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(57) ABSTRACT 

A multi-spectral tomography imaging system includes one 
or more source devices configured to direct beams of 
radiation in multiple spectra to a region of interest (ROI), 
and one or more detectors configured to receive the beams 
of radiation. The system includes a processor configured to 
cause movement in at least one of the components such that 
a first beam of radiation with a first spectrum is directed to 
the ROI for less than 360 degrees of movement of the ROI. 
The processor is also configured to process data detected by 
the one or more detectors, where the data results at least in 
part from the first beam of radiation with the first spectrum 
that is directed to the ROI for less than the 360 degrees of 
movement of the ROI. The processor is further configured to 
generate an image of the ROI based on the processed data. 
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SYSTEM AND METHOD FOR LOW-DOSE 
MULTI-SPECTRAL X-RAY TOMOGRAPHY 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present application claims the priority benefit of U.S. 
Provisional Patent Application No. 62/562,138, filed on Sep. 
22, 2017, the entire disclosure of which is incorporated by 
reference herein. 

GOVERNMENT LICENSE RIGHTS 

2 
or more detectors, at least a portion of the beams of 
radiation. The method also includes causing, by a processor 
in communication with the one or more source devices and 
the one or more detectors, movement in at least one of the 

5 one or more source devices, the one or more detectors, and 
the ROI. The method also includes processing, by the 
processor, data detected by the one or more detectors by 
solving an optimization problem based on the data, wherein 
the data results at least in part from a first beam of radiation 

10 with a first spectrum that is directed to the ROI. The method 
further includes generating, by the processor, an image of 
the ROI based on the processed data. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, which are incorporated in 
and constitute a part of this specification, illustrate various 
aspects of the subject matter and together with the descrip­
tion, serve to explain its principles. Wherever convenient, 
the same reference numbers will be used throughout the 
drawings to refer to the same or like elements. 

The present application is a divisional application of U.S. 
patent application Ser. No. 16/648,375 filed Mar. 18, 2020, 15 

which claims priority as a National Stage Application of 
International Application No. PCT/US18/52175, filed Sep. 
21, 2018, which claims the priority benefit of U.S. Patent 
Application No. 62/562,138, filed Sep. 22, 2017, the con­
tents of all of which are incorporated by reference herein in 20 

their entirety. 
FIG. lAdepicts a single-kVp switch imaging technique in 

which there is one rotation for the low kVp and another 
rotation for the high kVp in accordance with an illustrative 

25 embodiment. 

BACKGROUND 

X-ray tomography, including computed tomography 
(CT), may be used for a variety of purposes, such as for 
screening, diagnosis, evaluation of diseases, analysis of 
materials, etc. In the screening, diagnosis, and evaluation 
cases, the X-ray tomographic images, including CT images, 
can measure quantities related to X-ray attenuation values at 30 

different X-ray energies in the imaged subject, such as a 
patient. One way to acquire additional information using 
X-rays is to measure the patient at multiple different ener­
gies, since the attenuation of all materials is energy depen­
dent. This energy dependence is different for different mate- 35 

rials. In dual-energy X-ray tomography, including dual­
energy CT imaging, the subject is illuminated with two 
different X-ray spectra corresponding to two different 
energy distributions. In the medical X-ray imaging energy 
range, there are typically two dominant physical effects, i.e., 40 

the Compton and photoelectric effects. 

SUMMARY 

FIG. lB is a graph showing multiple normalized spectral 
including 80 kVp (120), 100 kVp (125), 120 kVp (130), and 
140 kVp (135) in accordance with an illustrative embodi­
ment. 

FIG. 2 illustrates an example of a sparse-view configu-
ration in which multi-spectral data are collected at multi sets 
of interlaced sparse views over an angular range of any value 
between 180 degrees and 360 degrees in accordance with an 
illustrative embodiment. 

FIG. 3 illustrates a limited-angular-range configuration in 
which multi-spectral data are collected at multiple sets of 
limited-angular ranges over an angular range of any value 
between 180 degrees to 360 degrees in accordance with an 
illustrative embodiment. 

FIG. 4 illustrates a block configuration in which multi­
spectral data are collected at multiple sets of detector blocks 
over an angular range of any value 2it ( or less in accordance 
with an illustrative embodiment. 

An illustrative multi-spectral tomography imaging system 
includes one or more source devices configured to direct 
beams of radiation in multiple spectra to a region of interest 
(ROI). The system also includes one or more detectors 
configured to receive at least a portion of the beams of 
radiation. The system further includes a processor in com­
munication with the one or more source devices and the one 
or more detectors. The processor is configured to cause 
movement in at least one of the one or more source devices, 
the one or more detectors, and the ROI such that a first beam 
of radiation with a first spectrum is directed to the ROI for 
less than 360 degrees of movement of the ROI relative to the 
one or more source devices and the one or more detectors. 
The processor is also configured to process data detected by 
the one or more detectors, where the data results at least in 
part from the first beam of radiation with the first spectrum 
that is directed to the ROI for less than the 360 degrees of 
movement of the ROI. The processor is further configured to 
generate an image of the ROI based on the processed data. 

FIG. 5 is a representation of a sparse-view configuration 
45 in which low-kVp and high-kVp data are collected at two 

sets of interlaced sparse views uniformly distributed over 2it 
in accordance with an illustrative embodiment. 

FIG. 6 is a representation of a limited-angular-range 
configuration 600 in which low-kVp and high-kVp data 

50 (from a source outputting low-kVp 602 and outputting 
high-kVp 604 onto object 306) are collected over the two 
adjacent limited-angular ranges in accordance with an illus­
trative embodiment. 

FIG. 7 is a representation of a split-illumination configu-
55 ration in which low-kVp and high-kVp data are collected 

with two adjacent illumination coverage of low-kVp and 
high-kVp at each of 640 views uniformly distributed over 2it 
in accordance with an illustrative embodiment. 

FIG. 8 is a representation of a block-illumination con-
60 figuration in which low-kVp and high-kVp data are col­

lected with multiple adjacent alternating illumination cov­
erage of low-kVp and high-kVp at each of 640 views 
uniformly distributed over 2it in accordance with an illus­
trative embodiment. An illustrative method of performing multi-spectral 

tomography includes directing, by one or more source 65 

devices, beams of radiation in multiple spectra to a region of 
interest (ROI). The method also includes receiving, by one 

FIG. 9 is a table summarizing the materials used in the 
composition of the phantoms of FIG. 10 in accordance with 
an illustrative embodiment. 
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FIG. lOA depicts a DE-472 phantom with 18 regions of 
interest within 16 circular inserts and 2 background areas 
highlighted by 1 to 18 in accordance with an illustrative 
embodiment. 

FIG. 10B is a lung phantom in accordance with an 
illustrative embodiment. 

FIG. lOC is a lung phantom with a muscle region of 
interest in accordance with an illustrative embodiment. 

FIG. lOD is a lung phantom with a bone region of interest 
in accordance with an illustrative embodiment. 

FIG. lOE is a lung phantom with a water region of interest 
in accordance with an illustrative embodiment. 

4 
FIG. 25 depicts pseudo code used to implement non­

convex-projection onto convex sets (NC-POCS) in accor­
dance with an illustrative embodiment. 

FIG. 26 depicts an MSXT imaging system in accordance 
5 with an illustrative embodiment. 

DETAILED DESCRIPTION 

Multi-spectral X-ray tomography (MSXT) is an imaging 
10 technique that uses multiple different energy spectra to 

conduct tomography. One example of multi-spectral X-ray 
tomography is multi-spectral computed tomography (CT), in 
which various numbers of spectra may be used, such as two FIG. 11 illustrates convergence metrics D(b(nl), KW(b(nl), 

and ca(b(nl), and reconstruction-error K6 (b(n)) as functions of 
iterations n in accordance with an illustrative embodiment. 15 

FIG. 12 illustrates truth and reconstructed water- and 

spectra, three spectra, four spectra, etc. As one example, 
dual-energy X-ray tomography acquisition is a technique 
that utilizes two different spectra to perform the imaging. In 

bone-basis images in accordance with an illustrative 
embodiment. 

FIG. 13 illustrates convergence metrics D(b(nl), KW(b(nl), 
and ca(b(nl), and reconstruction-error K}fm (n)) of an 80-KeV 
monochromatic image obtained with E=0.0170, as functions 
of iteration number n in accordacne with an illustrative 
embodiment. 

FIG. 14 illustrates water- and bone-basis images in accor­
dance with an illustrative embodiment. 

FIG. 15 depicts plots profiles of truth and reconstructed 
monochromatic images along the horizontal and vertical 
lines indicated in row 2 of FIG. 14 in accordance with an 
illustrative embodiment. 

traditional X-ray imaging, a non-linear data model can be 
used to incorporate the product of an incident X-ray spec­
trum and a detector-energy response, which is referred to as 

20 the X-ray spectrum. In MSXT, multiple sets of data may be 
collected with different X-ray spectra. When seeking to 
determine basis images, the multiple sets of data can be used 
to form X-ray tomographic images, including CT images, at 
X-ray energies of interest. 

25 

FIG. 16 illustrates reconstructions of 120-KeV monochro- 30 

There are four leading, distinctive methods currently used 
for dual-energy CT imaging. The first method, referred to as 
the single-kVp-switch method, uses a single X-ray source 
and a single detector array to collect dual-energy data sets by 
the performance of two full-rotation scans in which the 
source kVp is switched following the first full-rotation scan. 
The second method, referred to as the fast-kVp-switch matic image at intermediate iterations for both phantoms in 

accordance with an illustrative embodiment. 
FIG. 17 illustrates reconstruction results for both phan­

toms from data acquired with the sparse-view configuration 
in accordance with an illustrative embodiment. 

FIG. 18 illustrates profiles of the reconstructed ( dashed) 
and truth (solid) monochromatic images at 40 and 120 KeV 
along the horizontal and vertical lines indicated in row 2 of 
FIG. 14 in accordance with an illustrative embodiment. 

FIG. 19 illustrates reconstruction results for both phan­
toms from data acquired with the limited-angular-range 
configurations in accordance with an illustrative embodi­
ment. 

FIG. 20 depicts plots of profiles of the reconstructed and 
truth monochromatic images along the horizontal and ver­
tical lines indicated in FIG. 14 to reveal quantitative differ­
ences in accordance with an illustrative embodiment. 

FIG. 21 illustrates illumination reconstruction results for 
both phantoms from data acquired with the split-illumina­
tion configuration in accordance with an illustrative embodi­
ment. 

FIG. 22 depicts plots of profiles of the reconstructed and 
truth monochromatic images along the horizontal and ver­
tical lines indicated in row 2 of FIG. 14 in accordance with 
an illustrative embodiment. 

FIG. 23 illustrates water- and bone-basis images (row 1), 
40- and 120-KeV monochromatic images (row 2), and 
zoomed-in views of ROI images (row 3) similar to those in 
row 3 of FIG. 14 from block-illumination-scan data of the 
DE-472 and lung phantoms, respectively, in accordance with 
an illustrative embodiment. 

FIG. 24 illustrates profiles ofreconstructed (dashed) and 
truth (solid) monochromatic energy images at 40 and 120 
KeV along the horizontal and vertical lines indicated in row 
2 of FIG. 14 from block-illumination-scan data of the 
DE-472 and lung phantoms, respectively, in accordance with 
an illustrative embodiment. 

method, also uses a single X-ray source and a single detector 
array for acquisition of dual-energy data sets in which the 
source invokes a fast kVp switch at each effective view in a 

35 full-rotation scan. The third method, referred to as the 
dual-source/detector method, employs two source-detector 
pairs of different effective X-ray spectra to collect dual­
energy data sets within a full-rotation scan. The fourth 
method, referred to as the dual-layer-detector method, 

40 adopts a single X-ray source and a set of two-layer detectors 
with different energy responses for collecting dual-energy 
data sets within a full-rotation scan. 

The four methods of performing dual-energy CT imaging 
involve the performance of two or one full-rotation scans. 

45 For example, the single-kVp-switch method, while simple to 
implement without the addition of hardware to a regular 
diagnostic CT system, doubles the imaging time and dose of 
a regular full-rotation scan because it carries out two full­
rotation scans. As an example, FIG. lA depicts a single-kVp 

50 switch imaging technique in which there is one rotation for 
the low kVp and another rotation for the high kVp in 
accordance with an illustrative embodiment. The fast-kVp­
switch and dual-source/detector methods, while having half 
of the imaging time of the single-kVp-switch method, in 

55 essence also perform two scans within a single full rotation, 
and thus may also double imaging dose of a regular full­
rotation scan. In addition, the fast-kVp-switch, dual-source/ 
detector, and dual-layer-detector methods involve signifi­
cant hardware additions as compared to a regular diagnostic 

60 CT. For example, the fast-kVp-switch method involves a 
unique, high performance X-ray source capable of rapid 
switching within a full rotation, the dual-source/detector 
method uses an additional pair of X-ray sources and detector 
arrays, and the dual-layer-detector method uses a highly 

65 specialized detector technology. This additional hardware 
considerably increases CT-system cost and complexity. The 
hardware cost and complexity of these techniques is one of 
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the reasons for their lack of a wide adoption, particularly in 
non-diagnostic CT such as C-arm CT. 

Described herein are optimization-based algorithms for 
image reconstruction in multi spectral ( or photon-counting) 
computed tomography. A challenge of optimization-based 
image reconstruction in MSXT stems from the inherently 
non-linear data model that can lead to a non-convex opti­
mization program for which no mathematically exact solver 
appears to exist for achieving globally optimal solutions. As 
discussed in more detail below, a non-convex optimization 
program based on a non-linear data model is disclosed, with 
its first-order-optimality conditions derived. Further, a meth­
odology is disclosed to solve the non-convex optimization 
program for image reconstruction in MSXT. In addition to 
consideration of image reconstruction for a standard scan 
configuration, the disclosed methodology may be applied to 
non-standard scan configurations with no or little hardware 
modification to existing CT systems, which can be of 
potential practical implications for lowered hardware cost, 
enhanced scanning flexibility, and reduced imaging dose/ 
time in MSXT. Further, as discussed in more detail below, 
numerical studies are disclosed in support of the methodol­
ogy and its implementation. These studies demonstrate and 
characterize the methodology in reconstructing images and 
in enabling non-standard configurations with variable scan­
ning angular range and/or variable X-ray illumination cov­
erage. 

As discussed in more detail below, the proposed meth­
odologies can be applied to a variety of scan configurations, 
and may affect one or more aspects of the systems such as 
hardware used, imaging dose, and scanning time. As a 
general matter, the methodology may be used for any 
multiple spectra X-ray tomography imaging system. More 
specifically, the method may be used in any type of X-ray 
tomography, such as CT. Further, the methodology may be 
used for any multiple numbers of spectra (such as two 
spectra, three spectra, etc.). In the case of the multiple 
spectra being limited to two spectra, the methodology may 

6 
art. Likewise, any discussion below regarding X-ray tomo­
graphic imaging may likewise be applied to CT imaging. 

In one implementation, the proposed methodologies use a 
limited data set for imaging. Though the discussion below 

5 focuses on two spectra, the MSXT imaging may be applied 
to any number of multiple spectra (such as three spectra, 
four spectra, etc.). In this regard, any discussion herein 
directed to two spectra may be applied to any number of 
multiple spectra. As discussed above, typically, the data set 

10 for each spectrum in the MSXT imaging is a full rotation 
(i.e., at least 2it). In contrast, in a first implementation, the 
proposed methodology uses a data set that is less than 2it 
(for at least one spectrum in the imaging process. Thus, in 

15 
the instance that the MSXT imaging system uses two spectra 
for imaging, a data set for one spectrum is less than 2it (and 
a data set for a second spectrum is 2it ( or greater. In a second 
specific implementation, the methodology uses a data set 
that is less than 2it (for each spectrum used in the MSXT 

20 imaging. In the instance that the MSXT imaging system uses 
two spectra, a data set for a first spectrum is less that 2it, and 
a data set for a second spectrum is also less than 2it. In 
various embodiments, the data sets for a first spectrum and 
a second spectrum are both less than 360°; the data set for 

25 the first spectrum is less than 180° and the data set for the 
second spectrum is greater than 180° but less than 360°; the 
data sets for both the first spectrum and the second spectrum 
are less than 180°; the data set for the first spectrum is less 
than 90° and the data set for a second spectrum is greater 

30 than 90° but less than 180°; the data sets for both the first 
spectrum and the second spectrum are less than 90°; the data 
set for the first spectrum is less than 45° and the data set for 
a second spectrum is greater than 45° but less than 90°; the 
data sets for both the first spectrum and the second spectrum 

35 are less than 45°, etc. As another example, in the instance 
that the MSXT imaging system uses three spectra, the data 
sets for each of the first, second and third spectra are each 
less than 2it. 

be used for any dual-energy X-ray tomography imaging 
system. Even more specifically, the proposed methodologies 40 

may be used for scan configurations for fast low-dose 
dual-energy CT imaging. 

The proposed MSXT imaging system may obtain the 
limited data set for the one or more spectra in one of several 
ways. In one emboidment, the MSXT imaging system may 
control the source in order for the MSXT imaging system to 
obtain the limited data set. The control of the source may 
include control of relative movement of the source and/or 

In an illustrative embodiment, a methodology is disclosed 
for a two spectra system that uses the scan configurations for 
reconstructing images from data containing rays that are 45 

measured only with one of the two spectra. The methodol­
ogy thus enables the scan configurations disclosed herein, 
such as the short- and half-scan configurations, for realizing 
fast, low-dose dual-energy imaging on current conventional 
diagnostic and non-diagnostic CT systems. These enhance- 50 

ments are possible without hardware addition or modifica­
tion to the current conventional diagnostic and non-diag­
nostic CT systems. The scan configurations, referred to as 
short-scan, partial-scan, and half-scan configurations, are 
enabled by the disclosed methodology developed for image 55 

reconstruction directly from dual-energy data. In this regard, 
the proposed methodologies may be used to reconstruct 
basis images from a variety of decomposition schemes, and 
monochromatic images may be reconstructed by use of the 
filtered back-projection algorithm from corrected data and 60 

used as benchmark references. Further, the proposed meth­
odologies may be used in existing CT scanners, thus upgrad­
ing existing CT scanners to enable wide-spread application 
of dual-energy CT imaging. The techniques described herein 
are not limited to a particular type of tomography. For 65 

example, any discussion below regarding CT may be applied 
to other types of X-ray tomographic imaging known in the 

control of activation of the source (e.g., controlling the 
timing when the source outputs the different spectra). As one 
example, the MSXT imaging system may move the source/ 
detectors relative to the object and during movement control 
the source (e.g., activate the source to generate light in the 
one or more spectra) to generate the limited data set. The 
MSXT imaging system may also move the source/detectors 
relative to the object in one of several embodiments. In one 
embodiment, the source/detectors may move and the object 
may be stationary in order for the source/detectors to move 
relative to the object. In another embodiment, the source/ 
detectors may be stationary and the object may move in 
order for the source/detectors to move relative to the object. 
In still another embodiment, the source/detectors and the 
object may move in order for the source/detectors to move 
relative to the object. As another example, the MSXT 
imaging system may control the activation of the source so 
that the limited data set is obtained. 

Thus, regardless of the relative movement, the MSXT 
imaging system can activate the source such that during the 
relative movement, the data generated comprises the limited 
data set. As one example, the MSXT imaging system may 
include a single source, with the MSXT imaging system 
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controlling the single source such that light is output at the 
different spectra during the relative movement of less than 
2Jt. 

8 
central processor of the MSXT imaging system) or may be 
a passive filter ( e.g., not controllable by a central processor 
of the MSXT imaging system). Any type of filter known in 
the art may be used. Regardless of the filter type, the source In a first illustrative embodiment, the MSXT imaging 

system includes a single source with slow kVp switching, 
with the MSXT imaging system performing the slow kVp 
switching such that at each of the different spectra, the 
movement is less than 2it. The movement can be of the 

5 in combination with the filter generates the output at the 
different spectra. Further, the MSXT imaging system may 
activate the source such that during the relative movement, 
the data generated comprises the limited data set, as dis­
cussed above. source, detector, and/or the patient or other object being 

imaged. For example, the MSXT imaging system may 10 

activate the source to generate the first spectrum while 
generating relative movement greater than 180° but less than 
360°, use the slow kVp switching to switch the source to the 
second spectrum, and thereafter activate the source to gen­
erate the second spectrum while generating relative move­
ment greater than 180° but less than 360°. As another 
example, the MSXT imaging system may activate the source 

As another example, the MSXT imaging system may 
include multiple sources ( e.g., a first source configured to 
output light at the first spectra and a second source config­
ured to output light at the second spectra), with the MSXT 
imaging system controlling the multiple sources such that 

15 light output is at the different spectra during the relative 
movement of less than 2it. Thus, in one implementation, the 
MSXT imaging system may activate the multiple sources at 
least partly simultaneously. Alternatively, the MSXT imag­
ing system may activate the multiple sources serially. 

to generate the first spectrum while generating relative 
movement greater than 90° but less than 180°, use the slow 
kVp switching to switch the source to the second spectrum, 
and thereafter activate the source to generate the second 
spectrum while generating relative movement greater than 
180° but less than 360°. As still another example, the MSXT 
imaging system may activate the source to generate the first 
spectrum while generating relative movement greater than 25 

90° but less than 180°, use the slow kVp switching to switch 
the source to the second spectrum, and thereafter activate the 
source to generate the second spectrum while generating 
relative movement greater than 90° but less than 180°. As 
yet another example, the MSXT imaging system may acti- 30 

vate the source to generate the first spectrum while gener­
ating relative movement greater than 45° but less than 90°, 
use the slow kVp switching to switch the source to the 
second spectrum, and thereafter activate the source to gen­
erate the second spectrum while generating relative move- 35 

ment greater than 45° but less than 180°. As still another 
example, the MSXT imaging system may activate the source 

20 Regardless, the activation of the multiple sources is such that 
the different spectra during the relative movement is each 
less than 2it. 

to generate the first spectrum while generating relative 
movement greater than 45° but less than 90°, use the slow 
kVp switching to switch the source to the second spectrum, 40 

and thereafter activate the source to generate the second 
spectrum while generating relative movement greater than 
45° but less than 90°. 

In a second illustrative embodiment, the MSXT imaging 
system may include a single source with fast kVp switching, 45 

with the MSXT imaging system performing the fast kVp 
switching such that the total movement ( e.g., the sum of the 
movement) at each of the different spectra is less than 2it. 
Alternatively, the source of the MSXT imaging system may 
include a single source with fast kVp switching, with the 50 

MSXT imaging system performing the fast kVp switching 
such that the total movement ( e.g., the sum of the move­
ment) at each of the different spectra is less than 2it. For 
example, the MSXT imaging system may perform the fast 
kVp switching (generating the source output at the first and 55 

second spectra) while generating relative movement greater 
than 180° but less than 360°. As another example, the MSXT 
imaging system may perform the fast kVp switching (gen­
erating the source output at the first and second spectra) 
while generating relative movement greater than 90° but less 60 

than 180°. As still another example, the MSXT imaging 
system may perform the fast kVp switching (generating the 
source output at the first and second spectra) while gener­
ating relative movement greater than 45° but less than 90°. 

In a third illustrative embodiment, the source includes a 65 

filter in order to generate the light at the different spectra. 
The filter may be an active filter ( e.g., controllable by a 

As discussed above, in the multiple source implementa­
tion, the activation of the source may be less than 2it for each 
spectra. However, the relative movement may be less than 
2it or may be 2it or greater. In the example of relative 
movement which is less than 2it, the source may likewise be 
activated for less than 2it ( e.g., the activation of the source 
may be co-extensive with the relative movement or may be 
less than the relative movement). In the example ofrelative 
movement that is 2it or greater, the activation of the source 
is such that the data generated is for relative movement that 
is less than 2it. In this regard, the relative movement may be 
more or less than 2it. However, the activation of the source 
during the relative movement is such that the data collected 
is less than 2it of the relative movement. Further, various 
types of sources are contemplated, such as sources that 
generate a fan beam or sources that generate a cone beam. 
Thus, any discussion below directed to fan beams may 
equally be applied to cone beams or other source outputs. 

In one embodiment, the MSXT imaging system may 
control the detectors in order for the MSXT imaging system 
to obtain the limited data set. As one example, activation of 
detectors and/or control of filters associated with the detec-
tors may be used in order to obtain the limited data set. For 
example, with a source generating a fan beam, the detectors 
may be positioned in a curve along the fan beam. In this 
example, the MSXT imaging system may use a filter for one 
part of the output of the fan beam such that a first portion 
( e.g., a first ½) of the fan beam is at the first spectrum, and 
a second portion (e.g., a second½) of the fan beam is at the 
second spectrum. At the detector, there is a detector 
response. If a change of the system is desired, the source 
may be changed (such as via filters), the detectors may be 
changed ( e.g., change the range of the spectra sensed), or 
both. Alternatively, the MSXT imaging system may have 
multiple sets of detectors, which may be controlled in order 
to obtain the limited data set. The MSXT imaging system 
can also control relative movement of the source(s), detector 
(s ), and/or patient in order for the MSXT imaging system to 
obtain the limited data set. Thus, the MSXT imaging system 
controls one or more of the source(s), detector(s), and 
relative movement of system components to obtain the 
limited data set. 

In another implementation, the MSXT imaging system 
may use a methodology in order to generate an image with 
the limited data set. The methodology can include accessing 
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a data model of multi-spectral imaging, performing a trans­
formation on the model in order to apply a convex optimi­
zation program, and using a convex optimization program to 
solve the imaging problem. Various data models may be 
used. In one implementation, a non-linear data model is 5 

used. Various non-linear data models are contemplated, such 

7,444,011; 8,121,245; 8,923,587; and 9,613,442. U.S. Pat. 
Nos. 7,394,923; 7,444,011; 8,121,245; 8,923,587; and 
9,613,442, each of which are incorporated by reference 
herein in their entirety. 

The system memory 2606 may store information and/or 
instructions for use in combination with processing unit 
2604. For example, the system memory 2606 may store 
computer readable instructions, data structures, program 
modules or the like for operation of the imaging system 

as a continuous-to-discrete (CD)-data model or a discrete­
to-discrete (DD)-data model. Other data models can be used 
in alternative embodiments. Further, a transformation may 
be performed. One example transformation involves linear­
ization of the data model. In one particular implementation, 
the non-linear data model may be partly linear and partly 
non-linear. The transformation may involve linearizing the 
part of the data model that is non-linear. In addition, a 
correction is optionally applied to compensate for the trans­
formation of the model. In the example of linearization, a 
compensation to linearization of the model may be applied, 
with the compensation being iteratively performed. 

As discussed above, FIG. lA depicts a single-kVp switch 
imaging technique in which there is one rotation for the low 
kVp and another rotation for the high kVp in accordance 
with an illustrative embodiment. The system utilized in FIG. 
lA is a representation of a full-scan configuration. In par­
ticular, FIG. lAillustrates a standard, full-scan configuration 
in which each data set is collected for spectrum s at views 
uniformly distributed over 2it. As shown in FIG. lA, refer­
ence numeral 100 indicates the thin line for the low-kVp 
scan and reference numeral 110 indicates the thick line for 
the high-kVp scan. 

FIG. 1B is a graph showing multiple normalized spectral 
including 80 kVp (120), 100 kVp (125), 120 kVp (130), and 
140 kVp (135) in accordance with an illustrative embodi­
ment. Though 4 spectra are shown, fewer or greater numbers 
of spectra are contemplated, such as 2, 3, 5, 6, etc. As 
discussed below, various low-kVp spectrum (such as 80 kVp 
(120)) and high-kVp spectrum (such as 140 kVp (135)) may 
be used in the proposed system. As shown in the FIG. 1B, 
spectra 120, 125, 130, 135 are not delta functions. In one 
implementation, the methodology disclosed takes into con­
sideration that the spectra are not delta functions, which 
contributes to the non-linearity of the data models, as 
discussed in more detail below. 

10 2600, including, for example, control of movement of any of 
the source, object, and detector and control of the function­
ality of the source and the detector. Further, the system 
memory 2606 may store data obtained from detector device 
2620 and may process the data for presentation on the 

15 display 2608, as discussed in more detail below. The system 
memory 2606 may include volatile and non-volatile 
memory, such as random access memory (RAM) and read 
only memory (ROM). It should be appreciated by those 
skilled in the art that other types of computer readable media 

20 which can store data that is accessible by a computer, such 
as magnetic cassettes, flash memory cards, random access 
memories, read only memories, and the like, may also be 
used. A user may enter commands and/or information, as 
discussed below, into the computing environment 2602 

25 through input devices such as a mouse and keyboard (not 
shown) that form a user interface. The commands and/or 
information may be used to control operation of the imaging 
system, including acquisition of data and processing of data. 

FIG. 26 further depicts source device 2612 in communi-
30 cation with computing environment 2602 via line 2614. As 

discussed above, source device 2612 may be stationary or 
may move relative to any one, or both, of object 2616 and 
detector device 2620. Source device 2612 may also be 
configured to generate one or more spectra as discussed 

35 above. Further, source device 2612 includes a switch 2630. 
Switch 2630 is configured to perform the slow kVp switch­
ing or fast kVp switching under control by computing 
environment 2602. Further, source device 2612 may have 
associated therewith one or more filters (not shown), as 

40 discussed above. Line 2614 may also be used by processing 
unit 2604 to control movement of source device 2612, such 
as by sending commands to a motor (not shown) to move all 
or a part of source device 2612. For example, if the source 
device 2612 is an X-ray tube, the motor may move the entire 

FIG. 26 depicts an MSXT imaging system 2600 in 
accordance with an illustrative embodiment. In alternative 
embodiments, the MSXT imaging system 2600 may include 
fewer, additional, and/or different components. The MSXT 
imaging system 2600 includes a general purpose computing 
device in the form of a computing environment 2602, 
including a processing unit 2604, a system memory 2606, 
and display 2608. A system bus 2610 couples various system 
components of the computing environment 2602, including 
the processing unit, 2604, the system memory 2606, and the 
display 2608. The processing unit 2604 may perform arith­
metic, logic, and/or control operations by accessing system 
memory 2606. For example, the processing unit 2604 may 55 

control the various system components to acquire data for 
imaging and may process the acquired data to generate an 
image. Specifically, the processing unit 2604 may control 
the source device 2612, the detector device 2620, and/or 
relative movement of the source device 2612, the detector 60 

device 2620, or the object 2626 through one or more motors 
(not shown). Alternatively, different system processors, or 
different devices may control the various system compo­
nents to acquire data for imaging and may process the 
acquired data to generate an image. FIG. 26 illustrates one 65 

example of an MSXT imaging system. Other types of 
imaging systems are disclosed in: U.S. Pat. Nos. 7,394,923; 

45 X-ray tube relative to one, or both of, object 2616 and 
detector device 2620. Alternatively, the X-ray tube may 
remain stationary with a reflector revolving using the motor. 
In this manner, the beam emanating from the X-ray tube may 
be moved by bouncing the beam off the revolving reflector 

50 and toward object 2616. Although FIG. 26 illustrates a 
single source device, the MSXT imaging system 2600 may 
include one or more source devices, depending on the 
embodiment. 

The source device 2612 may be any device which gen­
erates a signal that can be received by detector device 2620. 
The source device 2612 selected for imaging system 2600 
may depend on the type of imaging performed by imaging 
system 2600. For example, source device 2612 may generate 
electromagnetic radiation in any frequency range, such as 
gannna rays, x-rays, visible light, microwaves, and radio/tv 
waves. In an illustrative embodiment, source device 2612 is 
an X-ray source that generates X-rays, or a radio frequency 
(RF) source that generates radio waves at one or more 
spectra. Source device 2612 may also generate other types 
of signals such as magnetic fields, mechanical waves (e.g., 
sound waves), heat, particles (e.g., electron, proton, neu-
tron), or the like. Though a source device 2612 is depicted 
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in imaging system 2600, it is noted that certain types of 
imaging systems do not utilize an external source, such as a 
positron emission tomography (PET) scanner. 

FIG. 26 also depicts object 2616. Object 2616 may be any 
type of Region of Interest (ROI) or anything that is capable 

12 
the source device 2612, the object 2616 and/or the detector 
device 2620. The processing unit 2604 may be configured to 
control at least one of the one or more source devices, 
control the one or more detectors or the ROI such that the 

5 ROI moves relative to the one or more source devices and 
of being scanned, such as a living organism ( e.g., human or 
animal) or a non-living object (e.g., a piece of luggage, a 
cargo container, food, an ocean, underground the earth, etc.). 
The position of the object may be stationary or may move 
relative to any one, or both, of source device 2612 and 10 

detector device 2620. Line 2618 can be a control line used 

the one or more detectors, control the one or more source 
devices such that the one or more source devices output light 
at the first spectrum or the second spectrum for less than 2it 
(of movement of the ROI relative to the one or more source 
devices and the one or more detectors, store ROI data 
generated from the one or more detectors sensing light from 

to control movement of object 2616, such as by sending 
commands to a motor (not shown) to move object 2616. Any 
part, or all, of object 2616 may be imaged using imaging 
system 2600. Further, the object may ingest or be injected 
with a substance, such as a contrast agent, which may assist 
in imaging a part or all of object 2616. As shown in FIG. 26, 
source device 2612 is external to object 2616. Alternatively, 
source device 2612 may be internal to object 2616. 

FIG. 26 further shows detector device 2620 communicat­
ing with computing environment 2602 via lines 2624 and 
2626. Detector device 2620 may include a line of individual 
detectors 2622. Alternatively, multiple lines of detectors 
may be used to form detector device 2620. In this regard, the 
MSXT imaging system 2600 may include one or more 
detectors. Line 2624 represents a control line whereby the 
processing unit is able to control at least one characteristic 

the first spectrum and the second spectrum (the ROI data 
being limited to less than 2it ( of movement of the ROI 
relative to the one or more source devices and the one or 

15 more detectors for at least one of the first spectrum and the 
second spectrum), and generate an estimated image of the 
ROI based on ROI data. The processing unit 2604 can take 
the form of processing circuitry, a microprocessor or pro­
cessor, and a computer-readable medium that stores com-

20 puter-readable program code (e.g., software or firmware) 
executable by the (micro )processor, logic gates, switches, an 
application specific integrated circuit (ASIC), a program­
mable logic controller, and an embedded microcontroller, 
for example. The processing unit 2604 can be configured 

25 with hardware and/or firmware to perform the various 
functions described below and shown in the pseudo code. 
Also, some of the components described as being internal to 
the processing unit 2604 can also be stored external to the of detector device 2620. As one example, line 2624 may 

control the activation of detector device 2620. Additionally, 
line 2624 may control one or more filters (not shown) 30 

associated with detector device 2620. Line 2626 may also be 

processing unit 2604, and other components can be used. 
As an example, the processing unit 2604 may control 

movement of any of the source device 2612, the detector 
device 2620, and/or the object 2616 in order to move the 
object 2616 relative to the source device 2612 and the 
detector device 2620. Further, the processing unit 2604 may 

a data transmission line through which data sensed from the 
detectors 2622 is sent to computing environment 2602 for 
processing by processing unit 2604. 

Detector device 2620 be any type of detector which 
senses any datum, such as electromagnetic radiation from 
any frequency range (such as X-rays in multiple spectra), 
magnetic fields, sound waves, heat, or the like. For example, 
for a 2-dimensional detector (flat-panel imager), detector 
device 2620 may include one row of detectors for fan beam 
geometry, four rows of detectors for quasi-fan-beam geom­
etry, or more than four rows of detectors for cone-beam 
geometry. Detector device 2620 may be stationary or may 
move relative to any one, or both, of source device 2612 and 
object 2616. Line 2624 may also be used to control move­
ment of detector device 2620, such as by sending commands 

35 control the source device 2612 such that the source device 
2612 outputs light such as in the scan configurations illus­
trated in FIGS. 2-8, which results in light output by the 
source device 2612 at the first spectrum or the second 
spectrum for less than 2it ( of movement of the object 2616 

40 relative to the source device 2612 and the detector device 
2620. Responsive to the light generated by the source device 
2612, the detector device 2620 may generate data, such as 
ROI data, for storage. Because the light output by the source 
device 2612 is limited ( e.g., being less than 2it of movement 

45 of the object 2616 relative to the source device 2612 and the 
detector device 2620), the ROI data stored is limited to less 
than 2it of movement of the object 2616 relative to the 
source device 2612 and the detector device 2620 for the first 

to a motor (not shown) to move all or a part of detector 
device 2620. As shown in FIG. 26, detector device 2620 is 
external to object 2616. Alternatively, detector device 2620 
may be internal to object 2616. Thus, both source device 50 

2612 and detector device 2620 may be internal or external 

spectrum and the second spectrum. Finally, the stored ROI 
data may be used to generate the estimated image of the 
object, as discussed in more detail below. 

to the object, depending on the type of object being scanned. 
Moreover, source device 2612 may be internal and detector 
device 2620 may be external to object 2616, or source 
device 2612 may be external and detector device 2620 may 55 

be internal to object 2616. For example a dental image of a 
patient may be acquired with an external source and a 
detector held in the mouth of a patient. 

In one example, the detector device 2620 may be modeled 
as a straight-line array of 512 detector bins, which may be 60 

large enough so that the field-of-view is the circle inscribed 
in a 256x256 imaging array. The MSXT measurements may 

FIGS. 2-8 illustrate representations of different limited 
data scans. As discussed above, the limited data scans may 
be based on control of one or more of the source(s), the 
detector(s), and the relative movement of the object. In 
particular, FIG. 2 illustrates an example of a sparse-view 
configuration 200 in which multi-spectral data are collected 
at multi sets of interlaced sparse views over an angular range 
of any value between 180 degrees and 360 degrees in 
accordance with an illustrative embodiment. In this regard, 
FIG. 2 illustrates an example of controlling the source in 
generating the limited data scan. The dashed circle 212 
indicates the FOY of the scanner, in which the imaged object 
(elliptical region 210) is enclosed. As shown in FIG. 2, there 

be related to the path integral of the x-ray attenuation 
coefficient along the rays defined by the source spot and 
individual detector bins. 

In one implementation, the computing environment 2602, 
such as processing unit 2604, may be in communication with 

65 are 4 sets of interlaced sparse views over an angular range 
of 2it (i.e., 360 degrees). For example, the source is con­
figured to generate the different spectra for: 80 kVp (202); 
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100 kVp (204); 120 kVp (206); and 140 kVp (208). As 
shown in FIG. 2, the different spectra are generated in a 
sequence, such as 80 kVp (202), 120 kVp (206), 100 kVp 
(204), and 140 kVp (208), with the sequence repeating over 
the entire angular range of 2it. 

In one implementation, there is no distance ( e.g., 0°) 
between the different spectra. Alternatively, there may be a 
distance between the different spectra. For example, the 
degree distance may be 0.5°, 0.5°-1 °, 1 °, 1 °-5°; 5°, 5°-10°, 
etc. Further, the distance (i.e., number of degrees) between 
increments of the different spectra may be uniform across all 
of the different spectra. Alternatively, the degree distance 
between the different spectra may be different. Fewer (such 
as 2 or 3) or greater (such as 5, 6 or more) interlaced sparse 
views are also contemplated in the embodiment of FIG. 2. 
Further, the angular range may be 2it, such as illustrated in 
FIG. 2. Alternatively, the angular range may be less than 2it, 
such as between 270° and 2it, such as between 180° and 2it, 
and such as between 180° and 270°. Further, the sequence 
may repeat in the different angular ranges less than 2it, such 
as between 270° and 2it, such as between 180° and 2it, such 
as between 180° and 270°, etc. 

FIG. 3 illustrates a limited-angular-range configuration 
300 in which multi-spectral data are collected at multiple 
sets of limited-angular ranges over an angular range of any 
value between 180 degrees to 360 degrees in accordance 
with an illustrative embodiment. As shown in FIG. 3, there 
are 4 sets of sparse views over an angular range of 2it. For 
example, each of 80 kVp (302), 100 kVp (304), 120 kVp 
(306), and 140 kVp (308) includes an associated continuous 
angular range. Thus, FIG. 3 illustrates another example of 
controlling the source in generating the limited data scan. As 
shown in FIG. 3, the different spectra are equally divided 
across 2it, with 90° for each of the 4 spectra. In this regard, 
in one implementation, the angular range (e.g., 2it) may be 
divided equally across the different spectra. Alternatively, 
the angular range may be divided unequally across the 
different spectra. Fewer (such as 2 or 3) or greater (such as 
5, 6 or more) interlaced sparse views are contemplated in 
other embodiments. Further, the angular range may be 2it, or 
alternatively less than 2it, such as between 270° and 2it, such 
as between 180° and 2it, such as between 180° and 270°, etc. 
As shown in FIG. 3, there are two positions at different 
spectra shown, with 320 at 80 kVp and with 330 at 100 kVp. 

14 
and changing of the configuration of the detectors may be 
performed iteratively ( e.g., stepping through the different 
spectra). 

FIG. 5 is a representation of a sparse-view configuration 
5 500 in which low-kVp and high-kVp data are collected at 

two sets of interlaced sparse views uniformly distributed 
over 2it in accordance with an illustrative embodiment. In 
one implementation, the source outputting low-kVp 502 and 
outputting high-kVp 504 may alternate, such as over an 

10 angular range (e.g., 2it, between 270° and 2it, between 180° 
and 2it; between 180° and 270°). In particular, a source 
outputting low-kVp 502 and outputting high-kVp 504 onto 
object 306 is illustrated. As shown in FIG. 5, there are gaps 
between the interlaced sparse views. The gaps may be 0.5°, 

15 0.5°-1 °, 1 °, 1 °-5°, 5°, 5°-10°, etc. Further, the degree dis­
tance between the different spectra may be the same between 
each of the different spectra or different as discussed above. 
Although not shown in FIG. 5, in an alternate implementa­
tion, there may be no distance between the interlaced sparse 

20 views. In another implementation, some of the interlaced 
sparse views may have a gap therebetween and other inter­
laced sparse views may have no gap. Thus, the angular range 
for each of the low-kVp and high-kVp may be added to 
result in respective total angular ranges for each of the 

25 low-kVp and high-kVp. 
FIG. 6 is a representation of a limited-angular-range 

configuration 600 in which low-kVp and high-kVp data 
(from a source outputting low-kVp 602 and outputting 
high-kVp 604 onto object 306) are collected over the two 

30 adjacent limited-angular ranges in accordance with an illus­
trative embodiment. The non-standard configurations illus­
trated in FIGS. 5-6 involve varying angular coverages, and 
are referred to as the sparse-view and limited-angular-range 
configurations, respectively. In FIG. 5, low- and high-kVp 

35 data are collected at two sets of interlaced sparse views 
uniformly distributed over 2it. In particular, the light gen­
erated by the source outputting low-kVp 502 is interspersed 
between the light generated by the source outputting high­
kVp 504. Further, the non-contiguous segments where the 

40 light generated by the source outputting low-kVp 502 may 
be summed, as discussed above. This sum is less than 2it. 
Likewise, the non-contiguous segments where the light 
generated by the source outputting high-kVp 504 may be 
sUlllilled, with the sum being less than 2it. In FIG. 6, low-

45 and high-kVp data are collected over two adjacent continu­
ous limited angular-ranges. As shown, the angular range for 
the low-kVp 602 (i.e., the thin line) is approximately 90°, 
whereas the angular range for the high-kVp 604 (i.e., the 

FIG. 4 illustrates a block configuration in which multi­
spectral data are collected at multiple sets of detector blocks 
over an angular range of any value 2it or less in accordance 
with an illustrative embodiment. For example, the angular 
range may be 2it, between 180° to 2it, between 180° to 270°, 50 

etc. In this embodiment, a row of detectors may detect 
different spectra, such as at 80 kVp (402), 100 kVp (404), 
120 kVp (406), and 140 kVp (408). FIG. 4 illustrates this at 

thick line) is greater than 90°. 
FIG. 6 further illustrates that the angular range for the 

low-kVp and the angular range for the high-kVp do not 
overlap. Alternatively, the angular range for the low-kVp 
may at least partly overlap with the angular range for the 
high-kVp. For example, the angular range for the low-kVp a point in the 2it (circumference. In this regard, FIG. 4 

illustrates an example of controlling the detector(s) in gen­
erating the limited data scan. As shown, the data at the 
different spectra are collected at least partly simultaneously 
with different detectors detecting the different spectra ( e.g., 
at 80 kVp (402), 100 kVp (404), 120 kVp (406), and 140 
kVp (408)). In an alternative implementation, all of the 
detectors may detect at one spectrum, and then sequence 
through the different spectra during the relative movement 
of the source(s)/detector(s) to the object (such as over 2it (or 
over less than 2it). As one example, the detectors may be 
configured to sense one spectrum. Thereafter, relative move­
ment may occur, with the detectors thereafter configured to 
sense another spectrum. This sequence of relative movement 

55 may be 0° to 225°, and the angular range for the high-kVp 
may be 225° to 90°. In an alternative implementation, a 
short+short scan configuration may be used in which each 
short scan is greater than 180° and less than 360° for the 
dual-energy data sets collected using the low-kVp and 

60 high-kVp X-rays. Specifically, the angular range for the 
low-kVp may be greater than 180°, whereas the angular 
range for the high-kVp may be greater than 180°. In another 
implementation, a half +half scan configuration may be used 
in which each half scan is equal to 90° for the dual-energy 

65 data sets collected using the low-kVp and high-kVp X-rays. 
As shown, the angular range for the low-kVp is equal to 
180°, and the angular range for the high-kVp is equal to 
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180°. In this regard, the short+short scan configuration and 
the half+half scan configuration are further specific 
examples of limited-angular range configurations. 

16 
Alternatively, low- and high-kVp data are collected, respec­
tively, with two adjacent and multiple adjacent alternating 
illumination coverages at views over less than 2it (such as 
uniformly distributed over 90°, between 90° to 180°, As discussed above, the MSXT imaging system may use 

a scan configuration that is a partial-angular-scan configu­
ration in which each of the two dual-energy data sets is 
acquired for an object only over an angular range consid­
erably less than 2it. Because the reduced angular range is 
less than 2it, a partial-angular-scan configuration can be 
exploited for possibly reducing imaging time and dose of a 
full-scan configuration. Further, a partial-angular-scan con­
figuration can readily be realized on standard CT scanners 
without additional hardware simply by use of the standard 
single-kVp-switch technique, which is available on many 
existing CT scanners. 

5 between 180° to 270°, between 270° to 360°, etc.). The 
configurations may be achieved through, for example, the 
use of a beam blocker in front of the X-ray source and/or 
detector blocks with different energy responses. Thus, these 
are examples of controlling one or both of the source(s) or 

10 the detector(s) in order to achieve the different configura-
tions. 

As discussed above, a one-step inversion approach may 
be used to reconstruct basis and monochromatic images in 
MSXT for a variety of scan configurations or systems of 

As an example, three parameters, a 0 , a 1 , and a 2 may be 
used to specify a partial-angular-scan configuration, where 

15 potential practical significance. In particular, an optimiza­
tion-based one-step inversion approach may use a method­
ology to reconstruct basis images through solving numeri­
cally a non-convex optimization program based upon the a 0 and a 2 denote the starting and ending angles of the X-ray 

tube, and a 1 is the angle at which the X-ray tube switches its 
kVp. The system therefore collects two sets of dual-energy 20 

data over angular ranges a 1 -a0 and a 2 -a1 . In a full-scan 
configuration, a 1 -a0 =a2 -a1 =2Jt, whereas in a partial-angu­
lar-scan configuration, a 1-a0<2it and a 2 -a1<2it. Further, 
two fast partial-angular-scan configurations may be used for 
dual-energy CT. In addition, the MSXT can control the tube 25 

such that it rotates a short-scan range in one kVp, before 
switching to another kVp setting to rotate for another 
short-scan range. Thus, two sets of dual-energy data may be 
acquired with a 0=0, a 1 =Jt+Ym, and a 2=2it+2ym, where Ym is 
the fan angle of the CT scanner. Alternatively, the MSXT 30 

may control the tube such that it rotates according to: a 0=0, 
a 1 =it, and a 2=2it. The X-ray tube may be switched from one 
kVp to another kVp at a 1 =it, and the angular range of each 
kVp scan covers one half of a full-rotation scan. As dis­
cussed in more detail below, the methodology can use a 35 

heuristic algorithm for reconstructing basis and monochro­
matic images from dual-energy data collected with full-, 
short- and half-scan configurations through numerically 
solving the program. 

non-linear data model in MSXT. In particular, the method­
ology may be used with non-standard scanning configura­
tions (such as disclosed in FIGS. 2-8) involving no or 
minimum hardware modification. In one implementation, 
the one-step inversion approach may include: accessing one 
or more non-linear data models; accessing a non-convex 
optimization program; using an algorithm for numerically 
for solving the non-convex optimization program; and deter-
mining one or more convergence conditions. Discussed 
below are the study design (including spectra, phantoms, 
and configurations), verification and characterization studies 
of one implementation of the methodology, and application 
of the methodology (including applying the methodology to 
non-standard scanning configurations of practical implica­
tions). 

As an initial matter, a data model may be used or accessed 
by the system. In one implementation, one or more non­
linear data models may be accessed. Several non-linear data 
models are contemplated, with examples of non-linear data 
models including: continuous-to-discrete (CD)-data models; 
and discrete-to-discrete (DD)-data models. 

In using the CD-data model for MSXT, one seeks to 
determine X-ray linear attenuation coefficient f'(E, r) from 
knowledge of multiple transmission measurements. One 

may decompose f'(E, r\ a function of X-ray photon energy 

45 E and spatial coordinates 7, into the form: 

FIG. 7 is a representation of a split-illumination configu- 40 

ration 700 in which low-kVp and high-kVp data are col­
lected with two adjacent illumination coverage of low-kVp 
702 and high-kVp 704 at each of 640 views uniformly 
distributed over 2it in accordance with an illustrative 
embodiment. In particular, a low-kVp illumination (702) 
and a high-kVp illumination (704) are directed onto object 
210, at a plurality of views (such as the 640 views uniformly 
distributed over 2it). FIG. 8 is a representation of a block­
illumination configuration 800 in which low-kVp and high­
kVp data are collected with multiple adjacent alternating 50 

illumination coverage of low-kVp 802, 804 and high-kVp 
806, 808 at each of 640 views uniformly distributed over 2it 
in accordance with an illustrative embodiment. For example, 
a first low-kVp illumination (802), a first high-kVp illumi­
nation (806), a second low-kVp illumination (804), a second 55 

high-kVp illumination (808) are directed onto object 210 at 

Eq. 1: 

where kEZ +, and µiE) and bi7) are referred to as decom­
position coefficients and basis images. The decomposition 
can be e.g., material or interaction based depending upon 
how µiE) is selected. Assuming that the decomposition 
coefficients are known, the problem of image reconstruc­
tion in MSXT may be simplified to the determination of 
the basis images, which are functions only of spatial 

variable 7. A material decomposition may be considered 
in which the mass-attenuation coefficient of the kth basis 
image material is selected as µiE). 

a plurality of views (such as the 640 views uniformly 
distributed over 2it). Alternatively, a different number of 
views may be used in the implementations of FIGS. 7 and 
8. 

Letting ~[sl(E) denote the X-ray spectrum for ray j with 

60 
spectrum s, and I}sl and I0}sl the transmission measurements 
for ray j in the presence and absence, respectively, of f'(E, Two non-standard configurations are shown in FIGS. 7-8, 

which involve varying illumination coverage. These con­
figurations are referred to as the split- and block-illumina­
tion configurations, respectively. In the configurations, low­
and high-kVp data are collected, respectively, with two 65 

adjacent and multiple adjacent alternating illumination cov­
erages at each of 640 views uniformly distributed over 2it. 

7) one can define a data model as g~ [sJ=-ln (I [sl/I [sl) 
' '!J 7 OJ ' 

which can be written further as: 

Eq. 2: 

Eq. 3: 
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where 7 1c denotes the sonrce position, ~ the direction of ray 
j, SE { 1, ... , S}, S the total number of X-ray spectra used, 
and 

q}'l(E)=Q}'l(E)(f0~E Q}'l(EJi- 1,Eq. 4: 5 

with the normalized spectral function satisfying f dE q}'l 
(E)=l. Spectrum function q}'l(E) can be ray-dependent in 
cases that a bow-tie filter is placed in front of the X-ray 
sonrce and/or that multiple measnrements can be made for 

10 
a given ray, e.g., using multiple energy bins in a photon­
counting detector. 

Because q}'l(E), µiE), and bk(7) are functions of con­

tinuous variable E or 7, and because g}'l for ray j is 
specified by discrete indexj, one may refer to equation 2 as 15 

a continuous-to-discrete (CD)-data model, which is used for 
obtaining discrete-to-discrete (DD)-data models below. 
When q}'l(E)=8(E-E0 ), the CD-data model becomes the 
conventional X-ray transform for ray j. 

18 
f';m, respectively. Similarly, basis-image vector bk of size 
I can be assembled in which entry i is given by bk;· 
Ignoring decomposition error f,,_fim equation 5, another 

DD-data model may be represented as: 

Eq. 8: 

where kE{l, ... , K}, and b denotes an aggregate basis-
image vector formed by concatenating individual basis­
image vectors bk in the ascending order of k. For sim­
plicity, b is referred to as the basis image. 
The reconstruction algorithm is designed based upon the 

DD-data model in equation 8 in the results described herein. 
When the algorithm is applied to data collected in a real 
experiment or generated by use of a data model (e.g., 
equation 5) other than equation 8, the data contain incon­
sistencies such as noise and/or decomposition error with the 
data model in equation 8. 

Variable bin model data g}'l(b) indicates explicitly that 
the reconstruction task is to determine b from knowledge of 
data measnred. Considering all of the measnrements with 
spectrum s, vector gls1(b) is formed of size Jlsl, with ele-
ments g}'l(b). An aggregate vector g(b) of model data can 
then be assembled by concatenating glsl(b) in the ascending 
order of s. Additionally, q}'l of size M is used to denote a 
vector of discretized spectrum in which entry qjm [sJ indicates 

[s] 
value of spectrum s at energy m for ray j. Let BMJ denote 
the measnred data for ray j with spectrum s, which can be 
used to form aggregate vector gM (i.e., the counterpart of 

In practical CT imaging with spectrum s, measnrements 20 

made at a discrete sonrce position h[sJ form a two-dimen­
sional (2D) array that includes rows and columns indexed by 
j}sl and j}'l. By letting N1clsJ denote the total number of 
discrete sonrce positions and N}sl and N}sl the total num­
bers of rows and columns of the detector-measnrement array 25 

at the sonrce position, one can align all the measnrements 
into a one-dimensional (lD) array in a concatenated form in 
the order of j}sl, j}'l, and hlsl, with elements indexed by 
j=L [sl+jv [s]xN u [sl+jA [slxNV [slxN u [s]' Jls]=NA [s]xN u [s]xNV [s]' 

30 model data g(b) as discussed above). 
and jE {0, ... , Jlsl_l}. 

In a DD-data model. the energy space can be discretized 
uniformly with E=rnllD where mE {l, ... , M}, and t,,.E is 
the energy sampling interval. The discretized form of the 
normalized spectrum function in equation 4 is defined as 
qjm[sl=t,,_E q}'l(mf,,.E) satisfying the normalization condition 35 

Em qjm[sJ=l. One can also consider a voxel-based represen­
tation of three-dimensional (3D) image space by discretizing 
evenly its x-, y-, and z-axis, with x=x0+ipx, Y=Yo+iyt,,_,,, and 
z=z0+ip.2, where ixE {0, ... , Nx-1}, iYE {0, ... , NY-1}, and 
i

2
E {0, ... , N

2
-l}. Nx, Ny, and N

2 
denote the total numbers 40 

of voxels, t,,.x, t,,_,,, f,,_2 the voxel sizes, and x0 , y 0, z0 the starting 
positions along x, y, and z-axis, respectively. The voxels can 
be aligned into a lD array of size I=NxxNYxN

2 
in a concat­

enated form in the order of ix, iy, and i
2

, indexed by 
i=ix+iyxNx+izxNyxNZ. 45 

For spectrum s, using equation 2 and the discrete image 
array, a DD-data model may be represented as: 

g/"1~In Lmqjm[>lexp(-L;a)'3/';m), Eq. 5: 

wherejE{0, ... , Jls]_l}, iE{0, ... , I-1}, a)sl denotes the 
intersection length of ray j with voxel i, f';m the discrete 
linear attenuation coefficient at energy m, and 

Eq. 6: 

50 

Further, the methodology may use a non-convex optimi­
zation program. Image reconstruction in MSXT is tanta­
mount to the determination of basis image b by inverting the 
DD-data model in equation 8 from knowledge of measnred 
data gM, which can be formulated as a constrained optimi­
zation program in the form of: 

b' = argmin 'l'(b) s.t. <l>(b; gM) :s,: & b ± 0, 
b 

Eq. 9 

where data constraint parameter E>0, and ±denotes the 
vector-form inequality, which requires all elements of b to 
be non-negative. The objective and data-fidelity functions 
may be designed as: 

'I'(b)=EkllMrv and <1>(b; gM)=D(g(b), gM), Eq. 10: 

where ll•IITv denotes the image total-variation (TV), defined 
as the 11-norm of the gradient-magnitude image, i.e., 
llbkllTv=ll(IVbkl)lli, with V denoting the finite-differencing 
approximation to the gradient and l•I a spatial magnitude 

where µkm=µk(rnllE), and bki discrete basis image k at voxel 
i. Subscript i indicates that f';m and bk; are in the concat­
enated form described above. 

operator, and D (x, y) the data divergence, often in the form 
of lP-norm or Kullback-Leibler (KL) divergence, between 
vectors x and y. One may consider a normalized 12 -norm of 
vector difference between model data g(b) and measnred 

55 
data gM, i.e., 

When K basis images are considered, a discrete form of 
equation 1 may be: 

Eq. 7: 

60 

where kE{l, ... , K}, and f,,_fim the difference between f;m 

and f;m· fim and f,,_fim' may be referred to as the mono­
chromatic image, and the image decomposition error 65 

within voxel i at energy m. Vector images f'm and fm of 
size I at energy m can be formed with elements f;m and 

Eq. 11 

Further, an algorithm may be used to numerically solve 
the non-convex program. Data divergence D(g(b ), gM) is 
non-convex (NC) due to the non-linearity of the DD-data 
model, so is the optimization program in equations 9-11. In 
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the absence of a mathematically exact solver for achieving 
the globally optimal solution of the non-convex optimiza­
tion program, a heuristic algorithm may instead be used for 
numerically solving the program and may demonstrate its 
potential in enabling MSXT configurations of potential 5 

application significance. 
As discussed above, various data models may be used. As 

one example, the DD-data model may be used, with the 
linear and non-linear contributions to the DD-data model 

20 
that non-linear term Llg(b) is known and denoted by ~g. 
Under this condition, the DD-data model in equation 18 

becomes a linear equation, i.e., g(b)-~g=J£b, and data 

divergence D ( J£ b, g J£ -Kg) and the optimization program 
consequently becomes convex, which can then be solved by 
use of a host of well-established algorithms. 

The projection-onto-convex-sets (POCS) procedure can 

analyzed. First, the mass-attenuation coefficient µkm in equa- 1 O be used to lower convex D( J[ b, gM- ~g) with the updating 
tion 8 may be split into: step: 

Eq. 12: 

Eq. 13: 

While µjk[sJ is independent of energy as it is a spectrum­
weighted average of µkm over energy, Llµjkm [sJ remains 
energy dependent. Substitution of equation 12 into equation 
8 yields: 

Eq. 19 
15 

g}'l(b)=g}'l(b)+Ll.g}'l(b), 

where jE{0, ... , Jlsl_l}, 

Eq. 14: 20 where jE{0, ... , JlsLl}, Kii}'l is the jth element with 

Eq. 15: 

Eq. 16: 25 

denote linear (LI) and non-linear (NL) functions of b, 
respectively, and can be used to form two aggregate 
vectors g(b) and Llg(b) in the same way of forming g(b). 
Thus, in one implementation, µ may be the non-linear 30 

component in the data model. Further, equation 14 includes 
two elements, with g(b) being linear and Llg(b) being non­
linear. In one implementation, the non-linear term Llg(b) 
may be represented by equation 16. In particular, g(b)=J£ b 
and matrix J£ is given by: 

Eq. 1 

35 

spectrums of ~g, a.lsJ a row vector that is the jth row of 
matrix .A lsl, and a}-sJT a column vector as the transpose of 

a}'l, and 0<ynl<2. Thus, Llg may be transformed into ~g}'l, 
with the - representing the approximation. The transforma-

tion into ~g}'l is one example of linearizing the non-linear 

model. In a specific implementation, ~g }'l may be consid­
ered a constant. 

Using b(nl in equation 16, one can calculate: 

Eq. 20: 

Thus, equation 20 is one representation of the actual 

difference between the approximation ~g }'l and the true 
non-linear model. As discussed below, one can use equation 

20 to replace ~g }'l. With this, the methodology may thus 
compensate for the transformation (e.g., compensate for the 

where matrix .A lsl, of size JlslxI and with element a)sl, 
denotes the discrete X-ray transform for all measurements 
made with spectrum s, and 'Uk [sJ a diagonal matrix of size 
JlsJ with diagonal elements µjk[sJ_ 

40 linearization) of the non-linear model. In this regard, the 
compensation may be in addition to the linearization. In one 
implementation, the compensation may be performed itera­
tively. Thus, it is then proposed to use Llg}'l(b(nl) as an 

The DD-data model in equation 8 for an individual ray 
can then be re-expressed in a matrix form for all of the rays 
considered as: 

45 estimate of ~g}'l in equation 19, and thus obtain an NC­
POCS update procedure as: 

g(b)-1--.g(b)=J[ b. Eq. 18: 
50 

While equation 18 is only a different form of the DD-data 
model in equation 8, it reveals that it is non-linear term Llg(b) 
that results in the non-convexity of the data divergence and 
thus of the optimization program. Thus, as shown above, 
equation 14 includes three terms: g}'l(b), which is the 55 

measurement, g(b ), which is a linear of b, and Llg(b) which 
is a non-linear function of b. Equation 18 is a rewrite of 
equation 14 into vector form. Further, from equations 14 and 
18, g(b) becomes matrix J£ b. 

If one assumes that Llg(b) is independent of b ( though in 60 

actuality it is a non-linear term), the left hand side of 
equation 18 is a linear function of b. Because of that 
assumption, one can place this equation into equation 10 or 

Eq. 21 

which has a form identical to that of the conventional POCS, 
except for that at iteration n, Llg}'l(b(nl) is calculated to 
compensate for the non-linear effect. As shown in equation 
21, the argument of Llgj is bk. bk is the current reconstruction 
at this iteration. In this regard, at each iteration, there is 
knowledge of bk. This knowledge of bk may be used to 
estimate Llgj through equation 20. Thus, in one implemen­
tation, the compensation may be iterative. Further, the 
iterations may result in convergence. In other words, an 
iterative procedure is used in which the compensation for the 
approximation of Llg(b) is performed. FIG. 25 depicts 11. In that regard, one is faced with a convex problem since 

Llg(b) is assumed to be constant (independent of b). 
There are various ways for numerically lowering the 

non-convex data divergence. In one way, it is first assumed 

65 pseudo code used to implement equation 21 and the non­
convex-projection onto convex sets (NC-POCS) in accor­
dance with an illustrative embodiment. 
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Using this, a projection-onto-convex-sets tailored to a 
non-convex application may be developed. In particular, 
combining this NC-POCS procedure for lowering D(g(b), 
gM) with the steepest descent (SD) for lowering the total 
variation (TV) objective function, one may obtain an heu­
ristic ASD-NC-POCS algorithm for numerically solving the 
non-convex program specified by equations 9-11. Similar to 
the conventional ASD-POCS algorithm, the ASD-NC­
POCS algorithm adaptively lowers the image TV and data 
divergence by use of the SD and NC-POCS procedures for 
image reconstruction in MSXT, with the pseudo-code as 
illustrated in FIG. 25. In a reconstruction, once the practical 
convergence condition on the data constraint is satisfied, 
gradient descent steps are applied to further lower data 
divergence so that other practical convergence conditions 
can be met rapidly. The ASD-NC-POCS methodology may 
further be used with one or more convergence conditions. 

One or more types of reconstruction parameters may be 
used in the optimization-based image reconstruction. In one 
implementation, there are two types of parameters involved 
in an optimization-based image reconstruction, which are 
referred to as program and algorithm parameters. Program 
parameters may specify the optimization program in equa­
tion 9, including image voxel, spectra q}'l, system matrices 
cA [sJ, and parameter E. Different choices of program param­
eters may lead to different optimization programs and thus 
different designed solutions. In one implementation, param­
eter E may be the focus that impacts dominantly the recon­
struction, while selecting image voxel, q/sl, and cA [sJ 
similar to those used in practical applications. The algorithm 
parameters such as ynl, NTv, and ak(n) in the algorithm 
illustrated in FIG. 25 may control the algorithm path leading 
to the designed solution. While the algorithm parameters 
have no effect on the designed solutions, they can impact the 
numerical reconstructions especially for a non-convex pro­
gram. Thus, in one implementation, the same algorithm 
parameters may be used as those used in the conventional 
ASD-POCS algorithm. 

Three mathematical convergence conditions may be con­
sidered for the ASD-NC-POCS algorithm: 

D(b(a)) = ID(g(b(a), gM)- t:I /,: ➔ 0, Eqs. 22 

- l'l'(b(a+l)) - 'l'(b("l)I 
Ll.'l'(b("J) = ~----~ ➔ 0 and 

l'l'(b(a+l)) + 'l'(b("l)I , 

ca(b(a)) = a:a,aW"))drv(b(a)) ➔ -1, 

as iteration number n➔=, where unit vectors adata(b(n)) 
and dTv(b(nl) are defined below. The second condition in 
Eqs. 22 is for the optimality of the objective function, 
whereas the other two are the local optimality conditions, 
i.e., the Karush-Kuhn-Tucker (KKT) conditions, as shown 
below. While the mathematical convergence conditions may 
not be met in practical reconstructions, they may be used to 
devise practical convergence conditions for studies dis­
cussed below. 

22 
a fan-beam configuration over a circular trajectory, with 
physical dimensions similar to those used in a standard 
cone-beam CT (CBCT) employed in radiation therapy. In 
one implementation, the CBCT system may have source-

s to-detector and source-to-center-of-rotation distances of 
1500 mm and 1000 mm, respectively, and a linear detector 
of 400 mm in length, which form a field-of-view (FOV) of 
265 mm in diameter. Imaged subjects are assumed to be 
completely within the FOV. In alternative embodiments, 

IO different dimensions may be used. As discussed above, the 
configuration shown in FIG. lA is a standard, full-scan 
configuration in which each data set is collected for spec­
trum s at views uniformly distributed over 2n:, and which is 
used for verification and benchmark of the algorithm imple-

15 mentation and performance. In addition, other non-standard 
configurations, such as illustrated in FIGS. 2-8, may be 
utilized to demonstrate the application of the methodology. 

With regard to spectra, the ASD-NC-POCS algorithm 
may be applicable to MSXT with multiple (S:2:2) spectral 

20 measurements. Discussed herein are applications using only 
two (i.e., S=2) spectral data sets collected with two, i.e., the 
low (s=l) and high (s=2) spectra at 80 and 140 kVp. 
Different specta values may be used in alternative imple­
mentations. The incident spectra are generated using the 

25 TASMICS worksheet (vl.0), assuming a tungsten anode and 
5-mm-Al filter, to simulate spectrum from a X-ray CT tube. 
The detector-energy response is modeled to be a linear 
energy-integrating response. The discrete X-ray spectrum, 
taken as the product of the incident spectrum and detector-

30 energy response with LlE=l (Ke V), is normalized and shown 
in FIG. lB. As discussed, the ASD-NC-POCS algorithm 
may also be applied to spectral measurements greater than 2. 

With regard to basis images, two (i.e., K=2) basis images 
are considered, and are referred to as the water and bone 

35 images in the reconstruction. It is further assumed that the 
spectra are the same for all rays within one kVp scan, i.e., 
the discretized spectrum can be denoted by qm [sJ, without the 
dependence on ray j. 

With regard to monochromatic images, using basis 
40 images bk reconstructed, along with knowledge of mass­

attenuation coefficients, one can readily obtain monochro­
matic image fm by using equation 7. In general, due to the 
presence of decomposition error, monochromatic image fm 
may represent only approximately linear attenuation coef-

45 ficient image f m· 

Illustrated in FIGS. lOA-E are two digital phantoms. The 
first simulates the standardized dual-energy contrast phan­
tom with iodine and calcium solution inserts, referred to as 
the DE-472 phantom, and the second mimics human tho-

50 racic anatomy, referred to as the lung phantom. Both phan­
toms are represented on a 512x512 array of square pixels of 
0.49 mm. Specifically, FIG. lOA depicts a DE-472 phantom 
with 18 regions of interest within 16 circular inserts and 2 
background areas highlighted by 1 to 18 in accordance with 

55 an illustrative embodiment. FIG. 10B is a lung phantom in 
accordance with an illustrative embodiment. FIG. lOC is a 
lung phantom with a muscle region of interest in accordance 
with an illustrative embodiment. FIG. lOD is a lung phan­
tom with a bone region of interest in accordance with an 

60 illustrative embodiment. FIG. lOE is a lung phantom with a 
water region of interest in accordance with an illustrative 
embodiment. 

With regard to numerical experiment design, one may 
consider scan configuration dimensions. Specifically, while 
the ASD-NC-POCS algorithm developed can reconstruct 
images from cone-beam data collected over general source 
trajectories, the ASD-NC-POCS algorithm may also be 
applied to other types of beams. In particular, ASD-NC- 65 

POCS algorithm may be applied to a fan-beam configura­
tion, such as image reconstruction from data collected with 

FIG. 9 is a table summarizing the materials used in the 
composition of the phantoms of FIG. 10 in accordance with 
an illustrative embodiment. Not depicted in FIG. 9 is water, 
which has 1.0 g/ml density. For the lung phantom simulating 
various human tissues, the ICRU-44 standard was used for 
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its materials, and the mass-attenuation coefficients are read-
24 

POCS algorithm by using data that contain decomposition 
error and statistical noise, which are inconsistent with the 
DD-data model in equation 8. 

For each phantom illustrated in FIGS. lOA-E, using its 

ily available as tabulated data. For the DE-472 phantom, the 
mass-attenuation coefficients of the iodine and calcium 
solutions are calculated using the XCOM web program, 
according to the specifications of the physical GAMMEX 
472 Dual Energy CT phantom. As shown in FIG. lOA, 18 
regions of interest (ROis) in the DE-472 phantom, defined 
based on the inserts, and 3 ROis of the lung phantom, 
defined based on material masks, are shown for computing 
metrics for parameter determination in the studies below. 

5 truth monochromatic image f m and spectra in FIG. lB, 
equation 5 is used to generate low- and high-kVp data at 640 
overlapping views evenly distributed over 2n:, which thus 
contain decomposition error. Furthermore, Poisson noise is 
added to data by scaling the spectra to yield 2xl04 photons 

Further, a verification study was performed to verify that 
under imaging conditions of interest, the ASD-NC-POCS 
algorithm can numerically solve the non-convex optimiza­
tion program in equation 9 from ideal data generated by use 

IO per ray in the air scan. The image array of the same 
dimension and pixel size as the digital phantom is used in the 
reconstruction. At each view, projection samples are col­
lected with a 400-mm linear detector that includes 1024 bins 

of the DD-data model in equation 8 without decomposition 15 

error and noise. 
With regard to the experimental parameters, two truth 

basis images representing water and cortical bone were used 
in equation 8 to generate ideal data from the lung phantom 
by use of the full-scan configuration with the low and high 20 

kVp spectra described in FIG. lA. For computation effi­
ciency, an image array of I=128x128 1.95-mm square pixels 
is considered, and a linear detector of 256 1.56-mm bins is 
used to generate projections at 160 views evenly distributed 
over 2n: for each of the low and high kVp spectra. As such, 25 

the X-ray transform matrices .A lil=.A l2 J are of size Jl1l=J 
l2l=256x160 and I=128x128. With parameters, spectra, and 
.A [sJ determined above, parameter E=l0-8 is selected to 
form a tight solution set, as the study may use ideal data. 

Based upon the mathematical convergence conditions in 30 

equations 22, practical convergence conditions for the veri­
fication study are designed as: 

35 

Eqs. 23: 

Convergent reconstruction is obtained when all of the 
convergence conditions above are satisfied. Because the 40 

truth basis images are known, a reconstruction-error metric 
3:b(b(n))=llb(n)_b,ruellillb,ruelb may also be devised, e.g., the 
normalized 12-distance between the truth and reconstructed 
basis images. This metric provides a quantitative indication 
as to whether and how the reconstructed basis images 45 

approach their truth counterparts. 

of 0.39-mm size. Alternatively, a different number of bins 
and/or size may be used. Therefore, the X-ray transform 
matrices .A lIJ and .A l2 l are identical and of dimensions 
Jl1l=Jl2J=640x1024 and I=512x512. With the determination 
of program parameters, i.e., image pixel, spectra, and matri­
ces .A [sJ, the strategy for the selection of parameter E in the 
characterization experiment is discussed below. 

Because data are generated directly from linear attenua­
tion coefficient f'm, there may be no truth basis images in the 
characterization study. Instead, metrics can be designed 
based upon monochromatic images fm for determination of 
parameter E. R regions of interest (ROis) in a monochro­
matic image may be chosen for calculating the "biases" and 
"standard deviations" within the ROis as: 

where iElr, and Ir indicates the number of pixels within ROI 
r. Using 0rm and crrm2 computed at energies m 1 and m2 , two 
metrics are formed for determination of parameter E: 

0= "[02 +02 J½/R and U rm1 rm2 

' 

FIG. 11 depicts ideal data and display convergence results For a given configuration and phantom, monochromatic 
images fm are formed at m 1=80 KeV and m2 =140 KeV from 
basis images reconstructed for a number of E values, 0 and 

50 L is computed from the images, and E is selected that yields 
lowest 0 and L. 

in accordance with an illustrative embodiment. FIG. 12 
depicts convergent reconstructions in accordance with an 
illustrative embodiment. More specifically, FIG. 11 illus­
trates convergence metrics D(b(nl), 3:IJl(b(nl), and ca(b(nl), 
and reconstruction-error 3:b(b(nl) as functions of iterations n, 
and FIG. 12 illustrates truth and reconstructed water- and 
bone-basis images. With regard to study results, the ASD­
NC-POCS algorithm may be applied to reconstructing basis 55 

images from the ideal data and display convergence results 
in FIG. 11 and convergent reconstructions in FIG. 12. It can 
be observed that the practical convergence conditions in 
equations 23 are satisfied and that convergent reconstruc­
tions are visually identical to their truth counterparts. In 60 

particular, the reconstruction-error metric in FIG. 11 reveals 
quantitatively a small difference of the convergent recon­
structions than their truth basis images, thus providing a 
numerical verification of the ASD-NC-POCS algorithm and 

Practical convergence conditions for the characterization 
study may be designed as: 

D(b(nlJ<I0-3, 

Eqs. 24: 

which may be looser than those in the verification study 
as the decomposition error and data noise are considered. 
The conventional ASD-POCS algorithm indicates that the 
third condition can often be relaxed to -0.5, instead of 
-0.99, with only imperceptible changes to the images. Using 

its computer implementation. 
Following the verification study with ideal data above, a 

characterization study may be performed on the ASD-NC-

65 reconstructed basis image bk (nl in equation 7, one can readily 
obtain monochromatic image fm (nl at iteration n. Also, in the 
simulation study, truth monochromatic image f'm may be 
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known, thus leading to the calculation of the reconstruction­
error metric K)fm (n))=llfm (n)_f mlblllf' mlb, which may be the 
normalized 12 -distance between the truth and reconstructed 
monochromatic images at energy m. 

One focus of the study results is a demonstration of 5 

reconstruction convergence. In particular, a reconstruction is 
used from data of the full-scan configuration to demonstrate 
that the practical convergence conditions in equations 24 
may be met by the ASD-NC-POCS algorithm. Without loss 
of generality, the reconstruction may be carried out with 10 

E=0.0170. FIG. 13 illustrates convergence metrics D(b(nl), 
KW(b(nl), and ca(b(n)) as functions of iteration number n in 
accordance with an illustrative embodiment. More specifi­
cally, FIG. 13 illustrates convergence metrics D(b(nl), 
KW(b(nl), and ca(b(nl), and reconstruction-error K)fm (n)) of 15 

an 80-KeV monochromatic image obtained with E=0.0170, 
as functions of iteration number n. It can be observed that the 
ASD-NC-POCS algorithm converges to meet the practical 
convergence conditions. 

With regard to the selection of the parameter E, for each 20 

of DE-472 and lung phantoms, reconstructions are per­
formed from its data by using theASD-NC-POCS algorithm 
for multiple values of E, metrics 8 and~ are calculated from 
the ROis described with regard to FIGS. lOA-E in mono­
chromatic energy reconstructions at 80 and 120 KeV. The 25 

value of E may be selected that yields the lowest 8 and ~­
Using the strategy, it has been determined that E=0.0170 and 
E=0.0111 in the characterization study using the DE-472 and 
lung phantoms, respectively. 

With regard to reconstruction results, using the program 30 

parameters ( e.g., image pixel, spectra, matrices .A [sJ, and E) 
determined, basis and monochromatic images of the DE-472 
and lung phantoms may be reconstructed. FIG. 14 depicts 
water-basis and bone-basis images (row 1), 40- and 120-
KeV monochromatic images (row 2), and zoomed-in views 35 

of ROI images (row 3) enclosed by boxes in row 2 from 
full-scan data of the DE-472 and lung phantoms, respec­
tively. FIG. 14 includes display windows [0, 1.5] (row 1), 
[-1000, 1000] HU (row 2), and [-500, 500] HU (row 3, 
DE-472 phantom) and [-1000, 200] HU (row 3, lung 40 

phantom). The dashed lines indicate the location of the 
profile plots in FIG. 15, while the arrows point to the air 
bubbles in the DE-472 phantom. In FIG. 14, reconstructed 
basis images, monochromatic images are displayed at 40 
and 120 KeV, which is used often for contrast enhancement 45 

and artifact reduction, and their zoomed-in views of ROI 
images are enclosed by the rectangular boxes indicated in 
row 2. 

26 
vertical lines indicated in row 2 of FIG. 14 in accordance 
with an illustrative embodiment. Overall, reasonable quan­
titative agreement in monochromatic images is observed for 
the lung phantom, while some discrepancy can be observed 
between the DE-472 phantom and its monochromatic 
images due to the decomposition error. The profiles also 
reveal that the 40-KeV monochromatic images are of con­
trast higher than that of the 120-KeV counterparts. 

It is of practical interest to inspect and understand how the 
reconstruction of monochromatic image evolves as itera­
tions increase. Without loss of generality, FIG. 16 illustrates 
reconstructions of 120-KeV monochromatic image at inter­
mediate iterations for both phantoms in accordance with an 
illustrative embodiment. It appears that reconstructions at as 
early as iteration 50 can resemble the respective convergent 
reconstructions. Similar observations can also be made for 
monochromatic energy images reconstructed at other ener­
gies. 

Discussed below are investigations of image reconstruc­
tion for non-standard configurations of potential application 
significance enabled by the ASD-NC-POCS algorithm. For 
each of the non-standard configurations considered, a veri­
fication study was performed. However, the verification 
results are not shown because the results and conclusions are 
similar to those described above. Instead, characterization 
studies similar to that described above are the focus in which 
data may contain decomposition error and statistical noise. 
For each of the configurations and spectra in FIG. 1B, data 
is generated from each of the DE-472 and lung phantoms by 
using equation 5, and Poisson noise is added to the data by 
considering a total count level identical to that in the 
full-scan study discussed above. Furthermore, image pixel 
size and spectra used may also be identical to those in the 
study discussed above, while matrices .A [sJ are illustrated 
in, and parameter E is determined by, use of the strategy 
described above for each of the non-standard configurations. 

As discussed above, configurations may have varying 
angular coverages. For example, FIGS. 5-6 involve varying 
angular coverages. With regard to study parameters, in the 
sparse-view configuration in FIGS. 5-6, each of the low- and 
high-kVp data sets contains 320 views, thus forming a total 
of 640 projection views. Again, at each view, a linear 
detector comprising 1024 bins of 0.39-mm size is used for 
data collection. Therefore, matrices .A [IJ and .A [2 l are of 
identical dimensions J[1l=J[2 l=320x1024 and I=512x512. 
Furthermore, using the strategy described above, E=0.0116 
and 0.008, respectively, is selected for the DE-472- and 
lung-phantom studies below. 

In the limited-angular-range configuration in FIGS. 5-6, The water-basis image retains mostly the water and soft­
tissue background, while high contrast inserts and bony 
structures appear largely in the bone-basis image. The 
seemingly observable "artifacts" in basis images recon­
structed are understandable because data may contain 
decomposition error as they were generated from f' m instead 
of two basis images. However, no significant cupping or 
band artifacts are visible in the monochromatic images, 
especially for the DE-472 phantom that contains high con­
centration iodine and calcium inserts. ROis of the DE-472 

50 each of the two adjacent angular ranges covers 98°, thus 
forming a total of 196°-angular range (corresponding to a 
short-scan angular range,) and low- or high-kVp data are 
generated at 174 views uniformly distributed over each of 
the two angular ranges, respectively, with a linear detector 

55 identical to that in the sparse-view configuration. Therefore, 
matrices .A [1l and .A [2l are of identical dimensions J[1l=J 
[
2l=174x1024 and I=512x512. Again, using the strategy 

described above, E=0.0085 and 0.0064, respectively, is 
phantom with a narrow display window show air-bubble 
contrast (indicated by the arrows) and discernible contrast 60 

inserts with the lowest concentration of iodine and calcium 

selected for the DE-472- and lung-phantom studies below. 
FIG. 17 illustrates reconstruction results for both phan-

toms from data acquired with the sparse-view configuration 
in accordance with an illustrative embodiment. Specifically, 
FIG. 17 illustrates water- and bone-basis images (row 1), 40-
and 120-KeV monochromatic images (row 2), and zoomed-

in the phantom. Meanwhile, ROis of the lung phantom show 
details of the lung nodules in the dark background, with a 
display window to highlight these features. 

For acquiring a quantitative impression of the reconstruc­
tions, FIG. 15 depicts plots profiles of truth and recon­
structed monochromatic images along the horizontal and 

65 in views of ROI images (row 3) similar to those in row 3 of 
FIG. 14 from sparse-view-scan data of the DE-472 and lung 
phantoms, respectively, with display windows [0, 1.5] (row 
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1), [-1000, 1000] HU (row 2), and [-500, 500] HU (row 3, 
DE-472 phantom) and [-1000, 200] HU (row 3, lung 
phantom). Reconstructed monochromatic images at 40 and 
120 Ke V visually resemble their counterparts obtained from 
the full-scan data. Both basis images of each phantom show 5 

clear material separation, and the monochromatic images 
display an uniform background and no visible artifacts 
caused by non-linear spectral effect. In addition to recon­
struction visualization, FIG. 18 illustrates profiles of the 
reconstructed and truth monochromatic images along the 10 

horizontal and vertical lines indicated in row 2 of FIG. 14 in 

28 
In the block-illumination configuration, the linear detector 

is divided into two sets of interlaced, adjacent detector 
blocks of equal length with 32 bins (i.e., 12.5-mm length), 
as shown in FIGS. 7-8, and the low or high kVp beam 
illuminates one of the two sets of detector blocks, respec­
tively. Therefore, matrices JI. [IJ and JI. [2l are of identical 
dimensions J[1l=J[2 l=640x512 and I=512x512. Using the 
strategy described herein, E=0.0121 and 0.0089 is selected, 
respectively, for the DE-472- and lung-phantom studies. 

FIG. 21 illustrates illumination reconstruction results for 
both phantoms from data acquired with the split-illumina­
tion configuration in accordance with an illustrative embodi­
ment. More specifically, FIG. 21 shows water- and bone­
basis images (row 1), 40- and 120-KeV monochromatic 

accordance with an illustrative embodiment. It can be 
observed that for sparse-view-scan configuration, the agree­
ment of monochromatic images reconstructed with the truth 
counterparts is comparable to that for the full-scan configu­
ration in FIG. 15. 

FIG. 19 illustrates reconstruction results for both phan­
toms from data acquired with the limited-angular-range 
configurations in accordance with an illustrative embodi­
ment. Specifically, FIG. 19 illustrates water- and bone-basis 
images (row 1), 40- and 120-KeV monochromatic images 
(row 2), and zoomed-in views of ROI images (row 3) similar 

15 images (row 2), and zoomed-in views of ROI images (row 
3) similar to those in row 3 of FIG. 14 from split-illumina­
tion-scan data of the DE-472 and lung phantoms, respec­
tively, with display windows [0, 1.5] (row 1), [-1000, 1000] 
HU (row 2), and [-500, 500] HU (row 3, DE-472 phantom) 

to those in row 3 of FIG. 14 from limited-angular-range-scan 
data of the DE-472 and lung phantoms, respectively, with 
display windows [0, 1.5] (row 1), [-1000, 1000] HU (row 

20 and [-1000, 200] HU (row 3, lung phantom). The mono­
chromatic image at 40 KeV for the DE-472 phantom show 
some visible artifacts, while the monochromatic image at 
120 KeV reveals less artifacts. Conversely, monochromatic 
images for the lung phantom appear to reveal few artifacts. 

25 In addition to reconstruction visualization, FIG. 22 depicts 
plots of profiles of the reconstructed and truth monochro­
matic images along the horizontal and vertical lines indi­
cated in row 2 of FIG. 14 in accordance with an illustrative 
embodiment. More specifically, FIG. 22 illustrates profiles 

2), and [-500, 500] HU (row 3, DE-472 phantom) and 
[-1000, 200] HU (row 3, lung phantom). Monochromatic 
image at 40 KeV for the DE-472 phantom shows visible 
artifacts, due to the poor conditioning of the DD-data model 
for the limited-angular-range scan considered and the pres­
ence of high-concentration calcium and iodine inserts in the 
phantom, while the monochromatic image at 120 KeV 
reveals less artifacts. On the other hand, monochromatic 
images for the lung phantom appear to be with artifacts 
much less prominent than those for the DE-472 phantom. In 
addition to reconstruction visualization, FIG. 20 depicts 
plots of profiles of the reconstructed and truth monochro­
matic images along the horizontal and vertical lines indi­
cated in FIG. 14 to reveal quantitative differences in accor­
dance with an illustrative embodiment. The lung-phantom 
reconstructions agree reasonably well with their truths for 
both energy levels, whereas some differences between the 
DE-phantom reconstructions and truth counterparts can be 
observed especially for the limited-angular-range configu- 45 

ration. 

30 of reconstructed (dashed) and truth (solid) monochromatic 
images at 40 and 120 KeV along the horizontal and vertical 
lines indicated in row 2 of FIG. 14 from split-illumination­
scan data of the DE-472 and lung phantoms, respectively. It 
can be seen that while some quantitative difference between 

35 the reconstructed and truth monochromatic images for the 
DE-472 phantom can be observed, the truth and recon­
structed monochromatic images agree reasonably well quan­
titatively for the lung phantom. 

FIG. 23 illustrates water- and bone-basis images (row 1), 
40 40- and 120-KeV monochromatic images (row 2), and 

zoomed-in views of ROI images (row 3) similar to those in 
row 3 of FIG. 14 from block-illumination-scan data of the 
DE-472 and lung phantoms, respectively, in accordance with 
an illustrative embodiment. FIG. 23 shows display windows 
[0, 1.5] (row 1), [-1000, 1000] HU (row 2), and [-500, 500] 
HU (row 3, DE-472 phantom) and [-1000, 200] HU (row 3, 
lung phantom). FIG. 24 illustrates profiles of reconstructed 
(dashed) and truth (solid) monochromatic energy images at 
40 and 120 KeV along the horizontal and vertical lines 

50 indicated in row 2 of FIG. 14 from block-illumination-scan 

With regard to configurations with varying illumination 
coverages, FIGS. 7-8 illustrate two additional non-standard 
configurations, which involve varying illumination cover­
age, and are referred to as the split- and block-illumination 
configurations, respectively. As discussed above, in the 
configurations, low- and high-kVp data are collected, 
respectively, with two adjacent and multiple adjacent alter­
nating illumination coverages at each of 640 views uni­
formly distributed over 2it. The configurations can be 55 

achieved through, e.g., the use of a beam blocker in front of 
the X-ray source and/or detector blocks with different energy 
responses. 

data of the DE-472 and lung phantoms, respectively, in 
accordance with an illustrative embodiment. In FIGS. 23-24, 
reconstruction results are displayed for both phantoms from 
data acquired with the block-illumination configurations. 
Based upon the reconstruction results, observations similar 
to those for the split-illumination configuration can be made. 

Thus, a one-step, optimization-based approach for image 
reconstruction in MSXT has been described, particularly 
demonstrating application to various different scan configu-In the split-illumination configuration, the linear detector 

with 1024 bins (i.e., 400-mm length) is divided into two 
adjacent segments of equal length with 512 bins (i.e., 
200-mm length), and the low or high kVp beam illuminates 
one of the two segments, respectively. Therefore, matrices 

60 rations of potential practical significance. The challenge of 
optimization-based image reconstruction in MSXT stems 
from its non-linear data model that can lead to a non-convex 
optimization program for which no mathematically exact 

JI. [IJ and JI. [2 l are of identical dimensions J[1l=J[2 l=640x 
512 and I=512x512. Using the strategy described herein, 65 

E=0.0118 and 0.008 are selected, respectively, for the 
DE-472- and lung-phantom studies described herein. 

solver is available for achieving its globally optimal solu­
tion. A non-convex optimization program is disclosed, its 
KKT condition is derived, and a methodology is used 
numerically to solve the program for image reconstruction in 
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MSXT. A property of the methodology disclosed is that it 
may reconstruct images in MSXT without the use of mul­
tiple spectral measurements for the same ray. Application of 
this property of the methodology enables scan configura­
tions of practical interest in terms of potentially lowered 5 

hardware cost, enhanced scanning flexibility, and reduced 
imaging dose/time in MSXT. 

30 
reconstructions of specific application interest. Additional 
image constraints other than the image-TV constraint may 
also be incorporated into the programs. For example, appro­
priate constraints on the basis-image values may be imposed 
for potentially improving image reconstruction in MSXT, 
especially for the limited-angular-range scan configuration. 

The following is one example of a derivation of the local 
optimality condition. Using equation 1, one can obtain 
monochromatic energy images as fn=Lk µknbk at N energies, 
where n=l,2, ... , N. Lower- or upper-bound constraints on 
the images can be written as: 

Eq. 25 

where Pn is a scalar for specifying the upper or lower bound 
of the nth monochromatic image, and flkn=±µkn with the 
negative sign used to impose a lower bound of image 
values, or simply non-negativity, on the monochromatic 
images. 
Equation 25 can be rewritten in a linear form of b as: 

Q nb+pn °0 for n= 1,2, ... ,N, where Eq. 26: 

Eq. 27: 

Eq. 28: 

Further, in addition to the standard, full-scan configura­
tion in MSXT, a plurality of non-standard configurations are 
disclosed with different designs of scanning angular range IO 

and illumination coverage each of which acquires only a 
portion of data of the full-scan configuration. The non­
standard configurations may be considered because they can 
readily be implemented on a standard CT scanner employing 
regular X-ray tubes and energy-integrating detectors without 15 

invoking hardware additions and/or modifications to the 
scanner. The study results support that the configurations 
considered may be enabled by the methodology proposed to 
yield monochromatic images comparable to those of the 
full-scan configuration both visually and quantitatively. 20 

While scan-configuration have been illustrated that enable 
dual-energy CT in the work, the methodology may accom­
modate multiple (>2) spectral scans and/or a variety of 
configurations with different designs of source trajectory 
and/or illumination coverage tailored to specific applica­
tions. 

25 and J denotes the identity matrix of size IXL 

The enabling effectiveness of the methodology may 
depend upon one or more factors, such as: sampling condi­
tions and their impact on the data-model conditioning for a 
specific configuration, appropriateness of spectra used, 30 

anatomy complexity of subjects imaged, decomposition 
error, and data noise. In the presence of data inconsistencies 
such as decomposition error and statistical noise, some 
banding artifacts near high contrast structures in DE-472-
phantom images are observed to appear stronger understand- 35 

ably for the limited-angular-range configuration than for 
other configurations, suggesting that the effectiveness of the 
methodology in enabling, e.g., a configuration with a con­
siderably limited angular-range, decreases relative to that for 
other configurations. Conversely, the results show that 40 

reconstructions of the lung phantom appear to be robust for 
the configurations considered. 

It is known that any optimization-based reconstruction 
may involve some parameters. In the optimization-based 
reconstruction disclosed, parameter E plays a role in impact- 45 

ing the image reconstruction. Metrics have been devised 
quantitatively to select E specific to the simulation-data 
study performed. However, other methods through which to 
determine E in realistic, practical applications are contem­
plated. In particular, metrics specific to the actual tasks may 50 

be designed for the determination of parameter E in practical 
applications. 

As discussed above, in one implementation, the method­
ology derivation relies upon the linearization of the model 
(such as the non-linear DD-data model). There may be 55 

multiple ways in which to transform (e.g., linearize) the 
model. In particular, discussed below is a specific case 
representative of multiple linearization methodologies. In 
this regard, it is contemplated that there are different ways 
than that disclosed for the linearization. Further, a specific 60 

optimization program is disclosed that includes the data 
divergence in a 12-norm form. Different optimization pro­
grams are contemplated that can lead to different reconstruc­
tions, particularly in the presence of data inconsistencies 
such as noise. Thus, optimization programs of different 65 

forms are contemplated (e.g., containing the KL or other 
data divergences) that enable scan configurations and obtain 

An optimization program may be considered in the form 
of: 

b' = min 'l'(b), 
b 

Eq. 29 

Eq. 30: 

Eq. 31: 

and derive its first-order optimality conditions, e.g., the 
Karush-Kuhn-Tucker (KKT) conditions. It can readily be 
shown that the optimzation programs in eguations 2)-31 and 
9 are equivalent when N=K, Pn=O, and µkn=-1 for k=n (0 
otherwise). Therefore, the derived KKT conditions for the 
former are applicable to the latter. 

The Lagrangian of the optimization program in equation 
equations 29-31 is given as: 

L(b, v, {)en} )='¥(b)+v('¥2(b)-E2)+E),nr( Q nh+Pn),Eq. 
32: 

where scalar v and vectors {ten} are the Lagrangian multi­
pliers. The KKT conditions can thus be expressed as: 

q,2(b*)o,E2, Eq. 33: 

Q nb*+pn°0,n=1,2,. .. ,N, Eq. 34: 

v*~O, Eq. 35: 

?c*n±0,n=1,2,. .. ,N, Eq. 36: 

V ,,l(b*, v*, {A* n} )=Vb '¥(b*)+v*V b '¥2(b*)+En 

Q nTA*n=0, Eq. 37: 

v*(<1>2(b*)-£2)=0, and Eq. 38: 

A*nT( Q nb*+pn)=0,n=1,2, ... ,N, Eq. 39: 

where b* and (v*, {A* n}) are optimal variables and Lagran­
gian multipliers for the optimization problem. Given the 
specific form of Q n in equation 26, the last part of the 
gradient of the Lagrangian in equation 37 can be simpli­
fied as: 

Eq. 40: 
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In general, for non-zero µkn, equation 40 has zero entries 
wherever all {A* n} have zeros at the same entries. Based on 
this observation, one may tum to the complementary slack­
ness in equation 39, which follows: 

( 
":' = 0 if(Q"b:); + p" > 0, 
""' > 0 if(Q"b ); + p" = 0. 

Eq. 41 

5 

Vector ln(b) of size I is used to denote an identity 10 

function, whose elements are: 

32 
where dn,,(b*)=dn,,(b*)/1 dn,,(b*) I and adata(b*)=ddata(b*)/ 

lddara(b*)I are the normalized vectors. 
For computing dTv(b*), using IP(b) in equation 10, there 

JS: 

Eq. 48: 

v' llb'II -("b, llb1cllrv ifb, '= bk, 
b k TV - 0 ifb, $ bk. 

As the -e 1-norm function is non-smooth, TV gradients, or 

( 
1 if(Q"b); + p" > 0, 

1"(b), = 0 if(Q"b); + p" = 0, 
Eq. 42 V b)lb* kllTv, are computed based on an approximation of a 

15 smoothed version. 

and diag(x) a function that yields a diagonal matrix with the 
elements of vector x placed along the diagonal line, as: 

20 

On the other hand, for computing ddata(b*), there is: 

<1>2(b)=( gMrgMi- 1(g(b)-gM)T(g(b)-gM). Eq. 49: 

Taking its gradient yields: 

[

XO Eq. 43 Vb<1>2(b)=2(gMrgMi- 1J(g(b),b)(g(b)-gM), Eq. 50: 

diag(x) = · .. x, · .. 

XJ-1 

Subsequently, considering all N constraints, a matrix is 
constructed as the product of N diagonal matrices: 

25 

'D(b)=ITn~t diag(ln(b)). Eq. 44: 30 

As a result, 'D (b) is also diagonal of size I and it picks out 
those image pixels at which location the N linear constraints 
in equation 25 or 26 are strictly satisfied simultaneously. 
Finally, K identical 'D (b) is used and placed in a diagonal 
line to form a bigger diagonal matrix 'D '(b) of size IxK as: 35 

(

D(b) ) 

D'(b) = · .. D(b) . 

Eq. 45 

Given the meaning of 'D (b) as described above, left­
multiplying 'D '(b*) to both sides of equations 40 yields: 

( D(b') ~>,1",1.;, D(b') ~>,2"";, ... , D(b') ~>K""; r = O. 

This can simplify the first order optimality condition in 
equation 37 as: 

40 

45 

50 

Eq. 46: 
55 

drib*)= 'D '(b*)V b'Jl(b*) and dda,a(b*)=v* 'D '(b*) 
Vb<P2(b*). 

Equation 35 states that v* is non-negative (dual feasibil­
ity), and the complementary slackness in equation 38 states 

60 
that v* can only be zero when the data fidelity constraint is 
not active. For practical solutions that are non-trivial, e.g., 
other than non-negative flat images, the data fidelity con­
straint is always active. Therefore, it is desired that v*>0 in 
practical situations, which leads to that dTv(b*) and ddata(b*) 

65 
shall be oppositely co-linear, or 

Eq. 47: 

where Jacobian matrix J(y(x), x) is given by: 

oy(x)1 oy(x)z (Eq. 51) 

OX] OX] 

J(y(x), x) = oy(x)1 oy(x)z 

OX2 OX2 

where y(x)j and X; are the j-th and i-th elements of vectors 
y(x) and x, respectively. Given the concatenated form of 
the aggregate basis image vector as b=(b 1 T' b2 T' ... , 

bKTf and the dimension of vector g(b) being J'=Ls Jlsl, 
where JlsJ is the size of data vector glsJ (b) for spectral set 
s, the Jacobian in equation 50 can be re-expressed as: 

[

v'b1 g(b)1, v'b1 g(b)2, ... v'b1 g(b)J' l 
v'bz g(b)1, v'bz g(b)z, · .. v'bz g(b)J' 

J(g(b), b) = : : ·. : . 
. . . 

v'bKg(b)1, v'bKg(b)z, ... v'bKg(b)J' 

Eq. 52 

In equation 8, the element of data vector g(b) may depend 
upon spectral set index s and ray index j. In this derivation, 
instead, a single index j' is used for the aggregate data vector 
g(b), as j'=j+(s-l)xJls-IJ and 

Eq. 53: 

As a result, the gradient of g/b) with respect to basis 
image bk can be written as: 

Eq. 54: 

Eq. 55: 

Eq. 56: 

Finally, replacing equations 52 and 54 into equation 50 
yields: 

Eq. 57 
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-continued 
I(g/ -gM/ )vb, g/ 
/ 

Eq. 58 

34 
a given source position. The total number of rays measured 
is denoted as JlsJ, which is the product of the number of rays 
measured at a source position and the number of source 
positions for a given X-ray spectrum s. Considering a I(g/ -gM/)v'b2 g/ 

/ 

I(g/ -gM/)v'bKgi' 
/ 

5 two-basis decomposition model in equation 61, one can 
readily express the data model for a ray measurement with 
spectrum s as: 

(g)' - gMJ') IµimtJ'm 

I-------a/ 
i' ItJ'm 

Eq. 59 IO 
gf1(b1, b2) = -ln; qflexp(-~ a1/,1J,m) 

= -ln; qflexp(-~ ay,1(µ,mbli + P2mb2;)} 

Eq. 62 

(g/ - gM/) Iµ;mt/m 

r-----,,,,,----a/ 
i' ItJ'm 

:5pt 

(g/ - gMJ') Iµ}(mtJ' m 

15 where jE{0, ... , Jlsl_ l} is a ray index for either low (s=l) 
or high (s=2) kVp scan, g}'l(b1, b2 ) denotes the model 
data for the jth ray in scan s, qjm[sJ the ray-dependent, 
normalized X-ray spectrum, satisfying Lm qjm[sJ=l, at 
energy m for the jth ray in scan s, and aji [sJ the intersection 
length of the jth ray in scan s with the ith voxel. The data 
model is a non-linear function of basis images b 1 and b2 . 

The data model in equation 62 can be re-written as: 

I-------a/ 
i' ItJ'm 

20 

As an alternative to the basis and monochromatic images 
discussed above, discrete image arrays may be considered, 25 
with a discrete image being denoted in a vector form of size 
I, where I is the total number of voxels of the image array, 
and entry i in an image vector is the image value within 
voxel i, where iE{0,l, ... , I-1}. Also, one may refer to the 
product of the incident X-ray beam spectrum and the detec- 30 
tor energy response as the X-ray spectrum, and express it as 
a vector of size M in which each entry denotes the spectrum 
value with energy bin m, where mE{l,2, ... , M}. In 
dual-energy CT imaging, one seeks to determine the X-ray 
linear-attenuation coefficient distribution, which is a two- 35 
variable function of X-ray energy and spatial coordinates. 
For a given energy m, the linear-attenuation coefficient 
distribution can be expressed as vector f m of size I in which 
each entry f;m indicates the value of the linear-attenuation 
coefficient at voxel i for energy m. In an attempt to avoid 40 
solving directly for a two-variable function, f m may be 
re-expressed as: 

Eq. 60: 

Eq. 63: 

Eq. 64: 

/1gj[,](b1,h2J~ln Emqjm[>lexp(-E,a1,[>l(f1µjlm[,]b1,+ 

11µ12ml'1h2,JJ. Eq. 65: 

The term µjk[sJ=Lm qjm[slµkm is an energy-independent 
term, taken as the spectrum-weighted average of µkm over 
energy m, Llµjkm[sl=µkm-µjk[s] remains energy dependent, 
and k=l and 2 indexes the basis material. It is noted that 
g}'l(b 1, b2 ) is a linear function of basis images b 1 and b2 , 

while Llg}'l(b 1, b2 ) contributes to the non-linearity of the 
data model. 

For spectrum s, data vector gls1(b1, b2 ) is formed of size 
Jlsl, with elements g}'l(b1, b2 ), where jE{0, 1, ... , Jls]_ 1}. 
Similarly, one can form additional data vectors gls1(b1, bJ 
and LlglsJ(b 1, b2 ), for s=l and 2, in the same fashion as 

Eq. 61: 

glsl(b 1, b2 ), with elements g}'l(b1, b2 ) and Llg}'l(b 1, b2 ) 

given in equations 64 and 65, respectively. Also, let cA [sJ 
denote the discrete X-ray transform matrix of dimension 
JlslxI with a)sl as its element for spectrum s, and U k[sJ a 

45 diagonal matrix of size JlsJ with µjk [sJ as its diagonal element. 

Vectors b 1 and b2 denote basis images of size I, µ,m and 
µ 2m the decomposition coefficients, and Llfm the decompo­
sition error. When different sets of decomposition coeffi­
cients are considered, one obtains different decompositions 50 

of the linear attenuation coefficients, thus different basis 
images and decomposition errors. The variable fm is referred 
to as the monochromatic image at energy m. The water and 
bone mass-attenuation coefficients may be used as the 
decomposition coefficients, and thus may refer to the decom- 55 

position in equation 61 as a material-based decomposition. 
Not considering the decomposition error from insufficient 
bases, the determination off m is simplified to determinating 
basis images b 1 and b2 , which are independent of energy m. 
Once the basis images are determined, one can use equation 60 

2 to obtain the monochromatic image fm at energy m, which 
is used then as an approximation of the linear-attenuation 
coefficients f'm of interest. 

Further, the data model for dual-energy imaging may be 
expressed in multiple ways. Specifically, in dual-energy CT 65 

imaging, measurement may be made with spectrum s, for 
each ray connecting a detector bin and the X-ray source at 

Subsequently, the data model in equation 63 for an indi­
vidual ray can be grouped into a matrix form for all of the 
rays from the low (s=l) and high (s=2) kVp scans as: 

Eq. 66 

Eq. 67 

Similarly, the non-convex optimization program may be 
expressed in one of several ways. For discussion conve­
nience, aggregated vectors g(b1, b2)=(gllJT(b 1, b2 ), gl2 JT(b 1, 

b2)f and Llg(b 1, b2 )=(Llgl'lT(b1, b2 ), Llgl2JT(b1, b2)f are 
formed, where symbol T indicates a transpose operation. 

[s] [s] 
Letting vectors BMi and BMi of sizes Jl'l and Jl2 l denote 
data actually measured with spectra s=l and 2, a measured 

rsl rsl 
data vector, 8M =( BMj, BMj )T, is formed in an aggregate 
form. Using the aggregated data vectors, one may then 



US 11,607,187 B2 
35 

formulate the basis images as a solution to the constrained 
optimization program designed as: 

(b1,b2) = arg min(llbillrv + llb2llrv) 
b1,b2 

where ll•IITv denotes the image total-variation (TV), the 
12-norm-data-fidelity function is given by: 

(g(b1,h2J, 8M-Ll.g(b1,h2JJ=[lli 11(b1,b2J-8~
1 

+Llgl 11 

(b1,h2Jll/+lli21(h1,h2J- g~ +L1.gl21(b1,h2JII/J 112, Eq. 68: 

5 

IO 

15 

36 
gence conditions, such as two necessary convergence con­
ditions, can be obtained for the algorithm, with the metrics 
defined as: 

I5(b\"1, b±")) = ID(g(b\"1, b±")), gM)- "I/,: Eq. 71 

fl (b("J b("J) _ l(llb\"+'Jllrv + llb±"+'Jllrvl-(llb\"Jllrv + llb±"Jllrvll 
rv 

1 
' 

2 - l(llb\"+'Jllrv + llb±"+'Jllrvl + (llb\"Jllrv + llb±"Jllrvll. 

The mathematical convergence conditions for the ASD­
NC-POCS algorithm can be obtained as: 

Eq. 72: 

Here, E>0 is the data constraint parameter. In addition, a 
non-negativity constraint is imposed on the monochromatic 
image at energy m. It can be observed that the optimization 20 

program in equation 9 is non-convex, because D(g(b 1, b2), 

8M-Llg(b1, b2)) is a non-convex function of (b 1, b2 ) and thus 
the data fidelity constraint forms a non-convex set. The 
non-convexity stems from the non-linear term Llg(b 1, b2), as 

25 
in its absence the data model becomes linear and so the data 

The iteration number n➔=. Because the mathematical 
convergence conditions may not be met in practical recon­
structions, they are used for devising the practical conver­
gence conditions below: 

Eq. 73: 

The practical convergence conditions appear to yield 
reconstructions visually and quantitatively resembling those 
obtained with tighter convergence conditions. 

fidelity constraint convex. 
With regard to the reconstruction methodology, in order to 

solve the optimization program in equation 68, the steepest 
descend (SD) procedure is first used to reduce the convex 
term of the basis-image TV. On the other hand, there is no 
mathematically exact solver for achieving the global mini­
mum of the NC-data divergence D(g(b1, b2 ), 8M-Llg(b 1, 

bJ). Instead, a procedure for lowering the NC-data diver­
gence is considered. It can be observed that, if Llg(b 1, b2 ) can 
be estimated, the data divergence becomes convex and can 
thus be lowered by use of a procedure based upon the 
projection-onto-convex-sets (POCS). This observation 
motivates the design of a procedure based upon the POCS 
updates for potentially lowering the non-convex data diver­
gence as: 

where jE{0,l, ... , JlsJ-l} for spectrums, the summation over 
m is from 1 to M, and a}'1 is the jth row of matrix cA [sJ. 

Unlike the conventional POCS procedure, the update in 
equation 69 attempts to address the non-convexity of the 
data divergence by including the estimated NC term Llg}'1 

(b/nl, b2 (nl), and is thus referred to as the NC-POCS 
procedure. Subsequently, an algorithm may be devised by 
combining SD and NC-POCS procedures that adaptively 
lower image TV and data divergence, which may be one 
example of the ASD-NC-POCS methodology. Parameter ynl 
may be identical to that in the conventional ASD-POCS 
algorithm. Using the reconstructed basis image bk(nl in 
equation 61, one can obtain monochromatic image fm (nl at 
iteration n. 

With regard to necessary convergence conditions, 
whether or not it can be mathematically shown whether the 
ASD-NC-POCS algorithm can globally optimally solve the 
NC program in equation 68, one or more necessary conver-

Thus, in one implementation, fast, low-dose dual-energy 
30 scanning configurations are disclosed, enabled by an opti­

mization-based methodology by using real data collected 
with a clinical diagnostic CT. The scanning configurations 
considered may readily be realized by use of the standard 
single-kVp-switch scheme available on existing CT systems 

35 without invoking any hardware addition. The configurations 
may be enabled by use of the ASD-NC-POCS methodology 
for image reconstruction through numerically solving an NC 
optimization program. As discussed above, two specific scan 
configurations (i.e., short+short and half+half) of practical 

40 implications, in terms of reduced imaging time and dose, are 
disclosed for demonstrating the enabling potential of the 
algorithm. Other scan configurations are contemplated. 
Monochromatic images may be reconstructed from data 
collected with the short- and half-scan configurations that 

45 may visually and quantitatively resemble those recon­
structed from the corresponding full-scan data collected with 
current dual-energy imaging techniques. In this regard, 
short- and half-scan configurations (and other scan configu­
rations) may be enabled by the disclosed methodology for 

50 achieving dual-energy CT imaging with reduced hardware 
cost and complexity, imaging dose, and/or time, thus poten­
tially allowing for wide-spread application of dual-energy 
CT imaging using existing CT scanners. 

As discussed above, the performance of the ASD-NC-
55 POCS methodology may depend upon a number of param­

eters and performance metrics used. For example, the meth­
odology performance may be impacted by the anatomic 
complexity of the imaged subject, data noise and artifacts, 
and reconstruction parameters. The metrics considered in 

60 the work are visualization and the scatter plots for iodine and 
calcium differentiation. For demonstration purposes, param­
eters such as voxel size and data/image dimensions are 
selected as those in typical clinical applications, whereas 
constraint parameter Eis selected through visual comparison 

65 of reconstructions with the corresponding reference images. 
While the focus is largely on showing the convergent 
reconstructions for avoiding the need to treat the iteration 
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number as a parameter, other reconstructions are investi­
gated at intermediate iterations (e.g., n=30). One can 
observe that reconstructions at earlier iterations can visually 
and quantitatively resemble the convergent reconstructions. 

While various scan configurations, including the two 5 

methodology-enabled short- and half-scan configurations 
are disclosed, additional configurations of scanning-time/ 
dose efficiency and low-hardware cost are contemplated, 
including helical source trajectory and/or off-set detector 
configurations. Furthermore, the approach and methodology 10 

may be extended to CT scanning configurations involving 
multiple spectra (e.g., greater than 2 spectra), as discussed 
above. 

The foregoing description of illustrative embodiments of 
the invention has been presented for purposes of illustration 15 

and of description. It is not intended to be exhaustive or to 
limit the invention to the precise form disclosed, and modi­
fications and variations are possible in light of the above 
teachings or may be acquired from practice of the invention. 
The embodiments were chosen and described in order to 20 

explain the principles of the invention and as practical 
applications of the invention to enable one skilled in the art 
to utilize the invention in various embodiments and with 
various modifications as suited to the particular use contem­
plated. It is intended that the scope of the invention be 25 

defined by the claims appended hereto and their equivalents. 

What is claimed is: 
1. A method of performing multi-spectral tomography, the 

method comprising: 
directing, by one or more source devices, beams of 30 

radiation in multiple spectra to a region of interest 
(ROI); 

receiving, by one or more detectors, at least a portion of 
the beams of radiation; 

causing, by a processor in communication with the one or 35 

more source devices and the one or more detectors, 
movement in at least one of the one or more source 
devices, the one or more detectors, and the ROI; 

38 
processing, by the processor, data detected by the one or 

more detectors by solving an optimization problem 
based on the data, wherein the data results at least in 
part from a first beam of radiation with a first spectrum 
that is directed to the ROI; and 
generating, by the processor, an image of the ROI based 

on the processed data. 
2. The method of claim 1, wherein the first beam of 

radiation with the first spectrum is directed to the ROI for 
less than 360 degrees of movement of the ROI relative to the 
one or more source devices and the one or more detectors. 

3. The method of claim 1, wherein causing movement 
comprises moving the one or more source devices and the 
one or more detectors while the ROI is stationary. 

4. The method of claim 1, wherein causing movement 
comprises moving the ROI while the one or more source 
devices are stationary. 

5. The method of claim 1, wherein the one or more source 
devices comprise a single source device, and further com­
prising directing, by the single source device, a first beam of 
radiation with a first spectrum at the ROI and a second beam 
of radiation with a second spectrum at the ROI. 

6. The method of claim 5, further comprising directing the 
first beam of radiation through a filter to generate the second 
beam of radiation. 

7. The method of claim 5, further comprising activating a 
switch to change between the first spectrum and the second 
spectrum. 

8. The method of claim 1, wherein processing the data 
includes performing a transformation on a non-linear data 
model associated with the data. 

9. The method of claim 8, wherein the optimization 
problem is solved based at least in part on the transformation 
on the non-linear data model. 

10. The method of claim 8, wherein performing the 
transformation comprises linearizing at least a portion of the 
non-linear data model. 

* * * * * 


