
1111111111111111 IIIIII IIIII 1111111111 11111 111111111111111 IIIII IIIII IIIII IIIIII IIII 11111111
US 20210263729Al

c19) United States
c12) Patent Application Publication

Mayer et al.
c10) Pub. No.: US 2021/0263729 Al
(43) Pub. Date: Aug. 26, 2021

(54) BIDIRECTIONAL EVALUATION FOR
GENERAL- PURPOSE PROGRAMMING

(71) Applicant: THE UNIVERSITY OF CHICAGO,
Chicago, IL (US)

(72) Inventors: Mikael Mayer, Chicago, IL (US); Ravi
Chugh, Chicago, IL (US)

(21) Appl. No.: 17/227,227

(22) Filed: Apr. 9, 2021

Related U.S. Application Data

(63) Continuation of application No. 17/160,098, filed on
Jan. 27, 2021, which is a continuation of application
No. PCT/US19/43846, filed on Jul. 29, 2019.

(60) Provisional application No. 62/711,252, filed on Jul.
27, 2018.

~ Sketch-n-Sketch File View Options

Current me: Untitled (1a: Table of States!*

istates =
[["Alabama'; "AL?", "Movtgomery"]
1 ["Alaska'; "AL?", "Juneau"]
, ["Arizona'; "AR?", ""]

["Arkansas'; "AR?", ""]
["California'; "CA?", ""]

1 ["Colorado'; "CO?", "'']
i ["Connecticut'; "CO?", ""J]

main=
let headers= ["State" , "Capital"] in
let headers =

List.map

Publication Classification

(51) Int. Cl.
G06F 8171
G06F 8/34

(52) U.S. Cl.

(2006.01)
(2006.01)

CPC . G06F 8171 (2013.01); G06F 8/34 (2013.01)

(57) ABSTRACT
A method of facilitating bidirectional programming of a user
may include receiving an original program source code and
evaluating the original program source code in the forward
direction to generate a program output. The evaluation may
occur in a programming environment. The program output
may be displayed, and an indication of the user correspond
ing to modifying the program output may be received. The
modified program output may be evaluated to generate an
updated program source code, wherein the updated program
source code, when evaluated, may generate the modified
program output. The modified program output may be
displayed in a display device of the user. A computing
system including a bidirectional progrannning environment
may also be included.

◄ Previous Exomple Next Example ►

State Capital GUI
Alabama Montgomery, AL.? HTML
Alaska Juneau, AK? Value
A' .. nzona ,AR? Auto
Arkansas ,AR? Sync

Caiifornia lCA
Coiorado I CO?
Connecticut , CO?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

(\[state, abbrev, cap] -> [state, cap + ", " + abbrev])
• states in
let padding = ["padding", "3px"] in
let headerRow =

lel styles = [padding] in
. Html.tr O [l (List.map (Html.th styles []) headers)
m
let stateRows =

let colors = ["lightgray", "white"] in
let drawRow i row ::::

in

let color== List.nth colors (mod i (List.length colors)) in
List.map

in

(Html.td [padding, ["background-color", color]] [])
rovv

Html.tr[] [] columns

. List.indexed Map drawRow rows
in
HtmLtable [padding] [] {headerRow :: stateRows)

Expressions

Constants

Patterns

Environments

Values

[E~Eval]

E f- eval e => s

e .. - c I x I 1lp.e I e 1 e 2 I e 1 :: e 2 I {e If = e J} I ef

let p e 1 e2 I let rec p e 1 e 2 I if e1 e 2 e3 I case e (p1 e 1) • • •

freeze e I applyLens e7 e2

C .. - n I b I s I [] I {} I (+) I (*) I (++) I (&&) I not I
updateApp I diff I merge

p .. - C I X I P1 :: P2 I {f1 = P1; .. ' }

E ··= - I E p!-1- V '!,,t -✓) '

v ::= c I (El .Ap.e) I [v·1 , · · ·] I {f1 = V·1; · · · }

Figura 1a

[U~Eval]

E f- eval e => s parse(s) = e1

parse(s) = e1 L I L I (!) J ----- r- eval e 1 4= v -v--> ----- r- e 1 unparse e 1 = s

- f- eval e 1 => v E !- eval e ~ s1
-v-+ E' f- e1

E f- eval e =>V E f- eval e ~ v' 'V"1' E I f- e'

Figure 1 b

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
0
1,0

c
rJJ
N
0
N
---0
N
Cl's
(,H
-....J
N
1,0

>

Patent Application Publication Aug. 26, 2021 Sheet 2 of 19 US 2021/0263729 Al

I Evaluation E 1-- e=}ul

--- [E-Const]
E!-C=}C

E = E1, .n---► V1E 2 x fl dom(E2)
--------- [E-Var]

E~-X=>-V

E f-- e1

----- [E-Fun]
E 1-Jp.e=}(E1 Jp.e)

(Ef J\x.er)
-- ,

Ej, x f---4v21- ef =} v
---'-----'----- [E-App]

EI- CJ e2 =}D

E f- e1 =>-True

E 1- e2=>-v
----- [E-lf-True]
E 1- if e1 e2 e3 =tu

Ef-e=}v
----- [E-Freeze]
E !- freeze e => v

I Evaluation Update E 1- e{=v 1
,.,.. E' 1- e' I

----- [E-Const]
E f- C{= c1

""' E !- c1

c. _.,,__ 1 E2L_ 1
L !- e2-.,--- V 2,.,.. 0 r e 2

E1 = EJ©E E2
---------[U-App]

E I- e1 e2
{= v' ~, E' 1- e i e2

E f-- e1 =>- True

E f-- e <= 1; 1
'v4 E2 f-- e12 2 [U-!f-True1

EI- .if e1 e2e34=v1
...,._, £21- if e:1 e2e3 ;

------- [U-Freeze]
E I- freeze e {== v ~ E I- e

Figure 2a

[E-Plus]

E f-- e1 =}n l

E f-- e2=}112

[E-Plus-1]

E 1-- e1 =tn1
E f-- e1 {= n'- n1 ~-.E1 1-- e'1

E I- e1 +- e2 <= n 1
...,._, E1 I- e 1 + e2

Figure 2b

[E-Plus-2]

E ~-- e., =tn,.,
""" k,,

Patent Application Publication Aug. 26, 2021 Sheet 3 of 19 US 2021/0263729 Al

E I- e2 ➔ [v2, ·]
-------- [E-Cons]
E f- e1 ::e2 4 [v11 v2, · · J

E 1- e1 4= vi ..,,.., E1 1- ei

E i- e2 4= [v;, · ·] "'~' E2 i-e; E 1 = E1 EBE E2
--------------- [U-Cons]

El-[e1, ·,en]=i-V !:::.=Dlff(v,v1
) El-[e1, ,en]~Dittl1...,..£ 1 l-e1

-------------------------[U-Ust]
CI [e "' p] A, ••• ·n 1 ,V,7 1=· 1 i-- e' L ... ·1• ''·n ~' ·" · '

Figure 2c

V3 '" {input '" u}; outputNew '" V
1

}

E, X f···➔ V3 I- el,update X =}{values= [· · ·;0 12, · · ·]}

E f--eJ.applye2 =}V x fresh EI- e0~v1,...,..., E' !---e\
--------[E-Lens] _________ L __ ~_· ___ L __ [U-Lens]
E I- applyLens e1 e2 ==>v E I-- applyLens e1 e2~ v' ·'ME' I-- applyLens e1 e2

E I- e =}{fun'" (E 1,)u.e f); input "' v2; outputNew '" v 1
}

S "" {v2_ l(E1, x i--+V2i-ef➔ v'...,.. E1, x i--+V?,1-ef)} ISi"" n
------------------- [E-Upddate-App]

E f-- updateAppe ➔ {values= [S1, ···,Sn]}

h r e1 4 v1 E I- e2➔ v2
6. '" Dlff(v1 1 v 2)

--------[E-Diffj
E I··· diff e1 e2 ➔ va/(6.)

V"" v2 @,, · · · EBu u "1 · J n
----------- [E-Merge]

E f-- merge e J e 2 ➔ v

Figure 2d

type alias Maybe□ne a= List a

maybeMapSimple : (a-> b) -> MaybeOne a-> MaybeOne b
maybeMapSimple f mx = case mx of [] -> []; [x] -> [f x]

maybeMapLens : Lens a (Maybe□ne b)
maybeMapLens default""

{ apply (f, mx) = Update.freeze maybeMapSimple f mx
, update {input= (f, mx), outputNew =my}=

}

case my of

[] -> {values"" [(f, [])] }

[y] ->
let z = case mx of [x] -> x; [] -> default in
let res= Update.updateApp {fun (g,w) = g w, input= (f,z), outputNew = y}
in {values= map (\(newF,newZ) -> (newF, [newZ])) res}

maybeMap: a-> (a-> b) -> MaybeOne a-> MaybeOne b

maybeMap default f mx = Update.applyLens (maybeMapLens default) (f, mx)

Figura 3a

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
.i;...

0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

listMapLens =

{ apply (f,xs) =

Update.freeze (List.simpleMap f xs)

, update {input"' (f, oldinputList)

, outputOld = oldOutputList
• outputNew = newOutputList} =

letrec walk diffOps maybePreviousinput oldinputs ace~
case (diffOps, oldinputs) of

C [L [J) ->
ace

(KeepValue : : moreDiffOps, oldHead :: oldTail) ->
let tails= walk moreDiffOps (Just oldHead) oldTail ace in
List.simpleMap (\newTail -> (f, oldHead) : : newTail) tails

(DeleteValue :: moreDiffOps, old.Head:: oldTail) ->
let tails= walk moreDiffOps (Just old.Head) oldTail ace in
tails

((UpdateValue newVal) :: moreDiffOps, old.Head:: oldTail) ->
let tails~ walk moreDiffOps (Just old.Head) oldTail ace in
let heads=

(Update.update.App {fun (a,b) =ab, input= (f, oldHead), output= newVal}).values
in
List.cartesianProductWith List.cons heads tails

((nsertValue newVal) :: moreDiffOps, _) ->

let headOrPreviousHead =

Figure 3b
{to be continued)

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
Ul
0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

case (oldinputs, maybePreviousinput) of
(oldHead :: _, _) -> oldHead

([], Just oldPreviousHead) -> oldPreviousHead
in
let tails= walk moreDiffOps maybePreviousinput oldinputs ace in
let heads=

(Update. update.App {fun (a, b) "'a b, input "'(f, headOrPreviousHead), output "'newVal}) . values
in

List.cartesianProductWith List.cons heads tails
in
let newLists =

walk (Update.listDiff oldOutputList newOutputList)Nothing oldinputList [[]]
in
let newFuncAndinputLists =

List.simpleMap (\newList ->

let (newFuncs, newinputList) = List.unzip newList in

let newFunc = Update.merge f newFuncs in

(newFunc, newinputList)
) newLists

in
{values= newFuncAndinputLists}

}

listMap f xs =

Update.applyLens listMapLens (f, xs)

Figure 3b
(continuation)

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
Cl's
0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

Patent Application Publication Aug. 26, 2021 Sheet 7 of 19 US 2021/0263729 Al

Example LOC Eva! #Upd #Sol Fastest Upd Slowest Upd Average Upd

States Table A* 37 304±20 11 1.18 57±5 154±20 85±20 200x
States Table B* 126 774±70 7 1 256±40 456±50 331±50 700x
Recipe* 193 1455±80 17 1.05 243±30 2237±200 1328±500 16x
Budgetting 37 328±11 7 2 7±0.9 13±2 9±2 80x
MVC 71 720±50 10 1 216±10 483±120 289±80 40x
Linked-Text 91 855±40 5 1.2 1886±140 2252±300 2025±200 5x
Markdown 128 1179±110 6 1 1369±90 1889±150 1607 ±200 13x
Dixit 130 705±40 15 1 87±6 2205±4000 417±1500 120x
Translation 122 357±20 8 2 187±12 1085±200 415±200 50x
LATEX in HTML 534 1648±200 6 1 413±50 3183±500 943±·1000 150x
Total J Average 1469 833±400 92 1.18 {723±900} (70x)

Figure 4

~ Sketch-n-Sketch File View Options ◄ Previous Exomple Next Example ►

Current file: Untitled (1a: Table of States!*

1 !states"'
2 [["Alabama'; "AL?", "Movtgomery"]
3 ["Alaska'; "AL?", "Juneau"]
4 , ["Arizona'; "AR?", ""] i ["Arkansas'; "AR?", ""]
7 ["California'; "CA?", ""]
8 , ["Colorado'; "CO?", ""]
9 , ["Connecticut': "CO?", ""]]
10 main=
11 let headers= ["State" , "Capital"] in
12 let headers =
13 List.map
~; (\[state, abbrev) cap] -> [state, cap + ": 11 + abbrev])

16 in states
17 let padding "' ["padding", "3px"] in
18 let headerRow =
19 lel styles = [padding] in
~~ in HtmUr O □ (List.map (Html.th styles []) headers)

22 let stateRows =
23 let colors = ["lightgray", "white"] in
24 let drawRow i row =
25
26 let color"' Listntt1 colors (mod i (List.length colors)) in
27 List.map
28 (Htm!.td [padding, ["background-color", color]] (])
29
30
31
32
33
34
35

rovv
in

in
Html.tr [] [] columns

. List.indexed Map drawRow rows
!fl

Html.table [padding] [] (headerRow :: stateRows)

Figure 5a

-
State Capital GUI
Alabama Montgomery, AL? HTML
Alaska Juneau, AK? Value
Arizona ,AR? Auto
Arkansas P'.,,.1

J \r'\:
Sync

-
California lCA
Colorado i CO?
Connecticut , CO?

~ Sketch-n-Sketch File View Options ◄ Previous Exomp!e Next Example ►

Current me: Untitled (1a: Table of States)* State Capital GUI
b Undo e ~;,1?3rjn ! Run ► ! Alabama Montgomery, A.L HTML

1 states= Alaska Juneau, AK Value
2 [["Alabama'; "AL?", "Movtgomery"] Arizona ,A.R? Auto
3 , ["Alaska': "AL?", "Juneau"]

Arkansas ,AR? Sync
4 , ["Arizona'; "AR?", ""]
5

1 ["Arkansas'; "AR?", ""] California ,CA
6 , ["California'; "CA?", ""] Colorado , CO? 7
8 , ["Colorado': "CO?", ""] Output Editor x Connecticut , CO?
9 1 ["Connecticut'; "CO?", ""]] Update Program ► L2 Removed [?! L3 Replaced [L ?] by [K] 10 mam=
11 iet headers = ["State" , "Capital"] ii Revert to Original Program

"
Figure 5b

!:?,;,1 Sketch-n-Sketch File View Options ◄ Previous Exomple Next Example ►

Current rne: Untitied (1a: Table of States)* State Caoltal GUI
MontgomeryPhoenix, AL t>Undo e Redo I Run ► ! Alabama HTML

,.
states= Alaska JuneauPhoenix, AK Value

'
2 [["Alabama'; "AL?", "Movtgomery"] Arizona Phoenix, AZ Auto
3 , [".Alaska'; "AL?", "Juneau"] Arkansas Phoenix, AR?

Sync
4 , ["Arizona'; "AR?", 11

"]

5 , ["Arkansas'; "AR?", ""] California Phoenix, CA
6 , ["California': "CA?", ""] Colorado Phoenix, CO? 7
8 , ["Colorado'; "CO?" , ""] Output Editor x Connecticut Phoenix, CO?
9 , ["Connecticut'; "CO?", 1111

]]

Update Program ► L4 Replaced [R?] by [Z] L4 Inserted [Phoenix] 10 main=
11 let headers = ["State" , "Capital"] in L4 Replaced [R?] by [Z] L 14 Inserted [Phoenix]
12 let headers =
13 List.map Revert to Original Program
14 (\[state, abbrev, cap]-> [state, cap+ "Phoenix, "t' CH.11/lv\/j)

II 15 states

Figure 5c

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
QO

0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

~ Sketch-n-Sketch File View Options ◄ Previous Example Next Example ►

Current file: Untitled (1a: Table of States)* State Capital GU!

b Undo d Redo o I Run ► I Alabama Montqomerv, AL HTML
Value Alaska Juneau. AK

18 let headerRow = Arizona Phoenix AZ Auto

19 let styles = (Eadding] in Arkansas Little Rock, AR
Sync

20 HtmLtr [J [] ist.map (HtmLth styles rn headers)
California Sacramento, CA 21 in

22 let stateRows = Colorado Denver, co
23 let colors= ["yellow", "white"] in Connecticut Hartford CT
24 let drawRow i row = Output Editor x
25 let color= List.nth colors (mod i (List.IE Update Program ► L23 Inserted [ye], L23 Replaced [ightgray] by [low]
26 let columns =
27 List.map Revert to Original Program
28 (HtmLtd [padding, ["background-color", color]] [])

~ 15:J Elements Console Sources Network Performance Memory Application Security Audits €HI : X

► <tr data-value-id-"30" style> ... </tr>
► <tr data-value-id="35'' style> ... </tr> Stylesj Computed Event Listeners DOM Breakpoints»
v <tr clata-value-id:::"35'' style> Filter :t1011 .els +,.

<td contenteditable="true'' data-value-id="3T' style=·'padding: 3px; background-color:
element.style { yellow'>Connecticut</td>

<td contenteditable="true" data-value-id='39" style=''padding: 3px; background-color: padding: ► 3px;
ye!low'>Hartford, CT <ltd> == $0 } background-color: y~llow;I

</tr> vellow
</table> > td [.A.ttributes Style] yellowgreen
<svg id="svgWidgetslayer" style="left: 730px; top: 42px: width: 306px; height: 308px;" -webkit-use(-modi greenyellowgreen
</svg> W?,fd-i~r~p: Dre_ak lightgoldenrodyellmlV

</div> x;"> } -webk,t-,,,ie-break lightyellow
</div class="output-panel-warning'' style="top: -1 px; right: -1 px; bottom: -1 px; leit: -1 p

~1trnl body div div.work-area div.main-panels div.paneloutput-panel div#outputCanvas table tr [iill

Figure 5d

"-=
~

"""" ('D

=
"""" t

"e -.... (')

~

""""
0 =
"-= = O" -.... (')

~

""""
0 =

~
~
N

~Cl's

N
0
N
rJ'1
=('D
('D

"""" 1,0

0
1,0

c
rJ'1
N
0
N
---0
N
Cl's
~
--.J
N
1,0

>

000 ~ Sketch-n-Sketch X ~ Ravi

~ ➔ d I G)file:///Users/ravi/git-clones/github-ravichugh/sketch-n-sketch/build/out/index.html a. *I
~ Sketch-n-Sketch File Code Tool View Options Output Tools ◄ Previous Example Next Example ►

Current file: Untitled (1a: Table of States) 0 State Capital ~ o Undo e Redo □ I Run ► I Alabama ?AL?

21 tr [] [] (map (th styles []) headers)
Alaska ?AL?

22 in Arizona ?AR?

23 let stateRows = Arkansas ?AR?
24 let colors = ["lightgray", "white"] in California I td. outputValueWithText I 56.25 x 23.75
25 -- TODO pull out stateRow function if helpful for paper Colorado L,._-:
26 indexedMap (\i row -> Connecticut !?CO?
27 let color = nth colors (mod i (len colors)) in
28 let columns = map (td [padding, ["background-color'; color]] [] row in

~ 15] Elements Console Sources Network Performance Memory Application Security Audits @21 : X
<td data-value-id-''37" style-''padding: 3px: background-color: IStyleslComputed Event Listeners DOM Breakpoints Properties Accessib1!ity
iigtltgray'' ciass='_outputValueWiHlText" contenteditable=
''true''>Connecticut</td> Filter :hov .els +
<td data-value-id=''39" style="padding: 3px; background-color: element.styie {
llglltgray" class="_outputValueVVitllText" contenteditable= , margin: ► 0 0 0 el;
''true">? CO?</td> t

</tr> body { main.css:16
</table>
<svg id="svg\/\/idgetslayer" style="leit: 855px; top: 42px; width: background-color: var(--main-bg-color) ;

color: var(--text-color) ;

html I body I

Figure 5e

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
0
0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

000 ~ Sketch-n-Sketch X ~ Ravi

<E- ➔ d I G) file:///Users/ravi/git-clones/github-ravichugh/sketch-n-sketch/build/out/index. html ~*I
~ Sketch-n-Sketch File Code Tool View Options Output Tools ◄ Previous Example Next Example ►

Current file: Untitled (1a: Table of States) 0 State Capital ~ o Undo e Redo □ I Run ► I Alabama ?AL?

21 tr [] [J (map (th styles []) h•
Output Tools Alaska ?AL?

22 in Update for New Output ► Arizona ?AR?

23 let stateRows = Arkansas ?AR?
24 let colors = ["lightgray", "white"] in California ?CA?
25 -- TODO pull out stateRow function if helpful for paper

0
Colorado ?CO?

26 indexedMap (\i row -> Connecticut !?CO?!
27 let color = nth colors (mod i (len colors)) in -----------------------

28 let columns = map (td [padding, ["background-color'; color]] [] row in

ra [] Elements Console Sources Network Performance Memory Application Securit orang @2!: X

orangered <td data-value-id="37" style=;Jpadding: 3px; background-color: jStyles!Computed Even1 Breakpoi~.mperties Accessibility
lightgray" class="_outputValueWithText" contenteditable=

Filter
coral

:hov .els + 0
'frue">Connecticut</td> darkorange
<td data-value-id="39" style=;Jpadding: 3px; background-color: element.style { florallwhite
orange;" class= 11_outputValueWithTexr contenteditable="true">? padding: 3px lightcoral

CO?<itd> == $@ background-color:j orang; j
</tr> } rnain.css:5

</table> * {
<svg id=''svgWidgetslayer" style="left: 855px; top: 42px; width: margin: ► 0;

html body div div div div #outputCanvas table tr I tr.~outputValueWithText I

Figure 5f

"-=
~
('D

=

t
"e -.... (')

~
0 =
"-= = O" -.... (')

~
0 =

~
~
N

~a---
N
0
N
rJJ
=('D
('D
0
1,0

c
rJJ
N
0
N
---0
N
a-
~
-....J
N
1,0

>

000 ~ Sketch-n-Sketch X ~ Ravi

~ ➔ C I G) file:i//Usersiraviigit-clones/github-ravichugh/sketch-n-sketch/build/out/index.html a. *I
~ Sketch-n-Sketch File Code Tool View Options Output Tools ◄ Previous Example Next Example ►

Current file: Untitled (1 a: Table of States) 0 State Capital ~ Di Run ► I
·--

bUndc Output Tools I Alabama !I ?AL? I
! ?AL? 21 t1

Update for New Output../►
Alaska

22 in -lightgray, +orange I Arizona ll?AR?I
23 let stateRows = , Revert to Original Program Arkansas ! ?AR?
24 let colors = ["lightgray", I California ll?CA?I
25 -- TODO pull out stateRow function if helpful for paper Colorado ! ?CO?
26 indexedMap (\i row -> ~ I Connecticut II ?CO? I 27 let color = nth colors (mod i (len colors)) in
28 let columns = map (td [padding, ["background-color'; color]] [] row in

ra oJ Elements Console Sources Network Performance Memory Application Security Audits @21: X

<td data-value-id=''37" style="padding: 3px; background-color: jStyles!Cornputed Event Listeners DOM Breakpoints Prope1iiesAccessibility
lightgray" class="_ outputValueWithText" contenteditable=

Filter :hov .c!s + 0 "true''>Connecticut<itd>
<td data-value-id=''39'' style="padding: 3px; background-color: element.style {
orange:" class="_outputValueWithText" contenteditable="true">? padding: 3px
CO?</td> == $@ background-color: orang;

</tr> } main.css:5
</table> * {
<svg id="svgWidgetsLayer'; style="left: 855px: top: 42px; \AJidth: margin: ► 0;

html body div div div div #outputCanvas table tr I tr_outputValueVVithText I

Figure 5g

"-=
~
('D

=

t
"e -.... (')

~
0 =
"-= = O" -.... (')

~
0 =

~
~
N

~a---
N
0
N
rJJ
=('D
('D
N
0
1,0

c
rJJ
N
0
N
---0
N
a-
~
-....J
N
1,0

>

Patent Application Publication Aug. 26, 2021 Sheet 13 of 19 US 2021/0263729 Al

TableWithButtons =
let wrapData rows=

let blankRow =
let num.Colwnns =

case rows of
[] -> 0
row::_-> List.length row

in
List.repeat numColwnns 11 ? 11

in
Update.applyLens

{ apply rows=
Update.freeze

(List.map (\row-> (Update.freeze False, row)) rows)

update {outputNew = flaggedRows} =
let processRow (flag, row)=

in

if flag== True
then [row, blankRow]
else [row J

{values= [List.concatMap processRow flaggedRows] }
}
rows

in
let mapData f flaggedRows =

List.map (Tuple.mapSecond f) flaggedRows
in
let tr=

in
{ wrapData = wrapData
, mapData = mapData
, tr= tr
}

Figure 5h

~ Slu~tchNnNSketch File View Options ◄ Previous Example Next Example ►

Current file: Untitled f 1 a: Table of States)* I State I !Ca~ital i
b Undo C Hedo [Ru~ ►] Alabama Montgomery, AL +
1 states= Alaska Juneau,AK +
2 [["Aiabama", "AK'', "Juneau"]

Arizona Phoenix, AZ + 3 ["Arizona" "AZ" "Phoenix"]
' ' ' 4 , ["Arkansas", "AR", "Little Rock"] Arkansas Little Rock, AR +

5 , ["California", 11CA", "Sacramento"] California Sacramento, CA + 6
-; , ["Colorado", "CO", "Denver"] Colorado Denver, CO I

8 ' ["Connecticut" l "CT" l
11 Hartford 11]n Connecticut Hartford, CT g ["?" "?" "?"U l

10 ' . ' ' ' . ? ?,?
11 Output Editor x
12 Update Program ► L9 Inserted', ["?", "?", "?'']'
13 Revert to Original Program

I!

Figure 5i

Html ""
let elementHelper tag styles attrs children=

[tag, [11 style 11
, styles] : : attrs , children] in

let textElementHelper tag styles attrs text=
elementHelper tag styles attrs [[11 TEXT 11

, text]] in

{div= elementHelper "div" , table= elementHelper "table"

, tr ""elementHelper 11 th 11 , td = textElementHelper "td"
, h1 ""textElementHelper "h1 11 , h2 = textElementHelper "h2n

Figure 5j

+
+

'

GUI
HTML
Value
Auto
Sync

I

... }

"-=
~
('D

=

t
"e -.... (')

~
0 =
"-= = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
.i;...

0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

Patent Application Publication Aug. 26, 2021 Sheet 15 of 19 US 2021/0263729 Al

602A 602C 602E
j I)

E:J Program Input
Module Device

6028 6020 602F

I Memo,; I
I I

Network Display
Interface Device

.
.

.

606-

Figure 6

Patent Application Publication Aug. 26, 2021 Sheet 16 of 19 US 2021/0263729 Al

700

RECEIVE ORIGINAL PROGRAM SOURCE CODE i....---- 702

+
EVALUATE ORIGINAL PROGRAM SOURCE CODE TO i....---- 704

GENERATE PROGRAM OUTPUT

+
DISPLAY THE PROGRAM OUTPUT IN A FIRST i....---- 706

DISPLAY DEVICE

+
RECEIVE AN INDICATION OF A USER, THE INDICATION i....---- 708

CORRESPONDING TO MODIFYING THE PROGRAM
OUTPUT

+
EVALUATE THE MODIFIED PROGRAM OUTPUT TO i....---- 710
GENERATE UPDATED PROGRAM SOURCE CODE

Figure 7

function outputToinputEditAction(hEditAction, dEditAction, dStackPath) {
let childEditActions = dEditAction.childEditActions;
if(dEditAction.kind.ctor === DUType.Reuse) {

}

let relPath = dEditAction.kind.path;
if(isidPath(relPath))

return mergeDEditActions(foreach(childEditActions)((k, d) =>
outputToinputEditAction(hEditAction, d, cons(k, dStackPath))), 11 singlen);

let sourceSta.ckPath = composeStackPath(dStackPath, relPath);
let dPathOriginal = followStackPath(hEditAction, dStackPath);
let dSourcePathOriginal = followStackPath(hEditAction, sourceStackPath);
let clonePath = makeRelative(dPathOriginal, dSourcePathOriginal);
let diffsFromChildren = mergeDEditActions(foreach(child.EditActions)((k, d) =>

outputToinputEdit.Action(hEditAction, d, cons(k, sourceStackPath))), 11 single 11
);

let [relEditAction, absEditAction] = partitionAndMakeRelative(
List.reverse(dSourcePathOriginal), diffsFromChildren);

let cloneAndEditAction = andThen(DCloneUpdate(clonePath), relEditAction);
return merge2DEditActions(DUpdatePath(dPathOriginal, cloneAndEditAction), absEditAction);

} else {

}

let dPathOriginal = followStackPath(hEditAction, dStackPath);
if(noChildEditActions(dEditAction))

return DUpdatePath(dPathOriginal, dEditAction);
let newChildEditActions = {};
let diffsFromChildren = mergeDEditActions(foreach(childEditActions)((k, d) => {

let cd = outputToinputEditAction(hEditAction, d, dStackPath);
let [relEditAction, absEditActionJ = partitionAndMakeRelative(

List.reverse(dPathOriginal), cd); newChildEditActions[k] = relEditAction;
return absEditAction;

}) ,
11 single 11

);

return merge2DEditActions(DUpdatePath(dPath0riginal, DNew(d.EditAction.kind.model,
newChildEditActions)), diffsFromChildren);

Figure 8

""O
~
('D

=

t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
-....J
0
1,0

c
rJJ
N
0
N
---0
N
Cl's
~
-....J
N
1,0

>

[BV Evaluation E I- e ➔ B v v
(BV-E-Const] ----

BV Evaluation Update E I- e{= sv v' -v--; E I I- e
!

E 1-c ➔ c
[BV-E-Funj --------

E f-- 1x.e ➔ (E, lx.e)
[BV-E-Var] -----

E I- x => E (x)

EI- e1 ➔ (Et, Jx.e r)
J .

E I- e2 =>
I- ~ 7'

-------- [BV-U-Const]
E I- c ◄==== c' -v--; E I- c'

-------------- [BV-U-Fun]

E 1- lx.e -4= (E ', 1\x.e 1) """'' E' I- lx.e'
----------- [BV-U-Var]
E 1--- x {= v '-v--; E [x ~ 11 1

] t·· x

E I- e 1 => (E f, Jix. e f)
E f-- e2 ➔ V2

Er,XI---*
/

L. .,I._ f E""' f ' I ' er ~ 'V "'-"+ . f I X I---)- 'l), : er
) ., ,:_ }

EI- e1 {= (E~, .h.e ;-) ~ E1 I- e~
I /

--·1- f j""L .. I c . x ;----• ·u? e f --,, I
, L j I " ·

[BV-E-App] f j- e 1 e 2 => V

L e2 ◄=·v2 """' :, 2 , e,
- -- [BV-U-App]

c 1..., 1 "'--. t -v--, I:' e,rv,e 0 1:· i-- ,I ,1 LrC1(2"";-V .,1 ·l.:::l -.,2, f1c2

Figure 9

I BN Evaluation DI- e=>, BN u
[BN-E-Const] ----

BN Evaluation Update D I- e ~ BN u' -v--; D 1 I- e'

D 1-c=>c
[BN-E-Fun] _ , _ ,

D '··· 1 x,, (o ✓1 , .. e) : Jl . C __,..- f L~~ .,

-------- [BN-U-Const]

D I- c ◄= c' """"' D I- c'
--------------- [BN-U-Fun]
D I- Jix.e {= (D', lx.e 1

) ~, D' 1- lx.e 1

[BN-E-Var]
D(x) === (Dx, e) Dx I- e => u D(x) = (D ., e;' {""Dy t·· e u1

--.--+ D~. ~-- e'
' x .. x [BN-U-Var]

D f·· x ====► u D I- x ◄= u' """"D [x ,----• (D~, e')J I- x
DI- e1 => (D1, lx.e f)

IJ f- e1 => (Dr, lx.eDff), X 1----), (D, e 2) f- Cf {:::: U
1 ""➔ D,r I X i····• (D2, e~) I- e}

Df Ix i- (D, e2) I- ef => u DI- e1 {= (Dr, kr.e 1) -v+ Dz I- e~
[BN-E-App] · ..

D 1-- e1 e2 => u D t--- e1 e2 <= u' -v--; D1e 1 8f 2 D2 f- e~ e;
[BN-U-App]

Figure 10

--= ~
('D

=

t
-e -.... (')

~
0 =
--= = O' -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJ'1
=('D
('D
QO

0
1,0

c
rJ'1
N
0
N
---0
N
Cl's
(,H
--.J
N
1,0

>

Forward K~Evaluation (D r--- e; S) ~ ullBackward K~Evaluation (D r--- e; S) {= u' ---➔ (D 1 I- e'; S')

[K-E-Const]

(D I- c; rn =} C

[K-E-Fun]

(D f--- ✓\x.e ;[]) =} (D, Xx.e)

[K-E-Var]

D(x)=(Dx, e) (Dx 1---e;S) =} u

(D r---x;S) =} u

[K-E-Fun-App]

(Dr f X f-t (D 21 e 2) 1--- e j; s) =} u

(D- · 1-- 1 x 0 ··(D- 0 ,.,) .. c;) ~ ·u j I JL • L j f 2 I C. L •• ,_. =?"

[K-E-App]

(D I- e 1; (D, e 2) :: S) =} u

(D 1-- e1 e2; S) ~ u

[K-U-Const]

(D r--- c; []) {= c' ---➔ (D I- c'; [])

[K-U-Fun]

(D r--· Xx.e; []) ~ (D', j\x.e 1
) ~ (D' f--- j\x.e '; [])

[K-U-Var]

D(x) = (D.u e) (Dx r--· e; S) {= u' ~ (D~ r--· e'; S')

(D 1--x;S) ~ u' 'V'.> (D[x f-t (D~. 1 e')] 1--x;S')

[K-U-Fun-App]

(DJ, X t-t (D2, e2) ~--· e1; S) {= U
1 ~ U?r1 XI rt (Di, e~) r--· e_,-; S')

(D ,. L 1x o , .• (0- ,, ,.,) .. c;) .1--- u' 'V"4 (0-, 1-- 1x O , • (D-, ,, ,) .. c; ') r r-- JL . L r I 2 I C. L ,. -- "\'= ' f I JL . L f ' 2 I C. 2 ,. ,_.
,I ,I ,I ,I

[K-U-App]

(D [___ y ·(D e·-) .. C:) .,t--.._ 1/ (D- i-- :- 1 •(D :- 1)" C:') · I (,}, --' I 2 " CJ ·s,:::: I "'-"'"➔ • 1 1 (. 1, · 21 (. 2 " CJ

([) L '") / ([-) C·r,,71 ('> [) ; I I S') r---e1 e2;::> {= u 'V'.> 1 1
~,. 2 re 1 e2;. ·

Figure 11

""O
~
('D

=
t
"e -.... (')

~
0 =
""O = O" -.... (')

~
0 =

~
~
N

~Cl's

N
0
N
rJJ
=('D
('D
1,0

0
1,0

c
rJJ
N
0
N
---0
N
Cl's
(,H
--.J
N
1,0

>

US 2021/0263729 Al

BIDIRECTIONAL EVALUATION FOR
GENERAL- PURPOSE PROGRAMMING

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 17/160,098, filed on Jan. 27, 2021,
which is a continuation of International Patent Application
No. PCT/US/2019/043846, filed Jul. 29, 2019, which claims
the benefit of and priority to U.S. Provisional Application
No. 62/711,252, filed Jul. 27, 2018. The contents of the
preceding applications are incorporated herein in their
respective entireties.

GOVERNMENT LICENSE RIGHTS

[0002] This invention was made with government support
under grant number 1651794 awarded by the National
Science Foundation. The government has certain rights in
the invention.

FIELD OF THE DISCLOSURE

[0003] The present disclosure generally relates to a system
and method for facilitating bidirectional program evaluation.

BACKGROUND

[0004] The background description provided herein is for
the purpose of generally presenting the context of the
disclosure. Work of the presently named inventors, to the
extent it is described in this background section, as well as
aspects of the description that may not otherwise qualify as
prior art at the time of filing, are neither expressly nor
impliedly admitted as prior art against the disclosure.
[0005] Direct manipulation user interfaces have been
developed for a wide variety of domains, such as word
processing, diagrams, spreadsheets, data visualizations, pre
sentations, and web applications. Such interfaces allow users
to experiment with the digital objects they are creating in
rapid fashion, where small edits and actions are immediately
and interactively displayed. Despite the benefits of a direct
manipulation graphical user interface (GUI), programmers
often choose to write programs to generate content, in order
to harness abstraction capabilities that are severely limited in
typical direct manipulation systems. For example, program
mers may use languages and libraries such as p5.js, Pro
cessing, JavaScript, Ruby, Elm, Microsoft PowerPoint,
LATEX, Racket Slideshow, and D3. Users of such libraries
may write code that, when executed, causes output to be
created, including presentation data (e.g., slides, graphics,
styled text, data-driven documents, and/or visualizations).
The output may be encoded in an open file format such as
Hypertext Markup Language (HTML), a semi-open format
such as Microsoft Word Document (.doc) format, or a
closed-source/proprietary format.
[0006] However, the power of programming creates non
negligible complexity. Namely, to change the output of a
program in a traditional programming environment, the
user/programmer must edit the source code, run (e.g., com
pile, interpret, etc.) it again, and view the new output, often
repeating this loop for a long time (e.g., months or even
years) while developing a project. This cycle is sometimes
referred to as the "edit-run-view" or "edit-compile-run"
cycle, and it wastes users' time. The amount of time and
effort spent in this way is particularly wasteful when sue-

1
Aug. 26, 2021

cessive edits to the program and the effects of those edits on
the resulting output are small and/or narrow in scope. The
current state of the art requires users to edit code of a
computer program even in cases where editing the output of
the computer program might seem the most logical and/or
natural thing to do, from the perspective of a user. This is
true even when changes to the output are small, relative to
the amount of work that must be performed in the code to
produce those changes.
[0007] Historically, two primary approaches have been
advanced with the goal of allowing programs to run "in
reverse." However, both approaches suffer from serious
drawbacks. A first approach, developed in bidirectional
programming languages, allows certain computations to be
specified as "lenses," wherein a "get" function for forward
evaluation is paired with a "put" function for backwards
evaluation, where the latter serves as a sensible complement
to the former. Although lenses are a powerful tool for a
variety of tasks-including transformations over relational,
semi-structured, and unstructured data-lenses are not a
solution for automatically reversing the computation of an
arbitrary program written in a general-purpose computer
programming language.
[0008] Another challenge in the literature on lenses relates
to defining a reversible list map function. For example, some
prior art approaches define lists using records, and the
mapping function is parameterized by a lens. However, that
approach cannot add or remove elements, nor change the
original lens. Some prior art approaches include a set of
well-typed lens combinators for creating HTML forms that
can write back the data, including inserting and deleting
elements. However, these approaches require lenses at every
step, and it is not possible to modify the style from the output
(e.g., by removing a
 tag) without changing it directly
in the source code. At least one prior art approach overcomes
the problem of inserting and deleting elements by duplicat
ing elements from the output. Another approach acknowl
edges that a modified function constant causes the update
procedure to fail.
[0009] A second approach aims to reverse arbitrary pro
grams by an interpreter first recording value traces to track
the provenance of how values are computed, and then, when
a user makes small changes to output, solving updated
value-trace equations to synthesize repairs to the program.
This approach suffers from numerous limitations, including
that although tracing and updates for numeric values are
supported, the tracing of other types of simple or more
complex values is not supported. Also, this approach does
not allow advanced users to customize the behavior of the
algorithm, which represents a significant limitation in prac
tice, because no single update algorithm for arbitrary pro
grams can work well in all use cases. Furthermore, even
assuming for the sake of argument that the tracing approach
could be extended to address the aforementioned limitations,
all computations would be required to be traced even if
many or most values were never updated by the user. For
programs where the subset of values that are directly
manipulated becomes a small fraction, the space overhead of
this approach could become a bottleneck, as is often the case
for other types of programs with heavy tracing requirements
(e.g., onmiscient debuggers).
[0010] Prior work in automated program repair and syn
thesis, bidirectional programming, and combining program
ming languages with direct manipulation user interfaces has

US 2021/0263729 Al

included attempts to generate and manipulate Scalable Vec
tor Graphic (SVG) documents, and has proposed that GUI
features should be co-designed with program transforma
tions that aim to make "large," structural, often semantics
changing edits that codify the user actions. Prior work has
been proposed allowing "small" changes to output values to
be reconciled through local updates to the program. How
ever, such approaches record value traces for all numeric
values, and when the user updates a number, the correspond
ing value-trace equation is immediately solved, applied to
the program, and the new output is rendered. The resulting
workflow provides a continuous, "live" interaction for equa
tions that can be solved in almost real-time. When multiple
valid solutions are found, the prior approaches may employs
simple heuristics to automatically choose an output, favor
ing continuous updates over user interaction to resolve
intent. In such systems, arbitrary types of values cannot be
changed, custom update behavior cannot be defined, and
time overhead (from re-evaluation) is traded to save space
overhead (from recording traces).
[0011] Evaluation update is similar to program repair, and
tools to repair HTML-producing programs do exist (e.g., for
PHP Hypertext Preprocessor (PHP)). Such tools fix string
literals out of context, or globally based on a set of corrected
input/outputs, by creating string equations and minimizing
the number of string literals to correct. Although these
approaches may provide acceptable results in some cases,
such approaches are not able to correct strings that were
computed, stored in and/or retrieved from variables, which
is a very common practice if the HTML template comes
from another file. The prior approaches are unable to back
propagate modifications either on constants or on variables,
and cannot deal with various string transformations.
[0012] In fact, the conventional approaches for writing
inverse evaluators, or "unevaluators" include serious short
comings. First example, the evaluator is separate from the
unevaluator and consequently, ensuring that the unevaluator
is actually in sync with the evaluator is error-prone, espe
cially because of complex pattern matching, partial closure
evaluation, and so on. Second, the evaluator is called from
the unevaluator, and without caching intermediate results,
the update algorithm is much slower than the evaluator
because it has to repeatedly call the evaluator itself.
[0013] In summary, although known bidirectional pro
gramming languages can evaluate certain classes of func
tions in reverse, current approaches do not enable evaluation
of functions in reverse for arbitrary programs written in
general-purpose languages.

BRIEF SUMMARY

[0014] In one aspect a method of facilitating bidirectional
programming of a user includes receiving an original pro
gram source code, evaluating the original program source
code to generate a program output, displaying one or both of
(i) the original program source code, and (ii) the program
output in a first display device of the user, receiving an
indication of the user corresponding to modifying the pro
gram output, and evaluating the modified program output to
generate an updated program source code, wherein the
updated program source code, when evaluated, generates the
modified program output.
[0015] In another aspect a computing device configured
for bidirectional programming of textual data by a user via
a graphical user interface includes a least one display device,

2
Aug. 26, 2021

at least one processor, and at least one memory. The memory
may include computer-readable instructions that, when
executed by the at least one processor, cause the computing
device to display, in the at least one display device, an
original program source code and a program output corre
sponding to the evaluated original program source code. The
instructions may further cause the computing device to
receive an indication of the user corresponding to modifying
the program output, and to evaluate the modified program
output to generate an updated program source code.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. la depicts a syntax of a bidirectional pro
gramming language supporting bidirectional evaluation for
programs, according to one embodiment,
[0017] FIG. lb depicts a syntax of a bidirectional pro
gramming language supporting bidirectional evaluation of
dynamic code, according to one embodiment,
[0018] FIG. 2a depicts evaluation semantics for bidirec
tional programming for programs, according to one embodi
ment,
[0019] FIG. 2b depicts evaluation semantics for evaluation
and update for arithmetic operations in a bidirectional pro
gramming language, according to one embodiment,
[0020] FIG. 2c depicts a rule set implementing evaluation
and update for lists in a bidirectional programming lan
guage, according to one embodiment,
[0021] FIG. 2d depicts a rule set implementing evaluation
and update for user-defined lenses and primitive helper
functions, according to one embodiment,
[0022] FIG. 3a depicts a custom lens for lists with one or
fewer elements,
[0023] FIG. 3b depicts a custom lens for lists with an
arbitrary number of elements,
[0024] FIG. 4 depicts a table of benchmark data relating to
numerous example programs,
[0025] FIG. Sa depicts a programming environment
including an initial prototype of a computer program,
according to an embodiment,
[0026] FIG. Sb depicts the programming environment of
FIG. Sa, further including a popup window including a
result ofreconciling a user's edits to the rendering of HTML
output generated by the computer program source code with
the computer program source code,
[0027] FIG. Sc depicts the computer programming envi
ronment of FIG. Sb, further including a popup window
including a result of reconciling a user's edits to the ren
dering of HTML output generated by the computer program
source code with the computer program source code,
wherein the edits resulted in ambiguity,
[0028] FIG. Sd depicts a computer programming environ
ment for allowing a user to modify the program output using
built-in tools of a web browser, according to an embodiment,
[0029] FIG. Se depicts a computer programming environ
ment wherein the user directly edits the Document Object
Model (DOM) of an HTML document output in the pro
gramming environment,
[0030] FIG. 5/ depicts the computer programming envi
ronment of FIG. Se, wherein the user uses a styles editor of
a web browser to add a new attribute directly to DOM,
[0031] FIG. Sg depicts the computer programming envi
ronment of FIG. Sf, wherein updated output is displayed and

US 2021/0263729 Al

the user is provided with a graphical user interface element
depicting the evaluated changes and an option to revert the
changes,
[0032] FIG. Sh depicts a computer program source code
for implementing certain aspect of the graphical interface
facility of FIG. Si, according to an embodiment,
[0033] FIG. Si depicts a computer programming environ
ment wherein a code library includes a graphical user
interface element in the output display which allows the user
to add a structural element by interacting with the graphical
user interface element,
[0034] FIG. SJ depicts an HTML module providing helper
functions for creating HTML elements, according to an
embodiment,
[0035] FIG. 6 depicts a system diagram for implementing
the present techniques, according to some embodiments and
scenarios,
[0036] FIG. 7 depicts a flow diagram for performing
bidirectional programming, according to an embodiment,
[0037] FIG. 8 depicts an example back-propagation algo
rithm, according to an embodiment,
[0038] FIG. 9 depicts call-by-value evaluation semantics,
according to an embodiment,
[0039] FIG.10 depicts call-by-name evaluation semantics,
according to an embodiment; and
[0040] FIG. 11 depicts bidirectional Krivine evaluation
semantics, according to an embodiment.

DETAILED DESCRIPTION

[0041] Although the following text sets forth a detailed
description of numerous different embodiments, it should be
understood that the legal scope of the description is defined
by the words of the claims set forth at the end of this text.
The detailed description is to be construed as exemplary
only and does not describe every possible embodiment since
describing every possible embodiment would be impracti
cal, if not impossible. Numerous alternative embodiments
could be implemented, using either current technology or
technology developed after the filing date of this patent,
which would still fall within the scope of the claims.
[0042] It should also be understood that, unless a term is
expressly defined in this patent using the sentence "As used
herein, the term" "is hereby defined to mean . . . " or a
similar sentence, there is no intent to limit the meaning of
that term, either expressly or by implication, beyond its plain
or ordinary meaning, and such term should not be inter
preted to be limited in scope based on any statement made
in any section of this patent (other than the language of the
claims). To the extent that any term recited in the claims at
the end of this patent is referred to in this patent in a manner
consistent with a single meaning, that is done for sake of
clarity only so as to not confuse the reader, and it is not
intended that such claim term be limited, by implication or
otherwise, to that single meaning. Finally, unless a claim
element is defined by reciting the word "means" and a
function without the recital of any structure, it is not
intended that the scope of any claim element be interpreted
based on the application of 35 U.S.C. § 112(f).
[0043] In contrast to prior approaches, the present appli
cation discloses a method and system of bidirectional evalu
ation for programs in a full-featured, general-purpose func
tional programming language. The system and method of
bidirectional evaluation with direct manipulation described
herein facilitates the ability of the user and/or author of a

3
Aug. 26, 2021

computer program to directly manipulate the output of the
program, and the ability of the user/author to evaluate the
program "in reverse," using the manipulated output to
automatically compute necessary edits to the source code of
the program. In the bidirectional evaluation techniques
described herein, arbitrary programs in a general-purpose
functional language can be run in reverse in order to produce
useful edits to the program. The system and method provide
a straightforward and natural way for users to express
changes to source code by directly manipulating the output
of programs, and to express changes to the output of
programs by directly manipulating the source code. The
method and system allow evaluation of the program "in
reverse," using the new expected output as specified by the
user to help synthesize the necessary program repairs/edits.
[0044] The methods and systems may synthesize updates
to the program based on changes to the output of the
program using an evaluation update algorithm, or simply,
update algorithm. The update algorithm may include retrac
ing the steps of the original evaluation and rewriting the
program as needed to reconcile differences between the
original source code and the output. Compared to typical
evaluation, the evaluation update algorithm receives an
expected output value as an argument to help synthesize
repairs to the expression such that it computes the expected
value. Further, programmers may define custom lenses to
augment the update algorithm with more advanced or
domain-specific program updates. Herein, the user of the
methods and systems may alternately be referred to as a
"user," a "developer," a "programmer," etc. In some cases,
a first person may author code, and a second person may
manipulate the output of the authored code. In some cases,
the first person and/or the second person may be non
programmers or non-technical users (e.g., a graphic
designer). In an embodiment, the manipulation of output of
the authored code may be performed by a computer software
process, such as a set of computer-readable instructions.
Example custom update lenses for several common func
tional programming patterns are described herein, as exten
sions to the "built-in" evaluation update algorithm.
[0045] Sometimes differences may be propagated that
prevent the entire program from being unevaluated. The
present techniques allow the use of lenses to handle such
differences, to handle only the concerned portions. The
update methods may also handle and produce differences. In
particular, in place of an ordinary function application eget e,
users of the present techniques can define a lens application
apply Lens { apply=ege,; update=epu,} e, in which case, the
unevaluation algorithm uses the designated update function
eput to help compute a new expression e' to replace the
argument e.
[0046] In addition to an evaluation relation e => v that
evaluates expression e to value v, an evaluation update (or
simply, update) relation e <i=v'----+ e' is described herein
which, given an expected value v', rewrites the original
expression e to e'.
[0047] Evaluation update may proceed by comparing the
original output value v with the goal v', and synthesizing
repairs toe such that, ideally, the new program e' evaluates
to v'. Evaluation update may be defined for arbitrary expres
sions e producing arbitrary types of values v. The approach
described herein may include uninstrumented evaluation
such that expressions are re-evaluated as needed during
update.

US 2021/0263729 Al

[0048] The following discussion includes example
embodiments of a direct manipulation programming envi
ronment/system for interactively editing documents (e.g.,
HTML documents), wherein a user may author programs in
a language to generate output, wherein the user may directly
manipulate the output using a GUI such as a web browser,
and wherein the output is evaluated "in reverse" to generate
an updated program source code. In one embodiment, a
built-in facility of a web browser may be used to manipulate
the HTML output, such as a DOM inspector. In another
embodiment, the program itself may include instructions
which provide the ability to add, modify, and/or delete
structural elements from the output. In some embodiments,
when the user directly manipulates the output using the GUI,
the update algorithm may reconcile the changes in the output
with the source code of the program.

Example Language Syntax

[0049] The following includes a description of an example
embodiment in which the concepts of bidirectional evalua
tion for programs have been implemented in a full-featured,
general-purpose functional programming language. Several
optional performance-based optimizations to the evaluation
update algorithm are also described. However, in some
embodiments, the concepts described herein may include a
programming language or paradigm wherein fewer or more
constructs are included. In some embodiments, a procedural,
imperative, and/or object-oriented language may implement
the bidirectional evaluation concepts. In some embodiments,
the full-featured, general-purpose functional programming
language embodiment described herein provide unique ben
efits for the integration of programmatic and direct manipu
lation.

Fundamental Syntax

[0050] FIG. la depicts a fundamental syntax for a lambda
calculus that models the language supported by the present
techniques is presented. FIG. la includes definitions for
expressions e, spread across three lines and corresponding
respectively to:

[0051] constants c, variables x, function application e1

e2 , list construction e1::e2 , record extension {elf=eA,
record field projection e.f,

[0052] (simple and recursive) let-bindings let x e1 e2 ,

conditionals if e1 e2 e3 , and case expressions case e (p 1

e1) ... ; and
[0053] evaluation update.

[0054] The fundamental syntax of FIG. la includes con
stants c including numbers n, booleans b, strings s, the
empty list [], the empty record { }, and built-in primitive
operators, including operators for arithmetic, logic, and
custom lenses. In particular, the primitive operators
updateApp, diff, and merge facilitate the definition of cus
tom lenses, which are discussed below. The values v include
constants, closures (E, Ap.e) where the environment E binds
free variables in the body of the function Ap.e, and lists and
records with zero or more components.

Extended Syntax

[0055] The fundamental syntax of FIG. la may be
extended with additional programming conveniences to sup
port programming practical applications, optimizations and
other enhancements to tum the evaluation update relation

4
Aug. 26, 2021

into an algorithm suitable in a practical setting, and user
interfaces for manipulating HTML output values and choos
ing program updates. For example, in addition to the con
stants, lists, and records presented in the fundamental syn
tax, the enhanced syntax may support tuples and user
defined data types, which are transformed (i.e., de-sugared)
internally to records. The extended syntax may also support
value-indexed dictionaries with an arbitrary number of bind
ings. The syntax compatible with an ML-style type system,
and some embodiments may include type checking. In still
further embodiments, variable definition strings, string inter
polation, and dynamic code evaluation, and other useful
constructs may be included, according to some scenarios.
[0056] Programs that generate HTML and parse HTML
typically perform a large amount of string processing and
JavaScript code generation, and utilize common data struc
tures. Language extensions facilitating such tasks are
described in the following sections.

Regular Expressions

[0057] The extended implementation includes two com
mon regular expression operators. The first operation,
extract res, takes a regular expression re (as a string) and a
string s to transform, and optionally returns a list of all the
groups of the first match of re to s. The update semantics
include taking a set of non-overlapping modified groups
taken greedily from the right-and pushing them back to
their original place in the original string. For example,
extract "b(.)" "bab" produces Just ["a"]. If the result is
updated to Just ["x"], the string s is updated to "bxb".
[0058] The second operation, replace ref s, takes a regular
expression re, a function f, and a string s to transform. The
function argument provides access to the match information,
including the index into the string, the subgroups and their
positions, the global match, and the replacement number.
The function uses this information to produce a string.
Interestingly, the final string after replacement is an inter
leaved concatenation of strings that did not change and
applications of the lambda to the record associated to each
match. For example, in the string "arrow", if the expression
"(rrlw)" 1s replaced with the function f=Am. if
m.match=="w" then "r" else "rm", then an expression is
created that looks like

"a"+ f{ match~"rr "}+ "o"+ f { match~"w "}.

This expression may be used both for evaluation and update.
For update, the update procedure may first be run on this
expression. Then, in the environment, an updated function f'
may be recovered. To update the original string s, the
information about the matches that changed (including the
subgroups) is gathered and applied to s.
[0059] Using the reversible extract operation, a String
library may be constructed which includes reversible vari
ants of several common string-processing operations: take,
drop, match, find, toint, trim, uncons, and sprintf.

Long String Literals

[0060] Many languages allow string literals to refer to
variables or expressions, which are then expanded (i.e.,
interpolated). The present techniques provide long string
literals----distinguished by triple double quotes and which
may span multiple lines-that support string interpolation of

expressions (written"""© (e)"""). To further facilitate string

US 2021/0263729 Al

processing tasks, the present techniques also allow variables

to be defined within long string literals (written"""© let x e;
s""").

Dynamic Code Evaluation

[0061] The present techniques allow for other common
web programming patterns to be achieved. For example, the
present techniques allow the dynamic computation of strings
that are meant to parse and evaluate as expressions. The
present techniques include a dynamic code evaluation primi
tive, eval e, for this purpose. The evaluation and update rules
follow.
[0062] FIG. lb depicts an evaluation and update rule for
dynamic code, according to an embodiment. The evaluation
rule E-Eval parses the evaluated string s in the empty
environment. This is distinct from JavaScript, for example,
where the generated code is evaluated in the environment in
which it was generated. If the programmer would like for the
generated code to have access to the environment, the
toString primitive-which converts the environments of
closures into nested let-expressions-can be used. For
example, toString (xf-t 2, Ay.x+y) evaluates to

"let x~2 in \y->x+y ".

The update rule U-Eval uses the unparser to push the
updated code string s' back to the expression e that generated
it. In some embodiments, eval may be associated with an
environment including a string/value pair. The current envi
ronment may be captured using a construct (e.g., Curren
tEnv), and eval and update may be performed in the current
environment, a custom environment reflecting only some
functions, and/or a sandbox mode with no environment

Whitespace and Formatting

[0063] So that updated programs remain readable and
conducive to subsequent programmatic edits, the present
techniques take care to insert and remove whitespace in a
way that respects the whitespace conventions of surrounding
expressions. To achieve this improvement in usability,
whitespace in between expressions and concrete syntax
tokens is recorded in an abstract syntax tree, and these are
used to determine how much whitespace to insert before,
between, and/or after newly created expressions. Bidirec
tional evaluation semantics are introduced in the next sec
tion.

Example Bidirectional Update Semantics

[0064] FIG. 2a depicts the bidirectional evaluation seman
tics for a subset of possible expression forms, including
big-step evaluation rules listed in the left colunm, and
evaluation update (or simply, update) rules listed in the right
colunm. By analogy to bidirectional type checking, evalu
ation may be thought of as "value synthesis" and evaluation
update as "value checking." An environment-expression pair

E f-- e may be referred to as a program. The evaluation update

judgment E f-- e=v'----+ E' f-- e' states that "when updating its

output value to v', the program Ef-- updates to E'f--e'." An
outcome wherein only the expression (resp. environment)
changes may be conventionally referred to by stating that,
"the expression (resp. environment) updates to a new
expression (resp. environment)." Similarly, an evaluation
update may be conventionally referred to by stating, "push

5
Aug. 26, 2021

v' (or changes to v) back to e." The evaluation update
judgment does not refer to the original value v produced by
the program; if the original value is needed by a premise of
an update rule, it must be re-computed.

Update Rules

Simple Rules

[0065] Update rules may not recursively refer to the
update judgment. For example, the axiom U-Const states
that, when updating the output value of an expression to c',
the expression c updates to c'; the environment E remains
unchanged. The rule U-Var states that, when updating the
output value of an environment to v', the environment E
updates to E'. This updated environment is like the original,
except that x is bound to the new value v'; the expression x
remains unchanged. The rule U-Fun states that, when updat
ing the output value of a program to the closure (E', Ap.e'),

the program Ef--Ap.e updates to E'f--Ap.e'. Although updat
ing closures in the output of a program may be less common
than other types of values, the U-Fun rule is nevertheless
crucial for the following derived rules.
[0066] FIG. 2b depicts evaluation and update rules for
addition. There are two update rules, U-Plus-1 and U-Plus-2,
which, respectively, re-evaluate the left or right operand (e1

or e2) to a number (n1 or n2) and then push back the updated
difference (n'-n1 or n'-n2) entirely to that operand. Because
there are two update rules, there are two valid program
updates for addition expressions. Additional numeric primi
tive operations (not shown in FIG. 2b) are handled in similar
fashion. The update rules are applied "automatically" to all
relevant (sub)expressions when trying to reconcile the pro
gram with a new output value.

[0067] In some embodiments, arithmetic rules may pro
duce unexpected results. For example, pushing 4 to let x=l
in x+x may result in let x=3 in x+x, which evaluates to 6. In
practice this pattern may be useful because it is non
blocking. Alternatively, it may be possible to add rules to
push back symbolic expressions such as w to the x on the left
side of the expression, and 4-w to the x on the right side of
the expression, such that after unification a solver outputs
the expected let x=2 in x+x.

[0068] The freeze e expression is semantically a no-op
(E-Freeze in FIG. 2a). However, this provides the program
mer one simple way to control the update algorithm, by
requiring that the expression e and values v it computes
remain unaltered (U-Freeze in FIG. 2a).

Function Application

[0069] The treatment of function application is at the heart
of the evaluation update relation. FIG. 2a depicts a rule,
E-App, for evaluating function calls; to simplify the presen
tation, that rule assumes that the function argument is a
variable x rather than an arbitrary pattern, as in our imple
mentation.

[0070] The corresponding update rule is U-App. The first
two premises re-evaluate the function e1 to a closure (Efl
Ax.ef) and the argument e2 to a value v2 . The third premise
pushes the updated value v' back through the function call,
specifically, through the function body efi where the closure
environment is extended with the binding xf-t v2 (as during
evaluation).

US 2021/0263729 Al

[0071] This produces a (potentially updated) function
body e'r and (potentially updated) environment Efl x f-t v 2 '

that is structurally equivalent to the original (their domains
are equal). The value bound to x in the new environment is
the (potentially updated) value v 2 '.

[0072] At this point, the function body and its environ
ment have been updated. Next, the fourth premise pushes
this program, in the form of the closure (E), Ax.e)), back to
the original function expression e1 ; the result is a new

program E1 f-- e/. Then, the fifth premise pushes the new
argument v 2 ' back to the original argument expression e2 ; the

result is a new program E2 f-- e2 '. Thus, the updated function
application expression is e/e2 '.

[0073] What remains is to reconcile E1 and E2 with the
original E. The rules ensure that E1 and E2 are both struc
turally equivalent to E, but each may have induced updates
to one or more bindings in E. As demonstrated with a
subsequent example, updated bindings may conflict-there
may be variables y such that E(y), E1 (y) and Eiy) are all
different. Next, an approach to combining these environ
ments is described.

Environment, Value, and Expression Merge

[0074] Several rules must consider multiple candidate
environments E1 and E2 when deciding how to update an
original environment E. For this purpose, a three-way envi
ronment merge operation is defined: E1 EBE E2

(E 1,X f-t V1)El\E,xevi(E2,X f-t V2)~E',x f-t (v/flvv2)
where E'~E/fJEE2.

[0075] The three-way environment merge traverses the
three structurally equivalent environments, performing a
three-way value merge on each value binding. The value
merge operation v 1 EB v v 2 (not depicted) recursively traverses
the subvalues of three structurally equivalent values, until
the rule for base cases-for merging constants----chooses v 2

if it differs from v (even if v 2 and v 1 conflict) and v 1

otherwise. It should be appreciated that other merge algo
rithms may be employed, in some embodiments. For
example, updates from the left may be preferred in the merge
algorithm, or all combinations of choices may be propa
gated. One of the important benefits of the present tech
niques is that the methods and systems for customizing
evaluation update disclosed herein enables users to readily
define such alternatives.
[0076] Closure values include expressions, so a three-way
expression merge operation e1 EBee2 is also implemented (not
shown) in similar fashion for closures.

List Construction

[0077] FIG. 2c depicts an evaluation rule (E-Cons) for list
construction, and a corresponding update rule (U-Cons) that
propagates changes to the head (resp. tail) value back to the
head (resp. tail) expression. The list construction and update
rules preserve the structure of existing cons expressions. In
this embodiment, structure-changing rules that add and/or
remove cons expressions are not included, due to the poten
tial for introducing ambiguity.

List Literals: Pretty Local Updates

[0078] The evaluation update rules discussed above may
produce updated (environments and) expressions that are
structurally equivalent to the original ones. Such structure-

6
Aug. 26, 2021

preserving changes are referred to herein as local updates.
Restricting changes to local updates ensures a predictable
class of "small" changes, but is so restrictive that even
seemingly benign changes are not possible---e.g. updating
the empty list expression [] with new value [1].
[0079] Such updates may need to be allowed for practical
purposes. Therefore, some embodiments may include the
rule U-List (FIG. 2c) to allow insertion and deletion inside
list literals that appear in the program. This form of struc
tural change as pretty local to emphasize its limited effect on
the program structure. The statement [e1 , ... , en] may be
expressed, as syntactic sugar for the nested list construction
expression e1 :: ... : :en:: [], terminating with the empty list.
[0080] The helper procedure Diff(v, v') takes the original
and updated list values and computes a value difference ti. (a
"delta"), in this case, a sequence of list difference opera
tions-Keep, Delete, Insert(v'), or Update(v'). In an embodi
ment, the implementation of Diffuses a dynamic program
ming approach which attempts to preserve as many
contiguous sequences from the original list as possible. The
syntax of the evaluation update judgment is reused for one
that pushes back value differences (rather than just values),
with the subscript Diff to help distinguishing the two syn-

taxes. The expression Ef--[e1 , ... , enl=n,uli.----+E'f--e'
computes the list literal e' that results from traversing the
original list literal and the difference operations; keeping,
inserting, deleting, or updating expressions as dictated by
the difference. It should be appreciated that some embodi
ments may include differences for insertion, deletion,
update, cloning, swapping, wrapping, unwrapping, and/or
any other suitable operations.

String, Records, and Dictionaries

[0081] Evaluation rules (not shown) for string concatena
tion e1 +e2 , record literals { f1 =e1 ; ... } , and record extension
{ elf=ei may also be included, in some embodiments.
[0082] Dictionary values may be constructed using primi
tive operators empty, get, insert, remove, and fromList.
Update rules for dictionaries may be implemented in much
the same way as those for lists. For example, the update rules
may be based on dictionary difference operations, analogous
to the list difference operations discussed above. Update
rules for records and record extension may also be imple
mented using similar principles as those discussed with
respect to lists above, except that those update rules may not
include insertions and/or deletions. Update rules for concat
enating strings and appending lists require a more nuanced
approach, as explained in the next section.

Customizing Evaluation Update

[0083] Because of the inherent expressiveness of the lan
guage, evaluation update may not provide all possible
intended behaviors that users may desire. For example, the
common evaluation and update pattern below may not be
handled by the update algorithm as discussed thus far. In this
example, metavariables f and x, may refer to expressions and
y, to refer to values.

Ef-map f[x1, X3, X4]⇒ [y1, Y3, y4]

Ef-map f[x1, X3, x4]¢:= [y;, Y2, Y3, Y4, Ys]

US 2021/0263729 Al

-continued
~ E' I-map f'[x]_, x2, X3, x4, xs]

Desired, but unavailable, program repair

[0084] The Diff operation computes the following align
ment between the original and updated values: that y 1 and y 4

have been updated to Yi' and y4 ', and new values y2 and y5

have been inserted after (the updated versions of) y 1 and y 4 .

A user may desire an updated program of the form indicated
above, where f', xi', and x4 ' are updated because of the two
updated function calls f x1 and f x4 , and where the synthe
sized values x2 are x5 are passed to the function f', ideally
producing the inserted values y2 and y5 . However, the
evaluation update approach described so far cannot synthe
size repairs of the desired form above. Given the definition

letrec map flist~case list of []->[];x::xs->f x::map f
XS

the original list value [y i, y 3 , y 4] is constructed completely
within the body of map: non-empty (cons) nodes are created
in the list=x: :xs branch and the empty node is created in the
list=[] branch. To reconcile the updated list, y5 would have
to be inserted into the empty list [] in map, and element y 2

would have to be inserted into the cons-node. Besides the
fact that the present techniques strive to disallow structural
updates anywhere but E-List (cf. the "List Literals: Pretty
Local Updates" discussion, infra), such changes are not
desirable because the new cons-node would not be the result
of applying f to anything. Rather, the new cons-node would
insert the same element in between all elements in the
output. Furthermore, map is a library, the definition of which
is, ideally, frozen.

[0085] Therefore, the evaluation update is unable to pro
vide simultaneous reasoning about structural changes to list
values and computations they pass through.

User-Defined Lenses

[0086] Rather than attempting to provide built-in support
for map and other common building blocks, the present
techniques choose to expose an API for users (or libraries)
to customize the evaluation update. Specifically, in place of
any "bare" function f, the user may additionally provide a
second update function in the program source code that
specifies how to push values back to calls to f.

[0087] A pair comprising bare and update functions forms
a lens, which is implemented using the syntax described
above as a record with the following type:

type alias Lens a b~{ apply:a->b,update:{input:a,
outputNew:b }->{ values:List a}}

[0088] The above lens definition is typed, and the expres
sion applyLens e1 e2 syntactically marks the function appli
cation as a lens application in lieu of a particular type. Either
a typed record or untyped record may be used, according to
some embodiments.

[0089] FIG. 2d includes an E-Lens rule, which projects the
apply field of the lens argument e1 and then applies it to the
argument e2 . To push a new value v' back to the lens
application applyLens e1 e2 , the U-Lens rule may use the
update function of the lens. The function argument is then
re-evaluated to v2 and, together with the new output v', is
passed to the e1 .update function. Each value v 2 ' in the values

7
Aug. 26, 2021

list of results is pushed back to the expression argument e2

and then used as the argument of the updated function call
expression.
[0090] Because the lens mechanism in the FIG. la is
intended to provide a way to customize the built-in update
algorithm, several internal operators are exposed (up
dateApp, diff, and merge) which custom update functions
can refer to. FIG. 2d also describes the semantics of these
operations as they arise in the discussion below. Because
these operations are intended for use only in update func
tions, evaluation rules are defined for these operators, but
update rules are not. However, in an embodiment, both
update and/or evaluation rules may be defined.

Optimizations

[0091] The present techniques include several additional
optimizations for the evaluation update relation, to form the
basis for a practical algorithm.

Optimization 1: Tail-Recursive Update

[0092] A direct implementation of the program update
algorithm may result in a call stack that increases with each
recursive call to update. Because the stack space in some
interpretation environments (e.g., in web browsers) is rela
tively limited, this recursive approach may lead to excep
tions for computational-intensive benchmarks, even rela
tively small ones. Because the heap space is usually less
limited than stack space, a rewriting of the update procedure
to continuation-passing style makes the update procedure
tail-recursive and, thus, compiles to an optimized form in
some embodiments (e.g. in JavaScript the procedure com
piles to a while-loop). This transformation is compatible
with a lazy list of all solutions computed by the algorithm.
In some embodiments, the tail-recursive transformation can
be used to repeatedly pause the computation, for purposes of
creating a non-blocking implementation (e.g., in a singleth
readed interpretation environment such as in JavaScript).

Optimization 2: Merging Closures

[0093] Merging environments naively-following the
definition of E/BEE2-may require exponential time, in
some embodiments. Each closure in the environment refers
to the prefix of the environment, which may have been
modified. Hence, to compare closures, their environments
must be compared, and so on. In some embodiments,
merging bindings for only those variables which appear free
in the associated function bodies may be a critical optimi
zation step.

Optimization 3: Propagating and Merging Edit Differences

[0094] In some embodiments, an evaluation update judg
ment which propagates expected values v', even though
large portions ofv' may be identical to the original values v,
is another potential scalability issue. To address this, some
embodiments may compute an edit difference between v and
v' which, together with those values, serves as a compact but
complete characterization of the changes. For example, for
numbers and booleans, the edit difference can be represented
as a Boolean flag indicating whether the value has changed
(i.e., whether U-Const needs to process this value).
[0095] For lists, the edit difference may be represented as
a list of index ranges associated with a number of insertions,
a number of removals, or an update based on a value

US 2021/0263729 Al

difference. Edit differences for other types of values, for
expressions, and for environments may also be analyzed, in
some embodiments. These edit differences may be propa
gated through the evaluation update algorithm.
[0096] Further, edit differences may be exposed to user
defined lenses, so that they can benefit from this optimized
representation. First, compared to the presentation of
U-Lens in FIG. 2d, the field outputO!d may be included in
the record argument v 3 to update: its value V is the original
result of the function call e1 .apply e2 . The update function
can choose to take outputOld into account when returning its
list of new argument values. Furthermore, to take advantage
of the optimized representation, the record argument may
also contain a diffs field that describes the edit differences
that tum outputO!d into outputNew. In an embodiment, the
update function may return a diffs field (in addition to
values). Then, the evaluation update algorithm can continue
to propagate changes using the optimized representation.
Reasoning with values and diffs can be thought of as "states"
and "operations", respectively, in the terminology of syn
chronization. A foldDiffhelper function may also be defined,
and used to define edit difference-based versions of the
reversible map and append lenses described above.

Correctness

[0097] In an embodiment, the ideal connection between
evaluation and update would be the following proposition:

Proposition 1 (Total Correctness of Update). If E f--e => v

(i.e. the program Ef--e evaluates to v) and Ef--e-¢=v'----+ E'

f--e' (i.e. when updating its output value v', to the program

updates to E' f-- e'), then E' f--e' => v' (i.e. the updated program
will evaluate to the updated value).
[0098] However, Proposition 1 is false, for two primary
reasons. The first reason is because conditional expressions,
in particular the U-If-True rule depicted in FIG. 2a, pushes
the updated value back to the true-branch, which was taken
during the original evaluation, optimistically assuming that
the same branch will be taken by the new program. The
U-If-False rule (not shown) makes an analogous assumption
about the false-branch. In general, however, these assump
tions may be violated. For example, the expression (Ax. if
x==l then x else 3) 1 evaluates to 1. If the user updates the
value to 2, the change will be pushed back to the then-branch
(and then back through the variable use to the function
argument), resulting in the updated expression (Ax. if x== 1
then x else 3) 2. When evaluated, this expression takes the
false-branch and produces 3. If the false-branch happened to
return 2, the updated program would "accidentally" produce
the correct updated value.
[0099] The second obstacle is that multiple updates may
induce conflicting program updates. For example, the
expression (Ax.[x, x])l evaluates to [1, 1]. If updated to [O,
2], the U-App, U-Cons, and U-Var rules, together with
right-biased environment merge, combine to update the
program to (Ax. [x, x])2, which, when re-evaluated, produces
[2, 2].
[0100] To address the former problem, control-flow-alter
nating updates could be disallowed. To address the latter
problem, environment merge could fail to produce an output
when there are conflicts, and the algorithm could require that
all uses of a variable in the output be updated in a consistent
manner. However, such variations may not be pursued in
some embodiments, due to the insight that total correctness

8
Aug. 26, 2021

is not of paramount importance for the practicality of
evaluation update in practice. For example, several of the
example use cases for direct manipulation interaction
depicted herein purposely alter control-flow (e.g., because of
a change to a Boolean flag). Therefore, instead of pursuing
a strong correctness property, users are enabled to consider
the effects of various program updates using a programming
environment.
[0101] However, if all uses of a variable in the output are
updated consistently, then a roundtrip guarantee exists that
the value produced by the final updated program will be the
same value that was being pushed back. This idea is for
malized in Proposition 2:
Proposition 2 (Weaker correctness property). Given an

update tree, if at any level where E f--e-¢=v'----+ E' f-- e' and
E'=E1 ----+ EE2 and each E, is the environment over a sub
expression e,', and furthermore for every variable x updated
in E' and every E,, either x was updated with the same value

in E, or it did not appear as a free variable in e,, then E' f-- e'
=>v/.
Proof. Given an evaluation update tree and the premises of

Proposition 2, by structural induction on the tree, if E f-- e

-¢=v'----+ E'f--e', then E'f--e' =>v'.

[0102] For U-Const, given Ef--c-¢=c'----+ E'f--c', it is true

that Ef--c' => c'

[0103] For U-Var, E'f--e' is equivalent to (E1 , x----+v',

E2) f-- x where x does not appear in E2 so this expression
evaluates to v' because of E-Var.

[0104] For U-Fun, Ef--Ax.e-¢=(E', Ax.e)----+ E'f--h.e' so

therefore E' f-- Ax.e' => (E', Ax.e') without further discus
s10n.

[0105] For U-App, assuming Ef--e1 e2 -¢=v'----+E'f--ei'

e2 ', it is required that Ef--e1 =>(E", Ax.e), Ef--e2 =>w,

E",x-+wf--e-¢=v'----+ E"', x-+w'f--e', Ef--e1 -¢=(E"',

Ax.e)----+ E1 f--ei', Ef--e2 -¢=w'----+ E2 f--e2 and E'=E/BE
E2.

[0106] To evaluate E'f--F e/e2 ', evaluate E'f--ei' and E'

f--e2 '. First, by induction on the last three update rules, one

obtains that: E1 f--e/=>(E"', Ax.e'), E2 f--e2 =>w' and E"', x

-+w'f--e' =>v'.

[0107] Second, by proving that: E'f--ei' evaluates to the

same value as E1 f--ei', and E' f--e2 ' evaluates to the same

value as E2 f-- e2 ', by applying the evaluation rules, E' f-- e1 ' e2 '

=>v'.
[0108] To prove two previous points, it is sufficient to
show that all free variables of ei' have the same value in E'
and E1 . If this was not the case, it would mean that, either

[0109] A free variable in ei' was not updated in E1 but
was updated in E2 with a new value. According to
Proposition 2's premises, this is not possible: Because
the variable appears in e1 ', it should have been updated
in E1 with the same value

[0110] A free variable in ei' was updated in E1 but the
same variable was updated in E2 with a different value,
and the conflict resolution chose E2 's value. This is
trivially not possible because the premises of Proposi
tion 2 states that there were no conflicts.

[0111] Similar reasoning proves the second point.

US 2021/0263729 Al

Corollary 0.0.1 (Updated variables used once). Given an

update tree, at any level where Ef--e.;=v'----+ E' f--e', if every
variable x that was updated in E' appear only once in e', then

E'f--e'=>v/
Proof. If every updated variable x in E' appears at most (thus
exactly) once in e', then given that E'=E/BE E2 and that the
sub-expressions e1 and e2 are disjoint, the updated value of
x in E' comes from exactly one E1 (or resp. E2) and x did not
appear as a free variable in the other e2 (resp. e1), Proposi
tion 2 applies.

Example Lenses

Lens: Maybe Map

[0112] The following describes a simple example of map
ping a "MaybeOne" value, encoded as a list with either zero
or one elements, using the principles discussed above. FIG.
3a depicts a definition of maybeMapSimple, which is frozen
to prevent changes to what is, effectively, a "library" func
tion in some embodiments. When reversing calls to maybe
MapSimple, the built-in update algorithm may be unable to
deal with adding or removing elements from the argument
list (as with list map, discussed above).

[0113] Therefore, FIG. 3a defines a custom lens called
maybeMapLens. To deal with the case when the updated
value includes an element when there was none before, this
lens is parameterized by a default element. The lens func
tions apply and update take arguments f and mx as a pair.
The maybeMap definition on the last line of FIG. 3a is
defined as the application of this lens (wrapped in
apply Lens) to its arguments packaged up in a pair. In the
forward direction, the apply function of maybeMapLens
simply invokes maybeMapSimple. In the reverse direction,
the update function uses a record pattern to project the input
and outputNew fields and handles two cases. If the new
output my is [], the updated MaybeOne value should be [
], and the function f is left unchanged-these are paired and
returned as a singleton list ofresult values. If the new output
my is [y], the goal is to pushy back through a call off. If
the original input maybe value mx is [x], then the function
call f z=f x needs to be updated. If the original input maybe
value is [], however, there was no original input; so, f z=f
default needs to be updated.
[0114] To achieve this in FIG. 3a, the primitive updateApp
operator is used to pushy back through f z using the built-in
algorithm (starting with rule U-App). The semantics of this
operation, which may correspond to E-Update-App of FIG.
2d, computes all possible updated values v 2 ' and puts them
in a In this way, updateApp may expose the U-App rule to
custom update functions.

[0115] Each value that comes out in results.values
includes a pair of a possibly-updated function newF and
possibly-updated argument newX. To finish, the second is
wrapped in list and this pair forms a solution. This function
"bootstraps" from the primitive U-App rule, lifting its
behavior to the MaybeOne type. For example, consider the
function

display [a,b,c]~[a,c+", "+b]

and two calls to maybeMap defaultState display, where the
definition

defaultState~["?", "?", "?"]

9

Aug. 26, 2021

serves as placeholder state data:

maybeRowl ~maybeMap defaultState display [["New
Jersey" ,"NJ" ,"Edison"]]

maybeRow2~maybeMap defaultState display []

[0116] As a preview, a specific example of this type oflens
is depicted in FIG. Sa), at line 14: updating the result of
maybeRowl to [] leads to updating the argument to [].
Updating the result of maybeRow2 to [["New Jersey",
"Edison, NJ"]] leads to updating the argument to [["New
Jersey", "NJ", "Edison"]]. Furthermore, updating the result
of maybeRow2 to [["New Jersey", "Edison NJ"]] simulta
neously inserts the appropriate three-element list and
changes the separator "," to " ". None of these three
interactions would be possible if instead calling maybe
MapSimple display, which is updated by the built-in algo
rithm alone.

Additional Lenses

[0117] The maybeMapLens definition demonstrates an
approach for dealing with updated transformed values
pushing them back through function application, as usual
and for dealing with newly inserted values-pushing them
back through function application with a default element.
This approach may be extended, in some embodiments, to a
listMapLens definition that operates on lists with arbitrary
numbers of elements rather than just zero or one, using a
recursive traversal as follows:
[0118] 1. the use of primitive operator diff (for which

E-Diff in FIG. 2d exposes the Diff operation used by
E-List) to align the original and updated output lists,

[0119] 2. the use of primitive operator merge (for which
E-Merge exposes the three-way value merge operation) to
combine multiple updates to the input function; and

[0120] 3. when inserting a new element into the output list,
choosing to use an adjacent element from the original list
(rather than a caller-specified default) to push back
through a function call.

[0121] FIG. 3b defines a listMapLens for operating on lists
with an arbitrary number of elements. The high-level struc
ture of update uses a library function, Update.listDiff,
defined in terms of a more general primitive diff operator.
Update.listDiff produces a list of difference operations
Keep Value, DeleteValue, InsertValue(v), and UpdateValue
(v)-which are Leo encodings of those returned by Diff in
E-List. The update function recursively walks the difference
operators, keeping, dropping, or updating elements as dic
tated. In one embodiment, the leftmost existing element is
used, if any, as the "default" value argument to the function
call that is pushed back.
[0122] A number of cases are examined. If there was an
insertion at the beginning of a non-empty list, there was no
leftmost element, wherein the rightmost element (the single
ton) is used. If there is an insertion in an empty list, then
update fails to produce a solution, rather than requiring an
explicit default value to be chosen. In an embodiment,
updated functions are also collected, and at the end they are
combined together using the built-in merge operation. There
are many other reasonable ways to define update for this
lens, and by exposing this choice, users may provide custom
implementations as appropriate to suit their own purposes.

HTML-to-String Lens

[0123] A lens for parsing an HTML string to a list of
encoded HTML nodes may be included in some embodi-

US 2021/0263729 Al

ments. The HTML-to-String lens illustrates the challenge of
tolerating a variety of potentially-malformed documents,
and carefully tracking whitespace, quotation marks, and
other characters that are not stored in the resulting DOM, all
of which are needed to respect the formatting conventions of
the program. Because these characters are respected, in
some embodiments, users may copy-and-paste HTML
strings into long string literals for convenience.
'fancy If' Lens
[0124] In some embodiments, such as when evaluating
programs whose structure and controlflow are mostly cor
rect, guard expressions may not need to be changed. How
ever, guard expression modification can be defined with
lenses, in other embodiments. For example, the 'fancylf'
function below employs a lens to augment the built-in
approach for updating if-expressions (pushing values back
to the same branch) with the ability to change the guard
expression. If the original guard c evaluates to True and the
original else branch e evaluates to the updated value v, then
pushing False back to c constitutes a second solution, called
'updateGuard'. The treatment for when c evaluates to False
is analogous:

fancy If cond thn els -
Update.apply Lens
{ apply (c, t, e) - if c then t else e
, update {input-(c,t,e), outputNew-v} -

let updateSameBranch -
if c then (c, v, e) else (c, t, v)

in
let updateGuard -

if (c && e -- v) I I (not c && t -- v)
then [(not c, t, e)]
else []

in
{ values - updateSameBranch: :updateGuard }

(cond, thn, els)

[0125] In another embodiment, the value may be pushed
back to the other branch even if it does not already evaluate
to the desired value v. Such variations can be implemented
easily using the present techniques.
[0126] It should be appreciated that many other examples
of lenses are possible. For example, a lens may be defined
for appending lists, which generates multiple candidate
solutions when inserting elements at the "split" between the
two input lists. An evaluation update for concatenating
strings may do the same. Several custom update functions
helpful for achieving a variety of desirable interactions for
bidirectional functional documents are described with
respect to FIG. 4.

Evaluation and Benchmarks

[0127] FIG. 4 depicts a table of benchmark data related to
the execution of a plurality of example programs. In prac
tice, many diverse examples comprising hundreds of lines of
code have been created using a programming system for
developing and editing HTML documents and web appli
cations, based on the techniques discussed above. The
example programs are designed to facilitate a variety useful
direct manipulation interactions enabled through bidirec
tional evaluation, and they demonstrate that a variety of
interactive documents and applications-such as web pages,
Markdown-to-HTML translators, a LAT EX-to-Html editor,

10
Aug. 26, 2021

and scalable recipe editors-can be programmed using the
techniques described herein in a way that allows direct
manipulation changes to propagate automatically back to the
program.

[0128] Moreover, these evaluations demonstrate that the
present techniques may synthesize program repairs very
quickly (e.g., within Oto 2 seconds) in full-featured inter
active settings. These examples also demonstrate how a
variety of HTML documents and applications can be devel
oped and edited interactively using the present techniques,
thereby mitigating or even eliminating the tedious edit-run
view cycle drawbacks discussed above that plague tradi
tional programming and/or software development environ
ments. Although the examples discussed herein relate to
HTML and web-based programming, the present techniques
allow programmers and end users to combine programming
with direct manipulation in any programming domain/para
digm. Specific evaluation examples are discussed below, in
addition to the direct manipulation interactions the examples
enable.

Evaluation Examples

States Table

[0129] The States Table A benchmark in FIG. 4 includes
direct manipulation text and DOM edits, and the States
Table B benchmark corresponds to interactions with custom
buttons. Bidirectional evaluation via DOM editing is dis
cussed below, with respect to FIG. Sd and FIG. Si. In some
embodiments, custom user interface features may be con
structed by:

[0130] 1. defining a lens that, in the forward direction,
attaches extra "state" to some data and, in the backwards
direction, refers to the updated state to determine how to
update the data; and

[0131] 2. (ii) exporting HTML elements that store the state
and handling events in some JavaScript code generated as
strings according to the above syntax that map browser
events to edits to the state.

Scalable Recipe Editor

[0132] A culinary recipe may be presented in such a way
that ingredient amounts can be scaled easily with respect to
a desired number of servings. The source of the recipe is
stored as a string containing HTML code. There, every
occurrence of "multdivby(p,q)" is first replaced using
regexes, the implementation of which was discussed above,
by the number (p/q)*servings, where servings is defined for
the entire recipe. The resulting string is then evaluated by a
String-to-HTML lens. To insert the quantity "5 eggs" pro
portional to a current number of servings of 10, users can
simply enter "_5_ egg" in the output, and the "_5_" is
replaced by custom lenses to "multdivby(5,10)" in the
source text. Similarly, inserting "_5s_" inserts a conditional
plural in "s". Because all proportional quantities are con
nected to servings through invertible arithmetic operations,
the user can edit any of the values as desired-e.g., to scale
the recipe to make 32 servings, or to find how many servings
can be made with 12 eggs-all others are updated accord
ingly.

US 2021/0263729 Al

Mini Markdown-to-HTML Editor

[0133] In this example, a regular expression-based pro
gram was created to convert Markdown strings to HTML
strings. Using built-in support for text updates, the present
techniques can, for example, demarcate a string in the output
text with underscores that get pushed back to the Markdown
string. Then, after evaluation, the text is italicized due to
 tags inserted by regular expression transformations.
For more advanced functionality, lenses were implemented
to translate Markdown headers(#, ##, etc.) to their HTML
counterparts (<hl>, <h2>, etc.), translate unordered and
ordered list elements (e.g. <Ii> to either"* A" or" 1. A"), and
translate <div> and
 elements to the correct number of
newlines.

Additional Examples

[0134] The remaining rows in FIG. 4 correspond to:
Budgeting is the computation of a budget for which, the
result of the expression (income-expenses) is updated to be
zero, causes the program update to include all choices for
changing the values of lunch, registration, and other
expenses. Model-View-Controller demonstrates an interac
tive page that manipulates the state of the application with
buttons and user-defined functions. Mini Linked-Text Edi
tor, wherein users can create links ("variables") between
portions of text so that updating any clone updates them all.
Translation Doc is a instruction manual in two languages
where user can change the language, add and clone trans
lations. Dixit is a scoresheet for the game to ask for bets and
compute scores. LAT EX in Html allows the user to modify
the output of an editable lightweight LAT EX source file that
includes \newcommand, sections, references, labels, and
unlimited equations. Interestingly, lenses enable the propa
gation of reference numbers as an updated reference name,
to propagate HTML bold and italic markers to their LAT EX
counterparts, and to escape backslashes if they are entered
from the output.

Performance of Update Algorithm

Methodology

[0135] To validate that the program update algorithm is
fast enough to support an interactive direct manipulation
workflow, the running time for several benchmarks was
measured. Each benchmark in FIG. 4 reflects a summary of
the running time of an example program and an interactive
editing session. Specifically, the "LOC" colunm depicts the
number of lines of code for the initial program and "Eva!"
depicts the running time (in milliseconds) averaged over 10
trials. For each example program, a series of direct manipu
lation edits and program updates were performed, and each
editing/update session produced a sequence of all calls to the
update algorithm. "#Upd" depicts the number of calls to the
program update algorithm during the session.

[0136] An oflline performance evaluation was performed
by replaying the sequence of updates in each session For
each call to program update, the time to compute solutions
with an unoptimized version of the update algorithm was
measured, wherein the unoptimized version ("Unapt")
included Optimizations 1 and 2 described above, and a
"fully-optimized" version ("Opt"), which also included
Optimization 3 regarding edit differences.

11
Aug. 26, 2021

[0137] Without Optimizations 1 and 2, the algorithm may
run out of stack or heap stack on some benchmarks. As
noted, each of these calls was performed 10 times, and the
running times in the last three colunms of FIG. 4 are
averages over the 10 trials. The "Slowest Upd" colunm
depicts the (average) running time of the slowest call to
update (using the "Opt" algorithm) for the given session,
"Fastest Upd" depicts the fastest, and "Average Upd"
depicts the (average) running time off all calls in the session.

Results

[0138] The data in FIG. 4 suggest three main observations.
First, that edit difference optimization is crucial for perfor
mance. The "Average Upd" colunm of the last row are
averages across calls to update, as opposed to averages of
the rows above. Across all 92 calls to update across all
benchmarks, the average running time for the fully-opti
mized algorithm is 723 ms. Thus, the use of edit differences,
rather than plain values, is crucial for making evaluation
update feasible in the setting.
[0139] Second, that performance of evaluation update is
comparable to evaluation. The average evaluation update
time (723 ms) is nearly the same as the average evaluation
time (833 ms). Because the evaluation update algorithm
performs much the same work as evaluation, this suggests
that the optimizations described herein achieve most oppor
tunities for speedup. Further gains, both for evaluation and
update, are likely to result from optimizing the interpreter
or compiling to "native" JavaScript code-as opposed to
additional optimizations of the current approach. In some
embodiments, updating the interpreter and/or compiling the
code to native JavaScript, or another compiled/intermediate
format, may be performed to achieve additional speedups.
[0140] Third, there is little ambiguity in the example
interactions. Across all 92 calls to update across all bench
marks, the average number of solutions is 1.18. The degree
of ambiguity for program repairs is heavily dependent on the
programs and interactions under consideration. However,
the example programs and interactions demonstrate a variety
of useful and realistic scenarios for interactive editing.
Together with the data, this suggests that novice and expe
rienced users/programmers alike can develop programs in
such a way that direct manipulation edits lead to the desir
able repairs without an overwhelming amount of ambiguity.

Example Bidirectional Evaluation with Direct
Manipulation Environment

[0141] In many embodiments, a user (e.g., a web devel
oper or other programmer, or a nonprogrammer) may want
to implement an interactive document, using a programming
environment that allows the user to edit the input source
code that generates output, and the output directly, using the
methods and systems described above. For example, a user
may want to create a computer program to generate an
HTML table wherein the rows correspond to each of the
United States of America, along with the respective capital
cities of each State. In general, source code is defined herein
to mean the sequence of characters, whitespace, and sym
bols used to compose a computer program. However, in
some embodiments, "source code" may include data, seri
alized values, complex data objects, images, video files,
symbolic expressions, abstract syntax trees, and/or other
electronic objects capable of being evaluated by a computer.

US 2021/0263729 Al

[0142] Using the present techniques, the user may begin
by writing a computer program in a computer language, such
as the language described in the above discussion, to gen
erate output. The initial programming effort required to
encode all intended data and presentation constraints is
similar to when using traditional text-based programming
environments. That is, the user may write input source code
as she normally would. After writing the input source code,
however, in a significant departure from traditional program
ming activities, the programming environment allows the
user to:
[0143] 1. edit the data and design parameters through

direct manipulation of the output; and
[0144] 2. add elements to the output through a custom,

library-defined user interface.
[0145] The programming environment may synthesize
program repairs based on the user's interactions with the
output, thereby obviating/mitigating the need for the user to
return to the input source code, and eliminating/reducing the
tedious edit-run-view cycle common to traditional program
ming environments. It should be appreciated that although
the following description includes examples of HTML gen
eration, any suitable output format may be used (e.g.,
JavaScript, SVG, a domain-specific language, a visualiza
tion library, etc).
[0146] The following includes a description of an example
GUI implementation for bidirectional evaluation for pro
grams. The GUI provides a lightweight mechanism for
previewing and choosing a solution when there is ambiguity,
which may be inherent in some cases while using a general
purpose language. However, it should be appreciated that the
present techniques are applicable and may be used in other
technical fields and in other programming paradigms/do
mains. For example, the present techniques may be used for
interactive programming when creating applications relating
to the trading of financial instruments, to medical data
management, to database systems (e.g., relational and key
value store databases), in data science, and so on.

Initial Prototype

[0147] FIG. Sa depicts a program source code written by
a user to generate an initial prototype. The program source
code may include string literals (e.g. "California") and
strings (e.g. "California"). Lines 1-8 of the program source
code in FIG. Sa define the data for an HTML table, states.
Each element of states is a three-element list, containing a
state name, two-letter abbreviation, and capital city. states
may be a list of lists, and it may be partially or completely
computed from previous variables.
[0148] In the program source code of the initial prototype,
the data is incomplete. Unknown abbreviations are marked
with question marks (e.g., "AL?'' on lines 1-2), whereas
undefined capital cities remain empty strings (i.e."" on lines
4-8). The state of the program source code reflects a com
mon practice of developers, wherein data is left temporarily
incomplete while the rendering portion of the program
source code, sometimes known as "scaffolding," is written.
In FIG. Sa, the main definition, starting on line 10, generates
the output HTML table.
[0149] First, the program source code produces two output
colunms: one for the state name (e.g., "Alabama"), and one
for its respective capital city, concatenated with the state
abbreviation (e.g., "Montgomery, AL"). The headers defi
nition at line 11 contains text for the header row, and the

12
Aug. 26, 2021

rows definition in lines 12-15 contains the text to display in
subsequent rows by mapping each three-element list [state,
abbrev, cap] in states to the two-element list [state, cap+",
"+abbrev].
[0150] The headerRow definition in lines 18-20 uses
library functions Html.tr and Html.th to generate table row
and header elements, respectively, for the top of the output
HTML table. These Html functions take three arguments: a
list of HTML style attributes, a list of additional HTML
attributes, and a list of HTML child nodes. The Html
functions produce encodings of HTML values to be ren
dered. For example, the headerRow definition may gener
ated an intermediate expression, according to the syntax and
semantics discussed above:

[0151] ["tr", [], [["th", [["style", [["padding",
"3px"]]]], [["TEXT", "State"]]], ["th", [["style",
[["padding", "3px"]]]], [["TEXT", "Capital"]]]]]

which may then be translated to the following HTML
element:

[0152] <tr>
[0153] <th style="padding: 3px;">State</th>
[0154] <th style="padding: 3px;">Capital</th>

[0155] </tr>
[0156] The program source code may also include zebra
striping code, for improving the readability of the output.
The stateRows definition on lines 22-33 generates the
remaining rows of the table. The colors list at line 23 defines
two initial colors, "lightgray" and "white". The expression at
line 25 chooses one of these colors based on the parity of
row index i, as i is received as a parameter from the
List.indexedMap library function. The colunms definition in
lines 26-29 places the text for each state and its capital
city-in a two-element list row-inside Html.td elements,
which comprise a row built from the Html.tr expression at
line 31. For example, for the first row, the columns expres
sion is evaluated and then translated to the following HTML
elements:

[0157] ["tr", [], [["td", ["style", [... , ["background
color", "lightgray"]]]], [["TEXT", "Alabama"]]],
[0158] ["td", [["style", [... , ["background-color",

"lightgray"]]]], [["TEXT", "? AL?'']]]]]
[0159] ["tr", [], [["td", [["style", [... , ["background

color", "white"]]]], [["TEXT", "Alaska"]]],
[0160] ["td", [["style", [... , ["background-color",

"white"]]]], [["TEXT", "? AK?"]]]]]
[0161] These nested lists are translated to the HTML
elements:

[0162] <tr>
[0163] <td style="padding: 3px; background-color:

lightgray; "> Alabama</th>
[0164] <td style="padding: 3px; background-color:

lightgray;">Montgomery, AL ?</th>
[0165] </tr>
[0166] <tr>

[0167] <td style="padding: 3px; background-color:
white;"> Alaska</th>

[0168] <td style="padding: 3px; background-color:
white;">Juneau, AK?</th>

[0169] </tr>
[0170] Lastly, the expression at line 35 builds the overall
Html.table element comprising headerRows and stateRows.
The output program source code value is translated to
HTML and rendered graphically in the right half of the
programming environment, as depicted in FIG. Sa. Although

US 2021/0263729 Al

the example depicted includes HTML output, and rendering
in a particular region of a GUI, the output may be of another
form (e.g., Markdown), and may be rendered in any suitable
location, including in a file, or via a network to a remote
computing device.

Direct Manipulation of Output Text

[0171] In some embodiments, a user who has encoded the
intended programmatic relationships for a data set and an
output design of that data set may next want to correct the
missing data (e.g., the data missing from lines 2-8 of FIG.
Sa). As noted above, in a significant departure from typical
programming practices, the present techniques allow pro
gramming environments to be created which allow the user
to edit text directly in the graphical user interface that
displays the output (the right half of the editor).

Computing and Displaying Program Updates

[0172] In some embodiments, a user may interact with the
output to produce changes to the program source code, and
the user may be provided with an indication of what the
resulting changes are. For example, FIG. Sb depicts an
example of how a user may edit the data in the program
source code depicted in FIG. Sa through the graphical user
interface, including a depiction the program environment
state after the following sequence of user actions.
[0173] First, in the first state row of the output table, the
user deletes the question mark after "AL" in the string ",
AL?''. Next, in the second row, the user replaces the string
"AL?'' with "AK". As soon as the user begins editing the
output table (or due to a user's explicit selection, in some
embodiments), the programming environment may detect
that the program output is no longer synchronized with the
program. As a result, the programming environment high
lights the source code input box on the left side of the
programming environment with a red border and displays a
pop-up window including a menu item labeled Update
Program.
[0174] When the user hovers over Update Program, the
programming environment runs an evaluation update algo
rithm to synthesize a repaired program that, when re
evaluated, generates the same result as the directly manipu
lated output. The update algorithm may proceed according
to the principles described above. In the depicted embodi
ment, the algorithm computes one solution that, along with
an option for reverting the changes, is displayed in a nested
graphical user interface menu to the right of Update Pro
gram. It should be appreciated that the graphical user
interface aspects of the present techniques may be imple
mented using any suitable software development environ
ment (e.g., using a desktop software development kit, a
mobile software development kit, via web programming
frameworks/libraries, etc.). A text-only output encoding may
also be targeted, such as curses.
[0175] FIG. Sb captures the editor state when the user
hovers over the first item in the nested menu, at which point
the programming environment displays a preview of the
updated program (resp. output) directly in the left (resp.
right) pane. The caption

[0176] "L2 Removed[?] L3 Replaced [L?] by [k]"
summarizes the string differences, in lines 2 and 3, between
the original and updated program text. These string differ
ences are highlighted in red and orange in the code box to

13
Aug. 26, 2021

further help communicate the proposed changes to the user.
In this case, the new program matches the user's expecta
tions, so the user clicks the menu item (not shown in the
screenshot) to confirm the update, returning the program and
output to a synchronized state.

[0177] In general, it should be appreciated that any suit
able means of communicating differences to users may be
used, and that the user's confirmation and/or rejection of the
changes may be received/collected via any suitable means
(e.g., the click of a mouse, a press of a touch screen, etc.).
Having the ability to accept a user indication before making
a change to the program source code is an important facility,
because edits to the output may lead to ambiguous changes,
with respect to the original source code. In some embodi
ments, a first display and a second display of a user may be
different physical devices, or a single physical device of a
user. For example, the user may have a desktop with
multi-head computer monitors, or a single computer moni
tor. Original program source code and/or program output
may be displayed in any display of the user. Updated
program source code and modified program output may be
displayed in any display of the user. In some embodiments
the first display of the user and the second display of the user
are the same device.

Ambiguity

[0178] FIG. Sc depicts a change that leads to plural/
ambiguous solutions. For example, in the third row, the user
replaces", AR?'' with "Phoenix, Ariz.". The change causes
the Update Program menu to be displayed, and when the
user hovers over the menu, two solutions are caused to be
displayed, in addition to the option to revert the changes.
FIG. Sc captures the editor state when the second solution is
hovered. In the example, both solutions are valid because
each replaces "AR?" on line 4 with "AZ", as desired, but the
second solution inserts "Phoenix" as a prefix to the ","
separator string used in the concatenation on line 14.

[0179] By viewing the preview of the output, with "Phoe
nix" appearing in all rows, the user quickly determines that
this change, though consistent with the output edit, is
undesirable. In this way, the menu with previews represents
a lightweight yet efficient way for the user to disambiguate
between multiple valid updates. The user then hovers over
the menu and selects the first option (not shown in the
screenshot).

[0180] The present techniques facilitate the avoidance of
ambiguity. For example, the user may edit the input source
code to wrap the string""," "in a call to Update.freeze (not
shown), which instructs the programming environment
never to change this expression when computing program
updates. In this way, the separator string at line 14 will
remain constant. The user may fill in missing data for the
remaining rows directly in the output pane. Having frozen
the separator string already, none of these changes lead to
ambiguity. In some embodiments, additional freeze opera
tors may be introduced. For example, Update.expression
Freeze may not prevent a new value from being pushed back
to an expression, and may ensure that the expression stays
the same and that only the variables' values may change.
Update.freezeLeft and Update.freezeRight may prevent
insertions to, respectively, the beginning and end of output
strings.

US 2021/0263729 Al

Browser Conveniences for Navigating Output Text

[0181] During the foregoing interactions in the program
ming environment, the user benefits from text-editing fea
tures built-in to the browser-using the Tab key to advance
to subsequent columns and rows, and arrow keys to navigate
the text cursor within the selected cell-which make it yet
more convenient to specify these changes in the graphical
user interface rather than in the source code editor.

Programming Environment: Direct Manipulation
Programming for HTML

[0182] The last major aspect of the programming envi
ronment is the user interface for updating output values and
interacting with the program update algorithm. Below, sev
eral different direct manipulation value editors are
described. Regardless of which value editor is used to make
changes, the connection to the update algorithm may pro
ceed as described in "Computing and Displaying Program
Updates," "Ambiguity," and "Automatic Synchronization".
[0183] Multiple types of user interfaces may be imple
mented for manipulating output, depending on the embodi
ment. The first mode is a Graphical User Interface, which
allows the user to make edits directly in the HTML-rendered
output. Some embodiments support text-based editing. For
example, in a translation of HTML text nodes, a "contente
ditable" attribute may be added to allow changes to the text.
In some embodiments, key events (e.g., keypress events) are
received and processed. For example, Ctrl+B may cause an
update to bold text. In some embodiments, direct manipu
lation widgets for common properties of other kinds of
elements, such as color, position, size, padding, etc. are
available. A second mode includes a Text Interface, which
allows the user to make edits to the output value rendered as
a string. The text interface allows the string to be rendered
either as "raw" HTML or in the syntax described above. The
final mode integrates with the built-in DOM Inspector
provided by modem web browsers. The features provided by
the browser allow users to, for example, select DOM ele
ments-either by right-clicking or by navigating in a sepa
rate view of the DOM tree-and then use built-in textand
GUI-based panels for adding, removing, and editing ele
ments and their attributes.
Direct Manipulation with DOM Inspector
[0184] Continuing with the above example, having cor
rected the data in the table, the user may next wish to
experiment with different styles. The direct manipulation
output pane in the depicted programming environment
embodiment provides direct manipulation only for text
content (as in the interactions above). However, it should be
appreciated that some embodiments allow the developer to
use the existing Developer Tools provided by modern
browsers for inspecting and modifying arbitrary elements
and attributes in the DOM (i.e. the HTML output of the
program). In an embodiment, changes to the DOM may be
used to trigger the program update algorithm.

Browser Conveniences for Editing Styles

[0185] Built-in browser functionality may have synergies
with the programming environment. For example, a user
wants to try out different colors for alternating rows, to
replace the colors at line 23 in FIG. Sa. FIG. Sd depicts an
example of affecting such changes in the programming
environment. First, the user may right-click the "Hartford,

14
Aug. 26, 2021

Conn." cell and select Inspect from the browser's pop-up
menu. Of course, the precise mechanism by which the user
accesses a developer tools panel may vary from browser to
browser. As a result, a Developer Tools pane appears at the
bottom of editor (as depicted), with the selected cell in focus
in the DOM Element Inspector. The rightmost panel may
provide a Styles Editor, which the developer can use to
change the background-color from the initial lightgray color,
by adding, editing, and/or removing properties in the Cas
cading Style Sheet (CSS) of the HTML document in the
right hand side of the programming environment.

[0186] The user may open the DOM inspector and select
one of the cells colored "lightgray" cells in the table (using
the Inspect panel in Firefox browser or the Elements panel
in Chrome browser, or by right-clicking directly on the
output element in the right half of the programming envi
ronment). A side panel in the browser Developer Tools pane
lists all of the style attributes for that cell, one of which is
the background-color: lightgray property generated by the
program. The user starts typing ye and, then, using the
built-in conveniences provided by the Styles Editor for
changing color values (e.g., a dropdown menu of related
colors, equipped with tab completion and previews) decides
to try the color yellow.

[0187] As with the text changes described above, the
programming environment may detect that the output is no
longer synchronized with the program source code, and
based on the detection, may trigger the update algorithm,
and displays the Update Program menu. FIG. Sd captures the
editor state as the user hovers over the single solution, which
replaces "lightgray" at line 23 with "yellow" to reconcile the
change. In the output of the updated program source code,
the color of all cells in alternating rows are changed (not
only the one cell directly manipulated). Notably, the present
technique has allowed the user to modify both the source
code of the program, and other rendered output parts of the
source code, without directly interacting with either.

Automatic Synchronization

[0188] In some embodiments, the programming environ
ment may facilitate automatic synchronization between the
program source code and the rendered output without the
user needing to confirm the updates. For example, the user
may want to experiment with colors, but manually hovering
and clicking the Update Program menu will be tedious when
trying several options. So, the developer may click the
button labeled Auto Sync in the right toolbar, which toggles
the editor into a mode that performs automatic updates.
Specifically, whenever the output is changed-either
directly in the graphical user interface and/or through the
DOM Inspector-the program update algorithm is automati
cally run after a configurable delay (e.g., 100 ms). When
there is a single solution, it is applied automatically, without
requiring the user to hover and select the update through the
menu.

[0189] Thus, the developer can try several colors in the
DOM Inspector in rapid fashion, viewing how the change
propagates immediately to the entire table.

Small Updates

[0190] As noted above, the user can add HTML elements/
attributes via the DOM. For example, to continue with the

US 2021/0263729 Al

above example, the user may wish to add a background color
to headerRow, whose styles list on line 19 does not include
a color.

[0191] FIG. Se depicts a menu displayed when the user
selects a td element. After selecting the first column of the
header row in the browser DOM Inspector (either by right
clicking, or using the browser's built-in Inspect cursor), the
user, again, uses the Styles Editor, as depicted in FIG. Sf
The Styles Editor provides an easy way (with a mouse click
or Enter key press) to add a new attribute. The user adds a
new background-color attribute set to the value orange, as
depicted in FIG. Sf, and the corresponding program update
adds the pair ["background-color", "orange"] to the styles
list on line 19. The resulting updated output HTML and
menu showing the changes and option the user to revert the
changes are depicted in FIG. Sg.

[0192] Therefore, unlike the local updates described
above, wherein constant literals in the program source code
were replaced with new ones, the user has succeeded in
performing a structural update, which alters the structure of
the abstract syntax tree. Specifically, the user has added a
"background-color" to the DOM, where none previously
existed. Some embodiments may transcend local and pretty
local updates. Using lenses and pushing back closures, the
entire function body may be changed to, for example,
replace a function f with another function f'. An API may be
exposed for editing the closure, which may allow the user to
develop tools to customize the body of the functions.

[0193] As described above with respect to FIG. 2c, such
structural updates are referred to pretty local because the
only change to the structure is inserting a new literal at a leaf
of the AST (i.e., inside another list literal). The program
update algorithm in the programming environment may
produce only local and pretty local changes to the program,
a restriction that nevertheless results in a useful set of
"small" changes to the original program.

Direct Manipulation with Custom User Interfaces

[0194] Throughout the direct manipulation interaction
examples described thus far, the user has leveraged GUI
features provided by the programming environment and/or
existing browsers to edit the content and styles of existing
rows in the table. It should be appreciated that performing
tasks that are not provided by the programming environment
and/or another environment (e.g., a web browser), are also
supported by the present techniques. For example, a row
with colunms "Delaware" and "Dover, DE" may be added to
the bottom of the output HTML table. Programmatically,
this change corresponds to adding a new three-element list
["Delaware", "DE", "Dover"] to the end of the states list.

[0195] The developer could directly manipulate the output
HTML by copying the last <tr> to a new row, and changing
the content of the row. However, as described above, the
program update algorithm cannot reconcile such changes
with the original program, because such a reconciliation so
would require simultaneous reasoning about inserting ele
ments into lists (in this example, states) that are being
destroyed (in this example, by List.map) and whose ele
ments are being transformed by some function (in this case,
the anonymous function on line 14 of FIG. Si). In an
embodiment, the programming environment includes logic
for detecting changes that modify the library, and providing
the user with an error message explaining that such changes
are not permitted.

15
Aug. 26, 2021

User-Defined Program Updates with Lenses
[0196] When the built-in program update algorithm does
not facilitate the direct manipulation interactions desired for
a particular task, the programming environment provides
users (or library writers) with the ability to define a custom
lens that augments a "bare" function with a second update
function that defines the "reverse semantics" for the bare
function. For example, to continue the above example, the
user can use lenses to define a module called TableWith
Buttons-which performs more advanced evaluation update
than for basic List.map-to serve as a drop-in replacement
for the basic table-constructing functions in the Html library.
FIG. Sh depicts an upgraded code library implementing the
TableWithButtons, according to an embodiment.
[0197] FIG. Si depicts a graphical example, using the more
sophisticated code library, of clicking a button (labeled"+")
causing a new row to be added at the clicked position. For
example, assume that the user clicks the button next to the
"Connecticut" row, hovers Update Program, and then hovers
the single solution (as shown in the screenshot). Based on
this series of interactions, the resulting program adds a
placeholder/blank row at line 9 in the states list, which can
later be filled in through the basic direct manipulation text
interactions as before. Thus, by using lenses to augment the
functionality of the built-in program update algorithm, users
and library writers can implement custom user interface
features for manipulating the particular bidirectional func
tional documents under construction. Of course, it should be
appreciated that structural elements other than HTML table
rows may be added. In some embodiments, the added
elements may be other than HTML elements (e.g., any
suitable complex data objects). The types of structural
elements that may be added, edited, and removed are often
determined by the which datatypes form the currency of a
particular programming environment.

Library Design for HTML Programming

[0198] The main definition of a program may compute an
HTML value, using a list-based encoding of HTML ele
ments. A text element may be represented by a two-element
list ["TEXT", s] and a non-text element by a three-element
list [tag, attributes, children], where tag is an HTML tag (e.g.
"div", "span", "hl", etc.), attributes is a list of string-value
pairs (rather, two-element lists), and children is a list of
HTML elements. In some embodiments, a list-based encod
ing that includes explicit datatypes may be used, in addition
to a small Html library to make programming with this
encoding more convenient.

Co-Design for Pretty Local Updates

[0199] FIG. SJ depicts a Html module that provides helper
functions for several common tags. These functions may
take a number of arguments. For example, three arguments
may be provided: a list of HTML "style" attributes, a list of
non-style attributes, and a list of children. The Html library
functions are used, above, in Lines 20, 28, 31, and 35 of FIG.
Sa depict example calls to Html. The choice to provide style
and non-style attributes separately is for clarity-to avoid
having the "style" attribute list be nested within another list.
However, the choice may be altered in some embodiments.
The choice for the "default" library functions to take attri
bute lists as arguments---even when they are empty-is to
facilitate the addition of styles during subsequent direct
manipulation interactions. But in some embodiments, this

US 2021/0263729 Al

behavior may be modified. In general, calling library func
tions with literal arguments is a convention that is estab
lished to provide an update algorithm with a place in the user
program, as opposed to the library implementing the update,
to add or remove attributes. This convention may be useful
in some embodiments wherein an update algorithm makes
structural changes to list literals, as discussed above with
respect to pretty local updates.

Additional and Alternate Embodiments

[0200] In some embodiments, a hybrid, demand-driven
approach may used, for large programs where both time and
memory are limited resources, wherein the time and space/
memory tradeoffs are configurable. In particular, the initial
evaluation of a program could proceed without traces,
resorting to evaluation update when output values are
changed. Then, when re-evaluating parts of the program to
reconcile the changes, evaluation could record traces with
the expectation that values for those expressions are more
likely to be changed again. The subsequent interactions
could then use trace information (and constraint solving)
where available to avoid re-evaluation. A benefit to incor
porating traces and constraint solving is to enable more
precise reasoning than, for example, the "top-down"
approach to inverting arithmetic operations described with
respect to FIG. 2b.
[0201] The methods and systems described herein include
two distinct notions of"bidirectionality." First, all programs
are reversed in a general-purpose language, wherein the
techniques in fact, reverse the language interpreter. That is,
in bidirectional evaluation, arbitrary programs in a general
purpose functional language may be evaluated "in reverse,"
by synthesizing program repairs based on differences
between original and desired output values. The practicality
of this approach is demonstrated by the programming envi
ronment discussed above, which represents a new direct
manipulation programming system used to develop a variety
of HTML documents and applications that can be interac
tively edited because of bidirectional evaluation.
[0202] Second, the creation of defined lenses for custom
izing the behavior of the "backwards interpreter" is facili
tated. Unlike prior work on lenses, and other mechanisms
for bidirectional transformations, the present techniques
enable users to write arbitrary pairs of (well-typed) apply
and update functions, wherein the latter are "hooks" to
customize the update algorithm. In contrast to past
approaches, a fundamental goal for the lenses work is to
ensure that the pair of functions satisfies various roundtrip
laws.
[0203] The present techniques allow edits to the output of
arbitrary programs, and such modifications must be sup
ported, because they arise frequently in the presence of
ambiguity (e.g., in determining whether a change should be
propagated to the function or data) and concurrent edits
(e.g., one user changes a function, an other changes the
data). Given the flexibility enabled by arbitrary functions, a
reversible list map can be defined which backpropagates
changes to the list elements as well as the function itself. The
evaluation update algorithm can, itself, be "lifted" to user
defined functions and data structures by exposing its opera
tions in an Application Programming Interface (API).
[0204] This API to define lenses relates to matching
lenses, in which lenses are parameterized over a choice for
how to align subsets of data in the input and output domains.

16
Aug. 26, 2021

However, in the present techniques, the built-in update
algorithm may use a Diff operation based on a single
heuristic, and this operation is exposed to user-defined
lenses through the diff primitive. In some embodiments,
some prior art approaches to lenses may be integrated into
the present bidirectional evaluation scheme, to provide
mechanisms for varying degrees of reasoning principles and
interaction paradigms, as needed according to various
embodiments.
[0205] In an embodiment, evaluation update may reason
about control-flow choices in order to prune solutions that
would deviate from them, which would enable a stronger
correctness property in situations that require it. In another
embodiment, bidirectional evaluation may be integrated
with, for example, type-directed program synthesis to syn
thesize "larger" kinds ofrepairs. In still other embodiments,
exposing expression and value abstract syntax trees entirely
to user-defined update functions (i.e. quote and unquote)
may enable more expressive metaprogramming mechanisms
to customize bidirectional evaluation. Finally, more full
featured direct manipulation programming systems-for
HTML as well as other domains-may further help to break
free from the edit-view-run cycle of traditional program
ming environments.
[0206] The examples and results above demonstrate that
the present techniques enable many useful direct manipula
tion programming interactions. Nevertheless, there are sev
eral technical and engineering limitations that are addressed
in particular embodiments. For example, a single heuristic is
used for implementing the Diff operator, in some embodi
ments. Given a list [a, b], if b is updated to b' and then c is
inserted at the beginning like [a,c,b'], the Diff algorithm
aligns lists and end up concluding that b was updated to c
and that b' was inserted at the end. In other embodiments,
alternative alignment algorithms may be used.
[0207] Furthermore, nested differences are not supported
by Diff in some embodiments. For example, if [x, y, z] is
updated to Ex, ["b", [], [y], z], some embodiments may fail
(possibly with an ungraceful exception) because it is
assumed that the expression which produced y should be
updated with ["b", [], [y]], when in fact, that expression
should be updated based on y and then propagated upwards.
However, in other embodiments, alternative nested differ
ence algorithms may be used.
[0208] In practical engineering terms, there are situations
in which a DOM listener becomes unsynchronized with the
editor state, and the editor cannot reason about larger
structural changes to the DOM. These limitations have the
potential to affect the usability of some current programming
environment implementations, and may require changes to
upstream codebases. In general, such issues are not funda
mental to the techniques described herein, but are symp
tomatic of bugs in other systems.

Example Bidirectional Evaluation Computing
Environment

[0209] FIG. 6 depicts various aspects of a computing
system 600 for facilitating bidirectional program evaluation,
in accordance with some embodiments. The high-level
architecture of the computing system 600 includes both
hardware and software components, as well as various
channels for communicating data between the hardware and
software components. The computing system 600 may
include hardware and software modules that perform meth-

US 2021/0263729 Al

ods of bidirectional program evaluation for purposes of
facilitating user programming (e.g., for creating HTML
documents). The modules may be implemented as com
puter-readable storage memories containing computer-read
able instructions (i.e., software) for execution by a processor
of the computing system 600.
[0210] The computing system 600 may include a client
computing device 602, a computer network 604, a remote
computing device 606, and a database 608. The client
computing device 602 may include a personal computer,
smart phone, laptop, tablet, or other suitable computing
device. The client computing device 602 may include vari
ous hardware components, such a central processing unit
(CPU) 602A, a memory 602B, a program module 602C, a
network interface controller 602D, an input device 602E,
and a display device 602F. The CPU 602A may include any
number of processors, including one or more graphics
processing unit (GPU). The memory 602B may include a
random-access memory (RAM), a read-only memory
(ROM), a hard disk drive (HDD), a magnetic storage, a flash
memory, a solid-state drive (SSD), and/or one or more other
suitable types of volatile or non-volatile memory. The
memory 602B may store, or contain, one or more program
module 602C. The program module 602C may be one or
more computer programs, including computer-readable
instructions. The computer-readable instructions may be
stored as program source code, and may correspond to the
program source code depicted in lines 1-35 of FIG. Sa and
lines 18-28 of FIG. Sd, for example. The computer-readable
instructions may also correspond to the output of such
program source code, such as the table of states and respec
tive capital cities depicted in FIG. Sa.

[0211] The program module 602C may contain a separate
set of instructions that, when executed, cause a graphical
user interface such as the one in the programming environ
ment of FIG. Sa to be rendered, such that the user can
interactively modify the program source code and/or the
output corresponding to the program source code, and view
as changes to either are propagated in both directions during
bidirectional evaluation as described above. The graphical
user interface of the programming environment may include
facilities for opening files, saving files, and editing existing
files. The graphical user interface may also include buttons
or other user interface widgets for accessing certain func
tionality with respect to the programming environment, such
as toggling Auto Synchronization, as discussed above. The
program module 602C may, in some cases, include instruc
tions for monitoring the status of a DOM associated with the
programming environment, and for responding to changes
based on detecting events during the monitoring. Computer
readable instructions stored in the program module 602C
may, when executed, cause information to be sent, received
and/or retrieved via the network interface controller 602D.
[0212] The network interface controller 602D may include
one or more physical networking devices (e.g., an Ethernet
device, a wireless network controller, etc.). The network
interface controller 602D may allow the client computing
device 602 to communicate with other components of the
computing system 600 via a computer network such as the
computer network 604. The input device input device 602E
may include one or more peripheral device such as a
detached keyboard or mouse, or an integral device such as
a capacitive touch screen of a portable computing device.
The input device 602E may include a microphone, in some

17
Aug. 26, 2021

embodiments. The display device 602F may include one or
more suitable display, such as a computer screen, monitor,
capacitive touch screen, television screen, etc.
[0213] In some embodiments, the client computing device
602 may connect to other components via a computer
network such as the computer network 604. The computer
network 604 may include any suitable arrangement of wired
and/or wireless network(s). The computer network 604 may
include public and/or private networks (e.g., the Internet
and/or a corporate network). In some embodiments, the
computer network 604 may include a local area network
(LAN), wide area network (WAN), metropolitan area net
work (MAN), virtual private network (VPN), etc. The client
computing device 602 may connect to any other component
of the computing system 600 via the computer network 604.
[0214] The other components of the computing system
600 may include one or more remote computing device 606.
The remote computing device 606 may be implemented as
one or more hardware devices, and may be a backend
component of the computing system 600. The remote com
puting device 606 may include various hardware compo
nents, such as a CPU, a memory, a NIC, an input device,
and/or an output device (not depicted FIG. 6). The CPU may
include any number of processors, possibly including one or
more GPUs. The memory may include a RAM, a ROM, an
HDD, a magnetic storage, a flash memory, an SSD, and/or
one or more other suitable types of volatile and/or non
volatile memory (not depicted FIG. 6). The NIC may include
one or more physical networking devices (e.g., an Ethernet
device, a wireless network adapter, etc.). The NIC may
allow the remote computing device 606 to communicate
with other services in computing system 600 by sending,
receiving, and/or retrieving data via the computer network
604. A user of the computing system 600 may interface with
the remote computing device 606 via the input device and/or
display device of the remote computing device 606.
[0215] The remote computing device 606 may include one
or more modules implemented as hardware and/or com
puter-readable instructions (e.g., software). For example, the
remote computing device 606 may include an evaluation
module for performing bidirectional evaluation of computer
code. In some embodiments, a evaluation module may also,
or alternatively, be located in the program module 602C of
the client computing device 602. The evaluation module
may include instructions for receiving a program source
code, evaluating the program source code to generate an
output, transmitting and/or displaying the output, receiving
an edit to the output, evaluating the output to generate an
updated program source code, and transmitting the program
source code to and other component of the computing
system 600 (e.g., to the client computing device 602). Of
course, depending on the embodiment, the foregoing actions
may occur completely in the client computing device 602.
An advantage of using the remote computing device 606
may be that the remote computing device 606 includes more
powerful computational and/or space capabilities than the
client computing device 602, and may this provide more
responsiveness.
[0216] The remote computing device 606 may include a
database 608, which may include a relational database,
key-value data storage system, or other suitable storage
device/system. The database 608 may be used to store
program source code, modules, and/or lenses. The database
608 may be used by the bidirectional evaluation update

US 2021/0263729 Al

algorithms for intermediate storage, and for saving logs of
programs. For example, in an embodiment, every change to
a program source code and/or its output through the bidi
rectional evaluation update algorithm may cause a copy of
both the original program, the output of the original pro
gram, the delta in the updated program source code (e.g., the
code that was changed), and the updated output to be stored
in the database 608. In this way, the user could later replay
the changes that were made to the program source code and
its output over time. In an embodiment, the database 608
may correspond to a source code management application
(e.g., a Git repository). The database 608 may also be used
to contain lenses and/or modules authored by users that are
used in conjunction with the update operations described
above.
[0217] In operation, a user (e.g., a computer programmer)
may want to write some source code to produce and output.
In some embodiments, the user may want to edit existing
source code. In some other embodiments, the user may want
to edit the output of existing source code directly, rather than
editing the source code. The user may begin by opening an
application in the client computing device 602. The appli
cation correspond to the programming environment depicted
in, for example, FIG. Sa. As discussed above, the user may
begin by opening a saved file, or creating a new file. The file
may already include programming instructions (e.g., pro
gram source code), to which the user may contribute addi
tional instructions. The user may then execute the program
source code by interacting with the programming environ
ment. For example, the user may press or click a "Run"
button with a computer mouse, or press a series of keys on
a keyboard to cause the instructions to be evaluated in a
forward direction.
[0218] In some embodiments, forward evaluation may
include a compilation step. The evaluation may cause output
to be displayed, corresponding, in some embodiments, to the
evaluation of program source code written in syntax pro
vided herein, to generate an HTML output as described with
respect to FIG. Sa et seq. The output may then be displayed
in the programming environment.
[0219] Next, the user may modify the output directly,
either by direct interaction with the output as displayed in
the programming environment, and/or via a DOM editor.
The modification may include edits to textual information,
as well as the addition of new structural elements. The type
of structural elements that are permitted to be added may be
governed by modules that the user has created and/or loaded
in the programming environment, which may included
lenses. For example, the user may use the TableWithButtons
module to allow additional table row elements to be added,
as described with respect to FIG. Sh. In some embodiments,
such modules may be stored in the program module 602C of
client computing device 602, or in a storage module of
remote computing device 606. The client computing device
602 may retrieve modules for use in the programming
environment.
[0220] Once the output has been modified by the user, the
programming environment may immediately detect that a
change has been made, and may execute a reverse update
algorithm, as described above, to determine how the pro
gram source code must be modified in order to match, or
produce, the modified output. As discussed, in some
embodiments, the reconciliation process may run automati
cally, either at an interval, or based upon the occurrence of

18
Aug. 26, 2021

an event (e.g., a click event). If the update results in one
updated program source code, then the updated program
source code may be displayed in the programming environ
ment (e.g., in an editor window). The changes that were
made may be annotated in the updated program source code,
for example, by the addition of colored regions, syntax
highlighting, or other visual cues, as depicted in the above
examples.
[0221] In some cases, the updated program source code
may not be immediately displayed, and rather, one or more
graphical user interface element (e.g., a popup menu) may
be displayed which depicts a textual representation of the
change(s) that the update algorithm discovered when per
forming reverse evaluation. For example, the popup menu
may include a message depicting the removal, replacement,
and/or addition of one or more string characters. Hovering
over the popup menu may preview the changes to the output
and/or the program source code displayed in the editor
window, and the popup menu may also include an option to
revert the program to its original state.
[0222] In some cases, more than one valid program source
code may be mapped to the updated output by the update
algorithm. In those cases, the popup menu (or another
graphical user interface facility) may depict each of the
possible changes to the original program source code, and
the user may choose from among them. Once the user makes
a selection, the program source code may be immediately
updated with the changes corresponding to the user's selec
tion.
[0223] In some embodiments, a heuristic may be applied
to automatically select one of a set of ambiguous edits,
without requiring the user's intervention. Such a selection
may be based on, for example, selecting the edit that affects
the fewest number of characters in the original program
source code.

Example Method for Bidirectional Evaluation

[0224] FIG. 7 depicts an example method 700 for per
forming bidirectional programming, according to an
embodiment. The method 700 may include receiving origi
nal program source code (block 702). For example, the
original program source code may be opened by the user in
a programming environment in the client computing device
602 of FIG. 6. The programming environment may corre
spond to that depicted in, for example, FIG. Sa and FIG. 6.
In an embodiment, the original program source code may
programming include instructions in a programming lan
guage corresponding to the syntax discussed with respect to
FIG. la.
[0225] In general, the program source code may be
received and/or retrieved from any computer via a computer
network, including from the remote computing device 606
of FIG. 6 via the computer network 604, and/or from a
computer memory (e.g., from the memory 602B). Once
received/retrieved, a file containing the program source code
may be read, and the contents of that file displayed in a
display device (e.g., the display device 602F of FIG. 6). The
contents may be statically parsed, for example, to syntax
highlight the code for usability purposes.
[0226] Once the original program source code is dis
played, it may be evaluated to generate a program output
(block 704). The evaluation may be performed by the
programming environment and/or by a separate component.
For example, in some cases, an evaluation module (e.g.,

US 2021/0263729 Al

program module 602C) of the programming environment
may read the program source code and input it into an
interpreter. The interpreter may evaluate the program source
code, using the forward half of the bidirectional evaluation
techniques discussed above, and may generate an output
corresponding to the result of the evaluation. The result of
the evaluation may be a program output, and may be
composed of any electronic data (e.g., strings, numbers, data
structures, objects, records, expressions, etc.). In some
embodiments, evaluating the code may be performed by a
remote computing system, such as remote computing device
606. There, for example, evaluation may include transmit
ting the program source code via the computer network 604
to the remote computing device 606, wherein a module local
to the remote computing device 606 including a language
interpreter, compiler, and/or runtime may evaluate the pro
gram source code.

[0227] The program output generated at block 704 may be
displayed in a display device of the user (e.g., the display
device 602F of FIG. 6) (block 706). In some embodiments,
the program output may be continuously re-displayed, each
time the user makes any change to the program output. This
may serve the important function, in some embodiments, of
notifying the user that the change the user has made to the
output has been accepted/persisted in the progrannning
environment. However, in some embodiments, the output of
the program source code may be transmitted to another local
process (e.g., a different program executing in the same
memory/address space) or a remote process (e.g., a different
program executing in another computer). In some embodi
ments, the output may not be displayed, and may only be
stored for later analysis, such as in database 608 of FIG. 6.
The programming environment may include the ability to
render the output of the evaluation. For example, if the
output is display code, such as CSS and/or HTML, then the
programming environment may use a browser toolkit (e.g.,
WebKit) to immediately render and display the output. In
some embodiments, the evaluation of the program source
code in method 700 may include injecting JavaScript or
other ancillary code into the evaluation output. The
JavaScript code may include, for example, event handlers
for detecting changes to the output code.

[0228] Once the output of the program source code is
displayed, a user may interact with the output directly, and
may transmit indications corresponding to modifying the
program output to the programming environment (block
708). The user who programmed the original program
source code may or may not be the same user who interacts
with the output. The interaction may take the form of a user
clicking on the output, with a mouse pointer, and/or cursor.
The user may access the output via a keyboard (e.g., a Tab
key of a keyboard) or any other key(s). The user may edit
existing elements in the output, using graphical user inter
face elements that are built-in to the programming environ
ment (e.g., widgets, a DOM inspector, a contextual menu, an
input field, etc). The user may also edit add, remove, and/or
create new elements (i.e., make structural changes to the
output) as discussed with respect to FIG. Si.

[0229] After any indication(s) of the user corresponding to
modifying the program input are received, the modified
program output may be evaluated "in reverse" as discussed
above. The result of modifying the program output may be
an updated program source code, wherein the result of
evaluating the program source code in the forward direction

19
Aug. 26, 2021

may output the modified program output (block 710). Evalu
ating the program in reverse may be used to determine
and/or reconcile differences between the original program
source code and the updated program source code. For
example, as discussed in FIG. Sc, the programming envi
ronment may determine that particular line numbers (L2 and
L3) are affected by the modified program output, and the
specifics of the modifications may be determined (e.g., that
a first group of one or more characters has been replaced by
a second group of one or more characters).

[0230] It should be appreciated that after the modified
program output is evaluated to generate updated program
source code, the updated program source code and/or the
modified program output may be displayed in a display
device and/or graphical user interface. In some embodi
ments, the display device may correspond to the display at
block 706. For example, a user may have two computer
monitors, and the program source code may be displayed on
one display, while the program output is displayed in
another. In other embodiments, the first and second displays
may be coupled to different computers, respectively. For
example, the program source code may be displayed in a
client (e.g., client computing device 602) and/or a server
(e.g., remote computing device 606). The updated program
source code may be transmitted, in some embodiments, over
a network such as computer network 604.

[0231] Reverse evaluation may enable the programming
environment to highlight more than one line of code in the
updated program source code, to indicate the potential
consequences of applying ambiguity in the updated program
source code to the original program source code. The user
may have the option of reviewing each of a plurality of
ambiguous updates, wherein the user's review of each one
causes the each updated program source code in the plurality
of ambiguous updates to be displayed in realtime, thereby
allowing the user to quickly determine which of the ambigu
ous updated program source code is intended/preferred. By
allowing the user to directly manipulate the output of
programs, without requiring the user to resort to reasoning
about the original program source code, and by automati
cally generating updated program source code reflecting the
user's desired edits to the output, the present techniques
greatly improve the efficiency of software development.

Example Bidirectional Evaluation Language
Embodiments

[0232] As noted above, the conventional approaches for
writing inverse evaluators, or "unevaluators" include serious
shortcomings. Thus, the present techniques provide methods
and systems for applying Bidirectional Evaluation to mul
tiple languages (e.g., PHP, Python, JavaScript, etc.).

Difference Language

[0233] In an embodiment, the present techniques enable
multi-language support by 1) storing the final environment
so that intermediate results can be cached and not recom
puted on update and 2) detecting complex function appli
cations (e.g., f(h(g(a)))), rewriting those applications to
let-in expressions with temporary variables that may benefit
from the caching. However, the foregoing two-step process
may not apply to some semantics (e.g., nested lets, overrid-

US 2021/0263729 Al

den variables/private variables in records, local functions
and computed functions), and may lead to unoptimized
behaviors.
[0234] Attempts to address a gap caused by rewriting by
maintaining a "difference" (e.g., a representation of how a
new value differs from a previous value) along with a
back-propagated new value may also be error-prone. It
should be appreciated that back-propagation of differences
may be essential (e.g., to avoid exponential complexity of
merging environments, when each value of the environment
could also point to a substantial portion of the environment
itself). Yet, new values and their differences may be treated
independently and, as a result, discrepancies (i.e., bugs) may
arise between new values and differences.
[0235] In summary, a language of "differences" may be
incomplete because the language of differences used to
express how a first expression differs from a second expres
sion (i.e., either an indexed child is different, the expression
was entirely replaced or for lists a number of removed/
inserted elements at respective indices). Moreover, differ
ence expressions may not enable the cloning of an element
to another place, let alone any calculation of differences after
cloning. For example, when manipulating tree-like struc
tures (e.g., HTML), a user may observe that elements
"move" between the tree, but such movement may not be
reflected in the language of differences which, at most,
described insertions and deletions within a list. The language
of differences, alone, may not support alternatives, and as a
result, any ambiguity in how the difference exists between a
first and second value may necessitate re-running an entire
update procedure.

Recursive (Edit Action) Language

[0236] In view of the foregoing, another style of evaluator
may be needed in some scenarios. Thus, in a preferred
embodiment, the present techniques include converting a
first evaluator based on recursivity to a second evaluator
based on rewriting, and then converting the second evaluator
to a third evaluator producing a description of rewriting
through Edit Actions. Specifically, instead of using differ
ences, which have a symmetrical connotation, an embodi
ment includes a powerful recursive notion including one or
more edit actions. The recursive embodiment described
herein enables authors to obtain a much more flexible
bidirectional evaluator. In fact, in some embodiments, the
present techniques are readily and successfully applied to
the JavaScript and PHP languages, to derive bidirectional
evaluators much faster than expected.
[0237] The present techniques include an inductive set of
self-contained "edit actions." Here, "self-contained" means
that, inter alia, the edit actions 1) may fully replace the tuple
(back-propagated value, differences with original), and 2)
may encode more edit actions over various scenarios (e.g.,
the present techniques prove that the set of edit actions may
form a monoid, meaning that the composition between them
can also be expressed as another "edit action"). For example,
instead of replaying an edit action script, an edit action may
be factored and even be handled independently in a final user
interface.
[0238] In some embodiments, edit actions may 1) encode
an evaluation step of a Program evaluated by a small-step
evaluator (Rewrite edit actions) and 2) express changes
requested to the user to the final output (Output edit actions).
The present techniques include a migration algorithm to

20
Aug. 26, 2021

"migrate" an Output edit action back through a Rewrite edit
action to produce a Program edit action. The present tech
niques may also describe generalizing the migration algo
rithm in the case of many alternative Output edit actions
(e.g., a version-space algebra). The present techniques may
include a general methodology to convert an evaluator to a
"Rewrite edit action" -producing evaluator, that computes an
edit action representing how a final value is computed from
an original program abstract syntax tree. Further, the present
techniques describe how to apply this migration algorithm to
effectively create unevaluators for multiple lambda calculus
variants and computing languages (e.g., JavaScript, PHP,
etc.). The present techniques include a comparison of the
performance in view of a baseline unevaluator and prove a
speed up of orders of magnitude.
[0239] Finally, the present techniques include a lens that
can customize back-propagation behavior, and enable ver
sions of List.map, Tree.map that can fully take into account
clones, wrapping and unwrapping. Specifically, from one
edit action, the present techniques may extract a shape
changing edit action and a value-changing action. For List.
map and Tree.map, the shape-changing edit action can first
be applied to the input value unmodified (e.g., clones in
outputs result in clones in inputs the same way). The
resulting input value then has the same shape as the output,
and the original evaluation update algorithm can be applied,
and will convert output value-changing edit actions (e.g., the
edit actions for the values at the leaves of the tree) back to
input value-changing edit actions and to the mapping func
tion. By recombining the shape-change edit action with the
input value-change edit action, the present techniques may
obtain the final edit action on the original input. Without the
lens including back-propagation behavior, the function List.
map may be difficult to implement, due to insertions and
deletions. With the above-described approach, implement
ing List.map is advantageously simplified, and clones
between elements of the list and trees are supported.

A Basic Edit Action Language

[0240] In an embodiment, an edit action language is
created by first defining a set of objects the edit action
language will operate on. In some embodiments, the set of
objects may be limited to certain records (e.g., to immutable
records), wherein such records include a map from keys to
certain records. For the sake of clarity and convenience, a
conventional syntax may be used to describe such records
(e.g., JavaScript for records and TypeScript for types).
However, it should be appreciated that depending on imple
mentation, any suitable syntax(es) may be used. An example
object may be as follows:

[0241] Object={[key: String]: Object}
[0242] Examples of records are as follows:

[0243] { }
[0244] {prog: { } }
[0245] {head: { a: { }}, tail: {head: {b: { }}, tail: { }} }
[0246] {O: { a: { }}, 1: {b: { }} }
[0247] {exp: {var: {m: { }}}, env: {head: {name: {m:

{ }}, value: { d: { }} }} }
[0248] A record may be deconstructed with bracket syn
tax, meaning that ifk is one of the keys of the record o, then
o[k] is the value associated to k in o. To express an edit
action on such objects, there is first a notion of"reuse", some
parts will be reused as-this (with possible edit actions for
some fields), some will be cloned from somewhere else

US 2021/0263729 Al

(again with possible edit actions on some fields), some will
be created from scratch (with a possible reuse of some
fields). In an embodiment, a first naive encoding is mini
malistic, in that any action is assumed to consist either of
fully cloning a sub-record (without touching it) or creating
a new record, leaving the possibility to express edit actions
for one or more children:

[0249] type EditAction=
[0250] Clone Path
[0251] INew {[key: String]: EditAction}

[0252] type Path=Cons String PathlNil
[0253] In some embodiments, a shorthand [keyl, ... key2]
is used to mean 'Cons keyl (Cons ... (Cons key2 Nil) ..
.)'. Applying an EditAction to an object (if applicable) may
create a new object according to the following semantics:

[0254] apply (New {keyl: action!, key2: action2})
object=
[0255] {key!: apply action! object, key2: apply

action2 object}
[0256] apply (Clone (Cons key path)) object=apply

(Clone path) object[key]
[0257] apply (Clone Nil) object=object

[0258] Further, the present techniques specify additional
semantics for transformations that include seamlessly
encoding insertions and deletions on a list, in addition to
clones of elements:

[0259] apply (New { }) { anything: { } }
[0260] ={ }

[0261] apply (New { a: Clone [}) {b: { }}
[0262] ={ a: {b: { } } }

[0263] apply (Clone ["tail"]) {head: { a:{ } }, tail: {head:
{b:{ }}, tail: { }} }
[0264] ={head: {b:{ } }, tail: { } }

[0265] apply (New {head: New { a: New{ } }, tail: Clone
[l}) {head: {b:{ }}, tail: { }}
[0266] ={head: { a:{ }}, tail: {head: {b:{ }}, tail: {

}} }
[0267] apply (New {head: Clone ["head"], tail: Clone [

l}) {head: {b:{ }}, tail: { }}
[0268] ={head: {b:{ } }, tail: {head: {b:{ } }, tail: {

}} }
[0269] A composition of differences includes a property/
assertion such that for each edit! edit2 and object where the
two members can be defined,

[0270] apply (compose edit! edit2) object===apply
edit! (apply edit2 object)

[0271] A function may be defined that obeys the above
assertion:

[0272] compose (Clone Nil) editAction=editAction
[0273] compose editAction (Clone Nil)=editAction
[0274] compose (Clone (Cons ht)) (New subActions)=

[0275] compose t subActions[h]
[0276] compose (New subActions) editAction=

[0277] compose (New {k: compose sub editAction
for (k: sub) in subActions})

[0278] compose (Clone (Cons head2 tail2)) (Clone
(Cons head! tail!))=
[0279] let (Clone tt)=compose (Clone (Cons head2

tail2)) (Clone tail!) in
[0280] Clone (Cons head! tt)

[0281] The above-described language may describe all
possible transformations. However, a user may encounter
difficulty in distinguishing between nodes that are entirely

21
Aug. 26, 2021

replaced from scratch (i.e., new nodes), as opposed to nodes
of which only a few sub-fields were modified (i.e., update
nodes).

An Advanced Edit Action Language

[0282] A preferred embodiment may include a re-defined
inductive set of edit actions, such that the fields of the cloned
elements may be modified:

[0283] type EditAction=
[0284] Reuse(RelPath) {[key: String]: EditAction}
[0285] I New ({[key: String]:

EditAction} I Integer I String I Boolean)
[0286] type RelPath={up: Int, down: Path}

[0287] For the above edit action definition, instead of
absolute paths, relative paths are stored. Thus, at any node,
an edit action of Reuse({ up: 0, down: Nil}) { } is an identity.
Furthermore, the re-defined inductive set simplifies reason
ing about EditActions, especially when such EditActions are
transformed. For example, an edit action that does not refer
a parameter up an object tree may be copied from one place
to another. It should be appreciated that similar apply and
compose functions can be derived.

Example Back Propagation Implementation

[0288] The EditAction implementation described above
can be used to enable back-propagation. For example,
assume an interpreter that rewrites objects like {a: n} to
values like {b: n, c: n}.
[0289] (1) Original Input: { a: 1}
[0290] the interpreter would produce the following
[0291] (2) Original Output: {b: 1, c: 1}
[0292] Let us suppose that the user comes in and modifies
the original output by modifying the value of b, and wrap
ping the value of c but leaving it untouched:
[0293] (2') Modified Output: {b: 2, c: { d: 1}}
[0294] The present techniques may back-propagate these
modifications to the original program { a: 1} by combining
the two edit actions into one, which would result in:
[0295] (1 ') Expected modified Input: { a: { d: 2}}
[0296] The present techniques may also derive such modi
fied input mechanically. using the edit actions described
above. The horizontal edit action corresponding to the
small-step evaluation from (1) to (2) is:
[0297] (1) to (2): New {b: Reuse (["a"]) { }, c: Reuse
(["a"]) { } }
[0298] The vertical edit action corresponding to the user
modifications from (2) to (3) is:
[0299] (2) to (2'): Reuse ([]) {b: New(2), c: New({ d:
Reuse([]) { } }) }
[0300] Running the algorithm outputToinputEditAction
((1) to (2), (2) to (2)) yields the following:
[0301] Reuse([]){a: New({d: DDNew(2)})}
[0302] which, if applied to (1), would produce the
expected (1 ').
[0303] FIG. 8 depicts an example output to input algo
rithm for enabling the back-propagation operations dis
cussed above. The algorithm assumes a straightforward
implementation of Reuse and New. In the algorithm, on the
output, at the current location pointed by dStackPath (the
workplace), the existing element is replaced by a clone of a
tree element present elsewhere in the output (the source).
The workplace's stack path is dStackPath. By following the
output's stack paths in the hEditAction, the algorithm recov-

US 2021/0263729 Al

ers the paths as they come from the input. All children diffs
are recovered globally as if they were done on the source's
path., yielding a list of global differences on the original
input. If these differences consists of updates whose path
contains the prefix dSourcePathOriginal, the algorithm
assumes that they happen on the workplace in the input and
were cloned from the source in the input.
[0304] The sourceStackPath corresponds to the dStack
Path+relPath. The dPathOriginal refers to the path where the
workplace came from in the input. The dSourcePathOriginal
corresponds to the path where the source came from in the
input. The clonePath refers to the relative path between an
input's workplace and an input's source. When the edit
action type is not a Reuse type, the algorithm collects
absolute differences outside of the original path. The algo
rithm of FIG. 8 may store paths in a relative way, or as
absolute paths from the root of each object.

Converting an Evaluator to an EditAction-Producing
Evaluator

[0305] In some embodiments, to convert an evaluator to
edit-action-producing evaluator, so that the evaluator can
use outputToinputEditAction to back-propagate edit actions
on the output to edit actions on the program, the following
steps may be used, wherein the steps are illustrated in an
environment-based call-by-value lambda calculus. The
evaluate! function below takes a ProgState and returns a
Val:

Exp - { type: "var", name: String }
I { type: "lambda", argName: String, body: Exp}
I +55 type: "app", fun: Exp, arg: Exp}

Val - { type: "closure", argName: String, body: Exp, env: Env}

22

Env - { type: "cons", head: {name: String, val: Val}, tail: Env} I { type: "nil"}
ProgState - { exp: Exp, env: Env }
evaluate(ps: ProgState): Val {

if(ps.exp.type -- "lambda")

Aug. 26, 2021

[0307] The refactoring steps may include

[0308] 1. Immediately after the start of the evaluator
function, if the computation is a Return of a value, there
should be a continuation left. The present techniques call
the first continuation on the computation state by remov
ing the first continuation, and returning the resulting
computation state.

[0309] 2. After treating the Return case, the computation
has to be a Compute of a ProgState. The present tech
niques reuse the code of the evaluator, with the following
changes:

[0310] (a) Replace each return X; statements that do not
involve the evaluator by

return { computation: {type: "Return", value: X},

continuations: (previous continuations)};

[0311] (b) Replace any let X=evaluate (P); C by

return { computation: P, continuations: {type: "cons",
head: ({computation: {value: X}, continuations}->
{ C }, tail: (previous continuations)}}

return {type: "closure", argName: ps.exp.argName, body: ps.exp.body, env: ps.env};
if(ps.exp.type -- "var") {

let env = ps.env;

}

while(env.head.name !- ps.exp.name) env - env.tail;
return env.head.val;

let { argName, body, env } - evaluate({ exp: ps.exp.fun, env: ps.Envl);
let arg - evaluate({exp: ps.exp.arg, env: ps.Env});
return evaluate({exp: body, env: {type: "cons", head:

{name: argName, val: arg}, tail: env}});

[0306] The present techniques may make the evaluator
tail-recursive, by eliminating the need for recursion by
storing continuations as callbacks. To do so, for an evaluator
that takes programs ProgState and produces values Val, the
evaluator is refactored to take a ComputationState to return
a ComputationState and repeatedly call itself until it reaches
a final value. The ComputationState may be defined as:

type Computation - { type: "Compute", ps: ProgState}

I {type: "Return", value: Val}

[0312] 3. Invoke the resulting evaluator in a while-loop so

that the computation can continue until there is nothing

else to compute. In the above example, the function

evaluate!_! is obtained, which is called from the function

evaluate!:

type Continuations= {type: "cons", tail: Continuations, head: ComputationState =>

ComputationState}

I {type: "nil"}

type ComputationState ={ computation: Computation, continuations: Continuations}

US 2021/0263729 Al
23

evaluatel(ps: ProgState): Val {

}

let cs - {computation: {type: "Compute", ps: ps}, continuations: { type: "nil"}};
while(cs.computation.type !-- "Return" 11 cs.continuations.type -- "cons") {

cs - evaluatel_l(cs);

return cs.computation.value;

evaluatel_l(cs: ComputationState): ComputationState {
if(cs.computation.type -- "Return") {

if(cs.continuations.type -- "cons")
return cs.continuations.head({ computation: cs.computation,
continuations: cs.continuations.tail});

else
throw "Error: no way to continue computation";

let ps = cs.computation.ps;
if(ps.exp.type -- "lambda")

return { computation: {type: "Return", value: {type: "closure",
argName: ps.exp.argName, body: ps.exp.body, env: ps.env},
continuations: cs.continuations } };

if(ps.exp.type -- "var") {
let env = ps.env;

}

while(env.head.name !- ps.exp.name) env - env.tail;
return { computation: {type: "Return", value: env.head.val},

continuations: cs. continuations };

return { computation: { type: "Compute", ps: {exp: ps.exp.fun, env: ps.Env}},
continuations: { type: "cons", tail: cs.continuations,

head: ({computation: {value: {argName, body, env}}, continuations})-> {
return { computation: {type: "Compute", ps: {exp: ps.exp.arg, env: ps.Env}I,

continuations: {type: "cons", tail: continuations, head:

}

({computation: {value: arg}, continuations})-> {
return {computation: {type: "Compute", ps: {exp: body, env:

{type: "cons", head: {name: argName, val: arg}, tail: env}} },
continuations: continuations};

} } } };

Aug. 26, 2021

[0313] In some embodiments, the present techniques may
transform the ComputationState to a first-order data struc
ture. Initially, continuations may be stored as closures,
which may make them difficult to reason about, as the
above-described Edit Actions cannot be applied directly to
them. Thus, in some embodiments, continuations may be
replaced by the data they require, including an identifier

specifying which code may be called. For example, at the
beginning of the equivalent of evaluate!_! function, instead
of calling the first continuation on the ComputationState, the
present techniques may use a case disjunction to execute
code that the original closure would have executed. In the
above example, this would yield the function evaluate1_2
that replaces the function evaluate!_!:

evaluate1_2(cs: ComputationState): ComputationState {
if(cs.computation.type -- "Return") {

if(cs.continuations.type -- "cons") {
let {head,tail} - cs.continuations;
if(head.name -- "afterFun") {

let { computation: {value: { argName, body, env}}} - cs;
let ps - head.data.ps;
return { computation: {type: "Compute", ps: ps},

continuations: {type: "cons", tail: tail, head:
{name: "afterArg", data: { argName, body, env}} }};

} else if(head.name -- mafterArg") {
let { argName, body, env} - head.data;
let { computation: {value: arg}} - cs;
return {computation: {type: "Compute", ps: {exp: body,

env: {type: "cons", head: {name: argName, val: arg}, tail: env}} },
continuations: tail};

throw "Unknown continuation"+ head.name;
} else

throw "Error: no way to continue computation";

let ps = cs.computation.ps;
if(ps.exp.type -- "lambda")

return { computation: {type: "Return", value: {type: "closure",
argName: ps.exp.argName, body: ps.exp.body, env: ps.env} },

US 2021/0263729 Al

-continued

continuations: cs. continuations};
if(ps.exp.type -- "var") {

let env = ps.env;

}

while(env.head.name !- ps.exp.name) env - env.tail;
return { computation: {type: "Return", value: env.head.val},

continuations: cs. continuations };

return { computation: { type: "Compute", ps: {exp: ps.exp.fun, env:
ps.Env}}, continuations: {type: "cons", tail:

cs.continuations,
head: { name: "afterFun", data: {type: "Compute",

ps: { exp: ps.exp.arg, env: ps.env}} } } };

Aug. 26, 2021
24

[0314] In some embodiments, the evaluator may be modi
fied to return Edit Actions rather than ComputationState.
Specifically, once the evaluate1_2 is updated to take and
return a first-order structures consisting of only records and
strings, the present techniques may provide that evaluate1_2
rewrite the computation state. Thus, instead of returning
computations, the present techniques may return Edit

Actions that lead to the resulting computations. This yields
a new variant evaluate1_3 that calls this function evaluate!
3_1 by applying the resulting Edit actions to the current
computation state, to obtain the next computation state. In
the above example, this technique results in the function
evaluate1_3 which replaces evaluate1_2:

evaluate1_3(cs: ComputationState): ComputationState {
let editAction - evaluate1_3_l(ComputationState);
return apply EditAction(editAction, cs);

}
evaluate1_3_l(cs: ComputationState): EditAction {

if(cs.computation.type -- "Return") {
if(cs.continuations.type -- "cons") {

let {head,tail} - cs.continuations;
if(head.name -- "afterFun") {

return New({
computation: New({

type: New("Compute"),
ps: Reuse(["continuations", "head", "data", "ps"]),

}),
continuations: New({

type: New("cons"),
head: New({

name: New("afterArg"),
data: Reuse(["computation", "value"])

}),
tail: Reuse(["continuations", "tail"])

})
});

}else if(head.name -- "afterArg") {
let { argName, body, env} - head.data;
let { computation: {value: arg}} -cs;
return New({

});

computation: New({
type: New("Compute"),
ps: New({

});

exp: Reuse(["continuations", "head", "data", "body"])
env: New({

})
})

type: New("cons"),
head: New({

name: Reuse(}"continuations", "head", "data", "argName"}),
val: Reuse(["computation", "value"])

}),
tail: Reuse(["continuations", "head", "data", "env"])

continuations: Reuse([''continuations'', ''tail''])

throw "Unknown continuation" +head.name;
} else

throw "Error: no way to continue computation";

let ps = cs.computation.ps;

US 2021/0263729 Al

-continued

if(ps.exp.type -- "lambda") {
return Reuse([], {

computation:

}

New({type: New("Return"),
value: New({

type: New("closure"),
argName: Reuse(["ps", "exp", "argName]),
body: Reuse(["ps", "exp", body"]),
env: Reuse(["ps", "env"])})})});

if(ps.exp.type -- "var") {
let env = ps.env, n = O;
while(env.head.name !- ps.exp.name) { env - env.tail; n++;}
return Reuse([], {

computation:
New(}type: New("Return"),

Aug. 26, 2021
25

value: Reuse(["ps", "env", ... fillArray("tail", n), "head"])})});
}
return New({

computation:
Reuse([''computation''],{
ps: Reuse([],{

exp: Reuse(["fun"])
})

}),
continuations:

New({
type: New("cons"),
head: New({

name: New("afterFun"),
data: New({type: "Compute",

ps: New({ exp: Reuse(["computation", "ps", "exp", "arg"])}),
env: Reuse(["computation", "ps", "env"])})})})

}

});
}

})

}),
tail: Reuse([])

[0315] Thus, Edit Actions are computed depending on the
computation state. When looking up a variable in the envi
ronment, evaluate1_3_1 also generates a custom Reuse path
with the right amount of "tail" so that the path points to the
value being used. The top-level use of Reuse ([], for both
variables and lambdas enables the present techniques to not
have to specify that the stack of continuations is the same,
and to start specifying the reuse relative paths with "ps"
rather than absolute paths with "computation", "ps". It
should be appreciated that a Reuse could be used for the last
return statement, but in such embodiments, a relative path
may be required that goes "up" on the leaves, which may
decrease readability. Moreover, those of skill in the art will
appreciate that many ways to write the above Edit-Action
producing evaluator are envisioned. For example, instead of
building the structure {type: "Compute", ps: ... } in the
continuation of the last return statement, an embodiment
may embed the entire computation state, and/or the argu
ment and the env. Some designs might be easier to reason
about, although at the end, the algorithms may produce the
same result.

Using Edit-Action-Producing Evaluators to Create Update
Engines

[0316] Once the above techniques are implemented, to
arrive at an evaluator that produces Edit-Action as a byprod
uct, and using the function outputToinputEditAction, as
described in FIG. 8, the present techniques may implement
a procedure to update programs when values are modified.
This procedure may execute the program only once and
record intermediate Edit Actions. It should be appreciated
that recording intermediate Edit Actions is a step that may be
pre-computed before running the update function in some
embodiments. For clarity, the following description includes
this evaluation as part of the update.

[0317] In the following example, update takes a program,
an edit action that has been made on its output, and returns
the new program. For that, update applies to the old program
the edit action obtained by calling the subroutine update_!:

update(exp: Exp, editActionOnOutput; EditAction): Exp {
let finalEditAction - update_l(exp, editActionOnOutput);
return applyEditAction(finalEditAction, exp);

}
update_l(exp: Exp, editActionOnOutput: EditAction): EditAction {

let intermediates - [] ;
let cs - { computation: {type: "Compute", ps: { exp: exp, env: {type: "nil" }} },

continuations: {type: "nil" } };

US 2021/0263729 Al Aug. 26, 2021
26

-continued

while(cs.computation.type !-- "Return" 11 cs.continuations.type -- "cons") {
let ea - evaluatel_3 (cs);
cs - applyEditAction(ea, cs);
intermediates. push(ea);

let finalEditAction - editActionOnOutput;
while(intermediates.length) > 0 {

finalEditAction - outputTolnputEditAction(intermediates.pop(), finalEditAction);

return finalEditAction;

[0318] It should be appreciated that the while loop enables
the support of local lenses, providing users ways to define
reverse transformations themselves. The foregoing approach
may be applied to easily scale to existing interpreters,
without having to consider the update part. For example, and
without limitation, reverse interpreters may be authored for
the following languages:

[0319] call by name substitution-based lambda calculus
[0320] call by value substitution-based lambda calculus
[0321] call by name environment-based lambda calcu-

lus
[0322] call by value environment-based lambda calcu-

!us
[0323]
[0324]
[0325]

Krivine evaluator
JavaScript
PHP

Implementing a Krivine Evaluator

[0326] As described above, bidirectional evaluation is a
technique that allows arbitrary expressions in a standard
A-calculus to be "run in reverse". In some embodiments of
bidirectional evaluation, (1) an expression e is evaluated to
a value v, (2) the user makes "small" changes to the value
yielding v' (structurally equivalent to v), and (3) the new
value v' is "pushed back" through the expression, generating
repairs as necessary to ensure that the new expression e'
(structurally equivalent toe) evaluates to v'.
[0327] Shown below is the syntax of a pure A-calculus
extended with constants c. The present techniques may
employ natural (e.g., big-step, environment-style) seman
tics, where function values are closures. Call-by-value func
tion closures (E, Ax.e) may refer to call-by-value environ
ments E-which bind call-by-value values-and call-by
name function closures (D, Ax.e) to call-by-name
environments D-which bind expression closures (D, e) yet
to be evaluated. A stack S may be a list of call-by-name
expression closures.

v::-cl(E,11.x.e)

u::-c(D,11.x.e)

D::--ID,xf--+ (Dx,e)

S::-[]l(D,e)::S

Expressions

Call-By-Value Values

Call-By-Value Environments

Call-By-Name Values

Call-By-Name Environments

Krivine Argument Stacks

[0328] Herein, structural equivalence is defined as struc
tural equivalence of expressions (e1-e2), values (v1-v2 and

u1-u2), environments (E1-E2 and D1-D2), and expression

closures (E1 f-- e1 -E2 f--e2 and D1 f-- e1 -Di-e2) is equality
modulo constants c1 and c2 , which may differ, at the leaves
of terms.

Bidirectional Call-by-Value Evaluation

[0329] FIG. 9 depicts the bidirectional call-by-value
evaluation rules, that may be extend the core language with
numbers, strings, tuples, lists, etc .. In addition to a conven
tional "forward" evaluator, there is a "backward" evaluator
(also referred to as "evaluation update" or simply "update"),
whose behavior is customizable. The environment-style
semantics simplifies the presentation of backward evalua
tion; a substitution-based presentation would require track
ing provenance.

[0330] Given an expression closure (E, e) (a "program")
that evaluates to v, together with an updated value v',
evaluation update traverses the evaluation derivation and
rewrites the program to (E', e') such that it evaluates to v'.
The first three update rules are as follows: Given a new
constant c', the BV-U-Const rule retains the original envi
ronment and replaces the original constant. Given a new
function closure (E', Ax.e'), the BV-U-Fun rule replaces both
the environment and expression. Given a new value v', the
BV-U-Var rule replaces the environment binding corre
sponding to the variable x used; E[x f-t v'] denotes structure
preserving replacement.

[0331] The rule BV-U-App for function application is
what enables values to be pushed back through all expres
sion forms. The first two premises evaluate the function and
argument expressions using forward evaluation, and the
third premise pushes the new value v' back through the
function body under the appropriate environment. Two key
aspects of the remainder of the rule are as follows: first, that
update generates three new terms to grapple with: E), v2 ',

and e). The first and third are "pasted together" to form the
new closure (E), Ax.e)) that some new function expression
e/ must evaluate to, and the second is the value that some
new argument expression e2 ' must evaluate to; these obli
gations are handled recursively by update (the fourth and
fifth premises). The second key is that two new environ
ments E1 and E2 are generated; these are reconciled by the
following merge operator, which requires that all uses of a
variable be updated consistently in the output. It will be
appreciated by those of skill in the art that in practice, it is
often useful to allow the user to specify a single example of
a change, to be propagated to other variable uses automati
cally. An alternative merge operator may be used, that trades
soundness for practicality.

US 2021/0263729 Al

[0332] Herein, the cbv Environment Merge E1 eiEBe'E2 is
defined as follows:

{

V1 if V1 = V2

and v = v1 if x $. freeVars(e 2)

v2 if x $. freeVars(ei)

[0333] Further, two theorems apply. First, the Structure
Preservation of BV Update:

[0334] IfEf--e => Bvv and v-v' and Ef--e-¢= Bvv'----+ E'f--e',

then Ef--e-E'f--e'.
[0335] And secondly, the Soundness of BV Update

[0336] If Ef--e-¢= Bv v'----+ E' f--e', then E' => Bv v'.
[0337] A call-by-name system largely follows the seman
tics of the call-by-value version described above.

Bidirectional Call-by-Name Evaluation

[0338] FIG. 10 depicts an example of bidirectional call
by-name evaluation. The BN-U-Const and BV-U-Fun rules
are analogous to the call-by-value versions. The BN-U-Var
rule for variables must now evaluate the expression closure
to a value, and recursively update that evaluation derivation.
Being call-by-name, rather than call-by-need, the present
techniques do so every time the variable is used, without any
memoization. The BN-U-App for application is a bit simpler
than BV-U-App, because the argument expression is not
forced to evaluate; thus, there is no updated argument
expression to push back. Environment merge for call-by
name environments is similar to the merging described
above.
[0339] Several theorems apply: First, Structure Preserva-

tion of BN Update. If D f-- e => BN u and u-u' and D f-- e-¢= BN

u'----+ D'f--e', then Df--e-D'f--e'. Second, Soundness of BN

Update. If D f-- e-¢= BN u'----+ D' f-- e', then D' f-- e' => BN u'.
[0340] In addition to being sound with respect to forward
call-by-name evaluation, it is sound with respect to forward
call-by-value evaluation. To formalize this proposition

below, the present techniques refer to the lifting IE l and

1 v l of by-value environments and values, respectively, to

by-name versions, and to the evaluation [(D, e)] of a
delayed expression closure to a by-value value.
[0341] Herein, BV Value and BV Environment Lifting are
defined as follows:

I (E;,Ay.e)l~(I Efl,Ay.e) I cl~c

I - l ~- I E,x----+ cl~ IE l,x----+ (E,c) I E,x----+ (E;,

Ay.e) l~ IE l,x----+ I (EpAY.e) I

[0342] BN Value, BN Environment, and BN Closure
Evaluation are defined as:

[c] = c [(D, AX.e)] = ([D], AX.e)

[-] = -[D, x >--> (Dx, e)] = [D], x >--> [(Dx, e)]

27

[D] f-e ⇒BV V

[(D, e)] = v

-continued

Aug. 26, 2021

[0343] A further theorem is Completeness of BN Evalu

ation. If Ef--e=>Bv v, then 1El f--e=>BN 1vl. And still
further, the Soundness of BN Update for BV Evaluation. If

Ef--e=>Bvv and 1El f--e-¢=BN 1v'l----+D'f--e', then [(D',

e')]=v'.

Krivine Evaluation

[0344] Lastly, the present techniques include a bidirec
tional "Krivine evaluator" in the style of the classic (for
ward) Krivine machine, an abstract machine that imple
ments call-by-name semantics for the lambda-calculus.
While lower-level than the "direct" call-by-name formula
tion, above, the forward and backward Krivine evaluators
are even more closely aligned than the prior versions.
[0345] FIG. 11 depicts Krivine evaluator semantics,
according to an embodiment. Following the approach of the
Krivine machine, the forward evaluator maintains a stack S
of arguments (i.e. expression closures). When evaluating an
application e1 e2 , rather than evaluating the e1 to a function
closure, the argument expression e2-along with the current
environment D-is pushed onto the stack S of function
arguments (the K-E-App rule); only when a function expres
sion "meets" a (non-empty) stack of arguments is the
function body evaluated (the K-E-Fun-App rule). The K-E
Const, K-E-Fun, and K-E-Var rules are similar to the call
by-name system, now taking stacks into account.
[0346] The backward evaluator closely mirrors the for
ward direction. Recall the two keys for updating applica
tions (BV-U-App and BN-U-App): pasting together new
function closures to be pushed back to the function expres
sion, and merging updated environments. Because the for
ward evaluation rule K-E-App does not syntactically
manipulate a function closure, the update rule K-U-App
does not construct a new closure to be pushed back. Indeed,
only the environment merging aspect from the previous
treatments is needed in K-U-App. The K-U-Fun-App rule
for the new Krivine evaluation form-following the struc
ture of the K-E-Fun-App rule----creates a new function
closure and argument which will be reconciled by environ
ment merge. It should be appreciated that existing
approaches for turning the natural semantics formulation of
the present techniques into an abstract state-transition
machine (including the use of, e.g., markers or continua
tions) ought to work for turning the natural semantics into
one of the "next 700 Krivine machines".
[0347] Several theorems apply, such as Structure Preser-

vation ofKrivine Update: If (Df--e; S)~ u and u-u' and (D

f--e; S) ~ u'----+ (D' f-- e'; S'), then D f--e-D' f-- e'. Another theo

rem is Soundness of Krivine Update: If (D f-- e; S) ~ u and

(Df--e; S)~u'----+ (D'f--e'; S'), then (D'f--e'; S')~u•.
[0348] The following theorem connects the Krivine sys
tem to the above (natural-semantics style) call-by-name
system (and, hence, the above call-by-value system)
analogous to the connection between the Krivine machine
and traditional substitution-based call-by-name systems:
Equivalence of Krivine Evaluation and BN Evaluation (-

f-- e; [])~ U iff -f--e =} BN U.

US 2021/0263729 Al Aug. 26, 2021
28

[0349] A corollary is the Soundess of Krivine Update for

BN Evaluation: If -f--e => BN u and (-f--e; [])$: u'-v-+ (-f--e';

[]), then - f-- e' => BN u'. And, Soundess of Krivine Update for

BV Evaluation: If -f--e => BVV and (-f--e; [])$: r v'l-v-+ (-f--e';

[]) then -f--e' => Bv v'.

translation differs in the empty stack case. For example, in
some embodiments, Krivine Forward BV Evaluation may be
defined as follows

x$.D (D,x>-->(D 1,ei)f-ex;S)~v [D]f-e=?v

[0350] Conclusions regarding the backward Krivine
evaluator that will be appreciated of those of skill in the art
include that first, the evaluator never creates new values
(function closures, in particular) to be pushed back (like
BV-U-App and BN-U-App do). Therefore, if the user inter
face is configured to disallow function values from being
updated (that is, if the original program produces a first
order value c), then the K-U-Fun rule for bare function
expressions can be omitted from the system. And second,
unlike the call-by-value and call-by-name versions above,
the backward Krivine evaluator does not refer to forward
evaluation at all. The backward rules are straightforward
analogs to the forward rules, using environment merge to
reconcile duplicated environments. Advantageously, this
simplicity helps when scaling the design and implementa
tion of bidirectional evaluation to larger, more full-featured
languages.

(D f-e; (D1, ei)::S)~v (D f-e; □)~v

[0353] A corollary follows a propos1t10n Soundness of

Krivine Update for BV Evaluation: If (E f--e; S) =? v and (E

f--e; S)$: rv'l-v-+ (D'f--e'; S'), then (D'f--e'; S')=?v'.

[0354] Namely, If - => e => BV v and (-f--e; [])$: r v'l-v-+ (

f--e'; []),then -f--e' => Bv v'.

Example Bidirectional Evaluation Language
Implementation

[0355] As noted above, the present techniques can be
applied for many languages, such as a lambda calculus
call-by-name substitution-based language, a lambda calcu
lus call-by-value substitution-based language, a lambda cal
culus call-by-name environment-based language, a lambda
calculus call-by-value environment-based language, and a
krivine evaluation system. The following is a proof in
JavaScript, demonstrating that the results described herein
are reproducible.

[0351] Rather than defining forward Krivine evaluation ?
directly and then establishing its connection to the call-by
name system, some embodiments of the present techniques
may define the semantics of forward Krivine evaluation by
translation to call-by-name evaluation. For example, Krivine
Forward BN Evaluation may be defined as follows: JavaScript Implementation

x$. D (D, x>--> (D1 , e1)f-ex;S)~u Df-e=?BNu

(Df-e; (D1, e1)::S)~u (Df-e; □)~u

JavaScript Verification Tests

[0356] The following tests demonstrate that the above
implementation behaves correctly for a series of inputs.

[0352] As with the direct by-name evaluator, the backward
Krivine evaluator may update byname evaluation, wherein

Standard Function Tests

[0357]

var ntests = O; passedtests = O;
function shouldEqual(a, b, msg) {

ntests++;
let as - uneval(a), bs - uneval(b);
if(as !-- bs) {

console.log(msg 11 "Test failed");
inspect (a)
console.log("not equal to expected")
inspect(b);

} else passedtests++;

debugMagicFunction - false;
shouldEqual(outputDiffsTolnputDiffs(

HClone("b"),
DDNew(3)),

DDUpdate){b: DDNew(3)}), "Clone new");
shouldEqual(outputDiffsTolnputDiffs(

HUpdate({d: HClone(l, "c")}, "b"),
DDUpdate({d: DDNew(3)})),

DDUpdate({b: DDUpdate({ c: DDNew(3)})}))
shouldEqual(outputDiffsTolnputDiffs(

HUpdate({d: HClone(l, "c"), e: HClone(l, "c")}),
DDUpdate({d: DDNew(3), e: DDNew(5)})),

DDUpdate({ c: DDNew(3).concat(DDNew(5))}));
shouldEqual(outputDiffsTolnputDiffs(

HUpdate({ a: HClone(l, "b")}),
DDClone("a")),

DDClone("b"))
shouldEqual(outputDiffsTolnputDiffs(

HNew({ }, {a: HClone("b"), b: HClone("b")}),
DDClone("a")),

DDClone("b"));

US 2021/0263729 Al

-continued

shouldEqual(outputDiffsTolnputDiffs(
HUpdate({ a: HClone(l, "b")}),

DDClone("b")),
DDClone("b"));

shouldEqual(outputDiffsTolnputDiffs(
HUpdate({a: HClone(l, "b"), b: HClone(l, "a")}),

DDClone("b")),
DDClone("a"));

shouldEqual(outputDiffsTolnputDiffs(
HUpdate({ a: HClone(l, "b")}),

DDUpdate({ a: DDNew(3)})),
DDUpdate({b: DDNew(3)}));

shouldEqual(outputDiffsTolnputDiffs(
HNew({ }, {d: HClone("a"), c: HClone("a"), b: HClone("b")}),

DDUpdate({d: DDNew(3), c: DDNew(5)})),
DDUpdate({ a: DDNew(3).concat(DDNew(5))}));

shouldEqual(outputDiffsTolnputDiffs(
HNew({ }, {a: HSame, b: HSame}),

DDUpdate({ a: DDNew(2)})),
DDNew(2));

shouldEqual(outputDiffsTolnputDiffs(
HUpdate({

b: HClone(2, "c")
}, ["a"]),

DDUpdate({
b: DDNew(3)

})),
DDUpdate({

c: DDNew(3)
}));

shouldEqual(outputDiffsTolnputDiffs(
HUpdate({

body: HUpdate({
app: HUpdate({

arg: HClone(5, "arg")
}),
arg: HClone(4, "arg")

})
}, {up: 0, down: cons("app", cons("body"))}),

29

DDUpdate({body: DDUpdate({ app: DDClone("app")}).concat(DDClone("app"))})),
DDUpdate({

Cloneapp: DDUpdate({
body: DDUpdate({

})

body: DDUpdate({ app: DDClone("app")})
})

}).concat(
DDUpdate({

)
);

app: DDUpdate({
body: DDUpdate({

})

})
})

body: DDClone("app")

shouldEqual(outputDiffTolnputDiff(
HNew({ }, {a: HNew({ }, {b: HCloneUpdate({up: 0, down: cons("c")}, {d:

HClone(2, "f')}) })}),
DUpdate({ a: DUpdate({b: DUpdate({ d: DCloneUpdate({ up: 1, down:

cons("e")}, {p: DClone(2, "d")}), e: DClone(l, "d")})})})),
DUpdate(

{f: DCloneUpdate({up: 1, down: cons("c", cons("e"))}, {p: DClone(3,
"f')}),

c: DUpdate({ e: DClone(2, "f')})
}));

shouldEqual(outputDiffTolnputDiff(
HUpdate({a: HNew({ }, {k: HClone(l, "b", "c"), p: HClone(l, "b",

"d")}), b: HClone(l, "a", "m")}),
DUpdate({b: DNew({ }, {u: DSame, o: DClone(l, "a", "k"), t: DClone(l,

"a", "p")})})),
DUpdate({a: DUpdate({m: DNew({ }, {u: DSame, o: DClone(2, "b", "c"), t:

DClone(2, "b", "d")})})}));
shouldEqual(outputDiffsTolnputDiffs(

HNew({ }, {a: HNew({ }, {b: HCloneUpdate({up: 0, down: cons("c")}, {d:
HClone(2, "f')}) })}),

Aug. 26, 2021

US 2021/0263729 Al
30

-continued

DDUpdate({ a: DDUpdate({b: DDUpdate({ d: DDCloneUpdate({ up: 1, down:
cons("e")}, {p: DDClone(2, "d")}), e: DDClone(l, "d")})})})),

DDUpdate(
{f: DDCloneUpdate({up: 1, down: cons("c", cons("e"))}, {p:

DDClone(3, "f')}),
c: DDUpdate({e: DDClone(2, "f')})

}));
shouldEqual(outputDiffsTolnputDiffs(

HUpdate({a: HNew({ }, {k: HClone(l, "b", "c"), p: HClone(l, "b",
"d")}), b: HClone(l, "a", "m")}),

DDUpdate({b: DDNew({ }, {u: DDSame, o: DDClone(l, "a", "k"), t:
DDClone(l, "a", "p")})})),

DDUpdate({a: DDUpdate({m: DDNew({ }, {u: DDSame, o: DDClone(2, "b",
"c"), t: DDClone(2, "b", "d")})})}));

shouldEqual(outputDiffsTolnputDiffs(
HCloneUpdate(["app", "body"], { arg: HClone(3, marg")}),
DDUpdate({ arg: DDClone(l, "app")})),
DDUpdate({arg: DDClone(l, "app", "body", "app")})

shouldEqual(outputDiffsTolnputDiffs(
HCloneUpdate(["app", "body"], { arg: HClone(3, "arg")}),
DDNew({ }, {app: DDClone("app"), arg: DDClone("app")})),
DDUpdate({app: DDUpdate({body: DDNew({ }, {app: DDClone("app"), arg:

DDClone("app")})})})

shouldEqual(outputDiffsTolnputDiffs(
HNew({ }, {b: HClone(0, "a"), c: HClone(0, "a")}),
DDUpdate({b: DDNew(2), c: DDNew({ }, {d: DDSame})})),
DDUpdate({a: DDNew({ }, {d: DDNew(2)})})

console.log(passedtests + "/" + ntests + " tests succeeded")
process.exit()
function doTest(testObject) {

for(let testcase oftestObject.testcases) {
progl - testcase.progl
step! - testObject.hEvaluate(progl);
console.log("\n\n-------lnFor program")
inspect(progl);
console.log("Transformed through (computed step)")
inspect(stepl);
prog2 - applyHDiffs(stepl, progl);
inspect(prog2);
//let reverseStepl - reverseHDiffs(progl, step!);
for(let prog2Diff of testcase.prog2diffs) {

console.log("lnlf change")
inspect(pro g2)

console.log("by")
inspect(prog2Difl);
console.log("to")
inspect(applyDDiffs(prog2Diff, prog2));
console.log("then change")
inspect(progl);
let proglDiff - outputDiffsTolnputDiffs(stepl, prog2Difl);
console.log("by")
inspect(proglDifl);
console.log("to")
inspect(applyDDiffs(proglDiff, progl));

Lazy Substitution-Based Lambda Calculus Tests

[0358]

cbn_lambda_calculus - {
II Frog - string
// I {lambda: name, body: Frog}
// I { app: Frog, arg: Frog}
testcases: [

{progl: {app: {lambda: "x", body: {lambda: "y", body: {app: {app:
"y", arg: "x"}, arg: "x" } } }, arg: "z"},

prog2diffs: [
// Remove first argument, or remove second argument.

Aug. 26, 2021

US 2021/0263729 Al

-continued

DDUpdate({body: DDUpdate({ app:
DDClone("app")}).concat(DDClone("app"))}),

// Replace second argument by w
DDUpdate({body: DDUpdate({ arg: DDNew("w")})}),
// Replace First argument by w

31

DDUpdate({body: DDUpdate({ app: DDUpdate({ arg: DDNew("w")})}) }),
// Copy function to overwrite second argument

}
],

DDUpdate({body: DDUpdate({ arg: DDClone(l, "app", "app")})}),
// Add a tbird argument
II Clone tbe second argument to a tbird argument z (should be x
// at tbe end) or add an unrelated tbird argument z (should stay z
// at tbe end)
DDUpdate({body: DDNew({ }, {app: DDSame, arg:

DDClone("arg").concat(DDNew("z"))})})

hEvaluate(prog) {
// Returns the hdiff to perform.
if(typeofprog.lambda !-- "undefined") return HSame;
if(typeof prog --- "string") return HSame;
// The function is not yet a lambda
if(typeof prog.app.lambda --- "undefined")

return HUpdate({ app: hEvaluate(prog.app)});
let name - prog.app.lambda;
// Replacement.
let evalHDiff - function(upDeptb, body Exp, cloneFrom) {

// Clone of argument
if(bodyExp --- name) return HClone(upDeptb, "arg");
// Otber name
if(typeof body Exp --- "string") return HClone(cloneFrom);
//shadowing: don't touch
if(bodyExp.lambda --- name) return HClone(cloneFrom);
// Lambda witb different name.
if(typeof body Exp.lambda !-- "undefined")

return HUpdate({body: evalHDiff(upDeptb+l, bodyExp.body)}, cloneFrom);
//if(typeof bodyExp.app !-- "undefined") {
return HUpdate({

app: evalHDiff(upDeptb + 1, bodyExp.app),
arg: evalHDiff(upDeptb + 1, bodyExp.arg)
}, cloneFrom);

return evalHDiff(2, prog.app.body, cons("app", cons("body")));
}

doTest (cbn_lambda_calculus) ;

Substitution-Based Lambda Calculus, Computing Argument
First Tests

[0359]

cbv _lambda_calculus - {
II Frog - string
// I {lambda: name, body: Frog}
// I { app: Frog, arg: Frog}
testcases: [

{progl: {app: {lambda: "x", body: {lambda: "y", body: {app: {app:
"y", arg: "x"}, arg: "x" } } }, arg: "z"},

prog2diffs: [

// Remove first argwnent, or remove second argwnent.
DDUpdate({body: DDUpdate({ app: DDClone("app")}).concat(DDClone("app"))}),
// Replace second argument by w

DDUpdate({body: DDUpdate({ arg: DDNew("w")})}),
// Replace First argument by w

DDUpdate({body: DDUpdate({ app: DDUpdate({ arg: DDNew("w")})})}),
// Copy function to overwrite second argwnent
DDUpdate({body: DDUpdate({ arg: DDClone(l, "app", "app")})}),

// Add a tbird argument
II Clone tbe second argument to a tbird argument z (should be x

// at tbe end) or add an unrelated tbird argument z (should stay z
// at tbe end)

Aug. 26, 2021

US 2021/0263729 Al

-continued

DDUpdate({body: DDNew({ }, {app: DDSame, arg:

}
],

DDClone("arg").concat(DDNew("z"))})})

hEvaluate(prog) {
I I Returns the hdiff to perform.
if(typeofprog.lambda !-- "undefined") return HSame;
if(typeof prog --- "string") return HSame;
I I The function is not yet a lambda
if(typeof prog.app.lambda --- "undefined")

return HUpdate({ app: hEvaluate(prog.app)});
I I The argument is not yet a lambda
if(typeof prog.arg.lambda --- "undefined")

return HUpdate({ arg: hEvaluate(prog.arg)});
let name - prog.app.lambda;
I I The argument is also a lambda now
if(typeofprog.arg.lambda !- "undefined") {

let evalHDiff - function(upDepth, body Exp, cloneFrom) {
I I Clone of argument

32

if(bodyExp --- name) return HClone(upDepth, "arg");
I I Other variable
if(typeof body Exp --- "string") return HClone(cloneFrom)
II Shadowing: don't touch
if(bodyExp.lambda --- name) return HClone(cloneFrom);
if(typeof body Exp.lambda !-- "undefined")

return HUpdate({
body: evalHDiff(upDepth + 1, bodyExp.body)

}, cloneFrom);
1/if(typeof bodyExp.app !-- "undefined") {
return HUpdate({

app: evalHDiff(upDepth + 1, bodyExp.app),
arg: evalHDiff(upDepth + 1, bodyExp.arg)

}, cloneFrom);

return evalHDiff(2, prog.app.body, cons("app", cons("body")));

Environment-Based Call-by-Name Lambda Calculus Tests

[0360]

env_cbn_lambda_calculus - {
II ProgState - {prog: Compute I Return, continuations: List { } }
II Compute - { ctor: "Compute", data: { env: Env, exp: Exp}}
I I Exp - string
II I {lambda: string, body: Exp}
II I { app: Exp, arg: Exp}
II Env - {name: String, value: {env: Env, exp: Exp}, tail: Env} I {}
II Return - { ctor: "Return", data: { env: Env, exp: {lambda: string,
II body: Exp}}}
continuations: {

II First element of continuations is an applyArg
applyArg: function(progState) {

}
},

let val - progState.prog.data;
let cont = progState.continuations.hd;
return {prog:

{ctor: "Compute",
env: {name: val.exp.lambda, value: cont.data, tail: val.env},
exp: val.exp.body},

continuations: progState.continuations.tl}

I I Ground truth
evaluate(progState) {

let prog - progState.prog;
if(prog.ctor --- "Return") {

if(typeofprogState.continuations !-- "undefined") {
return continuations [progState.continuations.hd. ctor] (pro gState);

} else {
return prog; II Final value.

Aug. 26, 2021

US 2021/0263729 Al

-continued

if(typeof prog.data.exp --- "string") {
let env = prog.data.env;

}

while(env && env.narne !== exp) env = env.tail;
if(!env) { console.log(env); throw exp + "not found"; }

II Replace data with env's data
return evaluate({prog: {ctor: "Compute", data: env.value},

continuations: progState.continuations});

if(typeof prog.data.exp.lambda --- "string") {
I I Compute -> Return
return evaluate({prog: {ctor: "Return", data: prog.data},

continuations: progState.continuations});

if(typeofprog.data.exp.app !-- "undefined") {
I I Replace exp with exp.app
I I Add a continuations
return evaluate({prog: {ctor: "Compute", data: {env: env, exp:

prog.data.exp.app} },
continuations: cons({kind: mapplyArg", data:

33

{ env: env, exp: prog.exp.arg}}, progState.continuations)});
}

},
hContinuations: {

II First element of continuations is an applyArg. It used to be a
II Return
applyArg(progState) {

},

return HUpdate({
prog: HUpdate({

})
}

ctor: HNew("Compute"),
data: HUpdate({

env: HNew({ }, {
name: HClone(l, "exp", "lambda"),
value: HClone(3, "continuations", uhd", "data"),
tail: HSame}),
exp: HClone("body")})}),

continuations: HClone("tl")

hEvaluate(progState) {
let prog - progState.prog;
if(prog.ctor --- "Return")

return typeofprogState.continuations !-- "undefined"?
hContinuations [progState.continuations.hd. ctor] (pro gState)
: HSame; II Final value.

if(typeof prog.data.exp --- "string") {
let env = prog.data.env;
let downStack - cons("value");
while(env && env.name !-- exp) {

env = env. tail;
downStack - cons ("tail", downStack)

if(!env) { console.log(env); throw exp +" not found"; }
return HUpdate({prog: HUpdate({ data: HClone(cons("env", downStack))})});

if(typeof prog.data.exp.lambda --- "string") {
return HUpdate({prog: HUpdate({ ctor: HN ew("Return")})});

II if(typeofprog.data.exp.app !-- "undefined") {
I I Replace exp with exp.app
I I Add a continuations

return HUpdate({
prog: HUpdate({

data: HUpdate({
exp: HClone("app")})}),

continuations: HNew({ }, {
hd: HNew({kind: "applyArg"}, {
data: HClone(l, "progn, "data")}),

tl: HSame
})});

Aug. 26, 2021

US 2021/0263729 Al

Environment-Based Call-by-Value Lambda Calculus Tests

[0361]

env_cbv_lambda_calculus - {
II ProgState - {prog: Compute I Return, continuations: List { } }
II Compute - { ctor: "Compute", data: { env: Env, exp: Exp}}
I I Exp - string
II I {lambda: string, body: Exp}
II I { app: Exp, arg: Exp}

34

II Env - {name: String, value: {env: Env, exp: Exp}, tail: Env} I undefined
II Return - { ctor: "Return", data: { env: Env, exp: {lambda: string, body: Exp}}}
continuations: {

// First element of continuations is an computeArg, program is a Return.
computeArg(progState) {

},

let computedFun - progState.prog.data;
// The continuation is how to compute the argument
let argCompute - progState.continuations.hd;
return {

prog:
{ctor: "Compute",

data: argCompute},
continuations: {hd: {

ctor: "applyFun", II Store the envlexp lambda for later.
data: computedFun

}, t1: progState.continuations.tl}}

// First element of continuations is an apply Fun, program is a
II Return (the argument).
applyFun(progState) {

let computedFun - progState.continuations.hd.data;
let argVal - progState.prog.data;
return {

prog:
{ctor: "Compute",

data: {

}
},

exp: computedFun.exp.body,
env: { name: computedFun.exp.lambda, value: argVal, tail:

computedFun.env}

continuations: progState.continuations.tl}
}

},
evaluate: function evaluate(progState) {

}
},

let prog - progState.prog;
if(prog.ctor --- "Return") {

if(typeofprogState.continuations !-- "undefined") {

}

return continuations [progState.continuations.hd. ctor] (pro gState);
} else {

return prog; II Final value.

if(typeof prog.data.exp --- "string") {
let env = prog.data.env;

}

while(env && env.narne !== exp) env = env.tail;
if(!env) { console.log(env); throw exp + "not found"; }
I I For CBV, data is a value->"Return" instead of "Compute"
return evaluate({prog: {ctor: "Return", data: env.value},

continuations: progState.continuations});

if(typeof prog.data.exp.lambda --- "string") {
I I Compute -> Return
return evaluate({prog: {ctor: "Return", data: prog.data},

continuations: progState.continuations});

if(typeofprog.data.exp.app !-- "undefined") {
I I Replace exp with exp.app
I I Add a continuations
return evaluate({prog: {ctor: "Compute", data: {env: env, exp:

prog.data.exp.app} }, continuations: cons({kind: mcomputeArg",
data: { env: env, exp: prog.data.exp.arg}},
progState.continuations)});

hContinuations: {
// First element of continuations is a computeArg, program is a
II Return.

Aug. 26, 2021

US 2021/0263729 Al

computeArg(progState) {
return HUpdate({

prog: HUpdate({
ctor: HNew("Compute"),

-continued

data: HClone(2, "continuations", "hd")}),
continuations: HNew({ }, {

},

hd: HNew({ctor: "applyFun"}, {
data: HClone(l, "prog", "data")}),

t1: HClone("tl ")})});

// First element of continuations is an apply Fun, program is a
II Return (the argument).
applyFun(progState) {

return HUpdate({
prog: HUpdate({

ctor: HNew("Compute"),
data: HNew({ }, {

35

exp: HClone(2, "continuations", "hd", "data", "exp", "body"),
env: HNew({ }, {

}
},

narne: HClone(2, "continuations", "hd", "data", "exp", "larnbda"),
value: HSarne})})}),

continuations: HClone("tl ")})

hEvaluate(progState) {
let prog - progState.prog;
if(prog.ctor --- "Return") {

if(typeofprogState.continuations !-- "undefined") {

}

return hContinuations[progState.continuations.hd.ctor] (progState);
} else {

return HSarne; // Final value, no change possible.

if(typeof prog.data.exp --- "string") {
let env = prog.data.env;

}

let downpath - cons("value");
while(env && env.narne !-- exp) {

env = env.tail;
downpath - cons("tail", downpath)

}
if(!env) { console.log(env); throw exp + "not found"; }
I I For CBV, data is a value->"Return" instead of "Compute"
return HUpdate({

prog: HUpdate({
ctor: HNew("Return"),
data: HClone(cons("env, downpath))})});

if(typeof prog.data.exp.larnbda --- "string") {
I I Compute -> Return
return HUpdate({prog: HUpdate({ ctor: HNew("Return")})});

}
if(typeofprog.data.exp.app !-- "undefined") {

II Replace exp with exp.app
I I Add a continuations
return HUpdate({

prog: HUpdate({ data: HUpdate({ exp: HClone("app")})}),
continuations: HNew({ }, {

hd: HNew({kind: "computeArg", data: HCloneUpdate({up: 1, down:
cons("prog", cons("data"))}, { exp: HClone("arg")})}),

tl: HSarne})});

Krivine Evaluator Tests

[0362]

// In the krivine evaluator, there is no continuation, the remaining
II computations for arguments are inside the argStack
krivine_evaluator - {

II ProgState - Compute I Return
II Compute - { ctor: "Compute", closedExp: { env: Env, exp: Exp},
II argStack: ArgStack}

Aug. 26, 2021

US 2021/0263729 Al

-continued

II Return - { ctor: "Return", data: { env: Env, exp:
II {lambda: string, body: Exp}}}
I I Exp - string
II I {lambda: string, body: Exp}
II I { app: Exp, arg: Exp}
II ClosedExp - { env: Env, exp: Exp}
II ArgStack - {head: ClosedExp, tail: ArgStack} I undefined
II Env - { name: String, value: ClosedExp, tail: Env} I undefined
evaluate(prog) {

if(prog.ctor --- "Return") {
throw "Cannot call a program on an error";

let closedExp - prog.closedExp;
if(typeof closedExp.exp --- "string") {

let { env, exp} - closedExp;

}

while(env && env.narne !== exp) env = env.tail;
if(!env) { console.log(env); throw exp + "not found"; }
return evaluate(

{ctor: "Compute",
closedExp: env. value,
argStack: prog.argStack});

if(typeof prog.closedExp.exp.lambda --- "string") {
if(typeof typeof prog.argStack !- "undefined") {

return evaluate(
{ctor: "Compute",

36

closedExp: {env: {name: closedExp.exp.lambda, value:
prog.argStack.head, tail: closedExp.env }, exp:
closedExp.exp.body },

argStack: prog.argStack.tail});
} else {

I I Only return place
return evaluate({ ctor: "Return", data: prog.closedExp});

}
if(typeof prog.exp.app !-- "undefined") {

I I Replace exp with exp.app

}
},

I I Add a continuations
return evaluate(

{ctor: "Compute",
closedExp: { env: env, exp: closedExp.exp.app },
argStack: {head: { env: env, exp: closedExp.exp.arg}, tail:

prog.argStack}});

hEvaluate(prog) {
if(prog.ctor --- "Return") {

throw "Cannot call a program on an error";

let closedExp - prog.closedExp;
if(typeof closedExp.exp --- "string") {

let { env, exp} - closedExp;
let downpath - cons("value");
while(env && env.name !-- exp) {downpath - cons('1ail",

downpath); env - env.tail; }
if(!env) { console.log(env); throw exp + "not found"; }
return HUpdate({ closedExp: HClone(cons("env", downpath))});

if(typeof prog.closedExp.exp.lambda --- "string") {
if(typeof typeof prog.argStack !- "undefined") {

return HNew({ },
{ ctor: HNew("compute"),

closedExp: HNew({ }, {
env: HNew({ }, {

name: HClone("closedExp", "exp", "lambda"),
value: HClone("argStack", "head"),
tail: HClone("closedExp", "env")}),

exp: HClone("closedExp", "exp", "body")}),
argStack: HClone("argStack", "tail")});

} else {
return HNew({ },

{ ctor: HNew("Return"),
data: HClone("closedExp")}); II Only return place

Aug. 26, 2021

US 2021/0263729 Al

-continued

if(typeof prog.exp.app !-- "undefined") {
// Replace exp with exp.app
// Add a continuations
return HNew({ },

37

{ closedExp: HCloneUpdate("closedExp", { exp: HClone("app")}),
argStack: HNew({ },

}
},

{head: HCloneUpdate("closedExp", { exp: HClone("arg")}), tail:
HClone ("argStack") }) }) ;

[0363] The above JavaScript implementation and tests are
for illustration purposes only and should not be considered
limiting of other approaches. For example, those of skill in
the art will appreciate that while the above tests are appli
cable to the above JavaScript implementation, additional
implementations/application programming interfaces (e.g.,
PHP) are envisioned, with additional respective test suites.
In fact, the above techniques are applicable to all program
ming languages now known or later developed.

ADDITIONAL CONSIDERATIONS

[0364] It should be appreciated that the tedium of the
edit-run-view cycle described above may not be a mere
annoyance. Computer programmers and other technology
workers often spend hours per day typing on their key
boards, and over time, the repeated stress of such typing can
cause injury. Insofar as the present techniques reduce the
need for users to use physical input devices (e.g., mice,
keyboards, etc.), additional, less intuitive/expected benefits
may be realized, such as increased productivity leading to
lower labor costs. The productivity gains discussed above
with respect to software development also represent signifi
cant advancements in the state of the art, and are significant
improvements to computer functionality. Specifically, text
editors do not currently support bidirectional evaluation as
described herein.

[0365] The following considerations also apply to the
foregoing discussion. Throughout this specification, plural
instances may implement operations or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera
tions be performed in the order illustrated. These and other
variations, modifications, additions, and improvements fall
within the scope of the subject matter herein.

[0366] Unless specifically stated otherwise, discussions
herein using words such as "processing," "computing,"
"calculating," "determining," "presenting," "displaying," or
the like may refer to actions or processes of a machine (e.g.,
a computer) that manipulates or transforms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non
volatile memory, or a combination thereof), registers, or
other machine components that receive, store, transmit, or
display information.
[0367] As used herein any reference to "one embodiment"
or "an embodiment" means that a particular element, fea
ture, structure, or characteristic described in connection with
the embodiment is included in at least one embodiment. The

Aug. 26, 2021

appearances of the phrase "in one embodiment" in various
places in the specification are not necessarily all referring to
the same embodiment.

[0368] As used herein, the terms "comprises," "compris
ing," "includes," "including," "has," "having" or any other
variation thereof, are intended to cover a non-exclusive
inclusion. For example, a process, method, article, or appa
ratus that comprises a list of elements is not necessarily
limited to only those elements but may include other ele
ments not expressly listed or inherent to such process,
method, article, or apparatus. Further, unless expressly
stated to the contrary, "or" refers to an inclusive or and not
to an exclusive or. For example, a condition A or B is
satisfied by any one of the following: A is true (or present)
and Bis false (or not present), A is false (or not present) and
B is true (or present), and both A and B are true (or present).

[0369] In addition, use of "a" or "an" is employed to
describe elements and components of the embodiments
herein. This is done merely for convenience and to give a
general sense of the invention. This description should be
read to include one or at least one and the singular also
includes the plural unless it is obvious that it is meant
otherwise.

[0370] Upon reading this disclosure, those of skill in the
art will appreciate still additional alternative structural and
functional designs for implementing the concepts disclosed
herein, through the principles disclosed herein. Thus, while
particular embodiments and applications have been illus
trated and described, it is to be understood that the disclosed
embodiments are not limited to the precise construction and
components disclosed herein. Various modifications,
changes and variations, which will be apparent to those
skilled in the art, may be made in the arrangement, operation
and details of the method and apparatus disclosed herein
without departing from the spirit and scope defined in the
appended claims.

What is claimed:

1. A method of facilitating bidirectional programming of
a user, comprising:

receiving, via a processor, an original program source
code,

evaluating the original program source code to generate a
program output,

displaying, in a first display device of the user, one or both
of (i) the original program source code, and (ii) the
program output,

receiving an indication of the user corresponding to
modifying the program output; and

US 2021/0263729 Al

evaluating the modified program output to generate an
updated program source code, wherein the updated
program source code, when evaluated, generates the
modified program output.

2. The method of claim 1, wherein the original program
source code includes one or more instructions encoded in a
general-purpose computer programming language.

3. The method of claim 1, wherein evaluating the original
program source code to generate a program output includes
generating HTML output.

4. The method of claim 1, wherein evaluating the modi
fied program output to generate an updated program source
code includes a tail-recursive optimization, a merging clo
sure optimization, and/or an edit difference optimization.

5. The method of claim 1, wherein evaluating the modi
fied program output to generate an updated program source
code includes applying a user-defined lens to the modified
program output.

6. The method of claim 1, further comprising, displaying,
in a second display device of the user, one or both of (i) the
updated program source code, and (ii) the modified program
output.

7. The method of claim 6, wherein the user interacts with
the second display device of the user to accept the modified
program output.

8. The method of claim 6, wherein the updated program
source code includes a plurality of ambiguous candidate
source codes, each of which, when evaluated, generate the
modified program output.

9. The method of claim 8, wherein displaying the updated
program source code is based on applying a heuristic to
automatically select one of the plurality of ambiguous
candidate source codes.

10. A computing device configured for bidirectional pro
gramming of textual data by a user via a graphical user
interface, the computing device comprising:

a least one display device,
at least one processor,
at least one memory, including computer-readable

instructions that, when executed by the at least one
processor, cause the computing device to:

display, in the at least one display device, an original
program source code and a program output correspond
ing to the evaluated original program source code,

receive, via the graphical user interface, an indication of
the user corresponding to modifying the program out
put; and

evaluate the modified program output to generate an
updated program source code.

11. The computing device of claim 10, wherein the
original program source code includes one or more instruc
tions encoded general-purpose computer programming lan
guage.

12. The computing device of claim 10, including further
instructions that, when executed cause the computing sys
tem to:

output HTML.

38
Aug. 26, 2021

13. The computing device of claim 10, including further
instructions that, when executed, cause the computing sys
tem to:

generate an updated program source code using a tail
recursive optimization, a merging closure optimization,
and/or an edit difference optimization.

14. The computing device of claim 10, including further
instructions that, when executed, cause the computing sys
tem to:

apply a user-defined lens to the modified program output.
15. The computing device of claim 10, wherein the

updated program source code includes a plurality of ambigu
ous candidate source codes, each of which, when evaluated,
generate the modified program output.

16. The computing device of claim 15, including further
instructions that, when executed, cause the computing sys
tem to:

apply a heuristic to automatically select one of the plu
rality of ambiguous candidate source codes.

17. The computing device of claim 10, including further
instructions that, when executed cause the computing sys
tem to:

display, in the at least one display device, one or both of
(i) the updated program source code, and (ii) the
modified program output.

18. The computing device of claim 17, including further
instructions that, when executed, cause the computing sys
tem to:

listen for a graphical user interface event corresponding to
an action of a user, wherein the action represents the
user's acceptance of the modified program output.

19. A computing device including a computer-readable
medium storing a progrannning environment application
that, when activated, causes the computing device to:

evaluate, in a forward direction, an original program
source code to generate an output,

receive, via an input device, an indication of a user, the
indication affecting the state of the output,

evaluate, in a reverse direction, the output, to generate an
updated program source code; and

display, in a display screen, the output and the updated
program source code.

20. The computing device as recited in claim 19, wherein
the updated program source code includes a plurality of
ambiguous candidate source codes, and wherein the pro
gramming environment application further causes the com
puting device to:

display, in the display screen, the plurality of ambiguous
candidate source codes,

receive, via the input device, a selection of the user
corresponding to one of the plurality of ambiguous
candidate source codes; and

in response to the selection of the user, display, in the
display screen, the one of the plurality of ambiguous
candidate source codes.

* * * * *

