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ABSTRACT

The singular properties of quantum fields have posed an intransigent obstruction to formu-

lating a mathematically well-defined theory of interacting quantum fields at nonzero coupling

in (3 + 1)-spacetime dimensions. To date, a systematic renormalization of the unavoidable

“ultraviolet” divergences produced by pointwise products of quantum fields has only been

achieved order-by-order in perturbation theory. In the coincidence limit, the behavior of

products of quantum fields is characterized by the coefficients of their operator product ex-

pansion (OPE). For Euclidean quantum field theories, Holland and Hollands have shown

operator product expansion (OPE) coefficients satisfy “flow equations”: For interaction pa-

rameter λ, the partial derivative of any OPE coefficient with respect to λ is given by an

integral over Euclidean space of a sum of products of other OPE coefficients. These Eu-

clidean flow equations were proven to hold order-by-order in perturbation theory, but they

are well defined non-perturbatively and, thus, provide a possible route towards giving a

non-perturbative construction of the interacting field theory. In this thesis, we generalize

these results for flat Euclidean space to curved Lorentzian spacetimes in the context of the

solvable “toy model” of massive Klein-Gordon scalar field theory, with m2 viewed as the

“self-interaction parameter”. Even in Minkowski spacetime, a serious difficulty arises from

the fact that all integrals must be taken over a compact spacetime region to ensure con-

vergence but any integration cutoff necessarily breaks Lorentz covariance. We show how

covariant flow relations can be obtained by adding compensating “counterterms” in a man-

ner similar to that of the Epstein-Glaser renormalization scheme. We also show how to

eliminate dependence on the “infrared-cutoff scale” L, thereby yielding flow relations com-

patible with almost homogeneous scaling of the fields. In curved spacetime, the spacetime

integration will cause the OPE coefficients to depend non-locally on the spacetime metric,

in violation of the requirement that quantum fields should depend locally and covariantly on

the metric. We show how this potentially serious difficulty can be overcome by replacing the
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metric with a suitable local polynomial approximation about the OPE expansion point. We

thereby obtain local and covariant flow relations for the OPE coefficients of Klein-Gordon

theory in curved Lorentzian spacetimes. As a byproduct of our analysis, we prove the field

redefinition freedom in the Wick fields (i.e. monomials of the scalar field and its covariant

derivatives) can be characterized by the freedom to add a smooth, covariant, and symmet-

ric function Fn(x1, . . . , xn; z) to the identity OPE coefficients, CIϕ···ϕ(x1, . . . , xn; z), for the

elementary n-point products. We thereby obtain an explicit construction of any renormal-

ization prescription for the nonlinear Wick fields in terms of the OPE coefficients CIϕ···ϕ.

The ambiguities inherent in our procedure for modifying the flow relations are shown to be

in precise correspondence with the field redefinition freedom of the Klein-Gordon OPE coef-

ficients. In an appendix, we develop an algorithm for constructing local and covariant flow

relations beyond our “toy model” based on the associativity properties of OPE coefficients.

We illustrate our method by applying it to the flow relations of λϕ4-theory.
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CHAPTER 1

INTRODUCTION TO THE OPE AND FLOW RELATIONS FOR

OPE COEFFICIENTS

The primary objectives of this chapter are to introduce the operator product expansion

(OPE), provide some informal motivation for the existence (and functional form) of the

flow relations for the OPE coefficients, and to briefly summarize some of the rigorous re-

sults for the flow relations that have already been established in Euclidean quantum field

theories. We begin with a discussion of the distributional properties of quantum fields and

the inherent difficulties these properties present for defining nonlinear field observables and

nonlinear dynamics (i.e. “interactions”). We then define the OPE and describe how the OPE

coefficients could be used to non-perturbatively analyze (and remove) the short-distance

“ultraviolet” divergences that arise in integrals involving the (unrenormalized) expectation

values of time-ordered products. Generalizing an approach sketched by Wilson in [1] (see

Remark 3 below), we obtain the basic structure of the flow relations for the OPE coefficients.

We conclude this chapter by comparing our informally-obtained relations to those that have

been rigorously-derived in Euclidean quantum field theories. A reader who is well-acquainted

with the distributional nature of quantum fields, the non-integrable divergences that arise in

(position-space) perturbation theory, and the operator product expansion may wish to skip

ahead to the discussion of the Euclidean flow relations found at the end of this chapter.

∗ ∗ ∗ Singular quantum fields ∗ ∗ ∗

Suppressing any spinorial/tensorial indices, denote an arbitrary local quantum field by

the symbol Φ and a quantum state by ⟨ · ⟩Ψ. Disregarding the practical limitations of ex-

perimental measurements, one might anticipate that an expectation value of Φ at spacetime

event x,

⟨Φ(x)⟩Ψ , (1.1)
1



would correspond to an elementary physical observable1, provided it is real-valued2. For

a renormalizable quantum field theory, there exists a wide class of quantum states and a

large (countably-infinite) set of quantum fields such that the quantity denoted by (1.1) is

mathematically well-defined as a C∞-smooth function of x.

However, if the spacetime is modeled as a continuum3, then there is a sense in which

quantum fields are inherently more “singular” (in their spacetime dependence) than their

classical counterparts. The first indication of this fact is that the “fluctuations” of a quantum

field at any event x are always divergent:

Var[Φ(x)]Ψ ≡ ⟨Φ(x)Φ(x)⟩Ψ − ⟨Φ(x)⟩Ψ ⟨Φ(x)⟩Ψ ∼ ∞, (1.2)

even when the expected value (1.1) is finite4. The fact that all quantum states exhibit

infinite field fluctuations implies5 that there cannot exist renormalizable “eigenstates” cor-

responding to Φ evaluated at event x. According to the standard postulates of quantum

mechanics, immediately subsequent to the measurement of a physical observable the quan-

tum state describing a physical system “collapses” to the eigenspace associated with the

measured observable. Since no normalizable state belongs to the eigenspace correspond-

ing to “Φ evaluated at event x”, a measurement of the quantum field at a sharply-defined

1. Of course, it is not possible to take repeated measurements at a single event in spacetime. However,
measurements could be taken at distinct events each with the same local spacetime structure.

2. i.e., assuming Φ is defined as a Hermitian “quadratic form”.

3. If spacetime is modeled as a discrete lattice, divergent fluctuations are avoided at the expense of
explicitly breaking (continuous) spacetime isometries.

4. As articulated in the influential paper [2], the divergent fluctuations of non-interacting quantum fields
can be inferred from the canonical equal-time commutation relations.

5. Here we use Dirac bra-ket notation for the quantum field and states: Suppose there exists a self-adjoint
operator Φ̂(x) with dense invariant domain on a Hilbert space. Further suppose there exist normalized
eigenstates, |Φe.v.(x)⟩, corresponding to this operator: i.e., ⟨Φe.v.(x) |Φe.v.(x)⟩ = 1 and Φ̂(x) |Φe.v.(x)⟩ =
Φe.v.(x) |Φe.v.(x)⟩. From these assumptions and (1.2), we immediately obtain a contradiction:

∞ > Φe.v.(x)Φe.v.(x) = Φe.v.(x)Φe.v.(x) ⟨Φe.v.(x) |Φe.v.(x)⟩ = ⟨Φe.v.(x)|Φ̂(x)Φ̂(x)|Φe.v.(x)⟩ ∼ ∞  (1.3)

2



spacetime event is theoretically incompatible with the standard postulates of quantum me-

chanics. This is a close analogue of the well-known fact that eigenstates of the position

operator for a non-relativistic particle are non-normalizable6 and, thus, are not physically

realizable. Nevertheless, in close analogy to the non-relativistic case7, one can construct a

physically-sensible quantum observable by “smearing” the field over a finite (but possibly

“very small”) spacetime region8. The smeared field observable is often written informally as

Φ(f) =

∫
dDx f(x)Φ(x), (1.4)

with f denoting a compactly-supported “bump function”9. In contrast to the fluctuations of

the pointwise field Φ(x), the fluctuations of the smeared field observable are finite-valued in

any physically-reasonable state. If f is real-valued and normalized such that
∫
dDxf(x) = 1,

then the smeared field (1.4) may be interpreted as a weighted average of the quantum field

over the spacetime region in which f is nonzero10.

Although smeared fields Φ(f) are satisfactory quantum observables, the singular nature

of quantum fields does create difficulties in defining nonlinear observables and nonlinear

dynamics that are not present for quantum systems with countable degrees of freedom.

Because the quantity (1.1) is finite-valued in any physically-reasonable state, the divergent

fluctuations in (1.2) arise from the expectation value of the pointwise product Φ(x)Φ(x).

6. More precisely, the inner product between position eigenstates, ⟨x⃗|x⃗′⟩ = δ(x⃗−x⃗′), diverges when x⃗ = x⃗′.

7. The analogy between (1.4) and the non-relativistic case is that, for bump function ψ on R3, |ψ⟩ ≡∫
d3xψ(x⃗) |x⃗⟩ is a normalizable state even though the individual position eigenstates |x⃗⟩ are not.

8. The microlocal spectrum condition [15, see eqs. 22-23 for definition] implies it is possible to define a
quantum field at a sharp “position in space” by smearing only in a timelike direction. For the very special
case of the linear field observable for a non-interacting theory, it is also possible to define the field at a
sharp “moment in time” by smearing in (all) spacelike directions. Of course, the latter is required to define
equal-time commutation relations.

9. In cases where the quantum field is tensor-valued, Φ = Φabcd···, it is smeared with a test function
element of its dual space, fabcd···, so that the smeared field (1.4) is always a scalar quantity.

10. From a practical standpoint, the weighted average of the field is a decidedly more realistic observable
than Φ(x) even in classical field theory, since the actual resolving abilities of any physical detector will be
limited and non-uniform in spacetime.
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This is a special case of the general “n-point functions”:

⟨Φ1(x1)Φ2(x2) · · ·Φn(xn)⟩Ψ , (1.5)

which characterize the correlations between n quantum fields Φ1, . . . ,Φn evaluated at events

x1, . . . , xn, respectively. The discussion of the previous paragraph implies that, in general,

the quantities (1.5) are only mathematically and physically meaningful when the quantum

fields have been smeared with bump functions f1(x1), . . . , fn(xn). Viewed as maps from

bump functions to numbers (i.e., as “functionals”), the expectation values (1.5) are linear (as

suggested by the informal integral notation (1.4) for the smeared fields) and suitably contin-

uous11 and, thus, are mathematically well-defined as distributions. The fact that quantum

fields are represented by distributions, which are inherently linear objects in general, is the

ultimate origin of all “short-distance”/“ultraviolet” divergences that arise when expressions

involving quantum fields are naively manipulated as if they were ordinary functions.

It is worth emphasizing that the n-point distributions (1.5) and their “time-ordered”

counterparts contain, in principle, all the types of predictions that are relevant for modern

particle physics experiments, including the probability amplitudes (i.e. “S-matrix elements”)

that are used to compute decay rates and scattering cross sections. Moreover, in spite

of the challenges posed by the singularities of (1.5) at coinciding spacetime events, the

strong correlations implied by the n-point distributions between fields at small “spacelike”

separations are intimately related to some of the most interesting and phenomologically-

important predictions of quantum field theory in curved spacetimes [4, see Section 2.2] : In

particular, the black-body radiation predicted in the Hawking effect ultimately originates

from quantum correlations between “closely-separated” fields located on opposite sides of a

black hole event horizon. The spatial correlations in the n-point distributions also provide a

natural explanation for the temperature fluctuations observed in the power spectrum of the

11. For a precise definition of “continuity” of a distribution, see [3, Definition 2.1.1].

4



cosmic microwave background radiation and imply a mechanism for “structure-formation”

in our universe: When amplified by the exponential expansion of an “inflationary” epoch,

quantum correlations between fields separated by very short-distances in the early universe

will seed the kind of density perturbations that are required for the formation of large-scale

structures like galaxies and galaxy clusters in our present universe.

∗ ∗ ∗ Nonlinear dynamics ∗ ∗ ∗

In (3+1)-spacetime dimensions, the singular nature of quantum fields has thus far ob-

structed serious attempts to formulate a mathematically well-defined theory of interacting

quantum fields, i.e., a theory where the elementary quantum fields satisfy nonlinear equa-

tions of motion. The kinds of interacting quantum field theories that constitute the Standard

Model of particle physics are Yang-Mills gauge theories, and proving the existence of a non-

trivial Yang-Mills theory (with a “mass gap”) in 4-dimensions remains a famous unsolved

problem with a sizable bounty [6]. Consequently, in spite of their physical importance, it is

not known how to satisfactorily define—much less construct—the n-point distributions, eq.

(1.5), in (3 + 1)-spacetime dimensions except for quantum field theories whose elementary

fields satisfy linear equations of motion, i.e., for “non-interacting” quantum fields. To the

extent that deviations from linear dynamics are “small”, the effects of interactions have been

quantified (with incredible success) using perturbation theory.

In the standard perturbative approach, it is the “time-ordered” version12 of the n-point

distributions denoted by,

⟨T{Φ1(x1)Φ2(x2) · · ·Φn(xn)}⟩Ψ , (1.6)

that are typically analyzed rather than the ordinary n-point distributions (1.5). In perturba-

tion theory, the expectation values for these time-ordered products of the interacting theory

12. See Section 4.3 for the definition of “time-ordering”.
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are approximated by a formal power series in the theory’s “interaction parameter(s)”. For

concreteness and simplicity, we will discuss a scalar field theory with a quartic potential and

interaction parameter λ,

L = −1

2
gab∇aϕ∇bϕ− 1

2
(m2 + ξR)ϕ2 − 1

4!
λϕ4. (1.7)

Classically, this Lagrangian corresponds to the nonlinear equation of motion:

(
−gab∇a∇b +m2 + ξR(x)

)
ϕ(x) +

1

3!
λϕ3(x) = 0, (1.8)

with gab denoting the spacetime metric, m the mass, ξ a curvature coupling parameter,

and R the Ricci scalar. For this model, the n-point time-ordered products involving the

elementary field observable ϕ, e.g., are supposed to be approximated by a power series of

the form:

⟨T {ϕ(x1) · · ·ϕ(xn)}⟩Ψ = ⟨T {ϕ0(x1) · · ·ϕ0(xn)}⟩Ψ0
+

N∑
k=1

λkDΨ0,k(x1, . . . , xn), (1.9)

where ϕ0 denotes a non-interacting field satisfying the linear Klein-Gordon equation (i.e.

eq. (1.8) with λ = 0), Ψ0 denotes a quantum state of the non-interacting theory, and DΨ0,k

denote λ-independent distributions that depend on both the quantum state Ψ0 and the

perturbative order k. Even for the simplest of quantum states in flat spacetime, it was

highly nontrivial to develop a renormalization program that allowed the distributions, like

DΨ0,k, that appear in perturbation theory to be constructed and given a physical inter-

pretation. Typically, calculations of physical observables in quantum field theory are still

carried out to only relatively low (single-digit) orders in perturbation theory. Nevertheless,

many of these low-order calculations have resulted in (by far) the most precise agreements

between theoretical prediction and experimental measurement that have yet been achieved

6



in empirical science.

At an early stage in the development of renormalized perturbation theory, it was ex-

pected/hoped that a power series like (1.9) might converge to a well-defined distribution as

N → ∞ for at least some nonzero range of values for the interaction parameter λ. In which

case, perturbation theory would, in principle, provide a means to define (rather than just

approximate) interacting quantum field theories. However, by now, it is generally believed

that this kind of infinite series would not converge even when spacetime is flat and the fields

are in their vacuum state, ⟨ · ⟩vac
13. Thus, it is anticipated that the n-point distributions of

an interacting theory (and their time-ordered counterparts) cannot—even in principle—be

obtained by summing all (N → ∞) orders in perturbation theory, and it is expected that

perturbation theory only approximately describes the behavior of interacting quantum fields

in the limit the strength of the interaction tends toward zero.

Remark 1. In one dimension, the Lagrangian (1.7) reduces to that of an anharmonic oscilla-

tor. The quartic anharmonic oscillator’s ground state correlation functions are known to be

non-analytic at λ = 0, and their standard perturbative series are divergent. Of course, this

does not present any obstacle whatsoever to the formulation of the quantum theory of the

quartic anharmonic oscillator: In contrast to the (3+1)-spacetime field theory case, the cor-

relation functions of the anharmonic oscillator are non-singular and there is no inherent ob-

struction to defining nonlinear operators, like the theory’s Hamiltonian, non-perturbatively.

For the purpose of motivating our application of the operator product expansion and

the general form of the flow relations for the OPE coefficients, it is useful to examine the

complications that arise when attempting to naively “turn on” the interaction parameter

λ for the scalar field theory with quartic potential (1.7) in the very special case that the

quantum fields are in the flat spacetime vacuum state. Naive manipulation of the formal

13. A simplistic, but suggestive, argument was given by Dyson in the context of QED [5]. For a scalar
field with self-interaction potential λϕ4/4!, his reasoning implies the vacuum expectation values should not
be analytic at λ = 0, since there does not exist a ground state for λ < 0, which corresponds to a potential
that is unbounded from below.

7



functional integral expressions for the vacuum expectation values would suggest14,

∂

∂λ
⟨T {Φ1(x1) · · ·Φn(xn)}⟩vac “=” − i

4!

∫
dDy

〈
T
{
ϕ4(y)Φ1(x1) · · ·Φn(xn)

}〉
vac

, (1.10)

where the integral is taken over all of D-dimensional Minkowski spacetime. The quotations

around the equality sign are intended to indicate this expression cannot be taken literally

since the integral on the right-hand side does not actually converge. Nevertheless, the heuris-

tic suggested by the informal relation (1.10) is that changes to the interaction parameter’s

magnitude are induced by “inserting” the interaction operator (ϕ4/4! in this case) and inte-

grating over spacetime. This simple idea is complicated by several inconvenient facts:

Firstly, on account of the distributional nature of quantum fields described previously,

it must first be specified what is meant by expressions involving nonlinear fields like ϕ4,

since nonlinear fields cannot be defined by taking pointwise products of the linear field. In

particular, we note ϕ4(y) ̸= ϕ(y)ϕ(y)ϕ(y)ϕ(y). Defining nonlinear fields is a non-trivial task

already in the non-interacting limit λ = 0 : Indeed, Chapter 3 of this thesis is dedicated

to a review of the renormalized Wick monomials and the characterization of their inherent

renormalization ambiguities in generic (globally-hyperbolic) spacetimes. To make sense of

(1.10) as a system of non-perturbative differential equations in the interaction parameter λ,

nonlinear fields would need to be defined and their renormalization ambiguities understood

for nonzero values of λ.

Secondly, as discussed in Section 4.3 of this thesis, time-ordering defines (1.6) as distribu-

tions only when all spacetime events are not coinciding, xi ̸= xj for all i, j = 1, . . . , n. When

any two spacetime events are coincident, the expectation value of time-ordered products

(1.6) generically possess non-integrable divergences. Hence, the integrand on the right-hand

side of (1.10) will generally fail to be locally integrable15 if event y coincides with any one

14. For example, see the derivation given in Section 5.1, starting around eq. (5.6).

15. This is a (non-perturbative) position-space analogue of the “ultraviolet divergences” that appear in

8



of x1, . . . , xn. Provided these isolated divergences are of finite “severity”16 at any fixed λ-

value, it should always be possible to renormalize the integrand of (1.10) to render it locally

integrable. However, the severity of divergences in the integrand of (1.10) are related to the

dimension of the quantum fields, which are known to depend on the value of the interac-

tion parameter(s). Thus, the renormalization scheme would generally also depend on λ in a

potentially-complicated way. Moreover, this renormalization procedure would generally not

be unique and, thus, would not unambiguously determine the right-hand side of (1.10). Since

(1.10) form an infinite set of coupled equations—each one requiring a λ-dependent renor-

malization—it is not at all obvious that the ambiguities in these equations could be fixed by

only a finite number of physical measurements as is the case in the standard perturbative

treatment of λϕ4-theory.

Thirdly, the integral is unbounded and generally does not converge as y → ∞ even for

the massive theory, m2 > 0.

Remark 2. The first two complications described in the preceding paragraphs simplify con-

siderably (but remain nontrivial) in perturbation theory. Formal differentiation of the power

series (1.9) and the formula (1.10) suggest the k-th order distribution Dvac,k will, e.g., involve

a term of the form:

ik

k!(4!)k

∫
d4y1 · · · d4yk

〈
T
{
ϕ40(y1) · · ·ϕ

4
0(yk)ϕ0(x1) · · ·ϕ0(xn)

}〉
vac

, (1.11)

in (3+1)-spacetime dimensions. Here ⟨ · ⟩vac denotes the vacuum state of the non-interacting

(Klein-Gordon) field. There is a unique prescription17 for defining “Wick powers” like ϕ40

such that their vacuum expectation value vanishes: i.e., ⟨ϕ40⟩vac = 0. If the Wick powers

momentum-space perturbation theory.

16. This can be made precise using the concept of a “scaling degree”; see the discussion preceding eq. (4.5)
and Footnote 1 of Section 4.1.

17. This prescription corresponds to replacing H(x1, x2) with ⟨ϕ(x1)ϕ(x2)⟩vac in formula (3.28).

9



are defined in this canonical way, then the only ambiguities present in (1.11) arise from the

renormalization of the time-ordered products for the non-interacting Klein-Gordon theory18.

If the time-ordered products are locally and covariantly defined and satisfy19 the properties-

postulated in [7], then it follows the only ambiguities that arise in the renormalization of

(1.11) are inherited from the ambiguities in the time-ordered products involving just ϕ40 :

T
{
ϕ40(y1) · · ·ϕ

4
0(yk)

}
. (1.12)

Once the renormalization prescriptions for (1.12) with k < p have been fixed, the prescription

for defining (1.12) with k = p is uniquely determined up to a “contact-term” of the form,

[
c0m

4I + c1η
µν(∂µϕ∂νϕ)0(y1) + c2m

2ϕ20(y1) + c3ϕ
4
0(y1)

]
δ(y1, . . . , yk), (1.13)

where c0, c1, c2, c3 are arbitrary, dimensionless, real-valued, spacetime-independent numbers.

Aside from the term proportional to the identity element I, every term appearing in (1.13)

is of the same form as a term that appears in the Lagrangian (1.7). It can be shown that

making different choices for c0, c1, c2, c3 is (perturbatively) equivalent to shifting the physical

parameters appearing in the original Lagrangian (1.7) by certain λ-dependent functions,

L → L̃ = f0(λ)m
4 + (1 + f1(λ)) η

µν∂µϕ∂νϕ+m2 (1 + f2(λ))ϕ
2 + f3(λ)ϕ

4, (1.14)

prior to differentiating (1.9) and (1.10) with respect to λ. Note functions f1, f2, f3, f4 vanish

at λ = 0.

18. See Section 4.3 for further discussion.

19. In fact, the smoothness and analyticity axioms of [7] are not satisfied by the prescription where〈
ϕ40

〉
vac = 0, since the vacuum 2-point function is not smooth in m2 at m2 = 0 ; see also the discussion

surrounding eq. (5.2). To simplify the discussion here, this subtlety will be ignored within the context of
Remark 2.
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∗ ∗ ∗ Operator product expansion and informal flow relations for OPE coefficients ∗ ∗ ∗

In spite of the incredible successes of renormalized perturbation theory, there are impor-

tant quantum field phenomena that cannot be analyzed perturbatively: e.g., it is expected

that the observed hadronic “confinement” of quarks and gluons manifests non-perturbatively

in the theory of quantum chromodynamics. As discussed previously, the renormalization

required to define nonlinear fields and time-ordered products poses a serious technical and

conceptual obstacle to defining interacting quantum field theories non-perturbatively. Be-

cause the need for renormalization ultimately arises from the singular behavior of products

of quantum fields as two or more of their spacetime events approach coincidence, the opera-

tor product expansion is an indispensable tool for the systematic analysis of these inherent

difficulties: A quantum field theory is said to possess an operator product expansion if, in

any physically-acceptable state Ψ, the expectation value of any product of local quantum

field observables can be approximated near event z as

〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ ∼

∑
B

CBA1···An
(x1, . . . , xn; z) ⟨ΦB(z)⟩Ψ . (1.15)

Here A1 . . . , An, B label the renormalized field observables of the theory (see e.g. (3.4)), and

the sum over B extends over all observables. The coefficients CBA1···An
(x1, . . . , xn; z) of this

expansion are ordinary c-valued distributions that are independent of the state Ψ (within the

class of allowed states). The “∼” in eq. (1.15) denotes that this relation holds asymptotically

in the coincidence limit x1, . . . , xn → z; a precise statement of this asymptotic relationship

will be given in formula (4.2)) below. The OPE was initially postulated by Wilson in [1] and

it is expected to exist for any renormalizable local quantum field theory under very general

assumptions [8–14].

Since the 1-point functions ⟨ΦB(z)⟩Ψ are smooth, the OPE implies the “singular behavior”

of the (n > 2)-point distributions (1.5) as x1, . . . , xn → z is entirely contained in the

11



distributional coefficients CBA1···An
(x1, . . . , xn; z). Although the B-sum contains infinitely-

many terms, there are typically only finitely-many singular OPE coefficients for any fixed

set of A1, . . . , An, with the coefficients becoming less singular (or approaching zero faster)

as the dimension of the field ΦB increases.

As discussed in Section 4.3, the OPE exists also for the expectation values of (un-

renormalized) time-ordered products, eq. (1.6). Assuming the OPE exists when the interac-

tion parameters are nonzero, it naturally suggests a relatively simple algorithm for remov-

ing the non-integrable divergences appearing in informal expressions involving time-ordered

products like eq. (1.10), thereby bypassing the second major issue discussed under eq. (1.10).

In particular, for any ΦA and spacetime dimension D, the OPE of
〈
T{ϕ4(y)ΦA(x)}

〉
Ψ is ex-

pected to contain only finitely-many terms that are non-integrable at y = x. Supposing the

OPE coefficients satisfy the scaling degree axiom20 of [15], see eq. (4.5), these non-integrable

terms are,

〈
T{ϕ4(y)ΦA(x)}

〉
Ψ

∼
∑

[C]≤[A]+[ϕ4]−D
CC
T{ϕ4A}(y, x;x) ⟨ΦC(x)⟩Ψ + locally-integrable terms, (1.16)

where [A] denotes the dimension of the field ΦA as defined in [15, Eq. 10]; see also Footnote

25. Here we have elected to expand about z = x. Suppose the non-integrable divergences

that occur in
〈
T
{
ϕ4(y)ΦA1

(x1) · · ·ΦAn
(xn)

}〉
Ψ at y = xi for each i ∈ {1, . . . , n} are of the

same form as (1.16), i.e., suppose that as y → xi with all other x-spacetime events held

20. This property has been proven to hold order-by-order in perturbation theory [10].
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fixed21:

〈
T
{
ϕ4(y)ΦA1

(x1) · · ·ΦAn
(xn)

}〉
Ψ

∼
∑

[C]≤[Ai]+[ϕ4]−D
CC
T{ϕ4Ai}

(y, xi;xi)
〈
T
{
ΦA1

(x1) · · ·ΦC(xi) · · ·ΦAn
(xn)

}〉
Ψ+ (1.17)

+ terms locally integrable at y = xi.

This implies that, unlike the informal expression (1.10), the following expression should be

free of any (local) non-integrable divergences,

∂

∂λ

〈
T
{
ΦA1

(x1) · · ·ΦAn
(xn)

}〉
Ψ “=”

− i

4!

∫
dDy

√
−g(y)

[〈
T
{
ϕ4(y)ΦA1

(x1) · · ·ΦAn
(xn)

}〉
Ψ
+ (1.18)

−
n∑
i=1

∑
[C]≤[Ai]+[ϕ4]−D

CC
T{ϕ4Ai}

(y, xi;xi)
〈
T
{
ΦA1

(x1) · · ·ΦC(xi) · · ·ΦAn
(xn)

}〉
Ψ

]
,

and, thus, it effectively bypasses the second major difficulty discussed directly after eq. (1.10).

We emphasize that the summation over each [C] is finite and the dimensions of the fields

may depend on λ. Here we have generalized (1.10) from the vacuum state ⟨ · ⟩vac in flat

Minkowski spacetime to any state ⟨ · ⟩Ψ in curved spacetime satisfying the OPE relations

(1.15).

By introducing an infrared cutoff, the integral in (1.18) could now be made to converge.

In which case, provided our assumptions held for λ > 0, the right-hand side of (1.18)

would be mathematically well-defined non-perturbatively. However, in order for formula

(1.18) to be useful for obtaining the expectation values
〈
T
{
ΦA1

(x1) · · ·ΦAn
(xn)

}〉
Ψ of the

interacting theory, one would first need to know the explicit form of the OPE coefficients,

21. This assumption is a stronger version of the “associativity” properties that are known to hold (pertur-
batively) for the OPE coefficients [10]; see also the two paragraphs preceding Theorem 3 in Section 4.1.
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CC
T{ϕ4Ai}

(y, xi;xi), appearing in formula (1.18) for λ > 0. Unfortunately, as with the n-

point distributions themselves, it is only known how to calculate the OPE coefficients to

finite order in perturbation theory.

Although formula (1.18) cannot be solved for the time-ordered expectation values without

knowing the OPE coefficients, we can use formula (1.18) to obtain relations for the OPE

coefficients themselves: By applying the operator product expansion (1.15) to both sides of

(1.18) and equating the coefficients of ⟨ΦB(z)⟩Ψ for each B, we obtain22

∂

∂λ
CBT{A1···An}(x1, . . . , xn; z) “∼”

− 1

4!

∫
dDy

√
g(y)

[
CBT{A1···An}(x1, . . . , xn; z)+ (1.19)

−
n∑
i=1

∑
[C]≤[Ai]+[ϕ4]−D

CC
T{ϕ4Ai}

(y, xi;xi)C
B
T{A1···C···An}(x1, . . . , xn; z)

]
,

as all events, x1, . . . , xn, approach an event z. Here g ≡ det gµν denotes the determinant

of the metric tensor. These relations are entirely “self-contained” in the sense that they

involve only the OPE coefficients and, in particular, do not contain any state-dependent

expectation values. If a suitable integration cutoff could be introduced, then these formulas

should be entirely mathematically well-defined. The existence and uniqueness of solutions

to an infinite system of differential equations like (1.19) is not presently known. However,

since (1.19) are first-order in λ, it is conceivable that solutions are uniquely determined by

specifying (all) the OPE coefficients CB
T{A1···An} at a single value of λ. For λ = 0, the theory

is non-interacting and the OPE coefficients can be directly constructed: see Chapter 4 for

explicit formulas. Therefore, by taking the known values for the OPE coefficients at λ = 0

as the “initial conditions” for the differential equations (1.19), one might then attempt to

compute the non-perturbative OPE coefficients for the interacting theory, λ > 0, by solving

22. The formula (1.19) is obtained by assuming there exists a state Ψ and a renormalization prescription
for the quantum fields such that ∂λ ⟨ΦB(z)⟩Ψ = 0 for all B.
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the equations.

Presuming they exist, the solutions to (1.19) for the time-ordered OPE coefficients

CB
T{A1···An}(x1, . . . , xn; z) should then be useful for determining the expectation values for

the time-ordered products
〈
T
{
ΦA1

(x1) · · ·ΦAn
(xn)

}〉
Ψ at λ > 0, recalling the heuristic

formula (1.18). However, it is far from obvious how to actually construct time-ordered

expectation values from knowledge of just the OPE coefficients (and the time-ordered ex-

pectation values at λ = 0), since physical quantum states must satisfy additional nontrivial

requirements like “positivity” conditions,
〈
Φ∗
A(f)ΦA(f)

〉
Ψ ≥ 0 for all ΦA (and all test func-

tions f), and they must satisfy the OPE relations, formula (1.15), for all composite fields

A1, . . . , An and at all spacetime events z ∈ M . The highly-nontrivial task of constructing

quantum states from the OPE coefficients will not be considered further in this thesis.

Remark 3. The preceding informal derivation of the formula (1.10) for ∂λ
〈
T
{
ΦA1

(x1) · · ·

ΦAn
(xn)

}〉
Ψ essentially generalizes an approach sketched by Wilson in the first OPE paper

[1, Section V. Mass Terms: Generalities]

A general perturbation formula can be set up to describe [relevant, marginal,

and irrelevant] interactions. To avoid innumerable complications of perturbation

theory to all orders one writes only a first-order formula giving the change in any

local (Heisenberg) field On(x) when any coupling constant is changed. That is,

if {λi} are the set of coupling constants associated with the interactions Li, one

obtains a formula for ∂On(x)/∂λi. The usual (unrenormalized) formula is

∂On(x)

∂λi
= i

∫
y
[On(x),Li(y)]ret ,

where [ ]ret means the retarded commutator23 (y0 < x0). This formula has to be

corrected both for nonadiabatic effects (when physical particle masses vary with

23. For x ̸= y, the retarded commutator can be expressed in terms of the time-ordered product:
[On(x),Li(y)]ret = T {Li(y)On(x)} − Li(y)On(x).
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λi) and for ultraviolet singularities at x = y. The nonadiabatic efects are easily

accounted for and will not be considered here. The ultraviolet singularities can be

analyzed using the operator-product expansion for the commutator [On(x),Li(y)]

and the singular terms can then be removed by subtraction.

In the very next line, Wilson anticipates the passage from formulas like (1.10) to (perturba-

tive) flow relations for the OPE coefficients:

One can then showa that operator product expansions continue to hold in the

presence of the perturbation and obtain formulas for derivatives of expansion

functions such as ∂Cn(z)/∂λi. These formulas will not be quoted here.

a. This paragraph summarizes a very complex analysis.

The footnote denoted by “a” in the preceding quotation is Footnote 27 in Wilson’s paper.

To my knowledge, explicit formulas like (1.19) for the flow relations did not appear in any

of Wilson’s publicly-accessible work.

In the preceding discussion, we described how the OPE coefficients may be used to extract

(and remove) the non-integrable divergences of the time-ordered n-point distributions, which

was the second issue described below eq. (1.10). Since the OPE coefficients contain more

general information about the distributional properties of the quantum fields, they should

also be relevant to the first issue described below eq. (1.10) : viz., defining nonlinear quantum

fields at nonzero coupling. In standard approaches to defining and constructing quantum

fields in Euclidean space and Minkowski spacetime, the existence of a unique vacuum state

plays an essential role. However, in the formulation of quantum field theory in a curved

Lorentzian spacetime, Hollands and Wald have previously argued [15, 16] that OPEs must

play a role of similar importance. In a general, curved Lorentzian spacetime there is no

notion of Poincare invariance and no preferred vacuum state, so properties of the quantum

field normally formulated in terms of vacuum expectation values in Minkowski spacetime

must now be formulated in terms of OPE coefficients. Hollands and Wald have argued
16



that the key relations satisfied by the quantum field observables can be expressed via the

OPE, so that, in essence, a quantum field theory in curved spacetime may be viewed as

being specified by providing all of its OPE coefficients CBA1···An
. Thus, it is of considerable

interest to determine the OPE coefficients of an interacting quantum field theory. It would be

especially of interest to determine the OPE coefficients of an interacting theory by methods

that do not rely on perturbation theory, since this would have the potential for providing a

non-perturbative definition of the interacting theory.

The third issue identified below eq. (1.10) regarding the “infrared” divergence of the

unbounded spacetime integral is, of course, also present in the naive flow relation (1.19) for

the OPE coefficients. As we will describe, the need to integrate the OPE coefficients over a

compact spacetime region introduces major complications in Lorentzian spacetimes. Since

the resolution of these difficulties is the primary objective of this thesis, discussion of the

integration cutoff and its associated issues is deferred until the overview chapter, Chapter 2.

The informal manipulations that led to the flow relations (1.19) for the OPE coefficients

were based on a crude heuristic and are entirely non-rigorous. Nevertheless, mathematically

well-defined flow equations for the OPE coefficients with essentially the same structure as

(1.19) have been rigorously derived for a variety of interacting quantum field theories on

manifolds with Euclidean-signature metrics. We turn next to a summary of these Euclidean

results.

∗ ∗ ∗ Mathematically well-defined flow equations for Euclidean QFTs ∗ ∗ ∗

For the case of a Euclidean quantum field theory with power-counting renormalizable self

interactions, Hollands has argued [17] that the OPE coefficients must satisfy a “flow” relation

under changes of the coupling parameters. Such flow equations have been proven to hold

order-by-order in perturbation theory for several interacting models, including λϕ4-theory

[18, 19], Yang-Mills gauge theories [20], and CFTs with strictly marginal interactions [17].

In particular, Holland and Hollands have proven [17, Theorem 1] that, by making use of
17



the freedom to redefine the quantum field observables, the OPE coefficients of λϕ4-theory

in D = 4 dimensional (flat) Euclidean space satisfy the following24 flow equations to any

(finite) perturbative order in λ,

∂

∂λ
CBA1···An

(x1, . . . , xn; z) =− 1

4!

∫
|y−z|≤L

d4y

[
CB
ϕ4A1···An

(y, x1, . . . , xn; z)+ (1.20)

−
n∑
i=1

∑
[C]≤[Ai]

CC
ϕ4Ai

(y, xi;xi)C
B
A1···ÂiC···An

(x1, . . . , xn; z)+

−
∑

[C]<[B]

CCA1···An
(x1, . . . , xn; z)C

B
ϕ4C

(y, z; z)

]
.

Here λ is the renormalized coupling parameter; L is a positive constant with units of length;

ÂiC indicates the replacement of the label Ai with the label C; and [A] denotes the dimension

of the renormalized field ΦA as defined in [15, Eq. 10]25. For the spatial integral over y, it is

understood that the integration is initially done over the region bounded by ϵ ≤ |y−xi| and

ϵ ≤ |y− z| ≤ L, the subtractions appearing in the integrand are performed, and the limit as

ϵ→ 0+ is then taken. Holland and Hollands have shown that all ultraviolet divergences that

may arise in individual terms as ϵ → 0+ precisely cancel between terms26, so the ϵ → 0+

limit is well-defined without any additional regulators or renormalization.

To compare the flow equations (1.20) for Euclidean λϕ4-theory to the informal Lorentzian

relations (1.19) obtained above, we first note that g(y) = 1 in flat spacetime. In D = 4

spacetime dimensions and to any finite order in perturbation theory, we also note that [ϕ4] =

4 so the sum over [C] ≤ [Ai]+[ϕ4]−D in the Lorentzian relations (1.19) reduces to [C] ≤ [Ai].

Therefore, apart from the integration cutoff (and the “∼” symbol), the first two lines of the

24. In [17–19], Holland and Hollands set the expansion point z = xn. We prefer to define the coefficients
more symmetrically in x1, . . . , xn by using an independent expansion point z.

25. To any finite perturbative order, the dimension defined in [15, Eq. 10] coincides with the standard
“engineering dimension” given in our “Notation and conventions” at the end of Chapter 2.

26. For comparison to the terminology that will be used in Chapter 2, note the cancellation of non-
integrable divergences at y = xi (for i = 1, . . . , n) is equivalent to the statement that the integrand of (1.20)
is uniquely “extendable” as a distribution to the “partial diagonals” involving y and any single xi-point.
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Holland and Hollands flow equations (1.20) for λϕ4-theory are (perturbatively) equivalent

to the “Wick rotated”27 flat spacetime limit of the informal Lorentzian flow relations (1.19).

Terms in the third line of the Euclidean flow equations (1.20) are related to the specific

renormalization scheme28 used in [18,19] and contain no non-integrable divergences for |y−

z| ≤ L.

Although the flow equations (1.20) were rigorously derived in a perturbative setting,

these equations make sense mathematically for any value of λ under very general model-

independent assumptions—specifically, if the OPE coefficients satisfy the “associativity” and

“scaling degree” axioms postulated in [15]. Thus, it seems reasonable to assume that eq. (1.20)

would hold for the OPE coefficients of the non-perturbative theory. That is, if it were possible

to integrate eq. (1.20) from λ = 0 (where the field is free and the OPE coefficients may be

computed directly) up to some nonzero λ, we would obtain a non-perturbative construction

of the interacting OPE coefficients. As mentioned before, it is not known if there exist

solutions to an infinite system of ordinary differential equations like (1.20). Nevertheless,

flow relations like eq. (1.20) have the potential to provide a new approach to the formulation

of interacting quantum field theory, and may be of considerable “practical” use as well.

Remark 4. For some (or all) values of the coupling parameter, there may exist nontrivial

solutions to the flow relations that do not satisfy the OPE relation (1.15) for some (or all)

physically-reasonable states. For example, the explicit formulas for the OPE coefficients of

massive non-interacting Klein-Gordon fields can be shown to satisfy flow relations, eq. (2.1),

with respect the mass squared parameter, m2, for both positive and negative values of m2.

However, the OPE (1.15) cannot hold for the Klein-Gordon vacuum state when m2 < 0

for the simple reason that no vacuum exists when m2 < 0. For pure λϕ4-theory29, it has

27. Under a Wick rotation, the volume element picks up a factor of −i. Note the Euclidean OPE coefficients
are symmetric so “time ordering” does not affect them.

28. For massive fields satisfying the BPHZ renormalization conditions, the terms in the third line ensure
the integral converges in the limit the cutoff is removed, L→ ∞.

29. Here “pure” means there are no self-couplings besides the quartic term and no couplings between ϕ
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been proven under certain assumptions [21] that the non-perturbative lattice-regularized

Schwinger functions are “Gaussian”30 in the continuum limit for all nonzero values of the

renormalized interaction parameter λ. This result is sometimes referred to as the quantum

“triviality” of λϕ4-theory31. Hence, for any nonzero λ, solutions to the flow relations (1.20)

clearly would not correspond to the OPE coefficients of the renormalized λϕ4-vacuum that is

obtained by this lattice-based construction: cf. eq. (1.20) with the form of the flow relations,

eq. (2.1), for the non-interacting OPE coefficients. Regardless of the non-perturbative status

of λϕ4-theory, we emphasize that, as mentioned previously, flow equations have also been

obtained for “asymptotically free” Yang-Mills gauge theories that are expected [6] to have

non-Gaussian vacua at finite nonzero coupling.

and other quantum fields.

30. i.e., the Schwinger n-point functions, ⟨ϕ(x1) · · ·ϕ(xn)⟩, vanish for n odd and for n even are given
in terms of the 2-point function, ⟨ϕ(xi)ϕ(xj)⟩, by the usual Wick combinatorial formulas, eq. (5.5), for a
non-interacting theory. Gaussian states are also known as “quasifree states” with vanishing 1-point function.

31. It is not entirely obvious [22, see Section 8: Is Destructive Field Theory Possible?] whether lattice-based
results should be considered decisive evidence for determining existence of nontrivially-interacting quantum
field theories in the continuum.
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CHAPTER 2

OVERVIEW OF RESULTS AND ORGANIZATION OF THESIS

The OPE flow relations (1.20) and their generalization to other interacting theories apply

for the case of flat Euclidean space. Recently, Fröb [23] has generalized these relations to

quantum fields on curved Riemannian spaces, without, however, imposing the condition

that the OPE coefficients be locally and covariantly defined. Since the physical world is

Lorentzian, it would be of interest to generalize the flow relations to Lorentzian spacetimes.

Furthermore, the requirement that the OPE coefficients be locally and covariantly defined

in curved spacetime is the natural generalization of the requirement of Poincaré invariance

in Minkowski spacetime [15] and it thereby provides an important requirement on the flow

relations. Thus, it is of interest to determine if the flow relations can be formulated for

Lorentzian spacetimes in a local and covariant manner.

There are two major obstacles to generalizing flow relations such as eq. (1.20) to the

Lorentzian case: (i) In the Euclidean case, the infrared cutoff, L, appearing in the flow rela-

tions (1.20) is fully compatible with rotational invariance, and the resulting flow relations are

automatically Euclidean invariant. However, in Minkowski spacetime, no bounded region of

spacetime can be invariant under Lorentz boosts. Thus, in Minkowski spacetime, either the

corresponding integral must be taken over an unbounded region—resulting in serious prob-

lems with convergence of the integral in Minkowski spacetime as well as with the definition

of the OPE coefficients throughout the region in the generalization to curved spacetime—or

the corresponding integral will not be Lorentz invariant, leading to flow relations that are

not Poincaré invariant. (ii) There is a fundamental difficulty with obtaining local and co-

variant results by performing an integral over a spacetime region. If the curved spacetime

flow relations take a form similar to eq. (1.20) where the integral is performed over some

neighborhood Uz of z ∈ M , this integral would depend on the spacetime metric in all of

Uz, not just in an arbitrarily small neighborhood of z. Thus, for a flow relation of the form
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of eq. (1.20) with an integral performed over a finite spacetime region Uz, the flow of OPE

coefficients will necessarily depend non-locally on the metric.

The purpose of this thesis is to show how the above difficulties can be overcome, thereby

showing that local and covariant OPE flow relations can be defined in curved Lorentzian

spacetimes. We will also show how to modify the flow relations so as to eliminate any

dependence on the infrared cutoff scale L. We will restrict consideration in this thesis to

the “toy model” of massive, non-minimally-coupled Klein-Gordon theory, with m2 and the

curvature coupling parameter, ξ, viewed as interaction parameters. Of course, this model is

a free field for all values of the parameters. Nevertheless, we may treat m2 and ξ as coupling

constants in an interaction Lagrangian, in parallel with the treatment of λ in eq. (1.20).

The resulting flow relations have a form that is very similar in its essential features to

that of a nonlinearly interacting theory, so this toy model provides a good testing ground for

confronting the issues needed to generalize the flow relations to curved Lorentzian spacetimes.

For this toy model, in Euclidean space of any dimension D ≥ 2, the direct analog of eq. (1.20)

above is the following flow relation in m2 for the coefficients1 CIϕ···ϕ(x1, . . . , xn; z) appearing

in the OPE of the n-point product of linear field observables, ⟨ϕ(x1) · · ·ϕ(xn)⟩Ψ :

∂

∂m2
CIϕ···ϕ(x1, . . . , xn; z) = −1

2

∫
|y−z|2≤L2

dDy CI
ϕ2ϕ···ϕ(y, x1, . . . , xn; z) (2.1)

Note that in this case the y-integral yields a well-defined distribution in (x1, . . . , xn) with

no need for an ultraviolet cutoff ϵ. Our goal is to obtain an analogous flow relation in the

Lorentzian case.

The first issue we must address is the “type” of products of fields that must be considered

in order for the OPE coefficients to satisfy flow relations. In the Euclidean case, there

is a unique notion of the n-point (correlation=Green’s= Schwinger) distributions and their

1. As we shall see in Section 4.2, all other OPE coefficients are determined by CI
ϕ···ϕ(x1, . . . , xn; z), so it

suffices to consider only the flow relations for these coefficients.
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corresponding OPE coefficients. However, in the Lorentzian case, one can consider Wightman

products, time-ordered products, retarded products, etc. Any of these products could be

put on the left side of eq. (1.15) and used to define OPE coefficients. The resulting OPE

coefficients will possess distinct singular behavior (i.e., “wavefront sets”), and it is not obvious,

a priori2, which—if any—of these Lorentzian objects are viable candidates for satisfying

flow relations. Our analysis of this issue in Chapter 5 reveals that the Green’s function

properties of the n-point distributions play an essential role in the derivation of flow relations.

Consequently, as we discuss in Chapter 6, the usual Wightman n-point OPE coefficients as

written in eq. (1.15) are not suitable candidates for satisfying flow relations in the Lorentzian

case. On the other hand, time-ordered products do possess the requisite Green’s function

properties for flow relations3. The Lorentzian flow relations we shall obtain will thus apply

to the OPE coefficients arising from the asymptotic expansion of the time ordered products〈
T{ΦA1

(x1) · · ·ΦAn
(xn)}

〉
Ψ rather than the Wightman products

〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ.

However, working with time-ordered products has the potential to lead to significant

additional complications, since time-ordered products possess substantial additional renor-

malization ambiguities beyond those associated with the definition of Wick powers and their

corresponding Wightman functions. Time-ordered products of n field observables are well de-

fined by naive time ordering only when no two points in the n-point distribution coincide, i.e.,

away from all “diagonals.” We denote this well defined, “unextended” time-ordered product

by T0{ΦA1
(x1) · · ·ΦAn

(xn)}. Any procedure for extending T0 to any of the diagonals (i.e.

renormalization) is generally non-unique and, therefore, must unavoidably introduce new

ambiguities proportional to δ-distributions (i.e. “contact terms”). This will result in corre-

sponding ambiguities on the diagonals of the OPE coefficients defined using time-ordered

products. Thus, if we formulate the flow relations in terms of these OPE coefficients, it might

2. the heuristic analysis of the previous chapter notwithstanding

3. Retarded and advanced products also satisfy the Green’s function properties.
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appear that we will have to deal with substantial additional renormalization ambiguities on

the diagonals.

Fortunately, however, we find that this is not the case. In the OPE, eq. (1.15), we may

keep all of the xi distinct, so that the unextended time ordered products and corresponding

OPE coefficients are well defined. However, flow relations such as eq. (1.20) involve an

integration over a variable y, so we cannot avoid the coincidence of y with the various xi.

Thus, it might appear that the flow relations require us to evaluate the OPE coefficients at

points where they are not defined. However, the integrand of the OPE flow relations contains

a very special combination of OPE coefficients that has sufficiently mild divergences (i.e.,

“low scaling degrees”) on the “partial diagonals” involving only y and one other spacetime

point4. Consequently, the integrand can be uniquely extended to these—and typically only

these—partial diagonals, and the flow relations are well defined for the unextended time-

ordered products T0. Thus, no new renormalization ambiguities arise beyond those occurring

for the Wick monomials in the flow relations of the OPE coefficients of unextended time

ordered products.

We now explain how the two major obstacles described above to obtaining Lorentzian

flow relations are overcome. The first obstacle originates from the fact that no bounded

neighborhood of z in Minkowski spacetime can be invariant under Lorentz boosts. To ensure

that the integrals appearing in the flow relations are well defined and convergent, we intro-

duce into the integrand a smooth function5 χ(y − z;L) such that χ = 1 in a coordinate ball

of radius L and χ = 0 outside a coordinate ball of radius 2L. The presence of χ ensures that

the integral extends over only a compact spacetime region, but it also necessarily breaks the

Lorentz covariance of the flow relations. Nevertheless, we prove in Chapter 6 that Lorentz

4. see also Footnote 26 of Chapter 1

5. It is preferable to work with a smooth function χ rather than a step function as in (1.20) and (2.1)
since in the Lorentzian case the singular behavior of a step function will overlap the singular behavior of the
OPE coefficients in the integrand.
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covariance can be restored in Minkowski spacetime—to any desired “scaling degree”—by sub-

tracting off finitely many terms in the flow relations with a compensating failure of Lorentz

invariance. For the OPE coefficients CI
T0{ϕ···ϕ}, this results in a Minkowski spacetime flow

relation of the form,

∂

∂m2
CIT0{ϕ···ϕ}(x1, . . . , xn; z) ∼− i

2

∫
dDy χ(y − z;L)CI

T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; z)+

−
∑
C

aC [χ]C
C
T0{ϕ···ϕ}(x1, . . . , xn; z), (2.2)

where aC are spacetime constant tensors which depend on χ. As described in Appendix C,

the existence of such aC is guaranteed by the same kind of cohomological argument [24] that

ensures the Lorentz-covariance of the Epstein-Glaser renormalization scheme. In Appendix

C, we also obtain a recursive construction6 of the coefficients aC [χ] required for the Lorentz-

covariant flow relations (2.2) in Minkowski spacetime, in parallel with the analysis given

in [25,26] of the covariance-restoring Epstein-Glaser counterterms.

The flow relations (2.2) are Lorentz covariant. However, they contain an infrared cutoff

scale L and the presence of L in this formula will spoil the required almost homogeneous

scaling of CI
T0{ϕ···ϕ}(x1, . . . , xn; z) under the scalings gab → λ−2gab, m2 → λ2m2 of the

metric and the mass. This issue also arises for the Euclidean flow relation eq. (2.1). Thus,

we must further modify these flow relations so as to eliminate its L dependence up to any

desired scaling degree. This can be accomplished in the following manner. As shown in

Section 5.2, the partial derivative with respect to L of the right side of the Euclidean flow

relation eq. (2.1) is of the form,

∂

∂L
[rhs of (2.1)] ∼

∑
C

βC(L)C
C
ϕ···ϕ(x1, . . . , xn; z), (2.3)

6. The inductive formula for aC is given in eq. (C.44) with Bκρ given by eq. (6.30).
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where βC = βγ1···γk denote tensors that are computed from the OPE coefficients and depend

on the infrared length scale L. If the divergences in βC(L) were integrable in a neighborhood

containing L = 0, then the problematic L-dependence of the Euclidean flow relation (2.1)

could be removed by simply subtracting the definite integral,

∑
C

CCϕ···ϕ(x1, . . . , xn; z)
∫ L

0
dL′βC(L

′), (2.4)

from the right-hand side of (2.1). However, the divergences in βC(L) are not, in general,

integrable. Nevertheless, we show that, for any finite field dimension [C], all divergences

in βC(L) as L → 0+ can be expressed as a finite linear combination of terms proportional

to L−∆ logN L for positive integers ∆, N . Such non-integrable terms are in the kernel of

differential operators of the form (1 +∆−1L∂L)
N+1, and these differential operators simply

act like the identity operator on any L-independent terms. Making use of these facts, we

construct a linear differential operator L[L] which, when applied to the right-hand side of

(2.1), effectively removes the L-dependent terms which lead to non-integrabilities in βC(L),

while perfectly preserving all of its L-independent behavior. Once the operator L[L] has

been applied to the right-hand side of (2.1), any remaining L-dependence is guaranteed to

be integrable and, thus, can be eliminated via simple subtraction of a definite integral as

described above. In the Euclidean case, this yields the following L-independent flow relations

for OPE coefficients defined by Hadamard normal ordering:

∂

∂m2
CIϕ···ϕ(x1, . . . , xn; z) ∼− 1

2
L[L]

∫
dDy χ(y, z;L)CI

ϕ2ϕ···ϕ(y, x1, . . . , xn; z)+

−
∑
C

bC(L)C
C
ϕ···ϕ(x1, . . . , xn; z), (2.5)

with L[L] given by eq. (5.33) and the explicit dependence of bC on the OPE coefficients

given in formula (5.48) of Theorem 6. (For comparison with the Euclidean flow relations

(1.20) and (2.1), one should take χ to be a step function cutoff, χ(y, z) = θ(L−2|y − z|2).)
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In the Minkowski case, the flow relations for the case where the Wick powers are defined by

Hadamard normal ordering7 become (see Theorem 7)

∂

∂m2
CIT0{ϕ···ϕ}(x1, . . . , xn; z) ∼ − i

2

∫
dDy L[L]χ(y, z;L)CI

T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; z)+

−
∑
C

cC(L)C
C
T0{ϕ···ϕ}(x1, . . . , xn; z), (2.6)

where cC is given by formula (6.29). The ambiguities in the choice of cC correspond to the

inherent renormalization ambiguities in the OPE coefficients of Hadamard normal-ordered

Wick monomials.

The second major obstacle to obtaining Lorentzian flow relations arises in curved space-

times as a result of the nonlocal dependence on the metric caused by integrating over a

region of finite size. We overcome this obstacle by replacing the true spacetime metric, gµν ,

with its Taylor polynomial, g(N)
µν , in Riemannian normal coordinates about z, carried to suf-

ficiently high order, N , to achieve equivalence in the flow relations up to the desired scaling

degree. This replacement is made prior to evaluating the spacetime integral, so the resulting

flow relations will be suitably “local” in the sense that they depend only on finitely-many

derivatives of the metric evaluated at the event z. However, we still need to introduce a

cutoff function, χ, with an associated length scale L and, thus, these local flow relations will

fail to be covariant on account of the presence of χ and fail to scale almost homogeneously

due to the presence of L. Nevertheless, we can again introduce compensating local countert-

erms to render the flow relation covariant and we can construct an operator L to eliminate

the dependence on L to any desired asymptotic scaling degree. In any Riemannian normal

7. A similar formula holds for the case of a general definition of Wick powers, with the only difference
being the presence of additional terms containing factors of the smooth functions Fk that parameterize the
field-redefinition freedom of Wick fields.
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coordinate system with origin at z, the resulting flow relations take the form,

∂

∂m2
CIT0{ϕ···ϕ}(x1, . . . , xn; 0⃗) ∼

− i

2

∫
RD

dDy

√
−g(N)(y)L[L]χ(y, 0⃗;L)CI

T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; 0⃗) +

−
∑
C

cCC
C
T0{ϕ···ϕ}(x1, . . . , xn; 0⃗), (2.7)

where the OPE coefficients on all lines and the counterterm coefficients cC are functionals

of the polynomial metric g(N)
µν . All dependence of cC on the polynomial metric at event z

can be expressed entirely in terms of totally-symmetric covariant derivatives of the Riemann

curvature tensor. The explicit form of cC is given in terms of the OPE coefficients in

formula (7.37). Overall, the key new aspects of the curved spacetime flow relations (2.7) are

the replacement of the metric by a polynomial approximation and the presence of additional

counterterms involving the curvature.

Finally, we note that our derivations of the flow relations for flat Euclidean space given in

Chapter 5, the flow relations for Minkowski spacetime given in Chapter 6, and the flow rela-

tions for general curved Lorentzian spacetimes given in Chapter 7 were based upon formulas

for OPE coefficients that we obtained explicitly in Chapter 4. However, for nonlinear models,

such explicit non-perturbative formulas for the OPE coefficients are not available. However,

in Appendix E, we show that for the integrals which appear in the flow relations, one can

derive covariance-restoring counterterms using only the associativity property of OPE coef-

ficients, without explicit knowledge of the coefficients. When specialized to Klein-Gordon

theory, this general algorithm reproduces the results we derived in Chapters 6-7. When

applied to λϕ4-theory in a curved Lorentzian spacetime (M, gab), the algorithm developed
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in Appendix E yields

∂

∂λ
CBT0{A1···An}(x1, . . . , xn; 0⃗) ∼

− 1

4!

∫
d4y

√
−g(N)(y)χ(y, 0⃗;L)

[
CB
T0{ϕ4A1···An}(y, x1, . . . , xn; 0⃗) +

−
n∑
i=1

∑
[C]≤[Ai]

[
CC
T0{ϕ4Ai}

(y, xi;xi) −
∑
[D]

cCDC
D
T0{Ai}(xi; 0⃗)

]
CB
T0{A1···ÂiC···An}

(x1, . . . , xn; 0⃗) +

−
[ ∑
[C]<[B]

CB
T0{ϕ4C}(y, 0⃗; 0⃗)−

∑
[C]≥[B]

cBC

]
CCT0{A1···An}(x1, . . . , xn; 0⃗)

]
, (2.8)

where the [D]-sum in the third line and the [C] ≥ [B] sum in the final line are carried out

to sufficiently-large but finite field dimensions8. The form of the counterterm coefficients

cBC is given in Appendix E for flat Minkowski spacetime. It would be natural to associate

the inherent local and covariant ambiguities in cBC with the field-redefinition freedom of

λϕ4-theory, but we have not investigated this issue9.

∗ ∗ ∗ Organization of this document ∗ ∗ ∗

The structure of this thesis is as follows. In Chapter 3, we review the theory of a free

Klein-Gordon field on a curved Lorentzian spacetime. The ambiguities in the definition of ar-

bitrary Wick monomials ΦA ≡ ∇α1ϕ · · · ∇αnϕ (where αi denote spacetime multi-indices) is

fully analyzed. The precise form of the “mixing matrix” ZB
A describing allowed field redefini-

tions is given in Theorem 1, and it is shown in Proposition 1 that the field redefinition freedom

is fully characterized by a sequence of smooth, real-valued functions Fn(x1, . . . , xn; z) that

are symmetric in (x1, . . . , xn).

8. The coefficient CD
T0{Ai} = CD

Ai
involving a single field factor is given by the geometric factors that

appear in an ordinary Taylor expansion (see eq. (E.25)).

9. This analysis would require an understanding of what field-redefinition freedom is allowed for the non-
perturbative interacting theory. Note also that we have not attempted to eliminate the L-dependence of
the flow relations (2.8). The techniques described in Section 5.2 can be used to eliminate the L-dependence
of (2.8) to any finite order in perturbation theory, but it is not obvious how to remove the L-dependence
non-perturbatively.

29



In Chapter 4, we show that the Klein-Gordon field admits an OPE of the form eq. (1.15)

for Hadamard states Ψ. In Theorem 2, we obtain an explicit formula for the OPE coeffi-

cients for the case where Wick monomials are defined by Hadamard normal ordering. For

a general prescription for Wick monomials, we show that the OPE coefficients CBA1···An
for

products of general Wick monomials are completely determined by the OPE coefficients

CIϕ···ϕ of the identity operator, I, for the n-point products of the linear field observable,

ϕ(x1) · · ·ϕ(xn). Furthermore, CIϕ···ϕ(x1, . . . , xn; z) is uniquely determined by the coefficients

CIϕ···ϕ with smaller n up to the addition of the function Fn(x1, . . . , xn; z) appearing in Propo-

sition 1. The existence and properties of the OPE for a general definition of Wick monomials

is summarized in Theorem 4. An inductive construction of the Wick monomials in terms

of CIϕ···ϕ is given in Proposition 5. As discussed in Section 4.3, all these statements carry

over to the OPE for unextended time-ordered products, since the formulas for their OPE

coefficients may be obtained in a simple and direct manner from the formulas for CBA1···An
.

In Chapter 5, we derive the flow relations for the OPE coefficients of the Euclidean

version of the Klein-Gordon field. The modification of the flow relations needed to remove

the L-dependence is given in Section 5.2.

In Chapter 6, we analyze the flow relations for the OPE coefficients of the Klein-Gordon

field in Minkowski spacetime. The counterterms in the flow relations needed to restore

Lorentz covariance are obtained, with the technical details given in Appendix C.

The generalization to curved spacetimes is given in Chapter 7. To any specified scal-

ing degree, we replace the spacetime metric by a Taylor approximation in a Riemannian

normal coordinate system defined relative to the expansion point z. We then show that

suitable counterterms can be introduced to yield local and covariant flow relations that are

independent of L.

Finally, although our analysis in this thesis is restricted to the toy model of the free

Klein-Gordon field, we show in Appendix E that our construction of the covariance-restoring
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counterterms requires only the associativity property of the OPE coefficients and thus should

be applicable to nonlinearly interacting theories. The algorithm for constructing countert-

erms given in Appendix E reproduces the results we derived in Chapters 6-7 when applied to

Klein-Gordon theory. When applied to λϕ4-theory in Lorentzian spacetime (M, gab), we ob-

tain the local and covariant Lorentzian analogue (2.8) of the Holland and Hollands Euclidean

flow relations (1.20).

Notation and conventions: We use letters from the beginning of the Latin alphabet

to denote abstract indices and our spacetime geometry conventions coincide with those of

[27]. Tensors are often abbreviated with multi-indices chosen from the beginning of the

Greek alphabet (α, β, γ, . . . )—e.g., we denote a tensor T a1···anb1···bm of type (n,m) simply

as Tαβ . In combinatorial formulas involving abstract multi-indices, we use the obvious

analogues of the standard multi-index conventions: e.g., for Tα ≡ T a1···an , we have |α| ≡ n

and α! ≡ |α|!. When coordinate components of a tensor are needed, we denote ordinary

spacetime indices with letters from the middle of the Greek alphabet (µ, ν, κ, ρ, . . . ) but

continue to denote multi-indices with (α, β, γ, . . . ). Throughout, N denotes the natural

numbers (positive integers, excluding 0) and N0 ≡ {0} ∪ N. We use “smooth” to mean

infinitely differentiable, i.e. C∞, and the “Taylor coefficients of f evaluated at z” will refer to

the set, ∇α1 · · · ∇αnf(x1, . . . , xn)|x1,...xn=z, of covariant derivatives of a multivariate smooth

function f evaluated at z without the numerical factor 1/(α1! · · ·αn!). The set of smooth

functions of compact support is denoted by C∞
0 and the dual space of distributions is denoted

by D′ : C∞
0 → R.

Some notation in the thesis may not always be redefined with each use. For the conve-

nience of the reader, we include here a list of frequently-employed non-standard symbols and

their definitions or, in cases where the definition is too lengthy, we reference the equation

where the symbol is defined.
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field notation

ΦA the differentiated scalar field monomial, ∇α1ϕ∇α2ϕ · · · ∇αpϕ

ΦHA monomial, (∇α1ϕ · · · ∇αpϕ)H , defined via “Hadamard normal

ordering”, see eq. (3.28)

ZB
A field redefinition “mixing matrix” defined in eq. (3.38)

[A]ϕ the number of ϕ-factors appearing in ΦA (i.e., p, in this case)

[A]∇ the number of covariant derivatives acting on ϕ in ΦA (i.e.,
∑p
i=1|αi|,

in this case)

[A] “engineering dimension” of ΦA given by (rational) number

(D/2− 1)×[A]ϕ + [A]∇

CBA1···An
OPE coefficients defined in relation (1.15)

(CH)BA1···An
OPE coefficients defined in relation (4.1) for Hadamard

normal-ordered fields

CB
T0{A1···An} OPE coefficients of unextended time-ordered products defined in

eq. (4.53)

(CH)B
T0{A1···An} Hadamard normal-ordered version of CB

T0{A1···An}

differential operators, parametrices and Greens functions

K Klein-Gordon operator, K ≡ −gab∇a∇b +m2 + ξR

H Hadamard parametrix defined in eq. (3.26)

HF Feynman parametrix, HF ≡ H − i∆adv, see also Footnote 10 in

Section 4.3

∆ causal propagator, ∆ ≡ ∆adv −∆ret

∆adv,∆ret advanced and retarded, resp., Greens function of K

L operator defined in eq. (5.33) in terms of infrared length scale L and

∂/∂L
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geometric notation

D the spacetime dimension, i.e.,

#(spatial dimensions) + #(temporal dimensions)

dµg(x) covariant volume element, dDx
√
−g(x), on spacetime (M, gab)∫

x1,x2,...,xn
abbreviation for

∫
×nM

dµg(x1)dµg(x2) · · · dµg(xn)

Sβ(x, z) bi-tensor defined with respect to the geodesic distance function in

eq. (3.58)

Z∗M zero section of the cotangent bundle T ∗M

V ±
x future/past lightcone of the cotangent space T ∗

xM

V̇ ±
x boundary of future/past lightcone of cotangent space T ∗

xM

(x1, k1) ∼ (x2, k2) equivalence relation defined below eq. (3.13) for

(x1, k1), (x2, k2) ∈ T ∗M

asymptotic equivalence relations

∼T ,δ asymptotic equivalence to scaling degree δ for merger tree T , defined

in the paragraph surrounding eq. (4.2)

∼δ shorthand for “∼T ,δ” when T is the trivial merger tree, i.e., all

spacetime points merge at the same rate to z

≈ asymptotic equivalence for all δ and T , defined in the paragraph

surrounding eq. (4.2)
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CHAPTER 3

KLEIN-GORDON THEORY AND LOCAL WICK FIELDS

The theory of a Klein-Gordon scalar field on a D-dimensional spacetime (M, gab) with mass

m and curvature coupling ξ is given by the action,

SKG ≡ −1

2

∫
M
dDx

√
−g(x)

[
gab(x)∇aϕ(x)∇bϕ(x) +

(
m2 + ξR(x)

)
ϕ2(x)

]
. (3.1)

The equation of motion arising from this action is

Kϕ = 0, (3.2)

where the Klein-Gordon operator K is given by

K ≡ −gab∇a∇b +m2 + ξR. (3.3)

To guarantee well-defined dynamics and to avoid causal pathologies, we will restrict con-

sideration throughout to globally-hyperbolic spacetimes, (M, gab). Any globally-hyperbolic

spacetime admits unique advanced, ∆adv, and retarded, ∆ret, Green’s distributions of the

Klein-Gordon operator, K [28].

In this chapter, we consider the quantum field theory of the Klein-Gordon field. Our

main concern is the ambiguities in the definition of arbitrary Wick monomials, i.e., quantum

field observables of the form

ΦA ≡ ∇α1ϕ · · · ∇αpϕ. (3.4)

Here αi denotes an abstract multi-index, i.e., αi = ai,1 . . . ai,|αi| where each ai,j is a spacetime

index. Thus, ΦA corresponds to a tensor constructed from p-factors of ϕ, with |αi|-number

of derivatives on the i-th factor. The ambiguities in ΦA will give rise to corresponding
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ambiguities in the n-point distributions,

〈
ΦA1

(f1) · · ·ΦAn
(fn)

〉
Ψ , (3.5)

as well as the n-point distributions for the un-extended time-ordered products. This will, in

turn, give rise to corresponding ambiguities in the OPE coefficients. The main result of this

chapter will be to obtain a simple characterization of the ambiguities in the definition of Wick

monomials which will be extremely useful for characterizing the corresponding ambiguities

in the OPE coefficients derived in the next section.

In Section 3.1, we review the construction of the abstract algebra1 containing Wick

polynomials and the requirements (“axioms”) imposed on the Wick monomials. The known

uniqueness theorem for Wick monomials implied by these axioms (see Theorem 1) is then

reformulated in Section 3.2 in terms of a choice of smooth functions Fn (see Proposition 1).

3.1 Wick algebra and state space: axioms and existence of Wick

polynomials

In this section, we review the definition of the algebra of observables W(M, gab) for the Klein-

Gordon field and the axioms that determine the Wick monomials—up to the uniqueness

discussed in the following section. Our discussion closely follows [7] which built on the

earlier work of [31–34].

The construction of W(M, gab) begins with the standard CCR (canonical commutation

relation) algebra A(M, gab) generated by observables that are linear in ϕ. To define A, we

start with the free ∗-algebra A0 generated by the identity I and the fundamental (smeared)

field ϕ(f) with f ∈ C∞
0 (M). We then factor A0 by all of the relations we wish to impose.

1. The algebraic approach to quantum field theory was initiated in [29]. A comprehensive review may be
found in [30, Chapter III].
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To do so, we let I ⊂ A0 be the two-sided ideal consisting of all elements in A0 that contain

at least one factor that can be put into any of the following forms:

i) ϕ(c1f1 + c2f2)− c1ϕ(f1)− c2ϕ(f2), with c1, c2 ∈ C

ii) ϕ(f)∗ − ϕ(f)

iii) ϕ(Kf), with the Klein-Gordon operator K given by eq. (3.3).

iv) ϕ(f1)ϕ(f2) − ϕ(f2)ϕ(f1) − i∆(f1, f2)I, where ∆[M, gab] denotes the advanced minus

retarded Green’s distribution for K[gab,m
2, ξ] on M

The algebra A is then defined to be the free algebra factored by this ideal,

A(M, gab) ≡ A0/I(M, gab). (3.6)

Thus, the CCR algebra effectively incorporates (i) the distributional nature of quantum fields,

(ii) the Hermiticity of real-valued fields, (iii) the Klein-Gordon field equation, and (iv) the

canonical commutation relations. It contains all elements that are finite linear combinations

of products of the (smeared) fundamental field. Quantum states of the CCR algebra are

then just linear maps ⟨ · ⟩Ψ : A(M, gab) → C which are normalized, ⟨I⟩Ψ = 1, and positive,

⟨A∗A⟩Ψ ≥ 0 for all A ∈ A.

The first step towards enlarging A(M, gab) to the full algebra of observables W(M, gab)

is to define the normal-ordered product relative to a state ⟨ · ⟩Ψ by the formula

: ϕ(f1) · · ·ϕ(fn) :Ψ ≡
∑
P

(−1)|P |
∏

(i,j)∈P

〈
ϕ(fi)ϕ(fj)

〉
Ψ

∏
k∈{1,...,n}\P

ϕ(fk), (3.7)

where the P are sets containing disjoint, ordered pairs taken from {1, . . . , n} such that

i < j, and |P | denotes the number of pairs in P . Note that normal-ordered elements

(3.7) of A are symmetric under interchange of test functions, i.e., : ϕ(f1) · · ·ϕ(fn) :Ψ=:

36



ϕ(fπ(1)) · · ·ϕ(fπ(n)) :Ψ for any permutation π. Products of normal-ordered elements also

satisfy the following important identity (“Wick’s theorem”),

: ϕ(f1) · · ·ϕ(fn) :Ψ : ϕ(fn+1) · · ·ϕ(fn+m) :Ψ (3.8)

=
∑

p≤min(n,m)

∏
(i,j)∈Pp

〈
ϕ(fi)ϕ(fj)

〉
Ψ :

∏
k∈{1,...,n}\Pp

ϕ(fk) :Ψ,

where Pp denote a set containing p disjoint, ordered pairs (i, j) such that i ∈ {1, 2, . . . , n}

and j ∈ {n+ 1, n+ 2, . . . , n+m}. Noting that : ϕ(f) :Ψ= ϕ(f), it follows from this identity

that normal-ordered elements, in fact, comprise a basis of the CCR algebra in the sense that

any element of A(M, gab) can be expressed via (3.8) as a linear combination of terms of the

form (3.7) (see (B.18) for an explicit formula).

It is useful to view : ϕ(f1) · · ·ϕ(fn) :Ψ as mapping tn = f(1⊗f2⊗· · ·⊗fn) into A(M, gab).

We write

Wn(tn) = : ϕ(f1) · · ·ϕ(fn) :Ψ (3.9)

=

∫
×nM

dµg(x1) · · · dµg(xn) : ϕ(x1) · · ·ϕ(xn) :Ψ tn(x1, . . . , xn),

where dµg(x) ≡ dDx
√

−g(x). Similarly, denote by um ≡ f(n+1 ⊗ fn+2 ⊗ · · · ⊗ fn+m)

another symmetrized tensor product of smooth test functions. In this notation, we may

write eq. (3.8) as

Wn(tn)Wm(um) =
∑

k≤min(n,m)

Wn+m−2k(tn ⊗k um), (3.10)
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where we define, for n,m ≥ k,

(tn ⊗k um)(x1, . . . xn+m−2k) ≡ (3.11)

n!m!

k!((n− k)!)2((m− k)!)2

∫
y1···y2k

[
⟨ϕ(y1)ϕ(y2)⟩Ψ · · · ⟨ϕ(y2k−1)ϕ(y2k)⟩Ψ×

×
∑
π∈Πk

[
tn(y1, y3, . . . , y2k−1, xπ(1), xπ(2), . . . , xπ(n−k)) ×

× um(y2, y4, . . . , y2k, xπ(n−k+1), . . . , xπ(n+m−2k))
] ]

,

where we abbreviate,

∫
y1···y2k

≡
∫
×2kM

dµg(y1) · · · dµg(y2k), (3.12)

and where Πk denotes any permutation of {1, . . . , n+m−2k} such that π(1) < π(2) < · · · <

π(n− k) and π(n− k + 1) < π(n− k + 2) < · · · < π(n+m− 2k). Note (3.11) is symmetric

in (x1, x2, . . . , xn+m−2k).

We now require Ψ to be a Hadamard state, i.e a state whose two-point distribution

Ψ2(f1, f2) ≡ ⟨ϕ(f1)ϕ(f2)⟩Ψ has a wavefront set of the form:

WF[Ψ2] =
{
(x1, k1;x2, k2) ∈ ×2(T ∗M\Z∗M)|(x1, k1) ∼ (x2,−k2), k1 ∈ V̇ +

x1

}
. (3.13)

Here Z∗M denotes the zero section of the cotangent bundle T ∗M and V̇ ±
x denotes the

boundary of the future/past lightcone of x. The relation (x1, k1) ∼ (x2, k2) is satisfied iff x1

and x2 can be joined by a null-geodesic with respect to which the covectors k1 and k2 are

cotangent and coparallel. In any convex normal neighborhood, the two-point distribution of
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a Hadamard state takes the form2:

Ψ2(x1, x2) =
U(x1, x2)[

σ(x1, x2) + 2i0+(T (x1)− T (x2)) + (0+)2
]D/2−1

+ (3.14)

+ V (x1, x2) log
[
ℓ−2σ(x1, x2) + 2i0+(T (x1)− T (x2)) + (0+)2

]
+WΨ(x1, x2),

where T is any local time function; σ is the (signed) squared geodesic distance3 between

points x1 and x2; ℓ is an arbitrary length scale; and U , V and WΨ are smooth symmetric

functions. If D is odd, then V = 0. Moreover, U and V are independent of the Hadamard

state Ψ and are locally and covariantly determined by the Hadamard recursion relations4. It

is known that there exist Hadamard states on A(M, gab) for any globally-hyperbolic space-

time (M, gab).

Thus far, we have merely rewritten the product rules of A(M, gab) in terms of normal-

ordered products. The enlargement of the algebra A(M, gab) to the desired algebra W(M, gab)

is accomplished by recognizing that for Hadamard states, eq. (3.11) makes sense not merely

when tn and um are products of test functions but also when they are distributions of the

following type: Denote by Vn(M, gab) the set of all elements of the (product) cotangent

bundle ×nT ∗M that are entirely contained within either the future or past lightcones,

Vn(M, gab) ≡
{
(x1, k1;x2, k2; . . . ;xnkn) ∈ ×nT ∗M | (ki ∈ V +

xi , ∀i ∈ n) or (ki ∈ V −
xi ,∀i ∈ n)

}
(3.15)

Let E ′(×nM, gab) denote the space of compactly-supported symmetric distributions D′
0(×

nM)

2. For states of the CCR algebra A, the equivalence of the microlocal spectral version (3.13) of the
Hadamard condition and the position-space version (3.14) was established by Radzikowski in [35, Theorem
5.1].

3. i.e., σ is equal to twice the “Synge bi-scalar/world function”.

4. More precisely, all of the derivatives of U and V at coincidence x1 = x2 are uniquely as well as locally
and covariantly determined by the fact that KΨ2 = smooth, with the Klein-Gordon operator K, see eq. (3.3),
acting on either spacetime variable.
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whose wavefront sets do not intersect Vn(M, gab),

E ′(×nM, gab) ≡
{
t ∈ D′

0(×
nM) |n ∈ N and WF(t) ∩ Vn(gab,M) = ∅

}
. (3.16)

Then formula (3.11) is well defined whenever tn and um are distributions in E ′ [7, Theo-

rem 2.1]. This means that we can extend the algebra A(M, gab) to an algebra W(M, gab)

generated by quantities of the form W (tn) for all tn ∈ E ′, with product rule given by

eq. (3.10). An example of such a distribution in E ′ is tn = f(x1)δ(x1, . . . , xn). By eq. (3.9),

W (tn) corresponds to : ϕn :Ψ (f). Thus, W(M, gab) includes elements corresponding to the

normal-ordered powers of the field. More generally, it includes all normal-ordered monomi-

als, : ∇α1ϕ · · · ∇αnϕ :Ψ (fα1···αn), where the αi denote multi-spacetime-indices and fα1···αn

denotes a test tensor field. For notational convenience, we will typically suppress the multi-

indices of fα1···αn and write : ∇α1ϕ · · · ∇αnϕ :Ψ (f), with it always being understood that

f is a tensor field dual to the tensor : ∇α1ϕ · · · ∇αnϕ :Ψ. Note that all Hadamard states on

A(M, gab) can be naturally extended to states on W(M, gab). Furthermore, it can be shown

that the only continuous states on W(M, gab) are Hadamard states [36].

The above construction of W(M, gab) made use of a choice of Hadamard state Ψ. How-

ever, it is not difficult to show that, as an abstract algebra, W(M, gab) does not depend on

the choice of Ψ [7, see Lemma 2.1]. Nevertheless, normal-ordered quantities such as : ϕn :Ψ

do depend on the choice of Ψ for any n > 1, i.e., : ϕn :Ψ′ ̸=: ϕn :Ψ if Ψ′ ̸= Ψ. Which quantity

should represent the true field observable ϕn and other Wick monomials? In fact, when

n > 1, : ϕn :Ψ for any choice of Hadamard state Ψ is not a suitable candidate to represent

ϕn since it does not satisfy the requirement of being locally and covariantly defined. Fol-

lowing [7, 37], we determine the Wick monomials by imposing the requirements (“axioms”)

on their definition. Existence of a definition of Wick monomials satisfying these axioms can

then be proven. We will consider the allowed freedom (i.e., non-uniqueness) in the definition

of the Wick monomials in the next section.
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The following are our axioms5 for Wick monomials:

W1 Local and covariant The Wick monomials are required to be “local and covariant”

in the following sense. Let (M, gab) and (M ′, g′ab) denote two globally-hyperbolic spacetimes.

Suppose ψ : M → M ′ is an isometric embedding (i.e., gab = ψ∗g′ab, where ψ∗ denotes the

pullback by ψ) that also is causality-preserving: i.e., ψ(x1), ψ(x2) ∈ M ′ is connected by a

causal curve only if x1, x2 ∈M is connected by a causal curve. Then, as shown in [7, Lemma

3.1], there is a canonical injective unital ∗-homomorphism αψ : W(M, gab) → W(M ′, g′ab).

We demand that the definition of any Wick monomial ΦA(f) = (∇α1ϕ · · · ∇αnϕ)(f) be such

that, under this homomorphism, we have αψ [ΦA(f)] 7→ ΦA(ψ∗f), where f is a test tensor

field on M dual to ΦA and ψ∗f is the push-forward of f via ψ.

W2 Smoothness and joint smoothness For any Wick monomial ΦA and for any

Hadamard state ⟨ · ⟩Ψ, we require that WF[⟨ΦA⟩Ψ] = ∅, i.e., that ⟨ΦA(x)⟩Ψ is smooth.

Furthermore, we require that this quantity be jointly smooth in x, the spacetime metric,

and the parameters m2 and ξ. To define this notion, we must first allow m2 and ξ to have

spacetime dependence. We then consider one parameter variations gab(s1), m2(s2), and

ξ(s3) in a compact spacetime region R, such that (M, gab(s1)) is globally hyperbolic for all

s1. As shown in [7, Lemma 4.1], we may naturally identify the algebra W associated with

(gab(s1),m
2(s2), ξ(s3)) with the algebra associated with (gab(0),m

2(0), ξ(0)) by identifying

these algebras on a Cauchy surface lying outside the future of R. Consequently, we may

identify a Hadamard state ⟨ · ⟩Ψ on the algebra for (gab(0),m
2(0), ξ(0)) with a Hadamard

state on the algebra associated with (gab(s1),m
2(s2), ξ(s3)). For any Hadamard state ⟨ · ⟩Ψ,

for any Wick monomial Φ, and for any family (gab(s1),m
2(s2), ξ(s3)) as above, we require

that
〈
ΦA[gab(s1),m

2(s2), ξ(s3)](x)
〉
Ψ be jointly smooth in (x, s1, s2, s3).

5. These axioms differ from the ones originally given in [7] in that the Leibniz rule W4 and the conservation
of stress-energy W8 have been added as in [37]. In addition, the analytic dependence condition of [7,37] has
been replaced by the joint smoothness condition of [38,39].
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W3 Commutator The commutator of any Wick monomial ΦA = ∇α1ϕ · · · ∇αnϕ with

the fundamental field ϕ is given by,

[(∇α1ϕ · · · ∇αnϕ)(f1), ϕ(f2)]

= i

n∑
i=1

(∇α1ϕ · · · ∇̂αiϕ · · · ∇αnϕ)(f1)∆
(
(−1)|αi|∇αTi

f1, f2

)
, (3.17)

where ∆ = ∆adv −∆ret is the advanced minus retarded Green’s function, ∇̂αiϕ denotes the

omission of the ∇αiϕ factor and for the multi-index α ≡ a1a2 · · · a|α|, we use the notation

αT ≡ a|α|a|α|−1 · · · a1.

W4 Leibniz rule Any Wick monomial ΦA = ∇α1ϕ · · · ∇αnϕ must satisfy the Leibniz rule

in the sense that

(∇α1ϕ · · · ∇αnϕ) (−∇af) = ((∇a∇α1)ϕ · · · ∇αnϕ) (f) + · · ·+ (∇α1ϕ · · · (∇a∇αn)ϕ) (f).

(3.18)

Here, the left-hand side of this equation is the distributional derivative of ΦA, whereas

the right-hand side is what one would obtain by applying the Leibniz rule to the classical

expression ΦA = ∇α1ϕ · · · ∇αnϕ.

W5 Hermiticity All Wick monomials are required to be Hermitian in the sense that,

(∇α1ϕ · · · ∇αnϕ)(f)
∗ = (∇α1ϕ · · · ∇αnϕ)(f). (3.19)

W6 Symmetry Any Wick monomial is required to be symmetric under interchange of

the fields—i.e.,

(∇απ(1)ϕ · · · ∇απ(n)ϕ)(f) = (∇α1ϕ · · · ∇αnϕ)(f), (3.20)
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for all permutations π of {1, . . . , n}.

W7 Scaling For λ > 0, let σλ : W(M,λ−2gab, λ
2m2, ξ) → W(M, gab,m

2, ξ) be the canon-

ical ∗-isomorphism defined in [7, Lemma 4.2]. The “scaling dimension” dA of any local,

covariant field ΦA is defined to be the smallest real number δ such that

lim
λ→0+

λ(D−δ)σλ
[
ΦA[λ

−2gab, λ
2m2, ξ]

]
(f) = 0, (3.21)

for all (gab,m2, ξ). The factor of λD accounts for the fact that the volume element scales as

dµλ−2g = λDdµg. We require the Wick monomial ΦA to have scaling dimension,

dA =
(D − 2)

2
×#(factors of ϕ) + #(derivatives) + 2×#(factors of m2) +

+ 2×#(factors of curvature) + #(“up” indices)−#(“down” indices). (3.22)

For example, (∇aϕ∇b∇cϕ) has two factors of ϕ, three derivatives, and three “down” indices,

and thus has scaling dimension D−2. As another example, gabRcd∇dRϕ has scaling dimen-

sion D/2 + 3, because it has one factor of ϕ, one derivative, two factors of curvature (each

“R” counting as a curvature factor), two “up” indices, and three “down” indices. Whereas

any “R” denoting a scalar or tensor constructed from the Riemann curvature tensor (and

its covariant derivatives) counts as a “curvature factor”, note the spacetime metric does not

count as a “curvature factor” for the purposes of formula (3.22). We further require that ΦA

scale homogeneously up to logarithms: i.e., there must exist finite N such that,

∂N

∂(log λ)N

[
λ(D−dA)σλ

[
ΦA[λ

−2gab, λ
2m2, ξ

]
(f)

]
= 0. (3.23)
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W8 Conservation of stress-energy The stress-energy tensor, Tab(f) ∈ W(M, gab), is

given by

Tab = (1− 2ξ)(∇aϕ∇bϕ) +

(
2ξ − 1

2

)
gab(∇cϕ∇cϕ) + (3.24)

+2ξgab(ϕ∇c∇cϕ)− 2ξ(ϕ∇a∇bϕ) +

(
ξGab −

1

2
m2gab

)
ϕ2,

where Gab ≡ Rab − 1
2gabR is the Einstein tensor. We require that Tab is divergence free,

0 = Tab(−∇af) = −(∇bϕKϕ)(f), (3.25)

where K = K[gab,m
2, ξ] is the Klein-Gordon operator, eq. (3.3), and the second equality

in (3.25) follows straightforwardly from differentiating (3.24) and using the Leibniz and

symmetry axioms.

Remark 5. Note that even in flat spacetime where Gab = 0, the stress-energy tensor (3.24)

has nontrivial dependence on the curvature coupling ξ. However, the conservation con-

straint (3.25) is independent of ξ in any region with vanishing Ricci scalar curvature, since

K[gab,m
2, ξ = 0] = K[gab,m

2, ξ] at any spacetime point x where R(x) = 0.

If we wished to define Wick monomials by normal ordering with respect to a Hadamard

state, we would have to choose a Hadamard state Ψ(M, gab) for each globally hyperbolic

spacetime (M, gab). However, as we have already mentioned above, it can be shown [7, see

Section 3] that no choice of Ψ(M, gab) can give rise to a prescription for Wick monomials

that satisfies the local and covariant condition, W1. Nevertheless, a construction of Wick

monomials satisfying all of our requirements W1-W8 can be given by normal ordering with

respect to a locally and covariantly constructed Hadamard parametrix, H(x1, x2), rather

than a Hadamard state. We define H(x1, x2) in a sufficiently small neighborhood of the
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diagonal x1 = x2 by,

H(x1, x2) =
U(x1, x2)[

σ(x1, x2) + 2i0+(T (x1)− T (x2)) + (0+)2
]D/2−1

+ (3.26)

+ V (x1, x2) log
[
ℓ−2σ(x1, x2) + 2i0+(T (x1)− T (x2)) + (0+)2

]
,

where the quantities appearing in this equation are defined as in eq. (3.14). Thus, H(x1, x2)

differs from the two-point function of any Hadamard state, Ψ, by a state-dependent, smooth,

symmetric function WΨ(x1, x2). We refer to H(x1, x2) as a “parametrix” because, although

it does not satisfy the Klein-Gordon equation in either variable, its failure to satisfy the

Klein-Gordon equation is smooth. We define the normal-ordered product of field operators

with respect to H by,

: ϕ(x1) · · ·ϕ(xn) :H ≡
∑
P

(−1)|P |
∏

(i,j)∈P
H(xi, xj)

∏
k∈{1,...,n}\P

ϕ(xk), (3.27)

i.e., by the same formula as in eq. (3.7) but with the two-point function,
〈
ϕ(xi)ϕ(xj)

〉
Ψ, of a

state, Ψ, replaced by the Hadamard parametrix H(xi, xj). Note that the Hadamard normal-

ordered elements satisfy Wick’s theorem (3.10) with, again,
〈
ϕ(xi)ϕ(xj)

〉
Ψ replaced by

H(xi, xj) in eq. (3.11). UsingH, we define the Wick monomial corresponding to ∇α1ϕ · · · ∇αnϕ

by,

ΦHA (f) ≡ (∇α1ϕ · · · ∇αnϕ)H(f)

≡
∫
y,x1,x2,...,xn

: ϕ(x1) · · ·ϕ(xn) :H tn+1[f ](y, x1, . . . , xn), (3.28)

with tn+1[f ] given by,

tn+1[f ](y, x1, . . . , xn) = fα1···αn(y)(−1)[A]∇∇(x1)

αT1
· · · ∇(xn)

αTn
δ(y, x1, . . . , xn), (3.29)
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where we define [A]∇ ≡
∑n
i=1 |αi| and the abbreviation

∫
y,x1,...,xn

is defined as in (3.12) and

our “Notation and conventions” in Chapter 2. In contrast to normal ordering defined with

respect to a Hadamard state, the prescription (3.28) for ΦH given by normal ordering with

respect to the locally and covariantly constructed Hadamard parametrix eq. (3.26) satisfies

requirement W1. It also satisfies [37] requirements W2-W7 for Wick monomials6.

However, the failure of H to be an exact solution of the Klein-Gordon wave equation

implies this prescription generally does not satisfy requirement W8,

(∇bϕKϕ)H(f) =

∫
dµg(y)f(y)∇

(x1)
b Kx2H(x1, x2)|x1,x2=y ̸= 0. (3.30)

Odd dimensions are an exception: For D odd, formula (3.26) contains only half-integer

powers of σ(x1, x2), so it follows that for U(x1, x2) smooth, H(x1, x2) is a parametrix of the

Klein-Gordon equation only if,

Kx2H(x1, x2)|x1,x2=y = 0. (3.31)

Furthermore, it can be shown [40, Lemma 2.1] that,

∇(x1)
b Kx2H(x1, x2)|x1,x2=y =

D

2(D + 2)
∇(y)
b [Kx2H(x1, x2)]x1,x2=y , (3.32)

so (3.31) implies the left-hand side of (3.30) does, in fact, vanish and, thus, W8 is satisfied

in all odd dimensions.

In even dimensions, however, Kx2H(x1, x2)|x1,x2=y yields a curvature scalar which is non-

vanishing in general spacetimes and, thus, normal-ordering with respect to the parametrix

6. The proof in [37] used an analytic dependence assumption in place of the joint smoothness condition
of [38] that we have used here in our formulation of W2. In order to prove that W2 holds for the Hadamard
normal ordered prescription, we would need to show that the Hadamard normal ordered n-point functions,
⟨: ϕ(x1) · · ·ϕ(xn) :H⟩Ψ, are jointly smooth in the required sense. We do not anticipate any difficulties in
proving this but, as far as we are aware, a proof has not been given in the literature.
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(3.26) fails to produce Wick fields satisfying the conservation axiom W8. Nevertheless, we

prove in Appendix A that for D > 2, there exists a smooth symmetric function Q(x1, x2)

which is locally and covariantly defined for x1 = x2 such that

∇(x1)
b Kx2H(x1, x2)|x1,x2=y = −∇(x1)

b Kx2Q(x1, x2)|x1,x2=y (3.33)

Furthermore, Q is smooth in (m2, ξ) and scales as,

Q[λ−2gab, λ
2m2, ξ] = λ(D−2)Q[gab,m

2, ξ], (3.34)

in a sufficiently small neighborhood of x1, x2 = y. Therefore, normal-ordering instead with

respect to the new Hadamard parametrix,

H ′ ≡ H +Q, (3.35)

will give a construction of Wick fields satisfying the axioms W1-W8.

It will be understood below that, unless otherwise stated, we are always normal-ordering

with respect to a Hadamard parametrix H which is smooth in (m2, ξ), satisfies

∇(x1)
b Kx2H(x1, x2)|x1,x2=y = 0, (3.36)

and scales homogeneously up to logarithms,

λ−(D−2)H[λ−2gab, λ
2m2, ξ] = H[gab,m

2, ξ] + V [gab,m
2, ξ] log λ2. (3.37)

(Recall V = 0 for D odd, so H scales exactly homogeneously in odd spacetime dimensions.)

Thus, for any D > 2, Hadamard normal ordering yields a prescription for defining Wick

monomials that satisfies W1-W8. For D = 2, no such Q exists, and condition W8 cannot
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be satisfied by any prescription that satisfies W1-W7 [37, see Subsection 3.2]. However,

Hadamard normal ordering satisfies W1-W7.

We turn our attention now to the characterization of the non-uniqueness of prescriptions

satisfying W1-W8 (or W1-W7 for D = 2).

3.2 Uniqueness of Wick monomials

In the previous section, we imposed conditions W1-W8 on the definition of Wick mono-

mials and gave a prescription based on “Hadamard normal-ordering” which satisfies these

requirements (or requirements W1-W7 for D = 2). This prescription is not unique. In this

section, we will show that the difference between any two prescriptions ΦA and Φ̃A for Wick

monomials satisfying W1-W8 (or W1-W7 for D = 2) are described by a “mixing matrix” Z

such that

Φ̃A(x) =
∑
B

ZB
A(x)ΦB(x). (3.38)

Theorem 1 below explicitly gives the general form of Z which, thereby, characterizes the

freedom to modify any prescription, such as the Hadamard prescription of the previous

section.

It will be convenient to use the following notation for ZB
A . An arbitrary Wick monomial

is of the form ΦA = ∇α1ϕ · · · ∇αpϕ and thus is characterized by the multi-indices α1, . . . , αp.

For Φ̃A = ∇α1ϕ · · · ∇αpϕ
∼

and ΦB = ∇β1ϕ · · · ∇βqϕ, we represent ZB
A as

ZB
A = Zβ1···βq

α1···αp . (3.39)

Each multi-index, α, is itself a product of spacetime indices, α = a1 · · · a|α|, so we may, in

turn, write Z as a spacetime tensor field

Zβ1···βq
α1···αp = Z

{b1,1···b1,|β1|}···{bk,1···bk,|βq |}
{a1,1···a1,|α1|}···{an,1···an,|αp|}

(3.40)
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In this notation, we enclose the spacetime indices corresponding to any given multi-index with

a curly bracket. If any multi-index is “empty”—i.e., if any factor of ϕ in the corresponding

Wick monomial has no derivatives acting on it, then we insert a “{0}” as a place-holder. If

q is zero, it is understood ΦB = I and we simply write “I” in the superscripts of (3.39) and

(3.40) as in examples (3.41)-(3.43) below. Similarly, when p = 0, it is understood ΦA = I

and we write “I” in the subscripts of (3.39) and (3.40).

As an example to illustrate this notation, it will follow from the theorem below that the

difference between any two prescriptions for Wick monomials that are quadratic in ϕ will be

given by a multiple of the identity element, I. In our notation, this would be expressed as

(∇α1ϕ∇α2ϕ
∼

)(x) =
∑
β1,β2

Zβ1β2
α1α2(x)(∇β1ϕ∇β2ϕ)(x) + ZI

α1α2(x)I, (3.41)

where Zβ1β2
α1α2 = δ

β1
(α1

δ
β2
α2)

and δβα is the Kronecker delta for the multi-indices defined by δβα = 1

if the multi-indices α and β coincide and zero otherwise. As particular examples of (3.41),

we have

(∇aϕ∇b∇cϕ
∼

)(x) = (∇aϕ∇b∇cϕ)(x) + ZI
{a}{bc}(x)I, (3.42)

whereas

(ϕ∇a∇bϕ
∼

)(x) = (ϕ∇a∇bϕ)(x) + ZI
{0}{ab}(x)I. (3.43)

With this notation established, we may state our main result in the following theorem.

Let [A]ϕ = p and [B]ϕ = q denote the number of factors of ϕ in Φ̃A = ∇α1ϕ · · · ∇αpϕ
∼

and

ΦB = ∇β1ϕ · · · ∇βqϕ, respectively.

Theorem 1. The Wick mixing matrix ZB
A defined in (3.38) is nonzero only when [B]ϕ ≤

[A]ϕ, i.e. q ≤ p, and is given in terms of ZI
A by,

Zβ1···βq
α1···αp =

(
p

q

)
δ
β1
(α1

· · · δβqαqZ
I
αq+1···αp), (3.44)
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where
(p
q

)
denotes the binomial coefficient. Furthermore, we have ZI

I = 1 and ZI
α1 = 0.

For p ≥ 2, each ZI
α1···αp is a real-valued, smooth tensor field of type (0,

∑p
i=1 |αi|) that is

symmetric under permutation π of multi-indices,

ZI
α1···αp = ZI

απ(1)···απ(p) , (3.45)

and is of the form,

ZI
A = ZI

A[gab, Rabcd, . . . ,∇(e1···∇en)Rabcd(x),m
2, ξ]. (3.46)

where the right side is a jointly smooth function of its arguments with polynomial dependence

on m2, Rabcd, and finitely many (totally-symmetric) covariant derivatives of Rabcd. The ZI
A

scale as,

ZI
A[λ

−2gab, λ
2m2, ξ] = λdAZI

A[gab,m
2, ξ], (3.47)

recalling the definition (3.22) of the scaling dimension dA. Furthermore, the tensor fields

ZI
A satisfy the Leibniz condition,

∇(x)
b ZI

α1···αp(x) = ZI
{bα1}α2···αp(x) + ZI

a1{bα2}···αp(x) + · · ·+ ZI
α1···{bαp}(x), (3.48)

where {bα} ≡ ba1a2 · · · a|α| for α ≡ a1 · · · a|α|. In addition, on account of W8, for D > 2,

the tensor fields ZI
{b}{ac} and ZI

{b}{0} must satisfy,

gacZI
{b}{ac} = (m2 + ξR)ZI

{b}{0}. (3.49)

Conversely, if {ΦB(x)|B = β1 · · · βq}q∈N0
are any Wick monomials satisfying W1-W8 (or

W1-W7 for D = 2) and ZB
A satisfy all of the above conditions of this theorem, then the

new prescription {Φ
∼
A|A = α1 · · ·αp}p∈N0

defined by eq. (3.38) will also satisfy W1-W8 (or
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W1-W7 for D = 2). Consequently, the inverse mixing matrix (Z−1)BA satisfies the same

properties as ZB
A .

Sketch of Proof. The proof follows [7, Proof of Theorem 5.1], with the main difference being

that they did not consider Wick powers involving derivatives and did not impose requirement

W4. The key first step is to note that if, inductively, the prescription for Wick monomials

involving q-factors of ϕ has been fixed for all q < p, then the prescription for any Wick

monomial with p-factors of ϕ is uniquely determined by the commutator condition W3 up to

the addition of a multiple of the identity I. In our notation, this c-number multiple is denoted

by ZI
α1···αp . In particular, eq. (3.41) holds for p = 2. We then can prove eq. (3.44) for general

p by induction. By condition W6, ZI
α1···αp must be totally symmetric in its multi-indices.

By condition W1, ZI
α1···αp must be local and covariant, and thus must be constructed from

the metric and the Riemann tensor and its derivatives as well as from m2 and ξ. By the

arguments of [38, 39] the joint smoothness requirement, W2, and the scaling requirement,

W7, imply polynomial dependence7 on m2, Rabcd, and finitely many derivatives of Rabcd.

The remaining properties of ZI
α1···αp follow directly from the axioms. The verification of the

converse is straightforward.

Remark 6. The fact that ZI
α1···αp has polynomial dependence onm2, Rabcd, and finitely many

of its derivatives and must have the scaling behavior stated in the theorem puts significant

constraints on ZI
α1···αp . In particular, (3.47) can hold non-trivially only if p(D−2)/2 is even.

Hence, ZI
α1···αp = 0 when p is odd and D ̸= 2 + 4k for integer k. Furthermore, if D is odd,

then we also have ZI
α1···αp = 0 whenever p = 2 + 4k.

Remark 7. For the purpose of proving Theorem 3 in Section 4.2, it is useful to note the Wick

7. The corresponding result was obtained in [7, Theorem 5.1] by imposing an additional analytic variation
requirement, which we do not impose here.
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mixing matrices ZB
A satisfy the following recursion relation, for any r ≤ q,

Zβ1···βq
α1···αp =

(
p

r

)(
q

r

)−1

δ
β1
(α1

· · · δβrαrZ
β(r+1)···βq
α(r+1)···αp)

. (3.50)

This identity is immediately established by plugging the expression (3.44) for ZB
A into both

sides of (3.50) and noting, (
p

r

)(
q

r

)−1(p− r

q − r

)
=

(
p

q

)
. (3.51)

We now prove the following result that will enable us to characterize in a simple and

direct manner the freedom in the prescription for defining Wick monomials specified by

Theorem 1. This new characterization will be very useful for characterizing the freedom of

the OPE coefficients for products of Wick monomials.

Proposition 1. For each n ≥ 2, there exists a smooth, real-valued function Fn(x1, . . . , xn; z)

on some neighborhood of ×n+1M containing (z, . . . , z) such that Fn is symmetric in (x1, . . . , xn)

and such that the coefficients ZI
α1···αn of eq. (3.44) are given by,

ZI
α1···αn(z) = ∇(x1)

α1 · · · ∇(xn)
αn Fn(x1, . . . , xn; z)|x1,...,xn=z. (3.52)

Furthermore, Fn satisfy,

[
∇(x1)
α1 · · · ∇(xn)

αn ∇(z)
β Fn(x1, . . . , xn; z)

]
x1,...,xn=z

= 0. (3.53)

Sketch of proof. Let x be in a normal neighborhood of z ∈ M and let σ(x, z) denote the

(signed) squared geodesic distance between z and x. Let

σa(x, z) ≡
1

2
∇(z)
a σ(x, z). (3.54)
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Note that in flat spacetime, in global inertial coordinates, we have

σµ(x, z) = −(xµ − zµ). (3.55)

Let f : M → R be smooth at z. Then the covariant Taylor expansion of f at z is given

by [41, see “Addendum to chapter 4: derivation of covariant Taylor expansions”]

f(x) ∼
∑
k

(−1)k

k!
∇a1 · · · ∇akf(x)

∣∣
x=zσ

a1(x, z) · · ·σak(x, z), (3.56)

where the meaning of this equation is that if the sum on the right side is taken from k = 0 to

k = N , then its difference with the right side in any coordinates vanishes to order (x− z)N .

Note that σa1 · · ·σak = σ(a1 · · ·σak), so only the totally-symmetric part of f ’s covariant

derivatives contribute non-trivially to (3.56). We may write this equation more compactly

as,

f(x) ∼
∑
β

∇βf(x)
∣∣
x=zS

β(x, z) (3.57)

where the sum ranges over all multi-indices β and we have written,

S{b1···b|β|}(x; z) ≡ (−1)|β|

|β|!
σb1(x, z) · · ·σb|β|(x, z). (3.58)

Note that in flat spacetime in global inertial coordinates, we have

S{µ1···µk}(x; z) =
1

k!
(xµ1 − zµ1) · · · (xµn − zµk) (3.59)

Applying the operator ∇(x)
α to both sides of (3.56) and evaluating at x = z should yield the

trivial identity, ∇(z)
α f(z) = ∇(z)

α f(z). This will be the case, in general, if and only if,

∑
|β|≤|α|

∇(x)
α Sβ(x, z)|x=z∇

(z)
β = ∇(z)

α , (3.60)
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when applied to any smooth scalar field8. It follows that if the multivariable series,

∑
β1···βn

ZI
β1···βn(z)S

β1(x1; z) · · ·Sβn(xn; z), (3.62)

were to converge to a smooth function of (x1, . . . , xn; z), then this function would satisfy

eq. (3.52) by construction. However, there is no reason why the series (3.62) need converge.

Nevertheless, it is always possible to modify the series (3.62) away from x1, . . . , xn = z

so as to render it convergent and C∞, while preserving the desired identity (3.52). To

see this, fix z, choose a tetrad at z, and let Uz ⊂ M be a convex normal neighborhood

of z. In Riemannian normal coordinates xµ centered at z and based on this tetrad, the

(non-convergent) series (3.62) takes the form,

∑
β1···βn

ZI
β1···βn (⃗0)x

β1
1 · · ·xβnn , (3.63)

with xβ ≡ xµ1 · · ·xµ|β| . By Borel’s Lemma [3, see Corollary 1.3.4], every power series is the

Taylor series of some smooth function, so we may always construct Fn ∈ C∞(×nRD) such

that,

∂
(x1)
a1,1 · · · ∂(x1)a1,k1

· · · ∂(xn)an,1 · · · ∂(xn)an,kn
Fn(x1, . . . , xn)|x1,...,xn=0⃗

= ZI
{(a1,1···a1,k1)}···{(an,1···an,kn)}

(⃗0), (3.64)

where we note the equality of mixed partials and the index symmetry of the terms which

8. Of course, for any finite |α|, this identity could (with substantial computational labor) alternatively be
directly derived from the values of the differentiated geodesic distance function σ(x, z) at coincidence x = z.
In global inertial coordinates in flat spacetime, the identity (3.60) holds if and only if,

∇(y)
α Sβ(x; z)|x=z = δβα, (3.61)

since covariant derivatives commute in this case. Note the identity (3.61) can be directly verified using
formula (3.59) for Sβ in flat spacetime. However, in curved spacetime, the left-hand side of (3.60) receives
non-trivial contributions which depend on the curvature tensor from |β| < |α| .
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contribute non-trivially to (3.63). Without loss of generality, we may assume that the support

of Fn is contained in ×nUz since, if necessary, we may multiply it by smooth function

χ(x1, . . . , xn; 0⃗) which is equal to unity in a neighborhood of the origin and has support

in ×nUz. However, in any RNC system, the ordinary partial derivatives of a scalar field

evaluated at the origin coincide with the totally-symmetrized covariant derivatives of the

scalar field evaluated at the origin9. It follows then from the identity (3.60) that, in fact,

∇(x1)
α1 · · · ∇(xn)

αn Fn(x1, . . . , xn)|x1,...,xn=0⃗
= ZI

α1···αn (⃗0). (3.66)

Thus, we have obtained a function Fn satisfying (3.52) in a neighborhood of one fixed event

z. However, by choosing a smooth set of tetrad vector fields and using them to define RNC

systems at each event, Fn satisfying (3.52) can be defined as a smooth function of z for any

event z ∈M, noting that ZI
α1···αn(z) is smooth in z by Theorem 1.

Although this construction of Fn will depend on z (and the arbitrarily-chosen tetrad

vector fields) away from total coincidence, the “germ” of Fn at x1, . . . , xn = z is independent

of z in the sense of (3.53). To prove eq. (3.53) we use the fact that

∇(z)
b

[
∇(x1)
α1 · · · ∇(xn)

αn Fn(x1, . . . , xn; z)|x1,...,xm=z

]
=
[(

(∇(x1)
{bα1}

· · · ∇(xn)
αn ) + · · ·+ (∇(x1)

α1 · · · ∇(xn)
{bαn})

)
Fn(x1, . . . , xn; z)

]
x1,...,xn=z

+

+
[
∇(x1)
α1 · · · ∇(xn)

αn ∇(z)
b Fn(x1, . . . , xn; z)

]
x1,...,xn=z

, (3.67)

which follows from the ordinary Leibniz rule and the commutativity of derivatives with

respect to different variables. The Leibniz condition, eq. (3.48), on ZI
α1···αn then implies

9. In any RNC system, it can be deduced from the geodesic equation for geodesics passing through the
origin that

∂(σ1
· · · ∂σn

Γκ
µν)(x)|x=0⃗ = 0, (3.65)

with Γκ
µν denoting the Christoffel symbols. For scalar fields evaluated at the origin, the equivalence between

partial derivatives and totally-symmetrized covariant derivatives can then be inductively established for all
n using (3.65).
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that the first line of eq. (3.67) is equal to the second line, so the final line must vanish

identically. This establishes the result (3.53) for β = {b}. The general case, |β| > 1 follows

via induction.

Remark 8. By Remark 6 below Theorem 1, Fn and all its derivatives on the total diagonal

are greatly constrained by the Wick axioms and will vanish identically unless n(D − 2)/2

is even. In particular, ∇(x1)
α1 · · · ∇(xn)

αn Fn(x1, . . . , xn; z)|x1,...,xn=z vanish when n is odd and

D ̸= 2 + 4k for integer k, and when D is odd and n = 2 + 4k.

Remark 9. Only the germ of Fn(x1, . . . , xn; z) on the total diagonal is relevant to (3.52) and

(3.53). Hence, if Fn and F ′
n have the same germ on the total diagonal, they are equivalent as

far as Proposition 1 is concerned. Note that Fn is not locally and covariantly defined away

from the total diagonal on account of the coordinate system and cutoff function used in its

construction. However, Fn and its derivatives on the total diagonal are local and covariant.

Remark 10. The property (3.53) implies the germ of Fn(x1, . . . , xn; z) on the total diagonal

is independent of its right-most point, z. By the previous remark, Fn(x1, . . . , xn; z) is, there-

fore, equivalent to, e.g., Fn(x1, . . . , xn;x1) or Fn(x1, . . . , xn;xn). Therefore, it is possible to

write Fn as functions of only n-spacetime points rather than (n + 1)-points. However, in

anticipation of the role they will play in the Wick OPE coefficients of Section 4.2, it is more

convenient to write Fn symmetrically with respect to x1, . . . , xn as we have done here by

using the auxiliary point, z.

Remark 11. A notable consequence of Proposition 1 is that all prescriptions for construct-

ing the quadratic Wick fields may be obtained by normal-ordering with respect to some

Hadamard parametrix. Suppose H is any Hadamard parametrix such that the prescription

for Wick monomials satisfies axioms W1-W8 (or W1-W7 for D = 2). Then by the above

proposition, any other prescription will satisfy

(∇α1ϕ∇α2ϕ
∼

)(z) = (∇α1ϕ∇α2ϕ)H(z) +∇(x1)
α1 ∇(x2)

α2 F2(x1, x2; z)|x1,x2=zI. (3.68)
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This prescription for general quadratic Wick monomials can be reproduced by Hadamard

normal ordering with respect to the new Hadamard parametrix

H̃(x1, x2) = H(x1, x2) +
1

2
F2(x1, x2;x1) +

1

2
F2(x1, x2;x2) (3.69)

This result is special to the quadratic fields. Prescriptions for the higher-order Wick mono-

mials are generally not equivalent to Hadamard normal ordering.

Thus, we have shown that the ambiguities between any two definitions of the Wick

monomials is completely characterized by a sequence of functions {Fn(x1, . . . , xn; z)}n≥2.

As described in the previous section, normal ordering (see eq. (3.28)) with respect to a

Hadamard parametrix satisfying (3.36) provides an explicit construction of the Wick mono-

mials compatible with axioms W1-W8 (or W1-W7 in D = 2). Our results, therefore, imply

any Hadamard normal-ordered monomial ΦHA may be expressed as

ΦHA =
∑
B

ZB
AΦB =

p∑
q=0

(
p

q

)
(∇(α1

ϕ · · · ∇αqϕ)[∇αq+1 · · · ∇αp)Fp−q], (3.70)

where ΦB corresponds to a Wick monomial defined via any renormalization prescription

satisfying the axioms, and we have introduced the shorthand

[∇α1 · · · ∇αnFn]z ≡ ∇(x1)
α1 · · · ∇(xn)

αn Fn(x1, . . . , xn; z)|x1,...,xn=z. (3.71)

The right-most equality in (3.70) follows directly from plugging (3.52) of Proposition 1 into

the expression (3.44) for ZB
A in Theorem 1. Of course, (3.70) can be inverted to express any

monomial ΦA in a general Wick prescription in terms of Hadamard normal-ordered fields

ΦA =
∑
B

(Z−1)BAΦ
H
B . (3.72)
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Note that Theorem 1 and Proposition 1 apply also to (Z−1)BA and (Z−1)IA. We can obtain

expressions for (Z−1)IA in terms of the functions Fn(x1, . . . , xn; z) by using
∑
C(Z−1)ICZ

C
A =

δIA together with the expression for ZC
A in terms of Fn implied by eqs. (3.44) and (3.52).

For A ̸= I, this yields

(Z−1)Iα1···αn = −
n−2∑
k=0

(
n

k

)
(Z−1)I(α1···αk [∇αk+1 · · · ∇αn)Fn−k], (3.73)

where we recall the shorthand (3.71) for the Taylor coefficients of Fn at z. This relation

allows one to recursively solve for (Z−1)Iα1···αn . For example, we have

(Z−1)Iα1α2 = −[∇α1∇α2F2] (3.74)

(Z−1)Iα1α2α3α4 = −[∇α1∇α2∇α3∇α4F4] +

(
4

2

)
[∇(α1

∇α2F2][∇α3∇α4)
F2]. (3.75)

In this way, (3.72) provides a construction of the Wick monomials in any prescription sat-

isfying the axioms in terms of Fn and the Hadamard normal-ordered monomials defined

in (3.28). In the next chapter, we will see that the corresponding ambiguities in the OPE

coefficients for products of Wick fields can be expressed in a simple way in terms of Fn.
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CHAPTER 4

KLEIN-GORDON OPE COEFFICIENTS

A renormalization prescription for the Wick monomials uniquely determines the Wightman

products of Wick fields as well as the unextended time-ordered products. In Section 4.1,

we obtain the explicit form of the OPE coefficients of the n-point Wightman distributions

involving Wick monomials defined via a local Hadamard normal-ordering procedure (see

Theorem 2). In Section 4.2, we then give the general form of the (Wightman) OPE coeffi-

cients corresponding to any prescription for the Wick monomials satisfying axioms W1-W8

in terms of the smooth functions Fn appearing in the Wick monomial uniqueness theorem

(see Theorem 4). In Section 4.3, we show that the OPE coefficients for unextended time-

ordered products are given by the same expressions as for the Wightman products with the

substitution H → HF , where H is a locally constructed Hadamard distribution and HF is

a locally-constructed Feynman distribution (see Proposition 6).

4.1 Local Hadamard normal-ordered OPE coefficients

In this section, we show that products of Wick monomials defined by local Hadamard normal

ordering admit an operator product expansion (OPE), i.e., we will show that for any Wick

monomials ΦHA1
, . . . ,ΦHAn

defined via the local Hadamard normal ordering prescription (see

eq. (3.28)) and in any Hadamard state Ψ we have,

〈
ΦHA1

(x1) · · ·ΦHAn
(xn)

〉
Ψ
≈

∑
B

(CH)BA1···An
(x1, . . . , xn; z)

〈
ΦHB (z)

〉
Ψ
, (4.1)

where the B-sum runs over all Wick monomials. In Theorem 2 below, we will also obtain

explicit expressions for the local and covariant OPE coefficients, (CH)BA1···An
. For products

involving more than two Hadamard normal-ordered monomials (i.e. n > 2), the OPE coeffi-

cients of (4.1) are found to satisfy important relations called “associativity” conditions which
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are especially useful for analyzing the OPE for Wick monomials ΦA that are not defined via

Hadamard normal ordering. In the next section, we will then show that a general definition

of Wick monomials ΦA also satisfy an OPE, and we will characterize how the freedom in

the choice of the definition of Wick monomials affects its OPE coefficients CBA1···An
.

The asymptotic equivalence relation “≈” used in the definition of the OPE (4.1) was

precisely formulated in a local and covariant manner in [15] by introducing a family of

asymptotic equivalence relations “∼T ,δ” which are parameterized by a positive real number

δ and a “merger tree” T . We introduce here the details relevant for our analysis and refer

the reader to [15] for the precise definition of ∼T ,δ and for further discussion. Merger trees

classify the different ways in which the limit x1, . . . , xn → z may be taken. For instance,

when n = 3, one possible merger tree would correspond to taking all three points (x1, x2, x3)

together to z at the “same rate”, while another possible merger tree would correspond to

having two of the points, e.g. x1 and x2, approach each other “faster” than all three points

(x1, x2, x3) approach z. For a given merger tree, T , the positive number δ in “∼T ,δ” indicates

how rapidly the difference between both sides of the equivalence relation goes to zero as the

spacetime points approach z at their various rates. Altogether, the equivalence relation “≈”

in (4.1) means that, for every T and δ > 0, there exists a real number ∆ such that,

〈
ΦHA1

(x1) · · ·ΦHAn
(xn)

〉
Ψ
∼T ,δ

∑
[B]≤∆(T ,δ)

(CH)BA1···An
(x1, . . . , xn; z)

〈
ΦHB (z)

〉
Ψ
, (4.2)

where we define the “engineering dimension” of ΦB ,

[ΦB ] ≡ [B] ≡ (D − 2)

2
× [B]ϕ + [B]∇, (4.3)

with [B]ϕ and [B]∇ denoting, respectively, the number of factors of ϕ in ΦB and the number

of covariant derivatives acting on the ϕ factors in ΦB (e.g., for ΦB = (∇β1ϕ · · · ∇βpϕ), we

have [B]ϕ = p and [B]∇ =
∑p
i=1 |βi|).
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The rate at which a distribution either diverges or converges to zero in the limit all its

spacetime points merge to z at the same rate (i.e. for the trivial merger tree) is known as

its “scaling degree at z”1. By convention, positive scaling degrees indicate divergence and

negative scaling degrees imply convergence: For example, the geometric factors Sβ(x; z) have

scaling degree −|β| at z, while the Hadamard parametrix H has scaling degree D − 2. As

we will see, the engineering dimension [A] of a Wick field ΦA is related to the scaling degree

of the coefficient CIAA as follows2:

[A] =
1

2
sdz

[
CIAA(x1, x2; z)

]
. (4.4)

Moreover, we will find the scaling degree of all Wick OPE coefficients are bounded from

above by:

sdz
[
CBA1···An

]
≤ [A1] + · · ·+ [An]− [B]. (4.5)

The key result needed to show the existence of an OPE for Hadamard normal-ordered

Wick monomials is that, in any Hadamard state Ψ, the distribution,

hn,Ψ(x1, . . . , xn) ≡ ⟨: ϕ(x1) · · ·ϕ(xn) :H⟩Ψ (4.6)

is, in fact, a smooth function3 of (x1, . . . , xn). It then follows immediately from the definition,

1. The “scaling degree” was introduced by Steinmann in the context of Minkowski spacetime [42, Section
5]. See [32] for further discussion in the context of curved manifolds.

2. If the scaling degree varies for different background geometries, then [A] is equal to the supremum of
the right-hand side with respect to (M, gab). If ΦA is tensor-valued, then the maximum scaling degree of the
tensor components is used.

3. It was proven in [36, Lemma III.1] that (4.6) is smooth if and only if Ψ is Hadamard and the truncated
n-point functions of Ψ are smooth. However, Sanders later proved that all Hadamard states have smooth
truncated n-point functions [43, Proposition 3.1.14] and, therefore, (4.6) is smooth for all Hadamard Ψ and
only Hadamard Ψ.
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eq. (3.28), of the Hadamard normal-ordered Wick power ϕnH(z) that we have,

〈
ϕnH(z)

〉
Ψ = hn,Ψ(z, . . . , z) (4.7)

i.e., the expectation value of the Wick power ϕnH evaluated at z is the total coincidence value

at z of the smooth function hΨ(x1, . . . , xn). More generally, we have,

⟨(∇α1ϕ · · · ∇αnϕ)H(z)⟩Ψ = ∇(x1)
α1 · · · ∇(xn)

αn hn,Ψ(x1, . . . , xn)
∣∣
x1,...,xn=z

(4.8)

The simplest example of an OPE is the one for the two point function ⟨ϕ(x1)ϕ(x2)⟩Ψ.

From the definition eq. (3.27) of Hadamard normal ordering, we have for x1 and x2 in a

common convex normal neighborhood,

ϕ(x1)ϕ(x2) =: ϕ(x1)ϕ(x2) :H +H(x1, x2)I (4.9)

We now take the expectation value of this equation in an arbitrary Hadamard state Ψ. Since

⟨: ϕ(x1)ϕ(x2) :H⟩Ψ is smooth, we may take its covariant Taylor expansion (see eq. (3.57)

above) for x1 and x2 in a normal neighborhood of some arbitrarily chosen point z, thereby

obtaining asymptotic relations4 that hold in the coincidence limit,

⟨: ϕ(x1)ϕ(x2) :H⟩Ψ ∼δ
∑

|β1|+|β2|≤δ
Sβ1(x1; z)S

β2(x1; z)∇
(x1)
β1

∇(x2)
β2

h2,Ψ(x1, x2)
∣∣
x1=x2=z

,

(4.10)

using the fact that

Sβ1(x1; z)S
β2(x2; z) ∼δ 0, for |β1|+ |β2| > δ. (4.11)

4. For n = 2, we omit the T symbol since there is only one possible merger tree in this case.
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Substituting expression (4.10) into eq. (4.9) and using eq. (4.8), we find that for any Hadamard

state Ψ, we have,

⟨ϕ(x1)ϕ(x2)⟩Ψ ∼δ
∑

|β1|+|β2|≤δ
Sβ1(x1; z)S

β2(x2; z)
〈
(∇β1ϕ∇β2ϕ)H(z)

〉
Ψ
+H(x1, x2) ⟨I⟩Ψ .

(4.12)

Noting this holds for all δ > 0, this equation takes the form of an OPE, from which we can

read off the OPE coefficients,

(CH)Iϕϕ(x1, x2; z) = H(x1, x2) (4.13)

(CH)
(∇β1

ϕ∇β2
ϕ)

ϕϕ (x1, x2; z) = S(β1(x1; z)S
β2)(x2; z), (4.14)

where we have symmetrized over β1 and β2 on the right side of the last expression since

(∇β1ϕ∇β2ϕ)H is symmetric in β1 and β2, so only the symmetric part of this OPE coefficient

contributes. All other OPE coefficients of the form CBϕϕ vanish. Given the scaling degree of

Sβ and H stated above, we indeed find (as anticipated in formula (4.4)),

[ϕ] =
1

2
sdz

[
(CH)Iϕϕ(x1, x2; z)

]
=

1

2
(D − 2), (4.15)

and (as anticipated in formula (4.5)) the scaling degree of (CH)Bϕϕ at z is found to be bounded

from above by [ϕ] + [ϕ]− [B] with the non-trivial coefficients saturating the bound.

In order to illustrate how more general OPEs are obtained for Hadamard normal-ordered

monomials and to understand the patterns that emerge in the structure of the general

OPE coefficients, it is instructive to consider another simple example, namely n = 2 and

ΦHA1
,ΦHA2

= ϕ2H . Wick’s theorem (3.10) implies that for x1, x2 in a common convex normal
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neighborhood, we have

〈
ϕ2H(x1)ϕ

2
H(x2)

〉
Ψ
= ⟨: ϕ(x1)ϕ(x1)ϕ(x2)ϕ(x2) :H⟩Ψ+ (4.16)

+ 4H(x1, x2) ⟨: ϕ(x1)ϕ(x2) :H⟩Ψ + 2H(x1, x2)H(x1, x2).

Again, all of the “totally normal-ordered” quantities appearing on the right-hand side are

smooth functions. Therefore, we may covariantly Taylor expand these terms about x1, x2 =

z, to obtain

〈
ϕ2H(x1)ϕ

2
H(x2)

〉
Ψ
∼δ∑

β1,β2,β3,β4

S(β1(x1; z)S
β2(x1; z)S

β3(x2; z)S
β4)(x2; z)

〈
(∇β1ϕ∇β2ϕ∇β3ϕ∇β4ϕ)H(z)

〉
Ψ
+

+ 4H(x1, x2)
∑
β1,β2

S(β1(x1; z)S
β2)(x2; z)

〈
(∇β1ϕ∇β2ϕ)H(z)

〉
Ψ
+ (4.17)

+ 2H(x1, x2)H(x1, x2) ⟨I⟩Ψ ,

where the respective sums run over
∑
i |βi| ≤ δ. Thus, the nonvanishing OPE coefficients

are,

(CH)B
ϕ2ϕ2

(x1, x2; z) (4.18)

=


S(β1(x1; z)S

β2(x1; z)S
β3(x2; z)S

β4)(x2; z) ΦHB = (∇β1ϕ∇β2ϕ∇β3ϕ∇β4ϕ)H

4S(β1(x1; z)S
β2)(x2; z)H(x1, x2) ΦHB = (∇β1ϕ∇β2ϕ)H

2H(x1, x2)H(x1, x2) ΦHB = I

Thus, we see that all of the nonvanishing OPE coefficients are given by products of the

Hadamard parametrix H(x1, x2) and the geometrical factors Sβ(x; z) defined by eq. (3.58).

The existence of an OPE for an arbitrary product of n Hadamard normal-ordered Wick
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monomials,

〈
(∇α(1,1)ϕ · · · ∇α(1,k1)

ϕ)H(x1) · · · (∇α(n,1)ϕ · · · ∇α(n,kn)
ϕ)H(xn)

〉
Ψ
, (4.19)

can be established by paralleling the derivation used in the above examples. As in the

definition of the engineering dimension, eq. (4.3), we denote the number of factors of ϕ that

appear in a Wick monomial ΦA by [ΦA]ϕ. Thus, for the factor ΦHAi
= (∇α(i,1)ϕ · · · ∇α(i,ki)

ϕ)H

in eq. (4.19), we have [ΦHAi
]ϕ = ki. We denote byK the total number of factors of ϕ appearing

in the expression (4.19),

K =
n∑
i=1

ki (4.20)

We write the quantity (4.19) in terms of products of H and normal ordered products of ϕ’s.

We then obtain an OPE for (4.19) by Taylor expanding the normal-ordered products of ϕ’s.

It follows that the general OPE coefficients are given by products of H(x1, x2), Sβ(x; z) and

their derivatives. It also can be seen that the only fields ΦHB = (∇β1ϕ∇β2ϕ · · · ∇βmϕ)H

for which (CH)BA1···An
can be non-vanishing are such that [ΦHB ]ϕ = m takes the values

m = K,K − 2, K − 4, . . . and m ≥ 0.

In order to explain the combinatorics of the formula for the general OPE coefficients in

terms of H(x1, x2), Sβ(x; z) and their derivatives, it is useful to introduce a uniform notation

for all the multi-indices relevant for (CH)BA1···An
by pairing each βj multi-index with a “0”

and write ΦHB = (∇β(0,1)
ϕ∇β(0,2)

ϕ · · · ∇β(0,m)
ϕ)H . The multi-indices relevant for (CH)BA1···An

then comprise the set of ordered pairs,

S ≡ {(0, 1), (0, 2), . . . , (0,m), (1, 1), (1, 2), . . . , (1, k1), . . . . . . , (n, 1), (n, 2) . . . , (n, kn)}

(4.21)

This set has (m +K)-elements, which is an even number whenever (CH)BA1···An
is nonvan-

ishing. In order to describe the combinations of Sβj (xu) and H(xv, xw) and their derivatives
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that appear in the formula for (CH)BA1···An
, we follow [19, see Section 4.1] by employing the

notion of “perfect matchings”5 for elements of S. By definition, the set, M(S), of perfect

matchings is the set of all partitions of S into subsets each of which contains precisely two

elements. Each pair of distinct elements of S is of the form {(v, i), (w, j)}. It is conve-

nient to require that these pairs be ordered so that v ≤ w. (When v = w, we may require

i < j, but the matrix elements of the matrix N defined below will vanish in that case,

so the ordering is irrelevant.) Since S has (m + K)-elements it follows that M(S) has

(m+K − 1)!! ≡ (m+K − 1)(m+K − 3)(m+K − 5) · · · 1 elements when m+K is even.

Thus, for example, if S = {(0, 1), (1, 1), (1, 2), (2, 1)} corresponding to n = 2, K = 3, and

m = 1, then M(S) consists of the three partitions:

M(S) =
{
{(0, 1), (1, 1); (1, 2), (2, 1)}, {(0, 1), (1, 2); (1, 1), (2, 1)}, {(0, 1), (2, 1); (1, 1), (1, 2)}

}
,

(4.22)

which are diagrammed in the following figure.

(0, 1) (1, 1) (1, 2) (2, 1) (0, 1) (1, 1) (1, 2) (2, 1)

(0, 1) (1, 1) (1, 2) (2, 1)

Figure 4.1: Directed graphs representing the three perfect matchings in (4.22). Arrow direc-
tion points from a vertex (v, i) ∈ S toward a vertex (w, j) ∈ S such that v ≤ w and i < j.

5. The terminology is borrowed from graph theory: The elements of S can be viewed as labeling the
vertices of a graph. (See e.g. Figure 4.1 below). An arrow connecting two vertices of this graph corresponds
then to a pairing between two elements of S. A “perfect matching” is achieved when every vertex is connected
to exactly one arrow and there are no loops (connecting a vertex to itself): i.e., every element of S is paired
with precisely one other element of S.
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It is useful to combine the relevant multi-index derivatives of Sβj (xu) and H(xv, xw) into

a single (K +m)× (K +m) matrix N as follows,

N(v,i)(w,j) ≡


∇(xv)
α(v,i)∇

(xw)
α(w,j)

H(xv, xw) v ̸= w; v, w ̸= 0

∇(xw)
α(w,j)

Sβi(xw; z) v = 0, w ̸= 0

0 otherwise

(4.23)

The hafnian of N is defined by [44]

hafN ≡
∑

M∈M(S)

∏
{(v,i),(w,j)}∈M

N(v,i)(w,j), (4.24)

where the sum is taken over the (m+K−1)!! perfect matchings, M , of the set S, eq. (4.21),

and the product is taken over all ordered pairs {(v, i), (w, j)} occurring in M . With these

definitions, the existence of an OPE for Hadamard normal-ordered products and the general

formula for the OPE coefficients may now be stated as the following theorem:

Theorem 2. For Hadamard normal-ordered fields ΦHAi
, there exists an OPE of the form

eq. (4.1), with local and covariant OPE coefficients (CH)BA1···An
(x1, . . . , xn; z). The OPE

coefficients (CH)BA1···An
can be nonvanishing only when m = [ΦHB ]ϕ takes the values m =

K,K − 2, K − 4, . . . and m ≥ 0, where K is given by eq. (4.20). Furthermore, the OPE

coefficients are explicitly given by

(CH)BA1···An
(x1, . . . , xn; z) =

1

m!
hafN , (4.25)

with hafN given by eq. (4.24) and they satisfy the scaling degree properties (4.4) and (4.5),

saturating the bound whenever (4.25) is nonzero.

A formal proof of the existence of an OPE for scalar field theories with renormalizable

interactions on any globally-hyperbolic spacetime was given (to any finite order in perturba-
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tion theory) in [10, Theorem 1]. Since at zeroth-order the quantum fields in [10] were defined

via Hadamard normal ordering, this result encompasses the case considered here. For the

case of flat spacetime, we have ∇(x)
α Sβ(x; z) = 1

|β|!∂
(x)
α (x−z)β and our formula (4.25) for the

Hadamard normal-ordered OPE coefficients corresponds6 to the formula given in [19, Sec-

tion 4.1] for the vacuum normal-ordered (flat) Euclidean OPE coefficients after replacing H

with the Euclidean Green’s function GE (see eq. (5.3) below). The scaling degree properties

stated in the theorem follow immediately from eq. (4.25) and the scaling behavior of the

Hadamard parametrix and the geometric factors Sβ(x; z).

Remark 12. In the Euclidean case considered in [19, Section 4.1], GE(x1, x2) is symmetric

in (x1, x2) so the ordering of (x1, x2) is irrelevant. However, in the Lorentzian case, the

anti-symmetric part of H is proportional to the causal propagator, i∆ ≡ i∆adv − i∆ret,

modulo C∞(M ×M), so the ordering of the events matters.

Remark 13. For B = I, we have m = 0, so we have (CH)IA1···An
= 0 if K is odd. If K is

even, then since v = 0 does not arise on the right side of eq. (4.25) when m = 0, we may

replace N(v,i)(w,j) by ∇(xv)
α(v,i)∇

(xw)
α(w,j)

H(xv, xw), so (CH)IA1···An
is given by

(CH)IA1···An
(x1, . . . , xn; z) =

∑
M∈M(S)

∏
{(v,i),(w,j)}∈M

∇(xv)
α(v,i)∇

(xw)
α(w,j)

H(xv, xw), (4.26)

i.e., (CH)IA1···An
is a sum of products of derivatives of H’s. As in the specific examples with

B = I given in formulas (4.13) and (4.18) above, it is observed that the right-hand side

of the general formula (4.26) does not explicitly depend on the expansion point z. We will

sometimes emphasize this independence by omitting z in the notation for the identity OPE

coefficients, writing (CH)IA1···An
= (CH)IA1···An

(x1, . . . , xn).

Remark 14. At the other extreme, when m = K, then if any product on the right side of

eq. (4.25) contained a factor with both v ̸= 0 and w ̸= 0, then it would also have to contain

6. There is a discrepancy of a factor of 1/m! between our formula (4.25) and the formula given in [19].
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a factor with v = w = 0 and thus would vanish. Thus, for m = K, the only elements of

M(S) which may contribute nontrivially to (4.25) are those such that v = 0 and w ̸= 0,

and the OPE coefficients (CH)BA1···An
are given by a sum of terms composed of products of

derivatives of Sβ ’s. Explicitly, this formula is,

(CH)BA1···An
(x1, . . . , xn; z) = symβ

n∏
i=1

ki∏
j=1

∇(xi)
α(i,j)S

βp(i,j)(xi; z), (4.27)

where p(i, j) ≡ j +
∑i−1
q=1 kq and the symmetrization over the β-multi-indices (already seen

in examples (4.14) and (4.18)) is here denoted using “symβ” as follows,

symβS
β1 · · ·Sβm ≡ S(β1 · · ·Sβm) ≡ 1

m!

∑
σ

Sβσ(1) · · ·Sβσ(m) , (4.28)

where σ sums over the permutations of {1, . . . ,m}.

For 0 < m < K, the OPE coefficient (CH)BA1···An
will be a sum of terms involving

products of derivatives of both H’s and Sβ ’s. In fact, the formula for (CH)BA1···An
in this

case satisfies very useful recursion relations in terms of a sum of products of OPE coefficients

of smaller K. An example of this structure can be seen from eqs. (4.13), (4.14), and (4.18)

where, by inspection, we see that

(CH)
(∇β1

ϕ∇β2
ϕ)

ϕ2ϕ2
(x1, x2; z) = 4(CH)

(∇β1
ϕ∇β2

ϕ)

ϕϕ (x1, x2; z)(CH)Iϕϕ(x1, x2). (4.29)

To state the general result, let SA be the set of the K multi-index labels of the ΦHA1
,

. . . ,ΦHAn
fields, i.e., SA = {(1, 1), . . . , (n, kn)}. (SA differs from S by not including the

labels {(0, 1), . . . , (0,m)} associated with multi-indices of the operator ΦBH .) Let p be an

integer with 0 < p ≤ m. Partition SA into two subsets P1, P2, such that P1 contains p

elements and P2 contains (K − p) elements, i.e., P1 and P2 are complements of each other

with respect to the set SA. (There are
(K
p

)
possible ordered partitions of this sort.) For any

69



such partition, we define,

ΦA′
i
≡

∏
(i,j)∈P1

∇α(i,j)ϕ (4.30)

ΦA′′
i
≡

∏
(i,j)∈P2

∇α(i,j)ϕ (4.31)

For any i such that there exists no (i, j) ∈ P1, then we set ΦA′
i
= I and, similarly, for any

i such that there are no (i, j) ∈ P2, we have ΦA′′
i
= I. Our result on the Hadamard OPE

coefficients (CH)BA1···An
with 0 < m < K is the following:

Proposition 2. For 0 < m < K, the Hadamard normal-ordered OPE coefficients (4.25) of

Theorem 2 satisfy,

(CH)BA1···An
(x1, . . . , xn; z) = (4.32)(

m

p

)−1 ∑
{P1,P2}∈Pp(SA)

[
(CH)

(∇β1
ϕ···∇βpϕ)

A′
1···A′

n
(x1, . . . , xn; z) (CH)

(∇β(p+1)
ϕ···∇βmϕ)

A′′
1 ···A′′

n
(x1, . . . , xn; z)

]

Here p is any integer with 0 < p ≤ m and the sum is taken over the
(K
p

)
-ordered partitions

Pp(SA) into subsets, P1 and P2, containing p andK−p elements, respectively. The fields ΦH
A′
i

and ΦH
A′′
i

were defined with respect to the partition by eqs. (4.30) and (4.31), respectively.

Proof. From the explicit expression for the Hadamard normal-ordered OPE coefficients (4.25)

given in Theorem 2, it can be seen directly that (4.32) is equivalent, for any 0 < p ≤ m and
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0 < m < K, to the relation

∑
M∈M(S)

∏
{(v,i),(w,j)}∈M

N(v,i)(w,j)

=
∑

{P1;P2}∈Pp(SA)


 ∑
M1∈M1[P1]

∏
{(v,i),(w,j)}∈M1

N(v,i)(w,j)

× (4.33)

 ∑
M2∈M2[P2]

∏
{(v,i),(w,j)}∈M2

N(v,i)(w,j)

  ,

with M1 ≡ M(P1 ∪ {(0, 1), . . . , (0, p)}) and M2 ≡ M(P2 ∪ {(0, p + 1), . . . , (0,m)}). To

prove this relation, we note that the first line of eq. (4.33) instructs us to take the product

of the matrix elements N(v,i)(w,j) over a perfect matching of S and then sum over all perfect

matchings. By eq. (4.23), in order for any perfect matching to contribute nontrivially, any

element of the form (0, j) must be matched with an element of SA. Fix any integer p

with 0 < p ≤ m. For a given perfect matching that contributes nontrivially to eq. (4.33),

the elements of SA that are paired with (0, 1), . . . , (0, p) define a subset, P1, of SA with p

elements. Let P2 = SA \P1 so that {P1, P2} is a partition of SA into subsets of p and K− p

elements, respectively. When we sum over all perfect matchings, we may first sum over all

perfect matchings that respect these partitions. That sum yields the term in large curly

braces on the second and third lines of eq. (4.33). It then remains to sum over all partitions

{P1, P2} ∈ Pp(SA), which yields eq. (4.33).

Remark 15. An important case is m = p for which relation (4.32) of Proposition 2 reduces

to,

(CH)BA1···An
(x1, . . . , xn; z) (4.34)

=
∑

{P1,P2}∈Pm(SA)
(CH)BA′

1···A′
n
(x1, . . . , xn; z) (CH)IA′′

1 ···A′′
n
(x1, . . . , xn).
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This implies that every Hadamard normal-ordered OPE coefficient can be expressed as a

sum of products of OPE coefficients with m = 0 of the form (4.26) and OPE coefficients

with m = K ′ of the form (4.27). In the second line of (4.34), we note the OPE coefficients

with B = I are independent of z; see also Remark 13 above.

While eq. (4.32) was derived here using the particular form (4.25) of the Hadamard

normal-ordered coefficients, we will show, in the next section, these identities for the Hadamard

normal-ordered OPE coefficients and the field redefinition relations for Wick fields obtained

in Section 3.2 can be used to prove relation (4.32) holds also for the OPE coefficients corre-

sponding to completely general constructions of the Wick fields; that is, we will show that

(4.32) continues to be a valid formula even when the H-subscripts are removed.

Above, we have given explicit formulas for all of the OPE coefficients occurring for prod-

ucts of Wick monomials of the Klein-Gordon field defined by Hadamard normal ordering.

There is an important associativity property satisfied by these OPE coefficients, which will

be seen in the next section to hold for general prescriptions for Wick monomials and, in-

deed, is expected to hold for general interacting theories [10]. As already mentioned at the

beginning of this section, for an OPE involving n > 2 spacetime points xi, we have different

possible “merger trees,” i.e., different possible rates at which the different xi’s may approach

z. For example, for an OPE involving three spacetime points (x1, x2, x3), we could let x1 and

x2, approach each other faster than the remaining point, x3. In this case, one might expect

that the OPE and its coefficients could be alternatively computed by first expanding the

expectation value in x1 and x2 about an auxiliary point z′ and, subsequently, expanding z′

and x3 about z. For this to be self-consistent, the OPE coefficients obtained via this iterated

expansion should be asymptotically equivalent (for this merger tree) to the original OPE

coefficients. For general merger trees, this implies that OPE coefficients involving n > 2

spacetime points must factorize into a sum of products of OPE coefficients involving fewer

spacetime points. This property is referred to as “associativity.”
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The associativity conditions corresponding to the most general possible merger trees may

be found in [15, Section 3]. For our purposes, it will be useful to have an explicit formula for

the following merger trees: Consider the set of K = k1 + k2 + · · · + kn spacelike-separated

spacetime points,

{
x(1,1), . . . , x(1,k1), x(2,1), . . . , x(2,k2), . . . , x(n,1), . . . , x(n,kn)

}
. (4.35)

Let T denote any merger tree where, for all i ∈ {1, . . . , n}, the ki-spacetime points x(i,1), . . . , x(i,ki)

approach each other faster than the remaining points in (4.35). Supposing a Wick field is

located at each one of these spacetime points, the associativity condition for this class of

merger trees is,

(CH)BA(1,1)···A(n,kn)
(x⃗1, . . . , x⃗n; z) ∼T ,δ (4.36)∑

C1,...,Cn

(CH)C1
A(1,1)···A(1,k1)

(x⃗1; z1) · · · (CH)Cn
A(n,1)···A(n,kn)

(x⃗n; zn)(CH)BC1···Cn
(z1, . . . , zn; z),

where we have introduced the shorthand x⃗i ≡ x(i,1), . . . , x(i,ki). Here the C1, . . . , Cn-sums

are carried out to sufficiently high, but finite, [Ci] for all i. The associativity condition and

other properties of the OPE coefficients were established in [10, Section 4]. We state this

result in the following theorem:

Theorem 3. The OPE coefficients (CH)BA1···An
satisfy (4.36) and the more general associa-

tivity conditions of [10, 15].

4.2 OPE coefficients for a general definition of Wick monomials

We are now in a position to obtain the expression for the coefficients that arise in the OPE

expansion of products of Wick monomials defined using an arbitrary prescription for Wick

monomials that satisfies the axioms of Section 3.1. Let ΦHA denote the Hadamard normal-
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ordered prescription for Wick monomials and let ΦA be an arbitrary prescription. The key

equations (3.70) and (3.72) relating ΦHA and ΦA via Z and its inverse, respectively, were

obtained in Section 3.2.

To obtain an OPE for
〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ for our arbitrary prescription for Wick

monomials, we now use eq. (3.72) to write

〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ (4.37)

=
∑
C1

· · ·
∑
Cn

(Z−1)C1
A1

(x1) · · · (Z−1)Cn
An

(xn)
〈
ΦHC1

(x1) · · ·ΦHCn
(xn)

〉
Ψ
.

It should be noted that the sums in the second line include only a finite number of terms

because (Z−1)CA = 0 unless [C] ≤ [A]. Next, we use the OPE, eq. (4.1), for the Hadamard

normal-ordered Wick monomials, with OPE coefficients given by eq. (4.25) to obtain

〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ ≈

∑
C1

· · ·
∑
Cn

(Z−1)C1
A1

(x1) · · · (Z−1)Cn
An

(xn)× (4.38)

×

∑
C0

(CH)C0
C1···Cn

(x1, . . . , xn; z)
〈
ΦHC0

(z)
〉
Ψ


Finally, we use eq. (3.70) to write

〈
ΦHB (z)

〉
Ψ

in terms of one-point Wick monomials in the

prescription that we are using,

〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ ≈

∑
C1

· · ·
∑
Cn

(Z−1)C1
A1

(x1) · · · (Z−1)Cn
An

(xn)× (4.39)

×

∑
C0

(CH)C0
C1···Cn

(x1, . . . , xn; z)

[∑
B

ZB
C0

(z) ⟨ΦB(z)⟩Ψ

] .
This provides an OPE expansion for

〈
ΦA1

(x1) · · ·ΦAn
(xn)

〉
Ψ, from which we can read off
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the OPE coefficients

CBA1···An
(x1, . . . , xn; z) ≈ (4.40)

∑
C0

ZB
C0

(z)

∑
C1

· · ·
∑
Cn

(Z−1)C1
A1

(x1) · · · (Z−1)Cn
An

(xn)(CH)C0
C1···Cn

(x1, . . . , xn; z)

 .
Expressions for the Hadamard normal-ordered coefficients (CH)C0

C1···Cn
were given in terms

of Sβ and H by eq. (4.25) of Theorem 2. The mixing matrix ZB
A was given in terms of Fn via

eq. (3.44) of Theorem 1 and (3.52) of Proposition 1. As described in Section 3.2, (Z−1)BA can

also be expressed in terms of Fn using eq. (3.44) and eq. (3.73). Thus, as desired, eq. (4.40)

yields a formula for the OPE coefficients CBA1···An
in terms of a Hadamard parametrix H,

the geometric factors Sβ , and the smooth functions Fn (which characterize the difference

between ΦA and ΦHA ).

Theorem 4. For any prescription for the Wick monomials {ΦA|A ≡ α1 · · ·αn}n∈N0
com-

patible with axioms W1-W8, there exists an OPE in the sense of (4.2) with local and covari-

ant defined OPE coefficients CBA1···An
(x1, . . . , xn; z) given by (4.40). These OPE coefficients

satisfy (4.36) (with the H-subscripts removed) as well as the general associativity conditions

of [10, 15]. The coefficients are also compatible with the scaling degree properties (4.4) and

(4.5).

Sketch of proof. See Appendix B.

Equation (4.40) provides a complete characterization of the OPE coefficients for an arbi-

trary prescription for Wick monomials and, thus, achieves the primary goal of this section.

However, there are important properties of the general Wick coefficients which are not im-

mediately apparent from (4.40) but will be extremely useful for our analysis of the flow

relations in future chapters as well as for illuminating the general qualitative structure of

the Wick coefficients. In particular, as we will show, the special form of the Wick mix-
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ing matrices (3.38) and the factorization properties (4.32) of the Hadamard normal-ordered

products together imply knowledge of just the CIϕ···ϕ-coefficients is sufficient for one to de-

termine all other Wick OPE coefficients. This property of the Wick coefficients will greatly

reduce the number of independent flow relations we must consider in future chapters. More-

over, the relative simplicity of the CIϕ···ϕ-coefficients permits us to obtain an explicit formula

for these elementary coefficients in terms of H and Fn, thereby generalizing the Hadamard

normal-ordered formula (4.26) to arbitrary prescriptions.

We now outline the steps that allow us to obtain an arbitrary OPE coefficient CBA1···An
in

terms of Sβ and OPE coefficients of the form CIϕ···ϕ. We will then give an explicit formula (see

eq. (4.48)) for CIϕ···ϕ in terms of the Hadamard parametrix H and the functions Fn. Finally,

we obtain in Proposition 5 an explicit (inductive) construction for the Wick monomials in

terms of the OPE coefficients CIϕ···ϕ.

We first note that eq. (4.40) implies that CBA1···An
= 0 whenever m > K for m ≡ [B]ϕ,

since this property holds for (CH)BA1···An
and the mixing matrices ZB

A and (Z−1)BA never

increase the number of powers of ϕ appearing in any Wick monomial. For the case m = K,

the only terms in ZB
A and (Z−1)BA that can contribute nontrivially to eq. (4.40) are δBA .

Thus, for m = K we obtain,

CBA1···An
(x1, . . . , xn; z) = (CH)BA1···An

(x1, . . . , xn; z)

= symβ

n∏
i=1

ki∏
j=1

∇(xi)
α(i,j)S

βp(i,j)(xi; z), (4.41)

with p(i, j) ≡ j +
∑i−1
q=1 kq and symβ defined as in (4.28). Thus, for m = K the OPE

coefficients for a general prescription are the same as for the Hadamard normal ordered

prescription, and depend only on the geometrical factors Sβ .

Next, we show that the OPE coefficients CBA1···An
such that 0 < m < K are determined

by OPE coefficients with B = I together with OPE coefficients of the form eq. (4.41). More
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precisely,

CBA1···An
(x1, . . . , xn; z)

=
∑

{P1,P2}∈Pm(SA)
CBA′

1···A′
n
(x1, . . . , xn; z)C

I
A′′
1 ···A′′

n
(x1, . . . , xn), (4.42)

with the notation as in Proposition 2. Since we have [A′
1]ϕ + · · · + [A′

n]ϕ = m ≡ [B]ϕ, the

coefficients CB
A′
1···A′

n
(x1, . . . , xn; z) are of the form (4.41). Thus, (4.42) expresses a general

OPE coefficient with 0 < m < K in terms of OPE coefficients with B = I. Formula (4.42)

is a special case of the following proposition when p = m.

Proposition 3. For 0 < p ≤ m < K, the OPE coefficients given by (4.40) satisfy the

same formula (4.32) as derived in Proposition 2 for the Hadamard normal-ordered OPE

coefficients. i.e., formula (4.32) remains a valid formula when the H-subscripts are removed.

Sketch of proof. See Appendix B.

The following proposition shows that any Wick OPE coefficient CBA1···An
(x1, . . . , xn; z)

is ultimately fixed by OPE coefficients of the form CCi
ϕ···ϕ(x1, . . . , xki) for [Ci]ϕ ≤ [Ai]ϕ = ki.

When combined with the previous proposition, this implies all Wick OPE coefficients may

be obtained from a finite number of OPE coefficients of the form CIϕ···ϕ.

Proposition 4. The Wick OPE coefficients (4.40) satisfy,

CBA1···An
(x1, . . . , xn; z)

= lim
y⃗1→x1

· · · lim
y⃗n→xn

∇
y(1,1)
α(1,1) · · · ∇

y(n,kn)
α(n,kn)

[
CBϕ···ϕ(y⃗1, . . . , y⃗n; z) + (4.43)

−
∑

[C1]<[A1]
[C1]ϕ<[A1]ϕ

· · ·
∑

[Cn]<[An]
[Cn]ϕ<[An]ϕ

CC1
ϕ···ϕ(y⃗1;x1) · · ·C

Cn
ϕ···ϕ(y⃗n;xn)C

B
C1···Cn

(x1, . . . , xn; z)
]
,

where we define the shorthand y⃗i ≡ y(i,1), . . . , y(i,ki) and denote ki ≡ [Ai]ϕ.
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Proof. See Appendix B.

Remark 16. Recall the definition (4.3) of [C] ≡ (D− 2)/2× [C]ϕ + [C]∇. Hence, for a fixed

[A], there are only finitely-many [C]ϕ and [C]∇ such that [C] < [A] and, thus, the C-sums

in (4.43) are all finite sums. Note also [C] < [A] iff

[C]∇ <
D − 2

2
×
(
[A]ϕ − [C]ϕ

)
+ [A]∇, (4.44)

where the right-hand side is non-negative for [C]ϕ < [A]ϕ and reduces to [A]∇ when D = 2.

The preceding proposition enables us to inductively compute all OPE coefficients using

only the OPE coefficients CBϕ···ϕ as input. To observe this, first note that, for these elementary

OPE coefficients,

CB(∇α1ϕ)···(∇αnϕ)
(x1, . . . , xn; z) = ∇(x1)

α1 · · · ∇(xn)
αn CBϕ···ϕ(x1, . . . , xn; z), (4.45)

and, thus, knowledge of CBϕ···ϕ implies knowledge of CB
(∇α1ϕ)···(∇αnϕ)

for all αi. Hence, by

assumption, we begin with knowledge of all OPE coefficients CBA1···An
such that [Ai]ϕ = 1

and [Ai]∇ < ∞ for i ∈ {1, . . . , n}. Noting the bounds on the Ci-sums, we may, therefore,

immediately use formula (4.43) to calculate any CBA1···An
such that, for all i, [Ai]ϕ ≤ 2 and

[Ai]∇ < ∞. Of course, this, in turn, provides enough data to compute any coefficient such

that [Ai]ϕ ≤ 3 and [Ai]∇ <∞ and, in this way, we may obtain any OPE coefficient CBA1···An

from formula (4.43) starting from knowledge of just CBϕ···ϕ.

Remark 17. For any finite [Ai]ϕ and [Ai]∇, we emphasize that the coefficient CBA1···An
can be

computed from (4.43) with only a finite number of iterations. In particular, it is not required

that we compute all [Ai]∇ < ∞ for a given [Ai]ϕ before incrementing to [A′
i]ϕ = [Ai]ϕ + 1.

By inequality (4.44), computing CBA1···An
for any [Ai]ϕ and [Ai]∇ only requires knowledge

of coefficients CBC1···Cn
such that [Ci]ϕ < [Ai]ϕ and [Ci]∇ < (D − 2)/2× [Ai]ϕ + [Ai]∇.
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Taken together, the above results allow us to express an arbitrary Wick OPE coefficient

CBA1···An
in terms7 of the OPE coefficients CIϕ···ϕ and pure geometrical factors Sβ . Finally,

we give an explicit formula for CIϕ···ϕ. To see how this formula is obtained, consider first the

simplest case of CIϕϕ. We have,

CIϕϕ(x1, x2; z) ≈ ZI
I (CH)Iϕϕ(x1, x2) +

∑
γ1,γ2

ZI
γ1γ2(z)(CH)

(∇γ1ϕ∇γ2ϕ)

ϕϕ (x1, x2; z)

≈ H(x1, x2) +
∑
γ1,γ2

[∇γ1∇γ2F2]z S
(γ1(x1; z)S

γ2)(x2; z)

≈ H(x1, x2) + F2(x1, x2; z), (4.46)

where in the last line, we used the fact that the series,

∑
γ1,γ2

[∇γ1∇γ2F2]z S
(γ1(x1; z)S

γ2)(x2; z), (4.47)

is simply the covariant Taylor expansion of the smooth function F2(x1, x2; z). Proceeding in

a similar manner and recalling formulas (4.40) and (4.41), we obtain the general formula,

CIϕ···ϕ(x1, . . . , xn; z) ≈ Fn(x1, . . . , xn; z) + (4.48)

+

⌊n/2⌋∑
k=1

∑
πk

H(xπ(1), xπ(2)) · · ·H(xπ(2k−1), xπ(2k))F(n−2k)(xπ(2k+1), . . . , xπ(n); z),

where the πk sums over the permutations of {1, . . . , n} such that π(1) < π(2), π(3) <

π(4), · · · , π(2k − 1) < π(2k); π(1) < π(3) < · · · < π(2k − 1); and π(2k + 1) < π(2k + 2) <

· · · < π(n). Formula (4.48) generalizes the normal-ordered formula (4.26) obtained in the

previous section to arbitrary prescriptions for the Wick monomials.

7. The only method we have provided for computing coefficients of the form CI
A1···An

from CI
ϕ···ϕ is via

formula (4.43) of Proposition 4. However, coefficients CB
A1···An

for B ̸= I may be computed from CI
ϕ···ϕ either

via formula (4.43) or, alternatively, by plugging the values of CI
A1···An

back into formula (4.32) of Proposition
3.
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Formula (4.48) now implies the full renormalization freedom for the Wick fields may be

expressed entirely in terms of the identity coefficients {CIϕ···ϕ(x1, . . . , xn; z)}n≥2 and, thus,

the set of these coefficients uniquely determines a prescription for the Wick fields {ΦA|A ≡

α1 · · ·αn}n∈N0
. To see this, note eq. (4.48) implies CIϕϕ is itself a Hadamard parametrix H̃ ≡

H + F2 (in accordance with Remark 11). If we choose to normal order instead with respect

to the parametrix H̃, i.e. use ΦH̃B in formula (3.72) rather than ΦHB , then the preceding

manipulations would again yield formula (4.48) for CIϕ···ϕ but now with all H’s replaced

by H̃ = CIϕϕ. Since this formula depends only on Fk≤n and OPE coefficients of the form

CIϕ···ϕ, it may be iteratively inverted to express Fn purely in terms of CIϕ···ϕ(x1, . . . , xk; z)

for k ≤ n. The claim is then an immediate consequence of Proposition 1 and the Wick

uniqueness theorem (Theorem 1).

Using identities (3.44) and (3.73), our expression for Fn in terms of the OPE coefficients

allows us to similarly express (Z−1)AB purely in terms of CIϕ···ϕ(x1, . . . , xk; z) for k ≤ n. A

Wick monomial ΦA in any prescription satisfying axioms W1-W8 can, thus, be expressed

via ΦA =
∑

[B]≤[A](Z−1)BAΦ
H̃
B in terms of just {CIϕ···ϕ(x1, . . . , xn; z)}n≤[A] and products of

the linear field observable ϕ, noting that the normal-ordered Wick fields ΦH̃B are themselves

defined in (3.28) with respect to only products of the linear field observable ϕ and the OPE

coefficient H̃ = CIϕϕ. An explicit inductive formula for ΦA expressed purely in terms of ϕ,

CIϕ···ϕ and the geometric factors Sβ is obtained in the following proposition.

Proposition 5. For the OPE coefficients CIϕ···ϕ given by the formula (4.48), the monomial
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ΦA in any prescription satisfying axioms W1-W8 satisfies:

(∇α1ϕ · · · ∇αnϕ)(f) =∫
z,x1,...,xn

fα1···αn(z)δ(z, x1, . . . , xn)∇
(x1)
α1 · · · ∇(xn)

αn

[
ϕ(x1) · · ·ϕ(xn)− (4.49)

∑
m<n

[B]<[A]

∑
π∈Πm

CIϕ···ϕ(xπ(m+1), . . . , xπ(n); z)S
β1(xπ(1); z) · · ·S

βm(xπ(m); z) (∇β1ϕ · · · ∇βmϕ)(z)

]

where Πm denotes the set of all permutations of {1, . . . , n} such that π(1) < π(2) < · · · <

π(m) and π(m + 1) < π(m + 2) < · · · < π(n), and the abbreviation
∫
z,x1,...,xn

is defined as

in (3.12) and our “Notation and conventions” in Chapter 2.

Proof. See Appendix B.

4.3 OPE coefficients of (unextended) time-ordered products

As we shall see in Chapter 6, the flow relations for OPE coefficients that we shall ob-

tain in Lorentzian spacetimes will involve expansions of time-ordered products—rather than

ordinary products—of Wick monomials. Away from the diagonals8, the “unextended time-

ordered product” of Wick monomials is defined by

T0{ΦA1
(x1) · · ·ΦAn

(xn)} = ΦAP (1)
(xP (1)) · · ·ΦAP (n)

(xP (n)), (4.50)

where P is a permutation of {1, . . . , n} such that xP (i) /∈ J−(xP (i+1)), where J− de-

notes the causal past. In other words, T0{ΦA1
(x1) · · ·ΦAn

(xn)} re-orders the product

ΦA1
(x1) · · ·ΦAn

(xn) by the “time” at which the Wick monomial is being evaluated. The

right side of eq. (4.50) yields a well-defined (algebra-valued) distribution on the product

8. The “diagonals” are the subset of the product manifold, {(x1, . . . xn) ∈ ×nM | xi = xj for any i, j ∈ {1, . . . , n}}.
Thus, “away from the diagonals” means when all points are distinct.
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manifold ×nM minus all of the diagonals.

Renormalization theory is primarily concerned with the “extension of T0{ΦA1
(x1) · · ·ΦAn

(xn)}

to the diagonals”: i.e., obtaining (algebra-valued) distributions T{ΦA1
(x1) · · ·ΦAn

(xn)} that

are well-defined on all of ×nM , including the diagonals and defined such that,

T{ΦA1
(x1) · · ·ΦAn

(xn)} = T0{ΦA1
(x1) · · ·ΦAn

(xn)}, (4.51)

away from all diagonals. In curved spacetime, it has been proven [37,45] that there exist “ex-

tensions” of (4.50) that are compatible with a list of axioms that generalize those stated here

(W1-W8) for Wick powers9. However, generally, there are additional “contact term” ambigui-

ties in these extensions, corresponding to the freedom to add finitely-many “δ-function-type”

terms on the diagonals. Although these ambiguities can be fully characterized [37], they

greatly complicate the analysis of time-ordered products. For the integral in Lorentzian flow

relations such as eq. (2.2) to be well-defined, it is necessary that the unextended time-ordered

products be extended to, at least, all partial diagonals involving the integration variable, y.

Fortunately, as we shall see in Chapter 6, the unextended time-ordered-products will satisfy

flow relations where the extension to the requisite partial diagonals is unambiguous and,

thus, independent of contact terms. Therefore, we will only ever need to consider the OPE

of unextended time-ordered-products and the field redefinition freedom of its coefficients,

and we may thereby bypass all of the usual complications of renormalization theory.

It is clear that the unextended time-ordered products satisfy OPE relations of the form,

〈
T0{ΦA1

(x1) · · ·ΦAn
(xn)}

〉
Ψ ≈

∑
B

CBT0{A1···An}(x1, . . . , xn; z) ⟨ΦB(z)⟩Ψ , (4.52)

9. The proof in [37,45] used an analytic dependence assumption in place of W2 (see Footnote 6 in Section
3.1).
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where

CBT0{A1···An}(x1, . . . , xn; z) = CBAP (1)···AP (n)
(xP (1), . . . , xP (n); z), (4.53)

with the permutations P as defined in (4.50). It is understood that eq. (4.52) holds only on

×nM minus all of the diagonals. As described in the following proposition, the explicit form

of the time-ordered OPE coefficients (4.53) is readily obtained from our previously-stated

expressions for the Wick OPE coefficients in terms of a Hadamard parametrix H, the geo-

metrical quantities Sβ , and the smooth functions Fn that characterize the difference between

the Hadamard normal-ordering prescription for Wick monomials and the prescription being

used.

Proposition 6. For any fixed prescription for the Wick monomials, the time-ordered OPE

coefficients (4.53) are simply obtained from the formula for CBA1···An
(x1, . . . , xn; z) by in-

dividually time-ordering all Hadamard parametrices: i.e., replacing every occurrence of H

with its corresponding Feynman parametrix10,

HF (x1, xx) = H(x1, x2)− i∆adv(x1, x2), (4.55)

with ∆adv denoting the advanced Green’s function.

Proof. By applying the definition of time-ordering (4.53) to the formula (4.40) for the general

10. The precise asymptotic behavior of the distribution kernel for HF is obtained by replacing the “iϵ-
prescription” in the expression (3.26) for H with the usual Feynman prescription: i.e., making the following
substitution,

[2i0+ (T (x1)− T (x2)) + (0+)2] → i0+ (4.54)
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Wick OPE coefficients, it is straightforwardly shown that we have

CBT0{A1···An}(x1, . . . , xn; z) ≈ (4.56)

∑
C0

ZB
C0

(z)

∑
C1

· · ·
∑
Cn

(Z−1)C1
A1

(x1) · · · (Z−1)Cn
An

(xn)(CH)C0
T0{C1···Cn}(x1, . . . , xn; z)

 ,
where we use the notation (CH)B

T0{A1···An} for the OPE coefficients of the unextended

time-ordered products (4.53) when the Wick fields are defined via a Hadamard normal-

ordering prescription, ΦA = ΦHA . It then follows from the factorization property (4.34) of

the Hadamard normal-ordered OPE coefficients that we have

(CH)C0
T0{C1···Cn}(x1, . . . , xn; z) (4.57)

=
∑

{P1,P2}∈Pm(S)
(CH)C0

T0{A′
1···A′

n}
(x1, . . . , xn; z)(CH)IT0{A′′

1 ···A′′
n}
(x1, . . . , xn).

The first factor in each product is unaffected by time-ordering because they depend only on

symmetric combinations of Sβ-factors, i.e., we have

(CH)C0
T0{A′

1···A′
n}
(x1, . . . , xn; z) = (CH)C0

A′
1···A′

n
(x1, . . . , xn; z), (4.58)

where the explicit form of the right-hand side is given by (4.27). Finally, recalling (4.26), we

have

(CH)IT0{A′′
1 ···A′′

n}
= T0

 ∑
P∈M(S)

∏
{(v,i),(w,j)}∈P

∇(xv)
αv,i ∇

(xw)
αw,jH(xv, xw)


=

∑
P∈M(S)

∏
{(v,i),(w,j)}∈P

∇(xv)
αv,i ∇

(xw)
αw,j T0 {H(xv, xw)} , (4.59)

where the second line follows from the fact that tensor products of ordinary c-number dis-

tributions commute. Altogether, we conclude the time-ordering map acts non-trivially only

84



on the Hadamard parametrices and in the way specified by the proposition. We note, when

x1 ̸= x2, the time-ordered Hadamard parametrix T0{H(x1, x2)} is equivalent to the Feyn-

man parametrix (4.55).

Remark 18. Although T0{H(x1, x2)} is a priori only defined away from x1 = x2, its extension

to its diagonal x1 = x2 uniquely yields the Feynman parametrix (4.55), because the scaling

degree of T0{H} is D − 2 which is less than that of the Dirac delta distribution (and all of

its distributional derivatives) and, thus, there do not exist any possible “contact terms” with

the correct scaling degree.

As examples, from eqs. (4.13) and (4.18), we see that for the Hadamard normal-ordering

prescription, we have,

(CH)IT0{ϕϕ}(x1, x2; z) = HF (x1, x2) (4.60)

(CH)I
T0{ϕ2ϕ2}(x1, x2; z) = HF (x1, x2)HF (x1, x2). (4.61)

The wavefront set calculus implies H2 is a well-defined distribution on (a convex nor-

mal neighborhood of) the product manifold M × M and, thus, the ordinary OPE coeffi-

cient (CH)I
ϕ2ϕ2

is similarly well-defined. However, the pointwise product of the Feynman

parametrix, H2
F , is only well-defined as a distribution on the product manifold minus the di-

agonal so the time-ordered coefficient (CH)I
T0{ϕ2ϕ2}

is thus only well-defined as a distribution

for x1 ̸= x2.

The advanced Green’s function scales almost homogeneously and, thus, HF defined via

(4.55) will scale almost homogeneously if and only if H is compatible with axiom W7. Note

(4.55) is symmetric in its spacetime variables and solves the inhomogeneous Klein-Gordon

equation with “δ-source” up to a smooth remainder,

KHF (x1, x2) = −iδ(x1, x2) mod C∞(M ×M) (4.62)
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Any bi-distribution satisfying (4.62) is referred to as a parametrix of a fundamental solution

for the differential operator K. If H(x1, x2) is any Hadamard parametrix (of the homoge-

neous Klein-Gordon equation) in D > 2 satisfying the conservation constraint (3.36), then

the Feynman parametrix defined via (4.55) will then necessarily satisfy,

[
∇(x1)
b Kx2HF (x1, x2) + i∇(x1)

b δ(x1, x2)
]
x1,x2=z

= 0. (4.63)

Conversely, for any Feynman parametrix satisfying (4.63), the corresponding Hadamard

parametrix, H = HF + i∆adv, will satisfy the conservation constraint (3.36).
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CHAPTER 5

FLOW RELATIONS FOR OPE COEFFICIENTS IN FLAT

EUCLIDEAN SPACE

In this chapter, we obtain flow equations in m2 for the Wick OPE coefficients in flat Eu-

clidean space. We initially focus our attention on the flow relation for CIϕϕ, since our analysis

of the preceding chapter implies the flow relations for all other Wick OPE coefficients can be

readily obtained after the flow relation for CIϕϕ is known. We begin in Section 5.1 by deriving

flow relations for the case where the Euclidean Green’s function GE(x1, x2) is used to define

a Hadamard normal-ordering prescription, so (CG)
I
ϕϕ(x1, x2; z) = GE(x1, x2). These flow

equations (see eq. (5.9) below) are the direct analogues of the Holland and Hollands flow

equations (1.20) for Klein-Gordon theory in the limit as the infrared cutoff L is removed,

i.e., L → +∞. Note that Hadamard normal-ordering with respect to GE(x1, x2) corre-

sponds to ordinary normal ordering with respect to the Euclidean vacuum state. However,

GE(x1, x2;m
2) does not have smooth dependence in m2 at m2 = 0, so it is not acceptable

to use it in a Hadamard normal-ordering prescription that is valid in an open interval in m2

containing m2 = 0. Nevertheless, it can be used outside any open interval in m2 containing

m2 = 0, and it is convenient to begin our consideration of flow relations with it because the

flow relation analysis is much simpler when a Green’s function (rather than a parametrix) is

used in the Hadamard normal-ordering prescription.

We turn then in Section 5.2 to the derivation of Euclidean flow relations for the case of

a Euclidean-invariant parametrix that has smooth dependence on m2 for all m2, including

m2 = 0. To avoid infrared divergences, this requires introducing a cutoff function in the

integral over all space appearing in the flow relation. The cutoff function can be chosen

to be Euclidean invariant, so it will not spoil the Euclidean invariance of the flow relations.

However, it will unavoidably spoil the scaling behavior of the flow relations. Nevertheless, we

develop an algorithm for modifying the flow relations which restores proper scaling behavior
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to any desired scaling degree. We show any ambiguities in our algorithm are in a 1-1

correspondence with the ambiguities of Euclidean OPE coefficients for Hadamard normal-

ordered Wick fields (see Theorem 6).

5.1 Vacuum normal ordering without an infrared cutoff (m2 > 0)

The Riemannian version of quantum field theory in curved spacetime has been formulated

by [46] in close parallel with the axiomatic formulation for the Lorentzian case given in Sec-

tion 3.1. An analogue of the “Hadamard normal-ordering” prescription for defining Wick

monomials can then be given by choosing a local and covariant Green’s parametrix for the

(now elliptic) Klein-Gordon operator. OPE coefficients for the Euclidean Wick OPE coeffi-

cients can then be obtained in parallel with the Lorentzian case away from the diagonals1.

In this chapter, we will be concerned only with the case of flat, Euclidean space (RD, δab).

In this case, there is a unique Green’s function, GE(x1, x2;m2), for the operator,

K = −δab∂a∂b +m2, (5.1)

such that GE vanishes as |x1 − x2| → ∞. It would be extremely convenient to use this

Green’s function in a Hadamard normal-ordering prescription for Wick monomials. Indeed,

since this Green’s function is the vacuum 2-point function of the Euclidean quantum field

theory,

⟨ϕ(x1)ϕ(x2)⟩vac = GE(x1, x2), (5.2)

it follows that Hadamard normal ordering with respect to GE(x1, x2;m
2) corresponds to

ordinary normal ordering with respect to the Euclidean vacuum state. However, as previously

mentioned, GE(x1, x2;m2) does not have smooth dependence on m2 at m2 = 0. Thus, it is

1. Defining products of Euclidean Wick fields on diagonals generally requires renormalization analogous
to extending the Lorentzian unextended time-ordered products to their diagonals and, thus, is subject to
additional contact-term renormalization ambiguities. See also Footnote 3.
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not acceptable to use it in a Hadamard normal-ordering prescription that is valid in an open

interval in m2 containing m2 = 0, since the corresponding Wick monomials defined in this

way will not have the required smooth dependence on m2. In order to obtain an acceptable

prescription that includes the case m2 = 0, we therefore must use a Green’s function (or

parametrix) for K that has smooth dependence on m2. Nevertheless, there are significant

simplifications in the derivation of the flow relations for GE(x1, x2;m2). Therefore, we will

proceed by first obtaining flow relations for normal ordering with respect to GE(x1, x2;m2)

for m2 > 0, and then derive flow relations for normal ordering with respect to a parametrix

that is smooth in m2.

Although we shall not need to make use of its explicit form, we note that for m2 > 0,

GE(x1, x2;m
2) is given explicitly by,

GE(∆x;m
2) =

∫
RD

dDp

(2π)D
eip·∆x

p2 +m2

=
m(D−2)/2

(2π)D/2
(
|∆x|2

)(D−2)/4
K(D−2)/2

(
m
√
|∆x|2

)
, (5.3)

where ∆x = x1 − x2 and K(D−2)/2 is a modified Bessel function of the second kind [47, see

Subsection 10.25 for definition of Kν(z) and Subsection 10.30 for its limiting form at the

origin]. It should be noted that GE(x1, x2;m2) is symmetric in x1 and x2. The wavefront

set of GE is the same as the wavefront set of a (two-variable) δ-function,

WF[GE ] = WF[δ] (5.4)

≡
{
(x1, k;x2,−k) ∈ ×2(T ∗RD\Z∗RD)|x1 = x2, k ∈ T ∗RD\Z∗RD

}
.

In particular, GE is smooth in x1 and x2 for ∆x ̸= 0. Furthermore, it follows from the

form of its wavefront set that, when smeared in one of its variables with any test function
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f , GE(x1, f ;m2) is smooth2 in x1. In other words, as a Schwartz kernel, GE(x1, x2) defines

a continuous linear map from C∞
0 (RD) into C∞(RD). It follows from the explicit formula

(5.3) that GE(x1, f ;m2) is smooth in m2 for m2 > 0.

For Wick monomials defined by normal ordering with respect to GE , the Euclidean OPE

coefficients are given, away from their diagonals3, by formula (4.25) with the replacement

H → GE . In particular, for the OPE coefficient (CG)
I
ϕ···ϕ with n factors of ϕ, we have

(CG)
I
ϕ···ϕ = 0 when n is odd, whereas when n is even, we have,

(CG)
I
ϕ···ϕ(x1, . . . , xn) =

∑
π

GE(xπ(1), xπ(2)) · · ·GE(xπ(n−1), xπ(n)), (5.5)

where the π sums over all permutations such that π(1) < π(3) < · · · < π(n − 1) and

π(1) < π(2), π(3) < π(4), . . . , π(n − 1) < π(n). As discussed in Section 4.2, the Wick OPE

coefficients for any prescription are determined by the values of the CIϕ···ϕ-coefficients.

We first motivate the form of the flow equations for (CG)
I
ϕ···ϕ following Hollands [17].

Since the OPE coefficients (CG)Iϕ···ϕ defined by normal ordering are just n-point “Schwinger

functions,” they are formally given by the functional integral,

(CG)
I
ϕ···ϕ(x1, . . . , xn) =

∫
S ′(RD)

dµ[φ]φ(x1) · · ·φ(xn), (5.6)

with measure,

dµ[φ] = D[φ]
1

Z0
exp

(
−SKG[δab,RD]

)
. (5.7)

2. This is established by a straightforward application of [3, Theorem 8.2.12]. In fact, as explained in the
next chapter, this property holds for any translation invariant bi-distribution.

3. Whereas the wavefront set calculus implies the pointwise products of any Lorentzian Hadamard
parametrix H appearing in formula (4.25) are guaranteed to be well-defined as distributions, the correspond-
ing pointwise products of GE are generally ill-defined as distributions on diagonals, since the wavefront set
(5.4) of GE is identical to the wavefront set of the two-variable Dirac delta function. In this respect, GE is
more analogous to a Feynman parametrix HF rather than to H; see also the discussion following eq. (4.61).
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Formal differentiation of eq. (5.6) with respect to m2 yields,

∂

∂m2
(CG)

I
ϕ···ϕ(x1, . . . , xn) = −1

2

∫
RD

dDy

∫
S ′(RD)

dµφ2(y)φ(x1) · · ·φ(xn). (5.8)

This suggests that we should have the flow relation

∂

∂m2
(CG)

I
ϕ···ϕ(x1, . . . , xn) = −1

2

∫
RD

dDy(CG)
I
ϕ2ϕ···ϕ(y, x1, . . . , xn). (5.9)

That this flow equation, eq. (5.9), does indeed hold will be seen to be a consequence of the

following lemma:

Lemma 1. The Euclidean Green’s function GE satisfies the flow relation

∂

∂m2
GE(x1, x2;m

2) = −
∫
RD

dDy GE(y, x1;m
2)GE(y, x2;m

2). (5.10)

Proof. We note first that, by a trivial calculation, the commutator of the differential opera-

tors K = −∂a∂a +m2 and ∂m2 is given by,

[K, ∂m2 ] = −I (5.11)

Thus, in particular, we have,

Ky
∂

∂m2
GE(y, x;m

2) = −GE(y, x;m2) +
∂

∂m2
KyGE(y, x;m

2)

= −GE(y, x;m2) +
∂

∂m2
δ(y, x)

= −GE(y, x;m2), (5.12)

where we used the Green’s function property, KyGE(y, x;m2) = δ(y, x), to get the second

line and we used the fact that the δ-function has no m2 dependence to get the last line. As
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already noted, the wavefront set of GE(y, x;m2) (and, hence, of ∂m2GE(y, x;m
2)) is such

that if we smear in x, we obtain a smooth function of y and, on account of the explicit

formula (5.3), a smooth function of m2 for m2 > 0. Therefore, for any test functions f1 and

f2, we have

∂

∂m2
GE(f1, f2;m

2) =

∫
RD

dDy δ(y, f1)
∂

∂m2
GE(y, f2;m

2)

=

∫
RD

dDy
[
KyGE(y, f1;m

2)
] ∂

∂m2
GE(y, f2;m

2)

=

∫
RD

dDy GE(y, f1;m
2)Ky

∂

∂m2
GE(y, f2;m

2)

= −
∫
RD

dDy GE(y, f1;m
2)GE(y, f2;m

2). (5.13)

Here, in going to the third line, we integrated by parts twice, invoking the fall-off behavior4

of GE as y → ∞. Equation (5.13) is just the smeared form of eq. (5.10).

As an immediate consequence of this lemma, we have

Theorem 5. The flow relation (5.9) holds for OPE coefficients (CG)
I
ϕ···ϕ(x1, . . . , xn) corre-

sponding to Euclidean vacuum normal-ordered Wick fields.

Proof. To obtain the flow equation (5.9), we apply ∂m2 to eq. (5.5), and use eq. (5.10)

together with the fact that (CG)
I
ϕ2ϕ···ϕ = 0 when n is odd and, when n is even,

(CG)
I
ϕ2ϕ···ϕ(y, x1, . . . , xn)

=
∑
π

2GE(y, xπ(1))GE(y, xπ(2))GE(xπ(3), xπ(4)) · · ·GE(xπ(n−1), xπ(n)), (5.14)

where the π-sum runs over the same permutations as in (5.5). Equation (5.9) then follows

by inspection.

4. We have restricted to the case m2 > 0 here, but it is worth noting that for m2 = 0, the fall-off of GE

is too slow to justify the integration by parts.
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5.2 Hadamard normal ordering with an infrared cutoff

We turn now to the modifications to the Euclidean flow relations that arise when we consider

the OPE coefficients corresponding to a Hadamard normal-ordering prescription using a

Euclidean invariant Hadamard parametrix, HE(x1, x2;m2), that varies smoothly with m2

for all m2, including m2 = 0. That is, HE is required to satisfy,

(−∂2 +m2)HE(x1, x2;m
2) = δ(x1, x2) + hE(x1, x2;m

2), (5.15)

where hE(x1, x2;m2) is smooth in all of its variables and symmetric in (x1, x2). Clearly, the

choice of HE is not unique, but any two such parametrices must differ from each other by

addition of a smooth, Euclidean-invariant function, w(x1, x2;m2). If we now try to repeat

the calculation of eq. (5.13) to obtain a flow relation for HE , we will pick up extra terms

involving h. In addition, HE will not, in general, vanish as |x1 − x2| → ∞, so we will not

be able to carry out the integration by parts of the third line of eq. (5.13) in the preceding

section. We can deal with the latter problem in the following manner by introducing a cutoff

function χ(x1, x2). We take χ to be Euclidean invariant by choosing it to be of the form,

χ(x1, x2;L) = ζ
(
L−2σ(x1, x2)

)
, (5.16)

where σ(x1, x2) is the squared geodesic distance between x1 and x2, L is an arbitrary length

scale, and ζ(s) is a smooth function that is equal to one for |s| ≤ 1 and vanishes for |s| ≥ 2.

Let z be an arbitrary point in RD and let Bz denote the ball of radius L centered about z.

Then for x1, x2 ∈ Bz, we have the identity,

∂

∂m2
HE(x1, x2;m

2) =

∫
RD

dDy χ(y, z;L) δ(y, x1)
∂

∂m2
HE(y, x2;m

2). (5.17)
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Starting with this equation, we can now carry out all the steps of eq. (5.13) including the

integration by parts, although we now pick up additional terms where derivatives act on χ.

The final result is,

∂

∂m2
HE(x1, x2;m

2) = −
∫
RD

dDy χ(y; z;L)HE(y, x1;m
2)HE(y, x2;m

2) +

+

∫
RD

dDy ∂
(y)
µ χ(y; z;L)

[
∂
µ
(y)
HE(y, x1;m

2)
∂

∂m2
HE(y, x2;m

2) + (5.18)

− HE(y, x1;m
2)∂

µ
(y)

∂

∂m2
HE(y, x2;m

2)

]
+

+

∫
RD

dDy χ(y, z;L)

[
HE(y, x1;m

2)
∂

∂m2
hE(y, x2;m

2) +

− hE(y, x1;m
2)

∂

∂m2
HE(y, x2;m

2)

]
.

The first term on the right side corresponds to the final line of eq. (5.13). The second and

third lines contain the terms where derivatives from the integration by parts act on χ, and

the fourth and fifth lines contain the terms arising from the fact that HE is a parametrix

rather than a Green’s function.

Equation (5.18) is unsatisfactory as a flow equation since terms below the first line contain

the unknown quantities ∂m2HE and ∂m2hE . Nevertheless, the second through fifth lines

must be smooth in (x1, x2;m
2) for x1, x2 ∈ Bz. To see this, we note that HE(y, x) can be

singular only when y = x. However, ∂(y)µ χ(y, z) is nonvanishing only for y /∈ Bz, so the

second and third lines are smooth for x1, x2 ∈ Bz. Since h is smooth in all of its variables

and χ is of compact support in y, the fourth and fifth lines must be smooth for all x1, x2.

Recall from its definition (5.15) that HE is only uniquely determined up to the addition of a

smooth function, so we have some freedom to redefine HE . Thus, a possible way of dealing

with the problematic terms in the second through fifth lines of eq. (5.18) would to simply
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drop these terms from the flow relations, leaving only the first line5,

∂

∂m2
HE(x1, x2;m

2) ∼δ −
∫
RD

dDy χ(y; z;L)HE(y, x1;m
2)HE(y, x2;m

2). (5.19)

In other words, one might attempt to use the freedom in the choice of HE to work with

flow relation (5.19) rather than (5.18). Indeed, this is a simple analog of the procedure used

in [19, Section V] to deal with the infrared difficulties in their Euclidean flow relations for λϕ4-

theory. Note that since (CH)Iϕϕ = HE and (CH)I
ϕ2ϕϕ

(y, x1, x2; z) = 2HE(y, x1)HE(y, x2),

we see that (5.19) is equivalent to relation (2.1) discussed in Chapter 2 for the special case

of n = 2, with χ is chosen to be a sharp step function instead of a smooth function.

However, for Klein-Gordon theory, the flow relation (2.1) would give rise to OPE coef-

ficients that are incompatible with the scaling axiom W7. Namely, in order to satisfy this

axiom, HE must have scaling behavior given by eq. (3.37) under the simultaneous rescaling

(δab,m
2) → (λ−2δab, λ

2m2). Here we are working in a fixed global inertial coordinate system

defined with respect to metric δab. Hence, with the coordinate basis held fixed, rescaling

the metric δab → λ−2δab is equivalent to rescaling the metric coordinate components as

δµν → λ−2δµν and the volume element as dDy → λ−DdDy. However, under the rescaling

(δµν , d
Dy,m2) → (λ−2δµν , λ

−DdDy, λ2m2), (5.20)

we find the quantity

Ω(x1, x2; z;m
2;L) ≡ −

∫
RD

dDy χ(y; z;L)HE(y, x1;m
2)HE(y, x2;m

2), (5.21)

appearing on the right side of (2.1) does not scale almost homogeneously for any fixed power

5. Since only the asymptotic behavior of the parametrix is relevant for the OPE coefficients, we have
replaced the equality symbol in (5.18) with the weaker relation “∼δ” which implies both sides are asymptot-
ically equivalent to an arbitrary scaling degree δ.
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of λ on account of the fact that—due to the presence of the length scale L—χ scales as

χ[λ−2δµν ](x1, x2;L) = ζ
(
(λL)−2σ[δµν ](x1, x2)

)
, (5.22)

rather than homogeneously. It follows that eq. (2.1) is incompatible with the scaling behavior

(3.37) of HE , and any prescription for defining Wick monomials based on its solutions would

fail to satisfy axiom W7.

Although Ω, as defined in (5.21), does not scale almost homogeneously under (5.20), it

does transform almost homogeneously with an overall factor of λD−4 under the simultaneous

rescaling

(δµν , d
Dy,m2, L) → (λ−2δµν , λ

−DdDy, λ2m2, λ−1L), (5.23)

since

χ[λ−2δµν ](x1, x2;λ
−1L) = χ[δµν ](x1, x2;L). (5.24)

It follows that we will obtain a satisfactory flow relation if we can replace the flow relation

(5.19), i.e.,
∂

∂m2
HE(x1, x2;m

2) ∼δ Ω(x1, x2; z;m2;L), (5.25)

with the modified flow relation

∂

∂m2
HE(x1, x2;m

2) ∼δ Ω̃δ(x1, x2; z;m2;L). (5.26)

where Ω̃δ(x1, x2; z;m
2;L) satisfies the following two properties:

1. Ω̃δ is an Euclidean-invariant distribution, symmetric in (x1, x2), and depending smoothly

on m2 such that for any (x1, x2) ∈ Bz, the distribution Ω̃δ differs from Ω by at most a

smooth function in (x1, x2) which scales almost homogeneously under (5.23) with an

overall factor of λ(D−4).
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2. To scaling degree δ,
∂

∂L
Ω̃δ(x1, x2; z;m

2;L) ∼δ 0. (5.27)

Given the previously-described scaling behavior of Ω, the first property implies Ω̃δ is required

to scale almost homogeneously under (5.23) with an overall factor of λ(D−4). However,

since the second property requires Ω̃δ to be independent of L up to asymptotic degree δ,

it follows immediately that Ω̃δ must, in fact, scale almost homogeneously under just (5.20)

up to asymptotic degree δ. Note we make no demand that Ω̃δ be independent of L at

asymptotic orders higher than the chosen δ since this is not relevant to the OPE coefficients.

Together, the two properties above therefore formalize the notion that Ω̃δ must contain the

same L-independent distributional behavior in (x1, x2) as Ω and simultaneously scale almost

homogeneously with respect to (5.20) up to any arbitrary, but fixed, asymptotic degree. In

odd spacetime dimensions, any Ω̃δ satisfying the two properties described below eq. (5.26)

is necessarily unique up to scaling degree δ. In even spacetime dimensions, any two Ω̃δ

satisfying the described properties may differ, to asymptotic degree δ, by only a smooth

function of the form, m(D−4)f(m2σ(x1, x2)). Our task is now to find Ω̃δ(x1, x2; z;m
2;L)

satisfying the above two properties.

Since L enters Ω only through the cutoff function χ, it follows that,

∂

∂L
Ω(x1, x2; z;m

2;L) = −
∫
RD

dDy
∂

∂L
χ(y; z;L)HE(y, x1;m

2)HE(y, x2;m
2). (5.28)

From the definition of the cutoff function (5.16), we observe ∂Lχ(y; z;L) = 0 for any y ∈ Bz.

However, since HE(y, x) is singular only when y = x, it follows immediately that (5.28) is, in

fact, a smooth function of (x1, x2) in the neighborhood Bz containing z. If the L-dependence

of the smooth function of (x1, x2) appearing on the right side of eq. (5.28) were integrable

in L on the interval [0, L], we could obtain the desired Ω̃δ by simply subtracting
∫ L
0 of the

right side of eq. (5.28) from Ω. However, the right side of eq. (5.28) is not integrable in L

97



on the interval [0, L]. Nevertheless, the singular behavior in L of the right side of eq. (5.28)

can be characterized as follows.

The quantity Ω scales almost homogeneously with an overall factor of λD−4 under the

simultaneous rescaling (5.23). It follows that the quantities

[
∂
(x1)
γ1 ∂

(x2)
γ2

∂

∂L
Ω(x1, x2; z;L)

]
x1,x2=z

, (5.29)

appearing in the Taylor expansion of ∂Ω/∂L scale almost homogeneously with an overall

factor of λ(D−3+Γ), with Γ ≡ |γ1| + |γ2|, under (m2, L) → (λ2m2, λ−1L) with the metric

components and volume element held fixed. The smoothness of Ω inm2 then implies that any

divergent dependence of (5.29) on L (as L→ 0+) is expressible as a finite linear combination

of terms of the form,

L−∆ logN L, for integer ∆ ≤ (D − 3 + Γ) and N ∈ N0. (5.30)

For ∆ ≥ 1, this gives rise to non-integrable divergences in L in any neighborhood of L = 0.

Our procedure for eliminating these non-integrable terms is to apply a differential operator

L[L] to Ω that annihilates these terms but leaves the L-independent parts of Ω untouched.

The remaining L dependence can then be eliminated by following the strategy indicated in

the previous paragraph.

The desired operator L[L] is constructed as follows. Define first the family of differential

operators,

LN∆ [L] ≡
(
1 + ∆−1L

∂

∂L

)N
= ∆−1L−∆ ∂N

∂(logL)N
L∆, ∆ ̸= 0, N ∈ N. (5.31)

These operators are designed so as to act trivially on L-independent terms and annihilate

terms of the form (5.30) with the same ∆-value and lower N -values. When acting on a term
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of the form (5.30) with a different ∆-value, the operator LN∆ leaves the leading L-behavior

unchanged in the sense of eq. (5.42) below. We define also the operators,

LN0 [L] ≡
N∏
k=1

(
1− k−1L logL

∂

∂L

)
=

N∏
k=1

(
1− k−1 logL

∂

∂(logL)

)
, (5.32)

whose definition is unambiguous because the commutator between every k-factor vanishes.

The LN0 operator is designed to annihilate terms of the form (5.30) with ∆ = 0 and lower

N -values. When LN0 acts on a term of the form (5.30) with ∆ ̸= 0, it produces terms of the

same form and ∆-value (but generally increases the N -value). We define L[L] by6

L ≡ LN0
D−4+δ∏
∆=1

LN∆ , (5.33)

for any N > 2. Note that [LN∆ ,L
N ′
∆′ ] = 0 for any ∆,∆′ ̸= 0, so the order of composition

between these operators does not matter. However, [LN0 ,L
N ′
∆ ̸=0] ̸= 0, so the order of com-

position for LN0 relative to the other operators LN∆ ̸=0 does matter. Note that (5.33) scales

almost homogeneously with an overall factor of λ0 under L→ λ−1L since it is composed of

operators (5.31) and (5.32) with this property. By expanding out the product of operators

in (5.33), note also that L[L] can be rewritten in the general form,

L[L] = 1 +

N(D−3+δ)∑
∆=1

N∑
n=0

cn,∆L
∆ logn L

∂∆

∂L∆
, (5.34)

6. The product over L∆-operators with different ∆-values is needed to account for the dependence of the
Wick OPE coefficients on the dimensionful parameter m2. In a theory without dimensionful parameters,
we could eliminate the L-dependence of a flow relation by simply using the operator L = L∆ with ∆
corresponding to the conformal scaling dimension of the flow relation. (Note that ∆ would generally depend
on the renormalized coupling parameter in an interacting theory.)
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where cn,∆ are L-independent numerical coefficients. Hence,

L[L]Ω(x1, x2; z;L)− Ω(x1, x2; z;L) =

N(D−3+δ)∑
∆=1

N∑
n=0

cn,∆L
∆ logn L

∂∆

∂L∆
Ω(x1, x2; z;L).

(5.35)

Recalling ∂LΩ is smooth in (x1, x2,m
2) in a neighborhood containing z ∈ RD, it follows

the right-hand side of (5.35) is also smooth in (x1, x2,m
2) because every term involves at

least one L-derivative of Ω. Every term on the right-hand side of (5.35) clearly scales almost

homogeneously with an overall factor of λ(D−4).

We now define Ω̃δ by

Ω̃δ(x1, x2; z;L) ≡ L[L]Ω(x1, x2; z;L)−
∑

|γ1|+|γ2|≤δ

1

γ1!γ2!
bHγ1γ2(L)(x1 − z)γ1(x2 − z)γ2 ,

(5.36)

where

bHγ1γ2(L) ≡ b0γ1γ2 +

∫ L

0
dL′

[
∂
(x1)
γ1 ∂

(x2)
γ2

∂

∂L′
(
L[L′]Ω(x1, x2; z;L

′)
)]
x1,x2=z

, (5.37)

where b0γ1γ2 corresponds to the inherent ambiguities in our prescription discussed underneath

eq. (5.48) below. That bHγ1γ2(L) is well defined is a consequence of the following proposition:

Proposition 7. For any N > 2, the L-dependent (Euclidean-covariant) tensors,

[
∂
(x1)
γ1 ∂

(x2)
γ2

∂

∂L
(Lδ[L]Ω(x1, x2; z;L))

]
x1,x2=z

, (5.38)

are integrable in L on a finite interval containing L = 0 for any |γ1|+ |γ2| ≤ δ

Proof. It is useful to first commute ∂L past the operator Lδ[L] in (5.38). To do this, we
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note,

∂LLN∆ =


∆−N (∆ + 1)NLN

(∆+1)
∂L ∆ > 0

(−1)N (N !)−1 logN (L)LN1 ∂L ∆ = 0

, (5.39)

and, therefore,

∂LL ∝ logN (L)

D−3+δ∏
∆=1

LN∆

 ∂L. (5.40)

Plugging this back into (5.38) and noting the smoothness of ∂LΩ in (x1, x2), we obtain,

formula (5.38) ∝ logN (L)

D−3+δ∏
∆=1

LN∆ [L]

[
∂
(x1)
γ1 ∂

(x2)
γ2

∂

∂L
Ω(x1, x2; z;L)

]
x1,x2=z

. (5.41)

Noting that

LN
′

∆′ (L
−∆ logN L) =


0 ∆′ = ∆, N ′ > N

O(L−∆ logN L) ∆′ ̸= ∆, N ′ > 0

, (5.42)

we see that, for any N ′ > N and all Γ ≤ δ, all non-integrable terms of the form (5.30) are

annihilated by the string of operators LN ′
1 LN ′

2 · · · LN ′
(D−3+δ)

appearing in (5.29), and that any

integrable terms of the form (5.30) remain integrable after application of LN ′
1 LN ′

2 · · · LN ′
(D−3+δ)

.

Noting that HE contains at most one power of the logarithm and Ω depends quadratically

on HE , we conclude the right-hand side of (5.41) and, thus, the Taylor coefficients (5.38)

must be integrable on an interval containing L = 0 for any N > 2 as we desired to show.

Remark 19. By the same reasoning as in (5.28), it follows that LΩ[χ] = Ω[Lχ]. For any

cutoff function χ of the form (5.16), it follows from (5.34) that Lχ is also a smooth cutoff

function. Hence, Proposition 7 implies L acts as a map from the set of cutoff functions of

the form (5.16) to the set of cutoff functions such that, to scaling degree δ, the asymptotic

expansion of ∂L(Ω[Lχ]) diverges, at worst, logarithmically as L→ 0+.

Note the translational symmetry of Ω implies bHγ1γ2 are independent of z and rotational
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symmetry of Ω implies bHγ1γ2 are composed of products of the Euclidean metric7 and, thus,

vanish unless |γ1|, |γ2| are even. Recalling the definition (5.21) of Ω and the fact that

(CH)
(∂γ1ϕ∂γ2ϕ)

ϕϕ (x1, x2; z) = (x1 − z)γ1(x2 − z)γ2/(γ1!γ2!), we note that the Ω̃δ defined in

(5.36) is identical to the right-hand side of the L-independent flow relation (2.5) claimed in

Chapter 2 for the special case that n = 2. i.e., bHC in formula (2.5) is given explicitly by

(5.37) for [C]ϕ = 2 and vanishes otherwise.

The required L-independence (5.27) of Ω̃δ is verified by differentiating (5.36),

∂

∂L
Ω̃δ(x1, x2; z;L)

=
∂

∂L
[L[L]Ω(x1, x2; z;L)]−

∑
|γ1|+|γ2|≤δ

1

γ1!γ2!

∂

∂L
bHγ1γ2(L)(x1 − z)γ1(x2 − z)γ2

∼δ
∑

|γ1|+|γ2|≤δ

1

γ1!γ2!
(x1 − z)γ1(x2 − z)γ2× (5.43)

×

[[
∂
(x1)
γ1 ∂

(x2)
γ2

∂

∂L
(L[L]Ω(x1, x2; z;L))

]
x1,x2=z

− ∂

∂L
bHγ1γ2(L)

]

∼δ 0,

where in going to the third line we have used the smoothness of ∂L(LΩ) in (x1, x2) to Taylor

expand the first term in the second line around x1, x2 = z. The final line then follows

from the definition (5.37) of bHγ1γ2 and the fundamental theorem of calculus. Thus, our

construction (5.36) of Ω̃δ complies with the required properties.

7. Note that Ω is invariant under the full orthogonal group including improper rotations. Although the
Levi-Civita symbols ϵµ1···µn are invariant under proper rotations, the Euclidean metric is the only tensor
invariant under all R ∈ O(D).
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It is worth noting that, using the formulas for the Hadamard-normal ordered coefficients

(CH)I
ϕ2ϕϕ

(y, x1, x2; z) = 2HE(y, x1)HE(y, x2) (5.44)

(CH)I
ϕ2(∂γ1ϕ···∂γkϕ)

(y, z; z) =


2∂

(z)
γ1 HE(y, z)∂

(z)
γ2 HE(y, z) k = 2

0 otherwise
(5.45)

(CH)
(∂γ1ϕ∂γ2ϕ)

ϕϕ (x1, x2; z) =
1

γ1!γ2!
(x1 − z)(γ1(x2 − z)γ2) (5.46)

the flow relation (5.26) can be written equivalently as,

∂

∂m2
(CH)Iϕϕ(x1, x2; z) ∼δ −

1

2

∫
dDyL[L]χ(y, z;L)(CH)I

ϕ2ϕϕ
(y, x1, x2; z)+

−
∑

[C]≤δ+2

bHC (L)(CH)Cϕϕ(x1, x2; z), (5.47)

where, for L > 0,

bHC (L) = b0C − 1

2

∫ L

0
dL′

∫
dDy

∂

∂L′
(
L[L′]χ(y, z;L′)

)
(CH)I

ϕ2C
(y, z; z). (5.48)

The only ambiguities in our construction arise from a limited choice for the value of the

L-independent b0C -tensors when [C]ϕ = 2. We have b0C = 0 unless [C]ϕ = 2. The

b0C are required to depend smoothly on (δµν ,m
2) and scale exactly homogeneously under

(δµν ,m
2) → (λ−2δµν , λ

2m2) with an overall factor of λ(D−4). This implies that b0C must

vanish identically when D is odd. In even spacetime dimensions, these ambiguities cor-

respond to the freedom to choose the Taylor coefficients of a smooth, Euclidean-invariant

function which depends smoothly on (δµν ,m
2) and scales exactly homogeneously under

(δµν ,m
2) → (λ−2δµν , λ

2m2) with an overall factor of λ(D−4). For any fixed cutoff func-

tion χ and any choice of Euclidean-invariant Hadamard parametrix HE which scales almost

homogeneously, one can choose b0γ1γ2 such that OPE coefficients obtained via Hadamard
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normal ordering satisfy (5.47). Conversely, for any fixed χ and admissible choice of b0γ1γ2 ,

one can find an HE such that the Hadamard-normal-ordered OPE coefficients satisfy (5.47).

Hence, the ambiguity in our construction of the L-independent flow relation (5.47) is in a

1-1 correspondence with the inherent freedom to choose a Hadamard parametrix for defining

normal-ordered Wick fields compatible with axioms W1-W8.

Remark 20. In flat space and all dimensions D ≥ 2, we note the conservation axiom W8

places no constraints on the ambiguities in HE and, thus, does not require any further

modifications to the flow relation (5.47). In particular, although HE is not an exact Greens

function of the Euclidean Klein-Gordon operator (5.1), it does automatically satisfy the

Euclidean version of the conservation constraint (4.63):

∇(x1)
µ hE(x1, x2)|x1,x2=z =

[
∇(x1)
µ Kx2HE(x1, x2)−∇(x1)

µ δ(x1, x2)
]
x1,x2=z

= 0, (5.49)

where we recall the smooth function hE was defined via (5.15). Because HE is required

to be invariant under the inhomogeneous orthogonal group, ∇(x1)
µ hE(x1, x2)|x1,x2=z must

be invariant under rotations about the point z. However, since there does not exist a

rotationally-invariant D-vector, we conclude ∇(x1)
µ hE(x1, x2)|x1,x2=z identically vanishes in

flat Euclidean space for any dimension, including D = 2.

By the same reasoning used in the proof of Theorem 5, the flow relation (5.47) for (CH)Iϕϕ

straightforwardly implies flow relations for (CH)Iϕ···ϕ as expressed in the following theorem:

Theorem 6. For any Hadamard parametrix satisfying (5.47), the corresponding Hadamard

normal-ordered coefficients (CH)Iϕ···ϕ satisfy the flow relation:

∂

∂m2
(CH)Iϕ···ϕ(x1, . . . , xn; z) ≈− 1

2

∫
dDy L[L]χ(y, z;L)(CH)I

ϕ2ϕ···ϕ(y, x1, . . . , xn; z) +

−
∑
C

bHC (L)(CH)Cϕ···ϕ(x1, . . . , xn; z), (5.50)
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where bHC (L) is again given by (5.48) with the same constraints on b0C as stated below (5.48).

Finally, the results of Section 4.2 can be used to obtain the flow relations for CIϕ···ϕ for

an arbitrary prescription for Wick monomials satisfying W1-W8. We obtain

∂

∂m2
CIϕ···ϕ(x1, . . . , xn; z) ≈− 1

2

∫
dDy L[L]χ(y, z;L)CI

ϕ2ϕ···ϕ(y, x1, . . . , xn; z)+ (5.51)

−
∑
C

bC(L)C
C
ϕ···ϕ(x1, . . . , xn; z) + “Fk-terms”,

where

bC(L) ≡ δn,2 b
0
C − 1

2

∫ L

0
dL′

∫
dDy

∂

∂L′
(
L[L′]χ(y, z;L′)

)
CI
ϕ2C

(y, z; z), (5.52)

and “Fk-terms” denotes terms that contain at least one factor of Fk (for k ≤ n). By the

discussion in Section 4.2 below eq. (4.48), Fj can, in turn, be written purely in terms of

OPE coefficients of the form CIϕ···ϕ(x1, . . . , xi; z) such that i ≤ j. In this way, all terms on

the right-hand side of (5.51) are expressible entirely in terms of OPE coefficients and the

cutoff function χ, and (5.51) yields the flow relation for the OPE coefficients corresponding

to an arbitrary prescription for the Wick fields compatible with the axioms W1-W8. Note,

in contrast to bHC (L) given in (5.48), here bC(L) can be nonzero when [C]ϕ ̸= 2 since,

for prescriptions not corresponding to normal ordering, CI
ϕ2C

is generally nonzero when

[C]ϕ ̸= 2.
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CHAPTER 6

FLOW RELATIONS FOR OPE COEFFICIENTS IN

MINKOWSKI SPACETIME

We turn, now, to the derivation of flow relations for OPE coefficients in Minkowski spacetime

(RD, ηab). As can be seen from the derivation of the Euclidean flow relations in the preceding

chapter, it is essential that the two-point OPE coefficient for which we are obtaining a flow

relation be a Green’s parametrix for the wave equation. Consequently, we do not believe

it is possible to obtain a flow relation for the Lorentzian CIϕϕ, since it does not have this

property. However, as we shall show, a flow relation for CI
T0{ϕϕ} can be obtained, where T0

denotes the unextended time-ordered-product.

In the Minkowski case, if we choose CI
T0{ϕϕ} to be the exact Feynman propagator for

m2 > 0, the spacetime integral that would appear in the flow relation will not converge, so

we would need to introduce a cutoff function even in this case. Therefore, in contrast to the

Euclidean case, there is no advantage in initially working with the exact Feynman propagator

as compared with a Poincaré-invariant Feynman parametrix that is smooth at m2 = 0. As

we shall see, a new difficulty arises from a cutoff in the Minkowski case in that there does

not exist a nontrivial function of compact support that is Lorentz invariant. Consequently,

in the Minkowski case, the introduction of a cutoff spoils the Poincaré invariance of the

flow relations. Nevertheless, we shall show that counterterms can be introduced into the

flow relations so as to restore Poincaré invariance. The presence of the cutoff function

in the flow relations also spoils their scaling behavior. However, this can be fixed using

the same procedure as developed for the Euclidean flow relations. Thus, we will, in the

end, obtain entirely satisfactory flow relations for the OPE coefficients of unextended time-

ordered-products in Minkowski spacetime (see Theorem 7). These flow relations will be

unique up to modifications of the counterterms that correspond to the ambiguities in the

definitions of the Wick monomials themselves.
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The requirement W1 that the Wick monomials be locally and covariantly defined implies

that, in Minkowski spacetime, the Wick monomials must be Poincaré covariant [15]. Thus,

in a Hadamard normal-ordering prescription, we must use a Poincaré-invariant Hadamard

parametrix. Since, in this chapter, we will want to include the case m2 = 0, we will not use

the usual choice ⟨ϕ(x1)ϕ(x2)⟩vac—which fails to be smooth in m2 at m2 = 0—but rather

will take H(x1, x2;m
2) to be given by eq. (3.26), with ℓ fixed (i.e., independent of m2).

The starting point for our derivation of Euclidean flow relations in the preceding chap-

ter was the preliminary flow-like equation (5.18) for the Euclidean Hadamard parametrix

HE(x1, x2;m
2). The key ingredients that went into the derivation of this equation were (i)

that HE is a fundamental solution (5.15) of the Klein-Gordon operator up to smooth re-

mainder and (ii) for any test function f , HE(y, f) is smooth in y. In Minkowski spacetime,

the OPE coefficient (CH)Iϕϕ = H(x1, x2) will not be a Green’s parametrix, i.e., it will satisfy

Kx1(CH)Iϕϕ(x1, x2) = smooth rather than Kx1(CH)Iϕϕ(x1, x2) = (δ(x1, x2)+smooth). Con-

sequently, the analog of condition (i) will not be satisfied and we cannot expect to obtain

flow relations for the ordinary OPE coefficients. However, condition (i) does hold for the

Feynman parametrix HF (x1, x2;m2) given by eq. (4.55). Such a parametrix satisfies,

(−ηab∂a∂b +m2)HF (x1, x2;m
2) = −iδ(x1, x2) + h(x1, x2;m

2), (6.1)

where h is a smooth function of its arguments. As with the Euclidean parametrix, any

two Feynman parametrices HF and H ′
F satisfying (6.1) can differ by a Poincaré invariant

smooth function of (x1, x2). Since (CH)I
T0{ϕϕ} = HF (x1, x2), it might be expected that flow

relations will hold for the OPE coefficients of time-ordered products1. As we shall see below,

flow relations do indeed hold for the OPE coefficients of time-ordered products.

Condition (ii) also holds for HF (x1, x2;m2). Indeed, for any translation invariant dis-

1. Indeed, this also could be anticipated from the fact that a Wick rotation from Euclidean space to
Minkowski spacetime will take the Euclidean Green’s function GE to the Feynman propagator GF .
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tribution D(x1, x2) on RD × RD and any test function f on RD, we have that D(x1, f) is

smooth in x1. Namely, if we define new variables X1 = x1 + x2 and X2 = x1 − x2, then,

by translation invariance, D cannot depend on X1, so the elements of its wavefront set must

be of the form (X1, 0;X2, K2) with K2 ̸= 0. Therefore, in terms of the original variables

(x1, x2), the elements of WF[D] must be of the form (x1, k1;x2,−k1) with k1 ̸= 0. The

wavefront set calculus rules then immediately imply that D(x1, f) is smooth for any test

function f .

Remark 21. Since the unextended time-ordered products are only defined away from all

diagonals, applying the Klein-Gordon operator to (CH)I
T0{ϕϕ} = T0{H(x1, x2)} will yield

a distribution that is a priori only defined when x1 ̸= x2 and, thus, the OPE coefficient

(CH)I
T0{ϕϕ} is itself not actually a Green’s function satisfying (6.1). Nevertheless, as dis-

cussed in Remark 18 below Theorem 6, the extension of T0{H(x1, x2)} to x1 = x2 is uniquely

given by the Feynman parametrix HF = H − i∆adv. Hence, whenever we need to use the

identity (6.1) in what follows below, we may, without introducing any new ambiguities, first

extend (CH)I
T0{ϕϕ} to its diagonal x1 = x2 and then subsequently apply the Green’s func-

tion identity (6.1) for the Feynman parametrix. As we will see, this is sufficient to derive

all the flow relations for the time-ordered Wick OPE coefficients of the form CI
T0{ϕ···ϕ}. As

discussed in Chapter 2 and Section 4.3, unique extensions of the OPE coefficients appearing

inside the integral on the right-hand side of the flow relations are only possible, in general,

to the “partial diagonals”, where the integration variable y coincides with only a single xi-

spacetime variable, so we will continue to write all OPE coefficients appearing in the flow

relations with the unextended time-ordering symbol T0 rather than T , with the understand-

ing that (unique) extensions to the appropriate partial diagonals with y are necessary for

evaluating the y-integral. See Remark 23 below Theorem 7 for further discussion regarding

the extension of the OPE coefficients appearing in the Minkowski flow relations.

Since conditions (i) and (ii) hold for HF , we can directly parallel the derivation of the
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key preliminary Euclidean flow-like equation (6.2) for HE to obtain a flow-like relation

for HF (x1, x2;m2) by introducing a cutoff function χ(y, z;L) defined such that χ = 1 for

y in some compact neighborhood, B1, of z and χ = 0 outside of some larger compact

neighborhood, B2, of z. We again denote by L the arbitrary length scale which is required

to define a spacetime cutoff. Then, for x1, x2 ∈ B1, we similarly obtain,

∂

∂m2
HF (x1, x2;m

2) = −i
∫
B2

dDy χ(y; z;L)HF (y, x1;m
2)HF (y, x2;m

2) +

+ i

∫
B2\B1

dDy ∂
(y)
µ χ(y; z;L)

[
∂
µ
(y)
HF (y, x1;m

2)
∂

∂m2
HF (y, x2;m

2) + (6.2)

− HF (y, x1;m
2)∂

µ
(y)

∂

∂m2
HF (y, x2;m

2)

]
+

+ i

∫
B2

dDy χ(y; z;L)

[
HF (y, x1;m

2)
∂

∂m2
h(y, x2;m

2) +

− h(y, x1;m
2)

∂

∂m2
HF (y, x2;m

2)

]
,

where h is defined via eq. (6.1). Note that the factor of ∂(y)µ χ(y; z;L) appearing in the second

line has support only on B2\B1 because we require χ(y; z;L) = 1 for y ∈ B1. Note also that

eq. (6.2) is identical to (5.18) modulo the substitutions HE → iHF and hE → ih.

As in the Euclidean formula (5.18), the fourth and fifth lines are automatically smooth

on account of the smoothness of h and the compact-support of χ. Similarly, in the second

and third lines, the differentiated cutoff function ∂
(y)
µ χ(y; z;L) is only nonzero when y ∈

B2\B1 and thus vanishes when y = x1, x2 if x1, x2 ∈ B1. However, whereas the Euclidean

parametrix HE(y, x) is singular only when y = x, the singular support of the Feynman

parametrix HF (y, x) includes all (y, x) such that y and x can be connected by a null geodesic.

Thus, the integrand in the second and third lines of (6.2) will be singular even for y ∈ B2\B1

whenever y is lightlike separated from either or both (x1, x2). Therefore, it is not at all

obvious that the integral will yield a smooth function. However, since the partial m2-

derivative does not alter the wavefront set of HF , the terms in the second and third lines of
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(6.2) will be smooth if and only if the quantity,

Θ[χ,HF ](x1, x2; z;m
2) ≡

∫
B2\B1

dDy ∂
(y)
µ χ(y, z;L)HF (y, x1;m

2)∂
µ
(y)
HF (y, x2;m

2), (6.3)

is smooth. The following proposition establishes smoothness of this quantity:

Proposition 8. For x1, x2 ∈ B1(z), the quantity Θ defined by (6.3) is a C∞ function of

(x1, x2).

Proof. A generalized function is smooth if and only if its wavefront set is the empty set. We

show the wavefront set of the generalized function (6.3) is contained in the empty set when

x1, x2 ∈ B1(z) and, thus, Θ(x1, x2; z) must be smooth. Note first the wavefront set of a

Feynman parametrix is,

WF[HF ] = WF[δ]∪
{
(x1, k1;x2, k2) ∈ ×2(T ∗RD\Z∗RD) | x1 ̸= x2, (x1, k1) ∼ (x2,−k2),

k1 ∈ V̇ +
x1 if x1 ∈ J+(x2), k1 ∈ V̇ −

x1 if x1 ∈ J−(x2)
}
, (6.4)

where we recall the notation: V̇ ±
x denotes, respectively the boundary of the future/past

lightcone at x; (x, k) ∼ (y, p) iff points x and y may be joined by a null geodesic γ such

that k and p are cotangent and coparallel to γ; and Z∗RD denotes the zero section of the

cotangent bundle T ∗RD. Recall the wavefront set of the δ-distribution was given in (5.4).

We write B ≡ B2\B1. Theorem 8.2.14 of [3] immediately implies the wavefront set of the

bi-distribution (6.3) is bounded by the union of three sets,

WF[Θ] ⊆
(
WF′[HF ] ◦ WF[HF ]

)
∪ (WFB[HF ]× (B)× {0}) ∪ ((B)× {0} × WFB[HF ]) .

(6.5)
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Here the notation is defined as follows: For any u ∈ D′(RD × RD),

WF′[u] ≡ {(x, k; y, p) | (x, k; y,−p) ∈ WF[u]} (6.6)

WFB[u] ≡ {(x, k) | (x, k; y, 0) ∈ WF[u] for some y ∈B} . (6.7)

For any u, v ∈ D′(RD × RD), the composition of wavefront sets WF′[u] and WF[v] goes as,

WF′[u] ◦ WF[v] ≡
{
(x1, k1;x2, k2) | (y, p;x1, k1) ∈ WF′[u] and (y, p;x2, k2) ∈ WF[v],

for some (y, p) ∈ (B × RD\{0})
}
. (6.8)

The form of the Feynman wavefront set (6.4) immediately implies that2,

WFB[HF ] ⊂ ∅, (6.9)

so nontrivial contributions to the right-hand side of (6.5) could only potentially come from

the set WF′[HF ] ◦ WF[HF ]. We show now this set is empty. Note, for y ∈ B, we have

(y, p;x1, k1) ∈ WF′[HF ] and (y, p;x2, k2) ∈ WF[HF ] only if all three spacetime points

(y, x1, x2) reside on the same null geodesic. Furthermore, when x1, x2 ∈ B1, then any y ∈ B

must be either to the future or to the past of both x1 and x2. Consider first the case where

y is to the future of x1: By (6.4), (y, p;x1, k1) ∈ WF′[HF ] only if p ∈ V −
y . However, when

y is to the future of x2, then (y, p;x2, k2) ∈ WF[HF ] only if p ∈ V +
y . Since V −

y ∩ V +
y ⊂ ∅,

it follows that, when y is to the future of both points, there are no nontrivial elements in

(6.8). In the case where y lies instead to the past of both points, one arrives at the same

2. In fact, eq. (6.9) would hold if HF was replaced with any bi-distribution whose wavefront set contains
only covectors such that k1 = −k2. Hence, by the discussion above, it holds also for all translationally-
invariant bi-distributions.
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conclusions only with the roles of V +
y and V −

y swapped. Therefore, when x1, x2 ∈ B1,

WF′[HF ] ◦ WF[HF ] ⊂ ∅, (6.10)

and, thus, (6.5) implies,

WF[Θ] ⊆ ∅, (6.11)

which is what we sought to show.

Remark 22. The proof of Proposition 8 would not go through if the Feynman parametrix,

HF , was replaced by parametrices for the advanced, GA, or retarded, GR, Green’s functions.

In particular, one finds, WF′[GA/R]◦WF[GA/R] = WF[GA/R], respectively, so (6.10) would

no longer hold. Note also, despite its apparent similarity to Θ, Proposition 8 does not apply

to the integral on the first line of (6.2) which is not a smooth function in (x1, x2). In

particular, for the result of Proposition 8, it was critical that y /∈ B1; otherwise, it would be

possible for y to simultaneously lie to the past of one point and to the future of the other,

while being an element of both (y, p;x1, k1) ∈ WF′[HF ] and (y, p;x2, k2) ∈ WF[HF ], in

which case, WF′[HF ] ◦ WF[HF ] = WF[HF ] ̸= ∅ and (6.10) no longer holds.

Since the second through fifth lines of (6.2) are smooth, we may attempt to drop these

terms and replace that flow relation with

∂

∂m2
HF (x1, x2;m

2) = ΩM (x1, x2; z;m
2;L) (6.12)

≡ −i
∫
B2

dDy χ(y; z;L)HF (y, x1;m
2)HF (y, x2;m

2).

As in the Euclidean case, this replacement will lead to difficulties with scaling behavior under

(ηab,m
2) → (λ−2ηab, λ

2m2). (As previously mentioned, in a fixed global inertial coordinate

system, this is equivalent to rescaling (ηµν , d
Dy,m2) → (λ−2ηµν , λ

−DdDy, λ2m2).) If this

were the only difficulty with (6.12), it could be dealt with in the same manner as in the
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Euclidean case. However, a potentially much more serious difficulty arises from the fact that

(6.12) fails to be Poincaré-invariant since there do not exist Lorentz-invariant functions of

compact support3,

χ(Λy,Λz) ̸= χ(y, z). (6.13)

Hence, for a Lorentzian metric, naively dropping the second through fifth lines of (6.2) would

necessarily violate the locality and covariance axiom W1, since this axiom implies Poincaré

invariance in the case of flat spacetime.

It follows from the smoothness of the second through fifth lines of (6.2) for all x1, x2 ∈

B1(z) that the failure of (6.12) to be Poincaré-invariant on its own must then be given by

a smooth function of (x1, x2). More precisely, for any x1, x2 ∈ B1(z) and any Poincaré

transformation P such that Px1, Px2 ∈ B1(Pz), the quantity

ΩM (Px1, Px2;Pz)− ΩM (x1, x2; z) (6.14)

is smooth in (x1, x2). Therefore, in parallel with our restoration of desired scaling behavior

in the Euclidean case, we will restore Poincaré invariance to the flow relation (6.12) if we can

replace ΩM on the right-hand side of that equation with a distribution Ω̃M,δ which satisfies

the following two properties:

1. For (x1, x2) ∈ B1(z),

Ω̃M,δ(x1, x2; z;m
2;L) (6.15)

≡ ΩM (x1, x2; z;m
2;L)−

∑
|γ1|+|γ2|≤δ

1

γ1!γ2!
aγ1γ2(χ)(x1 − z)γ1(x2 − z)γ2 ,

where aγ1γ2 = aγ2γ1 are constant tensors that scale almost homogeneously under

3. Note the function used in Euclidean space, ζ
(
L−2σ(y, z)

)
, is Lorentz invariant but not compactly-

supported in Minkowski spacetime, since σ(y, z) is zero on the boundary of the entire lightcone of point
z.
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(ηab,m
2, L) → (λ−2ηab, λ

2m2, λ−1L) with an overall factor of λ(D−4).

2. To asymptotic degree δ, Ω̃M,δ is asymptotically Poincaré-invariant with respect to

(x1, x2, z). That is, for any Poincaré transformation P such that (Px1, Px2) ∈ B1(Pz),

Ω̃M,δ(Px1, Px2;Pz;m
2;L) ∼δ Ω̃M,δ(x1, x2; z;m

2;L). (6.16)

Note it is not required that Ω̃M,δ be Poincaré-invariant at asymptotic degrees higher than

δ. Any two Ω̃M,δ satisfying these properties may differ, to scaling degree δ, by at most a

quantity of the form L(D−4)f(m2σ(x1, x2), L
−2σ(x1, x2)), where f is a smooth bi-variate

function. Thus, the difference between any two aγ1γ2 and a′γ1γ2 in (6.15) is necessarily of

the form,

aγ1γ2 − a′γ1γ2 = L(D−4) ∂
(x1)
γ1 ∂

(x2)
γ2 f(m2σ(x1, x2), L

−2σ(x1, x2))
∣∣∣
x1,x2=z

. (6.17)

If we can find a distribution Ω̃M,δ satisfying the above two properties, then the flow

relation
∂

∂m2
HF (x1, x2;m

2) ∼δ Ω̃M,δ(x1, x2; z;m
2;L), (6.18)

will be Poincaré invariant. This flow relation still fails to scale almost homogeneously with

respect to the metric and m2 due to the dependence of Ω̃M,δ on L. However, the unwanted

L-dependence can then be eliminated by the same procedure as used in the Euclidean case

treated in Section 5.2. Thus, we will be able to obtain satisfactory flow relation if we can find

a distribution Ω̃M,δ satisfying the above two properties. We turn now to the construction

of the tensors aγ1γ2 in the definition (6.16) of Ω̃M such that Ω̃M,δ is Poincaré invariant to

scaling degree δ in the sense of (6.16).

Although we cannot choose the cutoff function χ(y, z) to be Lorentz invariant, we can

require that it be invariant under a simultaneous translation of (y, z). In particular, we can
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choose a global inertial coordinate system on Minkowski spacetime and take χ to be given

by

χ(y, z;L; tµ) = ζ
(
L−2 (ηµν + 2tµtν

)
(y − z)µ(y − z)ν

)
, (6.19)

where tµ is proportional to the unit time vector field of these coordinates but is required to

remain unit normalized with respect to the metric components under the rescaling ηµν →

λ−2ηµν , i.e., under this rescaling, it is required that tµ → λ−1tµ. As in the Euclidean

case, ζ is a test function and ζ(s) = 1 if |s| ≤ 1 and ζ(z) = 0 if |s| > 2. Note that

ηµν + 2tµtν is a Riemannian metric with components diag(+1, . . . ,+1) in the chosen global

inertial coordinates, so (6.19) is supported on a D-dimensional coordinate ball of radius 2L.

Equation (6.19) is manifestly translationally invariant under a simultaneous translation of

(y, z). It is also invariant under pure spatial rotations (y, z) → (Ry,Rz) since (R−1t)µ = tµ,

but it is not invariant under Lorentz boosts. Note also the cutoff (6.19) is invariant under

the rescaling (ηab, L) → (λ−2ηab, λ
−1L) with the coordinate basis held fixed.

For any translationally-invariant χ and any Poincaré transformation P composed of an

arbitrary Lorentz transformation Λ together with an arbitrary translation, it follows that,

ΩM (Px1, Px2;Pz) = ΩM (Λx1,Λx2; Λz). (6.20)

Plugging this into (6.16) and using the definition (6.15) of Ω̃M , it follows that Ω̃M will be

Poincaré-invariant to the required scaling degree if and only if aγ1γ2 can be found such that,

ΩM (Λx1,Λx2; Λz)− ΩM (x1, x2; z) (6.21)

∼δ
∑

|γ1|+|γ2|≤δ

1

γ1!γ2!
(x1 − z)γ1(x2 − z)γ2

(
Λ
γ′1
γ1Λ

γ′2
γ2

− δ
γ′1
γ1δ

γ′2
γ2

)
aγ′1γ

′
2
,

where Λα
′
α ≡ Λ

µ′1
µ1 · · ·Λ

µ′|α|
µ|α| with the convention Λα

′
α = 1 if |α| = 0. Since the first

line of (6.21) has been shown to be smooth in (x1, x2), it is asymptotic to its Taylor series.

115



Hence, Taylor expanding the first line and equating the coefficients of (x1 − z)γ1(x2 − z)γ2

appearing on both lines, we see that aγ1γ2 must satisfy

[
∂
(x1)
γ1 ∂

(x2)
γ2

[
ΩM (Λx1,Λx2; Λz)− ΩM (x1, x2; z)

] ]
x1,x2=z

=

(
Λ
γ′1
γ1Λ

γ′2
γ2 − δ

γ′1
γ1δ

γ′2
γ2

)
aγ′1γ

′
2

(6.22)

If ΩM were itself a smooth function of (x1, x2), then we could trivially satisfy (6.22) by setting

aγ1γ2 equal to the Taylor coefficients of ΩM (x1, x2; z) evaluated at x1, x2 = z. However, ΩM

is fundamentally distributional, so it is far from obvious that there exist Λ-independent aγ1γ2

satisfying (6.22).

In Appendix C we show that (6.22) can always be solved and we obtain explicit solutions.

First, we use a cohomological argument to prove existence of solutions aγ1γ2 to (6.22). We

then obtain the explicit solutions for aγ1γ2 in the cases of rank r = 1, 2, where r ≡ |γ1|+ |γ2|.

The r = 1 solutions are

a{µ}{0} = a{0}{µ} = −i
∫
dDy ∂

(y)
µ χ(y, 0⃗)HF (y, 0⃗)HF (y, 0⃗). (6.23)

and the r = 2 solutions are4

a{(µ}{ν)} = −i
∫
dDy χ(y, 0⃗)

[
∂µHF (y, 0⃗)∂νHF (y, 0⃗)−

1

D
ηµν∂σHF (y, 0⃗)∂

σHF (y, 0⃗)

]
,

(6.24)

4. In eqs. (6.24) and (6.25), it is understood that the subtraction inside the integrand must be performed
prior to evaluating the integral, since the individual terms in the integrand contain non-integrable divergences
at y = 0⃗, i.e., the integrand is well-defined as a distribution in y only when y ̸= 0⃗, but its definition can be
uniquely extended to include the origin.
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and

a{(µν)}{0} = a{0}{(µν)} (6.25)

= −i
∫
dDy χ(y, 0⃗)

[
HF (y, 0⃗)∂µ∂νHF (y, 0⃗)−

1

D
ηµνHF (y, 0⃗)∂

2HF (y, 0⃗)

]
.

Finally, we obtain the recursive solution (C.44) for aγ1γ2 for all r > 2.

With the above solution for aγ1γ2 , we obtain Ω̃M,δ satisfying (6.15) and (6.16). We

thereby obtain the Poincaré-invariant flow relation (6.18). However, as in the Euclidean case,

the flow relation (6.18) is not compatible with the scaling behavior of the Wick monomials

required by the scaling axiom W7. Nevertheless, as in the Euclidean case, we can obtain

a flow relation that remains compatible with Poincaré invariance and satisfies the desired

scaling behavior by replacing Ω̃M,δ on the right side of (6.18) with

L[L]Ω̃M (x1, x2; z;L)−
∑

|γ1|+|γ2|≤δ

1

γ1!γ2!
cγ1γ2(L)(x1 − z)(γ1(x2 − z)γ2), (6.26)

where L was defined by (5.33) and

cγ1γ2(L) ≡
∫ L

0
dL′

[
∂
(x1)
γ1 ∂

(x2)
γ2

∂

∂L′

(
L[L′]Ω̃M (x1, x2; z;L

′
)]

. (6.27)

The distribution (6.26) is Poincaré-invariant and is asymptotically independent of L up to

scaling degree δ. Moreover, the distribution (6.26) differs from ΩM by a smooth function

of (x1, x2). Hence, the distribution (6.26) can be used in a flow relation for the Feynman

parametrix CI
T0{ϕϕ} = HF which is compatible with all Wick axioms. Recalling the definition

(6.15) of Ω̃M and the explicit formulas (5.44)-(5.46) for the OPE coefficients, the flow relation

117



with (6.26) on the right-hand side can be written in the form:

∂

∂m2
(CH)IT0{ϕϕ}(x1, x2; z) ∼δ −

i

2

∫
dDyL[L]χ(y, z;L)(CH)I

T0{ϕ2ϕϕ}(y, x1, x2; z)+

−
∑

[C]≤δ+2

cC(CH)CT0{ϕϕ}(x1, x2; z), (6.28)

where cC = 0 unless [C]ϕ = 2, in which case it is given by

cC(L) ≡ L[L]aC(L)+ (6.29)

−
∫ L

0
dL′

∂

∂L′

[
i

2

∫
dDy L[L′]χ(y, 0⃗;L′) (CH)I

T0{ϕ2C}(y, z; z) + L[L′]aC(L
′)
]
,

for L > 0. The tensors aC are also zero unless [C]ϕ = 2, in which case, they are inductively

defined via (C.44) in terms of

(Bκρ)C ≡ i

∫
dDy y[κ∂ρ]χ(y, 0⃗)(CH)I

T0{ϕ2C}(y, 0⃗; 0⃗). (6.30)

Note, by writing the y-integral in (6.28), we have implicitly (uniquely) extended the OPE

coefficient (CH)I
T0{ϕ2ϕϕ}

(y, x1, x2; z) = 2HF (y, x1)HF (y, x2) to the partial diagonals y = x1

and y = x2 as justified in Remark 21 above.

The inductive solution (C.44) determines aC up to Lorentz-invariant tensors of the correct

rank which scale with an overall factor of λ(D−4) under (ηab,m2, L) → (λ−2ηab, λ
2m2, λ−2L)

and depend smoothly on (ηab,m
2). Although the inherent ambiguities in aC may depend on

L, the L-operator and L-integral terms in (6.29) ensure that only the L-independent parts

of aC can contribute non-trivially to cC . Therefore, the only ambiguity in cC corresponds

to the choice of an L-independent tensor in aC that scales with an overall factor of λ(D−4)

under (ηab,m2) → (λ−2ηab, λ
2m2). In odd dimensions, there are no tensors that scale in this

way and depend smoothly on (ηab,m
2), so aC is unique. In even dimensions, this ambiguity

corresponds to freedom to choose the Taylor coefficients of a Poincaré-invariant smooth
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function in (x1, x2,m
2). We note also, as discussed in Remark 20, that the conservation

constraint (3.36) is automatically satisfied in flat spacetime.

The flow relation (6.28) for the (unextended) time-ordered OPE coefficient (CH)I
T0{ϕϕ} is

the Minkowski spacetime analogue of the Euclidean flow relation (5.47) for the ordinary OPE

coefficient (CH)Iϕϕ. In both cases, the inherent ambiguity in the flow relation corresponds to a

smooth function that is invariant under the respective isometry group. By Theorem 6, formu-

las for the (unextended) time-ordered OPE coefficients, CB
T0{A1···An} ≡ T0{CBA1···An

}, for any

given Wick prescription are obtained from formulas for the corresponding non-time-ordered

OPE coefficients, CBA1···An
, by simply replacing all occurrences of the Hadamard parametrix

H with its corresponding Feynman parametrixHF = H(x1, x2)−i∆adv(x1, x2). Hence, from

the explicit formulas for the Hadamard normal-ordered OPE coefficients (see (5.5) and (5.14))

and the flow relation (6.28), we immediately obtain the following theorem giving the flow

relations for the (unextended) time-ordered OPE coefficients (CH)I
T0{ϕ···ϕ}(x1, . . . , xn; z).

Theorem 7. For any Hadamard parametrix satisfying (6.28), the corresponding OPE coef-

ficients (CH)I
T0{ϕ···ϕ} satisfy:

∂

∂m2
(CH)IT0{ϕ···ϕ}(x1, . . . , xn; z) ≈ − i

2

∫
dDy L[L]χ(y, z;L) (CH)I

T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; z)

−
∑
C

cC(L)(CH)CT0{ϕ···ϕ}(x1, . . . , xn; z), (6.31)

where cC is given by formula (6.29) with the same ambiguities arising from aC .

Note that the inherent ambiguities in these flow relations are in 1-1 correspondence with

the freedom to choose a Hadamard parametrix whose corresponding Hadamard normal-

ordered Wick fields are compatible with axioms W1-W8.

Remark 23. As emphasized in Section 4.3, the extension of T0{ΦA1
(x1) · · ·ΦAn

(xn)} to

algebra-valued distributions defined on the diagonals generally introduces additional “contact-

term” ambiguities proportional to δ-distributions (and their distributional derivatives). How-
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ever, the scaling degree of δ(x1, . . . , xn) is (n − 1) · D, whereas by Theorem 4 the scaling

degree of the coefficients CI
T0{ϕ···ϕ}(x1, . . . , xn; z) appearing in the flow relation (6.31) is

n · (D − 2)/2. Since (n − 1)D is strictly greater than n(D − 2)/2 for n ≥ 2 and D ≥ 2, it

follows that there do not exist contact terms with scaling degree less than or equal to the

scaling degree of CI
T0{ϕ···ϕ}. By the axioms for time-ordered products in [7, 37], this implies

that the extension of the CI
T0{ϕ···ϕ} coefficients to the diagonals is unique and, therefore, it

so happens that we could replace T0 with T in formula (6.31) without introducing additional

contact term ambiguities. Note, however, that this does not occur for the general unextended

time-ordered Wick coefficients CB
T0{A1···An} nor, in general, for the coefficients appearing in

the flow relations (1.20) of λϕ4-theory.

Relation (6.31) of Theorem 7 applies to the time-ordered OPE coefficients for the Hadamard

normal-ordered Wick fields. However, following the steps outlined below Theorem 6 of the

preceding chapter, one may straightforwardly obtain flow relations for the time-ordered OPE

coefficients corresponding to any prescription for the Wick fields satisfying axioms W1-W8.

These relations will similarly take the same general form as the Hadamard normal-ordered

relation (6.31) except there will be additional terms containing factors of Fk (with k ≤ n)

as in relation (5.51) above.

Finally, we note that our derivation of the flow relation (6.31) for general n relied heav-

ily on our knowledge of the explicit expressions for the time-ordered OPE coefficients of

Hadamard normal-ordered Wick fields, since this knowledge enabled us to obtain (6.31)

from the flow relation (6.28) for n = 2 via inspection. However, if the OPE coefficients with

n > 2 had not been related in a simple, known manner to the n = 2 OPE coefficients, we

would not have been able to construct covariance-restoring terms for the n > 2 case using

the techniques described in this chapter. In Appendix E, we develop a general method for

constructing covariance-restoring counterterms based on the model-independent associativ-

ity conditions that can be applied to the n > 2 case and show that this general algorithm
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reproduces the results claimed here.
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CHAPTER 7

FLOW RELATIONS FOR OPE COEFFICIENTS IN CURVED

SPACETIME

In this chapter, we obtain flow relations for the unextended time-ordered Wick OPE coeffi-

cients in general globally-hyperbolic Lorentzian spacetimes (M, gab) in any dimension D ≥ 2.

As in the preceding Minkowski chapter, we focus attention initially to the flow relation for

the time-ordered OPE coefficient (CH)I
T0{ϕϕ} = HF (x1, x2;m

2; ξ), since the flow relations

for other time-ordered Wick OPE coefficients may be straightforwardly obtained once the

flow relation for (CH)I
T0{ϕϕ} is known.

In curved spacetime, any Feynman parametrixHF used for the construction of (CH)I
T0{ϕϕ}

is required to be locally and covariantly defined and have (jointly) smooth dependence on

the coupling parameters (m2, ξ). As already noted in Proposition 6, the relation between

HF and a Hadamard parametrix H (see (3.26)) is given by

HF (x1, xx) = H(x1, x2)− i∆adv(x1, x2), (7.1)

with ∆adv denoting the advanced Green’s function. Since the forms of H and HF depend

on the squared geodesic distance function σ(x1, x2), these parametrices are well defined only

in convex normal neighborhoods. The Feynman parametrix is a fundamental solution to the

Klein-Gordon equation

(−gab∇a∇b +m2 + ξR)HF (x1, x2;m
2; ξ) ≈ −iδ(x1, x2) + smooth terms. (7.2)

Furthermore, in curved spacetime, the wavefront set of HF continues to be of the form1

(x1, k;x2,−k) [35]. In particular, when smeared in either of its spacetime variables with a

1. Replacing RD with M in the Minkowski formula (6.4) gives the explicit wavefront set of HF in a curved
spacetime.
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test function f of sufficiently small compact support, HF (y, f) is a smooth function in y

within a convex normal neighborhood of the support of f .

The above properties of HF were all that were needed to obtain the initial flow relation

(6.12) in Minkowski spacetime, so we can parallel these steps to derive a similar flow relation

in any any globally-hyperbolic curved spacetime (M, gab). To do so, let Uz ⊂ M be a

convex normal neighborhood of the point z ∈ M . It is convenient to work in a Riemannian

normal coordinate (RNC) system about z. A RNC system is constructed by introducing an

orthonormal basis (i.e., “tetrad”) for TzM ,

{
(eµ)

a ∈ TzM |µ ∈ {0, . . . , D − 1} and gab(eµ)
a(eν)

b = ηµν

}
. (7.3)

The tetrad allows us to identify TzM with RD. We then use the exponential map—which

maps va ∈ TzM into the point in M lying at unit affine parameter along the geodesic

determined by (z, va)—to provide a diffeomorphism between Uz and a neighborhood U0 of the

origin of RD. This correspondence provides coordinates xµ on Uz. We denote by tµ the RNC

components of the timelike vector at z that is proportional to (e0)
µ but required to remain

unit-normalized with respect to the metric components under the rescaling gµν → λ−2gµν ,

i.e., under this rescaling, it is required that tµ → λ−1tµ. Let ζ ∈ C∞
0 (R) again denote a test

function that is equal to one for |s| ≤ 1 and vanishes for |s| ≥ 2. We then define a cutoff

function on Uz by,

χ[gµν , tµ, L](y; 0⃗) = ζ
(
L−2

(
gµν (⃗0) + 2tµtν

)
yµyν

)
, (7.4)

where L is chosen such that the coordinate ball of radius 2L lies within Uz. Here yµ denotes

the RNC values of y and we have denoted z by its RNC value 0⃗. Note that the cutoff function

(7.4) is invariant under the simultaneous rescaling (gab, L) → (λ−2gab, λ
−1L) with the RNC

coordinate basis held fixed.
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With these definitions and constructions, we can now straightforwardly generalize the

derivation of (6.12) to curved spacetime. We obtain

∂

∂m2
HF [gµν ](x1, x2) ≈ ΩC [gµν , tµ, L](x1, x2; 0⃗) + terms smooth in (x1, x2), (7.5)

where

ΩC [gµν , tµ, L](f1, f2; 0⃗)

≡ −i
∫
RD

dDy
√
−g(y)χ[gµν , tµ, L](y; 0⃗)HF [gµν ](y, f1)HF [gµν ](y, f2). (7.6)

In curved spacetime, the parameter ξ enters the Klein-Gordon equation in a nontrivial man-

ner and we also seek a flow equation in ξ. Using the fact that the commutator of the

differential operator ∂ξ ≡ ∂/∂ξ with the Klein-Gordon operator (3.3) is given by

[K, ∂ξ] = −RI. (7.7)

we can similarly derive the ξ-flow equation

∂

∂ξ
HF [gµν ](x1, x2; ξ) (7.8)

≈ −i
∫
RD

dDy
√

−g(y)χ(y, z)R(y)HF [gµν ](y, x1; ξ)HF [gµν ](y, x2; ξ) + smooth.

Note that the integral in the second line vanishes unless the scalar curvature is nonzero. Since

the analysis of the flow relations (7.5) and (7.8) are essentially identical, in the following we

will focus attention on only the m2-flow relation (7.5), it being understood that (7.8) can be

analyzed in a completely parallel manner, with the minor differences described in Remark

24 below Theorem 8.

If we attempt to drop the smooth terms and use (7.5) as our flow equation we will
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encounter three major difficulties: (i) Since the quantity ΩC is defined in (7.6) by an integral

over a finite spacetime region, ΩC depends nonlocally on the metric, which is not compatible

with axiom W1. (ii) On account of the presence of the cutoff function χ, ΩC is not covariantly

defined, which also is not compatible with axiom W1. (iii) On account of the cutoff scale

L present in χ, the scaling dependence of the OPE coefficients will not be compatible with

axiom W7. As we shall now show, these difficulties can be overcome by suitably modifying

the flow relation (7.5). Specifically, difficulty (i) can be overcome by replacing (7.6) with

a similar expression involving the Taylor coefficients of the metric in an expansion about

z rather than the metric itself. Difficulty (ii) then can be overcome by a generalization of

the procedure used to restore Lorentz invariance in Minkowski spacetime. Finally, difficulty

(iii) can be overcome by the same procedure as used for the Euclidean and Minkowski flow

relations. We now discuss, in turn, these difficulties and their resolutions.

(i) Locality. As already indicated above, the key idea needed to convert (7.6) into an

expression that depends only on the metric in an arbitrarily small neighborhood of z is to

replace the metric by its Taylor approximation about z, carried to sufficiently high order.

To scaling degree δ, the RNC components of the metric are asymptotically equivalent to its

Taylor polynomial about the origin,

gµν(x) ∼δ g
(N)
µν (x) ≡

N∑
k=0

1

k!
xσ1 · · ·xσk

∂kgµν(x)

∂xσ1 · · · ∂xσk

∣∣∣∣∣
x=0⃗

(7.9)

= ηµν +
1

3
Rµνκρ(⃗0)x

κxρ − 1

6
∇σRµνκρ(⃗0)x

κxρxσ + · · · ,

provided that we take N ≥ δ. As indicated by the second line of (7.9), the Taylor coefficients

are expressible entirely in terms of the Riemann curvature tensor and its totally-symmetric

covariant derivatives evaluated at the origin2. For sufficiently large xµ, the Taylor polynomial

2. This follows from a close relative [48, see Lemma 2.1] of the “Thomas replacement theorem” [49].
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g
(N)
µν (x) need not define a Lorentz metric. However, we can choose L sufficiently small that

|g(N)
µν − ηµν | ≪ 1 within a coordinate ball of radius 2L, so that g(N)

µν (x) is a Lorentz metric

wherever χ is nonvanishing.

To proceed, we perform an expansion of ΩC [gµν , tµ, L] about gµν = ηµν as a power

series in the (symmetrized) covariant derivatives of the Riemann curvature tensor. This

curvature expansion as well as the precise bound on the scaling degree of its non-smooth

terms is derived in Appendix D. This expansion also will be needed for our construction of

covariance-restoring counterterms below. The expansion takes the form3

ΩC [gµν , tµ, L](f1, f2; 0⃗) ∼δ (7.10)

δ+D−4∑
k=0

∑
p⃗k

(Ωp⃗)
{µ···σk−2}[ηµν , tµ, L](f1, f2; 0⃗)

k−2∏
j=0

[
Rµνκρ;(σ1···σj)(⃗0)

]pj
+ smooth terms,

where “smooth” refers to the behavior in x1 and x2 prior to smearing (cf. formula (7.14) of

Proposition 9 below). Here we have defined,

(Ωp⃗)
{µ···σk−2}[ηµν , tµ, L](f1, f2; 0⃗) ≡

∂PΩC [g
(k)
µν , tµ, L](f1, f2; 0⃗)

∂p0Rµνκρ(⃗0) · · · ∂pk−2Rµνκρ;(σ1···σk−2)
(⃗0)

∣∣∣∣∣
g
(k)
µν =ηµν

,

(7.11)

where g
(k)
µν denotes the kth-order polynomial metric (7.9) computed from gµν and P ≡∑k−2

j=0 pj . In (7.10) the p⃗k-sum runs over all non-negative integers p⃗k ≡ (p0, . . . , pk−2) such

that

2p0 + 3p1 + · · ·+ kp(k−2) = k. (7.12)

Note (7.11) are tensor-valued distributions defined on a neighborhood of the origin in flat

Minkowski spacetime, (N0, ηµν). Hence, all of the curvature dependence of the explicit terms

3. To avoid overly cumbersome notation involving multiple subscripts on spacetime indices, we have
implicitly re-used some Greek letters in (7.10), but the intended summations should be clear from context.
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in the curvature expansion (7.10) for ΩC comes through a finite product of curvature tensors

evaluated at the origin. Note the derivatives in (7.11) with respect to curvature tensors are

well-defined because the smeared distribution ΩC is a smooth function of the metric and the

polynomial metric g(k)µν is a smooth function of finitely-many curvature tensors evaluated at

the origin:

g
(k)
µν (x) = g

(k)
µν [x

σ, ηµν , Rµνκρ(⃗0),∇σRµνκρ(⃗0), . . . ,∇(σ1
· · · ∇σk−2)

Rµνκρ(⃗0)]. (7.13)

The result needed to effectively replace gµν with g
(N)
µν in (7.6) is given in the following

proposition:

Proposition 9. Let HF be a local and covariant Feynman parametrix which scales almost

homogeneously with an overall factor of λ(D−2) under (gµν ,m
2) → (λ−2gµν , λ

2m2) and

which depends smoothly on m2. Let ΩC be given by (7.6). Then for all N ≥ δ +D − 4, we

have

ΩC [gµν , tµ, L](x1, x2; 0⃗) ∼δ ΩC [g
(N)
µν , tµ, L](x1, x2; 0⃗) + terms smooth in (x1, x2). (7.14)

Proof. The proposition can be deduced from the curvature expansion (7.10) for ΩC as follows:

Note the maximum number of covariant derivatives of Rµνκρ appearing in the curvature

expansion (7.10) is δ +D − 6. Consider first the special case that gµν = g
(P )
µν for arbitrary,

but finite, integer P . We want to determine the smallest integer N < P such that the relation

(7.14) of the proposition holds. Since both gµν and g(N)
µν are themselves polynomial metrics

of the form (7.9), it follows immediately that their respective polynomial approximations,

g
(k)
µν [gµν ] and g

(k)
µν [g

(N)
µν ], are identical for any k ≤ N and, thus, all the coefficients (7.11)

of the curvature expansion computed from their respective polynomial approximations are

identical so long as the number of covariant derivatives in g(N)
µν is at least δ +D − 6 (i.e., if

N − 2 ≥ δ + D − 6). Since their respective curvature expansions (7.10) are thus identical
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for N ≥ δ + D − 4, this then implies the claimed relation (7.14) holds for the special case

that gµν = g
(P )
µν . To extend the proof of relation (7.14) to arbitrary smooth metrics gµν , we

use the fact [45, see proof of Theorem 4.1] that it is always possible to define a 1-parameter

family of metrics hµν(x; p) which depend smoothly on p in a neighborhood of p = 0 and

such that: i) For any fixed p ̸= 0, hµν(x; p) is a polynomial metric of finite order and ii)

hµν(x; p = 0) = gµν . The proposition has already been established for hµν(x; p) when p ̸= 0

since these are polynomial metrics, so compatibility with the smoothness axiom W2 then

implies the proposition must hold also for p = 0.

Our provisional proposal is to replace (7.5) with

∂

∂m2
HF [gµν ](x1, x2) ∼δ ΩC [g

(N)
µν , tµ, L](x1, x2; 0⃗), (7.15)

where N ≥ δ + D − 4. The distribution ΩC [g
(N)
µν , tµ, L] appearing on the right-hand side

of (7.15) is manifestly local with respect to the original spacetime (M, gab), since the only

dependence of g(N)
µν on the spacetime curvature comes through a finite number of local

curvature tensors evaluated at z (see (7.9)). Thus, the flow equation (7.15) is now local in

the spacetime metric. However, it fails to be covariant. We turn now to making a further

modification of (7.15) to restore covariance.

(ii) Covariance. The distribution ΩC [g
(N)
µν , tµ, L] appearing in (7.15) fails to be covariant

because the cutoff function, χ, depends upon a choice of the unit timelike co-vector tµ at z,

which is not determined by the metric. However, any two normalized timelike co-vectors tµ

and t′µ at z are related via a restricted Lorentz transformation Λ ∈ L↑
+,

t′µ = Λνµtν = (Λ−1) ν
µ tν ≡ (Λ−1t)µ. (7.16)
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Thus, in order to obtain a covariant flow relation, we seek to modify the flow relations by

the addition of smooth locally-constructed “counterterms” that compensate for the failure of

ΩC [g
(N)
µν , tµ, L] to be invariant under Lorentz transformations of tµ.

The dependence of ΩC [g
(N)
µν , tµ, L] on Lorentz transformations of tµ is quantified by the

distribution,

QC [g
(N)
µν , tµ, L](x1, x2; 0⃗; Λ

−1) (7.17)

≡ ΩC [g
(N)
µν , (Λ−1t)µ, L](x1, x2; 0⃗)− ΩC [g

(N)
µν , tµ, L](x1, x2; 0⃗)

= −i
∫
y

[
χ[g

(N)
µν , tµ, L](Λy; 0⃗)− χ[g

(N)
µν , tµ, L](y; 0⃗)

]
HF [g

(N)
µν ](y, x1)HF [g

(N)
µν ](y, x2),

where
∫
y ≡

∫
M dDy

√
−g(N)(y). By the same arguments as given for quantity QM in

Minkowski spacetime (see eq. (C.3)), the quantity QC has smooth dependence on (x1, x2). In

Minkowski spacetime, the Taylor coefficients, QM (Λ−1) ≡ ∂
(x1)
γ1 ∂

(x2)
γ2 QM (x1, x2; z; Λ

−1)|x1,x2=z,

of QM (x1, x2; z; Λ
−1) were shown to satisfy (C.9). The existence of the desired counterterms

in the flow relations was then established by cohomological arguments. However, in curved

spacetime, the Taylor coefficients of QC do not satisfy (C.9) for the simple reason that the

curved metric g(N)
µν given by (7.9) is not invariant under Lorentz transformations.

Nevertheless, we can use the curvature expansion (7.10) for QC [g
(N)
µν , tµ, L] and con-

sider the behavior under Lorentz transformations of the coefficients (Ωp⃗){µ···σk−2}[ηµν , tµ, L]

appearing in that expansion (see (7.11)). We write

(Qp⃗)
γ [ηµν , tµ, L,Λ

−1] ≡ (Ωp⃗)
γ [ηµν , (Λ

−1t)µ, L]− (Ωp⃗)
γ [ηµν , tµ, L], (7.18)

where we use the multi-index notation γ ≡ {µ · · · σk−2}. For notational convenience, we

will suppress the p-subscripts in the following and write the left side of (7.18) simply as Qγ .
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Since Qγ is smooth, its asymptotic behavior is determined by its Taylor coefficients,

Q
γ
γ1γ2(Λ

−1) ≡ ∂
(x1)
γ1 ∂

(x2)
γ2 Qγ(x1, x2; 0⃗; Λ

−1)|
x1,x2=0⃗

(7.19)

The crucial point is that the Taylor coefficients (7.19) depend only on ηµν , not the spacetime

metric g(N)
µν —all of the dependence on the spacetime metric in the curvature expansion (7.10)

appears in the curvature factors, not in (Ωp⃗). Consequently, we obtain,

Q
γ3
γ1γ2(Λ1Λ2)−Q

γ3
γ1γ2(Λ1)

=
[
∂
(x1)
γ1 ∂

(x2)
γ2

[
Ωγ3 [(Λ1Λ2t)µ](x1, x2; 0⃗)− Ωγ3 [(Λ1t)µ](x1, x2; 0⃗)

]]
x1,x2=0⃗

= (Λ1)
γ3
γ′3

[
∂
(x1)
γ1 ∂

(x2)
γ2

[
Ωγ

′
3 [(Λ2t)µ](Λ

−1
1 x1,Λ

−1
1 x2; 0⃗)− Ωγ

′
3 [tµ](Λ

−1
1 x1,Λ

−1
1 x2; 0⃗)

]]
x1,x2=0⃗

= (Λ1)
γ3
γ′3
(Λ1)

γ′1
γ1 (Λ1)

γ′2
γ2 Q

γ′3
γ′1γ

′
2
(Λ2), (7.20)

where the second equality follows from the identity:

Ωγ [g
(N)
µν , (Λ−1t)µ, L](x1, x2; 0⃗) = (Λ−1)

γ
γ′Ω

γ′ [g
(N)
µν , tµ, L](Λx1,Λx2; 0⃗), (7.21)

where we have used the fact that HF [(Λg)
(N)
µν ](Λy,Λx) = HF [g

(N)
µν ](y, x), with

(Λg)
(N)
µν (x) ≡ Λ ν1

µ1 Λ ν2
µ2 g

(N)
ν1ν2(Λ

−1x). (7.22)

Equation (7.20) is a close analogue of the equation (C.9). Writing QC(Λ) ≡ (Qp⃗)
γ3
γ1γ2(Λ),

we see that (7.20) corresponds to the cohomological identity

QC(Λ1) +D(Λ1)QC(Λ2)−QC(Λ1Λ2) = 0, (7.23)

see (C.14). By the same arguments as given in Proposition 10 of Appendix C, it follows that
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there exist tensors a ≡ (ap⃗)
γ3γ1γ2 such that

QC(Λ) = (D(Λ)− I)a. (7.24)

We now can restore covariance to the curved spacetime flow equations in close parallel

with the procedure we used to restore Lorentz covariance to the Minkowski flow equations.

Let a ≡ (ap⃗)
γ3γ1γ2 denote the solutions to (7.24). Let

aγ1γ2 ≡
δ+D−4∑
k=0

∑
p⃗

∑
γ3

(Rp⃗)γ3 (⃗0)(ap⃗)
γ3
γ1γ2 , (7.25)

with the p⃗ = (p0, p1, . . . , pk−2) sum running over (7.12). Here we have abbreviated the

product of curvature tensors appearing in the curvature expansion by writing

(Rp⃗){µνκρ;(σ1···σj)}(⃗0) ≡
k−2∏
j=0

[
Rµνκρ;(σ1···σj)(⃗0)

]pj
. (7.26)

Now replace ΩC [g
(N)
µν , tµ, L](x1, x2; 0⃗) in (7.15) with

Ω̃C [g
(N)
µν , tµ, L](x1, x2; 0⃗) (7.27)

≡ ΩC [g
(N)
µν , tµ, L](x1, x2; 0⃗)−

∑
|γ1|+|γ2|≤δ

1

γ1!γ2!
aγ1γ2 [g

(N)
µν , tµ, L]x

(γ1
1 x

γ2)
2

Then, to scaling degree δ, Ω̃C is independent of the choice of unit-normalized timelike tµ

and differs from ΩC by a smooth function of (x1, x2) with the same scaling behavior as ΩC .

Thus, the flow relation

∂

∂m2
HF [gµν ](x1, x2) ∼δ Ω̃C [g

(N)
µν , tµ, L](x1, x2; 0⃗), (7.28)

is both local and covariant in the metric. However, it does not have the required scaling be-

131



havior, so we will make a further modification to this flow relation in the “scaling” paragraph

below.

Finally, we note that we can obtain a recursive formula for a by the same procedure as

in the Minkowski case discussed in Appendix C. Define

Bκρ ≡ (Bκρ)
γ3
γ1γ2 ≡ −2Ω

γ3
γ1γ2 [χ = y[κ∂ρ]χ], (7.29)

with Ω
γ3
γ1γ2 [χ = y[κ∂ρ]χ] denoting the Taylor coefficients of the smooth function,

Ωγ3 [χ = y[κ∂ρ]χ](x1, x2; 0⃗). (7.30)

(Smoothness of (7.30) in (x1, x2) is guaranteed by the fact that ∂ρ
(y)
χ(y, 0⃗) vanishes in a

neighborhood of y = 0⃗.) Then for any infinitesimal restricted Lorentz transformation Λθ, we

have

QC(Λθ) = −θκρBκρ +O(θ2). (7.31)

The analysis of Appendix C then implies that

a =
k∑
j=1
c̃j ̸=0

1

c̃j
Ej

−LκρBκρ + 4
∑
i<j≤n

ηµiµj trija

 , (7.32)

with the notation defined in Appendix C, where we have lowered all indices on the tensors

so that all tensors in (7.32) are of type (0, |γ1| + |γ2| + |γ3|). As explained in Appendix

C, equation (7.32) determines higher rank coefficients (ap⃗)
γ3γ1γ2 inductively in terms of

the equations for the lowest nontrivial ranks with a given symmetry. When p⃗ = 0⃗, the

coefficients (ap⃗)
γ3γ1γ2 coincide with those appearing in the Minkowski flow relations: i.e.,

(a
0⃗
)γ3γ1γ2 = aγ1γ2 , whose rank r ≡ |γ1| + |γ2| = 0, 1, 2 cases were stated explicitly in the

appendix. When p⃗ ̸= 0⃗, the explicit lower-rank cases can be straightforwardly obtained
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using the methods of the appendix. For this purpose, it is worth noting the (ap⃗)
γ3γ1γ2

coefficients have the same symmetries as the Minkowski coefficients aγ1γ2 in the lower multi-

indices (and their respective spacetime indices γ1 = {µ1 · · ·µp}, γ2 = {ν1 · · · νq}). However,

the symmetries of the upper spacetime indices in (ap⃗)
γ3γ1γ2 are dictated by the curvature

tensors (7.26).

Under the rescaling

(ηµν , d
Dy,m2, L) → (λ−2ηµν , λ

−DdDy, λ2m2, λ−1L), (7.33)

the inductive solutions (7.32) for (ap⃗k)
γ3
γ1γ2 will scale in the manner required for Ω̃C to

have the same scaling behavior as ΩC .

(iii) Scaling The flow equation (7.28) is local and covariant and scales almost homoge-

neously with the correct power of λ under (gµν ,m
2, L) → (λ−2gµν , λ

2m2, λ−1L). However,

on account of the nontrivial L dependence, we do not have the required almost homogeneous

scaling under (gµν ,m
2) → (λ−2gµν , λ

2m2). This is the same difficulty as occurred in the

Euclidean and Minkowski cases, and it can be overcome by further modifying the flow rela-

tion in the same manner as for those cases. Specifically, we replace the flow relation (7.28)

with

∂

∂m2
HF [gµν ](x1, x2) ∼δ L[L]Ω̃C(x1, x2; 0⃗;L)−

∑
|γ1|+|γ2|≤δ

1

γ1!γ2!
cγ1γ2(L)x

(γ1
1 x

γ2)
2 , (7.34)

where L was defined by (5.33) and where, for L > 0,

cγ1γ2(L) ≡
∑
k

∑
p⃗k

(Rp⃗)γ3 (⃗0)

[
L[L](ap⃗)

γ3
γ1γ2(L) + (7.35)

+

∫ L

0
dL′

[
Ω
γ3
γ1γ2

[
χ = ∂L′

(
L[L′]χ

)]
− ∂

∂L′
(
L[L′](ap⃗)

γ3
γ1γ2(L

′)
)]]
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The flow relation (7.34) is local and covariant and has the proper scaling under (gµν ,m2) →

(λ−2gµν , λ
2m2).

Using the definition (7.27) of Ω̃C and the relations (5.44)-(5.46), we may rewrite (7.34)

in terms of the OPE coefficients:

∂

∂m2
(CH)IT0{ϕϕ}(x1, x2; 0⃗)

∼δ −
i

2

∫ √
−g(N)(y)L[L]χ(y, 0⃗;L) (CH)I

T0{ϕ2ϕϕ}(y, x1, x2; 0⃗) + (7.36)

−
∑

[C]≤δ+2

cC [g
(N)
µν , tµ, L](CH)CT0{ϕϕ}(x1, x2; 0⃗),

where N ≥ δ +D − 4. Here we have

cC ≡
∑
k

∑
p⃗k

(Rp⃗)γ (⃗0)

L[L](ap⃗)γC(L)− ∫ L

0
dL′

∂

∂L′

(
L[L′](ap⃗)

γ
C(L

′)
)
+

− i

2

[
∂P

(∂p⃗R)γ (⃗0)

∫ L

0
dL′

∫
y

∂

∂L′

(
L[L′]χ(y, 0⃗;L′)

)
CI
T0{ϕ2C}(y, 0⃗; 0⃗)

]
g
(k)
µν =ηµν

 , (7.37)

with the k and p⃗k sums taken as in the curvature expansion (7.10) and we have abbreviated∫
y ≡ dDy

√
−g(k)(y) and,

(∂p⃗R){µ···σk−2} ≡ ∂p0Rµνκρ∂
p1Rµνκρ;σ · · · ∂pk−2Rµνκρ;(σ1···σk−2)

. (7.38)

It is required that (ap⃗)
γ
C = 0 unless [C]ϕ = 2. For [C]ϕ = 2, the tensors (ap⃗)

γ
C are given

via the inductive formula (7.32) with,

(B
κρ
p⃗k

)
γ
C ≡ i

[
∂P

(∂p⃗R)γ (⃗0)

∫
dDy

√
−g(k)(y) y[κ∂ρ]χ(y, 0⃗;L) (CH)I

T0{ϕ2C}(y, 0⃗; 0⃗)

]
g
(k)
µν =ηµν

(7.39)
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Formula (7.32) determines (ap⃗)
γ
C up to Lorentz-invariant tensors that depend smoothly on

(ηµν ,m
2, ξ) and that scale with the same overall factor of λ as ΩγC under the rescaling (7.33).

As in the Minkowski case, the L-operator and L-integral terms in (7.37) ensure that only

the L-independent terms in (ap⃗)
γ
C can contribute to cC . Therefore, the only ambiguity

in cC corresponds to the choice of an L-independent Lorentz-invariant tensor in (ap⃗)
γ
C

that scales with the same overall factor of λ as Ω
γ
C under (ηµν ,m

2) → (λ−2ηµν , λ
2m2).

In odd dimensions, there are no tensors that scale in this way and depend smoothly on

(ηµν ,m
2) so (ap⃗)

γ
C is unique and, thus, cC has no ambiguities. In even dimensions, (ap⃗)

γ
C

is not unique and this yields the freedom in cC to choose a local and covariant smooth

function in (x1, x2, g
(N)
ab ,m2, ξ). In curved spacetime, compatibility with the Leibniz axiom

W4 places additional constraints on the allowed choices of cC and, in even dimensional curved

spacetimes with D > 2, there is an additional constraint coming from the conservation axiom

W8. These constraints can always be (non-uniquely) satisfied and, for cC satisfying these

conditions, the remaining ambiguities in (7.36) are in 1-1 correspondence with the freedom to

choose a Hadamard parametrix whose corresponding Hadamard normal-ordered Wick fields

are compatible with axioms W1-W8.

By the same reasoning that led to Theorems 6 and 7, the flow relation eq. (7.36) to-

gether with the explicit formulas for the unextended time-ordered OPE coefficients of the

Hadamard normal-ordered Wick fields imply flow relations for (CH)I
T0{ϕ···ϕ}, as expressed

by the following theorem:

Theorem 8. For any construction of the Wick monomials by Hadamard normal ordering,
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we have

∂

∂m2
(CH)IT0{ϕ···ϕ}(x1, . . . , xn; 0⃗) ≈

− i

2

∫
dDy

√
−g(N)(y)L[L]χ(y, 0⃗;L) (CH)I

T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; 0⃗) +

−
∑
C

cC [g
(N)
µν , tµ, L](CH)CT0{ϕ···ϕ}(x1, . . . , xn; 0⃗), (7.40)

with cC defined in (7.37).

As was the case in the flat spacetime case, the ambiguities in these flow relations are in 1-

1 correspondence with the freedom to choose H. The flow relations for general prescriptions

for the Wick fields may straightforwardly obtained from (7.40) in the manner discussed below

Theorem 6.

Remark 24. The derivation of L-independent local and covariant flow relations with respect

to the curvature-coupling parameter ξ proceeds essentially identically as the one presented

here for m2. The ξ flow relations are of the same form as (7.40) with the substitutions

m2 → ξ and dDy → dDyR(y). Of course, locality requires the Ricci scalar curvature,

R, must be computed using the polynomial metric g(N)
µν rather than gµν . Note also ξ is

dimensionless and the Ricci scalar curvature scales as R[λ−2g
(N)
µν ] = λ2R[g

(N)
µν ] so the ξ flow

relations scale with an overall extra power of λ2 relative to the m2 flow relations.
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APPENDIX A

EXISTENCE OF HADAMARD PARAMETRIX SATISFYING

THE CONSERVATION CONSTRAINT

In this appendix, we prove that there exists Q(x1, x2) satisfying (3.33) for D > 2. Abbreviate

Q0(y) ≡ Q(y, y) and

Qab(y) ≡
[
∇(x1)
a ∇(x2)

b Q(x1, x2)
]
x1,x2=y

. (A.1)

It is straightforward to show that

[
∇(x1)
b Kx2Q(x1, x2)

]
x1,x2=y = −∇aQba +

1

2
∇bQ

a
a +

1

2
(m2 + ξR)∇bQ0, (A.2)

with Qaa ≡ gabQab. Hence, the conservation condition (3.33) is equivalent to:

−∇aQba +
1

2
∇bQ

a
a +

1

2
(m2 + ξR)∇bQ0 = − D

2(D + 2)
∇(y)
b [Kx2H(x1, x2)]x1,x2=y , (A.3)

where we have used (3.32). Eq. (A.3) is solved (non-uniquely) for D > 2 by setting Q0(y) = 0

and

Qab(y) = − D

D2 − 4
gab [Kx2H(x1, x2)]x1,x2=y . (A.4)

To see that there exists a smooth function Q(x1, x2) with these properties, we first note

one can always obtain a smooth function f(x1, x2; y) with arbitrarily-specified covariant

derivatives evaluated at x1, x2 = y, by the construction described in the proof of Proposition

1. Thus, we may arrange that f(y, y; y) = 0 and

∇(x1)
a ∇(x2)

b f(x1, x2; y)|x1,x2=y = − D

D2 − 4
gab [Kx2H(x1, x2)]x1,x2=y , (A.5)

while requiring f and its derivatives at x1, x2 = y to depend smoothly on (m2, ξ) and scale
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almost homogeneously. Moreover, this construction implies

∇(x1)
α1 ∇(x2)

α2 ∇(y)
β f(x1, x2; y)|x1,x2=y = 0, for all |β| > 0, (A.6)

and, thus, the “germ” of f at x1, x2 = y is independent of y. Hence, we may construct a

y-independent smooth bi-variate Q satisfying (3.33) and (3.34) which depends symmetrically

on (x1, x2) via:

Q(x1, x2) =
1

2
f(x1, x2;x1) +

1

2
f(x1, x2;x2). (A.7)
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APPENDIX B

PROOFS FOR SECTION 4.2

We collect here proofs to the theorem and propositions contained in Section 4.2

Sketch of proof for Theorem 4. The manipulations leading to (4.40) establish OPEs are

preserved under field redefinitions, so the existence of the OPE for general Wick prescriptions

follows from the existence of an OPE for Hadamard normal-ordered Wick fields (see Theorem

2 in Section 4.1). Moreover, the scaling degree of the OPE coefficients are unaffected by the

field redefinitions. We now argue the associativity conditions are also preserved under field

redefinitions. For notational simplicity, we give the argument for an OPE involving three

spacetime points with the merger tree T corresponding to x1 and x2 approaching each other

faster than x3. The argument can then be straightforwardly generalized to n-point OPEs

with arbitrary merger trees. From (4.40), we have,

CBA1A2A3
(x1, x2, x3; z) (B.1)

≈
∑

C0,...,C3

ZB
C0

(z)(Z−1)C1
A1

(x1)(Z−1)C2
A2

(x2)(Z−1)C3
A3

(x3)(CH)C0
C1C2C3

(x1, x2, x3; z).

The associativity condition for Hadamard normal-ordered OPE coefficients implies the co-

efficient in the second line can be expanded as

(CH)C0
C1C2C3

(x1, x2, x3; z)

∼T ,δ
∑
D1

(CH)D1
C1C2

(x1, x2; z
′)(CH)C0

D1C3
(z′, x3; z) (B.2)

=
∑
D1,D2

[∑
E

ZE
D2

(z′)(Z−1)D1
E (z′)

]
(CH)D2

C1C2
(x1, x2; z

′)(CH)C0
D1C3

(z′, x3; z),
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where, in going to the final line, we have used the identity:

∑
E

ZE
D2

(z′)(Z−1)D1
E (z′) = δD1

D2
. (B.3)

Plugging (B.3) back into (B.2) and rearranging summations, we find then,

CBA1A2A3
(x1, x2, x3; z)

∼T ,δ
∑
E

 ∑
D2,C1,C2

ZE
D2

(z′)(Z−1)C1
A1

(x1)(Z−1)C2
A2

(x2)(CH)D2
C1C2

(x1, x2; z
′)

×

×

 ∑
C0,D1,C3

ZB
C0

(z)(Z−1)D1
E (z′)(Z−1)C3

A3
(x3)(CH)C0

D1C3
(z′, x3; z)

 . (B.4)

By (4.40), this is equivalent to,

CBA1A2A3
(x1, x2, x3; z) ∼T ,δ

∑
E

CEA1A2
(x1, x2; z

′)CBEA3
(z′, x3; z). (B.5)

All other associativity conditions, including (4.36), for general prescriptions of the Wick

powers may similarly be established using the corresponding associativity conditions for

Hadamard normal-ordered OPE coefficients and the identity (B.3).

Sketch of proof for Proposition 3. The proof makes use of the relationship (4.40) be-

tween the general Wick OPE coefficients and the Hadamard normal-ordered coefficients, the

identity (4.32) for the Hadamard OPE coefficients established in Proposition 2, and the re-

cursion relation (3.50) satisfied by the mixing matrix ZB
A . By (4.40) and (4.32), we have for
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any p ≤ m ≡ [B]ϕ,

CBA1···An
=

∑
C1,...,Cn

[
(Z−1)C1

A1
· · · (Z−1)Cn

An
× (B.6)

×
∑

{P1,P2}∈Pp(SC)

∑
k≥m

(
k

p

)−1

ZB
γ1···γk(CH)

(∇γ1ϕ···∇γpϕ)

C ′
1···C ′

n
(CH)

(∇γ(p+1)
ϕ···∇γk

ϕ)

C ′′
1 ···C ′′

n︸ ︷︷ ︸
(a)

]

Now, inserting the recursion relation (3.50) for the mixing matrix,

ZB
γ1···γk = Zβ1···βm

γ1···γk =

(
k

p

)(
m

p

)−1

δ
β1
(γ1

· · · δβpγpZ
β(p+1)···βm
γ(p+1)···γk)

, (B.7)

into the underbraced factor immediately yields:

(a) =
(
m

p

)−1

(CH)
(∇β1

ϕ···∇βpϕ)

C ′
1···C ′

n
Z
β(p+1)···βm
γ(p+1)···γk (CH)

(∇γ(p+1)
ϕ···∇γk

ϕ)

C ′′
1 ···C ′′

n
. (B.8)

Plugging this back into (B.6) gives,

CBA1···An
=

(
m

p

)−1∑
C0

Zβ(p+1)···βm
C0

× (B.9)

×
∑

C1,...,Cn

(Z−1)C1
A1

· · · (Z−1)Cn
An

∑
{P1,P2}∈Pp(SC)

(CH)
(∇γ1ϕ···∇γpϕ)

C ′
1···C ′

n
(CH)C0

C ′′
1 ···C ′′

n︸ ︷︷ ︸
(b)

 .

Recalling the definition of Pp(S) above eq. (4.30), one may use the recursion relation (3.50)

for the inverse mixing matrices in a similar manner (as with ZB
γ1···γk in the (a)-term above)

141



to rewrite the underbraced term:

(b) =
∑

{P1,P2}∈Pp(SA)
δ
C ′
1

A′
1
· · · δC

′
n

A′
1
(CH)

(∇γ1ϕ···∇γpϕ)

C ′
1···C ′

n
(Z−1)

C ′′
1

A′′
1
· · · (Z−1)

C ′′
n

A′′
n
(CH)C0

C ′′
1 ···C ′′

n
,

(B.10)

where we note that the sum in (B.10) is now taken over elements of Pp(SA) rather than

Pp(SC). Finally, inserting this back into (B.9) yields,

CBA1···An
=

(
m

p

)−1 ∑
{P1,P2}∈Pp(SA)

[
(CH)

(∇γ1ϕ···∇γpϕ)

A′
1···A′

n
× (B.11)

×
∑

C ′′
0 ,C

′′
1 ,...,C

′′
n

(Z−1)
C ′′
1

A′′
1
· · · (Z−1)

C ′′
n

A′′
n
Z
β(p+1)···βm
C0

(CH)C0
C ′′
1 ···C ′′

n

]
,

which, by eqs. (4.41) and (4.40), is equivalent to formula (4.32) with the H-subscripts

removed.

Proof of Proposition 4. The proof of (4.43) is based on the associativity conditions (4.36)

and the behavior of the Wick OPE coefficients CBϕ···ϕ(x1, . . . , xn; z) on the total diagonal

when [B]ϕ = n. As established in Theorem 4, the associativity conditions hold for general

prescriptions for the Wick powers. In particular, for the class of merger trees T such that

y⃗i → xi at a faster rate than xi → z, we have, cf. formula (4.36),

CBϕ···ϕ(y⃗1, . . . , y⃗n; z) ∼T ,δ
∑

C1,...,Cn

CC1
ϕ···ϕ(y⃗1;x1) · · ·C

Cn
ϕ···ϕ(y⃗n;xn)C

B
C1···Cn

(x1, . . . , xn; z),

(B.12)

with the summations carried to a sufficiently high, but finite, order. As we shall see, for our

purposes, it is sufficient to include only [Ci] ≤ [Ai] for all i.

We note the OPE coefficients CCi
ϕ···ϕ(y⃗i;xi) vanish unless [Ci]ϕ ≤ ki ≡ [Ai]ϕ for all i. It
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is useful to rearrange (B.12), putting all terms such that [Ci] = ki for all i on one side:

∑
[C1]ϕ=[A1]ϕ

· · ·
∑

[Cn]=[An]ϕ

CC1
ϕ···ϕ(y⃗1;x1) · · ·C

Cn
ϕ···ϕ(y⃗n;xn)C

B
C1···Cn

(x1, . . . , xn; z)

∼T ,δ C
B
ϕ···ϕ(y⃗1, . . . , y⃗n; z) + (B.13)

−
∑

[C1]ϕ<[A1]ϕ

· · ·
∑

[Cn]ϕ<[An]ϕ

CC1
ϕ···ϕ(y⃗1;x1) · · ·C

Cn
ϕ···ϕ(y⃗n;xn)C

B
C1···Cn

(x1, . . . , xn; z).

We now note the limiting behavior of the coefficients:

lim
y⃗i→xi

CCi
ϕ···ϕ(y⃗i;x) =


1 [Ci] = [Ci]ϕ = ki

0 [Ci] > ki

(B.14)

The second case follows from the fact that CCi
ϕ···ϕ(y⃗i;xi) has negative scaling degree when

[Ci] > ki by (4.5). The first case follows from the fact that, when [Ci]ϕ = ki, the CCi
ϕ···ϕ(y⃗i;xi)

are given by geometric factors (4.41) and these factors satisfy:

lim
y→x

Sβ(y;x) =


1 |β| = 0

0 |β| > 0

, (B.15)

because limy→x∇b
(y)
σ(y;x) = 0. Evaluating the proposed limit of (B.13), using (B.14), we

then find:

CB
ϕk1 ···ϕkn (x1, . . . , xn; z)

= lim
y⃗1→x1

· · · lim
y⃗n→xn

[
CBϕ···ϕ(y⃗1, . . . , y⃗n; z) + (B.16)

−
∑

[C1]<[A1]
[C1]ϕ<[A1]ϕ

· · ·
∑

[Cn]<[An]
[Cn]ϕ<[An]ϕ

CC1
ϕ···ϕ(y⃗1;x1) · · ·C

Cn
ϕ···ϕ(y⃗n;xn)C

B
C1···Cn

(x1, . . . , xn; z)
]
.
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This establishes formula (4.43) for the OPE coefficients involving products of Wick powers

with no derivatives. To obtain the general case, apply the derivative operator ∇
y(1,1)
α(1,1) · · · ∇

y(n,kn)
α(n,kn)

to both sides of relation (B.13) and take the limits y⃗i → xi for all i, using the identity:

lim
y⃗i→xi

∑
[Ci]ϕ=[Ai]ϕ

∇(yi,1)
α(i,1) · · · ∇

(yi,ki)
α(i,ki)

CCi
ϕ···ϕ(y⃗i;xi)C

B
C1···Ci···Cn

(x1, . . . , xn; z)

= CBC1···Ai···Cn
(x1, . . . , xn; z), (B.17)

which follows, in turn, from the identity (3.60) for the covariant derivative acting on any

scalar field.

Note, in our derivation, no assumption has been made about the rate x1, . . . , xn approach

each other in (B.12), so the resulting formula (4.43) is valid under arbitrary merger trees for

these points.

Proof of Proposition 5. Using Wick’s theorem (3.8), we find:

ϕ(x1)ϕ(x2) · · ·ϕ(xn) (B.18)

=

⌊n/2⌋∑
k=0

∑
σk

H(xσ(1), xσ(2)) · · ·H(xσ(2k−1), xσ(2k)) : ϕ(xσ(2k+1)) · · ·ϕ(xσ(n)) :H ,

where σk runs over the same permutations as in formula (4.48). Putting all terms on the

right-hand side and smearing with the test distribution tn+1 ∈ E ′(×(n+1)M, gab) defined in
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eq. (3.29) then yields:

0 =

∫
z,x1,...,xn

fα1···αnδ(z, x1, . . . , xn)∇
(x1)
α1 · · · ∇(xn)

αn

ϕ(x1) · · ·ϕ(xn) + (B.19)

−
⌊n/2⌋∑
k=0

∑
σk

H(xσ(1), xσ(2)) · · ·H(xσ(2k−1), xσ(2k))×

×Sβ2k+1(xσ(2k+1); z) · · ·S
βn(xσ(n); z)(∇β2k+1

ϕ · · · ∇βnϕ)H(z)

 ,
with implied summations over β multi-indices. Note only finitely-many terms contribute non-

trivially to the sum. In writing (B.19), we have used the definition (3.28) of the Hadamard

normal-ordered Wick fields. We may now use formula (3.70) to write (∇β1ϕ · · · ∇βmϕ)H

in terms of (∇β1ϕ · · · ∇βmϕ) and the smooth functions Fq≤m. Plugging this into (B.19),

one can then use the explicit expression (4.48) for the Wick OPE coefficients CIϕ···ϕ to write

(B.19) as:

0 =

∫
z,x1,...,xn

fα1···αnδ(z, x1, . . . , xn)∇
(x1)
α1 · · · ∇(xn)

αn

ϕ(x1) · · ·ϕ(xn)+ (B.20)

−
∑
m≤n

∑
π∈Πm

CIϕ···ϕ(xπ(m+1), . . . , xπ(n); z)×

×Sβ1(xπ(1); z) · · ·S
βm(xπ(m); z)(∇β1ϕ · · · ∇βmϕ)(z)

 ,
with Πm and

∫
z,x1,...,xn

defined as in (4.49). Note again there are implied finite sums over

β multi-indices. Note the m = n term in the sum yields:

−δ(z, x1, . . . , xn)∇
(x1)
α1 Sβ1(x1; z) · · · ∇

(xn)
αn Sβn(xn; z)(∇β1ϕ · · · ∇βnϕ) = −(∇α1ϕ · · · ∇αmϕ),

(B.21)
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using the identity (3.60). Moving this term to the left-hand side of (B.20), then gives the

equation (4.49) we sought to show.
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APPENDIX C

CONSTRUCTION OF aγ1γ2 FOR

LORENTZ-COVARIANCE-RESTORING TERMS

The goal of this appendix is construct Λ-independent a ≡ aγ1γ2 such that (6.22) holds

for any choice of cutoff function χ, i.e., to construct a such that Ω̃M defined via (6.15) is

Lorentz-invariant. Our strategy will be to solve (6.22) inductively for infinitesimal Lorentz

transformations,

Λθ = I +
1

2
θκρl

κρ, (C.1)

which generate the restricted Lorentz group. Here θκρ = θ[κρ] parameterize an arbitrary

infinitesimal transformation and lκρ denote the Lorentz generators. Restoring indices, the

generators are given explicitly by,

(lκρ)
µ
ν ≡ 2ηµ[κδ

ρ]
ν , (C.2)

in the vector representation. We define

QM (x1, x2; z; Λ
−1) ≡ ΩM (Λx1,Λx2; Λz)− ΩM (x1, x2; z), (C.3)

and we denote the Taylor coefficients which appear on the left-hand side of (6.22) by

Q(Λ−1) ≡ Qγ1γ2(Λ
−1) ≡ ∂

(x1)
γ1 ∂

(x2)
γ2 QM (x1, x2; z; Λ

−1)|x1,x2=z . (C.4)

Thus, Q is a spacetime tensor of the same rank r = |γ1|+ |γ1| as a. Translation invariance

implies Q(Λ−1) is independent of z. With this notation, the set of equations (6.22) that we
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wish to solve for a can be written as,

Q(Λ) = (D(Λ)− I)a, (C.5)

where D(Λ) denotes the representation of the Lorentz group on tensors of rank r. The kernel

of the operator D(Λ)− I is comprised of Lorentz-invariant tensors, so (C.5) determines a up

to the addition of a Lorentz-invariant tensor of rank r.

For the purposes of showing existence of a solution, a, to (C.5), it is useful to have a

manifestly smooth expression for the function QM (x1, x2; z; Λ
−1) defined in (C.3). From the

definition (6.12) of ΩM , we have,

ΩM (Λx1,Λx2; Λz) = −i
∫
dDy χ(y,Λz)HF (y,Λx1)HF (y,Λx2)

= −i
∫
dDy′ χ(Λy′,Λz)HF (Λy

′,Λx1)HF (Λy
′,Λx2)

= −i
∫
dDy′ χ(Λy′,Λz)HF (y

′, x1)HF (y
′, x2). (C.6)

Here, the second equality was obtained by making a change of integration variables y →

y′ = Λ−1y and the final equality follows from the Lorentz invariance of HF . Plugging (C.6)

into (C.3) yields,

QM (x1, x2; z; Λ
−1) = −i

∫
dDy [χ(Λy,Λz)− χ(y, z)]HF (y, x1)HF (y, x2). (C.7)

Since for arbitrary, fixed Λ, we have χ(Λy,Λz)−χ(y, z) = 0 when y is sufficiently close to z,

it follows from Proposition 8 that Q(x1, x2; z; Λ−1) is smooth in (x1, x2) when these points
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are sufficiently close to z. Evaluating the Taylor coefficients of (C.7) yields,

Qγ1γ2(Λ
−1) = (−1)(1+|γ1|+|γ2|)i

∫
dDy

[
χ(Λy, 0⃗)− χ(y, 0⃗)

]
∂
(y)
γ1 HF (y, 0⃗)∂

(y)
γ2 HF (y, 0⃗),

(C.8)

where the translation symmetry has been used to put z at the origin. Note Qγ1γ2 are mani-

festly invariant under interchange of multi-indices Qγ1γ2 = Qγ2γ1 and symmetric within their

respective spacetime indices Q{µ1···µ|γ1|}{ν1···ν|γ2|}
= Q{(µ1···µ|γ1|)}{(ν1···ν|γ2|)}

. The following

proposition establishes the existence of a satisfying (C.5) by the same type of cohomology

argument as used to prove the existence of counterterms in Epstein-Glaser renormaliza-

tion [24] :

Proposition 10. For any translation-invariant cutoff function χ and any restricted Lorentz

transformation Λ, the tensors Q(Λ−1) defined in (C.8) are always of the form (C.5) for some

Λ-independent tensors a, which are uniquely determined modulo Lorentz-invariant tensors

of rank r ≡ |γ1|+ |γ2|.

Proof. Using the explicit formula (C.8), we find:

Qγ1γ2(Λ1Λ2)−Qγ1γ2(Λ1)

= (−1)(1+|γ1|+|γ2|)i
∫
dDy

[
χ(Λ−1

2 Λ−1
1 y, 0⃗)− χ(Λ−1

1 y, 0⃗)
]
∂
(y)
γ1 HF (y, 0⃗)∂

(y)
γ2 HF (y, 0⃗)

= (Λ−1
1 )

γ′1
γ1(Λ

−1
1 )

γ′2
γ2(−1)(1+|γ1|+|γ2|)i ×

×
∫
dDy′

[
χ(Λ−1

2 y′, 0⃗)− χ(y′, 0⃗)
]
∂
(y)
γ′1
HF (y

′, 0⃗)∂(y)
γ′2
HF (y

′, 0⃗)

= (Λ1)
γ′1

γ1 (Λ1)
γ′2

γ2 Qγ′1γ
′
2
(Λ2). (C.9)

In going to the first equality, we note (Λ1Λ2)
−1 = Λ−1

2 Λ−1
1 . The second equality follows

from a change of integration variables y → y′ = Λ−1
1 y, noting the parametrix is Lorentz

invariant and detΛ1 = 1 so dDy′ = dDy.
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Given (C.9), eq. (C.5) can now be established via the following cohomological argument:

Denote the restricted Lorentz group L↑
+ ≡ SO+(1, D− 1) and denote by Cn(L↑

+) the set of

all tensors T ≡ Tα(Λ1, . . . ,Λn) which depend continuously on Λ. For each n ≥ 0, we define

the “coboundary operator” dn : Cn(L↑) → Cn+1(L↑
+) by1,

(dnT )(Λ1, . . . ,Λn+1) ≡ (−1)(n+1)T (Λ1, . . . ,Λn) +D(Λ1)T (Λ2, . . . ,Λ(n+1))+ (C.10)

+
n∑
k=1

(−1)kT (Λ1, . . . ,Λ(k−1), Λ̂kΛkΛ(k+1),Λ(k+2) . . . ,Λ(n+1)).

For any T ∈ Cn(L↑
+), it follows from the definition (C.10) via a straightforward computation

that we have

(dn+1 ◦ dnT )(Λ1, . . . ,Λn+2) = 0. (C.11)

Hence, for any T such that,

dnT = 0, (C.12)

it follows immediately from (C.11) that (C.12) is satisfied by,

T = dn−1S, (C.13)

for tensor S = S(Λ1, . . . ,Λn−1) with the same rank as T . If the only solutions to (C.12)

are of the form (C.13), then it is said that the “n-th cohomology group”, Hn(L↑
+) ≡ ker dn/

im dn−1, is empty. It has been proven [50, Subsection 5.C] that the first cohomology group

H1(L↑
+) is empty. However, by eq. (C.9), we have

0 = (d1Q)(Λ1,Λ2) = Q(Λ1) +D(Λ1)Q(Λ2)−Q(Λ1Λ2), (C.14)

1. In cohomology theory, Cn are known as the group of “n-cochains”. The sequence, C0 d0

−→ C1 d1

−→
C2 d2

−→ · · · , generated by the coboundary operators dn is called a “cochain complex”.
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Therefore, the only tensors satisfying (C.14) are of the form

Q(Λ) = (d0a)(Λ) = (D(Λ)− I)a. (C.15)

Thus, for Q given by (C.8), there exists a solution a to (C.5).

Although Proposition 10 establishes existence of a, we wish to obtain an explicit solution

for a in order to write the flow relations in an explicit form. In the remainder of this appendix,

we derive an explicit solution for a for ranks r = 0, 1, 2 and then obtain an inductive solution

for a for r > 2. Our analysis closely follows the approach taken by [26, Subsection 3.3] in

the context of the Epstein-Glaser renormalization scheme, while generalizing to arbitrary

spacetime dimension.

For r = 0, D(Λ) = 1 and thus (C.15) implies Q{0}{0} = 0 for any Lorentz-invariant scalar

a{0}{0}. For r = 1, we have Q{µ}{0} = Q{0}{µ}, so there is only a single independent Q(Λ).

The dependence of Q on Λ comes entirely through the cutoff function χ. Since we have

χ(Λ−1
θ y, 0⃗)− χ(y, 0⃗) = −1

2
θκρ(l

κρ)
µ
νy
ν∂µχ(y, 0⃗) +O(θ2) (C.16)

it follows from (C.8) that at leading order in θ we have

Q{µ}{0}(Λθ) = −1

2
θκρ(B

κρ){µ}{0}, (C.17)

where

(Bκρ){µ}{0} ≡ i(lκρ)σ1σ2

∫
dDy yσ2∂

(y)
σ1 χ(y, 0⃗) ∂

(y)
µ HF (y, 0⃗)HF (y, 0⃗). (C.18)

Note that (Bκρ){µ}{0} is independent of θκρ. On the other hand, for r = 1, to leading order
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in θκρ the right-hand side of (C.5) is simply,

(D(Λθ)− I)a = −1

2
θκρl

κρa. (C.19)

Hence, for r = 1, to leading order in θκρ equation (C.5) is equivalent to,

θκρl
κρa = θκρB

κρ. (C.20)

eq. (C.20) will hold for all infinitesimal θκρ if and only if,

lκρa = Bκρ, (C.21)

for all κ, ρ = 0, 1, . . . , D − 1. Contracting this equation with lκρ and using the identity2

lκρl
κρ = −2(D − 1)I, (C.22)

we obtain the explicit solution

a{0}{µ} = a{µ}{0} = − 1

2(D − 1)
(lκρB

κρ){µ}{0}

= −i
∫
dDy ∂

(y)
µ χ(y, 0⃗)HF (y, 0⃗)HF (y, 0⃗), (C.23)

where we have used (C.2) and (C.18) to obtain the second line.

We proceed now to r = 2. There are two independent Q tensors of rank two and they are

both symmetric in their spacetime indices: Q{µ}{ν} = Q{(µ}{ν)} andQ{µν}{0} = Q{0}{µν} =

2. The left-hand side of (C.22) is the quadratic Casimir operator of the Lie algebra of the homogeneous
Lorentz group.
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Q{0}{(µν)}. For r = 2 and infinitesimal Λ = Λθ, one now finds (C.5) takes the form

(lκρ ⊗ I + I ⊗ lκρ)a = Bκρ. (C.24)

Here (Bκρ){µ}{ν} and (Bκρ){µν}{0} = (Bκρ){0}{µν} are defined by a rank 2 generalization

of (C.18); the general formula for Bκρ for arbitrary rank is given in equation (C.31) below.

Applying the operator
(
lκρ ⊗ I + I ⊗ lκρ

)
to both sides of (C.24) and contracting over the

κ, ρ indices yields,

−4(D − 1)a+ 2
(
lκρ ⊗ lκρ

)
a =

(
lκρ ⊗ I + I ⊗ lκρ

)
Bκρ. (C.25)

Using the explicit expression (C.2) for lκρ, it is easily seen that for any rank two tensor

T ≡ Tµν we have ((
lκρ ⊗ lκρ

)
T
)
µν = 2

(
tr (T ) ηµν − Tνµ

)
, (C.26)

where tr(T ) ≡ ηµνTµν . Note that the trace is a Lorentz scalar, so this term is automatically

Lorentz invariant. Substituting (C.26) into (C.25) and symmetrizing over (µ, ν), we obtain

a{(µ}{ν)} = − 1

4D

(
(lκρ ⊗ I + I ⊗ lκρ)B

κρ)
{(µ1}{µ2)} (C.27)

= −i
∫
dDy χ(y, 0⃗)

[
∂µHF (y, 0⃗)∂νHF (y, 0⃗)−

1

D
ηµν∂σHF (y, 0⃗)∂

σHF (y, 0⃗)

]
,

where all derivatives are taken with respect to the spacetime point y. Similarly, we find,

a{(µν)}{0} = a{0}{(µν)}

= − 1

4D

(
(lκρ ⊗ I + I ⊗ lκρ)B

κρ)
{0}{(µ1µ2)} (C.28)

= −i
∫
dDy χ(y, 0⃗)

[
HF (y, 0⃗)∂µ∂νHF (y, 0⃗)−

1

D
ηµνHF (y, 0⃗)∂

2HF (y, 0⃗)

]
.

Thus, we have explicitly solved for a for all ranks r ≤ 2.
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We turn now to the derivation of an inductive solution to (C.5) for r > 2. For infinitesimal

Λ = Λθ and to leading order in θ, eq. (C.5) now yields

Lκρa = Bκρ, (C.29)

where

Lκρ ≡ (lκρ ⊗ I ⊗ · · · ⊗ I) + (I ⊗ lκρ ⊗ I ⊗ · · · ⊗ I) + · · ·+ (I ⊗ · · · ⊗ I ⊗ lκρ) , (C.30)

and

(Bκρ){µ1···µ|γ1|}{ν1···ν|γ2|}
≡ (C.31)

2i(−1)(|γ1|+|γ2|)
∫
dDy y[κ∂ρ]χ(y, 0⃗)∂µ1 · · · ∂µ|γ1|HF (y, 0⃗)∂ν1 · · · ∂ν|γ2|HF (y, 0⃗),

with all derivatives taken with respect to y. As in the r = 1, 2 cases, we solve (C.29) by

applying the operator Lκρ to both sides and contracting the κ, ρ-indices. We begin by noting

that the operator we obtain on the left-hand side,

LκρLκρ, (C.32)

contains two types of terms: There are r terms of the form,

I ⊗ · · · ⊗ I ⊗ lκρl
κρ ⊗ I ⊗ · · · ⊗ I = −2(D − 1)I ⊗ · · · ⊗ I, (C.33)

where we used (C.22). Similarly, using (C.26), the remaining r(r− 1) terms in (C.32) are of
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the form,

I ⊗ · · · I ⊗ lκρ︸︷︷︸
i-th slot

⊗ I · · · I ⊗ lκρ︸︷︷︸
j-th slot

⊗ I · · · ⊗ I = 2(ηµiµj trij − Tij), (C.34)

where trij and Tij denote, respectively, the trace over the i, j-th spacetime indices and the

transposition of the i, j-th indices, i.e., for any tensor T we have

(trijT )µ1···µr ≡ ηµiµjTµ1···µr , (TijT )µ1···µr ≡ Tµ1···µ̂iµj ···µ̂jµi···µr . (C.35)

Altogether, therefore, we have

LκρLκρ = −2r(D − 1)I+ 4
∑
i<j≤r

(ηµiµj trij − Tij), (C.36)

where I ≡ I⊗r. Hence, multiplying both sides of (C.29) by Lκρ and contracting the κ, ρ-

indices yields,

2r(D − 1)a+ 4
∑
i<j≤n

Tija = −LκρBκρ + 4
∑
i<j≤n

ηµiµj trija. (C.37)

Now, the trace of (C.29) yields

trij
(
Lκρ
(r)

a
)
= Lκρ

(r−2)

(
trija

)
= trijBκρ, (C.38)

where we have inserted a subscript (r) on Lκρ
(r)

to indicate the rank of the operator (C.30)

being considered. Thus, trija satisfies an equation of the same form as (C.29) but for the

lower rank r′ = r − 2 and with B′κρ = trijBκρ. For example, this implies the trace of the
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r = 3 tensor a{µ1µ2}{ν1} with respect to its two µ-spacetime indices is given by:

ηµ1µ2a{µ1µ2}{ν1} = − 1

2(D − 1)
ηµ1µ2(lκρB

κρ){µ1µ2}{ν1}, (C.39)

which is obtained by replacing (Bκρ){0}{ν1} with ηµ1µ2(Bκρ){µ1µ2}{ν1} in the r = 1 solution

(C.23) for a{0}{ν1}. Thus, since we are obtaining solutions inductively in r and have already

obtained explicit solutions for r = 1, 2, we may treat trija in (C.37) as “known.”

Thus, it remains only to extract a from the combination of components of a appearing

on the left side of (C.37). To do so, we note that the sum over all transpositions commutes

with any permutation. A standard result in the representation theory of finite-dimensional

groups implies the set of all elements that commute with the group algebra of the symmetric

group Sr is spanned by a complete set of orthogonal (idempotent) elements Ei,

EiEj = δijEi ,
k∑
i=1

Ei = I, (C.40)

where k denotes the number of partitions of r. Hence, we may expand the sum over trans-

positions appearing in (C.37), ∑
i<j≤r

Tij =
k∑
i=1

ciEi, (C.41)

for some real-valued coefficients ci. Applying the operator Ej to both sides of (C.37) and

using the orthogonality property (C.40), we obtain then,

(
2r(D − 1) + 4cj

)
Eja = Ej

−LκρBκρ + 4
∑
i<j≤n

ηµiµj trija

. (C.42)

We abbreviate the numerical coefficients,

c̃j ≡ 2r(D − 1) + 4cj . (C.43)
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For any j such that c̃j = 0, eq. (C.42) places no constraint on the corresponding Eja

and, thus, this particular Eja must automatically be composed of an Lorentz-invariant

combination of the metric and totally-antisymmetric D-dimensional tensor densities (i.e.

“Levi-Civita symbols” ϵµ1···µn). For all j such that c̃j ̸= 0, we may divide (C.42) through by

c̃j and use the completeness relation (C.40) to obtain the inductive solution,

a =
k∑
j=1
c̃j ̸=0

1

c̃j
Ej

−LκρBκρ + 4
∑
i<j≤n

ηµiµj trija

 , (C.44)

modulo arbitrary Lorentz-invariant tensors which may be identified with the value of the

sum over the terms which are unconstrained by (C.42):

k∑
j=1
c̃j=0

Eja = Lorentz invariant tensor of rank r. (C.45)

All quantities appearing in our inductive solution (C.44) for a have been explicitly defined

here except for the numerical coefficients cj and the idempotent elements Ej which may be

constructed via standard methods from the representation theory of the symmetric group

(see [26, see “Appendix A: Representation of the symmetric groups”] and references therein).

Note that the inductive solution, eq. (C.44), with Bκρ defined via

Q(Λθ) = −1

2
θκρB

κρ +O(θ2), (C.46)

holds for any tensors Q(Λ) satisfying (C.5) not just those defined3 via (C.4).

3. In particular, the solution (C.44) for a holds when Q corresponds to the Λ-dependent coefficients of
the contact terms,

(QA1···An
)α1···αn(Λ−1)∂(x1)

α1
· · · ∂(xn)

αn
δ(x1, . . . , xn), (C.47)

that quantify the failure of the Epstein-Glaser renormalized (i.e. “extended”) time-ordered products,
T{ΦA1

(x1) · · ·ΦAn
(xn)}, to be Lorentz covariant [26]. Hence, there is a close analogy between the countert-

erms required to restore Lorentz covariance in Epstein-Glaser renormalization and our “counterterms” for
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Remark 25. In the case where either |γ1| = 0 or |γ2| = 0, the tensor aγ1γ2 is totally symmetric

in its spacetime indices and a closed-form solution to the induction equation (C.44) can be

obtained (see the solution to the analogous problem in Epstein-Glaser renormalization given

in [25, Section 3]).

Remark 26. When r ≤ 2, the inductive solution (C.44) to eq. (C.5) reproduces the explicit

solutions we obtained above. The r = 0, 1 cases are trivial. To verify the r = 2 case, note

the symmetric group S2 contains two elements: the identity I and the transposition T12. It

is easily checked, in this case, that the idempotent decomposition (C.41) is satisfied by,

T12 = S− A, (C.48)

where S2 = S and A2 = A denote, respectively, the projector onto the symmetric part and

the anti-symmetric part of any tensor of rank 2. Note these projectors are “orthogonal” in the

sense that, for any tensor T of rank 2, S(AT ) = 0 = A(ST ). Moreover, they are “complete”

in the sense that S + A = I. Therefore, since they satisfy all the requisite properties, we

may identify these projectors with the idempotents (C.40) for r = 2. Denoting E1 = S and

E2 = A, we simply read off the coefficients c1 = 1 and c2 = −1 by comparing (C.48) with

(C.41). Hence, the formula (C.43) gives c̃1 = 4D and c̃2 = 4(D − 2) in this case. Plugging

these into the general formula (C.44) immediately yields: for D ̸= 2,

a = − 1

4D

(
S+

D

D − 2
A
)(

lκρ ⊗ I + I ⊗ lκρ
)
Bκρ + 4ηµ1µ2tr12a, (C.49)

which is the most general rank 2 solution to (C.5). For D = 2, we have c̃2 = 0, so the general

formula (C.44) yields (C.49) without the anti-symmetric term: note, in D = 2, any anti-

symmetric tensor of type (0, 2) is proportional to the Levi-Civita symbol ϵµ1µ2 and, thus, is

the flow relations. The primary difference is that our counterterms are not proportional to (differentiated)
δ-functions and, in the particular case of the flow relation for (CH)IT0{ϕϕ} = HF , they are actually smooth
functions of the spacetime variables, see eqs. (6.18) and (6.15).
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automatically invariant under restricted Lorentz transformations. For our application in any

dimension, only the symmetric part of a is of interest. Note also the trace of any rank two

tensor is a Lorentz scalar. Hence, (C.49) is consistent with the results given in eqs. (C.27)

and (C.28) above, i.e.,

Sa = − 1

4D
S
(
lκρ ⊗ I + I ⊗ lκρ

)
Bκρ + Lorentz-invariant tensor. (C.50)
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APPENDIX D

CURVATURE EXPANSION OF ΩC

In this appendix, we derive the curvature expansion, eq. (7.10), for ΩC . The derivation

closely follows the approach of [45, Proof of Theorem 4.1] with modifications to account

for the non-local metric dependence of ΩC and its dependence on tµ. Let gµν denote the

components of the metric in RNC centered at z ∈ M . Let Sλ : RD → RD denote the

map corresponding to re-scaling the Riemannian normal coordinates xµ 7→ λxµ. We note

Sλ leaves the origin invariant and it is a diffeomorphism for λ ∈ (0, 1]. Consider now the

smooth 1-parameter family of smooth metrics defined via,

hµν(x;λ) ≡ λ−2(S∗λg)µν(x) = gµν(λx). (D.1)

Note that hµν(λ) smoothly interpolates between the flat spacetime metric, ηµν , at λ = 0

and the original curved metric, gµν , at λ = 1.

For any Feynman parametrix compatible with the joint smoothness axiom W2, the quan-

tity,

ΩC [hµν(λ), tµ, L](f1, f2; 0⃗), (D.2)

defined via (7.6) is smooth in λ. Hence, by Taylor’s theorem with remainder, for any non-

negative integer n, we have

ΩC [gµν , tµ, L](f1, f2; 0⃗) =
n∑
k=0

1

k!

[
dk

dλk
ΩC [hµν(λ), tµ, L](f1, f2; 0⃗)

]
λ=0

+Rn(f1, f2; 0⃗),

(D.3)

where the Taylor remainder is given by

Rn(f1, f2; 0⃗) ≡
1

n!

∫ 1

0
dλ(1− λ)n

d(n+1)

dλ(n+1)
ΩC [hµν(λ), tµ, L](f1, f2; 0⃗). (D.4)
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We now show that, modulo smooth terms, the remainder (D.4) is of scaling degree (n−

D+5) and, thus, the non-smooth behavior of ΩC is entirely contained (up to scaling degree

δ) in the finite k-sum of (D.3) for n ≥ δ +D − 4. We have

(
S∗sΩC [hµν(λ), tµ, L]

)
= ΩC [(S

∗
sh)µν(λ), (S

∗
s t)µ, L] = ΩC [s

2hµν(sλ), stµ, L]. (D.5)

where the first equality follows directly from the definition (7.6) of ΩC and the second

equality follows from the definition (D.1) of hµν ,

(S∗sh)µν(x;λ) = λ−2(S∗s ◦ S∗λg)µν(x) = s2(S∗sλg)µν(x) = s2hµν(x; sλ). (D.6)

On the other hand, since χ(y, 0⃗; sL) − χ(y, 0⃗;L) vanishes in a neighborhood of the origin,

y = 0⃗, it follows from the same wavefront set arguments used in Proposition 8 that for any

s ∈ (0, 1], we have

ΩC [hµν(λ), tµ, L] = ΩC [hµν(λ), tµ, sL] + smooth terms. (D.7)

Plugging (D.7) into (D.5) yields,

(
S∗sΩC [hµν(λ), tµ, L]

)
= ΩC [s

2hµν(sλ), stµ, sL] + smooth terms. (D.8)

Plugging this back into the remainder (D.4), we find modulo smooth terms,

(S∗sRn)(f1, f2; 0⃗) =
1

n!

∫ 1

0
dλ(1− λ)n

d(n+1)

dλ(n+1)
ΩC [s

2hµν(sλ), stµ, sL](f1, f2; 0⃗) (D.9)

= s(n+1) 1

n!

∫ 1

0
dλ(1− λ)n

[
∂(n+1)

∂q(n+1)
ΩC [s

2hµν(q), stµ, sL](f1, f2; 0⃗)

]
q=sλ

However, from the almost homogeneous scaling behavior of the Feynman parametrix and
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its smoothness in m2 together with the invariance of the cutoff function (7.4) under the

simultaneous rescaling (gµν , tµ, L) → (s2gµν , stµ, sL), it follows that for any q ∈ [0, 1], we

have

ΩC [s
2hµν(q), stµ, sL](f1, f2; 0⃗) = O

(
s(−D+4)

)
. (D.10)

Consequently, we find modulo smooth terms

(S∗sRn)(f1, f2; 0⃗) = O(s(n+5−D)) (D.11)

which implies that the scaling degree of any non-smooth contributions to Rn(f1, f2; 0⃗) must

be at least n+ 5−D.

Thus, we have shown that

ΩC [gµν , tµ, L](f1, f2; 0⃗) ∼δ
δ−D+4∑
k=0

1

k!

[
dk

dλk
ΩC [λ

−2(S∗λg)µν , tµ, L](f1, f2; 0⃗)

]
λ=0

+ smooth.

(D.12)

We now rewrite (D.12) in the form of the claimed curvature expansion (7.10) for the special

case that the metric has polynomial dependence on the coordinates, gµν = g
(P )
µν . Since we

have

λ−2(S∗λg)
(P )
µν (x) (D.13)

= g
(P )
µν [xσ, ηµν , λ

2Rµνκρ(⃗0), λ
3∇σRµνκρ(⃗0), . . . , λ

P∇(σ1
· · · ∇σ(P−2))

Rµνκρ(⃗0)],
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it follows that

ΩC [λ
−2(S∗λg)µν , tµ, L] = ΩC [ηµν , λ

2Rµνκρ(⃗0), . . . , λ
P∇(σ1

· · · ∇σ(P−2))
Rµνκρ(⃗0), tµ, L].

(D.14)

For any smooth function of the form f = f(λ2α0, λ
3α1, . . . , λ

PαP−2), a straightforward

application of the multi-variate chain rule yields,

dkf

dλk

∣∣∣∣∣
λ=0

=
∑

2p0+3p1+···+kp(k−2)=k

k!α
p0
0 · · ·α

p(k−2)

(k−2)

∂(p0+···+p(k−2))f(α0, . . . , α(P−2))

∂p0α0 · · · ∂pk−2α(k−2)

∣∣∣∣∣∣
α0,...,α(P−2)=0

(D.15)

Using this formula to evaluate the terms in the k-sum of (D.12) then yields the claimed

curvature expansion (7.10). The result can then be extended to general smooth gµν via

compatibility with axiom W2, using the same argument as in the proof of Proposition 9.
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APPENDIX E

CONSTRUCTION OF COVARIANCE-RESTORING

COUNTERTERMS BASED ON GENERAL ASSOCIATIVITY

CONDITIONS

The purpose of this appendix is to develop an algorithm for constructing covariance-restoring

counterterms without relying on explicit formulas for the OPE coefficients or any other spe-

cial model-dependent properties. This algorithm is based on the general associativity prop-

erties of OPE coefficients and, thus, should be applicable to flow relations for any renormal-

izable Lorentzian quantum field theory. At the end of the appendix, we show this algorithm

reproduces the counterterms derived in Chapter 6 for the Klein-Gordon OPE coefficients

CI
T0{ϕ···ϕ} and we will use the algorithm to generate counterterms for the flow relations of

λϕ4-theory. For simplicity, we give a derivation for Lorentz-covariance restoring countert-

erms in flat spacetime; however, the derivation can be generalized to curved spacetimes using

the approach developed in Chapter 7.

Consider a theory arising from a Lagrangian with a self-interaction term ζΦV , where ζ

denotes the coupling parameter. (Note that for power-counting renormalizable theories, the

dimension of ΦV must be less than or equal to the spacetime dimension.) For example, for

λϕ4-theory we have ζ = λ and ΦV = ϕ4/4!. Consider the OPE coefficients arising from

products ΦA1
(x1) . . .ΦAn

(xn), where the fields ΦAi
are of arbitrary tensorial (or spinorial)

type. We assume that the Lorentzian OPE coefficients CB
T0{A1,...,An} have been found to

satisfy a flow relation of the form

∂

∂ζ
CBT0{A1,...,An}(x1, . . . , xn; z) ≈− i

∫
dDy χ(y, z;L) ΩBT0{V A1···An}(y, x1, . . . , xn; z)+

+ covariance-restoring counterterms, (E.1)
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where χ(y, z;L) is a suitable translationally-invariant cutoff function (see (6.19)) and the

quantity ΩB
T0{V A1···An}(y, x1, . . . , xn; z) is given in terms of OPE coefficients by a formula of

the general form

ΩBT0{V A1···An}(y, x1, . . . , xn; z)

= CBT0{V A1···An}(y, x1, . . . , xn; z)+ (E.2)

−
n∑
i=1

∑
[C]≤[Ai]+[V ]−D

CCT0{V Ai}(y, xi;xi)C
B
T0{A1···ÂiC···An}

(x1, . . . , xn; z)+

−
∑

[C]<[B]−[V ]+D

CCT0{A1···An}(x1, . . . , xn; z)C
B
T0{V C}(y, z; z),

where D denotes the spacetime dimension. For Klein-Gordon theory (ζ = m2 and ΦV =

ϕ2/2), eq. (E.2) corresponds to the flow relation (2.2) for the Wick OPE coefficient CI
T0{ϕ···ϕ}

(where only the second line of eq. (E.2) contributes in this case). For 4-dimensional λϕ4-

theory (ζ = λ and ΦV = ϕ4/4!), eq. (E.2) corresponds to the Wick-rotated integrand of the

Euclidean Holland and Hollands flow equation (1.20). For 4-dimensional Yang-Mills gauge

theories, eq. (E.2) coincides with the Wick-rotated integrand of the Euclidean flow relations

given in [20, Theorem 4]. Thus, eq. (E.2) encompasses all of these cases. Our aim is to

explicitly obtain the covariance restoring counterterms in eq. (E.1).

Note that the individual terms in the sum for ΩB
T0{V A1···An} are well-defined as distribu-

tions in spacetime variables y, x1, . . . , xn only away from all diagonals, i.e., where none of the

spacetime events coincide. However, assuming the OPE coefficients satisfy the associativity

and scaling axioms postulated in [15], then the scaling degree of ΩB
T0{V A1···An} on any partial

diagonal involving y and one other spacetime event xi is guaranteed to be strictly less than

the spacetime dimension D. It follows then that ΩB
T0{V A1···An} can be uniquely extended to

a distribution on these partial diagonals involving y, so the integral in (E.1) is well defined

(even though individual terms in ΩB
T0{V A1···An} generally contain non-integrable divergences
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at y = xi for i = 1, . . . , n).

The failure of the integral in (E.1) by itself to be covariant under Lorentz transformation

Λ is characterized by the nonvanishing of the quantity

−i
∫
dDy [χ(Λy,Λz;L)− χ(y, z;L)] ΩET0{V D1···Dn}(y, x1, . . . , xn; z) (E.3)

Since χ(y, z;L) = 1 in an open neighborhood of z, if the spacetime events xi are sufficiently

near to z, then we have

χ(Λxi,Λz;L) = χ(xi, z;L), for all i = 1, . . . , n. (E.4)

It then follows that the integrand in (E.3) vanishes as y approaches the partial diagonals

y = xi ̸= xj . Consequently, unlike the integral in (E.1), the expression (E.3) is well defined

for each of the individual terms in the sum defining ΩB
T0{V A1···An}. Note the y-dependence

of ΩB
T0{V A1···An} is isolated within terms of the form

CET0{V D1···Dn}. (E.5)

Specifically, the y-dependence of second line of (E.2) appears in CB
T0{V A1···An}. The y-

dependence of the third line of (E.2) appears in CC
T0{V Ai}

. Finally, the y-dependence of

the fourth line of (E.2) appears in CB
T0{V C}. It follows that the non-covariance of (E.3) is

quantified by integrals of the form:

ΥET0{D1···Dn}(x1, . . . , xn; z; Λ) ≡ (E.6)

− i

∫
dDy [χ(Λy,Λz;L)− χ(y, z;L)]CET0{V D1···Dn}(y, x1, . . . , xn; z).

Our task is now to show that the non-covariance of these terms can be compensated by

counterterms and thereby to construct the “covariance-restoring counterterms” for the flow

166



relation (E.1).

The integrand of (E.6) is nonvanishing only when y lies outside an open neighborhood

of z. The associativity condition (see eq. (4.36)) implies that, for any merger tree T such

that x1, . . . , xn approach an auxiliary point z′ faster than z′ and y approach z, we have

CET0{V D1···Dn}(y, x1, . . . , xn; z) ∼T ,δ
∑
C

CCT0{D1···Dn}(x1, . . . , xn; z
′)CET0{V C}(y, z

′; z),

(E.7)

where both sides are viewed as distributions in (y, x1, . . . , xn, z
′) but with the left-hand side

having trivial dependence on the auxiliary point z′. Plugging (E.7) into (E.6) yields,

ΥET0{D1···Dn}(x1, . . . , xn; z; Λ) ∼T ′,δ (E.8)

− i
∑
C

CCT0{D1···Dn}(x1, . . . , xn; z
′)
∫
y
[χ(Λy,Λz)− χ(y, z)]CET0{V C}(y, z

′; z),

where T ′ denotes any merger tree with (x1, . . . , xn) approaching z′ faster than z′ ap-

proaches z. Here
∫
y ≡

∫
dDy and we suppress the L-dependence of χ for notational conve-

nience. Assuming the OPE coefficient CEV C satisfies the general microlocal spectrum con-

dition stated in [15], then all elements (y, k1, z
′, k2, z, k3) ∈ (T ∗M)3 in the wavefront set of

CE
T0{V C}(y, z

′; z) will be such that k1 = −k2 and k3 = 0⃗. It follows then from a straightfor-

ward application of [3, Theorem 8.2.12] that the dependence of (E.8) on (z′, z) is, in fact,

smooth and, thus, we may set z′ = z :

ΥET0{D1···Dn}(x1, . . . , xn; z; Λ) ≈
∑
C

QET0{V C}(Λ
−1)CCT0{D1···Dn}(x1, . . . , xn; z), (E.9)

where QE
T0{V C}(Λ

−1) is given by

QET0{V C}(Λ
−1) ≡ −i

∫
dDy

[
χ(Λy, 0⃗;L)− χ(y, 0⃗;L)

]
CET0{V C}(y, 0⃗; 0⃗), (E.10)
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where translation invariance was used to set z = 0⃗. Thus, QE
T0{V C}(Λ

−1) is independent of

spacetime point z. Note that no assumption has been made on how quickly events x1, . . . , xn

approach z relative to each other, so (E.9) is valid for all merger trees involving the events

x1, . . . , xn. Hence, we simply use the notation “≈” that was introduced in the paragraph

surrounding eq. (4.2).

We now show that (E.10) satisfies a cohomological identity that enables us to obtain the

desired counterterms. Let Λ1 and Λ2 be Lorentz transformations. Then we have

QET0{V C}(Λ1Λ2)−QET0{V C}(Λ1)

= −i
∫
y

[
χ(Λ−1

2 Λ−1
1 y, 0⃗;L)− χ(Λ−1

1 y, 0⃗;L)
]
CET0{V C}(y, 0⃗; 0⃗)

= −i
∫
y′

[
χ(Λ−1

2 y′, 0⃗;L)− χ(y′, 0⃗;L)
]
CET0{V C}(Λ1y

′, 0⃗; 0⃗)

= −i
∫
y′

[
χ(Λ−1

2 y′, 0⃗;L)− χ(y′, 0⃗;L)
]∑
A,B

DE
A(Λ1)D

B
C (Λ

−1
1 )CAT0{V B}(y

′, 0⃗; 0⃗)

=
∑
A,B

DE
A(Λ1)D

B
C (Λ

−1
1 )QAT0{V B}(Λ2), (E.11)

where the second equality follows from a change of integration variables y → y′ = Λ−1
1 y and

third equality follows from the Lorentz covariance of the OPE coefficients (where we recall

that ΦV is a Lorentz scalar). Here we have abbreviated
∫
y ≡

∫
dDy. Denoting Q ≡ QE

T0{V C}

and suppressing field indices, eq. (E.11) is equivalent to:

0 = (d1Q)(Λ1,Λ2) = Q(Λ1) +D(Λ1)Q(Λ2)−Q(Λ1Λ2), (E.12)

which is the cohomological identity (C.14). As established in Proposition 10, this identity

implies there exists a ≡ aB
T0{V C} such that:

Q(Λ) = (d0a)(Λ) = (D(Λ)− I)a. (E.13)
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For tensor-valued1 Q, the results of Appendix C imply the a can be inductively constructed

(modulo Lorentz-invariant tensors) from

a =
k∑
j=1
c̃j ̸=0

1

c̃j
Ej

−LκρBκρ + 4
∑
i<j≤n

ηµiµj trija

 , (E.14)

with

Bκρ ≡ (Bκρ)ET0{V C} = 2i

∫
dDy y[κ∂ρ]χ(y, 0⃗)CET0{V C}(y, 0⃗; 0⃗). (E.15)

By reasoning analogous to the arguments of Chapter 6, we obtain counterterms that

ensure the Lorentz-covariance of the flow relation (E.1) by making the following substitution

in every appearance of CE
T0{V D1···Dn} in ΩB

T0{V A1···An}:

CET0{V D1···Dn} → CET0{V D1···Dn}(y, x1, . . . , xn; z)−
1

V
∑
C

aET0{V C}C
C
T0{D1···Dn}(x1, . . . , xn; z),

(E.16)

where we have written

V ≡
∫
dDy χ(y, 0⃗; 0⃗). (E.17)

It is understood the C-sum in (E.16) is carried to sufficiently-large field dimension [C] to

achieve whatever asymptotic precision is desired from the flow relation. The substitution

rule (E.16) is the key result of this appendix. We now illustrate it by applying it to the cases

of the massive Klein-Gordon field and 4-dimensional λϕ4-theory.

For the case of the flow relations for CI
T0{ϕ···ϕ} obtained in this thesis for the massive

Klein-Gordon field, we have ΦV = ϕ2/2, ζ = m2, and (E.2) reduces to:

ΩI
T0{(ϕ2/2)ϕ···ϕ}(y, x1, . . . , xn; z) =

1

2
CI
T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; z). (E.18)

1. A formula analogous to (E.14) can be obtained using the methods of Appendix C when Q is spinor-
valued (see also [26, Section 4]).
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Our algorithm instructs us to make the substitution (E.16) in ΩI
T0{(ϕ2/2)ϕ···ϕ}

. Plugging the

result of this substitution into (E.1) yields the flow relation:

∂

∂m2
CIT0{ϕ···ϕ}(x1, . . . , xn; z) ≈− i

2

∫
dDy χ(y, z;L)CI

T0{ϕ2ϕ···ϕ}(y, x1, . . . , xn; z)+

−
∑
C

aI
T0{(ϕ2/2)C}C

C
T0{A1···An}(x1, . . . , xn; z) (E.19)

where aI
T0{(ϕ2/2)C}

is given recursively by (E.14) with

(Bκρ)I
T0{(ϕ2/2)C} = i

∫
dDy y[κ∂ρ]χ(y, 0⃗)CI

T0{ϕ2C}(y, 0⃗; 0⃗). (E.20)

Comparing (E.19) with (6.31) of Theorem 7 and (E.20) with (6.30), we find that the sub-

stitution (E.16) reproduces the covariance-restoring counterterms obtained in Chapter 6 for

the flow relations of the Klein-Gordon OPE coefficients CI
T0{ϕ···ϕ}.

For λϕ4-theory, we have ΦV = ϕ4/4! and ζ = λ. Our algorithm instructs us to make the

following substitutions in the formula (E.2) for ΩB
T0{(ϕ4/4!)A1···An}

:

CB
T0{ϕ4A1···An} → CB

T0{ϕ4A1···An}(y, x1, . . . , xn; z)+ (E.21)

− 1

V
∑
C

aB
T0{ϕ4C}C

C
T0{A1···An}(x1, . . . , xn; z)

CC
T0{ϕ4Ai}

→ CC
T0{ϕ4Ai}

(y, xi; z)−
1

V
∑
D

aC
T0{ϕ4D}C

D
T0{Ai}(xi; z) (E.22)

CB
T0{ϕ4C} → CB

T0{ϕ4C}(y, z; z)−
1

V
aB
T0{ϕ4C}, (E.23)

where aB
T0{ϕ4C}

is given inductively by (E.14) in terms of

(Bκρ)B
T0{ϕ4C} = 2i

∫
dDy y[κ∂ρ]χ(y, 0⃗)CB

T0{ϕ4C}(y, 0⃗; 0⃗). (E.24)

Note that the OPE coefficient CB
T0{A} = CBA appearing on the right side of (E.22) is zero
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unless [A]ϕ = [B]ϕ ≡ m and, in this case, it is given by

CBA (x; z) =
1

β1! · · · βm!
∂
(x)
α1 (x− z)(β1 · · · ∂(x)αm(x− z)βm), (E.25)

where A = α1 · · ·αm and B = β1 · · · βm. Making the substitutions (E.21)-(E.23) in

ΩB
T0{(ϕ4/4!)A1···An}

and plugging this back into the flow relation (E.1), we obtain

∂

∂λ
CBT0{A1···An}(x1, . . . , xn; z) ≈

− 1

4!

∫
d4y χ(y, z;L)

[
CB
T0{ϕ4A1···An}(y, x1, . . . , xn; z)+ (E.26)

−
n∑
i=1

∑
[C]≤[Ai]

[
CC
T0{ϕ4Ai}

(y, xi;xi)+

− 1

V
∑
[D]

aC
T0{ϕ4D}C

D
T0{Ai}(xi; z)

]
CB
T0{A1···ÂiC···An}

(x1, . . . , xn; z)+

−
[ ∑
[C]<[B]

CB
T0{ϕ4C}(y, z; z)−

1

V
∑

[C]≥[B]

aB
T0{ϕ4C}

]
CCT0{A1···An}(x1, . . . , xn; z)

]
.

The generalization of this relation to curved spacetime was already given in eq. (2.8).
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