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Higher Flavor Symmetries in the Standard Model

Clay Córdova and Seth Koren*

A study of the generalized global flavor symmetries of the Standard Model is
initiated. The presence of nonzero triangle diagrams between the U(3)5 flavor
currents and the U(1)Y hypercharge current intertwines them in the form of a
higher-group which mixes the zero-form flavor symmetries with the one-form
magnetic hypercharge symmetry. This higher symmetry structure greatly
restricts the possible flavor symmetries that may remain unbroken in any
ultraviolet completion that includes magnetic monopoles. In the context of
unification, this implies tight constraints on the combinations of fermion
species which may be joined into multiplets. Three of four elementary
possibilities are reflected in the classic unification models of Georgi–Glashow,
SO(10), and Pati–Salam. The final pattern is realized non-trivially in
trinification, which exhibits the sense in which Standard Model Yukawa
couplings which violate these flavor symmetries may be thought of as
spurions of the higher-group. Such modifications of the ultraviolet flavor
symmetries are possible only if new vector-like matter is introduced with
masses suppressed from the unification scale by the Yukawa couplings.

1. Introduction

In this work we begin an exploration of the Standard Model’s
flavor symmetries incorporating the novel effects of higher
symmetries.[1] While the flavor symmetries are at best approx-
imate, it is an experimental fact that flavor-violating processes
are anything but generic. We have long appreciated that un-
derstanding precisely how the flavor symmetries are broken
by the Yukawa matrices of the Standard Model yields power-
ful information about the structure of flavor-changing effects
in the infrared as in the celebrated Glashow-Iliopoulos-Maiani
mechanism.[2] Similarly, systematically organizing the effects of
flavor symmetry-breaking continues to guide work on ultraviolet
physics beyond the Standard Model.[3]
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Following this tradition, below we will
analyze the symmetries of the Stan-
dard Model in the limit of vanishing
Yukawa couplings. Our goal is to eluci-
date the interplay between these famil-
iar (zero-form) flavor symmetries, and
the higher (one-form) magnetic hyper-
charge symmetry which is present in
the Standard Model because there are
no dynamical magnetic monopoles. In
particular, we show that as a conse-
quence of the triangle diagrams illus-
trated in Figure 1, the nonabelian flavor
symmetries and the magnetic one-form
symmetry are unified into a composite
structure known as a higher-group.[4–7]

Meanwhile, the structure of the abelian
chiral symmetries of the Standard Model
is even more delicate, forming a non-
invertible algebraic symmetry structure
of the type discussed in refs. [8, 9]. Other

recent work toward higher symmetries in particle physicsmodels
includes refs. [10–25] with refs. [26–36] touching on aspects of the
Standard Model structure.
We utilize these ideas to constrain the possible patterns

of flavor symmetries in any ultraviolet model with magnetic
monopoles. The presence of such particles implies that at short
distances magnetic charge can be screened, and hence the one-
form magnetic symmetry is broken. This is the electromagnetic
dual of usual screening of test charges by virtual pairs of elec-
trically charged particles. Following refs. [6, 7] we argue that
with only the Standard Model matter content, any flavor sym-
metry that participates non-trivially in a higher algebraic struc-
ture with this magnetic symmetry is also necessarily explicitly
broken in the ultraviolet (even in the absence of Yukawa cou-
plings). Letting Eflavor denote the energy scale where a given fla-
vor symmetry emerges, and Emagnetic the symmetry emergence
scale of the one-form magnetic symmetry, we obtain universal
inequalities:[14,15,37]

Eflavor ≲ Emagnetic (1)

In the context of models of unification with a weakly coupled
ultraviolet gauge group, the scale Emagnetic is the higgsing scale
where U(1)Y emerges.[18] The most basic application of Equa-
tion (1) therein is to the “flavor symmetries” of a single gener-
ation of Standard Model fields: the independent U(1) rotations
of different species in the infrared which descend from the same
ultraviolet multiplet necessarily emerge below the scale of unifica-
tion. In the ultraviolet, it is only simultaneous U(1) rotations of
the entire multiplet which are good symmetries, whereas any or-
thogonal subgroup of the infrared flavor symmetries is broken by
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Figure 1. A triangle diagram between the gauged hypercharge current and
two global flavor currents leads to the StandardModel two-group structure
we will focus on below.

the gauge theory in which hypercharge is embedded. As it is only
flavor symmetries that participate in the higher algebraic struc-
ture which are subject to Equation (1), understanding precisely
the Standard Model symmetries then constrains the allowed pat-
terns of unification for the Standard Model fermions.
With the Yukawa couplings of the Standard Model turned off,

we will find robustly only four possible unification patterns com-
patible with the Standard Model gauge structure in the infrared.
However, to fully see the role of the higher structure in control-
ling the ultraviolet of the Standard Model with non-zero Yukawa
couplings, we must understand the impact of the higher flavor
symmetries being approximate.
In the following section, we will explain the sense in which

Yukawas that violate the zero-form flavor symmetries may be
seen as spurions for the modification of the higher flavor struc-
ture. We illustrate in detail how this higher-symmetry violation
appears in both a toy model and in a well-motivated unification
scheme for physics beyond the Standard Model. This potentially
opens the door to future applications of higher symmetry struc-
tures in particle physics, where zero-form symmetries of interest
are often only approximate.
In particular, we will see that the structure of the Standard

Model approximate higher flavor-hypercharge symmetry may be
modified by adding matter which is vector-like under the Stan-
dard Model gauge group (and hence potentially massive), but
chiral under the infrared flavor symmetry. Hence, the introduc-
tion of such matter allows the realization of more general unifi-
cation patterns.
However, below we show that the presence of the approximate

higher flavor symmetry implies that the mass scale of the new
vector-like matter necessarily vanishes in the limit of zero Stan-
dard Model Yukawa couplings when the flavor symmetry is re-
stored. Viewed from the ultraviolet, this means that the same in-
teractions that generate the Standard Model Yukawa couplings
also necessarily generate themasses for this newmatter. As such,
realizing ultraviolet flavor symmetry patterns beyond those clas-
sified at zero Yukawas with only the Standard Model spectrum
requires newmatter whose masses are suppressed from the uni-
fication scale by the Yukawa couplings. Thus, to the extent that
the flavor symmetries are approximately valid, that is for small
Yukawa couplings, vector-like matter modifying our conclusions
is parametrically lighter than the unification scale (see Figure 2).
Thus, while an exact flavor symmetry allows one to infer ex-

actly the flavor-chiral matter at the unification scale Λ from the
far infrared, an approximate flavor symmetry broken by a cou-
pling y implies one must understand the spectrum from the in-
frared up to a scale ∼ yΛ before one has nailed the flavor-chiral
matter present at Λ. Nevertheless, the higher flavor structure

Figure 2. Symmetry-breaking scales in the Standard Model with approxi-
mate flavor symmetry f broken by a Yukawa yf . To the extent that the flavor
symmetry is approximate, its higher-group structure may be modified by
vector-like matter which lies parametrically below the unification scale.

is restrictive, and even with approximate flavor symmetries still
tightly constrains the overall patterns of unification of the Stan-
dard Model fermions.
In the following, we briefly review relevant aspects of general-

ized global symmetries. We then present a simple analysis in a
toy model illustrating the essential logic. Finally, we apply these
ideas to the Standard Model and illustrate the conclusion in vari-
ous well-knownmodels where hypercharge emerges from a non-
abelian group.

2. Generalized Symmetries and Emergence Scales

Let us review the basic concepts of generalized global symmetries
which will feature in our analysis.
Standard continuous global symmetries are encoded in quan-

tum field theory by the presence of currents J𝜇(x) which are con-
served at separated points in correlation functions. Such currents
imply familiar selection rules on scattering amplitudes. In mod-
ern parlance, these familiar currents generate zero-form symme-
tries. They act on local, 0D (point-like) operators such as the
gauge invariant composites of fields in a Lagrangian, or equiv-
alently on the particles created by such operators.
Continuous higher-form global symmetry is similarly charac-

terized by conserved currents, but as compared to the case above
these currents carry additional spacetime indices.[1] In our appli-
cation we will be focused in particular on one-form global sym-
metries. The associated currents are then local operators J𝜇𝜈(x)
which are antisymmetric in their spacetime indices and obey a
conservation equation 𝜕𝜇J𝜇𝜈(x) = 0.We note also that unlike ordi-
nary symmetries which may be abelian or nonabelian, one-form
symmetries are necessarily abelian.
The paradigmatic example of one-form symmetry occurs in

free Maxwell theory, that is, U(1)g gauge theory without charged
matter. In this simple theory, the equation of motion and the
Bianchi identity may be viewed as conservation equations for two
distinct one-form symmetry currents conventionally referred to
as electric (E), and magnetic (M)

JE
𝜇𝜈

∼ 1
e2
F𝜇𝜈 , JM

𝜇𝜈
∼ 𝜀𝜇𝜈𝜌𝜎F

𝜌𝜎 (2)
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Unlike ordinary symmetries, these one-form symmetries do not
act on local operators. Instead their charges are computed by sur-
face integrals, the simplest of which are localized in a fixed time
slice. In this case the charges are reduced to familiar Gaussian
surface integrals:

QE(Σ) ∼ ∫Σ
E ⋅ dS , QM(Σ) ∼ ∫Σ

B ⋅ dS (3)

The field configurations which activate these one-form symme-
try charges are those of infinitely massive source particles carry-
ing definite electric and magnetic charges. Viewed in spacetime
such sources trace out worldlines defining line operators in the
field theory which are thus the natural objects charged under one-
form symmetry. In Maxwell theory, these are electrically charged
Wilson lines, and magnetically charged ’t Hooft lines.
Let us now turn to symmetry breaking. Since all local opera-

tors are neutral under one-form symmetries we cannot violate
the conservation of Equation (2) by adding local operators to the
Lagrangian.[18,38] Instead the symmetries are violated when the
higher-form current conservation is fundamentally broken by al-
tering the degrees of freedom. In familiar weakly-coupled gauge
theories this leads to the following possibilities:

• The electric one-form symmetry current 1
e2
F𝜇𝜈 is violated when

there is finite mass electrically charged matter. This is because
such matter fields may screen the electric charges of Wilson
lines.[39]

• The magnetic one-form symmetry 𝜀𝜇𝜈𝜌𝜎F
𝜌𝜎 can similarly be

broken by the presence of finite mass magnetic monopoles, or
relatedly by realizing the abelian gauge field via higgsing from
a semi-simple gauge group (i.e., a gauge group with no U(1)
factors) nomatter how heavy its physicalmonopoles are. In the
following, we letΦ denote such a generic Higgs field andΛ the
scale of its expectation value. Above the scale Λ it is clear that
there are no gauge invariant two-form operators satisfying the
Bianchi identity and hence the magnetic one-form symmetry
is violated.

In practice, we will be interested in abelian gauge theories with
charged matter. In this case, the electric one-form symmetry
is broken, but the magnetic one-form symmetry remains. In
particular, in the context of the Standard Model, the abelian
hypercharge gauge group generates a magnetic one-form global
symmetry. From the discussion above, in UV completions of the
Standard Model this one-form symmetry is typically accidental,
and is broken at a unification scale Λ where U(1)Y is embedded
into a nonabelian group.

2.1. Higher Groups and the Emergence Theorem

In general, we may consider models with both zero-form and
one-form symmetry, and it is natural to ask about their possible
interplay. Two broad phenomena have been recently investigated.
Non-Invertible Symmetry:[40,41] This structure arises in particu-

lar when there are non-trivial triangle anomaly coefficients with
vertices gauge–gauge-flavor. (Note that such a non-zero triangle is
possible only for abelian flavor symmetries.)When the gauge ver-
tices are nonabelian this anomaly breaks the flavor symmetry in

question through instanton processes. When the gauge vertices
are abelian the symmetry is not violated, but instead its charges
form a non-trivial algebra with those defined in Equation (3) char-
acterizing the one-form symmetry.[8,9]

Such non-invertible symmetries arise in the limit of the Stan-
dard Model with vanishing Yukawa couplings where the flavor
symmetry U(1)ū−d̄+ē acting by phase rotations on the indicated
Standard-Model fields (see Table 6) is intertwined with the one-
form magnetic hypercharge symmetry.[8,42] More generally, such
non-invertible symmetries are a generic feature of models of Z′

gauge bosons.[12] These symmetries, while fascinating, are not
our focus in the present work.
Two-Group Symmetry:[4,6,7] This structure arises when there

are non-trivial triangle anomaly coefficients with vertices gauge-
flavor–flavor. (Note that such a non-zero triangle is possible only
for abelian gauge vertices.) In general, we denote the quantized
triangle coefficient by 𝜅 ∈ ℤ. For an abelian gauge theory with
left-handed Weyl fermions of gauge charge qg and U(1)f flavor
charges qf , we have

𝜅 =
∑
Weyls

qgq
2
f ∈ ℤ (4)

More generally for a nonabelian flavor symmetry, the q2f term is
replaced by a quadratic Casimir. We also note that such triangle
coefficients are insensitive to the sign of qf (in the nonabelian
case, this means they are invariant under complex conjugation,
i.e., changing fundamentals to anti-fundamentals).
When 𝜅 ≠ 0 one says there is two-group global symmetry. In

this case the flavor symmetry is still present in the theory, that
is the current J𝜇(x) is conserved at separated points in correla-
tion functions and its associated conserved charges organize the
Hilbert space into representations. However, there is a non-trivial
current algebra involving the ordinary flavor currents and the
magnetic one-form symmetry current.[6] For instance, the mag-
netic one-form symmetry current appears as a contact term in
the operator product expansion of the ordinary currents J𝜇(x):

𝜕𝜇J𝜇(x) ⋅ J𝜈(y) ∼ 𝜅 𝜕𝜆𝛿(x − y)𝜀𝜆𝜈𝜌𝜎F
𝜌𝜎(y) (5)

This equation is reminiscent of anomalous Ward-identities, but
with the crucial difference that the right-hand side of the above
is a non-trivial operator in the theory.[6,43]

Crucial to us is the following observation of ref. [6] which is
manifest in Equation (5): when 𝜅 is non-vanishing the opera-
tor algebra containing the ordinary flavor symmetry currents also
contains the magnetic one-form symmetry current. Thus, when-
ever the ordinary flavor symmetries are present, and 𝜅 is non-
zero, the magnetic one-form symmetry current (i.e., the abelian
gauge field strength) is also necessarily part of the local opera-
tor spectrum.
In this way the two-group current algebra is analogous to a

nonabelian symmetry though formed out of currents of different
spin, and where 𝜅 plays the role of the structure constant. More-
over, as in that context the coefficient 𝜅 ∈ ℤ is quantized and
hence cannot change continuously under renormalization group
flow, nor any other deformation of the theory that preserves the
flavor symmetry.
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These observations lead directly to the two-group emergence
theorem established in ref. [6] and further applied in refs. [7, 14,
15] which directly constrains allowed patterns of two-group sym-
metry breaking. In a two-group with non-zero 𝜅, the zero-form
currents do not close under the operator product. Therefore, for
non-zero 𝜅 breaking the one-form symmetry without breaking
the zero-form symmetry is impossible. With an eye toward later
applications we state a version of this theorem as follows:
Consider any effective field theory with an abelian gauge field U(1)g

and a flavor symmetry f with a non-zero flavor–flavor–gauge triangle
coefficient 𝜅. Then any ultraviolet where U(1)g emerges via higgsing
from a semi-simple group necessarily breaks the flavor symmetry f at
energy scales no greater than the higgsing scale Λ.
More bluntly, unification of U(1)g into a nonabelian group

where U(1)g is realized as a traceless generator is incompatible
with the flavor symmetry with non-zero flavor-flavor-gauge trian-
gle coefficient 𝜅. This establishes the inequality of scales stated in
Equation (1). Physically, if the flavor symmetry currents can turn
on a one-form symmetry current, these flavor symmetries can-
not be present above the scale at which the one-form symmetry
is broken by the nonabelian gauge dynamics.
Thus far we have reviewed the analysis of ref. [6] which uti-

lized exact flavor symmetry. In our application we are interested
in generalizing these ideas to situations where the flavor sym-
metry is broken explicitly by interactions in the Lagrangian, as in
the Standard Model. We can take into account flavor symmetry
breaking effects using the following essential logic.
Consider any effective field theory IR with an abelian gauge

field U(1)g . We let y denote a dimensionless coupling such that
when y → 0 a flavor symmetry f is restored. To indicate the de-
pendence on y, we refer to the theory as IR(y). In this situation
the parameter y is a spurion for the flavor symmetry, though
presently we will see that it is often fruitful to view it as a spu-
rion of a two-group.
The effective field theory in question is the low energy limit of

an ultraviolet (UV) theory which is also necessarily a function of
the parameter y. We denote this theory as UV(y). Hence under
the renormalization group:

RG : UV(y) ←→ IR(y) (6)

We assume that in UV(y) the magnetic one-form symmetry aris-
ing from U(1)g is broken. (For example this occurs if the abelian
gauge group arises from higgsing a nonabelian group with no
U(1) factors.) By IR(y) we thus mean the effective field theory
describing all degrees of freedom below the one-form symmetry
emergence scale (e.g., the higgsing scale) Λ.
We ask whether in the limit y → 0 the UV theory UV(y)|y=0

can also enjoy the flavor symmetry f . This is in principle possible
since the infrared(IR) theory IR(y)|y=0 indeed has the flavor sym-
metry. According to the two-group emergence theorem of ref. [6]
referenced above, this is only possible if in the theory IR(y)|y=0,
the flavor–flavor–gauge triangle coefficient 𝜅 vanishes.
Note that the parameter y may control the masses of many

fields. The flavor–flavor-gauge triangle coefficient receives contri-
butions from all fields which becomemassless in the limit y → 0.
These include for instance massless fermions, and also Gold-
stone bosons which may carry Wess–Zumino terms.[44,45] When
y ≠ 0 these fields contributing to 𝜅may have a variety of different

Table 1. Infrared vector-like abelian gauge theory.

U(1)g SU(Nf )L SU(Nf )R

𝜒+ +1 □ –

𝜒− −1 – □

mass scales, but all must necessarily vanish when y → 0. At non-
zero y we can thus partition the degrees of freedom contributing
to 𝜅 as follows:

• Massless degrees of freedom in IR(y). We denote their contri-
bution to 𝜅 as 𝜅0.

• A sequence of massive degrees of freedom whose masses are
y𝛼imi, where 𝛼i > 0 and mi is a mass scale. We denote each of
their contributions as 𝜅i.

By definition we then have the following sum rule:

𝜅 = 𝜅0 +
∑
i

𝜅i (7)

and the ultraviolet UV(y) can only restore the flavor symmetry
when y = 0 if the sum above vanishes.
As a corollary of these ideas we note that if 𝜅0 ≠ 0 and no addi-

tional degrees of freedom appear below the scale Λ, then UV(y)
cannot enjoy the flavor symmetry f even in the limit y → 0. Con-
versely if UV(y)|y=0 does have the flavor symmetry f and 𝜅0 ≠ 0
then there are necessarily new degrees of freedom below the UV
scale Λ which contribute non-zero 𝜅i in Equation (7) and whose
masses are parametrically suppressed by a positive power of y.
In particular, in this scenario, the same ultraviolet coupling that
violates the flavor symmetry also generates the masses for the
additional degrees of freedom.
In practice, we can apply this argument to constrain the possi-

blemaximal flavor symmetry of UV completions UV(y) of a given
IR theory IR(y). In a gauge theory, this maximal flavor symmetry
is determined by the multiplet structure of the matter and thus
constrains unification patterns. We illustrate this below in a toy
example before applying it directly to the Standard Model.

2.2. A Toy Model

As a warm-up, we wish to study a simple toy model which, while
not containing the richness of the Standard Model, allows us to
exhibit cleanly the basic implications of the two-group structure
and the sense in which flavor-violating couplings are spurions for
the higher-group. The simplicity means that some of the conclu-
sions at which we arrive one could have easily guessed, but the
conclusions below when applied to the Standard Model will be
less obvious.
We consider a vector-like infrared U(1)g abelian gauge the-

ory with Nf pairs of massless fermions 𝜒+
i ,𝜒

−
i which enjoy sep-

arate nonabelian flavor symmetries SU(Nf )L,R, as displayed in
Table 1. Both of these flavor symmetries have nonzero gauge-
global–global anomalies with U(1)g , listed in Table 2, so as first
analyzed in ref. [6], participate in a two-group symmetry.
Now let us try to “UV complete” this U(1)g gauge theory

into a nonabelian SU(2)g gauge theory. Following the emergence
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Table 2. Gauge–global–global anomalies of the toy model.

Flavor2 U(1)g

SU(Nf )
2
L +1

SU(Nf )
2
R −1

Table 3. UV completion of toy model with exact flavor symmetry.

SU(2)g SU(Nf )

𝜒i = (𝜒+
i ,𝜒

−
i ) □ □

theorem above, the separate flavor symmetries of 𝜒+ and 𝜒− can-
not be good UV flavor symmetries. However, the diagonal sub-
group thereof in which both 𝜒+ and 𝜒− transform as fundamen-
tals is not part of the two-group, so may be a good UV symmetry.
Indeed, this guides us to the obvious UV completion in which

(𝜒+
i ,𝜒

−
i ) are embedded in a single SU(2)g fundamental as in

Table 3.[46,47] This UV theory has a single SU(Nf ) flavor sym-
metry, and upon higgsing SU(2)g → U(1)g by a triplet scalar Φ
this returns to the diagonal flavor symmetry of the infrared. The
separate SU(Nf )L, SU(Nf )R symmetries emerge below the scale

⟨Φ⟩ = Λ at which the UV gauge group breaks and the U(1)(1)g
magnetic one-form symmetry likewise emerges.
With this matter content, the massless theory in the infrared

has exact two-group symmetry, and the unification in Table 3
gives the maximal possible flavor symmetry consistent with the
two-group emergence theorem reviewed in Section 2.1.
Now instead of considering the massless theory, we turn on

gauge-invariant masses in the infrared:

 ⊃ yijm𝜒
+i𝜒−j (8)

This explicitly violates the separate SU(Nf )L × SU(Nf )R symme-
tries, and the only remaining global symmetries are separateU(1)
symmetries acting “axially” on each 𝜒+

i and 𝜒−
i as is obvious in

the mass basis. While the SU(Nf ) symmetries are now only ap-
proximate, having been broken explicitly by the masses, we can
still perform the same two-group analysis as above. Againwemay
be led to the familiar UV completion, with the flavor symmetry
now also approximate in the UV as from a Yukawa coupling

 ⊃ yijΦab𝜒 i
a𝜒

j
b (9)

where a, b are SU(2)g indices and i, j flavor indices.
However, now that the higher-group symmetry is only approxi-

mate, wemust take into account the possibility of additional mat-
ter becoming light in the limit yij → 0 and modifying the two-
group structure constants.
Indeed, we may instead have a UV theory containing addi-

tional fermions where 𝜒+
i and 𝜒

−
i now appear in different SU(2)g

multiplets in the UV, as in Table 4. We can then write down a
Yukawa interaction in the UV:

 ⊃ yj iΦ
ab𝜌ia𝜂jb (10)

Table 4.UV completion of toy model with approximate infrared flavor sym-
metry.

SU(2)g SU(Nf )

𝜌i = (𝜒+i ,𝜓−i) □ □

𝜂i = (𝜓+
i ,𝜒

−
i ) □ □

Table 5. Infrared vector-like abelian gauge theory with new matter.

U(1)g SU(Nf )L SU(Nf )R

𝜒+ +1 □ –

𝜒− −1 – □

𝜓+ +1 □ –

𝜓− −1 – □

This Yukawa coupling yj i is a spurion for SU(Nf ) symmetry-
breaking. After higgsing SU(2)g → U(1)g , we find mass terms
and Yukawa interactions

 ⊃ yjiΛ
(
𝜒+i𝜒−

j + 𝜓+i𝜓−
j

)
+ yji𝜙

(
𝜒+i𝜒−

j + 𝜓+i𝜓−
j

)
(11)

which describe the IR theory of Table 5 (together with a neutral
scalar 𝜙). Now with respect to our original theory, this UV com-
pletion preserves, at least approximately, the axial subgroup of
the SU(Nf )L × SU(Nf )R symmetry of the 𝜒+,𝜒− fields, in which
𝜒+ transforms as a fundamental and 𝜒− as an antifundmental.
This is in contrast to the prior UV completion, which by plac-
ing the two into the same UVmultiplet preserved the exact vector
subgroup of the massless infrared theory.
We see that we have been able to achieve this by adding in-

frared matter which is vector-like under the gauge symmetry and
chiral under the separate SU(Nf )L, SU(Nf )R symmetries. This
also clarifies the sense in which the infrared Yukawas which ex-
plicitly violate the would-be flavor symmetries are spurions for
the breaking of the two-group structure. Including additional
matter which is chiral under the flavor symmetries does not hap-
pen at arbitrarily large scales, despite the fact that these newfields
have vector-like gauge charges.
The analysis of Section 2.1 of approximate two-group symme-

try tells us that this is in fact a universal feature. In the limit
yij → 0 the full SU(Nf )L × SU(Nf )R flavor symmetry is restored
and the two-group analysis robustly shows that 𝜒+, and 𝜒− can-
not be placed into the same UV multiplet consistently with this
flavor symmetry. Hence the masses of the partner species 𝜓±

must also vanish in this limit, so that our analysis of the infrared
flavor symmetries and two-group structure constants are modi-
fied by them.
In this example we see the proportionality of the vector-like

partners’ masses to the original species quite directly, because
our infrared spectrum is also vector-like. Then the new species
have just the same masses as the ones we started out knowing
about. However, this is the sense in which this toy model does
not contain the richness of the Standard Model, and we will see
a more interesting version of this below.
As particle physicists we know now the entire spectrum of

species which are chiral under the Standard Model gauge group,
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Table 6. Representations of the Standard Model Weyl fermions under the
classical gauge and global symmetries. We normalize each U(1) so the
least-charged particle has unit charge. We list also the charges of the right-
handed neutrino N and the Higgs boson H.

Qi ui di Li ei Ni H

SU(3)C 3 3 3 – – – –

SU(2)L 2 – – 2 – – 2

U(1)Y +1 −4 +2 −3 +6 – −3

U(1)B +1 −1 −1 – – – –

U(1)L – – – +1 −1 −1 –

and so get mass only after electroweak symmetry-breaking. The
same phenomenon of new vector-like matter which contributes
to the chiral flavor symmetries may occur in models of Standard
Model unification, but in a far more interesting fashion. Vector-
like matter under the Standard Model gauge group will gener-
ically get masses at the grand unified theory (GUT) scale. Yet
because the Standard Model Yukawas are spurions of two-group
symmetry breaking we will see by the same argument that such
species which participate in Standard Model flavor symmetries
must instead appear at the (potentially much lower) scale y𝛼Λ
with Λ the GUT scale and y a Standard Model Yukawa coupling.
We exhibit an explicit example of this in Section 4.2 below.

3. The Standard Model

3.1. Flavor Symmetry

By “flavor symmetry of the Standard Model” we will mean a
global symmetry of the matter content—not necessarily one
which relates different generations of fermions. That is, a sin-
gle free, massless Weyl fermion 𝜓 enjoys a classical U(1) “fla-
vor” symmetry, 𝜓 → ei𝛼𝜓 . A single multiplet of Weyl fermions
in a gauge theory without additional interactions continues to
enjoy such a flavor symmetry, and we recall the Standard Model
gauge structure in Table 6, where we label the identical copies of
each species i = 1, 2, 3, with Ng = 3 the number of generations
in the Standard Model. Having this multiplicity of each species
upgrades theU(1) symmetry of a single fermion into aU(3) sym-
metry acting on the fermions of a given species which allows ar-
bitrary unitary rotations among them. The gauge theory does not
distinguish between fermions with the same gauge charges.
At this level the Standard Model fields enjoy a large classical

U(3)5 flavor symmetry, but to get to the Standard Model we must
turn on the Yukawa interactions,

 ⊃ yuijH̃Qiūj + ydijHQid̄j + yeijHLiēj (12)

whose couplings carry the spurion assignments of Table 7. These
Yukawas break the classical flavor symmetry explicitly to

U(1)Le ×U(1)L𝜇 ×U(1)L𝜏 ×
U(1)B
ℤ3

(13)

Here Li are the individual lepton flavor numbers which exist in
the Standard Model with massless neutrinos, and the ℤ3 quo-

Table 7. Traditional zero-form flavor symmetry spurion analysis of the Stan-
dard Model Yukawas.

yu yd ye

U(3)Q □ □ –

U(3)u □ – –

U(3)d – □ –

U(3)L – – □

U(3)e – – □

Table 8. Gauge-global–global triangle coefficients of Standard Model with
Yukawas turned off. We note the U(1) part of each flavor symmetry shares
the same such coefficients with hypercharge with an additional factor of
Ng coefficient, as they have arisen from U(3) ≃ (SU(3) × U(1))∕ℤ3.

Flavor2 U(1)Y

SU(3)2Q +1 ⋅ 2 ⋅Nc

SU(3)2u −4 ⋅Nc

SU(3)2
d

+2 ⋅Nc

SU(3)2L −3 ⋅ 2

SU(3)2e +6

tient accounts for the overlap of baryon number with the center
of SU(3)C.

[48]

The nonzero Yukawa couplings of the Standard Model break
the separate flavor symmetries of each species down to down to a
small diagonal subgroup. Nonetheless, as in the toymodel above,
understanding the higher group structure of the Standard Model
flavor symmetries tightly constrains the patterns of unification.
And we will see that, as in the toy model above, the presence of
symmetry-violation will lead to interesting additional possibili-
ties for unification.

3.2. Flavor-Hypercharge Two-Group

As discussed above, triangle diagrams with gauge-global–global
legs carry powerful information, despite that they do not lead to
violation of the global symmetries around the vacuum. In the
Standard Model itself there are such nonvanishing triangle coef-
ficients between the flavor symmetries and U(1)Y hypercharge.
We focus on the SU(3)f subgroups of the flavor symmetries and

list these anomaly coefficients 𝜅(i)0 in Table 8 computed elemen-
tarily through Equation (4).
From these coefficients, we see that each individual Stan-

dard Model species’ flavor symmetry is part of the two-group
symmetry.[49,50] The two-group emergence theorem then tells us
that any of these zero-form symmetries whose currents could ac-
tivate a magnetic one-form symmetry current, as in Equation (5)
must only be a good symmetry below the scale at which the hyper-
charge magnetic one-form symmetry itself becomes a good sym-
metry.
A first statement is then that, contrary to the freedom one of-

ten expects in model-building, there is no UV completion of the
Standard Model without Yukawa couplings where hypercharge
is embedded as, say, U(1)Y ⊂ SU(N)Y and each Standard Model
species keeps its own flavor symmetry in the UV theory. This
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Table 9. Flavor subgroups not participating in the two-group with U(1)(1)Y ,
indexed by how many fermion species they act on.

One None

Two {L,Q} {L, d̄} {L, ē}

Three {ū, d̄, ē} {ū, ē, Q} {ū, d̄, Q}

Four None

Five {Q, ū, d̄, L, ē}

simply cannot be accomplished with only the Standard Model
spectrum of chiral fermions without turning on Yukawa inter-
actions and allowing additional vector-like matter, as in the toy
model above. To keep the charged leptons in their own multi-
plets in such a UV theory would require, for example, vector-like
leptons to appear at ∼ y𝓁Λ≪ Λ.
Thankfully, such complications need not appear in every unifi-

cation scheme, as from Table 8 one observes that the coefficients
for Standard Model fields are anything but random, all falling in
𝜅i = {−12,−6, 6}. Correspondingly, this means that if we exam-
ine diagonal subgroups of multiple species’ flavor symmetries,
there are subgroups which are not part of the two-group with hy-
percharge. We count these in Table 9 by the number of factors
involved. It is these subgroups which may be good symmetries
of a UV theory of unification, and in the next section we will ex-
hibit that they are realized in familiar GUTs. While much has
been written on the topic of searching for exotic GUTs (e.g., refs.
[51–62] as a small sample), our analysis via UV flavor symmetries
provides a novel organizing principle.
Our main focus below will be on classic “vertical” unification

schemes where the UV theory continues to have three identical
generations, and flavor remains as a global symmetry, by virtue
of our focus on the SU(Ng )f nonabelian flavor subgroups. But
it would be useful to connect to interesting recent work on fla-
vor non-universal unification for example, refs. [63–67]. It is pos-
sible to extend the analysis to more general cases by consider-
ing the gauge-global-global anomalies of U(1) subgroups which
are flavor non-universal. Noting that a U(1) acting on a single
fermion has the same anomaly coefficient as in Table 8, there
are then many options for novel unification schemes which one
may read off—for example it is allowed to unify the right-handed
fermions into the patterns {ū1, ē1, ē2}, {ū2, d̄1, d̄2} and {ū3, d̄3, ē3}.
But finding a UV theory which intertwines flavor with the Stan-
dard Model gauge group in such a way to embed the fermions in
these multiplets is a challenge we leave to future study.
Similarly, we need not have imagined restoring the full flavor

symmetries with yeij, y
d
ij, y

u
ij → 0. For example we could study by it-

self the theory with massless leptons yeij → 0, or keep the third
generation massive and consider the flavor symmetries of the
first two massless generations.

4. Unification and the Two-Group

4.1. Unification Patterns in Well-Known GUTs

How can we understand the structure of flavor symmetries in
Table 9, and what does it tell us? With only the Standard Model
fermions, any subgroup not in this list—any subgroup which is

part of the two-group in the IR—must be an emergent accidental
symmetry below the scale at which U(1)Y is unified into a group
with no magnetic one-form symmetry. It is only the subgroups
in this list that may be good UV symmetries. We note again that
the gauge-global–global anomaly (Equation (4)) does not distin-
guish between diagonal subgroups which place different species
in fundamentals versus antifundamentals. That is, two fermions
may share the same flavor symmetry in the UV either because
they are unified in the same multiplet, or because a Yukawa in-
teraction ties together their possible symmetry transformations.
The top line of Table 9 is what we said above: a rotation of one

species of fermion independently of any of the others is involved
in the two-group withU(1)Y . Any UV completion of hypercharge
will invariably break flavor symmetries. The fourth row has the
same information and is dual because of the fifth row. The cubic
hypercharge anomaly with gravity counts the number of all the
degrees of freedomweighted by their hypercharges, and vanishes
in the Standard Model:

U(1)Y × grav2 =
∑

species i

giYi = 0 (14)

This is the same counting as for the gauge-global–global coeffi-
cient of the fully diagonal flavor subgroup rotating all fermions,
so this subgroup does not participate in the two-group with hy-
percharge. Then subgroups which are not part of the two-group
partition the fermions—that is, for 𝔤 a subset of Standard Model
fermions,

∑
i∈𝔤

Yi = 0 ⇒
∑
i∉𝔤

Yi = 0 (15)

so the nth line and (5 − n)th line contain the same information.
In particular, the vanishing gravitational anomaly ensures that
we can have a UV theory where simultaneous rotations of all
fermions is a UV symmetry because they are all in the same
representation—this is what happens in the celebrated SO(10)
grand unified theory,[68]

SO(10) : 𝜓16 = {Q, ū, d̄, L, ē, N} (16)

where the Standard Model fermions are unified along with the
right-handed neutrinos into the 16D spinor representation.
Of course, it is quite special that the SO(10) representation

contains only the Standard Model fermions, and that is not gen-
erally guaranteed. Indeed, if we instead have a larger UV gauge
group such as E6, while this still realizes the option of having
all the Standard Model fermions in the same irreducible rep-
resentation (here the 27), they now come along with additional
vector-like fermions. We see also the pattern realized in Georgi–
Glashow’s[69] SU(5) ⊂ SO(10) as the middle column[70]

SU(5) : 𝜓5̄ = {L, d̄} , 𝜓10 = {ū, ē, Q} (17)

Turning to the other options of placing the Standard Model
fermions into two irreducible representations in the UV, the van-
ishing of the cubic anomaly U(1)Y × SU(2)2L also guarantees a
partitioning of the degrees of freedom by their SU(2)L charges.
Wemay unify {Q, L} and separately {ū, d̄, ē, N}, as neither of these
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subgroups participates in the two-group with hypercharge. This
is realized in the Pati–Salam model[71]

GPS ≡ SU(4)C × SU(2)L × SU(2)R (18)

where SU(2)L is untouched and the “left-handed” and “right-
handed” fermions are unified separately

𝜓L = (4, 2, 1) = {Q, L} , 𝜓R = (4̄, 1, 2) = {ū, d̄, ē, N} . (19)

GPS is also a subgroup of SO(10), places leptons as the “fourth
color” of quarks from SU(4)C → SU(3)C ×U(1)B−NcL

, and mani-
fests explicit left-right symmetry.

4.2. Quark–Lepton Disunification

By the same logic with which we identified the pattern of Pati–
Salam, the vanishing cubic anomaly U(1)Y × SU(3)2C tells us
there may exist a UV flavor symmetry which acts together on the
colored Standard Model species {Q, ū, d̄} and separately on the
uncolored ones {L, ē, N}.
Such a unification pattern is particularly interesting from the

perspective of not having yet observed proton decay—if quarks
and leptons are instead unified into the same gaugemultiplets in
the UV theory, then the heavy vector bosons of the broken direc-
tions are necessarily leptoquarks which destabilize the proton in
the infrared. This is the only possible unification pattern which
keeps separate the quarks and leptons and so can preserve the
proton stability of the StandardModel,[72,73] so the stakes are high
for properly understanding how this pattern of unification may
be realized.
However, this pattern is not realized in any theories of unifi-

cation containing solely the Standard Model species, as checked
exhaustively in ref. [63]. Nonetheless, this UV pattern of flavor
symmetries is realized nontrivially in trinification,[74] which is a
product group unification with

G33 ≡ SU(3)C × SU(3)L × SU(3)R (20)

and the fermions contained in

𝜓Q = (3, 3̄, 1) , 𝜓Q̄ = (3̄, 1, 3) , 𝜓L = (1, 3, 3̄) (21)

The quarks in this scheme are split between the left-handed ones
in 𝜓Q and the right-handed ones in 𝜓Q̄ . Yet Table 9 does not
seem to allow {Q}, {ū, d̄}, {L, ē, N}. Indeed, the trinification the-
ory with no Yukawa couplings does not lead to the infrared Stan-
dard Model flavor symmetry, in accordance with the demands of
the two-group structure. Yet trinification theories can reproduce
the real StandardModel with its broken flavor symmetries (for re-
cent work thereon see e.g., refs. [75–80]) in much the same man-
ner as we saw in the toy model above.
Approaching the theory from the bottom-up, trinification in-

troduces to the Standard Model chiral matter content an addi-
tional vector-like down quark {d′, d̄′}. Then there are additional
flavor subgroups in the Standard Model + {d′, d̄′} which do not
participate in the two-group with hypercharge. Namely, those fla-
vor transformations under which the “left-handed” d′ transform

the same way as the Q flavor multiplet and the “right-handed”
d̄′ transform as the ū, d̄ flavor multiplets. These expanded fla-
vor symmetries may then be good symmetries in the UV, and
indeed they match onto the separate U(1) flavor symmetries of
𝜓Q = {Q, d′} and 𝜓Q̄ = {ū, d̄, d̄′}. But the theory with these ex-
act flavor symmetries does not produce the Standard Model at
low energies.
Trinification is allowed as a viable unification scheme specifi-

cally because the Standard Model flavor symmetries are not ex-
act. Since our extra vector-like quark has been split between the
two different UV quark multiplets, we must lift the extra matter
by introducing UV couplings which explicitly violate the as-yet-
independent flavor symmetries of 𝜓Q and 𝜓Q̄ down to the diago-
nal. We may return to the Standard Model spectrum by adding a
coupling

 ⊃ yΦ𝜓Q𝜓Q̄ ⊃ yΛd′d̄′ + yH̃Qū + yHQd̄ (22)

with a field Φ whose vev ⟨Φ⟩ = Λ will break the trinification
gauge symmetry and lift the vector-like down quark which we
know is absent in the infrared StandardModel. This UV coupling
clearly brings the theory back into accord with the two-group
emergence theorem, as the only flavor symmetries preserved in
the UV now act on all {Q, ū, d̄} as we knew they must.
So trinification explicitly realizes the fact that the higher sym-

metry structuremay bemodified as a result of the zero-form sym-
metry being approximate. The Standard Model quark Yukawas
act as spurions not only for the zero-form flavor symmetry, but
also for the two-group structure, and the modification of this
structure is necessarily proportional to these Yukawas.
In fact there is a similar story for the lepton flavor symmetry,

but here involving the modification of the cubic ’t Hooft anomaly
SU(3)3 of the rotations of leptons (we include a right-handed neu-
trino as an infrared lepton for the purposes of this discussion).
The Standard Model flavor subgroup in which all of {L, ē, N}
transform as fundamentals has an anomaly of 4. Since we place
the leptons into the (1, 3, 3̄) of G33 , we must introduce additional
leptons which are vector-like under the Standard Model gauge
group to fill out this representation, 𝜓L = {L, ē, N, L′, L̄′, N′}. The
additional lepton doublet L′, its conjugate L̄′, and an extra sterile
neutrino N′ are chiral with respect to the SU(3) flavor symme-
try of 𝜓 i

L in the UV theory, so change the cubic anomaly from 4
to 9. Since the SU(3) flavor symmetry of the infrared is approx-
imate this is allowed, but it implies that their masses must be
proportional to the Standard Model Yukawas which break this
symmetry. And indeed, in trinification one adds a Yukawa cou-
pling which is bilinear in 𝜓L,

 ⊃ y′Φ′𝜓L𝜓L (23)

This lifts the extra vector-like lepton doublet and leads to seesaw
masses for the neutrinos (though only at one-loop due to addi-
tional subtleties[74,76]). Then while trinification does not modify
the two-group structure of the lepton flavor symmetries, it still
does modify their ’t Hooft anomaly structure, leading again to
vector-like leptons withmasses suppressed by a Yukawa coupling
from the unification scale.
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Table 10. Gauge-global–global anomalies of flipped SU(5).

Flavor2 U(1)𝜒

SU(3)25 −3 ⋅ 5

SU(3)210 +1 ⋅ 10

SU(3)21 +5 ⋅ 1

4.3. Unification Without Monopoles

As a final example let us consider the pattern of “flipped SU(5)”
models,[81–83] which have the structure

SU(5) ×U(1)𝜒 (24)

where the UV theory also has a one-form magnetic symmetry
which overlaps with hypercharge. The emergence theorem then
does not apply, and such theories are indeed able to mix up the
Standard Model fermions. Here the fermions are placed into

{L, ū} ∈ (5̄,−3), {Q, d̄, N} ∈ (10, 1), {ē} ∈ (1, 5) (25)

and we see the “flipping” of ē ↔ N, ū ↔ d̄ from the SU(5) multi-
plet structure.
This is allowed because the hypercharge magnetic one-form

symmetry does not itself emerge at the breaking scale, but rather
has some overlap with U(1)𝜒 . And in fact just the right overlap
for the gauge-global–global coefficients to properly match, with
the coefficients given in Table 10. In this model hypercharge is
embedded as Y∕6 = 𝜒∕5 − Z∕5, where Z is the SU(5) generator
which commutes with its SU(3)C and SU(2)L subgroups, and in-
deed with this relation the U(1)𝜒 -flavor–flavor anomalies in the
UV match those of U(1)Y in the Standard Model, as they must.
If one were drawn to UV theories in which the L and the ū ap-

pear in the same multiplet, one could attempt to construct such
models by adding additional vector-like matter and using the fact
that the Standard Model flavor symmetries are approximate. For
example by introducing some conjugate Weyl fermions {Ψ, Ψ̄} to
spread across two representations as {L, ū, ē,Ψ}, and {Q, d̄, N, Ψ̄}.
Then so long as Ψ contributes to the two-group structure con-
stants as SU(3)2ΨU(1)Y = +12 and Ψ̄ the opposite, we may search
for a UV theory with these two multiplets. Of course, in order to
return to the Standard Model in the infrared there must be a UV
Yukawa coupling y between the two such that the separate flavor
symmetries are explicitly broken in the UV back to the diagonal.
The UV theory would then realize a flavor symmetry in which all
the Standard Model species transform, though in conjugate rep-
resentations. The Standard Model fermions in the infrared have
flavor-symmetry-breaking Yukawa interactions with coupling y,
and the extra fermions get a vector-like mass yΛ whose size is
also controlled by the flavor-violating spurion.

5. Outlook

In this work we have initiated the study of the generalized global
flavor symmetries of the Standard Model by exploring the conse-
quences of their two-group structure for models of unification.
Our infrared analysis at zero Yukawa coupling uncovers the ex-
clusivity of the familiar multiplet patterns in elementary grand

unified theories, modulo the mystery of a single missing allowed
pattern with quarks and leptons each separately unified. A grand
unified theory bearing out this pattern is a model-building tar-
get of clear phenomenological interest given the lack of observed
proton decay.
While we have tackled only the simplest case of “vertical” unifi-

cation, it would be interesting to consider also the possibilities for
gauge-flavor unification where some of the horizontal symme-
tries are unified into the ultraviolet gauge group. Furthermore, a
novel feature of this work is our understanding of the Standard
Model Yukawa couplings as spurions of the higher-group struc-
ture. This provides a new organizing principle toward searching
for exotic grand unified theories, and it would be useful to more-
concretely understand the bottom-up model-building opportu-
nities. More generally, since symmetries of interest in particle
physics are often approximate, this is an important step toward
understanding what we can learn from approximate higher sym-
metry structures which appear in our theories.
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