
c12) United States Patent
Hoffmann et al.

(54) APPARATUS AND METHOD FOR
OPTIMIZING QUANTIFIABLE BEHAVIOR
IN CONFIGURABLE DEVICES AND
SYSTEMS

(71) Applicant: University of Chicago, Chicago, IL
(US)

(72) Inventors: Henry Hoffmann, Chicago, IL (US);
John Lafferty, Evanston, IL (US);
Nikita Mishra, Chicago, IL (US)

(73) Assignee: University of Chicago, Chicago, IL
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 874 days.

(21) Appl. No.: 15/457,743

(22)

(65)

(60)

(51)

(52)

(58)

Filed: Mar. 13, 2017

Prior Publication Data

US 2017/0261949 Al Sep. 14, 2017

Related U.S. Application Data

Provisional application No. 62/307,210, filed on Mar.
11, 2016.

Int. Cl.
G05B 13102
G06N 7100
U.S. Cl.

(2006.01)
(2006.01)

CPC G05B 1310265 (2013.01); G06N 71005
(2013.01)

Field of Classification Search
CPC G05B 13/0265; G06N 7/005
See application file for complete search history.

I 1111111111111111 1111111111 11111 11111 111111111111111 IIIII lll111111111111111

l.QQ

USO 11009836B2

(IO) Patent No.: US 11,009,836 B2
May 18, 2021 (45) Date of Patent:

(56) References Cited

PUBLICATIONS

Mishra, "A Probabilistic Graphical Model-based Approach for
Minimizing Energy Under Performance Constraints", 2015 (Year:
2015).*
Imes, "Minimizing Energy Under Performance Constraints on Embed
ded Platforms", 2014 (Year: 2014).*
Imes2, "POET: A Portable Approach to Minimizing Energy Under
Soft Real-time Constraints",IEEE, 2015 (Year: 2015).*
Hoffman, "JouleGuard: Energy Guarantees for Approximate Appli
cations", 2015 (Year: 2015). *

(Continued)

Primary Examiner - Michael J Huntley
Assistant Examiner - Van C Mang
(74) Attorney, Agent, or Firm - Obion, McClelland,
Maier & Neustadt, L.L.P.

(57) ABSTRACT

An apparatus and method are provided to perform con
strained optimization of a constrained property of an appa
ratus, which is complex due to having several components,
and these components are configurable in real-time. The
optimization is achieved by detecting values of the con
strained property and a plurality of other properties of the
apparatus when the apparatus is configured in a first subset
of the plurality of configurations. A model is learned using
the detected values of the constrained property. The model
represents the constrained property and can also represent
other properties as a function of the configurations. The
model can also include estimated uncertainties of the con
strained property in the model. Then, using the d model and
the estimated uncertainties, the optimal configuration can be
selected to minimize an error value (e.g., the difference
between a desired value and an observed value of the at least
one constrained property).

20 Claims, 45 Drawing Sheets

Determine computational pertormance and power consumption
for a discrete set of comput;:.tional configurations of a device

210

Estimate a device model of computational perform;:mce and power
consumption for all computational configurations

220

Select a computational configuration or a -;equence of computational
conf!gurations to optimally execute an application on the device

230

Update the device model and the selection of computational
configuration::. according to feedback of computiltional performance
and power consumption during execution ofthP. applications and/or

changes in the application
240

US 11,009,836 B2
Page 2

(56) References Cited

PUBLICATIONS

Wen, "Energy-Optimal Mobile Application Execution: Taming
Resource-Poor Mobile Devices with Cloud Clones", IEEE, 2012
(Year: 2012). *
Chun "CloneCloud: Elastic Execution between Mobile Device and
Cloud", Acm, 2011 (Year: 2011).*
Curtis-Maury, "Prediction Models for Multi-dimensional Power
Performance Optimization on Many Cores", 2015 (Year: 2008).*
Shen, "Battery Aware Stochastic QoS Boosting in Mobile Comput
ing Devices", 2014 (Year: 2014).*
Namboodiri, "To Cloud or Not to Cloud: A Mobile Device Per
spective on Energy Consumption of Applications", IEEE, 2012
(Year: 2012). *
Jurdak, "Adaptive GPS Duty Cycling and Radio Ranging for
Energy-efficient Localization", 2010 (Year: 2010).*
Kim "Power-Rate-Distortion Modeling for Energy Minimization of
Portable Video Encoding Devices", 2011 (Year: 2011).*
Pelikan, "Multiobjective hBOA, Clustering, and Scalability", 2005,
pp. 663-670 (Year: 2005).*
Ji, "Energy-Efficient Bandwidth Allocation for Multiuser Scalable
Video Streaming over WLAN", pp. 14, 2007 (Year: 2007).*
Hoffman, "CoAdapt: Predictable Behavior for Accuracy-Aware
Applications Running on Power-Aware Systems", pp. 223-232
(Year: 2014).*
Storlie, "Modeling and Predicting Power Consumption of High
Performance Computing Jobs", 2015 (Year: 2015).*
Minyoung Kim, et al., "xTune: A Formal Methodology for Cross
Layer Tuning of Mobile Embedded Systems" ACM Transactions on
Embedded Computing Systems, vol. 11, No. 4, Article 73, Dec.
2012, pp. 73:1-73:23.
Engin Ipek, et al., "Self-Optimizing Memory Controllers: A Rein
forcement Learning Approach" Intl. Symp. on Computer Architec
ture (ISCA), Jun. 2008, 12 pages.
Krishna Kant, et al., "Willow: A Control System for Energy and
Thermal Adaptive Computing" IEEE, International Parallel & Dis
tributed Processing Symposium, 2011, pp. 36-47.
Jian Li, et al., "Dynamic Power-Performance Adaptation of Parallel
Computation on Chip Multiprocessors" IEEE, The 12th Interna
tional Symposium on High-Performance Computer Architecture,
2006, pp. 77-87.
Jee Choi, et al., "Algorithmic Time, Energy, and Power on Candi
date HPC Compute Building Blocks" IEEE, 28th International
Parallel & Distributed Processing Symposium, 2014, pp. 447-457.
Petre Dini, et al., "Internet, GRID, Self-Adaptability and Beyond:
Are We Ready?" IEEE, The 15th International Workshop on Data
base and Expert Systems Applications (DEXA'04), 2004, 7 Pages.
Connor Imes, et al., "POET: A Portable Approach to Minimizing
Energy Under Soft Real-time Constraints" IEEE, Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015,
pp. 75-86.
Hui Cheng, et al., "SYS-EDF: A System-Wide Energy-Efficient
Scheduling Algorithm for Hard Real-Time Systems" Int. J. Embed
ded Systems, vol. 4, No. 2, 2009, pp. 141-151.
Tibor Horvath, et al., "Dynamic Voltage Scaling in Multitier Web
Servers with End-to-End Delay Control" IEEE, Transactions on
Computers, vol. 56, No. 4, Apr. 2007, pp. 444-458.
Henry Hoffmann, et al., "A Generalized Software Framework for
Accurate and Efficient Management of Performance Goals" IEEE,
The International Conference on Embedded Software (EMSOFT),
2013, 10 Pages.
Henry Hoffmann, et al., "Dynamic Knobs for Responsive Power
Aware Computing" ASPLOS' 11, The Sixteenth International Con
ference on Architectural Support for Programming Languages and
Operating Systems, 2011, pp. 199-212.
Henry Hoffmann, et al., "Self-Aware Computing in the Angstrom
Processor" DAC' 12, The 49th Annual Design Automation Confer
ence, 2012, pp. 259-264.
Henry Hoffmann, et al., "Application Heartbeats: A Generic Inter
face for Specifying Program Performance and Goals in Autonomous

Computing Environments" ICAC' 10, Proceedings of the 7th Inter
national Conference on Autonomic Computing, 2010, pp. 79-88.
Liang He, et al., "Exploring Adaptive Reconfiguration to Optimize
Energy Efficiency in Large-Scale Battery Systems" IEEE, 34th
Real-Time Systems Symposium, 2013, pp. 118-127.
Henry Hoffinann, et al., "CoAdapt: Predictable Behavior for Accuracy
Aware Applications Running on Power-Aware Systems" IEEE, 26th
Euromicro Conference on Real-Time Systems, 2014, pp. 223-232.
Henry Hoffmann, et al., Selecting Spatiotemporal Patterns for
Development of Parallel Applications IEEE, Transactions on Par
allel and Distributed Systems, vol. 23, No. 10, Oct. 2012, pp.
1970-1982.
Henry Hoffmann, "Racing and Pacing to Idle: An Evaluation of
Heuristics for Energy-Aware Resource Allocation" HotPower '13,
Proceedings of the Workshop on Power-Aware Computing and
Systems, 2013, 5 Pages.
Rong Ge, et al., "Effects of Dynamic Voltage and Frequency Scaling
on a K20 GPU" IEEE, 42nd International Conference on Parallel
Processing, 2013, pp. 826-833.
Fangzhe Chang, et al., "Automatic Configuration and Run-Time
Adaptation of Distributed Applications" Technical Report Auto
matic Configuration and Run-Time Adaptation of Distributed Appli
cations, 1999, pp. 1-18.
Etienne Le Sueur, et al., "Slow Down or Sleep, that is the Question"
Usenix technical conference, 2011, pp. 1-6.
Christophe Dubach, et al., "A Predictive Model for Dynamic
Microarchitectural Adaptivity Control" IEEE/ ACM 43rd Annual
International Symposium on Microarchitecture, 2010, pp. 485-496.
Aaron Carroll, et al., "Mobile Multicores: Use Them or Waste
Them" HotPower '13, The Workshop on Power-Aware Computing
and Systems, 2013, pp. 1-5.
David H. K. Kim, et al., "Racing and Pacing to Idle: Theoretical and
Empirical Analysis of Energy Optimization Heuristics" IEEE, 3rd
International Conference on Cyber-Physical Systems, Networks,
and Applications, 2015, pp. 78-85.
Connor Imes, et al., "Bard: A Unified Framework for Managing Soft
Timing and Power Constraints" IEEE, International Conference on
Embedded Computer Systems: Architectures, Modeling and Simu
lation (SAMOS), 2016, pp. 31-38.
Luciano Bertini, et al., "Statistical QoS Guarantee and Energy
Efficiency in Web Server Clusters" IEEE, The 19th Euromicro
Conference on Real-Time Systems (ECRTS'07), 2007, 10 Pages.
Enrico Bini, et al., "Minimizing CPU Energy in Real-Time Systems
with Discrete Speed Management" ACM Transactions on Compu
tational Logic, vol. V, No. N, Dec. 2008, pp. 1-22.
Benjamin C. Lee, et al., "Efficiency Trends and Limits from
Comprehensive Microarchitectural Adaptivity" ASPLOS'08, The
13th International Conference on Architectural Support for Pro
granuning Languages and Operating Systems, 2008, pp. 36-47.
Benjamin C. Lee, et al., "Accurate and Efficient Regression Mod
eling for Microarchitectural Performance and Power Prediction"
ASPLOS'06, The 12th International Conference on Architectural
Support for Progranuning Languages and Operating Systems, 2006,
pp. 185-194.
Benjamin C. Lee, et al., "CPR: Composable Performance Regres
sion for Scalable Multiprocessor Models" The 41 st annual IEEE/
ACM International Symposium on Microarchitecture, 2008, pp.
270-281.
Antonio Filieri, et al., "Automated Design of Self-Adaptive Soft
ware with Control-Theoretical Formal Guarantees" ICSE' 14, The
36th International Conference on Software Engineering, 2014, pp.
299-310.
Akbar Sharifi, et al., "METE: Meeting End-to-End QoS in Multicores
through System-Wide Resource Management" SIGMETRICS' 11,
2011, pp. 13-24.
Youngmin Shin, et al., "28nm High-K Metal Gate Heterogeneous
Quad-core CPUs for High-performance and Energy-Efficient Mobile
Application Processor" IEEE International, 2013, pp. 198-201.
Baoxian Zhao, et al., "Energy Management under General Task
Level Reliability Constraints" IEEE, 18th Real Time and Embedded
Technology and Applications Symposium, 2012, pp. 285-294.

US 11,009,836 B2
Page 3

(56) References Cited

PUBLICATIONS

Ronghua Zhang, et al., "ControlWare: A Middleware Architecture
for Feedback Control of Software Performance" IEEE, ICDCS'02,
The 22nd International Conference on Distributed Computing Sys
tems, 2002, 10 Pages.
Chuan-Yue Yang, et al., "System-Level Energy-Efficiency for Real
Time Tasks" (ISORC'07) IEEE, International Symposium on Object
and Component-Oriented Real-Time Distributed Computing, 2007,
8 Pages.
Yuhao Zhu, et al., "High-Performance and Energy-Efficient Mobile
Web Browsing on Big/Little Systems" IEEE, The 19th International
Symposium on High Performance Computer Architecture (HPCA),
2013, 12 Pages.
Qiang Wu, et al., "Formal Online Methods for Voltage/Frequency
Control in Multiple Clock Domain Microprocessors" ASPLOS'04,
The 11th international Conference on Architectural Support for
Programming Languages and Operating Systems, 2004, pp. 248-
259.
Xiao Zhang, et al., "A Flexible Framework for Throttling-Enabled
Multicore Management (TEMM)" The 41st International Confer
ence on Parallel Processing, 2012, pp. 389-398.
Wonyoung Kim, et al., "System Level Analysis of Fast, Per-Core
DVFS using On-Chip Switching Regulators" IEEE, The 14th Inter
national Symposium on High Performance Computer Architecture,
2008, pp. 123-134.
Meng Wang, et al., "Real-Time Loop Scheduling with Leakage
Energy Minimization for Embedded VLIW DSP Processors" IEEE,
The 13th IEEE International Conference on Embedded and Real
Time Computing Systems and Applications (RTCSA 2007), 2007,
8 Pages.
Xin Sui, et al., "Tuning Variable-Fidelity Approximate Programs"
University of Texas at Austin, 2014, 7 Pages.
Qilu Sun, et al., "LPV Model and Its Application in Web Server
Performance Control" IEEE, The International Conference on Com
puter Science and Software Engineering, 2008, pp. 486-489.
Srinath Sridharan, et al., "Holistic Run-time Parallelism Manage
ment for Time and Energy Efficiency" ICS' 13, The 27th interna
tional ACM conference on International conference on supercom
puting, 2013, 12 Pages.
Jacob Sorber, et al., "Eon: A Language and Runtime System for
Perpetual Systems" SenSys'07, The 5th international Conference on
Embedded Networked Sensor Systems, 2007, pp. 161-174.
David C. Snowdon, et al., "Koala: A Platform for OS-Level Power
Management" Eurosys'09, The 4th ACM European conference on
Computer systems, 2009, pp. 289-302.
Youngmin Shin, et al., "28nm High-K Metal-Gate Heterogeneous
Quad-Core CPUs for High-Performance and Energy-Efficient Mobile
Application Processor" ISSCC 2013, IEEE International Solid-State
Circuits Conference, Feb. 19, 2013, 3 Pages.
Vivek Sharma, et a., "Power-Aware QoS Management in Web
Servers" IEEE, International Real-Time Systems Symposium
(RTSS'03), 2003, pp. 1-10.
Muhammad Husni Santriaji, et al., "GRAPE: Minimizing Energy
for GPU Applications with Performance Requirements" IEEE, The
49th Annual IEEE/ ACM International Symposium on Microarchitecture
(MICRO), 2016, 13 Pages.
Efi Rotem, et al. "Power Management Architecture of the 2nd
Generation Intel® Core™ Microarchitecture, Formerly Codenamed
Sandy Bridge" Hot chips, Aug. 2011, pp. 1-33 and cover page.
Ramya Raghavendra, et al., "No "Power"Struggles: Coordinated
Multi-level Power Management for the Data Center" ASPLOS'08,
The 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008, 13 Pages.
Ragunathan Rajkumar, et al., "A Resource Allocation Model for
QoS Management" The 18th IEEE Real-Time Systems symposium,
1997, 10 Pages.
Peter D. Diiben, et al., "On the Use of Inexact, Pruned Hardware in
Atmospheric Modelling" Philosophical Transactions of The Royal
Society A, 2014, pp. 1-16.

Nikita Mishra, et al., "A Probabilistic Graphical Model-Based
Approach for Minimizing Energy Under Performance Constraints"
ASPLOS' 15, The 20th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2015,
pp. 267-281.
Akihiko Miyoshi, et al., "Critical Power Slope: Understanding the
Runtime Effects of Frequency Scaling" ICS'02, The 16th interna
tional conference on Supercomputing, 2002, pp. 35-44.
David Meisner, et al., "Power Management of Online Data
Intensive Services" ISCA' 11, The 38th ACM International Sympo
sium on Computer Architecture, 2011, pp. 319-330.
Michal Sojka, et al., "Modular Software Architecture for Flexible
Reservation Mechanisms on Heterogeneous Resources" Journal of
Systems Architecture, vol. 57, 2011, pp. 366-382.
Martina Maggio, et al., "Power Optimization in Embedded Systems
Via Feedback Control of Resource Allocation" IEEE, Transactions
on Control Systems Technology, vol. 21, No. 1, Jan. 2013, pp.
239-246.
Majid Shoushtari, et al., "Exploiting Partially-Forgetful Memories
for Approximate Computing" IEEE, Embedded Systems Letters,
vol. 7, No. 1, Mar. 2015, pp. 19-22.
Martina Maggio, et al., "A Game-Theoretic Resource Manager for
RT Applications" The 25th Euromicro Conference on Real-Time
Systems, 2013, pp. 57-66.
Kai Shen, et al., "Power Containers: An OS Facility for Fine
Grained Power and Energy Management on Multicore Servers"
ASPLOS' 13, The 18th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2013,
12 Pages.
Ankit Sethia, et al., "Equalizer: Dynamic Tuning of GPU Resources
for Efficient Execution" The 47th Annual IEEE/ ACM International
Symposium on Microarchitecture, 2014, 12 Pages.
Adrian Sampson, et al., "EnerJ: Approximate Data Types for Safe
and General Low-Power Computation" PLDI' 11, The 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2011, 11 Pages.
Saowanee Saewong, et al., "Practical Voltage-Scaling for Fixed
Priority RT-Systems" The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2003. pp. 1-22.
Seokwoo Song, et al., "Energy-Efficient Scheduling for Memory
Intensive GPGPU Workloads" EDAA, Conference on Design, Auto
mation & Test in Europe, 2014, 6 Pages.
Song Liu, et al., "Flikker: Saving DRAM Refresh-Power through
Critical Data Partitioning" ASPLOS' 11, The 16th International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2011, pp. 213-224.
Arjun Roy, et al., "Energy Management in Mobile Devices with the
Cinder Operating System" The European Conference on Computer
Systems (EuroSys 2011), 2011, pp. 1-15.
Timothy G. Rogers, et al., "Cache-Conscious Wavefront Schedul
ing" The 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012, pp. 1-12.
Martin Rinard, et al., "Patterns and Statistical Analysis for Under
standing Reduced Resource Computing" OOPSLA '10, The ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, 2010, 16 Pages.
Martin Rinard, "Probabilistic Accuracy Bounds for Fault-Tolerant
Computations that Discard Tasks" ICS06, The 20th Annual Inter
national Conference on Supercomputing, 2006, 11 Pages.
Raghavendra Pradyurnna Pothukuchi, et al., "Using Multiple Input,
Multiple Output Formal Control to Maximize Resource Efficiency
in Architectures" ACM/IEEE 43rd Annual International Sympo
sium on Computer Architecture (ISCA), 2016, 13 Pages.
Dmitry Ponomarev, et al., "Reducing Power Requirements oflnstruc
tion Scheduling Through Dynamic Allocation of Multiple Datapath
Resources" The International Symposium on Microarchitecture,
Dec. 2001, 12 Pages.
Padmanabhan Pillai, et al., "Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems" SOSP 'O 1, The 18th
ACM Symposium on Operating Systems Principles, 2001, 14
Pages.

US 11,009,836 B2
Page 4

(56) References Cited

PUBLICATIONS

Paula Petrica, et al., "Flicker: A Dynamically Adaptive Architecture
for Power Limited Multicore Systems" ISCA '13, The 40th Annual
International Symposium on Computer Architecture, 2013, 11 Pages.
Vinicius Petrucci, et al., "Lucky Scheduling for Energy-Efficient
Heterogeneous Multi-Core Systems" HotPower' 12, 2012, 5 Pages.
Trevor Pering, et al., "The Simulation and Evaluation of Dynamic
Voltage Scaling Algorithms" ISLPED 98, International Symposium
on Low Power Electronics and Design, 1998, pp. 76-81.
Krishna V. Palem, "Energy Aware Algorithm Design via Probabi
listic Computing: From Algorithms and Models to Moore's Law
and Novel (Semiconductor)Devices" CASES'03, The International
Conference on Compilers, Architecture and Synthesis for Embed
ded Systems, 2003, pp. 113-116.
Adam J. Oliner, et al., "Carat: Collaborative Energy Diagnosis for
Mobile Devices" SenSys' 13, The 11th ACM Conference on Embed
ded Networked Sensor Systems, 2013, 14 Pages.
Veynu Narasiman, et al., "Improving GPU Performance Via Large
Warps and Two-Level Warp Scheduling" MICRO'll, The 44th
Annual IEEE/ ACM International Symposium on Microarchitecture,
2011, 10 Pages.
Carl N. Morris, "Parametric Empirical Bayes Inference: Theory and
Applications" Journal of the American Statistical Association, vol.
78, No. 381, Mar. 1983, pp. 47-55 and cover page.
Xinxin Mei, et al., "A Measurement Study of GPU DVFS on Energy
Conservation" HotPower '13, the Workshop on Power-Aware Com
puting and Systems, 2013, 5 Pages.
Martina Maggio, et al., "Comparison of Decision-Making Strategies
for Self-Optimization in Autonomic Computing Systems" ACM
Transactions on Autonomous and Adaptive Systems, vol. 7, No. 4,
Dec. 2012, pp. 36:1-36:32.
Chenyang Lu, et al., "Feedback Control Architecture and Design
Methodology for Service Delay Guarantees in Web Servers" IEEE,
Transactions on Parallel and Distributed Systems, vol. 17, No. 9,
Sep. 2006, pp. 1014-1027.
Cong Liu, et al., "PASS: Power-Aware Scheduling of Mixed Appli
cations with Deadline Constraints on Clusters" The 17th Int'! Conf.
Computer Communications and Networks (ICCCN), Aug. 2008, 6
Pages.
Hai Li, et al., "Deterministic Clock Gating for Microprocessor
Power Reduction" HPCA '03, The 9th International Symposium on
High-Performance Computer Architecture, 2003, 10 Pages.
Jian (Denny) Lin, et al., "Real-Energy: A New Framework and a
Case Study to Evaluate Power-Aware Real-Time Scheduling Algo
rithms" ISLPED' 10, ACM/IEEE International Symposium on Low
Power Electronics and Design, 2010, pp. 153-158.
Baochun Li, et al., "A Control-Based Middleware Framework for
Quality-of-Service Adaptations" IEEE, Journal on Selected Areas in
Communications, vol. 17, No. 9, Sep. 1999, pp. 1632 -1650.
Nam Sung Kim, et al., "Leakage Current: Moore's Law Meets
Static Power" IEEE, Computer Society, Dec. 2003, pp. 68-74 and
cover page.
Troy Dale Kelley, "Developing a Psychologically Inspired Cogni
tive Architecture for Robotic Control: The Symbolic and Subsymbolic
Robotic Intelligence Control System (SS-RICS)" International Jour
nal of Advanced Robotic Systems, vol. 3, No. 3, 2006, pp. 219-222.
Onur Kayiran, et al., "Neither More Nor Less: Optimizing Thread
level Parallelism for GPGPUs" PACT' 13, The 22nd International
Conference on Parallel Architectures and Compilation Techniques,
2013, pp. 1-13.
Melanie Kambadur, et al., "Energy Exchanges: Internal Power
Oversight for Applications" Department of Computer Science,
Columbia University, 2014, pp. 1-11.
Melanie Kambadur, et al., "Trading Functionality for Power within
Applications" Columbia University, Mar. 28, 2014, pp. 1-2.
Evangelia Kalyvianaki, et al., "Adaptive Resource Provisioning for
Virtualized Servers Using Kalman Filters" ACM Transactions on
Autonomous and Adaptive Systems, vol. 9, No. 2, Article 10, Jun.
2014, pp. 10:1-10:35.

Evangelia Kalyvianaki, et al., "Self-Adaptive and Self-Configured
CPU Resource Provisioning for Virtualized Servers Using Kalman
Filters" ICAC'09, The 6th International Conference on Autonomic
Computing, 2009, pp. 117-126.
Sandy Irani, et al., "Algorithms for Power Savings" SODA'03, The
14th Annual ACM-SIAM Symposium on Discrete Algorithms,
2003, 10 Pages.
Krishna V. Palem, et al., "Ten Years of Building Broken Chips: The
Physics and Engineering of Inexact Computing" ACM Transactions
on Embedded Computing Systems, vol. 12, No. 2s, Article 87, May
2013, pp. 87:1-87:23.
Y. Jiao, et al., "Power and Performance Characterization of Com
putational Kernels on the GPU" IEEE/ ACM Int'! Conference on &
Int'! Conference on Cyber, Physical and Social Computing (CPSCom),
2010, pp. 1-8.
Connor Imes, et al., "Minimizing Energy Under Performance Con
straints on Embedded Platforms" The 4th Embedded Operating
Systems Workshop (EWiLi'l4), 2014, 6 Pages.
Sunpyo Hong, et al., "An Integrated GPU Power and Performance
Model" ISCA' 10, The 37th Annual International Symposium on
Computer Architecture, 2010, pp. 280-289.
Henry Hoffmann, "JouleGuard: Energy Guarantees for Approxi
mate Applications" SOSP' 15, The 25th Symposium on Operating
Systems Principles, 2015, 17 Pages.
Henry Hoffmann, et al., "PCP: A Generalized Approach to Opti
mizing Performance Under Power Constraints through Resource
Management" USENIX Association, 11th International Conference
on Autonomic Computing (ICAC' 14), 2014, pp. 241-247 and cover
page.
Jin Heo, et al., "AdaptGuard: Guarding Adaptive Systems from
Instability" ICAC'09, The 6th international Conference on Auto
nomic Computing, 2009, 10 Pages.
Joseph L. Hellerstein, et al., "Feedback Control of Computing
Systems" IEEE Press, John Wiley & Sons, 2004, Preface pp.
XV-XX and cover pages.
Henry Hoffmann, et al., "SEEC: A General and Extensible Frame
work for Self-Aware Computing" Computer Science and Artificial
Intelligence Laboratory Technical Report, MIT-CSAIL-TR-2011-
046, Nov. 7, 2011, pp. 1-13 and cover page.
Henry Hoffmann, et al., "Using Code Perforation to Improve
Performance, Reduce Energy Consumption, and Respond to Fail
ures" Computer Science and Artificial Intelligence Laboratory Tech
nical Report, MIT-CSAIL-TR-2009-042, Sep. 3, 2009, 20 Pages.
Michael Garland, et al., "Understanding Throughput-Oriented Archi
tectures" Communications of the ACM, vol. 53 No. 11, Nov. 2010,
pp. 58-66.
Ashvin Goel, et al., "SWiFT: A Feedback Control and Dynamic
Reconfiguration Toolkit" The 2nd USENIX Windows NT Sympo
sium, 1998, 1 Page.
Shelby Funk, et al., "A Global Optimal Scheduling Algorithm for
Multiprocessor Low-Power Platforms" RTNS' 12, The 20th Inter
national Conference on Real-Time and Network Systems, 2012, pp.
71-80.
Yong Fu, et al., "Feedback Thermal Control of Real-Time Systems
on Multicore Processors" EMSOFT' 12, The 10th ACM Interna
tional Conference on Embedded Software, 2012, 10 Pages.
Vincent W. Freeh, et al., "Analyzing the Energy-Time Tradeoff in
High-Performance Computing Applications" IEEE Transactions on
Parallel and Distributed Systems, 2007, pp. 1-24.
Jason Flinn, et al., "Energy-Aware Adaptation for Mobile Applica
tions" 17th ACM Symposium on Operating Systems Principles (SO
SP '99), vol. 34, No. 5, Dec. 1999, pp. 48-63.
Jason Flinn, et al., "Managing Battery Lifetime with Energy-Aware
Adaptation" ACM Transactions on Computer Systems, vol. 22, No.
2, May 2004, pp. 137-179.
Antonio Filieri, et al., "Automated Multi-Objective Control for
Self-Adaptive Software Design" ESEC/FSE' 15, The 2015 10th
Joint Meeting on Foundations of Software Engineering, 2015, pp.
13-24.
Hadi Esmaeilzadeh, et al., "Neural Acceleration for General
Purpose Approximate Programs" The 45th Annual IEEE/ ACM
International Symposium on Microarchitecture, 2012, 12 Pages.

US 11,009,836 B2
Page 5

(56) References Cited

PUBLICATIONS

Bradley Efron, et al., "Data Analysis Using Stein's Estimator and its
Generalizations" Journal of the American Statistical Association,
vol. 70, No. 350, Jun. 1975, pp. 311-319 and cover page.
Hadi Esmaeilzadeh, et al., "Architecture Support for Disciplined
Approximate Programming" The 17th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS'l2), 2012, pp. 1-12.
Qingyuan Deng, et al., "CoScale: Coordinating CPU and Memory
System DVFS in Server Systems" The 45th Annual IEEE/ ACM
International Symposium on Microarchitecture, 2012, 12 Pages.
Zhihui Du, et al., "Energy-Efficient Scheduling for Best-Effort
Interactive Services to Achieve High Response Quality" IEEE 27th
International Symposium on Parallel and Distributed Processing,
2013, 12 Pages.
Ryan Cochran, et al., "Pack & Cap: Adaptive DVFS and Thread
Packing Under Power Caps" MICRO' 11, the 44th Annual IEEE/
ACM International Symposium on Microarchitecture, 2011, pp.
175-185.
Jian Chen, et al., "Modeling Program Resource Demand Using
Inherent Program Characteristics" SIGMETRICS' 11, The ACM
SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, 2011, 12 Pages.
Jian Chen, et al., "Predictive Coordination of Multiple On-Chip
Resources for Chip Multiprocessors" ICS' 11, The International
Conference on Supercomputing, 2011, 10 Pages.
Ho-Leung Chan, et al., "Optimizing Throughput and Energy in
Online Deadline Scheduling" ACM Transactions on Algorithms,
vol. 6, No. 1, Article 10, Dec. 2009, pp. 10:1-10:22.
Michael Carbin, et al., "Verifying Quantitative Reliability for Pro
grams That Execute on Unreliable Hardware" OOPSLA '13, The
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, 2013, 20 Pages.
Michael Carbin, et al., "Proving Acceptability Properties of Relaxed
Nondeterministic Approximate Programs" PLDI' 12, The 33rdACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2012, 12 Pages.
Liyu Cao, et al., "Analysis of the Kalman Filter Based Estimation
Algorithm: an Orthogonal Decomposition Approach" Elsevier,
Autornatica, vol. 40, 2004, pp. 5-19.
Qing Cao, et al., "Virtual Battery: An Energy Reserve Abstraction
for Embedded Sensor Networks" IEEE, Real-Time Systems Sym
posium, 2008, pp. 123-133.
Chenyang Lu, et al., "Feedback Control Architecture and Design
Methodology for Service Delay Guarantees in Web Servers" IEEE
Transactions on Parallel and Distributed Systems, 2001, pp. 1-30.
Ramazan Bitirgen, et al., "Coordinated Management of Multiple
Interacting Resources in Chip Multiprocessors: A Machine Learn
ing Approach" 41st IEEE/ACM International Symposium on
Microarchitecture, 2008, pp. 318-329.
Nikhil Bansal, et al., "Average Rate Speed Scaling" Algorithmica,
vol. 60, 2011, pp. 877-889.
Nikhil Bansal, et al., "Speed Scaling with an Arbitrary Power
Function" SODA '09, Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2009, pp. 693-701.
Woongki Baek, et al., "Green: A Framework for Supporting Energy
Conscious Programming using Controlled Approximation" PLDI' 10,
The 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2010, pp. 198-209.
Hakan Aydin, et al., "Dynamic and Aggressive Scheduling Tech
niques for Power-Aware Real-Time Systems" (RTSS 2001), 22nd
IEEE Real-Time Systems Symposium, 2001, pp. 95-105.
Muhammad Ali Awan, et al., "Race-to-Halt Energy Saving Strate
gies" Elsevier, Journal of Systems Architecture, No. 60, 2014, pp.
796-815.
Avinash Lingamneni, et al., "Designing Energy-Efficient Arithmetic
Operators Using Inexact Computing" Journal of Low Power Elec
tronics, vol. 9, No. 1, 2013, pp. 1-13.

Jason Ansel, et al., "Language and Compiler Support for Auto
Tuning Variable-Accuracy Algorithms" (CGO 2011) International
Symposium on Code Generation and Optimization, 2011, 12 Pages.
Jason Ansel, et al., "SiblingRivalry: Online Autotuning Through
Local Competitions" CASES '12 (2012), The 2012 International
Conference on Compilers, Architectures and Synthesis for Embed
ded Systems, 2012, pp. 1-10 and cover page.
Susanne Albers, et al., "Race to Idle: New Algorithms for Speed
Scaling with a Sleep State" ACM Transactions on Algorithms, vol.
10, No. 2, Article 9, Feb. 2014, pp. 9:1-9:31.
Hrishikesh Amur, et al., "Towards Optimal Power Management:
Estimation of Performance Degradation due to DVFS on Modern
Processors" CERCS Technical Reports, 2010, 5 Pages.
Susanne Albers, et al., "Algorithms for Dynamic Speed Scaling"
(STA CS' 11), 28th Symposium on Theoretical Aspects of Computer
Science, 2011, pp. 1-11.
Nevine AbouGhazaleh, et al., "Integrated CPU and L2 Cache
Voltage Scaling using Machine Learning" LCTES'07, The 2007
ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, 2007, 9 Pages.
Yuki Abe, et al., "Power and Performance Analysis of GPU
Accelerated Systems" HotPower' 12, The 2012 USENIX conference
on Power-Aware Computing and Systems, 2012, pp. 1-5.
Kai Yu, et al., "Learning Gaussian Processes from Multiple Tasks"
ICML'05, The 22nd International Conference on Machine Learn
ing, 2005, 8 Pages.
Heechul Yun, et al., "System-wide Energy Optimization for Mul
tiple DYS Components and Real-time Tasks" ECRTS 2010, 22nd
Euromicro Conference on Real-Time Systems, 2010, pp. 1-10.
Frances Yao, et al., "A Scheduling Model for Reduced CPU Energy"
FOCS,95, IEEE, 36th Annual Foundations of Computer Science,
1995, pp. 374-382.
Joshua J. Yi, et al., "A Statistically Rigorous Approach for Improv
ing Simulation Methodology" HPCA'03, The 9th International
Symposium on High-Performance Computer Architecture, 2003, 11
Pages.
Xiaodong Li, et al., "Cross-Component Energy Management: Joint
Adaptation of Processor and Memory" ACM Transactions on Archi
tecture and Code Optimization, vol. 4, No. 3, Article 14, Sep. 2007,
pp. 14/1-14/31.
Yildiz Sinangil, et al., "A Self-Aware Processor SoC using Energy
Monitors Integrated into Power Converters for Self-Adaptation"
Symposium on VLSI Circuits Digest of Technical Papers, 2014, 2
Pages.
C. F. Jeff Wu, "On the Convergence Properties of the EM Algo
rithm" The Annals of Statistics, vol. 11, No. 1, 1983, pp. 95-103.
Gene Wu, et al., "GPGPU Performance and Power Estimation
Using Machine Learning" IEEE, 21st International Symposium on
High Performance Computer Architecture (HPCA), 2015, 13 Pages.
Jonathan A. Winter, et al., "Scalable Thread Scheduling and Global
Power Management for Heterogeneous Many-Core Architectures"
PACT' 10, The 19th International Conference on Parallel Architec
tures and Compilation Techniques, 2010, pp. 29-39.
Greg Welch, et al., "An Introduction to the Kalman Filter" UNC
Chapel Hill, Department of Computer Science, TR 95-041, Jul. 24,
2006, pp. 1-16.
Mark Weiser, et al., "Scheduling for Reduced CPU Energy" OSDI
'94, The 1st USENIX conference on Operating Systems Design and
Implementation, 1994, pp. 1-11.
Changyun Wei, et al., "An Agent-Based Cognitive Robot Architec
ture" ProMAS 2012, Programming Multi-Agent Systems, 2013, pp.
54-71.
Weidan Wu, et al., "Inferred Models for Dynamic and Sparse
Hardware-Software Spaces" 45th Annual IEEE/ ACM International
Symposium on Microarchitecture, 2012, pp. 1-12.
Wanghong Yuan, et al., "Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems" SOSP'03, The 19th
ACM Symposium on Operating Systems Principles, 2003, 15
Pages.
Vibhore Vardhan, et al., "GRACE-2: Integrating Fine-Grained Appli
cation Adaptation with Global Adaptation for Saving Energy"
International Journal Embedded Systems, vol. 4, No. 2, 2009, pp.
1-17.

(56) References Cited

PUBLICATIONS

US 11,009,836 B2
Page 6

Akshat Verma, et al., "Server Workload Analysis for Power Mini
mization Using Consolidation" USENIX'09, The 2009 Conference
on USENIX Annual Technical Conference, 2009, 14 Pages.
Narendran Thiagarajan, et al., "Who Killed My Battery: Analyzing
Mobile Browser Energy Consumption" WWW 2012-Session:
Mobile Web Performance, Apr. 16-20, 2012, pp. 41-50.
Nikita Mishra, et al., "Big Data for LITTLE Cores Combining
Learning and Control for Mobile Energy Efficiency" ASPLOS,
2016, pp. 1-14.
David C. Steere, et al., "A Feedback-Driven Proportion Allocator
for Real-Rate Scheduling" USENIX, The 3rd Symposium on Oper
ating Systems Design and Implementation, 1999, 15 Pages.
M. Aater Suleman, et al., "Feedback-Directed Pipeline Parallelism"
PACT' 10, The 19th international conference on Parallel architec
tures and compilation techniques, 2010, 10 Pages.
Stelios Sidiroglou, et al., "Managing Performance vs. Accuracy
Trade-offs With Loop Perforation" ESEC/FSE' 11, The 19th ACM
SIGSOFT Symposium and The 13th European Conference on
Foundations of Software Engineering, 2011, 11 Pages.
Alex Shye, et al., "Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile Architectures"
MICRO'09, 42nd Annual IEEE/ ACM International Symposium on
Microarchitecture, 2009, 11 Pages.

* cited by examiner

U.S. Patent

FIG.1A

May 18, 2021

Performance
Model

Sheet 1 of 45

Server
110

Computing Device
120

US 11,009,836 B2

Performance
Data

U.S. Patent

FIG. 1B

Computing
Device
120{A)

May 18, 2021 Sheet 2 of 45

"'O
(D -0
3
w
:::l
('")
(D

~
0
a.
(D

1,

Memory
112

('IJ
.µ
ro

0
Qj
u
C
ro
E
I...
0 -I...
OJ

a..

Server
110

Computing
Device
120(8)

Computing
Device
120{()

US 11,009,836 B2

Computing
Device
120(0)

U.S. Patent May 18, 2021 Sheet 3 of 45 US 11,009,836 B2

FIG. 2A

200

(Start)

,,

Determine computational performance and power consumption
for a discrete set of computational configurations of a device

210

H

Estimate a device model of computational performance and power
consumption for all computational configurations

220

,,

Select a computational configuration or a sequence of computational
configurations to optimally execute an application on the device

230

H

Update the device model and the selection of computational
configurations according to feedback of computational performance
and power consumption during execution of the applications and/or

changes in the application
240

H

(Finish

U.S. Patent May 18, 2021 Sheet 4 of 45 US 11,009,836 B2

FIG. 2B
210

Initialize loop index n and select a subset of computational
configurations from the set of all computational configurations

of the device
211

Select the nth computational configuration of the device
212

Measure the computational performance and power
consumption for the device executing the application, when the
device is in the nth computational configuration of the subset of

computation configurations
214

Store, in a performance-data table, the measured
computational performance and power consumption of the

device together with the nth computation configuration
216

ere e
index n, d

index n ind
mpietion

Yes

No

U.S. Patent May 18, 2021 Sheet 5 of 45 US 11,009,836 B2

FIG. 2C

220

Retrieve a database of performance data, the database can
include, e.g., the device using various computational

configurations to execute other applications and/or other
devices using various computational configurations to execute

various applications
222

Compare the performance-data table with the retrieved
database to find combinations of devices and applications

having similar computational performance and power
consumption as a function of computational configuration

224

Estimate a performance model of the device when executing
the application, the performance model including the

computational performance and power consumption for all
computational configuration of the device when executing the
application based on the performance-data table and similar

performance data from the database
226

U.S. Patent May 18, 2021 Sheet 6 of 45 US 11,009,836 B2

FIG. 2D

Determine a target job latency for computational tasks of the
application being executed by the device

232

Measure the latency when executing the application, adjust a
speedup factor according to differences between the measured

latency and the target job latency
234

Determine, using the estimated performance model, a
sequence of computational configurations to achieve the

speedup factor while minimizing the total energy consumption
of the device when executing the application

236

Is the application
complete?

238

Yes

No

U.S. Patent May 18, 2021 Sheet 7 of 45 US 11,009,836 B2

FIG. 2E

Determine, using the performance model, an optimal--efficiency
configuration corresponding to maximum ratio between

computational performance and power consumption of the
device when executing the application, and set the device in the

optimal--efficiency configuration
232'

Determine a speedup factor for the optimal-efficiency
configuration to complete computational tasks within a desired

time period
234'

Accelerate completion of the computational tasks using
approximate computing to trade-off accuracy for increased

speed
236'

Update the performance model according to continued
measurements of the computational performance and power

consumption of the device when executing the application
237'

Is the application
complete?

238'

I
i Yes •

No

FIG. 3

Loop Normalized

Variable performance

ff. l .. 1 (speedup
::: I © l

1 1 2© 1-
2 1.4&
3 1.6&

,::,1 4 2 1 ') .,, :L

s w <. 3 l , ~i -

'-:16 ") 88 :•::: w. ,.. . t,;

=:} 7 3. 18

Small data set of performance data

Normalized Loop Clock

consumption Variable rate

pnFeri',p , #id frequency ✓ ~. i(· ••• ;.J:, :: ·
•.

1 @ 2500{~&
1,@9 :i l 3@&&&@
1,16 <:: 2 35@&tHD
1,3& .•:;

.,,

.) 4f¾@&fHD
L 35 (. 4 2500&&
LS& .•.: 5 3@00&©
1,64 g 6 35(~&®&
1,69 7 "i r@&&& t; .J ..

of

additional

cores

cores
{J

@

[~

&
1
1
1
2

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
CIO
0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent May 18, 2021 Sheet 9 of 45 US 11,009,836 B2

FIG. 4A

FIG. 4B

B

FIG. 5

Hidden .Nodes
··-O
;,,--

Z1

:.t-:=-

All applications ?~:»·m:J'· _ ._._:=:::::=:::_.,_.,_.zy

(Observed data)

V1 ...

.... ~--·
,

___ .,.----✓-----,/'·--L~~
,, .. ,····-··/ /_.,/, ·····, ·•. ",

...... /'"'°/" ·, . .,__ ., ...• , _ / o✓
/l,'E ,., ..

·---.......
'•,

--❖

Z' -"-
~ ~ :~

V:: ...

·, _

D
z,,,,1-1

;

,_,
.fM-t

❖f@t=.J.@l Layer 2

'•,;:o>
- __ (Mfillilll Laver .l .,

Z,-1

'''"'" .,' "'

.· Tarnct Application
ajW.f..mml e
· (Partially observed data)

y1: Vector of po,ver consun1ption by the ffh application tor different confii:,rurations.

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
0

0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent May 18, 2021 Sheet 11 of 45 US 11,009,836 B2

.
l?
LL.

U.S. Patent

(/)
C:
a,
Q)

E
~

May 18, 2021 Sheet 12 of 45 US 11,009,836 B2

I.{)

~~-------m

-o ro ~ ~ o ID © E -~,·
C: C: ..c 4tlilllllllllllll ··- ·- :

1u c ti a. I
~ 0 0 O -~

A ·(0 I
... ~

I.O I.{) '1" M N

(S/J8ll uo ateJ a:JUBWJOJJ9d

r-,,..
.

l?
u..

U.S. Patent

00 .
l9
LI..

May 18, 2021 Sheet 13 of 45 US 11,009,836 B2

U1
,---------. M

0
0
N
""O ro
0 <D m E

..c C C
-1,,,.,.J -1,,,.,.J

ru C t Cl.
~000

~ 0 ~ 0 ~ 0 ~ 0 ~
m m N N M M O O m
M M M M M M M M

{SU8M UL) J8M0d-weisAs

0
m

0
M

U1
N

0
rl

U1

U.S. Patent May 18, 2021 Sheet 14 of 45

.
(.!:)
LL

U)
C: ca
(1)

E
~

(1.) I
i o =al
a ·,l
N Ol
-r"'t 11 '\ 11 \ (C ,+,o,i l

....., ""'\,&,,I' 11
o c: c: E (l.)!

..c ·- :.=, U l
+--' C:;J Q.(\jl

~ o oo et:I
l

A -t, a o l
1'--------r-1--------,-l--\ I

0 0 0 0
I'-, (C u, v
~ ~ . .,...... V'"'

~

I

0
M

\

(r LI!)A6Jau3

US 11,009,836 B2

00
0

wC
ci 0

N
0

·-....,
ro
N ·-·-

(~-· •• m-------· 0
o·· .
N .,,...

U.S. Patent

<(
0
't""""I

~
LI..

0)
(.)
C
co
E
s....

~
ID

CL

May 18, 2021 Sheet 15 of 45 US 11,009,836 B2

! I I I ! ! I !

- ... ··/·,,''- .. ,,,,..,,"-/' .. ·'.•' '•/· ,,,,,,,,.,,. .. ,, ... ,,,,,.,,,,-, ... , ... ,,...,,, .. _,,,,.. ,"·/',.''-•' '•/·,,''-•··~ ,•'\.•' '•/·.,-,.•,,/,,"-/',,·••,/'•/·.,''\.•".-/,,"-/' .. •"•,/··/·,,'

.... •'

..(;•:_; ,_::,.'. ,•·•, :,•,,•'-'..: • X •. :_; ,_e>'. ,:•,, :",,•'-',_. ·, S, ,:•., :",,•'-',_; • :-:. •. :., . ·,.''. ,•·•, ,._. ,;•,',_; ., X ,.:., ; ,_::,.'. ,•·• :,• .-~ •• : •, ::-.'. ,•·•, :,. ,•'-',_; ., ;.;. •. :., ; ,_::.: ,•·•, _.,_. ,,'-',_; • ;,:_ ,;~;, ,.._ ,•·•, ;,--/

/ .··

- • •, -:- • •, x":-:••,•·:-:·7-x··;,:·,.·:-•'-;,;·~·:-.·•..-x··;,:·,.•·:-:·•-;,:~·:-:·•,.-x·:-:· .. ·:-•·-;,;•~'";,:•,.•·-;.··-;,;·:v·:-:·•,••x":-:·•··:-•"-;,;•'.'.·:-.·.,.·x--;,:·,.-:":-·--,
· .. · .•·

--····

- · · • .- • +•: •• .:,s. ,-: :,,v..,'..:, :,: ,-: .:v .. '..:, :,-,,,•: .. :,, '. ,.; _:v..,'..:, ?.,.•:.;.:,,.•~ .• ;-: •. ::•v"'-·:. ?,-•:.::•v"'-·:. ?,,.•: .. :, ·< .•:.:.v"'..:. ;,-,,.,: .. :,:<,;-:.::v"'..:.
· .. ' .. /

I:
--·-: :~<'~{ ·: · ;., .. •;-:: ::<;,:;. ·•: :~,(~{ ·: · ;:.: ·•: :~<·x:::-,e.-.:·;-:: :: · A ·•: :~-:·>~: ·: · ~.'-:·;-:: :: · :.~: ·•: :~'>C:•C·'•.':•: X>C:-c:.:':< :: · :,,,: ·-:·x>~:-:~>:':{ ::<;-~: ·•: :~<>::·:,·

.... •·

--'<.>:, :-::,., . ., •. •. : ;;•: •• :,,.>:,. :-. ' :;-:. ,:,,.):. :-. :.<., : .• :• : ~;•:. ,: ..,>:.. :-::,., :., : .• :• :-~;•:. ,:,..,>:.:,:-::_,:,:;-: .• :•:..>:.:,:-::,.,:,;., : .• :• .. -.:;•: •• :•,.>:.:,:-::,., :., : .• :• ; ...:;•: •. :,..,>:; :-: ,:,;.,
.... ,.· .

... . ·· ... / .. _,. .-· .·'_.'

I I i I i I I i I
er-, co I'-,.. (D kf) -=;f" ,:,, ·~ .,.... Cl
0 0 0 0 0 0 0 0 D

ADEJnDD\f

U.S. Patent

co
0
M

(.!)

LL.

C])
0
C:
ro
E
"--

~
(])

o_

May 18, 2021 Sheet 16 of 45 US 11,009,836 B2

I ! I I I I

- • • • 10::::,: ,:: ;:. > >: ,:: ;:, :<>: -:~ ;x:<::< < ::-::,::>~>:''. ::-:: /:•:>:.: ::•:: ·>>::::,::,::::~:• >::::,: < ;:, >· ::< < ;x:<>:•,:
V/

1::

I i i I i I I i I
0) co ,..._ ,_q l_f) """ ('f") --~ 0
0 D C:) c, ci 0 0 D 0

AGEJ nGG'7'

U.S. Patent May 18, 2021 Sheet 17 of 45 US 11,009,836 B2

, ----;;,#;;;·, l-----1=,,.⇒.⇒. · · J · · ---.⇒.r»=--,~ · ---,-~ · · · _,,_,. · -r =-,-,,,,~ · · · . ⇒.⇒»>. · ·

Oi~I

w

. 1'.oeJnoov
(.!)

u..

U.S. Patent

co
'r"'I
'r"'I .
(.!J
LI..

May 18, 2021 Sheet 18 of 45 US 11,009,836 B2

fi.oeJnooy

U.S. Patent May 18, 2021 Sheet 19 of 45 US 11,009,836 B2

.·. . : .

. .
, .

. :: <'':'''.'"'"''':'."'.r"~':--::<;:t~": ~-- :~x.:,·~:'.':f';· >":· :· -V.:::;~(
. ,

L~>.":;.,.--S::>.'!;..~'!z:~~~~~;::;-. .

........ · .. ~±u:t:~·::· : : j . ·: · ·, ·•:· :··.··:· :· :0;:: .. •·
. .

<!'~°'¼tS:-h-.:'

~ • ~ M $ N W - ¢

<C
N
~

.
(.!J
u...

M ~ - ci

U.S. Patent May 18, 2021 Sheet 20 of 45

C
0

ro
N
❖-~

cc
N
rl

(.!J
u..

.. r:~~~~~=~~,~~:'>~>~-::~:~:·~-~~:~:~~=~=~=~=:'~~-~~~:~f:~~~~~~~~=~~=~=-~~,?~-~~~~~~~~?fft~~~-
-

US 11,009,836 B2

U.S. Patent

FIG. 13A

100 •·

FIG. 13B

May 18, 2021 Sheet 21 of 45

Kmeans

•~ .

.. ,;~~~
,;$- .

\"

. .'•' ,..,;

, . ~ ...
... v. ,./ -~

-:~ .,
,. :,"'

~.;.
·,:.i-

··· ~· ;t; ~

US 11,009,836 B2

U.S. Patent

FIG. 13C

-10

May 18, 2021 Sheet 22 of 45 US 11,009,836 B2

, •. . ,.

0

:,: ..
. ,.::

'
,,,., ·i; · . ..-;

... '>'.~

,!,; <!;~-1:f'

x264

10 20 30 40 so 60

pe.rforrnance (in iterls)
70

U.S. Patent May 18, 2021 Sheet 23 of 45 US 11,009,836 B2

FIG. 14A X 104 Kmeans
3.5 ::-: .

1!1 M~th~d 206 I
3.o !'.l ~ Online I

n »: Otffine
1

·~ 2.s j~ ~ Optimal
,5 ::! t) Raoe~t°"'idtel -!

2
_

01
,,w.·.--·.,w.· .. ·.ww .. ·w· , i

~· :
C '· w1.s1

Ii
::

.... ······

. _,.,.;.;;;'.~ ..
...... :;,.:•-•:-::.:••·········, .

:···········

". ///
,,;:•·

I
1.oll ~~~~~~~-·-~--•-,~-~•~··~··~-· · -
0.5 :: ·.•• .:' :, l L t. · ...): L !:. -< - ;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

utmzation

2. ;: ' . ., :·
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utiftttdioo

U.S. Patent

FIG. 14C

6

2

May 18, 2021

Method 200
~- Online
,,i, Offline
~ Optimal
~ Race~t~idle

Sheet 24 of 45

x264

·"

" •"

., ,:::-::-•::•

US 11,009,836 B2

"' . '""''"'""• :- ""'"""""'~ .,_""""""'"' . """"""""' " •"""'""··_; ·---~·"""'_ .. --~·""""' ' -"""""·--~'c ·""""'~"' •" '""'-"'""· ::
0 0.1 0.2 0.3 OA 05 0.6 0.7 0.8 0.9 1

UUlization

U.S. Patent May 18, 2021 Sheet 25 of 45 US 11,009,836 B2

FIG. 15A
fluid animate

1.,r-.. ----r----~----,----~~--:=====~

FIG. 158

1101

..... 1<ltl·
£:! to;

ti

>
•. •· ;. • · ··t -.•

•·'. :-,: •❖•.:--:·•❖ •.>•:~•->• :,.: •·>•.:--. •-:•·•->• .. ••:

>
< ,

:,,: •❖ .•. :,,::• ❖• .. ••.~•-:•-.:,.::,-:- •. .;,, .•• :,: •. :, •. :.,:

<
>
<

< . .

_.,.:,.. t
* • + •

·•·•❖• •• , ... , •• : • •
❖
;:

,._.._.,._Y_.VAY'-;'.,._._.,.,,..._._..,._ .. _.._._.,..,..,__._. +,_...,. ,._.,._.,,. _.,..,._.,,. ,.,. ,._
< • . .

, ·. ,,, ,r ... ,,, , .. , ,,.t••••<·><>•<><••·-><->··· .. .

.. -··
• ❖" > l'~oi: _,..;.,(> ... •.-lo,(),.:--•.:-.;;,, ❖ ...)~< .. + •..i•-=;,, ._ ... ;. .. :-.+ ... : .. ,-;. •.· , ,.

' .•
<
>
<

• M. 200
~ Online
'1, Offline
o Optimal

..... . .. -~ ,.,..,..,._.,., -..
::: :, ' . .

... •, . .•
• ,t,:•.❖ •O• ,(•'• ❖.: > ,:*.+< :, ,t,:,:--i, ,: >+:•. ❖ +:•.·► ,('.•+.,:~<lo•❖ •>► .,::.-:.:,:+,: ► ,t-:• ❖.: ► ,t .

+ .
....... ❖ "-·l'I <•.• ❖ ,(,. .. }.+< > ..-.-:❖ .. >+ ... ·~ ;,")o *" ~")o "' .. ❖";, ~ " >.: . ,

' . .
.•·

,(. ~: ,:

. ··-············1 Phase··1··············-······· ······---············- i Phase·2'···

10 20 30 ,f()

Time (frame)

fluidanlmate
,
' ,
<

........................... , ... :':''-·,► •.
<

<
>

' <
> .•·.•• .. • .. _••.·•.--•.·•.• .. _••·1--···•·.• .. ·
.,
' <

' ,
' ,

50

~ M. 200
·r,, Online
~ Offline
o Optimal

.................... , ;:., , ;:, ,, .. ," , ~ 00,,,

l J e ~

. .

<
,; ·.·

' <lo·~,(-)+ •.❖ O:•lo ❖~lo+ •.·)+lo ❖,(lo+.,),(lo ❖,(lo•-~·>< lo ❖,(❖ (;, ❖ (lo+<·>< lo ❖ (:

s ~

, .
>
<
>
>
<
'

~ so ·••·><• ·•· <••~· .•. , .•. , ••• , •• , •• ,, •• ,. >

fh. : ~ . ,
> ' ~ ,.
,!, •• -so~,,, ,.;., ,. ,:.. , .. ,. ? , :~, , .. , . ., , ·. I ! Phase 1 ! Phase 2

40
0 10 20 30 50

Time (frame)

U.S. Patent May 18, 2021 Sheet 26 of 45 US 11,009,836 B2

FIG. 16A

() '------'-----'-------'----'
fJ fJ.25 fJ.5 (L75 l~fJ

Ltlt elt£::v
A••

FIG. 16B

11 never idle D D race to idle

2.00
~ eo 1.1s
OJ &3 1.50

1.25

1.00
Vaio ODROID

Platform

FIG.17

1700

1725
1715

1710\ \ ~
1105 '\\\ I .. ~. J::::1:::::~;L:·,~

\

~ \ Generic ~=~~-··· .. · . --~~!~~
Latency Feedback

1720
1730

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
N
-....J
0
.i;...
Ul

d
rJl.

"'""'
"'""' "' = = \0
00
w
0--,

= N

FIG.18

JouleGuard Architecture

1800

Energy efficiency / I System Energy
goal / ~ Optimizer

Sys Energy-aware

System

1830 1810
Application

Accuracy Optimizer!)!,I

Approximate

Application

1840 1820

Performance, p_ower, and
accuracy feedback

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
N
CIO
0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent May 18, 2021

(.!)
LL.

I
~
0
0 u
C:

:::)

I
>.
C
0

!
a..
0..

<(

ili
@

~

C:
0

!

"I"=· _,

L
•·•·•·•·•·•·•·•·•·•·)·.·•·•·•·•v•·•·• ~:

c.--··l ,o 00 \0 ~ <""l
~ - 0. q 0 0. . y

·O ,o 0 0 0 0

(SQ]l10f)
1\Jgno;{:a10ug

Sheet 29 of 45 US 11,009,836 B2

0
00

:: =-«.f xi :;: +, <t,~L
l~?- ~ ..

-~tl~1t
j\,

:i-I•fk I
-4 .< ,,...... : ~-, ❖;< ❖.J

..... ., .. L ... J :,
~ ,; : 1 ❖

j ",.):,,,,,.,.--. ::.,.·- ~-- ··):-.~{

•
:

~ ••• ••'; y. . - _.£/ h: .j#/'- :;: : ~--::¾:,,,· ·•: ,..., ' . :-.;,j

*·

.,j_. -.: t.-·r:A~ _J,, 1'<-· . . ·-

❖ ~:,.~ !-1 .. .

-' JZ,_"? :--
·~1: .. •);-... -·· -~ •=

: : :;:_._:
❖: •

I *' -•1"'>1
:-•.¼-.:· •..

❖ ,_ ,t❖:+-. "t,~»
>1P~- -. -'.~

¼j j
~I-'".!1 ❖ ~ ::=

_: «4 +· k

0
~

00

0

FIG. 20

20051

Performance and power
measurements
for some

Architecture
Turns performance

and power
estimates into
schedule of

configurations

2000

2015

2010
Database of
historical

measurements

LEO
Estimates Power and Performance for all

configurations of a device based on
observations of one or more

configurations and historical data

2030

•••

Performance
Hash Table

sent back to the
devices

2025

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
~
0

0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent

co
M
N .
(.!J

LI..

0
~

+..J
C:
0 u

b.O
C: ·-c:
l.-
ro
<V

__J

-

:..c,
:C>
.........
X

May 18, 2021 Sheet 31 of 45

~
in 0 tr)

• ·•

<(······································•···•··

M
N .
(.!J

LI..

c---l
~

US 11,009,836 B2

U.S. Patent May 18, 2021 Sheet 32 of 45 US 11,009,836 B2

co
N
N .
(.!)
u...

I
bO - -
C: -~
C:
~

ro

~

- ·- .-,
·._;
~

Q) ------------- 0 __J l.r) 0 tr)
+ * ..

•1 (:z11um:N.) ;;)j~UUI.lOJJ~d··•· : . l 1t

-~- ~ t'J
O ·O 0

------••+wn:e:;.:e:::::e•e:te't << ,,,,

~ X ,,w,w,w,w,w,w,w,w,w,w,w,w,::,,w,•,Y::::::::::.::::/.\Z:::::::::::::::::::::.:i::;:,:,;,;: /::.::/:::/: ,,w,w,w,w,w,•:•,w,w,•,w,w,w, w}

N (°'·•l l.r'i -~ v·-} . ❖ .
(.!) ~ c-
u...

FIG. 23

.--------------/_,_N~ I 2000

•✓..-,--·-·
,-r

./
l Model 1)'
j

\., '
'".c,. .,./

/ Mean, \ Server,
\~ariancej Running f'

'=-=/ HBM I "-2015
I

~,.___, ··~ I
Model 2¾.,\ /~\.1odel N ""\, I Performance model

\ 1 r1 2005 l
""'~· .N,,/ \,,.,,,N,. _,/./ I

• • • ~i« I r•~~ ~~••~~~-,

I Performance
-•~r-"'·"'•·rnfifl'gUrallofis I
I I • I

-------------- I
I

.- ------ ----- ---~
I
I
I
I

Mobile Device,
Running Lightweight Control System

I Performanc
I
I
I
I
I

I
I

' I
Require'fnerr

l:,:,:,:,:,.,:,:,:::,:,.,:,:,:,:,:,:,:,:,:::,:,:,:,:,:,:,:::,:,:::,:,:,:,:,:,:,.,:,:,:::,:,.,:,:,:,:,:,:,:~;,~t~,;:~,~-~,;:;,:,:~;;,g,~,~,:;:~:,:,:,:,:,.,:::,:,.,:,:,:::,:,.,:,:,:,:,::.,:,.,:,:,:::,:,:::,:,:::,:,:,:,:,:,:,:::,:,:::,:,:,:,:::,:,:,:,.,:,.,:,:,:,:,:,:,:,:::,:,:,:,:,:,:,:,:,:,::.,:,:::,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,.,:,:,:11 , __________________________________ J

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJ'1
=('D
('D
(,H
(,H

0
.i;...
Ul

d
rJl.

"'""'
"'""' "' = = \0
00
w
0--,

= N

FIG. 24

2005

2405 2420

Perf~:;nceL~~""
li\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\!\\\JJJJJJJ!

h;o '"Ot'CS ... ~!-,.... ~ ·, .. big speeds

I 2.--.----.---·---- ~ LITTLE LITTLE
I Pertl1rn1ance Feedback cores s >e:eds
~;:···:·······:···:···········:···········:···········:· ··:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:···········:·······················:···:·······:···:·······:···:···:, ···:···········:···········:···········:···········:···········:···········:···········:···········:········)~

2410 2415

e
•
00
•
~
~
~
~ = ~

~
~
~CIO

N
0
N

rJJ
=('D
('D
~
.i;...

0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent

LI)

0
oe:::I"
N

LI)
N

t9
LL

May 18, 2021 Sheet 35 of 45 US 11,009,836 B2

FIG. 26

,-----------------, ¾,

' l I
l
l
l
l
l
l
l

?erformtJlt.4.

I

G~~l r·,--
1
1
\

'

G··R-·A·P·E"-:.

... · ... -~

2600

t

»»: N«- ::o,:,o.: •x«· :o»: ««)§(;(• :ooo: ·»:<• :ooo: -»>: :000,: .««· •»»: :-»Ot XO'!'

Perfo:fmanre Mea:!urnm@flt

2605

2620

Per-for:mantt & StaU Me;,ti,m?me-nt

A f' ♦' frlliJ)f)dC3d00

G··ou: r·-··-

·•· ·•· SMi Vlavefrnnt:i ,r ;:

-Kil·· ·.· 1c::,::~:_:;:::::,\ _

s:M Frnq,. ORAM Frnq,

2615

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
~
O'I

0
.i;...
Ul

d
r.,;_

""'"'
""'"' "' = = \0
00
w
0--,

= N

U.S. Patent

FIG. 27A

1

FIG. 27B

May 18, 2021 Sheet 37 of 45 US 11,009,836 B2

•~ M 1t•i

~· .~ "l.1"
:i,£i ~ oo
~• M

U.S. Patent May 18, 2021 Sheet 38 of 45 US 11,009,836 B2

FIG. 27C

18:00

1600

1.400

400

·O .. Y!!W'·· .. .

tf'l· ·U') lf:i l.!*l U% t;.~. lJ"i lf:i l:."1 l.!*l :If"!• lJ"i ·~ :lf:i ~., tJ"':j.
or,.,i~·~OOON<::;.tlJ:l•OOoN~lJ:l:000
0 :t-1 (",,t m ~ 1::0 ~ @) 0). •O N f'.~ -.:::t- ,If) *..O (t)

-rl~•rl ~MM rl

FIG. 28

2600

If ,i,

(Goal \ ~
Decision Circuitry

~

2650 I
,,,,

2655
,,,,

Dynamic Goal
J

2670
~

Update Actuator/System Model
J

2675
~

Actuating Circuitry
Observing Circuitry

~ (e.g., Sensors/Transducers)
2660

,,,,

2665
-

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
~
1,0

0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent

m
N

l9
LI..

May 18, 2021

0
0
!J)
N

Sheet 40 of 45 US 11,009,836 B2

Lli
m
I..D
N

0
m
I..D
N

Lli
rl
!J)
N

Lli
0
iJ)
N

FIG. 30

I~- d A

I .-, pee . atlo

/ rxnver
/ s.enst.T!'

/ 2802
•

I
/ ,.

2800

Update Model.

2810

Oynamk Goal
2820

1-----1M Model rflemory
2840

Contrt)I

2830

/ Interactive I
1
1 Goal

1
1

l 2804 /

l

I
J

/ Ac-tuat{H'
/

; 2806
1

Transl.ato:r

2850

(
l

!

/
l

/
I

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
.i;...
0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent

rl
m .
<.D
LL.

May 18, 2021 Sheet 42 of 45

············· ············ '·'•'•'•'•'• --

US 11,009,836 B2

v.i
·"'"' ,_

-~

V

Ci

U.S. Patent May 18, 2021

FIG. 32

Personal Digital Device
900 Camera

r

970

(
Speaker

918 0

SIM
932

Key Pad
916

000

- -

0 0 0 t------t

000
000

GPS,
Position

Sensor, &
Inertial

Navigation
934

Sheet 43 of 45 US 11,009,836 B2

CPU
902

I

1/0 Bus
936

Antenna I".

Display
906

904 ~

_ Rocker

(J Switch

Q

914

ADC
942

I
Receiver

924

Transmitter
926 ----

Memory
950

~
Media files

organization
application

954

~

FIG. 33

r-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --,

Remote
computing

Display
1010

hardware I
1000 ~

Display
Controller

1008

I
I
I
I
I pcetwork

Controller
_W 1006

J I
Memory

1002

Speakers
1022

Sound
Controller

1020

BUS
626

I
CPU
1001

ic:;. ...:;:,

Disk
..____1004--

Storage
Controller

1024

1/0 Interface
1 012 1--I ---,,

~- - - - - - - - - -· - - - 1-- - - -I- _j

Input
Devices

1014

Peripheral
Devices

1016

Actuators
1018

e
•
00
•
~
~
~
~ = ~

~
~
"'CIO
N
0
N

rJJ
=('D
('D
.i;...
.i;...

0
.i;...
Ul

d
r.,;_

"'""'
"'""' "' = = \0
00
w
0--,

= N

U.S. Patent May 18, 2021 Sheet 45 of 45 US 11,009,836 B2

1112

1114

FIG. 34

Mobile Network Service
1120

(!) ~ 8
~~u-v D

/
Access Central S1e1rv2e4r Database

'I\ v Processors rA. Point 1126

1154 1122

Base
Station
1156

~
(~etwor)k \
\1140

\
ecur

atewa
1132

Cloud
1130

Provisioning
Tool
1140

US 11,009,836 B2
1

APPARATUS AND METHOD FOR
OPTIMIZING QUANTIFIABLE BEHAVIOR

IN CONFIGURABLE DEVICES AND
SYSTEMS

CROSS REFERENCE TO RELATED PAPERS

This application is based upon and claims the benefit of
priority to provisional U.S. Application No. 62/307,210,
filed Mar. 11, 2016, the entire contents of which are incor
porated herein by reference.

This invention was made with govermnent support under
Grant No. CCF1439156 awarded by the National Science
Foundation, and Grant No. DE-AC02-06CH11357 awarded
by the Department of Energy. The government has certain
rights in the invention.

FIELD

2
consume 8% of U.S. power by 2020. Improved operation
techniques in data center are needed to make it more
economically and ecologically sustainable and scalable.
High power also means high temperature, which has many

5 other adverse side effects such as decrease of system reli
ability,

Energy conservation is also important to battery operated
mobile computing devices such as smartphones. Insufficient
battery life has is a primary factor in consumer dissatisfac-

10 tion with modern mobile devices. While mobile computing
have become increasing integrated and indispensable in
everyday lives for communication, sensing, controlling and
entertainment, the increasing complexity of hardware and
applications in the mobile devices greatly outpaces the

15 development of battery technology. For example, the
improvements from Samsung Galaxy S to Samsung Galaxy
S3 correspond to a 5.9 factor increase in CPU performance
increases, but the battery capacity only increased by a factor
of 1.4.

In certain situations, a goal of power management for a
battery powered mobile computing device is to minimize the
likelihood that the battery depletes before the device can be
recharged while simultaneously providing a high quality of
service. Various aspects of the computational configuration

This disclosure relates to a method and apparatus for 20

selecting a computational configuration of an electronic
device executing an application in order to improve energy
consumption and computational production, and, more par
ticularly to optimizing energy consumption and computa
tional production using a performance model that is based 25 can be adjusted and tuned to achieve these competing

objectives. Further, the optimal configuration for one com
bination of mobile device and application being executed on
the mobile device may not be optimal for another combi-

on similarities between a small number of computational
configurations of the device executing the application using
and a database of other devices, applications, and compu
tational configurations.

BACKGROUND

The background description provided herein is for the
purpose of generally presenting the context of the disclo
sure. Work of the presently named inventors, to the extent
the work is described in this background section, as well as
aspects of the description that may not otherwise qualify as
prior art at the time of filing, are neither expressly nor
impliedly admitted as prior art against the present disclo
sure.

Energy consumption plays an important role for the full
range of computing systems spectrum from small mobile
computing devices such as smartphones and wearable tech
nology, in which energy consumption determines the battery
life of the mobile device, and extending to the other end of
the spectrum including supercomputers, in which energy
consumption affects costs and cooling requirements. Power
management is especially important in mobile computing
and personal wireless devices such as smartphones and
smart wearable technology. As processors have become
smaller and more powerful and as computer memory has
increased in density and capacity, battery technology has not
kept pace. For example, from 1990 to 2000 disk capacity
increased by a factor of 1000, CPU speed increased by a
factor of 400, available RAM increased by a factor of 100,
wireless bandwidth increased by a factor of twelve, but the
energy density of battery increased by only a factor of three.

The absence oflarge improvements in battery technology
increases the importance of efficiently using energy from the
batteries. Even fixed computing devices benefit significantly
from improved efficiency. Thus, energy conservation and
power management have become two of the most important
challenges in modern computing systems, including general
purpose computers and mobile devices.

In 2015, data centers consume approximately 2% of all
US electricity, and data centers increase consumption at a
rate of 15% annually. Thus, data centers are projected to

30

nation of device and application.
Thus, the optimal computational configuration can

depend on the architecture of the mobile device and the
application being executed on the mobile device. Generally,
a computational device will be configurable over a configu
ration space, including: the number and combination of

35 cores, clockspeed, hyperthreading, and memory controllers,
for example. Thus, optimizing the computational configu
ration can be represented as a constrained optimization
problem, with the exact form of the optimization depending
on the specified goals of the optimization. For example, the

40 goal may be to guarantee the battery is not exhausted within
a predefined window while maintaining a minimum quality
of service. Alternatively, the goal may be to complete the
most computational tasks before the battery is exhausted.

Generally, finding the optimal computational configura-
45 tion depends on applying an accurate model of the compu

tational performance and energy consumption of the device
executing the application. However, obtaining a model can
be challenging because, generally, the model will be device
dependent, with different devices having different perfor-

50 mance and consumption characteristics. Further, the model
will be application dependent. For example, some applica
tions will being more conducive to parallel execution on
multiple cores, while others will require significant commu
nication overhead and become less efficient when executed

55 on multiple cores.
Certain rules of thumb or heuristics have been developed

as being nearly optimally efficient for a limited number of
device-application combinations. Two such heuristics are
the race-to-idle and never-idle heuristics. The computational

60 task can be defined as executing an application within a
predefined time window. According to the race-to-idle heu
ristic, all of the computational resources are allocated to the
application and once the application is finished the system
goes to idle for the remaining duration of the predefined time

65 window. This strategy incurs almost no runtime overhead,
but may be suboptimal in terms of energy, since maximum
resource allocation is not always the best solution to the

US 11,009,836 B2
3

energy minimization equation. In the never-idle heuristic the
device is configured to work at a constant rate while allo
cating only enough resources to complete the application
coincidently with the end of the predefined time window.
Depending on the device a never-idle computational con- 5

figuration might be closer to optimal than a race-to-idle
configuration, whereas another device might be the opposite.

Thus, on the one hand, these heuristics cannot be consis
tently relied on for the optimal configuration. However, on
the other hand, measuring the performance and consumption 10

of a device-application combination for each possible com
putational configuration to develop a comprehensive model
can be a time and energy consuming process. Ideally, a
reliable model of computational performance and power
consumption could be obtained for a device-application 15

combination without comprehensive testing every time a
new application or combination of applications is run on the
device. To this end, described herein is a method and
apparatus for simultaneously optimizing computational per
formance and energy consumption by using a model of the 20

device performance based on less than comprehensive test
ing of computational configurations of the device.

DESCRIPTION OF THE DRAWINGS
25

4
FIG. 5 shows a schematic diagram of a hierarchical

Bayesian model (HBM), according to one implementation;
FIG. 6 shows an example of a plot of correlations among

computational configurations;
FIG. 7 shows an example of a plot of performance

estimates for configuration-optimization methods as a func
tion of the number of cores according to one implementa
tion;

FIG. 8 shows an example of a plot of estimates of power
consumption for the respective configuration-optimization
methods as a function of the number of cores, according to
one implementation;

FIG. 9 shows an example of a plot of the energy of the
minimal energy configuration for various system utiliza
tions, according to one implementation;

FIG. lOA shows a bar plot comparing the accuracy of
performance estimates by three different optimization tech
niques for 11 different benchmark applications, according to
one implementation;

FIG. 10B shows a bar plot comparing the accuracy of
performance estimates by three different optimization tech
niques for 14 other benchmark applications, according to
one implementation;

FIG. llA shows a bar plot comparing the accuracy of
power estimates by three different optimization techniques
for 13 different benchmark applications, according to one
implementation;

A more complete understanding of this disclosure is
provided by reference to the following detailed description
when considered in connection with the accompanying
drawings, wherein:

FIG. lA shows a schematic diagram of a server commu
nicating with a device, according to one implementation;

FIG. 1B shows a schematic diagram of a server commu
nicating with several mobile devices, according to one
implementation;

FIG. 11B shows a bar plot comparing the accuracy of
30 power estimates by three different optimization techniques

for 12 other benchmark applications, according to one
implementation;

FIG. 2A shows a flow diagram of an example of a method
to determine an energy efficient configuration of a device
when executing an application, according to one implemen
tation;

FIG. 2B shows a flow diagram of an example of a process
to generate performance characteristics corresponding to
some configurations of the device when executing the appli
cation, according to one implementation;

FIG. 2C shows a flow diagram of an example of a process

FIG. 12A shows a bar plot comparing the mean energy of

35
optimal configurations determined according to four differ
ent optimization techniques for 13 different benchmark
applications, according to one implementation;

FIG. 12B shows a bar plot comparing the mean energy of
optimal configurations determined according to four differ-

40 ent optimization techniques for 12 other benchmark appli
cations, according to one implementation;

FIG. 13A shows a plot of a convex hull of the power
performance tradeoff space for the device executing a
Kmeans application for various optimization techniques;

FIG. 13B shows a plot of a convex hull of the power
performance tradeoff space for the device executing a swish
application for various optimization techniques;

to determine performance model of the configurations of the
device when executing the application, the performance 45

model being generated using a comparison between the
generated performance characteristics and a database of
performance characteristics of various other devices execut
ing various other applications, according to one implemen
tation;

FIG. 13C shows a plot of a convex hull of the power
performance tradeoff space for the device executing an x264

50 application for various optimization techniques;
FIG. 2D shows a flow diagram of an example of a control

process to control the configuration of the device using the
performance model of the device when executing the appli
cation, according to one implementation;

FIG. 2E shows a flow diagram of another example of a
control process to control the configuration of the device
using the performance model of the device when executing
the application, according to one implementation;

FIG. 14A shows a plot of the energy consumed as a
function of utilization for the device executing a Kmeans
application for various optimization techniques;

FIG. 14B shows a plot of the energy consumed as a
55 function of utilization for the device executing the Kmeans

application for various optimization techniques;

FIG. 3 shows a schematic diagram of a performance
model the device when executing the application, according 60

to one implementation;

FIG. 14C shows a plot of the energy consumed as a
function of utilization for the device executing the swish
application for various optimization techniques;

FIG. 15A shows a plot of performance of the device as a
function of time for a transition from phase 1 to phase 2 of
the application fluidanimate; FIG. 4A shows a schematic diagram of an example of a

simple directed graph with nodes A and B depending from
an observed node C;

FIG. 4B shows a schematic diagram of an example of a
simple directed graph with nodes A and B depending from
an unobserved node C;

FIG. 15B shows a plot of power consumption of the
device as a function of time for a transition from phase 1 to

65 phase 2 of the application fluidanimate;
FIG. 16A shows a plot comparing energy and latency

tradeoffs for the Vaio and the ODROID systems;

US 11,009,836 B2
5

FIG. 16B shows a bar plot comparing energy consump
tion for the Vaio and the ODROID systems when the
never-idle and race-to-idle heuristics are applied;

6
SUMMARY OF THE INVENTION

In one aspect, the present disclosure provides:
(1) a server, including (i) a receiver configured to receive FIG. 17 shows a schematic diagram of a POET architec

ture, according to one implementation;
FIG. 18 shows a schematic diagram of a JouleGuard

architecture, according to one implementation;

5 performance data of a device configured to execute an
application in a plurality of computational configurations,
the performance data including a first plurality of compu
tational configurations with corresponding power-consump-FIG. 19 shows a plot of simulation results for energy and

percentage of returned results using various control methods
compared to the JouleGuard architecture, according to one 10

implementation;
FIG. 20 shows a schematic diagram of a CALOREE

system, according to one implementation;
FIG. 21A shows plot of performance as a function of

configuration for a device having an ARM big.LITTLE 15

architecture that is executing a Lavamd application;
FIG. 21B shows plot of performance as a function of time

for a device having an ARM big.LITTLE architecture that is
executing the Lavamd application and that is selecting the
configuration on the basis of a learning method or a control 20

method;
FIG. 22A shows plot of performance as a function of

configuration for a device having an ARM big.LITTLE
architecture that is executing a Kmeans application;

FIG. 22B shows plot of performance as a function of time 25

for a device having an ARM big.LITTLE architecture that is
executing a Kmeans application and that is selecting the
configuration on the basis of a learning method or a control
method;

FIG. 23 shows a schematic diagram of a CALOREE 30

system using an HBM to generate the performance model at
the server and a lightweight control system in the device to
implement configuration control using the performance
model, according to one implementation;

FIG. 24 shows a schematic diagram of the device, accord- 35

ing to one implementation;
FIG. 25 shows a schematic diagram of the performance

hash table (PHT), according to one implementation;
FIG. 26 shows a schematic diagram of a GPU Resource

Adaptation for Performance and Energy (GRAPE) architec- 40

ture, according to a first implementation;
FIG. 27 A shows a plot of normalized power as a function

of time to compare a race-to-idle implementation with a
GRAPE implementation;

FIG. 27B shows a plot of normalized performance as a 45

function of time to compare the race-to-idle implementation
with the GRAPE implementation;

FIG. 27C shows a plot of integrated energy consumed as

tion rates and corresponding performance measures of the
device when executing the application; (ii) a memory to
store other performance data that includes a second plurality
of computational configurations, power-consumption rates,
and performance measures of a plurality of other devices
when executing a plurality of applications; and (iii) process
ing circuitry configured to (a) compare the received perfor
mance data of the device to the stored other performance
data, (b) determine a performance model of the device based
on the comparison between the received performance data of
the device and the stored other performance data, the per
formance model including an estimate of respective power
consumption rates and respective performance measures of
the device when executing the application for a third plu
rality of computational configurations of the device; and (c)
a transmitter configured to transmit to the device the deter
mined performance model of the device, wherein (d) the
transmitted performance model of the device enables the
device to optimize a combination of a performance measure
and power consumption according to predefined optimiza
tion criteria.

(2) The server according to (1), wherein the processing
circuitry is further configured to determine the performance
model, wherein the performance measures of the received
performance data are computational-performance rates, the
performance measures of the stored other performance data
are computational-performance rates, and the performance
measures of the performance model are computational-
performance rates.

(3) The server according to (1) or (2), wherein the
processing circuitry is further configured to determine the
performance model, wherein the performance model repre
sents hash table of a power-consumption rates and perfor-
mance measures of an energy-frontier plurality of compu
tational configurations corresponding to a convex hull of a
power-consumption/performance tradeoff space.

(4) The server according to any of (1)-(3), wherein the
processing circuitry is further configured to compare the
received performance data of the device to the stored other
performance data, wherein the device is one of a mobile
communication device, a wireless user equipment, a smart a function of time to compare the race-to-idle implementa

tion with the GRAPE implementation;
FIG. 28 shows a schematic diagram of a GPU Resource

Adaptation for Performance and Energy (GRAPE) architec
ture, according to a second implementation;

50 phone, wearable technology, and a tablet computer, an
embedded processor.

FIG. 29 shows a schematic diagram of a GPU Resource
Adaptation for Performance and Energy (GRAPE) architec- 55

ture, according to a third implementation;
FIG. 30 shows a schematic diagram of a GRAPE data

path, according to one implementation;
FIG. 31 shows a timing diagram of an overhead count

according to one implementation of a GRAPE architecture 60

using VHDL;
FIG. 32 shows a schematic diagram of a personal digital

device, according to one implementation;

(5) The server according to any of (1)-(4), wherein the
processing circuitry is further configured to compare the
received performance data of the device to the stored other
performance data, wherein the device is one of an aircraft
motor, an embedded processor in heavy machinery, and a
controller of a dynamic system.

(6) The server according to any of (1)-(5), wherein the
processing circuitry is further configured to (i) compare the
received performance data of the device to the stored other
performance data to generate an estimate of the respective
power-consumption rates and the respective performance
measures corresponding to all computational configurations
of the device, wherein (ii) the estimate ofrespective power-FIG. 33 shows a schematic diagram ofremote computing

hardware, according to one implementation; and
FIG. 34 shows a schematic diagram of a networked cloud

computing system, according to one implementation.

65 consumption rates and respective performance measures
corresponding to all computational configurations of the
device represents a mean and a measure of variance for each

US 11,009,836 B2
7

power-consumption rate and each performance measure of
each computational configuration of all computational con
figurations of the device, and (iii) the performance model
includes a subset of all computational configurations of the
device corresponding to a convex hull of a tradeoff space
between the power-consumption rates and the performance
measures determined using the estimate of the respective
power-consumption rates and the respective performance
measures corresponding to all computational configurations
of the device.

(7) The server according to any of (1)-(6), wherein the
memory is further configured to store the received perfor
mance data of the device.

(8) The server according to any of (1)-(7), wherein the
processing circuitry is further configured to compare the
performance data of the device to the other performance data
using a Bayesian network.

(9) The server according to any of (1)-(8), wherein the
processing circuitry is further configured to (i) compare the
received performance data of the device to the stored other
performance data using an expectation maximization
method to determine a combination of the plurality of other
devices and the plurality of applications that is similar, in
terms of performance and power use, to the device when
executing the application, and (ii) determine the perfor
mance model of the device, using the expectation maximi
zation method.

(10) The server according to any of (1)-(9), wherein the
processing circuitry is further configured to (i) compare the
received performance data of the device to the stored other
performance data using an hierarchical Bayesian model to
determine a combination of the plurality of other devices
and the plurality of applications that is similar, in terms of
performance and power use, to the device when executing
the application, and (ii) determine the performance model of
the device, using the hierarchical Bayesian model.

8
(13) The device according to (12), wherein the processing

circuitry is further configured to determine the sequence of
computational configurations of the device to perform the
predefined computational tasks of the application, wherein

5 the predefined optimization criteria to be optimized to
complete the predefined computational tasks within a pre
defined time period while minimizing power consumption
of the device during the predefined time period.

(14) The device according to 12 or 13, wherein the
10 processing circuitry is further configured to determine the

sequence of computational configurations of the device to
perform the predefined computational tasks of the applica
tion, wherein the predefined optimization criteria to be

15
optimized is to maximize a ratio between the performance
measure and the power consumption of the device, wherein
the performance measure is a computational performance
rate, and when an estimate of a completion time of the
application indicates that the application will not be

20 executed within a predefined time, using an approximate
computing method to accelerate completion of the applica
tion in order to complete the application by a predefined
time.

(15) The device according to any of (12)-(14), wherein the
25 processing circuitry is further configured to determine the

sequence of computational configurations of the device to
perform the predefined computational tasks of the applica
tion, wherein the predefined optimization criteria to be
optimized is to maximize a ratio between the performance

30 measure and the power consumption of the device, wherein
the performance measure is a computational-performance
rate, and when a calculation indicates that a maximum of
ratio of the computational-performance rate to the power
consumption rate is less than a predefined threshold, using

35 an approximate computing method to increase the ratio of
the computational-performance rate to the power-consump-
tion rate.

(11) The server according to any of (1)-(10), wherein the
processing circuitry is further configured to compare the
received performance data of the device to the stored other 40

performance data using one of a support vector machine, a
principal component analysis based method, a probabilistic
graph method, an artificial neural network, a machine learn
ing method, a pattern recognition method, a deep learning
method, a clustering method, a genetic algorithm, and a 45

classifier learning method to determine the performance
model of the device.

(16) The device according to any of (12)-(15), wherein the
processing circuitry is further configured to (i) determine the
predefined time period to be inversely proportional to a
speedup factor, and (ii) adjust the speedup factor to mini-
mize a difference between a desired latency of the respective
computational tasks and a measured latency of the respec
tive computational tasks.

(17) The device according to any of (12)-(15), wherein the
processing circuitry is further configured to (i) update the
performance model of the device executing the application
according to repeated measurements of the power consump
tion rate and the computational performance rate using

(12) A device configured to execute an application in a
plurality of computational configurations, the device includ
ing (i) an interface configured to (a) transmit, to a server,
performance data of the device, the performance data includ
ing, for a first plurality of computational configuration of the
plurality of computational configurations, corresponding
power-consumption rates and corresponding performance
measures of the device when executing the application, (b)
receive, from the server, a performance model that includes

50 various computational configurations, (ii) update the selec
tion of the computational configuration of the device accord
ing to the updated performance model, (iii) update the
estimate of a completion time of the application according to
the updated performance model and the updated computa-

55 tional configuration of the device, and (iv) update the
approximate computing method according to an updated
estimate of the completion time of the application, the
updated computational configuration, and the updated the

an estimate of respective power-consumption rates and
respective performance measures of the device when execut
ing the application for a second plurality of computational
configurations of the device; and (ii) processing circuitry 60

configured to (a) determine, using the performance model, a
sequence of computational configurations of the device to
perform predefined computational tasks of the application to
optimize a combination of a performance measure and
power consumption of the device according to predefined
optimization criteria, and (b) execute the application accord
ing to the determined sequence.

performance model.
(18) The device according to any of (12)-(17), wherein the

processing circuitry is further configured to adjust the
sequence of computational configurations of the device to
perform predefined computational tasks of the application,
using one of a control method including proportional, inte-

65 gral, and derivative feedback, a state-space control method,
a multiple-input multiple-output control method, and a
single-input single-output control method.

US 11,009,836 B2
9

(19) A system, including (i) a device that includes (a)
processing circuitry configured to: execute an application,
change a computational configuration of the processing
circuitry, measure power-consumption rates of the process
ing circuitry executing the application, and measure perfor
mance measures of the processing circuitry when executing
the application, (b) a transmitter configured to transmit
performance data of the device executing the application, the
performance data including respective computational con
figurations of a first plurality of computational configura
tions of the device with the corresponding power-consump
tion rates and the corresponding performance measures of
the device when executing the application, and (c) a receiver
configured to receive a performance model that estimates
respective power-consumption rates and the performance
measures of the device executing the application, for a
second plurality of computational configurations of the
device, and (ii) a server that includes (a) a memory to store
other performance data that includes computational configu
rations, power-consumption rates, and performance mea
sures of a plurality of other devices when executing a
plurality of applications, (b) a receiver configured to receive
the transmitted performance data of the device, (c) a trans
mitter configured to transmit the performance model of the
device, and (d) processing circuitry configured to: compare
the received performance data of the device to the stored
other performance data, and determine a performance model
of the device based on the comparison between the received
performance data of the device and the stored other perfor
mance data, the performance model including an estimate of
the respective power-consumption rates and the respective
performance measures of the device when executing the
application for the second plurality of computational con
figurations of the device.

(20) The system according to claim 19, wherein the
performance measures measured by the device includes a
computational-performance rates that include a ratio of a
number of computational tasks performed by the processing
circuitry executing the application within a predefined time
interval.

(21) A system, including: (i) an apparatus having at least
one constrained property and a plurality of other properties

10
model using a hierarchical Bayesian method to compare the
detected values of the at least one constrained property
corresponding to the first subset of the plurality of configu
rations to a database of other apparatuses also having the at

5 least one constrained property.
(24) The system according to any of (21)-(23), wherein

the apparatus is a mobile computing device executing an
application, the plurality of configurations include compu
tational configurations of the mobile computing device, and

10 the learning circuitry is included on a server, which is
remotely accessed by the mobile computing device.

(25) An apparatus having at least one constrained prop
erty, the apparatus comprising: (i) a plurality of components,
which are configurable in real-time to configure the appa-

15 ratus in respective configurations of a plurality of configu
rations; (ii) detection circuitry configured to detect values of
the at least one constrained property when the apparatus is
configured in a first subset of the plurality of configurations;
(iii) transmitting circuitry configured to transmit the detected

20 values of the at least one constrained property and the
corresponding first subset of the plurality of configurations
to a model learning apparatus; (iv) receiving circuitry con
figured to (a) receive a model representing respective values
of the at least one constrained property corresponding to the

25 plurality of configurations, and (b) receive an uncertainty of
the model; and (v) control circuitry configured to select,
using the received model and the uncertainty of the model,
a configuration of the plurality of configurations to minimize
an error value that is a difference between a desired value of

30 the at least one constrained property and an observed value
of the at least one constrained property by using the deter
mined model and the estimated uncertainty.

(26) A method of optimizing at least one constrained
property of an apparatus having a plurality of components,

35 which are configurable in real-time, the method comprising:
(i) detecting values of the at least one constrained property
and a plurality of other properties of the apparatus when the
apparatus is configured in a first subset of the plurality of
configurations; (ii) learning, using the detected values of the

40 at least one constrained property, a model representing the at
least one constrained property and the plurality of other
properties when the apparatus is in the plurality of configu
rations; (iii) estimating an uncertainty of the determined at
least one constrained property value of the model; and (iv)

to be optimized, the apparatus including (a) a plurality of
components, which are configurable in real-time, such that
the apparatus can be configured in a plurality of configura
tions, and (b) circuitry configured to detect the at least one
constrained property when the apparatus is configured in a
first subset of the plurality of configurations; (ii) learning
circuitry configured to (a) determine, using the detected at
least one constrained property, a model representing the at 50

least one constrained property when the apparatus is in the
plurality of configurations, and (b) estimate an uncertainty

45 selecting, using the determined model and the estimated
uncertainty, a configuration of the plurality of configurations
to minimize an error value that is a difference between a
desired value of the at least one constrained property and an
observed value of the at least one constrained property.

(27) A non-transitory computer readable storage medium
including executable instruction, wherein the instructions,
when executed by circuitry, cause the circuitry to perform
the method according to (26). of the determined at least one constrained property; and (iii)

control circuitry configured to (a) select a configuration of
the plurality of configurations to minimize an error value 55

that is a difference between a desired value of the at least one
DETAILED DESCRIPTION

constrained property and an observed value of the at least
one constrained property by using the determined model and
the estimated uncertainty.

(22) The system according to (21), wherein the learning
circuitry is further configured to encode the determined
model as a hash table to provide rapid lookup of optimal
configurations of the apparatus corresponding to respective
values of the at least one constrained property, according to
the determined model.

(23) The system according to (21) or (22), wherein the
learning circuitry is further configured to determine the

Optimizing a computational configuration of a computa
tional device to achieve desired power-consumption and
computational-performance goals can depend on having a

60 reliable model of the performance and consumption of the
device. Relying on a poor model could result in predicting
a theoretically optimal configuration that is actually far from
optimal. However, extensive empirical testing to measure
the performance and consumption of the device configured

65 in multiple computational configurations while executing
the desired application also has drawbacks due to the
significant resources in time and energy devoted to <level-

US 11,009,836 B2
11

oping a comprehensive model for each combination of
device and application. The model of performance and
consumption can be different for each combination of device
and application because different devices can have different
performance and consumption characteristics and different
applications can also have different performance and con
sumption characteristics. In many situations, measuring per
formance and consumption for all computational configu
rations is impracticable every time a device executes a new
application or a new combination of applications. Accord
ingly, it is desirable to derive a reliable model of the
performance and consumption for the device when execut
ing an application while performing empirical testing using
less than all of the computational configurations of the
device when executing the application. Herein, the word
performance is used as a short hand for "computational
performance," and the word consumption is used as a short
hand for "power consumption."

The methods described herein are more general than the
primary example provided herein, which optimizes the com
putational configuration for computational performance sub
ject to constraints on energy and/or power consumption.
This primary example is non-limiting, and the methods
described herein apply generally to constrained optimization
problems in complex and dynamic environments.

As would be understood by a person of ordinary skill in
the art, "constraints" refer to quantifiable goals that must be
met for correct operation. Examples include, but are not
limited to: performance, throughput, latency, energy, power,
accuracy, security, reliability, resilience, cost, space, size,
weight. Further, "optimization" subject to constraints refers
to the fact that although some goals are non-negotiable, i.e.
they absolutely must be respected, while other goals should
be minimized or maximized. For example, computer servers
must meet power constraints while maximizing throughput.
As another example, self-driving cars must meet speed
constraints while minimizing energy (or fuel). The term
"complexity" refers to the fact that in many systems there
are multiple mechanisms that can be tuned to meet the
constraints and the optimization goals. The interaction of
these mechanisms can be difficult to model----often leading
to non-linear, non-convex optimization spaces and/or
tradeoff spaces having multiple local minima-making it
extremely difficult to ensure constraints are respected while
other behavior is optimized. For example, the interaction
between the number of active cores in a multicore and the
speed of those cores creates non-linear, non-convex optimi
zation problems. The term "dynamic" refers to the fact that
unpredictable changes occur during system operation, yet
the constraints must still be satisfied while other behavior is
optimized. For example, when using a mobile device for a
video call, the software must handle transitions from low
motion (e.g. sitting still) to high motion (e.g. walking around
a house or waving to the other party).

Many problems exhibit the combination of challenges
presented by constrained optimization problems in complex
and dynamic environments that are addressed by the meth
ods described herein. The methods described herein use the
general approach of combining machine learning (ML) and
control theory (CT) to meet constraints optimally in com
plex and dynamic environments. In general, machine learn
ing models the complex interactions of the available mecha
nisms, while control theory ensures the constraints are met
despite dynamic changes. Machine learning enables the
generation of a reasonably accurate model of the system
without exhaustively exploring the parameter space. Having
generating a model of the system, control theory can be

12
applied to account for errors in the model and to adapt to
dynamic changes of the system and/or changing goals. The
methods described herein allow practical implementations
in addition to formal analytical guarantees. ML and CT are

5 broad fields that encompass a number of different individual
techniques.

The exemplary implementations described herein use a
non-limiting ML technique called hierarchical Bayesian
models, but other ML techniques can also be used, as would

10 be understood by a person of ordinary skill in the art. For
example, the ML techniques that can be used in the methods
described herein include: matrix completion methods, multi
tasking algorithms, transfer learning based algorithms,
regression algorithms, Bandit-based learning methods, and

15 genetic and evolutionary algorithms, for example. Matrix
completion methods can include: low rank matrix comple
tion with noise, high rank matrix completion, collaborative
filtering, recommender systems (e.g., the Netflix™ algo
rithm), matrix completion with side information, Bayesian

20 matrix completion, and nonparametric matrix completion,
for example. Regression algorithms can include: random
forest algorithms, polynomial regression, and gradient
boosting, for example. Bandit-based learning can include:
multiarmed bandit learners, and multiarmed bandit learners

25 with correlated arms, for example.
The exemplary implementations described herein use the

non-limiting CT example of a proportional-integral (PI)
control. However, other classes of controllers can be used, as
would be understood by a person of ordinary skill in the art.

30 For example, the controller can use: proportional control,
integral control, proportional integral control, proportional
integral derivative control, state-space control, stochastic
control, adaptive control, optimal control, model predictive
control, switching control, gain scheduling, self-tuning regu-

35 lators, minimum variance control, and fuzzy control.
The non-limiting exemplary implementations described

herein focus primarily on combinations of hierarchical
Bayesian learning with adaptive proportional integral con
trol with an independent optimization module. However,

40 these non-limiting exemplary implementations are instan
tiations of the more general concept contemplated herein,
which is sufficiently general to apply to many more combi
nations of the above approaches. For example, the methods
described herein can be applied to: maximizing throughput

45 for compute servers while respecting constraints on power
consumption; ensuring that a mobile device can last for the
duration of a plane trip; balancing tradeoffs between quality,
energy, and security for mobile video calls; minimizing cost
while providing reliable performance for cloud customers;

50 minimizing energy while ensuring user satisfaction for
mobile applications; managing tradeoffs between sensor
usage and reliability in self-driving cars; maximizing
throughput for minimal cost in industrial assembly lines; and
automatic configuration of high-end televisions to minimize

55 energy consumption while meeting user quality require
ments.

More particularly, the methods described herein can be
applied to many devices and systems in addition to the
exemplary networked mobile communication devices (e.g.,

60 smartphones and tablet PCs) described herein. For example,
the methods can be used to optimize any system which has
one or more constraints, and the may be particularly ben
eficial when it is used to optimize a system comprising
dynamics or time-dependent variables that are unpredictable

65 or difficult to model. Moreover, the methods described
herein may be particularly beneficial for optimizing systems
that are too complicated for linear regressions or other

US 11,009,836 B2
13

analytical models to capture the dependence on the system's
parameters. Exemplary systems include jet airplane turbines
for which it may be desirable to minimize fuel consumption
while maintaining power output by varying some or all of
the turbine's control parameters in the face of unpredictably 5

varying inputs such as humidity, pressure, and other envi
ronmental conditions, for example. Other exemplary sys
tems include building HVAC systems for which it may be
desirable to minimize power consumption, while maintain
ing temperature and humidity conditions throughout many 10

different regions of the building or buildings by varying air
handling controls, such as air flow rates, temperatures,
cooling/heating power, and other parameters while occu
pants of the building are opening or closing windows and/or
entering and entering rooms in unpredictable ways, for 15

example. Additionally, network bandwidth optimization can
be another exemplary system applying the methods
described herein. For example, in network bandwidth opti
mization, data throughput from multiple sources to multiple
destinations across a network can be maximized while 20

latency is constrained and in which data packets can take any
one of multiple routes across the network and the arrival of
the new data packets into the network is unpredictable. A
further exemplary system in which the methods described
herein can be applied is internal combustion engines for 25

which fuel consumption is minimized while, for example,
power output is held constant and the valve timing and other
engine parameters are varied as engine inputs such as air and
fuel quality vary. Additional constrained optimization prob
lems to which the present invention may be applied arise in 30

power generation systems, warehouse distribution systems,
and manufacturing facilities, for example.

Now an exemplary implementation of a smart home is
provided, illustrating the methods described herein. The
methods described herein combining machine learning 35

together with feedback and control can be used to manage a
"smart home." For example, a home could be configured
with shades that automatically adjust and light fixtures that
adjust brightness. A homeowner might have a constraint on
brightness and would like to meet this constraint while 40

minimizing electricity cost.
This example has all the requisite properties described

above. That is, (1) there is a quantifiable constraint in terms
of light, (2) there is an objective function to be optimized
(i.e., electricity cost), and (3) there are multiple configurable 45

parameters (i.e., shades and lights). The combination of
shades and lights give us a complex tradeoff space. Raising
and lowering the shades have one-time costs. The lights
continuously consume electricity. In addition, there are
system dynamics as changes in weather and time of day 50

create different conditions.

14
maps configuration to brightness and cost. This same model
could be stored in a brightness hash table (analogous to the
performance hash table). The controller computes the error
between the current brightness and the desired brightness,
computes a brightup (analogous to speedup) and then uses
the brightness hash table to select a minimal cost configu-
ration that delivers the desired brightup.

Altering the example slightly, the homeowner may be
more concerned about electricity costs. In this case, the
constraint is the amount of money the home owner is willing
to spend on lighting. The objective is to achieve the brightest
conditions. The learner would produce almost the same
model as the previous paragraph, but now it would store it
in a cost hash table-because it is controlling costs. In this
example the controller measures the rate of spending on
lighting and computes an error between the desired spending
rate and the budget (monthly budgets are trivially converted
to rates by dividing by time) to compute a costup (analo
gous, again, to speedup). The controller then looks in the
cost hash table to find the brightest configuration that meets
the desired budget, adjusting to maintain the correct power
consumption despite weather and time changes. Such a
system could even adapt to changing prices in electricity.

As would be understood by a person of ordinary skill in
the art, the applicable mathematical formulation is almost
identical to the example provided hereafter of meeting a
computer program's latency constraint with minimal energy.
Similar to the computational latency example to be dis
cussed, the learner maps configurations into quantifiable
behavior. Tradeoffs are stored in a hash table using a similar
scheme to FIG. 25. The controller similarly measures a
difference between a constraint and the actual behavior and
then selects the configuration that optimizes the constraint.

Returning to the example of optimizing computational
performance under energy and/or power constraints, there is
a tension between gathering sufficient empirical data to
estimate a reliable model whereby an optimal computational
configuration can be approximated and limiting the
resources devoted to gathering empirical data. Machine
learning techniques represent a promising approach to
addressing this estimation problem. Oflline learning
approaches collect profiling data for known applications and
use that to predict optimal behavior for unseen applications.
Online learning approaches use information collected while
an application is running to quickly estimate the optimal
configuration. Oflline methods require minimal runtime
overhead, but suffer because they estimate only trends and
carmot adapt to particulars of the current application being
executed on the device. Online methods customize to the
current application, but carmot leverage experience from
other applications. In a sense, oflline methods are dependent
on a rich training set that represents all possible behavior,
while the online methods can be data limited and generate a
statistically weak and less accurate model due to the small

55 sample size.

Such a smart home could learn from other smart homes to
build models of the relationship between shades, electric
lights, and brightness. That learned model could then be
passed to a controller that operates within the home to adjust
the relative usage of shades and electric lights to ensure the
homeowner is always in a sufficiently bright room while the
use of electric lights is minimized. This example maps
directly into the example of meeting a performance con
straint used throughout the document. Here the configurable 60

parameters are the shades and lights (analogous to cores and
clockspeeds in a computer). The constraint is brightness
(analogous to computer performance). The objective to be
optimized is cost (analogous to energy). The learner would
measure the brightness and cost of different configurations, 65

perhaps combine those measurements with other measure
ments from other smart homes, and produce a model that

In contrast to the oflline and online methods, a hybrid
method of estimating the performance-consumption model
is described herein. The hybrid method is a machine learning
method that combines the best of the oflline and online
methods (e.g., the hybrid method combines the statistical
properties of both oflline and online estimation). The hybrid
method begins with a set of applications for which the
consumption and performance have been measured previ
ously (e.g., oflline).

The hybrid method can use a graphical model to integrate
a small number of measurements of the current application
with knowledge of the previously observed applications to

US 11,009,836 B2
15 16

model to optimizing the computational configuration of the
computing device 120 for executing the current application.
The computing device can update the performance data sent
to the server 110 by measurements of the continued execu-

produce accurate estimations of the consumption and per
formance tradeoffs for the current application in all configu
rations. The hybrid method's strength is that it quickly
matches the behavior of the current application to a subset
of the previously observed applications. For example, if the
hybrid method has previously seen an application that only
scales to eight cores, it can use that information to quickly
determine if the current application will be limited in its
scaling.

5 tion of the current application, and the server can update the
performance model based on the updated performance data.

FIG. 2A shows a flow diagram of a method 200. In
process 210 of method 200, the computational performance
and power consumption of the computing device 120 are

10 obtained for a discrete set of computational configurations of
the computing device 120 when executing the current appli-

The hybrid method can be performed on a computing
device including a computer readable memory, such as a
hard disk, that stores a database of consumption and per
formance data for the device when executing various appli
cations. This standalone implementation of the hybrid
method is then performed by the device comparing a small 15

data set of consumption and performance measurements
with the database of previously recorded measurements for
other applications to estimate a model of the device when
executing the current application. Using the estimated
model, the device then determines the optimal computa- 20

tional configuration for executing the current application.
Alternatively, the hybrid method can be performed by a

combination of a device and a server communicating with
the device. The device can generate data for a small number
of configurations for the device when executing the appli- 25

cation, and send this small data set to the server. The server
can compare the received small data set for the device with
a database of the consumption and performance data stored
on the server, and estimate the model of the device when
executing the application. After receiving the estimated 30

model from the server, the device can then apply the model
to determining the optimal computational configuration for
executing the application on the device. Thus, the hybrid
method can be separated into subtasks that can be performed
on either the device or on the server in communication with 35

the device. One advantage of using a server to perform some
of the subtasks is that the server might not be subject to the
same size, memory and power constraints of the device. For
example, the device can be a smartphone or wearable
technology that has a small size with a limited battery and 40

memory, whereas the server could be a large data center with
access to significantly more power and memory. Further, the
database of the server could include performance and con
sumption data collected from many different devices when
executing many different applications. Accordingly, the 45

comparison between the small data set and the database can
be statistically richer due to the large sample size of data
provided by the larger database contributed to by a large
number of computational devices. Thus, each device access
ing the server to obtain a model also can contribute to grow 50

the database to the benefit of future users.

cation.
In process 220 of method 200, the small data set repre

senting performance and consumption measurements is used
to estimate a performance model representing the compu
tational performance and power consumption for all com-
putational configurations of the computing device 120 when
executing the current application. In certain implementa
tions, the estimation is performed by the server 110. In
certain other implementations, the estimation is performed
by the computing device 120.

In process 230 of method 200, an optimal computational
configuration is selected using the estimated performance
model from process 120. The optimal computational con
figuration can be a single computational configuration of a
sequence of computational configurations that optimally
executes the current application on the device, according to
predefined criteria. For example, the predefined criteria can
be to minimize the total energy consumption subject to the
constraint that the application be completed within a pre
defined time window. Alternatively, the predefined criteria
can be to maximize computational accuracy subject to the
constraint that no more than a predefined amount of energy
be consumed within the predefined time window. The com
putational configuration of the computing device 120 can
also be optimized according to other predefined criteria.

In step 240 of method 200, the performance model of the
computing device 120 and the small data set used for the
estimation of the performance model can be updated to
improve the performance model and more accurately esti
mate the optimal configuration of the computing device 120.
Further, if the computing device consumes power at a rate
greater or less than the rate indicated by the performance
model than the configuration can be updated to reflect these
changes and to ensure compliance with the predefined
optimization criteria. For example, if the predefined criteria
includes a guarantee that no more than a predefined amount
of energy be consumed within the predefined time window
and a higher than expected amount of energy was consumed
in the first part of the window than the energy consumption
can be decreased throughout the remaining duration of the
time window to ensure the predefined criteria are satisfied.

FIG. 2B shows a flow diagram of process 210. Step 212
of process 210 includes initializing a loop n and initializing

Referring now to the drawings, wherein like reference
numerals designate identical or corresponding parts
throughout the several views, FIG. 1 shows a schematic
drawing of a device-server system. A computing device 120
executes a current application and sends performance data of
the consumption and performance for a small set of com
putational configurations of the computing device 120 when
executing the current application. The performance data is
received by a server 110. The server 110 compares the small
data set receiving from the computing device 120 with a
database of performance data corresponding to various
combinations of devices and other applications. Using these
comparisons between the small data set and the database the
server estimates a performance model, and sends the per
formance model to the computing device 120. The comput
ing device 120 then applies the estimated performance

55 a discrete subset of computation configurations selected
from the set of all computational configurations of the
device. This discrete subset of computation configurations
corresponds to the small data set to be used for the com
parison to the performance database and the estimation of

60 the performance model in process 220.
In step 214 of process 210, the computational perfor

mance and power consumption of the computing device 120
when executing the current application is measured for the
nth computational configuration of the subset initialized in

65 step 212.
In step 216 of process 210, the measured computational

performance and power consumption from step 214 is

US 11,009,836 B2
17 18

recorded in a table. Also the nth computational configuration
of the subset is also recorded in the table. FIG. 3 shows an
example of a table of eight configurations ranging from a
clock rate of 250,000 to 400,000 and ranging from zero
additional cores to 2 additional cores. The number of con- 5

FIG. 2D shows a flow diagram of process 230. The
process 230 in FIG. 2D seeks to optimize the computational
configuration according to the predefined criteria of mini
mizing the total energy consumption under the constraint
that the application is completed within a predefined time
window. In step 232 of process 230, a target job latency is figurations, clockspeeds, and cores provided herein are

non-limiting examples. The methods described herein can
be used with any clockspeed and any number of cores. They
also support other configurable parameters such as network
bandwidth, memory bandwidth, cache partitions, etc. The
computational performance can be recorded as a normalized
speedup factor relative to a baseline configuration, and the
power consumption can be recorded as a powerup factor
indicating the relative increase in power consumed relative
to the baseline configuration.

In step 218 of process 210, the loop index n is incre
mented and process 210 inquires whether all of the initial
ized discrete subset of computational configurations have
been evaluated. If all of the computational configurations
have been evaluated, then process 210 is complete. Other
wise process 210 proceeds from step 218 to step 212.

FIG. 2C shows a flow diagram of process 220. In step 222
of process 220, a database of performance data is retrieved.
The database can include performance data of the computing
device 120 in addition to other computing devices contrib
uting to the database. The database includes recorded mea
surements of the computational performance and power
consumption of these devices for various computational
configurations and executing various applications. The data
base is similar to the small data set corresponding to the
discrete subset of computation configurations of process
210, except the database has more data and corresponds to
several applications. Some of the data from the database will
likely represent a similar power-performance tradeoff as the
power-performance tradeoff represented by the small data
set from computing device 120 executing the current appli
cation. However, the data from the database will also include
data points for computational configurations not included in
the small data set, and these additional data points in the
database can be used to estimate the performance and
consumption values for the computing device 120 executing
the current application that have been omitted in the original
small data set.

Accordingly, a complete model of the computing device
120 executing the current application can be estimated by
comparing the small data set to the more complete data of
the database and identifying those combinations of devices
and applications having power-performance tradeoffs most
similar to the power-performance tradeoffs of the computing
device 120 executing the current application. The data of
these similar combinations of devices and applications from
the database can then be used to fill in the holes left in the
small data set to generate a comprehensive model of the
computing device 120 executing the current application.

In step 224 of process 220, the performance-data table
obtained in process 210 is compared with the database
retrieved in step 222 to find those combinations of devices
and applications having similar computational performance
and power consumption as a function of computational
configuration.

In step 226 of process 220, a performance model of the
device when executing the application is estimated. The
performance model includes the computational performance
and power consumption for all computational configurations

determined for computational tasks of the current applica
tion. The target job latency is the desired amount of time in
which each of the computational tasks is to be completed.

10 The target job latency can be obtained from a ratio between
the computational tasks required to complete the application
and the predefined time window. Further, the optimal solu
tion to satisfy the predefined criteria can be a sequence of
computational configurations. For example, the optimal con-

15 figuration might be to allocate all computational resource to
the application, completing the application as quickly as
possible and then to idle throughout the remainder of the
predefined time window. If a sequence of computational
configurations are used, then the target job latency can vary

20 between the various portions of the sequence.
In step 234 of process 230, the actual job latency is

measured as the computing device 120 executes the appli
cation. When the actual job latency deviates from the target
job latency, a speedup factor is adjusted according to dif-

25 ferences between the measured latency and the target job
latency.

In step 236 of process 230, the estimated performance
model is used to determine the optimal computational con
figuration to achieve the speedup factor. Also, the estimated

30 performance model is used to determine a sequence of
computational configurations to achieve the speedup factor.

In step 238 of process 230, the process 230 continues to
step 234 if the current application is still continuing. If the
optimal configuration is a sequence of configurations, then

35 process 230 will also include the step of updating the target
job latency after the completion of each section of the
sequence. If the application is complete then process 230 is
also complete.

As the application is executing, the measured perfor-
40 mance and consumption of the computing device 120 can be

recorded and used to update the performance model of the
computing device 120. The newly measured performance
and consumption data of the computing device 120 can be
added to the small data set to generate an augmented small

45 data set. This augmented small data set can then be used in
a process similar to process 220 to generate an updated
model of the computing device 120 when executing the
current application. This process of updating the model of
the computing device 120 can be performed in parallel with

50 process 230, and the updated model of the computing device
120 can be incorporated into process 230 after the updated
model has been generated. This updating of the model of the
computing device 120 is indicated as step 240 of method
200, and FIG. 2A shows step 240 as being performed after

55 process 230. However, step 240 can also be performed
simultaneously with process 230. Additionally, step 240 can
be performed at periodic time intervals after starting process
230. In certain implementations, step 240 can be omitted.

FIG. 2E shows a flow diagram of process 230', which is
60 an alternative to process 230. In contrast to process 230,

process 230' solves the constrained optimization problem of
maximizing computational accuracy and maximizing effi
ciency while providing guarantees that predefined compu-
tational tasks are completed within a predefined time period.

of the device when executing the application based on the 65

performance-data table and similar performance data from
the database.

In step 232' of process 230', the performance model is
used to determine an optimal-efficiency configuration cor
responding to a maximum ratio between computational

US 11,009,836 B2
19

performance and power consumption of the device when
executing the application, and set the device in the optimal
efficiency configuration.

In step 234' of process 230', a speedup factor is deter
mined in order to operate in the optimal-efficiency configu
ration and also complete predefined computational tasks
within a desired time period.

20
that x and y are jointly drawn from the distribution D, and
finally xly- D represents that x is drawn from the distribu
tion after observing (or conditioned on) the random variable
y. The following are the operators on x: E [x] expected value

5 ofx, var[x]: variance ofx, Cov[x, y]: covariance ofx and y.
x denotes the estimated value for the random variable x.

The energy optimization problem can be formalized by
In step 236' of process 230', the completion of the

computational tasks are accelerated by the speedup factor by
using approximate computing to trade-off accuracy for 10

increased speed.

the predefined optimization criteria of minimizing the
energy consumed while executing the current application
according to predefined constraints. In the example consid
ered here, these predefined constraints include completing

In step 237' of process 230', the performance model of the
computing device 120 is updated according to continued
measurements of the computational performance and power

15
consumption of the computing device 120 when executing
the application. This updating of the performance model of
the computing device 120 can either be performed according

the application by a predefined deadline. The computing
device 120 can be configurable in various computational
configurations, each configuration having application-spe
cific computational performance characteristics and power
consumption characteristics. The goal of the optimization is
to select the configuration that finishes the work (e.g.,
completes execution of the application) by the deadline to step 240 or step 237' can be performed using another

method described later herein.
Now a description of one implementation is provided as

an illustrative example. This implementation uses probabi
listic graphical models (PG Ms) to perform the functions of
comparing the small data set to the database and to estimate
a performance model of the computing device 120. This
illustrative example further presents an example of optimiz
ing the computational configuration according to the pre
defined optimization criteria of minimizing the energy con
sumption of the current application subject to an additional
performance constraint (e.g., the additional performance
constraint can be that the work of the application be accom
plished by a predefined deadline).

20 while minimizing the energy consumption.
Formally, this goal can be expressed generally as the

computing device 120 accomplishing W work units in time
T. The computing device 120 has a set of configurations
(e.g., combinations of cores and clock speeds) denoted by

25 c . When each configuration c in the set of configurations
C has an application-specific performance (or work rate) re
and power consumption Pc, then the energy minimization
problem can be formulated as a linear program, which is
given by

30

In this example, the following notation is used. The set of
real numbers is denoted by JR . JR d denotes the set of
d-dimensional vectors ofreal numbers; JR dxn denotes the set 35

of real dxn dimensional matrices. The vectors are denoted
subject to .L rJc = W, and

cEC

by lower-case and matrices with upper-case boldfaced let
ters. The transpose of a vector x (or matrix) is denoted by xr
or just x'. llxlb is the £ 2 norm of vector x, i.e.

i.e. llxll2 =

IIXljp is the Frobenius norm of matrix X,

d n

i.e. IIXIIF = .Z.: .Z.: X 2 [i][j].
i=l i=l

Let AEJR dxd denote ad-dimensional square matrix. tr(A) is
the trace of the matrix A and is given as,

d

tr(A) = .L A[i][j].
i=l

Further, diag (x) is ad-dimensional diagonal matrix B with
the diagonal elements given as, B[i][i]=x[i] and off-diagonal
elements being 0.

Now, a review the standard statistical notation used herein
is provided below. Let x, y denote any random variables in
JR d_ The notation x- D represents that x is drawn from the
distribution D . Similarly, the notation x, y- D represents

40
wherein Pc is the power consumed when executing the
application using the cth configuration; re is the performance
rate when running on cth configuration; W is the work to be
performed by the application; tc is the time spent executing

45 the application while configured in the cth configuration; and
T is the total run time when executing the application. The
linear program above finds the times tc during which the
application is executed using the cth configuration so as to
minimize the total energy consumption and ensure all work

50 is completed by the deadline. The values Pc and re are central
to solving this problem, and the values Pc and re are obtained
from the performance model of the device. When Pc and re
are known, the structure of this linear program enables the
minimal energy schedule to be found using convex optimi-

55 zation techniques, for example.
This formulation is abstract so that it can be applied to

many applications and systems. In one embodiment, this
abstract formulation can be performed using a Kmeans
application using a 16-core Linux x86 server with hyper-

60 threading (allowing up to 32 cores to be allocated) as the
computing device 120. The numbers of core counts provided
herein are non-limiting examples. The methods described
herein can be used with any core counts. Further, other
learning techniques can be advantageous choices at different

65 core counts, but the same techniques are applicable. More
over, the configurable parameter need not be cores, but any
allocatable resource.

US 11,009,836 B2
21

The Kmeans application is a clustering algorithm used to
analyze large data sets. The Kmeans application can be run
with different performance demands and can be optimized in
order to minimize energy for any given performance
demand. To do so for Kmeans on the 32-core system, the 5

performance and consumption is estimated as a function of
the number of cores allocated to the application. Given this
information, the most energy efficient number of cores can
be selected according to the given performance demand.

22
Next, the size of the data set used with the database to

determine the estimate of the performance model of the
computing device 120 is considered. The phrase "perfor
mance model" refers to a complete table of power consump
tion and computational performance for all relevant com
putational configurations of the computing device 120. One
simple method, the averaging method, of estimating a per
formance model of the computing device when it is execut
ing the current application is to simply take a mean of Pc
(similarly for re) across all the applications. This averaging
method can work well if the current application follows a
general trend exhibited by all prior applications. This aver
aging method corresponds to the of!Iine methods discussed
above.

Another method, the regression method, of estimating can
also be applied to estimating a performance model for the
current application. In the regression method, consumption
and performance data of the computing device 120 when
executing the current application is obtained for a small
subset of configurations (i.e., the small data set) Then, a
multivariate polynomial regression can be performed on the
small data set for the configuration parameters versus pc (or
re) to predict consumption (or performance) in all other
configurations. This regression method might not work well
if there are local minima or maxima that are not captured by
a small sample size of the small data set. This regression
method corresponds to the online methods discussed above.

A better method is to compare the small data set with the
database of other applications and devices to determine
those combinations of applications and devices that are
similar to the computing device 120 when executing the
current application. Then use these similar combinations of
applications and devices to estimate a performance model of

For the Kmeans application the workload is the number of 10

samples to cluster. The deadline T is the time by which the
clustering is to be completed. The configurations represent
assigning to the Kmeans application different resources. For
example, the assigning of resources could be restricted to

15
determining the number of cores assigned to execute the
Kmeans application. Alternatively, the assigning of
resources can include the assignment of cores, clock speed,
memory controllers, and hyperthreads, depending on which
characteristics of the computing device 120 are configur- 20

able. For the Kmeans application, each assignment of
resources can result in a different rate of computation (points
clustered per time) and power consumption. The computa
tional rate can be defined in terms of the time required to
execute a computational unit. The computational rate (or 25

computational performance) is not necessarily defined in
terms of the number of floating point operations performed,
but can be defined in terms of computational tasks more
closely tied to the goal of the application. For the Kmeans
application the clustering of a predefined number of points 30

is a logical computational unit. Other applications such as
video playback, sorting, searching, etc. can also be subdi
vided into small computational task or computational units,
and these computational units/tasks can form the basis of
determining the computational rate (performance). 35 the computing device 120 when executing the current appli

cation. The Probabilistic Graphical Model (PGM) method is
one example of a method of estimating the performance
model by comparing a small data set to a database.

In addition to the consumption and performance depend
ing on the current application dependent, the consumption
and performance can also depend on the specific inputs used
in the current application. For example, for the same con
figuration of the computing device 120, the Kmeans appli- 40

cation can require more or less time to cluster the same
number of points depending on the set of points. This
variability arising from the inputs to a given application
somewhat limits the predictive power of even the most
accurate model. However, the variability due to the specific 45

inputs can be small and can average out as the sample size
becomes larger, making the variability due to input of
secondary importance when the sample size of application
input is large (e.g., clustering a large number of points in the
Kmeans application). On the other hand, the relative differ- 50

ences among applications are of primary importance. For
any new application the consumption-performance trade
offs will be unknown because a model of the consumption
and performance has not yet been determined for all avail
able configurations of the computing device 120. One way 55

to gather the missing information would be execute the new
application on each configuration in a brute force manner.
However, as discussed earlier, there can be a very large
number of configurations and the brute force approach might
not be manageable. Alternatively, the application can be 60

executed using a small subset of configurations and these
measurements can be used to estimate the behavior of
unmeasured configurations. Additionally, the data from
other applications from the computing device 120 and/or
other computing devices can also be used to estimate a 65

performance model of the computing device 120 (e.g., a
database, which has been collected of!Iine).

The PGM method can best be understood in the context
of directed graphical models. Directed graphical models (or
Bayesian networks) are a type of graphical model capturing
dependence between random variables. Each node in these
models denotes a random variable and the edges denote a
conditional dependence among the connecting nodes. The
nodes which have no edges connecting them are condition
ally independent. By convention, shaded nodes denote an
observed variable (i.e., a node whose value is known),
whereas an unshaded node denotes an unobserved variable.
FIGS. 4A and 4B show examples of directed graphical
models. For example, in FIGS. 4A and 4B, nodes A and B
can represent flips of a coin, and node C can represent the
bias of the coin. In FIG. 4A, node A and node B (i.e., random
variables A and B) are dependent on node C. In FIG. 4B,
node C corresponds to an unobserved variable; therefore
nodes A and B are not statistically independent because the
bias is not observed. However, in FIGS. 4A, A and B are
statistically independent because the bias is observed.

The dependence structure in Bayesian networks can be
better understood by exploring the coin flipping example
with a biased coin. Suppose A represents the outcome of the
first coin flip, B represents that of the second coin flip and
C represents the coin's bias. Suppose, the bias is P(Heads)=
0.7 and that this bias is known. Then both the flips are
independent, irrespective of the first flip the second flip gives
heads with probability 0.7. If the bias is unknown, however,
then the value of B is conditionally dependent on A. Thus,
knowing that A="Heads" increases belief that the bias is

US 11,009,836 B2
23

towards "Heads"-that C>0.5. Therefore, the probability
that the second coin flip gives "Heads" (i.e., B="Heads")
mcreases.

24
a small number of observations are obtained for this appli
cation. Specifically, for the Mth application, the observed
configurations belonging to the set QM where QM «n (i.e.,
there are only a very small number of observations for this The PGM method exploits this conditional dependence in

the presence of hidden, or unobserved, random variables.
The PGM method estimates a model of the computational
performance and power consumption of every system con
figuration as a random variable drawn from a Gaussian
probability distribution with unknown mean and standard
deviation. Therefore, previously observed applications in
the database will condition estimates by the PGM method of
the performance and consumption for new, unobserved
applications.

5 application). The objective is to estimate the power con
sumption for the Mth application for all computational con
figurations that have not been observed (i.e., are not in the
set QM).

The hierarchical Bayesian model, shown in FIG. 5, is
10 described in terms of statistical equations

Hierarchical Bayesian models, which are used in the
PGM method, are slightly more complex than the Bayesian 15

networks discussed above, usually with more than one layer
of hidden nodes representing unobserved variables. The
PGM method utilizes these hidden nodes to improve its
estimates for a new application using prior observations
from other applications. Knowing the performance-charac- 20

teristics of one application can help in producing better
predictors for other applications. Put in the context of the
coin flip example above, learning about one biased coin flip
conveys information about another coin flip. Similarly,
learning about previous applications provides information 25

about the Knieans application, for example. The PGM
method utilizes this conditional dependence in the problem

wherein Y,ERn; z,ER n; f.l,E]R n; and ~ER nxn_ These equa
tions describe that the power (denoted by y,) for each i th

application is drawn from a multivariate-Gaussian distribu
tion with mean z, and a diagonal covariance matrix a2 I.
Similarly, z, is from a multivariate-Gaussian distribution
with meanµ and covariance~- Further,µ and~ are jointly
drawn from a normal-inverse-Wishart distribution with
parameters f.lo, it, W, and v. The parameters for this model
are µ and ~ whereas, f.lo, it, W, and v are the hyper
parameters, which are set as f.io=0, it=l, W=I, and v=l.

The first layer in the model as shown in FIG. 5 is the
filtration layer and accounts for the measurement error for
each application. Interestingly, even if there is only a single

of estimating computational performance and power con
sumption for a current application using data from previous
applications. 30 measurement of each configuration for each application, this

layer plays a crucial role as it creates a shrinkage effect. The
shrinkage effect penalizes large variations in the application
and essentially helps in reducing the risk of the model for

FIG. 5 shows a schematic diagram of a hierarchical
Bayesian model that can be used for the PGM method. In
FIG. 5, there are n=I C I configurations of the computing
device 120. The target application (i.e., the current applica
tion) corresponding to subscript M is the new or unknown 35

application for which a performance model is desired. For
this target application a performance model is desired in
order to minimize the energy consumed subject to a pre
defined constraint (e.g., completing the target application by
the predefined deadline), as discussed above.

shrinkage effect and for shrinkage in hierarchical models.
The second layer on the other hand binds the variable z, for
each application and enforces that they are drawn from the
same distribution with unknown mean and covariance. The
normal-inverse-Wishart distribution is the hyper prior on µ
and ~ because this distribution is the conjugate prior for a

40 multivariate Gaussian distribution.
Additionally, the data of the database is indicated by the

set of M-1 applications (subscripts 1 through M-1) whose
performance and power are known (e.g., database values
that have been measured oflline). Each subscript corre
sponds to one combination of a device and an application. If 45

the database includes measurements from only a single
computing device (e.g., the computing device 120), then the
combinations of devices and applications will correspond to
a combination of the single device with different applica
tions. The variable y is a placeholder for either p (power 50

consumption) or r (computational performance).
Here the process of estimating the consumption as a

function of configuration is discussed for the PGM method.
A parallel/identical process can also used for estimating the
computational performance. Further, the example described 55

herein is for the case of a single device (i.e., the computing
device 120) executing all of the applications 1 through M.

Let the vector y,E]Jl n represent the power consumption
estimate of application i in all n configurations of the
computing device 120 (e.g., the cth component of y, is the 60

power for application i in configuration c (or y,[c]=pc)).
Also, let {yJ,~iM be the shorthand for the power estimates
for all applications. Without loss of generality, the first M-1
colunms (i.e., {yJ,~1M-l represent the data for those appli
cations whose power consumption is known (e.g., this data 65

can be collected oflline). The Mth colurmi, y M represents the
power consumption for the new, unknown application. Only

If the mean µ, the covariance ~, and the noise a are
known, then y, are conditionally independent given these
parameters. However, since the mean µ, the covariance ~,
and the noise a are unknown a dependence is introduced
amongst all the y,'s. This is a similar situation to the coin
flipping example discussed above, in which the value of one
coin flip influences our prediction about the other coin flip.
~ captures the correlation between different configurations
as shown in FIG. 6.

The variable 8={µ, ~, a} can be used to denote the
unknown parameters µ, ~, and a in the model. y M is
Gaussian given 8. Thus, the estimation problem simplifies to
estimating 8. A maximum-likelihood estimator can be used
to determine the set of values of the model parameters that
maximizes the likelihood function (or the probability func
tion of the observed outcomes given the configuration
parameters). Thus, the maximum-likelihood estimates of
configuration parameters are those values which most
closely agree with the database.

For example, if cp(y) is the set of the observations in vector
y, then finding the maximum likelihood estimate of the
parameter 8 can be achieved by maximizing the probability
of y M conditioned on gi(y,),~1M and then using the expecta
tion of y M given and 8 as the estimator for y M- Due to the
presence of latent variables (layer 1 and layer 2 in FIG. 5),
there is not a closed form solution for Pr(y Ml { cp(y,)} ,~i M, 8).
However, an iterative method, such as the Expectation-

US 11,009,836 B2
25

Maximization algorithm discussed next can be used to
obtain a solution for Pr(yMl{cp(y,)},~1M, 8).

26
optimal performance and consumption tradeoffs. Then an
iterative method can be used to walk along the convex hull
of this optimal tradeoff space until the performance goal is
reached.

In one example, method 200 using the PGM method can
be applied to executing the Kmeans application using a
computing device 120 that is the 16-core Linux x86 server
with hyperthreading, discussed above. In this example, there
are 32 configurations (hence n=32). Further, the example

The Expectation-Maximization (EM) algorithm can be
used to optimize over analytically intractable problems. The
EM algorithm switches between two steps: an expectation 5

step (E step) and a maximization step (M step) until con
vergence. During the E step, a function for the expectation
of the log of the likelihood is found using the current
estimate for the parameters. In the M step, the configuration
parameters are computed to maximize the expected log
likelihood found in the Estep. Then, in the next Estep, these
estimates of the configuration parameters are used to deter
mine a distribution of the latent variables, as discussed in
Kai Yu, Volker Tresp, and Anton Schwaighofer. "Learning
gaussian processes from multiple tasks," Proceedings of the
22nd International Conference on Machine Learning, pages
1012-1019, ACM, (2005), incorporated herein by reference

10 includes 24 other applications not including the current
(target) application (hence M=25). For these 24 other appli
cations, data has been collected for all possible configura
tions of the 16-core Linux x86 server. The data of these other
applications and configurations is denoted by {y,} ,~i M-I; y M

15 denotes the power consumption data for Kmeans.
The core counts, hyperthreading, OS, and processor

model described above are provided as non-limiting
examples, and the methods described herein are not depen
dent upon these particular examples. Furthermore, the num-

in its entirety.
As described earlier, Q, is the set of observed indices for

the i th application. Let L denote the indicator matrix with L(i,
j)=l if jEQ, and 0 otherwise. Stated differently, L(i, j)=l if
the i th application is observed in the j th configuration. L, is
used as shorthand for L(:, i). The expectation and covariance
for z, given 8 are given by

(
diag(L;) 'v-1)-1

Cov(z;) = ------;;:z- + L, and

_ , (diag(L;)y; 'v-1)
E(z;) - C; --<T-

2
- + L, µ .

These two equations are the E step. Ci is shorthand for
Cov(z,) and z, denotes E(z,). Next, the log-likelihood is
maximized with respect to 8 and taking the derivative with
respect to ~, a, and µ and setting the derivatives to 0 gives,

1 M

µ= M+n~Z;,
i=l

These three equations are the M step.

20 ber of other applications used by the PGM method (or other
learning technique used in another implementation) can
vary. The specific learning technique in this example can
produce better results when there are a greater number of
other applications. Different learning techniques may pro-

25 duce better results for lower numbers of applications. It can
be noted that, in certain implementations, the general
approach of combining learning and control can work with
fewer other applications, by simply applying a different
specific learning technique to build the model that is passed

30 pass to the controller. The application of the methods
described herein in which the number of other applications
is zero is denoted as the "online" method.

Referring to FIG. 5, the Kmeans application is the final
node, labeled "Target Application," whereas the rest of the

35 applications would be the remaining nodes in any order. The
PGM method estimates zM, the node above YM in FIG. 5,
which is an unbiased estimator for y M The PGM method
collects data for six different configurations (5, 10, ... 30
cores). Hence, QM={5, 10, ... 30} andy,v[j] is known if and

40 only if jEQM Also, L, or L(:,i) is an all one vector of length
n if i>'M and L(j,i)=l if jEQM and L(j,i)=0 otherwise.

In this example, the method 200 starts by initializing the
parameter 8=(µ, ~, a). Next the E-step equations are evalu
ated for each value of i to calculate the values of z, and C,.

45 Next the values of z, are used to evaluate equations of the
M-step. Then the results from the M-step are used as inputs
to the E-step, and so forth until convergence. When the
iteration between the E-step and M-step have converged,
process 220 is complete.

Next method 200 proceeds to process 230, in which the
estimate for zM from process 220 is used as the performance
model of the computing device 200 (i.e., Pe=zM [c], VcE c).
Similarly, the PGM method is used to estimates the perfor
mance re. Using these estimate for re and pp as the perfor-

The PGM method iterates between the E step and the M 50

step until convergence to obtain the estimated parameters 8.
Then, conditioned on those values of the parameters, the
PGM method sets YM as E(zMl8) given by the above equa
tions. The PGM method uses the same algorithm to estimate
computational performance as well. After both the compu
tational performance and the power consumption have been
estimated for all configurations of the computing device 120
when executing the current application, then process 220 is
complete and method 200 proceeds to step 230, in which the
performance model estimated in process 220 is applied to
determine the optimal configuration according to the pre
defined efficiency criteria.

55 mance model in process 230 to determine the optimal
configuration of the computing device 120 when executing
the Kmeans application.

The PGM method does not assume any parametric func
tion to describe how the power varies along the underlying

60 configuration parameters, such as the number of cores, the
memory controllers, and clockspeed. Thus, the PGM
method is flexible and robust enough to adapt to and
represent a much wider variety of applications than a
method relying on prior assumption of how the computing

Given computational performance and power consump
tion estimates, the energy minimization problem can be
solved using convex optimization techniques. For example,
process 230 can be performed by using the performance
model to find the set of configurations that represent Pareto-

65 configurations influence consumption and performance of
the computing device. This absence of prior assumptions can
also result in using greater computational resources to

US 11,009,836 B2
27 28

using all resources to their full capacities) and the time
provided for performing the computational task. For
example, if working at maximum capacity the device 120
can achieve the task in one second, but two seconds are

perform the method, increasing the value of performing the
PGM method on a server with extensive power resources
rather than on a mobile computing device with a limited
battery. These greater computational resources are used to
calculate the covariance matrix shown in FIG. 6 and to
exploit the relationships expressed by the covariance matric
to estimate, which can be computationally demanding tasks.

5 allotted to perform the task, then the utilization would be
0.5. In this non-limiting example, tests are performed across
a full range of utilization. In another implementation, the
utilization can be varied by maintaining the time constant
while varying the amount of computational work. In this

In addition to the PGM method, other methods can be
used which assume that consumption and performance are
convex functions of the computational configuration param
eters. These other methods can use algorithms, such as the
gradient descent method, to find the device model and the
optimal computational configuration. In contrast to these
other methods, the PGM method is robust to the existence
local minima and maxima in the function mapping the 15

computational configurations on to the power consumption
and the function mapping the computational configurations

10 implementation, the denominator of the ratio is the amount
of work that can be performed in the allotted time when
working at maximum capacity, and the numerator of the
ratio is the amount of computational work actually required
within the allotted time.

on to the computational performance.
To illustrate the benefits of the method 200, method 200

is compared to three other method: the heuristic of race-to- 20

idle method, an oflline learning method, and an online
learning method. The race-to-idle method simply allocates
all resources (cores, clockspeed, etc.) to the Kmeans appli
cation and then idles the computing device 120 once the
Kmeans application is complete. The oflline methods builds 25

a statistical model of performance and consumption for each
configuration based on prior measurements of other appli
cations. The online method approach uses polynomial
regression to estimate the tradeoffs between performance
and consumption for each configuration while the Kmeans 30

application is being executed by the computing device 120.

FIG. 9 shows the energy consumption data where higher
utilizations mean more demanding performance require
ments. As can be seen in FIGS. 7 and 8, method 200 is the
only estimation method that captures the true behavior of the
application and this results in significant energy savings
across the full range of utilizations.

Learning the performance for Kmeans application is
computationally challenging because the application scales
well to 8 cores, but its performance degrades sharply when
more cores are applied. The illustrative numbers provided in
this non-limiting example can be generalized, as would be
understood by a person of ordinary skill in the art, to an
arbitrarily large number of cores. As the number of cores
increases, other learning algorithms might be faster. There
fore, finding the peak using only 6 uniformly distributed
values (5, 10, ... , 30 cores) without exploring every
possible number of cores is quite challenging. The oflline
learning method predicts the highest performance at 32
cores because that is the general trend over all applications.
The online method predicts peak performance at 24 cores, so

Each of these three methods has their respective limita
tions. For example, the heuristic approach simply assumes
that the most energy efficient configuration is when all the
system resources are in use.

The oflline approach uses the average behavior from the
previously measured applications as the model for the
Kmeans application, but this may be a poor model if the
previous applications are dissimilar to the Kmeans applica
tion.

35 it benefits by learning that performance degrades at the
highest number of processors, but the online method fails to
discover the actual peak. The online method requires many
more samples to correctly find the peak. In contrast, method
200 leverages prior knowledge of an application whose

Using a large number of measurements, the online method
can produce a reasonable model, but acquiring a large
number of measurements might not be feasible.

40 performance peaks with 8 cores. Because method 200 has
previously encountered an application with similar behavior,
method 200 is able to quickly realize that the Kmeans
application follows a similar pattern and method 200 pro
duces accurate estimates with just a small number of obser-Method 200 combines the best features of both the oflline

and online approaches. At runtime, method 200 changes
core allocation (e.g., using process affinity masks), observes
the consumption and performance as a function of the
various core allocations, and combines this data with data
from previously observed applications (i.e., a database) to
obtain a most probable estimate for the consumption and 50

performance for the unobserved configurations of the com
puting device 120.

45 vations. Generally, the methods described herein can work
with any number of observations. It can be observed that the
HBM seems to advantageously provide good accuracy,
especially with only a small number of observations, but
other learning approaches can be used.

Now simulations are described. The simulations provide
an evaluation of method 200's performance and power
estimates, and also of method 200's ability to use those
estimates to minimize energy across a range of performance
requirements. First, the experimental setup of the simulation

FIGS. 7 and 8 show comparisons of method 200 relative
to the optimal values (i.e., brute force method), the oflline
method, and the online method. FIG. 9 shows a comparison
of method 200 relative to the race-to-idle method, optimal
values (i.e., brute force method), the oflline method, and the
online method. FIG. 7 shows performance estimates for each
method as a function of the number of cores. Similarly, FIG.
8 shows estimates of power consumption for each method as
a function of the number of cores.

55 is described and benchmark approaches are also described
and compared to method 200. Further, method 200's accu
racy is discussed for performance and power estimates. Then
it is demonstrated that method 200 provides near optimal
energy savings using these estimates. Also discussed is how

60 method 200 performs with respect to different sample sizes
and a measurement of method 200's overhead.

These runtime estimates are then used to determine the
minimal energy configuration for various system utiliza
tions, which are shown in FIG. 9. In certain implementa
tions, the utilization can be measured by the ratio between 65

the time in which the computational task can be performed
when working at maximum capacity (e.g., the configuration

The test platform for the simulation is a dual-socket Linux
3.2.0 system with a SuperMICRO X9DRL-iF motherboard
and two Intel Xeon E5-2690 processors.

This is a non-limiting example. For example, the methods
described herein are not contingent on the parameters of the
test platform. The methods described herein are general, and

US 11,009,836 B2
29

can be applied to any number of platforms with different
numbers and types of configurable resources. The cpu
fregqutils package is used to set the processor's clock speed.
The processors have eight cores, fifteen DVFS settings
(from 1.2 to 2.9 \GHz), hyperthreading, and TurboBoost. In 5

addition, each chip has its own memory controller, and the
numactl library is used to control access to memory con
trollers. In total, the system supports 1024 user-accessible
configurations, each with its own power/performance
tradeoffs (e.g., 16 cores, two hyperthreads, two memory 10

controllers, and 16 speed settings (15 DVFS settings plus
TurboBoost)). According to Intel's documentation, the ther
mal design power for these processors is 135 Watts. The
system is connected to a Watts Up meter which provides total
system power measurements at one second intervals. In 15

addition, Intel's RAPL power monitor is used to measure
chip power for both sockets at finer-grain intervals. The
simulations use 25 benchmarks from three different suites,
including: PARSEC (which includes blackscholes,
bodytrack, fluidanimate, swaptions, x264); Minebench 20

(which includes ScalParC, apr, semphy, svmrfe, Kmeans,
HOP, PSA, and Kmeansnf); and Rodinia (which includes
cfd, nn, lud, particlefilter, vips, btree, streamcluster), back
prop, and bfs).

30
search approach. The race-to-idle approach allocates all
resources to the application and once it is finished the system
goes to idle. This strategy incurs almost no runtime over-
head, but may be suboptimal in terms of energy, since
maximum resource allocation is not always the best solution
to the energy minimization equation. The online approach
carries out polynomial multivariate regression on the
observed dataset using configuration values (the number of
cores, memory control and speed-settings) as predictors, and
estimates the rest of the data-points based the same model.
Then it solves a linear program of the energy minimization
problem provided in the foregoing. This method uses only
the observations and not the prior data. The oflline approach
takes the mean over the rest of the applications to estimate
the power and performance of the given application and uses
these predictions to solve for minimal energy. This strategy
only uses prior information and does not update based on
runtime observations. The exhaustive search approach
searches every possible configuration to determine the true
performance, power, and optimal energy for all applications.

FIGS. 12A and 12B show a comparison of average energy
(normalized to optimal) by different estimation techniques
for various benchmarks. The energy for method 200 is very
close to optimal. On an average (taken over all the bench
marks) method 200 consumes 6% more than optimal, as
compared to the online, oflline, and race-to-idle approaches,
which respectively consume 24%, 29% and 90% more
energy than optimal.

FIGS. l0A and 10B show bar charts of the Pareto frontier
for power and performance estimation using different esti
mation algorithms. The estimated Pareto-optimal frontiers
are compared to the true frontier found with exhaustive
search, providing insight into how method 200 solves the
expressions in the foregoing. When the estimated curves are
below optimal plots, it represents worse performance, i.e.,
missed deadlines, whereas the estimations above the optimal
represent wasted energy.

Method 200's estimates are compared with the online,
oflline, and exhaustive search methods described in the
foregoing. Each of the 25 applications is deployed on the test
system, and performance and power are estimated. In certain
embodiments, method 200 and the online method both
randomly select and sample 20 configurations. Unlike the
online method, which only uses these 20 samples, method
200 utilizes these 20 samples along with all the data from the
other applications for the estimation purpose. These are
non-limiting examples. Both approaches get more accurate
as the number of samples increases. For both method 200
and the online approach, the average estimates are produced
over 10 separate trials to account for random variations. The
oflline approach does no sampling. The exhaustive approach
samples all 1024 configurations.

FIGS. l0A and 10B show a comparison of performance
(measured as speedup) estimation by different techniques for

In certain implementations, the use of more applications 25

can be used to improve the results. The applications used
represent a broad set of different computations with different
requirements and demonstrate generality. The simulation
also uses a partial differential equation solve jacobi), a file
intensive benchmark (filebound), and a search web-server 30

(swish++) These benchmarks provide means for testing a
range of types of important multicore applications with
various compute-intensive and i/o-intensive workloads. All
the applications run with up to 32 threads (the maximum
supported in hardware on the test machine). This is a 35

non-limiting example, any number of threads can be used. In
addition, all workloads are long running, taking at least 10
seconds to complete. To produce measurable behavior, the
configurable system is operated for a sufficiently long time.
What constitutes a sufficiently long time can be application 40

and system dependent. For example, a sufficiently long time
could be much shorter than 10 s. For example, the GRAPE
implementation described below can operate on the micro
second scale. Similarly if the operation time is longer, then
the system has more than enough time to learn. This duration 45

gives sufficient time to measure system behavior. Alt appli
cations are instrumented with the Application Heartbeats
library which provides application specific performance
feedback to method 200. Thus, method 200 is ensured of
optimizing the performance that matters to the application 50

being evaluated. All performance results are then estimated
and measured in terms of heartbeats per second. When the
Kmeans application is used to demonstrate method 200, the
heartbeats per second metric represents the samples clus
tered per second. 55 various benchmarks. The accuracy of method 200 is con

sistently better than the online and oflline approaches. On an
average (over all benchmarks), method 200's accuracy is
0.97 compared to 0.87 and 0.68 for the online and oflline
approaches respectively. The results are normalized with

To evaluate method 200 quantitatively, the accuracy of the
predicted performance and power values y is measured with
respect to the true data y as,

, { 115' - YII~) accuracy(y, y) = ma 1 - ---, 0 .
IIY-YII~

Now, method 200 is evaluated by comparing method 200
with four baselines approaches: the race-to-idle approach,
the online approach, the oflline approach, and the exhaustive

60 respect to the exhaustive-search method. Further, these are
representative, non-limiting results. It can be expected that
the results to change on different systems or with different
applications. However, in certain implementations, it can be
observed that the HBM performs better than existing

65 approaches.
FIGS. llA and 11B show a comparison of power (mea

sured in Watts) estimation by different techniques for vari-

US 11,009,836 B2
31 32

and outperforms the other estimators. The experiment
described in the foregoing is repeated for all applications,
then average the energy consumption for each application
across all utilization levels. These results are shown in FIGS.

ous benchmarks. The accuracies for method 200 are con
sistently better than the offline approach. On an average
(over all benchmarks), method 200's accuracy is 0.98 com
pared to 0.85 and 0.89 for the online and offline approaches
respectively. Again, the results are normalized with respect
to the exhaustive-search method. As above, these are rep
resentative, non-limiting results.

5 12A and 12B, which display the benchmark on the x-axis
and the average energy (normalized to optimal) on the
y-axis. On an average across all the applications, method
200 does only 6% worse than optimal. In contrast, online,
offline and race-to-idle methods are 24%, 29%, and 90%

The performance and power estimation accuracies are
shown in FIGS. l0A and lOB and in FIGS. llA and 118
respectively. The benchmarks are shown along the x-axis
and estimation accuracy on the y-axis. Unity represents
perfect accuracy. As seen in these FIGS. lOA, lOB, llA, and
llB, method 200 produces significantly higher accuracy for
both performance and power. On average (across all bench
marks and all configurations) method 200's estimations 15
achieve 0.97 accuracy for performance and 0.98 for power.

10 worse respectively. These are non-limiting representative
results. These results demonstrate that method 200 not only
produces more accurate estimates of performance and
power, but that these estimates produce significant-near
optimal-energy savings.

Next is described how method 200 can quickly react to
changes in application workload. To demonstrate this, the
application fluidanimate, which renders frames, was
executed with an input that has two distinct phases. Both
phases are completed in the same time, but the second phase

In contrast, the online approach achieves accuracies of 0.87
and 0.85, while the offline approach's accuracies are 0.68
and 0.89. Even for difficult benchmarks (like the Kmeans
application), method 200 produces accurate estimations
despite sampling less than 2% of the possible configuration
space.

20 is performed with significantly less work. In particular, the
second phase uses only 2/2rd of the resources used by the first
phase. These are non-limiting representative results. Thus,
executing the application fluidanimate demonstrate that
method 200 can quickly react to phase changes and maintain

Method 200 produces highly accurate estimates of per
formance and power. For example, the performance models
for the Kmeans, Swish, and x264 applications have accu
racies of 0.99, 1.00, and 0.98, respectively, and the power
consumption models for the Kmeans, Swish, and x264
applications have accuracies of0.99, 1.00, and 0.98, respec
tively. Method 200 accurately represents both the peak
performance configuration and the local minima and
maxima for all three applications. These accurate estimates 30

provided by the performance models make method 200
well-suited for use in energy minimization problems, espe
cially for applications having unusual behavior.

25 near optimal energy consumption. The results of executing
the application fluidanimate are shown in FIGS. 15A and
15B and summarized in Table 1. FIGS. 15A and 15B show
time (measured in frames) on the x-axis.

The goal of method 200 is not only to estimate perfor
mance and power, but to minimize energy for a performance 35
(or utilization) target. Thus, method 200 uses the estimates
of the performance model to form the Pareto-optimal fron
tier of performance and power tradeoffs. FIGS. 13A, 13B,
and 13C show the true convex hull and those estimated by
method 200 and the offline and online approaches. Due to
space limitations, only the hulls for the three representative 40

applications (i.e., Kmeans, Swish, and x264) are shown. In
FIGS. 13A, 13B, and 13C performance (measured as
speedup) is shown on the x-axis and system wide power
consumption (in Watts) on the y-axis. FIGS. 13A, 13B, and
13C clearly show that method 200's more accurate estimates 45

of power and performance produce more accurate estimates
of Pareto-optimal tradeoffs.

To evaluate energy savings, each application is deployed
with varying performance demands. Technically, the dead
line is fixed and the workload W is varied, such that
WE[minPerformance, maxPerformance] for each applica
tion. One hundred different values are tested for W for each
application, each value of W representing a different utili
zation demand from 1 % to 100%. This broad range of
possible utilizations demonstrates the generality of the meth
ods described herein. Each approach is used to estimate
power and performance and form the estimated convex hull
and select the minimal energy configuration.

50

55

FIGS. 14A, 14B, and 14C show the results for the three
representative benchmarks. Each of the FIGS. 14A, 14B,
and 14C shows the utilization demand on the x-axis and the 60

measured energy (in Joules) on the y-axis. Each of the FIGS.
14A, 14B, and 14C shows the results for the method 200,
online, and offline estimators as well as the race-to-idle
approach and the true optimal energy. As shown in FIGS.
14A, 14B, and 14C, method 200 produces the lowest energy 65

results across the full range of different utilization targets. In
this example, method 200 is consistently close to optimal

FIG. 15A shows performance normalized to real-time on
the x-axis, and FIG. 15B shows power in Watts (subtracting
out idle power) on the y-axis. The dashed vertical line shows
where the phase change occurs. Each of FIGS. 15A and 15B
shows the behavior for method 200, the offline method, the
online method, and an optimal solution.

All computational configurations represented in FIGS.
15A and 15B are able to meet the performance goal in both
phases. This fact is not surprising as all use gradient ascent
to increase performance until the demand is met. The real
difference comes when looking at power consumption. Here,
it can be observed that method 200 again produces near
optimal power consumption despite the presence of phases.
Furthermore, this power consumption results in near optimal
energy consumption as well, as shown in Table 1. These
results indicate that method 200 produces accurate results
even in dynamically changing environments.

TABLE 1

Relative energy conswnption by various algorithms with respect to
optimal. These are non-limiting representative results.

Algorithm Phase#! Phase#2 Overall

Method 1.045 1.005 1.028
Oflline 1.169 1.275 1.216
Online 1.325 1.248 1.291

Method 200's runtime overhead is tricky to quantify, but
can be quantified. The runtime takes several measurements,
incurring minuscule sampling overhead. After collecting
these samples, the runtime incurs a one-time cost of execut
ing method 200. After executing this algorithm, the models
are sufficient for making predictions and method 200 does
not need to be executed again for the life of the application
under control. For this reason, method 200 appears to be
well suited for long running applications which may operate
at a range of different utilizations. In certain embodiments,
the one-time estimation process is sufficient to provide
accurate estimates for the full range of utilizations.

US 11,009,836 B2
33 34

shows the average latency (normalized to 1-the empirically
determined worst case). The y-axis shows energy (normal
ized to 1-the highest measured energy). FIGS. 16A and
16B show the very different tradeoffs for the Vaio and the

5 ODROID with each point representing a different configu
ration. For the Vaio, energy increases as frame latency
increases. That is, a slower job wastes energy. For the
ODROID, energy decreases as frame latency increases. That

Therefore, the overhead is measured in two ways: (i) the
average time required to execute method 200 is measured on
the system and (ii) the average total system energy con
sumption is measured while executing the runtime. The
average execution time is 0.8 seconds across each bench
mark for each power and performance. These are non
limiting representative results. The average total system
energy consumption while executing the runtime is mea
sured to obtain an energy overhead value of 178.5 Joules.
The overhead is not trivial. However, for applications that 10

run in the 10 s of seconds to minutes or more, method 200's
overhead is easily amortized by the large energy savings
enabled. For comparison, the exhaustive search approach
takes more than 5 days to produce the estimates for the
semphy application, and for the HOP application, which is
the fastest application used in the example in the foregoing,

is a slower encoding saves energy.
The different shapes of these tradeoff spaces lead to

different optimal resource allocation strategies. Empirical
studies show that the race-to-idle heuristic, which makes all
resources available and then idles after completing a job, is
near optimal on systems like the Vaio. On systems like the

15 ODROID, energy can be economized by keeping the system
constantly busy and never idle.

an exhaustive search takes at least 3 hours.
Now, a method of performing process 230 is described,

using an example of achieving a latency goal for executing
an application. Many implementations of process 230 can be
used. The implementation described now uses abstract
resource management into a middleware or runtime, and this
particular implementation is referred to as POET (Perfor
mance with Optimal Energy Toolkit). POET is unique
because of (i) how it generates and uses energy awareness,
(ii) POET is designed for portability, and (iii) POET incor
porates a true minimal-energy resource allocation algorithm.

To better understand POET, it is helpful to consider
motivations for portable, energy-aware resource manage
ment. Further it is helpful to consider an example application

To demonstrate the importance of choosing the right
strategy, the two heuristics, race-to-idle and never-idle, are
analyzed and compared using both platforms and compare

20 their energy consumption to respective optimal configura
tions. The latency target is set equal to twice the minimum
latency and the energy consumption of encoding 500 video
frames using each heuristic is measured.

FIG. 16B shows the results, normalized to the optimal
25 energy found by measuring every possible resource configu

ration. Both heuristics meet the latency target, but their
energy consumptions vary tremendously. On the Vaio, race
to-idle is near optimal, but never-idle consumes 13% more
energy. Conversely, never-idle is near optimal for the

30 ODROID, but race-to-idle consumes two times more energy.
by evaluating the timing and energy tradeoffs of a video
encoder on two embedded platforms, a Sony Vaio™ tablet
and an ODROID™ development board. The two platforms
not only have different resources for management, but also
have latency and energy tradeoffs with different topologies. 35

Thus, resource allocation strategies that save energy on one
are wasteful on the other.

These results demonstrate that the resource allocation
strategy greatly affects energy consumption, and more
importantly, that heuristic solutions are not necessarily por
table across devices. These two points motivate the need for
an approach like POET, which provides near optimal
resource allocation while remaining platform-independent.
POET's runtime uses control theory to meet timing con
straints and linear programming to minimize energy con
sumption. Thus, using the performance model obtained from

This example features a video encoder, composed of jobs,
where each job encodes a frame. The encoder is instru
mented to report job latency and the platform's energy
consumption is measured over time. The two platforms have
different configurable resources, shown in Table 2. The Vaio
allows configuration of the number of active cores, the
number of hyperthreads per core, the speed of the proces
sors, and the use of TurboBoost. The ODROID supports
configuration of the number of active cores, their clock
speed, and whether the application uses the "big" (Cortex-
Al 5 high performance, high power) or "LITTLE" (Cortex
A7 low performance, low power) cores.

TABLE 2

40 the server 110, a device 120 executing POET's runtime can
optimize energy consumption according to some predefined
criteria, as exemplified in the following.

In certain implementations, POET uses a resource allo
cation framework. The goal of the resource allocation frame-

45 work is twofold: (i) to provide predictable timing so appli
cation jobs meet their deadlines and (ii) to minimize energy
consumption given the timing requirement. These two sub
problems are intrinsically connected, but can be decoupled
to provide a general solution. In practice, complexity can

Two embedded platforms witb different configurable components. These
differences in platforms demonstrate tbe generality of tbe metbods described herein. Furtber,

the methods described herein are even more general, and are not restricted to these two
latforms.

Core Speeds Turbo- Hyper-
Platform Processor Cores Types (GHz) Boost Threads

Sony Intel 2 .6-1.5 yes yes
Vaio Haswell
ODROID- Samsung 8 2 (A15 .8-1.6 no no
XU+E Exynos5 &A7) (A15) .5-1.2

Octa (A7)

FIGS. 16A and 16B exemplify the tradeoffs between
energy consumption and latency. In FIG. 16A, the x-axis

Idle
Power
(W) Configurations

2.5 45

0.12 69

65

arise from the keeping resource allocation general with
respect to the platform and the running application. The

US 11,009,836 B2
35

problem of providing predictable timing is addressed by
using control theory to compute a generic control signal.
Using the computed control signal, the energy minimization
problem is solved using mathematical optimization.

36
tions may also experience phases, where base speed changes
over time. To accommodate these situations, POET, in
certain embodiments, continually estimates base speed using
a Kalman filter, which adapts b(t) of control the current

FIG. 17 illustrates the POET architecture 1700. The
application 1725 informs the runtime of its target job latency
(i.e., latency goal). Measuring each job start and completion
time, POET's runtime computes a latency error and passes

5 application behavior.
POETs control formulation is independent of a particular

application as it, in certain embodiments, uses the Kalman
filter to estimate the application base speed. Unlike prior
work, this controller 1710 does not reason about a particular it to a controller 1710. The controller 1710 uses the latency

error (i.e., error) to calculate a generic control signal, indi
cating how much the speed of the application 1725 can be
altered. This signal is used by the optimizer 1720, together
with the specification of available resources 1715, to sched
ule resource usage so that the desired speed is achieved and
energy consumption is minimized. Both the controller 1710
and the optimizer 1720 are designed independently of the
application 1725 and system 1730. The only assumption
made is that applications are composed of repeated jobs,
each with a (soft real-time) deadline, or desired latency.
Further, for multicore platforms, it is assumed that each job
may be processed by multiple, communicating threads.

10 set of resources, but computes a generic control signal s(t).
POET provides formal guarantees about its steady-state
convergence and robustness without requiring users to
understand control theory.

The optimizer 1720 turns the generic control signal com-
15 puted by the controller 1710 into a system-specific resource

allocation strategy, translating the speedup s(t) into a sched
ule for the available resources. The schedule is computed for
the next -i: time units. To meet the requirement on the target
latency and avoid deadline misses, POET ensures that the

20 application completes I(t) jobs in the next interval by the

The controller 1710 cancels the error between the desired
job deadline dr and its measured latency dm(t) at time t. The
error e(t) is considered using the abstraction of the job speed, 25
where the required speed is 1/dr and the measured speed at
time t is 1/dm(t).

expression

I(t)ccr;·s(t)·b(t).

As shown in FIG. 17, the optimizer 1720 takes, as input,

1 1
e(t)= - ---

d, dm(t)

POET models latency as

a resource specification containing the set of available
system configurations (e.g., the performance model obtained
from the server 110). For example, there can be C possible
configurations in the system and by convention, these con
figurations are numbered from 0 to C-1. Accordingly, c=0

30 indicates the configuration where the least amount of
resources is allocated to the application 1725, corresponding
to a low-power idle state or sleep state when available. In
contrast, configuration C-1 maximizes the resource avail
ability. Each configuration c is associated with a power

35 consumption Pc and speedup sc
1

dm(t) = s(t- 1)-b(t- 1)

wherein s(t) is the speedup to achieve with respect to b(t),
the base application speed, i.e., the speed of the application
when it uses the minimum amount of resources.

Given this information, POET schedules for each con
figuration c an execution time -cc, ensuring that the I(t)
iterations complete and the total energy consumption is
minimized. To do so, POET solves the optimization prob-

40 !em:

POETs controller 1710 uses the error to calculate the
control signal s(t) so that the speedup cancels the error. The
controller 1710 intervenes at discrete time instants and

45
implements the integral control law, as expressed by

e(t)
s(t)=s(t-1)+(1-p)· b(t)

50

wherein p is a configurable pole of the closed loop charac
teristic equation. To ensure the controller 1710 reaches a
steady state where the error is eliminated without oscilla
tions, the value of p should lay in the unit circle, i.e., 0sp<l 55

and p is user-configurable. Relatedly, in certain implemen
tations, the CALO REE architecture 2000 automatically con
figures the pole to ensure convergence given a learned
model. A small p makes the controller 1710 highly reactive,
whereas a large p makes it slow to respond to external 60

changes. However, a large p ensures robustness with respect
to transient fluctuations and may be beneficial for very noisy
systems. A small p will cause the controller 1710 to react
quickly, potentially producing a noisy control signal.

The parameter b(t) represents the application's base 65

speed, which directly influences the controller 1710. Differ
ent applications will have different base speeds. Applica-

C-1

minimize ~ TC • p C

c=O

C-1

s.t. ~ r, ·s, ·b(t) = l(t)
c=O

The solution to the optimization problem minimizes the
total energy consumption subject to the constraints that all
jobs be completed within the next control period. The
optimization problem ensures that the time is fully sched
uled and imposes the constraint that a non-negative time is
assigned to each configuration. Solving linear optimization
problems is generally challenging. However, this particular
optimization problem has a structure that makes it practical
to solve. Feasible solutions are confined to a polytope in the
positive quadrant defined by the two constraints. Thus,
linear programming theory states an optimal solution exists
for this problem when all the -cc are equal to zero except for
(at most) two configurations.

US 11,009,836 B2
37

TABLE 3

Minimum energy schedule algorithm.

Input: C
Input: s(t)
Input: ,;

under= {c I sc,; s(t)}
over= {c I sc > s(t)}

_, system configurations
- given by Eqn. 3
- given by application

candidates = { (u, o) I u E under, o E over}
energy = oo
optimal=< -1, -1)
schedule = (0, 0)
for (u, o) E candidates do

'u = (,; · s(t) - ,; · sa)/(su - saJ
"to= "t - "tu

new Energy= -cu· Pu+ -co· Po
if new Energy < energy then

energy = new Energy
optimal = (u, o)
schedule = {-tu,--c

0
)

end if
end for
return optimal

return schedule

_, Loop over all pairs

_, Compute energy of this pair

- Compare energy to best found
so far

_, Pair of configurations with
minimal energy
_, Time to spend in each
configuration

The minimum-energy-schedule algorithm shown in Table
3 takes the set of configurations, the controller's speedup,
and the time interval -i: specified by the application. It then
divides the configurations in two distinct sets. The first set
contains all configurations with a speedup less than or equal
to the target. The second contains the remaining configura
tions. That is, those configurations with speedups greater
than required. Subsequently, the minimum-energy-schedule
algorithm loops over all possible pairs of configurations,
with one from each set, to determine how much time should
be spent in each configuration given the deadline. If the
energy of the pair is lower than any previous energy, the
algorithm stores the current best pair, its energy, and its
schedule. When the algorithm terminates, its output is the
pair of chosen configurations and their assigned times.

The algorithm tests all possible pairs from the two sets,
each of which contains at most C elements, so an upper
bound to the algorithm complexity is order O(C2

). There is

38
the Kalman filter. The optimizer 1720 operates in a platform
independent manner, using the available configurations pro
vided as input to find the optimal solution, without relying
on a particular heuristic that may be system-specific or

5 application-dependent. Finally, the customizable pole p in
the foregoing equations allows for flexibility and robustness
to inaccuracies and noise.

The ability to control robustness to inaccuracies and
model errors is a major advantage of feedback control

10 systems. In particular, POET is stable and converges to the
desired latency without oscillations provided that 0sp<l.
Formal analysis of this behavior can be obtained by applying
standard control techniques.

15
In addition to provable convergence, the control formu-

lation allows an analysis of POETs robustness to user error.
In particular, suppose ti. is a multiplicative error term,
indicating the largest error in the speedup values provided in
the system configurations. That is, if the provided speedup

20 is sp, the real value is sP·li.. POET cancels the error despite
inaccurate information if and only if 0<li.<2/(1-p). The
value of p therefore determines how robust POET is to errors
in speedup specifications. For example, when p=0.1, sP can
be off by a factor of two and the system is still guaranteed

25 to converge. Users who can provide good system models
will therefore use a small value of p, while less confident
users can select a larger p. All the experiments in the
evaluation use p=0 to test the implementation in the least
forgiving setting.

30 Next, additional details regarding the POET architecture
1700 are provided according to one non-limiting implemen
tation. First, a Kalman filter is described. Then, the conver
gence of the controller is analyzed. Next, the robustness to

35
inaccuracies is discussed in the user-specified configura
tions. Finally, additional data is presented to compare POET
architecture 1700 to an approach that only uses DVFS to
meet latency goals while minimizing energy consumption.

The controller of the POET architecture 1700 customizes

40 itself to the behavior of the application under control. This
customization is achieved at runtime by estimating the key
parameter of the controller, b (t), using a Kalman filter.
Denoting the application timing variance as q6 (t) and
assuming minimal measurement variance (i.e., the applica-an optimal solution to the linear program with at most two

non-zero values of -cc (this is because the dual problem has 45

two dimensions) and minimum-energy-schedule algorithm
tests all pairs of configurations. Therefore, minimum-en
ergy-schedule algorithm will find a minimal-energy sched
ule.

tion may be noisy, but the signaling framework does not add
additional noise), the Kalman filter formulation is given by

b-(tJ = b(t- lJ
In practice this process can be sped up by considering 50

only Pareto-optimal (in performance/power) configurations.
Sorting into Pareto-optimal configurations takes order O(C
log C) time, and need only be done once. After sorting,
configurations can be indexed by a bucketed hash table with
speedup as the key. Given a sufficiently large table this 55

reduces the per control invocation complexity to constant
time.

The controller 1710 and the optimizer 1720 both reason
about speedup instead of absolute performance or latency.
The absolute performance of the application, measured by 60

the average latency of its jobs, will vary as a function of the
application 1725 itself and the system 1730 that the appli
cation 1725 is executed on. However, speedup is a general
concept and can be applied to any application and system,
thus providing a more general metric for control. Moreover, 65

the controller 1710 customizes the behavior of a specific
application using the estimate of its base speed produced by

e"i,(t) = eb(t- 1) + qb (t)

kb(t) = e"i,(t)·s(t)
[s(t)]2-e,;(t)

b(t) = b- (t) + kb(t)[-d
1

- s(t) · b- (t)], and
mCtl

eb(t) = [l -kb(t) · s(t - l)]e"i,(t).

In this formulation, k6 (t) is the Kalman gain for the latency,
£-(t) and b(t) are the a priori and a posteriori estimates of
b(t), and e6- (t) and e6 (t) are the a priori and a posteriori
estimates of the error variance.

The POET architecture 1700 uses a Kalman filter because
it produces a statistically optimal estimate of the system's
parameters and is provably exponentially convergent. The
user does not need to have prior knowledge on Kalman
filtering-in certain embodiments, all the filter parameters

US 11,009,836 B2
39

are computed by the controller (speedup
(latency dm (f), latency variance q6 (t)),
others).

s(t)), measured
or derived (all

40
The closed loop system has a pole p. The system also has

a static gain of 1, therefore the input (the desired latency) is
translated directly into the output without modifications.
Provided that 0sp<l, the system is stable by design.

To analyze the robustness of the POET architecture 1700
to error, suppose that the speedup values provided in the
resource specification are incorrect. Let s c be the specified
speedup with the largest error. The true speedup can be
expressed as sc=li.·sc, with A being a multiplicative error

Control-theoretical adaptation mechanisms are useful
since they provide formal guarantees on the behavior of the 5

system under control during runtime. Usually, for linear
time-invariant systems, this analysis is performed in the
transfer function domain, because it greatly simplifies the
mathematical approach. For continuous-time systems, typi
cally the Laplace transform is used, while for discrete-time
systems, the analysis is typically performed using the
Z-transform. In the Z-transform domain, the operator z-k is

10 term. For example, li.=5 indicates that the specified speedup
is off by a factor of 5 and li.=0.5 indicates that the real
speedup is only half of that specified. These are non-limiting
representative values. a k-unit delay.

Due to the relationship between base speed b and speedup
15 scan error in the speedup term is equivalent to the same error

in the estimate of base speed. Therefore, the robustness to
errors of the POET architecture 1700 is determined in the
specified speedup by substituting li.·b=b into F(z), which can

Now, a discussion is provided to prove that the controller
computes the correct speedup to cancel the latency error.
Therefore, it is assumed that, whichever speedup is com
puted, the optimizer translates it into a schedule with no
error. The Kalman filter converges to its estimated value.
Therefore, it is proven that the controller converges to the 20

correct control signal when the Kalman filter has already
reached its correct estimate b. Since the input and output
signals are bounded, this proof suffices to show that the

be expressed as

C(z) ·A(z)
F(z) = 1 + C(z) · A(z)

entire system converges.
The equation

1
dm(t)= s(t-l)·b(t-1)

can be transformed into its Z-transform equivalent

b
A(z) = -,

z

wherein A(z) is the transform of the effect of the input s(t)
on the output dm(t). Similarly, the controller equation

e(t)
s(t)=s(t-1)+(1-p)· b(t)

25

30

(p- l)·z b-t.

b-(z-1) z

l+ (p-l)·z_ b-t.
b-(z-1) z

(1 - p) ·!l

1 +!l-(1-p)-z

The closed loop represented by the above expression ofF(z)
is stable if and only if its pole is within the unit circle.
Assuming the pole is real, its absolute value should be

35 between 0 and 1. Then, for a stable system, -1 <li. ·p+li.+ 1 <l.

40

The first part, -l<li.·p+li.+1, translates to

2
!l<--.

(1-p)

can be transformed into the corresponding one in the transfer 45

function domain, and becomes

The second part, li. ·p+li.+ 1 <l, imposes li.>0 and p<l. The
second constraint is already verified in the controller design.
As a final result, the system is stable when

(p- l)·z
C(z) = b · (z - 1 J

where p is the controller pole and z- 1 is the unit delay. The
Z-transform of the closed loop system is

C(z) · A(z)
F(z) = _l_+_C_(z-)--A-(-z)

and can be rewritten as

(p- l)·z b

F(z)= b-(z-1) z 1-p

l+(p-l)·z.~ z-p
b-(z-1) z

50

This means that if p=0 .1, the maximum ti. that the system can
stand is 2.2, while if p=0.9, the maximum ti. is 20.

As described above, the POET architecture 1700 can use
a performance model obtained from a server 110 to optimize

55 the efficiency (i.e., the ratio of computational task performed
to the energy consumption rate) subject to a constraint of
completing a given workload W=I(t) within a predefined
time period T=t. Also described above, a speed-up factor is
used to dynamically feedback, correct, and control for

60 deviations from ideal performance when the device 120
executes the application.

Similarly, the performance model and the speed-up factor
can be used with other optimization criteria and can be used
to perform optimizations, subject to other constraints. For

65 example, the optimization criteria can be to maximize the
computational tasks while ensuring that the energy reserves
last until a predetermined time, e.g., that the device 120 has

US 11,009,836 B2
41

power throughout the business day until evening when the
device can be recharged. Also, the optimization criteria can
be to dynamically select the most efficient configuration for
a particular application without being subject to additional
constraints.

42
TABLE 4-continued

Notation used in describing tbe JouleGuard architecture 1800.

Symbol Meaning

p
a

f
w
E

vsys

"'!_app

V

v

power conswnption
accuracy
speedup
factor by which to decrease energy conswnption
application workload
energy budget
represents variable v in system config sys
represents variable v in application config app
represents a measured value of variable v
this symbol represents an estimated value of variable
V

this denotes the value of v at time t

Further, in certain applications the optimization criteria
can be to constrain the maximum energy consumption
within a predefined time period subject to an additional
constraint that a predefined number of computational tasks
are performed within the predefined time period. This can be 10

achieved using the performance model and the speed-up
factor, but sometimes the device 120 camiot simultaneously
satisfy both constraints for a given application. In that case
approximate computing can be added to the POET archi-
tecture 1700. The JouleGuard architecture, which is

15
Leaming

described next, provides a non-limiting example of an
implementation of optimization using a combination of a
performance model obtained from a server 110, a controller

Control

v(t)
a
X

p
pole
error

parameters balancing exploration and exploitation

pole of control system
difference between required speed and current speed
multiplicative error in leamed models using a speed-up factor, and an accuracy optimizer when the

speed-up factor alone is insufficient to satisfy all constraints
20

of the constrained optimization criteria.
FIG. 18 shows an example implementation of a Joule-

Guard architecture 1800. The JouleGuard architecture 1800
can be arranged to split the problem of meeting an energy
goal while maximizing accuracy into two components. The

25

first component, which is labeled System Energy Optimizer
(SEO) 1810 in FIG. 18, is responsible for putting the system
into the most energy efficient system configuration. For
example, the SEO 1810 can perform some of the functions
of controller 1710 in the POET architecture 1700. The

30

expected speed and power of the most energy efficient
system configuration are passed to the Application Accuracy
Optimizer (AAO) 1820, which determines how much addi
tional performance to obtain from tuning the application
accuracy. 35

If the performance, power, and accuracy of all combina
tions of application and system configuration are known
ahead of time (e.g., based the performance model) and these
do not change, then the application and system configuration
need only be configured once. In general, however, unpre-

40

dictable dynamic fluctuations are expected, making it chal
lenging to perfectly predict the highest energy efficiency
system configuration ahead of time. Further, allowing for
imperfections in the determined performance model can
make the system more robust. Furthermore, variations can

45

result from the configuration that may be either/both appli
cation and/or input dependent. Therefore, the optimization is
solved at runtime using dynamic feedback. Both the SEO
1810 and AAO 1820 can adapt to changes in the other, yet
still converge to reliable steady-state behavior. First the SEO

50

1810 is described, and then the AAO 1820 is described with
an analysis of how the JouleGuard architecture 1800's
provides energy guarantees.

55
TABLE 4

Notation used in describing tbe JouleGuard architecture 1800.

Symbol Meaning

Ii
C(z)
A(z)
z

Z-transform of tbe controller
Z-transform of tbe application
unit delay operator

Table 4 summarizes the notation used to describe the
JouleGuard architecture 1800. The table has three parts. One
contains general notation that is used in this description. The
other two contain notation specific to either the learning or
control pieces. As shown in the table, the measured, esti
m~ted and t~e vvalues of variable v are respectively distin
gmshed as v, v, and v. Subscripts refer to the variable's
value in different configurations of the application or system.
Parenthetical notation is used to refer to values at particular
times.

Now, and embodiment of the SEO 1810 is described. The
JouleGuard architecture 1800 can use reinforcement learn
ing to identify the most energy efficient system configura
tion, employing a bandit-based approach. The system con
figurations are modeled as arms in a multi-armed bandit
(e.g., essentially levers in different slot machines). The
reward for pulling an arm is the energy efficiency of that
configuration. The goal is to quickly determine which arm
(configuration) has the highest energy efficiency. This is
straightforward given the convex hull in the configuration
trade-off space provided by the performance model. Further,
feedback of the performance and power while the system is
executing the application can be used to refine the configu
ration and schedule in real time. For example, the Joule
Guard architecture 1800 can estimate system configuration
sys' s energy efficiency by estimating performance and
power rsy/t) and Psy/t) using exponentially weighted mov
ing averages:

f ,,,Jt)~(l-a)·f,y,(t-1)+a·r,y,(t)

Empirically, it has been observed that a=0.85 provides good
outcomes on average across all applications and systems
described herein.

In a typical bandit problem without a performance model

General Sys
App
sys
app
bestsys
bestapp
default

set of all system configs
set of all application configs
an individual system config
an individual application config
most energy efficient system config
most accurate app config achieving required speedup
tbe default config of application or system
computation rate

60 obtained from the server 110, the initial estimates might be
random values. This is not a good choice for estimating
performance and power because a general trend indicates
that both power and performance tend to increase with
increasing resources. Therefore, in this case, the JouleGuard

65 architecture 1800 can initializes its performance and power
estimates so that the performance increases linearly with
increasing resources and power increases cubically with

US 11,009,836 B2
43

increasing clockspeed and linearly with other resources.
This is an overestimate for all applications, but it is not a
gross overestimate. Such an initialization performs exceed
ingly well in practice.

Generally, the performance model obtained from the
server 110 can be used to provide a better model of changes
in performance and power consumption as a function of the
configuration.

The final component of a bandit solution is balancing
exploration (i.e., trying different configurations) and exploi
tation (i.e., making use of the best configuration found so
far). In addition, JouleGuard architecture 1800 can be reac
tive to changes caused by application-level adaptation.
Therefore, JouleGuard architecture 1800 can explore the
system configuration space using a combination of the
obtained performance model and Value-Difference Based
Exploration. VDBE balances exploration and exploitation
by dynamically computing a threshold, E(t) where 0sE(t)sl.

44
unexpected impact on system performance and power, the
models will be inaccurate and E(t) will increase, so Joule
Guard architecture 1800 will likely explore new states to
find more efficient configurations. This learning mechanism

5 makes JouleGuard architecture 1800 extremely robust to
external variations, but it is stable when the system does not
vary.

Next, an embodiment of the AAO 1820 is described.
Given the system configuration found based on the above

10 update equations, JouleGuard architecture 1800 determines
the application configuration that will meet the energy goal
while maximizing accuracy. Given the system performance
and power estimates determined by SEO 1810 and a factor

15
f by which to decrease energy consumption, JouleGuard
architecture 1800 can find the application configuration that
provides a speedup, which is given by

f'default Pbestsy/t)
s(t) = f(t) · -, - · -, --

Pdefautt rbestsys(t)

In certain implementations, when selecting a system 20

configuration, JouleGuard architecture 1800 generates a
random number rand (0srand<l). If rand<E(t), JouleGuard
architecture 1800 selects a random system configuration.
Otherwise, JouleGuard architecture 1800 selects the most
energy efficient configuration found so far. E is initialized to 25

1 and updated every time the runtime is invoked. A large
difference between the measured efficiency rsysCt)/psysCt) and
the estimate rsysCt)IPsysCt) results in a large E, while a small
difference makes E small. At each iteration of the runtime
E(t) is updated according to

The difficulty is that ensuring energy requires that Joule
Guard architecture 1800 maintains this performance despite
unpredictable events, temporary disturbances, or unmodeled
dependences between application configuration and system
power consumption. Therefore, JouleGuard architecture
1800 continually adjusts the speedup applied as a function of
time t. JouleGuard architecture 1800 models the problem of

30 meeting speedup s as a control problem and minimizes the
error error(t) between the measured performance r(t) and the
required performance r(t)=f(t)·rbestsysCt) at time t (i.e., error
(t)=r(t)-r(t)). -la(,,y,(t) _ ,,y,(t) I

P,y,(t) P,y,(t)
x(t) = exp

5

1-x(t)
p(t)= 1 +x(t)

E(t) = _l_ · p(t) + (1 - -
1
-)- E(t- 1).

ISysl ISysl

Maintaining performance despite dynamic environmental
35 changes is a classical control problem; many cross-layer

approaches incorporate control for this reason. JouleGuard
architecture 1800 builds on these examples, formulating a
proportional integral (PI) controller eliminating error (t),
which is given by

40

The constants in the above equations are non-limiting rep
resentative values, and other values are contemplated. If the
random number is below E(t), JouleGuard architecture 1800
selects a random system configuration. Otherwise, Joule- 45

Guard architecture 1800 searches for the system configura
tion with the highest estimated energy efficiency, as given by

(1 - pole (t)) · error (t)
s(t)=s(t-1)+ , ,

rbestsys(t)

wherein s(t) is the speedup required beyond rbestsys, and
pole(t) is the adaptive pole of the control system, which
determines the largest inaccuracy in the system model that
JouleGuard architecture 1800 can tolerate while maintaining

best sys = argmax -, - sys E Sys . {
,,y,(t) I }

sys Psy/t)

50 stability and ensuring that the energy goal is met. While
many systems use control, JouleGuard architecture 1800's
approach is unique in that the controller constantly adapts its
behavior to account for potential inaccuracies introduced by

The JouleGuard architecture 1800 then puts the system into
this configuration and uses the expected performance and 55

power consumption to perform application accuracy opti-

the learning mechanism.
The formal mechanism that sets the pole is discussed in

below. Intuitively, control techniques make it possible to
determine how inaccurate the models can be and still
stabilize at the goal (i.e., meet the target energy while
avoiding oscillations. The learning system used in SEO 1810

mization.
In certain implementations, the selection of an updated

configurations can be based on the performance model, e.g.,
using a gradient search, a genetic algorithm, simulated
annealing algorithm, or other optimization search method

The bandit-based approach has the beneficial property
that when the system models are correct E(t)=0, JouleGuard
architecture 1800 will cease to randomly explore the space
(i.e., JouleGuard architecture 1800 will not use a random
configuration after it has learned accurate models). If the
system is disturbed in anyway, or the application has an

60 is constantly measuring the inaccuracy between its models
and the actual performance and power. JouleGuard archi
tecture 1800 uses this measured difference to set the pole.
When the difference is large, the controller acts slowly,
avoiding oscillations and allowing SEO 1810 to learn inde-

65 pendently of any application changes. When the system
model inaccuracy is low, the pole is small and the controller
works quickly.

US 11,009,836 B2
45 46

In summary, JouleGuard architecture 1800 determines the
application configuration by measuring the performance at
time t, computing the error between the required and mea
sured performance, then computing a speedup s(t). Joule
Guard architecture 1800 then searches application configu- 5

rations on the Pareto-optimal frontier of performance and
accuracy tradeoffs to select the highest accuracy configura
tion delivering that speedup, which is given by

C(z) · A(z)
F(z) = 1 + C(z) · A(z)

(1 - pole)z. 6r,y,
(z-1) z

1
+ (1 - pole)z. 6r,y,

(z-1) z

(1 - pole)6

bestapp = argmax{app I Sapp > s(t) A app EA}.
app

The control system of the JouleGuard architecture 1800
provides formal guarantees of energy consumption. First, it
can be shown that the control system converges to the
desired speedup. This can be done through standard analysis
in the Z-domain.

The Z-transform of the application is simply

A (z) = rbestsys .

z

The Z-transform for the control system's transfer function is

(1 - pole)z
C(z) = 7z="T) .

Therefore, the transfer function of the closed loop system is:

C(z) · A(z)
F(z) = -1 _+_C_(z-)--A-(z-)

(1 - pole)z rbestsys

7z="T)·-z-

l + (1 - pole)z . rbestsys

(z-1) z

! -pole

z -pole

Following standard control analysis, the system's stability
and convergence to the goal can be evaluated. The system is
stable-in the control theoretic sense that it will not oscillate
around the goal-if and only if 0spole<l. Therefore, pole is
chosen to meet these restrictions. Furthermore, the system is
convergent, meaning that when it stabilizes error(t)=0 if and
only if F (1)=1. Based on the above equations, it can be
observed that this condition is clearly met. Therefore, it can
be conclude that the control system is stable and convergent.
These guarantees, however, are based on the assumption that
rbestsys is an accurate estimate of the performance delivered
in bestsys. In the next section, it is discussed how to ensure
stability even when the estimate is inaccurate (as it likely is
at system initialization).

z + (1 - pole)6 - 1 ·

So, pole determines how robust JouleGuard architecture
1800 is to model inaccuracies. For example, F(z) pole=0.1
implies that rsy/t) can be off by a factor of 2.2 and Joule-

15 Guard architecture 1800 will still converge.
To provide convergence guarantees-and, thus, energy

guarantees-JouleGuard architecture 1800 sets the pole to
provide stability and avoid the oscillations seen in the

20
swish++ example for the uncoordinated approach. Joule
Guard architecture 1800 has a bound on model inaccuracies
as it is constantly updating its estimates of system perfor
mance using. Thus, JouleGuard architecture 1800 computes
11(t), the multiplicative inaccuracy at time t as:

25

6 (t) = ~
r,y,(t- 1)

30 and computes the pole as:

35
{

6(t) > 2: 1 - 2 / 6(t)
pole(t) = .

6(t) s 2: 0

This is one non-limiting representative example of a choice
for the pole. Other methods of determining the pole are

40
contemplated. The JouleGuard architecture 1800 can auto
matically adapt the pole so that the controller is robust to
inaccuracies in the system models. In practice, the pole is
large when the learner is unsure and likely to randomly
explore the space. This means that the controller will be slow

45 to change configurations when the learner is aggressive. In
contrast, when the learner converges, 11(t) is low and the
controller can be more aggressive. This adaptive pole place
ment combined with machine learning is the unique feature
of JouleGuard architecture 1800, which distinguishes it from

50 prior approaches and allows JouleGuard architecture 1800 to
split the energy guarantee problem into two subproblems yet
still provide robust guarantees.

A user may request an energy goal that is impossible to
meet given the application and the system. In this case,

55 JouleGuard architecture 1800 reports that the goal is infea
sible and then configures the application and system to
provide the smallest possible energy consumption.

The controller's robustness to inaccurate estimates of 60

The runtime of the JouleGuard architecture 1800 is sum
marized in Table 5. This algorithm is implemented through
a straightforward coding of the math described above and
summarized in the algorithm listing. Two requirements are rbestsys is determined by analyzing the above equations.

Suppose the estimate is incorrect and the true value is
rsys=11rsy/t) where 11 is a multiplicative error in the estima
tion. For example, 11=5 indicates that model is off by a factor
of 5. It can be determined that the robustness to these
inaccuracies of the JouleGuard architecture 1800 by substi
tuting 11rsys into F(z) to generate

(i) measuring feedback and (ii) configuring the application
and system. These are interface issues rather than technical
issues. JouleGuard architecture 1800 can be supplied a

65 function that reads performance and power. Any perfor
mance metric can be used as long as it increases with
increasing performance.

US 11,009,836 B2
47

TABLE 5

Algorithm for control of JouleGaurd architecture 1800.

Require W
Require E

loop

Workload provided by user
Energy budget provided by user

Measure work done W(t) and energy consurued E(t).
Measure performance r(t) and power p(t) in configuration c.
Update performance and power estimates re and Pc :

Pc(t) =(1-a)·pc(t-l)+a·pc(t)
rc(t) =(1-a)·rc(t-l)+a·rc(t)

Update e(t) :

E(t) =-
1
- ·p(t) +(1- -

1
-)•E(t- l).

ISysl ISysl

Generate random number rand
if rand < e(t) then
Select random system configuration
else
Select energy optimal system configuration sys:

sys = argmax -, - sys E Sys . {
r,y,(t) I }

sys Psy/t)

endif
Compute the controller's pole

{

6(t) > 2: 1 - 2 / 6(t)
pole(t) = .

6(t) s 2: 0

Compute remaining energy and work.
Use those values to compute speedup target:

s(t) = f(t). fdcfault . ~bc,i,y,(t).

fbestsys(t)

Compute speedup control signal:

(1 - pole(t)) · error(!)
s(t) = s(t - 1) + --,---

rbestsys(t)

Select the application configuration to deliver speedup:

app = argmax{aapp I Sapp> s(t) A app EA}.
app

end loop

Table 5 shows pseudocode for an algorithm to control the
JouleGuard architecture 1800, according to one implemen
tation. A user may request an energy goal that is impossible
to meet given the application and the system. In this case,
JouleGuard architecture 1800 reports that the goal is infea
sible and then configures the application and system to
provide the smallest possible energy consumption.

Similarly, power can be read from an external power
monitor or from modern hardware devices that support
on-board power measurement. Prior work defined a general
interface for specifying system-level configurations. A
straightforward extension of this interface supports applica
tion configuration changes as well. Given these interfaces,
the JouleGuard architecture 1800 is implemented as a C
runtime that can be compiled directly into an application. It
can replace existing runtime systems for approximate appli
cations, or it can convert a statically configured approximate
application into one dynamically configurable to meet
energy goals.

48
JouleGuard architecture 1800 does not require precise

quantification of application accuracy, rather it requires an
ordering on application configurations. Many frameworks
provide precise accuracy quantification, others do not and

5 some leave it to the programmer. Approaches that do not
precisely quantify accuracy still order configurations, but the
order represents preferences rather than absolute numerical
differences. JouleGuard architecture 1800 does not need a
precise value for accuracy. The only place it reasons about

10 accuracy is in the equation to calculate bestapp when
selecting an application configuration. This equation only
requires a total order on available configurations. Thus,
JouleGuard architecture 1800 is compatible with a wide

15
range of approximate approaches.

The implementations described above have assumed that
all accuracy tradeoffs occur at the application level. In
additional implementations, it is proposed that the approxi
mate hardware reduces energy consumption in exchange for

20 occasionally returning an inexact result. In most cases, these
approximate hardware units maintain the same timing, but
reduce power consumption. For those cases, it is straight
forward to modify the above control system to work with
approximate hardware. The learning engine can be used to

25 find the most energy efficient system configuration that
sacrifices no accuracy (this step is the same as the above).
The JouleGuard architecture 1800 is then modified such that
the control system to manage power (rather than speedup)
by tuning hardware level approximation. The approach is

30 similar, but the controller would reduce power instead of
increase performance. Yet another issue is to coordinate
approximate applications with approximate hardware. Such
a combination requires a modification of JouleGuard archi-

35 tecture 1800 to handle the fact that both layers affect
accuracy.

Now, a non-limiting example is described to illustrate
what is meant by maximizing an approximate application's
accuracy for an energy budget. First the problem is framed

40 in terms of a mathematical optimization. Descriptions are
provided regarding 1) application-only, 2) system-only, and
3) cross-layer solutions.

It is assumed that the application performs some set
amount of work W. The total work does not change, but the

45 application can do this work faster or slower by changing its
accuracy. For example, a video encoder encodes an entire
video, but can use different algorithms that changes the
encoding time and the noise in the output. It can be assumed
that an energy budget E represents the energy specified by

50 a user to perform the work W. Therefore, the system can be
configured to ensure that the work is completed within the
energy budget and accuracy is maximized.

It can be assumed that an approximate application 1840
with a set of configurations CA• where each configuration

55 kECA represents a unique performance rk and accuracy ak. It
can be assumed that ac is a relative metric rather than
absolute-many standard metrics for representing how far
approximate applications 1840 are from a nominal behavior
apply. An energy-aware system 1830 can have configura-

60 tions c,, where each configuration kECs has performance rk
and power consumption Pk·

In certain applications, it is not assumed that the appli
cation and system are independent. Instead, it is not assumed
that changing either application or system may have urnnod-

65 eled effects on the other. For example, changing application
accuracy may change system power consumption. Similarly,
changing system performance may have an unknown effect

US 11,009,836 B2
49 50

greater than or equal to W/E. Without such a configuration,
then the problem has no feasible solution.

on the performance of different application configurations.
Thus, a goal is to obtain a solution that is robust despite these
unmodeled dependences.

In certain implementations, the following accuracy opti
mization problem with constrained work and time maxi
mizes accuracy given an energy budget:

A coordinated, cross-layer approach selects both applica
tion and system configuration. The true optimal solution

5 requires knowledge of all combinations of application and
system performance, power, and accuracy as well as a
solution to the non-linear optimization problem.

maximize .L t(app,sys) · G(app,sys)

subject to

Now, the solution is provided for the case when the
application and system were independent. As shown above,

10 the system does the most work for an energy budget when
running in its single most energy efficient state:

.L t(app.,y,) · p(app, sys) s E

.L l(app.,y,) · r(app, sys) = W

0 S t(app,sys) for app E CA and sys E Cs

l(app,sys) 2. 0

15
i.e., .L tc · Pc = E.

By the theory of mathematical opt1m1zation, an optimal
solution to the constrained accuracy optimization problem

20
lies on the polytope of feasible solutions. For the constrained
accuracy optimization problem, this property implies that
the optimal solution occurs when there is strict equality in
the equation for the energy,

Here a (app, sys), p(app, sys), and r(app, sys) are (pos
sibly) non-linear functions representing the accuracy, power,
and performance of the combination of application configu
ration appEC A and sysECs- the constrained accuracy optimi- 25
zation problem schedule times t(app, sys) to spend in the sys= argmax{r, / p, I c E SJ.

Combining the above expression, it can be observed that
tsys = 1.0 tc =O\f c;,sys and tsys =E/p sys· To satisfy the work
constraint, the application and system must work at a
combined performance of r. If the speedup of the approxi
mate application 1840 is denoted as sapp' then it can be
written that r=sapp-rsys; i.e., the work rate is the product of
the system's computation rate and the speedup provided by
adapting the application.

configuration (app, sys) . The above equations maximize
accuracy, the while ensuring that the energy budget is not
exceeded, that the work is completed within the allotted
time, and that the times are non-negative. Further, the above 30

equations represent a non-linear optimization problem. This
non-linearity distinguishes the energy guarantee problem
from prior work that provides performance guarantees,
formulated as a linear program. While the JouleGuard

35
architecture 1800 adopts an approach of splitting the opti
mization problem into application and system components,
the approach differentiates over previous approaches in part
because the approach herein adopts novel solutions to these
subproblems to provide energy guarantees.

Accordingly, by solving for an sapp' it can be shown that
the work gets done and that accuracy is maximized. Further,
by substituting r and tsys' into the above equations, it can be

40 shown that
As described herein, several possible solutions exist to the

constrained accuracy optimization problem. The first con
siders only application-level configurations, the second con
siders only system-level configurations, and the third con
siders cross-layer approaches coordinating application and 45

system.

fsys·r= W

E/ Psys ·Sapp· rsys = W, and

W·Psys
Sapp= E·rsys. Considering only application-level optimization, a solu

tion can be obtained using a single system configuration
with a single power consumption Ps· Thus, it is trivial to
solve the constrained accuracy optimization problem. Since
power cannot change, energy will be reduced by completing
the work in the shortest amount of time possible. Therefore,
the optimal accuracy solution will be the one that lets
\app, s) 0Ps=E.

Therefore, the application can be configured to satisfy
50

Therefore, rapp =ps·W/E. So, the solution is to set the 55

application in the highest accuracy configuration that
achieves a computation rate of at least Ps·W/E. This can be
achieved using the performance model obtained from the
server 110.

app = argmax ac I Sc 2. -- /\ c E A . {
W · P,y, }

c E·rsys

Thus, a solution is obtained to the problem of coordinating
application and system to maximize accuracy on an energy
budget by putting the system in its most energy efficient
configuration, and then configuring the application to

In a system-only implementation, the solution cannot alter
application behavior. Instead, they work on performance and
power tradeoffs. In this case, accuracy is not a variable, so
every feasible solution to the constraints optimization prob
lem is equivalent. Thus, a system-only approach can solve
this problem as long as there is a system configurations such
that r)ps2:W/E. In other words, a system-only approach
works if there is a configuration whose energy efficiency is

60 achieve the necessary additional speedup.
Two conclusions can be drawn from the above analysis.

First, the optimization problem has a unique structure mak
ing it tractable despite the huge space that can arise from
combining application and system configurations. Second, it

65 is possible to decompose the problem into two dependent
but simple sub-problems. The first sub-problem is to find the
most energy efficient system configuration. The second

US 11,009,836 B2
51

sub-problem is to use the solution to first find an application
configuration. This structure can be used with a runtime
algorithm implementing the optimization that can be split
into two communicating components: one that solves the
above equation for sys and one that solves the above
equation for app.

There are benefits to proactively coordinating the appli
cation and system rather than having the application or
system react to changes in the other. Application or system
only approaches miss potential multiplicative (e.g., non
linear) benefits. Coordination can be used to extract a
maximum benefit from the system before altering the appli
cation, producing equivalent or better accuracy than appli
cation or system configuration alone. The performance
model obtained from the server 110 enables improved
coordination of the application and system to obtain the
optimal combination.

This analysis assumes that the application speedup and
system power were independent. That assumption might not
hold at runtime. A runtime system that implements this
model will both solve the optimization problem and account
for any runtime changes in application and system behavior
in order to maintain guarantees despite the simplifying
assumptions made in this section.

Now, an example illustrating the benefits of the Joule
Guard architecture 1800 is provided. This example demon
strates the challenges of maximizing accuracy on an energy
budget and illustrates the formal analysis provided above.
This example considers a document search application using
an approximate version of the open-source swish++ search
engine, which varies the number of documents it returns per
query. In this example. the search engine is executed on a
server platform which supports several configurations con
trolling tradeoffs between power and performance.

Next a non-limiting example is provided using illustrative
numbers and using a swish++ algorithm. The swish++
algorithm is configured as a web server, and is deployed on

52
The system can change swish++'s resource allocation to

reduce energy consumption. A system-level approach that
provides energy guarantees for individual system compo
nents satisfies some but not all of the desired objectives. For

5 example, in such a system-level approach, it is a user's
responsibility to request energy from individual components
such that the total system energy respects the guarantee. To
provide an overall system energy guarantee users must know
precisely how much energy to request from each component

10 and how much performance they will get from that combi
nation. Thus, to determine the best overall configuration on
the desired system, a performance model representing the
best configurations of the entire configuration space is

15
needed to determine if there is a configuration (e.g., a
combination of cores, clockspeed, hyperthreading, and
memory controllers) that meets the energy goal. In various
implementations, this is provided by the performance model
obtained from the server 110. For the application swish++

20 the best configuration happens to process 1750 qps at a cost
of 125 Watts, or 0.07 Joules per query. This value is 20%
higher than the goal, and this system-level approach results
in no accuracy loss (as shown in FIG. 19).

The system-level approach has two drawbacks. First and
25 foremost, it did not meet the goal. By itself, the system

simply cannot reduce energy consumption to 0.06 Joules per
query. Second, obtaining any energy reduction requires a
tremendous knowledge of the system to request the best
combination of different components. Second, obtaining any

30 energy reduction relies on accurate knowledge of the system
to determine the best combination of different components.
In this example, the space is exhaustively searched. In
practice, a more intelligent way to determine the system

35
configuration is needed. As discussed above, the server 110
can generate an accurate estimate of the performance model
for all configurations without performing an exhaustive
search of the device configurations.

Formally, given a set of all system configurations, each of

40 which can be identified as c, with performance re and power
consumption Pc then the energy at the system level is
minimized by selecting the most energy efficient configu
ration sys using the equation

a system with 32 threads. Further, the search is performed
using public domain books from Project Gutenberg as the
search documents. For search queries, a dictionary is con
structed of all words present in the documents, excluding
stop words, and words are selected at random following a
power law distribution. The search performance and the total
system power consumption are measured with the applica- 45

tion in its default (full accuracy) configuration using all
system resources. In this default configuration, swish++
processes 3100 queries per second (qps) at an average power
consumption of 280 Watts, or 0.09 Joules per query.

sys= argmax{r, / p, I c E SJ.

Solving this equation is simple, if an accurate performance
model, such as the performance model provided from the
server 110, is available. However, a more robust solution can

For this example, the desired reduction to the energy 50

consumption is 1/2 to achieve an energy consumption of0.06
Joules per query (the full evaluation tests a wide range of
energy goals). This energy could be achieved with a 50%
performance increase, a 33% power decrease, or by some
combination of the two. The primary challenge is determin- 55

ing which combination will result in the highest application

be obtained by using feedback and control to correct for
deviations between the actual performance and the perfor
mance model. Also, as shown here, the best system con
figuration can be insufficient to achieve the desired goal. In
which case, approximate computing can be relied on to

accuracy.
Naively, it might be tempting to start with approaches that

provide other guarantees and see if small changes can
provide energy guarantees. For example, here various modi
fied approaches are considered, including, (i) modifying a
system-level approach, (ii) modifying an application-level
approach, and (iii) an uncoordinated combination of the
application and system-level approaches. All three of these
can be improved by using the JouleGuardArchitecture 1800.
The behavior of all four approaches can be observed in FIG.
19.

make up for the deficiency.
Finding the system-level approach insufficient by itself to

satisfy the goals for our needs, an approximate application
60 is then used. Several application-level frameworks trade

accuracy for other benefits. None provide formal energy
guarantees, but PowerDial, e.g., guarantees performance.
This performance guarantee combined together with the
knowledge of the system's default power consumption can

65 be used to meet the energy goal. For example, PowerDial
can be operated at 4700 qps knowing the default power is
280 Watts. Doing so, 0.06 Joules per query is obtained,

US 11,009,836 B2
53

corresponding exactly with the desired goal, but at a high
cost of accuracy loss. On average, each query returns 83%
fewer results.

Given that each application has a set of configurations A,
where each configuration has a speedup sc and accuracy ac. 5

and assuming the system's default configuration has perfor
mance rdefault and power consumption Pdefauz,, the default
energy is improved by a factor f and the accuracy is
maximized by finding an application configuration app as
given by the expression 10

app = argmax a, Is, 2 f · -- Ac E A .

54
Of all four approaches described herein, this coordinated

one is clearly the best. It meets the energy goal while
delivering the smallest possible loss in accuracy-a signifi
cant savings over the application-level approach.

Now, a surmnary is provided of several benefits of the
JouleGuard architecture 1800. The JouleGuard architecture
1800 can be implemented using various prograrmning lan
guages (e.g., the programming language C), and it can be
implemented on various hardware platforms having differ
ent configurations (e.g., a heterogeneous mobile processor,
a tablet, and a server). Further, JouleGuard architecture 1800
adds only small overhead, in terms of both energy and
performance. JouleGuard architecture 1800 can quickly
converge to a given energy goal with low error. Additionally,

{

rd,fault }

c Pdefault

The application-level approach met the energy goal, but
with high accuracy loss. The system-level approach shows
there are more energy-efficient system configurations. It is
tempting, then to combine these approaches and meet the
energy goal by decreasing system power and increasing
application performance. A straightforward approach uses
the application and system-level solutions concurrently, but
without any communication between the two. A challenge
with this uncoordinated approach is that both the application
and system act without knowledge of each other. The
uncoordinated deployment of adaptive systems leads to
instability and oscillatory behavior, even when the indi
vidual adaptive components are provably well-behaved.
Indeed, this oscillatory behavior is illustrated in the unco
ordinated approach, which is shown in FIG. 19.

15 on average, across all applications, all machines, and a
number of energy goals, the JouleGuard architecture 1800
can dynamically adapt and maintains energy within a few
percent of the goal. Further, the JouleGuard architecture
1800 can dynamically converge to the energy goals with

20 near optimal accuracy. On average, for all applications,
systems and goals, the JouleGuard architecture 1800 con
verges to within a few percent of true optimal accuracy. The
JouleGuard architecture 1800 can provide greater accuracy
than the best that could be achieved through either applica-

25 tion approximation or system resource allocation alone.
Moreover, the JouleGuard architecture 1800 quickly reacts
to application phases, automatically increasing accuracy
whenever the application workload changes.

In certain implementations, the JouleGuard architecture

Regarding the uncoordinated approach, to meet the
energy goal of 0.06 Joules per query a performance goal of
2100 Queries/s and a power goal of 125 Watts (i.e.,
0.06=125/2100) is set. If these goals were met, the achieved
energy would be the desired 0.06 Joules per query. Instead,
the instability of the uncoordinated approach leads to oscil
latory behavior and the energy never converges. This oscil
latory behavior results in an average performance of 2080
qps, an average power of 147 Watts, and an average return

30 1800 provides accuracy optimization under energy con
straints. It provides energy guarantees. It maximizes accu
racy on an energy budget by splitting the optimization
problem into two sub-problems, i.e., finding the most
energy-efficient system configuration and tuning application

35 performance to provide additional energy savings while
maximizing accuracy. Further, in these implementations, the
JouleGuard architecture 1800 provides an approach for
combining the solutions to these sub-problems. The Joule
Guard architecture 1800 is robust and converges to the

40 energy goals even when there are inherent dependences
between application and the system. The JouleGuard archi
tecture 1800 is the first method that simultaneously provides
formal guarantees of energy consumption together with

of 81 % fewer results than the default. Rather than improving
over application or system alone, the uncoordinated combi
nation achieves the same energy efficiency as the system
only approach with an accuracy loss close to the application- 45

only approach. The intuition behind the oscillatory behavior
is that both the application and system reason about perfor
mance under the assumption that no other actor is manipu
lating performance. When application and system act con
currently without knowledge of each other, this assumption 50

is violated and instability occurs.
Rather than abandon the combination of the application

and system approaches, the JouleGuard architecture 1800
actively coordinates the two. The coordinated approach of
the JouleGuard architecture 1800 has been described above, 55

but here the results for swish++ application are shown. As
describe here, in certain implementations of the JouleGuard
Architecture 1800, machine learning is used to find the most
energy efficient system configuration, which provides the
performance of 1750 qps at 125 Watts. Recall, this configu- 60

ration resulted in 0.07 Joules per query, 20% above the
target. Therefore, the JouleGuard architecture 1800 then
uses control theory to speedup the application by an addi
tional 20% to 2100 qps. Thus, the JouleGuard architecture
1800 hits the target of0.06=125/2100 Joules per query-at 65

a cost of 24% fewer results per query than the default setup
of application and system.

maximizing accuracy.
Now, a description is provided of the benefits of a

combination of machine learning of a performance model at
a server together with a control architecture of a device
which uses the performance model obtained from the server.
This discussion uses the example of using the control
architecture of the POET architecture 1700 together with the
performance model, but the method can also be used with
the JouleGuard architecture 1800, as would be understood
by a person of ordinary skill in the art.

Control theory is a general technique. However, imple
mentations are problem-specific because traditional control
design directly incorporates application- and system-specific
models. For example, a controller that manages video
encoding on a phone using processor speed will be of no use
to a wireless receiver on an embedded system. This brittle-
ness of control design is further exacerbated by growing
application diversity and hardware complexity. For
example, heterogeneous processors expose a huge range of
performance and energy tradeoffs, which vary from appli
cation to application. Control theoretic libraries allow users
to generate customized solution for specific applications and
systems by providing models. While these approaches are a
step in the direction of generality, they still require signifi-

US 11,009,836 B2
55 56

in terms of the number of computational operations and
storage in order to store sufficient samples of several dif
ferent applications to produce accurate models. Therefore,
the HBM is best performed using a server or cloud com-

cant user input and prior knowledge of the application to be
controlled. In contrast, the methods described herein provide
the benefits of control theoretic techniques even for appli
cations without providing models and with minimal inputs
from users. 5 puting, rather than on a mobile device, which has much more

limiting power and storage constraints. Accordingly, in the
CALOREE system 2000 the learning operations are off
loaded to a remote server to address overhead challenges.

This is achieved by overcoming several challenges. For
example, heterogeneous processor designs expose multiple
resources that interact in complex ways, often leading to
non-convex optimization problems. Further, limited
resources can be devoted to exploring these tradeoff spaces, 10

e.g., it is disadvantageous to expend more energy learning
the tradeoff spaces than would be saved by knowing the
tradeoff spaces. Additionally, it is beneficial to maintain the
ability to formally reason about the controlled system's
dynamic behavior despite working without a priori know!- 15

edge.
These challenges and goals are overcome and met by the

methods described above and explained further now. The
combined system of the learned performance model together
with the POET architecture 1700 is referred to as the 20

CALOREE system 2000, which stands for Control And
Learning for Optimal Resource Energy and Efficiency.
CALO REE system 2000 represents a unique combination of
control theory and machine learning. CALOREE system
2000 dynamically manages resources for streaming appli- 25

cations to ensure their performance needs are met while
minimizing their energy consumption.

FIG. 20 shows an implementation of CALO REE system
2000. CALOREE system 2000 has two components. The
first component is a generalized control system (GCS) that 30

runs on a device 2005, which can be, e.g., an embedded or
mobile device, and the GCS manages resources. The second
component uses machine learning (e.g., hierarchical Bayes
ian model (HBM)) executed on a remote server 2015. When
the GCS encounters a new application, it takes a small 35

sample of the performance and energy in different resource
configurations and sends those samples to the server 2015,
which executes a learning algorithm to learn the statistically
most likely power consumption and performance metrics for
the remaining untested configuration based on a comparison 40

with a database 2010 of previous measurements including
previous measurements from various devices executing
assorted applications. These various devices can include
device 2005, device 2015 and device 2030, for example. The
learning algorithm on the server 2015 can be any machine 45

learning algorithm, including an algorithm referred to as
Learning for Energy Optimization (LEO) algorithm, which
uses an HBM to learn estimates of the power and perfor
mance for all configurations of the device 2005 when
executing the current application. Although other implemen- 50

tations are possible, the non-limiting example described
herein specifically uses an HBM learning method. The HBM
aggregates samples across devices and applications to pro
duce an estimate of the performance and energy tradeoffs of
each application and device. This estimate is stored in a 55

performance hash table (PHT) that is sent to the GCS, which
uses it to control its local application.

Additionally, in certain implementations, the HBM sends
the GCS each application's estimated variance so that the
controller can tune its behavior not just to the model, but also 60

to the potential range in the model's output.
The CALOREE system 2000 beneficially addresses the

three challenges listed above. An HBM, such as the LEO
algorithm, is well-suited to learning non-convex optimiza
tion spaces that arise in systems with many configurable 65

resources, addressing the complexity challenge. The HBM
can, however, use significant computational resources both

Finally, because the HBM communicates the model's vari
ance, it is possible to derive probabilistic control theoretical
guarantees. These are not quite as strong as traditional
control theoretic guarantees that assume the model is fixed
and known, but they still provide some mechanisms for
formal reasoning. While a traditional control system guar
antees convergence, the CALOREE system 2000 allows the
user to specify a lower bound on the probability that the
system will converge to the desired performance. For
example, a user can specify that the system will converge
with at least 95% probability.

Next a non-limiting example is provided to illustrated an
implementation of the CALOREE system 2000 and to
demonstrate its ability to control streaming applications on
heterogeneous ARM big.LITTLE devices, with the HBM
implemented on an x86 server. This implementation is then
compared to other state-of-the-art learning and control sys
tems. The CALOREE system 2000 is also tested in both
single-app and multi-app environments. In single-app envi
ronments, the streaming application runs by itself. In multi
app environments, other applications unpredictably enter the
system and compete for resources. Overall, it is observed
that the CALOREE system 2000 achieves more reliable
performance than previous methods, and achieves more
energy savings than previous methods.

Regarding the reliable performance of the CALOREE
system 2000, in the single-app case, all methods achieve
average performance close to the requirement. However, the
CALOREE system 2000's worst case performance is still
within 4% of the target, while prior techniques achieve worst
case performance between 28% to 75% lower than the
requirement. In the multi-app case, prior learning
approaches average at least 10% performance error, prior
control approaches average 5% error, and the CALOREE
system 2000 achieves just 2.7% average error, which is
almost half the next best competitor. All prior approaches
have a worst case performance at least 70% below the target,
while the CALO REE system 2000's worst case performance
is within 13% of the target.

Regarding the energy savings of the CALO REE system
2000, in the single-app case, the CALOREE system 2000
reduces average energy by 23-47% compared to prior learn
ing approaches and by 24% compared to prior control
approaches. For the most complicated applications, the
CALOREE system 2000 provides energy savings of more
than 2 times compared to the best prior approaches. In the
multi-app case, the CALOREE system 2000 reduces aver
age energy by 31 % compared to prior control approaches
and by 8% compared to prior learning approaches. While,
the savings compared to learning approaches may look
small, in this case the learning approaches are saving energy
by missing their performance goal.

The CALOREE system 2000 is compared to a control
system with rigorous a priori per application models
including models of application interference in the multi-app
case-something that would be impractical to deploy in the
real world. It is observed that CALOREE's average perfor
mance error across all cases is only 2% worse than this ideal
controller and its average energy is only 7.5% higher. This

US 11,009,836 B2
57

result shows that the CALOREE system 2000 provides a
considerable increase in generality with only minor reduc
tions in performance and energy.

In summary, control theoretic approaches are well suited
to manage resources in dynamic environments and machine
learning techniques can produce accurate models of com
plex processors. The methods described herein uniquely
combine control theoretic approaches with machine learning
techniques in order to generate a solution that at runtime
controls resource usage for a streaming application with no
prior knowledge.

The non-limiting examples illustrated in FIGS. 21A, 21B,
22A and 22B and described here present two simple
examples to illustrate the complementary strengths and
weaknesses of learning and control. FIG. 21A shows a
contour plot for normalized performance for a Lavamd
algorithm for different configurations. FIG. 21B shows a
time-line for running the Lavamd algorithm using either
learning (i.e., LEO) or control (i.e., POET) separately. FIG.
22A shows a contour plot for normalized performance for a
Kmeans algorithm for different configurations. FIG. 22B
shows a time-line for running the Kmeans algorithm using
either learning (i.e., LEO) or control (i.e., POET) separately.
The non-limiting examples use mobile development boards
featuring Samsung's Exynos 5 Octa with an ARM big
. LITTLE architecture that has four energy-efficient LITTLE
cores and four high-performance big cores. Each cluster can
be set to different frequencies, leading to a large configura
tion space for assigning resources to multi-threaded appli
cations.

Each configuration (assignment of cores and frequencies)
has different performance for different applications. FIGS.
21A, 21B, 22A and 22B show how performance varies as a
function of both resource usage and application. FIGS. 21A,
21B, 22A and 22B show cores on the x-axis and frequency
on the y-axis, with darker regions representing higher per
formance. The presence of local minima and maxima mean
that the function from resource usage to performance is
non-convex. Therefore, simple gradient ascent/descent
methods are not suitable to navigating these configuration
spaces. Additionally, the Lavamd application has a signifi
cantly more complicated configuration space than the
Kmeans application.

Now, prior learning and control approaches are described.
LEO, a hierarchical Bayesian learner, estimates application
performance as a function of its resource usage. POET, a
control system, adjusts resource usage to meet application
performance requirements with minimal energy. By describ
ing the results of the LEO and POET systems separately it
is possible to develop intuition about when one approach
performs better than the other, motivating the proposal to
combine the two systems, as described herein.

Many machine learning approaches have been proposed
to estimate application performance in a variety of scenarios.
Machine learning is well suited to building models of
complicated systems like those used in FIGS. 21A, 21B,
22A and 22B. To demonstrate how well learning manages
complexity, one can consider meeting a performance
requirement for Lavamd, which has a complicated configu
ration space. The application can use either learning or
control separately to attempt to meet a performance goal
with minimal energy. On one hand, the learning approach
estimates all configurations' performance and power and
then uses the lowest power configuration that delivers the
required performance. On other hand, the control approach
has a generic model of performance/power frontiers (similar

58
to Kmeans) and it constantly measures performance and
adjusts resource usage according to this generic model.

In contrast to many controllers using linear models, in
certain implementations, POET uses a convex model and

5 handles some non-linearities. However, it is sensitive to
local maxima.

FIG. 21B shows the results of controlling 30 iterations of
Lavamd to meet the performance requirement. The use of 30
iterations is a non-limiting illustrative example. The x-axis

10 shows iteration number and the y-axis shows normalized
performance. The learning approach achieves the goal, but
the controller oscillates wildly around it, sometimes not
achieving the goal and sometimes delivering performance
that is too high (and wastes energy). The oscillations occur

15 because the controller adjusts resources based on an incor
rect (over-simplified) model of the configuration space.
Hence, the learner's ability to handle complex models is
crucial for reliable performance in this example.

This result may be somewhat counter-intuitive. The prob-
20 !em is that the controller cannot handle the complexity of

Lavamd. One way to fix this problem would be to build a
custom controller just for this application, but that controller
would not be useful for other applications. In contrast, the
learner can find the local maxima in the configuration space,

25 and as this application has no phase changes or other
dynamics, the one configuration that the learner finds is
suitable for the entire application .

The benefits of using control over learning can be under
stood by considering a dynamic environment. This is simu-

30 lated by beginning with Kmeans as the only application
running on the system. Halfway through its execution, a
second app is launched on a big core, dynamically altering
resource availability. FIG. 22B shows the results of this
experiment. The vertical dashed line represents when the

35 second application begins. FIG. 22B clearly shows the
benefits of a control system in this dynamic scenario. After
a small dip in performance, the controller returns it back to
the desired level. The learning system, however, does not
have any inherent mechanism to measure the change or

40 adapt to the altered performance. While the system could
theoretically relearn the configuration space whenever the
environment changes, doing so is disadvantageous in some
implementations. Control systems are a light-weight mecha
nism for managing such dynamics. Control systems are

45 resilient to scale change in the system performance or power.
Many dynamic changes reduce all configurations' perfor
mance almost uniformly, changing the magnitude of perfor
mance without altering the relative difference between con
figurations. For this reason, control systems have proven

50 especially useful in web servers with fluctuating request rates
and multimedia applications with dynamically varying
inputs.

To understand the CALOREE system 2000, consider a
mobile device or embedded system running a streaming

55 application on a heterogeneous processor. No prior knowl
edge of this streaming application is assumed, but there is
prior knowledge of other applications. The goal of the
CALO REE system 2000 is to quickly build a model of the
new application and then control the resource usage of the

60 mobile devices such that a desired performance target is
meet with minimal energy.

FIG. 23 shows an implementation of the CALOREE
system 2000 approach to meeting the desired performance
target with minimal energy. In the implementation of the

65 device 2005 shown in FIG. 23, the control system is a
generalized control system (GCS), which allocates resources
to the new application to meet its specified performance goal

US 11,009,836 B2
59 60

addressing the additional complications presented by system
dynamics (e.g., applications transitioning from memory to
compute bound). Instead, control systems use relatively
simple difference models. Continuous time systems would

with minimal energy. The GCS starts with a generic resource
model, and as it selects configurations it records perfor
mance and power in each configuration, after recording a
small number of values (typically less than 10% of the total
configuration space). 5 use differential equations, but as time in computers is

inherently discretized the discussion herein is restricted to
difference equations which are appropriate for discrete time
systems.

Exploring a greater percentage of the configuration space
often produces greater accuracy. And on the converse,
exploring a lesser percentage of the configuration space can
reduce the accuracy. Depending on the goals and the system
more or less exploration of the configuration space can be 10

beneficial.
The recorded values are sent to a remote server 2015

which runs a hierarchical Bayesian model (HBM). The
HBM estimates the application's performance and power in

Continuing the example of controlling performance with
clockspeed, a simple model appropriate for control would be
to assume that the performance is a linear function of the
clockspeed, which is given by

perf(t)~k-clock(t-1)+ii

Here, the observed performance perf(t) is predicted as some
constant k times the clockspeed applied at the previous time
step, clock(t-1), plus some noise, Ii drawn from a Gaussian
distribution. This simple linear difference model ignores
low-level details like instruction mix, and instead uses
feedback, predicting behavior of the next time step as a
function of the previous time step. Using the relationship of
the above equation, it is possible to synthesize a simple
controller that is provably convergent to the desired perfor
mance. The controller can be governed, e.g., by the expres-

all other configurations and extracts those configurations 15

that are Pareto-optimal in the performance/power tradeoff
space. These configurations are packaged in a special data
structure-the performance hash table (PHT)-and sent to
the GCS. The PHT can be generated in the server 2015 and
sent to the devices 2005 as part of the performance model. 20

Alternatively, the performance model can be sent the device
2005, and the device 2005 can assemble the PHT from the
received performance model. Using the PHT, the GCS
selects an energy minimal resource configuration in constant
time (0(1)). The constant time to select the energy minimal
resource is an absolute time duration (i.e, no matter how
many configurable parameters there are, the controller will
select a combination of configurations in a constant amount

25 SJOnS

of time). That is, adding more parameters does not slow
down the controller.

In certain implementations, in addition to the PHT, the
server sends back the model's variance. In these implemen
tations, the GCS can use this variance to customize control

30

to the model's uncertainty, allowing guaranteed conver
gence to the performance goal despite the fact that the 35

system starts with no prior knowledge of the streaming
application.

Now, additional details of the CALO REE system 2000 are
provided. These additional details begin with a description

error(t) = goal - perf(t), and

error(t)
clock(t) = clock(t-1)- -k-.

The controller governed by the above equations provides
formal guarantees that it will converge to the desired per
formance (goal in the above equations) and it bounds the
time taken to converge. All these guarantees, however, are
predicated on the accuracy of the model; i.e., on the value k
in this simple example. This value is highly dependent on the
particular application under control. More complicated
examples that control multiple resources are relatively
straightforward extensions of the example shown here that
use matrix equations instead of the scalar equations pre
sented here. Either way, the control system is highly depen
dent on the value of k. The value of k could be set to be
application specific, but then the controller will fail on some
applications. If a value ofk is chosen such that performance
still converges to the goal for all applications it will be very
slow, meaning that the controller will take many time steps
to react to some dynamic events. It would clearly be

of a control design for a computer system according to one 40

non-limiting embodiment. Then a description is provided of
the generalized control system of the CALOREE system
2000, according to one non-limiting embodiment. Next, a
description is provided of how the CALOREE system 2000
turns the generalized control signal into specific resource 45

configurations using a model. Further, a description is pro
vide of how to use a hierarchical Bayesian model to estimate
resource performance and power tradeoffs. Then, the per
formance hash table that encodes the learned model is
described. Finally, a description is provided of some brief
analysis of the approach. This description is provide as a
non-limiting example of the CALOREE system 2000.

50 beneficial to tune the control models to individual applica-

FIG. 24 shows a non-limiting example of a light-weight
control system for the device 2005. A controller has a
performance goal (e.g., corresponding to a quality-of-ser- 55

vice or real-time constraint) and adjusts system resource
usage to see that the goal is met. In a simple example, a
control system might adjust processor frequency to ensure
that a performance goal is met. Even better, an optimal
controller would use the minimal clockspeed to meet the 60

performance requirement.
To turn clockspeed into performance a controller needs a

model relating these two values. Directly mapping clock
speed to performance is difficult-a hypothetical model might
account for instruction mixes, memory hierarchy, memory 65

latency, synchronization overheads, etc. Building such a
model is a tedious and error-prone process, even before

tions.
It is desirable to use control and learning to solve the

problem of meeting an application's performance require
ments while minimizing energy consumption. The difficulty
is that classical control formulations like the example above
integrate the models directly into the controller, i.e., the
application-dependent relationship between performance
and resource usage is directly used in the control equations.
This problem is addressed by adding a layer of indirection.
This idea is illustrated in FIG. 26. Instead of directly
controlling resources using an application-dependent model,
speedup is controlled by passing the speedup value to a
separate module that translates speedup into a desired
resource configuration using the learned models. The fol
lowing description describes the formulation for controlling
speedup and then describes the translator that converts that
speedup into resource allocations.

US 11,009,836 B2
61

Analogous to the above equation for perf(t), it is possible
to write a simple difference model relating speedup to
performance:

perf(t)~b-speedup(t-1)+ii,

wherein b is the base speed of the application, here defined
as the speed when all resources are available. While b is
application specific, it is easy to measure online, by simply
allocating all resources. Such a configuration should not
violate any performance constraints (although it is unlikely
to be energy efficient) so it is safe to take this measurement
without risk of violating performance constraints. With this
model, the control law becomes

error(t) = goal - pe,f(t) and

error(t)
speedup(!)= speedup(t-1)- -b-,

which states that the speedup to apply at time t is a function
of the previous speedup, the error at time t and the base
speed b. This is a very simple deadbeat controller that
provides all the standard control theoretic formal guarantees.
In certain implementations, the controller can include a pole,
rather than being a deadbeat controller. By measuring base
speed online while the application runs, the control can be
tuned to a specific application. It is noted that using this
definition of base speed, most speedups will be less than one.

62
wherein Pc and scare the estimated powerup and speedup of
configuration c and -cc is the amount of time to spend in
configuration c. The power equation above simply states that
the objective is to minimize energy (power times time). The

5 work equation above states that the work must be done,
while the time/deadline equation above requires the work to
be done on time. The final inequality simply imposes the
physical constraint of no negative time.

While most linear programming problems would be inef-
10 ficient to solve repeatedly on a mobile device, the linear

programming problem represented by the above equations
has a constant time (0(1)) solution. At most two of -cc are
non-zero, meaning that at most two configurations will be
used in any time interval. If the configurations are charted in
the power and performance tradeoff space the two configu-

15 rations with non-zero -cc lie on the lower convex hull of the
power performance tradeoff space. These two facts are used
to construct a constant time algorithm for finding the optimal
solution online.

FIG. 25 shows a performance hash table (PHT), which is
20 a data structure to efficiently convert a required speedup into

a configuration. The PHT is a novel data structure that
allows constant time operation. This constant time operation
is achieved by increasing the memory usage. If less memory
usage is desired and slower operation can be tolerated, a

25 sorted list could be used instead. Given n combinations of
configurations, a sorted list can be executed in O(log n) time.

In addition to making base speed easier to measure, this has
the nice property of bounding the learner's output, making 30

for more robust learning. Next, the description describes
how to address the problem of converting an abstract
speedup into an actual resource allocation.

The PHT contains points on the lower convex hull of the
power/performance tradeoff space. It consists of two arrays;
the first is an array of pointers that point into the second
array, which stores the configurations on the convex hull
sorted by speedup. Recall that speedups are computed
relative to the base speed, which uses all resources. Because
the largest speedup possible is 1, the only concern is that the
speedup is less than 1. The first table of pointers has a
resolution indicating how many decimal points of precision
it captures. The example in FIG. 25 has a resolution of 0.1.
To improve the visibility of FIG. 25, the non-limiting

Consider how to map the speedup produced by the above
equations into a resource allocation. On an exemplary target 35

system, an ARM big.LITTLE architecture, that specifically
means mapping speedup into a number of big cores, a
number of small cores, and a speed for both (on the system
big and little cores can be clocked separately).

The primary challenge here is that the HBM produces a 40

discrete non-linear function of resource usage into speedup
and powerup, while the above equation is a continuous
linear function. This divide is bridged by assigning time to
resource allocations such that the average speedup over a
control interval is that produced by the above speed-up 45

control equations.
An assignment of time to resources is referred to as a

schedule. Not surprisingly, there are typically many sched
ules that meet a particular performance requirement. It is
desirable to find a minimal energy schedule. Given a time 50

interval -c, a workload W to complete in that interval, and a
set of C configurations, this problem can be expressed as

example provided herein uses a resolution of0.1 and a table
of size 10. However, other resolutions and table sizes can be
used, especially if the aesthetics of generated figures is not
an issue. In practice the resolution is a tradeoff between the
maximum control error and the size of the PHT. Any positive
resolution can be used. Each pointer in the first table points
to the configuration in the second array that has the largest
speedup less than or equal to the index.

To use the table, the translator receives a speedup s(t)
from the controller. It needs to convert this into two con
figurations referred to as hi and lo. To find the hi configu
ration, the translator clamps the desired speedup to the
largest index lower than s(t) and then walks forward until it
finds the first configuration with a speedup higher than s(t).
This configuration is hi. To find the lo configuration, the
translator clamps the desired speedup to the smallest index
higher than s(t) and then walks backwards until it finds the
configuration with the largest speedup less than s(t).

For example, consider the PHT in FIG. 25 and a translator
C-1

min~ Tc·Pc

c=O

Subject to

55 trying to meet a speedup s(t)=0.65. To find hi, the translator
indexes at 0.6 and walks up to find c=2 with sc=0.8, setting
hi=2. To find lo, the translator indexes the table at 0.7 and
walks backward to find c=l with sc=0.2, setting lo=l. The

C-1

~r,·s,-b=W
c=O

C-1

~T,=T

c=O

0 s r, s r, V c E {O, ... , C - 1),

60

65

above values are provided as a non-limiting example.
Finally, the translator sets -ch, and 't1o by solving the

following set of equations:

In these equations, s(t) is the speedup requested by the
translator, and sc are the speedups estimated by the learner.

US 11,009,836 B2
63 64

By solving the above equations, the translator has turned
the speedup requested by the controller into a schedule of
resource allocations using the models provided by the HBM.
Provided that the resolution is large enough to get a good
spread of configurations to indices, the translator will always 5

index the configuration array at most one entry from where

approach that carefully tailors resource allocation for the
application and performance requirement. The race-to-idle
strategy is much better than doing nothing, but is far from
optimal.

Clearly there is great potential for energy reduction by
carefully tailoring resource usage. Various approaches can
be used to address the problem of configuring GPUs
(through both scheduling and resource management) for
maximum performance. However, interactive applications

it needs to be. Thus, the entire translation process runs in
constant time-assuming that the learner is responsible for
building the PHT once before passing it on to the translator.
This efficiency comes at a cost of memory usage-many of
the entries in the speedup index table will point to redundant
locations in the configuration array. This is a reasonable
tradeoff to make in practice because it is beneficial for the
code that runs on the mobile device to be fast or else there
is a risk of wasting energy while trying to save energy. In
certain implementations, it is recommend that a table have
a size 100, which provides a sufficient resolution and with
out being too wasteful of space. The table size of 100 is
provided as a non-limiting example. Generally, any table
size greater than 1 can be used.

In summary, the CALOREE system 2000 leverages the
collective information of a number of independent mobile
devices each running a lightweight controller. Each device,
such as the device 2005, makes a small number of local
observations of an application it runs and sends those to the
server. The server 2015 integrates those observations using
an HBM to produce customized models for each device.
These models are sent back to the individual devices where

10 particularly benefit from an approach that tailors resource
usage to the particular application and performance require
ment. The difficulty is that each application will respond
differently to different resources (e.g., some will need more
memory resources while others will need more computa-

15 tional resources). It is even likely that different kernels
within an application will have different requirements. The
challenge, then is dynamically determining how to tailor
resource usage to the current application and performance

20

requirement.
This challenge is addressed by the GRAPE (GPU

Resource Adaptation for Performance and Energy) architec
ture 2600. The GRAPE architecture 2600, according to
certain embodiments, is a hardware control system that
manages GPU resources to meet software-specified perfor-

25 mance goals. As shown in FIG. 26, the GRAPE architecture
2600 uses a controller 2605 to achieve a performance
requirement, which ensures that the stream of inputs is
processed at the right speed. The GRAPE architecture 2600

they are used to meet performance requirements with mini
mal energy by translating a speedup signal into configura- 30

further augments the controller 2605 with a simple machine
learning component implemented by the translator 2615 and
the model update 2620 that tailors control to the behavior of tions.

Next, another implementation is described, which uses a
GRAPE architecture 2600 as shown in FIG. 26. The GRAPE
architecture 2600 includes a controller 2605, a translator
2615, and an update model 2610. The GRAPE architecture
2600 can be used to optimize energy consumption and
performance according to the application executed on a
graphical processing unit (GPU) such as the GPU 2620
shown in FIG. 26.

GPUs are often used to support applications, whose
performance requirements are defined by their interaction
with the outside world (e.g. a sensor or a human). When
supporting such interactive applications, the goal should not
be running as fast as possible, but running just fast enough
to maintain interactive performance while minimizing
energy usage. The GRAPE architecture 2600, which is
described next, provides non-limiting examples of a hard
ware controller that can be integrated into existing GPU' s to
provide user-specified performance while minimizing
energy usage. The performance and energy can be evaluated
by modifying GPGPUSim to support the GRAPE architec
ture 2600. It is observed that, across a range of applications
and performance targets GRAPE is within 99.87% of the
desired performance, while consuming only 4.9% more
energy than optimal. Compared to the standard strategy of
racing-to-idle, GRAPE reduces energy consumption by 0.74
times on average and increases energy efficiency by 1.35
times. In addition, the area overhead of the GRAPE archi
tecture 2600 can be evaluated by implementing it in VHDL.

The non-limiting exemplary implementations described
herein are measured using the potential power reduction for
four benchmarks run in an interactive style with three
different resource management techniques. The baseline
technique executes the application in the normal, batch
mode. Race-to-idle is a common strategy that runs the
application in its fastest configuration and then idles until the
next input is ready. The oracle represents the true optimal

the current application, ensuring optimal resource usage.
Both the controller 2605 and the learner, which in FIG. 26
is realized using the translator 2615 and the model update

35 2620, can be implemented in hardware, removing the opti
mization burden from software developers.

To illustrate some advantages of the GRAPE architecture
2600, it is evaluated in two ways. First, the control and
learning algorithms are integrated into GPGPU-Sim v3.2.2,

40 a cycle-accurate GPGPU Simulator and GPUWatch, and
then the ability of the GRAPE architecture 2600 to deliver
performance and energy savings is tested using 17 bench
marks drawn from Rodinia and Parboil. This test is provided
as a non-limiting example. Second, the GRAPE architecture

45 2600 is implemented GRAPE in VHDL to measure its
performance, power, and area overhead. Given these two
implementations, it is observed that the GRAPE architecture
2600 provides advantages with respect to: 1) performance
predictability; 2) energy efficiency; 3) peak power reduction,

50 and 4) low overhead. Regarding performance predictability,
it is observed that across a range of different performance
targets, according to the above described implementations,
the GRAPE architecture 2600 achieves the desired perfor
mance with only 0.23% error. In fact, there is only a single

55 benchmark and performance target for which the GRAPE
architecture 2600 GRAPE fails to deliver the desired per
formance. Regarding energy efficiency, it is observed that
the GRAPE architecture 2600 reduces the energy consump
tion by 0.74 times on average compared to the baseline. For

60 example, the energy consumption reduction observed when
executing the Kmeans application is 0.49 times. It is
observed, however, that the efficiency can depend on the idle
power. Regarding peak power reduction, according to the
above implementations, the GRAPE architecture 2600 not

65 only reduces the energy consumption but also the peak
power. It is observed that the GRAPE architecture 2600
reduces peak power by 0.58 times of the normalized base-

US 11,009,836 B2
65 66

fuel flow and a car's speed such as wind speed, wind
direction, incline, surface condition, and tire pressure. Mod
eling this large set parameters can be challenging, resulting
in complicated models that are not useful in practice. Con-

line. For example, the best power reduction is when execut
ing the Kmeans application, for which the reduction is 0.31
times. Regarding low overhead, the GRAPE architecture
2600 can be implemented in an FPGA technology using
Quartus II software, which in tum uses VHDL to count
power and cycle overhead. The overhead power is measured
in one implementation using PowerPlay Early Power Esti
mator, which shows that the GRAPE architecture 2600 uses
0.967 Watts to operate.

5 trol engineers, however, have found that simple models
based on difference equations used to construct robust cruise
controls can deliver a desired speed even when the operating
environment is unknown ahead of time. Motivated by prior
successes in control theory, the GRAPE architecture 2600

10 applies similar techniques to the problem of maintaining a
GPU performance goal while minimizing energy consump-

The low overhead of the GRAPE architecture 2600 means
that it could easily be integrated into existing GPUs with
almost additional cost. Energy savings are demonstrated by
tailoring GPU resource usage when running interactive
applications. The control and learning framework developed
for the GRAPE architecture 2600 automatically adapts
resource usage to meet the performance requirements of
interactive GPU applications while minimizing energy con
sumption. Various implementations of this approach are
described in, including simulations and hardware. The meth
ods of the GRAPE architecture 2600 described herein 20

uniquely provide a hardware solution for reducing GPU
energy when processing interactive applications.

Next is provided a non-limiting example motivating the
need to tailor resource usage for interactive applications. For
example, consider using a GPGPU to accelerate digital
signal processing (DSP). The fast Fourier transform (FFT) is
one of the most important computations in DSP can be used
in noise cancellation, for example. A noise cancellation
application that works 16.384 kHz and 256 point FFT size
should maintain the latency period to finish at 7.8125 m
period. Assuming a noise cancellation algorithm need 5.25

tion.
GPGPU applications consist of variety of kernels, each

15
with different behavior. These different kernels are analo-
gous to different driving conditions in the cruise control
example. Applying specific purpose control strategy to
handle memory-bound applications may degrade the perfor-
mance if compute-bound applications. Therefore a general
control strategy can be applied. Recent research has dem
onstrated that, although generality sometimes causes perfor-
mance loss, carefully constructed general control systems
can perform better than dedicated ones.

FIG. 28 shows an alternative implementation of the
25 GRAPE architecture 2600, using decision circuitry 2655,

which performs some functions analogous to the controller
2605, actuating circuitry 2660, observing circuitry 2665,
circuitry realizing an update of the actuator model 2675,
circuitry to determine a dynamic goal (e.g., a speedup factor

30 or a latency goal) that feedbacks to a goal 2650 at which a
difference between a desired performance and actual per
formance is detected as an error that is feedback to the
decision circuitry 2655 to determine a correction (e.g., a

ms to finish its duty, then the FFT has 2.5625 ms latency
deadline. By default, 256 points FFT Rodinia implementa
tion in GPGPU 1.030 ms, leaving space for the GRAPE
architecture 2600 to adjust the performance down to 50%. 35

relative speedup factor).
In certain implementations, such as the implementation

shown in FIG. 28, the GRAPE architecture 2600 can use a
generic control system that implements an observe-decide
act (ODA) loop. In FIG. 28, the GRAPE architecture 2600
includes functionality to observe the GRAPE architecture
2600 and its environment, determine characteristics of the
kernels, and possibly adjust performance goals. Then, the

FIGS. 27A, 27B, and 27C show the FFT application's
performance (FIG. 27A), power (FIG. 27B), and energy
consumption (FIG. 27C) when executed under control of the
GRAPE architecture 2600. The FFT runs periodically and
then idle to await the next data. It is demonstrated that 40

GRAPE architecture 2600 decides a general speedup to
maintain specified performance goal. Having determined a
speedup, GRAPE automatically and dynamically assigns

running the FFT using a race-to-idle strategy requires more
power than using the GRAPE architecture 2600. The
GRAPE architecture 2600 adjusts resource usage such that
the requirement for interactive performance is maintained.
The GRAPE architecture 2600 not only reduces the maxi
mum power consumption, but also reduces energy consump
tion over time.

A significant insight in the GRAPE architecture 2600 is
that a combination of control theory and machine learning.
The GRAPE architecture 2600 maintains simple internal
difference models of how an application will respond to
more resources. When an application is running, the con
troller 2605 of the GRAPE architecture 2600 detects differ-

45 resources to the kernel to meet the required speedup while
reducing power consumption. The GRAPE architecture
2600 can handle different kernel characteristic, and make
decisions about actuators and applications with which it has
no prior experience. The control and learning mechanisms

50 are simple, yet powerful, permitting them to be implemented
in hardware.

ences between the application stated desired performance
and the actual measured performance. The control system of 55

the GRAPE architecture 2600 uses the difference models to
eliminate error between the desired performance and the
measured performance. Then the learning system of the
GRAPE architecture 2600 (e.g., translator 2615 and the
model update 2620) customizes the difference models so 60

that the controller 2605 can be tailored for individual
applications.

Regarding the functionality provided by the observing
circuitry 2665, the objectives of the observing circuitry 2665
of the GRAPE architecture 2600 are to monitor system
performance and kernel behavior. The GRAPE architecture
2600 continuously monitors system performance h, and
power cost c, during one window of -i: time units. During
each time unit -i:, the GRAPE architecture 2600 samples
system performance at the beginning and middle of the time
unit -i:.

In certain implementations, the GRAPE architecture 2600
observes a kernel's stall number, presence of idle cores, and
ability to reach a performance goal g, in each -i:. High stall
number means the kernels are in memory behavior. The

Intuitively, in certain implementations, the control system
of the GRAPE architecture 2600 works like the cruise
control in a car. Car drivers set a speed and cruise control
adjusts fuel flow to ensure that the speed is met. In principle,
a large number of variables affect the relationship between

65 presence of an idle core means the kernel is load-imbal
anced, and the inability to reach the goal means the appli
cation had a non-uniform kernel characteristic.

US 11,009,836 B2
67 68

would be understood by a person of ordinary skill in the art
as a process of increasing bounds on the data structures
storing these models.

Now an independent model relationship is described. As
5 the number of actuators grows, the number of configurations

(which is a setting for each actuator) increases exponentially.
To avoid this exponential explosion, the GRAPE architec
ture 2600 can model the actuators as independent and links
the models computationally using the equation:

Regarding the functionality provided by the circuitry to
determine dynamic goal 2670, the GRAPE architecture
2600, in certain implementations, not only maintains
throughput rate performance (h,) but also latency perfor
mance (li). GPGPU applications may consists of many
kernels which have different behavior between others. Some
kernels may have a maximum performance hmax above the
throughput performance goal and some kernels may have a
hmax below the user's performance goal gdefaulr The control
system can maintain (h,) when the kernel (hmax) is above the 10

gdefaulr When this happen the GRAPE architecture 2600
ensures that the performance error will be paid in the future
kernel to maintain the latency goal. Failure in keeping the
performance goal in one kernel will cost the system to the

15
deadline because the latency performance (li) drop.

Table 6 summarizes the below described method. Accord
ing to certain implementations, the GRAPE architecture
2600 can use a dynamic goal (g,) to keep (h,) and (li) as close
as possible but never below g by applying a simple classic 20

control system as in Table 6. The constant a is used to
control the dynamic rate. However, kernels with low (hmax)
can occur in the last kernel, and GRAPE do have enough
time to reclaim this lost latency. The GRAPE architecture
2600 overcomes this by dynamically setting lower limit of 25

the (g,). The GRAPE architecture 2600 can include an
assumption that if there is a there is a low performance
kernel, then another low-performance kernel is also likely to
manifest later. A lower limit goal is insurance against a
future low-performance kernel. An upper limit goal is also 30

beneficial to maintain system performance not exceeding too
much which can reduce the power saving potential.

TABLE 6
35

Summary of one non-limiting example of dynamic goal algorithm.
Algorithm 1 Dynamic Goal

Now the wavefront action is described. The GRAPE
architecture 2600 determines whether a kernel is a memory
bound kernel or computation bound kernel by monitoring
the stall threshold ts,au· GRAPE implements wavefront
action using the algorithm summarized in Table 7.

TABLE 7

algorithm for implementing the wavefront action.
Algorithm 2 Wavefront Action

1: procedure WAVEFRONT ACTION
2: if stall dram :C:: ts tall and stallinterconnect :C:: ts tall

then
3: N, - N,-1
4: else
5: N, - N,+1
6: end if
7: end procedure

The values of y, limitupper, and limit1ower can be subjec
tive. For example, y can be set to 4, limitupper to 48 and
limit1ower to 4. Memory bound kernels tend to exhibit non-1: procedure DYMAMIC GOAL

2: g, -&efaufr - (a (h; - gdefaufr))

3: end procedure

Regarding the actuating circuitry 2660 of the GRAPE
architecture 2600, the model is built to include a set of
actions. For example, an action can be an array consists of
speedups, cost, and identification. Additionally, a model of
frequency and voltage action can be used to model the
dynamic power and performance tradeoff, for example. In
certain implementations, a set of core model and warps can
be active in each core.

40 linear behavior during runtime. By finding best wavefront
numbers using the algorithm in Table 7, it can be expected
that the memory bound kernel's appears to behave more
linearly and therefore is easier to control.

Further regarding an actuator model of the GRAPE archi
tecture 2600, in certain implementations, a set of core
actuator (SJ are used together with a set of frequency
actuators (s6) and wavefront actuators. Core actuators can
have 16 members covering operation from idle to 15 cores
in use. It is assumed that the GPGPU has 7 P-states, ranging
from a peak of700 MHz to a minimum 100 MHz, with step

Regarding the decision circuitry 2655 of the GRAPE

45
architecture 2600, according to certain implementations, a
runtime system of the GRAPE architecture 2600 automati
cally and dynamically selects actions to meet the goals with
minimal cost. In certain implementations, the decision cir
cuitry 2655 includes a controller, an optimizer, and a learn-

50 ing engine that adapts the optimizer. Regarding the control
ler, the GRAPE architecture 2600 augments a model-based
feedback control system. The controller reads the perfor
mance goal (g,) for application (i), collects the throughput
rate hi and average throughput rate (li) at time t, and

55
computes speedup s,(t). Average throughput rate is a latency
goal that corresponds to a prediction of when the application
will finish.

of 100 MHz. These settings align with GTX 480's existing
DVFS settings. In certain implementations, a 45 nm predic
tive technology models can be used to scale the voltage with 60

frequency (from 1 V to 0.55 V). Frequency actuators are
used under the constraint that frequency cannot be changed
more than once in one decision period -i:. The scheduler's
wavefront limiting can be used as actuators which limiting
the wavefront in CTA from 4 to 32 by factor of 4. Extending 65

these actuators to future architectures with more cores,
DVFS settings, or scheduling options is can be performed as

In certain implementations, the control system uses dif
ference models to eliminate the error e,(t) between the
performance goal g, and the speed h,(t) where e,(t)=g,-h,(t).
Given this error estimate, the speedup required to meet the
goal can be calculated as:

s,(t)-s,(t-1)+w,(t)·e,(t),

wherein w,(t) represents the application's workload, or the
time it would take to complete application i using minimum
resources. Treating the value of workload as a time-variant

US 11,009,836 B2
69

parameter allows the GRAPE architecture 2600 to tailor
control to individual applications and even different kernels
within the application. In practice, this value could be
measured, but the measurement would disrupt the applica
tion performance because the measurement includes execut
ing in a minimal resource configuration. Therefore, the
GRAPE architecture 2600 can estimate the application
workload online. Workload is estimated using a on dimen
sional Kalman filter as w,(t)E 9t and models this workload
as:

w,(t)~w,(t-1)+ow,(t),

wherein ow,(t) represent time varying noise in the true
workload. The GRAPE architecture 2600 recursively esti
mates the workload for application i at time t as w'(t) using
the following Kalman filter formulation, which is given by

x,(t) =x,(t-1),

P;(t) = p;(t-1) + q;(t),

P;(t)s;(t-1)
k;(t) = -----,

[s;(t)]2p,(t)+o;

x;(t) = x,(t) +k;(t)h;(t)-s;(t- l)x~(t)],

p;(t) = [1-k;(t)s;(t- l)]p;(t), and

' 1
w;(t)= x;(t)'

wherein q,(t) and o, represent application variance and
measurement variance; x,(t) and x,(t) represent the a poste
riori and a priori estimate error variance; and k,(t) is the
Kalman filter gain.

70
architecture 2600 adaptively updates the model to reflect
actual behavior of kernel application.

Adaptation of the workload can be done using a Kalman
filter. In certain implementation, two more Kalman filter can

5 be used to estimate the speedup and cost. Alternatively, in
certain implementations, to decrease the area overhead and
cost the control computation, the number of Kalman filters
can be reduced. For example, the GRAPE architecture 2600
can implement a simple machine learning approach that

10 costs less than an adaptive Kalman filter. That is, the
GRAPE architecture 2600 can estimate the new model using
an algorithm such as the algorithm shown in, wherein k1 and
k2 is the learning rate, that the value is according to user. For

15
example, herein the values are set as k1=0.85 and k2=0.15.

20

25

30

Table 8, wherein k 1 and k2 is the learning rate, that the
value is according to user. For example, herein the values are
set as k1=0.85 and k2 =0.15.

TABLE 8

A summary of an algorithm for adaptive control
using machine learning, rather than Kalman filtering.

Algorithm 3 Update Actuator Model

1: procedure ADAPTING TRANSLATION

2:

3:

4:

k1ci
Ccore = - + k2Ccore

Cjreq

end procedure

Regarding the optimizer of the decision circuitry 2655, 35

the adaptive control system of the GRAPE architecture 2600
produces a general speedup signal s,(t), which the runtime
translates into the minimal energy configuration that will
actually meet this goal (e.g., this can be achieved using a
performance hash table (PHT)). The GRAPE architecture 40

2600 can do this by scheduling resource usage over a
decision time period window of -c seconds. Given a set
A={ a} of core actions with speedup sa and costs ca and
B={b} of frequency actions with speedup sb and costs cb, the
GRAPE architecture 2600 would like to schedule each of the 45

FIG. 29 shows an implementation of the GRAPE archi
tecture 2600 including a controller 2605, a translator 2615,
an actuator 2630, an application 2635, and an update system
model 2610.

FIG. 30 shows an exemplary implementation of a GRAPE
datapath 2800. Now a description is provided of a non
limiting examples of an implementation of the GRAPE
architecture 2600 using the GRAPE datapath 2800. The
non-limiting examples include implementations in both
hardware and software. The GRAPE datapath 2800 includes
input data from a speed and power sensor 2802 and input
data of an interactive goal 2804, as well as output data for actions for -cas-c time and "tb =t units in such a way that the

desired speedup is met and the total cost (energy) is mini
mized. In other words, system tries to solve the following
optimization problem

The idle action corresponds to the system paying a cost of
c,dze and achieving no speedup s,dze =0). The values -ca and "tb

can have different values because core actuator can change
in 1 cycle and frequency actuators can wait 500 cycles to
change due overhead delay.

an actuator 2806. The input data from the speed and power
sensors can be provided to circuitry determining an update
model 2810 and to circuitry determining a dynamic goal

50 2820. The circuitry determining a dynamic goal 2820 can
also receive the input data of the interactive goal 2804. The
output of the circuitry determining a dynamic goal 2820 can
be provided to a control 2830, which also receives results
from a model memory 2840, which is determined using

55 results of the update model 2810. Then, a translator 2850
provides the actuator output 2806 based in part on results of
the control 2830.

In certain implementations, the GRAPE architecture 2600
can be implemented in FPGA technology using Quartus II

60 software using VHDL to count power and cycle overhead.
Regarding the learning actuator models of the GRAPE

architecture 2600, adaptive control can be used to flexible
control the performance goal. The GRAPE architecture
2600 an increase flexibility by implementing an update in
the actuator model. For example, initially the actuator model 65

can assume that cost and performance between actions is
linear after several decision periods. Then, the GRAPE

For example, a fixed point package can be implemented to
perform a floating point multiplication and division in
VHDL. In one implementation, the design can be synthe-
sized such that the GRAPE architecture 2600 occupies
15,376 logic elements. In this implementation, a TimeQuest
timing analyzer shows that GRAPE fmax is 1.35 MHz or 519
cycles overhead in GPU Core frequency. Also, PowerPlay

US 11,009,836 B2
71

Early Power Estimator shows that this implementation of the
GRAPE architecture 2600 uses 0.667 Watts to operate. The
dynamic frequency and core actuator can be implemented by
masking the clock in GPGPU-Sim. The wavefront actuator
can be implemented using a swl scheduler. The GPUWattch 5

can be edited to count the dynamic voltage and leakage static
power. Further, a GTX480 model can be provided by those
simulator. Then, the DVFS overhead can be modeled as 500
cycles and the core gating overhead can be modeled as 1
cycle. These actuators increases the GPU power consump- 10

tion by 0.3 W. In this implementation, one decision period
for GRAPE is 3000 cycles.

FIG. 30 shows the GRAPE datapath 2800 in a VHDL
implementation. The implementation of the GRAPE data-

15
path 2800 shown in FIG. 30 includes 5 main components,
the update model 2810 to update the actuator model, the
model memory 2840 including actuator model arrays, the
control 2830, which counts the general speedup, the
dynamic goal 2820 to dynamically adjust the goal and 20

translator to find the least cost actuator. In certain imple
mentations, the speed and power sensor 2802 uses a vector
logic of 24 bits.

FIG. 33 shows an implementation of counting the over
head timing, in which sampling the sensor is performed 25

every 1500 cycles. It is assumed that there is no overhead in
sampling the data. The control calculation can be called
early at cycles 2450 to reduce the error in calculation.
Frequency overhead is 500 cycles, and during this overhead
period the simulator runs the application in previous fre- 30

quency action.
Next, a description of various implementations of the

device 120 and device 2005 and the server 2015 and server
110 are provided.

72
sharing images and media files via social media and func
tionality for capturing image displayed on the display 906.

The processor 902 can be any programmable micropro
cessor, microcomputer or multiple processor chip or chips
that can be configured by software instructions (applica
tions) to perform a variety of functions, including functions
of various embodiments described herein. The PDD 900 can
include multiple processors 902.

Software applications can be stored in the internal
memory 950 before they are accessed and loaded into the
processor 902. The processor 902 can include or have access
to the internal memory 950 sufficient to store the software
instructions. The internal memory 950 can also include an
operating system (OS) 952. The internal memory 950 can
also include an energy optimization application 954 that
preforms, among other things, parts of the method 200 as
described in the foregoing, thus providing additional func
tionality to the PDD 900.

Additionally, the internal memory 950 can be a volatile or
nonvolatile memory, such as flash memory, or a mixture of
both. For the purposes of this description, a general refer
ence to memory refers to all memory accessible by the
processor 902, including internal memory 950, removable
memory plugged into the PDD 900, and memory within the
processor 902 itself, including a secure memory.

The PDD 900 can also include an input/output (I/0) bus
936 to receive and transmit signal to peripheral devices and
sensors, or to communicate with embedded processors of the
motor vehicle.

In certain implementations, various steps of method 200
are performed using remote computing hardware, while
some less computational intensive and memory intensive
tasks of method 200 are performed on the PDD 900. FIG. 30
illustrates a block diagram of the remote computing hard-

In certain implementations, the device 120 and device
2015 can respectively be a personal digital device (PDD).
The PDD 900 shown in FIG. 32 is used to perform various
steps of method 200 and can be a smartphone, cellular
phone, tablet computer, digital camera, a video camera, a
personal or desktop computer, etc FIG. 32 shows a block
diagram illustrating one implementation of a personal digital
device (PDD) 900. The PDD 900 can perform the method
200 of optimizing energy. The PDD 900 includes processing
circuitry configured to perform the methods described
herein. For example, the PDD 900 can include a processor
902 coupled to an internal memory 950, to a display 906 and
to a subscriber identity module (SIM) 932 or similar remov
able memory unit. A processor 902 can be, for example, an
ARM architecture CPU such as the CortexA53 by ARM Inc.
or a Snapdragon 810 by Qualcomm, Inc. The processor 902
can also be an Intel Atom CPU by Intel Corporation.

35 ware 1000, which performs the methods and processes
described herein including method 200. The server 110 and
server 2015 can respectively be the remote computing
hardware 1000, Process data and instructions may be stored
in a memory 1002. The process data and instructions may

The PDD 900 can have an antenna 904 that is connected

40 also be stored on a storage medium disk 1004 such as a hard
drive (HDD) or portable storage medium or may be stored
remotely. Further, the instructions may be stored on CDs,
DVDs, in FLASH memory, RAM, ROM, PROM, EPROM,
EEPROM, hard disk or any other information processing

45 device with which the remote computing hardware 1000
communicates, such as a server, computer, or any non
transitory computer readable medium.

Further, functions of the remote computing hardware
1000 may be performed using a utility application, back-

50 ground daemon, or component of an operating system, or
combination thereof, executing in conjunction with CPU
1001 and an operating system such as Microsoft Windows 7,
UNIX, Solaris, LINUX, Apple MAC-OS and other systems
known to those skilled in the art.

to a transmitter 926 and a receiver 924 coupled to the
processor 902. The receiver 924 and portions of the proces
sor 902 and the internal memory 950 can be used for 55

network communications. The PDD 900 can further have
CPU 1001 may be a Xenon or Core processor from Intel

of America or an Opteron processor from AMD of America,
or may be other processor types that would be recognized by
one of ordinary skill in the art. Alternatively, the CPU 1001
may be implemented on an FPGA, ASIC, PLD or using

multiple antennas 904, receivers 924, and/or transmitters
926. The PDD 900 can also include a key pad 916 or
miniature keyboard and menu selection buttons or rocker
switch 914 for receiving user inputs. The PDD 900 can also
include a GPS device 934 for position sensing and/or inertial
navigation. The GPS device 934 can be coupled to the
processor and used for determining time and location coor
dinates of the PDD 900. Additionally, the display 906 can be

60 discrete logic circuits, as one of ordinary skill in the art
would recognize. Further, CPU 1001 may be implemented
as multiple processors cooperatively working in parallel to
perform the instructions of the inventive processes described
above.

a touch-sensitive device that can be configured to receive 65

user inputs. The PDD 900 can include a digital camera to
acquire images, as well as functionality for receiving and

The remote computing hardware 1000 in FIG. 33 also
includes a network controller 1006, such as an Intel Ethernet
PRO network interface card from Intel Corporation of

US 11,009,836 B2
73

America, for interfacing with a network 1030. The network
1030 can be a public network, such as the Internet, or a
private network such as an LAN or WAN network, or any
combination thereof and can also include PSTN or ISDN

74
computer or workstation that is connected to the network
1140 via a network controller, such as an Intel Ethernet PRO
network interface card from Intel Corporation of America,
for interfacing with a network.

sub-networks. The network 1030 can also be wired, such as 5

an Ethernet network, or can be wireless such as a cellular
network including EDGE, 3G and 4G wireless cellular
systems. The network 1030 can also be Wi-Fi, Bluetooth, or
any other wireless form of a communication that is known.

Signals from the wireless interfaces (e.g., the base station
1156, the wireless access point 1154, and the satellite
connection 1152) are transmitted to the mobile network
service 1120, such as an EnodeB and radio network con
troller, UMTS, or HSDPA/HSUPA. Requests from mobile

The remote computing hardware 1000 further includes a
display controller 1008 for interfacing with a display 1010.
A general purpose I/0 interface 1012 interfaces with input
devices 1014 as well as peripheral devices 1016. The general
purpose I/0 interface also can connect to a variety of
actuators 1018.

A sound controller 1020 may also be provided in the
remote computing hardware 1000 to interface with speakers/
microphone 1022 thereby providing sounds and/or music.

A general purpose storage controller 1024 connects the
storage medium disk 1004 with a communication bus 1026,
which may be an ISA, EISA, VESA, PCI, or similar, for
interconnecting all of the components of the remote com
puting hardware 1000. Descriptions of general features and
functionality of the display 1010, input devices 1014 (e.g.,

10 users and their corresponding information are transmitted to
central processors 1122 that are connected to servers 1124
providing mobile network services, for example. Further,
mobile network operators can provide services to the various
types of PDDs 900. For example, these services can include

15 authentication, authorization, and accounting based on home
agent and subscribers' data stored in databases 1126, for
example. The subscribers' requests can be delivered to the
cloud 1130 through a network 1140.

As can be appreciated, the network 1140 can be a public
20 network, such as the Internet, or a private network such as

an LAN or WAN network, or any combination thereof and
can also include PSTN or ISDN sub-networks. The network
1140 can also be a wired network, such as an Ethernet
network, or can be a wireless network such as a cellular
network including EDGE, 3G and 4G wireless cellular
systems. The wireless network can also be Wi-Fi, Bluetooth,
or any other wireless form of a communication that is
known.

a keyboard and/or mouse), as well as the display controller 25

1008, storage controller 1024, network controller 1006,
sound controller 1020, and general purpose I/0 interface
1012 are omitted herein for brevity as these features are
known. The various types of PDDs 900 can each connect via the

30 network 1140 to the cloud 1130, receive inputs from the
cloud 1130 and transmit data to the cloud 1130. In the cloud

Functions and features of the energy optimization meth
ods as described herein can be executed using cloud com
puting. For example, one or more processors can execute the
functions of optimizing the relevancy algorithm and calcu
lating the relevancy values. The one or more processors can
be distributed across one or more cloud computing centers 35

that communicate with the PDD 900 via a network. For

1130, a cloud controller 1136 processes a request to provide
users with corresponding cloud services. These cloud ser
vices are provided using concepts of utility computing,
virtualization, and service-oriented architecture.

The cloud 1130 can be accessed via a user interface such
as a secure gateway 1132. The secure gateway 1132 can, for
example, provide security policy enforcement points placed
between cloud service consumers and cloud service provid-

example, distributed performance of the processing func
tions can be realized using grid computing or cloud com
puting. Many modalities of remote and distributed comput
ing can be referred to under the umbrella of cloud
computing, including: software as a service, platform as a
service, data as a service, and infrastructure as a service.
Cloud computing generally refers to processing performed
at centralized processing locations and accessible to multiple
users who interact with the centralized processing locations
through individual terminals.

FIG. 34 shows an example of cloud computing, wherein
various types of PDDs 900 can connect to a network 1140
using either a mobile device terminal or a fixed terminal. For
example, FIG. 34 shows a PDD 900 that is a smart phone
1110 connecting to a mobile network service 1120 through
a satellite connection 1152. Similarly, FIG. 34 shows a PDD
900 that is a digital camera 1112 and another PDD 900 that
is a cellular phone 1114 connected to the mobile network
service 1120 through a wireless access point 1154, such as
a femto cell or Wi-Fi network. Further, FIG. 34 shows a
PDD 900 that is a tablet computer 1116 connected to the
mobile network service 1120 through a wireless channel
using a base station 1156, such as an Edge, 3G, 4G, or LTE
Network, for example. Various other permutations of com
munications between the types of PDDs 900 and the mobile
network service 1120 are also possible, as would be under
stood to one of ordinary skill in the art. The various types of
PDDs 900, such as the cellular phone 1114, tablet computer
1116, or a desktop computer, can also access the network
1140 and the cloud 1130 through a fixed/wired connection,
such as through a USB connection to a desktop or laptop

40 ers to interject enterprise security policies as the cloud-based
resources are accessed. Further, the secure gateway 1132 can
consolidate multiple types of a security policy enforcement,
including, for example, authentication, single sign-on,
authorization, security token mapping, encryption, tokeni-

45 zation, logging, alerting, and API control. The cloud 1130
can provide, to users, computational resources using a
system of virtualization, wherein processing and memory
requirements can be dynamically allocated and dispersed
among a combination of processors and memories such that

50 the provisioning of computational resources is hidden from
the users and making the provisioning appear seamless as
though performed on a single machine. Thus, a virtual
machine is created that dynamically allocates resources and
is therefore more efficient at utilizing available resources. A

55 system of virtualization using virtual machines creates an
appearance of using a single seamless computer even though
multiple computational resources and memories can be
utilized according increases or decreases in demand. The
virtual machines can be achieved using a provisioning tool

60 1140 that prepares and equips the cloud-based resources
such as a processing center 1134 and a data storage 1138 to
provide services to the users of the cloud 1130. The pro
cessing center 1134 can be a computer cluster, a data center,
a main frame computer, or a server farm. The processing

65 center 1134 and data storage 1138 can also be collocated.
While certain implementations have been described, these

implementations have been presented by way of example

US 11,009,836 B2
75

only, and are not intended to limit the teachings of this
disclosure. Indeed, the novel methods, apparatuses and
systems described herein may be embodied in a variety of
other forms; furthermore, various omissions, substitutions
and changes in the form of the methods, apparatuses and 5

systems described herein may be made without departing
from the spirit of this disclosure.

The invention claimed is:
1. A system, comprising:
an apparatus having at least one constrained property and 10

at least one other property to be optimized, the appa
ratus including
a plurality of components, which are configurable in

real-time, such that the apparatus can be configured
in a plurality of configurations, and 15

detection circuitry configured to detect values of the at
least one constrained property and values of the at
least one other property when the apparatus is con
figured in each of a first subset of configurations of
the plurality of configurations; 20

learning circuitry configured to
learn, using a machine learning method and based on

the detected values of the at least one constrained
property and the detected values of the at least one
other property, which were detected for the first 25

subset, a model that predicts values of the at least one
constrained property and the at least one other prop
erty when the apparatus is configured in each con
figuration of the plurality of configurations; and

control circuitry configured to 30

select, using the learned model, a particular configura
tion of the plurality of configurations that optimizes
the at least one other property, subject to a constraint
of the at least one constrained property compared to
other configurations of the plurality of configura- 35

tions,
wherein the learning circuitry is further configured to

learn the model by comparing the detected values of
the at least one constrained property and the at least
one other property for the first subset of the plurality 40

of configurations to a database of measurements of
other apparatuses also having the at least one con
strained property and the at least one other property,
the measurements of the other apparatuses represent
ing values of the at least one constrained property 45

and values of the at least one other property of
respective other apparatuses when components of
the other apparatuses are configured in a plurality of
other-apparatus configurations.

2. The system according to claim 1, wherein the learning 50

circuitry is further configured to encode the learned model as
a data structure storing configurations of the apparatus that
optimize the at least one other property subject to the
constraint of the at least one constrained property.

3. The system according to claim 1, wherein the learning 55

circuitry is further configured to learn the model using a
hierarchical Bayesian method.

4. The system according to claim 1, wherein
the apparatus is a mobile computing device executing an

application, 60

the plurality of configurations include computational con
figurations of the mobile computing device,

the control circuitry is included on the mobile computing
device, and

the learning circuitry is included on a server, which 65

transmits and receives communications to and from the
mobile computing device, and the server stores the

76
database of measurements of other mobile computing
devices on a non-transitory computer readable medium,
wherein

the database includes measurements of the at least one
constrained property and the at least one other property
for the other mobile computing devices when the other
mobile computing devices are configured in various
computational configurations, and

the database is used to learn the model by inference using
similarities between the measurements of other mobile
computing devices when configured in the various
computational configurations and the detected values
of the apparatus when configured in the first subset of
the plurality of configurations.

5. The system according to claim 1, wherein
the learning circuitry is further configured to learn the

model, wherein the model is represented using perfor
mance-frontier configurations of the plurality of con
figurations, and the performance-frontier configura
tions correspond to values of the at least one
constrained property and values of the at least one other
property that are on a convex hull of a tradeoff space
between the at least one constrained property and the at
least one other property, and

the control circuitry is further configured to select a
configuration of the performance-frontier configura
tions or a combination of configurations of the perfor
mance-frontier configurations to be the particular con
figuration of the plurality of configurations that
optimizes the at least one other property.

6. The system according to claim 1, wherein the control
circuitry is further configured to

update the constraint of the at least one constrained
property to minimize an error value, wherein the error
value represents a difference between a desired value
and an observed value of the apparatus, and

update, using the model, the particular configuration of
the plurality of configurations that optimizes the at least
one other property subject to the updated constraint of
the at least one constrained property.

7. The system according to claim 6, wherein the control
circuitry is further configured to

detect updated values of the at least one constrained
property and updated values of the at least one other
property when the apparatus is configured in the par
ticular configuration of the plurality of configurations;

update the model based on the particular configuration of
the plurality of configurations and on the updated
values of the at least one constrained property and the
updated values of the at least one other property, and

perform the updating of the configuration of the plurality
of configurations using the updated model together
with the updated constraint of the at least one con
strained property.

8. The system according to claim 4, wherein the control
circuitry is further configured to select the particular con
figuration of the plurality of configurations, wherein

the at least one other property includes one of an energy
consumption rate and a computational-performance
rate,

when the at least one other property includes the compu
tational-performance rate, the at least one constrained
property includes the energy-consumption rate,

when the at least one other property includes the energy
consumption rate, the at least one constrained property
includes the computational-performance rate, and

US 11,009,836 B2
77

the energy-consumption rate is a rate at which the mobile
computing device consumes energy while executing
the application, and the computational-performance
rate is a rate at which the mobile computing device
performs computational tasks of the application.

9. The system according to claim 8, wherein, when the at
least one constrained property includes the computational
performance rate, the control circuitry is further configured
to select the configuration of the plurality of configurations
to be a schedule that minimizes the energy consumed over 10

a predefined time period subject to a constraint that a
predefined number of the computational tasks of the appli
cation are completed within the predefined time period,
wherein

the schedule includes that
the apparatus is configured in a first configuration of the

plurality of configurations during a period corre
sponding to a duty cycle of the schedule,

15

the apparatus is configured in a second configuration of 20

the plurality of configurations, which is different
from the first configuration, for a period correspond
ing to a complement of the duty cycle, and

the first configuration and the second configuration
respectively correspond to the values of the at least 25

one constrained property and the values of the at
least one other property of the model that are on a
convex hull of a trade-off space between the at least
one constrained property and the at least one other
property. 30

10. The system according to claim 2, wherein
the learning circuitry is further configured to

learn the model using the machine learning method,
which is one of a hierarchical Bayesian model
method, a matrix completion method, a low rank 35

matrix completion with noise method, a high rank
matrix completion method, a collaborative filtering
method, a recommender system method, a matrix
completion with side information method, a Bayes
ian matrix completion method, a nonparametric 40

matrix completion method, a multi-tasking algo
rithm method, a transfer learning based algorithm
method, a regression algorithm method, a random
forest algorithm method, a polynomial regression
method, a gradient boosting method, a Bandit-based 45

learning method, a multi-armed bandit learner
method, a multi-armed bandit learner with correlated
arms method, a genetic algorithm method, and an
evolutionary algorithm method,

encode the learned model as the data structure, the data 50

structure being one of a hash table, a sorted list, a list,
a binary search tree, a binary heap, a btree, and a skip
list, and

the control circuitry is further configured to select the
particular configuration of the plurality of configura- 55

tions that optimizes the at least one other property using
a control method that is one of a proportional-integral
control method, a proportional control method, an
integral control method, a proportional integral deriva
tive control method, a state-space control method, a 60

stochastic control method, an adaptive control method,
an optimal control method, a model predictive control
method, a switching control method, a gain scheduling
method, a self-tuning regulator method, a minimum
variance control method, and a fuzzy control method. 65

11. The system according to claim 1, wherein the learning
circuitry is located remotely from the apparatus and com-

78
municates with the apparatus via a communication chamiel,
and the learning circuitry is configured to learn the model by

determining similarities between the apparatus and the
other apparatuses by comparing the database of mea
surements of the other apparatuses with the detected
values of the at least one constrained property and the
detected values of the at least one other property when
the apparatus is configured in the first subset of the
plurality of configurations,

learning, for all configurations of the apparatus, a com
plete model including estimates of the at least one other
property, uncertainties of the estimates of the at least
one other property, estimates of the at least one con
strained property, and uncertainties of the estimates of
the at least one constrained property, wherein the
complete model is learned using the similarities
between the apparatus and the other apparatuses, and
the complete model represents the values of the at least
one other property and the values of the at least one
constrained property for all configurations of the appa
ratus,

learning, using the complete model, a convex-hull model,
wherein the convex-hull model represents a second
subset of the plurality of configurations having values
of the at least one other property and values of the at
least one constrained property that are on a convex hull
of a tradeoff space between the at least one other
property and the at least one constrained property, and
the convex-hull model represents the estimates of the at
least one other property and the estimates of the at least
one constrained property corresponding the second
subset of the plurality of configurations, and

transmitting, over the communication channel, the
learned convex-hull model from the learning circuitry
to the apparatus.

12. The system according to claim 1, wherein learning
circuitry is further configured to estimate uncertainties of the
learned model to generate uncertainty estimates, wherein the
learned model includes the uncertainty estimates.

13. An apparatus having at least one constrained property
and at least one other property to be optimized, the apparatus
communicating over a communication channel with learn
ing circuitry, the apparatus comprising:

a plurality of components, which are configurable in
real-time, such that the apparatus can be configured in
a plurality of configurations;

detection circuitry configured to detect values of the at
least one constrained property and values of the at least
one other property when the apparatus is configured in
a first subset of the plurality of configurations;

a transmitter configured to transmit the detected values of
the at least one constrained property and values of the
at least one other property corresponding to the first
subset of the plurality of configurations to the learning
circuitry;

a receiver configured to receive, from the learning cir
cuitry, a model representing values of the at least one
constrained property and values of the at least one other
property, when the apparatus is configured in respective
configurations of the plurality of configurations, the
learning circuitry learning the model by comparing the
detected values of the at least one constrained property
and the at least one other property corresponding to the
first subset of the plurality of configurations to a
database of measurements of other apparatuses also
having the at least one constrained property and the at
least one other property, the measurements of the other

US 11,009,836 B2
79

apparatuses representing values of the at least one
constrained property and values of the at least one other
property of respective other apparatuses when compo
nents of the other apparatuses are configured in a
plurality of other-apparatus configurations; and 5

control circuitry configured to select, using the received
model, a particular configuration of the plurality of
configurations that optimizes the at least one other
property subject to a constraint of the at least one
constrained property. 10

14. A server communicating with an apparatus, wherein
the apparatus has at least one constrained property and at
least one other property to be optimized, and the apparatus
can be configured in a plurality of configurations, the server
comprising: 15

a receiver configured to receive, from the apparatus,
values of the at least one constrained property and
values of the at least one other property, which are
detected when the apparatus is in each of a first subset
of configurations of the plurality of configurations, 20

learning circuitry configured to learn, using a machine
learning method and based on the received values of
the at least one constrained property and the detected
values of the at least one other property, which were
detected for the first subset, a model that predicts values 25

of the at least one constrained property and the at least
one other property when the apparatus is configured in
each configuration of the plurality of configurations;
and

a transmitter configured to transmit, to the apparatus, the 30

determined model, wherein the learned model is
learned by
comparing the received values of the at least one

constrained property and the received values of the at
least one other property with measurements of the at 35

least one constrained property and the at least one
other property for other apparatuses when the other
apparatuses are configured in a plurality of other
apparatus configurations to determine similarities
between the apparatus and the other apparatuses, and 40

determining estimates of the at least one other property
and estimates of the at least one constrained property
using the similarities between the apparatus and the
other apparatuses to generate a complete model of
the apparatus representing the at least one other 45

property and the at least one constrained property for
all configurations of the apparatus, and the learned
model is based on the complete model.

15. The server according to claim 14, wherein
the learning circuitry is further configured to learn a 50

convex-hull model representing estimates of the at least
one other property and estimates of the at least one
constrained property of a second subset of the plurality
of configurations corresponding to the estimates of the
at least one other property and the estimates of the at 55

least one constrained property of the complete model
located on a convex hull of a tradeoff space between the
at least one other property and the at least one con
strained property; and

the learned model transmitted to the apparatus is the 60

convex-hull model.
16. A method of optimizing an apparatus, the apparatus

having at least one constrained property, at least one other
property to be optimized, and a plurality of components,
which are configurable in real-time, such that the apparatus 65

can be configured in a plurality of configurations, the
method comprising:

80
detecting values of the at least one constrained property

and values of the at least one other property when the
apparatus is configured in each of a first subset of
configurations of the plurality of configurations;

learning, using a machine learning method and based on
the detected values of the at least one constrained
property and the detected values of the at least one
other property, which were detected for the first subset,
a model that predicts values of the at least one con
strained property and the at least one other property
when the apparatus is configured in each configuration
of the plurality of configurations; and

selecting, using the learned model, a particular configu
ration of the plurality of configurations that optimizes
the at least one other property, subject to a constraint of
the at least one constrained property compared to other
configurations of the plurality of configurations,

wherein the learning step further includes learning the
model by comparing the detected values of the at least
one constrained property and the at least one other
property for the first subset of the plurality of configu
rations to a database of measurements of other appa
ratuses also having the at least one constrained property
and the at least one other property, the measurements of
the other apparatuses representing values of the at least
one constrained property and values of the at least one
other property of respective other apparatuses when
components of the other apparatuses are configured in
a plurality of other-apparatus configurations.

17. The method according to claim 16, further compris
ing;

estimating uncertainties of the values of the at least one
constrained property and the values of the at least one
other property of the learned model to generate uncer
tainty estimates, and including the uncertainty esti
mates in the learned model; and

encoding the model as a data structure to lookup configu
rations of the apparatus to optimize the at least one
other property subject to the constraint of the at least
one constrained property.

18. The method according to claim 17, wherein
the learning of the model is performed using the machine

learning method, which is one of a hierarchical Bayes
ian model method, a matrix completion method, a low
rank matrix completion with noise method, a high rank
matrix completion method, a collaborative filtering
method, a recommender system method, a matrix
completion with side information method, a Bayesian
matrix completion method, a nonparametric matrix
completion method, a multi-tasking algorithm method,
a transfer learning based algorithm method, a regres
sion algorithm method, a random forest algorithm
method, a polynomial regression method, a gradient
boosting method, a Bandit-based learning method, a
multi-armed bandit learner method, a multi-armed ban
dit learner with correlated arms method, a genetic
algorithm method, and an evolutionary algorithm
method,

the encoding of the learned model is performed, wherein
the data structure is one of a hash table, a sorted list, a
list, a binary search tree, a binary heap, a btree, and a
skip list, and

the selecting of the particular configuration of the plural
ity of configurations to optimize the at least one other
property is performed using a control method that is
one of a proportional-integral control method, a pro
portional control method, an integral control method, a

US 11,009,836 B2
81

proportional integral derivative control method, a state
space control method, a stochastic control method, an
adaptive control method, an optimal control method, a
model predictive control method, a switching control
method, a gain scheduling method, a self-tuning regu- 5

lator method, a minimum variance control method, and
a fuzzy control method.

19. The method according to claim 16, further compris
ing:

detecting values of the at least one constrained property 10

and values of the at least one other property when the
apparatus is configured in the particular configuration
of the plurality of configurations;

updating the learned model using the detected values of 15
the at least one constrained property and the detected
values of the at least one other property when the
apparatus is configured in the particular configuration
of the plurality of configurations;

updating the constraint of the at least one constrained 20

property to minimize an error value, wherein the error
value represents a difference between a desired value
and an observed value of the apparatus, which is
determined from values detected when the apparatus is
configured in the particular configuration of the plural- 25

ity of configurations; and
updating, using the updated model, the particular con

figuration of the plurality of configurations to optimize

82
the at least one other property subject to the updated
constraint of the at least one constrained property.

20. The method according to claim 16, wherein
the apparatus is a mobile computing device executing an

application, and the mobile computing device performs
the detecting of the values and the selecting of the
particular configuration of the plurality of configura
tions to optimize the at least one other property,

the learning of the model is performed by a server that
communicates with the mobile computing device using
a communication channel,

the at least one other property includes one of an energy
consumption rate at which the mobile computing
device consumes energy while executing the applica
tion and a computational-performance rate at which the
mobile computing device performs computational tasks
of the application,

the at least one constrained property includes another of
the energy-consumption rate application and the com
putational-performance rate, and

the method includes
updating a speed-up factor to minimize a difference

between a desired latency and a measured latency of
the mobile computing device when executing the
application, and

updating the constraint of the at least one constrained
property according to the updated speed-up factor.

* * * * *

