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Factor models have been widely used in recent years to model high-dimensional spatio-temporal data. However, the validity of
employing factor models in a specific application has received less attention. This article proposes test statistics for testing the
symmetry in cross-correlation matrices of a high-dimensional stochastic process implied by exact factor models. A rejection
of symmetry indicates that the use of an exact factor model is questionable. Both simulations and real examples are used to
demonstrate the applications and to study the finite-sample performance of the proposed test statistics. Empirical results show
that the proposed test statistics are effective in identifying cases where exact factor models are not appropriate, providing
valuable guidance for choosing factor models in a high-dimensional setting.
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1. INTRODUCTION

Dimension reduction or structure regularization becomes a necessity in high-dimensional statistical analysis. One
of the commonly used techniques in dimension reduction is to employ factor models in which a complex system
is driven by a small number of common factors. In time series analysis, factor models have been widely used in
recent years as an effective approach to modeling high-dimensional data. Anderson (1963) and Brillinger (1964)
marked the early study of factor models in time series analysis. Geweke (1977) proposed a dynamic factor model
for a vector time series which assumes that each individual series is a sum of two independent components. The
first component is common and is generated by a small number of factors, and the second component is specif-
ically referred to as noise. The author also proposed a frequency-domain procedure to estimate the model. Peña
and Box (1987) proposed a factor model in which all dynamics are driven by the factors and the noises are serially
uncorrelated. In addition, the factors are assumed to be independent of each other. This model is often referred to
as an exact factor model, because it closely follows that of independent data. Chamberlain (1983) and Chamber-
lain and Rothschild (1983) introduced the approximate factor models, where the noises may be serially dependent.
Certain conditions are needed on the covariance matrix of the noises and the factors to render the model asymp-
totically identifiable. Bai and Ng (2002) investigated high-dimensional information criteria for determining the
number of factors of an approximate factor model. Onatski (2009) studied hypothesis testing about the number
of factors in large factor models. Forni et al. (2000) proposed the generalized dynamic factor models addressing
the issues of identification and estimation. Forni et al. (2005) further studied one-sided estimation and forecast-
ing of generalized dynamic factor models. Other types of factor models have also been proposed in the literature
for high-dimensional time series analysis. See, for instance, Peña and Poncela (2006), Lam and Yao (2012), Lam
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et al. (2011), and Gao and Tsay (2019, 2022), among others. Interested readers are referred to Peña and Tsay (2021,
Ch. 6) and the references therein for further information.

The applicability of factor models to a given data set of vector time series is less studied, however. One often
takes it for granted that factor models are applicable to all high-dimensional time series. In addition, there are no
clear guidelines available on which class of factor models is suitable for a given data set. The goal of this article is to
close this gap by assessing the validity of applying exact factor models in an application. Specifically, we propose
test statistics to test the null hypothesis of symmetry in the cross-correlation matrices of a high-dimensional time
series. For an exact factor model, the cross-correlation matrices are symmetric. Therefore, if some cross-correlation
matrices are not symmetric, then employing an exact factor model for the data set under study becomes question-
able. Consider a k-dimensional time series yt = (y1t, … , ykt)′, where the superscript ′ denotes transpose. We said
that yt follows an exact factor model if it satisfies

yt = 𝝁 + Lft + 𝝐t, (1)

where 𝝁 is a constant vector, ft = (f1t, … , frt)′ is an r-dimensional factor process with r ≪ k and E(ft) = 0,
fjt and fi,t−𝓁 are uncorrelated for all 𝓁 and i ≠ j, L is a k × r loading matrix, and 𝝐t is a white noise series such
that E(𝝐t) = 0 and cov(𝝐t) = D

𝜖

, which is a positive-definite diagonal matrix. In model (1), {ft} and {𝝐t} are
uncorrelated processes. Let 𝚺z

𝓁 = cov(zt, zt−𝓁) be the lag-𝓁 autocovariance matrix of a vector time series zt. For the
exact factor model (1), we have

𝚺y
𝓁 = L𝚺f

𝓁L′, 𝓁 = 1, 2, … . (2)

Since 𝚺f
𝓁 is a diagonal matrix, 𝚺y

𝓁 is symmetric if yt follows an exact factor model. Let
𝚪𝓁 = diag(𝚺y

0)
−1∕2𝚺y

𝓁diag(𝚺y
0)
−1∕2 be the lag-𝓁 cross-correlation matrix of yt, where diag(A) is a diagonal matrix

consisting of the diagonal elements of the matrix A, and we omit the superscript y from the correlation matrix as
there is no confusion. In this article, we focus on testing the null hypothesis that 𝚪𝓁 is symmetric to assess the
applicability of exact factor models.

We proposed three approaches to test the hypothesis of symmetry in cross-correlations. The first approach is
the Wald test based on asymptotic distributions of the sample cross-correlations. The second approach utilizes the
maximum statistic of sample cross-correlation matrices and applies the extreme value theory to make statistical
inference. The third approach adopts the idea of multiple-hypothesis testing based on Benjamini–Hochberg (BH)
procedures to control the false discovery rate. Failure to reject the null hypothesis of symmetry in 𝚪𝓁 would support
the use of an exact factor model for yt. Such information should be helpful in applying exact factor models because
they can dramatically simplify the modeling process, especially when the dimension k is large and the number of
common factors r is small.

Asymptotic normality of sample cross-correlations of a stationary vector time series has been established in
the literature (Roy, 1989). However, since the dynamic dependence of yt can be complicated, it would be very
time-consuming to compute the asymptotic variances of many sample cross-correlations when the dimension is
high. To simplify the computation, we adopt a block bootstrap procedure to estimate the variances of sample
cross-correlations used in our testing. The use of block bootstrap methods in time series analysis is common in
the literature, see for instance, Kunsch (1989), Bühlmann (2002), Lahiri (2003), and Politis (2003).

The finite-sample performance of the proposed tests is investigated via a simulation study, which shows a fairly
accurate type-I error control and good testing powers against a variety of asymmetric scenarios. In particular, the
Wald test is effective in low-dimensional settings but it is computationally infeasible in high-dimensional settings.
The maximum approach is effective for high-dimensional settings, but not effective for low-dimensional series,
say k < 10. The BH approach is effective for both low- and high-dimensional settings, but it requires intensive
computing when the dimension is high, say k > 100. In terms of computation costs, the maximum approach is the
most efficient one when the dimension k is large, for example, k ≥ 100.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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TESTING FOR SYMMETRIC CORRELATION MATRICES 3

To demonstrate the applicability of the proposed test statistics, we consider three economic datasets often used
in the literature for factor modeling. Based on the test results of symmetric cross-correlation functions (CCF), we
are able to choose an adequate factor model for each application and obtain satisfactory fitting results.

The article is organized as follows. Section 2 introduces the hypothesis testing for the symmetry of CCF and
proposes test statistics that have sound theoretical justifications. Section 3 presents a simulation study to validate
the proposed methodology in finite samples. In Section 4, we apply the proposed methodology to three economic
datasets. Section 5 provides some concluding remarks.

2. TESTING SYMMETRIC CROSS-CORRELATIONS

Consider a k-dimensional stationary process with a sample realization {yt}T
t=1 of T observations. We can estimate

𝚺y
𝓁 and 𝚪𝓁 by their sample counterparts:

̂𝚺
y

𝓁 =
1

T

T∑

t=𝓁+1

(
yt − y

) (
yt−𝓁 − y

)′
, (3)

̂𝚪𝓁 ≡ [𝜌̂ij(𝓁)] = diag{̂𝚺
y

0}
− 1

2 ̂𝚺
y

𝓁 diag{̂𝚺
y

0}
− 1

2 , (4)

where y = 1

T

∑T
t=1yt is the sample mean. Furthermore, define

𝝆𝓁 = vec(𝚪𝓁), 𝝆̂𝓁 = vec(̂𝚪𝓁),
𝜹𝓁 ≡ vech(𝚪𝓁 − 𝚪′𝓁) = Dk 𝝆𝓁 ,

̂𝜹𝓁 = Dk 𝝆̂𝓁 ,

where 𝜹𝓁 and ̂𝜹𝓁 are k(k − 1)∕2-dimensional vectors, vech(A) denotes the vectorized operation of the
lower-triangular sub-matrix of A, and Dk denotes the k(k−1)∕2×k2 matrix in which each row vector has exactly one
entry 1 and one entry −1 to carry out the differencing 𝜌̂ij(𝓁) − 𝜌̂ji(𝓁) for a given (i, j) of indexes with k ≥ i > j ≥ 1.

We are interested in testing the hypothesis of symmetry in cross-correlation matrices:

H0 ∶ 𝚪𝓁 = 𝚪′𝓁 vs Ha ∶ 𝚪𝓁 ≠ 𝚪′𝓁 , 𝓁 = 1, 2, … , (5)

which is equivalent to checking

H0 ∶ 𝜹𝓁 = 0 vs Ha ∶ 𝜹𝓁 ≠ 0, 𝓁 = 1, 2, … . (6)

In what follows, we consider three approaches to conducting the testing. The first approach uses the Wald test
statistic based on the asymptotic distributions of sample cross-correlations mentioned in the Introduction. The
second approach utilizes the maximum statistic of sample cross-correlations and applies the extreme value theory
to make statistical inference. Details are given in Section 2.2. The third approach adopts the idea of multiple
hypothesis testing based on Benjamini–Hochberg procedures and is given in Section 2.3.

2.1. Wald Test

The first approach proposed is based on the central limit theorem for sample cross-correlations 𝝆̂𝓁 given by
Roy (1989) and Hannan (1976):

√
T
(
𝝆̂𝓁 − 𝝆𝓁

)
→

(
0,V𝓁

)
, as T → ∞, (7)

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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4 N.-J. HSU, L. H. SIM AND R. S. TSAY

under the regularity conditions in Assumption 1 below, where the formula of V𝓁 ≡ limT→∞ var
(√

T𝝆̂𝓁
)

is specified

in Roy (1989).

Assumption 1. (Regularity conditions). (a) The process yt is a stationary and ergodic process with a linear
process representation having finite fourth moments, and the spectral density of each univariate series is square
integrable. (b) All fourth-order cumulants of yt are zero.

Accordingly, we have the following theorem.

Theorem 1. Under H0 in (6) and Assumption 1, the Wald test statistic

Q𝓁 ≡ T ̂𝜹
′
𝓁

(
Dk
̂V𝓁D′

k

)−1
̂𝜹𝓁 , 𝓁 = 1, 2, … (8)

has an asymptotic Chi-square distribution with degrees of freedom k(k− 1)∕2, where ̂V𝓁 is a consistent estimator
of V𝓁 .

We may define a Portmanteau test statistic by taking into account simultaneously the first 𝓁 lags of
cross-correlations being symmetric. See the corollary below.

Corollary 1. Under H0 in (6) and Assumption 1, the test statistic, for a given 𝓁,

Q1∶𝓁 ≡ T ̂𝜹
′
1∶𝓁

[
(I𝓁 ⊗ Dk) ̂V1∶𝓁 (I𝓁 ⊗ D′

k)
]−1

̂𝜹1∶𝓁 , 𝓁 = 1, 2, … (9)

has an asymptotic Chi-square distribution with degrees of freedom 𝓁k(k − 1)∕2, where ̂𝜹1∶𝓁 = ( ̂𝜹
′
1, … ,

̂𝜹
′
𝓁)
′ and

̂V1∶𝓁 is a consistent estimator of V1∶𝓁 ≡ limT→∞ var
(√

T(𝝆̂′1, … , 𝝆̂
′
𝓁)
′
)

.

Similarly to the Portmanteau test for serial correlations, the joint test statistic Q1∶𝓁 should be more powerful
than the individual test statistics Q𝓁 . Based on Theorem 1 and Corollary 1, we reject H0 at the significance level
𝛼 if Q𝓁 > 𝜒

2
k(k−1)∕2(𝛼) and Q1∶𝓁 > 𝜒

2
𝓁k(k−1)∕2(𝛼) for a given 𝓁, where 𝜒2

v (𝛼) denotes the upper tail 𝛼 quantile of the
Chi-square distribution with v degrees of freedom. In our data analysis later, we adopt the consistent estimates
̂V𝓁 and ̂V1∶𝓁 derived in Melard et al. (1991) to implement the Wald tests and found that the test is effective in
low-dimensional settings with a small dimension k and large sample size T , but its performance deteriorates quickly
in the high-dimensional setting when T is not sufficiently large relative to the dimension k. This is caused mainly
by the fact that both ̂V𝓁 and ̂V1∶𝓁 become inaccurate estimates when the sample size is not large. In addition, the
computation involved becomes very intensive.

2.2. Maximum Statistics

The second approach proposed is based on extreme value theory for the maximum statistic, which has been
widely used for hypothesis testing in high-dimensional time series. See, for example, Chang et al. (2017), Xiao
and Wu (2014), and Tsay (2020). For the testing problem considered, define the standardized statistics and the
individual and joint test statistics:

̂
𝛿ij(𝓁) ≡ 𝜌̂ij(𝓁) − 𝜌̂ji(𝓁), Z𝓁ij =

̂
𝛿ij(𝓁)

ŝe( ̂𝛿ij(𝓁))
, 1 ≤ j < i ≤ k, (10)

Z(max)
𝓁 ≡ max

1≤j<i≤k
Z𝓁ij, Z(max)

1∶𝓁 ≡ max
1≤r≤𝓁

Z(max)
r ,

Z(min)
𝓁 ≡ min

1≤j<i≤k
Z𝓁ij, Z(min)

1∶𝓁 ≡ min
1≤r≤𝓁

Z(min)
r ,

M𝓁 ≡ max
{

Z(max)
𝓁 , −Z(min)

𝓁

}
, M1∶𝓁 ≡ max

{
Z(max)

1∶𝓁 , −Z(min)
1∶𝓁

}
,

(11)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 5

for 𝓁 = 1, 2, … , where the denominator ŝe( ̂𝛿ij(𝓁)) in (10) is obtained by a block bootstrap method discussed

shortly after. Since Z𝓁ij’s correspond to the marginal elements of the standardized ̂𝜹𝓁 , by Theorem 1, Z𝓁ij is asymp-

totically (0, 1) distributed under H0. Accordingly, Z(max)
𝓁 and Z(min)

𝓁 are the extreme values of k(k− 1)∕2 random

variates that are asymptotically (0, 1); Z(max)
1∶𝓁 and Z(min)

1∶𝓁 are the extreme values of 𝓁k(k − 1)∕2 random variates
that are asymptotically  (0, 1). For completeness, we first review the extreme value theorem for independent
normal variates in the following lemma:

Lemma 1. Assume Zi
i.i.d.∼ N(0, 1), for i = 1, 2, … , n, and define the maximum and minimum statistics: Z(n) ≡

max1≤i≤n Zi and Z(1) ≡ min1≤i≤n Zi. Then, as n → ∞,

an

(
Z(n) − bn

)
→d Λ, an

(
−Z(1) − bn

)
→d Λ,

where→d denotes convergence in distribution, Λ has the standard Gumbel distribution G(x) = exp(− exp(−x)) for
x ∈ R, an and bn are normalizing constants (Embrechts et al., 2013) given by

an =
√

2 ln n, bn = an −
ln 4𝜋 + ln ln n

2an

.

In this study, we employ the test statistics M𝓁 and M1∶𝓁 based on the extremes of Z𝓁ij’s. Although Z𝓁ij’s are
dependent variates in our case, Lemma 1 still provides a good approximation for deriving the null distribution
for M𝓁 and M1∶𝓁 under H0 whenever the dimension k of the series is sufficiently large. Some justifications for
this claim and an adjustment for the extreme value distribution to account for the dependence among Z𝓁ij’s are
provided in the Appendix, adopting some results of Afonja (1972). Following Lemma 1, we have the following
theorem.

Theorem 2. Assume yt satisfies Assumption 1(a). For a sufficiently large k, we reject H0 at significance level 𝛼 if

M𝓁 > b1,k −
1

a1,k
ln[− ln(1 − 𝛼∕2)], (12)

M1∶𝓁 > b𝓁,k −
1

a𝓁,k
ln[− ln(1 − 𝛼∕2)], (13)

for a given 𝓁 ∈ {1, 2, …}, where

a𝓁,k =
√

2 ln[𝓁k(k − 1)∕2], b𝓁,k = a𝓁,k −
ln 4𝜋 + ln ln[𝓁k(k − 1)∕2]

2a𝓁,k
.

Theorem 2 can be obtained directly from Lemma 1 with n = k(k−1)∕2 for individual test M𝓁 and n = 𝓁k(k−1)∕2
for joint test M1∶𝓁 , or refer to the proof in Tsay (2020). Although the normalized Z𝓁ij are not independent (0, 1)
in general, the proposed decision rules in Theorem 2 work very well as shown in our simulation study. Again,
more discussions regarding this issue are provided in the Appendix.

Return to the estimation of ŝe( ̂𝛿ij(𝓁)) in (10). Since ̂
𝛿ij(𝓁) corresponds to a single element in 𝜹𝓁 , its variance

estimate could be directly adopted from the corresponding diagonal entry of the asymptotic variance 1

T
D𝓁

̂V𝓁D′
k

described in (8). However, this theoretical estimate often fares poorly in a high-dimensional setting. We recom-
mend using a block bootstrap (Kunsch, 1989) to obtain a data-driven estimate ŝeBT( ̂𝛿ij(𝓁)). Block bootstrap has
been commonly used in time series analysis. See, for instance, Lahiri (2003) and the references therein. The boot-
strap procedure used is given in Algorithm 1. Regarding the block size, mBT can be chosen following two rules in
practice. One is to set at the magnitude of T1∕3 (Hall et al., 1995). The other choice is the smallest lag such that
the sample CCFs of yt are insignificant beyond that lag.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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6 N.-J. HSU, L. H. SIM AND R. S. TSAY

Algorithm 1. Bootstrap procedure for estimating se( ̂𝛿ij(𝓁)) in (10)

1: Specify the block size mBT and the bootstrap replicates B.
2: Define overlapping sub-block data with size mBT:

j ≡ {yj,… , yj+mBT−1}, j ∈  ≡ {1, 2,… ,T + 1 − mBT}.

3: for b = 1,… ,B do
4: Generate a random sample via block bootstrap from {yt}, that is,

Y(b)
≡ {j1

,… ,jL
}, L = [T∕mBT], j𝓁

i.i.d.∼ Unif( ),

where j𝓁
’s are sequentially ordered according to the index 𝓁 to form a vector time series with sample size

T .
5: Compute sample CCFs based on Y(b), denoted as 𝜌̂(b)ij (𝓁).
6: Compute ̂𝛿(b)ij (𝓁) = 𝜌̂

(b)
ij (𝓁) − 𝜌̂

(b)
ji (𝓁) for 1 ≤ j < i ≤ k, 𝓁 = 1, 2,…

7: end for
8: Compute the bootstrap standard error:

ŝeBT

(
𝜌̂ij(𝓁) − 𝜌̂ji(𝓁)

)
=

{
1

B − 1

B∑

b=1

(
̂
𝛿

(b)
ij (𝓁) − ̄

𝛿ij(𝓁)
)2

}1∕2

,

where ̄𝛿ij(𝓁) = B−1 ∑B
b=1

̂
𝛿

(b)
ij (𝓁).

2.3. Multiple Testings Using Benjamini–Hochberg Procedure

In contrast to the Wald test and the maximum statistics that consider a single hypothesis testing, we may consider
a multiple-testing approach by breaking down the null hypothesis into multiple hypotheses:

H(𝓁,i,j)
0 ∶ 𝛿ij(𝓁) = 0 vs H(𝓁,i,j)

a ∶ 𝛿ij(𝓁) ≠ 0, for 1 ≤ j < i ≤ k, 𝓁 = 1, 2, …

which is asymptotically equivalent to

̃H
(𝓁,i,j)
0 ∶ Z𝓁ij ∼ (0, 1) vs ̃H

(𝓁,i,j)
a ∶ Z𝓁,ij not  (0, 1), for 1 ≤ j < i ≤ k, 𝓁 = 1, 2, … , (14)

where Z𝓁ij is defined in (10). Similarly to the maximum statistics, this approach focuses on the marginal dis-
tribution of each Z𝓁ij, but ignores the dependence among Z𝓁ij’s to gain computational efficiency. We adopt the
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) to perform the
multiple hypotheses testing for (14) in the following steps:

Step 1: Compute the p-value associated with the individual test ̃H
(𝓁,i,j)
0 , that is,

p𝓁ij = 2
{

1 − Φ−1
(
|Z𝓁ij|

)}
, 1 ≤ j < i ≤ k, 𝓁 = 1, 2, … , (15)

where Φ−1(⋅) is the cumulative distribution function of (0, 1).

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 7

Step 2a (denoted as BH𝓁 procedure): For an individual lag 𝓁, order the p-values {p𝓁ij ∶ 1 ≤ j < i ≤ k} in (15)
by ascending order and denote them as

p(1) ≤ p(2) ≤ · · · ≤ p(m), where m = k(k − 1)∕2.

Step 2b (denoted as BH1 :𝓁 procedure): For multiple lags 1 to 𝓁, order the p-values {prij ∶ 1 ≤ j < i ≤ k, 1 ≤
r ≤ 𝓁} in (15) by ascending order and denote them as

p(1) ≤ p(2) ≤ · · · ≤ p(m), where m = 𝓁k(k − 1)∕2.

Step 3: Let jmax be the largest index j such that p(j) ≤
j

m
q, that is,

jmax ≡ max
1≤j≤m

{

j ∶ p(j) ≤
j

m
q

}

,

where q is a user-specified upper threshold for the false discovery rate (FDR).
Step 4: Reject the hypothesis in (6) if jmax is not an empty set.
Step 5: Identify the pairs of series associated with p(j) satisfying j ≤ jmax, if any.
When considering the CCF information of a single lag 𝓁, the BH𝓁 procedure in Step 2a is implemented. When

considering the CCF information of multiple lags from 1 to 𝓁, the BH1∶𝓁 procedure in Step 2b is implemented.
Besides the rejection decision, BH procedures also identify the alternative set which contains pairs of series with
asymmetric CCF structure, under the control of FDR ≤ q (Benjamini and Hochberg, 1995) at a prespecified level
q. These pairs could be informative in an application. See an illustration in Section 4.

3. SIMULATION STUDY

This section presents six experiments to study the proposed methods in testing symmetric cross-correlations for
a vector time series. Experiments 1–3 discuss the low-dimensional scenarios whereas Experiment 4 focuses on
high-dimensional scenarios. Experiment 5 is a sensitivity analysis of the fourth cumulant assumption. Experiment
6 examines a more general scenario for applying the proposed test in which the idiosyncratic term 𝝐t is serial
dependent while maintaining the absence of cross-sectional dependence. This simulation shows that the proposed
tests are applicable to approximate factor models so long as the factor series are mutually independent.

We consider the following data-generating process for Experiments 1, 2, and 4:

yt = Lft + 𝝐t, 𝝐t
i.i.d.∼ (0, Ik),

ft = 𝚽ft−1 + 𝜼t, 𝜼t
i.i.d.∼ (0, Ir),

where k ≥ r, and the two noise processes {𝝐t} and {𝜼t} are independent. Experiments 3, 5 and 6 use slightly
different forms for data generation specified in each corresponding subsection. To generate various CCF structures
in the simulation, we consider a random setting for the loading matrix L and three specifications for the AR matrix
𝚽 as follows:

• The loading matrix L:

L = [Lij], Lij ≡

̃Lij

max1≤i≤k,1≤j≤r | ̃Lij|
,

̃Lij
i.i.d.∼ (0, 1). (16)

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 N.-J. HSU, L. H. SIM AND R. S. TSAY

• Setting for𝚽:

(a) Case A (under H0),

𝚽 = diag[Φii], Φii
i.i.d.∼ U[−0.9, 0.9]. (17)

(b) Case B (under the alternative Ha),

𝚽 = [Φij], Φij =
̃Φij

√∑
1≤i,j≤r

̃Φ2
ij

,
̃Φij

i.i.d.∼ (0, 1). (18)

(c) Case C (lower triangular),

𝚽 =
⎡
⎢
⎢
⎢
⎣

0.5 0 0

0 0.4 0

𝜙 𝜙 0.3

⎤
⎥
⎥
⎥
⎦

, 𝜙 = 0, 0.1, 0.2, 0.3, 0.4, 0.5. (19)

We compare the performance of various test statistics proposed in Section 2, including

• Wald test statistics: Q1,Q2,Q3,Q1∶2,Q1∶3;
• Maximum test statistics: M1,M2,M3,M1∶2,M1∶3;
• Multiple testing procedures: BH1, BH2, BH3, BH1∶2, BH1∶3.

Other settings in the simulation study include

• type-I error for the Wald tests and the maximum test statistics is set to 𝛼 = 0.05 and the FDR for the BH
procedure is set at q = 0.05;

• the block bootstrap used to compute the test statistics is set with B = 100 and mBT = 5;
• the number of simulation replicates is 500 for each simulation study.

We evaluate both the empirical size and power of the test statistics under the six experiments described below
and summarize an overall finding at the end.

3.1. Experiment 1

Experiment 1 considers the scenarios with a fixed r = dim(ft) = 3, coupled with various dimensions k =
3, 5, 10, 15, 20. The L matrix is given in (16), and the data are generated under H0 using 𝚽 in (17) and under Ha

using 𝚽 in (18) with the sample sizes T = 300 and T = 1000. The empirical sizes and powers of the test statis-
tics considered, evaluated by the proportion of rejecting H0 among 500 simulation replicates, are summarized in
Figures 1 and 2 for T = 300. Similar results for T = 1000 are reported in Supporting information.

The empirical size of the BH procedure is fairly close to q = 0.05. The maximum statistics also have the
empirical size around 0.05 for time series with k ≥ 10, but they are too conservative for series with k < 10. This
is understandable because in such cases the number of Z𝓁ij’s (k(k − 1)∕2) is too small to apply the extreme value
approximation in Theorem 2. In contrast, the Wald test statistic has an accurate size at 0.05 for series with small k,
but it becomes too conservative for k ≥ 10. As expected, the sizes of all three test statistics improve as the sample
size increases. Regarding testing power, the BH procedure is the most powerful among the three methods for all
cases. The maximum statistics are competitive with the BH procedures when k > 10. An important finding of this
study is that the power of the Wald statistics declines quickly as k increases, suggesting that the Wald statistic is
ineffective when k > 10.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 9

Figure 1. Empirical sizes of test statistics in Experiment 1 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05)

Figure 2. Empirical powers of test statistics in Experiment 1 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05)

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 N.-J. HSU, L. H. SIM AND R. S. TSAY

Figure 3. Empirical powers of joint tests in Experiment 2 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05)

3.2. Experiment 2

Experiment 2 considers the scenarios with fixed r = 3 and k = 20. The data are generated using L in (16) and 𝚽
in (19). In particular, 𝜙 = 0 corresponds to a case of H0, 𝜙 ≠ 0 corresponds to a case of Ha, and the magnitude of
|𝜙| indicates the level of deviating from H0. Similarly to Experiment 1, two different sample sizes T = 300 and
T = 1000 are considered. Since the performance of tests based on cumulative statistics fares generally better than
that based on single-lag statistics, we only report the results of Q1∶𝓁 , M1∶𝓁 , and BH1∶𝓁 for the experiments hereafter.

The empirical powers for Experiment 2 are summarized in Figure 3 for T = 300. The left-end-point of the power
functions indicates that the test size under H0 is well controlled with 𝛼 = 0.05. Again, the maximum statistics and
the BH procedures are competitive. Both methods have good testing powers compared to the Wald test statistics.
Simulation results for data with T = 1000 show similar conclusions and are reported in Supporting information.

3.3. Experiment 3

Experiment 3 considers dynamic factor models with k = 10 and r = 3 as an alternative model scenario. The model
setting is as follows:

yt = L1ft + 𝜓L2ft−1 + 𝝐t, 𝝐t
i.i.d.∼ (0, Ik),

ft = 𝚽ft−1 + 𝜼t, 𝜼t
i.i.d.∼ (0, Ir).

In this experiment, the sample size is set to T = 300 and the settings for L = [L1,L2] and𝚽 follow (16) and Case
A in (17) respectively. The value of |𝜓| controls the level of deviating from H0. In particular, 𝜓 = 0 corresponds to
the case of H0 and 𝜓 ≠ 0 corresponds to the case of Ha. The resulting empirical powers for 𝜓 in the range of [0, 1]
are summarized in Figure 4. From the plots, the three testing methods are competitive, and all have good testing
powers in dynamic factor model scenarios. Similar conclusion holds for data with T = 1000 and is reported in
Supporting information.

3.4. Experiment 4

Experiment 4 focuses on high-dimensional scenarios with k = 50,100, 200,500, 1000 and r =
√

k∕2 such that
r∕k → 0 as k → ∞. The sample size is set to T = 500, and the settings for L and 𝚽 are identical to those of
Experiment 1. Note that, in this experiment, the series dimension k could be larger than the sample size T . In
Experiment 4, we only report the results for the maximum statistics and the BH procedures since implementing the
Wald test is too time-consuming for k > 20. The resulting empirical sizes and powers are summarized in Figures 5
and 6 respectively. From the plots, the maximum statistics might have some upward size distortion while the BH
procedures might have downward size distortion when k is large. This is not surprising because the factor models

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 11

Figure 4. Empirical powers of joint statistics in Experiment 3 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05)

Figure 5. Empirical sizes of joint test statistics in Experiment 4 for sample size T = 500, based on 500 simulation replicates
(𝛼 = q = 0.05), where k denotes dimension

Figure 6. Empirical powers of joint test statistics in Experiment 4 for sample size T = 500, based on 500 simulation replicates
(𝛼 = q = 0.05), where k denotes dimension

used are AR(1) so that some of the lag-3 cross-correlations might not be statistically significant. The plots also
show that both the maximum statistics and the BH procedure have good power in the high-dimensional cases with
the maximum statistics faring slightly better when the dimension is 1000.

3.5. Experiment 5

Experiment 5 is a sensitivity analysis to validate the performance of the Wald test when the fourth cumulant
assumption is violated. In this experiment, we only consider the H0 scenario and examine the test size. The data
yt are generated with r = 3 and k = 10 using L in (16) and 𝚽 in (17). Instead of Gaussian noises, 𝝐t follows a
Student t-distribution with 𝜈 degrees of freedom (denoted as t

𝜈

) in generating yt. As known for t
𝜈

distributions, the
fourth moment exists when 𝜈 > 4 but the fourth cumulants are not zero. Following this t

𝜈

setting, the cumulant
assumption required for the Wald test is violated except for 𝜈 → ∞ corresponding to the Gaussian case that
satisfies the cumulant assumption (i.e. all fourth cumulants are zero). In this experiment, the sample size is set
to T = 300 and 𝜈 is ranging from 1 to 10 indicating the level of violation from the cumulant assumption. The
results for Experiment 5 are summarized in Figure 7. It turns out that the empirical sizes of all proposed tests are

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 N.-J. HSU, L. H. SIM AND R. S. TSAY

Figure 7. Empirical sizes of test statistics in Experiment 5 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05),
where 𝜈 denotes the degrees of freedom of t-distribution

Figure 8. Empirical powers of joint statistics in Experiment 6 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05)

well-controlled at 𝛼 = 0.05 whenever 𝜈 > 4. Similar results are found for data with T = 1000 and are reported
in Supporting information. To conclude, the proposed tests remain effective so long as the fourth moments of the
time series yt exist.

3.6. Experiment 6

Experiment 6 investigates the performance of the test statistics under a broader class in which the idiosyncratic
term 𝝐t is serially dependent, but has no cross-sectional dependence, that is, cov(𝜖it, 𝜖jt′ ) = 0 for all i ≠ j and t ≠ t′,
and cov(𝜖it, 𝜖it′ ) could be non-zero for some t ≠ t′. The data generating model is identical to that of Experiment 1,
except that 𝝐t is assumed to follow a first-order moving-average (MA(1)) model, given by 𝝐t = 𝜻 t+0.5𝜻 t−1, where
𝜻 t is an i.i.d. white noise process. In this experiment, the sample size is set to T = 300, and k ∈ {3, 5, 10, 15, 20}.
The empirical sizes and powers of the joint test statistics considered, evaluated by the proportion of rejecting
H0 among 500 simulation replicates, are summarized in Figures 8 and 9 for T = 300. The performance of the
test statistics used is very similar to that of Experiment 1. This is expected since the proposed test statistics are
only relevant to the underlying cross-sectional CCF which is absent under the idiosyncratic MA(1) setting. The
simulation results for T = 1000 are reported in Supporting information.

3.7. Summary of Simulation

Finally, we use the simulation settings in Experiment 1 to evaluate the computing time for the proposed testing
procedures. The time comparison is shown in Figure 10, where the x-axis indicates the dimension k and the y-axis
indicates the computing time in minutes (log scale) for a single simulation replicate. From the plot, the BH proce-
dures are faster when the dimension k is small, but the maximum statistics become more computationally efficient
as k increases. On the other hand, the computing time for the Wald test grows too fast as k increases and becomes
almost infeasible for k > 40.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 13

Figure 9. Empirical sizes of joint statistics in Experiment 6 for T = 300, based on 500 simulation replicates (𝛼 = q = 0.05)

Figure 10. Computing-time evaluation for implementing the proposed testing procedures, where k is the dimension and the
y-axis is in log schedule

To summarize, the three proposed methods perform reasonably well in testing CCF symmetry in vector time
series. The Wald tests are most useful for low-dimensional time series, say k < 10, but become less power-
ful and even computationally infeasible for high-dimensional time series. The maximum statistics are effective
when the series dimension k is sufficiently large to apply the extreme value theory, for example, k ≥ 10. In par-
ticular, it enjoys an advantage in the computation time for high-dimensional settings. The BH procedures fare
well consistently in most scenarios considered in our simulation study, but they require heavier computation
when k is large, say k > 100. Finally, as a byproduct, the BH procedure also identifies the pairs of series with
asymmetric CCFs.

Our test statistics are functions of the sample CCFs 𝝆̂𝓁 . As expected, the test statistic is more powerful when the
sample CCFs involved are strong, for example, Q1 is generally more powerful than Q2 and Q3 since the magnitudes
of elements in 𝝆̂1 is generally higher than those in 𝝆̂2 and 𝝆̂3 for non-seasonal series. To mitigate the difficulty in
selecting the lags, we recommend that the cumulative statistics M1∶𝓁 and BH1∶𝓁 be used in applications.

4. APPLICATIONS

We demonstrate the proposed methodology in three applications to assist factor modeling. For all data sets, the
block size in the bootstrap steps is set to mBT = 5 in implementing the proposed tests. Our testing results are
further confirmed by a parametric approach under a factor model framework with model selection followed by the
likelihood ratio test.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 N.-J. HSU, L. H. SIM AND R. S. TSAY

Table I. The p-values of Wald test statistics and the maximum statistics for Dataset 1

Lag 𝓁

Test statistics 1 2 3 4 5

Q𝓁 0.9935 0.9666 0.9989 0.9981 1.0000
Q1∶𝓁 0.9935 1.0000 1.0000 1.0000 1.0000
M𝓁 0.2771 0.1750 0.1862 0.0232† 0.0618
M1∶𝓁 0.2771 0.3044 0.4161 0.0650 0.0779

Note: † indicates significance at 𝛼 = 0.05.

Figure 11. Ordered p-values of BH procedures for Dataset 1 (FDR controlled at q = 0.05)

4.1. Dataset 1

The first dataset used consists of quarterly Gross Domestic Product (GDP) series of 19 European countries from
2000.II to 2018.IV. The data are log-transformed and differenced to remove trends; time plots of the data are shown
in Supporting information. These data were used in Peña and Tsay (2021, Example 6.4) to demonstrate dynamic
factor model analysis.

We apply the proposed testing methods to the growth rates of sample size T = 75. The p-values based on Wald
tests and the maximum statistics are reported in Table I. Except for the test statistic M4, all p-values are greater
than 0.05, indicating there is insufficient evidence to reject the CCF symmetry.

We further implement the multiple testing procedure to Dataset 1 to explore the sources of CCF asymmetry in
the GDP growth series under FDR controlled at q = 0.05. The ordered p-values p(j) based on the test statistics {Z𝓁ij}
compared with the corresponding threshold (j∕m)q (dashed line) are shown in Figure 11. In all BH procedures,
there is no p-value below the threshold line showing no evidence of CCF asymmetry, which shows an agreement
with the results of Wald tests and the maximum statistics.

All testing results lead to the same conclusion that the GDP growth rates do not exhibit strong evidence of
asymmetric CCF structure between the series. Consequently, we use an exact factor model for further analysis.
This viewpoint is verified via a comprehensive model fitting with model selection. We consider the factor model:

yt = Lft + 𝝐t, 𝝐t ∼ (0, 𝜎2
𝜖

I),
ft = 𝚽1ft−1 + · · · +𝚽pft−p + 𝜼t, 𝜼t ∼ (0, I),

(20)

where L′L is diagonal and the covariance matrix for 𝜼t is set to I for model identifiability. The best fitted model
is selected among p ∈ {1, 2, 3, 4} and r ∈ {1, … , 5} via Bayesian Information Criterion (BIC) (Schwarz, 1978)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 15

Table II. BIC values of maximum likelihood fittings of factor models for Dataset 1

The order of VAR model

The number of common factor r p = 1 p = 2 p = 3 p = 4

r = 1 3633.20 3636.92 3640.17 3642.39
r = 2 3662.85 3663.50 3677.15 3691.87
r = 3 3703.11 3692.37 3722.03 3742.57
r = 4 3762.98 3747.06 3776.04 3834.43
r = 5 3792.00 3795.24 3865.12 3981.94

Table III. The p-values of the Wald test and the maximum statistics for Dataset 2

Lag 𝓁

Test statistics 1 2 3 4 5

Q𝓁 0.1693 0.9662 0.6767 0.9970 0.9900
Q1∶𝓁 0.1693 0.8827 0.9999 1.0000 1.0000
M𝓁 0.0099† 0.1531 0.0674 0.0552 0.3304
M1∶𝓁 0.0099† 0.0156† 0.0208† 0.0257† 0.0305†

Note: † indicates significance at 𝛼 = 0.05.

calculated by

BIC() = −2 log L( ̂𝜽) + log(T) df(), (21)

df() = df(L) +
p∑

i=1
df(𝚽i) + df(𝚺

𝝐
) = kr − r(r − 1)∕2 + pr2 + 1, (22)

where T is the sample size, L( ̂𝜽) is the maximum likelihood (ML) for model, and df() is the number of
parameters in model.

We implement the ML fittings to the candidate models with BIC selection using the toolbox in R: MARSS
package (Holmes et al., 2021), resulting in Table II. The best model selected by BIC is (r, p) = (1, 1), which
has a single latent factor and verifies the symmetric CCF structure in yt. This comprehensive analysis leads to a
consistent result with that obtained by the proposed test statistics.

4.2. Dataset 2

Dataset 2 consists of three variables, GDP, Consumer Price Index (CPI), and the unemployment rate (UR) of G7
countries. The data are quarterly statistics from January 1991 to July 2019, resulting in sample size T = 115, and
are retrieved from the Federal Reserve Economic Data (FRED) at https://fred.stlouisfed.com. Similarly to Dataset
1, we took the first difference of the series to achieve stationarity, again, shown in Supporting information. The
proposed testing methods are applied to the differenced series of Dataset 2 with k = 21 and T = 114. The p-values
based on Wald tests and the maximum statistics are reported in Table III. The maximum statistics find strong
evidence of CCF asymmetry for Dataset 2. Although the test statistics Q𝓁 and Q1∶𝓁 find no evidence of rejecting
H0, we realize that, from our simulations, the Wald test is less powerful than the other testing procedures when k
is around 20.

To explore the sources of CCF asymmetry in detail, the BH procedures are implemented with FDR controlled
at q = 0.05. The results are reported in Figure 12. The ordered p-values fall below the threshold (dashed line)
showing strong evidence of CCF asymmetry between the series. We further provide the sample CCF plots for the

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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16 N.-J. HSU, L. H. SIM AND R. S. TSAY

Figure 12. Ordered p-values of BH procedures for Dataset 2 (FDR controlled at q = 0.05)

Table IV. BIC values of maximum likelihood fittings of factor models for Dataset 2

The order of VAR model

The number of common factor r p = 1 p = 2 p = 3 p = 4

r = 1 6309.06 6299.34 6303.37 6307.40
r = 2 6054.09 6024.26 6026.52 6022.58
r = 3 5973.27 5958.10 5964.57 5980.18
r = 4 5943.35 5902.06 5922.95 5965.04
r = 5 5909.48 5911.34 5970.47 6046.00
r = 6 5916.94 5949.48 6045.38 6162.95

selected pairs of series with the small leading p-values in Supporting information, from which asymmetric CCF
structures are easily observed.

The testing results of the maximum statistics and BH procedures reveal strong evidence of asymmetric CCF
structure in the series. Therefore, exact factor models are not applicable to this dataset. Finally, we verify this
result via a comprehensive model fitting with model selection. Similarly to Dataset 1, we consider the factor
model in (20), perform the maximum likelihood fitting, and select the best model using BIC among models with
p ∈ {1, 2, 3, 4} and r ∈ {1, … , 6}. The result is given in Table IV.

The best model selected by BIC is (r, p) = (4, 2). Under this specific model, we further apply the likelihood-ratio
test to examine the symmetry of CCFs in a parametric setting:

H0 ∶ 𝜽 ∈ Θ0, vs. Ha ∶ 𝜽 ∈ Θ,

where Θ is the parameter space of (20) and Θ0 is the restricted parameter space to guarantee a symmetric CCF
structure for {yt}. We reject the null hypothesis if

LR = −2
[
log L( ̂𝜽0) − log L( ̂𝜽)

]
> 𝜒

2
dim(Θ)−dim(Θ0)

(𝛼),

where log L( ̂𝜽0) = sup
𝜽∈Θ0

log L(𝜽), log L( ̂𝜽) = sup
𝜽∈Θ log L(𝜽), and L(⋅) is the data likelihood. It turns out that

this parametric test also leads to a rejection of CCF symmetry for Dataset 2 with the following statistics:

log L( ̂𝜽) = −2687.7, dim(Θ) = 111,

log L( ̂𝜽0) = −2731.7, dim(Θ0) = kr − r(r − 1)∕2 + pr + 1 = 87,

LR = −2 [−2731.7 − (−2687.7)] = 88 > 𝜒2
111−87(0.05) = 36.4,

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702
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TESTING FOR SYMMETRIC CORRELATION MATRICES 17

Table V. The p-values of the maximum statistics for Dataset 3

Lag 𝓁

Test statistics 1 2 3 4 5

M𝓁 0.0000† 0.0002† 0.0034† 0.0000† 0.0027†

M1∶𝓁 0.0000† 0.0000† 0.0000† 0.0000† 0.0000†

Note: † indicates significance at 𝛼 = 0.05.

Figure 13. Ordered p-values of the BH procedures for Dataset 3 (FDR controlled at q = 0.05)

where dim(Θ) is computed based on (22). In sum, based on either a parametric test or a non-parametric test, the
same conclusion suggests that an exact factor model is not suitable for Dataset 2. Other factor models should be
employed.

4.3. Dataset 3

The third dataset employed consists of monthly U.S. macroeconomic variables with k = 108 time series and
T = 283 observations. These data were derived from the following resources available in the public domain:
FRED at https://fred.stlouisfed.org and Mark Watson at https://www.princeton.edu/~mwatson/publi.html and used
in Stock and Watson (2009). The first differenced series of the series, from December 1972 to July 1996, are used
in our analysis.

To examine the CCF asymmetry among series, we only apply the maximum statistics and the BH procedures to
Dataset 3. The testing results are presented in Table V and Figure 13. Both methods consistently show that there is
strong evidence of asymmetric CCF structures among the series. Therefore, exact factor models are not applicable
in this particular case; other classes of factor models should be used.

5. CONCLUDING REMARK

In this article, we considered three test statistics for testing the symmetry of the cross-correlation matrices of a
vector time series. Based on simulation studies, the Wald test statistics are useful when the dimension k of the
time series is small and the sample size T is large. However, they become infeasible when k is large. On the other
hand, both the maximum statistics and Benjamini–Hochberg procedures are powerful in detecting the asymmetry
in cross-correlation matrices when the dimension is high. They also have good empirical sizes in our simulation
studies. The maximum statistics do not fare well when the dimension is low as they depend heavily on the limiting
extreme value theory, which requires a large dimension k. On the other hand, the maximum statistics are faster to
compute when k is large.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 N.-J. HSU, L. H. SIM AND R. S. TSAY

Testing for symmetry in CCFs prior to employing factor models allows users to determine the adequacy of
considering orthogonal common factors in a given application. We demonstrated the application of the proposed
tests with three real examples, showing that they are indeed useful in assessing the applicability of exact factor
models.

Finally, we would like to iterate that various factor models with different parameterizations have been proposed
in different scientific fields. The approximate factor models of Chamberlain and Rothschild (1983) allow for weak
temporal dependence in the idiosyncratic components, Lam and Yao (2012) and Gao and Tsay (2019, 2022) assume
that the idiosyncratic components are serially independent, and Peña and Box (1987) assumes that the factor
series are mutually orthogonal. In some factor models, the mutual independence of factor series is not explicitly
mentioned. Our simulations show that the proposed test statistics can detect symmetric cross-correlation matrices
so long as the factor series are mutually orthogonal. The problem of checking for the applicability of other factor
models remains open. We leave it for future research.

DATA AVAILABILITY STATEMENT

These data were derived from the following resources available in the public domain: FRED at https://fred.
stlouisfed.org Mark Watson at https://www.princeton.edu/~mwatson/publi.html.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

REFERENCES

Afonja B. 1972. The moments of the maximum of correlated normal and t-variates. Journal of the Royal Statistical Society.
Series B (Methodological) 34:251–262.

Anderson TW. 1963. The use of factor analysis in the statistical analysis of multiple time series. Psychometrika 28:1–25.
Bai J, Ng S. 2002. Determining the number of factors in approximate factor models. Econometrica 70(1):191–221.
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing.

Journal of the Royal Statistical Society. Series B (Methodological) 57(1):289–300.
Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics

29(4):1165–1188.
Brillinger DR. 1964. The generalization of the techniques of factor analysis, canonical correlation and principal components

to stationary time series. In Invited Paper at the Royal Statistical Society Conference in Cardiff, Wales, UK.
Bühlmann P. 2002. Bootstraps for time series. Statistical Science 17(1):52–72.
Chamberlain G. 1983. Funds, factors, and diversification in arbitrage pricing models. Econometrica 51(5):1305–1323.
Chamberlain G, Rothschild M. 1983. Arbitrage, factor structure in arbitrage pricing models. Econometrica 51(5):1281–1304.
Chang J, Yao Q, Zhou W. 2017. Testing for high-dimensional white noise using maximum cross-correlations. Biometrika

104(1):111–127.
Embrechts P, Klüppelberg C, Mikosch T. 2013. Modelling Extremal Events: for Insurance and Finance Springer Science &

Business Media, Berlin.
Forni M, Hallin M, Lippi M, Reichlin L. 2000. The generalized dynamic factor model: identification and estimation. Review

of Economics and Statistics 82(4):540–554.
Forni M, Hallin M, Lippi M, Reichlin L. 2005. The generalized dynamic factor model: one-sided estimation and forecasting.

Journal of the American Statistical Association 100:830–840.
Gao Z, Tsay RS. 2019. A structural factor approach to modeling high-dimensional time series and space-time data. Journal of

Time Series Analysis 40(3):343–362.
Gao Z, Tsay RS. 2022. Modeling high-dimensional time series: a factor model with dynamically dependent factors and

diverging eigenvalues. Journal of the American Statistical Association 117:1398–1414.
Geweke J. 1977. The dynamic factor analysis of economic time series. In Latent Variables in Socio-Economic Models, Aigner

DJ, Goldberger AS (eds.). North-Holland, Amsterdam; 365–383.
Hall P, Horowitz JL, Jing B. 1995. On blocking rules for the bootstrap with dependent data. Biometrika 82(3):561–574.
Hannan EJ. 1976. The asymptotic distribution of serial covariances. Annals of Statistics 4(2):396–399.
Holmes E, Ward E, Scheuerell M, Wills K. 2021. MARSS: multivariate autoregressive state-space modeling. R package version

3.11.4.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12702

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12702 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://fred.stlouisfed.org
https://fred.stlouisfed.org
https://www.princeton.edu/~mwatson/publi.html


TESTING FOR SYMMETRIC CORRELATION MATRICES 19

Kunsch HR. 1989. The jackknife and the bootstrap for general stationary observations. Annals of Statistics 17(3):1217–1241.
Lahiri SN. 2003. Resampling Methods for Dependent Data Springer, New York.
Lam C, Yao Q. 2012. Factor modeling for high dimensional time series: inference for the number of factors. Annals of Statistics

40(2):694–726.
Lam C, Yao Q, Bathia N. 2011. Estimation of latent factors for high-dimensional time series. Biometrika 98(4):901–918.
Melard G, Paesmans M, Roy R. 1991. Consistent estimation of the asymptotic covariance structure of multivariate serial

correlations. Journal of Time Series Analysis 12(4):351–361.
Onatski A. 2009. Testing hypotheses about the number of factors in large factor models. Econometrica 77(5):1447–1479.
Peña D, Box G. 1987. Identifying a simplifying structure in time series. Journal of the American Statistical Association

82:836–843.
Peña D, Poncela P. 2006. Nonstationary dynamic factor analysis. Journal of Statistical Planning and Inference

136(4):1237–1256.
Peña D, Tsay RS. 2021. Statistical Learning for Big Dependent Data John Wiley & Son, New York.
Politis DN. 2003. The impact of bootstrap methods on time series analysis. Statistical Science 18(2):219–230.
Roy R. 1989. Asymptotic covariance structure of serial correlations in multivariate time series. Biometrika 76(4):824–827.
Schwarz G. 1978. Estimating the dimension of a model. Annals of Statistics 6(2):461–464.
Stock JH, Watson M. 2009. Forecasting in dynamic factor models subject to structural instability. In The Methodology and

Practice of Econometrics. A Festschrift in Honour of David F. Hendry, Oxford University Press, Oxford; 173–205.
Tsay RS. 2020. Testing serial correlations in high-dimensional time series via extreme value theory. Journal of Econometrics

216(1):106–117.
Xiao H, Wu WB. 2014. Portmanteau test and simultaneous inference for serial covariances. Statistica Sinica 24:577–599.

APPENDIX : ADJUSTMENT FOR DEPENDENCE

In Theorem 2, the normalizing constants a𝓁,k and b𝓁,k are derived under independent standard normal variates. In
our application, the normalized variates Z𝓁ij’s are dependent in general. We propose an adjustment to the normal-
izing constants in applying Theorem 2 to account for the dependence among Z𝓁ij’s for the proposed maximum test
statistic. The adjustment is based on a ‘working model’ for dependent (0, 1) variates by assuming a compound
symmetry dependence structure:

Zn = (Z1, … ,Zn)′ ∼
(
0,Cn(𝜏)

)
, Cn(𝜏) =

⎛
⎜
⎜
⎜
⎜
⎝

1 𝜏 · · · 𝜏
𝜏 1 · · · 𝜏
⋮ ⋱ ⋱ ⋮

𝜏 · · · 𝜏 1

⎞
⎟
⎟
⎟
⎟
⎠

, 𝜏 ∈ [0, 1).

Under this working model, the first and second moments of the maximum statistic Z(n) = max1≤j≤n Zj for arbitrary
n > 3 have closed forms (Afonja, 1972):

EZ(n) =
n(n − 1)

2
√
𝜋

√
1 − 𝜏 Φn−2 (0, 1∕3) , (A1)

EZ2
(n) = 1 + (1 − 𝜏)n(n − 1)(n − 2)

(
4𝜋

√
3
)−1

Φn−3 (0, 1∕4) , (A2)

where Φh(⋅, r) is the distribution function of a h-dimensional 
(
0,Ch(r)

)
. In particular, Φn−2 (0, 1∕3) and

Φn−3 (0, 1∕4) can be accurately evaluated via Monte Carlo methods according to

Φh(0, r) = E

[(

Φ
(

−
√

r
1 − r

Z1

))h
]

, Z1 ∼ (0, 1), Φ(z) = P(Z1 ≤ z).
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20 N.-J. HSU, L. H. SIM AND R. S. TSAY

The extreme value theorem generally holds for the maximum Z(n) even under the dependent scenario, that is, with
proper normalizing constants

(
a†n, b

†
n

)
such that

a†n
(
Z(n) − b†n

)
→d Λ, as n →∞, (A3)

where Λ has the standard Gumbel distribution. We suggest to find the suitable (a†n, b
†
n) in (A3) by matching the

first and second moments in the asymptotics, that is, equating

a†n
(
EZ(n) − b†n

)
= EΛ = 𝛾,

(
a†n
)2

var
(
Z(n)

)
= var(Λ) = 𝜋

2

6
, (A4)

where 𝛾 ≈ 0.5772 is the Euler constant. The resulting a†n and b†n satisfy

a†n =
𝜋

√
6

[
EZ2

(n) − (EZ(n))2
]1∕2

, b†n = EZ(n) −
𝛾

a†n
, (A5)

in which EZ(n) and EZ2
(n) are given in (A1) and (A2) respectively. The adjusted normalizing constants in (A5) rely

on the dimension n and the strength of dependence 𝜏 in the working model.
Connecting to our testing problem, our maximum statistic is taken among Z𝓁ij’s defined in (10) playing the

roles of dependent normal variates in Zn with n = k(k − 1)∕2 for test statistic M𝓁 and n = 𝓁k(k − 1)∕2 for
test statistic M1∶𝓁 respectively. We still need a sensible 𝜏 to plug in (A5) for computing EZ(n) and EZ2

(n), dis-
cussed after Corollary 2. Now, we are ready to give a modified version of Theorem 2 for adjusting the dependence
among Z𝓁ij’s.

Corollary 2. Consider a sufficiently large k and a small lag 𝓁 ∈ {1, 2, …}. Let (a†𝓁,k, b
†
𝓁,k) be (a†n, b

†
n) with n =

𝓁k(k − 1)∕2 in (A5). We reject H0 at the significance level 𝛼 if

M𝓁 > b†1,k −
1

a†1,k
ln[− ln(1 − 𝛼∕2)], (A6)

M1∶𝓁 > b†𝓁,k −
1

a†𝓁,k
ln[− ln(1 − 𝛼∕2)]. (A7)

To apply Corollary 2 in practice, we need a sensible value of 𝜏 from data to resemble the dependence strength
among Z𝓁ij’s. We conducted several experiments to determine 𝜏. Some choices for 𝜏 are suggested. Briefly speak-

ing, we first obtain a bootstrap estimate C∗
≡ ĉorrBT( ̂𝜹

∗
1∶𝓁) for approximating the correlation matrix of ̂𝜹1∶𝓁 , which

is a by-product of the bootstrap procedure in Algorithm 1, and then compute

𝜏a = mean of
{
|c∗ij|, i ≠ j

}
, 𝜏b = median of

{
|c∗ij|, i ≠ j

}
, 𝜏c = 1 −

n − 𝜆1(C
∗)

n − 1
,

where c∗ij’s are entries of C∗ and 𝜆1(C
∗) is the leading eigenvalue of C∗. In particular, the form of 𝜏c is inspired by

the eigenstructure of a compound symmetry matrix (working model). Then, we evaluate the adjusted normalizing
constants (a†𝓁,k, b

†
𝓁,k) in Corollary 2 by plugging in the values of 𝜏a, 𝜏b or 𝜏c estimated from data.

To study the effects of the adjustment, Experiment 2 in Section 3 is re-examined for the test statistic M1∶𝓁 with
the sample size T = 300 and T = 1000. Other settings are identical to those of Experiment 2 in Section 3.2. The
testing power based on the test rules with and without the adjustment on the normalizing constants are displayed in
Figure A1 for nine settings with combinations of k ∈ {10, 20, 40} and 𝓁 ∈ {1, 2, 3}. We only report the adjusted
results based on 𝜏a in Figure A1 for comparison since the adjusted decision rule performs almost identically

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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TESTING FOR SYMMETRIC CORRELATION MATRICES 21

Figure A1. Empirical powers of the test statistic M1∶𝓁 in Experiment 2 with or without adjustment under various settings of
(k,𝓁) for data with sample sizes T = 300 and T = 1000 (𝛼 = 0.05). The results are based on 500 simulation replicates

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12702 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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22 N.-J. HSU, L. H. SIM AND R. S. TSAY

based on any of {𝜏a, 𝜏b, 𝜏c}. As a reference, the adjusted test rule with 𝜏 = 0 is included in the comparison,
which corresponds to the uncorrelated scenario and behaves equivalently to the test rule without any adjustment.
Empirical results show that, the adjusted test rules show minor differences from the test rule without any adjustment
in terms of testing power. This is particularly true when the same size is T = 1000.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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