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ABSTRACT

Macrophages play a central role in the immune response by monitoring for signs of infection

and then initiating a wider response. This immune response needs to be proportionate to the

threat; both over-responding and under-responding are potentially dangerous to the body.

The number of macrophages that activate, the degree and duration of their responses, and

the types of signals they generate may all impact the downstream immune response. How-

ever, not all macrophages respond identically even to a uniform stimulus, and macrophages

residing in tissues likely encounter localized and/or transient signals to which individual cells

may respond differently depending on their context, history, cell state, etc. Within this com-

plex environment, how do macrophages calibrate their individual and collective responses to

correctly match their response to the threat? Answering this question is difficult with tradi-

tional experimental techniques that either treat an entire culture or isolate cells from their

environment. Fluidic Force Microscopy (FluidFM) combines the precision control of Atomic

Force Microscopy (AFM) with a pneumatic system capable of delivering picoliter volumes

of liquid through a hollow AFM probe. FluidFM stimulation targets cells on their length-

scale, allows simultaneous live cell monitoring, preserves environmental context, and gives

the user precise control over the location, concentration, and duration of stimulation. Using

the FluidFM, I determined the minimum conditions in concentration and time for activation

of single macrophages via TLR stimulation, compared single, small group, and whole culture

stimulation, and found a dependence on culture density in modulating the group response.

I built a model to determine the stimulus gradients produced by FluidFM dispensing and

how it related to the spatial limits of the macrophage group response. Lastly, I developed a

method to investigate whole pathogen-macrophage interactions with the FluidFM, in order

to determine the physical parameters that are necessary to generate an immune response.

This research advances our knowledge of how macrophages, singly and collectively, modulate

their responses to signs of infection and environmental factors. These regulation strategies

xii



by early-responding cells are one piece of how the whole immune system regulates itself for

safe and effective function.

Note: supplementary data and code files from this research can be found online at:

DOI10.17632/mfyddz6n8k.1

xiii
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CHAPTER 1

INTRODUCTION

1.1 Macrophages and the innate immune response

The immune system can be broadly divided into innate and adaptive immunity. The innate

immune response targets non-specific markers of infection for a quick, initial response. The

adaptive immune response takes longer to ramp up, but engages immunological memory to

specifically target and eliminate a threat. Both pieces of the immune system are necessary

to effective protection. Early-responding innate immune cells detect pathogen-associated

molecular patterns (PAMPs) such as foreign genetic material, or proteins found on the

surface of many bacteria. These PAMP signals activate families of receptors called Pattern

Recognition Receptors (PRR). One category of PRRs is the Toll-like receptor (TLR) family.

TLRs can be found on the outer membrane and endosomal membrane of immune cells,

where they can detect PAMPs in their environment, on the surface of pathogens, and in

endocytosed material. Activated TLRs cause the innate immune cells to initiate an immune

response, by recruiting other immune cells, directly targeting pathogens, killing infected cells,

or presenting antigen (pathogenic fragments) to the adaptive immune system for comparison

with the adaptive immune memory. In this way, innate immune cells mediate the start of a

large immune response to potential threats (Murphy et al. [2012]).

In my research I focused on one type of innate immune cell, macrophages. As one of

the early-responding immune cells, macrophages play a key role in creating a proportionate

immune response to any signal they detect. Macrophages can be found dispersed throughout

the body’s tissues. In each niche, these macrophages have adapted and integrated into their

environment to perform diverse functions as well as monitor for threats. These macrophages

are called tissue resident macrophages.
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1.2 Tissue Resident Macrophages

The traditional understanding of resident macrophages is that they primarily keep their res-

ident tissue free of threats and debris, such as pathogens, damaged or dying cells, or other

debris that could cause inflammation, through phagocytosis. While this high phagocytic ca-

pacity is their defining characteristic, resident macrophages perform diverse functions related

to tissue homeostasis and development. Blériot et al. [2020] suggest four categories of fac-

tors that influence macrophage identity and function: ontogeny (including intrinsic factors),

features of the local environment (such as architecture, or secreted signals), inflammation

status of individual macrophages, and time of residence in tissue. Many of these factors still

need further investigation in order to untangle how they impact the diverse populations of

tissue resident macrophages. But what is clear is that extrinsic factors are as impactful as

intrinsic factors in determining macrophage responses to stimuli.

Resident macrophages communities are shaped to suit their environment and function

within it. In turn, the resident tissue cooperates with macrophages to perform their immune

functions. In the case of highly sessile (stationary) macrophage populations, this commu-

nication is essential. Westphalen et al. [2014] found that alveolar macrophages are largely

immobile and communicate with epithelial cells to modulate immunity. Bissonnette et al.

[2020] describes research wherein alveolar macrophages act in a regulatory manner by re-

moving inhaled particles and apoptotic cells and decreasing overall inflammation in alveolar

tissue. Alveolar macrophages communicate with lung epithelial cells in a variety of ways

including physical junctions and secreted signals. In a different tissue context, Uderhardt

et al. [2019] found that resident macrophages act to regulate inflammation when they cloak

microlesions in stromal tissue to prevent neutrophils from doing excessive damage. All three

of these examples describe macrophages cooperating with their host tissue to regulate in-

flammation.

Another key factor in resident macrophage function is their abundance in tissue. Rather

2



than being replaced by circulating monocytes from the blood, resident macrophages of-

ten establish their own populations in tissue from embryonic origins. These populations

take on unique characteristics depending on their history and cooperation with the resi-

dent tissue cells. The degree to which the population continues to be replenished by blood

monocytes varies between tissue sites, and with age and sex. The resident tissue regulates

macrophage density via chemical signals that affect their growth and proliferation. Zhou

et al. [2018] describe a two cell system in vitro by which fibroblasts regulate macrophage

density via macrophage colony stimulating factor (CSF1) to maintain a 1:1 ratio of fibrob-

last and macrophage. One prominent hypothesis is that the availability of CSF1, which is

necessary for resident macrophage survival and often present at low levels, acts as a lim-

iting factor on macrophage density in the tissue. Dube et al. [2022] found that resident

macrophage density in dermal tissue decreased with age in mice, impacting their ability to

assist in wound healing. Thus environmental factors that impact macrophage density, and

that density itself, are key to the functioning of the population as a whole.

1.3 Dynamic Signaling

Many cells signal and sense via complex dynamics depending on the temporal behavior of

the stimulus and factors in the cellular environment. In particular, most traditional TLR-

stimulation experiments mix the agonist into culture media and constantly stimulate the cells

for hours. However, in biological context, macrophages may not see such strong, consistent

signals. In particular, when looking for a threshold of activation, I needed to consider not

just dose, but stimulation time. And I wanted to be able to separate stimulation time (how

long the stimulus is applied) from activation time (how long it takes to see an NFκB response,

particularly using stimulation times shorter than the activation time.

I only found one previous example in the literature of stimulating macrophages with brief

signals. Ashall et al. [2009] showed that pulsed stimulation with TNF generates different
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responses depending on the relative frequency of the TNF pulses and NFκB oscillatory

response. Thus, when the stimulus is too frequent, the response is lower. macrophages have

a recovery period for full response.

I found the concept of dynamic signaling to be useful when thinking about single cell

responses to a time-varying stimulus. Purvis and Lahav [2013] describe the various ways

information can be encoded in a signal: abundance, identity, modification, location, and

how concentration varies with time. It is natural to consider first, when thinking about cell

signaling, the type of ligand detected and its abundance. However, other temporal factors

like the ligand concentration over time, as well as spatial factors such as the concentration

gradient and spatial extent of stimulus, can provide information as well to the target cell.

It makes sense that immune cells might incorporate information from multiple factors in

determining their response, since they have an important role to play in maintaining the

delicate balance of the immune system.

There is evidence that macrophages use dynamic signaling. Zhang et al. [2017] describe

how NFκB dynamics encode TNFαdose of the stimulus. DeFelice et al. [2019] further explore

how dose encoding arises from an autoregulatory loop in the NFκB circuit. Kellogg et al.

[2017] found that macrophages have distinct temporal NFκB responses to distinct TLR

agonists. when multiple TLR agonists are present, macrophages do not integrate the response

to both, rather they pick one mode of response. this switch-like decision making depends

on the timescale of the response to each TLR, individual cell variability, and cross-tolerance

mediated by negative feedback. And Nelson and Nelson [2018] found that distinct NFκB

response patterns have consequences by impacting gene expression. Thus, dynamic signaling

on the part of the NFκB response enables the macorphage to discriminate between ligand

type and dose in its response downstream of NFκB.
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1.4 Heterogeneity in macrophage responses

Since macrophages have this role as pathogen-detectors, one would expect that they be-

have relatively consistently given the same stimulus. In bulk, this is true: a population of

macrophages has a consistent, population-level response to a uniform stimulus. However,

methods that stimulate cells uniformly and measure individual responses have found het-

erogeneity in single immune cell responses to TLR stimulation. Paszek et al. [2010] found

that macrophage heterogeneity lead to population robustness by decreasing sensitivity to

parameter perturbations, and decreasing fluctuations in paracrine signaling. By broaden-

ing the overall response, any one variation has a decreased impact on the average response.

Hughey et al. [2014] similarly described a population invariance arising from single-cell het-

erogeneities. NFκB oscillations in a population vary cell to cell, and also with stimulus

identity and concentration. Some features of the population response varied with stimu-

lus, but the average NFκB oscillation period remained constant across all stimuli. Kalita

et al. [2011] constructed a Bayesian model to identify sources of this cell to cell variability

in NFκB responses. They found cell geometry, initial NFκB levels, and IκB translation and

degradation rates together explained cell to cell differences in NFκB translocation. Thus

intrinsic variations in a culture of macrophages leads to heterogeneous responses that overall

preserve a consistent group response. But if individual macrophages respond so differently

when stimulated together, how do they respond when faced with a signal on the single-cell

scale, such as might happen when encountering single pathogens in a tissue context? Few

experiments have probed immune cell responses with localized PRR stimulation instead of

constant, uniform stimulation.
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1.5 Established methods for studying single cell responses

Traditionally, single-cell biology has meant measuring single cell responses in a uniformly-

stimulated group, but not necessarily stimulating just one cell, much less one cell in culture.

The change from bulk measures of activity to single-cell measures allowed for distinguishing

between binary single-cell responses and more gradual population-level changes. It also

allows us to measure the large variability in single-cell responses. While this may seem like

biological noise, information is encoded in the differences between single cell responses. Like

the measuring of single cell responses allows us more insight into individual and population

level behavior, single cell stimulation allows us to distinguish between responses that are

specific to one cell, and the influence of environmental factors. In order to stimulate just

one cell, it is easier to isolate the cell, than to sufficiently localize the stimulus down to a

single-cell level. However, isolation loses contextual information from the cell environment,

and the disturbance might perturb its state.

We wanted to study single cells within their environmental context. We turned to tech-

niques employed in neurobiology (such as the stimulation of single neurons in a network)

for options. Technologies including optogenetics, photocaged molecules, and specialized

micropipettes have been used to stimulate individual cells Using optogenetics would allow

for light-activated stimulation of TLR receptors directly. Photocaged ligands likewise are

light-activated, but would diffuse away from the target cell. Specialized micropipettes used

techniques such as hydrodynamically-confined flow to focus chemical stimulation on one area,

and allowed for longer stimulation times and more control over the concentration gradient.

Isolating single cells is the most straightforward way of limiting any stimulation ot just

one cell. Zhang et al. [2019] use a microfluidic setup that isolates single cells into individual

chambers for high-throughput measurements of single-cell readouts. There are advantages

to this system, such as the fine control over single-cell conditions and large-scale live-cell

readout. However, isolating the macrophages in this way from their culture environment
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limits observations of environmental factors and cell to cell communication.

Since we wanted to study not just single cell stimulation in isolation, but single-cell

stimulation in the culture environment, my lab has previously explored using photo-caged

molecules to locally target TLR stimulation on the single cell level in vitro and in vivo

Ryu et al. [2014, 2017], Stutts and Esser-Kahn [2015]. While we found success with these

techniques, immune cell PRR activation requires stimulation from minutes to hours, so we

needed a method that can provide sustained stimulation at one precise location. Li et al.

[2015].

For sustained stimulation, micropipette systems are a good option. Page et al. [2017]

describe a combined stimulation and sensing micropipette system, called "self-referencing

scanning ion conductance microscopy - scanning electrochemical microscopy." The probe

has two openings, one for dispensing a chemical stimulus, and one for detection of molecules

in the local environment. Ainla et al. [2012] review several microfluidic techniques that use

hydrodynamically confined flow. These techniques use the physics of fluid flow on small

scales to localize a chemical stimulus and prevent mixing and diffusion. The technique we

decided to use (Fluidic Force Microscopy) builds upon these micropipette techniques by

combining them with the precision control of an AFM (atomic force microscope) system

Meister et al. [2009], Guillaume-Gentil et al. [2014]. FluidFM has been used in a variety of

contexts to dispense chemical stimuli or whole pathogens Aebersold et al. [2018], Stiefel et al.

[2012]. The techniques I used in my thesis build upon this research. In the next chapter I

will elaborate on the development of the FluidFM methodology for this work.
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CHAPTER 2

TARGETED IMMUNE CELL STIMULATION IN CULTURE

WITH FLUIDFM: METHOD DEVELOPMENT

Fluidic Force Microscopy (FluidFM) builds upon micropipette techniques with the addition

of an AFM-based controller, that holds and positions the micropipette probe with micrometer

precision to ensure accurate levels of agonist are delivered (Meister et al. [2009]). FluidFM

technology has been used to measure individual cell responses to local chemical stimulation

(Aebersold et al. [2018], Lee et al. [2009]). It allows for sub-millimeter scale perturbations

in a cell’s environment while preserving the rest of its environmental context, allows for

monitoring over the length and timescales relevant to macrophage activation, and gives the

user precise control over the location, concentration, and duration of stimulation.

In applying this FluidFM technology to study single immune cell responses, we chose

macrophages as a model system. Macrophages play a key role in the early immune response

to infection or vaccination by releasing chemical signals to initiate an inflammatory im-

mune response in response to TLR stimulation. Uniform TLR stimulation of macrophages

has revealed significant heterogeneity in single immune cell responses (Paszek et al. [2010],

Hughey et al. [2014], Lee et al. [2009], Xue et al. [2015]), suggesting the importance of study-

ing individual macrophage stimulation. Macrophages are well suited for use with FluidFM

technology: they are adherent, they respond to a soluble ligand dispensed by the FluidFM

at low pressures, and the timescales of NF-κB activation and response readily provide clear

measurements via fluorescent microscopy of multiple cells ¬allowing for sufficient data-sets

for statistical analysis. Using this unique tool and set of experimental conditions, we sought

to understand how individual macrophages respond to a local stimulus while surrounded

by unstimulated cells. By comparing these values, we report on a role for cell density in

determining how individual macrophages mediate a group response.
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2.1 Quantitative readout for individual macrophage activation

Figure 2.1: Calibration data used to determine activation cutoffs for 10x images of cells
(group activation data), and 100x images of cells (single cell targeting data). (A-C, G-H)
Histograms of resting and activated populations with activation cutoff shown, annotated
with cutoff value “cutoff”, percent negative population above cutoff “alpha”, and percent
positive population above cutoff “power.” (D-E) Representative images of calibration data
using NFκB reporter cells. (D) 10x images of resting (top) and activated (bottom) cells. (E)
100x images of activated cells before (top) and after (bottom) stimulation. (F) 100x images
of resting cells at the start (top) and end (bottom) of a 15-minute incubation.

For our activation readout we used fluorescent NFκB reporter cells gifted to us by the

Frasier Lab (Li et al. [2015]). These cells produce GFP-tagged NFκB, which allows us to

see the translocation of NFκB from the cytoplasm to the nucleus upon activation of the

macrophage. In this way we can measure single-cell activation readouts in the culture.

In order to categorize individual cells as activated or unactivated, we needed a cutoff

value for the quantified microscopy data. Since changes to the experimental setup (objec-
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tive magnification, presence/absence of the FluidFM controller in the light-path, CellProfiler

pipeline parameters) affect the raw intensity values, we needed a cutoff value for each ex-

periment and quantitative parameter used. We imaged resting and highly activated cells

under the range of imaging conditions used in the experiments and then quantified these

images using the same pipeline as for the corresponding experiment data (Figure 2.1). After

quantification, cutoffs were determined to be where 95% of resting cells were below the line

and the power of the test is the number of activated cells above the cutoff. Histograms with

the cutoff were made in Prism and R. The code for quantification and analysis can be found

in appendices D.2 and D.3, respectively.

2.2 FluidFM-compatible culturing conditions

The FluidFM experiments require use of an open cell dish so the probe can be lowered into

the cells. We used CO2 Independent Medium which allows the cells to maintain the proper

pH under atmospheric CO2 conditions. To check that the cells still activated normally

when plated in CO2 Independent Media and incubated at 37◦C and atmospheric CO2 on

the microscope, RAW Blue SEAP NFκB reporter cells were plated in 50 mm microscope

dishes as for a FluidFM experiment and the next day the media was changed to either

DMEM + 10% HIFBS, DMEM + 10% HIFBS + 10 mM HEPES, or CO2 Independent

Media + 10% HIFBS. Half of the dishes in each group were treated with 1 ug/mL R848.

Half the dishes with DMEM+HIFBS were placed in the incubator, and all the others were

incubated on the microscope (Figure 2.2). Supernatant was taken at 5 hr (about how long

a dish would be sitting under those conditions during a FluidFM experiment) and at 20 hr

(the recommended time for incubating RAW Blue cells for an assay) and incubated with

QUANTI-Blue reagent for colorometric readout of NFκB activity (absorbance at 620 nm).

The results showed that the cells in CO2 Independent Medium activated about the same

as those in the incubator (the positive control). The 10 mM HEPES, while often used to
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Figure 2.2: RAW Blue Assay with RAW Blue NFκB reporter cells, plated in 50 mm micro-
scope dishes and treated with 1 ug/mL R848 for the indicated times. Treatment groups are
shown in the table. Each bar is the average of the two replicates.
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buffer cells for experiments outside the incubator, did not work well under the experimental

conditions needed for FluidFM experiments. The unbuffered cells (negative control) showed

similarly low levels of activation, matching the untreated cells.

2.3 FluidFM dispensing characterization

Determination of the concentration of agonist dispensed by the FluidFM The small molecule

fluorophore AF488 was dispensed (Figure 2.3A) and its diffusion compared to theoretical

prediction from a point source model (described below). I dispensed AF488 under the same

conditions as I would the agonist R848 for both single-cell targeting and group stimulation.

I imaged the resulting cloud of fluorescent fluorophore at 30 sec intervals for 20 minutes,

ending dispensing and removing the probe from the field of view at 15 minutes. In this way

I was able to capture the growth and decay of the concentration gradient, as well as its size

and shape. I wrote two ImageJ macros to extract the time-behavior of the cloud as well as

the intensity vs distance from the dispensing point profile (Appendix D).

To determine concentration of the dispensed fluorophore, reference slides containing 1µL

AF488 at varying concentrations, pressed between coverslips with or without a coverslip

spacer, were imaged under the same conditions as the dispensing experiment (Figure 2.3B).

The area of the spots was measured in ImageJ, and the thickness calculated by dividing the

volume by the area. Modal intensity of these reference images, when plotted against the

concentration and thickness of the layer of fluorophore imaged, allowed for the calculation

of a conversion factor between image brightness and the total amount of fluorophore (Figure

2.3C). We used this conversion factor to plot the predicted intensity profile from the diffusion

model, for comparison with the AF488 data (Figure 2.3E). After fitting the model to the

data (see below), the diffusion coefficient of AF488 was replaced with that of R848 in order to

estimate the relative concentration of R848 dispensed under the same conditions (dispensing

over-pressure and probe height) (Figure 2.3H). Both diffusion coefficients were estimated
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Figure 2.3: (A) AlexaFluor488 dispensed into water at (top) 4 mbar overpressure (continued)
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Figure 2.3: for 15 minutes at 4 microns height or (bottom) 400 mbar overpressure for 5
minutes at 20 microns height. Timepoints relative to start of dispensing, scale bars 100
(top) and 300 (bottom) microns. (B) Reference slides of AF488 solution, compressed between
coverslips to create layers of varying concentration and thickness. (C) Modal intensity of the
drops in (B), plotted against the product of AF488 concentration and drop thickness, for
converting between AF488 concentration and fluorescent intensity. Slides measured under
the same imaging conditions as for 4 mbar dispensing (left) and 400 mbar dispensing (right).
(D) Peak brightness and standard deviation of AF488 cloud from (A) measured in ImageJ
and plotted over time. Exponential curve fits in GraphPad Prism to both parts of the curve
give time constants for the rise to equilibrium and decay back to zero. (E) Comparison
of predicted (dashed line) and measured (points with error bars) intensity of dispensed
fluorophore gradient at equilibrium as a function of distance from the dispensing point.
(F) Measurement of the distance between the probe and the window of the probe holder,
maximum for the fit parameter “zmax” (see below) (G) Predicted concentration (relative to
C0) for 4 mbar dispensing at 0 – 5 microns from the dispensing point in 3D space. (H) R848
concentration (relative to C0) at the dish surface versus distance from the center (directly
underneath the dispensing point) calculated from the diffusion model for each dispensing
condition (4 mbar at 4 µm height and 400 mbar at 20 µm height).

with the SEGWE calculator using the molecular weight of the molecules and the preset

values for water at room temperature (for AF488) or 37°C (for R848).

Definitions:

C0 is the concentration loaded into the probe

V is the dispensing rate in volume/time

D is the diffusion coefficient of the dispensed molecule

k is the conversion factor from integrated concentration to brightness

r is distance from the dispensing point in 3D space

ρ is distance from the dispensing point location in the XY plane

Derive an expression for C(r) from the differential equation of a point source:

Differential equation for steady state diffusion from a constant source:

D∇2C + s = 0 (2.1)
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A point source at r⃗ = 0 dispensing at a constant rate of mass per time:

s = Ṁδ(r⃗); Ṁ = C0V (2.2)

Differential equation for the point source:

D∇2C + C0V δ(r⃗) = 0 (2.3)

Solution to the differential equation:

C(r) =
C0V

4πDr
(2.4)

Apply boundary conditions:

Add parameter R to prevent C from going to infinity at r = 0:

C(r) =
C0V

4πD(r +R)
(2.5)

Apply the boundary condition C = C0 at r = 0 to solve for R:

C(0) = C0 =
C0

4πD(0 +R)
⇒ R =

V

4πD
(2.6)

Final expression for C(r):

C(r) =
C0

1 + 4πD
V r

(2.7)

Convert to intensity:

I(ρ) =

∫ ∞

−∞
k · C(ρ2 + z2)dz (2.8)

This integral does not converge; can only solve computationally. In order to solve the in-

tegral, limits of integration were chosen that match the physical dimensions of the apparatus:

the dispensing point was 4 µm above the surface of the coverslip, and the distance from the

dispensing point to the top of the water drop (where it contacted the FluidFM instrument)

was measured to be 2 mm as shown in (F). So the intensity was predicted computationally

as follows:

I(ρ) =

∫ h

0
k · C(ρ2 + z2)dz +

∫ zmax

0
k · C(ρ2 + z2)dz (2.9)

Where h is the height of the probe above the surface of the slide (4 µm in this case) and
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zmax is a fit parameter describing the height of the dispensed “cloud” of AF488. The value of

zmax is constrained by the height of the water drop (F), and assuming spherical symmetry

should be about the same as the radius of the cloud in the x-y plane. The best value fit

for zmax (900 µm for 4 mbar dispensing of AF488, and 700 µm for 400 mbar dispensing) is

within those parameters.

The point source prediction for C(r), including an overall fit parameter A, is:

C(r) =
A · C0

1 + 4πD
V r

(2.10)

The parameters zmax and A were fit by minimizing chi-squared for the difference between

the dispensing data between 0 and 100 µm distance from the dispensing point and the

predicted value for those same points. (In the single cell targeting experiments most cells are

within 100 µm of the dispensing point. Including larger distances weighted the distribution

too heavily towards the tail, rather than the center where accuracy is most important in

order to compute the concentration at the target cell location).

Method (in Mathematica) (more details in Appendix D.1.2):

1. Generate predicted I(ρ) curve for each pair of A and zmax values for ρ = 0 to 100 µm

2. Compute χ2 distance between AF488 dispensing data and the predicted curves

3. Find pair of parameters that have the smallest χ2 value

Results:

• Best values for 4 mbar dispensing at 4 µm height: A = 0.55, zmax = 900µm

• Best values for 400 mbar dispensing at 20 µm height: A = 1.1, zmax = 700µm

Dilution Factor: the “dilution factor” determines the ratio between Cmax, the concentra-

tion at the dish surface below the dispensing point (the target cell position, in single cell

targeting experiments), and C0, the concentration of agonist loaded into the probe.
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For group targeting (400 mbar dispensing at 20 µm height), after fitting, the dilution

factor was determined to be 0.28.

For single cell targeting (4 mbar dispensing at 4 µm height), the distance between the

probe opening and the target cell surface varied due to variation in cell height. This intro-

duced additional uncertainty into the calculation of concentration at the target cell surface.

We calculated R848 concentrations from the best fit 4 mbar model for distances 0 to 5 µm

from the dispensing point (probe opening).

In the single cell targeting condition, the target cell surface is estimated to be 1-4 µm

from the probe opening. The relative concentration of agonist for those distances is shown

in the table (highlighted portion). Accounting for this uncertainty, the dilution factor (the

relative concentration of agonist at the target cell position compared to the concentration

loaded into the probe, C0) was estimated to be 0.02±0.01. This number was used to estimate

R848 concentration for the FluidFM single cell targeting experiments.

2.4 FluidFM protocol overview

Fluidic Force Microscopy allows for the stimulation and monitoring of single cells and small

groups of cells in culture

We delivered agonist (Resiquimod, or R848) directly onto target cells in pico-liter volumes

using the FluidFM. This technology allowed us to stimulate a single cell within a larger

microenvironment composed of unstimulated cells (Figure 2.4). We monitored the cells

throughout with live cell fluorescence microscopy.

To assess the macrophage immune response, we employed a commonly used measure of

macrophage activation – nuclear translocation of transcription factor NF-κB. In the resting

state, NF-κB resides in the cytoplasm, and translocates to the nucleus after TLR activa-

tion1. Using the FluidFM (Meister et al. [2009], Aebersold et al. [2018], Dorig et al. [2013],

Guillaume-Gentil et al. [2014]), we treated individual RAW264.7 macrophage NF-κB re-
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Figure 2.4: (A) Schematic of FluidFM experiment showing probe, cells, and microscope
objective. (B) FluidFM experimental workflow (C-D) Single cell and group targeting modes
in FluidFM dispensing. Schematic of concentration vs distance shown from an overhead
view (C) and side view (D) for the condition where Cmax is closest to 100 nM for each mode
(C0 = 5.5 µM for single cell targeting and 0.318 µM for group targeting). Cartoon cells
shown for scale. (E) Quantified cell images: NF-κB fluorescence, scale bar 5 µm, activation
numerical cutoff from calibration data of resting and activated cells under same imaging
conditions (Figure 2.1); exact numerical values vary depending on the imaging conditions
of the experiment – these values match those used in the single cell targeting experiments
(Figures 3.1, 3.3).
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porter cells (Li et al. [2015]) in culture with a localized stimulus and monitored the NF-κB

response by tracking the translocation of the GFP reporter.

Having established methods for treating and monitoring single cells in culture, we then

determined stimulation conditions. Several variables were considered in the design of this

study, including cell density, agonist type, agonist concentration, stimulation time, and time

at image collection. To simulate physiological macrophage densities, we plated macrophages

within the range estimated for tissue-resident macrophages: 500-1000 cells/mm2, estimated

from Li, Germain, and Gerner 2019 (Li et al. [2019]). We also plated macrophages at more

confluent densities for comparison (Figure 2.5A,B). For the agonist we selected the TLR7/8

agonist R848 for three reasons. First, R848 dispenses well out of the FluidFM probe without

aggregating or clogging. Second, as a small molecule its diffusion could be mathematically

modeled for an accurate concentration gradient. Finally, it consistently elicited measurable

NF-κB activation in as little as 15 minutes, allowing for rapid collection of single-cell datasets.

Having established a minimum response time (15 min), we then tested shorter stimulation

times until we established a minimum stimulation time (3-5 min). We also assayed FluidFM

dispensing conditions (flow rate and height) and established two dispensing modes: single

cell targeting, and group targeting. We dispensed R848 with stimulation times of 3, 5, and 15

minutes in these two stimulation modes. For single cell activation without making physical

contact, we dispensed ligand at a minimal flow rate a few microns above the target cell

surface. The ligand then diffused rapidly in the area surrounding the target cell. For group

activation, we dispensed ligand at an increased height and flow rate to cover a wider area

with a more uniform concentration (Figures 2.4C-D and 2.3).

The concentration of R848 loaded into the probe (C0) and the position and dispensing

rate of the probe together determine the concentration gradient of agonist at the dish surface

(Figure 2.4C-D and Figure 2.3H). Cmax denotes the concentration at the center of the gra-

dient, right below the dispensing point. The concentration of agonist at the position of each
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cell is a function of C0, the dispensing conditions, and the diffusion of the agonist into the

surrounding media over time. Diffusion modeling with AlexaFluor488 determined 3 minutes

(about three time-constants) to be the minimum time needed for the concentration distri-

bution to reach equilibrium - shorter dispensing times were not used in these experiments

(Figure 2.3D).

Lastly, we needed to convert our microscopy images into quantified data for analysis.

In each experiment, we imaged the reporter macrophage fluorescence to quantify the NF-

κB activation state of each cell before and after stimulation (Figure 2.4B,E, 2.1D-F). We

stimulated cells for three or five minutes and imaged before stimulation, at the start of

stimulation (time 0), and at 15 minutes after that time. For 15-minute stimulation, the cells

were imaged before stimulation, at the start of stimulation, and at 15 and 30 minutes. These

time-points reliably captured the response of the target macrophages. We then categorized

the single cell responses with calibration data to establish a quantitative activation cutoff

and determine the fraction activated for each set of experimental parameters (Figure 2.4E,

2.1A-C,G-H, appendix D.3). A detailed protocol for stimulation with the FluidFM can be

found in appendix B.

2.5 Integrating agonist concentration, culture density, and

macrophage location and response for analysis

With such multifaceted data, varying sample sizes, and naturally noisy data, it was a chal-

lenge to find a clear way to present it. The first challenge was calculating activation in a

way that separated natural variance in degree of response from uncertainty in the frequency

of response. For this reason I developed the "fraction activated" method and used boot-

strap analyses to calculate the uncertainty (see appendix D.4.1 item 4). Secondly, I took

inspiration from Aebersold et al. [2018] in designing the plots to display the FluidFM Group

Stimulation data in a way that could represent the spatial distribution of both the stimulus
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Figure 2.5: (A) histogram of culture densities for FluidFM datasets. Vertical lines divide
sparse, moderate, and dense categories at 1300 and 2300 cells per sq. mm. (B) representative
images per density in (A), GFP fluorescence of NFκB reporter macrophages, 10x magnifi-
cation. (C) Number of neighbors counting method. Cells are labeled with their number of
neighbors. Circles show 18 µm radius where neighbors were counted. (D-F) Analysis method
for FluidFM group stimulation. (D) Overlay of AF488 dispensing image on FluidFM group
stimulation image (not same experiment!). (E) overlay of grid onto GFP cell image for group-
ing cells into bins by location. (F) Final dataset, showing binned cell responses and agonist
concentration at that location. (G-I) Analysis method for FluidFM single cell stimulation
data. (G) FluidFM single cell stimulation concentration gradient, with vertical lines showing
distance bins. (H) Same distance bins overlaid on single-cell stimulation image (bright-field,
100x magnification). (I) Example of final dataset, showing binned cell responses at each
distance, grouped by stimulation condition.
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and response, as well as other factors like culture density. An overview of these methods is

shown in figure 2.5. More details about the analysis can be found in appendix D.4.
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CHAPTER 3

DETERMINATION OF THE SINGLE MACROPHAGE

ACTIVATION THRESHOLD FOR R848

Although the NF-κB activation of macrophages in culture and in isolation has been stud-

ied, the situation of targeted activation of one or a few cells in culture remained elusive.

Our initial goal was to determine the concentration of ligand needed to activate a single

macrophage in culture using TLR7/8 as a model agonist - a threshold of activation. But

first we needed to show that the FluidFM could localize the agonist signal sufficiently to

target a single macrophage in culture, as indicated by our theoretical diffusion model. Then,

we could modulate the agonist concentration and stimulation time to get our dose curve and

find the threshold.

3.1 Single-cell stimulation with Fluidic Force Microscopy

Figure 3.1: Example of FluidFM experiment targeting a single cell. Left to right: GFP
fluorescence before dispensing, brightfield image during dispensing, GFP fluorescence 15
min. after dispensing. Target cell circled, numbers are Nuclear/Cytoplasmic GFP ratio.
Scale bar 20 µm. Inset: target cell before, after stimulation, scale bar 5 µm.

Proof of concept experiment targeting a single macrophage in culture (figure 3.1). We
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used the FluidFM in single-cell targeting mode (figure 2.4) to target a single macrophage

in culture. You can see the target cell has higher NF-κB translocation to the nucleus than

its neighbors. Due to rapid diffusion of the small-molecule agonist, we could not completely

prevent off-target activation of neighboring cells.

We repeated this experiment with concentrations of R848 from 6 to 500 nM at the target

cell position, in order to determine the single-cell activation threshold (figure 3.3). But

before we could interpret these results, we needed to know how they compared to the more

conventional experiment of mixing the agonist into the culture media and stimulating the

entire culture uniformly. This turned out to be more difficult that expected, because we

needed to remove the agonist after a short stimulation with minimal disturbance of the

macrophages.

3.2 Macrophage whole culture stimulation at short timescales

We designed a short-timescale-stimulation version of a conventional dose curve to measure

NF-κB activity. In contrast to a conventional dose curve, the short-timescale stimulation

necessitated removing the agonist from the media before the end of the experiment. Pre-

liminary results had indicated that disturbance of the cell media environment from an hour

before treatment on-wards caused a decrease in the NF-κB response (Figure 3.2B,C). Thus,

we needed a way to remove the agonist with minimal disturbance of the cells. We tested

various methods of adding and removing the agonist. We selected the method that had the

highest NF-κB response at the shortest stimulation times: serial dilution with warm media

(Figure 3.2C).

Group Activation Assay Method Development

The general protocol for group activation in chambered slides is to first change the cell

media to fresh media with 10% HIFBS, let incubate 1 hr., then add the agonist either by

diluting 1:10 in the equilibrated media, or replacing the well contents with warmed, treated
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Figure 3.2: Method development for whole culture stimulation of macrophages. Dose curves
of concentration R848 vs fraction activated in well, colored by experiment group. Varied
assay parameters of (A) incubation location, (B) agonist addition method, and (C) agonist
removal method. Details below. Fraction activated calculated from calibration data (Figure
2.1A)
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media or cell supernatant. The cells incubate for the given stimulation time, then if the

stimulation time was less than 30 min, the agonist is removed by either washing the wells

with warm PBS and replacing with warm, untreated media, or by serial dilution (dilute well

contents 1:6 with warm, untreated media, repeat 3 times). The cells are fixed at 30 minutes

(or 60 minutes for the ts = 60 dataset), and then imaged for GFP fluorescence using the 10x

objective. The data is then quantified and the fraction of cells activated calculated according

to the calibration data cutoff of 1.48 Nuc/Cyt NFκB ratio (Figure 2.1A).

This experiment could be done either using CO2-Independent Medium with 2% L-

glutamine and 10% HIFBS and the cells incubated on the live cell microscope at 37C and

atmospheric CO2 (solid lines Figure S4F) or using DMEM with 10% HIFBS and the cells

incubated in the cell incubator at 37C and 5% CO2 (dotted line Figure 3.2A). The two

methods gave similar results. The experiments could be done more quickly and in parallel

using the biological safety cabinets and cell incubator, so that method was chosen.

Next, three methods of agonist addition were tested: dilution of 10x agonist dilutions in

fresh media into the equilibrated cell media (solid lines Figure 3.2B), replacing well contents

with prepared agonist dilutions in conditioned cell supernatant from untreated, equilibrated

cells (dotted lines Figure 3.2B), and replacing well contents with prepared agonist dilutions

in fresh media (dashed lines Figure 3.2B). All agonist dilutions were warmed in the incubator

before addition to the cells. The results show that for all stimulation times (indicated by line

color), the dilution method (solid lines) gave higher activation than either replacement with

treated media (dashed lines) or replacement with treated cell supernatant (dotted lines).

The difference was most apparent for the shortest stimulation time (5 minutes, blue, Figure

3.2B). Therefore, dilution was chosen as the method for adding agonist.

Lastly, for conditions where the stimulation time was less than 30 minutes (the experiment

endpoint), the agonist needed to be removed from the cells and allow them to incubate further

in untreated media. Two agonist removal methods were tested: PBS wash (removing well
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contents, washing twice with warm PBS, then replacing with warm, untreated media; dotted

lines Figure 3.2C) and dilution wash (dilute well contents 1:6 – remove 250 of 300 uL well

contents, add 250 uL fresh media, repeat 3x; solid lines Figure 3.2C). For both the 5 and 15

minute stimulation times, when agonist had been added by dilution, removing the agonist by

dilution also yielded higher activation than removing the agonist by PBS wash. In the case

where the agonist had been added by replacing well contents with treated media – “media”

method – there was no difference between agonist removal methods. The dilution method

of removing agonist was chosen for future experiments.

Conclusions: Activation is highest when the agonist is added by dilution into equilibrated

media and removed by serial dilutions with fresh media. Methods which disturb the local

media environment by removing well contents entirely to either add or remove agonist, yield

lower activation than the dilution methods which are less disruptive. This effect is most

apparent at short stimulation times.

3.3 Single cells activate with a lower concentration stimulus than

a culture of the same cells

With a system for single cell activation at the ready, we tested both the concentration

and temporal limits of single cell sensitivity with the FluidFM. Single cell targeting with

FluidFM reliably activated single cells in culture. We tested concentrations from 6 to 500

nM for 3, 5, and 15 min stimulation and analyzed the response of the target and surrounding

cells (Figure 3.3A). The response is highest for the target cell and decreases with increasing

distance from the target. The target cell is highly activated, cells immediately adjacent have

modest activation, and other cells further away show little change above background (3.3A).

We determined concentration of the agonist at the target cell position using the diffusion

model, (Figure 2.3E) resulting in a target cell dose curve (Figure 3.3C).

These results demonstrate that stimulation with R848 at a concentration of 100 nM for
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Figure 3.3: (A) Fraction activated vs distance from dispensing point, colors are concentration
at target cell position (Cmax), stimulation times (left to right) are 3, 5, and 15 minutes.
Each group has 15-21 independent replicates. (B) Group stimulation in chambered slides.
Calibration data (Figure 2.1B) of resting (blue) and activated (red) populations in each
panel. Data in navy, all scales same as inset. Histograms arranged by R848 concentration and
treatment time. (C) Fraction activated vs concentration, stimulation time from (A) and (B).
Top: target cells in single cell stimulation (boxed in A). Horizontal error bar uncertainty in
concentration at target cell position (Figure 2.3G). Bottom: group stimulation. Vertical error
bars are uncertainty in fraction activated, calculated by the bootstrap method (Appendix
D.4.1 item 4). Red circled data points 100 nM 5 min. stimulation significantly different.
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5 min is sufficient to activate the majority of macrophages individually. (Note: Cmax varies

between 50 and 200 nM, depending on the distance between the cell surface and the probe.

As cell height is variable, this concentration cannot be more precisely known (Figure 2.3G).

We use the best estimate of 100 nM for this condition). An activating concentration of 100

nM is consistent with previous reports of NF-κB activation by R848 stimulation, however

the 5-minute timing is considerably shorter than most stimulation times for TLR agonists.

This initial finding indicated that single macrophages respond to localized and transitory

chemical signals.

For the group stimulation experiments we plated the RAW264.7 NF-κB reporter macro-

phages in 8-well chambered coverslips and stimulated with R848 for between 5 and 30 minutes

(figure 3.3B,C). The NF-κB response of the population increases from a resting state to an

activated state with increasing concentration and/or stimulation time. Stimulation at or

above 100 nM for 15+ minutes is sufficient to cause activation, but for 5-minute stimulation,

the concentration threshold is tenfold higher.

The group activation results provide context for the single cell targeting FluidFM results.

The minimum concentration for activation with any stimulation time (100 nM) is nearly the

same in both experiments. However, in the case of short stimulation time (5 minutes), the

group activation threshold is higher than the single cell threshold. Using a permutation

analysis (Appendix D.4.2, item 8a), random samples were drawn with replacement from the

combined data and the fraction activated calculated. When compared with the experimental

result for the single cell activation, none of the 5000 sampled datasets had as high of a

fraction activated, meaning p < 0.0002. Group stimulation compared to single cell targeting

decreased the percent activated by 79% ± 8% (85% to 6%). From these results we concluded

that the activation threshold for R848 is lower for single cells than a group of culture of cells.
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CHAPTER 4

MACROPHAGE GROUP ACTIVATION FRACTION DEPENDS

ON CULTURE DENSITY AND STIMULATION TIME

Our results thus far indicated two activation regimes – single cell response and group re-

sponse. We next wanted to probe the transition between these two regimes. If stimulation

targeted at a single cell produced a stronger result that a uniform stimulus in the media,

what about a stimulus targeted over a large area, but still much smaller than the size of the

dish? We used the FluidFM in group targeting mode (Figure 2.4) to stimulate groups of

cells number from tens to hundreds.

4.1 Macrophage group activation fraction decreases with

increased culture density

For these results, We focused on two Cmax conditions in the FluidFM Group Targeting

experiments: one where the concentration of R848 was just below 100 nM in the center of

the dish, and one where the concentration was just below 1 µM at the center of the dish

(Figure 4.1A, 4.4B), using a stimulation time of 5 minutes. We also took data at other

concentrations, though it was not included in the main analysis (see Figure 4.6).

A Cmax of 90 nM resulted in a smaller area of responding cells, in the region of 30 – 90 nM

agonist concentration. A Cmax of 900 nM resulted in a larger area of responding cells, in the

region of 100 – 900 nM agonist concentration (Figure 4.1A-B, 4.6). Interestingly, increasing

Cmax appeared to increase the activation threshold, restricting activation to a smaller area

than expected if the threshold remained at a constant concentration. This result suggested

that there was more occurring with cellular activation than just the concentration alone;

perhaps the surrounding cells influenced the responses of individual cells.

If cell to cell communication were impacting activation, we would expect to see a de-
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Figure 4.1: Small group targeting with FluidFM. (A) Concentration gradient from dispensing
point for Cmax = 90 nM,900 nM. Vertical dashed line marks where concentration drops below
30 nM (top) or 100 nM (bottom). Lavender panel 30 – 100 nM, pink panel 100 – 900 nM. (B)
Group targeting with FluidFM, each plot one representative experiment (Figure 4.6). Top
row Cmax = 90 nM, bottom Cmax = 900 nM, left column sparse plating, right dense plating,
all 5 min. stimulation time. Data binned in 100 µm x 100 µm squares, tile background is
agonist concentration, point color is percent activated and point size is the number of cells
per bin. Circular dashed line corresponds to dashed line in (A). Negative control (bottom
right) (c) Cells within center circle in (B). Fold-change in Nuc/Cyt NF-κB ratio vs average
cell density and number of neighbors (Figure 2.5A-C). Horizontal line is activation threshold
(Figure 2.1H). Significance determined by 3-group permutation ANOVA in R and pairwise
comparisons with Wilcoxon test in R. (D) Fraction activated in center per independent
experiment. Grouped by stimulation condition (Cmax) and cell density. Significance from
permutation ANOVA in R Appendix D.4.2, item 8b). (E) Boxed data in (D), grouped by
number of nearest neighbors. Horizontal line is activation cutoff (Figure 2.1H). No significant
difference between groups (p = 0.29) (3-group permutation ANOVA in R). Stars: * p ≤ 0.05
** p ≤ 0.01 *** p ≤ 0.001 **** p ≤ 0.0001 ‘ns’ p > 0.05.
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pendence on cell culture density. To determine if cell density was playing a role, we sub-

categorized our data by cell density (Figure 3B). Individual Cmax experiments were sorted

into “sparse”, “moderate”, and “dense” cell density (Figure 2.5A,B). The “sparse” condition

has cell density on par with that observed in tissue resident macrophages (Li et al. [2019],

Uderhardt et al. [2019], Jenkins and Allen [2021]) and also the densities used in the single

cell targeting experiments (Figure 3.3).

While we categorized the culture images by average density, RAW264.7 macrophages tend

to grow in clusters, rather than an even confluency. Therefore, even in experiments with a

low overall cell density, there will be a mixture of isolated cells and clusters. We wanted to

examine if the dependence on cell density correlated more with the average culture density

or the hyper-local number of neighbors surrounding each cell. We determined the number

of close neighbors for each cell by counting the number of other cells within 2 cell lengths

(Figure 2.5C). Looking just at cell density, we compared the response of cells in a sparse

culture to a dense culture (Figure 4.1C). The differences between the populations are highly

significant for both Cmax values, as determined by 3-group permutation ANOVA (p < 0.0002

for both) (Appendix D.4.2, item 8b) and pairwise Wilcoxon test for sparse vs dense (p =

2x10-18 and p = 9x10-14 for Cmax = 90 nM and 900 nM, respectively). The effect sizes for

the median fold-change in Nuc/Cyt NF-κB for these pairwise comparisons were -6% ± 1%

and -2.2% ± 0.4% for Cmax = 90 nM and 900 nM, respectively. In both cases the cells were

less activated at higher cell density. The number of neighbors (point color, Figure 4.1C)

appeared to correlate with cell density, but not activation. We further examined the case of

Cmax = 90 nM, sparse density, and looked at number of neighbors. We found no significant

difference between any of the groups with a 3-group permutation ANOVA, excepting the

case of Cmax = 900 nM, spot density = sparse, comparing 0-1 neighbors with 2-3 neighbors

(Figures 4.1, 4.2). From this we concluded that differences in overall culture density were

more important than the number of neighbors when cells were further apart. This implies
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that the signal regulating this process is likely distributed over longer distances.

To confirm the observation of decreasing activation with increasing cell density, we also

calculated the fraction activated in the entire center region per experiment (Figures 4.1D,

4.2A). Contrasting replicates with low cell density to those with high cell density, the differ-

ence between the two groups is significant for the Cmax = 90 nM experiments, and p = 0.07

for the Cmax = 900 nM experiments (Figure 4.1D). The decrease in percent activated was

-21% ± 6% and -20% ± 5%, respectively.

By both measures of group activation, the NF-κB response is lower at higher cell density,

suggesting a potential role for cell-to-cell communication in tuning macrophage sensitivity.

The relative importance of whole culture density versus the hyper-local number of neighbors

suggests a longer length and time scale for this communication.

Is this density dependence present in whole-culture stimulation as well? We compared

100 nM 5 minute stimulation with R848 for cells plated at high and low density in cham-

bered slides, incubated in CO2 independent medium and imaged over time on the live cell

microscope (Figure 4.3). Low density cells were grown to 800 cells/mm2, and high density

cells were grown to 3600 cells/mm2. Cells were treated with 100 nM R848 and washed

by dilution method with fresh, warm media (Figure 4.3). Wilcoxon test comparison of the

two culture densities showed highly significant difference (p = 2.2x10-16). The decrease in

percent activation associated with increased cell density was 13.2% ± 1.7%, error determined

by permutation method in R (Appendix D.4.2, item 8b).

4.2 Macrophage group activation fraction depends on stimulation

time

A remaining question was if this decreased sensitivity was a permanent or transitory effect.

Thus far we had focused on the shortest stimulation times possible with the FluidFM. To

investigate the longevity of the phenomenon, we stimulated the groups of cells for longer
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Figure 4.2: Number of Neighbors vs culture density comparison for FluidFM Group Stimula-
tion results (see chpater 4). (A) Fraction activated in center circle from FluidFM Group data,
plotted against average cell density in that spot. Color indicates Cmax for that experiment.
(B) Number of cell neighbors vs culture density, single cell Fold-change in Nuc/Cyt NFκB
ratio. Pairwise significance from Wilcoxon test in R, after 3-group permutation ANOVA
(Appendix D.4.2, item 8b).
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Figure 4.3: Comparison of bulk activation of macrophages plated at high and low density
in chambered slides. Left: fraction activated over time for high and low density wells stim-
ulated with 100 nM R848 for 5 minutes, negative control unstimulated. Fraction activated
calculated from calibration data (Figure 2.1A). Right: individual cells Nuc/Cyt NFκB ratio
at 15 minutes post-stimulation. Significance from Wilcoxon test in R, p = 2.2x10-16.

periods of time – analogous to previous culture experiments. Large group stimulation at

15 minutes or longer had an activation threshold around 100 nM or lower, similar to the

single cell threshold for 5 minutes (Figure 3.3, 4.4A). Further group targeting FluidFM

experiments were done with a 15-minute stimulation time to see if this effect extended to

smaller groups of cells as well. In densely plated cells the longer stimulation times showed

higher activation (Figure 4.4C-D). This difference was less pronounced in the sparse cells

(Figure 4.4D). Increasing the stimulation time from 5 to 15 minutes caused the percent

activated in densely plated cells to increase by 25% ± 6% and 22% ± 1% for Cmax = 90

nM and Cmax = 900 nM, respectively (Figure 4.4D). These results suggest that the density-

dependent suppression of activation is most impactful for transitory stimuli (a few minutes),

and if the stimulus persists, the majority of cells respond, resulting in a consistent sensitivity

to signal. This combination of results explains (1) how this result would easily have been

missed with previous experimental methods and (2) that the mechanism for this process

must operate at timescales of 15 mins and over distances of multiple cell lengths.
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Figure 4.4: (A) Data from Figure 3.3C, EC50 values from dose-response fit (GraphPad
Prism). Vertical error is 95% CI. (B-D) Small group targeting with FluidFM. (B) Concen-
tration gradient from dispensing point for Cmax = 90 nM,900 nM. Vertical dashed line marks
where concentration drops below 30 nM (top) or 100 nM (bottom). Lavender panel 30 – 100
nM, pink panel 100 – 900 nM. (C) Group targeting with FluidFM, densely plated cells, each
plot one representative experiment (Figure 4.6). Top row Cmax = 90 nM, bottom Cmax =
900 nM, left and right columns 5 and 15 min stimulation time. Data binned in 100 µm x
100 µm squares, tile background is agonist concentration, point color is percent activated
and point size is the number of cells per bin. Circular dashed line corresponds to dashed line
in (B). Negative control (top right) (D) Fold-change in nuclear/cytoplasmic NF-κB ratio of
individual cells in center regions shown in (C), all replicates aggregated, grouped by Cmax,
stimulation time, and cell density. Horizontal line is activation cutoff (Figure 2.1H). Signifi-
cance from Wilcoxon test in R. Stars indicate: * p ≤ 0.05 ** p ≤ 0.01 *** p ≤ 0.001 ****
p ≤ 0.0001 ‘ns’ p > 0.05
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Figure 4.5: Top: table of values for concentration and gradient at the threshold location
(boundary between activated and unactivated cells) for FluidFM group datasets. Middle:
concentration gradient for each Cmax condition. Bottom: example dataset from each condi-
tion.
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4.3 Macrophage group activation spatial extent depends on

concentration gradient

One final observation I made from these data is that when I stimulated groups of macrophages

in culture, there was a radius beyond which the culture remained quiescent. I had expected

this radius to occur at about the same concentration of R848, the place where we reached

the single-cell or group activation threshold (somewhere between 30 and 100 nM). However,

I found that as I increased C0, and thus Cmax, the minimum activating concentration at the

edge of this zone increased also. Through a rough estimate of this boundary, I discovered

that for a range of Cmax, this cutoff location occurred at similar values of the concentration

gradient (Figure 4.5).

These results require further investigation and a more careful measurement of the bound-

ary from each experiment. But they provide one possible explanation for how groups of

macrophages adapt to stimuli over several orders of magnitude to limit the number of re-

sponding macrophages and avoid an excessive response.

Note: all FluidFM Group Stimulation datasets are shown in Figure 4.6. Representative

plots drawn from this data are shown in Figures 4.1, 4.4, and 4.5.

4.4 Conclusions and future directions

In summary, we observed the temporal and spatial characteristics of PRR signals influence

the macrophage response. The FluidFM allowed the unique ability to limit the temporal

and spatial extent of the PRR signal to target single macrophages, small groups, and larger

collections of cells. We report that macrophages, in a controlled environment, deviate in

their sensitivity to transitory (5 minute) PRR signals. Individual macrophages stimulated

with PRR signals became more sensitive in windows under 5 mins when they do not experi-

ence the same signal concentration as the surrounding culture. This difference in individual
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Figure 4.6: All FluidFM Group stimulation data, described in chapter 4. (continued)
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Figure 4.6: Data binned in 100 µm x 100 µm squares, tile background is agonist concen-
tration, point color is percent activated and point size is the number of cells per bin. Plots
grouped by Stimulation concentration (C0) and time (ts), ordered by culture density.

cell responses led to a lower concentration threshold for NF-κB activation of single cells

stimulated with the TLR agonist R848 compared to whole culture stimulation. These ob-

servations suggested that each cell gathers information from its environment alongside the

concentration of PRR agonist, and potentially a pathogenic threat to determine its response.

Our second question was how the surrounding cell culture influenced the sensitivity of

individual cells. Since the FluidFM exposed neighboring cells to differing concentrations

of PRR agonist, we wanted to understand how individual cells might integrate information

from the larger unstimulated culture or local stimulated group. Cell-to-cell communication

has been observed in related contexts - macrophages and other innate immune cells em-

ploy quorum licensing to regulate their state and quorum sensing to terminate inflammation

(Muldoon et al. [2020], Postat et al. [2018], Hamidzadeh and Mosser [2016], Bardou et al.

[2021], Antonioli et al. [2019]). In these cases, culture density during growth or after activa-

tion influence individual cell responses. For our experiments, we postulated that either the

overall density of cells or the local number of cells would determine the sensitivity of the

individually stimulated cells.

In our experiments we examined “sparse” cell densities (similar to the distribution of tissue

resident macrophages) and “dense” cell densities (confluent or crowded). Simultaneously, we

examined the “number of neighbors” (surrounding cells within a certain distance) in both

conditions, to test whether local or global density was the dominant factor. We observed

that the density of cells in culture determined the sensitivity of individuals to stimulation,

with more dense cultures inhibiting individual cells from responding to lower concentrations

of PRR agonist. The “number of neighbors” did not contribute to the phenomenon, leading

us to conclude that the larger culture density was dominant in determining the response.

Phrased colloquially, it’s not the neighbors on your street, but the overall population of your
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city that matters. The inhibition of activation at greater cell densities could have relevance

to biological situations where macrophage density is increased.

Upon providing evidence of a single cell to large-scale culture transition, and its relation

to culture density, we sought to determine how this short-timescale phenomenon of 5 mins

related to the more common experiment of stimulating macrophages for more than 30 mins

in a culture dish. We performed a series of FluidFM experiments increasing the time of small

group (tens to hundreds of cells) stimulations. We observed that the effect of alteration of

sensitivity of groups of cells is reduced after 15 mins of sustained PRR exposure. This result

suggests that the mechanism of cellular communication must occur at a similar time scale or

precede the appearance of the PRR agonist. This observation puts a temporal and spatial

limit on potential mechanisms for the decreased activation of densely cultured cells exposed

to transitory PRR signals. The next step of this research is an investigation into potential

mechanisms that could explain these changes in activation threshold. If such mechanism(s)

were identified, they could be used to tune macrophage sensitivity in contexts such as dose-

sparing for vaccines or tamping down excess inflammation.

These results also open up more questions about the dynamics of TLR activation and

response, potential group coordination of the response, and the role of the local cell environ-

ment. The FluidFM provides a valuable tool for this research because it can provide both

persistent and transitory stimuli, as well as spatially varying gradients, with a preservation

of any secreted factors present before stimulation. In this way it approximates the situa-

tion of quiescent cells sparsely distributed encountering localized and/or transitory signals

of infection. The cell culture environment can be varied to explore its effect on macrophage

sensitivity to these signals. Our experimental approach can be used to study a variety of cell

types, environments, stimuli, and responses to explore further questions of single immune

cell responses.
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CHAPTER 5

POTENTIAL MECHANISMS FOR MACROPHAGE QUORUM

COMMUNICATION

5.1 Introduction

Quorum sensing is when a population of cells changes from one state to another upon reaching

a certain size, or quorum. First observed in bacteria, recently similar behavior has been

observed in immune cell populations, including macrophages (Antonioli et al. [2019]). The

mechanism for this behavior is most often a secreted factor that directly or indirectly impacts

the immune response of the cell. As the number of immune cells increases, the amount of

this secreted factor increases also, changing the response of the population. This signaling

can occur before, during, or after inflammation. In the case of signaling prior to immune

stimulation, this phenomenon has been termed quorum licensing, and though the signaling

factor has not yet been identified, Muldoon et al. [2020] have determined that it leads to

a change in resting NFκB levels in macrophages depending the density at which they were

grown.

There are more examples of quorum sensing leading to resolution of inflammation, such

as nitric oxide production and purinergic signaling. Both of these signals are interesting

because they are intially pro-inflammatory, and then later anti-inflammatory. NO at low

levels stimulates immune response, and at high levels suppresses immune response through

a metabolic mechanism. Purinergic signaling utilizes the extracellular degredation of ATP

to ADP, AMP, Adenosine, and then Inosine and re-uptake of each of these molecules, which

have different effects on the immune response of the cell, ranging from stimulatory at the

start (ATP, ADP), to inhibitory at the end (adenosine). In this way purinergic signaling puts

a time limit on the immune response, changing from excitory to inhibitor as the extracellular

signal is broken down by cell surface enzymes.
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In my previous experiments, I had observed a density-dependence during stimulation. I

was unsure if it resulted from a signal at resting state that communicated population density,

or something concurrent with TLR activation that quickly modulated the response. The

former seemed more likely, especially given the time needed for a secreted signal to diffuse

to a large enough area, and the dominance of whole culture density over local clustering.

Therefore, I focused on secreted factors that would be present in resting cultures.

There remained the possibility of a contact mechanism of communication as well. Cells

can communicate chemical and mechanical signals through cell-cell junctions in a confluent

culture (Charras and Yap [2018], Eugenin et al. [2003]). In my preliminary experiments I

had observed clusters of cells responding more similarly when one of the cluster was stimu-

lated, than isolated cells and their neighbors. But the behavior was not consistent enough

for me to conclude it was responsible for the observed density-dependent effects. Also, as

my macrophage cultures were plated below confluency on glass, it seemed unlikely that a

mechanical signal could propagate beyond isolated clusters. Even at high density, cluster

size remained small. One possibility for distance communication was nanotube connections.

I had observed some filamentous connections between macrophages that were nearby but not

in contact, which I determined to be tunneling nanotubes. TNTs can communicate signals

between macrophages over great distances (Dupont et al. [2018], Lock et al. [2016]). However,

I did not observe many of TNTs in my macrophage cultures, which made me doubt there

were enough of them to create a widespread network through the culture. Thus, I judged

a secreted factor to be more likely the method of communication behind my observation of

density-dependent group activation.

5.2 Supernatant swap

The first step in determining the communication mechanism underlying my observed density-

dependence of macrophage sensitivity was to distinguish between a mechanical and a secreted
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signal. If the signal was in the supernatant, then swapping supernatant from sparse or dense

cultures should impact their responses. I hypothesized that a sensitizing factor in spare

supernatant could increase the response in dense cells, or an inhibitory factor in dense

supernatant could decrease the response in sparse cells. As controls, I also tested switching

the media between cultures of the same density, as well as swapping out for fresh media, or

leaving the same media on the culture.

Supernatant Swap Experiment Protocol

1. Culture Macrophages in 18-well slides

(a) Culture G9 NFκB Reporter Macrophages for at least 2 passages in T75 flasks

(b) Plate macrophages at 470 and 2350 cells/mm2 in DMEM media with 10%FBS in

two 18-well slides (Ibidi 81816), one slide per density.

(c) Incubate overnight at 37◦C and 5%CO2

2. Prepare reagents

• CO2 Independent Medium with 10% HIFBS and 2% L-Glutamine, 15 mL

• 2 µM R848, 300 µL, in prepared media

• Hoechst33342 nuclear stain 10 µg/mL in PBS

3. Change media

(a) Warm prepared media to 37 ◦C

(b) Add 40 uL hoechst dilution to 4 mL warm media and vortex to mix

(c) Remove media from 18-well slides by pipette and immediately replace with 90 µL

of the warm media+hoechst mixture

4. Incubate slides at 37 ◦C and atmospheric CO2 for 3 hours

5. Supernatant Swap

(a) Remove 80 µL from the center 12 wells of each slide and replace with 80 µL

treatment media as follows (work in triplicate):

(b) Column 2: No Swap group: do not remove media
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Figure 5.1: Diagram showing the different groups in a supernatant swap experiment (see
table 5.2). Cells in dish show contrasting density, media color shows change with addition
of new fresh or conditioned media. Incubation times and conditions shown atop arrows.
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(c) Column 3: Same SN group: replace with conditioned media from the first column

of the same slide

(d) Column 4: Swap SN group: replace with conditioned media from the last column

of the other slide

(e) Column 5: Fresh Media group: replace with fresh, warm media

sacrificial no swap same SN swap SN fresh media sacrificial
sacrificial no swap same SN swap SN fresh media sacrificial
sacrificial no swap same SN swap SN fresh media sacrificial

Table 5.1: 18-well slide layout showing swap groups

6. Incubate slides and prepared R848 dilution at 37 ◦C and atmospheric CO2 for 2 hours.

7. Stimulate and Image

(a) Working in parallel, treat all wells in each group as follows:

(b) Image each well in GFP and DAPI channels at 10x magnification

(c) Dilute 10 µL of the 2 µM R848 into each well

(d) Incubate 15 minutes at 37 ◦C

(e) Image each well in GFP and DAPI channels at 10x magnification

(f) Note: for the No Swap control group, image twice, 15 minutes apart, before adding

the R848 for an untreated control.

8. Quantify Fraction Activated

(a) Process the fluorescence images with CellProfiler as described (reference) to gen-

erate per-cell nuclear/cytoplasmic GFP fluorescence ratio.

(b) Using R, calculate the fraction activated per well (reference)

(c) Average the replicates and plot, comparing the 5 groups and 2 densities, and

calculate statistical significance with a t-test (reference).

The results (Figure 5.2) indicated that cells treated with conditioned media, at either

density, had a decreased response compared with cells that had fresh media. To follow up on

these results, I screened several potential mechanisms using a variation of this experiment, as
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Figure 5.2: Supernatant swap results showing fraction activated per group. Mean and SD
from 3 replicates. Groups described in Table 5.2 and Figure 5.1. Stars indicate: * p ≤ 0.05
** p ≤ 0.01 *** p ≤ 0.001 **** p ≤ 0.0001 ‘ns’ p > 0.05
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Plating Treatment R848 Purpose
Both None None Untreated Control
Both None 200 nM 15 min Positive Control for Activation
Both Fresh Media 200 nM 15 min Recovery time control
Sparse Sparse Conditioned

Media
200 nM 15 min Swap control for Sparse

Dense Dense Conditioned
Media

200 nM 15 min Swap control for Dense

Dense Sparse Conditioned
Media

200 nM 15 min Test for sensitizing factor in
sparse media

Sparse Dense Conditioned
Media

200 nM 15 min Test for inhibitory factor in
dense media

Table 5.2: Experiment groups for SN swap experiment with plating (sparse or dense culture),
treatment (type of supernatant swap), R848 treatment, and purpose of the experiment group.
Groups also described in figure 5.1

well as characterized resting supernatant from cultures at both densities. I have also begin

isolation of extracellular vesicles from the supernatant in order to analyze those as well.

5.3 Inhibitor screen

I compiled a list of potential mechanisms to screen from literature sources, especially other

quorum communication mechanisms. Below is a list of mechanisms that I tested. These fall

into four categories: protein secretion, nitric oxide secretion, extracellular ATP (and, related

calcium mobilization Ren et al. [2014]), and extracellular Adenosine. Listed below are the

inhibitors I used to test these candidate mechanisms.

Potential mechanisms Tested:

• Protein secretion through the Golgi

– Brefeldin A (GolgiPlug, BD Biosciences)

– Monensin (GolgiStop, BD Biosciences)

• Nitric Oxide

– NSAIDs: Aspririn and Acetominophen

– L-NIL: iNOS inhibitor
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– NS-398: COX2 inhibitor

• Extracellular ATP

– EGTA (calcium mobilization leading to ATP release)

– Apyrase (not shown - endotoxin contamination)

• Adenosine

– Istradefylline: A2AR antagonist

There remains a major category of mechanisms I haven’t tested yet: Chemokines such as

(KC, MCP-1, MIP-1b, RANTES), cAMP, Macrophage colony-stimulating factor (CSF-1).

This list of chemokines comes from results in Muldoon et al. [2020], where they looking at

the secreted factors present in resting macrophage culture that were density-dependent.

For the inhibitors tested so far, I based the protocol for the inhibitor screen off of the

supernatant swap protocol above. If the inhibitors caused a decrease in the secreted factor,

then that would change the conditioned media and thus its impact on the cultures treated

with it. I also looked at the direct effect of the inhibitors on cultures without the media

swap. I added the inhibitors at the media change step, prior to the swap. This way any

previously present secreted factors would be removed, and the inhibitor would impact any

subsequent secretion.

The results thus far are shown in figure 5.3. The main problem with these experiments

has been inconsistency in the Untreated controls (i.e. the groups that did not experience a

supernatant swap or inhibitor treatment, but were stimulated with R848). There has been

varying levels of response in these controls, as well as varying difference between the two

density groups. This has made it more difficult to distinguish any impact of the inhibitor.

In continuing these experiments, I will also have to be careful in disentangling the impact

of the inhibitors on the cells directly, from the impact they would have on secreted factors

that would then impact the immune response.

The most promising result thus far is that several of the inhibitors targeted at NO
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Figure 5.3: Barplots showing fraction activated for macrophages plated at high and low
density (bar color). Plus and minus rows below show whether the cells were treated with
the inhibitor (Treatment), swapped with dense-conditioned supernatant (Dense SN), and
stimulated with R848 (R848). Label above each plot indicates which inhibitor was used.
Bottom plot is labelled differently as there was no swap in that experiment - instead, groups
are labelled individually by inhibitor name. Stars indicate: * p ≤ 0.05 ** p ≤ 0.01 *** p ≤
0.001 **** p ≤ 0.0001 ‘ns’ p > 0.05
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production had some effect. While not consistent enough to draw any firm conclusions, this

remains an area for future investigation. Previous research into NO-based communication

has determined that significant levels are produced only after immune stimulation, so it is

difficult to detect or investigate the effect of lower levels that may be present in resting cells.

I have been unable to detect NO in resting cells, or in cells after brief R848 stimulation with

a Griess Reagent assay, indicating that if NO is the mechanism, the concentrations are below

the limit of detection for this assay (about 1 µM).

5.4 Proteomics

I also sent samples of resting supernatant from cultures at high and low density (numbers)

to the proteomics core for analysis. Credit to Samuel Wang and Allen Huff for processing

the samples and doing initial data analysis. My table of significant results is based off of

Allen’s analysis.

Supernatant Preparation:

1. Plate macrophages in 6-well plate, 2 mL media per well, 3 wells at 470 cells/mm2, 3

wells at 3000 cells/mm2

2. Incubate overnight at 37C and 5% CO2

3. Wash cells 3x with warm PBS

4. Incubate in PBS for 4 hr at 37C and 5% CO2

5. Remove supernatant to 15 mL tubes and spin down at 4000 xg for 10 minutes

6. Transfer supernatant to 1.5 mL tubes and concentrate with speed vac at 30C for 2 hr

on high speed, or until about 10x concentrated.

7. Recombine same wells into one tube. Add protease inhibitor and EDTA.

8. Take 75 µL for a BCA to test concentration, bring rest to proteomics core. Freeze at

-20 if not testing immediately.

Preliminary Results:
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Figure 5.4: Proteomics screen: top results with keyword "Immune". Column 1, negative log
of p-value test for significant difference between replicates. Higher number indicates greater
similarity between replicates. Column 2, differential expression between dense and sparse
supernatants, normalized to median expression for each group. Larger positive number
indicates higher expression in dense culture compared to sparse, larger negative number
indicates higher expression in sparse culture compared to dense. Column 3: description
of protein from UniProt. Column 4: Accession number for protein in UniProt database.
Column 5: Gene name from UniProt database. Results filtered for keyword "Immune" in
GOBP (biological process) description, and ordered by differential expression.
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The results from the proteomics screen are included in figure 5.4, filtered by significance

and the keyword "immune", and ordered by the magnitude of difference between expression

in dense culture and expression in sparse culture. Significance was determined by an ANOVA

comparing variance between replicates to variance between densities with a p-value cutoff of

0.05. More research needs to be done into each of these results. One that jumps out to me,

however, is the Macrophage Colony Stimulating Factor Receptor (CSF1R). CSF-1 is on the

list of candidate mechanisms that have yet to be tested in the inhibitor screen.

5.5 Conclusions and future directions

My results from the inhibitor screens thus far have been largely inconsistent. I think this is

due to the reliance on the supernatant swap protocol for experiments, which is not consistent

enough. I have thus turned more to proteomics-based methods for further ideas. My next

step is to follow up on the results from the proteomics of resting culture supernatant. I have

also begun isolation of extracellular vesicles from the supernatant in order to compare their

abundance and contents. I hope these experiments will yield a more complete picture of fac-

tors in the supernatant that might differ between densities, in the case that the phenomenon

I observed is not based on only one mechanism.

Another future direction of inquiry is the differences in growth/state between cultures at

different densities, and how this might impact their immune functions, possibly through a

metabolic mechanism? This possibility needs further reading before planning experiments.

Lastly, I plan to continue a version of the inhibitor screen without supernatant swapping, to

look further at the NO and Adenosine hypotheses, as well as certain chemokines including

CSF-1.
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CHAPTER 6

INVESTIGATING PHYSICAL PARAMETERS OF SINGLE

HOST-PATHOGEN INTERACTIONS WITH FLUIDFM

6.1 Introduction

One of the main function of macrophages in the immune system is to patrol for invading

pathogens and destroy them, and send alarm signals to other immune cells. Macrophages

have been observed to literally chase down live pathogens in order to phagocytose them.

Macrophages also have surface receptors that detect PAMPS commonly found on the patho-

gen surface, such as LPS, LTA, and flagellin, proteins found in the bacteria cell wall, mem-

brane, and flagella. These observations would imply that macrophages have a way of sensing

when pathogens are nearby, either by contact with their surface proteins, or sensing "shed"

proteins that increase in concentration close to the bacterium. Once such a protein is de-

tected, the macrophage should activate, and then take actions to deal with the threat.

Previous research has examined treatment of a macrophage culture with bacteria in so-

lution, as well as isolation of small numbers of macrophages and bacteria in droplets (Jiang

et al. [2022]) using microfluidics. This research has established a number of parameters for

macrophage-pathogen interactions, including the range of contacts between macrophages

and bacteria in free interactions, the bacteria speed when it hits the macrophage sur-

face, macrophage speed in free motion, and the number of bacteria needed to provoke a

macrophage response in confinement. Some of this research focuses on pathogen infection

as a readout, while others look at macrophage phagocytosis, and others at measures of

macrophage activation. We wanted to look at an earlier readout, NFκB activation, which

might indicate TLR stimulation by the pathogen. It has been found that NFκB activation

should precede other macrophage responses such as phagocytosis and NO production. Look-

ing at NFκB activation alone, however, would allow us to detect earlier signs of pathogen
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detection, as well as lower-level activation that may not necessarily lead to downstream

responses.

We wanted to examine the case of a single macrophage-bacterium interaction in a con-

troller manner, where we could control the movement of the bacteria with the FluidFM

probe, and thus test other physical parameters of interaction between the bacteria and

the macrophage. We wanted to determine the minimum threshold for activation of the

macrophage, as well as which parameters were most important in that activation. We ex-

pected that touching a single, live pathogen to the macrophage surface would garner a

strong response, but surprisingly even direct, prolonged contact was often ignored by the

macrophage. We are still investigating to determine which parameter we need to change in

order to elicit a strong, consistent response.

6.2 Methods

Figure 6.1: Method overview for single macrophage bacterium interaction experiments. Left:
single bacterium presentation with FluidFM protocol. Right: physical parameters of the
bacterium-macrophage interaction to be studied.

First, I must give credit to Sara Hoggatt, who has been working on this project with me
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this past year. She took most of the following data, and helped with developing the protocol.

Also thanks are due to Zander Galluppi for help with bacteria culture, and Brad Studnitzer

for providing fluorescent micro-particles.

The protocol for single-bacterium presentation with the FluidFM is similar enough to

the agonist dispensing protocol that I won’t repeat it in full. However, a few parts need to

be described:

Preparing fluorescent bacteria: b.Subtilis were grown in 2 mL LB Broth at 37 ◦C and

235 RPM in a shaking incubator for 1-2 days until increased in density. We then stained

them with MemBrite Fix 640/660 from Biotium (30097-T) following manufacturer directions.

Stocks were stored in 50% glycerol/LB Broth at -80 ◦C until ready for use.

To use, an aliquot was thawed and mixed into 1 mL broth in a 50 mm microscope dish (the

same as used for macorphage culture for FluidFM experiments) and placed in the live-cell

incubation chamber of the microscope to equilibrate at 37 ◦C until ready to use.

Picking up bacteria and rinsing the probe: To pick up a bacterium, we attached an

empty Nanopipette probe (apeture 500 nm) to the FluidFM and placed the bacteria dish

underneath it on the stage. We approached the probe to the surface, raised it 1 micron, and

positioned it over a single bacterium, using fluorescence microscopy to visualize the bacteria.

We then applied -30 mbar underpressure and moved the probe and dish until a bacterium

became stuck on the probe opening. We retracted the probe in the dish to make sure it was

well-adhered. If not, the underpressure could be increased to -100 or -300 mbar.

To remove any contamination from the bacteria culture, we rinsed the probe 4 times

in endotoxin-free water, checking after each rinse that the bacterium was still attached to

the tip by looking for the fluorescent signal. After 4 rinses the probe was lowered into the

macrophage dish.

Negative controls: For negative controls we used polystyrene microparticles, stained with

CY3 or CY5 dye, 1 µm in size (comparable to the b.Subtilis), with a non-immunogenic
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coating (Moser et al. [2017]). We also did a washing control by putting the probe in the

bacteria dish without picking up any, then rinsing it off and putting it in the macrophage

dish to make sure it wouldn’t activate the cells.

Multiple contact stimulation with a bacterium: To do the multiple contact experiments,

we used the NanoSurf software "force distance spectroscopy" function. This method ap-

proaches the cell to a certain setpoint, pauses, then withdraws and repeats a set number of

times. The user can specify the approach speed and distance, force setpoint, pause time,

withdrawal speed and distance, time between repeats, and number of repeats. In this way

we can automate multiple contact stimulation (Figure 6.1).

Area scanning stimulation with bacterium: To do the area scanning stimulation, we used

the AFM imaging mode of the FludFM. We set parameters to scan back and forth across

the cell surface at a set speed. We defined a square that covered the majority of the cell

area, then set a speed and spacing between scanned rows that would cover the surface in

a few minutes, but not moving so fast as to damage the cell or prevent contact with the

bacterium. We used force feedback mode to ensure the probe followed the contours of the

cell surface, rather than remaining at a set height.

Though we were able to successfully scan a b.Subtilis bacterium over the cell surface

several times, we never saw a response, so we paused those experiments and did not finish

collecting a full dataset. This method, however, could be used again in future if needed.

Other parameters we have explored include:

• Type of bacterium (b.Subtilis, s.Gresius, s.Epidermidis)

• Contact area

• Contact time

• Number of contacts

• Approach speed

• Antigen orientation/binding availability (LTA-coated beads vs b.Subtilis)
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• Number of bacteria (in progress)

• Bacteria viability/damage (in progress)

Several of these parameters are included in figure 6.1.

Figure 6.2: Comparison of quantification metrics for activation of macrophages stimulated
with b.Subtilis in solution (green bars) compared with untreated control (purple bars). Met-
ric given in title and x-axis title. Each plot labeled with the cutoff value (cutoff), percent
negative population above cutoff (alpha, set at 5%), and percent positive population above
the cutoff (power). Vertical line shows cutoff location. Significance between groups from
Wilcoxon test p = 10-16 for all plots.

Quantifying the macrophage response: We quantified this data using the same CellPro-

filer method as for the single-cell agonist dispensing experiments (see appendix D.2, with

pixel sizes matched to 40x magnification. Since we have extensive time series data for these

cells, however, we wanted to use a metric that incorporated this information into a more com-

prehensive (and hopefully sensitive) response than simply the final timepoint measurement.

We took calibration data from bulk bacteria stimulation of macrophages, and quantified the

response with several metrics. Fluorescence images of NFκB reporter cells quantified with

CellProfiler as described in Appendix D.2. In the end, the most sensitive method that in-

corporated time series information was the nuclear intensity area under the curve over time

(Nuclear Intensity AUC) (Figure 6.2).

Details of metrics shown in Figure 6.2:

• Nuc/Cyt NFκB Ratio at final timepoint: For final timepoint images, divide the mean

GFP intensity in the nucleus by the cytoplasm value for each cell (after background
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subtraction).

• Nuclear NFκB at final timepoint (background subtracted): Final timepoint images,

mean GFP intensity in the nucleus (after background subtraction).

• Fold-Change in Nuc/Cyt NFκB Ratio: Fold-change between initial and final timepoint

values of the Nuc/Cyt mean GFP intensity ratio.

• Fold-Change in Nuclear NFκB at final timepoint: Fold-change between inital and final

timepoint values of nuclear GFP intensity (after background subtraction).

• Area under the curve of Nuc/Cyt NFκB Time Series: Plot Nuc/Cyt mean GFP in-

tensity ratio over time, find the area under the curve, minus the starting value. Data

taken in 5 minute intervals from before stimulation to 30-40 minutes after stimulation.

• Area under the curve of Nuclear NFκB timecourse. Plot the nuclear mean GFP inten-

sity (background subtracted) over time, take the area under the curve (same as above

item).

• Normalized AUC of Nuc/Cyt NFκB Time Series: normalize the "Area under the curve

of Nuc/Cyt NFκB Time Series" by total imaging time.

• Normalized Area under the curve of Nuclear NFκB timecourse: normalize the " Area

under the curve of Nuclear NFκB timecourse" by total imaging time.

6.3 Preliminary Results

Types of bacteria or particle:

• Blank bead: polystyrene micro-particle, 1 µm size, coated with TEOS-mercaptosilane

as described in Moser et al. [2017], loaded with Cy3 or Cy5 fluorescent dye.

• LTA-coated bead: same as above, with Lipoteichoic acid (LTA) attached to the surface

with a PEG linker as described in Moser et al. [2017].

• B.Subtilis: bacilis Subtilis bacterium, stained with WGA 640 R or MemBrite 640/660

membrane stain.
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• S. Epidermidis: staph Epidermidis bacterium, stained with MemBrite 640/660 mem-

brane stain.

Figure 6.3: Preliminary results from single macrophage bacterium interaction experiments.
Points colored by approach speed of the probe to the target cell, vertical axis is nuclear
intensity area under the curve. Facets are type of bacteria or particle (see list below). Top
row of plots, horizontal axis is contact time between probe and macrophage. Bottom row of
plots, horizontal axis is number of contacts between probe and macrophage.

The results so far (figure 6.3) have yielded no significant difference between the nega-

tive controls and b.Subtilis stimulation. There have been some indications that increased

approach speed and number of contacts might slightly increase the response, but nothing

above baseline with multiple repetitions.

We considered that maybe it was an issue with agonist availability, since the LTA coating

the bacteria is bound by its lipid tails, which also need to be accessible to bind TLR2.

However, using LTA-coated microparticles where the lipid tails face outwards did not yield

a higher response, and we put aside that avenue of investigation for now.
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6.4 Conclusions and future directions

These results surprised us; although we have seen isolated incidents of single macrophages

becoming activated by single bacterium stimulation, nothing has been consistent or strong

as one would expect from an immune cell whose job it is to detect pathogens being given

sustained and/or repeated contact with a whole pathogen. This result raises several ques-

tions. Are the TLR receptors not binding? Or maybe there needs to be more TLR binding,

such as multiple bacteria would cause? Is the LTA on the bacteria surface being removed by

TLR binding, and thus increased time/contacts does not yield further TLR stimulation? Is

TLR binding not the main method of pathogen-detection? Does the bacterium need to be

free and detached from the probe for optimal detection? If so, what is different about that

situation that would enable a stronger response?

Our most recent hypothesis comes from Kagan [2023], who posits that damaged or oth-

erwise malfunctioning bacteria elicit immune responses while intact, healthy bacteria do not.

To this end, our most recent efforts have focused on damaging the bacteria prior to presen-

tation to the macrophages. Sara developed a protocol to use short ethanol exposure for this;

we are also looking into antibiotics that would damage the bacteria in different ways. Also

still needed is a way to measure the damage done to the bacterium, in order to understand

how damaging it would impact its contact with the cell. So far our results with this method

have yielded a high rate of macrophage death, so we may shift to look at pyroptosis and

inflammasome activation as an alternative readout to NFκB activation.

Following the hypothesis of multiple bacteria needed for a response, we are working on

methods to isolate a small number of bacteria on the tip of the FluidFM probe. We have

attempted to form bio-films that might be broken up into multi-bacteria chunks, though so

far we have not achieved a cohesive join between the bacteria. We are considering other

methods to adhere the bacteria together in drops as well, such as by embedding them in an

alginate gel, for example using the method described by Zhang et al. [2021].
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CHAPTER 7

DISCUSSION

7.1 Results and Conclusions

My research as a whole focused on developing the Fluidic Force Microscopy method for use in

single immune cell studies. I determined how to use this methodology to stimulate immune

cells, including culture conditions compatible with the instrument and cell responses, and key

stimulation parameters for a targeted response. I also derived and fit an analytical model for

diffusion from a constantly-dispensing point source that I used to estimate the concentration

of a small molecule stimulus dispensed from the probe. This model was key in connecting

single-cell responses to FluidFM stimulation with the agonist concentration and gradient at

each cell location. With the protocol I developed I was able to concentrate TLR stimulation

down to the single-cell level in culture, producing a highly-localized response within a wider,

undisturbed environment.

As a first case, I applied this method to studying single macrophages in culture under TLR

stimulation, and discovered a surprisingly low temporal threshold for single-cell activation,

especially compared to whole culture stimulation. I also observed a density-dependence of

the group response at brief stimulation times, leading me to investigate possible cell to cell

communication mechanisms for this phenomenon. My initial results from this mechanism

search indicated that conditioned media inhibited the whole culture response to stimulation,

when compared with fresh media, and treatment with protein-export inhibitors targeting

the Golgi did not impact this phenomenon.

My conclusions from this project were first, that Fluidic Force Microscopy was a viable

tool for future studies of single immune cell stimulation and group coordination in response.

Secondly, the activation threshold of single macrophages stimulated with R848 is estimated

to be 5 minutes at 100 nM dose, which is shorter than previously observed TLR stimula-
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tion, and also lower than the activation threshold for whole culture stimulation with R848.

Thirdly, when the macrophages are stimulated as a group (anywhere from tens to hundreds

to hundreds of thousands of cells), sparse cultures have a higher NFκB response than dense

cultures. Fourth, this difference in response is most pronounced for short timescale stim-

ulation (5 minutes), and reduces with longer stimulation time (15 minutes), as the group

activation threshold decreases to the level of the single-cell activation threshold. Lastly, while

I was not able to conclusively identify a single mechanism, my results thus far have put lim-

its on potential mechanisms including: it is likely a secreted factor, it should be present in

resting culture or produced quickly after TLR stimulation (within 5 to 15 minutes), it is not

secreted via the Golgi Apparatus, it should be related to culture density, it should diffuse

throughout the culture beyond just the cell’s nearest neighbors, and it should have some

effect on the NFκB response to TLR stimulation. In the future I hope to be able to identify

this mechanism.

The latter part of my thesis research included a second project on single pathogen-

macrophage interactions using the FluidFM. Thus far Sara and I have developed a method

to present single pathogens to single immune cells with control over the physical parameters

of the interaction such as distance, contact force, duration, area, number, and frequency.

We can also pre-treat the pathogens or macrophages before interaction to change their state.

Lastly, we can monitor any impact on surrounding cells from the target cell response. So far

our results indicate that macrophages are surprisingly insensitive to single-bacteria stimu-

lation. We have ruled out several physical parameters of the interaction as key to a strong

response, including contact time, area, speed, and number of contacts. We will continue to

explore other parameters such as number of bacteria and bacteria health/integrity. From

our preliminary data we have concluded that contact with a single bacteria (and however

much TLR stimulation that provides) is insufficient to activate most target macrophages.
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7.2 Next Steps and Future Directions

I have several ongoing projects to follow up on my results in this thesis. For the mechanism

search, I am continuing to look at potential mechanisms, especially those relating to nitric

oxide production, as it has yielded the best results so far, and has been previously shown

to function as a quorum sensing signal. When I identify a potential mechanism, I will

test several inhibitors as well as activators, in whole culture studies and in FluidFM group

stimulation studies, to confirm that it is the mechanism for my observations. I am also

continuing to characterize the resting supernatant at different densities. More analysis can

be done with the proteomics data, and other factors can be identified in the media. I will

continue with extracellular vesicle isolation and analysis. I also want to look for non-protein

factors. Lastly, RNA sequencing of the cells themselves might yield insights into culture

density impacts on cell state.

For the pathogen presentation project, we are currently working on damaging single

bacteria with ethanol or antibiotics. We want to characterize the degree of damage and its

impact on cell state. We are following up on some preliminary data that might indicate

pyroptosis and inflammasome activation when presented with these damaged bacteria. It

may be that NFκB activation is not the best readout for this experiment. We also need to

develop better methods for presenting large bacteria that are not easy to immobilize on the

probe tip. And we are investigating ways to create bacteria clumps of different sizes, either

through bio-film growth, or encapsulation in polymer droplets.

Further in the future, the techniques and results in this thesis could lead in many different

directions. First, my methods for dispensing TLR agonist with the FluidFM could be com-

bined with more complex cell culture environments. Cultures of multiple cell types could be

used to model resident macrophages in their host tissue, and examine different macrophage

densities when present with other cells. Patterned co-culture techniques could expand this to

further tune cell type placement and communication (Whitesides et al. [2001]). More recent
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techniques can create highly complex cultures (Park et al. [2017]). In co-culture settings, the

FluidFM stimulation could be targeted at the non-macrophage cells, to examine how they

might cooperate with the macrophages in immune surveillance. The culture could also be

plated on a substrate that mimics the extracellular matrix such as collagen or matrigel to

look at cell motion and communication when on a softer surface. Treatments could also be

incorporated into the cell media to pre-treat the macrophages before stimulation.

My research also focused on the short-term, direct response to stimulation with the

FluidFM. However, when stimulated for longer times, more complex NFκB dynamics could

be studied, as well as downstream responses like cytokine production. (Yde et al. [2011])

predict that cytokines emitting from a single activated cell would create propagating waves

in tissue; the FluidFM technique would be a powerful method for testing this model.

The single-pathogen presentation research could be expanded into these contexts as well,

once parameters for reliably activating the target macrophage are identified. Our research

so far has focused on gram-positive bacteria, but other pathogens could be studied with this

method.

Beyond using the FluidFM, it would be valuable to investigate local stimulation and

response of the immune response on the single cell level in an in vivo system. For example,

zebrafish have been identified as a model system for immunology as they have both an

innate and adaptive immune system, can be genetically modified to monitor different cell

types, and studied live with fluorescence microscopy (Bailone et al. [2020]). I would be

interested in studying the behavior of immune cells near the site of a small stimulation, such

as might happen with an infection or vaccine injection. In doing my research I was unable to

find answers about the length and timescales of adjuvant or agonist distribution in a tissue

during an infection or vaccination. I wanted this information to compare the conditions I

had created with the FluidFM. These questions might be better answered in a living system,

and could be used to guide in vitro experiments with the FluidFM or other techniques. And
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examination of individual macrophage responses in vivo could confirm or expand my in vitro

observations.

In summary, my thesis research opened up a lot of experimental possibilities and unan-

swered questions, which I hope will provide fruitful ground for others to explore in the

future.
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APPENDIX A

MATERIALS AND RESOURCES

Raw datasets and original code available online at DOI:10.17632/mfyddz6n8k.1

Reagents:

• Resiquimod (R848), Invivogen (tlrl-r848)

• CO2 Independent Medium, Fisher (18045088)

• Hoechst33342 trihydrochloride, tryhydrate, Fisher (H3570)

• DMEM (Dulbecco’s Modified Eagle Medium), Life Technologies (11995-073)

• FBS (Fetal Bovine Serum), Thermo Fisher Scientific (NC0363634)

• HIFBS (Heat-inactivated FBS), Thermo Fisher - Pierce (16140071)

• HEPES sodium salt, Thermo Scientific (A16516.22)

• NovoRinse, Aglient (872B603)

• NovoClean, Aglient (872B602)

• AlexaFluor488, Thermo-Fisher (33077A)

• MemBrite Fix 640/660, Biotium (30097-T)

• WGA-640R, Biotium (29026-1)

• LB Broth, Lennox (BP1427-500)

• GolgiStop, BD Biosciences (554724)

• GolgiPlug, BD Biosciences (555029)

• Aspirin, Sigma-Aldrich (A2093-100G)

• Acetaminophen, Sigma-Aldrich (A7085-100G)

• L-NIL, Cayman (80310)

• NS-398, Millipore Sigma (349254-5MG)

• Istradefylline, Sigma-Aldrich (SML0422-5MG)

• EGTA, Millipore (324626)

• Apyrase, Sigma-Aldrich (A6535-100UN)
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• EDTA, Sigma-Aldrich (EDS)

• Protease/Phosphatase Inhibitor, Cell Signaling Technology (5872S)

• QUANTI-Blue (Alkaline phosphatase detection medium), InvivoGen (rep-qbs)

• Griess Reagent, Sigma (G4410-10G)

Cell Lines:

• Murine: RAW264.7 Macrophages, GFP NF-κB reporter, gift from Iain Fraser lab

Sung et al. [2014]

• Murine: RAW Blue NFκB SEAP reporter macrophages, InvivoGen (raw-sp)

• b.Subtilis bacteria, Microbiologics (0540K), ATCC 19659

• s.Epidermidis bacteria, ATCC (14990)

Software:

• FIJI, https://fiji.sc, Schindelin et al. [2019]

• CellProfiler. https://cellprofiler.org, McQuin et al. [2018]

• R Studio, http://www.rstudio.com, Team [2020]

• GraphPad Prism, http://graphpad.com

• Mathematica, https://www.wolfram.com/mathematica/, Research [2022]

Instruments:

• FlexAFM, NanoSurf

• Zeiss Axio Observer 7 Inverted Optical Microscope

• Hammatsu Flash sCMOS Camera

Other Materials:

• Microscopy dishes 50 mm x 7 mm, clear wall, glass bottom, TedPella (14027-200)

• 8-well Chambered Coverglass, Ibidi (80826)

• 18-well Chambered Coverglass, Ibidi (81816)

• FluidFM micropipette 2 N/m stiffness, 2 µm aperture, Cytosurge

• FluidFM nanopipette 2 N/m stiffness, 300 µm apeture, Cytosurge
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• FluidFM pneumatic connector, Cytosurge
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APPENDIX B

DETAILED FLUIDFM PROTOCOL

B.1 Culture NFκB Reporter Macrophages

1. Thaw NFκB reporter macrophages and plate in T75 in DMEM media with 20% FBS

2. Grow 2 days at 37C and 5% CO2

3. Passage 1 million cells to T75 with DMEM + 10

4. Grow 2-4 days at 37C and 5% CO2 until ready to passage again

5. Plate cells for FluidFM experiment:

(a) 500,000 cells in 2 mL media in 50 mm microscope dish for overnight incubation

(b) 200,000 cells in 2 mL media in 50 mm microscope dish for 2 nights incubation

(c) Make sure cells are well distributed in dish by shaking gently

6. Incubate cells at 37C and 5% CO2 for 1 or 2 nights depending on plating density. Final

culture density should be around 500 cells/mm2, relatively sparse with few clumps.

CRITICAL: macrophages should be used between passages 2 and 8 for most consistent

results. Replace with new batch about once a month. Do not start experiment if visible

blebbing, cell debris in dish, or elevated resting NFκB activation.

B.2 Set up FluidFM and prepare cell culture

1. Warm up microscope and open software

(a) Open microscope software, Nanosurf C3000 FluidFM software, and Cytosurge

software

(b) Warm up microscope incubation box to 37◦C

2. Prepare cells

(a) Prepare CO2 independent medium with HIFBS as described above. Warm to

37C.
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Figure B.1: Diagram of FluidFM Setup. Bottom to top: place cell dish on microscope
stage centered over the objective. Fill probe and connect pneumatic connector to back, and
clip to underside of controller. Place controller on stage so tip is lowered into dish. Lower
microscope illumination head over controller.

71



(b) Dilute Hoechst 33342 nuclear stain to 10 µg/mL in PBS

(c) Remove growth media from 50 mm culture dishes plated as described above

(d) Replace with 2 mL CO2 independent medium with HIFBS

(e) Add Hoechst solution 1:100 (final concentration 100 ng/mL) to cell dish

(f) Incubate at 37◦C for at least 1 hr. (can put in microscope incubation chamber).

Protect from light. CRITICAL: you must allow the cells to equilibrate to their

new media at 37◦C before stimulating them. If they are not at the correct pH

or temperature, they will not be healthy or responsive and the hoechst stain

efficiency will decrease.

(g) While the cells are incubating, continue preparing the FluidFM

3. Prepare agonist solution

(a) Dilute agonist in sterile, filtered, endotoxin-free water to desired concentration.

(b) Optional: To reduce chance of clogging, sterile filter solution with a 0.22 µm

membrane.

4. Set up FluidFM for dispensing

(a) Clip micropipette probe (2 µm opening, 2 N/m stiffness) onto canticlip holder

(b) Fill probe reservoir with 10 µL of agonist solution

(c) Attach pneumatic tubing to back of probe

5. Set up FluidFM for dispensing

(a) Position controller on stage and connect power cable, pneumatic nozzle, and laser

cable

(b) Lift up probe and clip on to controller, attach pneumatic tubing to nozzle. Place

coverslip on stage to protect objective. Place controller gently back down, check

to make sure probe does not crash into slide.

(c) Align FluidFM laser following instructions in Cytosurge software. If encountering

issues, check https://www.cytosurge.com/support or the Troubleshooting section
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(d) Fill probe by applying 1000 mbar overpressure until you see a drop forming at

the tip. Turn off pressure

(e) Place 500 µL drop of water on coverslip beneath probe

i. Turn off the laser (in the Nanosurf software, go to “advanced settings -> SPM

settings -> laser off”. CRITICAL: if you don’t turn off the laser, you could

damage your eyes when looking at the underside of the probe.

ii. Gently tilt back the controller with one hand

iii. With your other hand, pipette a drop of water into the center of the coverslip.

CRITICAL: be very careful not to get the pipette tip or your hands anywhere

near the probe!

iv. Gently place the controller back down, making sure the water drop makes

good contact with the canticlip holder

(f) Align FluidFM laser in water

i. Turn the laser back on

ii. Align the laser same as before. You should have to make just a small adjust-

ment.

(g) Rinse probe to remove any agonist from the outer surface

i. Remove the previous coverslip and water drop using a folded tissue to absorb

the water and stick to the coverslip. CRITICAL: fold the tissue neatly, don’t

crumple it, and be very careful not to allow any edge of it to go near the

probe.

ii. Place a new coverslip on the stage

iii. Pipette two drops of endotoxin-free water approximately 250 µL each on

either end of the coverslip. Position one in the center underneath the probe.

iv. Lower the controller so the probe is submerged in the first drop. Let sit 5

min.

73



v. Lift up the controller and move the coverslip so the second drop is centered

vi. Lower the probe into the second drop. Let sit 5 minutes. Pause point: you

can leave the probe soaking for longer if needed.

(h) Position cell dish underneath controller

i. Remove the coverslip as described above

ii. Place the cell dish on the stage underneath the controller with the lid removed.

iii. Replace the controller on the stage to submerge the probe in the media

B.3 Stimulate and Image target area in culture, clean probe

1. Locate area in dish to target: use the microscope software to identify an area of the

dish with healthy, unactivated cells and an even density, not too sparse nor overgrown.

2. Approach and position probe

(a) Use FluidFM controller at 200 mV setpoint to approach probe to an empty spot

in your target area.

(b) Position probe over target cell or spot using the knobs on the side of the stage

3. Image cells before stimulation

(a) Use the Hoechst, GFP, and Brightfield or DIC channels

(b) *reduce UV intensity and exposure time as much as possible to prevent irritating

the macrophages

(c) GFP fluorescence will be dim, but be careful not to photobleach! Instead, take

a set of 10 images (no delay) at each timepoint and average them together to

improve image quality.

4. Dispense agonist to stimulate target cell(s)

(a) Apply overpressure to dispense agonist for the desired stimulation time. I used 4

mbar overpressure for close-distance single-cell targeting, and 400 mbar pressure

for group targeting. I used stimulation times of 5 and 15 minutes.

74



(b) At end of stimulation time, change pressure setpoint back to zero and retract

probe 100 um.

(c) Leave controller in place until imaging is completed - attempting to move it may

jostle the cell dish.

5. Image cells to monitor response

(a) Image cells in 5 or 15 minute intervals, as needed, to monitor NFκB response.

Save a set of Hoechst, GFP, and Brightfield/DIC images at each timepoint.

(b) The reporter macrophages should reach maximum response by 30-40 minutes, but

they can respond in as little as 10-15 minutes.

6. Clean probe for next use

(a) When imaging is completed, remove cell dish from underneath controller, place

aside in a safe place, and replace lid.

(b) Put a coverslip on the microscope stage and put a drop of NovoRinse solution

in the center. Alternative: another ethanol-based cleaning solution would work

here.

(c) Replace controller on stage so probe is submerged. Soak 10 minutes.

(d) Swap out the NovoRinse slide for a clean slide and place two drops of water on

it, as described in step 5g above.

(e) Soak the probe in each drop of water for 5 minutes. CRITICAL: multiple rinses

are required to remove all of the NovoRinse from the probe, which will irritate the

macrophages if not completely rinsed off. Pause Point: you can leave the probe

soaking in water for longer if needed.

(f) Remove the water slide, and replace the cell dish back underneath the controller

as described in 5h.

(g) Repeat steps 6-11 to take a second dataset. On last dataset, skip step 11 and

proceed to cleanup (below) instead.
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B.4 Clean Up

1. Clean probe

(a) Soak the probe in a drop of NovoClean solution for 10 minutes (as described in

step 5g). Alternative: use a dilute bleach solution. Be careful, though, as too

much exposure will corrode the metal contact at the base of the canticlip holder.

(b) Rinse briefly with water.

2. Empty and store probe

(a) Remove probe from FluidFM controller and replace on pedestal

(b) Remove tubing and empty reservoir with pipette.

(c) Rinse out reservoir with 10 uL sterile water

(d) Replace tubing. Detach nozzle from FluidFM controller and reattach to tubing

to reconnect probe to pneumatic system

(e) Locate the syringe port in the pneumatic line. Attach an empty 30 mL syringe

to the port. Turn the valve to connect syringe to the probe.

(f) Apply negative pressure with the syringe to vacuum residual solution from the

probe channel into the reservoir. Alternative: you can apply positive syringe

pressure to empty the probe as well. It will take longer and has a risk of clogging,

but it has lower risk of introducing bubbles into the channel.

(g) Release the syringe pressure. Disconnect tubing from nozzle and probe and store

for reuse.

(h) Empty and rinse probe reservoir again.

(i) Remove probe from canticlip holder and place back in box. Add 1 mL sterile

water to box to soak probe.

(j) Tape box closed and store at room temperature. As the water evaporates, it will

draw residual solution out of the probe.

3. Store FluidFM and shut down instruments/computers
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(a) The FluidFM controller can be left on the microscope stage, or stored in its box,

depending on use of the microscope.

i. Be careful detaching the laser cable, pneumatic tubing, and power cable!

Bending the cables near their attachment points can lead to bent pins, frayed

wires, or split tubing.

ii. It is recommended that only trusted instrument users move the FluidFM to

and from the microscope stage.

(b) Turn off the instruments and software in the reverse order you turned them on.

B.5 Negative Controls

Run the above protocol with dispensing endotoxin-free water. If there is still NFκB activation

of target cell(s), adjust protocol (increase rinsing time or number of rinses, etc) to improve

sterility and prevent contamination from cleaning solutions or extra agonist.
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APPENDIX C

FLUIDFM TROUBLESHOOTING

Probe clogged after single use

There are several things you can do to prolong probe life and prevent clogging or damage.

Cleaning promptly after each use, emptying before storage, storing in water, rinsing off all

cleaning solutions thoroughly, etc. When these measures are not sufficient, you can also

clean the probe with oxygen plasma.

Probe still clogged or visibly dirty after cleaning

Try cleaning with oxygen plasma. Load probes into a plasma etch instrument (remove

from box, place in pyrex dish. Make sure tip will not crash into anything!). Apply Oxygen

plasma at 20 cc/min, 200W power, 3-5 minutes duration. Store dry or in water until next

use.

Cannot align laser in air

Check that the laser is centered on the probe tip. Sometimes a strong reflection can be

mistaken for the laser if it is far off-center. Next, try moving the detector screws so that

the detector indicator is far off-center - this can help in picking up a weak signal. Try also

moving the laser further up the probe length, and it sometimes gives a stronger signal than

at the very tip. If adjusting the laser and detector position doesn’t help, the next step is to

clean the probe of any gunk that may be scattering the laser light. Soaking in an ethanol or

bleach-based solution, followed by water, may help in many cases. For a stronger cleaning,

use oxygen plasma as described above. You may also want to clean the canticlip holder

window. A 70% EtOH solution applied with lens paper to both the inner and outer surface,

followed by an anti-fogging spray applied to the inner surface, usually works well. If none of

this helps, switch to a new probe.

Cannot align laser in liquid

The first potential issue is bad liquid contact leading to pockets of air between the
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canticlip window and the probe. Especially if the probe is dry before lowering into liquid,

this is likely to occur. The probe might be blurry even when in focus, or you might see a

shadow cast by an air bubble. The first solution is to tilt the controller vertically and allow

any water to run down to the space between the probe and the window, to dislodge any

air bubbles. If this doesn’t work, hold the controller upside down and VERY CAREFULLY

pipette 40 µL of water onto the window to wet it before replacing the controller on the stage.

You can tell if you’ve made good contact because the image should become clear, and the

laser alignment should shift just slightly from where it was aligned in air. The image of

the laser should be clear; if it is blurry as if seen through wavy glass, that might indicate

condensation on the inside of the canticlip holder window. In this case, you will need to clean

and reapply anti-fogging spray to the inside of the window. (Without this anti-condensation

coating, the combination of heat and water create a humid environment underneath the

controller that creates condensation on the glass.) If none of the above helps, the issue may

be probe cleanliness. There is often a small drop in signal between air alignment and liquid

alignment, so even if the probe was aligned in air it may lose signal in the water. Again, the

probe may be cleaned by soaking in an ethanol or bleach-based solution, followed by water.

For a stronger cleaning, use oxygen plasma as described above.

Cannot find laser and/or probe

If the laser or the probe are far off-center when you attempt to focus the microscope,

the range of motion allowed by the stage control screws or laser control screws will not

allow you to find them. First, check that the controller is firmly seated in the divots in

the stage beneath each leg. Second, check that the probe is clipped onto the holder and

the holder to the controller as far down as possible, centered, and level. Third, try using a

lower-magnification objective to locate the probe and center it, before switching to a higher

magnification objective that has a smaller field of view. Try moving the stage downwards

to find the edge of the plastic where the tip is attached, then move along the edge until you
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see the tip come into view. If you cannot find the laser, try first looking for its reflection to

give some direction. Check that the laser cable is fully plugged in and the "laser off" box is

unchecked in the NanoSurf software. Also try moving the stage and laser to their limits to

search the space. Check that the probe is centered, because focusing on an off-center probe

can lead to the laser being out of view. Try taking the probe off the controller and replacing

it, and repositioning everything. Try moving the probe to home position, where the laser

should be in view. Do a systematic sweep of the space using the laser control screws.

Probe will not fill or dispense

There are two possible explanations for this; either there is a clog preventing the probe

from filling, or there is a pressure leak somewhere in the pneumatic system. To clear a clog,

see cleaning methods suggested above. To test for a leak, apply manual pressure with a 10

mL syringe of air applied to the port in the pressure line. If you are able to push the plunger

all the way down, there is a leak. The most common place for a leak to occur is in the

pneumatic connector, right behind the attachment to the probe. The delicate tubing often

splits there, because it requires some force to attach the connector to the probe and it is

difficult to avoid pressing on the tubing. If the tubing is split, replace with a new pneumatic

connector. Leaking tubing can be fixed with a small amount of epoxy.

Approach failed or stops early

The approach will fail due to loss of laser signal, or stop early if the force feedback is

triggered by a stray vibration. Try increasing the force set-point. Check that the laser is on

and still aligned. Sometimes a last that was badly aligned in water will lose signal in media

and need to be re-aligned or cleaned to get a stronger signal. Sometimes you will get the

"approach failed" error when you contact the surface, because the deflection of the probe

moved the laser beyond the limits of the detector. That’s okay, because you can still find the

surface. To avoid issues with the automatic approach, get the best laser alignment possible

before placing the probe into the cell dish. A clean probe and window will generally yield
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the best results.

Negative control activating

If your negative controls are causing activation of the macrophages, review your probe

cleaning protocols. Any stray ethanol or bleach solution on the probe will irritate the cells.

You could increase the number or duration of water rinses. Also make sure the water drop

makes complete contact with the probe and holder. Keep your rinsing water as sterile as

possible. If still experiencing issues, try dispensing at a greater height or lower pressure, so

the dispensed water does not displace the media but rather diffuses into it.

Clean pneumatic tubing

Sometimes when using negative pump pressure, media from the cell dish can get into the

pneumatic system. To clean the pneumatic tubing, detach the lengths of tubing from the

pump and trap and hang them vertically. Prepare a syringe with a large-bore needle inserted

into a spare rubber connector that you would use to attach the tubing to the nozzle. Attach

the rubber connector to the nozzle, and screw in one of the pieces of tubing. Fill the syringe

with water and push through the tubing. Repeat with second tubing. Then push through

air until no more liquid comes out the bottom. Hang to air dry overnight, then reconnect.

Nuclear stain poor quality

If the nuclear stain is old, or the media is not maintaining pH correctly, there may be poor

uptake or fluorescence of the nuclear stain. This is especially a problem when the FluidFM

probe is positioned over the target cell, because it casts a reflection in the Hoechst channel

images that will interfere with segmentation later. To improve nuclear stain quality, use fresh

stain and media. You can also clean up a dim image by averaging multiple frames together,

adjusting the image thresholds, or increasing exposure time. A background subtraction

process will also help. For images where the probe reflection is an issue, use ImageJ to select

and delete those sections of the image as best you can. You can also fix uneven illumination in

ImageJ by using a flatfield correction, or selecting sections to adjust brightness and contrast
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separate from the rest of the image. It is essential for data quality to be able to draw accurate

boundaries around each nucleus, so the quality of the nuclear image is important.

TrackObjects in CellProfiler giving bad results

To correlate responses of individual cells across timepoints, you need to be able to track

individual cells between consecutive images. CellProfiler has a module for this, but it isn’t

always perfect. There could be a few reasons for object tracking errors: individual cells may

move more than the rest, or die or divide, or their nuclear stain may fail to be detected in all

frames. The field of view may shift and cause some cells at the edges to be cut off, or all to

be mis-aligned. A lot of this can be addressed with better nuclear staining, and being careful

not to disturb the cell dish during imaging. Clumps of cells may be incorrectly segmented

frame to frame. The choice of tracking algorithm and parameters may not be optimized for

this data, and need some tweaking. One persistent issue is that cells may move unexpectedly

and change shape/position dramatically. For these, you may need to correct errors in cell

numbering by hand, afterwards.
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APPENDIX D

ORIGINAL CODE AND PIPELINES

Original code described below; actual files can be found on Mendeley Data at DOI:10.176

32/mfyddz6n8k.1.

D.1 Diffusion model in ImageJ and Mathematica

D.1.1 Process Fluorophore dispensing in ImageJ

Intensity and Size vs Time Macro

Quantify dispensed cloud intensity and size over time. Determine time to equilibrium con-

centration gradient, and time to decay after end of dispensing.

1. Set the scale in px per micron

2. Initialize an empty array to hold the results, include columns for:

• image name

• image time-point

• peak location x and y

• cloud size in x and y (measure standard deviation of intensity)

• maxima location

• maxima mean, median, mode, min, and max intensity

3. Open all images for one run in ImageJ. Make an array to loop over using getImageID().

4. Get the title of the "before dispensing" image of the probe. Remove it from the list of

images to loop over (it’s not part of the time series).

5. Define global variables:

• Dispensing time

• Maxima location for first image without cantilever (best way to identify peak
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location without the probe shadow/reflection interfering). Use these coordinates

for all images without cantilever.

• Maxima locaiton for images with cantilever: move the y coordinate down 6 mi-

crons (convert to px), x coordinate is the same.

6. loop over image array from step 3.

(a) Get metadata from image filename, convert frame index to time in seconds

(b) use imageCalculator() to subtract before dispensing cantilever image from dis-

pensing images with cantilever in frame.

(c) save maxima location according to global variables defined above

(d) run moment calculator and store results in array from step 2.

(e) to measure peak brightness, draw an oval centered on the maxima location with

a radius equal to 0.14 of standard deviation in x and y (based on a Gaussian

dropping to 99% value). measure intensity inside the oval and save to results.

(f) draw the oval on the image for QC and save.

(g) save the results to a text file. close all windows.

Intensity vs Distance Macro

1. Set global scale px to micron based on objective

2. Open image of last timepoint before end of dispensing, when cloud is at equilibrium

3. Find maxima location

4. Define a function to make a line, get intensity values along the line with plot profile,

record both intensity and distance in the results window, and draw the line on the

image.

5. Use the function to measure five lines from maxima to edges of image, avoid cantilever.

6. Save image with lines on it and results window

7. In Excel, average replicates to get an average and SD for concentration vs distance
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from the dispensing point for each set of dispensing conditions (AF488 concentration,

probe height, and applied pressure). Save as CSV file.

AF488 Reference Slides

1. Open the the cellphone picture of the slides in ImageJ

2. Set the scale for the image using the coverslip dimensions

3. Using the freehand drawing tool, measure the area of each fluorophore drop.

4. Open the fluorescence image for each drop and measure the modal intensity/

5. Record the area and modal intensity for each drop, along with its AF488 concentration.

6. Calculate the drop thickness by dividing the known volume of 1 µL by the measured

area.

7. Plot thickness*concentration for each slide against modal intensity

8. Do a linear fit and record the slope. This is the conversion factor of brightness*depth

to intensity you need for the diffusion model.

D.1.2 Chi-sq fit of model to data in Mathematica

1. Import intensity vs distance information you got from AF488 dispensing and reference

slides

2. Define a function for concentration vs distance, following the theoretical model, then

define a function for intensity vs distance, using the conversion factor you got from the

calibration slides.

3. Use the SEGWE calculator https://nmr.chemistry.manchester.ac.uk/?q=node

/432 to estimate the diffusion coefficients for AF488 in room temperature water, and

your agonist in warm water.

4. Use a chi-square fit to fit the theoretical expression to the dispensing data

(a) The parameters zmax and A were fit by minimizing chi-squared for the difference
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between the dispensing data between 0 and 100 µm distance from the dispensing

point and the predicted value for those same points. (In the single cell targeting

experiments most cells are within 100 µm of the dispensing point. Including larger

distances weighted the distribution too heavily towards the tail, rather than the

center where accuracy is most important in order to compute the concentration

at the target cell location).

(b) Define a function to compute the chi-sq distance between two lists

(c) Make a list of zmax values to loop over: 400 to 1000 µm, step size 100 µm

(d) Make a list of A values to loop over: 0.4 to 0.7, step size 0.05

(e) Generate predicted I(ρ) curve for each pair of A and zmax values for ρ = 0 to

100 µm. Note: cut off data at r = 235µm (index 1450) because data is unreliable

past this point.

(f) Compute chi-square distance between AF488 dispensing data and the predicted

curves

(g) Find pair of parameters that have the smallest chi-square value

(h) Best values for 4 mbar dispensing at 4 µm height: A = 0.55, zmax = 900µm

(i) Best values for 400 mbar dispensing at 20 µm height: A = 1.1, zmax = 700µm

5. Once you have the fit parameter, use the model to plot concentration vs distance from

the dispensing point at the dish surface for your agonist (make sure to change the

diffusion coefficient).

6. Note: we want to change from the spherical coordinate rho to the polar coordinate r so

that we can later match concentration values to cell location coordinates in the plane

of the dish. For the single-cell targeting at short height the distinction is negligible,

but for dispensing at greater heights it is important.

7. Determine the “dilution factor”

(a) Use the concentration model to determine the ratio of concentration at the center
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of the dish vs concentration loaded into the probe, called the “dilution factor”

(b) Use the dilution factor to calculate what concentration of agonist to use in order

to stimulate the cells at a desired concentration.

D.2 CellProfiler pipeline summary

Pipeline for 100x images:

1. Load GFP and HOECHST images

2. Extract metadata from file names (dataset, channel, timepoint)

3. In NamesAndTypes match up the pairs of channel images and put them in order for

processing

4. Group the datasets to be processed separately (so the cell tracking only applies within

each dataset)

5. Run “rescale intensity” to brighten the nuclear images (to improve segmentation): set

values of 0.6 and above to 1.0

6. Smooth the nuclei with a 30 px median filter

7. Run Identify Primary Objects on the smoothed nuclei. Object diameters 80-250 px,

use global thresholding, Otsu method, two classes, correction factor 0.9. (determined

empirically to get best results)

8. Run Track Objects. Tracking method LAP, search radius 3 SD, search radius limit

100-2000 px, no second phase. Save “tracked cells” image

9. Expand nuclei objects by 100 px and save as “cell regions” objects

10. Expand the nuclei objects by 10 px and save as “outer ring” to capture the bit of the

cytoplasm closest to the nucleus

11. Shrink the nuclei by 16 px to capture a nuclear ROI and correct for oversized nuclei

from the brightening in (5) and save as “shrunken nuclei”

12. Run Identify Tertiary Objects and subtract the nuclei objects from the outer ring ob-
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jects and save as “cytoplasm” (captures the ring of cytoplasm right outside the nucleus.

This approach was chosen because in widefield images the difference in thickness be-

tween cytoplasm and nucleus parts of the cell cause the nucleus to seem brighter and

the cytoplasm dimmer and this throws off the results. As in Ding et.al. 1998 J. Bio.

Chem., sampling the portion of cytoplasm nearest to the nucleus, where the thicknesses

are more similar, is a better measure of nuclear vs cytoplasmic GFP fluorescence.)

13. Create a masked image where the “cell regions” objects are masked

14. Measure the intensity of the masked image to get a measure of background intensity

15. Use Image Math to subtract the mean intensity of the masked image from the GFP

image, save as “NFκB background subtracted”

16. Measure the GFP intensity in the shrunken nuclei objects

17. Measure the GFP intensity in the cytoplasm objects

18. Use Calculate Math to divide the mean intensity of the shrunken nucleus by the mean

intensity of the cytoplasm for each object

19. Make an Overlay Outlines image showing the nucleus, cytoplasm, and cell regions

20. Use Display Data on Image to add the cell numbers from “track objects” and the

nuc/cyt ratio from “calculate math” to write these values by each cell on the outlines

overlay image

21. Save the annotated images

22. Export the data to spreadsheet

Pipeline for 10x images:

1. Load GFP and HOECHST images

2. Extract metadata from file names (dataset, channel, timepoint)

3. In NamesAndTypes match up the pairs of channel images and put them in order for

processing

4. Run Rescale Intensity to brighten the images: set values of 0.6 and above to 1.0
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5. Smooth the nuclei with a 3 px median filter

6. Run Enhance or Suppress Features to enhance the smoothed nuclei using “enhance

speckles” with feature size of 20 px

7. Run Identify Primary Objects on the smoothed nuclei. Object diameters 8-25 px,

use global thresholding, Otsu method, two classes, correction factor 0.9. (determined

empirically to get best results)

8. Expand nuclei objects by 10 px and save as “cell regions” objects

9. Expand the nuclei objects by 1 px and save as “outer ring” to capture the bit of the

cytoplasm closest to the nucleus

10. Shrink the nuclei by 1 px to capture a nuclear ROI and correct for oversized nuclei

from the brightening in (4) and save as “shrunken nuclei”

11. Run Identify Tertiary Objects and subtract the nuclei objects from the outer ring

objects and save as “cytoplasm” (captures the ring of cytoplasm right outside the

nucleus)

12. Create a masked image where the “cell regions” objects are masked

13. Measure the intensity of the masked image to get a measure of background intensity

14. Use Image Math to subtract the mean intensity of the masked image from the GFP

image, save as “NFκB background subtracted”

15. Measure the GFP intensity in the shrunken nuclei objects

16. Measure the GFP intensity in the cytoplasm objects

17. Use Calculate Math to divide the mean intensity of the shrunken nucleus by the mean

intensity of the cytoplasm for each object

18. Make an Overlay Outlines image showing the nucleus, cytoplasm, and cell regions

19. Use Display Data on Image to add the nuc/cyt ratio from “calculate math” to write

these values by each cell on the outlines overlay image

20. Save the annotated images
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21. Export the data to spreadsheet

D.3 Calibration data in R

Find quantitative cutoff for categorizing cells as activated using calibration data.

1. Set up R and import the tidyverse library

2. Read in the csv file with the quantified calibration data (output from CellProfiler).

3. Drop all rows with missing data

4. Find the cutoff value for the top 5% of resting cells

(a) Count the number of resting cells, multiply by 0.05

(b) Use "slice max" and "order" to extract the top 5% of the resting cell data

(c) Get the lowest value from that list, round.

5. Find the power of this cutoff: the percentage of Activated cells above the cutoff.

D.4 Analysis in R

D.4.1 FluidFM Single Cell Targeting Analysis

1. Set up R and import the following libraries: tidyverse, patchwork, ggbeeswarm, and

ggforce

2. Import data: single cell data and metadata (from CellProfiler), concentration gradient

informaiton (from Mathematica)

3. Data wrangling

(a) Make a unique run identifier column for the data and metadata

(b) Use the dilution factor to convert C0 to Cmax

(c) Extract the target cell position for each run and time-point from the cell data

(cell data has locations, metadata has target cell number), add to metadata, then

join back to cell data.
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(d) Compute the distance from the target cell for each cell, in microns

(e) Pivot Wider: transform the data table to one row per cell per run, with the

Nuc/Cyt Ratio at each time-point in a separate column

(f) Make "Nuc/Cyt Before" and "Nuc/Cyt Final" columns with values from first and

last time-points, then take their ratio to get the Fold-Change in Nuc/Cyt Ratio.

4. Define a bootstrap function for calculating uncertainty in fraction activated (for error

bars)

#input list of activation data (binary, cutoff already applied)

bootstrap <- function(data) {

#initialize an array to hold the fraction activated values

a <- as.numeric(rep(NA,5000))

n <- length(data) #size of each sample

#sample with replacement and get 5000 fraction activated values

for(i in 1:5000){

s <- sample(data, size = n, replace = T) #sample the data

a[i] <- sum(s,na.rm = T)/sum(!is.na(s)) #compute fraction activated

}

sd(a) #compute the variance in the fraction activated values

}

5. Bin cells by distance from target to compute fraction activated

(a) Create “binned distance” column and binary “activated” columns using the cutoffs

determined from calibration data

(b) Group by Run, binned distance and summarize data. Compute fraction activated

based on the two activation metrics: Nuc/Cyt NFκB ratio at final timepoint, and

the fold-change “rNC”, and the uncertainty for both using the bootstrap function
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6. Make Target cells dose-response curve

(a) Filter target cells from data by distance = 0

(b) add binary "activated" columns

(c) Summarize replicates and calculated fraction activated with uncertainty

(d) Compute uncertainty in Cmax form the diffusion model

D.4.2 FluidFM Group Targeting Analysis

1. Set up R and import the following libraries: tidyverse, patchwork, ggbeeswarm, and

ggforce

2. Import data: cell data and metadata (from CellProfiler), concentration gradient infor-

mation (from Mathematica)

3. Data wrangling

(a) Calculate distance from dispensing point in microns

(b) Join metadata to data, convert C0 to Molar units

(c) Bin cell data by distance from dispensing point, add column for binary activation

(d) Use pivot wider to match up cells across time-points

(e) Compute fold-change in Nuc/Cyt ratio between initial and final timepoints

(f) Group by treatment conditions and run, compute fraction activated

4. Count number of nearest neighbors

(a) Define a function to count the number of other cells within 18 microns of the

target cell

(b) Loop over cells, grouped by run, and add the number of neighbors to the cell data

frame.

5. Compare number of neighbors to culture density

(a) Filter cells in the center activation zone so as not to weight the data with the

outlying unstimulated cells. Distance cutoff depends on Cmax, determined to be
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30 and 100 um from center for 90 nM and 900 nM, respectively.

(b) Determine culture density for each run, based on field of view size and number of

cells per image.

(c) Bin number of neighbors, group by treatment condion, density, and number of

neighbors bin and summarize fraction activated. use Bootstrap for SE.

6. Bin data in xy grid to calculate fraction activated, join concentration information

(a) Join concentration information to cell data

(b) Create an xy grid of bins, join relative concentration information

(c) Sort cells into bins by locaiton

(d) Group by Run and xy bin, summarise to get fraction activated

(e) Join concentration information for each bin.

7. Plot xy binned data with concentration, number of cells per bin, and fraction activated

8. Functions for statistical significance and effect size:

(a) Permutation analysis for comparing small group to large group. Input combined

activation data for two groups you want to compare (binary), size of smaller group

for sampling, and experimental fraction activated of small group.

perm <- function(data, n, exp_a) {

a <- as.numeric(rep(NA,5000))

for(i in 1:5000){

s <- sample(data, size = n, replace = T)

a[i] <- sum(s,na.rm = T)/sum(!is.na(s))

}

pval = sum(a >= exp_a)/5000

return(pval)

}

93



(b) Permutation ANOVA to detect significant difference among multiple groups

permutation_anova <- function(dat){

colnames(dat) <- c("g", "d")

F_exp <- summary(aov(d~g, data=dat))[[1]][1,4]

groups <- unique(dat$g)

F_vals <- vector(mode = "numeric")

for (i in 1:5000) {

sampled_data <- data.frame(g = dat$g, d = as.numeric(NA))

n = nrow(sampled_data)

sampled_data$d <- sample(dat$d, size=n, replace=T)

F_vals[i] <- summary(aov(d~g, data=sampled_data))[[1]][1,4]

}

p_val <- sum(F_vals >= F_exp)/5000

return(list(p_val, F_exp, F_vals))

}

(c) Permutation to determine Effect Size with Uncertainty

effect_size3 <- function(dat, g1, g2) {

#rename columns of dataframe to d and g

colnames(dat) <- c("g", "d")

a <- as.numeric(rep(NA,5000))

group1 <- filter(dat, g==g1)

group2 <- filter(dat, g==g2)

n1 <- nrow(group1)

n2 <- nrow(group2)

a1 <- sum(group1$d,na.rm = T)/sum(!is.na(group1$d))
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a2 <- sum(group2$d,na.rm = T)/sum(!is.na(group2$d))

d_exp <- a2 - a1

for (i in 1:5000) {

sample1 <- unlist(sample(group1$d, size=n1, replace=T))

sample2 <- unlist(sample(group2$d, size=n2, replace=T))

s1 <- sum(sample1,na.rm = T)/sum(!is.na(sample1))

s2 <- sum(sample2,na.rm = T)/sum(!is.na(sample2))

a[i] <- s2 - s1

}

SE <- sd(a, na.rm = T)

return(list(d_exp, SE, a1, a2))

}

(d) Use the above funcitons and the R Wilcoxon Test to determine statistical sig-

nificance and effect size: filter data you want to compare, run the permutation

ANOVA for all groups, use the Wilcoxon test (non-parametric pairwise compar-

isons) to determine pairwise significance, and run the effect size code.

D.4.3 FluidFM Whole Culture Stimulation Analysis

1. Set up R and import the following libraries: tidyverse, patchwork, ggbeeswarm, and

ggforce

2. Import data: cell data (from CellProfiler) with metadata

3. Define the bootstrap function for calculating uncertainty in fraction activated as above

in section D.4.1, item 4

4. Group data by stimulation concentration and time, summarize to compute fraction

activated with uncertainty. (use the activation cutoff from calibration data)
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