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ABSTRACT

We study quantum Hall states on curved surfaces with the aim of exposing the gravitational

anomaly. We develop two general methods for computing correlation functions of the frac-

tional quantum Hall e↵ect (FQHE) on curved surfaces - the Ward Identity and Field Theory.

Using these methods we show that on surfaces with conical singularities, the electronic fluid

near the tip of the cone has an intrinsic angular momentum due solely to the gravitational

anomaly. This is e↵ect occurs because quantum Hall states behave as conformal primaries

near singular points, with a conformal dimension equal to the angular momentum. We argue

that the gravitational anomaly and conformal dimension determine the fine structure of the

electronic density at the conical point. The singularities emerge as quasi-particles with spin

and exchange statistics arising from adiabatically braiding conical singularities. Thus, the

gravitational anomaly, which appears as a finite size correction on smooth surfaces, domi-

nates geometric transport on singular surfaces.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In the last 30 years, topological states of matter have played an important role in con-

densed matter physics. What started with the discovery of the role of the topology in the

quantum Hall e↵ect (QHE) extended to myriad other discoveries - the spin quantum Hall

e↵ect, topological insulators, non-Abelian anyons, and more. The one thing in common

between topological states of matter is that they are characterized by observables that are

topologically protected - meaning they are insensitive to small perturbations of the Hamil-

tonian. Understanding topological materials comes down to understanding the topologically

invariant observables that characterize them, so-called universal characteristics.

We study topological invariants in the fractional quantum Hall e↵ect (FQHE). There

are three such invariants for the FQHE - the Hall conductance �H , the Hall viscosity ⌘H ,

and the gravitational anomaly cH . The Hall conductance �H and viscosity ⌘H have been

studied extensively, and there are physical arguments that explain their quantization and

topological nature. As a result, we know a lot about the Hall conductance and viscosity - the

conductance is easily measured in experiments and there are proposals for measuring the Hall

viscosity as well. However, little was known about the third universal characteristic of FQH

states - the gravitational anomaly cH - until recently. The reason is that the gravitational

anomaly arises as a response to geometric stress in the FQHE, and prior to our work as well

as [116, 71], there were no frameworks for calculating correlation functions for the fractional

quantum Hall e↵ect on geometric surfaces.

In this paper, we develop tools necessary to compute correlation functions for the FQHE

in curved space. We introduce two methods - a Ward identity and a field theory for FQHE

states on curved surfaces. These methods provide a formulaic way of computing correlation
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functions for Laughlin states of the FQHE. Each method prevails for certain types of calcu-

lation, so it’s useful to know both. After developing the Ward identity and field theory for

FQH states on curved surfaces, we apply these methods to study FQHE on singular surfaces.

We find that singular surfaces are the setting where the gravitational anomaly is under-

stood best. It is only in this setting, that certain observables like angular momentum and

exchange statistics between cones are determined completely by the gravitational anomaly.

On smooth geometric surfaces, the gravitational anomaly always appears as a finite-sized

correction. For this reason, geometric response of the FQHE on singular surface provides, to

date, the best theoretical and experimental setting for studying the gravitational anomaly.

1.2 Geometry in the FQHE

The reason for studying the geometry of the FQHE is that it provides a probe for measuring

the gravitational anomaly. Generally, important universal properties of fractional quantum

Hall (FQH) states are evident in the quantization of kinetic coe�cients in terms of the filling

fraction. The most well-known kinetic coe�cient is the Hall conductance [1], a transversal

response to the electromagnetic field. Beside this, FQH states possess a richer structure

evident through their response to changes in spatial geometry and topology, both captured

by the gravitational response.

A kinetic coe�cient which reflects a transversal response to the gravitational field is the

odd viscosity (also referred as anomalous viscosity, Hall viscosity or Lorentz shear modulus)

[2, 3, 4]. This coe�cient also exhibits a quantization and reveals universal features of FQH

states as much as the Hall conductance. While the Hall conductance is seen in an adiabatic

response to homogeneous flux deformation [1], the anomalous viscosity is seen as an adiabatic

response to homogeneous metric deformations [2]. However, even more universal features

become apparent when one considers the adiabatic response to inhomogeneous deformations

of the flux and the metric. This is the reason for studying the geometric response of the
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FQHE.

In the first part of this paper, we develop the Ward identity for FQHE states on curved

surfaces. This leads us to compute the response of the FQH states to local curvature and

show that this response reveals corrections to physical quantities in a flat space that remain

hidden otherwise. Our results fall into two categories. First, we compute the particle density

through a gradient expansion in local curvature, explain the relation of the leading terms to

the gravitational anomaly, and show that they are geometrical in nature. For this reason, we

expect these terms to be universal (i.e. insensitive to the details of the underlying electronic

interaction as long as the interaction gives rise to the FQH state). We develop a general

method to compute these terms. Additionally, we show that the dependence on curvature

determines the long wavelength expansion of the static structure factor in a flat background,

linking the electromagnetic response to the gravitational anomaly. Furthermore, correlation

functions computed on arbitrary surfaces provide information about the properties of FQH

states under general covariant and, in particular, conformal transformations.

We consider only Laughlin states for which the filling fraction ⌫ is the inverse of an

integer, but comment on how our results could be extended to other FQH states, such as

the ⌫ = 5/2 Pfa�an state [5]. We restrict our analysis to FQH states without boundaries.

Though our analysis is limited to the Laughlin wave function, we believe that our results

capture the geometric properties of FQH states. As such, they may serve as universal bounds

for response functions in realistic materials exhibiting the FQH e↵ect.

1.3 The Role of Field Theory

While the Ward identity method is a useful way to compute correlation functions for the

FQHE on a curved surface, it is cumbersome and lacks physical interpretation. The Ward

identity is a powerful mathematical toolkit. To better understand the origin of anomalies in

the FQHE, we need to study it in a more physical framework. For this reason, we develop a
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field theory for FQH states on curved surfaces. This allows us to to relate the quantities we

compute with well-understood physical structures studied extensively in traditional quantum

field theory.

In the second part of this paper, we develop a field theory for Laughlin states. This

approach naturally captures universal features of the QHE, and emphasizes the geometric

aspects of QH-states. We demonstrate how the field theory encompasses recent developments

in the field [? 85, 30, 50, 71, 61, 72, 47, 86] and obtain some properties of quasi-hole

excitations. A preliminary treatment of this approach appears in [50].

The universal properties of the QHE are encoded in the dependence of the ground state

wave function on electromagnetic and gravitational backgrounds (see e.g., [? ]). For that

reason, as with the Ward identity, we use the field theoretic approach to study QH states on

a Riemann surface and for simplicity focus on genus zero surfaces.

As with the Ward identity, restrict our analysis to the Laughlin states. Our approach is

closely connected to the hydrodynamic theory of QH states of Ref [134, 132] and the collective

field theory approach of Gervais, Sakita and Jevicki developed in [68, 81, 82] and extended in

[40, 39, 31, 44]. The action of the field theory for Laughlin states is written in Sec.(3). The

leading part, Eq.(3.10), is equivalent to the classical energy of a 2D neutralized Coulomb

plasma when the discreteness of particles is not taken into account. This is used in the

familiar plasma analogy of Ref.[93] to deduce the equilibrium density, as well as properties

of the quasi-hole state such as charge and statistics. The other terms in the action are more

subtle but equally significant, and give rise to important e↵ects including the gravitational

anomaly.

1.4 Singular Surfaces

In the last part of the paper, we study the FQHE on singular surfaces. Results from the

Ward identity and field theory methods, as well as early developments in the theory of the
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quantum Hall e↵ect [38, 94, 95, 130, 66], and a recent resurgence [76, 109, 111, 58, 85,

49, 50, 30, 71, 72, 91, 61, 47, 86] point to the role of geometric response as a fundamental

probe of quantum liquids with topological characterization, complementary to the more fa-

miliar electromagnetic response. Such liquids exhibit non-dissipative transport as a response

to variations of the spatial geometry, controlled by quantized transport coe�cients. This

geometric transport is distinct from the transport caused by electromotive forces. It is deter-

mined by the geometric transport coe�cients which are independent characteristics of the

state and can not be read from the electromagnetic response.

Surfaces with a singular geometry, such as isolated conical singularities, or disclination

defects, highlight the geometric properties of the state. For this reason, they serve as an ideal

setting to probe the geometry of QH states. In the last chapter (prior to the Conclusion),

we demonstrate this by examining Laughlin states on a singular surface, where geometric

transport is best understood. We compare spatial curvature singularities to magnetic ones

(flux tubes) and emphasize the di↵erence. While the QH state imbues both types of singular-

ities with local structure such as charge, spin, and statistics, only the curvature singularities

reflect the geometric transport.

The gravitational anomaly is central to understanding the geometry of topological states

[49, 50, 71, 91, 61, 47, 86, 127]. This e↵ect encodes the geometric characterization of such

states, and is often referred to as the central charge.

On a smooth surface the gravitational anomaly is a sub-leading e↵ect. For example,

the central charge, cH , appears as a finite size correction to the angular momentum of the

electronic fluid. In [86] it is shown that the angular momentum on a small region D of the

fluid on a surface with rotational symmetry is

L = � 1

2⇡

Z
D

⇣
µH(eB)� ~cH

24
R
⌘
dV, (1.1)

The last term in (2.1) represents the gravitational anomaly. We are ultimately interested in
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features which do not depend on the size of the domain D. For the j-spin Laughlin states

(see [49], and (4.16) below for the definition of spin) the transport coe�cient µH and the

‘central charge’ cH were found to be

cH = 1� 12µ2H
⌫

, µH =
1

2
(1� 2j⌫), (1.2)

where ⌫ is the filling fraction.

On a smooth surface, the geometric transport is hard to detect, since cH typically enters

transport formulas as a small correction. We want to identify a setting where the gravi-

tational anomaly cH is the dominant feature, as opposed to being a finite-size correction

overshadowed by a larger electromagnetic contribution. We demonstrate that a surface with

conical singularities brings geometric transport to the fore.

We show that a small parcel of electronic liquid centered at a singularity spins around it

with an intensive angular momentum. It is unchanged when the parcel volume D shrinks

as long as it stays larger than the magnetic length. The intensive angular momentum is

universal and proportional to cH , the geometric characteristic of the state (see (4.2,4.3)).

Similarly, the parcel maintains the excess or deficit of electric charge and moment of inertia

in the limit of vanishing D. That is to say, the moments are localized near the conical

point, see (4.10,4.11). Besides the charge, this property leads to the notions of spin and

exchange statistics of singularities. We compute both, see (4.6,4.7), and show that they are

also determined by the gravitational anomaly.

Our argument stems from the observation that a state near the singularity has conformal

symmetry. Specifically, we find that it transforms as a primary field.

Singularities elucidate the uneasy relation of QH-states to conformal field theory. In

general, QH-states do not possess conformal symmetry. They feature a scale - the magnetic

length. As a result, physical observables do not transform conformally. However, the states

appear to be conformal in the vicinity of a singularity. In this paper, we show that the state
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is primary with a conformal dimension identical to the angular momentum in units ~. We

emphasize that the dimensions have the opposite sign to the dimensions of similar primary

fields in conformal field theory

Conical singularities are not as exotic as they may seem, and occur naturally in several

experimental settings. Disclination defects in a regular lattice can be described by metrics

with conical singularities [84], and occur generically in graphene [90, 128]. In a recent

photonic experiment, synthetic Landau levels on a cone were designed in an optical resonator

[114].

A conical singularity of order ↵ < 1 is an isolated point ⇠
0

on the surface with a concen-

tration of curvature

R(⇠) = R
0

+ 4⇡↵�(⇠ � ⇠
0

), (1.3)

where R
0

is the background curvature, a smooth function describing the curvature away

from the singularity and the delta-function is defined such that its integral over the volume

element gives one. We refer ⇠
0

as the conical point.

Examples of genus-zero surfaces with constant curvature and conical singularities include:

R
0

> 0 - an ‘american football’ with two antipodal conical singularities [124], R
0

= 0 - a

polyhedron [125, 121], R
0

< 0 - a pseudo-sphere (see e.g. [119] and references therein). For

the purpose of this paper it su�ces to consider conical singularities which locally are flat

surfaces of revolution. If ↵ > 0 the singularity is equivalent to an embedded cone with the

apex angle 2 arcsin �, where 2⇡� = 2⇡(1 � ↵) is called cone angle (see Fig.4.1). If ↵ < 0,

the singularity can be seen as a branch point of multi-sheeted Riemann surface (though

non-convex polyhedra also can contain cone points with degree ↵ < 0).

An especially interesting case occurs when � or 1/� is an integer. In this case, it may

be possible to represent the surface as an orbifold, a surface quotiented by a discrete group

of automorphisms. Then the conical singularities arise as fixed points of the group action
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[121].

Most of the formulas below are valid regardless of whether concentrated curvature is

positive or negative (given by the sign of ↵), but strictly do not apply for cusp singularities

for which ↵ = 1. Braiding of singularities on orbifolds is more involved (see [87, 43] for a

similar issue in the context of CFT). We do not address them here.

Conical singularities a↵ect QH states di↵erently than magnetic singularities (flux tubes)

eB(⇠) = eB
0

� 2⇡~ a�(⇠ � ⇠
0

), (1.4)

To emphasize the di↵erence between geometric and magnetic singularities we consider both

simultaneously: a magnetic flux a threaded through the conical singularity ↵. We take eB
0

to be positive throughout the paper.

Lastly, we comment on the inclusion of spin j. As discussed in [50, 91, 86] Laughlin

states are characterized not only by the filling fraction but also by the spin. Spin does not

enter electromagnetic transport. Nor does it enter local bulk correlation functions, such as

the structure factor. The spin enters the geometric transport as seen in (3.13).

To the best of our knowledge, there is no experimental or numerical evidence that de-

termines the spin in QH materials, nor are there any arguments that j = 0, as it silently

assumed in earlier papers. For this reason, we keep spin as a parameter. It a↵ects the

physics of the QHE. For example, at the filling ⌫ = 1/3, the central charge vanishes at

j = 1, and j = 2. The central charge equals �2 if ⌫ = 1 and j = 0 or 1. If j = 1

2⌫ , the

coe�cient µH vanishes and cH = 1.

1.5 Summary

To conclude, there are two main physical results of this paper. The first is the calculation

of the angular momentum near the tip of a conical singularity. We’ll show that the angular
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momentum of a small parcel of fluid rotating about the origin of a conical singularity is

proportional to cH , the topological invariant that encodes the geometric response of the

state. The second result is that the braiding statistics of two cones are also proportional to

cH . Thus, we demonstrate for the first time a physical setting where the geometric response

coe�cient cH can be measured independently of other universal characteristics of the FQH

state.

These results can be summarized in two short formulas. Let ↵ be a variable that

parametrizes the cone angle (steepness of the cone). Then the angular momentum has

the form

L = ~cHf(↵). (1.5)

where f(↵) is a smooth function that only depends on the conical angle and nothing else.

This result allows for direct measurement of the geometric coe�cient in an experimental

setting. For the second result, let ↵
1

and ↵
2

be variables that parametrize the deficit angles

of two cones. Then the exchange statistics, when one cone is adiabatically transported

around the other one in a closed loop is

�
12

= ⇡
cH
24

f(↵
1

,↵
2

). (1.6)

where again f(↵
1

,↵
2

) is a smooth function that only depends on the conical angles. This re-

sult contrasts the more familiar exchange statistics of two quasiholes. The exchange statistics

between two quasiholes are proportional to the filling factor ⌫ and are therefore fractional.

For cones, however, the statistics are proportional to the geometric characteristic of the state

cH .
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In order to arrive at these results, we needed to built frameworks for studying the FQHE

on curved surfaces from the ground up. In what follows, we start by developing these

frameworks - the Ward identity and field theory - and apply them to compute correlation

functions of the FQHE on smooth surfaces first. After that, we apply these frameworks to

study the FQHE on singular surfaces and re-write the Ward identity in a form more suitable

for singular geometries. We conclude by deriving the main results of the paper - the angular

momentum of a parcel of QH fluid rotating around a conical singularity and the exchange

statistics between two cones.
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CHAPTER 2

WARD IDENTITY FOR THE FQHE

2.1 Main Results and Problem Setup

We consider electrons placed on a closed oriented curved surface, such as a deformed sphere,

and assume that the magnetic flux d� through a di↵erential volume element of the surface is

uniformly proportional to the volume so that d� = BdV where B > 0 is a uniform magnetic

field. The total number of flux quanta N� = V (2⇡l2)�1 piercing the surface is an integer

equal to the area V of the surface in units of 2⇡l2, where l =
p

~/eB is the magnetic length.

In this setting, and in the case of free particles, the lowest Landau level remains degenerate

on a curved surface [7], even in the presence of isolated conical singularities, and remains

separated from the rest of the spectrum by an energy of the order of the cyclotron energy.

The degeneracy of the level is determined by the Riemann-Roch theorem. Assuming that

the surface possesses no singularities so that the Euler characteristic � is an even integer,

the degeneracy is N
1

= N� + �
2

[6, 7]. If the number of particles is chosen exactly equal to

N
1

, the electronic droplet completely covers the surface and, lacking a boundary, admits no

edge states.

This result readily extends to Laughlin states (for a sphere and torus see [8], for a general

Riemann surface see [9, 10, 7]): the droplet has no boundary if the number of particles N is

equal to

N⌫ = ⌫N� +
�

2
, (2.1)

assuming that N⌫ is integer. We consider this case.

We focus on the particle density ⇢ defined such that ⇢ dV is the number of particles in the

volume element dV . A locally coordinate invariant quantity, the density must be expressed

locally through the (scalar) curvature R. In this paper we compute the leading terms in the

gradient expansion of the density of the ground state

11



h⇢i = ⇢
0

+
1

8⇡
R� b

8⇡
(�l2�g)R, b =

1

3
+
⌫ � 1

4⌫
, (2.2)

where ⇢
0

= ⌫(2⇡l2)�1 and �g is the Laplace-Beltrami operator. We omit higher order terms

in l2. They are computable, but may not have a universal meaning beyond the Laughlin

wave function. Higher order terms consist of higher order derivatives of the curvature, as

well as higher degrees of curvature, whereas the first three terms remain linear in curvature.

The first two terms are a local version of the global relation (2.1) between the maximum

particle number and the number of flux quanta. Eq. (2.1) is obtained by integrating (2.2)

over the surface with the help of the Gauss-Bonnet theorem
R
RdV = 4⇡�. Higher order

terms do not contribute to this expression.

The second term indicates that particles accumulate in regions of positive curvature

and repell from regions of negative curvature. For example, it shows the excess number of

particles accumulating at the tip of a cone. If the conical singularity is of the order ↵ > �1

such that it metric locally is |z|2↵dzdz̄, the excess number of particles at the tip is �↵/2.
The term appears in equivalent form in [9, 10].

The last term encodes the gravitational anomaly, which we explain in the body of the

paper. A noticeable feature of this term is the shift from 1/3 in the coe�cient b when ⌫ 6= 1.

This shift is yet another signature of states at fractional filling. We discuss its implications

below.

For the case of integer filling ⌫ = 1, described by free electrons, Eq. (2.2) was obtained

in [14, 15, 16]. In equivalent form, it is known in mathematical literature as an asymptotic

expansion of the Bergman kernel [17]. The formula (2.2) allows us to write the linear response

to curvature in flat space. Defining

⌘ = (⇢
0

l2)�1

�⇢

�R

���
R=0

, (2.3)
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and passing to Fourier modes, Eq. (2.2) implies

⌘(q) =
1

4⌫
(1� bq2 +O(q4)), q = kl. (2.4)

The momentum dependence of various correlation functions in flat space is closely related to

the linear response to curvature . In [12], one of the authors argued that the kinetic coe�cient

defined by (4.33) enters the hydrodynamics of a FQH incompressible quantum liquid (see

also [132]) as the anomalous term in the momentum flux tensor representing kinematic odd-

viscosity. The homogeneous part of the odd-viscosity, computed through alternative methods

in [2, 3, 11, 4], corresponds to the first term in (2.4). The leading gradient corrections to

the odd-viscosity for the integer case ⌫ = 1 was recently computed in [16]. It corresponds

to the second term in Eq. (2.4), and as we show below, receives a contribution from the

gravitational anomaly.

We will show the following general relation between the static structure factor, s(k) =

h⇢k⇢�kic/⇢0, and the response to curvature that is a feature of Laughlin states, and is likely

valid for more general FQH states as well

q4

2
⌘(q) = �q2

2
+
⇣
1 +

q2

2

⌘
s(q), q = kl. (2.5)

Using these relations we obtain

s(q) =
1

2
q2 + s

2

q4 + s
3

q6 +O(q8) (2.6)

where s
2

= (⌫�1 � 2)/8 and s
3

= (3⌫�1 � 4)(⌫�1 � 3)/96.

The term of order q4 in the structure factor goes back to [18]. We find that it is controlled

by ⌘(0) and limq!0

s(q)/q2. The next correction s
3

was recently obtained in [20] by means
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of a Mayer expansion. We provide an alternative derivation which emphasizes its connection

to the gravitational anomaly. Curiously, s
2

vanishes at ⌫�1 = 2, the bosonic Laughlin state,

while s
3

vanishes for the Laughlin state at 1/3 filling. The higher order coe�cients are

polynomials of increasing degree in ⌫�1.

We also mention another general relation between the structure factor and the Hall

conductance valid for the Laughlin wave function

�xy(k) =
e2

~
2⇢

0

k2
s(k) (2.7)

We clarify it in the body of the paper (see also [132]). This relation links the Hall conductance

to the response to curvature through (2.5) [19]. Furthermore, knowledge of s
3

determines

the Hall conductance �xy(k) up to order k4.

These results follow from iteration of a Ward identity obtained for the Laughlin wave

function in [22], combined with the gravitational anomaly. An important ingredient of the

Ward identity is the two point function of the “Bose” field ' at merged points. The Bose

field is defined as a potential of charges created by particles through the Poisson equation

��g' = 4⇡⌫�1⇢. (2.8)

In the paper, we show that in the leading 1/N approximation, the Bose field has Gaus-

sian correlations. This means that (i) the connected correlation function of ' at large dis-

tances between points is the Green function of the Laplace-Beltrami operator �gG(z, z0) =

�4⇡[ 1p
g �

(2)(z � z0) � 1

V ], and that (ii) at small distances between points the correlation

function is the regularized Green function,

h'(1)'(2)ic = ⌫�1

8><>: G(1, 2) at large separation

GR(1, 2) at short distances.
(2.9)
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The regularized Green function is defined as

GR(1, 2) = G(1, 2) + 2 log d(1, 2) (2.10)

where d(1, 2) is the geodesic distance between the two points.

The apparent metric dependence of the two point correlation function at short distances

is referred to as the gravitational anomaly.

2.2 The Laughlin State on a Riemann Surface

It is convenient to work in holomorphic coordinates where the metric is conformal to the

Euclidean metric ds2 =
p
gdzdz̄. In these coordinates, the scalar curvature reads R =

��g log
p
g, where the Laplace-Beltrami operator takes the form �g = (4/

p
g)@@̄. The

Kähler potential K, defined through the equation @@̄K =
p
g, also plays an important role.

A convenient gauge is one in which the antiholomorphic component of the gauge potential

for a uniform magnetic field B is given by Ā = 1

2

(A
1

+ iA
2

) = iB@̄K/4, such that r ⇥
A = B

p
g. The states in the lowest Landau level are defined as those annihilated by the

antiholomorphic component of the covariant momentum operator (see e.g., [7])

⇧̄ = �i~@̄ � eĀ. (2.11)

The solutions to ⇧̄ n = 0 are the single particle eigenstates given by  n(z) = sn(z)e�K(z,z̄)/4l2 ,

where the functions {sn} are called holomorphic sections, defined as solutions to @̄sn = 0

such that  n is normalizable (i.e.
R
dV | n|2 < 1).

The many-body ground state wave function for free fermions is the Slater determinant

of the single particle eigenstates, and for the filled lowest Landau level on a curved surface

it is just  
1

(z
1

, ..., zN ) / e�
PN

i K(zi,z̄i)/4l
2
det[sn(zi)]. In this form it appears in [15], and

15



in equivalent form in [7].

We construct Laughlin states at the filling fraction ⌫ by raising the determinant to the

power equal to the inverse fraction.

 �(z1, ..., zN )/e
� 1

4l2

PN
i K(zi,z̄i)

⇣
det[sn(zi)]

⌘�
, � ⌘ ⌫�1

We denote the inverse filling fraction as � for the majority of what follows, but it is inter-

changeable with ⌫�1. This wave function is normalizable only for N  N⌫ given by (2.1).

We consider states with N = N⌫ , the only case in which the wave-function is modular in-

variant. This indicates that the surface is completely filled with particles and there is no

boundary. The area of such a surface V = 2⇡�l2(N � �/2) is quantized in units of 2⇡l2.

For simplicity, we work in the case of genus zero. However, our formulas are local and

therefore apply to more general surfaces. For a comprehensive discussion of the lowest

Landau level on a surface of arbitrary genus see [7]. In the case of genus zero, we choose a

marked point at infinity where K ⇠ (V/⇡) log |z|2 + o(1) and log
p
g ⇠ �2 log |z|2. In this

case the holomorphic sections sn(z) are polynomials of degree n = 0, 1, ..., N�. Therefore,

the Vandermonde identity det[sn(zi)] /
QN

i<j(zi � zj) yields

 �(z1, ..., zN ) =
1pZ[g]

NY
i<j

(zi � zj)
�e

� 1
4l2

PN
i K(zi,z̄i), (2.12)

where Z[g] is a normalization factor. The asymptotic behavior of the wave-function at a

marked point (such as z ! 1) is |z|�(N�1)�N� , which determines the maximal number of

particles in the state (2.1).

As an example, consider the case of a sphere of radius r. Then, K = 4r2 log(1 +

|z|2/4r2), p
g = (1 + |z|2/4r2)�2, R = 2/r2 and the orthonormal holomorphic sections

are monomials sn(z) = [(N/V )Cn
N�1

]�1/2(z/2r)n. Inserting this Kähler potential K into

Eq.(2.12) reproduces the well-known wave-function on a sphere in stereographic coordinates
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[8]. In the limit that r ! 1, K = |z|2 and the planar wave function is recovered.

With this setup, we wish to evaluate equal time correlation functions in the limit l !
0, N� ! 1 such that the area V = 2⇡l2N� is fixed.

2.3 Generating functional for the FQHE

The normalization factor Z[g] encodes the geometry of the surface through its dependence

on the metric. It can be used to generate response functions to surface deformations. From

(2.12) it is defined as

Z[g] =

Z NY
i<j

|zi � zj |2�
NY
i

eW (zi,z̄i)d2zi, (2.13)

where

W = � 1

2l2
K + log

p
g. (2.14)

Each variation of logZ over W (z, z̄) inserts a factor of
P

i �
(2)(z � zi) proportional to the

density

⇢(z) =
1p
g

X
i

�(2)(z � zi) (2.15)

into the integral (2.13). Such variations produce connected correlation functions of the

density such as

p
gh⇢i = � logZ/�W, (2.16)

and
p

g(z)
p
g(z0)h⇢(z)⇢(z0)ic = �2 logZ/�W (z)�W (z0). More generally, if A(z

1

, ..., zN )

is a symmetric function of the coordinates, which does not depend on the metric, then
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�hAi/�W =
p
ghA ⇢ic. This method for computing correlation functions is detailed in [22].

2.4 Relations between linear responses on the lowest Landau

level

Using the explicit dependence of W on
p
g, we observe a general relation for a linear response

to area preserving variations of the metric

1

2
(�l2�g)

�hAi
�
p

g(⇣)
=
⇣
1 +

1

2
(�l2�g)

⌘
hA⇢(⇣)ic. (2.17)

This relation is valid for any N and any � (including the integer case). It follows from

the identity �2l2�hAi/�K = �2l2
p
g(�W/�K)h⇢Aic, where the Jacobian �2l2�W/�K =

1 + 1

2

(�l2�g) acts as an operator on h⇢Aic. Then the transformation
p
g�g�hAi/�pg =

4�hAi/�K brings it to the form of (4.3). With the choice of A =
P

i �
(2)(z � zi) and the

functional identity �h⇢i/�pg
���
R=0

= �� [�h⇢i/�R|R=0

, we obtain (2.5).

This relation reflects a symmetry between gravity and electromagnetism specific to the

lowest Landau level. It can be traced back to properties of zero modes of the operator (2.11).

Similar arguments lead to the relation between the static structure factor and the Hall

conductance expressed in (2.7). The generating functional (2.13) can be seen as the nor-

malization factor of the Laughlin wave function in a flat space, but in a weakly inhomo-

geneous magnetic field. A key assumption is that the form of the wave function is the

same as in the case of a uniform magnetic field where B = � ~
2e�W , as in [32]. With

this, the two-point density correlation function, computed as a variation of the density

h⇢(z)⇢(z0)ic = �h⇢(z)i/�W (z0), can also be understood as a variation of the density over

magnetic field under condition that the filling fraction is kept fixed. In Fourier modes, this

functional identity leads to ⇢
0

s(k) = ~
2ek

2(�⇢k/�Bk). The inhomogeneous version of the

Streda formula e�⇢k/�Bk = �xy(k), yields the relation (2.7) [21]. Then, computing ⌘(k)
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allows us to extract s(k), and thus �xy(k), from (2.5). Moreover, once we compute h⇢i, we
can recover the generating functional which we present in the end of the paper.

To compute the response to curvature we employ the Ward identity explained in the next

section.

2.5 Ward identity

The generating functional Z[g] is invariant under any transformation of coordinates of the

integrand (2.13). In particular, a holomorphic infinitesimal di↵eomorphism zi ! zi+ ✏/(z�
zi) where z is a parameter, invokes a change of the integrand (2.13) by the factor

P
i
@ziW
z�zi

+P
j 6=i

�
(z�zi)(zi�zj)

+
P

i
1

(z�zi)2
. The Ward identity states that the expectation value of this

factor vanishes. Expressing the sum as an integral over the density
P

i !
R
d2⇠
p
g(⇠)⇢(⇠),

yields the relation connecting one- and two-point functions

�2�

Z
@W

z � ⇠
h⇢ipgd2⇠ = h(@')2i+ (2� �)h@2'i, (2.18)

where the density is given by (4.16) and the Bose field ' = ��Pi log |z � zi|2. Eq. (2.18)

was obtained in [22]. Furthermore, it is convenient to define the field

'̃(z) = '+
K

2l2
� �

2
log

p
g, (2.19)

that vanishes at z ! 1. The anti-holomorphic derivative of Eq.(2.18) eliminates the integral,

by virtue of the @-bar formula @̄(1z ) = ⇡�(2)(z), to give

h⇢i@h'̃i+
⇣
1� �

2

⌘
@h⇢i = 1

2⇡�
p
g
@̄h(@'̃)2ic. (2.20)
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2.6 Iterating the Ward identity: the leading order

The Ward identity consists of terms of di↵erent order in N , and can be solved iteratively

order by order. The first term on the l.h.s. is of the order N2, the other two are of the order

N . To leading order we thus have h'̃i = 0, which yields h'i = � K
2l2

+ �
2

log
p
g + O(l2).

From this, using (2.8) we recover the first two terms in (2.2).

To proceed with the next iteration, we need to know h(@'̃)2ic or rather the short distance
behavior of the connected two-point correlation function h'(z)'(z0)ic.

2.7 The Gravitational Anomaly

We obtain the two-point function by varying the one-point function of ' with respect to W :

�h'(z)i/�W (z0) =
p

g(z0)h'(z)⇢(z0)ic. Since we already know the leading order of h'i, we
can obtain the leading order of the two-point function h'(z)⇢(z0)ic = 1p

g �
(2)(z � z0) � 1

V ,

or equivalently �gh'(z)'(z0)ic = �4⇡�[ 1p
g �

(2)(z�z0)� 1

V ] [27]. With this, we see that the

two-point function is the Green function of the Laplace-Beltrami operator as in (2.9).

However, this formula is only valid at distances much larger the magnetic length. At short

distances, the two-point correlation function h'(z)'(z0)ic is regular. General covariance re-

quires regularization of the two point function to be as in Eq. (2.9). The regularization

procedure, although plausible, is not immediately evident. However, it can be proved rigor-

ously. We save further discussion of this subtle point for a subsequent paper.

We are now in a position to compute the missing ingredient of the Ward identity (2.20).

Taking derivatives and merging points we obtain the known result

h(@'̃(z))2ic = � lim
z!z0

@z@⇣GR(z, z
0)

=
�

6


@2 log

p
g � 1

2
(@ log

p
g)2
�
. (2.21)
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This describes the gravitational anomaly. In a curved space we obtain

1p
g
@̄h(@'̃(z))2ic = � �

24
@R. (2.22)

This is the anomalous part of the Ward identity.

2.8 Iterating the Ward identity: subsequent orders

The anomalous contribution (2.22) allows us to extract b by computing the next order in

the Ward identity. Inserting (2.22) into (2.20) we obtain the equation

h⇢i@h'̃i+
⇣
1� �

2

⌘
@h⇢i = � 1

48⇡
@R. (2.23)

Matching terms of the same order (by replacing the first h⇢i in (2.23) with its leading order)

reduces the equation to a linear form, which readily integrates to

⇢
0

h'̃i+
⇣
1� �

2

⌘
(h⇢i � ⇢

0

) = � 1

48⇡
R. (2.24)

In this equation, all of the terms are proportional to the curvature. The r.h.s. is proportional

to the trace anomaly of the free Gaussian field. Matching the coe�cients determines the

coe�cient b in (2.2).

2.9 The Pfa�an state

Our results can be generalized to other holomorphic FQH states. We present heuristic

arguments for the Pfa�an state attributed to ⌫ = 1/2 filled spin polarized second Lan-

dau level [5]. The holomorphic part of the wave-function for this state is proportional to
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Q
i<j(zi � zj)

2Pf
�

1

zi�zj

�
, where Pf(Mij) is the Pfa�an of the matrix M . We assume that

the geometry is encoded entirely in the exponentiated Kähler potential, as in (2.12). In this

state the maximal number of particles is N = ⌫(N� + S �
2

) [3] where S (equal to 3 in this

case) is often referred to as the “shift” for FQH states. This formula fixes the leading terms

in the density ⇢ = ⌫( 1

2⇡l2
+ S

8⇡R) + O(l2), where ⌫ = 1/2. The Ward identity fixes the rest

of the expansion.

Without derivation we assume that the only change in the Ward identity is the coe�cient

reflecting the change of the leading order. Explicitly, we assume that the linearized version

of the Ward identity (2.24) reads

⇢
0

h'̃i+
✓
1� S

2

◆
(h⇢i � ⇢

0

) = � 1

48⇡
R, (2.25)

where '̃ = '+ 1

2l2
K� S

2

log
p
g. This equation gives a relation between the coe�cient of the

leading and next to the leading gradient expansion of the density, and leads us to conjecture

b =
1

12
+
⌫

4
S (2� S) = � 7

24
. (2.26)

Furthermore, since Eqs.(2.5) and (2.7) are generally valid, we find the gradient expansion

of ⌘(k), and consequently the static structure factor (and Hall conductance) for the Pfa�an

state

s(q) =
q2

2
+

S � 2

8
q4 +

3(2� S)2 � ⌫�1

96
q6 +O(q8). (2.27)

This expression also applies to the bosonic Pfa�an state at ⌫ = 1 with S = 2. In this case

b = 1/12.

The q4 coe�cient was previously argued to be robust within a FQH phase [11]. We
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find that it follows directly from the generalization of Eq.(2.1) to the Pfa�an state, under

minimal assumptions on the form of the wave function. The q6 coe�cient is connected to

the conjectured b. It can be tested numerically .

2.10 Generating functional and Polyakov’s Liouville action

Once we know the density (2.2), the generating functional can be computed by integrating

(2.16) in a similar manner to what has been done in [22]. The result for � = 1 was presented

in the recent paper [15]. We proceed by using the relation following from (4.3)

1

2
(�l2�g)

� logZ[g]

�
p
g

=
⇣
1 +

1

2
(�l2�g)

⌘
h⇢i = (2.28)

⇢
0

+
1

8⇡
R +

1

8⇡
(�b+

1

2
)(�l2�g)R.

The generating functional for an arbitrary filling fraction, developed as an expansion in

1/N�, reads

log
Z[g]

Z[g
0

]
=

N�(N⌫ + 1)

2
+N2

�A
(2)[g] +N�A

(1)[g] + A(0)[g],

A(2) = � ⇡

2�

1

V 2

Z
KdV, A(1) =

1

2V

Z
log

p
g dV,

A(0) =
1

16⇡

✓
1

3
+
� � 1

2

◆✓Z
log

p
gR dV + 16⇡

◆
,

where Z[g
0

] is the generating functional of a FQH state on a sphere.

The functionals A(2) and A(1) are familiar objects in Kähler geometry [25, 15]. Unlike

the higher order terms, the first three terms cannot be expressed locally through the scalar

curvature R. For this reason, they obey non-trivial co-cycle properties explained in [25, 15].

The variations of the first two functionals over the Kähler potential are the volume form and

the curvature.
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The functional A(0) is Polyakov’s Liouville action representing the logarithm of the parti-

tion function of a free Bose field [24]. Recall that Polyakov’s action appears as a normalized

spectral determinant of the Laplace-Beltrami operator, or as a partition function of the

Gaussian Bose field

�1

2
log

det
���g

�
det
���g0

� =
1

96⇡

Z
log

p
gR dV +

1

6
. (2.29)

It is instructive to to normalize the generating functional to � copies of the generating func-

tional of the integer filling case with the proper adjustment of the magnetic field Zreg[g] =

Z[g, �, N�]/
�Z[g, 1, N�/�]

�� , where we emphasize the dependence on � and N� [28]. This

ratio remains finite in the N� ! 1 limit

Zreg[g] = Zreg[g
0

]

"
det
���g

�
det
���g0

�#�1
2 (��1)

(2.30)

The regularized part reflects the gravitational anomaly. The generating functional en-

codes the gravitational and electromagnetic response of the FQH states. It shows how

various correlation functions transform under variations of the geometry such as conformal

transformations. In particular, the regularized part of the generating function transforms

covariantly.
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CHAPTER 3

FIELD THEORY FOR THE FQHE

3.1 Collective Field Theory

We start with some general remarks about the collective field theoretical approach.

To compute the expectation value of an observable O(z
1

, ..., zN ) within the ground state

 (z
1

, . . . , zN ), one has to evaluate a multiple integral over the individual particle coordinates

hOi =
Z
 ⇤O dV

1

. . . dVN , dVi =
p

g(zi)d
2zi, (3.1)

and then proceed with the large N limit. The field theory approach assumes instead that the

appropriate variables are collective modes. In the QH systems the ground state at a fixed

background gauge potential is a holomorphic function of coordinates. On a Riemann surface

this means that the wave function is holomorphic in complex (or isothermal) coordinates

where the metric is ds2 =
p
gdzdz̄. Therefore holomorphic collective modes su�ce for a

complete field theory of the QHE. On genus-0 surfaces they are power sums

a�k =
NX
i=1

zki , k � 1, D' =
Y
k>0

da�kdā�k,

The sum is taken in the N ! 1 limit and the measure of integration D' represents a

functional integration over the real collective field '(⇠), where we denote ⇠ = (z, z̄). For

further discussion of the measure, see Sec.(6). The field is defined such that its current, the

holomorphic derivative @z', is a generating function of the modes a�k

i@z' ⌘ �i
X
k�1

a�kz
�k�1. (3.2)

In this definition we assume that the field has no zero modes
R
' dV = 0 and is therefore
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globally defined on the Riemann surface. Expectation values are obtained by a functional

integral over the field with the appropriate action

hOi =
R O[']e��[']D'R

e��[']D'
(3.3)

as opposed to the multiple integral in (3.1). The collective field ' defined by its expansion

at infinity (3.2) can be extended to the finite part of the plane excluding the positions of

particles where the current has poles @'|z!zi ⇠ �1/(z � zi). This field is defined as

'(⇠) = 4⇡
X
i

G(⇠, ⇠i), (3.4)

where G is the Green function of the Laplace-Beltrami operator � with the zero mode

removed, and which satisfies

��G(⇠, ⇠0) = �(2)(⇠ �⇠0)� 1

V
.

By definition, the collective field is a solution of the Poisson equation

��' = 4⇡(⇢� N

V
), (3.5)

where ⇢(⇠) is the particle density.

We now specialize our discussion to the Laughlin state on genus-0 surfaces, but the final

results hold for any genus. The Laughlin wave function reads

 =
1pZ
Y
i<j

(zi � zj)
me

1
2

P
iQ(⇠i), (3.6)

~�Q = �2eB, (3.7)
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where m = 1/⌫ is an integer, ⌫ is the filling fraction, and Q is the ‘magnetic’ potential

of a slow varying magnetic field B. Below we set e = ~ = 1.

The normalization Z, known as the generating functional, was studied in [? 50]. The

generating functional is independent of the choice of coordinates and depends only on the

geometry of the surface through functionals of the metric.

At a given magnetic field the state is normalizable if the maximal number of particles is

N = ⌫N� +
1

2
�, (3.8)

where � is the Euler characteristic of the surface (� = 2 for a sphere) and N� = 1

2⇡

R
B dV

is the total number of magnetic flux quanta. We assume that the state contains a maxi-

mal number of particles so the surface is completely filled and the particle density has no

boundary.

Our goal is to represent the probability density dP = | |2Qi dVi as a functional integral

over the collective field Eq.(4.17) such that dP ! e��[']D'.

3.2 Main Results for Field Theory

Now we can formulate some results for the Laughlin state. We compute the action �['] in

(3.3) in the leading 1/N approximation. The action consists of three parts

�['] = �G['] + �B ['] + �L['] (3.9)
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which are conveniently written in terms of the field ' and related field � = log
p
⇢/(N/V )

�G['] =
1

8⇡⌫

Z h
(r')2 �R'� 4⌫B'

i
dV, (3.10)

�B ['] =
2

⌫

✓
⌫ � 1

2

◆
N

V

Z
e2�� dV, (3.11)

�L['] =
1

24⇡

Z h
(r�)2 +R�

i
dV. (3.12)

where R is a scalar curvature of the surface. The actions (3.10-3.12) are derived in sections

4-7. We remind that the field ' is defined such that
R
' dV = 0, so the coupling with the

curvature R and magnetic field B in (3.10) occurs only if the curvature and magnetic field

are not uniform. If they are uniform, the magnetic field enters only through relation (3.8).

The action is non-linear since � and ' are connected by the Eq. (3.5). It consists of three

distinct terms at di↵erent orders in 1/N , in descending order. This can be seen by noticing

that ' defined by (4.17) is of the order N , while � is of the order 1.

The leading term (3.10) of the action is the Gaussian free field with a background charge

which describes the coupling to curvature, cf. [64, 35, 136] The background charge is directly

related to the shift �/2 in (3.8). Perturbatively, the action (3.10) is equivalent to the Liouville

theory of gravity (see e.g., [60]) in the sense that the background charge increases the central

charge of the Gaussian field from 1 to 1 + 3⌫�1. As a consequence the conformal dimension

of the vertex operator e�a' is

ha =
1

2
a(1� a⌫). (3.13)

The conformal dimension is equal to the spin of the quasi-hole. This result refines the

erroneous notion that the spin of a quasi-hole matches its mutual statistics and the charge

deficit, both equal the filling fraction ⌫ at a = 1.1

1. To the best of our knowledge the spin of the quasi-hole was correctly computed in [96], see also [89]

and [129].
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Formally the action (3.10) is that of a Gaussian free field and possesses conformal invari-

ance. This invariance breaks at the next order of the action (3.11), except in the case of the

Bosonic Laughlin state ⌫ = 1/2 at which (3.11) vanishes.

Finally, the Polyakov-Liouville action (3.12) manifests the gravitational anomaly. This

part of the action alone is identical to the action of the Liouville theory of gravity if the

density ⇢ = (N/V )e2� is identified as a random metric (from this point of view, the field

' plays the role of a random Kähler potential (cf.[62])). The action does not posses the

cosmological term since the number of particles is fixed and
R
e2�dV = V .

We can check the consistency of the action against some known results.

Minimizing the action we find the first three leading terms of the 1/N expansion of the

ground state value of the particle density previously obtained in [? ]. If the magnetic field

is uniform it is also a gradient expansion in curvature

h⇢i= ⇢̄+

1

2⌫

✓
⌫� 1

2

◆
+

1

12

�
(l2�)

R

8⇡
, ⇢̄=

⌫B

2⇡
+

R

8⇡
, (3.14)

where l =
p

~/eB is the magnetic length.

The ⇢̄ term in (3.14) comes from (3.10). Integrating over the density yields the particle

number (3.8), where the R/(8⇡) term yields the background charge of �/2 due to the Gauss-

Bonnet theorem
R
RdV = 4⇡�. The order l2 term in (3.14), which receives contributions

from both (3.11) and (3.12) does not contribute to the particle number.

Linearizing the action on a flat space yields the propagator of density modes

�['] ⇡ V

2N

X
k

S�1(k)|⇢k|2, (3.15)

where S(k) is the static structure factor expanded to order k6, first computed in [83] (see
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also [? ])

S�1(k) =
2

⌫(kl)2

✓
⌫+(⌫� 1

2
)(kl)2+

1

48
(kl)4 . . .

◆
(3.16)

Other results are described below.

3.3 Boltzmann Weight

The first step in constructing the collective field theory is expressing the wave function (3.6)

as a functional of the collective field. The amplitude of (3.6) is interpreted as the Boltzmann

weight of the neutralized Coulomb plasma | |2 ⇠ e�E , with temperature set to unity. We

express the energy in terms of the Green function and the Kähler potential K defined by

the conditions @z@z̄K = (⇡/V )
p
g and K ⇠ log |z|2 + O(1/|z|) at infinity. Note that for

constant B, the potential becomes Q = �N�K. The energy reads

E =� 2

Z Z
⇢(⇠)G(⇠, ⇠0)B(⇠0)dV⇠dV⇠0 �N

Z
Q
dV

V

� 1

2
NN�

Z
K

dV

V
+

2⇡

⌫

X
i 6=j

G(⇠i, ⇠j). (3.17)

The last term in (3.17) takes into account the discreteness of particles.

In the continuum limit, we have to replace the sums over particle positions
P

i 6=j G(⇠i, ⇠j)

by integrals over the density taking into account the excluded self-interaction at i = j. We

must therefore regularize Green function G(⇠i, ⇠j) at coinciding points. The regularized

Green function is defined by subtracting the logarithm of the geodesic distance |⇠ � ⇠0|g1/4

between the points in units of the typical separation between particles, which is of the order

of ⇢�1/2

GR(⇠) = lim
⇠!⇠0

✓
G(⇠, ⇠0) + 1

4⇡
log[|⇠ � ⇠0|2⇢pg].

◆
(3.18)
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Thus
P

i 6=j G(⇠i, ⇠j) must be replaced by

Z Z
G(⇠, ⇠0)⇢(⇠0)dV⇠0 �GR(⇠)

�
⇢(⇠)dV⇠.

Bringing all pieces together and integrating by parts

E = E
0

+ �G[']�
1

2⌫

Z
⇢ log ⇢ dV, (3.19)

where �G['] is given by (3.10), and

E
0

=
N

⌫V

Z Z
log |⇠ � ⇠0|2

✓
⇢̄(⇠0)� 1

2

N

V

◆
dV⇠dV⇠0

where ⇢̄ is defined in (3.14). This gives the field theoretical representation of the wave

function. We comment that the short distance regularization is determined by the density

⇢ and for that reason depends on the state of the plasma. A similar regularization scheme

was employed for a 1D plasma in Ref.[59].

3.4 Entropy

The next step is to pass from integration over coordinates of individual particles to integration

over the macroscopic density. This is a standard method in statistical mechanics (used

in a setting similar to ours in [59]). The transformation defines the Boltzmann entropy

SB [⇢] = � R ⇢ log(⇢/⇢̄) dV
Y
i

p
g(⇠i)d

2⇠i ! eSBD⇢.
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Combining the Boltzmann weight and the entropy together we obtain the probability density

dP ! e�E[⇢]+SB [⇢]D⇢.

Here, the free energy of local equilibrium is

E � SB = E
0

+ �G + �B .

We observe that the Boltzmann entropy and the short distance regularization of the Coulomb

energy (3.19) combine to form �B .

3.5 Ghosts

The next step is to determine the measure D⇢. Passing from ⇢! ' comes at the price of a

Jacobian, which is given by the spectral determinant of the Laplace-Beltrami operator

D⇢ ⇠ Det(��)D'. (3.20)

The determinant can be represented by (1, 0) Faddeev-Popov ghosts by the following equation

Det(��) =
R
e�
R
⌘̄(��)⌘ dVD⌘D⌘̄, where ⌘ are complex fermionic modes.

3.6 Gravitational Anomaly

The last step involves the functional measure in (3.20). The procedure we outline below is

commonly used in the theory of quantum gravity. Let us denote by X a field ' or ghosts

⌘, ⌘̄ and consider the deviation �X from a given value of the field, say its mean. We define

32



the norm of the deviation as

||�X||2 =
NX
i=1

(�X(⇠i))
2 =

Z
(�X)2⇢dV (3.21)

and assume that the measure is normalized as
R
DX exp[�||�X||2] = 1. Such normalization

is supported by calculations based on the Ward identity for Laughin states [50]. Thus the

measure for both ' and the ghost fields depends in a nontrivial fashion on the density, and

thus on ' itself. So although the ghosts appear decoupled from the rest of the action, in fact

they are not.

The density ⇢ appearing in (4.20) can be treated as a conformal factor of the metric

and thus removed from the measure by a conformal transformation of coordinates dV !
⇢�1dV . It is known, however, that under conformal transformation the measure transforms

anomalously as

DX ! ecX �L[�]DX,

where cX is the central charge of the field X, where �L[⇢] is the Polyakov-Liouville action

(3.5) [106], see also [55]. This is the Weyl or gravitational anomaly which appears here in a

similar fashion as in the quantum theory of gravity. Applying this to the collective field '

with the central charge +1 and ghost with the central charge �2 we obtain the measure

e��L[⇢]D'D⌘D⌘̄.

After the Polyakov-Liouville action is taken into account the short distance regularization of

the field ' and ghosts does not depend on density. Since the ghosts are decoupled their con-

tribution is the spectral determinant of the Laplace operator. Summing up, the probability
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distribution is

dP = Z�1 Det(��)e�E0��[']D'. (3.22)

The ghosts determinant contributes to the finite size correction to the free energy of the

Coulomb plasma [79, 50].

Now we turn to some applications.

3.7 Density and generating functional

We start from computing the generating functional - the normalization factor of the Laughlin

wave function or (3.22).

The integral of the lhs of (3.22) is 1. The relevant contribution to the integral of the rhs

of (3.22) comes from the Gaussian approximation. It consists of the on-shell action �['c]

computed on the “classical” solution 'c, which minimizes the action. Computing Gaussian

fluctuations it is su�cient to take into account only the leading part of the action (3.10)

Z
e��[']D' = [ Det(��)]�

1
2 e��['c].

Thus integrating (3.22) gives

Z = [ Det(��)]
1
2 e��0 , �

0

= E
0

+ �['c]. (3.23)

In the three first leading orders in 1/N solution of ��[']/�' = 0 is the ground state value

of the field 'c = h'i, which, through (3.5) determines the ground state value of the density.

Solving in the leading order in 1/N we obtain Eq.(3.14).
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Inserting (3.14) back into (3.9) we find

�['c] = �2⇡

⌫

Z Z
⇢̄(⇠0)G(⇠, ⇠0)⇢̄(⇠0)dV⇠dV⇠0 .

The final result for the functional �
0

in (3.23) is best expressed in terms of the gauge

potential and spin connection. Their complex components are defined by

2i(@z̄Az � @zAz̄) = B
p
g, 2i(@z̄!z � @z!z̄) =

1

2
R
p
g.

In the transverse gauge @z̄Az = �@zAz̄, @z̄!z = �@z!z̄ the functional �
0

has a compact

form

�
0

= � 2

⇡⌫

Z ����✓⌫Az +
1

2
!z

◆����2 dzdz̄.
It remains to recall the value of the spectral determinant of the Laplace operator in

(3.23). Up to a metric independent terms it is given by the Polyakov formula [104]

log Det(��) = � 1

3⇡

Z
|!z|2dzdz̄.

As a result (cf.,[50])

logZ=

Z "
2

⇡⌫

����✓⌫Az +
1

2
!z

◆����2� 1

6⇡
|!z|2

#
dzdz̄. (3.24)

In the form (3.24) it is valid on a surface with any genus.

The authors of Ref.[86] argued that the elements of the Hessian matrix of the generating

functional

�H =
⇡

2

�2 logZ
�Az�Az̄

, 2&H =
⇡

2

�2 logZ
�!z�Az̄

, �cH
12

=
⇡

2

�2 logZ
�!z�!z̄

are universal transport coe�cients precisely quantized on QH-plateaus. Here �H is the Hall

35



conductance, &H determines the current caused by changing of the metric and the third

coe�cient, cH , describes forces exerted on the fluid as a result of a changing the metric. We

refer to [86] for further details. For Laughlin states these coe�cients are encoded in (3.24)

�H = ⌫, &H = 1/4, cH = 1� 3/⌫ (3.25)

3.8 Quasi-holes - gauge anomaly.

Introduced by Laughlin [93], a quasi-hole state with charge a on a compact surface reads

 a=
e
1
2⌫a[Q(w)�aK(w)]pZa[w, w̄]

24 NY
i=1

(zi�w)ae�
a
2K(zi,z̄i)

35 , (3.26)

where w is a holomorphic coordinate of the quasi-hole,  is the ground state (3.6) with N

particles subject to the condition (3.8), a is a positive integer less than m = 1/⌫, and K is

defined above (3.17). The factor of exp
��a

2

K(⇠i)
�
neutralizes the insertion of the quasi-hole.

This state covers the entire surface. The exponential factor of a⌫
2

[Q � aK] in (3.26) is

added for a convenience.

A quasi-hole is represented by the vertex operator Va(w, w̄) = e�a'(w,w̄). In particular

the normalization factor Za, the generating functional for a quasi-hole state, reads up to

constants

Za[w, w̄] ⇠
D
Va(w, w̄)

E
,

where the average is taken over the ground state (3.6) without the quasi-hole. As such the

quasi-hole may be seen as a source for the action (3.10) � ! � + a'(w). However, there

is a caveat. The quasi-hole disturbs the electronic density around itself in a vicinity of the
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size of magnetic length. At the limit of a vanishing magnetic length the density becomes

singular. At the same time the derivation of the action was based on the assumption that

the density is smooth. Therefore the derivation must be reexamined to take into account

the feedback of the singularity.

The leading 1/N value of (3.24) is given by the Gaussian part of the action (3.10)

Za ⇡ exp

✓
�ah'i+ a2

2
h'2ic

◆
. (3.27)

The mean of the field ' determined by (3.10) is

h'(⇠)i ⇡ 4⇡

Z
G(⇠, ⇠0)⇢̄(⇠0)dV⇠0 = ⌫Q+

1

2
log
p
g(⇠),

the variance is h'2ic ⌘ h'2i� h'i2 = 4⇡⌫GR, where the regularized Green function is given

by (3.18). But the GR depends on the density itself, and in the leading approximation one

replaces the density by its mean such that h'2ic = ⌫ log
�h⇢ipg

�
. Putting this together we

obtain

Za ⇡
⇣p

h⇢i
⌘⌫a2

(
p
g)�ha , (3.28)

where ha = a
2

(1� ⌫a) is the conformal dimension as in (3.13).

In the leading approximation the factor h⇢i in (4.29) can be treated as a constant. Then

(3.22) suggests that ha is the conformal dimension of the quasi-hole state: the quasi-hole

state transforms as a primary field under a holomorphic transformation. Symbolically

w ! f(w), Va ! (f 0(w))haVa

Because the state is holomorphic (up to the normalization factors in (3.26))the holo-

morphic dimension ha is also the spin of the state. Later we show this in a more direct

37



manner.

In the next to the leading approximation we cannot assume the density is (4.29) to

be a constant. As with the gravitational anomaly above, the field transforms as ' !
'� a⌫ log

p
⇢, which modifies the vertex operator

Va = (
p
⇢)⌫a

2
e�a',

such that the regularization of the two-point correlation function at coincident points is

independ on the state density. Alternatively, we may say that the quasi-hole contributes to

the action as a source � ! � + a' � a2⌫ log
p
⇢. Thus the stationary point of the action

reads

��

�'(⇠)
= �a

✓
1 +

⌫a

8⇡⇢
�

◆
�(w � ⇠). (3.29)

In the linear approximation we treat ⇢ in (4.31) as a constant ⇡ ⌫/(2⇡l2) and use (3.15). As

a result we obtain the first two terms of the expansion in (kl)2

⇢k⇡
2⌫a

(kl)2

⇣
�1+

a

4
(kl)2

⌘
S(k)⇡�⌫a+(kl)2

2
(a⌫�ha).

Equivalently the first two moments of the density �⇢ = h⇢i � N
V are

m
0

=

Z
�⇢ dV = �⌫a, (3.30)

m
2

=
1

2l2

Z
r2�⇢ dV = �⌫a+ 1

2
a(1� ⌫a). (3.31)

The first formula describes the fractional charge deficit �⌫a. This result goes back to [93].

The second moment is more involved [126, 80, 50]. Curiously, the second moment vanishes
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at ⌫ = 1

3

and a = 1.

Having determined the generating functional, we compute the adiabatic phase �C acquired

by the quasi-holes by transporting one around a closed path C.
For simplicity we compute the adiabatic phase when one hole with coordinate w

1

moves

around a closed path C enclosing another quasi-hole with coordinate w
2

. The extension of

(3.27,4.29) to the case of two quasi-holes is

Za1a2(w1

, w
2

) = Za1(w1

)Za2(w2

)e4⇡⌫a2a1G(w1,w2), (3.32)

where we used h'(w
2

)'(w
2

)ic = 4⇡⌫G(w
1

, w
2

) and (3.27).

The adiabatic phase reads

�C = 2i

Z I
C
 @w1 dw1

�
dV

1

. . . dVN .

Since the state is a holomorphic function of position of the quasi-holes, only normalization

factor in (3.26) contributes to the phase

�C = �2⇡a
1

⌫ �C + i

I
C
@w1 logZa1a2dw1

.

The first term is the Aharonov-Bohm phase picked up by a particle with charge �a
1

⌫

enclosing the magnetic flux �C = (N
�

+ a
1

+ a
2

)Area(C)/V in units of the flux quantum.

The contribution of the second term follows from (4.30)

i

I
C
@w1 logZa1a2dw1

= �ha1⌦C + 2⇡⌫a
1

a
2

. (3.33)

It contains the solid angle ⌦C = i
H
d log

p
g = 1

2

R
C RdV . The coe�cient in front of it is

the spin of the quasi-hole, equal to the holomorphic dimension (3.13). This formula extends

the result of Refs.[96], which was for the adiabatic phase of a single quasi-hole (a = 1) on a
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sphere.

The last term in (3.33) 4⇡i⌫a
2

a
1

H
dG(w

1

, w
2

), which vanishes if the contour C does not

enclose w
2

, is commonly referred to as the mutual statistics of the quasi-holes. When the

quasi-holes are identical, it is equal to ⌫a2, and di↵ers from the spin.

3.9 E↵ect of spin

Lastly, we comment on the e↵ect of spin of quantum Hall states. The spin, yet another

characterization of the QH state was introduced in Ref. [50]. The inclusion of spin comes

as a generalization of the lowest Landau level (LLL). We recall that the LLL are defined

as zero modes of the anti-holomorphic component of the kinetic momentum operator ⇡̄ =

�i~@̄+~s!̄� eĀ where !̄ = �(i/2)@̄ log
p
g, where parameter s is the spin. Throughout the

paper we set the spin to zero. Inclusion of spin e↵ectively shifts the potential Q in (3.7) by

�s log
p
g, such that the modified Q now satisfies the Poisson equation �Q = �2e

~ B + sR.

As a result, the action acquires an additional term s
4⇡

R
'RdV, which shifts the background

charge in the Gaussian action

�G['] =
1

8⇡⌫

Z h
(r')2 � (1� 2⌫s)R'� 4⌫B'

i
dV.

The Boltzmann entropy (3.11) and the Polyakov-Liouville action (3.12) remain the same.

Below we list some e↵ects of spin.

Spin does not appear in local properties evaluated at distances where change of curvature

is negligible, for example in a flat space. In particular the structure factor S(k) (3.16), the

charge of the quasi-hole m
0

(3.30) and its moment m
2

(3.31) are independent of spin.

However geometric characteristics depend on spin. As such, the relation (3.8) between
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the total number of particles and magnetic flux becomes

N = ⌫N� +
1

2
(1� 2⌫s)�. (3.34)

The spin modifies the conformal dimension (3.13) defined in (4.29) and appearing in the

adiabatic phase (3.33)

ha =
1

2
a(1� 2⌫s� a⌫).

However, the second moment (3.31) will not acquire any spin dependence, and will maintain

its relation to the conformal dimension m
2

= (1� s)m
0

+ ha.

Spin also enters the generating functional (3.24)

logZ=

Z "
2

⇡⌫

����✓⌫Az +
1

2
(1� 2⌫s)!z

◆����2� 1

6⇡
|!z|2

#
dzdz̄

Consequently, the Hall conductance does not depend on spin, but the geometric transport

coe�cients in (3.25) do

&H =
1

4
(1� 2⌫s), cH = 1� 3⌫�1 (1� 2⌫s)2

For more details regarding the inclusion of spin into the FQHE on a curved space, see [50].

To conclude, we reformulated the FQHE on a curved surface in terms of a field the-

ory. The field theory consists of the Gaussian action with the background charge and the

sub-leading corrections representing the gravitational anomaly. We demonstrated that this

theory captures conformal properties of quasi-holes, the adiabatic transport, and clarifies

the e↵ect of the gravitational anomaly.

Finally we comment that the action similar to (3.9) has been considered in [62] as an

admissible action for a random metric. The actions become analogous upon identifying the

fluctuating density as a random metric and the field ' as a fluctuating Kähler potential. We
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CHAPTER 4

FQHE ON SINGULAR SURFACES

4.1 Main results for FQHE on Singular Surfaces

a. Conformal dimensions. We show that the states are conformal primary in the vicinity of a

singularity, magnetic or geometric. In [49, 91] (see also [89]) it was shown that the magnetic

singularity is a conformal primary with the dimension

ha =
1

2
a(2µH � ⌫a). (4.1)

In this paper we show that the geometric singularity is also conformal primary, but in this

case its dimension is controlled solely the gravitational anomaly

�↵ =
cH
24

(��1 � �), � = 1� ↵. (4.2)

The formula (4.2) is familiar in the conformal field theory: ��↵ (mind the opposite sign!) is

the dimension of a vertex operator of a conical point in conformal field theory with the central

charge cH [87, 43]. The same formula enters the finite size correction to the free energy of

critical systems on a conical surface [52] and equivalently the formula for the determinant

of the Laplace operator (e.g., [88, 37]). These are not coincidences. In the neighborhood of

a singularity, QH-states and conformal field theory share the same mathematics, but are by

no means identical: the conformal dimension of QH states is opposite to that in conformal

field theory with the central charge given by (3.13).

Conformal dimensions are important characteristics which enter physical observables.

b. Dimension, gyration, and spin We show that the dimension determines transport

in the neighborhood of the singularity. The electronic fluid gyrates around the conical

point with an intensive angular momentum, independent of volume. We will show that the
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intensive part of the angular momentum is exactly the dimension (4.2)

L↵ = ~�↵. (4.3)

A reason for this is that the angular momentum of the gyrating fluid gives the spin to the

singularity - an adiabatic rotation of the state by 2⇡ results in a phase (2⇡/~)La,↵. But

because the state is holomorphic, its spin is identical to the dimension.

A similar formula holds for the angular momentum of the combined magnetic and geo-

metric singularities

L↵,a = ~
✓
1

�
ha +�↵

◆
. (4.4)

The intensive angular momentum (4.4) is added to (2.1) Hence, if the area D of the fluid

parcel is taken to zero, only the angular momentum (4.4) remains.

c. Braiding singularities Just like Laughlin’s quasi-holes (which are closely related to

flux tubes (1.4)), conical singularities can be braided. The phase acquired by adiabatically

exchanging two singularities is called the exchange statistics. Braiding two quasi-holes with

charges a
1

and a
2

yields the phase

�
12

= ⇡(⌫a
1

a
2

). (4.5)

This result is known since early days of QHE [36].

Braiding conical singularities is more involved. We argue that braiding phase of two

cones of the order ↵
1

and ↵
2

are determined exclusively by the central charge

�
12

= �⇡ cH
24
↵
1

↵
2

✓
1

�
1

+
1

�
2

◆
=

⇡ (↵
2

�↵1 + ↵
1

�↵2) + ⇡
cH
12
↵
1

↵
2. (4.6)

Here, we assume that the path is su�ciently small, so conical singularities are the only
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contributions to the solid angle swept out by the path. The first two terms in (4.6) are the

phase acquired by a particle with spin �↵1 (or �↵2) going half way around a solid angle

4⇡↵
1

(or ↵
2

). The last term
cH
12
↵
1

↵
2

is the exchange statistics.

On an orbifold, where either � or 1/� is an integer n the phase for identical cones is

�
12

= ⇡
cH
12

✓p
n� 1p

n

◆
2

. (4.7)

It appears rational, even in the case of the integer QHE.

The formulae (4.2-4.6) are our main results: the braiding statistics of the singularities

and the angular momentum of the electronic fluid around a cone are given solely by the

gravitational anomaly. Other results such as the transport and the fine structure of the

density profile at the singularity are shown below.

d.Moment of inertia The conformal dimension can be also read-o↵ from the fine structure

of the density profile in the neighborhood of the singularity. On a singular surface the density

changes abruptly on the scale of magnetic length and in the limit of vanishing magnetic length

is a singular function. It is properly characterized by the moments

m
2n =

Z
(r2/2l2)n(⇢� ⇢1)dV. (4.8)

Here, ⇢1 = ⌫(e/h)B is the asymptotic value of the density away from the singularity and

l =
p
~/(eB) is the magnetic length. In the integral (4.8) r is the Euclidean distance to the

singularity and dV = 2⇡�rdr is the volume element.

The first moment, the ‘charge’ m
0

, follows from the generalized Středa formula – the
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number of particles in an area dV is saturated by ⇢̄dV where

⇢̄ = ⌫(eB/h) + (µH/4⇡)R. (4.9)

We will obtain this relation in the next section.

Hence

m
0

=

Z
(⇢̄� ⇢1) dV = �⌫a+ µH↵. (4.10)

Eq. (4.10) says that if µH > 0, the apex accumulates electrons when ↵ > 0. It gives an

alternative definition of the transport coe�cient µH .This result for j = 0 is well known

(see, e.g., [45, 134, 30]) and there is even a recent claim of experimental observation [114].

However, the gravitational anomaly does not enter here. It emerges in the next moment, the

moment of inertia of the gyrating parcel m
2

. We will see that

m
2

= (1� j)m
0

+ ��1ha +�↵, (4.11)

where ha and �↵ are the dimension (4.1,4.2). We check this formula against the integer QH

e↵ect, ⌫ = 1, where all the moments are computed exactly. We do this in the last section of

the paper.

The relation between the moment of inertia (4.11) and the angular moment (4.3) is not

surprising. In a QH state, positions of particles determine their velocities. Consequently,

the density determines the momentum P of the flow. The relation between the momentum

and the density has been obtained in [134, 131, 132], in the next section we recall its origin.

The relation reads

r⇥ P = �eB (⇢� ⇢̄) +
~
2
(1� j)�⇢, (4.12)
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where (r⇥)i = ✏ijrj , rj is a covariant derivative, � is the Laplace-Beltrami operator,

and ⇢̄ is given by (4.9). In the next section we recall its origin.

With the help of this formula we express the angular momentum in terms of the density.

In order to avoid unnecessary complications with the definition of the angular momentum

on a curved surface, we assume that close to the singularity the surface locally can be

approximated by a flat surface with rotational symmetry. Then the angular momentum

about the conical point, expressed in local coordinates ⇠, is given by the standard formula

L =
R
(⇠ ⇥ P) dV .

Using (4.12) we obtain

L=(eB)

Z
r2

2
(⇢� ⇢̄)dV + ~(j � 1)

Z
⇢dV. (4.13)

Interpreting this formula we notice that the first term is the diamagnetic e↵ect of fluid

gyrating in magnetic field the second term is the paramagnetic contribution.

The formula for the charge of the cone (4.10) is a consequence of (4.12). Away from the

singularity the momentum rapidly vanishes. As a result the integral
R
(r⇥ P) dV vanishes.

Then (4.12) yields (4.10).

The integral (4.13) over the bulk of the surface gives the extensive part (2.1), while the

integral over a patch at the singularity is m
2

�(1�j)m
0

. Then (4.11) yields (4.4). It remains

to compute (4.1,4.2).

e. Transport at the singularity. Since the work of Laughlin [92] it was known that an

adiabatic change of the magnetic flux a(t) in (1.4) threading through the puncture of a disk

causes a radial electric current flowing outward I = �⌫eȧ.
Adiabatically evolving the order of the conical singularity ↵(t) also induces a current. It

follows from (4.10) that the current flowing away from the apex I = eṁ
0

is I = eµH ↵̇.

More interestingly, both evolving flux and the cone angle accelerate the gyration of the

fluid, and produce a torque. The torque is the moment of the force exerted on a fluid parcel
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M =
R
(r ⇥ F)dV . Since Ṗ = F, the torque is the rate of change of the angular momentum

M = L̇. From (4.3) it then follows that the torque is proportional to the rate of change of

the conformal dimension. We collect the formulae for electric and geometric transport

e-transport: current = �e⌫ȧ, torque = ~ḣa, (4.14)

g-transport: current = eµH ↵̇, torque = ~�̇↵. (4.15)

These formulas put geometric transport in a nutshell.

In the remaining part of the paper we obtain the dimensions (4.1,4.2) and the statistics

(4.6) by employing the conformal Ward identity, a framework developed in [136, 49].

4.2 QH-states on a Riemann surface

Before turning to singular surfaces, we recall some key facts about Laughlin states on a

Riemann surface [85, 49].

The most compact form of the state appears in locally chosen complex coordinates (z, z̄),

where the metric is conformal ds2 = e�|dz|2. In these coordinates the Laplace-Beltrami

operator is � = 4e��@z@z̄ and the volume form is dV = e�d2z.

In the conformal metric we can always choose coordinates such that the unnormalized

spin-j state reads

 =
NY

1i<k

(zi�zk)
� exp

NX
i=1

1

2
[Q(zi, z̄i)�j�(zi, z̄i)] (4.16)

t where, the integer � = ⌫�1 is the inverse filling fraction and Q is the magnetic potential

defined by �~�Q = 2eB.

While the wave function (4.16) explicitly depends on the choice of coordinates, the nor-

48



malization factor

Z[Q,�] =

Z
| |2

Y
i

exp [�(zi, z̄i)]d
2zi (4.17)

does not. It is an invariant functional depending on the geometry of the surface, and in

particular on the positions and orders of singularities.

The functional encodes the correlations and the transport properties of the state and

for that reason is referred to as a generating functional. For example, a variation of the

generating functional over the magnetic potential Q at a fixed conformal factor � is the

particle density

⇢ dV =

✓
� logZ
�Q

◆
d2z.

In [86], it was shown that that a variation of the generating functional over � at a fixed

volume and a fixed gauged potential implies the variational formula for the momentum of

the fluid

P =
~
2
r⇥

✓
� logZ
��

◆
. (4.18)

Then for surfaces of revolution the quantity

L = �~
Z ✓

� logZ
��

◆
d2z. (4.19)

is interpreted as angular momentum. In (4.18,4.19) the variation is taken at a constant

magnetic field and curvature.

With the help of these formulas we can obtain the relations (4.12,4.13). They follow from

the observation that the magnetic potential and the conformal factor appear in (4.16,4.17)

on almost equal footing, besides that under a variation over the conformal factor magnetic
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potential varies as �~��Q = 2��(eB). This contributes to the diamagnetic part of the

relation (4.12).

4.3 QH-state on a cone

A surface has a conical singularity of order �↵ (↵ < 1) if in the neighborhood of the conical

point z
0

the conformal factor behaves as

� ⇠ �↵ log |z � z
0

|2. (4.20)

Locally a cone is thought as a wedge of a plane with the deficit angle 2⇡↵, whose sides are

isometrically glued together (see the Fig. 4.1). Let denote the complex coordinate on the

Figure 4.1: Schematic diagram of a cone and its 3D embedding

plane as ⇠ and the cone angle 2⇡� = 2⇡(1 � ↵). The wedge is a domain 0  arg ⇠ < 2⇡�

with the Euclidean metric ds2 = |d⇠|2. A pullback of a singular conformal map

z ! ⇠(z) = (z � z
0

)�/� (4.21)

maps the wedge to a punctured disk. The map introduces the complex coordinates (z, z̄)

where the metric is conformal

ds2 = |z � z
0

|�2↵|dz|2. (4.22)
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The quantum mechanics on the cone assumes the ‘wedge-periodic’ condition. The lowest

Landau level on a cone is spanned by the holomorphic polynomials of z (see, (4.48)) in the

metric (4.22).

Eq. (4.16) is valid on any genus-zero surface. Specifically, in the neighborhood of the

conical singularity the the conformal factor in (4.16) behaves as (4.20) and locally the state

reads

 ↵=
Y
i<k

(zi�zk)
�
Y
i

|z
0

�zi|j↵e�|zi�z0|2�/(4l2�2).

Then the generating functional Z↵ is the expectation value of this operator.

A singularity can be interpreted as an insertion of the ‘vertex operator’ such that the

generating functional Z↵ is the expectation value of this operator. We will show that this

operator is conformal primary. This means that under a dilatation transformation of the

metric close to the singularity, the functional transforms conformally

�� logZ↵ = �↵��.

Here �↵ is the conformal dimension. Eq. (4.19) identifies the conformal dimension with the

angular momentum (4.3). We compute it in the remaining part of the paper.

Calculations are the most convenient in complex notation. We will need the formula

for the angular momentum written in complex coordinates. The momentum in complex

coordinates reads Pzdz+Pz̄dz̄ = P⇠d⇠+P
¯⇠d⇠̄ in local coordinates related by the conformal

map (4.21). Then with the help of (4.21), the angular momentum density in flat coordinates

reads Im(⇠P⇠) = Im(⇠ dzd⇠Pz) = ��1Im(zPz). Hence

L = ���1

Z
Im(zPz) dV. (4.23)
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4.4 Conformal Ward identity

Moments of the density and the angular momentum are computed via the Ward identity. The

Ward identity reflects the invariance of the integral (4.17) under the infinitesimal holomorphic

change of variables zi ! zi + ✏/(z � zi). It claims that the function of coordinates zi and a

complex parameter z

X
i

@ziQ+ (1�j)@zi�

z � zi
+
�

2

 X
i

1

z � zi

!
2

+
X
i

1� �
2

(z � zi)2
(4.24)

vanishes under averaging over the state.

The identity is closely related to the Ward identity of conformal field theory. In order to

flesh out this analogy, we introduce the scalar field '

' = �2�
X
i

log |z � zi|�Q. (4.25)

We also need the holomorphic component of the conformal ‘stress tensor’

T =
⌫

2
h(@z')2i � µHh@2z'i. (4.26)

Then the Ward identity can be brought to the form connecting the momentum and the

conformal ‘stress tensor’

1

~

Z
iPz0 � µH

2⇡ @z0(eB)

z � z0 dVz0 = T. (4.27)

We describe the algebra elsewhere.
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4.5 Trace of the conformal stress tensor

The meaning of the Ward identity becomes transparent if we complete the stress tensor by

its trace ⇥, defined through the conservation law equation

@z̄T + e�@z⇥ = 0. (4.28)

Together the components T, T̄ , ⇥ form a quadratic di↵erential Tijdx
idxj = T (dz)2 +

T̄ (dz̄)2 + 2e�⇥dzdz̄. Then @z̄ derivative brings (4.27) to the form

Pz =
1

2⇡i
@z (µH(eB)� 2~⇥) . (4.29)

The formula (4.29) identifies the trace ⇥ with the intensive part of the angular momentum

L = � µH
2⇡�

Z
(eB)dV +

~
⇡�

Z
⇥ dV.

Gravitational Anomaly On its own, the Ward identity is a relation between one and

two-point correlation functions. The two-point function h(@z')2i in the Ward identity

is evaluated coincident points. The connected part of this function TA = ⌫
2

h(@z')2ic =

⌫
2

⇥h(@z')2i � h@z'i2
⇤
is the entry which converts the identity into a meaningful equation.

In [49] it was argued that the connected two-point function is proportional to the Schwarzian

of the metric

TA =
1

12
S[�], S[�] ⌘ �1

2
(@z�)

2 + @2z�. (4.30)
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Thus T = TC + TA consists of the ‘classical’ part

TC =
⌫

2
(h@z'i)2 � µH@

2

z h'i (4.31)

and the anomalous part (4.30). This explicit representation of T converts the Ward identity

to the equation.

This equation consists of terms of a di↵erent order in magnetic length and has to be

solved iteratively. The leading approximation, where h⇢i ⇡ ⇢̄ su�ces. From (4.25) it follows

that h'i ⇡ (µH/⌫)�. Up to this order the classical part of the stress tensor is TC =

�(µ2H/⌫)
h
�1

2

(@z�)2 + @2z�
i
. Together with the anomalous part (4.30) the stress tensor

reads

T =
cH
12

S[�]. (4.32)

On smooth surfaces by virtue of (4.28)

⇥ =
cH
48

R.

This is the trace anomaly.

Thus, to leading order the Ward identity is equivalent to the conformal Ward identity.

Eq. (4.29) then yields the result obtained in [86] for the momentum on a smooth surface

Pz =
1

2⇡i
@z

⇣
µH (eB)� ~cH

24
R
⌘
. (4.33)

In its turn it yields the angular momentum given by (2.1). For reference we present the

formula for the density on a smooth surface, which follows from (4.33) and (4.12). It was
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previously obtained in [50]

⇢ = ⇢̄+
1

4⇡B


(⌫� 1

2
)�B+

⇣
(1�j)

µH
2

+
cH
24

⌘ ~
e
�R

�
.

4.6 Geometric singularity

On a singular surface the formula (4.33) is not valid, since the curvature is singular. However,

the results promptly follow from the dilatation sum rule we now obtain.

We multiply (4.27) by zdz
2⇡i and integrate it along a boundary of an infinitesemaly small

parcel. Using 1

2⇡i

H zdz
z�z0 = z0, (4.23) we reduce the Ward identity to the sum rule for the

intensive part of the angular momentum

�L↵,a = ~
I

T (z)
zdz

2⇡i
. (4.34)

and notice that in the neighborhood of singularity T (z) is a holomorphic function. ThusH
T (z)zdz

2⇡i = res(zT ).

We compute the singular part of the stress tensor by evaluating the Schwarz derivative

on the singular metric (4.20). Equivalently, we treat a conical singularity as a conformal

map (4.21) and compute the Schwarz derivative of the map

S[�] ⌘ {⇠, z} =
⇠000
⇠0 � 3

2

✓
⇠00
⇠0
◆
2

=
↵(2� ↵)

2z2
.

We obtain

T =
cH
24

↵(2� ↵)

z2
. (4.35)
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Using (4.34), we arrive at our main result (4.3).

4.7 Magnetic singularity

In this case, the gravitational anomaly does not contribute to the the singularity of the the

stress tensor. Rather, the stress tensor receives an additional contribution from the magnetic

potential of the flux tube Qa = 2a log |z|

T = �⌫
2
(@zQa)

2 � µH@
2

zQa =
ha
z2

, (4.36)

where ha is the conformal dimension (4.1).

Finally, when the flux tube sits on top of a conical singularity, the stress tensor is the sum

of (4.36) and (4.35). Near the singularity T ⇠ (��↵ + ha)/z2. This implies the relation

(4.4).

4.8 Exchange statistics

Now consider adiabatically exchanging two singularities. The state will acquire a phase.

Since the state is a holomorphic function of singularity position, its holonomy is encoded in

the normalization factor. The phase is then �
12

= i

2

H
d logZ, where the integral in positions

of singularities goes along the adiabatic path. The adiabatic connection d logZ treated as a

di↵erential of the position, say, the first singularity has a pole when two singularities coincide,

so the phase is the residue of the pole �
12

= �⇡ res[d logZ].

For conical singularities, the residue arises entirely from the gravitational anomaly. We

notice that the calculation of the normalization factor for multiple singularities is closely

related to the determinant of the Laplacian Det(��) on singular surfaces. This relation

was discussed in [50, 91, 86]. A reason for this is that the stress tensor for logZ and

1

2

cH log Det(��), share the same singularities.
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The result is summarized by the formula

logZ|p1!p2 =
cH
12
↵
1

↵
2

✓
1

�
1

+
1

�
2

◆
log |p

1

� p
2

|. (4.37)

where p
1

and p
2

are positions of two merging singularities.

Then the adiabatic connection is

d logZ =
cH
24
↵
1

↵
2

✓
1

�
1

+
1

�
2

◆
dp

1

� dp
2

p
1

� p
2

. (4.38)

It prompts the formula (4.6) for the exchange statistics.

We illustrate the calculation of the generating functional on the example of a genus-

0 polyhedral surface, such as a cube, tetrahedral, etc., whose vertices are separated by

distances well exceeding the magnetic length. In this calculation we focus on the geometric

singularities setting the fluxes a = 0. The metric describing a polyhedron is piece-wise flat

with multiple conical singularities. It is obtained from the Schwarz-Christo↵el map ⇠(z)

unfolding the polyhedron

e� = |⇠(z)0|2 =
Y
i

|z � pi|�2↵i . (4.39)

The metric describes a flat surface with conical singularities of the order ↵i, conditioned

by the Gauss-Bonnet theorem �Pi ↵i + 2 = 0, and located at points pi. The magnetic

potential �~�Q = 2eB corresponding to a uniform magnetic field will be Q = �|⇠(z)|2/2l2.
The Schwarzian of this metric is

S[�] =
X
i

�1

2

↵2i + ↵i
(z � pi)2

+
�i

z � pi
, �i ⌘ �

X
j 6=i

↵i↵j
pi � pj

. (4.40)

Using the explicit form of the metric, we find the following asymptotic behavior of the
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magnetic potential and the metric at singularities

@pi�|z!pi = �@z�+
�i
↵i

+ ...,

@pi�|z=pj = � ↵i
pi � pj

,

@piQ|z!pi = (�@z + �i
↵i

)Q|z!pi + ..., (4.41)

@piQ|z=pj = � ↵i
pi � pj

Q|z=pj

Next, we use the formula for the angular momentum of a that for a single cone (4.3), which

we write in the form

Z
D✏(pi)

(�Q+ (j � 1)) (⇢� ⇢1) dV = �↵i . (4.42)

To make sense of this formula for multiple cones, we take the domain of integration D✏(pi)

to be a small disk of radius ✏ centered on pi which is much larger than the magnetic length

but much smaller than the Euclidean distance to the closest neighboring cone point. In this

case, ⇢1 = ⌫
2⇡l2

is the density far from any cone points.

For multiple cones, there is also another important non-vanishing sum rule that comes

from the examining the simple poles of the Ward identity, which come entirely from the

Schwarzian of the metric. This sum rule reads

Z
D✏(pi)

@z (Q+ (1� j)�) (⇢� ⇢1) dV = �cH
12
�i. (4.43)

The proof for these sum rules comes directly from the Ward identity (4.27) specified for a

uniform magnetic field

1

~

Z
ihPz0i
z � z0dVz0 = hT i = cH

12
S[�] +O(l2). (4.44)
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Since the RHS is proportional to the Schwarzian, it will have second order pole and simple

poles at the cone points. This implies that the integral on the LHS has a Laurent expansion

around each cone point. Comparing the residues of the poles, we find (4.42) comes from the

second order pole of the Schwarzian, whereas (4.43) follows from the simple pole.

Now we are equipped to derive the variational formula for the generating functional.

Derivatives with respect to the cone points will act only the single-particle factors of the

wave function (4.16), and thus lead to

@pi logZ =

Z
@pi (Q+ (1� j)�) ⇢)dV. (4.45)

In the integrand we write ⇢ = (⇢�⇢1)+⇢1. The contribution of ⇢1 is of the order l�2. We

ignore it and focus on the contribution of ⇢ � ⇢1 which has a finite support at the conical

singularity points pi. Therefore, we convert the integral over the entire surface to a sum of

integrals over small disks D✏(pj) centered on singularities

@pi logZ =
X
j

Z
D✏(pj)

@pi (Q+ (1� j)�) (⇢� ⇢1) dV. (4.46)

With this, we utilize the asymptotic expressions for Q and � in (41), combined with the

formula (4.42) for the moment of inertia and the sum rule (4.43). We obtain

@pi logZ =
cH
12
�i �

�i
↵i
�↵i +

X
j 6=i

✓
↵i

pi � pj

◆
�↵j (4.47)

=
cH
24

X
j 6=i

↵i↵j
pi � pj


1

�i
+

1

�j

�
.

This formula represents the adiabatic connection with respect to adiabatic displacement of

conical singularity announced in the main text in Eq (30).
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4.9 Integer QH-state on a cone

The formulae for the charge of the singularity (4.10) and the moment of inertia (4.11) are

readily checked against the direct calculations for the integer case ⌫ = 1. See [67, 100, 107]

for a study of Landau levels on a cone. In the case where a flux (h/e)a threads the cone the

Landau level is spanned by one-particle states k = 0, . . . , N�1

 k=
e�|⇠|2/4l2

l
q

2⇡��(k� + q
� + 1)

✓ |⇠|p
2l

◆ q
� ·
✓
⇠p
2l

◆k
�

, (4.48)

where q = a+ ↵j, and the density is the sum of densities of each one-particle state

⇢ =
N�1X
k=0

| k|2. (4.49)

We observe that in the integer case the magnetic singularity and spin come together in a

combination q = a+ ↵j.
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Figure 4.2: Left panel: Density on a cone of angle � = 1/10, 1/5, 1/2 (blue, yellow, green)
with spin j = 0. Right panel: Density on a cone of angle � = 1/10 and spin j = 0, 1/2, 1
(blue, yellow, green).

At N ! 1 the density is expressed in terms of Mittag-Le✏er function

⇢ = ⇢1��1e�xx
q
�E 1

� ,
q
�+1

✓
x

1
�

◆
,

where we denoted x = |⇠|2/2l2, and ⇢1 = 1/2⇡l2. We recall the definition of the Mittag-
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Le✏er function

Ea,b(z) =
X
k�0

zk

�(ak + b)
.

We find the moments from the arguments used to obtain the conformal Ward identity.

Under re-scaling the magnetic length l2 ! ��1l2 the state (4.48) scales

 k ! �
1
2+

k+q
2� e(1��)|⇠|2/4l2 k.

but remains normalized. The normalization condition for the new state yields the identity

Z
e
(1��)

|⇠|2
2l2 | k|2dV = ��1�(q+k)/� .

Then, summing over all modes and taking N ! 1 at |�| > 1 we obtain the exact Laplace

transform of the density

Z
e
(1��)

|⇠|2
2l2 (⇢� ⇢1)dV =

�
�1� q

�

1� ��1/�
� �

�� 1
(4.50)

=
�

↵�2
2� +

m0
�

1� ��1/�
� �

�� 1
(4.51)

where m
0

= �a + (1 � 2j)↵/2 is the charge of the cone. This formula can be seen as a

generating function of moments (4.8). Expanding around � = 1 yields the charge m
0

(4.10)

and the moment of inertia m
2

(4.11).

In the orbifold setting the density is a finite sum where �(s, x) =
R x
0

ts�1e�tdt is the

lower incomplete gamma function. At � = 1/n and q = 0, the density is Riccati’s generalized

hyperbolic function - the sum over n-roots of unity !kn = ei
2k⇡
n

⇢ = ⇢1e�x
n�1X
k=0

exp
⇣
!knx

⌘
(4.52)
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In Fig.4.2, we illustrate how the cone angle and spin a↵ect the density, respectively. In both

figures, the density far away from the singularity is normalized to 1 and the distance to the

conical point is measured in units of magnetic length. On the left panel we set j = 0 and

plot ⇢ for � = 1/2, 1/5, 1/10. The values of density near the origin reflect the charge m
0

accumulated at the tip of the cone and feature oscillations on the order of magnetic length

away from the apex. We comment that magnetic singularity does not feature oscillations

at ⌫ = 1. On the right panel we set � = 1/10 and show the e↵ect of spin at j = 0, 1/2, 2.

Unless spin is zero the charge m
0

is negative. The cone repels electrons. Spin also suppresses

oscillations, but for small values of spin oscillations persist. For larger values of spin (not

plotted) oscillations are suppressed entirely.

Apart from the flat cone, there exist exact results for the “American football” geometry,

Fig. 4.3, a unique surface with positive constant curvature and two conical singularities

[124]. The singularities have the same order and antipodal. The football metric reads

ds2 =
(1� ↵)2|z|�2↵�
1 + |z|2�/4r2�2 |dz|2, � = 1� ↵. (4.53)

The volume and the curvature of this surface are

Figure 4.3: “American football”: a surface of constant positive curvature and two antipodal
conical singularities

V = 4⇡r2� and R = 2/r2, respectively. Identical conical singularities of order ↵ are located
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at z = 0 and z = 1. The number of states is N = N
�

+ (1 � 2j) � 2a, where N
�

, is the

total magnetic flux, a is the flux threaded through the singularities, and

⇢1 =
e

h
B +

(1� 2j)

8⇡

2

r2
, (4.54)

is the bulk density away from the conical singularities.

In coordinates ⇠ = z�/(2r�), the normalized eigenstates are

 k =
1p
VNk

⇠
1
� (k+q)

(1 + |⇠|2) 1
2�N��j

, q = a+ ↵j, (4.55)

where the normalization factor is

Nk = B

✓
1

�
N
�

� 2j + 1� 1

�
(k + q),

1

�
(k + q) + 1

◆
(4.56)

and B(x, y) = �(x)�(y)/�(x+ y) is the beta-function. The formula (4.49) gives the density

⇢ =⇢1��1(1 + |⇠|2)�2(N�/��2j)⇥
N�1X
k=0

�(N
�

/� � 2j + 1)|⇠| 2� (k+q)

�(N
�

/� � 2j + 1� (k + q)/�)�((k + q)/� + 1)
. (4.57)

As before, the density simplifies when q = 0 and ��1 = n is integer. Writing as before the

nth root of unity !n = ei2⇡/n, we find

⇢ = ⇢1
⇣
1 + |⇠|2

⌘�nN�
n�1X
k=0

⇣
1 + !kn|⇠|2

⌘nN�
. (4.58)
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The charge moment follows from simple integration

m
0

=

Z
(h⇢i � ⇢1) dV = N �N

�

+ (1� 2j)(1� ↵) (4.59)

= �(1� 2j)↵� 2a. (4.60)

This is twice the charge of a single flat cone given by (4.10).
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CHAPTER 5

CONCLUSION

In summary, in this paper we did three things. We developed the Ward identity framework

for computing correlation functions for the FQHE in curved space, we formulated the theory

of the Laughlin QH-states as a field theory of a scalar Bose field, and we showed that the

geometric response of the FQHE is understood best in the context of singularities on the

surface.

The Ward identity provided a toolkit for computing correlation functions of the FQHE

on curved surfaces. This allowed us to compute the particle density and see corrections to

it and other observables that had been invisible in flat space calculations. In particular, we

saw that the geometric characteristic of the QH state entered the density as a finite-sized

correction. We saw that to measure the geometric coe�cient cH , one needs to compute the

second moment of the density. While the Ward identity provided a powerful mathematical

framework for computing observables of the FQHE on curved surfaces, it lacked physical

interpretation. For this reason, we developed a field theoretic approach to studying the

geometry of the FQHE.

Once we formulated the field theory, we saw how parts of the field theoretic action a↵ect

the structure of observables. In particular, we saw that the geometric coe�cient which

appears as a finite-size correction to observables of the QH fluid, has two sources. First,

there is an anomaly in the measure of the action. The anomaly comes from the divergence

of the two point correlation function of the scalar field ' as two field merge. The connected

correlation function diverges and needs to be regularized, which is the source of the anomaly.

The second contribution to the finite-sized correction is Fadeev-Popov ghosts in the action.

These determine the sign of the correction.

After developing su�cient toolkits for computing correlation functions of the FQHE on

curved surfaces, we applied this machinery to study the FQHE on singular surfaces. We
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showed that singular surfaces are the ideal setting for studying the geometric characteristic

of QH states cH . The reason is that, while on smooth surfaces cH is always a finite-sized

correction to other quantities which dominate transport, on singular surfaces cH dominates

transport near the singularities.

We showed this with two main results. First we showed that the angular momentum

near a singularity is directly proportional to cH . This implies that angular momentum near

a conical singularity for a QH fluid is an experimentally viable quantity for detecting cH .

Then we showed that adiabatically transporting one singularity around another produced a

geometric phase, and the exchange statistics of that phase are proportional to cH as well.

Therefore, the second setting where cH can be measured directly is in the adiabatic transport

of conical singularities.

We hope that this work opens up ways for detecting the topological invariant cH that

characterizes the geometric response of the FQHE in an experimental setting. In addition, we

hope the tools developed in this work - the Ward identity and field theory - help others explore

the geometric properties of the FQHE and other topological states of matter. Although it is

stated in the acknowledgements, I’d like to thank my collaborators Y.H. Chiu, T. Can, and

my advisor P. Wiegmann for an exhilarating hunt for the gravitational anomaly.
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pair correlations of the two-dimensional one-component plasma: Exact result. J. Stat.

Phys., 98(3-4):639–666, 2000.

[84] M.O Katanaev and I.V Volovich. Theory of defects in solids and three-dimensional

gravity. Ann. Phys., 216(1):1 – 28, 1992.

[85] S. Klevtsov. Random normal matrices, Bergman kernel and projective embeddings.

JHEP, 2014(1):1–19, 2014.

[86] S. Klevtsov and P. Wiegmann. Geometric adiabatic transport in quantum hall states.

Phys. Rev. Lett., 115:086801, Aug 2015.

[87] V. G. Knizhnik. Analytic fields on Riemann surfaces. II. Commun. Math. Phys.,

112(4):567–590, 1987.

[88] A. Kokotov. Polyhedral surfaces and determinant of Laplacian. Proc. Math. Soc.,

141:725–735, 2013.

[89] Thomas Kvorning. Quantum hall hierarchy in a spherical geometry. Phys. Rev. B,

87:195131, May 2013.

74



[90] Paul E. Lammert and Vincent H. Crespi. Graphene cones: Classification by fictitious

flux and electronic properties. Phys. Rev. B, 69:035406, Jan 2004.

[91] M. Laskin, T. Can, and P. Wiegmann. Collective field theory for quantum Hall states.

Phys. Rev. B, 92:235141, Dec 2015.

[92] R. B. Laughlin. Quantized Hall conductivity in two dimensions. Phys. Rev. B, 23:5632–

5633, May 1981.

[93] R. B. Laughlin. Anomalous quantum Hall e↵ect: An incompressible quantum fluid

with fractionally charged excitations. Phys. Rev. Lett., 50:1395–1398, 1983.
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