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APPARATUS AND METHOD FOR 
OPTIMIZING QUANTIFIABLE BEHAVIOR 

IN CONFIGURABLE DEVICES AND 
SYSTEMS 

CROSS REFERENCE TO RELATED PAPERS 

This application is based upon and claims the benefit of 
priority to provisional U.S. Application No. 62/307,210, 
filed Mar. 11, 2016, the entire contents of which are incor­
porated herein by reference. 

This invention was made with govermnent support under 
Grant No. CCF1439156 awarded by the National Science 
Foundation, and Grant No. DE-AC02-06CH11357 awarded 
by the Department of Energy. The government has certain 
rights in the invention. 

FIELD 

2 
consume 8% of U.S. power by 2020. Improved operation 
techniques in data center are needed to make it more 
economically and ecologically sustainable and scalable. 
High power also means high temperature, which has many 

5 other adverse side effects such as decrease of system reli­
ability, 

Energy conservation is also important to battery operated 
mobile computing devices such as smartphones. Insufficient 
battery life has is a primary factor in consumer dissatisfac-

10 tion with modern mobile devices. While mobile computing 
have become increasing integrated and indispensable in 
everyday lives for communication, sensing, controlling and 
entertainment, the increasing complexity of hardware and 
applications in the mobile devices greatly outpaces the 

15 development of battery technology. For example, the 
improvements from Samsung Galaxy S to Samsung Galaxy 
S3 correspond to a 5.9 factor increase in CPU performance 
increases, but the battery capacity only increased by a factor 
of 1.4. 

In certain situations, a goal of power management for a 
battery powered mobile computing device is to minimize the 
likelihood that the battery depletes before the device can be 
recharged while simultaneously providing a high quality of 
service. Various aspects of the computational configuration 

This disclosure relates to a method and apparatus for 20 

selecting a computational configuration of an electronic 
device executing an application in order to improve energy 
consumption and computational production, and, more par­
ticularly to optimizing energy consumption and computa­
tional production using a performance model that is based 25 can be adjusted and tuned to achieve these competing 

objectives. Further, the optimal configuration for one com­
bination of mobile device and application being executed on 
the mobile device may not be optimal for another combi-

on similarities between a small number of computational 
configurations of the device executing the application using 
and a database of other devices, applications, and compu­
tational configurations. 

BACKGROUND 

The background description provided herein is for the 
purpose of generally presenting the context of the disclo­
sure. Work of the presently named inventors, to the extent 
the work is described in this background section, as well as 
aspects of the description that may not otherwise qualify as 
prior art at the time of filing, are neither expressly nor 
impliedly admitted as prior art against the present disclo­
sure. 

Energy consumption plays an important role for the full 
range of computing systems spectrum from small mobile 
computing devices such as smartphones and wearable tech­
nology, in which energy consumption determines the battery 
life of the mobile device, and extending to the other end of 
the spectrum including supercomputers, in which energy 
consumption affects costs and cooling requirements. Power 
management is especially important in mobile computing 
and personal wireless devices such as smartphones and 
smart wearable technology. As processors have become 
smaller and more powerful and as computer memory has 
increased in density and capacity, battery technology has not 
kept pace. For example, from 1990 to 2000 disk capacity 
increased by a factor of 1000, CPU speed increased by a 
factor of 400, available RAM increased by a factor of 100, 
wireless bandwidth increased by a factor of twelve, but the 
energy density of battery increased by only a factor of three. 

The absence oflarge improvements in battery technology 
increases the importance of efficiently using energy from the 
batteries. Even fixed computing devices benefit significantly 
from improved efficiency. Thus, energy conservation and 
power management have become two of the most important 
challenges in modern computing systems, including general 
purpose computers and mobile devices. 

In 2015, data centers consume approximately 2% of all 
US electricity, and data centers increase consumption at a 
rate of 15% annually. Thus, data centers are projected to 

30 

nation of device and application. 
Thus, the optimal computational configuration can 

depend on the architecture of the mobile device and the 
application being executed on the mobile device. Generally, 
a computational device will be configurable over a configu­
ration space, including: the number and combination of 

35 cores, clockspeed, hyperthreading, and memory controllers, 
for example. Thus, optimizing the computational configu­
ration can be represented as a constrained optimization 
problem, with the exact form of the optimization depending 
on the specified goals of the optimization. For example, the 

40 goal may be to guarantee the battery is not exhausted within 
a predefined window while maintaining a minimum quality 
of service. Alternatively, the goal may be to complete the 
most computational tasks before the battery is exhausted. 

Generally, finding the optimal computational configura-
45 tion depends on applying an accurate model of the compu­

tational performance and energy consumption of the device 
executing the application. However, obtaining a model can 
be challenging because, generally, the model will be device 
dependent, with different devices having different perfor-

50 mance and consumption characteristics. Further, the model 
will be application dependent. For example, some applica­
tions will being more conducive to parallel execution on 
multiple cores, while others will require significant commu­
nication overhead and become less efficient when executed 

55 on multiple cores. 
Certain rules of thumb or heuristics have been developed 

as being nearly optimally efficient for a limited number of 
device-application combinations. Two such heuristics are 
the race-to-idle and never-idle heuristics. The computational 

60 task can be defined as executing an application within a 
predefined time window. According to the race-to-idle heu­
ristic, all of the computational resources are allocated to the 
application and once the application is finished the system 
goes to idle for the remaining duration of the predefined time 

65 window. This strategy incurs almost no runtime overhead, 
but may be suboptimal in terms of energy, since maximum 
resource allocation is not always the best solution to the 
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energy minimization equation. In the never-idle heuristic the 
device is configured to work at a constant rate while allo­
cating only enough resources to complete the application 
coincidently with the end of the predefined time window. 
Depending on the device a never-idle computational con- 5 

figuration might be closer to optimal than a race-to-idle 
configuration, whereas another device might be the opposite. 

Thus, on the one hand, these heuristics cannot be consis­
tently relied on for the optimal configuration. However, on 
the other hand, measuring the performance and consumption 10 

of a device-application combination for each possible com­
putational configuration to develop a comprehensive model 
can be a time and energy consuming process. Ideally, a 
reliable model of computational performance and power 
consumption could be obtained for a device-application 15 

combination without comprehensive testing every time a 
new application or combination of applications is run on the 
device. To this end, described herein is a method and 
apparatus for simultaneously optimizing computational per­
formance and energy consumption by using a model of the 20 

device performance based on less than comprehensive test­
ing of computational configurations of the device. 

DESCRIPTION OF THE DRAWINGS 
25 

4 
FIG. 5 shows a schematic diagram of a hierarchical 

Bayesian model (HBM), according to one implementation; 
FIG. 6 shows an example of a plot of correlations among 

computational configurations; 
FIG. 7 shows an example of a plot of performance 

estimates for configuration-optimization methods as a func­
tion of the number of cores according to one implementa­
tion; 

FIG. 8 shows an example of a plot of estimates of power 
consumption for the respective configuration-optimization 
methods as a function of the number of cores, according to 
one implementation; 

FIG. 9 shows an example of a plot of the energy of the 
minimal energy configuration for various system utiliza­
tions, according to one implementation; 

FIG. lOA shows a bar plot comparing the accuracy of 
performance estimates by three different optimization tech­
niques for 11 different benchmark applications, according to 
one implementation; 

FIG. 10B shows a bar plot comparing the accuracy of 
performance estimates by three different optimization tech­
niques for 14 other benchmark applications, according to 
one implementation; 

FIG. llA shows a bar plot comparing the accuracy of 
power estimates by three different optimization techniques 
for 13 different benchmark applications, according to one 
implementation; 

A more complete understanding of this disclosure is 
provided by reference to the following detailed description 
when considered in connection with the accompanying 
drawings, wherein: 

FIG. lA shows a schematic diagram of a server commu­
nicating with a device, according to one implementation; 

FIG. 1B shows a schematic diagram of a server commu­
nicating with several mobile devices, according to one 
implementation; 

FIG. 11B shows a bar plot comparing the accuracy of 
30 power estimates by three different optimization techniques 

for 12 other benchmark applications, according to one 
implementation; 

FIG. 2A shows a flow diagram of an example of a method 
to determine an energy efficient configuration of a device 
when executing an application, according to one implemen­
tation; 

FIG. 2B shows a flow diagram of an example of a process 
to generate performance characteristics corresponding to 
some configurations of the device when executing the appli­
cation, according to one implementation; 

FIG. 2C shows a flow diagram of an example of a process 

FIG. 12A shows a bar plot comparing the mean energy of 

35 
optimal configurations determined according to four differ­
ent optimization techniques for 13 different benchmark 
applications, according to one implementation; 

FIG. 12B shows a bar plot comparing the mean energy of 
optimal configurations determined according to four differ-

40 ent optimization techniques for 12 other benchmark appli­
cations, according to one implementation; 

FIG. 13A shows a plot of a convex hull of the power­
performance tradeoff space for the device executing a 
Kmeans application for various optimization techniques; 

FIG. 13B shows a plot of a convex hull of the power­
performance tradeoff space for the device executing a swish 
application for various optimization techniques; 

to determine performance model of the configurations of the 
device when executing the application, the performance 45 

model being generated using a comparison between the 
generated performance characteristics and a database of 
performance characteristics of various other devices execut­
ing various other applications, according to one implemen­
tation; 

FIG. 13C shows a plot of a convex hull of the power­
performance tradeoff space for the device executing an x264 

50 application for various optimization techniques; 
FIG. 2D shows a flow diagram of an example of a control 

process to control the configuration of the device using the 
performance model of the device when executing the appli­
cation, according to one implementation; 

FIG. 2E shows a flow diagram of another example of a 
control process to control the configuration of the device 
using the performance model of the device when executing 
the application, according to one implementation; 

FIG. 14A shows a plot of the energy consumed as a 
function of utilization for the device executing a Kmeans 
application for various optimization techniques; 

FIG. 14B shows a plot of the energy consumed as a 
55 function of utilization for the device executing the Kmeans 

application for various optimization techniques; 

FIG. 3 shows a schematic diagram of a performance 
model the device when executing the application, according 60 

to one implementation; 

FIG. 14C shows a plot of the energy consumed as a 
function of utilization for the device executing the swish 
application for various optimization techniques; 

FIG. 15A shows a plot of performance of the device as a 
function of time for a transition from phase 1 to phase 2 of 
the application fluidanimate; FIG. 4A shows a schematic diagram of an example of a 

simple directed graph with nodes A and B depending from 
an observed node C; 

FIG. 4B shows a schematic diagram of an example of a 
simple directed graph with nodes A and B depending from 
an unobserved node C; 

FIG. 15B shows a plot of power consumption of the 
device as a function of time for a transition from phase 1 to 

65 phase 2 of the application fluidanimate; 
FIG. 16A shows a plot comparing energy and latency 

tradeoffs for the Vaio and the ODROID systems; 
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FIG. 16B shows a bar plot comparing energy consump­
tion for the Vaio and the ODROID systems when the 
never-idle and race-to-idle heuristics are applied; 

6 
SUMMARY OF THE INVENTION 

In one aspect, the present disclosure provides: 
(1) a server, including (i) a receiver configured to receive FIG. 17 shows a schematic diagram of a POET architec­

ture, according to one implementation; 
FIG. 18 shows a schematic diagram of a JouleGuard 

architecture, according to one implementation; 

5 performance data of a device configured to execute an 
application in a plurality of computational configurations, 
the performance data including a first plurality of compu­
tational configurations with corresponding power-consump-FIG. 19 shows a plot of simulation results for energy and 

percentage of returned results using various control methods 
compared to the JouleGuard architecture, according to one 10 

implementation; 
FIG. 20 shows a schematic diagram of a CALOREE 

system, according to one implementation; 
FIG. 21A shows plot of performance as a function of 

configuration for a device having an ARM big.LITTLE 15 

architecture that is executing a Lavamd application; 
FIG. 21B shows plot of performance as a function of time 

for a device having an ARM big.LITTLE architecture that is 
executing the Lavamd application and that is selecting the 
configuration on the basis of a learning method or a control 20 

method; 
FIG. 22A shows plot of performance as a function of 

configuration for a device having an ARM big.LITTLE 
architecture that is executing a Kmeans application; 

FIG. 22B shows plot of performance as a function of time 25 

for a device having an ARM big.LITTLE architecture that is 
executing a Kmeans application and that is selecting the 
configuration on the basis of a learning method or a control 
method; 

FIG. 23 shows a schematic diagram of a CALOREE 30 

system using an HBM to generate the performance model at 
the server and a lightweight control system in the device to 
implement configuration control using the performance 
model, according to one implementation; 

FIG. 24 shows a schematic diagram of the device, accord- 35 

ing to one implementation; 
FIG. 25 shows a schematic diagram of the performance 

hash table (PHT), according to one implementation; 
FIG. 26 shows a schematic diagram of a GPU Resource 

Adaptation for Performance and Energy (GRAPE) architec- 40 

ture, according to a first implementation; 
FIG. 27 A shows a plot of normalized power as a function 

of time to compare a race-to-idle implementation with a 
GRAPE implementation; 

FIG. 27B shows a plot of normalized performance as a 45 

function of time to compare the race-to-idle implementation 
with the GRAPE implementation; 

FIG. 27C shows a plot of integrated energy consumed as 

tion rates and corresponding performance measures of the 
device when executing the application; (ii) a memory to 
store other performance data that includes a second plurality 
of computational configurations, power-consumption rates, 
and performance measures of a plurality of other devices 
when executing a plurality of applications; and (iii) process­
ing circuitry configured to (a) compare the received perfor­
mance data of the device to the stored other performance 
data, (b) determine a performance model of the device based 
on the comparison between the received performance data of 
the device and the stored other performance data, the per­
formance model including an estimate of respective power­
consumption rates and respective performance measures of 
the device when executing the application for a third plu­
rality of computational configurations of the device; and ( c) 
a transmitter configured to transmit to the device the deter­
mined performance model of the device, wherein ( d) the 
transmitted performance model of the device enables the 
device to optimize a combination of a performance measure 
and power consumption according to predefined optimiza­
tion criteria. 

(2) The server according to (1), wherein the processing 
circuitry is further configured to determine the performance 
model, wherein the performance measures of the received 
performance data are computational-performance rates, the 
performance measures of the stored other performance data 
are computational-performance rates, and the performance 
measures of the performance model are computational-
performance rates. 

(3) The server according to (1) or (2), wherein the 
processing circuitry is further configured to determine the 
performance model, wherein the performance model repre­
sents hash table of a power-consumption rates and perfor-
mance measures of an energy-frontier plurality of compu­
tational configurations corresponding to a convex hull of a 
power-consumption/performance tradeoff space. 

( 4) The server according to any of (1 )-(3 ), wherein the 
processing circuitry is further configured to compare the 
received performance data of the device to the stored other 
performance data, wherein the device is one of a mobile 
communication device, a wireless user equipment, a smart a function of time to compare the race-to-idle implementa­

tion with the GRAPE implementation; 
FIG. 28 shows a schematic diagram of a GPU Resource 

Adaptation for Performance and Energy (GRAPE) architec­
ture, according to a second implementation; 

50 phone, wearable technology, and a tablet computer, an 
embedded processor. 

FIG. 29 shows a schematic diagram of a GPU Resource 
Adaptation for Performance and Energy (GRAPE) architec- 55 

ture, according to a third implementation; 
FIG. 30 shows a schematic diagram of a GRAPE data­

path, according to one implementation; 
FIG. 31 shows a timing diagram of an overhead count 

according to one implementation of a GRAPE architecture 60 

using VHDL; 
FIG. 32 shows a schematic diagram of a personal digital 

device, according to one implementation; 

(5) The server according to any of (1)-(4), wherein the 
processing circuitry is further configured to compare the 
received performance data of the device to the stored other 
performance data, wherein the device is one of an aircraft 
motor, an embedded processor in heavy machinery, and a 
controller of a dynamic system. 

(6) The server according to any of (1)-(5), wherein the 
processing circuitry is further configured to (i) compare the 
received performance data of the device to the stored other 
performance data to generate an estimate of the respective 
power-consumption rates and the respective performance 
measures corresponding to all computational configurations 
of the device, wherein (ii) the estimate ofrespective power-FIG. 33 shows a schematic diagram ofremote computing 

hardware, according to one implementation; and 
FIG. 34 shows a schematic diagram of a networked cloud 

computing system, according to one implementation. 

65 consumption rates and respective performance measures 
corresponding to all computational configurations of the 
device represents a mean and a measure of variance for each 
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power-consumption rate and each performance measure of 
each computational configuration of all computational con­
figurations of the device, and (iii) the performance model 
includes a subset of all computational configurations of the 
device corresponding to a convex hull of a tradeoff space 
between the power-consumption rates and the performance 
measures determined using the estimate of the respective 
power-consumption rates and the respective performance 
measures corresponding to all computational configurations 
of the device. 

(7) The server according to any of (1)-(6), wherein the 
memory is further configured to store the received perfor­
mance data of the device. 

(8) The server according to any of (1 )-(7), wherein the 
processing circuitry is further configured to compare the 
performance data of the device to the other performance data 
using a Bayesian network. 

(9) The server according to any of (1)-(8), wherein the 
processing circuitry is further configured to (i) compare the 
received performance data of the device to the stored other 
performance data using an expectation maximization 
method to determine a combination of the plurality of other 
devices and the plurality of applications that is similar, in 
terms of performance and power use, to the device when 
executing the application, and (ii) determine the perfor­
mance model of the device, using the expectation maximi­
zation method. 

(10) The server according to any of (1)-(9), wherein the 
processing circuitry is further configured to (i) compare the 
received performance data of the device to the stored other 
performance data using an hierarchical Bayesian model to 
determine a combination of the plurality of other devices 
and the plurality of applications that is similar, in terms of 
performance and power use, to the device when executing 
the application, and (ii) determine the performance model of 
the device, using the hierarchical Bayesian model. 

8 
(13) The device according to (12), wherein the processing 

circuitry is further configured to determine the sequence of 
computational configurations of the device to perform the 
predefined computational tasks of the application, wherein 

5 the predefined optimization criteria to be optimized to 
complete the predefined computational tasks within a pre­
defined time period while minimizing power consumption 
of the device during the predefined time period. 

(14) The device according to 12 or 13, wherein the 
10 processing circuitry is further configured to determine the 

sequence of computational configurations of the device to 
perform the predefined computational tasks of the applica­
tion, wherein the predefined optimization criteria to be 

15 
optimized is to maximize a ratio between the performance 
measure and the power consumption of the device, wherein 
the performance measure is a computational performance 
rate, and when an estimate of a completion time of the 
application indicates that the application will not be 

20 executed within a predefined time, using an approximate 
computing method to accelerate completion of the applica­
tion in order to complete the application by a predefined 
time. 

(15) The device according to any of (12)-(14), wherein the 
25 processing circuitry is further configured to determine the 

sequence of computational configurations of the device to 
perform the predefined computational tasks of the applica­
tion, wherein the predefined optimization criteria to be 
optimized is to maximize a ratio between the performance 

30 measure and the power consumption of the device, wherein 
the performance measure is a computational-performance 
rate, and when a calculation indicates that a maximum of 
ratio of the computational-performance rate to the power­
consumption rate is less than a predefined threshold, using 

35 an approximate computing method to increase the ratio of 
the computational-performance rate to the power-consump-
tion rate. 

(11) The server according to any of (1)-(10), wherein the 
processing circuitry is further configured to compare the 
received performance data of the device to the stored other 40 

performance data using one of a support vector machine, a 
principal component analysis based method, a probabilistic 
graph method, an artificial neural network, a machine learn­
ing method, a pattern recognition method, a deep learning 
method, a clustering method, a genetic algorithm, and a 45 

classifier learning method to determine the performance 
model of the device. 

(16) The device according to any of (12)-(15), wherein the 
processing circuitry is further configured to (i) determine the 
predefined time period to be inversely proportional to a 
speedup factor, and (ii) adjust the speedup factor to mini-
mize a difference between a desired latency of the respective 
computational tasks and a measured latency of the respec­
tive computational tasks. 

(17) The device according to any of (12)-(15), wherein the 
processing circuitry is further configured to (i) update the 
performance model of the device executing the application 
according to repeated measurements of the power consump­
tion rate and the computational performance rate using 

(12) A device configured to execute an application in a 
plurality of computational configurations, the device includ­
ing (i) an interface configured to (a) transmit, to a server, 
performance data of the device, the performance data includ­
ing, for a first plurality of computational configuration of the 
plurality of computational configurations, corresponding 
power-consumption rates and corresponding performance 
measures of the device when executing the application, (b) 
receive, from the server, a performance model that includes 

50 various computational configurations, (ii) update the selec­
tion of the computational configuration of the device accord­
ing to the updated performance model, (iii) update the 
estimate of a completion time of the application according to 
the updated performance model and the updated computa-

55 tional configuration of the device, and (iv) update the 
approximate computing method according to an updated 
estimate of the completion time of the application, the 
updated computational configuration, and the updated the 

an estimate of respective power-consumption rates and 
respective performance measures of the device when execut­
ing the application for a second plurality of computational 
configurations of the device; and (ii) processing circuitry 60 

configured to (a) determine, using the performance model, a 
sequence of computational configurations of the device to 
perform predefined computational tasks of the application to 
optimize a combination of a performance measure and 
power consumption of the device according to predefined 
optimization criteria, and (b) execute the application accord­
ing to the determined sequence. 

performance model. 
(18) The device according to any of (12)-(17), wherein the 

processing circuitry is further configured to adjust the 
sequence of computational configurations of the device to 
perform predefined computational tasks of the application, 
using one of a control method including proportional, inte-

65 gral, and derivative feedback, a state-space control method, 
a multiple-input multiple-output control method, and a 
single-input single-output control method. 
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(19) A system, including (i) a device that includes (a) 
processing circuitry configured to: execute an application, 
change a computational configuration of the processing 
circuitry, measure power-consumption rates of the process­
ing circuitry executing the application, and measure perfor­
mance measures of the processing circuitry when executing 
the application, (b) a transmitter configured to transmit 
performance data of the device executing the application, the 
performance data including respective computational con­
figurations of a first plurality of computational configura­
tions of the device with the corresponding power-consump­
tion rates and the corresponding performance measures of 
the device when executing the application, and ( c) a receiver 
configured to receive a performance model that estimates 
respective power-consumption rates and the performance 
measures of the device executing the application, for a 
second plurality of computational configurations of the 
device, and (ii) a server that includes (a) a memory to store 
other performance data that includes computational configu­
rations, power-consumption rates, and performance mea­
sures of a plurality of other devices when executing a 
plurality of applications, (b) a receiver configured to receive 
the transmitted performance data of the device, ( c) a trans­
mitter configured to transmit the performance model of the 
device, and (d) processing circuitry configured to: compare 
the received performance data of the device to the stored 
other performance data, and determine a performance model 
of the device based on the comparison between the received 
performance data of the device and the stored other perfor­
mance data, the performance model including an estimate of 
the respective power-consumption rates and the respective 
performance measures of the device when executing the 
application for the second plurality of computational con­
figurations of the device. 

(20) The system according to claim 19, wherein the 
performance measures measured by the device includes a 
computational-performance rates that include a ratio of a 
number of computational tasks performed by the processing 
circuitry executing the application within a predefined time 
interval. 

(21) A system, including: (i) an apparatus having at least 
one constrained property and a plurality of other properties 

10 
model using a hierarchical Bayesian method to compare the 
detected values of the at least one constrained property 
corresponding to the first subset of the plurality of configu­
rations to a database of other apparatuses also having the at 

5 least one constrained property. 
(24) The system according to any of (21)-(23), wherein 

the apparatus is a mobile computing device executing an 
application, the plurality of configurations include compu­
tational configurations of the mobile computing device, and 

10 the learning circuitry is included on a server, which is 
remotely accessed by the mobile computing device. 

(25) An apparatus having at least one constrained prop­
erty, the apparatus comprising: (i) a plurality of components, 
which are configurable in real-time to configure the appa-

15 ratus in respective configurations of a plurality of configu­
rations; (ii) detection circuitry configured to detect values of 
the at least one constrained property when the apparatus is 
configured in a first subset of the plurality of configurations; 
(iii) transmitting circuitry configured to transmit the detected 

20 values of the at least one constrained property and the 
corresponding first subset of the plurality of configurations 
to a model learning apparatus; (iv) receiving circuitry con­
figured to (a) receive a model representing respective values 
of the at least one constrained property corresponding to the 

25 plurality of configurations, and (b) receive an uncertainty of 
the model; and (v) control circuitry configured to select, 
using the received model and the uncertainty of the model, 
a configuration of the plurality of configurations to minimize 
an error value that is a difference between a desired value of 

30 the at least one constrained property and an observed value 
of the at least one constrained property by using the deter­
mined model and the estimated uncertainty. 

(26) A method of optimizing at least one constrained 
property of an apparatus having a plurality of components, 

35 which are configurable in real-time, the method comprising: 
(i) detecting values of the at least one constrained property 
and a plurality of other properties of the apparatus when the 
apparatus is configured in a first subset of the plurality of 
configurations; (ii) learning, using the detected values of the 

40 at least one constrained property, a model representing the at 
least one constrained property and the plurality of other 
properties when the apparatus is in the plurality of configu­
rations; (iii) estimating an uncertainty of the determined at 
least one constrained property value of the model; and (iv) 

to be optimized, the apparatus including (a) a plurality of 
components, which are configurable in real-time, such that 
the apparatus can be configured in a plurality of configura­
tions, and (b) circuitry configured to detect the at least one 
constrained property when the apparatus is configured in a 
first subset of the plurality of configurations; (ii) learning 
circuitry configured to (a) determine, using the detected at 
least one constrained property, a model representing the at 50 

least one constrained property when the apparatus is in the 
plurality of configurations, and (b) estimate an uncertainty 

45 selecting, using the determined model and the estimated 
uncertainty, a configuration of the plurality of configurations 
to minimize an error value that is a difference between a 
desired value of the at least one constrained property and an 
observed value of the at least one constrained property. 

(27) A non-transitory computer readable storage medium 
including executable instruction, wherein the instructions, 
when executed by circuitry, cause the circuitry to perform 
the method according to (26). of the determined at least one constrained property; and (iii) 

control circuitry configured to (a) select a configuration of 
the plurality of configurations to minimize an error value 55 

that is a difference between a desired value of the at least one 
DETAILED DESCRIPTION 

constrained property and an observed value of the at least 
one constrained property by using the determined model and 
the estimated uncertainty. 

(22) The system according to (21), wherein the learning 
circuitry is further configured to encode the determined 
model as a hash table to provide rapid lookup of optimal 
configurations of the apparatus corresponding to respective 
values of the at least one constrained property, according to 
the determined model. 

(23) The system according to (21) or (22), wherein the 
learning circuitry is further configured to determine the 

Optimizing a computational configuration of a computa­
tional device to achieve desired power-consumption and 
computational-performance goals can depend on having a 

60 reliable model of the performance and consumption of the 
device. Relying on a poor model could result in predicting 
a theoretically optimal configuration that is actually far from 
optimal. However, extensive empirical testing to measure 
the performance and consumption of the device configured 

65 in multiple computational configurations while executing 
the desired application also has drawbacks due to the 
significant resources in time and energy devoted to <level-
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oping a comprehensive model for each combination of 
device and application. The model of performance and 
consumption can be different for each combination of device 
and application because different devices can have different 
performance and consumption characteristics and different 
applications can also have different performance and con­
sumption characteristics. In many situations, measuring per­
formance and consumption for all computational configu­
rations is impracticable every time a device executes a new 
application or a new combination of applications. Accord­
ingly, it is desirable to derive a reliable model of the 
performance and consumption for the device when execut­
ing an application while performing empirical testing using 
less than all of the computational configurations of the 
device when executing the application. Herein, the word 
performance is used as a short hand for "computational 
performance," and the word consumption is used as a short 
hand for "power consumption." 

The methods described herein are more general than the 
primary example provided herein, which optimizes the com­
putational configuration for computational performance sub­
ject to constraints on energy and/or power consumption. 
This primary example is non-limiting, and the methods 
described herein apply generally to constrained optimization 
problems in complex and dynamic environments. 

As would be understood by a person of ordinary skill in 
the art, "constraints" refer to quantifiable goals that must be 
met for correct operation. Examples include, but are not 
limited to: performance, throughput, latency, energy, power, 
accuracy, security, reliability, resilience, cost, space, size, 
weight. Further, "optimization" subject to constraints refers 
to the fact that although some goals are non-negotiable, i.e. 
they absolutely must be respected, while other goals should 
be minimized or maximized. For example, computer servers 
must meet power constraints while maximizing throughput. 
As another example, self-driving cars must meet speed 
constraints while minimizing energy (or fuel). The term 
"complexity" refers to the fact that in many systems there 
are multiple mechanisms that can be tuned to meet the 
constraints and the optimization goals. The interaction of 
these mechanisms can be difficult to model----often leading 
to non-linear, non-convex optimization spaces and/or 
tradeoff spaces having multiple local minima-making it 
extremely difficult to ensure constraints are respected while 
other behavior is optimized. For example, the interaction 
between the number of active cores in a multicore and the 
speed of those cores creates non-linear, non-convex optimi­
zation problems. The term "dynamic" refers to the fact that 
unpredictable changes occur during system operation, yet 
the constraints must still be satisfied while other behavior is 
optimized. For example, when using a mobile device for a 
video call, the software must handle transitions from low 
motion ( e.g. sitting still) to high motion ( e.g. walking around 
a house or waving to the other party). 

Many problems exhibit the combination of challenges 
presented by constrained optimization problems in complex 
and dynamic environments that are addressed by the meth­
ods described herein. The methods described herein use the 
general approach of combining machine learning (ML) and 
control theory (CT) to meet constraints optimally in com­
plex and dynamic environments. In general, machine learn­
ing models the complex interactions of the available mecha­
nisms, while control theory ensures the constraints are met 
despite dynamic changes. Machine learning enables the 
generation of a reasonably accurate model of the system 
without exhaustively exploring the parameter space. Having 
generating a model of the system, control theory can be 

12 
applied to account for errors in the model and to adapt to 
dynamic changes of the system and/or changing goals. The 
methods described herein allow practical implementations 
in addition to formal analytical guarantees. ML and CT are 

5 broad fields that encompass a number of different individual 
techniques. 

The exemplary implementations described herein use a 
non-limiting ML technique called hierarchical Bayesian 
models, but other ML techniques can also be used, as would 

10 be understood by a person of ordinary skill in the art. For 
example, the ML techniques that can be used in the methods 
described herein include: matrix completion methods, multi­
tasking algorithms, transfer learning based algorithms, 
regression algorithms, Bandit-based learning methods, and 

15 genetic and evolutionary algorithms, for example. Matrix 
completion methods can include: low rank matrix comple­
tion with noise, high rank matrix completion, collaborative 
filtering, recommender systems (e.g., the Netflix™ algo­
rithm), matrix completion with side information, Bayesian 

20 matrix completion, and nonparametric matrix completion, 
for example. Regression algorithms can include: random 
forest algorithms, polynomial regression, and gradient 
boosting, for example. Bandit-based learning can include: 
multiarmed bandit learners, and multiarmed bandit learners 

25 with correlated arms, for example. 
The exemplary implementations described herein use the 

non-limiting CT example of a proportional-integral (PI) 
control. However, other classes of controllers can be used, as 
would be understood by a person of ordinary skill in the art. 

30 For example, the controller can use: proportional control, 
integral control, proportional integral control, proportional 
integral derivative control, state-space control, stochastic 
control, adaptive control, optimal control, model predictive 
control, switching control, gain scheduling, self-tuning regu-

35 lators, minimum variance control, and fuzzy control. 
The non-limiting exemplary implementations described 

herein focus primarily on combinations of hierarchical 
Bayesian learning with adaptive proportional integral con­
trol with an independent optimization module. However, 

40 these non-limiting exemplary implementations are instan­
tiations of the more general concept contemplated herein, 
which is sufficiently general to apply to many more combi­
nations of the above approaches. For example, the methods 
described herein can be applied to: maximizing throughput 

45 for compute servers while respecting constraints on power 
consumption; ensuring that a mobile device can last for the 
duration of a plane trip; balancing tradeoffs between quality, 
energy, and security for mobile video calls; minimizing cost 
while providing reliable performance for cloud customers; 

50 minimizing energy while ensuring user satisfaction for 
mobile applications; managing tradeoffs between sensor 
usage and reliability in self-driving cars; maximizing 
throughput for minimal cost in industrial assembly lines; and 
automatic configuration of high-end televisions to minimize 

55 energy consumption while meeting user quality require­
ments. 

More particularly, the methods described herein can be 
applied to many devices and systems in addition to the 
exemplary networked mobile communication devices (e.g., 

60 smartphones and tablet PCs) described herein. For example, 
the methods can be used to optimize any system which has 
one or more constraints, and the may be particularly ben­
eficial when it is used to optimize a system comprising 
dynamics or time-dependent variables that are unpredictable 

65 or difficult to model. Moreover, the methods described 
herein may be particularly beneficial for optimizing systems 
that are too complicated for linear regressions or other 
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analytical models to capture the dependence on the system's 
parameters. Exemplary systems include jet airplane turbines 
for which it may be desirable to minimize fuel consumption 
while maintaining power output by varying some or all of 
the turbine's control parameters in the face of unpredictably 5 

varying inputs such as humidity, pressure, and other envi­
ronmental conditions, for example. Other exemplary sys­
tems include building HVAC systems for which it may be 
desirable to minimize power consumption, while maintain­
ing temperature and humidity conditions throughout many 10 

different regions of the building or buildings by varying air 
handling controls, such as air flow rates, temperatures, 
cooling/heating power, and other parameters while occu­
pants of the building are opening or closing windows and/or 
entering and entering rooms in unpredictable ways, for 15 

example. Additionally, network bandwidth optimization can 
be another exemplary system applying the methods 
described herein. For example, in network bandwidth opti­
mization, data throughput from multiple sources to multiple 
destinations across a network can be maximized while 20 

latency is constrained and in which data packets can take any 
one of multiple routes across the network and the arrival of 
the new data packets into the network is unpredictable. A 
further exemplary system in which the methods described 
herein can be applied is internal combustion engines for 25 

which fuel consumption is minimized while, for example, 
power output is held constant and the valve timing and other 
engine parameters are varied as engine inputs such as air and 
fuel quality vary. Additional constrained optimization prob­
lems to which the present invention may be applied arise in 30 

power generation systems, warehouse distribution systems, 
and manufacturing facilities, for example. 

Now an exemplary implementation of a smart home is 
provided, illustrating the methods described herein. The 
methods described herein combining machine learning 35 

together with feedback and control can be used to manage a 
"smart home." For example, a home could be configured 
with shades that automatically adjust and light fixtures that 
adjust brightness. A homeowner might have a constraint on 
brightness and would like to meet this constraint while 40 

minimizing electricity cost. 
This example has all the requisite properties described 

above. That is, (1) there is a quantifiable constraint in terms 
of light, (2) there is an objective function to be optimized 
(i.e., electricity cost), and (3) there are multiple configurable 45 

parameters (i.e., shades and lights). The combination of 
shades and lights give us a complex tradeoff space. Raising 
and lowering the shades have one-time costs. The lights 
continuously consume electricity. In addition, there are 
system dynamics as changes in weather and time of day 50 

create different conditions. 

14 
maps configuration to brightness and cost. This same model 
could be stored in a brightness hash table (analogous to the 
performance hash table). The controller computes the error 
between the current brightness and the desired brightness, 
computes a brightup (analogous to speedup) and then uses 
the brightness hash table to select a minimal cost configu-
ration that delivers the desired brightup. 

Altering the example slightly, the homeowner may be 
more concerned about electricity costs. In this case, the 
constraint is the amount of money the home owner is willing 
to spend on lighting. The objective is to achieve the brightest 
conditions. The learner would produce almost the same 
model as the previous paragraph, but now it would store it 
in a cost hash table-because it is controlling costs. In this 
example the controller measures the rate of spending on 
lighting and computes an error between the desired spending 
rate and the budget (monthly budgets are trivially converted 
to rates by dividing by time) to compute a costup (analo­
gous, again, to speedup). The controller then looks in the 
cost hash table to find the brightest configuration that meets 
the desired budget, adjusting to maintain the correct power 
consumption despite weather and time changes. Such a 
system could even adapt to changing prices in electricity. 

As would be understood by a person of ordinary skill in 
the art, the applicable mathematical formulation is almost 
identical to the example provided hereafter of meeting a 
computer program's latency constraint with minimal energy. 
Similar to the computational latency example to be dis­
cussed, the learner maps configurations into quantifiable 
behavior. Tradeoffs are stored in a hash table using a similar 
scheme to FIG. 25. The controller similarly measures a 
difference between a constraint and the actual behavior and 
then selects the configuration that optimizes the constraint. 

Returning to the example of optimizing computational 
performance under energy and/or power constraints, there is 
a tension between gathering sufficient empirical data to 
estimate a reliable model whereby an optimal computational 
configuration can be approximated and limiting the 
resources devoted to gathering empirical data. Machine 
learning techniques represent a promising approach to 
addressing this estimation problem. Oflline learning 
approaches collect profiling data for known applications and 
use that to predict optimal behavior for unseen applications. 
Online learning approaches use information collected while 
an application is running to quickly estimate the optimal 
configuration. Oflline methods require minimal runtime 
overhead, but suffer because they estimate only trends and 
carmot adapt to particulars of the current application being 
executed on the device. Online methods customize to the 
current application, but carmot leverage experience from 
other applications. In a sense, oflline methods are dependent 
on a rich training set that represents all possible behavior, 
while the online methods can be data limited and generate a 
statistically weak and less accurate model due to the small 

55 sample size. 

Such a smart home could learn from other smart homes to 
build models of the relationship between shades, electric 
lights, and brightness. That learned model could then be 
passed to a controller that operates within the home to adjust 
the relative usage of shades and electric lights to ensure the 
homeowner is always in a sufficiently bright room while the 
use of electric lights is minimized. This example maps 
directly into the example of meeting a performance con­
straint used throughout the document. Here the configurable 60 

parameters are the shades and lights (analogous to cores and 
clockspeeds in a computer). The constraint is brightness 
(analogous to computer performance). The objective to be 
optimized is cost (analogous to energy). The learner would 
measure the brightness and cost of different configurations, 65 

perhaps combine those measurements with other measure­
ments from other smart homes, and produce a model that 

In contrast to the oflline and online methods, a hybrid 
method of estimating the performance-consumption model 
is described herein. The hybrid method is a machine learning 
method that combines the best of the oflline and online 
methods (e.g., the hybrid method combines the statistical 
properties of both oflline and online estimation). The hybrid 
method begins with a set of applications for which the 
consumption and performance have been measured previ­
ously ( e.g., oflline ). 

The hybrid method can use a graphical model to integrate 
a small number of measurements of the current application 
with knowledge of the previously observed applications to 
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model to optimizing the computational configuration of the 
computing device 120 for executing the current application. 
The computing device can update the performance data sent 
to the server 110 by measurements of the continued execu-

produce accurate estimations of the consumption and per­
formance tradeoffs for the current application in all configu­
rations. The hybrid method's strength is that it quickly 
matches the behavior of the current application to a subset 
of the previously observed applications. For example, if the 
hybrid method has previously seen an application that only 
scales to eight cores, it can use that information to quickly 
determine if the current application will be limited in its 
scaling. 

5 tion of the current application, and the server can update the 
performance model based on the updated performance data. 

FIG. 2A shows a flow diagram of a method 200. In 
process 210 of method 200, the computational performance 
and power consumption of the computing device 120 are 

10 obtained for a discrete set of computational configurations of 
the computing device 120 when executing the current appli-

The hybrid method can be performed on a computing 
device including a computer readable memory, such as a 
hard disk, that stores a database of consumption and per­
formance data for the device when executing various appli­
cations. This standalone implementation of the hybrid 
method is then performed by the device comparing a small 15 

data set of consumption and performance measurements 
with the database of previously recorded measurements for 
other applications to estimate a model of the device when 
executing the current application. Using the estimated 
model, the device then determines the optimal computa- 20 

tional configuration for executing the current application. 
Alternatively, the hybrid method can be performed by a 

combination of a device and a server communicating with 
the device. The device can generate data for a small number 
of configurations for the device when executing the appli- 25 

cation, and send this small data set to the server. The server 
can compare the received small data set for the device with 
a database of the consumption and performance data stored 
on the server, and estimate the model of the device when 
executing the application. After receiving the estimated 30 

model from the server, the device can then apply the model 
to determining the optimal computational configuration for 
executing the application on the device. Thus, the hybrid 
method can be separated into subtasks that can be performed 
on either the device or on the server in communication with 35 

the device. One advantage of using a server to perform some 
of the subtasks is that the server might not be subject to the 
same size, memory and power constraints of the device. For 
example, the device can be a smartphone or wearable 
technology that has a small size with a limited battery and 40 

memory, whereas the server could be a large data center with 
access to significantly more power and memory. Further, the 
database of the server could include performance and con­
sumption data collected from many different devices when 
executing many different applications. Accordingly, the 45 

comparison between the small data set and the database can 
be statistically richer due to the large sample size of data 
provided by the larger database contributed to by a large 
number of computational devices. Thus, each device access­
ing the server to obtain a model also can contribute to grow 50 

the database to the benefit of future users. 

cation. 
In process 220 of method 200, the small data set repre­

senting performance and consumption measurements is used 
to estimate a performance model representing the compu­
tational performance and power consumption for all com-
putational configurations of the computing device 120 when 
executing the current application. In certain implementa­
tions, the estimation is performed by the server 110. In 
certain other implementations, the estimation is performed 
by the computing device 120. 

In process 230 of method 200, an optimal computational 
configuration is selected using the estimated performance 
model from process 120. The optimal computational con­
figuration can be a single computational configuration of a 
sequence of computational configurations that optimally 
executes the current application on the device, according to 
predefined criteria. For example, the predefined criteria can 
be to minimize the total energy consumption subject to the 
constraint that the application be completed within a pre­
defined time window. Alternatively, the predefined criteria 
can be to maximize computational accuracy subject to the 
constraint that no more than a predefined amount of energy 
be consumed within the predefined time window. The com­
putational configuration of the computing device 120 can 
also be optimized according to other predefined criteria. 

In step 240 of method 200, the performance model of the 
computing device 120 and the small data set used for the 
estimation of the performance model can be updated to 
improve the performance model and more accurately esti­
mate the optimal configuration of the computing device 120. 
Further, if the computing device consumes power at a rate 
greater or less than the rate indicated by the performance 
model than the configuration can be updated to reflect these 
changes and to ensure compliance with the predefined 
optimization criteria. For example, if the predefined criteria 
includes a guarantee that no more than a predefined amount 
of energy be consumed within the predefined time window 
and a higher than expected amount of energy was consumed 
in the first part of the window than the energy consumption 
can be decreased throughout the remaining duration of the 
time window to ensure the predefined criteria are satisfied. 

FIG. 2B shows a flow diagram of process 210. Step 212 
of process 210 includes initializing a loop n and initializing 

Referring now to the drawings, wherein like reference 
numerals designate identical or corresponding parts 
throughout the several views, FIG. 1 shows a schematic 
drawing of a device-server system. A computing device 120 
executes a current application and sends performance data of 
the consumption and performance for a small set of com­
putational configurations of the computing device 120 when 
executing the current application. The performance data is 
received by a server 110. The server 110 compares the small 
data set receiving from the computing device 120 with a 
database of performance data corresponding to various 
combinations of devices and other applications. Using these 
comparisons between the small data set and the database the 
server estimates a performance model, and sends the per­
formance model to the computing device 120. The comput­
ing device 120 then applies the estimated performance 

55 a discrete subset of computation configurations selected 
from the set of all computational configurations of the 
device. This discrete subset of computation configurations 
corresponds to the small data set to be used for the com­
parison to the performance database and the estimation of 

60 the performance model in process 220. 
In step 214 of process 210, the computational perfor­

mance and power consumption of the computing device 120 
when executing the current application is measured for the 
nth computational configuration of the subset initialized in 

65 step 212. 
In step 216 of process 210, the measured computational 

performance and power consumption from step 214 is 
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recorded in a table. Also the nth computational configuration 
of the subset is also recorded in the table. FIG. 3 shows an 
example of a table of eight configurations ranging from a 
clock rate of 250,000 to 400,000 and ranging from zero 
additional cores to 2 additional cores. The number of con- 5 

FIG. 2D shows a flow diagram of process 230. The 
process 230 in FIG. 2D seeks to optimize the computational 
configuration according to the predefined criteria of mini­
mizing the total energy consumption under the constraint 
that the application is completed within a predefined time 
window. In step 232 of process 230, a target job latency is figurations, clockspeeds, and cores provided herein are 

non-limiting examples. The methods described herein can 
be used with any clockspeed and any number of cores. They 
also support other configurable parameters such as network 
bandwidth, memory bandwidth, cache partitions, etc. The 
computational performance can be recorded as a normalized 
speedup factor relative to a baseline configuration, and the 
power consumption can be recorded as a powerup factor 
indicating the relative increase in power consumed relative 
to the baseline configuration. 

In step 218 of process 210, the loop index n is incre­
mented and process 210 inquires whether all of the initial­
ized discrete subset of computational configurations have 
been evaluated. If all of the computational configurations 
have been evaluated, then process 210 is complete. Other­
wise process 210 proceeds from step 218 to step 212. 

FIG. 2C shows a flow diagram of process 220. In step 222 
of process 220, a database of performance data is retrieved. 
The database can include performance data of the computing 
device 120 in addition to other computing devices contrib­
uting to the database. The database includes recorded mea­
surements of the computational performance and power 
consumption of these devices for various computational 
configurations and executing various applications. The data­
base is similar to the small data set corresponding to the 
discrete subset of computation configurations of process 
210, except the database has more data and corresponds to 
several applications. Some of the data from the database will 
likely represent a similar power-performance tradeoff as the 
power-performance tradeoff represented by the small data 
set from computing device 120 executing the current appli­
cation. However, the data from the database will also include 
data points for computational configurations not included in 
the small data set, and these additional data points in the 
database can be used to estimate the performance and 
consumption values for the computing device 120 executing 
the current application that have been omitted in the original 
small data set. 

Accordingly, a complete model of the computing device 
120 executing the current application can be estimated by 
comparing the small data set to the more complete data of 
the database and identifying those combinations of devices 
and applications having power-performance tradeoffs most 
similar to the power-performance tradeoffs of the computing 
device 120 executing the current application. The data of 
these similar combinations of devices and applications from 
the database can then be used to fill in the holes left in the 
small data set to generate a comprehensive model of the 
computing device 120 executing the current application. 

In step 224 of process 220, the performance-data table 
obtained in process 210 is compared with the database 
retrieved in step 222 to find those combinations of devices 
and applications having similar computational performance 
and power consumption as a function of computational 
configuration. 

In step 226 of process 220, a performance model of the 
device when executing the application is estimated. The 
performance model includes the computational performance 
and power consumption for all computational configurations 

determined for computational tasks of the current applica­
tion. The target job latency is the desired amount of time in 
which each of the computational tasks is to be completed. 

10 The target job latency can be obtained from a ratio between 
the computational tasks required to complete the application 
and the predefined time window. Further, the optimal solu­
tion to satisfy the predefined criteria can be a sequence of 
computational configurations. For example, the optimal con-

15 figuration might be to allocate all computational resource to 
the application, completing the application as quickly as 
possible and then to idle throughout the remainder of the 
predefined time window. If a sequence of computational 
configurations are used, then the target job latency can vary 

20 between the various portions of the sequence. 
In step 234 of process 230, the actual job latency is 

measured as the computing device 120 executes the appli­
cation. When the actual job latency deviates from the target 
job latency, a speedup factor is adjusted according to dif-

25 ferences between the measured latency and the target job 
latency. 

In step 236 of process 230, the estimated performance 
model is used to determine the optimal computational con­
figuration to achieve the speedup factor. Also, the estimated 

30 performance model is used to determine a sequence of 
computational configurations to achieve the speedup factor. 

In step 238 of process 230, the process 230 continues to 
step 234 if the current application is still continuing. If the 
optimal configuration is a sequence of configurations, then 

35 process 230 will also include the step of updating the target 
job latency after the completion of each section of the 
sequence. If the application is complete then process 230 is 
also complete. 

As the application is executing, the measured perfor-
40 mance and consumption of the computing device 120 can be 

recorded and used to update the performance model of the 
computing device 120. The newly measured performance 
and consumption data of the computing device 120 can be 
added to the small data set to generate an augmented small 

45 data set. This augmented small data set can then be used in 
a process similar to process 220 to generate an updated 
model of the computing device 120 when executing the 
current application. This process of updating the model of 
the computing device 120 can be performed in parallel with 

50 process 230, and the updated model of the computing device 
120 can be incorporated into process 230 after the updated 
model has been generated. This updating of the model of the 
computing device 120 is indicated as step 240 of method 
200, and FIG. 2A shows step 240 as being performed after 

55 process 230. However, step 240 can also be performed 
simultaneously with process 230. Additionally, step 240 can 
be performed at periodic time intervals after starting process 
230. In certain implementations, step 240 can be omitted. 

FIG. 2E shows a flow diagram of process 230', which is 
60 an alternative to process 230. In contrast to process 230, 

process 230' solves the constrained optimization problem of 
maximizing computational accuracy and maximizing effi­
ciency while providing guarantees that predefined compu-
tational tasks are completed within a predefined time period. 

of the device when executing the application based on the 65 

performance-data table and similar performance data from 
the database. 

In step 232' of process 230', the performance model is 
used to determine an optimal-efficiency configuration cor­
responding to a maximum ratio between computational 
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performance and power consumption of the device when 
executing the application, and set the device in the optimal­
efficiency configuration. 

In step 234' of process 230', a speedup factor is deter­
mined in order to operate in the optimal-efficiency configu­
ration and also complete predefined computational tasks 
within a desired time period. 

20 
that x and y are jointly drawn from the distribution D, and 
finally xly- D represents that x is drawn from the distribu­
tion after observing ( or conditioned on) the random variable 
y. The following are the operators on x: E [ x] expected value 

5 ofx, var[x]: variance ofx, Cov[x, y]: covariance ofx and y. 
x denotes the estimated value for the random variable x. 

The energy optimization problem can be formalized by 
In step 236' of process 230', the completion of the 

computational tasks are accelerated by the speedup factor by 
using approximate computing to trade-off accuracy for 10 

increased speed. 

the predefined optimization criteria of minimizing the 
energy consumed while executing the current application 
according to predefined constraints. In the example consid­
ered here, these predefined constraints include completing 

In step 237' of process 230', the performance model of the 
computing device 120 is updated according to continued 
measurements of the computational performance and power 

15 
consumption of the computing device 120 when executing 
the application. This updating of the performance model of 
the computing device 120 can either be performed according 

the application by a predefined deadline. The computing 
device 120 can be configurable in various computational 
configurations, each configuration having application-spe­
cific computational performance characteristics and power 
consumption characteristics. The goal of the optimization is 
to select the configuration that finishes the work (e.g., 
completes execution of the application) by the deadline to step 240 or step 237' can be performed using another 

method described later herein. 
Now a description of one implementation is provided as 

an illustrative example. This implementation uses probabi­
listic graphical models (PG Ms) to perform the functions of 
comparing the small data set to the database and to estimate 
a performance model of the computing device 120. This 
illustrative example further presents an example of optimiz­
ing the computational configuration according to the pre­
defined optimization criteria of minimizing the energy con­
sumption of the current application subject to an additional 
performance constraint ( e.g., the additional performance 
constraint can be that the work of the application be accom­
plished by a predefined deadline). 

20 while minimizing the energy consumption. 
Formally, this goal can be expressed generally as the 

computing device 120 accomplishing W work units in time 
T. The computing device 120 has a set of configurations 
( e.g., combinations of cores and clock speeds) denoted by 

25 c . When each configuration c in the set of configurations 
C has an application-specific performance (or work rate) re 
and power consumption Pc, then the energy minimization 
problem can be formulated as a linear program, which is 
given by 

30 

In this example, the following notation is used. The set of 
real numbers is denoted by JR . JR d denotes the set of 
d-dimensional vectors ofreal numbers; JR dxn denotes the set 35 

of real dxn dimensional matrices. The vectors are denoted 
subject to .L rJc = W, and 

cEC 

by lower-case and matrices with upper-case boldfaced let­
ters. The transpose of a vector x ( or matrix) is denoted by xr 
or just x'. llxlb is the £ 2 norm of vector x, i.e. 

i.e. llxll2 = 

IIXljp is the Frobenius norm of matrix X, 

d n 

i.e. IIXIIF = .Z.: .Z.: X 2 [i][j]. 
i=l i=l 

Let AEJR dxd denote ad-dimensional square matrix. tr(A) is 
the trace of the matrix A and is given as, 

d 

tr(A) = .L A[i][j]. 
i=l 

Further, diag (x) is ad-dimensional diagonal matrix B with 
the diagonal elements given as, B[i][i]=x[i] and off-diagonal 
elements being 0. 

Now, a review the standard statistical notation used herein 
is provided below. Let x, y denote any random variables in 
JR d_ The notation x- D represents that x is drawn from the 
distribution D . Similarly, the notation x, y- D represents 

40 
wherein Pc is the power consumed when executing the 
application using the cth configuration; re is the performance 
rate when running on cth configuration; W is the work to be 
performed by the application; tc is the time spent executing 

45 the application while configured in the cth configuration; and 
T is the total run time when executing the application. The 
linear program above finds the times tc during which the 
application is executed using the cth configuration so as to 
minimize the total energy consumption and ensure all work 

50 is completed by the deadline. The values Pc and re are central 
to solving this problem, and the values Pc and re are obtained 
from the performance model of the device. When Pc and re 
are known, the structure of this linear program enables the 
minimal energy schedule to be found using convex optimi-

55 zation techniques, for example. 
This formulation is abstract so that it can be applied to 

many applications and systems. In one embodiment, this 
abstract formulation can be performed using a Kmeans 
application using a 16-core Linux x86 server with hyper-

60 threading (allowing up to 32 cores to be allocated) as the 
computing device 120. The numbers of core counts provided 
herein are non-limiting examples. The methods described 
herein can be used with any core counts. Further, other 
learning techniques can be advantageous choices at different 

65 core counts, but the same techniques are applicable. More­
over, the configurable parameter need not be cores, but any 
allocatable resource. 
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The Kmeans application is a clustering algorithm used to 
analyze large data sets. The Kmeans application can be run 
with different performance demands and can be optimized in 
order to minimize energy for any given performance 
demand. To do so for Kmeans on the 32-core system, the 5 

performance and consumption is estimated as a function of 
the number of cores allocated to the application. Given this 
information, the most energy efficient number of cores can 
be selected according to the given performance demand. 

22 
Next, the size of the data set used with the database to 

determine the estimate of the performance model of the 
computing device 120 is considered. The phrase "perfor­
mance model" refers to a complete table of power consump­
tion and computational performance for all relevant com­
putational configurations of the computing device 120. One 
simple method, the averaging method, of estimating a per­
formance model of the computing device when it is execut­
ing the current application is to simply take a mean of Pc 
(similarly for re) across all the applications. This averaging 
method can work well if the current application follows a 
general trend exhibited by all prior applications. This aver­
aging method corresponds to the of!Iine methods discussed 
above. 

Another method, the regression method, of estimating can 
also be applied to estimating a performance model for the 
current application. In the regression method, consumption 
and performance data of the computing device 120 when 
executing the current application is obtained for a small 
subset of configurations (i.e., the small data set) Then, a 
multivariate polynomial regression can be performed on the 
small data set for the configuration parameters versus pc ( or 
re) to predict consumption ( or performance) in all other 
configurations. This regression method might not work well 
if there are local minima or maxima that are not captured by 
a small sample size of the small data set. This regression 
method corresponds to the online methods discussed above. 

A better method is to compare the small data set with the 
database of other applications and devices to determine 
those combinations of applications and devices that are 
similar to the computing device 120 when executing the 
current application. Then use these similar combinations of 
applications and devices to estimate a performance model of 

For the Kmeans application the workload is the number of 10 

samples to cluster. The deadline T is the time by which the 
clustering is to be completed. The configurations represent 
assigning to the Kmeans application different resources. For 
example, the assigning of resources could be restricted to 

15 
determining the number of cores assigned to execute the 
Kmeans application. Alternatively, the assigning of 
resources can include the assignment of cores, clock speed, 
memory controllers, and hyperthreads, depending on which 
characteristics of the computing device 120 are configur- 20 

able. For the Kmeans application, each assignment of 
resources can result in a different rate of computation (points 
clustered per time) and power consumption. The computa­
tional rate can be defined in terms of the time required to 
execute a computational unit. The computational rate ( or 25 

computational performance) is not necessarily defined in 
terms of the number of floating point operations performed, 
but can be defined in terms of computational tasks more 
closely tied to the goal of the application. For the Kmeans 
application the clustering of a predefined number of points 30 

is a logical computational unit. Other applications such as 
video playback, sorting, searching, etc. can also be subdi­
vided into small computational task or computational units, 
and these computational units/tasks can form the basis of 
determining the computational rate (performance). 35 the computing device 120 when executing the current appli­

cation. The Probabilistic Graphical Model (PGM) method is 
one example of a method of estimating the performance 
model by comparing a small data set to a database. 

In addition to the consumption and performance depend­
ing on the current application dependent, the consumption 
and performance can also depend on the specific inputs used 
in the current application. For example, for the same con­
figuration of the computing device 120, the Kmeans appli- 40 

cation can require more or less time to cluster the same 
number of points depending on the set of points. This 
variability arising from the inputs to a given application 
somewhat limits the predictive power of even the most 
accurate model. However, the variability due to the specific 45 

inputs can be small and can average out as the sample size 
becomes larger, making the variability due to input of 
secondary importance when the sample size of application 
input is large (e.g., clustering a large number of points in the 
Kmeans application). On the other hand, the relative differ- 50 

ences among applications are of primary importance. For 
any new application the consumption-performance trade­
offs will be unknown because a model of the consumption 
and performance has not yet been determined for all avail­
able configurations of the computing device 120. One way 55 

to gather the missing information would be execute the new 
application on each configuration in a brute force manner. 
However, as discussed earlier, there can be a very large 
number of configurations and the brute force approach might 
not be manageable. Alternatively, the application can be 60 

executed using a small subset of configurations and these 
measurements can be used to estimate the behavior of 
unmeasured configurations. Additionally, the data from 
other applications from the computing device 120 and/or 
other computing devices can also be used to estimate a 65 

performance model of the computing device 120 (e.g., a 
database, which has been collected of!Iine). 

The PGM method can best be understood in the context 
of directed graphical models. Directed graphical models ( or 
Bayesian networks) are a type of graphical model capturing 
dependence between random variables. Each node in these 
models denotes a random variable and the edges denote a 
conditional dependence among the connecting nodes. The 
nodes which have no edges connecting them are condition­
ally independent. By convention, shaded nodes denote an 
observed variable (i.e., a node whose value is known), 
whereas an unshaded node denotes an unobserved variable. 
FIGS. 4A and 4B show examples of directed graphical 
models. For example, in FIGS. 4A and 4B, nodes A and B 
can represent flips of a coin, and node C can represent the 
bias of the coin. In FIG. 4A, node A and node B (i.e., random 
variables A and B) are dependent on node C. In FIG. 4B, 
node C corresponds to an unobserved variable; therefore 
nodes A and B are not statistically independent because the 
bias is not observed. However, in FIGS. 4A, A and B are 
statistically independent because the bias is observed. 

The dependence structure in Bayesian networks can be 
better understood by exploring the coin flipping example 
with a biased coin. Suppose A represents the outcome of the 
first coin flip, B represents that of the second coin flip and 
C represents the coin's bias. Suppose, the bias is P(Heads)= 
0.7 and that this bias is known. Then both the flips are 
independent, irrespective of the first flip the second flip gives 
heads with probability 0.7. If the bias is unknown, however, 
then the value of B is conditionally dependent on A. Thus, 
knowing that A="Heads" increases belief that the bias is 
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towards "Heads"-that C>0.5. Therefore, the probability 
that the second coin flip gives "Heads" (i.e., B="Heads") 
mcreases. 

24 
a small number of observations are obtained for this appli­
cation. Specifically, for the Mth application, the observed 
configurations belonging to the set QM where QM «n (i.e., 
there are only a very small number of observations for this The PGM method exploits this conditional dependence in 

the presence of hidden, or unobserved, random variables. 
The PGM method estimates a model of the computational 
performance and power consumption of every system con­
figuration as a random variable drawn from a Gaussian 
probability distribution with unknown mean and standard 
deviation. Therefore, previously observed applications in 
the database will condition estimates by the PGM method of 
the performance and consumption for new, unobserved 
applications. 

5 application). The objective is to estimate the power con­
sumption for the Mth application for all computational con­
figurations that have not been observed (i.e., are not in the 
set QM). 

The hierarchical Bayesian model, shown in FIG. 5, is 
10 described in terms of statistical equations 

Hierarchical Bayesian models, which are used in the 
PGM method, are slightly more complex than the Bayesian 15 

networks discussed above, usually with more than one layer 
of hidden nodes representing unobserved variables. The 
PGM method utilizes these hidden nodes to improve its 
estimates for a new application using prior observations 
from other applications. Knowing the performance-charac- 20 

teristics of one application can help in producing better 
predictors for other applications. Put in the context of the 
coin flip example above, learning about one biased coin flip 
conveys information about another coin flip. Similarly, 
learning about previous applications provides information 25 

about the Knieans application, for example. The PGM 
method utilizes this conditional dependence in the problem 

wherein Y,ERn; z,ER n; f.l,E]R n; and ~ER nxn_ These equa­
tions describe that the power (denoted by y,) for each i th 

application is drawn from a multivariate-Gaussian distribu­
tion with mean z, and a diagonal covariance matrix a2 I. 
Similarly, z, is from a multivariate-Gaussian distribution 
with meanµ and covariance~- Further,µ and~ are jointly 
drawn from a normal-inverse-Wishart distribution with 
parameters f.lo, it, W, and v. The parameters for this model 
are µ and ~ whereas, f.lo, it, W, and v are the hyper­
parameters, which are set as f.io=0, it=l, W=I, and v=l. 

The first layer in the model as shown in FIG. 5 is the 
filtration layer and accounts for the measurement error for 
each application. Interestingly, even if there is only a single 

of estimating computational performance and power con­
sumption for a current application using data from previous 
applications. 30 measurement of each configuration for each application, this 

layer plays a crucial role as it creates a shrinkage effect. The 
shrinkage effect penalizes large variations in the application 
and essentially helps in reducing the risk of the model for 

FIG. 5 shows a schematic diagram of a hierarchical 
Bayesian model that can be used for the PGM method. In 
FIG. 5, there are n=I C I configurations of the computing 
device 120. The target application (i.e., the current applica­
tion) corresponding to subscript M is the new or unknown 35 

application for which a performance model is desired. For 
this target application a performance model is desired in 
order to minimize the energy consumed subject to a pre­
defined constraint ( e.g., completing the target application by 
the predefined deadline), as discussed above. 

shrinkage effect and for shrinkage in hierarchical models. 
The second layer on the other hand binds the variable z, for 
each application and enforces that they are drawn from the 
same distribution with unknown mean and covariance. The 
normal-inverse-Wishart distribution is the hyper prior on µ 
and ~ because this distribution is the conjugate prior for a 

40 multivariate Gaussian distribution. 
Additionally, the data of the database is indicated by the 

set of M-1 applications ( subscripts 1 through M-1) whose 
performance and power are known ( e.g., database values 
that have been measured oflline). Each subscript corre­
sponds to one combination of a device and an application. If 45 

the database includes measurements from only a single 
computing device (e.g., the computing device 120), then the 
combinations of devices and applications will correspond to 
a combination of the single device with different applica­
tions. The variable y is a placeholder for either p (power 50 

consumption) or r ( computational performance). 
Here the process of estimating the consumption as a 

function of configuration is discussed for the PGM method. 
A parallel/identical process can also used for estimating the 
computational performance. Further, the example described 55 

herein is for the case of a single device (i.e., the computing 
device 120) executing all of the applications 1 through M. 

Let the vector y,E]Jl n represent the power consumption 
estimate of application i in all n configurations of the 
computing device 120 ( e.g., the cth component of y, is the 60 

power for application i in configuration c (or y,[c]=pc)). 
Also, let {yJ,~iM be the shorthand for the power estimates 
for all applications. Without loss of generality, the first M-1 
colunms (i.e., {yJ,~1M-l represent the data for those appli­
cations whose power consumption is known (e.g., this data 65 

can be collected oflline ). The Mth colurmi, y M represents the 
power consumption for the new, unknown application. Only 

If the mean µ, the covariance ~, and the noise a are 
known, then y, are conditionally independent given these 
parameters. However, since the mean µ, the covariance ~, 
and the noise a are unknown a dependence is introduced 
amongst all the y,'s. This is a similar situation to the coin 
flipping example discussed above, in which the value of one 
coin flip influences our prediction about the other coin flip. 
~ captures the correlation between different configurations 
as shown in FIG. 6. 

The variable 8={µ, ~, a} can be used to denote the 
unknown parameters µ, ~, and a in the model. y M is 
Gaussian given 8. Thus, the estimation problem simplifies to 
estimating 8. A maximum-likelihood estimator can be used 
to determine the set of values of the model parameters that 
maximizes the likelihood function ( or the probability func­
tion of the observed outcomes given the configuration 
parameters). Thus, the maximum-likelihood estimates of 
configuration parameters are those values which most 
closely agree with the database. 

For example, if cp(y) is the set of the observations in vector 
y, then finding the maximum likelihood estimate of the 
parameter 8 can be achieved by maximizing the probability 
of y M conditioned on gi(y,),~1M and then using the expecta­
tion of y M given and 8 as the estimator for y M- Due to the 
presence of latent variables (layer 1 and layer 2 in FIG. 5), 
there is not a closed form solution for Pr(y Ml { cp(y,)} ,~i M, 8). 
However, an iterative method, such as the Expectation-
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Maximization algorithm discussed next can be used to 
obtain a solution for Pr(yMl{cp(y,)},~1M, 8). 

26 
optimal performance and consumption tradeoffs. Then an 
iterative method can be used to walk along the convex hull 
of this optimal tradeoff space until the performance goal is 
reached. 

In one example, method 200 using the PGM method can 
be applied to executing the Kmeans application using a 
computing device 120 that is the 16-core Linux x86 server 
with hyperthreading, discussed above. In this example, there 
are 32 configurations (hence n=32). Further, the example 

The Expectation-Maximization (EM) algorithm can be 
used to optimize over analytically intractable problems. The 
EM algorithm switches between two steps: an expectation 5 

step (E step) and a maximization step (M step) until con­
vergence. During the E step, a function for the expectation 
of the log of the likelihood is found using the current 
estimate for the parameters. In the M step, the configuration 
parameters are computed to maximize the expected log­
likelihood found in the Estep. Then, in the next Estep, these 
estimates of the configuration parameters are used to deter­
mine a distribution of the latent variables, as discussed in 
Kai Yu, Volker Tresp, and Anton Schwaighofer. "Learning 
gaussian processes from multiple tasks," Proceedings of the 
22nd International Conference on Machine Learning, pages 
1012-1019, ACM, (2005), incorporated herein by reference 

10 includes 24 other applications not including the current 
(target) application (hence M=25). For these 24 other appli­
cations, data has been collected for all possible configura­
tions of the 16-core Linux x86 server. The data of these other 
applications and configurations is denoted by {y,} ,~i M-I; y M 

15 denotes the power consumption data for Kmeans. 
The core counts, hyperthreading, OS, and processor 

model described above are provided as non-limiting 
examples, and the methods described herein are not depen­
dent upon these particular examples. Furthermore, the num-

in its entirety. 
As described earlier, Q, is the set of observed indices for 

the i th application. Let L denote the indicator matrix with L(i, 
j)=l if jEQ, and 0 otherwise. Stated differently, L(i, j)=l if 
the i th application is observed in the j th configuration. L, is 
used as shorthand for L(:, i). The expectation and covariance 
for z, given 8 are given by 

(
diag(L;) 'v-1)-1 

Cov(z;) = ------;;:z- + L, and 

_ , (diag(L;)y; 'v-1 ) 
E(z;) - C; --<T-

2
- + L, µ . 

These two equations are the E step. Ci is shorthand for 
Cov(z,) and z, denotes E(z,). Next, the log-likelihood is 
maximized with respect to 8 and taking the derivative with 
respect to ~, a, and µ and setting the derivatives to 0 gives, 

1 M 

µ= M+n~Z;, 
i=l 

These three equations are the M step. 

20 ber of other applications used by the PGM method ( or other 
learning technique used in another implementation) can 
vary. The specific learning technique in this example can 
produce better results when there are a greater number of 
other applications. Different learning techniques may pro-

25 duce better results for lower numbers of applications. It can 
be noted that, in certain implementations, the general 
approach of combining learning and control can work with 
fewer other applications, by simply applying a different 
specific learning technique to build the model that is passed 

30 pass to the controller. The application of the methods 
described herein in which the number of other applications 
is zero is denoted as the "online" method. 

Referring to FIG. 5, the Kmeans application is the final 
node, labeled "Target Application," whereas the rest of the 

35 applications would be the remaining nodes in any order. The 
PGM method estimates zM, the node above YM in FIG. 5, 
which is an unbiased estimator for y M The PGM method 
collects data for six different configurations ( 5, 10, ... 30 
cores). Hence, QM={5, 10, ... 30} andy,v[j] is known if and 

40 only if jEQM Also, L, or L(:,i) is an all one vector of length 
n if i>'M and L(j,i)=l if jEQM and L(j,i)=0 otherwise. 

In this example, the method 200 starts by initializing the 
parameter 8=(µ, ~, a). Next the E-step equations are evalu­
ated for each value of i to calculate the values of z, and C,. 

45 Next the values of z, are used to evaluate equations of the 
M-step. Then the results from the M-step are used as inputs 
to the E-step, and so forth until convergence. When the 
iteration between the E-step and M-step have converged, 
process 220 is complete. 

Next method 200 proceeds to process 230, in which the 
estimate for zM from process 220 is used as the performance 
model of the computing device 200 (i.e., Pe=zM [c], VcE c). 
Similarly, the PGM method is used to estimates the perfor­
mance re. Using these estimate for re and pp as the perfor-

The PGM method iterates between the E step and the M 50 

step until convergence to obtain the estimated parameters 8. 
Then, conditioned on those values of the parameters, the 
PGM method sets YM as E(zMl8) given by the above equa­
tions. The PGM method uses the same algorithm to estimate 
computational performance as well. After both the compu­
tational performance and the power consumption have been 
estimated for all configurations of the computing device 120 
when executing the current application, then process 220 is 
complete and method 200 proceeds to step 230, in which the 
performance model estimated in process 220 is applied to 
determine the optimal configuration according to the pre­
defined efficiency criteria. 

55 mance model in process 230 to determine the optimal 
configuration of the computing device 120 when executing 
the Kmeans application. 

The PGM method does not assume any parametric func­
tion to describe how the power varies along the underlying 

60 configuration parameters, such as the number of cores, the 
memory controllers, and clockspeed. Thus, the PGM 
method is flexible and robust enough to adapt to and 
represent a much wider variety of applications than a 
method relying on prior assumption of how the computing 

Given computational performance and power consump­
tion estimates, the energy minimization problem can be 
solved using convex optimization techniques. For example, 
process 230 can be performed by using the performance 
model to find the set of configurations that represent Pareto-

65 configurations influence consumption and performance of 
the computing device. This absence of prior assumptions can 
also result in using greater computational resources to 
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using all resources to their full capacities) and the time 
provided for performing the computational task. For 
example, if working at maximum capacity the device 120 
can achieve the task in one second, but two seconds are 

perform the method, increasing the value of performing the 
PGM method on a server with extensive power resources 
rather than on a mobile computing device with a limited 
battery. These greater computational resources are used to 
calculate the covariance matrix shown in FIG. 6 and to 
exploit the relationships expressed by the covariance matric 
to estimate, which can be computationally demanding tasks. 

5 allotted to perform the task, then the utilization would be 
0.5. In this non-limiting example, tests are performed across 
a full range of utilization. In another implementation, the 
utilization can be varied by maintaining the time constant 
while varying the amount of computational work. In this 

In addition to the PGM method, other methods can be 
used which assume that consumption and performance are 
convex functions of the computational configuration param­
eters. These other methods can use algorithms, such as the 
gradient descent method, to find the device model and the 
optimal computational configuration. In contrast to these 
other methods, the PGM method is robust to the existence 
local minima and maxima in the function mapping the 15 

computational configurations on to the power consumption 
and the function mapping the computational configurations 

10 implementation, the denominator of the ratio is the amount 
of work that can be performed in the allotted time when 
working at maximum capacity, and the numerator of the 
ratio is the amount of computational work actually required 
within the allotted time. 

on to the computational performance. 
To illustrate the benefits of the method 200, method 200 

is compared to three other method: the heuristic of race-to- 20 

idle method, an oflline learning method, and an online 
learning method. The race-to-idle method simply allocates 
all resources (cores, clockspeed, etc.) to the Kmeans appli­
cation and then idles the computing device 120 once the 
Kmeans application is complete. The oflline methods builds 25 

a statistical model of performance and consumption for each 
configuration based on prior measurements of other appli­
cations. The online method approach uses polynomial 
regression to estimate the tradeoffs between performance 
and consumption for each configuration while the Kmeans 30 

application is being executed by the computing device 120. 

FIG. 9 shows the energy consumption data where higher 
utilizations mean more demanding performance require­
ments. As can be seen in FIGS. 7 and 8, method 200 is the 
only estimation method that captures the true behavior of the 
application and this results in significant energy savings 
across the full range of utilizations. 

Learning the performance for Kmeans application is 
computationally challenging because the application scales 
well to 8 cores, but its performance degrades sharply when 
more cores are applied. The illustrative numbers provided in 
this non-limiting example can be generalized, as would be 
understood by a person of ordinary skill in the art, to an 
arbitrarily large number of cores. As the number of cores 
increases, other learning algorithms might be faster. There­
fore, finding the peak using only 6 uniformly distributed 
values (5, 10, ... , 30 cores) without exploring every 
possible number of cores is quite challenging. The oflline 
learning method predicts the highest performance at 32 
cores because that is the general trend over all applications. 
The online method predicts peak performance at 24 cores, so 

Each of these three methods has their respective limita­
tions. For example, the heuristic approach simply assumes 
that the most energy efficient configuration is when all the 
system resources are in use. 

The oflline approach uses the average behavior from the 
previously measured applications as the model for the 
Kmeans application, but this may be a poor model if the 
previous applications are dissimilar to the Kmeans applica­
tion. 

35 it benefits by learning that performance degrades at the 
highest number of processors, but the online method fails to 
discover the actual peak. The online method requires many 
more samples to correctly find the peak. In contrast, method 
200 leverages prior knowledge of an application whose 

Using a large number of measurements, the online method 
can produce a reasonable model, but acquiring a large 
number of measurements might not be feasible. 

40 performance peaks with 8 cores. Because method 200 has 
previously encountered an application with similar behavior, 
method 200 is able to quickly realize that the Kmeans 
application follows a similar pattern and method 200 pro­
duces accurate estimates with just a small number of obser-Method 200 combines the best features of both the oflline 

and online approaches. At runtime, method 200 changes 
core allocation (e.g., using process affinity masks), observes 
the consumption and performance as a function of the 
various core allocations, and combines this data with data 
from previously observed applications (i.e., a database) to 
obtain a most probable estimate for the consumption and 50 

performance for the unobserved configurations of the com­
puting device 120. 

45 vations. Generally, the methods described herein can work 
with any number of observations. It can be observed that the 
HBM seems to advantageously provide good accuracy, 
especially with only a small number of observations, but 
other learning approaches can be used. 

Now simulations are described. The simulations provide 
an evaluation of method 200's performance and power 
estimates, and also of method 200's ability to use those 
estimates to minimize energy across a range of performance 
requirements. First, the experimental setup of the simulation 

FIGS. 7 and 8 show comparisons of method 200 relative 
to the optimal values (i.e., brute force method), the oflline 
method, and the online method. FIG. 9 shows a comparison 
of method 200 relative to the race-to-idle method, optimal 
values (i.e., brute force method), the oflline method, and the 
online method. FIG. 7 shows performance estimates for each 
method as a function of the number of cores. Similarly, FIG. 
8 shows estimates of power consumption for each method as 
a function of the number of cores. 

55 is described and benchmark approaches are also described 
and compared to method 200. Further, method 200's accu­
racy is discussed for performance and power estimates. Then 
it is demonstrated that method 200 provides near optimal 
energy savings using these estimates. Also discussed is how 

60 method 200 performs with respect to different sample sizes 
and a measurement of method 200's overhead. 

These runtime estimates are then used to determine the 
minimal energy configuration for various system utiliza­
tions, which are shown in FIG. 9. In certain implementa­
tions, the utilization can be measured by the ratio between 65 

the time in which the computational task can be performed 
when working at maximum capacity ( e.g., the configuration 

The test platform for the simulation is a dual-socket Linux 
3.2.0 system with a SuperMICRO X9DRL-iF motherboard 
and two Intel Xeon E5-2690 processors. 

This is a non-limiting example. For example, the methods 
described herein are not contingent on the parameters of the 
test platform. The methods described herein are general, and 
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can be applied to any number of platforms with different 
numbers and types of configurable resources. The cpu­
fregqutils package is used to set the processor's clock speed. 
The processors have eight cores, fifteen DVFS settings 
(from 1.2 to 2.9 \GHz), hyperthreading, and TurboBoost. In 5 

addition, each chip has its own memory controller, and the 
numactl library is used to control access to memory con­
trollers. In total, the system supports 1024 user-accessible 
configurations, each with its own power/performance 
tradeoffs (e.g., 16 cores, two hyperthreads, two memory 10 

controllers, and 16 speed settings (15 DVFS settings plus 
TurboBoost)). According to Intel's documentation, the ther­
mal design power for these processors is 135 Watts. The 
system is connected to a Watts Up meter which provides total 
system power measurements at one second intervals. In 15 

addition, Intel's RAPL power monitor is used to measure 
chip power for both sockets at finer-grain intervals. The 
simulations use 25 benchmarks from three different suites, 
including: PARSEC (which includes blackscholes, 
bodytrack, fluidanimate, swaptions, x264); Minebench 20 

(which includes ScalParC, apr, semphy, svmrfe, Kmeans, 
HOP, PSA, and Kmeansnf); and Rodinia (which includes 
cfd, nn, lud, particlefilter, vips, btree, streamcluster), back­
prop, and bfs ). 

30 
search approach. The race-to-idle approach allocates all 
resources to the application and once it is finished the system 
goes to idle. This strategy incurs almost no runtime over-
head, but may be suboptimal in terms of energy, since 
maximum resource allocation is not always the best solution 
to the energy minimization equation. The online approach 
carries out polynomial multivariate regression on the 
observed dataset using configuration values (the number of 
cores, memory control and speed-settings) as predictors, and 
estimates the rest of the data-points based the same model. 
Then it solves a linear program of the energy minimization 
problem provided in the foregoing. This method uses only 
the observations and not the prior data. The oflline approach 
takes the mean over the rest of the applications to estimate 
the power and performance of the given application and uses 
these predictions to solve for minimal energy. This strategy 
only uses prior information and does not update based on 
runtime observations. The exhaustive search approach 
searches every possible configuration to determine the true 
performance, power, and optimal energy for all applications. 

FIGS. 12A and 12B show a comparison of average energy 
(normalized to optimal) by different estimation techniques 
for various benchmarks. The energy for method 200 is very 
close to optimal. On an average (taken over all the bench­
marks) method 200 consumes 6% more than optimal, as 
compared to the online, oflline, and race-to-idle approaches, 
which respectively consume 24%, 29% and 90% more 
energy than optimal. 

FIGS. l0A and 10B show bar charts of the Pareto frontier 
for power and performance estimation using different esti­
mation algorithms. The estimated Pareto-optimal frontiers 
are compared to the true frontier found with exhaustive 
search, providing insight into how method 200 solves the 
expressions in the foregoing. When the estimated curves are 
below optimal plots, it represents worse performance, i.e., 
missed deadlines, whereas the estimations above the optimal 
represent wasted energy. 

Method 200's estimates are compared with the online, 
oflline, and exhaustive search methods described in the 
foregoing. Each of the 25 applications is deployed on the test 
system, and performance and power are estimated. In certain 
embodiments, method 200 and the online method both 
randomly select and sample 20 configurations. Unlike the 
online method, which only uses these 20 samples, method 
200 utilizes these 20 samples along with all the data from the 
other applications for the estimation purpose. These are 
non-limiting examples. Both approaches get more accurate 
as the number of samples increases. For both method 200 
and the online approach, the average estimates are produced 
over 10 separate trials to account for random variations. The 
oflline approach does no sampling. The exhaustive approach 
samples all 1024 configurations. 

FIGS. l0A and 10B show a comparison of performance 
(measured as speedup) estimation by different techniques for 

In certain implementations, the use of more applications 25 

can be used to improve the results. The applications used 
represent a broad set of different computations with different 
requirements and demonstrate generality. The simulation 
also uses a partial differential equation solve jacobi), a file 
intensive benchmark (filebound), and a search web-server 30 

(swish++) These benchmarks provide means for testing a 
range of types of important multicore applications with 
various compute-intensive and i/o-intensive workloads. All 
the applications run with up to 32 threads (the maximum 
supported in hardware on the test machine). This is a 35 

non-limiting example, any number of threads can be used. In 
addition, all workloads are long running, taking at least 10 
seconds to complete. To produce measurable behavior, the 
configurable system is operated for a sufficiently long time. 
What constitutes a sufficiently long time can be application 40 

and system dependent. For example, a sufficiently long time 
could be much shorter than 10 s. For example, the GRAPE 
implementation described below can operate on the micro­
second scale. Similarly if the operation time is longer, then 
the system has more than enough time to learn. This duration 45 

gives sufficient time to measure system behavior. Alt appli­
cations are instrumented with the Application Heartbeats 
library which provides application specific performance 
feedback to method 200. Thus, method 200 is ensured of 
optimizing the performance that matters to the application 50 

being evaluated. All performance results are then estimated 
and measured in terms of heartbeats per second. When the 
Kmeans application is used to demonstrate method 200, the 
heartbeats per second metric represents the samples clus­
tered per second. 55 various benchmarks. The accuracy of method 200 is con­

sistently better than the online and oflline approaches. On an 
average (over all benchmarks), method 200's accuracy is 
0.97 compared to 0.87 and 0.68 for the online and oflline 
approaches respectively. The results are normalized with 

To evaluate method 200 quantitatively, the accuracy of the 
predicted performance and power values y is measured with 
respect to the true data y as, 

, { 115' - YII~ ) accuracy(y, y) = ma 1 - ---, 0 . 
IIY-YII~ 

Now, method 200 is evaluated by comparing method 200 
with four baselines approaches: the race-to-idle approach, 
the online approach, the oflline approach, and the exhaustive 

60 respect to the exhaustive-search method. Further, these are 
representative, non-limiting results. It can be expected that 
the results to change on different systems or with different 
applications. However, in certain implementations, it can be 
observed that the HBM performs better than existing 

65 approaches. 
FIGS. llA and 11B show a comparison of power (mea­

sured in Watts) estimation by different techniques for vari-
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and outperforms the other estimators. The experiment 
described in the foregoing is repeated for all applications, 
then average the energy consumption for each application 
across all utilization levels. These results are shown in FIGS. 

ous benchmarks. The accuracies for method 200 are con­
sistently better than the offline approach. On an average 
(over all benchmarks), method 200's accuracy is 0.98 com­
pared to 0.85 and 0.89 for the online and offline approaches 
respectively. Again, the results are normalized with respect 
to the exhaustive-search method. As above, these are rep­
resentative, non-limiting results. 

5 12A and 12B, which display the benchmark on the x-axis 
and the average energy (normalized to optimal) on the 
y-axis. On an average across all the applications, method 
200 does only 6% worse than optimal. In contrast, online, 
offline and race-to-idle methods are 24%, 29%, and 90% 

The performance and power estimation accuracies are 
shown in FIGS. l0A and lOB and in FIGS. llA and 118 
respectively. The benchmarks are shown along the x-axis 
and estimation accuracy on the y-axis. Unity represents 
perfect accuracy. As seen in these FIGS. lOA, lOB, llA, and 
llB, method 200 produces significantly higher accuracy for 
both performance and power. On average (across all bench­
marks and all configurations) method 200's estimations 15 
achieve 0.97 accuracy for performance and 0.98 for power. 

10 worse respectively. These are non-limiting representative 
results. These results demonstrate that method 200 not only 
produces more accurate estimates of performance and 
power, but that these estimates produce significant-near 
optimal-energy savings. 

Next is described how method 200 can quickly react to 
changes in application workload. To demonstrate this, the 
application fluidanimate, which renders frames, was 
executed with an input that has two distinct phases. Both 
phases are completed in the same time, but the second phase 

In contrast, the online approach achieves accuracies of 0.87 
and 0.85, while the offline approach's accuracies are 0.68 
and 0.89. Even for difficult benchmarks (like the Kmeans 
application), method 200 produces accurate estimations 
despite sampling less than 2% of the possible configuration 
space. 

20 is performed with significantly less work. In particular, the 
second phase uses only 2/2rd of the resources used by the first 
phase. These are non-limiting representative results. Thus, 
executing the application fluidanimate demonstrate that 
method 200 can quickly react to phase changes and maintain 

Method 200 produces highly accurate estimates of per­
formance and power. For example, the performance models 
for the Kmeans, Swish, and x264 applications have accu­
racies of 0.99, 1.00, and 0.98, respectively, and the power­
consumption models for the Kmeans, Swish, and x264 
applications have accuracies of0.99, 1.00, and 0.98, respec­
tively. Method 200 accurately represents both the peak 
performance configuration and the local minima and 
maxima for all three applications. These accurate estimates 30 

provided by the performance models make method 200 
well-suited for use in energy minimization problems, espe­
cially for applications having unusual behavior. 

25 near optimal energy consumption. The results of executing 
the application fluidanimate are shown in FIGS. 15A and 
15B and summarized in Table 1. FIGS. 15A and 15B show 
time (measured in frames) on the x-axis. 

The goal of method 200 is not only to estimate perfor­
mance and power, but to minimize energy for a performance 35 
( or utilization) target. Thus, method 200 uses the estimates 
of the performance model to form the Pareto-optimal fron­
tier of performance and power tradeoffs. FIGS. 13A, 13B, 
and 13C show the true convex hull and those estimated by 
method 200 and the offline and online approaches. Due to 
space limitations, only the hulls for the three representative 40 

applications (i.e., Kmeans, Swish, and x264) are shown. In 
FIGS. 13A, 13B, and 13C performance (measured as 
speedup) is shown on the x-axis and system wide power 
consumption (in Watts) on the y-axis. FIGS. 13A, 13B, and 
13C clearly show that method 200's more accurate estimates 45 

of power and performance produce more accurate estimates 
of Pareto-optimal tradeoffs. 

To evaluate energy savings, each application is deployed 
with varying performance demands. Technically, the dead­
line is fixed and the workload W is varied, such that 
WE[minPerformance, maxPerformance] for each applica­
tion. One hundred different values are tested for W for each 
application, each value of W representing a different utili­
zation demand from 1 % to 100%. This broad range of 
possible utilizations demonstrates the generality of the meth­
ods described herein. Each approach is used to estimate 
power and performance and form the estimated convex hull 
and select the minimal energy configuration. 

50 

55 

FIGS. 14A, 14B, and 14C show the results for the three 
representative benchmarks. Each of the FIGS. 14A, 14B, 
and 14C shows the utilization demand on the x-axis and the 60 

measured energy (in Joules) on the y-axis. Each of the FIGS. 
14A, 14B, and 14C shows the results for the method 200, 
online, and offline estimators as well as the race-to-idle 
approach and the true optimal energy. As shown in FIGS. 
14A, 14B, and 14C, method 200 produces the lowest energy 65 

results across the full range of different utilization targets. In 
this example, method 200 is consistently close to optimal 

FIG. 15A shows performance normalized to real-time on 
the x-axis, and FIG. 15B shows power in Watts (subtracting 
out idle power) on the y-axis. The dashed vertical line shows 
where the phase change occurs. Each of FIGS. 15A and 15B 
shows the behavior for method 200, the offline method, the 
online method, and an optimal solution. 

All computational configurations represented in FIGS. 
15A and 15B are able to meet the performance goal in both 
phases. This fact is not surprising as all use gradient ascent 
to increase performance until the demand is met. The real 
difference comes when looking at power consumption. Here, 
it can be observed that method 200 again produces near 
optimal power consumption despite the presence of phases. 
Furthermore, this power consumption results in near optimal 
energy consumption as well, as shown in Table 1. These 
results indicate that method 200 produces accurate results 
even in dynamically changing environments. 

TABLE 1 

Relative energy conswnption by various algorithms with respect to 
optimal. These are non-limiting representative results. 

Algorithm Phase#! Phase#2 Overall 

Method 1.045 1.005 1.028 
Oflline 1.169 1.275 1.216 
Online 1.325 1.248 1.291 

Method 200's runtime overhead is tricky to quantify, but 
can be quantified. The runtime takes several measurements, 
incurring minuscule sampling overhead. After collecting 
these samples, the runtime incurs a one-time cost of execut­
ing method 200. After executing this algorithm, the models 
are sufficient for making predictions and method 200 does 
not need to be executed again for the life of the application 
under control. For this reason, method 200 appears to be 
well suited for long running applications which may operate 
at a range of different utilizations. In certain embodiments, 
the one-time estimation process is sufficient to provide 
accurate estimates for the full range of utilizations. 
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shows the average latency (normalized to 1-the empirically 
determined worst case). The y-axis shows energy (normal­
ized to 1-the highest measured energy). FIGS. 16A and 
16B show the very different tradeoffs for the Vaio and the 

5 ODROID with each point representing a different configu­
ration. For the Vaio, energy increases as frame latency 
increases. That is, a slower job wastes energy. For the 
ODROID, energy decreases as frame latency increases. That 

Therefore, the overhead is measured in two ways: (i) the 
average time required to execute method 200 is measured on 
the system and (ii) the average total system energy con­
sumption is measured while executing the runtime. The 
average execution time is 0.8 seconds across each bench­
mark for each power and performance. These are non­
limiting representative results. The average total system 
energy consumption while executing the runtime is mea­
sured to obtain an energy overhead value of 178.5 Joules. 
The overhead is not trivial. However, for applications that 10 

run in the 10 s of seconds to minutes or more, method 200's 
overhead is easily amortized by the large energy savings 
enabled. For comparison, the exhaustive search approach 
takes more than 5 days to produce the estimates for the 
semphy application, and for the HOP application, which is 
the fastest application used in the example in the foregoing, 

is a slower encoding saves energy. 
The different shapes of these tradeoff spaces lead to 

different optimal resource allocation strategies. Empirical 
studies show that the race-to-idle heuristic, which makes all 
resources available and then idles after completing a job, is 
near optimal on systems like the Vaio. On systems like the 

15 ODROID, energy can be economized by keeping the system 
constantly busy and never idle. 

an exhaustive search takes at least 3 hours. 
Now, a method of performing process 230 is described, 

using an example of achieving a latency goal for executing 
an application. Many implementations of process 230 can be 
used. The implementation described now uses abstract 
resource management into a middleware or runtime, and this 
particular implementation is referred to as POET (Perfor­
mance with Optimal Energy Toolkit). POET is unique 
because of (i) how it generates and uses energy awareness, 
(ii) POET is designed for portability, and (iii) POET incor­
porates a true minimal-energy resource allocation algorithm. 

To better understand POET, it is helpful to consider 
motivations for portable, energy-aware resource manage­
ment. Further it is helpful to consider an example application 

To demonstrate the importance of choosing the right 
strategy, the two heuristics, race-to-idle and never-idle, are 
analyzed and compared using both platforms and compare 

20 their energy consumption to respective optimal configura­
tions. The latency target is set equal to twice the minimum 
latency and the energy consumption of encoding 500 video 
frames using each heuristic is measured. 

FIG. 16B shows the results, normalized to the optimal 
25 energy found by measuring every possible resource configu­

ration. Both heuristics meet the latency target, but their 
energy consumptions vary tremendously. On the Vaio, race­
to-idle is near optimal, but never-idle consumes 13% more 
energy. Conversely, never-idle is near optimal for the 

30 ODROID, but race-to-idle consumes two times more energy. 
by evaluating the timing and energy tradeoffs of a video 
encoder on two embedded platforms, a Sony Vaio™ tablet 
and an ODROID™ development board. The two platforms 
not only have different resources for management, but also 
have latency and energy tradeoffs with different topologies. 35 

Thus, resource allocation strategies that save energy on one 
are wasteful on the other. 

These results demonstrate that the resource allocation 
strategy greatly affects energy consumption, and more 
importantly, that heuristic solutions are not necessarily por­
table across devices. These two points motivate the need for 
an approach like POET, which provides near optimal 
resource allocation while remaining platform-independent. 
POET's runtime uses control theory to meet timing con­
straints and linear programming to minimize energy con­
sumption. Thus, using the performance model obtained from 

This example features a video encoder, composed of jobs, 
where each job encodes a frame. The encoder is instru­
mented to report job latency and the platform's energy 
consumption is measured over time. The two platforms have 
different configurable resources, shown in Table 2. The Vaio 
allows configuration of the number of active cores, the 
number of hyperthreads per core, the speed of the proces­
sors, and the use of TurboBoost. The ODROID supports 
configuration of the number of active cores, their clock 
speed, and whether the application uses the "big" (Cortex-
Al 5 high performance, high power) or "LITTLE" (Cortex­
A7 low performance, low power) cores. 

TABLE 2 

40 the server 110, a device 120 executing POET's runtime can 
optimize energy consumption according to some predefined 
criteria, as exemplified in the following. 

In certain implementations, POET uses a resource allo­
cation framework. The goal of the resource allocation frame-

45 work is twofold: (i) to provide predictable timing so appli­
cation jobs meet their deadlines and (ii) to minimize energy 
consumption given the timing requirement. These two sub­
problems are intrinsically connected, but can be decoupled 
to provide a general solution. In practice, complexity can 

Two embedded platforms witb different configurable components. These 
differences in platforms demonstrate tbe generality of tbe metbods described herein. Furtber, 

the methods described herein are even more general, and are not restricted to these two 
latforms. 

Core Speeds Turbo- Hyper-
Platform Processor Cores Types (GHz) Boost Threads 

Sony Intel 2 .6-1.5 yes yes 
Vaio Haswell 
ODROID- Samsung 8 2 (A15 .8-1.6 no no 
XU+E Exynos5 &A7) (A15) .5-1.2 

Octa (A7) 

FIGS. 16A and 16B exemplify the tradeoffs between 
energy consumption and latency. In FIG. 16A, the x-axis 

Idle 
Power 
(W) Configurations 

2.5 45 

0.12 69 

65 

arise from the keeping resource allocation general with 
respect to the platform and the running application. The 
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problem of providing predictable timing is addressed by 
using control theory to compute a generic control signal. 
Using the computed control signal, the energy minimization 
problem is solved using mathematical optimization. 

36 
tions may also experience phases, where base speed changes 
over time. To accommodate these situations, POET, in 
certain embodiments, continually estimates base speed using 
a Kalman filter, which adapts b(t) of control the current 

FIG. 17 illustrates the POET architecture 1700. The 
application 1725 informs the runtime of its target job latency 
(i.e., latency goal). Measuring each job start and completion 
time, POET's runtime computes a latency error and passes 

5 application behavior. 
POETs control formulation is independent of a particular 

application as it, in certain embodiments, uses the Kalman 
filter to estimate the application base speed. Unlike prior 
work, this controller 1710 does not reason about a particular it to a controller 1710. The controller 1710 uses the latency 

error (i.e., error) to calculate a generic control signal, indi­
cating how much the speed of the application 1725 can be 
altered. This signal is used by the optimizer 1720, together 
with the specification of available resources 1715, to sched­
ule resource usage so that the desired speed is achieved and 
energy consumption is minimized. Both the controller 1710 
and the optimizer 1720 are designed independently of the 
application 1725 and system 1730. The only assumption 
made is that applications are composed of repeated jobs, 
each with a (soft real-time) deadline, or desired latency. 
Further, for multicore platforms, it is assumed that each job 
may be processed by multiple, communicating threads. 

10 set of resources, but computes a generic control signal s(t). 
POET provides formal guarantees about its steady-state 
convergence and robustness without requiring users to 
understand control theory. 

The optimizer 1720 turns the generic control signal com-
15 puted by the controller 1710 into a system-specific resource 

allocation strategy, translating the speedup s(t) into a sched­
ule for the available resources. The schedule is computed for 
the next -i: time units. To meet the requirement on the target 
latency and avoid deadline misses, POET ensures that the 

20 application completes I(t) jobs in the next interval by the 

The controller 1710 cancels the error between the desired 
job deadline dr and its measured latency dm(t) at time t. The 
error e(t) is considered using the abstraction of the job speed, 25 
where the required speed is 1/dr and the measured speed at 
time t is 1/dm(t). 

expression 

I(t)ccr;·s(t)·b(t). 

As shown in FIG. 17, the optimizer 1720 takes, as input, 

1 1 
e(t)= - ---

d, dm(t) 

POET models latency as 

a resource specification containing the set of available 
system configurations ( e.g., the performance model obtained 
from the server 110). For example, there can be C possible 
configurations in the system and by convention, these con­
figurations are numbered from 0 to C-1. Accordingly, c=0 

30 indicates the configuration where the least amount of 
resources is allocated to the application 1725, corresponding 
to a low-power idle state or sleep state when available. In 
contrast, configuration C-1 maximizes the resource avail­
ability. Each configuration c is associated with a power 

35 consumption Pc and speedup sc 
1 

dm(t) = s(t- 1)-b(t- 1) 

wherein s(t) is the speedup to achieve with respect to b(t), 
the base application speed, i.e., the speed of the application 
when it uses the minimum amount of resources. 

Given this information, POET schedules for each con­
figuration c an execution time -cc, ensuring that the I(t) 
iterations complete and the total energy consumption is 
minimized. To do so, POET solves the optimization prob-

40 !em: 

POETs controller 1710 uses the error to calculate the 
control signal s(t) so that the speedup cancels the error. The 
controller 1710 intervenes at discrete time instants and 

45 
implements the integral control law, as expressed by 

e(t) 
s(t)=s(t-1)+(1-p)· b(t) 

50 

wherein p is a configurable pole of the closed loop charac­
teristic equation. To ensure the controller 1710 reaches a 
steady state where the error is eliminated without oscilla­
tions, the value of p should lay in the unit circle, i.e., 0sp<l 55 

and p is user-configurable. Relatedly, in certain implemen­
tations, the CALO REE architecture 2000 automatically con­
figures the pole to ensure convergence given a learned 
model. A small p makes the controller 1710 highly reactive, 
whereas a large p makes it slow to respond to external 60 

changes. However, a large p ensures robustness with respect 
to transient fluctuations and may be beneficial for very noisy 
systems. A small p will cause the controller 1710 to react 
quickly, potentially producing a noisy control signal. 

The parameter b(t) represents the application's base 65 

speed, which directly influences the controller 1710. Differ­
ent applications will have different base speeds. Applica-

C-1 

minimize ~ TC • p C 

c=O 

C-1 

s.t. ~ r, ·s, ·b(t) = l(t) 
c=O 

The solution to the optimization problem minimizes the 
total energy consumption subject to the constraints that all 
jobs be completed within the next control period. The 
optimization problem ensures that the time is fully sched­
uled and imposes the constraint that a non-negative time is 
assigned to each configuration. Solving linear optimization 
problems is generally challenging. However, this particular 
optimization problem has a structure that makes it practical 
to solve. Feasible solutions are confined to a polytope in the 
positive quadrant defined by the two constraints. Thus, 
linear programming theory states an optimal solution exists 
for this problem when all the -cc are equal to zero except for 
(at most) two configurations. 
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TABLE 3 

Minimum energy schedule algorithm. 

Input: C 
Input: s(t) 
Input: ,; 

under= {c I sc,; s(t)} 
over= {c I sc > s(t)} 

_, system configurations 
- given by Eqn. 3 
- given by application 

candidates = { ( u, o) I u E under, o E over} 
energy = oo 
optimal=< -1, -1) 
schedule = ( 0, 0) 
for ( u, o) E candidates do 

'u = (,; · s(t) - ,; · sa)/(su - saJ 
"to= "t - "tu 

new Energy= -cu· Pu+ -co· Po 
if new Energy < energy then 

energy = new Energy 
optimal = ( u, o) 
schedule = {-tu,--c

0
) 

end if 
end for 
return optimal 

return schedule 

_, Loop over all pairs 

_, Compute energy of this pair 

- Compare energy to best found 
so far 

_, Pair of configurations with 
minimal energy 
_, Time to spend in each 
configuration 

The minimum-energy-schedule algorithm shown in Table 
3 takes the set of configurations, the controller's speedup, 
and the time interval -i: specified by the application. It then 
divides the configurations in two distinct sets. The first set 
contains all configurations with a speedup less than or equal 
to the target. The second contains the remaining configura­
tions. That is, those configurations with speedups greater 
than required. Subsequently, the minimum-energy-schedule 
algorithm loops over all possible pairs of configurations, 
with one from each set, to determine how much time should 
be spent in each configuration given the deadline. If the 
energy of the pair is lower than any previous energy, the 
algorithm stores the current best pair, its energy, and its 
schedule. When the algorithm terminates, its output is the 
pair of chosen configurations and their assigned times. 

The algorithm tests all possible pairs from the two sets, 
each of which contains at most C elements, so an upper 
bound to the algorithm complexity is order O(C2

). There is 

38 
the Kalman filter. The optimizer 1720 operates in a platform­
independent manner, using the available configurations pro­
vided as input to find the optimal solution, without relying 
on a particular heuristic that may be system-specific or 

5 application-dependent. Finally, the customizable pole p in 
the foregoing equations allows for flexibility and robustness 
to inaccuracies and noise. 

The ability to control robustness to inaccuracies and 
model errors is a major advantage of feedback control 

10 systems. In particular, POET is stable and converges to the 
desired latency without oscillations provided that 0sp<l. 
Formal analysis of this behavior can be obtained by applying 
standard control techniques. 

15 
In addition to provable convergence, the control formu-

lation allows an analysis of POETs robustness to user error. 
In particular, suppose ti. is a multiplicative error term, 
indicating the largest error in the speedup values provided in 
the system configurations. That is, if the provided speedup 

20 is sp, the real value is sP·li.. POET cancels the error despite 
inaccurate information if and only if 0<li.<2/(1-p ). The 
value of p therefore determines how robust POET is to errors 
in speedup specifications. For example, when p=0.1, sP can 
be off by a factor of two and the system is still guaranteed 

25 to converge. Users who can provide good system models 
will therefore use a small value of p, while less confident 
users can select a larger p. All the experiments in the 
evaluation use p=0 to test the implementation in the least 
forgiving setting. 

30 Next, additional details regarding the POET architecture 
1700 are provided according to one non-limiting implemen­
tation. First, a Kalman filter is described. Then, the conver­
gence of the controller is analyzed. Next, the robustness to 

35 
inaccuracies is discussed in the user-specified configura­
tions. Finally, additional data is presented to compare POET 
architecture 1700 to an approach that only uses DVFS to 
meet latency goals while minimizing energy consumption. 

The controller of the POET architecture 1700 customizes 

40 itself to the behavior of the application under control. This 
customization is achieved at runtime by estimating the key 
parameter of the controller, b (t), using a Kalman filter. 
Denoting the application timing variance as q6 (t) and 
assuming minimal measurement variance (i.e., the applica-an optimal solution to the linear program with at most two 

non-zero values of -cc (this is because the dual problem has 45 

two dimensions) and minimum-energy-schedule algorithm 
tests all pairs of configurations. Therefore, minimum-en­
ergy-schedule algorithm will find a minimal-energy sched­
ule. 

tion may be noisy, but the signaling framework does not add 
additional noise), the Kalman filter formulation is given by 

b-(tJ = b(t- lJ 
In practice this process can be sped up by considering 50 

only Pareto-optimal (in performance/power) configurations. 
Sorting into Pareto-optimal configurations takes order O(C 
log C) time, and need only be done once. After sorting, 
configurations can be indexed by a bucketed hash table with 
speedup as the key. Given a sufficiently large table this 55 

reduces the per control invocation complexity to constant 
time. 

The controller 1710 and the optimizer 1720 both reason 
about speedup instead of absolute performance or latency. 
The absolute performance of the application, measured by 60 

the average latency of its jobs, will vary as a function of the 
application 1725 itself and the system 1730 that the appli­
cation 1725 is executed on. However, speedup is a general 
concept and can be applied to any application and system, 
thus providing a more general metric for control. Moreover, 65 

the controller 1710 customizes the behavior of a specific 
application using the estimate of its base speed produced by 

e"i,(t) = eb(t- 1) + qb (t) 

kb(t) = e"i,(t)·s(t) 
[s(t)]2-e,;(t) 

b(t) = b- (t) + kb(t)[-d 
1 

- s(t) · b- (t)], and 
mCtl 

eb(t) = [l -kb(t) · s(t - l)]e"i,(t). 

In this formulation, k6 (t) is the Kalman gain for the latency, 
£-(t) and b(t) are the a priori and a posteriori estimates of 
b(t), and e6- (t) and e6 (t) are the a priori and a posteriori 
estimates of the error variance. 

The POET architecture 1700 uses a Kalman filter because 
it produces a statistically optimal estimate of the system's 
parameters and is provably exponentially convergent. The 
user does not need to have prior knowledge on Kalman 
filtering-in certain embodiments, all the filter parameters 
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are computed by the controller (speedup 
(latency dm (f), latency variance q6 (t)), 
others). 

s(t)), measured 
or derived (all 

40 
The closed loop system has a pole p. The system also has 

a static gain of 1, therefore the input (the desired latency) is 
translated directly into the output without modifications. 
Provided that 0sp<l, the system is stable by design. 

To analyze the robustness of the POET architecture 1700 
to error, suppose that the speedup values provided in the 
resource specification are incorrect. Let s c be the specified 
speedup with the largest error. The true speedup can be 
expressed as sc=li.·sc, with A being a multiplicative error 

Control-theoretical adaptation mechanisms are useful 
since they provide formal guarantees on the behavior of the 5 

system under control during runtime. Usually, for linear 
time-invariant systems, this analysis is performed in the 
transfer function domain, because it greatly simplifies the 
mathematical approach. For continuous-time systems, typi­
cally the Laplace transform is used, while for discrete-time 
systems, the analysis is typically performed using the 
Z-transform. In the Z-transform domain, the operator z-k is 

10 term. For example, li.=5 indicates that the specified speedup 
is off by a factor of 5 and li.=0.5 indicates that the real 
speedup is only half of that specified. These are non-limiting 
representative values. a k-unit delay. 

Due to the relationship between base speed b and speedup 
15 scan error in the speedup term is equivalent to the same error 

in the estimate of base speed. Therefore, the robustness to 
errors of the POET architecture 1700 is determined in the 
specified speedup by substituting li.·b=b into F(z), which can 

Now, a discussion is provided to prove that the controller 
computes the correct speedup to cancel the latency error. 
Therefore, it is assumed that, whichever speedup is com­
puted, the optimizer translates it into a schedule with no 
error. The Kalman filter converges to its estimated value. 
Therefore, it is proven that the controller converges to the 20 

correct control signal when the Kalman filter has already 
reached its correct estimate b. Since the input and output 
signals are bounded, this proof suffices to show that the 

be expressed as 

C(z) ·A(z) 
F(z) = 1 + C(z) · A(z) 

entire system converges. 
The equation 

1 
dm(t)= s(t-l)·b(t-1) 

can be transformed into its Z-transform equivalent 

b 
A(z) = -, 

z 

wherein A(z) is the transform of the effect of the input s(t) 
on the output dm(t). Similarly, the controller equation 

e(t) 
s(t)=s(t-1)+(1-p)· b(t) 

25 

30 

(p- l)·z b-t. 

b-(z-1) z 

l+ (p-l)·z_ b-t. 
b-(z-1) z 

(1 - p) ·!l 

1 +!l-(1-p)-z 

The closed loop represented by the above expression ofF(z) 
is stable if and only if its pole is within the unit circle. 
Assuming the pole is real, its absolute value should be 

35 between 0 and 1. Then, for a stable system, -1 <li. ·p+li.+ 1 <l. 

40 

The first part, -l<li.·p+li.+1, translates to 

2 
!l<--. 

(1-p) 

can be transformed into the corresponding one in the transfer 45 

function domain, and becomes 

The second part, li. ·p+li.+ 1 <l, imposes li.>0 and p<l. The 
second constraint is already verified in the controller design. 
As a final result, the system is stable when 

(p- l)·z 
C(z) = b · (z - 1 J 

where p is the controller pole and z- 1 is the unit delay. The 
Z-transform of the closed loop system is 

C(z) · A(z) 
F(z) = _l_+_C_(z-)--A-(-z) 

and can be rewritten as 

(p- l)·z b 

F(z)= b-(z-1) z 1-p 

l+(p-l)·z.~ z-p 
b-(z-1) z 

50 

This means that if p=0 .1, the maximum ti. that the system can 
stand is 2.2, while if p=0.9, the maximum ti. is 20. 

As described above, the POET architecture 1700 can use 
a performance model obtained from a server 110 to optimize 

55 the efficiency (i.e., the ratio of computational task performed 
to the energy consumption rate) subject to a constraint of 
completing a given workload W=I(t) within a predefined 
time period T=t. Also described above, a speed-up factor is 
used to dynamically feedback, correct, and control for 

60 deviations from ideal performance when the device 120 
executes the application. 

Similarly, the performance model and the speed-up factor 
can be used with other optimization criteria and can be used 
to perform optimizations, subject to other constraints. For 

65 example, the optimization criteria can be to maximize the 
computational tasks while ensuring that the energy reserves 
last until a predetermined time, e.g., that the device 120 has 
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power throughout the business day until evening when the 
device can be recharged. Also, the optimization criteria can 
be to dynamically select the most efficient configuration for 
a particular application without being subject to additional 
constraints. 

42 
TABLE 4-continued 

Notation used in describing tbe JouleGuard architecture 1800. 

Symbol Meaning 

p 
a 

f 
w 
E 

vsys 

"'!_app 

V 

v 

power conswnption 
accuracy 
speedup 
factor by which to decrease energy conswnption 
application workload 
energy budget 
represents variable v in system config sys 
represents variable v in application config app 
represents a measured value of variable v 
this symbol represents an estimated value of variable 
V 

this denotes the value of v at time t 

Further, in certain applications the optimization criteria 
can be to constrain the maximum energy consumption 
within a predefined time period subject to an additional 
constraint that a predefined number of computational tasks 
are performed within the predefined time period. This can be 10 

achieved using the performance model and the speed-up 
factor, but sometimes the device 120 camiot simultaneously 
satisfy both constraints for a given application. In that case 
approximate computing can be added to the POET archi-
tecture 1700. The JouleGuard architecture, which is 

15 
Leaming 

described next, provides a non-limiting example of an 
implementation of optimization using a combination of a 
performance model obtained from a server 110, a controller 

Control 

v(t) 
a 
X 

p 
pole 
error 

parameters balancing exploration and exploitation 

pole of control system 
difference between required speed and current speed 
multiplicative error in leamed models using a speed-up factor, and an accuracy optimizer when the 

speed-up factor alone is insufficient to satisfy all constraints 
20 

of the constrained optimization criteria. 
FIG. 18 shows an example implementation of a Joule-

Guard architecture 1800. The JouleGuard architecture 1800 
can be arranged to split the problem of meeting an energy 
goal while maximizing accuracy into two components. The 

25 

first component, which is labeled System Energy Optimizer 
(SEO) 1810 in FIG. 18, is responsible for putting the system 
into the most energy efficient system configuration. For 
example, the SEO 1810 can perform some of the functions 
of controller 1710 in the POET architecture 1700. The 

30 

expected speed and power of the most energy efficient 
system configuration are passed to the Application Accuracy 
Optimizer (AAO) 1820, which determines how much addi­
tional performance to obtain from tuning the application 
accuracy. 35 

If the performance, power, and accuracy of all combina­
tions of application and system configuration are known 
ahead of time ( e.g., based the performance model) and these 
do not change, then the application and system configuration 
need only be configured once. In general, however, unpre-

40 

dictable dynamic fluctuations are expected, making it chal­
lenging to perfectly predict the highest energy efficiency 
system configuration ahead of time. Further, allowing for 
imperfections in the determined performance model can 
make the system more robust. Furthermore, variations can 

45 

result from the configuration that may be either/both appli­
cation and/or input dependent. Therefore, the optimization is 
solved at runtime using dynamic feedback. Both the SEO 
1810 and AAO 1820 can adapt to changes in the other, yet 
still converge to reliable steady-state behavior. First the SEO 

50 

1810 is described, and then the AAO 1820 is described with 
an analysis of how the JouleGuard architecture 1800's 
provides energy guarantees. 

55 
TABLE 4 

Notation used in describing tbe JouleGuard architecture 1800. 

Symbol Meaning 

Ii 
C(z) 
A(z) 
z 

Z-transform of tbe controller 
Z-transform of tbe application 
unit delay operator 

Table 4 summarizes the notation used to describe the 
JouleGuard architecture 1800. The table has three parts. One 
contains general notation that is used in this description. The 
other two contain notation specific to either the learning or 
control pieces. As shown in the table, the measured, esti­
m~ted and t~e vvalues of variable v are respectively distin­
gmshed as v, v, and v. Subscripts refer to the variable's 
value in different configurations of the application or system. 
Parenthetical notation is used to refer to values at particular 
times. 

Now, and embodiment of the SEO 1810 is described. The 
JouleGuard architecture 1800 can use reinforcement learn­
ing to identify the most energy efficient system configura­
tion, employing a bandit-based approach. The system con­
figurations are modeled as arms in a multi-armed bandit 
(e.g., essentially levers in different slot machines). The 
reward for pulling an arm is the energy efficiency of that 
configuration. The goal is to quickly determine which arm 
(configuration) has the highest energy efficiency. This is 
straightforward given the convex hull in the configuration 
trade-off space provided by the performance model. Further, 
feedback of the performance and power while the system is 
executing the application can be used to refine the configu­
ration and schedule in real time. For example, the Joule­
Guard architecture 1800 can estimate system configuration 
sys' s energy efficiency by estimating performance and 
power rsy/t) and Psy/t) using exponentially weighted mov­
ing averages: 

f ,,,Jt)~(l-a)·f,y,(t-1 )+a·r,y,(t) 

Empirically, it has been observed that a=0.85 provides good 
outcomes on average across all applications and systems 
described herein. 

In a typical bandit problem without a performance model 

General Sys 
App 
sys 
app 
bestsys 
bestapp 
default 

set of all system configs 
set of all application configs 
an individual system config 
an individual application config 
most energy efficient system config 
most accurate app config achieving required speedup 
tbe default config of application or system 
computation rate 

60 obtained from the server 110, the initial estimates might be 
random values. This is not a good choice for estimating 
performance and power because a general trend indicates 
that both power and performance tend to increase with 
increasing resources. Therefore, in this case, the JouleGuard 

65 architecture 1800 can initializes its performance and power 
estimates so that the performance increases linearly with 
increasing resources and power increases cubically with 
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increasing clockspeed and linearly with other resources. 
This is an overestimate for all applications, but it is not a 
gross overestimate. Such an initialization performs exceed­
ingly well in practice. 

Generally, the performance model obtained from the 
server 110 can be used to provide a better model of changes 
in performance and power consumption as a function of the 
configuration. 

The final component of a bandit solution is balancing 
exploration (i.e., trying different configurations) and exploi­
tation (i.e., making use of the best configuration found so 
far). In addition, JouleGuard architecture 1800 can be reac­
tive to changes caused by application-level adaptation. 
Therefore, JouleGuard architecture 1800 can explore the 
system configuration space using a combination of the 
obtained performance model and Value-Difference Based 
Exploration. VDBE balances exploration and exploitation 
by dynamically computing a threshold, E(t) where 0sE(t)sl. 

44 
unexpected impact on system performance and power, the 
models will be inaccurate and E(t) will increase, so Joule­
Guard architecture 1800 will likely explore new states to 
find more efficient configurations. This learning mechanism 

5 makes JouleGuard architecture 1800 extremely robust to 
external variations, but it is stable when the system does not 
vary. 

Next, an embodiment of the AAO 1820 is described. 
Given the system configuration found based on the above 

10 update equations, JouleGuard architecture 1800 determines 
the application configuration that will meet the energy goal 
while maximizing accuracy. Given the system performance 
and power estimates determined by SEO 1810 and a factor 

15 
f by which to decrease energy consumption, JouleGuard 
architecture 1800 can find the application configuration that 
provides a speedup, which is given by 

f'default Pbestsy/t) 
s(t) = f(t) · -, - · -, --

Pdefautt rbestsys(t) 

In certain implementations, when selecting a system 20 

configuration, JouleGuard architecture 1800 generates a 
random number rand (0srand<l). If rand<E(t), JouleGuard 
architecture 1800 selects a random system configuration. 
Otherwise, JouleGuard architecture 1800 selects the most 
energy efficient configuration found so far. E is initialized to 25 

1 and updated every time the runtime is invoked. A large 
difference between the measured efficiency rsysCt)/psysCt) and 
the estimate rsysCt)IPsysCt) results in a large E, while a small 
difference makes E small. At each iteration of the runtime 
E(t) is updated according to 

The difficulty is that ensuring energy requires that Joule­
Guard architecture 1800 maintains this performance despite 
unpredictable events, temporary disturbances, or unmodeled 
dependences between application configuration and system 
power consumption. Therefore, JouleGuard architecture 
1800 continually adjusts the speedup applied as a function of 
time t. JouleGuard architecture 1800 models the problem of 

30 meeting speedup s as a control problem and minimizes the 
error error(t) between the measured performance r(t) and the 
required performance r(t)=f(t)·rbestsysCt) at time t (i.e., error 
( t )=r( t )-r( t)). -la( ,,y,(t) _ ,,y,(t) I 

P,y,(t) P,y,(t) 
x(t) = exp 

5 

1-x(t) 
p(t)= 1 +x(t) 

E(t) = _l_ · p(t) + (1 - -
1
-)- E(t- 1). 

ISysl ISysl 

Maintaining performance despite dynamic environmental 
35 changes is a classical control problem; many cross-layer 

approaches incorporate control for this reason. JouleGuard 
architecture 1800 builds on these examples, formulating a 
proportional integral (PI) controller eliminating error (t), 
which is given by 

40 

The constants in the above equations are non-limiting rep­
resentative values, and other values are contemplated. If the 
random number is below E(t), JouleGuard architecture 1800 
selects a random system configuration. Otherwise, Joule- 45 

Guard architecture 1800 searches for the system configura­
tion with the highest estimated energy efficiency, as given by 

(1 - pole (t)) · error (t) 
s(t)=s(t-1)+ , , 

rbestsys(t) 

wherein s(t) is the speedup required beyond rbestsys, and 
pole(t) is the adaptive pole of the control system, which 
determines the largest inaccuracy in the system model that 
JouleGuard architecture 1800 can tolerate while maintaining 

best sys = argmax -, - sys E Sys . { 
,,y,(t) I } 

sys Psy/t) 

50 stability and ensuring that the energy goal is met. While 
many systems use control, JouleGuard architecture 1800's 
approach is unique in that the controller constantly adapts its 
behavior to account for potential inaccuracies introduced by 

The JouleGuard architecture 1800 then puts the system into 
this configuration and uses the expected performance and 55 

power consumption to perform application accuracy opti-

the learning mechanism. 
The formal mechanism that sets the pole is discussed in 

below. Intuitively, control techniques make it possible to 
determine how inaccurate the models can be and still 
stabilize at the goal (i.e., meet the target energy while 
avoiding oscillations. The learning system used in SEO 1810 

mization. 
In certain implementations, the selection of an updated 

configurations can be based on the performance model, e.g., 
using a gradient search, a genetic algorithm, simulated 
annealing algorithm, or other optimization search method 

The bandit-based approach has the beneficial property 
that when the system models are correct E(t)=0, JouleGuard 
architecture 1800 will cease to randomly explore the space 
(i.e., JouleGuard architecture 1800 will not use a random 
configuration after it has learned accurate models). If the 
system is disturbed in anyway, or the application has an 

60 is constantly measuring the inaccuracy between its models 
and the actual performance and power. JouleGuard archi­
tecture 1800 uses this measured difference to set the pole. 
When the difference is large, the controller acts slowly, 
avoiding oscillations and allowing SEO 1810 to learn inde-

65 pendently of any application changes. When the system 
model inaccuracy is low, the pole is small and the controller 
works quickly. 
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In summary, JouleGuard architecture 1800 determines the 
application configuration by measuring the performance at 
time t, computing the error between the required and mea­
sured performance, then computing a speedup s(t). Joule­
Guard architecture 1800 then searches application configu- 5 

rations on the Pareto-optimal frontier of performance and 
accuracy tradeoffs to select the highest accuracy configura­
tion delivering that speedup, which is given by 

C(z) · A(z) 
F(z) = 1 + C(z) · A(z) 

(1 - pole)z. 6r,y, 
(z-1) z 

1 
+ (1 - pole)z. 6r,y, 

(z-1) z 

(1 - pole)6 

bestapp = argmax{app I Sapp > s(t) A app EA}. 
app 

The control system of the JouleGuard architecture 1800 
provides formal guarantees of energy consumption. First, it 
can be shown that the control system converges to the 
desired speedup. This can be done through standard analysis 
in the Z-domain. 

The Z-transform of the application is simply 

A (z) = rbestsys . 

z 

The Z-transform for the control system's transfer function is 

(1 - pole)z 
C( z) = 7z="T) . 

Therefore, the transfer function of the closed loop system is: 

C(z) · A(z) 
F(z) = -1 _+_C_(z-)--A-(z-) 

(1 - pole)z rbestsys 

7z="T)·-z-

l + (1 - pole)z . rbestsys 

(z-1) z 

! -pole 

z -pole 

Following standard control analysis, the system's stability 
and convergence to the goal can be evaluated. The system is 
stable-in the control theoretic sense that it will not oscillate 
around the goal-if and only if 0spole<l. Therefore, pole is 
chosen to meet these restrictions. Furthermore, the system is 
convergent, meaning that when it stabilizes error(t)=0 if and 
only if F (1)=1. Based on the above equations, it can be 
observed that this condition is clearly met. Therefore, it can 
be conclude that the control system is stable and convergent. 
These guarantees, however, are based on the assumption that 
rbestsys is an accurate estimate of the performance delivered 
in bestsys. In the next section, it is discussed how to ensure 
stability even when the estimate is inaccurate (as it likely is 
at system initialization). 

z + ( 1 - pole )6 - 1 · 

So, pole determines how robust JouleGuard architecture 
1800 is to model inaccuracies. For example, F(z) pole=0.1 
implies that rsy/t) can be off by a factor of 2.2 and Joule-

15 Guard architecture 1800 will still converge. 
To provide convergence guarantees-and, thus, energy 

guarantees-JouleGuard architecture 1800 sets the pole to 
provide stability and avoid the oscillations seen in the 

20 
swish++ example for the uncoordinated approach. Joule­
Guard architecture 1800 has a bound on model inaccuracies 
as it is constantly updating its estimates of system perfor­
mance using. Thus, JouleGuard architecture 1800 computes 
11(t), the multiplicative inaccuracy at time t as: 

25 

6 ( t) = ~ 
r,y,(t- 1) 

30 and computes the pole as: 

35 
{ 

6(t) > 2: 1 - 2 / 6(t) 
pole(t) = . 

6(t) s 2: 0 

This is one non-limiting representative example of a choice 
for the pole. Other methods of determining the pole are 

40 
contemplated. The JouleGuard architecture 1800 can auto­
matically adapt the pole so that the controller is robust to 
inaccuracies in the system models. In practice, the pole is 
large when the learner is unsure and likely to randomly 
explore the space. This means that the controller will be slow 

45 to change configurations when the learner is aggressive. In 
contrast, when the learner converges, 11(t) is low and the 
controller can be more aggressive. This adaptive pole place­
ment combined with machine learning is the unique feature 
of JouleGuard architecture 1800, which distinguishes it from 

50 prior approaches and allows JouleGuard architecture 1800 to 
split the energy guarantee problem into two subproblems yet 
still provide robust guarantees. 

A user may request an energy goal that is impossible to 
meet given the application and the system. In this case, 

55 JouleGuard architecture 1800 reports that the goal is infea­
sible and then configures the application and system to 
provide the smallest possible energy consumption. 

The controller's robustness to inaccurate estimates of 60 

The runtime of the JouleGuard architecture 1800 is sum­
marized in Table 5. This algorithm is implemented through 
a straightforward coding of the math described above and 
summarized in the algorithm listing. Two requirements are rbestsys is determined by analyzing the above equations. 

Suppose the estimate is incorrect and the true value is 
rsys=11rsy/t) where 11 is a multiplicative error in the estima­
tion. For example, 11=5 indicates that model is off by a factor 
of 5. It can be determined that the robustness to these 
inaccuracies of the JouleGuard architecture 1800 by substi­
tuting 11rsys into F(z) to generate 

(i) measuring feedback and (ii) configuring the application 
and system. These are interface issues rather than technical 
issues. JouleGuard architecture 1800 can be supplied a 

65 function that reads performance and power. Any perfor­
mance metric can be used as long as it increases with 
increasing performance. 
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TABLE 5 

Algorithm for control of JouleGaurd architecture 1800. 

Require W 
Require E 

loop 

Workload provided by user 
Energy budget provided by user 

Measure work done W(t) and energy consurued E(t). 
Measure performance r(t) and power p(t) in configuration c. 
Update performance and power estimates re and Pc : 

Pc(t) =(1-a)·pc(t-l)+a·pc(t) 
rc(t) =(1-a)·rc(t-l)+a·rc(t) 

Update e(t) : 

E(t) =-
1
- ·p(t) +(1- -

1
-)•E(t- l). 

ISysl ISysl 

Generate random number rand 
if rand < e(t) then 
Select random system configuration 
else 
Select energy optimal system configuration sys: 

sys = argmax -, - sys E Sys . { 
r,y,(t) I } 

sys Psy/t) 

endif 
Compute the controller's pole 

{ 

6(t) > 2: 1 - 2 / 6(t) 
pole(t) = . 

6(t) s 2: 0 

Compute remaining energy and work. 
Use those values to compute speedup target: 

s(t) = f(t). fdcfault . ~bc,i,y,(t). 

fbestsys(t) 

Compute speedup control signal: 

(1 - pole(t)) · error(!) 
s(t) = s(t - 1) + --,---­

rbestsys(t) 

Select the application configuration to deliver speedup: 

app = argmax{aapp I Sapp> s(t) A app EA}. 
app 

end loop 

Table 5 shows pseudocode for an algorithm to control the 
JouleGuard architecture 1800, according to one implemen­
tation. A user may request an energy goal that is impossible 
to meet given the application and the system. In this case, 
JouleGuard architecture 1800 reports that the goal is infea­
sible and then configures the application and system to 
provide the smallest possible energy consumption. 

Similarly, power can be read from an external power 
monitor or from modern hardware devices that support 
on-board power measurement. Prior work defined a general 
interface for specifying system-level configurations. A 
straightforward extension of this interface supports applica­
tion configuration changes as well. Given these interfaces, 
the JouleGuard architecture 1800 is implemented as a C 
runtime that can be compiled directly into an application. It 
can replace existing runtime systems for approximate appli­
cations, or it can convert a statically configured approximate 
application into one dynamically configurable to meet 
energy goals. 

48 
JouleGuard architecture 1800 does not require precise 

quantification of application accuracy, rather it requires an 
ordering on application configurations. Many frameworks 
provide precise accuracy quantification, others do not and 

5 some leave it to the programmer. Approaches that do not 
precisely quantify accuracy still order configurations, but the 
order represents preferences rather than absolute numerical 
differences. JouleGuard architecture 1800 does not need a 
precise value for accuracy. The only place it reasons about 

10 accuracy is in the equation to calculate bestapp when 
selecting an application configuration. This equation only 
requires a total order on available configurations. Thus, 
JouleGuard architecture 1800 is compatible with a wide 

15 
range of approximate approaches. 

The implementations described above have assumed that 
all accuracy tradeoffs occur at the application level. In 
additional implementations, it is proposed that the approxi­
mate hardware reduces energy consumption in exchange for 

20 occasionally returning an inexact result. In most cases, these 
approximate hardware units maintain the same timing, but 
reduce power consumption. For those cases, it is straight­
forward to modify the above control system to work with 
approximate hardware. The learning engine can be used to 

25 find the most energy efficient system configuration that 
sacrifices no accuracy (this step is the same as the above). 
The JouleGuard architecture 1800 is then modified such that 
the control system to manage power (rather than speedup) 
by tuning hardware level approximation. The approach is 

30 similar, but the controller would reduce power instead of 
increase performance. Yet another issue is to coordinate 
approximate applications with approximate hardware. Such 
a combination requires a modification of JouleGuard archi-

35 tecture 1800 to handle the fact that both layers affect 
accuracy. 

Now, a non-limiting example is described to illustrate 
what is meant by maximizing an approximate application's 
accuracy for an energy budget. First the problem is framed 

40 in terms of a mathematical optimization. Descriptions are 
provided regarding 1) application-only, 2) system-only, and 
3) cross-layer solutions. 

It is assumed that the application performs some set 
amount of work W. The total work does not change, but the 

45 application can do this work faster or slower by changing its 
accuracy. For example, a video encoder encodes an entire 
video, but can use different algorithms that changes the 
encoding time and the noise in the output. It can be assumed 
that an energy budget E represents the energy specified by 

50 a user to perform the work W. Therefore, the system can be 
configured to ensure that the work is completed within the 
energy budget and accuracy is maximized. 

It can be assumed that an approximate application 1840 
with a set of configurations CA• where each configuration 

55 kECA represents a unique performance rk and accuracy ak. It 
can be assumed that ac is a relative metric rather than 
absolute-many standard metrics for representing how far 
approximate applications 1840 are from a nominal behavior 
apply. An energy-aware system 1830 can have configura-

60 tions c,, where each configuration kECs has performance rk 
and power consumption Pk· 

In certain applications, it is not assumed that the appli­
cation and system are independent. Instead, it is not assumed 
that changing either application or system may have urnnod-

65 eled effects on the other. For example, changing application 
accuracy may change system power consumption. Similarly, 
changing system performance may have an unknown effect 



US 11,009,836 B2 
49 50 

greater than or equal to W/E. Without such a configuration, 
then the problem has no feasible solution. 

on the performance of different application configurations. 
Thus, a goal is to obtain a solution that is robust despite these 
unmodeled dependences. 

In certain implementations, the following accuracy opti­
mization problem with constrained work and time maxi­
mizes accuracy given an energy budget: 

A coordinated, cross-layer approach selects both applica­
tion and system configuration. The true optimal solution 

5 requires knowledge of all combinations of application and 
system performance, power, and accuracy as well as a 
solution to the non-linear optimization problem. 

maximize .L t(app,sys) · G(app,sys) 

subject to 

Now, the solution is provided for the case when the 
application and system were independent. As shown above, 

10 the system does the most work for an energy budget when 
running in its single most energy efficient state: 

.L t(app.,y,) · p(app, sys) s E 

.L l(app.,y,) · r(app, sys) = W 

0 S t(app,sys) for app E CA and sys E Cs 

l(app,sys) 2. 0 

15 
i.e., .L tc · Pc = E. 

By the theory of mathematical opt1m1zation, an optimal 
solution to the constrained accuracy optimization problem 

20 
lies on the polytope of feasible solutions. For the constrained 
accuracy optimization problem, this property implies that 
the optimal solution occurs when there is strict equality in 
the equation for the energy, 

Here a (app, sys), p(app, sys), and r(app, sys) are (pos­
sibly) non-linear functions representing the accuracy, power, 
and performance of the combination of application configu­
ration appEC A and sysECs- the constrained accuracy optimi- 25 
zation problem schedule times t(app, sys) to spend in the sys= argmax{r, / p, I c E SJ. 

Combining the above expression, it can be observed that 
tsys = 1.0 tc =O\f c;,sys and tsys =E/p sys· To satisfy the work 
constraint, the application and system must work at a 
combined performance of r. If the speedup of the approxi­
mate application 1840 is denoted as sapp' then it can be 
written that r=sapp-rsys; i.e., the work rate is the product of 
the system's computation rate and the speedup provided by 
adapting the application. 

configuration ( app, sys) . The above equations maximize 
accuracy, the while ensuring that the energy budget is not 
exceeded, that the work is completed within the allotted 
time, and that the times are non-negative. Further, the above 30 

equations represent a non-linear optimization problem. This 
non-linearity distinguishes the energy guarantee problem 
from prior work that provides performance guarantees, 
formulated as a linear program. While the JouleGuard 

35 
architecture 1800 adopts an approach of splitting the opti­
mization problem into application and system components, 
the approach differentiates over previous approaches in part 
because the approach herein adopts novel solutions to these 
subproblems to provide energy guarantees. 

Accordingly, by solving for an sapp' it can be shown that 
the work gets done and that accuracy is maximized. Further, 
by substituting r and tsys' into the above equations, it can be 

40 shown that 
As described herein, several possible solutions exist to the 

constrained accuracy optimization problem. The first con­
siders only application-level configurations, the second con­
siders only system-level configurations, and the third con­
siders cross-layer approaches coordinating application and 45 

system. 

fsys·r= W 

E/ Psys ·Sapp· rsys = W, and 

W·Psys 
Sapp= E·rsys. Considering only application-level optimization, a solu­

tion can be obtained using a single system configuration 
with a single power consumption Ps· Thus, it is trivial to 
solve the constrained accuracy optimization problem. Since 
power cannot change, energy will be reduced by completing 
the work in the shortest amount of time possible. Therefore, 
the optimal accuracy solution will be the one that lets 
\app, s) 0Ps=E. 

Therefore, the application can be configured to satisfy 
50 

Therefore, rapp =ps·W/E. So, the solution is to set the 55 

application in the highest accuracy configuration that 
achieves a computation rate of at least Ps·W/E. This can be 
achieved using the performance model obtained from the 
server 110. 

app = argmax ac I Sc 2. -- /\ c E A . { 
W · P,y, } 

c E·rsys 

Thus, a solution is obtained to the problem of coordinating 
application and system to maximize accuracy on an energy 
budget by putting the system in its most energy efficient 
configuration, and then configuring the application to 

In a system-only implementation, the solution cannot alter 
application behavior. Instead, they work on performance and 
power tradeoffs. In this case, accuracy is not a variable, so 
every feasible solution to the constraints optimization prob­
lem is equivalent. Thus, a system-only approach can solve 
this problem as long as there is a system configurations such 
that r)ps2:W/E. In other words, a system-only approach 
works if there is a configuration whose energy efficiency is 

60 achieve the necessary additional speedup. 
Two conclusions can be drawn from the above analysis. 

First, the optimization problem has a unique structure mak­
ing it tractable despite the huge space that can arise from 
combining application and system configurations. Second, it 

65 is possible to decompose the problem into two dependent 
but simple sub-problems. The first sub-problem is to find the 
most energy efficient system configuration. The second 
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sub-problem is to use the solution to first find an application 
configuration. This structure can be used with a runtime 
algorithm implementing the optimization that can be split 
into two communicating components: one that solves the 
above equation for sys and one that solves the above 
equation for app. 

There are benefits to proactively coordinating the appli­
cation and system rather than having the application or 
system react to changes in the other. Application or system 
only approaches miss potential multiplicative (e.g., non­
linear) benefits. Coordination can be used to extract a 
maximum benefit from the system before altering the appli­
cation, producing equivalent or better accuracy than appli­
cation or system configuration alone. The performance 
model obtained from the server 110 enables improved 
coordination of the application and system to obtain the 
optimal combination. 

This analysis assumes that the application speedup and 
system power were independent. That assumption might not 
hold at runtime. A runtime system that implements this 
model will both solve the optimization problem and account 
for any runtime changes in application and system behavior 
in order to maintain guarantees despite the simplifying 
assumptions made in this section. 

Now, an example illustrating the benefits of the Joule­
Guard architecture 1800 is provided. This example demon­
strates the challenges of maximizing accuracy on an energy 
budget and illustrates the formal analysis provided above. 
This example considers a document search application using 
an approximate version of the open-source swish++ search 
engine, which varies the number of documents it returns per 
query. In this example. the search engine is executed on a 
server platform which supports several configurations con­
trolling tradeoffs between power and performance. 

Next a non-limiting example is provided using illustrative 
numbers and using a swish++ algorithm. The swish++ 
algorithm is configured as a web server, and is deployed on 

52 
The system can change swish++'s resource allocation to 

reduce energy consumption. A system-level approach that 
provides energy guarantees for individual system compo­
nents satisfies some but not all of the desired objectives. For 

5 example, in such a system-level approach, it is a user's 
responsibility to request energy from individual components 
such that the total system energy respects the guarantee. To 
provide an overall system energy guarantee users must know 
precisely how much energy to request from each component 

10 and how much performance they will get from that combi­
nation. Thus, to determine the best overall configuration on 
the desired system, a performance model representing the 
best configurations of the entire configuration space is 

15 
needed to determine if there is a configuration (e.g., a 
combination of cores, clockspeed, hyperthreading, and 
memory controllers) that meets the energy goal. In various 
implementations, this is provided by the performance model 
obtained from the server 110. For the application swish++ 

20 the best configuration happens to process 1750 qps at a cost 
of 125 Watts, or 0.07 Joules per query. This value is 20% 
higher than the goal, and this system-level approach results 
in no accuracy loss (as shown in FIG. 19). 

The system-level approach has two drawbacks. First and 
25 foremost, it did not meet the goal. By itself, the system 

simply cannot reduce energy consumption to 0.06 Joules per 
query. Second, obtaining any energy reduction requires a 
tremendous knowledge of the system to request the best 
combination of different components. Second, obtaining any 

30 energy reduction relies on accurate knowledge of the system 
to determine the best combination of different components. 
In this example, the space is exhaustively searched. In 
practice, a more intelligent way to determine the system 

35 
configuration is needed. As discussed above, the server 110 
can generate an accurate estimate of the performance model 
for all configurations without performing an exhaustive 
search of the device configurations. 

Formally, given a set of all system configurations, each of 

40 which can be identified as c, with performance re and power 
consumption Pc then the energy at the system level is 
minimized by selecting the most energy efficient configu­
ration sys using the equation 

a system with 32 threads. Further, the search is performed 
using public domain books from Project Gutenberg as the 
search documents. For search queries, a dictionary is con­
structed of all words present in the documents, excluding 
stop words, and words are selected at random following a 
power law distribution. The search performance and the total 
system power consumption are measured with the applica- 45 

tion in its default (full accuracy) configuration using all 
system resources. In this default configuration, swish++ 
processes 3100 queries per second ( qps) at an average power 
consumption of 280 Watts, or 0.09 Joules per query. 

sys= argmax{r, / p, I c E SJ. 

Solving this equation is simple, if an accurate performance 
model, such as the performance model provided from the 
server 110, is available. However, a more robust solution can 

For this example, the desired reduction to the energy 50 

consumption is 1/2 to achieve an energy consumption of0.06 
Joules per query (the full evaluation tests a wide range of 
energy goals). This energy could be achieved with a 50% 
performance increase, a 33% power decrease, or by some 
combination of the two. The primary challenge is determin- 55 

ing which combination will result in the highest application 

be obtained by using feedback and control to correct for 
deviations between the actual performance and the perfor­
mance model. Also, as shown here, the best system con­
figuration can be insufficient to achieve the desired goal. In 
which case, approximate computing can be relied on to 

accuracy. 
Naively, it might be tempting to start with approaches that 

provide other guarantees and see if small changes can 
provide energy guarantees. For example, here various modi­
fied approaches are considered, including, (i) modifying a 
system-level approach, (ii) modifying an application-level 
approach, and (iii) an uncoordinated combination of the 
application and system-level approaches. All three of these 
can be improved by using the JouleGuardArchitecture 1800. 
The behavior of all four approaches can be observed in FIG. 
19. 

make up for the deficiency. 
Finding the system-level approach insufficient by itself to 

satisfy the goals for our needs, an approximate application 
60 is then used. Several application-level frameworks trade 

accuracy for other benefits. None provide formal energy 
guarantees, but PowerDial, e.g., guarantees performance. 
This performance guarantee combined together with the 
knowledge of the system's default power consumption can 

65 be used to meet the energy goal. For example, PowerDial 
can be operated at 4700 qps knowing the default power is 
280 Watts. Doing so, 0.06 Joules per query is obtained, 
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corresponding exactly with the desired goal, but at a high 
cost of accuracy loss. On average, each query returns 83% 
fewer results. 

Given that each application has a set of configurations A, 
where each configuration has a speedup sc and accuracy ac. 5 

and assuming the system's default configuration has perfor­
mance rdefault and power consumption Pdefauz,, the default 
energy is improved by a factor f and the accuracy is 
maximized by finding an application configuration app as 
given by the expression 10 

app = argmax a, Is, 2 f · -- Ac E A . 

54 
Of all four approaches described herein, this coordinated 

one is clearly the best. It meets the energy goal while 
delivering the smallest possible loss in accuracy-a signifi­
cant savings over the application-level approach. 

Now, a surmnary is provided of several benefits of the 
JouleGuard architecture 1800. The JouleGuard architecture 
1800 can be implemented using various prograrmning lan­
guages ( e.g., the programming language C), and it can be 
implemented on various hardware platforms having differ­
ent configurations ( e.g., a heterogeneous mobile processor, 
a tablet, and a server). Further, JouleGuard architecture 1800 
adds only small overhead, in terms of both energy and 
performance. JouleGuard architecture 1800 can quickly 
converge to a given energy goal with low error. Additionally, 

{ 

rd,fault } 

c Pdefault 

The application-level approach met the energy goal, but 
with high accuracy loss. The system-level approach shows 
there are more energy-efficient system configurations. It is 
tempting, then to combine these approaches and meet the 
energy goal by decreasing system power and increasing 
application performance. A straightforward approach uses 
the application and system-level solutions concurrently, but 
without any communication between the two. A challenge 
with this uncoordinated approach is that both the application 
and system act without knowledge of each other. The 
uncoordinated deployment of adaptive systems leads to 
instability and oscillatory behavior, even when the indi­
vidual adaptive components are provably well-behaved. 
Indeed, this oscillatory behavior is illustrated in the unco­
ordinated approach, which is shown in FIG. 19. 

15 on average, across all applications, all machines, and a 
number of energy goals, the JouleGuard architecture 1800 
can dynamically adapt and maintains energy within a few 
percent of the goal. Further, the JouleGuard architecture 
1800 can dynamically converge to the energy goals with 

20 near optimal accuracy. On average, for all applications, 
systems and goals, the JouleGuard architecture 1800 con­
verges to within a few percent of true optimal accuracy. The 
JouleGuard architecture 1800 can provide greater accuracy 
than the best that could be achieved through either applica-

25 tion approximation or system resource allocation alone. 
Moreover, the JouleGuard architecture 1800 quickly reacts 
to application phases, automatically increasing accuracy 
whenever the application workload changes. 

In certain implementations, the JouleGuard architecture 

Regarding the uncoordinated approach, to meet the 
energy goal of 0.06 Joules per query a performance goal of 
2100 Queries/s and a power goal of 125 Watts (i.e., 
0.06=125/2100) is set. If these goals were met, the achieved 
energy would be the desired 0.06 Joules per query. Instead, 
the instability of the uncoordinated approach leads to oscil­
latory behavior and the energy never converges. This oscil­
latory behavior results in an average performance of 2080 
qps, an average power of 147 Watts, and an average return 

30 1800 provides accuracy optimization under energy con­
straints. It provides energy guarantees. It maximizes accu­
racy on an energy budget by splitting the optimization 
problem into two sub-problems, i.e., finding the most 
energy-efficient system configuration and tuning application 

35 performance to provide additional energy savings while 
maximizing accuracy. Further, in these implementations, the 
JouleGuard architecture 1800 provides an approach for 
combining the solutions to these sub-problems. The Joule­
Guard architecture 1800 is robust and converges to the 

40 energy goals even when there are inherent dependences 
between application and the system. The JouleGuard archi­
tecture 1800 is the first method that simultaneously provides 
formal guarantees of energy consumption together with 

of 81 % fewer results than the default. Rather than improving 
over application or system alone, the uncoordinated combi­
nation achieves the same energy efficiency as the system 
only approach with an accuracy loss close to the application- 45 

only approach. The intuition behind the oscillatory behavior 
is that both the application and system reason about perfor­
mance under the assumption that no other actor is manipu­
lating performance. When application and system act con­
currently without knowledge of each other, this assumption 50 

is violated and instability occurs. 
Rather than abandon the combination of the application 

and system approaches, the JouleGuard architecture 1800 
actively coordinates the two. The coordinated approach of 
the JouleGuard architecture 1800 has been described above, 55 

but here the results for swish++ application are shown. As 
describe here, in certain implementations of the JouleGuard 
Architecture 1800, machine learning is used to find the most 
energy efficient system configuration, which provides the 
performance of 1750 qps at 125 Watts. Recall, this configu- 60 

ration resulted in 0.07 Joules per query, 20% above the 
target. Therefore, the JouleGuard architecture 1800 then 
uses control theory to speedup the application by an addi­
tional 20% to 2100 qps. Thus, the JouleGuard architecture 
1800 hits the target of0.06=125/2100 Joules per query-at 65 

a cost of 24% fewer results per query than the default setup 
of application and system. 

maximizing accuracy. 
Now, a description is provided of the benefits of a 

combination of machine learning of a performance model at 
a server together with a control architecture of a device 
which uses the performance model obtained from the server. 
This discussion uses the example of using the control 
architecture of the POET architecture 1700 together with the 
performance model, but the method can also be used with 
the JouleGuard architecture 1800, as would be understood 
by a person of ordinary skill in the art. 

Control theory is a general technique. However, imple­
mentations are problem-specific because traditional control 
design directly incorporates application- and system-specific 
models. For example, a controller that manages video 
encoding on a phone using processor speed will be of no use 
to a wireless receiver on an embedded system. This brittle-
ness of control design is further exacerbated by growing 
application diversity and hardware complexity. For 
example, heterogeneous processors expose a huge range of 
performance and energy tradeoffs, which vary from appli­
cation to application. Control theoretic libraries allow users 
to generate customized solution for specific applications and 
systems by providing models. While these approaches are a 
step in the direction of generality, they still require signifi-
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in terms of the number of computational operations and 
storage in order to store sufficient samples of several dif­
ferent applications to produce accurate models. Therefore, 
the HBM is best performed using a server or cloud com-

cant user input and prior knowledge of the application to be 
controlled. In contrast, the methods described herein provide 
the benefits of control theoretic techniques even for appli­
cations without providing models and with minimal inputs 
from users. 5 puting, rather than on a mobile device, which has much more 

limiting power and storage constraints. Accordingly, in the 
CALOREE system 2000 the learning operations are off­
loaded to a remote server to address overhead challenges. 

This is achieved by overcoming several challenges. For 
example, heterogeneous processor designs expose multiple 
resources that interact in complex ways, often leading to 
non-convex optimization problems. Further, limited 
resources can be devoted to exploring these tradeoff spaces, 10 

e.g., it is disadvantageous to expend more energy learning 
the tradeoff spaces than would be saved by knowing the 
tradeoff spaces. Additionally, it is beneficial to maintain the 
ability to formally reason about the controlled system's 
dynamic behavior despite working without a priori know!- 15 

edge. 
These challenges and goals are overcome and met by the 

methods described above and explained further now. The 
combined system of the learned performance model together 
with the POET architecture 1700 is referred to as the 20 

CALOREE system 2000, which stands for Control And 
Learning for Optimal Resource Energy and Efficiency. 
CALO REE system 2000 represents a unique combination of 
control theory and machine learning. CALOREE system 
2000 dynamically manages resources for streaming appli- 25 

cations to ensure their performance needs are met while 
minimizing their energy consumption. 

FIG. 20 shows an implementation of CALO REE system 
2000. CALOREE system 2000 has two components. The 
first component is a generalized control system (GCS) that 30 

runs on a device 2005, which can be, e.g., an embedded or 
mobile device, and the GCS manages resources. The second 
component uses machine learning (e.g., hierarchical Bayes­
ian model (HBM)) executed on a remote server 2015. When 
the GCS encounters a new application, it takes a small 35 

sample of the performance and energy in different resource 
configurations and sends those samples to the server 2015, 
which executes a learning algorithm to learn the statistically 
most likely power consumption and performance metrics for 
the remaining untested configuration based on a comparison 40 

with a database 2010 of previous measurements including 
previous measurements from various devices executing 
assorted applications. These various devices can include 
device 2005, device 2015 and device 2030, for example. The 
learning algorithm on the server 2015 can be any machine 45 

learning algorithm, including an algorithm referred to as 
Learning for Energy Optimization (LEO) algorithm, which 
uses an HBM to learn estimates of the power and perfor­
mance for all configurations of the device 2005 when 
executing the current application. Although other implemen- 50 

tations are possible, the non-limiting example described 
herein specifically uses an HBM learning method. The HBM 
aggregates samples across devices and applications to pro­
duce an estimate of the performance and energy tradeoffs of 
each application and device. This estimate is stored in a 55 

performance hash table (PHT) that is sent to the GCS, which 
uses it to control its local application. 

Additionally, in certain implementations, the HBM sends 
the GCS each application's estimated variance so that the 
controller can tune its behavior not just to the model, but also 60 

to the potential range in the model's output. 
The CALOREE system 2000 beneficially addresses the 

three challenges listed above. An HBM, such as the LEO 
algorithm, is well-suited to learning non-convex optimiza­
tion spaces that arise in systems with many configurable 65 

resources, addressing the complexity challenge. The HBM 
can, however, use significant computational resources both 

Finally, because the HBM communicates the model's vari­
ance, it is possible to derive probabilistic control theoretical 
guarantees. These are not quite as strong as traditional 
control theoretic guarantees that assume the model is fixed 
and known, but they still provide some mechanisms for 
formal reasoning. While a traditional control system guar­
antees convergence, the CALOREE system 2000 allows the 
user to specify a lower bound on the probability that the 
system will converge to the desired performance. For 
example, a user can specify that the system will converge 
with at least 95% probability. 

Next a non-limiting example is provided to illustrated an 
implementation of the CALOREE system 2000 and to 
demonstrate its ability to control streaming applications on 
heterogeneous ARM big.LITTLE devices, with the HBM 
implemented on an x86 server. This implementation is then 
compared to other state-of-the-art learning and control sys­
tems. The CALOREE system 2000 is also tested in both 
single-app and multi-app environments. In single-app envi­
ronments, the streaming application runs by itself. In multi­
app environments, other applications unpredictably enter the 
system and compete for resources. Overall, it is observed 
that the CALOREE system 2000 achieves more reliable 
performance than previous methods, and achieves more 
energy savings than previous methods. 

Regarding the reliable performance of the CALOREE 
system 2000, in the single-app case, all methods achieve 
average performance close to the requirement. However, the 
CALOREE system 2000's worst case performance is still 
within 4% of the target, while prior techniques achieve worst 
case performance between 28% to 75% lower than the 
requirement. In the multi-app case, prior learning 
approaches average at least 10% performance error, prior 
control approaches average 5% error, and the CALOREE 
system 2000 achieves just 2.7% average error, which is 
almost half the next best competitor. All prior approaches 
have a worst case performance at least 70% below the target, 
while the CALO REE system 2000's worst case performance 
is within 13% of the target. 

Regarding the energy savings of the CALO REE system 
2000, in the single-app case, the CALOREE system 2000 
reduces average energy by 23-47% compared to prior learn­
ing approaches and by 24% compared to prior control 
approaches. For the most complicated applications, the 
CALOREE system 2000 provides energy savings of more 
than 2 times compared to the best prior approaches. In the 
multi-app case, the CALOREE system 2000 reduces aver­
age energy by 31 % compared to prior control approaches 
and by 8% compared to prior learning approaches. While, 
the savings compared to learning approaches may look 
small, in this case the learning approaches are saving energy 
by missing their performance goal. 

The CALOREE system 2000 is compared to a control 
system with rigorous a priori per application models­
including models of application interference in the multi-app 
case-something that would be impractical to deploy in the 
real world. It is observed that CALOREE's average perfor­
mance error across all cases is only 2% worse than this ideal 
controller and its average energy is only 7.5% higher. This 
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result shows that the CALOREE system 2000 provides a 
considerable increase in generality with only minor reduc­
tions in performance and energy. 

In summary, control theoretic approaches are well suited 
to manage resources in dynamic environments and machine 
learning techniques can produce accurate models of com­
plex processors. The methods described herein uniquely 
combine control theoretic approaches with machine learning 
techniques in order to generate a solution that at runtime 
controls resource usage for a streaming application with no 
prior knowledge. 

The non-limiting examples illustrated in FIGS. 21A, 21B, 
22A and 22B and described here present two simple 
examples to illustrate the complementary strengths and 
weaknesses of learning and control. FIG. 21A shows a 
contour plot for normalized performance for a Lavamd 
algorithm for different configurations. FIG. 21B shows a 
time-line for running the Lavamd algorithm using either 
learning (i.e., LEO) or control (i.e., POET) separately. FIG. 
22A shows a contour plot for normalized performance for a 
Kmeans algorithm for different configurations. FIG. 22B 
shows a time-line for running the Kmeans algorithm using 
either learning (i.e., LEO) or control (i.e., POET) separately. 
The non-limiting examples use mobile development boards 
featuring Samsung's Exynos 5 Octa with an ARM big­
. LITTLE architecture that has four energy-efficient LITTLE 
cores and four high-performance big cores. Each cluster can 
be set to different frequencies, leading to a large configura­
tion space for assigning resources to multi-threaded appli­
cations. 

Each configuration ( assignment of cores and frequencies) 
has different performance for different applications. FIGS. 
21A, 21B, 22A and 22B show how performance varies as a 
function of both resource usage and application. FIGS. 21A, 
21B, 22A and 22B show cores on the x-axis and frequency 
on the y-axis, with darker regions representing higher per­
formance. The presence of local minima and maxima mean 
that the function from resource usage to performance is 
non-convex. Therefore, simple gradient ascent/descent 
methods are not suitable to navigating these configuration 
spaces. Additionally, the Lavamd application has a signifi­
cantly more complicated configuration space than the 
Kmeans application. 

Now, prior learning and control approaches are described. 
LEO, a hierarchical Bayesian learner, estimates application 
performance as a function of its resource usage. POET, a 
control system, adjusts resource usage to meet application 
performance requirements with minimal energy. By describ­
ing the results of the LEO and POET systems separately it 
is possible to develop intuition about when one approach 
performs better than the other, motivating the proposal to 
combine the two systems, as described herein. 

Many machine learning approaches have been proposed 
to estimate application performance in a variety of scenarios. 
Machine learning is well suited to building models of 
complicated systems like those used in FIGS. 21A, 21B, 
22A and 22B. To demonstrate how well learning manages 
complexity, one can consider meeting a performance 
requirement for Lavamd, which has a complicated configu­
ration space. The application can use either learning or 
control separately to attempt to meet a performance goal 
with minimal energy. On one hand, the learning approach 
estimates all configurations' performance and power and 
then uses the lowest power configuration that delivers the 
required performance. On other hand, the control approach 
has a generic model of performance/power frontiers (similar 

58 
to Kmeans) and it constantly measures performance and 
adjusts resource usage according to this generic model. 

In contrast to many controllers using linear models, in 
certain implementations, POET uses a convex model and 

5 handles some non-linearities. However, it is sensitive to 
local maxima. 

FIG. 21B shows the results of controlling 30 iterations of 
Lavamd to meet the performance requirement. The use of 30 
iterations is a non-limiting illustrative example. The x-axis 

10 shows iteration number and the y-axis shows normalized 
performance. The learning approach achieves the goal, but 
the controller oscillates wildly around it, sometimes not 
achieving the goal and sometimes delivering performance 
that is too high (and wastes energy). The oscillations occur 

15 because the controller adjusts resources based on an incor­
rect ( over-simplified) model of the configuration space. 
Hence, the learner's ability to handle complex models is 
crucial for reliable performance in this example. 

This result may be somewhat counter-intuitive. The prob-
20 !em is that the controller cannot handle the complexity of 

Lavamd. One way to fix this problem would be to build a 
custom controller just for this application, but that controller 
would not be useful for other applications. In contrast, the 
learner can find the local maxima in the configuration space, 

25 and as this application has no phase changes or other 
dynamics, the one configuration that the learner finds is 
suitable for the entire application . 

The benefits of using control over learning can be under­
stood by considering a dynamic environment. This is simu-

30 lated by beginning with Kmeans as the only application 
running on the system. Halfway through its execution, a 
second app is launched on a big core, dynamically altering 
resource availability. FIG. 22B shows the results of this 
experiment. The vertical dashed line represents when the 

35 second application begins. FIG. 22B clearly shows the 
benefits of a control system in this dynamic scenario. After 
a small dip in performance, the controller returns it back to 
the desired level. The learning system, however, does not 
have any inherent mechanism to measure the change or 

40 adapt to the altered performance. While the system could 
theoretically relearn the configuration space whenever the 
environment changes, doing so is disadvantageous in some 
implementations. Control systems are a light-weight mecha­
nism for managing such dynamics. Control systems are 

45 resilient to scale change in the system performance or power. 
Many dynamic changes reduce all configurations' perfor­
mance almost uniformly, changing the magnitude of perfor­
mance without altering the relative difference between con­
figurations. For this reason, control systems have proven 

50 especially useful in web servers with fluctuating request rates 
and multimedia applications with dynamically varying 
inputs. 

To understand the CALOREE system 2000, consider a 
mobile device or embedded system running a streaming 

55 application on a heterogeneous processor. No prior knowl­
edge of this streaming application is assumed, but there is 
prior knowledge of other applications. The goal of the 
CALO REE system 2000 is to quickly build a model of the 
new application and then control the resource usage of the 

60 mobile devices such that a desired performance target is 
meet with minimal energy. 

FIG. 23 shows an implementation of the CALOREE 
system 2000 approach to meeting the desired performance 
target with minimal energy. In the implementation of the 

65 device 2005 shown in FIG. 23, the control system is a 
generalized control system (GCS), which allocates resources 
to the new application to meet its specified performance goal 
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addressing the additional complications presented by system 
dynamics (e.g., applications transitioning from memory to 
compute bound). Instead, control systems use relatively 
simple difference models. Continuous time systems would 

with minimal energy. The GCS starts with a generic resource 
model, and as it selects configurations it records perfor­
mance and power in each configuration, after recording a 
small number of values (typically less than 10% of the total 
configuration space). 5 use differential equations, but as time in computers is 

inherently discretized the discussion herein is restricted to 
difference equations which are appropriate for discrete time 
systems. 

Exploring a greater percentage of the configuration space 
often produces greater accuracy. And on the converse, 
exploring a lesser percentage of the configuration space can 
reduce the accuracy. Depending on the goals and the system 
more or less exploration of the configuration space can be 10 

beneficial. 
The recorded values are sent to a remote server 2015 

which runs a hierarchical Bayesian model (HBM). The 
HBM estimates the application's performance and power in 

Continuing the example of controlling performance with 
clockspeed, a simple model appropriate for control would be 
to assume that the performance is a linear function of the 
clockspeed, which is given by 

perf(t)~k-clock(t-1 )+ii 

Here, the observed performance perf(t) is predicted as some 
constant k times the clockspeed applied at the previous time 
step, clock(t-1), plus some noise, Ii drawn from a Gaussian 
distribution. This simple linear difference model ignores 
low-level details like instruction mix, and instead uses 
feedback, predicting behavior of the next time step as a 
function of the previous time step. Using the relationship of 
the above equation, it is possible to synthesize a simple 
controller that is provably convergent to the desired perfor­
mance. The controller can be governed, e.g., by the expres-

all other configurations and extracts those configurations 15 

that are Pareto-optimal in the performance/power tradeoff 
space. These configurations are packaged in a special data 
structure-the performance hash table (PHT)-and sent to 
the GCS. The PHT can be generated in the server 2015 and 
sent to the devices 2005 as part of the performance model. 20 

Alternatively, the performance model can be sent the device 
2005, and the device 2005 can assemble the PHT from the 
received performance model. Using the PHT, the GCS 
selects an energy minimal resource configuration in constant 
time (0(1)). The constant time to select the energy minimal 
resource is an absolute time duration (i.e, no matter how 
many configurable parameters there are, the controller will 
select a combination of configurations in a constant amount 

25 SJOnS 

of time). That is, adding more parameters does not slow 
down the controller. 

In certain implementations, in addition to the PHT, the 
server sends back the model's variance. In these implemen­
tations, the GCS can use this variance to customize control 

30 

to the model's uncertainty, allowing guaranteed conver­
gence to the performance goal despite the fact that the 35 

system starts with no prior knowledge of the streaming 
application. 

Now, additional details of the CALO REE system 2000 are 
provided. These additional details begin with a description 

error(t) = goal - perf(t), and 

error(t) 
clock(t) = clock(t-1)- -k-. 

The controller governed by the above equations provides 
formal guarantees that it will converge to the desired per­
formance (goal in the above equations) and it bounds the 
time taken to converge. All these guarantees, however, are 
predicated on the accuracy of the model; i.e., on the value k 
in this simple example. This value is highly dependent on the 
particular application under control. More complicated 
examples that control multiple resources are relatively 
straightforward extensions of the example shown here that 
use matrix equations instead of the scalar equations pre­
sented here. Either way, the control system is highly depen­
dent on the value of k. The value of k could be set to be 
application specific, but then the controller will fail on some 
applications. If a value ofk is chosen such that performance 
still converges to the goal for all applications it will be very 
slow, meaning that the controller will take many time steps 
to react to some dynamic events. It would clearly be 

of a control design for a computer system according to one 40 

non-limiting embodiment. Then a description is provided of 
the generalized control system of the CALOREE system 
2000, according to one non-limiting embodiment. Next, a 
description is provided of how the CALOREE system 2000 
turns the generalized control signal into specific resource 45 

configurations using a model. Further, a description is pro­
vide of how to use a hierarchical Bayesian model to estimate 
resource performance and power tradeoffs. Then, the per­
formance hash table that encodes the learned model is 
described. Finally, a description is provided of some brief 
analysis of the approach. This description is provide as a 
non-limiting example of the CALOREE system 2000. 

50 beneficial to tune the control models to individual applica-

FIG. 24 shows a non-limiting example of a light-weight 
control system for the device 2005. A controller has a 
performance goal (e.g., corresponding to a quality-of-ser- 55 

vice or real-time constraint) and adjusts system resource 
usage to see that the goal is met. In a simple example, a 
control system might adjust processor frequency to ensure 
that a performance goal is met. Even better, an optimal 
controller would use the minimal clockspeed to meet the 60 

performance requirement. 
To turn clockspeed into performance a controller needs a 

model relating these two values. Directly mapping clock­
speed to performance is difficult-a hypothetical model might 
account for instruction mixes, memory hierarchy, memory 65 

latency, synchronization overheads, etc. Building such a 
model is a tedious and error-prone process, even before 

tions. 
It is desirable to use control and learning to solve the 

problem of meeting an application's performance require­
ments while minimizing energy consumption. The difficulty 
is that classical control formulations like the example above 
integrate the models directly into the controller, i.e., the 
application-dependent relationship between performance 
and resource usage is directly used in the control equations. 
This problem is addressed by adding a layer of indirection. 
This idea is illustrated in FIG. 26. Instead of directly 
controlling resources using an application-dependent model, 
speedup is controlled by passing the speedup value to a 
separate module that translates speedup into a desired 
resource configuration using the learned models. The fol­
lowing description describes the formulation for controlling 
speedup and then describes the translator that converts that 
speedup into resource allocations. 
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Analogous to the above equation for perf(t), it is possible 
to write a simple difference model relating speedup to 
performance: 

perf(t)~b-speedup(t-1 )+ii, 

wherein b is the base speed of the application, here defined 
as the speed when all resources are available. While b is 
application specific, it is easy to measure online, by simply 
allocating all resources. Such a configuration should not 
violate any performance constraints (although it is unlikely 
to be energy efficient) so it is safe to take this measurement 
without risk of violating performance constraints. With this 
model, the control law becomes 

error(t) = goal - pe,f(t) and 

error(t) 
speedup(!)= speedup(t-1)- -b-, 

which states that the speedup to apply at time t is a function 
of the previous speedup, the error at time t and the base 
speed b. This is a very simple deadbeat controller that 
provides all the standard control theoretic formal guarantees. 
In certain implementations, the controller can include a pole, 
rather than being a deadbeat controller. By measuring base 
speed online while the application runs, the control can be 
tuned to a specific application. It is noted that using this 
definition of base speed, most speedups will be less than one. 

62 
wherein Pc and scare the estimated powerup and speedup of 
configuration c and -cc is the amount of time to spend in 
configuration c. The power equation above simply states that 
the objective is to minimize energy (power times time). The 

5 work equation above states that the work must be done, 
while the time/deadline equation above requires the work to 
be done on time. The final inequality simply imposes the 
physical constraint of no negative time. 

While most linear programming problems would be inef-
10 ficient to solve repeatedly on a mobile device, the linear 

programming problem represented by the above equations 
has a constant time (0(1 )) solution. At most two of -cc are 
non-zero, meaning that at most two configurations will be 
used in any time interval. If the configurations are charted in 
the power and performance tradeoff space the two configu-

15 rations with non-zero -cc lie on the lower convex hull of the 
power performance tradeoff space. These two facts are used 
to construct a constant time algorithm for finding the optimal 
solution online. 

FIG. 25 shows a performance hash table (PHT), which is 
20 a data structure to efficiently convert a required speedup into 

a configuration. The PHT is a novel data structure that 
allows constant time operation. This constant time operation 
is achieved by increasing the memory usage. If less memory 
usage is desired and slower operation can be tolerated, a 

25 sorted list could be used instead. Given n combinations of 
configurations, a sorted list can be executed in O(log n) time. 

In addition to making base speed easier to measure, this has 
the nice property of bounding the learner's output, making 30 

for more robust learning. Next, the description describes 
how to address the problem of converting an abstract 
speedup into an actual resource allocation. 

The PHT contains points on the lower convex hull of the 
power/performance tradeoff space. It consists of two arrays; 
the first is an array of pointers that point into the second 
array, which stores the configurations on the convex hull 
sorted by speedup. Recall that speedups are computed 
relative to the base speed, which uses all resources. Because 
the largest speedup possible is 1, the only concern is that the 
speedup is less than 1. The first table of pointers has a 
resolution indicating how many decimal points of precision 
it captures. The example in FIG. 25 has a resolution of 0.1. 
To improve the visibility of FIG. 25, the non-limiting 

Consider how to map the speedup produced by the above 
equations into a resource allocation. On an exemplary target 35 

system, an ARM big.LITTLE architecture, that specifically 
means mapping speedup into a number of big cores, a 
number of small cores, and a speed for both ( on the system 
big and little cores can be clocked separately). 

The primary challenge here is that the HBM produces a 40 

discrete non-linear function of resource usage into speedup 
and powerup, while the above equation is a continuous 
linear function. This divide is bridged by assigning time to 
resource allocations such that the average speedup over a 
control interval is that produced by the above speed-up 45 

control equations. 
An assignment of time to resources is referred to as a 

schedule. Not surprisingly, there are typically many sched­
ules that meet a particular performance requirement. It is 
desirable to find a minimal energy schedule. Given a time 50 

interval -c, a workload W to complete in that interval, and a 
set of C configurations, this problem can be expressed as 

example provided herein uses a resolution of0.1 and a table 
of size 10. However, other resolutions and table sizes can be 
used, especially if the aesthetics of generated figures is not 
an issue. In practice the resolution is a tradeoff between the 
maximum control error and the size of the PHT. Any positive 
resolution can be used. Each pointer in the first table points 
to the configuration in the second array that has the largest 
speedup less than or equal to the index. 

To use the table, the translator receives a speedup s(t) 
from the controller. It needs to convert this into two con­
figurations referred to as hi and lo. To find the hi configu­
ration, the translator clamps the desired speedup to the 
largest index lower than s(t) and then walks forward until it 
finds the first configuration with a speedup higher than s(t). 
This configuration is hi. To find the lo configuration, the 
translator clamps the desired speedup to the smallest index 
higher than s(t) and then walks backwards until it finds the 
configuration with the largest speedup less than s(t). 

For example, consider the PHT in FIG. 25 and a translator 
C-1 

min~ Tc·Pc 

c=O 

Subject to 

55 trying to meet a speedup s(t)=0.65. To find hi, the translator 
indexes at 0.6 and walks up to find c=2 with sc=0.8, setting 
hi=2. To find lo, the translator indexes the table at 0.7 and 
walks backward to find c=l with sc=0.2, setting lo=l. The 

C-1 

~r,·s,-b=W 
c=O 

C-1 

~T,=T 

c=O 

0 s r, s r, V c E {O, ... , C - 1), 

60 

65 

above values are provided as a non-limiting example. 
Finally, the translator sets -ch, and 't1o by solving the 

following set of equations: 

In these equations, s(t) is the speedup requested by the 
translator, and sc are the speedups estimated by the learner. 
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By solving the above equations, the translator has turned 
the speedup requested by the controller into a schedule of 
resource allocations using the models provided by the HBM. 
Provided that the resolution is large enough to get a good 
spread of configurations to indices, the translator will always 5 

index the configuration array at most one entry from where 

approach that carefully tailors resource allocation for the 
application and performance requirement. The race-to-idle 
strategy is much better than doing nothing, but is far from 
optimal. 

Clearly there is great potential for energy reduction by 
carefully tailoring resource usage. Various approaches can 
be used to address the problem of configuring GPUs 
(through both scheduling and resource management) for 
maximum performance. However, interactive applications 

it needs to be. Thus, the entire translation process runs in 
constant time-assuming that the learner is responsible for 
building the PHT once before passing it on to the translator. 
This efficiency comes at a cost of memory usage-many of 
the entries in the speedup index table will point to redundant 
locations in the configuration array. This is a reasonable 
tradeoff to make in practice because it is beneficial for the 
code that runs on the mobile device to be fast or else there 
is a risk of wasting energy while trying to save energy. In 
certain implementations, it is recommend that a table have 
a size 100, which provides a sufficient resolution and with­
out being too wasteful of space. The table size of 100 is 
provided as a non-limiting example. Generally, any table 
size greater than 1 can be used. 

In summary, the CALOREE system 2000 leverages the 
collective information of a number of independent mobile 
devices each running a lightweight controller. Each device, 
such as the device 2005, makes a small number of local 
observations of an application it runs and sends those to the 
server. The server 2015 integrates those observations using 
an HBM to produce customized models for each device. 
These models are sent back to the individual devices where 

10 particularly benefit from an approach that tailors resource 
usage to the particular application and performance require­
ment. The difficulty is that each application will respond 
differently to different resources ( e.g., some will need more 
memory resources while others will need more computa-

15 tional resources). It is even likely that different kernels 
within an application will have different requirements. The 
challenge, then is dynamically determining how to tailor 
resource usage to the current application and performance 

20 

requirement. 
This challenge is addressed by the GRAPE (GPU 

Resource Adaptation for Performance and Energy) architec­
ture 2600. The GRAPE architecture 2600, according to 
certain embodiments, is a hardware control system that 
manages GPU resources to meet software-specified perfor-

25 mance goals. As shown in FIG. 26, the GRAPE architecture 
2600 uses a controller 2605 to achieve a performance 
requirement, which ensures that the stream of inputs is 
processed at the right speed. The GRAPE architecture 2600 

they are used to meet performance requirements with mini­
mal energy by translating a speedup signal into configura- 30 

further augments the controller 2605 with a simple machine 
learning component implemented by the translator 2615 and 
the model update 2620 that tailors control to the behavior of tions. 

Next, another implementation is described, which uses a 
GRAPE architecture 2600 as shown in FIG. 26. The GRAPE 
architecture 2600 includes a controller 2605, a translator 
2615, and an update model 2610. The GRAPE architecture 
2600 can be used to optimize energy consumption and 
performance according to the application executed on a 
graphical processing unit (GPU) such as the GPU 2620 
shown in FIG. 26. 

GPUs are often used to support applications, whose 
performance requirements are defined by their interaction 
with the outside world (e.g. a sensor or a human). When 
supporting such interactive applications, the goal should not 
be running as fast as possible, but running just fast enough 
to maintain interactive performance while minimizing 
energy usage. The GRAPE architecture 2600, which is 
described next, provides non-limiting examples of a hard­
ware controller that can be integrated into existing GPU' s to 
provide user-specified performance while minimizing 
energy usage. The performance and energy can be evaluated 
by modifying GPGPUSim to support the GRAPE architec­
ture 2600. It is observed that, across a range of applications 
and performance targets GRAPE is within 99.87% of the 
desired performance, while consuming only 4.9% more 
energy than optimal. Compared to the standard strategy of 
racing-to-idle, GRAPE reduces energy consumption by 0.74 
times on average and increases energy efficiency by 1.35 
times. In addition, the area overhead of the GRAPE archi­
tecture 2600 can be evaluated by implementing it in VHDL. 

The non-limiting exemplary implementations described 
herein are measured using the potential power reduction for 
four benchmarks run in an interactive style with three 
different resource management techniques. The baseline 
technique executes the application in the normal, batch 
mode. Race-to-idle is a common strategy that runs the 
application in its fastest configuration and then idles until the 
next input is ready. The oracle represents the true optimal 

the current application, ensuring optimal resource usage. 
Both the controller 2605 and the learner, which in FIG. 26 
is realized using the translator 2615 and the model update 

35 2620, can be implemented in hardware, removing the opti­
mization burden from software developers. 

To illustrate some advantages of the GRAPE architecture 
2600, it is evaluated in two ways. First, the control and 
learning algorithms are integrated into GPGPU-Sim v3.2.2, 

40 a cycle-accurate GPGPU Simulator and GPUWatch, and 
then the ability of the GRAPE architecture 2600 to deliver 
performance and energy savings is tested using 17 bench­
marks drawn from Rodinia and Parboil. This test is provided 
as a non-limiting example. Second, the GRAPE architecture 

45 2600 is implemented GRAPE in VHDL to measure its 
performance, power, and area overhead. Given these two 
implementations, it is observed that the GRAPE architecture 
2600 provides advantages with respect to: 1) performance 
predictability; 2) energy efficiency; 3) peak power reduction, 

50 and 4) low overhead. Regarding performance predictability, 
it is observed that across a range of different performance 
targets, according to the above described implementations, 
the GRAPE architecture 2600 achieves the desired perfor­
mance with only 0.23% error. In fact, there is only a single 

55 benchmark and performance target for which the GRAPE 
architecture 2600 GRAPE fails to deliver the desired per­
formance. Regarding energy efficiency, it is observed that 
the GRAPE architecture 2600 reduces the energy consump­
tion by 0.74 times on average compared to the baseline. For 

60 example, the energy consumption reduction observed when 
executing the Kmeans application is 0.49 times. It is 
observed, however, that the efficiency can depend on the idle 
power. Regarding peak power reduction, according to the 
above implementations, the GRAPE architecture 2600 not 

65 only reduces the energy consumption but also the peak 
power. It is observed that the GRAPE architecture 2600 
reduces peak power by 0.58 times of the normalized base-
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fuel flow and a car's speed such as wind speed, wind 
direction, incline, surface condition, and tire pressure. Mod­
eling this large set parameters can be challenging, resulting 
in complicated models that are not useful in practice. Con-

line. For example, the best power reduction is when execut­
ing the Kmeans application, for which the reduction is 0.31 
times. Regarding low overhead, the GRAPE architecture 
2600 can be implemented in an FPGA technology using 
Quartus II software, which in tum uses VHDL to count 
power and cycle overhead. The overhead power is measured 
in one implementation using PowerPlay Early Power Esti­
mator, which shows that the GRAPE architecture 2600 uses 
0.967 Watts to operate. 

5 trol engineers, however, have found that simple models 
based on difference equations used to construct robust cruise 
controls can deliver a desired speed even when the operating 
environment is unknown ahead of time. Motivated by prior 
successes in control theory, the GRAPE architecture 2600 

10 applies similar techniques to the problem of maintaining a 
GPU performance goal while minimizing energy consump-

The low overhead of the GRAPE architecture 2600 means 
that it could easily be integrated into existing GPUs with 
almost additional cost. Energy savings are demonstrated by 
tailoring GPU resource usage when running interactive 
applications. The control and learning framework developed 
for the GRAPE architecture 2600 automatically adapts 
resource usage to meet the performance requirements of 
interactive GPU applications while minimizing energy con­
sumption. Various implementations of this approach are 
described in, including simulations and hardware. The meth­
ods of the GRAPE architecture 2600 described herein 20 

uniquely provide a hardware solution for reducing GPU 
energy when processing interactive applications. 

Next is provided a non-limiting example motivating the 
need to tailor resource usage for interactive applications. For 
example, consider using a GPGPU to accelerate digital 
signal processing (DSP). The fast Fourier transform (FFT) is 
one of the most important computations in DSP can be used 
in noise cancellation, for example. A noise cancellation 
application that works 16.384 kHz and 256 point FFT size 
should maintain the latency period to finish at 7.8125 m 
period. Assuming a noise cancellation algorithm need 5.25 

tion. 
GPGPU applications consist of variety of kernels, each 

15 
with different behavior. These different kernels are analo-
gous to different driving conditions in the cruise control 
example. Applying specific purpose control strategy to 
handle memory-bound applications may degrade the perfor-
mance if compute-bound applications. Therefore a general 
control strategy can be applied. Recent research has dem­
onstrated that, although generality sometimes causes perfor-
mance loss, carefully constructed general control systems 
can perform better than dedicated ones. 

FIG. 28 shows an alternative implementation of the 
25 GRAPE architecture 2600, using decision circuitry 2655, 

which performs some functions analogous to the controller 
2605, actuating circuitry 2660, observing circuitry 2665, 
circuitry realizing an update of the actuator model 2675, 
circuitry to determine a dynamic goal (e.g., a speedup factor 

30 or a latency goal) that feedbacks to a goal 2650 at which a 
difference between a desired performance and actual per­
formance is detected as an error that is feedback to the 
decision circuitry 2655 to determine a correction (e.g., a 

ms to finish its duty, then the FFT has 2.5625 ms latency 
deadline. By default, 256 points FFT Rodinia implementa­
tion in GPGPU 1.030 ms, leaving space for the GRAPE 
architecture 2600 to adjust the performance down to 50%. 35 

relative speedup factor). 
In certain implementations, such as the implementation 

shown in FIG. 28, the GRAPE architecture 2600 can use a 
generic control system that implements an observe-decide­
act (ODA) loop. In FIG. 28, the GRAPE architecture 2600 
includes functionality to observe the GRAPE architecture 
2600 and its environment, determine characteristics of the 
kernels, and possibly adjust performance goals. Then, the 

FIGS. 27A, 27B, and 27C show the FFT application's 
performance (FIG. 27A), power (FIG. 27B), and energy 
consumption (FIG. 27C) when executed under control of the 
GRAPE architecture 2600. The FFT runs periodically and 
then idle to await the next data. It is demonstrated that 40 

GRAPE architecture 2600 decides a general speedup to 
maintain specified performance goal. Having determined a 
speedup, GRAPE automatically and dynamically assigns 

running the FFT using a race-to-idle strategy requires more 
power than using the GRAPE architecture 2600. The 
GRAPE architecture 2600 adjusts resource usage such that 
the requirement for interactive performance is maintained. 
The GRAPE architecture 2600 not only reduces the maxi­
mum power consumption, but also reduces energy consump­
tion over time. 

A significant insight in the GRAPE architecture 2600 is 
that a combination of control theory and machine learning. 
The GRAPE architecture 2600 maintains simple internal 
difference models of how an application will respond to 
more resources. When an application is running, the con­
troller 2605 of the GRAPE architecture 2600 detects differ-

45 resources to the kernel to meet the required speedup while 
reducing power consumption. The GRAPE architecture 
2600 can handle different kernel characteristic, and make 
decisions about actuators and applications with which it has 
no prior experience. The control and learning mechanisms 

50 are simple, yet powerful, permitting them to be implemented 
in hardware. 

ences between the application stated desired performance 
and the actual measured performance. The control system of 55 

the GRAPE architecture 2600 uses the difference models to 
eliminate error between the desired performance and the 
measured performance. Then the learning system of the 
GRAPE architecture 2600 ( e.g., translator 2615 and the 
model update 2620) customizes the difference models so 60 

that the controller 2605 can be tailored for individual 
applications. 

Regarding the functionality provided by the observing 
circuitry 2665, the objectives of the observing circuitry 2665 
of the GRAPE architecture 2600 are to monitor system 
performance and kernel behavior. The GRAPE architecture 
2600 continuously monitors system performance h, and 
power cost c, during one window of -i: time units. During 
each time unit -i:, the GRAPE architecture 2600 samples 
system performance at the beginning and middle of the time 
unit -i:. 

In certain implementations, the GRAPE architecture 2600 
observes a kernel's stall number, presence of idle cores, and 
ability to reach a performance goal g, in each -i:. High stall 
number means the kernels are in memory behavior. The 

Intuitively, in certain implementations, the control system 
of the GRAPE architecture 2600 works like the cruise 
control in a car. Car drivers set a speed and cruise control 
adjusts fuel flow to ensure that the speed is met. In principle, 
a large number of variables affect the relationship between 

65 presence of an idle core means the kernel is load-imbal­
anced, and the inability to reach the goal means the appli­
cation had a non-uniform kernel characteristic. 
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would be understood by a person of ordinary skill in the art 
as a process of increasing bounds on the data structures 
storing these models. 

Now an independent model relationship is described. As 
5 the number of actuators grows, the number of configurations 

(which is a setting for each actuator) increases exponentially. 
To avoid this exponential explosion, the GRAPE architec­
ture 2600 can model the actuators as independent and links 
the models computationally using the equation: 

Regarding the functionality provided by the circuitry to 
determine dynamic goal 2670, the GRAPE architecture 
2600, in certain implementations, not only maintains 
throughput rate performance (h,) but also latency perfor­
mance (li). GPGPU applications may consists of many 
kernels which have different behavior between others. Some 
kernels may have a maximum performance hmax above the 
throughput performance goal and some kernels may have a 
hmax below the user's performance goal gdefaulr The control 
system can maintain (h,) when the kernel (hmax) is above the 10 

gdefaulr When this happen the GRAPE architecture 2600 
ensures that the performance error will be paid in the future 
kernel to maintain the latency goal. Failure in keeping the 
performance goal in one kernel will cost the system to the 

15 
deadline because the latency performance (li) drop. 

Table 6 summarizes the below described method. Accord­
ing to certain implementations, the GRAPE architecture 
2600 can use a dynamic goal (g,) to keep (h,) and (li) as close 
as possible but never below g by applying a simple classic 20 

control system as in Table 6. The constant a is used to 
control the dynamic rate. However, kernels with low (hmax) 
can occur in the last kernel, and GRAPE do have enough 
time to reclaim this lost latency. The GRAPE architecture 
2600 overcomes this by dynamically setting lower limit of 25 

the (g,). The GRAPE architecture 2600 can include an 
assumption that if there is a there is a low performance 
kernel, then another low-performance kernel is also likely to 
manifest later. A lower limit goal is insurance against a 
future low-performance kernel. An upper limit goal is also 30 

beneficial to maintain system performance not exceeding too 
much which can reduce the power saving potential. 

TABLE 6 
35 

Summary of one non-limiting example of dynamic goal algorithm. 
Algorithm 1 Dynamic Goal 

Now the wavefront action is described. The GRAPE 
architecture 2600 determines whether a kernel is a memory 
bound kernel or computation bound kernel by monitoring 
the stall threshold ts,au· GRAPE implements wavefront 
action using the algorithm summarized in Table 7. 

TABLE 7 

algorithm for implementing the wavefront action. 
Algorithm 2 Wavefront Action 

1: procedure WAVEFRONT ACTION 
2: if stall dram :C:: ts tall and stallinterconnect :C:: ts tall 

then 
3: N, - N,-1 
4: else 
5: N, - N,+1 
6: end if 
7: end procedure 

The values of y, limitupper, and limit1ower can be subjec­
tive. For example, y can be set to 4, limitupper to 48 and 
limit1ower to 4. Memory bound kernels tend to exhibit non-1: procedure DYMAMIC GOAL 

2: g, -&efaufr - ( a (h; - gdefaufr)) 

3: end procedure 

Regarding the actuating circuitry 2660 of the GRAPE 
architecture 2600, the model is built to include a set of 
actions. For example, an action can be an array consists of 
speedups, cost, and identification. Additionally, a model of 
frequency and voltage action can be used to model the 
dynamic power and performance tradeoff, for example. In 
certain implementations, a set of core model and warps can 
be active in each core. 

40 linear behavior during runtime. By finding best wavefront 
numbers using the algorithm in Table 7, it can be expected 
that the memory bound kernel's appears to behave more 
linearly and therefore is easier to control. 

Further regarding an actuator model of the GRAPE archi­
tecture 2600, in certain implementations, a set of core 
actuator (SJ are used together with a set of frequency 
actuators (s6 ) and wavefront actuators. Core actuators can 
have 16 members covering operation from idle to 15 cores 
in use. It is assumed that the GPGPU has 7 P-states, ranging 
from a peak of700 MHz to a minimum 100 MHz, with step 

Regarding the decision circuitry 2655 of the GRAPE 

45 
architecture 2600, according to certain implementations, a 
runtime system of the GRAPE architecture 2600 automati­
cally and dynamically selects actions to meet the goals with 
minimal cost. In certain implementations, the decision cir­
cuitry 2655 includes a controller, an optimizer, and a learn-

50 ing engine that adapts the optimizer. Regarding the control­
ler, the GRAPE architecture 2600 augments a model-based 
feedback control system. The controller reads the perfor­
mance goal (g,) for application (i), collects the throughput 
rate hi and average throughput rate (li) at time t, and 

55 
computes speedup s,(t). Average throughput rate is a latency 
goal that corresponds to a prediction of when the application 
will finish. 

of 100 MHz. These settings align with GTX 480's existing 
DVFS settings. In certain implementations, a 45 nm predic­
tive technology models can be used to scale the voltage with 60 

frequency (from 1 V to 0.55 V). Frequency actuators are 
used under the constraint that frequency cannot be changed 
more than once in one decision period -i:. The scheduler's 
wavefront limiting can be used as actuators which limiting 
the wavefront in CTA from 4 to 32 by factor of 4. Extending 65 

these actuators to future architectures with more cores, 
DVFS settings, or scheduling options is can be performed as 

In certain implementations, the control system uses dif­
ference models to eliminate the error e,(t) between the 
performance goal g, and the speed h,(t) where e,(t)=g,-h,(t). 
Given this error estimate, the speedup required to meet the 
goal can be calculated as: 

s,(t)-s,(t-1 )+w,(t)·e,(t), 

wherein w,(t) represents the application's workload, or the 
time it would take to complete application i using minimum 
resources. Treating the value of workload as a time-variant 
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parameter allows the GRAPE architecture 2600 to tailor 
control to individual applications and even different kernels 
within the application. In practice, this value could be 
measured, but the measurement would disrupt the applica­
tion performance because the measurement includes execut­
ing in a minimal resource configuration. Therefore, the 
GRAPE architecture 2600 can estimate the application 
workload online. Workload is estimated using a on dimen­
sional Kalman filter as w,(t)E 9t and models this workload 
as: 

w,(t)~w,(t-1 )+ow,(t), 

wherein ow,(t) represent time varying noise in the true 
workload. The GRAPE architecture 2600 recursively esti­
mates the workload for application i at time t as w'(t) using 
the following Kalman filter formulation, which is given by 

x,(t) =x,(t-1), 

P;(t) = p;(t-1) + q;(t), 

P;(t)s;(t-1) 
k;(t) = -----, 

[s;(t)]2p,(t)+o; 

x;(t) = x,(t) +k;(t)h;(t)-s;(t- l)x~(t)], 

p;(t) = [1-k;(t)s;(t- l)]p;(t), and 

' 1 
w;(t)= x;(t)' 

wherein q,(t) and o, represent application variance and 
measurement variance; x,(t) and x,(t) represent the a poste­
riori and a priori estimate error variance; and k,(t) is the 
Kalman filter gain. 

70 
architecture 2600 adaptively updates the model to reflect 
actual behavior of kernel application. 

Adaptation of the workload can be done using a Kalman 
filter. In certain implementation, two more Kalman filter can 

5 be used to estimate the speedup and cost. Alternatively, in 
certain implementations, to decrease the area overhead and 
cost the control computation, the number of Kalman filters 
can be reduced. For example, the GRAPE architecture 2600 
can implement a simple machine learning approach that 

10 costs less than an adaptive Kalman filter. That is, the 
GRAPE architecture 2600 can estimate the new model using 
an algorithm such as the algorithm shown in, wherein k1 and 
k2 is the learning rate, that the value is according to user. For 

15 
example, herein the values are set as k1=0.85 and k2=0.15. 

20 

25 

30 

Table 8, wherein k 1 and k2 is the learning rate, that the 
value is according to user. For example, herein the values are 
set as k1=0.85 and k2 =0.15. 

TABLE 8 

A summary of an algorithm for adaptive control 
using machine learning, rather than Kalman filtering. 

Algorithm 3 Update Actuator Model 

1: procedure ADAPTING TRANSLATION 

2: 

3: 

4: 

k1ci 
Ccore = - + k2Ccore 

Cjreq 

end procedure 

Regarding the optimizer of the decision circuitry 2655, 35 

the adaptive control system of the GRAPE architecture 2600 
produces a general speedup signal s,(t), which the runtime 
translates into the minimal energy configuration that will 
actually meet this goal (e.g., this can be achieved using a 
performance hash table (PHT)). The GRAPE architecture 40 

2600 can do this by scheduling resource usage over a 
decision time period window of -c seconds. Given a set 
A={ a} of core actions with speedup sa and costs ca and 
B={b} of frequency actions with speedup sb and costs cb, the 
GRAPE architecture 2600 would like to schedule each of the 45 

FIG. 29 shows an implementation of the GRAPE archi­
tecture 2600 including a controller 2605, a translator 2615, 
an actuator 2630, an application 2635, and an update system 
model 2610. 

FIG. 30 shows an exemplary implementation of a GRAPE 
datapath 2800. Now a description is provided of a non­
limiting examples of an implementation of the GRAPE 
architecture 2600 using the GRAPE datapath 2800. The 
non-limiting examples include implementations in both 
hardware and software. The GRAPE datapath 2800 includes 
input data from a speed and power sensor 2802 and input 
data of an interactive goal 2804, as well as output data for actions for -cas-c time and "tb =t units in such a way that the 

desired speedup is met and the total cost (energy) is mini­
mized. In other words, system tries to solve the following 
optimization problem 

The idle action corresponds to the system paying a cost of 
c,dze and achieving no speedup s,dze =0). The values -ca and "tb 

can have different values because core actuator can change 
in 1 cycle and frequency actuators can wait 500 cycles to 
change due overhead delay. 

an actuator 2806. The input data from the speed and power 
sensors can be provided to circuitry determining an update 
model 2810 and to circuitry determining a dynamic goal 

50 2820. The circuitry determining a dynamic goal 2820 can 
also receive the input data of the interactive goal 2804. The 
output of the circuitry determining a dynamic goal 2820 can 
be provided to a control 2830, which also receives results 
from a model memory 2840, which is determined using 

55 results of the update model 2810. Then, a translator 2850 
provides the actuator output 2806 based in part on results of 
the control 2830. 

In certain implementations, the GRAPE architecture 2600 
can be implemented in FPGA technology using Quartus II 

60 software using VHDL to count power and cycle overhead. 
Regarding the learning actuator models of the GRAPE 

architecture 2600, adaptive control can be used to flexible 
control the performance goal. The GRAPE architecture 
2600 an increase flexibility by implementing an update in 
the actuator model. For example, initially the actuator model 65 

can assume that cost and performance between actions is 
linear after several decision periods. Then, the GRAPE 

For example, a fixed point package can be implemented to 
perform a floating point multiplication and division in 
VHDL. In one implementation, the design can be synthe-
sized such that the GRAPE architecture 2600 occupies 
15,376 logic elements. In this implementation, a TimeQuest 
timing analyzer shows that GRAPE fmax is 1.35 MHz or 519 
cycles overhead in GPU Core frequency. Also, PowerPlay 
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Early Power Estimator shows that this implementation of the 
GRAPE architecture 2600 uses 0.667 Watts to operate. The 
dynamic frequency and core actuator can be implemented by 
masking the clock in GPGPU-Sim. The wavefront actuator 
can be implemented using a swl scheduler. The GPUWattch 5 

can be edited to count the dynamic voltage and leakage static 
power. Further, a GTX480 model can be provided by those 
simulator. Then, the DVFS overhead can be modeled as 500 
cycles and the core gating overhead can be modeled as 1 
cycle. These actuators increases the GPU power consump- 10 

tion by 0.3 W. In this implementation, one decision period 
for GRAPE is 3000 cycles. 

FIG. 30 shows the GRAPE datapath 2800 in a VHDL 
implementation. The implementation of the GRAPE data-

15 
path 2800 shown in FIG. 30 includes 5 main components, 
the update model 2810 to update the actuator model, the 
model memory 2840 including actuator model arrays, the 
control 2830, which counts the general speedup, the 
dynamic goal 2820 to dynamically adjust the goal and 20 

translator to find the least cost actuator. In certain imple­
mentations, the speed and power sensor 2802 uses a vector 
logic of 24 bits. 

FIG. 33 shows an implementation of counting the over­
head timing, in which sampling the sensor is performed 25 

every 1500 cycles. It is assumed that there is no overhead in 
sampling the data. The control calculation can be called 
early at cycles 2450 to reduce the error in calculation. 
Frequency overhead is 500 cycles, and during this overhead 
period the simulator runs the application in previous fre- 30 

quency action. 
Next, a description of various implementations of the 

device 120 and device 2005 and the server 2015 and server 
110 are provided. 

72 
sharing images and media files via social media and func­
tionality for capturing image displayed on the display 906. 

The processor 902 can be any programmable micropro­
cessor, microcomputer or multiple processor chip or chips 
that can be configured by software instructions (applica­
tions) to perform a variety of functions, including functions 
of various embodiments described herein. The PDD 900 can 
include multiple processors 902. 

Software applications can be stored in the internal 
memory 950 before they are accessed and loaded into the 
processor 902. The processor 902 can include or have access 
to the internal memory 950 sufficient to store the software 
instructions. The internal memory 950 can also include an 
operating system (OS) 952. The internal memory 950 can 
also include an energy optimization application 954 that 
preforms, among other things, parts of the method 200 as 
described in the foregoing, thus providing additional func­
tionality to the PDD 900. 

Additionally, the internal memory 950 can be a volatile or 
nonvolatile memory, such as flash memory, or a mixture of 
both. For the purposes of this description, a general refer­
ence to memory refers to all memory accessible by the 
processor 902, including internal memory 950, removable 
memory plugged into the PDD 900, and memory within the 
processor 902 itself, including a secure memory. 

The PDD 900 can also include an input/output (I/0) bus 
936 to receive and transmit signal to peripheral devices and 
sensors, or to communicate with embedded processors of the 
motor vehicle. 

In certain implementations, various steps of method 200 
are performed using remote computing hardware, while 
some less computational intensive and memory intensive 
tasks of method 200 are performed on the PDD 900. FIG. 30 
illustrates a block diagram of the remote computing hard-

In certain implementations, the device 120 and device 
2015 can respectively be a personal digital device (PDD). 
The PDD 900 shown in FIG. 32 is used to perform various 
steps of method 200 and can be a smartphone, cellular 
phone, tablet computer, digital camera, a video camera, a 
personal or desktop computer, etc FIG. 32 shows a block 
diagram illustrating one implementation of a personal digital 
device (PDD) 900. The PDD 900 can perform the method 
200 of optimizing energy. The PDD 900 includes processing 
circuitry configured to perform the methods described 
herein. For example, the PDD 900 can include a processor 
902 coupled to an internal memory 950, to a display 906 and 
to a subscriber identity module (SIM) 932 or similar remov­
able memory unit. A processor 902 can be, for example, an 
ARM architecture CPU such as the CortexA53 by ARM Inc. 
or a Snapdragon 810 by Qualcomm, Inc. The processor 902 
can also be an Intel Atom CPU by Intel Corporation. 

35 ware 1000, which performs the methods and processes 
described herein including method 200. The server 110 and 
server 2015 can respectively be the remote computing 
hardware 1000, Process data and instructions may be stored 
in a memory 1002. The process data and instructions may 

The PDD 900 can have an antenna 904 that is connected 

40 also be stored on a storage medium disk 1004 such as a hard 
drive (HDD) or portable storage medium or may be stored 
remotely. Further, the instructions may be stored on CDs, 
DVDs, in FLASH memory, RAM, ROM, PROM, EPROM, 
EEPROM, hard disk or any other information processing 

45 device with which the remote computing hardware 1000 
communicates, such as a server, computer, or any non­
transitory computer readable medium. 

Further, functions of the remote computing hardware 
1000 may be performed using a utility application, back-

50 ground daemon, or component of an operating system, or 
combination thereof, executing in conjunction with CPU 
1001 and an operating system such as Microsoft Windows 7, 
UNIX, Solaris, LINUX, Apple MAC-OS and other systems 
known to those skilled in the art. 

to a transmitter 926 and a receiver 924 coupled to the 
processor 902. The receiver 924 and portions of the proces­
sor 902 and the internal memory 950 can be used for 55 

network communications. The PDD 900 can further have 
CPU 1001 may be a Xenon or Core processor from Intel 

of America or an Opteron processor from AMD of America, 
or may be other processor types that would be recognized by 
one of ordinary skill in the art. Alternatively, the CPU 1001 
may be implemented on an FPGA, ASIC, PLD or using 

multiple antennas 904, receivers 924, and/or transmitters 
926. The PDD 900 can also include a key pad 916 or 
miniature keyboard and menu selection buttons or rocker 
switch 914 for receiving user inputs. The PDD 900 can also 
include a GPS device 934 for position sensing and/or inertial 
navigation. The GPS device 934 can be coupled to the 
processor and used for determining time and location coor­
dinates of the PDD 900. Additionally, the display 906 can be 

60 discrete logic circuits, as one of ordinary skill in the art 
would recognize. Further, CPU 1001 may be implemented 
as multiple processors cooperatively working in parallel to 
perform the instructions of the inventive processes described 
above. 

a touch-sensitive device that can be configured to receive 65 

user inputs. The PDD 900 can include a digital camera to 
acquire images, as well as functionality for receiving and 

The remote computing hardware 1000 in FIG. 33 also 
includes a network controller 1006, such as an Intel Ethernet 
PRO network interface card from Intel Corporation of 
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America, for interfacing with a network 1030. The network 
1030 can be a public network, such as the Internet, or a 
private network such as an LAN or WAN network, or any 
combination thereof and can also include PSTN or ISDN 

74 
computer or workstation that is connected to the network 
1140 via a network controller, such as an Intel Ethernet PRO 
network interface card from Intel Corporation of America, 
for interfacing with a network. 

sub-networks. The network 1030 can also be wired, such as 5 

an Ethernet network, or can be wireless such as a cellular 
network including EDGE, 3G and 4G wireless cellular 
systems. The network 1030 can also be Wi-Fi, Bluetooth, or 
any other wireless form of a communication that is known. 

Signals from the wireless interfaces ( e.g., the base station 
1156, the wireless access point 1154, and the satellite 
connection 1152) are transmitted to the mobile network 
service 1120, such as an EnodeB and radio network con­
troller, UMTS, or HSDPA/HSUPA. Requests from mobile 

The remote computing hardware 1000 further includes a 
display controller 1008 for interfacing with a display 1010. 
A general purpose I/0 interface 1012 interfaces with input 
devices 1014 as well as peripheral devices 1016. The general 
purpose I/0 interface also can connect to a variety of 
actuators 1018. 

A sound controller 1020 may also be provided in the 
remote computing hardware 1000 to interface with speakers/ 
microphone 1022 thereby providing sounds and/or music. 

A general purpose storage controller 1024 connects the 
storage medium disk 1004 with a communication bus 1026, 
which may be an ISA, EISA, VESA, PCI, or similar, for 
interconnecting all of the components of the remote com­
puting hardware 1000. Descriptions of general features and 
functionality of the display 1010, input devices 1014 (e.g., 

10 users and their corresponding information are transmitted to 
central processors 1122 that are connected to servers 1124 
providing mobile network services, for example. Further, 
mobile network operators can provide services to the various 
types of PDDs 900. For example, these services can include 

15 authentication, authorization, and accounting based on home 
agent and subscribers' data stored in databases 1126, for 
example. The subscribers' requests can be delivered to the 
cloud 1130 through a network 1140. 

As can be appreciated, the network 1140 can be a public 
20 network, such as the Internet, or a private network such as 

an LAN or WAN network, or any combination thereof and 
can also include PSTN or ISDN sub-networks. The network 
1140 can also be a wired network, such as an Ethernet 
network, or can be a wireless network such as a cellular 
network including EDGE, 3G and 4G wireless cellular 
systems. The wireless network can also be Wi-Fi, Bluetooth, 
or any other wireless form of a communication that is 
known. 

a keyboard and/or mouse), as well as the display controller 25 

1008, storage controller 1024, network controller 1006, 
sound controller 1020, and general purpose I/0 interface 
1012 are omitted herein for brevity as these features are 
known. The various types of PDDs 900 can each connect via the 

30 network 1140 to the cloud 1130, receive inputs from the 
cloud 1130 and transmit data to the cloud 1130. In the cloud 

Functions and features of the energy optimization meth­
ods as described herein can be executed using cloud com­
puting. For example, one or more processors can execute the 
functions of optimizing the relevancy algorithm and calcu­
lating the relevancy values. The one or more processors can 
be distributed across one or more cloud computing centers 35 

that communicate with the PDD 900 via a network. For 

1130, a cloud controller 1136 processes a request to provide 
users with corresponding cloud services. These cloud ser­
vices are provided using concepts of utility computing, 
virtualization, and service-oriented architecture. 

The cloud 1130 can be accessed via a user interface such 
as a secure gateway 1132. The secure gateway 1132 can, for 
example, provide security policy enforcement points placed 
between cloud service consumers and cloud service provid-

example, distributed performance of the processing func­
tions can be realized using grid computing or cloud com­
puting. Many modalities of remote and distributed comput­
ing can be referred to under the umbrella of cloud 
computing, including: software as a service, platform as a 
service, data as a service, and infrastructure as a service. 
Cloud computing generally refers to processing performed 
at centralized processing locations and accessible to multiple 
users who interact with the centralized processing locations 
through individual terminals. 

FIG. 34 shows an example of cloud computing, wherein 
various types of PDDs 900 can connect to a network 1140 
using either a mobile device terminal or a fixed terminal. For 
example, FIG. 34 shows a PDD 900 that is a smart phone 
1110 connecting to a mobile network service 1120 through 
a satellite connection 1152. Similarly, FIG. 34 shows a PDD 
900 that is a digital camera 1112 and another PDD 900 that 
is a cellular phone 1114 connected to the mobile network 
service 1120 through a wireless access point 1154, such as 
a femto cell or Wi-Fi network. Further, FIG. 34 shows a 
PDD 900 that is a tablet computer 1116 connected to the 
mobile network service 1120 through a wireless channel 
using a base station 1156, such as an Edge, 3G, 4G, or LTE 
Network, for example. Various other permutations of com­
munications between the types of PDDs 900 and the mobile 
network service 1120 are also possible, as would be under­
stood to one of ordinary skill in the art. The various types of 
PDDs 900, such as the cellular phone 1114, tablet computer 
1116, or a desktop computer, can also access the network 
1140 and the cloud 1130 through a fixed/wired connection, 
such as through a USB connection to a desktop or laptop 

40 ers to interject enterprise security policies as the cloud-based 
resources are accessed. Further, the secure gateway 1132 can 
consolidate multiple types of a security policy enforcement, 
including, for example, authentication, single sign-on, 
authorization, security token mapping, encryption, tokeni-

45 zation, logging, alerting, and API control. The cloud 1130 
can provide, to users, computational resources using a 
system of virtualization, wherein processing and memory 
requirements can be dynamically allocated and dispersed 
among a combination of processors and memories such that 

50 the provisioning of computational resources is hidden from 
the users and making the provisioning appear seamless as 
though performed on a single machine. Thus, a virtual 
machine is created that dynamically allocates resources and 
is therefore more efficient at utilizing available resources. A 

55 system of virtualization using virtual machines creates an 
appearance of using a single seamless computer even though 
multiple computational resources and memories can be 
utilized according increases or decreases in demand. The 
virtual machines can be achieved using a provisioning tool 

60 1140 that prepares and equips the cloud-based resources 
such as a processing center 1134 and a data storage 1138 to 
provide services to the users of the cloud 1130. The pro­
cessing center 1134 can be a computer cluster, a data center, 
a main frame computer, or a server farm. The processing 

65 center 1134 and data storage 1138 can also be collocated. 
While certain implementations have been described, these 

implementations have been presented by way of example 
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only, and are not intended to limit the teachings of this 
disclosure. Indeed, the novel methods, apparatuses and 
systems described herein may be embodied in a variety of 
other forms; furthermore, various omissions, substitutions 
and changes in the form of the methods, apparatuses and 5 

systems described herein may be made without departing 
from the spirit of this disclosure. 

The invention claimed is: 
1. A system, comprising: 
an apparatus having at least one constrained property and 10 

at least one other property to be optimized, the appa­
ratus including 
a plurality of components, which are configurable in 

real-time, such that the apparatus can be configured 
in a plurality of configurations, and 15 

detection circuitry configured to detect values of the at 
least one constrained property and values of the at 
least one other property when the apparatus is con­
figured in each of a first subset of configurations of 
the plurality of configurations; 20 

learning circuitry configured to 
learn, using a machine learning method and based on 

the detected values of the at least one constrained 
property and the detected values of the at least one 
other property, which were detected for the first 25 

subset, a model that predicts values of the at least one 
constrained property and the at least one other prop­
erty when the apparatus is configured in each con­
figuration of the plurality of configurations; and 

control circuitry configured to 30 

select, using the learned model, a particular configura­
tion of the plurality of configurations that optimizes 
the at least one other property, subject to a constraint 
of the at least one constrained property compared to 
other configurations of the plurality of configura- 35 

tions, 
wherein the learning circuitry is further configured to 

learn the model by comparing the detected values of 
the at least one constrained property and the at least 
one other property for the first subset of the plurality 40 

of configurations to a database of measurements of 
other apparatuses also having the at least one con­
strained property and the at least one other property, 
the measurements of the other apparatuses represent­
ing values of the at least one constrained property 45 

and values of the at least one other property of 
respective other apparatuses when components of 
the other apparatuses are configured in a plurality of 
other-apparatus configurations. 

2. The system according to claim 1, wherein the learning 50 

circuitry is further configured to encode the learned model as 
a data structure storing configurations of the apparatus that 
optimize the at least one other property subject to the 
constraint of the at least one constrained property. 

3. The system according to claim 1, wherein the learning 55 

circuitry is further configured to learn the model using a 
hierarchical Bayesian method. 

4. The system according to claim 1, wherein 
the apparatus is a mobile computing device executing an 

application, 60 

the plurality of configurations include computational con­
figurations of the mobile computing device, 

the control circuitry is included on the mobile computing 
device, and 

the learning circuitry is included on a server, which 65 

transmits and receives communications to and from the 
mobile computing device, and the server stores the 

76 
database of measurements of other mobile computing 
devices on a non-transitory computer readable medium, 
wherein 

the database includes measurements of the at least one 
constrained property and the at least one other property 
for the other mobile computing devices when the other 
mobile computing devices are configured in various 
computational configurations, and 

the database is used to learn the model by inference using 
similarities between the measurements of other mobile 
computing devices when configured in the various 
computational configurations and the detected values 
of the apparatus when configured in the first subset of 
the plurality of configurations. 

5. The system according to claim 1, wherein 
the learning circuitry is further configured to learn the 

model, wherein the model is represented using perfor­
mance-frontier configurations of the plurality of con­
figurations, and the performance-frontier configura­
tions correspond to values of the at least one 
constrained property and values of the at least one other 
property that are on a convex hull of a tradeoff space 
between the at least one constrained property and the at 
least one other property, and 

the control circuitry is further configured to select a 
configuration of the performance-frontier configura­
tions or a combination of configurations of the perfor­
mance-frontier configurations to be the particular con­
figuration of the plurality of configurations that 
optimizes the at least one other property. 

6. The system according to claim 1, wherein the control 
circuitry is further configured to 

update the constraint of the at least one constrained 
property to minimize an error value, wherein the error 
value represents a difference between a desired value 
and an observed value of the apparatus, and 

update, using the model, the particular configuration of 
the plurality of configurations that optimizes the at least 
one other property subject to the updated constraint of 
the at least one constrained property. 

7. The system according to claim 6, wherein the control 
circuitry is further configured to 

detect updated values of the at least one constrained 
property and updated values of the at least one other 
property when the apparatus is configured in the par­
ticular configuration of the plurality of configurations; 

update the model based on the particular configuration of 
the plurality of configurations and on the updated 
values of the at least one constrained property and the 
updated values of the at least one other property, and 

perform the updating of the configuration of the plurality 
of configurations using the updated model together 
with the updated constraint of the at least one con­
strained property. 

8. The system according to claim 4, wherein the control 
circuitry is further configured to select the particular con­
figuration of the plurality of configurations, wherein 

the at least one other property includes one of an energy­
consumption rate and a computational-performance 
rate, 

when the at least one other property includes the compu­
tational-performance rate, the at least one constrained 
property includes the energy-consumption rate, 

when the at least one other property includes the energy­
consumption rate, the at least one constrained property 
includes the computational-performance rate, and 
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the energy-consumption rate is a rate at which the mobile 
computing device consumes energy while executing 
the application, and the computational-performance 
rate is a rate at which the mobile computing device 
performs computational tasks of the application. 

9. The system according to claim 8, wherein, when the at 
least one constrained property includes the computational­
performance rate, the control circuitry is further configured 
to select the configuration of the plurality of configurations 
to be a schedule that minimizes the energy consumed over 10 

a predefined time period subject to a constraint that a 
predefined number of the computational tasks of the appli­
cation are completed within the predefined time period, 
wherein 

the schedule includes that 
the apparatus is configured in a first configuration of the 

plurality of configurations during a period corre­
sponding to a duty cycle of the schedule, 

15 

the apparatus is configured in a second configuration of 20 

the plurality of configurations, which is different 
from the first configuration, for a period correspond­
ing to a complement of the duty cycle, and 

the first configuration and the second configuration 
respectively correspond to the values of the at least 25 

one constrained property and the values of the at 
least one other property of the model that are on a 
convex hull of a trade-off space between the at least 
one constrained property and the at least one other 
property. 30 

10. The system according to claim 2, wherein 
the learning circuitry is further configured to 

learn the model using the machine learning method, 
which is one of a hierarchical Bayesian model 
method, a matrix completion method, a low rank 35 

matrix completion with noise method, a high rank 
matrix completion method, a collaborative filtering 
method, a recommender system method, a matrix 
completion with side information method, a Bayes­
ian matrix completion method, a nonparametric 40 

matrix completion method, a multi-tasking algo­
rithm method, a transfer learning based algorithm 
method, a regression algorithm method, a random 
forest algorithm method, a polynomial regression 
method, a gradient boosting method, a Bandit-based 45 

learning method, a multi-armed bandit learner 
method, a multi-armed bandit learner with correlated 
arms method, a genetic algorithm method, and an 
evolutionary algorithm method, 

encode the learned model as the data structure, the data 50 

structure being one of a hash table, a sorted list, a list, 
a binary search tree, a binary heap, a btree, and a skip 
list, and 

the control circuitry is further configured to select the 
particular configuration of the plurality of configura- 55 

tions that optimizes the at least one other property using 
a control method that is one of a proportional-integral 
control method, a proportional control method, an 
integral control method, a proportional integral deriva­
tive control method, a state-space control method, a 60 

stochastic control method, an adaptive control method, 
an optimal control method, a model predictive control 
method, a switching control method, a gain scheduling 
method, a self-tuning regulator method, a minimum 
variance control method, and a fuzzy control method. 65 

11. The system according to claim 1, wherein the learning 
circuitry is located remotely from the apparatus and com-

78 
municates with the apparatus via a communication chamiel, 
and the learning circuitry is configured to learn the model by 

determining similarities between the apparatus and the 
other apparatuses by comparing the database of mea­
surements of the other apparatuses with the detected 
values of the at least one constrained property and the 
detected values of the at least one other property when 
the apparatus is configured in the first subset of the 
plurality of configurations, 

learning, for all configurations of the apparatus, a com­
plete model including estimates of the at least one other 
property, uncertainties of the estimates of the at least 
one other property, estimates of the at least one con­
strained property, and uncertainties of the estimates of 
the at least one constrained property, wherein the 
complete model is learned using the similarities 
between the apparatus and the other apparatuses, and 
the complete model represents the values of the at least 
one other property and the values of the at least one 
constrained property for all configurations of the appa­
ratus, 

learning, using the complete model, a convex-hull model, 
wherein the convex-hull model represents a second 
subset of the plurality of configurations having values 
of the at least one other property and values of the at 
least one constrained property that are on a convex hull 
of a tradeoff space between the at least one other 
property and the at least one constrained property, and 
the convex-hull model represents the estimates of the at 
least one other property and the estimates of the at least 
one constrained property corresponding the second 
subset of the plurality of configurations, and 

transmitting, over the communication channel, the 
learned convex-hull model from the learning circuitry 
to the apparatus. 

12. The system according to claim 1, wherein learning 
circuitry is further configured to estimate uncertainties of the 
learned model to generate uncertainty estimates, wherein the 
learned model includes the uncertainty estimates. 

13. An apparatus having at least one constrained property 
and at least one other property to be optimized, the apparatus 
communicating over a communication channel with learn­
ing circuitry, the apparatus comprising: 

a plurality of components, which are configurable in 
real-time, such that the apparatus can be configured in 
a plurality of configurations; 

detection circuitry configured to detect values of the at 
least one constrained property and values of the at least 
one other property when the apparatus is configured in 
a first subset of the plurality of configurations; 

a transmitter configured to transmit the detected values of 
the at least one constrained property and values of the 
at least one other property corresponding to the first 
subset of the plurality of configurations to the learning 
circuitry; 

a receiver configured to receive, from the learning cir­
cuitry, a model representing values of the at least one 
constrained property and values of the at least one other 
property, when the apparatus is configured in respective 
configurations of the plurality of configurations, the 
learning circuitry learning the model by comparing the 
detected values of the at least one constrained property 
and the at least one other property corresponding to the 
first subset of the plurality of configurations to a 
database of measurements of other apparatuses also 
having the at least one constrained property and the at 
least one other property, the measurements of the other 
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apparatuses representing values of the at least one 
constrained property and values of the at least one other 
property of respective other apparatuses when compo­
nents of the other apparatuses are configured in a 
plurality of other-apparatus configurations; and 5 

control circuitry configured to select, using the received 
model, a particular configuration of the plurality of 
configurations that optimizes the at least one other 
property subject to a constraint of the at least one 
constrained property. 10 

14. A server communicating with an apparatus, wherein 
the apparatus has at least one constrained property and at 
least one other property to be optimized, and the apparatus 
can be configured in a plurality of configurations, the server 
comprising: 15 

a receiver configured to receive, from the apparatus, 
values of the at least one constrained property and 
values of the at least one other property, which are 
detected when the apparatus is in each of a first subset 
of configurations of the plurality of configurations, 20 

learning circuitry configured to learn, using a machine 
learning method and based on the received values of 
the at least one constrained property and the detected 
values of the at least one other property, which were 
detected for the first subset, a model that predicts values 25 

of the at least one constrained property and the at least 
one other property when the apparatus is configured in 
each configuration of the plurality of configurations; 
and 

a transmitter configured to transmit, to the apparatus, the 30 

determined model, wherein the learned model is 
learned by 
comparing the received values of the at least one 

constrained property and the received values of the at 
least one other property with measurements of the at 35 

least one constrained property and the at least one 
other property for other apparatuses when the other 
apparatuses are configured in a plurality of other­
apparatus configurations to determine similarities 
between the apparatus and the other apparatuses, and 40 

determining estimates of the at least one other property 
and estimates of the at least one constrained property 
using the similarities between the apparatus and the 
other apparatuses to generate a complete model of 
the apparatus representing the at least one other 45 

property and the at least one constrained property for 
all configurations of the apparatus, and the learned 
model is based on the complete model. 

15. The server according to claim 14, wherein 
the learning circuitry is further configured to learn a 50 

convex-hull model representing estimates of the at least 
one other property and estimates of the at least one 
constrained property of a second subset of the plurality 
of configurations corresponding to the estimates of the 
at least one other property and the estimates of the at 55 

least one constrained property of the complete model 
located on a convex hull of a tradeoff space between the 
at least one other property and the at least one con­
strained property; and 

the learned model transmitted to the apparatus is the 60 

convex-hull model. 
16. A method of optimizing an apparatus, the apparatus 

having at least one constrained property, at least one other 
property to be optimized, and a plurality of components, 
which are configurable in real-time, such that the apparatus 65 

can be configured in a plurality of configurations, the 
method comprising: 

80 
detecting values of the at least one constrained property 

and values of the at least one other property when the 
apparatus is configured in each of a first subset of 
configurations of the plurality of configurations; 

learning, using a machine learning method and based on 
the detected values of the at least one constrained 
property and the detected values of the at least one 
other property, which were detected for the first subset, 
a model that predicts values of the at least one con­
strained property and the at least one other property 
when the apparatus is configured in each configuration 
of the plurality of configurations; and 

selecting, using the learned model, a particular configu­
ration of the plurality of configurations that optimizes 
the at least one other property, subject to a constraint of 
the at least one constrained property compared to other 
configurations of the plurality of configurations, 

wherein the learning step further includes learning the 
model by comparing the detected values of the at least 
one constrained property and the at least one other 
property for the first subset of the plurality of configu­
rations to a database of measurements of other appa­
ratuses also having the at least one constrained property 
and the at least one other property, the measurements of 
the other apparatuses representing values of the at least 
one constrained property and values of the at least one 
other property of respective other apparatuses when 
components of the other apparatuses are configured in 
a plurality of other-apparatus configurations. 

17. The method according to claim 16, further compris­
ing; 

estimating uncertainties of the values of the at least one 
constrained property and the values of the at least one 
other property of the learned model to generate uncer­
tainty estimates, and including the uncertainty esti­
mates in the learned model; and 

encoding the model as a data structure to lookup configu­
rations of the apparatus to optimize the at least one 
other property subject to the constraint of the at least 
one constrained property. 

18. The method according to claim 17, wherein 
the learning of the model is performed using the machine 

learning method, which is one of a hierarchical Bayes­
ian model method, a matrix completion method, a low 
rank matrix completion with noise method, a high rank 
matrix completion method, a collaborative filtering 
method, a recommender system method, a matrix 
completion with side information method, a Bayesian 
matrix completion method, a nonparametric matrix 
completion method, a multi-tasking algorithm method, 
a transfer learning based algorithm method, a regres­
sion algorithm method, a random forest algorithm 
method, a polynomial regression method, a gradient 
boosting method, a Bandit-based learning method, a 
multi-armed bandit learner method, a multi-armed ban­
dit learner with correlated arms method, a genetic 
algorithm method, and an evolutionary algorithm 
method, 

the encoding of the learned model is performed, wherein 
the data structure is one of a hash table, a sorted list, a 
list, a binary search tree, a binary heap, a btree, and a 
skip list, and 

the selecting of the particular configuration of the plural­
ity of configurations to optimize the at least one other 
property is performed using a control method that is 
one of a proportional-integral control method, a pro­
portional control method, an integral control method, a 
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proportional integral derivative control method, a state­
space control method, a stochastic control method, an 
adaptive control method, an optimal control method, a 
model predictive control method, a switching control 
method, a gain scheduling method, a self-tuning regu- 5 

lator method, a minimum variance control method, and 
a fuzzy control method. 

19. The method according to claim 16, further compris­
ing: 

detecting values of the at least one constrained property 10 

and values of the at least one other property when the 
apparatus is configured in the particular configuration 
of the plurality of configurations; 

updating the learned model using the detected values of 15 
the at least one constrained property and the detected 
values of the at least one other property when the 
apparatus is configured in the particular configuration 
of the plurality of configurations; 

updating the constraint of the at least one constrained 20 

property to minimize an error value, wherein the error 
value represents a difference between a desired value 
and an observed value of the apparatus, which is 
determined from values detected when the apparatus is 
configured in the particular configuration of the plural- 25 

ity of configurations; and 
updating, using the updated model, the particular con­

figuration of the plurality of configurations to optimize 
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the at least one other property subject to the updated 
constraint of the at least one constrained property. 

20. The method according to claim 16, wherein 
the apparatus is a mobile computing device executing an 

application, and the mobile computing device performs 
the detecting of the values and the selecting of the 
particular configuration of the plurality of configura­
tions to optimize the at least one other property, 

the learning of the model is performed by a server that 
communicates with the mobile computing device using 
a communication channel, 

the at least one other property includes one of an energy­
consumption rate at which the mobile computing 
device consumes energy while executing the applica­
tion and a computational-performance rate at which the 
mobile computing device performs computational tasks 
of the application, 

the at least one constrained property includes another of 
the energy-consumption rate application and the com­
putational-performance rate, and 

the method includes 
updating a speed-up factor to minimize a difference 

between a desired latency and a measured latency of 
the mobile computing device when executing the 
application, and 

updating the constraint of the at least one constrained 
property according to the updated speed-up factor. 

* * * * * 


