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ABSTRACT

With the rise of remote cloud services and the consequent rise in data breaches, there is an

increased need for the secure outsourcing of data. The problem of enabling query processing

over encrypted data without decryption is a challenging one, and approaches ranging from

software to hardware solutions have been proposed. In this work, we take a closer look at a

class of solutions that are efficient and deployable in the near-term future and that employ

the use of light weight symmetric key primitives. In exchange for this added efficiency, these

schemes leak certain information about the underlying data and queries. We explore the

limitations of what a passive server-side adversary can learn from this information leakage

and present practical constructions that minimize leakage while supporting complex queries.

In particular, we investigate the security of encrypted databases that support two types

of expressive queries: range queries on multi-attribute data and shortest path queries on

graph-structured data. The former is a common database query on relational data that

requests all records whose attribute values lie within given query intervals. The latter is a

fundamental graph query that returns the shortest path in a graph between two nodes, and

has applications to the analysis of routing networks, metabolic networks, and social networks.

Multi-attribute data and graph-structured data are ubiquitous in our increasingly data-driven

world, and understanding the security of how to encrypt them while also supporting expressive

queries will help move us towards practical deployment.

In the first part of this work, we present the first attacks on schemes that support

range queries over multi-attribute (or multi-dimensional) data. We describe the information

theoretic limitation of reconstruction attacks in two settings and show that, in both cases,

there can be an exponential number of distinct databases that produce equivalent leakage.

We present a full database reconstruction attack that reconstructs the database when all

queries are observed. We then relax these assumptions, and present an order reconstruction

attack and an approximate database reconstruction attack that require only a strict subset

xviii



of the possible range queries to succeed.

In the second part of this work, we shift our focus to schemes that support shortest path

queries on graph-structured data. We initiate our study by describing an attack that recovers

the plaintext queries issued by the client on a graph encryption scheme, which we call the

GKT scheme (Ghosh et al. AsiaCCS 2021). We then present a modified version of the

GKT scheme with reduced leakage in exchange for a 2x increase in bandwidth overhead and

a logarithmic increase in storage overhead. Our scheme uses data-structure techniques to

decompose the graph into edge-disjoint paths. These paths are then stored in a multimap

and encrypted using a standard encrypted multimap scheme. We support our scheme with a

detailed cryptanalysis and explain why this new approach mitigates our previous attack.
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CHAPTER 1

INTRODUCTION

“ Thesis statement: Systems that enable the efficient processing of complex

queries over encrypted data often leak information about the underlying

data and their queries. We take a combinatorial approach to cryptanalyzing

this leakage and mitigating these attacks. ”Data breaches have been occurring with alarming frequency in the last few years, with

billions of accounts being compromised in the Yahoo, Alibaba, and LinkedIn data breaches

alone [15]. It comes, perhaps, as little surprise that these data can be highly sensitive.

Now a days, nearly every piece of information – at all organizational levels – is stored on a

personal computer or back-end server. As we acquire and store increasingly large amounts

of data, we find ourselves outsourcing our data to cloud service providers such as Google

Cloud or Apple iCloud. This data ranges from electronic health records to personal banking

details to confidential research data to classified government files. When such information is

compromised, the effects, such as identity theft and financial fraud, can be detrimental.

Encryption can mitigate the risk of a data breach when data is outsourced to a third-party

cloud service. One simple solution would be to encrypt the data as a single block and

outsource it to the cloud. Querying the data would require one of two approaches. (1) The

server has access to the decryption key: When a query is issued, the server decrypts the data,

searches for and returns the response to the client, and re-encrypts the data. (2) The server

does not have access to the decryption key: When a query is issued, the server returns the

encrypted data to the client and the client decrypts the data and searches for the response. In

the former, the server would still have access to the plaintext data and so would not prevent

a passive server-side adversary (e.g., a curious cloud service employee) from reading the data.

In the latter, the bandwidth requirements for even moderately-sized databases would quickly
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become exorbitant and impractical. This is especially true given that bandwidth from cloud

providers is much more expensive than storage. These strawman solutions thus highlight the

need for a better approach that is both more secure and more bandwidth efficient.

Encrypted databases (EDBs) provide a practical solution for strongly mitigating

network and server-side attacks. EDBs have been extensively studied, and many solutions

have been suggested to enable server query processing over encrypted data on behalf of clients.

One potential solution is to use heavy cryptographic solutions such has fully-homomorphic

encryption [50] or oblivious RAM (ORAM) [54]. While these provide strong security

guarantees, they are still not as efficient and do not scale as well as we would like despite

many recent advances. Another solution is to use trusted hardware solutions, such as

Intel SGX [8,63,92]. However, while readily deployable with today’s technologies, trusted

hardware has been shown be vulnerable to powerful timing attacks [122], attacks leveraging

rogue data cache loads that can extract secret keys [18], and code-reuse attacks that do not

even require kernel privilege [10]. Hardening applications against such attacks often requires

re-writing the application code [16] or using ORAM [119]. More over, trusted hardware still

requires trusting a third party i.e. the company that manufactures the hardware.

The third class of solutions, which we refer to as structured encryption (STE) [29], is

what this thesis is concerned with. Such solutions employ a variety of cryptographic primitives

(often light weight symmetric key primitives) to encrypt structured data. This structured

data may take on various forms ranging from document-oriented data to tree-structured

data to matrix-structured data. Importantly, STE schemes offer sub-linear search on the

encrypted data and thus the encrypted data can be queried for by the client without the

server needing to decrypt the records. In 2022 MongoDB was the first database platform

to release an EDB service that supports expressive queries on randomized encrypted data.

With the deployment of EDBs in the wild such as MongoDB’s “Queryable Encryption” it is

more important than ever to understand the security of such schemes.
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The efficiency of STE schemes, however, comes at a cost: the schemes are inherently

“leaky” and reveal certain information about the underlying data or the query issued whenever

a query is processed. Such leakage can include seemingly benign information such as the

access pattern (i.e. pattern of memory locations accessed when retrieving the response to

a query), search pattern (i.e. equality between queries), and volume pattern (i.e. the

number of encrypted records returned with each query). Starting with the seminal work of

Islam, Kuzu, and Kantarcioglu [64] in which they describe the first attack against searchable

encryption schemes using access pattern, there have been a number of attacks that leverage

leakage to reconstruct the database or queries (e.g. [40, 43, 70, 76]). The state of the art is

still far from being as secure as we would hope. The question of whether existing practical

STE schemes are secure remains an important open question in applied cryptography. More

to the point, understanding the weaknesses of existing STE schemes and learning how these

weaknesses can be exploited is a crucial first step towards building better, more secure

schemes. In particular, we seek to better understand the complex queries that these schemes

must support in order to be useful in today’s world of big data. We describe two of the most

important queries in the paragraphs below.

Range queries on multi-attribute data. Range queries are a fundamental query type that

requests all records such whose value of a particular attribute (or attributes) lies within a given

closed interval. All prior work on range queries, both on the attack side [57,58,60,70,74] and

constructive side, have focused on range queries over one attribute. This thesis initiates the

study of structured encryption schemes that support private range queries over two-attribute

(two-dimensional) data. A range query over two attributes has the form:

SELECT * FROM T

WHERE (years BETWEEN 2010 AND 2020)

AND (avg_temp BETWEEN 15 AND 18)
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where T is a table and years and avg_temp are attributes. In order to move towards practical

EDBs, it is necessary that we better understand the security that such schemes provide.

Shortest path queries on graph-structured data. Graphs are an important mathematical

object that can be used to visualize data and compute statistics about the data. Graph-

structured data have been used in numerous settings including PageRank, social networks,

fraud detection to biological networks, and recommendation systems – to name a few. NoSQL

(non-relational) databases store and support queries on non-tabular data such as graphs.

Given the importance of graph-structured data, graph database systems such as Amazon

Neptune [5], Facebook TAO [17], Neo4j [97], and GraphDB [99] have risen in popularity.

Despite the major role that graph-structured data and plaintext graph database systems

play in real-world data management, our understanding of graph encryption schemes (GESs)

is limited. Few GES have been described, most can only support one query type, and the

recent attacks on existing schemes call into question their security. The second half of my

thesis concerns itself with schemes that support single-pair shortest path queries on graphs.

Formally, such a query takes as input a graph G = (V,E) and two vertices (u, v) ∈ V × V

and returns the shortest path between u and v in G, if it exists.

This thesis aims at advancing our understanding of STE schemes so that we can build

practical schemes that support complex queries without compromising security. In particular,

we take a close look at schemes that support range queries over multi-attribute (multi-

dimensional) datasets and shortest path queries over graphs. In Chapters 3 and 4 we present

the first attacks against schemes that support range queries in more than one dimension. In

Chapter 5 we present the first attack against a scheme that supports shortest path queries

on graphs. We conclude this thesis by then describing a novel scheme for supporting shortest

path queries in Chapter 6; this scheme provably mitigates our attack while still boasting

asymptotic efficiency. All our work includes theoretical analysis and experiments on real-world

datasets to demonstrate the practicality of our attacks/scheme.
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1.1 Thesis Overview

We now describe the organization of this thesis. The general trajectory of this work has been

to first understand the weaknesses of existing schemes, develop attacks against these schemes,

and then use the lessons learned to propose novel schemes that provably mitigate the attacks.

This thesis specifically looks at two expressive query types important in modern databases:

range queries over multi-attribute data and shortest path queries on graph-structured data.

The technical contributions of this thesis are divided into four chapters as follows.

• Chapter 3 presents the paper “Full Database Reconstruction Attack in Two Dimensions,”

which first appeared in CCS 2020 [43]. This work exploits access pattern leakage

along with known query distribution or search pattern leakage to achieve full database

reconstruction (which asks the adversary to recover the exact domain values of each

encrypted record). This is the first attack to go beyond one dimension, and explore the

the security of schemes supporting range queries in higher dimensions. One-dimensional

databases can be reconstructed up to reflection. In contrast, we show that reconstruction

in higher dimensions is significantly more complex and that the size of the set of two-

dimensional databases that produce the same leakage profile can be exponential in

the number of records. We present a complete polynomial-time attack that returns a

polynomial-size encoding of all databases consistent with the given leakage profile.

• One natural question that arose from the work in Chapter 3 was whether one could

launch a database reconstruction attack using fewer queries. This question gave way

to Chapter 4, which covers our follow-up paper “Reconstructing with Less: Leakage

Abuse Attacks in Two Dimensions,” which appeared in CCS 2021 [87]. We considered

two new database reconstruction goals: order reconstruction (which asks the adversary

to recover the relative orders of the encrypted records) and approximate database

reconstruction (which asks the adversary to recover the domain values of each record to
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within some small error of the true value). Our order reconstruction attack requires only

access pattern, and we experimentally demonstrate that reconstructing the order in

higher dimensions can enable the attacker to infer the geometry of the underlying data –

especially in more dense databases. Our approximate database reconstruction attack is

distribution-agnostic and succeeds given any subset of the possible search pattern and

the order of the records in the database. We additionally show how auxiliary statistical

information of a related dataset can further improve reconstruction.

• In Chapter 5, we present “An Efficient Query Recovery Attack Against a Graph

Encryption Scheme," which appeared in ESORICS 2022 [45]. Ghosh, Kamara and

Tamassia presented a graph encryption scheme supporting shortest path queries [52]. We

show how to perform a query recovery attack against this scheme when the adversary

is given the original graph together with the leakage of certain subsets of queries.

Specifically, the goal of the adversary is to recover the plaintext values of the queries

issued – up to any information theoretic limitations – given the setup and query leakage.

Our attack falls within the security model used by Ghosh et al., and is the first targeting

schemes supporting shortest path queries. For a graph on n vertices, our attack runs in

time O(n3) and matches the time complexity of the scheme’s setup. We evaluate the

attack’s performance using the real world datasets used in the original paper.

• In light of the attack in Chapter 5, we set out to design a new secure graph encryption

scheme that supports single-pair shortest path queries. In Chapter 6, titled “A Graph

Encryption Scheme for Single-Pair Shortest Path Queries with Less Leakage”, we

present a scheme that employs classic data-structure techniques to reduce query leakage

and mitigate our described attack. Our scheme only incurs an additional logarithmic

factor in storage overhead over the GKT scheme, for a total of O(n2 log n) storage

where n is the number of vertices in the graph. Our scheme leverages classic graph

algorithm techniques to compute spanning subtrees whose paths correspond to shortest
6



paths in the original graph and then decompose those trees into edge disjoint paths; a

logarithmic number of subpaths of each edge-disjoint path is stored in a multimap and

then encrypted. For any query, the response size is guaranteed to be at most x2 the

size of the queried shortest path, however our experimental evaluation on real world

datasets demonstrates that, in practice, the size of the response is nearly optimal.
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CHAPTER 2

COMMON PRELIMINARIES

Notation. For some integer n, let [n] = {1, 2, . . . , n}. We denote the concatenation of two

strings a and b as a||b.

Dictionaries and Multimaps. A dictionary D is a map from a label space L to a

value space V. A multimap is a generalization of a dictionary in which each label may be

associated with multiple values. Formally, a multimap M is a map from a label space L to

the powerset of a value space 2V. If lab 7→ val then we write val ← D[lab]. We denote the

assignment of val to lab as D[lab]← val (and correspondingly for multimaps).

2.1 Graphs

Throughout this thesis, we employ the use of graphs both as a tool to carry out our attacks

and as a way to structure data that we wish to encrypt. A graph is a pair G = (V,E)

consisting of a vertex set V and an edge set E. A graph is simple if the pairs of vertices in

E are unordered and a graph is directed if the edges specify a direction from one vertex to

another. Two vertices u, v ∈ V are connected if there exists a path from u to v in G.

A digraph is a tuple G = (V,E) such that V is the vertex set and E is the directed edge

set. For any two vertices or nodes u, v ∈ V we denote a directed edge from u to v as the

pair (u, v). A source vertex is a vertex with only outgoing edges and a sink vertex is a

vertex with only incoming edges.

A tree is a connected, acyclic graph. A rooted tree T = (V,E, r) is a tree in which one

vertex r has been designated the root. For some rooted tree T = (V,E, r) and vertex v ∈ V

we denote by T [v] the subtree of T induced by v and all its descendants.

Given a graph G = (V,E) and some vertex v ∈ V , we define a single-destination

shortest path (SDSP) tree for v to be a directed spanning tree T such that T is a subgraph
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of G, v is the only sink in T , and each path from u ∈ V \ {v} to v in T is a shortest path

from u to v in G. An example of an SDSP tree can be found in Figure 5.1c.

We also define two binary operations on graphs. Given two graphs G = (V,E) and

H = (V ′, E′), the union of G and H is defined as G ∪H = (V ∪ V ′, E ∪ E′). Given a graph

G = (V,E) and a subgraph H = (V ′, E′) such that V ′ ⊆ V,E′ ⊆ E, the graph subtraction

of H from G is defined as G \H = (V \ V ′, E \ E′).

2.1.1 Graph Isomorphisms

Our attack in Chapter 5 makes heavy use of graph isomorphisms and automorphisms.

Definition 1. An isomorphism of graphs G1 = (V1, E1) and G2 = (V2, E2) is a bijection

between vertex sets φ : V1 → V2 such that for all u, v ∈ V1, (u, v) ∈ E1 if and only if

(φ(u), φ(v)) ∈ E2. If such an isomorphism exists, we write G1
∼= G2.

Definition 2. An isomorphism of rooted trees T1 = (V1, E1, r1) and T2 = (V2, E2, r2) is

an isomorphism φ from T1 to T2 (as graphs) such that φ(r1) = r2.

2.1.2 Canonical Names

A canonical name is an encoding Name(·) mapping graphs to bit-strings such that, for

any two graphs H and G, Name(G) = Name(H) if and only if G ∼= H. For rooted trees Aho,

Hopcraft, and Ullman (AHU) [3] describe an algorithm for computing a specific canonical

name in O(n) time. We refer to this as the canonical name and describe it next.

The AHU Algorithm. We use a modified AHU algorithm, denoted as ComputeNames,

to compute the canonical names of rooted trees (and their subtrees) and determine if they

are isomorphic. ComputeNames takes as input a rooted tree T = (V,E, r), a vertex v ∈ V ,

and an empty dictionary Names. It outputs the canonical name of the subtree T [v] (which we

also refer to as the canonical name of v) and a dictionary Names that maps each descendent
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u of v to the canonical name of T [u]. The algorithm proceeds from the leaves to the root. It

assigns the name ‘10’ to all leaves of the tree. It then recursively visits each descendent u

of v and assigns u a name by sorting the names of its children in increasing lexicographic

order, concatenating them into an intermediate name children_names and assigning the

name ‘1||children_names||0’ to u (see Figure 5.1b for an example). The canonical name of

T , Name(T ), is the name assigned to the root r by this algorithm.

Our implementation of the algorithm returns a dictionary Names mapping each descendent

u of v to the short canonical name of the subtree T [u]. Maintaining the dictionary Names

enables us to compute the canonical names of the subtrees rooted at each v ∈ V in a single

traversal of T . ComputeNames takes time and space O(n2) where |V | = n. Note that the

original AHU algorithm can be modified to run in O(n) time, by only considering one level

at a time and reassigning integers to the vertices at that level [3]. In contrast, we need to

assign names to each vertex in the tree in order to later compute the path names.

The pseudocode of ComputeNames can be found in Algorithm 1.

Algorithm 1 [3] ComputeNames
Input: Rooted tree T = (V,E, r), vertex v ∈ V , and dictionary Names.
Output: Dictionary Names.

1: if v is a leaf then
2: Names[v] = “10”
3: return Names
4: else
5: Initialize empty list temp = [ ]
6: for child u of v do
7: Names← ComputeNames(T, v,Names)
8: temp.append(Names[u])

9: Sort temp in ascending order
10: Concatenate names in temp as children_name
11: Names[v] = “1”||children_name||“0”
12: return Names
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2.1.3 Heavy-Light Decomposition

Heavy-light decomposition (HLD) was introduced by Sleator and Tarjan in order

to develop fast algorithms for a number of tree problems, including computing nearest

common ancestors and various network flow problems [116]. Before discussing the method,

we introduce a few definitions.

Definition 3. Given a rooted tree T , the size of a node v in T , sizeT (v), is the number of

nodes in the subtree rooted at node v (the size includes the node v itself).

Definition 4. Let T be a rooted tree. An edge between a node v in T and its parent is defined

as heavy if and only if sizeT (v) ≥ 1
2sizeT (parent(v)). All other edges in the tree are light.

By definition, any node in a tree has at most one child linked to by a heavy edge.

Definition 5. The heavy edges decompose the tree nodes of a tree T into vertex disjoint paths

which are called heavy chains. These paths are connected to each other via light edges.

Theorem 2.1.1. ([116]) Let T be a rooted tree with n nodes. From any node in T , the

number of light edges needed to reach the root of the tree is at most log n. Thus, the number

of heavy chains along the path from any node to the root is also O(log n).

Complexity. This algorithm only marks each edge while exploring the input tree T using

DFS. The running time is thus the same time and space as running DFS on a tree i.e. O(n)

where n is the number of nodes in T .
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Algorithm 2 [116] ComputeHLD
Input: Rooted tree T = (V,E, r), and vertex v ∈ V .
Output: Size of subtree T [v] and tree T with edges labeled as either “heavy” or “light”.

1: if v is a leaf then
2: // The subtree rooted at v is of size 1.
3: return 1, T
4: else
5: v_size = 1
6: temp = {}
7: // Compute size of subtree rooted at v.
8: for child w of v do
9: w_size, T ← ComputeHLD(T,w)

10: temp[w]← w_size
11: v_size← v_size+ w_size

12: for (w,w_size) in temp do
13: // Determine if (w, v) is heavy or light.
14: if w_size < v_size/2 then
15: Label (w, v) in T as “light”
16: else
17: Label (w, v) in T as “heavy”
18: return v_size, T

2.2 Two-Dimensional Databases

In Chapters 3 and 4, we fix positive integers N0, N1 and let the domain D be defined as

D = [N0]× [N1]. When N0 = N1 we say that D is square. We call main diagonal of D

the set of points that lie on line segment from (0, 0) to (N0 + 1, N1 + 1). For a point w ∈ D,

we write w0 for its first coordinate (horizontal) and w1 for its second coordinate (vertical),

so w = (w0, w1). We also recall the geometric concept of dominance between points: point

w ∈ D dominates point x ∈ D if x0 ≤ w0 and x1 ≤ w1. We denote this as x ⪯ w. Similarly,

point w ∈ D anti-dominates point x ∈ D if w0 ≤ x0 and x1 ≤ w1, and we denote this as

x ⪯a w. The dominance or anti-dominance is said to be strict if the above inequalities are

strict. We say that w minimally (anti-) dominates x if there is no point v ̸= w, x such

that w (anti-) dominates v and v (anti-) dominates x.

We define a 2-dimensional database D over domain D as an element of DR for some

integer R ≥ 1, i.e., an R-tuple of points in D. We refer to the entries of D as records. We
12



call the identifier (or ID) of a record its index in the tuple (an integer j ∈ [R]). Also, the

domain value associated with ID j is denoted D[j]. Note that the same value in D may be

associated with multiple database records. In the rest of this thesis, for simplicity, whenever

it is clear from the context, we may refer to records of a database as points.

Range queries and responses. A range query returns the identifiers of the records whose

points are in a given range. Formally, a range query is a pair q = (c, d) ∈ D2 such that c ⪯ d.

We define the response or access pattern of q = (c, d) to be the set of identifiers of records

in D whose points lie in the rectangle “between” c and d. Formally,

Resp(D, q) = {j ∈ [R] : c ⪯ D[j] ⪯ d}. (2.1)

We define the response multiset of a database D, denoted RM(D), as the multiset of

all access patterns of D:

RM(D) = {{Resp(D, q) : q = (c, d) ∈ D2, c ⪯ d}}. (2.2)

The double bracket notation emphasises the multiset as distinct queries q and q′ may produce

the same response, Resp(D, q) = Resp(D, q′). For two multisets A and B, we say that A is a

submultiset of B if A is contained in B. We define the response set of D, denoted RS(D),

to be the set associated with RM(D) where each response appears exactly once.

Computing the response multiset. Our algorithms assume the response multiset RM(D)

as input. This allows us to isolate the combinatorial and geometric structure of the problem.

We now show how an adversary can calculate RM(D) with access pattern leakage plus (i)

known query distribution, (ii) search pattern leakage and known query distribution, or (iii)

search pattern leakage and known database size. These are all standard in previous work.

In case (i), the adversary computes each unique response s of RM(D) and its multiplicity,

which is given by the probability of s being returned by a query. For example, given a uniform

13



distribution of queries, the multiplicities can be computed with high probability using a

standard Chernoff bound argument after roughly O(N4) queries. Similar techniques can be

used for other distributions.

In cases (ii) and (iii), the adversary can derive RM(D) after observing a response to every

query at least once. To know when this has occurred, the adversary waits for a sufficient

number of queries that depends on the query distribution (case (ii)) or until all distinct

queries have been seen, their count based on the size of the database (case (iii)). Notably, in

cases (ii) and (iii), if the queries are uniform, O(N2 logN) queries are sufficient to compute

RM(D) with high probability, by the coupon collector argument.

2.2.1 Leakage Equivalent databases

We now introduce the notion of equivalent databases.

Definition 6. Databases D and D′ are equivalent with respect to the response multiset

if RM(D) = RM(D′) and equivalent with respect to the response set if RS(D) = RS(D′).

Both equivalence definitions imply that the databases the same number of records. When

it is clear from context which type of equivalence we are referring to, we may simply refer to

“equivalent databases”.

2.2.2 Full database reconstruction

We denote the set of databases equivalent to D with respect to the response multiset as

E(D) = {D′ ∈ DR : RM(D) = RM(D′)}. (2.3)

We define full database reconstruction as follows:

Definition 7. Full Database Reconstruction (FDR). Given the multiset RM(D) for

some database D, compute E(D).
14
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Figure 2.1: The dominance graph (blue) and anti-dominance graph (red) for a database with
8 records and components {u1}, {u2, u3}, {u4}, {u5, u6, u7}, and {u8}.

Computing E(D) is the best an adversary can do without prior information on D or the

queries. We revisit the setting later and show that, with training data, an adversary can

often recover D after computing E(D) by looking for the most typical member.

2.2.3 Order Reconstruction

In order to define order reconstruction, we must first introduce the concept of (anti-)dominance

graphs. The definitions below are illustrated in Figure 2.1.

Definition 8. The dominance graph, G = (V,E), of a set of points S, is the digraph where

V = S and (a, b) ∈ E if b minimally dominates a and a, b ∈ V .

Definition 9. The anti-dominance graph, G′ = (V ′, E′), of a set of points S, is the

digraph where V ′ = S and (a, b) ∈ E′ if b minimally anti-dominates a and a, b ∈ V ′.

Let D be a database and let G and G′ be the dominance and anti-dominance graphs of

D, respectively. We define the set of all possible point orderings of databases equivalent to D

with respect to response set, RS(D) as Eo(D). Formally,

Eo(D) = {D′ ∈ DR : RS(D) = RS(D′)}. (2.4)

We define order reconstruction (OR) as follows:
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Definition 10. Order Reconstruction (OR). Given a set RS(D) of some database D,

compute all pairs of dominance and anti-dominance graphs (G,G′) such that any database

D′ with record relationships defined by (G,G′) is equivalent to D with respect to the response

set, i.e. RS(D) = RS(D′).

Computing (G,G′) is the information theoretic best that an adversary can do without

additional information.

2.2.4 Approximate Database Reconstruction

The problem of approximate database reconstruction (ADR) is defined as follows.

Given the order of points in D and a multiset of search token and response pairs (where

each pair corresponds to one of the observed queries), (i) estimate the number of unique

queries that each record appears in and then (ii) use this information to construct a system

of non-linear equations that can be solved to give approximate values of the records.

2.3 Prior and Related Work

2.3.1 Searchable Symmetric Encryption and Structured Encryption

Key word search over encrypted outsourced documents is a fundamental problem in data

management. The goal is typically to build and encrypt an inverted-index that maps each

key word to the set of matching document identifiers such that that the server can process

key word queries over the encrypted data. The search should be sub-linear in the size of the

data. Searchable symmetric encryption (SSE) presents a solution to this problem and

there exists a long line of work that formalizes the notion of SSE and presents increasingly

secure and efficient solutions such as [13,14,23,24,29,33,34,51,68,69,96,117] *see also the

survey by Fuller et al. [48]). All existing SSE schemes make an important trade-off between

security and efficiency: when a query is processed, the client learns the results of the query
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and the server learns some small well-defined information about the underlying data and the

query. This “leakage” can include information such as access pattern or volume patters; we

discuss the implications of this leakage in following subsections.

A more recent line of work has proposed and analyzed the security of volume-hiding

schemes [7,66,102,126,127] that reduces this leakage by hiding the number of records returned.

These schemes generally pad the responses in order to hide the volume at the expense of a

small constant factor increase in the bandwidth and storage overhead.

Structured encryption (STE) was introduced by Chase and Kamara in [29] as a way

to generalize SSE. STE enables the encryption of structured data (e.g., a social network or a

dictionary) in such a way that search on this data is both private and efficient. search for a

variety of query types beyond key-word search, including graph queries (e.g., [29, 52]) and

subsets of SQL (e.g., [42, 65]). These approaches have been used both in data management

research (e.g., [101,103,106]) and industry (e.g., [30, 91]).

2.3.2 Range Supporting Schemes

Order revealing encryption (ORE) [2, 11, 12] has been used to support range queries,

but even the most-secure “ideal” ORE constructions leak the order of the records before even

being queried, and ORE schemes have been shown vulnerable to powerful leakage abuse

attacks (e.g., [9, 40, 59, 95]). In contrast, the encrypted records stored in range schemes

built from Searchable symmetric encryption (SSE) do not inherently leak such order

information; these schemes often build an index that maps range queries to the records

(or index of the records) that match the range, and the index is then encrypted using a

standard SSE scheme. To respond to a range query, the client may query for a specific

range or a collection of subranges that correspond to the range query of interest. Most

efficient range schemes built from SSE only support range queries on only single-attribute

(1D) data. Demertzis et al. [37,38] present one-dimensional range schemes with storage and
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security trade-offs, and Faber et al. [42] builds on the SSE scheme in [24] to support 1D

range, substring, wild-card, and phrase queries. Falzon et al. [44] are the first to construct

schemes that also support multi-dimensional queries over symmetrically encrypted data.

2.3.3 Leakage Abuse Attacks against Range Supporting Schemes

The following attacks described in this subsection were carried out by passive adversaries

against a one-dimensional database with the domain [1, N ] for some integer N . Kellaris et

al. [70] were the first to give such an attack from the leakage of range queries. They showed

that given the access pattern of the queries, one could determine the exact record values up

to reflection after observing O(N4 logN) uniformly random queries. We refer to the goal

of recovering the exact values of all the records as full database reconstruction (FDR).

Kellaris et al. further showed that FDR can be achieved with only O(N2 logN) queries if

the database is dense. A dense database is one in which each domain value is associated

with at least one record. Since this seminal work, a number of other papers have explored

the problem in one-dimension (e.g., [58,73,74,76,88]). In [76], Lacharité et al. improve on

the dense database attack and present an algorithm that succeeds in FDR of dense databases

with only O(N logN) uniformly random queries.

Order reconstruction was introduced in [70] as the first step of their FDR attack.

Grubbs et al. [58] generalize the attack to achieve sacrificial ϵ-approximate order reconstruction

(ϵ-AOR) where ϵ > 0 is the chosen precision factor. The goal of sacrificial ϵ-AOR is to recover

the order of all records, except for records that are either within ϵN of each other or within

ϵN of the domain endpoints. Their attack achieves sacrificial ϵ-AOR with probability 1− δ

for some δ > 0 given the access pattern of O(ϵ−1 log ϵ−1 + ϵ−1 log δ−1) uniformly random

queries. Furthermore, setting ϵ = 1/N achieves FDR.

Approximate database reconstruction from access pattern of range queries in one-

dimension was addressed in [58,74,76]. Lacharité et al. [76] introduce ϵ-approximate database
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reconstruction (ϵ-ADR) as the goal of reconstructing each record value up to ϵN error for

some ϵ > 0. They give an attack that achieves ϵ-ADR with O(N log ϵ−1) uniform queries.

In [58], the authors describe an attack that achieves sacrificial ϵ-ADR; the goal is to recover

all values up to an error of ϵN , while “sacrificing” recovery of points within ϵN of the domain

endpoints. Concepts from statistical learning theory are applied to achieve a scale-free attack

that succeeds with only O(ϵ−2 log ϵ−1) queries.

Kornaropoulos et al. [74] reconstruct a one-dimensional database without knowledge of

the underlying query distribution and without observing all possible queries by employing

statistical estimators to approximate the support size of the conditional distribution of

search tokens given a particular response. Their agnostic reconstruction attack achieves

reconstruction with good accuracy in a variety of settings including and beyond the uniform

query distribution.

There are a number of reconstruction attacks [57,60,70,75] that only use volume pattern

i.e., the number of records matching each query. The goal of these attacks is to reccover the

number of records associated with each domain value. Kelaris et al. [70] initiate the study

of attacks using only volume pattern; their attack builds a polynomial from the observed

volumes and then factors it into two polynomials to recover the database volumes. Grubbs

et al. [57] give an attack that builds a graph from the leakage and then uses clique-finding

combined with heuristics to recover the database. The attack by Gui et al. [60] uses a greedy

approach to recover the database volumes from the leakage of range queries with bounded

width b. Most recently, Kornaropoulos et al. [75] give an attack that employs a combination

of counting functions and constrained optimization solvers.

2.3.4 Graph Encryption Schemes

We now describe prior and related work concerning graph encryption schemes. Chase and

Kamara [29] demonstrate the generality of STE by describing schemes that support adjacency,
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neighbor, and focused subgraph queries on graphs. Meng et al. [93] present three schemes of

varying leakage levels and efficiencies. To reduce storage overhead, their schemes leverage

sketch-based oracles that select seed vertices and store the exact shortest distance from

all vertices to the seeds; these distances are then used to estimate shortest paths between

any two vertices in the graph. Wang et al. [128] utilize additively homomorphic encryption

and garbled circuits to encrypt graph data and support shortest distance queries. Ghosh et

al. [52] describe a scheme based on the SP-matrix of the graph and whose setup time, query

time, and storage are asymptotically optimal.

A number of STE schemes supporting other query types and graphs have been described

such as GES supporting top-k-nearest neighbors [82], STE for conceptual graphs [105], STE

for knowledge graphs [130], and dynamic STE for bipartite graphs [77,80]. Solutions for graph

queries in other security models have also been proposed (e.g., information retrieval [129]

and differential privacy [111]), but are outside the scope of this work.

2.3.5 Leakage Abuse Attacks against Graph Encryption Schemes

The leakage of graph encryption schemes was first analyzed by Goetschmann [53]. The author

considers schemes that support approximate shortest path queries that use sketch-based

distance oracles (e.g., [93]), presents two methods for estimating distances between nodes,

and gives a query recovery attack that aims to recover the vertices in an encrypted query; the

experimental evaluation demonstrates that with auxiliary knowledge on some queries, the

adversary can distinguish among candidate vertices which vertex was queried. Our attack

which we describe in Chapter 5 is also a query recovery attack, but uses knowledge of the

plaintext graph rather than partial knowledge of some queries.
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CHAPTER 3

FULL DATABASE RECONSTRUCTION FROM RANGE

QUERIES IN TWO DIMENSIONS

This chapter first appeared as a conference publication by the same title with minor

modifications in CCS 2020 [43]. It is joint work with Evangelia Anna Markatou,

Akshima, David Cash, Adam Rivkin, Jesse Stern, and Roberto Tamassia.

3.1 Introduction

Several recent works [57, 58, 70, 73, 74, 76, 88] have presented attacks that leverage a mild-

looking form of leakage on range queries and k-NN queries. The attacks assume knowledge of

the access pattern of the query, meaning the identifiers of the records in the response of the

query. With enough queries and knowledge of their distribution, these attacks can efficiently

fully recover the plaintext data, up to reflection (intuitively, the attack is not sure about the

order of the data, since increasing and decreasing sequences of points are indistinguishable

in their models). Attacks can also leverage another type of mild-looking leakage, search

pattern leakage. Using search pattern leakage, the attacker can determine whether two

identical responses correspond to the same query. The combination of access and search

pattern leakage can achieve equivalent results without knowledge of the query distributions.

3.1.1 Contributions

We perform the first exploration of reconstruction attacks on encrypted databases that support

two-dimensional range queries. Concretely, we consider settings that allow for conjunctive

range queries on two columns (e.g. a query q selects all records with weight between w0

and w1 and height between h0 and h1). We consider this problem because plausible efficient

constructions can support such queries while leaking strictly less information than systems
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Figure 3.1: Reconstruction of Malte Spitz’s [118] location data from 08/31/2009. Original
locations are drawn as blue points and their reflections as yellow triangles. The points in each
highlighted box and stand-alone pair can independently flip along the diagonal, producing
1024 equivalent databases.

that preform one-dimensional range queries. Prior work in one-dimension leaves the security

of these systems open.

Our results assume a basic form of leakage where a persistent passive adversary learns

which (encrypted) records are returned for each query. Our attack additionally requires

either knowledge of the query distribution or search pattern leakage. Our leakage choice

is conservative, and as we argue below, will apply to many potential approaches towards

supporting two-dimensional range queries. It is also strong, in that (following prior work) we

require all possible queries to be issued in order to get a clean theoretical understanding of

possible attacks. In our setting we completely characterize what is information-theoretically

possible to recover by the adversary, showing that in the two-dimensional setting it can be

complicated even to describe. We then develop an efficient algorithm that succeeds in finding

all databases consistent with the observed leakage.

There are many possible ways to support encrypted two-dimensional range queries. We

selected a leakage profile that reflects a common-denominator leakage that appears difficult

to efficiently avoid and is also technically interesting to attack. To begin understanding

our setting, consider an index-based approach that independently supports range queries on

individual columns, and simply translates a two-dimensional query into the intersection of
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one-dimensional queries. Such a system, on the query q from the previous paragraph, will

leak which columns have the requested weight and which columns have the requested height.

Prior one-dimensional attacks (e.g. [58,70]) can thus be applied to each dimension, recovering

the full database.

A few approaches can leak strictly less than this one and render the one-dimensional

attacks inapplicable. A conceptually simple system could, roughly speaking, precompute

a joint index for all possible two-dimensional q. Once this index is encrypted (using an

encrypted multimap [23, 29, 34], say), only the records matching both dimensions will be

retrieved when processing a given q (in contrast to the naive solution, where records matching

the weight range but not the height range would be accessed unnecessarily). Since the

dimensions interfere with each other to produce leakage, prior attacks do not apply.

Another approach which could produce similar leakage is to use an oblivious primitive like

ORAM to obtain the identifiers of records matching the query, and then access the actual

records in a standard data store. Such an approach, which has been used for encrypted

keyword searches (e.g., [49]), and dynamic constructions like [36,51], is desirable when the

actual records are large compared to the indexing information, as it would reduce the size of

the ORAM. This approach hides the search pattern and the leakage on individual columns,

but still reveals the access pattern of records matching the query. Thus, this method is

vulnerable to our attack when the query distribution is known.

Maple is a system for multi-dimensional range search over encrypted cloud data [125].

Their approach focuses on not leaking single-dimension information. To achieve this, the

system leaks, in addition to access and search pattern leakage, the path pattern of the search

tree (which nodes were accessed on the multi-dimensional range search tree) and the values

of each query (which ranges are being queried). More recently, Kamara et al. [65, 67] show

how to perform conjunctive SQL queries with a reduced leakage profile, but only for a single

value and not ranges.
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In contrast to the one-dimensional case where complete recovery up to reflection is

possible, we present an information-theoretic limit to the power of reconstruction attacks in

two dimensions. Namely, we show that there exist exponentially-large families of different

databases that have indistinguishable access and search pattern leakage. Also, for a database

D, we fully characterize the set of databases with leakage identical to that of D in terms

of combinatorial and geometric properties of D as well as number-theoretic considerations

involving the domain of points of D, including the number of integral solutions to a certain

Diophantine equation. We tame this complexity by providing a characterization and succinct

encoding of this set of indistinguishable databases.

Based on this characterization, we exhibit a poly-time attack that recovers the set of

indistinguishable databases returning a poly-space encoding of it. For a database with R

records over a rectangular domain with N0×N1 points, where N = N0 ·N1, our attack takes

time O((N0 +N1)(RN2 + R logR)). Our attack works for an arbitrary database, with no

assumptions on the configuration of the points. In particular, we support both dense and

sparse databases, allowing zero, one, or multiple records per domain point.

We have implemented our attack and evaluated it on several datasets of real-world

health and location data. We illustrate in Figure 3.1 our reconstruction of a real-world

location dataset by our attack, which recovers a family of equivalent databases obtained by

independently flipping along the diagonal certain highlighted subsets of points. Finally, we

developed another attack that, assuming some prior auxiliary knowledge, picks the “real”

database out from amongst the indistinguishable set, and showed that it typically succeeds

on real-world data.

We summarize our main contributions as follows:

1. We characterize the families of 2D databases with the same leakage profile and show

they may contain an exponential number of databases (Section 3.3, Theorems 3.3.3

and 3.3.4).
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2. We develop an efficient poly-time full database reconstruction attack that encodes

the potentially exponential databases in poly-space (Section 3.4, Algorithm 7 and

Theorem 3.4.5).

3. We implement the attack and evaluate it on real-world location and health data

(Section 3.5).

4. Given access to training data, we show how to reduce the size of the solution set

(Section 3.6).

This chapter is the product of merging two independent lines of work, [4] and [90].

3.2 Technical Tools and Overview

We introduce the main technical ingredients in our algorithm, and then provide an overview

of how they are combined. At the end of this section we apply these tools to classify the

structure of E(D) for any database D. We will then apply our classification in the analysis of

our main algorithm.

Reflection. Symmetries will play a central role in understanding E(D), the most important

of which for us is reflection. We define the reflection of a point w = (w0, w1) of domain

D = [N0]× [N1] to be the point w′ = (w′0, w
′
1) such that (see Figure 3.2)

w′0 = w1 ·
N0 + 1

N1 + 1
; w′1 = w0 ·

N1 + 1

N0 + 1
. (3.1)

We refer to the reflection of a point using function w′ = σ(w). The reflection of w, σ(w), can

be obtained geometrically by considering the rectangle with horizontal and vertical sides that

has one corner at point w and two other corners on the main diagonal of D. The reflection,

w′ of w is the remaining corner of this rectangle.
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Figure 3.2: Points u, v and w of domain D = [14] × [9] (thick black rectangle) and their
reflections u′, v′ and w′. We have that u′ ∈ D but v′ /∈ D and w′ /∈ D. By Lemma 3.2.1,
the points of D whose reflection is in D have coordinates of the type (3i, 2j), i.e., are at the
intersections of the dotted grid-lines.

Note that the reflection w′ of w may or may not be in D. The following lemma characterizes

the points of D whose reflection is also in D.

Lemma 3.2.1. Let w = (w0, w1) be a point of domain D = [N0] × [N1] and let α0
α1

be the

reduction of fraction N0+1
N1+1 to its lowest terms. We have that the reflection of w is in domain

D if and only if w0 is a multiple of α0 and w1 is a multiple of α1.

Our definition of reflection refers to the main diagonal of the domain. We can define

a similar concept referring to the other diagonal, i.e., the line segment from (N0 + 1, 0)

to (0, N1 + 1).

3.2.1 Query Densities

We will repeatedly use a strategy that generalizes the main observation of [70]. There, in

trying to determine a point x, they observed that one can compute the proportion of RM(D)

in which x appears. Then they could proceed algebraically to limit the number of possible

values for x. In particular, in one dimension, this narrowed x down to two values. The final

step of their algorithm reduced this to one possibility by fixing another point y and recording

how often x and y appeared together, adding another constraint.
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Figure 3.3: Illustration of Equations 3.2 and 3.3 for points of domain D = [14] × [9].
(a) The query density of point w = (6, 2) is the product of the areas of the two rectangles,
i.e., ρw = 6 · 2 · (15 − 6) · (10 − 2) = 12 · 72 = 864. Since the reflection w′ = (3, 4) of w
is a point of D, by Lemma 3.2.2, we have ρw′ = ρw = 864. (b) The query density of pair
v = (6, 2) and w = (12, 4) is the product of the areas of the two purple filled rectangles, i.e.,
ρv,w = 12 · 18 = 216. Since the reflections v′ = (3, 4) of v and w′ = (6, 8) of w are points of
D, by Lemma 3.2.3, we have ρv,w = ρv′,w = ρv,w′ = ρv′,w′ = 216.

We now generalize the notion of query density to two dimensions. For a domain D =

[N0]× [N1], and x ∈ D, define

ρx =
∣∣∣{(c, d) ∈ D2 : c ⪯ x ⪯ d}

∣∣∣
and for a pair of points x, y ∈ D define

ρx,y =
∣∣∣{(c, d) ∈ D2 : c ⪯ x, y ⪯ d}

∣∣∣ .
These are the number of queries that contain x or x and y (respectively). Thus, the formula

for the query density ρx of a point x = (x0, x1) ∈ D = [N0]× [N1] is as follows (see Figures 3.3

and 3.5).

ρx = x0x1(N0 + 1− x0)(N1 + 1− x1) (3.2)

Lemma 3.2.2. Let w be a point of domain D and suppose the reflection w′ of D is also in D.

We have that w and w′ have the same query density, i.e., ρw′ = ρw.
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Similarly, the formula for the query density ρv,w of a pair of points, v and w, of D such

that v ⪯ w is as follows.

ρv,w = v0v1(N0 + 1− w0)(N1 + 1− w1) (3.3)

Again, we obtain the same query density by replacing one or both points of a pair with their

reflections, as shown in Lemma 3.2.3. We note that this equation only holds when v ⪯ w. If

not, there are similar formulas depending on their (anti-) dominance relationship.

Lemma 3.2.3. Let v ⪯ w be points of domain D and v′ and w′ be their reflections. We have

ρv,w = ρv′,w if v′ ∈ D and v′ ⪯ w

ρv,w = ρv,w′ if w′ ∈ D and v ⪯ w′

ρv,w = ρv′,w′ if v′ ∈ D, w′ ∈ D and v′ ⪯ w′

Our attack exploits the fact that given response multiset RM(D), one can compute the

query densities of all the points and pairs of points of the database without knowing their

coordinates.

Two technical lemmas. The following lemmas will be used in both our classification of the

structure of E(D) and in the analysis of our algorithm. They will be applied to infer where a

point (or points) must be located based on query density constraints. The first bounds the

number of points w that satisfy ρw = α below the trivial upper bound of N0N1. The second

lemma identifies when points can be solved for, possibly up to a reflection symmetry.

Lemma 3.2.4. Let α ∈ Z. Then, equation ρx = α has at most 2(N0 +N1) integral solutions

for x.

Proof. We have that ρx = x0x1(N0 + 1− x0)(N1 + 1− x1). For each β ∈ [N0], when we set
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x0 = β we get: α = βx1(N1 + 1− x1)(N0 + 1− β) =⇒

x21 − (N1 + 1)x1 +
α

β(N0 + 1− β)
= 0 (3.4)

Solving the above quadratic equation (with real coefficients) for x1, we get at most two

integer solutions. For each γ ∈ [N1], when we set x1 = γ we get α = x0γ(N1+1−γ)(N0+1−x0)

which implies

x20 − (N0 + 1)x0 +
α

γ(N1 + 1− γ)
= 0 (3.5)

We obtain 2N1 solutions by setting x1 to each value in [N1] and solving for x0. Thus, we

obtain at most 2(N0 +N1) solutions for x.

We illustrate Lemma 3.2.5 in Figure 3.4.

0

10

105

5
x

σ(x)
v

p

w

Figure 3.4: In Lemma 3.2.5, we know points v and w, and want to determine point x. The
grey (solid), green (dashed-dotted) and purple (dashed) lines denote curves ρx, ρv,x and
ρw,x, respectively. The intersection of these three curves returns a unique location for x. To
demonstrate that we need points in dominance (v) and anti-dominance (w) relationships
with x, we also show that if we know some point p such that x ⪯ p, ρp,x in red (dotted) just
gives us the same solutions as ρv,x.
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Lemma 3.2.5. Let v, w ∈ [N0]× [N1] and let α, β, γ ∈ Z. Then the system of equations

ρx = α

ρv,x = β

v ⪯ x

(3.6)

has at most two integral solutions for x. If x̂ is a solution, then σ(x̂) is the other solution if

and only if v ⪯ σ(x̂). Additionally, if we have

ρw,x = γ

w ⪯a x

(3.7)

then the system has at most one integral solution. Similarly, the system has at most one

solution if the last equation of Systems (3.6) and (3.7) are replaced by x ⪯a v and x ⪯ w,

respectively.

Proof. Since v ⪯ x, we know which coordinates of {v, x} are minimal and maximal. Applying

the formula for ρ, we write the first two equations of System 3.6 as

α = ρx = x0x1(N0 + 1− x0)(N1 + 1− x1)

β = ρv,x = v0v1(N0 + 1− x0)(N1 + 1− x1)

We then rewrite the above equations as

β

v0v1
= (N0 + 1− x0)(N1 + 1− x1)

µ = α
v0v1
β

= x0x1

ω = − β

v0v1
+N0N1 +N0 +N1 + 1 + µ

= (N1 + 1)x0 + (N0 + 1)x1.

(3.8)

Using substitution and the quadratic formula we can obtain the following two solutions:
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x̂′ =
(

ω − sqrt

2(N1 + 1)
,

ω + sqrt

2(N0 + 1)

)
x̂′′ =

(
ω + sqrt

2(N1 + 1)
,

ω − sqrt

2(N0 + 1)

) (3.9)

where sqrt =
√

ω2 − 4µ(N1 + 1)(N0 + 1). Note that x̂′ and x̂′′ are reflections across the

main diagonal. Moreover, note that by Lemmas 3.2.2 and 3.2.3 we know that ρx = ρσ(x) and

ρv,x = ρv,σ(x). Thus, both x′ and x′′ solve System (3.6) when they satisfy the third equation.

For the backward direction, suppose that x̂ is a solution and that v ̸⪯ σ(x̂). Then the third

equation of System (3.6) would not be satisfied and the lemma follows.

Let us now consider the additional equations in System (3.7). Applying the formula for ρ

given that w ⪯a x yields

γ = ρw,x = x0w1(N0 + 1− w0)(N1 + 1− x1).

We can then rearrange to obtain the system of equations

γ

(N0 + 1− w0)w1
= N1x0 + x0 − x0x1

− β

v0v1
+N0N1 +N0 +N1 + 1 = N1x0 −N0x1 + x0x1

(3.10)

and then solve simultaneously to get unique values for x0 and x1.

Lastly, we consider the case when the last equation in Systems (3.6) and (3.7) are replaced

with x ⪯a v and x ⪯ w, respectively. By applying the rho equations we see that

β = ρv,x = v0x1(N0 + 1− x0)(N0 + 1− v0)

γ = ρw,x = x0x1(N0 + 1− w0)(N1 + 1− w1)

which we can rearrange to get the system of equations
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γ

(N0 + 1− w0)(N1 + 1− w1)
= x0x1

β

v0(N1 + 1− v1)
= N0x1 + x1 − x0x1.

(3.11)

and then solve for unique values of x0 and x1.

We make the standard assumption that arithmetic on numbers of size (number of bits)

O(logN0N1) can be done in constant time. We also employ full-precision arithmetic and use

symbolic representations for non-integer values.

3.2.2 Technical Overview

In the remainder of this section, we work with a square domain D = [N ] × [N ] in order

to provide an overview of our work without the complications of a general domain. To

understand the implications of solving the FDR problem, we are interested in the structure

of E(D). A first observation is that applying the 8 “rigid motions of the square” (rotations

and horizontal/vertical reflections) to D will result in equivalent databases. It is natural to

conjecture that E(D) is generated this way, and that |E(D)| ≤ 8 (some databases will be

invariant under these symmetries, resulting in an upper bound). Interestingly, the correct

bound is exponential.

An initial attempt. Let us examine what happens if we naively generalize the prior attack

of [70] attack to two dimensions. The first step is to use RM(D) to compute the query density

ρx for every point x. Next, we can attempt to solve for x, up to the rigid motions of the

square. This is depicted in Figure 3.5. As a function of two unknown coordinates over the

reals, ρx is a degree-4 curve. Solving this involves intersecting the curve with the plane

defined by α, which results in the curve on right side of the figure. It is already apparent

that the situation in two dimensions is dramatically different form one dimension: Instead of

getting two real points in this intersection, we get an infinite number of real solutions.
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Figure 3.5: Solving ρx = α (Equation 3.2): (a) intersecting plane z = α with surface
z = x0x1(N +1−x0)(N +1−x1) defining ρx; (b) curve of the solutions, where the 8 integral
points (in red) are symmetric with respect to rigid motions of the square. In general, there
are additional integral points on this curve.

We partially resolve this situation by noting that the points we want on the curve must

be integral since the record values in D take on integer values. One could potentially apply

techniques from number theory to compute integral solutions directly, but this is beyond

the scope of this work. By inspection, we can see that if x ∈ D is an integral solution,

then we have up to eight integral solutions obtained by reflecting and rotating, as shown in

Figure 3.5(b). These points are essentially unique, as the entire database can be permuted

this way and be equivalent. But there is no reason that these should be the only integral

solutions. Experiments indicate that the curve of Figure 3.5 can have an unbounded number

of integral solutions (i.e. the number of solutions grows with N), partitioned into groups of

at most 8 by the rigid motions.

Unfortunately for the attacker, another symmetry may occur that is not covered by the

rigid motions of the square. For example, consider the database of Figure 3.6, which comprises

8 red points. Reflecting any subset of the points results in an equivalent database. Moreover,

these reflections are not rigid motions of the square.

FDR in two dimensions: Our approach. We obtain an FDR algorithm by giving a new

approach that teases apart the subtle structure of E(D), even when it is exponentially large.

The first step is to identify 2, 3, or 4 extreme points that “contain” the rest of the database;
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Figure 3.6: Reflecting any subset of the 8 database points yields an equivalent database.
Further applying rigid motions, we get a total of 8× 28 = 1, 024 equivalent databases.

in particular these points will collectively achieve the maximum and minimum values in each

dimension. We find these by looking for a minimal set of points such that their co-occurrence

in a query implies the entire database is in that query.

We then algebraically solve for the possible assignments of these points in D by carefully

applying Lemmas 3.2.4 and 3.2.5, obtaining a polynomial list of solutions. Then for each

possible solution, we recover a family of equivalent databases, organized by their freely-moving

“components”. Taking a union over all of the families for the possible solutions for the extreme

points gives E(D).

3.3 Classifying Equivalent Databases

Before delving into the algorithm, we need to know what the best we can do is. Given RM(D)

for some database D, an algorithm can at best find E(D), the set of all databases D′ such

that RM(D′) = RM(D). Unlike the one-dimensional case, E(D) has more structure than

a simple reflection. As shown in Figure 3.6, we can obtain databases equivalent to D by

repeatedly performing a transformation that replaces a subset of points with their reflections

without affecting the dominance relation of these points with respect to all the other points.

Components. To understand equivalent databases, we must introduce some terminology.
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Definition 11. A component of D is a minimal non-empty subset C of points of D such

that for every point p ∈ C and point q ∈ D such that q /∈ C, one of the following holds (see

Figure 3.7):

• p and σ(p) both dominate q; or

• p and σ(p) are both dominated by q.

It is immediate that any two components of a database are disjoint, because if their

intersection was non-empty, it would form a smaller component. The components of a

database are uniquely determined, as formally stated below.

Lemma 3.3.1. Any database can be uniquely partitioned into components.

Proof. Suppose P1 and P2 are two distinct partitions of a database into components. Then,

their components can be ordered by domination, going from bottom to top along the diagonal.

Let C1 and C2 be the first components of P1 and P2 that differ. Thus for every p ∈ C1 and

q not in C1 or an earlier component, p and σ(p) are dominated by q. The same holds for C2.

Assume without loss of generality that there is point p ∈ C1 such that p /∈ C2. If C2

is not a subset of C1, then there is some point q ∈ C2 and q /∈ C1. Partition P1 indicates

that p, σ(p) ⪯ q (since q is not in an earlier component or in C1), and partition P2 similarly

indicates that q, σ(q) ⪯ p. These imply p = q, a contradiction. If C2 is a strict subset of C1,

then it contradicts the minimality of C1, as it is a smaller component contained in C1. Thus

C1 = C2, and the partitions must be the same.

A point p of a domain D is said to be reflectable if the reflection σ(p) of p is a point

of D. We extend this definition to components by saying that a component C of a database

D is reflectable if all the points of C are reflectable. For technical reasons, if a component

consists of a single point on the main diagonal, then we define it to not be reflectable. The

following lemma, illustrated in Figure 3.7, states that replacing the points of a reflectable

component with their reflections leaves the search pattern unchanged.
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Figure 3.7: A database D over domain [14]× [9]. Solid circles represent database points and
hollow circles represent their reflections. D has components C1 = {p}, C2 = {q, r, s}, and
C3 = {t, u, v}. C1 and C3 are nonreflectable while C2 is reflectable. Replacing the points of
C2 with their reflections yields a database equivalent to D.

Lemma 3.3.2. Let C be a reflectable component of a database, D, and let D′ be database

obtained from D by replacing C with component C ′ comprising σ(p) for every point p ∈ C. We

have that D and D′ are equivalent with respect to the response multiset, i.e., RM(D) = RM(D′).

Proof. We give here the proof for the case when D is over a square domain, i.e., a domain

D = [N0] × [N1] such that N0 = N1. This case is easier to deal with since the reflection of

every point of D is also in D. The proof for a general domain has a similar structure but

involves additional details.

We show that D and D′ are equivalent by defining a one-to-one mapping between queries

on D and queries on D′ such that queries mapped to each other have the same response.

Namely, given a query q for D with access response Resp(D, q), we generate a query q′ for

D′, such that Resp(D, q) = Resp(D′, q′).

Let B the union of the components of D preceding C on the diagonal. Also, let A be the

union of the components of D following C on the diagonal. We have that D′ consists of B

followed by C ′, followed by A (see Figure 3.8). We consider five cases:

1. Resp(D, q) contains no points in C: We map query q to itself as D and D′ are identical

but for the points in C.
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2. Resp(D, q) contains only points in C: We map query q = (c, d) to q′ = (σ(c), σ(d)). We

have that if c ⪯ p ⪯ d, then σ(c) ⪯ σ(p) ⪯ σ(d). Thus, Resp(D, q) = Resp(D′, q′).

3. Resp(D, q) has points in B and C but not in A. We map query q = (c, e) to q′ = (c, e′),

where e′ = σ(e) (see Figure 3.8). Let range (c, f) be the intersection of ranges (c, e)

and (c, e′). Also, let ranges (d, e) and (d′, e′) be the remaining parts of (c, e) and (c, e′),

respectively. Since the reflections of the points of C in (c, f) are also in (c, f), we have

that (c, f) contains the same points of C and C ′. Consider now the points of C in (d, e).

This is the scenario of Case 2 above and thus we have that these points are the same as

the points of C ′ in (d, e′). We conclude that Resp(D, q) = Resp(D′, q′).

4. Resp(D, q) has points in A and C but not in B. This case is symmetric to Case 3 and

can be proved similarly.

5. Resp(D, q) contains points in A and B. Here, all points of C and C ′ are contained in

Resp(D, q). Thus, we map q to itself.

We can similarly show that given a query q′ for D′, we can generate query q for D, such that

Resp(D′, q′) = Resp(D, q). Also, this mapping is the inverse of the previous one. It follows

that RS(D) = RS(D′) and thus D and D′ are equivalent.

The main argument of this proof is schematically illustrated in Figure 3.8.

Before going further, we show that the set of a equivalent databases may be arbitrarily

large (in contrast to the one-dimensional case). We can exploit Lemma 3.3.2 to build a

database that admits an exponential number of equivalent databases (see Figure 3.6).

Theorem 3.3.3. For every integer R, there exists a family of 2R databases with R points

that are equivalent to each other.

Proof. Let D be the database over domain [R+1]×[R+1] with points (i+1, i) for i = 1, · · · , R.

We have that D has R reflectable components, each comprising a single point. Applying
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Figure 3.8: Case 3 of the proof of Lemma 3.3.2: Database D′ is obtained from D by reflecting
component C to yield C ′; the blue range query (c, e) on D and the red range query (c, e′) on
D′ return the same response, as seen from the intersection (c, f) and differences, (d, e) and
(d′, e′), of the two ranges.

Lemma 3.3.2, we obtain 2R equivalent databases by replacing subsets of the points of D with

their reflections.

Classification theorem. We now prove that for any database D, the set of equivalent

databases can be systematically described. At a high level, we show that any database

equivalent to D can be formed by starting from a small number of “seed” databases and

reflecting their components.

Theorem 3.3.4. Given a database D with points from domain [N0]× [N1], there exists a set

S of O(N0 +N1) databases such that any database equivalent to D can be obtained from a

database D′ ∈ S by reflecting a subset of the reflectable components of D′, and then reflecting

the resulting database vertically and/or horizontally.

The proof includes much of the reasoning used to prove our later algorithm correct, but we

present a self-contained version for clarity. The seed databases correspond to sets of integral

solutions to certain equations, which are theoretically possible up to the stated bound. In

experiments with real data, we only ever needed one seed database. We did observe real

databases with several reflectable components.
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Proof. Fix a database D ∈ DR. We start by observing that D contains a set {left , right , bot ,

top} of 2 to 4 extreme points that achieve the minimum and maximum each dimension

(see Figure 3.9). By reflecting D vertically and/or horizontally (operations which preserve

equivalence), we may assume that right dominates left .

In any database that is equivalent to D, the extreme points must have the same query

densities as in D. One of these four extreme points must achieve minimal value in the

first coordinate. For each of those choices, by Lemma 3.2.4, there are 2(N0 +N1) solutions

for left that appear in an equivalent database. For each of these solutions, by the first

part of Lemma 3.2.5, there are at most two solutions for right (using the assumption that

left ⪯ right). Thus there are at most O(N0 +N1) possible values for left and right in any

equivalent database with left ⪯ right .

For each of these possible solutions for left , right , there may or may not exist a database

D′ that has extreme points set to those solutions and is equivalent to D. If there is none, we

discard those solutions. Otherwise, we take D′ to be any such database and add it to S. As

above, we have assumed that left is dominated by right in D′.

We now argue that any database D̂ that is (1) equivalent to D (and hence D′) and (2)

has the same left , right as D′, can be obtained from D′ by diagonally reflecting components

of D′. By Lemma 3.3.2, all of the databases obtained in this way will be equivalent to D′, so

this will prove the theorem.

Every point in D̂ lies in the regions S1, S2, or S3 depicted in Figure 3.10, and moreover

must lie in the same region as it does in D′ (otherwise D̂ is not equivalent). Any point of D̂

in S1 or S3 uniquely determined by query densities in D′, by the second part of Lemma 3.2.5

(taking v = left , w = right and x as the unknown point in S1 or S3, and applying the

two versions of the second part to S1 and S3 respectively). Moreover, by the first part of

Lemma 3.2.5, every point in S2 is determined up to reflection by σ, and one of those solutions

must be the corresponding point in D′ (this takes v = left in the lemma).
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We next observe that in D̂, how the points are divided into the components is the same

as in D′, even though the points in S2 may not be uniquely determined. This is because

reflecting any point of a database by σ does not change which points are in which components.

Finally, we show that D̂ can be obtained by reflecting components of D′ contained in

S2. Fix a component C of D̂, and order its non-diagonal points û1, û2, . . . , ûk by their

low projections onto the diagonal (the diagonal points automatically match because they

only have one solution). Let u′1, . . . , u
′
k be the corresponding points of D′. The point u′1

is reflectable since C is reflectable. We also know that u′1 does not lie on the diagonal,

because otherwise u′1 could be removed from C to form a smaller component, contradicting

the minimality in the definition of C (further points may however lie on the diagonal). Since

û1 was determined up to reflection, it is either u′1 or σ(u′1), which are distinct. If û1 = u′1, we

claim the entire component of D̂ matches the component in D′ (ûi = u′i for all i). Otherwise,

we claim that ûi = σ(u′i) for all i.

Now suppose û1 = u′1; the case û1 = σ(u′1) is similar. We claim that û2 = u′2. The key

observation is that, by our ordering of the points, u′1 and u′2 must fall into one of the following

relationships:

• u′1 ⪯ u′2 and u′1 ⪯ σ(u′2)

• u′1 ⪯ u′2 and u′1 ⪯a σ(u′2)

• u′1 ⪯a u′2 and u′1 ⪯ σ(u′2)

• u′1 ⪯a u′2 and u′1 ⪯a σ(u′2).

The first case cannot happen, because then u′1 could be removed from the component,

contradicting minimality. (If u′1 dominates both of these points, then it also dominates

u′i, σ(u
′
i) for all i).

We next address the second case, and claim that û2 must equal u′2 in order for D̂ to

be equivalent to D′. (The third case is similar.) If û2 were equal to σ(u′2) instead of, then
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there would exist a query over D̂ containing left and û2 and not û1. But in D′ all queries

containing left and u′2 also contain u′1, so the databases would not be equivalent.

Finally, in the fourth case, we have u′1 ⪯a u′2, so by Lemma 3.2.5 (with w = left , x = u′1),

u′2 is uniquely determined, and we must have û2 = u′2 in order for the databases to be

equivalent.

This shows that û2 = u′2. We can continue the argument for the rest of the ûi. In

place of u′1, we find some u′j (j < i) that is related in one of the latter three above ways

to u′i that u′1 was related to u′2. Such an j must exist, because otherwise we would have

that u′j ⪯ u′i, u
′
j ⪯ u′i for all j < i, and we could remove u′i and the subsequent points to

form a smaller component. (Note that j might not be i − 1.) This completes the claim

that the component either matches or is entirely reflected. This argument also shows that

non-reflectable components of D′ must be equal in D̂. This completes the proof.

3.4 Full Database Reconstruction

In this section, we present our full database reconstruction (FDR) attack in two dimensions.

3.4.1 Overview of the attack

Our attack relies on the contents of RS(D) and RM(D) and comprises the following steps:

1. Identify the extreme points of the database, including any corner points. (Algorithm 3)

2. Extract the left-most, left, and right-most, right, points and segment the remaining

points in three sets: one with all points above left and right, one with all points between

them, and one with all points below them. (Algorithm 4)

3. Find all possible locations for points left and right , and use them to identify one or

two locations for every point in the database. (Algorithm 5)
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4. Using the recovered locations, partition the database into components. (Algorithm 6)

5. Prune the locations for the points in each partition down to one location per point.

(Algorithm 7)

3.4.2 Preprocessing

Before we delve into the algorithm, we will preprocess the input. Given multiset RM(D),

we generate the corresponding set RS(D). At this point, we would like to note that RM(D)

has size O((N0N1)
2) = O(N2) and RS(D) has size O(min(R4, N2)). A single response can

contain up to R identifiers. Thus, it takes time O(min(R5, RN2)) to read RS(D) and time

O(RN2) to read RM(D).

We also preprocess RM(D) and RS(D) making sure that each value in the domain

corresponds to at most one identifier. We do that by finding the smallest set S in RS(D)

that contains a given ID. Then, we go through RM(D) and RS(D) replacing set S from each

response with a new identifier.

3.4.3 Get extremes

The first step of the reconstruction algorithm finds a minimal set of extreme points of database

D, i.e., a set E ⊆ D of smallest size such that for any point p ∈ D there exist points left ,

right , bot , and top in E such that left0 ≤ p0 ≤ right0 and bot1 ≤ p1 ≤ top1. Note that the

same point of E may be the minimum or maximum in both dimensions, i.e., we may have

left = bot or right = top. We call such a point a corner of the database.

Suppose database D has at least two distinct points. We consider the following three

cases for a minimal set of extreme points, E, of D (see Figure 3.9):

Case 1: E has two points, both corners: p = left = bot and q = right = top.

Case 2: E has three points, one of which is a corner: p = left , q = right = top, and r = bot .
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Case 3: E has four points, none of which is a corner: p = left , q = top, r = right , and s = bot .

Algorithm 3 takes as input RS(D) and returns a constant size list of hashmaps. Each

hashmap contains four entries, each corresponding to an extreme point (minimum or maximum

coordinate) in a dimension.

We first identify the points on two, three or four edges of the database, depending on if

we have case (1), (2) or (3) respectively. We do so by finding the second largest response in

RS(D), S1. The difference of S1 with the set containing all database points is an edge of the

database. We similarly find the rest of the edges.

Then, we identify the extreme points of each edge. The key idea is that each extreme

point only has one point right next to it on the edge. The non-extreme points have a point on

either side. Thus, if we look at sets of size two in RS(D) that contain only points in one edge,

the extreme points will each be in exactly one such set. Every other point will be in two.

Once we have identified the extreme points of each edge, we need to find any corners, and

decide on which point from each edge we’ll return as extreme. We simply iterate through all

subsets of size 2,3, and 4 of extreme points and pick the first subset, such that the smallest

response in RS(D) that contains all points in this subset is the largest one. The algorithm

then returns all possible configurations of this subset of points.

Lemma 3.4.1. Let D be a database with R records and let RS(D) be its response set.

Algorithm 3 returns all possible configurations of extreme points of D (up to symmetries) in

time O(min(R5, RN2)).

(1)

p

q (2)

p

q

r

(3)

p

q

r

s

Figure 3.9: Three mutually exclusive cases for a minimal set of extreme points of a database:
(1) two corners, p and q; (2) one corner, q; (3) no corners.
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Algorithm 3 FindExtremes(RS(D))

1: Let L be the largest set in RS(D) and Edges,PosExtremes empty lists
2: Let S1 be the 2nd largest set in RS(D). Add L− S1 to Edges.
3: Let S2 be the 2nd largest set containing L− S1. Add L− S2 to Edges.
4: Let S3 be the 2nd largest set containing L− S1 and L− S2 (if it exists). Add L− S3 to Edges.
5: Let S4 be the 2nd largest set containing L− S1, L− S2 and L− S3 (if it exists). Add L− S4 to Edges.
6: Let PosExtremes be an empty list.
7: for all E ∈ Edges do
8: if |E| = 1 then
9: Add the one ID in E to PosExtremes

10: else
11: Consider the responses of size 2 in RS(D) containing only IDs of E.
12: Count in how many such responses each ID of E appears.
13: Add any IDs that appear exactly once to PosExtremes

14: for i = 2 to 4 do
15: for all subsets of IDs E ⊆ PosExtremes such that |E| = i do
16: if L is the only set in RS(D) containing E then
17: // The i IDs of E refer to a minimal set of extreme points
18: Let PosConfigs be an empty list
19: for all possible configurations of extreme point IDs in E do
20: Define map mapping keys left, right, bot, and top, to respective IDs of E.
21: Add this map to PosConfigs.
22: Return PosConfigs

Proof. First we argue that after line 5 the set Edges must contain the extreme points. The

second largest query in RS(D) must exclude at least one extreme point p. Suppose for a

contradiction that p is not extreme, then we could extend the query to include p which would

thus result in a strictly larger query that still doesn’t contain all records. Now consider the

second largest query that contains p. Once again, the remaining point(s) must be extreme in

another direction. If not, then we could extend that query to include the non-extreme point,

which would result in a strictly larger query that is not the whole database. Since we repeat

this four times, each time ensuring that the previously recovered extreme points are included

in the second largest query, then we are able to recover all extreme points (not necessarily a

minimal set).

The loop on line 7 then checks if there are any potential corner points. Note that any set

of IDs in L− Si (for i = 1, . . . , 4) added to Edges must correspond to points with the same

value in the extreme dimension and different values in the other. If there is only one point in
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this set, then we must add it to PosExtremes.

Else, we need to locate any possible corners on this edge. For example, in case (2), we

only ever see three edges of the database, but we still need a point on each of the four edges.

In order to do so with only three edges, we need to locate the corners.

To find potential corners, if there are multiple IDs in this edge we select the points that

only appear in one set in RS(D) that is of size 2 and restricted to points in that edge. Note

that any point that is a corner must satisfy this condition. At the end of this for loop,

PosExtremes will therefore contain any corner points.

Lastly, we will show that a subset S ⊆ [R] is a valid set of extreme point identifiers iff

the minimal query that contains those points must also contain the whole database. Let

left , right , bot , top ∈ D be the set of extreme points (not necessarily unique) that achieve mini-

mum and maximum values in the first and second coordinates, respectively. Then for all p ∈ D,

we have left0 ≤ p0 ≤ right0 and bot1 ≤ p1 ≤ top1. Let q = ((left0, bot1), (right0, top1)).

Then, by definition, the query q returns all p ∈ D such that

(left0, bot1) ⪯ p ⪯ (right0, top1)

i.e. all of D. For the backward direction, suppose that the minimal query containing

left , right , bot , top ∈ D also contains the whole database. Suppose for a contradiction that

one of these points is not extreme and so there exists, WLOG, p ∈ D be such that

p0 < min(left0, right0, bot0, top0).

But that means that (left0, bot1) ̸⪯ p and hence p cannot be in the minimal query containing

those four points, which is a contradiction. Hence an element of {left0, right0, bot0, top0}

must achieve the minimal value along the first coordinate. A similar argument can be made

for the other extremes.

45



Searching through RS(D) to find the second largest queries in lines 1 to 5 will take

time O(RS(D)). In the worst case, |Edges| = R and then finding a set satisfying the else

statement takes time O(|RS(D)|). Thus, the for loop on line 7, takes O(R|RS(D)|) time.

Since PosExtremes only contains points that are singular in an edge or potential corners,

then |PosExtremes| ≤ 8, which implies that the for loops on lines 14 and 15 exhibit a

constant number of iterations. Checking that L is the only set in RS(D) containing E can

be done with a number of element membership searches linear in |RS(D)|. Also, checking

all possible configurations contributes a constant factor. Hence, overall Algorithm 3 runs in

time O(R|RS(D)|) = O(min(R5, RN2)).

3.4.4 Segment the database

Given a set of extreme points left , right , bot , and top computed by Algorithm 3, our goal is

to segment the points of the database D into three sets, S1, S2, and S3 according to their

vertical (second coordinate) arrangement with respect to the extreme points. Namely, these

sets are defined as follows:

• S1 comprises the points of D that are vertically above both left and right ;

• S2 comprises the points of D that are vertically in between left and right (included);

• S3 comprises the points of D that are vertically below both left and right .

Note that in Case 1 (as defined in Section 3.4.3), we have a trivial segmentation where

S1 = S3 = ∅ and S2 = D. Two subcases for the segmentation in Case 3 are illustrated in

Figure 3.10.

Algorithm 4 (Segmentation) takes as input RS(D) and PosConfigs (output by Algorithm 3)

and returns a list of tuples, where each tuple comprises of two IDs, for left and right , and

three sets of IDs.
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Algorithm 4 Segmentation(PosConfigs ,RS(D))

1: Let Segmentations be an empty list.
2: for all hashmaps H ∈ PosConfigs do
3: Let S2 be the smallest set in RS(D) containing H[left] and H[right]
4: Let T be the smallest set in RS(D) containing H[top], H[left] and H[right]
5: S1 = T − S2

6: S3 = D − T
7: Add ((H[left], H[right]), (S1, S2, S3)) to Segmentations.
8: Return Segmentations

Lemma 3.4.2. Let D ∈ DR be a database with R records and let RS(D) be the response set

of D. Let PosConfigs be the output of Algorithm 3 on RS(D). Then Algorithm 4 returns a list

that includes each possible set of extreme points, denoted (left , right), and their corresponding

database segments (S1, S2, S3) in O(min(R5, RN2)) time.

Proof. Note that for all p ∈ D, left0 ≤ p0 ≤ right0 and bot1 ≤ p1 ≤ top1. By definition,

a query q = (c, d) returns all points p such that c ⪯ p ⪯ d. Moreover, the smallest query

containing two points is the query defined by those two points.

S2 is computed to be the smallest set in RS(D) containing left and right . Query q =

(left , right) must return all points p ∈ D such that left ⪯ p ⪯ right , which precisely

corresponds to all points of D vertically in between left and right , as desired.

S1 is defined as T −S2, where T is the smallest set in RS(D) containing top, left and right .

In particular, T contains all points corresponds to the query q = (left , (right0, top1)) i.e. all

p ∈ D such that left ⪯ p ⪯ (right0, top1). In particular, T = S1 ∪ S2 and so S1 = T − S2.

Moreover, D = S1 ∪ S2 ∪ S3, thus S3 = D − T = D − (S1 ∪ S2). The correctness of the

segments follows.

The for loop on line 2 runs through a constant number of iterations, as there is a constant

number of possible configurations for the extreme points. Finding the smallest sets in lines 3

and 4 is linear in R|RS(D)|. Steps 5 and 6 are linear in the sizes of the sets, which is O(R).

The total runtime is O(R|RS(D)|+R) = O(min(R5, RN2)).

47



D

left

S2

S3

S1 right
top

bot

D

left right

top

bot

S2
S3

S1

Figure 3.10: Segmenting the database into three sets of points.

3.4.5 Find candidate locations

Algorithm 5 finds candidate locations for all the database records. First we find the candidate

locations for all the database records. Each hashmap in list Segmentations has two keys,

denoted left , and right , which provide the IDs of the leftmost and rightmost points, as defined

in Section 3.4.3. First, we use ρleft to compute left such that left0 ∈ [N0] and left1 ∈ [N1].

We can obtain at most 2(N0+N1) solutions as shown in Lemma 3.2.4. We then use a second

parameter, ρleft ,right , to obtain the set of equations in System 3.6, and then solve for all

valid solutions of left0, left1, right0, and right1. Once we have located left and right , we can

use these points to compute at most two potential solutions for the remaining records using

Lemma 3.2.5.

48



Algorithm 5 Solve(Segmentations ,RS(D))

1: Initialize lists Extremes, and Solutions; Initialize hashmap Rho
2: for H ∈ PosConfigs do
3: Let ID1 = H[left] and ID2 = H[right]
4: for all record ID ∈ D do
5: Let m be the number of responses in RS(D) containing ID
6: Let m1 be the number of responses in RS(D) containing ID1, ID
7: Let m2 be the number of responses in RS(D) containing ID2, ID
8: Let Rho[ID] = m, Rho[(ID1, ID)] = m1, Rho[(ID2, ID)] = m2.
9:

10: // First, find all possible solutions for extreme points.
11: for all ((ID1, ID2), (S1, S2, S3)) ∈ Segmentations do
12: Initialize list L.
13: for left0 = 1, . . . , N0 do
14: Compute solutions left ′1, left

′′
1 of Eq. 3.4, β = left0, α = Rho[ID1].

15: if left ′1 ∈ D then add (left0, left
′
1) to L.

16: if left ′′1 ∈ D then add (left0, left
′′
1) to L.

17: for left1 = 1, . . . , N1 do
18: Compute solutions left ′0, left

′′
0 of Eq. 3.5, γ = left1, α = Rho[ID2].

19: if left ′0 ∈ D then add (left ′0, left1) to L.
20: if left ′′0 ∈ D then add (left ′′0 , left1) to L.
21: for all left ∈ L do
22: Compute solutions right ′ and right ′′ using System (3.8) with α = Rho[ID2], β = Rho[(ID1, ID2)],

and v = left .
23: if right ′ ∈ D then add ((ID1, ID2), (left , right

′), (S1, S2, S3)) to Extremes.
24: if right ′′ ∈ D then add ((ID1, ID2), (left , right

′′), (S1, S2, S3)) to Extremes.
25:
26: // Now find at most two solutions for all other points.
27: for all ((ID1, ID2), (left , right), (S1, S2, S3)) ∈ Extremes do
28: Initialize hashmap H.
29: for all ID ∈ S1 do
30: Compute ans to System (3.10) with β = Rho[(ID1, ID)], γ = Rho[(ID2, ID)], v = left , w = right .
31: if ans ̸∈ D then go to line 27.
32: else Let H[ID2] = {ans}.
33: for all ID ∈ S2 do
34: Compute ans, ans′ using System (3.8) with α = Rho[ID], β = Rho[(ID1, ID)], and v = left .
35: if ans ∈ D then Let H[ID] = {ans}.
36: if ans′ ∈ D then Let H[ID] = H[ID] ∪ {ans′}.
37: if (ans, ans′) ̸∈ D2 then go to line 27.
38: for all ID ∈ S3 do
39: Compute ans to System (3.11) with β = Rho[(ID1, ID)], γ = Rho[(ID2, ID)], v = left , w = right .
40: if ans ̸∈ D then go to line 27.
41: Let H[ID] = {ans}.
42: Add H to Solutions.
43: Return Solutions.
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Lemma 3.4.3. Let D ∈ DR be a database with R records and let RM(D) be its response

multiset. Algorithm Solve computes in O(RN2) time a list of hashmaps, denoted Solutions,

such that for each database D̂ equivalent to D, i.e., D̂ ∈ E(D), there exists H ∈ Solutions

with the property that for all ID ∈ [R], we have D̂[ID] ∈ H[ID].

Proof. By Lemma 3.4.1 we know that Algorithm 3 correctly outputs the configurations of

the extreme points, PosConfigs. The for loop on line 2 iterates through each hashmap in

PosConfigs, computing the necessary query densities and storing them in a hashmap Rho

which maps IDs to their corresponding query densities. The correctness of these values follows

from the definition of the query density equations. For each configuration in PosConfigs , the

segments are then computed and output as Segmentations. In lines 11 to 24, Algorithm 5

iterates through Segmentations and computes the at most 4(N0 +N1) possible values of left

and right . The correctness of this step follows from Lemma 3.2.4. By Lemma 3.2.5 we can

then solve each remaining point up to two values. Let D̂ be an equivalent database to D.

Any p ∈ D̂ in Segment S2, S1 or S3, must be consistent with either Systems (3.8), (3.10),

or (3.11), respectively. Since Algorithm 5 evaluates the possible values for each point in the

database given each pair of extreme points in Segmentations , then for any equivalent D̂ there

exists some H ∈ Solutions such that for all identifiers ID ∈ [R], we have that D̂[ID] ∈ H[ID].

Computing the necessary query density functions takes time O(RN2). The loop on line 11

iterates a constant number of times and the three nested for loops iterate O(N0 +N1) times.

Checking that some element is in the domain and then adding it to a list takes time O(1).

The loop starting at line 27 iterates through a list of size O(N0 +N1). The three inner

for loops run through all points in S1, S2, and S3 which is at most R iterations. Initializing

a hash map, evaluating all possible values, checking and then adding an element all take

constant time. Thus, the total runtime of this part of the algorithm is O(R(N0+N1)), which

yields an overall runtime of O(RN2).
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3.4.6 Partition a database into components

Algorithm 6 (Partition) Partition takes as input a database D and returns the list of its

components, each labeled with a flag indicating whether it is reflectable. I.e., the output of

the algorithm is list of pairs (C, refl), where C is a component of D and refl is a Boolean

indicating whether C is reflectable or not. We represent this database D using a hashmap,

that maps identifiers to their one or two possible values. The algorithm also returns a list of

projections on the diagonal to aid Algorithm 7.

For a record ID of database D, let low(ID) and high(ID) be the lower and higher orthogonal

projections of point v = D[ID] on the main diagonal, respectively (see Figure 3.11), i.e.,

low(ID) and high(ID) are the intersections of the main diagonal with horizontal and vertical

lines through point v, where low(ID) ⪯ high(ID). Clearly, a point and its reflection have the

same orthogonal projections on the main diagonal.

Algorithm Partition (Algorithm 6) is based on the observation that if we project all

the points of D onto the main diagonal, the projections of the points of a component

are consecutive along the diagonal (see Figure 3.11). The algorithm finds the reflectable

components by "walking up" the diagonal and keeping track of the IDs of the points whose

projections have been encountered so far. A component is formed once both projections of

its points have been seen.

Extra care must be taken in case multiple records are associated with points that have the

same projection, say p. In that case, we process first IDs such that p is the higher projection,

next IDs such that p is both the upper and lower projection (i.e., p = D[ID]), and finally IDs

such that p is the lower projection. See Algorithm 6 for the pseudocode.

Lemma 3.4.4. Given a database D with R identifiers, each with one or two possible locations,

p, σ(p), from domain [N0] × [N1], Partition (Algorithm 6) partitions D into its reflectable

and nonreflectable components in time O(min(R logR,R +N0, R +N1)).

Proof. By Lemma 3.3.1 we know that database D has a unique partition. We shall show that
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Algorithm 6 Partition(D)

1: Partition = [] // list of components of database D
2: Projections = [] // list of projections of points on main diagonal
3: Let M be an empty hashmap // maps projections to IDs
4: for all ID ∈ D do
5: p = D[ID]
6: Add low(p) and high(p) to Projections
7: Add ID to M [low(p)]; Add ID to M [high(p)]

8: Component = ∅ // set of IDs of points of current component
9: SeenOnce = ∅ // set of IDs of points of current component for which only one projection has been seen

10: Sort list Projections by ascending order.
11: for all p ∈ Projections do
12: Order the items ID ∈M [p] as follows:
13: first, all ID such that high(ID) = p ̸= low(ID),;
14: next, all ID such that high(ID) = p = low(ID);
15: finally, all ID such that high(ID) ̸= p = low(ID);
16: within each group, order by ID value.
17: for all ID ∈M [p] do
18: if ID ∈ SeenOnce then
19: Remove ID from SeenOnce
20: if SeenOnce = ∅ then
21: if Component contains a nonreflectable point or a single diagonal point then
22: refl = false
23: else
24: refl = true

25: Add (Component , refl) to Partition
26: Set Component = ∅
27: else
28: Add ID to SeenOnce and to Component

29: Return Partition

Algorithm 6 returns the valid partition P of the database. A partition P is invalid if any of

these statements holds: (1) P does not contain all points in the database, (2) P contains

a component which violates the dominance ordering of the definition or (3) P contains a

non-minimal component.

1. P must contain all identifiers of D. Each identifier of D will end up in some component

of the partition, when the algorithm eventually processes its projections and adds it to

some component.

2. Suppose Cbad is a component which contains some point p, such that p dominates

some point q /∈ Cbad, but σ(p) does not dominate q. Since q /∈ Cbad, that means that
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Figure 3.11: Partitioning a database with 5 points (filled circles) over domain [19] × [9]
into a reflectable component (bottom left) and a nonreflectable component (top right) using
Partition (Algorithm 6). Reflections of points are depicted as empty circles, and projections
on the main diagonal as cross marks.

high(q), low(q) ⪯ high(p), low(p), as the algorithm traverses the projections in order

of dominance and from low to high. However, that implies that q ⪯ σ(p), which leads

to a contradiction. (The proof is similar for any of the four possible violations of the

dominance order.)

3. Suppose Cbad is a non-minimal component. This means that there exists some subset

of points S ⊂ Cbad, such that all points p, σ(p), where p ∈ S dominate all points

q, σ(q) such that q ∈ Cbad − S. If that is the case then, for all pairs p, q, where

p ∈ S, q ∈ Cbad − S we have low(q) ⪯ high(q) ⪯ low(p) ⪯ high(p). In this case,

Algorithm 6 would have traversed through all the projections (low and high) of points in

Cbad − S and created a component for them. Thus, Cbad would not have been created.

We conclude that Algorithm 6 returns a valid partition of the database identifiers. Regarding

run time, generating projections takes O(R) time and sorting them takes either O(R logR)

or O(min(R +N0, R +N1)) time depending on whether merge sort or bucket sort is used,

respectively. The components are generated traversing up the diagonal and doing O(1) work

per projection. Thus, Algorithm 6 takes O(min(R logR,R +N0, R +N1)) time.
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Figure 3.12: (left) Database with 7 records and 3 components over domain [19] × [19].
The true points are shown with filled circles, their reflections with empty circles, and their
projections on the main diagonal with cross marks. (right) Graphs for the components
constructed by Algorithm 7, where an edge between two records indicates that fixing the
point of one record fixes the point of the other record.

3.4.7 Prune the candidate reconstructions

Algorithm 7 utilizes the algorithms discussed so far to get families of possible databases

and their (reflectable and non-reflectable) components. To achieve FDR, we must prune the

solution set and determine the 1 or 2 possible configurations for each component.

We shall iterate through each component in each family. For each component C, we create

a graph G, whose nodes are the identifiers of C. Similarly to Partition (Algorithm 6), we

find the low and high projections of each identifier on the diagonal. We again “walk-up" the

diagonal, adding an edge between ID1 and ID2, if the boxes generated by (low(ID1), high(ID1))

and (low(ID2), high(ID2)) intersect in more that one points. More formally, when high(ID1) >

low(ID2) and high(ID2) > low(ID1). Any identifiers for which high(ID) = low(ID) are ignored

for the purposes of G. The construction of graph G is illustrated in Figure 3.12.

Then, if all identifiers on this component have two possible locations, we pick one identifier

and discard one of its locations. Now, we do a depth-first search on graph G starting on

an identifier which has only one possible location. On each step of the search we traverse

some edge (ID1, ID2), where at least one of the identifiers, say ID1 has only one location,
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say r. If the other identifier has two u, u′, we calculate ρu,r and ρu′,r, and determine which

one is consistent with RM(D). It cannot be that both are consistent, because in that case

there wouldn’t be an edge between (ID1, ID2). In case none are consistent, then this database

family is invalid.

Algorithm 7 takes as input D’s response multiset, RM(D), and returns a list of families

of databases. Each family consists of a database D̂ and its partition into components. The

attacker produces E(D) using the output of Algorithm 7. Theorem 3.4.5 shows that that

all possible reconstructions of D can be obtained by taking a database D̂ returned by the

algorithm, applying a rigid motion, and reflecting a subset of its components.

Theorem 3.4.5. Given the response multiset (RM(D)) of some database D with R records

over domain [N0]× [N1], Algorithm 7 (FDR) returns an encoding of E(D), the set of databases

equivalent to D, of size O(N0+N1) in time O((N0+N1)(RN2+R logR)), where N = N0N1.

Proof. Line 35 of Algorithm 7 makes sure that we only return databases that are equivalent

to D. It remains to show that we return all equivalent databases.

We know from Theorem 3.3.4 that there are at most O(N0 +N1) database families in

E(D), each originating from the possible configurations/locations of the extreme points of the

database. Each family of databases can be produced using any of its members by reflecting

all subsets of reflectable components and then applying the rigid motions of the square.

Thus, we need to show that (1) we find all possible families, (2) we identify all reflectable

components of that family, and (3) we produce a database that belongs in each family.

1. By Lemma 3.4.1 we can identify the extreme points and all their possible configurations.

Lemmas 3.2.4 and 3.2.5 imply that we can identify at most 4(N0 +N1) solutions for

the relevant extreme points of each configuration. Since there are 2, 3, or 4 extreme

points, there is a constant number of possible configurations for them. Thus, we can

identify O(N0 +N1) database families.
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Algorithm 7 FDR(RM(D))

1: Databases = [], RS(D) as the set of RM(D)
2: PosConfigs = FindExtremes(RS(D))(Algorithm 3)
3: Segmentations = Segmentation(PosConfigs,RS(D)) (Algorithm 4)
4: Solutions = Solve(PosConfigs,Segmentations,RM(D)) (Algorithm 5)
5: for D̂ in Solutions do
6: Partition = Partition(D̂) (Algorithm 6)
7: for each (Component , refl) in Partition do
8: Let Resolved be the set of ID ∈ Component s.t. |D̂[ID]| = 1
9: Let Unresolved be the set of ID ∈ Component s.t. |D̂[ID]| = 2

10: if Unresolved ̸= ∅ AND (Resolved = ∅ OR Resolved only contains points on the diagonal) then
11: Pick random ID ∈ Unresolved and remove one entry of D̂[ID]
12: Remove ID from Unresolved and add it to Resolved
13:
14: Construct graph G with nodes all ID ∈ Component , ignoring points on the diagonal. There is

an edge between ID1, ID2 in G, if the boxes defined by (low(ID1), high(ID1)) and (low(ID2), high(ID2))
intersect in more than one point.

15:
16: Let Edges(G) be an iterator of the edges of G given by a depth-first search starting at some

ID1 ∈ Resolved.
17: for each (ID1, ID2) ∈ Edges(G) do
18: // At each iteration, one ID is added to Resolved or current solution is discarded
19: if ID2 ∈ Unresolved then
20: Let D̂[ID1] = r
21: m = the number of responses in (D) containing ID1 & ID2

22: if r ∈ D̂[ID2] then
23: Remove r from D̂[ID2]

24: for u in D̂[ID2] do
25: Compute ρu,r using Equation 3.3
26: if ρu,r ̸= m then
27: Remove u from D̂[ID2]

28:
29: if |D̂[ID2]| = 1 then
30: Add ID2 to Resolved and remove it from Unresolved
31: else
32: // Here, D̂[ID2] = ∅
33: Go to line 5 (discard the current solution D̂)
34: Compute the response multiset RM(D̂)
35: if RM(D̂) = RM(D) then
36: Add D̂,Partition to Databases

37: Return Databases

2. Given the solutions for two extreme points, by Lemma 3.4.3 and Lemma 3.2.5 we can

identify one or two solutions per identifier. Then, by Lemma 3.4.4 we can identify all

reflectable (and non-reflectable) components. Note that the components remain the

same even after applying the rigid motions of the square on a database.
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3. It remains to show that we can produce a database that belongs to the above family.

We know one to two solutions per point and its partition. Each component of the

partition has one to two configurations. We shall show that if we fix one (non-diagonal)

point in the component, it reduces all other points’ possible locations to one.

Each point uniquely belongs some component C. For each point p ∈ C, there exists

some point p′ such that the boxes created by (low(p), high(p)) and (low(p′), high(p′))

intersect. Thus, we can walk up the diagonal on the points’ projections, and create a

graph G, with nodes the (non-diagonal) points and an edge between two points whose

projection boxes intersect.

We show that if a point r has one possible location, it reduces each of its neighbors

u in G to one possible location consistent with the leakage. Let m be the number of

different sets in RS(D) that contain both u and r. We have two cases:

(a) The boxes intersect : As an example from Figure 3.12, see u and r. WLOG, say

that u dominates r, and r anti-dominates σ(u). (The proof follows similarly when

swapping r and u.) So, low(r) ⪯ low(u) ⪯ high(r) ⪯ high(u).

We have that m = r0(N0 + 1− u0)r1(N1 + 1− u1). We write down the relevant ρ

equations, and show that at least one of them is not equal to m, allowing us to

trim down the invalid solution.

ρu,r = r0(N0 + 1− u0)r1(N1 + 1− u1)

ρσ(u),r = r0(N0 + 1− u′0)u
′
1(N1 + 1− r1)

Suppose ρu,r = ρσ(u),r, then u0 = r1
N0+1
N1+1 . Thus, u′1 = u0

N1+1
N0+1 = r1. This

means that both u and σ(u) dominate r. Thus, the boxes could not intersect, and

ρu,r ̸= ρσ(u),r.

(b) Point r’s box contains the other: As an example from Figure 3.12, u could be
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the green point, while r is the blue. WLOG, say that r anti-dominates both

u and σ(u). (The proof follows similarly in case u dominates r and σ(r).) So,

(low(r) ⪯ low(u) ⪯ high(u) ⪯ high(r). Again, m = r0(N0 − u0)u1(N1 − r1). We

can write down the ρ equations

ρu,r = r0(N0 + 1− u0)u1(N1 + 1− r1)

ρσ(u),r = r0(N0 + 1− u′0)u
′
1(N1 + 1− r1)

Setting ρu,r = ρσ(u),r, we get that u1 = u0
N1+1
N0+1 . That means that u is on the

diagonal. This is a contradiction as graph G contains no points on the diagonal.

Thus, given one fixed point, we can traverse G and determine the location of every

other point. Doing so for all components gives us the family of databases.

First, Algorithm 7 needs to preprocess the leakage, which takes O(RN2) time. Algorithm

7 runs Algorithms 3, 4 and 5. This takes O(RN2 +min(R5, RN2)) = O(RN2). Then, for

each database family, we run Algorithm 6 which takes O(min(R logR,R+N0, R+N1)) time.

We then generate and traverse G, which takes O(R logR) time. Note that on each step of

the traversal, we need to calculate a query density function. But we could preprocess those

in O(RN2). Note that it suffices to calculate only two query density functions per record.

Finally, for each candidate family of databases, we generate a member D′ and check if its

response set matches RS(D). It takes O(RN2) for each family to calculate and check the

response set and there are at most O(N0 +N1) such families.

Thus, by Lemmas 3.4.1, 3.4.2, 3.4.3, and 3.4.4, we have that Algorithm 7 achieves FDR

and runs in time O(RN2 + (N0 + N1)(min(R logR,R + N0, R + N1) + R logR + RN2)),

which is O((N0 +N1)(RN2 +R logR)).
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3.5 Experimental Evaluation

Our algorithm leaves a few issues open for empirical exploration: How large a set of seed

databases S would an adversary typically reconstruct and how many components would each

of those databases contain? For a rectangular domain, how many components are reflectable?

We explore these questions through data representative of what might realistically be stored

in an encrypted database with two-dimensional range queries.

Our datasets. We use hospital records from the years 2004, 2008, and 2009 of the Healthcare

Cost and Utilization Project’s Nationwide Inpatient Sample (HCUP, NIS)1, seven years,

2012-2018, of Chicago crime locations from the City of Chicago’s data portal,2 and the mobile

phone records of Malte Spitz, a German Green party politician.3

Prior work also used HCUP data for experimental analysis. The 2009 HCUP data was

previously used for the KKNO and LMP attacks, and all three years were used in GLMP19’s

volume leakage paper [57,70]. These years were chosen due to their prior use and changes

in HCUP’s sampling methodology, but other years should give similar results. Also, we

explore a new setting for access pattern attacks, geographic datasets indexed by longitude

and latitude. We use both Chicago crime data and the phone record locations of Malte Spitz.

Each Chicago dataset represents the locations of crimes within a district during a year. The

Spitz data were stored by the Deutsche Telekom and contributed by Malte Spitz to Crawdad.

Each year of HCUP data contains a sample of inpatient medical records in the United

States. 2004, 2008, and 2009 include data from 1004, 1056, and 1050 hospitals and 8004571,

8158381, and 7810762 records respectively. The NIS is the largest longitudinal hospital care

collection in the United States and contains many attributes for each record. We only use a

1. https://www.hcup-us.ahrq.gov/nisoverview.jsp. We did not deanonymize any of the data, our attacks
are not designed to deanonymize medical data, and the authors who performed the experiments underwent
the HCUP Data Use Agreement training and submitted signed Data Use Agreements.

2. https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

3. https://crawdad.org/spitz/cellular/20110504/
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Attributes Description D 2004 D 2008 D 2009

AGE Age in years 91 91 91

AGEDAY Age in days 365 365 365

AGE<18 Age < 18 18 18 18

AGE≥18 Age ≥ 18 73 73 73

LOS Length of stay 366 365 365

AMONTH Admission month 12 12 12

NCH # chronic conditions N/A 16 26

NDX # diagnoses 16 16 26

NPR # procedures 16 16 26

ZIPINC Zip code income quartile 4 4 4

Table 3.1: HCUP attributes

small subset of attributes which were used by prior works and come from the Core data file for

our analysis. Like KKNO, we divide the age domain into two attributes for minors and adults.

While the Agency for Healthcare Research and Quality (AHRQ) provides hospitals with a

format and domain for each attribute, many hospitals do not follow the AHRQ guidelines

in practice. We use the AHRQ formats for our domain sizes and omit data which do not

lie within the domain. We attempt to choose attributes with a variety of data distributions.

Also, we avoid pairs of attributes which do not logically make sense to compare (e.g. AGE

by AGE_BELOW_18). HCUP attributes are described in Table 3.1.

Chicago was re-districted in 2012, so we only use the 22 districts from years after 2012.

The minimum number of crimes in a district across all years was 4162 and the maximum

was 22434. The Spitz data contain locations with beginning dates from 166 different days

between 8/31/2009 and 2/21/2010. Therefore, we use seven years of Chicago crime data with

22 districts and 7 domains and 166 days of Spitz, leading to a total of 1244 location datasets.

The minimum number of phone record locations for a day was 18 and the maximum was 502.
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We scale Chicago longitudes to be proportional to the ratio of longitude to latitude in

that district to better represent the geometric shapes. For a chosen latitude domain N0, the

minimum longitude domain for a district was around N0
5 and the maximum around 3.6N0.

For the HCUP data, we consider databases comprising records from a single hospital and a

given a year indexed by two attributes. For the Chicago data, since longitude and latitude are

given with up to 12 decimal points, we map a location (lat, long) to point (w0, w1) of domain

D = [N0]× [N1] by setting w0 =
(lat−latmin)·(N0−1)

latmax−latmin
+ 1 and w1 =

(long−longmin)·(N1−1)
longmax−longmin

+ 1,

where division is rounded to the nearest integer. We set N0 = 9, 19, 39, 59, 99, 199, and 1999,

and set N1 so that the domain preserves the ratio of longitude range to latitude range of the

district. The resulting domains are square for only 6 districts. For Spitz data we choose to

use square geographic domains. We use the actual longitudes and latitudes multiplied by 100

as integers and center the smaller range in the square domain. The maximum N0 = N1 we

observe is 677.

To generate the leakage for our attack, for each database, we build the response multiset

by querying each possible range (c, d) ∈ D2 such that c ⪯ d.
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Dataset and attributes Domain # DBs by # of
reflectable
components

# DBs

N
IS

20
04

AGE & LOS 91x366 1004/0. . . 1004

AGEDAY & ZIPINC 365x4 677/0. . . 677

AGE<18 & NPR 18x16 972/0. . . 972

AMONTH & ZIPINC 12x4 948/0. . . 948

NDX & NPR 16x16 0/997/7/0. . . 1004

N
IS

20
08

AGE≥18 & NPR 73x18 1055/0. . . 1055

AMONTH & NCH 12x16 1005/0. . . 1005

NCH & NDX 16x16 0/1054/1/0/1/0. . . 1056

NCH & NPR 16x16 0/1053/3/0. . . 1056

NDX & NPR 16x16 0/1052/4/0. . . 1056

N
IS

20
09

AGE<18 & LOS 18x366 968/0. . . 968

AMONTH & AGEDAY 12x365 644/0. . . 644

NCH & NDX 26x26 0/1043/7/0. . . 1050

NCH & NPR 26x26 0/1049/1/0. . . 1050

NDX & NPR 26x26 0/1017/3/0. . . 1050

Chicago LAT & LONG 9, 19, 39, 59,
99, 199, 1999

1072/6/0. . . 1078

Spitz LAT & LONG ≤ 677× 677 0/117/35/9/3/0
/0/0/2/0. . .

166

Table 3.2: Results of our experiments on real-world datasets. In the third column,
n0/n1/n2/ . . . means that ni databases have i reflectable components, i = 0, 1, 2, . . ..
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Our findings. Our results are shown in Table 3.2. Recall that the reconstruction returns

a set S of seed databases that generates a family of
∑

D∈S 4 · 2r(D) equivalent databases,

where r(D) denotes the number of reflectable components of D. For all databases, our

reconstruction found a single seed database (i.e., |S| = 1). Thus, we report the number

of reflectable components for this database. The number of reflectable components for the

Chicago data is consistent for all chosen domains, so we compress our seven longitude domains

into a single row in the table. The majority of our datasets leaked an equivalent family of

minimal size (15713 out of 15792 instances). Across all our experimental attributes, a total

of 61 datasets leaked a family of databases of size 16, 9 leaked a family of size 32, 7 leaked a

family of size 64, and 2 leaked a family of size 1024.

Whether a database has a rectangular or square domain is a major determining factor

in the number of equivalent databases. In our experiments, all components in rectangular

databases could be fixed to not be reflected, suggesting that few real rectangular databases

with similar attributes would have a large number of equivalent databases. This accounts for

8345 of our datasets. In the square case, the number of reflectable components varies with the

distribution of the data. Among 7322 square HCUP datasets, there were 26 datasets with two

reflectable components and only one with 4 components. However, the square Spitz datasets

were frequently distributed along the main diagonal, leading to larger families of equivalent

databases. Of the 166 Spitz datasets, around 1/4 of them had ≥ 2 reflectable components,

with a maximum of eight components. To illustrate the structure of the Spitz data, we

show in Figure 3.1 the phone record locations for 08/31/2009 and our reconstruction4. Our

algorithm finds 8 reflectable components, (4 single points and 4 multi-point components

shown as shaded squares), resulting in 4 · 28 = 1024 equivalent databases.

Conclusions. The data show that one may rarely see symmetries arising from multiple seed

databases or from reflectable components in rectangular domains. These were expected, as

4. Figure 3.1 map source: Google Maps
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those symmetries correspond to number-theoretic coincidences in the data. We also conclude

that multiple components will plausibly appear in real data. Some data types tend to have a

single component, while other types have some larger number, and sporadic examples with

several components can occur. For example, when the Spitz data was divided into days,

multiple components could arise when the travel was roughly diagonal. Over a longer period,

however, the diagonal structure was lost. We ran an additional test using a database of Spitz

records from every day and found only a single reflectable component. In the Chicago crime

data, the distribution of events was also rarely so well-structured. In the HCUP datasets, we

observed that occasional datasets with correlated attributes could have multiple components,

but most instances lacked this type of diagonal distribution.

3.6 Automatically Finding DB in E(DB)

Our attack in Section 3.4, and those of prior work [57, 70] only recover E(D) and not D.

Indeed, this is the best one can hope for when giving a worse-case algorithm. However in

practice it is intuitive that an attacker could sometimes do better by observing the distribution

of the data recovered and applying one of the allowed symmetries to best match the expected

distribution. This section formalizes such an attack for one and two-dimensional cases.

Attack setting. We assume that an attacker has recovered E(Dtest) and aims to determine

which member of that set is the correct database Dtest. With no context this is impossible, so

we assume that the adversary has auxiliary knowledge of the data through a similar dataset

Dtrain. In our experiments below, we give the attack auxiliary data in the form of a histogram

of Dtrain, the mean of Dtrain, or a single point from Dtest.

This attack setting is not totally realistic because if an attack had such auxiliary knowledge

then it would probably also apply it during the initial phase that recovered E(Dtest), but doing

so is an open problem that requires different ideas. For now we interpret our experiments

here as determining if sometimes recovering E(Dtest) essentially allows recovering Dtest itself.
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Our attack. We will first consider the case where the attack can view a histogram Htrain of

Dtrain. In one dimension, Htrain is on the domain D and in two dimensions, Htrain is a joint

histogram over D. Our attack recovers the family of equivalent databases (either through the

KKNO attack in one dimension or the attack from Section 3.4 in two dimensions) and tries to

identity which database in the family is the true Dtest. Given E(Dtest) = {D0, . . . , Dk}, the

attacker will compute k histograms H0, . . . ,Hk and select the Di with the Hi that minimizes

the mean squared error with respect to Htrain. More formally, define

MSE(Htrain,Hi) =
1

|D|
∑
x∈D

(Htrain(x)− Hi(x))
2.

The attack selects Di corresponding to Hi with the minimum MSE(Htrain,Hi).

Next, we also consider the case of a weaker adversary, who knows only the mean from the

similar database, µtrain. In that case, the attack selects the database with the closest mean to

the training data, minimizing |µtrain − µi|. Because the means and histograms of geographic

data in terms of latitude and longitude seem less realistic to be available publicly than the

means and histograms of medical attributes, we consider another weak adversary who only

knows a single location, p, in the test database. The attack outputs a guess uniformly at

random from the equivalent databases which contain p to identify Dtest in E(Dtest).

To experimentally test the MSE approach, we take the overall data distribution across all

hospitals for a single attribute in one dimension or a pair of attributes in two dimensions

of 2008 HCUP data as our training distribution Dtrain and use each hospital from the 2009

HCUP data for those attributes as a Dtest. We use HCUP 2008 domain sizes and exclude

HCUP 2009 data which exceed those domains. For an adversary with only the mean, we take

the publicly available mean from 2008 for each attribute, or we calculate the mean across

all hospitals in 2008 for attributes where the mean is not reported online. We evaluate an

adversary who knows only a single point in the database with Chicago Crime and Spitz data,

and we choose the known location uniformly from the locations in each database.
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Attribute D Acc. MSE Acc. µ # DBs

LOS 366 1.00 1.00 1049

AGEDAY 365 0.91 0.92 645

AGE 125 0.99 0.73 1049

AGE_18_OR_GREATER 107 0.96 0.90 1049

AGE_BELOW_18 18 0.75 0.74 1049

NCH 16 1.00 1.00 1050

NDX 16 0.83 0.68 1050

NPR 16 1.00 1.00 1050

AMONTH 12 0.66 0.66 1000

ZIPINC_QRTL 4 0.72 0.74 1049

Table 3.3: Symmetry breaking for 1D range queries.

We run experiments on both 1D and 2D databases. We present our results in one

dimension on just HCUP data in Table 3.3. We can see that for both the MSE and mean

attacks, the reflection is typically easy to remove. While the attack with a full histogram

outperforms the attack with only the mean, they are both effective. For smaller domains these

approaches do not work as well and for other domains like admission month (AMONTH),

where the data are fairly uniform, it is harder to accurately determine the symmetry.

We present our two-dimensional results in Table 3.4. We note that the joint accuracy

has a baseline of 1/8 = 0.125 when there is one reflectable component. For our HCUP

databases the attacks did much better than the baseline, but were not completely accurate.

For the location data with a single known point, it was possible to find D in E(D) with high

probability for Chicago data with large domains. Denser databases, like the Chicago data

with small domains, and databases with many reflectable components, like the Spitz dataset,

still were significantly better than the baseline but had worse performance.
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Attributes D Acc. MSE Acc. µ Acc. p # DBs

NCH & NDX 16× 16 0.743 0.683 N/A 1050

NCH & NPR 16× 16 0.935 0.927 N/A 1050

NDX & NPR 16× 16 0.668 0.580 N/A 1050

Chi LAT & LONG 9 N/A N/A 0.364 154

Chi LAT & LONG 19 N/A N/A 0.467 154

Chi LAT & LONG 39 N/A N/A 0.506 154

Chi LAT & LONG 59 N/A N/A 0.571 154

Chi LAT & LONG 99 N/A N/A 0.721 154

Chi LAT & LONG 199 N/A N/A 0.890 154

Chi LAT & LONG 1999 N/A N/A 1.0 154

Spitz LAT & LONG ≤ 677 N/A N/A 0.524 166

Table 3.4: Symmetry breaking for 2D range queries.

3.7 Conclusion and Future Work

We have shown that full database reconstruction from responses to range queries is much more

complex in two dimensions than one. Indeed, going from 1D to 2D, the worst-case number

of databases that produce equivalent leakage jumps from constant to exponential (in the

database size). Despite this limitation, we develop a poly-time reconstruction algorithm that

computes and encodes all databases with equivalent leakage in poly-space. We implement

our attack and demonstrate that the configurations that lead to a large number of equivalent

databases are present in real data. As new approaches to search on encrypted databases are

being proposed, our work identifies specific technical challenges to address in the development

of schemes for range search resilient to attacks.
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CHAPTER 4

RECONSTRUCTING WITH LESS: LEAKAGE ABUSE ATTACKS

IN TWO DIMENSIONS

This chapter first appeared as conference publication by the same title with minor

modifications in CCS 2021 [87]. It is joint work with Evangelia Anna Markatou,

Roberto Tamassia, and William Schor.

4.1 Introduction

The growing adoption of cloud computing and storage in the past two decades has been

accompanied by a corresponding increase in data breaches. Encrypted cloud storage reduces

the risk of such breaches. In particular, searchable encryption provides a practical solution

for processing queries over encrypted data without the need for decryption.

For the sake of efficiency, searchable encryption schemes sacrifice full security by leaking

some information about the queries and their responses.

As a consequence, the underlying data is vulnerable to inference attacks from this leakage.

To defend against such attacks, a variety of mitigation techniques have been developed. Works

on encryption schemes and mitigation techniques include [22,37,42,43,56–58,60,64,70,73–

76,88,89,100,102,104]. Systems implementing these types of schemes have been developed

in both academia (e.g., [103, 106]) and in industry (e.g., [101]). Regarding reconstruction

attacks, see, e.g., [22, 43,57,58,60,64,70,73–76,88,100,104].

The following standard types of leakage occur in searchable encryption schemes. A scheme

leaks the access pattern if the adversary observes the encrypted records returned in response

to queries. A scheme leaks the search pattern if the adversary can distinguish if a query

has been previously issued, i.e., can assign a unique query identifier to each distinct query.

This work considers an encrypted database with two attributes, referred to as a two-
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dimensional (2D) database to which range queries are issued. We assume a passive

persistent adversary who observes the entire access pattern leakage, i.e., all possible responses

of queries, and a subset of the search pattern leakage. Our adversary aims to reconstruct

the order of the database records in the two dimensions (attributes) using solely the access

pattern, a problem called order reconstruction (OR). The adversary then performs an

approximate reconstruction of the (attribute) values of the database records by using the

partial search pattern observed, a problem called approximate database reconstruction

(ADR). A more ambitious goal is full database reconstruction (FDR), which aims at

computing the exact record values, up to unavoidable symmetries and other information

theoretic limitations.

4.1.1 Contributions

Previous work on reconstruction attacks from range queries on 2D databases [43] assumes

that the adversary has knowledge of the entire access and search pattern leakage (i.e., has

seen all possible queries and their responses) and uses both forms of leakage to perform an

attack that reconstructs the record values in polynomial time, up to inherent information

theoretic limitations.

In contrast to [43], we investigate what information is recoverable from 2D range queries

when given only a fraction of the possible responses. We make progress in this direction with

the following contributions:

1. We show that order reconstruction faces additional information theoretic limitations when

given only access pattern leakage. We describe and prove a complete characterization

of the family of databases that have the same access pattern leakage.

2. We present an order reconstruction attack that allows an adversary with the entire

access pattern to build a linear-space representation of the family of databases in poly-time.

69



3. We design a distribution-agnostic approximate database reconstruction attack

that reconstructs record values given the order of the records, and the search and access

pattern leakage from any number of queries drawn from an unknown distribution.

4. We empirically evaluate the effectiveness of our attacks on real-world datasets under

different query distributions.

5. We develop new combinatorial and geometric concepts and algorithms related to

point reconstruction from range queries that may be of independent interest.

Our work provides the first order reconstruction attack in 2D from access pattern

leakage and the first approximate reconstruction attack in 2D from partial search

pattern leakage and an unknown query distribution. Our order reconstruction attack

does not require knowledge of the domain size and, instead, gives us a lower bound of the

domain size. This attack is also a full database reconstruction attack for the case when the

1D horizontal and vertical projections of the points are dense, i.e., have a record for every

domain value.

Our work improves over the full database reconstruction attack of [43], where the adversary

observes both access pattern and search pattern from all possible queries on the database. This

previous attack fails when even a single query is missing. In contrast, we demonstrate that

an adversary can still infer much about the original data with significantly less information.

Our approximate database reconstruction (ADR) attack can be viewed as the 2D analogue

of the work on attacks on 1D databases reported in [74]. To apply previous approximation

approaches that assume knowledge of the order to 2D databases, we must completely

characterize order reconstruction in 2D. However, much like FDR does not trivially extend

from the 1D to 2D setting, our order reconstruction method demonstrates an exponential

increase in the number of indistinguishable point configurations in the 2D setting. Thus,

we cannot simply generalize 1D techniques to 2D. We re-examine a number of support-size
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estimators to better suit our problem. We emphasize that while our techniques are distribution

agnostic (i.e., they do not require knowledge of the query distribution), certain distributions

prevent the observation of a large fraction of responses and records (i.e., a distribution where

only a few queries have nonzero probability) and thus place severe information theoretic

limits on the accuracy of any approximate reconstruction method. In Section 4.6 we examine

different non-parametric estimators and their efficacy under different query distributions. In

Section 4.7 we build a complex nonlinear system of equations to model the problem instead

of the linear system of [74].

4.1.2 EDBs and 2D Range Queries

There are a number of schemes that support two-dimensional range queries over encrypted

data. All existing schemes leak access and search pattern, and many leak strictly more

information. Our work is motivated by the need to understand what can be learned from

information leakage that seems unavoidable without employing the use of oblivious RAMs

(ORAMs) [55] or fully homomorphic encryption [50], both of which incur significant overhead.

Shi et al. [114] designed a scheme called Multidimensional Range Query over Encrypted

Data (MRQED) that leverages public key encryption. Although their model is different, their

scheme leaks strictly more than access and search pattern. MRQED achieves “match-revealing”

security which reveals the attributes of the range query when the query is successfully

decrypted. The scheme builds a binary tree on the values of each dimension, and releases

public keys corresponding to the nodes that “cover” the range of interest. The server learns

both search and access of the query, the plaintexts of the matching records, and structural

information about range query issued. Maple is a tree-based public-key multi-dimensional

range searchable encryption scheme [125]. Its goal is to provide single-dimensional privacy

which mitigates one-dimensional database reconstruction attacks. In addition to leaking

access and search pattern, they also leak the nodes accessed when traversing the range tree
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and the values of each queried range. Recently, Kamara et al. gave constructions for schemes

that support conjunctive SQL queries with a reduced leakage profile [25,65,132].

One may also consider an index-based construction described in [43] that is built on top

of a multi-keyword searchable symmetric encryption (SSE) scheme, like Cash et al. [24].

To mitigate 1D attacks and avoid leaking information about individual columns, one can

precompute a joint index of all possible 2D queries and encrypt the resulting index. When a

2D query is issued, only records matching both dimensions will be returned and the leakage

is precisely the leakage of the underlying SSE scheme used.

4.1.3 Comparison with Prior Work

In the following, we denote with N the size of the domain of the database points. We present

the first order reconstruction and the first approximate database reconstruction in 2D; our

attacks only require a strict subset of the leakage used by the 2D attacks in [43]. Previous

2D attacks require the multiset of access patterns, which can be obtained with O(N4 logN)

uniformly random queries. In contrast, our order reconstruction attack takes as input the set

of access pattern leakage, which can be obtained with O(N2 logN) uniformly random queries.

Our approximate database reconstruction attack requires search and access pattern leakage,

however, we are able to recover information with small relative error with as few as 4% of the

possible queries. Table 4.1 compares our results with previous work, where Dense1D denotes

a 2D database whose horizontal and vertical projections are each a dense 1D database.

Table 4.1 compares our attacks with selected related work.

4.2 Preliminaries

Input to Attacks. The query pattern or search pattern of a query q = (c, d) is defined

to be a query-specific token QP(D, q) = t, where t ∈
[(N0+1

2

)(N1+1
2

)]
. We assume a 1-1

correspondence between queries and tokens.
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Queries Assumptions Leakage Attack

1D 2D Query Database Search OR FDR ADR

range range distrib. pattern

Kellaris+ [70] ✓ Uniform Any ✓ ✓ ✓

Lacharité+ [76] ✓ Unknown Dense ✓ ✓

Grubbs+ [58] ✓ Uniform Any ✓ ✓ ✓

Markatou+ [88] ✓ Unknown Any ✓

Markatou+ [88] ✓ Unknown Any ✓ ✓

Kornaropoulos+ [74] ✓ Unknown Any ✓ ✓

Falzon+ [43] ✓ Unknown Any ✓ ✓

Falzon+ [43] ✓ Known Any ✓

This Work ✓ Unknown Any ✓

This Work ✓ Unknown Any ✓ ✓

This Work ✓ Unknown Dense1D ✓ ✓

Table 4.1: Comparison of our attack with related ones that assume access pattern leakage.

Our order reconstruction algorithm (Sections 4.4-4.5) takes RS(D) as input. Our approxi-

mate database reconstruction algorithm (Sections 4.6–4.7) takes as input a submultiset of

RM(D) (i.e., the query and access pattern) observed by the adversary for any number of

queries drawn from an arbitrary distribution.

Threat model. We study the security of encrypted database schemes that support two-

dimensional range queries and which leak the access pattern and query pattern of each query.

We consider a passive, honest-but-curious, persistent adversary that has compromised

the database management system or the client-server communication channel, and can observe

the leakage over an extended period of time. Our order reconstruction attack considers an

adversary that takes RS(D) as input and wishes to compute the order of all records. Our

second attack considers an adversary that knows the search tokens and responses of some
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sample of queries, as well as the order of all the records, and wishes to approximate the

domain value of each record.

Assumptions and reconstruction attacks. We explore reconstruction under a few

different assumptions. In Section 4.5 we assume the adversary knows the full response

set RS(D). In Section 4.7 we assume the adversary knows the domain, but we make no

assumption about the number of queries that it may have observed or the distribution from

which queries are drawn; the adversary has no knowledge of the distribution.

In Section 4.7, we give a method for estimating the values of the database given only

query pattern. In particular, given the order of points in D and a multiset of search token

and response pairs (where each pair corresponds to one of the observed queries) we preform

approximate database reconstruction (ADR).

4.2.1 Query Densities

We use the generalized notion of query densities of points and point sets in two-dimensions

presented in Chapter 3 and [43], which extends the methods in [70] for computing the number

of unique queries whose responses contain a given set of points. By observing sufficiently

many query responses of uniformly random queries, one can recover the value of a point x by

computing the proportion of responses that the identifier of x appears in.

Definition 12 (Chapter 3,[43]). Let D = [N0]× [N1]. The query density of a point x ∈ D

is defined as

ρx =
∣∣∣{(c, d) ∈ D2 : c ⪯ x ⪯ d}

∣∣∣ .
The query density a set of points S ⊆ D defined as

ρS =
∣∣∣{(c, d) ∈ D2 : ∀x ∈ S, c ⪯ x ⪯ d}

∣∣∣ .
74



Thus, these are the number of queries that contain x or all points in S, respectively.

Given a point x = (x0, x1) ∈ D, the formula for computing ρx is

ρx = x0 · x1 · (N0 + 1− x0) · (N1 + 1− x1). (4.1)

The query density ρS of a set of points S ⊆ D is

ρS = (min
x∈S

x0)(min
y∈S

y1)(N0 + 1−max
z∈S

z0)(N1 + 1−max
w∈S

w1). (4.2)

4.3 Order and Equivalent Databases

Before developing our attacks, we present our results on the information-theoretic limitations

of order reconstruction.

As shown in Chapter 3 and [43], given some database D we can generate a database D′

that is equivalent with respect to the response multiset by rotating/reflecting D according

to the symmetries of the square and by independently flipping the reflectable components

across the main diagonal.

We recall Lemma 3.3.2 and note that if D and D′ are equivalent with respect to the

response multiset, then they are equivalent with respect to the response set. The converse is

not necessarily true. We show in Propositions 4.3.1 and 4.3.2 (Figure 4.1) that there are two

additional symmetries that produce equivalent databases with respect to the response set.

Definition 13. A pair of points (p, q) of a database D is an antipodal pair if for every point

r ∈ D− {p, q} we have (1) q1 < r1 < p1 and (2) either r0 < min(p0, q0) or r0 > max(p0, q0).

See Figure 4.1b.

Definition 14. A pair (p, q) of points of a database D are said to be a close pair if q

minimally dominates p, and there exists no point r ∈ D−{p, q} such that r anti-dominates p

or r is anti-dominated by q or r is between p and q. See Figure 4.1c.
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(a) Illustration of Definition 11
and Proposition 3.3.2. C1 and C2

are components of D. Flipping C2

along the diagonal yields an equiv-
alent database with respect to the
response multi-set.

R

Q

P

L

p
p′

q
q′

(b) Illustration of Definition 13
and Proposition 4.3.1. Points p
and q are an antipodal pair. Each
remaining point is in L or R. Re-
placing p with p′ ∈ P and q
with q′ ∈ Q gives an equivalent
database with respect to the re-
sponse set.

q′

X
2

p

X
1

X
3

q

Q

(c) Illustration of Definition 14
and Proposition 4.3.2. Points p
and q are a close pair. There are
no points in regions X1, X2 or
X3. Replacing q with any q′ ∈ Q
yields an equivalent database with
respect to the response set.

Figure 4.1: Examples of transformations that yield equivalent databases with respect to the
response set (Definition 6).

The following proposition, illustrated in Figure 4.1b, shows that one cannot infer the

horizontal ordering of an antipodal pair from the response set.

Proposition 4.3.1. Let D be a database from domain D that contains an antipodal pair

(p, q). Let V be the widest vertical strip of points of D that contains p and q, and let P and

Q be the tallest horizontal strips of V containing p and q, respectively, but no other point

of D. Let D′ be the database obtained from D by replacing p with another point, p′, of P and

q with another point, q′, of Q. We have that databases D and D′ are equivalent with respect

to the response set, i.e., RS(D) = RS(D′).

Proof. Let D[i] = p, D[j] = q, D′[i] = p′, and D′[j] = q′. We first show that RS(D) ⊆ RS(D′).

Consider a response A in RS(D) that contains i and not j. We will exemplify a query to

D′ with response A. Consider the set B = (A − {i}). Since D[i] has a unique maximal

value in the second coordinate the set B must be an element of RS(D). By assumption,

RS(D − {p, q}) = RS(D′ − {p′, q′}) and so we have that B ∈ RS(D′). Let (c, d) ∈ D2 be a

query that generates the response B in D′. Now consider the query ((min0, 1), (max0, d1))

where min0 = min(c0, p0, p
′
0) and max0 = max(d0, p0, p

′
0). Since the only additional identifier

contained in this region is i, then the response generated by this query is A = B ∪ {i} which
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implies A ∈ RS(D′). A similar argument holds for queries that contain j and not i, as well

as queries that contain both i and j, which concludes the forward direction of the proof. One

can also extend this reasoning to show that RS(D′) ⊆ RS(D).

By Proposition 4.3.1, the two points of the antipodal pair (p, q) of D and of the corre-

sponding antipodal pair (p′, q′) of D′ can be ordered, reverse ordered, or collinear in the

horizontal dimension and these three orderings cannot be distinguished using RS(D).

Proposition 4.3.2. Let D be a database from domain D that has a close pair (p, q). Let

D′ be the database obtained from D by replacing q with any point q′ such that q′0 = q0

and p1 ≤ q′1 ≤ q1. Then D and D′ are equivalent with respect to the response set, i.e.,

RS(D) = RS(D′).

Proof. Let D[i] = q and D′[i] = q′. By assumption RS(D − {q}) = RS(D′ − {q′}). We first

show that RS(D) ⊆ RS(D′). We claim that for any response A ∪ {i} in RS(D) there exists

a response A ∪ {i} ∈ RS(D′). Let A ∪ {i} be a response in RS(D) and let (c, d) ∈ D2 be a

query to D that produces such a response. We will consider two possible cases and in each

case explicitly give a query to D′ that must result in the response A ∪ {i}.

Case 1 : p0 < c0. Consider the query ((c0,min1), d) issued to D′ such that min1 = min(q′1, c1).

If min1 = c1 then

Resp(D′, ((c0,min1), d)) = Resp(D′, (c, d)) = A ∪ {i}

since all points r ∈ A are identical in both D and D′ and q′ is contained in this query.

Else if min1 = q′1 then by definition of close pair, q, q′ must minimally dominate p. So no

additional points beside q′ are contained in the response generated by ((c0,min1), d) thus

Resp(D′, ((c0,min1), d)) = A ∪ {i}.

Case 2 : c0 ≤ p0. Since the query (c, d) contains q then we have c ⪯ p and q ⪯ d. Moreover

p ⪯ q′ ⪯ q and so Resp(D′, (c, d)) = A ∪ {i}.

That proves the forward direction of the proof. A similar argument holds for the backward

direction and we conclude that RS(D) = RS(D′).
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Combining Propositions 3.3.2, 4.3.1 and 4.3.2, we characterize the information-theoretic

limitations of order reconstruction.

Theorem 4.3.3. Let D be a two-dimensional database. The set of point orderings Eo(D)

can be obtained from the dominance graph G, the anti-dominance graph G′, the antipodal pair

(if it exists), and the set of close pairs of D by means of the following transformations:

1. Flipping the direction of G and/or a subset of components of G′ according to Proposi-

tion 3.3.2.

2. If D contains an antipodal pair, add or remove one or two edges from G or G′ to make the

pair collinear or switch their relationship from strict dominance to strict anti-dominance

or vice versa.

3. For each close pair in D, add or remove one or two edges from G or G′ to make them

collinear or put them in a strict dominance relationship.

We prove Theorem 4.3.3 in Section 4.4.1. The equivalent configurations of Propositions

4.3.1 and 4.3.2 arise only with respect to the response set. The multiplicity information from

the response multiset provided by the search pattern resolves them. Indeed, Theorem 4.3.3

adds transformations (2) and (3) to transformation (1) given in [43].

4.3.1 Chains and Antichains

Our order reconstruction algorithm uses the concepts of chains and antichains of the dominance

and anti-dominance relations for points in the plane [46,123].

A set of points S ⊆ D is a chain if any two points x,w ∈ S are in a dominance relationship

i.e. x ⪯ w or w ⪯ x. A subset of points A ⊆ D is an antichain if for any two points x,w ∈ A

neither x ⪯ w nor w ⪯ x. Let D ⊆ D be a set of points. The height of a point x ∈ D is

the length of the longest chain in D with x as the maximal element. Note that two points
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Figure 4.2: Example of a dominance graph and its associated canonical antichain partition
comprising antichains A0 = {s}, A1 = {u1, · · ·u6}, and A2 = {v1, · · · v4}.

of the same height cannot have a dominance relation. Thus, the set of all points in D with

the same height yields a partition A of D into antichains, namely the canonical antichain

partition. We denote the canonical antichain partition by (A0, A1, . . . , AL) where Ai is the

set of points at height i.

Let D be a database and let (G,G′) be the dominance and anti-dominance graphs of

D. Now note that the paths in the dominance graph correspond to chains in D. Formally,

if (u1, u2, . . . , uℓ) is a path of record IDs in G, then D[u1] ⪯ D[u2] ⪯ · · · ⪯ D[uℓ] and

{D[u1], D[u2], . . . , D[uℓ]} forms a chain in D. By definition the edges of G represent the

minimal dominance relations of the points in D and thus determining the length of a longest

possible path in G from a source to u ∈ [R] is equivalent to determining the height of point

D[u] in the database. This gives us a nice way of partitioning the IDs such that the partition

corresponds to the canonical antichain partition. Formally, if s is a source of G then D[s]

has height 0. And if Si ⊆ [R] is the set of IDs in G that have a maximum distance of i from

any sink, then the canonical antichain partition of D is given by Ai = {D[a] : a ∈ Si}.

For an example, see Figure 4.2. Since G is acyclic we can compute these longest paths

efficiently. For convenience we may use Ai to instead refer to the IDs of points within each

partition of the canonical antichain.

These observations are crucial in the design of our OR algorithm. E.g., we construct the
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dominance graph starting at the IDs of points with height 0. We then compute the partition

on IDs that correspond to the canonical antichain partition and use this partition to construct

the anti-dominance graph.

4.4 Overview of Order Reconstruction

A high-level intuitive explanation for our order reconstruction algorithm is schematically illus-

trated in Figure 4.3, where we show a database that has distinct extreme points left, right, top

and bottom. We assume, without loss of generality, that left ⪯ right. The two parts of

the figure distinguish the cases where top is to the left or right of bottom, respectively. By

symmetry, these two cases cover all the possible configurations of the extreme points. For

simplicity, we assume that none of the remaining points are horizontally or vertically aligned

with each other or the extreme points. Thus, only the four extreme points are on the boundary

of the rectangle occupied by the database points. The OR algorithm presented in the next

section will remove these simplifying assumptions and reconstruct an arbitrary database. A

first building block of our OR algorithm finds such extreme points from the response set. We

leverage an algorithm from [43] to find these extreme points, however our techniques diverge

considerably from [43] after this. Whereas they solve a system of degree four polynomials

with full knowledge of RM(D), our OR algorithm determines the relationships between pairs

of records using only set containment observed in RS(D).

Partition of the Database into Regions. By drawing horizontal and vertical lines

through the extreme points, we partition the database points into nine regions labeled XY for

X ∈ {T,M,B} and Y ∈ {L,M,R}, where T, B, L, R, and M stand for top, bottom, left, right,

and middle, respectively. Note that some of these regions may be empty. We can compute

the points in each region from the response set by finding minimal responses that contain

certain pairs and triplets of extreme points and performing intersections and differences of

such responses with each other and the entire database. We show how to compute the rows
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(a) top to the left of bottom (b) top to the right of bottom

Figure 4.3: Partition of the database points into nine regions induced by the extreme points.

and columns, from which a region can be computed by intersecting its row with its column.

The middle row and column are the minimal response containing left and bottom and the

minimal response containing top and bottom, respectively. The other rows and columns

are obtained by computing the minimal response containing the triplet of extreme points

opposite to the column and subtracting this response from the database. For example, the

left column is obtained by subtracting from the database the minimal response containing

top, right, and bottom.

(Anti-)Dominance with a Corner. Consider a subset S of the database containing a

dominance corner, s, defined as a point that dominates or is dominated by all other points

of S. For example, point left is a dominance corner for the points in region ML in Figure 4.3a.

Another building block of our algorithm is a method that given S and s, computes all pairs

of points of S that have a dominance relation. By symmetry, the same methods compute

the anti-dominance relation pairs for a subset of points that admits a similarly defined

anti-dominance corner. Let s be a dominance corner for S and assume s is dominated by all

the other points. The method considers for each point v of S, the smallest response containing

points s and v. The points contained in this response are the points of S dominated by v.

For example, in the point set of Figure 4.2, we have that point s is a dominance corner. Also,
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the smallest response containing s and v3 is {s, u3, u4, v3}, which implies that the points

dominated by v3 are s, u3 and u4.

Points in Different Rows and Columns. Consider two points, p, and q. For some

placement of these points into regions, namely when they are in regions in different rows and

columns, we can immediately decide their horizontal and vertical order and thus whether they

are in a dominance or anti-dominance relation. For example, if p is in BL and q is in MM,

MR, TM, or TR, then we have that q is above and to the right of p and thus dominates p.

Also, if p is in BM and q is ML or TL, then we have that q is above and to the left of p

and thus q anti-dominates p. Similar considerations hold for other placements of p and q in

different rows and columns.

Points in Different Regions in Same Row or Column. Consider now the case when p

and q are in different regions that share the same row or column. In this case, we know one

of the horizontal or vertical ordering of the points, but not the other. Let p be in TL and q be

in TR. We have that p is to the left of q. We can use our building block method applied to

the points in the top row and their anti-dominance corner right to determine whether p and

q are in anti-dominance relation. If they are not, given that p is to the left of q, we conclude

that q dominates p. The same reasoning holds when p is in TL and q is in TM and, more

generally, by symmetry, for p and q in contiguous regions of the same row or column.

Points in Same Region. We now turn to the case when p and q are in the same region.

Here, we need to take into account the configurations of the extreme points. We distinguish

the cases when top is to the left bottom (Figure 4.3a) and top is to the right of bottom

(Figure 4.3b). It is worth noting that we can distinguish these two cases from the response

set only if there is at least a point in the middle column. Otherwise, top and bottom are an

antipodal pair (Definition 13 and Proposition 4.3.1).

In the case of Figure 4.3a, each region is included in a group of regions that has a

dominance corner and another group of regions that has an anti-dominance corner. For
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example, suppose p and q are in TL, TM, ML, or MM. We have that left is a dominance

corner for the top two rows and bottom in an anti-dominance corner for the left two rows.

Applying our building block method to these two groups of regions, we determine whether p

and q are in dominance or anti-dominance relation. In the case of Figure 4.3a, we can use

the same approach for all regions except MM.

To deal with the remaining case of p and q within region MM in the configuration of

Figure 4.3b, we observe that using dominance corner top or bottom, we can determine if p

and q are in dominance relation. If so, we are done, else, we find the extreme points of MM

and apply the order reconstruction algorithm recursively to the points within this region.

4.4.1 Proof of Theorem 4.3.3

Now that we have introduced the notion of partitioning the domain, we present the proof for

Theorem 4.3.3 below.

Proof. Let D be a database and let left, right, top, and bottom be its four extreme points.

Without loss of generality, these points must take one of the two configurations pictured in

Figure 4.3. Note, any point’s relative order can be determined if it is in a dominance relation

with one point and in an anti-dominance relation with another point. If a point is not in

such a relation, then we argue that the three transformations yield all databases equivalent

to D with respect to the response set.

Case 1: If top and bottom are antipodal, we have the configuration of Figure 4.3a or Figure 4.3b

with an empty middle column and the ordering of all pairs of points is determined with the

exception of the antipodal pair (Transformation 2).

Case 2: If top and bottom are not antipodal, we have two subcases.

Case 2a: If top anti-dominates bottom, we have the configuration of Figure 4.3a where the

ordering of all pairs of points is determined.

Case 2b: Else, top dominates bottom and we have the configuration of Figure 4.3b, where the
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ordering of all pairs of points is determined except for pairs in MM. If MM = ∅ or has a single

point, we are done. Else, let C be the subset of points of MM are not in anti-dominance

relation with a point of D not in MM. We have that all the remaining points of MM have

their ordering determined. Also, C comprises one or more components and/or close pairs

whose ordering can be changed by means of Transformations 1 and 3.

Now, let us show that there are no other possible transformations that change the order of

some pair of points a, b in C, while leaving RS(D) the same. If b minimally dominates a, there

exists no response in RS(D) that contains right and a without b. Any such transformation

would result in one of the following changes: (i) a dominates b, (ii) a anti-dominates b, (iii)

b anti-dominates a and (iv) a and b are collinear. If (i), (ii) or (iii), then there would exist

a response in RS(D) that contains right and a, but not b, which would result in a different

response set. Thus, the transformation would make a and b be collinear. This is possible only

if the corresponding sets X1, X2 and X3 shown in Figure 4.1c are empty. As b minimally

dominates a, X3 must be empty. Suppose there is some point c ∈ X1, then there is a response

that contains a and c without b and a response that contains b and c without a. If a and

b were collinear, one of those responses becomes impossible, modifying the response set. A

similar argument can be made about X2. We conclude a and b are a close pair and that we

are applying Transformation 3.

Alternatively, if b minimally strictly anti-dominates a, there exists a response r1 that

contains right and a without b and a response r2 that contains right and b without a. The

transformations would result in one of the following: (i) a dominates b, (ii) b dominates a,

(iii) a anti-dominates b and (iv) a and b are collinear. In (i), (ii), or (iv) one of r1 or r2 would

not exist, resulting in a different response set. What is left is case (iii), which implies that

the anti-dominance relationship is flipped by applying Transformation 1.
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4.5 Order Reconstruction

We show that the adversary can reconstruct the order of all records in the database (up to

equivalent orders) by using the response set. The order reconstruction (OR) algorithm has

the following steps:

(1) Find the extreme points of the database. (Algorithm 11)

(2) Find the first antichain of the database, which contains all points that do not dominate

any point and generate the dominance graph of the database. (Algorithm 12)]

(3) Find all antichains in the dominance graph. (Algorithm 13)

(4) Build the anti-dominance graph from antichains (Algorithm 14)

(5) Use the dominance and anti-dominance graphs to find any antipodal pairs (Proposition

4.3.1), close pairs (Proposition 4.3.2) and reflectable components. (Proposition 3.3.2).

(Algorithm 15)

Note that this attack achieves FDR when the horizontal and vertical projections of the points

are dense.

4.5.1 Preliminaries

Our OR attack requires computing the IDs of the points dominating a point in antichain A0.

Algorithm 10 (DominanceID), takes as input the response set RS(D) of a database D and

the ID a of some point with height 0, and outputs the set of identifiers of points that

dominate D[a].

We now describe how given the response set RS(D) and the ID a of a point with height 0,

we compute the full set of IDs of points that dominate D[a]. Let a, b ∈ [R] be the IDs of two

points in D. Algorithm Boxes, takes as input a pair (a, b) and returns the following responses

of RS(D) (see Figure 4.4):
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Algorithm 8 Boxes(a, b)

1: Let Sa,b be the smallest response in RS(D) containing a and b,
2: Let L = D and Pb,a, Pa,b be empty lists
3: for p ∈ L do
4: if ∄r ∈ RS(D), s.t. p, b ∈ r and a /∈ r then
5: Add p to Pa,b

6: if ∄r ∈ RS(D), s.t. p, a ∈ r and b /∈ r then
7: Add p to Pb,a

8: Return Pb,a, Sa,b and Pa,b

• Sa,b: minimal response containing a and b.

• Pa,b: D minus the maximal responses containing b but not a; i.e., set of points p such

that every response containing b and p contains also a.

• Pb,a: D minus the maximal responses containing a but not b; i.e., set of points p such

that every response containing a and p contains also b.

Given a pair of IDs (a, b), there are at most two distinct maximal responses containing a

but not b (or b but not a). These responses comprise the points in the maximal horizontal and

vertical strips of the domain that contain a but not b (or b but not a). If a and b share the

same horizontal or vertical coordinate, only one of the above strips is nonempty. Algorithm 10

(DominanceID) uses Boxes to determine if top dominates a. If yes, then we return the minimal

response containing a, top and right. Else top must strictly antidominate a. Let S be the

smallest response containing a, top and right and let M be the smallest response containing

b

Pa,b

Sa,b

Pb,a

a

b

Pa,b

Sa,b

Pb,a

a

Figure 4.4: Sets output by Algorithm 8 for a, b ∈ D, when b strictly anti-dominates a (left)
and they are co-linear (right).
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Algorithm 9 Edges(S,RS(D))

1: Let RS′ be the set of responses that contain only points in S
2: Let L be the largest response in RS′

3: Let S1 be the 2nd largest response in RS′. E1 = L− S1.
4: Let S2 be the 2nd largest response containing E1. E2 = L− S2.
5: Let S3 be the 2nd largest response containing E1 and E2. If S3 exists, E3 = L− S3.
6: Let S4 be the 2nd largest set containing E1, E2, and E3. If S4 exists, E4 = L− S4.
7: Return E1, E2, E3, E4

a and top. It is clear that S −M contains all IDs of points that strictly dominate a. To

find the IDs of points that are colinear with a, we run Edges with M − {a} as input; the

IDs of points that are colinear with a must be one of the edges in the output. In particular,

the colinear points must be p ∈ E such that E is the edge not containing top, left, or any

element of A0. And so the algorithm outputs (S −M) ∪ E.

4.5.2 Find Extreme Points

The first step is to identify at most four identifiers of points with extreme coordinate values.

Specifically, we wish to find identifiers of points left, right, top and bottom such that for

all p ∈ D the following hold: (1) left0 ≤ p0 ≤ right0 and bottom1 ≤ p1 ≤ top1, and (2)

p ̸⪯ left, bottom and top, right ̸⪯ p. Note that since no points in D are dominated by left and

bottom, then their height is 0 and are thus a subset of A0 in the canonical antichain partition

of D. These points give a starting point for computing the rest of A0. We recover these

extremal points by calling Edges (Algorithm 9).

Our approach for finding such a subset of identifiers is as follows. Let L and S1 be the

first and second largest responses in RS(D), respectively. Then E1 = L−S1 must correspond

to the IDs of points that are extreme in some coordinate. To find the IDs of points that

are extreme in some other coordinate, find the second largest response S2 that contains E1,

and then compute E2 = L− S2. By extending this process, we find all points with extremal

coordinates. It remains to find the correct point within each set Ei. Suppose E1 and E2 are

the left and bottom edges, respectively. By finding a, b ∈ [R] such that the smallest response
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Algorithm 10 DominanceID(a, top, left, right,RS(D))

1: Let S1 be the smallest response that contains left, top and right.
2: Let S2 be the smallest response that contains s1, top and right.
3: Let M be the smallest response that includes s1 and top
4: for p ∈M do
5: if p ∈M − S2 then
6: Pp,top, Sp,top, Ptop,p = Boxes(top, p)
7: S = Pp,top ∪ Sp,top ∪ Ptop,p

8: if left, right ∈ S then
9: Return S2 // a and top are collinear

10: else if left ∈ S then
11: Return S2 // top dominates a
12: else if right ∈ S then
13: // top anti-dominates a
14: E = Edges(M − {a},RS(D))
15: S2 = S2 −M
16: Add all p in an edge in E not containing top or a′ ∈ A0 to S2.
17: Return S2

18: else if p ∈M − S1 then
19: Pp,a, Sa,p, Pa,pBoxes(a, p)
20: S = Pp,a ∪ Sa,p ∪ Pa,p

21: if left, right ∈ S then
22: Return S2 // a and top are collinear
23: else if right ∈ S then
24: Return S2 // top dominates a
25: else if left ∈ S then
26: // top anti-dominates a
27: E = Edges(M − {a},RS(D))
28: S2 = S2 −M
29: Add all p in an edge in E not containing top or a′ ∈ A0 to S2.
30: Return S2

31: Return S2

containing a and b contains no other edge points, then D[a] and D[b] must not be dominating

any other points in D. Hence left = D[a] and bottom = D[b]. Similarly for the identifiers of

top and right.

Without loss of generality, we assume that right dominates left. Algorithm FindExtremePairs

is inspired by [43] and the pseudocode can be found in Algorithm 11.

Lemma 4.5.1. Let D be a database with R records and let RS(D) be its response set. Algo-

rithm 11 (FindExtremePairs) returns all configurations of extreme points (left, right, top, bottom)

such that no points are dominated by left and bottom, and no points dominate right and top

in O(R2|RS(D)|) time.
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Algorithm 11 FindExtremePairs(RS(D))

Input: Response set RS(D) of database D

1: E1, E2, E3, E4 = Edges(D,RS(D))
2: Let PossibleConfigs be all possible combinations of E1, E2, E3 and E4 into LeftE,RightE,TopE,BottomE.
3: Initialize empty dictionary config.
4: for LeftE,RightE,TopE,BottomE in PossibleConfigs do
5: for E1, E2 ∈ {LeftE,BottomE}, {RightE,TopE} do
6: for a, b ∈ E1 × E2 do
7: if the smallest response in RS(D) that contains a and b does not contain any other element of

E1 or E2 then
8: Add a, b to config under their corresponding key left, right, top, or bottom.
9: Return to line 5.

10: Add config to PosExtremes.
11: Return PosExtremes

Proof. We first show that Algorithm 9 returns the correct edges i.e. the sets Ei for i ≤ 4

contain IDs of all points with an extreme coordinate value. Note that the second largest

response in RS(D) must exclude the ID of some extreme point p. For a contradiction, suppose

p is not extreme. Then we could minimally extend the query to include p and the resulting

query would have a response strictly larger than the original query and strictly smaller than

[R] since it is not extreme, hence a contradiction. Now consider the second largest response

containing the ID of p. The remaining ID(s) must correspond to points with an extreme

coordinate value in another direction, else we could minimally extend the query to include

the non-extreme point(s). By extending this reasoning, we recover the IDs of all points with

an extreme coordinate.

In Algorithm 11, line 2 stores the at most 4! assignments of the Ei to LeftE,RightE,TopE,

and BottomE. The for loop on line 4 then iterates through each possible assignment to

identify the correct IDs within each edge set. We want to find the IDs for the left-most

point, a, and bottom-most point, b, such that no points are dominated by D[a] or D[b]. This

corresponds to finding a ∈ LeftE and b ∈ BottomE such that the minimal response containing

them contains no other extreme points. Suppose for a contradiction that some edge point

c was dominated by either a or b, then the minimal query must also contain c. A similar

argument holds for the top-most and right-most points.
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The algorithm terminates in O(R|RS(D)|) time. It takes O(R2 · |RS(D)|) time to find the

edges. Then, we iterate through pairs of edges and look through RS(D) to find a smallest

response.

4.5.3 Generate Dominance Graph

This step takes as input the response set RS(D) and some configuration config given by

running FindExtremePairs (Algorithm 11) on RS(D), and outputs a dominance graph G of D.

We first compute all IDs of points with height 0. These are the sinks of G. Let left, right, and

bottom be given by config. All points not dominated by left and bottom must be contained

in the minimal query containing them.

Then for each a ∈ A0 we build a subgraph of the dominance graph on a and all IDs that

dominate a. We use DominanceID (Algorithm 10) to compute this set of IDs. We initialize

subgraph Ga = {a} and then extend the graph by finding the next smallest response resp

containing a, that also contains some ID v not yet added to the graph. Since resp is minimal,

then v must dominate everything in the response. Moreover, v must minimally dominate all

IDs that are sinks in the current Ga and are contained in resp. We add (t, v) to Ga for all

sinks t of Ga contained in resp.

Once graphs Ga for a ∈ A0 have been computed, we take their union, G = ∪aGa, as the

dominance graph and return G and A0.

Lemma 4.5.2. Let D be a database with R records, RS(D) be its response set, and config

the correct configuration output by FindExtremePairs (Algorithm 11) on RS(D). Given RS(D)

and config, Algorithm 12 (DomGraph) returns the dominance graph of the points in D in

O(R3|RS(D)|) time.

Proof. Let left, right, top and bottom be the points defined by config. Without loss of generality,

assume that right dominates left and bottom. We first show that lines 2 to 7 find a set of IDs

of points that are not dominating any point in D (i.e. a minimal antichain A0 of D up to
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Algorithm 12 DomGraph(RS(D), config)

1: // Find antichain-0. We assume right dominates left.
2: Let small be the smallest response containing left and bottom.
3: Let A0 = small
4: for p ∈ small do
5: Let S be the smallest response that contains right and p.
6: Q = (S ∩ small)− {p}
7: A0 = A0 −Q

8: // Find dominance graph.
9: Let G be an empty graph

10: for each a ∈ A0 do
11: Ga = (V,E) such that Va = {a} and Ea = ∅.
12: S = DominanceID(a, top, left, right,RS(D))
13: Let RS ⊆ RS(D) comprise the responses of size at least 2 that contain a and only other IDs in S.
14: for resp ∈ RS by increasing size do
15: if ∃v ∈ resp such that v /∈ Ga then
16: Add vertex v to Ga

17: for each t of resp such that t is a sink of subgraph of Ga that contains only points in resp do
18: Add edge (t, v) to Ga.
19: G = ∪a∈A0

Ga, and remove any transitive edges
20: Return G, A0

rotation/reflection). By Algorithm 11, no point is dominated by either left or bottom. Let S

be the smallest response in RS(D) containing left and bottom. All points not dominated by

left and bottom must be in S, and thus A0 = S.

By assumption, right must dominate all points with IDs in S. Let p be a point with ID in

S and consider the response T of query (p, right). If there is a point q with ID in S such that

p ⪯ q, then its ID must also be in response T . In line 6 we find the set Q of all such IDs and

delete Q from A0. Since the for loop on line 4 iterates through all IDs in S, and deletes the

IDs of all points that must dominate at least one other point in S, then at the end of the

loop A0 must be the set of all points not dominating any other point.

On lines 10 to 18, we construct the dominance graph. Let S be the IDs output by

DominanceID(RS(D), a) for some a ∈ A0. Note that S − {a} corresponds to the IDs of all

records that dominate D[a]. The for loop starting on line 14 correctly builds the dominance

subgraph on all IDs in S. We show that the following loop invariant is maintained: at the

end of iteration ℓ (1) no point with ID in S \ V (Ga) is dominated by a point with a vertex in
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Ga and (2) if i and j are in V (Ga) and D[j] minimally dominates D[j], then edge (i, j) is in

Ga. At the start Ga = {a}; this is correct since a ∈ A0 and A0 is the set of IDs of points

that do not dominate any other point. Assume that at iteration ℓ the invariant holds. Find

the next smallest response T that contains a and only other IDs in S. If T contains v not

in Ga then add it to Ga. (1) holds since no point in S \ V (Ga) dominates D[v], otherwise

it would be contained in T and we could form a strictly smaller response contradicting the

minimality of T . For each sink t ∈ Ga such that t ∈ T we add (t, v) to Ga. (2) holds since

D[v] must dominate all points with IDs in T ∩ V (Ga) and must minimally dominate all sinks

t in Ga that are contained in T . Suppose there is some ID j in V (Ga) that is minimally

dominated by v but is not a sink. Then this would violate the correctness of Ga at the end

of iteration ℓ and hence this cannot happen.

Putting it all together, we want to show that taking the union of all Ga gives us the

complete dominance graph G. Let p, q ∈ D be any points such that p ⪯ q. By correctness of

A0, there exists some a ∈ A0 such that D[a] ⪯ p, q, and thus p and q are contained in the

minimal query of a, right, and top. By the correctness of Ga, then an edge from the IDs of p

to q must be added when constructing Ga. Since every dominance edge is added to a graph

Ga of some a, then taking the union over all Ga gives the complete dominance graph of D.

The Algorithm terminates in O(R3|RS(D)|) time. It takes O(R · |RS(D)|) time to find the

first antichain. Then, Algorithm 10 takes O(R2 · |RS(D)|) and may be run R times.

4.5.4 Construct Antichains

Given A0, we now compute the entire canonical antichain partition of D. We explain how to

find the partition A = (A0, . . . , AL) such that L is the maximum height of any element in

D. Computing each Ai is equivalent to finding the set of elements whose maximum length

path in G from any a ∈ A0 has length i. Thus, for each p ∈ G we compute the longest path

in G from any a ∈ A0 to p and then add p to the correct partition in A. Lastly, order the

92



elements in each antichain A ∈ A such that, without loss of generality, for any pair of ordered

elements c and c′, c′ antidominates c i.e. c ⪯a c′. If |A| ≤ 2 we are done. Else we compute

all responses that contain exactly two elements in A. If such a response exists for a pair

c, c′ ∈ A then we can infer that there exists no c′′ ∈ A such that c ⪯a c′′ ⪯a c′. Thus we may

use these responses to determine the ordering of the elements in A such that any element

must anti-dominate all previous elements in the ordering.

Lemma 4.5.3. Let D be a database and RS(D) be its response set. Given RS(D), a

dominance graph G of D, and the minimal antichain A0, Algorithm 13 (FindAntichains)

returns a dictionary Antichains such that Antichains[i] contains an ordered list of all IDs at

height i in O(R2|RS(D)|) time.

Proof. Let A0 be the set of IDs of points with height 0. We argue that the height of p ∈ V is

given by the maximum length of a path from a to p over all a ∈ A0. Fix some p ∈ V and

suppose that the maximum length of any path from the vertices in A0 to p is ℓ, and let there

be such a maximal path from some a ∈ A0 to p. By correctness of Algorithm 12, the path

from a to p in G corresponds to a chain in database D. Thus the height of p is ≥ ℓ. Suppose

for a contradiction that p has height ℓ′ > ℓ; By definition of height there must exist a chain

C ⊆ D of size ℓ′ with p as the maximal element. Let c1 ⪯ c2 ⪯ · · · ⪯ cℓ′ be the elements of C.

We have that ci+1 must minimally dominate ci, otherwise we could could extend the chain

from a to p to have length greater than ℓ′. By correctness of G, each edge (ci, ci+1) must be

in G. Hence the length of the longest path from a to p in G is ℓ′ > ℓ, a contradiction. Thus

the height of p is given by the length of the longest path from a to p over all a ∈ A0. Let L

be the number of partitions in the canonical antichain partition of D. We have shown that

Algorithm computes the partition A = (A0, . . . , AL) correctly. Let a1, . . . , am be elements of

a partition A ∈ A. We show that Algorithm 13 correctly computes an ordering of a1, . . . , am

i.e. a aγ1 , . . . , aγm such that γi = 1, . . . ,m and for all j either aγj ⪯a aγj+1 or aγj+1 ⪯a aγj .

If |A| < 3 then we are done. |A| ≥ 3 then on line 12 we compute all responses in RS(D) that
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Algorithm 13 FindAntichains(RS(D), G,A0)

1: // Find antichains.
2: (V,E) = G, Antichains = {}, Antichains[0] = A0

3: Compute longest paths∈ G from all a ∈ A0 to all points in D.
4: L = 0
5: for each p ∈ V do
6: Let ℓ be the length of the longest path to p from any a ∈ A0.
7: Add p to Antichains[ℓ]
8: L = max(L, ℓ)

9: // Order the points of Antichains[i].
10: for i = 0, · · · , L do
11: if |Antichains[i]| > 3 then
12: Let S be all responses in RS(D) that contain exactly two elements of Antichains[i] (and perhaps

other points)
13: Remove all p ̸∈ Antichains[i] from S and make S a set.
14: Order Antichains[i] such that pairs of consecutive points are responses in S.
15: Return Antichains

contain exactly two elements in A and denote this set as S. A response containing exactly

two elements a, a′ ∈ A exists only if a minimally anti-dominates a′ (or vice versa). Next

we delete all p ∈ D − A from responses in S and make it a set. Let {a, a′} be an element

of the resulting set S. Without loss of generality, suppose a′ minimally anti-dominates a.

Suppose that there exists another set {a′, a′′} ∈ S. Then by transitivity a′′ must minimally

anti-dominate a′. We can thus “order" the elements in A by finding consecutive pairs of

points in the responses.

This Algorithm terminates in O(R2|RS(D)|) time, as it takes O(R2) time to find the

longest paths in G and O(R2|RS(D)|) to order the antichains.

4.5.5 Generate Anti-Dominance Graph

The next step is to take the response set RS(D), the dominance graph G, and the canonical

antichain partition Antichains and construct the corresponding anti-dominance graph. There

are three major steps that we must take: (1) fix the antichain orientations so that they

are lined up correctly, (2) add any edges between IDs of different antichains that are in an

anti-dominance relationship, and (3) identify colinearities.
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First we iterate through Antichains; At iteration i, we look at Antichains[j] for all j < i

until we find an edge (c1, c2) in G such that c1 ∈ Antichains[j] and c2 ∈ Antichains[i]. If there

is another edge (c′1, c
′
2) in G with c′1 ∈ Antichains[j] and c′2 ∈ Antichains[i], then we check if

the edges in the antichains i and j are consistent. E.g, if the orderings are (c1, c
′
1) and (c′2, c2)

in Antichains[j] and Antichains[i], respectively, then we flip Antichains[i].

Once the chains are fixed, we add edges for anti-dominance relationships. We iterate

through Antichains[i] and Antichains[j] for i < j and look at each pair of elements ai, aj

such that ai ∈ Antichains[i] and aj ∈ Antichains[j]. For each ai and aj we compute all their

successors and all predecessors in G. If there exists a path from some successor of aj to some

predecessor of ai, then we add (aj , ai) to G′. Similarly, if there exists a path from some

predecessor of aj to some successor of ai, we add (ai, aj) to G′.

The last thing that remains is to identify colinearities. For each edge (q, p) in G′ find the

smallest response S containing q and p. If there exists some k ∈ S such that k and p are

not connected in G′, then they must be colinear and so we add (k, p) to G′. We similarly

check if there exists a colinearity between k and q and add those edges to G′. The final step

is to remove all transitive edges in G′ (if they exist) to keep only minimal anti-dominance

relationship and return the anti-dominance graph G′.

Lemma 4.5.4. Let D be a database and RS(D) be its response set. Given RS(D), the

dominance graph G of D, and the ordered antichains of D, Algorithm 14 returns the anti-

dominance graph of D in O(R3|RS(D)|).

Proof. The antichains returned by Algorithm 13 may have inconsistent direction. The first

step of Algorithm 14 is to fix their orientation. We assume that the first antichain, A0, has

the correct orientation. Then, we find the first element of A0 that has a dominance edge

to a point in A1, the second antichain. Let that edge be (c1, c2), c1 ∈ A0, c2 ∈ A1. If there

are multiple options for c2, we pick the smallest one in order. Note that each member p of

antichain i must have a dominance edge with some member q of antichain j, j < i. Otherwise,
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Algorithm 14 AntiDomGraph(RS(D), G,Antichains)

1: Initialize empty graph G′

2: // Fix chain orientation
3: for i ∈ [1, |Antichains|] do
4: Add an edge in G′ between consecutive points in Antichains[i− 1]
5: Find (c1, c2) ∈ G, where c1 is the first point in Antichains[k], k < i in an edge with a point from

Antichains[i]. If there are multiple options for c2, pick the smallest one in order.
6: if ∃(c′1, c′2) ∈ G, for a point c′1 ∈ Antichains[k], k < i, which is after c1 in order, and c′2 ∈ Antichains[i],

which is before c2 in order, and there is no path from c′1 to c2 in G then
7: Flip the order of Antichains[i]
8: Add an edge in G′ between consecutive points in the last antichain
9: // All chains are fixed; Now add edges between them.

10: for Ai = Antichains[i] and Aj = Antichains[j], such that i, j ∈ [|Antichains|] and i < j do
11: for ai ∈ Ai and aj ∈ Aj do
12: if ai and aj not connected in G then
13: Find successors of aj , Sj ⊆ Aj , and all predecessors of aj , Pj ⊆ Aj . Add aj to Sj , Pj .
14: Find successors of ai, Si ⊆ Ai, and all predecessors of ai, Pi ⊆ Ai. Add ai to Si, Pi.
15: if ∃ path from p to q in G, s.t. p ∈ Sj , q ∈ Pi then
16: Add edge (aj , ai) to G′

17: else if ∃ path from p to aj in G, s.t. p ∈ Pi then
18: Add edge (aj , ai) to G′

19: else if ∃ path from p to q in G, s.t. p ∈ Pj , q ∈ Si then
20: Add edge (ai, aj) to G′

21: // Find any collinearities.
22: // The pseudocode for Boxes can be found in the Appendix.
23: Let E be an empty list.
24: for (q, p) ∈ G′ do
25: Pq,p, Sp,q, Pp,q = Boxes(p, q)
26: Let S = Pq,p ∪ Sp,q ∪ Pp,q

27: if ∃k ∈ S, where there is no path from k to p in G′ then
28: Add an appropriate edge between k and p in G′

29: if ∃k ∈ S, where there is no path from k to q in E then
30: Add an appropriate edge between k and q in E

31: Add all edges in E to G′

32: Remove transitive edges from G′

33: Return G′

p would be part of some previous antichain. If the order of antichain 1 is wrong, then a

point c′1 ∈ A0 in order before c1 must have an edge with point c′2 ∈ A1, in order after c2. If

the chains were correctly ordered that would be impossible as c′2 anti-dominates c1 and c1

anti-dominates c′1. Thus, c′2 cannot dominate c′1. Thus, Algorithm 13 can correctly orient the

second chain given the order of the previous antichains. Maintaining this invariant, Algorithm

13 correctly orients all antichains.

We begin constructing the anti-dominance graph by adding anti-dominance edges between
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consecutive pairs of points in each antichain. It remains to add anti-dominance edges between

points in different antichains. The algorithm iterates through pairs of chains, and finds

points ai and aj that are not connected in G and ai ∈ Ai, aj ∈ Aj , i < j. Point ai either

anti-dominates aj or aj anti-dominates ai. In order to determine their relationship, we look

for a dominance edge between the antichains. If aj anti-dominates ai, then all predecessors

of ai are also anti-dominated by aj and its successors. So, if a predecessor of aj dominates a

successor of ai. Then aj must anti-dominate ai. Similarly, if a successor of aj dominates a

predecessor of ai, then ai anti-dominates aj .

This technique finds only strict anti-dominance edges. It remains to find any collinear

anti-dominance edges. Given a pair of points p and p, such that q anti-dominates p, and

a point k that is in Boxes(p, q), k must have an anti-dominance relationship with both. If

no such path exists in G′, we add appropriate edges depending on which of the Boxes k is

in. Note that in some cases, as explained by Proposition 4.3.2, it’s impossible to determine

all collinearities. Our definition of the anti-dominance graph is that it contains minimal

anti-dominance edges. Thus, after we remove any transitive edges, we have generated D’s

anti-dominance graph.

The algorithm takes O(R2|RS(D)|) time: O(R2) to fix the antichains and add edges

between them, and O(R3 · |RS(D)|) to run Boxes for any anti-dominance pair.

4.5.6 Order Reconstruction

We have already given algorithms for computing the extreme points, the dominance graph,

the antichains, and the anti-dominance graph. We now put these pieces together to achieve

OR of a database D given its response set RS(D). Algorithm 15 performs OR by taking

the following steps. First it runs FindExtremePairs (Algorithm 11) to compute all candidate

configurations of the extreme points. There is a constant number of such configurations and

at least one of them corresponds to a correct arrangement of the extreme points in D (up
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to rotation/reflection). For each candidate configuration, it then computes the dominance

graph using Algorithm 12 (DomGraph) and the anti-dominance graph using Algorithm 14

(AntiDomGraph). Incorrect configurations result in graphs that are either of an incorrect form

or result in a pair of dominance and anti-dominance graphs (G,G′) such that databases with

orders described by (G,G′) are not compatible with RS(D). Algorithm 15 continues to iterate

through the configurations until a correct pair of graphs (G,G′) is found and returned. Given

a response set RS(D) of some database D as input, Algorithm 15 (OrderReconstruction) is

guaranteed to terminate and output a correct graph pair.

Theorem 4.5.5. Given the response set RS(D) of a 2D database D with R records, Algo-

rithm 15 (OrderReconstruction) returns an O(R)-space representation of the set Eo(D) of all

possible orderings of the points of databases equivalent to D with respect to the response set.

The algorithm runs in time O(R3|RS(D)|), which is O(R7).

Proof. By Lemma 4.5.1, PossibleConfigs has all possible configurations of a given set of

extreme points. Thus, at some point we pick the correct config. By Lemmas 4.5.2 and

4.5.4, we know that G and G′ return correct weak dominance and anti-dominance graphs.

By Proposition 4.3.1, we know that if the smallest response that contains top and bottom

is empty, then they are an antipodal pair. Similarly for left and right. We find all such

pairs. We iterate though pairs of points and find any that satisfy the close pair requirements

from Definition 14, constructing the closePairs set. The anti-dominance graph encodes the

components as the connected components of the anti-dominance graph form the flippable

components.

By Theorem 4.3.3, given (G,G′, antipodalPairs, closePairs) output by the algorithm, we can

construct all members of set E(D). The first graph we return is sufficient as any other extreme

point configurations whose response set matches RS(D) are either rotations/reflections or

contain antipodal pairs. This Algorithm takes O(R3|RS(D)|) time, as it takes O(R3|RS(D)|)

time to run Algorithms 11, 12, 13 and 14. Finding antipodal pairs takes O(|RS(D)|) and
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Algorithm 15 OrderReconstruction(RS(D))

1: PossibleConfigs = FindExtremePairs(RS(D))
2: for config ∈ PossibleConfigs do
3: G,A0 = DomGraph(RS(D), config)
4: G′ = AntiDomGraph(RS(D), G,Antichains(RS(D), G,A0))
5: Let closePairs and antipodalPairs be empty lists.
6: Find the smallest response that contains top and bottom. If it contains no other points, then add

(top, bottom) to antipodalPairs.
7: Find the smallest response that contains left and right. If it contains no other points, then add

(left, right) to antipodalPairs.
8: for each edge (b, a) ∈ G do
9: if (b, a) satisfy Definition 14 then

10: Add (b, a) to closePairs

11: if response set of points with orders (G,G′) is RS(D) then
12: Return (G,G′, antipodalPairs, closePairs)

finding close pairs O(R3). Finally, it takes O(R4) time to generate and compare the leakage.

We can encode graphs G and G′ by their linear extensions in linear space, and the sets

antipodalPairs and closePairs contain at most O(R) points.

4.5.7 Experiments

In the previous subsections, we discussed the limitations of OR and described an algorithm

that succeeds at OR when given the response set of a database. We now support our

theoretical results with experimental results. We have deployed our OR attack on three

real-world databases (Table 4.2): California, Spitz and HCUP.

The California Road Network dataset [79] comprises 21, 047 road network intersections

indexed by longitude and latitude. Our California dataset is a random sample of 1000

points with coordinates truncated to one decimal place and scaled by a factor of 10. The

resulting domain is [102]× [102]. We generated the response set for this dataset and then ran

our OR attack (Algorithm 15) on it.

Although, in theory, we only recover the relative orders of all the points, the actual

reconstruction leaks additional information about the overall “shape” of the data. For our

reconstruction, after finding the order of the points, each point is assigned coordinates
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Figure 4.5: Dominance (right) and anti-dominance (left) graphs of the (top) California and
(bottom) Spitz datasets.

corresponding to its index in each dimension’s ordering. The figure shows each antichain in a

different color, illustrating the height increase, as well as an α-shape [41] of the point-set.

Malte Spitz is a German politician who published his phone location for 166 days, between

8/31/2009 and 2/21/2010 [118]. Our Spitz dataset comprises longitude and latitude

information from the first day, truncated to one decimal place and scaled by a factor of 10.

We also ran our order reconstruction attack on the Healthcare Cost and Utilization Project

(HCUP) Nationwide Inpatient Sample (NIS) 2008 and 2009 medical datasets [1],

but we are unable to share images of the reconstructions, per the HCUP data usage agreement.

The HCUP dataset was used in prior attacks [43,75,76]. The reconstructed dominance graph

and anti-dominance graph of the California and Spitz datasets are shown in Figure 4.5.

Order reconstruction in two-dimensions is significantly more enlightening than in one-

dimension. We conjectured that the geometry of the data is more observable when data is

more dense in one or both of the domains. Our results from the California dataset support

this: we can clearly see that this location data comes from the state of California. In the

Spitz case, we can still recover the shape of the dataset and see that it is a deeply diagonal

database with a number of collinearities and reflectable components (Figure 4.5).
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4.6 Estimating the Query Density

Recall that the query density, ρS , of a set of records S corresponds to the number of

unique range queries that contain all records in S. One of the challenges of reconstructing

a database D with partial knowledge of the search pattern, is that the adversary can no

longer compute the exact ρ values by constructing RM(D). Thus, the two-dimensional FDR

attack [43] no longer applies. To reconstruct with missing queries, we draw inspiration

from [74] and use statistical estimators to estimate the ρ values. In Section 4.7 we show how

ρ estimates can be used to build a system of non-linear equations whose solution corresponds

to an approximate reconstruction of the target database.

Formally, let D be a database of R records and let M = {{(t1, A1), . . . , (tm, Am) : Ai ∈

RS(D)}} be a sample (i.e. multiset) of m token-response pairs that are leaked when queries

are issued according to an arbitrary distribution. Let L ⊆M be a subsample of M of size

n. Given a sample (multiset) M of m token-response pairs, we show how one may compute

the appropriate submultisets L ⊆M that correspond to the ρ functions of interest. Each of

these submultisets is used to approximate the value of its respective ρ value.

Definition 15. [121] Let L be a subsample and let fi be the number of search tokens that

are observed i times in L. The fingerprint of a sample L is the vector F = (f1, f2, ..., fn),

where |L| = n. We can express the total number of token-response pairs in L as n =
∑n

i=1 ifi

and the number of observed distinct search tokens as d =
∑n

i=1 fi.

To estimate ρ̂ ≈ ρ, we let L be a submultiset of M comprised of all token-response pairs

that contain the identifiers of the points whose ρ value we wish to compute. We then use

an estimator to estimate how many unique search tokens are associated with those record

identifiers. We describe three such estimators below.
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4.6.1 Non-parametric Estimators

Sampling-based estimators have been used in various domains ranging from databases [61] to

ecology (e.g. [19,20]). Non-parametric estimators do not require prior knowledge of the query

distribution, yet their success hinges upon the underlying distribution from which queries

are drawn. Indeed, for skewed distributions, it may be information theoretically impossible

to obtain a reasonable estimate. Recently, non-parametric estimators have been used for

database reconstruction to estimate the support size of the given conditional probability

distribution of a particular record identifier [74].

We have considered the estimators by Chao and Lee [27] and by Shlosser [115], and

the jackknife estimators described in [19, 20]. We describe these estimators in more detail

below. We initially also considered the Valiant-Valiant estimator [121] as it was used in [74].

However, it did not perform as well in our case.

Chao-Lee. Chao and Lee proposed an estimator that utilizes sample coverage [27]. The

sample coverage C of a sample L is the sum of the probabilities of the the token-response

pairs that appear in L. Knowledge of C can then be used to estimate ρ̂. Chao and Lee use

this approximation in combination with an additive term to correct estimates of data drawn

from skew distributions.

Let pi be the probability that a query sampled from the distribution matches the i-th

token-response pair, of the possible Q =
(N0+1

2

)(N1+1
2

)
token-response pairs. Let 1L(i) be

the following indicator function: 1L(i) equals 1 if the i-th token-response pair is in L and 0

otherwise. The sample coverage C of a sample L is the sum of the probabilities of the the

token-response pairs that appear in L: C =
∑Q

i=1 pi · 1L(i). Note that Ĉ = 1 − f1/n is a

natural estimate for C, which can then be used to estimate ρ̂ ≈ d/Ĉ. Thus,

ρ̂ChaoLee =
d

Ĉ
+

n(1− Ĉ)

Ĉ
· γ̂2,
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where γ̂ is an estimate of the coefficient of variation γ = (
∑

i(pi− pmean)
2/Q)1/2/pmean and

pmean is the mean of the probabilities p1, . . . , pQ.

Shlosser. Shlosser derived an estimator that works well under the assumption that the

sample is large and the sampling fraction is non-negligible [115]. We used an implementation

of Shlosser Estimator that used a Bernoulli Sampling scheme. This estimator is more effective

for skewed distributions.

Let q be the probability with which a token-response pair is included in the sample.

In [115], Shlosser derived the estimator

ρ̂Shloss = d+
f1

∑n
i=1(1− q)i · fi∑n

i=1 i · (1− q)i−1 · fi
.

This estimator rests on the assumption that q = n/Q. As [61] notes, the Shlosser estimator

further rests on the assumption that E[fi]/E[f1] ≈ Fi/F1 where Fi is the number of tokens

that appear i times in entire database; This assumption isn’t often satisfied in our setting,

but our experiments demonstrate that Shlosser did comparable to Jackknife in various cases.

Jackknife. The jackknife method was introduced as a technique for correcting the bias of an

estimator [109]. We use the jackknife estimators described in [19,20], which have been used

for the problem of estimating the number of unique attributes in a relational database [61],

in database reconstruction [74], and in biology for the related problem of species estimation.

Given a biased estimate, jackknife estimators use sampling with replacement to estimate the

bias biasjack, and obtain ρ̂jack.

One can view d as a biased estimate of the true ρ. Given a biased estimate d, jackknife

estimators use sampling with replacement to estimate the bias biasjack, and obtain ρ̂jack =

d − biasjack. Let dn denote the number of unique tokens in L and let dn−1(k) denote

the number of unique tokens in L when the k-th token-response removed. Note that

dn−1(k) = dn−1 if and only if the k-th pair is unique in L. Let dn−1 = (1/n)
∑n

k=1 d(n−1)(k).
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Uniform Gaussian(1/2,1/5) Beta(2,1)

(a)

(b)

Figure 4.6: MSE of the estimators on the (a) Spitz and (b) 2008 NIS AGE < 18 & NPR
datasets over the query ratio.

The first order jackknife estimator is ρ̂jack = d − (n − 1)(d(n−1) − d). The second order

jackknife considers all n samples generated by leaving one pair out, in addition to all
(n
2

)
generated by leaving two pairs out. This method can be extended to an k-th order jackknife

estimators that generates
∑k

i=1

(n
i

)
samples and has bias O(n−k+1).

4.6.2 Experiments

We ran our estimators against two datasets with domain sizes 25× 25 and 18× 33. The first

dataset is the first day of the Spitz dataset (described in Section 4.5.7), a dataset deeply

diagonal exhibiting numerous collinearities and reflectable components. The second database

is the NIS 2008 AGE ≤ 18 & NPR database, a fairly dense medical database. We utilized

Python library PyDistinct [26] to compute the estimates. They were chosen as they represent

two fairly different real-world data distributions. For more information, see Table 4.2.

We tested the robustness of each estimator under the (i) uniform distribution, (ii) Beta(2,1)

104



distribution and (iii) Gaussian(1/2,1/5) distribution of the queries. Recall that our goal

is to estimate the query densities ρi for each ID i and ρi,j for each pair of IDs. Thus, we

obtained estimates ρ̂i and ρ̂i,j from the three estimators under the three query distributions

and computed the mean squared error (MSE) of such estimates. In Figure 4.6, we plot the

MSE of the estimators against the query ratio, which we define as the ratio of the number of

queries observed and the total number of possible queries. I.e., if we have observed a queries

(including any duplicates) and there are a total of b possible queries, the query ratio is a
b .

Note that even when this ratio is 1, the adversary most likely has not observed all possible

queries. Missing values in the plots of Figure 4.6 are due to failure by the estimators to

produce an answer in some cases. Overall, we found that the Chao-Lee estimator consistently

performed best, especially for a small query ratio.

4.7 Approx. Database Reconstruction

Our distribution-agnostic attack for ADR assumes the ordering of the points and consists

of two parts. As we saw in Section 4.6, non-parametric estimators may perform differently

under different query distributions. In our experiments, the Chao-Lee estimator performed

the best under all three distributions and we use it to estimate how many query responses

contain a point or a set of points. We use these estimates to construct a system of equations,

whose solution gives an approximate reconstruction.

4.7.1 Algorithm

We assume knowledge of the ordering (e.g., as given by Algorithm 15). The first step of

ADR is to build a system of equations. We know that point p with coordinates p0, p1 will be

included in ρp = p0p1(N0 − p0)(N1 − p1) unique responses. The Chao-Lee estimator gives us

an estimate, ρ̂p, of ρp. We then construct an equation with unknowns xp, yp.
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xpyp(N0 − xp)(N1 − yp) = ρ̂p (4.3)

Given a pair of points p, q, where p dominates q, we know that both points are included in

ρp,q = q0q1(N0 − p0)(N1 − p1) unique responses. We estimate ρp,q as ρ̂p,q, and construct an

equation with unknowns xp, yp, xq, yq.

xqyq(N0 − xp)(N1 − yp) = ρ̂p,q (4.4)

We build a similar equation from any ordering of p and q, following Equation 4.2. If two

points are in both a dominance and anti-dominance relationship, then they must be collinear.

We add this constraint to our system. We use the Chao-Lee estimator to approximate the ρ

values (ρp, ρp,q) from the multiset of responses we have seen. We then construct a first guess for

the values of the points using their ordering. Each point p is given coordinates corresponding

to its indexes in the first and second dimension. Finally, we find an approximation of the

database’s point values using a least-squares approach.

Our ADR attack is summarized in Algorithm 16, which takes as input a multiset M

of token-response pairs, the ordering G,G′ and the domain size (N0, N1). It returns a

reconstructed point set.

Algorithm 16 ADR(M,G,G′, N0, N1)

1: Let g be a reconstruction of the point values using G and G′, giving each point a value corresponding to
its order in each dimension.

2: Create a system of ρ equations for all single points and pairs, including any collinearities, utilizing
Equations 4.3 and 4.4.

3: Using the submultiset M of token-response pairs we have observed and the Chao-Lee estimator approxi-
mate, the ρ value of each equation, as described in Section 4.6.

4: Return a least-squares solution to the system of equations initializing at g
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Table 4.2: Real-world datasets used in our experiments.

Dataset Attributes # Queries #Points Domain

California [79] LAT & LONG 26532800 1000 102× 102

Spitz [118] LAT & LONG 130500 28 25× 25

NIS 2008 [1]

AGE<18 & NPR 80784 355 18× 33

NCH & NDX 663300 529 25× 67

NCH & NPR 158400 574 25× 33

NIS 2009 [1]

NCH & NDX 621270 528 27× 60

NCH & NPR 246753 566 27× 38

NDX & NPR 1244310 862 60× 38

4.7.2 Datasets and System

The ADR attack assumes the order of the records as an input. For our experiments, we

picked the correct order from the results of OR (Algorithm 15). We tested our ADR attack on

real world datasets: the California [79] and Spitz [118] location datasets and the HCUP NIS

medical datasets [1] described in Section 4.5.7. Due to complexity constraints, we sub-sampled

the datasets (resulting domain and more information shown in Table 4.2). We performed one

run per experiment and, for each experiment, we sampled queries according to the uniform,

Beta(2, 1), and Gaussian(1/2, 1/5) distributions.

Our experiments were run on the Brown University Computer Science Compute Grid,

which runs on Intel Xeon and AMD Opteron CPUs and relies on the Oracle Grid Engine

to schedule jobs. We implemented our attack in Python 3.7.1. For our experiments, we

used PyDistinct [26] to estimate the ρ values and the least_squares function from SciPy

Optimize [124] to solve our system of equations. The Numpy [62] library was used for general

computing.
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4.7.3 Accuracy Metrics

We measure the accuracy of the reconstruction with the following four metrics to take into

account different characteristics. The mean error is the average distance of a reconstructed

point to the original point. We use the normalized mean error, which is obtained by

dividing the mean error by N0 +N1, where [N0]× [N1] is the domain of the database. The

mean squared error is the average squared distance of a reconstructed point to the original

point. This widely used error metric (e.g., [74]) gives greater weight to larger errors. The

Hausdorff distance of point sets P and Q, denoted H(P,Q), is a common measure of how

far P and Q are from each other. It is defined as H(P,Q) = max(h(P,Q), h(Q,P ), where

h(P,Q) = maxp∈P (minq∈Q dist(p, q)). We obtain the pairwise relative distance error by

computing all distances between pairs of original points and between pairs of reconstructed

points, calculating the absolute values of the differences of such distances, normalizing by the

original distances, and taking the mean. This measure captures the accuracy of the shape of

the reconstructed points. For the Hausdorff distance, we use SciPy’s [124] implementation of

the algorithm in [120]. The other metrics are easily computed.

4.7.4 Experiments

Figure 4.7 shows our reconstructions of the Spitz and California datasets. We cannot present

reconstructions of the NIS datasets per the HCUP data usage agreement. In Figure 4.8,

and 4.10, we give the accuracy metrics and computational resource usage of our reconstructions

for all databases under the different distributions. On the x-axis we show the query ratio, i.e.,

the number of queries observed by the adversary over the total number of possible queries.

Recall that even when this ratio is 1, the adversary most likely has not observed all possible

queries as some duplicate queries would typically be issued.

Our attack performs consistently well on both the location and medical datasets under all

four metrics and all three query distributions. The four accuracy metrics follow similar trends.

108



Uniform Gaussian(1/2,1/5) Beta(2,1)

(a)

(b)

(c)

Figure 4.7: Reconstructions generated by our algorithm. Empty blue circles denote original
points and filled green circles denote reconstructed points. (a) Spitz dataset with 7% query
ratio. (b) California dataset with 4% query ratio. (c) Postprocessing adjustment.

As expected, the accuracy of our reconstruction generally improves with the query ratio. In

particular, for the uniform distribution, we already achieve near perfect reconstruction with

query ratio around 10%, while for the Beta and Gaussian distributions, there are still errors

even at 80% query ratio. Note that the smaller the query ratio is, the higher the variation

of accuracy across experiments is, since different query samples vary in usefulness. This is

partially due our estimator performing worse under non-uniform distributions and small

query ratios (see Figure 4.6).

Our experiments required between a few megabytes of memory to tens of gigabytes for

the more computationally intensive ones. Interestingly, the query ratio seems to have a
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small effect to the memory required and the size of the database is the deciding factor.

The experiments needed from a few CPU seconds to several CPU days to complete. We

show the memory and CPU time required by the experiments in the last and second to last

columns of Figure 4.8, respectively. Note that our code was not optimized for multi-threaded

programming as it was written in Python. In multiple experiments, the CPU usage tends to

be high at low query ratios. We believe this phenomenon is caused by inaccurate estimates

from the estimators (Section 4.6) that make finding a least squares solution harder.

In Figure 4.10, we show the results of our reconstructions of the NIS 2009 dataset. Overall,

the results follow a similar trend to the results in Figure 4.8. There is a decrease in normalized

mean error, mean squared error, and pairwise relative distance error, as a larger percentage

of queries is observed. We also note that the maximum memory required is fairly constant

across all runs.

We ran our experiments on a computing grid that automatically allocated CPUs per

experiment. We show in Figure 4.9(a) the histogram of an indicator of the speedup provided

by the grid for our experiments. This indicator equals the CPU time divided by the wall-clock

time minus 1. Over all experiments, the mean was 0.629, the maximum 4.372, and the

variance 0.315, confirming the modest speedup provided by the grid. We infer that our

experiments can be reproduced in a computing environment with ≥ 5 CPUs.

4.7.5 Post-processing Adjustment

In a number of datasets, our solution is topologically close to the original data, yet translated.

We now explore how to further reduce the reconstruction error. In Figure 4.7b, the shape

of California is clear, yet in the Gaussian and Beta cases, the points are shifted towards

the bottom right. If we were given the centroid of the original points, we could compare it

with the centroid of our solution, and translate all points by their difference, as shown in

Figure 4.7c.
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Normalized Mean Mean Squared Hausdorff Pairwise Relative CPU Usage Max Memory
Error Error Distance Distance Error (hours) Required (GB)

California: LAT & LONG

Spitz: LAT & LONG

NIS 2008: AGE<18 & NPR

NIS 2008: NCH & NDX

NIS 2008: NCH & NPR

Figure 4.8: Accuracy (measured with the metrics defined in Section 4.7.3) and computational
resource usage (CPU time and maximum memory required) of our reconstructions of the
California, Spitz and NIS 2008 datasets (see Section 4.7.2) as a function of the query ratio
(number of queries observed by the adversary over the total number of possible queries), under
the Uniform (blue circle •), Beta (green star ⋆), and Gaussian (orange ♦) query distributions.
In Section 4.7.2, we describe each database and its characteristics, including the domain size
and the total number of possible range queries.

(a) (b)

Figure 4.9: (a) Histogram of the grid speedup (CPU time over wall-clock time minus 1) of
our experiments. The mean is 0.629, the maximum is 4.3725 and the variance is 0.315. (b)
Impact of applying the adjustment technique of Section 4.7.5 to the reconstructions of the
California and NIS 2009 NCH & NDX and NCH & NPR datasets for the Beta (B) and
Gaussian (G) distributions.
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Normalized Mean Mean Squared Hausdorff Pairwise Relative CPU Usage Max Memory
Error Error Distance Distance Error (hours) Required (GB)

NIS 2009: NCH & NDX

NIS 2009: NCH & NPR

NIS 2009: NDX & NPR

Figure 4.10: Accuracy (measured with the metrics defined in Section 4.7.3) and computational
resource usage (CPU time and maximum memory required) of our reconstructions of the NIS
2009 datasets as a function of the query ratio, under the Uniform (blue circle •), Beta (green
star ⋆), and Gaussian (orange ♦) query distributions.

We ran this adjustment technique on the reconstructions of the California dataset and

NIS 2009 NCH & NDX and NCH & NPR datasets. For the latter, we used the centroids

of the corresponding 2008 NIS datasets as proxies for the original centroids. This choice

is motivated by the fact that the adversary might have access to the statistics of a related

dataset with a similar centroid. We applied the adjustment only to the Beta and Gaussian

distributions since our reconstructions under the uniform distribution are already very good.

We report in Figure 4.9(b) the variation of the normalized mean error (NME), mean squared

error (MSE), and Hausdorff distance (HD) due to our post-processing adjustment. Since we

are only translating the points, the pairwise relative distance error does not change. The

experiments show that this simple adjustment often significantly reduces reconstruction error.
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4.8 Conclusion and Future Work

This chapter presents practical reconstruction attacks from 2D range queries on encrypted

databases and furthers our understanding of the intrinsic limitations of such attacks. A first

future direction is improving the performance of OR and ADR with advanced data structures

and specialized nonlinear solvers. Another direction is exploring partial OR from a subset of

the access pattern leakage. All symmetries in two-dimensions occur also in higher dimensions

since we can project the points onto a 2D plane. Many of our techniques extend naturally to

higher dimensions, including the notion of chains/antichains. It is an open problem whether

new symmetries arise in dimensions greater than two.
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CHAPTER 5

AN EFFICIENT QUERY RECOVERY ATTACK AGAINST A

GRAPH ENCRYPTION SCHEME

This chapter first appeared as a conference publication by the same title with

minor modifications in ESORICS 2022 [45]. It is joint work with Kenneth G.

Paterson.

5.1 Introduction

Graphs are a powerful tool that can be used to model many problems related to social

networks, biological networks, geographic relationships, etc. Plaintext graph database

systems have already received much attention in both industry (e.g. Amazon Neptune [5],

Facebook TAO [17], Neo4j [97], GraphDB [99]) and academia (e.g. Pregel [86], GraphLab [84],

Trinity [112]).

With the rise of data storage outsourcing, there is an increased interest in Graph Encryption

Schemes (GES). A GES enables a client to encrypt a graph, outsource the storage of the

encrypted graph to an untrusted server, and finally to make certain types of graph queries to

the server. Current GES typically only support one type of query, e.g. adjacency queries [29],

neighbor queries [29], approximate shortest distance queries [93], and exact shortest path

queries [52, 128].

In this chapter, we analyse the security of the GES of Ghosh, Kamara and Tamassia [52]

from ASIA CCS 2021. We refer to this scheme henceforth as the GKT scheme. The GKT

scheme encrypts a graph G such that when a shortest path query (u, v) is issued for some

vertices u and v of G, the server returns information allowing the client to quickly recover

the shortest path between u and v in G. The scheme pre-computes a matrix called the

SP-matrix from which shortest paths can be efficiently computed, and then creates an
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encrypted version of this matrix which we refer to as the encrypted database (EDB). EDB is

sent to the server. At query time, the client computes a search token for the query (u, v); this

token is sent to the server and is used to start a sequence of look-ups to EDB. Each look-up

results in a new token and a ciphertext encrypting the next vertex on the shortest path from

u to v. The concatenation of these ciphertexts is returned to the client and decrypting this

sequence reveals the vertices in the shortest path.

The GKT scheme of [52] is very elegant and efficient. For a graph on n vertices, computing

the SP-matrix takes time O(n3) and dominates the setup time. Building a search token

involves computing a pseudo-random function. Processing a query (u, v) at the server requires

t look-ups in EDB, where t is the length of the shortest path from u to v. Importantly,

thanks to the design of the scheme, query processing can be done without interaction with

the client, except to receive the initial search token and to return the result. This results in

EDB revealing at query time the sequence of labels (tokens) needed for the recursive lookup

and the sequence of (encrypted) vertices that is eventually returned to the client.

Ghosh et al. [52] provide a security proof of the GKT scheme in a simulation-based security

model that assumes an honest-but-curious (semi-honest) server. The approach identifies a

leakage profile for the GKT scheme and formally proves that the scheme leaks nothing more

than this. The leakage profile comes in two parts: setup leakage (available to the server upon

receipt of the encrypted data structure) and query leakage (that becomes available to the

server as it processes each query). Specifically, the query leakage leaks when two queries are

equal i.e. the query pattern, the length of the queried path, and how two paths with the

same destination intersect.

We exploit the query leakage of the GKT scheme to mount a query recovery (QR)

attack against the scheme. Our attack can be mounted by the honest-but-curious server

and requires knowledge of the graph G. This may appear to be a strong requirement, but

is in fact weaker than is permitted in the security model of [52], where the adversary can
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even choose G. Assuming that the graph G is public is a standard assumption for many

schemes that support private graph queries [52, 94, 111]. This model is perfect for routing

and navigation systems in which the road network may easily be obtained online via Google

Maps or Waze, but the client may wish to keep its queries private. In such a scenario, the

map and traffic information are widely available, but the routing information of individual

users is sensitive.

Our attack has two phases. First, it has an offline, pre-processing phase that is carried out

on the graph G. In this phase, we extract from G a plaintext description of all its shortest

path trees. We then process these trees and compute candidate queries for each query using

each tree’s canonical labels. A canonical label is an encoding of a graph that can be used

to decide when graphs are isomorphic; a canonical label of a rooted tree can be computed

efficiently using the AHU algorithm [3]. This concludes the offline phase of the attack. Its

time complexity is O(n3) where n is the number of vertices in G, and matches the run time

of our overall attack and the run time of the GKT scheme’s setup. Both our attack and the

setup are lower bounded by the time to compute the all-pairs shortest paths, which takes

O(n3) time for general graphs [47].

The second phase of the attack is online: As queries are issued, the adversary constructs

a second set of trees that correspond to the sequence of labels computed by the server when

processing each query i.e. the per-query leakage of the scheme. That leakage is uniquely

determined by the search token that initiates the look-up. This description uses the labels

of EDB (which are search tokens) as vertices; two labels are connected if the first points to

the second in EDB. When an entire tree has been constructed, the adversary can then run

the AHU algorithm again to compute the canonical names associated with this query tree.

An entire query tree Q can be built when all queries to a particular destination have been

issued. In practice, this is a realistic routing scenario where many trips may share a common

popular destination (e.g. an airport, school, or distribution center).

116



By correctness of the scheme, there exists a collection of isomorphisms mapping Q to at

least one tree computed in the offline phase. Such isomorphisms also map shortest paths to

shortest paths. We thus perform a matching between the paths in the trees from the online

phase to the trees in the offline phase. This can be done efficiently using a modified AHU

algorithm [3] that we develop and which decides when one path can be mapped to another

by an isomorphism of trees. This yields two look-up tables which, when composed, map

each path in the first set of trees to a set of candidate paths in the second set. We use the

search token of the queries associated with Q to look up the possible candidate queries in

the tables computed in the online phase, and output them. The runtime of this phase is

O(n′ · n2) where n′ ≤ n is the number of complete query trees computed in the online phase.

The output is guaranteed to contain the correct query.

In general, the leakage from a query can be consistent with many candidates for that

query, and the correct candidate cannot be uniquely determined. Graph theoretically, this is

because there can be many possible isomorphisms between pairs of trees in our two sets. If

we consider the chosen graph setting, it is easy to construct a graph G where, given any query

tree Q of G, its isomorphism is uniquely determined and there is a unique candidate for each

query of Q, i.e. we can achieve what we call full query recovery (FQR). For such graphs,

the GKT scheme offers almost no protection to queries. In other cases, the query leakage may

result in one or only a few possible query candidates, which may be damaging in practice. In

order to explore the effectiveness of our attack, we support it with experiments on 8 real-world

graphs (6 of which were used in [52]) and on random graphs with varying graph sizes and

edge probabilities. Our results show that for the given real-world graphs, as many as 21.9 %

of all queries can be uniquely recovered and as many as half of all queries can be mapped to

at most 3 candidate queries. Our experimental results show that query recovery tends to

result in smaller sets of candidate queries when the graphs are less dense, and that dense

graphs tend to have more symmetries and hence result in larger sets of candidate queries.
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Note also that our attack is best possible: it always outputs a minimal set of candidates

consistent with the query leakage, and the correct query is always included in the set.

We summarize our core contributions as follows:

1. We present the first attack against a GES that supports shortest path queries, and the

second known attack against GESs, to our knowledge.

2. We use the GKT scheme’s leakage to mount an efficient query recovery attack against

the scheme. We explain how, for our real world datasets, the set of all query trees can

be recovered with as few as 68.1% of the queries.

3. We make use of the classical AHU algorithm for the graph isomorphism problem for

rooted trees and develop a new algorithm for deciding when a path in one tree can be

mapped onto a path in another under an isomorphism. Our supporting graph theoretic

theorems may be of independent interest.

4. We evaluate our attack against real-world datasets and random graphs.

5. We motivate the need for detailed cryptanalysis of GESs.

5.2 The GKT Graph Encryption Scheme

In this section, we give an overview of the GKT scheme [52] and its leakage.

5.2.1 GKT Scheme Overview

The GKT scheme supports single pair shortest path (SPSP) queries. The graphs may

be directed or undirected, and the edges may be weighted or unweighted. An SPSP query

on a graph G = (V,E) takes as input a pair of vertices (u, v) ∈ V × V , and outputs a

path pu,v = (u,w1, . . . , wℓ, v) such that (u,w1), (w1, w2), . . . , (wt−1, v) ∈ E. We require
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that this path is of minimal length in G, i.e. there does not exist a sequence of edges

(u,w′1), (w
′
1, w
′
2), . . . , (w

′
t−1′ , v) ∈ E such that t′ < t.

SPSP queries may be answered using a number of different data structures. The GKT

scheme makes use of the SP-matrix [32]. For a graph G = (V,E), the SP-matrix M is a

|V | × |V | matrix defined as follows. Entry M [i, j] stores the second vertex along the shortest

path from vertex vi to vj ; if no such path exists, then it stores ⊥. An SPSP query (vi, vj)

is answered by computing M [i, j] = vk to obtain the next vertex along the path and then

recursing on (vk, vj) until ⊥ is returned.

At a high level, the GKT scheme proceeds by computing an SP-matrix for the query

graph and then using this matrix to compute a dictionary SPDX′. This dictionary is then

encrypted using a dictionary encryption scheme (DES) such as [23,29]. To ensure that the

GKT scheme is non-interactive, the underlying DES must be response-revealing. Since it is

germane to our analysis, we provide the syntax of a DES next.

Definition 16. A dictionary encryption scheme (DES) is a tuple of four algorithms

DES = (KeyGen,Encrypt,Token,Get) with the following syntax:

• DES.KeyGen is probabilistic and takes as input security parameter λ and outputs key k.

• DES.Encrypt takes as input a secret key k and dictionary D and outputs an encrypted

dictionary ED.

• DES.Token takes as input a key k and a label lab and outputs a search token tk.

• DES.Get takes as input a search token tk and an encrypted dictionary ED and returns

a plaintext value val.

Correctness for a DES DES states that for all dictionaries D, for all keys k output by

DES.KeyGen and for pairs (lab, val) in D, executing DES.Get on input tk = DES.Token(k, lab)

and dictionary ED = DES.Encrypt(k,D) results in output val.
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Note that while the GKT scheme itself is response-hiding (i.e. the shortest path is not

returned in plaintext to the client), the underlying DES used in the scheme is response-

revealing, that is, the values in its encrypted dictionary ED are revealed at query time. The

response-revealing property of the DES is necessary to enable the GKT scheme to operate in

a non-interactive manner.

Now we provide a detailed description of the GKT scheme. At setup, the client generates

two secret keys: one for a symmetric encryption scheme SKE, and one for a dictionary

encryption scheme DES. It takes the input graph G and computes the SP-matrix M [i, j]. It

then computes a dictionary SPDX such that for each pair of vertices (vi, vj) ∈ V × V , we set

SPDX[(vi, vj)] = (w, vj) if i ̸= j and in the SP-matrix we have M [i, j] = w for some vertex w.

The client then computes a second dictionary SPDX′ as follows. For each label-value

pair (lab, val) in SPDX the following steps are carried out. A search token tk is computed

from val using algorithm DES.Token and a ciphertext c is computed by encrypting val using

SKE.Encrypt. Then SPDX′[lab] is set to (tk, c). The resulting dictionary SPDX′ is then

encrypted using DES.Encrypt to produce an output EDB, which is given to the server.

Now the client can issue an SPSP query for a vertex pair (u, v) by generating a search

token tk for (u, v) and sending it to the server. The server initializes an empty string resp

and uses tk to search EDB and obtain a response a. If a =⊥, then it returns resp. Otherwise,

it parses a as (tk′, c), updates resp = resp||c and recurses on tk′ until ⊥ is reached on look-up.

The server returns resp, a concatenation of ciphertexts (or ⊥) to the client. The client then

uses its secret key to decrypt resp, obtaining a sequence of pairs val = (wk, v) from which the

shortest path from u to v can be constructed.

Complexity. The GKT scheme’s setup takes time O(n3) and is dominated by the cost of

computing the SP-matrix. Token generation takes time O(1) (assuming use of an efficient

DES) and querying EDB takes time O(t) where t is the maximum length of a shortest path

in G. The server storage is O(n2).
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5.2.2 Leakage of the GKT Scheme

Ghosh et al. [52] provide a formal specification of their scheme’s leakage. Informally, the

setup leakage of their scheme is the number of vertex pairs in G that are connected by a

path, while the query leakage consists of the query pattern (which pairs of queries are equal),

the path intersection pattern (the overlap between pairs of shortest paths seen in queries),

and the lengths of the shortest paths arising in queries. See [52, Section 4.1] for more details.

Recall that in the GKT scheme, the server obtains EDB by encrypting the underlying

dictionary SPDX′, in which labels are of the form lab = (vi, vj) and values are of the form

val = (tk, c), using a DES. Here tk is a search token obtained by running DES.Token on a pair

(w, vj) and c is obtained by running SKE.Encrypt also on (w, vj). Since EDB is obtained by

running DES on SPDX′, this means that the labels in EDB are derived from tokens obtained

by running DES.Token on inputs lab = (vi, vj). Moreover, these tokens also appear in the

values in EDB that are revealed to the server at query time, that is, in the entries (tk, c).

In turn, the query leakage reveals to the server the token used to initiate a search, as

well as all the subsequent pairs (tk, c) that are obtained by recursively processing such a

query. Let us denote the sequence of search tokens associated with the processing of some

(unknown) query q for a shortest path of length t as s = tk1∥tk2∥ . . . ∥tkt+1 ∈ {0, 1}∗. We

refer to this string as the token sequence of q. Since the search tokens correspond to the

sequence of vertices in the queried path, there are as many tokens in the sequence as there

are vertices in the shortest path for the query. Note that, by correctness of DES used in the

construction of EDB, no two distinct queries can result in the same token sequence (in fact

no two distinct queries can produce the same first token tk1, since each such first token must

be used to derive a unique label in EDB identifying the beginning of a specific shortest path).

Notice also that token sequences for different queries can be overlapping; indeed since

the tokens are computed by running DES.Token on inputs lab = (vi, v) where v is the final
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vertex of a shortest path, two token sequences are overlapping if and only if they correspond

to queries (and shortest paths) having the same end vertex. Hence, given the query leakage

of a set of queries, the adversary can compute all the token sequences and construct from

them n′ ≤ n directed trees, {Qi}i∈[n′], each tree having at most n vertices and a single root

vertex. The vertices across all n′ trees are labelled with the search tokens in EDB and there

is a directed edge from tk to tk′ if and only if tk and tk′ are adjacent in some token sequence.

(Each tree has at most n vertices because of our assumption about G being connected.)

We call this set of trees the query trees. Each query tree corresponds to the set of queries

having the same end vertex. Each tree has a single sink (root) that corresponds to a unique

vertex v ∈ V . The tree paths correspond to the shortest paths from vertices w ∈ V \ {v} to

v, such that w and v are connected in G. We note that Ghosh et al. [52] also discuss these

trees but they do not analyze the theoretical limits of what can be inferred from them.

We denote the leakage of the GKT scheme on a graph G after issuing a set of SPSP queries

Q as L(G,Q). For a formal proof of security that establishes the leakage profile of the GKT

scheme please refer to [52]. We stress that our attacks are based only on the leakage of the

scheme, as established above, and not on breaking the underlying cryptographic primitives of

the scheme.

5.2.3 Implications of Leakage

Suppose that all queries have been issued and that we have constructed all n query trees

{Qi}i∈[n], each tree having n vertices. We observe that there exists a one-to-one matching

between the query trees {Qi}i∈[n] and the SDSP trees {Tv}v∈V of G such that each matched

pair of trees is isomorphic. The reason is that the query trees are just differently labelled

versions of the SDSP trees; in turn, this stems from the fact that paths in the query trees are

in 1-1 correspondence with the shortest paths in G.

This now reveals the core of our query recovery attack, developed in detail in Section 5.3
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below. The server with access to G first computes all the SDSP trees offline. As queries are

issued, it then constructs the query trees one path at a time. Once a complete query tree

Q is computed (recall that each query tree must have n vertices since G is connected) the

server finds all possible isomorphisms between Q and the SDSP trees. Then, for each token

sequence in Q, it computes the set of paths in the SDSP trees to which that token sequence

can be mapped under the possible isomorphisms. This set of paths yields the set of possible

queries to which the token sequence can correspond. This information is stored in a pair of

dictionaries, which can be used to look up the candidate queries.

To illustrate the core attack idea, Figure 5.1 depicts (5.1a) a graph G, (5.1b) its SDSP

tree for vertex 1 (with vertex labels and canonical names), and (5.1c) the matching query

tree (without vertex labels). It is then clear that the leakage from the unique shortest path

of length 2 in Figure (5.1c) can only be mapped to the corresponding path with edges (4, 5),

(5, 1) in Figure (5.1b) under isomorphisms, and similarly the shortest path of length 1 that is

a subpath of that path of length 2 can only be mapped to path (5, 1). On the other hand,

the 3 remaining paths of length 1 can be mapped under isomorphisms to any of the length 1

paths (2, 1), (3, 1), or (6, 1) and so cannot be uniquely recovered.

Since the adversary only learns the query trees and token sequences from the leakage, the

degree of query recovery that can be achieved based on that leakage is limited. In particular,

without auxiliary information, the adversary can only recover the candidate queries up to

symmetries arising from the isomorphisms between the query trees and the SDSP trees. In

section 5.4, we show that in practice this is often not an issue since many queries result in

only a very small number of candidate queries.
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5.3 Query Recovery

5.3.1 Threat Model and Assumptions

We consider a passive, persistent, honest-but-curious adversary that has compromised

the server and can observe the initial search token issued, all subsequent search tokens

revealed during the query processing, and the response. In particular, this adversary could

be the server itself. In Section 5.5 we briefly outline a modified version of our attack in which

we assume that the adversary has only compromised the communication channels between

the client and server, and can thus only see the search tokens used to initiate the recursive

look-up and the server responses.

We assume that the adversary knows the graph G that has been encrypted to create EDB.

As noted previously, this is a strong assumption, but fits within the security model used

in [52] (where G can even be chosen) and is realistic in many routing/navigation scenarios.

We further assume that the adversary sees enough queries to construct a subset of the n

query trees. We emphasize that computing all n trees does not require observing all possible

queries; in the real world datasets we tested, we were able to construct all query trees with

as few as 68.1% of the possible queries. This is because constructing a query tree that

corresponds to Tv only requires observing the queries that start at the leaf nodes of Tv and

end at v. In SDSP trees with few leaves, only a small fraction of queries is needed.

We assume that the all-pairs shortest path algorithm used in constructing the SP-matrix

from G during setup is deterministic. We assume that this algorithm is known to the

adversary. Such an assumption is reasonable as the adversary knows G and many shortest

path algorithms are deterministic, including Floyd-Warshall [47] and many of its adaptations.

124



(a) Original graph G.
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(b) SDSP tree for node 1. (c) The inferred leakage.

Figure 5.1: (a) Original graph G, (b) its corresponding SDSP tree for vertex 1 in G with the
canonical names labeling all the vertices of the tree, and (c) the the matching query tree that
is leaked during setup (without any vertex labels).

5.3.2 Formalising Query Recovery Attacks

Query recovery (QR) in general is the goal of determining the plaintext value of queries

that have been issued by the client. The notion of query recovery was introduced by Islam

et al. [64] in the context of leakage abuse attacks on SSE schemes and has been extensively

studied in the context of SSE and related schemes since.

We study the problem of query recovery in the context of GESs, specifically, the GKT

scheme: given G, the setup leakage of the GKT scheme and the query leakage from a set of

SPSP queries, our adversary’s goal is to match the leakage for each SPSP query with the

corresponding start and end vertices (u, v) of a path in G. As noted above, there may be a

number of candidate queries that can be assigned to the leakage from each query. We now

formally describe the adversary’s goals.

Definition 17. (Consistency) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be the set of

SPSP queries that are issued, and S = {s1, s2, . . . , sk} be the set of token sequences of the

queries issued. An assignment π : S → V × V is a mapping from token sequences to SPSP

queries. An assignment π is said to be consistent with the leakage L(G,Q) if it satisfies

L(G,Q) = L(G, π(S)).
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Informally, consistency requires that, for each si ∈ S, the query π(si) specified by

assignment π could feasibly result in the observed leakage L(G,Q).

Definition 18. (QR) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be a set of SPSP queries,

and S the corresponding set of token sequences. Let Π be the set of all assignments consistent

with L(G,Q). The adversary achieves query recovery (QR) when it computes and outputs

a mapping: s 7→ {π(s) : π ∈ Π} for all s ∈ S.

Informally, the adversary achieves query recovery if, for each s ∈ S (a set of token

sequences resulting from queries in Q), it outputs a set of query candidates {π(s) : π ∈ Π}

containing every query that is consistent with the leakage. Note that this implies that the

output always contains the correct query (and possibly more). This is the best the adversary

can do, given the available leakage.

There is some information not conveyed in this mapping. In particular, by fixing an

assignment for a given token sequence, we may fix or reduce the possible assignments for

other query responses. We give such an example below.

Example 5.3.1. Suppose we observe the set of token sequences {si : i ∈ [5]} such that

s1, s2, s3, s4 correspond to paths of length 1 and s5 corresponds to a path of length 2, with s4

a subsequence of s5, and which allows us to construct the query tree in Figure 5.1c. Further

suppose that the resulting query tree is not isomorphic to any other query tree, so we know

that all queries in S are rooted at 1. An adversary achieving QR must output the following:

{s1 : {(6, 1), (3, 1), (2, 1)}, s2 : {(6, 1), (3, 1), (2, 1)},

s3 : {(6, 1), (3, 1), (2, 1)}, s4 : {(5, 1)}, s5 : {(4, 1)}}.

However, if the adversary could fix the assignment s1 to (1, 6) (for example, by using auxiliary

information) then s2 could only be mapped to either (1, 3) or (1, 2).
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We now define a special type of query recovery when there exists only one assignment

consistent with the query leakage, i.e. all queries can be uniquely recovered.

Definition 19. (FQR) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be a set of SPSP queries,

and S the corresponding set of token sequences. Let Π be the set of assignments consistent

with L(G,Q). We say that the adversary achieves full query recovery (FQR) when it (a)

achieves QR, and (b) |Π| = 1.

That is, there is a unique assignment of token sequences to queries consistent with the

leakage. Whether FQR is always possible (i.e. for every possible set of queries Q) depends

on the graph G. Specifically, we will see that FQR is always possible if and only if each

SDSP tree arising in G is non-isomorphic and every path in each SDSP tree is fixed by all

automorphisms of the tree. It is easy to construct graphs for which these conditions hold

(see Section 5.3.10). For such graphs, our QR attack always achieves FQR.

5.3.3 Technical Results

We develop some technical results concerning isomorphisms of trees and the behavior of

paths under those isomorphisms that we will need in the remainder of the chapter.

For any rooted tree T = (V,E, r) and any u ∈ V , let T [u] ⊆ T denote the subtree induced

by u and all its descendants in T .

Lemma 5.3.2. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be rooted trees, and pu,r =

(u,w1, . . . , wt, r) and pv,r′ = (v, w′1, . . . , w
′
ℓ, r
′) be paths in T and T ′, respectively. If there

exists an isomorphism φ : T → T ′ such that φ(u) = v, then t = ℓ and φ(wi) = w′i ∀i ∈ [t].

Proof. By assumption φ(u) = v and by definition of isomorphism of rooted trees we also

have that φ(r) = r′. Since T is a tree, then we know that there exists a unique path between

u and r, and between v and r′. Isomorphisms of graphs must be edge preserving, and so φ
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must map the subgraph pu,r to pv,r′ . These two paths can only be isomorphic if they are the

same length and thus t = ℓ. Putting together these two facts we have that

(φ(u), φ(w1)) = (v, w′1), (φ(w1), φ(w2)) = (w′1, w
′
2), . . . , (φ(wt), φ(r)) = (wt, r

′)

which concludes the proof.

Given a rooted tree T = (V,E, r) and u ∈ V , let PathNameT (u) denote the concatenation

of the canonical names of vertices along the path from u to r in T , separated by semicolons:

PathNameT (u) = Name(T [u])∥“; ”∥Name(T [w1])∥“; ”∥ . . . ∥“; ”∥Name(T [wt])∥“; ”∥Name(T [r]).

Computing path names will form the core of our QR attack. Before we explain how we

use them, we prove a sequence of results about the relationship between path names and

isomorphisms. In Section 5.3.5 we explain how to apply a universal hash function to the path

names to compress their length from O(n2) to O(log n) bits, thereby reducing storage and

run time complexity.

Proposition 5.3.3. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be isomorphic rooted trees and let

C and C ′ denote the set of children of r and r′, respectively. There is an isomorphism from

T to T ′ if and only if there is a perfect matching from C to C ′ such that for each matched

pair ci ∈ C, c′i ∈ C ′, there exists an isomorphism φi : T [ci]→ T [c′i].

Proof. To see the forwards direction, let φ denote an isomorphism from T to T ′ and note

that if φ(c) = c′ for c ∈ C, then by the edge-preservation property of isomorphisms, φ must

map the vertices of T [c] to the vertices of T [c′], and thus T [c] ∼= T [c′]. For the backwards

direction, we construct an isomorphism φ from T to T ′. Let φr be the trivial isomorphism

that takes r to r′ and let

φ = φ1 ∪ φ2 ∪ · · · ∪ φk ∪ φr.
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Let (a, b) ∈ E. If (a, b) is an edge in T [ci] for some ci ∈ C then it is easy to see that by

restricting φ to the vertices in T [ci], we have that (φ(a), φ(b)) is an edge in T ′[c′i] ⊆ T ′.

If (a, b) = (ci, r) for some ci ∈ C, then (φ(ci), φ(r)) = (c′i, r
′). Since c′i is a child of r′

then (φ(a), φ(b)) ∈ E′. A similar argument holds for showing that if (a, b) ∈ E′, then

(φ−1(a), φ−1(b)) ∈ E.

Lemma 5.3.4. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be isomorphic rooted trees. Let u and

v be children of r and r′, respectively. Suppose that σ is an isomorphism from T [u] to T ′[v].

Then there exists an isomorphism φ from T to T ′ such that φ|T [u] = σ and φ(u) = v.

Proof. Let C and C ′ denote the set of children of r and r′, respectively. Since φ is an

isomorphism and is edge preserving, then it must map C to C ′ and we necessarily have that

k = |C| = |C ′|.

We now use Proposition 5.3.3 to prove the lemma. Let φ̂ be any isomorphism from T to

T ′. If φ̂ maps u to v then we are done. Otherwise, φ̂(u) = c′ ̸= v and φ̂−1(v) = c ≠ u for

some c′ ∈ C ′ and c ∈ C. By Proposition 5.3.3 we have that T [u] ∼= T ′[c′] and T [c] ∼= T ′[v],

and by assumption we also know that T [u] ∼= T ′[v]. Thus, by transitivity, we conclude that

T [c] ∼= T ′[c′]. Let W be the vertices in T \ (T [u] ∪ T [c]) and let π be an isomorphism from

T [c] to T ′[c′]. Then φ = φ̂|W ∪ σ ∪ π is a collection of isomorphisms on all the trees rooted

at the children of the roots. Thus φ is an isomorphism from T to T ′ that maps u to v.

We now come to our main technical result:

Theorem 5.3.5. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be rooted trees and let u ∈ V

and v ∈ V ′. There exists an isomorphism φ : T → T ′ mapping u to v if and only if

PathNameT (u) = PathNameT ′(v).
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Proof. The forwards direction follows from Lemma 5.3.2.

For the backwards direction, suppose that PathNameT (u) = PathNameT ′(v). Since a

path name includes the canonical name of the entire tree, we deduce that Name(T [r]) =

Name(T ′[r′]); it follows that T ∼= T ′. Similarly we deduce that T [u] ∼= T ′[v]. More gener-

ally, let pu,r = (u,w1, . . . , wt−1, r) and pv,r′ = (v, w′1, . . . , w
′
t−1, r

′) be paths in T and T ′,

respectively. Then for all i ∈ [t− 1] we have that Name(T [wi]) = Name(T ′[w′i]).

We now prove the result inductively on the vertices along the path from u to r. For the

base case, take any isomorphism φ0 from T [u] to T ′[v] and note that this must necessarily

map u to v. We can now extend this reasoning level-by-level upwards, at each stage using

the equalities of components of the two path names to extend the isomorphism. Suppose

that for k ≤ t− 1 there exists an isomorphism φk from T [wk] to T ′[w′k] such that φk(u) = v.

By equality of path names we have that T [wk+1]
∼= T ′[w′k+1]. Note also that wk and w′k are

children of wk+1 and w′k+1, respectively. Applying Lemma 5.3.4, we see that there exists an

isomorphism φk+1 from T [wk+1] to T ′[w′k+1] such that φk+1|T [wk]
= φk. Since u is a vertex

in T [wk], it follows that φk+1(u) = φk(u) = v. This completes the proof.

Theorem 5.3.5 also gives us a method for identifying when there exists only a single

isomorphism between two rooted trees. Suppose that T = (V,E, r) and T ′ = (V ′, E′, r′) are

isomorphic rooted trees and that every vertex v ∈ V has a distinct path name; then there

exists exactly one isomorphism from T to T ′. Intuitively, a vertex in T can only be mapped

to a vertex in T ′ with the same path name. So if path names are unique, then each vertex in

T can only be mapped to a single vertex in T ′, meaning there is only a single isomorphism

available. The converse also holds: if there exists exactly one isomorphism from T to T ′, then

every vertex v ∈ V necessarily has a distinct path name. This observation will be useful in

characterizing when query reconstruction results in full query recovery. We summarise with:

Corollary 5.3.6. Let T and T be isomorphic rooted trees. Every vertex v in T has a unique

path name in T if and only if there exists a single isomorphism from T to T ′.
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5.3.4 Overview of the Query Recovery Attack

Our QR attack takes as input the graph G, a set of token sequences corresponding to the set

of issued queries, and comprises of the following steps:

0. Preprocess the graph offline (Algorithm 18). Compute the SDSP trees {Tv}v∈V of

graph G. Then compute a multimap M that maps each path name arising in the Tv to

the set of SPSP queries whose start vertices have the same path name.

1. Compute the query trees online. The trees are constructed from the token sequences

as the queries are issued.

2. Process the query trees (Algorithm 19). Compute a dictionary D that maps each

token sequence to the path name of the start vertex of the path.

Note that steps 0 and 2 are trivially parallelizable. In the case that the APSP algorithm is

randomized, the adversary can simply run the attack multiple times to account for different

shortest path trees.

In practice, the attack can output a single large table T matching token sequences s to

sets of queries. However, storing this large table will be more expensive than storing D and

M when G has high symmetry. Moreover, D can be indexed by the first token tk in each

token sequence s (since tk uniquely determines the sequence).

In the following subsections, we expand on each of the steps in the above overview.

5.3.5 Computing the Path Names

Before diving into our attack, we describe our algorithm for computing path names which

we use as a subroutine of our attack. Algorithm 17 (ComputePathNames) takes as input

a rooted tree T = (V,E, r) and outputs a dictionary mapping each vertex v ∈ V to its

path name. First, we call Algorithm 1 (ComputeNames) on tree T , its root r, and an
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empty dictionary Names, and obtain a dictionary Names that maps each vertex v ∈ V to the

canonical name of subtree T [v].

We first recall the definition of a universal hash function. A set H of functions U → [M ]

is a universal hash function family if, for every distinct x, y ∈ U the hash function family

H satisfies the following constraint:

Pr
h←H

[h(x) = h(y)] ≤ 1/M.

We will use a function h drawn from a universal hash function family H to compress

the path names from O(n2) to O(log n). We initialize an empty dictionary PathNames and

set PathNames[r] = h(Names[r]). We then traverse T in a depth first search manner; when

a new vertex v is discovered during the traversal, we set PathNames[v] to the hash of the

concatenation of the name of v and the path name of its parent u i.e.

PathNames[v] = h(Names[v]∥PathNames[u]). (5.1)

When all vertices have been explored, PathNames is returned. The pseudocode can be found

in Algorithm 17.

Theorem 5.3.7. Let T be a rooted tree and PathNames be the output of running Algorithm 17

on T . Let H be a universal hash function family mapping {0, 1}∗ → {0, 1}6 log n. Then for

randomly sampled h← H the expected number of collisions in PathNames is at most O(1/n3).

Proof. Let u, v ∈ V be distinct and let (u,w1, . . . , wk, r = wk+1) and (v, w′1, . . . , w
′
k′ , r =

wk′+1) be paths in T . We thus have

PathNames[u] = h(Names[u]∥h(Names[w1]∥h(Names[w2]∥...)))

and similarly for PathNames[v]. For there to be a collision between their path names

132



then either: (1) Names[u]∥PathNames[w1] and Names[v]∥PathNames[w′1] collide or (2) for

some i ∈ [min{k, k′}] and k, k′ ≤ n − 2, we have that Names[wi]∥PathNames[wi+1] and

Names[w′i]∥PathNames[w′i+1] collide. Recall that a canonical name is unique up to isomor-

phism of the rooted tree.

Let Cuv denote the event that the path names of u and v collide, and let Cj
uv denote the

event that the j-th nested hash of u’s and v’s path names collide. A collision on the path

names occurs when any of the at most n pairs of nested hash values (used to compute the path

names of u and v) collide. By definition of universal hash function we have E[Cj
uv] < 1/n6.

Thus, by linearity of expectation,

E[Cuv] =

min{k+1,k′+1}∑
j=1

E[Cj
uv] <

n

n6
=

1

n5
.

Let C denote the event of any collision of path names in T . Then by linearity of expectation

the expected number of collisions is

E[C] =
∑
u

∑
v

E[Cuv] <
n2

n5
=

1

n3
.

Corollary 5.3.8. Let G = (V,E) be a graph and let {Tr}r∈V be the set of SDSP trees of G.

Let PathNames be the union of the outputs of running Algorithm 17 on each tree in {Tr}r∈V .

Let H be a universal hash function family mapping {0, 1}∗ → {0, 1}6 log n. Then for randomly

sampled h← H the expected number of collisions in PathNames is at most O(1/n).

We note that to achieve a smaller probability of collision, one can choose a hash function

family H whose output length is c log n where c > 6. For simplicity we invoke the universal

hash function using SHA-256 truncated to 128 bits.
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Algorithm 17 ComputePathNames
Input: Rooted tree T = (V,E, r).
Output: Dictionary PathNames.

1: // Compute the canonical name of T [v] for all v ∈ V .
2: Initialize empty dictionaries Names and PathNames
3: Initialize empty stack S
4: Names← ComputeNames(T, r,Names)
5: h← H
6:
7: // Concatenate the canonical names into path names.
8: S.push(r)
9: Mark r as explored

10: PathNames[r]← h(Names[r])
11:
12: while S ̸= ∅ do
13: v ← S.pop( )
14: if v is not explored then
15: Let u be the parent of v
16: PathNames[v] = h(Names[v]∥“; ”∥PathNames[u])
17: Mark v as explored
18: for children w of v do
19: S.push(w)
20: return PathNames

Lemma 5.3.9. Let T = (V,E, r) be a rooted tree on n vertices and H be a universal hash

function family mapping {0, 1}∗ → {0, 1}6 log n. Upon input of T , Algorithm 17 returns a

dictionary of size O(n log n) mapping each v ∈ V to a hash of its path name in time O(n2).

Proof. Correctness follows easily from Theorem 5.3.7 and by a recursive argument.

Calling ComputeNames (Algorithm 1) takes O(n2) time. Reading the name of the root

r and assigning the hash of its name takes at most time O(n). Every node is pushed onto

the stack once, and thus the while loop on line 12 iterates n times. Assigning a new path

name on line 16 takes time O(n) since Names[v] is O(n) bits, PathNames[u] is O(log n) bits,

and computing the hash takes constant time. Pushing the children of a given vertex onto

the stack takes time O(n) for a total run time of O(n2). PathNames maps the vertices to

the hash of their path names. Each vertex and its hashed path name can be encoded with

O(log n) bits yielding a dictionary of size O(n log n).
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5.3.6 Preprocess the Graph

We first preprocess the original graph G = (V,E) into the n SDSP trees. Since the

adversary is assumed to have knowledge of G, this step can be done offline. We use the same

all-pairs shortest paths algorithm used at setup on G to compute the n SDSP trees {Tv}v∈V ,

where tree Tv is rooted at vertex v. For unweighted, undirected graphs, we can use breadth

first search for a total run time of O(n2 + nm) where m = |E|; For general weighted graphs

this has step has a run time of O(n3) [47].

Next, we compute the path names of each vertex in {Tr}r∈V , and then construct a

multimap M that maps the (hashed) path name of each vertex in {Tr}r∈V to the set of

SPSP queries whose start vertices have the same path name. We leverage Theorem 5.3.5 to

construct this map and describe the steps in detail below.

We initialize an empty multimap M. For each r ∈ V we compute PathNames by

running Algorithm 17 (ComputePathNames) on Tr. For each vertex v in Tr we com-

pute path_name ← PathNames[v], and check whether path_name is a label in M. If yes,

M[path_name] ← M[path_name] ∪ {(v, r)}. Otherwise M[path_name] ← {(v, r)}. The

pseudocode for computing M can be found in Algorithm 18.

Lemma 5.3.10. Let G = (V,E) be a graph on n vertices. Upon input of G, Algorithm 18

returns a multimap of size O(n2 log n) mapping each v ∈ V to its corresponding path name

in time O(n3).

Proof. For each vertex r ∈ V we compute a dictionary mapping each vertex in Tr to its

respective path names. The correctness of path names follows from Lemma 5.3.9.

We now analyze the run time. Computing all-pairs shortest path takes time O(n3). The

for loop on line 5 iterates through n vertices. For each vertex in V , we run Algorithm 17

(ComputePathNames) which takes O(n2) time and the inner for loop on line 9 takes O(n)

time. Thus, the for loop on line 5 takes a total time of O(n3).
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Algorithm 18 PreprocessGraph
Input: A graph G.
Output: A multimap M mapping path names to sets of SPSP queries.

1: // Compute the set of SDSP trees from G.
2: Initialize an empty multimap M
3: Compute {Tv}v∈V by running all-pairs shortest path on G
4:
5: for r ∈ V do
6: // Compute the path names of each vertex.
7: PathNames← ComputePathNames(Tr)
8: // Map path names to candidate queries.
9: for (v, path_name) in PathNames do

10: if path_name is a label in M then
11: M[path_name]← M[path_name] ∪ {(v, r)}
12: else
13: M[path_name]← {(v, r)}
14: return M

The multimap maps hashes of the path names to a list of candidate queries. The hashed

path names have size O(log n) and there are at most n2 distinct path names; each query

corresponds to only one path name and is O(log n) bits long. The multimap thus has total

size O(n2 log n).

5.3.7 Process the Search Tokens

We must now process the tokens revealed at query time. Recall that the tokens are revealed

such that, the response to any shortest path query can be computed non-interactively. When

a search token tk is sent to the server, the server recursively looks up each of the encrypted

vertices along the path. The adversary can thus compute the query trees using the search

tokens revealed at query time. First, it initializes an empty graph F .

As label-value pairs (lab, val) are revealed in EDB, the adversary parses tkcurr ← lab

and (tknext, c) ← val, and adds (tkcurr, tknext) as a directed edge to F . At any given time,

F will be a forest comprised of n′ ≤ n trees, {Qi}i∈[n′], such that each Qi has at most

n nodes. Identifying the individual trees in the forest can be done in time O(n2). The

adversary can compute the query trees online and the final step of the attack
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can be run on any set of complete query trees. A complete query tree corresponds to

the set of all queries to some fixed destination vertex. For ease of explanation, we assume

Algorithm 19 (QueryMapping) takes as input the set of all complete query trees that have

been constructed from the leakage.

5.3.8 Map the Token Sequences to SPSP Queries

In the last step, we take as input the set of complete query trees {Qi}i∈[n′] constructed

from the leakage. We use the path names of each vertex in the {Qi}i∈[n′], to construct a

dictionary D that maps each token sequence s to the path name of the starting vertex of the

corresponding path in its resspective query tree .

We first initialize an empty dictionary D. For each complete query tree Qi, we compute

PathNames ← ComputePathNames(Qi) and take the union of PathNames and D. The

pseudocode for computing D can be found in Algorithm 19.

Theorem 5.3.11. Let G = (V,E) be a graph and EDB be an encryption of G using the GKT

scheme. Let {Qi}i∈[n′] be the query trees constructed from the leakage of queries issued to

EDB. Upon input of G, Algorithm 18 returns a dictionary M mapping each path name to a

set of SPSP queries in time O(n3). Upon input of G and {Qi}i∈[n′], Algorithm 19 returns a

dictionary D mapping token sequences to path names in time O(n3). Moreover, the outputs

D and M have the property that, for any token sequence s corresponding to a path (v, r) in a

query tree and for every query (v′, r′) ∈ M[D[s]], there exists an isomorphism φ from Q to

Tr′ such that φ(v) = v′ and φ(r) = r′.

Proof. The correctness of {Qi}i∈[n] follows from the correctness of the GKT scheme. Dictio-

nary D contains a map of each vertex in ∪i∈[n]Qi to its path name. The correctness of M

and D follows from Lemmas 5.3.10 and 5.3.9, respectively.

Let (v, r) be a pair comprised of a non-root vertex v and a root vertex r in a complete

query tree Q, and let s be the token sequence corresponding to (v, r). Let (v′, r′) ∈ M[D[s]].
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Algorithm 19 QueryMapping
Input: A graph G and a set of query trees {Qi}i∈[n′] with n′ ≤ n.
Output: A dictionary D mapping search tokens to path names, and a multimap M mapping path names
to sets of SPSP queries.

1: Initialize empty dictionary D
2: for i ∈ [n′] do
3: // Compute the path names of each vertex in the query trees.
4: PathNames← ComputePathNames(Qi)
5: D← D ∪ PathNames
6: return D

By composition of D and M we must have that PathNameQ(v) = PathNameTr′ (v
′). Applying

Theorem 5.3.5, there is thus an isomorphism from Q to Tr′ that maps v to v′ and r to r′.

We now analyze the run time. Preprocessing G (Algorithm 18) takes time O(n3). Com-

puting the path names (Algorithm 17) of n′ ≤ n trees takes O(n3) time, which gives us an

upper bound on the run time of the whole attack.

5.3.9 Recover the Queries

Once the map between each node (token) in a query tree and its corresponding path name has

been computed, the attacker can use M and D to compute the candidate queries of all queries

in the complete query trees. Given M and D (outputs of Algorithms 18 and 19, respectively)

and an observed token s matching a query in the query trees for some unknown query, the

adversary can find the set of queries consistent with s by simply computing M[D[s]].
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Figure 5.2: A graph for which FQR is always possible, no matter what set of queries is issued.

5.3.10 Full Query Recovery

We conclude this section with a discussion of when FQR is possible. By the cor-

rectness of our attack, this is the case for a graph G, a set of complete query trees

{Qi}i∈[n′], and associated token sequences S when for M ← PreprocessGraph(G),

D← QueryMapping(G, {Qi}i∈n′) and all s ∈ S we have |M[D[s]]| = 1.

We can also phrase a condition for FQR feasibility in graph-theoretic terms. Recall

Corollary 5.3.6, which states that given two isomorphic rooted trees T and T ′, if each vertex

in T has a unique path name, then there exists only one isomorphism from T to T ′. We

deduce that FQR is always achievable for any set of complete query trees, when all n2 vertices

in the SDSP trees have unique path names. Formally, we have the following:

Corollary 5.3.12. Let G = (V,E) be a graph and let {Tv}v∈V be the set of SDSP trees

of G. Suppose every vertex in
⋃
v∈V Tv has a unique path name (and in particular, each

T ∈ {Tv}v∈V has a unique canonical name). Then FQR can always be achieved on any

complete query tree(s). The converse is also true.

By correctness, our attack achieves FQR whenever it is possible. In Figure 5.2, we show

an example graph G for which FQR is always possible. Indeed, each tree {Tv}v∈[7] has a

unique canonical name, and for all v ∈ [7], each vertex u in Tv has a unique path name. More

generally, let G be the family of graphs having one central vertex c and any number of paths

all of distinct lengths appended to c. It is easy to see that our attack achieves FQR for all

graphs G ∈ G.
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Dataset n m d # Comp # Unique
Total % Unique # Leaves in SDSP trees

# Nodes in SDSP trees % Min Percentile
50 90 99

InternetRouting 35 323 0.543 1 28
1190 2.353 % 1120

1190 94.1 % 40 84 90

CA-GrQc 46 1030 0.995 1 3
2070 0.145 % 2065

2070 99.8 % 1845 1845 1845

email-Eu-core 1005 16,706 0.0331 20 65,659
1,009,020 6.507 % 787,486

1,009,020 78.0 % 16 69 190

facebook-combined 4039 88,234 0.011 1 33,634
16,309,482 0.206 % 16,194,084

16,309,482 99.3 % 1826 11,424 20,480

p2p-Gnutella08 6301 20,777 0.001 2 8,519,868
39,696,300 21.463 % 27,663,800

39,696,300 69.7 % 4 12 64

p2p-Gnutella04 10,876 39,994 0.0006 1 25,915,785
118,276,500 21.911 % 80,580,827

118,276,500 68.1 % 3 9 32

p2p-Gnutella25 22687 54705 0.0002 13 82,736,533
514,677,282 16.075 % 379,383,168

514,677,282 73.7 % 5 18 54

p2p-Gnutella30 36682 88328 0.0001 12 197,413,906
1,345,532,442 14.671 % 1,003,317,663

1,345,532,442 74.6 % 5 24 60

Table 5.1: A list of all real-world datasets used in our experiments; n denotes the number of
vertices; m denotes the number of edges of the graph dataset; d = 2m/(n · (n− 1)) denotes
the density of the graph. The last three columns show the 50th, 90th, and 99th percentiles
obtained for Query Recovery on the eight real-world datasets.

5.4 Experimental Evaluation

5.4.1 Implementation Details

We implemented our attacks in Python 3.7.6 and ran our experiments on a computing

cluster with a 2 x 28 Core Intel Xeon Gold 6258R 2.7GHz Processor (Turbo up to 4GHz /

AVX512 Support), and 384GB DDR4 2933MHz ECC Memory. To generate the leakage, we

implemented the GES from [52] and we used the same machine for the client and the server.

The cryptographic primitives were implemented using the PyCryptodome library version

3.10.1 [107]; for symmetric encryption we used AES-CBC with a 16B key and for collision

resistant hash functions we used SHA-256. For the DES, we implemeted Πbas from [23]

and generated the tokens using HMAC with SHA-256 truncated to 128 bits. The shortest

paths of the graphs were computed using the single_source_shortest_path algorithm

from the NetworkX library version 2.6.2 [98]. For our attacks, we used used the same shortest

path algorithm from NetworkX as in our scheme implementation. We also used our own

implementation of the AHU algorithm (Algorithm 1) to compute canonical names. The

attack is highly parallelizable, and we exploited this property when implementing our attack.
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5.4.2 Graph Datasets

We evaluate our attacks on 6 of the same data sets as [52]; in addition we use the Inter-

netRouting dataset from the University of Oregon Route Views Project collected on January

2, 2000 and the facebook-combined dataset. All 8 of these datasets were obtained from [78].

The InternetRouting and CA-GrQc datasets were extracted from the original datasets using

the dense subset extraction algorithm by Charikar [28] as implemented by Ambavi et al. [6].

Details about these datasets can be found in Table 5.1.

In addition to real world datasets, we deployed our attacks on random graphs for n =

100, 250, 500, 1000 and edge probabilities p = 0.2, 0.4, 0.6, 0.8. The graphs were generated

using the fast_gnp_random_graph function from NetworkX [98].

5.4.3 Query Reconstruction Results

Real world datasets. We carried out our attack on the Internet Routing, CA-GrQc,

email-EU-Core, facebook-combined, and p2p-Gnutella08 datasets; The online portion of the

attack (Algorithm 19) given all queries ran in 0.087s, 0.093s, 5.807s, 102.670s, and 339.957s

for each dataset, respectively. For the first four datasets, we also ran attacks given 75% and

90% of the queries averaged over 10 runs and sampled as follows: The start vertex was chosen

uniformly at random and the end vertex was chosen with probability linearly proportional

to its out degree in the original graph. This simulates a more realistic setting in which

certain “highly connected” destinations are chosen with higher frequency. The results of these

experiments can be found in Table 5.2. Queries can be reconstructed with just 75% of the

queries. In fact, with high probability, we start seeing complete query trees with as few as

20% of the queries for the facebook-combined dataset.
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InternetRouting Ca-GrQc email-EU-core facebook-combined

75% of the Queries (averaged over 10 runs)

90% of the Queries (averaged over 10 runs)

100% of the Queries

p2p-Gnutella08 p2p-Gnutella04 p2p-Gnutella25 p2p-Gnutella30

100% of the Queries

Table 5.2: CDFs for QR of the real-world data sets after observing (row 1) 75%, (row 2) 90%,
and (rows 3 and 4) 100% of the queries. On the x axis we plot the number of candidate
queries output by our attack and on the y axis we plot the percent of total queries. The
red dotted lines indicate the 50th, 90th, and 99th percentiles. Because of Ca-GrQC’s high
symmetry, complete query trees could only be constructed after at least 80% of the queries
were observed and hence its first graph is omitted.
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InternetRouting Ca-GrQc email-EU-core facebook-combined

p2p-Gnutella08 p2p-Gnutella04∗ p2p-Gnutella25∗ p2p-Gnutella30∗

Table 5.3: Histograms for QR of the real world data sets after observing 100% of the queries.
On the x axis we plot the number of candidate queries output by our QR attack and on
the y axis we plot the number of queries. The red dotted lines indicate the 50th, 90th, and
99th percentiles. An asterisk next to the data set indicates that results were obtained via
simulation, see discussion for details.

For the remaining datasets we ran simulations to demonstrate the success that an adversary

could achieve given 100% of the queries. Our simulations were carried out as follows. Given

G, the SDSP trees and the path names for each vertex in these trees were computed, and

then a dictionary mapping each query in G to the set of candidate queries was constructed by

identifying queries whose starting vertices have the same path name. The simulations only

used the plaintext graph and the results show the success that an adversary would achieve in

an end-to-end attack. These results can be found in the bottom row of Table 5.2.

In Table 5.1 we report the percent of uniquely recoverable queries when the attack is run

on the set of all query trees. Uniquely recoverable queries are queries whose responses

result in only one candidate. CA-GrQc had the smallest percentage of uniquely recoverable

queries (0.145%) and the p2p-Gnutella04 had the largest percentage (21.911%). The small
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p = 0.2 p = 0.4 p = 0.6 p = 0.8

Table 5.4: CDFs for QR of random graphs for n = 100, 250, 500, 1000 and p = 0.2, 0.4, 0.6, 0.8
after observing 100% of the queries. On the x axis we plot the number of candidate queries
output by our QR attack and on the y axis we plot the percent of total queries. For each
(n, p) we generated 50 graphs and took an average of the number of vertices with each given
set size of candidate queries. We observe that as the edge probability increases, the number
of symmetries, and hence the number of candidate queries output tends to increase.

percentage for CA-GrQc can be attributed to its high density (d = 0.995), where density is

defined as d = 2m/(n · (n− 1)). The CA-GrQc graph is nearly complete, and its SDSP trees

display a high degree of symmetry. In fact, many of the query trees are isomorphic to the

majority of SDSP trees, and the majority of SDSP trees have a star shape (i.e. n− 1 of the

vertices in the tree are adjacent to the root). Each non-root vertex in a star tree has the

same path name, resulting in a large number of possible candidates per token sequence.

In Table 5.2, we plot the cumulative distribution functions (CDFs) of our experiments.

The four Gnutella data sets exhibit a high recovery rate that can be explained by asymmetry

and low density. 50% percent of all queries for the p2p-Gnutella08, p2p-Gnutella04, p2p-

Gnutella25, p2p-Gnutella30 data sets result in at most 4, 3, 5, 5 candidate query values,

respectively. Details of the 50th, 90th, and 99th percentiles can be found in Table 5.1. In

Table 5.3 we plot the histograms of the results for QR on the real-world datasets assuming

100% of the queries have been observed.

Random graphs. We also deployed our attack on random graphs, varying the number

of nodes (n = 100, 250, 500, 1000) and the edge probability (p = 0.2, 0.4, 0.6, 0.8). Query

recovery was carried out after all possible queries had been issued. For each (n, p) pair we
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p = 0.2 p = 0.4 p = 0.6 p = 0.8

Table 5.5: PDFs for QR of random graphs after observing 100% of the queries. On the x axis
we plot the number of candidate queries output by our QR attack and on the y axis we plot
the percent of total queries.

generated 50 random graphs, encrypted the graphs using the scheme, generated the leakage

for all possible SPSP queries, and deployed our query recovery attack on the responses.

Then for each recovered multimap, mapping the response to the set of candidate queries, we

computed the average number of queries that had each possible number of candidate queries

across all 50 graphs. The CDFs of these results can be found in Table 5.4.

In general, we see that an increase in p and n both result in an increase in the size of

the maximum query candidate sets. For example, for n = 100, p = 0.2 we have that 6.3%

of all queries are uniquely recoverable and 50% of all queries are recoverable to at most 10

candidate queries (representing 0.101% of all queries). For n = 1000, p = 0.2, we have that

1.5% of all queries are uniquely recoverable and 50% of all queries are recoverable to at most

107 candidate queries (representing 0.0107% of all queries).

As p increases from 0.2 to 0.8, the graphs become more dense and we see a similar trend

as seen in the real-world data sets. Denser graphs are closer to complete, and result in more

symmetries and larger candidate query sets. As p increases, we also see more “waves” in the

CDFs; in the graphs showing the probability density functions (PDFs) (see Table 5.5), these

correspond to large clusters of candidate queries all of which have the same path name and

hence which cannot be distinguished in a QR attack.
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5.5 Conclusion

We have given a query recovery attack against the GKT graph encryption scheme from [52].

The attack model we consider is strong, but it fits within the model used in [52]. The attack

begins with an offline preprocessing phase of the graph. In the online phase, our attack waits

until it has observed all queries to at least one destination vertex and then outputs a list of

candidates for each of these queries. Our attack has the property that the output contains

everything that is consistent with the leakage (and nothing more), and always contains the

correct query. We have given a precise characterization of when full query recovery is possible.

We evaluated our attack against real-world and random graphs.

Another variant of our attack is possible for a network adversary. Such an adversary is

assumed to know G but is able to see only the communications between the client and server,

that is, search tokens and responses (which, recall, are concatenations of ciphertexts). Note

that, for an SPSP query (u, v), the ciphertexts correspond to the vertices that follow u along

the path pu,v. If the adversary were able to observe the query leakage from all possible queries

then it could initialize a graph H and then for each response parse c1∥c2∥ . . . ∥ct ← resp and

add (ci, ci+1) to H for i ∈ [t− 1]. The components of H then become the trees. These trees

are the same as the original query trees, but are missing the leaf nodes. To complete the

attack, the adversary would compute the SDSP trees {Tv}v∈V and for every T ∈ {Tv}v∈V ,

delete the leaf nodes. Now the adversary can continue with the attack as described in

Section 5.3.10, i.e. compute path names and assign the candidate SPSP queries to each resp.

This attack would not be able to recover the candidate query values for the leaf nodes of the

SDSP trees, so is slightly weaker than our main attack.

Yet a further variant of our attack – and which is an interesting open question – applies

when arbitrary subsets of queries have been issued: then the adversary can construct partial

query trees and attempt to identify isomorphic embeddings of them into the SDSP trees.

Our attack leaves open the question of whether other graph encryption schemes can be

146



similarly attacked. On the constructive side, the question of whether we can build more

secure schemes that utilize chaining in a non-interactive manner and which support shortest

path queries remains open. Moreover, there is still much work to be done regarding the

design of encrypted graph database schemes that can support a variety of queries – an

important property for schemes in practical settings. In the next chapter, we present a scheme

supporting shortest path queries that provably mitigates this attack and that utilizes classic

data-structure techniques to achieve its efficiency.
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CHAPTER 6

A GRAPH ENCRYPTION SCHEME FOR SINGLE-PAIR

SHORTEST PATH QUERIES WITH LESS LEAKAGE

This is joint work with Esha Ghosh, Kenneth G. Paterson, and Roberto Tamassia.

6.1 Introduction

Graphs are used to model data in numerous large-scale real-world applications ranging from

fraud detection to biological networks to recommendation systems. Users often wish to

query these graphs for information such as k-nearest neighbors, node clustering, shortest

paths/distances between two nodes, and page rank [86]. Plaintext graph databases have

consequently been heavily studied in recent years, and many such systems have been devel-

oped and widely deployed in industry including Facebook Tao [17], Amazon Neptune [5],

GraphDB [99], and Neo4j [97].

The advent of third-party cloud services has resulted in an increase in the outsourcing

of data. This data is often sensitive and proprietary, which raises client concerns about

privacy. One naive solution would be to encrypt and outsource the whole database, and

then download the entire encrypted database each time a query is issued. This is time and

bandwidth inefficient and begs the question of how clients can securely outsource their data

while enabling query processing on the server-side. An alternative solution would be to

use strong cryptographic techniques such as fully-homomorphic encryption [50] or oblivious

RAM [54]. While they enable secure computation over encrypted data, these techniques are

still expensive at scale despite many recent advances.

To address the issue of efficiently and securely outsourcing graph databases, Chase and

Kamara introduced the notion of structured encryption (STE) [29] which generalizes

searchable symmetric encryption (SSE) [13, 14, 23, 24, 29, 33, 51, 68, 69, 96, 117]. STE
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enables the encryption of structured data such that the data can be privately queried in

sub-linear time. STE gains its efficiency by sacrificing security to an extent: these schemes leak

some information about the queries or underlying data. Security of STE is typically proven

using the real-ideal paradigm, which states that the scheme does not leak any information

beyond some well-defined leakage function. A long line of work has show that such leakage

can be detrimental to the security of schemes supporting key-word search (e.g., [22, 35,100])

and range queries (e.g.[43,57,70,74–76,87]), emphasizing the importance of cryptanlyzing

proposed schemes.

A graph encryption scheme (GES) is a form of STE that enables one to encrypt a

graph, outsource it to an untrusted server, and then process queries over the encrypted graph.

These schemes are efficient, often incurring only a constant overhead over plaintext variants.

Our understanding of GESs is in its infancy and existing schemes typically support only a

single query type, such as adjacency queries [29], focused subgraph queries [29], approximate

shortest distance queries [93], and single-pair shortest path queries [52].

In contrast to standard SSE and range schemes, our understanding of GES security is

also limited. Falzon and Paterson [45] demonstrated the first query recovery attack against a

GES supporting single-pair shortest path (SPSP) queries. An SPSP query on a graph

G = (V,E) takes as input a pair of vertices (u, v) ∈ V × V and outputs a shortest path

between u and v, if it exists. This attack works against the scheme by Ghosh, Kamara, and

Tamassia [52], (henceforth referred to as the GKT scheme) and is optimal in the absence of

auxiliary information. It enables an honest-but-curious server with knowledge of the plaintext

graph to successfully recover the plaintext queries issued by the client up to some equivalence

set which, in practice, can be as small as 3 to 5 queries on real-world social network graphs.

SPSP queries are a fundamental graph query that have numerous applications in social

network analysis, routing, resource management, and biology [131]. In this work, we propose

a new GES supporting SPSP queries. Our scheme has quantifiably less leakage than the
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GKT scheme and mitigates the attack in [45]. The key to our reduced leakage profile is the

following. First, we compute the spanning shortest-path trees rooted at each node in the

graph that we wish to encrypt. These trees are then decomposed into edge-disjoint paths,

which are in turn further processed and stored in an encrypted multimap. Unlike in the

GKT scheme, a passive persistent adversary can no longer reconstruct the shortest path trees

of G, which was the key to the attack in [45]. Informally, the query reconstruction space of a

scheme is the number of unique assignments of plaintext queries to each issued query that

produces that same leakage. We prove a number of conditions under which the reconstruction

space of our scheme is larger than that of the GKT scheme and show that for many common

graph families the gap in the sizes of the reconstruction space is actually exponential in the

number of vertices in G.

Our GES achieves asymptotically optimal bandwidth and a further reduced leakage profile

at the expense of only a logarithmic factor in storage over the GKT scheme. We support our

scheme with a proof of security, a cryptanalysis of the leakage profile, and an implementation

to demonstrate the scheme’s practicality on real-world datasets. On average, our scheme’s

response size is similar to that of the GKT scheme, while our query-time is up to 1.65x

faster with the potential for additional speed-up through parallelism. In contrast, the GKT

scheme’s query algorithm cannot be parallelized due to its inherently sequential processing.

6.1.1 Prior work

Schemes. Meng et al. [93] present three schemes of varying efficiency and security that

leverage sketch-based distance oracles to support shortest distance queries. Liu et al. [83]

and Shen et al. [113] also use distance oracles to pre-compute the shortest distances between

queries; the former uses order-preserving encryption for efficiency gains at the expense of

leaking the orders of the distances at setup, and the latter only supports constrained shortest

path distance queries. Wang et al. [128] utilize additive homomorphic encryption and garbled
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Scheme
Scheme Complexity Attack Size of Query Reconstruction Space

Resp size Query time Space Citation # Queries Kn Ln S21,...,2log(n+1)−1

GKT [52] t t n2 [45] n2 (n!)n+1 2n/2 1

This work 2t log n+ 2t n2 log n – – (n2)! ≥ (n!)logn−1 ≥ n
∏log(n+1)−3

i=0 (2i!)

Table 6.1: Comparison of our scheme and the GKT scheme [52], both of which are GES that
support SPSP queries. Here, n denotes the number of vertices of the graph and t the length
of the shortest path returned by a query. Kn denotes the complete graph on n vertices, Ln

the line on n vertices, and Sn the “asymmetric” star on n nodes with one central vertex and
N = log(n+ 1)− 1 incident paths of lengths 21, . . . , 2log(n+1)−1.

circuits to encrypt graph data and support shortest distance queries; their scheme additionally

relies on a third party, the proxy. Ghosh et al. [52] describe a scheme based on the SP-matrix

of the graph and whose setup time, query time, and storage are asymptotically optimal.

A number of STE schemes supporting other query types and graphs have been described

such as GES supporting top-k-nearest neighbors [82], STE for conceptual graphs [105], STE

for knowledge graphs [130], and dynamic STE for bipartite graphs [77, 80]. Solutions for

graph queries in other security models have also been proposed, but are outside the scope of

this work. These approaches include SGX [39], private information retrieval [129], differential

privacy [111], and structural anonymization [21].

Attacks. The first leakage abuse attack against a GES was described by Goetschmann [53].

This attack succeeds against one of the schemes by Meng et al. [93] that supports approximate

shortest path distance queries; Goetschmann describes two methods for estimating distances

between the nodes of the graph and then uses these methods to infer the plaintext vertices

in each issued query. Most recently, Falzon and Paterson [45] give a query recovery attack

against the GKT scheme [52]. They show that a server-side adversary with knowledge of the

plaintext graph G and the leakage of certain queries can recover the set of possible plaintext

queries for each issued query.
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6.1.2 Contributions

Throughout this work, we let G = (V,E) denote a graph, n = |V | the number of vertices,

and m = |E| the number of edges. A single pair shortest-path query on a graph can be

answered on the fly by using a single-source shortest path (SSSP) algorithm, such as Dijkstra’s

algorithm which runs in time O(m+ n log n). This approach, however, is very costly when

multiple queries are processed on the graph. To avoid such overhead, one must pre-process

the graph and store the shortest path information in a data structure that can then be used to

answer SPSP queries efficiently. Examples of such data structures include the SP-matrix [32]

and distance oracles [31].

Existing attacks work against GESs that use either the SP-matrix or distance oracles. We

thus propose a new data structure based on classical graph algorithm techniques to build a

scheme that provably mitigates these attacks. Let G = (V,E) be the graph that we wish

to encrypt. At a high level, our GES works as follows. For each vertex v ∈ V we compute

the shortest path tree rooted at v whose paths correspond to shortest paths in G; we denote

this tree as Tv. We decompose each tree Tv into edge-disjoint paths. Though one could use

any algorithm for decomposing the trees, we opt for the heavy-light decomposition for its

guarantees on bounding the number of sub-paths any path is decomposed into.

We could stop here and store the disjoint paths. However, in the worst case, the longest

path returned might still have length O(n). Given a disjoint path p of length ℓ, we extract

subpaths of p of lengths that are powers of two i.e. 20, 21, . . . , 2⌈log ℓ⌉. We call these sub-

paths canonical fragments. These fragments are then stored in a multimap. A second

multimap stores the map between SPSP queries and the identifiers of the fragments needed

to reconstruct the shortest path for the given query. The two multimaps are then encrypted

using a standard encrypted multimap scheme.

To query the graph, the server computes one lookup to learn the identifiers of the fragments

and a second lookup to retrieve the actual fragments. This is done non-interactively, i.e. in
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one round trip between the client and server, since we use a response-revealing EMM to

encrypt the first multimap. Our approach is bandwidth and storage efficient, and mitigates

the attack from prior work.

Our contributions can be summarized as follows:

• We present a new non-interactive graph encryption scheme that supports single-pair

shortest path queries. Our scheme is based on a novel data structure that stores

sub-paths of lengths powers of two to minimize bandwidth and reducing leakage.

(Section 6.4)

• We describe a new data structure for responding to SPSP queries. This data structure

contributes to the enhanced security of our scheme whilst maintaining optimal bandwidth

complexity and incurring only an additional logarithmic factor in storage overhead.

(Section 6.4)

• We support our scheme with a thorough cryptanalysis and prove that there is an

information-theoretic gap between the size of the query reconstruction space of our

scheme and that of the GKT scheme for several graph families.(Section 6.5)

• We implement our scheme and test its performance on a number of real-world datasets,

including ones of social networks and geographical networks. We show improved

round-trip query time over the GKT scheme. (Section 6.6)

6.2 Preliminaries

Notation. For a integer n, let [n] = {1, 2, . . . , n}. We denote concatenation of two strings

a and b as a||b. We denote use ∅ or ⊥ to refer to the empty set. Given a set X we use

x←$X to denote that the element x was sampled uniformly at random from X. We denote a

function negligible in λ by negl(λ). Unless otherwise stated, we simply write log n for log2 n.
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Graphs. A graph G = (V,E) is a tuple comprised of a set of vertices V (of size n) and a set

of edges E = V × V (of size m). For simplicity of presentation, we assume that all graphs we

consider are connected. However our scheme can be used to encrypt multi-component graphs

without any modifications.

In this work, we consider GES that support single pair shortest path (SPSP) queries

on a graph G = (V,E). An SPSP query is the evaluation of a function SPSP that takes as

input two vertices u, v ∈ V , and outputs a path pu,v = (u,w1, . . . , wt, v) of minimal length

in G if u and v are connected, and outputs ⊥ otherwise.

6.2.1 Graph Encryption Scheme

Definition 20. ([29]) A graph encryption scheme (GES) is a tuple of algorithms

GES = (KeyGen,Encrypt,Token, Search,Reveal) with the following syntax:

• KeyGen is a probabilistic algorithm that takes as input a security parameter λ and

outputs a secret key K.

• Encrypt is a probabilistic algorithm that takes a secret key K and a graph G and outputs

an encrypted database EDB.

• Token takes as input a key K and query q and returns a search token tk.

• Search takes as input an encrypted database EDB and a search token tk and outputs a

response resp.

• Reveal takes as input a key K and response resp and outputs plaintext m.

Note that this is a purely syntactical definition and has no mention of client or server.

In practice, KeyGen,Encrypt,Token, and Reveal would be executed by the client while Search

would be executed by the server.
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Correctness. A graph encryption scheme for SPSP queries GES is correct if for all graphs

G = (V,E) and all queries q = (u, v) ∈ V × V , if K ← GES.KeyGen(1λ) and EDB ←

GES.Encrypt(K,G), then the resulting m← GES.Reveal(K, resp) is a shortest path from u to

v in G where tk← GES.Token(K, q) and GES.Search(EDB, tk).

Security. The security of GESs is parameterized by a leakage function L = (LS,LQ)

that specifies an upper bound on the information leaked at setup (LS) and at query time

(LQ). We define security using the real-ideal paradigm with respect to passive persistent

adversaries who execute the protocol honestly and who learn the output of the leakage

functions. Such adversaries may include an honest-but-curious server or a network adversary

that has compromised the communication channel.

Definition 21. Let GES = (KeyGen,Encrypt,Token, Search,Reveal) be a graph encryption

scheme and let L = (LS,LQ) be a tuple of stateful algorithms. We say that GES is L-secure

if for all polynomial-time adversaries A, there exists a polynomial-time simulator S such that

|Pr[RealGES
A (1λ) = 1]− Pr[IdealGES

A,S (1
λ) = 1]| ≤ negl(λ).

and games RealGES
A (λ) and IdealGES

A,S (λ) are defined as in Figure 6.1.

6.2.2 Encrypted Multimap Scheme

Encrypted multimap schemes are fundamental building blocks of our GES. EMM schemes

can be response-revealing or response-hiding. Informally, a response-revealing scheme reveals

the plaintext answer of a query to the server whereas a response-hiding scheme does not.

Definition 22. A response-hiding encrypted multimap (EMM) scheme is a tuple of

algorithms EMM-RH = (KeyGen, Encrypt, Token, Get, Reveal) with the following syntax:

• KeyGen is probabilistic and takes a security parameter λ, and outputs a secret key K.
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RealGES
A (1λ)

Initalize(D)
1 : K ← GES.KeyGen(λ)
2 : EDB← GES.Encrypt(K,G)

3 : return EDB

Query(q)
4 : tk← GES.Token(K, q)

5 : resp← GES.Search(EDB, tk)
6 : return resp

Finalize(b)
7 : return b

IdealGES
A,S(1

λ)

Initalize(D)
1 : (α, stL)← LS(D)
2 : (ED, stS)← S(α)
3 : return EDB

Query(q)
4 : (α, stL)← LQ(q, stL)
5 : (resp, stS)← S(α, stS)
6 : return resp

Finalize(b)
7 : return b

Figure 6.1: Games RealGES
A and IdealGES

A,S .

• Encrypt is probabilistic and takes as input a secret key K and multimap M, and outputs

an encrypted multimap EM.

• Token takes a key K and a label lab, and outputs a search token tk.

• Get takes a search token tk and an encrypted multimap EM and returns response resp.

• Reveal takes key K and response resp and returns a set of plaintext values {vali}i∈[k].

A response-revealing EMM scheme comprises of a tuple of only four algorithms

EMM-RR = (KeyGen,Encrypt,Token,Get) such that KeyGen,Encrypt,Token are as in Defini-

tion 22 and Get instead takes as input enccrypted database EDB and search token tk and

returns a set of plaintext values {vali}i∈[k]. Our graph encryption scheme is response-hiding

and makes black-box use of one response-revealing and one response-hiding EMM scheme.

Correctness. Correctness of EMM requires that for all multimaps M and labels lab in M,

if K ← EMM.KeyGen(λ), EM← EMM.Encrypt(K,M), then executing EMM.Reveal(K, resp)

such that tk← EMM.Token(K, lab) and resp← EMM.Get(EM, tk), returns M[lab].

Security. Security of an EMM scheme is also defined using the real-ideal paradigm. The

RealEMM
A and IdealEMM

A games are the same as in Figure 6.1, except that Initialize is
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executed using EMM.KeyGen and EMM.Encrypt, and Query is executed using EMM.Token

and EMM.Get.

Leakage Functions. In our work we consider EMM schemes with the following standard

leakage functions.

• Multimap size (Size): This setup leakage refers to the total number of values in the

multi-map. Formally, for a multimap M with label space L, Size(M) =
∑

lab∈L |M[lab]|.

• Query pattern (QP): Reveals whether two queries are equal. Let M be a multimap

and lab1, . . . , labk be a sequence of queries, then QP(M, (lab1, . . . , labk)) = M where M

is a k × k matrix of bits such that M [i, j] = 1 if and only if labi = labj .

• Access pattern (AP): Reveals the individual values returned for each query. Let M be

a multimap and lab1, . . . , labk be a sequence of queries, then AP(M, (lab1, . . . , labk)) =

(M[labi])i∈[k].

• Volume pattern (Vol): Reveals the number of values returned. Let M be a mul-

timap and lab1, . . . , labk be a sequence of queries, then Vol(M, (lab1, . . . , labk)) =

(|M[labi]|)i∈[k].
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11
(a) Original graph G. (b) SDSP Tree T1.

(c) Decomposition of T1. (d) Our scheme’s leakage.

Figure 6.2: (a) The original graph G, (b) its corresponding SDSP tree rooted at vertex 1, and
(c) the SDSP tree decomposed into edge-disjoint paths. The GKT scheme leaks trees that
are isomorphic to the SDSP trees. In contrast, our scheme only leaks edge-disjoint paths. In
particular, it leaks (d) the set of minimal-length canonical fragments comprising the queried
path. These fragments may contain padding to pad lengths up to the next largest power of
two; padding vertices are depicted with a dotted border. Distinct queries may correspond to
the same fragments.
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6.3 Technical Background

We now introduce the technical background for our scheme. The leakage profile of the

original GKT scheme leaked the edges along which two paths with the same destination

vertex intersect at. This leakage can be detrimental to the security of the queries and, in

fact, Falzon and Paterson [45] demonstrate how this leakage can be leveraged to recover the

plaintext queries. Our goal is to thus reduce the leakage.

Let G = (V,E) be the graph that we wish to encrypt. To achieve this reduced leakage

profile, we first compute the all-pairs shortest paths (APSP) of G. We show that for

common APSP algorithms, such as Floyd-Warshall [47], taking the union of paths with the

same destination vertex results in n rooted spanning trees {Tv}v∈V : each tree Tv is rooted

at a different vertex v ∈ V and the paths correspond to shortest paths in G. These trees

are then decomposed into edge-disjoint paths. Our scheme can be instantiated using any

algorithm that decomposes trees into edge-disjoint paths. However, to concretize our schemes

we employ a data-structure technique called heavy-light decomposition (HLD) [116] to

decompose the trees. In particular, we use HLD for its efficiency guarantees and describe the

algorithm in detail in Section 2.

We start by introducing some notation, and proving that many common all-pairs shortest

path (APSP) algorithms output collections of paths from which spanning rooted shortest

path trees can be computed. This is a necessary condition, since we must apply HLD to a

rooted tree.

Definition 23. Let G = (V,E) be a graph and P be a collection of paths of G. The graph

induced by P is defined as G|P = (VP , EP ) where VP = {v : v ∈ e, e ∈ p, p ∈ P} and

EP = {e : e ∈ p, e ⊆ P}. By definition, VP ⊆ V and EP ⊆ E.

Lemma 6.3.1. Let G = (V,E) be a graph and P be the collection of paths that results from
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running Floyd-Warshall on G. 1 Let Pv denote the set of paths in P that terminate at v.

Then for all v ∈ V , the graph G|Pv
forms a tree with v as its root.

Proof. We must prove two properties: (1) G|Pv
is connected and (2) there are no cycles in

G|Pv
. By definition of Pv, all paths must end at v. Thus any two vertices u, u′ ∈ VPv

are

connected through an undirected path via v and property (1) holds.

We now prove property (2). Let the vertices in V be labeled from 1 to n and let A(u, v, k)

denote the shortest path from u to v using only vertices 1 to k. Recall the recurrence used

by Floyd-Warshall.

A(u, v, k) = min


A(u, v, k − 1)

A(u, k, k − 1) +A(k, v, k − 1)

where A(u, v, 0) = (u, v). For the sake of contradiction, suppose that the recurrence produces

a cycle in G|Pv
. Then there must be two distinct paths between a pair of vertices in Pv as

depicted in Figure 6.3.

vw’wu’

u

Figure 6.3: A cycle in Pv.

As k iterates over [n], we update the shortest path from u to v using only vertices

1, . . . , k. Similarly for the shortest path from u′ to v. However, a cycle as in Figure 6.3 would

imply that for k = w we have A(u, v, k) = A(u, k, k − 1) + A(k, v, k − 1) and A(u′, v, k) =

A(u′, k, k−1)+A(k, v, k−1). Yet the path corresponding to A(k, v, k−1) in the two equations

must have been distinct. This is a contradiction. Thus Pv cannot contain a cycle.

1. We prove this for the Floyd-Warshall algorithm, but this property holds for other similar APSP
algorithms.
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Corollary 6.3.2. Let G = (V,E) be a graph and P the collection of paths resulting from

running Floyd-Warshall on G. For any vertex v ∈ V , if two paths p, p′ ∈ Pv coincide at a

vertex u, then they must coincide at each vertex along the path from u to v.

For convenience, we denote tree G|Pv
as Tv and refer to it as the single destination

shortest path (SDSP) tree for v in G.

After computing all SDSP trees, our scheme decomposes each tree into edge-disjoint

paths using HLD. At a high level, HLD works by labeling edges in a tree T as either “heavy”

or “light” such that the light edges demarcate where an edge-disjoint path ends and a new

path starts. HLD additionally guarantees that any path in T crosses no more than log n

disjoint paths. Applying HLD to a tree may, in the worst case, result in an edge-disjoint

path of length O(n). This happens when most edges are heavy e.g. when G is a path. To

address this, our scheme computes and stores what we call the canonical fragments of

each edge-disjoint path. The canonical fragments of a path pu,v are the subpaths ending at v

whose lengths are powers of two. This allows us to optimize bandwidth at the expense of a

small additional overhead in storage.

Definition 24. Let pu,v be a path padded up to the next smallest power of 2 such that the

padding vertices are pre-pended to u. Let p(j)u,v denote the subpath comprised of the last 2j

edges in pu,v. The canonical fragments of pu,v are {p(j)u,v : 0 ≤ j ≤ log2 |pu,v|}.

6.4 A GES With Less Leakage

In this section, we present PathGES, a scheme that leverages indirection to ensure non-

interactivity and reduce leakage. Our scheme has optimal bandwidth complexity and has a

reduced leakage profile as compared to GKT [52].
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1: KeyGen(1λ) → K
2: K1 ← EMM-RR.KeyGen(1λ)
3: K2 ← EMM-RH.KeyGen(1λ)
4: return K1∥K2

5: Encrypt(K,G) → EDB
6: Initialize multimaps M1 and M2

7: Parse K1∥K2 ← K
8: for r ∈ V do
9: Compute SDSP tree Tr rooted at r in G

10: TA
r ← ComputeHld(Tr, r)

11: for each subpath pu,v ∈ TA
r in BFS manner do

12: Let ℓ be the next power of 2 greater than |pu,v|
13: Pad pu,v to length ℓ
14: for j ∈ [0, ⌈log2 ℓ⌉] do
15: // Compute fragment and add it to M2.
16: Let p

(j)
u,v be the path of the last 2j edges of pu,v

17: M2[(r, u, v, j)]← p
(j)
u,v

18: if j = 0 then s = p
(0)
u,v else s = p

(j)
u,v \ p(j−1)

u,v

19: for non-pad vertex w in s do
20: // Add tokenset of query (w, r) to M1

21: tk← EMM-RH.Token(K2, (r, u, v, j))
22: M1[(w, r)]← M1[(v, r)] ∪ {tk}
23: Permute M1[(w, r)]

24: Pad M1 and M2 up to n2 log n and 4n2, respectively.
25: EM1 ← EMM-RR.Encrypt(K1,M1)
26: EM2 ← EMM-RH.Encrypt(K2,M2)
27: return (EM1,EM2)

Figure 6.4: Psuedocode for our scheme, PathGES.Encrypt, which supports single pair shortest
path queries over an encrypted graph.

6.4.1 Scheme Description

High-level Description. Given a graph G = (V,E), the client computes the set of SDSP

trees {Tv}v∈V and decomposes each tree into disjoint paths (e.g. using HLD). The idea is to

encode the shortest path information as a set of fragments which can be retrieved using a set

of look-ups to two multimaps. Multimap M1 maps each query to a set of search tokens used to

look up the corresponding canonical fragments in the second multimap; it is encrypted using

a response-revealing EMM scheme. Multimap M2 maps each canonical fragment identifier to

the respective canonical fragment; it is encrypted using a response-hiding EMM scheme. We

denote the encrypted versions of M1 and M2 as EM1 and EM2, respectively.
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1: // Compute search token.
2: TokenC(K, (u, v)) → tk
3: Parse K1∥K2 ← K
4: tk← EMM-RR.Token(K1, (u, v))
5: return tk

6: // Look up encrypted fragments.
7: SearchS(EDB, tk) → resp
8: Initialize resp←⊥
9: Parse (EM1,EM2)← EDB

10: T ← EMM-RR.Get(EM1, tk)
11: for tk′ ∈ T do
12: c← EMM-RH.Get(EM2, tk

′)
13: resp← resp ∪ {c}
14: return resp

15: // Decrypt and recover path.
16: RevealC(K, resp) → p
17: Parse K1∥K2 ← K
18: Initialize P ← ∅
19: for c ∈ resp do
20: m← EMM-RH.Reveal(K2, c)
21: Unpad m
22: P ← P ∪ {m}
23: Sort P into path p from u to v
24: return p

Figure 6.5: Psuedocode for our scheme’s query protocol, which comprises of three algorithms:
PathGES.Token, PathGES.Search, and PathGES.Reveal.

To issue query (u, v) ∈ V × V , the client computes a query-specific search token tku,v

which the server uses to retrieve the token set T from EM1. For each token tk′ ∈ T , the

server retrieves the corresponding canonical fragment from EM2 and adds it to the response.

By property of HLD, each shortest path is comprised of no more than log n fragments and,

thus, search requires at most log n look-ups to EM2 (one look-up for each search token

obtained from EM1) to retreieve the at most 2t edges. The server returns the set of encrypted

fragments to the client who then decrypts them to recover the shortest path.

Formal description. KeyGen takes as input a security parameter λ and returns a pair of

keys K1∥K2, one each for the response-revealing and the response-hiding EMM schemes.

Encrypt takes as input key K = K1∥K2 and the graph G = (V,E) that the client wishes

to encrypt. It initializes empty multimaps M1 and M2. For each vertex r ∈ V it computes
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the SDSP tree rooted at r to obtain Tr. For each Tr, the client decomposes the tree into

edge-disjoint paths e.g. using the HLD algorithm (Algorithm 2). We denote the decomposed

tree as TA
r .

Importantly, the disjoint paths are processed in a breadth first search (BFS) manner, so

that the multimap can be computed in one traversal of each tree. For each path pu,v in TA
r ,

as it is discovered, and for each canonical fragment p
(j)
u,v of pu,v, the client:

1. Generates token tk′ ← EMM-RH.Token(K2, (r, u, v, j)) using the response-hiding EMM;

2. Sets M2[(r, u, v, j)]← p
(j)
u,v;

3. Sets M1[(w, r)]← M1[(u, r)] ∪ {tk′}.

The key is that the fragments needed to reconstruct the shortest path from u to r comprises

the fragment from u to v, and the fragments of the shortest path from v to r. Since TA
r is

processed in a BFS manner, M[(r, u)] has already been computed.

The client pads M1 up to n2 log n and M2 up to 4n2. Then it encrypts the multimaps

i.e., EM1 ← EMM-RR.Encrypt(K1,M1) and EM2 ← EMM-RH.Encrypt(K2,M1), and the

encrypted graph (EM1,EM2) is outsourced to the server. The padding step is necessary to

prevent leaking information about the graph at setup (See Section 6.4.2 for a discussion).

To query for (u, v) ∈ V×V , the client computes a token tku,v ← EMM-RR.Token(K1, (u, v))

which it sends to the server. The server uses tku,v to look up the token set T in EM1 that

is needed to retrieve the corresponding canonical fragments in EM2. The server initializes

empty set resp and for each tk′ ∈ T adds the encrypted fragment c← EMM-RH.Get(EM2, tk
′)

to resp. Finally, resp is returned to the client who can then decrypt and sort the fragments

to recover the shortest path.

The pseudocode for PathGES can be found in Figures 6.4 and 6.5.
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Figure 6.6: Examples of graphs that, without padding the resulting multimaps, would achieve
asymptotically different sizes for M1 and M2. Solid and dashed edges denote heavy and light
edges, respectively. Dotted circles denote padding vertices.

6.4.2 Complexity and Correctness

Encrypt is upper bounded by the time needed to compute the SDSP trees, which for general

graphs takes time O(n3). Token entails a single call to the EMM-RR.Token. Our chosen

implementation of EMM-RH only requires two PRF evaluations [23] which take time O(1).

Assuming use of HLD to decompose the trees into disjoint subpaths, Search takes time

O(log n+ t), since any shortest path results in at most 1 + log n look-ups to the EMMs to

retrieve at most 2t fragments. In the worst case the server must return 2t edges, where t is

the length of the shortest path and so client-side decryption, Reveal, takes time O(2t).

The first multimap takes n2 log n space and the second multimap takes 4n2 space, for a

total storage complexity of O(n2 log n). To motivate the need for padding the multimaps, we

describe some pathological graphs for which the sizes of M1 and M2 vary wildly without the

padding step in line 24 (Figure 6.4).

Upperbound on M1. Let G be the complete graph on n vertices. Each SDSP tree of G is a

star: a tree whose root r is adjacent to each of the other n− 1 vertices. Computing the HLD

of a star results in n edge-disjoint paths all of length 1 = 20 (See Figure 6.6a). Each query
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corresponds to exactly one fragment of size 1, and without padding the multimaps, the size

of M1 would be n2. In contrast, if G is a balanced binary tree then any SDSP tree Tr of G

would itself be a binary tree. In particular, each Tr contains a balanced binary sub-tree on

n/2 vertices. Recall that applying HLD to a balanced binary tree results in all light edges (see

Figure 6.6b). Thus in each SDSP tree, there are at least n/4 leaf nodes whose shortest paths

to r comprise log(n/4) disjoint paths and the resulting M1, without padding the multimaps,

would be of size O(n2 log n).

Lemma 6.4.1. Let λ ∈ Z and G a graph on n vertices. Let K ← PathGES.KeyGen(1λ) and

(EM1,EM2)← PathGES.Encrypt(K,G). Then at the end of line 11 in the Encrypt algorithm,

|M1| ≤ n2 log n.

Proof. M1 maps each SDSP query to a token set, such that each token in the set corresponds

to a fragment. By Theorem 2.1.1, the shortest path from any vertex to the root of an

annotated tree TA
r crosses at most ⌊log n⌋ light edges. A shortest path from any vertex u

to the root r in TA
r comprises of no more than log n disjoint paths and, thus, each query

corresponds to at most log n fragments. There are n2 − n possible SPSP queries. Thus, at

the end of line 11 (Figure 6.4), M1 has size at most n2 log n.

In Figure 6.7, we plot the ratio of the size of M1 (prior to padding) when encrypting

a balanced binary tree to our upperbound of O(n2 log n). We see that out ratio closely

approaches 0.8.

Upperbound on M2. To see why we need to pad M2 up to 4n2 observe the following.

Consider again the complete graph on n vertices and its resulting SDSP trees. Since the

fragments of these n trees are trivial, then the size of M2, prior to padding, would be n2.

On the other hand, if G is a cycle of size n = 2(2k + 1) + 1, then every SDSP tree Tr will

comprise a root r from which two paths of length 2k + 1 descend (see Figure 6.6c). The

subtree induced by r, one of r’s children, and its descendants forms a path p of length 2k + 1
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Figure 6.7: We depict the number of values in M1 prior to padding when encrypting the
balanced binary tree on n = 2k − 1 nodes to the bound n2 log n ( ). We also depict the
number of values in M2 prior to padding when encrypting the cycle graph on n = 2(2k+1)+1
nodes to the bound 4n2 ( ). Observe that our worst-case examples approach our theoretical
limits to within a small constant factor.

and on line 13 the client will pad the path up to 2k+1, effectively doubling the length of the

path. Storing each of the canonical fragments of p adds an additional factor of 2 overhead.

This yields a multimap M2 whose size approaches 4n2 as n tends to infinity.

Lemma 6.4.2. Let λ ∈ Z and G = (V,E) be any graph on n vertices. Let K ←

PathGES.KeyGen(1λ) and (EM1,EM2) ← PathGES.Encrypt(K,G). Then at the end of

line 11 in the Encrypt algorithm, |M2| ≤ 4n2.

Proof. On line 13 (Figure 6.4), each edge-disjoint path of length ℓ is padded to the next

power of two. In the worst case ℓ = 2k +1 for an integer k, which results in padding the path

up to 2 · 2k. The length of the padded path approaches 2ℓ as k tends to infinity. Storing the

canonical fragments of each path requires an additional 2k+1 storage. M2 maps fragment

identifiers to fragments. Thus, at the end of line 11, M2 has size at most 4n2.

In Figure 6.7, we also plot the ratio of the size of M2 (prior to padding) when encrypting

a cycle graph to our upperbound of O(4n2). We see that the ratio approaches 1, thus proving

that our asymptotic bound is tight.

Summary. We now present a theorem that summarizes the correctness and complexity.
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Theorem 6.4.3. Let G = (V,E) be a graph such that n = |V |. Let EDB be the result of

encrypting G using PathGES. Executing Encrypt on G takes O(n3) time and produces an

encrypted database of size O(n2 log n). Executing Query on EDB and SPSP query (u, r) ∈

V × V results in the shortest path from u to r having a response size of at most 2t, where t

is the length of the shortest path from u to r. Token runs in time O(1) and produces a token

of size O(1). Search runs in O(log n+ t) time and Reveal runs in O(t) time.

Proof. First we show that the response is the shortest path from u to r. Let TA
r be the

annotated SDSP tree rooted at r. We proceed by induction on the disjoint subpaths as they

are discovered using BFS. Let pv0,r be the first disjoint path, and let {p(j)v0,r}j∈[0,ℓ] be its set

of canonical fragments. Then for every j ∈ [1, ℓ] and every non-pad vertex w in p
(j)
v0,r \ p

(j−1)
v0,r

it is easy to see that M1[(w, r)] corresponds to the fragment needed to recover the path

from w to r. Suppose that this also holds true for the first k − 1 subpaths. Let pu,v be the

k-th path discovered. By the inductive hypothesis and correctness of BFS, then M1[(u, r)]

must have been computed correctly. Thus for every j ∈ [1, ℓ] and every non-pad vertex w in

p
(j)
u,v \ p

(j−1)
u,v we have that M1[(w, r)] can be computed using the fragments comprising the

path from u to r, plus the fragment p(j)u,v. Moreover, since these fragments form paths in the

SDSP tree Tr, then the path is a shortest path in G.

We now claim that each fragment contains no more than 2 times the edges contained

in the true shortest path. Let pu,v be a subpath covering the queried shortest path. Let

p = (w0, w1, . . . , wk, v) in pu,v be the vertices precisely contained in the queried shortest path.

Let 2k be the smallest power of two at least as large as the length of p. Then there exists

fragment p(k)u,v that covers p and is at most 2 times the length of p. The for loop on line 19 of

Encrypt ensures that each query is mapped to the minimum length fragment.

Storage complexity trivially follows since we pad M1 and M2 up to n2 log n and 4n2,

respectively. Computing the SDSP trees takes time O(n3) for general graphs. Each tree in

{Tr}r∈V is traversed once and has a maximum size of O(n). The total set of fragments for a

168



432

2 5 6

234

2 3

6

2

3 51

6

7

4

3

1
24

5

6

7

(b) SDSP  Trees

7

1

4

5

2

3

…

4

1
2

3

5

67

3
4 2

1 5

6

7

2

1 3 5

4 6

7

(c) GKT Leakage

3

1

5

2

6

7

4

(a) Original Graph

6
7

1

5

2

6

3

4

2

3

4

1 5

67

1 2

4 3 2
3 2

27 6 5
6 5 2
5 2

4 3
1 2
2 3
5 2 3
7 6 5 2 3

(1,2)
(3,2)
(4,2)
(5,2)
(6,2)
(7,2)

(4,3)
(1,3)
(2,3)
(5,3)

6,3 , (7,3)

(d) Our Scheme’s Leakage

1 2

7 6
1 2
5 6
2 5 6
4 3 2 5 6

(1,4)
(3,4)
(2,4)

(7,4)

(7,6)
(1,6)
(5,6)
(2,6)

3,6 , (4,6)

5,4 , (6,4)

5
67

6 5 2 3 4
2 3 4
3 4

…

Figure 6.8: A comparison of the leakage of the GKT scheme and of our scheme. The
attack in [45] against the (a) original graph results in full query recovery i.e., there exists
a single isomorphism between each (b) SDSP tree and the (c) query trees computed from
the GKT scheme’s leakage. Thus each query can be uniquely recovered. In contrast, our
scheme results in numerous fragments, with distinct queries potentially returning the same
fragment. For example, queries (6, 3) and (7, 3) result in the same response and hence cannot
be distinguished.

given SDSP tree require no more than 2 times the space of the original tree. For each tree,

computing the fragments and the multimaps can be done in time linear in n. Thus the total

time to encrypt is O(n3).

Issuing a query requires computing a single token using the EMM-RR.Token. This takes

O(1) time and returns a single token of size O(1). Any call to Search results in 1 look-up

to EM1, ⌊log n⌋ look-ups to EM2 and the retrieval of at most 2t edges, for a total running

time of O(log n + t). Running Reveal to decrypt the fragments is linear in the number of

edges in the response, and thus takes O(t) time.

6.5 Cryptanalysis

We now describe the theoretical limitations of what an adversary can learn from our scheme’s

leakage. Our results demonstrate that our scheme mitigates the attack described in [45],

including for families of graphs that had resulted in full query recovery.

In this section, we assume that a graph G = (V,E) was encrypted using PathGES and that

every possible query in V × V has been issued once. This represents the strongest passive
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Figure 6.9: A partition of indistinguishable queries when encrypting the graph in Figure 6.8(a)
with our scheme. The leakage induced by out scheme is depicted in Figure 6.8(d).

adversary without auxiliary information. Yet even in this strong setting, we demonstrate an

information theoretical gap between what the adversary can reconstruct from the leakage of

PathGES versus that of the GKT scheme. Furthermore, we show an exponential increase in

the size of the reconstruction space for several families of graphs.

Leakage abuse attacks can broadly be categorised into query recovery attacks and

database reconstruction attacks. In the context of GESs, the goal of query recovery is to

infer the plaintext value of each issued query given the original graph and the query leakage.

The goal of database reconstruction is to infer the underlying graph G given the setup and

query leakage. In either case, the adversary may attempt the attack using all possible queries

or a subset of them. The attack in [45] is a query recovery attack. For comparison, we also

analyze the success of an attacker attempting query recovery against our scheme.

Definition 25 ([45]). (Consistency) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be the

set of SPSP queries that are issued, and S = {tk1, tk2, . . . , tkk} be the corresponding set of

search tokens. An assignment π : S → V × V is a mapping from token sequences to SPSP

queries. An assignment π is said to be consistent with the leakage LQ(G,Q) if it satisfies

LQ(G,Q) = LQ(G, π(S)).
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In other words, an assignment π is consist with the leakage if the set of queries π(S) could

have produced the observed leakage.

Definition 26. (QR) Let G = (V,E) be a graph, Q be a set of SPSP queries, and S the

corresponding set of search tokens. Let Π be the set of all assignments consistent with L(G,Q).

The adversary achieves query recovery (QR) when it computes and outputs a mapping:

s 7→ {π(s) : π ∈ Π} for all s ∈ S.

The goal of query recovery is to compute the set of all possible SPSP queries for each

search token issued by the client.

Definition 27. (Query reconstruction space) Let G = (V,E) be a graph, Q be a set of

SPSP queries. Let Π be the set of all assignments consistent with L(G,Q). The query

reconstruction space is the set of possible assignments, Π. The size of the query

reconstruction space is |Π|.

6.5.1 QR from the GKT scheme’s leakage

Recall that if all possible SPSP queries are issued to the GKT scheme, then the adversary

can construct from the leakage a set of n query trees; each query tree is rooted and its paths

corresponds to the shortest paths whose destination is the root. These query trees are one-to-

one with the SDSP trees. Thus, queries can be recovered up to the possible isomorphisms

that exist between the query trees and the SDSP trees. This notion is formalized as follows.

Lemma 6.5.1 ([45]). Let G = (V,E) be a graph encrypted using GKT, {Tr}r∈V be the SDSP

trees of G, Q be the set of all distinct SPSP queries, and S be the search tokens of Q. Further

let q = (u, v) be a query in Q and tk ∈ S be its corresponding search token. If there exists a

vertex w ∈ V such that there is a rooted tree isomorphism ϕ : Tv → Tw, then there exists an

assignment π : S → V × V such that π(tk) = (ϕ(u), w) and π is consistent with the leakage

LQ(G,Q).
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What this theorem tells us is that queries can be recovered up to the possible isomorphisms

between the query trees and the SDSP trees. If there only exists one possible matching

between the query trees and the SDSP trees and there only exists one isomorphism between

each pair of trees, then queries can be uniquely recovered. This strong form of recovery is

called full query recovery (FQR) [45]. Falzon and Paterson note that there exist families

of trees for which FQR is always possible. One such family is the family of graphs that

have one central vertex v and paths of distinct lengths incident to v. Figure 6.8 depicts

such a graph; the left column depicts the SDSP trees and the middle column depicts the

corresponding query trees.

6.5.2 QR from our scheme’s leakage

In contrast to the GKT scheme, PathGES decomposes each SDSP tree into edge-disjoint

paths before encrypting the paths using a response hiding EMM. As a result, an adversary

cannot necessarily associate the leakage of SPSP queries with the same destination vertex

whose paths are edge disjoint. Specifically, for each SDSP tree Tr, an adversary can at most

recover the queries up to isomorphism of the trees rooted at the children of r.

For a concrete example, consider the graph G in Figure 6.8 and the leakage resulting from

the SPSP queries (1, 2), (5, 2), and (4, 3). The GKT scheme leaks the fact that paths p1,2

and p5,2 share the same destination vertex and that path p4,3 has a different destination. In

contrast, our scheme does not leak anything beyond the lengths of their respective fragments

and which fragments appear together. All three queries result in a single fragment of the

same size. Moreover, all three fragments correspond to only one query ad all three queries

result in a response consisting of a single fragment. There is in fact no information that can

be used to distinguish these fragments or associate them as belonging to the same SDSP tree.

We characterize QR up to the isomorphisms of the subtrees rooted at the children of the

SDSP tree roots as follows.
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Lemma 6.5.2. Let G = (V,E) be a graph encrypted using PathGES, {Tr}r∈V be the SDSP

trees of G, Q be the set of all distinct SPSP queries, and S be the search tokens of Q. Let

(u, v) be any query in Q and tk ∈ S be its corresponding search token. If there exists a vertex

w ∈ V and children c and d of the roots in Tv and Tw, respectively, such that there is a rooted

tree isomorphism ϕ : Tv[c] ∪ (c, v) → Tw[d] ∪ (d, w), then there exists an edge-disjoint path

decomposition of {Tr}r∈V and assignment π : S → V × V such that π(tk) = (ϕ(u), w) and π

is consistent with the leakage LQ(G,Q).

Put another way, if there are two isomorphic subtrees Tv[c] and Tw[d], then there is a set

of queries of the form (a, b) where a ∈ Tv[c] that is indistinguishable from a set of queries

(a′, b′) where a′ ∈ Tw[d].

Proof. We first define π. Let A ⊆ Q be the set of queries (a, b) such that a ∈ Tv[c] and b = v,

and let SA ⊆ S be the tokens generated by A. Similarly, let B ⊆ Q be the set of queries

(a, b) such that a ∈ Tw[d] and b = w, and let SB ⊆ S be the tokens generated by B. Let

tk ∈ S and (a, b) be the query that generated tk:

• If tk ∈ SA, then set π(tk) = (ϕ(a), ϕ(b)).

• If tk ∈ SB , then set π(tk) = (ϕ−1(a), ϕ−1(b)).

• Else set π(tk) = (a, b).

We now show that π is consistent with the leakage i.e., that the query and structure

pattern of LQ(G,Q) and LQ(G, π(S)) are equal. Since Q is a set and π is a permutation,

then π(S) is also a set. Thus the query pattern for both is a |Q| × |Q| matrix with 1’s along

the diagonal and 0’s everywhere else.

Let H = (Q, F ) and H ′ = (π(S), F ′) be the structure pattern graphs of LQ(G,Q) and

LQ(G, π(S)), respectively. It remains to show that the structure pattern is equal, i.e. that

there is an edge-weight preserving isomorphism φ : H → H ′. Observe that the subgraph of
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H induced by A and its neighbors is disconnected from the lest of the graph. Similarly for B.

This is because all shortest paths in Tv[c] ∪ (c, v) are edge disjoint from all other shortest

paths and so does not share fragments with any other queries.

We now define φ for each of these components of H. Consider the queries q ∈ A. Any

edge-disjoint decomposition of Tv must be a decomposition for Tv[c]. Since the rooted-tree

isomorphism ϕ is edge-preserving, then any decomposition of Tv[c] must also be one for Tw[d]

under ϕ. Since ϕ is a map of vertices to vertices, it also maps shortest paths to shortest paths

and fragments of a particular length to fragments of the same length. We abuse notation of

ϕ(f) to mean the image of the vertices in fragment f under ϕ.

• For any edge (q = (a, b), f) ∈ Q× F such that q ∈ A, set φ((a, b)) = (ϕ−1(a), ϕ−1(b)).

• For any edge (q = (a, b), f) ∈ Q× F such that q ∈ B, set φ((a, b)) = (ϕ−1(a), ϕ−1(b)).

• For any edge (q, f) ∈ Q× F such that Q \ (A ∪B), then q ∈ π(S) and f ∈ F ′. For all

such vertices, set φ as the identity, i.e. φ(q) = q and φ(f) = f .

Since φ maps fragments under the identity or ϕ, then it is edge-weight preserving (the edge

weights of H and H ′ correspond to the lengths of the incident fragments). To see that φ is also

edge-preserving, let (q = (a, b), f) be any edge in H. If q ∈ A or q ∈ B, then by isomorphism

of ϕ either ((ϕ(a), ϕ(b)), ϕ(f)) ∈ H ′ or ((ϕ−1(a), ϕ−1(b)), ϕ−1(f)) ∈ H ′, respectively. Else

q ∈ Q \ (A ∪ B). Since π−1(q) is the token generated by q, then (φ(q), φ(f)) ∈ H ′. Thus

H ∼= H ′ and π is consistent with LQ(G,Q).

6.5.3 Reconstruction Space

We now make some additional observations about the reconstruction space of our scheme.

Lemma 6.5.3. Let G = (V,E), and fix a set of SDSP trees for G and a decomposition of

each tree into canonical fragments. For each canonical fragmentof length L, there are at least

L/2 equivalent queries.
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Proof. Let v ∈ V and let f be a fragment in SDSP tree Tv. Let the corresponding path of f

in Tv be (u0, u2, . . . , uk2) where uk2 is the node closest to the root v. Then set of queries

{(ui, v) : 0 ≤ i ≤ k2/2} all result in the same response.

Corollary 6.5.4. Let F be the set of all fragments. Then the reconstruction space is of size

at least
∏

f∈F ,|f |≥2
|f |
2 !

For concreteness, we compute the sizes of the reconstruction spaces of the GKT scheme

versus our scheme for various graph families. The results can be found in Table 6.1 and the

proofs of these bounds can be found below.

6.5.4 Reconstruction Space Lowerbounds

Complete Graph

Lemma 6.5.5. Let G = (V,E) be a complete graph on n vertices and let Q = V × V . Let G

be encrypted using the GKT scheme and let L(G,Q) be its corresponding leakage. The size

of the reconstruction space is (n!)n+1.

Proof. The SDSP trees of a complete graph are n stars, each star rooted at a different root

node of G. Each star is isomorphic. It follows that there are n query trees, all of which are

isomorphic stars. There are n! ways to assign the query trees to the SDSP trees. For each

pair, there are n! isomorphisms. Since there are n such pairs we have a total reconstruction

space size of n! · (n!)n.

Lemma 6.5.6. Let G = (V,E) be a complete graph on n vertices and let Q = V × V . Let G

be encrypted using our scheme, and let L(G,Q) be its corresponding leakage. The size of the

reconstruction space is (n2)!.
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Proof. The SDSP trees of a complete graph are n stars. Decomposing each tree into disjoint

paths results in n paths each of length 1. In total there are n2 fragments all of which are

indistinguishable. There are (n2)! possible bijections between V × V and the set of n2

fragments and the lemma follows.

Line Graph

Lemma 6.5.7. Let G = (V,E) be a path on n vertices and Q = V × V . Let G be

encrypted using the GKT scheme and let L(G,Q) be its corresponding leakage. The size of

the reconstruction space is 2n/2.

Proof. Let the graph be the path (1, 2, 3 . . . , n) and let n be even. G has n corresponding

SDSP trees. Observe that the SDSP tree rooted at node i ∈ V is isomorphic to the SDSP

tree rooted at n − i + 1. Given the set of n query trees, each query tree is isomorphic to

exactly two SDSP trees: the SDSP tree it corresponds to and its reflection. For each SDSP

tree and query tree pair that are isomorphic, there exists only one isomorphism between

the pair of trees. This is because each tree has at most two paths incident to the root, each

of differing lengths. Thus the isomorphism is determined. The reconstruction space is the

number of ways to pair the SDSP trees with isomorphic query trees multiplied by the number

of isomorphisms between each pair. The size of the reconstruction space is 2n/2. A similar

argument holds for odd n.

Lemma 6.5.8. Let G = (V,E) be a line graph on n vertices and let Q = V × V . Let G be

encrypted using our scheme, and let L(G,Q) be its corresponding leakage. The size of the

reconstruction space is Ω((n!)log n−1).

Proof. Let the graph be the path (1, 2, 3 . . . , n). Each SDSP tree is comprises of two paths

descending from the root. When the SDSP tree is decomposed, each path becomes a disjoint

path. Any query thus results in a response comprised of a single canonical fragment. Thus,
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each canonical fragment of the same length and which does not comprise of any padding

vertices are indistinguishable. There are at least n canonical fragments of each length

1, 2, 22, . . . , 2log n−1. Each canonical fragment of length ℓ length is indistinguishable from any

other fragment of the same length. This gives us a lowerbound of (n!)log n−1.

Asymmetric Star

We define the asymmetric star Sk1,...,kℓ as the graph with one central vertex and ℓ paths of

distinct lengths k1 . . . , kℓ, all of which are incident to the central vertex. For convenience we

consider the asymmetric star whose paths are of lengths that are powers of two, i.e. S21,...,2N .

Lemma 6.5.9. Let G = (V,E) be an asymmetric star S21,...,2N on n = 2N+1 − 1 vertices

and let Q = V × V . Let G be encrypted using the GKT scheme and let L(G,Q) be its

corresponding leakage. The size of the reconstruction space is 1.

This result follows from Section 4.9 of [45].

Lemma 6.5.10. Let G = (V,E) be the asymmetric star S21,...,2N on n = 2N+1 − 1 vertices

and let Q = V ×V . Let G be encrypted using our scheme, and let L(G,Q) be its corresponding

leakage. The size of the reconstruction space is Ω(n
∏log(n+1)−3

i=0 (2i!)).

Proof. Let j ∈ [N ] and consider an SDSP tree rooted at a vertex along the path of length

2j . This tree consists of the other paths of lengths {2i}j ̸=i,i∈[N ] all descending from the

fixed root. Each path of length 2i gives rise to a fragment of length at least 2i. Applying

Corollary 6.5.4, each such fragment results in 2i−1 indistinguishable queries. Because these

queries are indistinguishable, the assignment can permute these in any way possible i.e.

there exist at least
∏N

i=1,i ̸=j(2
i−1!) distinct assignments. Thus each SDSP tree results in∏N

i=1,i ̸=j(2
i−1!) ≥

∏N−2
i=0 (2i!) possible assignments consistent with the leakage. There are n

SDSP trees (one rooted at each vertex in G). This yields a lower bound of n
∏N−2

i=0 (2i!) =

n
∏log(n+1)−3

i=0 (2i!) on the size of the query reconstruction space.
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Dataset

Graph Characteristics Setup

|V | |E| d
Num of
Comp

Dia-
meter

Max Frag
Length

M1
Size

M1
% Pad

EM1
Size

M2
Size

M2
% Pad

EM2
Size

Total
Time

InternetRouting 35 323 0.543 1 2 2 202KB 87.3 269KB 591KB 30.4 619KB 360ms

CA-GrQc 46 1030 0.995 1 2 2 351KB 85.3 468KB 1039KB 30.2 1076KB 442ms

email-Eu-core 1005 16,706 0.0331 20 7 4 238MB 64.8 293MB 505MB 29.8 525MB 41s

facebook-combined 4039 88,234 0.011 1 8 4 4.39GB 60.7 5.25GB 8.46GB 30.2 8.48GB 11.1min

p2p-Gnutella08 6301 20,777 0.001 2 9 8 11.3GB 61.0 13.4GB 19.9GB 31.5 20.6GB 26.6min

p2p-Gnutella04 10,876 39,994 0.0006 1 10 8 35.7GB 58.3 41.9GB 59.5GB 31.6 61.5GB 1.47hr

p2p-Gnutella25 22,687 54,705 0.0002 13 11 8 164GB 57.5 190GB 265GB 31 268GB 7.39hr

Swiss 19,976 24,009 0.00012 1 311 512 127GB 54.9 148GB 127GB 34.8 207GB 5.88hr

Cali 21,693 21,693 0.00009 2 491 512 150GB 53.6 174GB 119GB 32.7 245GB 8.51hr

Table 6.2: Details about the real-world datasets used in our experiments and our setup
experimental results. |V | denotes the number of vertices, |E| the number of edges of the
graph dataset, and d = 2|E|/(|V |2 − |V |) the density of the graph.

6.6 Empirical Evaluation

We now evaluate our scheme’s performance on real world graph datasets and compare its

performance to the GKT scheme [52].

Experimental setup. We implemented our scheme and the GKT scheme using Python

3.7.6 and ran our experiments on a compute cluster with a 32 Core Intel Xeon (Cascade

Lake-based) processor and 2146GB Memory. Both implementations used the same compute

node for the client and the server, so our results do not include network latency.

Graphs. We used the NetworkX library version 2.6.3 [98] to represent and manipulate graphs.

We used our own implementation of the heavy-light decomposition algorithm (Figure 2).

Cryptographic primitives. The cryptographic primitives were implemented using the

Cryptography library version 39.0.1 [108]. For symmetric encryption we used AES in CBC

mode with 16B block size and key length; for cryptographic hash functions we used SHA-256;

for search token generation we used HMAC with SHA-256. We implemented our EMM

schemes using [23] and encryption was parallelized across 20 cores.
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6.6.1 Datasets

We evaluated our scheme on the same social network datasets as Ghosh et al. [52] and

Falzon and Paterson [45], along with two geographical datasets: the Swiss Federal Railway

timetable [110] and the California road network [79]. See Table 6.2 for more details.

• InternetRouting [78]: A dataset from the University of Oregon Route Views Project. A

dense subgraph (n = 35) was extracted using the dense subset extraction algorithm by

Charikar [28] as implemented by Ambavi et al. [6].

• Ca-GrQc [78]: A network of the General Relativity and Quantum Cosmology arXiv

collaborations from January 1993 to April 2003. A subset (n = 46) was extracted using

dense subset extraction.

• email-EU-core [78]: A network of internal emails sent between members of a large

European research institution. We parsed the data as a non-directed graph, i.e. an edge

(u, v) exists if either u sent v and email or vice versa.

• facebook-combined [78]: A social network derived from Facebook friends lists. The

graph includes all edges from the ego networks collected in the survey.

• p2p-Gnutella [78]: Four datatsets depicting the Gnutella peer-to-peer network from the

4th, 5th, and 25th of August 2002.

• Swiss [110]: A timetable of the Swiss Railway from December 13, 2015 to December

10, 2016 parsed as a graph [85]. This graph comprised of 178 components as a result of

numerous funiculars and short connections that are all a part of the network. We extracted

the largest component from this graph.

• Cali [79]: A dataset of the California Road Network. This dataset was also used in prior

works on range schemes e.g. [44,87].
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Social Network Datasets
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Geographic Datasets
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Figure 6.10: Query benchmarks with respect to the length of the path queried. We use the
following symbols for the social network datasets: InternetRouting ( ), Ca-GrQc ( ),
email-EU-core ( ), facebook-combined ( ), p2p-Gnutella08 ( ), p2p-Gnutella04 ( ),
p2p-Gnutella25 ( ). And the following symbols for the geographic datasets: Swiss ( )
and Cali ( ). For each dataset we issued 100,000 random queries, partitioned them based on
path length, and took the average of the respective attribute within each set of the partition.

6.6.2 Performance

Setup. Setup includes the KeyGen and Encrypt algorithms. We report setup benchmarks in

Table 6.2, including sizes of the plaintext multimaps, percent padding, sizes of the encrypted

multimaps, and total setup time. Setup times were practical ranging from as little as 360 ms

(n = 35) to 8.51 hours (n = 21, 693).

Client-side storage required only a 32B key, one 16B key each for the response-hiding

EMM and the response-revealing EMM. Similar to the GKT scheme, server-side storage

is the most significant cost of our scheme. Total storage ranged from 888KB (n = 35) to

458GB (n = 22, 687). Due to the way padding was added, the sizes of EM1 and EM2 were

at most 1.33 times and 2.06 times larger than the plaintext multimaps, respectively. Storage

is proportional to the number of nodes and is independent of the density of the graph. In

contrast, the GKT scheme’s encryption overhead varies with the density of the graph.
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Social Network Datasets
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Geographic Datasets
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Figure 6.11: Response size, Search time at server, and Reveal time at client as they vary
with (Top row) the length of the path queried and (Bottom row) the number of fragments
returned. We use the following symbols for the social network datasets: InternetRouting
( ), Ca-GrQc ( ), email-EU-core ( ), facebook-combined ( ), p2p-Gnutella08 ( ),
p2p-Gnutella04 ( ), p2p-Gnutella25 ( ). And the following symbols for the geographic
datasets: Swiss ( ) and Cali ( ). For each dataset we issued 10,000 random queries,
partitioned them based on path length (or number of fragments), and took the average of
the respective attribute within each set of the partition.

Query. Querying the database comprises of three algorithms: Token (client-side computation

of the search token), Search (server-side look-up of the encrypted records), and Reveal (client-

side decryption of the response). In Figures 6.10 and 6.11 we depict query benchmarks for

all datasets including the response size, percent padding of the response, runtime of Search,

and runtime of Reveal. For each dataset we sampled 100,000 uniformly random queries,

partitioned the queries based on length of the queried path (or respectively, the number of

fragments), and averaged the benchmarks within each set of the partition.

In general, response size varies proportionally with the length of the path, with an

approximate 100B increase for each additional vertex. We found that Search increases linearly

with respect to both the path length and the number of fragments. This is due to the fact that

longer paths are likely to result in more fragments. Similarly, Reveal increases linearly with
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Figure 6.12: PathGES ( ) and GKT ( ) query benchmarks for the facebook-combined
dataset with respect to the length of the queried path. Results were averaged over 100,000
uniformly random issued SPSP queries. Observe that Search takes almost half an order of
magnitude more for GKT, whereas Reveal is faster for GKT. The response size is on average
comparable to the bandwidth of GKT.

respect to both path length and number of fragments. However, we see a closer correlation

to length since response decryption is only dependent on the number of edges returned.

6.6.3 Comparison with GKT

Figure 6.12 depicts query benchmarks for the facebook-combined dataset for both PathGES

and GKT. We issued 100,000 uniformly random SPSP queries, partitioned the results with

respect to the length of the shortest path returned, and averaged the respective attribute for

all shortest paths of a given length.

Token is very efficient for both schemes and takes approximately 0.043ms. Search run-

time is faster for our scheme despite what the theoretical complexity might suggest. This

discrepancy between worst-case asymptotic complexity and real-world performance can be

largely attributed to the difference in number of calls to cryptographic primitives that our

implementations of the response-revealing and response-hiding EMM schemes must make. In

particular, a call to Search.EMM-RR requires computing for each value: one hash evaluation

(to obtain the encrypted label) and one symmetric decryption (to reveal the value). In con-

trast, a call to Search.EMM-RH requires computing for each value only one hash evaluation

(to obtain the encrypted label). The GKT scheme looks up t edges in a dictionary encrypted
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using the response-revealing scheme. Our scheme instead looks up the (at most) t+ δ edges

in EM2 for δ ∈ [1, t+ 1], which is encrypted using the response-hiding scheme (in practice

δ is closer to 1). These observations were confirmed using line-profiler [71] to compute the

length of time the search operation spent on each line of code.

Our scheme’s search time could further be decreased through parallelization since the

look up for each fragment can be processed using a different core. In contrast, the GKT

scheme’s search cannot be parallelized since the vertices must be looked up sequentially.

Reveal is marginally faster for the GKT scheme, since it only involves symmetric decryption

of the vertices in the shortest path. In our scheme, the returned fragments may include

additional nodes and padding vertices that are not in the shortest path. Moreover, the Reveal

algorithm of our response-hiding EMM implementation also entailed a key-derivation step,

hence the small additive increase in decryption time required by PathGES.

Total query time (which includes runtime of Token, Search, and Reveal) is efficient and

practical for both schemes. However, as the length of the path increases, the total query time

of GKT overtakes that of PathGES. Response size increases linearly with respect to the path

length for both schemes. On average, the response size of PathGES almost matches that of

GKT, despite the worst-case 2x constant factor overhead in bandwidth for our scheme.

6.7 Conclusion

In this work, we present a new graph encryption scheme for shortest path queries. We

describe a new data structure for storing shortest and responding to SPSP queries. Our

scheme is built upon this data structure and achieves optimal bandwidth complexity while

mitigating the attack by Falzon and Paterson [45]. We support our scheme with a proof of

security and thorough cryptanalysis. We further support our scheme with an experimental

evaluation that demonstrates its practicality on a number of real-world social network and

geographic datasets.
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CHAPTER 7

CONCLUSION

In this thesis we have studied structured encryption schemes that support complex expressive

queries – i.e., range queries on multi-attribute databases (Chapters 3 and 4) and

single-pair shortest path queries on graphs (Chapters 5 and 6) – through both an

adversarial lens (Chapters 3, 4, and 5) and a constructive one (Chapter 6). We applied

a number of combinatorial and algorithmic techniques to our work, and extended them to

the setting of encrypted databases to obtain new results that may be of independent interest.

7.1 Why these Attacks Matter

Critics of existing leakage abuse attacks often argue that the assumptions are too strong and

too unrealisic, pointing to papers that require every query to be issued e.g., [43,70] or require

knowledge of the query distribution e.g., [57, 73,76]. Despite the low likelihood that a client

will issue all queries, we cannot dismiss the fact that doing so has been shown detrimental to

security time and time again. In many other areas of cryptography, the existence of even one

polynomial-time attack against a scheme or primitive would call into question its security.

Why should structured encryption be any different?

Given that passive adversaries can recover so much information – and in polynomial

time no less – suggests that these schemes leak too much information and that we should

instead focus on building schemes that are secure regardless of the number of queries issued

or the query distribution from which the queries are drawn. The attacks described in this

thesis should act as reminder to tread with caution and re-evaluate how we build structured

encryption schemes.
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7.2 The Importance of Cryptanalysis

Yehuda Lindell wrote: “There are plenty of [cryptographers] who dabble in theory and practice,

or may be somewhere on the spectrum in the middle. Despite their differences, I personally

think that they have a lot in common. The adversarial mindset that cryptographers need to do

their job is the same whatever they are doing” [81]. This quote emphasizes that even when

we are constructing a scheme, we should be thinking like an adversary. That often means

assuming the worst-case scenario and not dismissing the possibility that some hospital staff

member may, at some point, accidentally request all patients in the system between the ages

of 0 and 120.

In Chapter 6, our cryptanalysis was done in conjunction with security proofs. Not only

do we establish the leakage profile of our scheme, but we also prove information theoretic

results about what a passive adversary cannot learn. It is our hope that future schemes are

also accompanied by cryptanlysis and theorems that bound the type of information that

adversaries can learn. Such cryptanlysis will serve as a forcing function for the community

to better understand the schemes that we put forth. Moreover, it will help us overcome the

cycle of building schemes, attacking them, and then building a new modified scheme that

can ultimately be similarly attacked.

7.3 Directions for Future Work

Structured encryption is a promising approach for private queries on outsourced data. That

said, there is still much work to be done on developing structured encryption that is efficient,

sufficiently secure, and supports expressive queries.

Kornaropoulos et al. [72] recently proposed a quantitative measure of searchable encryption

via leakage inversion. Their key insight is that leakage is a function and that the preimage

of a leakage pattern is the set of equivalent databases that could have produced that leakage.
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One could thus apply standard information theoretic techniques to compute, for example, the

entropy of the reconstruction space and better compare different leakage profiles. They

define closed-form expressions and derive bounds for both keyword-based and range-based

databases and one interesting direction would be to extend their analysis to other types of

queries. It would also be interesting to explore whether other information theoretic techniques

would be helpful in quantifying leakage.

On the constructive side, it would be interesting to try and design graph encryption

schemes with smaller storage overhead than the scheme presented in Chapter 6. More

generally, the question of how to design a scheme that supports a number of standard graph

queries (e.g., k-nearest node queries, single-pair shortest path queries, diameter queries)

remains open. In order to make schemes practical and deploy-able, we must ultimately design

and analyze schemes that are functional, expressive, efficient, and dynamic.
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