
THE UNIVERSITY OF CHICAGO

ESSAYS ON ECONOMETRICS AND INDUSTRIAL ORGANIZATION

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE SOCIAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

KENNETH C. GRIFFIN DEPARTMENT OF ECONOMICS

BY

JONAS LIEBER

CHICAGO, ILLINOIS

JUNE 2023



Contents

Preface

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Legal Notice on Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Estimating Concentration Parameters

for Bandit Algorithms 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Estimating sub-Gaussian parameters . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Definition of sub-Gaussian parameters . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Tail-sub-Gaussian parameter . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 MGF-sub-Gaussian parameter . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Hoeffding’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Inference with Estimated Parameters . . . . . . . . . . . . . . . . . . . . . 24

1.5 Revisiting Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ii



1.5.1 Multi-armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.2 Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6 Empirical Application: Liquor Sales in Washington State . . . . . . . . . . . . . . 47

1.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.6.2 Sample Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.6.3 Demand Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.6.4 Marginal Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.6.5 Model of Firm Experimentation Behavior . . . . . . . . . . . . . . . . . . 54

1.6.6 Experimentation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.9.1 On sub-Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.9.2 Details on Estimation of MGF-parameter . . . . . . . . . . . . . . . . . . 81

1.9.3 Inferred Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.9.4 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1.9.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1.9.6 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1.9.7 Inference for Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . 104

1.9.8 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2 Estimating Nesting Structures 115

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.2 The Inverse Generalized Nested Logit Model . . . . . . . . . . . . . . . . . . . . 120

2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

iii



2.3.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2.3.2 Illustration of Non-Negativity Constraints . . . . . . . . . . . . . . . . . . 126

2.3.3 Illustration of Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.4 Econometric Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.4.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.4.2 Application to Estimating Nesting Structures . . . . . . . . . . . . . . . . 141

2.5 Monte-Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

2.5.1 Performances of the Estimator . . . . . . . . . . . . . . . . . . . . . . . . 143

2.5.2 Comparison to BLP Approach . . . . . . . . . . . . . . . . . . . . . . . . 145

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

2.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.8.1 Non-negative Two Stage Least Squares . . . . . . . . . . . . . . . . . . . 155

2.8.2 On Assumption 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

2.8.3 Prediction Error of the LASSO . . . . . . . . . . . . . . . . . . . . . . . . 185

3 Demand Estimation with Finitely Many Consumers 191

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

3.2 The random coefficient logit model . . . . . . . . . . . . . . . . . . . . . . . . . . 194

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

3.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.5 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

3.8.1 Proof of Proposition 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

iv



3.8.2 Proof of Theorem 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

3.8.3 Proof of Theorem 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

3.8.4 Nonparametric Demand Estimation . . . . . . . . . . . . . . . . . . . . . 222

3.8.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

v



Preface



List of Figures

1.1 Empirical Tail and Tail Bounds for different parameters . . . . . . . . . . . . . . . 18

1.2 Concentration and Anti-Concentration . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Example Lower Bound for PrK̂tail ¥ κK�
tails as function of κ . . . . . . . . . . . . 30

1.4 The Histogram of Price Endings suggests Limited intra-week Price Experimentation 55

1.5 Stability of Marginal Cost between June 2012 and Dec 2014 . . . . . . . . . . . . 57

1.6 Comparison of Gaussian and sub-Gaussian Tail Bounds . . . . . . . . . . . . . . . 74

2.1 Inducing Sparsity without Penalization: Non-negativity Constraints . . . . . . . . . 135

vii



List of Tables

1.1 Influence of Concentration Parameters K1, K2 on Profits . . . . . . . . . . . . . . 37

1.2 Inference for Linear Programs: Simulation for Nonparametric Demand Counter-

factuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.3 Nonparametric Bounds on Demand Counterfactuals: Feasibility . . . . . . . . . . 46

1.4 Demand Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.5 Average Price Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.6 Comparison of Price Experimentation Strategies . . . . . . . . . . . . . . . . . . . 62

2.1 Comparing OLS and NNLS for J � 4 . . . . . . . . . . . . . . . . . . . . . . . . 129

2.2 Scaling Properties of NNLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.3 Monte-Carlo Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2.4 Monte Carlo: True Model is RCL with log-normal coefficients . . . . . . . . . . . 147

2.5 Monte Carlo: True Model is RCL with normal coefficients . . . . . . . . . . . . . 148

3.1 Mean Absolute Error for DGP without Random Coefficients . . . . . . . . . . . . 206

3.2 Mean Absolute Error for DGP with Random Coefficients . . . . . . . . . . . . . . 208

viii



Acknowledgements

First, I am grateful to my advisors, Alexander Torgovitsky, Ali Hortaçsu, Azeem Shaikh and Max
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Abstract

This dissertation is comprised of three chapters. The unifying theme of this dissertation is the

estimation of demand. The first chapter proposes a method to estimate concentration parameters

for bandit algorithms. It can be applied to experimenting with prices when demand is initially

unknown. The second chapter develops a method to estimate nesting structures in demand models.

The third chapter considers the estimation of demand when there are finitely many consumers,

specifically the zero-valued market shares.
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Chapter 1

Estimating Concentration Parameters

for Bandit Algorithms

1.1 Introduction

Following the repeal of prohibition in 1933, the State of Washington created a monopoly for selling

liquor. This monopoly was upheld for almost 80 years until voters adopted an initiative that led to

the privatization of liquor sales starting June 1st, 2012. Suddenly, vendors were free to sell liquor

and to set prices. To set profit-maximizing prices, firms would have to know the demand curve.

There is anecdotal evidence that vendors did not know the demand curve. Alan Johnson, CEO

of BevMo!, a Californian company specializing in the sale of alcoholic beverages that entered the

liquor markets in Washington, said in March 2012:

“I sure don’t know what we’ll charge the consumer.

There is going to be a lot of scrambling.”1

In this situation, a firm can learn the demand curve by simply setting a price and then observing

1Cited according to Huang et al. (2022) as the original source Gregutt, Paul, “BevMo Ramps It Up in Washington
State” (April 30, 2012) is no longer available.
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demand. But learning the demand curve is only a means to an end, profit maximization. This

problem can be modeled as a multi-armed bandit (Rothschild, 1974). In multi-armed bandits mod-

els, agents repeatedly choose actions with uncertain rewards. While learning about the distribution

of rewards associated with each action, agents aim to maximize expected utility or profits. Many

dynamic programming problems can be written as bandit models. Examples include firms maxi-

mizing profits by experimenting with prices or advertisement (Rothschild, 1974; Schwartz et al.,

2017; Misra et al., 2019; Waisman et al., 2019), randomized control trials maximizing outcomes

by evaluating alternative treatments (Berry, 2006; FDA, 2018; Kasy and Sautmann, 2021), con-

sumers maximizing utility by trying experience goods (Hotz and Miller, 1993; Erdem and Keane,

1996; Crawford and Shum, 2005), or workers maximizing income by choosing an industry or a job

(Keane and Wolpin, 1997; Jovanovic, 1979; Miller, 1984).

A popular bandit algorithm is the upper confidence bound (UCB) algorithm. The UCB algorithm

advocates for optimism in the face of uncertainty. Formally, it constructs finite-sample confidence

intervals (CIs) for the mean reward associated with each action. The UCB algorithm then rec-

ommends the action with the highest upper confidence bound, i.e., the action that gives the most

reason for optimism. The construction of these finite-sample CIs uses Hoeffding’s inequality, a

probabilistic bound on how much the average can deviate from the mean.

A caveat in applying Hoeffding’s inequality is that it is not fully data-driven. It involves con-

centration parameters that govern the tail. These parameters resemble the variance in the CLT,

where consistent estimates of the variance exist and can, by Slutsky’s Lemma, be used for infer-

ence. So far, there has been no analog of these results for inference with Hoeffding’s inequality.

In this paper, I propose two methods for estimating the concentration parameters which appear

in Hoeffding’s inequality. I establish that asymptotic inference with estimated parameters is valid,
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i.e., confidence intervals have at least the nominal coverage under mild conditions. Under stronger

assumptions, I show that the estimated parameters are asymptotically optimal, i.e., they yield the

narrowest possible confidence interval in the class of valid confidence intervals based on Hoeffd-

ing’s inequality. In contrast, I show the impossibility of finite-sample inference with estimated

parameters without further assumptions. With an additional anti-concentration assumption, I show

that finite-sample bounds with estimated parameters are feasible.

In the statistical literature on bandits, concentration parameters appearing in Hoeffding’s inequality

are assumed to be known (Lattimore and Szepesvári, 2020). In practice, however, these concentra-

tion parameters are either unknown or estimated from above using support bounds. These support

bounds often lead to inflated concentration parameters. As a result, upper confidence bounds are

unnecessarily high, leading to an overexploration of sub-optimal options in the UCB algorithm.

I leverage the methods derived in this paper to adapt the UCB algorithm to settings where the

concentration parameters are unknown. Under an anti-concentration assumption, I derive a finite-

sample bound for the regret of the adapted UCB algorithm that is close to the finite-sample regret

bound of the asymptotically optimal UCB algorithm with known parameters.

Subsequently, I apply these methods to the optimal price experimentation problem of firms en-

tering the liquor market in Washington state in 2012 where entering firms experimented to learn

the shape of the demand curve (Huang et al., 2022). I empirically compare the price experimen-

tation implemented by store managers with UCB algorithms with concentration parameters from

support bounds and the proposed estimators. I find that the UCB algorithm with parameters based

on support bounds would have increased profits by 1% . The UCB algorithm with estimated con-

centration parameters achieves a 26% profit increase, close to the 30% increase of the infeasible

UCB algorithm with optimal parameters.
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My theoretical results can also be applied to non-standard inference problems that arise in par-

tial identification and machine learning. Inference problems in partial identification and machine

learning are often difficult because they involve non-Gaussian limiting distributions. One example

is when the true parameter lies on the boundary of the parameter space. In the case of the LASSO

(Tibshirani, 1996), which has been used to approximate optimal instruments (Belloni et al., 2012;

Gilchrist and Sands, 2016) and for inference on treatment effects in the presence of many controls

(Belloni et al., 2013), Fu and Knight (2000) show that the limiting distribution can have probability

mass on zero when the true coefficient is zero. A second example are non-differentiable functions

of the mean. In the case of linear programs, which are widely used in partial identification of, e.g.,

counterfactual demand (Tebaldi et al., 2019), policy-relevant treatment effects (Mogstad et al.,

2018), and peer effects (Herstad, 2022), this occurs when (some) parameters of the linear program

are estimated (Mangasarian and Shiau, 1987). Delta method and the bootstrap are invalid without

differentiability Shapiro (1990); Fang and Santos (2019)). In this paper, I show that Hoeffding’s

inequality can be used to derive conservative inference in these settings even when there are non-

differentiabilities or parameters lie on the boundary of the parameter space.

I propose a finite-sample inference to linear programs, allowing for all parameters to be estimated.

I show how the problem can be treated as a quadratically constrained quadratic program and derive

sufficient conditions under which this program is convex. This allows the number of parameters

to grow almost exponentially in the sample size. I illustrate the proposed method in a simulation

study based on the nonparametric demand estimation strategy proposed by Tebaldi et al. (2019).

Using Hoeffding’s inequality for inference has a price. First, inference based on Hoeffding’s in-

equality tends to be conservative, i.e., coverage tends to be above the nominal level. For example,

a 95% confidence interval of a standard normal based on Hoeffding’s inequality is about 39%

larger than it would have to be, its coverage is 99.35%. Second, the necessary tail assumptions are

4



stronger than the tail assumptions needed for the CLT. Hence, inference based on the CLT needs

weaker assumptions and yields narrower confidence intervals. As discussed above, the strengths

of inference based on Hoeffding’s inequality are finite-sample validity, that parameters do not have

to be in the interior, and that differentiability is not required when passing from inference on the

mean to inference on a function of the mean.

The rest of this paper is organized as follows. Section 1.1.1 discusses the related literature. In sec-

tion 1.2, I present empirical settings that motivate this paper. I develop estimators for sub-Gaussian

concentration parameters in section 1.3 and study inference with these estimated parameters in sec-

tion 1.4. The motivating examples are revisited in section 1.5. The empirical application to liquor

sales in Washington is in section 1.6. Section 3.6 concludes.

1.1.1 Related Literature

This paper relates to several strands of literature.

First, it relates to the econometric literature on finite-sample inference on the mean. Bahadur

and Savage (1956) show the non-existence of reasonable finite-sample confidence intervals for

the mean as long as the class of distributions considered is sufficiently large. When the class

of distributions is restricted to those with known support bounds, Hoeffding (1963) establishes

valid finite-sample confidence intervals whose length decreases at the optimal rate
?
n of the CLT

but feature a sub-optimal constant compared to confidence intervals based on the CLT. When the

class of distributions is restricted to those with known support bounds, Romano and Wolf (2000)

build on Anderson (1969) to propose confidence intervals with uniform finite-sample validity and

asymptotically optimal length. However, these confidence intervals are hard to compute as they in-

volve infinite-dimensional optimization over the class of all distributions. In this paper, I show that

finite-sample inference based on Hoeffding’s inequality with estimated concentration parameters
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is impossible without further assumptions, echoing Bahadur and Savage (1956). When inference

based on Hoeffding’s inequality with estimated parameters is possible, the confidence intervals are

asymptotically wider than those derived with the CLT. This is the price for simplicity of compu-

tation, finite-sample validity, and the ability to sidestep (directional) differentiability requirements

in asymptotic inference.

Second, this paper relates to the econometric literature on inference on functions of the mean

and the literature on moment inequalities. Shapiro (1990) and Fang and Santos (2019) show that

(directional) differentiability is required to pass from inference on the mean to inference on a func-

tion of the mean using the delta method or the bootstrap. Many interesting inference problems do

not satisfy this differentiability requirement, lack asymptotic normality and are hence considered

nonstandard. Examples include linear programs (Mangasarian and Shiau, 1987) and the LASSO

(Fu and Knight, 2000). Using inference based on concentration inequalities does not require dif-

ferentiability or even continuity. I contribute to this literature by deriving conditions under which

inference based on Hoeffding’s inequality can be used with estimated concentration parameters.

Third, this paper relates to the idea of using estimated concentration parameters for inference.

For distributions with known support bounds, Maurer and Pontil (2009) derive a Bernstein con-

centration inequality with estimated variances. This result has seen applications in the bandit

literature (Audibert et al., 2007) and empirical risk minimization (Shivaswamy and Jebara, 2010).

For example, (Shivaswamy and Jebara, 2010) claim that Bernstein concentration inequalities yield

tighter confidence intervals than Hoeffding’s inequality when the variances are small. This is only

true when support bounds are used to derive the sub-Gaussian paramters appearing in Hoeffding’s

inequality. The estimators for concentration parameters proposed in this paper have the same ef-

fect when used for inference with Hoeffding’s inequality. In general, Hoeffding’s inequality leads

to stronger concentration than Bernstein’s inequality (Vershynin, 2018, Section 2.8). It is useful
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to highlight that while (Shivaswamy and Jebara, 2010) derives finite-sample concentration bounds

for estimated variances using a support bound, this paper uses anti-concentration assumption for

finite-sample bounds.

Fourth, this paper relates to the literature on multi-armed bandits. Specifically, it builds on the

idea of estimating dispersion parameters of reward distributions on the fly. For the special case

of bandits whose reward distributions are exactly Gaussian, Auer et al. (2002) propose and study

the UCB-Normal algorithm that estimates the unknown variances on the fly. For general reward

distributions, Auer et al. (2002) proposed the experimental UCB1-Tuned algorithm with estimated

variances which they found to perform well in simulations. Audibert et al. (2007) leverage the

Bernstein concentration inequality with known bounded support derived by Maurer and Pontil

(2009) to propose and study the UCBV algorithm that uses estimated variances. In bandits with

different variances per arm, this reduces the regret by experimenting less on arms that appear to

have low variances. Mukherjee et al. (2018) refine EUCBV by combining UCBV with the arm-

elimination strategy of UCB-Improved developed by Auer and Ortner (2010). Honda and Take-

mura (2011) propose the DMED algorithm motivated by a Bayesian perspective and establish its

instance-specific asymptotic optimality. All these bandit algorithms require known support bounds

for reward distributions. My refinement of the UCB algorithm does not require that the support is

bounded nor that the support bounds are known. Under an additional anti-concentration property, I

establish a finite-sample regret bound of the UCB algorithm with estimated parameters that is close

to the regret bound of the UCB algorithm with known parameters. In my empirical application,

I find that DMED performs comparably to UCB with concentration parameters based on support

bounds. Using estimated concentration parameters improves the performance in this example for

a fixed horizon.

Fifth, this paper adds to the literature on inference to linear programs with estimated parame-

7



ters. Fang et al. (2022) propose a method for inference when all coefficients are known but the

right hand side in the constraint is estimated. Hsieh et al. (2022) consider using the optimality

conditions of linear (and quadratic) programs as moment inequalities to leverage methods from the

literature on inference with moment inequalities. This method is computationally challenging, par-

ticularly when there are many parameters and constraints. In the most closely related paper in this

literature, Syrgkanis et al. (2021) study inference for a linear program that arises in non-parametric

inference on auctions using finite-sample inference. In their linear program, the coefficients in the

objective are estimated as means of sub-Gaussians with known sub-Gaussian parameters. Syrgka-

nis et al. (2021) note that using Hoeffding’s inequality is computationally attractive. While the

methods proposed in this paper would solve a quadratic program for inference, Syrgkanis et al.

(2021) use the particular structure of their linear program to derive a inference method that only

relies on solving a linear program. My paper adds to this literature by covering the general case

in which all parameters are estimated, sub-Gaussian parameters are unknown, and computational

complexity due to many variable or constraints is a first-order concern.

Sixth, this paper contributes to the empirical literature on firm behavior, learning and deviations

from optimality. Rothschild (1974) showed that the optimal price experimentation strategy of a

Bayesian monopolist leads to a positive probability of committing to a price that does not maxi-

mize profits. DellaVigna and Gentzkow (2019) show that retail chains forgo substantial profits by

adopting uniform pricing policies that are not adapted to geographically heterogeneous demand

conditions. Hortaçsu et al. (2021) find that even a large US airline using sophisticated methods to

estimate demand is subject to certain biases and hence sets sub-optimal prices. In contrast, Huang

et al. (2022) find that firms entering the liquor market in Washington State are successful in learn-

ing complex features of demand and in setting optimal prices within 2.5 years of entry. Studying

the same setting, I find that firms could have considerably increased their profits in the 2.5 years of

experimentation. According to my demand estimates, firms did not succeed in finding the optimal

8



prices.

1.2 Applications

The purpose of this section is to illustrate empirical settings which serve as motivating exam-

ples for inference based on concentration inequalities. First, I introduce multi-armed bandits as a

model of optimal experimentation for a monopolist facing an unknown demand curve. Second, I

consider applications to partial identification, specifically inference to linear programs with esti-

mated parameters, and inference to partially identified parameters that are solutions to a class of

optimization problems considered by Horowitz and Lee (2022). Third, I consider applications to

machine learning. Specifically, I discuss how convergence rates can be used for inference, and the

role of Hoeffding’s inequality for empirical risk minimization and the selection of the batch size in

the stochastic gradient descent method that is used in artificial neural networks.

Example 1. Multi-armed bandits. Consider a monopolist facing an unknown demand curve

(Rothschild, 1974). The monopolist’s objective is to maximize the expected sum of profits aris-

ing over T periods. Each period, the monopolist can choose a price from a finite set of prices

tpgrid,1, . . . , pgrid,Lu and observe the associated profit. For each posted price, the demand follows

a Binomial distribution where the number of trials is given by the number of consumers n   8
and the success probability is given by the aggregated choice probability sppq. Given a constant

marginal cost C, the monopolist aims to maximize

Ţ

t�1

ErΠpptqs �
Ţ

t�1

E rppt � CqBinpn, spptqqs � n
Ţ

t�1

ppt � Cqspptq. (1.1)

by choosing the sequence pptq in a possibly data-driven way. For example, this allows p10, the

price charged in period 10, to depend on the realized demand in period 1-9. While the monopolist

knows the marginal cost C and the number of consumers n in the market, the monopolist does not
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know sp�q. Because the number of consumers is finite, the monopoly only receives a noisy signal

of the true demand at the posted price.

A widely used algorithm to maximize the sum of expected profits (1.1) is the UCB algorithm

(Lai, 1987; Agrawal, 1995; Auer et al., 2002). The UCB algorithm requires the sub-Gaussian

confidence parameters K1, . . . , KL of the profits for each price pgrid,1, . . . , pgrid,L. After trying

every arm once, the UCB algorithm computes an upper confidence bound based on Hoeffding’s

inequality with known sub-Gaussian concentration parameter (Theorem 11) with a time-dependent

coverage level. Then the UCB algorithm recommends the price with the highest upper confidence

bound, updates the finite sample confidence interval of the chosen option. This is formalized in

Algorithm 1.

If a firm wanted to implement the UCB algorithm in practice, it would have to specify the con-

centration parameters K1, . . . , KL of the profit for each price pgrid,1, . . . , pgrid,L. The concentration

parameter Kl governs the tail of the distribution of profits of charging price pgrid,l. The reason why

the monopolist engages in price experimentation is that these distributions are unknown. Hence, it

seems unreasonable that the monopolist would know the optimal concentration parameters of the

unknown distributions. The purpose of this paper is to derive a method to estimate the concentra-

tion parameters K1, . . . , KL while experimenting.

Many other interesting experimentation problems can be framed as bandit problems. Examples

include evaluating treatments while attempting to maximize outcomes in clinical trials (Kasy and

Sautmann, 2021), learning about experience goods while maximizing utility (Crawford and Shum,

2005; Hotz and Miller, 1993), learning about the match value of occupations while maximizing

income (Jovanovic, 1979; Miller, 1984), learning about the promise of research projects while

maximizing research output Weitzman (1979).
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Example 2. Inference for linear programs with estimated parameters. Consider the linear program

min
xPRp

c1x s.t. Ax ¤ b (1.2)

with constraint matrix A P Rm�p, constraint vector b P Rm and objective vector c P Rp. The

question is how to perform inference on the optimal value c1x� or the optimizer x� of this linear

program when A, b and c are expectations that are estimated.

There are many empirical settings in which this problem arises. Tebaldi et al. (2019) propose

a method to compute sharp bounds on counterfactual demand without parametric assumption on

latent utility draws. When prices are exogenous, c and A are observed while b is the vector of es-

timated market shares. Further examples include dynamic discrete choice (Nevo et al., 2016) and

testing identifying assumptions in the treatment effect literature Angrist and Imbens (1995). See

Fang et al. (2022) for an in-depth discussion of these and further examples. In this paper, I show

how conservative inference for the linear program (1.2) can be conducted based on Hoeffding’s

inequality and derive sufficient conditions for computational tractability even when the number

of variables and (in)equality constraints is very large. Recall that Hoeffding’s inequality involves

concentration parameters. The proposed method for inference can be combined with my results on

using estimated concentration parameters for inference to allow for inference that does not rely on

knowing concentration parameters a priori.

Inference for linear programs with estimated parameters is hard because linear programs are not

(directionally) differentiable in parameters (Mangasarian and Shiau, 1987). However, the step

from asymptotic inference on the mean of the parameters to asymptotic inference on a function

of the mean typically requires differentiability, e.g., for the delta method or the bootstrap (Shapiro

(1990); Fang and Santos (2019)). In contrast, no such condition is required for finite-sample in-
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ference. As a result, finite-sample inference is available when asymptotic inference is elusive,

particularly when all parameters are estimated.

I propose to derive uniform finite-sample confidence sets for A, b and c with Hoeffding’s inequal-

ity. Denote these confidence sets by CA, Cb, Cc. For inference on the optimal value the linear

program (1.2), I then propose to solve

min
xPRp

c̃,Ã,b̃

c1x s.t.

$''''''''''&
''''''''''%

Ãx ¤ b̃,

Ã P CA,

b̃ P Cb,

c̃ P Cc.

(1.3)

While any method to derive finite-sample confidence intervals can be used to derive CA, Cb, Cc,

Hoeffding’s inequality has the advantage that (1.3) turns out to be a convex program in relevant

cases. This is important for computational tractability of (1.3) as linear programs are often used

with many variables and constraints.

Example 3. Partial Identification. Horowitz and Lee (2022) study inference for partially identified

parameters that are solutions to a class of optimization problems. Applications include nonpara-

metrically estimated labor supply effects of tax or welfare reforms using grouped data (Blundell

et al., 1998; Kline and Tartari, 2016), entry games with multiple equilibria (Ciliberto and Tamer,

2009), and estimation under shape constraints (Freyberger and Horowitz, 2015; Horowitz and Lee,

2017) as applied to estimating the effect of childbearing on labor supply (Angrist and Evans, 1998).

Two of three methods developed by Horowitz and Lee (2022) build on sub-Gaussian tail assump-

tions with known sub-Gaussian concentration parameters. The methods proposed in this paper

to estimate these concentration parameters can be used to generalize the methods developed by

Horowitz and Lee (2022) to the case of unknown concentration parameters.
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Example 4. Machine Learning Inference via Rates. Inference for many machine learning estima-

tors is often difficult, see, for instance, the discussion on the LASSO estimator (Tibshirani, 1996)

above. In contrast, rates of convergence are often available, e.g., for the LASSO (Bickel et al.,

2009; Hastie et al., 2015), Non-Negative Least Squares (Meinshausen, 2013; Slawski and Hein,

2011, 2013) or its extensions with endogeneity (Zhu, 2018; Hortaçsu et al., 2022). These con-

vergence rates build on Gaussian or sub-Gaussian tail assumptions to control the large number of

explanatory variables. If the sub-Gaussian concentration parameters and some estimator-specific

constants were known, the rate results could be used for inference. For example, non-negative

two-stage least squares, used by Hortaçsu et al. (2022) to estimate nesting structures for demand

models, features estimator-specific constants that are relatively simple to compute. The methods

proposed in this paper to estimate sub-Gaussian concentration parameters allow inference for this

high-dimensional estimator when the sub-Gaussian parameters are unknown.

Example 5. Empirical Risk Minimization. Empirical risk minimization (ERM) is a paradigm in

machine learning and statistics (Vapnik, 1991). ERM is used, for instance, in support vector ma-

chines (Vapnik, 1999), in boosting algorithms like adaBoost (Freund and Schapire, 1997), in deci-

sion trees (Quinlan, 1986; Breiman et al., 1984), in random forests (Breiman, 2001; Ho, 1995), and

in artificial neural networks (Rosenblatt, 1958). All these methods aim to minimize an expected

loss function L, i.e.,

min
hPH

Rphq � ErLphpXq, Y qs,

where h is the “hypothesis”, i.e., the function we would like to learn out of a class of hypothesis

H, X are some explanatory variables, Y is some outcome and L ¥ 0 is a loss function. The

distribution with respect to which the expectation of the loss function is taken is unknown. Instead
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of minimizing the population risk R, ERM minimizes the (training) sample risk, i.e.,

min
hPH

R̂phq � 1

n

ņ

i�1

LphpXiq, Yiqs.

If LphpXiq, Yiq is sub-Gaussian with known sub-Gaussian parameter and H is finite (imagine that

we select one out of finitely many models), then Hoeffding’s inequality can be used to derive a

probabilistic bound for the “estimation error”

min
hPH

R̂phq �min
hPH

Rphq.

Such a probabilistic bound can be used to find an upper bound for the number of observations

required to bound the estimation error to a desired level. Extensions to infinite-dimensional models,

i.e., when |H| � 8, follow the same logic with McDiarmid’s inequality, which requires the sub-

Gaussian concentration parameter of the l-th centered conditional version of the loss function.

Example 6. Stochastic Gradient Descent for Artificial Neural Networks. The application to em-

pirical risk minimization is relevant in the context of artificial neural networks (ANNs). ANNs

achieve highly competitive performance in a variety of contexts, in particular to the estimation

of heterogeneous treatment effects which can be used to address optimal advertisement targeting

problems (Hitsch and Misra, 2018; Farrell et al., 2021). Training an ANN is often achieved via gra-

dient descent. Even with the backpropagation algorithm, computing the derivatives of LphpXiq, Yiq
for each value of i with respect to all parameters of h (weights and biases) is challenging when

there are many observations (Goodfellow et al., 2016).

To reduce the computational complexity of this optimization, stochastic gradient descent (SGD)

is commonly used. In each iteration of SGD, a “mini-batch” of k   n observations is drawn

randomly and then the gradient of the expected loss function is only evaluated for these randomly
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selected points. Choosing of the batch size k is difficult as it involves a trade-off between compu-

tational feasibility (it is easier to perform an iteration of SGD when the batch size is smaller) and

convergence properties (a SGD step is more likely to decrease the empirical risk when the batch

size is larger) (Bengio, 2012; Goodfellow et al., 2016). In applications, the sub-Gaussian parame-

ter of LpXi, Yiq may not be known. The methods proposed in this paper to estimate sub-Gaussian

parameters can inform practitioners choosing the batch size in training ANNs.

1.3 Estimating sub-Gaussian parameters

1.3.1 Definition of sub-Gaussian parameters

Two notions of sub-Gaussianity are relevant for this paper. One notion is based on a tail bound

which ensures that a sub-Gaussian random variable is concentrated around its mean. A second

notion of sub-Gaussianity is based on the moment-generating function (MGF), which turns out to

be useful to study sums of independent random variables.

Definition 7. A real-valued random variable X is

• tail-sub-Gaussian with parameter K ¡ 0 if for all t ¡ 0,

P r|X| ¥ ts ¤ 2 exp

�
� t2

K2



, (1.4)

• MGF-sub-Gaussian with parameter K ¡ 0 if it has mean zero and for all λ P R

E rexp pλXqs ¤ exp
�
K2λ2

�
. (1.5)

Intuitively, a random variable is tail-sub-Gaussian (MGF-sub-Gaussian) if it’s tail (MGF) is dom-

inated by the tail (MGF) of a Gaussian random variable.2 Fortunately, these two notions of sub-
2See section 1.9.1.1 for details regarding the relation to Gaussians.
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Gaussianity are equivalent up to a constant as is shown in section 1.4.1. Let me consider some

examples of sub-Gaussians and their parameters.

Remark 8. Let X be a real-valued random variable.

1. Let B,B ¡ 0 be such that �B ¤ X ¤ B. Then X is

(a) tail-sub-Gaussian with parameter at most maxtB,Bu{alogp2q,

(b) MGF-sub-Gaussian with parameter at most pB �Bq{?8.

2. Let X � N p0, σ2q for some σ ¥ 0. Then X is MGF-sub-Gaussian with parameter σ{?2.

Remark 8 covers a wide class of distributions. An example of a bounded random variable is the

profit of a firm when there are finitely many consumers, see Example 1. If X � pp � cqsppqn
where p is the price, c ¤ p is the cost, sppq is a theoretical choice probability and n is the number

of consumers, then X is bounded from below by 0 and from above by pp �mcqn. Remark 8 also

shows that all Gaussians are sub-Gaussians and that the MGF-sub-Gaussian parameter and the

standard deviation are identical up to a constant factor that is due to the parametrization of (1.5).

As the following observation shows, there are more similarities between sub-Gaussian parameters

and standard deviations.

Remark 9. If X is tail-sub-Gaussian (MGF-sub-Gaussian) with parameter K, then for any γ P R,

γX is tail-sub-Gaussian (MGF-sub-Gaussian) with parameter |γ|K.

The following remark formalizes an important difference between Gaussians and Sub-Gaussians.

Remark 10. If X is tail-sub-Gaussian (MGF-sub-Gaussian) with parameter K, then for any κ ¥ 0,

X is tail-sub-Gaussian (MGF-sub-Gaussian) with parameter K � κ.

In other words, it is not true that N p0, 1q is also N p0, 1 � 1q. But a sub-Gaussian with parameter

1 is also sub-Gaussian with parameter 1 � 1. Remark 10 also implies that for every tail-sub-

Gaussian (MGF-sub-Gaussian) random variable X , there is a smallest tail-sub-Gaussian (MGF-

sub-Gaussian) parameter. As we will see later, smaller sub-Gaussian constants lead to narrower
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confidence intervals. For sharpness of inference, it is therefore of interest to estimate the smallest

tail-sub-Gaussian (MGF-sub-Gaussian) parameter.

1.3.2 Tail-sub-Gaussian parameter

In this section, I propose a method to estimate tail-sub-Gaussian parameters, starting with observed

random variables. Estimated random variables, e.g., residuals in a regression, are discussed in ap-

pendix section 1.9.3.

Consider a real-valued random variable X that is tail sub-Gaussian with parameter K. Observe

that X is then also K � ε tail-sub-Gaussian for any ε ¡ 0. The first objective is to characterize the

smallest such tail-sub-Gaussian parameter of X since it allows for the least conservative inference.

K�
tail � min

K¥0
K s.t. @t ¥ 0, 1� F|X|ptq ¤ 2 exp

�
� t2

K2



(1.6)

� sup
tPR�

tc
log

�
2

1�F|X|ptq

	 (1.7)

� sup
pPr0,1s

F�1
|X|ppqc

log
�

2
1�p

	 . (1.8)

1.3.2.1 Observed Realizations

Suppose we observe n i.i.d realizations of X , X1, . . . , Xn. To estimate K� defined in (1.6),(1.7)

and (1.8), a natural approach is to replace the unknown cdf of |X| with an empirical counter-

part. The empirical cdf F̂|X|ptq :� 1
n

°n
i�1 1p�8,|Xi|sptq is a natural estimate of the true cdf. This

motivates to the following estimator

K̂tail � min
K¥0

K s.t. @t ¥ 0, 1� F̂|X|ptq ¤ 2 exp

�
� t2

K2



(1.9)

17



� sup
tPR�

tc
log

�
2

1�F̂|X|ptq

	 (1.10)

� sup
pPr0,1s

F̂�1
|X|ppqc

log
�

2
1�p

	 . (1.11)

Program (1.9) has infinitely many constraints so that it appears hard to solve. But the structure of

the empirical tail simplifies the solution to finitely many constraints. Consider a plot of an em-

pirical tail for a sample of four (positive) observations X1, X2, X3, X4 in Figure 1.1. We observe

Figure 1.1: Empirical Tail and Tail Bounds for different parameters

that between realizations Xi and Xi�1, the empirical tail is flat. Recall that we are looking for

the smallest K such that the empirical tail is uniformly below t ÞÑ 2 expp�t2{K2q. Since this

function is strictly decreasing for any K � 0, it is sufficient that it is above the empirical tail at

X1, X2, . . . , Xn. For example, the red dotted line in Figure 1.1 involves a parameter Klow that is
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too low because the tail bound cuts through the empirical tail at a flat region. In contrast, the blue

line is the tail bound for the optimal tail parameter.

With this insight, we can solve for K̂tail explicitly.

K̂tail � max
i�1,...,n

|Xi|c
log

�
2

1�F̂ pXi�q

	 , (1.12)

where F̂ pXi�q is defined as the left limit of F̂ at Xi. A simpler formula exists when there are no

point masses in the distribution of X .3 Figure 1.1 visualizes the sub-Gaussian tail bound obtained

via (1.12). In this case, the maximum in (1.12) is assumed for i � 4. This is why the function

t ÞÑ 2 expp�t2{K̂2
tailq appears to touch the empirical tail at pX4, 0.25q. To be precise, the empirical

tail does not pass through that exact point due to its discontinuity at that point.

1.3.3 MGF-sub-Gaussian parameter

Recall that a mean-zero random variable X is MGF-sub-Gaussian with parameter K if for all

λ P R

ErexppλXqs � ErexppλpX � ErXsqqs ¤ exppK2λ2q.
3Note that if there are not point masses in the distribution of X , then

K̂tail � max
i�1,...,n

��Xpiq

��c
log
�

2
1� i�1

n

	 , (1.13)

where
��Xpiq

�� is the i-th order statistic, i.e., the i-th lowest observation among |X1| , . . . , |Xn|.

19



First note that for λ � 0, this equality is always satisfied. Rearranging yields that for all λ P R

such that λ � 0

a
log pErexppλpX � ErXsqqsq

λ
¤ K.

Hence the smallest MGF-sub-Gaussian parameter of X is defined by

K�
mgf :� sup

λPR
λ�0

a
log pErexppλ pX � ErXsqsq

λ
. (1.14)

This motivates the following estimator for K�
mgf .

K̂mgf :� sup
λPR
λ�0

gffelog

�
1
n

n°
i�1

exp

�
λ

�
Xi � 1

n

n°
j�1

Xj

���

λ
. (1.15)

In contrast to (1.10), there is no obvious closed-form solution for (1.15). So it is relevant to consider

its numeric properties. First, evaluation for large (absolute) values of λ involves evaluating the

exponential at a large number. To avoid overflow issues, a rescaling can be used. Secondly, it may

seem odd to subtract ErXs in (1.14) since ErXs � 0. However, this is important for the numerical

performance of the estimator (1.15) since even when ErXs � 0, it will sometimes be the case

that the average is strictly larger than zero. In such a case, not centering X leads to the objective

function diverging to infinity in a neighborhood of zero. The issue is resolved by centering. See

section 1.9.2 for details.

1.4 Inference

Now that estimators for sub-Gaussian parameters are derived, the natural next question is whether

they can be used for inference.
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1.4.1 Hoeffding’s Inequality

The fundamental theoretical result that I leverage for inference is Hoeffding’s inequality. I state it

first with known sub-Gaussian parameters as it can be found in the literature.

Theorem 11. Hoeffding’s inequality (Vershynin, 2018, Theorem 2.6.3). Fix n P N. Let X1, . . . , Xn

be independent, random variables such that for all i, Er|Xi|s   8. Assume that for all i, Xi�ErXis
is MGF-sub-Gaussian with parameter Ki ¡ 0. Then for every t ¥ 0,

P

�
?
n

����� 1n
¸
i�1

pXi � ErXisq
����� ¥ t

�
¤ 2 exp

�
���� t2

22 1
n

n°
i�1

K2
i

�
��
.4 (1.16)

Since Hoeffding’s inequality is a key theoretical result in the context of this paper, it is worth

making some observations. First, Hoeffding’s inequality is stated with known sub-Gaussian pa-

rameters. Extending Hoeffding’s inequality to allow for estimated sub-Gaussian parameters is a

main objective of this paper.

Second, Hoeffding’s inequality is a finite-sample result, i.e., confidence intervals based on (1.16)

are valid for any number of observations. In addition, (1.16) is written in such a way that it also

allows asymptotic inference.5 It may not be immediately obvious why asymptotic inference based

on Hoeffding’s inequality is interesting. After all, inference based on the CLT leads to narrower

4More generally, Then for every t ¥ 0, and any pa1, . . . , anq,

P

������
¸
i�1

aiXi � 0

����� ¥ t

�
¤ 2 exp

�
���� t2

22
n°

i�1

a2iK
2
i

�
��
. (1.17)

. The result in the statement of the theorem then follows from setting ai � 1{n. The more general result 1.17 is
sometimes useful in applications.

5Asymptotic inference is possible so long as 1
n

°n
i�1 K

2
i converges.
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confidence intervals. The merits of asymptotic inference based on Hoeffding’s inequality become

clear when the objective is not doing inference on the mean but inference on a function of the

mean. Inference based on the CLT requires differentiability in this step as formalized in the delta

method. In contrast, inference based on Hoeffding’s inequality does not require any smoothness

conditions so that it is applicable in situations where CLT-based inference is out of reach. One

example of an empirical application in which differentiability is inference for linear programs.

Third, Hoeffding’s inequality is robust to heteroskedasticity in the sub-Gaussian parameters.6 7

The parameter that governs the tail behavior of the average is the average of the squared sub-

Gaussian parameters. It is therefore not necessary to learn all sub-Gaussian parameters individu-

ally. It is sufficient to learn about the average of their squares. In the main text, I will assume that

the random variables are identically distributed. Appendix section ?? extends this analysis to the

case of heteroscedastic sub-Gaussian parameters.

Fourth, Hoeffding’s inequality is stated for MGF-sub-Gaussian random variables. The reason for

this is that the MGF is a convenient tool to study the sum of independent random variables. That

Hoeffding’s inequality is stated for MGF-sub-Gaussians might give the impression that it does not

apply to tail-sub-Gaussian random variables. Fortunately, one can pass from tail-sub-Gaussians to

MGF-sub-Gaussians at the cost of inflating the sub-Gaussian constant. This has been known in the

literature (Vershynin, 2018, Proposition 2.5.2). I contribute to this literature by reducing the cost

of passing from tail sub-Gaussian parameters to MGF-sub-Gaussian parameters. This allows for

sharper inference based on tail-sub-Gaussian parameters.

Proposition 12. Consider a real-valued random variable X with mean zero.
6Even if the Ki were equal, the distributions of Xi could differ. This is because sub-Gaussianity only restricts tail

behavior.
7If the Ki’s differ but are bounded, we could always inflate the smaller Kis in light of Remark 10. However, this

would result in suboptimal inference.
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1. If X is tail-sub-Gaussian with parameter K ¡ 0, then X MFG-sub-Gaussian with parameter

at most 1.135441K.

2. If X is MGF-sub-Gaussian with parameter K ¡ 0, then X is tail-sub-Gaussian with param-

eter at most 2K.

The proof builds on a judicious splitting of the series expansion of two exponentials in a finite and

an infinite part and using global polynomial optimization tools to control the finite part. Propo-

sition 12 paves a way to use estimates of tail-sub-Gaussian parameters to conduct inference on

MGF-sub-Gaussian parameters and vice versa by inflating the estimates with the appropriate fac-

tor. Finally, note that the appearance of 22 in Hoeffding’s inequality is due to the factor of 2 in

Corollary 12 that is required to pass from MGF-sub-Gaussianity to tail-sub-Gaussianity.

Let me conclude this section on Hoeffding’s inequality by spelling out the confidence intervals

to which it gives rise.

Corollary 13. Fix n P N. Let X1, . . . , Xn be independent, random variables such that for all i,

Er|Xi|s   8. Assume that for all i, Xi � ErXis is MGF-sub-Gaussian with parameter Ki ¡ 0.

Then for every α P p0, 1q,

P

�
1

n

ņ

i�1

ErXis P
�
X̄n � δnpK2, n, αq, X̄n � δnpK2, n, αq

�
looooooooooooooooooooooooomooooooooooooooooooooooooon

�:CIpX̄n,K2,n,αq

�
¥ 1� α, (1.18)

where

δnpK2, n, αq :� 2?
n

a
K2

d
log

�
2

α



,

X̄n � 1

n

ņ

i�1

Xi,

K2 :� 1

n

ņ

i�1

K2
i .
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The rate at which confidence intervals (CIs) based on Hoeffding’s inequality shrink is the optimal

rate,
?
n. The difference between CIs based on Hoeffding’s inequality and the asymptotically

sharp CI based on the CLT is a constant. As discussed in section 1.9.1.1, the 95% CI based of an

asymptotically standard normal based on the CLT is r�1.96, 1.96s while the 95% CI of a standard

normal based on Hoeffding’s inequality is r�2.72, 2.72s. This roughly 39% increase in the length

of the CI is the price for using Hoeffding’s inequality.

1.4.2 Inference with Estimated Parameters

In this section, I study inference based on Hoeffding’s inequality with estimated parameters. Con-

sider first inference based on the CLT. When the variance is overestimated, the confidence intervals

are larger than they would have to be. In other words, inference is valid but conservative. When

the variance is underestimated, the confidence intervals are narrower than they should be. In other

words, inference is invalid. The same intuition carries over to inference based on Hoeffding’s

inequality as the following result shows. The result applies to any estimator of sub-Gaussian pa-

rameters.

Theorem 14. Fix n P N. Let X1, . . . , Xn be random variables such that for all i, Er|Xi|s   8.

Let K̂ be any positive random variable with arbitrary dependence on X1, . . . , Xn.

Then for any K ¡ 0 and γ ¥ 0

P

�
1

n

ņ

i�1

ErXis P CIpX̄n, K̂ � γ, n, αq
�

¥P
�
1

n

ņ

i�1

ErXis P CIpX̄n, K, n, αq
�
� P

�!
K̂ � γ ¥ K�

)�
� 1,

where CIp�, �, �, �q is the Hoeffding confidence interval derived in Corollary 13.
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1.4.2.1 Asymptotic Inference

The following theorem shows that the probability of underestimating the tail-sub-Gaussian param-

eter converges to zero as the sample size tends to infinity. Hence, inference based on Hoeffding’s

inequality with estimated tail-sub-Gaussian parameter is asymptotically valid.

Theorem 15. Suppose that X1, . . . , Xn are i.i.d. real-valued tail-sub-Gaussian random variables

with minimal parameter K�. Then for all ε ¡ 0,

lim
nÑ8

P
�
K̂tail ¤ K�

tail � ε
�
� 0.

In particular, K̂tail allows for asymptotically conservative inference.

In section ??, I propose an extension of Theorem 15 to sub-Gaussian parameters that are indepen-

dent but not identically distributed.

The key step in the proof of Theorem 15 is a localization argument. The estimated tail-sub-

Gaussian parameter is the objective value of an estimated function. To guarantee that the maximal

value of the estimated function is not far below the maximal value of the population function, it

is sufficient that the function is estimated sufficiently well “close” to the population maximizer.

Showing that the objective function is sufficiently well estimated “close” to the population maxi-

mizer follows from the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality which establishes a finite-

sample bound on how close the empirical cdf is to the true cdf.

In contrast, a bound on the probability of overestimating K� in the generality of Theorem 15

is more challenging. Intuitively, the reason for this is that no obvious localization argument can

be applied. The maximum of an estimated function could be overestimated because the estimated

function is poorly estimated anywhere. While the empirical cdf estimates the true cdf uniformly
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well, the empirical quantile function does not achieve uniform consistency to the true quantile

function. This uniform consistency is a sufficient condition for asymptotic sharpness of inference

with the estimated parameters.

Theorem 16. Suppose that X1, . . . , Xn are i.i.d. real-valued tail-sub-Gaussian random variables.

Denote the smallest tail parameter with K�
tail. Assume further that the support of X1 is either finite

or bounded and connected. Then for all ε ¡ 0,

lim
nÑ8

P
�
K̂tail ¥ K�

tail � ε
�
� 0.

In particular, K̂tail is consistent for K�
tail and inference with K̂tail is asymptotically sharp in the class

of inference methods based on Hoeffding’s inequality with estimated tail-sub-Gaussian parameters.

1.4.2.2 Finite-sample Inference

It would be desirable to obtain a finite-sample upper bound on PrK̂tail ¥ K�
tails that holds uniformly

over all possible tail sub-Gaussian distributions of X with optimal parameter K�
tail. Such a bound

would allow finite-sample inference on the sample average with Hoeffding’s inequality (1.16) on

the basis of Theorem 14. There is no such uniform finite-sample guarantee for the estimator (1.12).

In fact, there exists no “reasonable” estimator of K�
tail that satisfies such a uniform finite-sample

guarantee as the following theorem shows.

Theorem 17. Consider n i.i.d realizations of a real-valued random variable X � µ, X1, . . . , Xn.

Consider any function K̂ � K̂pX1, . . . , Xnq such that

K̂p0, . . . , 0q � 0. (1.19)

Then there exists a µ that is tail-sub-Gaussian with optimal parameter K�
tail such that for any ε ¡ 0
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and 0   δ   K�

P
�
K̂ ¥ K�

tail � δ
�
¤ ε.

Let me discuss the key condition (1.19). Recall that, the true tail-sub-Gaussian parameter K�
tail of

a sub-Gaussian is similar to the standard deviation of a Gaussian. Intuitively, what should be a

reasonable estimator of the standard deviation when all observations are zero? More formally, re-

call that when X is K-tail-sub-Gaussian (or K-MGF-sub-Gaussian), γX is γK-tail-sub-Gaussian

(or γK-MGF-sub-Gaussian). Hence, an estimator of K that has a claim to being sharp has to

be homogenous of degree one. Homogeneity of degree one implies (1.19). If (1.19) is not satis-

fied, then K̂p0, . . . , 0q �: K̄ ¡ 0. In this case, we still get the impossibility result for all K�
tail ¡ K̄.

The proof illustrates the origin of the impossibility result: The uniformity condition includes rather

odd distributions with a lot of probability mass at or close to zero and a small amount of probability

mass very far away from zero.

To obtain a finite-sample coverage result, we need to rule out such behavior. The key assumption

we have to add is an anti-concentration assumption. By characterizing the probability of overesti-

mating K�
tail for continuous distributions, the following theorem shows how an anti-concentration

can be used for finite-sample inference with estimated concentration parameters.

Theorem 18. Suppose that X1, . . . , Xn are i.i.d. real-valued tail-sub-Gaussian random variables

with parameter K�. Denote the cdf of X1 by F and assume that it admits a density f . Consider

the estimator K̂ defined in (1.13). Then for any κ ¥ 0

P
�
K̂tail ¥ K�

tailκ
�
� 1� n!

ņ

i�1

p�1qi�1

i!
F ipK�

tailwn�i�1,npκqqIn�i,n, (1.20)
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where I0,n � 1, I1,n � F pw1,1pκqq, for 2 ¤ i P N

Ii,n :�
w1,n»
0

. . .

wi,n»
0

1t1 ... tifpt1q . . . fptiqdti . . . dt1,

and for any j, n P N such that 1 ¤ j ¤ n

wj,npκq :� κ

gffelog

�
2

1� j�1
n

�
.

It is remarkable that the continuity assumption allows for a characterization of the probability

that K�
tail is overestimated, i.e., that (1.20) is not an inequality. Theorem 18 allows finite-sample

inference on K̂tail if one is willing to add an anti-concentration assumption. Let me illustrate this

in a simple example.

Example 19. Consider n � 2. Then

I0,2 � 1,

I1,2 � F pK�
tailw1,2pκqq,

Assume that

0   L

�
t

K�



¤ F ptq   U

�
t

K�



. (1.21)

The sub-Gaussian tail assumption amounts to setting Lpsq � 1 � 2 expp�s2q. If we add an anti-

concentration assumption, this gives an upper bound for F . For the purpose of this example,

consider Upsq :� 1 � expp�s2q. Figure 1.2 illustrates this situation. The cdf F must be in the

shaded area between the lower bound L and the upper bound U . We see that F has much leeway

close to zero but that the tail behavior is tightly bounded from both sides. The tight control is due
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to the choice of the bounds for this illustration.

Figure 1.2: Concentration and Anti-Concentration

Using these bounds immediately yields

I0,2 P r1, 1s

I1,2 P rLpw1,2pκqq, Upw1,2pκqqs ,

This allows us to bound (1.20) from below by noting

P
�
K̂tail ¥ K�

tailκ
�

�1� 2!
2̧

i�1

p�1qi�1

i!
F ipK�

tailw2�i�1,2pκqqI2�i,2

�1� 2
p�1q1�1

1!
F 1pK�

tailw2�1�1,2pκqqI2�1,2 � 2
p�1q2�1

2!
F 2pK�

tailw2�2�1,2pκqqI2�2,2

�1� 2F 1pK�
tailw2,2pκqqI1,2 � 2

�1
2
F 2pK�

tailw1,2pκqqI0,2

�1� 2F 1pK�
tailw2,2pκqqI1,2 � F 2pK�

tailw1,2pκqqI0,2

¥1� 2Upw2,2pκqqUpw1,2pκqq � L2pw1,2pκqq �: fpκq.
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The lower bound fpκq for P
�
K̂tail ¥ K�

tailκ
�

is illustrated in Figure 1.3. In particular, for κ �
0.3483, fpκq � 0.975.

Figure 1.3: Example Lower Bound for PrK̂tail ¥ κK�
tails as function of κ

A valid finite-sample 95% confidence interval with estimated concentration parameters based on

Theorem 18 and Theorem 14 would be

CI

�
X̄n,

1

0.3483
K̂tail, 2, 0.975




since the probability of coverage is bounded from below by 0.975 � 0.975 � 1 � 0.95. That only

the factor 1{0.3483 � 2.9 is sufficient to control for uncertainty in the estimated concentration

parameter even though there are only 2 observations is due to the strength of the anti-concentration

assumption in this example.
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1.5 Revisiting Applications

1.5.1 Multi-armed Bandits

Consider the multi-armed bandit problem introduced in Example 1. The purpose of this section is

to explain the upper confidence bound (UCB) algorithm with known sub-Guassian concentration

parameters, and how it can be refined using the estimators derived in section 1.3.

Algorithm 1 UCB with known sub-Gaussian Parameters (Lattimore and Szepesvári, 2020)
1: Input: p1, . . . , pL (price grid) and Kmgf,1, . . . , Kmgf,L (MGF-sub-Gaussian parameters for prof-

its)

2: Choose each price once: pt � pgrid,t for t � 1, . . . , L.

3: Set counters for how often each price was posted T1 � 1, . . . , TL � 1.

4: Compute the average profit for each price, Π̂1, . . . , Π̂L.

5: In period t, choose pt � pgrid,l for any l

argmax
lPt1,...,Lu

�
�Π̂l �Kl

d
2 log

�
1� t log2ptq�

Tl

�

.

6: Increment counter of chosen arm: if Tl � Tl � 1.

7: if t   T then

8: Increment period counter t � t� 1.

9: Return to line 4.

Let me begin by recalling the UCB algorithm. The assumption is that for each price p P tp1, . . . , pLu,
the associated profit is random and tail-sub-Gaussian with known tail parameter Kl. After trying

each arm once, we can use Hoeffding’s inequality to derive confidence intervals for the expected

profit for each price of level α P p0, 1q. From then on, the price with the highest upper confidence

bound is chosen. Whenever the demand (and hence profit) associated with a price p is observed,
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the confidence interval for the profit associated with p is updated. When α is chosen judiciously,

it can be shown that this algorithm is asymptotically optimal (Lattimore and Szepesvári, 2020,

Theorem 8.1). The asymptotic optimality holds for the optimal sub-Gaussian parameters as well

as for inflated parameters, see Remark 10. As market shares are bounded by 1 from above, the

support for the profits associated with each price is bounded, allowing to derive possibly inflated

sub-Gaussian concentration parameters with Remark 8.

Alternatively, I can use the estimators derived in section 1.3 to estimate the sub-Gaussian con-

centration parameters “on the fly”. In the empirical application presented in section 1.6, I use

equation (1.10) to estimate the sub-Gaussian parameter while experimenting. This gives rise to the

following slightly different algorithm.

Algorithm 2 UCB with Estimated sub-Gaussian Parameters: Asymptotic Estimators
1: Input: p1, . . . , pL

2: Choose each price twice: pt � pgrid,t�spt,LqL for t � 1, . . . , 2L and spt, Lq � 1t¡L

3: Set counters for how often each price was posted T1 � 2, . . . , TL � 2.

4: Compute the average profit for each price, Π̂1, . . . , Π̂L.

5: Estimate the MGF-sub-Gaussian parameters for the profit of each price K̂mgf,1, . . . , K̂mgf,L with

((1.12) and Proposition 12) or (1.15).

6: In period t, choose pt � pgrid,l for any l

argmax
lPt1,...,Lu

�
�Π̂l � K̂mgf,1

d
2 log

�
1� t log2ptq�

Tl

�

.

7: Increment counter of chosen arm: if Tl � Tl � 1.

8: if t   T then

9: Increment period counter t � t� 1.

10: Return to line 4.
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Let me highlight the differences between Algorithm 1 and 2. In contrast to Algorithm 1, Algorithm

2 does not require the sub-Gaussian concentration parameters as inputs. One cost of not knowing

sub-Gaussian concentration parameters is that each option has to be tried twice rather than once as

there has to be an estimate of the location and of the dispersion of the profit distribution associated

with each price.

Note however that theoretical analysis of Algorithm 2 is difficult because finite-sample infer-

ence with estimated concentration parameters is impossible in general, see Theorem 17. Under

an additional anti-concentration assumption, finite-sample inference with estimated parameters is

possible. As a result, a finite-sample regret bound for an appropriately defined variant of the UCB

algorithm can be established.
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Algorithm 3 UCB with Estimated sub-Gaussian Parameters: Finite-Sample
1: Input: T, p1, . . . , pL, f : NÑ N

2: Choose each price twice: pt � pgrid,t�spt,LqL for t � 1, . . . , 2L and spt, Lq � 1t¡L

3: Set counters for how often each price was posted T1 � 2, . . . , TL � 2.

4: Compute the average profit for each price, Π̂1, . . . , Π̂L.

5: Estimate the MGF-sub-Gaussian parameters for the profit of each price K̂mgf,1, . . . , K̂mgf,L with

(1.10) and Proposition 12.

6: Use Theorem 18 and a union bound to find a κ such that

PrDl � 1, . . . , L K̂mgf,l   κKmgf,ls ¤ fpT q 1

T � L� 1
. (1.22)

7: In period t, choose pt � pgrid,l for any l

argmax
lPt1,...,Lu

�
�Π̂l � 1

κ
K̂mgf,l

d
2 log

�
1� t log2ptq�

Tl

�

.

8: Increment counter of chosen arm: if Tl � Tl � 1.

9: if t   T then

10: Update the average profit for the chosen arm Π̂l.

11: Update the tail-sub-Gaussian parameter K̂mgf,l of the chosen arm l by using Theorem 18 to

find a κ such that

PrK̂mgf,l   κKmgf,ls ¤ fpT q 1

T � L� 1
(1.23)

12: Increment period counter t � t� 1.

13: Return to line 4.

The main difference between Algorithm 3 and Algorithm 2 is that Algorithm 3 uses the finite-
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sample correction factor 1
κ

obtained from Theorem 18 to ensure finite-sample validity of inference

based on Hoeffding’s inequality with estimated sub-Gaussian parameters. A more subtle difference

is that Algorithm 3 takes the number of time periods as input. This means that the firm must

know in advance how long it plans to experiment. This is a somewhat undesirable property but

it can be relaxed by selecting a period after which there will be no more updating of tail-sub-

Gaussian parameters. The key for Algorithm 3 are equation (1.22) and (1.23) as they guarantee

that the probability of underestimating a tail-sub-Gaussian parameter is small enough to obtain the

following finite-sample regret bound.

Theorem 20. Consider Algorithm 3 in the class of sub-Gaussian bandits with an anti-concentration

property that allows the application of Theorem 18 to derive a κ ¡ 0 that satisfies (1.22) and (1.23).

Define the regret of Algorithm 3 by

RT :� TE rΠ�s �
Ţ

t�1

E rΠl(t)s ,

where E rΠ�s is the maximum expected profit given the price grid and lptq is the price chosen by

Algorithm 3 in period t. Define the optimality gaps as

∆l :� E rΠ�s � E rΠls ¥ 0.

Then

RT ¤
Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�
� fpT qT max

l�1,...,L
∆l. (1.24)

In particular, if fpT q � 1{T 2, then the second summand simplifies to max
l�1,...,L

∆l{T .

Let me first discuss what it means for an anti-concentration property to allow the application of

Theorem 18 to derive a κ ¡ 0 that satisfies (1.22) and (1.23). Theorem 18 allows to bound
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the probability of underestimating the tail-sub-Gaussian parameter in finite samples as long as the

distribution for which one estimates the tail-sub-Gaussian parameter satisfies an anti-concentration

assumption. The anti-concentration condition in (1.21) in Example 19 illustrates this. The stronger

the anti-concentration, the less do I have to inflate the estimated sub-Gaussian tail parameters by

multiplying them with 1
κ

. Without an anti-concentration property, Theorem 18 shows that it is

impossible to conduct finite-sample inference with estimated sub-Gaussian tail parameters.

Next, note that choosing fpT q in Algorithm 3 involves a trade-off: choosing a smaller f reduces

the second summand in (1.24) but increases the first summand in (1.24) as reducing the probability

of underestimating a tail-sub-Gaussian parameter comes at the cost of a higher correction factor 1
κ

.

Finally, note that (1.24) is a finite-sample bound that gets close to the finite-sample regret bound

of Theorem 8.1 in (Lattimore and Szepesvári, 2020). Lattimore and Szepesvári (2020) use the

finite-sample regret bound to show that the regret of Algorithm 1 reaches an asymptotic lower

bound in Theorem 15.2 in (Lattimore and Szepesvári, 2020) and can hence be considered asymp-

totically optimal in the minimax-sense. The difference between the regret bound (1.24) and the

regret bound in Theorem 8.1 of (Lattimore and Szepesvári, 2020) is the second summand that can

be made arbitrarily small. To derive asymptotic regret bounds, one has to adapt Algorithm 3 by

choosing a period after which the sub-Gaussian parameters are not further updated.

Let me complement these theoretical results with a simulation study. I focus on Algorithm 1

and 2. For illustrative purposes, I suppose that there are only 2 prices, p1 and p2. I further assume

that the profit associated with price p1 is distributed according to the U r0, 1s distribution. For some

∆ ¡ 0, I assume that the profit associated with price p2 is distributed according to the U r∆, 1�∆s
distribution. In particular, p2 is maximizing expected profits. The higher ∆, the more does price

p2 increase expected profits. However, note that both profit distributions coincide when centered
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so that they share the same optimal tail-sub-Gaussian parameter K�
tail. For notational simplicity,

denote K� :� K�
tail and K̂tail,l � K̂L. I consider a learning horizon of T � 100 periods. A first

Table 1.1: Influence of Concentration Parameters K1, K2 on Profits

UCB1 UCB2

K1 � K� K1 � 10K� K1 � 0.1K� K1 � K� K1 � K� Ki � K̂1

∆ K2 � K� K2 � 10K� K2 � 0.1K� K2 � 10K� K2 � 0.1K� K2 � K̂2

0.05 3.069 2.564 3.084 4.928 0.254 2.873
p0.01q p0.00q p0.02q p0.00q p0.00q p0.01q

0.10 7.123 5.253 7.134 9.861 0.861 6.429
p0.01q p0.00q p0.04q p0.00q p0.01q p0.03q

0.15 11.777 8.074 11.920 14.800 2.325 10.531
p0.01q p0.00q p0.05q p0.00q p0.03q p0.04q

0.20 16.709 11.017 17.158 19.743 5.097 15.023
p0.01q p0.00q p0.06q p0.00q p0.06q p0.05q

0.25 21.793 14.082 22.660 24.691 9.296 19.832
p0.01q p0.00q p0.06q p0.00q p0.08q p0.06q

0.30 26.876 17.264 28.209 29.645 14.559 24.851
p0.01q p0.00q p0.05q p0.00q p0.10q p0.06q

Notes: The table reports the the sum of expected profits over T � 100 periods when using various UCB
algorithms to experiment with prices. The first column is the mean difference in expected profits between
the two prices. Column 2-5 are the expected profits of UCB Algorithm 1. UCB Algorithm 1 requires the
specification of sub-Gaussian parameters K1,K2. Column 2 reports expected profits of the UCB algorithm
with the optimal concentration parameters, column 3 reports expected profits of the UCB algorithm with
too high concentration parameters, column 4 reports expected profits of the UCB algorithm with too low
concentration parameters. Column 4 looks at the asymmetric case when the concentration parameter of
the optimal second arm is inflated while the concentration parameter of the sub-optimal first arm is correct.
Column 4 looks at the asymmetric case when the concentration parameter of the optimal second arm is too
low while the concentration parameter of the sub-optimal first arm is correct. Each number is based on
10000 simulations. The numbers in brackets below the expected profits are simulation standard deviations.

observation is that the expected sum of profits attained by UCB Algorithm 1 with the smallest

concentration parameters in column 2 are higher than the expected sum of profits attained by UCB

Algorithm 1 with inflated concentration parameters in column 3. The reason for this is that inflated

sub-Gaussian parameters give too much room for optimism, which leads to too much exploration
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by the UCB algorithm. This observation illustrates a finite-sample issue of the regret bound in The-

orem 8.1 in Lattimore and Szepesvári (2020): it shows asymptotic optimality of the UCB algorithm

as long as the true concentration parameters are not underestimated. The simulation highlights the

importance of being close to the smallest possible concentration parameters in finite samples.

A second observation is that for all sub-optimality gaps ∆, UCB 1 with K2 � 10K� and K1 � K�

leads to the highest profits. This is not surprising once we recall that the UCB algorithm recom-

mends the option when it has a high mean or a high uncertainty. When the measure of uncertainty

in the rewards associated with the optimal parameter is large, this gives rise to a strong motive

for exploring this option - almost regardless of the mean. Of course, it is not feasible to inflate

the concentration parameter for the profits of the profit-maximing price since the identity of the

profit-maximing price is unknown. The flip-side of this phenomenon is when the concentration

parameter of the optimal arm is too low. This leads to an overexploration of the sub-optimal price

because there is too much optimism about it.

A third observation is that the expected sum of profits achieved by UCB Algorithm 2 which esti-

mates sub-Gaussian parameters is close to the expected sum of profits achieved by UCB Algorithm

1 with optimal concentration parameters.

1.5.2 Linear Programs

Consider the linear program

min
xPRp

c1x s.t. Ax ¤ b (1.25)

with constraint matrix A P Rm�p, constraint vector b P Rm and objective vector c P Rp. The

objective of this section is to derive methods for inference on the optimal value c1x� of this linear
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program when A, b and c are expectations that have to be estimated. It is instructive to start by

considering the case where only b is estimated and then successively extend the analysis to the

case where c and A are also estimated.

Let me first consider inference on the objective value of (1.25).

Theorem 21. Consider the linear program (1.25). Assume that for all j � 1, . . . , p and and for all

k � 1, . . . ,m

Ak,j � ErǍk,js,

bk � Erb̌ks,

cj � Erb̌js,

where Ǎk,j , b̌k, and čj are real-valued random variables, which are MGF-sub-Gaussian with pa-

rameter KA,k,j , Kb,k, and Kc,j . Suppose further that there is an i.i.d. sample pǍi, b̌i, čiqi�1,...,n of

pǍ, b̌, čq. Denote for any k, j

Āk,j � 1

n

ņ

i�1

Ǎi
k,j,

b̄k � 1

n

ņ

i�1

b̌ik,

c̄j � 1

n

ņ

i�1

b̌ij.

Fix α P p0, 1q. There are pδA,k,j,n,KA,k,j
, δb,k,n,Kb,k

, δc,j,n,Kc,j
qkPt1,...,mu,jPt1,...,pu such that

1� α ¤ Pr@j, k Ak,j P rĀk,j � δA,k,j,n,KA,k,j
, Āk,j � δA,k,j,n,KA,k,j

s,

bk P rb̄k � δb,k,n,Kb,k
, b̄k � δb,k,n,Kb,k

s,

cj P rc̄j � δc,j,n,Kc,j
, c̄j � δc,j,n,Kc,j

ss.
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Then the quadratic program with quadratic constraints

min
xPRp,

ÃPRm�p,

b̃PRm,
c̃PRp

1

2
pc̃1, x1q

�
��0p�p Ip

Ip 0p�p

�
�


looooooomooooooon
�:M

�
�� c̃

x

�
�
 s.t.

$''''''''''&
''''''''''%

Ãx ¤ b̃,

Ãk,j P rĀk,j � δA,k,j,n,KA,k,j
, Āk,j � δA,k,j,n,KA,k,j

s,

b̃k P rb̄k � δb,k,n,Kb,k
, b̄k � δb,k,n,Kb,k

s,

c̃j P rc̄j � δc,j,n,Kc,j
, c̄j � δc,j,n,Kc,j

s

(1.26)

yields a lower bound for the α quantile of the objective value of (1.25).

Theorem 21 establishes the validity of inference on the optimal value based on Hoeffding’s inequal-

ity. In principle, any finite-sample inference method can be used to achieve the same guarantee.

The advantage of Hoeffding’s inequality is that (1.26) is computationally attractive in many impor-

tant examples. Before I discuss the computational properties of (1.26) in detail, let me first note

that there are many cases where only a subset of parameters is estimated. For example, Fang et al.

(2022) consider the case where only b is estimated while A and c are known and list numerous

economic applications. If, for instance, parameter Ak,j is known for some k, j, one can simply set

δA,k,j,n,KA,k,j
� 0.

The following result discusses the computational complexity of (1.26).

Theorem 22. Consider the quadratically constrained quadratic program (1.26).

1. If only b is estimated, (1.26) reduces to a linear program.

2. If b and c are estimated but A is known, (1.26) reduces to a quadratic program. In general,

(1.26) is strongly NP-hard. A sufficient condition for convexity is that x and c are non-

negative (or that both are non-positive).
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3. If A, b and c are estimated, (1.26) is strongly NP-hard in general. A sufficient condition for

convexity is that x and c are non-negative and that A is known to be non-positive.

1.5.2.1 Application to Nonparametric Demand Estimation

One empirical setting to which this can be applied is nonparametric demand estimation. Tebaldi

et al. (2019) proposed a method to compute sharp bounds on demand counterfactuals without

parametric assumptions. In particular, they derive sharp bounds for the drop in health insurance

coverage rates if premium subsidies were lowered. To determine these bounds when prices are

exogenous, they solve the following linear program (LP).

min
ϕ

c1ϕ

$''''''&
''''''%

ϕk ¥ 0,

°
k ϕk � 1,

°
kPSpj,mq ϕk � ŝj,m.

(1.27)

Here, the ϕk are probability masses that an unknown distribution of latent utility draws puts on

elements of the Minimum Relevant Partition (MRP). The MRP is a partition of the space of latent

utility draws and only depends on the observed prices. Consider a case where there is only one

geographical market that is observed over time. Assume that the distribution of latent utility draws

does not change over time. Then we observe the choices of the same population over time when it

faces different prices. The MRP is the coarsest partition of the space of latent utility draws such that

two consumers choose the same (health insurance) option if and only if their latent utility draws lie

in the same partition element. The objective c formalizes an objective set by the researcher, e.g.,

the demand for health insurance when a subsidy is decreased. Spj,mq is a set of indices of MRP

elements that make up the observed market shares.

Since the prices are observed without error, everything that depends only on prices (the MRP,
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Spj,mq) can be constructed without error. However, there may be error in the estimated market

shares ŝj,m. When there are only finitely many consumers and consumers make independent deci-

sions, errors in the estimated market shares are inevitable. How much does the estimation error in

market shares propagate to error in the bounds derived by Tebaldi et al. (2019)?

I explore this in a numerical simulation with the following data generating process. Suppose that

there are 2 inside products differentiated only by their price in T � 10 or T � 20 markets. I

assume that consumer i in market t choose the product j P t0, 1, 2u that maximizes utility ui,j,t,

where

ui,j,t � �αpj,t � εi,j,t.

I further assume that α, the marginal utility of income, is given by α � 1, and that the latent utility

draws εi,j,t follow a T1EV distribution. For prices, I simply draw from the uniform distribution

between 0 and 1. The utility of the outside option is normalized to ui,0,t � 0.

The market shares are thus described by the usual logit formula, i.e.,

sj,t � expp�pj,tq
1� expp�p1,tq � expp�p2,tq

Denote the number of consumers by n P t101, 102, 103, 104, 105, 106, u. We assume that the re-

alized market shares are drawn from a binomial distribution where the number of experiments is

the number of consumers n and the success probability is the market share implied by the logit

formula. The binomial draws are the only source of randomness in this simulation.

For the objective vector c in (1.27), I simply draw from the uniform distribution on the unit in-

terval. For T � 10, this gives rise to a Linear Program with 66 variables, 20 constraints with
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estimated parameter and 67 shape constraints that are not influenced by the estimation of market

shares. For T � 20, the Linear Program has 231 variables, 40 constraints with estimated parameter

and 232 shape constraints that are not influenced by the estimation of market shares.

The linear program that is solved for inference is then

min
ϕ

c1ϕ

$''''''''''&
''''''''''%

ϕk ¥ 0,

°
k ϕk � 1,

°
kPSpj,mq ϕk ¤ ŝj,m � δpj,m,Kj,m, αq°
kPSpj,mq ϕk ¤ ŝj,m � δpj,m,Kj,m, αq,

(1.28)

where 2δpj,m,Kj,m, αq is the length of the two-sided CI for ŝj,m based on Hoeffding’s inequality

with MGF-sub-Gaussian parameter Kj,m where Kj,m, see Corollary 13. The dependence on the

number of consumers is ‘hidden’ in the dependence on the market. To estimate Kj,m from just the

market shares, I create a binary vector with as many 1s as there are sold products (i.e., the product

of observed market shares and number of consumers). Then I can use either the estimator for the

tail-sub-Gaussian parameter 1.10 and inflate it with Proposition 12, or directly use the MGF-sub-

Gaussian parameter 1.15. Both will yield asymptotically valid inference based on Theorem 14 and

Theorem 15. From a computational perspective, it is important to note that (1.28) is computation-

ally attractive because δ does not depend on ϕ. This is a feature of Hoeffding’s inequality. Other

finite-sample methods, such as Chernoff’s inequality or binomial quantiles would also allow for

valid inference. But the nonlinear dependence of the implied δ would render (1.28) intractable

when there are many parameters and inequalities.

The results are reported in Table 1.2. We see that the inference based on Hoeffding’s inequality is

conservative, coverage rates for all numbers of markets and consumers are 100%, vastly overcov-
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ering the required 95%. Still, the bounds are informative in that they exclude a fair share of the unit

interval. We also see that estimating concentration parameters leads to narrower confidence inter-

vals compared to the using support bounds with Remark 8. Inference with MGF-sub-Gaussian

parameters also is less conservative than inference with tail-sub-Gaussian parameters due to the

inflation factor from Proposition 12.
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Table 1.2: Inference for Linear Programs: Simulation for Nonparametric Demand Counterfactuals

quantiles

Hoeffding with tail Hoeffding with MGF

T n c� simulated support bd estimated support bd estimated

10 105 72.40% 73.24% 85.43% 79.63% 77.73% 77.51%

(0.95) (1.00) (1.00) (1.00) (1.00)

10 106 72.61% 72.95% 79.25% 76.79% 75.33% 75.17%

(0.95) (1.00) (1.00) (1.00) (1.00)

20 105 54.73% 55.89% 81.43% 66.74% 62.63% 62.26%

(0.95) (1.00) (1.00) (1.00) (1.00)

20 106 55.14% 55.64% 65.81% 61.01% 59.13% 58.93%

(0.95) (1.00) (1.00) (1.00) (1.00)

Notes: The table reports a simulation results of (1.27). T is the number of markets, n is the number of

consumers, c� is the average optimal value across simulations. The other columns then report the 0.95

quantiles of this objective value. The exact quantiles based on simulation are in column 4. The other

columns report bounds on the quantiles based on Hoeffding’s inequality, with tail-sub-Gaussian parameters

based on support bounds in column 5, estimated parameters in column 6; MGF-sub-Gaussian parameters

based on support bounds in column 7, estimated parameters in column 8. Below the quantiles, I report

simulated coverage rates. Each number is based on 100 simulations.

In addition to allowing for inference, (1.28) is feasible with probability of at least 1 � α as long

as the sub-Gaussian parameter is valid. In contrast, Tebaldi et al. (2019) equate the choice shares

with the estimated market shares, leading to infeasibility of (1.27). To accommodate potential
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infeasibility, 1.3 propose a two-step method. As Table 1.3 shows, feasibility is not a practical

concern with (1.28), echoing the discussion of finite-sample feasibilities in other popular demand

models (Lieber and Wiemann, 2022). That all instances of (1.3) are feasible could be an artifact

of the conservativeness of Hoeffding’s inequality or it could be a result of (1.27) being “just”

infeasible.

Table 1.3: Nonparametric Bounds on Demand Counterfactuals: Feasibility

Fraction of Feasible Draws

Hoeffding with tail Hoeffding with MGF

T n s � ŝ support bd estimated support bd estimated

10 102 0.00 1.00 1.00 1.00 1.00

10 103 0.16 1.00 1.00 1.00 1.00

10 104 0.95 1.00 1.00 1.00 1.00

10 105 1.00 1.00 1.00 1.00 1.00

20 102 0.00 1.00 1.00 1.00 1.00

20 103 0.00 1.00 1.00 1.00 1.00

20 104 0.39 1.00 1.00 1.00 1.00

20 105 0.98 1.00 1.00 1.00 1.00

Notes: The table reports the how often the program (1.27) was feasible in the simulation.T is

the number of markets, n is the number of consumers. Column 3 reports how often the linear

program (1.27) that equates theoretical choice probabilities s and observed market shares ŝ.

Column 4-7 report how often the program (1.28) is feasible if Hoeffding’s inequality with tail-

parameters (based on support bounds or estimation) or MGF-parameters (based on support

bounds or estimation) are used. Each number is based on 100 simulations.
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1.6 Empirical Application: Liquor Sales in Washington State

In November 2011, voters in Washington State adopted Initiative 1183, ending a state-monopoly

for liquor sales in Washington that had existed for almost 80 years. Starting June 1st, 2012, vendors

were free to sell liquor and to set prices if they bought a license from the Washington State Liquor

Control Board. To set profit-maximizing prices, firms have to know the demand curve. Anecdotal

evidence suggests that vendors did not know the demand curve. Alan Johnson, CEO of BevMo!, a

Californian company specializing in the sale of alcoholic beverages that entered the liquor markets

in Washington, said in March 2012:

“I sure don’t know what we’ll charge the consumer.

There is going to be a lot of scrambling.”8

In this situation, a firm can learn the demand curve by simply setting prices then observing the

corresponding demand. When there are only finitely many consumers, the observed market share

will only be a approximation of the theoretical market share. In other words, the firm can learn

about the demand curve by collecting noisy signals of it. But learning the demand curve is only a

means to an end. The firm’s objective is to maximize profits. This problem can be modeled as a

multi-armed bandit (Rothschild, 1974).

The objective of this section is to quantify how well the entrants into the off-premise liquor sales

learned to set prices. Could they have increased profits had they just used the UCB algorithm? If

so, by how much? Does it depend on which concentration parameters are supplied to the UCB

algorithm?

For this empirical exercise, I proceed in three steps. First, I estimate the demand for liquor. In

8Cited according to Huang et al. (2022) as the original source Gregutt, Paul, “BevMo Ramps It Up in Washington
State” (April 30, 2012) is no longer available.
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a second step, I estimate the marginal cost of each liquor. In a third step, I compare the price

experimentation implemented by the store managers to three different UCB algorithms: the UCB

algorithm with concentration parameters based on support bound, the UCB algorithm with optimal

concentration parameters, and the UCB algorithm with estimated concentration parameters.

1.6.1 Data

I combine data from three sources. My main data source is the Retail Scanner Data from NielsenIQ

which provides weekly price, marketing and sales information of liquor from June 2012 to Decem-

ber 2014. I complement this with monthly liquor price data from Oregon which helps to obtain

estimates for marginal cost. The 2010 Census contains demographic information the a county

level. In particular, it contains the number of residents above the federal minimum legal drinking

age of 21 years by county.

1.6.2 Sample Construction

The main liquor categories are whiskey, gin, rum, tequila and vodka. Consumers rarely substitute

across product categories so that firms tend to disregard substitution effects across product cate-

gories (Conlon and Rao, 2015). As Huang et al. (2022), I focus on whiskeys as it is the category

with the highest sales.

There is evidence that consumers in Washington do not travel between stores to shop for liquor

(Illanes and Moshary, 2020; Huang et al., 2022). To be sure that consumers do not travel be-

tween stores, I restrict my sample to counties in which a liquor stores held a local monopoly. The

purpose of this restriction is to circumvent strategic interactions between competing off-premise

liquor stores. When there is competition, an increase in demand could stem from noise, one’s own

experimental reduction of prices or from a competitor’s price increase. There are 4 counties in
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Washington in which a chain of liquor stores held monopolies.

The NielsenIQ retail scanner data set does not record prices of products that were not sold in a

given store in a given week (Dubé et al., 2021). Observing prices is necessary to evaluate store

managers’ experimentation schemes. Hence, I focus on the products with sufficiently high sales

so that I can observe posted prices reliably. Specifically, I focus on the 10 whiskeys with high-

est sales. Even with this restriction, there are store-week pairs with zero sales. When sales for a

whiskey in a store-week are zero, I use the uniform pricing policy within retail chains (DellaVigna

and Gentzkow, 2019; Huang et al., 2022) to recover the unobserved prices.

1.6.3 Demand Estimation

I assume that demand follows a standard simple logit. Specifically, I model the utility for whiskey

j in market t as

uj,m,t � xj,tβ � pj,tα � δm � ξj,t � εj,t,

where xj,t contain brand, size, whiskey type, year, month fixed effects, pj,t is the price of product

j in market t and δm are store fixed effects. The utility of the outside option (a composite be-

tween choosing no liquor and choosing another liquor) is normalized to zero. Markets are defined

on a county-week level. Then the number of sales of product j in market t follows a binomial

distribution where the number of trials is the number of consumers in the market and the success

probability is the choice probability

sj,m,t � exp pxj,tβ � pj,tα � δm � ξj,tq
J°

k�0

exp pxk,tβ � pk,tα � δm � ξk,tq
.
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Because the county-week level is a relatively disaggregated definition of markets, there are many

liquors and few consumers. Hence, there are markets with zero market shares. I therefore apply

the method developed in Lieber and Wiemann (2022) to estimate the demand model as it is robust

to zero-valued market shares. I use a confidence level of 0.95. Prices are allowed to be endoge-

nous. As instruments, I use the prices in Oregon in the same month9 as well as average prices in

Washington in the same week in other markets, not just from the four counties in the sample.

It is worth discussing exactly what the price pj,t is. For tax purposes, Washington State considers

a liquor as spirit whenever the alcohol by volume is above 20%. This is the case for all whiskeys

in my sample. There are three relevant taxes. First, there is a sales tax of 20.5% on each liquor.

Second, there is a tax of $3.7708 on each liter of spirit sold10. Finally, there is a liquor licensing

fee of 17% of revenue that liquor stores have to pay to the state. Before the liberalization of the

liquor market, all taxes were included in the sticker price on the shelf. After the liberalization,

liquor stores initially posted sticker prices that do not include the sales tax of 20.5% or the liter tax,

confusing customers. There was a push towards including taxes in sticker prices.11 It is hard to

say which vendor included which tax on the price tag when.12 But since this is a widely discussed

issue in the media at the time, the WSLCB provides clear information on its website13 and there

is even an online calculator14 to calculate the final price, I assume that consumers are aware of the

full final price.

Whiskey is a durable good. It is unlikely to depreciate in quality within a week when properly

9There are months in which I do not observe prices in Oregon. I use locally constant and linear interpolation to
interpolate the prices in months for which prices in Oregon are not observed.

10This applies to the volume of spirits, not to the volume of alcohol.
11Melissa Allison, “ Retailers simplifying liquor-price tags to include taxes ”, Seattle Times, July 5, 2012.

https://www.seattletimes.com/business/retailers-simplifying-liquor-price-tags-to-include-taxes/
12I have ordered liquor “for pick up” in Seattle myself. No online store included the taxes in the sticker price.
13See, e.g., https://dor.wa.gov/taxes-rates/other-taxes/spirits-hard-liquor-sales-tax or

https://dor.wa.gov/about/statistics-reports/spirits-taxes , last accessed 10/03/2022.
14https://www.liquorcalc.com/ , last accessed 10/03/2022
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stored so that a whiskey bottle purchased in one week might be consumed in a later week. While it

would be possible to incorporate this durability for demand estimation by considering a dynamic

program in which the state variable is the volume (and type) of whiskey stored by a consumer, this

creates a non-stationary learning environment for the firm engaging in price experimentation. I

therefore abstract from the durability of whiskey in the demand estimation.
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Table 1.4: Demand Estimates

main specification price (first stage)

price -0.089

feature or display 0.146 -0.366 (0.693)

missing feature & display 1.342 -0.411 (0.139)

bourbon straight bonded 0.658 -5.507 (0.755)

extra large (1.75l vs 0.75l) 1.240 0.855 (0.474)

intercept -7.786 -1.252 (0.523)

year fixed effects ✓ ✓

month fixed effects ✓ ✓

brand fixed effects ✓ ✓

store fixed effects ✓ ✓

avg. prices in Washington 1.549 (0.056)

prices in Oregon 0.070 (0.020)

number of Observations 5360 5360

Notes: The first column provides logit parameter estimates following the methodology in

Lieber and Wiemann (2022). The second column reports estimates of the first stage for

price. The F-statistic for the two excluded instruments is 391.49.

The parameter estimates are reported in Table 1.4. The implied average price elasticities for 6 of

the 10 whiskeys are reported in Table 1.5. The pattern of the cross-price elasticity exhibits the

Independence-of-Irrelevant-Alternatives property of the simple logit. Cross-price elasticities are

very low. In contrast, own-price elasticities are considerable and suggest that prices are in the

elastic range of the demand curve. I have chosen to report the elasticities for only 6 of the 10

whiskeys for formatting reasons, because I cannot identify the products and because the pattern
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for the 10 products is the same. I can compare these elasticities to those reported by Huang et al.

(2022) who estimate a random coefficient logit model with the same data but more products (sales

aggregated to a monthly level). The own-price elasticities are of comparable size, while the cross-

price elasticities reported by Huang et al. (2022) are higher by a factor of around 10. Even with

those cross-price elasticities, there seems to be limited substitution for marginal price changes.

Table 1.5: Average Price Elasticities

Elasticity with respect to price of product

1 2 3 4 5 6

product

1 -2.3006 0.0007 0.0008 0.0007 0.0016 0.0006

2 0.0006 -2.4477 0.0008 0.0007 0.0016 0.0006

3 0.0006 0.0007 -3.1063 0.0007 0.0016 0.0006

4 0.0006 0.0007 0.0008 -3.0305 0.0016 0.0006

5 0.0006 0.0007 0.0008 0.0007 -2.2121 0.0006

6 0.0006 0.0007 0.0008 0.0007 0.0016 -1.1499

Notes: The table reports the average price elasticities for 6 whiskeys. To interpret

these estimates, consider the first row. It is the elasticity of the market share of whiskey

1 with respect to the prices of whiskeys 1-6 when all product characteristics and prices

are set to their average across regions and weeks from June 2012 to December 2014.

Intuitively, a 1% increase in the price of product 1 will reduce its market share by

2.3% and increase the market share of whiskey 2 by 0.0007%.

1.6.4 Marginal Cost

To obtain these estimates for marginal cost, one would usually assume that firms play a Nash-

Bertrand equilibrium. Then one could derive the first order conditions and back out the marginal
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cost parameters. However, if firms experiment with prices, marginal costs cannot be obtained by

an inversion of first order conditions.

An institutional detail helps to overcome this problem: Oregon, a neighbor of Washington State,

maintains a state monopoly on off-premise liquor sales and has regulated prices to be the whole-

sale prices plus a fixed 104% markup. Since prices in both Oregon and Washington State include

federal excise taxes, there are no tax differences in the acquisition of liquor. This allows me to

back out the wholesale prices in Oregon (including federal excise tax), which are then assumed to

equal wholesale prices (including federal excise tax) in Washington State.

1.6.5 Model of Firm Experimentation Behavior

Each monopoly’s objective is to maximize the sum of expected profits15 over the period from June

2012 to December 2014 by choosing a sequence of prices ppj,tqjPt1,...,Ju,tPt1,...,T u. pj,m,t is allowed

to depend on the information available to monopoly m up to period t� 1.

I assume that monopolies only observe the realizations of demand in their own markets, i.e., that

they do not observe the demand realizations of other monopolists. This would incentivize free-

riding on other monopolies’ experimentation efforts. Whether the group of monopolies would

then experiment enough is a very interesting question (Che and Hörner, 2018).

I define the length of a period to be one week, since that is the level of temporary granularity

at which I observe prices in the retail scanner data. It might be that firms change their prices within

a week. NielsenIQ then reports a quantity weighted average of prices. I observe some patterns in

15In the bandit literature, it is common to minimize the regret, i.e., difference the expected profit accruing from
charging the optimal price in every period and the expected profit of the actually implemented price experimentation
strategy. Benefits of considering the regret are that it is non-negative and that it simplifies asymptotic analysis when
T diverges to infinity. However, for any fixed T , any strategy that minimizes the regret also maximizes the sum of
expected profits.
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the data which suggest that intra-week experimentation might be happening or that the week of

monopolists does not coincide with the week defined by NielsenIQ (Thursday-Wednesday). While

I would be worried about my time period definition if there was evidence for substantial intra-

week pricing, I am not worried about a potential difference in which day is the first in a week. As

suggestive evidence, I look at price endings. Empirically, the behavioral left-digit bias, i.e., that

consumers tend to perceive a price of $8.99 as much lower than $9, is a powerful force in consumer

demand (Strulov-Shlain (2021)). If many firms would engage in intra-week experimentation, we

would see many prices endings that are far away from 99 or 98. Figure 1.4 shows that the over-

whelming number of price endings is 98 or 99, which suggests that intra-week experimentation is

not a first-order concern.16

Figure 1.4: The Histogram of Price Endings suggests Limited intra-week Price Experimentation

As discussed in the sample construction, I only consider the 10 whiskeys with highest sales be-

cause I cannot observe the posted prices of a liquor that is not sold. Thus firms have to post a

J � 10-dimensional price vector every week. I make the simplifying assumption that firms do not
16While it could be that firms change their prices in multiples of $2 increments only, that appears unlikely.
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jointly optimize prices. The reason for this is that even if there were only two prices for each prod-

uct, it would take 210 � 1000 weeks or 20 years to try each combination once. Since we look at

T � 136 weeks, it seems more reasonable to let firms maximize profits product-by-product rather

than jointly. According to the estimates of cross-price elasticities reported in Table 1.5, ignoring

price substitution may not be not a dramatic departure from optimality. If the firm knew the shape

of demand and the specifics of the logit model, in particular the low-dimensional structure of the

substitution patterns, they could learn much more efficiently. But the purpose of this exercise is to

imagine that a firm has no information about the structure of demand. So I will simulate the price

experimentation product-by-product while keeping the prices of the other 9 products fixed at their

average.

A further simplifying assumption in the canonical multi-armed bandit model is stationarity, i.e.,

that no parameters change over time. In particular, demand, cost, taxes and characteristics are as-

sumed to be constant over the T � 136 weeks. This is a strong assumption, in particular for cost

and certain characteristics that depend on marketing choices such as whether a product is featured

or on display. That marketing variables like whether a product is on feature or display are constant

over time is rejected by the data. In principle, it is possible to accommodate such changes by con-

sidering contextual multi-armed bandits. But these marketing variables are not really contextual

variables. They are choice variables themselves, which are in the control of the store managers.

In a future iteration, I would like to allow store managers to also learn about the effects of these

marketing variables, simultaneously with prices. I believe that this is feasible even when there are

only 136 weeks. Stationarity of demand parameters is a common assumption and taxes are con-

stant. Apart from the marketing variables, I included year and month fixed effects in the demand

estimation, but will also average them out to create a stationary demand model. A critical question

to assess whether comparing the UCB’s performance with the performance of store managers is

whether marginal cost for liquor is constant over time. Since we have strong proxies for marginal
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cost, we can directly evaluate this in the data. Figure 1.5 illustrates the variance of prices in Ore-

gon over time for each of the 10 whiskeys, suggesting that variation in marginal cost is low for

the 10 considered whiskeys in the sample period. In particular, there are some products for which

marginal cost are constant.

To apply the UCB algorithm, it is necessary to discretize the space of prices. Theory on multi-

armed bandits is silent on how this discretization should be done. However, there are results in

economics that can guide us to a judicious choice. Specifically, there is well-established evidence

of left-digit bias (Strulov-Shlain (2021)). For a whiskey j, I consider the minimum and maximum

price that was ever charged by any firm in my sample. I then take the smallest upper bound that

ends on 99 and the largest upper bound that ends on 99 and allow all prices ending on 49 or 99 be-

tween those two to define the discrete set of prices. I believe that this is a reasonable discretization,

particularly in light of Figure 1.4.

Figure 1.5: Stability of Marginal Cost between June 2012 and Dec 2014

In particular, we see that for whiskey 6, 9 and 10, marginal cost were very stable over time. As

a robustness check to departures from stationarity in the cost structure, I will consider these three
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whiskeys only.

To conclude, let us formalize the price experimentation problem of monopolist m. For each

whiskey j � 1, . . . , 10, the monopolist wants to maximize the sum of expected profits, i.e.,

Ţ

t�1

E rppj,tp1� 0.17q �mcjqBinpnm, sj,m,tppj,m,tqqs

� nm

Ţ

t�1

ppj,tp1� 0.17q �mcjqsj,m,tppj,m,tq, (1.29)

where the choice probability is given by

sj,m,tppq :� ex̄jβ�αP pp,jq�δm�ξ̄j

ex̄jβ�αP pp,jq�δm�ξ̄j �
J°

k�0
k�j

ex̄kβ�αP pp̄k,kq�δm�ξ̄k

,

w̄r is a shorthand for 1
n

°t
t�1wr,t and P ppq is the effective price paid by the costumer including

liquor sales and volume tax, i.e.,

P pp, jq :� 1.205p� 3.7708liter volj.

The choice pj,m,t has to be made with information available up to time t, i.e., all demand realiza-

tions between period 1 to t� 1 but not t.

1.6.6 Experimentation Strategies

I compare four price experimentation strategies by simulating the multi-armed bandit. Specifically,

I assume the true demand to follow the simple logit with parameters as reported in Table 1.4. The

binomial draws in (1.29) are the source of randomness in the simulation. Since learning strategies

are allowed to be functions of the realizations of demand, the path of chosen prices is random, too.
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Hence, I simulate an entire experimentation path over T � 136 weeks. Three of the four price

experimentation algorithms are the UCB algorithm with various concentration parameters. The

fourth price experimentation strategy is the one implemented by store managers.

Consider first the price experimentation implemented by store managers. We observe the prices

set by store managers, although potentially with some measurement error.17 This experimentation

scheme is independent of the binomial draws in (1.29). Since store managers are not bound by the

requirement that their prices be in the discretized set of prices tpgrid,1, . . . , pgrid,Lu, I find the closest

price in tpgrid,1, . . . , pgrid,Lu to the posted price of every product in every week. The difference

cannot be more than a quarter of a dollar due to the construction of the price grid. For most prices,

the difference is 0 or 1 penny, as most prices end on .99 or .98, see Figure 1.4.

Now consider the UCB algorithm to experiment with prices for whiskey j.18 The UCB algo-

rithm will compute finite-sample confidence intervals for profits based on Hoeffding’s inequality,

recommend to try the price with the highest upper confidence bound for profits and then update

the confidence interval for the sampled option. The confidence bounds depend on concentration

parameters, pKtail,lqlPt1,...,Lu. I consider the optimal concentration parameters pK�
tail,lqlPt1,...,Lu, esti-

mated concentration parameters pK̂tail,lqlPt1,...,Lu given the observations made thus far and concen-

tration parameters based on support bounds pKtail, support bound,lqlPt1,...,Lu.

First, consider concentration parameters based on support bounds pKtail, support bound,lqlPt1,...,Lu. These

bounds are based on the Remark 8 that I recall here for the reader’s convenience.

Remark 8. Consider a real-valued random variable X . If |X| is bounded by B, then X is tail-sub-

17See the discussion on intra-week experimentation for a detailed discussion.
18I will suppress the dependence on j for notational convenience.
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Gaussian with parameter at most B{alogp2q.

The support bound arising from Remark 8 for the profit uses that market shares are bounded by 1.

Hence, the profit associated with price p is bounded by

B :� nppp1� 0.17q �mcq, (1.30)

where n is the number of consumers, 0.17 is the liquor revenue tax and mc is the marginal cost.

Hence,

Ktail, support bound,l � npplp1� 0.17q �mcqa
logp2q .

Second, I consider the estimator for tail-sub-Gaussian parameters derived in section (1.3), i.e.,

K̂tail,l � max
c�1,...,Cl

Πc,pgrid,ld
log

�
2

1�F̂ pΠc,pgrid,l�q


 ,

where Cl counts how often price pgrid,l has been explored so far, Πc,pgrid,l is the observed profit as-

sociated with price pgrid,l at the c-th try and F̂ is the empirical cdf of pΠc,pgrid,lqc�1,...,Cl
.

Third, I consider the optimal concentration parameters. Since I have modeled the demand curve, I

can explicitly solve the the smallest possible and hence optimal concentration parameter, i.e.,

K�
tail,l :� sup

tPR�

tc
log

�
2

1�Fpl
ptq

	 ,

where Fpgrid,l is the true cdf of the profits associated with price pgrid,l.
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1.6.7 Results

I report the results of the comparison of experimentation strategies in Table 1.6. To begin, consider

the ’aggregated’ estimates for ’all products’. Aggregation refers to adding up the profits of the four

local monopoly. We observe that the percentage increase in profits by adopting the UCB algorithm

based on support bounds is rather modest with 0.77%. The reason is that concentration parameters

based on support bounds are unnecessarily large so that there is too much experimentation and too

little exploitation. In contrast, profits would have increased by 26% if the store managers had used

the UCB algorithm with estimated concentration parameters based on (1.10). This is a striking

increase in profits and close to the 29.9% increase in profits of the infeasible UCB algorithm with

optimal concentration parameters.
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Table 1.6: Comparison of Price Experimentation Strategies

UCB(support bound) UCB(K̂) UCB(K�)

all products

county 1 3.53% 30.5% 34.7%

county 2 3.56% 29.1% 32.9%

county 3 -6.17% 16.0% 19.2%

county 4 3.60% 29.3% 33.5%

aggregated 0.77% 26.0% 29.9%

products with stable cost

county 1 - 3.93% 23.51% 25.55%

county 2 - 3.87% 21.35% 23.01%

county 3 -14.52% 7.61% 9.22%

county 4 - 4.99% 20.25% 21.76%

aggregated - 7.10% 18.26% 20.06%

Notes: The table reports the percentage gain in total profits if store managers had adopted a UCB algorithm

between June 2012 to December 2014. The first column is the feasible UCB algorithm with concentration

parameters based on support bounds. The second column is the feasible UCB algorithm with estimated

concentration parameters based on (1.10). The third column is the infeasible UCB algorithm with optimal

concentration parameters. The table reports the gains for each local monopoly separately and aggregated.

For example, if the monopoly in county 1 had adopted the UCB algorithm with concentration parameters

based on support bounds, it would have increased profits for all products by 3.53%. Using the concentration

parameters would have increased profits by 30.5% and using optimal concentration parameters would have

increased profits by 34.7%. The ’products with stable cost’ are the ones with particularly stable prices over

time, see Figure 1.5. The numbers in the table are averages over 10000 simulations.

These aggregated patterns mask a heterogeneity at the firm level. For example, the price experi-
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mentation strategy implemented by monopoly 3 would have outperformed the UCB algorithm with

concentration parameters based on support bounds. As a result, the increase in profits achieved by

switching to the UCB algorithm with estimated concentration parameters is less pronounced - al-

though a 16% increase in profits is still notable. Huang et al. (2022) also find heterogeneity in the

quality/speed of learning at the monopoly level.

One of the main simplifying assumptions to model firm behavior with multi-armed bandits is

stability of marginal cost. From Figure 1.4, we have learned that the marginal cost of three prod-

ucts was stable over time. This subset of products allows me to study the sensitivity of results with

respect to the assumption of stablility of marginal cost over time. The feasible UCB algorithm with

concentration parameters based on support bounds now would have reduced profits compared to

the price experimentation implemented by store managers by 7.1%. The feasible UCB algorithm

with estimated concentration parameters would still have increased profits by 18.26%, close to

20.06% profit increase achieved by the infeasible UCB with optimal concentration parameters.

Because of the simplifying assumptions to model consumer demand and firm behavior, the compar-

ison between UCB and store managers should be taken with a grain of salt. The three main caveats

are non-stationarity of product characteristics, that product interactions have been left aside and

that the durability of whiskey was abstracted away. However, the comparison between UCB algo-

rithms is unaffected by these limitations and suggests that (1) the UCB algorithm with estimated

concentration parameters performs almost as good as the UCB algorithm with optimal concentra-

tion parameters and (2) the UCB algorithm with estimated parameters comfortably outperforms

the feasible UCB algorithm with concentration parameters based on support bounds.

63



1.7 Conclusion

Bandits model learning when agents repeatedly choose actions with uncertain rewards. Bandit

models have been applied to experimenting with prices or advertisement to maximize profits,

evaluating treatment to maximize outcomes, and testing experience goods to maximize utility.

A widely used algorithm for bandit problems is the upper confidence bound (UCB) algorithm.

The UCB algorithm builds on Hoeffding’s inequality, which involves sub-Gaussian concentration

parameters. These parameters are typically not known in applications, constituting an obstacle for

applying Hoeffding’s inequality for inference.

In this paper, I proposed two estimators for the concentration parameters in Hoeffding’s inequality.

I studied asymptotic and finite-sample inference based on estimated estimates. With my estimators

for concentration parameters, asymptotic inference with estimated parameters is valid under mild

conditions and optimal under stronger conditions. Finite-sample inference with estimated param-

eters is impossible without further assumptions. I proposed conditions under which finite-sample

inference with estimated parameters is valid.

These theoretical results can be applied to non-standard inference problems that arise in partial

identification and machine learning. One example are linear programs with estimated parameters.

I developed a inference method that can account for all parameters to be estimated, and is com-

putationally attractive in interesting settings. In simulations, this approach yields valid confidence

sets that are informative but conservative.

Bandit algorithms are the application of my theoretical results on which I focused in this paper.

Specifically, I adapted the UCB algorithm to settings in which the sub-Gaussian concentration pa-

rameters are not known. Theoretically, I established a finite-sample regret bound for this adapted
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UCB algorithm under anti-concentration assumptions. This regret bound is close to the finite-

sample regret bound of the UCB algorithm with known sub-Gaussian parameters that leads to

the asymptotic optimality of the UCB algorithm. In simulations, I found that UCB with estimated

concentration parameter performs almost as well as the UCB algorithm with optimal concentration

parameters. In an empirical application on the liberalization of the spirits market in Washington

State in 2012, I find that estimating concentration parameters significantly outperforms the avail-

able support bounds for concentration parameters.
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1.9 Appendix

1.9.1 On sub-Gaussians

1.9.1.1 Relating Gaussians and sub-Gaussian

While sub-Gaussian inference with estimated concentration parameters may be valid, it is only

useful for practitioners if the resulting confidence bounds are “not too large”.

Consider X be a normal random variable with mean zero and standard deviation σ. Let us first

note that X’s MGF is given by

E rexp ptXqs � exp

�
t2σ2

2



.

Hence X is MGF-sub-Gaussian with parameter σ?
2
. By Proposition 12, X is tail sub-Gaussian

with parameter at most
?
2σ.19 For σ � 1, this yields a 95% confidence interval r�2.72, 2.72s.

This has a coverage of 99.34%. This is illustrated in Figure 1.6.

1.9.1.2 Hoeffding’s Inequality

The moment generating function lends itself to study the behavior of sums of independent random

MGF-sub-Gaussians.
19On the other hand, the tail-sub-Gaussian parameter of the standard normal cannot be smaller than 1.27 since for

t � 4.69494 we have

P r|N p0, 1q| ¥ ts � 2 � p1� Φptqq � 2.66685 � 10�6   2.321711 � 10�6 � 2 exp

�
� t2

1.272



.

Hence the lower bound for the factor from MGF sub-Gaussian parameter to tail sub-Gaussian parameter is
1.27

ap2q � 1.8. In Proposition 12, this constant is bounded at 2. So the room for improvement in claim 2 of
Proposition 12 is not larger than 10%. Similarly, the factor from tail sub-Gaussian parameter to MGF sub-Gaussian
parameter must be bounded from below by 0.557. This is considerably lower than the 1.135441 established in Propo-
sition 12. But this does not imply that the constant in Proposition 12 is inflated since for every fixed distribution, the
product of the two costs must be 1. But each step has to hold for any sub-Gaussian distribution.
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Figure 1.6: Comparison of Gaussian and sub-Gaussian Tail Bounds

Proposition 23. (Vershynin, 2018, Proposition 2.6.1) Let X1, . . . , Xn be independent, mean-zero

real-valued random variables. Assume that for all i, Xi is an MGF-sub-Gaussian random vari-

able with parameter Ki. Then
°n

i�1Xi is a MGF-sub-Gaussian random variable with parameterc
n°

i�1

K2
i .

Proof of Theorem 11. Note that by Remark 9, aiXi is MGF-sub-Gaussian with parameter aiKi.

By Proposition 23,

ņ

i�1

aiKi (1.31)

is MGF-sub-Gaussian with parameter

d
ņ

i�1

a2iK
2
i .

We can then use Proposition 12 to conclude that (1.31) is tail-sub-Gaussian with parameter

2

d
ņ

i�1

a2iK
2
i .
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This completes the proof.

1.9.1.3 Relating Tail- and MGF-sub-Gaussians

Proof of Proposition 12. This proof uses some of the ideas in the proof of Proposition 2.5.2 in

Vershynin (2018).

1. Consider a real-valued random variable X that is mean-zero tail sub-Gaussian with parame-

ter K ¡ 0. Because of the scaling property 9, we can assume without loss of generality that

the K is 1. We have to show that there exists a K̃ such that for all λ P R,

E rexp pλXqs ¤ exp
�
K̃2λ2

	
.

In addition to showing existence of such a K̃, the objective is to find the smallest such K̃.20

Step 1: MGF of squared random variable

We will first try to bound the MGF of the squared random variable, i.e., E rexp pη2X2qs
for any η P R such that 0   η   1. Note that

E
�
exp

�
η2X2

�� �
8»
0

P
�
exp

�
η2X2

� ¡ t
�

dt

�
8»
0

P
�
η2X2 ¡ max tlog ptq , 0u� dt

�
8»
0

P

�
|X| ¡

a
max tlog ptq , 0u

η

�
dt

20I do not claim to have derived the smallest such constant. Whenever I speak of the “smallest possible” in this
proof, I mean the smallest possible that can I can derive given my proof technique.
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¤
8»
0

min

"
1, 2 exp

�
�max tlog ptq , 0u

η2


*
dt.

The two arguments in the minimum are equal when

t � exp
�
η2 log p2q� .

Hence we have

E
�
exp

�
η2X2

��
¤

8»
0

min

"
1, 2 exp

�
� log ptq

η2


*
dt

�
exppη2 logp2qq»

0

1dt� 2

8»
exppη2 logp2qq

exp

�
� log ptq

η2



dt

� exp
�
η2 log p2q��1� η2

1� η2




� exp
�
η2 log p2q�� 1

1� η2



�: fpηq.

Step 2: Small λ Consider a threshold parameter λ� P p0, 1.3q21 that we will choose later.

First consider |λ| ¤ λ�. Our goal is now to find the smallest αl such that for all λ ¤ λ�

E rexp pλXqs ¤ exppλ2α2
l q.

By Lemma 34, we have

E rexp pλXqs ¤ E
�
λX � exp

�
κλ2X2

��
� Erexp �κλ2X2

�s
21Note that 1.3

?
κ   1.
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¤ fp?κ |λ|q (Step 1)
!¤ exppλ2α2

l q.

Hence the smallest αl is characterized by

α2
l � sup

λ¤λ�

log pfp?κ |λ|qq
λ2

� sup
|λ|¤λ�

log
�
exp pκλ2 log p2qq � 1

1�κλ2

��
λ2

� sup
|λ|¤λ�

κλ2 log p2q � log
�

1
1�κλ2

�
λ2

� logp2qκ� sup
|λ|¤λ�

log
�

1
1�κλ2

�
λ2

� logp2qκ� κ sup
|λ|¤λ�

log
�

1
1�κλ2

�
κλ2

� logp2qκ� κ sup
0¤τ¤κpλ�q2

log
�

1
1�τ

�
τ

� logp2qκ� κ inf
0¤τ¤κpλ�q2

log p1� τq
τ

� logp2qκ� κ
log p1� κpλ�q2q

κpλ�q2

� logp2qκ� log p1� κpλ�q2q
pλ�q2

where in the penultimate step, I used that the function to be minimized is monotonically

decreasing.

Step 3: Large λ

77



Now consider |λ| ¥ λ�. Our goal is to find the smallest αh such that for all λ ¥ λ�

E rexp pλXqs ¤ exp
�
λ2α2

h

�
.

For a tuning parameter 0   γ   ?
2 that will be chosen later, we have

E rexp pλXqs ¤ exp

�
1

2γ2
λ2



E
�
exp

�
1

2
γ2X2


�

¤ exp

�
1

2γ2
λ2



f

�
γ?
2



(Step 1)

!¤ exp
�
α2
hλ

2
�
.

Hence αh is characterized by

α2
h � inf

γ
sup
λ¥λ�

log
�
exp

�
1

2γ2λ
2
	
f
�

γ?
2

		
λ2

� inf
γ

1

2γ2
� sup

λ¥λ�

log
�
f
�

γ?
2

		
λ2

� inf
γ

1

2γ2
� sup

λ¥λ�

log

�
exp

�
γ2

2
log p2q

	�
1

1� γ2

2




λ2

� inf
γ

1

2γ2
� γ2

2

1

pλ�q2 log p2q �
log

�
1

1� γ2

2



pλ�q2

� inf
γ

1

2γ2
� logp2q

2

1

pλ�q2γ
2 � 1

pλ�q2 log
�
1� 1

2
γ2




� inf
0 γ̃ 2

1

2γ̃
� logp2q

2

1

pλ�q2 γ̃ �
1

pλ�q2 log
�
1� 1

2
γ̃



�: zpγ̃q.

Note that zp�q is a convex function on p0, 2q as the sum of three convex functions. Hence any
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stationary point is a global optimum. The stationary point is characterized22 as the solution

in p0, 2q to

� 1

pλ�q2
logp2q

2
γ3 � 1

pλ�q2 plogp2q � 1q γ2 � 1

2
γ � 1 � 0. (1.32)

Since this is a polynomial of degree 3, an exact formula for the solutions exists.

Step 4: Optimal Threshold Parameter

Now let us choose λ� in an optimal way by choosing it such that

min
λ� 1.3

max tαlpλ�q, αhpλ�qu .

This can be done numerically, yielding

K̃ � 1.135441.

2. This is the proof of Proposition 2.5.2 in Vershynin (2018). Consider a real-valued random

variable X that is MGF-sub-Gaussian with parameter K ¡ 0. Then for any λ P R,

P rX ¥ ts � P rexp pλXq ¥ exp pλtqs
22Note that

z1pγq :� � 1

2γ2
� logp2q

2

1

pλ�q2 �
1

pλ�q2
1

1� 1
2γ

p�0.5q !� 0.

Multiplying this with 2γ2p1� 0.5γq yields

�p1� 0.5γq � logp2q
pλ�q2 γ

2p1� 0.5γq � 1

pλ�q2 γ
2 � 0.

Rearranging yields (1.32).
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¤ exp p�λtqE rexp pλXqs (Markov)

¤ exp p�λtq exp �λ2
�

(Assumption)

� exp
�
λ2 � λt

�
.

This bound can be minimized by setting λ � t
2

so that

P rX ¥ ts ¤ exp

�
�t2

4



.

We can now repeat the same argument with �X to obtain P r�X ¥ ts ¤ exp
�
� t2

4

	
. Using

a union bound, we conclude

P r|X| ¥ ts ¤ 2 exp

�
�t2

4



.

This shows that X is tail-sub-Gaussian with parameter K � 2.

This completes the proof.

1.9.1.4 Examples of Sub-Gaussian Random Variables

Proof for Remark 8.

1. Consider a real-valued random variable X that is bounded by �B from below and B from

above.

First consider the tail-sub-Gaussian parameter. For this, let B :� maxtB,Bu. Then for

all t ¥ 0,

P r|X| ¥ ts ¤

$''&
''%
1 if t ¤ B,

0 if t ¡ B.

80



Consider t ¤ B. Then we have to find K such that

t ¤ 2 exp

�
�B2

K2



.

The left hand side is maximized for t � 1. So let’s find K such that

1 ¤ 2 exp

�
�B2

K2



.

Rearranging gives K ¤ B{alogp2q.

The bound on the MGF-sub-Gaussian parameter follows directly from Hoeffding’s lemma.

2. Next consider a normally distributed random variable, i.e., X � N p0, σ2q for some σ ¥
0. Then X is MGF-sub-Gaussian with parameter σ{?2 as can be seen by inspecting the

moment generating function of the Gaussian. See section 1.9.1.1 for details.

This completes the proof.

1.9.2 Details on Estimation of MGF-parameter

Remark 24. For numeric performance, it is best to avoid evaluating the exponential at large values.

For this, I recommend to evaluate K̂mgf as follows

K̂mgf � max

$''''&
''''%

sup
λPR�

d
log

�
1
n

n°
i�1

exp

�
λ

�
X̃i � max

i�1,...,n
X̃i





� λmaxi�1,...,n X̃i

λ
,

sup
λPR�

�

d
log

�
1
n

n°
i�1

exp

�
λ

�
X̃i � min

i�1,...,n
X̃i





� λmini�1,...,n X̃i

λ

,////.
////-

,

81



where X̃i :� Xi �
n°

j�1

Xj .

Remark 25. Suppose 1
n

°
i Xi � 0. Consider the square of the uncentered (1.15) for simplicity.

Then by L’Hospital

lim sup
λÑ0

log

�
1
n

n°
i�1

exppλXiq



λ2
� lim sup

λÑ0

1
n

n°
i�1

exppλXiqXi

2λ 1
n

n°
i�1

exppλXiq
� 8

since first fraction tends to infinity since the denominator tends to zero while the numerator tends

to 1
n

°
i Xi � 0.

Remark 26. Suppose 1
n

°
i Xi � 0. Consider the square of (1.15) for simplicity. Then by

L’Hospital

lim sup
λÑ0

log

�
1
n

n°
i�1

exppλXiq



λ2
� lim sup

λÑ0

1
n

n°
i�1

exppλXiqXi

2λ 1
n

n°
i�1

exppλXiq

� lim sup
λÑ0

1
n

n°
i�1

exppλXiqX2
i

2 1
n

n°
i�1

exppλXiq � 2λ 1
n

n°
i�1

exppλXiqXi

� 1

2

1

n

ņ

i�1

X2
i .

1.9.3 Inferred Realizations

Suppose that we would like to estimate the tail-sub-Gaussian parameter of an unobserved random

variable ε for which we have an estimate ε̂. An important example are are residuals in a regression.

Suppose that the distribution of ε is does not have point masses so that we can use (1.13). Then

max
i�1,...,n

��εpiq��c
log

�
2

1� i�1
n

	 ¤ max
i�1,...,n

��ε̂piq��� ��εpiq � ε̂piq
��c

log
�

2
1� i�1

n

	

82



¤ max
i�1,...,n

��ε̂piq��c
log

�
2

1� i�1
n

	 � max
i�1,...,n

��εpiq � ε̂piq
��c

log
�

2
1� i�1

n

	

¤ max
i�1,...,n

��ε̂piq��c
log

�
2

1� i�1
n

	 � }ε� ε̂}8
min

i�1,...,n

c
log

�
2

1� i�1
n

	

� max
i�1,...,n

��ε̂piq��c
log

�
2

1� i�1
n

	 � }ε� ε̂}8a
log p2q . (1.33)

This is almost a finite-sample Slutsky result: we can relpace ε with ε̂ at the cost of the term }ε �
ε̂}8{

a
log p2q. Wether this argument is fruitful depends on whether one can derive a meaningful

bound on }ε � ε̂}8 for a particular estimator. For example for OLS residuals, it can be shown23

that with high probability and for some constant C

}ε� ε̂}8 ¤ CKε

c
p

n
.

Note that the unknown Kε appears in this bound. At first sight, this seems to defeat the purpose as

Kε is the term that is to be estimated in the first place. A trick that is sometimes used in integration

by parts24 is useful here: restoration of the original term. We can estimate the unknown term Kε

with the equally unknown term

max
i�1,...,n

|εpiq|{
b
logp2{p1� i�1

n
qq so that we have restored the original term on the left hand side of

(1.33). We then rearrange the equation to see that with high probability,

max
i�1,...,n

��εpiq��c
log

�
2

1� i�1
n

	 ¤ 1

1� C
a

p
n

max
i�1,...,n

��ε̂piq��c
log

�
2

1� i�1
n

	 .
23I leave out some log terms here to streamline the presentation. See section 1.9.4.1 for a self-contained derivation

of a bound on OLS residuals based on sub-Gaussianity and a rank assumption.
24See Lemma 36 for an example.
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In section 1.4, we will see that left hand side estimates Kε. We now see that with the finite-sample

correction term 1{p1 � Cp{nq, we can use the inferred realizations for the same purpose, at least

when C
a
p{n   1.

1.9.4 Linear Models

1.9.4.1 OLS

Proposition 27. Consider two random variables X P Rp and a real-valued random variable ε P R.

Fix a parameter β� P Rp. Then define

Y :� X1β� � ε.

Now suppose that we have n i.i.d. draws of pY,X, εq, of which we only observe pY,Xq. Denote

the observed random variables by pY1, . . . , Yn,X1, . . . ,Xnq. Denote by X the matrix of n rows

and p columns which holds Xi in row i. Assume that

1. ε1 is independent of X1,

2. ε1 is tail-sub-Gaussian with parameter Kε,

3. }X1}2 is tail-sub-Gaussian with parameter Kx,

4. for any γ � 0

0   φ :� γt 1
n
X tXγ

}γ}22
.

Then for any τ ¡ 0

P r}ε� ε̂}8 ¥ ts ¤ 4np exp

�
� t

4K2
ε
p
n

1
φ2

�
K2

x � 1
φ2

4p
n
K2

ε

K2
x

��
,
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where ε̂ are the OLS residuals, ε̂ :� pI �XpX 1Xq�1X 1qy.

Proof. For any norm, we have

}ε̂� ε} �
����y �Xβ̂

	
� py �Xβ�q

��� � ���X �
β̂ � β�

	��� . (1.34)

In particular, for the supremum norm, (1.34) implies

}ε̂� ε}8 �
���X �

β̂ � β�
	���

8

� max
i�1,...,n

���X1
i

�
β̂ � β�

	���
¤ max

i�1,...,n
}Xi}2

���β̂ � β�
���
2

(Hölder)

�
���β̂ � β�

���
2

max
i�1,...,n

}Xi}2 .

We proceed by separately bounding the terms
���β̂ � β�

���
2

and max
i�1,...,n

}Xi}2 in two steps.

Step 1: Bounding
���β̂ � β�

���
2

We can use the rank assumption to infer

φ
���β̂ � β�

���
2
¤ 1?

n

���X �
β̂ � β�

	���
2
� 1?

n
}ε̂� ε}2 .

For the upper bound,

}ε̂� ε}2 �
���X �

β̂ � β�
	���

2

�
���X �

pX 1Xq�1
X 1 pXβ� � εq � β�

	���
2

�

�������X pX 1Xq�1
X 1looooooomooooooon

�:PX

ε

�������
2

.
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PX is a projection onto the column space generated by X so that it has the eigenvalue 1 with

multiplicity p and the eigenvalue 0 with multiplicity n � p because we assume that X has full

rank. Because PX is also symmetric, it admits an orthogonal diagonalization, i.e., there exists an

orthogonal matrix V such that PS � V DV t where D is a diagonal matrix whose first p entries on

the diagonal are 1 and whose last n � p entries are 0. Column j of matrix V is the eigenvector

associated with the j-th element on the diagonal of D. In particular, the first p columns of V are

the normalized columns of X because PX is the projection on the column space of X , so that the

eigenvectors corresponding to the eigenvalues 1 are just the normalized columns of X because the

column vectors of X trivially span the column space of X . Then

� }PXε}2
� ��V tDV ε

��
2

(Spectral decomp (PX is real and symmetric))

� ��V tDε
��
2

(V orthogonal)

�
gffe p̧

j�1

�
x1jε

}xj}

2

¤ ?
p max
j�1,...,p

���� x1jε}xj}2

���� .
For any j P t1, . . . , pu, we can use the independence of X and ε to apply Hoeffding’s inequality

(Vershynin, 2018, Theorem 2.6.3) conditional on x to obtain

P
����� x1j
}xj}2

ε

���� ¥ t

���� xj

�
¤ 2 exp

�
��� t2

4K2
ε

��� xj

}xj}2

���2
2

�
�
� exp

�
� t2

4K2
ε



.

As the right hand side does not depend on x, the inequality also holds unconditionally

P
����� x1j
}xj}2

ε

���� ¥ t

�
¤ 2 exp

�
� t2

4K2
ε



.
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Now we can use a union bound to take care of the maximum over j

P
�
max

j�1,...,p

���� x1j
}xj}2

ε

���� ¥ t

�
¤

p̧

j�1

P
����� x1j
}xj}2

ε

���� ¥ t

�
� 2p exp

�
� t2

4K2
ε



.

To conclude, we have shown

P
����β̂ � β�

���
2
¥ t

�
¤ P

�
1

φ

1?
n
}ε̂� ε}2 ¥ t

�

¤ P
�
1

φ

c
p

n
max

j�1,...,p

���� x1j
}xj}2

ε

���� ¥ t

�

¤ 2p exp

�
�

n
p
φ2t2

4K2
ε

�
.

Step 2: Bounding max
i�1,...,n

}Xi}2

A simple union bound gives for any t ¡ 0

P
�
max

i�1,...,n
}Xi}2 ¥ t

�
¤

ņ

i�1

P r}Xi}2 ¥ ts � 2n exp

�
� t2

K2
x



.

Step 3: Conclude

For any t ¡ 0, we have

P r}ε̂� ε}8 ¥ ts ¤ P
����β̂ � β�

���
2

max
i�1,...,n

}Xi}2 ¥ t

�

¤ P
����β̂ � β�

���
2
¥
?
t
�
P
�
max

i�1,...,n
}Xi}2 ¥

?
t

�

¤ 2p exp

�
�

n
p
φ2t

4K2
ε

�
2n exp

�
� t

K2
x




¤ 4np exp

�
�t

�
n
p
φ2

4K2
ε

� 1

K2
x

��
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¤ 4np exp

�
�t

�
n
p
φ2K2

x � 4K2
ε

4K2
εK

2
x

��
.

Rearranging yields the claimed result.

1.9.4.2 The LASSO

In this section, we revisit the analysis of the prediction error of the LASSO.

Our goal is not to generate new insights. In fact, we follow the discussion of Hastie, Tibshirani

and Friedman in section 11 of Hastie et al. (2015) which, to the best of our knowledge, is based on

the analysis by Bickel, Ritov and Tsybakov in Bickel et al. (2009). The motivation for including

this section is to allow the reader to follow the analysis in one coherent framework. While the

literature often considers fixed design matrices and Gaussian errors, we present the results with

random matrices and sub-Gaussian errors.

We start with the LASSO objective for a generic first stage j P t1, . . . , pu. We have

fpβq � 1

2n
}y �Xβ}22 � λ }β}1 . (1.35)

Denote the minimizer of this function, i.e., the LASSO estimator by β̂LASSO.

Lemma 28. We have

���� 1nεtX
����
8

���β̂LASSO � β�
���
1
� λ

�
}β�}1 �

���β̂LASSO
���
1

	
¥ 1

2n

���X �
β̂LASSO � β�

	���2
2
. (1.36)
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Proof. As β̂LASSO is the minimizer of (2.49), we have

f pβ�q ¥ fpβ̂LASSOq.

i.e.,

1

2n
}y �Xβ�}22 � λ }β�}1

¥ 1

2n

���y �Xβ̂LASSO
���2
2
� λ

���β̂LASSO
���
1

� 1

2n

���y �Xβ� �X
�
β̂LASSO � β�

	���2
2
� λ

���β̂LASSO
���
1

� 1

2n

�
}y �Xβ�}22 � 2 py �Xβ�qtX

�
β̂LASSO � β�

	
�
���X �

β̂LASSO � β�
	���2

2



� λ

���β̂LASSO
���
1

Subtracting 1
2n
}y �Xβ�}22 from both sides, noting that y � Xβ� � Xβ� � ε � Xβ� � ε and

rearranging, we find

1

n
εtX

�
β̂LASSO � β�

	
� λ

�
}β�}1 �

���β̂LASSO
���
1

	
¥ 1

2n

���X �
β̂LASSO � β�

	���2
2
.

Using Hölder’s inequality to further bound the left hand side of from above, we find (2.50).

Lemma 29. If

λ ¥ 2

n

��X tε
��
8

then

1

n

���X �
β̂LASSO � β�

	���2
2
¤ 12λ }β�}1 .

Proof. Let’s start with (2.50). Note that the lower bound 1
2n

���X �
β̂LASSO � β�

	���2
2

can be further
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bounded from below by zero. Then we have with the triangle inequality

0 ¤
���� 1nεtX

����
8

���β̂LASSO � β�
���
1
� λ

�
}β�}1 �

���β̂LASSO
���
1

	

�
����� 1nεtX

����
8
� λ


���β̂LASSO � β�
���
1
� λ

����β̂LASSO � β�
���
1
� }β�}1 �

���β̂LASSO
���
1

	

¤
����� 1nεtX

����
8
� λ


���β̂LASSO � β�
���
1
� λ

����β̂LASSO
���
1
� }β�}1 � }β�}1 �

���β̂LASSO
���
1

	

�
����� 1nεtX

����
8
� λ


���β̂LASSO � β�
���
1
� 2λ }β�}1

¤� 1

2
λ
���β̂LASSO � β�

���
1
� 2λ }β�}1 �

λ

2

�
4 }β�}1 �

���β̂LASSO � β�
���
1

	
.

Comparing the last estimate with the lower bound 0, we find

���β̂LASSO � β�
���
1
¤ 4 }β�}1 (1.37)

Now let’s consider (2.50) again:

1

2n

���X �
β̂LASSO � β�

	���2
2
¤
���� 1nεtX

����
8

���β̂LASSO � β�
���
1
� λ

�
}β�}1 �

���β̂LASSO
���
1

	

¤
���� 1nεtX

����
8

���β̂LASSO � β�
���
1
� λ

����β� � β̂LASSO
���
1

	
(triangle ineq)

¤1

2
λ
���β̂LASSO � β�

���
1
� λ

����β� � β̂LASSO
���
1

	
�3

2
λ
���β̂LASSO � β�

���
1

¤3

2
λ4 }β�}1 � 6λ }β�}1 .

Multiplying by 2 gives the desired result.

So far, all arguments were done without using the distribution of X or ε. This came at a price:
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the statement in Lemma 48 is conditional on the inequality

λ ¥ 2

n

��X tε
��
8

which, depending on the realizations of X and ε, may or may not hold. Of course, we are interested

in choosing λ large enough to ensure that the event holds with “large” probability. For this, we

have to impose additional assumptions.

Assumption 1.

1. The observations are independent and identically distributed over i.

2. X and ε are uncorrelated.

Assumption 2.

1. For each j in t1, . . . , pu, Xj is tail-sub-Gaussian with a parameter bounded by ρX .

2. ε is tail-sub-Gaussian with parameter ρε.

Lemma 30. Suppose Assumption 3 and 4 are satisfied. Set t ¥ 0 arbitrarily. Then with probability

of at least

1� 2 exp

�
logppq � cB min

"
t2

ρ2Xρ
2
ε

,
t

ρXρε

*
n




we have

max
jPJ

1

n

��X tε
��
8 ¤ t.

Proof. We have

1

n

��X tε
��
8 � max

kPt1,...,du

����� 1n
ņ

i�1

Xi,kεi

����� .
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We note that Xi,kεi is independent over i by Assumption 3. Also by Assumption 3, the expectation

of Xi,kεi is zero. In Assumption 4, we have assumed that Xi,k are sub-Gaussian with sub-Gaussian

norm at most ρX and that εi is sub-Gaussian with sub-Gaussian norm at most ρε. We know that

the product of two sub-Gaussians is sub-exponential with the sub-exponential norm bounded by

the product of the sub-Gaussian norms. Hence we can apply Bernstein’s inequality to infer that for

any j P t1, . . . , pu we have for any t ¥ 0

P

������ 1n
ņ

i�1

Xi,kεi

����� ¥ t

�
¤ 2 exp

�
�cB min

"
t2

ρ2Xρ
2
ε

,
t

ρXρε

*
n



.

Using a union bound, we find for any t ¥ 0

P

�
max

jPt1,...,pu

����� 1n
ņ

i�1

Xi,jεi

����� ¥ t

�
�P

�
� ¤

jPt1,...,pu

#����� 1n
ņ

i�1

Xi,jεi

����� ¥ t

+��

¤
¸

jPt1,...,pu
P

������ 1n
ņ

i�1

Xi,jεi

����� ¥ t

�

¤2p exp
�
�cB min

"
t2

ρ2Xρ
2
ε

,
t

ρXρε

*
n




�2 exp
�
logppq � cB min

"
t2

ρ2Xρ
2
ε

,
t

ρXρε

*
n



.

This completes the proof.

We now combine the results we have shown so far in the following Corollary.

Corollary 31. Suppose Assumption 3 and 4 are satisfied. Fix some 0   τ  
b

n
logppq and set

λ � 2ρXρε

c
logppq
n

τ
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Then with probability of at least

1� 2 exp
�
logppq �1� cBτ

2
��

(1.38)

it holds for all j P J that

1

n

���X �
β̂LASSO � β�

	���2
2
¤ 24ρXρε

c
logppq
n

τ }β�}1 . (1.39)

Proof. Combine Lemma 48 and Lemma 49.

In particular, if n and p tend to infinity such that logppq
n

tends to zero, we can choose τ � 1
2
?
cB

and see that with probability converging to one, the LASSO prediction error is bounded by a

constant times
b

logppq
n

. This is the so-called slow rate of the LASSO.

1.9.5 Inference

1.9.5.1 Baseline Inference Result

Proof of Theorem 14. We have

P

�
1

n

ņ

i�1

ErXis P CIpX̄n, K̂ � γ, n, αq
�

�P
�#

1

n

ņ

i�1

ErXis P CIpX̄n, K̂ � γ, n, αq
+
X
!
K̂ � γ ¥ K

)�

� P

�#
1

n

ņ

i�1

ErXis P CIpX̄n, K̂ � γ, n, αq
+
X
!
K̂ � γ   K

)�
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

¥0

¥P
�#

1

n

ņ

i�1

ErXis P CIpX̄n, K̂ � γ, n, αq
+
X
!
K̂ � γ ¥ K

)�

¥P
�#

1

n

ņ

i�1

ErXis P CIpX̄n, K, n, αq
+
X
!
K̂ � γ ¥ K

)�
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¥P
�#

1

n

ņ

i�1

ErXis P CIpX̄n, K, n, αq
+�

� P
�!

K̂ � γ ¥ K
)�

� 1.

where in the last step, I used that PrAXBs � PrAs � PrBs � PrAXBs ¥ PrAs � PrBs � 1.

1.9.5.2 Asymptotic Inference

1.9.5.2.1 Conservative Inference with Tail-sub-Gaussian Parameter

Proof of Theorem 15. Let me drop the tail subscript of K̂tail and K�
tail as this proof is only con-

cerned with tail-sub-Gaussian parameters. Recall the definition of K� as

K� � sup
t¥0

tc
log

�
2

1�F ptq

	 .

If K�   ε, then P
�
K̂ ¤ K� � ε

�
� 0 for all n P N as K̂ is non-negative with probability one. So

suppose in the following that K� ¥ ε. Let ptnqnPN be a sequence that realizes the supremum in the

definition of K�. Then there exists an N P N such that for all n ¥ N we have

K� � ε

2
  tnc

log
�

2
1�F ptnq

	 ¤ tnc
log

�
2

1�F ptn�q

	 ,
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where the last inequality follows from the fact that F ptn�q ¤ F ptnq.25 Next, there exists26 a γ ¡ 0

such that

F ptNq � 1� γ.

Then

P
�
K̂   K� � ε

�
�P

�
K̂   K� � ε

2
� ε

2

�

¤P

�
���K̂   tNc

log
�

2
1�F ptN�q

	 � ε

2

�
���

�P

�
���sup

t¥0

tc
log

�
2

1�F̂ pt�q

	   tNc
log

�
2

1�F ptN�q

	 � ε

2

�
���

¤P

�
��� tNc

log
�

2

1�F̂ ptN�q

	   tNc
log

�
2

1�F ptN�q

	 � ε

2

�
��� (monotonicity of P)

25The inequality F ptn�q ¤ F ptnq can be rearranged to 1� F ptnq ¤ 1� F ptn�q. This implies

2

1� F ptn�q ¤
2

1� F ptnq .

As applying monotonous functions preserves the inequality, this yields
c
log
�

2
1�F ptn�q

	
¤
c
log
�

2
1�F ptnq

	
which

can be rearranged to 1b
logp 2

1�F ptnq
q ¤

1b
logp 2

1�F ptn�q
q . The claimed inequality then follows from multiplication with

tn.
26Suppose that such a γ ¡ 0 doesn’t exist. Then F ptN q � 1. Since tN is finite, this would mean that

0 ¤ K� � ε   K� � ε

2
  tNc

log
�

2
1�F ptN q

	 � tNb
log
�
2
0

� � tNa
log p8q �

tN
8 � 0

which is a contradiction.
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�P

�
���ε

2
  tNc

log
�

2
1�F ptN�q

	 � tNc
log

�
2

1�F̂ ptN�q

	
�
���

�P

�
���ε

2
  tN

�
���
c
log

�
2

1�F̂ ptN�q

	
�
c
log

�
2

1�F ptN�q

	
c
log

�
2

1�F ptN�q

	
log

�
2

1�F̂ ptN�q

	
�
��

�
���

¤P

�
���ε

2
  tN

�
��� L

���F ptN�q � F̂ ptN�q
���c

log
�

2
1�F ptN�q

	
log

�
2

1�F̂ ptN�q

	
�
��

�
��� (1.40)

where in the last step, I applied Lemma 32 and that γ   F ptN�q   1 � γ which implies that

eventually γ
2
  F̂ ptN�q   1� γ

2
. Picking up from (1.40), I note

P
�
K̂   K� � ε

�

¤ P

�
���ε

2
  tN

�
��� L

���F ptN�q � F̂ ptN�q
���c

log
�

2
1�F ptN�q

	
log

�
2

1�F̂ ptN�q

	
�
��

�
���

¤ P

�
���ε

2
  K�

�
���L

���F ptN�q � F̂ ptN�q
���c

log
�

2

1�F̂ ptN�q

	
�
��

�
��� (Definition of K� with supremum)

¤ P
�a

logp2q ε

2LK�  
���F ptN�q � F̂ ptN�q

���� .
The convergence of this probability to zero follows immediately from the Dvoretzky–Kiefer–Wolfowitz

(DKW) inequality. This completes the proof.

Lemma 32. Fix a ε ¡ 0. Then the function f : rε, 1� εs Ñ R defined by

fpxq :�
d
log

�
2

1� x
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is Lipschitz continuous.

Proof. Note that the derivative

f 1pxq � 1

2
b
log

�
2

1�x

� 1

1� x

is continuous on the compact set rε, 1� εs and hence bounded. A bound on the derivative implies

that the original function is Lipschitz continuous.

1.9.5.2.2 Sharp Inference with Tail-sub-Gaussian Parameter

Proof of Theorem 16. Recall (1.8) and (1.11):

K� � sup
tPR

tc
log

�
2

1�F ptq

	 � sup
pPr0,1s

F�1ppqc
log

�
2

1�p

	

and

K̂ � sup
tPR

tc
log

�
2

1�F̂ ptq

	 � sup
pPr0,1s

F̂�1ppqc
log

�
2

1�p

	 .

Then

P
�
K̂ ¥ K� � ε

�
� P

�
��� sup

pPr0,1s

F̂�1ppqc
log

�
2

1�p

	 � sup
pPr0,1s

F�1ppqc
log

�
2

1�p

	 ¥ ε

�
���

¤ P

�
��� sup

pPr0,1s

F̂�1ppq � F�1ppqc
log

�
2

1�p

	 ¥ ε

�
���

¤ P

�
1a

log p2q sup
pPr0,1s

���F̂�1ppq � F�1ppq
��� ¥ ε

�
.
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If the support is bounded and connected, I can apply Theorem 1.1 of Bogoya et al. (2016) to infer

that sup
pPr0,1s

|F̂�1ppq � F�1ppq| converges to zero as n tends to infinity. If the support is finite, then

uniform convergence of the empirical quantile function follows from its pointwise convergence.

This completes the proof.

1.9.5.3 Finite-Sample Inference

1.9.5.3.1 Impossibility Theorem

Proof of Theorem 17. Fix K ¡ 0, δ P p0, Kq, ε P p0, 1q and n P N. Fix 1 ¡ γ ¡ 0. Then

consider the distribution

X �

$''&
''%
0 with probability 1� γ,c
log

�
2
γ

	
with probability γ.

Let us first verify that X is 1-tail-sub-Gaussian. For this, it is sufficient to look at the tail of X ,

given by

P r|X| ¥ ts �

$''''''&
''''''%

1 if t ¤ 0,

γ if 0   t ¤
c
log

�
2
γ

	
,

0 if t ¡
c
log

�
2
γ

	
.

The only non-trivial sub-Gaussian tail bound is at t �
c
log

�
2
γ

	
, where we verify that

P

�
|X| ¥

d
log

�
2

γ


�
� γ ¤ 2 exp

�
��

d
log

�
2

γ


2
�

� γ.
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So X is indeed 1-tail-sub-Gaussian. For any K ¡ 0, XK is then K-tail sub-Gaussian. Now let us

consider an estimator K̂ � K̂pX1, . . . , Xnq of K given that satisfies (1.19). Consider the event E

that 0 � X1 � . . . � Xn. First, note that

P rEs � p1� γqn.

In particular, we can select γ as a function of n such that P rEs ¡ 1� ε. Secondly, note that on E,

K̂ � 0. Hence

P
�
K̂ ¥ K � δ

�
�P

�
K̂ ¥ K � δ

���E�PrEs � P
�
K̂ ¤ K � δ

���Ec
�
PrEcs

¤P r0 ¥ K � δ|EsPrEs � 1PrEcs

�0PrEs � PrEcs   ε.

This completes the proof.

1.9.5.3.2 Positive Result on Finite-Sample Inference

Proof of Theorem 18.

P
�
K̂ ¡ K�κ

�
� 1� P

�
K̂ ¤ K�κ

�

� 1� P

�
��� max

iPt1,...,nu

��Xpiq
��c

log
�

2
1� i�1

n

	 ¤ K�κ

�
���

� 1� P

�
�����@i P t1, . . . , nu

��Xpiq
�� ¤ K� κ

d
log

�
2

1� i�1
n



loooooooooomoooooooooon

�wi,n

�
�����
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� 1� P
�@i P t1, . . . , nu ��Xpiq

�� ¤ wi,n

�
� 1� E

�
n¹

i�1

1|Xpiq|¤wi,n

�

� 1� E

�
1Xp1q ... Xpnq

n¹
i�1

1|Xpiq|¤wi,n

�

� 1� n!

w1,n»
0

. . .

wn,n»
0

1t1 ... tnfpt1q . . . fptnqdt1 . . . dtnlooooooooooooooooooooooooooomooooooooooooooooooooooooooon
�:In

((Van der Vaart, 2000, Lemma 13.1 (ii)))

� 1� n!
ņ

i�1

p�1qi�1

i!
F ipwn�i�1,nqIn�i (Lemma 35)

1.9.6 Regret Bound

Proof of Theorem 20. Consider the events

Eptq :�
!
Dl � 1, . . . , L K̂lptq   κKls

)

for all t � 1 . . . , T where K̂t
l is the estimate of K̂l in round t based on (1.10) and Proposition 12.

In words, Eptq occurs when one tail sub-Gaussian parameter in period t is underestimated. The

proof of Theorem 20 proceeds in three steps. First, we will split up the analysis of regret to the

case when no Eptq occur and to the case when at least one of them occurs. Second, we will bound

the regret when no Eptq occurs using Theorem 8.1 in (Lattimore and Szepesvári, 2020). Third, we

will add a crude regret bound in the case that one of the Eptqs occurs. Fourth, we will show that

(1.22) and (1.23) imply a strong bound on the probability that one of the Eptqs occurs.

Step 1: splitting regret
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Note that

RT � TE rΠ�s �
Ţ

t�1

E rΠl(t)s

� E

�
TΠ� �

Ţ

t�1

Πl(t)

�

� E

�
1 T�

t�1
Eptq

�
TΠ� �

Ţ

t�1

Πl(t)

��
� E

��
1� 1 T�

t�1
Eptq

��
TΠ� �

Ţ

t�1

Πl(t)

��
. (1.41)

Step 2: bounding regret when no Eppptqqq occurs

Note that

1� 1 T�
t�1

Eptq
� 1 T�

t�1
Eptqc

.

So 1� 1 T�
t�1

Eptq
is the event that no Eptq occurs. In this event, all sub-Gaussian tail-parameters as-

sociated with all distributions over all periods are not underestimated. In particular, the estimated

sub-Gaussian tail-parameters are valid for inference. In this case, we can divide the reward distri-

butions by the estimated sub-Gaussian parameter and infer that they are now tail-sub-Gaussian with

parameter at most 1. This is the condition required for Theorem 8.1 in (Lattimore and Szepesvári,

2020). So that we can infer

E

��
1� 1 T�

t�1
Eptq

��
TΠ� �

Ţ

t�1

Πl(t)

��

�E
�
1 T�

t�1
Eptqc

�
TΠ� �

Ţ

t�1

Πl(t)

��

¤E

�
��1 T�

t�1
Eptqc

Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
��
��

�P
�

T£
t�1

Eptqc
�

Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�
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¤
Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�
. (1.42)

Step 3: bounding regret when at least one Eppptqqq occurs

Next, consider

E

�
1 T�

t�1
Eptq

�
TΠ� �

Ţ

t�1

Πl(t)

��
.

If at least one Eptq occurs, Algorithm 3 underestimates at least one tail-sub-Gaussian parameter.

In this case, I resort to a worst-case bound on the regret for this case and bound the probability

of this event in the next step to control the expected regret. Note that the regret of any strategy is

bounded by the regret of always pulling the worst arm.

E

�
1 T�

t�1
Eptq

�
TΠ� �

Ţ

t�1

Πl(t)

��

¤ E

�
1 T�

t�1
Eptq

� �����
�
TΠ� �

Ţ

t�1

Πl(t)

������
8

(Hölder)

¤ E

�
1 T�

t�1
Eptq

�
T max

l�1,...,L
∆l (1.43)

¤ P

�
T¤
t�1

Eptq
�
T max

l�1,...,L
∆l. (1.44)

Step 4: bounding the probability that some Eppptqqq occurs

Using a union bound, we see

P

�
T¤
t�1

Eptq
�
�P

�
Dl, t : K̂l   κKl in period t

�

¤pT � L� 1q 1

T 2

1

T � L� 1
� 1

T 2
, (1.45)
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where I used that Algorithm 3 estimates exactly T �L1 sub-Gaussian tail parameters: after trying

each arm twice (which takes 2L periods), the Algorithm 3 estimates L sub-Gaussian parameters.

Then in each of the following T�2L�1 periods, Algorithm 3 estimates 1 tail-sub-Gaussian param-

eter. In the last period T , there is no need to update the estimate of the tail-sub-Gaussian parameter

as there is no need to inform the choice in period T �1. This leads to L�T �2L�1 � T �L�1

sub-Gaussian parameters. To bound the probability that an underestimating a tail-sub-Gaussian

parameter, I used (1.22) and (1.23).

Finally, let me combine the results of the four steps:

RT �E
�
1 T�

t�1
Eptq

�
TΠ� �

Ţ

t�1

Πl(t)

��
� E

��
1� 1 T�

t�1
Eptq

��
TΠ� �

Ţ

t�1

Πl(t)

��

(using (1.41))

¤
Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�

� E

��
1� 1 T�

t�1
Eptq

��
TΠ� �

Ţ

t�1

Πl(t)

��
(using (1.42))

¤
Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�

� E

�
1 T�

t�1
Eptq

�
T max

l�1,...,L
∆l (using (1.44))

¤
Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�

� 1

T 2
T max

l�1,...,L
∆l (using (1.45))

�
Ļ

l�1
l:∆l¡0

inf
εPp0,∆lq

∆l

�
1� 5

ε2
� 2

�
logp1� T log2pT q � 1q�

p∆l � εq2
�
� 1

T
max

l�1,...,L
∆l,
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as claimed.

1.9.7 Inference for Linear Programs

Proof of Theorem 22. Consider the class of quadratically constrained quadratic programs, i.e.,

minimize 1
2
xTP0x� qT0 x (1.46)

subject to 1
2
xTPix� qTi x� ri ¤ 0 for i � 1, . . . ,m, (1.47)

Ax � b, (1.48)

where P0, P1, . . . , Pn P Rn�n and x P Rn is the optimization variable. It is well known that (1.46)

is convex if P0, P1, . . . , Pn are positive semidefinite. Now consider the three claims of Theorem

22 in turn.

1. First, when only b is estimated, then P0, P1, . . . , Pn are all equal to zero. Hence the quadrat-

ically constrained quadratic program reduces to a linear program.

2. Second, when b, c (and potentially A) are estimated, then P0 is M with zeros to take out b̃

(and potentially Ã). The zeros are inconsequential as they add 0 eigenvalues. The matrix

M is the key object to understand the convexity of the program. M is indefinite so that

the quadratic program is NP-hard in general. When x and c are constrained to be non-

negative, then M is positive semi-definite on the feasible set. In particular, the quadratically

constrained quadratic program when A is known is convex in this case as P1 � P2 � . . . �
Pn � 0. The same argument applies when x and c are known to be non-positive.

3. When A, b, and c are estimated, then the objective matrix P0 is positive semi-definite pro-

vided sign constraints on x and c, as discussed above. Hence the objective is convex. To see
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the convexity of the constraints, note that if the pair pÃ1, x1, b̃1q and pÃ2, x2, b̃1q satisfy

Ãkxk ¤ b̃k (1.49)

for k P t1, 2u, then for any λ P p0, 1q,

�
λÃ1 � p1� λqÃ2

	 �
λx1 � p1� λqx2

� ¤ λb̃1i � p1� λqb̃2i .

To see this, expand the left-hand side:

�
λÃ1 � p1� λqÃ2

	 �
λx1 � p1� λqx2

�
�λ2Ã1x1 � λp1� λq

�
Ã1x2 � Ã2x1

	
� p1� λq2Ã2x2

¤λ2b̃1 � λp1� λq
�
Ã1x2 � Ã2x1

	
� p1� λq2b̃2 (using (1.49))

¤λb̃1 � λp1� λq
�
Ã1x2 � Ã2x1

	
� p1� λqb̃2 (b1, b2 ¥ 0)

¤λb̃1 � p1� λqb̃2,

where in the last step, I used the opposite sign of Ã and x. All inequalities are understood in

a componentwise sense.

This completes the proof.

1.9.8 Auxiliary Results

1.9.8.1 Uniform Convergence

The first result is to establish uniform convergence in a setting where it is not obvious how the

Uniform Law of Large Numbers might be applied. It is a generalization of a well-known result of
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real analysis27 to a stochastic setting. I cannot guarantee that this result is new, but I could not find

a reference for it. So, I develop it here.

Proposition 33. Let a, b P R such that a   b. Consider a function f : ra, bs Ñ R which is

continuous. Let pfnqnPN be a sequence of stochastic processes such that for all n, fn : ra, bs�ΩÑ
R.28 Assume further that fn is

1. monotonically increasing with probability 1 or

2. continuous in its first argument29 and satisfies

P rfnp�q is monotonic on ra, bss Ñ 1. (1.50)

If fn converges pointwise in probability to f , then fn converges uniformly in probability to f .

Proof. Fix ε ¡ 0. For all δ ¡ 0, we have to show that there exists an N P N such that for all

n ¥ N

P r}fn � f}8 ¥ εs   δ.

Since f is continuous on ra, bs and ra, bs is compact, f is uniformly continuous on ra, bs. Hence

there exists a partition a � t1   . . .   tK � b of ra, bs such that for all k P t1, . . . , K � 1u,

max
xPrtk,tk�1s

fpxq � min
xPrtk,tk�1s

fpxq   1

2
ε. (1.51)

27See, e.g., Proposition 3.2 in Bogoya et al. (2016).
28I will suppress the dependence on Ω in the rest of the proof.
29The continuity is only needed to ensure the measurability of the event tfnp�q is monotonic on ra, bsu. For this,

note that since fn is continuous

tfnp�q is monotonically increasing on ra, bsu �
£

x,yPQXra,bs:x y

tfnpyq ¥ fnpxqu.

Since the event on the left hand side is a countable intersection of measurable sets, it is measurable itself. A simi-
lar argument can be made to show that the event tfnp�q is monotonically decreasing on ra, bsu is measurable. Then
tfnp�q is monotonic on ra, bsu can be written as the union of two measurable sets.

106



Since fn converges pointwise in probability and K   8, there exists an N1 P N such that for all

n ¥ N1

P
�
|fnptkq � fptkq| ¥ 1

2
ε @k � 1, . . . , K

�
  1

2

δ

K � 1
. (1.52)

By (1.50), there exists an N2 P N such that for all n ¥ N2,

P rfnp�q is monotonic on ra, bss ¥ 1� 1

2

δ

K � 1
. (1.53)

Then for all n ¥ N :� max tN1, N2u

P r}fn � f}8 ¥ εs

�P
�
sup
xPra,bs

|fnpxq � fpxq| ¥ ε

�

¤
K�1̧

k�1

P

�
sup

xPrtk,tk�1s
|fnpxq � fpxq| ¥ ε

�

¤1

2
δ �

K�1̧

k�1

P

�
max

#
sup

xPrtk,tk�1s
|fnptkq � fpxq| , sup

xPrtk,tk�1s
|fnptk�1q � fpxq|

+
¥ ε

�
((1.53))

�1

2
δ �

K�1̧

k�1

P

�
max

#
sup

xPrtk,tk�1s
|fnptkq � fptkq � fptkq � fpxq| ,

sup
xPrtk,tk�1s

|fnptk�1q � fptk�1q � fptk�1q � fpxq|
+
¥ ε

�

¤1

2
δ �

K�1̧

k�1

P

�
max

#
|fnptkq � fptkq| � sup

xPrtk,tk�1s
|fptkq � fpxq| ,

|fnptk�1q � fptk�1q| � sup
xPrtk,tk�1s

|fptk�1q � fpxq|
+
¥ ε

�

¤1

2
δ �

K�1̧

k�1

P
�
max

"
|fnptkq � fptkq| � 1

2
ε, |fnptk�1q � fptk�1q| � 1

2
ε

*
¥ ε

�
((1.51))

�1

2
δ �

K�1̧

k�1

P
�
max t|fnptkq � fptkq| , |fnptk�1q � fptk�1q|u ¥ 1

2
ε

�
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¤1

2
δ �

K�1̧

k�1

1

2

δ

K � 1
((1.52))

�δ.

This completes the proof.

1.9.8.2 Numerical Inequality

Lemma 34. For all x P R, we have30

exp pxq ¤ x� exp
�
0.5575x2

�
.

Proof. For notational convenience, define the constant

κ :� 0.5575 (1.54)

and the function

fpxq � exp
�
0.5575x2

�� x� exp pxq

� exp
�
κx2

�� x� exp pxq .

We will show that fpxq ¥ 0 for different regions for x.

Case 1: x ¥¥¥ 1
κ

30The constant 0.5575 may not be optimal but the inequality is not true if 0.5575 is replaced with 0.5574: try
x � 0.64.
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In this case, we have

κx2 ¥ x

so that fpxq ¥ 0 since exp p�q is continuous.

Case 2: 0 ¤¤¤ x ¤¤¤ 1
κ

Expanding the exponential, we see

fpxq �
8̧

n�0

pκx2qn
n!

� x�
8̧

n�0

xn

n!

�1� κx2 �
8̧

n�2

pκx2qn
n!

� x�
�
1� x�

8̧

n�2

xn

n!

�

�κx2 �
8̧

n�2

pκx2qn
n!

�
8̧

n�2

xn

n!

�κx2 �
8̧

n�2

pκx2qn
n!

�
8̧

n�2

xn

n!

�p1� γq
8̧

n�0

γnκx2 �
8̧

n�2

1

n!

�pκx2qn � xn
�

(Geom. sum, γ P p0, 1q)

�p1� γq
8̧

n�2

γn�2κx2 �
8̧

n�2

1

n!

�pκx2qn � xn
�

�
8̧

n�2

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

�
.

Now note that it would be sufficient to show that

inf
xPr0, 1κs

fpxq ¥ 0. (1.55)
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We have

inf
xPr0, 1κs

fpxq � inf
xPr0, 1κs

� 8̧

n�2

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

��

¥ inf
xPr0, 1κs

�
14̧

n�2

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

��

� inf
xPr0, 1κs

� 8̧

n�15

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

��

¥ inf
xPr0, 1κs

�
14̧

n�2

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

��

�
8̧

n�15

inf
xPr0, 1κs

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

�

¥ inf
xPr0, 1κs

�
14̧

n�2

1

n!

�
n!γn�2p1� γqκx2 � κnx2n � xn

��

�
8̧

n�15

inf
xPr0, 1κs

1

n!

�
n!γn�2p1� γqκx2 � xn

�
.

Now, notice that the first summand is a polynomial (of order 28). Since finite polynomials can be

minimized exactly (Lasserre (2001)), I use software to show that the first term is non-negative for

γ � 1
2
. So fix γ � 0.5. For the second term, consider any n ¥ 15. I will show that all summands

are non-negative so that the series is well-defined.

n!γn�2p1� γqκx2 � xn ¥ 0 (1.56)

for x P �0, 1
κ

�
if

x ¤ �
n!γn�2p1� γqκ� 1

n�2 � γ pn!p1� γqκq 1
n�2 ¤ γ pn!q 1

n�2 pp1� γqκq 1
n�2 .

Now note that p1 � γqκ   1 so that the sequence pp1� γqκq 1
n�2 is monotonically increasing in n

110



and converges to one. In particular,

pp1� γqκq 1
n�2 ¥ pp1� γqκq 1

15�2 ¡ 0.9.

Similarly, pn!q 1
n�2 is monotonically increasing31 in n. Hence

pn!q 1
n�2 ¥ p15!q 1

15�2 ¡ 8.

Hence (1.56) holds when

x ¤ 0.5 � 8 � 0.9 � 3.6.

Since 1
κ
� 1.8   3.6, we have shown (1.55).

Case 3: ��� 1
κ
¤¤¤ x ¤¤¤ 0 We have

fpxq �
8̧

n�0

pκx2qn
n!

� x�
8̧

n�0

xn

n!

�1� κx2 �
8̧

n�2

pκx2qn
n!

� x�
�
1� x�

8̧

n�2

xn

n!

�

�κx2 �
8̧

n�2

pκx2qn
n!

�
8̧

n�2

xn

n!

�κx2 �
8̧

n�2

pκx2qn
n!

�
8̧

n�2
n even

xn

n!
�

8̧

n�2
n odd

xn

n!

�κx2 �
8̧

n�2

pκx2qn
n!

�
8̧

n�2
n odd

|x|n
n!

�
8̧

n�2
n even

|x|n
n!

31Note that for any n

pn� 1q!1{pn�1q

pnq!1{pn�2q
� pn� 1q1{pn�1qn!

1
n�1�

1
n�2 ¡ 1

because any root of a number strictly above 1 is strictly above one.

111



�
�
κ� 1

2



x2 �

8̧

n�2

pκx2qn
n!

�
8̧

n�3
n odd

|x|n
n!

�
8̧

n�3
n even

|x|n
n!

�
�
κ� 1

2



x2 �

8̧

n�2

pκx2qn
n!

�
8̧

n�3
n odd

�
|x|n
n!

� |x|n�1

pn� 1q!

�

�
�
κ� 1

2



x2looooomooooon

¥0

�
8̧

n�2

pκx2qn
n!loomoon
¥0

�
8̧

n�3
n odd

|x|n
n!loomoon
¥0

�
1� |x|

n� 1



loooooomoooooon
¥0 for x¥� 1

κ

.

Case 4: x     ��� 1
κ

We have

f 1pxq � exppκx2q2κx� 1� exppxq,

f2pxq � exppκx2q4κ2x2 � exppκx2qp2κq � exppxq

� exppκx2q �4κ2x2 � 2κ
�� exppxq.

Hence f 1p�1{κq � �11.19. Since f2pxq ¡ 0 for x   � 1
κ

, f 1pxq   0 for x   � 1
κ

. Since

fp�1{κq � 4.05 ¡ 0, we see that fpxq ¡ 0 for all x   � 1
κ

.

1.9.8.3 A Recursive Integral

Let z1,n   . . .   zn,n be a triangular array of real numbers. The purpose of this section is to find a

recursive expression for

Ij,n :�
z1,n»
0

. . .

zj,n»
0

1t1 ... tjfpt1q . . . fptjqdtj . . . dt1

for any n P N, n ¡ 1 and j P N such that j ¤ n, where I0,n :� 1 and I1,n :� F pz1,nq, F : R Ñ R

is a cdf which admits a density f : RÑ R.
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Lemma 35. We have the following recursive expression for Ij,n

Ij,n �
j̧

i�1

p�1qi�1

i!
F ipzj�i�1,nqIj�i,n.

32 (1.57)

Proof. We have

Ij,n

�
z1,n»
0

fpt1q
z2,n»
t1

fpt2q . . .
zj,n»
tj�1

fptjqdtj
looooomooooon

�F pzj,nq�F ptj�1q

. . . dt1 (Tonelli)

�F pzj,nqIj�1,n �
z1,n»
0

fpt1q
z2,n»
t1

fpt2q . . .
zj�1,n»
tj�2

fptj�1qF ptj�1qdtj�1

loooooooooooooomoooooooooooooon
1
2
pF 2pzj�1,nq�F 2ptj�2qq

. . . dt1 (R36 with n � 1)

�F pzj,nqIj�1,n � 1

2
F pzj�1,nqIj�2,n � 1

2

z1»
0

fpt1q
z2»
t1

fpt2q . . .
zj�2,n»
tj�3

fptj�2qF 2ptj�2qdtj�2

looooooooooooooomooooooooooooooon
1
3
pF 3pzj�2,nq�F 3ptj�3qq

. . . dt1

(R36 with n � 2)

�
j̧

i�1

p�1qi�1

i!
F ipzj�i�1,nqIj�i,n,

where in the last step, we used an induction.

Remark 36. For any cdf F with density f and any integer n P N, we have

b»
a

fpxqF npxqdx � 1

n� 1

�
F n�1pbq � F n�1paq� .33

32I use the shorthand F ipzq :� pF pzqqi.
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Proof. Integrate by parts

b»
a

fpxqF npxqdx � rF pxqF npxqsbx�a �
b»
a

F pxqnF n�1pxqfpxqdx

and notice that the second summand on the right-hand side is n times the right-hand side. Rear-

range and evaluate the integrals.

1.9.8.4 Basic Inequality

Remark 37. Consider a, b P R such that a ¡ 0 and b ¡ 0. Then

���?a�
?
b
��� ¤a

|a� b|

Proof. Note that

���?a�
?
b
���2 � a� 2

?
ab� b ¤ a� 2minta, bu � b � |a� b|

and take the square root.

33I use the shorthand F ipxq :� pF pxqqi.
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Chapter 2

Estimating Nesting Structures

Coauthored with Ali Hortaçsu*, Julien Monardo†, and Áureo de Paula‡

2.1 Introduction

The nested logit model is commonly used to estimate demand in differentiated products markets,

both by researchers and by antitrust practitioners.1 The nested logit model extends the logit model

by grouping products into nests, where products within the same nest will be closer substitutes

than products in different nests. The nested logit model is computationally simple – as it can be

estimated via a linear regression – and it is consistent with utility maximization by heterogeneous

consumers. It has also been generalized to allow for more general nesting structures (i.e., alloca-

tions of products into groups). However, one of the main disadvantages of the nested logit model

and its generalizations is that the nesting structure must be chosen a priori.

*Kenneth C. Griffin Department of Economics, University of Chicago
†School of Economics, University of Bristol
‡Department of Economics, University College London
1See the seminal papers by Goldberg (1995) and Verboven (1996a) as well as Brenkers and Verboven (2006);

Björnerstedt and Verboven (2016); Berry et al. (2016); Azar et al. (2019) for more recent papers. See also the La-
gardère/Natexis/VUP (2004), TomTom/Tele Atlas (2008), Unilever/Sara Lee (2010) merger cases handled by the
European Commission (see CCR - Competition Competence Report Autumn 2013/1) and the Aetna/Humana merger
case litigated by the United States District Court for the District of Columbia (see Civil Action No. 16-1494 (JDB)).
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In this paper, we propose a novel method to estimate the nesting structure. We rely on a recent

generalization of the nested logit model which retains its linear-in-parameter form and allows any

possible nesting structure. Specifically, using aggregate data on market shares, prices and product

characteristics, we show how using non-negativity constraints coming from economic theory can

help estimate the nesting structure by estimating a linear model. Thereby, we are able to obtain

substitution patterns than do not depend on a predetermined nesting structure.

The literature has proposed methods to estimate demand models for differentiated products

while accounting for the presence of unobserved (by the modeller) product characteristics and

dealing with the resulting endogeneity issues (Berry, 1994; Berry et al., 1995; Berry and Haile,

2014). However, demand estimation faces a trade-off between simplicity of estimation and flexi-

bility of the substitution patterns. Indeed, recognizing the limitations of the logit and nested logit

models,2 the literature has proposed demand models that extend the logit model in two different

directions. First, since Berry et al. (1995), the standard practice has been to obtain flexible sub-

stitution patterns by using the random coefficient logit model, allowing for unobserved consumer

heterogeneity in preferences.3 However, these flexible substitution patterns are obtained at the cost

of a complex estimation procedure that requires solving a non-linear, non-convex optimization

problem and simulating the demand function.4

Alternatively, to accommodate richer substitution patterns, the literature has also proposed

2Since the seminal paper by McFadden (1973), the logit model has been the workhorse model for demand estima-
tion purposes. However, the logit model implies that decreases in price of a product reduce the demand for all other
products by the same percentage, no matter how similar products are. This restriction is a manifestation of the indepen-
dence from irrelevant alternatives (IIA) property of the logit model and may lead to counterintuitive conclusions, such
as, consumers who buy a BMW being as likely to switch to another luxury car as to a non-luxury car. Furthermore,
because of its simple nesting structure, the nested logit model yields restrictive substitution patterns whereby where
products within the same nest will be closer substitutes than products in different nests, which may be counter-intuitive
in some applications.

3The random coefficient logit model was initially developed by Boyd and Mellman (1980) and Cardell and Dunbar
(1980). As shown by McFadden and Train (2000), any random utility model can be theoretically approximated by a
random coefficient logit model.

4This implies handling the associated issues of local optima, choice of starting values, and the accuracy of the
simulation (see, e.g., Knittel and Metaxoglou, 2014, and references therein). See Conlon and Gortmaker (2020) for
current best practices in the estimation of structural demand models using BLP method. Note that there are other
approaches to solve BLP-type problem (Dubé et al., 2012; Lee and Seo, 2015; Salanié and Wolak, 2019).
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models that use more general nesting structures. The most prominent examples are specific in-

stances of generalized extreme value (GEV) models developed by McFadden (1978).5 In particu-

lar, the generalized nested logit model generalizes the demand function of the nested logit model

by allowing all possible nesting structures (Wen and Koppelman, 2001). However, like the random

coefficients logit model, they require solving non-linear, non-convex optimization problems. By

contrast, Fosgerau et al. (2021) propose the inverse generalized nested logit (IGNL) model that

directly generalizes the inverse demand of the nested logit model by allowing any nesting struc-

ture, while retaining its attractive features: the IGNL model is estimated by linear regression and

is consistent with the model of heterogeneous, utility-maximizing consumers studied by Allen and

Rehbeck (2019).

In any case, both the nesting-based GEV models and the IGNL models require the modeller

to define a specific nesting structure before estimation. In some applications, however, there may

be no natural nesting structure. For example, in the automobile market, Brenkers and Verboven

(2006) use a nested logit model, where products are first allocated to groups according to their

market segment (subcompact, compact, standard, intermediate, and luxury) and where groups are

then divided into subgroups according to the country of origin (domestic or foreign). By contrast,

Grigolon (2020) constructs groups according to an ordering of cars from subcompact to luxury.

Determining which of the nesting structures best describes the automobile market is not always

obvious.

This paper contributes to the literature by not assuming a specific nesting structure. Instead,

we propose to estimate it from aggregate data on market shares, prices and product characteristics

using the framework developed by Fosgerau et al. (2021). Specifically, we exploit non-negativity

constraints coming from economic theory as well as sparsity constraints to estimate the IGNL

model and its nesting structure.

5See also the ordered logit (Small, 1987), the product differentiation logit (Bresnahan et al., 1997), the paired
combinatorial logit (Koppelman and Wen, 2000), the flexible coefficient multinomial logit (Davis and Schiraldi, 2014),
the ordered nested logit (Grigolon, 2020), etc.
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We carry out two sets of Monte-Carlo experiments. An application to actual dataset is forth-

coming. The first set assesses the empirical performances of our proposed estimator. Simulations

show that it performs well in finite sample. In particular, we correctly detect as positive (resp.,

zero) 96% (resp., 91.78%) of the positive (resp., zero) nesting parameters.

The second set compares our approach to Berry et al. (1995)’s approach (referred to as the

BLP method) in terms of implied substitution patterns and markups. Simulations show that our

approach performs well in comparison to the BLP approach when it is misspecified. This shows

that our approach is able to obtain accurate estimates of the substitution patterns and is thus of

great empirical interest given that estimation of demand models for differentiated products is the

starting point of many empirical studies.6

This paper is linked to two strands of literature. First, it relates to the extensive literature that

estimates demand models for differentiated products using Berry (1994)’s and Berry et al. (1995)’s

method to handle the endogeneity issues due to the modelling of unobserved product differenti-

ation through the inclusion of unobserved characteristics terms (see e.g. Nevo, 2011; Berry and

Haile, 2016; Dubé, 2018, for an overview of the literature). Several papers have proposed nesting-

based models in the GEV framework (cf. footnote 7). Horowitz (1987) proposes a statistical test

to discriminate among nested logit models. Closest to this paper are Almagro and Manresa (2019)

and Aboutaleb et al. (2021) on one hand and Compiani (2020) and Fosgerau et al. (2021) on the

other hand. Almagro and Manresa (2019) and Aboutaleb et al. (2021) propose methods to estimate

the nesting structure. However, these papers contrast with ours in three respects. First, they rely on

the GEV framework, whereas we rely on Fosgerau et al. (2021)’s framework. As a consequence,

our estimation procedure involves convex optimization problems, while theirs involve non-convex

optimization problems. Second, they do not allow for potentially endogenous, unobserved char-

acteristics terms. Third, they rely on individual-level data, whereas we rely on aggregate data.

6Prominent examples of these studies include market power (Berry et al., 1995; Nevo, 2001), new product (Petrin,
2002; Gentzkow, 2007), mergers (Nevo, 2000; Miller and Weinberg, 2017), and taxes and trade policies (Goldberg,
1995; Verboven, 1996a; Berry et al., 1999; Griffith et al., 2019).
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Furthermore, observing that, in Berry (1994)’s method, it is the inverse demand function, rather

than the demand function, that is the target of estimation, Compiani (2020) and Fosgerau et al.

(2021) directly estimate inverse demand functions to obtain substitution patterns and the implied

markups. However, Compiani (2020) propose to non-parametrically estimate the inverse demand

function, whereas our approach is fully parametric; and Fosgerau et al. (2021) apply their setting

by using a model that extends the nested logit model but relies on an assumed nesting structure.

Second, our paper relates to the econometric literature on sparse high-dimensional linear mod-

els. For the case of exogenous regressors, the l1 regularized Dantzig selector and LASSO are

natural candidates (Candes et al., 2007; Bickel et al., 2009) Both of these methods involve choos-

ing a regularization parameter. The choice of the tuning parameter in regularized regressions has

been recognized as a theoretical challenge in the subsequent literature. More recently, the regular-

izing potential of non-negativity constraints has been discovered (Slawski and Hein, 2011, 2013;

Meinshausen, 2013). By contrast to the methods mentioned above, this does not involve choos-

ing a regularization parameter. For the case of many endogenous regressors, a high-dimensional

version of Two-Stage-Least-Squares based on the LASSO has been proposed and studied by Zhu

(2018). A Self-Tuning Instrumental Variable estimator based on the Dantzig selector has been pro-

posed and studied by Gautier and Tsybakov (2018) and been further refined using orthogonality

with respect to nuisance parameters by Belloni et al. (2017). Our paper adds to this literature by

extending the analysis of non-negativity constraints to the case of many endogenous variables.

The remainder of the paper is organized as follows. Section 2.2 introduces the IGNL model

and Section 2.3 discusses its estimation and identification. Section 2.4 introduces our estimator.

Section 2.5 presents our Monte-Carlo experiments. Section 2.6 concludes.
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2.2 The Inverse Generalized Nested Logit Model

Consider a population of consumers who choose from a set of J �1 differentiated products, where

product j � 0 is referred to as the outside good. Each product j � 1, . . . , J in each market t �
1, . . . , T is characterized by the vector pxjt, ξjt, pjt, sjtq, where xjt P RK is a vector of K observed

product/market characteristics, ξjt P R is the jt-product/market unobserved characteristics term,

pjt P R is the price, and sjt ¡ 0 is the market share. Following Berry (1994), the product/market

unobserved characteristics term represents all product/market characteristics that are unobserved

by the researcher but observed by consumers and firms.

Furthermore, assume that each product j � 1, . . . , J in each market t � 1, . . . , T is defined by

a linear index δjt (Berry and Haile, 2014) defined by

δjt � xjtβ � αpjt � ξjt, (2.1)

where α and β are parameters to be estimated, and set δ0t � 0 for all t � 1, . . . , T .

Let ∆�
J � tps0, . . . , sJq P p0,8qJ�1 :

°J
j�0 sj � 1u be the set of non-zero market shares and

RJ�1
0 � tpδ0, . . . , δJ P RJ�1 : δ0 � 0u be the set of normalized indexes. The behavior of the

consumers is described by the inverse demand function

σ�1 � �
σ�1
0 , . . . , σ�1

J

��1
: ∆�

J Ñ RJ�1
0 , (2.2)

which, for each market t � 1, . . . , T , gives the vector of product indexes δt � pδ0t, . . . , δJtq as a

function of the vector of nonzero market shares st � ps0t, . . . , sJtq and some parameter vector µ

to be estimated,

σ�1
j pst;µq � δjt, j � 1, . . . , J, t � 1, . . . , T. (2.3)

The logit and nested logit models are specific instances of the inverse demand model defined in
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Equation (2.2) (Berry, 1994). Indeed, the logit model is defined by the following inverse demand

equations

σ�1
j pstq � ln psjtq � ln ps0tq � δjt. (2.4)

Furthermore, assuming that the choice set is partitioned into nests and the outside good is the

only member of its nest, then for a product j in nest g, the nested logit model generalizes the logit

model as follows

σ�1
j pst;µq � p1� µq ln psjtq � µ ln

�¸
kPg

skt

�
� ln ps0tq � δjt. (2.5)

In this paper, we consider the inverse generalized nested logit (IGNL) model developed by

Fosgerau et al. (2021), which generalizes the inverse demand function of the nested logit model

to allow for any possible nesting structure. Let G pjq be the set of all groups containing product j

and, as for the nested logit model, assume that the outside good is the only member of its group.

Then, the IGNL model is defined by

σ�1
j pst;µq �

�
�1�

¸
gPGpjq

µg

�

ln psjtq �

¸
gPGpjq

µg ln

�¸
kPg

skt

�
� lnps0tq � δjt, (2.6)

where the vector of nesting parameters µ � ppµjqjPJ , pµgqgPGq satisfies the following assumptions.

[(A1)]
°

gPGpjq µg   1 for all j � 1, . . . , J , µg ¥ 0 for all g P G.

Several comments are in order. First, under Assumptions (A1) – (A2), the IGNL model is

invertible, meaning that any observed vector of market shares st can be rationalized by a unique

vector of product indexes δt P RJ�1
0 .

Second, Assumptions (A1) – (A2), the IGNL model is consistent with a specific instance of the

large class of heterogeneous, utility-maximizing consumers studied by Allen and Rehbeck (2019),

where the µg’s control for the distribution of preferences in the population of consumers. This
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implies that the parameters µg govern substitution between products.

Third, observe that the IGNL model reduces to the logit model when all µg equal zero. This

means, as for the nested logit model, that the IGNL model allows deviation from independence

from irrelevant alternatives (IIA) thanks to its nesting parameters.

Fourth, rearranging Equations (2.6) shows that the IGNL model boils down to the following

linear model7

ln

�
sjt
s0t



� xjtβ � αpjt �

¸
gPGpjq

µg ln

�
sjt°
kPg skt

�
� ξjt. (2.7)

However, as highlighted in the following section, the IGNL model has many parameters to be

estimated, which implies that standard linear econometric methods may not work. Besides, there

are also many endogeneous variables, which requires us to find many valid instruments. In the

remainder of this paper, we provide a method to overcome this issue and then conveniently recover

the nesting structure from data.

2.3 Estimation

To better understand our main estimating equation (2.7), we write it in matrix form:
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ξ11
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ξJT

�
�������


loomoon
�:ξ

,

where we recall that J is the number of products, T is the number of markets, K is the number of

product characteristics, G :� 2J � J � 1 is the number of nests which are denoted by g1, . . . , gG

7Based on Berry (1994), this was expected because the IGNL model is an inverse demand model that is in closed-
form and linear-in-parameters.
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and

ggjt :� ln

�
�� sjt°

kPg
skt

�
�
1jPg.

Let us get a feeling for the dimensions. In a typical application, there will be few characteristics,

say K � 10. There might be T � 200 markets when exploiting both space and time variation. If

there are J � 10 products, there will n � 2000 observations and G � 1, 000 nests. If we increase

the number of products to J � 20, there will be n � 4000 observations and G � 1, 000, 000 nests.

As we see, the number of nests increases exponentially in the number of products. This can easily

lead to there being more parameters to estimate than there are observations.

Denote the number of parameters to estimate by p � K � 1 � G. If there are more param-

eters to estimate than observations, i.e. p ¡ n, this becomes what is commonly referred to as a

”high dimensional” problem. In addition, following the literature, we assume that product char-

acteristics xjt are exogenous (i.e., to be uncorrelated with ξjt) and we consider that prices and the

group share terms are endogenous. Prices are likely to be endogenous as firms may consider both

observed and unobserved characteristics when they set their prices. In the presence of unobserved

product characteristics, the group share terms ggjt are endogenous by construction. This is because

market shares are determined by a full system of equations that depends on the vectors of endoge-

nous prices and of unobserved characteristics, and because consumers may choose products while

potentially considering the unobserved characteristics.

How could one ever hope to reliably estimate so many parameters with so few observations?

Our key assumption is sparsity: we assume that the number of nests with strictly positive nesting

coefficient is “small” compared to the number of observations. If we knew which nests have a

positive nesting coefficient and we had valid instruments, we could comfortably use conventional

methods. This is what has been done in any research project that has used the nested logit: having

specified nests with strictly positive nesting parameter, practitioners could use TSLS (or Maximum
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Likelihood) to estimate the parameters which were assumed to be strictly positive. Naturally and

notably, researchers have chosen to estimate sparse nesting structures, i.e. only considered nested

logit models with much less nests than they had observations. In this sense, sparsity is not a new

assumption. What is new is that we do not ask the researcher to know which nests have positive

nesting parameters but let the data select these nests.

To estimate such a model, one could penalize the parameters, i.e. use Best Subset Selection or

a convex relaxation of it such as the LASSO. However, this involves choosing a penalization pa-

rameter. This penalization parameter should be small when there are many non-zero coefficients in

the Data Generating Process (DGP). In contrast, when the DGP involves few non-zero parameters,

the penalization should be higher. So intuitively, asking a researcher for a penalization parameter

to estimate nesting structures means asking for the number of nests with strictly positive nesting

parameter. There is no reason to assume that a researcher should know the number of nests with

strictly positive nesting parameters.8

Instead of relying on penalization, we propose to use a regularization that comes directly from

economic theory: the nesting parameters are non-negative. As we will show in theory and in simu-

lations, this is enough to discipline the estimation even in when there are more nesting parameters

than observations. Here, we briefly describe how the estimation actually works. We propose to

estimate (2.7) in two stages. Suppose, for now, that we have enough instruments. We will discuss

them instruments later.

In the first stage, we “predict” the endogenous regressors with the instruments. We do not

prescribe a particular method for the first stage. When there are many observations and few pa-

rameters, a simple linear regression will work. In a high-dimensional case, when there are more

parameters than observations, there must also be more instruments than observations and we have

to avoid overfitting in the first stage. So we need some regularization in the first stages, too. Since

8There are automated ways of choosing penalization parameters such as cross-validation. However, there are very
few theoretical results on how cross-validation affects the quality of the parameter estimates.
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there is no economic theory to guide us for regularization, we must rely on statistical methods such

as the LASSO. Here, penalization and the choice of a penalization parameter is less problematic

because in the first stages, we only care about “predicted values” since these are what matters in

the second stage. In contrast, in the second stage, we do care about parameter estimates. For pre-

diction, using penalization in the spirit of Best Subset Selection, LASSO, Elastic Net etc is well

understood. Our theoretical analysis will not hinge on a specific first-stage method and rather make

an assumption on how well it approximates the true predicted (fitted) values. In the appendix, we

show for example that the LASSO naturally satisfies these assumptions with a generic choice of

penalization parameters. In simulations, we use Ridge Regression with n-fold (generalized) cross

validation for computational convenience.

In the second stage, we regress the outcome on the predicted values from the first stages im-

posing the non-negativity of the nesting parameters. That is, we solve

min
β,α,µ

1

n

���y � Xβ � αp̂ � Ĝµ
���2
2

subject to µg ¥ 0 for all g � 1, . . . , G, (2.8)

where p̂ is the predicted price from the first stage and Ĝ is the predicted group matrix from the first

stage. Note that (2.8) is a convex problem so that it can be solved efficiently and with global opti-

mality certificates. Computationally, the challenge is to compute Ĝ because G has many columns,

i.e. there are many nests. For each column of G, we have to run one first stage. For example, if

J � 20 and hence G � 1, 000, 000, we will have to run about 1,000,000 first stages with at least

1,000,000 instruments in each first stage. Because each first stage can be run separately, we can

parallelize this task. We are presently considering using a third-stage such as the Adaptive LASSO

proposed by Zou (2006) or hard thresholding proposed by Slawski and Hein (2011).9

9The Adaptive LASSO might offer oracle properties, i.e. provide estimates which are as good as if the true model
was known in advance. It is applicable here because we can use our NN2SLS estimates are consistent. Hence they
can be used to choose a tuning parameter for each regressor in a theory-driven way as shown by Zou (2006) in the
low-dimensional asymptotic regime. Thresholding offers to directly obtain finite-sample results on selection accuracy
(Slawski and Hein, 2011).
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2.3.1 Instruments

Instruments should induce exogenous variation in each of the endogenous variables. As high-

lighted by Fosgerau et al. (2021), instruments for the IGNL model include conventional instru-

ments. First, price endogeneity can be handled using supply-side instruments such as cost and

markup shifters (Berry, 1994; Berry et al., 1995; Berry and Haile, 2014). Cost shifters include the

Hausman instruments, i.e., prices in other markets (Hausman et al., 1994; Nevo, 2001). Markup

shifters include the BLP-type instruments, i.e., functions of the characteristics of competing prod-

ucts (Berry et al., 1995; Gandhi and Houde, 2020). In particular, Gandhi and Houde (2020) propose

the differentiation instruments based on the differences of product characteristics, dkijt � xk
it � xk

jt

for i � 1, . . . , J , i � j.

Furthermore, identification of the group share terms requires finding exogenous variations in

the relative share of product j within its nests, lnpsjt{
°

kPg sktq. Intuitively, since the nesting pa-

rameters µg drive the substitution patterns across products, any variable that can reveal the substi-

tution patterns are therefore good candidates as instruments. Following Verboven (1996b); Gandhi

and Houde (2020); Fosgerau et al. (2021), for each group share term ggjt, we use differentiation

instruments based on the differences of product characteristics with other products of the same

group, dkijt for i � g i � j.

In the simulations of Section 2.5, we find that cost shifters combined with the differentiation

IVs introduced by Gandhi and Houde (2020) work well.

2.3.2 Illustration of Non-Negativity Constraints

To illustrate the power of non-negativity constraints, we abstract from endogeneity issues by setting

ξ � 0. (2.9)
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In doing so, we can focus on the second stage and then compare Non-Negative Least Squares

(NNLS) to Ordinary Least Squares (OLS). We consider J � 4 (inside) products with K � 3

characteristics (including a constant) and hence G � 24� 4� 1 � 11 groups or nests. Hence there

are p � G � K � 1 � 15 parameters to estimate. We consider two regimes. One is the high-

dimensional regime with T � 3, where there are more parameters to estimate than observations

(n � T � J � 12). The other is the low-dimensional regime with T � 200, where the number of

observations (n � 800) far exceeds the number of parameters to estimate. This is an illustration,

not a Monte Carlo experiment so that we only simulate one dataset.

Table 2.1 summarizes the experiment. The column labelled “Truth” gives the true parameters,

where, e.g., µt1,2u denotes the nesting parameter associated to the group composed of products

1 and 2. As we see, the simulated model is a nested logit model where all inside products are

grouped together: all group coefficients are zero, except the one containing all inside products.

So the data generating process exhibits sparsity in the sense that most group coefficients are zero.

Comparing the estimates, we see that NNLS outperforms OLS in both low- and high-dimensional

regimes. In the high-dimensional regime, the OLS estimates are far from the truth, particularly for

µt1,2u, µt1,3u, µt2,3u, µt1,2,3u, µt2,4u, µt1,3,4u and µt1,2,3,4u. This is not surprising as the OLS estimator

is not unique in this case.10 By contrast, the NNLS estimates are relatively close to the truth.

In the low-dimensional regime, we increase the number of observations. As expected, the

OLS estimates gain accuracy. However, not all nesting parameters estimates are non-negative,

as required by economic theory. In fact, one cannot hope for uniformly non-negative nesting

estimates. Since OLS is unbiased, it is likely that some estimates will fall below zero if the true

parameter is zero. By contrast, the NNLS estimates are extremely close to the truth.

We also compare NNLS and OLS in terms of estimated price elasticities of demand and

markups. In the high-dimensional case, we find that NNLS provides results that are close to the

10For the implementation, we use cyclic coordinate descent so that we are guaranteed to converge to a particular
minimizer of OLS.
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truth, whereas OLS gives biased results. In the low-dimensional case, the two estimators perform

equally well.
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Table 2.1: Comparing OLS and NNLS for J � 4

T � 3 T � 200

Truth OLS NNLS OLS NNLS

β0 0.25 0.137 0.246 0.244 0.250

β1 0.50 0.525 0.502 0.500 0.500

β2 0.75 0.738 0.749 0.750 0.750

α 1 1.005 1.000 1.005 1.000

µt1,2u 0 0.530 0.010 �0.021 0

µt1,3u 0 0.489 0.017 �0.021 0

µt2,3u 0 0.591 0.010 �0.021 0

µt1,2,3u 0 �0.370 0 0.045 0.000

µt1,4u 0 0.106 0.001 �0.021 0

µt2,4u 0 0.277 0 �0.021 0

µt1,2,4u 0 0.074 0.017 0.047 0.000

µt3,4u 0 0.013 0 �0.022 0

µt1,3,4u 0 0.236 0.011 0.047 0.000

µt2,3,4u 0 0.074 0.016 0.048 0.000

µt1,2,3,4u 0.5 �0.097 0.462 0.418 0.499

Own-price elasticities -4.536 -5.876 -4.565

Cross-price elasticities 0.808 1.254 0.817

Markups 0.236 0.201 0.235

Own-price elasticities -4.485 -4.485 -4.485

Cross-price elasticities 0.778 0.778 0.778

Markups 0.241 0.241 0.241

Notes: The two bottom panels give the estimated own- and cross-price elasticities of de-

mands as well as the estimated (relative) markups, averaged across products and markets.129



2.3.3 Illustration of Scaling

As the number of nesting parameters to estimate is exponential in the number of inside products J ,

there is a curse of dimensionality in estimating nesting structures. No purely data-driven method

will be able to fully overcome this curse of dimensionality. It is useful to see how far we can

increase the number of products. In particular, it is interesting to see how long it takes to solve the

NNLS (second-stage) problem and how good estimates are.

For this illustration, we set the number of markets at T � 10 and consider J � 5, 10, 15, 20

products. Otherwise, we use the same DGP as in the previous section. In particular, recall that we

abstract from endogeneity issues to focus on the second stage. The number of observations is n

and the number of parameters to estimate is p � 2J � J � 1�K � 1. The only nesting parameter

in the DGP is the coefficient of the group with all inside products and it has a nesting coefficient

of 0.5. Since we implement NNLS via a cyclic coordinate descent, this is a challenging DGP since

we first cycle through all other groups. As we see, the number of observations grows linearly in

J while the number of parameters to estimate grows exponentially in J . Table 2.2 shows, for all

values for J , that NNLS performs well in correctly including the positive nesting parameter (see

column ”Correctly Included”). It also shows that it falsely includes only a very small percentage

of the zero nesting parameters (see column ”Falsely Included”).
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Table 2.2: Scaling Properties of NNLS

Nesting Parameters

J p n Correctly Included Falsely Included }µ̂� µ}2 Wall Time

5 30 50 1/1 8 0.006 ¡1sec

10 1017 100 1/1 45 0.059 23sec

15 32,756 150 1/1 144 0.492 576sec

20 1,048,555 200 1/1 358 0.513 2991sec

2.4 Econometric Theory

Since this section might be of independent interest, we first present the theory for a general linear

model with many endogenous variables. We then show how the theory applies to our problem.

2.4.1 General Theory

We begin with some notation. For a matrix M P Rk�l and a set of indices I � t1, . . . , lu, the

matrix MI P Rk�|I| corresponds to the submatrix of M which has only the columns of M whose

indices are in I. In particular, if I � tiu, then Mtiu, usually written Mi, is understood to be the

i-th column of M . We write Mi,� to designate row i of matrix M ,

2.4.1.1 Setting

Suppose we have n independent observations generated as

yi � Xi,�β� � εi (2.10)
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where yi P R is the outcome, Xi,� P Rp is a rowvector of regressors, β� P Rp is a vector of

coefficients and εi P R is an error term. Stack these row-wise over i so that

y � py1, . . . , ynq P Rn, X � pX1,�, . . . , Xn,�q P Rn�p and ε � pε1, . . . , εnq. X and y are observable

but β and ε are unknown. The error term is centered, i.e. Erεs � 0. Some (perhaps all) regressors

are endogenous, i.e.

ErXjεs � 0 for some j.

There are d instruments Zi,� P Rd available so that for each j

Xi,j � Zi,�π�j � ηi,j. (2.11)

We assume that instruments Z are independent of first and second stage errors ε and η. The π�j

have to be estimated for each j, using some estimator. The theoretical analysis allows for a class of

potential estimators in the first stage as long as they meet our formal assumption 6. It is a strength

of the analysis not to specify the first-stage procedure because it allows a practitioner to choose a

first stage procedure depending on the DGP at hand. We show in Appendix 2.8.3 that the LASSO

satisfies these assumptions with a theoretically guided choice of the tuning parameter.

Denote the first-stage estimates by π̂j for all j. Compute the fitted values as

X̂j :� Zπ̂j. (2.12)

Then the non-negative two stage least squares estimator (NN2SLS) is

β̂NN2SLS :� argmin
bPRp

�

1

n

���y � X̂β
���2
2
. (NN2SLS)
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2.4.1.2 Results

Our main result is a finite-sample concentration result on β̂NN2SLS, i.e. that with high probability,

β̂NN2SLS is close to β�.

For this result, we need four assumptions. The first assumption imposes independence of the

observations and exogeneity of the instruments. The second assumption is a sub-Gaussian tail

assumption on instruments and first and second stage errors. It is similar in spirit to assumptions

that first and second moments are bounded but much stronger: all moments exist and cannot grow

faster than a certain rate. The third assumption should be thought of as an instrument exogeneity

assumption and is explained in detail below. The fourth assumption guarantees a certain quality of

first-stage predicted values and is formulated without reference to a particular first-stage method.

In section 2.8.3, we show that the LASSO satisfies these assumptions with a theoretically guided

choice of the tuning parameter.

Theorem 38. Suppose Assumptions 3, 4, 5 and 6 are satisfied. Then with probability at least

pT1 :� pL2 � pA3,1,n � pA3,2,n � 2

it holds that

���β̂NN2SLS � β�
���
1
¤ rL3 � rL2max

$''&
''%

s

ϕ
,
3

ν
� 1

?
ν
?
s

�
max
jPS

rL45pjq


,//.
//- �: rT1,

where pL2, rL2 is defined in Lemma 40, rL3 is defined in Lemma 41 and rL45 is defined in Lemma

45.

To show the bite of theorem 38 without boring the reader with the exact expressions for pT1

and rT1, let us also impose the growth conditions formalized in assumption 7. In particular, this

entails that n converges to infinity faster than s, logppq and logpdq. Then pT1 converges to 1 while
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rT1 converges to zero, i.e. the NN2SLS estimator is consistent in the sense that
���β̂NN2SLS � β�

���
1

converges in probability to zero as n tends to infinity.

Corollary 39. Under Assumptions 3, 4, 5 6 and 7, β̂NN2SLS is l1-consistent in probability for β�.

The rate of convergence is at least

max

#
s3

nγ
,
s

3
2

nα
, s3rA4,S,n, s

3
2 rA4,t1,...,pu,n

+
. (2.13)

We proceed by sketching the proof of theorem 38 and then presenting our assumptions. The

actual proofs are in section 2.8.1 of the appendix.

2.4.1.3 Intuition

To get an intuition for how non-negativity constraints can induce sparsity and thereby regularize

a high-dimensional linear model, consider figure 2.1. It consists of four panels. Each panel has

a coordinate axes on which we consider the parameters β1, β2 of a linear regression with two

regressors. Panel 2.1a shows the contour lines of the least squares objective and the OLS estimator

β̂OLS which minimizes the OLS objective. The other panels consider the problem of minimizing

the OLS objective under different constraints.
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Figure 2.1: Inducing Sparsity without Penalization: Non-negativity Constraints

(a) OLS (b) Ridge

(c) LASSO (d) NNLS

Panel (b) considers the case of a constraint on the l2 norm of β, i.e. Ridge regression with a

fixed penalization parameter. The penalization parameter is directly related to the radius of the ball

that is the feasible set. We see that Ridge minimizes a convex objective over a convex set. The

Ridge estimator β̂Ridge is closer to the origin than the OLS estimator but does not induce sparsity:

no component of β̂Ridge is exactly zero. Panel (c) visualizes the case of a constraint on the l1 norm

of β, i.e. the LASSO with a fixed penalization parameter, in the spirit of the famous figure 2 of

Tibshirani (1996). We see that the feasible set of the LASSO is also feasible. In contrast to the
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Ridge estimator, the LASSO can induce sparsity: here β̂LASSO
1 � 0. Finally, panel (d) visualizes

constraints on the sign of beta, i.e. non-negativity constraints. We see that the NNLS estimator

β̂NNLS can also induce sparsity when components of the OLS estimator are negative. In higher

dimensions, the bite of the non-negativity constraints rises as the number of orthants increases

exponentially in the dimension of β while we only consider one orthant. The figure also visualizes

how NNLS does not depend on choosing a penalization parameter.

2.4.1.4 Sketch of Proof

To understand why the NN2SLS estimator works well, it is instructive to think about how it can fail.

It can fail in the first stage by overfitting the endogenous variables or producing predicted values

that are so highly correlated that it is hard to tell their effects apart. In addition, NN2SLS can fail

in the second stage by failing to include important regressors or including too many unimportant

regressors. It is useful to consider these two cases separately. For this purpose, we introduce the

oracle NN2SLS estimator. The oracle-NN2SLS estimator is identical to the NN2SLS estimator

except that it knows which regressors are “important”.

To formally introduce the oracle-NN2SLS estimator, we define the index set

S � tj P t1 . . . , pu|β�j � 0u (2.14)

to be the set of the second-stage coefficients which are “important” i.e. not zero in the data gen-

erating process. Denote the cardinality of S by s :� |S|. We then define the oracle second-stage

estimator as

arg min
bPRs

�

1

n

���y � X̂Sb
���2
2
. (oracle-NN2SLS)

The difference to (NN2SLS) is that in (oracle-NN2SLS), the set S is known. Hence all βj’s which

are zero in the data generating process are also set to zero in (oracle-NN2SLS). Now we can apply
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a triangle inequality to split the analyses of first and second stage:

���β̂NN2SLS � β�
���
1
¤
���β̂oracle � β�

���
1
�
���β̂NN2SLS � β̂oracle

���
1
.

Intuitively, the challenge in bounding
���β̂NN2SLS � β̂oracle

���
1

is the high-dimensional second stage.

Both β̂NN2SLS and β̂oracle are based on the same X̂ so that the analysis is separated from the

problem of using the d instruments without overfitting. The focus is on avoiding overfitting in the

second stage when NNLS selects among p covariates. We control the term
���β̂NN2SLS � β̂oracle

���
1

using the KKT conditions of the NN2SLS problem and our assumption on instrument relevance

formalized in Assumption 5.

In contrast, the term
���β̂oracle � β�

���
1

can be thought of as accuracy of a low-dimensional

second-stage problem. Since the second stage is low-dimensional, we can focus on the first stage

where we have to avoid overfitting. This requires assumptions on the regularizing power of the

first stage method, formalized in Assumption 6. The rest of the argument is based on the form of

the objective of the NN2SLS oracle estimator, see Lemma 41: because the NN2SLS problem is

convex, we can credibly claim that the objective function evaluated at the estimator is not larger

than the objective function evaluated at the true parameter. All other lemmas are more or less

technical derivations of probabilistic bounds of terms appearing in the proofs of these three results.

Our proofs build on the analysis by Meinshausen (2013).

2.4.1.5 Assumptions

The first assumption concerns independence of our observations and exogeneity of the instruments.

Assumption 3. For each i, write ηi � pηi,1, . . . , ηi,pq P Rp and Zi,� � pZi,1, . . . , Zi,dq. We assume

that

1. the observations are independent over i and

2. for all i, the instruments Zi are uncorrelated with εi and ηi.
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The second assumption imposes sub-Gaussian tail conditions for η, ε,X and Z.11 These tail as-

sumptions are stronger than the usual integrability assumptions and allow a finite-sample analysis

without assuming exact distributions, for example Gaussianity of errors.

Assumption 4.

1. There exists a parameter ρε such that for all i and for all t ¥ 0

P r|εi| ¥ ts ¤ 2 exp

�
� t2

ρ2ε



.

2. There exists parameters ρZ , ρη such that for any nonzero vectors a P Rd, b P Rp and for all

t ¥ 0

P
�����Zi,�

a

}a}2

���� ¥ t

�
¤ 2 exp

�
� t2

ρ2Z



,

P
�����ηi,� b

}b}2

���� ¥ t

�
¤ 2 exp

�
� t2

ρ2η



.

In addition to the instrument exogeneity assumption in item 2 of Assumption 3, we need to

impose an instrument relevance assumption. In a low-dimensional 2SLS setting, this is usually

done by requiring that ErpZπq1pZπqs � ErX̂ 1X̂s be invertible. When p is larger than n, the

matrix X̂ tX̂ P Rp�p cannot be invertible because its rank is at most n. What would be a sensible

rank condition in a high-dimensional case? Studying H2SLS based on applying LASSO as first

and second-stage method to estimate a high-dimensional model with endogeneity, Zhu (2018)

assumes that the minimum eigenvalue of Er 1
n
X̂ tX̂s is bounded away from zero and that

���bt X̂tX̂
n

b
���

is, with high probability, bounded from below by a constant times p}b}21 � }b}22q. As we impose

non-negativity of β�, we can work with a different assumption on the design matrix proposed by

Slawski and Hein (2011) and Meinshausen (2013) (the “self-regularizing property” by Slawski

11See section 2.5 of Vershynin (2020) for a textbook exposition.
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and Hein (2011) and the “minimum positive eigenvalue condition” by Meinshausen (2013)). This

assumption is the first item of Assumption 5. Let us introduce the assumption before discussing it

further.

Assumption 5. We assume

1. There exists a ν ¡ 0 such that with probability at least pA3,1,n we have that for all b P Rp
�

bt
X̂ tX̂

n
b ¥ ν }b}21 . (2.15)

2. There exists a ϕ ¡ 0 such that with probability at least pA3,2,n it holds that for all b P Rp such

that }bN}1 ¤ 3
?
s?
ν

�
max
jPS

rL45pjq


}bS}1 and minjPN bj ¥ 0 that

s bt
X̂ tX̂

n
b ¥ ϕ }b}21 (2.16)

where rL45p�q is defined in (2.44).

3. There exists a ϕ8 ¡ 0 such that with probability 1 it holds for all b P Rs that

s b
X̂ t

SX̂S

n
b ¥ ϕ8 }b}21 . (2.17)

The first item of Assumption 3 is a minimum positive eigenvalue condition on X̂ . The key is

to understand that b is restricted to be non-negative in all components. Recall from the discussion

above that it is not feasible to assume that X̂ tX̂ has full rank, or equivalently, that the smallest

eigenvalue in absolute values is not zero. Indeed, when n ¥ p then

min
bP♢

bt
X̂ tX̂

n
b � 0,

where ♢ �: tw P Rp| }w}1 � 1u is the diamond that is the boundary of the ball of radius 1 around
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zero with with respect to the l1 norm. 12 However, when one requires that the “eigenvectors” b be

componentwise non-negative, Slawski and Hein (2011) and Meinshausen (2013) are able to give

numerous examples and sufficient conditions for (2.15). Geometrically, (2.15) is a restriction of

the b vectors to be in the simplex of Rp rather than in the complete diamond ♢.

Now consider the second item of Assumption 5. Compatibility conditions are among the

weakest known regularity assumptions in high-dimensional linear models (Candes et al., 2007;

van de Geer and Bühlmann, 2009). Meinshausen (2013) imposed a stronger compatibility condi-

tion which does not restrict bN to be non-negative. Because N � Sc contains “almost all” of the p

regressors, restricting bN to be non-negative is a significant weakening of assumptions. Intuitively,

while (2.15) requires all components of b to be non-negative, the mostly non-negative compatibil-

ity condition (2.16) allows for bS to be negative in some components but, in exchange, requires

that bN is “not too large” compared to bS .

Finally, the third item in assumption 5 is a usual invertability condition on X̂ t
SX̂S . It is possible

to assume this invertibility because s is much smaller than n, i.e. we assume second-stage sparsity.

See Assumption 7 for detailed growth assumptions.

Next, we impose an assumption on the first-stage prediction accuracy that allows us to be

flexible with respect to the first-stage method.

Assumption 6. For any subset J � t1, . . . , pu, with probability at least pA4,J,n, we have

1?
n
max
jPJ

��Zpπ̂j � π�j q
��
2
¤ rA4,J,n. (2.18)

Note that Assumption 6 does not require consistency of the first-stage estimates π̂. In fact, it

does not even require uniqueness of the solution to the first-stage problem. Prediction accuracy

is a much weaker requirement for which many results are readily available in the literature. One

example for a first-stage method 13which satisfies this requirement is the LASSO. For example,

12The normalization is chosen for comparability with 2.15 (divide 2.15 by }b}21 for non-zero b).
13Assumption 6 is formulated for any subset J � t1, . . . , pu. In contrast, results for many methods are available
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Corollary 50 in section 2.8.3 in the appendix is a finite-sample result on the so-called slow rate

of the LASSO as a first-stage estimator where the only requirement is sufficient regularization. In

this case, for any 0   τ  
b

n
logpd}J}q and

λ � 2ρzρη

c
logpd |J|q

n
τ,

assumption 6 holds with

pLASSO, slow
A4,J,n :� 1� 2 exp

�
logpd |J|q �1� cBτ

2
��

,

where cB is a mathematical constant and

rA4,J,n :� 24ρzρη

c
logpd |J|q

n
τ
��π�j ��1 .

In particular, we see that if τ ¡ 1?
cB

, then pLASSO, slow
A4,J,n tends to one if dJ tends to infinity. We also

see that in this case, rA4,J,n tends to zero at rate
b

logpd|J|q
n

.

An applied researcher may have knowledge of the specific structure of the Z matrix. In partic-

ular, the Z matrix might satisfy sufficient regularity conditions for some other first-stage estimator.

By leaving the first-stage estimator unspecified, we allow the applied researcher to choose a suit-

able first-stage method depending on the application.

2.4.2 Application to Estimating Nesting Structures

To apply the theory of NN2SLS to the problem of estimating 2.7, we note that n, the number of

observations, is the product of J , the number of products, and T , the number of markets. Further,

the number of groups or nests is G � 2J � J � 1.

only for J with exactly one element. Remark 2.48 in appendix 2.8.2 shows how to use a union bound to go from such
results to the one required in Assumption 6.
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In the general theory, all second-stage coefficients are non-negative. From economic theory,

we know that all nesting parameters are non-negative. It is also reasonable to assume that α,

the marginal utility of income, is non-negative.14 However, we cannot expect that all product

characteristics have a non-negative coefficient. We apply Frisch-Waugh-Lovell to residualize the

linear model with respect to the product characteristics X. Let

MX :� In �XpX1Xq�1X1

be the matrix projecting on the orthogonal of the columnspace of X. Then we can set

X :�MXpp,Gq,

where the left-hand side X P Rn,G�1 is the matrix for the general theory, written in non-bold font to

distinguish it from the matrix of characteristics, X P Rn�K , where we recall that K is the number

of product characteristics. Similarly, we set y :�MXy and Z :�MXZ.

2.5 Monte-Carlo Experiments

We carry out two sets of Monte-Carlo experiments. The first set assesses the performances in finite

samples of our proposed estimator (Section 2.5.1). The second set compares our approach to the

BLP approach (Section 2.5.2).

14This is not necessary but simplifies the notation.

142



2.5.1 Performances of the Estimator

2.5.1.0.1 Simulated Data.

We generate 50 datasets of T � 400 markets of J � 8 products (+ one outside good). The

simulated data generating process (DGP) is a fully structural model of demand and supply, where

the demand model is defined by Equations (2.6), and where the supply model is a static price

competition model with multiproduct firms.

On the supply side, we assume that 4 firms, each producing one two products compete in prices:

in market t, each firm chooses the prices pjt of its products that maximize its profits. The marginal

cost function of product j in market t is given by

cjt � γ0 � γxxjt � γwwjt � ωjt, j ¡ 0, (2.19)

where wjt is a cost-shifter and ωjt is an unobserved cost component.

Assuming that a pure-strategy Nash equilibrium in prices exists, prices of products j � 1, . . . , J

solve the corresponding first-order conditions, and the associated market shares are then computed

using Equations (2.6).

We use xjt, wjt i.i.d. Up0, 1q and pξjt, ωjtq � N p0,Σq with Σ �
�

0.2 0.1

0.1 0.2

�
. We set β0 � 3,

βx � 6, α � 1, γ0 � 1, γx � 2, γw � 2. We set µt1,2u � µt1,3u � µt2,3u � µt1,2,3u � µt1,4u �
µt2,4u � 0.1, where, e.g., µt1,2u denotes the nesting parameter associated to the group composed of

products 1 and 2. The remaining 241 nesting parameters are set equal to zero.

Let dxijt � xit � xjt. We use the two sets of instruments. The first comprises the cost shifter

wjt. The second consists of the differentiation instruments
�°

iPGpjq d
x
ijt

	
,
�°

iPGpjq
�
dxijt

�2	 and�°
iPGpjq d

x
ijt

	2

that we interact with the corresponding group fixed effects.
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2.5.1.0.2 Results.

Table 2.3 presents the results. It shows that our estimator performs well in finite sample. Recall

that in the DGP, 6 nesting parameters out of 247 are positive, that is, 2.43% among them are

positive (97.57% are zero). Overall, our estimator predicts that 10.36% of the nesting parameters

are positive (89.64% are zero). Furthermore, we correctly detect whether the nesting parameters

are zero or positive for 91.88% of them. Specifically, we correctly detect as positive (resp., zero)

96% (resp.,91.78%) of the positive (resp., zero) nesting parameters.

Table 2.3: Monte-Carlo Results

True Estimates

β0 3.000 3.028 (0.0500)

�α -1.000 -0.924 (0.0283)

βx 6.000 5.576 (0.1293)

Total of

Zeros 97.57% 89.64%

Non-zeros 2.43% 10.36%

Correctly detected 91.88%

Zeros 91.78%

Non-zeros 96.00%

Notes: Estimates (mean across 50 Monte Carlo datasets); Simulated standard

errors into parenthesis (standard deviation across the 50 Monte Carlo datasets).

144



2.5.2 Comparison to BLP Approach

2.5.2.1 Simulated Data

We generate 50 datasets of T � 400 markets of J � 8 products (+ one outside good). The

simulated DGP is a fully structural model of demand and supply, where the demand model is a

random coefficient logit model (RCL) with one log-normally distributed coefficient on price, and

where the supply model is a static price competition model with multiproduct firms.

On the demand side, the RCL model is an additive random utility model where the indirect

utility of consumer n in market t for product j is defined by

unjt � β0 � αpjt � βxxjt � αnpjt � ξjt � εnjt, j ¡ 0 (2.20)

un0t � εn0t (2.21)

where αn � logN p0, σq and εnjt i.i.d. T1EV p0, 1q. On the supply side, this is the same as in the

first experiment, except that market shares are now computed using the RCL demand function.

Simulations (and estimations of the RCL model) use the package pyblp in Python, developed

by Conlon and Gortmaker (2020). We set β0 � 5, βx � 6, α � 2, σ � 1.5, γ0 � 1, γx � γw � 2.

We use xjt, wjt i.i.d. Up0, 1q and pξjt, ωjtq � N p0,Σq with Σ �
�

0.2 0.1

0.1 0.2

�
.

Estimation of the RCL models uses Berry et al. (1995)’s method together with the best practices

as described in Conlon and Gortmaker (2020): it first uses Gandhi and Houde (2020)’s differenti-

ation IVs to control for the endogeneity of prices and market shares and then update to the optimal

IVs of Chamberlain (1987) using the approximate approach.

Estimation of the IGNL model follows the two steps described above. We use two sets of

instruments. Based on Reynaert and Verboven (2014) and Gandhi and Houde (2020), the first

comprises the predicted value p̂jt from a linear regression of prices pjt on a third-order polynomial

in pxjt, zjtq and a function of ownership and dxijt. Let dp̂ijt � p̂it� p̂jt. The second set of instruments
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consists of the differentiation instruments
�°

iPGpjq d
p̂
ijt

	
,
�°

iPGpjq
�
dp̂ijt

	2



and
�°

iPGpjq d
p̂
ijt

	2

that we interact with the corresponding group fixed effects.

2.5.2.2 Results

The following table summarizes the results of the experiment. It shows that the IGNL model

best fits the own- and cross-price elasticities of a RCL model with a log-normally distributed

random coefficient on price than a misspecified RCL model in which the random coefficient on

prices is assumed to be normal. It also shows that our approach and the BLP approach when it is

misspecified perform rather equally in terms of estimated markups.
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Table 2.4: Monte Carlo: True Model is RCL with log-normal coefficients

True Estimated

(1) (2) (3) (4) (5) (6) (7)

True Bias t-stat Med. bias MAD MSE Var

True Model: assuming that the random coefficient is log-normal

Own-elasticities -7.787 0.009 0.827 0.018 0.045 0.003 0.004

Cross-elasticities 0.770 -0.001 -0.464 -0.002 0.006 0.000 0.000

Markups 0.165 0.000 0.897 0.000 0.001 0.000 0.000

Misspecified Model: assuming that the random coefficient is normal

Own-elasticities -7.787 0.624 34.158 0.626 0.624 0.401 0.015

Cross-elasticities 0.770 -0.111 -16.450 -0.100 0.111 0.014 0.002

Markups 0.165 -0.000 -1.3841 -0.001 0.002 0.000 0.000

Misspecified Model: assuming an IGNL model

Own-elasticities -7.787 -0.136 -6.837 -0.104 0.141 0.035 0.019

Cross-elasticities 0.770 -0.054 -13.544 -0.058 0.056 0.004 0.001

Markups 0.165 0.013 22.439 0.013 0.013 0.000 0.000

Notes: Results use 50 Monte Carlo datasets. Column (1) gives the true own elasticities, cross elasticities

and markups. Column (2) gives the bias, Column (3) gives the t-stat for whether the bias (which is esti-

mated in a finite number of simulations) is statistically different from zero; Column (4) gives median bias,

Column (5) gives mean absolute deviation ; Column (6) gives the mean squared error and Column (7)

gives the variance.
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Table 2.5: Monte Carlo: True Model is RCL with normal coefficients

True Estimated

(1) (2) (3) (4) (5) (6) (7)

True Bias t-stat Med. bias MAD MSE Var

True Model: assuming that the random coefficient is log-normal

Own-elasticities -5.262 0.014 1.597 0.017 0.044 0.003 0.003

Cross-elasticities 0.660 -0.002 -1.319 -0.002 0.006 0.000 0.000

Markups 0.234 0.001 1.636 0.001 0.002 0.000 0.000

Misspecified Model: assuming that the random coefficient is normal

Own-elasticities -5.262 1.016 34.161 1.039 1.016 1.073 0.044

Cross-elasticities 0.660 -0.194 -96.121 -0.192 0.194 0.039 0.000

Markups 0.234 0.037 1.311 0.062 0.120 0.040 0.039

Misspecified Model: assuming an IGNL model

Own-elasticities -5.262 -0.280 -26.426 -0.282 0.280 0.083 0.005

Cross-elasticities 0.660 0.003 1.599 0.003 0.009 0.000 0.000

Markups 0.234 0.008 11.513 0.008 0.008 0.000 0.000

Notes: Results use 50 Monte Carlo datasets. Column (1) gives the true own elasticities, cross elasticities

and markups. Column (2) gives the bias, Column (3) gives the t-stat for whether the bias (which is esti-

mated in a finite number of simulations) is statistically different from zero; Column (4) gives median bias,

Column (5) gives mean absolute deviation ; Column (6) gives the mean squared error and Column (7)

gives the variance.

2.6 Conclusion

We propose a method to estimate the nesting structure in a large class of demand models for dif-

ferentiated products, which describe the aggregate behavior of heterogeneous, utility-maximizing
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consumers.

We build on a recent generalization of the inverse demand function of the nested logit model

that accommodates any possible nesting structure while retaining its tractability. Specifically, we

show how using non-negativity restrictions coming from economic theory as well as sparsity re-

strictions help us estimate the nesting structure.
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Salanié, B. and F. A. Wolak (2019). Fast,” robust”, and approximately correct: estimating mixed

demand systems. National Bureau of Economic Research.

Slawski, M. and M. Hein (2011). Sparse recovery by thresholded non-negative least squares.

Advances in neural information processing systems 24.

153



Slawski, M. and M. Hein (2013). Non-negative least squares for high-dimensional linear models:

Consistency and sparse recovery without regularization. Electronic Journal of Statistics 7, 3004–

3056.

Small, K. A. (1987). A discrete choice model for ordered alternatives. Econometrica, 409–424.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological) 58(1), 267–288.
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2.8 Appendix

2.8.1 Non-negative Two Stage Least Squares

Let us first define some important constants. By cH we denote the constant that appears in Ho-

effding’s inequality for sub-Gaussians ((Vershynin, 2020, Theorem 2.6.3)).15 By ccenter,SG, we

denote the constant that appears in the centering inequality for sub-Gaussians, see (Vershynin,

2020, Lemma 2.6.8). Similarly, by cB we denote the constant that appears in Bernstein’s inequal-

ity for sub-exponential random variables (Theorem 2.6.3 in Vershynin (2020)).16 By ccenter,SE , we

denote the constant that appears in the centering inequality for sub-exponentials, see (Vershynin,

2020, Exercise 2.7.10).

2.8.1.1 Proof of Theorem 38.

Proof. In general, the proof follows the arguments in Meinshausen (2013). Using the triangle

inequality, we see

���β̂NN2SLS � β�
���
1
�
���β̂oracle � β� �

�
β̂oracle � β̂NN2SLS

	���
1

¤
���β̂oracle � β�

���
1
�
���β̂NN2SLS � β̂oracle

���
1
.

The term
���β̂oracle � β�

���
1

can be bounded using Lemma 41.

15Note that this constant also depends on which of the “equivalent” definitions of a sub-Gaussian one considers
since they only equivalent up to a constant, (Vershynin, 2020, Proposition 2.5.2).

16Note that this constant also depends on which of the “equivalent” definitions of a sub-exponential one considers
since they only equivalent up to a constant, (Vershynin, 2020, Proposition 2.7.1).
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Upper bound for ∆βt X̂tX̂
n

∆β

To estimate the second term, define ∆β :� β̂NN2SLS � β̂oracle.17 We can reparametrize the

NN2SLS problem (2.10) problem so that the solution is ∆β:

∆β � min
γ

���Y � X̂β̂oracle � X̂γ
���2
2looooooooooooomooooooooooooon

�:fpγq

s.t γk ¥ �β̂oracle
k for all k � 1, . . . , p. (2.22)

Note that γ � 0 is a feasible point to (2.22). Hence fp0q ¥ fp∆βq, i.e.

���Y � X̂β̂oracle
���2
2
¥
���Y � X̂β̂oracle � X̂∆β

���2
2

(2.23)

Defining R :� Y � X̂β̂oracle. Then we can write inequality (2.23) as

RtR ¥
���R � X̂∆β

��� � RtR � 2RtX̂∆β �∆βtX̂ tX̂∆β.

Subtracting the term RtR, dividing by n and rearranging yields

∆βt X̂
tX̂

n
∆β ¤ 2

n
RtX̂∆β.

Using Lemma (40), we see that with probability at least pL2 we have

∆βt X̂
tX̂

n
∆β ¤ rL2 }∆β�N}1 ¤ rL2 }∆βMc}1 . (2.24)

17Meinshausen writes δβ instead of ∆β.
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Lower bound for ∆βt X̂tX̂
n

∆β

Define M :� tk : ∆βk   0u. By definition18 19, M � S and N � M c so that we trivially have

}∆βN}1 ¤ }∆βMc}1. Now define

a :�
d
∆βt

Mc

X̂ tX̂

n
∆βMc ,

b :�
d
∆βt

M

X̂ tX̂

n
∆βM

where, exceptionally, we write ∆βMc to for the p-dimensional vector defined by

p∆βMcqj �

$''&
''%
∆βj if j PM c,

0 otherwise

and similarly for ∆βt
M . Then we have

∆βt X̂
tX̂

n
∆β

� �
∆βt

M �∆βt
Mc

�t X̂ tX̂

n

�
∆βt

M �∆βt
Mc

�
�∆βt

M

X̂ tX̂

n
∆βM �∆βt

Mc

X̂ tX̂

n
∆βMc � 2∆βt

Mc

X̂ tX̂

n
∆βM

�a2 � b2 � 2∆βt
Mc

X̂ tX̂

n
∆βM

¥a2 � b2 � 2

�����∆βt
Mc

X̂ tX̂

n
∆βM

�����
¥a2 � b2 � 2ab (Cauchy-Schwarz)

¥a2 � 2ab. (b ¥ 0)

18If j P M , then ∆βj � β̂NN2SLS
j � β̂oracle

j   0. Because β̂NN2SLS
j ¥ 0, this implies β̂oracle ¡ 0 which in turn implies

that j P S.
19If j P N , then β̂oracle � 0 so that ∆βj � β̂NN2SLS

j � β̂oracle
j � β̂NN2SLS

j ¥ 0 which means that j P M c.
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¥ν }∆βMc}21 � 2
?
ν }∆βMc}1 b (Pos. Eigenval. Cond.)

¥ν }∆βMc}21 � 2
?
ν }∆βMc}1

gffeσmax

�
X̂ t

SX̂S

n

�
}∆βM}2

¥ν }∆βMc}21 � 2
?
ν }∆βMc}1

gffeσmax

�
X̂ t

SX̂S

n

�
}∆βM}1

¥ν }∆βMc}21 � 2
?
ν }∆βMc}1

?
s

�
max
jPS

rL45pjq


}∆βM}1 (Lemma 44)

with probability at least pL45pSq � pA3,1,n � 1.

Case 1: }∆βM}1  
?
ν

3
?
s

�
max
jPS

rL45pjq

 }∆βMc}1

In this case we have with probability at least pL45pSq � pA3,1,n � 1

∆βt X̂
tX̂

n
∆β ¥ }∆βMc}21 ν

�
1� 2

3



� 1

3
}∆βMc}21 ν.

Combining this with the upper bound (2.24), we find that with probability at least pL2� pA3,1,n� 1

1

3
}∆βMc}21 ν ¤ rL2 }∆βMc}1 .

Dividing by }∆βMc}1, we find that with probability at least pL2 � pA3,1,n � 1

}∆βMc}1 ¤
3

ν
rL2.

Combining this with the assumptions of case 1, we also get a bound for }∆βM}1:

}∆β}1 � }∆βMc}1 � }∆βM}1
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¤ }∆βMc}1

�
���1�

?
ν

3
?
s

�
max
jPS

rL45pjq


�
��


¤ rL2

�
���3

ν
� 1

?
ν
?
s

�
max
jPS

rL45pjq


�
��
.

Case 2: }∆βM}1 ¥
?
ν

3
?
s

�
max
jPS

rL45pjq

 }∆βMc}1

First, recall that N �M c and M � S. Hence the assumption for this case implies

}∆βN}1
?
ν

3
?
s

�
max
jPS

rL45pjq

 ¤ }∆βMc}1

?
ν

3
?
s

�
max
jPS

rL45pjq

 ¤ }∆βM}1 ¤ }∆βS}1 .

In particular, ∆β satisfies the condition required for (2.16) of Assumption 5. Using (2.16), we

directly get with probability at least pA3,2,n

∆βt X̂
tX̂

n
∆β ¥ ϕ

s
}∆β}21 .

Combining this with the upper bound (2.24), we find that with probability at least pL2� pA3,2,n� 1

ϕ

s
}∆β}21 ¤ rL2 }∆βMc}1 ¤ rL2 }∆β}1 .

Dividing by }∆β}1, we find that with probability at least pL2 � pA3,2,n � 1

}∆β}1 ¤
s

ϕ
rL2.

Hence we have bounded }∆β}1 in both cases and completed the proof.
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2.8.1.2 Proof of Corollary 39.

Before we go to the proof of Corollary 39, we formulate an assumptions on growth rates.

Assumption 7. We have

1. pA3,1,n and pA3,2,n converge to 1 as n tends to infinity

2. for any subset J � t1, . . . , pu, rA4,J,n converges to 0 and pA4,J,n converges to 1 as n tends to

infinity

3. s3rA4,S,n converges to zero as n tends to infinity

4. logpdq
n1�2γ converges to zero as n tends to infinity

5. s
5
2

nγ converges to zero as n tends to infinity

6. logppq
n1�2α converges to zero as n tends to infinity

7. s
3
2

nα converges to zero as n tends to infinity

8. there exists a universal constant β, independent of n, such that }β�}2 ¤
?
sb.

9. there exist a universal constant π, independent of n, such that

max
jPt1,...,pu

��π�j ��1 ¤ π

Proof. To derive consistency from the finite sample result in Theorem 38, we have to do two

things. First, we have to show that pT1 converges to 1 as n tends to infinity. Secondly, we have to

show that rT1 converges to zero as n tends to infinity. So let’s proceed in two steps.
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Step 1: pT1 converges to 1

Recall from Theorem 38 that

pT1 :�pL2 � pA3,1,n � pA3,2,n � 2.

pL2 converges to 1 as n tends to infinity Recall from Lemma 40 that

pL2 :� pL3 � pL4 � pL45pt1, . . . , puq � 2.

To show that pL2 converges to 1 as n tends to infinity, it is sufficient to show that pL3, pL4 and

pL45pt1, . . . , puq converge to 1 as n tends to infinity. Consider first pL3. We recall

pL3 :� pA4,S,n � pL45pSq � 1� 4 expp�cBnq � 4 expplogpdq � cBn
1�2γq.

As before, pA4,S,n converges to 1 as n tends to infinity by Assumption 7. In Assumption 7, we

have also assumed that logpdq
n1�2γ converges to zero as n tends to infinity so that expplogpdq� cBn

1�2γq
converges to zero as n tends to infinity. If n tends to infinity, then expp�cBnq trivially converges

to zero. Finally, let’s consider pL45pSq. We recall

pL45pSq � pA4,S,n � 2
¸
jPS

exp
��cB mintκj, κ

2
jun

�
.

As we have already discussed, pA4,S,n converges to 1 as n tends to infinity by Assumption 7. So

we only have to show that
°
jPS

exp
��cB mintκj, κ

2
jun

�
converges to zero as n tends to infinity. We

have

¸
jPS

exp
��cB mintκj, κ

2
jun

� ¤smax
jPS

exp
��cB mintκj, κ

2
jun

�
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¤s exp
�
�cB min

jPS

�
mintκj, κ

2
ju
�
n




� exp

�
logpsq � cB min

jPS

�
mintκj, κ

2
ju
�
n



.

In Assumption 7, we assumed that min
jPS

κj is bounded away from zero uniformly for all n and that

logpsq
n

converges to zero. Hence
°
jPS

exp
��cB mintκj, κ

2
jun

�
converges to zero as n tends to infin-

ity. So we conclude that pL3 indeed converges to 1 as n tends to infinity.

Now let’s consider pL4. We recall

pL4

�pS2 � pS3 � pS4pαq � 2

�ppA4,S,n � pL45pt1, . . . , puq � 1q

� �
pA4,t1,...,pu,n � 4 expp�cBnq

�
� �

1� 4 exp
�
logppq � cBn

1�2α
��� 2.

We recall that by Assumption 7, pA4,S,n and pA4,t1,...,pu,n converge to one as n tends to infinity. It

is also clear that expp�cBnq converges to zero as n tends to infinity. By Assumption 7, we also

have that logppq
n1�2α converges to zero as n tends to infinity. Hence exp plogppq � cBn

1�2αq converges

to zero as n tends to infinity. So to see that pL4 converges to 1 as n tends to infinity, it only remains

to show that pL45pt1, . . . , puq converges to 1 as n tends to infinity. For this, we recall that

pL45pt1, . . . , puq � pA4,t1,...,pu,n � 2p expp�cBnq.

By Assumption 7, pA4,t1,...,pu,n converges to 1 as n tends to infinty. We have also assumed that

logppq
n

converges to zero as n tends to infinity so that p expp�cBnq converges to zero as n tends to

infinity. Hence we see that pL45pt1, . . . , puq converges to 1 as n tends to infinity. This completes
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the proof that pL2 converges to 1 as n tends to infinity.

Step 2: rT1 converges to 0

Recall that

rT1 �rL3 � rL2max

$''&
''%

s

ϕ
,
3

ν
� 1

?
ν
?
s

�
max
jPS

rL45pjq


,//.
//- .

It is sufficient to show that rL3 and srL2 converge to zero as n tends to infinity.

rL3 converges to zero Recall that

rL3 � 2s

c
s

ϕ8

�
�}β�}8 rA4,S,n � ρε � ρη }β�}2

min
jPS

rL45pjq
�
ρZ
nγ

max
jPS

��π�j ��1 �a
2ccenter,SErA4,S,n


�
.

That the terms s
3
2 rA4,S,n, s

5
2

nγ and s
5
2 rA4,S,n converge to zero follows immediately from assumption

7. This implies that rL3 converges to zero as n tends to infinity.

srL4pαq converges to zero Recall that

srL4pαq �srS2 � srS3 � srS4pαq.

Now let’s consider each of these terms separately. First, for srS2 we have

srS2 �s2 }β�}8 rA4,S,n max
kPt1,...,pu

rL5pkqlooooooomooooooon
bounded under assumption 7
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which converges to zero as s
5
2 rA4,S,n converges to zero by Assumption 7. Secondly, for rS3, we

have

srS3 �2s pρη � }β�}2q rA4,t1,...,pu,n

¤2s
�
ρ2η �

?
sβ

2
	
rA4,t1,...,pu,n

which also converges to zero because we assumed that s
3
2 rA4,t1,...,pu,n converges to zero in Assump-

tion 7. Finally,

srS4pαq � sρz pρη }β�}2 � ρεq 1

nα
max

jPt1,...,pu

��π�j ��2
¤ sρz

�
ρη
?
sβ � ρε

� 1

nα
π

converges to zero as n tends to infinity as s
3
2

nα converges to zero as n tends to infinity by Assumption

7. This completes the proof.

2.8.1.3 Technical Lemmata

Lemma 40. Suppose Assumptions 3, 4, 5 and 6 are satisfied. Define ∆β :� β̂NN2SLS � β̂oracle and

R :� Y � X̂β̂oracle. Then with probability at least

pL2 :� pL3 � pL4 � pL45pt1, . . . , puq � 2

it holds that

1

n
RtX̂∆β ¤ rL2 }∆βN}1 ,
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where

rL2 � rL3 max
jPt1,...,pu

prL45pjqq2 � rL4

and pL3, rL3 are defined in Lemma 41, pL4 and rL4 are defined in Lemma 43, and pL4 and rL4 are

defined in Lemma 45, respectively.

Proof. First, we can write

1

n
RtX̂∆β � 1

n

¸
kPS

�
RtX̂k

	
∆βk � 1

n

¸
kPN

�
RtX̂k

	
∆βk. (2.25)

Consider first the sum over k P S. Recall that β̂oracle is the solution to (oracle-NN2SLS). In

particular, it satisfies the KKT conditions20 for k P S

1. β̂oracle
k ¡ 0 and RtX̂k � 0 or

2. β̂oracle
k � 0 and RtX̂k ¤ 0.

The contribution of all cases in (1.) vanishes in (2.25) because RtX̂k � 0. For k P S that fall into

category (2.), it follows by the non-negativity of β̂NN2SLS
k and β̂oracle

k � 0 that ∆βk ¥ 0 and hence

20The Lagrangian for this problem is

Lpb, λq �
���y � X̂Sb

���2
2
�
¸
jPS

λjbj

where λj ¥ 0 are Lagrange multipliers. Then the KKT conditions are that β̂oracle for all k P S

0 � 2X̂t
k

�
y � X̂S β̂

oracle
	
� λk � 2X̂t

kR� λk, (first order condition)

0 � λkβ̂
oracle
k . (complementary slackness condition)

In particular, if β̂oracle
k ¡ 0, then λk � 0 so that the first order condition simplifies to RtX̂k � 0. If β̂oracle

k � 0,
then we cannot tell whether λk is equal to zero or not. But in any case, we know that λk ¥ 0 so that the first order
condition implies X̂t

kR ¤ 0.
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�
RtX̂k

	
∆βk ¤ 0. We are left with contributions from k P N in (2.25):

1

n
RtX̂∆β ¤ 1

n

¸
kPN

�
RtX̂k

	
∆βk ¤ 1

n
max
kPN

�
RtX̂k

	
}∆βN}1 .

It remains to bound 1
n
max
kPN

�
RtX̂k

	
. For this, we write, as in Zhu

R � Y � X̂β̂oracle � X̂
�
β� � β̂oracle

	
� ξ,

where

ξ :�
�
X� � X̂

	
β� � ηβ� � ε.

Then

1

n
max
kPN

�
RtX̂k

	
� 1

n
max
kPN

��
X̂S

�
β�S � β̂oracle

	
� ξ

	t

X̂k

�

� 1

n
max
kPN

��
β�S � β̂oracle

	t

X̂ t
SX̂k � ξtX̂k

�

¤ 1

n
max
kPN

�����β�S � β̂oracle
	t

X̂ t
SX̂k

����� 1

n
max
kPN

ξtX̂k

¤
���β�S � β̂oracle

S

���
1

1

n
max
kPN

���X̂ t
SX̂k

���
8
� 1

n
max

kPt1,...,pu
ξtX̂k

¤
���β� � β̂oracle

���
1

1

n
max
kPN

���X̂ t
SX̂k

���
8
� 1

n

���ξtX̂���
8
.

We can use Lemma 41 to see bound
���β� � β̂oracle

���
1

and Lemma 43 to bound 1
n

���ξtX̂���
8

. It remains

is to bound the term 1
n
max
kPN

���X̂SX̂k

���
8

. 21 We have

1

n
max
kPN

���X̂SX̂k

���
8
� 1

n
max
kPN

max
jPS

���X̂ 1
jX̂k

���
21Conditional on data, we can compute this quantity, but as we see in the following, we can get an unconditional

bound under our assumptions.
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¤ 1

n
max
kPN

max
jPS

���X̂j

���
2

���X̂k

���
2

(Hölder)

�
�

1?
n
max
jPS

���X̂j

���
2


�
max
kPN

1?
n

���X̂k

���
2



.

Now we can apply Lemma 45 to bound these two terms. We conclude by combining these bounds

with a union bound.

Lemma 41. Fix γ P �0, 1
2

�
. Under Assumption 3, 4, 5 and 6 with probability at least

pL3 :� pA4,S,n � pL45pSq � 1� 4 expp�cBnq � 4d expp�cBn1�2γq

it holds that

���β̂oracle � β�
���
1
¤ rL3

where

rL3 � 2s

c
s

ϕ8

�
�}β�}8 rA4,S,n � ρε � ρη }β�}2

min
jPS

rL45pjq
�
ρZ
nγ

max
jPS

��π�j ��1 �a
2ccenter,SErA4,S,n


�


and pL45p�q and rL45p�q are defined in Lemma 45.

Remark 42. As Lemma 41 considers the oracle problem in the second stage, all assumptions

concerning first stages for xj with j P Sc are not needed. In particular, we do not require

• sub-Gaussianity of Zi,� and ηi,� of Assumption 4 but only sub-Gaussianity Zi,S and ηi,S

• condition (2.15) and (2.16) of Assumption 5

• Assumption 6 with JX Sc � H.

Proof. The proof is organized in six steps. First, we follow the argument of Meinshausen which

leaves us to bound the term
���PSY � X̂β�

���
2
. In the second step, we use a decomposition proposed
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by Zhu to decompose this term into three summands which are then bounded separately in step 3,4

and 5. Finally, we conclude in step 6.

Step 1: Follow Meinshausen

Consider the objective of the oracle problem (oracle-NN2SLS). It will be useful to decompose the

objective into two parts.22 Let PS � X̂SpX̂ 1
SX̂Sq�1X̂ 1

S denote the projection onto the vectorspace

spanned by the columns in X̂S . Then we have for any b P Rs
�

���Y � X̂sb
���2
2
�
���PS

�
Y � X̂sb

	���2
2
�
���pI � PSq

�
Y � X̂sb

	���2
2

�
���PSY � X̂sb

���2
2
� }pI � PSqY }22 .

As }pI � PSqY }22 does not depend on b, solving (oracle-NN2SLS) is equivalent to solving

min
bPRs

�

���PSY � X̂Sb
���2
2
. (2.26)

Note that β�S is feasible in (2.26). In particular, we have

���PSY � X̂Sβ
�
S

���2
2
¥
���PSY � X̂Sβ̂

oracle
���2
2
. (2.27)

Note that by the reverse triangle inequality, we have

���PSY � X̂Sβ̂
oracle
S

���2
2

¥
����X̂Sβ

�
S � X̂Sβ̂

oracle
S

���
2
�
���PSY � X̂Sβ

�
S

���
2

	2

�
���X̂2β

�
2 � X̂Sβ̂

oracle
S

���2
2
� 2

���X̂Sβ
�
S � X̂Sβ̂

oracle
S

���
2

���PSY � X̂Sβ
�
S

���
2
�
���PSY � X̂Sβ

�
S

���2
2
.

22We explain the benefits in step 3.
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Combining these two inequalities, we find

���PSY � X̂Sβ
�
S

���2
2

¥
���X̂Sβ

�
S � X̂Sβ̂

oracle
S

���2
2
� 2

���X̂Sβ
�
S � X̂Sβ̂

oracle
S

���
2

���PSY � X̂Sβ
�
S

���
2
�
���PSY � X̂Sβ

�
S

���2
2
.

Rearranging, we find

2
���X̂S

�
β�S � β̂oracle

S

	��� ���PSY � X̂Sβ
�
S

��� ¥ ���X̂S

�
β�S � β̂oracle

S

	���2
2
.

Dividing by
���X̂S

�
β�S � β̂oracle

S

	��� yields

���X̂S

�
β̂oracle
S � β�S

	���
2
¤ 2

���PSY � X̂Sβ
�
S

���
2
.

Now we can use Assumption 5, specifically (2.17) to bound the term on the left hand side from

below:

c
ϕ8n
s

���β�S � β̂oracle
���
1
¤
���X̂S

�
β̂oracle
S � β�S

	���
2
.

To conclude, we have found

���β� � β̂oracle
���
1
¤ 2

c
s

nϕ8

���PSY � X̂β�
���
2
. (2.28)

So the remainder of the proof has the objective of bounding the term
���PSY � X̂β�

���
2

from above.
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Step 2: Zhu’s Decomposition

We use a decomposition due to Zhu23. For this, recall

ξ :� pX� � X̂qβ� � ηβ� � ε.

Noting that X̂β� � X̂Sβ
�
S , we have

���PSY � X̂Sβ
�
S

���
2
�
���PSpX̂Sβ

�
S � ξq � X̂Sβ

�
S

���
2

� }PSξ}2
�
���PSpX̂ �X�qβ � PSηβ

� � PSε
���
2

¤
���PSpX̂ �X�qβ

���
2
� }PSηβ

�}2 � }PSε}2
�
���PSpX̂S �X�

Sqβ�S
���
2
� }PSηβ

�}2 � }PSε}2 . (2.29)

The term }PSε}2 also appears in the analysis of Meinshausen24. Compared to Meinshausen’s anal-

ysis, endogeneity leaves us with two additional terms,
���pX̂S �X�

Sqβ�
���
2

and }PSηβ
�}2: If there is

no endogeneity, then Z � X is a valid instrument so that the first stage errors η are equal to zero

and hence X̂ � X�. So additional terms vanish when there is no endogeneity.

Combining (2.29) with (2.28), we find

���β� � β̂oracle
���
1
¤ 2

c
s

nϕ8

���PSpX̂S �X�
Sqβ�S

���
2
� 2

c
s

nϕ8
}PSηβ

�}2 � 2

c
s

nϕ8
}PSε}2 .

(2.30)

23See the proof of Lemma A.1 in Zhu (2018).
24See Lemma 4 in Meinshausen (2013).
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In the following three steps, we derive bounds for each of the three summands appearing on the

right hand side of inequality (2.30).

Step 3: Bound 2
b

s
nϕ8

}PSε}2

Recall that the the term }PSε}2 also appears in the exogenous case considered by Meinshausen.

We find it instructive to highlight some similarities and differences between the lines of arguments

of Meinhausen and our paper.

Meinshausen assumes Gaussianity of ε and that X is fixed, so the term }PSε}2 follows a χ2psq
distribution and exact tail probabilities can be derived. 25 In our setting, two complications arise.

First, we do not assume exact Gaussianity but only sub-Gaussianity. As a result, we will not

be able to obtain exact tail probabilities. Instead, we will derive bounds on tail probabilities which

will depend on constants from Hoeffding’s and Bernstein’s concentration inequality.

The second point is more substantial. As we study endogeneity, we have to allow for random-

ness in Z,X and hence X̂ . Endogeneity also requires that we allow for correlation between η and

ε so that X̂ and ε are not independent of one another. This makes deriving tail bounds for }PSε}22
more challenging: Even if we were to assume Gaussianity of ε, we would not be able to infer that

x̂1jε follows a Gaussian distribution.

PS is a projection onto the column space generated by X̂S so that it has the eigenvalue 1 with

multiplicity s and the eigenvalue 0 with multiplicity n � s because we assume that X̂S has full

rank per Assumption 5, specifically (2.17). Because PS is also symmetric, it admits an orthogo-

25Note that we could have done Step 1 without the projection PS in which case we would now have }ε}22. That

would be a χ2pnq in the Gaussian case so that we would not have convergence of
a

s
n

���PSY � X̂β�
���
2

to zero. As a

result, we would also not get convergence of β̂oracle to β�.
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nal diagonalization, i.e. there exists an orthogonal matrix V such that PS � V DV t where D is

a diagonal matrix whose first s entries on the diagonal are 1 and whose last n � s entries are 0.

Column j of matrix V is the eigenvector associated with the j-th element on the diagonal of D. In

particular, the first s columns of V are the normalized columns of X̂ because PS is the projection

on the column space of X̂ , so that the eigenvectors corresponding to the eigenvalues 1 are just the

normalized columns of X̂S because the column vectors of X̂S trivially span the column space of

X̂S . Hence

2

c
s

nϕ8
}PSε}22 � 2

c
s

nϕ8

��pV DV tqε��2
2
� 2

c
s

nϕ8

��DV tε
��2
2
. (V orthognonal)

We further have

2

c
s

nϕ8

��DV tε
��2
2
� 2

c
s

nϕ8

ş

j�1

�
x̂1jε

}x̂j}

2

¤ 2s

c
s

nϕ8
max

j�1,...,s

�
x̂1jε

}x̂j}

2

. (2.31)

If x̂j were independent of ε, we could apply Hoeffding’s inequality conditionally on x̂j and then

note that the bound is independent of x̂j . However, x̂j depends on η which we expect to be

correlated with ε. So we have to show that
x̂1jε
}x̂j} can be bounded with high probability. We have

2s

c
s

nϕ8
ε1

x̂j

}x̂j}2
� 2s

c
s

ϕ8

1
1?
n
}x̂j}2

�
1

n
ε1x�j �

1

n
ε1px̂j � x�j q



(2.32)

We now bound the right hand side from above by bounding each of the three terms separately:

1. the term 1
1?
n
}x̂j}2

,

2. the term 1
n
ε1x�j ,

3. the term 1
n
ε1px̂j � x�j q.
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Bounding the term 1
1?
n
}x̂j}2

Our strategy will be to bound 1?
n
}x̂j}2 from below. For this, we

use Lemma 45 to infer that with probability at least pL45pSq we have that for all j P S

1?
n
}x̂j}2 ¥ rL45pjq,

where pL45p�q is defined in (2.43) and rL45p�q is defined in (2.44). Hence with probability at least

pL45pSq we have that for all j P S

1
1?
n
}x̂j}2

¤ 1

rL45pjq .

Bounding the term 1
n
ε1x�j We have

1

n
ε1x�j �

1

n

ņ

i�1

εix
�
i,j

� 1

n

ņ

i�1

εi

�
ḑ

l�1

Zi,lπ
�
l,j

�

� 1

n

ḑ

l�1

π�l,j

�
ņ

i�1

εiZi,�

�

¤ ��π�j ��1
����� 1n

ņ

i�1

εiZi,�

�����
8
.

Recall that by Assumption 3, εiZi,l is independent over i and has mean zero. Because both εi and

Zi,l are sub-Gaussian by Assumption 4, their product is sub-exponential with norm at most ρερZ .

Hence we can apply Bernstein’s inequality26 to infer that a fixed l P t1, . . . , du we have

P

�
1

n

�����
ņ

i�1

εiZi,l

����� ¡ t

�
¤ 2 exp

�
�cB min

"
t

ρzρε
,

t2

ρ2zρ
2
ε

*
n



.

26Corollary 2.8.3 in Vershynin (2020).
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In particular, if we choose t � 1
nγ ρzρε, then with probability at least 1�2 exp p�cBn1�2γq we have

1

n

�����
ņ

i�1

εiZi,l

����� ¤ 1

nγ
ρzρε.

Using a union bound, we see that with probability at least 1� 2d exp p�cBn1�2γq we have

max
lPt1,...,du

1

n

�����
ņ

i�1

εiZi,l

����� ¤ 1

nγ
ρzρε.

To summarize, we have shown that with probability at least 1� 2d exp p�cBn1�2γq it holds that

1

n
ε1x�j ¤

��π�j ��1 1

nγ
ρzρε.

Bounding the term 1
n
ε1px̂j � x�j q We have

1

n
ε1px̂j � x�j q �

1

n
ε1Z

�
π̂j � π�j

� ¤ 1?
n
}ε}2

1?
n

��Z �
π̂j � π�j

���
2
.

By assumption 4, εi is sub-Gaussian with parameter ρε. By (Vershynin, 2020, Lemma 2.7.6), ε2i is

sub-exponential with constant at most ρ2ε. So when we subtract the mean of ε2i , it is sub-exponential

with constant at most ccenter,SEε2i . Because we have assumed independence over i in assumption

3, we can apply Bernstein’s inequality (Vershynin, 2020, Corollary 2.8.3) to see

P
����� 1?

n

�}ε}22 � Er}ε}22s
����� ¥ t

�
¤ 2 exp

�
�cB min

#
t2

c2center,SEρ
4
ε

,
t

ccenter,SEρ2ε

+
n

�
.

For the second term, we can use Assumption 6 to infer that with probability at least pA4,j,n we have

that 1?
n

��Z �
π̂j � π�j

���
2
¤ rA4,j,n. Combining the bounds for the two terms with a union bound,
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we see that with probability at least pA4,j,n � 2 exp p�cBnq it holds that

1

n
ε1px̂j � x�j q ¤

a
2ccenter,SEρεrA4,j,n.

To summarize, we combine (2.31), (2.32) and our probabilistic bounds for the three terms appear-

ing in (2.32) with a union bound to infer that

2

c
s

nϕ8
}PSε}2 ¤ 2s

c
s

ϕ8

1

min
jPS

rL45pjq
�
ρZρε
nγ

max
jPS

��π�j ��1 �a
2ccenter,SEρεrA4,S,n




with probability at least

pS3,γ :� pA4,S,n � pL45pSq � 1� 2 expp�cBnq � 2d expp�cBn1�2γq. (2.33)

Step 4: Bound 2
b

s
nϕ8

}PSηβ
�}22

Note that ηβ� is a vector with n i.i.d. entries. By Assumption 4, we know that
°
jPS

η1,jβ
�
j is

sub-Gaussian with sub-Gaussian norm at most ρη }β�}2. Hence the argument to bound }PSηβ
�}22

proceeds exactly as in step 3, we just have to replace ρε with ρη }β}2.

Step 5: Bound 2
b

s
nϕ8

���PSpX̂S �X�
Sqβ�

���2
2

Note that

2

c
s

nϕ8

���PSpX̂S �X�
Sqβ�S

���
2
¤2

c
s

nϕ8

���pX̂S �X�
Sqβ�S

���
2

(PS is a projection)

�2
c

s

nϕ8
}Zpπ̂S � π�Sqβ�S}2

�2
c

s

nϕ8

�����
¸
jPS

Zpπ̂j � π�j qβ�j
�����
2

¤2
c

s

nϕ8

¸
jPS

��Zpπ̂j � π�j qβ�j
��
2
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¤2s
c

s

nϕ8
max
jPS

��Zpπ̂j � π�j qβ�j
��
2

¤2s
c

s

ϕ8
}β�}8

1?
n
max
jPS

��Zpπ̂j � π�j q
��
2
.

We are now in the position to apply Assumption 6 to bound max
jPS

��Zpπ̂j � π�j q
��
8. Hence we

conclude that with probability at least pA4,S,n

2

c
s

nϕ8

���PSpX̂S �X�
Sqβ�

���
2
¤ s2

c
s

ϕ8
}β�}8 rA4,S,n.

Step 6: Conclude

Let’s recap the results from step 1 and 2:

���β� � β̂oracle
���
1
¤ 2

c
s

nϕ8

���PSY � X̂β�
���
2

((2.28))

¤ 2

c
s

nϕ8

����PSpX̂S �X�
Sqβ�

���
2
� }PSηβ

�}2 � }PSε}2
	
. ((2.30))

To conclude, we use a union bound to combine the bounds from steps 3,4 and 5.

Lemma 43. Assume that Assumptions 3, 4 and 6 are satisfied. Fix α P �0, 1
2

�
. Define ξ P Rn as

ξ :� pX̂ �X�qβ � ηβ� � ε. (2.34)

Then with probability at least

pL4 :� pS2 � pS3 � pS4pαq � 2

it holds that

���� 1nX̂ tξ

����
8
¤ rS2 � rS3 � rS4pαq :� rL4 (2.35)
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where pS2 is defined in (2.37), rS2 is defined in (2.38), pS3 is defined in (2.39), rS3 is defined in

(2.40), pS4pαq is defined in (2.41), rS4pαq is defined in (2.42).

Proof. This proof is similar to proof of Lemma A.4 in Zhu (2018). First, the triangle inequality

gives

���� 1nX̂ tξ

����
8

�
���� 1nX̂ t

�
pX̂ �X�qβ � ηβ� � ε

	����
8

¤
���� 1nX̂ tpX̂ �X�qβ

����
8
� 1

n

���X̂ t pηβ� � εq
���
8

¤
���� 1nX̂ tpX̂ �X�qβ

����
8
� 1

n

�����X̂ �X�
	t

pηβ� � εq
����
8
� 1

n

��pX�qt pηβ� � εq��8
�
���� 1nX̂ tpX̂ �X�qβ

����
8
� 1

n

�����X̂ �X�
	t

pηSβ�S � εq
����
8
� 1

n

��pX�qt pηSβ�S � εq��8 . (2.36)

In the following three steps, we will bound each of these terms separately.

Step 2: Bound
��� 1
n
X̂pX̂ �X�qtβ

���
8

Recall that

���� 1nX̂ 1pX̂ �X�qβ�
����
8
� max

kPt1,...,pu

���� 1nX̂ 1
kpX̂ �X�qβ�

���� .
Now consider an arbitrary k P t1, . . . , pu. Then

1

n
X̂ 1

kpX̂ �X�qβ�

� 1

n
X̂ 1

kZpπ̂ � π�qβ�

� 1

n
X̂ 1

kZpπ̂S � π�Sqβ�S

¤ 1

n

���X̂k

���
2
}Zpπ̂S � π�Sqβ�S}2 (Hölder)
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� 1

n

���X̂k

���
2

�����
¸
jPS

Zpπ̂j � π�j qβ�j
�����
2

¤ s

n

���X̂k

���
2
}β�}8max

jPS

��Zpπ̂j � π�j q
��
2

�s 1?
n

���X̂k

���
2
}β�}8

1?
n
max
jPS

��Zpπ̂j � π�j q
��
2

¤srL45pkq }β�}8
1?
n
max
jPS

��Zpπ̂j � π�j q
��
2

(w.p. ¥ pL45ptkuq by Lemma 45)

¤srL45pkq }β�}8 rA4,S,n, (w.p. ¥ pA4,S,n by A6)

where pL45 is defined in 2.43 and rL45 is defined in 2.44. With a union bound, we conclude that

with probability at least

pL45ptkuq � pA4,S,n � 1

it holds that

1

n
X̂ 1

kpX̂ �X�qβ� ¤ srL45pkq }β�}8 rA4,S,n �: bn,k.

Now let’s use a union bound to control the maximum over k P t1, . . . , pu:

P
�

max
kPt1,...,pu

���� 1nX̂ 1
kpX̂ �X�qβ�

���� ¥ max
kPt1,...,pu

bn,k

�

�P
�
� ¤

kPt1,...,pu

"���� 1nX̂ 1
kpX̂ �X�qβ�

���� ¥ max
kPt1,...,pu

bn,k

*��
¤

¸
kPt1,...,pu

P
����� 1nX̂ 1

kpX̂ �X�qβ�
���� ¥ max

kPt1,...,pu
bn,k

�

¤
¸

kPt1,...,pu
P
����� 1nX̂ 1

kpX̂ �X�qβ�
���� ¥ bn,k

�

¤1� pA4,S,n � pL45pt1, . . . , puq.
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Concluding with a union bound, with probability at least

pS2 :� pA4,S,n � pL45pt1, . . . , puq � 1 (2.37)

it holds that

���� 1nX̂ 1pX̂ �X�qβ�
����
8
¤ s }β�}8 rA4,S,n

�
max

kPt1,...,pu
rL45pkq



�: rS2. (2.38)

Step 3: Bound 1
n

�����X̂ �X�
	t

pηSβ�S � εq
����
8

We have

1

n

�����X̂ �X�
	1
pηSβ�S � εq

����
8

� 1

n
}Z pπ̂ � π�q pηSβ�S � εq}8

� max
jPt1,...,pu

1

n

����π̂j � π�j
�1
Z 1 pηSβ�S � εq

���
¤ max

jPt1,...,pu
1

n

����π̂j � π�j
�1
Z 1
���
2
}ηSβ�S � ε}2 (Hölder)

� 1?
n
}ηSβ�S � ε}2 max

jPt1,...,pu
1?
n

��Z �
π̂j � π�j

���
2

¤ 1?
n
p}ηSβ�S}2 � }ε}2q max

jPt1,...,pu
1?
n

��Z �
π̂j � π�j

���
2
.

We can control }ηSβ�S}2 and }ε}2 via Bernstein’s inequality: By assumption 4, ηi,Sβ
�
S is sub-

Gaussian with parameter ρη }β�S}2. By (Vershynin, 2020, Lemma 2.7.6), pηi,Sβ�Sq2 is sub-exponential

with constant at most ρ2η }β�S}22. So when we subtract the mean of pηi,Sβ�Sq2, it is sub-exponential

with constant at most ccenter,SE pηi,Sβ�Sq2. Because we have assumed independence over i in as-

sumption 3, we can apply Bernstein’s inequality (Vershynin, 2020, Corollary 2.8.3). Using the
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same arguments for }ε}2, we find

P
�
1

n

��}ηSβ�S}22 � E
�}ηSβ�S}22��� ¥ t

�

¤2 exp
�
�cB min

#
t2

c2center,SEρ
4
η }β�}42

,
t

ccenter,SEρ2η }β�}22

+
n

�
,

P
�
1

n

��}ε}22 � E
�}ε}22��� ¥ t

�

¤2 exp
�
�cB min

#
t2

c2center,SEρ
4
ε

,
t

ccenter,SEρ2ε

+
n

�
.

With Assumption 6 and a union bound, we see that with probability at least

pS3 :� pA4,t1,...,pu,n � 4 expp�cBnq (2.39)

it holds that

1

n

�����X̂ �X�
	1
pηSβ�S � εq

����
8
¤a

2ccenter,SE pρη }β�}2 � ρεq rA4,t1,...,pu,n �: rS3. (2.40)

Step 4: Bound 1
n
}X� pηSβ�S � εq}8

We have

1

n

��pX�qt pηSβ�S � εq��8
� max

jPt1,...,pu
1

n

����X�
j

�t pηSβ�S � εq
���

� max
jPt1,...,pu

1

n

����Zπ�j �t pηSβ�S � εq
���

� max
jPt1,...,pu

1

n

����π�j �t Zt pηSβ�S � εq
���

� max
jPt1,...,pu

����� 1n
ņ

i�1

�
ḑ

l�1

π�l,jZi,l

��¸
kPS

ηi,kβ
�
k � εi

������
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¤ max
jPt1,...,pu

������ 1n
ņ

i�1

�
ḑ

l�1

π�l,jZi,l

��¸
kPS

ηi,kβ
�
k

�������
����� 1n

ņ

i�1

�
ḑ

l�1

π�l,jZi,l

�
εi

�����
�

By Assumption 4,
d°

l�1

π�l,jZi,l is sub-Gaussian with sub-Gaussian norm at most ρz
��π�j ��2. Similarly,°

kPS
ηi,kβ

�
k is sub-Gaussian with sub-Gaussian norm at most ρη }β�}2. Now we can use Lemma

2.7.7 in Vershynin (2020) infer that

W 1
i,j :�

�
ḑ

l�1

π�l,jZi,l

��¸
kPS

ηi,kβ
�
k

�

W 2
i,j :�

�
ḑ

l�1

π�l,jZi,l

�
εi

are sub-exponential with sub-exponential with sub-exponential norm at most

ρW 1,j � ρz
��π�j ��2 ρη }β�}2

ρW 2,j � ρz
��π�j ��2 ρε,

respectively. By Assumption 3, we also know that W 1
i and W 2

i have expectation zero. Also by

Assumption 3, pW 1
i,jq is independent over i, as is pW 2

i,jq. Hence we can apply Bernstein’s inequality

to infer for k P t1, 2u

P

������ 1n
ņ

i�1

W k
i,j

����� ¥ t

�
¤ 2 exp

�
�cB min

#
t2

ρ2
Wk,j

,
t

ρWk,j

+
n

�
.

With t � max
jPt1,...,pu

ρ
Wk,j

nα , a union bound over j yields

P

�
max

jPt1,...,pu

����� 1n
ņ

i�1

W k
i,j

����� ¥
max

jPt1,...,pu
ρW,j

nα

�
¤ 2p exp

��cBn1�2α
�
.
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Taking a union bound over k P t1, 2u yields that with probability at least

pS4pαq :� 1� 4p exp
��cBn1�2α

�
(2.41)

it holds that

1

n

��pX�qt pηSβ�S � εq��8 ¤ 1

nα
max

jPt1,...,pu
ρz

��π�j ��2 pρη }β�}2 � ρεq �: rS4pαq. (2.42)

Step 5: Conclude

Using a union bound, we combine (2.38), (2.40) and (2.42) to bound the three terms in (2.36).

Lemma 44. Suppose Assumption 3, 4 and 6 are satisfied. Then with probability at least pL45pSq
it holds that

σmax

�
X̂ t

SX̂S

n

�
¤ s

�
max
jPS

rL45pjq

2

.

where pL45pSq is defined in (2.43) and rL45pSq is defined in (2.44).

Proof. Recall that

σmax

�
X̂ t

SX̂S

n

�
¤ 1

n
max
jPS

¸
kPS

���X̂ 1
jX̂k

��� (Gershgorin)

¤ 1

n
max
jPS

¸
kPS

���X̂j

���
2

���X̂k

���
2

(Hölder)

� 1

n
max
jPS

���X̂j

���
2

¸
kPS

���X̂k

���
2

¤ s

�
max
jPS

1?
n

���X̂j

���
2


2

¤ s

�
max
jPS

rL45pjq

2

(Lemma 45)
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with probability at least pL45pSq.

Lemma 45. Under Assumption 3, 4 and 6 for any set J � t1, . . . , pu, we have with probability a

least

pL45pJq :� pA4,J,n � 2
¸
jPJ

exp
��cB min

 
κj, κ

2
j

(
n
�

(2.43)

that for all j P J

1?
n

���X̂j

���
2
P

�
�����
d

1

2n

ņ

i�1

E
�pZi,�π�j q2

�� rA4,J,nloooooooooooooooooomoooooooooooooooooon
:�rL45,low

,

d
3

2n

ņ

i�1

E
�pZi,�π�j q2

�� rA4,J,nloooooooooooooooooomoooooooooooooooooon
:�rL45,high

�
����� (2.44)

where κj is defined in (2.47).

Proof. Note that

1?
n

���X̂j

���
2
� 1?

n
}Zπ̂j}2 �

1?
n

��Zπ�j � Zpπ�j � π̂jq
��
2
.

The (reverse) triangle inequality yields

1?
n

��Zπ�j ��2 � 1?
n

��Z �
π̂j � π�j

���
2
¤ 1?

n

���X̂j

���
2
¤ 1?

n

��Zπ�j ��2 � 1?
n

��Z �
π̂j � π�j

���
2
. (2.45)

Note that Zi,�π�j is sub-Gaussian with constant at most ρz
��π�j ��2 by Assumption 4. We have

1?
n

��Zπ�j ��2 �
d

1

n

ņ

i�1

�
Zi,�π�j

�2
.

By (Vershynin, 2020, Lemma 2.7.6), pZi,�π�j q2 is sub-exponential with constant at most ρ2z
��π�j ��22.

So when we subtract the mean of pZi,�π�j q2, it is sub-exponential with constant at most
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ccenter,SEρ
2
z

��π�j ��22. Because we have assumed independence over i in Assumption 3, we can apply

Bernstein’s inequality (Vershynin, 2020, Theorem 2.8.2) to infer that

P

������ 1n
ņ

i�1

�
Zi,�π�j

�2 � 1

n

ņ

i�1

E
�pZi,�π�j q2

������ ¥ t

�

¤2 exp
�
�cB min

#
t2

c2center,SEρ
4
Z

��π�j ��42 ,
t

ccenter,SEρ2Z
��π�j ��22

+
n

�
.

In particular, with the choice t � 1
2
1
n

n°
i�1

E
�pZi,�π�j q2

�
we obtain that with probability at least

1� 2 exp
��cB min

 
κj, κ

2
j

(
n
�

we have

1?
2

d
1

n

ņ

i�1

E
�pZi,�π�j q2

� ¤ 1?
n

��Zπ�j ��2 �¤
c

3

2

d
1

n

ņ

i�1

E
�pZi,�π�j q2

�
(2.46)

where

κj :�
1
2n

n°
i�1

E
�pZi,�π�j q2

�
ccenter,SEρ2Z

��π2
j

��2
2

. (2.47)

We now combine this probabilistic bound with Assumption 6 using a union bound to infer that

(2.44) for all j P J with probability at least

1� p1� pA4,J,nq � 2
¸
jPJ

exp
��cB min

 
κj, κ

2
j

(
n
� � pA4,J,n �

¸
jPJ

2 exp
��cB min

 
κj, κ

2
j

(
n
�
.

This completes the proof.

2.8.2 On Assumption 6

Assumption 6 is formulated for any subset J � t1, . . . , pu. In contrast, results for many methods

are available only for J with exactly one element. The following remark show how to use a union
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bound to go from such results to the one required in Assumption 6.

Remark 46. Suppose that for each j P t1, . . . , puwe have that with probability at least pA4,tju,n �:
pA4,j,n it holds that

1?
n

��Zpπ̂j � π�j q
��
2
¤ rA4,tju,n �: rA4,j,n.

Then for any J � t1, . . . , pu, inequality (2.18) with rA4,J,n :� max
jPJ

rA4,j,n holds that with proba-

bility at least

pA4,J,n :� 1�
¸
jPJ
p1� pA4,j,nq . (2.48)

To get some intuition, consider equation (2.48) where pA4,j,n � pA4,1,n for all j P t1, . . . , nu,
i.e.

pA4,J,n � 1� |J| p1� pA4,1,nq .

For asymptotic results, it will be important that pA4,J,n converges to 1 for any J, in particular for

the “worst case” J � t1, . . . , pu. For this, p1� pA4,1,nq will have to decrease faster than p is rising,

for example exponentially in n.

2.8.3 Prediction Error of the LASSO

In this section, we revisit the analysis of the prediction error of the LASSO.

Our goal is not to generate new insights. In fact, we follow the discussion of Hastie, Tibshirani

and Friedman in section 11 of Hastie et al. (2015) which, to the best of our knowledge, is based on

the analysis by Bickel, Ritov and Tsybakov in Bickel et al. (2009). The motivation for including
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this section is to allow the reader to follow the analysis in one coherent framework. While the

literature often considers fixed design matrices and Gaussian errors, we present the results with

random matrices and sub-Gaussian errors.

We start with the LASSO objective for a generic first stage j P t1, . . . , pu. We have

fpπjq � 1

2n
}Xj � Zπj}22 � λ }πj}1 (2.49)

Denote the minimizer of this function, i.e. the LASSO estimator by π̂LASSO
j .

Lemma 47. We have

���� 1nηtjZ
����
8

��π̂LASSO
j � π�j

��
1
� λ

���π�j ��1 � ��π̂LASSO
j

��
1

	
¥ 1

2n

��Z �
π̂LASSO
j � π�j

���2
2
. (2.50)

Proof. As π̂LASSO
j is the minimizer of (2.49), we have

f
�
π�j
� ¥ fpπ̂LASSO

j q.

i.e.

1

2n

��Xj � Zπ�j
��2
2
� λ

��π�j ��1
¥ 1

2n

��Xj � Zπ̂LASSO
j

��2
2
� λ

��π̂LASSO
j

��
1

� 1

2n

��Xj � Zπ�j � Z
�
π̂LASSO
j � π�j

���2
2
� λ

��π̂LASSO
j

��
1

� 1

2n

���Xj � Zπ�j
��2
2
� 2

�
Xj � Zπ�j

�t
Z
�
π̂LASSO
j � π�j

�� ��Z �
π̂LASSO
j � π�j

���2
2

	
� λ

��π̂LASSO
j

��
1

Subtracting 1
2n

��Xj � Zπ�j
��2
2

from both sides, noting that Xj � Zπ�j � Zπ�j � ηj � Zπ�j � ηj and
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rearranging, we find

1

n
ηtjZ

�
π̂LASSO
j � π�j

�� λ
���π�j ��1 � ��π̂LASSO

j

��
1

	
¥ 1

2n

��Z �
π̂LASSO
j � π�j

���2
2
.

Using Hölder’s inequality to further bound the left hand side of from above, we find (2.50).

Lemma 48. If

λ ¥ 2

n

��Ztηj
��
8

then

1

n

��Z �
π̂LASSO
j � π�j

���2
2
¤ 12λ

��π�j ��1 .
Proof. Let’s start with (2.50). Note that the lower bound 1

2n

��Z �
π̂LASSO
j � π�j

���2
2

can be further

bounded from below by zero. Then we have with the triangle inequality

0 ¤
���� 1nηtjZ

����
8

��π̂LASSO
j � π�j

��
1
� λ

���π�j ��1 � ��π̂LASSO
j

��
1

	

�
����� 1nηtjZ

����
8
� λ


��π̂LASSO
j � π�j

��
1
� λ

���π̂LASSO
j � π�j

��
1
� ��π�j ��1 � ��π̂LASSO

j

��
1

	

¤
����� 1nηtjZ

����
8
� λ


��π̂LASSO
j � π�j

��
1
� λ

���π̂LASSO
j

��
1
� ��π�j ��1 � ��π�j ��1 � ��π̂LASSO

j

��
1

	

�
����� 1nηtjZ

����
8
� λ


��π̂LASSO
j � π�j

��
1
� 2λ

��π�j ��1
¤� 1

2
λ
��π̂LASSO

j � π�j
��
1
� 2λ

��π�j ��1 � λ

2

�
4
��π�j ��1 � ��π̂LASSO

j � π�j
��
1

	
.

Comparing the last estimate with the lower bound 0, we find

��π̂LASSO
j � π�j

��
1
¤ 4

��π�j ��1 (2.51)
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Now let’s consider (2.50) again:

1

2n

��Z �
π̂LASSO
j � π�j

���2
2
¤
���� 1nηtjZ

����
8

��π̂LASSO
j � π�j

��
1
� λ

���π�j ��1 � ��π̂LASSO
j

��
1

	

¤
���� 1nηtjZ

����
8

��π̂LASSO
j � π�j

��
1
� λ

���π�j � π̂LASSO
j

��
1

	
(triangle ineq)

¤1

2
λ
��π̂LASSO

j � π�j
��
1
� λ

���π�j � π̂LASSO
j

��
1

	
�3

2
λ
��π̂LASSO

j � π�j
��
1

¤3

2
λ4

��π�j ��1 � 6λ
��π�j ��1 .

Multiplying by 2 gives the desired result.

So far, all arguments were done without using the distribution of Z or ηj . This came at a price:

the statement in lemma 48 is conditional on the inequality

λ ¥ 2

n

��Ztηj
��
8

which, depending on the realizations of Z and ηj , may or may not hold. Of course, we are interested

in choosing λ large enough to ensure that the event holds with “large” probability. For this, we use

our Assumptions 3 and 4.

Lemma 49. Suppose Assumption 3 and 4 are satisfied. Set t ¥ 0 and choose J � t1, . . . , pu
arbitrarily. Then with probability at least

1� 2 exp

�
logpd |J|q � cB min

"
t2

ρ2Zρ
2
η

,
t

ρZρη

*
n




we have

max
jPJ

1

n

��Ztηj
��
8 ¤ t.
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Proof. We have

1

n

��Ztηj
��
8 � max

kPt1,...,du

����� 1n
ņ

i�1

Zi,kηi,j

����� .
We note that Zi,kηi,j is independent over i by Assumption 3. Also by Assumption 3, the expectation

of Zi,kηi,j is zero. In Assumption 4, we have assumed that Zi,k are sub-Gaussian with sub-Gaussian

norm at most ρz and that ηi,j is sub-Gaussian with sub-Gaussian norm at most ρη. We know that

the product of two sub-Gaussians is sub-exponential with the sub-exponential norm bounded by

the product of the sub-Gaussian norms. Hence we can apply Bernstein’s inequality to infer that for

any j P t1, . . . , pu we have for any t ¥ 0

P

������ 1n
ņ

i�1

Zi,kηi,j

����� ¥ t

�
¤ 2 exp

�
�cB min

"
t2

ρ2Zρ
2
η

,
t

ρZρη

*
n




Using a union bound, we find for any t ¥ 0

P

�
max
jPJ

max
kPt1,...,du

����� 1n
ņ

i�1

Zi,kηi,j

����� ¥ t

�
�P

�
��� ¤

jPJ
kPt1,...,du

#����� 1n
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����� ¥ t

+����

¤
¸
jPJ

kPt1,...,du

P

������ 1n
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Zi,kηi,j

����� ¥ t

�

¤2d |J| exp
�
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ρ2Zρ
2
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,
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ρZρη

*
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�2 exp
�
logpd |J|q � cB min

"
t2

ρ2Zρ
2
η

,
t

ρZρη

*
n



.

This completes the proof.

We now combine the results we have shown so far in the following Corollary.

Corollary 50. Suppose Assumption 3 and 4 are satisfied. Choose some J � t1, . . . , pu. Fix some
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0   τ  
b

n
logpd|J|q and set

λ � 2ρzρη

c
logpd |J|q

n
τ

Then with probability at least

1� 2 exp
�
logpd |J|q �1� cBτ

2
��

(2.52)

it holds for all j P J that

1

n

��Z �
π̂LASSO
j � π�j

���2
2
¤ 24ρzρη

c
logpd |J|q

n
τ
��π�j ��1 . (2.53)

Proof. Combine Lemma 49 and Lemma 48.

In particular, if n, d and |J| tend to infinity such that logpd|J|q
n

tends to zero, we can choose

τ � 1
2
?
cB

and see that with probability converging to one, the LASSO prediction error is bounded

by a constant times
b

logpd|J|q
n

. This is the so-called slow rate of the LASSO.
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Chapter 3

Demand Estimation with Finitely Many

Consumers

Coauthored with Thomas Wiemann*

3.1 Introduction

The problem of estimating demand parameters in settings with endogenous prices arises fre-

quently in empirical economics. A key assumption in commonly applied demand models is that

population-level market shares are observed without error. In practice, however, market shares are

often estimated as averages of consumer choices. When the number of consumers over which these

averages are computed is finite, these shares will be estimated with error. Estimation errors in the

market shares propagate to estimation errors in the demand parameters which do not “average out”

due to the nonlinearity of the discrete choice model.

One symptom of this is the so-called “zero-market-share problem” which arises when products

are not purchased in every market (e.g., Dubé et al., 2021). Zero-valued market shares imply that

*Kenneth C. Griffin Department of Economics, University of Chicago

191



the conventional demand estimators are not defined and cannot be computed, making the zero-

market-share problem particularly salient. In response to zero-valued market shares, researchers

often use ad-hoc solutions such as removing market-product combinations with no purchases. As

noted in Dubé et al. (2021), researchers may not always be explicitly aware of ad-hoc manipulation

of the data. Common datasets such as retail scanner data from IRI and Nielsen, for example, only

report products with positive purchases. These data manipulations may however introduce addi-

tional biases and render existing theoretical guarantees on conventional estimators inapplicable.

In this paper, we propose a new estimator of demand parameters suitable for settings with esti-

mated and possibly zero-valued market shares. The small but important departure from the demand

models of Berry (1994) and Berry et al. (1995) is that we consider the observed market shares to

be generated by a finite number of consumers. The estimator is based on a constrained optimiza-

tion problem constructed by generalizing the mathematical program with equilibrium constraints

(MPEC) formulation of Dubé et al. (2012) using known bounds on the estimation error in the ob-

served market shares. We dub the estimator Estimated/Zero-share MPEC (EZ-MPEC) to highlight

the applicability of the estimator in settings with estimated and zero-valued market shares. Our

theoretical results show consistency of the estimator as the number of markets (T ) and the number

of consumers in each market (n) grow such that logpT q{n Ñ 0. We further provide confidence

intervals via test inversion under the same regime.

Although we focus on demand estimation based on random coefficient logit models, our results

generalize to a larger class of demand estimators, including nonparametric demand estimation as

in Tebaldi et al. (2019). To the best of our knowledge, this is the first application of finite-sample

concentration bounds to the construction of a demand estimator for settings with estimated market

shares and endogenous prices. In simulations, we highlight prevalence of biases arising through

estimated market shares and ad-hoc data manipulations as well as illustrate the good performance

of the EZ-MPEC estimator.

This paper contributes to the growing literature aiming to resolve the zero-market-share prob-
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lem. One strand of this literature views the occurrence of zeros in the observed market shares as a

rejection of the conventional random coefficient demand model and proposes extensions that mo-

tivate population-level market shares of zero. Gandhi et al. (2020) propose an asymptotic regime

in which products are either “safe” with a population-level market share bounded away from zero

or “risky” with a population-level market share of zero, and Dubé et al. (2021) incorporate consid-

eration sets of consumers. The other strand of literature, to which we contribute primarily, focuses

on sampling error of the market shares – and associated positive probability of zero-valued market

shares – when these are constructed based on finitely many consumer purchases. To character-

ize the finite sample uncertainty in the observed market shares, Hortaçsu et al. (2021) consider

a Bayesian IV approach and assume consumer arrivals follow a Poisson process. Regardless of

the cause of the zero-shares considered by these approaches, however, the estimators proposed in

existing literature rely on additional data not conventionally needed for demand estimation. In par-

ticular, instruments informative about the identity of safe products, the consumers’ consideration

sets, or the consumers’ search behavior is needed, respectively. In contrast, the estimator proposed

in this paper does not make a substantial structural deviation of the popular demand model and

requires no additional data beyond the number of consumers in every market.

We also contribute to the literature on demand estimation with estimated market shares. Berry

et al. (2004) and Freyberger (2015) develop asymptotic distributions of the random coefficient logit

demand estimator with estimated market shares when the number of products J or the number of

markets T grow, respectively, and show that the number of customers n must grow sufficiently

quickly to achieve asymptotic normality. Freyberger (2015) further shows that the conventional

estimator is not centered at the true value unless
?
T {n Ñ 0. The bias correction and covariance

adjustments suggested by this literature are not applicable, however, when an estimated market

share is zero-valued. In contrast, the confidence intervals we provide hold for logpT q{n Ñ 0 and

can be computed regardless of whether zero-valued market shares occur in the data. This appears

particularly important as the settings with small numbers of consumers in which the finite-sample
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corrections of Freyberger (2015) are most likely to be relevant are also the settings in which they

are least likely to be applicable due to increased probability of zero-valued market shares in the

data.

The rest of the paper proceeds as follows: Section 3.2 reviews the random coefficient logit

model and discusses consequences of estimated market shares. Section 3.3 presents and discusses

the EZ-MPEC estimator. Section 3.5 provides Monte Carlo simulations to illustrate finite sample

performance of the proposed estimator to conventional alternatives. Section 3.6 concludes.

3.2 The random coefficient logit model

This section briefly reviews the random coefficient demand model of Berry (1994) and Berry et al.

(1995), discusses the finite number of consumers adaptation, and illustrates its consequences for

estimation.

We begin by defining the demand model in a single market. Consider a consumer i who chooses

an alternative from J � t0, . . . , Ju that maximizes their utility

Yi � argmax
jPJ

XJ
j βi � ξj � εi,j, (3.1)

where Xj are observed product characteristics of the jth alternative including prices, βi is a

consumer-specific parameter vector βi, ξj is the corresponding unobserved demand shock, and

εij is a consumer and product-specific latent utility shock. Throughout, j � 0 is the outside option

with utility normalized to zero. Let X be the J � dX vector with Xj as elements and define ξ

analogously. To obtain the random coefficient logit model, we place distributional assumptions on

the demand coefficients and latent utility shocks.

Assumption 8. Consumers choose an alternative from J � t0, . . . , Ju via (3.1) @i � 1, . . . , n.

The latent utility shocks εi,j are i.i.d. T1EV. Customer preference parameters βi are i.i.d. multivari-

194



ate normal with parameter θ � pµ,Σq.

Integrating over εi and βi, results in the common expression for conditional choice probabilities

(CCPs):

πjpX, ξ; θq � PrpYi � j|X, ξ; θq �
»

exp pXjβ � ξjq
1�°J

k�1 exp pXkβ � ξkq
dF pβ; θq. (3.2)

Since the latent demand shocks ξ are unobserved by the econometrician but potentially cor-

related with observed product characteristics such as prices, researchers frequently leverage in-

strumental variables Z for estimation of the demand parameters. Assumption 9 states a moment

condition frequently employed in practice.

Assumption 9. There exists an instrument Z such that E
�
ZJξ

� � 0.

To allow for the application of common linear IV methodology despite the non-linear de-

pendence of the CCPs in (3.2), Berry (1994) shows that for any pX, θq, there exists a bijec-

tive map between the value of the CCPs and the latent demand shocks. In particular, for all

s P p0, 1qJ : }s}1   1, there exists a unique ξ P RJ such that πpX, ξ; θq � s, where πpX, ξ; θq
denotes the J �1 vector of CCPs. Replacing the unobserved demand shocks in the moment condi-

tion of Assumption 9 with these solutions ξpX, s; θq, then motivates GMM estimators that replaces

s with the strictly positive CCPs.

In practice the econometrician may not observe market shares sampled directly from the CCPs

as postulated in Berry et al. (1995). Instead, market shares are frequently estimated as sample

averages over consumer choices. Assumption 10 highlights this small but critical deviation from

the conventional demand models with observed CCPs.

Assumption 10. Observed market shares are sample averages of consumer choices

Ŝ
pnq
j � 1

n

ņ

i�1

1tYi � ju, @j P J .
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Settings with observed market shares constructed from a finite sample of consumer purchase

decisions as considered here introduce several challenges to demand estimation. In particular, due

to the nonlinear nature of the conventional demand model in equation (3.2), the sampling error

in the market shares does not straightforwardly average out and instead introduces an incidental

parameter problem. For example, consider the conventional GMM estimator in a setting with many

markets given by

θ̂blp � argmin
θPΘ

�
1

T

Ţ

t�1

ZJ
t ξpXt, St; θq

�J

WT

�
1

T

Ţ

t�1

ZJ
t ξpXt, St; θq

�
, (3.3)

where is pSt, Xt, Ztq iid� pπpX, ξ; θ0qq, X, Zq is a sample of t � 1, . . . , T markets, and WT is a

positive-definite weighting matrix, often chosen to be W � p°T
t�1 ZtZ

J
t q�1. Freyberger (2015)

characterizes the asymptotic distribution of θ̂blp when St are replaced with estimated market shares

Ŝn
t as T Ñ 8. Similarly, Berry et al. (2004) characterizes the analogue estimator with estimated

market shares in a setting with many products.1 The authors show that unless the number of

consumers grow at sufficiently fast rate, the conventional estimator is not
?
T or

?
J Gaussian.

Freyberger (2015) further shows that the asymptotic distribution of the estimator as the number

of markets grow is not centered at the true value unless
?
T {n Ñ c for some finite constant c.

The author proposes a bias correction to improve finite sample performance, which is shown to

improve performance in Monte Carlo simulations.

In addition to the incidental parameter problem, estimated market shares can be cause for

the zero-market-share problem. This is because for any product-market combination, nŜpnq
jt �

BinomialpπjpXt, ξt; θ0q, nq, implying a strictly positive probability for the event that some products

do not have purchases in every market (i.e., PrpDj, t : Ŝjt � 0q ¡ 0). The occurrence of zero-

1Berry et al. (2004) and Freyberger (2015) also accommodate for sampling uncertainty from the Monte Carlo
integration of the integral in equation (3.2). We focus on sampling uncertainty from the estimation of market shares
only here, but note that our application of concentration inequalities straightforwardly extends to the Monte Carlo
integration error.
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valued market shares in particular has received increased attention in recent literature due to both

the abundance of economic settings with no observed purchases for some products and its severe

consequences for conventional estimation approaches. An important aspect of estimators such as

θ̂blp leveraging the demand inversion directly is that they require the set of market shares pStqTt�1 to

be positive since otherwise ξp�q is not defined.

The infeasiblity of θ̂blp with estimated zero-valued market shares is particularly evident using

the MPEC formulation proposed by Dubé et al. (2012):

min
pθ,ξq

�
1

T

Ţ

t�1

ZJ
t ξt

�J

WT

�
1

T

Ţ

t�1

ZJ
t ξt

�

s.t. Sjt � πjpXt, ξt; θq, @pj, tq P J � T ,

(3.4)

where T � t1, . . . , T u is the set of observed markets. Dubé et al. (2012) show that MPEC is

equivalent to the previously defined GMM estimator θ̂blp. Since the domain of the CCPs πjp�q is

strictly positive, presence of any vector of market shares St that is not strictly positive implies that

no feasible solution to the mathematical program exists. Replacing pStqTt�1 with their estimated

counterparts can thus result in infeasibility of θ̂blp. Further, the bias corrections suggested by

Freyberger (2015) cannot be computed for the same reasons.

In practice, researchers often apply ad-hoc manipulations to their data when zero-valued mar-

ket shares arise to be able to apply conventional random coefficient logit estimators. Popular ap-

proaches appear to be: 1) Replacing the zero-valued market shares with an arbitrary small number

(e.g., 0.5{n), or 2) removing the product-market combinations from the sample that are associated

with zero-valued market shares (Quan and Williams, 2018; Gandhi et al., 2020; Dubé et al., 2021).2

The bias of the first approach is likely sensitive to the specific small number used (see, e.g., Dubé

2Alternatively, researchers may choose to aggregate purchases across products and markets until estimated shares
are strictly positive. This introduces measurement error and limits the type of question that can be answered as
products and markets are combination are often artificial, smoothing across relevant heterogeneity and making the
results challenging to interpret. Quan and Williams (2018) give an augmented nested logit model under which local
demand heterogeneity is identified using aggregated rather than local market shares.
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et al., 2012). We are more concerned with the second approach of truncating the data, as this can

lead to substantial selection bias. In particular, while by assumption ErZJ
t ξts � 0 for all mar-

kets for identification, the moment conditions ErZJ
t ξt|Ŝpnq

t ¡ 0s do not hold in general because

conditional on Ŝ
pnq
t ¡ 0 the latent demand shocks are less likely to be negative. The next section

develops an alternative estimator that explicitly takes sampling error in the marketing shares into

account and can be applied to settings with zero-valued market shares.

3.3 Estimation

To address the issues arising from estimation errors in market-shares, we combine the MPEC

estimator (3.4) developed by Dubé et al. (2012) with finite-sample confidence intervals on the

observed market shares. Throughout, we consider an i.i.d. sample across markets.

Assumption 11. The data is an i.i.d. sample {pŜpnq
t , Xt, ZtquTt�1 from pŜpnq, X, Zq.

We propose to consider any solution to

min
pθ,ξq

�
1

T

Ţ

t�1

ZJ
t ξt

�J

WT

�
1

T

Ţ

t�1

ZJ
t ξt

�

s.t. Ŝ
pnq
jt P Cj

n,T pXt, ξt; θ, αq, @pj, tq P J � T .

(3.5)

Compared to (3.4), we replace the constraint that observed market shares equal model-implied

expected CCPs with the constraint that observed market shares must be contained in a set Cn,T .

As in the equality constraints of (3.4), Cn,T depends on product characteristics, the latent demand

shocks, and the demand parameter. In addition, the set depends on the number of consumers n, the

number of markets T , and a hyper-parameter α P p0, 1q.3

The purpose of the sets Cn,T is to bound the sampling errors in the estimation of the market

shares. We choose this set to be a joint confidence set that covers the true population-level market
3Cn,T further depends on the number of products J . Since J is fixed throughout, we omit this dependence.
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shares with probability at least 1 � α for any finite number of consumers. These finite-sample

confidence intervals provide a probabilistic bound on the deviations of the estimated market shares

from their population-values. These joint confidence intervals are constructed in two steps: First,

we consider a particular product-market combination and derive a probabilistic bound on the es-

timation error in the observed market share. Second, we adjust the marginal confidence level to

achieve uniform coverage at a desired rate. We now discuss both steps in turn.

Multiple methods to derive finite-sample confidence sets exist. In choosing a method, the

researcher faces a trade-off between tractability and tightness. On one end of the spectrum are

confidence-intervals based on Hoeffding’s inequality. These confidence intervals lend themselves

to straightforward computation of the EZ-MPEC estimator as they correspond to constraints which

are linear in the model-implied choice probabilities. EZ-MPEC based on these bounds thus exhibits

the same Jacobian and Hessian used for solving infeasible MPEC.4 However, Hoeffding’s inequal-

ity is conservative, allowing for larger sampling error in the market shares than necessary for the

desired nominal coverage level. On the other end of the spectrum, binomial quantiles have exact

coverage but imply an increased computational burden on the constrained optimization problem

due to the non-linear dependence of the confidence sets on the model-implied CCPs.5

Given a choice of bound, the marginal confidence intervals need to be adjusted to achieve joint

coverage for all estimated market shares. We consider simple adjustments based on the union

bound (Bonferroni) in Proposition 51. These adjustments are conservative as they allow for arbi-

trary dependence across products without exploiting the structure of the random coefficient logit

model. Sharp bounds on the sampling error may be obtained using multinomial quantiles. Unfortu-

nately, multinomial quantiles are computationally intractable for even small numbers of products.

We thus focus on bounds that are more likely to be useful in practice.

4We note that Cn,T based on Hoeffding’s inequality also allows using finite-sample confidence intervals for the
nonparametric demand model proposed in Tebaldi et al. (2019) which requires linearity for tractability. See Appendix
3.8.4 for further illustration.

5In Appendix 3.8.5, we give implementation details for feasible MPEC using the binomial quantiles.
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Proposition 51. Let assumptions 8-11 hold. Fix α P p0, 1q. Then with Hoeffding’s inequality, it

holds that

Pr

�
���Dpj, tq P J � T : |Ŝjt � πjpXt, ξt; θ0q| ¥

gffe log
�

2J
1� T

?
1�α

	
2n

�
��
¤ α,

@n P N��. With binomial quantiles, it holds that

Pr

�
Dpj, tq P J � T : Ŝjt R

�
1

n
F�1

Bin

�
1� T

?
1� α

J
, πjpXt, ξt; θ0q, n



,

1

n
F�1

Bin

�
1� 1� T

?
1� α

J
, πjpXt, ξt; θ0q, n


�

¤ α,

@n P N��, where F�1
Bin p�, p, nq denotes the quantile function of the binomial distribution with n

trials and success probability p P p0, 1q. For J � 1, the second inequality holds with equality.

Proposition 51 provides explicit bounds on the estimation error of all market shares simulta-

neously that hold with probability at least 1 � α. Since these bounds depend on the true CCPs,

πpXt, ξt; θ0q, they can be leveraged in estimation. For example, when using bounds based on

Hoeffding’s inequality, the EZ-MPEC estimator is given by

min
pθ,ξq

�
1

T

Ţ

t�1

ZJ
t ξt

�J

WT

�
1

T

Ţ

t�1

ZJ
t ξt

�

s.t. Ŝ
pnq
jt � πjpXt, ξt; θq ¤

gffe log
�

2J
1� T

?
1�α

	
2n

, @j, t,

πjpXt, ξt; θq � Ŝ
pnq
jt ¤

gffe log
�

2J
1� T

?
1�α

	
2n

, @pj, tq P J � T .

Remark 52. Although Proposition 51 considers the random coefficient logit model due to its

popularity in demand estimation, we highlight that these bounds on the market share sampling
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error do not depend on the specific demand model. In particular, researchers may substitute CCPs

implied by any discrete choice model for πp�q that admits population-level demand inversion.

3.4 Asymptotic Properties

This section provides formal consistency and inference results based on large n and T asymptotics.

We begin with listing additional assumptions. 6

Assumption 12. Dγ P p0, 1q such that P pπpX, ξ; θ0q P rγ, 1� γsJq � 1.

Assumption 13. Θ, suppX , and suppZ are compact.

Assumption 14. The matrix 1
T

°T
t�1 Z

J
t Zt has full rank and is stochastically bounded, i.e., @ε ¡ 0

there exists an Mpεq such that Pr
�
} 1
T

°T
t�1 Z

J
t Zt} ¡Mpεq

	
  ε.

Assumption 15. @δ ¡ 0, DMpδq ¡ 0, such that

lim
TÑ8

Pr

�
inf

θRNθ0
pδq
}GT pθq �GT pθ0q} ¥Mpδq



� 1,

where GT is the objective function in (3.3).

Assumptions 12 and 13 restrict the support of the population-level market shares, the prod-

uct characteristics, and the parameter space. Assumption 14 places moment restrictions on the

instrument vectors. Finally, Assumption 15 assumes identification of the demand parameter from

the moment conditions in Assumption 9. These assumptions are analogous to those assumed for

asymptotic analysis in Freyberger (2015).

The assumptions are sufficient to show convergence of the EZ-MPEC estimator to the demand

parameters θ0 for many markets T and many consumers per market n at the rate logpT q{n Ñ 0.

For asymptotic analysis, we let the confidence parameter α depend on pn, T q.
6Notation: When A is a matrix, }A} � tracepAtAq1{2. Else, } � } denotes the Euclidean norm. Further, we denote

a neighborhood by Nx0
pδq � tx P X0 : }x� x0} ¤ δu.
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Theorem 53. Let assumptions 8 to 15 hold. If in addition αn,T P p0, 1q : αn,T � opp1q and

logpT q � oppnq, then @ϵ ¡ 0,

lim
n,TÑ8

Pr

�
sup

θ̃PΘ�n,T

��θ̃ � θ0
�� ¡ ϵ

�
� 0,

where Θ�
n,T denotes the argmin of the EZ-MPEC estimator in (3.5) with bounds based on Propo-

sition 51 and hyperparameter αn,T , and θ0 are the true demand parameters.

Remark 54. While Theorem 53 is formulated for EZ-MPEC based on the inequalities of Propo-

sition 51, it also applies to many other methods to derive finite-sample confidence intervals. (3.5)

combined with any method to construct finite-sample confidence intervals enjoys the properties of

Theorem 53 as long as the confidence intervals are not larger than the confidence intervals based

on Hoeffding’s inequality. This includes, in particular, binomial and multinomial quantiles.

To obtain confidence intervals with sufficient coverage of θ0, we rely on inversion of tests of

null hypotheses of the form

H0 : θ � θ0 versus H1 : θ � θ0.

For this purpose, we propose the test statistic ĜT given by

ĜT pαq � min
tξ̃tuTt�1

T

�
1

T

Ţ

t�1

ZJ
t ξ̃t

�J�
1

T

Ţ

t�1

ξ̂Jt ZtZ
J
t ξ̂t

��1�
1

T

Ţ

t�1

ZJ
t ξ̃t

�

s.t. Ŝ
pnq
jt P Cj

n,T pXt, ξ̃t; θ, αq, @pj, tq P J � T ,

(3.6)

where pξ̂tqTt�1 are consistent estimates of the latent demand shocks obtained from computing EZ-

MPEC in a first step. The test statistic is akin to the χ2 test statistic conventionally leveraged in

GMM inference of the random coefficient logit models of Berry et al. (1995), but accounts for the

sampling error in the market shares. Theorem 55 gives a test based on (3.6) with controlled size.
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Theorem 55. If the assumptions of Theorem 53 hold, in particular, logpT q � oppnq and αn,T P
p0, 1q : αn,T � opp1q, then under H0

lim sup
n,TÑ8

E
�
1tĜT pαn,T q ¡ c1�τ

K u
�
¤ τ,

for any τ P p0, 1q, where cα{2K is the 1� α
2

quantile of a χ2 distribution with K degrees of freedom.

Importantly, Theorem 53 and Theorem 55 hold as logpT q � oppnq. In contrast, Freyberger

(2015) shows that the naive estimator that replaces the population-level market shares in infeasible

MPEC with their estimates is asymptotically normal only
?
T � oppnq. As logpT q    ?

T for

large T , our estimator is robust to situations when there are much fewer consumers per market.

Even stronger, Freyberger (2015) shows that in the asymptotic regime we consider, the naive es-

timator that replaces the population-level market shares in infeasible MPEC with their estimates

incurs a bias that is not bounded in probability when rescaled with
?
T .

3.5 Monte Carlo Simulation

We conduct Monte Carlo simulations to illustrate the implications of estimated market shares for

conventional random coefficient logit estimators that remove zero-valued market shares from their

data and highlight improvements of the proposed EZ-MPEC estimator based on binomial quantiles.

The setting is similar to the simulations reported in Dubé et al. (2012).

Each of the simulations considers a setting with J � 5 products (and an outside option) and

T � 50 markets. We let the number of consumers per market vary across simulations to analyze

settings with varying sampling uncertainty in the estimated market shares. Each consumer makes

their purchasing decision with CCP associated with product j given in Assumption 8, where

XJ
j βi � β0

i �W t
jβ

w
i � pjβ

p
i ,
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and βi � pβ0
i , pβw

i qt, βp
i q. Throughout, we take

Wj �

�
�����
W 1

j

W 2
j

W 3
j

�
����� � N

�
�����

�
�����
0

0

0

�
����� ,

�
�����
1.55 �.25 0.2

�.25 1.55 0.2

0.2 0.2 1.55

�
�����

�
����
, and ξj � Np0, 1q,

and let the endogenous price be given by pj � maxp0.1ξj�ej, , 0.01q, with ej � Np0, 1q. Note that

endogeneity is introduced through dependence of price on the latent demand shock ξj . For each

product, there is an additional underlying instrument vector Zj of dimension 6�1 with entries gen-

erated Zm
j � Up0, 1q � 0.25ej , where Up0, 1q is the realization of a standard uniformly distributed

random variable. In estimation, we construct a higher order standard polynomial expansion of Zj

with the product characteristics Wj .7

Our analysis applies the proposed EZ-MPEC estimator in (3.5) where the bounds Cα
n are based

on the Binomial quantiles. We choose α � 0.1 so that the set of all J�T sampling error conditions

hold jointly with probability at least 0.9.

We begin by considering a data generating process where the demand parameters βi are fixed

across consumers at β0 � 0, βw � p1 1 -1qJ, and βp � �3. In this logit setting without random

coefficients, demand inversion with population-level market shares motivates a simple two-stage

least squares (TSLS) estimator with logpSj{S0q as the second stage left-hand side variable. We

compare EZ-MPEC to both the infeasible TSLS estimator using the population-level market shares

as well as to the ad-hoc TSLS estimator that removes product-market combinations with zero-

valued market shares.

Table 3.1 presents the results for 1,000 simulations. We focus on the median absolute error

(MAE) of the demand parameter corresponding to the endogenous price variable (βp � �3) as the

evaluation criterion in columns (1)-(3) to assess both centrality and dispersion. Column (4) gives

7Following a similar approach as in Dubé et al. (2012), we consider
Zj , Z

2
j , Z

3
j ,Wj ,W

2
j ,W

3
j ,
±6

m�1 Z
m
j ,
±3

k�1 W
k
j , Zj � W 1

j , Zj � W 2
j . This results in a total of 42 moment con-

ditions.
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the average share of zero-valued market shares in the sample, which corresponds to the share of

the J � T observations removed from the data in column (2).

TSLS with population-level market shares in column (1) of Table 3.1 has an MAE of approx-

imately 0.09.8 In contrast, the TSLS estimator with estimated sample shares (TSLS: Ad-Hoc) has

substantially higher MAE as large as 0.44 at 250 consumers per market. This difference reduces as

the number of consumers per market grow and corresponding share of zero-valued market shares

decreases, yet, even with 5000 consumers per market do not suffice to estimate the market shares

at sufficient accuracy to ignore their sampling error.

The EZ-MPEC estimator in column (3) of Table 3.1 improves over the TSLS estimator with

estimated market shares. In particular for markets with a small numbers of consumers between

500-1000, the differences are substantial. For example, at 750 consumers per market, the EZ-

MPEC estimator as an MAE that is 0.103 smaller than TSLS: Ad-Hoc. Given that the sampling

uncertainty of the infeasible TSLS estimator with population-level market shares corresponds to

an MAE of approximately 0.09, this highlights that ignoring sampling error in the market shares

can lead to qualitatively very different results. As the number of consumers increase and the share

of zero-valued market shares decreases, the incidental parameter and selection bias of the TSLS

estimator with estimated market shares decrease, reducing the magnitude of the MAE to that of

the EZ-MPEC estimator as expected.

8Note that because consumer markets have no implications for the population-level market shares, any differences
in the corresponding TSLS estimator are due to sampling uncertainty of the T markets.
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Table 3.1: Mean Absolute Error for DGP without Random Coefficients

# Consumers (zero-share) TSLS: Infeasible TSLS: Ad-Hoc EZ-MPEC

(1) (2) (3)

500 (0.133) 0.094 0.317 0.231

750 (0.110) 0.091 0.289 0.186

1000 (0.095) 0.088 0.260 0.185

2000 (0.068) 0.091 0.191 0.166

3000 (0.054) 0.084 0.167 0.154

4000 (0.046) 0.088 0.173 0.150

5000 (0.040) 0.092 0.150 0.158

Notes. Results based on 1,000 Monte Carlo simulations. TSLS: Infeasible and TSLS: Ad-

Hoc denote two-stage least squares estimators using the population-level and estimated market

shares, respectively. TSLS: Ad-Hoc is computed using only those product-market combina-

tions with positive estimated market shares. Parentheses state the average fraction of observa-

tions with zero-valued estimated market shares.

In a second set of simulations, we consider a data-generating process based on the random co-

efficient logit model. In particular, the consumer-specific demand parameters βi are uncorrelated

and generated as β0
i � Np0, 0.25q, βw

i � Npp1 1 -1qJ, 0.25I3q, and βp
i � Np�3, 1q. In this ran-

dom coefficient logit setting without random coefficients, demand inversion with population-level

market shares motivates estimation via a nested-fixed point estimation as in Berry et al. (1995) or

via the MPEC estimator of Dubé et al. (2012) given in (3.4). Both approaches target identical esti-

mands but the MPEC estimator has computational and numerical advantages (Dubé et al., 2012).

Similar to the first simulation, we compare EZ-MPEC to both the infeasible MPEC estimator using

the population-level market shares as well as to the feasible MPEC estimator based on estimated

market shares that removes product-market combinations with zero-valued market shares. For all
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estimators, we evaluate the integral in (3.2) with 200 Monte Carlo draws. Because we do not focus

on numerical integration here, we use the same 200 draws in data generation and estimation.

Table 3.2 presents the results for 1,000 simulations. As before, we focus on the median abso-

lute error (MAE) of the mean demand parameter corresponding to the endogenous price variable

(Erβp
i s � �3). The share of zero-valued market shares in column (4) is the share of the sample

dropped from the data when computing the feasible MPEC estimator based on estimated market

shares (MPEC: Ad-Hoc) in column (2).

The infeasible MPEC estimator that uses the population-level market shares reported in column

(1) of Table 3.2 has an MAE of approximately 0.14. In markets with a small number of consumers

between 500-1000, the ad-hoc MPEC has MAEs between approximately 0.263-0.312, highlight-

ing again the relative importance of the sampling uncertainty associated with market shares. In

contrast to the setting without random coefficients, the EZ-MPEC estimator does not improve over

the ad-hoc MPEC estimator for these small markets. When the number of consumers increases,

however, the MAE of the EZ-MPEC estimator decreases at faster rate. We expect that this is due

to the fast contraction of the Binomial quantiles as the number of consumers grow, which are used

for constructing the feasible set in estimation, relative to the reduction incidental parameter and

selection bias that the ad-hoc MPEC estimator suffers from.
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Table 3.2: Mean Absolute Error for DGP with Random Coefficients

# Consumers (zero-share) MPEC: Infeasible MPEC: Ad-Hoc EZ-MPEC

(1) (2) (3)

500 (0.091) 0.146 0.312 0.350

750 (0.072) 0.143 0.296 0.298

1000 (0.061) 0.148 0.263 0.250

2000 (0.040) 0.151 0.222 0.205

3000 (0.031) 0.142 0.213 0.189

4000 (0.026) 0.146 0.199 0.178

5000 (0.023) 0.134 0.199 0.171

Notes. Results based on 1,000 Monte Carlo simulations. MPEC: Infeasible and MPEC: Ad-Hoc

denote MPEC estimators using the population-level and estimated market shares, respectively.

MPEC: Ad-Hoc is computed using only those product-market combinations with positive esti-

mated market shares. Parentheses state the average share of observations with zero-valued esti-

mated market shares.

3.6 Conclusion

This paper proposes a new EZ-MPEC estimator for demand estimation in settings with endogenous

prices and estimated market shares. The estimator is constructed by generalizing the constrained

optimization formulation of Dubé et al. (2012) for the random coefficient logit model of Berry

et al. (1995) using probabilistic bounds on the sampling error of market shares. We show that the

estimator is consistent as the number of markets grow large T Ñ 8 and the number of consumers

per market n grows at appropriate rate such that logpT q{n Ñ 0. Under analogous conditions,

we further provide confidence intervals that contain the true demand parameters at pre-specified

confidence level.
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Two Monte Carlo simulations illustrate the importance of estimation error in market shares and

showcase that the incidental parameter and selection problem that conventional estimators suffer

from can be substantial. In these settings, application of the proposed EZ-MPEC estimator can

lead to meaningful improvements.
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3.8 Appendix

3.8.1 Proof of Proposition 51

We begin by establishing the following auxiliary result.

Lemma 56. Fix n P N�� and τ P p0, 1q. Let pZiqiPt1,...,nu be a sequence of random variables such

that

1. pZiqiPt1,...,nu is a family of independent random variables,

2. for all i, suppZi � r0, 1s.

Then

Pr

�
�
����� 1n

ņ

i�1

pZi � ErZisq
����� ¥

d
log

�
2
τ

�
2n

�

¤ τ.
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Proof of Lemma 56. Theorem 2.2.6 in Vershynin (2018) with Mi � 1{n, mi � 0 implies that

for any t ¡ 0,

Pr

�
1

n

ņ

i�1

pZi � ErZisq ¥ t

�
¤ exp

�
� 2t2°n

i�1

�
1
n
� 0

�2
�
� exp

��2t2n� .
Then,

Pr

������ 1n
ņ

i�1

pZi � ErZisq
����� ¥ t

�

�Pr

������
#
1

n

ņ

i�1

pZi � ErZisq
����� ¥ t

+¤#
1

n

ņ

i�1

p�Zi � Er�Zisq ¥ t

+�

¤2 exp ��2t2n�

where the last inequality applies a union bound. Finally, the right hand side is equal to τ if t �b
logp 2

τ q
2n

.

Proof of Proposition 51. Let Cj
n,T pX, ξ; θ, τq denote either

�
�πjpX, ξ; θq �

d
log

�
2
τ

�
2n

, πjpX, ξ; θq �
d

log
�
2
τ

�
2n

�
� ,

or

�
1

n
F�1

Bin

�τ
2
, πjpX, ξ; θq, n

	
,
1

n
F�1

Bin

�
1� τ

2
, πjpX, ξ; θq, n

	�
.

Note that by Assumption 8-10, ErŜpnq
jt s � πjpXt, ξt; θ0q, for all j and t. By Lemma 56 and the

definition of quantiles, it follows that in either case

Pr
�
Ŝjt P Cj

n,T pXt, ξt; θ0, τq
	
¥ 1� τ. (3.7)
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We then have

Pr
�
@j, t : Ŝj,t P Cj

n,T pXt, ξt; θ0, τq
	
� Pr

�
T£
t�1

J£
j�1

!
Ŝjt P Cj

n,T pXt, ξt; θ0, τq
)�

r1s�
T¹
t�1

Pr

�
J£

j�1

!
Ŝjt P Cj

n,T pXt, ξt; θ0, τq
)�

�
T¹
t�1

�
1� Pr

�
J¤

j�1

!
Ŝjt R Cj

n,T pXt, ξt; θ0, τq
)��

r2s¥
T¹
t�1

�
1�

J̧

j�1

Pr
�
Ŝjt R Cj

n,T pXt, ξt; θ0, τq
	�

r3s¥ r1� Jτ sT ,

where [1] follows from Assumption 11, [2] follows from the union bound, and [3] follows from

inequality (3.7) whenever Jτ ¤ 1. Finally, setting the right hand side equal to 1 � α and solving

for τ , we have 1� T
?
1�α

J
¥ τ.

3.8.2 Proof of Theorem 53

Proof. The proof proceeds as follows. First, we state an equivalent formulation of the EZ-MPEC

estimator using the demand inversion of Berry (1994). Second, we show that consistency of the

estimator is implied by consistency in the latent demand shocks. Finally, we show consistency in

the latent demand shocks.

Remark 57. The second step of the proof, showing that consistency of the demand estimator is

is implied by consistency in the latent demand shocks, relies heavily on the proof of Freyberger

(2015), who shows consistency when population-level market shares are replaced by their esti-

mates. We adapt the proof to allow for indeterminacy due to the set-constraints but follow the

same arguments elsewhere. Further, when proving consistency in the latent demand shocks, we

leverage a lemma that follows from the proof of Freyberger (2015).
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3.8.2.1 An Equivalent EZ-MPEC

By Berry et al. (1995), for any realization of the product characteristics and a given value of

the demand parameters θ, there exists a bijective map between sample shares and latent demand

shocks ξ. Let this map be denoted by ξp�q. For notational convenience, let ξtps; θq � ξpXt, s; θq
and similarly πtpξ; θq � πpXt, s; θq.

Define for any α P p0, 1q

St
n,T pαq � tst P p0, 1qJ : st P Ct

n,T pαq, }st}1   1u

Sn,T pαq � tsT P p0, 1qJ�T : st P St
n,T pαq, @t � 1, . . . , T u,

where

Ct
n,T pαq �

�
Ŝ
pnq
t � δn,T pαq, Ŝpnq

t � δn,T pαq
�

δn,T pαq �
d

log
�
2JT
α

�
2n

where Ŝ
pnq
t is the vector of estimated market shares in market t with n consumers.

Let GT denote the objective function in a sample of size T defined by

GT pθ, sT q �
�

1

T

¸
t�1

ZJ
t ξtpst; θq

�J

WT

�
1

T

¸
t�1

ZJ
t ξtpst; θq

�
.

The EZ-MPEC estimator in (3.5) is then equivalent to

min
θPΘ, sT Pp0,1qJ�T

GT pθ, sT q

s.t. sT P Sn,T pαq,
(3.8)
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3.8.2.2 Consistency implied by Consistency in Latent Demand Shocks

First, we show that any estimator θ̌ is consistent if

}GT pθ̌,ST q} � inf
θPΘ

}GT pθ,ST q} � opp1q. (3.9)

Fix δ ¡ 0. Note that

Pr
�}θ̌ � θ0} ¥ δ

� �Pr
�}θ̌ � θ0} ¥ δ, }GT pθ̌,ST q �GT pθ0,ST q} ¥ Cpδq�
� Pr

�}θ̌ � θ0} ¥ δ, }GT pθ̌,ST q �GT pθ0,ST q}   Cpδq�
¤Pr

�}GT pθ̌,ST q �GT pθ0,ST q} ¥ Cpδq�
� Pr

�
inf

θRNθ0
pδq
}GT pθ,ST q �GT pθ0,ST q}   Cpδq



,

where by Assumption 15

lim
TÑ8

Pr

�
inf

θRNθ0
pδq
}GT pθ,ST q �GT pθ0,ST q}   Cpδq



� 0.

For the first term, it holds that

}GT pθ̌,ST q �GT pθ0,ST q} ¤ }GT pθ̌,ST q} � }GT pθ0,ST q}
r1s� }GT pθ0,ST q} � inf

θPΘ
}GT pθ,ST q} � opp1q

¤ 2}GT pθ0,ST q} � opp1q,

where [1] applies Equation (3.9). Further, by the discussion in Appendix C of Freyberger (2015),

assumption 11, 12 and 13, imply that the support of ξt is bounded. Using in addition 14, Kol-
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mogorov’s law of large numbers gives }GT pθ0,ST q} � opp1q. Combining, we thus have

Pr
�}θ̌ � θ0} ¥ δ

� � opp1q

for any θ̌ such that (3.9).

Next, we show that if

sup
θPΘ

����
�

inf
s̃PSn,T

GT pθ, s̃q
�
�GT pθ,ST q

���� � opp1q (3.10)

then (3.9) holds.

Take any pθT q8T�1 with θT P Θ and note

������� inf
s̃PSn,T

GT pθT , s̃q
���� ���GT pθT ,ST q

������� ¤
����
�

inf
s̃PSn,T

GT pθT , s̃q
�
�GT pθT ,ST q

����
¤ sup

θPΘ

����
�

inf
s̃PSn,T

GT pθ, s̃q
�
�GT pθ,ST q

����
� opp1q,

(3.11)

where the last equation applies Equation (3.10).

Now define

θ̃ � argmin
θPΘ

}GT pθ,ST q}

and

θ̂ P arg inf
θPΘ, s̃PSn,T

GT pθ, s̃q.
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Then

0 ¤}GT pθ̂,ST q} � inf
θPΘ

}GT pθ,ST q}

�}GT pθ̂,ST q} � }GT pθ̃,ST q}

�}GT pθ̂,ST q} �
��� inf
s̃PSn,T

GT pθ̂, s̃q
���� ��� inf

s̃PSn,T

GT pθ̂, s̃q
���� }GT pθ̃,ST q}

r1s�
��� inf
s̃PSn,T

GT pθ̂, s̃q
���� }GT pθ̃,ST q} � opp1q

r2s¤
��� inf
s̃PSn,T

GT pθ̃, s̃q
���� }GT pθ̃,ST q} � opp1q

r3s�opp1q,

where [1] and [3] apply Equation (3.11), and [2] uses the definition of θ̂. Combining, we thus have

that (3.9) holds.

By the above, it thus suffices to show that (3.10) holds. Let Z be the JT � dZ matrix of

instruments. By the Cauchy-Schwarz inequality

����
�

inf
s̃PSn,T

GT pθ, s̃q
�
�GT pθ,ST q

����
2

� 1

T 2

����ZJ
��

inf
s̃PSn,T

ξT ps̃; θq
�
� ξT pST ; θq


����
2

¤ 1

T
}ZJZ} � 1

T

����
�

inf
s̃PSn,T

ξT ps̃; θq
�
� ξT pST ; θq

����
2

.

Since 1
T
}ZJZ} � Opp1q by Assumption 14, it suffices to prove that the second term is opp1q. For

this purpose, note further that

sup
θPΘ

1

T

����
�

inf
s̃PSn,T

ξT ps̃; θq
�
� ξT pST ; θq

����
2

� sup
θPΘ

1

T

Ţ

t�1

����
�

inf
s̃PSt

n,T

ξtps̃t; θq
�
� ξT pST ; θq

����
2

¤ sup
θPΘ

1

T

Ţ

t�1

sup
s̃PSt

n,T

���ξtps̃t; θq � ξT pST ; θq
���2

¤ sup
θPΘ

max
tPt1,...,T u

sup
s̃PSt

n,T

���ξtps̃t; θq � ξT pST ; θq
���2,

(3.12)
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so that we may consider the final expression.

3.8.2.3 Consistency of Latent Demand Shocks

For α P p0, 1q, let Hn,T pαq denote the the event that all Hoeffding bounds on the sampling error

hold in the sample – that is,

Hn,T pαq �
 
πpXt, ξt; θ0q P Ct

n,T pαq, @t � 1, . . . , T
(
.

Now notice that by the definition of πp�q and ξp�q, it holds for any Cpϵq ¡ 0 that

Pr

�
sup
θPΘ

max
tPt1,...,T u

sup
s̃PSt

n,T

���πtpξtps̃t; θq; θq � πtpξtpSt; θq; θq
��� ¥ Cpϵq

�

r1s� Pr

�
max

tPt1,...,T u
sup

s̃PSt
n,T

���s̃t � St

��� ¥ Cpϵq
�

r2s� Pr

�
max

tPt1,...,T u
sup

s̃PSt
n,T

���s̃t � St

���2 ¥ Cpϵq
�����Hn,T pαq

�
Pr pHn,T pαqq

� Pr

�
max

tPt1,...,T u
sup

s̃PSt
n,T

���s̃t � St

���2 ¥ Cpϵq
�����pHn,T pαqqc

�
Pr ppHn,T pαqqcq

r3s¤ Pr

�
max

tPt1,...,T u
sup

s̃PSt
n,T

���s̃t � St

���2 ¥ Cpϵq
�����Hn,T pαq

�
� Pr ppHn,T pαqqcq

r4s¤ Pr

�
max

tPt1,...,T u
sup

s̃PSt
n,T

���s̃t � St

���2 ¥ Cpϵq
�����Hn,T pαq

�
� α

r5s¤ Pr p2δn,T pαq ¥ Cpϵq|Hn,T pαqq � α

r6s¤1t2δn,T pαq ¥ Cpϵqu � α

(3.13)

where [1] uses that the bounds St
n,T based on Hoeffding’s inequality do not depend on θ, [2] follows

from the law of total probability, [3] uses that probabilities are bounded by one, [4] follows from

Proposition 51 which implies Pr pHn,T q ¥ 1 � α, [5] follows from the definition of St
n,T , and

[6] follows since δn,T pαq is non-random. Choosing α � αn,T � opp1q, it then follows from the
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definition of δn,T pαq that the term converges to zero whenever logpT q � oppnq.
This implies that (3.12) is opp1q. To see this, suppose by way of contradiction that for some

δ ¡ 0

sup
θPΘ

max
tPt1,...,T u

sup
s̃PSt

n,T

���ξtps̃t; θq � ξT pST ; θq
���2 ¡ δ.

Then by Lemma 58, which we state below, there exists Cpδq ¡ 0 such that

sup
θPΘ

max
tPt1,...,T u

sup
s̃PSt

n,T

���πtpξtps̃t; θq; θq � πtpξtpSt; θq; θq
��� ¡ Cpδq,

which contradicts that (3.13) is opp1q whenever logpT q � oppnq. Hence, we have the desired

result.

3.8.2.4 A Useful Lemma

Lemma 58. Under the assumptions of Theorem 53, it holds that @δ ¡ 0, DCpδq ¡ 0 such that for

all t � 1, . . . , T ,

Pr

�
inf
θPΘ

inf
ξ̃RNξt

pδq

���πtpξ̃; θq � πtpξt; θq
��� ¡ Cpδq

�
� 1.

Remark 59. The lemma follows from the proof of Theorem 1 in Freyberger (2015) with only

minor adaptations. We include it here for completeness.

Proof. Take ξ̃ : }ξ̃ � ξt} ¥ Jδ. Without loss of generality, take }ξ̃1 � ξ1t} ¥ }ξ̃j � ξjt}, @j �
1, . . . , J. We further take ξ̃1 � ξ1t ¥ δ, but the arguments for ξ̃1 � ξ1t ¤ �δ are analogous.

Let ξ̃ � δ denote element-wise addition. For all δ ¡ 0, it holds that

exppδqπ1tpξt; θq ¡ π1tpξt � δ; θq ¡ π1tpξt; θq, and π1tpξ̃; θq ¥ π1tpξt � δ; θq. (3.14)
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Further, by assumptions 8, 12, 13, and 11, there exists γ ¡ 0 and a compact set V � R
dX such

that
³
V dF pβ; θq ¡ p ¡ 0 and with probability 1,

γ   PrpYi � j}pt, Xt, ξt, βq   1� γ, (3.15)

for all j � 0, 1, . . . , J, and β P V , where

PrpYi � j}p,X, ξ; βq � exp pV ppj, Xj; βq � ξjq
1�°J

l�1 exp pV ppl, Xl; βq � ξlq
.

For notational convenience, let vjtpξ; βq � PrpYi � j}pt, Xt, ξ; βq
Next, define δ0 � mintδ,�1

4
logp1� γqu. We have

»
v1tpξ̃; βqdF pβ; θq �

»
v1tpξt; βqdF pβ; θq

¥
»
V
v1tpξ̃; βqdF pβ; θq �

»
V
v1tpξt; βqdF pβ; θq

¥
»
V
v1tpξt � δ0; βqdF pβ; θq �

»
V
v1tpξt; βqdF pβ; θq.

By the mean value theorem, it then holds that for some δ̃ P p0, δ0q

»
V
v1tpξt � δ0; βqdF pβ; θq �

»
V
v1tpξt; βqdF pβ; θq

�
�»

V
v1tpξt � δ̃; βqdF pβ; θq �

»
V
v1tpξt � δ̃; βq

�
J̧

k�1

vktpξt � δ̃; βq
�
dF pβ; θq

�
δ0,

r1s¥
�»

V
v1tpξt; βqdF pβ; θq � expp2δ̃q

»
V
v1tpξt; βq

�
J̧

k�1

vktpξt; βq
�
dF pβ; θq

�
δ0

r2s¥
»
V
v1tpξt; βqdF pβ; θq

�
1� expp2δ̃qp1� γq

	
δ0

r3s¥
»
V
dF pβ; θqγ

�
1� expp2δ̃qp1� γq

	
δ0

r4s¥pγ
�
1� expp2δ̃qp1� γq

	
δ0,

219



where [1] follows from (3.14), [2] and [3] follows from (3.15), and [3] uses that
³
V dF pβ; θq ¡

p ¡ 0. The last term is greater than zero and only depends on δ. Hence, we can take Cpδq �
pγ

�
1� expp2δ̃qp1� γq

	
δ0 which completes the proof.

3.8.3 Proof of Theorem 55

Proof. In addition to the test statistic ĜT pαq defined in (3.6) using the sampling bounds used

in estimation, we define two additional test statistics. The first is based on multinomial quantile

bounds C̃n,T pX, ξ; θ, αq with the property that

Pr
�
H̃n,T pαq

	
� α, (3.16)

where H̃n,T pαq denotes the the event that all multinhatomial bounds on the sampling error hold in

the sample – that is,

H̃n,T pαq �
!
Ŝ
pnq
t P C̃n,T pX, ξt; θ0, αq, @t � 1, . . . , T

)
.

In particular, define

G̃T pαq � min
tξ̃tuTt�1

T

�
1

T

Ţ

t�1

ZJ
t ξ̃t

�J�
1

T

Ţ

t�1

ξ̂Jt ZtZ
J
t ξ̂t

��1�
1

T

Ţ

t�1

ZJ
t ξ̃t

�

s.t. Ŝ
pnq
t P C̃n,T pX, ξ̃t; θ0, αq, @t P t1, . . . , T u.

(3.17)

Note that by construction,

C̃n,T pX, ξt; θ0, αq � Cn,T pX, ξt; θ0, αq, @t P t1, . . . , T u,

220



where the RHS are the bounds specified in Proposition 51 that we consider in estimation, so that

Pr
�
ĜT pαq ¤ G̃T pαq

	
� 1. (3.18)

Further, define the infeasible GMM test statistic

GT � T

�
1

T

Ţ

t�1

ZJ
t ξt

�J�
1

T

Ţ

t�1

ξ̂Jt ZtZ
J
t ξ̂t

��1�
1

T

Ţ

t�1

ZJ
t ξt

�
,

where ξt is the set of true latent demand shocks. Note then that under H0,

Pr
�
G̃T pαq ¤ GT pαq

���H̃n,T pαq
	
� 1. (3.19)

Then, let c1�τ
K denote the 1� τ th quantile of a χ2 distribution with K degrees of freedom

E
�
1tĜT pαq ¡ c1�τ

K u
� r1s¤ E

�
1tG̃T pαq ¡ c1�τ

K u
�

� E
�
1tG̃T pαq ¡ c1�τ

K u
���H̃n,T pαq

�
Pr

�
H̃n,T pαq

	
� E

�
1tG̃T pαq ¡ c1�τ

K u
���pH̃n,T pαqqc

�
Pr

�
pH̃n,T pαqqc

	
r2s¤ E

�
1tG̃T pαq ¡ c1�τ

K u
���H̃n,T pαq

�
p1� αq � α

r3s¤ E
�
1tGT ¡ c1�τ

K u
���H̃n,T pαq

�
p1� αq � α

r4s� E
�
1tGT ¡ c1�τ

K u� p1� αq � α,

(3.20)

where [1] follows from (3.18), [2] follows from (3.16), and [3] follows from (3.19). To show step

[4], we can show that

tpZt, ξtquTt�1 KK H̃n,T pαq,

since GT is a function of only tpZt, ξtquTt�1. To do so, let AT be any set on RT�J�pK�1q and
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consider

E
�
1AT

�tpZt, ξtuTt�1

�
1tH̃n,T pαqu

�
� E

�
1AT

�tpZt, ξtuTt�1

�
E
�
1tH̃n,T pαqu

���tpZt, ξt, StuTt�1

��
� E

�
1AT

�tpZt, ξtuTt�1

�
E
�
1tH̃n,T pαqu

���tStuTt�1

��
� E

�
1AT

�tpZt, ξtuTt�1

� p1� αq�
� E

�
1AT

�tpZt, ξtuTt�1

��
E
�
1tH̃n,T pαqu

�
.

Freyberger (2015) shows that under assumptions 8, 12, and 13, the latent demand shocks ξt are

bounded. Then, by assumptions 9, 11, and 14, it holds by the central limit theorem that
?
T 1

T

°T
t�1 Z

J
t ξt

dÑ
Np0,Σq, where ξt are the true latent demand shocks. Hence by Theorem 53 and the continuous

mapping theorem

GT � T

�
1

T

Ţ

t�1

ZJ
t ξt

�J�
1

T

Ţ

t�1

ξ̂Jt ZtZ
J
t ξ̂t

��1�
1

T

Ţ

t�1

ZJ
t ξt

�
dÑ χ2pKq, (3.21)

where χ2pKq is a χ2 distribution with K degrees of freedom. Combining (3.20) and (3.21) and

using that αn,T � opp1q, we have under H0,

lim sup
tÑ8

E
�
1tĜT pαq ¡ c1�τ

K u
�
¤ lim sup

TÑ8
E
�
1tGT ¡ c1�τ

K u� p1� αn,T q � αn,T � τ.

3.8.4 Nonparametric Demand Estimation

While the zero-share problem is particularly salient for the random coefficients logit model, the

underlying problem of errors in estimated choice probabilities exists in many frameworks for de-

mand estimation. To illustrate this, we extend the nonparametric demand estimation framework

proposed by Tebaldi et al. (2019) to a finite number of consumers. For computational tractability,

this model requires linearity of any additional constraints. We therefore focus on using Hoeffding’s
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inequality.

In the simpler framework with exogenous prices, the linear program is9

max
ϕ

{min
ϕ

c1ϕ

$''''''&
''''''%

�ϕk ¤ 0,

°
k ϕk � 1,

°
kPSpj,mq ϕk � ŝj,m @j,m.

(3.22)

where Spj,mq is the set of indices of elements of the Minimum Relevant Partition whose union

is the market share for product j in market m. Spj,mq is a deterministic function of prices and

known to the researcher. The only random variable here is ŝj,m, the estimated market share. We

can apply Hoeffding’s inequality to obtain simultaneous confidence intervals for all products in all

markets. This leads to

max
ϕ

{min
ϕ

c1ϕ

$''''''&
''''''%

�ϕk ¤ 0,

°
k ϕk � 1,���°kPSpj,mq ϕk � ŝj,m

��� ¤ Bpntqt,α @j,m.

(3.23)

Note that the absolute value in the concentration constraints can be written as linear constraints.

Hence our modification (3.23) of (3.22) maintains computational tractability since efficient solvers

for linear programs are available.

One interesting feature of (3.23) and its generalization to endogenous prices proposed by

Tebaldi et al. (2019) is that there often does not exist a feasible solution in applications. This

can be interpreted as a rejection of the econometric model by (3.22), notably the quasi-linearity of

prices or the time-market-homogeneity of latent utility draws. However, the reason why the model

appears rejected could be the finiteness of consumers. While we do not have access to the data

9The goal is to bound the counterfactual from both sides, hence the maxmin notation.
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used in Tebaldi et al. (2019), we can replicate this phenomenon in simulations.

3.8.5 Implementation details

This section outlines implementation details of the EZ-MPEC estimator using Binomial quantiles

and supplies expressions for the Jacobian and Hessians used in estimation. All programs are im-

plemented in Matlab using Knitro, with code readily available upon request.

3.8.5.1 Setup

Note that using the bounds derived in Proposition 51, we can write the corresponding EZ-MPEC

estimator as

min
pθ,ξ,ηq

ηJWη

s.t.
1

n
F�1

Bin

�
1� T

?
1� α

J
, Pjtpθq, n



� Ŝj,t ¤ 0, @j, t,

Ŝj,t � 1

n
F�1

Bin

�
1� 1� T

?
1� α

J
, Pjtpθq, n



¤ 0, @j, t,

η � 1

T

Ţ

t�1

ZJ
t ξt

where Pjtpθq � PrpYi � j}pt, Xt, ξt, θq as given in equation (3.2). The task is now to obtain the

Jacobian of the objective function and the constraints, as well as the Hessian of the corresponding

Lagrangian. Fortunately, the program is similar to Dubé et al. (2012), which derive first and second

order derivatives of the objective, the moment equality, as well as the CCPs Pjtpθq. We thus focus

on the derivatives of the Binomial quantile function with respect to the CCPs Pjtpθq.
Since the Binomial quantile function is not continuously differentiable, we approximate the

Binomial distribution function with a function that has a continuously differentiable inverse. We
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consider

F̂ pr, Pjtpθq, nq �
ņ

i�0

1

1� expp�2mpr � iqq
�
n

i



Pjtpθqi p1� Pjtpθqqn�i , (3.24)

where m ¥ 0 is a hyperparameter.10

3.8.5.2 Inverse function rules

Although the approximation (3.24) has an inverse in its first argument that is continuously differ-

entiable in its second argument, it does generally have a closed form expression. We thus leverage

simple results akin to the inverse function theorem.

In particular, we have

F̂
�
F̂�1pα, p, nq, p, n

	
� α

ñ B
B F̂

�
F̂�1pα, p, nq, p, n

	
� 0,

and hence by application of the chain rule and the inverse function theorem

0 � B
B F̂

�
F̂�1pα, p, nq, p, n

	
� BF̂ pr, p, nq

Br
���
r�F̂�1pα,p,nq

BF̂�1pα, p, nq
Bp � BF̂ pF̂�1pα, p, nq, p, nq

Bp

ñ BF̂�1pα, p, nq
Bp �

�BF̂ pF̂�1pα,p,nq,p,nq
Bp

BF̂ pr,p,nq
Br

���
r�F̂�1pα,p,nq

.

(3.25)

For the second order derivative, we simplify notation and let subscripts denote partial deriva-

tives with respect to the indexed argument.

10To account for the approximation, we can further shift the bounds by a constant. This would not affect the
derivatives.
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Then

B2F̂�1pα, p, nq
B2p � F̂�1

22 pα, p, nq �
B
Bp

�
F̂�1
2 pα, p, nq

	
� B
Bp

�
�F̂2pF̂�1pα, p, nq, p, nq
F̂1pF̂�1pα, p, nq, p, nq

�

� F̂2pF̂�1pα, p, nq, p, nq
F̂1pF̂�1pα, p, nq, p, nq2

B
Bp

�
F̂1pF̂�1pα, p, nq, p, nq

	

� 1

F̂1pF̂�1pα, p, nq, p, nq
B
Bp

�
F̂2pF̂�1pα, p, nq, p, nq

	

� 1

F̂1pF̂�1pα, p, nq, p, nq

�
F̂�1
2 pα, p, nq BBp

�
F̂1pF̂�1pα, p, nq, p, nq

	

� B
Bp

�
F̂2pF̂�1pα, p, nq, p, nq

	

,

(3.26)

where

B
Bp

�
F̂1pF̂�1pα, p, nq, p, nq

	
� F̂11pF̂�1pα, p, nq, p, nqF̂�1

2 pα, p, nq � F̂12pF̂�1pα, p, nq, p, nq,
B
Bp

�
F̂2pF̂�1pα, p, nq, p, nq

	
� F̂21pF̂�1pα, p, nq, p, nqF̂�1

2 pα, p, nq � F̂22pF̂�1pα, p, nq, p, nq.

Note that by Schwarz’s theorem, F̂12px, p, nq � F̂21px, p, nq. Hence, Equation (3.26) simplifies to

B2F̂�1pα, p, nq
B2p � 1

F̂1pF̂�1pα, p, nq, p, nq

�
F̂11pF̂�1pα, p, nq, p, nq

�
F̂�1
2 pα, p, nq

	2

� F̂22pF̂�1pα, p, nq, p, nq


.

(3.27)

3.8.5.3 Jacobian

Using Equation (3.25) and the chain rule, we have

BF̂�1pα, Pj,tpθq, nq
Bθ �

�
���BF̂ pF̂�1pα,Pj,tpθq,nq,p,nq

Bp

���
p�Pj,tpθq

BF̂ pr,p,nq
Br

���
r�F̂�1pα,Pj,tpθq,nq

�
�
BPj,tpθq

Bθ , (3.28)
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where BPj,tpθq
Bθ is the same as in Dubé et al. (2012), and

BF̂ pr, p, nq
Bp �

ņ

i�0

i
p
� n�i

1�p

1� expp�2mpr � iqq
�
n

i



pi p1� pqn�i ,

and

BF̂ pr, p, nq
Br � 2m

ņ

i�0

exp p�2mpr � iqq
p1� expp�2mpr � iqqq2

�
n

i



pip1� pqn�i.

3.8.5.4 Hessian

Using the chain rule, we have

B2F̂�1pα, Pj,tpθq, nq
BθBθJ � B

BθJ
�
BF̂�1pα, Pj,tpθq, nq

Bθ

�

� B2F̂�1pα, p, nq
Bp2

����
p�Pj,tpθq

BPj,tpθq
Bθ

BPj,tpθq
BθJ � BF̂�1pα, p, nq

Bp
����
p�Pj,tpθq

BPj,tpθq
BθBθJ ,

where BPj,tpθq
Bθ and BPj,tpθq

BθBθJ are the same as in Dubé et al. (2012), and BF̂�1pα,p,nq
Bp

����
p�Pj,tpθq

is given in

equation (3.28). Finally, using Equation (3.27), we have

B2F̂�1pα, p, nq
Bp2 � 1

F̂1pF̂�1pα, p, nq, p, nq

�
F̂11pF̂�1pα, p, nq, p, nq

�
F̂�1
2 pα, p, nq

	2

� F̂22pF̂�1pα, p, nq, p, nq


,

where

F̂22pr, p, nq �
ņ

i�0

ipi�1q
p2

� 2 ipn�iq
Prp1�pq � pn�iqpn�i�1q

p1�pq2

1� expp�2mpr � iqq
�
n

i



pi p1� pqn�i ,
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and

F̂11pr, p, nq � �2m
ņ

i�0

exp p�2mpr � iqq
p1� expp�2mpr � iqqq2

�
1� 2

exp p�2mpr � iqq
1� expp�2mpr � iqq


�
n

i



pi p1� pqn�i ,

and F̂1pr, p, nq and F̂�1
2 pα, p, nq as before.
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