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ABSTRACT

We present a comprehensive analysis of the mass and light distributions in cluster-scale strong

gravitational lens systems. Strong gravitational lensing is a rare phenomenon in the universe in which

massive foreground galaxies magnify and multiply-image background source galaxies into magnificent

arcs. The COOL-LAMPS collaboration (Chicago Optically-Selected Lenses Located at the Margins of

Public Surveys) has discovered and confirmed hundreds lensing systems via color-magnitude selection

and visual inspection with lens redshifts ranging from ∼ 0.2 to ∼ 1.2 in DECaLS (Dark Energy

Camera Legacy Survey) Data Release 8 images, of which 179 are analyzed here. In this work, we

compute parametric estimates of the Einstein-radius-enclosed mass and luminosity for each system

using only two measured parameters: the Einstein radius and the photometric galaxy-cluster redshift.

We find that the total-mass-to-light ratio has little correlation with the redshift of the cluster, and we

also parameterize the stellar-to-total-mass ratio as a function of physical distance in kiloparsecs from

the center of the BCG. This work will lay out a blueprint for studying larger samples of cluster-scale

strong gravitational lens candidates in upcoming imaging surveys such as Rubin/LSST (Legacy Survey

of Space and Time), in which an algorithmic treatment of lensing systems will be needed due to the

sheer volume of data these surveys will produce.

1. INTRODUCTION

Measuring mass in galaxy clusters can be done in a

variety of ways. Considering galaxies as an aggregate of

stars, stellar structure theory places strong constraints

on the observed luminosity of a star as a function of its

mass (Kuiper 1938; Wang & Zhong 2018). For a galaxy

with a uniform stellar population in which its light func-

tionally traces its mass, one can simply integrate over a

given aperture and convert the observed flux to a lumi-

nosity and on to a stellar mass measurement (Presotto

et al. 2014). Galaxies and galaxy clusters are objects

that are made of far more than just stars though (Zwicky

1933; Rubin 1986). Hot intracluster gas contributes sig-

nificantly to the total mass in galaxy clusters, and this

gas radiates strongly in the x-ray as a function of its tem-

perature (e.g., Kellogg et al. 1972; Forman et al. 1972).

X-ray observatories, like the Chandra X-ray Observa-

tory, are able to make direct observations of this x-ray

emission and thus infer the mass of the gas in addition

to previous methods of characterizing stellar mass (e.g.,
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Markevitch & Vikhlinin 2007). More than just gas and

stars, galaxies and galaxy clusters are complex objects

that also incorporate dark matter halos in their overall

structure at a typical factor many times greater than

the amount of baryonic matter contained in any single

galaxy (Navarro et al. 1996; Hradecky et al. 2000). How-

ever, since astronomers and physicists have yet to link

the presence of dark matter to any physical observable,

quantifying the amount of dark matter in a given system

is only indirectly possible. Galaxy clusters are generally

virialized systems, and one can obtain a mass estimate

for a given galaxy or galaxy cluster by simply measur-

ing the velocity dispersion of cluster galaxies along the

line of sight in addition to the virial radius of the indi-

vidual cluster (Bryan & Norman 1998). However, this

measurement assumes a state of dynamical equilibrium

for each cluster, which may not apply in the case of re-

cent mergers (e.g., Lourenço et al. 2020), for example.

All three of these measurements are beneficial in their

own way, but each relies on some underlying assump-

tion regarding the state of the system at hand in order

to measure mass. This is where we turn to gravitational

lensing for help.

Gravitational lensing is a phenomena where mass in

the universe causes the path of light rays which pass
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Figure 1. A descriptive visualization of the simplest case
of gravitational lensing adapted from Levine (2022) with an
object at position A being lensed by lens L causing the ob-
server at position C to view it at position B. Note the an-
gle θ as the Einstein radius which characterizes the angular
separation between the lensed image at position B and the
line-of-sight from the observer to lens L.

near said mass to bend as a result of general relativity

(Einstein 1936). The visualization of lensing in Figure

1 obeys Equations (1) and (2).

β⃗ = θ⃗ − α⃗(θ⃗) (1)

α⃗(θ⃗) =
DLS(zL, zS)

DS(zS)
⃗̂α(θ⃗) (2)

While, technically, all mass in the universe causes

some degree of gravitational lensing and obeys Equa-

tions (1) and (2), only objects in the universe with the

highest projected surface mass density, such as galax-

ies and galaxy clusters, are capable of producing multi-

ple images of background sources (Shajib et al. 2022).

The visible effect of lensing by galaxies and galaxy clus-

ters, henceforth referred to as “strong” lensing, creates

highly distorted, magnified, and multiply-imaged images

of galaxies that are located behind the lens relative to

the observer typically in an arclike shape (e.g., Gunn

et al. 1979; Rivera-Thorsen et al. 2017; Napier et al.

2023). Galaxy clusters produce the strongest lensing

effect and are the best “natural telescopes” in the uni-

verse (Lotz et al. 2017). This allows us to peer into the

high-redshift universe at angular resolutions that would

be impossible to achieve with any observational facility

currently available. As derived in Remolina González

et al. (2020), the mass of many different individual grav-

itational lens systems are able to be algorithmically con-

strained knowing the angle θ between the brightest clus-

ter galaxy (BCG) and lensed source arc, which is the

Einstein radius described in Figure 1, the redshift of

the lens (lensing galaxy), and the redshift of the source

(lensed background galaxy). This allows one to quickly

estimate the core mass interior to the Einstein radius of

a galaxy cluster with minimal scatter on order of ≈ 10%

using Equations (3) and (4).

Σcr(zL, zS) =
c2

4πG
× DS(zS)

DL(zL)DLS(zL, zS)
(3)

M(< θE) = Σcr(zL, zS)× π(DL(zL)θE)
2 (4)

Since Equations (3) and (4) are agnostic of the distri-

bution of mass within the Einstein radius itself, it offers

a simple, efficient, and powerful tool to measure mass

at high density scales provided the lensing geometry is

simple enough to be described by a single, roughly cir-

cular projected mass distribution. This method allows

one to measure the mass of galaxies at a higher den-

sity scale and correspondingly smaller radii than typical

mass measurements of M200 or M500. Here, 200 and 500

refer to the radius from the BCG at which the mean den-

sity of the cluster is 200 or 500 times the mean density

of the universe respectively (White 2001).

While mass is an important metric to consider even

by itself, the scientific value of this measurement can be

amplified greatly by measuring luminosity from an ob-

served flux in addition to mass. Constraining light al-

lows us to directly measure the total-mass-to-light ratio

of galaxy clusters in addition to measuring the stellar-

to-total-mass ratio. Both of these parameters are im-

portant for testing cosmological simulations, as the evo-

lution of how these parameters behave over a wide range

of distance scales and redshifts is informed by underly-

ing cosmological parameters that created the simulation

in the first place.

Throughout this paper, we adopt a flat ΛCDM cos-

mology with Ωm = 0.3, ΩΛ = 0.7, and H0 =

70 km/s/Mpc. All photometric calculations were done

using the AB magnitude system using the grz filters on

the Dark Energy Camera (DECam, Honscheid & DePoy

2008).

2. MEASUREMENT

We begin by collating a sample of galaxy clusters

and groups that exhibit visual evidence of strong grav-

itational lensing. Leveraging a large number of inves-

tigators with a wide variety of experience levels, the

COOL-LAMPS collaboration has found hundreds of new

strong-lensing galaxy clusters located in public imag-

ing surveys primarily through direct visual inspection of

Legacy Survey Data Release 8 DECaLS (Dey et al. 2019)

images. Since the measurement described in Remolina

González et al. (2020) works best when the tangentially

lensed arcs trace out some portion of an ring with radius

equal to the Einstein radius centered on the BCG, the

most suitable clusters for this analysis are ones where the

most obvious lensed arc is a roughly circular arc with
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projected center located at or very near to the BCG.

179 strong-lensing systems were selected from COOL-

LAMPS data archives based on this ranking, since any

systems with complex morphology are less likely to be

well described by this simple model. A collage to visu-

alize the kinds of clusters and lenses considered in this

work is shown in Figure 2.

Figure 2. A sample of 9 strong gravitational lenses used
in this work. Note the presence of a visually-obvious
tangentially-lensed source-galaxy arc in all of the images.

With our sample in hand, we then constrained the

three fundamental parameters needed to generate a

mass estimate: Einstein radius, lens redshift, and source

redshift.

2.1. Einstein Radius

Of the three parameters necessary to generate an en-

closed mass for any given cluster, the Einstein radius is

easily the most important. Drawing on the methodol-

ogy of Remolina González et al. (2020), we define the

Einstein radius for each system as the radius of a circle

centered on each cluster’s BCG which minimizes the to-

tal residual distance between the perimeter of the circle

and each of the three most readily identifiable bright

“clumps” in the lensed arcs for each lensing system.

Square image cutouts centered on the coordinates of

the BCG were initially queried from the Legacy Survey

DR9 DECaLS server, and each one was then loaded into

an SAOImageDS9 RGB frame where the z -band corre-

sponded to the red channel, the r -band corresponded to

the green channel, and the g-band corresponded to the

blue channel. All three channels were then automat-

ically scaled to the DS9 “zscale” setting, as this scal-

ing made visual identification of lensed image families

the easiest by eye. Contours were applied to the im-

age based on its g-band flux, since this band strikes a

good balance between making both the BCG and lensed

arcs visible, in order to identify the point of peak sur-

face brightness for the BCG and similar peaks in sur-

face brightness in the clumps of each tangentially lensed

arc. The coordinates of these four points (the BCG cen-

ter and three points along each arc) were identified and

saved using the command-line DS9 “iexam” function.

In order to place error bars on the Einstein radius, the

three positional constraints for each circular arc were

bootstrapped 1000 times and pushed through the mini-

mization algorithm. The mean and standard deviation

for the resulting 1000 values were adopted as the value

and error for Einstein radius respectively.

2.2. Lens (BCG) Redshift

Constraining the lens redshift is important to scale

the measured Einstein radius to a cosmologically sensi-

ble angular diameter distance (Remolina González et al.

2020). Since cluster-member galaxies in the lens are pre-

dominantly “elliptical”, “red-sequence”, or “early-type”

galaxies, they fall on a predictable trend as a function

of redshift in color-magnitude space (Gladders & Yee

2000). We adopt the codebase implemented in Levine

(2022) to measure the characteristic redshift of each

lensing system. The algorithm takes in a list of RA

and Dec coordinates of the BCG as identified in the

Einstein radius step, identifies cluster member galaxies

along the line-of-sight within a radius defined by the user

(one arcminute in our case) as informed by this color-

magnitude relation, and returns a list of photometric
redshifts transformed from colors of each cluster mem-

ber identified in the search radius. This generated a list

of photometric redshifts for all of the identified cluster

members in a one arcminute aperture. The observed

cluster-member galaxy distribution consists of cluster

members (both galaxies on the red sequence, and in-

trinsically bluer galaxies) and galaxies along the line of

sight which occupy a broad range of colors both bluer

and redder than the cluster red-sequence. Because the

bluer cluster members creates a lopsided color distribu-

tion, which can bias the estimated cluster redshift low,

and the measured scatter high, we focus only on appar-

ent red-sequence members to estimate the color (and

thus redshift) uncertainty for a given system.

For the richest clusters in our sample in which indi-

vidual cluster measurements of the measured width of

the cluster red sequence are robust, we noted that this
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Figure 3. On the left, a histogram of the photometric BCG-
normalized redshifts for all tagged non-BCG cluster-member
galaxies in this work. The red region of the histogram with
the larger scatter is excluded from further calculations due to
possible non-cluster-member interlopers. The green region is
representative of bona-fide cluster members. On the right,
we take the green region of the plot and separate it into
17 photometric redshift bins based on range of our sample.
The scatter in each of those bins is plotted with a best-fit
functional description overplotted in red.

uncertainty increased as a function of redshift. This is

to be expected, even in the absence of a true increase

in scatter in the rest frame, due to increasing photo-

metric uncertainties for fainter galaxies. In addition,

within the fixed wavelength range of our rest-frame ob-

servational bandpasses, we observe a bluer portion of the

spectrum from any given galaxy as the effects of cosmo-

logical redshifting pushes the galaxy’s rest-frame spec-

trum redward. The measured photometric redshift from

this bluer light is more sensitive to minor differences be-

tween the star formation history and stellar properties

between individual galaxies, resulting in increased scat-

ter for our predicted redshifts. In order to account for

this increasing uncertainty as a function of redshift, we

sorted all of the clusters based on their BCG photomet-

ric redshift into 17 redshift bins equally spaced between

the minimum and maximum value of the BCG photo-

metric redshift for the entire sample of 179 clusters. This

strikes a good balance between redshift granularity and

total cluster members identified in each bin for different

systems. We compute the color scatter (and hence red-

shift scatter) from all identified cluster-member galax-

ies within each redshift bin. We then fit a function of

the form f(z) =
√
a+ bzc to the data in order to pa-

rameterize the redshift error as a function of redshift.

The equation after residual minimization is described in

Equation (5), and we adopt the output of Equation (5)

evaluated at each BCG photometric redshift as the error

on said redshift as summarized in Figure 3.

σz(z) =
√
3.69× 10−5 + 9.15× 10−2 × z3.40

∣∣∣∣
z
BCG

(5)

2.3. Source Redshift

The redshift of the source does not significantly al-

ter the final mass measurement of the data (Remolina

González et al. 2020), and it only introduces a bias factor

into the final measurement. The “average” population

of source redshift arcs can be fitted by a Gaussian with

µ = 2 and σ = 0.2 (Bayliss et al. 2011), and we sim-

ply adopt this distribution for source redshifts among

all strong-lensing systems in this sample.

2.4. Cluster Light

Conveniently, the pixel values in the Legacy Sur-

vey DR9 DECaLS fits images that are the backbone

of the analysis in this work are in units of nanomag-

gies: a linear unit of flux that is normalized to the

AB magnitude system where 1 nanomaggie = 3.63078×
10−20 erg/s/cm2/Hz. Initial estimates for cluster light

were generated by linearly summing the flux from all

pixels in each of the grz filter images from DECaLS

within a circular aperture centered at the BCG with

radius equal to the measured Einstein radius for each

system. Careful attention was paid to ensuring that

this step did not include light from the lensed sources,

as well as any intervening stars or foreground galaxies as

identified by a flux and visual color screening. This was

accomplished by creating two separate mask files: one to

mask the flux from source arcs, and another to mask flux

from interlopers. Both were made with a custom IDL

script that allows the user to “paint” regions in an image

with a circular brush and save the painted regions to a

fits file. The light integration step was carried out for

the 1000 different bootstrapped radii defined when the

Einstein radius was fitted, and the resulting mean and

standard deviation for the 1000 light measurements after

correcting each for Milky Way extinction in each filter at

the location of the BCG were adopted as the character-

istic value and error respectively for all 179 clusters in

the sample. While this technique does not necessarily

account for every possible source of systematic uncer-

tainty (mis-identification of cluster members, accidental

masking of intracluster light, etc.), any slight source of

uncertainty in these measurements is likely outweighed

from uncertainty in our bootstrapping step or in the

uncertainty in the photometric fitting algorithm we de-

scribe in Section 3.

3. ANALYSIS

3.1. Light Measurements

In order to robustly constrain stellar mass and light,

the measured flux density in nanomaggies for all the

photometric grz filters in each of our strong lensing sys-

tems were fed to the parametric SED modeling pack-
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age astro-prospector (Johnson et al. 2021), hence-

forth referred to as ”Prospector”, as initial constraints.

Prospector combines the stellar population synthesis li-

brary python-FSPS (Flexible Stellar Population Syn-

thesis, Conroy et al. 2009; Conroy & Gunn 2010) along

with the modern MCMC model optimization package

emcee (Foreman-Mackey et al. 2013) to interpolate a

physically-motivated spectral energy distribution (SED)

based on either observed photometry or observed spec-

troscopic data. In our case, the parametric SED for

each system was fitted based on the grz photometry

with three fixed parameters and five free parameters.

Namely, we assume a Chabrier IMF (Chabrier 2003),

Calzetti attenuation curve for dust (Calzetti et al. 2000),

and delayed-tau SFH model (Carnall et al. 2019). We

fit for stellar mass with a log-uniform prior ranging from

108 to 1014 M⊙, the log of solar metallicity with a tophat

prior ranging from -1.0 to 0.2 dex, the dust attenuation

coefficient used by the Calzetti dust attenuation curve

with a tophat prior ranging from 0 to 2.0, the age of the

cluster with a tophat prior ranging from the age of the

universe at z = 20 to the age of the universe at the red-

shift of the lensing cluster in Gyr, and the value for tau

in the delayed-tau SFH model with a log-uniform prior

ranging from 0.1 to 10 Gyr. We utilize emcee as imple-

mented in Prospector with 84 walkers for a total of 6720

iterations, taking only the last 840 iterations for each of

the 84 walkers (70,560 total parameter vectors) as rep-

resenting the prior distribution for each of the variables

of interest in order to eliminate the significant burn-in

sequence of the fit. After fitting, we adopt the 50th per-

centile value as the characteristic value for each of the

five parameters, and the greater difference between the

84th-50th percentile and 50th-16th percentile values as

the error for each of the five parameters. An example of

a resulting spectrum from this fitting process is shown

in Figure 4.

To generate light estimates, we take a random sam-

ple of 1024 parameter vectors for mass, dust, metallic-

ity, age, and tau drawn from the posterior distribution

of 70,540 returned by Prospector and generate an SED

for each based on these parameters. We then integrate

over the rest-frame wavelength range of 3000Å - 7000Å

shifted into the observed frame according to the BCG

redshift for each of the sample SEDs to convert to an

observed flux in erg/s/cm2 as summarized in Equation

(6).

Flux
[ erg

cm2 s

]
=

∫ 7000Å×(1+z)

3000Å×(1+z)

I (λ)dλ (6)

The wavelength range covered by the g-band, r -band,

and z -band filters spans from ≈ 4000Å to 10,000Å, so

a range of 3000Å - 7000Å allows us to sample impor-

Figure 4. A spectral energy distribution for CJ0205-3539,
one of the 179 clusters in our sample, after running a
Prospector analysis. SEDs for 1000 random parameter vec-
tors drawn from the final chain of 70,560 are plotted in grey.
The blue, green, and red curves represent the transmission
curves (in arbitrary units) for the g-band, r -band, and z -
band filters as a function of wavelength respectively. The left
and right vertical red lines mark 3000Å and 7000Å respec-
tively redshifted by the redshift of the cluster. We integrate
for luminosity between them.

tant features in the restframe optical such as the 4000Å

break, while also remaining physically motivated by flux

in the z -band as the lower bound of 3000Å gets red-

shifted out of the g and r bands in the observed frame.

As can be seen in Figure 4, the scatter between the

sample SEDs grows outside the rest-frame wavelength

coverage range of the grz filters, and so staying as close

to them as possible while still measuring over a reason-

able wavelength range is desirable. After integrating our

SED to obtain flux, we convert the observed flux to a

luminosity in solar luminosities using Equations (7) and

(8) where dL(zBCG) is the luminosity distance at the red-

shift of the BCG.

L [erg] = (Eq. 6)× 4π[dL(zBCG)]
2 (7)

L [L⊙] = (Eq. 7)×
(
3.846× 1033

[erg
s

])−1

(8)

After luminosity calculations were carried out for our

1024 randomly sampled SEDs, we once again adopt the

50th percentile value as the characteristic value for lumi-

nosity, and the greater difference between the 84th-50th

percentile and 50th-16th percentile values as the error

for luminosity in each of the galaxy clusters.

3.2. Stellar Mass Measurements

Estimates for stellar mass in each system were also

generated as a result of the Prospector fitting. Since

stellar mass is one of the parameters used by Prospector

to parameterize an SED, we can infer the stellar mass

for each system from the posterior distribution of each

fit. An example of such posterior is shown in Figure 5.
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Figure 5. A corner plot of the fitted parameters describing
the SED for CJ0205-3539, one of the 179 clusters in our
sample, after running a Prospector analysis.

However, the stellar mass reported by Prospector de-

scribes the total stellar mass formed over the lifetime

of the galaxy. Since stars in galaxies are subject to dy-

namical events such as supernovae, mergers, and out-

flows (e.g., Li et al. 2017), the stellar mass that consti-

tutes the light we see at observation is not necessarily

all the stellar mass that has formed in the history of

that galaxy. What we are actually interested in is the

amount of stellar mass that we currently see at the time

of observation. Prospector parameterizes this value in

the form of a surviving mass fraction that is generated

once a fit is complete. We obtain the observed stel-

lar mass at the time of observation by multiplying the

50th percentile value for the stellar mass posterior by

the surviving mass fraction. The greater difference be-

tween the 84th-50th percentile and 50th-16th percentile

values was adopted as the error for stellar mass in each

of the galaxy clusters.

3.3. Total Mass Measurements

Once measurements for the Einstein radius, source

redshift, and lens redshift were robustly measured, we

calculated the enclosed cluster mass using Equations (3)

and (4) via Monte Carlo statistical methods. The en-

closed cluster mass was computed 1000 times, and each

calculation used a different Einstein radius, source red-

shift, and lens redshift randomly drawn from a Gaussian

prior with standard deviation equal to the uncertainty

on each measurement and mean equal to the charac-

Figure 6. A comparison between mass estimates generated
by the LENSTOOL analysis plotted on the y-axis, and mass
estimates generated by evaluating Equations (3), (4), and
(9) plotted on the x-axis for the first 35 clusters analyzed
in our sample. A fractional difference plot between the two
is shown below. Note the similar scatter between the two
measurements over a wide range of mass scales.

teristic value for each measurement. Also described in

Remolina González et al. (2020) is the need to apply an

empirical correction based on the ”completeness” of the

lensed galaxy arcs in each system of the following form:

Corrected M(< θE) =
Measured M(< θE)

f(θE)
(9)

Where f(θE) is a parabolic function specified in Re-

molina González et al. (2020).

For the purposes of applying this correction in each

of our 179 clusters, we define the azimuthal coverage

as the percentage of a full Einstein ring traced out by

the lensed galaxy arcs in a given system. For example,

a lens with a tangential arc stretching from 3 o’clock

to 6 o’clock (where North is 12 o’clock) would have an

azimuthal coverage of 0.25. This was measured by deter-

mining what fraction of a circle with the best-fit Einstein

radius centered at the BCG fell within the painted re-

gion representing the lensed source arcs. If the measured

azimuthal coverage was less than 0.5, Equation (9) was

applied. If greater than or equal to 0.5, it was not ap-

plied. The mean and standard deviation of the resulting

1000 measurements after accounting for the empirical

correction were adopted as its characteristic mass and
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error. In constraining mass, we also considered a sec-

ond method for measuring the cluster-centric mass elu-

cidated in Remolina González et al. (2021a) that lever-

ages the parametric lens modeling software LENSTOOL

(Jullo et al. 2007) to estimate the enclosed mass as op-

posed to the simple evaluation of Equations (3), (4),

and (9). For the first 35 clusters that were analyzed as

a part of this work, we generated single-halo lens models

using LENSTOOL by using the three coordinates cor-

responding to the locations of the brightest clumps in

each lensed arc as positional constraints with a single

pseudo-isothermal elliptical mass distribution (PIEMD,

Kassiola & Kovner 1993) locked to the center of the

BCG. The software then runs an MCMC sampler to con-

strain the best-fit halo that recreates the observed po-

sitions of the position constraints for the main multiple

image family. A fits file for each system where the pixel

values correspond to 106 M⊙ contained in that pixel

was outputted by LENSTOOL to describe the best-fit

mass distribution found by the MCMC sampling. We

then linearly integrated this mass sheet over a circular

aperture centered on the coordinates of the BCG with

area equal to the area enclosed by the tangential critical

curve as prescribed in Remolina González et al. (2021a).

The primary downside to this method is speed, and it

is also sensitive to the choice of defining locations along

the lensed arc in a way that simple circle fitting is not.

While it is possible to refine the positional constraints

based on the output of each lens model, the process of

iteratively refining just one lens model for a single sys-

tem may take upwards of an hour for a single system,

whereas evaluating Equations (3), (4), and (9) takes

only moments. In addition, the positional constraints

that are ultimately fed to these equations in the process

of measuring the Einstein radius need not be extremely

accurate with respect to exactly constraining image fam-

ily positions since, as long as the positional constraints

are accurately placed at any point along the tangen-

tially lensed images, the method is accurate to within

the systematic uncertainty. A comparison of these two

estimates in Figure 6 shows a well-described scatter over

a wide range of enclosed masses as expected from Re-

molina González et al. (2021b), and we use the simplest

estimate from Equations (3), (4), and (9) hereafter.

4. RESULTS

4.1. Stellar-to-Total-Mass Ratio

Now that we have measured the total mass con-

strained by lensing as well as stellar mass constrained

by photometric analysis, we are able to take the ratio

of the two to generate a stellar-to-total-mass ratio mea-

surement. At the onset of this work, one of the ques-

tions we grappled with was whether or not there was

there was any difference in the stellar-to-total-mass ra-

tio as a function of the three different types of strong

lensing, as well as whether there were different trends

for just BCG light, or cluster members at large. Before

plotting, each image in the sample was visually classified

with two labels. The first label simply marked whether

or not the Einstein radius enclosed only one galaxy or

multiple galaxies. The second label was a visual ranking

of the perceived richness of each system which labeled

systems as either galaxy-scale, group-scale, or cluster-

scale lensing. When plotting Einstein radius against the

stellar-to-total-mass ratio, we used these labels to plot

each cluster with a unique marker to see if there were

any immediately visible trends.

Figure 7. The Einstein radius converted to a physical kilo-
parsec distance based on the angular diameter distance at
the redshift of the BCG plotted against the stellar-to-total-
mass ratio. Points are color-coded and styled according to a
visual classification that separated them by visible richness
and whether or not the Einstein radius enclosed more than
just the BCG for each system.

We note that there is a gradient (as expected) to Fig-

ure 7 insofar as clusters of galaxies are heavily concen-

trated on the right hand side of Figure 7, whereas group-

scale and relatively isolated galaxies are more concen-

trated on the left side of the Figure 7. Figure 8 presents

the same data, now color-coded by the total enclosed

stellar luminosity, to further illuminate this trend.

As visible in both Figure 7 and Figure 8, there is a

clearly negative correlation between these two parame-

ters. Also shown in Figure 8 are 500 random samples

drawn from the posterior distribution of a linear regres-

sion also done with the MCMC package emcee . We

include an intrinsic Gaussian scatter on the y-axis to
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Figure 8. The Einstein radius converted to a physical kilo-
parsec distance based on the angular diameter distance at
the redshift of the BCG plotted against the the stellar-to-
total-mass ratio. The points are color-coded according to
the luminosity of the system in units of solar luminosities
from stellar light within the aperture defined by the Einstein
radius as measured in the rest-frame wavelength range from
3000Å to 7000Å.

this model in order to describe the luminosity differences

in each system that account for much of the scatter in

the plot. The results of the fit and their corresponding

±1σ uncertainties are shown in Table 1.

Table 1. Linear Fit Parameters

m b σy

−1.10+0.08
−0.08 0.50+0.12

−0.12 0.2+0.01
−0.01

4.2. Total-Mass-to-Light Ratio

One of the chief goals of this work is to robustly mea-

sure the total-mass-to-light ratio of a sample of galaxy

cluster cores over a wide range of redshifts leveraging

the effects of strong gravitational lensing to place tight

constraints on the total mass of the cluster at smaller

angular scales than other methods would allow. Again

leveraging the total mass constrained by lensing as well

as stellar light constrained by photometric analysis, we

are able to take the ratio of the two to generate a total-

mass-to-light ratio measurement. We apply standard

error propagation techniques for the error on the M/L

ratio as well. Figure 9 shows the resulting total-mass-to-

light ratio as a function of redshift for the entire sample.

Figure 9. The photometric redshift of the BCG plotted
against the total-mass-to-light ratio. The points are colored
according to the Einstein radius converted to a physical kilo-
parsec distance based on the angular diameter distance at the
redshift of the BCG.

There is also little correlation between the mass-to-

light ratio and BCG redshift. While the Pearson corre-

lation coefficient is -0.167, which for our sample of 179

clusters would lead to a p-value of 0.025 (a marginally

significant result), we believe this is primarily a function

of the selection effect of our survey. The bottom left of

Figure 9 would be populated with low Einstein radius

clusters at a low redshift, but since this Einstein radius

scale is on order of about 10 kiloparsecs, any Einstein

rings visible would be visually located right on top of

the BCG light. This would not only make them hard to

detect based on the COOL-LAMPS visual search algo-

rithm, but it would also make them unsuitable for this

analysis because the source light would be completely

blended together with the lensing cluster light. The top

right of Figure 9 would be primarily populated by clus-

ters at a high redshift with large Einstein radii, which

are simply a rarer type of lensing system in the universe

(Collett 2015). Since this work uses the effects of gravi-

tational lensing to measure the total-mass-to-light ratio

in the first place, we are systematically biased against

finding and plotting such systems in Figure 9. Since

the COOL-LAMPS visual search algorithm is primar-

ily based on DECaLS DR8 images, many of these high-

redshift clusters barely even show up in the z -band filter
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images. We may simply not have scanned enough of the

sky to find many examples of these systems. Therefore,

we posit that this work is unable to show any statisti-

cally significant evolution of the total-mass-to-light ratio

as a function of redshift as informed by measuring this

value directly across a wide range of redshifts and phys-

ical distance scales.

5. CONCLUSION

We have shown that an algorithmic measurement of

mass and light in many different types of strong lensing

systems is possible. Leveraging a wide variety of compu-

tational techniques, we have shown that there is a nega-

tive correlation between the distance from the BCG and

the stellar-to-total-mass ratio and have robustly param-

eterized it. We have also shown little correlation be-

tween the total-mass-to-light ratio as a function of red-

shift, and have discussed possible systematic biases for

these measurements. Further study will be done to com-

pare these measurements to the literature, and follow-up

work/observations will be done in order to tighten our

statistical/systematic uncertainties.
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