient concentration, which characterizes the 
internal structures of lesions and folds, and is useful for 10 

reducing false positives. 

interest to cover the entire colon; 
FIGS. 12a-12/illustrate an axial view of (a) an original 

CT slice, (b) the segmented colon obtained by the ABE 
method (cyan), (c) the segmentation of colonic lumen by 
volume-growing (blue), ( d) the expansion of the segmented 
colonic lumen, (e) the intersection of the regions segmented 

Another aspect of the present invention is the combined, 
instead of independent, use of three-dimensionally derived 
volumetric features by a linear or a nonlinear classifier to 
reduce false positives. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the invention and many 
of the attendant advantages thereof will be readily obtained 
as the same becomes better understood by reference to the 
following detailed description when considered in connec­
tion with the accompanying drawings, wherein: 

FIG. 1 is a flowchart illustrating the steps of identifying 
at least one three-dimensionally extended lesion within a 
thick volumetric region encompassing a target organ accord­
ing to the present invention; 

FIG. 2 is a flowchart illustrating the steps in the knowl­
edge-guided segmentation of the target organ according to 
the present invention; 

FIGS. 3a-3/illustrate colon segmentation, showing (a) the 
original CT volume, (b) the segmented outer air (body 
shown), (c) the segmented bone, (d) segmented lung bases, 
(e) segmentation after anatomy-based extraction, and (f) 
final segmentation after colon-based analysis; 

FIG. 4 is a flowchart showing the steps in the anatomy­
oriented approach of the segmentation of the colon, a major 
componenent of the anatomy-based extraction (ABE) 
method; 

FIG. 5 shows a typical histogram of CT colonography 
indicating three characteristic peaks for air (LA), fat (Lp), 
and muscle (LM); 

FIGS. 6a and 6b illustrate (a) a volume of interest for a 
local histogram acquisition of the lungs, showing the two 
points PR and PL used in the anatomy-oriented approach for 
the selection of the connected components of the lung, and 
(b) the local histogram showing the peak for the lungs LL; 

FIG. 7 illustrates an example of a case in which a 
secondary protocol in the anatomy-oriented approach is 
applied in the segmentation of the colon because the colon 
is clipped by the data reconstruction limit; 

FIGS. Sa-Sc are illustrations of the three-dimensional 
representation of (a) the original isotropic CT volume, (b) 
the region segmented by the ABE step, with extracolonic 
components colored in red, and (c) the complete segmenta­
tion in which the extracolonic components have been 
removed by intersecting the segmentations generated by the 
ABE and CBA steps; 

FIGS. 9a-9c are illustrations of (a) an original CT volume 
containing multiple outer-air objects, as indicated by arrows, 
(b) a secondary segmentation method which fails to remove 
part of the outer-air objects, leaving redundant components 
indicated by arrows, and (c) the preferred anatomy-based 
extraction method which removes the outer-air region com­
pletely; 

FIGS. l0a-l0d are illustrations of the removal of the 
dorsal body region (which does not contain the colon) by the 

15 by ABE and CBA (green), and (f) the simultaneous repre­
sentation of the final complete segmentation (green) and the 
regions removed by the ABE step (red); 

FIGS. 13a and 13b illustrate (a) coronal and sagittal views 
of a CT volume, with the first 50 caudal slices defining a 

20 volume of interest ( dotted box) to locate the rectum, (b) 
coronal and sagittal views of the volume of interest covering 
the rectum (top row), inverted mask with the rectum marked 
by "R" (middle row, and the final segmented rectum with "s" 
indicating the potential location of a seed voxel (bottom 

25 row); 
FIGS. 14a-14f are illustrations of the conditions for 

selecting an air seed (invalid region is colored red, arrows 
show potential sites in (f)), indicating that the air seed must 
(a) not be within the ABE segmentation, (b) not be within 

30 previously identified extracolonic components, ( c) have a 
CT value not exceeding 900 Hounsfield units, ( d) not be 
within the present CBA segmentation, and ( e) not be close 
to the boundary of the surrounding CT volume; 

FIGS.15a and 15b illustrate (a) a volume of interest (solid 
35 white box) formed by removing the top 25% and bottom 5% 

slices ( dotted white boxes) and divided into six zones which 
the segmented colon should visit, and (b) examples of the 
contents of four of the zones; 

FIGS. 16a and 16b are illustrations of the conditions that 
40 the complete segmentation of the colon should satisfy, 

including (a) checking whether the ascending and descend­
ing colon are present by comparing the number of seg­
mented voxels in the sectors labeled "A" and "B", and (b) 
testing for the presence of the sigmoid colon by checking 

45 whether at least 100 mm3 of voxels have been segmented 
within the region indicated by the dotted box; 

FIG. 17 is a flowchart illustrating the steps of detecting a 
set of candidate lesions based on geometric feature values 
and selecting at least one lesion from the set of candidate 

50 lesions based on volumetric, morphologic, and/or texture 
feature statistics according to the present invention; 

FIG. 18 is an illustration of the relationship of represen­
tative shapes to the volumetric shape index values; 

FIGS. l9a-l9f are illustrations of the effect of the volu-
55 metric shape index in differentiating between polyps, folds, 

and lumen, showing axial images with polyps in the boxes 
((a) and (d)), polyps indicated by arrows ((b) and (e)), and 
three-dimensional endoluminal views of the polyps shown 
in (b) and (e) colored by volumetric shape index ((c) and 

60 (f)); 

65 

FIGS. 20a-20c are illustrations of (a) a phantom with a 
complete Gaussian sphere and a Gaussian hemisphere, (b) a 
cut-plane view of the EC response, and (c) a cut-plane view 
of the DEC response; 

FIGS. 21a and 21b show (a) four 2-D pictures illustrating 
how the increase in the number of directions in the compu­
tation of the gradient concentration improves the estimate of 
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the local gradient concentration, and (b) an illustration of the 
computation of coefficients used in the calculation of the 
directional gradient concentration (DGC); 

12 
mensionally extended lesions within a volumetric region 
encompassing a target organ, according to the present inven­
tion. 

FIGS. 22a-22/ are illustrations of 2-D examples of gra­
dient concentration, showing (a) a circular density, in which 5 

the density tends to increase towards the center similar to the 
Gaussian function and all vectors point to the center, (b) 
hemispherical density, in which gradient vectors point 
toward the center only in one half of the volume of interest, 

First, in step 101, a set of voxels representing a total 
scanned volume is generated from a set of cross-sectional 
images of the target organ. Note that in this context, we 
mean a "set" to include at least one member. 

Next, in step 102, segmentation is performed to extract a 
set of voxels representing the thick volumetric region from 
the set of voxels representing the total scarmed volume. (c) the gradient vectors, if they exist, point in random 10 

directions, ( d) the gradient vectors point in the same direc­
tion, as can happen within a boundary region, ( e) the 
gradient vectors point away from the center, and (f) a 
nonspecific situation in which some gradient vectors point 
toward the center, but do not form a precise hemispherical 15 

concentration pattern; 

In step 103, a set of candidate lesions is detected based on 
three-dimensionally derived geometric feature values of 
each voxel in the set of voxels representing the thick 
volumetric region. 

In step 104, at least one three-dimensionally extended 
lesion is selected from the set of candidate lesions, based on 
three-dimensionally derived volumetric feature values, mor­
phologic feature values, and/or texture feature values of each 
lesion in the set of candidate lesions. 

FIGS. 23a-23c are illustrations of (a) a phantom with a 
Gaussian wedge, sphere, and hemisphere, (b) a cut-plane 
view of the phantom, colored based on gradient concentra-

20 
tion, and (c) a cut-plane view of the phantom, colored based 

Finally, in step 105, a set ofvoxels is output representing 
the at least one detected three-dimensionally extended 
lesion. 

on directional gradient concentration; 

FIGS. 24a and 24b are illustrations of quadratic discrimi­
nant analysis showing (a) a partition of a 2-D plane depicting 
the mean vales of volumetric shape index and directional 25 
gradient concentration of the polyp candidates, and (b) 
multiple partitions generated in the round-robin evaluation 
process; 

While the method illustrated in FIG. 1 is applicable to 
identifying lesions in any target organ, steps 101-105 will be 
described in more detail below with regard to the specific 
method of identifying three-dimensionally extended colonic 
polyps. However, those skilled in the art will recognize that 
the following methods and structures are readily adaptable 
for application to other types of lesions in other organs, and FIGS. 25a-25c show histograms of feature values within 

a TP polyp candidate (left) and a FP polyp candidate (right): 
(a) SI feature, (b) GC feature, and (c) CT value feature (in 
Hounsfield units); 

30 that the methods are not limited only to the identification of 
colonic polyps. Moreover, the invention should not be 
limited to the specific embodiments of the individual steps 
of FIG. 1 disclosed below, since various modifications may FIGS. 26a and 26b illustrate (a) axial, coronal, and 

sagittal views of a polyp (arrow) that dissolves into a 
cloud-like background substance, and (b) that the region of 35 

the actual polyp produces a subtle polyp-like signature 
pattern in the high end of the histogram of SI values (arrow), 
but the surrounding cloud-like substance generates a tail of 

be made without departing from the spirit and scope of the 
invention. 

Typically, colonographic image data is obtained for a 
patient in the supine and prone positions, after insufllation of 
the colon with room air. In a performance evaluation study 
of the method of the present invention, data was obtained SI values that extends to the lowest values of the SI; 

FIGS. 27a-27c illustrate changes in the average number 
of FPs per patient obtained in the detection of 21 polyps 
from 27 CTC data sets at by-polyp sensitivities of 86%, 
90%, and 95% for several combinations of threshold values 
for the SI, GC, and CT values used in the histogram-based 
feature analysis step: (a) effect of SI threshold when GC=0.4 
and CT=-300 Hu, (b) effect ofGC threshold when SI=0.725 
and CT=-300 Hu, and ( c) effect of CT value threshold when 
SI=0.725 and GC=0.4; 

FIG. 28 shows FROC curves for the present method for 
the by-patient and by-polyp analyses based on 72 patients 
(144 data sets), including 14 patients with 21 polyps, 
wherein the FROC curves obtained by use of the feature­
guided analysis indicate a higher detection performance than 
that obtained by use of fuzzy clustering; and 

FIG. 29 shows a system for identifying at least one 
three-dimensionally extended lesion within a thick volumet-
ric region encompassing a target organ according to the 
present invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Referring now to the drawings, wherein like reference 
numerals designate identical or corresponding parts 
throughout the several views, FIG. 1 is a flowchart illus­
trating steps in the computer-aided detection of three-di-

40 with a helical CT (GE CTi 9800; GE Medical Systems, 
Milwaukee, Wis., U.S.A) with a collimation of 5 mm, a pitch 
of 1.5-1.7, and a reconstruction interval of 2.5-3.5 mm. 
Patients were scanned in a single breath-hold followed by 
shallow breathing. The data sets originally consisted of 

45 150-250 slice images in a 512x512 matrix and were inter­
polated linearly in the axial direction to yield isotropic 
volumes in 512x512x500-600 matrices. Alternatively, more 
slice images could be obtained, eliminating the need for 
interpolation. The imaging range of the data was from the 

50 diaphragm to the rectum so that the entire colon was 
included in the volume data. 

For the purposes of this description, an image shall be 
defined to be a representation of a physical scene, in which 
the image has been generated by some imaging technology: 

55 examples of imaging technology include television or CCD 
cameras or X-ray, sonar or ultrasound imaging devices, CT 
or MRI device, etc. The initial medium on which an image 
is recorded could be an electronic solid-state device, a 
photographic film, or some other device such as a photo-

60 stimulable phosphor. That recorded image could then be 
converted into digital form by a combination of electronic 
( as in the case of a CCD signal) or mechanicavoptical means 
(as in the case of digitizing a photographic film or digitizing 
the data from a photostimulable phosphor). The number of 

65 dimensions which an image could have could be one ( e.g. 
acoustic signals), two (e.g. X-ray radiological images) or 
more (e.g. nuclear magnetic resonance images). 
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The present invention is preferably computer imple­
mented and can be configured to accept image data either 
from an image acquisition device directly or from an image 
digitizer or from and image storage device. The image 
storage device can be local, e.g., associated with an image 5 

acquisition device or image digitizer, or can be remote so 
that upon being accessed for processing according to the 
present invention, the image data is transmitted via a net­
work, for example a Picture Archiving Communications 
System (PACS) or other network. 10 

Also, it should be appreciated that the source of data may 
be any appropriate image acquisition device such as an 
X-ray machine, CT apparatus, or MRI apparatus. Alterna­
tively, the source of image data being obtained and pro­
cessed may be an image storage device storing data pro- 15 

duced by an image acquisition device. The radiographic 
image(s) may be digitized to produce digitized image(s) and 
stored in the image storage device for subsequent retrieval 
and processing, as may be desired by a user. However, it 
should be appreciated that, if the radiographic images are 20 

obtained with a direct digital imaging device, then there is 
no need for digitization. 

The isotropic volume generated by linear interpolation 
will contain large amounts of anatomic structures other than 
the colon. To limit the search space for the polyps within the 25 

colon and to avoid generating false positives due to the 
extra-colonic structures, the entire colon is segmented by 
using a fully automated knowledge-guided technique. Spe­
cifically, a set of thick regions that encompasses the entire 
colon wall is extracted. Other methods attempt to extract 30 

only the surface of the colon, even semi-automatically, 
which risks losing a part of the polyps in the surface 
generation process [25, 28, 30]. 

FIG. 2 is a flowchart illustrating the steps in the segmen­
tation of the target organ according to the present invention. 35 

In step 201, a first set of segmentation voxels is generated 
by thresholding the set of voxels representing the total 
scanned volume with a value characteristic of the target 
organ. 

14 
ing, edge detection (gradient filtering), and operations of 
mathematical morphology [33] in three-dimensional space. 
The colonic walls are segmented from the remaining region 
by thresholding of the range of the CT and gradient mag­
nitude values corresponding to the colonic wall. The ABE 
method performs an additional step that enlarges the region 
of the segmented colon walls by approximately 5% in 
special situations, such as when part of the actual is left 
outside the imaged volume. 

These methods extract nearly all of the visible colonic 
walls, although the resulting volume could contain extraco­
lonic components (ECs). In particular, the segmented region 
may contain a small amount of bowel that adheres to the 
colonic wall or that is covered by the tortuous colonic loops. 
Therefore, the colon-based analysis (CBA) technique (step 
202) uses the ABE segmentation to produce an alternative 
segmentation of the colon where the ECs have been 
excluded. The final segmentation is obtained by intersecting 
of the ABE and CBA segmentations. 

FIG. 3 shows a series of segmentations produced in the 
method of colon segmentation according to the present 
invention. FIGS. 3a-3d show the segments generated by the 
anatomy-oriented approach including (a) the original CT 
volume, (b) the segmented outer air (body shown), ( c) the 
segmented bone, and (d) segmented lung bases. FIG. 3e 
shows a final segmentation after ABE. FIG. 3/ shows a 
signal representing a three-dimensional segmentation of a 
colon obtained by a combination of the ABE and CBA 
segmentations, including a first signal portion representing 
an internal surface of the colon; a second signal portion 
representing an external surface of the colon; and a third 
signal portion representing tissue located between said inter­
nal surface and said external surface of the colon. 

In addition, FIG. 8 is an illustration of the three-dimen­
sional representation of (a) the original isotropic CT volume, 
(b) the region segmented by the ABE step, with extracolonic 
components colored in red, and (c) the complete segmenta­
tion in which the extracolonic components have been 
removed by intersecting the segmentations generated by the 

Next, in step 202, organ-based analysis of the first set of 
segmentation voxels is performed to obtain a second set of 
segmentation voxels. 

40 ABE and CBA steps. 

Finally, in step 203, the intersection of the first set of 
segmentation voxels and the second set of segmentation 
voxels is determined to obtain the set ofvoxels representing 
the thick volumetric region. 

While the method illustrated in FIG. 2 is applicable to the 
segmentation of any target organ, steps 201-203 will be 
described in more detail below with regard to the specific 
method of segmenting a colon. However, those skilled in the 
art will recognize that the following methods and structures 
are readily adaptable to the segmentation of other organs, 
and that the methods are not limited only to colonic seg­
mentation. Moreover, the invention should not be limited to 
the specific embodiments of the individual steps of FIG. 2 
disclosed below, since various modifications may be made 
without departing from the spirit and scope of the invention. 

For reliable segmentation of the colonic walls, an 
anatomy-based extraction (ABE) method [32] (step 201) is 
used in which anatomical objects other than the target organ 
are segmented. The ABE method is an extension of the 
anatomy-oriented approach [31] and uses the anatomy­
oriented approach for initial segmentation of the colon by 
removing: (1) the air surrounding the body region ("outer 
air"), (2) the bones, and (3) the lung base. The anatomy­
oriented approach includes thresholding, region growing, 
connected component analysis (labeling), Gaussian smooth-

The ABE method segments the colonic walls C with high 
sensitivity, but the resulting segmentation c+ could contain 
redundant extra-colonic components, such as small bowel or 
stomach. Therefore, in the second step, the CBA removes 

45 the extra-colonic components from C+, producing the final 
segmentation C. 

FIG. 4 shows the primary steps in the segmentation of the 
colon prior to colon-based analysis, i.e., the steps of the 
anatomy-oriented approach [31], which comprises a major 

50 portion of the ABE segmentation. First, global and local 
histograms are obtained and analyzed. A typical global 
histogram shows three characteristic peaks, which corre­
spond to CT value distributions of the air ( outer and inside 
colon), the fat, and the muscle, as shown in FIG. 5. A local 

55 histogram is obtained at the center of the top five axial slices 
to determine the CT intensity level of the lungs. In these two 
histograms, four peak levels of CT values for air, lung, fat, 
and muscle (LA, LD Lp, and LM, respectively), are deter­
mined by searching of local maxima the predetemined 

60 ranges. Table 1 shows the search ranges of CT values for the 
peak levels. These values are used for the automated deter­
mination of adaptive threshold values in the segmentation. 

Let V, Ra, R6 and R1, denote the original CT volume, outer 
air (the air surrounding the body region), bones, and lung 

65 bases, respectively. Let T crt a,~) denote the operation of 
thresholding the CT value range [a,~]. First, a global 
histogram analysis ofV is performed to obtain the CT values 
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LA, Lp, and LM that correspond to air, fat, and muscle, 
respectively, as described above. Next Ra is segmented by 

( 
LA +Lp) Tcr -oo, --

2
-

followed by a series of morphological operations, and con­
nected component analysis. In rare cases, colonic walls are 
clipped by the data reconstruction limit (a round border), 
owing to insufficient coverage of the in-plane imaging range 
(FIG. 7). In this situation, the air inside the colon is included 

16 
and the sharpness of the boundary of the structure. These 
three structures for masking are segmented in volume data 
with a half resolution, because they do not need precise 
segmentation for the purpose of masking, and doing so 

5 accelerates the process. 
After Gaussian smoothing of the original data and mask­

ing of the data with the outer air, bone, and lung, the colonic 
walls are segmented by thresholding of the original CT value 
and the CT gradient magnitude. In this method, the scale 

10 (sigma) of the Gaussian function for smoothing and the 
threshold range for the gradient magnitude were adjusted so 
that the thickness of the segmented colonic walls would be 
3.0-4.0 mm. The scale of the Gaussian function for smooth-

in the segmented volume of the outer air and is removed 
from the volume data. Consequently, the final segmentation 15 

result of colonic walls has less volume than the expected 
value, and segmentation failure occurs in this method. In 
such cases, a secondary protocol for segmentation of the 
outer air is automatically launched, which uses known 
properties of the data reconstruction limit, such as shape and 20 

CT values. This method, however, has the possibility that 
small volumes of air between the body surface and the data 
reconstruction limit are excluded, and therefore this method 

ing was determined as 2.0 (voxels) to preserve small struc­
tures and to reduce noise. 

The colon is segmented from the remaining volume 
Vc=V\(RaURbUR.1) by intersecting the regions obtained by 
T crtL,v-800, L,v-50) and T GR(L,v-950,oo ), where T GR 

denotes thresholding of the gradient magnitude. (The gra­
dient of the CT value is first calculated at each voxel in Ve) 

The largest connected component can be selected as the 
target object of the colonic walls. However, there are some 
cases in which the colon is not sufficiently insufllated, and 
consequently the colon structure is fragmented. Therefore, 
the components are sorted according to their volume, and the 
smaller components are also added to the segmentation 

is not used as the primary protocol. 
Next, the bony structures such as the spine, the pelvis, and 25 

parts of the ribs are segmented for removal of voxels that 
have a high gradient magnitude on the boundary of the bone. 
The Rb region is segmented from V\Ra, by 

result in this method, if a condition is satisfied. Let P={p,} 
be the set of the resulting connected components, and let lp,I 
denote the number of voxels in component p,. The compo-

30 nent PLEP, for which lpLl~lp) for all j>'L, represents the 
principal region of the colon. Additional components are 
included according t to Equation 1. 

and connected component analysis is performed to pick up 35 

the bone structures of components that have volumes larger 
than the predetermined size (50 mm3

). 

In addition, the thickness of the resulting segmented colonic 
wall is adjusted to 3.0-4.0 mm. 

If the segmentation of the outer-air region was incom­
plete, a part of the underlying table or skin-line could appear 
within the segmented colon (FIG. 9). Therefore, the ABE 
technique includes three steps, in addition to the anatomy-
oriented approach, for the outer-air segmentation process. 
The first step inverts the original outer-air segmentation 
obtained by the anatomy-oriented approach, and removes all 

The lung bases are also segmented. It was observed that 
the border of the lung, including the diaphragm, was 
included in the segmentation result, if elimination of the 40 

lung was not performed first. This is due to the fact that 
colonic flexures often reach the diaphragm beneath the left 
lung, after insufllation. To segment Rz, a local histogram 
analysis of the top region of V\(Ra URb) is performed. The 
lung bases are segmented by 45 but the largest resulting connected component, which is the 

body region. The second step fills the air gaps at the surface 
of the segmented outer air by volume-growing. Third, after 
the osceous structures have been identified, the body region 
dorsal to the spine is removed (FIG. 10). 

where LL is the peak CT value of the local lung histogram 
(FIG. 6). The resulting connected components that are close 
to the estimated location of the left and right lung bases, 
identified by a point PL and a point PR, are removed. The 
coordinates of these two points were determined empirically 
so that the lungs in the volume data would include these 
points. The logical OR set of the two components is deter­
mined as the lung volume. The threshold values are deter­
mined based on the peak levels of air and lung. 

These three structures (Ra, Rb, and R1) are dilated by a 
three-dimensional morphological operation with spherical 
kernels to mask the boundary of the structures in the original 
volume for the segmentation of the colonic walls. The kernel 
radii for the structures are 5.0 mm for the outer air, 1.5 mm 
for the bone, and 8 mm for lung, which were determined 
according to their distance from the structure to the colon 

50 Another feature of ABE, in addition to the anatomy-
oriented approach, is the minimization of the amount of 
colonic wall that is excluded from the segmented colon. By 
default, the anatomy-oriented approach defines the seg­
mented colon as the largest connected component obtained 

55 after thresholding for the colonic walls. In the anatomy­
oriented approach, smaller components are included only if 
their size exceeds Rfc=25% of the size of the largest com­
ponent. This approach reduces the amount of ECs, but it 
could also exclude a small disconnected part of the colon, 

60 typically the rectum (FIG. 11). Therefore, in the ABE 
method, Rfc = 1 %. Although this increases the amount of ECs 
in the segmented region, the application of the CBA step 
should remove such components. 

The CBA method uses the segmented colon obtained by 
65 the ABE as a guide for volume-growing within the colonic 

lumen. Because ECs are generally not connected directly to 
the colonic lumen, they are expected to be excluded by the 
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CBA segmentation process. Schematically, ABE segmenta­
tion is an "outside-to-inside" segmentation, whereas CBA is 

18 
mented by the most recent v:.olume-growing step. The 
updated CEA-segmentation is c-=r',uc-, where r', repre­
sents r, expanded to cover c+ within the local neighborhood 
of r,. Then, if C obtained from Eq. (3) is considered 

an "inside-to-outside" segmentation. The ECs that are not 
included in the CBA segmentation are also excluded from 
the intersection. 5 incomplete, the volume-growing process is continued by 

choosing a seed point from within the largest unsegmented 
air-filled region. 

Note however that the thresholding operation for seg­
menting the colonic wall and ECs in the above ABE step 
may alternatively be accomplished by using other methods 
such as a region-growing method [33], image labeling [34], 
Markov Random Field [35], mathematical morphology [36], 10 

and other image segmentation methods such as those 
described in [37] recognizable by those skilled in the art. 

The application of the CBAmethod is complicated by the 
potential presence of completely collapsed regions in the 
colon. This causes two problems. First, collapsed regions 15 

may prevent the volume-growing process from progressing 
through the entire colonic lumen. Second, the method may 
need to assign multiple seeds, i.e., voxels, which determine 
the starting point of the volume-growing process. Because 
the method is fully automated, it requires (1) an automated 20 

assignment of multiple seeds, and (2) criteria to check 
whether the CBA segmentation is complete. 

Once a seed has been determined, the application of the 
volume-growing technique is relatively simple. At each 
iteration, unvisited voxels that are 26-connected to the 25 

currently segmented region will be added to the segmented 
region, if they are not part of the ABE segmentation (FIG. 
l2a-b ), and have CT and gradient magnitude values below 
those of the colonic wall. The process terminates when the 
number of voxels added to the segmented region decreases 30 

by more than 75% from the previous iteration or decreases 

All seeds used for volume-growing must have CT values 
corresponding to the air, and they may not be located within 
previously identified ECs ( outer air, bones, lungs). The ABE 
segmentation is used to guide the process of locating the 
seeds. 

The first seed is set at the rectum, because the location of 
the rectum can be estimated quite reliably. It is located 
within the center region of the bottom part of the entire CT 
volume. The method of setting a seed is reliable; because 
few ECs are located within this region, the likelihood that 
the seed would be located within an EC, instead of the 
rectum, is small. The rectum is located by extracting a 
volume of interest (VOI) that is defined by the bottom fifty 
axial slices (FIG. 13a). When the region segmented by ABE 
within this VOI, is inverted, at least two connected compo­
nents are obtained. The largest component represents the 
region outside the colon, and the second largest component 
should represent the air inside the colon which was set as a 
seed (FIG. 13b). 

If the use of the first seed does not result in a satisfactory 
segmentation, the next seed is chosen by shifting of the VOI 
upward by twenty-five slices and repeating the procedure 
described above. This could happen when the first volume­
growing fails due to a collapsed region between the rectum 
and sigmoid colon. 

Additional seeds, if needed, are chosen from a set of 

by more than a predetermined number. These conditions are 
expected to produce a segmentation of the colonic lumen 
that does not extend into the colonic wall nor protrude 
beyond small openings within the colonic wall. 

The segmentation provided by the ABE is of the form 
shown in Equation (2), 

c•~(C\c)UE' (2) 

35 
air-seeds. The initial set of potential air-seeds is defined by 
dilating the ABE segmentation. A valid air-seed must then 
satisfy five conditions (FIGS. l4a-e) that check whether the 
voxel is located within the unvisited colonic lumen. The five 
conditions are that (1) the air-seed must not be within the 

where C represents the actual colonic walls, cc C is the part 
of C not segmented by the ABE, and E' represents extra­
colonic components. For polyp detection, one may assume 
that c=cp, because, according to observations, the portions of 
the colon not segmented by the ABE reside within com­
pletely collapsed locations that are not of diagnostic quality. 
On the other hand, up to 20% of the false-positive polyp 
findings were found to originate from E'. Therefore, to 
minimize E', the CBAmethod was developed, which essen­
tially implements a self-adjusting volume-growing scheme 
to segment the air within the colonic lumen. Let c- denote 
the segmentation produced by the CBA method. The final 
segmentation of the colon is obtained by Equation (3). 

40 
ABE segmentation, (2) the air-seed must not be within 
previously identified extracolonic components, (3) the CT 
value of the air-seed may not exceed 900 Hounsfield units, 
(4) the air-seed must not be within the present CBA seg­
mentation, and (5) the air-seed must not be close to the 

45 
boundary of the surrounding CT volume. The valid air-seeds 
are then subjected to connected-component analysis. As the 
volume-growing continues, each new seed is returned from 
the largest available connected air-seed component. The 
seeds that have been used for the segmentation are no longer 

50 
available as new seeds. 

The final segmentation of the colon is obtained by inter­
secting the segmented regions obtained by the ABE and 
CBA methods to remove redundant segmentation. It is 
therefore necessary to have the CBA segmentation cover the 

(
3

) 55 surrounding colonic wall, as determined by the ABE seg­
mentation. This is accomplished in two steps. First, several 
surface layers are added to the CBA segmentation, until the 
outermost layer intersects with more than 95% of the ABE 
surface (FIG. 12c). Second, new surface layers are added to 

The seed points of the volume-growing step are detected 
automatically from c+. The first seed is chosen from within 
the rectum, because this part of the colon can be located 
most reliably. First, a volume-of-interest VR is extracted 
from the 4 cm bottom region ofV. Let Rc+=VRnc+. Then 
Re+ divides (,RC+ )nVR into two disconnected compo­
nents: the colonic lumen and the region outside the colon. 
The rectum is identified as the second largest connected 
component within (•RC+)nVR. 

60 the CBA segmentation, until less than 25% of the outermost 
layer intersects with the ABE segmentation (FIGS. l2d1). 

The volume-growing step may need to be continued if the 65 

complete colon was not segmented (the conditions are 
described below). Let r, denote the region that was seg-

To reduce the computation time and memory usage, the 
CBA technique may downsample the CT volumes by a 
factor of two. However, the very last step of determining the 
final colonic wall is performed in full resolution, because 
fine precision is necessary for obtaining a satisfactory match 
between the CBA and ABE segmentations. 



US 7,379,572 B2 
19 20 

candidate colonic polyps and selecting true-positive colonic 
polyps from the candidate set. 

Polyp candidates are detected in the segmented colon C 
by (1) smoothing the volumetric region encompassing the 
colon extracted in the knowledge-guided segmentation step 
to generate volumetric regions at multiple scales, (2) com-
puting three-dimensionally derived geometric features char­
acterizing polyps, for each voxel in the set of voxels 
representing the volumetric region, on at least one scale, (3) 
segmenting connected components corresponding to polyps, 
and (4) clustering these connected components to generate 
polyp candidates. 

In step 1701, the volumetric region encompassing the 
colon extracted in the knowledge-guided segmentation step 

Several conditions are used to test if C represents a 
complete colon. If some of the conditions are not satisfied, 
the CBA volume-growing process can be invoked to add 
new components to the segmentation. First, no more than 
50% of the ABE segmentation may be removed by the CBA 5 

method, i.e., the number of voxels removed from c+ is 
limited according to C,..=(IC+I-ICl)/IC+l>0.50. Second, the 
symmetry between the ascending and descending colon (Ca 
and Cd) is tested by checking that the number of segmented 
voxels between the expected locations of Ca and Cd differs 10 

less than 20% (FIG. 16a). The third condition tests for the 
presence of segmented colon within the expected location of 
the rectum. The fourth condition checks that the colon 
represented by C passes within an offset of 10-25% from the 
boundary of the bounding box of c+ (FIG. 15). The fifth 
condition tests ifthere are very large air-filled compartments 
that have not been segmented. The size of the largest 
air-seed component may not exceed 250,000 mm3

• The sixth 
condition terminates the segmentation process if C,..>0.95. 
Finally, a region at least 100 mm3 in size should be seg­
mented from the expected region of the sigmoid colon (FIG. 
16b). 

15 is first smoothed by Gaussian filters with various kernel 
sizes to generate volumetric regions at multiple scales. Note 
that the smoothing, and thus the generation of multiscale 
volumetric regions, can be accomplished by other types of 
smoothing filters, such as those described in [55], recogniz-

FIG. 17 is a flowchart illustrating the steps of detecting a 
set of candidate lesions based on geometric feature values, 
and selecting at least one lesion from the set of candidate 
lesions based on volumetric, morphologic and/or texture 
feature statistics according to the present invention. 

20 able by those skilled in the art. Then, to characterize polyps, 
two three-dimensionally derived geometric features, the 
volumetric shape index and volumetric curvedness [38, 39], 
are computed at each voxel in C at a given scale. The 
volumetric shape index characterizes the topological shape 

First, in step 1701, the volumetric region encompassing 
the target organ extracted in the previous step is smoothed 

25 of the volume in the vicinity of a voxel (Eq. (23)), whereas 
the volumetric curvedness represents the size of the polyp or 
the magnitude of the effective curvature (Eq. (24)). Both 
quantities are defined based on the notion of curvature. 
Therefore, the definition and the computational method of 

30 curvature are described briefly in the following. to generate volumetric regions at multiple scales, and then 
three-dimensionally derived geometric feature values are 
calculated, for each voxel in the set of voxels representing 
the volumetric region, on at least one scale. This step 
includes determining a volumetric shape index and a volu­
metric curvedness value for each voxel in the set of voxels 35 

representing the volumetric region. 
Next, in step 1702, a set of initial candidate lesions is 

generated using the three-dimensionally derived geometric 
feature values computed in step 1701. This step includes 
identifying a set of seed voxels having a volumetric shape 40 

index value in a first predefined range and a volumetric 
curvedness value in a second predefined range, determining 
a grow region of spatially connected voxels adjacent to a 
seed voxel in the set of seed voxels, and applying condi­
tional morphological dilation to the grow region to obtain an 45 

enhanced grow region. 
In step 1703, the set of initial candidate lesions generated 

in step 1702 is clustered to form the set of candidate lesions. 
Finally, in step 1704, a set of true lesions (true-positive 50 

lesions) is selected from the set of candidate lesions formed 
in step 1703. 

While the method illustrated in FIG. 17 is applicable to 
detecting a set of candidate lesions in any target organ, steps 
1701-1704 will be described in more detail below with 55 

regard to the specific method of detecting a set of candidate 
polyps in a colon. However, those skilled in the art will 
recognize that the following methods and structures are 
readily adaptable to detecting a set of candidate lesions in 
other organs, and that the methods are not limited only to 60 
detecting a set of candidate colonic polyps. Moreover, the 
invention should not be limited to the specific embodiments 
of the individual steps of FIG. 17 disclosed below, since 
various modifications may be made without departing from 
the spirit and scope of the invention. 65 

Steps 1701-1704 will be described in more detail below 
with regard to the specific steps of detecting a set of 

Curvature is a local property attached to points on a 
surface. Let h(p) denote the CT value at a point (voxel) p=(x, 
y, z). Then an iso-surface Pat the level (CT value) of a in a 
three-dimensional space R3 is given by 

P~{p~(x,y,z)ER3
; h(p)~a }. (4) 

At each point p, there exists a small neighborhood U of p 
in which z can be expressed by a function cp of x and y. By 
denoting (x, y)=(u, v) in this neighborhood, the iso-surface 
P can be represented as 

(5) 

Let us denote the partial derivatives of Pin terms of u and 
v as follows: 

8(u, v) 8P(u, v) 
Pu = ~, P, = _a_v_, 

(6) 

(7) 

Using these notations, a vector parallel to the normal 
vector to the surface is defined as shown in Equation (8), 

(8) 

where X denotes the outer product of two vectors, and 11·11 

denotes a norm. With these notations, the first fundamental 
forms [ 40] are defined as 

(9) 

Also, the second fundamental forms [ 40] are defined as 

(10) 



US 7,379,572 B2 
21 

Because one is interested in calculating the curvature 
information at a voxel p without explicitly generating an 
iso-surface, the first and second fundamental forms are 
calculated directly from the isotropic volume as follows 
[ 41]. By the use of implicit differentiation 

E~l+h}lh/ (11) 

F~ 1 +h)zjh/ (12) 

G~l+h/lh/ (13) 

M~(h)z)zyz-h)z)z=-hPyhzz-h/hx)/R (14) 

and the chain rule, one can obtain Pu=aP/au=(l, 0, acp/au)= 
(1, 0, -hj~)- Substituting similar expressions for P v, P uu, 

P uv' and P w into Eqs. (7)-(10), one obtains Equations 11-17. 

(15) 

22 
sizes. For example, as shown in FIG. 18, five well-known 
shape classes have the following shape index values: cup 
(0.0), rut (0.25), saddle (0.5), ridge (0.75), and cap (1.0). 
Diagrammatically, opposite points on the unit circle, 

5 denoted by the end points of the dotted lines, represent 
shapes that are each other's "negative," that is, they have the 
same shape, but opposite mold. Therefore, all shapes can be 
mapped on the interval SIE[0,1]. In FIG. 18, the "negative" 
shapes are represented by light gray. A plane has vanishing 
curvedness and an indeterminate shape index. 10 

The most important advantage of the shape index is that 
the transition from one shape to another occurs continuously, 
and thus the shape index can describe subtle shape variations 
effectively. For example, SI=0.875 represents the "dome" 

15 shape, which is a transient shape from ridge (SI=0.75) to cap 
(SI=l.0). Moreover, the definition of the volumetric shape 
index introduced here allows one to define the shape index 
at every voxel in a volume without explicitly calculating the 

Then the principal curvatures k 1 and k2 [40, 42] are defined 
as in Equation 18. Here H and K 20 

iso-surface. Therefore, the volumetric shape index captures 
the intuitive notion of local shape of an iso-surface at a 
voxel. 

(16) The curvedness is a measure of the curvature of the 

R = h; ✓ h / hf , b ~ hf 
(17) 25 

iso-surface. The dimension of the curvedness is that of the 
reciprocal of length, and its range is ]-oo, oo[. Curvedness is 
a "dual" feature to the shape index in that the shape index 
measures "which" shape the local neighborhood of a voxel 

i=x,y,z 

(18) 30 

has, whereas the curvedness measures "how much" shape 
the neighborhood includes. The curvedness also provides 
scale information: a large negative value implies a very 
gentle change, whereas a large positive value implies a very 
sharp knife-like edge. 

LN-M2 
Ke:--­

EG-F2 

1 
k2 

(i,j,k)=V (x,y,z) 

EN-2FM+GL 
Hee 

2(EG-F2) 

1 
~ {hf(hJJ + h,,)-2hJhkhJk) k3/2 

(i,j,k)=&' (x,y,z) 

1 1 k1 +k2 
SI(p) = - - -arctan--

2 n k1-k2 

CV(p)=✓(k/+k/)12 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

are the Gaussian curvature and mean curvature, respectively. 
Here, ~(x, y, z) is a permutation of (x, y, z), i.e., ~(x, y, 
z)-{(x, y, z), (y, z, x), (z, x, y)}. 

By use of these principal curvatures, the volumetric shape 
index SI (p) and the volumetric curvedness CV (p) at a voxel 
p are defined as the local shape index and curvedness of the 
iso-surface that passes p, where k 1;,k2 . The space spanned 

In the three-dimensional volumetric data, generally, pol­
yps appear as bulbous, cap-like structures adhering to the 
colonic wall, with small to medium curvedness, whereas 

35 folds appear as elongated, ridge-like structures having large 
curvedness values. The colonic walls appear as nearly flat, 
cup-like structures and have small curvedness values. There­
fore, the shape index and the curvedness can differentiate 

40 

45 

50 

among polyps, folds, and colonic walls effectively. 
FIG. 19 demonstrates the potential of the shape index in 

differentiating colonic structures. FIGS. 19(a) and (d) show 
axial CT images that contain polyps in the regions indicated 
by boxes. FIGS. 19(b) and (e) show magnified views of the 
regions indicated in (a) and (d). The polyps are indicated by 
arrows. FIGS. 19(c) and (j) represent three-dimensional 
endoscopic views of (b) and ( e ), rendered by perspective 
volume rendering and colored by the shape index. Voxels 
that have shape index values corresponding to the cap class 
are colored green, those corresponding to ridge are colored 
pink, and those corresponding to the other classes are 
colored brown. As expected, most portions of the polyp are 
colored green, whereas folds and colonic walls are colored 
pink and brown, respectively. With this coloring scheme, the 
polyps, folds, and colonic wall are clearly separated, and the 

55 polyp is easily distinguishable from other structures. 
In step 1702, the characteristic values of the shape index 

for polyps are used to segment the polyp candidates by use 
of hysteresis thresholding [ 41]. First, voxels that have shape 
index and curvedness values between a predefined minimum 

60 and maximum are extracted as seed regions. The minimum 
and maximum threshold values for the shape index are set to 
approximately 0.9 and 1.0, respectively, so that the regions 
that are in the cap class can be selected. The minimum and 
maximum threshold values for the curvedness are set so that 

by SI and CV is a polar-coordinate representation of the 
space spanned by the principal curvatures k 1 and k2 . The 
shape index is a measure of the shape. Every distinct shape, 
except for the plane, corresponds to a unique value of SI [38, 
39]. These shapes are mapped on a unit circle in the (k1 , 

k2)-space (see FIG. 18). The unit circle contains shapes with 65 

unit curvedness, and the rays through the origin contain 
identical shapes that differ in their curvedness, i.e., their 

the curvedness is within the range of targeted polyps, i.e., 
minimum,.,0.08 mm-1 (effective size of 12.5 mm) and maxi­
mum,.,0.20 mm- 1 (effective size of 5.0 mm.) 
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Starting with seed regions, hysteresis thresholding based 
on the shape index and curvedness is applied to the extracted 
colon C to obtain polyp candidates. This hysteresis thresh­
olding extracts a set of spatially connected voxels to the seed 
regions having shape index and curvedness values within the 5 

predefined minimum and maximum values. This process is 
used to extract a large connected component that corre­
sponds to the major portion of a polyp because the peripheral 
region of a polyp does not always show a perfect cap shape, 
but may show a dome-like shape. Therefore, a relaxed 10 

minimum threshold value (approximately 0.8) for the shape 
index is used in order to include the skirts of the polyps 
connected to the colonic walls or folds. Similarly, the 
peripheral region of a polyp may have curvedness values 
that are smaller or larger than that of the center region of a 15 

polyp. Therefore, the minimum and maximum threshold 
values for curvedness were relaxed to approximately 0.05 
mm- 1 (effective size of 20 mm) and 0.25 mm- 1 (effective 
polyp sizes of 4 mm), for identification of clinically signifi­
cant polyps 20 

In practice, small polyps of approximately 5 mm or less 
in diameter may already be covered by the seed region R0 • 

In this case, the segmentation technique described above 
could segment not only the polyp, but also a part of the 
region surrounding the polyp. Therefore, before starting the 
iterative process of conditional morphological dilation, the 
seed region is eroded by 1 mm. The seed region then 
becomes smaller than the actual region of the polyp candi­
date. When the dilation process is started, the expanding 
region will first restore the original region of the seed and 
identify correctly the actual region of the polyp candidate. 

The polyp candidates may contain the multiple detections, 
at different locations, of the same polyps, and may include 
a large number of small bumpy structures due to image 
noise. Multiple detections are merged into a single candidate 
by combining the detections that are located within a merg-
ing distance. A merging distance of approximately 10 mm is 
used, because, generally, multiple detections occur on a 
polyp larger than 10 mm. 

In step 1703, the set of initial candidate lesions generated 

Table 2 summarizes the threshold values for the major 
parameters used in the segmentation process. 

The region of a polyp candidate is extracted through an 
iterative conditional morphological dilation process, which 
is applied to the region detected by hysteresis thresholding 
as described above. The region, in which the growth rate due 
to a step of conditional dilation is smallest, is chosen as the 
final region of the polyp or lesion candidate. 

In this method, the region extracted by use of hysteresis 
thresholding is used as seed region Ra- The seed region is 
expanded by use of conditional morphological dilation as 
follows: let EB denote the operation of morphological dila­
tion [33], and let\ denote the operation of set difference (i.e., 
A\B denotes the part of set A not in set B). Let CL denote the 
region of the colonic lumen, which can be determined during 
the colon extraction process. Let B denote a morphological 
spherical structuring element with a diameter of D mm. In 
each step of the process of iterative conditional morphologi-
cal dilation, the following operation is performed: R,= 
(R,_ 1EBB)\CL. The morphological dilation extends the 
boundary surface of the previous region R,_ 1 by D mm, and 
the set difference operation eliminates the part of the dilated 
region that extends to the colonic lumen. D is set to the voxel 
resolution of each data set (approximately 0.5-0.7 mm) to 
expand the region in layers with a thickness of one voxel. 

The maximum number of dilation steps, M, is constrained 
by MD~7.5 mm. That is, the boundary surface of the polyp 
candidate may extend at most 7 .5 mm from its starting 
position in R0 • Therefore, the technique can potentially 
extract the complete region of polyp or lesion candidates 
that are up to 15 mm in diameter. This suffices to extract 
most polyps with small to medium sizes. 

To determine the complete region RP of a polyp candidate, 
in each step of the process of conditional dilation, the 
amount N, of voxels that were added to R,_ 1 to yield R, is 
calculated. The final region of the polyp candidate will be 
the dilated region for which the growth rate due to expansion 

in step 1702 is clustered to form the set of candidate lesions. 
In one embodiment, a fuzzy c-means algorithm [43] can be 
used as described below. Note, however, that the fuzzy 
clustering process can be accomplished by using other 

25 statistical clustering methods such as those described in 
[44], which are recognizable by those skilled in the art. 

Let f (p) denote the feature vector of data point p (i.e. a 
voxel in a polyp candidate). The fuzzy c-means algorithm 
groups the data points p with similar f (p) into a single 

30 cluster C. The similarity between two data points p and q is 
defined by the similarity measure Mf=llf(p)-f(q)II, where 11·11 

represents the Euclidean distance. The main advantage of 
the fuzzy clustering is that it defines a membership function 
8,(p )E[0, 1] for each data point p and each cluster C,. If the 

35 value of 8, (p) is large, it is likely that p belongs to cluster 
c,. 

Let s, denote the segmented polyp candidates. To start the 
fuzzy clustering, the center of each polyp candidate s, is used 
as the initial estimate of the cluster centers, and define 

40 8,(p )= 1 if pEs,, and 8,(p )=0 otherwise. The feature values 
in each f (p) are normalized to the range [0,1]. The fuzzy 
c-means clustering takes the f(p) of all p as input, and moves 
the cluster centers to the optimal location by iteratively 
updating the membership functions 8,(p) and the location of 

45 the cluster centers. This optimization is based on minimizing 
an objective function that represents the distance from any 
given data point to a cluster center weighted by the degree 
of membership of the data points. 

The data points p with membership higher than a thresh-
50 old value m, 8jp) ~m, for some j are kept to yield the final 

clusters. By using the relatively high threshold value m of 
approximately 0.8, the fuzzy clustering process keeps the 
candidates due to noise as a small, isolated cluster, because 
they tend to contain voxels that have distinctly different 

55 feature values from those of their surrounding voxels. These 
voxels have low memberships in the candidates, and thus the 
above thresholding operation generates small clusters. 
Thresholding with a minimum volume of approximately 38 
mm3 is applied to individual clusters for removal of these by conditional dilation, or dNldR, is smallest. Typically, the 

growth rate first increases rapidly, and then decreases as the 
expanding region becomes bounded by the visually per­
ceived shape of the polyp candidate. After that, the growth 
rate increases again as the expanding region extends into the 
organ wall beyond the actual region of the polyp candidate. 
Therefore, the region that corresponds to the smallest 65 

growth rate represents, most likely, the complete region of 
the polyp candidate. 

60 small clusters. This minimum volume is equivalent to the 
volume of a 4-mm polyp, which is small enough to keep the 
clinically significant polyps that are 5 mm or larger. 

Table 2 summarizes the threshold values for the major 
parameters used in the clustering process. 

In step 1704, a set of true lesions (true-positive (TP) 
lesions) is selected from the set of candidate lesions formed 
in step 1703. For this purpose, three-dimensionally derived 
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features are obtained to characterize each polyp candidate 
and to differentiate false positives (FPs) from TPs. 

26 
designed to have high values for hemispheres, but low 
values for complete spheres. In a hemisphere, the value of 

e,~(p) 

In one embodiment, two three-dimensionally derived 
volumetric features, the gradient concentration (GC) and the 

5 
directional gradient concentration (DGC), are used for effi­
cient differentiation between FPs and TPs [ 45]. The GC and 
the DGC features are based on the iris filter [ 45] that was 
originally designed to enhance and detect rounded convex 
regions. This feature measures the degree of concentration 
of the gradient orientations of the CT values in the vicinity 
of a voxel. The GC feature is computed by 

in Eq. (25) is high in one half of the region and low in the 

10 
other half (FIG. 22b ). Suppose one calculates the difference 

(25) 15 

of the values 

20 

----;, 

that have been computed from opposite directions, D, and 
----;, 

25 DJ" Then 

where p is an operating point (OP), and N is the number of 
the symmetric directions used for computing the response 
(FIG. 21a). Generally, increasing the number of directions 
improves the estimate of the local gradient concentration, 
with a sacrifice in computation speed. The values e,max(p) 
are computed by use of the distance range of [Rm,m Rmaxl 
from p in each direction. The angle 1.jJiJ(p) is the angle 30 

----;, ----;, 

between the direction vector D, and a gradient vector g 1 
located at distance j from p (FIG. 21b). 

From Eq. (25), the value ofGC is bounded by [-1,1]. The 
value at the OP increases as the number of gradient vectors 35 
pointing to the OP increases. Therefore, the GC value is 
highest at the center of a spherical object, in which the voxel 
values increase toward the center point (FIG. 22a). This is 
because the value of 

40 

e,~(p) 

is low at the center of a sphere since 

but high in a hemisphere where 

e,~(p)" 1 and ej~(p) "0 

in Eq. (25) is high in all directions around the center. 

(or vice versa). If the gradient vectors do not concentrate 
45 anywhere (FIG. 22c), both 

Due to the partial volume effect, the soft-tissue density 
within a polyp tends to increase from the colonic air toward 
the center of the polyp. Therefore, most gradient vectors 
within a polyp tend to point toward the polyp's center. On 50 

the other hand, folds, which are a major source ofFPs in the 
colon, are elongated ridge-like objects that do not have a 
single center toward which the soft-tissue density would 
increase. Therefore, gradient vectors in a fold do not con­
centrate at any particular point. Another source of FPs is 55 

stool, which can sometimes be confused with small polyps. 
Because the internal structure of stool is less homogeneous 
than that of a polyp, the density variation within stool tends 
to cause the gradient vectors to point in random directions 
rather than toward any particular location. Because of these 60 

differences, the GC feature can be an effective means for 
differentiating polyps from FPs. 

Generally, polyps appearing on the colonic wall are 
hemispherical objects, rather than complete spheres. There- 65 

fore, the DGC feature is designed to improve the identifi­
cation of hemispherical density patterns. The DGC is 

e,~(p)" 0 and ej~(p) "0, and therefore et(p) "0. 

The DGC is defined based on the coefficients 

e,~(p) 

of Eq. (25) as in Equation (26). 

DGC(p) = (26) 

_'.__ ~ { le,~(p)- eJ':':v;2(P)I; e,~(p), eJ':':v;2(P) > 0 

2N U e,~(p)+ef:':v12 (p); otherwise. 
i=l 
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Here N is the number of the synnnetric computation nonspecific situations that, although they do not form a true 
directions, and the values hemispherical concentration pattern, could produce high 

values 

----;, ----;, 

and are computed from opposite directions, D, and D i+Ni2 . 

Although this formulation does not check whether the 10 

gradient vectors pointing to p form a precise hemispherical 
concentration pattern, it allows fast DGC computation with 
simultaneous computation of GC. 

(FIG. 22f). Such situations can be identified by increasing 
the number of directions where DGC is computed. 

FIG. 23 shows examples of the GC and DGC response for 
synthetic objects. FIGS. 23a and b show that the GC values 
are highest at the center of a sphere. High values are also If the gradient vectors point toward the OP in both sides 

of the OP, 

ejax(p) and e~N;2(P) 

are positive and DGC(p )E[0, 1]. If the gradient vectors point 
away from the OP, 

ejax(p) and e~N;2(P) 

are negative and DGC(p)E[-2,0]. If the gradient vectors 
point toward the OP in one direction, but away from the OP 
in the opposite direction, DGC(p)E[-1,1]. Therefore, the 
value range of the DGC is [-2,1]. 

Some special cases complicate the use of the DGC 
feature. For example, if the gradient vectors are pointing in 
the same direction (FIG. 22d), then 

in one direction and 

ej~(p)" -1 

in the other direction. The difference 

15 seen in the center of a polyp-like hemisphere. A ridge-like 
cylinder has moderately high GC values at its central axis, 
but these are lower than the GC values at the centers of the 
sphere and hemisphere because of the smaller number of 
gradient vectors pointing toward the central axis. FIG. 23c 

20 shows that the DGC values are high at the center of the 
polyp-like hemisphere, but low at the center of a sphere. The 
central axis of the ridge-like cylinder has moderately high 
values. 

25 In another embodiment, a novel modified gradient con-
centration (MGC) [ 46] is used as an effective three-dimen­
sional derived feature for characterizing each polyp candi­
date and for differentiating false positives from true 
positives. MGC feature is based on the GC feature. The GC 

30 feature characterizes the direction of three-dimensional gra­
dient vectors of CT values with respect to an operating point 
at the center of the region where the gradient direction is 
calculated. The GC feature can differentiate pedunculated 
polyps from FPs with high accuracy, but the performance in 

35 differentiating sessile polyps from FPs is low. Therefore, the 
MGC feature was designed to improve the performance of 
the GC in differentiating sessile polyps from FPs. 

The MGC feature is defined based on the GC feature, 
which is highly sensitive to spherical objects with a Gaus-

40 sian distribution of CT values. The values of the MGC are 
calculated by mapping of the GC values through a sigmoid 
function that increases the GC values corresponding to 
spherical (QC,.,]) and hemispherical (GC,.,Q.5) objects while 
decreasing low GC values that appear within FPs. The 

45 sigmoid mapping of the GC values is calculated by 

50 

1 
MGC(p) = _l_+_e-xp-(g_G_C_(_p-)--t) 

(27) 

The parameters of the sigmoid function, i.e., the gain g and 
transfer t, were determined experimentally. 

may then approach 2, increasing the overall response. Such 
a situation could occur within a boundary region, if the scale 

55 

of DGC (i.e., Rmax) is set much smaller than the diameter of 
the largest target polyps. Another special case occurs when 

In another embodiment, the variance of the CT value 
(CTV) [34] is used as an effective three-dimensionally 
derived feature for characterizing each polyp candidate and 
for differentiating false positives from true positives. CTV is 
calculated from the CT value of the voxels. Given the all gradient vectors point away from the OP (FIG. 22e), and 

then 

at the center. However, this kind of gradient concentration 
pattern is unlikely to appear in CTC. Finally, there could be 

60 
extracted region R of a polyp candidate, CTV is calculated 
as shown in 

65 

1 
CTV(R) = IRl-1 I (CT(p)-CT(R))2, 

pcR 

(28) 
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Equation (28), in which IRI is the number of voxels in R, 
CT(p) is the CT value ofvoxel p, and CT(R) is the mean CT 
value within R. 

In the preferred embodiment, other three-dimensionally 
derived volumetric features described in steps 1701 and 5 

1702 such as the shape index, curvedness, CT value, and 
gradient of CT values can also be used for characterizing 
each polyp candidate and for differentiating false positives 
from true positives. 

The effectiveness of the features mentioned above in 10 

characterizing polyps can be visualized by calculation of 
histograms of feature values from typical TP and FP polyp 
candidates. These histograms show signature patterns that 
are different between typical TP and FP polyp candidate 
(FIGS. 25a-25c). For example, in FIG. 25a, the SI values of 15 

a TP polyp candidate are concentrated at the high end of the 
histogram of SI values, whereas the SI values of a FP polyp 
candidate are distributed over a wide range of SI values. 

30 
shown in Equations (29)-(37). In Eq. (37), the mk represents 
the indexes of the voxels with the highest value(s) off within 
s,. Note that other types of FSs such as the moments as 
described in [34] can alternatively be used by those skilled 
in the art. 

N; 

mini (s;) = ~p{J;(k)) 

maxi (s;) = r:ix{f;(k)} 
k=l 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Most regions of polyp candidates contain feature values 
that are characteristic of polyps, as well as feature values 20 

that are not characteristic of polyps. For example, in FIG. 
25a, the TP and FP polyp candidates contain both high and 
low values of SI. Therefore, simply the presence of polyp­
like or unpolyp-like feature values is not a sufficient indi­
cator for a TP or FP classification. The polyp candidate may 25 

also represent multiple lesions rather than a single well­
defined lesion. For example, FIG. 26a shows a small polyp 
within a cloud-like substance: the histogram of SI values 
(FIG. 26b) shows not only high values of the SI due to the 
polyp-like region of the polyp candidate, but also a wide 
range of low, unpolyp-like values due to the surrounding 
cloud-like substance. Simply computing the mean value of 
the SI within the entire region of the polyp candidate 
extracted by a segmentation method, including the condi­
tional morphological dilation, would dilute the high polyp- 35 

like values due to the low values produced by the cloud-like 
substance. 

Two methods can be used for computing these statistics 
30 for polyp candidates. The simpler and faster approach, 

which we call global statistics, is to compute these statistics 

Thus, a method called feature-guided analysis [ 46] was 
developed, in which, for each polyp candidate, a feature F7 
is calculated in a restricted range that is determined by the 40 

region of the polyp candidate and the rage in which values 
of the feature exceed a threshold value T Ff The threshold 
value TFJ is determined empirically for each feature. First, 
initial estimates of the threshold values for each feature are 
determined by examining visually the feature histograms of 45 

a number of TP polyp candidates and a number of lowest­
ranking FP polyp candidates in the data sets. Here, the rank 
of the FP polyp candidates is based on the mean value of the 
SI within the entire segmented region of the polyp candidate. 
Next, approximately 10 threshold values are chosen ran- 50 

domly in the neighborhood of the initial estimates. Each 
combination of the thresholds from each feature can be used; 
however, we typically choose the threshold combination that 
minimizes the FP rate of the present method at high by­
polyp detection sensitivities (86%-95%) in the CTC data 55 

sets for the feature-guided analysis technique. 
Once volumetric, morphologic, and/or texture features are 

computed, the following nine statistics of these features 
called feature statistics (FSs) are compute within the region 
obtained by conditional morphological dilation described in 60 

step 1702: (1) mean (2) minimum, (3) maximum, (4) vari­
ance, (5) skewness, (6) kurtosis, (7) entropy, (8) the average 
of 10 voxels with the highest feature values in a candidate, 
and (9) contrast as defined by the ratio between minimum 
and maximum. Let s, represent a polyp candidate, and let 65 

f,G)G=l, ... , N,) represent the values of feature f for the N, 
voxels of s,. Then the above nine statistics can be defined as 

1 10 

max 101 (si) = 10 I f;(m,) 
k=l 

(35) 

(36) 

(37) 

directly from the CT values or their gradient contained 
within the polyp candidate. The second approach, called 
local statistics, is to compute the statistics locally within a 
small neighborhood, typically but not limited to 3x3 or 5x5, 
of each voxel within the candidate region. The distribution 
of the local statistics is further summarized by mean, vari­
ance, skewness, kurtosis, and contrast statistics within each 
polyp candidate. The local statistics can capture the local 
textural variations more efficiently than the first global 
approach, and thus can be more effective in differentiating 
stool from polyps. 

In step 1704, true polyp ( or TP polyps) is selected from 
the set of polyp candidates based on at least one of the FSs 
such as, but not limited to, the ones mentioned above. For 
this purpose, FP polyps are identified by classifying of the 
polyp candidates into TP and FP categories by use of a 
statistical classifier. This classifier can be a linear classifier 
such as the one generated by linear discriminant analysis 
(LDA) [47]; non-linear classifier such as the one generated 
by quadratic discriminant analysis (QDA) [47], neural net­
work [48], and support vector machine [49]; kernel-based 
learning methods [ 49]; any type of single classifier based on 
a statistical classification algorithm described in Ref. [50], or 
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any combination thereof. In the classification, a set of FSs 
are calculated and arranged into a feature vector. The feature 
vector is used as input to the statistical classifier, and the 
polyp candidates are classified into TP and FP categories. 
TPs define the final output of the preferred method, i.e., the 5 

detected polyps. 
In one embodiment, we used LDA and QDA as the 

statistical classifier. To be specific, in the following, the 
classifier generated by the QDA is called a quadratic clas­
sifier (QC). Similarly, the classifier generated by the LDA is 10 

called a linear classifier (LC). 
Let N denote the number ofFSs, and s,=(s,1,s,2, ... , st) 

denotes an N-dimensional feature vector of the polyp can­
didate s,, in which the component sf represents the j-th FS 
value of the polyp candidate. Given a training set { s,} with 15 

known classes, LDA or QDA generates a decision boundary 
that optimally partitions the feature space spanned by the N 
features into two classes, i.e., true-positive and false-positive 
classes. To this end, a discriminant function g(s,; w) RN--;,R, 
is generated, which projects the N-dimensional feature space 20 

to a scalar decision variable space. Here, w is a weight 
vector (or matrix) that determines the form of the discrimi­
nant function g. This weight vector is determined by the 
training set. The decision boundary is given by g(s; w)=0. 
For LDA, the decision boundary forms a hyperplane, and for 25 

QDA, it forms a hyperquadratic surface. 
LDA uses the simplest type of discriminant function, 

called a linear discriminant function, defined by 

(38) 30 

where w is an N-dimensional weight vector. In QDA, on the 
other hand, g is a quadratic discriminant function defined by 

(39) 

32 
radiation exposure. Each CTC data set covered the entire 
region of the abdomen, from diaphragm to rectum, and 
consisted of 150-300 CT images with a matrix size of 
512x512. After the linear interpolation along the axial 
direction, the z-dimension of the resulting isotropic volumes 
contained between 500-700 voxels, and the physical reso-
lution of these volumes was 0.5-0.75 mm/voxel. 

Optical colonoscopy was performed on the same day as 
the CTC. There were 21 colonoscopy-confirmed polyps 
larger than 5 mm in 14 patients (27 data sets). Radiologists 
established the exact locations of the polyps in CTC data sets 
by use of the colonoscopy reports, pathology reports, and 
multiplanar reformatted views of the CTC data sets. Eight of 
these polyps were located in the sigmoid colon, 1 in the 
descending colon, 3 in the hepatic flexure, 1 in the transverse 
colon, 2 in the splenic flexure, 5 in the ascending colon, and 
1 in cecum. All of the polyps were confirmed on the CT 
images, but 3 polyps were visible only in either the supine 
or prone view, because they were located in a collapsed 
region or carried under the fluid in the other view. Seventeen 
of the polyps were measured 5-10 mm, three polyps were 
11-12 mm, and one polyp was 25 mm in diameter. 

To determine the true and false positives in the comput­
erized detections, the center coordinates of the true-positive 
polyps in each data set were determined by two radiologists. 
A detection was considered a true positive if the distance 
between the detected polyp and the center of a true polyp 
was at most 10 mm. All other findings were considered false 
positives. 

In one experiment, the feature-guided analysis was dis-
abled and the performance of six features was compared in 
the differentiation of FPs and TPs in the polyp candidates 
generated in step 1703 [ 45]. The six features included shape 
index, curvedness, CT value, gradient of CT value, gradient 

where Wis an NxN matrix. 
Geometrically, the discriminant function g(s) is inter­

preted as proportional to the signed distance from s to the 
decision boundary. Generally, the larger the value of g( s ), the 
more likely it is that s is a polyp. In other words, g(s) is 
proportional to the ranked ordering of the likelihood that s 
is a polyp. Therefore, the polyp candidates are classified into 
the true-positive class Crp and the false-positive class CFP 
by partitioning the feature space through thresholding of the 
decision variable as follows: 

35 concentration, and directional gradient concentration. The 
CT value is a CT attenuations value at a voxel, and the 
gradient of CT value is the magnitude of the 3x3x3 Prewitt 
gradient of the CT value [37]. 

(40) 

Those candidates that are classified into the polyp class 
CP are reported as the final detected polyps by our system. 

The performance of the FSs in the classification between 
TPs and FPs, as well as the performance of the polyp 
detection were evaluated based on CTC data obtained from 
72 clinical CTC examinations performed during 1997-2001 
at the University of Chicago [18]. Each patient underwent 
standard pre-colonoscopy colon cleansing. Each patient was 
scanned in both supine and prone positions, and the colon 
was insufllated with room air. The CTC scanning was 
performed in prone and supine positions with a helical CT 
scanner (GE 9800 CTi or LightSpeed QX/i; GE Medical 
Systems, Milwaukee, Wis.). Thus, there were 144 CTC data 
sets. The collimation was 2.5-5.0 mm, pitch was 1.5-1.7, and 
the reconstruction intervals were 1.5-2.5 mm. The matrix 
size of the axial images was 512x512, with a spatial reso­
lution of0.5 mm/pixel to 0.7 mm/pixel. A reduced current of 
60 mA or 100 mA with 120 kVp was used to minimize 

ROC analysis [51] was used to evaluate the performance 
40 of these features. ROC analysis is a statistical technique that 

is accepted widely as an effective method for evaluating the 
performance of a binary decision-making process in inter­
preting medical images, or, in this case, the differentiation 
between TPs and FPs. For this purpose, nine statistics from 

45 the feature values within each polyp candidate were calcu­
lated. These nine statistics included (1) mean (2) minimum, 
(3) maximum, (4) variance, (5) skewness, (6) kurtosis, (7) 
entropy, (8) the average of 10 voxels with the highest feature 
values in a candidate, and (9) contrast as defined by the ratio 

50 between minimum and maximum. When the statistics were 
calculated for individual features, a total of 54 FSs are 
obtained to characterize each polyp candidate. 

The performance of each FS was evaluated by subjecting 
its values, computed from polyp candidates, to the 

55 LABROC4 program [52], which generates a binormal ROC 
curve. The ROC result is characterized by using the area 
under the ROC curve (A

2
), which is the most commonly 

employed univariate summary index of the ROC curve [51]. 
Generally, a high value (the maximum is 1.0) indicates high 

60 separation between TPs and FPs. 
The FSs that had anA

2 
value exceeding 0.8 were grouped 

into FS combinations, because they can be considered as 
"effective" features. Also, if the sum of the A

2 
value and its 

standard deviation exceeded 0.8, the FS was included in the 
65 combinations. A study of the plots ofFSs withA

2 
values less 

than 0.8 suggested that the differentiation capability of such 
FSs is limited, and their use is expected to lead only to 
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marginal improvement with a potentially high error margin 
when new cases are added to the database. It should be noted 
that simply choosing the individually high-performing fea­
tures does not necessarily result in optimal performance 
when the FSs are used in combination [51]. Therefore, 5 

choosing multiple features with high performance is neces­
sary. 

Table 3 shows the three highest-performing statistics of 
each feature in differentiating between the TP and FP polyp 
candidates in an analysis of a subset of the CTC database 10 

described above ( 43 CTC examinations for a total of 86 CTC 
data sets; 12 polyps in 11 cases). The Az was highest for the 
mean value of SI (mean(SI))(0.92), followed by the mean 
value of DGC (mean(DGC)) and the kurtosis of the CT 
value (0.85). The gradient, GC, and CV features yielded 15 

lower values, with the CV feature producing the lowest Az 
value in this evaluation. 

In another experiment, the performance of several FS 
combinations was evaluated by using them as input to the 
LC or QC to yield a discrimination function for differenti- 20 

ating between TPs and FPs (FIG. 24a) [45]. The output of 
the discriminant function was considered as a decision 
variable, and the values of the discriminant function for each 
candidate were subjected to ROC analysis. To estimate the 
unbiased performance, we trained and tested the classifiers 25 

for LDA and QDA by a statistical resembling method called 
round-robin (or leave-one-out) method [53]. In this method, 
each candidate is removed, in tum, from the set of all polyp 
candidates. The classifier is trained by the remaining can­
didates, and a discriminant function is generated and evalu- 30 

ated on the removed candidate (FIG. 24b). The values of 
these discrimination functions are then subjected to ROC 
analysis, and the area under the ROC curve Az is calculated. 
The advantage of this method is that the training and testing 
of candidates can be completely separated; therefore, the 35 

resulting discrimination criterion is least biased to the cases 
in the database. Another advantage is that almost all of the 
polyp candidates are available in this method. It should be 
noted, however, that the above statistical resembling may 
alternatively be accomplished using other methods recog- 40 

nizable by those skilled in the art, such as cross validation 
[53] and bootstrapping [54]. 

Table 4 shows the FSs that were used to produce the FS 
combinations. Fifty-nine combinations of two or three FSs 
yielded the highest Az values, ranging from 0.93 to 0.96 in 45 

the round-robin ROC analysis, with the standard deviation 
oftheAz value varying between 0.01 and 0.02. Therefore, in 
Table 5 we show only the ROC results of the FS combina­
tions that also performed best in round-robin polyp detec­
tion. As expected, combining two or more FSs increases the 50 

Az value from that of individual FSs. The increment is not 
remarkably high, however, as the mean(SI) already yields a 
highAz value of0.92 on its own. Many of the combinations 
that produced the highest Az values involved FSs based on 
the SI and DGC features. The highest Az value was 0.90 55 

when the DGC feature was paired with features other than 
the SI and 0.93 when the SI feature was paired with features 
other than the DGC. Adding a third feature to a combination 
of FSs based on SI and DGC could improve the Az value 
marginally. Use of the QC produced generally higher Az 60 

values than use of the LC, although the difference was small. 
As expected, the use of all samples improved the result over 
round-robin analysis, but this difference was also small. 

The final detected polyps were obtained by determining 
the threshold value t in Eq. (38). Correspondingly, a free- 65 

response receiver operating characteristic (FROC) curve 
[51] was generated that indicates the overall performance, 

34 
i.e., sensitivity for the detection of polyps as a function of the 
false-positive rate, by using t as the sweeping variable. Two 
types of FROC curves were generated by the following two 
methods: (1) by-patient analysis, in which a case is regarded 
as abnormal if at least one true polyp was detected in either 
the supine or the prone data set of the patient, and (2) 
by-polyp analysis, in which a polyp was regarded as 
detected if it is detected in either the supine or prone data set 
of a patient. In both methods, our system processed the 
supine and prone volumetric data sets independently to yield 
polyp candidates. In addition, the average number of false 
positives per patient was calculated as an index of the 
false-positive rate. 

When generating each type ofFROC curve, two methods, 
consistency evaluation and round-robin (or leave-one-out) 
evaluation, were used for generating the discrimination 
function from a classifier. In the first method, the classifier 
was trained using all of the polyp candidates and produced 
a single decision boundary that classified the polyp candi­
dates into TP and FP classes. In the second method, each 
candidate is removed, in tum, from the set of all polyp 
candidates, and the classifier is trained by the remaining 
candidates to yield a decision boundary. The decision 
boundary was then used for classifying the polyp candidate 
that was left out in calculation of the decision boundary as 
TP or FP. 

In one experiment, the overall detection performance was 
compared between a system with the feature-guided analysis 
but without the fuzzy clustering, and a system with the fuzzy 
clustering but without the feature-guided analysis [ 46]. 
Here, the parameter values of the feature-guided analysis 
step and the MGC feature were determined by use of 27 
CTC data sets with polyps. The following ranges of feature 
values were used to determine the threshold values for the 
feature-guided analysis step: Ts.zt:[0.5, 0.9](SIE[0,1]), TGcE 
[0.0, 0.5](GCE[-1,1]), and TcTE[-500, -250] (the CT value 
is given in Hounsfield units). The threshold values of the 
MGC feature were sampled within TMGcE[0.0, 0.4]. FIGS. 
27a-27c show changes in the FP rates obtained at by-polyp 
detection sensitivities of 86%, 90%, and 95% in detecting 
polyps from the 27 CTC data sets for several threshold 
combinations. The lowest FP rates were obtained by use of 
the following threshold triple: (TsDTGc,Tcr)=(0.725, 0.4, 
-300). It should be noted that, as can be seen from FIGS. 
27a-27c, the threshold values that yield the lowest FP rate 
may be different detection sensitivity levels. The above 
threshold triplet was chosen so that it yielded the smallest FP 
rate at a by-polyp sensitivity level of 95%. When the MGC 
feature was used instead of the GC, the lowest FP rates at the 
same sensitivity were obtained by use of the triplet (TsD 
T MGO T cr)=(0.725, 0.25, -300). 

The gain (g) and transfer (t) parameters of the sigmoid 
function for calculating the MGC feature were estimated 
initially by visualization of the MGC feature within a typical 
spherical (pedunculated) polyp and a hemispherical (sessile) 
polyp. The final parameter values were determined applying 
the preferred method to the 27 CTC data sets with polyps. 
The parameter values were varied uniformly within 
-2.0~g~-5.0 and-0.1 ~t~0.2. The parameter values (g,t)= 
(-2.75, 0.1) yielded the smallest average number of FP 
detections per patient at 86-95% by-polyp detection sensi­
tivity levels. 

The parameter values established above were employed in 
the feature-guided analysis step of the preferred method. 
When the resulting system was applied to the entire database 
of 144 CTC data sets, a total of 34 TP polyp candidates and 
1670 FP polyp candidates were detected. These polyp can-
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form. Alternatively, the source of image data being obtained 
and processed may be a memory storing data produced by an 
image acquisition device, and the memory may be local or 
remote, in which case a data communication network, such 

didates were subjected to the quadratic discriminant classi­
fier, in which only three features, the mean value of the SI, 
the mean value of the GC ( or MGC), and the variance of the 
CT value, were used as discriminating features to yield the 
final detected polyps. 5 as PACS (Picture Archiving Computer System), can be used 

to access the image data for processing according to the 
present invention. 

In FIG. 28, the top two FROC curves show the perfor­
mance of the preferred method in the detection of polyps by 
consistency evaluation. Here, the GC feature was used in 
obtaining the result. In the consistency evaluation, the 
preferred method yielded a 100% by-patient and a 95% 10 

by-polyp detection sensitivity at a FP rate of 1.22 FP 
detections per patient. In the round-robin evaluation, at a 
100% by-patient detection sensitivity, the FP rate was 1.29 

This invention conveniently may be implemented using a 
conventional general purpose computer or micro-processor 
programmed according to the teachings of the present inven­
tion, as will be apparent to those skilled in the computer art. 

FP detections per patient, and at a 95% by-polyp detection 
sensitivity, the FP rate was 1.46 FP detections per patient. 15 

The use of the MGC feature yielded slightly improved 
results. In the consistency evaluation, at a 100% by-patient 
and a 95% by-polyp detection sensitivity, the FP rate was 
1.18 FP detections per patient. In the round-robin evaluation, 
the corresponding FP rate was 1.51 FP detections per patient. 20 

Appropriate software can readily be prepared by program­
mers of ordinary skill based on the teachings of the present 
disclosure, as will be apparent to those skilled in the 
software art. 

As disclosed in cross-referenced U.S. patent application 
Ser. No. 09/818,831, a computer implements the method of 
the present invention, wherein the computer housing houses 
a motherboard which contains a CPU, memory (e.g., 
DRAM, ROM, EPROM, EEPROM, SRAM, SDRAM, and 
Flash RAM), and other optional special purpose logic When the fuzzy clustering was used in the present 

method, there were 1903 FP polyp candidates. The bottom 
two FROC curves of FIG. 28 show the performance of the 
present method with fuzzy clustering but without feature­
guided analysis. The method yielded a 100% by-patient and 25 

a 95% by-polyp detection sensitivity at a FP rate of 4.7 FP 
detections per patient in the consistency result, and 5.3 FP 
detections per patient in the round-robin result. 

devices (e.g., ASICS) or configurable logic devices (e.g., 
GAL and reprogrammable FPGA). The computer also 
includes plural input devices, (e.g., keyboard and mouse), 
and a display card for controlling a monitor. Additionally, 
the computer may include a floppy disk drive; other remov-
able media devices (e.g. compact disc, tape, and removable 
magneto-optical media); and a hard disk or other fixed high 
density media drives, connected using an appropriate device 
bus (e.g., a SCSI bus, an Enhanced IDE bus, or an Ultra 
DMA bus). The computer may also include a compact disc 

The use of feature-guided analysis reduced 70-75% of the 
FP detections generated by the fuzzy clustering technique 30 

when it was set at a high detection sensitivity of 90-100%. 
The results obtained by use of fuzzy clustering could be 
improved by increasing the number of features in the 
classification of the polyp candidates. For example, it was 
observed that the use of six features reduced the FP rate of 35 

reader, a compact disc reader/writer unit, or a compact disc 
jukebox, which may be connected to the same device bus or 
to another device bus. 

As stated above, the system includes at least one computer 
the consistency result down to 1.42 FP detections per patient 
at a 100% by-patient sensitivity. However, the use of six 
features with feature-guided analysis also reduced the FP 
rate: at the by-patient detection sensitivity of 100%, the FP 
rate was reduced to 0.85 FP detections per patient. Never­
theless, only three features were used in this study because 
the use of a small number of features is expected to make the 
detection performance generalizable when more cases are 
added. 

The present invention may be better understood by ref­
erence to the system shown in FIG. 29. The Interpolation 
Unit 2910 uses a database of cross-sectional organ images 
2901 to obtain a set ofvoxels representing the total scanned 
volume. The Anatomy Based Extraction Unit 2920 and the 
Organ-Based Analysis Unit 2930 extract a set ofvoxels from 
the total scarmed volume, forming a database of voxels 
representing the segmented organ (2902). Next, the Initial 
Lesion Candidate Selector 2940 uses the segmented organ 
database 2903 to compute three-dimensionally derived geo­
metric feature values and form a database of initial lesion 
candidates (2903). The initial lesion candidates are then 
transformed, via morphological dilation and clustering, by 
the Candidate Lesion Selector 2950, into a database of final 
lesion candidates (2904. Feature values of the candidate 
lesions are computed by the Feature Computation Unit 2960 
and used by the Discriminator Unit 2970 to classify the 
candidate lesions into a database of true-positive lesions 
2905. 

The source of image data for Interpolation Unit 2910 may 
be any appropriate image acquisition device such as an 
X-ray machine, CT apparatus, and MRI apparatus. Further, 
the acquired data may be digitized if not already in digital 

readable medium. Examples of computer readable media are 
compact discs, hard disks, floppy disks, tape, magneto­
optical disks, PROMs (e.g., EPROM, EEPROM, Flash 
EPROM), DRAM, SRAM, SDRAM, etc. Stored on any one 

40 or on a combination of computer readable media, the present 
invention includes software for controlling both the hard­
ware of the computer and for enabling the computer to 
interact with a human user. Such software may include, but 
is not limited to, device drivers, operating systems and user 

45 applications, such as development tools. Computer program 
products of the present invention include any computer 
readable medium which stores computer program instruc­
tions ( e.g., computer code devices) which when executed by 
a computer causes the computer to perform the method of 

50 the present invention. The computer code devices of the 
present invention can be any interpretable or executable 
code mechanism, including but not limited to, scripts, inter­
preters, dynamic link libraries, Java classes, and complete 
executable programs. Moreover, parts of the processing of 

55 the present invention may be distributed (e.g., between (1) 
multiple CPUs or (2) at least one CPU and at least one 
configurable logic device) for better performance, reliability, 
and/or cost. For example, an outline or image may be 
selected on a first computer and sent to a second computer 

60 for remote diagnosis. 
The invention may also be implemented by the prepara­

tion of application specific integrated circuits or by inter­
connecting an appropriate network of conventional compo­
nent circuits, as will be readily apparent to those skilled in 

65 the art. 
While preferred embodiments of the invention have been 

described, these descriptions are merely illustrative and are 
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not intended to limit the present invention. For example, 
although the embodiments of the invention described above 
were in the context of a system for the computer-aided 
diagnosis and detection of colorectal polyps, those skilled in 
the art will recognize that the disclosed methods and struc­
tures are readily adaptable for broader applications including 
other types of lesions in other organs. In addition, the 
invention is applicable to many other types of CAD systems 
for detection of other medical abnormalities. 

Moreover, it will be appreciated from the foregoing that 
the present invention represents a significant advance over 
other systems and methods for the computer-aided detection 

5 

10 

of organ lesions. It will also be appreciated that, although a 
limited number of embodiments of the invention have been 

15 

described in detail for purposes of illustration, various 
modifications may be made without departing from the spirit 
and scope of the invention. Accordingly, the invention 
should not be limited except as by the appended claims. 20 

TABLE 1 

Search Range (HU) 

Structure Minimum 

Air -990 

Lung -950 

Fat -200 

Muscle 0 

TABLE 2 

PARAMETER 

SEED SHAPE INDEX 
REGION 

CURVEDNESS 

GROWABLE SHAPE INDEX 
REGION 

CURVEDNESS 

MERGING DISTANCE 
FUZZY MEMBERSHIP 
MINIMUM VOLUME 

Feature 

CT value 
Gradient 

TABLE 3 

Maximwn 

-900 

-600 

0 

100 

VALUE 

minimwn 0.9 
maximum 1.0 
minimwn 0.08 mm- 1 

maximum 0.20 mm- 1 

minimwn 0.8 
maximum 1.0 
minimwn 0.05 mm- 1 

maximum 0.25 mm- 1 

12.5 mm 
0.8 

38 mm3 

Abbreviation 

25 

30 

35 

40 

45 

50 

38 

TABLE 5 

Feature Stat (1) AZ Stat (2) AZ Stat (3) AZ 

SI mean 0.92 skew 0.91 maxl0 0.76 
DGC mean 0.85 maxl0 0.82 skew 0.82 
CT kurt 0.85 var 0.83 ctr 0.77 
GR mean 0.77 maxl0 0.75 max 0.73 
GC min 0.76 mean 0.75 maxl0 0.70 
CV var 0.73 kurt 0.69 entr 0.69 

The invention claimed is: 
1. A method of processing a set of cross-sectional images 

defining a volumetric region encompassing an inner surface, 
an outer surface, and intervening tissue between the inner 
surface and the outer surface of a colon, comprising: 

obtaining a set of voxels representing a total scanned 
volume from the set of cross sectional images of the 
colon; and 

performing segmentation to extract a set of voxels repre­
senting the volumetric region encompassing the inner 
surface, the outer surface, and the intervening tissue 
between the inner surface and the outer surface of the 
colon from the set of voxels representing the total 
scanned volume, 

wherein the performing step includes 
generating a first set of segmentation voxels by thresh­

olding the set of voxels representing the total scanned 
volume with a value characteristic of the colon; 

performing organ based analysis of the set of voxels 
representing the total scanned volume using seed loca­
tions obtained from the first set of segmentation voxels 
to obtain a second set of segmentation voxels; and 

determining an intersection of the first set of segmentation 
voxels and the second set of segmentation voxels to 
obtain the set of voxels representing the volumetric 
region encompassing the inner surface, the outer sur­
face, and the intervening tissue of the colon. 

2. The method of claim 1, wherein the obtaining step 
comprises: 

determining corresponding pixels on adjacent images in 
the set of cross sectional images of the colon; and 

connecting said corresponding pixels to obtain a set of 
voxels representing the total scanned volume. 

3. The method of claim 1, wherein the step of performing 
organ based analysis comprises: 

selecting an air seed voxel; 
designating spatially connected voxels in a neighborhood 

of the air seed voxel to be in the second set of 
segmentation voxels, if a set of predetermined condi­
tions is satisfied; and 

repeating the selecting and designating steps until a 
number of additional voxels designated in the desig-

Shape index 
Curvedness 

Gradient concentration 
Directional gradient concentration 

CT 
GR 
SI 

CV 
GC 

DGC 

55 nating step decreases by more than a predetermined 
percentage of a number of voxels designated in an 
immediately prior designating step. 

TABLE 4 

Statistic Abbrev. Statistic Abbrev. 

mean mean variance var 
minimum min skewness skew 
maximwn max kurtosis kurt 

Statistic Abbrev. 

entropy entr 
contrast cnt 

maximwnl0 maxl0 

4. The method of claim 1, wherein the step of performing 
organ based analysis comprises: 

60 selecting an air seed voxel; 
designating spatially connected voxels in a neighborhood 

of the air seed voxel to be in the second set of 
segmentation voxels, if a set of predetermined condi­
tions is satisfied; and 

65 repeating the selecting and designating steps until a 
number of additional voxels designated in the desig­
nating step decreases by more than a predetermined 
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number from a number of voxels designated in an 
immediately prior designating step. 

5. The method of claim 3, wherein the designating step 
comprises: 

determining as the predetermined conditions, (1) if each 5 

voxel in the region of spatially connected voxels is not 
in the first set of segmentation voxels, and (2) if each 
voxel in the region of spatially connected voxels has an 
associated voxel value and voxel gradient, each below 
predetermined values associated with walls of the 10 

colon. 
6. The method of claim 3, further comprising: 
designating a region of surface voxels to be in the second 

set of segmentation voxels; 
repeating the designating step until the region of surface 15 

voxels intersects with more than a first predetermined 
percentage of a layer of voxels in the first set of 
segmentation voxels; and 

repeating the preceding designating step until the region 
of surface voxels intersects with less than a second 20 

predetermined percentage of the layer of voxels in the 
first set of segmentation voxels. 

7. The method of claim 3, wherein the air seed voxel 
selecting step comprises: 

selecting a voxel that (1) is not in the first set of segmen- 25 

tation voxels, (2) has a voxel value less than a prede­
termined value, (3) is not in the second set of segmen­
tation voxels, and ( 4) is not close to a boundary of the 
total scanned volume. 

40 
applying conditional morphological dilation to the grow 

region to obtain an enhanced grow region; 
designating the enhanced grow region as an initial can­

didate lesion in the set of initial candidate lesions; and 
repeating the preceding determining, applying, and des­

ignating steps for each seed voxel in the set of seed 
voxels. 

12. The method of claim 11, wherein the step of applying 
conditional morphological dilation comprises: 

expanding the grow region by morphological dilation 
until at least a boundary of an expanded region reaches 
a boundary of the colon; 

measuring a growth rate of the grow region during the 
expanding step; and 

designating the grow region at a minimum growth rate as 
the enhanced grow region. 

13. The method of claim 9, wherein the clustering step 
comprises: 

merging initial candidate lesions in the set of initial 
candidate lesions that are located within a predeter­
mined distance of each other to obtain a reduced set of 
candidate lesions; 

grouping the reduced set of candidate lesions to obtain a 
set of lesion clusters; and 

removing lesion clusters having a total volume below a 
predetermined minimum volume from the set of lesion 
clusters to obtain the set of candidate lesions. 

14. The method of claim 8, wherein the selecting step 

8. The method of claim 1, further comprising: 30 comprises: 

detecting a set of candidate lesions based on geometric 
feature values at each voxel in the set of voxels 
representing the volumetric region; 

selecting at least one three dimensionally extended lesion 
from the set of candidate lesions based on at least one 35 

of volumetric feature values and morphologic feature 
values of each candidate lesion in the set of candidate 
lesions; and 

outputting a set of voxels representing the at least one 
three dimensionally extended lesion selected in the 40 

selecting step. 
9. The method of claim 8, wherein the detecting step 

comprises: 
calculating geometric feature values for each voxel in the 

set of voxels representing the volumetric region; 
generating a set of initial candidate lesions using the 

geometric feature values calculated in the calculating 
step; and 

clustering the set of initial candidate lesions to form the 
set of candidate lesions. 

10. The method of claim 9, wherein the calculating step 
comprises: 

smoothing the volumetric region to generate volumetric 
regions at multiple scales; 

45 

50 

determining a volumetric shape index, for each voxel in 55 

the set ofvoxels representing the volumetric region, on 
at least one scale; and 

determining a volumetric curvedness value, for each 
voxel in the set of voxels representing the volumetric 
region, on the at least one scale. 

11. The method of claim 9, wherein the step of generating 
a set of initial candidate lesions comprises: 

60 

selecting a set of true positive lesions from the set of 
candidate lesions; and 

outputting the set of true positive lesions as the at least 
one three dimensionally extended lesion. 

15. The method of claim 14, wherein the step of selecting 
a set of true positive lesions comprises: 

calculating at least one feature value for each voxel in a 
set ofvoxels representing the set of candidate lesions; 

calculating statistics of the at least one feature value for 
each lesion in the set of candidate lesions; and 

partitioning the set of candidate lesions into a set of false 
positive lesions and the set of true positive lesions 
based on analysis of the statistics of the at least one 
feature value calculated in the preceding calculating 
step. 

16. The method of claim 15, wherein the step of calcu­
lating at least one feature value comprises: 

calculating a gradient concentration feature value for each 
voxel in the set of voxels representing the set of 
candidate lesions; 

calculating at least one of volumetric shape index value, 
volumetric curvedness value, and gradient of voxel 
value for each voxel in the set of voxels representing 
the set of candidate lesions; and 

identifying a set of voxels having a feature value in a 
predefined range to generate a restricted set of candi­
date lesions; and 

calculating at least one of gradient concentration feature 
value, volumetric shape index value, volumetric 
curvedness value, and gradient of voxel value for the 
set of voxels representing the restricted set of candidate 
lesions. identifying a set of seed voxels having a volumetric shape 

index value in a first predefined range and a volumetric 
curvedness value in a second predefined range; 

determining a grow region of spatially connected voxels 
adjacent to a seed voxel in the set of seed voxels; 

17. The method of claim 15, wherein the step of calcu-
65 lating statistics of the at least one feature value comprises: 

determining at least one of mean, minimum, maximum, 
variance, standard deviation, skewness, kurtosis, and 
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ratio of minimum to maximum, using feature values of 
all voxels in each candidate lesion in the set of candi­
date lesions. 

18. The method of claim 15, wherein the partitioning step 
comprises: 

partitioning the set of candidate lesions using at least one 
of a linear discriminant classifier, a quadratic discrimi­
nant classifier, a neural network, and a support vector 
machine. 

19. The method of claim 16, wherein the step of calcu- 10 

lating the gradient concentration feature comprises: 
determining a gradient vector of voxel values for each 

voxel in the set of voxels representing the enhanced set 
of candidate lesions; and 

calculating a concentration of the gradient vector at each 15 

voxel in the set of voxels representing the set of 
candidate lesions. 

20. The method of claim 1, wherein the obtaining step 
comprises: 

obtaining the set of voxels representing the total scanned 20 

volume from a set of cross sectional computed-tomo­
graphic images of a colon. 

21. The method of claim 1, wherein the step of performing 
segmentation comprises: 

removing voxels representing organs other than the colon 25 

from the set of voxels representing the total scanned 
volume. 

22. A method of identifying at least one three dimension­
ally extended lesion from a set of voxels representing a 
volumetric region encompassing an inner surface, an outer 30 

surface, and intervening tissue between the inner surface and 
the outer surface of a colon, comprising: 

calculating geometric feature values for each voxel in the 
set of voxels representing the volumetric region: 

35 generating a set of initial candidate lesions using the 
geometric feature values calculated in the calculating 
step; 

clustering the set of initial candidate lesions to form a set 
of candidate lesions: 

selecting the at least one three dimensionally extended 
40 

42 
designating the enhanced grow region as an initial can­

didate lesion in the set of initial candidate lesions; and 
repeating the preceding determining, applying, and des­

ignating steps for each seed voxel in the set of seed 
voxels. 

25. The method of claim 24, wherein the step of applying 
conditional morphological dilation comprises: 

expanding the grow region by morphological dilation 
until at least a boundary of an expanded region reaches 
a boundary of the colon; 

measuring a growth rate of the grow region during the 
expanding step; and 

designating the grow region at a minimum growth rate as 
the enhanced grow region. 

26. The method of claim 22, wherein the clustering step 
comprises: 

merging initial candidate lesions in the set of initial 
candidate lesions that are located within a predeter­
mined distance of each other to obtain a reduced set of 
candidate lesions; 

grouping the reduced set of candidate lesions to obtain a 
set of lesion clusters; and 

removing lesion clusters having a total volume below a 
predetermined minimum volume from the set of lesion 
clusters to obtain the set of candidate lesions. 

27. The method of claim 22, wherein the selecting step 
comprises: 

selecting a set of true positive lesions from the set of 
candidate lesions; and 

outputting the set of true positive lesions as the at least 
one three dimensionally extended lesion. 

28. The method of claim 27, wherein the step of selecting 
a set of true positive lesions comprises: 

calculating at least one feature value for each voxel in a 
set ofvoxels representing the set of candidate lesions; 

calculating statistics of the at least one feature value for 
each lesion in the set of candidate lesions; and 

partitioning the set of candidate lesions into a set of false 
positive lesions and the set of true positive lesions 
based on analysis of the statistics of the at least one 
feature value calculated in the preceding calculating 
step. 

lesion from the set of candidate lesions based on at least 
one of volumetric feature values and morphologic 
feature values of each candidate lesion in the set of 
candidate lesions; and 

outputting a set of voxels representing the at least one 
three dimensionally extended lesion selected in the 
selecting step. 

29. The method of claim 28, wherein the step of calcu-
45 lating at least one feature value comprises: 

23. The method of claim 22, wherein the calculating step 
comprises: 

smoothing the volumetric region to generate volumetric 
regions at multiple scales; 

determining a volumetric shape index, for each voxel in 
the set ofvoxels representing the volumetric region, on 
at least one scale; and 

determining a volumetric curvedness value, for each 
voxel in the set of voxels representing the volumetric 
region, on the at least one scale. 

24. The method of claim 22, wherein the step of gener­
ating a set of initial candidate lesions comprises: 

identifying a set of seed voxels having a volumetric shape 
index value in a first predefined range and a volumetric 
curvedness value in a second predefined range; 

determining a grow region of spatially connected voxels 
adjacent to a seed voxel in the set of seed voxels; 

applying conditional morphological dilation to the grow 
region to obtain an enhanced grow region; 

50 

55 

60 

65 

calculating a gradient concentration feature value for each 
voxel in the set of voxels representing the set of 
candidate lesions; 

calculating at least one of volumetric shape index value, 
volumetric curvedness value, and gradient of voxel 
value for each voxel in the set of voxels representing 
the set of candidate lesions; and 

identifying a set of voxels having a feature value in a 
predefined range to generate a restricted set of candi­
date lesions; and 

calculating at least one of gradient concentration feature 
value, volumetric shape index value, volumetric 
curvedness value, and gradient of voxel value for the 
set of voxels representing the restricted set of candidate 
lesions. 

30. The method of claim 28, wherein the step of calcu­
lating statistics of the at least one feature value comprises: 

determining at least one of mean, minimum, maximum, 
variance, standard deviation, skewness, kurtosis, and 
ratio of minimum to maximum, using feature values of 
all voxels in each candidate lesion in the enhanced set 
of candidate lesions. 
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31. The method of claim 28, wherein the partitioning step 
comprises: 

partitioning the set of candidate lesions using at least one 
of a linear discriminant classifier, a quadratic discrimi­
nant classifier, a neural network, and a support vector 5 

machine. 
32. The method of claim 29, wherein the step of calcu­

lating the gradient concentration feature comprises: 
determining a gradient vector of voxel values for each 

voxel in the set ofvoxels representing the enhanced set 10 

of candidate lesions; and 
calculating a concentration of the gradient vector at each 

voxel in the set of voxels representing the enhanced set 
of candidate lesions. 

33. A computer program product embedded on a com- 15 

puter readable medium, the computer program product 

44 
including plural computer program instructions which, when 
executed by a computer, cause the computer to perform the 
steps recited in any one of claims 1, 2, 3-20, 21, 22, and 
23-32. 

34. A system configured to process a set of cross-sectional 
images defining a volumetric region encompassing an inner 
surface, an outer surface, and intervening tissue of a colon 
by performing the steps recited in any one of claims 1, 2, 
3-20, and 21. 

35. A system configured to identify at least one three 
dimensionally extended lesion within a thick volumetric 
region encompassing an inner surface, an outer surface, and 
intervening tissue of a colon by performing the steps recited 
in any one of claims 22 and 23-32. 

* * * * * 


