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Abstract

The high spatial and temporal resolution of dynamic contrast-enhanced MRI (DCE-MRI)

can improve the diagnostic accuracy of breast cancer screening in patients who have dense

breasts or are at high risk of breast cancer. However, the spatiotemporal resolution of DCE-

MRI is limited by technical issues in clinical practice. Our earlier work demonstrated the use

of image reconstruction with enhancement-constrained acceleration (ECA) to increase tem-

poral resolution. ECA exploits the correlation in k-space between successive image acquisi-

tions. Because of this correlation, and due to the very sparse enhancement at early times

after contrast media injection, we can reconstruct images from highly under-sampled k-

space data. Our previous results showed that ECA reconstruction at 0.25 seconds per

image (4 Hz) can estimate bolus arrival time (BAT) and initial enhancement slope (iSlope)

more accurately than a standard inverse fast Fourier transform (IFFT) when k-space data is

sampled following a Cartesian based sampling trajectory with adequate signal-to-noise ratio

(SNR). In this follow-up study, we investigated the effect of different Cartesian based sam-

pling trajectories, SNRs and acceleration rates on the performance of ECA reconstruction in

estimating contrast media kinetics in lesions (BAT, iSlope and Ktrans) and in arteries (Peak

signal intensity of first pass, time to peak, and BAT). We further validated ECA reconstruc-

tion with a flow phantom experiment. Our results show that ECA reconstruction of k-space

data acquired with ‘Under-sampling with Repeated Advancing Phase’ (UnWRAP) trajecto-

ries with an acceleration factor of 14, and temporal resolution of 0.5 s/image and high SNR

(SNR� 30 dB, noise standard deviation (std) < 3%) ensures minor errors (5% or 1 s error)

in lesion kinetics. Medium SNR (SNR� 20 dB, noise std� 10%) was needed to accurately

measure arterial enhancement kinetics. Our results also suggest that accelerated temporal

resolution with ECA with 0.5 s/image is practical.
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1. Introduction

Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquires a series

of T1-weighted images before, during, and after the administration of a gadolinium-based

contrast agent (GBCA). This provides dynamic information on the exchange of the GBCA

between the vascular and interstitial compartments [1]. DCE-MRI is a valuable tool in oncol-

ogy including early diagnosis [2], lesion classification [3], treatment planning [4] and treat-

ment response assessment [5]. Analysis of DCE-MRI datasets is typically performed at

different levels of complexity: (1) based on visualization of images, (2) based on semi-quantita-

tive parameters derived from the signal enhancement curve as a function of time (e.g. arrival

time of contrast media enhancement, enhancement rate or area under curve), and (3) based

on pharmacokinetic modeling which allows quantification of tissue vascularization, perfusion,

and capillary permeability.

Kinetic parameter accuracy relies heavily on an accurate measurement of tissue enhance-

ment and GBCA concentration in feeding arteries, the latter is referred to as the ‘arterial input

function’ (AIF). Direct measurement of the AIF is challenging and requires high temporal res-

olution to capture rapid changes in blood concentration of GBCA. A common solution for

pharmacokinetic modelling is to use a general and well-defined AIF, which represents an aver-

age over many healthy patients [6]. However, this introduces errors into the parameter estima-

tions as there is considerable variability in cardiac output even among healthy patients [7].

Simulation studies suggested that a temporal resolution of 1–1.5 second is necessary for

accurate measurements of the AIF in each patient [7, 8]. In addition, high temporal resolution

is needed to accurately detect the rapid uptake of GBCA that is used clinically to identify and

characterize cancers. However, in clinical practice, high temporal resolution sampling is

accompanied by loss of spatial resolution due to limited sampling rates. Therefore, clinical

ultrafast breast DCE-MRI that produces full 3D bilateral breast scans achieves a temporal reso-

lution ranging from 2–7 seconds depending on the field-of-view (FOV) and the number of

slices [9].

MRI data exhibits a high degree of spatiotemporal correlation, resulting in redundant infor-

mation in k-space. A basic strategy of modern acceleration strategy for DCE-MRI is to reduce

the number of phase-encoding steps without loss of spatial resolution while maintaining ade-

quate SNR, and to estimate the unmeasured k-space points with a reconstruction method.

Many techniques have been introduced to accelerate temporal resolution of DCE-MRI. Popu-

lar methods include partial Fourier techniques [10], reduced FOV [11, 12], parallel imaging

methods [13–16], view-sharing (VS) [17–21], compressed sensing [22, 23], and Kt-BLAST [24,

25]. However, their acceleration rates are limited due to the artifacts caused by missing high

spatial frequency components [24, 25], the image processing [16] or non-uniform sampling

[22]. In addition, parallel imaging reconstruction is heavily influenced by the estimation of

coil sensitivities or their harmonic contributions [16]. The reconstruction error is more signifi-

cant at higher acceleration factors [16].

To date, many regularization-based methods have been introduced to solve the ill-posed

problem of reconstruction with highly under-sampled k-space data [26–31]. Most of them

employ a total variation-based method for compressed sensing and required a non-Cartesian

incoherent sampling [28–31]. Adluru et. al. [27] proposed a temporally constrained recon-

struction based on an iterative L2 norm regularization, but the method can only reach accelera-

tions up to a factor of 5.

Our previous study proposed an enhancement-constrained acceleration (ECA) reconstruc-

tion from highly under-sampled k-space data with Cartesian sampling trajectory [32]. The

strategy of ECA reconstruction is to recover missing k-space points by exploiting correlations,
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based on two assumptions: (I) each k-space point contains some information about other k-

space points and a properly selected subset of k-space points contains sufficient information to

recover the rest of k-space; and (II) signal in each voxel enhances smoothly within short-time

intervals. The temporal sampling frequency must be high enough to meet the smoothness cri-

terion, but low enough to provide adequate signal-to-noise ratio. To obtain smooth enhance-

ment in both arteries and suspicious lesions, we chose a target temporal resolution of 0.25

seconds in the previous study, based on published estimates of the optimal temporal resolution

for breast DCE-MRI [6–8, 33]. Our previous study demonstrated that sparse, uniform k-space

samples with adequate SNR can be used to reconstruct breast DCE-MRI with high fidelity.

However, the performance of ECA reconstruction for measuring the shape of the AIF and

lesion pharmacokinetics was not addressed in our earlier work. In addition, the impact of

noise and acceleration factor on ECA reconstruction was not evaluated. Therefore, in this fol-

low-up study, we focus on the performance of ECA reconstruction in accurately recovering

the AIF and semi-quantitative kinetic features in lesions, as well as pharmacokinetic model-

ling. We also investigate the robustness of ECA reconstruction at different noise levels and

acceleration factors with three Cartesian based sampling trajectories. In addition, we validate

the ECA reconstruction using a flow phantom.

2. Methodology

2.1. Simulation phantoms

To provide quantitative ground truths for validating the reconstruction method, five in silica
breast phantoms, representing a range of pathologies (Fig 1), were created from real clinical

data; paired ultrafast and high-spatial resolution DCE-MRI datasets. Table 1 lists acquisition

parameters for original patient MR scans.

The phantoms were created based on a set of parameters that defined the concentration of

contrast media in each voxel as a function of time. This was converted from the signal intensity

enhancement over time measured in each voxel from the original ultrafast DCE-MRI dataset

Fig 1. Percent signal enhancement (PSE) curve versus time in (a) vessel voxels and (b) lesion voxels by cases. Markers and dashed lines: mean of PSE; Area:

standard deviation of PSE. PSE in vessel voxels plotted in (a) were measured relative to bolus arrival time (BAT). Case 1: Invasive ductal carcinoma (IDC),

Grade III; Case 2: ductal carcinoma in situ (DCIS); Case 3: Invasive lobular carcinoma, Grade II; Case 4: IDC Grade III; Case 5: No abnormal enhancement

(control case).

https://doi.org/10.1371/journal.pone.0286123.g001
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acquired in vivo. Each phantom consisted of three categories of signal sources: blood vessel,

lesion, and background, and each was modeled with a distinct function that computed the

time-evolution of concentration of contrast media and then generated images of signal inten-

sity enhancement during the scan at 50 msec intervals. The functions were used to fit the origi-

nal data with high precision. As a result, we were able to evaluate the accuracy of measurement

of kinetic features (e.g. BAT, AIF, and Ktrans) at high temporal resolution from the ECA recon-

struction using various k-space sampling methods, even though these features were measured

at lower temporal resolution in the acquired data. Development of breast phantoms can be

divided into three steps (Fig 2).

(1) Segmentation: blood vessels and lesions were segmented from patient ultrafast and stan-

dard high-spatial resolution DCE-MR images, which both underwent a non-rigid registra-

tion for motion correction [34]. 3D vasculature was segmented from subtracted high-

spatial resolution images by a Hessian filtering process [35]. Lesions were segmented

manually.

(2) Creating maps of kinetic parameters: ultrafast image sets were used to generate pharmaco-

kinetic maps. Signal intensity of each lesion voxel was converted into the concentration of

contrast agent over time [36]:

Table 1. MRI parameters of the source patient images.

Standard Ultrafast

TR/TE 4.8/2.4 3.2/1.6

Acquisition Voxel Size (mm3) 0.8 × 0.8 × 0.8 0.8 × 0.8 × 2

Temporal Resolution Range (s/image) 60–70 2.8–7

Flip Angle (˚) 10 10

Field of View 300–330 mm (X, Y)

160–200 mm (Z)

300–330 mm (X, Y)

160–200 mm (Z)

Number of Slices 200–250 80–107

https://doi.org/10.1371/journal.pone.0286123.t001

Fig 2. Pipeline of the phantom development from patient images.

https://doi.org/10.1371/journal.pone.0286123.g002
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C tð Þ ¼
1

r1

�
1

T1ðtÞ
�

1

T10

� �

ð1Þ

where r1 is the relaxivity, r1 = 3.4 mMol-1s-1 was used in all simulations [37]; T10 (lesion) = 1.44

s [38]and T10 (blood) = 1.66 s [39]; T1(t) is derived using the spoiled gradient-echo signal

model:

S tð Þ ¼ K sinðFAÞ �
ð1 � e�

TR
T1ðtÞÞ

1 � cosðFAÞe�
TR

T1ðtÞ
ð2Þ

where K is a scaling constant which ensures the pre-contrast and post-contrast maximum sig-

nal intensity of each AIF and lesion voxel are consistent with the real images; FA = 10˚,

TR = 3.2 ms.

T1 tð Þ ¼
� TR

ln A � SðtÞ
Sð0Þ
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� ln ðA � SðtÞ
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� TR
T10

1� e
� TR
T10

, S(t) and S(0) are the signal intensity across time t and pre-contrast sig-

nal intensity, respectively. We can then write Eq (1) as
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An empirical model used a truncated exponential function to fit the C(t) in lesion during ini-

tial enhancement phase (uptake only):

CðtÞ ¼ ðt � t0Þ � Cm � ð1 � e� bðt� t0ÞÞ ð5Þ

where t0 is the BAT in lesion voxels (s), Cm is the upper limit of tracer concentration (mmol),

and β is the uptake rate (s-1).

Due to the use of full dose contrast agent, the AIF could not be accurately measured directly

from arteries by ultrafast DCE-MRI[1, 40]. Instead, we used Parker’s population-based AIF

model [6] to generate the concentration change in vessel voxels. Percent signal enhancement

PSE tð Þ ¼ SðtÞ� Sð0Þ
Sð0Þ

� �
of the first peak was fit into an empirical exponential function model simi-

lar to Eq (5)

PSEðtÞ ¼ ðt � t0Þ � A � ð1 � e� aðt� t0ÞÞ ð6Þ

where A is the upper limit of signal intensity, and α is the uptake rate (s-1). t0 calculated from

Eq (6) was used to parameterize Parker’s model [6] for each vessel voxel,

Cb tð Þ ¼ t > t0ð Þ �
X2

n¼1

An

sn
e
�
ðt� t0 � TnÞ

2

2sn2

� �

þ
ge� mðt� t0Þ

1þ e� sðt� t0 � tÞ
ð7Þ

where An, Tn and σn are the scaling constants, centers, and widths of the nth Gaussian; γ and μ
are the amplitude and decay constant of the exponential; s and τ are the width and center of

the sigmoid, respectively. The parameter values of the Parker’s population AIF model are listed

in Table 2.
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In summary, kinetic maps of t0, Cm, β were used to parameterize the three-parameter

empirically derived contrast enhancement model Eq (5) in lesion voxels, and a kinetic map of

t0 was used and combined with parameters in Parker’s AIF model for vessel voxels. For back-

ground voxels, the t0, Cm and β were set to 0.

(3) Generating phantom k-space: For each phantom, ground truth MR images were computed

by converting concentration to signal by Eq (2), where 1

T1ðtÞ
¼ 1

T10
þ r1C tð Þ, which was

derived from Eq (1).

To simulate signal evolution during the acquisition time, phantom signal was updated

every 50 ms. This simulation was used to update k-space in each acquisition window. Fig 1

shows the mean and standard deviation of the percent signal enhancement (PSE(t)) curve ver-

sus time in arteries and in lesions by case, where the PSE curves in vessel voxels were measured

relative to BAT in the voxel.

For each phantom, the nominal temporal resolution (the time required for complete carte-

sian sampling for each image) was 7 seconds, and the full acquisition time was 56 seconds for

the entire DCE series.

2.2. K-space sampling trajectories

We compared three Cartesian-based k-space sampling trajectories: standard Cartesian and

two under-sampling protocols based on Repeated Advancing Phase (UnWRAP). In standard

Cartesian sampling, the k-space was filled from edge to edge via a row-by-row trajectory.

In UnWRAP trajectories, the time of acquisition for each phase-encoding line depends on

the acceleration rate. For a N-fold acceleration, in UnWRAP1, we split all phase-encoding

lines of k-space into N sections, each separated into N sheaves, so that each sheaf contained 1/

N2 of total phase-encoding lines in k-space. We acquired the first sheaf of phase-encoding

lines in the first section, then moved to the first sheaf in the second section. After acquiring the

first sheaf in the last section, we moved to the acquisition for the second sheaf for all sections.

The acquisition continued until the entire k-space was filled (Fig 3C and 3D). Within each

sheaf, k-space was sampled in a Cartesian manner. In UnWRAP2, we first sampled every Nth

phase-encode line from the first line, and then we sampled every Nth phase-encode line from

the second line and looped until all phase-encoding lines were acquired (Fig 3E and 3F).

Within each loop, k-space was sampled in a Cartesian manner. This is similar to the trajectory

used in Kt-BLAST but without denser sampling in the central k-space region. Fig 3 shows the

patterns of the three trajectories when acceleration factor = 5, where frequency-encoding

direction is omitted, and each frequency-encoding line is represented as a dot for simplicity.

2.3. Image reconstruction

2.3.1. Enhancement-constrained acceleration (ECA) reconstruction. ECA reconstruc-

tion assumes that the enhancement is smooth on the timescale of the reconstruction’s tempo-

ral resolution. Sharp changes in signal between consecutive reconstructed time points are

penalized. We constrain the new images to match the k-space data sampled over each recon-

structed time interval. Intuitively speaking, ECA searches for the smoothest set of

Table 2. Parameter values for Parker’s AIF model [6].

Parameter A1 A2 T1 T2 σ1 σ2 γ μ s τ
Value 0.809 0.330 0.17046 0.365 0.0563 0.132 1.050 0.1685 38.078 0.483

Units mmol�min mmol�min min min min min mmol min-1 min-1 min

https://doi.org/10.1371/journal.pone.0286123.t002
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enhancement curves consistent with the highly under-sampled k-space data measured during

each of the reconstructed time intervals. A positive semidefinite smoothness penalty matrix is

used to penalize the discretized second derivative in temporal dimension [32]. The ill-posed

inverse problem is then solved by conjugate gradient method. The details of the ECA recon-

struction are provided in [32].

2.3.2. Inverse Fast Fourier Transform (IFFT) reconstruction. To benchmark the ECA recon-

struction, the IFFT which is one of the standard MR Image reconstruction methods, was applied to

reconstruct MR images from fully sampled k-space data (temporal resolution of 7 s/image).

2.4. Flow phantom experiment

To further evaluate the performance of the ECA reconstruction, in-vitro flow measurements

were acquired on a flow-kinetic phantom (Fig 4). This phantom was designed to produce real-

istic input and tissue contrast uptake and washout curves by adjusting downstream flow rates

between two outputs [41]. The phantom consists of a coiled tube within a water-filled plastic

container, with water pumped through the tube by a peristaltic flow pump at a constant flow

rate of 300 ml/min from outside the scan room. The flow phantom was imaged in a Philips

Ingenia 3.0-T MRI scanner equipped with a 32-channel head coil. The DCE-MRI protocol

employed a standard T1-weighted GRE sequence to obtain 30 serial 2D images of the central

axial plane of the flow phantom, with a temporal resolution of 4.9 s/image. Ground truth

images were acquired with a temporal resolution of 0.56 s/image. Table 3 listed the DCE-MRI

parameters for acquiring the ground truth images and the measurement images. A multi-shot

linear Cartesian sampling trajectory was selected, with TFE factor = 14 and TFE shot = 100.

The linear sampling profile was rearranged according to the TFE shot to provide an

UNWRAP1 trajectory with an acceleration factor = 10. Contrast bolus of diluted 1 ml Multi-

Hance (Bracco, NJ, diluted 20:1) was delivered and followed by a saline flush of 10 ml, both at

0.2 ml/s.

Fig 3. Illustration of sampling trajectories. Sampling pattern (upper) and k-space sampled for the first three time points (bottom) with a 5-fold acceleration:

(a)(b) standard Cartesian, (c)(d) UnWRAP1, and (e)(f) UnWRAP2.

https://doi.org/10.1371/journal.pone.0286123.g003
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2.5. Data analysis

To compare the performance of ECA reconstruction to the standard IFFT, an interpolation

method was used to fit the signal enhancement curves at each voxel and to interpolate the

curves from ECA images and IFFT images so that the same measurements are simulated at 50

ms intervals. In this study, we employed a modified Akima piecewise cubic Hermite interpola-

tion (Makima) method to interpolate the enhancement curve in the time series of each voxel

within ROIs. Makima is a non-smoothing spline based on a piecewise function composed of a

set of polynomials [42]. It gives a good fit to the curve where rapid change occurs between flat

regions. All simulation kinetic features were measured from Makima interpolated enhance-

ment curves extracted from ECA and IFFT images.

Signal enhancement curves of a vessel and a lesion voxel from Case 1 are shown in Fig 5,

where the curves from images reconstructed by ECA and IFFT, and by different sampling tra-

jectories are compared to the ground truth. For each vessel and lesion voxel, we fit the interpo-

lated PSE(t) to the EMM using Eq (6), obtaining primary parameters BAT, A and α Then, the

secondary parameter, initial enhancement slope, was calculated as: iSlope = A�α (s-1). Note that

for the vessel voxels, we used Eq (6) to fit the enhancement curve to the AIF first pass to esti-

mate BAT.

Table 3. DCE-MRI parameters of the flow phantom experiment.

Ground Truth UnWRAP1 Measurement

TR/TE 8.3/4.1 8.3/4.1

Acquisition Pixel Size (mm2) 2.5 × 2.5 0.47× 0.57

Temporal Resolution (s/image) 0.56 4.9

Flip Angle (˚) 10 10

Field of View (mm2) 230 × 163 230 × 228

TFE factor 1 14

Slice Thickness (mm) 5 5

https://doi.org/10.1371/journal.pone.0286123.t003

Fig 4. Schematic representation of the flow phantom system, consisting of pump, contrast injection (power injector), coiled input,

branching into two outputs with relative flow controlled by pinch valves and measured by digital meters.

https://doi.org/10.1371/journal.pone.0286123.g004
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For lesion voxels, we measured Ktrans, the volume transfer constant between blood plasma

and extravascular extracellular space. We calculated Ktrans from a signal intensity form of the

Tofts model, which was introduced in an earlier study [43]:

PSE tð Þ ¼
Sbð0Þ

Stð0Þð1 � HctÞ
Ktrans

Z t

0

PSEbðtÞexp �
ðt � tÞKtrans

ve

� �

dt ð8Þ

where Sb(0) and St(0) are the baseline signal intensity in blood vessel and in lesion, respectively.

PSEb(t) and PSEt(t) are the percent signal enhancement in blood vessel and in lesion, Hct is the

hematocrit (Hct = 0.42) [6], ve is the volume of EES per unit volume of tissue ve2[0, 1]. Note

that for each case, Sb(0) and PSEb(t) were measured from a single voxel at the feeding artery.

To evaluate the performance of ECA reconstruction for vessel voxels, in addition to the

BAT, we studied two parameters that are directly measured from the interpolated PSE(t)
curves:

• AIF peak signal intensity of the first pass in arteries (SIpeak) is the maximum signal enhance-

ment value across the time of measurement: SIpeak = max (PSE).

• Time at the first peak: Tpeak = t when PSE(t) = SIpeak.

Fig 5. Signal enhancement curves of a vessel voxel (upper) and a lesion voxel (bottom) from ground truth and images reconstructed by ECA and standard

inverse fast Fourier transform (IFFT) with k-space sampled by (a) (b) standard Cartesian, (c) (d) UnWRAP1, and (e) (f) UnWRAP2. Images were acquired

noise-free phantom. Temporal resolution of IFFT is 7 seconds, ECA is 0.5 seconds (acceleration factor = 14). Errors = measured (interpolated)–ground truth.

https://doi.org/10.1371/journal.pone.0286123.g005
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Moreover, we measured Error ratio to compare the performance of ECA reconstruction to

that of the standard IFFT,

Error ratio ¼
PECA � PGT

PIFFT � PGT
ð9Þ

where PECA and Pifft refer to kinetic parameter measured from images reconstructed by ECA

reconstruction method and by IFFT, respectively, PGT is the ground truth value of the kinetic

parameter.

To investigate the performance of ECA reconstructions with noise, white Gaussian noise

was added to k-space. Three signal-to-noise-ratios (SNRs) - 30 dB, 20 dB and 10 dB–were

investigated in this study. As a reference, the SNR of clinical ultrafast DCE-MRI ranges from

20 to 30 dB when measured as the averaged post-contrast signal intensity in the time series

divided by the standard deviation of the baseline signal. Tumor and vessel regions of interest

(ROI) have a higher SNR (>30 dB) due to the greater signal enhancement.

To investigate the impact of acceleration factor on estimation of kinetic features, four accel-

eration factors were investigated: 5, 10, 14, and 20, which accelerated the nominal temporal

resolution of 7 seconds to 1.4, 0.7, 0.5, and 0.35 seconds, respectively.

In the flow phantom experiment, 10-fold ECA reconstruction was used to recover the signal

enhancement curve in the tube ROIs. To quantify the performance of the ECA reconstruction,

we compared the SIpeak and delay time (TD) measured from the ECA and IFFT images to the

ground truth. TD was calculated as the time lag between the relative enhancement signal of

ROI1 (inflow) and the other ROIs by finding the largest absolute value of the normalized

cross-correlation of the two signals. For comparing measured signal to the ground truth at

each time point, Makima interpolation was used for ECA and IFFT images to interpolate the

signal at the same time point as the ground truth acquisition. Absolute error was calculated by

taking the absolute value of the difference between the parameters measured from recon-

structed images and from ground truth images. SNR of the flow phantom image was calculated

by mean of the enhanced signal in the tube ROIs divided by standard deviation (std) of the

background area.

2.6. Statistical analysis

The ‘Bootstrap’ method was used for calculating confidence intervals. The Wilcoxon rank sum

test was used to compare kinetic parameters between different reconstruction methods and

different sampling trajectories. A value of p<0.05 was considered statistically significant.

3. Results

3.1. ECA vs IFFT with different sampling trajectories

ECA reconstructions recovered signal enhancement curves more accurately than standard

IFFT, as shown by a smaller error variance across the ‘scan’ time for ECA (Fig 5), particularly

when rapid signal change occurred, e.g. during the first pass of the AIF. This is critical for pre-

cise measurements of kinetic features. With any sampling trajectories, ECA reconstruction

estimated each lesion and AIF kinetic parameter more accurately than IFFT (p<0.0001). To

demonstrate this quantitatively, Table 4 shows the median value and the 95% confidence inter-

vals (CIs) of the Error ratio of ECA and IFFT by kinetic features and by sampling trajectories.

All the kinetic parameters were estimated from noise-free images with a 14-fold acceleration

factor. All the median values of the Error ratio were below 1, referring to a lower error mea-

sured by ECA than IFFT. Error ratio values varied by parameter and by sampling trajectories.
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Of the three sampling trajectories, UnWRAP1 and UnWRAP2 with ECA reconstruction mea-

sured vessel and lesion kinetics much more precisely than with IFFT (median Error ratio
range = 0.038–0.522). The difference between ECA and IFFT was smaller with standard Carte-

sian sampling (median Error ratio range = 0.238–0.81). Among all vessel and lesion kinetic fea-

tures, ECA with UnWRAP2 measured Ktrans much more accurately than IFFT with

UnWRAP2, with median Error ratio = 0.038 (95% CI (0.037, 0.04)).

Fig 6 compares the performance of ECA reconstruction with the three sampling trajecto-

ries. Comparing the two UnWRAP trajectories, UnWRAP1 and UnWRAP2 were not signifi-

cantly different when estimating lesion iSlope (p = 0.99) and lesion BAT (p = 0.63). ECA

reconstruction with UnWRAP2 trajectory measured lesion Ktrans, AIF Tpeak, and AIF BAT
more accurately than ECA with UnWRAP1 (p<0.0001), while ECA with UnWRAP1 esti-

mated AIF SIpeak more accurately than ECA with UnWRAP2 (p<0.0001). The performance

of ECA with standard Cartesian sampling was significantly different from ECA with UnWRAP

trajectories (p<0.05). For all lesion and arterial kinetics except AIF SIpeak, ECA with the two

UnWRAP trajectories provided more accurate measurement than ECA with standard Carte-

sian sampling, showing a lower median error and smaller error variance. However, ECA with

standard Cartesian sampling showed higher accuracy in estimating AIF SIpeak (p< 0.0001)

than UnWRAP trajectories, although the error variance was much greater.

3.2. ECA performance with noise

Fig 7 shows the absolute (percent) error in lesion kinetics measured from ECA and IFFT

images, by different sampling trajectories with varying SNR. ECA with UnWRAP trajectories

showed lower median absolute (percent) errors than ECA with standard Cartesian or IFFT

with any trajectories. To ensure a minor error—error < 5% or < 1 s—high SNR (SNR� 30

dB, noise std< 3%) was needed for sampling with UnWRAP trajectories.

Fig 8 shows the absolute (percent) error in AIF kinetics measured from ECA and IFFT

images, for different sampling trajectories and with different SNRs. ECA reconstruction with

k-space sampled with a standard Cartesian trajectory estimated AIF SIpeak more accurately

than either of the UnWRAP sampling trajectories. This is shown by smaller median absolute

percent errors estimated by standard Cartesian versus UnWRAPs (Fig 8A). However,

UNWRAP provided a narrower error variation for SNR� 30 dB. ECA measured AIF Tpeak

more accurately with UnWRAP trajectories–with a smaller variation–compared to standard

Table 4. Median value and the 95% confidence interval (CI) of voxel based ECA vs IFFT Error ratio, noise free, acceleration factor = 14.

Parameters UnWRAP1 UnWRAP2 Standard Cartesian

Median 95% CI Median 95% CI Median 95% CI

Lesions iSlope 0.215 [0.209, 0.222] 0.233 [0.230, 0.236] 0.810 [0.798, 0.820]

BAT 0.178 [0.172, 0.184] 0.167 [0.163, 0.172] 0.775 [0.764,0.786]

Ktrans 0.050 [0.047, 0.052] 0.038 [0.037,0.040] 0.643 [0.640 0.646]

AIF SIpeak 0.508 [0.497, 0.513] 0.522 [0.514, 0.530] 0.526 [0.491, 0.558]

Tpeak 0.227 [0.227, 0.235] 0.200 [0.200, 0,200] 0.238 [0.213, 0.250]

BAT 0.166 [0.165, 0.169] 0.160 [0.158, 0.162] 0.486 [0.475, 0.500]

Bold highlights the lowest Error ratio among the three trajectories

BAT: bolus arrival time

iSlope: Initial enhancement slope

SIpeak: Peak signal intensity of the first AIF pass

Tpeak: time at peak signal of the first AIF pass

https://doi.org/10.1371/journal.pone.0286123.t004
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Fig 6. Absolute percent error or Absolute error in lesion kinetics measured from images by ECA with different sampling trajectories. ECA acceleration

factor = 14. All images were reconstructed without noise. (a) Lesion initial relative enhancement slope (iSlope), (b) Lesion BAT, (c) Lesion Ktrans, (d) AIF peak

signal intensity (SIpeak), (e) AIF time at peak (Tpeak), and (f) AIF BAT. On each box, the central red line indicates the median, and the bottom and top edges of

the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers. SC: Standard

Cartesian. Asterisk mark (*) means statistical significance, **: p< 0.0001 and *: p< 0.05.

https://doi.org/10.1371/journal.pone.0286123.g006
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Cartesian sampling when SNR� 20 dB. Moreover, ECA reconstruction with UnWRAP trajec-

tories showed superior performance in estimation of AIF BAT than standard Cartesian trajec-

tories over all tested noise level. UnWARP trajectories with medium SNR (SNR� 20 dB,

equivalent overall noise std� 10%) can ensure minor errors in estimating AIF kinetics, i.e. the

median absolute percent error of SIpeak< 5%, median absolute error of Tpeak and BAT< 1 s.

3.3. ECA performance with different acceleration factors (AF)

Figs 9 and 10 show the absolute (percent) error in lesion and AIF kinetics, respectively, mea-

sured from images reconstructed with ECA at different acceleration factors when SNR = 30

dB. The difference between the performance of ECA with different acceleration factors was

much smaller than the variation due to noise. The difference was even smaller for kinetic mea-

surements in lesion voxels and for measurements of AIF peak and time of the AIF peak, where

the signal changed more slowly and smoothly. However, when measuring parameters that

require high-temporal resolution, e.g. AIF BAT, the lowest median absolute error was obtained

with an acceleration factor of 14 (from the nominal temporal resolution of 7 s to accelerated

temporal resolution of 0.5 s).

Fig 7. Absolute percent error or Absolute error in lesion kinetics measured from images by ECA and IFFT with different SNRs. ECA acceleration

factor = 14. NF means noise-free. Makers show median, error bars represent the quarter percentiles. (a) Lesion initial relative enhancement slope (iSlope), (b)

Lesion BAT, and (c) Lesion Ktrans. Yellow ellipse highlighted the best combination of reconstruction method and sampling trajectory for the lowest errors. SC:

Standard Cartesian.

https://doi.org/10.1371/journal.pone.0286123.g007

Fig 8. Median absolute error or median absolute error in AIF kinetics measured from images by ECA and IFFT with different SNRs. ECA acceleration

factor = 14. NF means noise-free. Makers show median, error bars represent the quarter percentiles. (a) AIF peak signal intensity (SIpeak), (b) AIF time at peak

(Tpeak), and (c) AIF BAT. Yellow ellipse highlighted the best combination of reconstruction method and sampling trajectory for the lowest errors. SC: Standard

Cartesian.

https://doi.org/10.1371/journal.pone.0286123.g008
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3.4. Flow phantom experiment

Eighteen ROIs were selected (Fig 11A) representing different locations in the coiled tube. The

SNR of the flow phantom image was 22 dB. Fig 11A and 11B show (a) the 2D cross-sectional

image of the flow phantom and (b) PSE curves of three ROIs of the flow phantom image

reconstructed by 10-fold ECA, standard IFFT with and without Makima interpolation, and

ground truth. Fig 11C shows the absolute percent enhancement errors of the flow phantom

image reconstructed by standard IFFT (Makima interpolated) and ECA reconstruction.

Table 5 lists the absolute error of the parameters obtained from the measured images com-

pared to the ground truth with 10-fold UnWRAP1 ECA and standard IFFT with (mIFFT) and

without Makima interpolation. The absolute errors in measurements of SIpeakand TD were sig-

nificantly lower by ECA reconstruction than IFFT (p< 0.00001) or mIFFT (p < 0.05). The

Makima interpolation significantly increased the accuracy of TD measurements (p< 0.00001)

but did not improve the fidelity of SIpeak measurements.

Fig 9. Median absolute percent error or median absolute error in lesion kinetics measured from images by ECA with different acceleration factor (AF)

when SNR = 30 dB. Makers show median, error bars represent the quarter percentiles. (a) Lesion initial relative enhancement slope (iSlope), (b) Lesion BAT,

and (c) Lesion Ktrans. Yellow ellipse highlighted the best combination of reconstruction method and sampling trajectory for the lowest errors. SC: Standard

Cartesian.

https://doi.org/10.1371/journal.pone.0286123.g009

Fig 10. Median absolute percent error or median absolute error in AIF kinetics measured from images by ECA with different acceleration factor (AF)

when SNR = 30 dB. Makers show median, error bars represent the quarter percentiles. Makers show median, error bars represent the quarter percentiles. (a)

AIF peak signal intensity (SIpeak), (b) AIF time at peak (Tpeak), and (c) AIF BAT. Yellow ellipse highlighted the best combination of reconstruction method and

sampling trajectory for the lowest errors. SC: Standard Cartesian.

https://doi.org/10.1371/journal.pone.0286123.g010
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4. Discussion

Both simulation and flow phantom studies demonstrate that the ECA method can reconstruct

high-temporal-resolution dynamic images using small partitions of k-space. This allows for

more accurate measurements of the kinetics of contrast media distribution through arteries

and tissues. ECA accurately estimates kinetic features such as lesion iSlope and Ktrans. In addi-

tion, ECA provides diagnostic information that is not available from low-temporal resolution

imaging, such as BAT in tissues/lesions, and accurate recovery of the AIF.

To ensure that each subset of k-space measured during each reconstructed time frame

maintains sufficient SNR and morphologic information for accurate ECA image reconstruc-

tion, the UnWRAP trajectories are suggested as they uniformly sample spatial frequencies dur-

ing each time frame. The difference between UnWRAP1 and UnWRAP2 is small compared to

the difference between standard Cartesian and UnWRAP trajectories. UnWRAP2 has slightly

better performance than UnWRAP1 in terms of higher accuracy when estimating Ktrans, BAT

for lesions and AIF, and AIF Tpeak, probably because the UnWRAP2 trajectory samples k-

space more uniformly during each time frame than UnWRAP1.

Fig 11. Flow phantom experiment (a) 2D cross-sectional image with 18 ROIs representing different locations in the tube, (b) mean PSE curves for three ROIs

of flow phantom image reconstructed by 10-fold ECA, standard IFFT with and without Makima interpolation, and ground truth, (3) the absolute mean percent

enhancement errors in the three ROIs of the phantom image reconstructed by standard IFFT (Makima interpolated) and 10-fold UnWRAP1 sampled ECA

reconstruction.

https://doi.org/10.1371/journal.pone.0286123.g011

Table 5. Median value and the 95% confidence interval (CI) of the absolute error of parameters measured from flow phantom images by ECA, IFFT with (mIFFT)

and without Makima interpolation (IFFT).

Absolute error of Parameters ECA mIFFT IFFT

Median 95% CI Median 95% CI Median 95% CI

SIpeak 0.296 [0.209, 0.382] 1.99 [1.85, 2.12] 2.05 [1.92, 2.18]

TD (s) 0 [-0.042, 0.042] 0.317 [0.273, 0.361] 6.38 [5.26,7.51]

Bold highlights the lowest error of the three methods

SIpeak: Peak signal intensity

TD: Delay time between the signal enhancement in ROI1 and the other ROIs.

https://doi.org/10.1371/journal.pone.0286123.t005
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Images reconstructed from UnWRAP k-space sampling trajectories with ECA reconstruc-

tion provide more accurate measurements of the AIF and lesion kinetics than the standard

IFFT, with a lower absolute error and smaller error variance, particularly with medium to high

SNR (SNR�20 dB). Increasing noise level introduces significant errors in parameters esti-

mated by both ECA and IFFT. High SNR (�30 dB) is required to ensure minor errors in mea-

surements of lesion kinetics (<5% in median absolute percent error of iSlope and Ktrans or <1

s in median absolute error of BAT in lesion). For measuring the AIF, a lower overall SNR

(SNR�20 dB) is sufficient to ensure a minor error (<5% in median absolute percent error of

SIpeak or <1 s in median absolute error of Tpeak and BAT in vessels). Our previous measure-

ments show that these SNRs are achievable in current routine clinical practice [1].

UnWRAP trajectories improve the performance of ECA reconstruction. However, they do

not work well with standard IFFT. IFFT with standard Cartesian k-space sampling can provide

smaller absolute (percent) error in estimation of lesion iSlope and BAT, and all AIF features

than IFFT with UnWtRAPs at any SNR.

Different from most regularization methods that are used for compressed sensing with

incoherent non-Cartesian sampling [28–31], the ECA reconstruction can be implemented

with any sampling trajectory, although the performance will be different depending on the

sampling during each reconstruction interval. This means that the ECA method has potential

for improved sampling of retrospective data (if the time-stamped k-space raw data were

saved). ECA can also be used with current MRI protocol without changing the sampling trajec-

tory. In addition, given the high SNR k-space data, the ECA method can achieve high accelera-

tion with a factor of 14, as validated by this simulation study, which is much higher than the

other reported MRI acceleration methods [26, 27].

A large acceleration factor of ECA requires high quality of measurement data. A greater

number of under-determined k-space points for each new time frame would reduce SNR and

increase reconstruction errors. The sparsity of subtraction images acquired with ultrafast

-DCE-MRI during the early phase of enhancement may allow higher acceleration factors with

acceptable errors. In this research, we tested four acceleration factors which increased the

nominal temporal resolution of 7 s/image to 1.4 s/image—0.35 s/image. The smallest median

absolute (percent) error or error variance in pharmacokinetic parameters was achieved with

14-fold acceleration (accelerated temporal resolution with ECA was 0.5 s/image) when

SNR = 30 dB. We recognize that our study has some limitations:

• T2* effects were not simulated. This effect is significant immediately after contrast bolus

administration, particularly in arteries, and can cause errors in kinetic measurements.

• The effect from artifacts, such as motion or Gibbs ringing, was not simulated in this study.

• Our study only discussed Cartesian-based k-space sampling trajectories. It will be important

to validate the effectiveness of ECA reconstruction with non-cartesian trajectories, such as

radial [44] or PROPELLER [45].

• We did not compare ECA quantitively with the other reconstruction methods including

compressed sensing, view sharing, higher parallel imaging acceleration, etc.

In conclusion, this study demonstrates that ECA reconstruction of k-space data sampled

by UnWRAP trajectories can generate high-precision DCE-MR images from short time

intervals of k-space data. This allows accurate tracking of contrast bolus propagation and

accurate pharmacokinetic measurements, particularly during the critical early phase of

enhancement. Accurate measurements of these parameters are critical for increased diag-

nostic accuracy.
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