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ABSTRACT

We present a collection of three short stories on the applications of simple toy models in

different topics in condensed matter theory. These stories describe examples of new toy

models and methods for solving them exactly, as well as limitations of certain kinds of toy

models. The models we construct provide to a refined understanding of complex physical

phenomena, by distilling the phenomena down to their minimal ingredients.

The first story describes an exactly solvable model for an unusual kind of phase tran-

sition called a deconfined quantum critical point (DQCP). While these kinds of quantum

critical points have been hypothesized and intensely studied from field theory and numerical

perspectives, their exact nature is still disputed. Our model provides the first example of

a DQCP that can be solved exactly on the lattice, and gives a clear picture of the physi-

cal mechanism behind the transition. The second story presents a simple, exactly solvable

model for a transition in the entanglement dynamics of a quantum system. Like DQCPs,

entanglement transitions have been explored mainly through numerical work and field the-

ory approximations, with very limited exact results. We present both the model and a novel

means of solving it – by a mapping to Möbius transformations. The third story is about

limitations of exactly solvable models. We show that, although these models can be con-

structed for broad classes of topological phases of matter, they cannot be constructed for

certain phases – namely those with a nonzero Hall conductance.

xii



CHAPTER 1

INTRODUCTION

1.1 Toy models in physics

Much of our understanding of condensed matter physics has come from simple toy models.

Some examples of these models are:

• The Ising model[2, 3]

• The Haldane model[4], the Kitaev wire[5], and other free fermion models[6]

• The Haldane chain[7] and the AKLT model[8]

• The SYK model[9, 10]

• The toric code[11]

• The Kitaev honeycomb model[12]

• String-net models[13, 14] and generalizations[15, 16]

• Fracton stabilizer models, such as the Chamon model[17], the Haah models[18], the

X-cube model[19], and others[20]

Simple toy models are powerful tools for demystifying complex theories and giving phys-

ical intuition for abstract mathematical concepts. They are particularly useful in the field

of topological phases of matter, which connects deep mathematical results in topology and

category theory to the physical world. This PhD thesis reviews some ways in which my col-

laborators and I used simple toy models to better understand aspects of three very different

topics in condensed matter theory: quantum criticality, quantum dynamics, and topological

phases. The toy models we study are so simple that they can be solved exactly, and capture

the minimal ingredients for various interesting physical phenomena.
1



In the following, we will briefly discuss the three topics in condensed matter theory listed

above, introducing along the way our new results. We will explore thse topics much more in

depth in the following chapters.

1.2 Symmetries of phases of matter and how to break them

In the 1930s and 1940s, Lev Landau developed a paradigm for understanding phases of matter

and transitions between them[21]. Within the Landau paradigm, phases are classified by

their symmetries, and systems undergo “spontaneous symmetry breaking" phase transitions

when their symmetry group is reduced to a subgroup. An example of such a transition

is the liquid to solid transition. In this example, the liquid has a continuous translation

symmetry because its particle density is uniform in space. On the other hand, a solid has

a discrete translation symmetry due to its crystal lattice structure. The symmetry of the

latter is a subgroup of the former, and the transition between these two phases is described

by spontaneous symmetry breaking.

Transitions between different phases are particularly interesting when they are contin-

uous [22]. In a continuous phase transition, the correlation length diverges, so microscopic

details of the system are washed away. As a result, two entirely different systems can demon-

strate precisely the same properties at criticality, a phenomenon known as universality. For

example, the uni-axial magnet at its paramagnetic to ferromagnet transition and water at its

critical point, where the difference between liquid and gas disappears, actually have identical

critical properties.

Within the spontaneous symmetry breaking picture, it would seem unlikely to have a

continuous transition between phases that have different symmetries. Specifically, this is the

case where the symmetry group of one phase is not a subgroup of the symmetry group of

the other. A priori, there is no reason for there to be a direct transition; such a transition

may secretly be two spontaneous symmetry breaking transitions finely tuned to occur at the

2



same point. When the transition is indeed continuous and not finely tuned, the transition is

known as a deconfined quantum critical point. Ch. 2 presents the first exactly solvable model

for this kind of unusual quantum critical point.

1.3 Entanglement transitions: competition between scrambling

and measurement

Sec. 1.2 discussed phases of stationary, time-independent systems. There are also interesting

phases of dynamical systems, where the interactions between particles change in time and

we also allow for observers to probe the quantum system via measurement[23, 24, 25, 26].

The dynamical phases we will focus on are distinguished by the entanglement of the steady

state. Here, we will give some physical intuition for the result we will present from an

information-theoretic perspective.

Suppose that we have a 1D chain of qubits and initialize the system in a quantum state.

This quantum state encodes a message. For example, in a particularly simple kind of state

known as a product state on a chain of N qubits, the state can be labeled by a binary string

of length N such as (0, 0, 1, 0, . . . , 1) where each entry indicates the state of a qubit. If we

now add interactions to the qubits, then the state will change over time, and the message

of the initial state becomes "scrambled," or encrypted. If we also perform measurements

on the system, we can extract information about the system, thereby removing information

that was originally stored by the initial state. However, if there is sufficient scrambling, then

the message gets encrypted well enough that small amounts of measurement do not destroy

the message – the message can still be at least partially recovered.

The competition between scrambling and measurement leads to measurement-induced

phase transitions, which are phase transitions in dynamical systems related to properties of

the long-time steady-state, i.e. if that steady-state can still carries information about the

initial message. Ch. 3 presents a simple model of such a phase transition, where we can

3



compute universal properties of the critical point exactly.

1.4 Topological phases and commuting projector Hamiltonians

Many phases are classified by their symmetries. However, more recently, it has been shown

that phases with the same symmetries can still be distinct1. Such phases are known as

topological phases [27, 6].

The integer quantum Hall effect is the prototypical example of a topological phase of

matter in two dimensions[28]. In fact the experimental discovery of the quantum Hall phase

marked the beginning of the study of topological phases of matter[29]. In a 2D slab, the bulk

is a boring insulator, but the boundary can host dissipationless current. This dissipationless

current is proportional to the Hall conductance, which is the topological invariant labeling

the phase of matter.

There is a recipe for constructing exactly solvable models, called commuting projector

Hamiltonians, for broad classes of topological phases[1, 14, 15, 16]. However, it was recently

shown using abstract and highly nontrivial results in algebraic geometry that the integer

quantum Hall phase, and in fact any topological phase with a nonzero Hall conductance,

cannot be realized by a commuting projector Hamiltonian[30]. In Sec. 4, we prove this no-go

theorem on exactly solvable models in a completely different, and more physically intuitive

way.

1. To be clear, by symmetry in this context we mean refer to 0-form symmetries

4



CHAPTER 2

STORY 1: INTERTWINED SYMMETRIES AND UNUSUAL

PHASE TRANSITIONS

2.1 Introduction: Deconfined quantum criticality

The notion of deconfined quantum criticality was introduced in Refs. [31, 32]. The paradigm

of such a critical point, as explained in those original papers, describes the transition between

a valence-bond solid (VBS) phase and a Néel antiferromagnet on a square lattice. The system

has both an SO(3) internal rotation symmetry and a C4 lattice rotation symmetry due to

the square lattice. In the VBS phase, neighboring spins pair into singlets, so the SO(3)

symmetry is respected but the C4 lattice rotation symmetry is spontaneously broken. This

results in four degenerate ground states. In the Néel phase, the C4 rotation symmetry is

respected but the SO(3) symmetry is spontaneously broken. Therefore, a direct transition

between the two phases would be a transition between phases that have different symmetries:

C4 is not a subgroup of SO(3) and SO(3) is not a subgroup of C4.

One physical indication for a direct transition is in the structure of the C4 vortices. If we

start in the VBS phase, then we restore the C4 symmetry by proliferating domain walls of

the symmetry. The structure of the vortices, where four domain walls meet, show that the

symmetries are intertwined: the vortices carry spin−1/2’s, i.e. spinons. Therefore, prolifer-

ating vortices also proliferates spinons, so restoring the C4 symmetry results in spontaneously

breaking the SO(3) symmetry[1].

Initial numerical work agreed with the hypothesis of a direct, continuous phase transition[33,

34]. However, later work in numerics and conformal bootstrap led to growing evidence against

a continuous phase transition[35, 36, 37, 38]. It is now believed that this transition is actually

weakly first order rather than continuous.

Inspired by the picture of vortices of one symmetry carrying fractional charge of the other

5



Figure 2.1: (a) The four degenerate ground states resulting from spontaneously breaking the
C4 rotation symmetry in the VBS phase. (b) Four C4 domain walls form a vortex, which
charries an uncompensated spin−1/2 moment. These figures are obtained from Ref. [1].

symmetry, we construct a model that implements a similar physical picture in a simpler

setting. We obtain a model in 1D where the domain walls of one symmetry carry fractional

charge of another symmetry. Using an exact mapping to a well-known spontaneous symmetry

breaking transition, we show that indeed the DQCP in this case exists, and is exactly solvable

on the lattice.

2.2 Exactly solvable model for a deconfined quantum critical

point in 1D

This chapter is reprinted with permission from:

Carolyn Zhang and Michael Levin. Exactly solvable model for a deconfined quantum critical

point in 1D. Phys. Rev. Lett. 130,026801, Jan 2023.

© 2020 American Physical Society

Abstract

We construct an exactly solvable lattice model for a deconfined quantum critical point

(DQCP) in (1+1) dimensions. This DQCP occurs in an unusual setting, namely at the edge

of a (2+1) dimensional bosonic symmetry protected topological phase (SPT) with Z2 × Z2
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symmetry. The DQCP describes a transition between two gapped edges that break different

Z2 subgroups of the full Z2×Z2 symmetry. Our construction is based on an exact mapping

between the SPT edge theory and a Z4 spin chain. This mapping reveals that DQCPs in

this system are directly related to ordinary Z4 symmetry breaking critical points.

2.2.1 Introduction

Deconfined quantum critical points (DQCPs) describe unusual “Landau forbidden” phase

transitions in which the unbroken symmetry group of one phase is not a subgroup of the

unbroken symmetry group of the other phase[31, 32]. The paradigm of this kind of critical

point is the hypothesized (2+1) dimensional DQCP between the valence bond solid (VBS)

phase and the Néel phase on a square lattice. The VBS phase has internal SO(3) rotation

symmetry but spontaneously breaks C4 lattice rotation symmetry, while the Néel phase has

C4 symmetry but breaks SO(3) symmetry. Crucially, the two symmetries are intertwined:

vortices of the C4 symmetry carry uncompensated spin-1/2 moments[1]. As a result, dis-

ordering with respect to the C4 symmetry can cause ordering under the SO(3) symmetry,

resulting in a hypothesized direct transition between the two phases.

Thus far, DQCPs have been studied primarily using field theory and numerical methods[33,

34]. One reason for this is the lack of analytically tractable lattice models for DQCPs. In

this work, we take a step towards a more analytical microscopic approach, by constructing

an exactly solvable lattice model for a (1+1) dimensional DQCP. The exact solvability of our

model makes explicit the mechanism for the DQCP, which lies in the unusual structure of the

domain walls. This DQCP has a similar field theory description to the (1+1) dimensional

DQCP that was analyzed in Refs. [39, 40, 41] using bosonization (see also Ref. [42, 43]).

However, our DQCP involves a different lattice realization with different (non-spatial) sym-

metries.

The key idea behind our solvable lattice model is to consider a DQCP in an unusual

7



(a)

(b)

(c)

Figure 2.2: (a)-(b) The two degenerate ground states of the Hamiltonian (2.2) that sponta-
neously breaks Z2a. The blue arrows represent the σj spins and the black arrows represent
the τj+1/2 spins. Both states are eigenstates of Ub with eigenvalue +1. (c) Domain walls
occur at the boundaries between these states. A state with two Z2a domain walls (indicated
by the dashed lines) has eigenvalue −1 under Ub, meaning two Z2a domain walls fuse to a
Z2b charge.

setting – namely, at the edge of a (2+1) dimensional symmetry protected topological (SPT)

phase. SPT edge theories provide a natural setting for DQCPs because they also have

intertwined symmetries[44, 45]. In particular, an SPT with a “mixed anomaly” between two

symmetries has an edge theory where domain walls of one symmetry carry fractional charge

of the other symmetry[46, 47, 48]. Like in the VBS/Néel system, disordering with respect

to one symmetry, by proliferating domain walls of that symmetry, may cause ordering with

respect to the other symmetry, thereby realizing a DQCP.

We consider the simplest example of such an SPT edge theory: the edge theory of a 2D

Z2 × Z2 symmetric bosonic SPT with a mixed anomaly between the two Z2 symmetries.

Using an exact mapping between the SPT edge theory and a Z4 spin chain, we rigorously

establish the existence of a DQCP and derive the full critical theory.
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2.2.2 Z2a × Z2b SPT edge theory

Our model for the SPT edge theory consists of a chain of spin-1/2’s with two spins σj and

τj+1/2 in each unit cell, labeled by j. The two Z2 symmetries, denoted by Z2a and Z2b, are

generated by unitary operators Ua and Ub with

Ua =
∏
j

σxj Ub =
∏
j

τxj+1/2i
1−σzj σ

z
j+1

2 . (2.1)

Note that Ub does not act “on-site” in this representation: this is allowed since (2.1) describes

the effective action of the symmetries on the edge degrees of freedom; in the original 2D spin

system that describes the bulk SPT phase, both symmetries act onsite.

The above symmetry action (2.1) carries a mixed anomaly between the two symmetries.

One manifestation of this mixed anomaly is that a pair of Z2a domain walls is charged under

Z2b. To see this, consider the Hamiltonian

H = −
∑
j

σzjσ
z
j+1 −

∑
j

τxj+1/2. (2.2)

The two degenerate ground states of this Hamiltonian, which are illustrated in Fig. 3.1(a)-

(b), spontaneously break Z2a. Now consider a state with two domain walls |ψ2dw⟩, as shown

in Fig. 3.1(c). From (2.1), we can see that such a state is actually charged under Z2b:

Ub|ψ2dw⟩ = −|ψ2dw⟩. Evidently, two Z2a domain walls carry a Z2b charge, so each domain

wall can be associated with “half" a Z2b charge.

Another way to think about this anomaly is in terms of the fusion rules for domain walls.

There are actually four kinds of domain walls for this system if we distinguish between states

that carry different quantum numbers under the unbroken Z2b symmetry. These four kinds

of domain walls are shown in Fig. 3.2: (1) a “no-domain wall” state; (2) a (bare) Z2a domain

wall; (3) a Z2b charge; (4) a composite of a Z2a domain wall and a Z2b charge. The fact that
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i1 −i−1C†
jCj+1

domain
wall

Figure 2.3: A mapping between the four kinds of domain walls in the SPT edge theory and
the four kinds of domain walls in the Z4 spin chain, which are labeled by their eigenvalues
{1, i,−1,−i} under C†

jCj+1. As discussed in the main text, two Z2a domain walls (second
configuration) fuse to a Ub charge, which is equivalent to a τj+1/2 spin flip (third configura-
tion).

two Z2a domain walls fuse to a Z2b charge means that the fusion rules for the domain walls

have a Z4 group structure rather than the usual Z2×Z2 structure. This Z4 fusion structure

points to a connection between our edge theory with an anomalous Z2a×Z2b symmetry given

by (2.1) and an ordinary (non-anomalous) Z4 spin chain (this was also noted in Ref. [49]).

2.2.3 Z4 spin chain

The Z4 spin chain is a spin chain where each spin can be in four different states. The two

basic operators acting on the jth spin are the “clock” operator Cj and the “shift” operator

Sj . These operators take the following form (in the clock eigenstate basis):

Cj =



1 0 0 0

0 i 0 0

0 0 −1 0

0 0 0 −i


Sj =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


. (2.3)

Note that Cj and Sj satisfy the algebra

C4
j = S4j = 1 CjSj = iSjCj . (2.4)
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In this paper, we will be interested in Z4 spin chains with a global Z4 symmetry given

by UZ4
=
∏

j Sj . Such spin chains are closely related to the Z2 × Z2 SPT edge theory

described above. To see the relation, consider a symmetry breaking Hamiltonian of the

form H = −∑j
1
2(C

†
jCj+1 +C

†
j+1Cj). This system has four degenerate ground states, and

likewise four different species of domain walls. The different types of domain walls can be

conveniently labeled by fourth roots of unity, {1, i,−1,−i}; the label associated with each

domain wall is given by C†
jCj+1 (assuming the domain wall is located between spins at sites

j and j + 1). The crucial point is that these domain walls obey Z4 fusion rules just like the

domain walls for the Z2 × Z2 SPT edge theory, suggesting that there may be a way to map

one system onto the other.

2.2.4 Mapping between the models

We will now map the Hilbert space of the Z2 × Z2 SPT edge theory onto the Hilbert space

of the Z4 spin chain.

As we mentioned earlier, the basic idea is to map the four kinds of domain walls in the Z4

spin chain onto the four kinds of domain walls in the SPT edge theory. To do this, we need to

map the spin chain operator C†
jCj+1 (which measures Z4 domain walls) onto a corresponding

domain wall operator in the SPT edge theory. The latter operator should have the four

domain wall configurations in Fig. 3.2 as eigenstates, with eigenvalues 1, i,−1, and −i. It

should also be invariant under the Z2×Z2 symmetry, since we want our mapping to map Z4

symmetric operators in the spin chain (like C†
jCj+1) onto Z2 × Z2 symmetric operators in

the SPT edge theory. These requirements are satisfied by the operator τx
j+1/2

i
(1−σzjσ

z
j+1)/2,

so we map

C
†
jCj+1 ↔ τxj+1/2i

(1−σzjσ
z
j+1)/2. (2.5)

In addition to C
†
jCj+1, we also need to work out how our mapping acts on the shift

11



Sj

Sj

SjSj

1 1

i −i −1 −1

i−i

Figure 2.4: The action of Sj on domain wall states in the SPT edge theory: Sj shifts the
domain wall measured by C

†
j−1Cj by i and the domain wall measured by C

†
jCj+1 by −i.

Here, j labels the spin in the middle of each 5-spin configuration.

operator Sj . To do this, notice that Sj shifts the domain wall measured by C
†
j−1Cj by i

and the domain wall measured by C
†
jCj+1 by −i. This means that Sj should map to an

operator whose action on SPT domain wall states is of the form shown in Fig. 2.4. Another

requirement is that Sj should map onto an operator that is invariant under the Z2 × Z2

symmetry. These two requirements lead us to the mapping

Sj ↔ σxj

[(
1 + σzj−1σ

z
j

2

)
+

(
1− σzj−1σ

z
j

2

)
τzj−1/2

]

×
[(

1 + σzjσ
z
j+1

2

)
τzj+1/2 +

(
1− σzjσ

z
j+1

2

)]
.

(2.6)

Eqs. (2.5-2.6) define a mapping between local Z4 symmetric operators in the spin chain

and local Z2 × Z2 symmetric operators in the SPT edge theory. To understand the global

properties of this mapping, we note that straightforward algebra shows that

∏
j

Sj ↔ Ua
∏
j

C
†
jCj+1 ↔ Ub. (2.7)
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These equations tell us how the various symmetry sectors map onto one another. In

particular, we see that the two sectors of the SPT edge theory with Ua = ±1 and Ub = 1 map

onto the two spin chain sectors with
∏

j Sj = ±1, and with periodic boundary conditions.

On the other hand, the two SPT sectors with Ua = ±1 and Ub = −1 map onto spin chain

sectors with
∏

j Sj = ±1 and anti-periodic boundary conditions. Here, the anti-periodic

boundary condition can be implemented, on a closed loop of N sites, by using CN+1 = −C1

instead of CN+1 = C1 (which corresponds to the periodic case). Putting this all together,

we see that the Hilbert space of the SPT edge theory maps onto the Hilbert space of the

Z4 spin chain with a particular combination of sectors, namely the two symmetry sectors∏
j Sj = ±1, with either periodic or anti-periodic boundary conditions.

Alternatively, one can think of this particular combination of sectors as describing a Z4

spin chain coupled to a Z2 gauge field {νj+1/2} with the gauge constraint νx
j−1/2

νx
j+1/2

=

S2j . In the gauged spin chain, the two boundary conditions correspond to sectors with

even and odd Z2 gauge flux, while the global constraint
∏

j Sj = ±1 is imposed by gauge

invariance. In this paper, we will mostly work with the explicit sector description rather

than the gauged spin chain language, but the latter is a completely equivalent way to think

about our mapping.

2.2.5 Using the mapping

We will now use the mapping to understand the phases and phase transitions of the SPT edge

theory. We start with the Z4 spin chain, which is expected to support three different gapped

phases: an ordered phase where the Z4 symmetry is spontaneously broken, a disordered phase

where the symmetry is unbroken, and a partially ordered phase where the Z4 symmetry is

broken down to Z2[50]. We can diagnose each of these phases in terms of an order parameter
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O, and a disorder parameter D defined as follows1:

O = lim
|i−j|→∞

⟨C†
iCj⟩ D = lim

|i−j|→∞

〈 j∏
k=i

Sk

〉
. (2.8)

Each phase has a different pattern of order and disorder parameters:

Ordered phase : O ̸= 0, D = 0

Disordered phase : O = 0, D ̸= 0

Partially ordered phase : O = 0, D = 0. (2.9)

Now, according to (2.7), our mapping takes the order parameter O for the Z4 spin chain onto

the symmetry transformation Ub restricted to an interval, which is, by definition, a disorder

parameter for Z2b. Likewise, our mapping takes the Z4 disorder parameter D to a Z2a

disorder parameter. It follows that the ordered phase of the spin chain corresponds to a phase

of the SPT edge theory with a vanishing Z2a disorder parameter and a nonvanishing Z2b

disorder parameter – i.e. a phase with broken Z2a symmetry and unbroken Z2b symmetry.

By the same reasoning, the disordered phase of the spin chain maps onto a phase with

unbroken Z2a symmetry and broken Z2b symmetry. Finally, the partially ordered phase of

the spin chain maps onto a phase where both Z2a and Z2b are broken.

The most important application of these results, for our purposes, involves phase tran-

sitions. In particular, consider a hypothetical critical point between the Z2a broken (Z2b

unbroken) phase, and its partner, the Z2b broken (Z2a unbroken) phase. Applying our map-

ping, such critical points correspond to critical points between the ordered and disordered

phase of the Z4 spin chain. This means that the problem of understanding DQCPs in the

context of the SPT edge theory maps onto the problem of understanding ordinary symmetry

1. By some conventions, “order parameter" refers to the operator Cj . Here, we mean the two-point
correlation function in (2.8), which is nonzero in the ordered phase and zero in the disordered phase.
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breaking critical points for the Z4 spin chain. Since the latter critical points are known to

exist and are well-understood, this proves the existence of DQCPs and also allows us deduce

their structure.

2.2.6 Exactly solvable model

More concretely, we can use our mapping to construct an exactly solvable Hamiltonian that

describes a continuous phase transition between the Z2a broken (Z2b unbroken) phase, and

the Z2b broken (Z2a unbroken) phase of the SPT edge theory and therefore describes a DQCP.

To build such a Hamiltonian, we start with an exactly solvable spin chain Hamiltonian that

describes a Z4 symmetry breaking transition. In particular, we use the Z4 clock model:

Hclock(α) = −(1− α)
∑
j

1

2

(
C
†
jCj+1 + C

†
j+1Cj

)
− α

∑
j

1

2

(
Sj + S

†
j

)
. (2.10)

Later, we will review how to solve Hclock exactly; for now, the only property we need is that

Hclock belongs to the Z4 ordered phase for α < 1
2 and the disordered phase for α > 1

2 , with

a direct transition at α = 1
2 .

To apply our mapping, we write

Hclock(α) = (1− α)Ha,clock + αHb,clock, (2.11)

where Ha,clock and Hb,clock describe the two sets of terms in (2.10). Notice that Ha,clock

and Hb,clock are both sums of commuting terms. Furthermore, one can see that Ha,clock

and Hb,clock belong to the ordered and disordered phases, respectively. Hence, applying

our mapping to Ha,clock gives a commuting Hamiltonian describing the Z2a broken (Z2b
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unbroken) phase of the SPT edge theory:2

Ha = −
∑
j

(
1 + σzjσ

z
j+1

2

)
τxj+1/2. (2.12)

Similarly, applying our mapping to Hb,clock, gives a commuting Hamiltonian for the Z2b

broken (Z2a unbroken) phase:

Hb = −
∑
j

[
σxj

(
1 + σzj−1σ

z
j+1

2

)(
τz
j−1/2

+ τz
j+1/2

2

)

+ σxj

(
1− σzj−1σ

z
j+1

2

)(
1 + τz

j−1/2
τz
j+1/2

2

)]
.

(2.13)

Our exactly solvable model that tunes between these two symmetry breaking phases is

given by

H(α) = (1− α)Ha + αHb. (2.14)

Like Hclock, this Hamiltonian describes a direct transition between the two phases (and

hence a DQCP) at α = 1
2 .

2.2.7 Exactly solvable critical point

We now review how to solve the Z4 clock model Hclock(α) (2.10) and hence also H(α). The

basic idea is to map Hclock onto two decoupled transverse field Ising models which undergo

simultaneous symmetry breaking transitions. To do this, we map each four dimensional spin

onto two spin-1/2 degrees of freedom, denoted by µj and ρj (note that µj and ρj should not

be confused with σj and τj+1/2). We then write

Cj =
e−iπ/4
√
2

(
µzj + iρzj

)
(2.15)

2. Note that this Hamiltonian is not exactly the same as the Hamiltonian written under Eq. 2.1, whose
ground states also spontaneously break Ua.
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and

Sj = µxj

(
1 + µzjρ

z
j

2

)
+ ρxj

(
1− µzjρ

z
j

2

)
. (2.16)

Using (2.15) and (2.16), we compute

C
†
jCj+1 + C

†
j+1Cj = µzjµ

z
j+1 + ρzjρ

z
j+1

Sj + S
†
j = µxj + ρxj .

(2.17)

Applying this map to the Z4 clock model in Eq. 2.10 gives

Hclock = −(1− α)
∑
j

1

2

(
µzjµ

z
j+1 + ρzjρ

z
j+1

)
− α

∑
j

1

2

(
µxj + ρxj

)
,

(2.18)

which recovers the well-known fact that the Z4 clock model is unitarily equivalent to two

decoupled transverse field Ising models.

This mapping implies that the DQCP that occurs at α = 1/2 is equivalent to two copies

of the critical Ising theory[51]. More precisely, the DQCP is equivalent to a particular combi-

nation of sectors of the Ising theory: translating the sectors
∏

j Sj = ±1 and CN+1 = ±C1

into the Ising language, we see that H(α) is described by the symmetry sector
∏

j µ
x
j ρ

x
j = 1,

with the same (periodic or anti-periodic) boundary conditions in both µ, ρ, i.e. µzN+1 = ±µz1
and ρzN+1 = ±ρz1.3

Using this mapping we can obtain all the critical exponents of the DQCP. For example,

the correlation length ξ near the critical point diverges as ξ ∼ 1
|α−1

2 |ν
with ν = 1. Also, the

3. To see that
∏

j Sj = ±1 translates to
∏

j µ
x
j ρ

x
j = 1, notice that S2

j = µx
j ρ

x
j according to (2.16). Since∏

j Sj = ±1,
∏

j S
2
j =

∏
j µ

x
j ρ

x
j = 1. The fact that the two Ising models must have the same boundary

condition follows directly from CN+1 = ±C1, using the definition of Cj in (2.15).
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two-point correlators for the Z2a and Z2b order parameters σz and τz are given by

⟨σzi σzj ⟩ ∼
1

|i− j|1/2
⟨τzi+1/2τ

z
j+1/2⟩ ∼

1

|i− j|1/2
. (2.19)

Is the above DQCP stable to perturbations? The answer to this question depends on what

additional symmetries we impose beyond Z2a × Z2b. For example, suppose we impose both

time reversal and parity symmetry. In this case, it is well known that the critical point of the

Z4 clock model does not have any relevant symmetric operators beyond the tuning parameter

α, but it does have a marginal operator corresponding to λ
∑

j(C
2
jC

2
j+1 + S2j ). Adding this

operator moves the system along a critical line[50, 52, 53]. Therefore the DQCP that we

described above is actually part of deconfined quantum critical line with continuously varying

exponents (see the Sec. 2.3 for more details). On the other hand, if we don’t impose additional

symmetries, then the critical point has other relevant symmetric operators that drive the

system into a gapless phase, destroying the direct transition. These are known as “chiral

perturbations," and are given by λφ
∑

j

(
C
†
jCj+1e

iφ + h.c.
)

and λϑ
∑

j

(
Sje

iϑ + h.c.
)
[54,

55, 56, 57]. More generally, if we consider the whole critical line, there is a region (i.e. a

range of λ) where the chiral perturbations are irrelevant[52, 54, 55, 56] (see also Sec. 2.3).

In this region, time reversal symmetry and parity symmetry are not required to stabilize the

transition.

2.2.8 Self-duality at criticality

An interesting aspect of the above DQCP is that it is self-dual : there is a duality transfor-

mation that maps the critical point to itself and exchanges the Z2a and Z2b order parameters

in (2.19). This self-duality is reminiscent of the self-duality that occurs in other DQCPs,

such as in the XY antiferromagnet/VBS transition obtained from adding easy-plane spin

anisotropy to the Néel/VBS theory[31, 32, 58].
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The duality transformation – denoted by Uc – is easiest to understand in terms of the

Z4 spin chain variables: in this description, Uc maps C†
jCj+1 onto Sj+1 and maps Sj onto

C
†
jCj+1. This is similar to the Kramers-Wannier duality, but unlike standard Kramers-

Wannier duality, Uc is both (1) unitary and (2) locality preserving, in the sense that it maps

local operators to local operators. These properties are due to the unusual sector structure

in our Z4 spin chain, or equivalently the fact that the Z4 spin chain is coupled to a Z2 gauge

field (see the Sec. 2.3 for more details). One consequence of the unitarity and locality of Uc

is that Uc can also be viewed as an ordinary symmetry, rather than a duality.

2.2.9 Discussion

As emphasized above, at the core of our construction is the mapping between the Z2 × Z2

SPT edge theory and the Z4 spin chain (2.5-2.6). This mapping can be readily generalized

to any ZN1
×ZN2

SPT edge theory with a primitive4 mixed anomaly. Specifically, any edge

theory of this kind can be mapped onto a ZN1N2
spin chain in such a way that the Landau

forbidden transition in the edge theory maps onto an ordinary symmetry breaking transition

in the spin chain.

Moving forward, it would be interesting to find examples of these mappings for other

kinds of anomalies, such as “type-III anomalies”[48, 47], or for non-Abelian symmetry groups.

Examples of this kind could give solvable DQCPs with richer structure. It would also be

interesting to generalize to higher dimensional systems, though this is not straightforward

since our construction relies on charges and domain walls having the same dimensionality,

as shown in Fig. 3.2.

Another interesting generalization is to add disorder to our model, by drawing the co-

efficients of the terms in Ha,clock and Hb,clock from random distributions. It was shown in

Refs. [60, 61, 62] that strongly disordered ZN clock models have continuous transitions with

4. By “primitive” we mean that the topological invariant eiΘ12 defined in Ref. [59] is a primitive dth root
of unity where d = gcd(N1, N2).
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critical properties that can be obtained exactly using a renormalization group analysis. In

the corresponding SPT edge theory, this kind of model would give an example of a disordered

DQCP.
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2.3 Supplemental Material

2.3.1 Field theory description of deconfined quantum critical line

In this section, we present a field-theoretic description of the deconfined quantum critical

line that separates the two symmetry breaking phases of the SPT edge theory. The exactly

solvable DQCP presented in the main text corresponds to a particular point along this line,

as we explain below.

We begin with a field theory description of the SPT edge theory. This field theory consists

of two bosonic fields θ, ϕ with the commutation relation

[
θ(x′), ∂xϕ(x)

]
= 2πiδ(x− x′), (2.20)

where the fundamental local operators in the SPT edge theory are e±iθ, e±iϕ. The Z2a×Z2b
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symmetries act on θ and ϕ as follows:

Ua : ϕ→ ϕ+ π θ → θ

Ub : ϕ→ ϕ θ → θ + π.

(2.21)

(To see that Eq. (2.21) describes the desired mixed anomaly between Z2a and Z2b, observe

that the symmetry actions Ua and Ub are not anomalous as individual Z2 symmetries, while

the product Ub · Ua is anomalous[63, 45]. This also holds for the lattice model in the main

text and is characteristic of the mixed anomaly for Z2a × Z2b).

Next, observe that we can realize the Z2a broken (Z2b unbroken) phase of the SPT edge

theory with the following edge Hamiltonian:

H =
1

8π

[
K (∂xθ)

2 +
4

K
(∂xϕ)

2
]
+ Aϕ cos(2ϕ), (2.22)

Here, K is the Luttinger parameter, Aϕ is a real coefficient, and we work in units where

the edge velocity v is set to v = 1. The above Hamiltonian breaks the Z2a symmetry

spontaneously in a regime where the term Aϕ cos(2ϕ) is relevant. In this case, ϕ becomes

fixed to one of the two minima of the cosine potential leading to an expectation value for

eiϕ, which is odd under Ua. Likewise, we can realize the Z2b broken (Z2a unbroken) phase

using the edge Hamiltonian

H =
1

8π

[
K (∂xθ)

2 +
4

K
(∂xϕ)

2
]
+ Aθ cos(2θ), (2.23)

As before, if we are in regime where Aθ cos(2θ) is relevant, then eiθ acquires an expectation

value, spontaneously breaking the Z2b symmetry.

The above considerations suggest a natural field theory for the deconfined quantum crit-
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Aφ

SSB Z2a

SSB Z2b

SSB Z2a

SSB Z2b

3
10π

3
10π

Figure 2.5: Phase diagram for the Hamiltonian in (2.24) for K = 2. The dotted lines are crit-
ical lines, with continuously varying exponents. The black dots at (Aθ, Aϕ) =

(
± 3

10π ,± 3
10π

)
indicate points along the critical lines described by the exactly solvable critical points from
the main text.

ical line separating the two symmetry breaking phases:

H =
1

8π

[
K (∂xθ)

2 +
4

K
(∂xϕ)

2
]
+ Aθ cos(2θ) + Aϕ cos(2ϕ), (2.24)

Only one of the two cosine operators is relevant for a given value of K: the scaling dimension

of cos(2ϕ) is K while the scaling dimension of cos(2θ) is 4
K . Therefore, cos(2ϕ) is relevant

for K < 2 and cos(2θ) is relevant for K > 2. At K = 2, both cosines are marginal. For this

value of K, the two marginal operators cos(2ϕ) and cos(2θ) compete, and the fate of the

theory depends on the magnitudes of the coefficients Aϕ, Aθ (see Fig. 2.5). In particular, if

|Aϕ| > |Aθ| then the Z2a symmetry is spontaneously broken, while if |Aϕ| < |Aθ| then the

Z2b symmetry is spontaneously broken. The deconfined quantum critical line(s) occur when
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Aϕ = ±Aθ.

A few comments about (2.24): first, we note that the field theory (2.24) has been used

in various contexts in the literature (see e.g. Ref [53] and references therein), and is similar

to the field theory of the 1D DQCP discussed in Ref. [39]. We also note that if we define

θ′ = 2θ and ϕ′ = ϕ/2, the resulting field theory for θ′ and ϕ′ is precisely the field theory that

describes the Z4 spontaneous symmetry breaking critical line[64]. This mapping to the Z4

symmetry breaking transition is the field theory analog of the lattice mapping discussed in

the main text.

We now review how to derive the properties of the critical lines with Aϕ = ±Aθ. To

do this, we fix K = 2 and reparameterize the two cosines in (2.24) in symmetric and anti-

symmetric combinations:

Aθ cos(2θ) + Aϕ cos(2ϕ) = g+[cos(2θ) + cos(2ϕ)]

+ g−[cos(2θ)− cos(2ϕ)] (2.25)

The critical lines occur when either g+ = 0 or g− = 0. For concreteness, consider the critical

line with g− = 0. The key to analyzing this line is to utilize the hidden SU(2) symmetry in

this model. In particular, there exists an SU(2) rotation that maps

cos(2θ) + cos(2ϕ) → 1

2
[(∂xθ)

2 − (∂xϕ)
2] (2.26)

and leaves cos(2θ) − cos(2ϕ) and (∂xθ)
2 + (∂xϕ)

2 invariant. After this (unitary) SU(2)

transformation, our Hamiltonian becomes

H → ṽ

8π

[
K̃ (∂xθ)

2 +
4

K̃
(∂xϕ)

2
]

+ g−[cos(2θ)− cos(2ϕ)] (2.27)
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where

K̃2 = 4
1 + 2πg+
1− 2πg+

ṽ2 = 1− 4π2g2+. (2.28)

Crucially, along the critical line g− = 0, the SU(2) rotated Hamiltonian (2.27) is Gaussian.

As a result, critical exponents can be computed straightforwardly. These critical exponents

vary continuously along the critical line due to the continuously varying Luttinger parameter

K̃.

To complete this discussion, we now work out which point(s) along these critical lines

correspond to the exactly solvable lattice model given in Eq. 15. To this end, recall that

in the main text, we mapped our solvable lattice model onto two decoupled Ising models.

This mapping implies that the operator that drives the transition is the sum of the energy

fields of the two Ising models, which has a scaling dimension 1. In comparison, in the field

theory (2.27), the operator that drives the transition is [cos(2θ)−cos(2ϕ)] which has a scaling

dimension of min( 4
K̃
, K̃) (since the scaling dimensions of cos(2θ) and cos(2ϕ) are 4

K̃
and K̃,

respectively). Setting 4
K̃

= 1 and K̃ = 1, we see that our exactly solvable lattice model

corresponds to the two points g+ = ± 3
10π for the critical line with g− = 0. Similarly, along

the other critical line with g+ = 0, the solvable model corresponds to the two points with

g− = ± 3
10π . These points are marked in the phase diagram shown in Fig. 2.5.

2.3.2 Chiral perturbations

In the main text, we mentioned that, if we don’t impose time reversal and parity symmetry,

then there exist chiral perturbations that can destroy our exactly solvable DQCP and drive

the system into a gapless phase. In this section, we analyze these chiral perturbations

using the field theory (2.24) and we identify the regions of the critical lines where these

perturbations are relevant/irrelevant. In the regions where they are relevant (such as in

our exactly solvable lattice model), we need time reversal and parity symmetry to stabilize

the direct transition, while in the regions where they are irrelevant, we do not need any
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additional symmetries.

In the field theory (2.24), the chiral perturbations correspond to ∂xϕ and ∂xθ. Note that

these operators are invariant under Ua and Ub, but they break either time reversal or parity

symmetry, if we define

T : ϕ→ ϕ θ → −θ

P : ϕ→ −ϕ θ → θ

(2.29)

To determine when the chiral perturbations are relevant and when they are not, we must

perform the same SU(2) transformation as we described in the previous section on these

operators. It is easiest to first take linear combinations of the two chiral perturbations, given

by ∂x(ϕ+ θ) and ∂x(ϕ− θ). The SU(2) rotation maps ∂x(ϕ+ θ) and ∂x(ϕ− θ) to cos(ϕ+ θ)

and cos(ϕ − θ) respectively. The scaling dimension of cos(ϕ + θ) and cos(ϕ − θ), which we

call ∆c, is given by

∆c =
1

K̃
+
K̃

4
(2.30)

The chiral perturbation is relevant when ∆c < 2, which corresponds to

(4− 2
√
3) < K̃ < (4 + 2

√
3) (2.31)

In this range, we must require time reversal symmetry and parity symmetry in order to

exclude these perturbations and stabilize the direct transition. Outside of this range, the

chiral perturbations are irrelevant, so we do not need to impose these extra symmetries.

2.3.3 Duality transformation

In this section, we explain how the duality transformation Uc (which is also a unitary sym-

metry) acts on the different operators in the SPT edge theory. Our strategy will be to first

work out how Uc acts on the operators in the Z4 spin chain; we will then translate this over
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to the SPT edge theory.

To understand how Uc acts on the Z4 spin chain variables, it is convenient to use the

gauge theory language where we think of the Z4 spin chain as coupled to a Z2 gauge field.

As we mentioned in the main text, the gauge theory language is an alternative way to

describe the sector structure of the Z4 spin chain. To use the gauge theory language, we

introduce a Z2 gauge field {νj+1/2} on the links of the lattice, and we impose the gauge

constraint νx
j−1/2

νx
j+1/2

= S2j . The local gauge invariant operators in the Z4 spin chain are

{C†
jν

z
j+1/2

Cj+1, Sj , C
2
j , ν

x
j+1/2

}. All other gauge invariant operators can be built from these

operators, so it suffices to understand how Uc acts on these operators.

The action of the duality transformation Uc on the first two operators, {C†
jν

z
j+1/2

Cj+1, Sj}

is similar to standard Kramers-Wannier duality:

U
†
cC

†
jν

z
j+1/2Cj+1Uc = Sj+1

U
†
cSjUc = C

†
jν

z
j+1/2Cj+1.

(2.32)

To figure out the action of Uc on the other two gauge invariant operators, {C2
j , ν

x
j+1/2

},

we use the Gauss law constraint νx
j−1/2

νx
j+1/2

= S2j to deduce that

U
†
cC

2
jC

2
j+1Uc = S2j+1 = νxj+1/2ν

x
j+3/2

U
†
c ν

x
j−1/2ν

x
j+1/2Uc = U

†
cS

2
jUc = C2

jC
2
j+1.

(2.33)

In order for Uc to be locality preserving and satisfy (2.33), it must have the following

action on C2
j and νx

j+1/2
:

U
†
cC

2
jUc = νxj+1/2

U
†
c ν

x
j+1/2Uc = C2

j+1.

(2.34)

(As an aside, note that the above formulas imply that U2
c acts like a unit translation on the
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Z4 spin chain).

Now that we have figured out how Uc acts on the operators in the (gauged) Z4 spin chain,

we can translate this action to the SPT edge theory using our mapping. More specifically,

we will need the mapping between the gauged spin chain and the SPT edge theory. This

mapping is essentially identical to the one described in Eqs. (5-6) in the main text, but with

the replacement C†
jCj+1 → C

†
jν

z
j+1/2

Cj+1:

C
†
jν

z
j+1/2Cj+1 ↔ τxj+1/2i

(1−σzjσ
z
j+1)/2

Sj ↔ σxj

[(
1 + σzj−1σ

z
j

2

)
+

(
1− σzj−1σ

z
j

2

)
τzj−1/2

]

×
[(

1 + σzjσ
z
j+1

2

)
τzj+1/2 +

(
1− σzjσ

z
j+1

2

)] (2.35)

We can also derive how the mapping acts on C2
j and νx

j+1/2
, by squaring the two equations

in (2.35) and using the constraint νx
j−1/2

νx
j+1/2

= S2j :

C2
j ↔ σzj , νxj+1/2 ↔ τzj+1/2. (2.36)

We are now ready to work out how the duality transformation Uc acts on the operators

in the SPT edge theory. It suffices to work out the action of Uc on {σzj , τzj+1/2
, σxj , τ

x
j+1/2

}

since all other operators can be built out of these. For the first two operators, {σzj , τzj+1/2
},

we can work out the action of Uc using Eqs. (2.32), (2.34) and (2.36):

U
†
cσ

z
jUc = τzj+1/2

U
†
c τ

z
j+1/2Uc = σzj+1.

(2.37)

Thus, Uc exchanges the Z2a and Z2b order parameters – as we mentioned in the main text.

The duality transformation Uc has a more complicated action on σxj and τx
j+1/2

. To obtain
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the action of Uc on σxj , we first solve for σxj in terms of gauged Z4 spin chain operators.

From (2.35), we have

σxj ↔
[(

1 + σzj−1σ
z
j

2

)
+

(
1− σzj−1σ

z
j

2

)
τzj−1/2

]

×
[(

1 + σzjσ
z
j+1

2

)
τzj+1/2 +

(
1− σzjσ

z
j+1

2

)]
S
†
j .

(2.38)

Writing the right hand side in terms of gauged spin chain operators, we get

σxj ↔
[(

1 + C2
j−1C

2
j

2

)
+

(
1− C2

j−1C
2
j

2

)
νxj−1/2

]

×
[(

1 + C2
jC

2
j+1

2

)
νxj+1/2 +

(
1− C2

jC
2
j+1

2

)]
S
†
j .

(2.39)

Then using the action of Uc on the gauged spin chain operators (2.32-2.33) and translating

back into the SPT edge theory degrees of freedom using (2.35-2.36), we get

U
†
cσ

x
j Uc =

[(
1 + τz

j−1/2
τz
j+1/2

2

)
+

(
1− τz

j−1/2
τz
j+1/2

2

)
σzj

]

×
[(

1 + τz
j+1/2

τz
j+3/2

2

)
σzj+1 +

(
1− τz

j+1/2
τz
j+3/2

2

)]

× (−i)(1−σzjσ
z
j+1)/2τxj+1/2.

(2.40)

Similarly, solving for τx
j+1/2

, gives

τxj+1/2 = i
(1−σzjσ

z
j+1)/2C

†
j+1ν

z
j+1/2Cj

= i
(1−C2

jC
2
j+1)/2C

†
j+1ν

z
j+1/2Cj .

(2.41)

Again using the transformation laws for the spin chiain (2.32-2.33) and translating back
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into the SPT edge theory degrees of freedom using (2.35-2.36), we obtain

U
†
c τ

x
j+1/2Uc = i

(1−τzj+1/2τ
z
j+3/2)/2

×
[(

1 + σzjσ
z
j+1

2

)
+

(
1− σzjσ

z
j+1

2

)
τzj+1/2

]

×
[(

1 + σzj+1σ
z
j+2

2

)
τzj+3/2 +

(
1− σzj+1σ

z
j+2

2

)]
σxj+1.

(2.42)

Eqs. (2.37), (2.40), and (2.42) completely define the action of Uc on all operators in the

SPT edge theory.

2.4 Additional results

We now provide two additional results to the main paper and its supplemental materials.

First, we rederive the above story using dualities of the twisted discrete gauge theory obtained

by gauging the (2 + 1)D bulk Z2 × Z2 SPT. Second, we provide a proof that the story can

be generalized to any primitive mixed anomaly between cyclic groups. Both of these results

were obtained in collaboration with Michael Levin.

2.4.1 Derivation from (2 + 1)D topological order

The above results can be rederived using dualities of gauge theories. First, consider twisted

Z2×Z2 obtained by gauging the Z2×Z2 SPT with anomaly given above. This gauge theory

has anyons generated by

{m1, e1,m2, e2}. (2.43)

The mixed anomaly means that m1 and m2 have nontrivial mutual statistics eiθm1,m2 .

Specifically, according to Ref. [59], the phase obtained by braiding m1 fully around m2

gcd(2, 2) = 2 times is given by

ei2θm1,m2 = −1, (2.44)
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which in turn equals e
iθ

m1,m
2
2 . According to these braiding statistics, we can identify

m2
2 = e1 m2

1 = e2. (2.45)

Upon a relabeling of the anyon labels, this is simply (untwisted) Z4 gauge theory. Z4

gauge theory has anyons generated by {m, e} with m4 = e4 = 1 and eiθe,m = i. Specifically,

we can identify

m1 ↔ m e2 ↔ m2

m2 ↔ e e1 ↔ e2,

(2.46)

which is an exact duality between the two gauge theories.

Z4 gauge theory has three distinct gapped boundaries, corresponding to the three different

phases of the Z4 spin chain. These gapped boundaries are labeled by three lagrangian

subgroups:

L1 = {1, e, e2, e3} ↔ SSB Z4 → Z1

L2 = {1,m,m2,m3} ↔ symmetric

L3 ={1, e2,m2, e2m2} ↔ SSB Z4 → Z2.

(2.47)

Using the duality in (2.46), we map L1 → {1,m2, e1,m2e1} which is the phase in the

SPT edge theory that spontaneously breaks Z2a and respects Z2b. Similarly we map L2 →

{1,m1, e2,m1e2} which is the phase that spontaneously breaks Z2b and respects Z2a. Finally,

we map L3 → {1, e1, e2, e1e2} which is the phase in the SPT edge theory where the full

symmetry spontaneously broken. This recovers the results derived in the main paper. Note

that we can also rederive the exact operator mapping between the microscopic lattice models,

by mapping the string operators of the two gauge theories.
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2.4.2 General mixed anomalies between cyclic groups

We will now show that a twisted ZN1
×ZN2

gauge theory with anomaly given by a nontrivial

eiΘ12 , with trivial eiΘ1 , eiΘ2 (note that by construction, eiΘijk must also be trivial), can be

mapped to an untwisted ZN1N2
gauge theory if and only if eiΘ12 is a primitive N12th root

of unity, where N12 = gcd(N1, N2) (here we use the notation of Ref. [59]). This generalizes

the mapping used in the main paper to general mixed anomalies of cyclic groups.

Let the anyons of the ZN1
×ZN2

gauge theory be generated by e1,m1 and e2,m2 respec-

tively. We use the fact that eiΘ12 is defined as

eiΘ12 = eiN
12θm1,m2 , (2.48)

where N12 = lcm(N1, N2) and eiθm1,m2 is the braiding phase between m1 and m2. eiΘ12 can

be written as

eiΘ12 = e
2πik
N12 , (2.49)

where k ∈ [0, N12), so we have

eiθm1,m2 = e
2πik

N12N
12 = e

2πik
N1N2 . (2.50)

This means that

e
iθ

en2m
r
1,e

l
1m

m
2 = e

2πirmk
N1N2

+2πinm
N2

+2πirl
N1 . (2.51)

We want en2m
r
1 and el1m

m
2 to generate the two ZN1N2

symmetries. This means that

rmk + nmN1 + rlN2 = 1 mod N1N2. (2.52)
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We will show that we can do even better, and find a solution to

rmk + nmN1 + rlN2 = 1. (2.53)

We need to show that given any N1 and N2 and k satisfying gcd(k,N12) = 1, we can

always solve (2.53).

We first group the terms in (2.53) to get

r(mk + lN2) + nmN1 = 1 mod N1N2. (2.54)

Suppose instead that there is no solution to (2.53). This means that there is no solution

to the following similar equation:

r(k + lN12) + nN1 = 1. (2.55)

To see why this is the case, notice that if there exists a solution to (2.55), then we can

use the fact that there always exists a and b satisfying

N12 = aN1 + bN2, (2.56)

according to Bezout’s identity. This gives

r(k + l′N2) + n′N1 = 1, (2.57)

where l′ = lb and n′ = la+ n.

If there is no solution to (2.55), then there is also no solution to

r(k + lN12) + nN3 = 1, (2.58)
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where N3 = N1/N12. This is because of the following. If (2.55) has no solution, then this

means that there exists an integer p that divides both (k + lN12) and N1. However, if p

divides N12, then it cannot divide k, because gcd(k,N12) = 1. In this case, p cannot divide

(k + lN12). This means that p cannot divide N12, so in order for p to divide N1, it must

divide N1/N12. But if it divides N1/N12, then there is no solution to (2.58). Next we have

r(k + lN3,12) + nN3 = 1, (2.59)

again due to Bezout’s identity, and

r(k + lN3,12) + nN4 = 1, (2.60)

where N4 = N3/N3,12. Let us describe this sequence of equations by (xn, yn), where xn+1 =

gcd(xn, yn) and yn+1 = yn/xn+1. Then eventually, for some n, either xn = 1 or yn = 1. In

either case, we can just choose l = n = 0, k = r = 1. Then from this solution and working

backward, we can obtain a solution to (2.53). This results in a contradiction, so there must

be a solution to (2.53).

Surprisingly, this result means that we can have a DQCP in a (1 + 1)D system without

any anomaly at all, as long as N1 and N2 are coprime. In this case, N12 = k = 1, so the

DQCP can be mapped to a SSB transition in a ZN1N2
spin chain. For N1N2 > 4, we can

use strong disorder to ensure a continuous phase transition[62].
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CHAPTER 3

STORY 2: QUANTUM DYNAMICS AND ENTANGLEMENT

TRANSITIONS

3.1 Introduction: Entanglement transitions

There are two basic tools for manipulating quantum states: unitary time evolution and

measurement. As discussed in Sec. 1.3, entanglement transitions occur due to competition

between these two processes. To understand why this transition might occur, let us consider

two limiting cases. In the limit of no measurement and only unitary time evolution, a

generic state becomes volume-law entangled in the long-time limit. In 1D, this means that

the entanglement entropy between a subsystem of size ℓ and its complement scales as

S(ℓ) = aℓ+ · · · (3.1)

where a is a constant and (· · · ) refer to subleading terms. In the other limit, of no unitary

time evolution and only commuting single-site measurements, the long-time steady-state

would be area-law entangled, which in 1D means that

S(ℓ) = const + · · · (3.2)

Therefore, the competition results in a transition between steady states that are distinguished

by their entanglement properties.

Note that unitary time evolution is a locality-preserving operation: time evolution (with

local interactions) over a time t can only create correlations over a linear distance propor-

tional to t, because correlations grow within a light-cone by Lieb-Robinson bounds. On the

other hand, measurement is not locality-preserving: a local measurement can destroy cor-

relations that are arbitrarily far apart in space. It may therefore seem that measurements
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have an unfair advantage: correlations created by time evolution for arbitrarily long times

can be destroyed instantaneously by a local projective measurement. Therefore, any finite

amount of measurement might completely win over unitary time evolution.

As was first confirmed in Refs. [23, 24, 25, 26], this is not actually the case. In interact-

ing systems, it has now been shown through both numerical and analytical methods that

measurement-induced phase transitions (MIPTs) occur in a variety of settings. The typical

setting for an MIPT is in a chain of qubits, where random two-site gates are interspersed

with rate p of projective on-site measurements weighted according to the Born probability.

In this setting, the Hartley (zeroth) entanglement entropy S0(ℓ) for a subsystem ℓ, which

is the logarithm of the rank of the reduced density matrix, was studied using a mapping to

classical bond percolation[25]. This mapping gave the critical exponent ν0 = 4
3 at the MIPT,

defined by S0(ℓ) ∼ (pc − p)ν0 , which was confirmed with numerics. The critical exponents

νn for n > 0 have not been determined analytically.

While MIPTs for interacting systems are very common (albeit still not analytically un-

derstood), MIPTs for a simpler, more analytically tractable Gaussian circuits are much

more rare. Gaussian circuits are circuits in which the unitary time evolution consists only

of fermion bilinears, and measurements are restricted to fermion occupation number. In

fact, it was proven in Ref. [65] that the volume-law phase is unstable to any nonzero rate of

projective measurement in Gaussian systems. A process related to projective measurement

is weak measurement, given by imaginary time evolution U(iλ) = eλO where O is an op-

erator. In the limit λ → ∞, U(iλ) is simply a projector onto the eigenstate of O with the

largest eigenvalue, but U(iλ) is not a projector for any finite λ. Weak measurements can be

implemented by coupling the system to an ancilla, measuring the ancilla, and postselecting,

as explained in Sec. 3.3.1. Gaussian circuits with weak measurement rather than projective

measurements are also known simply as Gaussian non-unitary circuits, because they contain

gates that are not unitary. Such circuits also demonstrated an absence of the volume-law
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phase for any amount of non-unitarity[66].

In our model, we alternate between translation-invariant unitary time evolution and weak

measurement on all of the sites. It is not obvious that weak measurement on all the sites

would be any less destructive than projective measurement on a single site. However, we

show that in this model, we can obtain a (finely-tuned) MIPT, despite the circuit being

Gaussian. Furthermore, we can compute the critical exponents {νn} describing this critical

point exactly.

3.2 Volume-law to area-law entanglement transition in a

non-unitary periodic Gaussian circuit

This chapter is reprinted with permission from:

Etienne Granet, Carolyn Zhang, and Henrik Dreyer. Volume-law to area-law entanglement

transition in a non-unitary periodic Gaussian circuit. arXiv preprint arXiv:2212.10584.

Abstract

We consider Gaussian quantum circuits that alternate unitary gates and post-selected

weak measurements, with spatial translation symmetry and time periodicity. We show ana-

lytically that such models can host different kinds of measurement-induced phase transitions

detected by entanglement entropy, by mapping the unitary gates and weak measurements

onto Möbius transformations. We demonstrate the existence of a log-law to area-law tran-

sition, as well as a volume-law to area-law transition at a finite measurement amplitude.

For the latter, we compute the critical exponent ν for the Hartley, von Neumann and Rényi

entropies exactly.
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3.2.1 Introduction

In recent years, there has been an immense amount of work on dynamical phase transitions

driven by competition between unitary time evolution and projective measurements, called

measurement-induced phase transitions (MIPTs). Although generic unitary time evolution

leads to volume-law entangled states in the long-time limit, interspersing the unitary evolu-

tion with local measurements can stabilize area-law entangled steady states [25, 23, 24, 26].

These MIPTs have been studied in various setups, mostly through numerical methods [67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93].

A subclass of circuits called Gaussian circuits allows for analytical calculations because they

only involve unitaries and measurements built out of fermion bilinears. However, though

the volume-law to area-law MIPT was observed for interacting circuits, it has not yet been

observed in Gaussian circuits [94, 95, 96, 97, 66, 65, 98, 99].

In this work, we analytically study Gaussian non-unitary circuits with spatial translation

symmetry and discrete time translation symmetry. They consist of Gaussian unitary gates

and weak measurements, obtained by coupling the system to ancillas, measuring the ancillas,

and post-selecting (see Sec. 3.3). We show that these non-unitary circuits can demonstrate

MIPTs between different entanglement phases as we tune the measurement amplitude, which

is related to the ancilla coupling. Surprisingly, for specific parameters, we find a volume-

law to area-law transition at a finite measurement amplitude. We derive the exact critical

measurement amplitude and the correlation length exponents {νn} for the Hartley (n = 0),

von Neumann (n = 1) and Rényi (n > 1) entanglement entropies. To our knowledge, this is

the first example of a volume-law to area-law transition in a Gaussian non-unitary circuit,

and of an analytical computation of all {νn} at a MIPT.
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UZZ(t)

UZZ(t)

· · ·

|ψ0〉

UX(h)

UX(h)

UX(iλ)

UX(iλ)

|ψn〉

Figure 3.1: A schematic of n applications of the round described by (3.5), with p = 1. |ψn⟩
is the normalized final state.

3.2.2 Setup

We study non-unitary circuits built out of the following translation-invariant 1D layers [100,

101]:

UZZ(t) = e
−it

∑L
j=1 σ

z
jσ

z
j+1

UY Y (t) = e
−it

∑L
j=1 σ

y
j σ

y
j+1

UX(t) = e
−it

∑L
j=1 σ

x
j

(3.3)

where σx,y,zj are Pauli matrices, and periodic boundary conditions L + 1 ≡ 1 are assumed.

These layers can be written as free fermion evolution using the standard Jordan-Wigner
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Figure 3.2: (a) Phase diagram for the non-unitary circuit described in (3.15), with x and
λ as defined in (3.16) and (3.4) respectively. The phase boundary is given by (3.20). (b)
Scaling of the von-Neumann entropy. Markers denote the slope of the best linear fits to the
exact entropy S1(ℓ) ∼ s1ℓ + b after 500 cycles on subsystem sizes up to ℓ = 100. Dashed
lines denote the closed form expression (3.31).

transformation σxj = 1− 2c
†
jcj and σzj = (cj + c

†
j)
∏j−1

ℓ=1(1− 2c
†
ℓcℓ), where c†j , cj are fermion

creation and annihilation operators. Non-unitarity is introduced by allowing t to be complex,

which corresponds to weak measurement or dynamics in open quantum systems [102].

We will focus on circuits built out of the following elementary cycle of layers

U(t, h, λ) = UX(iλ)UX(h)UZZ(t) , (3.4)

for t, h, λ real parameters. We can use this cycle to build more complicated rounds described

by U :

U = U(tp, hp, λp)...U(t1, h1, λ1) , (3.5)
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with tr, hr, λr, r ∈ {1, ..., p} fixed real parameters. We will study the entanglement properties

of a subsystem of large size ℓ after n → ∞ identical rounds U , in the thermodynamic limit

L → ∞, with ℓ ≪ n ≪ L. This kind of setup, for p = 1, is illustrated in Fig. 3.1. Because

each round is identical, our models have discrete time translation symmetry. While we use

the particular structure of cycle and round defined in (3.4) and (3.5), we note that our

methods can be applied to any round built out of (3.3).

3.2.3 Time evolution via Möbius transformations.

The actions of the layers in (3.3) are particularly simple on coherent states [100]. These are

states of the form

|ψ(A, f(k))⟩ = A
∏

k∈K+
L

[
1 + f(k)c†(−k)c†(k)

]
|0⟩ , (3.6)

where KL = 2π
L

{
−L

2 + 1
2 , · · · , L2 − 1

2

}
and K+

L ⊂ KL contains all the positive momenta,

and |0⟩ the tensor product of +1 eigenstates of σxj at each site. Here, A normalizes the state

and contains a phase, and f(k) is an amplitude for fermions at momenta k,−k.

The crucial observation of Ref. [100] was that a coherent state remains a coherent state

after the application of any of the layers in (3.3), but with modified A and f(k). In particular,

each of the layers in (3.3) transforms f(k) by a Möbius transformation:

Ug(t)|ψ(A, f(k))⟩ = |ψ(Ã, f̃(k))⟩ , (3.7)

where g = ZZ, Y Y,X and

f̃(k) = F (f) =
af(k) + b

cf(k) + d
, (3.8)

where a, b, c, and d are complex functions of t and k. We provide their explicit forms for the

three kinds of layers in Sec. 3.3. The transformation on A will not be needed in this work.
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Because the composition of Möbius transformations is a Möbius transformation, the action

of U(t, h, λ) and U can also be written as (3.8). It follows that Un|ψ(A, f(k))⟩ also produces

a coherent state for any n. Like any Möbius transformation, the transformation associated

with U can be packaged into a 2× 2 matrix

Mk =

a b

c d

 (3.9)

acting on the vector
(
f(k)
1

)
: the new value f̃(k) is given by the ratio of the two components

of the resulting vector. The matrix of the Möbius transformation associated with Un is then

simply obtained by repeated matrix multiplications Mn
k . Therefore, in order to obtain the

behaviour at large n of Un|0⟩, we need to study the fixed points of the Möbius transformation

Mk associated with U and their stability. Note that the initial state can be any coherent

state, and therefore any free fermion state with zero total momentum, as well as some non-

zero momentum states by applying with c†(k0) operators on the coherent state [103].

Let us denote the normalized state after n rounds by |ψ(An, fn(k))⟩. The fixed points of

the Möbius transformation are the two solutions to the quadratic equation

f∞(k) =
af∞(k) + b

cf∞(k) + d
. (3.10)

We label these fixed points by f−∞(k) and f+∞(k) for each k. The stability of these fixed

points are given by |F ′(f)|: if |F ′(f)|f=f−∞(k) < 1, then f−∞(k) is a stable fixed point. Since

a Möbius transformation can have at most only one stable fixed point, any choice of initial

state f0(k) ̸= f+∞(k) will be attracted to f−∞(k) as n→ ∞, for that particular value of k. It

can be shown that

|F ′(f)|f=f−∞
=

1

|F ′(f)|f=f+∞

=
|µ−(k)|
|µ+(k)|

, (3.11)

where µ−(k) and µ+(k) with |µ−(k)| ≤ |µ+(k)| are the two eigenvalues of Mk. So for
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|µ−(k)| ≠ |µ+(k)|, there is a unique stable fixed point given by f−∞(k), while f+∞(k) is an

unstable fixed point. On the contrary, if |µ−(k)| = |µ+(k)|, then there are no stable fixed

points and fn(k) will not converge as n→ ∞ whenever f0(k) ̸= f±∞(k).

These two alternatives completely determine the steady state entanglement properties.

Let us call the values of k for which |µ−(k)| = |µ+(k)| “critical". We will only need to consider

k ∈ [0, π] because f(k) must be an antisymmetric function for (3.6) to be consistent. If there

are no critical k ∈ [0, π], we will show that the steady state has area-law entanglement,

which in 1D means that in the thermodynamic limit Sm(ℓ) saturates to a finite value when

ℓ→ ∞. If there is a finite number of critical k, then the steady state generically has log-law

entanglement: Sm(ℓ) ∼ log(ℓ). Finally, if there is a whole interval of critical k, then the

steady state has volume-law entanglement: Sm(ℓ) ∼ ℓ.

In order to determine analytically whether such critical k exist for a given Möbius trans-

formation, we use that |µ−(k)| = |µ+(k)| if and only if the following two conditions are

satisfied:

(i) I
Tr(Mk)√
det(Mk)

= 0 (ii)

∣∣∣∣R Tr(Mk)√
det(Mk)

∣∣∣∣ ≤ 2 . (3.12)

We prove this in Sec. 3.3. We will now give two examples of non-unitary circuits and show

that, by studying their corresponding Möbius transformations, we can obtain their phase

diagrams exactly.
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3.2.4 Log-law to area-law transition.

We will now show that a log-law to area-law transition can occur in a simple circuit containing

only one cycle (3.4), i.e. p = 1 in (3.5). For this circuit, we have

Mk =

zk,te−2λ+2ih e−2λ+2ih

−e2λ−2ih z∗k,te
2λ−2ih

 , (3.13)

where

zk,t =
e2it tan(k/2) + e−2it

tan(k/2)

2 sin(2t)
. (3.14)

To investigate the entanglement properties of this circuit, we study the conditions (3.12) for

the existence of critical k, as detailed in Sec. 3.3. We find that if λ = 0, both conditions

in (3.12) are satisfied for all k. Because there is a whole interval of critical k (in fact,

the entire range of k), the steady state exhibits volume-law entanglement, as expected in

absence of measurements. For λ > 0, the phase of the system depends on the condition

| tan(2h)| > | tan(2t)|. If this condition holds, then the steady-state always demonstrates

area-law entanglement. Otherwise, there is a critical value λc such that for 0 < λ < λc there

is a unique critical k given by k = arccos
[
tan(2h)
tan(2t)

]
for which both conditions of (3.12) hold,

implying a log-law entanglement. For λ > λc there are no critical k, indicating area-law

entanglement. λc(t, h) can be computed exactly and is given in Sec. 3.3. Therefore, when

| tan(2h)| < | tan(2t)|, the system demonstrates a log-law to area-law transition at λ = λc.

Such transitions are well-known in free fermionic non-unitary circuits [97, 104, 95, 105].

Let us finally mention the case h = t = π/4. Here we find for any λ an interval [kc, π−kc]

of critical k, with 0 < kc < π/2 depending on λ. This yields a volume law phase, but without

any transition to an area-law behaviour at any finite λ, consistent with Ref. [106].
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3.2.5 Volume-law to area-law transition

We now consider a round with two cycles:

U = U(t2, h2, λ)U(t1, h1, λ) . (3.15)

For generic values of the parameters, such circuits do not have volume-law to area-law MIPTs

in λ. However, for

t1 = h1 =
π

4
− x t2 = h2 =

π

4
+ x, (3.16)

where x ∈ [0, π/4], we will show that there exists an x-dependent λc such that the steady

state demonstrates volume-law entanglement for λ < λc and area-law entanglement for

λ > λc.

From the definition of zk,t in (3.14), we have zk,t1 = −z∗k,t2 . Therefore, Mk for (3.15)

simplifies to

Mk =

 |zk,t1 |2e−4λ − e4ix z∗k,t1(e
−4λ + e4ix)

−zk,t1(e4λ + e−4ix) |zk,t1|2e4λ − e−4ix

 . (3.17)

To determine the critical k, we compute

Tr(Mk)√
det(Mk)

= 2
|zk,t1|2 cosh(4λ)− cos(4x)

1 + |zk,t1 |2
. (3.18)

This quantity is always real, so condition (i) of (3.12) is satisfied for all k. Condition (ii)

can be written as

tan2(k/2) +
1

tan2(k/2)
≤ 4 cos4(2x)

sinh2(2λ)
+ 2 cos(4x). (3.19)

For this to hold for at least one value of k, we need it to be true for k = π
2 , which
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minimizes the left-hand side. Plugging in k = π
2 , we find that the interval of critical k

disappears when λ > λc where

λc =
1

2
arcsinh

[
cos2(2x)

sin(2x)

]
. (3.20)

Therefore, the steady state demonstrates area-law entanglement for λ > λc. For λ < λc,

(3.19) is satisfied for k ∈ [kc, π − kc], with kc obeying (3.19) with equality. Within this

interval, fn(k) does not converge to a stable fixed point, and we will now show that this

leads to volume-law entanglement.

3.2.6 Behavior of entanglement entropy

Given a state |ψ⟩ on a spin chain of size L, the reduced density matrix ρℓ on [1, ℓ] is given

by

ρℓ = Trℓ+1,...,L (|ψ⟩⟨ψ|) . (3.21)

We define the entanglement entropies Sm(ℓ) as

S0(ℓ) = log rank[ρ] , Hartley

S1(ℓ) = −Tr[ρ log ρ] , von Neumann

Sm(ℓ) =
log Tr[ρm]

1−m
, m ≥ 2 , Rényi .

(3.22)

While it is difficult to obtain the exact behavior of Sm(ℓ) at intermediate times, we can

compute the coefficient of the volume-law (O(ℓ)) contribution to Sm(ℓ) in the n→ ∞ limit.

To that end, we introduce the correlation matrix Γ on the subsystem [1, 2, . . . ℓ], given by

⟨ψ|

a2j−1

a2j

 ·
(
a2k−1 a2k

)
|ψ⟩ = δj,k + iΓjk, (3.23)
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with the Majorana fermions a2j−1 = cj + c
†
j and a2j = i(cj − c

†
j). Γ has a block-Toeplitz

structure:

Γ =
(
Πj−i

)
i,j=1,...,ℓ Πj =

 −φj ψj

−ψ−j φj

 , (3.24)

where from (3.6), φj and ψj are computed to be

φj =
i

2π

∫ π

−π
dke−ikj fn(k) + fn(k)

∗

1 + |fn(k)|2

ψj =
1

2π

∫ π

−π
dke−ikj fn(k)− fn(k)

∗ + |fn(k)|2 − 1

1 + |fn(k)|2
.

(3.25)

We find that φj and ψj converge to some φ̄j and ψ̄j respectively as n → ∞, and we define

φ̂(k) and ψ̂(k) through φ̄j = 1
2π

∫ π
−π dke

−ikjφ̂(k) and ψ̄j = 1
2π

∫ π
−π dke

−ikjψ̂(k). When

fn(k) converges to a stable fixed point, we can replace fn(k) in (3.25) by f−∞(k). Notice

that if there is a critical value of k, then f−∞(k) generically fails to be smooth because it

jumps between the two fixed points of the Möbius transformation. This leads to power-law

decay of correlations of Majorana fermions in real-space according to (3.25), implying log-law

entanglement. On the other hand, if there are no critical k, f−∞(k) is smooth and real-space

correlations decay exponentially, implying area-law entanglement for pure states [107, 108].

If k ∈ [kc, π − kc] is critical, then fn(k) in this momentum range does not converge and

depends on both the initial state f0(k) and the cycle number n. We choose the initial state

f0(k) = 0 for all k which, in the spin language, means all spins in the +1 eigenstate of σxj .

For this initial state, we have fn(k) = xn(k)/yn(k) with

xn(k)
yn(k)

 = Mn
k ·

0

1

 . (3.26)
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Since |µ−(k)| = |µ+(k)|, we can write µ+(k)/µ−(k) = e2iθk for k ∈ [kc, π − kc], where

θk = arccos

[
|zk,t1|2 cosh(4λ)− cos(4x)

1 + |zk,t1 |2

]
. (3.27)

Diagonalizing Mk, we find

fn(k) =
b(k) sin(nθk)

(−a(k) + cos θk) sin(nθk) + sin(θk) cos(nθk)
, (3.28)

where a and b are matrix elements of Mk/
√

detMk as in (3.9), and we have indicated their

k dependence explicitly. We see that in this case, fn(k) does not converge to a stable fixed

point as n → ∞ and instead keeps oscillating. To compute φ̂(k) and ψ̂(k), we separate the

slowly varying and quickly oscillating parts of fn(k) by defining

f(k, u) =
b(k) sinu

(−a(k) + cos θk) sinu+ sin θk cosu
. (3.29)

As shown in Sec. 3.3, we compute φ̂(k) and ψ̂(k) by averaging over the fast oscillations:

φ̂(k) =
i

2π

∫ 2π

0
du

f(k, u) + f(k, u)∗

1 + |f(k, u)|2

ψ̂(k) =
1

2π

∫ 2π

0
du

f(k, u)− f(k, u)∗ + |f(k, u)|2 − 1

1 + |f(k, u)|2 .

(3.30)

We now follow Ref. [109] to compute the entanglement entropy. Repeating the calculations

therein, we find the following leading behavior when ℓ→ ∞:

Sm(ℓ) =
ℓ

2π

∫ π

−π
dkHm

(√
|φ̂(k)|2 + |ψ̂(k)|2

)
, (3.31)
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with O(log ℓ) corrections, and with Hm(x) given by

H0(x) = 1x∈(−1,1)

H1(x) = −1 + x

2
log

1 + x

2
− 1− x

2
log

1− x

2

Hm(x) =
1

1−m
log

[(
1 + x

2

)m

+

(
1− x

2

)m]
,

(3.32)

for m ≥ 2. When fn(k) converges to a stable fixed point, we plug f−∞(k) into the definition

of φ̂(k) and ψ̂(k), and obtain

|φ̂(k)|2 + |ψ̂(k)|2 = 1. (3.33)

Since Hm(1) = 0, these momenta do not contribute to the volume law term O(ℓ), nor to

the O(log ℓ) term [110]. On the other hand, when fn(k) does not converge to a stable fixed

point, we can show from (3.58) that

|φ̂(k)|2 + |ψ̂(k)|2 < 1. (3.34)

Therefore, these momenta do contribute to the O(ℓ) term. We obtain

Sm(ℓ) =


sm(λ)ℓ , if λ < λc

O(ℓ0) , if λ > λc ,

(3.35)

with sm(λ) a coefficient computable from (3.31) (see Sec. 3.3). We compare these exact

calculations with numerical computations of entanglement entropies in Fig. 3.2. In the limit

λ→ λc, we define the critical exponent ν by the leading behaviour of sm(λ) when λ→ λc:

sm(λ) = am(λc − λ)ν +O((λc − λ)ν
′
), (3.36)
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where ν′ > ν. We obtain analytically

s0(λc − λ) ∼ (λc − λ)1/2

s1(λc − λ) ∼ (λc − λ) log (λc − λ)

sm(λc − λ) ∼ (λc − λ) ,

(3.37)

with coefficients given in Sec. 3.3 and subleading terms ∼ (λc − λ)3/2. Therefore, ν = 1
2 for

S0(ℓ) and ν = 1 for Sm(ℓ), where m ≥ 1, with marginal logarithmic corrections at m = 1

[111, 112]. At the critical point λ = λc, the only critical k is k = π
2 , but θπ

2
= 0 according

to (3.27). So fn(
π
2 ) converges to a stationary value, and the O(log ℓ) coefficients vanish,

yielding a central charge c = 0, consistent with Ref. [105, 97].

3.2.7 Discussion

We presented a general framework for obtaining exact results on steady-states of clean Gaus-

sian non-unitary circuits with discrete time translation symmetry using Möbius transforma-

tions. A few comments are in order. First, it was shown in Ref. [70, 65] that entanglement

transitions are also purification transitions. This can also be seen in our analysis: if a Möbius

transformation has a single stable fixed point for all k, the steady state is independent of the

initial state. Therefore, the corresponding circuit would map mixed states to the pure state

given by f−∞(k), as n → ∞. On the other hand, when there is a region of critical k, fn(k)

in this interval always retains its dependence on the initial state, and a mixed state remains

mixed even as n→ ∞.

Second, we note that the distinction governed by conditions (3.12) is equivalent to a

statement on the reality of the single-particle energies {ϵk} of the effective Hamiltonian H

defined by U = eiH : ϵk is real if and only if k is critical. Therefore, increasing the non-

unitarity of the model through λ has a similar effect as in the continuous-time model of Ref.

[93].
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While we only studied steady states of two simple kinds of rounds, the general framework

of Möbius transformations can be used to study any other circuit built out of the layers in

(3.3) and their intermediate time dynamics. Note that these MIPTs can be detected directly

by either measuring two-point correlation functions in the steady state or by measuring

correlations between mode occupation numbers c†(k)c(k). For the latter, the measurement

outcome depends on the criticality of k. Therefore, while difficult to implement due to the

mid-circuit postselection, they are easy to detect.
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3.3 Supplemental Material

3.3.1 Realization of the weak measurement

The non-unitary operator eλσ
x
j can be realized (up to an unimportant normalization factor)

with an ancilla spin and a post-selection. Namely we have, with σxj acting on the spin in the

spin chain and σya acting on the ancilla,

e
λσxj ∝ a⟨0|e

i
(
θ+θ′
2 + θ−θ′

2 σxj

)
σya |0⟩a , with e2λ =

cos θ

cos θ′
. (3.38)
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Notice that we post-select the ancilla to be in the +1 eigenstate of σya. We must perform

this post-selection after every cycle and at each site.

3.3.2 Möbius transformations

The Möbius transformations for the layers in Eq. (1) of the main text were derived in

Ref. [100] (with a different convention t→ −t). We list them here for convenience:

UZZ(t) : f̃(k) =
[1 + tan2(k/2)e4it]f(k) + i tan(k/2)(1− e4it)

−i tan(k/2)(1− e4it)f(k) + tan2(k/2) + e4it

UY Y (t) : f̃(k) =
[1 + tan2(k/2)e4it]f(k)− i tan(k/2)(1− e4it)

i tan(k/2)(1− e4it)f(k) + tan2(k/2) + e4it

UX(t) : f̃(k) = e4itf(k) .

(3.39)

3.3.3 Proof of Eq. (10)

We now prove that the two eigenvalues µ−(k) and µ+(k) of Mk have equal magnitude if

and only if

(i) I

(
Tr(Mk)√
det(Mk)

)
= 0

(ii)

∣∣∣∣R
(

Tr(Mk)√
det(Mk)

)∣∣∣∣ ≤ 2 .

(3.40)

Let K =
µ−(k)
µ+(k)

. We use the fact that

√
K +

1√
K

=
Tr(Mk)√
det(Mk)

. (3.41)

Now setting K = κeiα with κ > 0, the two eigenvalues have equal magnitude if and only if

κ = 1, and we have

I

(
Tr(Mk)√
det(Mk)

)
=

(√
κ− 1√

κ

)
sin

α

2
. (3.42)
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The above quantity is zero if and only if κ = 1 or sin(α/2) = 0. Similarly, we have

R

(
Tr(Mk)√
det(Mk)

)
=

(√
κ+

1√
κ

)
cos

α

2
. (3.43)

If κ = 1, then the right-hand side is smaller than or equal to 2 in absolute value. This proves

that κ = 1 implies (3.40). If now κ ̸= 1 but sin(α/2) = 0, then cos(α/2) = ±1 and the

right-hand side is strictly larger than 2 in absolute value. Hence if κ ̸= 1, at least one of the

two conditions in (3.40) is not satisfied, which proves the equivalence.

3.3.4 Log-law to area-law transition

We consider here the setup given by the matrix in Eq. (11). Defining

zk,t = ρeiϕ , ρ > 0 , (3.44)

we have
Im

trMk√
detMk

= −2ρ sin(ϕ+ 2h) sinh(2λ)√
1 + ρ2

Re
trMk√
detMk

=
2ρ cos(ϕ+ 2h) cosh(2λ)√

1 + ρ2
.

(3.45)

From the definition of zk,t, we have

ρ2 =
tan2(k/2) + tan−2(k/2) + 2 cos(4t)

4 sin2(2t)
, (3.46)

and

tanϕ = − cos k tan(2t) . (3.47)

The condition sin(ϕ + 2h) = 0 is equivalent to tanϕ = − tan(2h), which thus gives the

equation

cos k =
tan(2h)

tan(2t)
. (3.48)
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For this to have a solution one needs | tan(2h)| ≤ | tan(2t)|. Hence for λ ̸= 0, the condition

(i) of (3.40) is only satisfied for kc = ± arccos
tan(2h)
tan(2t)

when | tan(2h)| ≤ | tan(2t)|. Then the

condition (ii) of (3.40) yields at k = kc

ρ2

1 + ρ2
cosh2(2λ) ≤ 1 . (3.49)

Using the expression for ρ2 and

tan2(kc/2) =
tan(2t)− tan(2h)

tan(2t) + tan(2h)
, (3.50)

one finds then that it is equivalent to λ ≤ λc with the critical value of λ given by

λc =
1

2
arcsinh

√√√√ 2 sin2(2t)

cos(4t) +
tan2(2t)+tan2(2h)
tan2(2t)−tan2(2h)

 . (3.51)

3.3.5 Proof of Eq. (30)

In this appendix, we prove Eq. (30) in the main text, where we obtain ϕ̂(k) and ψ̂(k) by

averaging over u:

φ̂(k) =
i

2π

∫ 2π

0
du

f(k, u) + f(k, u)∗

1 + |f(k, u)|2

ψ̂(k) =
1

2π

∫ 2π

0
du

f(k, u)− f(k, u)∗ + |f(k, u)|2 − 1

1 + |f(k, u)|2 .

(3.52)
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For a smooth bounded function F (k, u) that is 2π periodic in u, we can decompose for ϵ > 0

∫ π

−π
F (k, nθk)dk =

2π/ϵ∑
m=0

∫ −π+(m+1)ϵ

−π+mϵ
dkF (k, nθk)

=

2π/ϵ∑
m=0

∫ −π+(m+1)ϵ

−π+mϵ
dkF (−π +mϵ, nθk) +O(ϵ)

=

2π/ϵ∑
m=0

1

nθ′−π+mϵ

∫ nθ−π+(m+1)ϵ

nθ−π+mϵ

duF (−π +mϵ, u) +O(ϵ) .

(3.53)

Importantly, the O(ϵ) can be bounded independently of n from the assumptions on F . Each

of these terms in the sum has a limit when n→ ∞ given by

lim
n→∞

1

nθ′−π+mϵ

∫ nθ−π+(m+1)ϵ

nθ−π+mϵ

duF (−π+mϵ, u) =
θ−π+(m+1)ϵ − θ−π+mϵ

2πθ′π+mϵ

∫ 2π

0
duF (−π+mϵ, u) .

(3.54)

Hence we obtain

∫ π

−π
F (k, nθk)dk =

2π/ϵ∑
m=0

θ−π+(m+1)ϵ − θ−π+mϵ

2πθ′π+mϵ

∫ 2π

0
duF (−π +mϵ, u) +O(ϵ) +O(1/n)

=
ϵ

2π

2π/ϵ∑
m=0

∫ 2π

0
duF (−π +mϵ, u) +O(ϵ) +O(1/n)

=
1

2π

∫ π

−π
dk
∫ 2π

0
duF (k, u) +O(ϵ) +O(1/n) .

(3.55)

We can now apply this to φj and ψj with fn(k) given in Eq. (28) of the main text:

fn(k) =
b(k) sin(nθk)

(−a(k) + cos θk) sin(nθk) + sin(θk) cos(nθk)
, (3.56)

For example for φj we would choose

F (k, u) = ie−ikj f(k, u) + f(k, u)∗

1 + |f(k, u)|2 , (3.57)
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with the definition

f(k, u) =
b(k) sinu

(−a(k) + cos θk) sinu+ sin θk cosu
, (3.58)

and we see that F (k, u) is indeed smooth and bounded in absolute value by 1. Hence we

obtain that φj and ψj converge when n → ∞ to φ̄j and ψ̄j with φ̂(k) and ψ̂(k) given by

(3.52).

3.3.6 Proof of Eq. (31)

We follow Ref.[109] to prove Eq. (31) in the main text. Denoting ±iνp the eigenvalues of Γ,

the entanglement entropies Sm(ℓ) are

Sm(ℓ) =
ℓ∑

p=1

Hm(νp) . (3.59)

Defining

D(λ) = det[iλ Id2ℓ − Γ] , (3.60)

we have D(λ) =
∏ℓ

p=1(λ
2 − ν2p), and so Sm(ℓ) can be written as a contour integral in

the upper-half plane of ∂λ logD(λ) multiplied by Hm(λ), since each νp is a simple pole of

∂λ logD(λ). Let us introduce the 2× 2 matrices Π̂(k) by

Π̄j =
1

2π

∫ π

−π
dke−ikjΠ̂(k) , (3.61)

where Π̄j denotes the limit n→ ∞ of Πj . It reads

Π̂(k) =

 −φ̂(k) ψ̂(k)

−ψ̂(−k)∗ φ̂(k)

 . (3.62)
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Now, using Szego’s lemma, we have when ℓ→ ∞

logD(λ) =
ℓ

2π

∫ 2π

0
dk log det[iλ Id2 − Π̂(k)] +O(log ℓ) . (3.63)

We find, using ψ̂(−k) = ψ̂(k)∗

det[iλ Id2 − Π̂(k)] = |ψ̂(k)|2 + |φ̂(k)|2 − λ2 . (3.64)

Hence ∂λ logD(λ) has simple poles at

λ = ±
√

|ψ̂(k)|2 + |φ̂(k)|2 . (3.65)

Hence, carrying the contour integral yields Eq. (31) of the main text.

3.3.7 Proof of Eq. (34)

In this appendix, we prove the statement in the main text that

|φ̂(k)|2 + |ψ̂(k)|2 < 1 (3.66)

when k is critical. Since x→ x2 is a strictly convex function, we have for any function F (u)

(
1

2π

∫ 2π

0
duF (u)

)2

≤ 1

2π

∫ 2π

0
duF (u)2 , (3.67)

with equality if and only if F (u) is constant. We then write

|φ̂(k)|2 + |ψ̂(k)|2 =

(
1

2π

∫ 2π

0
du

2ℜf(k, u)
1 + |f(k, u)|2

)2

+

(
1

2π

∫ 2π

0
du

|f(k, u)|2 − 1

1 + |f(k, u)|2
)2

+

(
1

2π

∫ 2π

0
du

2ℑf(k, u)
1 + |f(k, u)|2

)2

.

(3.68)
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Since f(k, u) is not constant in u, we have

|φ̂(k)|2+|ψ̂(k)|2 < 1

2π

∫ 2π

0
du

[(
2ℜf(k, u)

1 + |f(k, u)|2
)2

+

(
2ℑf(k, u)

1 + |f(k, u)|2
)2

+

( |f(k, u)|2 − 1

1 + |f(k, u)|2
)2
]
.

(3.69)

The integrand simplifies to 1, yielding (3.66).

3.3.8 Critical exponents

The entanglement entropy is given by

Sm(ℓ) =
ℓ

2π

∫ π

−π
dkHm

(√
|φ̂(k)|2 + |ψ̂(k)|2

)
+O(log ℓ) . (3.70)

Since |φ̂(k)|2 + |ψ̂(k)|2 = 1 when k is not critical, and since Hm(1) = 0, only the critical

values of k contribute to the volume law scaling. Hence we have

Sm(ℓ) =
ℓ

π

∫ π−kc

kc
dkHm

(√
|φ̂(k)|2 + |ψ̂(k)|2

)
+O(log ℓ) . (3.71)

where kc satisfies

tan(kc/2)
2 + tan(kc/2)

−2 =
4 cos4(2x)

sinh2(2λ)
+ 2 cos(4x) . (3.72)

Recall that the entanglement entropy Sm(ℓ) has the following behaviour at large ℓ

Sm(ℓ) =


sm(λ)ℓ , if λ < λc

O(ℓ0) , if λ > λc ,

(3.73)

with sm(λ) some coefficient. We define the critical exponent ν by the leading behaviour of

sm(λ) when λ→ λc

sm(λ) = am(λc − λ)ν +O((λc − λ)ν
′
) , (3.74)
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where ν′ > ν. This critical behaviour can be studied performing an expansion of (3.71) when

λ → λc. To that end, we need the dominant expression of kc and θk when λ → λc. Firstly,

from (3.72) we find

kc =
π

2
− 2 sin(2x)√

tanh(2λc)

√
λc − λ+O(λc − λ) . (3.75)

We now perform an expansion of θk for k ∈ [kc, π − kc]. We note that as λ → λc, we have

kc → π/2, so the values of k ∈ [kc, π − kc] also come close to π/2. This requires thus an

expansion of θk in (k − π/2)2 and λc − λ. We find

θk =
√
8 sin2(2x) sinh(4λc)(λc − λ)− 2 cos2(2x)[cosh(4λc) + cos(4x)](k − π

2 )
2

+O(λc − λ) +O(k − π
2 )

2 .

(3.76)

We then need the behaviour of φ̂, ψ̂ perturbatively in λc−λ. For a, b, c, d, e, f constants and

θ → 0 we have the expansion

1

2π

∫ 2π

0
du

a sin2 u+ bθ sinu cosu+ cθ2

d sin2 u+ eθ sinu cosu+ fθ2

=
a

d
+

2|θ|
π

∫ ∞

0

(dc− fa− eb+ e2a
d )u2 + fc− f2a

d

d2u4 + (2df − e2)u2 + f2
du+O(θ2) ,

(3.77)

To prove this, we write

∫ 2π

0
du

a sin2 u+ bθ sinu cosu+ cθ2

d sin2 u+ eθ sinu cosu+ fθ2
= 2π

a

d
+

∫ π

−π
du

(b− ea
d )θ sinu cosu+ (c− fa

d )θ2

d sin2 u+ eθ sinu cosu+ fθ2
.

(3.78)

Then we decompose the integral into the intervals [−ϵ, ϵ], [π − ϵ, π], [−π,−π + ϵ] and the

rest denoted I, for some ϵ > 0. The limit θ → 0 can be taken directly on I, and using the

change of variable u → −u one finds I = O(θ2). On [−ϵ, ϵ], provided ϵ is small enough we

can replace sinu by u and cosu by 1. Then we perform the change of variable u = θv and

58



take the limit θ → 0. With a similar process on the other intervals, we obtain (3.77).

Using (3.77), we find

√
|φ̂(k)|2 + |ψ̂(k)|2 = 1− γ|θk|+O(θ2k) , (3.79)

with after some algebra

γ =
4

π

∫ ∞

0
du

|b|2u2 + |b|2
|b|2+|1−a|2

(|b|2 + |1− a|2)2u4 + 2[|b|2 + |1− a|2 − 2(ℜ(1− a))2]u2 + 1
, (3.80)

where the coefficients a(k), b(k) are evaluated at k = π/2, and that we recall are defined as

the coefficients of the matrix Mk/
√

detMk in Eq. (16) of the main text, as in Eq. (7).

Explicitly

a(π/2) = sin2(2x)e−4λc − cos2(2x)e4ix , b(π/2) = sin(2x) cos(2x)(e−4λc + e4ix) . (3.81)

From (3.71) we have then for m ≥ 2

sm(λ) =
2

π

∫ π/2

kc
dkHm

(√
|φ̂(k)|2 + |ψ̂(k)|2

)
= −2γH ′

m(1)

π

∫ π/2

kc
dkθk +O((λc − λ)3/2) .

(3.82)

Using (3.76) and (3.75) we find

∫ π/2

kc
dkθk = 8 sin2(2x) cosh(2λc)(λc − λ)

∫ 1

0
dy
√

1− y2 +O((λc − λ)3/2)

= 2π sin2(2x) cosh(2λc)(λc − λ) +O((λc − λ)3/2) .

(3.83)
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Hence we obtain the following behaviour for m ≥ 2

sm(λ) = 2γ sin2(2x) cosh(2λc)
m

m− 1
(λc − λ) +O((λc − λ)3/2) , (3.84)

and all the Rényi entropies have the critical exponent

ν = 1 . (3.85)

As for the von Neumann entropy, we have

H1(1− ϵ) =
ϵ

2

(
1− log

ϵ

2

)
+O(ϵ2) . (3.86)

Hence it displays a marginally corrected critical behaviour as

s1(λ) = γ sin2(2x) cosh(2λc)
(1− 2 log 2)

2
(λc − λ) log(λc − λ) +O(λc − λ) . (3.87)

As for the Hartley entropy, we have

s0(λ) =
2

π

∫ π/2

kc
dk , (3.88)

so

s0(λ) =
4 sin(2x)

π
√

tanh(2λc)

√
λc − λ+O(λc − λ) , (3.89)

yielding the critical exponent

ν =
1

2
. (3.90)
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3.4 Additional results

Here we study the quasi-periodic circuit of Ref. [106] and recover the volume-law to log-law

transition by studying Möbius transformations. This section was inspired by conversations

with Peter Lu, Tarun Grover, and Etienne Granet.

3.4.1 Quasi-periodic circuit

The non-unitary circuit in Ref. [106] is given by

V (T ) =
T∏
t=1

eih̃
∑

r σ
x
r eiJ̃t

∑
r σ

z
rσ

z
r+1 . (3.91)

For ease of analysis, we will switch the two terms, and study the circuit

V (T ) =
T∏
t=1

eiJ̃t
∑

r σ
x
r eih̃

∑
r σ

z
rσ

z
r+1 , (3.92)

so that the quasi-periodicity is in the σxr term. We found that for a single round, the Mobius

transformation is

Mk(t) =

e4iJ̃t
(
e4ih̃ + 1

tan2(k/2)

)
e4iJ̃t(1− e4ih̃) i

tan(k/2)

−(1− e4ih̃) i
tan(k/2)

1 + e4ih̃ 1
tan2(k/2)

 (3.93)

For the quasi-periodic circuit, Ref. [106] defined

J̃t = −π
4
+
i

2
log tan(ht)

h̃ = arctan(−ie−2iJ ),

(3.94)

where

ht = h+ λ cos(2πQt+ δ), (3.95)
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and Q is irrational. Simplifying (3.94), we get

J̃t = −
(
−π
4
+
π

2

1

2
(1− sgn(tan(ht)))

)
+
i

2
log | tan(ht)|

h̃ = −π
4
+

1

2
log tan(J)i.

(3.96)

Mk simplifies to

Mk(t) =

− 1
tan2(ht)

(
− 1

tan2(J)
+ 1

tan2(k/2)

)
− 1

tan2(ht)

(
1 + 1

tan2(J)

)
i

tan(k/2)

−
(
1 + 1

tan2(J)

)
i

tan(k/2)
1− 1

tan2(J)
1

tan2(k/2)

 . (3.97)

We must now check whether or not Mk(t) satisfies (3.12), to determine whether or not k is

critical. To check whether or not Mk(t) satisfies the first condition, we must check whether

det(Mk(t)) is positive or negative. We have

det(Mk(t)) ∼
(

1

tan2(J)
− 1

tan2(k/2)

)(
1− 1

tan2(J) tan2(k/2)

)
+

(
1 +

1

tan2(J)

)2 1

tan2(k/2)
.

(3.98)

This quantity is positive for all k, so Mk(t) satisfies the first condition for all ht. Next, we

need to check if Mk(t) satisfies the second condition. We evaluate

∣∣∣∣∣∣∣∣∣∣
− 1

tan(ht)

(
− 1

tan2(J)
+ 1

tan2(k/2)

)
+ tan(ht)

(
1− 1

tan2(J)
1

tan2(k/2)

)
√((

1
tan2(J)

− 1
tan2(k/2)

)(
1− 1

tan2(J) tan2(k/2)

)
+
(
1 + 1

tan2(J)

)2
1

tan2(k/2)

)
∣∣∣∣∣∣∣∣∣∣
≤ 2.

(3.99)

One can check that this is always satisfied for a region of k as long as tan(ht) ̸= 0(ht ̸= 0, π)

and tan(ht) ̸= ∞
(
ht ̸= ±π

2

)
, as expected of a non-unitary circuit with a dual that is unitary.

Now if we have a quasiperiodic circuit with λ > λc, then in the limit of infinite time,

there will be time steps where ht gets arbitrarily close to π. Notice that in the periodic case,
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ht can also hit π for λ > λc, but one must finely tune δ. Therefore, there should also be a

volume-law to log-law transition with appropriately tuned δ. In the quasi-periodic case, this

does not depend on δ. Suppose that this happens at t = tn. Then

Mk(tn, . . . t1) =Mk(tn)Mk(tn−1, . . . t1). (3.100)

For ht → π, we have ∣∣∣∣ Tr(Mk(tn, . . . t1))√
det(Mk(tn, . . . t1))

∣∣∣∣ ∼ 1

tan(ht)
→ ∞. (3.101)

This violates the second condition, so in the infinite time limit, there is no finite range of

critical k. The physical intuition for this is the same as in Ref. [106], that transition comes

from there being a projective measurement on all the sites, for λ > λc.
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CHAPTER 4

STORY 3: TOPOLOGICAL PHASES AND GAPLESS EDGES

4.1 Introduction: Models for topological phases

A local commuting projector Hamiltonian (LCPH) is a Hamiltonian defined on a lattice Λ,

that takes the form

H =
∑
r∈Λ

Hr, (4.1)

where each term Hr is supported within a bounded distance ξ of the site r, up to exponential

tails. The defining features of a LCPH are that (1) the local terms are projectors and (2)

they all commute with each other:

[Hr, Hr′ ] = 0 H2
r = Hr = H

†
r ∀r, r′ ∈ Λ. (4.2)

These models are exactly solvable despite being strongly interacting. Specifically, their

ground states and excited states can be obtained by finding simultaneous eigenstates of the

local Hamiltonian terms. For example, the ground state is explicitly given by

PGS =
∏
r∈Λ

(
1−Hr

2

)
, (4.3)

and excited states can be obtained by violating local projectors.

LCPHs have contributed greatly to our understanding of gapped phases of matter.

Gapped phases of matter are phases where a set of degenerate ground states are separated

from the excited states by a gap ∆ that does not vanish in the thermodynamic limit. In

particular, LCPHs can be constructed for broad classes of topological phases[13, 44, 14, 113,

15, 16, 114]. For example, the toric code[11] and many other two-dimensional topological

orders have a corresponding string-net model[13], which is a LCPH.
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Given the broad applicability of LCPHs, it is important to study their limitations: what

phases cannot be realized by LCPHs? In two spatial dimensions, it is hypothesized that any

topological order that does not admit a gapped boundary cannot be realized by a LCPH.

There are some partial proofs of this hypothesis. For example, if a topological phase has a

nonzero chiral central charge c−, then it does not admit a gapped edge, and does not have

any LCPH realization. To see why this is the case, note that the chiral central charge is

proportional to energy current at the edge[12]:

I =
π

12
c−T 2, (4.4)

where T is the temperature. However, the energy current from A to B is given by[12, 115]

IAB =
∑
a∈A

∑
b∈B

⟨−i[Ha, Hb]⟩, (4.5)

where the expectation value is taken in the thermal state ρ ∼ e−βH . It follows that for a

commuting projector Hamiltonian, c− must be zero. Some topological phases have c− = 0

but have a nonzero electric Hall conductance[116]. It was shown in Ref. [30] that these

phases also cannot be realized by commuting projector Hamiltonians. However, the proof in

Ref. [30] relies on abstract methods in algebraic geometry, that do not give much physical

intuition for the result. Instead, we use a flux insertion argument, based on a real-space

formula for the Hall conductance, to prove the the result in a physically intuitive way. This

proof not only clarifies the physical reason for the result, but it also shows why there are

certain loopholes, such as using infinite-dimensional local Hilbert spaces. In additional, while

the proof in Ref. [30] is restricted to the case where the local terms {Hr} are strictly local,

our proof also applies to {Hr} with exponentially decaying tails. This allows us to use

our proof to show that any system of non-interacting electrons with exponentially localized

Wannier functions has a vanishing Hall conductance.
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4.2 Vanishing Hall conductance for commuting Hamiltonians

This chapter is reprinted with permission from:

Carolyn Zhang and Michael Levin. Vanishing Hall conductance for commuting Hamiltonians.

Phys. Rev. B 105, L081103, Feb 2022.

© 2020 American Physical Society

Abstract

We consider the process of flux insertion for ground states of almost local commuting

projector Hamiltonians in two spatial dimensions. In the case of finite dimensional local

Hilbert spaces, we prove that this process cannot pump any charge and we conclude that

the Hall conductance must vanish.

4.2.1 Introduction

A local commuting projector Hamiltonian (LCPH) is a special kind of quantum lattice

model of the form H =
∑

rHr, where each Hr is a projection operator supported on a finite

collection of nearby lattice sites, and where the different Hr’s commute with one another.

Lattice models of this kind, such as the toric code model[11], have proven to be powerful

tools for studying interacting topological phases of matter. Given the many applications of

these models[13, 44, 15, 16, 18], it is important to understand their limitations: that is, what

phases cannot be realized by LCPHs? In two dimensions, it is known1 that one class of such

phases are those with a nonzero thermal Hall conductance[117]. In this work, we show that

another class of such phases are those with a nonzero electric Hall conductance ν. This claim

was first proved in Ref. [30] using algebraic geometry. Here, we give a simple and physically

motivated proof based on the idea of flux insertion. Our techniques are closely related to

1. To see why the thermal Hall conductance must vanish for commuting Hamiltonians, note that the
energy current fjk = 0 in Eq. (154) of Ref. [117], and hence one can choose hjkl = 0 in Eq. (159), which
leads to a vanishing thermal Hall conductance in Eq. (160).
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those of Refs. [118, 119, 120]. Our argument has the additional advantage that it extends to

almost local CPHs (ALCPHs), a generalization of LCPHs that includes Hamiltonians with

interactions that decay faster than any power.

4.2.2 Physical argument.

We first present an intuitive, but non-rigorous, argument for our no-go result. This argu-

ment is similar to our main argument, but not as general, since it applies only to strictly

local commuting projector Hamiltonians. It also assumes the “local topological quantum

order” (LTQO) property (4.11), which is stronger than the property (4.12) used in the main

argument.

Imagine starting in a ground state |Ω⟩ of a two dimensional LCPH and then adiabatically

inserting ±2π flux at two punctures. This process can be implemented by a string operator U

localized along a line between the two punctures, as illustrated in Fig. 4.1. By the Laughlin

argument [121, 122], the amount of charge pumped by this process from one puncture to the

other is equal to 2πν. Let B be a region surrounding one of the two punctures, and let QB

be the operator that measures the total charge in region B. The charge pumped by the flux

insertion is then ⟨Ω|U†QBU −QB |Ω⟩, so the Hall conductance is

ν =
1

2π
⟨Ω|U†QBU −QB |Ω⟩, (4.6)

Since the system is charge conserving and the current flows only along the string, the operator

T ≡ U†QBU − QB is localized near the point where the string intersects the boundary of

B, as indicated in Fig. 4.1.

Now consider the charge pumped by inserting many units of flux, written as a telescoping

sum:

⟨Ω|U†nQBU
n −QB |Ω⟩ =

n−1∑
k=0

⟨Ω|U†kTUk|Ω⟩. (4.7)
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QBTU

Φ = 2π

Figure 4.1: Setup for physical argument. A string operator U inserts ±2π flux at its end-
points. This operation pumps charge from one puncture to the other, increasing the total
charge QB within region B (solid circle). The operator T = U†QBU − QB measuring the
change in QB is supported in the small dotted circle. For an LCPH, U commutes exactly
with all Hamiltonian terms that are supported away from the two punctures.

Crucially, for an LCPH, the operator U commutes exactly with all Hr terms away from the

two punctures (we justify this claim below). This means, in particular, that Uk|Ω⟩ does

not contain any excitations away from the two punctures, i.e. it is a “local ground state” in

this region. Then, assuming that the Hamiltonian obeys the local TQO condition (4.11), we

deduce that Uk|Ω⟩ must have the same expectation values as |Ω⟩ for any local observable

supported away from the punctures. In particular, specializing to the observable T , we

deduce that ⟨Ω|Uk†TUk|Ω⟩ = ⟨Ω|T |Ω⟩. We conclude that all of the terms in the sum in

(4.7) give the same quantity 2πν, so the right hand side evaluates to 2πnν.

At the same time, the absolute value of the left hand side of (4.7) is bounded by |qmax−

qmin| where qmax and qmin are the largest and smallest eigenvalues of QB . Hence, we have

the bound 2πn|ν| ≤ |qmax − qmin|. Since n can be made arbitrarily large, we conclude that

ν = 0.

To complete the argument, we now explain why U commutes with all the Hr terms away

from the two punctures. The key point is that all the Hr terms that are supported away from

the two punctures remain commuting projectors throughout the flux insertion process[30].

Therefore, if the system starts in an eigenspace of some Hr away from the punctures, it will

stay in this eigenspace throughout the flux insertion, since all the terms in the Hamiltonian

commute with Hr(t) at all times, and the process is adiabatic. In particular, the system
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is in the same eigenspace at the end of the process as at the beginning, implying that U

commutes with Hr.

This behavior should be contrasted with that of non-commuting Hamiltonians: in that

case, U does not commute with Hr, so there is no reason that Uk|Ω⟩ has to be in a ground

state away from the two punctures for arbitrarily large k. Instead, every time we apply

U , we create additional (possibly charged) excitations, that spread outward from the two

punctures as k increases. When k is large enough, the excited region in Uk|Ω⟩ reaches the

support of T and the total pumped charge stops growing linearly. Hence ν can be nonzero

without contradiction.

An important loophole in the above no-go argument is that it assumes that QB has a

bounded spectrum. This assumption can break down if the Hilbert space on each lattice site

is infinite dimensional. This explains how the LCPH in Ref. [123] can realize a state with

ν ̸= 0: the example given there uses a system built out of infinite dimensional rotor degrees

of freedom. In such a system, a finite region B can absorb an infinite amount of charge, so

ν can be nonzero.

We now turn to a rigorous version of this argument based on infinitesimal flux inser-

tion. This argument applies to a more general class of almost local commuting projector

Hamiltonians (ALCPHs).

4.2.3 Setup

We consider a sequence of two dimensional lattice spin systems of increasing linear size L,

defined on a torus geometry. We denote the lattice by Λ = {−L/2 + 1, · · · , L/2− 1, L/2}2

where we take L to be even for convenience. Each site r ∈ Λ corresponds to a finite

dimensional local Hilbert space, where the dimension is fixed and does not depend on L.

In the following, all constants are uniform in the system size; the notation O(L−∞) means

≤ CkL
−k for all k, for some constant Ck.
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We consider Hamiltonians that are sums of commuting projectors of the form

H =
∑
r∈Λ

Hr, [Hr, Hr′ ] = 0, H2
r = Hr = H

†
r . (4.8)

Each projector Hr is “almost local” in the sense that Hr commutes with operators Or′ ,

supported on a single site r′, up to error superpolynomially small in the distance |r − r′|:

∥[Hr, Or′ ]∥ ≤ ∥Or′∥ · O(|r − r′|−∞). (4.9)

We also assume each Hr is charge conserving:

[Hr, QΛ] = 0 ∀r ∈ Λ, (4.10)

where QΛ =
∑

r∈Λ qr is a sum of Hermitian charge operators qr, each supported on site r,

with an integer spectrum and a uniformly bounded norm. In addition, we assume that the

number of ground states of H remains bounded as L → ∞ and that these ground states

are simultaneous eigenstates of the projectors {Hr : r ∈ Λ} with eigenvalue 0 (i.e. H is

frustration-free).

To state our final assumption, we first need to introduce some notation. For any region

R, we define the corresponding “local ground state subspace” VR to be the set of all states

that are annihilated by the projectors {Hr : r ∈ R}. We denote the projector onto VR

by PR, and we denote the expectation value of an observable O, averaged over VR, by

⟨O⟩R = 1
Tr(PR)

Tr(PRO). We use the abbreviation P ≡ PΛ to denote the projector onto the

global ground state subspace, and likewise we use the notation ⟨O⟩ ≡ ⟨O⟩Λ to denote the

average over the global ground state subspace.

Our final assumption is a weaker version of the local topological order (LTQO) condition

of Refs. [124, 125]. The usual LTQO condition states that for any region R, and any local
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observable O
R̃

supported in a smaller region R̃ ⊂ R, the expectation value of O
R̃

in (any)

local ground state |ΨR⟩ ∈ VR is approximately the same as the expectation value in (any)

global ground state |Ω⟩:

⟨ΨR|OR̃
|ΨR⟩ = ⟨Ω|O

R̃
|Ω⟩+ ∥O

R̃
∥ · O(dist(R̃, Rc)−∞), (4.11)

where Rc is the complement of R in Λ. In this paper, we will only need the weaker prop-

erty that the average expectation value of O
R̃

over the local ground state subspace VR is

approximately equal to the average expectation value of O
R̃

over the global ground state

subspace:

⟨O
R̃
⟩R = ⟨O

R̃
⟩+ ∥O

R̃
∥ · O(dist(R̃, Rc)−∞). (4.12)

Note that (4.12), unlike (4.11), does not require local indistinguishability of ground states.

Rather, it can be interpreted as a local response condition: it says that local observables

O
R̃

have approximately the same (zero temperature) expectation values in the full system as

they do in a subsystem R ⊃ R̃. One difference between (4.12) and the usual LTQO condition

(4.11) is that (4.12) can be satisfied by systems with spontaneous symmetry breaking, while

such systems generally violate (4.11).

4.2.4 Hall conductance

To define the Hall conductance within this setting, we consider a geometry consisting of

two overlapping disks A and B of radius L
4 , centered at (−L

8 , 0) and (L8 , 0) respectively (see

Fig. 4.2).

Our definition involves a string operator K−
A that runs along the lower half boundary of

A and that inserts an infinitesimal flux into the center of B. To construct K−
A , we assume
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QA QB

r−

R−

K∗−
A

Figure 4.2: Geometry of main argument. Two disks A,B with charge QA, QB , intersect
in the lower half torus at point r−. The operators K∗−

A and [K∗−
A , QB ] are supported in

the blue strip and the dotted circle respectively. The operator QA − K∗−
A commutes (up

to O(L−∞)) with PR− , the projector into the local ground state subspace of the (shaded)
region R−.

the existence of an operator KA with two properties. First, KA satisfies

[QA −KA, P ] = 0. (4.13)

Second, KA is supported “near” the boundary of A. More precisely, KA can be approximated,

up to O(L−∞), by a sum of terms of the form

KA =
∑

r∈∂αLA
Kr,A +O(L−∞) (4.14)

where ∂αLA = {r ∈ Λ : max (dist(r, A), dist(r, Ac)) ≤ αL} is a strip of width 2αL along

the boundary of A, with 0 < α ≤ 1
32 . Here, each Kr,A is a strictly local charge conserving

operator, with a uniformly bounded norm, supported in DαL(r), a disk of radius αL centered

at r. It has been shown that an operator KA with these two properties can be constructed

for all gapped, charge conserving Hamiltonians[126, 118].

Given a KA with these properties, we construct a corresponding string operator K−
A by

restricting the sum in (4.14) to sites in the lower half torus, which we denote by Λ− = {r ∈
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Λ : ry ≤ 0}:

K−
A =

∑
r∈(∂αLA)∩Λ−

Kr,A. (4.15)

To see why K−
A inserts an infinitesimal flux, note that for θ ≪ 1, the operator eiθKA has

the same action on ground states as the gauge transformation eiθQA by (4.13); likewise, the

restricted operator eiθK
−
A acts like a gauge transformation along the lower boundary of A

but acts trivially along the upper boundary of A, exactly as one expects for an infinitesimal

flux insertion operator.

With these preliminaries, we can now define the Hall conductance in a form that is most

convenient for our purposes:

ν = −i lim
L→∞

⟨[K−
A , QB ]⟩. (4.16)

This expression can be interpreted as the charge pumped into B by an infinitesimal flux

insertion.

Note that (4.16) can be related to the more familiar Kubo formula for the Hall con-

ductance. Using (4.13) but with B instead of A, we see that ⟨[K−
A , QB ]⟩ = ⟨[K−

A , KB ]⟩

by cyclicity of the trace. KB can then be replaced by K−
B , up to O(L−∞), giving ν =

−i limL→∞⟨[K−
A , K

−
B ]⟩. This is the adiabatic curvature [126, 127], which is well-known [128]

to express the Kubo linear response coefficient in the QHE.

Importantly, any KA satisfying (4.13) and (4.14) is valid for computing ν. We will lever-

age this non-uniqueness of KA in this work, by constructing a KA with special properties.

4.2.5 Main result

We now use (4.16) to compute the Hall conductance for ALCPHs. Our main result is the

following: Let H be a charge conserving ALCPH. There is a choice of KA, which we call

K∗
A, satisfying (4.13,4.14) such that the corresponding operator K∗−

A , defined as in (4.15),
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obeys

⟨[K∗−
A , QB ]⟩ = O(L−∞). (4.17)

In particular, ν = 0.

Proof. Let K∗
A be defined by

K∗
A = QA −

∫
DΛ[θ]e

i(θ,H)QAe
−i(θ,H), (4.18)

where DΛ[θ] =
∏

r∈Λ
dθr
2π , (θ,H) =

∑
r∈Λ θrHr, and we integrate over {0 ≤ θr ≤ 2π}. With

this definition, the operator QA−K∗
A is simply an average of UQAU

† over all unitary oper-

ators U = ei(θ,H) generated by the commuting projectors, Hr. Therefore, by construction,

QA −K∗
A commutes with every unitary operator ei(θ,H), and hence it also commutes with

the generators, Hr:

[QA −K∗
A, Hr] = 0, (r ∈ Λ) (4.19)

This ensures that K∗
A satisfies (4.13).

In fact, K∗
A also satisfies (4.14), i.e. it can be approximated by a sum of local terms

supported along the boundary of A. Intuitively, this is because the above averaging proce-

dure only modifies QA near its boundary since the Hamiltonian is commuting and charge

conserving. This claim is encapsulated in the following lemma: K∗
A can be approximated,

up to O(L−∞), by a sum of the form

K∗
A =

∑
r∈∂αLA

K
∗
r,A +O(L−∞) (4.20)

where K∗
r,A is a strictly local charge conserving operator, with a uniformly bounded norm,

supported in DαL(r).

The proof of Lemma 4.2.5 is particularly simple for the special case of strictly local

commuting projector Hamiltonians. In fact, in this case, Eq. (4.20) holds without any error
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terms. To see this, notice that in (4.18) we only need to include Hr within a finite distance of

the boundary of A because all other Hr’s commute with QA exactly. We can then write K∗
A

as K∗
A =

∑
r∈AK

∗
r,A where K∗

r,A is defined just like K∗
A in (4.18) except with QA replaced

by qr and with the averaging restricted to Hr’s within a finite distance of the boundary of A.

Eq. (4.20) then follows immediately since K∗
r,A vanishes exactly except for r within a finite

distance of the boundary of A. A similar proof holds in the more general case of almost local

commuting projector Hamiltonians; see Sec. 4.3 for details2.

We now assume Lemma 4.2.5 and proceed with the proof of the theorem. First, we define

K∗−
A as in (4.15):

K∗−
A =

∑
r∈(∂αLA)∩Λ−

K
∗
r,A. (4.21)

We then make two observations. The first observation, which follows immediately from the

definition (4.21) and charge conservation, is that

supp([K∗−
A , QB ]) ⊂ D2αL(r

−), (4.22)

where r− is the point in the lower half torus where the boundaries of A and B intersect (see

Fig. 4.2).

The second observation is that

[QA −K∗−
A , PR− ] = O(L−∞), (4.23)

where R− = {r ∈ Λ : ry < −2αL}. To see this, it suffices to show that [QA −K∗−
A , Hr] =

O(L−∞) for any r ∈ R− since PR− =
∏

r∈R−(1−Hr). From (4.19),

[QA −K∗−
A , Hr] = [K∗

A −K∗−
A , Hr].

2. See Sec. 4.3 for the proof of Lemma 4.2.5 for ALCPHs.
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The right hand side is O(L−∞). Indeed, K∗
A−K

∗−
A can be approximated, up to O(L−∞),

by a sum of local terms K∗
r,A strictly supported in {r ∈ Λ : ry ≥ −αL}, and each of these

O(L) terms commutes with the almost local terms Hr up to O(L−∞) according to (4.9).

We now use (4.22,4.23) to complete the proof. First, by cyclicity of the trace,

⟨[QA −K∗−
A , QB ]⟩R− = ⟨{QB , [PR− , QA −K∗−

A ]}⟩R− , (4.24)

where {·, ·} denotes the anticommutator. By (4.23), the right hand side is O(L−∞); therefore

since [QA, QB ] = 0, we deduce that

⟨[K∗−
A , QB ]⟩R− = O(L−∞). (4.25)

At the same time, using (4.12) together with (4.22) and the fact that the distance from

D2αL(r
−) to the complement of R− is proportional to L, we have

⟨[K∗−
A , QB ]⟩ = ⟨[K∗−

A , QB ]⟩R− +O(L−∞). (4.26)

Theorem 4.2.5 then follows immediately from (4.25,4.26).

It is instructive to compare this proof with the physical argument we presented earlier. To

make this comparison, we think of QA−K∗−
A as the infinitesimal analog of the flux insertion

operator U . Specifically, we note that the unitary U corresponding to a 2π flux insertion is

given by U = e−2πi(QA−K∗−
A )[118]. We can then see that the two observations (4.22, 4.23)

that underlie our proof have close parallels with the physical argument. In particular, (4.22)

is analogous to our previous claim that U†QBU −QB is localized near the point where the

support of U intersects B. Likewise, (4.23) is analogous to our claim that U preserves the

ground state away from the punctures. One difference between the two arguments is that

the above argument requires that the site Hilbert space is finite dimensional, e.g. when we

cyclically permute the trace in (4.24), while the physical argument only uses the weaker
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assumption that QB has a bounded spectrum.

4.2.6 Discussion

While we have focused on Hamiltonians built out of commuting projectors, our results apply

to a broader class of commuting Hamiltonians. For example, we can replace the projector

assumption with a weaker gap assumption: the lowest eigenvalue of Hr is 0 and it is isolated

from the rest of its spectrum by a local gap gr ≥ g > 0 with g independent of r, L. To see

why our results apply in this case, note that we can pick a smooth function χg such that

χg(E) = 0 if E ≤ 0 and χg(E) = 1 if E ≥ g. We can then spectrally flatten Hr to the

projector χg(Hr). Smoothness of χg translates to a rapid decay in real space and so χg(Hr)

remains almost local. It follows that H̃ =
∑

r χg(Hr) is an ALCPH with the same ground

state space as H. Hence, the Hall conductance vanishes for ground states of such almost

local, locally gapped, commuting Hamiltonians.

Our results can also be readily extended to fermionic systems. Indeed, while the setup

for our proof was explicitly bosonic, all results continue to hold in the fermionic setting,

provided that we restrict to operators with even fermion parity. This restriction ensures

that the locality expressed by (almost) commutation continues to hold in the fermionic

setting.

One application of our results is that they provide a short proof that any system of non-

interacting electrons with localized Wannier functions has a vanishing Hall conductance.

To prove this, let the projector into the lowest band be P =
∑

r,µ |ψr,µ⟩⟨ψr,µ| and let the

projector into the other bands be 1−P =
∑

r,µ′ |ψ̃r,µ′⟩⟨ψ̃r,µ′|. Here, {|ψr,µ⟩} and {|ψ̃r,µ′⟩} are

pairwise orthogonal, superpolynomially localized Wannier functions. A parent Hamiltonian

with lowest band projector P is given by H =
∑

r,µ a(ψr,µ)a
†(ψr,µ)+

∑
r,µ′ a

†(ψ̃r,µ′)a(ψ̃r,µ′),

where a†(ψr,µ) creates a ψr,µ excitation from the Fock vacuum. It is clearly a commuting

projector Hamiltonian, and the decay of the Wannier functions implies that the terms are
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almost localized. Hence H is an ALCPH and our theorem implies that the Hall conductance

vanishes. In fact, Ref. [129] already proved a stronger version of this result, but our proof

has the advantage of applying to a much larger class of interacting systems.

One direction for future work is to investigate which two dimensional topological phases

can be realized by ALCPHs in the absence of any symmetries. In this case, a reasonable con-

jecture is that ALCPHs can realize precisely those topological phases that support gapped

boundaries. Assuming this conjecture, it is particularly interesting to consider topological

phases that have a vanishing thermal Hall conductance, but do not support gapped bound-

aries [130]. These phases presumably do not have an ALCPH realization, but there is no

direct proof of this, to our knowledge.
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4.3 Supplemental Material

In this Supplemental Material, we prove Lemma 1 from the main text. First, we introduce

some notation. For any operatorO and any subset S of lattice sites, we define a corresponding

“averaged” operator ES(O) by averaging O over the unitaries generated by {Hr : r ∈ S}:

ES(O) =

∫
DS [θ]e

i(θ,H)SOe−i(θ,H)S . (4.27)
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where DS [θ] =
∏

r∈S
dθr
2π , (θ,H)S =

∑
r∈S θrHr, and we integrate over {0 ≤ θr ≤ 2π}. In

this notation, K∗
A can be written as

K∗
A = QA − EΛ(QA) (4.28)

The averaging operation ES has several important properties that we will use below. We

note first of all that ES is a contraction, i.e. ∥ES(O)∥ ≤ ∥O∥, and second of all that, since

the Hamiltonian is commuting, ES = ES\S′ ◦ES′ = ES′ ◦ES\S′ for any S′ ⊂ S where S \S′

is the complement of S′ in S. It follows in particular that

∥ES(O)− ES′(O)∥ ≤ ∥ES\S′(O)−O∥. (4.29)

Another useful bound is that

∥ei(θ,H)SOe−i(θ,H)S −O∥ ≤ 2π
∑
r∈S

∥[Hr, O]∥ . (4.30)

This bound follows from the fact that

∥∥∥∥ ddt(e−it(θ,H)SOeit(θ,H)S )

∥∥∥∥ ≤ 2π
∑
r∈S

∥[Hr, O]∥ ,

together with the fundamental theorem of calculus. Integrating (4.30) over all θr’s gives yet

another property of ES :

∥ES(O)−O∥ ≤ 2π
∑
r∈S

∥[Hr, O]∥. (4.31)

Finally, combining (4.29, 4.31), we deduce the bound

∥ES(O)− ES′(O)∥ ≤ 2π
∑

r∈S\S′
∥[Hr, O]∥. (4.32)
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We now apply the above bound (4.32) to the case O = QA. In that case, charge con-

servation guarantees that [Hr, QA] = −[Hr, QAc ] and therefore, by the almost locality of

Hr,

[Hr, QA] = O
(
max(dist(r, A), dist(r, Ac))−∞) . (4.33)

In other words, only Hr with r near the edge of A fail to commute with QA. Combining this

with (4.32), we see that we can restrict the average in (4.28) to a strip along the boundary

of A with superpolynomially small error:

K∗
A = QA − E∂αL/2A

(QA) +O(L−∞). (4.34)

Next, we split QA =
∑

r∈A qr in two contributions, Qbdry and Qint, according to to

whether r ∈ ∂αLA or not. From (4.31), we can see that the contribution to K∗
A from Qint

is O(L−∞) since the distance between ∂αL/2A and Qint is proportional to L. Therefore, we

can replace QA by Qbdry in (4.34):

K∗
A = Qbdry − E∂αL/2A

(Qbdry) +O(L−∞).

To proceed further, we write Qbdry as a sum of qr’s and we use (4.32) to approximate

E∂αL/2A
(qr) = E

D̃αL/2(r)
(qr)+O(L−∞) where D̃αL/2(r) = DαL/2(r)∩∂αL/2A. In this way,

we derive

K∗
A =

∑
r∈(∂αLA)∩A

K∗
r,A +O(L−∞)

where

K∗
r,A = qr − E

D̃αL/2(r)
(qr) (4.35)

All that remains is to show that K∗
r,A can be approximated by a strictly local, uniformly

bounded, charge conserving operator K∗
r,A supported within DαL(r). To show this, we need
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one more property of ES , namely the inequality

∥[ES(O1), O2]∥ ≤ 4π∥O1∥ ·
∑
r∈S

∥[Hr, O2]∥ (4.36)

which holds for any two operators O1, O2 with [O1, O2] = 0. To derive this inequality, note

that

∥[ES(O1), O2]∥ ≤
∫
DS [θ] ∥[O1, e

−i(θ,H)SO2e
i(θ,H)S ]∥ (4.37)

Combining (4.30, 4.37) and using [O1, O2] = 0 gives (4.36).

We are now ready to complete the argument and show that K∗
r,A is localized near r. To

do this, we consider the commutator [K∗
r,A, Ox] where Ox is an operator supported on some

site x outside of DαL(r). Using the above inequality (4.36) with O1 = qr and O2 = Ox, and

S = D̃αL/2(r), we deduce that

∥[K∗
r,A, Ox]∥ ≤ 4π∥qr∥ ·

∑
r∈D̃αL/2(r)

∥[Hr, Ox]∥

≤ ∥Ox∥ · O(L−∞) (4.38)

where the last line follows from the almost locality of Hr. Since Ox is an arbitrary single

site operator supported outside of DαL(r), the bound (4.38) implies our claim: K∗
r,A can

be approximated up to O(L−∞) by an observable, K∗
r,A, that is strictly supported inside

of DαL(r). [For example, K∗
r,A can be defined by simply taking the partial trace of K∗

r,A

over all the lattice sites outside of DαL(r)]. It is also clear by construction that these K∗
r,A

operators are charge conserving, and they are uniformly bounded because the norm of K∗
r,A

is bounded by 2∥qr∥ by (4.35). This completes the proof of Lemma 1 from the main text.
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CHAPTER 5

OUTLOOK

In this thesis we showed how simply toy models can lead to new insights in various disparate

topics in condensed matter theory. Many questions remain, and we highlight a few of them

here.

5.1 Quantum criticality

A natural next step following our work in Ch. 2 is to obtain an analytically tractable model

for a DQCP in 2D. Evidence has been mounting that the original VBS to Néel DQCP in 2D

is actually weakly first order[35, 36, 37, 38], but there may be other 2D lattice models that

give genuine DQCPs. The model presented in Ch. 2 describes the 1D edge of a 2D SPT,

so one place to look for such a 2D DQCP is at the boundary of a 3D SPT. An important

aspect of our 1D model was that charge and domain walls in 1D are both point-like. This

allows for our mapping to the Z4 spin chain. In 2D, charge is pointlike but domain walls are

line-like, so there may not be an exact mapping like that in Ch. 2. One possible solution is

to consider mixed anomalies of continuous symmetries, where the charges and vortices are

both point-like. Another possibility is to consider vortices with interesting structures formed

at the junctions of domain walls, similar to the C4 vortices of the VBS-Néel transition.

5.2 Quantum dynamics

In Ch. 3, we obtained a volume-law to area-law transition in a Gaussian non-unitary circuit,

but it was fine-tuned with respect to certain parameters in the circuit. One direction for fu-

ture work is to understand whether or not this is generic, i.e. whether any such entanglement

transition in a Gaussian circuit has to be fine-tuned. In particular, Ref. [65] proved that the

volume-law phase in Gaussian circuits is unstable to any amount of projective measurement.
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It would be interesting to better understand to what extent similar rigorous results can be

obtained for Gaussian non-unitary circuits, with weak rather than projective measurements.

One motivation for the project presented in Ch. 3 was the question of whether or not

disorder and randomness affects the nature of the entanglement transition. From the map-

ping of random non-unitary Gaussian circuits onto Chalker-Coddington models[66] and the

observation that disorder is a relevant perturbation in these models[131], it seems that dis-

order would affect the universality class of the transition. It remains to be seen whether or

not there exists a volume-law to area-law entanglement transition in Gaussian circuits in the

presence of randomness in the gates or in the weak measurements. The latter would occur

if we do not postselect on the ancilla (see Sec. 3.3.1). We hypothesize that the transition

does not exist in the presence of randomness, but we do not have a proof. One possible ap-

proach for this problem is studying perturbative disorder in Gaussian circuits. In interacting

systems, the role of disorder on the universality class of the transition is also not clear.

Another future direction is studying interacting but integrable non-unitary circuits, which

may realize entanglement transitions distinct from both Gaussian circuits and generic inter-

acting circuits. In forthcoming work[132], we study one particular such model[133]. In

addition to being integrable, the model has an antiunitary symmetry playing a similar role

to parity-time (PT) symmetry. As shown in Ref. [75], there is an interesting connection

between entanglement transitions and (generalized) PT symmetry breaking in generic in-

teracting non-unitary circuits. The integrable nature of the model we study allows for

more analytic results, and we find that its antiunitary symmetry breaking transition has

entanglement behavior different from that in generic interacting models. Many questions

remain along this line of research: how generic is the entanglement behavior we find for

other integrable non-unitary circuits with antiunitary symmetry? Can critical properties

be determined analytically? How can the non-unitary gates be implemented in a physical

setting?
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5.3 Topological phases

There are many open questions related to models for topological phases. We will begin with

some directions for future work that are related to the results presented in Ch. 4, and then

we will mention some more general problems.

As mentioned in Ch. 4, it is believed that commuting projector Hamiltonians in 2D can

only realize phases with gapped boundaries. However, there is no proof of this, except in the

special cases discussed in Ch. 4. Recently, the property that a topological order admits a

gapped edge has been reformulated in terms of a set of topological invariants that generalize

the chiral central charge. The so-called "higher central charges" can be computed from the

anyon data[134, 135, 136], and can also be extracted from the ground state wavefunction[137].

We highlight two interesting questions regarding the higher central charges. First, can higher

central charge be related to transport properties of the edge, like how chiral central charge is

related to the thermal Hall conductance? Relatedly, does higher central charge have a bulk

formula via bulk-boundary correspondence, like chiral central charge[115]? Second, can one

prove that the higher central charges must vanish for any commuting projector Hamiltonian?

For the chiral central charge, this follows directly from the formula for the energy current, as

discussed in Ch. 4. Therefore, an answer to the first question might help answer the second

question.

If phases that do not admit a gapped boundary do not have a commuting projector de-

scription, then it would be important to understand how to construct more general models

for them[138]. While these models may not be exactly solvable, they may still be partially

solvable, like Kitaev’s honeycomb model for Ising topological order[12]. For fermionic topo-

logical phases, such lattice models would allow for explicit gauging of fermion parity, by

coupling the fermions to gauge fields and applying a gauge constraint. In principle, one can

then explicitly derive the minimal modular extensions of the fermionic topological order,

which are the smallest bosonic topological orders that contain the anyons of the fermionic
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topological order. In turn, the minimal modular extensions would allow for computation of

the chiral central charge of the fermionic topological order modulo 1/2.

A technically challenging problem related to existing models of topological phases is

constructing microscopic lattice models for condensation of general non-abelian anyons. To

put this question in context, note that for abelian topological phases, we can drive an anyon

condensation transition by adding short string operators Hr,a where r denotes the lattice

site and a denotes the anyon, to the string-net Hamiltonian HSN :

H(λ) = HSN − λ
∑
r,a

Hr,a (5.1)

This would lead to condensation of the a anyons at large λ. The analogous microscopic

procedure for condensing non-abelian anyons is not understood. A related problem is how

to construct a string-net model with a boundary given a general Lagrangian algebra: a

Lagrangian algebra specifies a gapped boundary of a topological order via abstract data

describing how anyons are absorbed by the boundary, but it is not clear how to translate it

into a microscopic model.

There are some interesting questions at the intersection of condensed matter and quantum

information. For example, there is a hierarchy of complexity of topological orders given by

abelian, nilpotent, solvable, non-solvable but weakly integral, and not weakly integral. It is

hypothesized that only the latter kind of topological order can perform universal quantum

computation by braiding alone[139], and some of the other kinds of topological orders can

perform universal quantum computation upon supplementing the braiding with additional

operations[140, 141]. There is a related hierarchy of complexity for preparation of these

topological phases[142]. For example, there are recipes for preparing "solvable" topological

orders using sequences of finite time evolution, measurement, and feedforward (i.e. using

the measurement results to correct errors). However, for some of these topological orders,

the details of some of these steps (i.e. the actual unitary for the finite time evolution) are
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not fully developed. It is hypothesized, but not proven, that non-solvable topological orders

cannot be prepared using a finite sequence of the above three steps. It would be interesting

to rigorously study the limitations of different preparation protocols and their relations to

universal quantum computation, possibly using constraints on the string operators of the

resulting topological order[143] and their braiding properties.

The main theme of this thesis is toy models in condensed matter physics. However, toy

models may have limited applicability in realistic physical systems. Exactly solvable models

tend to be simple in terms of ground state structure, but complex in terms of interactions.

For example, the exactly solvable model for the 2D Z2 SPT contains 7-body interactions[63].

For experimental realization, it would be crucial to simplify the interactions. Currently,

beyond quantum hall pseud-potential constructions[7] and coupled wire constructions[144,

145], there are few frameworks for constructing realistic models of topological phases. One

approach for obtaining more realistic models is using exactly solvable models as a starting

point, and adding modifications while staying in the same phase. Much of the work in this

direction is inevitably numerical[146, 147, 148], with surprising new findings that beg for

better physical understanding.

To close, we share an image of the sunrise observed from a short distance below the peak

of Grand Teton. This image serves as a symbol for the vast landscape of open questions and

hope for the future.

86



87



REFERENCES

[1] Michael Levin and T. Senthil. Deconfined quantum criticality and néel order via dimer
disorder. Phys. Rev. B, 70:220403, Dec 2004.

[2] Ernst Ising. Beitrag zur theorie des ferro-und paramagnetismus. PhD thesis, Grefe &
Tiedemann Hamburg, 1924.

[3] Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder
transition. Phys. Rev., 65:117–149, Feb 1944.

[4] F. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensed-
matter realization of the "parity anomaly". Phys. Rev. Lett., 61:2015–2018, Oct 1988.

[5] A Yu Kitaev. Unpaired majorana fermions in quantum wires. Physics-uspekhi,
44(10S):131, 2001.

[6] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors.
Rev. Mod. Phys., 83:1057–1110, Oct 2011.

[7] F Duncan M Haldane. Continuum dynamics of the 1-d heisenberg antiferromagnet:
Identification with the o (3) nonlinear sigma model. Physics letters a, 93(9):464–468,
1983.

[8] Ian Affleck, Tom Kennedy, Elliott H Lieb, and Hal Tasaki. Rigorous results on valence-
bond ground states in antiferromagnets. Condensed Matter Physics and Exactly Soluble
Models: Selecta of Elliott H. Lieb, pages 249–252, 2004.

[9] Subir Sachdev and Jinwu Ye. Gapless spin-fluid ground state in a random quantum
heisenberg magnet. Phys. Rev. Lett., 70:3339–3342, May 1993.

[10] Alexei Kitaev. A simple model of quantum holography (part 2). Entanglement in
Strongly-Correlated Quantum Matter, page 38, 2015.

[11] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,
303(1):2–30, 2003.

[12] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics,
321(1):2–111, 2006.

[13] Michael A. Levin and Xiao-Gang Wen. String-net condensation: A physical mechanism
for topological phases. Phys. Rev. B, 71:045110, Jan 2005.

[14] Chien-Hung Lin, Michael Levin, and Fiona J. Burnell. Generalized string-net models:
A thorough exposition. Phys. Rev. B, 103:195155, May 2021.

[15] Chris Heinrich, Fiona Burnell, Lukasz Fidkowski, and Michael Levin. Symmetry-
enriched string nets: Exactly solvable models for set phases. Phys. Rev. B, 94:235136,
Dec 2016.

88



[16] Meng Cheng, Zheng-Cheng Gu, Shenghan Jiang, and Yang Qi. Exactly solvable models
for symmetry-enriched topological phases. Phys. Rev. B, 96:115107, Sep 2017.

[17] Claudio Chamon. Quantum glassiness in strongly correlated clean systems: An exam-
ple of topological overprotection. Phys. Rev. Lett., 94:040402, Jan 2005.

[18] Jeongwan Haah. Local stabilizer codes in three dimensions without string logical
operators. Phys. Rev. A, 83:042330, Apr 2011.

[19] Sagar Vijay, Jeongwan Haah, and Liang Fu. Fracton topological order, generalized
lattice gauge theory, and duality. Phys. Rev. B, 94:235157, Dec 2016.

[20] Rahul M Nandkishore and Michael Hermele. Fractons. Annual Review of Condensed
Matter Physics, 10:295–313, 2019.

[21] Lev Davidovich Landau. On the theory of phase transitions. i. Zh. Eksp. Teor. Fiz.,
11:19, 1937.

[22] John Cardy. Scaling and renormalization in statistical physics, volume 5. Cambridge
university press, 1996.

[23] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher. Quantum zeno effect and the
many-body entanglement transition. Phys. Rev. B, 98:205136, Nov 2018.

[24] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher. Measurement-driven entanglement
transition in hybrid quantum circuits. Phys. Rev. B, 100:134306, Oct 2019.

[25] Brian Skinner, Jonathan Ruhman, and Adam Nahum. Measurement-induced phase
transitions in the dynamics of entanglement. Phys. Rev. X, 9:031009, Jul 2019.

[26] Amos Chan, Rahul M. Nandkishore, Michael Pretko, and Graeme Smith. Unitary-
projective entanglement dynamics. Phys. Rev. B, 99:224307, Jun 2019.

[27] Xiao-Gang Wen. Colloquium: Zoo of quantum-topological phases of matter. Rev.
Mod. Phys., 89:041004, Dec 2017.

[28] Marvin E Cage, Kv Klitzing, AM Chang, F Duncan, M Haldane, Robert B Laughlin,
AMM Pruisken, and DJ Thouless. The quantum Hall effect. Springer Science &
Business Media, 2012.

[29] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination
of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett.,
45:494–497, Aug 1980.

[30] Anton Kapustin and Lukasz Fidkowski. Local commuting projector hamiltonians and
the quantum hall effect. Commun. Math. Phys., 373(2):763–769, 2020.

89



[31] T. Senthil, Leon Balents, Subir Sachdev, Ashvin Vishwanath, and Matthew P. A.
Fisher. Quantum criticality beyond the landau-ginzburg-wilson paradigm. Phys. Rev.
B, 70:144407, Oct 2004.

[32] Todadri Senthil, Ashvin Vishwanath, Leon Balents, Subir Sachdev, and Matthew PA
Fisher. Deconfined quantum critical points. Science, 303(5663):1490–1494, 2004.

[33] Anders W. Sandvik. Evidence for deconfined quantum criticality in a two-dimensional
heisenberg model with four-spin interactions. Phys. Rev. Lett., 98:227202, Jun 2007.

[34] Roger G. Melko and Ribhu K. Kaul. Scaling in the fan of an unconventional quantum
critical point. Phys. Rev. Lett., 100:017203, Jan 2008.

[35] Adam Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza. Decon-
fined quantum criticality, scaling violations, and classical loop models. Phys. Rev.
X, 5:041048, Dec 2015.

[36] Yu Nakayama and Tomoki Ohtsuki. Necessary condition for emergent symmetry from
the conformal bootstrap. Phys. Rev. Lett., 117:131601, Sep 2016.

[37] David Poland, Slava Rychkov, and Alessandro Vichi. The conformal bootstrap: The-
ory, numerical techniques, and applications. Rev. Mod. Phys., 91:015002, Jan 2019.

[38] Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, and Zi Yang Meng. Scaling of
entanglement entropy at deconfined quantum criticality. Phys. Rev. Lett., 128:010601,
Jan 2022.

[39] Shenghan Jiang and Olexei Motrunich. Ising ferromagnet to valence bond solid transi-
tion in a one-dimensional spin chain: Analogies to deconfined quantum critical points.
Phys. Rev. B, 99:075103, Feb 2019.

[40] Brenden Roberts, Shenghan Jiang, and Olexei I. Motrunich. Deconfined quantum
critical point in one dimension. Phys. Rev. B, 99:165143, Apr 2019.

[41] Rui-Zhen Huang, Da-Chuan Lu, Yi-Zhuang You, Zi Yang Meng, and Tao Xiang. Emer-
gent symmetry and conserved current at a one-dimensional incarnation of deconfined
quantum critical point. Phys. Rev. B, 100:125137, Sep 2019.

[42] Christopher Mudry, Akira Furusaki, Takahiro Morimoto, and Toshiya Hikihara. Quan-
tum phase transitions beyond landau-ginzburg theory in one-dimensional space revis-
ited. Phys. Rev. B, 99:205153, May 2019.

[43] Wayne Zheng, D. N. Sheng, and Yuan-Ming Lu. Unconventional quantum phase tran-
sitions in a one-dimensional lieb-schultz-mattis system. Phys. Rev. B, 105:075147, Feb
2022.

90



[44] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen. Symmetry protected
topological orders and the group cohomology of their symmetry group. Phys. Rev. B,
87:155114, Apr 2013.

[45] Dominic V. Else and Chetan Nayak. Classifying symmetry-protected topological
phases through the anomalous action of the symmetry on the edge. Phys. Rev. B,
90:235137, Dec 2014.

[46] Xiao-Liang Qi, Taylor L Hughes, and Shou-Cheng Zhang. Fractional charge and quan-
tized current in the quantum spin hall state. Nature Physics, 4(4):273–276, 2008.

[47] Michael P. Zaletel. Detecting two-dimensional symmetry-protected topological order
in a ground-state wave function. Phys. Rev. B, 90:235113, Dec 2014.

[48] Juven C. Wang, Luiz H. Santos, and Xiao-Gang Wen. Bosonic anomalies, induced
fractional quantum numbers, and degenerate zero modes: The anomalous edge physics
of symmetry-protected topological states. Phys. Rev. B, 91:195134, May 2015.

[49] Arkya Chatterjee and Xiao-Gang Wen. Algebra of local symmetric operators and
braided fusion n-category–symmetry is a shadow of topological order. arXiv preprint
arXiv:2203.03596, 2022.

[50] Jorge V. José, Leo P. Kadanoff, Scott Kirkpatrick, and David R. Nelson. Renormal-
ization, vortices, and symmetry-breaking perturbations in the two-dimensional planar
model. Phys. Rev. B, 16:1217–1241, Aug 1977.

[51] Robbert Dijkgraaf, Cumrun Vafa, Erik Verlinde, and Herman Verlinde. The operator
algebra of orbifold models. Communications in Mathematical Physics, 123(3):485–526,
1989.

[52] Mahito Kohmoto, Marcel den Nijs, and Leo P. Kadanoff. Hamiltonian studies of the
d = 2 ashkin-teller model. Phys. Rev. B, 24:5229–5241, Nov 1981.

[53] P Lecheminant, Alexander O Gogolin, and Alexander A Nersesyan. Criticality in
self-dual sine-gordon models. Nuclear Physics B, 639(3):502–523, 2002.

[54] H. J. Schulz. Phase transitions in monolayers adsorbed on uniaxial substrates. Phys.
Rev. B, 28:2746–2749, Sep 1983.

[55] David A. Huse and Michael E. Fisher. Commensurate melting, domain walls, and
dislocations. Phys. Rev. B, 29:239–270, Jan 1984.

[56] Samuel Nyckees and Frédéric Mila. Commensurate-incommensurate transition in the
chiral ashkin-teller model. Phys. Rev. Research, 4:013093, Feb 2022.

[57] Seth Whitsitt, Rhine Samajdar, and Subir Sachdev. Quantum field theory for the
chiral clock transition in one spatial dimension. Phys. Rev. B, 98:205118, Nov 2018.

91



[58] Chong Wang, Adam Nahum, Max A. Metlitski, Cenke Xu, and T. Senthil. Deconfined
quantum critical points: Symmetries and dualities. Phys. Rev. X, 7:031051, Sep 2017.

[59] Chenjie Wang and Michael Levin. Topological invariants for gauge theories and
symmetry-protected topological phases. Phys. Rev. B, 91:165119, Apr 2015.

[60] Daniel S. Fisher. Random transverse field ising spin chains. Phys. Rev. Lett., 69:534–
537, Jul 1992.

[61] Daniel S. Fisher. Critical behavior of random transverse-field ising spin chains. Phys.
Rev. B, 51:6411–6461, Mar 1995.

[62] T. Senthil and Satya N. Majumdar. Critical properties of random quantum potts and
clock models. Phys. Rev. Lett., 76:3001–3004, Apr 1996.

[63] Michael Levin and Zheng-Cheng Gu. Braiding statistics approach to symmetry-
protected topological phases. Phys. Rev. B, 86:115109, Sep 2012.

[64] Xiao-Gang Wen. Quantum field theory of many-body systems: from the origin of sound
to an origin of light and electrons. OUP Oxford, 2004.

[65] Lukasz Fidkowski, Jeongwan Haah, and Matthew B Hastings. How dynamical quantum
memories forget. Quantum, 5:382, 2021.

[66] Chao-Ming Jian, Bela Bauer, Anna Keselman, and Andreas W. W. Ludwig. Criticality
and entanglement in nonunitary quantum circuits and tensor networks of noninteract-
ing fermions. Phys. Rev. B, 106:134206, Oct 2022.

[67] Marcin Szyniszewski, Alessandro Romito, and Henning Schomerus. Entangle-
ment transition from variable-strength weak measurements. Physical Review B,
100(6):064204, 2019.

[68] Aidan Zabalo, Michael J. Gullans, Justin H. Wilson, Sarang Gopalakrishnan, David A.
Huse, and J. H. Pixley. Critical properties of the measurement-induced transition in
random quantum circuits. Phys. Rev. B, 101:060301, Feb 2020.

[69] Soonwon Choi, Yimu Bao, Xiao-Liang Qi, and Ehud Altman. Quantum error correction
in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett.,
125:030505, 2020.

[70] Michael J. Gullans and David A. Huse. Dynamical purification phase transition induced
by quantum measurements. Phys. Rev. X, 10:041020, Oct 2020.

[71] Shao-Kai Jian, Chunxiao Liu, Xiao Chen, Brian Swingle, and Pengfei Zhang.
Measurement-induced phase transition in the monitored sachdev-ye-kitaev model.
Physical Review Letters, 127(14):140601, 2021.

92



[72] Adam Nahum, Sthitadhi Roy, Brian Skinner, and Jonathan Ruhman. Measurement
and entanglement phase transitions in all-to-all quantum circuits, on quantum trees,
and in landau-ginsburg theory. PRX Quantum, 2(1):010352, 2021.

[73] M Buchhold, Y Minoguchi, A Altland, and S Diehl. Effective theory for the
measurement-induced phase transition of dirac fermions. Physical Review X,
11(4):041004, 2021.

[74] Qicheng Tang and W Zhu. Measurement-induced phase transition: A case study in the
nonintegrable model by density-matrix renormalization group calculations. Physical
Review Research, 2(1):013022, 2020.

[75] Sarang Gopalakrishnan and Michael J Gullans. Entanglement and purification tran-
sitions in non-hermitian quantum mechanics. Physical review letters, 126(17):170503,
2021.

[76] Xhek Turkeshi, Rosario Fazio, and Marcello Dalmonte. Measurement-induced critical-
ity in (2+ 1)-dimensional hybrid quantum circuits. Physical Review B, 102(1):014315,
2020.

[77] Maxwell Block, Yimu Bao, Soonwon Choi, Ehud Altman, and Norman Y Yao.
Measurement-induced transition in long-range interacting quantum circuits. Physi-
cal Review Letters, 128(1):010604, 2022.

[78] Utkarsh Agrawal, Aidan Zabalo, Kun Chen, Justin H Wilson, Andrew C Potter,
JH Pixley, Sarang Gopalakrishnan, and Romain Vasseur. Entanglement and charge-
sharpening transitions in u (1) symmetric monitored quantum circuits. Physical Review
X, 12(4):041002, 2022.

[79] Shengqi Sang, Yaodong Li, Tianci Zhou, Xiao Chen, Timothy H Hsieh, and
Matthew PA Fisher. Entanglement negativity at measurement-induced criticality. PRX
Quantum, 2(3):030313, 2021.

[80] Marcin Szyniszewski, Alessandro Romito, and Henning Schomerus. Universality of en-
tanglement transitions from stroboscopic to continuous measurements. Physical review
letters, 125(21):210602, 2020.

[81] Shimpei Goto and Ippei Danshita. Measurement-induced transitions of the entangle-
ment scaling law in ultracold gases with controllable dissipation. Physical Review A,
102(3):033316, 2020.

[82] Oliver Lunt and Arijeet Pal. Measurement-induced entanglement transitions in many-
body localized systems. Physical Review Research, 2(4):043072, 2020.

[83] Thomas Botzung, Sebastian Diehl, and Markus Müller. Engineered dissipation induced
entanglement transition in quantum spin chains: from logarithmic growth to area law.
Physical Review B, 104(18):184422, 2021.

93



[84] Javier Lopez-Piqueres, Brayden Ware, and Romain Vasseur. Mean-field entanglement
transitions in random tree tensor networks. Physical Review B, 102(6):064202, 2020.

[85] Crystal Noel, Pradeep Niroula, Daiwei Zhu, Andrew Risinger, Laird Egan, Debopriyo
Biswas, Marko Cetina, Alexey V Gorshkov, Michael J Gullans, David A Huse, et al.
Measurement-induced quantum phases realized in a trapped-ion quantum computer.
Nature Physics, pages 1–5, 2022.

[86] Jason Iaconis, Andrew Lucas, and Xiao Chen. Measurement-induced phase transitions
in quantum automaton circuits. Physical Review B, 102(22):224311, 2020.

[87] Zhi-Cheng Yang, Yaodong Li, Matthew PA Fisher, and Xiao Chen. Entangle-
ment phase transitions in random stabilizer tensor networks. Physical Review B,
105(10):104306, 2022.

[88] Yimu Bao, Soonwon Choi, and Ehud Altman. Theory of the phase transition in random
unitary circuits with measurements. Physical Review B, 101(10):104301, 2020.

[89] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and Andreas WW Ludwig.
Measurement-induced criticality in random quantum circuits. Physical Review B,
101(10):104302, 2020.

[90] Bruno Bertini and Lorenzo Piroli. Scrambling in random unitary circuits: Exact
results. Physical Review B, 102(6):064305, 2020.

[91] Tsung-Cheng Lu and Tarun Grover. Spacetime duality between localization transitions
and measurement-induced transitions. PRX Quantum, 2:040319, Oct 2021.

[92] Katja Klobas and Bruno Bertini. Entanglement dynamics in rule 54: Exact results
and quasiparticle picture. SciPost Physics, 11(6):107, 2021.

[93] Youenn Le Gal, Xhek Turkeshi, and Marco Schiro. Volume-to-area law entanglement
transition in a non-hermitian free fermionic chain. arXiv:2210.11937, Oct 2022.

[94] Xiangyu Cao, Antoine Tilloy, and Andrea De Luca. Entanglement in a fermion chain
under continuous monitoring. SciPost Physics, 7(2):024, 2019.

[95] Xiao Chen, Yaodong Li, Matthew P. A. Fisher, and Andrew Lucas. Emergent confor-
mal symmetry in nonunitary random dynamics of free fermions. Phys. Rev. Research,
2:033017, Jul 2020.

[96] Adam Nahum and Brian Skinner. Entanglement and dynamics of diffusion-annihilation
processes with majorana defects. Phys. Rev. Research, 2:023288, Jun 2020.

[97] O. Alberton, M. Buchhold, and S. Diehl. Entanglement transition in a monitored free-
fermion chain: From extended criticality to area law. Phys. Rev. Lett., 126:170602,
Apr 2021.

94



[98] Federico Carollo and Vincenzo Alba. Entangled multiplets and spreading of quan-
tum correlations in a continuously monitored tight-binding chain. Phys. Rev. B,
106:L220304, Dec 2022.

[99] Pengfei Zhang, Shao-Kai Jian, Chunxiao Liu, and Xiao Chen. Emergent replica con-
formal symmetry in non-hermitian syk _2 chains. Quantum, 5:579, 2021.

[100] Henrik Dreyer, Mircea Bejan, and Etienne Granet. Quantum computing critical expo-
nents. Phys. Rev. A, 104:062614, Dec 2021.

[101] Etienne Granet, Henrik Dreyer, and Fabian H.L. Essler. Out-of-equilibrium dynamics
of the xy spin chain from form factor expansion. SciPost Phys., 12:019, 2022.

[102] A. McDonald, R. Hanai, and A. A. Clerk. Nonequilibrium stationary states of quantum
non-hermitian lattice models. Phys. Rev. B, 105:064302, Feb 2022.

[103] Etienne Granet. Exact mean-field solution of a spin chain with short-range and long-
range interactions. arXiv preprint arXiv:2209.08756, 2022.

[104] Matteo Ippoliti, Tibor Rakovszky, and Vedika Khemani. Fractal, logarithmic, and
volume-law entangled nonthermal steady states via spacetime duality. Physical Review
X, 12(1):011045, 2022.

[105] Xhek Turkeshi, Alberto Biella, Rosario Fazio, Marcello Dalmonte, and Marco Schiró.
Measurement-induced entanglement transitions in the quantum ising chain: From in-
finite to zero clicks. Phys. Rev. B, 103:224210, Jun 2021.

[106] Tsung-Cheng Lu and Tarun Grover. Spacetime duality between localization transitions
and measurement-induced transitions. PRX Quantum, 2:040319, 2021.

[107] Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of
statistical mechanics: theory and experiment, 2007(08):P08024, 2007.

[108] Fernando GSL Brandao and Michał Horodecki. Exponential decay of correlations
implies area law. Communications in mathematical physics, 333(2):761–798, 2015.

[109] Pasquale Calabrese and John Cardy. Evolution of entanglement entropy in one-
dimensional systems. Journal of Statistical Mechanics: Theory and Experiment,
2005(04):P04010, 2005.

[110] Filiberto Ares, José G Esteve, Fernando Falceto, and Zoltán Zimborás. Sublogarith-
mic behaviour of the entanglement entropy in fermionic chains. Journal of Statistical
Mechanics: Theory and Experiment, 2019(9):093105, 2019.

[111] I Affleck, D Gepner, H J Schulz, and T Ziman. Critical behaviour of spin-s heisenberg
antiferromagnetic chains: analytic and numerical results. J. Phys. A: Math. Gen.,
22:511, 1989.

95



[112] Sebastian Eggert. Numerical evidence for multiplicative logarithmic corrections from
marginal operators. Phys.Rev. B, 54:9612, 1996.

[113] Nicolas Tarantino and Lukasz Fidkowski. Discrete spin structures and commuting pro-
jector models for two-dimensional fermionic symmetry-protected topological phases.
Phys. Rev. B, 94:115115, Sep 2016.

[114] Nathanan Tantivasadakarn and Ashvin Vishwanath. Full commuting projector hamil-
tonians of interacting symmetry-protected topological phases of fermions. Phys. Rev.
B, 98:165104, Oct 2018.

[115] Anton Kapustin and Lev Spodyneiko. Thermal hall conductance and a relative topo-
logical invariant of gapped two-dimensional systems. Phys. Rev. B, 101:045137, Jan
2020.

[116] T. Senthil and Michael Levin. Integer quantum hall effect for bosons. Phys. Rev. Lett.,
110:046801, Jan 2013.

[117] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics,
321(1):2–111, 2006.

[118] Sven Bachmann, Alex Bols, Wojciech De Roeck, and Martin Fraas. A many-body
index for quantum charge transport. Commun. Math. Phys., 375(2):1249–1272, 2020.

[119] Sven Bachmann, Alex Bols, Wojciech De Roeck, and Martin Fraas. Rational indices
for quantum ground state sectors. J. Math. Phys., 62(1):011901, 2021.

[120] A. Kapustin and N. Sopenko. Hall conductance and the statistics of flux insertions in
gapped interacting lattice systems. J. Math. Phys., 61(10):101901, 2020.

[121] Robert B Laughlin. Quantized hall conductivity in two dimensions. Phys. Rev. B,
23(10):5632, 1981.

[122] Joseph E Avron, Ruedi Seiler, and Barry Simon. Charge deficiency, charge transport
and comparison of dimensions. Commun. Math. Phys., 159(2):399–422, 1994.

[123] Michael DeMarco and Xiao-Gang Wen. A commuting projector model with a non-zero
quantized hall conductance. arXiv preprint arXiv:2102.13057, 2021.

[124] Sergey Bravyi, Matthew B. Hastings, and Spyridon Michalakis. Topological quantum
order: Stability under local perturbations. J. Math. Phys., 51(9):093512, 2010.

[125] Spyridon Michalakis and Justyna P Zwolak. Stability of frustration-free hamiltonians.
Commun. Math. Phys., 322(2):277–302, 2013.

[126] Matthew B Hastings and Spyridon Michalakis. Quantization of hall conductance for
interacting electrons on a torus. Commun. Math. Phys., 334(1):433–471, 2015.

96



[127] Sven Bachmann, Alex Bols, Wojciech De Roeck, and Martin Fraas. Quantization of
conductance in gapped interacting systems. Annales H. Poincaré, 19(3):695–708, 2018.

[128] Joseph E Avron and Ruedi Seiler. Quantization of the hall conductance for general,
multiparticle schrödinger hamiltonians. Phys. Rev. Lett., 54(4):259, 1985.

[129] Domenico Monaco, Gianluca Panati, Adriano Pisante, and Stefan Teufel. Optimal
decay of wannier functions in chern and quantum hall insulators. Commun. Math.
Phys., 359(1):61–100, 2018.

[130] Michael Levin. Protected edge modes without symmetry. Phys. Rev. X, 3:021009, May
2013.

[131] Andreas W. W. Ludwig, Matthew P. A. Fisher, R. Shankar, and G. Grinstein. Integer
quantum hall transition: An alternative approach and exact results. Phys. Rev. B,
50:7526–7552, Sep 1994.

[132] Etienne Granet and Carolyn Zhang, to appear.

[133] Yuan Miao, Vladimir Gritsev, and Denis V Kurlov. The floquet baxterisation. arXiv
preprint arXiv:2206.15142, 2022.

[134] Siu-Hung Ng, Andrew Schopieray, and Yilong Wang. Higher gauss sums of modular
categories. Selecta Mathematica, 25(4):53, 2019.

[135] Siu-Hung Ng, Eric C Rowell, Yilong Wang, and Qing Zhang. Higher central charges
and witt groups. Advances in Mathematics, 404:108388, 2022.

[136] Justin Kaidi, Zohar Komargodski, Kantaro Ohmori, Sahand Seifnashri, and Shu-Heng
Shao. Higher central charges and topological boundaries in 2+ 1-dimensional tqfts.
SciPost Physics, 13(3):067, 2022.

[137] Ryohei Kobayashi, Taige Wang, Tomohiro Soejima, Roger SK Mong, and Shinsei
Ryu. Extracting higher central charge from a single wave function. arXiv preprint
arXiv:2303.04822, 2023.

[138] Nikita Sopenko. Chiral topologically ordered states on a lattice from vertex operator
algebras. arXiv preprint arXiv:2301.08697, 2023.

[139] Deepak Naidu and Eric C Rowell. A finiteness property for braided fusion categories.
Algebras and representation theory, 14:837–855, 2011.

[140] Carlos Mochon. Anyon computers with smaller groups. Phys. Rev. A, 69:032306, Mar
2004.

[141] Shawn X Cui, Seung-Moon Hong, and Zhenghan Wang. Universal quantum compu-
tation with weakly integral anyons. Quantum Information Processing, 14:2687–2727,
2015.

97



[142] Nathanan Tantivasadakarn, Ashvin Vishwanath, and Ruben Verresen. A hierarchy
of topological order from finite-depth unitaries, measurement and feedforward. arXiv
preprint arXiv:2209.06202, 2022.

[143] Sergey Bravyi, Isaac Kim, Alexander Kliesch, and Robert Koenig. Adaptive constant-
depth circuits for manipulating non-abelian anyons. arXiv preprint arXiv:2205.01933,
2022.

[144] C. L. Kane, Ranjan Mukhopadhyay, and T. C. Lubensky. Fractional quantum hall
effect in an array of quantum wires. Phys. Rev. Lett., 88:036401, Jan 2002.

[145] Tobias Meng. Coupled-wire constructions: a luttinger liquid approach to topology.
The European Physical Journal Special Topics, 229(4):527–543, 2020.

[146] Yin-Chen He, Subhro Bhattacharjee, R. Moessner, and Frank Pollmann. Bosonic
integer quantum hall effect in an interacting lattice model. Phys. Rev. Lett., 115:116803,
Sep 2015.

[147] Bin-Bin Chen, Ziyu Chen, Shou-Shu Gong, D. N. Sheng, Wei Li, and Andreas We-
ichselbaum. Quantum spin liquid with emergent chiral order in the triangular-lattice
hubbard model. Phys. Rev. B, 106:094420, Sep 2022.

[148] Li-Mei Chen, Tyler D Ellison, Meng Cheng, Peng Ye, and Ji-Yao Chen. Chiral fibonacci
spin liquid in a Z3 kitaev model. arXiv preprint arXiv:2302.05060, 2023.

98


	List of Figures
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Toy models in physics
	1.2 Symmetries of phases of matter and how to break them
	1.3 Entanglement transitions: competition between scrambling and measurement
	1.4 Topological phases and commuting projector Hamiltonians

	2 Story 1: Intertwined symmetries and unusual phase transitions
	2.1 Introduction: Deconfined quantum criticality
	2.2 Exactly solvable model for a deconfined quantum critical point in 1D
	2.2.1 Introduction
	2.2.2 Z2aZ2b SPT edge theory
	2.2.3 Z4 spin chain
	2.2.4 Mapping between the models
	2.2.5 Using the mapping
	2.2.6 Exactly solvable model
	2.2.7 Exactly solvable critical point
	2.2.8 Self-duality at criticality
	2.2.9 Discussion
	2.2.10 Acknowledgements

	2.3 Supplemental Material
	2.3.1 Field theory description of deconfined quantum critical line
	2.3.2 Chiral perturbations
	2.3.3 Duality transformation

	2.4 Additional results
	2.4.1 Derivation from (2+1)D topological order
	2.4.2 General mixed anomalies between cyclic groups


	3 Story 2: Quantum dynamics and entanglement transitions
	3.1 Introduction: Entanglement transitions
	3.2 Volume-law to area-law entanglement transition in a non-unitary periodic Gaussian circuit
	3.2.1 Introduction
	3.2.2 Setup
	3.2.3 Time evolution via Möbius transformations.
	3.2.4 Log-law to area-law transition.
	3.2.5 Volume-law to area-law transition
	3.2.6 Behavior of entanglement entropy
	3.2.7 Discussion
	3.2.8 Acknowledgements

	3.3 Supplemental Material
	3.3.1 Realization of the weak measurement
	3.3.2 Möbius transformations
	3.3.3 Proof of Eq. (10)
	3.3.4 Log-law to area-law transition
	3.3.5 Proof of Eq. (30)
	3.3.6 Proof of Eq. (31)
	3.3.7 Proof of Eq. (34)
	3.3.8 Critical exponents

	3.4 Additional results
	3.4.1 Quasi-periodic circuit


	4 Story 3: Topological phases and gapless edges
	4.1 Introduction: Models for topological phases
	4.2 Vanishing Hall conductance for commuting Hamiltonians
	4.2.1 Introduction
	4.2.2 Physical argument.
	4.2.3 Setup
	4.2.4 Hall conductance
	4.2.5 Main result
	4.2.6 Discussion
	4.2.7 Acknowledgements

	4.3 Supplemental Material

	5 Outlook
	5.1 Quantum criticality
	5.2 Quantum dynamics
	5.3 Topological phases

	References

