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ABSTRACT

Understanding why high-dimensional estimators can generalize beyond finite training samples is

a fundamental problem in statistical learning theory. The traditional intuition, as suggested by

Occam’s razor, is that models with low complexity tend to generalize better. We can often find

simple models that explain the training data well if the high-dimensional data distribution has

some hidden low-dimensional structure (for example, sparse linear regression and low-rank matrix

recovery). However, contrary to our traditional intuition, complex models which interpolate noisy

training labels can also enjoy good generalization in some settings. This phenomenon, which we

call "interpolation learning," has significantly challenged our theoretical foundation of statistical

learning. In this thesis, we present a novel Moreau envelope generalization theory to establish the

concentration of measure in high dimensions. Since our result can precisely quantify the role of

model complexity in generalization error, we can establish strong consistency results even though

the norm of the high-dimensional interpolants that we consider diverges. In addition to proving

sharp non-asymptotic bounds for interpolants in various contexts, we also recover versions of clas-

sical results from the compressed sensing and high-dimensional statistics literature. Applications

of our theory include kernel ridge regression, max-margin classification, phase retrieval, matrix

sensing, and some simple neural networks.
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CHAPTER 1

INTRODUCTION

High-dimensional models are ubiquitous in modern statistics and machine learning applications.

In atmospheric and climate sciences, measurements can be taken on a fine grid of extended spatial

fields, leading to a massive collection of complex features in relatively short time horizons. In

financial exchanges, millions of different instruments are traded every single day. Similar situa-

tions can be found in other areas, such as genetics and neuroscience, where the large number of

predictors requires a model to have many more parameters than the number of training samples.

When the number of features is small, embedding them in a higher dimensional space can allow

us to learn non-linear relationships. We can understand classical machine learning algorithms such

as boosting and kernel regression this way. Nowadays, machine learning models are growing in-

creasingly high-dimensional. A state-of-the-art neural network architecture for speech recognition,

natural language processing, or computer vision can contain more than billions of parameters.

When we fit a high-dimensional model on samples, the goal is usually to reveal some truth

about the population distribution or to be able to make good predictions on future unseen data

points. Statistical learning theory provides a rigorous mathematical framework to reason about

generalization. In the statistical learning framework, a model is a function that maps an in-

stance to some prediction, and we specify a class of models to choose from (also known as con-

cept/hypothesis class). In most of this thesis, we will consider hypothesis classes parameterized

by a high dimensional vector. Also, we have a loss function that measures the quality of the model

output on a single instance. Given independent and identically distributed samples from some un-

known distribution, we hope to find a model in the hypothesis class that is nearly optimal in terms

of the expected loss with respect to the unknown population. When we have the prior knowledge

that the population distribution comes from some fixed parametric family and we wish to estimate

the parameters, then we can pick the loss to be the log-likelihood function, and a generalization

guarantee will also be a bound on estimation error (in terms of KL divergence). More generally,
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if we only care about average prediction error on a new sample, then only very mild assumptions

on the data distribution are required. We just need to specify how to measure the accuracy of a

prediction.

In high-dimensional settings, it is usually possible to perfectly minimize the loss function on

training samples. However, if a model fits too closely to noisy training data, it can memorize noise

patterns that do not exist in the population distribution. As a result, overfitting will hurt the gen-

eralization performance at test time. To avoid overfitting, classical learning theory suggests that

we should constrain the complexity of the learned model. We have a rich mathematical under-

standing of why regularization helps. There is a long history of literature showing that the class of

low-complexity models enjoys uniform convergence (also known as "concentration of measure"

or "uniform law of large numbers"). Roughly speaking, uniform convergence refers to the phe-

nomenon that uniformly over a class of models, the training error and population error will be

close to each other. As a result, minimizing the training error in a constrained class of models is

approximately the same as minimizing the test error. In addition, the complexity of a class of mod-

els can be precisely measured by quantities such as VC-subgraph dimension [52], fat-shattering

dimension [1], covering numbers [52] and Rademacher complexity [3]. By balancing the approx-

imation error from choosing a low-complexity class with the generalization error from uniform

convergence, we can find the optimal amount of regularization and derive some quantitative gen-

eralization bound for regularized estimators without making any parametric assumptions on the

population distribution.

On the other hand, the empirical success of deep neural networks has remarkably escaped the

curse of overfitting. It is common to train a neural network without explicit regularization so

that it can exactly interpolate the training data. An interpolating over-parameterized model will

generally have very high model complexity. Yet, in practice, it still generalizes decently well

[11, 48, 76]. One may argue that there is very little noise in applications like image classification,

so interpolation is sensible. However, the thought-provoking experiment from Belkin et al. [10]
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shows that interpolating classifiers can generalize well even if we randomly flip some percentages

of the training labels. Though the training error stays at zero across different noise levels, the test

error of interpolating predictors will miraculously adapt and remain close to the optimal error as

we vary how much noise we add. The observation that complex high-dimensional models can

also generalize to the population raises a fundamental question to the machine learning theory:

can the concentration of measure capture learning in these modern settings? What are the proper

theoretical tools to understand the generalization of high-complexity models that are becoming

increasingly popular in practice?

In this thesis, we attempt to bridge the gap between our traditional understanding of learning

with the mysterious success of high-dimensional interpolants. Building on the intuitions from

classical learning theory, we develop a more refined uniform convergence technique to establish

generalization in high-dimensional settings. In addition to showing that it is powerful enough to

explain interpolation learning, we demonstrate our theoretical framework’s versatility by applying

it to analyze regularized estimators in various interesting settings, such as sparse linear regression,

high-dimensional generalized linear model, matrix sensing, and phase retrieval.

In Chapter 2, we begin the study of interpolants by analyzing the test error of kernel ridge

regression (KRR). Using the well-known omniscient risk estimate, we control the test error of

kernel ridge interpolant by the error of the optimally balanced estimators and a multiplicative

factor that measures the cost of interpolation. Direct analysis of the cost of interpolation reveals

the necessary and sufficient condition for which the kernel ridge interpolant is asymptotically as

good as the optimally balanced estimators. We then apply this result to establish benign overfitting

in kernel ridge regression and recover the multiple descent phenomenon for inner-product kernels

in a polynomial regime. In addition to directly analyzing the cost of interpolation, we provide

another perspective to understand benign overfitting based on uniform convergence in Section 2.4.

We show that the size of the RKHS norm is sufficient to explain generalization.

In Chapter 3, we consider the problem of linear regression with Gaussian features. We use the

3



Gaussian Minimax Theorem (GMT) to prove the same uniform convergence guarantee in Chapter 2

known as the optimistic rate for any linear predictors. Doing so allows us to move beyond ridge

regression and analyze the minimal norm interpolant for any norm. Choosing the ℓ1 norm gives us a

novel benign overfitting result for basis pursuit. In addition to understanding interpolants, we apply

our theory to recover some classical statistical guarantees for ridge and LASSO regression under

random designs. We also provide a high-probability version of the precise error for Ordinary Least

Squares (OLS) with isotropic features in the proportional regime. Finally, we apply our theory to

analyze the minimum nuclear norm estimator in matrix sensing in Section 3.6.

In Chapter 4, we introduce the Moreau envelope generalization theory, which generalizes the

result in linear regression to any generalized linear loss. If we have a globally Lipschitz loss, then

our Moreau envelope theory can be translated to the classical Rademacher complexity bound (but

without the loose multiplicative factor of 2). Examples of a globally Lipschitz loss include the

absolute loss, the Huber loss, and the log-likelihood function for Logistic regression and Binomial

GLM. More generally, even if the loss function is neither Lipschitz nor convex, we show that

as long as the loss’s square root is Lipschitz, we can establish a uniform convergence guarantee

with an optimistic rate. As an example, we consider the problem of linear classification with the

squared hinge loss, which corresponds to soft and hard margin Support Vector Machines (SVM),

and show that the same argument as in Chapter 3 can be used to establish benign overfitting in linear

classification. In Section 4.2, we introduce a general technique to compute the norm of the minimal

norm interpolant and provide a lower bound that suggests our uniform convergence bound should

always be asymptotically tight. Another application of this result is ReLU regression and phase

retrieval, in which the loss is not even differentiable. Moreover, we extend our result in Chapter 4

to allow the loss function to have some non-linear component. This flexibility will enable us to

establish a norm-based generalization bound for two-layer neural networks with weight-sharing in

the first layer.

Finally, we discuss some empirical and theoretical evidence of universality and conjecture that
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it should be possible to relax the Gaussian feature assumption in our Moreau envelope generaliza-

tion theory. We numerically check the validity of our theory for discrete, asymmetric, and heavy-

tailed feature distributions. We also briefly discuss some theoretical advances based on random

matrix theory and the Lindeberg principle. With the broad applicability of uniform convergence

in understanding high dimensional interpolants and regularized estimator, our results suggest a

promising research direction for the theoretical foundation of deep learning. Moreover, our results

demonstrate that the concentration of measure phenomenon remains a fundamental principle in

statistical learning.
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CHAPTER 2

KERNEL RIDGE REGRESSION

Kernel Ridge Regression (KRR) is a class of flexible and non-linear machine learning models. A

kernel K : X × X → R is a symmetric and positive semi-definite function:

(A) ∀x, x′ ∈ X , K(x, x′) = K(x′, x)

(B) ∀n ∈ N, x1, ..., xn ∈ X , c1, ..., cn ∈ R, it holds that

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0. (2.1)

In the above, X is an abstract input space. For example, X can be taken to be Rd and com-

monly used kernels include: i) polynomial kernel K(x, x′) =
(
1 + γ⟨x, x′⟩

)l, ii) Laplacian kernel

K(x, x′) = exp
(
−γ∥x− x′∥1

)
, and iii) Gaussian kernel K(x, x′) = exp

(
−γ∥x− x′∥22

)
. But X

can also be a low-dimensional manifold, the space of probability distributions, the space of strings,

or the set of nodes in a graph. Kernels can be defined on these non-Euclidean spaces too [9, 31, 34].

Given (x1, y1), ..., (xn, yn) ∈ X × R sampled independently from some unknown joint distri-

bution D, we can define a predictor fδ : X → R for any ridge parameter δ ≥ 0 by

fδ(x) = K(Dn, x)
T (K(Dn, Dn) + δIn)

−1 Y (2.2)

where K(Dn, x) ∈ Rn, K(Dn, Dn) ∈ Rn×n, Y ∈ Rn are given by

[K(Dn, x)]i = K(xi, x), [K(Dn, Dn)]i,j = K(xi, xj), [Y ]i = yi. (2.3)

We will assume that D is given by x ∼ p and y = f∗(x) + ξ for some distribution p over X ,

f∗ : X → R and ξ ∼ N (0, σ2). It is then natural to find the expectation of the test error of fδ

defined as E(x,y)∼D[(fδ(x)− y)2] with respect to the randomness of training data.
6



Though the setting for KRR is very generic, we can understand it as ordinary ridge regression.

By Mercer’s theorem [45], the kernel admits the decomposition

K(x, x′) =
∑
i

λiϕi(x)ϕ(x
′) (2.4)

where ϕi : X → R satisfies Ex∼p[ϕi(x)ϕj(x)] = 1 if i = j and 0 otherwise. For example, if

X = {x1, ..., xM} has finite cardinality M , then (2.4) can be found by the spectral decomposition

of the matrix K(X ,X ) ∈ RM×M given by [K(X ,X )]i,j = K(xi, xj). When p is the uniform

distribution over the sphere in Rd or the boolean hypercube {−1, 1}d, then {ϕi} can be taken to

be the spherical harmonics or the Fourier-Walsh (parity) basis. In the case that K is the Gaussian

kernel or polynomial kernel, the {λi} has closed-form expression in terms of the modified Bessel

function or the Gamma function [46].

Therefore, instead of viewing the feature x as an element of X , we can consider the potentially

infinite-dimensional real-valued vector ψ(x) = (
√
λ1ϕ1(x),

√
λ2ϕ2(x), ...) and denote the design

matrix Ψ = [ψ(x1), ψ(x2), ...]
T . Then we can understand (2.2) as

fδ(x) = ψ(x)TΨT (ΨΨT + δIn)
−1Y = ⟨wδ, ψ(x)⟩ (2.5)

where wδ = ΨT (ΨΨT + δIn)
−1Y is simply the ridge regression estimate with respect to the data

set (Ψ, Y ). As the eigenfunctions {ϕi} forms a complete basis, we can expand

f∗(x) =
∑
i

viϕi(x) =
∑
i

vi√
λi
ψi(x) = ⟨w∗, ψ(x)⟩. (2.6)

where we denote w∗
i = vi/

√
λi. In general, the RKHS norm of a function f defined by f(x) =

⟨w,ψ(x)⟩ is given by ∥f∥K = ∥w∥2.
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2.1 Omniscient Risk Estimator

Many prior works (for example, see Canatar et al. [17], Hastie et al. [28], Jacot et al. [30], Loureiro

et al. [39], Mel and Ganguli [42], Richards et al. [55], Simon et al. [60], Wu and Xu [75]) have

shown that in high dimensional settings, it holds that

wδ,i ≈
λi

λi + κδ
w∗
i (2.7)

where κδ is the effective regularization defined in (2.8) below. Rigorous version of (2.7) can

be proved using random matrix theory, while non-rigorous proofs based on methods in statistical

physics (such as replica and cavity methods) also exist. We will adopt the eigenlearning framework

[60] in this section. We note that although the proofs in this section are based on an non-rigorous

result, all the theoretical proofs starting from Section 3 will be completely rigorous. As we will

see, the simplicity of the eigenlearning equations can provide a good first step for an intuitive

understanding of interpolation in high dimensions.

In the eigenlearning framework, the effective regularization κδ is defined by

∑
i

λi
λi + κδ

+
δ

κδ
= n. (2.8)

Using κδ, we can define

Li,δ =
λi

λi + κδ
, Eδ =

n

n−
∑

i L2
i,δ

. (2.9)

Then the population and training error of fδ are given by

E(fδ) = Eδ

(∑
i

(1− Li,δ)
2v2i + σ2

)
and Etr(fδ) =

δ2

n2κ2δ
E(fδ). (2.10)

In the above, the vi are defined in (2.6) and σ2 is the variance of ξ in the population distribution

D, which is also the Bayes error in the problem. Finally, the expected RKHS norm is given by the

8



following formula:

E∥fδ∥2K =
E(fδ)
n

∑
i

λi
(λi + κδ)

2
+
∑
i

λiv
2
i

(λi + κδ)
2
. (2.11)

We see from above that equation (2.7) can provide a complete description of the stochastic system

defined by fδ for any δ ≥ 0.

2.2 Cost of Interpolation

In this section, we want to understand the test error of the kernel ridgeless regression E(f0). In

particular, how does it compare to the optimally balanced estimator?

Theorem 1. Let δ∗ = argminδ≥0 E(fδ) be the optimal ridge parameter. It holds that

E0σ2 ≤ E(f0) ≤ E0E(fδ∗). (2.12)

Proof. The first inequality is straightforward from the definition. To prove the second, observe that

E(fδ∗) = inf
δ≥0

Eδ

(∑
i

(1− Li,δ)
2v2i + σ2

)

≥ inf
δ≥0

∑
i

(1− Li,δ)
2v2i + σ2

=
∑
i

(1− Li,0)
2v2i + σ2

where we use the fact that (1− Li,δ)
2 decreases as κδ decreases, and κδ decreases as δ decreases.

The proof concludes by observing
∑

i(1− Li,0)
2v2i + σ2 = E(f0)/E0.

In many settings of interest, we have E(fδ∗) → σ2 and so the factor E0 is actually tight and

E(f0) ≈ E0E(fδ∗). Note that it is not always true that E(f0) → σ2 and so E0 measures the "cost of

interpolation" relative to the optimal balance. Next, we will analyze the multiplicative factor E0.

9



For convenience, we will sort the eigenvalues λ1 ≥ λ2 ≥ ... and denote the effective ranks [7] of

the tail of the eigenvalues as

rk =

∑
i>k λi
λk+1

and Rk :=

(∑
i>k λi

)2∑
i>k λ

2
i

. (2.13)

Proposition 2. For any k such that k < n and n < Rk, it holds that

E0 ≤
(
1− k

n

)−2(
1− n

Rk

)−1

. (2.14)

All remaining proofs in this chapter can be found in Appendix C. Proposition 2 suggests if there

exists a sequence k = o(n) such that Rk = ω(n), then E0 → 1 and so the ridgeless interpolant is

asymptotically as good as the optimally ridge estimator. This is also one of the key conditions for

benign overfitting in linear regression (Bartlett et al. [7]). Next, let’s try to get lower bound on E0.

Since E0 =
(
1− 1

n

∑
i L2

i,0

)−1
, it suffices to lower bound 1

n

∑
i L2

i,0.

Proposition 3. Fix any b > 0. If there exists k < n such that n ≤ k + brk, then let k be the first

such integer. Otherwise, pick k = n. It holds that

1

n

∑
i

L2
i,0 ≥ max

{
1

(b+ 1)2

(
1− k

n

)2 n

Rk
,

(
b

b+ 1

)2 k

n

}
. (2.15)

Our lower bound is also heavily inspired by the lower bound of Theorem 4 in Bartlett et al.

[7], though our proof technique is completely different and much simpler since we rely on the

eigenlearning equations. In order for E0 to converge to 1, it must be the case that 1
n

∑
i L2

i,0 → 0.

Using the lower bound above, we identify the necessary and sufficient condition.

Corollary 4. For any n ∈ N, let kn be the first integer k < n such that n ≤ k + rk. Then E0 → 1

if and only if

lim
n→∞

kn
n

= 0 and lim
n→∞

n

Rkn

= 0. (2.16)
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Next, we provide some examples of eigenvalues {λi} where the ridgeless estimator is asymp-

totically as good as the optimally-tuned ridge estimator.

Example 1 (Junk features from Zhou et al. [77]).

λi =


1 if i ≤ dS

1
dJ

if dS + 1 ≤ i ≤ dS + dJ

0 if i > dS + dJ .

In this case, it is routine to check Rk = dJ by choosing k = dS and so letting dS = o(n) and

dJ = ω(n), Proposition 2 shows that E0 → 1.

Example 2 (Slow eigendecay from Bartlett et al. [7]).

λi = i−1 log−α i for some α > 0.

In this case, we can estimate

∑
i>k

λi ≥
∫ ∞

k+1

1

x logα x
dx =

1

(α− 1) logα−1(k + 1)∑
i>k

λ2i ≤ 1

k + 1

∫ ∞

k

1

x log2α x
dx =

1

(k + 1)(2α− 1) log2α−1(k)

and so

Rk ≥ (k + 1)(2α− 1) log2α−1(k)

(α− 1)2 log2α−2(k + 1)
= Θ (k log k) .

Then choosing k = n√
log n

, we have k = o(n) and Rk = ω(n) because

Rk

n
= Θ(log1/2 n).

In the following examples, we show that (2.16) does not hold and so overfitting is not benign.

11



However, we still have tempered overfitting [40] in the sense that E(f0) does not diverge as n →

∞.

Example 3 (Isotropic features in the proportional regime).

λi =


1 if i ≤ d

0 otherwise
for d = γn and γ > 1.

In this case, it is easy to check that rk = d − k and so k + rk = d > n and kn = n. Therefore,

the first condition in (2.16) cannot hold because kn/n = 1. On the other hand, we also have

Rk = d− k and plugging in k = 0 to Proposition 2, we obtain

E0 ≤
(
1− n

d

)−1
=

γ

γ − 1
.

The above upper bound is tight when f∗ = 0 because E(fδ∗) = σ2 can be obtained with infinite

regularization and it is well-known that in the proportional regime (for example, see Hastie et al.

[28] and Zhou et al. [78]), we have

lim
n→∞

E(f0) = σ2
γ

γ − 1
.

Example 4 (Power law decay from Mallinar et al. [40]).

λi = i−α for some α > 1.

In this case, we can estimate

1

(α− 1)(k + 1)α−1
=

∫ ∞

k+1
x−α dx ≤

∑
i>k

λi ≤
∫ ∞

k
x−α dx =

1

(α− 1)kα−1

1

(2α− 1)(k + 1)2α−1
=

∫ ∞

k+1
x−2α dx ≤

∑
i>k

λ2i ≤
∫ ∞

k
x−2α dx =

1

(2α− 1)k2α−1

12



and so

(
k + 1

k

)
1

α− 1
≤ rk

k
≤
(
k + 1

k

)α−1 1

α− 1(
k

k + 1

)2(α−1) 2α− 1

(α− 1)2
≤ Rk

k
≤
(
k + 1

k

)2α−1 2α− 1

(α− 1)2
.

The above implies Rk = Θ(k). Therefore, since kn ≤ n, it must be the case that n/Rkn = Ω(1),

which violates the second condition in (2.16).

In fact, it is shown that E0 → α for the power law decay in Mallinar et al. [40]. Observe that

α = limk→∞ 1 + 1
rk/k

. The next proposition shows that the relationship E0 ≲ 1 + 1
rk/k

actually

holds more generally. We first state the finite-sample result and then apply it to obtain the desired

asymptotic version.

Proposition 5. Suppose there exists m,M > 0 such that m ≤ rk/k ≤ M for k ≥ ⌊ n
1+M ⌋. Then

it holds that

E0 ≤ 4

(
1

1+M − 1
n

)−1

m
. (2.17)

If {λi} does not change with n and limk→∞ rk/k = α > 0, then

lim
n→∞

E0 ≤ 4

(
1 +

1

α

)
. (2.18)

An implication of Proposition 5 is that as long as limk→∞ rk/k > 0, then overfitting is tem-

pered. The next proposition shows that the converse is actually true as well: if limk→∞ rk/k = 0,

then E(f0) → ∞ as n→ ∞.

Proposition 6. For any k ≥ n+ rk, it holds that

1

n

∑
i

L2
i,0 ≥ n

k

(
1− rk

k − n

)2

. (2.19)
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Therefore, if {λi} does not change with n and limk→∞ rk/k = 0, then, then it holds that

lim
n→∞

E0 = ∞.

Example 5 (Exponential decay).

λi = e−i.

In this case, we can estimate ∑
i>k

λi ≤
∫ ∞

k
e−x dx = e−k

and so rk ≤ e and rk/k → 0. Proposition 6 implies that overfitting is catastrophic in this case.

Finally, we can summarize the above results into the trichotomy theorem below in terms of the

effective rank rk. We note that the more general cases where {λi} are allowed to change with n

can be analyzed using the finite-sample results in Proposition 2, 3, 5, 6 and Corollary 4.

Theorem 7. Suppose that {λi} does not change with n and the optimally tuned ridge regression

is consistent: E(fδ∗) → σ2, then

(i) if limk→∞ rk/k = ∞, then overfitting is benign:

lim
n→∞

E(f0) = σ2 (2.20)

(ii) if limk→∞ rk/k ∈ (0,∞), then overfitting is tempered:

σ2 < lim
n→∞

E(f0) <∞ (2.21)

(ii) if limk→∞ rk/k = 0, then overfitting is catastrophic:

lim
n→∞

E(f0) = ∞. (2.22)
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2.3 Optimal Ridge

In this section, we give bounds on the test error E(fδ∗) of the optimally-tuned ridge regression. We

first state the general result and then discuss the applications to special cases.

Theorem 8. Fix any l ∈ N ∪ {∞} and k < n/2. For any k′ < n, it holds that

E(fδ∗) ≤
1 + ϵ

1− ϵ− k′
n

σ2 +∑
i>l

v2i +

(∑
i>k λi

)(∑
i≤l

v2i
λi

)
n− k

 (2.23)

where ϵ is defined as

ϵ =

2
∑

i≤l
v2i
λi

σ2

2/3(∑
i>k′ λ

2
i

n

)1/3

. (2.24)

If we ignore the complicated multiplicative factor in (2.23), then the bound

E(fδ∗) ≤ inf
l

σ2 +∑
i>l

v2i

+

(∑
i>k λi

)(∑
i≤l

v2i
λi

)
n− k

can be interpreted using uniform convergence. The term σ2+
∑

i>l v
2
i is the level of training error

that we wish to achieve and
∑

i≤l
v2i
λi

is the RKHS norm sufficient to achieve this error. To see this,

we can simply pick f =
∑

i≤l
vi√
λi
ψi. The 1

n−k

(∑
i>k λi

)(∑
i≤l

v2i
λi

)
term is the generalization

error one can usually obtain with Rademacher complexity. We use k here to handle situations

where there are o(n) diverging eigenvalues. In the case that ∥f∗∥K < ∞, we can simply take

l = ∞. When f∗ has infinite RKHS norm, we can send l → ∞ as n→ ∞ and consistency is still

possible because
∑

i>l v
2
i → 0.

Next, we analyze the multiplicative factor 1+ϵ

1−ϵ−k′
n

by choosing k′ appropriately. As we will see

in the examples below, there usually exists a choice of k′ = o(n) such that ϵ is small. From (2.24),

it is clear that the precise finite-sample rate will depend on the spectrum through the
√∑

i>k′ λ
2
i

15



term. If the spectrum has very fast decay, then we can pick k′ to be small and the finite-sample

rate can approach the parametric rate of O(n−1). In the case when both the norm of the features∑
i λi and the RKHS norm ∥f∗∥K are bounded, then the choice of k′ = Θ(

√
n) will imply that ϵ

is at most the order of o(n−1/2).

Agnostic rate. Suppose that
∑

i λi <∞, it must be the case that λi = o(i−1) and

∑
i>k′

λ2i = o

∑
i>k′

i−2

 = o

(
1

k′

)
.

Assuming that σ2 is constant and
∑

i
v2i
λi

is finite, we can take k′ = Θ(
√
n) and obtain from (2.24)

ϵ = o

((
1

n
1
2+1

)1/3
)

= o(n−1/2).

Choosing l = ∞ and k = 0, we see that E(fδ∗) → σ2 at the agnostic rate of O(n−1/2) as n→ ∞

E(fδ∗) ≤
(
1 +O

(
n−1/2

))σ2 + (
∑

i λi)

(∑
i
v2i
λi

)
n

 . (2.25)

Fast rate. If we assume that λi = i−α, then we can get faster finite-sample rate. In particular, we

know that
∑

i>k λ
2
i = Θ(k−(2α−1)) then we can balance

k′

n
+ ϵ = O

(
k′

n
+

1

(k′)2α/3−1/3n1/3

)

and so we should set k′ = n
1

α+1 . Plugging in, we see that both ϵ and k′/n are of order O(n−
α

1+α ).

As α → ∞, we see that the finite-sample rate approaches the parametric rate of O(n−1).

If we assume that λi = e−i, then we can get even faster finite-sample rate. We know
∑

i>k λ
2
i =

16



Θ(e−2k) then we can balance

k′

n
+ ϵ = O

(
k′

n
+
e−2k′/3

n1/3

)
.

Then choosing k′ = Θ(log n), we see that both ϵ and k′/n are of order at most O
(
log n
n

)
.

2.4 Uniform Convergence

In Section 2.2 and 2.3, we analyze the test error of the ridgeless interpolant E(f0) by first bounding

the cost of interpolation E(f0)
E(fδ∗)

in terms of the spectrum {λi}, and then analyzing the test error of

the optimal ridge E(fδ∗). In this section, we consider a more traditional approach. We first consider

the difference1 between the test error and the training error
√
E(fδ) −

√
Etr(fδ) uniformly over

all ridge parameter δ ≥ 0. Then, we will control the generalization gap using the complexity of

the model as measured by RKHS norm. Finally, we will analyze the RKHS norm of the ridgeless

interpolant E∥f0∥2K and use it to recover the same consistency results.

Using equations (2.10) and (2.11), we can show the following uniform convergence result.

Theorem 9. For any δ ≥ 0 and k ∈ N such that (k/n)2+2(k/n) < 1. Let ϵ =
√

(k2 + 2kn)/n2,

then it holds that

(1− ϵ)2E(fδ) ≤

√Etr(fδ) +

√
(
∑

i>k λi)E∥fδ∥2K
n

2

. (2.26)

As mentioned earlier, the term 1
n(
∑

i>k λi)E∥fδ∥2K corresponds to the generalization error and

can be viewed as a bound on the Rademacher complexity of norm-constrained linear predictors.

The choice of k allows us to only depend on
∑

i>k λi, which can be significantly smaller than∑
i λi when there are a small number of very large eigenvalues. In addition, equation (2.26)

1. The reason why we consider the difference of the square roots will be clear in Section 4.
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precisely quantifies the bias-variance tradeoff in tuning the ridge parameter. Smaller δ leads to a

smaller training error
√
Etr(fδ) but requires a higher RKHS norm E∥fδ∥2K. In the extreme case

δ = 0, the training error is exactly 0 and the RKHS norm needs to be very high in order to

interpolate all the noisy training labels. Such a small bias and high variance situation will typically

lead to sub-optimal asymptotic test error. However, under the benign overfitting condition such

as (2.16), it can be shown the minimal norm required to achieve zero training error is just large

enough so that the generalization error in (2.26) can exactly match the Bayes error σ2 as n goes to

infinity. In particular, we have the following norm bound on the ridgeless interpolant.

Proposition 10. For any l ∈ N ∪ {∞} and k ∈ N such that Rk > n, it holds that

E∥f0∥2K ≤
∑
i≤l

v2i
λi

+

(
1− n

Rk

)−1 n
(
σ2 +

∑
i>l v

2
i

)∑
i>k λi

. (2.27)

As n grows, the first term is usually a lower order term compared to the second term (which

scales linearly with n). If n/Rk → 0 and l is chosen so that
∑

i>l v
2
i → 0, then indeed

E∥f0∥2K ≈ nσ2∑
i>k λi

and
(
∑

i>k λi)E∥f0∥2K
n

≈ σ2.

Plugging the norm bound in Proposition 10 to Theorem 9, we immediately have the following

bound on the test error of the interpolating KRR solution.

Corollary 11. For any l ∈ N ∪ {∞} and k ∈ N such that (k/n)2 + 2(k/n) < 1 and Rk > n. Let

ϵ =
√
(k2 + 2kn)/n2, then it holds that

(1− ϵ)2E(f0) ≤

(∑
i>k λi

)(∑
i≤l

v2i
λi

)
n

+

(
1− n

Rk

)−1
σ2 +∑

i>l

v2i

 . (2.28)

We note that (2.28) is quite similar to (2.23) with the main difference in the multiplicative

factors. This is expected due to Theorem 1 and we can recover a version of Corollary 11 using
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Proposition 2 and Theorem 8 as well. We see that E(f0) → σ2 if the following conditions hold:

(A)
∑

i v
2
i <∞

(B) there exists a sequence kn such that

lim
n→∞

∑
i>kn λi

n
= 0, lim

n→∞
kn
n

= 0, lim
n→∞

n

Rkn

= 0. (2.29)

The first condition is very mild because it is weaker than requiring the label to have bounded

second moment: σ2 +
∑

i v
2
i = E[y2] < ∞. The condition 1

n

∑
i>kn

λi → 0 is also very mild

because usually
∑

i λi = E[K(x, x)] = 1 < ∞. From Corollary 4, we also know that the last two

conditions in (2.29) are necessary.

2.5 Example: Inner-Product Kernels in Polynomial Regime

In this section, we consider kernel ridge regression in the setting studied in Ghorbani et al. [24],

Mei et al. [41] and Misiakiewicz [47]. Let’s take p to be the uniformly distribution over the sphere

in Rd or the boolean hypercube. Denote V≤l−1 to be the subspace of all polynomials of degree

≤ l − 1 and B(d, l) = Θd(d
l) to be the dimension of the subspace Vl of degree-l polynomials

orthogonal to V≤l−1. Let {Yks}k≥0,s∈[B(d,k)] be the polynomial basis with respect to D (e.g.

spherical harmonics or parity functions). Expand the target function in this basis:

f∗(x) =
∞∑
k=0

∑
s∈[B(d,k)]

vksYks(x).

Inner-Product Kernel Decomposition. Consider kernels of the form K(x, x′) = hd(⟨x, x′⟩/d),

then it admits the eigendecompositon in the polynomial basis:

K(x, x′) =
∞∑
k=0

∑
s∈[B(d,k)]

µd,k(h)

B(d, k)
Yks(x)Yks(x

′)
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Interestingly, the eigenvalues of K with respect to D has a block diagonal structure. The block

diagonal structure is a consequence of the rotation-invariance of the distribution p.

Covariance Splitting. Consider the regime n ≍ dl where l is not an integer. Choose k in

Corollary 11 to include the first ⌊l⌋ blocks. Then

k =

⌊l⌋∑
k=0

B(d, k) = Θ

 ⌊l⌋∑
k=0

dk

 = Θ
(
d⌊l⌋
)
= o(n). (2.30)

Moreover, denote P≤⌊l⌋ to be the projection onto V≤⌊l⌋ and P>⌊l⌋ to be the projection onto its

complement. Then we have

⌊l⌋∑
k=0

∑
s∈[B(d,k)]

v2ks
µd,k/B(d, k)

= ∥P≤⌊l⌋f
∗∥2K

∑
k>⌊l⌋

∑
s∈[B(d,k)]

v2i = ∥P>⌊l⌋f
∗∥2.

We can compute ∑
k>⌊l⌋

∑
s∈[B(d,k)]

µd,k(h)

B(d, k)
=
∑
k>⌊l⌋

µd,k(h)

and so

Rk =

(∑
k>⌊l⌋

∑
s∈[B(d,k)]

µd,k(h)

B(d,k)

)2
∑

k>⌊l⌋
∑

s∈[B(d,k)]

(
µd,k(h)

B(d,k)

)2 =

(∑
k>⌊l⌋ µd,k(h)

)2
∑

k>⌊l⌋
µd,k(h)

2

B(d,k)

≥

(∑
k>⌊l⌋ µd,k(h)

)2∑
k>⌊l⌋ µd,k(h)

2
·B(d, ⌈l⌉) = Ω(d⌈l⌉) = ω(n).

(2.31)

As a result, if we have
∥P≤⌊l⌋f

∗∥2K ·
(∑

k>⌊l⌋ µd,k(h)
)

n
→ 0, (2.32)
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then applying Corollary 11, we have shown that

lim sup
n→∞

E(f0)− σ2 ≤ ∥P>⌊l⌋f
∗∥2. (2.33)

In Ghorbani et al. [24] and Mei et al. [41], it is shown that the above is not just an upper bound.

In fact, it holds that limn→∞ E(f0)− σ2 = ∥P>⌊l⌋f
∗∥2 and so the application of our Collary 4 is

in fact tight in this case.
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CHAPTER 3

LINEAR REGRESSION IN GAUSSIAN SPACE

Linear regression is a fundamental model in statistics and machine learning. This chapter studies

the generalization theory for linear regression with Gaussian features. As we will see in Sec-

tion 3.1, the Gaussian feature assumption will be helpful for us to establish uniform convergence

not just for predictors on the ridge path (Theorem 9), but for any linear predictor. The generality

of our result can allow us to study predictors that do not necessarily have a closed-form expres-

sion and therefore cannot be analyzed directly like in Chapter 2 (for example, ℓ1 or nuclear norm

regularization). In addition, since the uniform convergence approach does not require the data

distribution to be well-specified, we can extend the results in the previous section to more general

settings. From now on, we will let the data distribution be a Gaussian multi-index model. We

assume the data distribution D is given by:

(A) d-dimensional Gaussian features with arbitrary mean and covariance: x ∼ N (µ,Σ)

(B) a generic multi-index model: there exists a low-dimensional projection W = [w∗
1, ..., w

∗
k] ∈

Rd×k, a random variable ξ ∼ Dξ independent of x (not necessarily Gaussian), and an un-

known link function g : Rk+1 → R such that

ηi = ⟨w∗
i , x⟩, y = g(η1, ..., ηk, ξ). (3.1)

Since g is not even required to be continuous, our assumption on y is quite general. The multi-

index model (3.1) includes well-specified linear regression by setting Dξ to be any distribution

with zero mean and bounded second moment, k = 1 and g(η, ξ) = η + ξ. It also allows nonlin-

ear trends and heteroskedasticity by changing the definition of g. For example, it is possible that

y = g(⟨w∗, x⟩) is a deterministic function of x but with an unknown and nonlinear function g.

Even though a linear model is misspecified in this case and cannot achieve zero population error,
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it is still interesting to ask whether we can achieve the best population error for a linear predictor

asymptotically. More generally, we can even allow g to be a neural network as long as the num-

ber of hidden units k in the first layer is small relative to the sample size n and D satisfies the

hypercontractivity assumption (C) below. It can be challenging to find consistent estimates for the

parameters w∗
1, ..., w

∗
k, but we are only concerned with finding a linear model with good prediction

error L(w, b). Note that the feature vector x can also have arbitrary mean and covariance, so the

only real restriction on D is the Gaussianity of x. In Chapter 5, we will see that sometimes the

Gaussian feature assumption is unnecessary, so our theory holds more generally. This is a special

case of a general phenomenon known as universality1.

Given a training set {(xi, yi)}ni=1 sampled independently from D, we consider the square loss

and define the training and test error to be

L̂(w, b) =
1

n

n∑
i=1

(⟨w, xi⟩+ b− yi)
2, L(w, b) = E(x,y)∼D[(⟨w, x⟩+ b− y)2]. (3.2)

We will consider loss functions other than the square loss in the next chapter.

3.1 Optimistic Rate

Our result in this section is a special case of the Moreau envelope theory introduced in Chapter 4,

which requires a mild technical assumption known as hypercontractivity:

(C) There exists a universal constant τ > 0 such that uniformly over all (w, b) ∈ Rd×R, it holds

that
E[(⟨w, x⟩+ b− y)8]1/8

E[(⟨w, x⟩+ b− y)2]1/2
≤ τ. (3.3)

The assumption (3.3) is verified with an explicit choice of τ in Appendix B.1. We note that the

power of 8 is not crucial here and can be replaced by any power greater than 2. As in Section 2.4,

1. However, we also prove that universality can fail in some misspecified settings (see the discussion in section 5.2
for more details)
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we control the generalization gap defined by the difference of the square roots. Theorem 12 below

is a special case of case (ii) in Theorem 36 in Chapter 4 and the proof can be found in Appendix E.

Theorem 12. Assume (A), (B), and (C) holds and denote Q = I − W (WTΣW )−1WTΣ. For

any δ ∈ (0, 1), let Cδ : Rd → [0,∞] be a continuous function such that with probability at least

1− δ/4 over x ∼ N (0,Σ), uniformly over all w ∈ Rd,

⟨Qw, x⟩ ≤ Cδ(w). (3.4)

Then with probability at least 1− δ, it holds uniformly over all (w, b) ∈ Rd × R that

(1− ϵ)L(w, b) ≤

(√
L̂(w, b) +

√
Cδ(w)

2

n

)2

(3.5)

where ϵ = O

(
τ

√
k log(n/k)+log(1/δ)

n

)
.

Compared to Theorem 9, Theorem 12 requires the Gaussianity of x in assumption (A), but it

can be proven rigorously and applied to misspecified models of the form in assumption (B). Recall

that we assume y = f∗(x) + ξ in Chapter 2 and we expand f∗ =
∑
viϕi, and this assumption

is crucial for obtaining a closed-form expression such as equation (2.10). More importantly, our√
C2
δ /n term plays the role of Rademacher complexity in classical uniform convergence guaran-

tees [3]. In our context, the average Rademacher complexity is given by the following:

Definition 1. Given a positive semi-definite matrix Σ and sample size n ∈ N, the Rademacher

complexity of a hypothesis class H is given by

Rn(H) = Ex1,...,xn∼N (0,Σ)
s∼Unif({±1}n)

[
sup
h∈H

∣∣∣∣∣ 1n
n∑

i=1

sih(xi)

∣∣∣∣∣
]
. (3.6)

Rademacher complexity measures the ability of H to fit random Rademacher noise (±1) on an

average training set sampled from the ground truth distribution. For more background, see for ex-

24



ample the work of Bartlett and Mendelson [3], Bartlett et al. [5], Srebro et al. [63] and Wainwright

[73].

A closely related geometric complexity measure is the Gaussian width [see, e.g., 3, 71]. The

following definitions match the notation of Koehler et al. [33].

Definition 2. The Gaussian width and the radius of a set S ⊂ Rd are

W (S) := EH∼N (0,Id)
sup
s∈S

|⟨s,H⟩| and rad(S) := sup
s∈S

∥s∥2.

We also define the notation

WΣ(S) := W (Σ1/2S)

to represent the Gaussian width with respect to covariance matrix Σ.

As it turns out, when the hypothesis class H is linear, the Rademacher complexity is actually

equivalent to Gaussian width (up to a scaling of 1/
√
n).

Proposition 13. Let K be an arbitrary subset of Rd and consider H = {x 7→ ⟨w, x⟩ : w ∈ K}.

Then, for any positive semi-definite matrix Σ, it holds that

Rn(H) =
WΣ(K)√

n
. (3.7)

Proof. Observe that for x1, ..., xn ∼ N (0,Σ) independent of s ∼ Unif({±1}n), we have that

1
n

∑n
i=1 sixi ∼ N

(
0, 1nΣ

)
. The rest just follows from definitions:

Rn(H) = Ex1,...,xn∼N (0,Σ)
s∼Unif({±1}n)

[
sup
w∈K

∣∣∣∣∣ 1n
n∑

i=1

si⟨w, xi⟩

∣∣∣∣∣
]

= Ex1,...,xn∼N (0,Σ)
s∼Unif({±1}n)

[
sup
w∈K

∣∣∣∣∣〈w, 1n
n∑

i=1

sixi
〉∣∣∣∣∣
]

= EH∼N (0,Id)

[
sup
w∈K

∣∣∣〈w, 1√
n
Σ

1
2H
〉∣∣∣ ] = n−1/2WΣ(K).
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If we let Σ⊥ = QTΣQ, then it is clear from definition that Cδ is just a high probability version

of the Gaussian width WΣ⊥ (which is equivalent to Rademacher complexity after rescaling). If

we consider Ridge regression and the minimal ℓ2 norm interpolator, then we can approximately

choose Cδ to be

Cδ(w) ≈ ∥w∥2 · E∥QTx∥2 (3.8)

by applying Cauchy-Schwarz inequality and standard concentration argument for the norm of

∥QTx∥2. We can view Q as a (potentially oblique) projection onto the subspace orthogonal to

Σ1/2w∗
1, ...,Σ

1/2w∗
k. Indeed, if we denote the corresponding orthogonal projection matrix as P ,

then it is clear that Q = Σ−1/2PΣ1/2. In other words, Q first applies the linear map Σ1/2 to

a predictor w, orthogonalizes Σ1/2w with respect to Σ1/2w∗
1, ...,Σ

1/2w∗
k and finally applies the

inverse linear map Σ−1/2. Since the trace of a covariance matrix is equal to the sum of its eigen-

values, E∥QTx∥22 = Tr(QTΣQ) and the projection Q effectively set some eigenvalues to 0, we

can view E∥QTx∥2 essentially as the term
√∑

i>k λi in equation (2.26) of Theorem 9 and so our

equation (3.5) can recover a similar uniform convergence guarantee. In fact, equation (3.5) holds

not just for predictors on the ridge path. It holds for any predictors in the entire Rd. As we will

see in section 3.3, 3.5 and 3.6, other choices of Cδ might be more appropriate depending on the

application. For an arbitrary norm ∥ · ∥ with dual norm ∥ · ∥∗, we can pick

Cδ(w) ≈ ∥w∥ · E∥QTx∥∗. (3.9)

In the application to LASSO regression in section 3.3, we will pick ∥ · ∥ to be the ℓ1 norm. In

the application to matrix sensing in section 3.6, we will pick ∥ · ∥ to be the nuclear norm. The

corresponding dual norms are the ℓ∞ norm and the spectral norm, respectively. In Section 4.2,

we will show that we can always obtain sharp asymptotic risk bound for empirical risk minimizer

(ERM) in a convex set by choose Cδ based on local Gaussian width.
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3.2 Minimal Norm Interpolation

Now that we have proved the uniform convergence guarantee (Theorem 12), it remains to analyze

the complexity of the minimal norm interpolant. In this section, we use the Gaussian comparison

inequality to prove an analog of Proposition 10 in Chapter 2. We first introduce the notion of

effective ranks, which is the same as the definition in equation (2.13) of the previous chapter.

Definition 3 (Bartlett et al. [7]). The effective ranks of a covariance matrix Σ are

r(Σ) =
Tr(Σ)

∥Σ∥op
and R(Σ) =

Tr(Σ)2

Tr(Σ2)
.

The effective ranks are related to the concentration of the ℓ2 norm of a Gaussian vector with

covariance Σ. In fact, both definitions of effective ranks can be derived by applying Bernstein’s

inequality to ∥x∥2/E∥x∥2 (for example, see Lemma 64 in the Appendix). For more on these

notions of effective rank, see Bartlett et al. [7] and Koehler et al. [33]. We are now ready to state

the norm bound for the minimal ℓ2 norm interpolant.

Theorem 14. Assume that (A) and (B) holds. Let Q be the same as in Theorem 12 and Σ⊥ =

QTΣQ. Fix any (w♯, b♯) ∈ Rd+1 such that Qw♯ = 0 and suppose for some ρ ∈ (0, 1), it holds that

L̂(w♯, b♯) ≤ (1 + ρ)L(w♯, b♯). (3.10)

Then with probability at least 1− δ, for some ϵ ≲ ρ + log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
,

it holds that

min
(w,b)∈Rd+1:L̂f (w,b)=0

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nL(w♯, b♯)

Tr(Σ⊥)
. (3.11)

The proof of Theorem 14 is the same as Theorem 38 in Chapter 4 and can be found in Ap-

pendix E.3. In the following paragraph, we give an intuitive explanation of the norm bound (3.11).
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As mentioned earlier, Q is a projection matrix and so Σ⊥ = QTΣQ only retains the compo-

nents of Σ that correspond to the tail of its eigenvalues. In Theorem 14, it is implicitly assumed

that R(Σ⊥) is large with respect to the sample size n and this condition effectively ensures that

QTx1, ..., Q
Txn are approximately orthogonal. Therefore, we have

⟨xi, QQTxj⟩ = ⟨QTxi, Q
Txj⟩ ≈


∥QTxi∥2 if i = j

0 otherwise.

To prove an upper bound on the minimal norm required to interpolate, we can fix any (w♯, b♯) and

consider

w ≈ w♯ +
n∑

i=1

(yi − ⟨w♯, xi⟩ − b♯)
QQTxi
∥QTxi∥2

because ⟨w, xi⟩+ b♯ ≈ yi. By the near orthogonality again, we have

∥w∥22 ≈ ∥w♯∥22 +
n∑

i=1

(yi − ⟨w♯, xi⟩ − b♯)2

∥QTxi∥2
≈ ∥w♯∥22 +

nL(w♯, b♯)

Tr(Σ⊥)

which is essentially our bound (3.11) with ϵ ≈ 0.

If we assume a well-specified model: y = ⟨w∗, x⟩+ ξ with ξ ∼ N (0, σ2), then we can choose

w♯ = w∗ and then L(w♯, b♯) = σ2. More generally, we can choose w♯, b♯ = argminw,b L(w, b).

The condition Qw♯ = 0 can always be satisfied because L((I −Q)w, b) ≤ L(w, b) for all (w, b) ∈

Rd+1 by Jensen’s inequality. Condition (3.10) can also be easily checked because we just need

concentration of the empirical loss at a single non-random parameter. If ∥w♯∥2 is too large for our

bound (3.11), then it might be beneficial to approximately minimize L(w, b) with a smaller norm

(as in the case of Proposition 10). As we see in Chapter 2, the
√
n/Tr(Σ⊥) factor in the norm

bound (3.11) conveniently cancels with the complexity term in equation (3.5). Since Theorem 14

applies to misspecified data distributions as well, we can combine it with Theorem 12 to establish

benign overfitting for any Gaussian multi-index setting.
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Corollary 15. Assume that (A), (B), and (C) holds. Let Q = I −W (WTΣW )−1WTΣ and Σ⊥ =

QTΣQ. Fix any (w♯, b♯) ∈ Rd+1 such that Qw♯ = 0. Consider the minimal norm interpolator

ŵ, b̂ = argmin
(w,b):L̂(w,b)=0

∥w∥2. Then with probability at least 1− δ, for some

ρ ≲ τ

√
k log(n/k) + log(1/δ)

n
+ log (1/δ)

 1√
n
+

1√
R(Σ⊥)

+
k

n
+

n

R(Σ⊥)

 ,

it holds that

L(ŵ, b̂) ≤ (1 + ρ)

√L(w♯, b♯) + ∥w♯∥2

√
Tr(Σ⊥)

n

2

. (3.12)

The proof can be found in Appendix D.1. Using Corollary 15, we can establish the consistency

of the minimal ℓ2 norm interpolant in the following sense. Suppose there exists a sequence of dis-

tributions2 Dn satisfying assumptions (A), (B) and (C) and the Bayes error σ2n := infw,b LDn
(w, b)

converges to some limit σ2 ∈ R+. Define Σ⊥
n the same way as in Corollary 15 and assume there

exists a sequence (w
♯
n, b

♯
n) such that Qnw

♯
n = 0 and

LDn
(w

♯
n, b

♯
n) → σ2 and ∥w♯

n∥2

√
Tr(Σ⊥

n )

n
→ 0. (3.13)

In addition, assume that
kn
n

→ 0 and
n

R(Σ⊥
n )

→ 0, (3.14)

then Corollary 15 suggests that LDn
(ŵn, b̂n) → σ2 in probability.

Finally, we note that our analysis can show something more than the consistency of the minimal

ℓ2 norm interpolant. In fact, any predictor on the ridge path with norm larger than ∥w♯∥2 (or with

regularization parameter sufficiently close to 0) can enjoy the same generalization guarantee as the

minimal norm interpolant, which explains the flatness of the generalization curve as opposed to the

2. We need the feature dimension d ≥ n in order to interpolate so the distribution D might change as n increases.
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classical U-shaped curve (for example, see Figure 5.3 in Chapter 5). In other words, once we fit

all of the signals, it does not matter how much noise is fitted, and all near-interpolators can achieve

consistency at the same time.

Corollary 16. In the same setting as Corollary 15, it also holds with probability at least 1− δ that

for any R between ∥ŵ∥2 and ∥w♯∥2, the constrained risk minimizer

ŵR, b̂R := argmin
(w,b):∥w∥2≤R

L̂(w, b) (3.15)

has the generalization bound

L(ŵR, b̂R) ≤ (1 + ρ)

√L(w♯, b♯) + ∥w♯∥2

√
Tr(Σ⊥)

n

2

. (3.16)

Corollary 16 is a consequence of Lemma 65 in the Appendix, which holds more generally.

Using the same techniques in this section, we can also establish benign overfitting result for the

minimal ℓ1 norm interpolant (for example, see Koehler et al. [33]), but the ℓ1 norm bound there

is not always tight. Tighter analysis for the minimal ℓ1 norm interpolant and more generally the

minimal ℓp norm interpolant can be found in Wang et al. [74] and Donhauser et al. [21], and their

proof techniques still depend on a result similar to our Theorem 12.

3.3 Optimally Regularized Estimators

In the last section, we show that the minimal norm interpolant is consistent when conditions (3.13)

and (3.14) hold. However, as we see in the Examples 3, 4 and 5 in Chapter 2, the condition

n/R(Σ⊥) → 0 does not always hold and is not necessary for the consistency of the optimally-

tuned ridge regression. We only need this condition if we want the minimal norm interpolant to be

as good as the optimal ridge. The following result, which is a corollary of Theorem 12, extends

the analysis of optimal ridge to using any norm as a regularizer.
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Corollary 17. Assume that (A), (B), and (C) holds and let Q = I −W (WTΣW )−1WTΣ. Fix an

arbitrary norm ∥ · ∥ and any (w♯, b♯) ∈ Rd+1. There exists λ∗ > 0 such that if we consider the

regularized estimator

ŵλ∗ , b̂λ∗ = arg min
(w,b)

√
L̂(w, b) + λ∗∥w∥, (3.17)

it holds with probability at least 1− δ that

(1− ϵ)L(ŵλ∗ , b̂λ∗) ≤

(√
L(w♯, b♯) +

(
E∥QTx∥∗ + sup

∥v∥≤1
∥Qv∥Σ

√
2 log(16/δ)

)
∥w♯∥√
n

)2

where ϵ is the same as in Theorem 12.

As before, suppose there exists a sequence of distributions Dn satisfying assumptions (A), (B)

and (C) and the Bayes error σ2n := infw,b LDn
(w, b) converges to some limit σ2 ∈ R+. In order

for the regularized estimator (ŵλ∗ , b̂λ∗) to be consistent in the sense that LDn
(ŵλ∗ , b̂λ∗) → σ2, we

see that we only need a sequence (w
♯
n, b

♯
n) such that

LDn
(w

♯
n, b

♯
n) → σ2,

∥w♯
n∥E∥QT

nx∥∗√
n

→ 0,
∥w♯

n∥ sup∥v∥≤1 ∥Qnv∥Σn√
n

→ 0 (3.18)

and kn/n→ 0.

Note that in the definition of (ŵλ∗ , b̂λ∗), we add the regularization term to the square root of

the training loss. In the context of ℓ1 regularization, this is known as the square-root LASSO

in the literature. In our applications, the quantity sup∥v∥≤1 ∥Qv∥Σ is usually dominated by the

expected norm E∥QTx∥∗. The conditions in (3.18) are relatively mild: as long as the dimension-

free quantity ∥w♯∥E∥QTx∥∗ is small relative to
√
n, then we can achieve small population error.

This is property of the data distribution D that makes it suitable to use the norm ∥·∥ as a regularizer

and we typically do not expect consistency in a high dimensional problem unless there is some

latent low-dimensional structure. Moreover, the proof of Corollary 17 suggests that we can choose

λ∗ to be any high probability bound of ∥QTx∥∗. In practice, even though the matrixQ is unknown,
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we can use a potentially more conservative estimate 1
n

∑n
i=1 ∥xn∥∗ as a surrogate for λ∗.

Ridge Regression. Specializing Corollary 17 to the Euclidean norm, observe that

E∥QTx∥2 ≤
√

E∥QTx∥22 =

√
Tr(Σ⊥)

sup
∥v∥2≤1

∥Qv∥Σ = ∥Σ⊥∥1/2op ≤
√

Tr(Σ⊥)

and so in the context of ridge regression, we can simplify the generalization bound as

(1− ϵ)L(ŵλ∗ , b̂λ∗) ≤

√L(w♯, b♯) +
(
1 +

√
2 log(16/δ)

)
∥w♯∥2

√
Tr(Σ⊥)

n

2

.

Therefore, the conditions

LDn
(w

♯
n, b

♯
n) → σ2, ∥w♯

n∥2

√
Tr(Σ⊥

n )

n
→ 0,

kn
n

→ 0 (3.19)

are indeed sufficient for the consistency of optimally-tuned ridge regression. Compared with con-

ditions (3.13) and (3.14), we no longer need n/R(Σ⊥) → 0. However, from Corollary 16, having

that condition means we no longer need to tune the ridge parameter λ: any sufficiently small λ will

lead to consistency.

Slow Rate under Bounded ℓ1 Norm. Specializing Corollary 17 to the ℓ1 norm, observe that

E∥QTx∥∞ ≤
√

2 log(2d)max
i

Σ⊥
ii

sup
∥v∥1≤1

∥Qv∥Σ =

√
max
i

Σ⊥
ii
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by standard argument (for example, Lemma 66 in the appendix) and so in the context of LASSO

regression, then we can simplify the generalization bound as

(1− ϵ)L(ŵλ∗ , b̂λ∗) ≤

(√
L(w♯, b♯) +

√
8max

i
Σ⊥
ii · ∥w

♯∥1

√
log(2d) + log(16/δ)

n

)2

.

If we denote σ2 = infw,b L(w, b) and let w♯, b♯ be the minimizer of population loss, then the above

result implies the convergence rate of σ∥w♯∥1
√

log(d)
n + ∥w♯∥21 ·

log(d)
n to σ2, which is also known

as the "slow" rate of LASSO. Moreover, if w♯ is k-sparse, then we can bound

∥w♯∥1 ≤ k∥w♯∥∞

and so under these assumptions, the LASSO slow rate guarantee becomes σ∥w♯∥∞
√

k2 log(d)
n +

∥w♯∥2∞ · k
2 log(d)

n . This analysis works for all predictors w∗ of bounded ℓ1-norm, and it is minimax

optimal over this class, but when we assume that w∗ is k-sparse it is generally suboptimal and in

particular does not give exact recovery when σ = 0. We now explain how our theory recovers the

correct behavior in the sparse and well-conditioned setting commonly studied in the sparse linear

regression literature.

Performance under Sparsity. We show how to recover well-known results from compressed

sensing and high-dimensional statistics about sparse linear regression with Gaussian designs. In

particular, we prove a performance guarantee for the LASSO when the covariance matrix is well-

conditioned, as previously analyzed by Raskutti et al. [53], or more generally satisfies a version of

the compatability condition [67]. We start with the following well-known lemma commonly used

in the analysis of the LASSO (see, e.g. Vershynin [71])
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Lemma 18. Suppose w♯ is k-sparse, i.e. supported on coordinate set S ⊂ [d] with |S| ≤ k. Every

w with ∥w∥1 ≤ ∥w♯∥1 satisfies

∥(w − w♯)SC∥1 ≤ ∥(w − w♯)S∥1. (3.20)

The above lemma shows that the vector w − w♯ lies in the covex cone

C(S) := {u : ∥uSC∥1 ≤ ∥uS∥1},

where S is the support of w♯. Now we can state the version of the compatibility condition [67]

we use; the compatibility condition is a weakening of the restricted eigenvalue condition [12, 53],

and the compatibility condition is known to be a sufficient and almost necessary condition for the

LASSO to perform exact recovery from O(k log d) samples in the Gaussian random design setting

[32].

Definition 4 (Compatibility Condition; see Van De Geer and Bühlmann [67]). For a positive

semidefinite matrix Σ ∈ Rd×d and set S ⊂ [d], we say Σ has S-restricted ℓ1-eigenvalue

ϕ2(Σ, S) = min
u∈C(S)

|S| · ⟨u,Σu⟩
∥uS∥21

.

We say the S-compatibility condition holds if the S-restricted ℓ1-eigenvalue is nonzero.

Combine Lemma 18 and the compatibility condition, we obtain the following:

Theorem 19. Under assumptions (A), (B) and (C), let ϵ, Q be the same as in Theorem 12 and

denote Σ⊥ = QTΣQ. Let σ2 = minw,b L(w, b) and w♯, b♯ = argminw,b L(w, b). Suppose that

1. w♯ is a k-sparse vector with support S ⊂ [d]

2. the covariance matrix Σ satisfies the S-compatibility condition
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3. the number of samples n satisfies

n ≥
32maxiΣ

⊥
ii

ϕ(Σ, S)2
· k log(16d/δ) and ϵ ≤ 1/2

Then for any ϵ′ < 1, it holds with probability at least 1 − δ that for all (w, b) satisfying ∥w∥1 ≤

∥w♯∥1 and L̂(w, b) ≤ (1 + ϵ′)σ2, we have

L(w, b)− σ2 ≤ 104σ2

(
ϵ+ ϵ′ +

maxiΣ
⊥
ii

ϕ(Σ, S)2
8k log(16d/δ)

n

)
. (3.21)

In particular, when σ = 0 we have that ∥w − w♯∥Σ = 0, and so if Σ is positive definite then we

have w = w♯ (exact recovery).

To interpret the above bound, observe that when we consider the regularized ERM ŵ, b̂ =

argminw,b:∥w∥1≤∥w♯∥1 L̂(w, b), we know that L̂(ŵ, b̂) ≤ L̂(w♯, b♯) and so we can choose ϵ′ =

O(1/
√
n) based on concentration of L̂(w♯, b♯). As a result, we have ϵ+ ϵ′ = Õ(τ

√
k/n+σ2/

√
n)

and the last term, assuming Σ is well-conditioned, is O(σ2k log(d/δ)/n), which is the well-known

minimax rate for sparse linear regression (e.g., Rigollet and Hütter [56]). The above analysis is not

very careful in terms of constant factors; later we show how to get sharp constants in the isotropic

and well-specified setting. Also, we show how to get rid of the ϵ + ϵ′ term on the right hand side

under stronger assumptions.

From now on, we will assume that the distribution D is given by

x ∼ N (0,Σ), ξ ∼ N (0, σ2), y = ⟨w∗, x⟩+ ξ (3.22)

and we ignore the bias term b for simplicity. We denote X ∈ Rn×d as the design matrix and

Y ∈ Rn as the vector of responses. We define the empirical and population loss L̂(w) and L(w)

the same way as in (3.2) with b = 0. In this case, the Bayes error is σ2 and the minimizer of the

population loss is w∗.
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The model (3.22) has been studied in many prior works because it is the starting point for the

analysis of linear regression and it is often possible to use the structure y = ⟨w∗, x⟩+ ξ to directly

compute most quantities of interest. Note that the model (3.22) clearly satisfies the Gaussian

multi-index assumptions (A) and (B). Theorem 59 in the appendix shows that it also satisfies the

hypercontractivity assumption (C) and so all of our results in this chapter so far can be applied. In

the following sections, we will use our uniform convergence framework to recover results proven

in the setting of (3.22).

First, we state a version of Theorem 12 that uses a slightly different definition of Cδ.

Theorem 20. Under the model assumption in (3.22), let F : Rd → [0,∞] be a continuous function

such that for x ∼ N(0,Σ), with probability at least 1− δ′, it holds uniformly over all w ∈ Rd that

⟨w − w∗, x⟩ ≤ F (w). (3.23)

For any δ > 0, assume n ≥ 196 log(12/δ). Then there exists β1 ≤ 14

√
log(12/δ)

n such that with

probability at least 1− 2(δ′ + δ), it holds uniformly over all w ∈ Rd that

L(w) ≤ (1 + β1)

(√
L̂(w) +

F (w)√
n

)2

. (3.24)

We omit the proof here because it is very similar to the proof of Theorem 12 and can be found

in Zhou et al. [78]. Due to some small difference3 in the proof strategy, we no longer need to

introduce the projection matrix Q and the hypercontractivity constant τ . As a result, Theorem 20

is easier to use in our applications later.

3. The difference between Theorem 12 and Theorem 20 is that the proof of Theorem 12 first conditions on both
Xw∗

1 , ..., Xw∗
k and ξ and then uses VC theory to establish low-dimensional concentration, whereas Theorem 20 only

needs to condition on ξ because it can exploit the linear structure of (3.22) in y.
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3.4 Improved Finite-Sample Rate

When we consider the empirical risk minimizer in a set K and the set K has low complexity, the

optimal rate for the population loss goes at a “parametric rate” of 1/n, faster than a 1/
√
n rate, as

in the case of ordinary least squares when d is fairly small compared to n. At first glance, it may

appear impossible to get faster than a 1/
√
n rate from the main optimistic rates bound because of

the presence of the β1 = O(
√

log(1/δ)/n) term. As we will show, one can actually get fast/optimal

rates from this theorem, but there is a different sense in which the 1/
√
n is unavoidable: this rate

is actually the best we can hope for if we are only allowed to use certain summary statistics of

the predictor. Nevertheless, it is still possible to obtain fast/optimal rates for the empirical risk

minimizer by a black-box application of Theorem 20. The strategy we use is to bound the error

∥w − w∗∥
Σ̂

in the empirical metric by using a direct and very simple argument based on the KKT

condition, and then apply Theorem 20 to bound the error in the population metric. The general idea

of analyzing the population loss by going through the empirical metric is very common in statistics

and learning theory (e.g. Mendelson [43], Bartlett and Mendelson [4], Lecué and Mendelson [35]).

Theorem 21. Let K be a closed convex set in Rd containing w∗ and suppose δ′ ≥ 0, p ≥ 0 are

such that with probability at least 1 − δ′ over the randomness of x ∼ N(0,Σ), uniformly over all

w ∈ K we have

⟨w − w∗, x⟩ ≤ ∥w − w∗∥Σ
√
p. (3.25)

Suppose that ŵ = argminw∈K L̂(w) and p/n ≤ 0.999, then for all n ≥ C log(2/δ) for some

absolute constant C > 0, it holds with probability at least 1− (δ + δ′) that

L(ŵ)− σ2 ≤ (1 + τ)σ2 · p
n
. (3.26)

where τ = τ(p, n, δ) is upper bounded by an absolute constant and satisfies τ(p, n, δ) → 1 in any

joint limit [p+ log(2/δ)]/n→ 0, n→ ∞.
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The details of the proof can be found in the appendix, where it is obtained as a special case of

a more general result (Theorem 68). To illustrate the application of this result, we show how it is

used in the analysis of Ordinary Least Squares estimator ŵOLS = (XTX)−1XTY .

Corollary 22. Under the model assumptions (4.2) with d < n and assuming a sufficiently large n,

it holds with probability at least 1− δ that

L(ŵOLS)− σ2 ≲ σ2

(√
d

n
+ 2

√
log(36/δ)

n

)2

(3.27)

Theorem 21 can be applied in a very similar way to analyze other models in the low complexity

regime, for example the LASSO when the sparsity level is small, which we illustrate below. Pro-

vided the ℓ1-eigenvalue φ and maximum diagonal entry of Σ are constants, we recover the sharp

Θ(σ2k log(d)/n) minimax rate for sparse linear regression (which is sharp provided k ≪ d; see,

e.g., [56]). This recovers the guarantee for the LASSO in the Gaussian random design setting given

by combining the result of Raskutti et al. [53] with the appropriate analysis of LASSO in the fixed

design setting [e.g. 12, 67].

Corollary 23. Applying Theorem 21 with K = {∥w∥1 ≤ ∥w∗∥1} the rescaled ℓ1-ball and under

the sparsity and compatability condition assumptions of (19), we have with probability at least

1− δ that the LASSO solution

ŵLASSO = argmin
w:∥w∥1≤∥w∗∥1

L̂(w)

satisfies

L(ŵLASSO)− σ2 ≲
maxiΣii

ϕ(Σ, S)2
· σ

2k log(16d/δ)

n
(3.28)

provided n is sufficiently large that

√
maxiΣii

ϕ(Σ, S)2
· 8k log(16d/δ)

n
≤ 0.999.
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Comparing Corollary 23 to Theorem 19, we see that we indeed get rid of the ϵ+ ϵ′ term in the

upper bound of equation (3.21).

3.5 Precise Asymptotics with Isotropic Features

In this section, we consider the isotropic setting with Σ = Id in (3.22) and we study the propor-

tional limit regime where d/n → γ ∈ (0,∞). This is a well-studied regime because the asymp-

totic results in random matrix theory such as the Marchenko-Pastur law are directly applicable. In

contrast to the consistency results that we prove in the previous sections, even optimally regular-

ized estimators tend to be inconsistent in these settings. However, we show that we can still use

uniform convergence to recover the precise asymptotics of various estimators such as OLS, min-

imal norm interpolant and LASSO. Importantly, the precise asymptotics are derived from novel

non-asymptotic results implied by Theorem 20. Finally, we discuss the limitation of uniform con-

vergence to obtain sharp finite-sample rate in section 3.5.3.

3.5.1 Empirical Risk Minimizer

First, we consider a high-dimensional setting when d is smaller than n. For example, when d =

n/2, the ordinary least squares estimator ŵOLS is the unique minimizer of the training error, but

it does not interpolate the training data and so the uniform convergence of interpolators analysis

cannot be applied. As it turns out, our Theorem 20 is enough to tightly characterize the excess risk

of ŵOLS. If we write x = Σ1/2H with H ∼ N (0, Id), then by the Cauchy-Schwarz inequality, it

holds that

⟨w∗ − w, x⟩ ≤ ∥H∥2 ∥w
∗ − w∥Σ .

Using standard concentration inequalities and L(w)− σ2 = ∥w − w∗∥2Σ, we can choose

F (w) =
(√

d+ 2
√
log(4/δ′)

)√
L(w)− σ2. (3.29)
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Theorem 24. Under the model assumptions in (3.22), let γ = d/n < 1. There exists some

ϵ ≲
(
log(36/δ)

n

)1/2
such that for all sufficiently large n, with probability 1 − δ it holds uniformly

for all w ∈ Rd that

∣∣∣∣∣∣
√
L(w)− σ2 −

√
γL̂(w)

(1− γ)2

∣∣∣∣∣∣ ≤ ϵ

√
L̂(w) +

√√√√ 1

1− γ

(
L̂(w)

1− γ
− σ2

)
+ ϵL̂(w). (3.30)

For the empirical risk minimizer ŵOLS = (XTX)−1XTY , the right hand side of (3.30) is ap-

proximately zero because we also have

L̂(ŵOLS) ≤ σ2(1− γ) + σ2ϵ
√
1− γ. (3.31)

Therefore, we obtain the following generalization bound:

L(ŵOLS)−
σ2

1− γ
≲ σ2

(
log(36/δ)

n

)1/4

. (3.32)

We have a relatively complicated expression in (3.30) because our choice of F according to

(3.29) depends on the excess risk L(w) − σ2, and so after applying (3.24) we need to solve a

quadratic equation. All quantities in (3.30) are well-defined because L̂ ≥ 0 and the ϵL̂(w) term

inside the last square root ensures that with high probability it is positive. If we think of ϵ as

zero for simplicity, then our uniform convergence guarantee (3.30) predicts that the excess risk

L(w)− σ2 of a predictor with training error L̂(w) cannot be larger than

1

1− γ

√γL̂(w)

1− γ
+

√
L̂(w)

1− γ
− σ2

2

.

The minimal error is approximately σ2(1−γ) and so all near empirical risk minimizer should enjoy

an excess risk of σ2 γ
1−γ , which agrees with the exact expectation formula in Hastie et al. [28]; see

their discussion for additional references. Since our approach also gives us a lower bound for free
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(by solving the quadratic equation), Theorem 24 is enough to show that L(ŵOLS) converges to

σ2 1
1−γ in probability. We see that even though the empirical risk minimizer is not consistent, our

uniform convergence approach can still provide an accurate understanding of the excess risk, and

our bound for OLS is tight at least for the leading term.

Moreover, the O(n−1/4) rate of (3.32) comes from the fact that we need to take the square

root of ϵ in the last term of (3.30); it is not too difficult to see that this is sub-optimal for OLS.

In fact, in Theorem 30, we explicitly calculate the variance of L(ŵOLS) and show that in the

proportional scaling regime (e.g., γ = 0.5), the right amount of deviation is of order O(n−1/2). In

the fixed-d regime, the convergence rate can be accelerated to the more familiar rate of O(n−1).

In Theorem 31, we show how to use a more direct approach to obtain high probability bounds

that match these variance calculations. Surprisingly, we can also show that the O(n−1/4) rate is

generally unavoidable for any uniform convergence analysis that only considers the size of L̂(w).

Our analysis is tight in the sense that there are estimators whose training error is indistinguishable

from ŵOLS, but whose convergence rate is provably slower than Ω(n−1/4). For readers interested

in the tightest rate of convergence, more details can be found in Section 3.5.3.

For the case d > n, the OLS estimator is no longer defined, and instead we study the perfor-

mance of the minimum-norm interpolator of the data. Together with the previous result, we show

that the optimistic-rate bound can capture the behavior of the pseudoinverse estimator ŵ = X+Y

on both sides of the double descent curve.

Theorem 25. Under the model assumptions in (4.2) with γ = d/n > 1 and Σ = Id, there exists

ϵ ≲
(
log(18/δ)

n

)1/2
such that with probability at least 1− δ, the following holds uniformly over all

w such that L̂(w) = 0:

∣∣∣∣L(w)− [σ2 + ∥w∥22 +
(
1− 2

(1 + ϵ)γ

)
∥w∗∥22

]∣∣∣∣
≤2∥w∗∥2

√√√√(1− 1

γ

)(
∥w∥22 −

∥w∗∥22
γ

)
− σ2

γ
+ 3ϵ∥w∥22.

(3.33)
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We prove that Theorem 25 captures the asymptotic behavior of the minimum-norm interpolator

in Theorem 26 below by combining the generalization bound with a norm calculation, recovering

the asymptotic formula for this setting computed by Hastie et al. [28] using random matrix theory

techniques.

Theorem 26. Under the model assumptions in (4.2) with γ = d/n > 1 and Σ = Id, there exists

ϵ ≲
(
log(40/δ)

n

)1/2
such that with probability at least 1− δ, it holds that

min
w:Xw=Y

∥w∥22 ≤ (1 + ϵ)

(
∥w∗∥22
γ

+
σ2

γ − 1

)
. (3.34)

Thus, by Theorem 25, we have

L(ŵ)−
[(

1− 1

γ

)
∥w∗∥22 + σ2

γ

γ − 1

]

≤ ϵ

(
∥w∗∥22
γ

+
σ2

γ − 1

)
+ ∥w∗∥2

√√√√ϵ

(
∥w∗∥22
γ

+
σ2

γ − 1

) (3.35)

where ŵ is the minimal-ℓ2 norm interpolator. If we fix σ2, γ and ∥w∗∥2, then as n→ ∞

L(ŵ) →
(
1− 1

γ

)
∥w∗∥22 + σ2

γ

γ − 1
in probability. (3.36)

Similar to the application in the last section, we also have a lower order O(n−1/4) term. It

is suboptimal, and we suspect that this is unavoidable for any uniform convergence analysis that

only considers the typical size of ∥ŵ∥. Nonetheless, this bound recovers the leading term, and the

lower-order term is negligible if we only care about the difference with σ2.

3.5.2 LASSO

A well-known application of the Gaussian Minmax Theorem is to the sharp analysis of the LASSO

in the setting where the covariates are isotropic and Gaussian (see, e.g., Stojnic [64], Amelunxen
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et al. [2]). Our optimistic rates bound Theorem 20 recovers a corresponding generalization bound

for all predictors w with ∥w∥1 ≤ ∥w∗∥1, which when specialized to the constrained ERM (i.e. the

LASSO solution) recovers these results.

Theorem 27. Using the notation of Theorem 24, we have with probability at least 1 − δ that for

all w with ∥w∥1 ≤ ∥w∗∥1,

∣∣∣∣∣∣
√
L(w)− σ2 −

√
γL̂(w)

(1− γ)2

∣∣∣∣∣∣ ≤ ϵ

√
L̂(w) +

√√√√ 1

1− γ

(
L̂(w)

1− γ
− σ2

)
+ ϵL̂(w) (3.37)

provided γ + 2ϵ/
√
n < 1, where

K′ := {u : ∥w∗ + u∥1 ≤ ∥w∗∥1} and γ :=
1

n
·W (K′ ∩ Sn−1)2.

Observe that if σ = 0 and L̂(w) = 0 then we get exact recovery provided γ+2ϵ/
√
n < 1 which

is sharp up to the constant in the confidence term (see, e.g., Amelunxen et al. [2], Chandrasekaran

et al. [19]). Informally, exact recovery occurs when n > ω2, i.e. the number of observations

exceeds the statistical dimension. Moreover, we can consider the asymptotic setting where σ =

o(1) and the proportional scaling limit where γ converges to constant. In this case, it is known

(equation 40(a) of Thrampoulidis et al. [65]) that we have L̂(ŵLASSO)/σ
2 → 1 − γ, so the right

hand side converges to zero and we have

1

σ2
L(ŵLASSO)− 1 → γ

1− γ
.

Thus we recover the characterization of the performance of LASSO in this regime [65, 64]. It is

possible, as in the OLS setting, to also derive non-asymptotic bounds on L̂(ŵLASSO) and therefore

obtain non-asymptotic bounds on the performance of the LASSO; we omit the details.

Remark 28. The Gaussian width of the tangent cone K′ has been sharply characterized in previous

work [e.g. 19, 2]. In particular, from the work of Amelunxen et al. [2] we know that if w∗ is k-
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sparse,

ω = W (K′ ∩ Sn−1) ≤ W (cone(K′) ∩ Sn−1) ≤
√
dψ(s/d)

where

ψ(ρ) := inf
τ≥0

{
ρ(1 + τ2) + (1− ρ)

√
2/π

∫ ∞

τ
(u− τ)2e−u2/2du

}
,

as well as a corresponding lower bound which characterizes ω.

3.5.3 Sharp Rate for OLS

We now zero in on the question of sharp rates for Ordinary Least Squares. Unlike all of the pre-

vious sections, in this section we will use tools beyond uniform convergence in order to precisely

compute second order terms in the generalization gap. Surprisingly, even though we can match

the high probability bound with an exact calculation up to first order term, the existence of certain

near-ERM can prevent us from recovering the correct variance term:

Theorem 29. Under the model assumptions, fix γ = d/n to be some value in (0, 1) and pick any

c > 0. Then there exists another absolute constant c′ > 0 such that for all sufficiently large n, with

probability at least 1− δ, there exists a w ∈ Rd such that

L̂(w)− L̂(ŵOLS) ≤ c · σ2

n1/2
, (3.38)

but the population error satisfies

L(w)− L(ŵOLS) ≥ c′ · σ2

n1/4
. (3.39)

If we know that L̂(w) = L̂(ŵOLS), then it is necessarily the case that w = ŵOLS and as we

will see, we can get the tightest possible convergence rates. On the other hand, it is not difficult to

see that nL̂(ŵOLS)/σ
2 follows a chi-squared distribution with n − d degrees of freedom, and by
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the variance formula of chi-squared distributions, we have

Var(L̂(ŵOLS)) =
2σ4(1− γ)

n
.

Consequently, L̂(ŵOLS) can in fact deviate from EL̂(ŵOLS) = σ2(1−γ) by the order of σ2/
√
n. If

we only know that L̂(w) is within the normal range of L̂(ŵOLS), then the above theorem says that

the sub-optimal rate of O(n−1/4) that we show is actually tight and unavoidable. We can show a

similar negative result for the fixed d regime that the convergence cannot be faster than O(n−1/2),

but as we can see from the last section, using ∥w − w∗∥2
Σ̂
≈ σ2γ as the empirical metric instead

is enough to recover the parameteric rate O(1/n). This argument fails for the proportional limit

regime because the smallest eigenvalue of Σ̂ is (1−√
γ)2 and so we can only get the larger quantity

σ2 γ
(1−√

γ)2
which fails to capture the first order behavior of σ2 γ

1−γ .

Finally, we show how to prove the tight finite sample rate using more direct methods. In fact,

we can use the higher order moments of the inverse Wishart distribution [72] to obtain the exact

closed-form expressions for both the mean and variance of L(ŵOLS) with any finite value of n and

d.

Theorem 30. Under the model assumptions in (4.2) with d ≤ n, consider the ordinary least square

estimator ŵOLS = (XTX)−1XTY . It holds that

EL(ŵOLS) = σ2
n− 1

n− d− 1

Var(L(ŵOLS)) = 2σ4
d(n− 1)

(n− d− 1)2(n− d− 3)

(3.40)

Hence as d/n→ γ, it holds that

EL(ŵOLS) →
σ2

1− γ
and

n

σ4
Var(L(ŵOLS)) →

2γ

(1− γ)3
. (3.41)
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If d is held constant, as n→ ∞, we have

nE[L(ŵOLS)− σ2] → σ2d and
n2

σ4
Var(L(ŵOLS)) → 2d. (3.42)

We can also show a matching high probability version based on the Gaussian minimax theorem:

Theorem 31. Under the model assumptions in (4.2) with d ≤ n, consider the ordinary least

square estimator ŵOLS = (XTX)−1XTY and denote γ = d/n. Assume that γ ≤ 0.999, then

with probability at least 1− δ, it holds that

L(ŵOLS)−
σ2

1− γ
≲ σ2

√
γ log(36/δ)

n
.

The full proof can be found in the appendix. As we can see from above, the variance of

L(ŵOLS) is of order O(1/
√
n) when d is proportional to n, and of order O(1/n) when d is fixed.

In both cases, the expectation is close to σ2/(1−γ). Theorem 31 shows exactly this and interpolates

the two regimes: when γ is of constant order, then we recover the O(1/
√
n) rate, but when d is

fixed, γ = O(1/n) and so we can accelerate the convergence rate to O(1/n).

3.6 Matrix Sensing

We now consider the problem of matrix sensing: given random matrices A1, ..., An (with i.i.d.

standard Gaussian entries) and independent linear measurements y1, ..., yn given by yi = ⟨Ai, X
∗⟩+

ξi where ξi is independent of Ai, and Eξ = 0 and Eξ2 = σ2, we hope to reconstruct the matrix

X∗ ∈ Rd1×d2 with sample size n ≪ d1d2. We will assume X∗ has low rank r. In this setting,

since the measurement matrices have i.i.d. standard Gaussian entries, the test error is the same as

the estimation error:

L(X) = E(⟨A,X⟩ − y)2 = E(⟨A,X −X∗⟩)2 + σ2

= E∥X̂ −X∗∥2F + σ2.
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Classical approach to this problem is finding the minimum nuclear norm solution:

X̂ = argmin
X∈Rd1×d2 :⟨Ai,X⟩=yi

∥X∥∗. (3.43)

Gunasekar et al. [26] also shows that gradient descent converges to the minimal nuclear norm

solution in matrix factorization problems. It is well known that having low nuclear norm can

ensure generalization [23, 62] and minimizing the nuclear norm ensures reconstruction [18, 54].

However, if the noise level σ is high, then even the minimal nuclear norm solution X̂ can have large

nuclear norm. Since our Theorem 12 and 20 can be adapted to different norms as regularizer, our

uniform convergence guarantee can be directly applied. It remains to analyze the minimal nuclear

norm required to interpolate the measurements y. For simplicity, we assume ξ to be Gaussian in

the proof of Theorem 32 below, but we can easily relax it to be sub-Gaussian or sub-exponential.

Theorem 32. Suppose that d1d2 > n, then there exists some ϵ ≲
√

log(32/δ)
n + n

d1d2
such that

with probability at least 1− δ, it holds that

min
∀i∈[n],⟨Ai,X⟩=yi

∥X∥∗ ≤ ∥X∗∥∗ + (1 + ϵ)

√
nσ2

d1 ∨ d2
. (3.44)

The proof can be found in Appendix D.5. Without loss of generality, we will assume d1 ≤ d2

from now on because otherwise we can take the transpose of A and X . Similar to assuming

n/R(Σ⊥) → 0 in linear regression, we implicitly assume that n/d1d2 → 0 in matrix sensing.

Such scaling is necessary for benign overfitting because of the lower bound on the test error for

any interpolant (for example, Proposition 4.3 of Zhou et al. [77]). We want to point out that the

norm calculation above does not take advantage of the fact that X∗ has low rank, and it is possible

that we can further improve this estimate. The rank of X∗ is only used in Theorem 33 below,

in which we plug in our norm estimate in Theorem 32 to Theorem 20 and then uses the fact that

∥X∗∥∗ ≤
√
r∥X∗∥F .
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Theorem 33. Fix any δ ∈ (0, 1). There exist constants c1, c2, c3 > 0 such that if d1d2 > c1n,

d2 > c2d1, n > c3r(d1 + d2), then with probability at least 1− δ that

∥X̂ −X∗∥2F
∥X∗∥2F

≲
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X∗∥F
+

(√
d1
d2

+
n

d1d2

)
σ2

∥X∗∥2F
. (3.45)

From Theorem 33, we see that when the signal to noise ratio ∥X∗∥2F
σ2

is bounded away from

zero, then we obtain consistency ∥X̂−X∗∥2F
∥X∗∥2F

→ 0 if the following conditions hold:

(A) r(d1 + d2) = o(n)

(B) d1d2 = ω(n)

(C) d1/d2 → {0,∞}

This can happen for example when r = Θ(1), d1 = Θ(n1/2), d2 = Θ(n2/3). As discussed earlier,

the second condition is necessary for benign overfitting, and the first consistency condition should

be necessary even for regularized estimators. The third condition requires the ground truth matrix

X∗ to be very tall or very short. It is sufficient for consistency but may not be necessary.
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CHAPTER 4

MOREAU ENVELOPE GENERALIZATION THEORY

In this chapter, we consider a more general setting than linear regression that allows the loss func-

tion to be a general linear objective. Given any continuous loss function f : R × Y → R and

i.i.d. sample pairs (xi, yi) from some data distribution D over Rd×Y , we can learn a linear model

(ŵ, b̂) by minimizing the empirical loss L̂f with the goal of achieving small population loss Lf :

L̂f (w, b) =
1

n

n∑
i=1

f(⟨w, xi⟩+ b, yi), Lf (w, b) = E(x,y)∼D[f(⟨w, x⟩+ b, y)]. (4.1)

In the above, Y is an abstract space for the labels. We will let Y = R for regression problems and

Y = {−1, 1} for binary classification. The setting that we consider in Chapter 3 corresponds to

choosing f(ŷ, y) = (ŷ − y)2. We make the same assumptions on D as in Chapter 3:

(A) d-dimensional Gaussian features with arbitrary mean and covariance: x ∼ N (µ,Σ)

(B) a generic multi-index model: there exist a low-dimensional projection W = [w∗
1, ..., w

∗
k] ∈

Rd×k, a random variable ξ ∼ Dξ independent of x (not necessarily Gaussian), and an un-

known link function g : Rk+1 → Y such that

ηi = ⟨w∗
i , x⟩, y = g(η1, ..., ηk, ξ). (4.2)

Since the link function g is not required to be continuous, the label y can be binary. We can

define the projection matrix Q and Cδ the same way as in Theorem 12. Our generalization theory

crucially depends on the Moreau envelope, defined as follows.

Definition 5. The Moreau envelope of a function f : R × Y → R associated with smoothing

parameter λ ∈ R+ is defined as

fλ(ŷ, y) = inf
u
f(u, y) + λ(u− ŷ)2. (4.3)
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The Moreau envelope is usually viewed as a smooth approximation to the original function f ;

its minimizer is known as the proximal operator. It plays an important role in convex analysis (see

e.g. [8, 15, 57]), but is also useful and well-defined when f is nonconvex.

Stated informally, the core of our Moreau envelope theory is the following inequality: with

high probability, it holds uniformly over all (w, b) and λ ≥ 0 that

Lfλ(w, b) ≤ L̂f (w, b) + λ
Cδ(w)

2

n
. (4.4)

Traditionally, the technique of uniform convergence controls the difference Lf − L̂f , whereas

(4.4) controls the difference between L̂f and the smaller quality Lfλ . However, as we will see

in Section 4.1, one can usually obtain some approximation error bound between Lf and Lfλ for

any choice of λ depending on the smoothness properties of f . As we can see in the definition

(4.3), a larger choice of λ leads to a smaller approximation error while the upper bound in (4.4)

becomes larger. Therefore, equation (4.4) can automatically imply a relationship between Lf and

L̂f for different choice of f by choosing λ appropriately to balance the approximation error and

generalization error.

As a first example, we consider the square loss f(ŷ, y) = (ŷ − y)2. It can be easily checked

that the Moreau envelope is exactly proportional to itself:

fλ(ŷ, y) = inf
u
(u− y)2 + λ(u− ŷ)2 =

λ

1 + λ
f(ŷ, y) (4.5)

and so Lfλ = λ
1+λ Lf . Multiplying 1+λ

λ on both hand sides of (4.4) and choosing λ =

√
nL̂f (w,b)

Cδ(w)2

to minimizes the upper bound yields a generalization of our Theorem 12:

Lf (w, b) ≤
1 + λ

λ
L̂f (w, b) + (1 + λ)

Cδ(w)
2

n

=

(√
L̂f (w, b) +

√
Cδ(w)

2

n

)2

.

50



4.1 Lower Bounds on Moreau Envelope

In this section, we study the relationship between Lf and Lfλ for general loss function f . We first

introduce the standard definition of Lipschitz and smooth functions.

Definition 6. A function f : R → R is M -Lipschitz if for all x, y in R,

|f(x)− f(y)| ≤M |x− y|.

Definition 7. A twice differentiable function f : R → R is H-smooth if for all x in R

|f ′′(x)| ≤ H.

It is well-known that non-negative and smooth functions are square-root Lipschitz (for exam-

ple, Lemma 2.1 in Srebro et al. [63]).

Proposition 34. For a H-smooth and non-negative function f : R → R, it holds that

|f ′(t)| ≤
√

2Hf(t) and
∣∣∣∣ ddt√f(t)

∣∣∣∣ ≤
√
H

2
. (4.6)

Therefore,
√
f is

√
H/2-Lipschitz.

Proof. Since f is H-smooth and non-negative, by Taylor’s theorem, for any s, t ∈ R, we have

0 ≤ f(s)

= f(t) + f ′(t)(s− t) +
f ′′(a)
2

(s− t)2

≤ f(t) + f ′(t)(s− t) +
H

2
(s− t)2

where a ∈ [min(s, t),max(s, t)]. Setting s = t − f ′(t)
H yields the desired bound. The second

inequality follows by the chain rule.
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If the loss function f is Lipschitz or smooth (or square-root Lipschitz more generally), we can

have the following lower bound on the Moreau envelope.

Proposition 35. If for each y ∈ Y , f : R × Y → R is M -Lipschitz with respect to the first

argument, then for any λ ≥ 0, it holds that

f(ŷ, y) ≤ fλ(ŷ, y) +
M2

4λ
. (4.7)

If for each y ∈ Y , f : R × Y → R is non-negative and
√
f is

√
H-Lipschitz with respect to the

first argument, then for any λ ≥ 0, it holds that

f(ŷ, y) ≤ λ+H

λ
fλ(ŷ, y). (4.8)

Proof. If f is Lipschitz, then

fλ(ŷ, y) = inf
u
f(u, y) + λ(u− ŷ)2

≥ inf
u
f(ŷ, y)−M |u− ŷ|+ λ(u− ŷ)2

= f(ŷ, y) + inf
u
Mu+ λu2

= f(ŷ, y)− M2

4λ
.

If
√
f is Lipschitz, then by Lemma 75 in Appendix E

fλ(ŷ, y) = inf
u
f(u, y) + λ(u− ŷ)2

≥ inf
u

(√
f(ŷ, y)−

√
H|u− ŷ|

)2
+
+ λ(u− ŷ)2

= inf
u

sup
λ′≥0

−λ′|u− ŷ|2 + λ′

H + λ′
f(ŷ, y) + λ(u− ŷ)2

≥ λ

λ+H
f(ŷ, y).
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Plugging in the bound (4.7) into equation (4.4) and choosing λ = 1
2

√
nM2

Cδ(w)
2 to minimize the

upper bound, we obtain

Lf (w, b) ≤ L̂f (w, b) + λ
Cδ(w)

2

n
+
M2

4λ

= L̂f (w, b) +M

√
Cδ(w)

2

n
.

(4.9)

Plugging in the bound (4.8) into equation (4.4) and choosing λ =

√
nHL̂f (w,b)

Cδ(w)
2 to minimize

the upper bound, we obtain

Lf (w, b) ≤
λ+H

λ
L̂f (w, b) + (λ+H)

Cδ(w)
2

n

=

(√
L̂f (w, b) +

√
HCδ(w)

2

n

)2

.

(4.10)

Note that the term
√

Cδ(w)2

n can be interpreted as Rademacher complexity. In comparison to

the standard symmetrization and contraction argument [3], our equation (4.9) remove the factor of

two and can be shown to be tight [79]. In comparison to the optimistic rate in Srebro et al. [63],

our more refined bound (4.10) avoids the hidden constant and logarithmic factor.

We are now ready to state our formal result. As in Theorem 12, we will make two additional

mild technical assumptions:

(C) hypercontractivity: there exists a universal constant τ > 0 such that uniformly over all

(w, b) ∈ Rd × R, it holds that

E[f(⟨w, x⟩+ b, y)4]1/4

E[f(⟨w, x⟩+ b, y)]
≤ τ. (4.11)

(D) the class of functions on Rk × Y defined below has VC dimension at most h:

{(x, y) → 1{f(⟨w, x⟩+ b, y) > t} : (w, b, t) ∈ Rk × R× R}. (4.12)
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We note that the class of functions in assumption (D) is defined on Rk ×Y instead of Rd ×Y .

Therefore, h is completely independent of the dimension d and can typically be chosen to be O(k).

We state the formal result below.

Theorem 36. Assume that (A), (B), (C), and (D) holds, and let Q = I −W (WTΣW )−1WTΣ.

For any δ ∈ (0, 1), let Cδ : Rd → [0,∞] be a continuous function such that with probability at

least 1− δ/4 over x ∼ N (0,Σ), uniformly over all w ∈ Rd,

⟨Qw, x⟩ ≤ Cδ(w). (4.13)

Then it holds that

(i) if for each y ∈ Y , f is M -Lipschitz with respect to the first argument, then with probability

at least 1− δ, it holds that uniformly over all (w, b) ∈ Rd × R, we have

(1− ϵ)Lf (w, b) ≤ L̂f (w, b) +M

√
Cδ(w)

2

n
(4.14)

(ii) if for each y ∈ Y , f is non-negative and
√
f is

√
H-Lipschitz with respect to the first

argument, then with probability at least 1−δ, it holds that uniformly over all (w, b) ∈ Rd×R,

we have

(1− ϵ)Lf (w, b) ≤

(√
L̂f (w, b) +

√
H Cδ(w)

2

n

)2

(4.15)

where ϵ = O

(
τ

√
h log(n/h)+log(1/δ)

n

)
.

4.2 Upper Bounds on Training Error

We note that we only requires f to be Lipschitz or square-root Lipschitz in Section 4.1. In par-

ticular, f does not need to be convex or differentiable. This observation will be useful for our

applications in Section 4.4 and 4.5. On the other hand, we will show in this section that if f is
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assumed to be convex, then our moreau envelope theory is always asymptotically tight with an

appropriate choice of Cδ. This is because if we interpret equation (4.4) as a lower bound on the

training error, then a matching upper bound also holds. Finally, we show how to use this upper

bound on the training error to derive bounds on the norm of the minimal norm interpolant.

Given a data distribution D satisfying assumptions (A) and (B), we can define a distribution D̃

over (x̃, ỹ) ∈ Rk+1 × Y by

x̃ =

 x̃1:k

x̃k+1

 ∼ N (0, Ik+1), ξ ∼ Dξ, and ỹ = g(WTµ+ (WTΣW )1/2x̃1:k, ξ) (4.16)

and we define a mapping ϕ : Rd → Rk+1 by

ϕ(w) :=

(WTΣW )−1/2WTΣw

∥Σ1/2Qw∥2

 . (4.17)

We will show that for any w ∈ Rd, the distribution of f(⟨w, x⟩+ b, y) with (x, y) ∼ D is the same

as f(⟨ϕ(w), x̃⟩ + wTµ + b, ỹ) with (x̃, ỹ) ∼ D̃. Therefore, we can understand D̃ as an equivalent

low-dimensional distribution for which the concentration of measure can be easily established

using assumption (C) and (D).

We note that y only depends on x through WTx and for any w ∈ Rd, we have

wTx

WTx

 ∼ N


wTµ

WTµ

 ,

wTΣw wTΣW

WTΣw WTΣW




and so by the conditional distribution of multivariate Gaussian, it is straightforward to check that

wTx |WTx = η ∼ N
(
wTµ+ wTΣW (WTΣW )−1(η −WTµ), ∥Σ1/2Qw∥22

)
.

55



As a result, we can write WTx = WTµ+ (WTΣW )1/2x̃1:k and

wTx = wTµ+ wTΣW (WTΣW )−1/2x̃1:k + ∥Σ1/2Qw∥2x̃k+1

= wTµ+ ⟨ϕ(w), x̃⟩.

Indeed, the joint distribution of (wTµ+ ⟨ϕ(w), x̃⟩, ỹ) is the same as (⟨w, x⟩, y). We are now ready

to state the upper bound for training error.

Theorem 37. Under assumptions (A) and (B), let f : R × Y → R be convex with respect to the

first argument for any y ∈ Y . Fix K ⊂ Rd,B ⊂ R to be any bounded convex sets. Suppose that τ

is such that with probability at least 1− δ/2 over x ∼ N (0,Σ) and (x̃i, ỹi)
n
i=1 sampled i.i.d. from

D̃ defined in (4.16), it holds that

min
(w,b)∈K×B

sup
λ≥0

1

n

n∑
i=1

fλ(⟨ϕ(w), x̃i⟩+ wTµ+ b, ỹi)−
λ

n
⟨Qw, x⟩2 (4.18)

Then with probability at least 1− δ, it holds that

min
(w,b)∈K×B

L̂f (w, b) ≤ τ. (4.19)

We explain why Theorem 37 suggests the tightness of our Moreau envelope theory (4.4) below.

Note that the first term in equation (4.18) only depends1 on w through ϕ(w) and we can write it as

min
(w̃,b)∈ϕ(K)×B

max
λ≥0

1

n

n∑
i=1

fλ(⟨w̃, x̃i⟩+ wTµ+ b, ỹi)−
λ

n

[
max

w∈K:ϕ(w)=w̃
⟨Qw, x⟩2

]
. (4.20)

It is obvious that for w ∈ K

⟨Qw, x⟩ ≤ max
w′∈K:ϕ(w′)=ϕ(w)

⟨Qw′, x⟩ ≈ E

[
max

w′∈K:ϕ(w′)=ϕ(w)
⟨Qw′, x⟩

]
:= C(ϕ(w)) (4.21)

1. Using ϕ(w), we can recover wTΣW . We can assume µ lies in the span of ΣW by increasing k by 1 and letting
w∗

k+1 = Σ−1µ.
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by the concentration of Lipschitz functions (we ignore the confidence term δ in Cδ for now). Then

by (4.4), it should hold uniformly over all (w, b) ∈ K × B that

L̂f (w, b) ≥ max
λ≥0

Lfλ(w, b)−
λC(ϕ(w))2

n
.

On the other hand, equation (4.20) only involves minimization over a low-dimensional space and

it implicitly suggests a concentration assumption: if we consider the constrained ERM

ŵ, b̂ = argmin
(w,b)∈K×B

L̂f (w, b),

then Theorem 37 implies

L̂f (ŵ, b̂) = min
(w,b)∈K×B

L̂f (w, b) ≤ τ

≈ min
(w̃,b)∈ϕ(K)×B

max
λ≥0

Efλ(⟨w̃, x̃⟩+ wTµ+ b, ỹ)− λC(w̃)2

n

≤ max
λ≥0

Efλ(⟨ϕ(ŵ), x̃⟩+ wTµ+ b̂, ỹ)− λC(ϕ(ŵ))2

n

= max
λ≥0

Lfλ(ŵ, b̂)−
λC(ϕ(ŵ))2

n
.

Hence, we have shown (informally) that

L̂f (ŵ, b̂) ≈ max
λ≥0

Lfλ(ŵ, b̂)−
λC(ϕ(ŵ))2

n
(4.22)

which explains the tightness of our moreau envelope theory (4.4). In the following settings:

(i) f(ŷ, y) = (ŷ − y)2 with y ∈ R,

(ii) f(ŷ, y) = (1− ŷy)2+ with y ∈ {−1, 1},

it can be shown that fλ = λ
λ+1 and so the maximization in (4.22) can be solved exactly. In
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particular, by Lemma 75, we have

L̂f (ŵ, b̂) ≈
(√

Lf (ŵ, b̂)−
C(ϕ(ŵ))√

n

)2

+
(4.23)

and so if (ŵ, b̂) is an interpolant: L̂f (ŵ, b̂) ≈ 0, then we should have asymptotically

Lf (ŵ, b̂) ≈
C(ϕ(ŵ))2

n
. (4.24)

The choice ofC in (4.21) is known as Local Gaussian Width. In fact, all of the results in section 3.5

can be understood by this calculation (e.g., see Example 4 of Zhou et al. [78]). Finally, we note

that Theorem 37 is also useful for computing the minimal norm required to achieve zero training

error. In particular, we can let K = {w ∈ Rd : ∥w∥ ≤ B} and we can find the minimal B such

that we can choose τ = 0 in (4.18). This argument is used in the proof of Theorem 14 in Chapter 3

and Theorem 38 in the next section.

4.3 Linear Classification with SVM

In this section, we consider binary classification with the squared hinge loss. As mentioned in the

previous section, we can use Theorem 37 to obtain a norm bound for the max-margin classifier.

Theorem 38. Under assumptions (A) and (B), let f : R × Y → R be the squared hinge loss

f(ŷ, y) = (1 − ŷy)2+ with Y = {−1, 1}. Let Q be the same as in Theorem 36 and Σ⊥ = QTΣQ.

Fix any (w♯, b♯) ∈ Rd+1 such that Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯, b♯) ≤ (1 + ρ)Lf (w

♯, b♯). (4.25)

Then with probability at least 1− δ, for some ϵ ≲ ρ + log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
,

it holds that
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min
(w,b)∈Rd+1:L̂f (w,b)=0

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w

♯, b♯)

Tr(Σ⊥)
. (4.26)

Combining the above norm bound with Theorem 36, we can follow the same lines of proof of

Corollary 15 and 16 to show the following:

Corollary 39. Under assumptions (A), (B) and (C) with Y = {−1, 1} and f(ŷ, y) = (1 − ŷy)2+,

denote W ∈ Rd×k by W = [w∗
1, ..., w

∗
k] and let Q = I−W (WTΣW )−1WTΣ. Let Σ⊥ = QTΣQ

and fix any (w♯, b♯) ∈ Rd+1 such that Qw♯ = 0. Then with probability at least 1− δ, for some

ρ ≲ τ

√
k log(n/k) + log(1/δ)

n
+ log (1/δ)

 1√
n
+

1√
R(Σ⊥)

+
k

n
+

n

R(Σ⊥)

 ,

it holds that for any SVM solution of the form ŵ, b̂ = argminw,b L̂f (w, b) + λ∥w∥22 such that

∥ŵ∥2 ≥ ∥w♯∥2, we have

L(ŵ, b̂) ≤ (1 + ρ)

√L(w♯, b♯) + ∥w♯∥2

√
Tr(Σ⊥)

n

2

. (4.27)

Experimental results on SVM can be found in Figure 5.8 of Chapter 5.1. As theory predicts,

the generalization curve looks very similar to linear regression with the square loss.

4.4 Applications to Non-Convex Problems

Moreover, we show that our Theorem 36 can be applied to not only linear regression and max-

margin classification. Since we only need
√
f to be Lipschitz, for any 1-Lipschitz function σ :

R → R, we can consider

(i) f(ŷ, y) = (σ(ŷ)− y)2 when Y = R

(ii) f(ŷ, y) = (1− σ(ŷ)y)2+ when Y = {−1, 1}.
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We can interpret the above loss function f as learning a neural network with a single hidden

unit. Common choices of 1-Lipschitz and non-linear σ include

(i) sigmoid activation: σ(ŷ) = 1
1+e−ŷ or hyperbolic tangent activation: σ(ŷ) = tanh ŷ

(ii) any Leaky ReLU activation with |α| < 1:

σ(ŷ) =


x if x ≥ 0

αx if x < 0.

Indeed, Theorem 36 can be straightforwardly applied to these situations and can be useful if we

consider optimally regularized estimators. However, we typically do not expect benign overfitting

under these loss functions f for the following simple reason (which is also pointed out in [59]):

interpolating with f(ŷ, y) = (σ(ŷ)−y)2 is the same as interpolating with f(ŷ, y) = (ŷ−σ−1(y))2

when σ is invertible (as in the case of sigmoid, hyperbolic tangent and Leaky ReLU activations

with α > 0), and so we can apply our square loss theory to the distribution over (x, σ−1(y)). In

general, the predictor that minimizes the population loss E(σ(⟨w, x⟩ + b) − y)2 is going to be

different to the minimizer of E(⟨w, x⟩+ b− σ−1(y))2.

In contrast, the situation with σ(ŷ) = max{ŷ, 0} is still interesting because σ is not invertible,

and this setting is known as ReLU regression. In order to be able to interpolate, we must have

y ≥ 0. If y > 0 with probability 1, then σ(ŷ) = y is the same as ŷ = y and we are back to

the square loss case. However, if there is some probability mass at y = 0, then the minimal norm

interpolant can be very different. Interestingly, even though the loss function f(ŷ, y) = (σ(ŷ)−y)2

is 1 square-root Lipschitz, the minimal norm interpolant will typically be inconsistent under this

choice of f . As it turns out, the more appropriate loss is

f(ŷ, y) =


(ŷ − y)2 if y > 0

σ(ŷ)2 if y = 0.

(4.28)
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Even though the above choice of f is non-convex and so Theorem 37 cannot be directly applied, it

is still possible to compute the minimal norm required to interpolate the data. The loss (4.28) shows

up naturally in our norm calculation (e.g., Lemma 82 in the Appendix) by applying CGMT to the

quantity minw:∀i∈[n],σ(⟨w,xi⟩)=yi
∥w∥2. Another reason why the loss (4.28) is natural is because

it also satisfies the relationship fλ = λ
1+λf while ensuring f(ŷ, y) = 0 is equivalent to σ(ŷ) = y

for any y ≥ 0. We state the norm bound below, which is completely analogous to Theorem 38.

Moreover, since the loss defined in (4.28) is also 1 square-root Lipschitz, it can be combined with

Theorem 36 to establish benign overfitting for ReLU regression just like Corollary 39.

Theorem 40. Under assumptions (A) and (B), let f : R × Y → R be the loss defined in (4.28)

with Y = R≥0. Let Q be the same as in Theorem 36 and Σ⊥ = QTΣQ. Fix any (w♯, b♯) ∈ Rd+1

such that Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯, b♯) ≤ (1 + ρ)Lf (w

♯, b♯). (4.29)

Then with probability at least 1− δ, for some ϵ ≲ ρ + log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
,

it holds that

min
(w,b)∈Rd+1:L̂f (w,b)=0

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w

♯, b♯)

Tr(Σ⊥)
. (4.30)

Another example of non-invertible activation is σ(ŷ) = |ŷ|. This is related to the problem of

phase retrieval. For the problem of phase retrieval, the correct loss should be f(ŷ, y) = (|ŷ| −

y)2 because we can check that it satisfies the relationship fλ = λ
1+λf . Even though the norm

calculation is not as simple as the case of ReLU regression, it should be possible to show benign

overfitting results for the phase retrieval problem as well.
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4.5 Single Index Model

Finally, we show that our results can be extended to a even more general setting than (4.1), and

the more general result can allow us to establish uniform convergence bound for two-layer neural

networks with weight sharing. Suppose that we have a parameter space Θ ⊆ Rp and a continuous

mapping w from θ ∈ Θ to a linear predictor w(θ) ∈ Rd. Given a function f : R × Y × Θ → R

that is continuous with respect to the first and third argument and i.i.d. sample pairs (xi, yi) drawn

from distribution D, we can define the training and population error to be

L̂(θ) =
1

n

n∑
i=1

f(⟨w(θ), xi⟩, yi, θ) and L(θ) = E[f(⟨w(θ), x⟩, y, θ)]. (4.31)

We make the same assumptions (A) and (B) on D. Assumptions (C) and (D) can be naturally

extended to the following:

(E) there exists a universal constant τ > 0 such that uniformly over all θ ∈ Θ, it holds that

E[f(⟨w(θ), x⟩, y, θ)4]1/4

E[f(⟨w(θ), x⟩, y, θ)]
≤ τ. (4.32)

(F) bounded VC dimensions: the class of functions on Rk+1 × Y defined by

{(x, y) → 1{f(⟨w, x⟩+ b, y, θ) > t} : (w, b, t, θ) ∈ Rk+1 × R× R×Θ} (4.33)

has VC dimension at most h.

Now we can state the extension of Theorem 36.

Theorem 41. Suppose that assumptions (A), (B), (E) and (F) hold. Denote W ∈ Rd×k by W =

[w∗
1, ..., w

∗
k] and let Q = I −W (WTΣW )−1WTΣ. For any δ ∈ (0, 1), let Cδ : Rd → [0,∞] be a

continuous function such that with probability at least 1− δ/4 over x ∼ N (0,Σ), uniformly over
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all θ ∈ Θ,

⟨Qw(θ), x⟩ ≤ Cδ(w(θ)). (4.34)

Then it holds that

(i) if for each θ ∈ Θ and y ∈ Y , f is Mθ-Lipschitz with respect to the first argument and Mθ is

continuous in θ, then with probability at least 1 − δ, it holds that uniformly over all θ ∈ Θ,

we have

(1− ϵ)L(θ) ≤ L̂(θ) +Mθ

√
Cδ(w(θ))

2

n
(4.35)

(ii) if for each θ ∈ Θ and y ∈ Y , f is non-negative and
√
f is

√
Hθ-Lipschitz with respect to

the first argument, and Hθ is continuous in θ, then with probability at least 1 − δ, it holds

that uniformly over all θ ∈ Θ, we have

(1− ϵ)L(θ) ≤

(√
L̂(θ) +

√
Hθ Cδ(w(θ))

2

n

)2

(4.36)

where ϵ = O

(
τ

√
h log(n/h)+log(1/δ)

n

)
.

Single-Index Neural Network. In this example, we consider two-layer neural networks with

weight sharing in the first layer. More precisely, we have θ = (w, a, b) ∈ Rd+2N where N is the

number of hidden units. Let σ(x) = max(x, 0) be the ReLU activation function. The hypothesis

given by θ is

hθ(x) :=
N∑
i=1

aiσ(⟨w, x⟩ − bi)

In the context of regression, we can consider the square loss and f is given by

f(⟨w, x⟩, y, θ) := (hθ(x)− y)2 (4.37)

63



and in the context of classification, we can consider the squared hinge loss and f is given by

f(⟨w, x⟩, y, θ) := (1− hθ(x)y)
2
+. (4.38)

The above f is well-defined because hθ depends on x only through ⟨w, x⟩. If we write ŷ = ⟨w, x⟩,

then we have

f(ŷ, y, θ) =

 N∑
i=1

aiσ(ŷ − bi)− y

2

or f(ŷ, y, θ) =

1−
N∑
i=1

aiσ(ŷ − bi)y

2

+

.

Without loss of generality, we can assume that b1 ≤ ... ≤ bN , then it is easy to see that
√
f is

maxj∈[N ]

∣∣∣∑j
i=1 ai

∣∣∣ Lipschitz. Applying Theorem 41, we obtain the following corollary.

Corollary 42. Fix an arbitrary norm ∥·∥ and consider f as defined in (4.37) or (4.38). Assume that

the data distribution D satisfy (A), (B), and (E). Without loss of generality, we further assume that

bi are sorted, then with probability at least 1 − δ, it holds that uniformly over all θ = (w, a, b) ∈

Rd+2N , we have

(1− ϵ)L(θ) ≤

√L̂(θ) +
maxj∈[N ]

∣∣∣∑j
i=1 ai

∣∣∣ ∥Qw∥ (E∥x∥∗ + ϵ′)
√
n

2

(4.39)

where ϵ is the same as in Theorem 41 with h = O((k+N) log(k+N)) and the norm concentration

term is ϵ′ = O
(
sup∥u∥≤1 ∥u∥Σ

√
log(1/δ)

)
.

The above theorem says given a network hθ(x) :=
∑N

i=1 aiσ(⟨w, x⟩ − bi), after sorting the

bi’s, a good complexity measure to look at is maxj∈[N ]

∣∣∣∑j
i=1 ai

∣∣∣ · ∥Qw∥ and equation (4.39)

precisely quantify how the complexity of a network controls generalization.
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CHAPTER 5

UNIVERSALITY

In this chapter, we discuss the extent to which the Gaussian feature assumption made in Chapter 3

and 4 can be relaxed. As we see in Chapter 2, the proof of Proposition 9, which is an important

special case of our optimistic rate theory Theorem 12 and Theorem 36 in Chapter 3 and 4, only

depends on the omniscient risk estimator introduced in Section 2.1. Rigorous version of the om-

niscient risk estimator can be proved using random matrix theory while assuming x = Σ1/2z and

z has i.i.d. coordinates with zero mean, unit variance, and bounded 12th absolute central moment

(for example, see Wu and Xu [75] and Hastie et al. [28]). In similar settings, it is possible to

directly establish the universality of Gaussian Minimax Theorem with Lindeberg’s method [27].

In addition, even though the eigenfunctions for kernel ridge regression are nearly always not in-

dependent, many works have suggested that its asymptotic test error should only depend on the

spectrum and we can usually define an equivalent Gaussian model. This is known as the Gaussian

equivalence conjecture and has been rigorously proven in the context of inner product kernels and

random features model (for example, Hu and Lu [29]).

In Section 5.1, we provide empirical evidence that our generalization theory Theorem 36 should

continue to hold when x = Σ1/2z and z has i.i.d. coordinates even though the coordinate distri-

bution is not necessarily Gaussian. However, in section 5.2, we show that there is a relatively

simple setting where the coordinates of x are dependent (but uncorrelated), and universality fails

in a meaningful way.

5.1 Numerical Experiments

Feature Distribution. In this section, the marginal distribution of x is always given by x =

Σ1/2z, where z is a random vector with i.i.d. coordinates that have mean 0 and variance 1. The

coordinate distributions of z that we consider in the simulations include:
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Figure 5.1: Probability density plot for coordinate distributions of z.

• standard Gaussian distribution with density p(z) = 1√
2π
e−

1
2z

2
,

• uniform distribution over [−
√
3,
√
3],

• Laplace distribution with density p(z) = 1
2be

− |z|
b and scale parameter b = 1√

2
.

We also consider discrete distributions:

• Rademacher distribution with equal chance of being −1 or 1,

• Poisson distribution with rate parameter 1 and probability mass function Pr(z̃ = k) = e−1

k! (we

take z = z̃ − 1 to center the mean),

and heavy-tailed distributions:

• Student’s t-distribution

– t-distribution with 5 degrees of freedom has density p(z̃) = 8

3
√
5π
(
1+ z̃2

5

)3
– It has variance 5

3 and so we let z =
√

3
5 z̃. It is symmetric, unbounded and has finite fourth

moment. However, moments of order 5 or higher do not exist.
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• Weibull distribution

– Weibull distribution with scale parameter λ = 1 and shape parameter k = 0.5 has density

p(z̃) = e−
√
z̃

2
√
z̃
1{z̃≥0}. It has mean 2 and variance 20 and so we take z̃ = z−2√

20

• Log-Normal distribution

– the distribution of eZ , where Z follows the standard Gaussian distribution. It has mean
√
e

and variance e(e− 1), and so we can choose z = eZ−
√
e√

e(e−1)

Covariance Matrix and Scaling. For simplicity, we choose Σ to be diagonal and consider

• Isotropic features Σ = Id in the proportional scaling (n = 300, d = 350)

• Junk features in the over-parameterized scaling (n = 300, d = 3000)

Σkk =


1 if k = 1, 2, 3

0.052 otherwise

• Non-benign features in the over-parameterized scaling (n = 300, d = 3000)

Σkk =


1 if k = 1, 2, 3

1
k2

otherwise

As we see in Example 1 of Chapter 2, the junk features setting is known to satisfy the benign

overfitting conditions [7, 77], by which the minimal ℓ2-norm interpolator is consistent. In contrast,

our Example 4 in Chapter 2 also shows that overfitting is not benign in the second case, but our

theory from section 3.3 shows that the optimally-tuned ridge regression can be consistent.
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5.1.1 Linear Regression

We fit linear models to minimize the square loss with ℓ1 and ℓ2 penalty. For simplicity, we ignore

the intercept term in this section, but we will consider models with intercept in the context of linear

classification. We can obtain many data distributions by combining the different options below:

Conditional Distribution of y. Let

w∗ = (1.5, 0, ..., 0)

ξ ∼ N (0, 0.5)

and consider

• a well-specified linear model:

y = ⟨w∗, x⟩+ ξ

• a mis-specified model:

y = ⟨w∗, x⟩︸ ︷︷ ︸
linear signal

+ |x1| · cosx2︸ ︷︷ ︸
non-linear term

+ x3 · ξ︸ ︷︷ ︸
heteroscedasticity

The second model does not satisfy the classical assumptions for linear regression because the

Bayes predictor

E[y|x] = ⟨w∗, x⟩+ |x1| · cosx2

is non-linear and the variance of the residual also depends on x3. Even though statistical inference

can be challenging for models like this, we can hope to learn a model that competes with the

optimal linear predictor (which is not necessarily the same as w∗) in terms of prediction error.

Though our theory is restricted to Gaussian features, we conjecture that it can be extended to a

more general class of distributions and we use numerical simulations to confirm our conjecture.
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Ridge Regression

1. Isotropic features: similar to the choice of F in equation (3.29) in Chapter 3, we can choose

Cδ by the simple Cauchy-Schwarz bound

⟨Qw, x⟩ ≤ ∥Qw∥2 · ∥x∥2 ≈
√
d∥Qw∥2

resulting in the following bound

Lf (w) ≤ (1 + o(1))

(√
L̂f (w) +

√
d

n
· ∥Qw∥2

)2

(5.1)

2. Junk and non-benign features: similar to the analysis in section 3.2, we can choose Cδ by

⟨Qw, x⟩ ≤ ∥w∥2 · ∥QTx∥2 ≈ ∥w∥2
√

Tr(Σ⊥)

resulting in the following bound

Lf (w) ≤ (1 + o(1))

√L̂f (w) + ∥w∥2

√
Tr(Σ⊥)

n

2

(5.2)

In all of the experiments, we use a constant close to 1 to replace the 1 + o(1) factor in our

generalization bounds. Note that (5.2) can be interpreted in terms of Rademacher complexity:

E x1,...,xn∼D
s∼Unif({±1}n)

[
sup

∥w∥2≤B

∣∣∣∣∣ 1n
n∑

i=1

si⟨w,QTxi⟩

∣∣∣∣∣
]
=
B

n
· E x1,...,xn∼D

s∼Unif({±1}n)

[∥∥∥∥∥
n∑

i=1

siQ
Txi

∥∥∥∥∥
2

]

≤ B ·

√
Tr(Σ⊥)

n

The last inequality holds generally for any distribution with Ex∼D[xx
T ] = Σ by Cauchy-

Schwarz inequality. In our examples, x = Σ1/2z and z is scaled to satisfy E[zzT ] = Id. Therefore,
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we will use equation (5.1) and (5.2) even for non-Gaussian data.

LASSO Regression Similar to the case of ridge regression, we use the analogy to Rademacher

complexity to extend our theory to the ℓ1 case. Since we can no longer bound the ℓ∞ norm of a sum

using the Cauchy-Schwarz inequality, it is easier to directly work with the empirical Rademacher

complexity (which also should be similar to the expected Rademacher complexity in the settings

that we consider)
∥w∥1
n

· Es∼Unif({±1}n)

[∥∥∥∥∥
n∑

i=1

siQ
Txi

∥∥∥∥∥
∞

]

and we can estimate the expected norm by

1

B

B∑
k=1

∥∥∥∥∥
n∑

i=1

sk,iQ
Txi

∥∥∥∥∥
∞

for a large value of B and s1, ..., sB sampled independently from Unif({±1}n). In our implemen-

tation, s1, ..., sB are fresh samples each time the risk bound is computed. To summarize, we use

the following expression for the calculation of risk bound:

1. Isotropic features:

√L̂f (w) + ∥Qw∥1 ·
1

nB

B∑
k=1

∥∥∥∥∥
n∑

i=1

sk,ixi

∥∥∥∥∥
∞

2

(5.3)

2. Junk and non-benign features:

√L̂f (w) + ∥w∥1 ·
1

nB

B∑
k=1

∥∥∥∥∥
n∑

i=1

sk,iQ
Txi

∥∥∥∥∥
∞

2

(5.4)

which are analogous to (5.1) and (5.2).

We note that it is important to use the Rademacher complexity to extend to non-Gaussian
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features in the ℓ1 case, rather than a bound similar to ∥w∥1E∥x∥∞√
n

. Empirically, the latter is too

small to provide a valid upper bound on the test loss. This is because ∥x∥∞ is deterministic

for distributions like the Rademacher distribution, while the random signs in the definition of

Rademacher complexity allows a tail behavior more similar to Gaussian and so we can regain a

log factor in the norm component.

For both ridge and LASSO regression, risk curves measured in the square loss are shown in

three figures corresponding to the different data covariances. Within each figure, there are 16

subplots corresponding to the different combinations of one of the eight feature distributions and

label generating process (well-specified vs mis-specified) as defined at the beginning of the section.

Similar to the situation in the rest of the experiments, the training error is close to 0 with suf-

ficiently small regularization, and the confidence bands are wider with heavy-tailed distributions.

Also, the null risk and the Bayes risk are different across different feature distributions when there

is model misspecification (see the calculation in the appendix for more details).

The plots for isotropic, junk and non-benign features in the ridge regression setting can be

found in figures 5.2, 5.3 and 5.4, respectively. Generally speaking, the experiments confirm the

tightness and wide applicability of our generalization guarantees. The specific feature distribution

and model misspecification do not seem to affect the shape of test error curve.

• Figure 5.2: Ridge regression with isotropic data (n = 300, d = 350). As proved by the-

orem 26, the risk bound (5.1) follows the test error curve closely. This is true even in the

non-Gaussian and mis-specified settings. Note that we do not have benign-overfitting be-

cause we are in the proportional scaling regime with d close to n, and the population risk of

the minimal-ℓ2 norm interpolator is even worse than the null-risk (more significantly so with

misspecification). The optimally-tuned ridge regression has risk better than the null risk,

but it is still far from the Bayes risk because the consistency result of optimally-tuned ridge

regression assumes Tr(Σ)/n→ 0.

• Figure 5.3: Ridge regression with junk features (n = 300, d = 3000). In the junk features
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setting, as predicted in Theorem 16, the test error curve is essentially flat once the regular-

ization is small enough to fit the signal, and we get nearly optimal population risk as long as

we do not over-regularize the predictor. The test error curve can be expected to be more flat

with increasing d. This phenomenon is also consistent across different feature distributions

and label generating processes. Our bound (5.2) closely tracks the performance of ridge

regression along the entire regularization path.

• Figure 5.4: Ridge regression with non-benign features (n = 300, d = 3000). In the non-

benign features setting, as proved by Corollary 17, the optimally-tuned ridge regression

achieves nearly optimal prediction risk. Our risk bound is tight up to the point up to the

point where the test error starts to increase. As expected, the minimal norm interpolator fails

to achieve consistency even though we are in the overparameterized regime. Once again, the

distribution and model misspecification has no effect on the shape of the test error curve.

The plots for isotropic, junk, and non-benign features in the LASSO regression setting can be

found in figures 5.5, 5.6 and 5.7. The risk bounds in the ℓ1 case are not as tight as in the ℓ2 case

because they are only expected to be tight in certain parts of the entire regularization path. Similar

results and experiments were obtained by Wang et al. [74], Donhauser et al. [21].

• Figure 5.5: LASSO regression with isotropic data (n = 300, d = 350). Contrary to the

inconsistency of optimally-tuned ridge regression in this setting, the regularized LASSO

estimator can achieve nearly optimal population risk thanks to sparsity. The risk bound (5.3)

appears to be valid and sufficient for the consistency of optimal LASSO in the distributions

that we consider, though it is not very tight for interpolation. Recall that the minimal-ℓ1

norm interpolator suffers from an exponentially slow convergence rate when d = nα [74]

and observe that the population risk of the minimal-ℓ1 norm interpolator is again worse than

the null-risk.

• Figure 5.6: LASSO regression with junk features (n = 300, d = 3000). Similar to the
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isotropic setting, the regularized LASSO can achieve nearly optimal prediction risk and the

risk bound (D.17) is sufficient to explain this phenomenon. Once again, the data distribution

and model misspecification appear to have no effect on the shape of the test error curve.

It is theoretically possible to use a nearly identical risk bound to show the consistency of

minimal-ℓ1 norm interpolator when n is large and d is super-exponential in n [33], but as we

can see, n = 300 and d = 3000 is not quite large enough yet. On the other hand, overfitting

is more benign than what theory predicts, suggesting a better analysis may yield a weaker

condition required for consistency.

• Figure 5.7: LASSO regression with non-benign features (n = 300, d = 3000). Though the

population risk and the associated risk bound of regularized LASSO can be quite close to the

Bayes risk, overfitting with minimal-ℓ1 norm interpolator does not appear to be benign (and

there is no existing theoretical result suggesting that consistency is possible with a larger

n or d). In particular, its ℓ1 norm increases much more quickly than the junk-features case.

Though the (D.17) is not tight throughout the entire regularization path, it is still a valid upper

bound on the test error across different feature distributions and label generating processes.

5.1.2 Linear Classification

Similarly, we fit linear models to minimize the squared hinge loss with ℓ2 and ℓ1 penalty. We can

consider the same feature distributions and data covariance structure as in the preceding section.

For faster computation (because margin classifiers can be slower to compute than regressors), we

take k = 1, and n = 100, d = 120 in the proportional scaling and n = 100, d = 2000 in the

overparameterized scaling. The label y is generated by the following model:

η = ⟨w∗, x⟩+ b∗, Pr(y = 1 |x) = 1− Pr(y = −1 |x) = g(η)
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Figure 5.2: Ridge regression with isotropic data (n = 300, d = 350).
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Figure 5.3: Ridge regression with junk features (n = 300, d = 3000).

75



Figure 5.4: Ridge regression with non-benign features (n = 300, d = 3000).
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Figure 5.5: LASSO regression with isotropic data (n = 300, d = 350).
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Figure 5.6: LASSO regression with junk features (n = 300, d = 3000).

78



Figure 5.7: LASSO regression with non-benign features (n = 300, d = 3000).
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where g : R → [0, 1] is the logistic link function. Since we use the squared hinge loss for learning

(which is not the negative log-likelihood function), the linear model that we learn is not necessarily

well-calibrated and so this can also be considered as a misspecified setting. Therefore, we will only

consider one label generating process in the classification context. Finally, by our Moreau envelope

theory, we can use completely the same risk bounds for ℓ2 and ℓ1 margin classifiers.

The plots for ℓ2 and ℓ1 margin classifiers can be found in Figures 5.8 and 5.9. Each figure

contain three subplots, and each subplot corresponds to one of the data covariance and contains the

risk curves measured in squared hinge loss for the eight feature distributions.

ℓ2-Margin Classifiers. As in the regression case, overfitting is not benign when the features

are isotropic and the population risk of ℓ2 max-margin classifier can be worse than the null risk.

The risk bounds tightly control the test errors across different feature distributions. The difference

between risk bound and the actual test error is larger when the feature distribution is heavy-tailed,

but the confidence interval is also wider due to the relatively small sample size.

In the junk feature setting, the under-regularized part of the regularization path is essentially

flat for all feature distributions. Overall, the experimental result is very similar to 5.3, as predicted

by our theory in Section 4.3. The non-benign case is also similar to 5.4 except that the U-shape

curve is quite narrower near the optimal amount of regularization.

ℓ1-Margin Classifiers. In each of the subplots, the risk bound is tight only up to a certain point

before the ℓ1 norm starts to increase quite a lot, leading to loose bound near interpolation. How-

ever, the risk bound is tight enough to establish consistency of optimally-tuned predictor in the

junk and non-benign features setting. Again, the population risk of ℓ1 max-margin classifier can

be worse than the null risk even in the junk features setting. Observe that different distributions

do not seem to change the shape of generalization curve, and there is an interesting multiple de-

scent phenomenon in the non-benign feature case, which has already been discovered in previous

literature [20, 37, 38].
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Figure 5.8: ℓ2 margin classification: isotropic, junk and non-benign features.
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Figure 5.9: ℓ1 margin classification: isotropic, junk and non-benign features.
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5.2 Provable Failure of Universality

In this section, we discuss an example where universality provably fails. The counterexample in

this section is motivated by example 2 of Shamir [59]. For non-Gaussian features, it is possible

to introduce strong dependence between the tail and the leading component of x while ensuring

that they are uncorrelated. The dependence will prevent the norm of the tail from concentrating

around its mean. In contrast, for Gaussian features with matching covariance, the two components

must be independent. So the norm of the tail will concentrate — such discrepancy results in an

over-optimistic bound for non-Gaussian data. In particular, we will assume the data distribution D

over (x, y) is given by:

(A) x = (x|k, x|d−k) where x|k ∼ N (0,Σ|k) and there exists a function h : Rk → R such that

x|d−k = h(x|k) · z with z ∼ N
(
0,Σ|d−k

)
independent of x|k (5.5)

(B) there exists a function g : Rk+1 → R such that

y = g(x|k, ξ) (5.6)

where ξ ∼ Dξ is independent of x (but not necessarily Gaussian).

By the independence between z and x|k, we can easily see that x|k and x|d−k are uncorrelated.

Moreover, the covariance matrix of x|d−k is

E[x|d−kx
T
|d−k] = E[h(x|k)

2] · Σ|d−k (5.7)

which is just a re-scaling of Σ|d−k and therefore has the same effective rank as R(Σ|d−k).

Optimistic rate. Even though the feature x in D is non-Gaussian, its tail x|d−k is Gaussian con-

ditioned on the low-dimensional component x|k. Therefore, our proof technique is still applicable
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after a conditioning step, and we can handle the low-dimensional part with VC theory as before.

However, it turns out that the uniform convergence bound for 1 square-root Lipschitz loss is no

longer valid. Instead, we have to re-weight the loss by 1
h(x|k)2

. More precisely, the application of

our Gaussian comparison techniques shows the following:

Theorem 43. Consider dataset (X, Y ) drawn i.i.d. from the data distribution D according to (A)

and (B), and fix any f : R× Y → R≥0 such that
√
f is 1-Lipschitz for any y ∈ Y . Fix any δ > 0

and suppose there exists ϵδ < 1 and Cδ : Rd−k → [0,∞] such that

(i) with probability at least 1− δ/2 over (X, Y ) and G ∼ N (0, In), it holds uniformly over all

w|k ∈ Rk and ∥w|d−k∥Σ|d−k
∈ R≥0 that

1

n

n∑
i=1

1

h(xi|k)
2
f(⟨w|k, xi|k⟩+h(xi|k)∥w|d−k∥Σ|d−k

Gi, yi) ≥ (1−ϵδ)ED

[
1

h(x|k)
2
f(⟨w, x⟩, y)

]

(ii) with probability at least 1 − δ/2 over z|d−k ∼ N (0,Σ|d−k), it holds uniformly over all

w|d−k ∈ Rd−k that

⟨w|d−k, z|d−k⟩ ≤ Cδ(w|d−k) (5.8)

then with probability at least 1− δ, it holds uniformly over all w ∈ Rd that

(1− ϵδ)E

[
1

h(x|k)
2
f(⟨w, x⟩, y)

]
≤

(
1

n

n∑
i=1

1

h(xi|k)
2
f(⟨w, xi⟩, yi) +

Cδ(w|d−k)√
n

)2

. (5.9)

The first assumption is mild because we only require uniform convergence over a low-dimensional

concept class. Low-dimensional concentration can typically be verified using hypercontractivity

and VC argument like in Chapter 4. The choice of Cδ is defined similarly. The only difference is

that we need to upper bound ⟨w|d−k, z|d−k⟩ instead of ⟨w|d−k, x|d−k⟩, which is helpful because

the norm of z|d−k will usually concentrate while the norm of x|d−k does not. Though the above

generalization bound applies to any 1 square-root Lipschitz function, we will focus on the square
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loss because this section’s primary goal is constructing a counterexample to universality.

Computing the minimum norm. Next, we will compute the minimal norm to achieve zero

training error for linear regression.

Theorem 44. Under assumptions (A) and (B), fix any w∗
|k ∈ Rk and suppose for some ρ ∈ (0, 1),

it holds with probability at least 1− δ/8

1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2

≤ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 . (5.10)

Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ|d−k)
+ n

R(Σ|d−k)

)
,

it holds that

min
w∈Rd:∀i,⟨w,xi⟩=yi

∥w∥22 ≤ ∥w∗
|k∥

2
2 + (1 + ϵ)

nE

[(
y−⟨w∗

|k,x|k⟩
h(x|k)

)2
]

Tr(Σ|d−k)
(5.11)

It is easy to see that the w∗ that minimizes the population weighted square loss satisfy w∗
|d−k

=

0, and so we can let w∗
|k to be the minimizer. Again, the first assumption is mild because we only

require concentration at one single hypothesis.

Benign overfitting. Consider the minimal norm interpolant ŵ = argminw∈Rd:Xw=Y ∥w∥2 and

define

L∗ = inf
w

E

(y − ⟨w, x⟩
h(x|k)

)2
 .
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Similar to Corollary 39 in Chapter 4, plugging in Theorem 44 to the uniform convergence guarantee

Theorem 43, we have (ignoring lower order terms)

E

[
1

h(x|k)
2
(⟨ŵ, x⟩ − y)2

]
≤

Tr(Σ|d−k) · ∥ŵ∥22
n

≤
Tr(Σ|d−k) · ∥w∗∥22

n
+ (1 + ϵ)L∗.

Therefore, if we choose k = 1 and Σ|d−1 = 1
d−1Id−1 with n≪ d, then it holds that

E

[
1

h(x|k)
2
(⟨ŵ, x⟩ − y)2

]
→ L∗ (5.12)

which recovers the result of Shamir [59].

Breaking Uniform Convergence. Finally, we explain why this is a counterexample to univer-

sality. If we pretend that the features are Gaussian, then since we choose Σ|d−k to be benign, our

theory in Chapter 4 predicts that

inf
w

E[(⟨w, x⟩ − y)2] ≤ E[(⟨ŵ, x⟩ − y)2]

≤ (1 + o(1))
∥ŵ∥22 · E∥x|d−k∥22

n

= (1 + o(1))
∥ŵ∥22 · E[h(x|k)

2] Tr(Σ|d−k)

n
.

Therefore, for sufficiently large n, it must be the case that

inf
w

E[(⟨w, x⟩ − y)2] ≤ inf
w

E[h(x|k)
2] · E

(y − ⟨w, x⟩
h(x|k)

)2
 . (5.13)

However, this cannot be always true when y and h(x|k) are dependent. For example, let’s consider

the case where k = 1, x1 ∼ N (0, 1), and h only depends on x1 through |x1|. We consider the case
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where y = h(|x1|)2. Then

E[x1y] = 0 and E[x|d−ky] = E[h(|x1|)3z] = 0

and so

inf
w

E[(⟨w, x⟩ − y)2] = E[y2] = E[h(|x1|)4]. (5.14)

On the other hand, we can also check

E
[

x1y

h(|x1|)2

]
= E[x1] = 0 and E

[
x|d−ky

h(|x1|)2

]
= E[x|d−k] = 0

and so

inf
w

E

(y − ⟨w, x⟩
h(x|k)

)2
 = E

[(
y

h(|x1|)

)2
]
= E[h(|x1|)2]. (5.15)

Then equation (5.13) predicts that E[h(|x1|)4] ≤ E[h(|x1|)2]2, but this is impossible because

E[h(|x1|)4]− E[h(|x1|)2]2 = Var(h(|x1|)2) > 0

as long as h(|x1|) is not degenerate. For example, we can take h(|x|) = 1+ |x|. In general, h(|x|)2

can follow any non-negative distribution by choosing
√
h to the inverse CDF and so we can make

(5.13) arbitrarily loose.
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CHAPTER 6

CONCLUSION

In this thesis, we study the statistical learning theory for models with high complexity, with partic-

ular emphasis on understanding the generalization error of high-dimensional interpolants in non-

realizable settings. A theoretical understanding of machine learning is instrumental — it can pro-

vide a tool to predict the generalization performance and guide the design of better algorithms and

model selection procedures in practice; it also allows us to understand, on a fundamental level,

what properties of the data distribution are essential to the success of machine learning.

As we can see in our applications in Chapter 2, 3 and 4, even though the norm of the in-

terpolants that we consider can diverge as the sample size goes to infinity, we are still able to

establish strong consistency results through a uniform convergence argument. We accomplish this

by proving uniform convergence bounds with the optimal dependence on model complexity. Our

theory provides a unifying perspective on benign overfitting and optimal regularization in statisti-

cal learning, and it has many benefits from a technical point of view — it is non-asymptotic and

does not require any particular scaling between the sample size and feature dimension; it requires

very mild assumptions and can handle any Gaussian multi-index setting; it does not depend on

any specific training algorithm and can be easily adapted to different loss functions (for example,

max-margin classification, phase retrieval, and ReLU regression) and complexity measures (for

example, ℓ1, ℓ2 and nuclear norm). Nevertheless, this generalization theory crucially depends on

the assumption that the features are Gaussian. In Chapter 5, we see that we should be able to

significantly relax this assumption, at least in some settings of kernel ridge regression and random

feature regression, as well as the setting where the feature vector is a linear transformation of in-

dependent variables. However, as we see in section 5.2, universality can fail unexpectedly. It is an

important open question to understand when we can safely assume the features are Gaussian.

There are many potential exciting extensions to our results in Chapter 4. For example, we

consider the applications of our Moreau envelope generalization theory to Lipschitz or square-root
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Lipschitz loss functions. However, if we use the log link in many generalized linear models, the

loss function is neither Lipschitz nor square-root Lipschitz globally. In these situations, some other

properties of the loss function (such as convexity) might allow us to prove sharp generalization

bound for regularized estimators. In addition, we have ignored the optimization concerns in most of

this thesis. When we consider convex losses such as the square loss or the squared hinge loss, many

first-order methods (such as gradient descent with or without momentum and stochasticity) will

converge to the minimal norm interpolant. However, the optimization landscape for non-convex

losses is more complicated. In these situations, even though the uniform convergence bounds can

still be applied, we need to take the training dynamics into account as well. Finally, we can only

prove generalization bound for single-index neural networks in section 4.5. It would be interesting

to establish a similar result for arbitrary neural networks. Finding the right complexity measure

and the optimal dependence in uniform convergence bounds will be a significant breakthrough in

our mathematical understanding of deep learning.
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APPENDIX A

GAUSSIAN MINIMAX THEOREM

In this appendix, we introduce some key technical tools and useful lemmas.

Gaussian Minmax Theorem. The following result is Theorem 3 of Thrampoulidis et al. [66],

known as the Convex Gaussian Minmax Theorem or CGMT (see also Theorem 1 in the same

reference). As explained there, it is a consequence of the main result of Gordon [25], known

as Gordon’s Theorem or the Gaussian Minmax Theorem. Despite the name, convexity is only

required for one of the theorem’s conclusions.

Theorem 45 (Convex Gaussian Minmax Theorem; [66, 25]). Let Z : n× d be a matrix with i.i.d.

N (0, 1) entries and suppose G ∼ N (0, In) and H ∼ N (0, Id) are independent of Z and each

other. Let Sw, Su be compact sets and ψ : Sw × Su → R be an arbitrary continuous function.

Define the Primary Optimization (PO) problem

Φ(Z) := min
w∈Sw

max
u∈Su

⟨u, Zw⟩+ ψ(w, u) (A.1)

and the Auxiliary Optimization (AO) problem

ϕ(G,H) := min
w∈Sw

max
u∈Su

∥w∥2⟨G, u⟩+ ∥u∥2⟨H,w⟩+ ψ(w, u). (A.2)

Under these assumptions, Pr(Φ(Z) < c) ≤ 2Pr(ϕ(G,H) ≤ c) for any c ∈ R.

Furthermore, if we suppose that Sw, Su are convex sets and ψ(w, u) is convex inw and concave

in u, then Pr(Φ(Z) > c) ≤ 2Pr(ϕ(G,H) ≥ c).

In other words, the first conclusion says that high probability lower bounds on the auxiliary

optimization ϕ(G,H) imply high probability lower bounds on the primary optimization Φ(Z).

Importantly, this direction holds without any convexity assumptions. Under the additional con-

96



vexity assumptions, the second conclusion gives a similar comparison of high probability upper

bounds.

In our analysis, we need a slightly more general statement of the Gaussian Minmax Theorem

than 45: we need the minmax formulation to include additional variables which only affect the

deterministic term in the minmax problem. It’s straightforward to prove this result by repeating the

argument in Thrampoulidis et al. [66]; below we give an alternative proof which reduces to 45, by

introducing extremely small extra dimensions to contain the extra variables. Intuitively, this works

because the statement of the GMT allows for arbitrary continuous functions ψ, with no dependence

on their quantitative smoothness.

Theorem 46 (Variant of GMT). Let Z : n× d be a matrix with i.i.d. N (0, 1) entries and suppose

G ∼ N (0, In) and H ∼ N (0, Id) are independent of Z and each other. Let SW , SU be compact

sets in Rd×Rd′ and Rn×Rn′ respectively, and let ψ : SW ×SU → R be an arbitrary continuous

function. Define the Primary Optimization (PO) problem

Φ(Z) := min
(w,w′)∈SW

max
(u,u′)∈SU

⟨u, Zw⟩+ ψ((w,w′), (u, u′)) (A.3)

and the Auxiliary Optimization (AO) problem

ϕ(G,H) := min
(w,w′)∈SW

max
(u,u′)∈SU

∥w∥2⟨G, u⟩+ ∥u∥2⟨H,w⟩+ ψ((w,w′), (u, u′)). (A.4)

Under these assumptions, Pr(Φ(Z) < c) ≤ 2Pr(ϕ(G,H) ≤ c) for any c ∈ R.

Proof. Let ϵ ∈ (0, 1) be arbitrary and

SW,ϵ := {(w, ϵw′) : (w,w′) ∈ SW }, SU,ϵ := {(u, ϵu′) : (u, u′) ∈ SU}.

Define ψϵ((w,w′), (u, u′)) := ψ((w, 1ϵw
′), (u, 1ϵu

′)) so that if W = (w, ϵw′) and U = (u, ϵu′),

then ψϵ(W,U) = ψ((w,w′), (u, u′)). We also define Sw = {w ∈ Rd : ∃w′ s.t. (w,w′) ∈ SW }.
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The other sets Sw′ , Su and Su′ are defined similarly. It is clear that Sw, Sw′ , Su, Su′ , SW,ϵ and SU,ϵ

are all still compact in their respective topology, and ψϵ is continuous for every ϵ > 0.

Let Z ′ : (n + n′)× (d + d′) be a matrix with i.i.d. N(0, 1) entries such that the top left n× d

matrix is Z. Similarly, we defineG′ to be a (n+n′)-dimensional Gaussian vector with independent

coordinates such that the first n coordinates are G, and H ′ to be a (d + d′)-dimensional Gaussian

vector with independent coordinates such that the first d coordinates are H . Next, consider the

augmented PO and AO:

Φϵ(Z
′) := min

W∈SW,ϵ

max
U∈SU,ϵ

⟨U,Z ′W ⟩+ ψϵ(W,U)

ϕϵ(G
′, H ′) := min

W∈SW,ϵ

max
U∈SU,ϵ

∥W∥2⟨G′, U⟩+ ∥U∥2⟨H ′,W ⟩+ ψϵ(W,U)

(A.5)

It is clear that for a small value of ϵ, the augmented problem will be close to the original problem.

More precisely, for every (w,w′) ∈ SW and (u, u′) ∈ SU

|⟨(w, ϵw′), Z ′(u, ϵu′)⟩ − ⟨w,Zu⟩|

= |ϵ⟨(0, w′), Z ′(u, 0)⟩+ ϵ⟨(w, 0), Z ′(0, u′)⟩+ ϵ2⟨(0, w′), Z ′(0, u′)⟩|

≤ ϵ(R(Sw) +R(Sw′))(R(Su) +R(Su′))∥Z ′∥op = ϵA∥Z ′∥op

(A.6)

where A := (R(Sw) + R(Sw′))(R(Su) + R(Su′)) is deterministic and does not depend on ϵ.

Similarly, it is routine to check

∥w∥2⟨G, u⟩ = ∥w∥2(⟨G′, (u, ϵu′)⟩ − ϵ⟨G′, (0, u′)⟩)

∥u∥2⟨H,w⟩ = ∥u∥2(⟨H ′, (w, ϵw′)⟩ − ϵ⟨H ′, (0, w′)⟩)

so by the triangle inequality and Cauchy-Schwarz inequality, we have

∣∣∥(w, ϵw′)∥2⟨G′, (u, ϵu′)⟩ − ∥w∥2⟨G, u⟩
∣∣

≤ ϵR(Sw′)∥G′∥2(R(Su) + ϵR(Su′)) + ϵR(Sw)∥G′∥2R(Su′) ≤ ϵA∥G′∥2
(A.7)
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and

∣∣∥(u, ϵu′)∥2⟨H ′, (w, ϵw′)⟩ − ∥u∥2⟨H,w⟩
∣∣

≤ ϵR(Su′)∥H ′∥2(R(Sw) + ϵR(Sw′)) + ϵR(Su)∥H ′∥2R(Sw′) ≤ ϵA∥H ′∥2
(A.8)

From (A.6), it follows that ∣∣Φϵ(Z
′)− Φ(Z)

∣∣ ≤ ϵA∥Z ′∥op . (A.9)

Similarly, from (A.7) and (A.8), it follows that

|ϕϵ(G′, H ′)− ϕ(G,H)| ≤ ϵA(∥G′∥2 + ∥H ′∥2). (A.10)

Approximating the original PO and AO by (A.5) allows us to directly apply the Gaussian

Minmax Theorem. For any c ∈ R, we have

Pr(Φ(Z) < c) ≤ Pr(Φϵ(Z
′) < c+

√
ϵ) + Pr(ϵA∥Z ′∥op >

√
ϵ)

≤ 2Pr(ϕϵ(G
′, H ′) ≤ c+

√
ϵ) + Pr(ϵA∥Z ′∥op >

√
ϵ)

≤ 2Pr(ϕ(G′, H ′) ≤ c+ 2
√
ϵ) + 2Pr

(
ϵA(∥G′∥2 + ∥H ′∥2) >

√
ϵ
)

+ Pr(ϵA∥Z ′∥op >
√
ϵ)

≤ 2Pr(ϕ(G′, H ′) ≤ c+ 2
√
ϵ) + 2Pr

(
∥G′∥2 >

1

2A
√
ϵ

)
+ 2Pr

(
∥H ′∥2 >

1

2A
√
ϵ

)
+ Pr

(
∥Z ′∥op >

1

A
√
ϵ

)

where we used (A.9) in the first inequality, 45 in the second inequality, and (A.10) in the last

inequality. This holds for arbitrary ϵ > 0 and taking the limit ϵ → 0 shows the result, because

the CDF is right continuous [22] and the remaining terms go to zero by standard concentration

inequalities (see Lemma 52 and Theorem 53 below).
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Truncation Lemmas. Theorem 46 requires SW and SU to be compact. However, we can usually

get around the compactness requirement by a truncation argument in our applications.

Lemma 47. Let f : Rd → R be an arbitrary function and Sd
r = {x ∈ Rd : ∥x∥2 ≤ r}, then for

any set K, it holds that

lim
r→∞

sup
w∈K∩Sd

r

f(w) = sup
w∈K

f(w). (A.11)

If f is a random function, then for any t ∈ R

Pr

(
sup
w∈K

f(w) > t

)
= lim

r→∞
Pr

(
sup

w∈K∩Sd
r

f(w) > t

)
. (A.12)

Proof. We consider two cases:

1. Suppose that supw∈K f(w) = ∞. Then for any M > 0, there exists xM ∈ K such that

f(xM ) > M . Hence for any r > ∥xM∥2, it holds that

sup
w∈K∩Sd

r

f(w) > M =⇒ lim inf
r→∞

sup
w∈K∩Sd

r

f(w) ≥M

As the choice of M is arbitrary, we have limr→∞ supw∈K∩Sd
r
f(w) = ∞ as desired.

2. Suppose that supw∈K f(w) = M < ∞. Then for any ϵ > 0, there exists xϵ ∈ K such that

f(xϵ) > M − ϵ. Hence for any r > ∥xϵ∥2, it holds that

sup
w∈K∩Sd

r

f(w) > M − ϵ =⇒ lim inf
r→∞

sup
w∈K∩Sd

r

f(w) ≥M − ϵ

As the choice of ϵ is arbitrary, we have lim infr→∞ supw∈K∩Sd
r
f(w) ≥ M . On the other

hand, it must be the case (by definition of supremum) that

sup
w∈K∩Sd

r

f(w) ≤M =⇒ lim sup
r→∞

sup
w∈K∩Sd

r

f(w) ≤M
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Consequently, the limit of supw∈K∩Sd
r
f(w) exists and equals M .

Finally, by the fact that the supremum is increasing in r and the continuity of probability measure,

we have

Pr

(
sup
w∈K

f(w) > t

)
= Pr

(
lim
r→∞

sup
w∈K∩Sd

r

f(w) > t

)

= Pr

⋃
r∈N

⋂
R≥r

sup
w∈K

⋂
Sd
R

f(w) > t


= lim

r→∞
Pr

⋂
R≥r

sup
w∈K

⋂
Sd
R

f(w) > t


= lim

r→∞
Pr

(
sup

w∈K∩Sd
r

f(w) > t

)
.

Lemma 48. Let K be a compact set and f, g be continuous real-valued functions on Rd. Then it

holds that

lim
r→∞

sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) = sup
w∈K:f(w)≥0

g(w). (A.13)

If f and g are random functions, then for any t ∈ R

Pr

(
sup

w∈K:f(w)≥0
g(w) ≥ t

)
= lim

r→∞
Pr

(
sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) ≥ t

)
. (A.14)

Proof. We consider two cases:

1. The limiting problem is infeasible: ∀w ∈ K, f(w) < 0. Then by compactness and the

continuity of f , there exists µ < 0 such that for all w ∈ K

f(w) < µ =⇒ sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) ≤ rµ+ sup
w∈K

g(w).
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By compactness and the continuity of g again, we have supw∈K g(w) <∞ and so

lim
r→∞

sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) = −∞

as desired.

2. The limiting problem is feasible: ∃w0 ∈ K, f(w0) ≥ 0. In this case, let

wr = argmax
w∈K

inf
0≤λ≤r

λf(w) + g(w)

= argmax
w∈K

r · f(w)1{f(w)≤0} + g(w)

be an arbitrary maximizer for each r. Note that a maximizer necessarily exists in K by

compactness of K and the continuity of f and g. By compactness of K again, the sequence

{wr} at positive integer values of r has a subsequential limit: ∃rn → ∞ and w∞ ∈ K such

that wrn → w∞.

For the sake of contradiction, assume that f(w∞) < 0, then by continuity, there exists µ < 0

such that for all sufficiently large n

f(wrn) < µ =⇒ sup
w∈K

inf
0≤λ≤rn

λf(w) + g(w) = rn · f(wrn) + g(wrn) ≤ rnµ+ sup
w∈K

g(w)

which is unbounded from below as n→ ∞. On the other hand, we have

sup
w∈K

inf
0≤λ≤rn

λf(w) + g(w) ≥ g(w0)

and so we have reached a contradiction; thus f(w∞) ≥ 0. Observe that

sup
w∈K

inf
0≤λ≤rn

λf(w) + g(w) = rn · f(wrn)1{f(wrn)≤0} + g(wrn) ≤ g(wrn)
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and so by continuity of g

lim sup
n→∞

sup
w∈K

inf
0≤λ≤rn

λf(w) + g(w) ≤ g(w∞) ≤ sup
w∈K:f(w)≥0

g(w).

The lim inf direction follows immediately from the definition, and so the limit exists and

equals supw∈K:f(w)≥0 g(w). We can conclude that

lim
r→∞

sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) = sup
w∈K:f(w)≥0

g(w)

because it is a monotonic sequence.

Finally, by the fact that the supremum is decreasing in r and the continuity of probability

measure, we have

Pr

(
sup

w∈K:f(w)≥0
g(w) ≥ t

)
= Pr

(
lim
r→∞

sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) ≥ t

)
= Pr

(
∩r sup

w∈K
inf

0≤λ≤r
λf(w) + g(w) ≥ t

)
= lim

r→∞
Pr

(
sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) ≥ t

)
.

Concentration of Lipschitz functions. Recall that a function f : Rn → R is L-Lipschitz with

respect to the norm ∥·∥ if it holds for all x, y ∈ Rn that |f(x) − f(y)| ≤ L∥x − y∥. We use the

concentration of Lipschitz functions of a Gaussian.

Theorem 49 (van Handel [68], Theorem 3.25). If f is L-Lipschitz with respect to the Euclidean

norm and Z ∼ N (0, In), then

Pr(|f(Z)− Ef(Z)| ≥ t) ≤ 2e−t2/2L2
. (A.15)
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We also use a similar result for functions of a uniformly spherical vector (see Theorem 5.1.4

and Exercise 5.1.12 of Vershynin [71]); we cite a result with sharp constant factor from Ledoux

[36].

Theorem 50 (Spherical concentration; Ledoux [36]). If f is L-Lipschitz with respect to the Eu-

clidean norm and Z ∼ Uni(Sn−1) where Sn−1 = {u ∈ Rn : ∥u∥ = 1} is the unit sphere,

Uni(Sn−1) is the uniform measure on the sphere, and n ≥ 3, then

Pr(|f(Z)− Ef(Z)| ≥ t) ≤ 2e−(n−2)t2/2L2
. (A.16)

The following lemma says that a o(n)-dimensional subspace cannot align with a random spher-

ically symmetric vector.

Lemma 51. Suppose that S is a fixed subspace of dimension d in Rn with n ≥ 4, PS is the

orthogonal projection onto S, and V is a spherically symmetric random vector (i.e. V/∥V ∥2 is

uniform on the sphere). Then

∥PSV ∥2
∥V ∥2

≤
√
d/n+ 2

√
log(2/δ)/n. (A.17)

with probability at least 1− δ. Conditional on this inequality holding, we therefore have uniformly

for all s ∈ S that

|⟨s, V ⟩| = |⟨s, PSV ⟩| ≤ ∥s∥2∥PSV ∥2 ≤ ∥s∥2∥V ∥2
(√

d/n+ 2
√

log(2/δ)/n)
)
. (A.18)

Proof. This is trivial if d ≥ n, since the left-hand side is at most 1. Thus assume without loss of

generality that d < n. By symmetry, it suffices to fix S to be the span of basis vectors e1, . . . , ed

and to bound ∥PSV ∥2 for V a uniformly random chosen vector from the unit sphere in Rn. Recall

that for any coordinate i, we have EV 2
i = 1/n by symmetry among the coordinates and the fact

that ∥V ∥22 = 1 almost surely. The function v 7→ ∥PSv∥2 is a 1-Lipschitz function and E∥PSV ∥2 ≤
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√
E∥PSV ∥22 =

√
d/n, so by Theorem 50 above

∥PSV ∥2 ≤
√
d/n+

√
2 log(2/δ)/(n− 2))

with probability at least 1− δ. Using n ≥ 4 gives the result.

The concentration of the Euclidean norm of a Gaussian vector follows from Theorem 49; we

state it explicitly below.

Lemma 52. Suppose that Z ∼ N(0, In). Then

Pr(
∣∣∥Z∥2 −√

n
∣∣ ≥ t) ≤ 4e−t2/4. (A.19)

Proof. First we recall the standard fact (see e.g. Chandrasekaran et al. [19]) that

√
n− 1 ≤ n√

n+ 1
≤ E∥Z∥2 ≤

√
n.

Because the norm is 1-Lipschitz, it follows from Theorem 49 that

Pr(|∥Z∥2 − E∥Z∥2| ≥ t) ≤ 2e−t2/2

so

Pr(
∣∣∥Z∥2 −√

n
∣∣ ≥ t+ 1) ≤ 2e−t2/2.

Now using that (t− 1)2 ≥ t2/2− 1 shows

Pr(
∣∣∥Z∥2 −√

n
∣∣ ≥ t) ≤ 2e−(t2/2−1)/2 ≤ 4e−t2/4.
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Wishart Concentration. Let σmin(A) denote the minimum singular value of an arbitrary matrix

A, and σmax the maximum singular value. We use ∥A∥op = σmax(A) to denote the operator norm

of matrix A.

Theorem 53 (Vershynin [70], Corollary 5.35). Let n,N ∈ N. Let A ∈ RN×n be a random matrix

with entries i.i.d. N (0, 1). Then for any t > 0, it holds with probability at least 1− 2 exp(−t2/2)

that
√
N −

√
n− t ≤ σmin(A) ≤ σmax(A) ≤

√
N +

√
n+ t. (A.20)

106



APPENDIX B

VC THEORY AND HYPERCONTRACTIVITY

Recall the following definition of VC-dimension from Shalev-Shwartz and Ben-David [58].

Definition 8. Let H be a class of functions from X to {0, 1} and let C = {c1, ..., cm} ⊂ X . The

restriction of H to C is

HC = {(h(c1), ..., h(cm)) : h ∈ H}.

A hypothesis class H shatters a finite set C ⊂ X if |HC | = 2|C|. The VC-dimension of H is the

maximal size of a set that can be shattered by H. If H can shatter sets of arbitrary large size, we

say H has infinite VC-dimension.

Also, we have the following well-known result for the class of nonhomogenous halfspaces in

Rd (Theorem 9.3 of Shalev-Shwartz and Ben-David [58]), and the result on VC-dimension of the

union of two hypothesis classes (Lemma 3.2.3 of Blumer et al. [14]):

Theorem 54. The class {x 7→ sign(⟨w, x⟩+ b) : w ∈ Rd, b ∈ R} has VC-dimension d+ 1.

Theorem 55. Let H a hypothesis classes of finite VC-dimension d ≥ 1. Let H2 := {max(h1, h2) :

h1, h2 ∈ H} and H3 := {min(h1, h2) : h1, h2 ∈ H}. Then, both the VC-dimension of H2 and the

VC-dimension of H3 are O(d).

The VC dimension of neural networks is also well understood (equation 2 of Bartlett et al. [6]):

Theorem 56. The VC-dimension of a neural network with piecewise linear activation function, W

parameters, and L layers has VC-dimension O(WL logW ).

Using Theorem 54, 55, and 56, we can verify the VC dimension assumptions made in Chapter 3

and 4. For example, the VC dimension for the square loss and the squared hinge loss is analyzed in

Appendix E.2 and E.3 of Zhou et al. [79]. We can easily establish low-dimensional concentration

due to the following result:
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Theorem 57 (Vapnik [69], Special case of Assertion 4 in Chapter 7.8; see also Theorem 7.6).

Suppose that the loss function l : Z ×Θ → R≥0 satisfies

(i) for every θ ∈ Θ, the function l(·, θ) is measurable with respect to the first argument

(ii) the class of functions {z 7→ 1{l(z, θ) > t} : (θ, t) ∈ Θ× R} has VC-dimension at most h

and the distribution D over Z satisfies for every θ ∈ Θ

Ez∼D[l(z, θ)
4]1/4

Ez∼D[l(z, θ)]
≤ τ, (B.1)

then for any n > h, with probability at least 1 − δ over the choice of (z1, . . . , zn) ∼ Dn, it holds

uniformly over all θ ∈ Θ that

1

n

n∑
i=1

l(zi, θ) ≥

(
1− 8τ

√
h(log(2n/h) + 1) + log(12/δ)

n

)
Ez∼D[l(z, θ)]. (B.2)

The assumption (B.1) is standard (indeed, this is the setting primarily focused on in [69]) and

is sometimes referred to as hypercontractivity or norm equivalence in the literature; a variant of the

result holds with 4 replaced by 1+ϵ. In many settings of interest, this can be directly checked using

the fact that x is Gaussian (for instance, see section B.1 and B.2 below). Of course, our general

result can be applied without this assumption, by using low-dimensional concentration under an

alternative assumption: Vapnik [69], Panchenko [50, 51], Mendelson [44] have further discussion

and alternative results; in particular, Assertion 3 of Vapnik [69, Chapter 7.8] gives a bound based

on a fourth-moment assumption, and Panchenko [51, Theorem 3] gives one based on a version of

Rademacher complexity.

108



B.1 Square Loss

The following theorem is the Gaussian space analogue of Theorem 9.21 in O’Donnell [49] and can

be proved using the same argument by Theorem 11.23 and replacing the Fourier basis on {−1, 1}n

with the Hermite polynomials on Rn.

Theorem 58 (O’Donnell [49]). Let f : Rd → R be a polynomial of degree at most k. Then for

any q ≥ 2, it holds that

Ez∼N (0,Id)
[|f(z)|q]1/q ≤ (q − 1)k/2Ez∼N (0,Id)

[|f(z)|2]1/2. (B.3)

We will now check the hypercontractivity assumption (C) when both the mean and standard

deviation of y is a polynomial of η1, ..., ηk.

Theorem 59. Suppose that in (4.2), we have

y = m(η1, ..., ηk) + s(η1, ..., ηk) · ξ

where m, s are both polynomials of degree at most l and ξ has finite eighth moment, then

E[(⟨w, x⟩+ b− y)8]1/8

E[(⟨w, x⟩+ b− y)2]1/2
≤

√
2 ·

√
7
l

(
E[ξ8]1/8

E[ξ2]1/2

)
. (B.4)

Proof. By triangular inequality in the ℓp space and independence between x and ξ

E[(⟨w, x⟩+ b− y)8]1/8 ≤ E[(⟨w, x⟩+ b−m(η1, ..., ηk))
8]1/8 + E[(s(η1, ..., ηk) · ξ)8]1/8

= E[(⟨w, x⟩+ b−m(η1, ..., ηk))
8]1/8 + E[s(η1, ..., ηk)8]1/8 · E[ξ8]1/8

Since ⟨w, x⟩, η1, ..., ηk are jointly Gaussian, we can apply Theorem 58 and upper bound the above
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by

√
7
l
(
E[(⟨w, x⟩+ b−m(η1, ..., ηk))

2]1/2 + E[s(η1, ..., ηk)2]1/2 · E[ξ8]1/8
)

≤
√
7
l

(
E[ξ8]1/8

E[ξ2]1/2

)(
E[(⟨w, x⟩+ b−m(η1, ..., ηk))

2]1/2 + E[s(η1, ..., ηk)2]1/2 · E[ξ2]1/2
)

≤
√
7
l

(
E[ξ8]1/8

E[ξ2]1/2

)
√
2 ·
√

E[(⟨w, x⟩+ b−m(η1, ..., ηk))
2] + E[s(η1, ..., ηk)2] · E[ξ2]

where we use E[ξ8]1/8 ≥ E[ξ2]1/2 in the second inequality and
√
a+

√
b ≤

√
2(a+ b) in the last

inequality. The desired conclusion follows by observing

E[(⟨w, x⟩+ b− y)2] = E[(⟨w, x⟩+ b−m(η1, ..., ηk))
2] + E[s(η1, ..., ηk)2] · E[ξ2]

because x and ξ are independent.

Remark 60. The assumption that ξ has finite eighth moment can be significantly relaxed because

there is a version of Theorem 57 in Vapnik [69] that replaces the exponent of 4 by 1 + ϵ. How-

ever, allowing heavier tails of ξ comes at the cost of a larger constant in front of τ or a slower

convergence rate with respect to n in the low-dimensional concentration term.

B.2 Squared Hinge Loss

For illustration, we show how to check hypercontractivity (C) for the squared hinge loss under

some example generative assumptions on y. In the first and simpler example, suppose that there is

an arbitrary constant η > 0 such that

min{Pr(y = 1 | x),Pr(y = −1 | x)} ≥ η

almost surely. This assumption is satisfied, for example, if the data is generated by an arbitrary

function of η1, . . . , ηk combined with Random Classification Noise (see e.g. Blum et al. [13]), i.e.
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the label is flipped with some probability. Then if ŷ = ⟨w, x⟩+ b is the prediction, we have

Emax(0, 1− yŷ)2 ≥ ηE(1 + |ŷ|)2 ≥ η(1 + E[ŷ2]),

and on the other hand we always have

Emax(0, 1− yŷ)8 ≤ E(1 + |ŷ|)8 ≤ 28(1 + E[ŷ8]) ≤ 216(1 + E[ŷ2]4) ≤ 216(1 + E[ŷ2])4

where the second-to-last inequality follows from the fact that ŷ is marginally Gaussian and using

standard formula for the moments of a Gaussian. It follows that

E[max(0, 1− yŷ)8]1/8

E[max(0, 1− yŷ)2]1/2
≤ 4

√
η

which verifies (4.11) in this setting.

We now consider a more general situation and show that if there is a non-negligible portion of

x’s such that that y is noisy, hypercontractivity is still guaranteed to hold. Let Aη be the event that

min{Pr(y = 1 | x),Pr(y = −1 | x)} ≥ η. Then

Emax(0, 1− yŷ)2 ≥ E[1(Aη)max(0, 1− yŷ)2] ≥ ηE[1(Aη)(1 + |ŷ|)2]

≥ ηQ(Pr(Aη))E[(1 + |ŷ|)2]

whereQ is defined below. In the last step, we considered the worst case eventAη for given Pr(Aη),

which corresponds to chopping the tails off of ŷ; considering this example, we see the inequality

holds where where Q : (0, 1] → (0, 1] is an explicit function

Q(p) := min


∫ zp
−zp

|x|e−x2/2dx

2
,

∫ zp
−zp

x2e−x2/2dx
√
2π

 (B.5)

and zp is defined such that Prg∼N(0,1)[|g| > zp] = p. Repeating the argument above yields the
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following result:

Theorem 61. Suppose that under (4.2), there exists η > 0 such that pη := Pr(min{Pr(y = 1 |

x),Pr(y = −1 | x)} ≥ η) > 0. Then for any w, b we have that for ŷ = ⟨w, x⟩+ b,

E[max(0, 1− yŷ)8]1/8

E[max(0, 1− yŷ)2]1/2
≤ 4√

ηQ(pη)

For another example, if y follows a logistic regression model E[y | x] = tanh(βw∗
1 · x) with

normalization ⟨w∗
1,Σw

∗
1⟩ = 1, then by Theorem 61 with e.g. η = 1/2, we verify (4.11) with τ

a constant depending only on β. The result also holds for more general models like E[y | x] =

tanh(f(η1, . . . , ηk)) as long as f is not always very large.
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APPENDIX C

PROOFS FOR SECTION 2

C.1 Proofs for Section 2.2

Lemma 62. For any k ∈ N, it holds that

κ0 ≥
(
1− n

Rk

)∑
i>k λi
n

and κ0 ≥ λk+1

(
k + rk
n

− 1

)
. (C.1)

Moreover, for any k < n, it holds that

κ0 ≤
(
1− k

n

)−1 ∑
i>k λi
n

(C.2)

Proof. Observe the following Cauchy-Schwarz inequality:

∑
i>k

λi

2

=

∑
i>k

√
λi

λi + κ0

√
λi(λi + κ0)

2

≤

∑
i>k

λi
λi + κ0

∑
i>k

λi(λi + κ0)


≤

(∑
i

λi
λi + κ0

)∑
i>k

λi(λi + κ0)


= n

∑
i>k

λ2i + κ0
∑
i>k

λi

 .

Rearranging in terms of κ0 proves the first inequality. Moreover, it holds that

n =
∑
i≤k

λi
λi + κ0

+
∑
i>k

λi
λi + κ0

≥
kλk+1

λk+1 + κ0
+

∑
i>k λi

λk+1 + κ0
.
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which can be rearranged to the second lower bound. Finally, observe that

n =
∑
i

λi
λi + κ0

≤ k +

∑
i>k λi
κ0

and rearranging concludes the proof of the last inequality.

Lemma 63. For any δ ≥ 0 and any k ∈ N such that k < n, it holds that

δ

n
≤ κδ ≤

∑
i>k λi + δ

n− k
(C.3)

Proof. Observe that
δ

κδ
≤
∑
i

λi
λi + κδ

+
δ

κδ
≤ k +

∑
i>k

λi
κδ

+
δ

κδ

and the proof concludes by plugging in (2.8) and some rearrangement.

Proposition 2. For any k such that k < n and n < Rk, it holds that

E0 ≤
(
1− k

n

)−2(
1− n

Rk

)−1

. (2.14)

Proof. By definition, we have

n− δ

κδ
=
∑
i

λi
λi + κδ

≤
∑
i≤k

λi
λi + κδ

+
∑
i>k

√
λi

λi + κδ

√
λi

≤ k +

√∑
i>k

λi
(λi + κδ)

2

∑
i>k

λi.

Rearranging, we get (
n− k − δ

κδ

)2∑
i>k λi

≤
∑
i>k

λi
(λi + κδ)

2
.
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At the same time, observe that

1− 1

n

∑
i

L2
i,δ =

1

n

(∑
i

λi
λi + κδ

+
δ

κδ
−
(

λi
λi + κδ

)2
)

=
κδ
n

∑
i

λi
(λi + κδ)

2
+

δ

nκδ

≥ κδ
n

(
n− k − δ

κδ

)2∑
i>k λi

+
δ

nκδ
.

(C.4)

Plugging in δ = 0 and Lemma 62, we have

E0 =

(
1− 1

n

∑
i

L2
i,0

)−1

≤

(
κ0
n

(n− k)2∑
i>k λi

)−1

=

(
1− k

n

)−2(
1− n

Rk

)−1

.

Proposition 3. Fix any b > 0. If there exists k < n such that n ≤ k + brk, then let k be the first

such integer. Otherwise, pick k = n. It holds that

1

n

∑
i

L2
i,0 ≥ max

{
1

(b+ 1)2

(
1− k

n

)2 n

Rk
,

(
b

b+ 1

)2 k

n

}
. (2.15)

Proof. Observe that for any k < n

∑
i

L2
i,0 ≥

∑
i:λi≤λ

(
λi

λi + κ0

)2

≥
∑

i:λi≤λ λ
2
i

(λ+
∑

i>k λi
n−k )2

Without loss of generality, sort the eigenvalues in descending order. Then pick the first k′ < n
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such that λk′+1 ≤ b

∑
i>k′ λi
n−k′ and set λ = λk′+1. By the choice of λ, we have

∑
i

L2
i,0 ≥ 1

(b+ 1)2

∑
i>k′ λ

2
i(∑

i>k′ λi
n−k′

)2
(C.5)

which can be rearranged to the first part of the desired inequality. Moreover, we know that for any

k < k′ < n, we have λk+1 > b
∑

i>k λi
n−k and so by the second part of Lemma 62, we have

κ0 ≤
∑

i>k λi
n− k

≤ 1

b
λk+1.

Therefore, we have

∑
i

L2
i,0 ≥

∑
k≤k′

(
λk

λk + κ0

)2

≥ k′
(

b

b+ 1

)2

.

(C.6)

and we are done with the case when there exists such k′. Finally, if there is no such k′, then by the

same reasoning, we have

∑
i

L2
i,0 ≥

∑
k≤n

(
λk

λk + κ0

)2

≥ n

(
b

b+ 1

)2

and we are done.

Proposition 5. Suppose there exists m,M > 0 such that m ≤ rk/k ≤ M for k ≥ ⌊ n
1+M ⌋. Then

it holds that

E0 ≤ 4

(
1

1+M − 1
n

)−1

m
. (2.17)
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If {λi} does not change with n and limk→∞ rk/k = α > 0, then

lim
n→∞

E0 ≤ 4

(
1 +

1

α

)
. (2.18)

Proof. Let k be the largest integer such that λk ≥ κ0. Then it holds that

1− 1

n

∑
i

L2
i,0 =

1

n

∑
i

Li,0 − L2
i,0

=
κ0
n

∑
i

λi
(λi + κ0)2

≥ κ0
n

∑
i>k

λi
(λi + κ0)2

≥ κ0
n

λk
4κ20

∑
i>k λi
λk

≥ 1

4

mk

n
.

(C.7)

It remains to lower bound k and verify that k ≥ ⌊ n
1+M ⌋. By construction, it holds that λk+1 <

κ0. Also, by Lemma 62 we know that

κ0 ≤ 1

n− k′
∑
i>k′

λi =
rk′

n− k′
λ′k ≤ Mk′

n− k′
λ′k.

Choosing k′ = ⌊ n
1+M ⌋, then the above become

λk+1 < κ0 ≤M
k′

n− k′
λ′k ≤ λ′k.

Since the λi are sorted, it must be the case that

k ≥ k′ =⇒ k ≥ n

1 +M
− 1 (C.8)

and so we have

1− 1

n

∑
i

L2
i,0 ≥ 1

4
m

(
1

1 +M
− 1

n

)
.
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Taking the inverse concludes the proof of the first part. Finally, suppose that limk→∞ rk/k = α,

then fix any ϵ ∈ (0, α), there exists N such that ∀k ≥ N , α − ϵ ≤ rk/k ≤ α + ϵ. Then for

n ≥ (1 + 2α)(N + 1), we can choose m = α− ϵ and M = α + ϵ because

⌊ n

1 +M
⌋ ≥ n

1 +M
− 1 ≥ n

1 + 2α
− 1 ≥ N.

Applying the non-asymptotic result and sending n→ ∞, we obtain

lim
n→∞

E0 ≤ 4
1 + α + ϵ

α− ϵ
.

Finally, we conclude the proof by sending ϵ→ 0.

Proposition 6. For any k ≥ n+ rk, it holds that

1

n

∑
i

L2
i,0 ≥ n

k

(
1− rk

k − n

)2

. (2.19)

Therefore, if {λi} does not change with n and limk→∞ rk/k = 0, then, then it holds that

lim
n→∞

E0 = ∞.

Proof. By Cauchy-Schwarz, we have

n =
∑
i

λi
λi + κ0

=
∑
i>k

λi
λi + κ0

+
∑
i≤k

λi
λi + κ0

≤
∑

i>k λi
κ0

+
√
k

√√√√∑
i≤k

(
λi

λi + κ0

)2
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By Lemma 62, we have κ0 ≥ λk+1

(
k
n − 1

)
. Combine with above, we obtain

n ≤ rk
n

k − n
+
√
k

√√√√∑
i≤k

(
λi

λi + κ0

)2

Rearranging gives us
n
(
1− rk

k−n

)
√
k

≤

√√√√∑
i≤k

(
λi

λi + κ0

)2

=⇒ 1

n

∑
i

L2
i,0 ≥ 1

n

∑
i≤k

(
λi

λi + κ0

)2

≥ n

k

(
1− rk

k − n

)2

For any ϵ > 0, choose k = (1 + ϵ)n, we get

1

n

∑
i

L2
i,0 ≥ 1

1 + ϵ

(
1− rk

k

1 + ϵ

ϵ

)2

Therefore, if rk = o(k), then

lim
n→∞

1

n

∑
i

L2
i,0 ≥ 1

1 + ϵ

However, since the choice of ϵ is arbitrary, then we can send ϵ→ 0. The desired conclusion follows

by E0 =
(
1− 1

n

∑
i L2

i,0

)−1
.

Theorem 7. Suppose that {λi} does not change with n and the optimally tuned ridge regression

is consistent: E(fδ∗) → σ2, then

(i) if limk→∞ rk/k = ∞, then overfitting is benign:

lim
n→∞

E(f0) = σ2 (2.20)

(ii) if limk→∞ rk/k ∈ (0,∞), then overfitting is tempered:

σ2 < lim
n→∞

E(f0) <∞ (2.21)
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(ii) if limk→∞ rk/k = 0, then overfitting is catastrophic:

lim
n→∞

E(f0) = ∞. (2.22)

Proof. First, assume that rk/k → ∞. For any ϵ > 0, we can pick k = ϵn in Proposition 2 and

obtain the following:

E0 ≤ 1

(1− ϵ)2

(
1− 1

ϵ

k

Rk

)−1

. (C.9)

Since we have ∑
i>k

λ2i ≤ λk+1

∑
i>k

λi =⇒ Rk ≥ rk,

we can send n→ ∞ and k/Rk ≤ k/rk → 0. Therefore, it holds that

lim
n→∞

E0 ≤ 1

(1− ϵ)2
.

Since the choice of ϵ > 0 can be made arbitrarily small, we have the desired conclusion. On the

other hand, suppose that rk/k is bounded, then there exists M > 0 such that rk < kM for all k. If

we let b = 1/(3M), then for all k ≤ n/2, it holds that

k + brk < k(1 + bM) ≤ 1 + bM

2
n ≤ 2n

3
< n.

Then we can apply Theorem 3 to show that

1

n

∑
i

L2
i,0 ≥ 1

2(1 + 3M)2

and so limn→∞ E0 > 1. Finally, (ii) and (iii) follows from Theorem 1, Proposition 5 and 6.
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C.2 Proofs for Section 2.3 and 2.4

Theorem 8. Fix any l ∈ N ∪ {∞} and k < n/2. For any k′ < n, it holds that

E(fδ∗) ≤
1 + ϵ

1− ϵ− k′
n

σ2 +∑
i>l

v2i +

(∑
i>k λi

)(∑
i≤l

v2i
λi

)
n− k

 (2.23)

where ϵ is defined as

ϵ =

2
∑

i≤l
v2i
λi

σ2

2/3(∑
i>k′ λ

2
i

n

)1/3

. (2.24)

Proof. For any k < n, it holds that

∑
i

(1− Li,δ)
2v2i = κδ

∑
i≤l

κδλi
(λi + κδ)

2

v2i
λi

+
∑
i>l

v2i

≤ κδ
∑
i≤l

v2i
λi

+
∑
i>l

v2i

≤
δ +

∑
i>k λi

n− k

∑
i≤l

v2i
λi

+
∑
i>l

v2i

=

∑
i≤l

v2i
λi

n− k
δ +

(∑
i>k λi

)(∑
i≤l

v2i
λi

)
n− k

+
∑
i>l

v2i

and for any k′ < n

1

n

∑
i

(
λi

λi + κδ

)2

≤ k′

n
+

∑
i>k′ λ

2
i

nκ2δ
≤ k′

n
+
n
∑

i>k′ λ
2
i

δ2
.

To balance the two terms, we choose δ such that

σ2
n
∑

i>k′ λ
2
i

δ2
=

∑
i≤l

v2i
λi

n− k
δ =⇒ δ = σ2/3

n(n− k)
∑

i>k′ λ
2
i∑

i≤l
v2i
λi

1/3
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and so using k ≤ n/2, we have

∑
i≤l

v2i
λi

n− k
δ =

σ
√∑

i>k′ λ
2
i

∑
i≤l

v2i
λi

(n− k)/
√
n


2/3

≤ σ2ϵ.

The proof concludes by plugging into the definition of E(fδ∗).

Theorem 9. For any δ ≥ 0 and k ∈ N such that (k/n)2+2(k/n) < 1. Let ϵ =
√

(k2 + 2kn)/n2,

then it holds that

(1− ϵ)2E(fδ) ≤

√Etr(fδ) +

√
(
∑

i>k λi)E∥fδ∥2K
n

2

. (2.26)

Proof. Applying equation (2.10) and (2.8), we can write the difference

(√
E(fδ)−

√
Etr(fδ)

)2
=

(
1− δ

nκδ

)2

E(fδ)

≤ 1

n

(∑
i

λi
λi + κδ

)2
E(fδ)
n

.

We can do covariance splitting by

(∑
i

λi
λi + κδ

)2

≤

k +∑
i>k

λi
λi + κδ

2

= k2 + 2k

∑
i>k

λi
λi + κδ

+

∑
i>k

√
λi

λi + κδ

√
λi

2

≤ k2 + 2kn+

∑
i>k

λi
(λi + κδ)

2

∑
i>k

λi


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where in the last inequality we use (2.8) and Cauchy-Schwarz, and so by (2.11)

(√
E(fδ)−

√
Etr(fδ)

)2
≤ k2 + 2kn

n2
E(fδ) +

E(fδ)
n

∑
i>k

λi
(λi + κδ)

2

 1

n

∑
i>k

λi


≤ k2 + 2kn

n2
E(fδ) +

E∥fδ∥2K(
∑

i>k λi)

n

then using
√
x+ y ≤

√
x+

√
y

√
E(fδ)−

√
Etr(fδ) ≤

√
k2 + 2kn

n2
E(fδ) +

E∥fδ∥2K(
∑

i>k λi)

n

≤

√
k2 + 2kn

n2
E(fδ) +

√
E∥fδ∥2K(

∑
i>k λi)

n
.

Re-arranging concludes the proof.

Proposition 10. For any l ∈ N ∪ {∞} and k ∈ N such that Rk > n, it holds that

E∥f0∥2K ≤
∑
i≤l

v2i
λi

+

(
1− n

Rk

)−1 n
(
σ2 +

∑
i>l v

2
i

)∑
i>k λi

. (2.27)

Proof. When δ = 0, it holds that

n

E0
= n−

∑
i

L2
i,0 =

∑
i

λi
λi + κ0

−
λ2i

(λi + κ0)2

=
∑
i

λi(λi + κ0)− λ2i
(λi + κ0)2

= κ0

(∑
i

λi
(λi + κ0)2

)
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by applying (2.9) and (2.8). Therefore, the first term in (2.11) can be simplified as

E(f0)
n

∑
i

λi
(λi + κ0)2

=
E0
(∑

i(1− Li,0)
2v2i + σ2

)
n

∑
i

λi
(λi + κ0)2

=
∑
i

(1− Li,0)
2

κ0
v2i +

σ2

κ0

=
∑
i

κ0
(λi + κ0)2

v2i +
σ2

κ0

by the definition in (2.10) and (2.9). Plugging in, we arrive at

E∥f0∥2K =
∑
i

v2i
λi + κ0

+
σ2

κ0
(C.10)

To handle situations where f∗ is not in the RKHS, observe that for any l, we have

∑
i

v2i
λi + κ0

=
∑
i≤l

v2i
λi + κ0

+
∑
i>l

v2i
λi + κ0

≤
∑
i≤l

v2i
λi

+
1

κ0

∑
i>l

v2i

and so

E∥f0∥2K ≤
∑
i≤l

v2i
λi

+
1

κ0

σ2 +∑
i>l

v2i

 . (C.11)

The proof concludes by plugging in Lemma 62.
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APPENDIX D

PROOFS FOR SECTION 3

D.1 Proofs for Section 3.2

We will make use of the following standard concentration result.

Lemma 64. For any covariance matrix Σ, it holds that with probability at least 1− δ,

1−
∥Σ1/2H∥22
Tr(Σ)

≲
log(4/δ)√
R(Σ)

(D.1)

and

∥ΣH∥22 ≲ log(4/δ) Tr(Σ2). (D.2)

Therefore, provided that R(Σ) ≳ log(4/δ)2, it holds that

(
∥ΣH∥2

∥Σ1/2H∥2

)2

≲ log(4/δ)
Tr(Σ2)

Tr(Σ)
. (D.3)

Proof. Because we are considering ℓ2 norm andH is standard Gaussian, without loss of generality

we can assume that Σ is diagonal and we denote the diagonals of Σ as λ1, ..., λd. By the sub-

exponential Bernstein inequality [71, Corollary 2.8.3], we have with probability at least 1− δ/2

∣∣∣∣∣∥Σ1/2H∥22
Tr(Σ)

− 1

∣∣∣∣∣ =
∣∣∣∣∣

p∑
i=1

λi∑
j λj

(H2
i − 1)

∣∣∣∣∣ ≲
√

log(4/δ)

R(Σ)
∨ log(4/δ)

r(Σ)
≤ log(4/δ)√

R(Σ)

where the last inequality uses that R(Σ) ≤ r(Σ)2, shown in Lemma 5 of Bartlett et al. [7]. Using

the sub-exponential Bernstein inequality again, we show with probability at least 1− δ/2

∣∣∣∣∣∥ΣH∥22
Tr(Σ2)

− 1

∣∣∣∣∣ ≲
√

log(4/δ)

R(Σ2)
∨ log(4/δ)

r(Σ2)
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From Lemma 5 of Bartlett et al. [7], we know that the effective ranks are at least 1. This implies

∥ΣH∥22 ≲ log(4/δ) Tr(Σ2).

Provided that R(Σ) ≳ log(4/δ)2, we have

∥Σ1/2H∥22 ≥ 1

2
Tr(Σ)

in which case it holds that
∥ΣH∥22

∥Σ1/2H∥22
≲ log(4/δ)

Tr(Σ2)

Tr(Σ)
.

Corollary 15. Assume that (A), (B), and (C) holds. Let Q = I −W (WTΣW )−1WTΣ and Σ⊥ =

QTΣQ. Fix any (w♯, b♯) ∈ Rd+1 such that Qw♯ = 0. Consider the minimal norm interpolator

ŵ, b̂ = argmin
(w,b):L̂(w,b)=0

∥w∥2. Then with probability at least 1− δ, for some

ρ ≲ τ

√
k log(n/k) + log(1/δ)

n
+ log (1/δ)

 1√
n
+

1√
R(Σ⊥)

+
k

n
+

n

R(Σ⊥)

 ,

it holds that

L(ŵ, b̂) ≤ (1 + ρ)

√L(w♯, b♯) + ∥w♯∥2

√
Tr(Σ⊥)

n

2

. (3.12)

Proof. By Lemma 64, there exists some constant C > 0 such that with probability at least 1− δ/8

⟨Qw, x⟩ ≤ ∥w∥2 · ∥QTx∥2

≤ ∥w∥2 ·

1 + C
log(32/δ)√
R(Σ⊥)

1/2√
Tr(Σ⊥)

and so we can choose Cδ to be the above upper bound in Theorem 12. It holds that with probability
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at least 1− δ/2, uniformly over all (ŵ, b̂) such that L̂(ŵ, b̂) = 0, we have

L(ŵ, b̂) ≤ (1− ϵ)−1

1 + C
log(32/δ)√
R(Σ⊥)

 ∥ŵ∥22Tr(Σ
⊥)

n
.

Moreover, we apply Theorem 14 to show with probability at least 1− δ/2

∥ŵ∥2 ≤ ∥w♯∥2 + (1 + ϵ′)

√
nLf (w

♯, b♯)

Tr(Σ⊥)

then by a union bound, we have with probability at least 1− δ, it holds that

L(ŵ, b̂) ≤
(1 + ϵ′)2

(
1 + C

log(32/δ)√
R(Σ⊥)

)
1− ϵ

∥w♯∥2

√
Tr(Σ⊥)

n
+
√
Lf (w

♯, b♯)

2

.

Flatness of generalization curve. Next, we prove a general lemma that shows any constrained

ERM with a sufficiently small regularization can enjoy the same generalization guarantee as the

minimal norm interpolator under the benign overfitting conditions. Note that we only require
√
f

to be convex below and so this result can be applied to linear classification with the squared hinge

loss as well as linear regression with the square loss in Chapter 3.

Lemma 65. Suppose that
√
f is convex and there exists a convex function C : Rd → R such that

for any (w, b) ∈ Rd+1

(1− ϵ)Lf (w, b) ≤
(√

L̂f (w, b) +
C(w)√
n

)2

.

Let (w′, b′) ∈ Rd+1 be any interpolator: f(⟨w′, xi⟩ + b′, yi) = 0 for all i ∈ [n]. Then for

any (w, b) ∈ Rd+1 and any R between C(w) and C(w′), consider the constrained empirical risk
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minimizer of the form

wR, bR := arg min
(w,b):C(w)≤R

L̂f (w, b).

It holds that

(1− ϵ)Lf (wR, bR) ≤ max

{(√
L̂f (w, b) +

C(w)√
n

)2

,
C(w′)2

n

}
(D.4)

Proof. For any R between C(w) and C(w′), we can write

R = (1− α)C(w) + αC(w′)

for some α ∈ [0, 1]. If we define wα := (1 − α)w + αw′ and bα := (1 − α)b + αb′, then by

convexity, we have

C(wα) ≤ (1− α)C(w) + αC(w′) = R

and by definition, we have L̂f (wR, bR) ≤ L̂f (wα, bα). In addition, by the convexity of
√
f and

Jensen’s inequality, we have

L̂f (wα, bα) =
1

n

n∑
i=1

f(⟨wα, xi⟩+ bα, yi)

=
1

n

n∑
i=1

√
f((1− α)(⟨w, xi⟩+ b) + α(⟨w′, xi⟩+ b′), yi)

2

≤ 1

n

n∑
i=1

(
(1− α)

√
f(⟨w, xi⟩+ b, yi) + α

√
f(⟨w′, xi⟩+ b′, yi)

)2
=

1

n

n∑
i=1

(1− α)2f(⟨w, xi⟩+ b, yi) = (1− α)2L̂f (w, b)
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and so

√
(1− ϵ)Lf (wR, bR) ≤

√
L̂f (wR, bR) +

C(wR)√
n

≤
√
L̂f (wα, bα) +

R√
n

≤ (1− α)
√
L̂f (w, b) +

(1− α)C(w) + αC(w′)√
n

= (1− α)

(√
L̂f (w, b) +

C(w)√
n

)
+ α

C(w′)√
n

≤ max

{√
L̂f (w, b) +

C(w)√
n
,
C(w′)√

n

}
.

Taking the square on both hand side concludes the proof.

D.2 Proofs for Section 3.3

Corollary 17. Assume that (A), (B), and (C) holds and let Q = I −W (WTΣW )−1WTΣ. Fix an

arbitrary norm ∥ · ∥ and any (w♯, b♯) ∈ Rd+1. There exists λ∗ > 0 such that if we consider the

regularized estimator

ŵλ∗ , b̂λ∗ = arg min
(w,b)

√
L̂(w, b) + λ∗∥w∥, (3.17)

it holds with probability at least 1− δ that

(1− ϵ)L(ŵλ∗ , b̂λ∗) ≤

(√
L(w♯, b♯) +

(
E∥QTx∥∗ + sup

∥v∥≤1
∥Qv∥Σ

√
2 log(16/δ)

)
∥w♯∥√
n

)2

where ϵ is the same as in Theorem 12.

Proof. Since we can write

∥QTx∥∗ = sup
∥v∥≤1

⟨v,QTΣ1/2H⟩
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with H ∼ N (0, Id) and we can use Cauchy-Schwarz inequality to show that

sup
∥v∥≤1

⟨v,QTΣ1/2H⟩ − sup
∥v∥≤1

⟨v,QTΣ1/2H ′⟩

≤ sup
∥v∥≤1

⟨v,QTΣ1/2H⟩ − ⟨v,QTΣ1/2H ′⟩ = sup
∥v∥≤1

⟨Σ1/2Qv,H −H ′⟩

≤ sup
∥v∥≤1

∥Qv∥Σ · ∥H −H ′∥2,

by concentration of Lipschitz function (Lemma 49), it holds with probability at least 1− δ/8 that

∥QTx∥∗ ≤ E∥QTx∥∗ + sup
∥v∥≤1

∥Qv∥Σ
√
2 log(16/δ).

Using the definition of dual norm, we have

⟨Qw, x⟩ ≤ ∥w∥∥QTx∥∗

≤ ∥w∥

(
E∥QTx∥∗ + sup

∥v∥≤1
∥Qv∥Σ

√
2 log(16/δ)

)

and we can choose Cδ to be the above upper bound in Theorem 12. Applying Theorem 12, we

show that

(1− ϵ)L(ŵ, b̂) ≤

(√
L̂(ŵ, b̂) +

(
E∥QTx∥∗√

n
+ sup

∥v∥≤1
∥Qv∥Σ

√
2 log(16/δ)

n

)
∥ŵ∥

)2

≤

(√
L̂(w♯, b♯) +

(
E∥QTx∥∗√

n
+ sup

∥v∥≤1
∥Qv∥Σ

√
2 log(16/δ)

n

)
∥w♯∥

)2

Suppose that L̂(w♯, b♯) ≤ (1 + ρ)L(w♯, b♯), then it follows that

L(ŵ, b̂) ≤ 1 + ρ

1− ϵ

(√
L(w♯, b♯) +

(
E∥QTx∥∗√

n
+ sup

∥v∥≤1
∥Qv∥Σ

√
2 log(16/δ)

n

)
∥w♯∥

)2

.

Next, we prove a standard expectation bound and concentration inequality for the ℓ∞ norm of
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Gaussian vectors.

Lemma 66. For any covariance matrix Σ, consider z ∼ N (0,Σ). Then it holds that

E∥z∥∞ ≤
√
2 log(2d)max

i
Σii (D.5)

and with probability at least 1− δ, we have

∥z∥∞ ≤
√
2 log(2d/δ)max

i
Σii. (D.6)

In addition, it holds that

sup
∥v∥1≤1

∥v∥Σ =
√

max
i

Σii. (D.7)

Proof. By Jensen’s inequality, for any λ > 0, it holds that

eλE∥z∥∞ ≤ Eeλ∥z∥∞ ≤ E

[∑
i

eλ|zi|
]

≤ 2
∑
i

Eeλzi = 2
∑
i

eλ
2Σii/2 ≤ 2deλ

2maxiΣii/2

and so rearranging gives

E∥z∥∞ ≤ log(2d)

λ
+ λ

maxiΣii

2
.

Optimizing over λ proves the first desired bound. To show the high probability bound, we can use

a union bound and the standard Gaussian tail bound Pr(|Z| ≥ t) ≤ 2e−t2/2 to show that

Pr(∥z∥∞ > t) ≤
∑
i

Pr(|zi| > t) ≤
∑
i

2e−t2/2Σii

≤ 2de−t2/2maxi Σii

and setting δ = 2de−t2/2maxiΣii , we have t =
√

2maxiΣii log(2d/δ). Finally, for A =
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[a1, ..., ad], we show that

max
∥v∥1≤1

∥Av∥2 = max
∥v∥1≤1,∥u∥2≤1

⟨u,Av⟩

= max
∥u∥2≤1

∥ATu∥∞ = max
∥u∥2≤1

max
i

|aTi u|

= max
i

max
∥u∥2≤1

|aTi u| = max
i

∥ai∥2 =

√
max
i

(ATA)ii.

Lemma 18. Suppose w♯ is k-sparse, i.e. supported on coordinate set S ⊂ [d] with |S| ≤ k. Every

w with ∥w∥1 ≤ ∥w♯∥1 satisfies

∥(w − w♯)SC∥1 ≤ ∥(w − w♯)S∥1. (3.20)

Proof. Note that over this set, we have

∥(w − w♯)SC∥1 = ∥wSC∥1 = ∥w∥1 − ∥wS∥1 ≤ ∥w♯∥1 − ∥wS∥1

≤ ∥(w♯ − wS)∥1 = ∥(w − w♯)S∥1

where the first inequality uses ∥w∥1 ≤ ∥w♯∥1 and the second inequality follows by the triangle

inequality.

Theorem 19. Under assumptions (A), (B) and (C), let ϵ, Q be the same as in Theorem 12 and

denote Σ⊥ = QTΣQ. Let σ2 = minw,b L(w, b) and w♯, b♯ = argminw,b L(w, b). Suppose that

1. w♯ is a k-sparse vector with support S ⊂ [d]

2. the covariance matrix Σ satisfies the S-compatibility condition

3. the number of samples n satisfies

n ≥
32maxiΣ

⊥
ii

ϕ(Σ, S)2
· k log(16d/δ) and ϵ ≤ 1/2
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Then for any ϵ′ < 1, it holds with probability at least 1 − δ that for all (w, b) satisfying ∥w∥1 ≤

∥w♯∥1 and L̂(w, b) ≤ (1 + ϵ′)σ2, we have

L(w, b)− σ2 ≤ 104σ2

(
ϵ+ ϵ′ +

maxiΣ
⊥
ii

ϕ(Σ, S)2
8k log(16d/δ)

n

)
. (3.21)

In particular, when σ = 0 we have that ∥w − w♯∥Σ = 0, and so if Σ is positive definite then we

have w = w♯ (exact recovery).

Proof. Note that L(w, b) = E[(⟨w, x⟩+ b− y)2] is a quadratic function in both w and b with

∇2L(w, b) = 2

µµT + Σ µ

µT 1

 .

Since the second-order Taylor expansion is exact for quadratic functions, if we let σ2 = minw,b L(w, b)

and w♯, b♯ = argminw,b L(w, b), it must be the case that

L(w, b) = σ2 + (w − w♯)T (µµT + Σ)(w − w♯) + 2(b− b♯)⟨µ,w − w♯⟩+ (b− b♯)2

= σ2 + ∥w − w♯∥2Σ + (⟨µ,w − w♯⟩+ b− b♯)2.

By Lemma 18, Lemma 66, the compatibility condition, and a union bound, it holds for x ∼

N (0,Σ) that with probability at least 1− δ/8

⟨Qw, x⟩ = ⟨Q(w − w♯), x⟩ = ⟨w − w♯, QTx⟩

≤ ∥w − w♯∥1∥QTx∥∞

≤ 2∥(w − w♯)S∥1
√

2 log(16d/δ)max
i

Σ⊥
ii

≤ k1/2∥w − w♯∥Σ
ϕ(Σ, S)

√
8 log(16d/δ)max

i
Σ⊥
ii

(D.8)

and so we can apply Theorem 12 with Cδ(w) equal to the right hand side of (D.8). Therefore, we
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have shown that

(1− ϵ)L(w, b) ≤

√L̂(w, b) +
k1/2∥w − w♯∥Σ

ϕ(Σ, S)

√
8
log(16d/δ)

n
max
i

Σ⊥
ii

2

≤

σ√1 + ϵ′ +
√
L(w, b)− σ2

√
8k log(16d/δ)

n

maxiΣ
⊥
ii

ϕ(Σ, S)2

2

.

For the simplicity of notation, we denote

x =
√
L(w, b)− σ2, a =

√
1 + ϵ′

1− ϵ
, b =

√
8k log(16d/δ)

(1− ϵ)n

maxiΣ
⊥
ii

ϕ(Σ, S)2

then we have shown

σ2 + x2 ≤ (aσ + bx)2.

Solving this quadratic equation, the above becomes

x ≤ σ

1− b2

(
ab+

√
b2 + a2 − 1

)

and so using the inequality
√
x+ y ≤

√
x+

√
y and the AM-GM inequality, we can show

x2 ≤ σ2

(1− b2)2

(
ab+

√
b2 + a2 − 1

)2
=

σ2

(1− b2)2

(
a2b2 + b2 + a2 − 1 + 2ab

√
b2 + a2 − 1

)
≤ σ2

(1− b2)2

(
a2b2 + b2 + a2 − 1 + 2ab2 + 2ab

√
a2 − 1

)
≤ σ2

(1− b2)2

(
a2b2 + b2 + a2 − 1 + 2ab2 + a2b2 + a2 − 1

)
=

σ2

(1− b2)2

(
(1 + 2a+ 2a2)b2 + 2(a2 − 1)

)
.

Therefore, if a ≤ 2 and b2 ≤ 1
2 (which is guaranteed by the assumption), then x2 ≤ 52σ2(b2 +

134



a2 − 1) and we are done.

Remark 67 (Generalization Bound for Larger Cones). For simplicity, in the above analysis we

gave a generalization bound for predictors w satisfying ∥w∥1 ≤ ∥w∗∥1, or more generally ∥(w −

w∗)SC∥1 ≤ ∥(w − w∗)S∥1, which covers the case of the LASSO with oracle regularization com-

monly considered in the literature (see, e.g., Vershynin [71]). In situations where adaptivity to the

unknown value of ∥w∗∥1 is important, the relevant predictor w may only be guaranteed to satisfy

the weaker bound ∥(w−w∗)SC∥1 ≤ C∥(w−w∗)S∥1 for some C > 1 and the analogous version

of the compatibility condition/restricted eigenvalue condition over this cone is assumed (see, e.g.

Bickel et al. [12], Van De Geer and Bühlmann [67], Rigollet and Hütter [56], Wainwright [73]);

adopting the analysis to predictors in this larger cone is straightforward and we omit the details.

D.3 Proofs for Section 3.4

Lemma 68. Under the assumptions of Theorem 20 and with the definition of β1 there, with prob-

ability at least 1− 4(δ + δ′)

L(ŵ) ≤ σ2 + (1 + 2β1)

(√
σF (ŵ)/

√
n+ F (ŵ)/

√
n

)2

where ŵ is any empirical risk minimizer over a closed convex set K containing w∗, i.e. L̂(ŵ) =

minw∈K L̂(w).

Proof. Write X = ZΣ1/2 with Z a matrix of i.i.d. Gaussians, and observe

1

n
⟨ZT ξ,Σ1/2(w − w∗)⟩ = 1

n
⟨ξ, ZΣ1/2(w − w∗)⟩ = 1

n
⟨ξ,X(w − w∗)⟩

Note that conditional on ξ, ZT ξ is just a standard Gaussian N(0, ∥ξ∥22Id). So with probability at
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least 1− δ′ (recalling the defining property of the complexity functional F ) we have

1

n
⟨ZT ξ,Σ1/2(w − w∗)⟩ ≤ ∥ξ∥2

n
F (w). (D.9)

Observe that

∇wL̂(w) =
1

n
∇w∥Y −Xw∥22 = − 2

n
XT (Y −Xw) = − 2

n
(XT ξ +XTX(w∗ − w))

so from the KKT condition ⟨w∗ − ŵ,∇wL̂(ŵ)⟩ ≥ 0 we have

⟨w∗ − ŵ,XT ξ⟩+ ⟨w∗ − w,XTX(w∗ − w)⟩ ≤ 0

so rearranging gives the first inequality, and using (D.9) gives the second inequality in

∥w∗ − ŵ∥
Σ̂
≤
√

1

n
⟨ξ,X(ŵ − w∗)⟩ ≤

√
∥ξ∥2
n

F (w).

By Theorem 20 (defining F (w) = ∞ outside of K), for all w ∈ K

∥w∗ − w∥Σ ≤ (1 + β1)
[
∥w∗ − w∥

Σ̂
+ F (w)/

√
n
]

and so for ŵ we have

∥w∗ − ŵ∥Σ ≤ (1 + β1)
[
∥w∗ − ŵ∥

Σ̂
+ F (ŵ)/

√
n
]

≤ (1 + β1)

[√
∥ξ∥2
n

F (ŵ) + F (ŵ)/
√
n

]

and using the fact that the norm ∥ξ∥2 concentrates about σ
√
n by Lemma 52 and recalling the
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definition of β1, we have

∥w∗ − ŵ∥2Σ ≤ (1 + 2β1)

(√
σF (ŵ)/

√
n+ F (ŵ)/

√
n

)2

.

Finally, recalling that L(ŵ) = σ2 + ∥w − ŵ∥2Σ gives the bound as claimed.

Theorem 21. Let K be a closed convex set in Rd containing w∗ and suppose δ′ ≥ 0, p ≥ 0 are

such that with probability at least 1 − δ′ over the randomness of x ∼ N(0,Σ), uniformly over all

w ∈ K we have

⟨w − w∗, x⟩ ≤ ∥w − w∗∥Σ
√
p. (3.25)

Suppose that ŵ = argminw∈K L̂(w) and p/n ≤ 0.999, then for all n ≥ C log(2/δ) for some

absolute constant C > 0, it holds with probability at least 1− (δ + δ′) that

L(ŵ)− σ2 ≤ (1 + τ)σ2 · p
n
. (3.26)

where τ = τ(p, n, δ) is upper bounded by an absolute constant and satisfies τ(p, n, δ) → 1 in any

joint limit [p+ log(2/δ)]/n→ 0, n→ ∞.

Proof. Defining ρ :=
√
p/n and Theorem 68 gives

∥w∗ − ŵ∥Σ ≤ (1 + 2β1)
1/2
(√

σF (ŵ)/
√
n+ F (ŵ)/

√
n

)
= (1 + 2β1)

1/2
(√

σρ∥w − w∗∥Σ + ρ∥w − w∗∥Σ
)

hence

(1− (1 + 2β1)
1/2ρ)∥w − w∗∥Σ ≤ (1 + 2β1)

1/2
√
σρ∥w − w∗∥Σ

which is equivalent to

∥w − w∗∥Σ ≤ (1 + 2β1)σρ

(1− (1 + 2β1)
1/2ρ)2

and this in turn is equivalent to the final result.
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Corollary 22. Under the model assumptions (4.2) with d < n and assuming a sufficiently large n,

it holds with probability at least 1− δ that

L(ŵOLS)− σ2 ≲ σ2

(√
d

n
+ 2

√
log(36/δ)

n

)2

(3.27)

Proof. Recall from the proof of Theorem 24 that with probability at least 1− δ′ we have

⟨w − w∗, x⟩ ≤
(√

d+ 2
√

log(4/δ′)
)∥∥∥Σ1/2(w∗ − w)

∥∥∥
2

where δ′ = δ/9 so the result follows from Theorem 21 with K = Rd.

Corollary 23. Applying Theorem 21 with K = {∥w∥1 ≤ ∥w∗∥1} the rescaled ℓ1-ball and under

the sparsity and compatability condition assumptions of (19), we have with probability at least

1− δ that the LASSO solution

ŵLASSO = argmin
w:∥w∥1≤∥w∗∥1

L̂(w)

satisfies

L(ŵLASSO)− σ2 ≲
maxiΣii

ϕ(Σ, S)2
· σ

2k log(16d/δ)

n
(3.28)

provided n is sufficiently large that

√
maxiΣii

ϕ(Σ, S)2
· 8k log(16d/δ)

n
≤ 0.999.

Proof. Recall from the proof of Theorem 19, more specially (D.8), that with probability at least

1− δ/8

⟨w − w∗, x⟩ ≤ ∥w − w∗∥1∥x∥∞

≤ 2∥(w − w∗)S∥1∥x∥∞ ≤ 2k1/2

ϕ(Σ, S)
∥w − w∗∥Σmax

i

√
2Σii log(16d/δ).
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so the result follows from Theorem 21.

D.4 Proofs for Section 3.5

The following training error bounds are standard, which we include for completeness.

Lemma 69. Under the model assumptions in (4.2) with d ≤ n, consider the ordinary least square

estimator ŵOLS = (XTX)−1XTY . With probability at least 1− δ, it holds that

√
L̂(ŵOLS) ≤ σ

(√
1− d

n
+ 2

√
log(4/δ)

n

)
(D.10)

Similarly, with probability at least 1− δ, it holds that

∥ŵOLS − w∗∥
Σ̂
≤ σ

(√
d

n
+ 2

√
log(4/δ)

n

)
(D.11)

Proof. By our model assumptions, we can write ŵOLS = w∗ + (XTX)−1XT ξ, and so Y −

XŵOLS = (I −X(XTX)−1XT )ξ. Since (I −X(XTX)−1XT ) is almost surely an idempotent

matrix with rank n− d, it follows that the distribution of

nL̂(ŵOLS)

σ2
=

1

σ2
ξT (I −X(XTX)−1XT )ξ,

is a Chi-square distribution with n−d degrees of freedom. By the same reasoning, the distribution

of
n ∥ŵOLS − w∗∥2

Σ̂

σ2
=

1

σ2
ξTX(XTX)−1XT ξ

is a Chi-square distribution with d degrees of freedom. By Lemma 52, with probability at least

1− δ, it holds that √
n

σ

√
L̂(ŵOLS) ≤

√
n− d+ 2

√
log(4/δ).
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Similarly, we have √
n

σ
∥ŵOLS − w∗∥

Σ̂
≤

√
d+ 2

√
log(4/δ).

Rearranging the terms conclude the proof.

Theorem 24. Under the model assumptions in (3.22), let γ = d/n < 1. There exists some

ϵ ≲
(
log(36/δ)

n

)1/2
such that for all sufficiently large n, with probability 1 − δ it holds uniformly

for all w ∈ Rd that

∣∣∣∣∣∣
√
L(w)− σ2 −

√
γL̂(w)

(1− γ)2

∣∣∣∣∣∣ ≤ ϵ

√
L̂(w) +

√√√√ 1

1− γ

(
L̂(w)

1− γ
− σ2

)
+ ϵL̂(w). (3.30)

For the empirical risk minimizer ŵOLS = (XTX)−1XTY , the right hand side of (3.30) is ap-

proximately zero because we also have

L̂(ŵOLS) ≤ σ2(1− γ) + σ2ϵ
√
1− γ. (3.31)

Therefore, we obtain the following generalization bound:

L(ŵOLS)−
σ2

1− γ
≲ σ2

(
log(36/δ)

n

)1/4

. (3.32)

Proof. By Lemma 52, we can pick

F (w) =
(√

d+ 2
√

log(4/δ′)
)∥∥∥Σ1/2(w∗ − w)

∥∥∥
2

=
(√

d+ 2
√

log(4/δ′)
)√

L(w)− σ2.

Let δ′ = δ/9 and replace δ by δ/3 in Theorem 20, plug in the estimates from Lemma 69 using

confidence level δ/9, then by a union bound with γ = d
n and ϵ =

√
log(36/δ)

n , we have

√
L̂(ŵOLS) ≤ σ

√
1− γ + 2σϵ (D.12)
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and the bound (3.24) becomes

L(w) ≤ (1 + 14ϵ)

(√
L̂(w) + (

√
γ + 2ϵ)

√
L(w)− σ2

)2

.

We can simplify this by expanding the square

(1 + 14ϵ)−1L(w) ≤ L̂(w) + (
√
γ + 2ϵ)2(L(w)− σ2) + 2(

√
γ + 2ϵ)

√
L̂(w)

√
L(w)− σ2.

Rearranging, we arrive at

[
(1 + 14ϵ)−1 − (

√
γ + 2ϵ)2

]
(L(w)− σ2)

≤ L̂(w)− (1 + 14ϵ)−1σ2 + 2(
√
γ + 2ϵ)

√
L̂(w)

√
L(w)− σ2.

Note that this is a quadratic equation in terms of
√
L(w)− σ2

(L(w)− σ2)− 2
(
√
γ + 2ϵ)

√
L̂(w)

(1 + 14ϵ)−1 − (
√
γ + 2ϵ)2

√
L(w)− σ2 ≤ L̂(w)− (1 + 14ϵ)−1σ2

(1 + 14ϵ)−1 − (
√
γ + 2ϵ)2

.

We can complete the square, which leads to the following

√L(w)− σ2 −
(
√
γ + 2ϵ)

√
L̂(w)

(1 + 14ϵ)−1 − (
√
γ + 2ϵ)2

2

≤ (1 + 14ϵ)−1

(1 + 14ϵ)−1 − (
√
γ + 2ϵ)2

(
L̂(w)

(1 + 14ϵ)−1 − (
√
γ + 2ϵ)2

− σ2

)

Observe that (1 + 14ϵ)−1 − (
√
γ + 2ϵ)2 = 1− γ −O(ϵ) and so

√
γ

1− γ
≤

(
√
γ + 2ϵ)

(1 + 14ϵ)−1 − (
√
γ + 2ϵ)2

≤
√
γ

1− γ
+O(ϵ).

We can handle the other terms similarly. Plugging in (D.12) concludes the proof.
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Lemma 70. Let w∗, w be arbitrary vectors with w∗ ̸= 0, let V be the (one-dimensional) span of

w∗, and let PV be the orthogonal projection onto V . Then for any vector x,

⟨w − w∗, x⟩ ≤ ∥w − w∗∥2 · ∥PV x∥2 + ∥x∥2

√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

.

Proof. Observe that by expanding the square, we have

∥w − w∗∥22 = ∥w∥22 + ∥w∗∥22 − 2⟨PV w,w∗⟩

and so rearranging gives the Parallelogram identity

∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22 = 2⟨PV w,w∗⟩.

Taking absolute value of both sides and using that PV w and w∗ are colinear gives

∣∣∣∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22
∣∣∣ = 2∥PV w∥2∥w∗∥2.

Combining this with the Pythagorean Theorem, we find

∥PV ⊥w∥22 = ∥w∥22 − ∥PV w∥22 = ∥w∥22 −

(∣∣∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22
∣∣

2∥w∗∥

)2

.

Thus, applying the Cauchy-Schwarz inequality

⟨w − w∗, x⟩ = ⟨PV (w − w∗), x⟩+ ⟨PV ⊥w, x⟩

≤ ⟨PV (w − w∗), x⟩+ ∥PV ⊥w∥2∥x∥2
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and plugging in the identity for ∥PV ⊥w∥2 gives

⟨w − w∗, x⟩ ≤ ⟨w − w∗, PV x⟩+ ∥x∥2

√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

≤ ∥w − w∗∥2 · ∥PV x∥2 + ∥x∥2

√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

.

which is the desired inequality.

Lemma 71. Under the assumptions of Theorem 20 with γ = d/n > 1 and the further assump-

tion that the data has isotropic covariance Σ = Id, there exists ϵ ≲
√

log(18/δ)
n such that with

probability at least 1− δ, we have

∥w − w∗∥22 + σ2 ≤ (1 + ϵ)

√L̂(w) +
√
γ ·

√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22


2

.

Proof. Observe that ⟨w∗,x⟩
∥w∗∥2

∼ N (0, 1) and so by a standard Gaussian tail bound, Lemma 52 and a

union bound, with probability at least 1− δ, it holds that

∥PV x∥2 =

∥∥∥∥∥w∗(w∗)T

∥w∗∥22
x

∥∥∥∥∥
2

=
|⟨w∗, x⟩|
∥w∗∥2

≤
√

2 log(6/δ)

and ∥x∥2 ≤
√
d+ 2

√
log(6/δ).

Combining Lemma 70 with Theorem 20 and another union bound gives

1√
1 + β1

√
∥w − w∗∥22 + σ2

≤
√
L̂(w) + ∥w − w∗∥2

√
2 log(18/δ)

n

+

(√
d

n
+ 2

√
log(18/δ)

n

)√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

.
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Using the fact that ∥w − w∗∥2 ≤
√

∥w − w∗∥22 + σ2 and d > n, we have

(
1 + 2

√
log(18/δ)

n

)−1(
1√

1 + β1
−
√

2 log(18/δ)

n

)√
∥w − w∗∥22 + σ2

≤
√
L̂(w) +

√
γ ·

√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

.

To simplify, there exists ϵ ≲
√

log(18/δ)
n such that

1√
1 + ϵ

√
∥w − w∗∥22 + σ2 ≤

√
L̂(w) +

√
γ ·

√√√√∥w∥22 −
(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

.

and rearranging concludes the proof.

The generalization bound from Lemma 71 holds for all w; we now show what happens when

we specialize it to interpolators.

Theorem 25. Under the model assumptions in (4.2) with γ = d/n > 1 and Σ = Id, there exists

ϵ ≲
(
log(18/δ)

n

)1/2
such that with probability at least 1− δ, the following holds uniformly over all

w such that L̂(w) = 0:

∣∣∣∣L(w)− [σ2 + ∥w∥22 +
(
1− 2

(1 + ϵ)γ

)
∥w∗∥22

]∣∣∣∣
≤2∥w∗∥2

√√√√(1− 1

γ

)(
∥w∥22 −

∥w∗∥22
γ

)
− σ2

γ
+ 3ϵ∥w∥22.

(3.33)

Proof. By Lemma 71, there exists some ϵ ≲
√

log(18/δ)
n such that with probability at least 1 − δ,
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for all w such that L̂(w) = 0 it holds that

∥w − w∗∥22 + σ2

≤ (1 + ϵ)γ

(
∥w∥22 −

(
∥w∥22 + ∥w∗∥22 − ∥w − w∗∥22

)2
4∥w∗∥22

)

= (1 + ϵ)γ

(
∥w∥22 −

(∥w∥22 + ∥w∗∥22)
2 − 2(∥w∥22 + ∥w∗∥22)∥w − w∗∥22 + ∥w − w∗∥42

4∥w∗∥22

)

Rearranging, we have

4∥w∗∥22 ·
∥w − w∗∥22 + σ2

(1 + ϵ)γ

≤ 4∥w∗∥22 · ∥w∥
2 − (∥w∥22 + ∥w∗∥22)

2 + 2(∥w∥22 + ∥w∗∥22)∥w − w∗∥22 − ∥w − w∗∥42

Grouping the terms with ∥w − w∗∥22, we see that

∥w − w∗∥42 +

(
4∥w∗∥22
(1 + ϵ)γ

− 2(∥w∥22 + ∥w∗∥22)

)
· ∥w − w∗∥22 + 4∥w∗∥22 ·

σ2

(1 + ϵ)γ

≤ 4∥w∗∥22 · ∥w∥
2 − (∥w∥22 + ∥w∗∥22)

2

which is equivalent to

∥w − w∗∥42 − 2

(
∥w∥22 +

(
1− 2

(1 + ϵ)γ

)
∥w∗∥22

)
· ∥w − w∗∥22

+(∥w∥22 − ∥w∗∥22)
2 + 4∥w∗∥22 ·

σ2

(1 + ϵ)γ
≤ 0.
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To complete the square, we compute

(
∥w∥22 +

(
1− 2

(1 + ϵ)γ

)
∥w∗∥22

)2

− (∥w∥22 − ∥w∗∥22)
2 − 4∥w∗∥22 ·

σ2

(1 + ϵ)γ

=

(
4

(1 + ϵ)2γ2
− 4

(1 + ϵ)γ

)
∥w∗∥42 + 4

(
1− 1

(1 + ϵ)γ

)
∥w∥22∥w

∗∥22 − 4∥w∗∥22 ·
σ2

(1 + ϵ)γ

=4∥w∗∥22

[(
1− 1

(1 + ϵ)γ

)(
∥w∥22 −

∥w∗∥22
(1 + ϵ)γ

)
− σ2

(1 + ϵ)γ

]

≤4∥w∗∥22

[(
1 + ϵ− 1

γ

)(
∥w∥22 + ϵ∥w∥22 −

∥w∗∥22
γ

)
− σ2

γ

]

where in the last step we use (1 + ϵ)2 ≥ 1 and σ2(1+ϵ)
γ ≥ σ2

γ . To simplify, it is routine to check

that

(
1 + ϵ− 1

γ

)(
∥w∥22 + ϵ∥w∥22 −

∥w∗∥22
γ

)
−
(
1− 1

γ

)(
∥w∥22 −

∥w∗∥22
γ

)
≤ 3ϵ∥w∥22

and so we can conclude that

∣∣∣∣∥w − w∗∥22 −
[
∥w∥22 +

(
1− 2

(1 + ϵ)γ

)
∥w∗∥22

]∣∣∣∣
≤ 2∥w∗∥2

√√√√(1− 1

γ

)(
∥w∥22 −

∥w∗∥22
γ

)
− σ2

γ
+ 3ϵ∥w∥22.

as desired.

Theorem 26. Under the model assumptions in (4.2) with γ = d/n > 1 and Σ = Id, there exists

ϵ ≲
(
log(40/δ)

n

)1/2
such that with probability at least 1− δ, it holds that

min
w:Xw=Y

∥w∥22 ≤ (1 + ϵ)

(
∥w∗∥22
γ

+
σ2

γ − 1

)
. (3.34)
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Thus, by Theorem 25, we have

L(ŵ)−
[(

1− 1

γ

)
∥w∗∥22 + σ2

γ

γ − 1

]

≤ ϵ

(
∥w∗∥22
γ

+
σ2

γ − 1

)
+ ∥w∗∥2

√√√√ϵ

(
∥w∗∥22
γ

+
σ2

γ − 1

) (3.35)

where ŵ is the minimal-ℓ2 norm interpolator. If we fix σ2, γ and ∥w∗∥2, then as n→ ∞

L(ŵ) →
(
1− 1

γ

)
∥w∗∥22 + σ2

γ

γ − 1
in probability. (3.36)

Proof. The proof strategy here follows the same lines as in Theorem 2 of Koehler et al. [33], but

handles the w∗ term more carefully. First, we introduce the Lagrangian and apply a change of

variable

min
Xw=Y

∥w∥2 = min
w

max
λ

⟨λ,Xw − Y ⟩+ ∥w∥2

= min
w

max
λ

⟨λ,Xw − ξ⟩+ ∥w + w∗∥2

To apply CGMT (Theorem 45), we need a double truncation argument. For any r, t > 0, introduce

the following problem:

Φr(t) = min
∥w+w∗∥2≤2t

max
∥λ∥≤r

⟨λ,Xw − ξ⟩+ ∥w + w∗∥2. (D.13)

We also introduce

Φ(t) = min
∥w+w∗∥2≤2t

max
λ

⟨λ,Xw − ξ⟩+ ∥w + w∗∥2

= min
Xw=ξ

∥w+w∗∥2≤2t

∥w + w∗∥2
(D.14)

and claim that Φr(t) → Φ(t) as r → ∞. By definition, Φr(t) ≤ Φs(t) for r ≤ s. We consider two
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cases:

1. Φ(t) = ∞, i.e. the minimization problem defining Φ(t) is infeasible. In this case, we know

that for all ∥w + w∗∥2 ≤ 2t

∥Xw − ξ∥2 > 0.

By compactness, there exists µ = µ(X, ξ) > 0 (in particular, independent of r) such that

∥Xw − ξ∥2 ≥ µ.

Therefore, considering λ along the direction of Xw − ξ shows that

Φr(t) = min
∥w+w∗∥2≤2t

max
∥λ∥2≤r

⟨λ,Xw − ξ⟩+ ∥w + w∗∥2 ≥ rµ

so Φr(t) → ∞ as r → ∞.

2. Otherwise Φ(t) < ∞, i.e. the minimization problem defining Φ(t) is feasible. In this case,

we can let w(r) be an arbitrary minimizer achieving the objective Φr(t) for each r ≥ 0 by

compactness. By compactness again, the sequence {w(r)}∞r=1 at positive integer values of

r has a subsequential limit w(∞) such that ∥w(∞) + w∗∥ ≤ 2t. Equivalently, there exists

an increasing sequence rn such that limn→∞w(rn) = w(∞).

Suppose for the sake of contradiction that Xw(∞) ̸= ξ, then by continuity, there exists

µ > 0 and a sufficiently small ϵ > 0 such that for all ∥w − w(∞)∥2 ≤ ϵ

∥Xw − ξ∥2 ≥ µ.

This implies that for sufficiently large n, we have

∥Xw(rn)− ξ∥2 ≥ µ
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and by the same argument as in the previous case

Φrn(t) = max
∥λ∥2≤r

⟨λ,Xw(rn)− ξ⟩+ ∥w(rn) + w∗∥2 ≥ rµ

so Φrn → ∞, but this is impossible since Φr(t) ≤ Φ(t) < ∞. By contradiction, it must be

the case that Xw(∞) = ξ. By taking λ = 0 in the definition of Φr(t), we have

Φrn(t) ≥ ∥w(rn) + w∗∥2.

By continuity, we show that

lim inf
n→∞

Φrn(t) ≥ lim
n→∞

∥w(rn) + w∗∥2 = ∥w(∞) + w∗∥2 ≥ Φ(t).

Since Φrn(t) ≤ Φ(t), the limit of Φrn(t) exists and equals Φ(t). We can conclude that

limr→∞Φr(t) = Φ(t) because Φr(t) is an increasing function of r.

In both cases, we have Φr(t) → Φ(t) as r → ∞. The auxiliary problem corresponding to Φr(t) is

ϕr(t) = min
∥w+w∗∥2≤2t

max
∥λ∥2≤r

∥λ∥⟨H,w⟩+ ∥w∥⟨G, λ⟩ − ⟨λ, ξ⟩+ ∥w + w∗∥2 (D.15)

which is upper bounded by

ϕ(t) = min
∥w+w∗∥2≤2t

max
λ

∥λ∥⟨H,w⟩+ ∥w∥⟨G, λ⟩ − ⟨λ, ξ⟩+ ∥w + w∗∥2

= min
⟨H,w⟩+∥G∥w∥−ξ∥≤0

∥w+w∗∥2≤2t

∥w + w∗∥2.
(D.16)

Applying CGMT and the fact that Φr(t) monotonically increases to Φ(t) almost surely, we can
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conclude

Pr

(
min

Xw=Y
∥w∥2 > t | ξ

)
= Pr (Φ(t) > t | ξ) = Pr

(
lim
r→∞

Φr(t) > t | ξ
)

≤ lim
r→∞

Pr (Φr(t) > t | ξ)

≤ 2 · lim
r→∞

Pr (ϕr(t) > t | ξ)

≤ 2 · Pr (ϕ(t) > t | ξ) = 2 · Pr

(
min

⟨H,w⟩+∥G∥w∥−ξ∥≤0
∥w + w∗∥2 > t | ξ

)

By tower law, we have shown that

Pr

(
min

Xw=Y
∥w∥2 > t

)
≤ 2 · Pr

(
min

∥G∥w∥−ξ∥≤⟨H,w⟩
∥w + w∗∥2 > t

)
.

To upper bound the minimum, we consider w of the form αw∗ + βPH where P = I − w∗(w∗)T

∥w∗∥2 .

For the simplicity of notation, define

ϵ = 2

√
log(40/δ)

n
and ρ =

√
1

n
+ 2

√
log(20/δ)

n
.

By a union bound, the following collection of events occurs with probability at least 1− δ/2:

1. By Lemma 51, it holds that

|⟨ξ,G⟩| ≤ ρ∥ξ∥ · ∥G∥

2. By Lemma 52, it holds that

(1− ϵ)σ
√
n ≤ ∥ξ∥ ≤ (1 + ϵ)σ

√
n

(1− ϵ)
√
n ≤ ∥G∥ ≤ (1 + ϵ)

√
n(√

d− 1

n
− ϵ

)
√
n ≤ ∥PH∥ ≤

(√
d− 1

n
+ ϵ

)
√
n
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3. By standard Gaussian tail bound, it holds that

|⟨H,w∗⟩| ≤ ∥w∗∥ϵ
√
n

The above bounds imply that

∥G∥w∥ − ξ∥2 = ∥G∥2∥w∥2 + ∥ξ∥2 − 2∥w∥⟨G, ξ⟩

≤ (1 + ρ)(∥G∥2∥w∥2 + ∥ξ∥2)

≤ (1 + ρ)(1 + ϵ)2n(∥w∥2 + σ2).

By orthogonality, observe that

∥w∥2 = α2∥w∗∥2 + β2∥PH∥2

⟨H,w⟩ = α⟨H,w∗⟩+ β∥PH∥2,

and so to ensure that ∥G∥w∥ − ξ∥ ≤ ⟨H,w⟩, we can choose β such that

(1 + ρ)1/2(1 + ϵ)
√
n(α2∥w∗∥2 + β2∥PH∥2 + σ2) + α∥w∗∥ϵ

√
n ≤ β∥PH∥2.

Note that it suffices to have

(1 + ρ)1/2(1 + 2ϵ)
√
n(α2∥w∗∥2 + β2∥PH∥2 + σ2) ≤ β∥PH∥2

⇐⇒ α2
∥w∗∥2

(1 + ρ)−1(1 + 2ϵ)−2 ∥PH∥2
n − 1

+
σ2

(1 + ρ)−1(1 + 2ϵ)−2 ∥PH∥2
n − 1

≤ β2∥PH∥2

Again, by orthogonality, we have

∥w + w∗∥2 = (1 + α)2∥w∗∥2 + β2∥PH∥2
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and so

min
∥G∥w∥−ξ∥≤⟨H,w⟩

∥w + w∗∥2

≤ σ2

(1 + ρ)−1(1 + 2ϵ)−2 ∥PH∥2
n − 1

+ min
α

(1 + α)2∥w∗∥2 + α2
∥w∗∥2

(1 + ρ)−1(1 + 2ϵ)−2 ∥PH∥2
n − 1

=
σ2

(1 + ρ)−1(1 + 2ϵ)−2 ∥PH∥2
n − 1

+
∥w∗∥2

(1 + ρ)−1(1 + 2ϵ)−2 ∥PH∥2
n

Finally, we can plug in the high probability lower bound for ∥PH∥
√
n and the proof is complete

after some routine calculations.

Theorem 27. Using the notation of Theorem 24, we have with probability at least 1 − δ that for

all w with ∥w∥1 ≤ ∥w∗∥1,

∣∣∣∣∣∣
√
L(w)− σ2 −

√
γL̂(w)

(1− γ)2

∣∣∣∣∣∣ ≤ ϵ

√
L̂(w) +

√√√√ 1

1− γ

(
L̂(w)

1− γ
− σ2

)
+ ϵL̂(w) (3.37)

provided γ + 2ϵ/
√
n < 1, where

K′ := {u : ∥w∗ + u∥1 ≤ ∥w∗∥1} and γ :=
1

n
·W (K′ ∩ Sn−1)2.

Proof. We use that for K′ := {u : ∥w∗ + u∥1 ≤ ∥w∗∥1}

⟨w∗ − w, x⟩ ≤ ∥w∗ − w∥ sup
u∈K′∩Sn−1

⟨u, x⟩

where Sn−1 is the unit sphere. Recall that ω := W (K′ ∩ Sn−1) denotes the Gaussian width

of the intersection of the tangent cone K′ with the unit sphere. Let ϵ = Θ
(
log(36/δ)

n

)1/2
as in
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Theorem 24, then with this notation Theorem 20 gives

σ2 + ∥w∗ − w∥22 ≤ (1 + β)

(√
L̂(w) + ∥w∗ − w∥2(ω + 2ϵ)/

√
n

)2

≤ (1 + 14ϵ)

(√
L̂(w) + ∥w∗ − w∥2(ω + 2ϵ)/

√
n

)2

.

This is a quadratic equation in ∥w∗ − w∥2 which is of exactly the same form as the quadratic

equation that arose in the analysis of Ordinary Least Squares (proof of Theorem 24), if we define

γ = ω2/n. So solving the quadratic equation in the exact same way, we find that under the

assumption γ + 2ϵ/
√
n < 1 that

∣∣∣∣∣∣
√
L(w)− σ2 −

√
γL̂(w)

(1− γ)2

∣∣∣∣∣∣ ≤ ϵ

√
L̂(w) +

√√√√ 1

1− γ

(
L̂(w)

1− γ
− σ2

)
+ ϵL̂(w). (D.17)

Theorem 29. Under the model assumptions, fix γ = d/n to be some value in (0, 1) and pick any

c > 0. Then there exists another absolute constant c′ > 0 such that for all sufficiently large n, with

probability at least 1− δ, there exists a w ∈ Rd such that

L̂(w)− L̂(ŵOLS) ≤ c · σ2

n1/2
, (3.38)

but the population error satisfies

L(w)− L(ŵOLS) ≥ c′ · σ2

n1/4
. (3.39)

Proof. Consider the following estimator:

wα = w∗ + α (ŵOLS − w∗)

= w∗ + α(XTX)−1XT ξ
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Then the training error is

L̂(wα) =
1

n
∥Y −Xwα∥2 =

1

n
∥ξ − αX(XTX)−1XT ξ∥2

=
1

n
∥
(
I −X(XTX)−1XT

)
ξ + (1− α)X(XTX)−1XT ξ∥2

=
1

n
∥
(
I −X(XTX)−1XT

)
ξ∥2 + (1− α)2

1

n
∥X(XTX)−1XT ξ∥2

= L̂(ŵOLS) + (1− α)2 ∥ŵOLS − w∗∥2
Σ̂

With probability at least 1− δ, it holds that

∥ŵOLS − w∗∥2
Σ̂
≤ σ2

(
√
γ + 2

√
log(4/δ)

n

)2

which can again be upper bounded by, for example, 4σ2γ for a sufficiently large n. Therefore, we

can let

(1− α)24σ2γ = c · σ
2

√
n

and it suffices to pick

α = 1 +

√
c

4γ
· 1

n1/4
.

So if we define c′ = 2
√

c
4γ , then the excess error of wα satisfies

L(wα)− σ2 = ∥Σ1/2(wα − w∗)∥2

= α2∥Σ1/2(ŵOLS − w∗)∥2

≥
(
1 +

c′

n1/4

)
· L(ŵOLS).

The last inequality follows from the fact that L(ŵOLS) ≥ σ2.
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Theorem 30. Under the model assumptions in (4.2) with d ≤ n, consider the ordinary least square

estimator ŵOLS = (XTX)−1XTY . It holds that

EL(ŵOLS) = σ2
n− 1

n− d− 1

Var(L(ŵOLS)) = 2σ4
d(n− 1)

(n− d− 1)2(n− d− 3)

(3.40)

Hence as d/n→ γ, it holds that

EL(ŵOLS) →
σ2

1− γ
and

n

σ4
Var(L(ŵOLS)) →

2γ

(1− γ)3
. (3.41)

If d is held constant, as n→ ∞, we have

nE[L(ŵOLS)− σ2] → σ2d and
n2

σ4
Var(L(ŵOLS)) → 2d. (3.42)

Proof. Write X = ZΣ1/2 and recall that

L(ŵOLS)− σ2 = ∥ŵOLS − w∗∥2Σ =
∥∥∥Σ1/2(XTX)−1XT ξ

∥∥∥2
2

= ξTZ(ZTZ)−2ZT ξ.

First, we compute the expectation. By the tower law, we have

EL(ŵOLS)− σ2 = E
[
E
[
ξTZ(ZTZ)−2ZT ξ |Z

]]
= σ2ETr((ZTZ)−1)

= σ2Tr(E
[
(ZTZ)−1

]
)

Proposition 2.1 of von Rosen [72] shows that

E[(ZTZ)−1] =
1

n− d− 1
Id,
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and so

EL(ŵOLS) = σ2 + σ2
d

n− d− 1
= σ2

n− 1

n− d− 1
.

To compute the variance, by the law of total variance, we have

Var(L(ŵOLS)) = Var(L(ŵOLS)− σ2)

= EVar(ξTZ(ZTZ)−2ZT ξ |Z) + Var(E(ξTZ(ZTZ)−2ZT ξ |Z))

By the variance formula of Gaussian quadratic form, we have

Var(ξTZ(ZTZ)−2ZT ξ |Z) = 2σ4Tr((ZTZ)−2)

Proposition 2.1 of von Rosen [72] shows that

E[(ZTZ)−2] =
n− 1

(n− d)(n− d− 1)(n− d− 3)
Id,

and so

EVar(ξTZ(ZTZ)−2ZT ξ |Z) = 2σ4d(n− 1)

(n− d)(n− d− 1)(n− d− 3)
.

To compute the second term, observe that

Var(E(ξTZ(ZTZ)−2ZT ξ |Z)) = σ4Var(Tr((ZTZ)−1))

= σ4Var(vec(Id)
T vec((ZTZ)−1))

= σ4vec(Id)
T Var(vec((ZTZ)−1))vec(Id)

Proposition 2.1 of von Rosen [72] shows that

Var(vec((ZTZ)−1)) =
Id2 +

∑
i,j(ei ⊗ ej)(e

T
j ⊗ eTi )

(n− d)(n− d− 1)(n− d− 3)
+ 2

vec(Id)vec(Id)T

(n− d)(n− d− 1)2(n− d− 3)
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and so

1

σ4
Var(E(ξTZ(ZTZ)−2ZT ξ |Z))

=
2d

(n− d)(n− d− 1)(n− d− 3)
+

2d2

(n− d)(n− d− 1)2(n− d− 3)

=
2d(n− 1)

(n− d)(n− d− 1)2(n− d− 3)
.

Finally, we have shown that

Var(L(ŵOLS)) = 2σ4
d(n− 1)

(n− d− 1)2(n− d− 3)
.

Theorem 31. Under the model assumptions in (4.2) with d ≤ n, consider the ordinary least

square estimator ŵOLS = (XTX)−1XTY and denote γ = d/n. Assume that γ ≤ 0.999, then

with probability at least 1− δ, it holds that

L(ŵOLS)−
σ2

1− γ
≲ σ2

√
γ log(36/δ)

n
.

Proof. We are interested in the excess risk:

L(ŵOLS)− σ2 = ∥Σ1/2(ŵOLS − w∗)∥2 = ∥(ZTZ)−1ZT ξ∥2.

Notice that

∥(ZTZ)−1ZT ξ∥2 =
(
(ZTZ)−1/2ZT ξ

)T
(ZTZ)−1

(
(ZTZ)−1/2ZT ξ

)

and we have the following equality:

bT (ZTZ)−1b = max
u

−∥Zu∥2 + 2⟨u, b⟩

= max
u

min
v

∥v∥2 + 2⟨v, Zu⟩+ 2⟨u, b⟩.
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We can plug in (ZTZ)−1/2ZT ξ into b. The b term may seem a bit complicated, but the key

observation is that conditioned on Z, the distribution of (ZTZ)−1/2ZT ξ ∼ N (0, σ2Id) ac-

tually does not depend on Z, and so they are independent. Therefore, we can condition on

b = (ZTZ)−1/2ZT ξ and the law of Z remains unchanged. To apply Theorem 45, we need use a

truncation argument. Define the truncated problem as

Φr = max
∥u∥≤r

min
v

∥v∥2 + 2⟨v, Zu⟩+ 2⟨u, b⟩, (D.18)

then by Theorem 47, we have

Pr
(
L(ŵOLS)− σ2 > t | (ZTZ)−1/2ZT ξ = b

)
=Pr

(
lim
r→∞

Φr > t
)
≤ lim

r→∞
Pr (Φr > t) .

Given u, the minimizer v = −Zu satisfies ∥v∥ ≤ r∥Z∥ and so for any M > 0, we have

Pr (Φr > t) ≤ Pr

(
max
∥u∥≤r

min
∥v∥≤rM

∥v∥2 + 2⟨v, Zu⟩+ 2⟨u, b⟩ > t

)
+ Pr(∥Z∥ ≥M)

≤ 2Pr

(
max
∥u∥≤r

min
∥v∥≤rM

∥v∥2 + 2∥v∥⟨H, u⟩+ 2∥u∥⟨G, v⟩+ 2⟨u, b⟩ > t

)

+ Pr(∥Z∥ ≥M)

= 2Pr

(
max
∥u∥≤r

min
∥v∥≤rM

∥v∥2 + 2∥v∥ (⟨H, u⟩ − ∥G∥∥u∥) + 2⟨u, b⟩ > t

)

+ Pr(∥Z∥ ≥M)

by Gaussian minimax theorem. On the event that ∥G∥ ≥ ∥H∥, the minimizer is

∥v∥ = ∥G∥∥u∥ − ⟨H, u⟩ ≥ (∥G∥ − ∥H∥)∥u∥ > 0.
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At the same time, we have ∥v∥ ≤ r(∥G∥+ ∥H∥) and so

Pr (Φr > t) ≤ 2Pr

(
max
∥u∥≤r

2⟨u, b⟩ − (⟨H, u⟩ − ∥G∥∥u∥)2 > t, ∥G∥ > ∥H∥

)

+ 2Pr(∥G∥ ≤ ∥H∥) + 2Pr(∥G∥+ ∥H∥ ≥M) + Pr(∥Z∥ ≥M).

As the max over {u : ∥u∥ ≤ r} is always smaller than the overall max, taking M → ∞, we have

Pr (Φr > t) ≤ 2Pr
(
max
u

2⟨u, b⟩ − (∥G∥∥u∥ − ⟨H, u⟩)2 > t, ∥G∥ > ∥H∥
)
+2Pr(∥G∥ ≤ ∥H∥)

Observe that any u can be decomposed into two parts: one part spanned by b and the other part

in the orthogonal complement of b. Formally, we write u = αb + k where ⟨k, b⟩ = 0, and the

problem becomes

max
α∈R,⟨k,b⟩=0

2α∥b∥2 −
(
∥G∥ ·

√
α2∥b∥2 + ∥k∥2 − ⟨H, k⟩ − α⟨H, b⟩

)2

.

Define P = Id − bbT

∥b∥2 . On the event that ∥G∥ > ∥H∥, the quantity inside the square is always

positive and so we want to choose the direction of k that make ⟨H, k⟩ as large as possible:

max
α∈R

2α∥b∥2 − min
⟨k,b⟩=0

(
∥G∥ ·

√
α2∥b∥2 + ∥k∥2 − ⟨H, k⟩ − α⟨H, b⟩

)2

=max
α∈R

2α∥b∥2 −

(
min

⟨k,b⟩=0
∥G∥ ·

√
α2∥b∥2 + ∥k∥2 − ⟨H, k⟩ − α⟨H, b⟩

)2

=max
α∈R

2α∥b∥2 −
(
min
β≥0

∥G∥ ·
√
α2∥b∥2 + β2 − β∥PH∥ − α⟨H, b⟩

)2

=max
α∈R

2α∥b∥2 −
(
|α| · ∥b∥

√
∥G∥2 − ∥PH∥2 − α⟨H, b⟩

)2

≤max
α∈R

2α∥b∥2 − α2∥b∥2
(√

∥G∥2 − ∥PH∥2 − |⟨H, b⟩|
∥b∥

)2

=
∥b∥2(√

∥G∥2 − ∥PH∥2 − |⟨H,b⟩|
∥b∥

)2
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By the tower law, we have shown that

Pr

(
L(ŵOLS)− σ2 >

∥b∥2

t

)
≤2Pr (∥G∥ ≤ ∥H∥) + 2Pr

(√
∥G∥2 − ∥PH∥2 − |⟨H, b⟩|

∥b∥
<

√
t, ∥G∥ > ∥H∥

)
=2Pr

(
∥G∥ ≤ ∥H∥ or

√
∥G∥2 − ∥PH∥2 − |⟨H, b⟩|

∥b∥
<

√
t, ∥G∥ > ∥H∥

)

For the simplicity of notation, denote

ϵ = 2

√
log(32/δ)

n
.

By a union bound, with probability at least 1− δ/2, the following occurs:

1. by Lemma 52 and the fact that b ∼ N (0, σ2Id), it holds that

∥G∥2 ≥ n(1− ϵ)2

∥PH∥2 ≤ n(
√
γ + ϵ)2 and ∥b∥2 ≤ σ2n(

√
γ + ϵ)2

2. As ⟨H,b⟩
∥b∥ ∼ N (0, 1), by standard Gaussian concentration, it holds that

|⟨H, b⟩|
∥b∥

≤ ϵ
√
n

Therefore, for sufficiently large n, we have ∥G∥ > ∥H∥ and we can pick t by setting

√
t =

√
n(1− ϵ)2 − n(

√
γ + ϵ)2 − ϵ

√
n
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and so with probability at least 1− δ, we have

L(ŵOLS)− σ2 ≤
σ2(

√
γ + ϵ)2(√

(1− ϵ)2 − (
√
γ + ϵ)2 − ϵ

)2 .
It is then routine to check the desired bound.

D.5 Proofs for Section 3.6

Theorem 32. Suppose that d1d2 > n, then there exists some ϵ ≲
√

log(32/δ)
n + n

d1d2
such that

with probability at least 1− δ, it holds that

min
∀i∈[n],⟨Ai,X⟩=yi

∥X∥∗ ≤ ∥X∗∥∗ + (1 + ϵ)

√
nσ2

d1 ∨ d2
. (3.44)

Proof. Without loss of generality, we will assume that d1 ≤ d2. We will vectorize the measurement

matrices and estimator A1, ..., An, X ∈ Rd1×d2 as a1, ..., an, x ∈ Rd1d2 and define ∥x∥∗ = ∥X∥∗.

Denote A = [a1, ..., an]
T ∈ Rn×d1d2 . We define the primary problem Φ by

min
∀i∈[n],⟨Ai,X⟩=ξ

∥X∥∗ = min
Ax=ξ

∥x∥∗

= min
x

sup
λ

⟨λ,Ax− ξ⟩+ ∥x∥∗ := Φ.

(D.19)

Next, we define the truncation problem by

Φr := min
∥x∥2≤r

sup
λ

⟨λ,Ax− ξ⟩+ ∥x∥∗ (D.20)

Φr,s := min
∥x∥2≤r

sup
∥λ∥2≤s

⟨λ,Ax− ξ⟩+ ∥x∥∗. (D.21)
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The corresponding auxiliary problems are

Ψr,s := min
∥x∥2≤r

sup
∥λ∥2≤s

∥λ∥2⟨H, x⟩+ ∥x∥2⟨G, λ⟩ − ⟨λ, ξ⟩+ ∥x∥∗

= min
∥x∥2≤r

sup
0≤λ≤s

λ (⟨H, x⟩+ ∥G∥x∥2 − ξ∥2) + ∥x∥∗
(D.22)

and the limit as s→ ∞ and then the limit as r → ∞

Ψr := min
∥x∥2≤r

∥G∥x∥2−ξ∥2≤−⟨H,x⟩

∥x∥∗ (D.23)

Ψ := min
∥G∥x∥2−ξ∥2≤−⟨H,x⟩

∥x∥∗. (D.24)

By the same argument used in the proof of Theorem 26, it holds that Pr(Φ > t) ≤ 2Pr(Ψ ≥ t)

and so it suffices to analyze the auxiliary problem. We will pick x of the form x = −αH for some

α ≥ 0, which needs to satisfy α∥H∥22 ≥ ∥αG∥H∥2− ξ∥2. By a union bound, the following events

occur simultaneously with probability at least 1− δ/2:

1. by Lemma 52, it holds that

∥G∥2 ≤
√
n+ 2

√
log(32/δ)

∥ξ∥2
σ

≤
√
n+ 2

√
log(32/δ)

∥H∥2 ≤
√
d1d2 + 2

√
log(32/δ)

2. Condition on ξ, we have 1
∥ξ∥⟨G, ξ⟩ ∼ N (0, 1) and so by standard Gaussian tail bound

Pr(|Z| > t) ≤ 2e−t2/2

|⟨G, ξ⟩|
∥ξ∥

≤
√

2 log(16/δ)
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Then we can use AM-GM inequality to show for sufficiently large n

∥αG∥H∥2 − ξ∥22

=α2∥G∥22∥H∥22 + ∥ξ∥2 − 2α∥H∥2⟨G, ξ⟩

≤nα2∥H∥22

(
1 + 2

√
log(32/δ)

n

)2

+ ∥ξ∥2 + 2
√
nα∥H∥2∥ξ∥2

√
2 log(16/δ)

n

≤nα2∥H∥22

(
1 + 10

√
log(32/δ)

n

)
+

(
1 +

√
2 log(16/δ)

n

)
∥ξ∥22

and it suffices to let

α2∥H∥42 ≥ nα2∥H∥22

(
1 + 10

√
log(32/δ)

n

)
+

(
1 +

√
2 log(16/δ)

n

)
∥ξ∥22.

Rearranging the above inequality, we can choose

α =

 1 + 10

√
log(32/δ)

n

1− n
d1d2

(
1 + 10

√
log(32/δ)

n

)(
1 + 2

√
log(32/δ)

d1d2

)2


1/2

√
nσ2

∥H∥22

and since H as a matrix can have at most rank d1, by Cauchy-Schwarz inequality on the singular

values of H , we have ∥H∥∗ ≤
√
d1∥H∥2 and

∥x∥∗ = α∥H∥∗ ≤ α
√
d1∥H∥2 ≤ (1 + ϵ)

√
d1(nσ2)

d1d2
= (1 + ϵ)

√
nσ2

d2

for some ϵ ≲
√

log(32/δ)
n + n

d1d2
.
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Theorem 33. Fix any δ ∈ (0, 1). There exist constants c1, c2, c3 > 0 such that if d1d2 > c1n,

d2 > c2d1, n > c3r(d1 + d2), then with probability at least 1− δ that

∥X̂ −X∗∥2F
∥X∗∥2F

≲
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X∗∥F
+

(√
d1
d2

+
n

d1d2

)
σ2

∥X∗∥2F
. (3.45)

Proof. Note that ⟨A,X∗⟩ ∼ N (0, ∥X∗∥2F ) and so by the standard Gaussian tail bound Pr(|Z| ≥

t) ≤ 2e−t2/2, Theorem 53 and a union bound, it holds with probability at least 1− δ/8 that

|⟨A,X∗⟩| ≤
√

2 log(32/δ)∥X∗∥F

∥A∥op ≤
√
d1 +

√
d2 +

√
2 log(32/δ).

Therefore, we can choose F in Theorem 20 by

⟨X −X∗, A⟩ ≤ ∥A∥op∥X∥∗ + |⟨A,X∗⟩|

≤
(√

d1 +
√
d2 +

√
2 log(32/δ)

)
∥X∥∗ +

√
2 log(32/δ)∥X∗∥F := F (X).

Applying Theorem 20, we have

σ2 + ∥X̂ −X∗∥2F = L(X̂) ≤ (1 + β1)
F (X̂)2

n

Moreover, since X∗ has rank r and so ∥X∗∥∗ ≤
√
r∥X∗∥F , we use Theorem 32 to show

∥X̂∥∗ ≤
√
r∥X∗∥F + (1 + ϵ)

√
nσ2

d2
.

To control F (X̂), observe that

(√
d1 +

√
d2 +

√
2 log(32/δ)

)√
r∥X∗∥F +

√
2 log(32/δ)∥X∗∥F

≤
(
2
√
r(d1 + d2) + (1 +

√
r)
√
2 log(32/δ)

)
∥X∗∥F
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and so we have

F (X̂)√
n

≤

(
2

√
r(d1 + d2)

n
+ (1 +

√
r)

√
2 log(32/δ)

n

)
∥X∗∥F

+

(
1 +

√
d1
d2

+

√
2 log(32/δ)

d2

)
(1 + ϵ)σ.

The desired conclusion follows by plugging in the above estimates and some rearrangements.
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APPENDIX E

PROOFS FOR SECTION 4

In this appendix, we will first prove Theorem 41, which immediately implies Theorem 36 as a

special case, and then Theorem 37 and its applications.

Notation. We consider the general setting introduced in Section 4.5. Following the tradition in

statistics, we denote X = (x1, ..., xn)
T ∈ Rn×d as the design matrix. In the proof section, we

slightly abuse the notation of ηi to mean Xw∗
i and ξ to mean the n-dimensional random vector

whose i-th component satisfies yi = g(η1,i, ..., ηk,i, ξi). We will write X = ZΣ1/2 where Z is a

random matrix with i.i.d. standard normal entries if µ = 0.

Throughout this section, we can first assume µ = 0 in Assumption (A) without loss of gener-

ality because if we define f̃ : R× Y ×Θ → R by

f̃(ŷ, y, θ) := f(ŷ + ⟨w(θ), µ⟩, y, θ), (E.1)

then by definition, it holds that

f(⟨w(θ), x⟩, y, θ) = f̃(⟨w(θ), x− µ⟩, y, θ)

and so we can apply the theory on f̃ first and then translate to the problem on f . Similarly, we

can also assume Σ1/2w∗
1, ...,Σ

1/2w∗
k are orthonormal without loss of generality. This is because

we can denote W ∈ Rd×k by W = [w∗
1, ..., w

∗
k] and let W̃ = W (WTΣW )−1/2. By definition, it

holds that W̃TΣW̃ = I and so the columns of W̃ = [w̃∗
1, ..., w̃

∗
k] satisfy Σ1/2w̃∗

1, ...,Σ
1/2w̃∗

k are

orthonormal. If we define g̃ : Rk+1 → R by

g̃(η1, ..., ηk, ξ) = g([η1, ..., ηk](W
TΣW )1/2 + µTW, ξ), (E.2)
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then y = g̃(xT W̃ , ξ) and so we can apply the theory on g̃.

E.1 Proof of Theorem 41

Lemma 72. Fix any integer k < d and any k vectorsw∗
1, ..., w

∗
k in Rd such that Σ1/2w∗

1, ...,Σ
1/2w∗

k

are orthonormal. Denoting

P = Id −
k∑

i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T , (E.3)

the distribution of X conditional on Xw∗
1 = η1, ..., Xw

∗
k = ηk is the same as that of

k∑
i=1

ηi(Σw
∗
i )

T + ZPΣ1/2. (E.4)

Proof. We can write X = ZΣ1/2. The key observation is that ZP , ZΣ1/2w∗
1, ..., ZΣ

1/2w∗
k are

independent. To see why this is the case, we can vectorize each term:



vec(ZP )

vec(ZΣ1/2w∗
1)

...

vec(ZΣ1/2w∗
k)


=



P ⊗ In

(Σ1/2w∗
1)

T ⊗ In

...

(Σ1/2w∗
k)

T ⊗ In


vec(Z)

From the above representation, we see that the joint distribution is multivariate Gaussian and the

covariance matrix is



P ⊗ In

(Σ1/2w∗
1)

T ⊗ In

...

(Σ1/2w∗
k)

T ⊗ In





P ⊗ In

(Σ1/2w∗
1)

T ⊗ In

...

(Σ1/2w∗
k)

T ⊗ In



T

= diag (P ⊗ In, In, ..., In)

167



Therefore, the distribution ofZP remains unchanged after conditioning onZΣ1/2w∗
1, ..., ZΣ

1/2w∗
k,

and we can write

Z = Z

 k∑
i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T

+ ZP

=
k∑

i=1

ηi(Σ
1/2w∗

i )
T + ZP.

The proof is concluded by the fact that X = ZΣ1/2.

The above lemma allows us to ignore the multi-index model (B) and simply treat y as deter-

ministic by a conditioning argument, while preserving the Gaussianity of the design matrix. Next,

we will write the generalization problem as a Primary Optimization problem in Gaussian Mini-

max Theorem (see Theorem 46 in Appendix A). For generality, we will let F be any deterministic

function and then choose it in the end.

Lemma 73. Fix an arbitrary set Θ ⊆ Rp and let F : Θ → R be any deterministic and continuous

function. Consider dataset (X, Y ) drawn i.i.d. from the data distribution D according to (A) and

(B) with µ = 0 and orthonormal Σ1/2w∗
1, ...,Σ

1/2w∗
k. Then conditioned onXw∗

1 = η1, ..., Xw
∗
k =

ηk and ξ, if we define

Φ := sup
(w,u,θ)∈Rd×Rn×Θ

w=PΣ1/2w(θ)

inf
λ∈Rn

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ) (E.5)

where P is defined in (E.3) and ψ is a deterministic and continuous function given by

ψ(u, θ, λ | η1, ..., ηk, ξ) = F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

+ ⟨λ,

 k∑
i=1

ηi(Σw
∗
i )

T

w(θ)− u⟩,
(E.6)
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then it holds that for any t ∈ R, we have

Pr

(
sup
θ∈Θ

F (θ)− L̂(θ) > t
∣∣∣ η1, ..., ηk, ξ) = Pr(Φ > t). (E.7)

Proof. By introducing a variable u = Xw(θ), we have

sup
θ∈Θ

F (θ)− L̂(θ) = sup
θ∈Θ

F (θ)− 1

n

n∑
i=1

f(⟨w(θ), xi⟩, yi, θ)

= sup
θ∈Θ,u∈Rn

inf
λ∈Rn

⟨λ,Xw(θ)− u⟩+ F (θ)− 1

n

n∑
i=1

f(ui, yi, θ).

Conditioned onXw∗
1 = η1, ..., Xw

∗
k = ηk and ξ, the above is only random inX by our multi-index

model assumption on y. By Lemma 72, the above is equal in law to

sup
θ∈Θ,u∈Rn

inf
λ∈Rn

⟨λ,

 k∑
i=1

ηi(Σw
∗
i )

T + ZPΣ1/2

w(θ)− u⟩+ F (θ)− 1

n

n∑
i=1

f(ui, yi, θ)

= sup
θ∈Θ,u∈Rn

inf
λ∈Rn

⟨λ,
(
ZPΣ1/2

)
w(θ)⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

= sup
(w,u,θ)∈Rd×Rn×Θ

w=PΣ1/2w(θ)

inf
λ∈Rn

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

=Φ.

The function ψ is continuous because we require F, f andw to be continuous in the definitions.

Next, we are ready to apply Gaussian Minimax Theorem. Although the domains in (E.5) are

not compact, we can use the truncation lemmas 47 and 48 in Appendix A.

Lemma 74. In the same setting as Lemma 73, define the auxiliary problem as

Ψ := sup
(u,θ)∈Rn×Θ

⟨H,PΣ1/2w(θ)⟩≥
∥∥∥∥PΣ1/2w(θ)∥2G+

∑k
i=1⟨w(θ),Σw∗

i ⟩ηi−u
∥∥∥
2

F (θ)− 1

n

n∑
i=1

f(ui, yi, θ) (E.8)
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then for any t ∈ R, it holds that

Pr

(
sup
θ∈K

F (θ)− L̂(θ) > t

)
≤ 2Pr(Ψ ≥ t). (E.9)

where the randomness in the second probability is taken over G,H, η1, ..., ηk and ξ.

Proof. Denote Sr = {(w, u, θ) ∈ Rd×Rn×Θ : w = PΣ1/2w(θ) and ∥w∥2+∥u∥2+∥θ∥2 ≤ r}.

The set Sr is bounded by definition and closed by the continuity of w. Hence, it is compact. Next,

we denote the truncated problems:

Φr := sup
(w,u,θ)∈Sr

inf
λ∈Rn

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ) (E.10)

Φr,s := sup
(w,u,θ)∈Sr

inf
∥λ∥2≤s

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ). (E.11)

By definition, we have Φr ≤ Φr,s and so

Pr(Φr > t) ≤ Pr(Φr,s > t).

The corresponding auxiliary problems are

Ψr,s := sup
(w,u,θ)∈Sr

inf
∥λ∥2≤s

∥λ∥2⟨H,w⟩+ ∥w∥2⟨G, λ⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

= sup
(w,u,θ)∈Sr

inf
∥λ∥2≤s

∥λ∥2⟨H,w⟩+ ⟨λ, ∥w∥2G+
k∑

i=1

ηi⟨w(θ),Σw∗
i ⟩ − u⟩

+ F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

= sup
(w,u,θ)∈Sr

inf
0≤λ≤s

λ

⟨H,w⟩ −

∥∥∥∥∥∥∥w∥2G+
k∑

i=1

ηi⟨w(θ),Σw∗
i ⟩ − u

∥∥∥∥∥∥
2


+ F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)
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and the limit of s→ ∞:

Ψr := sup
(w,u,θ)∈Sr

⟨H,w⟩≥
∥∥∥∥w∥2G+

∑k
i=1 ηi⟨w(θ),Σw∗

i ⟩−u
∥∥∥
2

F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

By definition, it holds that Ψr ≤ Ψ and so

Pr(Ψr ≥ t) ≤ Pr(Ψ ≥ t).

Thus, it holds that

Pr(Φ > t) = lim
r→∞

Pr(Φr > t) by Lemma 47

≤ lim
r→∞

lim
s→∞

Pr(Φr,s > t)

≤ 2 lim
r→∞

lim
s→∞

Pr(Ψr,s ≥ t) by Theorem 46

= 2 lim
r→∞

Pr(Ψr ≥ t) by Lemma 48

≤ 2Pr(Ψ ≥ t).

The proof concludes by applying Lemma 73 and the tower law.

The following two simple lemmas will be useful to analyze the auxiliary problem.

Lemma 75. For a, b,H > 0, we have

sup
λ≥0

−λa+ λ

H + λ
b = (

√
b−

√
Ha)2+.

Proof. Observe that

sup
λ≥0

−λa+ λ

H + λ
b = b− inf

λ≥0
λa+

H

H + λ
b.
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Define f(λ) = λa+ H
H+λb, then

f
′
(λ) = a− Hb

(H + λ)2
≤ 0 ⇐⇒ (H + λ)2 ≤ Hb

a

⇐⇒ −
√
Hb

a
−H ≤ λ ≤

√
Hb

a
−H

Since we require λ ≥ 0, we only need to consider whether
√

Hb
a − H ≥ 0 ⇐⇒ b ≥ Ha. If

b < Ha, the infimum is attained at λ = 0. Otherwise, the infimum is attained at λ∗ =
√

Hb
a −H ,

at which point

f(λ∗) = 2
√
Hba−Ha.

Plugging in, we see that the expression is equivalent to (
√
b−

√
Ha)2+ in both cases.

Lemma 76. For a, b ≥ 0, we have

sup
λ≥0

−λa− b

λ
= −

√
4ab

Proof. Define f(λ) = −λa− b
λ , then

f
′
(λ) = −a+ b

λ2
≥ 0 ⇐⇒ b

a
≥ λ2

and so in the domain λ ≥ 0, the optimum is attained at λ∗ =
√
b/a at which point f(λ∗) =

−2
√
ab.

We are now ready to analyze the auxiliary problem.

Lemma 77. In the same setting as in Lemma 73, assume that for every δ > 0

(A) Cδ : Rd → [0,∞] is a continuous function such that with probability at least 1 − δ/4 over

H ∼ N (0, Id), uniformly over all w ∈ Rd, we have that

⟨Σ1/2PH,w⟩ ≤ Cδ(w) (E.12)
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(B) ϵδ is a positive real number such that with probability at least 1 − δ/4 over {(x̃i, ỹi)}ni=1

drawn i.i.d. from D̃, it holds uniformly over all θ ∈ Θ that

1

n

n∑
i=1

f(⟨ϕ(w(θ)), x̃i⟩, ỹi, θ) ≥
1

1 + ϵδ
E
(x̃,ỹ)∼D̃

[f(⟨ϕ(w(θ)), x̃⟩, ỹ, θ)]. (E.13)

where the distribution D̃ over (x̃, ỹ) is given by

x̃ ∼ N (0, Ik+1), ξ̃ ∼ Dξ, ỹ = g(x̃1, ..., x̃k, ξ̃)

and the mapping ϕ : Rd → Rk+1 is defined as

ϕ(w) = (⟨w,Σw∗
1⟩, ..., ⟨w,Σw

∗
k⟩, ∥PΣ

1/2w∥2)T .

Then the following is true:

(i) suppose for some choice of Mθ that is continuous in θ, it holds for every y ∈ Y and θ ∈ Θ,

f is Mθ-Lipschitz with respect to the first argument, then with probability at least 1 − δ,

uniformly over all θ ∈ Θ, we have

L(θ) ≤ (1 + ϵδ)

(
L̂(θ) +Mθ

√
Cδ(w(θ))

2

n

)
. (E.14)

(ii) suppose for some choice of Hθ that is continuous in θ, it holds for every y ∈ Y and θ ∈ Θ,

f is non-negative and
√
f is

√
Hθ-Lipschitz with respect to the first argument, then with

probability at least 1− δ, uniformly over all θ ∈ Θ, we have

L(θ) ≤ (1 + ϵδ)

(√
L̂(θ) +

√
HθCδ(w(θ))

2

n

)2

. (E.15)

Proof. First, let’s simplify the auxiliary problem (E.8). Changing variables to subtract the quantity
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Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+
∑k

l=1⟨w(θ),Σw∗
l ⟩ηl,i from each of the former ui, we have that

Ψ = sup
(u,θ)∈Rn×Θ

∥u∥2≤⟨H,PΣ1/2w(θ)⟩

F (θ)− 1

n

n∑
i=1

f

ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ



and separating the optimization problem in u and θ, we obtain

Ψ = sup
θ∈Θ

F (θ)

− 1

n
inf

u∈Rn:
∥u∥2≤⟨H,PΣ1/2w(θ)⟩

n∑
i=1

f

ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

 .

Next, we will lower bound the infimum term by weak duality to obtain upper bound on Ψ:

inf
u∈Rn:

∥u∥2≤⟨H,PΣ1/2w(θ)⟩

n∑
i=1

f

ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ


= inf

u∈Rn
sup
λ≥0

λ(∥u∥22 − ⟨Σ1/2PH,w(θ)⟩2)

+
n∑

i=1

f

ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ


≥ sup

λ≥0
−λ⟨Σ1/2PH,w(θ)⟩2

+ inf
u∈Rn

n∑
i=1

f

ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

+ λ∥u∥22

= sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2

+
n∑

i=1

inf
ui∈R

f

ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

+ λu2i

= sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2 +
n∑

i=1

fλ

Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

 .
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Suppose that for every y ∈ Y and θ ∈ Θ, f is Mθ-Lipschitz with respect to the first argument,

then by the same argument in the proof of equation (4.7), the above can be further lower bounded

by the following quantity:

sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2 −
nM2

θ

4λ
+

n∑
i=1

f

 k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

 .

On the other hand, suppose that for every y ∈ Y and θ ∈ Θ, f is non-negative and
√
f is

√
Hθ-

Lipschitz with respect to the first argument, then by the same argument in the proof of equation

(4.8), the above can be further lower bounded by:

sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2 + λ

Hθ + λ

 n∑
i=1

f

 k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

 .
Notice that if we write x̃i = (η1,i, ..., ηk,i, Gi), then (x̃i, yi) are independent with distribution

exactly equal to D̃. Moreover, we have

f

 k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

 = f(⟨ϕ(w(θ)), x̃i⟩, yi, θ)

and it is easy to see that the joint distribution of (⟨ϕ(w(θ)), x̃⟩, y) with (x̃, y) ∼ D̃ is exactly the

same as (⟨w(θ), x⟩, y) with (x, y) ∼ D. As a result, we have that

E
(x̃,y)∼D̃

[f(⟨ϕ(w(θ)), x̃⟩, y, θ)] = L(θ).

By our assumption (E.12), (E.13) and a union bound, we have with probability at least 1− δ/2

|⟨Σ1/2PH,w(θ)⟩| ≤ Cδ(w(θ))

1

n

n∑
i=1

f

 k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

 ≥ 1

1 + ϵδ
L(θ).
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Therefore, if f is Mθ-Lipschitz, then by by Lemma 76, we have

Ψ ≤ sup
θ∈Θ

F (θ)− sup
λ≥0

−λCδ(w(θ))
2

n
−
M2

θ

4λ
+

1

1 + ϵδ
L(θ)

= sup
θ∈Θ

F (θ) +

√
M2

θ

Cδ(w(θ))
2

n
− 1

1 + ϵδ
L(θ)

Consequently, by taking F (θ) = 1
1+ϵδ

L(θ)−Mθ

√
Cδ(w(θ))

2

n and Lemma 74, we have shown

that with probability at least 1− δ, we have

sup
θ∈K

F (θ)− L̂(θ) ≤ 0 =⇒ 1

1 + ϵδ
L(θ) ≤ L̂(θ) +Mθ

√
Cδ(w(θ))

2

n
.

If
√
f is

√
Hθ-Lipschitz, then by Lemma 75

Ψ ≤ sup
θ∈K

F (θ)− sup
λ≥0

−λCδ(w(θ))
2

n
+

λ

Hθ + λ

1

1 + ϵδ
L(θ)

= sup
θ∈K

F (θ)−

(√
L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))

2

n

)2

+

.

Consequently, by taking F (θ) =

(√
L(θ)
1+ϵδ

−
√

HθCδ(w(θ))2

n

)2

+
and Lemma 74, we have shown

that with probability at least 1− δ, we have

sup
θ∈K

F (θ)− L̂(θ) ≤ 0.

Rearranging, either we have

√
L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))

2

n
< 0 =⇒ L(θ) < (1 + ϵδ)

HθCδ(w(θ))
2

n
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or we have

√
L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))

2

n
≥ 0 =⇒

(√
L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))

2

n

)2

≤ L̂(θ)

=⇒ L(θ) ≤ (1 + ϵδ)

(√
L̂(θ) +

√
HθCδ(w(θ))

2

n

)2

.

In either case, the desired bound holds.

Finally, we are ready to prove Theorem 41, which is restated below for convenience.

Theorem 41. Suppose that assumptions (A), (B), (E) and (F) hold. Denote W ∈ Rd×k by W =

[w∗
1, ..., w

∗
k] and let Q = I −W (WTΣW )−1WTΣ. For any δ ∈ (0, 1), let Cδ : Rd → [0,∞] be a

continuous function such that with probability at least 1− δ/4 over x ∼ N (0,Σ), uniformly over

all θ ∈ Θ,

⟨Qw(θ), x⟩ ≤ Cδ(w(θ)). (4.34)

Then it holds that

(i) if for each θ ∈ Θ and y ∈ Y , f is Mθ-Lipschitz with respect to the first argument and Mθ is

continuous in θ, then with probability at least 1 − δ, it holds that uniformly over all θ ∈ Θ,

we have

(1− ϵ)L(θ) ≤ L̂(θ) +Mθ

√
Cδ(w(θ))

2

n
(4.35)

(ii) if for each θ ∈ Θ and y ∈ Y , f is non-negative and
√
f is

√
Hθ-Lipschitz with respect to

the first argument, and Hθ is continuous in θ, then with probability at least 1 − δ, it holds

that uniformly over all θ ∈ Θ, we have

(1− ϵ)L(θ) ≤

(√
L̂(θ) +

√
Hθ Cδ(w(θ))

2

n

)2

(4.36)

where ϵ = O

(
τ

√
h log(n/h)+log(1/δ)

n

)
.
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Proof. We apply the reduction argument at the beginning of the appendix. Given D that satisfies

assumptions (A) and (B), we define [w̃∗
1, ..., w̃

∗
k] = W̃ = W (WTΣW )−1/2 and f̃ , g̃ as in (E.1)

and (E.2). For {(xi, yi)}ni=1 sampled independently from D, we observe that the joint distribution

of (xi − µ, yi) can also be described by D′ as follows:

(A’) x ∼ N (0,Σ)

(B’) y = g̃(η1, ..., ηk, ξ) where ηi = ⟨x, w̃i⟩.

Indeed, we can check that

y = g(xTW, ξ)

= g((x− µ)T W̃ (WTΣW )1/2 + µTW, ξ)

= g̃((x− µ)T W̃ , ξ).

Moreover, by construction, we have

L̂(θ) =
1

n

n∑
i=1

f̃(⟨w(θ), xi − µ⟩, yi, θ)

L(θ) = ED′ f̃(⟨w(θ), xi⟩, yi, θ)

and D′ satisfies assumptions (A) and (B) with µ = 0 and orthonormal Σ1/2w̃∗
1, ...,Σ

1/2w̃∗
1 and falls

into the setting in Lemma 73. We see that f being Lipschitz or square-root Lipschitz is equivalent

to f̃ being Lipschitz or square-root Lipschitz. It remains to check assumptions (E.12) and (E.13)

and then apply Lemma 77. Observe that

Σ−1/2PΣ1/2 = Σ−1/2
(
Id − Σ1/2W̃W̃TΣ1/2

)
Σ1/2

= Id − W̃W̃TΣ = I −W (WTΣW )−1WTΣ

= Q

(E.16)

and so Σ1/2P = QTΣ1/2.
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To check that (E.12) holds, observe that ⟨Σ1/2PH,w⟩ has the same distribution as ⟨Qw, x⟩. To

check that (E.13) holds, we will apply Theorem 57. Note that the joint distribution of (⟨ϕ(w(θ)), x̃⟩, ỹ)

with (x̃, ỹ) ∼ D̃ is exactly the same as (⟨w(θ), x⟩, y) with (x, y) ∼ D′ and so

ED̃[f̃(⟨ϕ(w(θ)), x⟩, y, θ)
4]1/4

ED̃[f̃(⟨ϕ(w(θ)), x⟩, y, θ)]
=

ED′ [f̃(⟨w(θ), x⟩, y, θ)4]1/4

ED′ [f̃(⟨w(θ), x⟩, y, θ)]
=

ED[f(⟨w(θ), x⟩, y, θ)4]1/4

ED[f(⟨w(θ), x⟩, y, θ)]
.

Therefore, the assumption (E) is equivalent to the condition in Theorem 57. Note that {(x, y) 7→

1{f̃(⟨ϕ(w(θ)), x⟩, y, θ) > t} : (θ, t) ∈ Θ×R} is a subclass of {(x, y) 7→ 1{f(⟨w, x⟩+ b, y, θ) >

t} : (w, b, t, θ) ∈ Rk+1 × R × R × Θ}. Therefore, by assumption (F), we can apply Theorem 57

and (E.13) holds.

E.2 Proof of Theorem 37

Lemma 78. Consider f : R × Y × Θ → R and dataset (X, Y ) drawn i.i.d. from the data

distribution D according to (A) and (B) with µ = 0 and orthonormal Σ1/2w∗
1, ...,Σ

1/2w∗
k. Define

the random quantity Ψ over x ∼ N (0,Σ) and (x̃i, ỹi) drawn i.i.d. from the surrogate distribution

D̃ in Lemma 77 by

Ψ := inf
(u,θ)∈Rn×Θ

∥u∥2≤⟨Qw(θ),x⟩

1

n

n∑
i=1

f(ui + ⟨ϕ(w(θ)), x̃i⟩, ỹi, θ). (E.17)

Suppose that we can interchange the supremum and infimum in the following problem:

inf
θ∈Θ,u∈Rn

sup
λ∈Rn

⟨λ,Xw(θ)− u⟩+ 1

n

n∑
i=1

f(ui, yi, θ)

= sup
λ∈Rn

inf
θ∈Θ,u∈Rn

⟨λ,Xw(θ)− u⟩+ 1

n

n∑
i=1

f(ui, yi, θ)

(E.18)
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then it holds that for any t ∈ R, we have

Pr

(
inf
θ∈Θ

L̂(θ) > t

)
≤ 2Pr(Ψ ≥ t). (E.19)

Proof. By introducing a variable u = Xw(θ) and our assumption (E.18), we have

inf
θ∈Θ

L̂(θ) = inf
θ∈Θ

1

n

n∑
i=1

f(⟨w(θ), xi⟩, yi, θ)

= inf
θ∈Θ,u∈Rn

sup
λ∈Rn

⟨λ, u−Xw(θ)⟩+ 1

n

n∑
i=1

f(ui, yi, θ)

= sup
λ∈Rn

inf
θ∈Θ,u∈Rn

⟨λ, u−Xw(θ)⟩+ 1

n

n∑
i=1

f(ui, yi, θ)

By Lemma 72, conditioned on Xw∗
1 = η1, ..., Xw

∗
k = ηk and ξ, the above is equal in law to

sup
λ∈Rn

inf
θ∈Θ,u∈Rn

⟨λ, u−

 k∑
i=1

ηi(Σw
∗
i )

T + ZPΣ1/2

w(θ)⟩+ 1

n

n∑
i=1

f(ui, yi, θ)

= sup
λ∈Rn

inf
θ∈Θ,u∈Rn

−⟨λ, ZPΣ1/2w(θ)⟩ − ψ(u, θ, λ | η1, ..., ηk, ξ)

=− inf
λ∈Rn

sup
θ∈Θ,u∈Rn

⟨λ, ZPΣ1/2w(θ)⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

=− inf
λ∈Rn

sup
(w,u,θ)∈Rd×Rn×Θ

w=PΣ1/2w(θ)

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

:=− Φ

where ψ is defined as

ψ(u, θ, λ | η1, ..., ηk, ξ) =⟨λ,
k∑

i=1

⟨w(θ),Σw∗
i ⟩ηi − u⟩

− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ).

(E.20)
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Denote the compact set Sr = {(w, u, θ) ∈ Rd × Rn × Θ : w = PΣ1/2w(θ) and ∥w∥2 +

∥u∥2 + ∥θ∥2 ≤ r}. Next, we consider the truncated problems:

Φr := inf
λ∈Rn

sup
(w,u,θ)∈Sr

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ) (E.21)

Φr,s := inf
∥λ∥2≤s

sup
(w,u,θ)∈Sr

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ). (E.22)

The corresponding auxiliary problems are

Ψr,s := inf
∥λ∥2≤s

sup
(w,u,θ)∈Sr

∥λ∥2⟨H,w⟩+ ∥w∥2⟨G, λ⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ) (E.23)

Ψr := inf
λ∈Rn

sup
(w,u,θ)∈Sr

∥λ∥2⟨H,w⟩+ ∥w∥2⟨G, λ⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ). (E.24)

We can simplify

Ψr = inf
λ∈Rn

sup
(w,u,θ)∈Sr

∥λ∥2⟨H,w⟩+ ⟨λ,G∥w∥2 +
k∑

i=1

⟨w(θ),Σw∗
i ⟩ηi − u⟩ − 1

n

n∑
i=1

f(ui, yi, θ)

≥ sup
(w,u,θ)∈Sr

inf
λ∈Rn

∥λ∥2⟨H,w⟩+ ⟨λ,G∥w∥2 +
k∑

i=1

⟨w(θ),Σw∗
i ⟩ηi − u⟩ − 1

n

n∑
i=1

f(ui, yi, θ)

≥ sup
(w,u,θ)∈Sr

inf
λ≥0

λ

⟨H,w⟩ −

∥∥∥∥∥∥G∥w∥2 +
k∑

i=1

⟨w(θ),Σw∗
i ⟩ηi − u

∥∥∥∥∥∥
2

− 1

n

n∑
i=1

f(ui, yi, θ)

= sup
(w,u,θ)∈Sr

⟨H,w⟩≥
∥∥∥G∥w∥2+

∑k
i=1⟨w(θ),Σw∗

i ⟩ηi−u
∥∥∥
2

− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

= − inf
(w,u,θ)∈Sr

⟨H,w⟩≥
∥∥∥G∥w∥2+

∑k
i=1⟨w(θ),Σw∗

i ⟩ηi−u
∥∥∥
2

1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)
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Therefore, we can define the limit as r → ∞

Ψ := inf
(u,θ)∈Rn×Θ∥∥∥G∥PΣ1/2w(θ)∥2+

(∑k
i=1 ηi(Σw

∗
i )

T
)
w(θ)−u

∥∥∥
2
≤⟨H,PΣ1/2w(θ)⟩

1

n

n∑
i=1

f(ui, yi, θ)

= inf
(u,θ)∈Rn×Θ

∥u∥2≤⟨H,PΣ1/2w(θ)⟩

1

n

n∑
i=1

f(ui +
k∑

l=1

⟨w(θ),Σw∗
l ⟩ηl,i + ∥PΣ1/2w(θ)∥2Gi, yi, θ)

= inf
(u,θ)∈Rn×Θ

∥u∥2≤⟨x,Qw(θ)⟩

1

n

n∑
i=1

f(ui + ⟨ϕ(w(θ)), x̃i⟩, yi, θ)

where we write x̃i = (η1,i, ..., ηk,i, Gi) and x = Σ1/2H because PΣ1/2 = Σ1/2Q. Finally, we

conclude the proof by showing that

Pr

(
inf
θ∈Θ

L̂(θ) > t
∣∣∣ η1, ..., ηk, ξ) = Pr(−Φ > t) = Pr(Φ < −t)

≤ lim
r→∞

Pr(Φr < −t) since Φ ≥ Φr

= lim
r→∞

lim
s→∞

Pr(Φr,s < −t) by Lemma 47

≤ 2 lim
r→∞

lim
s→∞

Pr(Ψr,s ≤ −t) by Theorem 46

≤ 2 lim
r→∞

Pr(Ψr ≤ −t) since Ψr,s ≥ Ψr

= 2Pr(∩r{Ψr ≤ −t})

≤ 2Pr(Ψ ≥ t) by Lemma 47.

Theorem 37. Under assumptions (A) and (B), let f : R × Y → R be convex with respect to the

first argument for any y ∈ Y . Fix K ⊂ Rd,B ⊂ R to be any bounded convex sets. Suppose that τ

is such that with probability at least 1− δ/2 over x ∼ N (0,Σ) and (x̃i, ỹi)
n
i=1 sampled i.i.d. from
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D̃ defined in (4.16), it holds that

min
(w,b)∈K×B

sup
λ≥0

1

n

n∑
i=1

fλ(⟨ϕ(w), x̃i⟩+ wTµ+ b, ỹi)−
λ

n
⟨Qw, x⟩2 (4.18)

Then with probability at least 1− δ, it holds that

min
(w,b)∈K×B

L̂f (w, b) ≤ τ. (4.19)

Proof. As in the proof of Theorem 41, we can assume without loss of generality that µ = 0 and

Σ1/2w∗
1, ...,Σ

1/2w∗
k are orthonormal, and we can apply Lemma 78. Let θ = (w, b) and Θ = K×B.

Define w(θ) = w and f ′ : R× Y ×Θ by f(ŷ, y, θ) = f(ŷ + b, y) and we can check

inf
(w,b,u)∈K×B×Rn

sup
λ∈Rn

⟨λ,Xw − u⟩+ 1

n

n∑
i=1

f(ui + b, yi)

= sup
λ∈Rn

inf
(w,b,u)∈K×B×Rn

⟨λ,Xw − u⟩+ 1

n

n∑
i=1

f(ui + b, yi)

(E.25)

because K×B×Rn is convex and f is convex with respect to the first argument and we can apply

the minimax theorem [61]. Then by applying Lemma 78 to f ′, it suffices to analyze

Ψ = inf
(u,w,b)∈Rn×K×B

∥u∥2≤⟨Qw,x⟩

1

n

n∑
i=1

f(ui + ⟨ϕ(w), x̃i⟩+ b, ỹi)

= inf
(w,b)∈K×B

inf
u∈Rn

sup
λ≥0

λ

n

(
∥u∥22 − ⟨Qw, x⟩2

)
+

1

n

n∑
i=1

f(ui + ⟨ϕ(w), x̃i⟩+ b, ỹi)

= inf
(w,b)∈K×B

sup
λ≥0

inf
u∈Rn

λ

n

(
∥u∥22 − ⟨Qw, x⟩2

)
+

1

n

n∑
i=1

f(ui + ⟨ϕ(w), x̃i⟩+ b, ỹi)

= inf
(w,b)∈K×B

sup
λ≥0

−λ
n
⟨Qw, x⟩2 + 1

n

n∑
i=1

inf
ui∈R

f(ui + ⟨ϕ(w), x̃i⟩+ b, ỹi) + λu2i

= inf
(w,b)∈K×B

sup
λ≥0

1

n

n∑
i=1

fλ(⟨ϕ(w), x̃i⟩+ b, ỹi)−
λ

n
⟨Qw, x⟩2

(E.26)
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where in the third inequality we use the convexity of f and the minimax theorem [61] again.

E.3 Proofs for Section 4.3 and 4.4

First, we show norm bounds for the minimal ℓ2 norm interpolant and the max-margin classifier by

applying Theorem 37 to the square loss and the squared hinge loss. Finally, we will use similar

arguments to calculate the minmimal norm required to interpolate for phase retrieval and ReLU

regression. We will use the following lemmas.

Lemma 79. Suppose that a, b > 0. Then if a/b > 1, we have

max
λ≥0

[
λ

1 + λ
a− λb

]
= (

√
a−

√
b)2,

and if a/b ≤ 1 then

max
λ≥0

[
λ

1 + λ
a− λb

]
= 0.

Proof. Observe that the objective can be rewritten as

g(λ) := a− 1

1 + λ
a− λb

and the derivative of this expression with respect to λ is

g′(λ) =
1

(1 + λ)2
a− b.

Therefore the unique critical point of g on the domain (−1,∞) is at 1 + λ =
√
a/b. This is the

global maximum of g on this domain because g goes to −∞ as λ → −1 and as λ → ∞. At this

point, we have that

g(λ) = a−
√
ab− (

√
a/b− 1)b = a+ b− 2

√
ab = (

√
a−

√
b)2.
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If a/b > 1 this is the global maximum on [0,∞). Otherwise, the maximum is at the boundary at

λ = 0.

Lemma 80. For any ŷ, ϵ ∈ R, it holds that if y ∈ R, then

(y − (ŷ + ϵ))2 = (y − ŷ)2 − 2(y − ŷ)ϵ+ ϵ2, (E.27)

and if y ∈ {−1, 1}, then

(1− y(ŷ + ϵ))2+ ≤ (1− yŷ)2+ − 2y(1− yŷ)+ϵ+ ϵ2. (E.28)

Proof. The first equality is straightforward to check. For the second inequality, we claim that

(1− y(ŷ + ϵ))+ ≤ |(1− yŷ)+ − ϵy|.

Indeed, if 1− y(ŷ+ ϵ) ≤ 0, then there is nothing to prove. Otherwise, by monotonicity of x→ |x|

and x → x+, it is clear that |(1 − yŷ)+ − ϵy| ≥ (1 − yŷ) − ϵy = (1 − y(ŷ + ϵ))+. Taking the

square of both hand sides concludes the proof.

Lemma 81. ConsiderQ = I−
∑k

i=1w
∗
i (w

∗
i )

TΣ where Σ1/2w∗
1, ...,Σ

1/2w∗
k are orthonormal and

we let R be the orthogonal projection matrix onto the image of Q. Then it holds that rank(R) =

d− k and

RΣw∗
i = 0 for any i = 1, ..., k.

Moreover, we have QR = R and RQ = Q, and so

1

Tr(RΣR)
≤
(
1− k

n
− n

R(QTΣQ)

)−1 1

Tr(QTΣQ)

n

R(RΣR)
≤
(
1− k

n
− n

R(QTΣQ)

)−2 n

R(QTΣQ)
.
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Proof. It is obvious that rank(R) = rank(Q) and by the rank-nullity theorem, it suffices to show

the nullity of Q is k. To this end, we observe that

Qw = 0 ⇐⇒ Σ−1/2

I − k∑
i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T

Σ1/2w = 0

⇐⇒

I − k∑
i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T

Σ1/2w = 0

⇐⇒ Σ1/2w ∈ span{Σ1/2w∗
1, ...,Σ

1/2w∗
k}

⇐⇒ w ∈ span{w∗
1, ..., w

∗
k}.

It is also straightforward to verify that Q2 = Q and QTΣw∗
i = 0 for i = 1, ..., k. For any v ∈ Rd,

Rv lies in the image of Q and so there exists w such that Rv = Qw. Then we can check that

vTRΣw∗
i = ⟨Rv,Σw∗

i ⟩

= ⟨Qw,Σw∗
i ⟩ = ⟨w,QTΣw∗

i ⟩ = 0

and

(QR)v = Q(Rv)

= Q(Qw) = Q2w

= Qw = Rv.

Since the choice of v is arbitrary, it must be the case that RΣw∗
i = 0 and QR = R. For any

v ∈ Rd, we can check

(RQ)v = R(Qv) = Qv

by the definition of orthogonal projection. Therefore, it must be the case that RQ = Q. Finally,
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we use R = QR = RQT to show that

Tr(RΣR) = Tr(RQTΣQR) = Tr(QTΣQR)

= Tr(QTΣQ)− Tr(QTΣQ(I −R))

≥ Tr(QTΣQ)−
√
Tr((QTΣQ)2) Tr((I −R)2)

= Tr(QTΣQ)

(
1−

√
k

R(QTΣQ)

)

= Tr(QTΣQ)

(
1− k

n
− n

R(QTΣQ)

)

and

Tr((RΣR)2) = Tr(ΣRΣR)

= Tr(ΣQRQTΣQRQT )

= Tr((RQTΣQ)R(QTΣQR))

≤ Tr((RQTΣQ)(QTΣQR)) = Tr((QTΣQ)2R)

≤ Tr((QTΣQ)2).

Rearranging concludes the proof.

We will prove Theorem 38. The proof for theorem 14 is exactly the same.

Theorem 38. Under assumptions (A) and (B), let f : R × Y → R be the squared hinge loss

f(ŷ, y) = (1 − ŷy)2+ with Y = {−1, 1}. Let Q be the same as in Theorem 36 and Σ⊥ = QTΣQ.

Fix any (w♯, b♯) ∈ Rd+1 such that Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯, b♯) ≤ (1 + ρ)Lf (w

♯, b♯). (4.25)

Then with probability at least 1− δ, for some ϵ ≲ ρ + log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
,
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it holds that

min
(w,b)∈Rd+1:L̂f (w,b)=0

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w

♯, b♯)

Tr(Σ⊥)
. (4.26)

Proof. It suffices to show that for the desired choice of B = ∥w♯∥2+(1+ϵ)

√
nLf (w♯,b♯)

Tr(Σ⊥)
, we have

min
∥w∥≤B

L̂f (w, b
♯) = 0.

To this end, we will apply Theorem 37. For the squared hinge loss (as well as the square loss), it

holds that fλ = λ
λ+1f and so we want

min
∥w∥2≤B

max
λ≥0

λ

λ+ 1

[
1

n

n∑
i=1

f(⟨ϕ(w), x̃i⟩+ ⟨w, µ⟩+ b♯, ỹi)

]
− λ

n
⟨Qw, x⟩2 ≤ 0.

By Lemma 79, it suffices to find a w such that ∥w∥2 ≤ B and

1

n

n∑
i=1

f(⟨ϕ(w), x̃i⟩+ ⟨w, µ⟩+ b♯, ỹi) ≤
1

n
⟨Qw, x⟩2. (E.29)

To this end, we let R to the orthogonal projection matrix onto the image of Q and consider

w of the form w♯ + α Rx
∥Rx∥2

. Note that Lemma 81 can be applied here because we can consider

[w̃∗
1, ..., w̃

∗
k] = W̃ = W (WTΣW )−1/2 and Σ1/2w̃∗

1, ...,Σ
1/2w̃∗

k are orthonormal by construction.

It is easy to check that I − W̃W̃TΣ = I −W (WTΣW )−1WTΣ = Q. Then we check that

Qw = Qw♯ + α
QRx

∥Rx∥2
= α

Rx

∥Rx∥2
and ⟨Qw, x⟩ = α∥Rx∥2.

Since RΣW̃ = 0, we have

ϕ(w) =

 W̃TΣw

∥Σ1/2Qw∥2

 =

 W̃TΣw♯

α∥Σ1/2Rx∥2
∥Rx∥2


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and so

⟨ϕ(w), x̃i⟩ = ⟨ϕ(w♯), x̃i⟩+
α∥Σ1/2Rx∥2

∥Rx∥2
x̃i,k+1.

Moreover, we can assume1 µ to be in the span of ΣW . Then we have ⟨w, µ⟩ = ⟨w♯, µ⟩. Next, we

use Lemma 80 to show

1

n

n∑
i=1

f(⟨ϕ(w), x̃i⟩+ ⟨w, µ⟩+ b♯, ỹi)

≤ 1

n

n∑
i=1

f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi) +
α2∥Σ1/2Rx∥22

∥Rx∥22

(
1

n

n∑
i=1

x̃2i,k+1

)

− 2
α∥Σ1/2Rx∥2

∥Rx∥2

(
1

n

n∑
i=1

ỹi

√
f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi)x̃i,k+1

)
.

SinceQw♯ = 0 and ỹi only depends on x̃i,1, ..., x̃i,k, we have ỹi
√
f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi)

is independent of x̃i,k+1 and so 1
n

∑n
i=1 ỹi

√
f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi)x̃i,k+1 has the same

distribution as √√√√ 1

n2

n∑
i=1

f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi) · N (0, 1).

Moreover, we have Rx ∼ N (0, RΣR) and Σ1/2Rx ∼ N (0,Σ1/2RΣRΣ1/2), and it is easy to

check that

Tr(Σ1/2RΣRΣ1/2) = Tr((RΣR)2).

By a union bound, the following occur together with probability at least 1− δ/2 for some absolute

constant C > 0:

1. Using the first part of Lemma 64, we have

∥Rx∥22 ≥ Tr(RΣR)

(
1− C

log(32/δ)√
R(RΣR)

)
1. If not, we can simply increase k by 1 and let w∗

k+1 = Σ−1µ.
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2. Using the last part of Lemma 64, requiring R(RΣR) ≳ log(32/δ)2

∥Σ1/2Rx∥22
∥Rx∥22

≤ C log(32/δ)
Tr((RΣR)2)

Tr(RΣR)

3. Using subexponential Bernstein’s inequality (Theorem 2.8.1 of Vershynin [71]), requiring

n = Ω(log(1/δ)),
1

n

n∑
i=1

x̃2i,k+1 ≤ 2

4. Using standard Gaussian tail bound Pr(|Z| ≥ t) ≤ 2e−t2/2, we have

∣∣∣∣∣ 1n
n∑

i=1

ỹi

√
f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi)x̃i,k+1

∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi)

√
2 log(32/δ)

n

5. By assumption, it holds that

1

n

n∑
i=1

f(⟨ϕ(w♯), x̃i⟩+ ⟨w♯, µ⟩+ b♯, ỹi) ≤ (1 + ρ)Lf (w
♯, b♯).

Therefore, we can use AM-GM inequality to show that

1

n

n∑
i=1

f(⟨ϕ(w), x̃i⟩+ b♯, ỹi) ≤
1

n

n∑
i=1

f(⟨ϕ(w♯), x̃i⟩+ b♯, ỹi) + 2α2
∥Σ1/2Rx∥22
∥Rx∥22

+ 2α
∥Σ1/2Rx∥2
∥Rx∥2

√√√√ 1

n

n∑
i=1

f(⟨ϕ(w♯), x̃i⟩+ b♯, ỹi)

√
2 log(32/δ)

n

≤

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ)Lf (w

♯, b♯)

+ C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
Tr((RΣR)2)

Tr(RΣR)
α2
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and it suffices to pick α such that

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ)Lf (w

♯, b♯) + C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
Tr((RΣR)2)

Tr(RΣR)
α2

≤α2Tr(RΣR)
n

(
1− C

log(32/δ)√
R(RΣR)

)
.

Rearranging, we can set

α2 =

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ)

1− C log(32/δ)√
R(RΣR)

− C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
n

R(RΣR)

nLf (w
♯, b♯)

Tr(RΣR)
.

Note that ∥w∥2 ≤ ∥w♯∥2 + α. The proof concludes by applying Lemma 81 to replace RΣR with

Σ⊥.

Theorem 40. Under assumptions (A) and (B), let f : R × Y → R be the loss defined in (4.28)

with Y = R≥0. Let Q be the same as in Theorem 36 and Σ⊥ = QTΣQ. Fix any (w♯, b♯) ∈ Rd+1

such that Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯, b♯) ≤ (1 + ρ)Lf (w

♯, b♯). (4.29)

Then with probability at least 1− δ, for some ϵ ≲ ρ + log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
,

it holds that

min
(w,b)∈Rd+1:L̂f (w,b)=0

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w

♯, b♯)

Tr(Σ⊥)
. (4.30)
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Proof. Let I = {i ∈ [n] : yi > 0} and observe that

min
w∈Rd

∀i∈[n],σ(⟨w,xi⟩+b♯)=yi

∥w∥2 = min
w∈Rd

∀i∈I,⟨w,xi⟩+b♯=yi
∀i/∈I,⟨w,xi⟩+b♯≤0

∥w∥2

= min
w∈Rd

sup
λ∈Rn

∀i/∈I,λi≥0

n∑
i=1

λi(⟨w, xi⟩+ b♯ − yi) + ∥w∥2

= min
w∈Rd

sup
λ∈Rn

∀i/∈I,λi≥0

⟨λ, ZΣ1/2w + (b♯ + ⟨w, µ⟩)⃗1− y⟩+ ∥w∥2

Note that if we condition on ZΣ1/2w∗
1 = η1, ..., ZΣ

1/2w∗
k = ηk and ξ, then both y and I are

non-random. Without loss of generality, we can assume that Σ1/2w∗
1, ...,Σ

1/2w∗
k are orthonormal

because otherwise we can define W̃ = W (WTΣW )−1/2 and conditioning on ZΣ1/2W is the

same as conditioning on ZΣ1/2W̃ . Then by Lemma 72, the above quantity has the same distribu-

tion as

Φ := min
w∈Rd

sup
λ∈Rn

∀i/∈I,λi≥0

⟨λ, ZPΣ1/2w⟩+ ⟨λ,
k∑

i=1

⟨w,Σw∗
i ⟩ηi+ (b♯+ ⟨w, µ⟩)⃗1− y⟩+ ∥w∥2. (E.30)

Observe that the minimax problem is convex in w and linear in λ. Moreover, the set {λ ∈ Rn :

∀i /∈ I, λi ≥ 0} is convex. Therefore, by the same truncation argument and CGMT, we can

consider the auxiliary problem

Ψ := min
w∈Rd

sup
λ∈Rn

∀i/∈I,λi≥0

⟨λ,
k∑

i=1

⟨w,Σw∗
i ⟩ηi + ∥PΣ1/2w∥2G+ (b♯ + ⟨w, µ⟩)⃗1− y⟩

+ ∥λ∥2⟨H,PΣ1/2w⟩+ ∥w∥2

(E.31)
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and it holds that Pr(Φ > t) ≤ 2Pr(Ψ ≥ t). If we define

f(ŷ, y) =


(ŷ − y)2 if y > 0

σ(ŷ)2 if y = 0

(E.32)

then by Lemma 82, we have

sup
λ∈Rn

∀i/∈I,λi≥0

⟨λ,
k∑

i=1

⟨w,Σw∗
i ⟩ηi + ∥PΣ1/2w∥2G+ (b♯ + ⟨w, µ⟩)⃗1− y⟩+ ∥λ∥2⟨H,PΣ1/2w⟩

= sup
λ≥0

λ

⟨H,PΣ1/2w⟩+ sup
u∈Rn:
∥u∥2=1

∀i/∈I,ui≥0

⟨u,
k∑

i=1

⟨w,Σw∗
i ⟩ηi + ∥PΣ1/2w∥2G+ (b♯ + ⟨w, µ⟩)⃗1− y⟩



= sup
λ≥0

λ

⟨H,PΣ1/2w⟩+

√√√√√ n∑
i=1

f

 k∑
l=1

⟨w,Σw∗
l ⟩ηl,i + ∥PΣ1/2w∥2Gi + b♯ + ⟨w, µ⟩, yi


 .

Therefore, we have shown

Ψ = min
w∈Rd:(∑n

i=1 f
(∑k

l=1⟨w,Σw∗
l ⟩ηl,i+∥PΣ1/2w∥2Gi+b♯+⟨w,µ⟩,yi

))1/2
≤−⟨H,PΣ1/2w⟩

∥w∥2

Note that Lemma 83 is the analog of Lemma 80 for ReLU regression. The rest of the proof is

completely the same as proving equation (E.29) in Theorem 38 and so we omit the details.

The following two lemmas are used in the proof of Theorem 40.

Lemma 82. For any v ∈ Rn and I ⊆ [n], it holds that

sup
u∈Rn:∥u∥2=1
∀i/∈I,ui≥0

⟨u, v⟩ =

 ∑
i∈I or i/∈I:vi>0

v2i

1/2

.
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Proof. Observe that

sup
u∈Rn:∥u∥2=1
∀i/∈I,ui≥0

⟨u, v⟩ = sup
u∈Rn:∥u∥2=1
∀i/∈I,ui≥0

∑
i∈I

uivi +
∑

i/∈I:vi>0

uivi +
∑

i/∈I:vi≤0

uivi

≤ sup
u∈Rn:∥u∥2=1
∀i/∈I,ui≥0

∑
i∈I or i/∈I:vi>0

uivi

≤ sup
u∈Rn:∥u∥2=1
∀i/∈I,ui≥0

 ∑
i∈I or i/∈I:vi>0

u2i

1/2 ∑
i∈I or i/∈I:vi>0

v2i

1/2

≤

 ∑
i∈I or i/∈I:vi>0

v2i

1/2

and this upper bound is attainable by setting ui = vi for i ∈ I or i /∈ I : vi > 0 and 0 otherwise

and then scale it to have unit ℓ2 norm.

Lemma 83. Define

f ′(ŷ, y) =


ŷ − y if y > 0

σ(ŷ) if y = 0

(E.33)

then for any ŷ, y, ϵ

f(ŷ + ϵ, y) ≤ f(ŷ, y) + ϵ2 + 2ϵf ′(ŷ, y)

Proof. If y > 0, then

f(ŷ + ϵ, y) = (ŷ + ϵ− y)2 = (ŷ − y)2 + ϵ2 + 2ϵ(ŷ − y)

= f(ŷ, y) + ϵ2 + 2ϵf ′(ŷ, y).

If y = 0, first observe that

σ(ŷ + ϵ) ≤ |σ(ŷ) + ϵ|.

Indeed, if ŷ+ϵ ≤ 0, then there is nothing to prove. Otherwise, the proof follows by the monotonicty
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of x→ |x| and σ. Therefore, we can check

f(ŷ + ϵ, y) = σ(ŷ + ϵ)2

≤ (σ(ŷ) + ϵ)2 = σ(ŷ)2 + ϵ2 + 2ϵσ(ŷ)

= f(ŷ, y) + ϵ2 + 2ϵf ′(ŷ, y).
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APPENDIX F

PROOFS FOR SECTION 5

F.1 Experimental Details

Linear Regression. Since we are considering quite high-dimensional settings and we need many

repeated experiments for different regularization strengths, we generally want to avoid drawing a

large test set to estimate the prediction error when it is possible. In the case of square loss, we can

always write the population loss as

Lf (w) = Lf (w̃) + ∥w − w̃∥2Σ

where w̃ is the optimal linear predictor satisfying the first order condition:

E[x(xT w̃ − y)] = 0.

In the well-specified case, by the independence between x and ξ, the above becomes

Σw̃ = Σw∗ =⇒ w̃ = w∗.

Therefore, we have Lf (w̃) = E[(y − ⟨w∗, x⟩)2] = σ2. To determine the optimal linear predictor

in the mis-specified case, we want to set

Σw̃ = E[xy]

= E[x(⟨w∗, x⟩+ |x1| · cosx2)]

= Σw∗ + E[x1 · |x1|]E[cosx2]e1 + E[|x1|]E[x2 cosx2]e2

and so

w̃ = w∗ + E[x1 · |x1|]E[cosx2]Σ−1e1 + E[|x1|]E[x2 cosx2]Σ−1e2.
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At the same time, it is routine to check that the optimal error is given by

Lf (w̃) = E[y2]− ⟨E[xy],Σ−1E[xy]⟩.

It remains to compute the null risk

E[y2] = E[(⟨w∗, x⟩+ |x1| · cosx2 + x3ξ)
2]

= E[(⟨w∗, x⟩+ |x1| · cosx2)2] + Σ33σ
2

= ⟨w∗,Σw∗⟩+ E[x21]E[cos
2 x2] + 2E[⟨w∗, x⟩(|x1| · cosx2)] + Σ33σ

2

= ⟨w∗,Σw∗⟩+ E[x21]E[cos
2 x2] + Σ33σ

2

+ 2 (E[x1 · |x1|]E[cosx2]w∗
1 + E[|x1|]E[x2 cosx2]w∗

2)

and

⟨E[xy],Σ−1E[xy]⟩ = ⟨Σw∗ + E[|x1| cos(x2)x], w∗ + Σ−1E[|x1| cos(x2)x]⟩

= ⟨Σw∗, w∗⟩+ 2⟨w∗,E[|x1| cos(x2)x]⟩

+ ⟨E[|x1| cos(x2)x],Σ−1E[|x1| cos(x2)x]⟩.

Therefore, we have

Lf (w̃) = E[x21]E[cos
2 x2] + Σ33σ

2 − E[x1 · |x1|]2E[cosx2]2Σ−1
11 − E[|x1|]2E[x2 cos(x2)]2Σ−1

22

It remains to compute quantities like E[|x|],E[x · |x|],E[cosx],E[x cosx] for each of the eight

feature distributions. Since they are one dimensional quantities, we can afford to draw a very large

number of samples to estimate them.
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Linear Classification. When the feature distribution is Gaussian, we can estimate

Lf (w, b) = E
[
max(0, 1− y(⟨w, x⟩+ b))2

]

without drawing a new high-dimensional dataset from D. First, we can write x = Σ1/2z. Note

that conditioning on η is the same as conditioning on ⟨w∗, x⟩ = ⟨Σ1/2w∗, z⟩ ∼ N (0, ∥w∗∥2Σ) and

the conditional distribution of z is

η − b∗

∥w∗∥2Σ
Σ1/2w∗ + Pz

where P = I − (Σ1/2w∗)(Σ1/2w∗)T

∥w∗∥2Σ
and so the conditional distribution of ⟨w, x⟩+ b is

〈
w,Σ1/2

(
η − b∗

∥w∗∥2Σ
Σ1/2w∗ + Pz

)〉
+ b

= b+
⟨w,Σw∗⟩
∥w∗∥2Σ

(η − b∗) + ⟨PΣ1/2w, z⟩ ∼ N
(
µ(η), σ2

)

where µ(η) = b+
⟨w,Σw∗⟩
∥w∗∥2Σ

(η − b∗) and

σ2 = wT (Σ1/2PΣ1/2)w = wTΣw − ⟨w,Σw∗⟩2

∥w∗∥2Σ
.

Since x is independent of y conditioned on η, we have that

L(w, b) = E
[
E
[
max(0, 1− y(⟨w, x⟩+ b))2 | η

]]
= E

[
g(η) ·max(0, 1− µ(η)− σz)2 + (1− g(η)) ·max(0, 1 + µ(η) + σz)2

]
We can then estimate the population error by drawing samples from a two-dimensional distri-

bution. In addition, the linear predictor that minimizes the population squared hinge loss generally

does not have a simple closed-form expression, but we can run SGD on the population objective
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in order to find the optimal linear predictor w̃, b̃. For simplicity, we choose

w∗ = (5, 0, ..., 0) and b∗ = 3.

In this case, we can simplify the optimization problem to an one-dimensional problem by observing

that w̃i = 0 for i ̸= 1. Indeed, we can check the first order condition holds

∂

∂wi
Lf (w̃, b̃) = −2E

[
ymax(0, 1− y(⟨w̃, x⟩+ b̃))xi

]
= −2E

[
ymax(0, 1− y(w̃1x1 + b̃))

]
E [xi] = 0

because y is independent of xi with i ̸= 1. Therefore, we can just generate {xi,1, yi} from D and

perform one-pass SGD (theorem 6.1 of Bubeck [16]) to find w̃1, b̃. In the experiments, we find

choosing the initial step size to be 0.1 works well.

F.2 Proofs for Section 5.2

By assumption (A), we can write xi|d−k = h(xi|k) · Σ
1/2
|d−k

zi where zi ∼ N (0, Id−k). We will

denote the matrix Z = [z1, ..., zn]
T ∈ Rn×(d−k). Following the notation in section 5.2, we will

also write X = [X|k, X|d−k] where X|k ∈ Rn×k and X|d−k ∈ Rn×(d−k). The proofs in this

section closely follows the proof of Theorem 41.

Theorem 43. Consider dataset (X, Y ) drawn i.i.d. from the data distribution D according to (A)

and (B), and fix any f : R× Y → R≥0 such that
√
f is 1-Lipschitz for any y ∈ Y . Fix any δ > 0

and suppose there exists ϵδ < 1 and Cδ : Rd−k → [0,∞] such that

(i) with probability at least 1− δ/2 over (X, Y ) and G ∼ N (0, In), it holds uniformly over all

w|k ∈ Rk and ∥w|d−k∥Σ|d−k
∈ R≥0 that

1

n

n∑
i=1

1

h(xi|k)
2
f(⟨w|k, xi|k⟩+h(xi|k)∥w|d−k∥Σ|d−k

Gi, yi) ≥ (1−ϵδ)ED

[
1

h(x|k)
2
f(⟨w, x⟩, y)

]
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(ii) with probability at least 1 − δ/2 over z|d−k ∼ N (0,Σ|d−k), it holds uniformly over all

w|d−k ∈ Rd−k that

⟨w|d−k, z|d−k⟩ ≤ Cδ(w|d−k) (5.8)

then with probability at least 1− δ, it holds uniformly over all w ∈ Rd that

(1− ϵδ)E

[
1

h(x|k)
2
f(⟨w, x⟩, y)

]
≤

(
1

n

n∑
i=1

1

h(xi|k)
2
f(⟨w, xi⟩, yi) +

Cδ(w|d−k)√
n

)2

. (5.9)

Proof. Note that

⟨w|d−k, xi|d−k⟩ = h(xi|k) · ⟨w|d−k,Σ
1/2
|d−k

zi⟩

and so for any f : R× Y × Rk → R, we can write

Φ := sup
w∈Rd

F (w)− 1

n

n∑
i=1

f(⟨w, xi⟩, yi, xi|k)

= sup
w∈Rd,u∈Rn

u=ZΣ
1/2
|d−k

w|d−k

F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= sup
w∈Rd,u∈Rn

inf
λ∈Rn

⟨λ, ZΣ1/2
|d−k

w|d−k − u⟩+ F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k).

By the same truncation argument used in Lemma 74, it suffices to consider the auxiliary problem:

Ψ := sup
w∈Rd,u∈Rn

inf
λ∈Rn

∥λ∥2⟨H,Σ
1/2
|d−k

w|d−k⟩+ ⟨G∥Σ1/2
|d−k

w|d−k∥2 − u, λ⟩

+ F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= sup
w∈Rd,u∈Rn

inf
λ≥0

λ
(
⟨H,Σ1/2

|d−k
w|d−k⟩ −

∥∥∥G∥Σ1/2
|d−k

w|d−k∥2 − u
∥∥∥
2

)
+ F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)
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Therefore, it holds that

Ψ = sup
w∈Rd,u∈Rn

⟨H,Σ
1/2
|d−k

w|d−k⟩≥
∥∥∥G∥Σ1/2

|d−k
w|d−k∥2−u

∥∥∥
2

F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= sup
w∈Rd

F (w)− 1

n
inf

u∈Rn

⟨H,Σ
1/2
|d−k

w|d−k⟩≥
∥∥∥G∥Σ1/2

|d−k
w|d−k∥2−u

∥∥∥
2

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k).

Next, we analyze the infimum term:

inf
u∈Rn

⟨H,Σ
1/2
|d−k

w|d−k⟩≥
∥∥∥G∥Σ1/2

|d−k
w|d−k∥2−u

∥∥∥
2

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= inf
u∈Rn

∥u∥2≤⟨H,Σ
1/2
|d−k

w|d−k⟩

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)
(
ui + ∥Σ1/2

|d−k
w|d−k∥2Gi

)
, yi, xi|k)

= inf
u∈Rn

sup
λ≥0

λ(∥u∥2 − ⟨H,Σ1/2
|d−k

w|d−k⟩
2)

+
n∑

i=1

f(⟨w|k, xi|k⟩+ h(xi|k)
(
ui + ∥Σ1/2

|d−k
w|d−k∥2Gi

)
, yi, xi|k)

≥ sup
λ≥0

inf
u∈Rn

λ(∥u∥2 − ⟨H,Σ1/2
|d−k

w|d−k⟩
2)

+
n∑

i=1

f(⟨w|k, xi|k⟩+ h(xi|k)
(
ui + ∥Σ1/2

|d−k
w|d−k∥2Gi

)
, yi, xi|k)

= sup
λ≥0

−λ⟨H,Σ1/2
|d−k

w|d−k⟩
2

+
n∑

i=1

inf
ui∈R

f(⟨w|k, xi|k⟩+ ui + ∥Σ1/2
|d−k

w|d−k∥2h(xi|k)Gi, yi, xi|k) +
λ

h(xi|k)
2
u2i .

Now suppose that f takes the form f(ŷ, y, x|k) =
1

h(x|k)2
f̃(ŷ, y) for some 1 square-root Lipschitz

f̃ and by a union bound, it holds with probability at least 1− δ that
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⟨Σ1/2
|d−k

H,w|d−k⟩
2 ≤ Cδ(w|d−k)

2

1

n

n∑
i=1

1

h(xi|k)
2
f̃(⟨w|k, xi|k⟩+ ∥Σ1/2

|d−k
w|d−k∥2h(xi|k)Gi, yi) ≥ (1− ϵδ)E

[
1

h(x|k)
2
f̃(⟨w, x⟩, y)

]
,

then the above becomes

sup
λ≥0

−λ⟨Σ1/2
|d−k

H,w|d−k⟩
2 +

n∑
i=1

1

h(xi|k)
2
f̃λ(⟨w|k, xi|k⟩+ ∥Σ1/2

|d−k
w|d−k∥2h(xi|k)Gi, yi)

≥ sup
λ≥0

−λ⟨Σ1/2
|d−k

H,w|d−k⟩
2 +

λ

λ+ 1

n∑
i=1

1

h(xi|k)
2
f̃(⟨w|k, xi|k⟩+ ∥Σ1/2

|d−k
w|d−k∥2h(xi|k)Gi, yi)

≥ sup
λ≥0

−λCδ(w|d−k)
2 +

λ

λ+ 1
(1− ϵ)nE

[
1

h(x|k)
2
f̃(⟨w, x⟩, y)

]

≥n


√√√√(1− ϵδ)E

[
1

h(x|k)
2
f̃(⟨w, x⟩, y)

]
−
Cδ(w|d−k)√

n

2

+

where we apply Lemma 75 in the last step. Then if we take

F (w) =


√√√√(1− ϵδ)E

[
1

h(x|k)
2
f̃(⟨w, x⟩, y)

]
−
Cδ(w|d−k)√

n

2

+

then we have Ψ ≤ 0. To summarize, we have shown


√√√√(1− ϵδ)E

[
1

h(x|k)
2
f̃(⟨w, x⟩, y)

]
−
Cδ(w|d−k)√

n

2

+

− 1

n

n∑
i=1

1

h(xi|k)
2
f̃(⟨w, xi⟩, yi) ≤ 0

which implies

E

[
1

h(x|k)
2
f̃(⟨w, x⟩, y)

]
≤ (1− ϵδ)

−1

(
1

n

n∑
i=1

1

h(xi|k)
2
f̃(⟨w, xi⟩, yi) +

Cδ(w|d−k)√
n

)2
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and we are done.

Theorem 44. Under assumptions (A) and (B), fix any w∗
|k ∈ Rk and suppose for some ρ ∈ (0, 1),

it holds with probability at least 1− δ/8

1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2

≤ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 . (5.10)

Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ|d−k)
+ n

R(Σ|d−k)

)
,

it holds that

min
w∈Rd:∀i,⟨w,xi⟩=yi

∥w∥22 ≤ ∥w∗
|k∥

2
2 + (1 + ϵ)

nE

[(
y−⟨w∗

|k,x|k⟩
h(x|k)

)2
]

Tr(Σ|d−k)
(5.11)

Proof. Fix any w∗
|k ∈ Rk, we observe that

min
w∈Rd:∀i,⟨w,xi⟩=yi

∥w∥22 = min
w∈Rd:∀i,⟨w|k,xi|k⟩+⟨w|d−k,xi|d−k⟩=yi

∥w|k∥
2
2 + ∥w|d−k∥

2
2

≤ ∥w∗
|k∥

2
2 + min

w|d−k∈Rd−k:

∀i,⟨w|d−k,xi|d−k⟩=yi−⟨w∗
|k,xi|k⟩

∥w|d−k∥
2
2.

Therefore, it is enough analyze

Φ := min
w|d−k∈Rd−k:

∀i,⟨w|d−k,xi|d−k⟩=yi−⟨w∗
|k,xi|k⟩

∥w|d−k∥2

= min
w|d−k∈Rd−k:

∀i,⟨w|d−k,Σ
1/2
|d−k

zi⟩=
yi−⟨w∗

|k,xi|k⟩

h(xi|k)

∥w|d−k∥2.
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By introducing the Lagrangian, we have

Φ = min
w|d−k∈Rd−k

max
λ∈Rn

n∑
i=1

λi

(
⟨Σ1/2

|d−k
w|d−k, zi⟩ −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

)
+ ∥w|d−k∥2

= min
w|d−k∈Rd−k

max
λ∈Rn

⟨λ, ZΣ1/2
|d−k

w|d−k⟩ −
n∑

i=1

λi

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)
+ ∥w|d−k∥2.

Similarly, the above is only random in Z after conditioning on X|kw
∗
|k and ξ and the distribution

of Z remains unchanged after conditioning because of the independence. By the same truncation

argument as before and CGMT, it suffices to consider the auxiliary problem:

min
w|d−k∈Rd−k

max
λ∈Rn

∥λ∥2⟨H,Σ
1/2
|d−k

w|d−k⟩+
n∑

i=1

λi

(
∥Σ1/2

|d−k
w|d−k∥2Gi −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

)

+ ∥w|d−k∥2

= min
w|d−k∈Rd−k

max
λ∈Rn

∥λ∥2

⟨H,Σ1/2
|d−k

w|d−k⟩+

√√√√ n∑
i=1

(
∥Σ1/2

|d−k
w|d−k∥2Gi −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

)2


+ ∥w|d−k∥2

and so we can define

Ψ := min
w|d−k∈Rd−k:√√√√∑n

i=1

(
∥Σ1/2

|d−k
w|d−k∥2Gi−

yi−⟨w∗
|k,xi|k⟩

h(xi|k)

)2

≤⟨−Σ
1/2
|d−k

H,w|d−k⟩

∥w|d−k∥2.

To upper bound Ψ, we consider w|d−k of the form −α
Σ
1/2
|d−k

H

∥Σ1/2
|d−k

H∥2
, then we just need

n∑
i=1

α∥Σ|d−kH∥2

∥Σ1/2
|d−k

H∥2
Gi −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

2

≤ α2∥Σ1/2
|d−k

H∥22.
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By a union bound, the following occur together with probability at least 1− δ/2 for some absolute

constant C > 0:

1. Using the first part of Lemma 64, we have

∥Σ1/2
|d−k

H∥22 ≥ Tr(Σ|d−k)

1− C
log(32/δ)√
R(Σ|d−k)



2. Using the last part of Lemma 64, requiring R(Σ|d−k) ≳ log(32/δ)2

∥Σ|d−kH∥22
∥Σ1/2

|d−k
H∥22

≤ C log(32/δ)
Tr(Σ2

|d−k
)

Tr(Σ|d−k)

3. Using subexponential Bernstein’s inequality (Theorem 2.8.1 of Vershynin [71]), requiring

n = Ω(log(1/δ)),
1

n

n∑
i=1

G2
i ≤ 2

4. Using standard Gaussian tail bound Pr(|Z| ≥ t) ≤ 2e−t2/2, we have

∣∣∣∣∣ 1n
n∑

i=1

Gi(yi − ⟨w∗
|k, xi|k⟩)

h(xi|k)

∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩

h(xi|k)

)2√
2 log(32/δ)

n

5. By assumption, it holds that

1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2

≤ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 .
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Then we use the above and the AM-GM inequality to show that

1

n

n∑
i=1

α∥Σ|d−kH∥2

∥Σ1/2
|d−k

H∥2
Gi −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

2

≤ 2α2
∥Σ|d−kH∥22
∥Σ1/2

|d−k
H∥22

+ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2


+ 2
α∥Σ|d−kH∥2

∥Σ1/2
|d−k

H∥2

√√√√√(1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
√2 log(32/δ)

n

≤C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
α2

Tr(Σ2
|d−k

)

Tr(Σ|d−k)

+

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 .

After some rearrangements, it is easy to see that we can choose

α2 =

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ)

1− C
log(32/δ)√
R(Σ|d−k)

− C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
n

R(Σ|d−k)

nE

[(
y−⟨w∗

|k,x|k⟩
h(x|k)

)2
]

Tr(Σ|d−k)
.

and the proof is complete.
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