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ABSTRACT

The strength of the Bayesian paradigm lies in its flexibility through hierarchical modeling and

its ability to provide coherent uncertainty quantification. However, the computation costs

of classical Bayesian procedures like Markov Chain Monte Carlo (MCMC) can be daunting

when confronting big data challenges (large p or large n problems). This thesis innovates

Bayesian methodology and theory with the help of modern machine learning techniques, to

bring together the best of both worlds.

In Chapter 1, I provide a general introduction of the advancement of machine learning

methods, challenges in conducting inference with black-box machine learning methods, and

an overview of the Bayesian methodology covered in this thesis.

In Chapter 2 and Chapter 3, I investigate the integration of machine learning techniques

and Bayesian computation in case where the likelihood is implicit or intractable. I devel-

oped two summary-free Approximate Bayesian Computation (ABC) approaches. The first

approach adopts the “classification trick” to estimate the KL divergence between the simu-

lated and observed data. The second approach directly targets at the posterior distribution

by matching the joint distribution of the parameter and the data via conditional generative

adversarial networks (cGANs).

I study the theoretical guarantees as well as methodology of Bayesian neural networks

in Chapter 4 and Chapter 5. Their expressiveness and generalizability has motivated me to

deploy deep neural networks inside Bayesian algorithms. This combination not only benefits

from the power of neural networks but also retains the inferential potential of the Bayesian

probabilistic structure.

I tackle the classical problem of variable selection in the context of ensemble tree-based

regression in Chapter 6. To encourage more competition among variables, we place a spike-

and-slab wrapper outside the sum-of-trees prior and propose to solve the computation with

ABC techniques.
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CHAPTER 1

INTRODUCTION

Innovations in machine learning methods and the availability of big data have encouraged

numerous advancements in high-dimensional statistical modeling. The general belief in the

machine learning community is that with enough data, machine learning models will be able

to learn inherent structures in the true underlying data generating process and researchers

need to place few assumptions on the model. This success has been witnessed in natural

language models, image recognition, game strategies, and various other fields. In particular,

universal approximation methods like forests and neural networks has gained popularity

because of their exceptional predictive power. Many physical, natural and social science

applications have benefited from their expressiveness and flexibility in prediction. However,

it is challenging for practitioners to conduct meaningful inference with a fully nonparametric

model. It is no secret that interpreting the machine learning methods like forests and neural

networks is challenging in itself because the model has no interpretable structure. In addition,

it is not obvious whether the model will obey the theory that has been proved to empirically

informative by experts, when the data size is limited. A natural remedy to the problem lies

in the Bayesian paradigm, which provides automated uncertainty quantification. For this

thesis, I address some current challenges in statistical inference in the area of deep learning

and Bayesian statistics.

1.1 Approximate Bayesian Computation

The first part proposes new methodology in simulation-based inference, where we focus

on models with known data generating processes (DGPs) but suffer from computational

issues from intractable likelihood functions. One of the driving forces of simulation-based

inference is Approximate Bayesian Computation (ABC). The intuition behind ABC is that

if the simulated data looks “similar” to the observed data, then the proposed parameters

1



should be “close” to the true values. A lot of the research in this field has been focused

on how to rigorously quantify the closeness between two datasets and what are theoretical

guarantees for the approximated posteriors. Very often, ABC methods construct a kernel-

type approximation to the posterior distribution through an Accept/Reject mechanism that

compares summary statistics of observed and simulated data. Despite the simplicity of

usage, they depend on external expert knowledge of the model to specify useful summary

statistics. As a result, the corresponding posterior shape highly relies on the choice of

summary statistics and the (often ad-hoc) Accept/Reject threshold.

Motivated by these two issues, I propose two summary-free ABC methods which are

both inspired by the framework of Generative Adversarial Networks (GANs), introduced by

Goodfellow et al. (2014). Essentially a GAN is an interplay between two neural networks:

the discriminator network and the generator network. While the generator tries to learn

the underlying representation of the observed dataset and produces fake datasets that looks

similar to the real dataset, the discriminator tries to distinguish the fake dataset from the

real dataset and provides updates to the generator on how it can improve itself.

In Chapter 2, we use the DGP as the generator and mainly exploit the expressive power

of the discriminator. We adopt a classification-based Kullback-Liebler (KL) divergence es-

timator as the data discrepancy used in the Accept-Reject ABC procedure. The estimator

directly quantifies how close the empirical distributions of real and fake datasets are and

obviates the need to specify summary statistics. Furthermore, inspired by the connection

between the KL divergence and likelihood ratio, we propose an exponential weighting strat-

egy that requires no ad-hoc thresholding or scaling. This connection further allows us to

provide theoretical justifications for the approximated posterior distribution.

While our method in Chapter 2 alleviates the two major issues of ABC, it is unclear how

to construct a reasonable classifier when the observed dataset has a dependent structure.

Further, the need to train a new classifier for each ABC sample makes the computation cost

2



somewhat heavy. To overcome these limitations, we propose an alternative Bayesian sampler

in Chapter 3, where we harness the approximability of the generator network. We build

our sampler using conditional GAN (Mirza and Osindero, 2014), which takes conditioned

information as part of the input for both the generator and the discriminator. The generator

then learns the conditional distribution of the dataset given the conditional information. We

further borrow the idea to utilize the architecture to approximate the conditional distribution

of the parameter given input dataset. Once a mature, trained generator is obtained, we can

use it to retrieve draws from approximated posteriors by plugging in the observed dataset as

the condition and passing random latent variables to the generator. The training process is

then executed completely on simulated pairs of parameters and datasets, which enables us

to conduct inference for dependent dataset.

1.2 Bayesian Deep Learning

In the second part of this thesis, I propose to place Bayesian probabilistic structures on the

parameters in a neural network. Specifically, I examine into deep rectified linear unit (ReLU)

networks, given their sparsity-inducing nature, superior representation ability, and well-

documented empirical successes. However, uncertainty quantification remains a challenge

and is largely unexplored. A natural approach to the problem of uncertainty assessment lies

in Bayesian hierarchical modeling. I investigate the combination of Bayesian hierarchical

modeling and deep ReLU networks from both theoretical and practical perspective.

In Chapter 4, I consider deep ReLU networks with spike-and-slab priors on its weights,

and study the limiting behavior of the posterior distribution of the deep sparse ReLU net-

works. Deep sparse ReLU networks have been shown to be capable of approximating smooth

functions and their compositions at the optimal rate (Schmidt-Hieber, 2020). Polson and

Ročková (2018) show that, with the spike-and-slab priors, the sparse deep ReLU networks

attain the near-optimal speed of posterior contraction. Building on these previous works, I

3



investigated the semi-parametric Bernstein-von Mises phenomenon. The squashing nature

of the ReLU function enables deep ReLU networks to partition the predictor space simi-

larly to trees/forests. Using this connection, I conducted the analysis by holding the deep

architecture fixed and performing the change of measure on the final layer, which preserves

the same partition of the predictor space and shifts the regression functions only locally. I

obtained asymptotic normality results for linear and squared L2-norm functionals for deep

sparse ReLU networks. These findings provide a foundation for inference such as testing of

the exceedance of a level, constructing confidence balls, and potentially casual inference.

While my previous work in Chapter 4 focuses on the theoretical aspect of Bayesian deep

neural networks, Bayesian implementation of deep learning remains practically challenging.

In Chapter 5, I propose a new way to update the weights in the neural network via sam-

pling instead of optimization that exploits the duality between regularized optimization and

the maximum a posterior (MAP) estimator. In particular, by utilizing data augmentation

strategies, the objective functions of many commonly-used activation functions, like ReLU

and Logit, can be represented as mixtures of Gaussians. While the most straightforward

implementation for our data augmentation strategy is to model the neural network as a

Bayesian hierarchical model and conduct full Bayesian inference, the number of parameters

(neural network weights) can be prohibitively large, making it computationally infeasible to

update all of them with conditional Gibbs sampling.

To strike a balance between the inferential potential of Bayesian sampling and the com-

putational efficiency of optimization, I propose an intermediate solution that updates only

the last layer of the neural network using data augmentation schemes while still updat-

ing the rest of the weights through stochastic gradient descent. I iteratively update the two

during the training process to achieve a tradeoff between exploration and exploitation. I pro-

vide two solutions to the data augmentation strategies, one approximation approach based

on Expectation-Maximization (EM) and another exploratory approach based on MCMC.
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I illustrate the usage in three applications: Gaussian regression, Logistic regression, and

Support Vector Machine (SVM). The new updating scheme helps neural networks converge

faster with significant efficiency gains, and this is validated in our empirical analysis.

1.3 Variable Selection

In the last part of this thesis, I look into a different family of machinery: trees and forests.

Similar to other ensemble methods, forests combine several week learners (trees) in order to

produce one predictive model. In particular, we consider Bayesian Additive Regression Trees

(BART) (Chipman et al., 2010), which have demonstrated great efficacy in various appli-

cations. However, its variable screening procedure is rather ad-hoc and does not encourage

enough sparsity in high-dimensional settings.

In Chapter 6, we initially proposed a natural solution, which places a spike-and-slab

wrapper outside the sum-of-trees prior. However, the fully Bayesian computation then de-

mands a stochastic reversible jump search (Green, 1995) where the dimensionality of the

predictor space for each tree can change. This is inherently difficult and computationally

burdensome when combined with internal tree splitting moves. As an alternative to the

MCMC, we tackled the problem with ABC, which provides a new avenue towards approxi-

mating the median probability model in non-parametric setups where the marginal likelihood

is intractable. The innovation of the method lies in the two-step data splitting strategy where

(1) a random subset of data is used to come up with a proposal draw and (2) the rest of

the data is used for ABC acceptance. We made contributions to both model-free variable

selection and ABC literatures. We generalize ABC methods to a nonparametric regression

setting and use model-fit criteria, such as mean squared error on validation set, instead of

summary statistics to quantify the distance between the proposed model and optimal model.

We demonstrate the effectiveness of our methods through several simulated examples and

an analysis of the HIV data.
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CHAPTER 2

ABC VIA CLASSIFICATION

Approximate Bayesian Computation (ABC) enables statistical inference in simulator-

based models whose likelihoods are difficult to calculate but easy to simulate from.

ABC constructs a kernel-type approximation to the posterior distribution through an

Accept/Reject mechanism which compares summary statistics of real and simulated

data. To obviate the need for summary statistics, we directly compare empirical dis-

tributions with a Kullback-Leibler (KL) divergence estimator obtained via contrastive

learning. In particular, we blend flexible machine learning classifiers within ABC to au-

tomate fake/real data comparisons. We consider the traditional Accept/Reject kernel

as well as an exponential weighting scheme which does not require the ABC acceptance

threshold. Our theoretical results show that the rate at which our ABC posterior dis-

tributions concentrate around the true parameter depends on the estimation error of

the classifier. We derive limiting posterior shape results and find that, with a properly

scaled exponential kernel, asymptotic normality holds. We demonstrate the usefulness

of our approach on simulated examples as well as real data in the context of stock

volatility estimation.

2.1 Introduction

We consider a collection of i.i.d. observations X = (X1, . . . , Xn)′ where each Xi ∈ X is

realized from a parametric model {Pθ0
: θ0 ∈ Θ ⊂ Rd}. We assume that Pθ, for each θ ∈ Θ,

admits a density pθ. We are interested in Bayesian inference about θ0 based on the posterior

distribution

πn(θ |X) ∝ p
(n)
θ (X)π(θ) (2.1)

. Adopted from Yuexi Wang, Tetsuya Kaji, and Veronika Ročková. Approximate Bayesian computation
via classification. Journal of Machine Learning Research, 23(350):1–49, 2022a.
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prescribed by the likelihood p
(n)
θ (X) and the prior density π(θ). We are particularly in-

terested in simulator-based models whose the likelihood function cannot be directly ex-

pressed/evaluated (such as discretely observed diffusions (Sørensen, 2004) or generative mod-

els) but can be sampled from.

Simulator-based models are often called implicit models because the the likelihood func-

tion pθ cannot be numerically evaluated (Diggle and Gratton, 1984). Fortunately, it may still

be possible to simulate synthetic datasets from the model. The ability to simulate from the

likelihood has opened up new opportunities for simulating from the posterior. For example,

Approximate Bayesian Computation (ABC) (Pritchard et al., 1999; Beaumont et al., 2002)

emerged as a default likelihood-free Bayesian inferential tool. It is an Accept/Reject pos-

terior sampling mechanism which obviates likelihood evaluations. Each iteration proceeds

by (1) simulating prior parameter guesses and fake data from the likelihood, and then (2)

accepting those parameter values whose fake data were close to the observed data. A big

challenge with ABC has been gauging the similitude between observed and fake data.

Measures of similarity between data sets have traditionally been based on summary statis-

tics (see Blum et al. (2013) for an overview within the ABC context). In other words, two

datasets are considered similar if their summary statistics are close. In the absence of expert

knowledge, however, constructing effective summary statistics can be challenging (Joyce and

Marjoram, 2008; Nunes and Balding, 2010; Blum et al., 2013) and one may need to resort

to automated strategies. One possibility is regressing parameter values onto (functionals

of) fake data in a pilot ABC run to train a flexible mapping which can be substituted for

summary statistics (Fearnhead and Prangle, 2011; Jiang et al., 2017b; Akesson et al., 2021).

Another possibility, related to indirect inference, is to construct summary statistics from an

auxiliary model (Drovandi et al., 2011; Wood, 2010). One can also choose a subset of candi-

date summary statistics that satisfy some optimality criterion (Joyce and Marjoram, 2008;

Nunes and Balding, 2010) or find an optimal projection of a set of summary statistics onto
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a lower-dimensional map (Fearnhead and Prangle, 2011). Alternatively, one can directly use

a discrepancy between the empirical distributions of the observed and synthetic data sets

inside ABC (such as Kullback-Leibler (Jiang et al., 2018) or Wasserstein (Bernton et al.,

2019) or Maximum Mean (MM) discrepancy (Park et al., 2016)) or Energy Statistics (ES)

(Nguyen et al., 2020)). See Drovandi and Frazier (2022) for a nice comprehensive review

of the distribution-style ABC discrepancies. Our work fortifies this ABC point of view by

focusing on the Kullback-Leibler discrepancy estimated via classification.

The KL divergence is one of the most widely used discrepancy metrics. It expresses

the average information per observation to discriminate between two probabilistic models

(Kullback, 1958). In large deviations, for example, it characterizes the exponential decay

rate at which empirical measures converge to their probabilities (see Sanov’s theorem in

Den Hollander (2008)) and the rate of decay of the probability of error in a binary hypoth-

esis testing problem (see Stein’s Lemma in Cover and Thomas (1991)). KL also naturally

connects to maximum likelihood estimation through its interpretation as the expectation of

the log-likelihood ratio. There exist many methods for estimating the KL divergence. For

example, Wang et al. (2009) proposed nearest-neighbor techniques to obtain a mean-square

consistent estimator. Wang et al. (2005) proposed a histogram-based KL estimator based on

partitioning of the space into statistically equivalent intervals. Silva and Narayanan (2007)

and Silva and Narayanan (2010) went a step further and proposed using data-driven par-

titions (including multivariate recursive partitioning) and formulated sufficient consistency

conditions. Alternatively, Nguyen et al. (2007) proposed a variational approach by turning

KL estimation into a penalized convex risk minimization problem. Our work is different

from the approaches above as we adopt a KL estimator based on classification.

We suggest embedding a machine learning classifier inside ABC to determine whether or

not fake and observed data are similar and, thereby, whether or not the underlying parameter

value should be kept in the ABC reference table. The fundamental premise of this proposal is
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as follows: parameter values that yield indistinguishable simulated datasets can be deemed

close. Bayesian inference via classification has been suggested before. Kaji and Ročková

(2022) developed a version of the Metropolis-Hastings algorithm, called MHC, based on

classification-based estimators of likelihood ratios. Thomas et al. (2022) derived a marginal

approach by contrasting two fake datasets generated from the marginal and conditional

likelihoods. Gutmann et al. (2018) proposed a classification strategy related to ours using a

different discrepancy metric. Our paper reframes the method of Gutmann et al. (2018) as a

genuine ABC algorithm with a KL divergence discriminator and provides supporting theory

which justifies its inferential potential.

In particular, we study statistical properties of the approximate posterior which, in part,

depend on the properties of the KL divergence estimator. We consider the traditional Ac-

cept/Reject ABC version (with a uniform kernel) as well as an exponential kernel variant

which does not require the ABC tolerance threshold. Similar to Frazier et al. (2018), we

show that the choice of the ABC acceptance threshold ε plays a critical role in the conver-

gence rate and in the limiting posterior shape. In practice, it is often not obvious what the

optimal threshold ε should be. Motivated by the connections with the MHC algorithm of

Kaji and Rockova (2021), we propose an exponential kernel which yields ABC posteriors

that correspond to the stationary distribution of MHC. Our ABC kernel method can be

thus regarded as a parallelizable counterpart to the sequential MHC sampling, targeting the

same posterior approximation. The concentration and asymptotic shape behavior of the

ABC posterior, which can be derived from Kaji and Ročková (2022), theoretically justify

our exponential weighting scheme. Finally, our classification-based ABC approach provides

a viable computational strategy for obtaining coarsened posteriors for Bayesian robust in-

ference (Miller and Dunson, 2018). Our ABC approach leverages machine learning but does

so in a perhaps more traditional way than the recent sequential neural likelihood and mix-

ture density network approaches for learning posteriors (Papamakarios and Murray, 2016;
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Papamakarios et al., 2019).

The remaining of the paper is structured as follows. In Section 2.2, we flesh out the basic

idea of ABC and introduce our framework with classification. In Section 2.3, we investigate

the posterior concentration and limiting shape behaviors of the ABC posteriors. Section 2.4

shows performance on simulated datasets and Section 2.5 further highlights the practical

value of our approach on real data. In Section 2.6, we conclude with a discussion.

Notation. We use the shorthand notation p0 = pθ0
and P0 = Pθ0

. We employ the

operator notation for expectation, e.g., P0f =
∫
fdP0. The ε-bracketing number N[](ε,F , d)

of a set F with respect to a premetric d is the minimal number of ε-brackets in d needed

to cover F1. The δ-bracketing entropy integral of F with respect to d is J[](δ,F , d) =∫ δ
0

√
1 + logN[](ε,F , d)dε. Next, K(f, g) =

∫
f log(f/g)dµ denotes the Kullback-Leibler

divergence between two density functions and V2(f, g) =
∫
f |log(f/g)|2 dµ. For real-valued

sequences {an}n≥1 and {bn}n≥1, an . bn means that an ≤ C bn for some generic constant

C > 0, an � bn means that an . bn . an, and an � bn indicates a greater order of

magnitude. For a sequence of random variables xn, xn = oP (an) if limn→∞ P (|xn/an| ≥

C) = 0 for every C > 0, and xn = OP (an) if for every C > 0 there exists a finite M > 0 and

a finite N such that P (|xn/an| ≥ M) ≤ C for all n > N . All limits are taken as n → ∞.

Take ‖·‖ to be the Euclidean norm.

2.2 ABC without Summary Statistics

The now default ABC method for Bayesian likelihood-free inference constructs a nested

kernel-type approximation to the posterior distribution. The first approximation occurs

when the data is distilled into summary statistics to obtain π(θ |SX) ∝ π(SX |θ)π(θ), where

SX = S(X) is a vector of summary statistics. The quality of this approximation depends

crucially on the informativeness of SX . The actual ABC approximation to the posterior

1. A premetric on F is a function d : F × F → R such that d(f, f) = 0 and d(f, g) = d(g, f) ≥ 0.
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(2.1) is then constructed via a kernel function as πABC(θ | SX) =
∫
π(θ, S | SX)dS with

π(θ, S) ∝ Tε(‖S − SY ‖)π(S | θ)π(θ), where ‖·‖ is a general norm to be specified later by the

user and where Tε(‖u‖) = T (‖u‖/ε) is a standard (smoothing) kernel with a scale parameter

ε > 0. The key two challenges with ABC are (1) deriving low-dimensional summary statistics

with a minimal loss of information and (2) selecting the kernel and its the tolerance level ε. To

remediate the reliance of ABC on summary statistics, we focus on viewing the observed and

fake data as empirical distributions and gauge the discrepancy between them. See Drovandi

and Frazier (2022) for an overview of other discrepancy-based ABC methods. Regarding

the choice of aggregation kernels, we consider the traditional uniform kernel yielding an

Accept/Reject algorithm and a smoothing kernel free from ε-tuning.

We are interested in regimes where ABC is most effective (Jiang et al., 2017b), i.e.

settings where the sample size n of X is moderately high and the dimension of Θ is low to

ensure that we can hit the high ABC-posterior region with a reasonable prior probability.

The number of observations n has an impact on the effectiveness of the embedded classifier.

The nonparametric neural network classifiers usually demand n to be somewhat large so that

the estimation errors are manageable.

2.2.1 ABC with KL Divergence

Instead of summary statistics, we use the estimated KL divergence inside the ABC algo-

rithm. Our interest in the KL divergence as a discrepancy metric stems partially from the

following connection to the generalized Bayesian inference (Bissiri et al., 2016). The posterior

distribution (2.1) can be rewritten as a generalized posterior πn(θ | X) ∝ π(θ) exp(−n ×

KL(p
(n)
0 , p

(n)
θ )) where the parameter θ is linked to data through the empirical Kullback-

Liebler (KL) divergence KL(p
(n)
0 , p

(n)
θ ) ≡ 1

n

∑n
i=1 log(p0/pθ)(Xi). For when the KL diver-

gence cannot be easily evaluated, we consider various estimators in the next section. We

denote a generic KL divergence estimator obtained from observed data X ∼ P
(n)
0 and

11



Algorithm 1: KL-ABC with Accept-Reject
For a pre-determined tolerance level ε > 0 repeat for j = 1, . . . , N :

1. Simulate θj from π(θ).
2. Simulate X̃θj = (X̃

θj
1 , . . . , X̃

θj
m )′ through i.i.d. sampling from the model pθj .

3. Construct K̂(X, X̃θj ) by training a classifier distinguishing X and X̃θj as in (2.8).
4. Accept θj when K̂(X, X̃θj ) ≤ ε.

pseudo-data X̃θ ∼ P
(n)
θ as K̂(X, X̃θ). Adopting K̂(·, ·) as the ABC discrepancy, we con-

sider a simple Accept/Reject ABC mechanism detailed in Algorithm 1 below. While Jiang

et al. (2017b) used a nearest-neighbor estimator of the KL divergence, we devise a different

estimator based on classification in Section 2.2.3.

Algorithm 1 simulates pairs of parameter values and pseudo-data {θ, X̃θ} from the joint

posterior density

π̂AR
(
θ, X̃θ | K̂(X, X̃θ) ≤ ε

)
=

π(θ)p
(n)
θ (X̃θ)I

(
K̂(X, X̃θ) ≤ ε

)∫
π(θ)p

(n)
θ (X̃θ)I

(
K̂(X, X̃θ) ≤ ε

)
dX̃θdθ

, (2.2)

which margins towards the following approximate (Accept/Reject) posterior density

π̂ARε (θ |X) =

∫
π̂AR

(
θ, X̃θ | K̂(X, X̃θ) ≤ ε

)
dX̃θ

≡
π(θ)P

(n)
θ

(
K̂(X, X̃θ) ≤ ε

)∫
π(θ)P

(n)
θ

(
K̂(X, X̃θ) ≤ ε

)
dθ
. (2.3)

The inferential potential of the approximation (2.3) will be scrutinized theoretically later

in Section 2.3.2. In particular, we will later see that the convergence rate of (2.3) around

θ0 depends on the choice of ε (Frazier et al., 2018) as well as the quality of the discrimina-

tor. It is interesting to note that the ABC posterior (2.3) is mathematically equivalent to

the c-posterior proposed by Miller and Dunson (2018) for robust inference in mis-specified

(tractable) models. The computation of the c-posteriors has relied on powered-likelihood

approximations and MCMC sampling. While we instead view (2.3) as an approximate pos-
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terior in models with intractable likelihoods, our ABC algorithm can be nevertheless used to

compute coarsened posteriors in broader scenarios when MCMC sampling may not be avail-

able (see Remark 2.2.2 below). Algorithm 1 uses the uniform kernel which corresponds to the

indicator function Tε(‖u‖) = I(‖u‖ ≤ ε). In practice, it is difficult to balance out conflicting

demands of smaller ε (yielding good approximability) and larger acceptance rates (yielding

more posterior samples). As a remedy, we propose a way to aggregate the ABC samples

through a scaled exponential kernel motivated by the connection between KL and the log-

likelihood ratio. This ABC variant requires no ad-hoc thresholding and is summarized in

Algorithm 2.

Algorithm 2 generates draws for the pair {θ, X̃θ} from a joint posterior density

π̂EK(θ, X̃θ |X) =
π(θ)p

(n)
θ (X̃θ) exp

(
− nK̂(X, X̃θ)

)∫
π(θ)p

(n)
θ (X̃θ) exp

(
− nK̂(X, X̃θ)

)
dX̃θdθ

, (2.4)

which leads to the approximated Bayesian posterior as

π̂EK(θ |X) =

∫
π̂EK(θ, X̃θ |X)dX̃θ =

π(θ)P
(n)
θ exp

(
− nK̂(X, X̃θ)

)∫
π(θ)P

(n)
θ exp

(
− nK̂(X, X̃θ)

)
dθ
. (2.5)

Remark 1 (Generating Fake Data). We assume X̃θ = gθ(X̃), where X̃ ∈ Rm are ran-

dom variables arriving from P̃ (m) and where gθ : Rm → Rm is a deterministic mapping.

Generating random variable draws by passing X̃ through some mapping is commonly done

in practice, also known as the reparameterization trick (Kingma and Welling, 2013). For

Algorithm 2: KL-ABC with Exponential Weighting
Repeat for j = 1, . . . , N :

1. Simulate θj from π(θ).
2. Simulate X̃θj = (X̃

θj
1 , . . . , X̃

θj
m )′ through i.i.d. sampling from the model pθj .

3. Construct K̂(X, X̃θj ) by training a classifier distinguishing X and X̃θj as in (2.8).
4. Assign θj a weight proportional to exp

(
− nK̂(X, X̃θ)

)
.
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example, Gaussian random variables X̃ = {X̃θ
i }
m
i=1 that follow i.i.d. N(µ, σ2) distribution

can be obtained by transforming {X̃i}mi=1
i.i.d.∼ N(0, 1) via X̃θ

i = µ + σX̃i. In other cases,

one can use uniform draws X̃ and the inverse transform sampling.

Smooth kernels have been used inside ABC before to rescale the acceptance probability

(e.g. Beaumont et al. (2002) employed the Epanechnikov kernel). Wilkinson (2013) and

Sisson et al. (2018) provide a thorough overview and comparisons of the commonly used

kernels. Our smoothed weights are directly interpretable due to their linkage between the

KL divergence and the log-likelihood ratio. Algorithm 2 can be regarded as a version of

Importance Sampling ABC (see Nguyen et al. (2020) for a variant using energy statistics

and Park et al. (2016) for minimal description length ABC). We later show in Section 2.3.2

that, with the scaled exponential kernel, the ABC posterior corresponds to the stationary

distribution of the MHC algorithm of Kaji and Ročková (2022) and can be regarded as a

posterior under a misspecified model. Computational comparisons of the sequential MHC

sampler with our parallelizable ABC sampler are performed in the Appendix C of Wang et al.

(2022a) where we show benefits of the ABC strategy when convergence issues may arise for

MHC due to initialization. In Section 2.3.4, we perform comparisons of the Accept/Reject

(AR) and exponential kernels under model misspecification where we show that the AR

kernel is far more robust.

The classifier needs to be trained for each ABC draw, which may incur additional compu-

tational cost compared to traditional ABC where the summary statistics and their distance

can be computed without optimization. We provide comparisons of computation times in

Appendix F of Wang et al. (2022a). Although the computation costs of our methods are

higher when the data dimensionality d is relatively small, we are less disadvantageous when

d is large compared to other discrepancies like Wasserstein distance or Maximum Mean Dis-

crepancy. In addition, nonparametric discriminator classes such as neural network classifiers

can efficiently benefit when there is an inherent low-dimensional structure in the data (Kaji
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et al., 2020). Additionally, training can be accelerated if one initiates the training at some

pre-trained neural networks.

2.2.2 Connection to Robust Bayesian Inference

Our algorithms can be regarded as “robust ABC" algorithms that estimate (relative-entropy

coarsened posteriors) c-posteriors introduced in Miller and Dunson (2018). Note that our

focus of robustness is different from the robustness to different distance measures, but more

relevant to data perturbation or model misspecification (discussed later in Section 2.3.4).

The c-posteriors yield robust inference by conditioning on the event that the observed data

X is sufficiently close (in terms of the KL divergence) to the data generated by the model.

A similar case as the Huber-type data contamination is considered in γ-divergence ABC

Fujisawa et al. (2021). The proposed computation of c-posteriors in Miller and Dunson

(2018) is made feasible only through asymptotic approximations (Section 3.1 in Miller and

Dunson (2018)), e.g. with powered posteriors that are computable using conjugate priors.

Our ABC methods can compute them without any approximation and for a broader class

of priors. In particular, if in Algorithm 1 we draw ε ∼ Exp(α) for some α > 0 and accept θ

if K̂(X, X̃θ) < ε, then our ABC posterior coincidentally approximates the relative-entropy

c−posterior proportional to π(θ)P
(n)
θ e−ηKn where Kn = Pn log p0

pθ
. Algorithm 2 corresponds

to the case α = n in Miller and Dunson (2018) without any approximation. Interestingly,

the degree of robustness corresponds to the acceptance rate of ABC. For example, if we

let α � n, the c-posterior puts larger weight on the prior and robustifies the model, which

corresponds to accepting many draws (more than proportional to n) and the draws reflecting

the shape of the prior. On the contrary, if we let α � n, the c-posterior puts most weight

on a narrow neighborhood of the observed data, which corresponds to accepting very few

draws for which the Kullback–Leibler divergence is the smallest. From an ABC’s perspective,

probably the most interesting case is when the acceptance rate is roughly fixed throughout
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n → ∞, in which case α is comparable with n and our algorithms produce a correct c-

posterior without utilizing the approximation in Miller and Dunson (2018) which stands on

n � α or n � α. In addition, another advantage of our method is that it allows us to

calculate the c-posterior for different α easily. If we use an MCMC with tempering (i.e.

the powered likelihood approximation), we might need to run separate MCMC chains for

different α. On the other hand, our ABC-based algorithm lets us calculate the c-posteriors

by filtering out independent samples of candidate draws according to various α. This may

be advantageous in applications when no ex-ante preference is available on the degree of

robustness and when one wants to see how the concentration of the c-posterior varies with

it.

2.2.3 Estimating KL Divergence via Classification

We adopt the ‘− logD’ trick to estimate the KL divergence (Goodfellow et al., 2014). More

precisely, a flexible discriminator D (such as a neural network or logistic regression) is trained

to maximize

Mθ
n,m(D) = Pn logD + Pθm log(1−D), (2.6)

where we employ the operator notation for expectation, e.g., Pnf = 1
n

∑n
i=1 f(Xi) and

Pθmf = 1
m

∑m
i=1 f(X̃θ

i ). This can also be regarded as a classification problem where we label

{Xi}ni=1 (‘real’ data) with 1 and {X̃θ
i }
m
i=1 (‘fake’ data) with 0. The oracle maximizer to

(2.6) can be shown to be (Goodfellow et al., 2014, Proposition 1)

Dθ(X) =
p0(X)

p0(X) + pθ(X)
. (2.7)
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The functional form of the oracle solution in (3.31) naturally suggests the following KL

estimator obtained from a trained discriminator D̂θ
n,m (Thomas et al., 2020b)

K̂(X, X̃θ) = Pn log
D̂θ
n,m

1− D̂θ
n,m

=
1

n

n∑
i=1

log
D̂θ
n,m(Xi)

1− D̂θ
n,m(Xi)

. (2.8)

Later we show that our classification-based KL estimator (2.8) converges to a well-defined

limit counterpart K(p0, pθ) under mild conditions in Section 2.3.1.

2.2.4 Other KL Estimators

Our ABC results, presented later in Section 2.3, can be extended to other types of KL

estimators if similar estimation error results as in Theorem 5 can be shown. Since the rate

1/(nu2) stems from the estimation error of the empirical KL divergence, the fundamental

difference between our classification-based KL estimator and other KL estimators lies in the

rate δn. One example is the k-Nearest Neighbor (kNN) estimator proposed in Pérez-Cruz

(2008). Wang et al. (2009) showed that this estimator is asymptotically unbiased and mean-

square consistent and they propose a data-dependent choice of k which can improve the

convergence speed. Jiang et al. (2018) assess data discrepancy inside ABC with the special

case of 1-nearest neighbor, which is defined as

K̂(X, X̃θ) =
d

n

n∑
i=1

log
minj ‖Xi − X̃θ

j ‖
minj 6=i

∥∥Xi −Xj∥∥ + log
m

n− 1
. (2.9)

where d is the number of covariates in X. Zhao and Lai (2020) provide convergence rate

of the bias for this kNN estimator is bounded by n−2γ/(d+2) log n, where γ is a parameter

characterizing the tail behavior of the target distribution. Note that the kNN estimator is

not applicable to cases where X arises from a discrete distribution.

Another route to estimate the KL divergence is via (data-dependent) partitioning meth-
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ods. Wang et al. (2005) proposed to estimate the Radon-Nikodym derivative dP0/dPθ using

frequency counts on a statistically equivalent partition of Rd. However, the computational

complexity of their method is exponential in d and the estimation accuracy deteriorates

quickly as the dimension increases. Silva and Narayanan (2010) further contributed to

multivariate data-driven partition schemes by using a Barron-type histogram-based density

estimate. They provide sufficient conditions on the partitions scheme to make the estimator

strongly consistent.

Lastly, Nguyen et al. (2007) adopted a variational approach to estimate KL by refram-

ing the estimation problem as a penalized convex risk minimization problem, where they

restrict the estimate to a bounded subset of a Reproducing Kernel Hilbert Space (RKHS).

Convergence rates are then obtained from empirical process theory on nonparametric M-

estimators (van de Geer, 2000). In an independent contribution, Ghimire et al. (2021) used

a discriminator in RKHS to estimate KL using a similar approach to ours. They showed

that the estimator error bound is related to the complexity of the discriminator in RKHS. A

comparison of computational complexities of these methods and our approach can be found

in Appendix G of Wang et al. (2022a).

Beyond the forward KL divergence, our classification framework allows us to consider

other discrepancy metrics. Alternatively to (2.8), we could instead estimate the reversed KL

divergence

K̂reverse(X̃
θ,X) =

1

m

m∑
i=1

log
1− D̂θ

n,m

D̂θ
n,m

(X̃θ
i )

which converges to K(pθ, p0) and which is still uniquely minimized at pθ = p0. One can

show that the estimation error of this reversed KL estimator is still OP ∗(δn) by following the

same techniques used in Lemma 3. The reversed KL divergence is widely used in variational

inference (Jordan et al., 1999; Wainwright and Jordan, 2008). Forward and reversed KL’s

could perform differently when the function class inside the variational approach is not

rich enough. The reversed KL is zero-forcing/mode-seeking, while the forward KL is mass-
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covering/mean-seeking (Bishop, 2006). Another related metric, deployed by Gutmann et al.

(2018), is the classification accuracy (CA) defined as

CA(X, X̃θ) =
1

n+m

(
n∑
i=1

D̂θ
n,m(Xi) +

m∑
i=1

(
1− D̂θ

n,m(X̃θ
i )
))
. (2.10)

Since D̂(·) and log D̂
1−D̂

(·) are linked by a logistic transformation which is Lipschitz-continous,

CA can be roughly regarded as a weighted average of the forward KL divergence and the

reversed KL divergence. Our framework is connected to other GAN-style discrepancy metrics

which are also used in ABC literature. We provide a discussion in Wang et al. (2022a,

Appendix D).

2.3 Frequentist Analysis of the ABC Posterior

One way to assess the quality of the posterior distribution is through the speed at which

it contracts around the truth θ0 as n → ∞. While the ABC posterior is ultimately an

approximation, it might still concentrate about θ0 at a reasonable rate. In this section, we

look into theoretical properties of both Algorithm 1 and Algorithm 2. First, we develop a tail

bound result quantifying how fast the classification-based estimator K̂(X, X̃θ) converges

to the true KL divergence K(p0, pθ) conditional on approximability of the discriminator

class. The tail bound analysis is crucial in our convergence analysis. Next, we show that

the convergence rate of the accept-reject ABC in Algorithm 1 is determined jointly by the

accept-reject threshold εn, the estimation error δn (with respect to Pn log p0/pθ), and the

rate n−1/2 of estimation between Pn log p0/pθ and K(p0, pθ). Further, the typical posterior

distribution converges to a uniform distribution over an ellipse when the acceptance threshold

εn dominates the other two. On the other hand, the exponentially weighted posterior in

Algorithm 2 can be viewed as the posterior under a “misspecified” model. The convergence

rate is then determined by the contraction rate of the true posterior and the estimation error,
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where the ABC posterior is asymptotically normal around the KL projection under LAN

conditions (Kaji and Ročková, 2022).

2.3.1 Convergence Rate of Estimation Errors

We assume that the set of considered classifiers D resides in a sieve Dn that expands with

the sample size and its size is measured by bracketing entropy N[](ε,F , d). Kaji et al. (2020)

prove the rate of convergence of such a classifier (under assumptions reviewed later) with a

Hellinger-type distance defined as

dθ(D1, D2) =
√
hθ(D1, D2)2 + hθ(1−D, 1−Dθ)2,

where hθ(D1, D2) =
√

(P0 + Pθ)(
√
D1 −

√
D2)2.

Assumption 1. Assume that n/m converges and that an estimator D̂θ
n,m exists that satisfies

Mn,m(D̂θ
n,m) ≥Mθ

n,m(Dθ)−OP (δ2
n) for a nonnegative sequence δn. Moreover, assume that

the bracketing entropy integral satisfies J[](δn,Dθn,δn , dθ) . δ2
n
√
n and that there exists α < 2

such that J[](δ,Dθn,δ, dθ)/δ
α has a majorant decreasing in δ. Here Dθn,δn = {D ∈ Dn :

dθ(D,Dθ) ≤ δn}.

Assumption 1 requires three conditions. First, the synthetic data sample size m should

be at least as large as the actual data size n, which can be assured. Second, the discriminator

class needs to be expressive enough so we can find a sufficiently good maximizer approxi-

mating the oracle discriminator Dθ. Lastly, the entropy of the sieve should be moderate to

prevent overfitting.

The following theorem states that the sequence δn in Assumption 1 determines the con-

vergence rate of D̂. The speed at which δn converges to 0 depends on the choice of the sieve

and smoothness of the model. When a nonparametric estimator is employed, δn is often

slower than n−1/2. In Section 2.7.1, we give a specific expression of δn for a neural network
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classifier and give a few examples in which δn vanishes faster than n−1/4.

Lemma 2 (Kaji et al., 2020, Theorem S.1). Under Assumption 1, we have dθ(D̂θ
n,m, Dθ) =

O∗P (δn).2

To establish the rate of convergence of our approximated posterior, we have the following

assumption.

Assumption 2. There exists Λ > 0 such that for every θ ∈ Θ, P0(p0/pθ) and P0(p0/pθ)
2

are bounded by Λ and

sup
D∈Dθn,δn

P0

(
Dθ
D

∣∣∣∣DθD ≥ 25

16

)
< Λ, sup

D∈Dθn,δn

P0

(
1−Dθ
1−D

∣∣∣∣1−Dθ1−D
≥ 25

16

)
< Λ,

for δn in Assumption 1. The brackets in Assumption 1 can be taken so that P0(
√
u/l−1)2 =

O(dθ(u, l)
2) and P0(

√
(1− l)/(1− u)− 1)2 = o(dθ(u, l)).

Assumption 2 constrains the tail behavior of the discriminator so that the residual of

the cross-entropy loss in (2.6) can be circumscribed by the bracketing entropy. See Kaji

and Ročková (2022) for a discussion of how this can be reasonably satisfied for logistic

discriminator and neural network discriminators that use sigmoid activation functions.

The following theorem quantifies the rate of convergence of our estimator (2.8) towards

the empirical KL divergence Pn log p0
pθ
.

Lemma 3 (Convergence Rate of Estimation Errors). Under Assumptions 1 and 2,

∣∣∣∣K̂(X, X̃θ)− Pn log
p0

pθ

∣∣∣∣ = OP ∗(δn). (2.11)

2. We use P ∗ to denote outer expectation (see Section 1.2 of van der Vaart and Wellner (1996)), here is
the expectation of a “a smallest measureable function g that dominates dθ(D̂θ

n,m, Dθ)".
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Proof. Since the estimation error can be rewritten as

K̂(X, X̃θ)− Pn log
p0

pθ
= −Pn

(
log

1− D̂θ
n,m

1−Dθ
− log

D̂θ
n,m

Dθ

)
,

it follows from Kaji and Ročková (2022, Theorem 4.1).

Remark 4 (Uniform Convergence Rate). The rate of estimation in Lemma 2 and Lemma 3

is characterized as point-wise. While for each θ ∈ Θ the estimation error is shrinking

at the rate δn, the multiplication constant in front the rate could potentially depend on θ.

Assuming a compact parameter support (which is not a-typical in deep learning models; see

e.g. Schmidt-Hieber (2020) or Polson and Ročková (2018) and Wang and Ročková (2020))

and continuity of the multiplication constant, we can essentially regard the rate as uniform.

Hereafter, we thereby abuse the notation and tacitly assume that δn is the worst rate over all

θ ∈ Θ ⊂ Rd, i.e. the rate with the largest multiplication constant.

Next, we investigate convergence around the actual KL divergence K(p0, pθ). The next

lemma will be utilized later in the proof of Theorem 7. However, it is of independent interest

as it shows how the speed at which the joint error probability (accounting for randomness of

both the observed and fake data (X, X̃)) decays in terms of the estimation error. Below, the

probability P corresponds to P (n)
0 ⊗ P̃ (m), where P̃ (m) is the measure for X̃ (see Remark

1).

Theorem 5. For a given θ ∈ Θ, we define for u > 0 and δn > 0 as in Lemma 2 and for an

arbitrarily slowly increasing sequence Cn > 0

ρn,θ(u;Cn; δn) ≡ P

(∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > 2u, dθ(D̂

θ
n,m, D

θ) ≤ Cnδn

)
. (2.12)

Under Assumptions 1 and 2, we then have

ρn(u;Cn; δn) ≡ sup
θ∈Θ

ρn,θ(u;Cn; δn) = O
(Cnδn

u
+

1

nu2

)
.
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The proof can be found in Section 2.7.3.1. Note that the intersecting event above has

probability converging to one, according to Lemma 2.

Remark 6 (Neural Network Sieve). The results discussed in this section apply to any non-

parametric sieve discriminator that satisfies the entropy conditions. To facilitate understand-

ing of how the rate of convergence δ can be affected by the dimension of the data space d, the

smoothness of the density, and the choice of the classifier, we provide a discussion on neural

network sieve specifically here.

Borrowing from the idea of Bauer and Kohler (2019), the convergence rate of the appropri-

ately configured neural network discriminator depends only on the low underlying dimension

of the oracle discriminator, however large the ostensible dimension of the data is. Intuitively,

the low-dimensional structure can be described as follows. The log-likelihood ratio log(p0/pθ)

takes a d-dimensional input X as an argument, which may be large. If this function admits

a representation as a nested composition of smooth functions, each of which takes a possi-

bly smaller number d∗ of arguments, the neural network sieve can adapt to this underlying

structure and converges faster than the traditionally proven rate.

In particular, if d∗ < 2p, we have δn = oP (n−1/4), which is often the desired rate for the

nonparametric estimator of a nuisance parameter. Additionally we show that one can obtain

δn . n−2/5 for the binary choice model with logistic errors and δn arbitrarily close to n−1/2

for the discretely sampled Brownian motion model. The detailed characterizations of the low

underlying dimension d∗ and two examples can be found in Section 2.7.1.

Finally, with Assumption 2, the convergence rate δn translates into the convergence rate

of the Kullback-Leibler estimator in Lemma 3. Thus, in smooth low-dimensional hierarchical

models, our Kullback-Leibler estimator converges reasonably fast even when the nominal

dimension of the data is large.
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2.3.2 Posterior Concentration Rate

Concentration rates are typically quantified in terms of a prior concentration (measured in

terms of a combination of the KL divergence and the KL variation) and the entropy of the

model. We have a similar prior mass condition (see (8.4) in Section 8.2 in Ghosal and Van der

Vaart (2017)). We denote the KL-neighborhood of p0 by

B2(p0, ε) = {θ : K(p0, pθ) < ε2}. (2.13)

Assumption 3 (Prior Mass). There exist some constants κ > 0 and ξ > 0 such that for

every 0 < ε < ξ and some constant C > 0, the prior probability satisfies Π[B2(p0, ε)] ≥ Cεκ.

Next, we assume that the parameter θ is identifiable in the sense that the KL divergence

is locally compatible with the Euclidean norm. This assumption is adopted from Assumption

3(ii) of Frazier et al. (2018).

Assumption 4 (Identification). The density function pθ is continuous in θ and for every θ

in some open neighborhood of θ0 satisfies

‖θ − θ0‖ ≤ L×K(p0, pθ)
α

for some L > 0 and α > 0.

Similarly as in (5.1) in Kleijn and van der Vaart (2006), Assumption 4 ensures posterior

concentration around θ0 when K(p0, pθ) → 0. This holds for many distributions. For

example, for the exponential distribution with a rate parameter θ, we have K(p0, pθ) = θ
θ0
−

log( θθ0
)−1. Since log(1+x) = x− x2

2 +o(x2) when x→ 0, we haveK(p0, pθ) ≥ 1
2θ
−2
0 (θ−θ0)2.

For multivariate normal distribution with a known variance Σ and an unknown location µ,

we have K(p0, pθ) = 1
2(µ−µ0)Σ−1(µ−µ0) ≥ 1

2ρ(Σ)−1 ‖µ− µ0‖2, where ρ(Σ) is the spectral

radius, i.e., the largest eigenvalue, of a matrix Σ.
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First, we focus on the uniform kernel Tε(x) = I(|x| ≤ ε) used in Algorithm 1. Recall

(from Remark 1) that X̃θ = gθ(X̃) for some suitable mapping gθ(X̃) where X̃ ∼ P̃ (m).

The ABC joint posterior (2.2) is a weighted aggregation of uniform kernels, i.e

π̂AR
(
θ, X̃ | K̂[X, gθ(X̃)] ≤ ε

)
=

π̃(X̃)π(θ)I
(
K̂[X, gθ(X̃)] ≤ ε

)∫
π̃(X̃)π(θ)I

(
K̂[X, gθ(X̃)] ≤ ε

)
dX̃dθ

, (2.14)

which yields the following ABC posterior distribution

Π̂ARεn (A |X) =

∫
θ∈A π(θ)P̃ (m)

(
K̂(X, X̃θ) ≤ εn

)
dθ∫

Θ π(θ)P̃ (m)
(
K̂(X, X̃θ) ≤ εn

)
dθ

for a Borel-measurable A ⊂ Θ.

(2.15)

The following theorem (a modification of Theorem 1 in Frazier et al. (2018)) quantifies

the concentration rate in terms of the tolerance threshold εn as well as the rate at which the

classification-based KL estimator can estimate Pn log(p0/pθ) (as formulated in (2.11)).

Theorem 7. Let Assumptions 1, 2 and 3 hold and take δn as in (2.11) in Lemma 3. Then,

as n → ∞ and with εn = o(1) such that nε2n → ∞ and Cnδn = o(εn) for some arbitrarily

slowly increasing sequence Cn > 0 we have

P
(n)
0 Π[K(p0, pθ) > λn | K̂(X, X̃θ) ≤ εn] = o(1), (2.16)

where λn = εn + MnCnδnε
−κ
n +

√
Mnn

−1/2ε
−κ/2
n for some arbitrarily slowly increasing

sequence Mn > 0. Moreover, if Assumption 4 also holds, as n→∞, we have

P
(n)
0 Π[‖θ − θ0‖ > Lλαn | K̂(X, X̃θ) ≤ εn] = o(1). (2.17)

The proof of the theorem is provided in Section 2.7.3.2. Thus, the convergence rate of our

ABC posterior depends on three components: the accept-reject threshold εn, the estimation

error of the KL estimator δn and the rate of discrepancy n−1/2 between the empirical and
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true KL divergence. Since δn will typically be greater than the parametric rate n−1/2, the

overall convergence rate is then driven by λn = εn + M̃nδnε
−κ
n , where M̃n is an arbitrarily

slowly increasing sequence.

In practice, it is unclear how to properly choose εn. In Algorithm 2, we proposed to

weight the draws using a scaled exponential kernel exp(−nK̂(X, X̃θ)). We denote the ABC

posterior under the exponential kernel as Π̂EK(· |X) where

Π̂EK(A |X) =

∫
A P̃

(m) exp
(
− nK̂(X, X̃θ)

)
π(θ)dθ∫

Θ P̃ (m) exp
(
− nK̂(X, X̃θ)

)
π(θ)dθ

. (2.18)

To gain more insights into the ABC posterior behavior under the exponential kernel, we

take a closer look at the “likelihood function" above

P̃ (m) exp
(
− nK̂(X, X̃θ)

)
=
p

(n)
θ

p
(n)
0

P̃ (m)euθ ,

where uθ(X, X̃θ) = −n×
(
K̂(X, X̃θ)−Pn log p0

pθ

)
. From the equations above, we can write

π̂EK(θ |X) ∝ p
(n)
θ (X)× eûθ(X) × π(θ) with ûθ(X) = log

∫
euθ(X,X̃θ)dP̃ (m)(X̃).

(2.19)

When K̂(X, X̃θ) is the classification-based estimator, ûθ(X) can be related to the random

generator setting of the Metropolis-Hastings MHC algorithm in Kaji and Ročková (2022)

which has (2.19) as its stationary distribution. Similarly as in Appendix Section 5 of Kaji

and Ročková (2022), we can regard the posterior approximation in (2.19) as a posterior

π̂EK(θ |X) ∝ q
(n)
θ π̃(θ) under a misspecified likelihood

q
(n)
θ =

p
(n)
θ (X)eûθ(X)

Cθ
where Cθ =

∫
X
p

(n)
θ (X)eûθ(X)dX (2.20)

and a modified prior π̃(θ) ∝ π(θ)Cθ. Since the likelihood is misspecified, the ABC posterior
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concentrates around a projection point θ∗ defined as

θ∗ = arg min
θ∈Θ
−P (n)

0 log[q
(n)
θ /p

(n)
0 ], (2.21)

which corresponds to the mis-specified model that is closest to P (n)
0 in the KL sense (Kleijn

and van der Vaart, 2006). Kaji and Ročková (2022) study posterior concentration of (2.19).

Unlike in Theorem 7, the posterior concentration rate here depends both on the estimation

error δn and the actual concentration rate of the true posterior, not the acceptance threshold.

Remark 8 (Vanishing Bias). To better understand the severity of the centering bias of the

misspecified model, we note

−P (n)
0 log[q

(n)
θ∗ /p

(n)
0 ] ≤ −P (n)

0 log[q
(n)
θ0
/p

(n)
0 ] = P

(n)
0 log

p
(n)
0

p
(n)
0 eûθ0(X)/Cθ0

= logCθ0
− P (n)

0 ûθ0
(X) = logP

(n)
0 eûθ0(X) − P (n)

0 ûθ0
(X).

This is essentially the Jensen gap. If we have this Jensen gap vanishing when n→∞, then

we can conclude that the centering bias is also vanishing, and the ABC posterior in (2.18)

will eventually concentrate at the right location.

2.3.3 Shape of the Limiting ABC Posterior Distribution

We now analyze the limiting shape of Π̂ARεn (· | X) defined in (2.15). We focus on the

case when εn � δ
1/(κ+1)
n , where κ was defined in Assumption 3, since the posterior is not

guaranteed to converge when the decision threshold εn is smaller than the estimation error

δn of the KL estimator.

Assumption 5. Assume that for every ε > 0, we have inf‖θ−θ0‖>εK(p0, pθ) > 0. In

addition, assume that log pθ is twice differentiable with respect to θ and that, for every θ in

some neighborhood of θ0, the remainder of the second order Taylor expansion of K(p0, pθ) =
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P0 log p0
pθ

(x) around θ0 is comparatively small relative to the second-order term, i.e.

K(p0, pθ) = ∇θ=θ0
K(p0, pθ)(θ − θ0) +

1

2
(θ − θ0)′∇2

θ=θ0
K(p0, pθ)(θ − θ0){1 + o(1)}

=
1

2
(θ − θ0)′I(θ0)(θ − θ0){1 + o(1)},

where I(θ) = ∇2
θK(p0, pθ) = P0[(∇θ log pθ)

2] is the Fisher information matrix.

When Assumption 5 is satisfied, the condition in Assumption 4 is immediately satisfied

as well and the identification of θ0 is guaranteed. In the open-neighborhood of θ0, since we

have

(θ − θ0)′I(θ0)(θ − θ0) = 2K(p0, pθ){1 + o(1)},

and I(θ0) is positive definite, the convergence in the bilinear form (θ − θ0)′I(θ0)(θ − θ0)

ensures the convergence of the parameters.

Theorem 9. Assume that the prior function π(·) is continuous around θ0. Then, under

Assumptions 1, 2, 3 and 5, if limn δn/ε
κ+1
n → 0, the average posterior distribution of

ε
−1/2
n (θ − θ0) converges to the uniform distribution over the ellipse {w : w′I(θ0)w ≤ 2}

where I(θ) is the Fisher information matrix defined in Assumption 5. In particular, as

n→ 0, we have

P
(n)
0

∫
f
(
ε
−1/2
n (θ − θ0)

)
Π̂ARεn (θ |X)→

∫
u′I(θ0)u≤2

f(u)du/

∫
u′I(θ0)u≤2

du

for every continuous and bounded function f(·) : X → R.

The proof is provided in Section 2.7.3.3.

Remark 10. Theorem 9 is adapted from the case (i) in Theorem 2 of Frazier et al. (2018).

We only consider situations when εn � δ
1/(κ+1)
n with the prior shrinkage parameter κ de-

fined in Assumption 3. In other words, we assume that the ABC decision threshold εn is
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dominating both the estimation error δn and the asymptotic error n−1/2 and, thereby, de-

termines the posterior concentration rate. It is not entirely obvious how the posterior would

behave when the threshold εn shrinks faster than the estimation error δn.

For the asymptotic behavior of the ABC posterior (2.19) induced by the exponential

kernel, we resort to BvM characterizations under misspefication in LAN models (Kleijn and

van der Vaart, 2012). When the posterior (2.19) concentrates around θ∗ in (2.21) at the rate

ε∗n, one can show under a suitable LAN condition that the approximate posterior converges

to a sequence of normal distributions in total variation at the rate ε∗n. The centering and

the asymptotic covariance matrix both depend on θ∗. The formal statement and the proof

is in Kaji and Ročková (2022).

Although we only consider the case where the model is correctly specified in our paper,

our results can be extended to the mis-specified model along the lines of Frazier et al. (2019).

2.3.4 ABC Kernels and Model Misspecification

Although the exponential kernel ABC (Algorithm 2) obviates the need for the threshold

εn and performs very well in our examples, the Accept/Reject kernel ABC (Algorithm 1)

may perform better under mis-specification (see Remark 2.2.2). When the model is mis-

specified, the posterior under Algorithm 1 will converge to the “pseudo-true" value, which is

the point that minimizes the distance between summary statistics within the mis-specified

class. Since our summary statistic is replaced with KL divergence, this point will coincide

with the KL projection in our case. The exponential kernel will also concentrate around

a certain KL projection but its bias will now be compounded by the influence of both

P0 /∈ P = {θ ∈ Θ : Pθ} and the exponential tilt eûθ(X) arising from the approximation error

of the KL estimator. We would thereby expect a bigger bias from the exponential kernel

when the model is misspecified.

We illustrate the intuition above with a toy example. We use the simple example proposed
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in Frazier et al. (2019) where the assumed data-generating process (DGP) is i.i.d. N (θ, 1),

but the actual DGP for X is i.i.d. N(θ, σ2) for σ2 6= 1. In other words, the assumed

DGP has an incorrect specification of the variance of the observed data. We consider the

oracle logistic classifier built on X and the quadratic term X2 for our KL estimator. We fix

θ = 1 and simulate X (using n = 100) with respect to different values of σ2, ranging from

0.5 to 5 with evenly spaced increments of 0.05. Using one common set of latent variables

νi ∼ N (0, 1), the observed data is generated as Xi = 1 + νiσ for each σ2. The prior belief

is θ ∼ N (0, 25), and we implement ABC methods with N = 100 000 pseudo datasets. The

parameter draws and the latent variable datasets are the same across the different values of

σ2. To explore how the tail behavior influences the ABC bias, we also include misspecified

lognormal distributions using the same setup.

Figure 2.1(a) compares the posterior mean of the accept-reject ABC (AR) and the ABC

with exponential weighting (EW) across different values of σ2. We can see that both AR and

EW have a relatively small bias in estimating θ when the misspecification level in σ2 varies.

Since the logistic regression classifier on X and X2 is almost the “oracle" discriminator for

gaussian distributions, the error of the KL estimator should be minimal. Nevertheless, the

posterior mean of EW exhibits a downward moving trend when the level of misspecification

increases. For the heavy-tailed lognormal distribution shown in Figure 2.1(b), although

the posterior mean of AR does shift away from true value θ = 1 as the degree of model

misspecification increases, the posterior mean of EW shifts away from θ = 1 at a faster

speed.

2.4 Simulations

In this section, we illustrate our approach and make comparisons with other likelihood-

free inference techniques. Within our KL-ABC framework, we include two types of KL

estimators. One is obtained with the logit discriminator score, which we refer to as KL

30



0.95

1.00

1.05

1.10

1.15

1 2 3 4 5

sigma_sq

th
e

ta

mtd

AR
EW

(a) normal

1

2

3

4

1 2 3 4 5

sigma_sq

th
e

ta

mtd

AR
EW

(b) lognormal

Figure 2.1: ABC posterior under misspecified models.

estimation via classification (KLC), and the other one is estimated via the kNN method

(kNN) with k = 1 (Jiang et al., 2018). For both estimators, we aggregate ABC samples with

the accept-reject kernel as in Algorithm 1 and the exponential kernel as in Algorithm 2. The

latter will be denoted with a suffix ‘exp’, e.g. KLC-exp or kNN-exp. The discriminator used

for each dataset will be specified later.

The ABC discrepancy metrics we choose for comparisons are (1) the classification accu-

racy (CA) (Gutmann et al., 2018) defined as (2.10); (2) the 2-Wasserstein (W2) distance un-

der the Euclidean metric (Bernton et al., 2019) defined asW2(X, X̃θ) = minγ [
∑n
i=1

∑m
j=1 γij ||Xi−

X̃θ
j ||

2]1/2 s.t. γ′1m = 1n, γ
′1n = 1m with 0 ≤ γij ≤ 1; (3) `2-distance between sum-

mary statistics (SS) and we use the semi-automatic (SA) method (Fearnhead and Prangle,

2011) if no candidate summary statistics are given; (4) approximated posterior mean of

the parameters predicted by trained deep neural network (DNN) (Jiang et al., 2017b);

(5) Maximum Mean (MM) discrepancy (Park et al., 2016) defined as MM(X, X̃θ) =

1
n(n−1)

∑
i6=j k(Xi, Xj) + 1

m(m−1)

∑
i6=j k(X̃θ

i , X̃
θ
j ) − 2

nm

∑
i,j k(Xi, X̃

θ
j ) where k(·, ·) is a

Gaussian kernel with the bandwidth being the median of {
∥∥Xi −Xj∥∥ : i 6= j};(6) a V-

statistic estimator of Energy Statistics (ES) proposed by Nguyen et al. (2020); (7) auxiliary
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likelihood AL = 1
m ln pA(X̃θ | φ̂(X̃θ)) − 1

m ln pA(X̃θ | φ̂(X)) proposed by Drovandi et al.

(2011), where pA(x | φ) is a d-dimensional Gaussian distribution with φ being the sample

mean and covariance. For the classification accuracy (CA), we use the same discriminator

as the one in KL estimation. For the DNN approach, we deploy a 3-layer DNN with 100

neurons and hyperbolic tangent (tanh) activation on each hidden layer. The model is trained

on 106 samples and validated on 105 samples, with early stopping once the validation error

starts to increase. In each experiment, unless otherwise noted, we set the tolerance threshold

ε adaptively such that 1 000 of 100 000 (i.e. the top 1%) proposed ABC samples are accepted.

2.4.1 M/G/1-Queuing Model

Because queuing models are usually easy to simulate from, but have no tractable likeli-

hoods, they have been frequently used as test cases in the ABC literature, see e.g. Fearn-

head and Prangle (2011) and Bernton et al. (2019). Here, we choose the same setup as

in Jiang et al. (2017b). Each datum is a 5-dimensional vector consisting of the first five

inter-departure times xi = (xi1, xi2, xi3, xi4, xi5)′. In the model, the service times uik

follow a uniform distribution U [θ1, θ2], and the arrival times wik are exponentially dis-

tributed with the rate θ3. We only observe the interdeparture times xi, given by the process

xik = uik + max(0,
∑k
j=1wij −

∑k−1
j=1 xij). We perform ABC on n = 500 observed samples

which are generated from the true parameter θ0 = (1, 5, 0.2). The prior on (θ1, θ2 − θ1, θ3)

is uniform on [0, 10]2 × [0, 0.5]. 3

Regarding the choice of the discriminator, we consider both the Random Forest (RF)

classifier and a `1-penalized logistic classifier (LRD). For the former, we use the default

setting in the R package randomForest. We also denote CA calculated from RF classifier

as RF-CA. For the latter, we implement the discriminator with R package glmnet, and

the model is built on degree-2 polynomials of the data, including quadratic and interaction

3. We place the uniform prior on θ2 − θ1 instead of θ2, since θ2 must be larger than θ1. This is used in
Jiang et al. (2017b).
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Figure 2.2: ABC reconstructed posteriors under M/G/1-queuing model with θ0 = (1, 5, 0.2)′.
The vertical black lines mark the true values. The blue curves in kNN and RF boxes mark
a smoothed density calculated from the exponential kernel.

terms, with penalty parameter λ is selected via 5-fold cross-validation. We find that RF

outperforms LRD.

The shape of the ABC posteriors is given in Figure 2.2. The plot reveals that, among the

three parameters, θ1 is the hardest one to estimate where all methods, except for RF and its

variants, gave relatively flat posterior estimates. Regarding θ2, all methods seem to center

well around the truth. RF-exp provides the tightest estimation. Regarding θ3, all except

kNN return spiky posterior. Next, we repeat the experiments on 10 different datasets, and

summarize the average squared estimation errors and the width of the 95% credible intervals

in Table 2.1. Overall, we see that RF and RF-exp are able to correctly identify the right

locations of the parameters and outperform the kNN estimator, with RF-exp providing the

tightest credible interval. The method RF-CA tends to give very similar results to RF, which
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θ1 = 1 θ2 = 5 θ3 = 0.2

Method (θ̂1 − θ1)2 95% CI width (θ̂2 − θ2)2 95% CI width (θ̂3 − θ3)2 95%CI width
(scale) (10−4)

RF 0.008 2.044 0.038 4.304 0.571 0.084
RF -exp 0.035 0.959 0.055 1.473 0.307 0.028
LRD 0.197 3.116 0.217 4.599 0.308 0.064
LRD-exp 0.169 2.851 0.312 3.708 0.234 0.030
kNN 0.525 3.135 0.106 3.986 3.659 0.094
kNN-exp 1.057 2.664 (0.8) 0.431 3.331 (0.9) 2.634 0.072

DNN 0.150 3.350 1.100 7.361 81.931 0.328
ES 0.255 3.321 0.087 5.280 1.176 0.070
CA 0.191 3.107 0.235 4.602 0.280 0.064
RF-CA 0.014 2.194 0.036 4.104 0.404 0.084
AL 0.259 3.423 0.057 5.651 0.575 0.044
SA 0.180 2.457 0.355 3.514 45.297 0.446
W2 0.595 3.631 0.039 4.871 3.846 0.052 (0.8)

Table 2.1: ABC performance on the M/G/1 queuing model over 10 repetitions, with top 1%
ABC samples selected. Most of the 95% CIs have full coverage with the rest having their
coverage marked in brackets. The bold fonts mark the best model in each metric.

is not entirely unexpected since they are derived from the same discriminators.

2.4.2 Lotka-Volterra Model

The Lotka-Volterra (LV) predator-prey model (Wilkinson, 2018) describes population evo-

lutions in ecosystems where predators interact with prey. It is one of the classical stochastic

kinetic network model examples. The state of the population is prescribed deterministically

via a system of ordinary differential equations (ODEs). Inference for such models is chal-

lenging because the transition density is intractable. However, simulation from the model is

possible, which makes it a natural candidate for ABC methods.

The model monitors population sizes of predators Xt and prey Yt over time t. The

changes in states are determined by four parameters θ = (θ1, . . . , θ4)′ controlling: (1) the

rate rt1 = θ1XtYt of a predator being born; (2) the rate rt2 = θ2Xt of a predator dying; (3)

the rate rt3 = θ3Yt of a prey being born; (4) the rate rt4 = θ4XtYt of a prey dying. Given

the initial population sizes (X0, Y0) at time t = 0, the dynamics can be simulated using
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the Gilliespie algorithm (Gillespie, 1977). The algorithm samples times to an event from

an exponential distribution (with a rate
∑4
j=1 r

t
j) and picks one of the four reactions with

probabilities proportional to their individual rates rtj .

We use the same simulation setup as Kaji and Ročková (2022). Each simulation is started

atX0 = 50 and Y0 = 100 and state observations are recorded every 0.1 time units for a period

of 20 time units, resulting in a series of T = 201 observations each. The real data (n = 20 time

series) are generated with true values θ0 = (0.01, 0.5, 1, 0.01)′. The predator-prey interaction

dynamic is very sensitive to parameter changes. For example, Figure 4 of Kaji and Ročková

(2022) shows that a slight perturbation in θ2 leads to significant changes in the population

renewal cycle. We rely on the ability of the discriminator to tell such different patterns apart.

The sensitivity of the model to minor parameter changes is confirmed with heat-map plots

of the estimated KL divergence as a function of (θ1, θ4)′ in Figure 2.3. Figure 2.3(a) provides

a plot of the estimated KL over the region [0, 0.1]2 where, apparently, the majority of the

region is flat and uninformative with a sharp spike around the true values at θ1 = θ4 = 0.01.

We thus narrow the investigation down to a smaller region [0, 0.02]2 in Figure 2.3(b). Again,

the curvature in the estimated KL around the truth is quite steep. This may pose some issues

for Metropolis-Hasting algorithms, since the majority of the prior region is uninformative

and improper initialization could lead to extremely slow convergence.

Previous ABC analyses of this model suggested various summary statistics including the

mean, log-variance, autocorrelation (at lag 1 and 2) of each series as well as their cross-

correlation (Papamakarios and Murray, 2016). For the discriminator of our method, we

choose the `1-penalized (LASSO) logistic regression classifier (LRD) with m = n and with a

penalty λ selected via 5-fold cross-validation (as implemented in the R package glmnet), as

well as a random forest classifier (RF).

Similar to Kaji and Ročková (2022), we use an informative prior θ ∈ U(Ξ) with a re-

stricted domain Ξ = [0, 0.1]× [0, 1]× [0, 2]× [0, 0.1] so that the computation is more economic
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(a) (θ1, θ4) ∈ (0, 0.1)2 (b) (θ1, θ4) ∈ (0, 0.02)2

Figure 2.3: Estimated K̂(X, X̃θ) (via Classification) over a grid of (θ1, θ4) values. The other
two parameters are fixed at θ2 = 0.5, θ3 = 1.

and efficient. A typical snapshot of the ABC posteriors is plotted in Figure 3.4. From the

plot, we can see that the difficulty in estimating different parameters varies a lot and θ3 is

the most challenging among all. While other methods give relatively flat posteriors for θ3,

our method (RF) combined with the scaled exponential kernel identifies the correct loca-

tion of the parameter with a much tighter posterior. For the DNN approach, the posteriors

seem to be very flat and the estimation for θ2 is biased. Considering its heavy computation

costs, we exclude this method in the repetition experiment. The average performance of

ABC methods under this model is summarized in Table 2.2. We can see that RF with the

exponential kernel gives the tightest CI most of the time, while maintaining relatively small

estimation errors.

2.5 Empirical Analysis

We further demonstrate our approach on the nontrivial problem of estimating stock volatility

using merely daily observations on high, low and closing prices. All of these price observations

are typically available to investors. We use a similar data generating process as in Magdon-
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Figure 2.4: ABC posteriors for the Lotka-Volterra model with θ0 = (0.01, 0.5, 1, 0.01)′. The
black vertical lines mark the true parameter values. The blue curves in kNN and RF boxes
represent the smoothed density calculated from the exponential kernel. The ABC posteriors
are plotted from the top 1% out of 105 samples.

Ismail and Atiya (2003), assuming that the assets follow a Brownian motion with a constant

drift and volatility. In particular, suppose that the log-price processes Xj(t), i = 1, . . . , d, are

correlated Brownian motions, that is E[Xi(s)Xj(t)] = σij min{s, t}, and that the joint move-

ment of the log-price processes X(t) = (X1(t), . . . , Xd(t))
′ follows a multivariate Brownian

motion as

dX(t) = µdt+ ΣdW (t), (2.22)
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θ1 = 0.01 θ2 = 0.5 θ3 = 1 θ4 = 0.01

Method (θ̂1 − θ1)2 95% CI width (θ̂2 − θ2)2 95% CI width (θ̂3 − θ3)2 95% CI width (θ̂4 − θ4)2 95% CI width
(scale) (10−5) (10−2) (10−5)

RF 0.118 1.116 0.389 0.719 0.037 0.938 0.051 1.290
RF-exp 0.015 0.354 0.092 0.191 0.272 0.483 0.037 0.493
LRD 42.949 4.474 1.688 0.626 0.119 0.945 17.159 4.720
LRD-exp 0.066 0.354 0.247 0.285 0.405 0.643 0.021 0.626
KL 0.563 1.462 0.107 0.602 0.054 0.934 0.203 1.327
KL-exp 0.049 0.544 (0.9) 0.044 0.243 (0.9) 0.346 0.599 (0.9) 0.066 0.616 (0.9)

CA 36.477 4.375 1.602 0.629 0.118 0.945 15.684 4.622
RF-CA 0.141 1.061 0.699 0.700 0.042 0.933 0.056 1.181
ES 0.101 1.233 0.203 0.573 0.045 0.923 0.341 1.443
W2 1.265 1.666 0.478 0.599 0.011 0.917 4.080 2.051
SS 1.639 1.777 2.260 0.721 1.019 0.901 3.767 1.660
MM 0.824 1.727 0.959 0.601 0.414 0.932 0.074 1.294

Table 2.2: ABC performance evaluated on the Lotka-Volterra Model, averaged over 10 repe-
titions, with the top 1% ABC samples selected. Most of the 95% CIs have full coverage with
the rest having their coverage marked in brackets. The bold fonts mark the best model in
each metric.

where µ = (µ1, . . . , µd)
′ and Σ = [σij ]1≤i,j≤d denote the drift and the volatility of the log

processes, respectively. We write

Hj = max
0≤t≤1

Xj(t), Lj = min
0≤t≤1

Xj(t), Sj = Xj(1),

for the high, low and final log price, respectively, over a fixed time interval [0, 1]. We want

to estimate the drift µ and the volatility matrix Σ merely from observing these three prices

over a period of time.

We impose a normal-inverse-Wishart prior (µ,Σ) ∼ NIW (µ0, λ,Φ, ν). This distribution

can be sampled from in two steps: (1) sample Σ from an inverse Wishart distribution Σ |

Φ, ν ∼ W−1(Φ, ν); (2) sample µ from a multivariate normal distribution µ | µ0, λ,Σ ∼

N(µ0,
1
λΣ). Since Σ is a semi-positive definite matrix, we model the parameters through its

Cholesky root Σ1/2. Without loss of generality, we only consider the caseW (0) = (0, . . . , 0)′,

since the closing prices on the previous day or the opening prices of today are usually known.
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2.5.1 Synthetic Data

To compare various likelihood-free estimators, we first generate synthetic data for 1 000

trading days. For each day (of length t = 1), we simulate the Brownian motion using 500

time steps to obtain the high, low and closing price data for each particular window. We

first restrict our attention to the case of just two assets, which leaves us with 5 parameters

to estimate: µ1, µ2 and the upper triangular root of Σ, denoted with L =

[
l11 0

l12 l22

]
. We

first illustrate how the covariance parameter σ12 impacts the co-movement of asset prices.

Holding µ1 = µ2 = 0 and σ11 = σ22 = 1 fixed, we plot time series realizations of the closing

prices for three particular choices of σ12 in Figure 2.5. The patterns are as expected where

the prices tend to co-fluctuate when σ12 is closer to one. The success of our method depends

on how well the discriminator can tell apart these trajectories.
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Figure 2.5: Closing prices time series for three choices of σ12 (µ1 = µ2 = 0, σ11 = σ22 = 1).

For our simulation, we set µ = (0, 0)′ and σ11 = σ22 = 1, σ12 = 0.5. We choose

relatively non-informative prior hyper-parameters µ0 = (0, 0)′, λ = 1,Φ = Id and ν = d.

Posterior distributions reconstructed with different ABC methods are given in Figure 2.6

and the averaged performance over 10 repetitions is summarized in Table 2.3. We explore

two discriminators built on the prices and the quadratic/interaction terms of the prices:

(1) a lasso classifier with penalty term λ selected from a 5-fold cross-validation (LRD); (2)

a random forest classifier (RF). We find out that for the Lotka-Volterra model, the linear
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classifier performs better than the nonparametric random forest, as reflected in Figure 2.6.

We observe a smaller estimation bias and the computation of LRD is much shorted than

RF. Thus, we only include LRD in the repetitions. It is clear that our exponential kernel

methods place more mass around the true location of the parameters, and that the shape

of kNN-exp is slightly less regular than LRD-exp. Although LRD-exp induces a larger bias

in estimating the drift (µ1, µ2), it does a better job at capturing the correct location of the

volatilities.

mu1 mu2

−1 0 1 2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

s11 s12 s22

0 1 2 3 −1 0 1 2 0 1 2 3 4

0

1

2

3

4

0

1

2

3

0

1

2

3

mtd

AL

CA

DNN

ES

kNN

kNN−exp

LRD

LRD−exp

RF

RF−exp

W2

Figure 2.6: Posterior densities on simulated volatility data (d = 2)

2.5.2 Real Data Analysis

Following the example in Rogers and Zhou (2008), we examine a small data set of stock prices

focusing on two stocks: Boeing (BA) and Proctor & Gamble (PG). The prices were obtained

from NYSE (Yahoo Finance), starting from 3rd January 2011 and consisting of 1 000 trading

days. Since the off-market trades follow a different mechanism than the market trade, we
40



LRD LRD-exp kNN kNN-exp ES CA W2 AL SS DNN

µ1 = 0
MSE(×10−4) 2.004 2.113 0.638 0.159 1.484 1.497 0.170 0.628 1.216 1.838
95% CI width 1.760 0.331 1.480 0.442 0.740 1.660 0.831 1.240 1.734 3.079

µ2 = 0
MSE(×10−4) 0.734 7.439 0.363 0.259 0.050 0.142 0.277 0.089 0.021 7.029
95% CI width 1.628 0.431 1.435 0.538 0.737 1.564 0.813 1.247 1.569 2.527

σ11 = 1
MSE(×10−3) 0.311 0.111 0.167 0.460 0.834 0.002 2.634 1.669 1.404 3.502
95% CI width 0.963 0.371 0.954 0.329 1.231 0.896 1.140 0.910 0.763 6.233

σ12 = 0.5
MSE(×10−3) 1.035 0.103 0.427 0.107 6.657 0.861 1.528 3.337 0.109 18.427
95% CI width 1.193 0.355 1.092 0.324 1.700 1.122 0.988 1.114 0.628 5.530

σ22 = 1
MSE(×10−3) 0.416 0.304 0.124 0.018 0.776 0.007 4.244 1.679 3.687 1.882
95% CI width 0.959 0.252 0.974 0.314 1.274 0.920 1.157 0.922 0.783 6.693

Table 2.3: Performance on the stock volatility estimation example, averaged over 10 repe-
titions, with top 1% selected. All 95% CIs have full coverage of the true parameters. The
bold fonts mark the best model in each row.

only model price changes from the opening price to the closing price each day where the log

price differences X(t) are all computed based on the opening prices of that day.
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Figure 2.7: Posterior densities estimated from log-prices of BA and PG

We observe that the fluctuations in the prices are much smaller than in our simulated

time series and we thereby choose the hyperparameters based on the mean and covariance of

the closing prices. Figure 2.7 gives the ABC posterior distributions estimated from different
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methods and the corresponding summaries of the distributions are provided in Table 2.4.

We again observe that our methods with the exponential kernels return much narrower

posterior distributions. The estimates on the volatilities are quite close except for the ABC

with summary statistics (SS). The drifts of both BA and PG are not significantly different

from zero.

LRD LRD-exp kNN kNN-exp CA ES W2 AL DNN SS

µ1 (×10−3)
µ̄1 -0.774 1.354 0.250 0.779 0.342 0.173 -0.126 -0.500 -0.091 -0.071
l -10.380 -1.981 -6.816 -1.145 -7.099 -3.201 -3.987 -7.603 -5.415 -9.532
u 8.202 3.514 7.229 3.385 7.395 3.443 3.736 6.810 9.335 10.121

µ2 (×10−3)
µ̄2 0.009 -0.039 0.491 0.822 0.445 0.545 0.453 0.316 2.793 0.450
l -6.591 -1.718 -4.329 -1.406 -4.604 -2.364 -3.491 -4.103 -8.913 -9.831
u 6.531 4.563 5.503 2.166 5.538 3.616 4.450 4.690 14.701 10.171

σ11(×10−4)
σ̄11 1.406 1.142 1.049 1.054 1.101 1.070 1.130 1.273 1.224 0.738
l 0.824 1.142 0.633 0.844 0.634 0.577 0.626 0.689 0.243 0.155
u 2.362 1.142 1.640 1.202 1.819 1.818 1.938 2.259 3.616 1.976

σ12(×10−5)
σ̄12 2.811 2.446 1.767 2.084 1.906 1.074 2.052 2.759 -0.530 -0.376
l -2.379 2.446 -2.359 2.084 -2.390 -6.152 -3.137 -2.656 -25.243 -6.660
u 8.226 2.446 6.037 2.084 6.442 8.008 7.253 8.568 23.343 6.065

σ22(×10−4)
σ̄22 6.922 5.263 4.924 4.820 5.470 5.419 4.947 6.179 18.485 5.521
l 4.069 5.263 2.766 4.820 3.149 2.005 1.734 3.322 1.571 1.326
u 11.049 5.263 8.020 4.820 8.826 10.258 9.844 10.223 93.218 12.852

Table 2.4: Posterior estimates on analysis of BA and PG. For each parameter, we report
three summary statistics, the posterior means, the lower limit of the 95% CI intervals (l)
and the upper limit of the 95% CI intervals (u).

2.6 Discussion

This paper develops an ABC variant using a classification-based KL estimator as a dis-

crepancy measure. By deploying a flexible classifier, the empirical KL divergence can be

estimated with a vanishing error. In addition, inspired by the connection between the KL

divergence and the log-likelihood ratio, we propose a scaled exponential kernel to aggregate

ABC samples. This smoothing variant avoids the need for choosing the ad hoc threshold

εn and fully utilizes information returned from all ABC samples. Under mild conditions,

we show that the posterior concentration rate of the accept-reject ABC depends on the es-
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timation error δn and the accept-reject threshold εn, while the rate of the smooth version

depends on the estimation error δn and the contraction rate of the actual posterior distribu-

tion. Our methodology can also be related to many other likelihood-free inference methods,

including ABC with Classification Accuracy (Gutmann et al., 2018), Wasserstein distance

ABC (Bernton et al., 2019), and Generalized Posteriors (Schmon et al., 2020). Our methods

coincide with the c-posterior (Miller and Dunson, 2018), which is robust to perturbations. In

particular, the accept-reject ABC can be shown to be robust under model misspecification

(see Section 2.3.4). In addition, the exponential kernel can be motivated as an instantiation

of General Bayesian Inference (GBI) (Bissiri et al., 2016) with the KL estimator as the loss

function. See Thomas and Corander (2019) and Thomas et al. (2020b) for examples of con-

ducting robust inference using probabilistic classifiers under the generalized Bayes update

setup. Along with our theoretical investigations, we demonstrate competitive performance

of our methods on benchmark examples. Our theoretical analysis provides theoretical justi-

fications for the method of Gutmann et al. (2018).

2.7 Appendix

2.7.1 Convergence Rate of Estimation Errors with Neural Network Sieves

To develop a precise definition of the low underlying dimension d∗ described in Remark 6,

we borrow the smoothness notion of Bauer and Kohler (2019).

Definition 1 ((p, C)-Smoothness). Let p = q+s for some q ∈ N0 and 0 < s ≤ 1. A function

m : Rd → R is called (p, C)-smooth if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = q,

the partial derivative ∂qm
∂x

α1
1 ···∂x

αd
d

exists and satisfies

∣∣∣∣ ∂qm

∂xα1
1 · · · ∂x

αd
d

(x)− ∂qm

∂xα1
1 · · · ∂x

αd
d

(z)

∣∣∣∣ ≤ C‖x− z‖s
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for every x, z ∈ Rd where ‖ · ‖ denotes the Euclidean norm.

With this, the nested composition structure is defined as follows.

Definition 2 (Generalized Hierarchical Interaction Model). Let d ∈ N, d∗ ∈ {1, . . . , d}, and

m : Rd → R. We say that the function m satisfies a generalized hierarchical interaction

model of order d∗ and level 0, if there exist a1 ∈ Rd, . . . , ad∗ ∈ Rd, and f : Rd∗ → R such

that

m(x) = f(a′1x, . . . , a
′
d∗x)

for every x ∈ Rd. We say thatm satisfies a generalized hierarchical interaction model of order

d∗ and level l+1 withK components if there exist gk : Rd∗ → R and f1,k, . . . , fd∗,k : Rd → R

(k = 1, . . . , K) such that f1,k, . . . , fd∗,k (k = 1, . . . , K) satisfy a generalized hierarchical

model of order d∗ and level l and

m(x) =
K∑
k=1

gk(f1,k(x), . . . , fd∗,k(x))

for every x ∈ Rd. We say that the generalized hierarchical interaction model is (p, C)-smooth

if all functions occurring in its definition are (p, C)-smooth.

For example, a conditional binary choice model satisfies a generalized hierarchical inter-

action model of order d∗ ≤ 3 and level 0, irrespectively of the dimension of the covariates.

Example 1 (Binary Choice Model). Let yi = I{x′iα + εi > 0}, εi ∼ Pε, be the true DGP

and yβi = I{x′iβ + ε̃i > 0}, ε̃i ∼ P̃ε, be the generative model. Then,

log
p0(y, x)

pθ(y, x)
= y log

1− Pε(−x′α)

1− P̃ε(−x′β)
+ (1− y) log

Pε(−x′α)

P̃ε(−x′β)
.

Therefore, we can write this as f(a′1z, a
′
2z, a

′
3z) where z = (y, x′)′, a1 = (1, 0, . . . , 0)′, a2 =

(0,−α′)′, a3 = (0,−β′)′, and f(y, x1, x2) = y[log(1 − Pε(x1)) − log(1 − P̃ε(x2))] + (1 −
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y)[logPε(x1) − log P̃ε(x2)]. If Pε and P̃ε are logistic distributions, then f is (p, C)-smooth

for (p, C) = (8, 1) or for (p, C) = (11, 10), for example. Therefore, it satisfies the generalized

hierarchical interaction model of order d∗ = 3 and level l = 0.

Example 2 (Diffusion Process). Let Xi,t/d, t = 1, . . . , d be discretely sampled observations

of a Brownian motion dXit = µdt+σdWit with Xi0 = 0, where Wit is a standard Brownian

motion independent across i. Let the generative model be Xθ
i,t/d

, t = 1, . . . , d from Xθ
it =

mdt+ sdW̃it and θ = (m, s). Then, the log likelihood ratio is

log
p0(x1/d, . . . , x1)

pθ(x1/d, . . . , x1)
= d log

s

σ
− d

2

(
1

σ2
− 1

s2

) d∑
j=1

(xj/d − x(j−1)/d)
2

+

(
µ

σ2
− m

s2

)
x1 −

1

2

(
µ2

σ2
− m2

s2

)
.

Letting z = ((x1/d − x0)2, . . . , (x1 − x(d−1)/d)
2, x1)′, we can write this as f(a′z) where

a = (−d2( 1
σ2 − 1

s2 ), . . . ,−d2( 1
σ2 − 1

s2 ), µ
σ2 − m

s2 )′ and f(y) = d log s
σ + y − 1

2

(µ2

σ2 − m2

s2

)
. Then,

f is (p, C)-smooth with (p, C) = (∞, 1), and the log likelihood ratio satisfies the hierarchical

model with d∗ = 1 and level l = 0.

Next, we define the configuration of the neural network appropriate for estimating a

generalized hierarchical interaction model.

Definition 3 (Hierarchical Neural Network). Let σ : R → R be a q-admissible activation

function. For M∗ ∈ N, d ∈ N, d∗ ∈ {1, . . . , d}, and α > 0, let FM∗,d∗,d,α be the class of

functions f : Rd → R such that

f(x) =
M∗∑
i=1

µiσ

(
4d∗∑
j=1

λi,jσ

(
d∑
v=1

θi,j,vxv + θi,j,0

)
+ λi,0

)
+ µ0

for some µi, λi,j , θi,j,v ∈ R, where |µi| ≤ α, |λi,j | ≤ α, and |θi,j,v| ≤ α. For l = 0, define the

set of neural networks with two hidden layers by H(0)
M∗,d∗,d,α = FM∗,d∗,d,α; for l > 0, define
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the set of neural networks with 2l + 2 hidden layers by

H(l)
M∗,d∗,d,α ={
h : Rd → R : h(x) =

K∑
k=1

gk(f1,k(x), . . . , fd∗,k(x)), gk ∈ FM∗,d∗,d∗,α, fj,k ∈ H(l−1)

}
.

With these definitions, the convergence rate of the neural network sieve is characterized

as follows. If the log likelihood ratio satisfies the generalized hierarchical model of order d∗

and the corresponding neural network sieve is used, the convergence rate of the discriminator

depends only on d∗, not on d. The precise assumption is formulated as follows.

Assumption 6 (Neural Network Discriminator). Let P0 and Pθ have subexponential tails

and finite first moments.4 Let log(p0/pθ) satisfy a (p, C)-smooth generalized hierarchical

interaction model of order d∗ and finite level l with K components for p = q + s, q ∈ N0,

and s ∈ (0, 1]. Let H(l)
M∗,d∗,d,α be the class of neural networks with the Lipschitz activation

function with Lipschitz constant 1 for

M∗ =

⌈(
d∗ + q

d∗

)
(q + 1)

([
(log δn)2(2q+3)

δn

]1
p

+ 1

)d∗⌉
,

α =

[
(log δn)2(2q+3)

δn

]d∗+p(2q+3)+1
p log n

δ2
n
,

and δn = [(log n)
p+2d∗(2q+3)

p /n]
p

2p+d∗ . Denote by Dn = {Λ(f) : f ∈ H(l)
M∗,d∗,d,α} the sieve of

neural network discriminators for the standard logistic cdf Λ.

Assumption 6 gives a sufficient condition for the entropy condition in Assumption 1.

With this, we obtain the “classification counterpart” of Bauer and Kohler (2019, Theorem

1) as below.

4. We say that P on Rd has subexponential tails if logP (‖X‖∞ > a) . −a for large a.
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Theorem 11 (Kaji et al., 2020, Proposition S.3). Suppose Assumption 6 holds. If n/m

converges and an estimator D̂θ
n,m exists that satisfies Mn,m(D̂θ

n,m) ≥ Mθ
n,m(Dθ) − OP (δ2

n)

for the δn in Assumption 6, then dθ(D̂θ
n,m, Dθ) = O∗P (δn).

This theorem, combined with the explicit expression of δn in Assumption 6, tells that if

d∗ < 2p, we have δn = oP (n−1/4), which is often the desired rate for the nonparametric esti-

mator of a nuisance parameter. For the binary choice model in Example 1, the discriminator

converges much faster than n−1/4.

Example 1 (continuing from p. 44). The binary choice model with logistic errors satisfies

a (p, C)-smooth hierarchical model with (p, C) = (8, 1) and d∗ = 3. We can substitute these

numbers (and q = p−1) into δn in Assumption 6 and obtain δn =
( (log n)13.75

n

)8/19 . n−2/5.

Example 2 (continuing from p. 45). The discretely sampled Brownian motion model satisfies

a (p, C)-smooth hierarchical model with d∗ = 1, C = 1, and arbitrarily large p. Therefore,

δn can be arbitrarily close to n−1/2, however large the sampling frequency is.

When there is no low-dimensional structure, Definition 2 simply reduces to the smooth-

ness of m and d∗ is equal to d. Therefore, the convergence rate in Theorem 11 reduces to

the traditionally proven rate that deteriorates quickly with d.

We note that the hierarchical structure is not the only way to proving the superior

adaptivity of a neural network discriminator. Similar results can possibly be deduced with

other smoothness assumptions and network configurations, such as Schmidt-Hieber (2020)

and Yarotsky (2017).

2.7.2 Frequentist’s Analysis on the Exponential Kernel

We thus study the concentration in terms of a KL neighborhood around Q(n)
θ∗ defined as

B(ε, Q
(n)
θ∗ ;P

(n)
0 ) = {Q(n)

θ∗ ∈ Q
(n) : K̃(θ∗, θ) ≤ nε2, Ṽ (θ∗, θ) ≤ nε2}, (2.23)
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where K̃(θ∗, θ) ≡ P
(n)
0 log

q
(n)
θ∗

q
(n)
θ

and Ṽ (θ∗, θ) ≡ P
(n)
0

∣∣∣∣∣log
q

(n)
θ∗

q
(n)
θ

− K̃(θ∗, θ)

∣∣∣∣∣
2

.

The following corollary is directly adopted from Theorem 5.1 of Kaji and Ročková (2022).

Corollary 12. Denote with Q̃(n)
θ a measure defined through dQ̃

(n)
θ = (p

(n)
0 /q

(n)
θ∗ )dP

(n)
θ and

let d(·, ·) be a semi-metric on P(n). Suppose that there exists a sequence εn > 0 satisfying

εn → 0 and nε2n →∞ such that for every ε > εn there exists a test φn (depending on ε) such

that for every J ∈ N0

P
(n)
0 φn . e−nε

2/4 and sup

Q
(n)
θ :d(Q

(n)
θ ,P

(n)
θ∗ )>Jε

Q̃
(n)
θ (1− φn) ≤ e−nJ

2ε2/4. (2.24)

Let B(ε, Q
(n)
θ∗ ;P

(n)
0 ) be as in (2.23) and let Π̃n(θ) be a prior distribution with a density

π̃(θ) ∝ Cθπ(θ) with Cθ as in (2.20). Assume that there exists a constant L > 0 such that,

for all n and j ∈ N,

Π̃n

(
θ ∈ Θ : jεn < d(Q

(n)
θ , P

(n)
θ∗ ) ≤ (j + 1)εn

)
Π̃n

(
B(εn, Q

(n)
θ∗ ;P

(n)
0 )

) ≤ enε
2
nj

2/8. (2.25)

Then for every sufficiently large constant M , as n→∞,

P
(n)
0 ΠEK

(
Q

(n)
θ : d(Q

(n)
θ , P

(n)
θ∗ ) ≥Mεn | X(n)

)
→ 0. (2.26)

Next, we want to show the shape of the posterior is actually asymptotically gaussian

around θ∗. The following corollary follows from Theorem 2.1 of Kleijn and van der Vaart

(2012) and Lemma 8.1 of Kaji and Ročková (2022).

Corollary 13. (Bernstein von-Mises) Assume that the posterior (2.20) concentrates around
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θ∗ at the rate ε∗n and that for every compact K ∈ Rd

sup
h∈K

∣∣∣∣∣∣log
q

(n)
θ∗+ε∗nh

(X)

q
(n)
θ∗ (X)

− h′Ṽθ∗ δ̃n,θ∗ −
1

2
h′Ṽθ∗h

∣∣∣∣∣∣→ 0 (2.27)

for some random vector δ̃n,θ∗ and a non-singular matrix Ṽθ∗. Then the approximated pos-

terior ΠEK(·) converges to a sequence of normal distributions in total variation at the rate

ε∗n, i.e.

sup
B

∣∣∣∣ΠEK (ε∗n−1(θ − θ∗
)
∈ B |X)−N

δ̃n,θ∗ ,Ṽ
−1
θ∗ (B)

∣∣∣∣→ 0 in P (n)
0 − probability. (2.28)

2.7.3 Proofs

2.7.3.1 Proof of Theorem 5

Denote Kn = Pn log p0
pθ
. Using Chebyshev’s inequality and Assumption 2 as

P
(n)
0 [|Kn −K(p0, pθ)| > u] = P

(n)
0

( ∣∣∣∣(Pn − P0) log
p0

pθ

∣∣∣∣ > u
)
≤ 1

u2
P

(n)
0

[ ∣∣∣∣(Pn − P0) log
p0

pθ

∣∣∣∣2 ]
=

1

u2
P

(n)
0

[ ∣∣∣∣Pn( log
p0

pθ
− P0 log

p0

pθ

)∣∣∣∣2 ] =
1

nu2
P0

[ ∣∣∣∣log
p0

pθ
− P0 log

p0

pθ

∣∣∣∣2 ]
≤ 16(2 + Λ)h(p0, pθ)

nu2
,

where the last inequality follows from Lemma 2.1 (iii) of Kaji and Ročková (2022). Next,

note

K̂(X, X̃θ)−Kn = −Pn
(

log
1− D̂θ

n,m

1−Dθ
− log

D̂θ
n,m

Dθ

)
.
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Recall the outer expectation P ∗ in Lemma 2 and the set of classifiers Dθ
n,δ defined in As-

sumption 1, we can bound

P

(∣∣∣∣∣Pn( log
1− D̂θ

n,m

1−Dθ
− log

D̂θ
n,m

Dθ

)∣∣∣∣∣ > u, dθ(D̂
θ
n,m, Dθ) ≤ Cnδn

)
≤ P ∗

(
sup

D∈DθCnδn

∣∣∣∣Pn( log
1−D
1−Dθ

− log
D

Dθ

)∣∣∣∣ > u
)

≤ 1

u
E∗ sup

D∈DθCnδn

∣∣∣∣Pn( log
1−D
1−Dθ

− log
D

Dθ

)∣∣∣∣
by Markov’s inequality. The proof of Theorem 4.1 of Kaji and Ročková (2022) shows that

the expectation is O(Cnδn). Using the triangle inequality and the Bonferroni inequality,

since h(p0, pθ) ≤ 2, we can then write

P

(∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > 2u, dθ(D̂

θ
n,m, D

θ) ≤ Cnδn

)
≤ P

(∣∣∣K̂(X, X̃θ)−Kn
∣∣∣+ |Kn −K(p0, pθ)| > 2u, dθ(D̂

θ
n,m, Dθ) ≤ Cnδn

)
≤ P

(∣∣∣K̂(X, X̃θ)−Kn
∣∣∣ > u, dθ(D̂

θ
n,m, Dθ) ≤ Cnδn

)
+ P

(n)
0 [|Kn −K(p0, pθ)| > u]

≤ O
(Cnδu

u

)
+

32(2 + Λ)

nu2
.

2.7.3.2 Proof of Theorem 7

Throughout, we continue to assume that X̃θ = gθ(X̃) and we denote with P = P
(n)
0 ⊗ P̃ (m)

the joint measure for (X, X̃). Below, we will be using the notation Π(·) to denote the generic

probability, i.e. for (θ, X̃) or for the conditional probability θ given X̃. Later, we will define

a high-probability event Ωn(C, εn) such that P (n)
0 [Ωn(C, εn)c] = o(1) for some C ∈ (0, 1).

Given δn > 0 from our assumptions, we can write for every λn > 0 and εn > 0 and for every
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arbitrarily slowly increasing sequence Cn > 0

P
(n)
0 Π

(
K(p0, pθ) > λn

∣∣∣K̂(X, X̃θ) ≤ εn

)
≤ Π1 + o(1)+

P
(n)
0 Π

(
K(p0, pθ) > λn

∣∣∣K̂(X, X̃θ) ≤ εn, d(D̂θ
n,m, Dθ) ≤ Cnδn

)
I[Ωn(C, εn)], (2.29)

where, using Lemma 2 and the fact that the rate δn is uniform (see Remark 4),

Π1 ≡ P
(n)
0 Π(d(D̂θ

n,m, Dθ) > Cnδn) ≤ sup
θ∈Θ

P (d(D̂θ
n,m, Dθ) > Cnδn) = o(1).

Consider the joint event, for some δ′ > 0,

Aεn(δ′) = {(X̃, θ) : K̂[X, gθ(X̃)] ≤ εn} ∩ {K(p0, pθ) > δ′}.

For every (X̃, θ) ∈ Aεn(δ′) we have

K(p0, pθ) ≤ K̂(X, gθ(X̃)) +
∣∣∣K̂(X, gθ(X̃))−K(p0, pθ)

∣∣∣ ≤ εn +
∣∣∣K̂(X, gθ(X̃))−K(p0, pθ)

∣∣∣ .
Hence (X̃, θ) ∈ Aεn(δ′) implies that

∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > δ′ − εn,

and choosing δ′ ≥ εn + tε leads to

Π[Aεn(δ′)] ≤
∫

Θ
P̃ (m)

[∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > tε

]
dΠ(θ).
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Using (2.29), we now focus on the conditional probability, given d(D̂θ
n,m, Dθ) ≤ Cnδn,

Π
(
K(p0, pθ) > εn + tε

∣∣∣K̂(X, X̃θ) ≤ εn, d(D̂θ
n,m, Dθ) ≤ Cnδn

)
≤

∫
Θ P̃ (m)

[∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > tε | d(D̂θ

n,m, Dθ) ≤ Cnδn

]
dΠ(θ)∫

Θ P̃ (m)
[
K̂(X, X̃θ) ≤ εn | d(D̂θ

n,m, Dθ) ≤ Cnδn

]
dΠ(θ)

. (2.30)

We now find a lower bound for the denominator. Recall the KL neighborhood B2(p0, εn)

defined in (2.13). Since

K̂(X, X̃θ) ≤ K(p0, pθ) +
∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ ≤ εn/2 +K(p0, pθ),

provided that
∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ ≤ εn/2. The denominator can be then bounded by

∫
Θ
P̃ (m)[K̂(X, X̃θ) ≤ εn | d(D̂θ

n,m, Dθ) ≤ Cnδn]dΠ(θ)

≥
∫
B2(p0,εn/2)

P̃ (m)
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ ≤ εn/2 | d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dΠ(θ)

≥ Π[B2(p0, εn/2)]−
∫
B2(p0,εn/2)

P̃ (m)
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ > εn/2 | d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dΠ(θ).

Denoting

Z(X) ≡
∫
B2(p0,εn/2)

P̃ (m)
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ > εn/2 | d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dΠ(θ)

we can write, for every C > 0, using Fubini’s theorem and Markov’s inequality

P
(n)
0 (Z(X) > C) ≤ 1

C

∫
B2(p0,εn/2)

P
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ > εn/2 | d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dΠ(θ)

=
Π(B2(p0, εn/2))

C

sup
θ∈Θ

P
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ > εn/2, d(D̂θ
n,m, Dθ) ≤ Cnδn

]
sup
θ∈Θ

P
[
d(D̂θ

n,m, Dθ) ≤ Cnδn
]

=
Π(B2(p0, εn/2))

C(1 + o(1))
sup
θ∈Θ

ρn,θ(εn/2;Cn; δn),
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where we have used Theorem 5 and the fact that P (d(D̂θ
n,m, Dθ) ≤ Cnδn) = 1 + o(1) for

every θ ∈ Θ from Lemma 2. We now define an event, for some 0 < C < 1 and εn > 0,

Ωn(C, εn) = {X : Z(X) ≤ C × Π(B2(p0, εn/2))} .

Using Theorem 5, we have

ρn,θ(εn/2;Cn; δn) = O
(Cnδn

εn
+

1

nε2n

)
for every θ ∈ Θ.

Choosing εn > 0 such that εn = o(1) and nε2n →∞ and Cnδn = o(εn) we have P (n)
0 [Ωn(C, εn)c] =

o(1) for every C ∈ (0, 1). On the event Ωn(C, εn), for some 0 < C < 1, we can lower-bound

the denominator with

∫
Θ
P̃ (m)[K̂(X, X̃θ) ≤ εn | d(D̂θ

n,m, Dθ) ≤ Cnδn]dΠ(θ) > (1− C)× Π(B2(p0, εn/2).

Using this bound and applying Fubini’s theorem, we can further write

P
(n)
0 Π

(
K(p0, pθ) > εn + tε | K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
)
I[Ωn(C, εn)]

≤

∫
Θ P

[∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > tε | d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dΠ(θ)

(1− C)×Π(B2(p0, εn/2)
(2.31)

Using Theorem 5 again, we obtain an upper bound for the display above with

ρn(tε;Cn; δn)

(1− C)× Π(B2(p0, εn/2)(1 + o(1))
.

Using the prior Assumption 3, we can choose tε such that

(Cnδn
tε

+
1

nt2ε

)
/εκn = 1/Mn
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for some arbitrarily slowly increasing sequence Mn > 0. We choose tε = MnCnδn/ε
κ
n +

√
Mnn

−1/2/ε
κ/2
n . Since δn & n−1/2 and ε−κn ≥ ε

−κ/2
n , the overall rate is then driven by

εn + tε = εn + M̃nδnε
−κ
n , where M̃n = MnCn.

2.7.3.3 Proof of Theorem 9

Recall from Theorem 7 that with the accept-reject strategy, the true KL divergenceK(p0, pθ)

is contracting at the rate λn = εn + M̃nδnε
−κ
n , where M̃n is a slowly increasing sequence

that diverges faster than Cn. Consider the case when εn � M̃nδnε
−κ
n or, equivalently,

εn � δ
1/(κ+1)
n . Denote

x(θ) = ε−1
n K(p0, pθ) and fn(θ − θ0) = f

(
ε
−1/2
n (θ − θ0)

)
.

We express the ABC posterior expectation of fn(θ− θ0) for a non-negative and bounded

function fn(·) by

P
(n)
0 E

Π̂ARεn

[
fn(θ − θ0)

]
= P

(n)
0

∫
fn(θ − θ0)dΠ̂ARεn (θ |X)

= P
(n)
0

∫
fn(θ − θ0)I[K(p0, pθ) ≤ λn, d(D̂θ

n,m, Dθ) ≤ Cnδn)]dΠ̂ARεn (θ |X)︸ ︷︷ ︸
(I)

+ P
(n)
0

∫
fn(θ − θ0)I[K(p0, pθ) ≤ λn, d(D̂θ

n,m, Dθ) > Cnδn)]dΠ̂ARεn (θ |X)︸ ︷︷ ︸
(II)

+ P
(n)
0

∫
fn(θ − θ0)I[K(p0, pθ) > λn]dΠ̂ARεn (θ |X)︸ ︷︷ ︸

(III)

where the term (III) can be controlled using Fubini’s theorem and the concentration result
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in Theorem 7 as follows

(III) =

∫
fn(θ − θ0)P

(n)
0 I[K(p0, pθ) > λn]dΠ̂ARεn (θ |X)

≤ ‖f‖∞ P
(n)
0 Π

(
K(p0, pθ) > λn | K̂(X, X̃θ) ≤ εn

)
= o(1).

The second term (II) can be bounded similarly as

(II) = P
(n)
0

∫
K(p0,pθ)≤λn

fn(θ − θ0)I[d(D̂θ
n,m, Dθ) > Cnδn)]dΠ̂ARεn (θ |X)

≤ ‖f‖∞
∫
K(p0,pθ)≤λn

P (d(D̂θ
n,m, Dθ) > Cnδn)dΠ(θ)

≤ ‖f‖∞ sup
θ∈Θ

P (d(D̂θ
n,m, Dθ) > Cnδn) = o(1)

where we use the fact that supθ∈Θ P (d(D̂θ
n,m, Dθ) > Cnδn) = o(1) from Lemma 2.

Thus, the asymptotic behavior is mainly determined by the term (I). Combined with the

continuity of π(θ) at θ0 we can re-write (I) as

(I) = P
(n)
0

∫
K(p0,pθ)≤λn π(θ)fn(θ − θ0)P̃ (m)

[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ∫

K(p0,pθ)≤λn π(θ)P̃ (m)
[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ

= P
(n)
0

∫
K(p0,pθ)≤λn fn(θ − θ0)P̃ (m)

[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ∫

K(p0,pθ)≤λn P̃
(m)
[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ

(1 + o(1))

We have x(θ) ≥ 0 for all θ ∈ Θ and since

K̂(X, X̃θ) = K̂(X, X̃θ)−K(p0, pθ) + εnx(θ),
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we can write

P̃ (m)[K̂(X, X̃θ) ≤ εn, d(D̂θ
n,m, Dθ) ≤ Cnδn

]
≥ P̃ (m)

[∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ ≤ εn(1− x(θ)), d(D̂θ

n,m, Dθ) ≤ Cnδn

]
= 1− P̃ (m)

[∣∣∣K̂(X, X̃θ)−K(p0, pθ)
∣∣∣ > εn(1− x(θ)), d(D̂θ

n,m, Dθ) ≤ Cnδn

]
. (2.32)

Denoting with

Z̃(X) =

∫
x(θ)≤1−MnCnδn

εn

P̃ (m)
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ > εn
(
1− x(θ)

)
, d(D̂θ

n,m, Dθ) ≤ Cnδn
]

dθ.

Using Markov’s inequality and Fubini’s theorem we have, for every C̃ > 0,

P
(n)
0 (Z̃(X) > C̃)

≤ 1

C̃

∫
x(θ)≤1−MnCnδn

εn

P
[∣∣∣K̂(X, X̃θ)−K(p0, pθ)

∣∣∣ > εn
(
1− x(θ)

)
, d(D̂θ

n,m, Dθ) ≤ Cnδn
]

dθ

≤ 1

C̃

∫
x(θ)≤1−MnCnδn

εn

ρn
(
εn(1− x(θ));Cn; δn

)
dθ

≤ 1

C̃
×
∫
x(θ)≤1−MnCnδn

εn

dθ × sup
x(θ)≤1−MnCnδn

εn

ρn
(
εn(1− x(θ));Cn; δn

)
≤

∫
x(θ)≤1−MnCnδn

εn

dθ

C̃
× ρn(MnCnδn;Cn; δn)

=

∫
x(θ)≤1−MnCnδn

εn

dθ

C̃
×O

(
1

Mn
+

1

nM2
nC

2
nδ

2
n

)
.

where ρn(·;Cn; δn) is defined in Theorem 5. Thus, we can define a set Ω̃n(C̃n), for some for

some arbitrarily slowly increasing sequence C̃n > 0, and C̃n = O(1/Mn), as

Ω̃n(C̃n) =

{
X : Z̃(X) ≤ C̃n ×

∫
x(θ)≤1−MnCnδnεn

dθ

}
.

Then we have that P (n)
0 (Ω̃n(C̃n)c) = o(1). Recall the inequality in (2.32), on Ω̃n(C̃n), we
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have that

∫
x(θ)≤1−MnCnδnεn

P̃ (m)[K̂(X, X̃θ) ≤ εn, d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dθ

≥
∫
x(θ)≤1−MnCnδnεn

dθ − Z̃(X) =

∫
x(θ)≤1−MnCnδnεn

dθ × (1− o(1))

And this quantity is upper-bounded by
∫
x(θ)≤1−MnCnδnεn

dθ. Therefore, we can conclude that

∫
x(θ)≤1−MnCnδn

εn

P̃ (m)
[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ =

∫
x(θ)≤1−MnCnδn

εn

dθ
(
1 + o(1)

)
.

Note that x(θ) ≤ 1 −MnCnδn/εn implies that K(p0, pθ) ≤ εn −MnCnδn. On this set

Ω̃n(C̃n), we can further lower bound the denominator as

∫
K(p0,pθ)≤λn

P̃ (m)[K̂(X, X̃θ) ≤ εn, d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dθ

=

∫
K(p0,pθ)≤εn−MnCnδn

dθ︸ ︷︷ ︸
D1

(1 + o(1))

+

∫
εn−MnCnδn<K(p0,pθ)≤λn

P̃ (m)[K̂(X, X̃θ) ≤ εn, d(D̂θ
n,m, Dθ) ≤ Cnδn

]
dθ︸ ︷︷ ︸

D2

.

Next, we show that the second term D2 is o(D1). Let u = ε
−1/2
n (θ − θ0). Under

Assumption 5, we haveK(p0, pθ) = 1
2(θ−θ0)′I(θ0)(θ−θ0){1+o(1)}, which is x(θ0+

√
εnu) =

1
2u
′I(θ0)u. Since I(θ0) is positive definite we can write

D2

D1
≤

∫
1−MnCnδn/εn<x(θ)≤1+M̃nδn/ε

κ+1
n

dθ∫
x(θ)≤1−MnCnδn/εn

dθ
(2.33)

≤

∫
2(1−MnCnδn/εn)≤u′I(θ0)u≤2(1+M̃nδn/ε

κ+1
n )

dθ∫
u′I(θ0)u≤2(1−MnCnδn/εn) dθ

.
MnCnδn

εn
+
M̃nδn

εκ+1
n

= o(1). (2.34)
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where the approximation follows from the fact that εn � δ
1/(κ+1)
n and because the denomina-

tor is approximating the integral
∫
u′I(θ0)u≤2 dθ and the numerator is the length of shrinking

intervals. Combining the above results, we find that, on the set Ω̃n(C̃n), the denominator

can be lower-bounded by
∫
x(θ)≤1−MnCnδnεn

dθ{1 + o(1)}.

This implies

(I) =

∫
K(p0,pθ)≤λn fn(θ − θ0)P

[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ

(1 + o(1))
∫
x(θ)≤1−MnCnδnεn

dθ
(1 + o(1)) + o(1)

= (N1 +N2){1 + o(1)}+ o(1). (2.35)

with

N1 ≡

∫
x(θ)≤1−MnCnδnεn

f
(
ε
−1/2
n (θ − θ0)

)
dθ

∫
x(θ)≤1−MnCnδnεn

dθ
(2.36)

and

N2 ≡

∫
K(p0,pθ)≤λn

I
[
x(θ) > 1− MnCnδn

εn

]
f
(
ε
−1/2
n (θ − θ0)

)
P
[
K̂(X, X̃θ) ≤ εn, d(D̂θ

n,m, Dθ) ≤ Cnδn
]
dθ∫

x(θ)≤1−MnCnδnεn

dθ
,

(2.37)

where the second equality follows from the fact that x(θ) ≤ 1−MnCnδn
εn

leads to K(p0, pθ) ≤

εn −MnCnδn and then K(p0, pθ) ≤ λn is trivially satisfied and where the last o(1) comes

from the set Ω̃n(C̃n)c.

Since we have εn � δn, with u = ε
−1/2
n (θ − θ0), the first term is approximately equal to

N1 =

∫
K(p0,pθ0+

√
εnu)≤εn f(u)du∫

K(p0,pθ0+
√
εnu)≤εn du

(1 + o(1)) .
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Using Assumption 5 again, we have

∫
K(p0,pθ0+

√
εnu)≤εn

du =

∫
1
2
√
εnu′I(θ)

√
εnu≤εn

du+ o(1) =

∫
u′I(θ0)u≤2

du+ o(1).

This leads to

N1 =

∫
u′I(θ0)u≤2 f(u)du∫
u′I(θ0)u≤2 du

(1 + o(1)) .

Next, we show that the fraction N2 converges to 0. The numerator can be simplified as an

integral over 1− MnCnδn
εn

< x(θ) ≤ 1 + M̃nδn
εκ+1
n

, which can be bounded by (2.33) as

N2 ≤

‖f‖∞
∫

1−MnCnδnεn
<x(θ)≤1+M̃nδn

εκ+1
n

dθ∫
x(θ)≤1−MnCnδnεn

dθ

≤ ‖f‖∞
D2

D1
= o(1).

Since we have εκ+1
n � δn, putting all the terms together, we obtain that the P (n)

0 -

averaged ABC posterior distribution of ε−1/2
n (θ − θ0) is asymptotically uniform over the

ellipsoid {u : u′I(θ0)u ≤ 2}.
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CHAPTER 3

ADVERSARIAL BAYESIAN SIMULATION

In the absence of explicit or tractable likelihoods, Bayesians often resort to approximate

Bayesian computation (ABC) for inference. Our work bridges ABC with deep neural

implicit samplers based on generative adversarial networks (GANs) and adversarial

variational Bayes. Both ABC and GANs compare aspects of observed and fake data to

simulate from posteriors and likelihoods, respectively. We develop a Bayesian GAN (B-

GAN) sampler that directly targets the posterior by solving an adversarial optimization

problem. B-GAN is driven by a deterministic mapping learned on the ABC reference

by conditional GANs. Once the mapping has been trained, iid posterior samples are ob-

tained by filtering noise at a negligible additional cost. We propose two post-processing

local refinements using (1) data-driven proposals with importance reweighing, and (2)

variational Bayes. We support our findings with frequentist-Bayesian results, showing

that the typical total variation distance between the true and approximate posteriors

converges to zero for certain neural network generators and discriminators. Our find-

ings on simulated data show highly competitive performance relative to some of the

most recent likelihood-free posterior simulators.

3.1 ABC and Beyond

For a practitioner, much of the value of the Bayesian inferential approach hinges on the ability

to compute the entire posterior distribution. Very often, it is easier to infer data-generating

probability distributions through simulator models rather than likelihood functions. How-

ever, Bayesian computation with simulator models can be particularly grueling.

. Adopted from Yuexi Wang and Veronika Ročková. Adversarial bayesian simulation. arXiv preprint
arXiv:2208.12113, 2022.
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We assume that θ ∈ Θ ⊂ Rd is a parameter controlling a simulator-based model that

gives rise to a data vector X(n)
θ = (X1, . . . , Xn)′ ∼ P

(n)
θ which is not necessarily iid. The

model may be provided by a probabilistic program that can be easily simulated but its

implicit likelihood p(n)
θ = π(X(n) |θ) cannot be evaluated. For an unknown inferential target

θ0 ∈ Θ, our goal is to approximate the post-data inferential density (i.e. the posterior)

π(θ |X(n)
0 ) ∝ p

(n)
θ (X

(n)
0 )π(θ), (3.1)

where X(n)
0 denotes the observed data. We allow for the possibility that both the likelihood

p
(n)
θ (·) and/or the prior π(θ) are analytically intractable but easy to draw from.

Without the obligation to build a model, Approximate Bayesian Computation (ABC)

(Beaumont et al., 2002; Sisson et al., 2018) provides an approximation to the posterior (3.1)

by matching aspects of observed and fake data. This is accomplished via forward simulation

of the so-called ABC reference table {(θj , X
(n)
j )}Tj=1 where θj ’s have been sampled from the

prior π(θ) and fake data X(n)
j ’s have been sampled from the likelihood p(n)

θj
(·). In order to

keep only plausible parameter draws, this table is then filtered through an Accept/Reject

mechanism to weed out parameter values θj for which the summary statistics of the fake

and observed data were too far. Our work, albeit not being an ABC method per-se, builds

off of recent ABC and simulation-based Bayesian inference innovations described below.

ABC Regression adjustment (Beaumont et al., 2002; Beaumont, 2003; Blum and François,

2010) is a post-processing step that re-weights and re-adjusts the location of θj ’s gathered

by rejection ABC by fitting a (weighted) regression model of θj ’s onto summary statistics

sj = s(X
(n)
j ). Such a model can be regarded as provisional density estimator of π(θ |X(n))

derived from s(X(n)) under certain regression distributional assumptions. More flexible

conditional density estimators, such as neural mixture density networks (Papamakarios and

Murray, 2016; Lueckmann et al., 2017), have been successfully integrated into ABC without

the burden of choosing summary statistics. Our approach is related to these developments.
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However, we do not attempt to learn a flexible parametric approximation to the posterior

(or the likelihood (Lueckmann et al., 2019; Papamakarios et al., 2019)).Instead, we find an

implicit neural sampler from an approximation to π(θ | X(n)) by training Generative Ad-

versarial Networks (Goodfellow et al., 2016) on the ABC reference table. GANs have been

originally conceived to simulate from complex likelihoods by contrasting observed and fake

data. ABC, on the other hand, contrasts observed and fake data to simulate from com-

plex posteriors. Bringing together these two approaches, we propose the B-GAN posterior

sampler, an incarnation of conditional GANs (Gauthier, 2014; Mirza and Osindero, 2014;

Athey et al., 2021; Zhou et al., 2022) for likelihood-free Bayesian simulation. By contrasting

the ABC reference table with a fake dataset under the same marginal distribution π(X(n)),

B-GAN learns to simulate from an approximation to the conditional distribution π(θ |X(n)).

Similarly as (Papamakarios and Murray, 2016) and (Lueckmann et al., 2017), our method is

also global in the sense that it learns π(θ |X(n)) for any X(n), not necessarily X(n)
0 . More

perfected posterior reconstructions can be obtained with post-processing steps that zoom in

onto the posterior distribution evaluated at X(n)
0 . We consider two such refinements based

on: (1) reinforcement learning with importance sampling, and (2) adversarial variational

Bayes. We describe each approach below.

Simple rejection ABC may require exceedingly many trials to obtain only a few ac-

cepted samples when the posterior π(θ |X(n)
0 ) is much narrower than the prior π(θ) (see e.g.

Marjoram et al. (2003); Sisson et al. (2007); Beaumont et al. (2009)). This has motivated

query-efficient ABC techniques which intelligently decide where to propose next (see Jarven-

paa et al. (2020); Hennig and Schuler (2012) for decision-theoretic reasoning or Järvenpää

et al. (2019) and Gutmann and Corander (2016) for implementations based on Bayesian op-

timization and surrogate models). Alternatively, Lueckmann et al. (2017) learn a Bayesian

mixture density network approximating the posterior over multiple rounds of adaptively cho-

sen simulations and use more flexible proposal distributions (not necessarily the prior) with a
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built-in importance-reweighting scheme. A similar strategy was used in Papamakarios et al.

(2019) who used a pilot run of mixture density networks to learn the proposal distribution

for the next round. Although X
(n)
0 is not used in B-GAN training, it can be used in the

proposal inside the ABC reference table. Similarly as in Papamakarios et al. (2019), we use

X
(n)
0 to construct a flexible proposal (i.e. an empirical Bayes prior) and convert the draws

to posterior samples under the original prior by importance reweighing. This ’reinforcement

learning’ refinement substantially improves the reconstruction accuracy and can be justified

by theory.

Our vanilla B-GAN sampler uses contrastive learning (Gutmann et al., 2018; Durkan

et al., 2020) to estimate the conditional distribution π(θ |X(n)) for any X(n). Since X(n)
0 is

used only at the evaluation stage (not the training stage), we can custom-make the sampler

to X
(n)
0 by using the B-GAN output (or the output after reinforcement learning) as an

initialization for implicit variational Bayes optimization (Tran et al., 2017; Huszár, 2017).

Implicit variational Bayes attempts to approximate the posterior using densities which are

defined implicitly by a push-forward mapping. B-GAN also trains such a mapping but the

generator will have never seen observed data. At later stages of B-GAN training, we can

thereby modify the objective function for the generator so that it minimizes a lower bound

to the marginal likelihood. Since the likelihood cannot be evaluated, we use contrastive

learning inside the variational objective to compute the lower bound (Huszár, 2017; Tran

et al., 2017). We consider the joint-contrastive form (Huszár, 2017; Durkan et al., 2020),

where the classifier is still trained to learn the joint likelihood ratio using the ABC reference

table (similarly as in B-GAN). However, the generator is now trained on X(n)
0 by maximizing

the evidence lower bound. This algorithm is related to the B-GAN simulator, but uses X(n)
0

during the training stage.

Contrastive learning has been used inside Bayesian likelihood-free sampling algorithms

before (see e.g. Wang et al. (2022a); Gutmann et al. (2018); Kaji and Ročková (2022)).

63



Both Wang et al. (2022a) and Kaji and Ročková (2022) assume iid data with a large enough

sample size n to be able to apply classification algorithms for each iteration of Metropolis

Hastings and ABC, respectively. Our approach does not require iid data and works even

with n = 1. We also do not require to run classification at each posterior simulation step.

We show highly competitive performance of our methods (relative to state-of-the art

likelihood-free Bayesian methods) on several simulated examples. While conceptually related

methodology has occurred before (Papamakarios and Murray, 2016; Lueckmann et al., 2017;

Ramesh et al., 2022), theory supporting these likelihood-free Bayesian approaches has been

lacking. We provide new frequentist-Bayesian theoretical results for the typical variational

distance between the true and approximated posteriors. We analyze Wasserstein versions of

both the B-GAN algorithm as well as adversarial variational Bayes. With properly tuned

neural networks, we show that this distance goes to zero as n→∞ with large enough ABC

reference tables.

The outline of our paper is as follows. Section 3.2 reviews conditional GANs and in-

troduces the Bayesian GAN sampler together with the reinforcement adjustments. In Sec-

tion 3.3, we describe another local enhancement strategy inspired by implicit variational

Bayes. In Section 3.4, we investigate the theoretical guarantees of the B-GAN posteriors.

The performance of our methods is illustrated on simulated datasets in Section 3.5. In

Section 5.6, we conclude with a discussion.

3.2 Adversarial Bayes

Generative Adversarial Networks (GANs) (Goodfellow et al., 2016) are a game-theoretic

construct in artificial intelligence designed to simulate from likelihoods over complex objects.

GANs involve two machines playing a game against one another. AGenerator aims to deceive

a Discriminator by simulating fake samples that resemble observed data while, at the same

time, the Discriminator learns to tell the fake and real data apart. This process iterates
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until the generated data are indistinguishable by the Discriminator and can be regarded as

genuine likelihood samples. Below, we review several recent GAN innovations and propose

an incarnation for simulation from a posterior as opposed to a likelihood.

3.2.1 Vanilla GANs

In its simplest form, GANs learn how to implicitly simulate from the likelihood p
(n)
θ0

(·)

using only its realizations X(n)
0 ∈ X where X

(n)
0 ∼ p

(n)
θ0

when θ0 is unknown. Recall

that draws from implicit distributions can be obtained by passing a random noise vector

Z ∈ Z ⊆ Rd through a non-stochastic push-forward mapping gβ(·) : Z → X . The original

GANs formulation (Goodfellow et al., 2016) involves a Generator, specified by the mapping

gβ(·), that attempts to generate samples similar to X(n)
0 by filtering Z, i.e.

X(n) = (X1, . . . , Xn)′ where Xi = gβ(Zi) with Zi
iid∼ πZ(Z) so that X(n) ∼ p

(n)
θ .

The generative coefficients β are iteratively updated depending on the feedback received

from the Discriminator. The Discriminator, specified by a mapping d(·) : X → (0, 1), gauges

similarity between X(n) and X(n)
0 with a discrepancy between their (empirical) distributions.

Hereafter we use X to denote a generic dataset as X ∈ X for simplicity of notation. At a

population level, a standard way of comparing two distributions, say P (n)
θ0

and P (n)
θ , is with

the symmetrical Jensen-Shannon divergence1 which can be equivalently written as a solution

to a particular optimization problem

JS(P
(n)
θ , P

(n)
θ0

) = ln 2 + 0.5× sup
d:X→(0,1)

{
E
X∼P (n)

θ

ln
[
d(X)

]
+ E

X∼P (n)
θ0

ln
[
1− d(X)

]}
.

(3.2)

1. defined as JS(P
(n)
θ , P

(n)
θ0

) = KL(P
(n)
θ | (P (n)

θ + P
(n)
θ0

)/2) + KL(P
(n)
θ0
| (P (n)

θ + P
(n)
θ0

)/2)
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The optimal Discriminator d∗(·), solving the optimization (3.2), appears to be d∗(X) =

p
(n)
θ (X)/

[
p

(n)
θ (X)+p

(n)
θ0

(X)
]
(Goodfellow et al., 2014, Proposition 1). The optimal Generator

is then defined through the optimal value β∗ which leaves the Discriminator maximally

confused, i.e. d∗(X) = 1/2 and therefore p(n)
θ0

(X) = p
(n)
θ (X) uniformly over X .

Despite the nice connection to likelihood ratios, original GANs (Goodfellow et al., 2014)

may suffer from training difficulties when the discriminator becomes too proficient early

on (Gulrajani et al., 2017; Arjovsky and Bottou, 2017). Alternative divergences have been

implemented inside GANs that are less prone to these issues. For example, the Wasserstein

distance (Arjovsky and Bottou, 2017) also admits a dual representation

dW

(
P

(n)
θ , P

(n)
θ0

)
= sup
f∈FW

∣∣∣∣∣EX∼P (n)
θ

f(X)− E
X∼P (n)

θ0

f(X)

∣∣∣∣∣ (3.3)

where FW = {f : ‖f‖L ≤ 1} are functions with a Lipschitz semi-norm ‖f‖L at most

one. The function f(·) is often referred to as the Critic. In our implementations, we will

concentrate on the Wasserstein version of GANs (Arjovsky et al., 2017).

3.2.2 Conditional GANs

While originally intended for simulating from likelihoods underlying observed data, GANs

can be extended to simulating from distributions conditional on observed data. Certain

aspects of conditional GANs (cGANs) have been investigated earlier (Gauthier, 2014; Mirza

and Osindero, 2014) in various contexts including causal inference (Athey et al., 2021) or

non-parametric regression (Zhou et al., 2022). Our work situates conditional GANs firmly

within the context of ABC and likelihood-free posterior simulation. Before we describe

our development in Section 3.2.3, we first introduce the terminology of cGANs within a

Bayesian context. We will intentionally denote with X the conditioning variables and focus

on the conditional distribution π(θ | X) for the inferential parameter θ ∈ Θ with a prior
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π(θ). Similarly as with vanilla GANs in Section 3.2.1, cGANs again involve two adversaries

represented by two mappings.

Definition 14. (Generator) We define a deterministic generative model as a mapping g :

(Z × X )→ Θ that filters noise random variables Z ∈ Z to obtain samples from an implicit

conditional density πg(θ | X). This conditional model then defines an implicit joint model

πg(X, θ) = πg(θ |X)π(X), where π(X) =
∫
X p

(n)
θ (X)π(θ)dθ is the marginal likelihood.

Definition 15. (Discriminator) We define a deterministic discriminative model as a map-

ping d : (X × Θ) → (0, 1) which predicts whether the data pair (X, θ) came from π(X, θ)

(label 1) or from πg(X, θ) (label 0).

The main distinguishing feature, compared to vanilla GANs, is that the conditioning

random vector X enters both mappings. The task is to flexibly parametrize gβ(·), e.g. using

neural networks as will be seen later, in order to approximate the joint density model π(X, θ)

as closely as possible. Ideally, we would like to recover an (oracle) function g∗ : Z ×X → Θ

such that the conditional distribution of g∗(Z,X) given X is the same as π(θ | X). The

existence of such an oracle g∗ is encouraged by the noise-outsourcing lemma from probability

theory (Kallenberg, 2002; Zhou et al., 2022) which we reiterate below using Gaussian Z.

Lemma 16. (Zhou et al., 2022, Lemma 2.1) Let (X, θ) be a random pair taking values in

X × Θ with a joint distribution π(X, θ). Then, for any given d ≥ 1, there exists a random

vector Z ∼ πZ = N(0, Id) and a Borel-measurable function g∗ : Rd ×X → Θ such that Z is

independent of X and (X, θ) = (X, g∗(Z,X)) almost surely.

The premise of conditional GANs rests in the fact that matching two joint distributions,

while fixing a marginal distribution, is equivalent to matching conditional distributions. This

implies that g∗(Z,X), given X, is indeed distributed according to π(θ | X). The question

remains how to find the oracle mapping g∗ in practice. Using the Jensen-Shannon divergence
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(3.2) for comparing the joint distributions π(X, θ) and πg(X, θ), the oracle mapping g∗

emerges at the equilibrium of a minimax game.

Lemma 17. Consider a minimax game (g∗, d∗) = arg min
g∈G

max
d∈D

D(g, d) prescribed by

D(g, d) = E(X,θ)∼π(X,θ) log d(X, θ) + EX∼π(X),Z∼πZ log[1− d(X, g(Z,X)]. (3.4)

Assume that G and D are universal approximators capable of representing any function g :

(Z × X ) → Θ and d : (X × Θ) → (0, 1), respectively. Then, uniformly on X and Θ, the

solution (g∗, d∗) satisfies

πg∗(θ |X) =
π(X, θ)

π(X)
= π(θ |X) and d∗g(X, θ) =

π(X, θ)

π(X, θ) + πg(X, θ)
for any g ∈ G.

Proof. The expression for d∗g(X, θ) is an immediate consequence of Proposition 1 in Good-

fellow et al. (2016). Plugging-in this expression into (3.4), we find that

g∗ = arg min
g∈G

(
E(X,θ)∼π(X,θ) log d∗g(X, θ) + EX∼π(X),z∼πZ log[1− d∗g(X, g(Z,X))]

)
,

According to Theorem 1 of Goodfellow et al. (2016), the minimum is achieved if and only

if πg∗(X, θ) = π(X, θ) = π(θ |X)π(X). The fact that π(X, θ) and πg∗(X, θ) have the same

marginal π(X) implies the expression for πg∗(θ |X).

While the Jensen-Shannon (JS) variant of the cGAN game in Lemma 17 is conceptually

compelling and can be supported by theory (Zhou et al., 2022), implementation difficulties

may arise (such as convergence failure or mode collapse (Arjovsky and Bottou, 2017)). We

thereby focus on the Wasserstein variant of the game from Lemma 17

(g∗, f∗) = arg min
g∈G

max
f∈F

∣∣∣EX∼π(X),Z∼πZf(X, g(Z,X))− E(θ,X)∼π(X,θ)f(X, θ)
∣∣∣ , (3.5)
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where, using F = FW , g∗ minimizes the Wasserstein distance between πg(X, θ) and π(X, θ).

3.2.3 Bayesian GANs

We now submerge the conditional GAN framework within the context of Bayesian simulation.

To implement the adversarial game (3.5) in practice, one needs to (a) parametrize F and

G (for instance using neural networks) and (b) to replace the expectations in (3.5) with

empirical counterparts. Both of these steps will introduce approximation error. We provide

theoretical insights later in Section 3.4.

We assume that the generator class G = {gβ : (Z × X ) → Θ where β ∈ RG} is

parametrized with β and the critic class F = {fω : (X × Θ) → R where ω ∈ RC} is

parametrized with ω. We consider neural networks (with ReLU activations) in our imple-

mentations and support this choice with theory (Corollary 23).

For the empirical version, one can use the ABC reference table which consists of simu-

lated data pairs {(θj , X
(n)
j )}Tj=1 generated from the joint model π(X(n), θ) = p

(n)
θ (X(n))π(θ)

under the prior π(θ). We can think of each draw X
(n)
j = (X

j
1 , . . . , X

j
n)′ ∼ p

(n)
θ as either a

stacked collection of n iid vectors Xj
i (of dimension q) sampled from a product likelihood∏n

i=1 pθ(X
j
i ) or a single observation from a general likelihood p(n)

θ (·) which may not neces-

sarily assume independence (e.g. one time series observation vector). From now on, we will

simply denote X(n)
j with Xj , similarly for X(n)

0 and X(n).

We can break the relationship between θ and X in the ABC reference table by contrasting

these data pairs with another dataset consisting of {(g(Zj , Xj), Xj)}Tj=1 where Zj ’s have

been sampled from πZ(·). Keeping the same Xj ’s essentially means that we are keeping

the same marginal. The dataset {(g(Zj , Xj), Xj)}Tj=1 encapsulates iid draws from πg(X, θ).

These two datasets can be then used to approximate the expectations in (3.4) and (3.5).

A high-level description of an algorithm for solving the Jensen-Shannon (JS) version of the

game from Lemma 17 is outlined in Algorithm 2 of Wang and Ročková (2022, Appendix
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Algorithm 3: B-GAN for Bayesian Simulation (Wasserstein Version).
Input

Prior π(θ), observed data X0 and noise distribution πZ(·)
Training

Initialize network parameters ω(0) = 0 and β(0) = 0
Reference Table

For j = 1, . . . , T : Generate (Xj , θj) where θj ∼ π(θ) and Xj ∼ P (n)
θj

.
Wasserstein GAN

For t = 1, . . . , N :
Critic Update (Ncritic steps): For k = 1, . . . , Ncritic

Generate Zj ∼ πZ(z) for j = 1, . . . , T .
Generate εj

iid∼ U [0, 1] and set θ̄j = εjθj + (1− εj)gβ(t−1)(Zj , Xj) for j = 1, . . . , T .
Update ω(t) by applying stochastic gradient descent on (3.6) with the penalty (3.7).

Generator Update (single step)
Generate noise Zj ∼ πZ(z) for j = 1, . . . , N .
Update β(t) by applying stochastic gradient descent on (3.6).

Posterior Simulation:
For i = 1, . . . ,M : Simulate Zi ∼ πZ(z) and set θ̃i = gβ(N)(Zi, X0).

C) 2. As mentioned earlier, the JS version may suffer from training issues (Arjovsky and

Bottou, 2017). We provide an illustration of such issues using convergence diagnostics on a

toy example in Wang and Ročková (2022, Appendix C). In our implementations, we thereby

consider the empirical version of (3.5) which again involves simulated datasets {(θj , Xj)}Tj=1

and {Zj}Tj=1
iid∼ πZ(·) to obtain

β̂T = arg min
β:gβ∈G

 max
ω:fω∈FW

∣∣∣∣∣∣
T∑
j=1

fω
(
Xj , gβ(Zj , Xj)

)
−

T∑
j=1

fω(Xj , θj)

∣∣∣∣∣∣
 . (3.6)

One particular way of solving this problem is summarized in Algorithm 3. In terms of

the constraint on ω to ensure the Lipschitz condition ‖fω‖L ≤ 1, the original Wasserstein

GANs implementation (Arjovsky and Bottou, 2017) used gradient clipping, which may lead

to computational issues. Alternatively, Gulrajani et al. (2017) imposed a soft version of the

2. During the course of this work, we found out that this algorithm was proposed in a simultaneous and
independent work (Ramesh et al., 2022).
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constraint with a penalty3 on the gradient of fω with respect to a convex combination4

of the two contrasting datasets. Similarly as Athey et al. (2021), we adopt the one-sided

penalty only with respect to θj

λ
{ 1

T

T∑
j=1

[
max

(
0,
∥∥∇θ̄fω(Xj , θ̄j)

∥∥
2 − 1

)]2}
(3.7)

where θ̄j = εjθj +(1− εj)g(Zj , Xj) with the εj re-drawn from a uniform distribution at each

step. The choice of λ is discussed in Wang and Ročková (2022, Appendix D). To stabilize

gradients, the critic is updated multiple times (ideally until convergence) before each update

of the generator, which is different from the JS version where such a stabilization may not

be feasible (Arjovsky et al., 2017)

Our Bayesian GAN framework for posterior simulation (i.e. Algorithm 3 further referred

to as B-GAN) consists of a neural sampler gβ̂T (Z,X) which generates samples from an

approximate posterior, i.e. conditioning on the observed data X0, by filtering iid noise as

follows

θ̃j = gβ̂T (Zj , X0) where Zj
iid∼ πZ(·) for j = 1, . . . ,M. (3.8)

When gβ̂T is close to g∗, the samples θ̃j will arrive approximately from π(θ |X0). One of the

practical appeals of this sampling procedure is that, once the generator has been trained,

the simulation cost is negligible. Note that our observed data X0 ∼ p
(n)
θ0

(X) are not involved

in the training stage, only in the simulation stage (3.8). We illustrate Algorithm 3 on a toy

example. The configurations of our B-GAN networks and optimization hyperparameters are

described in Wang and Ročková (2022, Appendix D.1).

Example 1 (Toy Example). This toy example (analyzed earlier in (Papamakarios et al.,

3. They adopt the two-sided penalty encouraging the norm of the gradient to go towards 1 instead of just
staying below 1 (one-sided penalty).

4. This is inspired by the fact that the optimal critic function contains straight lines with gradient norm
1 connecting coupled points from the contrasted distributions (Gulrajani et al., 2017, Proposition1).
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Figure 3.1: Approximated posteriors given by B-GAN, SNL, SS, and W2 for the toy
example. The results for θ4 are similar to θ3 and thus not shown here.

2019)) exposes the fragility of ABC methods in a relatively simple setting. The exper-

iment entails n = 4 two-dimensional Gaussian observations X = (x1, x2, x3, x4)′ with

xj ∼ N (µθ,Σθ) parametrized by θ = (θ1, θ2, θ3, θ4, θ5)′, where

µθ = (θ1, θ2)′ and Σθ =

 s2
1 ρs1s2

ρs1s2 s2
2


with s1 = θ2

3, s2 = θ2
4 and ρ = tanh(θ5). The parameters θ are endowed with a uni-

form prior5. Approximating the posterior can be tricky because the signs of parameters

θ3 and θ4 are not identifiable, yielding multimodality. We generate X0 with parameters

θ0 = (−0.7,−2.9,−1.0,−0.9, 0.6)′. Since we have access to the true posterior, we can di-

rectly compare our posterior reconstructions with the truth. We compare B-GAN with (1)

ABC using naive summary statistics (SS) (mean and variance), (2) 2-Wasserstein distance

ABC (Bernton et al., 2019), and (3) Sequential Neural Likelihood (SNL) (Papamakarios

et al., 2019) with the default setting suggested by the authors. We provide all implemen-

tation details in Wang and Ročková (2022, Appendix D.1). For each method, we obtained

M = 1 000 samples and plotted them in Figure 3.1. Our B-GAN approach as well as SNL

nicely capture the multimodality. There appears to be an overestimation of variance (relative

5. on [−3, 3]× [−4, 4]× [−3, 3]× [−3, 3]× [−3, 3]
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Algorithm 4: 2-Step Refinement (B-GAN 2step)
INPUT

Prior π(θ), observed data X0 and noise distribution πZ(z)
Training

Initialize network parameters ω(0) = 0 and β(0) = 0
Pilot Run

Apply Algorithm 3 with π(θ) to learn ĝpilot(·)
Reference Table

Generate pairs {(Xj , θj)}Tj=1 where θj = ĝpilot(Zj , X0) for Zj ∼ πZ and Xj ∼ P
(n)
θj

.
Refinement

Apply Wasserstein GAN step in Algorithm 3 on {(Xj , θj)}Tj=1 and return gβ̂T (·)
Posterior Simulation

Simulate {Zi}Mi=1
iid∼ πZ(z) and set θ̃i = gβ̂T (Zi, X0).

Estimate ŵi using either (3.9) or (3.10).
OUTPUT

Pairs of posterior samples and weights (θ̃1, ŵ1), . . . , (θ̃M , ŵM )

to the truth) which, as we explain later in Section 3.4, is expected because B-GAN is trained

to perform well on average for any X, not necessarily for X0. This motivates our two refine-

ment strategies: one based on active learning (Section 3.2.4) and one based on variational

Bayes (Section 3.3).

Similarly as with default ABC techniques, our B-GAN approach is not query-efficient, i.e.

many prior guesses θj in the training dataset may be too far from the interesting areas with

a likelihood support leaving only a few observations to learn about the conditional π(θ |X0).

The next section presents a two-step approach which uses X0 for proposal construction in

the ABC reference table to obtain more valuable data-points in the reference table.

3.2.4 Two-step Refinement

Our chief goal is to find a high-quality approximation to the conditional distribution π(θ |X)

evaluated at the observed data X = X0, not necessarily uniformly over the entire domain

X . However, the ABC reference table {(θj , Xj)}Tj=1 may not contain enough data points

Xj in the vicinity of X0 to train the simulator when the prior π(θ) is too vague. This can

be remedied by generating a reference table using an auxiliary proposal distribution π̃(θ)
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which is more likely to produce pseudo-observations Xj that are closer to X0. For example,

a pilot simulator gβ̂T (Z,X0) in (3.8) obtained from Algorithm 3 under the original prior π(θ)

can be used to guide simulations in the next round to sharpen the reconstruction accuracy

aroundX0 (Papamakarios and Murray, 2016). Training the generator6 g̃β̂T under the ‘wrong’

prior can be corrected for by importance re-weighting with weights r(θ) = π(θ)/π̃(θ). Since

the posterior π̃(θ | X0)r(θ) is proportional to π(θ | X0), reweighing the resulting samples

θ̃j = g̃β̂T (Z,X
(n)
0 ) with weights wj = r(θj) will produce samples from an approximation to

the original posterior (after normalization). Algorithm 4 summarizes this two-step strategy,

referred to as B-GAN-2S.

Since the proposal density πgβ̂T (θ |X0) obtained in the pilot run may not have an ana-

lytical form, computing the importance weights wj = π(θj)/πgβ̂T
(θj |X0) directly may not

feasible. We consider leaky ReLU generative networks for which, in fact, the analytical form

does exist (Liang, 2021). More generally, the density ratio r(θ) can always be approximated.

For example, with a tractable prior π(θ) the importance weights wj can be estimated by

ŵj =
π(θj)

π̂gβ̂T
(θj |X0)

(3.9)

where π̂g
β̂T

(θj | X0) is a plugged-in kernel density estimator (KDE) estimator (Terrell and

Scott, 1992). This is particularly useful and efficient when the parameter dimension is

low. When the prior is also not tractable but simulatable, the weights wj can be directly

estimated from classification by contrasting datasets θ̃j ∼ π̃(θ) (label ‘0’) and θj ∼ π(θ)

(label ‘1’). In particular, training a classifier D̃ (see e.g. (Cranmer et al., 2015; Durkan et al.,

2020; Gutmann and Hyvärinen, 2012) for the explanation of the ’likelihood-ratio-trick’ for

6. which simulates from an approximation to π̃(θ |X0) ∝ p(n)θ0
(X0)π̃(θ)
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Figure 3.2: Posterior densities under the Gaussian model. The true parameter is θ0 =
(−0.7,−2.9,−1.0,−0.9, 0.6)′, while the signs of θ3 and θ4 are not identifiable.

classification based estimators), we can obtain

ŵj =
D̃(θ̃j)

1− D̃(θ̃j)
. (3.10)

Papamakarios and Murray (2016) used mixture density networks estimators of the condi-

tional distribution π(θ | x) after a pilot run to learn the proposal distribution π̃(θ). In order

to obtain an analytically tractable Gaussian mixture representation, their proposal π̃(θ) has

to be Gaussian and it cannot be narrower than any of the mixture components. We do not

require such assumptions. Lueckmann et al. (2019) instead propose to directly incorporate

the weights r(θ) inside training and relax the Gaussianity assumption to avoid the variance

instability. Similarly as in Lueckmann et al. (2019), we could also incorporate weights ŵj

inside the objective function, e.g. multiplying each summand in (3.6) by ŵj .

Example 2 (Toy Example Continued). We continue our exploration of the Toy Example

1. We now use the output from B-GAN (Algorithm 3) under the original uniform prior

as a proposal distribution π̃(θ) and generate training data {(Xj , θj)}Tj=1 with a marginal

π̃(X) =
∫
X p

(n)
θ (X)π̃(θ)dθ. To convert the generated posterior samples to the original uni-

form prior, we perform reweighing by r(θ) = π(θ)/π̃(θ) using the kernel density estimator of

π̃(θ) obtained from the pilot B-GAN run in Algorithm 3. The number of training points used
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Figure 3.3: Maximum Mean Discrepancies (MMD, log scale) between the true posteriors
and the approximated posteriors. The box-plots are computed from 10 repetitions.

in the second step is T = 50 000. We note that much smaller T could be used if one were to

perform more sequential refinements, not just one. The re-weighted (and normalized) poste-

rior is plotted against the truth, SNL and a variational Bayesian variant (introduced later in

Section 3.3) in Figure 3.2. Both B-GAN and B-GAN-2S provide tighter approximations to

the true posterior We repeated the experiment 10 times and report the Maximum Mean Dis-

crepancies (MMD) (Gretton et al., 2012) between the true posterior and its approximations

obtained from M = 1 000 posterior draws for each method in Figure 3.3. Satisfyingly, B-

GAN-2S yields the smallest MMD. We support this encouraging finding with our theoretical

results in Section 3.4.

Remark 18 (Computation When n > 1). There are various ways of handling larger n. For

example, our approach can be deployed sequentially on batches of smaller iid samplers: using

simulations from a posterior on the smaller batch as a prior for the next. Alternatively, we

could stack the n replicates into one data vector and learn a higher-dimensional mapping.

Deep learning has been used for large sets of covariates and we regard this option doable when

n and the dimensionality of the vectors is not overwhelmingly large.

In the two-step refinement, the observed data X0 only contribute to the proposal dis-

tribution π̃(θ), not the training of the simulator gβ̂(·). In the next section, we consider a

variational Bayes variant which does involve X0 in training.
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3.3 Adversarial Variational Bayes

Variational Bayes (VB) is an optimization-centric Bayesian inferential framework based on

minimizing a divergence between approximate and real posteriors. VB typically reduces the

infinite-dimensional optimization problem to a finite-dimensional one by molding approx-

imations into structured parametric forms. Implicit distributions (defined as probabilistic

programs) have the potential to yield finer and tighter VB posterior approximations (Huszár,

2017; Kingma and Welling, 2013; Tran et al., 2017; Titsias and Ruiz, 2019). This section

highlights the connection between the implicit variational Bayes inference and our B-GAN

framework (Algorithm 3 and 4), both of which target the posterior.

The VB setup consists of an (intractable) likelihood p
(n)
θ (·), prior π(θ) and a class of

posterior approximations qβ(θ |X0) indexed by β. We are recycling the notation of β here

to highlight the connection between the GAN generator and the the implicit variational

generator. The goal of the VB approach is to find a set of parameters β∗ that maximize a

lower bound to the marginal likelihood

log π(X0) ≥ L(β) ≡
∫

log

(
π(X0, θ)

qβ(θ |X0)

)
qβ(θ |X0)dθ. (3.11)

The tightness of the inequality increases with expressiveness of the inference model qβ(·),

where the equality occurs when qβ(θ | X0) = π(θ | X0). Writing the evidence lower bound

L(β) = −KL
(
qβ(θ |X0)‖π(θ | X0)

)
+ C in terms of Kullback-Leibler discrepancy, we have

β∗ = arg max
β
L(β) = arg min

β
KL
(
qβ(θ |X0)‖π(θ | X0)

)
. (3.12)

Besides implicit likelihood, we also assume implicit posterior approximation qβ(θ | X).

Similarly as before in Section 3.2.2, this approximation can be defined by stochastic genera-

tive networks which take a simple distribution and transform it nonlinearly by a deep neural

network. In general, we assume that the density qβ(θ |X0) does not have any particular form
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but, instead, that its samples are obtained by passing noise Z ∼ πZ through a deterministic

generator mapping gβ(Z,X) parametrized by β ∈ RG.

With implicit likelihoods, where only forward simulation is possible, one may need to

use contrastive learning (Bickel et al., 2007) to optimize the lower bound (3.11). Ideally,

we would estimate the conditional density ratio by two contrasting datasets θ ∼ π(θ | X0)

(label ‘1’) and θ̃ ∼ qβ(θ | X0) (label ‘0’). However, this is not feasible since the posterior

distribution π(θ | X0) is unknown. Fortunately, we can simulate from (and contrast) two

joint distributions with a different conditional, given X, but the same marginal π(X). We

define
d∗gβ(X, θ)

1− d∗gβ(X, θ)
=

π(X, θ)

qβ(θ |X)π(X)
, (3.13)

where d∗gβ : (X ×Θ)→ (0, 1) can be viewed as the ’oracle classifier’ when distinguishing data

pairs (θ,X) as arising from either πgβ(θ,X) ≡ qβ(θ |X)π(X) or π(θ,X). We have seen this

oracle classifier earlier in Lemma 17, with the variational conditional distribution qβ(θ |X)

taking the place of πg(θ |X).

The variational lower bound (3.11) can be re-written as

L(β) ≡ Eθ∼qβ(θ |X0)

[
logit

(
d∗gβ(X0, θ)

)]
+ C. (3.14)

For implicit approximating distributions qβ(θ | X) it may not be possible to directly

optimize (3.14) with respect to β (even using the re-parametrization trick and stochastic

gradient descent (Kingma and Welling, 2019)). The lower bound (3.14) depends on the

oracle classifier which is unknown. Going back to Lemma 17, we note that d∗gβ(θ,X) is a

solution to an infinite-dimensional classification problem under the entropy loss (Goodfellow

et al., 2016)

d∗gβ(θ,X) = arg max
d∈D

D(gβ, d). (3.15)

where D(gβ, d) was defined in (3.4) in Lemma 17. Although the oracle classifier is unknown,
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it can be estimated by solving a classification problem (3.15) by focusing on a particular

class of classifiers D = {dφ : (X × Ω) → (0, 1);φ ∈ RC}, for instance neural networks

indexed by parameters φ. We can thereby reframe maximizing the evidence lower bound

(ELBO) in (3.14) as an adversarial game between two agents optimizing different objectives:

(1) the Generator gβ(Z,X) tries to maximize ELBO, (2) the Discriminator dφ(X, θ) tries

to distinguish between the two joint distributions.

The idea of replacing aspects of the evidence lower bound with adversarial objectives

occurred earlier (Mescheder et al., 2017; Huszár, 2017; Tran et al., 2017). These papers

focus on hierarchical models with latent variables when either the prior or the likelihood (or

both) are implicit. Instead of focusing on maximum likelihood estimation (Mescheder et al.,

2017), we focus purely on VB inference with approximate posteriors qβ(θ | X0) when θ is

assigned a prior.

All adversarial variational Bayesian papers have considered the KL formulation. Similarly

as with the JS version of B-GAN , we have seen training issues. We thereby resort to

Wasserstein formulation (Ranganath et al., 2016; Ambrogioni et al., 2018) which minimizes

the Wasserstein distance (instead of the KL divergence in (3.12))

β∗ = arg min
β:gβ∈G

sup
fω∈FW

∣∣∣∣∣Eθ∼qβ(θ |X0)

(
π(θ |X0)

qβ(θ |X0)
− 1

)
fω(θ)

∣∣∣∣∣ , (3.16)

where we have rewritten the Wasserstein distance (3.3) intentionally using density ratios and

where the critic fω operates only on Θ. The parameters β∗ can be approximated by replacing

the density ratio with a classification estimator for the joint distributions (as discussed in

Wang and Ročková (2022, Appendix B)). We also implement a different algorithm which

trains a critic on the joint space Θ×X without having to directly estimate the joint likelihood

ratio.
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Choosing F that is symmetrical7, we start from β(0) and ω(0) and using the reference

table {(θj , Xj)}Tj=1
iid∼ π(θ,X) with {Zj}Tj=1

iid∼ πZ(·), we

• update ω(t+1) to approximate the Wasserstein distance, given β(t),

ω(t+1) = arg max
ω:fω∈F

 T∑
j=1

fω(Xj , gβ(t)(Zj , Xj))−
T∑
j=1

fω(Xj , θj)

 (3.17)

• update β(t+1) to minimize the distance evaluated at X0, given ω(t+1),

β(t+1) = arg min
β:gβ∈G

 T∑
j=1

fω(t+1)(X0, gβ(Zj , X0)) + C

 , (3.18)

where C does not depend on β, given the most recent update ω(t+1). This iterative procedure

can be regarded as targeting the estimator

β̂T = arg min
β:gβ∈G

∣∣∣∣∣∣ 1

T

T∑
j=1

fω(β)

(
X0, gβ(Zj , X0)

)
− Eθ∼π(θ |X0)fω(β) (X0, θ)

∣∣∣∣∣∣ (3.19)

where

ω(β) = arg max
ω:fω∈FW

∣∣∣∣∣∣ 1

T

T∑
j=1

fω
(
Xj , gβ(Zj , Xj)

)
− 1

T

T∑
j=1

fω(Xj , θj)

∣∣∣∣∣∣ .
Proceeding iteratively, given the update ω(t+1), the second term in (3.19) does not depend

on β and is consumed by the constant C in (3.18). This iterative procedure resembles the

GAN simulator (3.8). There are, however, fundamental differences compared to Algorithm 3.

Unlike coefficients β̂T in (3.6) of the B-GAN generator, coefficients β̂T in (3.19) are trained

on X0 under the variational loss (3.14). This means that the generator gβ(Z,X0) directly

targets π(θ |X) evaluated at X = X0. We would thereby expect this version to work better

than Algorithm 3 which does not use X0 at all.

7. i.e. fω ∈ F → −fω ∈ F
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Indeed, on the toy simulated example in Example 2 we can see that the VB variant pro-

duces tighter reconstructions relative to the B-GAN approach. The performance, however,

is not uniformly better than Algorithm 4. We provide a snapshot from another repetition

in Wang and Ročková (2022, Appendix B.1), where the spikiness of B-GAN-VB (especially

obvious when estimating θ2) may explain why the MMDs between B-GAN-VB and the

true posteriors are larger than for B-GAN-2S in Figure 3.3. The algorithmic description is

provided in Algorithm 5 and implementation details of B-GAN-VB are provided in Wang

and Ročková (2022, Appendix B). We initialize the generator at a network returned from

Algorithm 4.

Algorithm 5: Adversarial Variational Bayes (Wasserstein Version)
INPUT

Prior π(θ), observed data X0 and noise distribution πZ(z)
Training
Pilot Run

Apply Algorithm 4 with π(θ) to learn ĝpilot(·)
Initialize critic network ω(0) = 0 and the generator network at gβ(0) = gpilot(·)

Reference Table
Generate pairs {(Xj , θj)}Tj=1 where θj = ĝpilot(Zj , X0) for Zj ∼ πZ and Xj ∼ P

(n)
θj

.
WGAN Training

For t = 1, . . . , N :
Critic Update (Ncritic steps): Same as in Critic Update of Algorithm 3
Generator Update (single step)

Generate noise Zj ∼ πZ(z) for j = 1, . . . , N .
Update β(t) by applying stochastic gradient descent on (3.18).

Posterior Simulation

Simulate {Zi}Mi=1
iid∼ πZ(z) and set θ̃i = gβ(N)(Zi, X0).

Estimate ŵi using either (3.9) or (3.10).
OUTPUT

Pairs of posterior samples and weights (θ̃1, ŵ1), . . . , (θ̃M , ŵM )

3.4 Theory

The purpose of this section is to provide theoretical solidification for the implicit posterior

simulators in Algorithms 3 to 5. We will quantify the typical total variation (TV) distance

between the actual posterior and its approximation and illustrate that with carefully chosen
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neural generators and discriminators, the expected total variation distance vanishes as n→

∞. We will continue denoting X(n) simply by X.

We define with ν = P
(n)
θ ⊗ Π the joint measure on X × Θ with a density π(X, θ) =

p
(n)
θ (X)π(θ). The goal is to approximate this measure with µg defined semi-implicitly

through a density function πg(X, θ) = π(X)πg(θ | X) where π(X) =
∫
π(X, θ)dθ is the

marginal likelihood and where the samples from the density πg(θ | X) are obtained by the

Generator in Definition 14. Thus, by keeping the marginal distribution the same, the dis-

tribution πg(θ | X) is ultimately approximating the conditional distribution π(θ | X). The

quality of the approximation will be gauged under the integral probability metric8 (IPM)

dF (µg, ν) = sup
f∈F

∣∣∣E(X,θ)∼µgf(X, θ)− E(X,θ)∼νf(X, θ)
∣∣∣ , (3.20)

where F is a class of evaluation metrics9. The IPM metric (3.20), due to shared marginals

of the two distributions, satisfies

dF (µg, ν) ≤ EXdF
(
µg(X), ν(X)

)
, (3.21)

where µg(X) and ν(X) denote the conditional measures with densities πg(θ |X) and π(θ |X).

At the population level, the B-GAN (Algorithm 3) minimax game finds an equilibrium

g∗ = min
g∈G

dF (µg, ν),

where G is a class of generating functions (that underlie the implicit distribution µg).

Typically, both F and G would be parameterized by neural networks with the hope that

the discriminator networks can closely approximate the metric dF and that the generator

8. The absolute value can be removed due to the Monge-Rubinstein dual (Villani, 2008).

9. For example, Lipschitz-1 functions yield the Wasserstein-1 metric and functions bounded by 1 yield
the TV metric.
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networks can flexibly represent distributions. In practice, one would obtain a data-driven

estimator based on the empirical distribution ν̄T of (θj , Xj) for 1 ≤ j ≤ T and the empirical

distribution µ̄g of (g(Zj , Xj), Xj) where Zj ∼ πZ for 1 ≤ j ≤ T . Assuming that G = {gβ :

β ∈ RG}, the B-GAN estimator can be written as

β̂T ∈ arg min
β:gβ∈G

max
ω:fω∈F

∣∣E µ̄gfω
(
X, gβ(Z,X)

)
− E ν̄T fω(X, θ)

∣∣ . (3.22)

For brevity, we will often denote the generator density πgβ(·) (see Definition 14) simply by

πβ(·) and similarly for µgβ . The next Theorem provides an upper bound on the typical total

variation (TV) distance between true and the approximated posterior measures ν(X0) and

µβ̂T (X0) with densities π(θ |X0) and πβ̂T (θ |X0), respectively. The total variation distance

can be upper bounded by three terms: (1) the ability of the critic to tell the true model

apart from the approximating model

A1(F ,G) ≡ E inf
ω:fω∈F

∥∥∥∥log
π(θ |X)

πβ̂T (θ |X)
− fω(X, θ)

∥∥∥∥
∞

(3.23)

(2) the ability of the generator to approximate the average true posterior

A2(G) ≡ inf
β:gβ∈G

[
EX

∥∥∥∥log
πβ(θ |X)

π(θ |X)

∥∥∥∥
∞

]1/2

, (3.24)

and (3) the complexity of the (generating and) critic function classes measured the pseudo-

dimension Pdim(·) and defined in Definition 2 in (Bartlett et al., 2017). We denote with

H =
{
hω,β : hω,β(Z,X) = fω

(
gβ(Z,X), X

)}
a structured composition of networks fω ∈ F

and gβ ∈ G.

Theorem 19. Let β̂T be as in (3.22) where F = {f : ‖f‖∞ ≤ B} for some B > 0. Denote

with E the expectation with respect to {(Xj , θj)}Tj=1
iid∼ π(X, θ) and {Zj}Tj=1

iid∼ πZ in the
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reference table. Assume that the prior satisfies

Π[Bn(θ0; ε)] ≥ e−C2nε
2

for some C2 > 0 and ε > 0. (3.25)

Then for T ≥ Pdim(F) ∨ Pdim(H) we have for any C > 0

P
(n)
θ0

E d2
TV

(
ν(X0), µβ̂T (X0)

)
≤ CTn (ε, C),

where, for some C̃ > 0 and Pmax ≡ Pdim(F) ∨ Pdim(H),

CTn (ε, C) =
1

C2nε2
+

e(1+C2+C)nε2

4

[
2A1(F ,G) +

BA2(G)√
2

+ 4C̃ B

√
log T × Pmax

T

]
.

Proof. Section 3.7.1.1.

From (3.21), it can be seen that Algorithm 3 targets a lower bound to the average

Wasserstein distance between the posterior π(θ |X) and πg(θ |X) after margining over π(X).

In other words, Algorithm 3 is not necessarily targeting π(θ |X0). The 2-step enhancement

in Algorithm 4 provides more data draws in the ABC table that more closely resemble X0.

Theorem 19 applies to Algorithm 4 as well with slight modifications.

Corollary 20. (2step B-GAN) Assume that β̂T in (3.22) is learned under the proposal distri-

bution π̃(θ) and denote with Ẽ the expectation of the reference table under π̃(θ). Assume that

the original prior π(θ) satisfies (3.25). Then the importance re-weighted posterior reconstruc-

tion from Algorithm 4 satisfies the statement in Theorem 19 with E replaced by Ẽ and with

Ã2(G) ≡ inf
β:gβ∈G

∫
X π̃(X)

∥∥∥log
πβ(θ |X)
π(θ |X)

∥∥∥
∞

dX and Ã1(F ,G) ≡ Ẽ inf
ω:fω∈F

∥∥∥π(θ)
π̃(θ) log π(θ |X)

πβ̂T (θ |X) − fω(X, θ)
∥∥∥
∞
.

Proof. Section 3.7.1.2.

Remark 21. Zhou et al. (2022) provided theoretical results for the total variation distance

between joint distributions using the Jensen-Shannon version of conditional GANs. Contrast-

ingly, we provide frequentist-Bayesian results, quantifying the typical total variation distance
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between the true and approximate posteriors. In addition, we use the Wasserstein GANs,

building on oracle inequalities established in Liang (2021).

The (nonasymptotic) bounds for the typical TV distance in Theorem 19 and Corollary

20 are not refined enough to fully appreciate the benefits of the 2-step enhancement. In

Section 3.7.1.3, we provide an intuitive explanation for why the 2-step refinement version

works so well in practice on each particular realization of X0 (not only on average over many

realizations X0). We also provide a version of Theorem 19 for adversarial variational Bayes

(Algorithm 5) in Theorem 26 (Section 3.7.1.5).

One of the appeals of our method is that it can accommodate situations where n = 1 (such

as spatiotemporal dependent datasets). For n independent copies of observed data vectors,

it is desirable to inquire when the average total variation distance in Theorem 19 converges

to zero as n→∞ for a suitable choice of ε and C (potentially depending on n). We provide

one example using discriminator feed-forward networks F with a ReLU activation function

σReLU (x) = max{x, 0} which have good approximation properties (Schmidt-Hieber, 2020).

For the generator networks, we need to make sure that the resulting density πg(θ | X) is

absolutely continuous. To this end, we consider G that are leaky feed-forward ReLU neural

networks with an activation function σaReLU (x) = max{ax, x} for some 0 < a ≤ 1. Liang

(2021, Section 3.3) shows that these networks indeed produce densities that are absolutely

continuous and provided a closed-form expression for the log density.

Definition 22. We denote with FBL (S,W ) a class of feed-forward ReLU neural networks

f with depth L (i.e. the number of hidden layers plus one), width W and size S (total

number of parameters in the network) such that ‖f‖∞ ≤ B. The width is defined as W =

max{w0, . . . , wL} where wl is the width of the lth layer with w0 the input data dimension

and wL the output dimension. With GBL (S,W ), we denote the leaky ReLU neural networks

with the same meaning of parameters.

The following remark (clarified in Section 3.7.1.4 in the Appendix) warrants optimism
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when using neural networks for the generator and the discriminator. We formulate the

remark for Algorithm 3 and note that a similar conclusion holds for Algorithm 4 as well.

Remark 23. Assume that the joint distribution π(θ,X) is realizable in the sense that there

exists gβ0
∈ GB0

L0
(S0,W0) such that π(θ,X) = πgβ0

(θ,X). Assume that GB∗L∗ (S∗,W ∗) ⊆

GB0
L0

(S0,W0) is a class of leaky ReLU generative networks indexed by β where ‖β0‖∞ ∨

‖β‖∞ ≤ b for some b > 0. Assume that F = FBL (S,W ) are ReLU discriminator networks

and πZ is uniform on [0, 1]d. Assume the prior concentration (3.25) is satisfied with εn > 0

such that εn = O(1/
√
n). For each arbitrarily slowly increasing sequence Cn, there exists

L, S,W > 0 and Tn such that we have P (n)
θ0

Ed2
TV

(
ν(X0), µβ̂Tn (X0)

)
= o(1) as n→∞.

3.5 Performance Evaluation

This section demonstrates very promising performance of our B-GAN approaches in Algo-

rithm 3 (B-GAN), Algorithm 4 (B-GAN-2S) and Algorithm 5 (B-GAN-VB) and on simu-

lated examples relative to other Bayesian likelihood-free methods (plain ABC using summary

statistics (SS); 2-Wasserstein distance ABC by (Bernton et al., 2019); Sequential Neural Like-

lihood (SNL) (Papamakarios et al., 2019) with default settings). The implementation details

of our methods and the counterparts are described in Appendix D.2 for the Lotka-Volterra

model and Appendix D.3 for the Boom-and-Bust model in Wang and Ročková (2022)

3.5.1 Lotka-Volterra Model

The Lotka-Volterra (LV) predator-prey model (Wilkinson, 2018) is one of the classical

likelihood-free examples and describes population evolutions in ecosystems where predators

interact with prey. The state of the population is prescribed deterministically via a system

of ordinary differential equations (ODEs). Inference for such models is challenging because

the transition density is intractable. However, simulation from the model is possible, which
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Figure 3.4: Approximate posterior densities under the Lotka-Volterra Model. The true
parameter vector (marked by vertical lines) is θ0 = (0.01, 0.5, 1, 0.01)′.

makes it a natural candidate for simulator-based inference methods.

The model monitors population sizes of predators xt and prey yt over time t. The

changes in states are determined by four parameters θ = (θ1, . . . , θ4)′ controlling: (1) the

rate rt1 = θ1xtyt of a predator being born; (2) the rate rt2 = θ2xt of a predator dying; (3) the

rate rt3 = θ3yt of a prey being born; (4) the rate rt4 = θ4xtyt of a prey dying. Given the initial

population sizes (x0, y0) at time t = 0, the dynamics can be simulated using the Gillespie

algorithm (Gillespie, 1977). The algorithm samples times to an event from an exponential

distribution (with a rate
∑4
j=1 r

t
j) and picks one of the four reactions with probabilities

proportional to their individual rates rtj . We use the same setup as Kaji and Ročková (2022)

where each simulation is started at x0 = 50 and y0 = 100 and state observations are recorded

every 0.1 time units for a period of 20 time units, resulting in a series of 201 observations

each.

The real data X0 are generated with true values θ0 = (0.01, 0.5, 1, 0.01)′. The data vector

X0 is stretched into one (201× 2× n) vector. The advantage of our approach is that it can
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be used even for n = 1 when other methods (such as (Kaji and Ročková, 2022)) cannot.

We focus on the n = 1 case here. We use an informative prior θ ∈ U(Ξ) with a restricted

domain Ξ = [0, 0.1]× [0, 1]× [0, 2]× [0, 0.1] to make it easier for classical ABC methods (see

(Kaji and Ročková, 2022)) and to make the GAN training more efficient. Previous analyses

Papamakarios and Murray (2016) suggested summary statistics as the mean, log-variance,

autocorrelation (at lag 1 and 2) of each series as well as their correlation. Papamakarios et al.

(2019) also built their sequential neural network on top of this set of summary statistics.

We build our model on the time series itself. This example is quite challenging due to the

spikiness of the likelihood in very narrow areas of the parameter space (as explained in (Kaji

and Ročková, 2022)). Our adversarial approaches are implemented using the Wasserstein

versions.

To recover the posterior distributions, we draw M = 1 000 samples for each method,

except the top 1% for the ABC methods. A typical snapshot (for one particular data

realization) of the approximated posteriors is given in Figure 3.4 and the summary statistics

averaged over 10 repetitions are reported in Table 3.1. Since we do not have access to the

true posterior, we look at the width of the 95% credible interval, its coverage (proportion of

the 10 replications such that the true value is inside the credible interval), and bias of the

posterior mean. Again, we observe that B-GAN-2S and B-GAN-VB outperforms B-GAN

and SNL with a smaller bias and tighter variance. In Figure 3.4, B-GAN-VB appears to

have smaller bias than B-GAN-2S when estimating all parameters but θ1. The computation

cost requirements are compared in Wang and Ročková (2022, Appendix D.5).

3.5.2 Simple Recruitment, Boom and Bust

Our second demonstration is on the simple recruitment, boom and bust model (Fasiolo

et al., 2018). The model is prescribed by a discrete stochastic process, characterizing the

fluctuation of the population size of a certain group over time. Given the population size Nt
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θ1 = 0.01 θ2 = 0.5 θ3 = 1.0 θ4 = 0.01
bias CI width bias CI width bias CI width bias CI width

(scale) (×10−3) (×10−2) (×10−1) (×10−2) (×10−2)

B-GAN 4.15 1.89 1.09 0.45 0.24 1.00 0.49 2.18
B-GAN-2S 0.70 0.21 (0.9) 0.42 0.10 (0.7) 0.11 0.33 (0.9) 0.13 0.34 (0.8)
B-GAN-VB 1.02 0.25 (0.7) 0.38 0.11 (0.9) 0.11 0.29 (0.8) 0.12 0.29 (0.7)
SNL 1.05 0.44 0.45 0.17 0.13 0.48 0.15 0.52
SS 9.58 3.80 2.49 0.91 0.49 1.76 0.68 2.72
W2 10.99 4.02 (0.9) 2.42 0.84 0.47 1.73 0.79 2.82

Table 3.1: Summary statistics of the approximated posteriors under the Lotka-Volterra
model (averaged over 10 repetitions). Bold fonts mark the best model of each column. The
coverage of the 95% credible intervals are 1 unless otherwise noted in the parentheses.

and parameter θ = (r, κ, α, β)′, the population size at the next timestep Nt+1 follows the

following distribution

Nt+1 ∼

 Poisson
(
Nt(1 + r)

)
+ εt, if Nt ≤ κ

Binom
(
Nt, α

)
+ εt, if Nt > κ

,

where εt ∼ Pois(β) is a stochastic arrival process, with rate β > 0. The population grows

stochastically at rate r > 0, but it crashes if the carrying capacity κ is exceeded. The

survival probability α ∈ (0, 1) determines the severity of the crash. Over time the population

fluctuates between high and low population sizes for several cycles.

This model has been shown to be extra challenging for both synthetic likelihood (SL)

methods and ABC methods in Fasiolo et al. (2018). The distribution of the statistics is far

from normal which breaks the normality assumption of SL. In addition, the authors show

that ABC methods require exceedingly low tolerances and low acceptance rates to achieve

satisfying accuracy.

We first run the simulation study using the setup in An et al. (2020). The real data

X0 is generated using parameters r = 0.4, κ = 50, α = 0.09 and β = 0.05, and the prior

distribution is uniform on [0, 1]×[10, 80]×[0, 1]×[0, 1]. The observed data has 250 time-steps,

with 50 burn-in steps to remove the transient phase of the process.
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Figure 3.5: Approximate posterior densities under the Boom-and-Bust Model. The true
parameter is θ0 = (0.01, 0.5, 1, 0.01)′.

Previous analyses of the model suggested various summary statistics, including the mean,

variance, skewness, kurtosis of the data, lag 1 differences, and lag 1 ratios (An et al., 2020).

We use them in SS and SNL methods. We have explored three types of input: the time

series itself, the time series in conjunction with their summary statistics, and the summary

statistics only. We find that the network built on the summary statistics appears to perform

the best, thus we only include the results from this network here.

We include SS, W2, SNL as competitors for comparisons. One snapshot of the approx-

imate posterior densities is provided in Figure 3.5. We report the performance summary

averaged over 10 repetitions in Table 3.2. ABC methods struggle to identify the parameters

and provide very flat posteriors. The vanilla B-GAN is able to identify the correct location

of parameters but with rather wide credible intervals. We observe great improvements after

applying the 2-step refinements, the most obvious one for the parameter α. SNL, B-GAN-2S

and B-GAN-VB are all able to provide very accurate estimates with tight credible intervals.

B-GAN-VB provides the smallest bias and the tightest posteriors, especially for β, although

at the cost of lower coverage. While B-GAN-VB is performing better, the performance of B-

GAN-2S is slightly inferior relative to SNL in this example. Potentially, the performance of

B-GAN-2S can be further improved if we add more sequential refinement steps in B-GAN-2S

training, since the prior range here is too wide.
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r = 0.4 κ = 50 α = 0.09 β = 0.05
bias CI width bias CI width bias CI width bias CI width

(scale) (×10−1) (×10−1) (×10−2) (×10−1) (×10−1)

B-GAN 0.44 1.63 2.92 10.78 3.03 1.38 1.22 0.36 (0.8)
B-GAN-2S 0.27 0.79 (0.8) 1.60 5.29 (0.9) 1.06 0.34 1.05 0.26 (0.7)
B-GAN-VB 0.23 0.65 (0.8) 1.29 4.88 (0.9) 0.89 0.25 (0.7) 1.00 0.19 (0.5)
SNL 0.24 0.93 1.52 5.37 1.01 0.38 1.28 0.39 (0.9)
SS 2.16 8.26 10.60 37.17 15.08 9.18 4.41 0.95
W2 2.59 9.49 10.16 43.20 5.46 2.77 3.92 0.86 (0.6)

Table 3.2: Summary statistics of the approximated posteriors under the Boom-and-Bust
model (averaged over 10 repetitions). Bold fonts mark the best model of each column. The
coverage of the 95% credible intervals are 1 unless otherwise noted in the parentheses.

3.6 Discussion

This paper propels strategies for Bayesian simulation using generative networks. We have

formalized several schemes for implicit posterior simulation using GAN conditional density

regression estimators as well as implicit variational Bayes. The common denominator behind

our techniques is (joint) contrastive adversarial learning (Tran et al., 2017; Huszár, 2017). We

have provided firm theoretical support in the form of bounds for the typical total variation

distance between the posterior and its approximation. We have highlighted the potential

of our adversarial samplers on several simulated examples with very encouraging findings.

We hope that our paper will embolden practitioners to implement neural network posterior

samplers in difficult situations when likelihood (and prior) are implicit.
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3.7 Appendix

3.7.1 Proofs from Section 3.4

3.7.1.1 Proof of Theorem 19

Proof. We continue denoting X(n) simply by X. Recall the definition of the KL neighbor-

hood

Bn(θ0; ε) = {θ ∈ Θ : KL(P
(n)
θ0
‖P (n)

θ ) ≤ nε2, V2,0(P
(n)
θ0

, P
(n)
θ ) ≤ nε2}, (3.26)

where KL(P
(n)
θ0
‖P (n)

θ ) = P
(n)
θ0

log[p
(n)
θ0
/p

(n)
θ ] and

V2,0(P
(n)
θ0

, P
(n)
θ ) = P

(n)
θ0

∣∣∣log[p
(n)
θ0
/p

(n)
θ ]−KL(P

(n)
θ0
‖P (n)

θ )
∣∣∣2 . (3.27)

We define an event, for some fixed C > 0 and ε > 0,

An(ε) =

X :

∫
Bn(θ0;ε)

p
(n)
θ (X)

p
(n)
θ0

(X)
π(θ)dθ > e−(1+C)nε2

Π[Bn(θ0; ε)]

 .

We denote with E the expectation with respect to {(θj , Xj)}Tj=1 from the ABC reference

table sampled from the joint π(θ,X). For simplicity of notation, we use Eβ̂T interchangeably

with E, since it is equivalently accounting for the randomness in β̂T . Using the fact that

the total variation distance is bounded by 2, we have

P
(n)
θ0

E
β̂T
d2
TV

(
ν(X0), µβ̂T (X0)

)
=

∫
An(ε)

p
(n)
θ0

(X0)E
β̂T
d2
TV

(
ν(X0), µβ̂T (X0)

)
dX0 (3.28)

+ 4P(n)
θ0

[Acn(ε)]. (3.29)

According to (Ghosal and Van Der Vaart, 2007, Lemma 10), we have P(n)
θ0

[Acn(ε)] ≤ 1
C2nε2

.

Denoting with π(X) =
∫
θ p

(n)
θ (X)π(θ)dθ the marginal likelihood, we can rewrite the term in
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(3.28) as ∫
X
IAn(ε)(X)π(X)r(X)E

β̂T
d2
TV

(
ν(X), µβ̂T (X)

)
dX

where
1

r(X)
≡
∫

Θ

p
(n)
θ (X)

p
(n)
θ0

(X)
π(θ)dθ ≥

∫
Bn(θ0;ε)

p
(n)
θ (X)

p
(n)
θ0

(X)
π(θ)dθ.

On the event An(ε), we can thus write

r(X) <
e(1+C)nε2

Π[Bn(θ0; ε)]
.

Under the assumption (3.25), the term in (3.28) can be upper bounded by

e(1+C+C2)nε2
∫
X
π(X)Eβ̂T d

2
TV (ν(X), µβ̂T (X)) dX ≤ e(1+C+C2)nε2

4
Eβ̂T [KL(ν‖µβ̂T ) + KL(µβ̂T ‖ν)].

(3.30)

The inequality above stems from the Pinsker’s inequality (Van Handel, 2014, Theorem 4.8)

and the fact that the joint measures ν and µβ̂T have the same marginal distribution π(X).

In particular, using Fubini’s theorem, we can write

∫
X
π(X)E

β̂T
d2
TV

(
ν(X), µβ̂T (X)

)
dX

≤ 1

4

∫
X
π(X)E

β̂T
[KL(ν(X)‖µβ̂T (X)) + KL(µβ̂T (X)‖ν(X))]dX

=
1

4
E
β̂T

∫
X
π(X)

∫
Θ

log
π(θ |X)

πβ̂T (θ |X)

[
π(θ |X)− πβ̂T (θ |X)

]
dθdX

=
1

4
E
β̂T

[
KL(ν‖µβ̂T ) + KL(µβ̂T ‖ν)

]
≡ 1

4
E
β̂T
dSKL(ν, µβ̂T ).

The above inequality is essential for understanding how the average squared total variation

distance between the posterior and its approximation (with the average taken with respect

to the observed data generating process) can be related to the ‘symmetrized’ KL divergence

dSKL(ν, µβ̂T ) between the joint distribution and its approximation. We now continue to
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bound the symmetrized KL divergence. For simplicity, we denote with β̂ the estimator β̂T

in (3.22). We have the following decomposition, for any ω such that fω ∈ F ,

dSKL(ν, µβ̂) =

∫
X
π(X)

∫
Θ
fω(θ,X)[π(θ |X)− πβ̂(θ |X)]dθdX

+

∫
X
π(X)

∫
Θ

[
log

π(θ |X)

πβ̂(θ |X)
− fω(θ,X)

]
[π(θ |X)− πβ̂(θ |X)]dθdX

≤ dF (ν, µβ̂) + 2

∥∥∥∥log
π(θ |X)

πβ̂(θ |X)
− fω(θ,X)

∥∥∥∥
∞
,

where we have used the inequality
∫
fg ≤ ‖f‖∞‖g‖1 and the fact that π(θ |X) and πβ̂(θ |X)

are both non-negative and integrate to one. Then, choosing fω ∈ F that minimizes the

second term we obtain

dSKL(ν, µβ̂) ≤ 2A1(F ,G, β̂) + dF (ν, µβ̂) ,

where A1(F ,G, β̂) is defined as

A1(F ,G, β̂) ≡ inf
ω:fω∈F

∥∥∥∥log
π(θ |X)

πβ̂T (θ |X)
− fω(X, θ)

∥∥∥∥
∞

and A1(F ,G) = Eβ̂A1(F ,G, β̂) was defined in (3.23).

We now apply a mild modification of the oracle inequality in (Liang, 2021, Lemma 12).

As long as F and H are symmetric10, then for any β such that gβ ∈ G we have

dF (ν, µβ̂) ≤ dF (µβ, ν) + 2dF (ν̄T , ν) + dF (µ̄
β
T , µβ) + dH(π̄T , π), (3.31)

where ν̄T and µ̄βT are the empirical counterparts of ν, µβ based on T iid samples (ABC refer-

ence table {(θj , Xj)}Tj=1 for ν and {(gβ(Zj , Xj), Xj)}Tj=1 with Zj
iid∼ πZ for µβ). In addition

π̄T is the empirical version for the distribution πZ for Z and H = {hω,β : hω,β(Z,X) =

10. i.e. if f ∈ F then also −f ∈ F
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fω(X, gβ(Z,X))}. This oracle inequality can be proved analogously as (Liang, 2021, Lemma

12) the only difference being that due to the conditional structure of our GANs the function

class H is not entirely a composition of networks fω and gβ but has a certain nested struc-

ture. Similarly as in (Liang, 2021) (proof of Theorem 13), we can write for any β such that

gβ ∈ G

dF (µβ, ν) ≤ B × dTV (µβ, ν) ≤ B

√
1

4
dSKL(µβ, ν)

≤ B√
2

[∫
X

∥∥∥∥log
πβ(θ |X)

π(θ |X)

∥∥∥∥
∞
π(X)dX

]1/2

.

Choosing β that minimizes the expectation on the right side, we obtain dF (µβ, ν) ≤
B√

2
A2(G), where the term A2(G) was defined in (3.24). Denote with

RT (F) = Eε sup
f∈F

1

T

T∑
j=1

εjf(Xj , θj)

the Rademacher complexity with ε = (ε1, . . . , εT )′ iid Rademacher11 variables. For the

second term in (3.31), the symmetrization property (see e.g. Lemma 26 in Liang (2021) or

Theorem 3.17 in Sen (2018)) yields for T ≥ Pdim(F)

E dF (ν̄T , ν) ≤ 2ERT (F) ≤ C̃ ×B
√
Pdim(F) log T

T

for some C̃ > 0, where Pdim(F) is the pseudo-dimension of the function class F (Defini-

tion 2 in (Bartlett et al., 2017)). The second inequality follows, for example, from Lemma

29 in (Liang, 2021). The bounds on E dH(π̄T , π), and E dF (µ̄
β
T , µβ) in (3.31) are analo-

gous. Putting the pieces together from the oracle inequality in (3.31) we can upper-bound

11. taking values {−1,+1} with probability 1/2.

95



P
(n)
θ0

Ed2
TV

(
ν(X0), µβ̂T (X0)

)
with

1

C2nε2
+

e(1+C+C2)nε2

4

[
2A1(F ,G) +

B√
2
A2(G) + 4C̃ B

√
log T

T
(Pdim(F) ∨ Pdim(H))1/2

]

which yields the desired statement.

3.7.1.2 Proof of Corollary 20

Proof. We continue to use the shorthand notation X for X(n) and β̂ for β̂T . Denote with

π̃(θ) the proposal distribution. Then, the posterior π̃(θ |X) under π̃(θ) satisfies

π(θ |X) = π̃(θ |X)×R(X)× r(θ), where R(X) =
π̃(X)

π(X)
and r(θ) =

π(θ)

π̃(θ)
. (3.32)

Our reconstruction in Algorithm 4 works by first approximating the joint distribution π̃(θ,X)

and then reweighing by the prior ratio, namely

πβ̂(θ |X) = π̃β̂(θ |X)×R(X)× r(θ), (3.33)

where β̂ has been learned by B-GAN (Algorithm 3) by matching the joint π̃(θ,X) =

π̃(θ | X)π̃(X) under the prior π̃(θ). We denote the joint measure with this density by ν̃.

Denote with µβ̂T (X) the approximating conditional measure with a density (3.33). We can

apply the same steps as in the proof of Theorem 19 until the step in (3.30). Similarly, we

denote with Ẽ the expectation with respect to {(θj , Xj)}Tj=1 from the ABC reference table

sampled from the joint π̃(θ,X), and we use Ẽβ̂T interchangeably with Ẽ. The next steps

will have minor modifications. Notice that

log
π(θ |X)

πβ̂(θ |X)
= log

π̃(θ |X)

π̃β̂(θ |X)
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and thereby

∫
X
π(X)Ẽβ̂d2

TV

(
ν(X), µβ̂T (X)

)
dX

≤ 1

4

∫
X
π(X)Ẽβ̂

[
KL
(
ν(X)‖µβ̂(X)

)
+ KL

(
µβ̂(X)‖ν(X)

)]
dX

=
1

4
Ẽβ̂
∫
X
π(X)

∫
Θ

log
π(θ |X)

πβ̂(θ |X)
[π(θ |X)− πβ̂(θ |X)] dθdX

=
1

4
Ẽβ̂
∫
X
π̃(X)

∫
Θ
r(θ) log

π(θ |X)

πβ̂(θ |X)
[π̃(θ |X)− π̃β̂(θ |X)] dθdX

≡ 1

4
Ẽβ̂dSKL(ν̃, µ̃β̂).

Using similar arguments as in the proof of Theorem 19, we have the following decomposition,

for any ω such that fω ∈ F ,

dSKL(ν̃, µ̃β̂) =

∫
X
π̃(X)

∫
Θ
fω(θ,X)[π̃(θ |X)− π̃β̂(θ |X)]dθdX

+

∫
X
π̃(X)

∫
Θ

[
r(θ) log

π(θ |X)

πβ̂(θ |X)
− fω(θ,X)

]
[π̃(θ |X)− π̃β̂(θ |X)]dθdX

≤ dF (ν̃, µ̃β̂) + 2

∥∥∥∥r(θ) log
π(θ |X)

πβ̂(θ |X)
− fω(θ,X)

∥∥∥∥
∞
.

The rest of the proof is analogous. The only difference is that β̂ now minimizes the empirical

version of dF (ν̃, µ̃β̂) under the proposal distribution π̃(θ).

3.7.1.3 Motivation for the Sequential Refinement

Remark 24 (2step Motivation). For the proposal distribution π̃(θ), using similar arguments

as in the proof of Theorem 19, the TV distance of the posterior at X0 (not averaged over

P
(n)
θ0

) can be upper-bounded by

4 d2
TV (ν(X0), µβ̂(X0)) ≤ 2A1(F ,G, X0) +

B√
2
A2(G) + 4C̃ B

√
log T × Pmax

T
+ A3(π̃)
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where A1(F ,G, X0) ≡ supβ:gβ∈G infω:fω∈F
∥∥∥log

π(θ |X0)
πβ(θ |X0)

− fω(X0,θ)
r(θ)

]
is the discriminability

evaluated at X0 (as opposed to (3.23)) and where

A3(π̃) = 2

∫
X
π̃(X) [‖fω(X0, θ)− fω(X, θ)‖∞ +B‖gβ̂(θ)(X)− gβ̂(θ)(X0)‖1] dX

and gβ̂(θ)(X) ≡ π(θ |X) − πβ̂(θ |X). This decomposition reveals how the TV distance can

be related to discriminability around X0 and an average discrepancy between the true and

approximated posterior densities relative to their value at X0 where the average is taken

over the marginal π̃(X). These averages will be smaller since the marginal π̃(X) produces

datasets more similar to X0. For example, an approximation to the the posterior predictive

distribution π̃(X) =
∫
X p

(n)
θ (X)πβ̂(θ |X0) where β̂ has been learned by B-GAN (Algorithm

3) is likely to yield datasets similar to X0, thereby producing a tighter upper bound than a

flat prior.

We provide clarifications of the calculations and reasoning in Remark 24. We assume that

a prior distribution π̃(θ) has been used in the ABC reference table that yields the marginal

π̃(X) =
∫
X p

(n)
θ (X)π̃(θ)dθ. Recall the definition of the reweighted posterior reconstruction

in (3.33) and (3.32). Denote with

gβ̂(θ)(X) ≡ π(θ |X)− πβ̂(θ |X) = R(X)× r(θ)× [π̃(θ |X)− π̃β̂(θ |X)]

the difference between true and approximated posteriors at X, where β̂ has been trained

using the proposal π̃(θ) and where R(X) = π̃(X)/π(X) and r(θ) = π(θ)/π̃(θ). Using similar

arguments as in the proof of Theorem 19, the squared TV distance of the posterior and its
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approximation satisfies, for any element fω ∈ F = {f : ‖f‖∞ ≤ B},

4 d2
TV (ν(X0), µβ̂(X0)) ≤

∫
Θ

log
π(θ |X0)

πβ̂(θ |X0)
gβ̂(θ)(X0)dθ

=

∫
Θ

[
log

π(θ |X0)

πβ̂(θ |X0)
− fω(X0, θ)

r(θ)

]
gβ̂(θ)(X0)dθ

+

∫
X
π(X)

∫
Θ

fω(X, θ)

r(θ)
gβ̂(θ)(X0)dθdX

+

∫
X

π(X)

r(θ)

∫
Θ

[fω(X0, θ)− fω(X, θ)]gβ̂(θ)(X0)dθdX

≤2 inf
ω

∥∥∥∥log
π(θ |X0)

πβ̂(θ |X0)
− fω(X0, θ)

r(θ)

∥∥∥∥
∞

+ dF (ν̃, µ̃β̂)

+ 2

∫
X
π̃(X)‖fω(X0, θ)− fω(X, θ)‖∞dX

+ 2B ×
∫
X
π̃(X)

∥∥∥∥ gβ̂(θ)(X)

R(X)r(θ)
− gβ̂(θ)(X0)

R(X0)r(θ)

∥∥∥∥
1

dX.

The term dF (ν̃, µ̃β̂) can be bounded as in the proof of Corollary 20 by

B√
2
Ã2(G) + 4C̃ B

√
log T × Pmax

T

Compared to Corollary 20, the upper bound on d2
TV (ν(X0), µβ̂(X0)) now involves the dis-

criminability evaluated at X0 (not averaged over the marginal π̃(X)), i.e.

A1(F ,G, X0) ≡ sup
β:gβ∈G

inf
ω:fω∈F

∥∥∥∥∥log
π(θ |X0)

πβ(θ |X0)
− fω(X0, θ)

r(θ)

]
.

The additional two terms in the upper bound involve integration over π̃(X).
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3.7.1.4 Clarification of Remark 23

With εn = O(1/
√
n) we need to verify that for some suitable choice of Cn →∞ we have as

n→∞

A1(F ,G) = o(e−Cn) (3.34)

A2(G) = o(e−Cn) (3.35)
log T

T
×
[
Pdim(F) ∨ Pdim(H)

]
= o(e−2Cn) (3.36)

for T that is large enough, i.e. T ≥ Pdim(F)∨Pdim(H). The term A2(G) equals zero from

our assumption of representability of π(θ,X) = πgβ0
(θ,X) for gβ0

∈ G, which verifies (3.35).

We assume that X(n) is a stacked vector of n observed vectors of length q, not necessarily

iid, and denote d∗ = d+ nq. Using leaky ReLU networks and assuming representability, for

any β such that gβ ∈ G the log posterior ratio rβ(θ,X(n)) = log
π(θ |X(n))

πβ(θ |X(n))
is continuous

and, due to boundedness of the network weights, satisfies

0 < C ≤ rβ(θ,X(n)) ≤ C̄ <∞

for any fixed d∗. With large enough T and setting E = [− log T, log T ]d
∗
and R = log T ,

Lemma 50 yields that there exists a ReLU network fω ∈ F with a width

W = 3d
∗+3 max{d∗bN1/d∗c, N + 1}

and depth L = 12 log T + 14 + 2d∗ such that

A1(F ,G) ≤ sup
β:gβ∈G

inf
ω:fω∈F

‖rβ(θ,X(n))− fω(X(n), θ)‖L∞(E) ≤ 19
√
d∗ωEf (2(log T )1−2/d∗N−2/d∗),
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where ωEf is the modulus of continuity of f(t) satisfying ωEf (t)→ 0 as t→ 0+. Choosing N

such that 2d
∗/2(log T )d

∗/2−1 = o(N) as T → ∞, the right-hand side above goes to zero for

any fixed d∗ = d + nq. For each n, we can find T large enough (depending on the modulus

of continuity) such that A1(F ,G)eCn
√
d∗ ≤ ηn for some ηn = o(1), yielding (3.34). The

smallest T that satisfies this will be denoted with Tn.

In order to verify (3.36), Theorem 14.1 in Anthony and Bartlett (1999) and Theorem 6

in Bartlett et al. (2017) show that for piecewise linear activation functions (including ReLU

and leaky ReLU) there exist constants c, C > 0 such that

c× SL log(S/L) ≤ Pdim(F) ≤ C × SL logS,

where F is a class of discriminator networks with L layers and S parameters. Since elements

in H can be regarded as sparse larger neural networks with L+L∗ layers, S+S∗ parameters

and piece-wise linear activations, we have

Pdim(F) ∨ Pdim(H) ≤ C × (S + S∗)(L+ L∗) log(S + S∗).

Our assumption T ≥ Pdim(F) ∨ Pdim(H) will thus be satisfied, for instance, when

T > C × (S + S∗)(L+ L∗) log(S + S∗). (3.37)

Choosing N = b2d∗/2(log T )d
∗/2c, which satisfies the requirement 2d

∗/2(log T )d
∗/2−1 = o(N)

as T →∞, yields

W = 3d
∗+3 max{d∗bN1/d∗c, N + 1} = 3d

∗+3b2d
∗/2(log T )d

∗/2 + 1c (3.38)

for a sufficiently large n (and thereby d∗). Recall that in the feed-forward neural networks,

the total number of parameters S =
∑L−1
l=0 [wl(wl + 1)] satisfies S ≤ LW (W + 1). For any
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fixed d∗ (and thereby n), assuming L = 12 log T + 14 + 2d∗ as before and W as in (3.38), we

define T (d∗) as the smallest T that satisfies

C × [LW (W + 1) + S∗](L+ L∗) log[LW (W + 1) + S∗] ≤ T

log T
× e−2Cn × ηn

for some ηn = o(1). Any T > T (d∗) satisfies T > Pdim(F)∨Pdim(H) and e2Cn log T
T [Pdim(F)∨

Pdim(H)] ≤ ηn. With T ≥ max{Tn, T (d∗)}, the condition (3.36) is verified.

Lemma 25. (Zhou et al., 2022, Lemma B5) Let f be a uniformly continuous function defined

on E ⊂ [−R,R]d. For any L,N ∈ N+, there exists a ReLU network function fφ with width

3d+3 max{dbN1/dc, N + 1} and depth 12L+ 14 + 2d such that

‖f − fφ‖L∞(E) ≤ 19
√
dωEf (2RN−2/dL−2/d),

where ωEf (t) is the modulus of continuity of f(t) satisfying ωEf (t)→ 0 as t→ 0+.

3.7.1.5 Theory for Adversarial Variational Bayes

Theorem 26. Let β̂T be as in (3.39) where F = {f : ‖f‖∞ ≤ B} for some B > 0. Denote

with E the expectation with respect to {Zj}Tj=1 in the reference table. Assume that the prior

satisfies (3.25). Then for T ≥ Pdim(F ◦ G) we have for any Cn > 0

P
(n)
θ0

E d2
TV

(
ν(X0), µβ̂T (X0)

)
≤ DTn (F ,G, εn, Cn),

where

DT
n (F ,G, εn, Cn) =

A3(F ,G)

2
+

1

C2
nnε

2
n

+
1

2
C̃

√
log T

T
Pdim(F ◦ G)+

e(1+C2+Cn)nε2
n

4

B√
2
A2(G)
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for some C̃ > 0 where A2(G) was defined in (3.24) and where

A3(F ,G) = P
(n)
θ0

E
∥∥∥∥log

πβ̂T (θ |X0)

π(θ |X0)
− fω(β̂T )(X0, θ)

∥∥∥∥
∞
.

Here E account for the nested randomness in the estimation process of ω(β̂T ) and β̂T .

Proof. We denote with Ē the expectation with respect to the empirical distribution. Because

the class F is symmetrical (i.e. f ∈ F implies −f ∈ F), the adversarial variational Bayes

estimator is defined as

β̂T = arg min
β:gβ∈G

[
ĒZ∼πZfω(β)

(
X0, gβ(Z,X0)

)
− Eθ∼π(θ |X0)fω(β) (X0, θ)

]
(3.39)

where

ω(β) = arg max
ω:fω∈F

[
ĒZ∼πZ ,X∼π(X)fω

(
X, gβ(Z,X)

)
− Ē(θ,X)∼π(θ,X)fω(X, θ)

]
.

Note that the (stochastic) gradient descent update for β, conditioning on the most recent

value of ω, does not involve the second term Eθ∼π(θ |X0)fω(β) (θ,X0) in (3.39) because

it does not depend on β. The minimization occurs only over the first term. We obtain

theoretical results for β̂T and note that our Algorithm 5 targets this estimator. In the

sequel, we denote β̂T simply by β̂ and use the notation πβ(θ,X) = πβ(θ |X)π(X) for the

joint generator model. Using the Pinsker inequality we obtain

P
(n)
θ0

E4 d2
TV (ν(X0), µβ̂(X0)) ≤P (n)

θ0
E
∫

Θ
log

π(θ |X0)

πβ̂(θ |X0)

[
π(θ |X0)− πβ̂(θ |X0)

]
dθ

≤P (n)
θ0

E2

∥∥∥∥log
πβ̂(θ |X0)

π(θ |X0)
− fω(β̂)(X0, θ)

∥∥∥∥
∞

+ P
(n)
θ0

Edβ̂(νβ̂(X0), µ(X0)),

103



where we define (for any β, β̃ such that gβ ∈ G and g
β̃
∈ G)

d
β̃

(νβ(X), µ(X)) ≡ Eθ∼πβ(θ |X)fω(β̃)
(X, θ)− Eθ∼π(θ |X)fω(β̃)

(X, θ).

From the definition of (3.39) and since F ◦G is symmetrical, we have for any realization X0

and for any β

dβ̂(νβ̂(X0), µ(X0)) = dβ̂(νβ̂(X0), ν̄β̂(X0)) + dβ̂(ν̄β̂(X0), µ(X0))

≤ dβ̂(νβ̂(X0), ν̄β̂(X0)) + dβ(ν̄β(X0), µ(X0)) (3.40)

≤ dF (νβ̂(X0), ν̄β̂(X0)) + dβ(ν̄β(X0), νβ(X0)) + dβ(νβ(X0), µ(X0))

≤ 2dF◦G(πZ , π̄Z) + dβ(νβ(X0), µ(X0)).

Next, using the same arguments as in the proof of Theorem 19, we obtain

P
(n)
θ0

Edβ(νβ(X0), µ(X0)) ≤ 4P(n)
θ0

[Acn(ε)] + e(1+Cn+C2)nε2E
∫
X
dβ(νβ(X), µ(X))π(X)dX

Since ‖fω(β)‖∞ ≤ B, we have for any β

EXdβ(µβ(X), ν(X)) =

∫
X
π(X)

∫
Θ
fω(β)(X, θ)

[
π(θ |X)− πβ(θ |X)

]
dθdX

≤ B × EXdTV (µβ(X), ν(X))

≤ B√
2
EX

√√√√∥∥∥∥∥log
π(θ |X)

πβ(θ |X)

∥∥∥∥∥
∞
.

In the sequel, we choose β which minimizes this term. Next, using the symmetrization

techniques as before in the proof of Theorem 19 and denoting with E the expectation with
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respect to {Zj}Tj=1, we have

dF◦G(πZ , π̄Z) ≤ ERn(F ◦ G) ≤ C̃

√
log T

T
Pdim(F ◦ G).

Putting the pieces together, we obtain an upper bound for P (n)
θ0

E d2
TV

(
ν(X0), µβ̂T (X0)

)
.
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CHAPTER 4

UNCERTAINTY QUANTIFICATION FOR SPARSE DEEP

LEARNING

Deep learning methods continue to have a decided impact on machine learning, both in

theory and in practice. Statistical theoretical developments have been mostly concerned

with approximability or rates of estimation when recovering infinite dimensional objects

(curves or densities). Despite the impressive array of available theoretical results, the

literature has been largely silent about uncertainty quantification for deep learning.

This paper takes a step forward in this important direction by taking a Bayesian point

of view. We study Gaussian approximability of certain aspects of posterior distributions

of sparse deep ReLU architectures in non-parametric regression. Building on tools from

Bayesian non-parametrics, we provide semi-parametric Bernstein-von Mises theorems

for linear and quadratic functionals, which guarantee that implied Bayesian credible

regions have valid frequentist coverage. Our results provide new theoretical justifica-

tions for (Bayesian) deep learning with ReLU activation functions, highlighting their

inferential potential.

4.1 Introduction

Neural networks have emerged as one of the most powerful prediction systems. Their empir-

ical success has been amply documented in many applications including image classification

(Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012a) or game intelligence

(Silver et al., 2016). Beyond algorithmic developments, there has been a rapid progress in

theoretical understanding of deep learning (Anthony and Bartlett, 2009). The majority of

. Adopted from Yuexi Wang and Veronika Ročková. Uncertainty quantification for sparse deep learning.
In International Conference on Artificial Intelligence and Statistics, pages 298–308. PMLR, 2020.
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existing statistical theory has been concerned with prediction aspects, e.g. approximability

(Telgarsky, 2016; Yarotsky, 2017; Vitushkin, 1964) or rates of convergence (either from a

frequentist point of view (Mhaskar et al., 2017; Poggio et al., 2017; Schmidt-Hieber, 2020) or

a Bayesian point of view (Polson and Ročková, 2018)). A distinguishing feature of statistics,

that goes beyond mere construction of prediction maps, is providing uncertainty quantifi-

cation (UQ) for inference (hypothesis testing and confidence assessments). The statistical

approach to uncertainty quantification uses observations to construct a random subset (con-

fidence set) which contains the truth with large probability. While computational methods

such as Boostrapped DQN (Osband et al., 2016) and Deep Ensembles (Lakshminarayanan

et al., 2017) have been proposed to quantify predictive uncertainty, theoretically justifiable

developments on UQ for deep learning are more rare.

A structured approach to the problem of uncertainty assessment lies in Bayesian hier-

archical modeling. The Bayesian paradigm for deep learning places a probabilistic blanket

over architectures/parameters and allows for uncertainty quantification via posterior distri-

butions (Neal, 1993). While exact Bayesian inference is computationally intractable, many

approximate methods have been developed including MCMC (Neal, 2012), Variational Bayes

(Ullrich et al., 2017), Bayes by Backprop (Blundell et al., 2015), Scalable Data Augmenta-

tion (Wang et al., 2022b), Monte Carlo Dropout (Gal and Ghahramani, 2016), Hamiltonian

methods (Springenberg et al., 2016). The Bayesian inference is fundamentally justified by

the Bernstein-von Mises (BvM) theorem. The BvM phenomenon occurs when, as the num-

ber of observations increases, the posterior distribution is approximately Gaussian, centered

at an efficient estimator of the parameter of interest. Moreover, the posterior credible sets,

i.e. regions with prescribed posterior probability, are then also confidence regions with the

same asymptotic coverage. While the BvM limit is not unexpected in regular parametric

models, infinite-dimensional notions of BvM are far from obvious (see e.g. Castillo and Nickl

(2013)).
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Our paper deals with uncertainty quantification. Our approach is inherently Bayesian

and, as such, is conceptually epistemic where uncertainty about the unknown state of nature

is expressed through priors and coherently updated with the data. The frequentist notion of

uncertainty is primarily aleatoric as it reflects variability in possible realizations of an event

that is largely stochastic in nature and is irreducible. The premise of the BvM phenomenon

is that these two uncertainties, while qualitatively very different, are not mutually exclusive

in the sense that their quantifications can agree. Priors that are not subjective and more

automatic do not necessarily adhere to epistemic interpretation and can yield aleatoric mea-

sures of quantification. Our work sheds light on the fact that frequentist calibration is an

attainable goal of Bayesian statistical procedures, where the BvM phenomenon facilitates

communication of uncertainty using the more universally understood frequentist concept

(Dawid, 1982).

In this note, we study the semi-parametric BvM phenomenon concerning the limiting

behavior of the posterior distribution of certain low-dimensional summaries of a regression

function. In particular, we assume a non-parametric regression model with fixed covariates

and sparse deep ReLU network priors, which have been recently shown to attain the opti-

mal speed of posterior contraction (Polson and Ročková, 2018). Building on Castillo and

Rousseau (2015), who laid down the general framework for semi-parametric BvMs, and on

Polson and Ročková (2018), we formulate asymptotic normality for linear and quadratic

functionals. Related semi-parametric BvM results have been established for density estima-

tion (Rivoirard and Rousseau, 2012), Gaussian process priors (Castillo, 2012a,b), covariance

matrix (Gao and Zhou, 2016) and tree/forest priors (Ročková, 2020). Our results provide

new frequentist theoretical justifications for Bayesian deep learning inference with certain

aspects of a regression function.

Our analysis focuses on sparse deep ReLU networks. Deep networks have been shown

to outperform shallow ones in terms of representation power (Telgarsky, 2016), model com-
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plexity (Mhaskar et al., 2017) and generalization (Kawaguchi et al., 2017). The ReLU

squashing function has been generally preferred due to its expressibility and inherent spar-

sity. For instance, Yarotsky (2017) provides error bounds for approximating polynomials

and smooth functions with deep ReLU networks. Schmidt-Hieber (2020) showed that deep

sparse ReLU networks can yield rate-optimal reconstructions of smooth functions and their

compositions. Sparse architectures (in addition to ReLU) can reduce the test error. For ex-

ample, sparsification can be achieved with dropout (Srivastava et al., 2014) which averages

over sparse structures by randomly removing nodes and, thereby, alleviates overfitting. More

recently, Polson and Ročková (2018) proposed Spike-and-Slab Deep Learning (SS-DL) as a

fully Bayesian variant of dropout. Their framework provably does not overfit and achieves

an adaptive near-minimax-rate optimal posterior concentration. Liu (2021) studies the BvM

phenomena for the gradient function of Bayesian deep ReLU network and proposes a variable

selection method based on the credible intervals. We continue the theoretical investigation

of SS-DL in this paper.

Similar to Ročková (2020), we consider a non-parametric regression model where re-

sponses Y (n) = (Y1, . . . , Yn)′ are linked to fixed covariates xi = (xi1, . . . , xip)
′ ∈ [0, 1]p for

i = 1, . . . , n as follows

Yi = f0(xi) + εi, εi
iid∼ N(0, 1), (4.1)

where f0 ∈ Hαp is an α-Hölder smooth function on a unit cube [0, 1]p for some α > 0. The

true generative model implied by (4.1) will be denoted by Pn0 . We want to reconstruct f0

with f ∈ F , where the model class F is assigned a prior distribution Π. Our goal is to study

the asymptotic behavior of the posterior distribution

Π
[√

n(Ψ(f)− Ψ̂) |Y (n)
]
,

where Ψ : F → R is a measurable function of interest and where Ψ̂ is a random centering

109



point (see Theorem 2.1 in Castillo and Rousseau (2015)).

Two functionals are considered in our work. The first one is the linear functional

Ψ(f) =
1

n

n∑
i=1

a(xi)f(xi), (4.2)

with a constant weighting functions a(·). We discuss potential generalizations to the non-

constant case later in Section 5.6 . The second functional of interest is the squared-L2

norm

Ψ(f) = ‖f‖2L , (4.3)

where ‖f‖2L = 1
n

∑n
i=1[f(xi)]

2. Note that ‖·‖L corresponds to the LAN (locally asymptoti-

cally normal) norm, which is equivalent to the empirical L2-norm ‖·‖n in our model. There

is extensive literature on minimax estimation of linear and quadratic functionals, initiated

in Ibragimov and Khasminskii (1985) and followed by Cai and Low (2005); Efromovich and

Low (1996); Collier et al. (2017), to name a few. While the linear functional is useful for

inference about the average regression surface, the quadratic functional is useful in many

testing problems, including construction of confidence balls (Cai and Low, 2006a) and good-

ness of fit tests (Dümbgen, 1998; Butucea, 2007). We study adaptive estimation of the two

functionals from a Bayesian perspective.

First, we give the definition of asymptotic normality.

Definition 27. Denote with β the bounded Lipschitz metric for weak convergence and with

τn the mapping τn : f →
√
n(Ψ(f) − Ψn). We say that the posterior distribution of the

functional Ψ(f) is asymptotically normal with centering Ψn and variance V if

β(Π[· | Y (n)] ◦ τ−1
n ,N (0, V ))→ 0, (4.4)

in Pn0 -probability as n → ∞. We will write this more compactly as Π[· | Y (n)] ◦ τ−1
n  
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N (0, V ).

Next, we say that the posterior distribution satisfies the BvM theorem if (4.4) holds with

Ψn = Ψ̂ + oP ( 1√
n

) for Ψ̂ a linear efficient estimator of Ψ(f0).

Castillo and Rousseau (2015) provide general conditions on the model and on the function

Ψ(·) to guarantee that the BvM phenomenon holds. Our results are built on the first-order

approximation technique developed in their work. Essentially, we want to show that the

sparse deep learning posterior can approximate both f0 and the linear expansion term well

enough so that the remainder term vanishes when n→∞.

The rest of our paper is organized as follows. Section 4.2 defines sparse ReLU networks

and reviews the posterior concentration results. Section 4.3 contains the main results of

BvM properties of the two functionals and Section 4.4 discusses extensions to adaptive

priors. Section 4.5 concludes with a discussion.

4.2 Deep ReLU Networks

We follow the notation used in Polson and Ročková (2018). We denote with F(L,p, s) the

class of sparse ReLU networks with L ∈ N layers, a vector of p = (p0, . . . , pL+1)′ ∈ NL+2

hidden units and sparsity level s ∈ N, which is the upper bound on the number of nonzero

parameters. In our model, we have p0 = p and pL+1 = 1. Each function fDLB (x) ∈ F(L,p, s)

takes the form

fDLB (x) = WL+1σbL

(
WLσbL−1

· · ·σb1(W1x)
)

+ bL+1 (4.5)

where bl ∈ Rpl are shift vectors and Wl are pl × pl−1 weight matrices that link neurons

between the (l − 1)th and lth layers and σb(x) is the squashing function. Throughout this

work, we assume the rectified linear (ReLU) function σb(x) = max(x + b, 0) which applies

to vectors elementwise. Note that the top layer shift parameter bL+1 is outside the ReLU

111



function since the top layer is only a linear function. We denote the sets of all model

parameters with

B = {(W1, b1), . . . , (WL, bL), (WL+1, bL+1)}. (4.6)

Let Zl ∈ Rpl represent the hidden nodes of the lth layer obtained as

Zl(x) = σbl(WlZl−1(x)), for l = 1 . . . , L,

Z0(x) = x.

We use Z = {Zl}Ll=1 to represent the collection of all hidden neurons. Their values are com-

pletely determined by {Wl, bl}Ll=1, independently of the top layer parameters {WL+1, bL+1}.

4.2.1 Spike-and-Slab Priors

We place a probabilistic structure on B that is slightly different from Polson and Ročková

(2018). In particular, we remove the spike-and-slab prior on the top layer L to obtain a fully-

connected top layer for each function fDLB (x). Such a relaxation on the top layer facilitates

the change of measure step in our results. Later we show that having a fully connected top

layer does not affect the network approximability and the posterior concentration rate.

We convert B into a vector by stacking {Wl, bl}L+1
l=1 from the bottom to the top and

denote B = (β1, . . . , βT )′, where T =
∑L
l=0 pl+1(pl + 1) is the number of parameters in a

fully connected network with L layers and a vector of p neurons. Note that {βj}j>T−(pL+1)

corresponds to the top layer {WL+1, bL+1}. Then the priors on B are

π(βj | γj) = γj π̃(βj) + (1− γj)δ0(βj), (4.7)

with

γj = 1 for j > T − (pL + 1), (4.8)
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where π̃(β) is specified as

π̃(βj) =

 N(0, 1), j > T − pL + 1,

Uniform[−1, 1], j ≤ T − pL + 1,
(4.9)

i.e., the top layer weights follow standard normal distribution, while the deep weights follow

uniform distribution on [−1, 1]. δ0(β) is a dirac spike at zero, and γj ∈ {0, 1} for whether

or not βj is nonzero. We let γj = 1 for all j > T − (pL + 1) so that the top layer is fully

connected. The vector γ = (γ1, . . . , γT )′ encodes the connectivity pattern below the top

layer. We assume that, given the network structure and the sparsity level s = |γ| > pL, all

architectures are equally likely a priori, i.e.

π(γ | p, s) =
I(γj = 1 for j > T − pL − 1)(T−pL−1

s−pL−1

) . (4.10)

We denote with Vp,s the set of all combinatorial possibilities of connectivity patterns below

the top layer. For a given sparsity level s, we can write

F(L,p, s) =
⋃

γ∈Vp,s
F(L,p, γ), (4.11)

where each shell F(L,p, γ) consists of all uniformly bounded functions fDLB with the same

connectivity pattern γ, i.e. F(L,p, γ) = {fDLB (x) ∈ F(L,p, s) : fDLB (x) as in (5.2) with B

arising from (4.7) for a given γ ∈ Vp,sand where
∥∥∥fDLB (x)

∥∥∥
∞
< F} for some F > 0.

Remark 28. The prior for the deep coefficients βj in (4.9) can be replaced by

π̃(βj) = N(0, 1),∀j = 1, . . . , T. (4.12)

The posterior concentration rate can be also shown to be rate-optimal under this prior. The
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sketch of the proof is given after Theorem 7.1 in Wang and Ročková (2020). Moreover, the

BvM property for this prior can be immediately concluded from our proofs of Theorems 29,

31 and 32.

4.2.2 A Connection between Deep ReLUs and Trees

Before proceeding, it will be useful to revisit a connection between networks and trees. Recall

that any deep ReLU network function can be written as a sum of local linear functions, i.e.

fDLB (x) =
K∑
k=1

I(x ∈ Ωk)(β̃′kx+ α̃k), (4.13)

where {Ωk}Kk=1 is a partition of the predictor space made by recursive ReLU layers (see

Polson and Sokolov (2017) for illustrations). Both the partition {Ωk}Kk=1 and the coefficients

of the local linear functions {β̃k, α̃k}Kk=1 are determined from {Wl, bl}L+1
l=1 . We have omitted

the dependence on B for simplicity of notation.

Balestriero and Baraniuk (2018) view ReLU as Max-Affine Spline Functions (MASO) and

describe how the local linear functions and partitions are determined from weights B. They

point out that the partition by layer l contains up to 2pl convex conjoint regions. In practice,

however, many of them could be empty intersections. Montufar et al. (2014) shows that the

number of linear regions K of ReLU networks is upper-bounded by 2T and lower-bounded

by (
∏L−1
l=1 b

pl
p c

p)
∑p
j=1

(pL
j

)
. Hanin and Rolnick (2019) further measure the volume of the

boundaries between these regions.

Deep ReLU networks are similar to trees/forests methods in the sense that they also

partition the predictor space. In fact, any regression tree can be represented by a neural

network with a particular activation function, as we illustrate below using an example from

Biau et al. (2016).
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4.2.2.0.1 Example 1 Define an activation function τb : R→ {−1, 1} such that

τb(x) = 2Ix+b≥0 − 1.

We can reconstruct a two-dimensional (p = 2) example in Figure 4.1(a) with a neural network

as

Z1 = τ−b1(X1), Z2 = τ−b2(X2), Z3 = τ−2(−Z1 + Z2),

Z4 = τ−2(Z1 + Z2), Z5 = τ−1(Z1), fDLB (x) =
5∑
i=3

WiZi.

where b1 and b2 set the decision boundaries along (X1, X2) axes in the tree, and {Wi}5i=3

are the jump sizes in each leaf node. A more detailed explanation of the choice of weights

can be found in Biau et al. (2016). By analogy, the hierarchical segmentation is determined

by the deep layers while the values of the leaf nodes are assigned by the top layer.

(a) Example 1 (b) Example 2

Figure 4.1: Visualization of the two examples

Deep ReLU networks use a different activation function and thereby place fewer restric-

tions on the geometry of the partition boundaries (shards as opposed to boxes). There are
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two aspects that make the analysis of deep ReLU networks more difficult. First, the parti-

tioning lines do not align with coordinate axes when Wl 6= 0. Second, the partitioning cells

{Ωk}Kk=1 and the local linear coefficients {β̃k, α̃k}Kk=1 are related as they both depend on the

unknown coefficients {Wl, bl}Ll=1. In tree models, on the other hand, they are independent

parameters.

To illustrate the correspondence between the partitions and local linear functions as well

as their relationship to B, we consider the following toy example.

4.2.2.0.2 Example 2 Consider L = 1, p = 2 and p1 = 2. Given the weights and shifts

as

W1 =

 W 1
1

W 1
2

 , b1 = (b11, b
1
2),W2 =

 W 2
1

W 2
2

 , b2 = b2,

we can write the model as

Z1 = σb11
(W 1

1x), Z2 = σb12
(W 1

2x), fDLB (x) = σb2(W 2
1Z1 +W 2

2Z2).

Then the corresponding {β̃k, α̃k,Ωk}5k=1 for each local linear function can be organized as

i β̃i α̃i Ωi

1 W 2
1W

1
1 +W 2

2W
1
2 W 2

1 b
1
1 +W 2

2 b
1
2 + b2 A1 ∩ A2 ∩ A3

2 W 2
1W

1
1 W 2

1 b
1
1 + b2 A1 ∩ Ac2 ∩ A4

3 W 2
2W

1
2 W 2

2 b
1
2 + b2 Ac1 ∩ A2 ∩ A5

4 0 max(b2, 0) Ac1 ∩ A
c
2

5 0 0 (Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4)c

with

A1 = {x : W 1
1x+ b11 > 0}, A2 = {x : W 1

2x+ b12 > 0}, A3 = {x : β̃1x+ α̃1 > 0},

A4 = {x : β̃2x+ α̃2 > 0}, A5 = {x : β̃3x+ α̃3 > 0}.
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Here we use Aci to denote the complement of set Ai, i.e., Aci = {x ∈ R2 : x /∈ Ai}. The

covariance matrix of {β̃k}3k=1 is

Var


β̃1

β̃2

β̃3

 =
2

9


2 1 1

1 1 0

1 0 1

 .

This example is plotted in Figure 4.1(b), where the boundaries of the partitions are nested

according to {β̃k, α̃k}5k=1 and determined by {Wl, bl}2l=1.

4.2.3 Posterior Concentration

One essential prerequisite for our BvM analysis is optimal rate of posterior convergence. Pol-

son and Ročková (2018) (PR18) showed that sparse deep ReLUs attain the near-minimax

optimal rate and are adaptive to unknown smoothness under suitable priors on the architec-

ture size.

Here, we use a modified prior with a fully connected top linear layer (as given by (4.8)).

The posterior concentration result still holds. Indeed, for an arbitrary sparse network, there

exists at least one network with a fully connected linear layer that achieves the same ap-

proximation error. The approximability of our class of networks is thus the same as the

class considered in PR18. We illustrate how such a network can be constructed in Wang and

Ročková (2020, Lemma 7.1).

Denoting (L∗, N∗, s∗) as in Theorem 5.1 of PR18 and choosing the parameters of the

network as  L = L∗ + 1 � log(n),

s = s∗ + 24pN∗ . np/(2α+p),
(4.14)

we define

AMn = {fDLB ∈ F(L,p, s) :
∥∥∥fDLB − f0

∥∥∥
L
≤Mξn} (4.15)
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with ξn = n−α/(2α+p) logδ(n) for some M > 0 and δ > 0. As we formalize in Lemma 35,

one can show Π[AMn
n |Y (n)] = 1 + oP (1) for any Mn →∞ and uniformly bounded α-Hölder

mappings f0.

Our analyses in Section 4.3 will be performed locally on sets AMn
n where the posterior

concentrates.

4.3 Semi-parametric BvM’s

Locally on the sets An ≡ AMn
n we will perform expansions of the log-likelihood as well as

the functional Ψ. The log-likelihood is denoted with

`n(f) = −n
2

log 2π −
n∑
i=1

[Yi − f(xi)]
2

2
.

and the log-likelihood ratio ∆`(f) = `(f) − `(f0) can be expressed as a sum of a quadratic

term and a stochastic term via the LAN expansion as follows

∆`(f) = −n
2
‖f − f0‖2L +

√
nWn(f − f0)

where

Wn(f − f0) = 〈f − f0,
√
nε〉L

=
1

n

n∑
i=1

√
nεi[f0(xi)− f(xi)].

We focus on the first-order approximations of the functionals. For any f ∈ An, we write

Ψ(f) = Ψ(f0) + 〈Ψ(1)
0 , f − f0〉L + r(f, f0).
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The first-order term Ψ
(1)
0 is equal to a for linear functionals (4.2) and 2f0 for the quadratic

functional (4.3). The inner product 〈·, ·〉L is defined as 〈g, h〉L = 1
n

∑n
i=1 g(xi)h(xi) for two

functions g and h.

Before we dive into the main development, we recall the results in Castillo and Rousseau

(2015) which will be leveraged in our analysis.

There are two sufficient conditions for obtaining weak asymptotic normality as defined

in (4.4). The first one is the vanishing remainder

sup
f∈An

∣∣t√nr(f, f0)
∣∣ = oP (1). (4.16)

The second one is verifying

∫
An

e`n(ft)−`n(f0)dΠ(f)∫
An

e`n(f)−`n(f0)dΠ(f)
= 1 + oP (1),∀t ∈ R, (4.17)

where ft = f − tΨ
(1)
0√
n
.

The second condition in (4.17) can be shown with a change of measure argument and it

guarantees that the posterior has no extra bias term. With these two conditions satisfied,

the posterior behavior of
√
n(Ψ(f) − Ψ̂) is asymptotically mean-zero normal with variance

V0 =
∥∥∥Ψ

(1)
0

∥∥∥2

L
, where

Ψ̂ = Ψ(f0) +
Wn(Ψ

(1)
0 )

√
n

is a random centering point.

A crucial step is performing the change of measure in (4.17), where we replace f with

a shifted function ft in the integration. This is complicated by the fact that the shifted

function ft does not necessarily have to correspond to a deep ReLU network from the class

F(L,p, s). In the analysis of trees, for instance, one can condition on the partition parameter

and perform the shift of measure on functions supported on the same partition, where the
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shift only affects step heights. For a deep ReLU network, however, partitions Ωk and local

linear coefficients (̃bk, α̃k) in (4.13) are not independent as they both depend on the deep

weights {Wl, bl}Ll=1. It is thereby not obvious how the shift affects the partitions and the

network coefficients. If we want to preserve the partitions of the predictor space, the only

“free" parameters left to play with are the top layer weights {WL+1, bL+1}. Similarly as for

trees, we consider conditioning on the deep coefficients {Wl, bl}Ll=1, which is equivalent to

conditioning on γ and Z = {Zl}Ll=1, and perform the change of measure only on the top

layer. We write the function class conditionally on (γ, Z) as

F(L,p, γ, Z) = {f ∈ F(L,p, s) : f = WL+1ZL + bL+1 and f has connectivity γ}. (4.18)

Since the prior of {Wl, bl}Ll=1 is continuous, there are infinitely many (γ, Z)-dependent shells

F(L,p, γ, Z) inside F(L,p, s). The general scheme of our proof is as follows. First, for each

shell F(L,p, γ, Z), we have a local centering point Ψ̂
γ
Z and a local variance V γZ . Moreover,

the shifted function ft inside each shell lives on the same partition as f and the change of

measure can therefore be performed more easily. Second, we show that Ψ̂
γ
Z and V γZ converge

uniformly to a global centering point Ψ̂ and a global variance V0 for all Z and γ inside

An. This implies that we recover the global BvM on F(L,p, s). The details of the local

projections and the proof of all theorems are in Section 4.6.

4.3.1 Linear Functionals

To start, we consider the linear functional in (4.2) where a(·) is a constant function in which

case Ψ(f) can be viewed as a constant multiple of the average regression surface evaluated
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at {xi}ni=1. Let

Ψ(f) = Ψ(f0) + 〈a, f − f0〉L, Ψ
(1)
0 = a,

Ψ̂ = Ψ(f0) +
Wn(a)√

n
, V0 = ‖a‖2L .

Theorem 29. Assume the model (4.1), where f is endowed with a prior on F (L,p, s) defined

in (4.7), (4.8) and (4.9). Assume that (4.14) is satisfied and that f0 ∈ Hαp , where p = O(1)

as n→∞, α < p and ‖f0‖∞ ≤ F . When a(·) is constant, we have

Π(
√
n(Ψ(f)− Ψ̂) | Y (n)) N(0, ‖a‖2L)

in Pn0 -probability as n→∞.

Proof. Reference to Section 4.6.4. When a(·) is constant, the shifted functions ft can be

easily constructed by shifting the top intercept bL+1 → bL+1 − ta√
n
. The projection of a is

not needed as the remainder term is zero.

Remark 30. When a(·) is not constant, we need the projection of a(·) (conditional on

(γ, Z)), denoted by aγ
[Z]

, to be close to a for all Z and γ supported by An. In order for the

BvM result to hold, we would then require the no-bias condition

〈a− aγ
[Z]
, f − f0〉L = oP

(
1√
n

)
. (4.19)

In order to verify this condition, one could view Z as a collection of random sparse ReLU

features and study the approximability of this class. Although there are some studies on

the universal approximation error of random ReLU features (Sun et al., 2019; Yehudai and

Shamir, 2019), general conditions for the approximation ability of such projections are not

yet obvious.
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4.3.2 Squared L2-norm Functional

We consider the quadratic functional in (4.3). The estimation of the L2-norm is closely

related to minimax optimal testing of hypothesis under empirical L2 distance (Collier et al.,

2017). This functional could serve as the risk function and has been used in many testing

problems (Cai and Low, 2006a; Dümbgen, 1998). The next theorem relies on the following

notation

Ψ(f) = Ψ(f0) + 2〈f0, f − f0〉L + ‖f − f0‖2L ,Ψ
(1)
0 = 2f0,

Ψ̂ = Ψ(f0) +
2Wn(f0)√

n
, V0 = 4 ‖f0‖2L .

Theorem 31. Assume the model (4.1), where f is endowed with a prior on F (L,p, s) defined

in (4.7), (4.8) and (4.9). Assume that (4.14) is satisfied and that f0 ∈ Hαp , where p = O(1)

as n→∞, α ∈ (p2 , p) and ‖f0‖∞ ≤ F . Then we have

Π(
√
n(Ψ(f)− Ψ̂) | Y (n)) N(0, 4 ‖f0‖2L)

in Pn0 -probability as n→∞.

Proof. Reference to Section 4.6.5. For this quadratic functional, we use the (γ, Z)-dependent

projection fγ
0[Z]

to approximate Ψ
(1)
0 = 2f0 so that the change of measure can be conducted

through {WL+1, bL+1}. The additional constraint α > p/2 is added to obtain ξ2
n = o( 1√

n
),

which ensures that the remainder term (4.16) vanishes.

4.4 Adaptive Priors

The results in previous section are predicated on the assumption that the smoothness α

is known. This is hardly ever satisfied in practice and the next natural step is to inquire

whether similar conclusions can be obtained when α is unknown. Similarly as PR18, instead
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of the α-dependent choices of the width N and sparsity level s in (4.14), we deploy the

following priors that adapt to smoothness

π(N) =
λN

(eλ − 1)N !
, for λ ∈ R, (4.20)

π(s) ∝ e−λss, for λs > 0. (4.21)

The parameter space now consists of shells of sparse ReLU networks with different widths

and sparsity levels, i.e.

F(L) =
∞⋃
N=1

T⋃
s=0

F(L,pLN , s), (4.22)

where F(L,pLN , s) was defined in (4.11). An approximating sieve can be constructed that

consists of sparse and not so wide networks, i.e.

Fn =

Nn⋃
N=1

sn⋃
s=0

F(L,pLN , s) (4.23)

with Nn � nξ2
n/ log n and sn � nξ2

n.

Following the same strategy as in the proof Theorem 6.2 of PR18, we extend the pos-

terior concentration result to the case of adaptive priors (4.7), (4.8), (4.20) and (4.21) (see

Theorem 37). The next step is extending the BvM results from the previous section. The

following Theorem shows that one can obtain asymptotic normality of the quadratic and

linear functionals without the exact knowledge of α.

Theorem 32. Assume the model (4.1), where f is endowed with a prior on F (L) defined

through (4.7), (4.8), (4.9), (4.20) and (4.21) with L � log(n). Assume that f0 ∈ Hαp , where

p = O(1) as n→∞, α < p and ‖f0‖∞ ≤ F .
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(i) For the linear functional Ψ(f) in (4.2) where a(·) is constant, we obtain

Π(
√
n(Ψ(f)− Ψ̂) | Y (n)) N(0, ‖a‖2L),

where Ψ̂ = Ψ(f0) + 1√
n
Wn(a).

(ii) For the square L2-norm functional Ψ(f) in (4.3), we obtain for α ∈ (p2 , p)

Π(
√
n(Ψ(f)− Ψ̂) | Y (n)) N(0, 4 ‖f0‖2L)

where Ψ̂ = Ψ(f0) + 2√
n
Wn(f0).

Proof. Reference to Section 4.6.6.

Remark 33. Similar constraints on the smoothness α have been imposed in other related

works (Farrell et al., 2021). However, unlike in other developments (Schmidt-Hieber, 2020;

Farrell et al., 2021), the convergence rates we build on are adaptive in the sense that, beyond

the assumption α < p, the exact knowledge of α is not required. When the imposed smooth-

ness assumptions do not hold, one could still obtain asymptotic normality via misspecified

BvM-type results (Kleijn and van der Vaart, 2012) but uncertainty quantification with the

implied credible sets would be problematic.

Remark 34. It is worth noting that our results do not hinge on the assumption that f0

came from the prior. Instead, f0 is an arbitrary Hölder smooth function, not necessarily a

neural network. While the model is ultimately mis-specified, our results are attainable due to

the expressibility of deep ReLU networks where one can approximate f0 with deep learning

mappings with a rapidly vanishing error. The fact that our posterior concentrates around

the truth at the optimal rate makes the derivation of BvM and valid inference feasible.
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4.5 Discussion

In this paper, we obtained asymptotic normality results for linear and squared L2-norm

functionals for deep, sparse ReLU networks. These results can be used as a basis for semi-

parametric inference and can be extended in various ways.

First, one could obtain similar formulations for general smooth linear functionals by ver-

ifying the no bias condition in (4.19). This relates to the approximation ability of random

ReLU features mentioned in Remark 30. The ReLU features act similarly as random ro-

tational trees. However, the nested nature of partitions and local linear functions make

the analysis difficult. Random features have gained much attention recently. For instance,

Rahimi and Recht (2008a) show how random features can be connected to kernel methods.

Sun et al. (2019) discuss the universal approximation bounds for compositional ReLU

features. Huang et al. (2006) and Huang (2014) provide similar results and they propose an

implementation of the extreme learning machine implementation, where only the top layer

is trained while deep layers are sampled randomly from some distribution. A time-series

variant of this algorithm is the Deep Echo State Network (Sun et al., 2017; McDermott and

Wikle, 2019).

Another way to obtain BvM for smooth linear functionals would be to construct a less-

restrictive projection of the first-order term Ψ
(1)
0 . Schmidt-Hieber (2020) shows that par-

allelization can be realized using embedding networks. The shifted function ft could be

constructed as an embedding network that simultaneously represents (f,Ψ
(1)
0 ). This repre-

sentation could leverage the approximability of smooth functions a with deep neural net-

works.

To sum up, our semi-parametric BvM results certify that (semi-parametric) inference with

Bayesian deep learning is valid and that meaningful uncertainty quantification is attainable.

Possible applications of our results include casual inference, whereby embedding our model

within a missing data framework (Ray and van der Vaart, 2020), the average functional

125



can be used for average treatment effect estimation. In this vein, our results are relevant

for the development/understanding of the widely sought after machine learning methods for

causal inference (Athey and Wager, 2017). In particular, an extension of our work along

these lines will constitute a fully-Bayesian variant of the doubly-robust plug-in approach of

Farrell et al. (2021). In addition, the main theorems (Theorem 3.1-3) provide foundations

for testing hypotheses such as exceedance of a level
∑n
i=1 f0(xi) > c. Lastly, an important

future direction will be quantifying uncertainty about the entire function f0 (not only its

functionals), which was recently formalized for Bayesian CART by Castillo and Ročková

(2021).

Our work is primarily concerned with theoretical frequentist study of the posterior dis-

tribution. Investigating practical usefulness and computation of our priors is an important

future direction. There are various ways to approximate aspects of deep learning posterior

distributions under spike-and-slab prior, see Polson and Ročková (2018) for a discussion on

possible implementations. In addition, Deng et al. (2019) proposed an adaptive empirical

Bayesian method for sparse deep learning with a self-adaptive spike-and-slab prior.

4.6 Appendix

4.6.1 Rudiments

With the prior measure Π(·) on F(L,p, s), given observed data Y (n) = (Y1, . . . , Yn)′, infer-

ence about f0 is carried out via the posterior distribution

Π(A|Y (n), {xi}ni=1) =

∫
A

∏n
i=1 Πf (Yi|xi)dΠ(f)∫ ∏n
i=1 Πf (Yi|xi)dΠ(f)

,∀A ∈ B

where B is a σ-field on F(L,p, s) and where Πf (Yi|xi) is the likelihood function for the

output Yi under f .
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4.6.2 Posterior Concentration Rate

First, we show that the posterior concentrates at the optimal (near-minimax) rate. We

modify the result in Polson and Ročková (2018) to our prior which differs in two aspects: (1)

the top layer is fully connected, (2) the top layer coefficients are assigned a Gaussian prior.

First, we show that our fully-connected top layer networks can approximate f0 as well as

the networks considered in Polson and Ročková (2018) (i.e. with a sparse top layer). The

following Lemma demonstrates how one can construct a fully connected top layer network

from any network considered in PR18 so that their outputs are the same. A graphical

illustration of this construction can be found in Figure 4.2.
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Figure 4.2: Network Construction

Lemma 35. Assume a sparse network fDLB∗ ∈ F̃(L,p∗, s∗) of the form (6) in PR18 with

a sparsity pattern γ, where F̃(L,p∗, s∗) is defined in Section 4 of PR18. With p∗ =

(p, p∗1, . . . , p
∗
L, 1) ∈ NL+2 and |γ| = s∗, there exists at least one network fDLB ∈ F(L+1,p, s)

with p = (p, p∗1, . . . , p
∗
L, p
∗
L, 1) ∈ NL+3 and |γ| = s ≤ s∗ + 2p∗L such that fDLB∗ (x) = fDLB (x)

for any x ∈ Rp.
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Proof. We construct one function fDLB that satisfies the stated conditions. We denote B =

{(Wl, bl) : 1 ≤ l ≤ L + 2} such that p = (p, p∗1, . . . , p
∗
L, p
∗
L, 1) ∈ NL+3 and choose the same

deep coefficients {Wl, bl} = {W ∗l , b
∗
l } for each 1 ≤ l ≤ L. The parameters of the top layer

are set as WL+2 = 1′p∗L
and bL+2 = b∗L+1. Choosing the matrix WL+1 in a way such that

W ′L+11p∗L
= W ∗′L+1 we obtain

fDLB (x) = WL+2ZL+1 + bL+2 = WL+2WL+1Z
∗
L + b∗L+1 = W ∗L+1Z

∗
L + b∗L+1 = fDLB∗ (x).

The procedure we use to generate WL+1 from W ∗L+1 can be found in Algorithm 6.

Algorithm 6: Network Construction of F(L+ 1,p, s) from F̃(L,p∗, s∗)
We assume W ∗L+1,1 6= 0

Initialize {Wl, bl}Ll=1 = {W ∗l , b∗l }Ll=1,WL+1 = 0pL×pL , bL+1 = 0,WL+2 = I′pL , bL+2 = b∗L+1

function h(j) := max{k ≤ j : WL+1,k 6= 0}
// the index of last connected node (up to j) in layer L+1 of fDLB∗
function ι(j) :=

∑pL
i=1 I(h(i) = h(j))

// #nodes in layer L+1 in fDLB that will be connected to ZL,h(j)

procedure Generate WL+1 from W ∗L+1

for each j = 1 : pL do
if h(j) = j // when ZL,j previously connected in fDLB∗
then

WL+1,i,i =
W ∗L+1,j

ι(j) // connect ZL,j to ZL+1,j with the averaged weights

else

WL+1,j,h(j) =
W ∗
L+1,h(j)

ι(j) // connect ZL,h(j) to ZL+1,j with the averaged weights

end
end

It turns out that the sparsity of this extended network satisfies

s = s∗ + ‖WL+2‖0 + ‖WL+1‖0 −
∥∥W ∗L+1

∥∥
0

= s∗ + 2p∗L −
∥∥W ∗L+1

∥∥
0
≤ s∗ + 2p∗L.

With the construction from Lemma 35, our network class could achieve at least the

same approximation error as the one in Schmidt-Hieber (2020). To recover the posterior

concentration rate results in Theorem 6.1 in PR18, we impose the following conditions on
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(L, s,N)


L∗ ∝ log(n)

s∗ . np/(2α+p)

N∗ ∝ np/(2α+p)/ log(n)

⇒


L = L∗ + 1 ∝ log(n)

s ≤ s∗ + 2p∗L = s∗ + 24pN∗ . np/(2α+p)

N = N∗ ∝ np/(2α+p)/ log(n)

The assumptions on the network structure (depth, width and sparsity) maintain very similar

for our new prior.

We formally state the posterior concentration result for our prior below.

Theorem 36. Assume f0 ∈ Hαp where p = O(1) as n→∞, α < p and ‖f0‖∞ ≤ F . Let L, s

be as in (4.14), and p = (p, 12pN, . . . , 12pN, 1)′ ∈ NL+2, where N = CNbnp/(2α+p)/ log(n)c

for some CN > 0. Under the priors from Section 2.1, the posterior distribution concentrates

at the rate εn = n−α/(2α+p) logδ(n) for some δ > 1 in the sense that

Π(fDLB ∈ F(L, p, s) : ‖f − f0‖n > Mnεn | Y (n))→ 0

in Pn0 probability as n→∞ for any Mn →∞.

Proof. The statement can be proved as in Rockova and Polson (2018) by verifying the fol-

lowing three conditions (adopted from Ghosal and Van Der Vaart (2007))

sup
ε>εn

log E
( ε

36
;Aε,1 ∩ Fn; ‖·‖n

)
≤ nε2n (4.24)

Π(Aεn,1) ≥ e−dnε
2
n (4.25)

Π(F\Fn) ≤ e−(d+2)nε2n for some d > 2. (4.26)

We define Fn, for some Cn = Cnp/(2α+p) log2δ(n) and C > 0, as

Fn = {fDLB ∈ F(L,p, s) : ‖WL+1‖22 + b2L+1 ≤ Cn}.
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Here Fn ⊂ F(L,p, s) is an approximating space (a sieve) consisting of functions whose

top layer weights are contained in a ball of radius
√
Cn in RpL+1. We show that this sieve

contains most of the prior mass as required in (4.26) for C > 0 large enough. Indeed, because

p = O(1) and

pL + 1 = 12 pN + 1 � np/(2α+p)/ log(n)

we have

Π(F\Fn) = P
(
‖WL+1‖22 + b2L+1 > Cn

)
= P(χ2

pL+1 > Cn) = P(e
1
4χ

2
pL+1 > e

Cn
4 ) ≤ e−

Cn
4 2(pL+1)/2 → 0.

Next, we want to verify the entropy condition (4.24). Because

{fDLB ∈ Fn : ‖f‖∞ ≤ ε} ⊂ {fDLB ∈ Fn : ‖f‖n ≤ ε}

we have

sup
ε>εn

log E
( ε

36
; f ∈ Fn; ‖·‖∞

)
. log


 2

εn/36
V (L+1)

s−(pL+1)

︸ ︷︷ ︸
(I)

 √Cn
εn/36
V (L+1)

pL+1

︸ ︷︷ ︸
(II)


. (s+ 1) log

(
72

εn
(L+ 1)(12pN + 1)2(L+1)

)
+ (pL + 1) log(np/(2α+p) log2δ(n))

. np/(2α+p) log(n) log
(
n/ logδ(n)

)
+ np/(2α+p)/ log(n) log

(
n log(n)

)
. np/(2α+p) log2(n) . nε2n

for some δ > 1, where

V =
L+1∏
l=0

(Pl + 1) (4.27)

and using the fact that s . np/(2α+p) and L � log(n).
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The covering number E( ε36 ; f ∈ Fn; ‖·‖∞) consists of two parts. The part (I) stands for

the covering number for the deep architecture, while the part (II) is the covering number

for the top layer. The calculations of the covering numbers are derived from Lemma 12 of

Schmidt-Hieber (2020) which shows

∥∥∥fDLB − fDLB∗
∥∥∥
∞
≤ ‖B −B∗‖∞ V (L+ 1)

with V defined as in (4.27). To make sure
∥∥∥fDLB − fDLB∗

∥∥∥
∞
≤ εn

36 , we want ‖B −B∗‖∞ ≤
εn/36

2V (L+1)
. Since all deep parameters are bounded in absolute value by one, we can discretize

the unit cube [−1, 1]s−pL−1 with a grid of a diameter εn/36
2V (L+1)

and obtain the covering

number in part (I). For the top layer, the weights and the bias term are contained inside a

(pL + 1)-dimensional ball with a radius
√
Cn. Part(II) for ‖·‖∞ is bounded by the εn/36

2V (L+1)
-

covering number of a Euclidean ball of radius
√
Cn in (pL+ 1)-dimensional space (Edmunds

and Triebel, 2008).

Last, we need to show that the prior concentrates enough mass around the truth in the

sense of (4.25). From Lemma 35 and Lemma 5.1 in PR18, we know that there exists a neural

network f̂
B̂
∈ Fn(L,p, s), such that

∥∥∥f̂B̂ − f0

∥∥∥
n
≤ ε/2.

We denote the connectivity pattern of f̂
B̂

as γ̂ (with ŝ = |γ̂|) and the corresponding set of

coefficients as B̂. Following the same arguments as in PR18, we have

{fDLB ∈ Fn(L,p, s) :
∥∥∥fDLB − f0

∥∥∥
n
≤ εn} ⊃ {fDLB ∈ Fn(L,p, γ̂) :

∥∥∥fDLB − f0

∥∥∥
n
≤ εn/2}.

We now denote with β ∈ RT and β̂ ∈ RT the vectorized nonzero coefficients in B and B̂

that have the sparsity pattern γ̂. We use γ(β) to pin down the sparsity pattern of β. Using
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Lemma 12 of Schmidt-Hieber (2020) we have

{
fDLB ∈ Fn(L,p, γ̂) :

∥∥∥fDLB − f0

∥∥∥
n
≤ εn/2

}
⊃
{
β ∈ RT : γ(β) = γ̂ and

∥∥∥β − β̂∥∥∥
∞
≤ εn

2V (L+ 1)

}
.

(4.28)

Altogether, we can write

Π(fDLB ∈ Fn(L,p, ŝ) :
∥∥∥fDLB − f0

∥∥∥
n
≤ εn) >

Π(fDLB ∈ Fn(L,p, γ̂) :
∥∥∥fDLB − f0

∥∥∥
n
≤ εn/2)(T−pL−1

ŝ−pL−1

)
>

1(T−pL−1
ŝ−pL−1

)Π

(
β ∈ RT : γ(β) = γ̂ and

∥∥∥β − β̂∥∥∥
∞
≤ εn

2V (L+ 1)

)
.

We note that with ŝ � np/(2α+p), L � log(n) and N � np/(2α+p)/ log(n)

1(T−pL−1
ŝ−pL−1

) ≥ e−(L+1)ŝ log(12pN) > e−D1 log2(n)np/(2α+p)

for some D1 > 0. In addition, under the uniform prior on the deep coefficients and the

standard normal prior on the top layer, we can write

Π

(
β ∈ RT : γ(β) = γ̂ and

∥∥∥β − β̂∥∥∥
∞
≤ εn

2V (L+ 1)

)
(4.29)

≥
(

εn
2V (L+ 1)

)ŝ−pL−1 ∏
j>T−pL−1

Π

(∣∣∣βj − β̂j∣∣∣ ≤ εn
2V (L+ 1)

)

=

(
εn

2V (L+ 1)

)ŝ−pL−1 ∏
j>T−pL−1

∫ εn
2V (L+1)

− εn
2V (L+1)

dΠ(βj − β̂j). (4.30)

where the last T − pL − 1 coefficients in β are the top layer weights and bias as shown in

(4.9).

We want to recenter the normal distribution at 0 rather than β̂j by using the following
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inequality

dN(β̂j , 1)

dN(0, 1
2)

= e
−1

2 (βj−β̂j)2+β2
j = e

1
2 (βj+β̂j)

2−β̂2
j ≥ e

−β̂2
j .

Then we can continue with the lower bound for (4.30) as follows

(4.30) ≥
(

εn
2V (L+ 1)

)ŝ−pL−1

e
−
∑
j>T−pL−1 β̂

2
j

(∫ εn
2V (L+1)

− εn
2V (L+1)

dN

(
0,

1

2

))pL+1

≥
(

εn
2V (L+ 1)

)ŝ−pL−1

e−Cn
(
e
−( εn

2V (L+1)
)2 εn√

πV (L+ 1)

)pL+1

≥
(

2√
2π

)pL+1( εn
2V (L+ 1)

)ŝ
e−Cne

− (pL+1)εn

4(12pN+1)(L+1)(L+1) ≥ e−D2n
p/(2α+p) log2(n)

for some D2 > 0 and recall that Cn = Cnp/(2α+p) log2δ(n).Thus we can combine the bounds

and conclude that e−(D1+D2)np/(2α+p) log2(n) ≥ e−dnε
2
n for some δ > 1 and d > D1 + D2.

The proof is now complete.

It is worth noting that the same concentration rate still holds if we use N(0, 1) prior on

all parameters. We could define

Fn = {‖β‖22 ≤ Cn}.

The prior mass condition in (4.26) is

Π(F\Fn) = P(χ2
s > Cn) ≤ e−C1n

p/(2α+p) log2δ(n).
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The entropy condition in (4.24) is

sup
ε>εn

log E(
ε

36
, f ∈ Fn; ‖·‖∞) . log


 √

Cn
εn/36
V (L+1)

s
. (s+ 1) log

(
72

εn
(L+ 1)(12pN + 1)2(L+1)

)
+ s log(Cnp/(2α+p) log2δ(n))

. np/(2α+p) log(n) log
(
n/ logδ(n)

)
+ np/(2α+p) log(n log(n))

. nε2n

for some δ > 1, using the fact that s . np/(2α+p) and L � log(n).

The prior concentration condition in (4.25) can be proved by changing (4.30) into

Π(β ∈ RT : γ(β) = γ̂,
∑
j

β2
j ≤ Cn and

∥∥∥β − β̂∥∥∥
∞
≤ εn

2V (L+ 1)
)

≥ e
−
∑
j β̂

2
j

(∫ εn
2V (L+1)

− εn
2V (L+1)

dN(0,
1

2
)

)ŝ

≥ e−Cn
(
e
−( εn

2V (L+1)
)2 εn√

πV (L+ 1)

)ŝ
≥ e−Cn

(
εn√

πV (L+ 1)

)ŝ
e
− ŝεn

4(12pN+1)(L+1)(L+1) ≥ e−Dn
p/(2α+p) log2(n).

Theorem 37 (adaptive priors). Assume f0 ∈ Hαp , where p = O(1) as n → ∞, α < p, and

‖f0‖∞ ≤ F . Let L � log(n) and assume priors for N and s as in (4.20) and (4.21). Assume

the prior of f as given by (4.7) and (4.8). Then the posterior distribution concentrates at

the rate ξn = n−α/(2α+p) logδ(n) for δ > 1 in the sense that

Π(f ∈ F(L) : ‖f − f0‖L > Mnξn | Y (n))→ 0

in Pn0 probability as n→∞ for any Mn →∞.

The proof for Theorem 37 follows the same techniques used in Theorem 6.2 of PR18.
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And this adaptive results also hold for networks with standard normal priors on all weights.

4.6.3 Preparations for Main Theorems

The general framework for first-order approximation of functionals is as follows

Theorem 38. (Castillo and Rousseau, 2015) Consider the model Pn0 , a real-valued functional

f → Ψ(f) and 〈·, ·〉L,Ψ
(1)
0 ,Wn, as defined above. Suppose that (4.16) is satisfied, and denote

Ψ̂ = Ψ(f0) +
Wn(Ψ

(1)
0 )

√
n

, V0 =
∥∥∥Ψ

(1)
0

∥∥∥2

L
.

Let Π be a prior distribution on f . Let An be any measurable set such that

Π(An | Y (n)) = 1 + oP (1), as n→∞.

Then for any real t with ft as

ft = f −
tΨ

(1)
0√
n
,

we could write

EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An] = eoP (1)+t2V0/2

∫
An

e`n(ft)−`n(f0)dΠ(f)∫
An

e`n(f)−`n(f0)dΠ(f)
.

Moreover, if ∫
An

e`n(ft)−`n(f0)dΠ(f)∫
An

e`n(f)−`n(f0)dΠ(f)
= 1 + oP (1), ∀t ∈ R (4.31)

is satisfied, then the posterior distribution of
√
n(Ψ(f) − Ψ̂) is asymptotically normal and

mean-zero, with variance V0.

Proof. Set Rn(·, ·) = 0,Ψ
(2)
0 = 0, µn = 0 in Theorem 2.1 of Castillo and Rousseau (2015).
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4.6.3.0.1 Projection of Functions The intuition of our projection conditional on (γ, Z)

is to maintain the same partitions for the shifted function in (4.17) and perform the change

of measure locally. We first give the notation for ZL, which are the nodes in the top layer.

Let ZLj , j = 1, . . . , pL denote the jth node in Lth layer, which can be written as a sum of

local linear functions, respectively:

ZLj(x) =

KL∑
k=1

I(x ∈ Ω
j
k){β̃j

′

k x+ α̃
j
k}

here the partitions {Ωjk}
KL
k=1 and coefficients {β̃jk, α̃

j
k}
KL
k=1 are determined by {Wl, bl}Ll=1.

For simplicity of notation, we denote WL+1 = (w1, . . . , wpL)′. Then the output can be

written as:

f(x) =

pL∑
j=1

wjZLj(x) + bL+1

=

KL∑
k1=1

· · ·
KL∑

kpL=1

I

x ∈ pL⋂
j=1

Ω
j
kj


 pL∑
j=1

wj β̃
j′

kj

x+

 pL∑
j=1

wjα̃
j
kj

+ bL+1

 .

We denote the projection of function a(x) conditional on {Wl, bl}Ll=1 with a
γ
[Z]

, since

conditional on {Wl, bl}Ll=1 is equivalent to conditional on (γ, Z):

(W a, ba) = arg minWL+1,bL+1∈Fn(L,p,γ,Z) ‖WZL(x) + b− a(x)‖L ,

a
γ
[Z]

(x) = W aZL(x) + ba.

The projection aγ
[Z]

can also be viewed as the best approximation to a conditional on (γ, Z).
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Similarly, we denote projection of f0 onto {Wl, bl}Ll=1 as fγ
0[Z]

:

(W 0, b0) = arg minWL+1,bL+1∈Fn(L,p,γ,Z) ‖WZL(x) + b− f0(x)‖L , (4.32)

f
γ
0[Z]

(x) = W 0ZL(x) + b0. (4.33)

Note that f ∈ {WZL(x) + b : W ∈ RpL , b ∈ R}, so naturally we have
∥∥∥fγ0[Z]

− f0

∥∥∥
L
≤

‖f − f0‖L.

4.6.4 Proof of Theorem 29

We will perform the analysis locally on the sets An ≡ AMn
n from (4.15) for some Mn →

∞. We use the fact that convergence of Laplace transforms for all t in probability implies

convergence in distribution in probability (Castillo and Rousseau, 2015). The posterior

decomposes into a mixture of laws with weights Π(γ | Y (n)), where γ is the vector encoding

the connectivity pattern with prior in (4.10). We denote with In,γ = EΠ[et
√
n(Ψ(f)−Ψ̂) |

Y (n), An, γ] and write

In : = EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An] =

∑
γ∈Vp,s

Π(γ | Y (n), An)In,γ .

Next, we want to show that on the event An and uniformly for all γ ∈ Vp,s

In,γ = eoP (1)+t2V0/2(1 + o(1)) as n→∞

so that In = eoP (1)+t2V0/2(1 + o(1)).

We choose γ such that F(L,p, γ) ∩ An 6= ∅ and for f ∈ F(L,p, γ) ∩ An we expand the
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linear functional as Ψ(f)−Ψ(f0) = 〈a, f − f0〉L which yields

Ψ
(1)
0 = a,

r(f, f0) = 0.

The remainder condition (4.16) is thus trivially satisfied. To verify the second condition

(4.17), we choose the shifted function ft as

ft = f − ta√
n
.

Due to the fact that our class of neural networks has a top linear layer, the function ft shares

the same deep connectivity structure as f where only the top layer intercepts btL+1 have been

shifted. The change of measure thus only influences bL+1 where btL+1 = bL+1 − ta√
n
. Next,

we can write

In,γ = e
t2

2 ‖a‖
2
L ×

∫
An

e`n(ft)−`n(f0)dΠ(f | γ)∫
An

e`n(f)−`n(f0)dΠ(f | γ)
(4.34)

= e
t2

2 ‖a‖
2
L ×

∫
ft+

ta√
n
∈An e

`n(ft)−`n(f0)dΠ(ft | γ)
dΠ(f |γ)
dΠ(ft|γ)∫

An
e`n(f)−`n(f0)dΠ(f | γ)

. (4.35)

Next, we show that the ratio above converges to 1 as n→∞. We have

dΠ(f | γ)

dΠ(ft | γ)
=
dΠ({Wl, bl}Ll=1,WL+1, bL+1 | γ)

dΠ({Wl, bl}Ll=1,WL+1, b
t
L+1 | γ)

=
dΠ({Wl, bl}Ll=1 | γ)dΠ(WL+1)dΠ(bL+1)

dΠ({Wl, bl}Ll=1 | γ)Π(WL+1)Π(btL+1)
=
dΠ(bL+1)

dΠ(btL+1)

dΠ(bL+1)

dΠ(btL+1)
=

φ(bL+1)

φ(bL+1 − ta√
n

)
= exp

{
−1

2

[
b2L+1 − (bL+1 −

ta√
n

)2
]}

= exp

(
−
atbL+1√

n
+
t2a2

2n

)

Next, we note (from the definition of the sieve Fn and Cn in the proof of Theorem 36)

|bL+1|√
n
≤
√
Cn√
n
. n
− α

2α+p logδ(n)
.

138



Going back to (4.34), we now have for some c > 0

e−c n
− α

2α+p logδ(n)+ t2a2

2n + t2

2 ‖a‖
2
L ×

Π
(
f + ta√

n
∈ An | Y (n), γ

)
Π
(
f ∈ An | Y (n), γ

) ≤ In,γ

≤ ec n
− α

2α+p logδ(n)+ t2a2

2n + t2

2 ‖a‖
2
L ×

Π
(
f + ta√

n
∈ An | Y (n), γ

)
Π
(
f ∈ An | Y (n), γ

) . (4.36)

Next, from

‖f − f0‖L −
∥∥∥∥ ta√n

∥∥∥∥
L
≤
∥∥∥∥f +

ta√
n
− f0

∥∥∥∥
L
≤ ‖f − f0‖L +

∥∥∥∥ ta√n
∥∥∥∥
L

it is clear that

{
f : ‖f − f0‖L ≤Mnξn −

∥∥∥∥ ta√n
∥∥∥∥
L

}
⊂
{
f :

∥∥∥∥f +
ta√
n
− f0

∥∥∥∥
L

≤Mnξn

}
⊂
{
f : ‖f − f0‖L ≤Mnξn +

∥∥∥∥ ta√n
∥∥∥∥
L

}

This yields

Π

(
f : ‖f − f0‖L ≤ ξn −

∥∥∥∥ ta√n
∥∥∥∥
L
| Y (n), γ

)
≤ Π

(
f : f +

ta√
n
∈ An | Y (n), γ

)
≤ Π

(
f : ‖f − f0‖L ≤ ξn +

∥∥∥∥ ta√n
∥∥∥∥
L
| Y (n), γ

)
.

Since the concentration rate is slower than 1/
√
n, i.e. ξn = n−α/(2α+p) logδ(n) & n−1/2, we

have Π(f + ta√
n
∈ An) → Π(f ∈ An), as n → ∞. From the sandwich inequality (4.36), we

have In,γ → e
t2‖a‖2

L
2 for any t ∈ R as n→∞.

4.6.5 Proof of Theorem 31

Similar to the linear functional case, the posterior decomposes into a mixture of laws with

weights Π(γ | Y (n)), where γ is the vector encoding the connectivity pattern with a prior in
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(4.10). We can write

In : = EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An] =

∑
γ∈Vp,s

Π(γ | Y (n), An)In,γ (4.37)

where

In,γ := EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An, γ].

We further decompose each In,γ by conditioning on the deep weights {Wl, bl}Ll=1. We can

write

Π({Wl, bl}L+1
l=1 | Y

(n), An, γ) = Π(WL+1, bL+1 | {Wl, bl}Ll=1,Y
(n), An, γ)Π({Wl, bl}Ll=1 | Y

(n), An, γ)

= Π(WL+1, bL+1 | Y (n), An, γ, Z)Π(Z | Y (n), An, γ),

since Z = {Zl}Ll=1 is fully determined by {Wl, bl}Ll=1 and we can thereby replace conditioning

on {Wl, bl}Ll=1 by conditioning on Z. We can further dissect In,γ by conditioning on Z

In,γ =

∫
IZn,γdΠ(Z | Y (n), An, γ), where IZn,γ :=

∫
et
√
n(Ψ(f)−Ψ̂)dΠ(WL+1, bL+1 | Y (n), An, γ, Z).

In the rest of the proof, we show that IZn,γ → exp(−t2V0/2) uniformly for all γ and

Z such that f ∈ An. This can be done in two steps. First, we show that conditional on

(Y (n), An, γ, Z), Ψ(f) asymptotically centers at a local (γ, Z)-dependent centering point Ψ̂
γ
Z

with a local (γ, Z)-dependent variance V γZ (both defined later). In the second step, we show

that the local centering points Ψ̂
γ
Z are close to the global centering point Ψ̂ and that the

local variances V γZ converge to V0 uniformly for all γ and Z such that f ∈ An.
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We define the (γ, Z)-dependent local centering point and variance as

Ψ̂
γ
Z = Ψ(f0) +

Wn(2f
γ
0[Z]

)
√
n

and V
γ
Z = 4

∥∥∥fγ0[Z]

∥∥∥2

L
, (4.38)

where fγ
0[Z]

is the ‖ · ‖L projection of f0 on the set of deep learning networks f with a

connectivity pattern γ and hidden nodes Z defined in (4.33).

For any f ∈ F(L,p, γ), the squared L2-norm functional can be expanded as

Ψ(f)−Ψ(f0) = 2〈f0, f − f0〉L + ‖f − f0‖2L

= 2〈fγ
0[Z]

, f − f0〉L + ‖f − f0‖2L + 2〈f0 − f
γ
0[Z]

, f − f0〉L.

Note that
∥∥∥fγ0[Z]

− f0

∥∥∥
L
≤ ‖f − f0‖L for any f which has a connectivity pattern γ and

hidden nodes Z.

This expansion yields the first-order and remainder terms

Ψ
(1)
0 = 2f

γ
0[Z]

,

r(f, f0) = ‖f − f0‖2L + 2〈f0 − f
γ
0[Z]

, f − f0〉L.

To ensure asymptotical normality of Ψ(f), we first need to ensure the local shape condi-

tion in (4.16). Assuming that the smoothness α satisfies

α > p/2 (4.39)
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we have for f ∈ An with a connectivity γ and hidden nodes Z

r(f, f0) = ‖f − f0‖2L + 2〈f0 − f
γ
0[Z]

, f − f0〉L

≤ 2 ‖f − f0‖2L +
∥∥∥f0 − f

γ
0[Z]

∥∥∥2

L

≤ 3 ‖f − f0‖2L . ξ2
n = n

− 2α
2α+p log2δ = o

(
1√
n

)
.

Next, to verify the second sufficient condition (4.17) we define the shifted function ft as

ft = f −
2tf

γ
0[Z]√
n

.

Then we use the local centering point Ψ̂
γ
Z in (4.38) to define

ĨZn,γ :=EΠ[et
√
n(Ψ(f)−Ψ̂γ

Z) | Y (n), An, γ, Z] (4.40)

=e
2t2
∥∥∥fγ0[Z]

∥∥∥2

L ×
∫
An

e`n(ft)−`n(f0)dΠ(f | γ, Z)∫
An

e`n(f)−`n(f0)dΠ(f | γ, Z)

=e
2t2
∥∥∥fγ0[Z]

∥∥∥2

L ×

∫
ft+

2tf
γ
0[Z]√
n
∈An

e`n(ft)−`n(f0)dΠ(ft | γ, Z)
dΠ(f |γ,Z)
dΠ(ft|γ,Z)∫

An
e`n(f)−`n(f0)dΠ(f | γ, Z)

For simplicity of notation, we first denote ζ = (WL+1, bL+1)′ ∈ RpL+1 and ζt =

(W t
L+1, b

t
L+1)′ ∈ RpL+1 and ∆ = (W 0, b0)′ as defined in (4.32). Then we can simply

write ζt = ζ − 2t√
n

∆.

Since all parameters are a-priori independent and there is no sparsity structure placed
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on {WL+1, bL+1}, the prior ratio dΠ(f |γ,Z)
dΠ(ft|γ,Z)

can be calculated as

dΠ(f | γ, Z)

dΠ(ft | γ, Z)
=
dΠ(WL+1)

dΠ(W t
L+1)

dΠ(bL+1)

dΠ(btL+1)
=

dΠ(ζ)

dΠ(ζt)

=

pL+1∏
i=1

exp

{
−1

2

[
ζ2 − (ζi −

2t√
n

∆i)
2
]}

= exp

{pL+1∑
i=1

[
−ζi

∆it√
n

+
2t2∆2

i

n

]}
.

Similar to our previous proof, we have under the assumption α > p/2

∣∣∣∣∣
pL+1∑
i=1

ζi
∆it√
n

∣∣∣∣∣ ≤ t√
n
‖ζ‖2 ‖∆‖2 .

Cn√
n

= o(1), (4.41)

where we used the fact that both f and f
γ
0[Z]

are contained in An and thereby have their

top coefficients contained in a ball of radius
√
Cn (recall the definition of Cn in the proof of

Theorem 36).

Now, using the fact that

‖f − f0‖L − 2

∥∥∥∥∥tf
γ
0[Z]√
n

∥∥∥∥∥
L

≤

∥∥∥∥∥f +
2tf

γ
0[Z]√
n
− f0

∥∥∥∥∥
L

≤ ‖f − f0‖L + 2

∥∥∥∥∥tf
γ
0[Z]√
n

∥∥∥∥∥
L

we have

Π

(
f : ‖f − f0‖L ≤ ξn − 2

∥∥∥∥∥tf
γ
0[Z]√
n

∥∥∥∥∥
L

| Y (n), γ, Z

)

≤ Π

(
f +

2tf
γ
0[Z]√
n
∈ An | Y (n), γ, Z

)
≤ Π

(
f : ‖f − f0‖L ≤ ξn + 2

∥∥∥∥∥tf
γ
0[Z]√
n

∥∥∥∥∥
L

| Y (n), γ, Z

)
.

Again, since the concentration rate is slower than 1/
√
n, i.e. ξn = n−α/(2α+p) logδ(n) &
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n−1/2, we have

Π(f +
2tfγ

0[Z]√
n
∈ An | Y (n), γ, Z)

Π(An | Y (n), γ, Z)
→ 1, ∀t ∈ R. (4.42)

Hence, with (4.39), (4.41) and (4.42), one concludes ĨZn,γ → e
2t2
∥∥∥fγ0[Z]

∥∥∥2

L as n → ∞ using a

similar sandwich inequality in (4.36). In other words, we have

ĨZn,γ = et
2V γZ /2(1 + o(1)). (4.43)

Recall the definition of a local centering point Ψ̂
γ
Z and a local variance V γZ in (4.38).

Then we can write

IZn,γ = EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An, γ, Z]

= EΠ[et
√
n[(Ψ(f)−Ψ̂γ

Z)+(Ψ̂γ
Z−Ψ̂)] | Y (n), An, γ, Z]

= ĨZn,γ × et
√
n(Ψ̂

γ
Z−Ψ̂)

= (1 + o(1))et
2V γZ /2+t

√
n(Ψ̂γ

Z−Ψ̂)

= (1 + o(1))et
2V0/2+t2(V γZ−V0)/2+t

√
n(Ψ̂γ

Z−Ψ̂).

The proof will be complete once we show the following condition uniformly for all γ such

that f ∈ An

In,γ =

∫
IZn,γdΠ(Z | Y (n), An, γ)

= (1 + o(1))et
2V0/2

∫
et

2(V γZ−V0)/2+t
√
n(Ψ̂γ

Z−Ψ̂)dΠ(Z | Y (n), An, γ)→ et
2V0/2, as n→∞.

This is equivalent to showing

∫
et

2(V γZ−V0)/2+t
√
n(Ψ̂γ

Z−Ψ̂)dΠ(Z | Y (n), An, γ) = 1 + oP (1). (4.44)

144



Since we work conditionally on the set An, we have ‖fγ
0[Z]
− f0‖L . ξn and thereby

√
n(Ψ̂− Ψ̂

γ
Z) = Wn(f

γ
0[Z]
− f0) = oP (1),∣∣V γz − V ∣∣ = 4

∣∣∣∣∥∥∥fγ0[Z]

∥∥∥2

L
− ‖f0‖2L

∣∣∣∣
. 2 ‖f0‖L

∥∥∥fγ0[Z]
− f0

∥∥∥
L

+
∥∥∥fγ0[Z]

− f0

∥∥∥2

L

.
∥∥∥fγ0[Z]

− f0

∥∥∥
L
≤ ξn

under the assumption that ‖f0‖L ≤ F .

Using the smoothness assumption (4.39), we have ξ2
n = o

(
1√
n

)
. We can bound the

integral in (4.44) using the uniform bounds on
√
n(Ψ̂− Ψ̂

γ
Z) and

∣∣V γz − V ∣∣ as
(4.44) =

∫
et

2ξn/2+t×oP (1)dΠ(Z | Y (n), An, γ)

=et
2ξn/2+t×oP (1) = eoP (1) = 1 + oP (1).

Putting the pieces together, we write In from (4.37) as

In =
∑

γ∈Vp,s
Π(γ | Y (n), An)In,γ =

∑
γ∈Vp,γ

Π(γ | Y (n), An)et
2V0/2(1+oP (1)) = et

2V0/2(1+oP (1))

which completes the proof.

4.6.6 Proof of Theorem 32

For our proof for Theorem 32, the analysis is locally conducted on the set

AMn = {f ∈ F(L) : ‖f − f0‖L ≤Mnξn} (4.45)
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with ξn = n−α/(2α+p) logδ(n) for some M > 0 and δ > 0. And from the results in Theorem

37, we know Π(AMn | Y (n)) = 1 + op(1) for any Mn →∞.

Conditioning on An in (4.45), the posterior consists of a mixture of laws conditional on

N, s and γ

In = EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An]

=
∞∑
N=1

Π(N | Y (n), An)
T∑
s=1

Π(s | Y (n), An, N)
∑

γ∈Vp,s
Π(γ | Y (n), An, N, s)In,s,γ

=

Nn∑
N=1

Π(N | Y (n), An)

sn∑
s=1

π(s | Y (n), An, N)
∑

γ∈Vp,s
Π(γ | Y (n), An, N, s)In,s,γ + op(1)

where we denote with

In,s,γ = EΠ[et
√
n(Ψ(f)−Ψ̂) | Y (n), An, N, s, γ].

The second equality follows from the fact that Π(N > Nn | Y (n)) → 0 and Π(s > sn |

Y (n))→ 0 in Pn0 probability as n→∞, using Corollary 6.1 of Polson and Ročková (2018).

Thereby the set An eventually excludes all the deep learning mappings outside the sieve.

4.6.6.0.1 Linear functionals For Ψ(f) = 〈a, f〉L, when a(·) is a constant function,

following the same strategy as in the proof of Theorem 29, we have

In,s,γ = et
2‖a‖2L/2(1 + o(1))

and thereby the BvM holds.
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4.6.6.0.2 Squared L2-norm functionals For Ψ(f) = ‖f‖22, we use the same strategy

as in the proof of Theorem 31. For α ∈ (p2 , p), we have

∥∥∥fN,s,γ0[Z]
− f0

∥∥∥2

L
≤ ‖f − f0‖2L = o

(
1√
n

)
(4.46)

here fN,s,γ
0[Z]

denotes the projection of f0 onto deep learning networks with a fixed sparsity

and hidden structure (γ, Z) where |γ| = s and the width equals N (similarly as in (4.33)).

The inequality (4.46) holds for all f with a deep structure determined by (γ, Z).

The following arguments are similar to the proof of Theorem 31 but will be conditional

on N and s. Since

Π({Wl, bl}L+1
l=1 | Y

(n), An, N, s, γ) = Π(WL+1, bL+1 | Y (n), An, N, s, γ, Z)dΠ(Z | Y (n), An, N, s, γ)

we can rewrite In,s,γ as

In,s,γ =

∫ (∫
et
√
n(Ψ(f)−Ψ̂)dΠ(WL+1, bL+1 | Y (n), An, N, s, γ, Z)

)
dΠ(Z | Y (n), An, N, s, γ)

= (1 + o(1))e2t2‖f0‖2L
∫
et

2(V N,s,γZ −V0)/2+t
√
n(Ψ̂N,s,γ

Z −Ψ̂)dΠ(Z | Y (n), An, N, s, γ)

where

Ψ̂
N,s,γ
Z = Ψ(f0) +

1√
n
Wn(2f

N,s,γ
0[Z]

), V
N,s,γ
Z = 4

∥∥∥fN,s,γ0[Z]

∥∥∥2

L
.

and the term (1 + o(1)) comes from similar considerations as in (4.43).

Now we need to show In,s,γ → e2t2‖f0‖2L for all N, s and γ in the local neighborhood An.

In other words,

sup
N≤Nn

sup
s≤sn

sup
γ∈Vp,s

∫
et

2(V N,s,γZ −V0)/2+t
√
n(Ψ̂N,s,γ

Z −Ψ̂)dΠ(Z | Y (n), An, N, s, γ) = oP (1).

(4.47)
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Then we can write for α > p/2

√
n(Ψ̂N,s,γ − Ψ̂) = Wn(f

N,s,γ
0[Z]

− f0) = oP (1),∣∣VN,s,γ − V0

∣∣ = 4

∣∣∣∣∥∥∥fN,s,γ0[Z]

∥∥∥2

L
− ‖f0‖2L

∣∣∣∣
. 2 ‖f0‖L

∥∥∥fN,s,γ0[Z]
− f0

∥∥∥
L

+
∥∥∥fN,s,γ0[Z]

− f0

∥∥∥2

L

.
∥∥∥fN,s,γ0[Z]

− f0

∥∥∥
L
≤ ξn.

With α > p/2, (4.47) is satisfied. Aggregating the sum of IN,s,γ over N, s and γ, we have

In =

Nn∑
N=1

Π(N | Y (n), An)

sn∑
s=1

Π(s | Y (n), An, N)
∑

γ∈Vp,s

Π(γ | Y (n), An, N, s)In,s,γ + oP (1)

=

Nn∑
N=1

Π(N | Y (n), An)

sn∑
s=1

Π(s | Y (n), An, N)
∑

γ∈Vp,s

Π(γ | Y (n), An, N, s)(1 + o(1))e2t2‖f0‖2L+oP (1) + oP (1).

As a result, we have In → e2t2‖f0‖2L for all t ∈ R as n→∞, which concludes the proof for

the L2-norm functional case.
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CHAPTER 5

DATA AUGMENTATION FOR BAYESIAN DEEP LEARNING

Deep Learning (DL) methods have emerged as one of the most powerful tools for func-

tional approximation and prediction. While the representation properties of DL have

been well studied, uncertainty quantification remains challenging and largely unex-

plored. Data augmentation techniques are a natural approach to provide uncertainty

quantification and to incorporate stochastic Monte Carlo search into stochastic gradi-

ent descent (SGD) methods. The purpose of our paper is to show that training DL

architectures with data augmentation leads to efficiency gains. We use the theory of

scale mixtures of normals to derive data augmentation strategies for deep learning. This

allows variants of the expectation-maximization and MCMC algorithms to be brought

to bear on these high dimensional nonlinear deep learning models. To demonstrate

our methodology, we develop data augmentation algorithms for a variety of commonly

used activation functions: logit, ReLU, leaky ReLU and SVM. Our methodology is

compared to traditional stochastic gradient descent with back-propagation. Our opti-

mization procedure leads to a version of iteratively re-weighted least squares and can

be implemented at scale with accelerated linear algebra methods providing substan-

tial improvement in speed. We illustrate our methodology on a number of standard

datasets. Finally, we conclude with directions for future research.

5.1 Introduction

Deep neural networks (DNNs) have become a central tool for Artificial Intelligence (AI) ap-

plications such as, image processing (ImageNet, Krizhevsky et al. (2012)), object recognition

. Adopted from Yuexi Wang, Nicholas Polson, and Vadim O Sokolov. Data augmentation for Bayesian
deep learning. Bayesian Analysis, 1(1):1–29, 2022b.
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(ResNet, He et al. (2016)) and game intelligence (AlphaGoZero, Silver et al. (2016)). The

approximability (Poggio et al., 2017; Bauer and Kohler, 2019) and rate of convergence of

deep learning, either in the frequentist fashion (Schmidt-Hieber, 2020) or from a Bayesian

predictive point of view (Polson and Ročková, 2018; Wang and Ročková, 2020), have been

well-explored and understood. Fan et al. (2021) provides a selective overview of deep learn-

ing. However, training deep learners is challenging due to the high dimensional search space

and the non-convex objective function. Deep neural networks have also suffered from issues

such as local traps, miscalibration and overfitting. Various efforts have been made to improve

the generalization performance and many of their roots lie in Bayesian modeling. For exam-

ple, Dropout (Wager et al., 2013) is commonly used and can be viewed as a deterministic

ridge `2 regularization. Sparsity structure via spike-and-slab priors (Polson and Ročková,

2018) on weights helps DNNs adapt to smoothness and avoid overfitting. Rezende et al.

(2014) propose stochastic back-propagation through the use of latent Gaussian variables.

In this paper, following the spirit of hierarchical Bayesian modeling, we develop data aug-

mentation strategies for deep learning with a complete data likelihood function equivalent to

weighted least squares regression. By using the theory of mean-variance mixtures of Gaus-

sians, our latent variable representation brings all of the conditionally linear model theory

to deep learning. For example, it allows for the straightforward specification of uncertainty

at each layer of deep learning and for a wide range of regularization penalties. Our method

applies to commonly used activation functions such as ReLU, leaky ReLU, logit (see also

Gan et al. (2015)), and provides a general framework for training and inference in DNNs.

It inherits the advantages and disadvantages of data augmentation schemes. For approx-

imation methods like Expectation-Maximization (EM) and Minorize-Maximization (MM),

they are stable as they increase the objective but can be slow in the neighborhood of the

maximum point even with acceleration methods such as Nesterov acceleration available and

the performance is highly dependent on the properties of the objective function. Stochastic

150



exploratory methods like MCMC have the main advantage of addressing uncertainty quantifi-

cation (UQ) and are stable in the sense they require no tuning. Hyper-parameter estimation

is immediately available using traditional Bayesian methods. DA augments the objective

function with extra hidden units which allow for efficient step size selection for the gradient

descent search. In some of the applications, data augmentation methods can be formulated

in terms of complete data sufficient statistics, a considerable advantage when dealing with

large datasets where most of the computational expense comes from repeatedly iterating over

the data. By combing the MCMC methods with the J-copies trick (Jacquier et al., 2007),

we can move faster towards posterior mode and avoid local maxima. Traditional methods

for training deep learning models such as stochastic gradient descent (SGD) have none of

the above advantages. We also note that we exploit the advantages of SGD and accelerated

linear algebra methods when we implement our weighted least squares regression step.

Data augmentation strategies are commonplace in statistical algorithms and accelerated

convergence (Nesterov, 1983; Green, 1984) is available. Our goal is to show similar effi-

ciency improvements for deep learning. Our work builds on Deng et al. (2019) who provide

adaptive empirical Bayes methods. In particular, we show how to implement standard ac-

tivation functions, including ReLU (Polson and Ročková, 2018), logistic (Zhou et al., 2012;

Hernández-Lobato and Adams, 2015) and SVM (Mallick et al., 2005) activation functions

and provide specific data augmentation strategies and algorithms. The core subroutine of

the resulting algorithms solves a least squares problem. Scalable linear algebra libraries such

as Compute Unified Device Architecture (CUDA) and accelerated linear algebra (XLA) are

available for implementation. To illustrate our approach, empirically we experiment with two

benchmark datasets using Pólya-Gamma data augmentation for logit activation functions.

For the deep architecture embedded in our approach, we adopt deep ReLU networks. Deep

networks are able to achieve the same level of approximation accuracy with exponentially

fewer parameters for compositional functions (Mhaskar et al., 2017). Poggio et al. (2017)
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further show how deep networks can avoid the curse of dimensionality. The ReLU function

is favored due to its ability to avoid vanishing gradients and its expressibility and inherent

sparsity. Approximation properties of deep ReLU networks have been developed in Mont-

ufar et al. (2014), Telgarsky (2017), and Liang and Srikant (2017). Yarotsky (2017) and

Schmidt-Hieber (2020) show that deep ReLU networks can yield a rate-optimal approxima-

tion of smooth functions of an arbitrary order. Polson and Ročková (2018) provide posterior

rates of convergence for sparse deep learning.

There is another active area of research that revives traditional statistical models with

the computational power of DL (Bhadra et al., 2021). Examples include Gaussian Process

models (Higdon et al., 2008; Gramacy and Lee, 2008b), Generalized Linear Models (GLM)

and Generalized Linear Mixed Models (GLMM) (Tran et al., 2020) and Partial Least Squares

(PLS) (Polson et al., 2021). Our method benefits from the computation efficiency and flexi-

bility of expression of the deep neural network. In addition, our work builds on the sampling

optimization literature (Pincus, 1968, 1970) which now uses MCMC methods. Other exam-

ples include Ma et al. (2019) who study that sampling can be faster than optimization and

Neelakantan et al. (2017) showing that gradient noise can improve learning for very deep

networks. Gan et al. (2015) implements data augmentation inside learning deep sigmoid be-

lief networks. Neal (2011) and Chen et al. (2014) provide Hamitonian Monte Carlo (HMC)

algorithms for MCMC. Duan et al. (2018) proposes a family of calibrated data-augmentation

algorithms to increase the effective sample size.

The rest of our paper is outlined as follows. Section 5.2 provides the general setting

of deep neural networks and shows how DA can be integrated into deep learning using

the duality between Bayesian simulation and optimization. Section 5.3 describes our data

augmentation (DA) schemes and two approaches to implement them. Section 5.4 provides

applications to Gaussian regression, support vector machines and logistic regression using

Pólya-Gamma augmentation (Polson et al., 2013). Section 5.5 provides the experiments of
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DA on both regression and classification problems. Section 5.6 concludes with directions for

future research.

5.2 Bayesian Deep Learning

In deep learning we wish to recover a multivariate predictive map fθ(·) denoted by

y = fθ(x),

where y = (y1, . . . , yn)′, yi ∈ R denotes a univariate output and x = (x1, . . . ,xn)′, xi ∈ Rp

a high-dimensional set of inputs. Using training data of input-output pairs {yi,xi}ni=1 that

generalizes well out-of-sample, the goal is to provide a predictive rule for a new input variable

x?

y? = f
θ̂
(x?),

where θ̂ is estimated from training data typically using SGD. The interest in deep learners lies

in their ability to perform better than the additive rule for those interpolation or prediction

problems. Other statistical alternatives include Gaussian processes but they often have

difficulty in handling higher dimensions.

Deep learners use compositions (Kolmogorov, 1957; Vitushkin, 1964) of ridge functions

rather than additive functions that are commonplace in statistical applications. With L ∈ N

we denote the number of hidden layers and with pl ∈ N the number of neurons at the lth

layer. Setting pL+1 = p, p0 = p1 = 1, we denote with p = (p0, p1, . . . , pL+1) ∈ NL+2 the

vector of neuron counts for the entire network. Imagine composing L layers, a deep predictor

then takes the form

y = fθ(x) = (fW0,b0 ◦ fW1,b1 ◦ · · · ◦ fWL,bL)(x), (5.1)
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where bl ∈ Rpl is a shift vector, Wl ∈ Rpl−1×pl is a weight matrix that links neurons between

(l − 1)th and lth layers and fWl,bl(x) = fl(Wlx + bl) is a semi-affine function. We denote

with θ = {(W0, b0), (W1, b1), . . . , (WL, bL)} as the stacked parameters. We can rewrite the

compositions in (5.1) with a set of latent variables Z = (Z1, Z2, . . . , ZL)′ as

y = f0(Z1W0 + b0),

Zl = fl(Zl+1Wl + bl), l = 1, . . . , L,

ZL+1 = x,

(5.2)

where Zl ∈ Rn×pl is the matrix of hidden nodes in l-th layer. We only consider the case

p = 1 and Z1 ∈ Rn in our work. We provide discussion on extensions to cases p > 1 for

some of our applications in Section 5.4.

5.2.1 Bayesian Simulation and Regularization Duality

The problem of deep learning regularization (Polson and Sokolov, 2017) is to find a set of

parameters θ which minimizes a combination of a negative log-likelihood `(y, fθ(x)) and a

penalty function φ(θ) defined by

θ̂ := arg min
θ

n∑
i=1

`(yi, fθ(xi)) + λ

#θ∑
j=1

φ(θj), (5.3)

where λ controls regularization and #θ denotes the number of parameters in θ.

When the function fθ(x) is a deep learner defined as (5.1), we can specify different

amount of penalty λl and form of regularization function φl(·) for each layer. Then the

objective function can be written as

θ̂ = arg min
θ

1

n

n∑
i=1

`(yi, fθ(xi)) +
L∑
l=0

λlφl(Wl, bl). (5.4)
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Commonly used regularization techniques for deep learners include L2(weight decay), spike-

and-slab regularization (Polson and Ročková, 2018) and dropout (Wager et al., 2013), which

can also be viewed as a variant of L2-regularization.

As such the optimization problem in (5.4) of training a deep learner fθ(·) involves a

highly nonlinear objective function. Stochastic gradient descent (SGD) is a popular tool

based on back-propagation (a.k.a. the chain rule), but it often suffers from local traps and

overfitting due to the non-convex nature of the problem. We propose data augmentation

techniques which can be seamlessly applied in this context and provide efficiency gains. This

is achieved via the hierarchical duality between optimization with regularization and finding

the maximum a posteriori (MAP) estimate (Polson and Scott, 2011), as described in the

following lemma.

Lemma 39. The regularization problem

θ̂ = arg min
θ

 1

n

n∑
i=1

`(yi, fθ(xi)) +
L∑
l=0

λlφl(Wl, bl)


is equivalent to finding the the Bayesian MAP estimator defined by

arg max
θ

p(θ|y) = arg max
θ

exp

− 1

n

n∑
i=1

`(yi, fθ(xi))−
L∑
l=0

λlφl(Wl, bl)

 ,

which corresponds to the mode of a posterior distribution characterized as

p(θ | y) = p(y | θ)p(θ)/p(y),

p(y|θ) ∝ exp{−
n∑
i=1

`
(
yi, fθ(xi)

)
}, p(θ) ∝ exp{−

L∑
l=0

λlφl(Wl, bl)}.

Here p(θ) can be interpreted as a prior probability distribution and the log-prior as the reg-

ularization penalty.
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5.2.2 A Stochastic Top Layer

By exploiting the duality from Lemma 39, we wish to use a Bayesian framework to add

stochastic layers – so as to fully account for the uncertainty in estimating the predictive rule

fθ(·). Thus, we convert the sequence of composite functions in the deep learner specified in

(5.2) to a stochastic version given by

y | Z1 ∼ p(y | Z1),

Zl ∼ N(fl(WlZl+1 + bl), τ
2
l ), l = 1, 2, . . . , L,

ZL+1 = x.

(5.5)

Now the hidden variables Z = (Z1, . . . , ZL)′ can be viewed as data augmentation variables

and hence will also allow the contribution of fast scalable algorithms for inference and pre-

diction.

For the ease of computation, we only replace the top layer of the DNN with a stochastic

layer. We denote network structure below the top layer with B = {(W1, b1), . . . , (WL, bL)},

and the network structure can be rewritten as

y = f0(Z1W0 + b0), Z1 = fB(x),

where the function f0(Z1W0+b0) is the top layer structure and function fB(x) is the network

architecture below the top layer. Considering the objective function in (5.4), we implement

the solutions with a two-step iterative search. At iteration t, we have

1. DA-update for the top layer W0, b0 as the MAP estimator of the distribution

p(W0, b0 | Z
(t)
1 ,y) ∝ p(y, Z

(t)
1 | W0, b0)p(W0, b0) (5.6)

∝ exp

{
− 1

n

n∑
i=1

`(yi, fθ(xi) | B(t)) + λ0φ0(W0, b0)

}
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2. SGD-update for the deep architecture B

B(t+1) = arg min
B

1

n

n∑
i=1

`
(
yi, fθ(xi) | (W0, b0)(t+1))+

L∑
l=1

λlφl(Wl, bl)

= arg min
B

1

n

n∑
i=1

`
(
Z

(t)
1 , fB(xi)

)
+

L∑
l=1

λlφl(Wl, bl).

3. Sample Z(t+1)
1 from a normal distribution N (µ

(t)
z , σ

(t)
z ) where µ(t)

z and σ(t)
z are deter-

mined jointly by {θ(t),x,y}.

The main contribution of our work comes from two aspects: (1) we update top layer

weights {W0, b0} conditional on B as in (5.6), which is also equivalent to conditioning on

Z1, with data augmentation techniques as later shown in Section 5.3; (2) the latent variables

Z1 is sampled from a normal distribution rather than optimized by gradient descent methods.

Z1 serves as a bridge that connects a weighted L2-norm model f0 and a deep learner fB .

Commonly used activation functions {fl}Ll=1 are linear affine functions, rectified linear units

(ReLU), sigmoid, hyperbolic tangent (tanh), and etc. We illustrate our methods with a

deep ReLU network, i.e., {fl}Ll=1 are ReLU functions, due to its expressibility and inherent

sparsity. In the next section, we introduce our data augmentation strategies and show how

the stochastic layers can be achieved via data augmentation.

5.3 Data Augmentation for Deep Learning

Data augmentation introduces a vector of auxiliary variables, denoted by ω = (ω1, . . . , ωn)′

with ωi ∈ R, such that the posterior can be written as

p(θ | y) = Eω

[
p(θ,ω | y)

]
,
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where the augmented auxiliary distribution, p(θ,ω | y) factorizes nicely into complete condi-

tionals p(θ | ω,y) and p(ω | θ,y). A crucial ingredient is that p(θ | ω,y) is easily managed

typically via conditional Gaussians.

Data augmentation tricks allow us to express the likelihood as an expectation of a

weighted L2-norm. Specifically, we write

exp
{
− `
(
y, fθ(x)

)}
= Eω

{
exp

(
−Q

(
y | fθ(x),ω

))}
=

∫ ∞
0

exp
(
−Q

(
y | fθ(x),ω

))
p(ω)dω

where p(ω) is the prior on the auxiliary variables ω = (ω1, . . . , ωn)′ and the function Q
(
y |

fθ(x),ω
)
is designed to be a quadratic form, given the data augmentation variables ω. The

function fθ(x) = (f0 ◦ · · · ◦ fL)(x) is a deep learner.

Table 5.1 shows that standard activation functions such as ReLU, logit, lasso and check

can be expressed in the form of (5.7). Commonly used activation functions for deep learning,

with an appropriate stochastic assumptions for w (for notation of simplicity, we derive the

standard form for the single observation case) can be expressed as

exp(−max(1− x, 0)) = Eω

{
1√
2πω

exp
(
− 1

2ω
(x− 1− ω)2

)}
, where ω ∼ GIG(1, 0, 0),

exp(− log(1 + ex)) = Eω

{
exp(−1

2
ωx2)

}
, where ω ∼ PG(1, 0),

exp(−|x|) = Eω

{
1√
2πω

exp
(
− 1

2ω
x2
)}

, where ω ∼ E
(1

2

)
.

Here GIG denotes the Generalized Inverse Gaussian distribution, PG represents the Pólya

Gamma distribution (Polson et al., 2013), and E represents the exponential distribution.

Using the data augmentation strategies, the objectives are represented as mixtures of

Gaussians. DA can perform such an optimization with only the use of a sequence of iteratively

re-weighted L2-norms. This allows us to use XLA techniques to accelerate the training.
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l(W, b) Q(W, b, ω) p(ω)

ReLU: max(1− zi, 0)

∫ ∞
0

1√
2πcλ

exp

{
−(x+ aλ)2

2cλ

}
dλ =

1

a
exp

(
−2 max(ax, 0)

c

)
GIG(1, 0, 0)

Logit: log(1 + ezi)
1

2b
e(a−b/2)ψ

∫ ∞
0

e−ωψ
2/2p(ω)dω =

(eψ)a

(1 + eψ)b
PG(b, 0)

Lasso: |ziσ |
∫ ∞

0

1√
2πcλ

exp

{
− x2

2cλ

}
e−

1
2λdλ =

1

c
exp

(
−|x|
c

)
E(1

2)

Check: |zi|+ (2τ − 1)zi

∫ ∞
0

1√
2πcλ

exp

{
−(x+ (2τ − 1)λ)2

2c2λ

}
e−2τ(1−τ)λdλ =

1

c
exp

(
−2

c
ρτ (x)

)
GIG(1, 0, 2

√
τ − τ2)

x

Table 5.1: Data augmentation strategies. Here ρτ (x) = 1
2 |x| +

(
τ − 1

2

)
x is the check

function.

Remark 40. The log-posterior is optimized given the training data, {yi,xi}ni=1. Deep learn-

ing possesses the key property that ∇θ log p(y|θ,x) is computationally inexpensive to evalu-

ate using tensor methods for very complicated architectures and fast implementation on large

datasets. One caveat is that the posterior is highly multi-modal and providing good hyperpa-

rameter tuning can be expensive. This is clearly a fruitful area of research for state-of-the-art

stochastic MCMC algorithms to provide more efficient algorithms. For shallow architectures,

the alternating direction method of multipliers (ADMM) is an efficient solution to the opti-

mization problem.

Similarly we can represent the regularization penalty exp(−λφ(θ)) in data augmentation

form. Hence, we can then replace the optimization problem in (5.4) with

θ̂ := arg max
θ

Eω

[
exp

(
− 1

n

n∑
i=1

Q
(
yi | fθ(xi),ω

)
−

L∑
l=0

λlφl(Wl, bl)
)]
, (5.7)

using the duality in Lemma 39.

There are two approaches to Monte Carlo optimization which could handle our data

augmentation (Geyer, 1996), missing data methods like Expectation-Maximization (EM)

algorithms or stochastic search methods like Markov Chain Monte Carlo (MCMC). The first

approach is based on a probabilistic approximation of the objective function (5.7) and is less
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concerned with exploring Θ. The second type is more exploratory which aims to optimize

the objective function by visiting the entire range of Θ and is less tied to the properties of

the function.

For EM algorithms, we consider constructing a surrogate optimization problem which

has the same solution to (5.7) (Lange et al., 2000). Specifically, we define a new objective

function as

H(θ) = Eω|θ
[

exp
(
− 1

n

n∑
i=1

Q
(
yi | fθ(xi),ω

)
−

L∑
l=0

λlφl(Wl, bl)
)]
,

which is a concave function to be maximized. A natural choice of the surrogate function can

be constructed using Jensen’s inequality as

G
(
θ | θ(t)) = −Eω|θ(t)

 1

n

n∑
i=1

Q
(
yi | fθ(xi),ω

)
+

L∑
l=0

λlφl(Wl, bl)

 ,
where each ωi is drawn from conditional distribution p(ωi | θ) ∝ p(ωi,θ) and the minoriza-

tion is satisfied as

logH(θ) ≥ G
(
θ | θ(t)).

Maximizing G
(
θ | θ(t)

)
with respect to θ drives H(θ) uphill. The ascent property of the EM

algorithm relies on the nonnegativity of the Kullback-Leibler divergence of two conditional

probability densities (Hunter and Lange, 2004; Lange, 2013a). The EM algorithm enjoys

the numerical stability as it steadily increases the likelihood without wildly overshooting or

undershooting. It simplifies the optimization problem by (1) avoiding large matrix inversion;

(2) linearizing the objective function; (3) separating the variables of the optimization problem

(Lange, 2013b). In Section 5.4.3 we show how Pólya-Gamma augmentation leads to an EM

algorithm for logistic regression.

The exploratory alternative to solve (5.7) is stochastic search methods such as MCMC.
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The data augmentation strategies enable us to sample from the joint posterior

p(θ | y) ∝ exp
(
− 1

n

n∑
i=1

`
(
yi, fθ(xi)

)
−

L∑
l=0

λlφl(Wl, bl)
)

= Eω

[
exp

(
− 1

n

n∑
i=1

Q
(
yi | fθ(xi),ω

)
−

L∑
l=0

λlφl(Wl, bl)
)]

=

∫ ∞
0

exp
(
− 1

n

n∑
i=1

Q(yi | fθ(xi),ω
))
p(ω)p(θ)dω

where the prior is related to the regularization penalty, via p(θ) ∝ exp
(
−
∑L
l=0 λlφl(Wl, bl)

)
.

Hence, we can provide an MCMC algorithm in the augmented space (θ,ω) and simulate

from the joint posterior distribution, denoted by p(θ,ω | y), namely

p(θ,ω | y) ∝ exp
(
−Q(y | fθ(x),ω)

)
p(θ)p(ω).

A sequence can be simulated using MCMC Gibbs conditionals,

p
(
θ(t) | ω(t),y

)
∝ exp

(
−Q(y | fθ(x),ω(t))

)
p(θ),

p
(
ω(t+1) | θ(t),y

)
∝ exp

(
−Q(y | fθ(t)(x),ω)

)
p(ω).

Then we recover stochastic draws θ(t) ∼ p(θ | y) from the marginal posterior. These draws

can be used in prediction to account for predictive uncertainty, namely

p
(
y? | f(x?)

)
=

∫
p
(
y? | θ, fθ(x?)

)
p(θ | y)dθ ≈ 1

T

T∑
t=1

p
(
y? | θ(t), fθ(t)(x?)

)
. (5.8)

As Q(y | fθ(x),ω) is conditionally quadratic, the update step for θ | ω,y can be achieved

using SGD or a weighted L2-norm – the weights ω are adaptive and provide an automatic

choice of the learning rate, thus avoiding backtracking which can be computationally ex-
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pensive. And the performance of MCMC search is less tied to the statistical properties (i.e.

convexity or concavity) of the objective function. We provide examples of how Gaussian

regression and SVMs can be implements in Section 5.4.1 and Section 5.4.2.

5.3.1 MCMC with J-copies

The MCMC methods offer a full description of the objective function (5.7) over the entire

space Θ. Inspired by the simulated annealing algorithm (Metropolis et al., 1953), we in-

troduce a scaling factor J to allow for faster moves on the surface of (5.7) to maximize. It

also helps avoiding the trapping attraction of local maxima. In addition, the corresponding

posterior is connected to the Boltzmann distribution, whose density is prescribed by the

energy potential f(θ) and temperature J as

πJ (θ) = exp {−Jf(θ)} /ZJ for θ ∈ Θ (5.9)

where ZJ =
∫
Θ exp {−Jf(θ)} dθ is an appropriate normalizing constant.

To simulate the posterior mode without evaluating the likelihood directly (Jacquier et al.,

2007), we sample J independent copies of hidden variable Z1 . Denoted the copies with

Z1
1 , . . . , Z

J
1 , we sample them simultaneously and independently from the posterior distribu-

tion

Z
j
1 |θ,x,y

iid∼ N (µz, σ
2
z), j = 1, . . . , J,
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where µz, σz are determined by {x,y,θ}. And we stack the J copies as

y(S) =



y

y

y

...

y


, Z

(S)
1 =



Z1
1

Z2
1

Z3
1
...

ZJ1


, fB(x(S)) =



fB(x)

fB(x)

fB(x)

...

fB(x)


(5.10)

where y(S), Z(S)
1 and fB(x(S)) are (n × J)-dimensional vectors. We use Z(S)

1 to amplify

the information in y, which is especially useful in the finite sample problems. Figure 5.1

illustrates our network architecture.

Figure 5.1: J-copies network architecture

With the stacked system, the joint distribution of the parameters θ and the augmented
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hidden variables Z(S)
1 given data y,x can be written as

πJ (θ, Z
(S)
1 | x,y) ∝

J∏
j=1

p(y | θ, Zj1)p(Z
j
1 | θ,x,y)p(θ).

Hence, the marginal joint posterior

p(θ | x,y) =

∫
πJ (θ, Z

(S)
1 | x,y)dZ

(S)
1

concentrates on the density proportional to p(x,y | θ)Jp(θ) and provides us with a simula-

tion solution to finding the MAP estimator (Pincus, 1968, 1970).

Another alternative to simulate from the posterior mode is Hamiltonian Monte Carlo

(Neal, 2011), which is a modification of Metropolis-Hastings (MH) sampler. Adding an

additional momentum variable ν to the Boltzmann distribution in (5.9), and generating

draws from joint distribution

πJ (θ,ω) ∝ exp
(
−Jf(θ)− (1/2)νTM−1ν

)
,

whereM is a mass matrix. Chen et al. (2014) adopt this approach in a deep learning setting.

5.3.2 Connection to Diffusion Theory

An alternative to the MCMC algorithm can be derived from diffusion theory (Phillips and

Smith, 1996). For example, we can approximate the random walk Metropolis-Hastings

algorithm with the Langevin diffusion Lt defined by the stochastic differential equation

dLt = dBt + 1
2∇ log f(Lt)dt, where Bt is the standard Brownian motion. More specifically,

let d := |θ|, we write the random walk like transition as

θ(t+1) = θ(t) +
σ2

2
∇ log f(θ(t)) + σεt,
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where εt ∼ Nd(0, Id) and σ2 corresponds to the discretization size.

This can also be derived by taking a second-order approximation of log(f), namely

log f(θ(t+1)) = log f(θ(t)) +
(
θ(t+1) − θ(t))′∇ log f(θ(t))

− 1

2

(
θ(t+1) − θ(t))′H(θ(t))

(
θ(t+1) − θ(t)),

where H(θ(t)) = −∇2 log f(θ(t)) is the Hessian matrix. By taking exponential transforma-

tion on both sides, the random walk type approximation to f(θ(t+1)) is

f(θ(t+1)) ∝ exp
{(
θ(t+1) − θ(t))′∇ log f(θ(t))− 1

2

(
θ(t+1) − θ(t))′H(θ(t))

(
θ(t+1) − θ(t))}

∝ exp
{
− 1

2

(
θ(t+1) − θ̃(t))′H(θ(t))

(
θ(t+1) − θ̃(t))}.

where θ̃(t) = θ(t) + H−1(θ(t))∇ log f(θ(t)). If we simplify this approximation by replacing

H(θ(t)) with σ−2Ip, the Taylor approximation leads to updating step as

θ(t+1) = θ(t) + σ2∇ log f(θ(t)) + σεt.

Roberts and Rosenthal (1998) give further discussion on the choice of σ that would yield an

acceptance rate of 0.574 to achieve optimal convergence rate.

Mandt et al. (2017) show that SGD can be interpreted as a multivariate Ornstein-

Uhlenbeck process

dθ(t) = −ηAθ(t)dt+ η

√
C

S
dW (t),

here η is the constant learning rate, A is the symmetric Hessian matrix at the optimum

and C
S is the covariance of the mini-batch (of size S) gradient noise, which is assumed to

be approximately constant near the local optimum of the loss. They also provide results on

discrete-time dynamics on other Stochastic Gradient MCMC algorithms, such as Stochastic

Gradient Langevin dynamics (SGLD) by Welling and Teh (2011) and Stochastic Gradient
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Fisher Scoring by Ahn et al. (2012).

Combing their results and the Langevin dynamics of MCMC algorithms, we can write

the approximation of our DA-DL updating scheme as

 W0

b0


(t+1)

=

 W0

b0


(t)

+ σ2∇ log f0(Z
(t)
1 W

(t)
0 + b

(t)
0 ) + σε0t,

B(t+1) = B(t) − η∇2fB∗(x)B(t) +
C√
S
ηεBt.

Similar adaptive dynamics are also observed in other methods. Geman and Hwang (1986)

show the convergence of the annealing process using Langevin equations. Slice sampling

(Neal, 2003) adaptively chooses the step size based on the local properties of the density

function. By constructing local quadratic approximations, it could adapt to the dependencies

between variables. Murray et al. (2010) further propose elliptical slice sampling that operates

on the ellipse of states.

5.4 Applications

To illustrate our methodology, we provide three examples: (1) a standard Gaussian regression

model with squared loss; (2) a binary classification model under the support vector machine

framework; (3) a logistic regression model paired with a Pólya mixing distribution. For

the Gaussian regression and SVM models, we implement with J-copies stacking strategy to

provide full posterior modes.

Before diving into the examples, we introduce the notations we use throughout this

section. We continue to denote the output with y = (y1, . . . , yn)′, yi ∈ R, the input with x =

(x1, . . . ,xn)′,xi ∈ Rp, the latent variable of the top layer with Z1 = (z1,1, . . . , z1,n)′, z1,i ∈ R

and the stacked version as in (5.10). We introduce stochastic noises ε0 = (ε0,1, . . . , ε0,n)′

in the top layer and εz = (εz,1, . . . , εz,n)′ in the second layer, where ε0,i
iid∼ N (0, τ2

0 ) and
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εz,i
iid∼ N (0, τ2

z ). The scale parameters τ0 and τz are pre-specified and determine the level

of randomness or uncertainty for the DA-update and SGD-update respectively. We use η

to denote the learning rate used in the SGD updates and T is number of training epochs.

We use ‖·‖ to denote `2-norm such that ‖y‖ =
√∑n

i=1 y
2
i and the matrix-type norm as

‖y‖Σ =
√
yTΣy.

Our models differ from standard deep learning models and some newly proposed Bayesian

approaches in the adoption of stochastic noises ε0 and εz. It distinguishes our model from

other deterministic neural networks. By letting εz follow a spiky distribution that puts most

of its mass around zero, we can control the estimation approximating to posterior mode

instead of posterior mean. The randomness allows us to adopt a stacked system and make

the best use of data especially when the dataset is small.

5.4.1 Gaussian Regression

We consider the regression model as

yi = z1,iW0 + b0 + ε0,i, where yi ∈ (−∞,∞), ε0,i
i.i.d∼ N (0, τ2

0 ),

z1,i = fB(xi) + εz,i, where εz,i
i.i.d∼ N (0, τ2

z ).

The posterior updates are given by

Ŵ0 = Cov(Z1,y)/Var(Z1), (5.11)

b̂0 = ȳ −W0Z̄1, (5.12)

p(Z1 | y,x,θ) = Cz exp

{
− 1

2τ2
0

‖y − Z1W0 − b0‖2 −
1

2τ2
z
‖Z1 − fB(x)‖2

}
,
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where ȳ = 1
n

∑n
i=1 yi and Cz is a normalizing constant. The latent variable Z1 is drawn

from following normal distribution Z1 ∼ N (µZ , σ
2
Z) with the mean and variance specified as

µZ =
τ2
zW0(y − b0) + τ2

0 fB(x)

W 2
0 τ

2
z + τ2

0

, σ2
Z =

τ2
0 τ

2
z

W 2
0 τ

2
z + τ2

0

. (5.13)

The J copies of Z1 are simulated and stacked as

Z
j
1
iid∼ N (µZ , σ

2
Z), Z

(S)
1 = (Z1

1 , . . . , Z
J
1 )′.

The updating scheme for this Gaussian regression is summarized in Algorithm 7.

Algorithm 7: Data Augmentation with J-copies for Gaussian Regression (DA-GR)

Initialize B(0),W
(0)
0 , b

(0)
0

For epoch t = 1, . . . , T do
1. Update the weights in the top layer with {y(S), Z

(t,S)
1 }

W
(t)
0 = Cov(Z

(t,S)
1 ,y(S))/Var(Z(t,S)

1 )

b
(t)
0 = ȳ(S) −W (t)

0 Z̄1
(t,S)

2. Update the deep learner fB with {Z(t,S)
1 ,x(S)}

B(t) = B(t−1) − η∇fB(t−1)

(
x(S) | Z(t,S)

1

)
; // SGD

3. Update Z(S)
1 jointly from deep learner fB and sampling layer f0

Z1
j,(t+1) |W (t)

0 , b
(t)
0 ,y, fB(t)(x)

iid∼ N
(
µ

(t)
z , σ

(t)
z

2)
, j = 1, . . . , J

Return ŷ = W
(T )
0 fB(T )(x) + b

(T )
0

The model can also be generalized to multivariate y. Let yi be a q-dimension vector, we

denote each dimension as yik, k = 1, . . . , q, and the model is written as

yik = z1,iW0k + b0k + ε0,ik, where yik ∈ (−∞,∞), ε0,ik
iid∼ N (0, τ2

0 ),

z1,i = fB(xi) + εz,i, where εz,i
iid∼ N (0, τ2

z ),

where W0 = (W01, . . . ,W0q)
′ is now a q-dimensional vector with W0k computed similarly to

(5.11), b0 = (b01, . . . , b0q)
′ is also q-dimensional with b0k calculated as (5.12). The posterior
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update for Z1 becomes

p(Z1 | y,x,θ) = Cz exp

{
− 1

2τ2
0

q∑
k=1

‖yk − Z1W0k − b0k‖2 −
1

2τ2
z
‖Z1 − fB(x)‖2

}
,

which is a multivariate normal distribution with the mean and variance as

µZ =
τ2
z
∑q
k=1W0k(yk − b0k) + τ2

0 fB(x)

τ2
z
∑q
k=1W

2
0k + τ2

0

, σ2
Z =

τ2
0 τ

2
z

τ2
z
∑q
j=kW

2
0k + τ2

0

.

5.4.2 Support Vector Machines (SVMs)

Support vector machines require data augmentation for rectified linear unit (ReLU) activa-

tion functions. Polson and Scott (2011) and Mallick et al. (2005) write the support vector

machine model as

y = Z1W0 + λ+
√
λε0, where λ ∼ p(λ),

where p(λ) follows a flat uniform prior. The augmentation variable λ = (λ1, . . . , λn)′ can

be regarded as slacks admitting fuzzy boundaries between classes.

By incorporating the augmentation variable λ, the ReLU deep learning model can be

written as

yi = z1,iW0 + λi +
√
λiε0,i, where yi ∈ {−1, 1}, ε0,i

i.i.d∼ N (0, τ2
0 ),

z1,i = fB(xi) + εz,i, where εz,i
i.i.d∼ N (0, τ2

z ).

From a probabilistic perspective, the likelihood function for the output y is given by

p(yi | W0, z1,i) ∝ exp

{
− 2

τ2
0

max(1− yiz1,iW0, 0)

}

∝
∫ ∞

0

1

τ0
√

2πλi
exp

(
− 1

2τ2
0

(1 + λi − yiz1,iW0)2

λi

)
dλi.
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Derived from this augmented likelihood function, the conditional updates are

W0 | y, Z1,λ ∝

[
n∏
i=1

1

τ0
√
λi

][
exp

{
− 1

2τ2
0

n∑
i=1

(1 + λi − yiz1,iW0)2

λi

}]

Z1 | y,x,W0,B ∝ exp

{
− 1

2τ2
0

‖y − Z1W0‖2Λ−1 −
1

2τ2
z
‖Z1 − fB(x)‖2

}

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of the augmentation variables.

In order to generate the latent variables, we use conditional Gibbs sampling as

λ−1
i | W0, yi, z1,i ∼ IG(

∣∣1− yiz1,iW0

∣∣−1
, τ−2

0 ) (5.14)

W0 | y, Z1, λ ∼ N (µw, σ
2
w) (5.15)

Z1 | y,x,W0,B ∼ N (µz, σ
2
z) (5.16)

with the means and variances given by

µw =

∑n
i=1 yiz1,i

1+λi
λi

τ2
0

∑n
i=1

y2
i z

2
1,i

λi

, σ2
w =

1

τ2
0

∑n
i=1

y2
i z

2
1,i

λi

, µz =
W0τ

2
z y + τ2

0 fB(x)Λ1

W0τ2
z + τ2

0 Λ1
, σ2
z =

τ2
0 τ

2
zΛ1

W 2
0 τ

2
z + τ2

0 Λ1
,

where IG denotes the Inverse Gaussian distribution and 1 = (1, . . . , 1)′ is a n-dimensional

unit vector.

The J-copies strategy can also be adopted here. Zj1 and λj needs to be sampled inde-

pendently for j = 1, . . . , J . Algorithm 8 summarizes the updating scheme with J-copies for

SVMs.

5.4.3 Logistic Regression

The aim of this example is to show how EM algorithm can be implemented via a weighted

L2-norm in deep learning. Adopting the logistic regression model from Polson and Scott
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Algorithm 8: Data Augmentation with J-copies for SVM (DA-SVM)

Initialize B(0),W
(0)
0 ,λ(0)

For epoch t = 1, . . . , T do
1. Update the weights in the top layer with {y(S), Z

(t,S)
1 }

{λ(t,S)}−1 |W (t−1)
0 ,y(S), Z

(t,S)
1 ∼ IG(|1− y(S)Z

(t,S)
1 W

(t−1)
0 |−1, 1

τ20
)

W
(t)
0 | y(S), Z

(t,S)
1 ,λ(t,S) ∼ N (µ

(t)
ω , σ

(t)
ω

2
)

2. Update the deep learner fB with {Z(t,S)
1 ,x(S)}

B(t) = B(t−1) − η∇fB(t−1)

(
x(S) | Z(t,S)

1

)
; // SGD

3. Update Z(S)
1 jointly from deep learner fB and sampling layer f0

Z
j,(t+1)
1 |W (t)

0 ,λj,(t),y, fB(t)(x)
iid∼ N (µ

(t)
z , σ

(t)
z

2
), j = 1, . . . , J

Return ŷ =

{
1, if W (T )

0 fB(T )(x) > 0
−1, otherwise.

(2013), we focus on the penalization of W0, with parameter optimization given by

Ŵ0 = arg min
W0

[
1

n

n∑
i=1

log
(

1 + exp
(
− yifDLB (xi)W0

))
+ φ(W0 | τ)

]
,

The outcomes yi are coded as ±1, and τ is assumed fixed.

For likelihood function ` and regularization penalty φ, we assume

p(yi | σ) ∝
∫ ∞

0

√
ωi√

2πσ
exp

{
− ωi

2σ2

(
yifB(xi)W0 −

1

2ωi

)2}
p(ωi)dωj , (5.17)

p(W0 | τ) =

∫ ∞
0

√
λ√

2πτ
exp

{
− λ

2τ2
(W0 − µW − κWλ−1)2

}
p(λ)dλ, (5.18)

where µW , κW are pre-specified terms controlling the prior of the penalty term and λ is

endowed with a Pólya distribution prior P (λ). Let ω−1
i have a Pólya distribution with

α = 1, κ = 1/2, the following three updates will generate a sequence of estimates that
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converges to a stationary point of posterior

W
(t+1)
0 = (τ−2Λ(t) + xT∗ Ω(t)x∗)−1(

1

2
xT∗ 1),

ω
(t+1)
i =

1

z
(t+1)
i

 ez
(t+1)
i

1 + ez
(t+1)
i

− 1

2

 , λ(t+1) =
κW + τ2φ′(W (t)

0 | τ)

W
(t)
0 − µW

,

where z(t)
i = yiz

T
1,iW

(t)
0 = yilogit(ŷti), x∗ is a matrix with rows x∗i = yiz1,i, Ω = diag(ω1, . . . , ωn)

and Λ = diag(λ1, . . . , λp) are diagonal matrices. x∗ can be written as x∗ = diag(y)Z1, φ′(·)

denotes the derivative of standard normal density function.

In the non-penalized case, with λi = 0 for every i, the updates can be simplified as

weighted least squares

W
(t+1)
0 = (Z

(t)
1

T
diag(y)Ω(t)diag(y)Z

(t)
1 )−1(

1

2
yTZ

(t)
1 ),

ω
(t+1)
i =

1

z
(t+1)
i

 ez
(t+1)
i

1 + ez
(t+1)
i

− 1

2

 .

We focus on the non-penalized binary classification case and Algorithm 9 summarizes our

approach. Further generalizations are available. For example, a ridge-regression penalty,

along with the generalized double-pareto prior (Armagan et al., 2013) can be implemented

by adding a sample-wise L2-regularizer. A multinomial generalization of this model can be

found in Polson and Scott (2013).

5.5 Experiments

We illustrate the performance of our methods on both synthetic and real datasets, compared

to the deep ReLU networks without the data augmentation layer. We refer to the latter as

DL in our results. We denote the data augmented gaussian regression in Algorithm 7 as

DA-GR, the SVM implementation in Algorithm 8 as DA-SVM and the logistic regression in
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Algorithm 9: Data Augmentation for Logistic Regression (DA-logit)

Initialize W (0)
0 , b

(0)
0 B(0)

For epoch t = 1, . . . , T do
1. Retrieve the input and output of the top layer

Z
(t)
1 = fB(t−1)(x) ; // input

y(t) = sigmoid(W
(t−1)
0 Z

(t)
1 + b

(t−1)
0 ); // output

2. Calculate the sample-wise weights
z(t) = y · logit(y(t)) ; // transformed responses
ω(t) = 1

z(t)
(sigmoid(z(t))− 1

2) ; // weights
3. Update the entire deep learner fθ with {y,x}
θ(t) = θ(t−1) − η∇fθ(t−1)(x | y, sample_weights = ω(t)) ;
// SGD

Return ŷ =

{
1, if fθ(T )(x) > 1

2
−1, otherwise.

Algorithm 9 as DA-logit. For appropriate comparison, we adopt the same network structures,

such as the number of layers, the number of hidden nodes, and regularizations like dropout

rates, for DL and our methods. The differences between our methods and DL are that (1) the

top layer weights W0, b0 of DL are updated via SGD optimization, while the weights W0, b0

of our methods are updated via MCMC or EM; (2) for binary classification, DA-logit and

DL adopt a sigmoid activation function in the top layer to produce a binary output, while

DA-SVM uses a linear function in the top layer and the augmented sampling layer transforms

the continuous value into a binary output. For all experiments, the datasets are partitioned

into 70% training and 30% testing randomly. For the optimization we use a modification

of the SGD algorithm, the Adaptive moment estimation (Adam, Kingma and Ba (2015))

algorithm. The Adam algorithm combines the estimate of the stochastic gradient with the

earlier estimate of the gradient, and scales this using an estimate of the second moment

of the unit-level gradient. We have also explored RMSprop (Tieleman and Hinton, 2012)

optimizer and we observe similar decreases in regression or classification errors.

To illustrate how the choice of J could affect the speed of convergence, we include differ-

ent implementations of DA-GR and DA-SVM with J = 2, 5, 10. We have explored different
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sampling noise variance τ0, τZ , but the choices, in general, do not affect the results signifi-

cantly.

5.5.1 Friedman Data

The benchmark (Friedman, 1991) setup uses a regression of the form

yi = 10 sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5 + εi, with εi ∼ N (0, σ2),

where xi = (xi1, xi1, . . . , xip) and only the first 5 covariates are predictive of yi. We run the

experiments with n = 100, 1 000 and p = 10, 50, 100, 1 000 to explore the performance in both

low dimensional and high dimensional scenarios. We implement both one-layer (L = 1) and

two-layer (L = 2) ReLU networks with 64 hidden units in each layer. For DA-GR model,

we let τ0 = 0.1, τz = 1. The experiments are repeated 50 times with different random seeds.

Figure 5.2 reports the three quartiles of the out-of-sample squared errors (MSEs). The

top row is the performance of the one-layer networks and the bottom row is the performance

of the two-layer networks. The two-layer networks perform better and converge faster. For

DA-GR, when J = 5 or J = 10, it converges significantly faster and the prediction errors

are also smaller. When J = 2, the performance of DA-GR is relatively similar to the deep

learning model with only SGD updates. This is due to the fact that DA-GR with J-copies

learns the posterior mode which is equivalent to the minimization point of the objective

function, and it concentrates on the mode faster when J becomes larger.

The computation costs of DA are higher as shown in Figure 5.3. This is not entirely

unexpected since we introduce sampling steps. When J increases, the computation costs

also increase slightly. Given the improvement in convergence speed and prediction errors,

our data augmentation strategies are still worthwhile even with some extra computation

costs. In addition, for each epoch, we can draw the sample-wise posteriors in parallel and
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the gap between the computation time can be further mitigated.
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Figure 5.2: Quartiles of out-of-sample MSEs under the Friedman Setup. We explore cases
where n = 1 000 and p = 10, 50, 100, 1 000. The tests are repeated 50 times. The medians of
out-of-sample MSEs after training for 1 to 10 epochs are plotted with lines and the vertical
bars mark the 25 % and 75% quantiles of the MSEs. DA-GR refers to DA Gaussian regression
shown in Algorithm 7 and DL stands for the ReLU networks without the data-augmentation
layer.

5.5.2 Boston Housing Data

Another classical regression benchmark dataset is the Boston Housing dataset1, see, for

example, Hernández-Lobato and Adams (2015). The data contains n = 506 observations

with 13 features. To show the robustness of DA, we repeat the experiment 20 times with

1. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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Figure 5.3: Computation time under the Friedman setup. The setups are n = 1 000 and
p = 10, 50, 100, 1 000. The averaged time (over 50 repetitions) for computing 1 to 10 epochs is
plotted with lines and the vertical bars mark the 25% and 75% quantiles of the computation
time collected. We only include one figure of computation time comparison here since the
scale is relatively the same for all cases.

different training subsets. We adopt the ReLU networks with one hidden layer of 64 units

and set the dropout rate to be 0.5. For the DA-GR model, we let τ0 = 0.1, τZ = 1.

Figure 5.4 shows the prediction errors of all methods. DA-GR with J = 10 performs

significantly better than the others, in terms of both prediction errors and convergence rates.

Meanwhile, DA-GR with J = 2 behaves similarly to SGD at the beginning, but it converges

significantly faster than SGD after a few epochs. This again, shows that with the J-copies

strategy, our method helps the optimization converge at a faster speed, and injecting the

noise helps the model generalize well out-of-sample.
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Figure 5.4: Out-of-sample MSEs for the Boston housing dataset. The experiment is repeated
20 times with different training subsampling. The medians of MSEs after training for 1 to
50 epochs are provided, with the vertical bars marking the 25% and 75% quantiles of the
errors. DA-GR refers to the data augmentation strategy in Algorithm 7 and DL stands for
the ReLU networks without the data-augmentation layer.

5.5.3 Wine Quality Data Set

The Wine Quality Data Set 2 contains 4 898 observations with 11 features. The output wine

rating is an integer variable ranging from 0 to 10 (the observed range in the data is from 3

to 9). The frequency of each rating is reported in Table 5.2.

rating 3 4 5 6 7 8 9

frequency 20 163 1457 2198 880 175 5

Table 5.2: Frequencies of different wine ratings

The most frequent ratings are 5 and 6. Since we focus on binary classification problems,

we provide two types of classifications, both of which have relatively balanced categories:

2. P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis, ‘Wine Quality Data Set’, UCI Machine
Learning Repository.
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(1) wine with a rating of 5 or 6 (Test 1); (2) wine with a rating of ≤ 5 or > 5 (Test 2). We

use the same network architectures adopted in Friedman’s example with τ0 = τz = 0.1.

Figure 5.5 provides results for the two types of binary classifications. In both cases,

DA-SVM performs better than DA-logit and DL. The advantage of large J is still significant

and helps converge especially in the early phase. DA-logit outperforms DL in Test 1 when

the network is shallow (L=1), while in other cases performs similarly to DL.
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Figure 5.5: Binary classifications on the wine quality dataset. Two types of binary clas-
sifications are considered here. The experiment is repeated 20 times with different train-
ing subsampling. We compare the misclassification rates of DA-SVM in Algorithm 8 with
J = 2, 5, 10, DA-logit in Algorithm 9 and the ReLU networks without the data augmentation
layer (DL), after training for 1 to 10 epochs.
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5.5.4 Airbnb Data Set

The Airbnb Kaggle competition3 provides a more challenging application with 21 3451 ob-

servations in total, and classified by destination into 12 classes: 10 most popular countries,

other and no destination found (NDF), where other corresponds to any other country which

is not among the top 10 and NDF corresponds to situations that no booking was made. The

countries are denoted with their standard codes, as ‘AU’ for Australia, ‘CA’ for Canada,

‘DE’ for Germany, ‘ES’ for Spain, ‘FR’ for France, ‘UK’ for United Kingdom, ‘IT’ for Italy,

‘NL’ for Netherlands, ‘PT’ for Portugal, ‘US’ for United States. Table 5.3 reports the per-

centage of each class. We follow the preprocessing steps in Polson and Sokolov (2017). The

list of variables contains information from the sessions records (number of sessions, summary

statistics of action types, device types and session duration), and user tables such as gender,

language, affiliate provider etc. All categorical variables are converted to binary dummies,

which leads to 661 features in total. For the neural network architecture, we use a two-layer

ReLU network with 64 hidden units on each layer and set the dropout rate to be 0.3. For

the SVM model, we let τ0 = τz = 0.1.

AU CA DE ES FR UK IT NDF NL PT US other

% obs 0.25 0.67 0.50 1.05 2.35 1.09 1.33 58.35 0.36 0.10 29.22 4.73

Table 5.3: Percentage of each class (#obs = 21 3451)

Our goal is to test the binary classification models on this dataset. We consider two types

of binary responses, both of which have relatively balanced amounts of observations in each

category.

1. Spain (1.05%) vs United Kingdom(1.09%)

2. United Kingdom (1.09%) vs Italy (1.33%)

3. https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings
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Figure 5.6: Binary classifications on the Airbnb booking dataset. Two types of binary
classifications are considered here. The experiment is repeated 20 times with different train-
ing subsampling. We compare the misclassification rates of DA-SVM in Algorithm 8 with
J = 2, 5, 10, DA-logit in Algorithm 9 and the ReLU networks without the data augmentation
layer, after training for 1 to 20 epochs.

Figure 5.6 demonstrates the binary classifications for Spain versus UK and UK versus

Italy. For both cases, the out-of-sample misclassification rates are not small and the fluctua-

tions over epochs are big, suggesting that a better model structure may be needed. However,

we still observe that DA-SVM with J = 5 or J = 10 has smaller classification errors over

epochs and the out-of-sample errors decrease faster during earlier phase of training.

5.5.5 Summary of Experiment Results

From the above examples, we observe that DA-logit which is implemented under the EM

principle does not show an obvious advantage over the vanilla neural network. It shows some

improvements on the convergence speed when the network is shallow in the Wine Quality

dataset case as in Figure 5.5. This could be partially due to the fact that we did not ap-

ply regularization on the DA layer for our logit implementation. More importantly, the

performance of the EM algorithm is contingent on the statistical properties of the objec-

tive function. Although the surrogate function is constructed via only the top layer whose
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quadratic form ensures concavity, the property of the objective function as a whole becomes

complicated when the deep network architecture is more complex. Since our method also

inherits the negative side of EM and MM algorithms, convergence to the global maximum is

not guaranteed in the absence of concavity. However, this observation could open the pos-

sibility of future research where we can combine the EM algorithms with shape-constrained

neural networks (Gupta et al., 2020).

On the contrary, the MCMC methods with the J-copies strategy significantly improve

the prediction errors and convergence speed of the neural networks for both regression and

classification problems. And the advantages become more outstanding when J is larger.

The phenomenon suggests that the stochastic exploratory methods are preferable when the

statistical property of the objective function is unknown or too complex. And the J-copies

scheme largely relieves the problem of being trapped into local modes.

One concern of using MCMC methods is the extra computation costs induced by the

sampling steps. In our current version where p1 = 1, the sample-wise sampling steps can be

computed in parallel. If one wishes to introduce a higher dimension latent variable Z1 such

that p1 > 1, the computation costs will increase as it may involve sampling from multivariate

distributions. In that case, fast sampling implementation such as Bhattacharya et al. (2016)

is recommended to speed up the process.

5.6 Discussion

Various regularization methods have been deployed in neural networks to prevent overfit-

ting, such as early stopping, weight decay, dropout (Hinton et al., 2012b), gradient noise

(Neelakantan et al., 2017). Bayesian strategies tackle the regularization problem by propos-

ing probability structures on the weights. We show that data augmentation strategies are

available for many standard activation functions (ReLU, SVM, logit) used in deep learning.

Using MCMC provides a natural stochastic search mechanism that avoids procedures
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such as back-tracking and provides full descriptions of the objective function over the entire

range Θ. Training deep neural networks thus benefits from additional hidden stochastic

augmentation units (a.k.a. data augmentation). Uncertainty can be injected into the network

through the probabilistic distributions on only one or two layers, permitting more variability

of the network. When more data are observed, the level of uncertainty decreases as more

information is learned and the network becomes more deterministic. We also exploit the

duality between maximum a posteriori estimation and optimization. We provide a J-copies

stacking scheme to speed up the convergence to posterior mode and avoid trapping attraction

of the local modes. Concerning efficiency, DA provides a natural framework to convert the

objective function into weighted least squares and is straightforward to implement with the

current deep learning training process.

Our three motivational examples illustrated the advantages of data augmentation. Our

work has the potential to be generalized to many other data augmentation schemes and

different regularization priors. Probabilistic structures on more units and layers are also

possible to allow for more uncertainty.

Our DA-DL methods enjoy the benefits of both worlds. On one hand, with the data

augmentation on top, it is robust to random weight initialization. Although we still need to

specify the learning rates for the deep architecture, the top layer can learn adaptively and

the entire network becomes less sensitive to the choice of learning rate. On the other hand,

the fast SGD updates from the deep architecture largely alleviate the computation concerns

compared to a fully Bayesian hierarchical model.

There are many directions to future research, including adding more sampling layers so

the model could accommodate more randomness and flexibility, and using weighted Bayesian

bootstrap (Newton et al., 2021) to approximate the unweighted posteriors by assigning ran-

dom weight to each observation and penalty. Uncertainty quantification for prediction is

also possible. Although we focus on the training aspect of deep learning, one can collect
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posterior draws θ(t) from the MCMC procedure when the training process converges. Using

(5.8), we can construct predictive intervals and conduct inference.
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CHAPTER 6

VARIABLE SELECTION WITH ABC BAYESIAN FORESTS

Few problems in statistics are as perplexing as variable selection in the presence of very

many redundant covariates. The variable selection problem is most familiar in para-

metric environments such as the linear model or additive variants thereof. In this work,

we abandon the linear model framework, which can be quite detrimental when the co-

variates impact the outcome in a non-linear way, and turn to tree-based methods for

variable selection. Such variable screening is traditionally done by pruning down large

trees or by ranking variables based on some importance measure. Despite heavily used

in practice, these ad-hoc selection rules are not yet well understood from a theoretical

point of view. In this work, we devise a Bayesian tree-based probabilistic method and

show that it is consistent for variable selection when the regression surface is a smooth

mix of p > n covariates. These results are the first model selection consistency results

for Bayesian forest priors. Probabilistic assessment of variable importance is made fea-

sible by a spike-and-slab wrapper around sum-of-trees priors. Sampling from posterior

distributions over trees is inherently very difficult. As an alternative to MCMC, we

propose ABC Bayesian Forests, a new ABC sampling method based on data-splitting

that achieves higher ABC acceptance rate. We show that the method is robust and

successful at finding variables with high marginal inclusion probabilities. Our ABC

algorithm provides a new avenue towards approximating the median probability model

in non-parametric setups where the marginal likelihood is intractable.

. Adopted from Yi Liu, Veronika Ročková, and Yuexi Wang. Variable selection with abc bayesian forests.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(3):453–481, 2021.
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6.1 Perspectives on Non-parametric Variable Selection

In its simplest form, variable selection is most often carried out in the context of linear

regression (Tibshirani, 1996; George and McCulloch, 1993; Fan and Li, 2001). However,

confinement to linear parametric forms can be quite detrimental for variable importance

screening, when the covariates impact the outcome in a non-linear way (Turlach, 2004).

Rather than first selecting a parametric model to filter out variables, another strategy is to

first select variables and then build a model. Adopting this reversed point of view, we focus

on developing methodology for the so called “model-free" variable selection (Chipman et al.,

2001).

There is a long strand of literature on the fundamental problem of non-parametric vari-

able selection. One line of research focuses on capturing non-linearities and interactions with

basis expansions and performing grouped shrinkage/selection on sets of coefficients (Scheipl,

2011; Ravikumar et al., 2009; Lin and Zhang, 2006; Radchenko and James, 2010). Lafferty

and Wasserman (2008) propose the RODEO method for sparse non-parametric function

estimation through regularization of the derivative expectation operator and provide a con-

sistency result for the selection of the optimal bandwidth. Candes et al. (2018) propose a

model-free knock-off procedure, controlling FDR in settings when the conditional distribution

of the response is arbitrary. In the Bayesian literature, Savitsky et al. (2011) deploy spike-

and-slab priors on covariance parameters of Gaussian processes to erase variables. In this

work, we focus on other non-parametric regression techniques, namely trees/forests which

have been ubiquitous throughout machine learning and statistics (Breiman, 2001; Chipman

et al., 2010). The question we wish to address is whether one can leverage the flexibility of

regression trees for effective (consistent) variable importance screening.

While trees are routinely deployed for data exploration, prediction and causal inference

(Hill, 2011; Taddy et al., 2011a; Gramacy and Lee, 2008a), they have also been used for di-

mension reduction and variable selection. This is traditionally done by pruning out variables
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or by ranking them based on some importance measure. The notion of variable importance

was originally proposed for CART using overall improvement in node impurity involving

surrogate predictors (Breiman et al., 1984). In random forests, for example, the importance

measure consists of a difference between prediction errors before and after noising the co-

variate through a permutation in the out-of-bag sample. However, this continuous variable

importance measure is on an arbitrary scale, rendering variable selection ultimately ad-hoc.

Principled selection of the importance threshold (with theoretical guarantees such as FDR

control or model selection consistency) is still an open problem. Simplified variants of im-

portance measures have begun to be understood theoretically for variable selection only very

recently (Ishwaran, 2007; Kazemitabar et al., 2017).

Bayesian trees and forests select variables based on probabilistic considerations. The

BART procedure (Chipman et al., 2010) can be adapted for variable selection by forcing the

number of available splits (trees) to be small, thereby introducing competition between pre-

dictors. BART then keeps track of predictor inclusion frequencies and outputs a probabilistic

importance measure: an average proportion of all splitting rules inside a tree ensemble that

split on a given variable, where the average is taken over the MCMC samples. This measure

cannot be directly interpreted as the posterior variable inclusion probability in anisotropic

regression surfaces, where wigglier directions require more splits. Bleich et al. (2014) con-

sider a permutation framework for obtaining the null distribution of the importance weights.

Zhu et al. (2015) implement reinforcement learning for selection of splitting variables during

tree construction to encourage splits on fewer more important variables. All these develop-

ments point to the fact that regularization is key to enhancing performance of trees/forests

in high dimensions. Our approach differs in that we impose regularization from outside the

tree/forest through a spike-and-slab wrapper.

Spike-and-slab variable selection consistency results have relied on analytical tractability

(approximation availability) of the marginal likelihood (Narisetty and He, 2014; Johnson
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and Rossell, 2012; Castillo et al., 2015). Nicely tractable marginal likelihoods are ultimately

unavailable in our framework, rendering the majority of the existing theoretical tools in-

applicable. For these contexts, Yang and Pati (2017) characterized general conditions for

model selection consistency, extending the work of Lember and van der Vaart (2007) to non

iid setting. Exploiting these developments, we show variable selection consistency of our

non-parametric spike-and-slab approach when the regression function is a smooth mix of co-

variates. Building on Ročková and van der Pas (2020), our paper continues the investigation

of missing theoretical properties of Bayesian CART and BART. We show model selection

consistency when the smoothness is known as well as joint consistency for both the regular-

ity level and active variable set when the smoothness is not known and when p > n. These

results are the first model selection consistency results for Bayesian forest priors.

The absence of a tractable marginal likelihood complicates not only theoretical analysis,

but also computation. We turn to Approximate Bayesian Computation (ABC) (Plagnol and

Tavaré, 2004; Marin et al., 2012; Csillery et al., 2010) and propose a procedure for model-free

variable selection. Our ABC method does not require the use of low-dimensional summary

statistics and, as such, it does not suffer from the known difficulty of ABC model choice

(Robert et al., 2011). Our method is based on sample splitting where at each iteration (a) a

random subset of data is used to come up with a proposal draw and (b) the rest of the data

is used for ABC acceptance. This new data-splitting approach increases ABC effectiveness

by increasing its acceptance rate. ABC Bayesian forests relate to the recent line of work on

combining machine learning with ABC (Pudlo et al., 2015; Jiang et al., 2017a). We propose

dynamic plots that describe the evolution of marginal inclusion probabilities as a function

of the ABC selection threshold.

The paper is structured as follows. Section 6.2 introduces the spike-and-slab wrapper

around tree priors. Section 6.3 develops the ABC variable selection algorithm. Section 6.4

presents model selection consistency results. Section 6.5 demonstrates the usefulness of the
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ABC method on simulated data and we apply our methods to an analysis on HIV dataset

in Section 6.6. Section 6.7 wraps up with a discussion.

Notation. With ‖ · ‖n we denote the empirical L2 norm. The class of functions f(x) :

[0, 1]p → R such that f(·) is constant in all directions excluding S0 ⊆ {1, . . . , p} is denoted

with C(S0). WithHαp , we denote α-Hölder continuous functions with a smoothness coefficient

α. a . b denotes a is less or equal to b, up to a multiplicative positive constant, and a � b

denotes a . b and b . a. The ε-covering number of a set Ω for a semimetric d, denoted by

N(ε; Ω; d), is the minimal number of d-balls of radius ε needed to cover set Ω.

6.2 Bayesian Subset Selection with Trees

We will work within the purview of non-parametric regression, where a vector of continuous

responses Y (n) = (Y1, . . . , Yn)′ is linked to fixed (rescaled) predictors xi = (xi1, . . . , xip)
′ ∈

[0, 1]p for 1 ≤ i ≤ n through

Yi = f0(xi) + εi with εi ∼ N (0, σ2) for 1 ≤ i ≤ n, (6.1)

where f0(·) is the regression mixing function and σ2 > 0 is a scalar. It is often reasonable

to expect that only a small subset S0 of q0 = |S0| predictors actually exert influence on

Y (n) and contribute to the mix. The subset S0 is seldom known with certainty and we are

faced with the problem of variable selection. Throughout this paper, we assume that the

regression surface is smoothly varying (α-Hölder continuous) along the active directions S0

and constant otherwise, i.e. we write f0 ∈ Hαp ∩ C(S0).

Unlike linear models that capture the effect of a single covariate with a single coefficient,

we permit non-linearities/interactions and capture variable importance with (additive) re-

gression trees. By doing so, we hope to recover non-linear signals that could be otherwise

missed by linear variable selection techniques.
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As with any other non-parametric regression method, regression trees are vulnerable to

the curse of dimensionality, where prediction performance deteriorates dramatically as the

number of variables p increases. If an oracle were to isolate the active covariates S0, the

fastest achievable estimation rate would be n−α/(2α+|S0|). This rate depends only on the

intrinsic dimensionality q0 = |S0|, not the actual dimensionality p which can be much larger

than n. Recently, Ročková and van der Pas (2020) showed that with suitable regularization,

the posterior distribution for Bayesian CART and BART actually concentrates at this fast

rate (up to a log factor), adapting to the intrinsic dimensionality and smoothness. Later

in Section 6.4, we continue their theoretical investigation and focus on consistent variable

selection, i.e. estimation of S0 rather than f0(·). Spike-and-slab regularization plays a key

role in obtaining these theoretical guarantees.

6.2.1 Trees with Spike-and-Slab Regularization

Many applications offer a plethora of predictors and some form of redundancy penalization

has to be incurred to cope with the curse of dimensionality. Bayesian regression trees were

originally conceived for prediction rather than variable selection. Indeed, original tree im-

plementations of Bayesian CART (Denison et al., 1998a; Chipman et al., 1998) do not seem

to penalize inclusion of redundant variables aggressively enough. As noted by Linero (2018),

the prior expected number of active variables under the Bayesian CART prior of Chipman

et al. (1998) satisfies limp→∞ E[q] = K−1 as p→∞ where K is the fixed number of bottom

leaves. This behavior suggests that (in the limit) the prior forces inclusion of the maximal

number of variables while splitting on them only once. This is far from ideal. To alleviate this

issue, we deploy the so-called spike-and-forest priors, i.e. spike-and-slab wrappers around

sum-of-trees priors (Ročková and van der Pas, 2020). As with the traditional spike-and-slab

priors, the specification starts with a prior distribution over the 2p active variable sets:

S ∼ π(S) for each S ⊆ {1, . . . , p}. (6.2)
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We elaborate on the specific choices of π(S) later in Section 6.3.2 and Section 6.4.

Given the pool of variables S, a regression tree/forest is grown using only variables inside

S. This prevents the trees from using too many variables and thereby from overfitting. Recall

that each individual regression tree is characterized by two components: (1) a tree-shapedK-

partition of [0, 1]p, denoted with T , and (2) bottom node parameters (step heights), denoted

with β ∈ RK . Starting with a parent node [0, 1]p, each K-partition is grown by recursively

dissecting rectangular cells at chosen internal nodes along one of the active coordinate axes,

all the way down to K terminal nodes. Each tree-shaped K-partition T = {Ωk}Kk=1 consists

of K partitioning rectangles Ωk ⊂ [0, 1]p.

While Bayesian CART approximates f0(x) with a single tree mappings fT ,β(x) =∑K
k=1 I(x ∈ Ωk)βk, Bayesian Additive Regression Trees (BART) use an aggregate of T

mappings

fE ,B(x) =
T∑
t=1

fT t,βt(x)

where E = {T 1, . . . , T T } is an ensemble of tree partitions and B = [β1, . . . ,βT ] is an

ensemble of step coefficients. In a fully Bayesian approach, prior distributions have to be

specified over the set of tree structures E and over terminal node heights B. The spike-and-

forest construction can accommodate various tree prior options.

To assign a prior over E for a given T , one possibility is to first pick the number of bottom

nodes, independently for each tree, from a prior

Kt ∼ π(K) for K = 1, . . . , n, (6.3)

such as the Poisson distribution (Denison et al., 1998a). Given the vector of tree sizes

K = (K1, . . . , KT )′ and a set of covariates S, we assign a prior over so-called valid ensem-

bles/forests VEKS . We say that a tree ensemble E is valid if it consists of trees that have

non-empty bottom leaves. One can pick a tree partition ensemble from a uniform prior over
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valid forests E ∈ VEKS , i.e.

π(E | S,K) =
1

∆(VEKS )
I
(
E ∈ VEKS

)
, (6.4)

where ∆(VEKS ) is the number of valid tree ensembles characterized by K bottom leaves

and split directions S. The prior (6.3) and (6.4) was deployed in the Bayesian CART

implementation of Denison et al. (1998a) (with T = 1) and it was studied theoretically

by Ročková and van der Pas (2020). Another related Bayesian forest prior (implemented

in the BART procedure and studied theoretically by Ročková and Saha (2019) consists of

an independent product of branching process priors (one for each tree) with decaying split

probabilities (Chipman et al., 1998). The implementation is very similar to the one of

Denison et al. (1998a).

Finally, given the partitions T t of size Kt for 1 ≤ t ≤ T , one assigns (independently for

each tree) a Gaussian product prior on the step heights

π(βt |Kt) =
Kt∏
k=1

φ(βtk;σ2
β), (6.5)

where φ(x;σ2
β) denotes a Gaussian density with mean zero and variance σ2

β = 1/T (as

suggested by Chipman et al. (2010)). The prior for σ2 can be chosen as inverse chi-squared

with hyperparameters chosen based on an estimate of the residual standard deviation of the

data (Chipman et al., 2010).

The most crucial component in the spike-and-forest construction, which sets it apart

from existing BART implementations, is the active set S which serves to mute variables by

restricting the pool of predictors available for splits. The goal is to learn which set S is most

likely (a posteriori) and/or how likely each variables is to have contributed to f0. Unlike

related tree-based variable selection criteria, the spike-and-slab envelope makes it possible to

perform variable selection directly by evaluating posterior model probabilities Π(S |Y (n)) or
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marginal inclusion probabilities Π(j ∈ S0 | Y (n)) for 1 ≤ j ≤ p. Random forests (Breiman,

2001) also mute variables, but they do so from within the tree by randomly choosing a small

subset of variables for each split. The spike-and-slab approach mutes variables externally

rather than internally. Bleich et al. (2014) note that when the number of trees is small,

the Gibbs sampler for BART can get trapped in local modes which can destabilize the

estimation procedure. On the other hand, when the number of trees is large, there are

ample opportunities for the noise variables to enter the model without necessarily impacting

the model fit, making variable selection very challenging. Our spike-and-slab wrapper is

devised to get around this problem.

The problem of variable selection is fundamentally challenged by the sheer size of possible

variable subsets. For linear regression, (a) MCMC implementations exist that capitalize on

the availability of marginal likelihood (Narisetty and He, 2014; Guan and Stephens, 2011), (b)

optimization strategies exist for both continuous (Ročková and George, 2018; Ročková, 2018)

and point-mass spike-and slab priors (Carbonetto and Stephens, 2012). These techniques

do not directly translate to tree models, for which tractable marginal likelihoods π(Y (n) | S)

are unavailable. To address this computational challenge, we explore ABC techniques as a

new promising avenue for non-parametric spike-and-slab methods.

6.3 ABC for Variable Selection

Performing (approximate) posterior inference in complex models is often complicated by

the analytical intractability of the marginal likelihood. Approximate Bayesian Computation

(ABC) is a simulation-based inference framework that obviates the need to compute the

likelihood directly by evaluating the proximity of (sufficient statistics of) observed data and

pseudo-data simulated from the likelihood. Simon Tavaré first proposed the ABC algorithm

for posterior inference (Tavaré et al., 1997) in the 1990’s and since then it has widely been
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used in population genetics, systems biology, epidemiology and phylogeography1.

Combined with a probabilistic structure over models, marginal likelihoods give rise to

posterior model probabilities, a standard tool for Bayesian model choice. When the marginal

likelihood is unavailable (our case here), ABC offers a unique computational solution. How-

ever, as pointed out by Robert et al. (2011), ABC cannot be trusted for model comparisons

when model-wise sufficient summary statistics are not sufficient across models. The ABC

approximation to Bayes factors then does not converge to exact Bayes factors, rendering

ABC model choice fundamentally untrustworthy. A fresh new perspective to ABC model

choice was offered in Pudlo et al. (2015), who rephrase model selection as a classification

problem that can be tackled with machine learning tools. Their idea is to treat the ABC

reference table (consisting of samples from a prior model distribution and high-dimensional

vectors of summary statistics of pseudo-data obtained from the prior predictive distribution)

as an actual data set, and to train a random forest classifier that predicts a model label using

the summary statistics as predictors. Their goal is to produce a stable model decision based

on a classifier rather than on an estimate of posterior model probabilities. Our approach has

a similar flavor in the sense that it combines machine learning with ABC, but the concept

is fundamentally very different. Here, the fusion of Bayesian forests and ABC is tailored to

non-parametric variable selection towards obtaining posterior variable inclusion probabili-

ties. Our model selection approach does not suffer from the difficulty of ABC model choice

as we do not commit to any summary statistics and use random subsets of observations to

generate the ABC reference table.

6.3.1 Naive ABC Implementation

For its practical implementation, our Bayesian variable selection method requires sampling

from the analytically intractable posterior distribution over subsets Π(S | Y (n)) under the

1. The study of how human beings migrated throughout the world in the past.
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spike-and-forest prior (6.4), (6.3) and (6.2). Given a single tree partition T , the (conditional)

marginal likelihood π(Y (n) | T ,S) is available in closed form, facilitating implementations of

Metropolis-Hastings algorithms (Chipman et al., 1998; Denison et al., 1998a) (see Liu et al.

(2021, Section S.3)). However, such MCMC schemes can suffer from poor mixing. Taking

advantage of the fact that, despite being intractable, one can simulate from the marginal

likelihood π(Y (n) |S), we will explore the potential of ABC as a complementary development

to MCMC implementations.

The principle at the core of ABC is to perform approximate posterior inference from a

given dataset by simulating from a prior distribution and by comparisons with numerous

synthetic datasets. In its standard form, an ABC implementation of model choice creates

a reference table, recording a large number of datasets simulated from the model prior and

the prior predictive distribution under each model. Here, the table consists of M pairs

(Sm,Y ?
m) of model indices Sm, simulated from the prior π(S), and pseudo-data Y ?

m ∈ Rn,

simulated from the marginal likelihood π(Y (n) | Sm). To generate Y ?
m in our setup, one can

hierarchically decompose the marginal likelihood

π(Y (n) | S) =

∫
(fE,B ,σ2)

π(Y (n) | fE ,B , σ2)dπ(fE ,B , σ
2 | S) (6.6)

and first draw (fmE ,B , σ
2
m) from the prior π(fE ,B , σ

2 | S) and obtain Y ?
m from (6.1), given

(fmE ,B , σ
2
m). ABC sampling is then followed by an ABC rejection step, which extracts pairs

(Sm,Y ?
m) such that Y ?

m is close enough to the actual observed data. In other words, one trims

the reference table by keeping only model indices Sm paired with pseudo-observations that

are at most ε-away from the observed data, i.e. ‖Y obs−Y ?
m‖2 ≤ ε for some tolerance level ε.

These extracted values comprise an approximate ABC sample from the posterior π(S |Y (n)),

which should be informative for the relative ordering of the competing models, and thus

variable selection (Grelaud et al., 2009). Note that this particular ABC implementation

does not require any use of low-dimensional summary statistics, where rejection is based
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solely on Y obs. While theoretically justified, this ABC variant has two main drawbacks.

First, with very many predictors, it will be virtually impossible to sample from all 2p

model combinations at least once, unless the reference table is huge. Consequently, relative

frequencies of occurrence of a model Sm in the trimmed ABC reference table may not be a

good estimate of the posterior model probability π(Sm | Y (n)). While the model with the

highest posterior probability π(Sm |Y (n)) is commonly conceived as the right model choice,

it may not be the optimal model for prediction. Indeed, in nested correlated designs and

orthogonal designs, it is the median probability model that is predictive optimal (Barbieri

and Berger, 2004). The median probability model (MPM) consists of those variables whose

marginal inclusion probabilities P(j ∈ S0 | Y (n)) are at least 0.5. While simulation-based

estimates of posterior model probabilities P(S |Y (n)) can be imprecise, we argue (and show)

that ABC estimates of marginal inclusion probabilities P(j ∈ S0 |Y (n)) are far more robust

and stable.

The second difficulty is purely computational and relates to the issue of coming up with

good proposals fmE ,B such that the pseudo-data are sufficiently close to Y obs. Due to the

vastness of the tree ensemble space, it would be naive to think that one can obtain solid

guesses of f0 purely by sampling from non-informative priors. This is why we call this

ABC implementation naive. These considerations lead us to a new data-splitting ABC

modification that uses a random portion of the data to train the prior and to generate

pseudo-data with more affinity to the left-out observations.

6.3.2 ABC Bayesian Forests

By sampling directly from noninformative priors over tree ensembles π(fE ,B , σ
2 | S), the

acceptance rate of the naive ABC can be prohibitively small where huge reference tables

would be required to obtain only a few approximate samples from the posterior.

To address this problem, we suggest a sample-splitting approach to come up with draws
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that are less likely to be rejected by the ABC method. At each ABC iteration, we first draw

a random subsample I ⊂ {1, . . . , n} of size |I| = s with no replacement. Then we split the

observed data Y (n) into two groups, denoted with Y (n)
I and Y (n)

Ic , and instead of (6.6) we

consider the marginal likelihood conditionally on Y (n)
I

π(Y (n) | Y (n)
I ,S) =

∫
(fE,B ,σ2)

π(Y
(n)
Ic | fE ,B , σ

2)dπI(fE ,B , σ
2 | S) (6.7)

where

πI(fE ,B , σ
2 | S) = π(fE ,B , σ

2 | Y (n)
I ,S). (6.8)

This simple decomposition unfolds new directions for ABC sampling based on data splitting.

Instead of using all observations Y obs to Accept/Reject each draw, we set aside a random

subset of data Y obs
Ic for ABC rejection and use Y obs

I to “train the prior". The key observation

is that the samples from the prior πI(fE ,B , σ
2 | S), i.e. the posterior π(fE ,B , σ

2 | Y (n)
I ,S),

will have seen a part of the data and will produce more realistic guesses of f0. Such guesses

are more likely to yield pseudo-data that match Y obs
Ic more closely, thereby increasing the

acceptance rate of ABC sampling. Note that the acceptance step is based solely on the left-

out sample Y obs
Icm

, not the entire data. Similarly as the naive ABC outlined in the previous

section, we first sample the subset S from the prior π(S) and then obtain draws from the

conditional marginal likelihood under an updated prior πI(fE ,B , σ
2 | S). This corresponds

to an ABC strategy for sampling from π(S | Y (n)
Ic ) under the priors (6.2) and (6.8). As will

be seen later, this posterior is effective for assessing variable importance. Moreover, if π(S)

is a good proxy for π(S |Y (n)
I ) (when the training set is small relative to the ABC rejection

set), this ABC will produce approximate samples from the original target π(S | Y (n)).

The idea of using a portion of the data for training the prior and the rest for model

selection goes back to at least Good (1950). The most common prescription for choosing

training samples in Bayesian analysis is to convert improper priors into propers ones for

196



meaningful model selection with Bayes factors (Lempers, 1971; O’Hagan, 1995). Berger and

Pericchi (1996) advocated choosing the training set as small as possible subject to yielding

proper posteriors (so called minimal training samples). Berger and Pericchi (2004) argue that

data can vary widely in terms of their information content and the use of single minimal

training samples can be inadequate/ suboptimal. Since there are many possible training

samples, it is natural to average the resulting Bayes factors over the training samples in some

fashion. While intrinsic Bayes factors (Berger and Pericchi, 1996) average Bayes factors over

all possible minimal training samples, expected posterior priors (Pérez and Berger, 2002)

average the prior first. In particular, the empirical expected-posterior prior for model S

(Ghosh and Samanta, 2002; Pérez and Berger, 2002) writes as

π(fE ,B , σ
2 | S) =

1

L

L∑
l=1

πIl(fE ,B , σ
2 | S), (6.9)

where πIl(fE ,B , σ
2 | S) was defined in (8) and where L is the number of all minimal training

samples Il. The marginal likelihood under this prior can be then written as (equation (3.5) in

Pérez and Berger (2002)) m(Y (n) | S) = 1
L

∑L
l=1 π(Y (n) | Y (n)

I ,S), where π(Y (n) | Y (n)
I ,S)

was defined in (7). Our ABC analysis with internal data splitting can be thus regarded as

arising from the empirical expected posterior prior (6.9). While the motivation for using

training samples in Bayesian analysis has been largely to make improper priors proper, here

we use this idea in a different context to increase ABC acceptance rate.

The ABC Bayesian Forests algorithm is formally summarized in Table 10. It starts by

splitting the dataset into two subsets at each (mth) iteration: Y obs
Im for fitting and Y obs

Icm
for

ABC rejection. The algorithm then proceeds by sampling an active set S from π(S). Using

the spike-and-slab construction, one can draw Bernoulli indicators γ = (γ1, . . . , γp)
′ where

P(γj = 1 | θ) = θ for some prior inclusion probability θ ∈ (0, 1) and set Sm = {j : γj = 1}.

When sparsity is anticipated, one can choose θ to be small or to arise from a beta prior B(a, b)
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Algorithm 10: ABC Bayesian Forests
Data: Data (Y obs

i , xi) for 1 ≤ i ≤ n
Result: πj(ε) for 1 ≤ j ≤ p where πj(ε) = P̂(j ∈ S0 | Y (n))
Set M : the number of ABC simulations; s: the subsample size; ε: the tolerance threshold;
m = 0 the counter

while m ≤M do ahoj

(a) Split data Y obs into Y obs
Im and Y obs

Icm , where Im ⊂ {1, . . . , n} of size |Im| = s is
obtained by sampling with no replacement.

(b) Pick a subset Sm from π(S).
(c) Sample (fmE,B, σ

2
m) from πIm(fE,B, σ

2 | Sm) = π(fE,B, σ
2 | Y obs

Im ,Sm).

(d) Generate pseudo-data Y ?
Icm by sampling white noise εi

iid∼ N (0, σ2
m) and setting

Y ?
i = fmE,B(xi) + εi for each i /∈ Im.

(e) Compute discrepancy εm = ‖Y ?
Icm − Y

obs
Icm ‖2.

if εm < ε then
Accept (Sm, fmE,B) and set m = m+ 1

else
Reject (Sm, fmE,B) and set m = m+ 1

end
end
Compute πj(ε) as the proportion of times jth variable is used in the accepted fmE,B’s.

for some a > 0 and b > 0 (yielding the beta-binomial prior). We discuss other suitable prior

model choices in Section 6.4.

In the (c) step of ABC Bayesian Forests, one obtains a sample from the posterior of

(fE ,B , σ
2), given Y obs

Im . For this step, one can leverage existing implementations of Bayesian

CART and BART (e.g. the BART R package of McCulloch et al. (2018)). A single draw from

the posterior is obtained after a sufficient burn-in. In this vein, one can view ABC Bayesian

Forests as a computational envelope around BART to restrict the pool of available variables.

The (d) step then consists of predicting the outcome Y ?
Icm

for left-out observations xi using

(6.1) for each i ∈ Icm. The last step is ABC rejection based on the discrepancy between Y ?
Icm

and Y obs
Icm

.

For the computation of marginal inclusion probabilities πj(ε), one could conceivably

report the proportion of ABC accepted samples Sm that contain the jth variable. However,

Sm is a pool of available predictors and not all of them are necessarily used in fmE ,B . Thereby,
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we report the proportion of ABC accepted samples fmE ,B that use the jth variable at least

once, i.e.

πj(ε) =
1

M(ε)

∑
m:εm<ε

I(j used in fmE ,B), (6.10)

where M(ε) is the number of accepted ABC samples at ε. Each tree ensemble fmE ,B thus

performs its own variable selection by picking variables from Sm rather than from {1, . . . , p}.

Limiting the pool of predictors prevents from too many false positives. In addition, the

inclusion probabilities (6.10) do use the training data Y (n)
I to shrink and update the subset

S by leaving out covariates not picked by fmE ,B . In this way, the mechanism for selecting the

subsets S is not strictly sampling from the prior π(S) but it seizes the information in the

training set I. In this way, Sm’s can be regarded as approximate samples from π(S |Y obs).

When I = ∅, we recover the naive ABC as a special case.

6.3.2.1 Dynamic ABC

The estimates of marginal inclusion probabilities πj(ε) obtained with ABC Bayesian Forests

unavoidably depend on the level of approximation accuracy ε. The acceptance threshold ε

can be difficult to determine in practice, because it has to accommodate random variation

of data around f0 as well as the error when approximating smooth surfaces f0 with trees.

As ε → 0, the approximations πj(ε) will be more accurate, but the acceptance rate will be

smaller. It is customary to pick ε as an empirical quantile of εm (Grelaud et al., 2009),

keeping only the top few closest samples. Rather than choosing one value ε, we suggest a

dynamic strategy by considering a sequence of decreasing values εN > εN−1 > · · · > ε1 > 0.

By filtering out the ABC samples with stricter thresholds, we track the evolution of each

πj(ε) as ε gets smaller and smaller. This gives us a dynamic plot that is similar in spirit to the

Spike-and-Slab LASSO (Ročková and George, 2018) or EMVS (Ročková and George, 2014)

coefficient evolution plots. However, our plots depict approximations to posterior inclusion

probabilities rather than coefficient magnitudes. Other strategies for selecting the threshold
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ε are discussed in Sunnaaker et al. (2013); Marin et al. (2012); Csillery et al. (2010).

6.3.3 ABC Bayesian Forests in Action

We demonstrate the usefulness of ABC Bayesian Forests on the benchmark Friedman dataset

(Friedman, 1991), where the observations are generated from (6.1) with σ = 1 and

f0(xi) = 10 sin(π xi1 xi2) + 20 (xi3 − 0.5)2 + 10xi4 + 5xi5, (6.11)

where xi ∈ [0, 1]p are iid from a uniform distribution on a unit cube. Because the outcome

depends on x1, . . . , xp, the predictors x6, . . . , xp are irrelevant, making it more challenging to

find f0(x). We begin by illustrating the basic features of ABC Bayesian Forests with p = 100

and n = 500, assuming the beta-binomial prior π(S | θ) with θ ∼ B(1, 1) (see Section 6.3.2).

At the mth ABC iteration, we draw one posterior sample fmE ,B after 100 burnin iterations

using the BART MCMC algorithm (Chipman et al., 2001) with T = 10 trees. We generate

M = 1 000 ABC samples (with s = n/2) and we keep track of variables used in fmE ,B ’s

to estimate the marginal posterior inclusion probabilities πj(ε). It is worth pointing out

that unlike MCMC, ABC Bayesian Forests are embarrassingly parallel, making distributed

implementations readily available.

Following the dynamic ABC strategy, we plot the estimates of posterior inclusion indi-

cators πj(ε) as a function of ε (Figure 6.1). The true signals are depicted in blue, while the

noise covariates are in red. The estimated inclusion probabilities clearly segregate the active

and non-active variables, even for large ε values. This is because BART itself performs vari-

able selection to some degree, where not all variables in Sm end up contributing to fmE ,B . For

small enough ε, the inclusion probabilities of true signals eventually cross the 0.5 threshold.

Based on the median probability model rule (Barbieri and Berger, 2004), one thereby selects

the true model when ε is sufficiently small. Because the inclusion probabilities get a bit
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Figure 6.1: (Left) Dynamic ABC plots for evolving inclusion probabilities as ε gets smaller.
(Right) Plot of πj(ε) obtained with ABC Bayesian Forests (ε is the 5% quantile of εm’s) and
the variable importance measure from Random Forests (rescaled to have a maximum at 1).

unstable as ε gets smaller (they are obtained from smaller reference tables), we excluded the

10 smallest ε values from the plot.

We repeated the experiment with more trees (T = 50) and a single tree (T = 1). Using

more trees, one still gets the separation between signal and noise. However, many more noisy

covariates would be included by the MPM rule. This is in accordance with Chipman et al.

(2001) who state that BART can over-select with many trees. With a single tree, on the

other hand, one may miss some of the low-signal predictors, where deeper trees and more

ABC iterations would be needed to obtain a clearer separation.

In this simulation, we observe a curious empirical connection between πj(ε), obtained with

ABC Bayesian Forests (taking top 5% ABC samples), and rescaled variable importances

obtained with Random Forests (RF). From Figure 6.1(b), we see that the two measures

largely agree, separating the signal coefficients (triangles) from the noise coefficients (dots).

However, the RF measure is a bit more conservative, yielding smaller normalized importance

scores for true signals. While variable importance for RF is yet not understood theoretically,
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in the next section we provide conditions under which the posterior distribution is consistent

for variable selection.

6.4 Model-Free Variable Selection Consistency

In this section, we develop large sample model selection theory for spike-and-forest priors.

As a jumping-off point, we first assume that α (the regularity of f0) is known, where model

selection essentially boils down to finding the active set S0. Later in this section, we investi-

gate joint model selection consistency, acknowledging uncertainty about S0 and, at the same

time, the regularity α.

Several consistency results for non-parametric regression already exist (Zhu et al., 2015;

Yang and Pati, 2017). Comminges and Dalalyan (2012) characterized tight conditions on

(n, p, q0), under which it is possible to consistently estimate the sparsity pattern in two

regimes. For fixed q0, consistency is attainable when (log p)/n ≤ c for some c > 0. When q0

tends to infinity as n→∞, consistency is achievable when c1q0 + log log(p/q0)− log n ≤ c2

for some c1, c2 > 0. Throughout this section, we will treat q0 as fixed and show variable

selection consistency when q0 log p ≤ nq0/(2α+q0). As an overture to our main result, we

start with a simpler case when T = 1 (a single tree) and when α is known. The full-fledged

result for Bayesian forests and unknown α is presented in Section 6.4.3. Throughout this

section, we will assume σ2 = 1.

6.4.1 The Case of Known α

Spike-and-forest mixture priors are constructed in two steps by (1) first specifying a condi-

tional prior ΠS(f) on tree (ensemble) functions expressing a qualitative guess on f0, and

then (2) attaching a prior weight π(S) to each “model" (i.e. subset) S. The posterior distri-

bution Π(f |Y (n)) can be viewed as a mixture of individual posteriors for various models S
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with weights given by posterior model probabilities Π(S | Y (n)), i.e.

Π(f | Y (n)) =
∑
S

Π(S | Y (n))ΠS(f | Y (n)).

Our aim is to establish “model-free" variable selection consistency in the sense that

Π(S = S0 | Y (n))→ 1 in P(n)
f0

-probability as n→∞,

where P(n)
f0

is the distribution of Y (n) under (6.1). The adjective “model-free" merely refers

to the fact that we are selecting subsets in a non-parametric regression environment without

necessarily committing to a linear model. We start by defining the model index set Γ ={
S : S ⊆ {1, . . . , p}

}
, consisting of all 2p variable subsets, and we partition it into (a) the

true model S0, (b) models that overfit ΓS⊃S0
(i.e. supersets of the true subset S0) and (c)

models that underfit ΓS6⊃S0
(i.e. models that miss at least one active covariate). Each model

S ∈ Γ is accompanied by a convergence rate εn,S that reflects the inherent difficulty of the

estimation problem. For each model S of size |S|, we define

εn,S = Cε n
−α/(2α+|S|)√log n for some Cε > 0, (6.12)

the ‖ · ‖n-near-minimax rate of estimation of a |S|-dimensional α-smooth function.

6.4.1.1 Prior Specification

Prior distribution on the model index Π(S) has to be chosen carefully for model selection

consistency to hold when p > n (Moreno et al., 2015). Traditional spike-and-slab priors

introduce Π(S) through a prior inclusion probability θ = Π(i ∈ S0 | θ), independently for

each i = 1, . . . , p. This prior mixing weight is often endowed with a prior, such as the uniform

prior π(θ) = B(1, 1) (Scott and Berger, 2010), yielding a uniform prior on the model size, or
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the “complexity prior" π(θ) = B(1, pc) for c > 2 (Castillo and van der Vaart, 2012), yielding

an exponentially decaying prior on the model size. We propose a different approach, directly

assigning a prior on model weights through

π(S) ∝ e
−C

(
n|S|/(2α+|S|) log n∨|S| log p

)
(6.13)

where C > 0 is a suitably large constant. When |S| log p ≤ n|S|/(2α+|S|), this prior is

proportional to e
−C/C2

ε n ε
2
n,S and, as such, it puts more mass on models that yield faster

rates convergence (similarly as in Lember and van der Vaart (2007)). When |S| log p >

n|S|/(2α+|S|) log n, the implied prior on the effective dimensionality π(|S|) =
( p
|S|
)
π(S) will

be exponentially decaying in the sense that π(|S|) . e−(C−1)|S| log p for C > 1. It was

recently noted by Castillo and Mismer (2018) that the complexity prior “penalizes slightly

more than necessary". With our prior specification (6.13), however, the exponential decay

kicks in only when |S| is sufficiently large.

Assuming that the level of smoothness α is known, the optimal number of steps (i.e. tree

bottom leaves K) needed to achieve the rate-optimal performance for estimating f0 should

be of the order nq0/(2α+q0) = 1/C2
ε n ε

2
n,S0

/ log n (Ročková and van der Pas, 2020). For our

toy setup with a known α, we thus assume a point-mass prior on K with an atom near the

optimal number of steps for each given S, i.e.

π(K | S) = I[K = KS ], where KS = bCK/C2
ε n ε

2
n,S/ log nc (6.14)

for some CK > 0 such that KS0
= 2q0s for some s ∈ N. In Section 6.4.2, we allow for more

flexible trees with variable sizes.
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6.4.1.2 Identifiability

The active variables ought to be sufficiently relevant in order to make their identification

possible. To this end, we introduce a non-parametric signal strength assumption, making sure

that f0 is not too flat in active directions (Yang and Pati, 2017; Comminges and Dalalyan,

2012).

We first introduce the notion of an approximation gap. For any given model S, we denote

with FS a set of approximating functions (only single trees fT ,β with KS leaves for now)

and define the approximation gap as follows:

δSn ≡ inf
fT ,β∈FS

‖f0 − fT ,β‖n = ‖f0 − f ŜT ,β̂‖n, (6.15)

where f ŜT ,β̂ is the ‖ · ‖n-projection of f0 onto FS . For identifiability of S0, we require that

those models that miss one of the active covariates have a large separation gap.

Definition 41. (Identifiability) We say that S0 is (f0, ε)-identifiable if, for some M > 0,

inf
i∈S0

δ
S0\i
n > 2Mε. (6.16)

We provide a more intuitive explanation of (6.16) in terms of directional variability of

f0. The best approximating tree f ŜT ,β̂ can be written as

f ŜT ,β̂(x) =

KS∑
k=1

I(x ∈ Ω̂Sk )β̂k with β̂k = f̄0(Ω̂Sk ) ≡ 1

n(Ω̂Sk )

∑
xi∈Ω̂Sk

f0(xi),

where T̂ = {Ω̂Sk }
KS
k=1 is the tree-shaped partition of the ‖ · ‖n-projection of f0 defined in

(6.15) with KS leaves and where n(Ω̂Sk ) =
∑n
i=1 I(xi ∈ Ω̂Sk ) ≡ nµ(Ω̂Sk ). The separation gap
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in (6.15) can be then re-written as

δSn =

√√√√KS∑
k=1

µ(Ω̂Sk )V [f0 | Ω̂Sk ],

where

V [f0 | Ω̂Sk ] ≡ 1

n(Ω̂Sk )

∑
xi∈Ω̂Sk

(
f0(xi)− f̄0(Ω̂Sk )

)2

is the local variability of f0 inside Ω̂Sk . Given this characterization, (6.16) will be satisfied, for

instance, when variability of f0 inside best approximating cells that miss an active direction

is too large, i.e. infi∈S0
inf
k
V [f0 | Ω̂

S0\i
k ] > 4M2 ε2.

Our identifiability condition is a theoretical assumption on f0 which indicates how large

signal in each direction should be in order to be capturable. It generalizes the more tradi-

tional sufficient “beta-min conditions" (Castillo et al., 2015; Zhao and Yu, 2006) for variable

selection consistency (see Remark 44). Here, we gauge the amount of signal in terms of local

variation in cells that do not split on an active covariate. Intuitively, if we do not split on

i ∈ S0, the “variation" of f0 inside the cells of the best tree we can get without i will be too

large. The following example links our identifiability assumption with beta-min conditions.

Example 3. Assume for now that p = 2 and that f0 is linear, i.e.

f0(xi) = a+ bxi1 + cxi2.

Moreover, assume that n = 16 predictor observations are located on a regular grid X =

{k/4 : 1 ≤ k ≤ 4} × {j/4 : 1 ≤ j ≤ 4}, where × denotes the Cartesian product. Suppose

S0 = {1, 2} and set S = S0\{2} = {1} and KS = 2. It can be verified that the partition T̂ of

the best approximating tree that does not split on the covariate x2 consists of two rectangles
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Ω̂S1 = [0, 1/2)× [0, 1] and Ω̂S2 = [1/2, 1]× [0, 1]. Then we have

f̄0(Ω̂S1 ) = a+
3

2

(
b

4

)
+

5

2

( c
4

)
and f̄0(Ω̂S2 ) = a+

7

2

(
b

4

)
+

5

2

( c
4

)

and thereby

(δSm)2 = V (f0|Ω̂S1 ) = V (f0|Ω̂S2 ) =
1

4

b2

16
+

5

4

c2

16
. (6.17)

From the expression (6.17) we can immediately see the connection to the beta-min conditions.

When the signal in the direction of x2 is large enough, i.e. c > 16/
√

5Mε, our identifiability

condition will be satisfied.

The second sufficient condition needed for methods such as the LASSO to fully recover

S0 is “irrepresentability" (Zhao and Yu, 2006; Van De Geer and Bühlmann, 2009). This

condition restricts the amount of correlation between (active and non-active) covariates

by imposing a regularization constraint on the magnitudes of regression coefficients of the

inactive predictors onto the active ones. Here, we generalize the notion of irrepresentability

to the non-parametric setup. Consider an underfitting model S = S1 ∪ S2 6⊃ S0, where

S1 ⊂ S0 are true positives and S2 is a possibly empty set of false positives, i.e. S2 ∩S0 = ∅.

We define

ρSn ≡
1

n

n∑
i=1

[f0(xi)− fS1T̂ ,β̂(xi)][f
Ŝ
T ,β̂(xi)− fS1T̂ ,β̂(xi)], (6.18)

the sample covariance between the surplus signals in f0 and f ŜT ,β̂ obtained by removing the

effect of fS1T̂ ,β̂. This quantity will be large if noise covariates inside S2 can compensate for

the missed true covariates in S0\S1, i.e. when the true and fake covariates are strongly

correlated. To obviate this substitution effect, we introduce the following nonparametric

“irrepresentability"condition. Similarly as in Zhao and Yu (2006), we require that “the total

amount of an irrelevant covariate represented by the covariates in the true model" is small.
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Definition 42. (Irrepresentability) We say that ε-irrepresentability holds for f0 and S0 if,

for some M > 0, we have supS6⊃S0
|ρSn | < M

2 ε, where ρ
S
n was defined in (6.18).

It follows from Lemma 50 that under the irrepresentability and identifiability conditions

(Definition 41 and 42), we obtain

inf
S6⊃S0

inf
fT ,β∈FS

‖fT ,β − f0‖n > M ε. (6.19)

This condition essentially states that all models that miss at least one active covariate (i.e.

not only subsets of the true model) have a large separation gap.

The following theorem characterizes variable selection consistency of spike-and-tree pos-

terior distributions. Namely, the posterior distribution over the model index is shown to

concentrate on the true model S0. One additional assumption is needed to make sure that

the (fixed) design X = {x1, . . . ,xn} is sufficiently regular. Ročková and van der Pas (2020)

define the notion of a fixed S0-regular design in terms of cell diameters of a k-d tree partition

(Definition 3.3). This assumption essentially excludes outliers, making sure that the data

cloud is spread evenly in active directions (while permitting correlation between covariates).

Theorem 43. Assume f0 ∈ Hαp ∩ C(S0) for some α ∈ (0, 1] and S0 ⊂ {1, . . . , p} with q0 =

|S0| and ‖f0‖∞ . B. Denote with ε̃n = Cε n
−α/(2α+qn)√log n, where qn = Cqdn ε2

n,S0
/ log pe

for some Cq > 0, and assume q0 log p ≤ nq0/(2α+q0) with 2 ≤ q0 = O(1) as n→∞. Assume

that (a) S0 is (f0, ε̃n)-identifiable, (b) ε̃n-irrepresentability holds and that (c) the design X

is S0-regular. Under the spike-and-tree prior comprising (with T = 1) (6.4),(6.5),(6.13) with

C > 2 and (6.14), we have

Π[S = S0 | Y (n)]→ 1 in P(n)
f0

-probability as n→∞.

Proof. Section 6.8.1.1.
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Remark 44. The assumption of (f0, ε̃n)-identifiability pertains to the more traditional suffi-

cient beta-min conditions for variable selection consistency in sparse high-dimensional mod-

els. For example, Castillo et al. (2015) in their Corollary 1 require that mini∈S0
|β0
i | ≥

M

√
q0 log p
n , for some “large enough constant" M > 0 that depends on the compatibility num-

ber (see e.g. Definition 2.1 in Castillo et al. (2015) of the design matrix X (rescaled to have

an ‖ · ‖2 norm
√
n). Our identifiability threshold also depends on the rate of convergence

εn (similarly as in Castillo et al. (2015)). However, unlike in the linear models we measure

the signal strength in a non-parametric way. Lastly, note that the identifiability gap ε̃n in

Theorem 43 is a bit larger than the near-minimax rate εn,S0
. This requirement will be relaxed

in the next section, where α will be treated as unknown.

For iid models, Ghosal et al. (2008) considered the problem of nonparametric Bayesian

model selection and averaging and characterized conditions under which the posterior achieves

adaptive rates of convergence. The authors also study the posterior distribution of the model

index, showing that it puts a negligible weight on models that are bigger than the optimal

one. Yang and Pati (2017) characterized similar conditions for the non-iid case, see Sec-

tion 6.8.1.1 for more details.

Remark 45. (Theory for ABC) It is worth pointing out that Theorem 43 is obtained for

the actual posterior π(S | Y (n)), not the ABC posterior. Theory for ABC recently started

emerging with the first results focussing on ABC bias (Barber et al., 2015), consistency and

asymptotic normality (Martin et al., 2014; Frazier et al., 2018, 2019) and on convergence of

the posterior mean (Li and Fearnhead, 2018). For our non-parametric regression scenario, we

can conclude (variable selection) consistency for ABC Bayesian forests under the assumption

that the residual variance σ2 decreases with the sample size (as is typical in the Gaussian

sequence model). In particular, Theorem 52 in Section 6.8.1.4 shows that the ABC posterior

concentrates at the rate λn = 4εTn/3 + 1/
√
n, where εTn =

√
2 log n/n is the ABC tolerance

level.
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This result implies that the ABC posterior will not reward underfitting model as long

as our identifiability and irrepresentability conditions are satisfied with ε = λn. Regarding

over-fitting models, an ABC analogue of Lemma 49 in Section 6.8.1.1.2 implies that the

ABC posterior probability of over-fitting models goes to zero, which concludes variable selec-

tion consistency of a (naive) ABC method. These considerations can be extended to ABC

Bayesian Forests with data splitting using the empirical expected posterior prior justification

in (6.9). More details are in Section 6.8.1.4.

Remark 46. (Consistency of the Median Probability Model) In Section 6.3.3, we used the

median probability model rule which may not the same as the highest-posterior model whose

consistency we have shown in Theorem 43. However, even when p → ∞ it can be verified

(as in Corollary 4.1 in Narisetty and He (2014)) that the median probability model is also

consistent under the same assumptions as Theorem 43. In particular, P(n)
f0

[∩pi=1Ei] → 1 as

n→∞ where Ei = {Π(γi = γ0
i | Y

(n)) > 0.5} and where γi = I(i ∈ S) are binary inclusion

indicators and γ0
i = I(i ∈ S0).

6.4.2 The Case of Unknown α

The fact that the level α has to be known for the consistency to hold makes the result in

Theorem 43 somewhat theoretical. In this section, we provide a joint consistency result for

the unknown regularity level K and, at the same time, the unknown subset S0. Finding the

optimal regularity level K, given S0, is a model selection problem of independent interest

(Lafferty and Wasserman, 2001). Here, we acknowledge uncertainty about both K and S0

by assigning a joint prior distribution on (K,S). Namely, we consider an analogue of (6.13),

where n|S|/(2α+|S|) is now replaced with K log n (according to (6.14)), i.e.

π(K,S) ∝ e−C(K log n∨ |S| log p) for 1 ≤ K ≤ n and S ⊆ {1, . . . , p}. (6.20)
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This prior penalizes models with too many splits or too many covariates. We now re-

gard each model as a pair of indices (K,S), where the “true" model is characterized by

Γ0 = (KS0
,S0) with KS0

defined in (6.14). Again, we partition the model index set

Γ = {(K,S) : S ⊆ {1, . . . , p}, 1 ≤ K ≤ n} into (a) the true model Γ0, (b) models that

underfit Γ{S6⊃S0}∪{K<KS0
} (i.e. miss at least one covariate or use less than the optimal

number of splits), and (c) models that overfit Γ{S⊃S0}∩{K≥KS0
} (i.e. use too many variables

and splits).

We combine the identifiability and irrepresentability conditions into one as follows:

inf
{S6⊃S0}∪{K<KS0

}
inf

fT ,β∈FS(K)
‖fT ,β − f0‖n > M εn,S0

(6.21)

for some M > 1, where FS(K) consists of all trees with K bottom leaves and splitting

variables S. This condition is an analogue of (6.19), essentially stating that one cannot

approximate f0 with an error smaller than a multiple of the near-minimax rate using under-

fitting models.

Theorem 47. Assume f0 ∈ Hαp ∩ C(S0) for some α ∈ (0, 1] and S0 ⊂ {1, . . . , p} such

that |S0| = q0 and ‖f0‖∞ . B. Assume q0 log p ≤ nq0/(2α+q0) and 2 ≤ q0 = O(1) as

n→∞. Furthermore, assume that the design X is S0-regular and that (6.21) holds. Under

the spike-and-tree prior comprising (with T = 1) (6.4), (6.5) and (6.20) for C > 3, we have

Π
[
{S = S0} ∩ {KS0

≤ K ≤ Kn}
∣∣∣Y (n)

]
→ 1 in P(n)

f0
-probability as n→∞,

where KS0
was defined in (6.14) and Kn = dC̄ n ε2

n,S0
/ log ne for some C̄ > CK/C

2
ε .

Proof. Section 6.8.1.2.

Note that bothKS0
andKn are of the same (optimal) order, where the marginal posterior

distribution Π(K | Y (n)) squeezes inside these two quantities as n → ∞. Lafferty and
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Wasserman (2001) provide a similar result for their RODEO method, without the variable

selection consistency part. Yang and Pati (2017) also provide a similar result for Gaussian

processes, without the regularity selection consistency part. Here, we characterize joint

consistency for both subset and regularity model selection.

6.4.3 Variable Selection Consistency with Bayesian Forests

Finally, we provide a variant of Theorem 47 for tree ensembles. Each Bayesian forest (i.e.

additive regression tree) model is characterized by a triplet (S, T,K), where S is the active

variable subset, T ∈ N is the number of trees andK = (K1, . . . , KT )′ ∈ NT is a vector of the

bottom leave counts for the T trees. Rate-optimality of Bayesian forests can be achieved for

a wide variety of priors, ranging from many weak learners (large T and small Kt’s) to a few

strong learners (small T and large Kt’s) (Ročková and van der Pas, 2020). The optimality

requirement is that the total number of leaves in the ensemble
∑T
t=1K

t behaves like KS0
,

defined earlier in (6.14).

We thereby define models in terms of equivalence classes rather than individual triplets

(S, T,K). We construct each equivalence class E(Z) by combining ensembles with the same

number Z of total leaves, i.e.

E(Z) =

min{Z,n}⋃
T=1

K ∈ NT :
T∑
t=1

Kt = Z

 . (6.22)

The cardinality of E(Z), denoted with ∆(E(Z)), satisfies ∆(E(Z)) ≤ Z! p(Z), where p(Z)

is the partitioning number (i.e. the number of ways one can write Z as a sum of positive

integers). The “true" model Γ0 = (S0, E(KS0
)) consists of an equivalence class of forests

that split on variables inside S0 with a total number of KS0
leaves. Similarly as before,

we define underfitting model classes Γ{S6⊃S0}∪{E(Z):Z<KS0
} and overfitting model classes

Γ{S⊃S0}∩{E(Z):Z≥KS0
}. Regarding the prior on T , similarly as Ročková and van der Pas
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(2020), we consider

π(T ) ∝ e−CT T , T = 1, . . . , n, for CT > 0. (6.23)

Given T , we assign a joint prior over S0 and K ∈ NT as follows:

π(S,K | T ) ∝ e
−C max

{
|S| log p ;

∑T
t=1K

t log n
}

for C > 1. (6.24)

We conclude this section with a model selection consistency result for Bayesian forests under

the following identifiability condition

inf
{S6⊃S0}∪{E(Z):Z<KS0

}
inf

fE,B∈FS(K)
‖fE ,B − f0‖n > M εn,S0

, (6.25)

where FS(K) denotes all forests fE ,B that split on variables S and consist of T trees with

K = (K1, . . . , KT )′ bottom leaves.

Theorem 48. Assume f0 ∈ Hαp ∩ C(S0) for some α ∈ (0, 1] and S0 ⊂ {1, . . . , p} such

that |S0| = q0 and ‖f0‖∞ . B. Assume q0 log p ≤ nq0/(2α+q0), where 2 ≤ q0 = O(1) as

n→∞. Furthermore, assume that the design is S0-regular and that (6.25) holds. Under the

spike-and-forest prior comprising (6.4), (6.5), (6.23) and (6.24), we have

Π

{S = S0} ∩

KS0
≤

T∑
t=1

Kt ≤ Kn

 ∣∣∣Y (n)

→ 1 in P(n)
f0

-probability as n→∞,

where KS0
was defined in (6.14) and Kn = dC̄ n ε2

n,S/ log ne for some C̄ > CK/C
2
ε .

Proof. Section 6.8.1.3.
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6.5 Simulation Study

We evaluate the performance of ABC Bayesian Forests on simulated data. We consider the

following performance criteria: Precision = 1−FDP = TP
TP+FP , Power = TP

TP+FN(defined as

the proportion of true signals discovered as such), Hamming Distance (HD)= FP+FN (where

FP and FN denotes the number of false positives and false negatives, respectively) and the

area under the ROC curve (AUC). Traditionally, AUC assesses how well a classification

method can differentiate between two classes in the absence of a clear decision boundary.

We use this criterion to assess variable importance since many of the considered selection

methods are based on an importance measure and, as such, do not have a clear decision

boundary.

The synthetic data are generated from the model (6.1), where xi’s for i = 1, . . . , n are

drawn independently from Np(0,Σ) with Σ = (ρij)
p,p
i,j=1. We make our comparisons under

different combinations of f0, σ and Σ. In particular, we consider a relatively large noise level

with σ = 5 (σ =
√

5 for the linear setup) and

1. medium equi-correlation ρij = 0.5 for i 6= j with ρii = 1,

2. high auto-correlation ρij = 0.9|i−j|.

Regarding the mean function f0, we consider four choices: (1) a linear setup with f0(xi) =

xi1 + 2xi2 + 3xi3 − 2xi4 − xi5; (2) the Friedman setup as described in (6.11); (3) a CART

(tree-based) function f0(xi) generated from the first 5 covariates using the rpart function

in R; (4) a simulated example from Liang et al. (2018) (denoted with LLS hereafter) with

f0(xi) = 10xi2
1+x2

i1
+ 5 sin(xi3xi4 + 2xi5). For the auto-correlation case, we permuted the

covariates so that signals are not next to each other.

For each combination of settings, we repeat our simulation over 20 different datasets

assuming n = 500 and p ∈ {100, 1 000}. We compare ABC Bayesian Forests with Random

Forests (RF), Dynamic Trees (DT) of Taddy et al. (2011b), BART (Chipman et al., 2010),
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Figure 6.2: Average variable selection performance under equicorrelation ρij = 0.5 over 20
simulations. Each panel corresponds to a different dimension p ∈ {100, 1000}. Each row
reports a different statistic: AUC is the area under the ROC curve, PREC = 1 − FDP =

TP
TP+FP , POWER = TP

TP+FN , log(HD) = log(FP + FN). ABC is run for T ∈ {10, 20} and
cutoff ∈ {0.5, 0.25}.Each column indicates a different data generating process.

DART of Linero (2018), LASSO and Spike-and-Forests (the MCMC counterpart of ABC

Bayesian Forests outlined in Section 6.8.2). ABC Bayesian Forests are trained with M =

1 000 ABC samples, where only a fraction of ABC samples (top 10%) are kept in the reference

table. The prior π(S) is the usual beta-binomial prior with θ ∼ B(1, 1). Inside each ABC

step, we sample a subset of size s = n/2 and draw a tree ensemble using the default Bayesian

CART prior (Chipman et al., 1998) and T ∈ {10, 20} trees. For each ABC sample, we draw

the last BART sample after B = 200 burnin MCMC iterations. A sensitivity analysis to the

choice s, T,B and M is reported in the Supplemental Materials (Section 4). Two versions of

215



Linear CART Friedman LLS

A
U

C
P

R
E

C
P

O
W

E
R

log(H
D

)

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0
1
2
3

p=100

Linear CART Friedman LLS

A
U

C
P

R
E

C
P

O
W

E
R

log(H
D

)

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

A
B

C
−2

0−
0.

5

A
B

C
−2

0−
0.

25

A
B

C
−1

0−
0.

5

A
B

C
−1

0−
0.

25 R
F

D
T

LA
S

S
O

B
A

R
T

D
A

R
T S
F

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0
1
2
3

p=1000

Figure 6.3: Average variable selection performance under autocorrelation ρij = 0.9|i−j|

over 10 simulations. Each panel corresponds to a different dimension p ∈ {100, 1000}.
Each row reports a different statistics: AUC is the area under the ROC curve, PREC
= 1 − FDP = TP

TP+FP , POWER = TP
TP+FN , log(HD) = log(FP + FN). ABC is run for

T ∈ {10, 20} and cutoff ∈ {0.5, 0.25}. Each column indicates a different data generating
process.

BART (without ABC) were deployed using the R package BART: (1) the standard BART from

Chipman et al. (2010) with T = 20 (as recommended in Bleich et al. (2014)), and (2) the

sparse version DART of Linero (2018) with a Dirichlet prior (sparse=TRUE, a=0.5, b=1)

with T = 200. Both versions are run with 10 000 MCMC samples after 10 000 burn-in. For

LASSO, we use the glmnet package in R (Friedman et al., 2010) using the 1-se rule to select

the penalty λ. For Random Forests, we deploy the randomForest package in R (Liaw and

Wiener, 2002) using the default number of 500 trees where variable importance is based on
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the difference in predictions (with and without each covariate) in out-of-bag samples.

To select variables with random forests, there are at least three commonly used strategies:

(1) Recursive Feature Elimination (RFE) implemented in the caret package with 5-fold

cross-validation (as suggested in Linero (2018)); (2) truncating importance at the 1 − α

quantile of a standard normal distribution (as suggested by Breiman and Cutler (2013)); (3)

truncating importance at the Bonferroni-corrected (1− α/p) quantile of a standard normal

distribution (Bleich et al., 2014). We report the third method, which was seen to perform the

best. For BART and DART, we select those variables which have been split on inside a forest

at least once on average. Alternative strategies based on truncating inclusion probabilities

(Linero, 2018) using data-adaptive thresholds (Bleich et al., 2014) did not perform better,

in general. For ABC, we report results for two selection thresholds 0.5 and 0.25. For Spike-

and-Forest (SF), we report the median probability model.

The performance comparisons for variable selection are summarized in Figure 6.2 (equi-

correlation ρij = 0.5) and Figure 6.3 (autocorrelation ρij = 0.9|i−j|). These figures show

that ABC has an advantage in terms of AUC, suggesting that ABC can rank variables more

efficiently. While RF tend to have a higher power, they are plagued with false discoveries

(i.e. smaller precision). ABC Bayesian Forests, on the other hand, are seen to yield fewer

false discoveries (i.e. higher precision) relative to the other procedures. The ABC threshold

0.5 yields higher precision whereas 0.25 yields higher power.

While ABC Bayesian Forests were designed to explore the posterior distribution over

models, it is natural to ask whether they also yield reasonable prediction. There are various

ways to perform prediction with our ABC method. One natural strategy is to save each

draw fmS,B at the mth ABC iteration when εm < ε and average out individual predictions

obtained from these single draws. Alternatively, one could first select variables based on

ABC Bayesian Forests and then run a separate BART method (using the default number of

T = 200 trees which is recommended for prediction) with the selected variables. Using both
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ABC2 ABC1 ABC1 ABC2 ABC1 ABC1 RF RLT DT BART DART
T = 20 T = 20, c = 0.5 T = 20, c = 0.25 T = 10 T = 10, c = 0.5 T = 10, c = 0.25

Equi-correlation ρij = 0.5 for i 6= j
Linear

p = 100 5.56 5.58 5.84 5.60 5.84 5.55 5.63 5.45 5.92 5.49 5.40
p = 1 000 5.79 6.15 5.73 5.86 6.28 5.95 5.83 5.70 6.04 5.82 5.62

CART
p = 100 34.21 34.63 37.19 34.00 36.10 35.81 34.21 34.64 34.61 35.48 35.57
p = 1 000 32.00 34.27 35.72 31.99 33.93 33.17 32.30 32.40 33.08 33.77 34.04

Friedman
p = 100 30.32 29.28 31.59 30.52 30.30 29.03 31.84 30.17 41.41 31.31 29.03
p = 1 000 33.14 35.97 31.54 33.54 38.42 32.71 34.35 32.22 45.69 32.99 29.42

LLS
p = 100 26.23 27.00 28.70 26.25 26.90 27.36 26.80 26.46 28.51 27.42 27.42
p = 1 000 27.37 26.98 26.94 27.38 27.07 27.02 27.18 26.68 30.66 28.21 27.49

Auto-correlation ρij = 0.9|i−j|

Linear
p = 100 6.17 6.29 6.37 6.20 6.25 6.18 6.37 6.09 6.77 6.17 5.91
p = 1 000 6.39 6.44 6.00 6.47 6.21 6.13 6.55 6.20 7.06 6.53 6.42

CART
p = 100 33.80 37.72 37.28 33.83 36.78 36.61 33.57 34.40 35.05 35.61 35.81
p = 1 000 31.57 33.55 37.21 31.52 33.52 37.43 31.63 31.88 32.22 33.11 33.43

Friedman
p = 100 34.09 32.51 34.65 34.27 34.97 32.77 36.88 33.83 48.64 34.21 30.36
p = 1 000 39.09 39.57 32.58 40.58 43.05 33.46 41.80 37.38 49.51 35.96 30.81

LLS
p = 100 28.57 27.94 30.71 28.45 28.03 29.12 28.88 27.87 30.69 28.83 28.81
p = 1 000 29.98 28.25 28.96 30.14 28.40 28.38 30.19 28.56 32.29 31.76 29.28

Table 6.1: Average out-of-sample mean squared prediction error over 20 independent vali-
dation datasets. ABC1 denotes predictions using ABC samples fmS,B and ABC2 uses ABC
variable selection and runs BART (T = 200) on the selected subset. T designates the num-
ber of trees and c is the selection threshold. The best performing method for each row is
denoted in bold.

strategies, we report average out-of-sample mean squared prediction error, where the average

is taken over 20 independent validation samples generated from the same data generating

process (Table 6.1). We include both ABC predictions described above and denote them as

ABC1 and ABC2, respectively, for the two different thresholds (c ∈ {0.5, 0.25}) and for the

two choices of the number of trees (T ∈ {10, 20}).

The best method under each simulation setting is marked in bold. When the data

becomes more non-linear (CART and LLS setups) and the correlation among variables gets

stronger, ABC tends to outperform the other methods. DART, on the other hand, works

better for more linear datasets. Note that our default ABC implementation internally uses

only a small number of B = 200 burn-in iterations and a small number of trees. For

prediction, it has been recommended that BART is deployed with a larger number of trees
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Figure 6.4: A barplot of ordered importance measures (inclusion probabilities for ABC,
importance measures for DART and RF) for each of the p = 201 mutations for the drug
APV, where blue represents mutations found in Rhee et al. (2005). (a) Inclusion probabilities
are computed using the top 1 000 out ofM = 10 000 ABC samples; (b) Average split of DART
with 20 000 MCMC iterations; (c) log variable importance of Random Forest with 500 trees.

(Chipman et al., 2010). In addition, the ABC computation produces forest samples fmS,B

which are from an approximate posterior. These two facts may affect resulting predictions

which may not necessarily outperform BART (DART) across-the-board.

6.6 HIV Data

To further illustrate the usefulness of our approach, we consider a dataset described and an-

alyzed in Rhee et al. (2006) and Barber and Candès (2015). The data consists of genotype

and resistance measurements (log-decrease in susceptibility) for three drug classes, i.e. pro-

tease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside

reverse transcriptase inhibitors (NNRTIs). The data is publicly available from the Stanford

HIV Drug Resistance Database.2

The goal of this analysis is to identify possible non-polymorphic mutation positions which

result in a log-fold increase of lab-tested drug resistance. The design matrix X = (xij)
n,p
i,j=1

2. https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
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consists of binary indicators xij ∈ {0, 1} for whether or not the jth mutation occurred in

the ith sample. As in Barber and Candès (2015), only mutations that appear at least 3

times are taken into consideration. One appealing feature of this dataset is the availability

of a proxy to the ‘ground truth’. Indeed, in an independent experimental study, Rhee et al.

(2005) identified mutations that are present at a significantly higher frequency in patients

who have been treated with each drug. Similarly as Barber and Candès (2015), we treat

this experimental data as an approximation to the truth for comparisons and for validation

of our findings.

We run ABC with M = 10 000 iterations, where each internal BART sample is obtained

after 200 burnin iterations with 20 trees. The top 1 000 ABC samples with the smallest εm

are kept and used to compute inclusion probabilities for each mutation. For illustration, we

visualize results for one of the PI drugs (APV) and report the results for all the drugs in

Liu et al. (2021, Section S.5). The inclusion probabilities have been ordered and plotted in

Figure 6.4, where the mutations experimentally validated by Rhee et al. (2005) (a proxy for

true signals) are denoted in blue and the rest is in red. For comparisons, we also included

the importance measure (the average number of splits on each variable) from DART run

with 20 000 MCMC iterations and T = 200 trees as well as the importance measure (on a

log scale) from Random Forests (RF) run with 500 trees.

Figure 6.4 reveals that ABC Bayesian Forests have a strong separation power, where

experimentally validated mutations generally have a higher inclusion probability. Compared

to DART and RF, ABC clearly stands out as being more effective in weeding out ‘noise’.

We gauge the strength of the signal/noise separation using several descriptive statistics. In

these comparisons, we also consider plain BART method (using T = 20 trees and 20 000

MCMC iterations) and ABC using the top 100 and 500 samples with the smallest tolerance

level εm. Since the selection of the cut-off point is not obvious for BART and RF, we first

select variables based on an adaptive cut-off point so that there are no false discoveries (i.e.
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Figure 6.5: (a) The number of true discoveries using an adaptive cut-off; (b) The number
of true (red) and false (blue) discoveries using an automated cut-off; (c) The AUC of each
method.

the cut-off is the largest importance weight of a not experimentally validated mutation).

From the plot of the number of ‘True’ locations selected (displayed in Figure 6.5(a)) we can

see that all three ABC implementations find more signal variables. Next, we choose the

cut-off point in an automated way, where ABC importance probabilities are truncated at

0.5 and 0.25, BART and DART measures are truncated at one (i.e. the variable has been

used on average at least once), and RF select variables using recursive feature elimination

as explain in the previous section. Similarly to Barber and Candès (2015), we report the

number of ’True’ locations and ’False’ locations (Figure 6.5(b)). RF selection is plagued with

false discoveries and DART is not free from false identifications either. The ABC selection

cutoff 0.5 results in a more conservative selection, where lowering the cutoff point to 0.25

yields more discoveries. Finally, from the plot of the AUC values for all considered methods

(Figure 6.5(c)), we conclude that ABC is better at separating the experimentally validated

mutations from the rest even using a very few filtered ABC samples.
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6.7 Discussion

This paper makes advancements at two fronts. One is the proposal of ABC Bayesian Forests

for variable selection based on a new idea of data splitting, where a fraction of data is first

used for ABC proposal and the rest for ABC rejection. This new strategy increases ABC

acceptance rate. We have shown that ABC Bayesian Forests are highly competitive with (and

often better than) other tree-based variable selection procedures. The second development

is theoretical and concerns consistency for variable and regularity selection. Continuing

the theoretical investigation of BART by Ročková and van der Pas (2020), we proposed

new complexity priors which jointly penalize model dimensionality and tree size. We have

shown joint consistency for variable and regularity selection when the level of smoothness is

unknown and no greater than 1. Our results are the first model selection consistency results

for BART priors.

Our ABC sampling routine has the potential to be extended in various ways. Sampling

from π(fE ,B , σ
2 |Y obs
Im ,Sm) in ABC Bayesian Forests is one way of distilling Y obs

Im to propose a

candidate ensemble fmE ,B . We noticed that the ABC acceptance rate can be further improved

by replacing a randomly sampled tree with a fitted tree. Indeed, instead of drawing from

π(fE ,B , σ
2 |Y obs

Im ,S), one can fit a tree f̂mT ,β to Y obs
Im using recursive partitioning algorithms

(such as the rpart R package of Therneau and Atkinson (2018) or with BART (by taking

the posterior mean estimate f̂mE ,B = E[fE ,B | Y obs
Im ,S]). This variant, further referred to as

ABC Forest Fit, is indirectly linked to other model-selection methods based on resampling.

Felsenstein (1985) proposed a “first-order bootstrap" to assess confidence of an estimated

tree phylogeny. The idea was to construct a tree from each bootstrap sample and record the

proportion of bootstrap trees that have a feature of interest (for us, this would be variables

used for splits). Efron and Tibshirani (1998) embedded this approach within a parametric

bootstrap framework, linking the bootstrap confidence level to both frequentist p-values and

Bayesian a posteriori model probabilities. The authors proposed a second-order extension
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by reweighting the first-order resamples according to a simple importance sampling scheme.

This second-order variant performs frequentist calibration of the a-posteriori probabilities

and amounts to performing Bayesian analysis with Welch-Peers uninformative priors. Efron

(2012) further develops the connection between parametric Bootstrap and posterior sampling

through reweighting in exponential family models. Using non-parametric bootstrap ideas,

Newton and Raftery (1994) introduce the weighted likelihood bootstrap (WLB) to sample

from approximate posterior distributions. The WLB samples are obtained by maximum

reweighted likelihood estimation with random weights. Such posterior sampling can be

beneficial when, for instance, maximization is easier than Gibbs sampling from conditionals.

In a similar spirit, our ABC Forest Fit variant would perform optimization (instead of

sampling) on a random subset of the dataset to obtain a candidate tree/ensemble.

It is worth pointing out that f̂mE ,B does not necessarily have to be a tree/forest. We

suggest trees because they are are easily trainable and produce stable results using traditional

software packages. In principle, however, this method could be deployed in tandem with other

non-parametric methods, such as deep learning, to perform variable selection.

6.8 Appendix

6.8.1 Theory

6.8.1.1 Proof of Theorem 43

We first review some notation used throughout this section and adapted from Ročková and

van der Pas (2020). Recall that ΠS(·) denotes the conditional distribution given the model S.

Next, FS(K) denotes a set of all step functions fT ,β(·) with K steps that split on covariates

S and ‖fT ,β‖∞ ≤ B. A tree partition is called valid when each tree splits on observed values

X = {x1, . . . ,xn} and has nonempty cells. We denote with VKS all valid trees obtained by

splitting K − 1 times along coordinates inside S. The number of such valid trees is denoted
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with ∆(VKS ). For a valid tree partition T ∈ VKS , we denote with F(T ) ⊂ FS(K) all step

functions supported on T . We prove Theorem 43 by verifying conditions B1-B4 in Theorem

4 of Yang and Pati (2017) (further referred to as YP17). We build on tools developed in

Ročková and van der Pas (2020) (further referred to as RP17).

6.8.1.1.1 Prior Concentration Condition The first condition pertains to prior con-

centration and consists of two parts: (a) the model prior mass condition and (b) the prior

concentration condition in the parameter space under the true model. Namely, we want to

show that

π(S0) ≥ e
−n ε2

n,S0 (6.26)

and

ΠS0

(
fT ,β ∈ FS0

(K) : ‖fT ,β − f0‖n ≤ εn,S0

)
≥ e
−dn ε2

n,S0 (6.27)

for some d > 2. The prior concentration (6.26) follows directly from the definition of model

weights (6.13) for C ≤ C2
ε under our assumption q0 log p < nq0/(2α+q0).

Regarding (6.27), a variant of this condition is verified in Section 8.2 of RP17 assuming

that K is random with a prior. It follows from their proof, however, that (6.27) holds if we

fix K at KS0
= bCK/C2

ε n ε
2
n,S0

/ log nc = 2q0s for some s ∈ N. The proof consists of (a)

constructing a single approximating tree (i.e. the k-d tree with s = (log2KS0
)/q0 cycles of

splits on each coordinate in S0) and showing that it has enough prior support. This tree

exists under the assumption that the design is S0-regular. From (8.5) of RP17, such tree

approximates f0 with an error bounded by a constant multiple of εn,S0
. The verification of

(6.27) then follows directly from RP17.

6.8.1.1.2 Entropy Condition The second condition (B4 in the notation of YP17) en-

tails controlling the complexity of over/underfitting models. In the sequel, we focus only on

models with up to qn covariates, where qn = Cqdn ε2
n,S0

/ log pe. This restriction is justified
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by the following lemma.

Lemma 49. Denote with qn = Cqdn ε2
n,S0

/ log pe. Under the assumptions of Theorem 43,

we have

Π(q ≥ qn | Y (n))→ 0 (6.28)

in P(n)
f0

-probability as n→∞.

Proof. First, we show that Π(q ≥ qn)e
(d+2)n ε2

n,S0 → 0, where d > 2 is as in (6.27). We can

write

Π(q > qn)e
(d+2)nε2

n,S0 . e
(d+2)n ε2

n,S0

p∑
k=qn

(
p

k

)
e−C ×max{nk/(2α+k) log n,k log p}

≤ e
(d+2)n ε2

n,S0
−(C−2) qn log p

= e
−n ε2

n,S0
[(C−2)Cq−(d+2)]

.

The right hand side above goes to zero when (C − 2)Cq − (d+ 2) > 0. This can be satisfied

with C > 2 and Cq large enough. This fact, together with prior mass conditions (6.27) and

(6.26), yields (6.28) according to Lemma 1 of Ghosal and Van Der Vaart (2007).

Lemma 49 essentially states that the posterior will not reward models whose dimension-

ality is larger than (or equal to) qn. In our following considerations, we thus condition only

models with less than qn variables.

We now verify that the complexity of overfitting models S ⊃ S0 is not too large in the

sense that their global metric entropy satisfies

logN
(
εn,S ; FS(KS) ; ‖ · ‖n

)
≤ n ε2

n,S . (6.29)

First, we note that for two tree step functions fT ,β1
∈ F(T ) and fT ,β2

∈ F(T ) that

have the same partition T ∈ VKSS and different step heights β1 ∈ RKS and β2 ∈ RKS ,

we have {‖fT ,β1
− fT ,β2

‖n ≤ εn,S} ⊃ {‖β1 − β2‖2 ≤ εn,S}. Furthermore, noting that
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F(T ) = {fT ,β : ‖fT ,β‖∞ ≤ B} ⊂ {β ∈ RKS : ‖β‖2 ≤ B
√
n} we can write

N
(
εn,S ; F(T ) ; ‖ · ‖n

)
≤
(

3B
√
n

εn,S

)KS
≤
(

3B n3/2/Cε

)KS
,

where we used the standard εn,S covering number of a KS -Euclidean ball of a radius B
√
n

and the fact that 1/εn,S ≤ 1/Cε × nα/(2α+|S|) ≤ 1/Cε × n. Then we can write

N
(
εn,S ; FS(KS) ; ‖ · ‖n

)
≤ ∆(VKSS )

(
3B n3/2/Cε

)KS
.

Using Lemma 3.1 of Ročková and van der Pas (2020), we have ∆(VKSS ) ≤ (KS n |S|)KS .

The overall log-covering number is then upper-bounded with (since |S| ≤ qn ≤ n)

KS log
(

3B n3 n3/2
)
. KS log n ∝ n ε2

n,S . (6.30)

This verifies the model complexity condition for overfitting models. Next, we need to verify

(6.29) with εn,S replaced by ε̃n for “underfitting" models S ∈ ΓS6⊃S0
where |S| ≤ qn. This

follows from the same arguments as above and the fact that εn,S ≤ ε̃n. Finally, the last

requirement in Assumption B4 of YP17 is verifying that

∑
S6⊃S0:|S|≤qn

e−C2 n ε̃
2
n +

∑
S⊃S0:|S|≤qn

e
−C2 n ε

2
n,S ≤ 1 (6.31)

for some large constant C2 > 0. Since ε̃n ≥ εn,S > εn,S0
for any S ⊃ S0 such that |S| ≤ qn,

we can upper-bound the left-hand side above with

qn∑
q=0

∑
S:|S|=q

e
−C2 n ε

2
n,S0 ≤ e

−C2 n ε
2
n,S0

qn∑
q=0

(
p

q

)
≤
(

2 e p

qn

)qn+1

e
−C2 nε

2
n,S0

From our definition of qn, we have qn log p � n ε2
n,S0

and (6.31) will be satisfied for a large
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enough C2.

6.8.1.1.3 Prior Anticoncentration Condition Lastly, as one of the sufficient condi-

tions for model selection consistency, we need to verify

∑
S⊃S0:|S|≤qn

π(S) ΠS
(
fT ,β ∈ FS(KS) : ‖f0 − fT ,β‖n ≤M εn,S

)
≤ e
−H nε2

n,S0 (6.32)

for some H > 0. Alternatively, YP17 introduce the so-called “anti-concentration condition"

ΠS
(
fT ,β ∈ FS(KS) : ‖f0 − fT ,β‖n ≤M εn,S

)
≤ e
−H nε2

n,S0 for overfitting models S ⊃ S0

where εn,S ≥ εn,S0
. This condition is needed to show that the posterior probability of more

complex models that contain the truth goes to zero.

It turns out that this condition can be avoided with our choice of model weights π(S)

(Ghosal et al., 2008). We can verify (6.32) directly (without the anticoncentration condition)

by upper-bounding the left hand side of (6.32) with

∑
S⊃S0:|S|≤qn

π(S) ≤
∑

S⊃S0:|S|≤qn

e
−C nε2

n,S ≤ e
−C nε2

n,S0

(
2 e p

qn

)qn+1

. (6.33)

Since qn log p � n ε2
n,S0

, (6.32) holds for H < C − 1.

6.8.1.1.4 Identifiability Under the identifiability and irrepresentability assumptions

(41) and (42), it turns out that we cannot approximate f0 well enough with models that

miss at least one covariate. This property is summarized in the following Lemma, which is

a variant of Proposition 1 of YP17.

Lemma 50. For f0 ∈ Hαp∩C(S0), assume that S0 is (f0, ε)-identifiable and that ε-irrepresentability

holds. Then

inf
S6⊃S0

inf
fT ,β∈FS

‖f0 − fT ,β‖n > M ε.
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Proof. We decompose S 6⊃ S0 into true positives and false positives, i.e. S = S1 ∪S2, where

S1 ⊂ S0 and S2 ∩ S0 = ∅. We denote with f̂S the projection of f0 onto FS , omitting the

subscripts T̂ and β̂. With a slight abuse of notation we denote E(f, g) = 1
n

∑n
i=1 f(xi)g(xi).

Then we can write

‖f0 − f̂S‖2n = ‖f0 − f̂S1 + f̂S1 − f̂S‖2n > ‖f0 − f̂S1‖2n − 2|E[(f0 − f̂S1)(f̂S − f̂S1)]|,

where E[(f0 − f̂S1)(f̂S − f̂S1)] equals ρSn defined in (6.18). We note that δS1
n is monotone

increasing in the number of false non-discoveries |S0\S1|. The statement of the Lemma then

follows from the fact that ‖f0− f̂S‖2n > inf
S1⊂S0

δS1
n −2 sup

S6⊃S0

ρSn > inf
i∈S0

δ
S0\i
n −M ε > Mε.

6.8.1.2 Proof of Theorem 47

We introduce some more notation. We denote with FS =
⋃n
K=1FS(K) all valid trees that

split on directions inside S and we write ΠK,S(·) for the conditional prior, given K and S.

Similarly as in Section 6.8.1.1, we verify the three conditions (Prior Concentration, En-

tropy, Prior Anti-concentration). The prior model concentration condition is again satisfied

automatically from the definition of model weights in (6.20) andKS0
= bCK/Cε n ε2

n,S0
/ log nc.

Namely,

π(KS0
,S0) ∝ e

−C max{CK/Cεn ε2
n,S0

,q0 log p} ≥ e
−n ε2

n,S0 , (6.34)

for CK < Cε/C, where we used the assumption q0 log p ≤ nq0/(2α+q0). Next, the prior

concentration in the parameter space associated with the true model

ΠKS0
,S0

(
fT ,β ∈ FS0

(KS0
) : ‖fT ,β − f0‖n ≤ εn,S0

)
≥ e
−dn ε2

n,S0

follows again from Section 8.2 of RP17.

For the entropy considerations, we focus only on models with up to qn covariates and
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up to Kn splits, where qn = dCqn ε2
n,S0

/ log pe and Kn = dC̄n ε2
n,S0

/ log ne were defined in

Theorem 47. This restriction is justified by the following Lemma.

Lemma 51. Denote with qn = dCqn ε2
n,S0

/ log pe and Kn = dC̄ n ε2
n,S0

/ log pe. Under the

assumptions of Theorem 43, we have

Π(q ≥ qn | Y (n))→ 0 and Π(K ≥ Kn | Y (n))→ 0 (6.35)

in P(n)
f0

-probability as n→∞.

Proof. It suffices to show that Π(q > qn)e
(d+2)nε2

n,S0 → 0 and Π(K ≥ Kn)e
(d+2)nε2

n,S0 → 0

for d > 2 from (6.27). We have q0 ≤ qn for n large enough, since q0 = O(1) as n→∞, and

thereby

Π(q ≥ qn)e
(d+2)nε2

n,S0 . e
(d+2)nε2

n,S0

p∑
q=qn

(
p

q

) n∑
K=1

e−C max{K log n,q log p}

≤ e
(d+2)nε2

n,S0

p∑
q=qn

elog n+q log(p e/q)−C q log p ≤ e
log p+log n−(C−1) qn log p+(d+2)n ε2

n,S0

≤ e
−(C−3) qn log p+(d+2)n ε2

n,S0 ,

where we used the fact that for q0 ≥ 2 and α ∈ (0, 1], we have log n ≤ nq0/(2α+q0). Since

qn log p ≥ Cqnε
2
n,S0

, the right hand side above goes to zero when (C − 3)Cq > d + 2. This

will be guaranteed with C > 3 and Cq large enough. Similarly, we have

Π(K ≥ Kn)e
(d+2)n ε2

n,S0 . e
(d+2)n ε2

n,S0

p∑
q=0

(
p

q

) n∑
K=Kn

e−C max{K log n,q log p}

≤ e
(d+2)n ε2

n,S0

p∑
q=0

n∑
K=Kn

e−(C−1) max{K log n,q log p}

≤ e
log(p+1)+log n−(C−1)Kn log n+(d+2)n ε2

n,S0 ≤ e
−(C−2)Kn log n+(d+3)n ε2

n,S0 ,
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where we used our assumption log p ≤ nq0/(2α+q0). Since Kn ≥ C̄n ε2
n,S0

, the right hand

side above goes to zero when (C − 2)C̄ > d + 3. Together with the prior mass conditions

(6.27) and (6.34), (6.35) follows from Lemma 1 of Ghosal and Van Der Vaart (2007).

This Lemma essentially says that the posterior does not overfit in terms of both q and

K, where the mass concentrates on models with K < Kn splits. Note that Kn is of the

same order as the optimal regularity KS0
. Now, we denote with Γn ⊂ Γ a sieve consisting of

all models with less than qn variables and Kn splits. For the entropy bounds of overfitting

and underfitting models (inside the sieve Γn), we can use the same arguments as in Section

6.8.1.1. Assume a model (K,S) ∈ Γn. Then it follows from (6.30) that

logN
(
εn,S ; FS(K) ; ‖ · ‖n

)
≤ K log(3B n3n3/2) . Kn log n . n ε2

n,S0
.

For over-fitting models, this can be further upper-bounded with a multiple of n ε2
n,S , thus

satisfying (6.29). The last requirement for the entropy condition is verifying the following

variant of (6.31)

∑
(K,S)∈Γn:S6⊃S0∪K<KS0

e
−C2M

2 n ε2
n,S0 +

∑
(K,S)∈Γn:S⊃S0∩K≥KS0

e
−C2n ε

2
n,S ≤ 1 (6.36)

for some suitable C2 > 0. Since n ε2
n,S0

≤ n ε2
n,S for S ⊃ S0, we can upper-bound the left

hand side with

∑
S:|S|<qn

Kn∑
K=1

e
−C2n ε

2
n,S0 ≤ e

−C2n ε
2
n,S0

(
2 e p

qn

)qn+1

elogKn ≤ e
−C2n ε

2
n,S0

+(qn+1) log p+logKn .

(6.37)

Since qn log p � n ε2
n,S0

and logKn . nq0/(2α+q0) . nε2
n,S0

, the right-hand side of (6.37)

converges to zero for some suitably large C2 as n→∞, thus satisfying (6.36).

In place of the anti-concentration condition (similarly as in (6.33)), we need to verify that
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the prior probability of larger models (that contain the truth) is small in the sense that, for

some H > 0, ∑
(K,S)∈Γn:{S⊃S0}∩{K≥KS0

}
π(S, K) ≤ e

−H nε2
n,S0 . (6.38)

We can write

∑
S⊃S0:|S|<qn

Kn∑
K=KS0

π(S, K) ≤
qn∑
q=0

(
p

q

) Kn∑
K=KS0

e−C KS0
log n (6.39)

≤
(

2 e p

qn

)qn+1

elogKne−C KS0
log n. (6.40)

Because qn log p � n ε2
n,S0

and logKn . nq0/(2α+q0) . nε2
n,S0

the condition (6.38) is satisfied

for some H > 0 when C and CK are large enough.

6.8.1.3 Proof of Theorem 48

We modify the notation a bit. We adopt the definition of δ-valid ensembles from RP17

(Definition 5.3). With FS(K) we denote all δ-valid tree ensembles fE ,B that (a) are

uniformly bounded (i.e. ‖fE ,B‖∞ ≤ B for some B > 0), (b) consist of T trees with

K = (K1, . . . , KT )′ ∈ NT leaves and (c) that split along directions S.

We start by showing that the prior model concentration condition is satisfied. From

our assumption q0 log p ≤ nq0/(2α+q0) and definition KS0
< CK/C

2
ε n ε

2
n,S0

/ log n and using

(6.23) and (6.24), we obtain

π(S0, E(KS0
)) ∝

KS0∑
T=1

e−CT T
∑

K∈NT :
∑T
t=1K

t=KS0

e−C n
q0/(2α+q0) log n ≥ e

−(CTCK/(Cε log n)+C/C2
ε )n ε2

n,S0 .

The right-hand side can be further lower-bounded with e
−n ε2

n,S0 for a large enough Cε and

n. Next, we need to show prior concentration in the parameter space under the true model
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equivalence class (S0, E(KS0
)). All that is needed is finding a single well-approximating

forest supported on one partition ensemble characterized by (T,K) from the equivalence

class E(KS0
). Such an ensemble can be obtained by considering T = 1 and a single k-d

tree with KS0
leaves from Lemma 3.2 of RP17. The prior concentration condition then boils

down to (6.27), which has already been verified in RP17.

Next, we show that for Kn = dC̄ n ε2
n,S0

/ log ne we have

Π

(T,K) :
T∑
t=1

Kt ≥ Kn
∣∣Y (n)

→ 0.

We can write

Π

(T,K) :
T∑
t=1

Kt ≥ Kn

 . n∑
T=1

e−CT T
p∑
q=0

(
p

q

) n∑
Z=Kn

∑
K:
∑T
t=1K

t=Z

e−C max{Z log n,q log p}

. e−(C−1)Kn log n+log p+2 log n+log p(n)−CT ,

where p(n) is the partitioning number. According to Andrews (1976), we have

log p(n) ∼ π

√
2n

3
as n→∞. (6.41)

Under our assumptions q0 > 2 and α ∈ (0, 1], we have
√
n ≤ nq0/(2α+q0) and log n ≤

nq0/(2α+q0). From log p ≤ nq0/(2α+q0) and using the fact that Kn ≥ C̄ n ε2
n,S0

/ log n, we can

then write

Π

(T,K) :
T∑
t=1

Kt ≥ Kn

 e
(d+2)n ε2

n,S0 . e
−[(C−1)C̄−Dπ

√
2/3−d−5]n ε2

n,S0

for some D > 0. The right hand side goes to zero for C > 1 and C̄ large enough. Similarly,

we can show that Π(q ≥ qn |Y (n))→ 0 as n→∞ for qn = dCq n ε2
n,S0

/ log pe by proceeding
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as in Lemma 51 in Section 6.8.1.2.

Based on the previous paragraph, we narrow down attention to a subset of model indices

Γn ⊂ Γ, consisting of models (S, E(Z)) such that |S| < qn and Z < Kn. We now define a

sieve Fn as follows

Fn =

qn⋃
q=0

Kn⋃
T=1

⋃
∑T
t=1K

t≤Kn

⋃
S:|S|=q

FS(K).

It follows from the previous paragraph that Π(Fcn | Y (n)) → 0 as n → ∞. For the entropy

calculation we thus focus on the sieve Fn.

We first note that the metric entropy logN
(
εn,S ;F(E); ‖ · ‖n

)
, where F(E) are all uni-

formly bounded forests supported on a δ-valid partition ensemble E , can be upper-bounded

with
(∑T

t=1K
t
)

log(B/εn,SC1κ(E)
√
n) (follows from equation (9.3) of RP17), where κ(E)

is the condition number of a valid ensemble (defined in Section 9.1. of RP17). Next, we find

an upper bound for the covering number of the tree ensembles that are attached to a model

(S, E(Z)), where E(Z) is the equivalence class of (T,K) defined in (6.22). From Section 9.1

of RP17, and using the fact that ∆(E(Z)) ≤ Z!p(Z), it follows that

logN

εn,S ;
⋃

(T,K)∈E(Z)

FS(K) ∩ Fn; ‖ · ‖n


≤ log ∆(E(Z)) + log ∆(VEKS ) + Z log(B/εn,SC1κ(E)

√
n)

. Z logZ +
√
Z + Z log(|S|n2) + Z log

(
n2+δ/2

√
Z
)

for some C1 > 0, where ∆(VEKS ) is the cardinality of δ-valid ensembles VEKS . Inside the

sieve, we have |S| < qn ≤ n and Z < Kn � n ε2
n,S0

/ log n and thereby we can upper bound

the log entropy with a constant multiple of n ε2
n,S0

. For an overfitting model (S, E(Z))

such that Z ≥ K(S0) and S ⊃ S0, the log-covering number is further upper-bounded with
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n ε2
n,S ≥ n ε2

n,S0
. Next, we verify the following variant of condition (6.31)

∑
Γn∩Γ{S6⊃S0}∪{Z<KS0

}

e
−C2M

2 n ε2
n,S0 +

∑
Γn∩Γ{S⊃S0}∩{Z≥KS0

}

e
−C2n ε

2
n,S ≤ 1 (6.42)

for some C2 > 0. Since n ε2
n,S > nε2

n,S0
for S ⊃ S0 and M > 1, we can upper-bound the

left-hand-side with

e
−C2 n ε

2
n,S0

qn∑
q=0

(
p

q

) Kn∑
Z=1

∆(E(Z)) .

(
2 e p

qn

)qn+1

e
−C2 n ε

2
n,S0

+log qn+logKn+Kn logKn+π
√

2Kn/3,

where we used the fact ∆(E(Z)) ≤ Z!p(Z) and (6.41). Since Kn logKn . n ε2
n,S0

and

qn log p � nε2
n,S0

, the right hand side goes to zero for a large enough constant C2 > 0.

Lastly, the anti-concentration condition is replaced with

n∑
T=Kn

π(T )
∑

Γn∩Γ{S⊃S0}∩{Z≥KS0
}

∑
K∈NT :

∑T
t=1K

t=Z

π(S,K | T ) ≤ e
−H nε2

n,S0

for some H > 0. Using the fact π(S,K | T ) & e−C
∑
Kt log n, we can upper-bound the left

hand side above with

Kn∑
T=1

π(T )e−C KS0
log n

∑
Γn∩Γ{S⊃S0}∩{Z≥KS0

}

∆(E(Z))

. e−C KS0
log n

(
2 e p

qn

)qn+1

e2 logKn+Kn logKn+π
√

2Kn/3−CT

Using similar arguments as before, and because KS0
log n ≥ CK/Cε n ε

2
n,S0

, the condition

will be satisfied for large enough C > 0 and CK > 0.
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6.8.1.4 Theory for ABC

First, we show the following ABC posterior concentration result.

Theorem 52. Under the assumptions of Theorem 4.1 and assuming σ2 = 1/n in (1), the

naive ABC posterior satisfies with P(n)
f0

tending to one

Π
[
‖f − f0‖n > λn | ‖Y − Y ?‖n ≤ εTn

]
. 1/M

for εTn =
√

2 log n/n, λn = 4εTn/3 + 1/
√
n and for any M > 0 large enough.

Proof. We will be working conditionally on the eventA = {ε = (ε1, . . . , εn)′ : max1≤i≤n |εi| ≤√
2 log n/n} whose complement has a small probability, i.e. P(n)

f0
[Ac] ≤ c0/

√
2 log n for some

c0 > 0 when εi
iid∼ N (0, 1/n). On the event A, we have

‖Y − f0‖n =

√√√√ 1

n

n∑
i=1

ε2
i ≤

√
2 log n/n ≡ εTn .

We now define a joint event

A(εTn , λn) ≡ {(Y ?, f) : ‖Y ? − Y ‖n ≤ εTn and ‖f − f0‖n > λn}.

For all (Y ?, f) ∈ A(εTn , λn) we have

‖f − f0‖n ≤ ‖Y ? − Y ‖n + ‖f − Y ?‖n + ‖f0 − Y ‖n ≤
4

3
εTn + ‖f − Y ?‖n.

This means that (Y ?, f) ∈ A(εTn , λn) implies ‖f − Y ?‖n > λn − 4
3ε
T
n and choosing λn ≥

4
3ε
T
n + tε leads to

Π[A(εTn , λn)] ≤
∫

Pf [‖f − Y ?‖n > tε]dΠ(f)
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and

Π

[
‖f − f0‖n >

4

3
εTn + tε

∣∣ ‖Y − Y ?‖n ≤ εTn

]
≤
∫
Pf [‖Y ? − f‖n > tε]dΠ(f)∫
Pf [‖Y ? − Y ‖n ≤ εTn ]dΠ(f)

. (6.43)

Now, we have for a random variable χ2
n with a chi-square distribution with n degrees of

freedom

Pf [‖Y ? − f‖n > u] = Pf
[
χ2
n

n2
> u2

]
= Pf

[
eχ

2
n/4 > eu

2 n2/4
]
≤ 2n/2

eu
2 n2/4

.

Next, for n large enough we can write

∫
Pf [‖Y ? − Y ‖n ≤ εTn ]dΠ(f) ≥

∫
‖f−f0‖n≤εTn/3

Pf [‖Y ? − f‖n ≤ εTn/3]dΠ(f) (6.44)

≥ Π[‖f − f0‖n ≤ εTn/3]− en/2 log 2−n log n/18 (6.45)

≥ Π[‖f − f0‖n ≤ εTn/3]/2. (6.46)

Next (under the assumption q0 log p < nq0/(2α+q0), we have π(S0) ≥ e
−nε2

n,S0 and (assuming

K = KS0
� nε2

n,S0
/ log n and denoting β̂ ∈ RK the steps of the ‖ · ‖n projection of f0 onto

trees with K leafs) for some c > 0

Π[‖f − f0‖n ≤ εTn/3] > e
−n ε2

n,S0 Π(‖β − β̂‖2 ≤ εTn/6) (6.47)

> e
−n ε2

n,S0
e−K log 2−‖β̂‖22−(εTn )2/72+K/2 log[(εTn )2/36]

Γ(K/2)K/2
> e
−c n ε2

n,S0 .

(6.48)

We can now upper-bound (6.43) with 2n/2e
−t2ε n2/4+cn ε2

n,S0 which is smaller than an arbitrary

constant M > 0 for n large enough if we choose tε = 1/
√
n.

Given this consistency result, we can immediately conclude (using the inequality in (21)
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in the paper) that the ABC posterior will not reward underfitting model as long as our

identifiability and irrepresentability conditions are satisfied with ε = λn. In other words,

under the assumptions of Theorem 52 and assuming that S0 is (f0, λn)-identifiable and that

λn-irrepresentability holds we have, with Pf0
tending to one and for any M > 0,

Π
[
S 6⊃ S0 | ‖Y − Y ?‖n ≤ εTn

]
. 1/M.

Regarding over-fitting models, we first show the following ABC analogue of Lemma 8.1.

We can write, on the event A, and for qn = Cqdn ε2
n,S0

/ log pe (as in Lemma 8.1)

Π1 ≡ Π
[
q ≥ qn | ‖Y − Y ?‖n ≤ εTn

]
=

∑
S:|S|≥qn

π(S)

∫
Pf [‖Y − Y ?‖n ≤ εTn ]dΠ(f | S)∫
Pf [‖Y − Y ?‖n ≤ εTn ]dΠ(f)

.

It turns out from the proof of Theorem 52 that

Π1 ≤
∑
q≥qn

∑
S:|S|=q π(S)∫

Pf [‖Y − Y ?‖n ≤ εTn ]dΠ(f)
. e

c nε2
n,S0 Π(q ≥ qn).

In the proof of Lemma 1.1 we have already showed (under the assumptions of Theorem 4.1)

that Π(q ≥ qn) . e
−n ε2

n,S0
C for some C > 0. Choosing Cq large enough, one concludes that

Π1 → 0 as n→∞. This shows that the ABC posterior concentrates on the sieve of models

Fn with up to qn covariates. Using this result, we can focus on models of size up to qn and

show that the posterior probability of over-fitting models goes to zero. Indeed, on the event

A and on Fn we have (using an inequalities (4) and (6))

Π
[
{S ⊃ S0} ∩ Fn | ‖Y − Y ?‖n ≤ εTn

]
≤

∑
S⊃S0:|S|≤qn π(S)∫

Pf [‖Y − Y ?‖n ≤ εTn ]dΠ(f)

. e
(c−C)nε2

n,S0

(
2ep

qn

)qn+1

. e
−H nε2

n,S0

for some H > 0 with C > 0 is large enough. This concludes that the ABC posterior will
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lead to consistent variable selection as well.

We now discuss how the theory can be extended when data-splitting is deployed in ABC.

First, we discuss the case when the split is done only once before applying ABC (not internally

at each iteration). Denote with n1 the training sample size and with n2 the validation sample

size. In order for the consistency result in Theorem 52 to hold, we need to make sure that

prior concentration holds in the sense that Π[‖f−f0‖n2 . εTn2
] ≥ e

−c n2ε
2
n2,S0 for some c > 0.

Leaving n1 data-points for training the prior, we know (from results in RP17 under fixed

σ2) that the posterior concentrates at the optimal rate (up to a log factor), i.e.

Π[|f − f0‖n1 . εn1,S0
| Y (n)
I ,S0]→ 1 as n1 →∞.

Choosing n1 and n2 in such a way so that εn1,S0
. εTn2

≡
√

2(log n2)/n2 (and assuming that

observed fixed covariates in the training and testing sets are close), the prior concentration

condition will be satisfied and the ABC will be consistent and concentrate at the rate λn2 .

This implies variable selection consistency of our ABC method under identifiability and

irrepresentabilty conditions which depend on λn2 . A similar conclusion is obtained for the

expected posterior prior (6.9) where

Π[|f − f0‖n1 . εn1,S0
] ≥ π(S0)

1

L

∑
l

Π[‖f − f0‖n1 . εn1,S0
| Y (n)
Il ,S0] & π(S0).

A rigorous proof of ABC consistency for the expected posterior priors would require more

care and will be left for future investigation.

6.8.2 Spike-and-Forests: MCMC Variant

As a precursor to ABC Bayesian Forests, we first implemented an MCMC algorithm for

joint sampling from a posterior Π(S, E | Y (n)) over the space of models and tree ensem-

ble partitions. We refer to this algorithm as Spike-and-Forests. The sampling follows a
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Metropolis-Hasting scheme, exploiting the additive structure of forests by sampling each

tree individually from conditionals in a Gibbs manner within each Metropolis step (Bayesian

backfitting by Chipman et al. (2010)). The key is assigning a joint proposal distribution

pr(S, E | Sm, Em) = pr(S | Sm)pr(E | S, Em) over variable subsets S and partition ensembles

E , where Sm and Em are current MCMC states.

We explain the proposal mechanism using a single tree and write T instead of E . First,

a model proposal S? is sampled from pr(S | Sm) which consists of the following three op-

tions: add, delete and stay for adding/deleting one (or none) of the variables. These three

steps are chosen with probabilities 0.4, 0.4 and 0.2, respectively. Candidate variables for

deletion/addition are chosen from a uniform distribution. Given the newly suggested model

S?, the proposal distribution pr(T | S?, Tm) consists of various moves, described below, de-

pending on the status of S?.

If S? was obtained from Sm by adding a variable, the proposal pr(T | S? = add, Tm)

consists of two steps: birth and replace. In the birth step, a bottom node is added to

Tm and in the replace step one of the variables that occurs more than once inside Tm is

replaced with the new variable. The birth step increases the size of the tree, while the replace

step does not. The two steps are chosen with probabilities

πbirth,add = 0.7 min

{
π(K + 1)

π(K)
, 1

}
, πbirth, replace = 1− πbirth,add,

where K is the number of bottom nodes in Tm and π(K) is a prior on the number of bottom

nodes. If no variable appears more than once in the tree, then replace is invalid and

πbirth, replace is set to 0.

If S? is obtained from Sm by deleting a variable, the proposal pr(T |S? = delete, Tm)

consists of two steps: death and replace. If the variable chosen for deletion occurs in a

bottom node, it can be removed from a tree Tm with a delete step that erases the bottom

node. If the variable occurs inside the tree, it can be deleted by replacing it with other
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variables in the replace step. If both of these moves are eligible, we pick one of them with

probabilities

πdeath,delete = 0.7 min

{
π(K − 1)

π(K)
, 1

}
, πdeath,replace = 1− πdeath,delete.

If the variable suggested for deletion is not in a bottom node, then πdeath,delete = 0.

If the pool of variables stays the same, i.e. S? = Sm, the proposal pr(T | S? = stay, Tm)

consists of 4 moves: add, delete, replace and rule. All proposal moves, and their proba-

bilities, are adopted from Bayesian CART of Denison et al. (1998a). These steps only modify

the tree configuration without adding/deleting variables.

Regarding the prior distributions for our MCMC implementation, we assume the beta-

binomial prior on the variable subsets. Namely, for binary indicators γj ∈ {0, 1}, for whether

or not xj is active, we assume P(γj = 1 | θ) = θ and θ ∼ B(a, b). The prior distribution on

trees consists of (a) the truncated Poisson distribution on the number of bottom leaves, (b)

uniform prior over trees with the same number of leaves and (c) standard Gaussian prior

on the step sizes. This is the Bayesian CART prior proposed by Denison et al. (1998a)

and analyzed theoretically by Ročková and van der Pas (2020). In the computation of MH

acceptance ratios, we leverage the fact that the bottom leave parameters can be integrated

out to obtain a conditional marginal likelihood, given each partition.

The MCMC sampling routine can be extended to spike-and-forests, altering each tree

inside the forests one by one through Bayesian backfitting (Chipman et al., 2010). One big

advantage of the Bayesian forest representation is that it accelerates mixing since most trees

are shallow and thereby more easily modified throughout MCMC (see Pratola (2016)).
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