
THE UNIVERSITY OF CHICAGO

STRUCTURED LOW-COMPLEXITY MATRIX AND TENSOR APPROXIMATION

WITH APPLICATIONS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

COMMITTEE ON COMPUTATIONAL AND APPLIED MATHEMATICS

BY

YIAN CHEN

CHICAGO, ILLINOIS

JUNE 2023

Copyright © 2023 by Yian Chen

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . x

ACKNOWLEDGMENTS . xi

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Overview of Chapter 2 . 4
1.2 Overview of Chapter 3 . 5
1.3 Overview of Chapter 4 . 6
1.4 Overview of Chapter 5 . 7

2 SCALABLE GAUSSIAN PROCESS ANALYSIS FOR IMPLICIT PHYSICS-BASED
COVARIANCE MODELS . 9
2.1 Introduction . 9
2.2 Implicit Physics-Based Covariance Models and Low-Rank Approximation . . 11

2.2.1 Physics-Based Covariance Models . 13
2.2.2 Low-Rank Approximation of Kernel Using Chebyshev Interpolation . 14
2.2.3 Approximation of Jacobian and Hessian 17

2.3 A Scalable Approach for Gaussian Process Regression Using Physics-Based
Covariance Models . 18
2.3.1 Latent Process Kriging . 19
2.3.2 Joint Process Kriging . 20
2.3.3 Correction for Nonlinearity . 22

2.4 A Scalable Approach for Gaussian Process Maximum Likelihood Estimation 27
2.4.1 Latent Process MLE . 28
2.4.2 Joint Process MLE . 29
2.4.3 Estimation of Fisher Information Matrix 30

2.5 Numerical Experiments . 33
2.5.1 One-Dimensional Viscous Burger’s Equation 34
2.5.2 Real Data Experiment . 46

2.6 Discussion . 54

3 SCALABLE PHYSICS-BASED MAXIMUM LIKELIHOOD ESTIMATION USING
HIERARCHICAL MATRICES . 61
3.1 Introduction . 61
3.2 Physics-based Covariance Models and Maximum Likelihood Estimation . . . 65

3.2.1 Physics-based Covariance Models . 66
3.2.2 Maximum Likelihood Estimation and Parameter Inference 67

3.3 HODLR Approximations for Covariance Matrices 69

iii

3.3.1 HODLR Matrices . 69
3.3.2 Randomized Matrix-free Construction of HODLR Matrices 72
3.3.3 Differentiating the HODLR Approximation 78

3.4 Hierarchical Approximations of Gaussian Likelihood, Score Equations, Infor-
mation Matrices . 86
3.4.1 Approximated Gaussian Likelihood 86
3.4.2 Trace Computation . 86
3.4.3 Approximated Score Equations And Fisher Information Matrix . . . 87

3.5 Numerical Experiments . 89
3.5.1 SPDE Representation of Matérn Models 89
3.5.2 A Matérn Based Wind Velocity Model 92
3.5.3 Stationary Advection-diffusion-reaction Equation 104

3.6 Discussion . 107

4 COMMITTOR FUNCTIONS VIA TENSOR NETWORKS 109
4.1 Introduction . 109
4.2 Background and preliminaries . 111

4.2.1 Committor functions . 111
4.2.2 Soft boundary condition . 113
4.2.3 Tensors and tensor networks . 114

4.3 Proposed method . 118
4.3.1 Discretizing the variational problem 118
4.3.2 Constructing Hk . 121
4.3.3 Constructing HA and HB . 123
4.3.4 Constructing hB . 126
4.3.5 Optimization . 128

4.4 Numerical experiments . 130
4.4.1 Double-well potential . 130
4.4.2 Ginzburg-Landau potential . 133
4.4.3 Gaussian Mixture Equilibrium Density 138

4.5 Conclusion . 141

5 STATISTICAL MECHANICS AND QUANTUM MANY BODY SIMULATION WITH
AUXILIARY-FIELD MONTE CARLO AND MATRIX PRODUCT STATE . . . 143
5.1 Introduction . 143
5.2 Proposed Method . 146

5.2.1 Recap of AFMC . 146
5.2.2 MPS/TT Density Estimations with AFMC Sampling 148
5.2.3 Recompression via TT Sketching . 148
5.2.4 Extending to Quantum Setting . 151
5.2.5 Extending to Parabolic PDE . 153
5.2.6 Complexity Analysis . 154

5.3 Numerical Experiments . 155
5.3.1 Classical Setting . 155

iv

5.3.2 Quantum Setting . 156
5.3.3 Evolving Fokker-Planck Equations 158

5.4 Discussion . 159

REFERENCES . 167

A SUPPLEMENT TO CHAPTER 2 . 184
A.1 Joint Process Kriging with Higher-Order Terms 184
A.2 Tensor Algebra Conventions . 184
A.3 Derivation of Higher-Order Terms . 186

B SUPPLEMENT TO CHAPTER 3 . 191
B.1 Motivating Example for Full Dataset Fitting 191
B.2 Two Quasilinear Trace Operations for HODLR Matrices 193

B.2.1 Matrix-Matrix Product AB And A−1B 193
B.2.2 Product of Form A−1BC−1D . 200
B.2.3 Computation of tr(A−1B) And tr(A−1BC−1D) 201

B.3 HODLR factorization . 204

C SUPPLEMENT TO CHAPTER 4 . 208
C.1 Soft committor functions . 208

C.1.1 Formal PDE derivation . 210
C.2 Discretization of the Ginzburg-Landau density 211

v

LIST OF FIGURES

2.5.1 Parameter estimations and corresponding 95% confidence intervals computed via
the expected Fisher information matrix. We solve the nonlinear system of score
equations (2.4.3),(2.4.13) using the physics-based covariance model with the num-
ber of mesh points k = 2q in each dimension for q ranging from 5 to 10 (x-axis).
Red lines with crosses represent MLE using low-rank approximations. The first
row describes the results for latent process MLE Section 2.4.1. The second row
describes the results for joint process MLE Section 2.4.2. MLE results using ex-
act score equations are provided for q = 5 to 9 (x-axis) by using blue lines with
circles. For q = 10 the exact MLE calculation ran out of memory. 39

2.5.2 Error distribution of the predicted field compared with the true data Section
2.5.1. Left: Results from joint process kriging M2. The covariance model fol-
lows (2.3.8)-(2.3.10), which includes up to second-order terms corresponding to
(2.2.4). Right: Results from joint process kriging with higher-order termsM+

2 .
The covariance model follows (2.3.15)-(2.3.17), which includes up to fourth-order
terms corresponding to (2.2.5)(2.2.6). The higher-order terms should account for
part of the nonlinear behavior of Burger’s equation. 44

2.5.3 Times taken in seconds to solve the GP regression problem (y-axis) vs. number of
mesh points 2q for q ranging from 10 to 14 (x-axis) by (a) latent process kriging
(Algorithm 1&3) and (b) joint process kriging (Algorithm 2&8). We present the
time to compute latent/joint process kriging without higher-order terms exactly
(#) and approximately (2) and latent/joint process kriging with higher-order
terms exactly (+) and approximately (×). All results are averaged over 50 tests.
Note that the y-axis is in logarithmic scale. The lines corresponding to theoretical
O(k log2 k) scaling (dash lines) are added to each plot. 47

2.5.4 Times taken in seconds (y-axis) vs. number of mesh points 2q for q ranging
from 10 to 14 (x-axis) for evaluating (a) latent and joint process score equations
(Algorithm 4&5) and (b) the expected Fisher information matrix via equation
(2.4.22), (2.4.23). For both plots, we present the time to evaluate the score
equations or the expected Fisher information matrix for latent process exactly
(#) and approximately (2) and for joint process exactly (+) and approximately
(×). All results are averaged over 50 tests. Note that the y-axis is in logarithmic
scale. The lines corresponding to theoretical O(k log2 k) scaling (dash lines) are
added to each plot. 47

2.5.5 Observations of relative humidity at 500 hPa pressure level. The time period is
from Dec. 1, 1982 to April 18, 1983. The data have been nondimensionalized. . 49

2.5.6 Predictions corresponding to (a) latent process kriging M1, (b) joint process
kriging M2, and (c) joint independent kriging Mind. The time period is from
Dec. 1, 1982, to April 18, 1983. Both datasets are nondimensional. 53

2.5.7 Error histograms corresponding to independent process kriging Mind and joint
process kriging M2. Note that the vertical axis represents the probability den-
sities in logarithmic scale. The logarithm of zero density has been truncated to
meet the base value of each bar plot. 54

vi

3.5.1 Computational complexity of constructing the HODLR approximation of KU and
its derivatives with respect to the parameters θ: (a) the total number of required
KU -vector products and (b) shows the runtime (in seconds) of the rest linear
algebra operations for fixed off-diagonal rank 32 (blue curve with circles), 64
(red curve with crosses), 128 (yellow curve with squares) over different sizes of
observations. We use number of observations of size n = 2r with r ranging from 9
to 16. In (b), to demonstrate the scaling, the theoretical line (black dashed line)
corresponding to O(n log2 n) is added to the plot. 96

3.5.2 Runtime (in seconds) of (a) tr(A−1B) given two HODLR matrices A,B and
tr(A−1BC−1D) given the two products A−1B and C−1D for fixed off-diagonal
rank 32 (blue curve with circles), 64 (red curve with crosses), 128 (yellow curve
with squares) over n = 2r observations with r from 9 to 16. Theoretic lines corre-
sponding to O(n log2 n) scaling (purple curve with pluses) are added to each plot.
Additionally, we include the complexity of their corresponding exact operations
(black dashed line) when A,B,C,D are dense and have no structure in each plot
for r ≤ 14. 97

3.5.3 Time taken (in seconds) to evaluate (a) the log-likelihood, (b) the score equations
and (c) the observed Fisher information matrix exactly (purple curve with pluses)
and using HODLR approximations for fixed off-diagonal rank 32 (blue curve with
circles), 64 (red curve with crosses), 128 (yellow curve with squares) over n = 2r

observations with r from 9 to 16. Theoretic lines corresponding to O(n log2 n)
scaling (black dashed line) are added to each plot. 98

3.5.4 Estimated MLEs and their 95% confidence intervals using n = 2r observations
with r from 8 to 13. Three columns in the figure represent results for three inde-
pendently simulated datasets. The true parameter values θtrue = (ρ, σϕ, σχ, l) =
(0.7, 1, 0.3, 0.5) are added into each plot as black horizontal lines. We compare
three models: (1) proposed HODLR model (blue curve with circles), (2) sparse
spiked model (yellow curve with squares), (3) exact estimates (red line with x’s)
provided only for r = 8, · · · , 10. 103

3.5.5 Estimated MLEs and their 95% confidence intervals using n = 2r observations
with r from 8 to 13. Three columns in the figure represent results for three
independently simulated datasets. The true parameter values θtrue = (σϕ, l) =
(1, 1) are added into each plot as black horizontal lines. Exact estimates (circle)
are provided for r = 8, · · · , 10. 107

4.2.1 (a) Tensor diagrams for a 3-tensor A and a 2-tensor B. (b) Tensor diagram for a
d-dimensional Kronecker Delta node. Solid lines correspond to discrete variables,
and dashed lines correspond to continuous variables. 115

4.2.2 (a) Tensor contraction of discrete legs. (b) Tensor contraction of continuous legs. 116
4.2.3 (a) d-dimensional TT/MPS. (b) d-dimensional MPO. The indices depicted match

the expressions in (4.2.12) and (4.2.14). Note that we omit the legs for the trivial
indices α0 and αd. 117

4.3.1 Tensor diagram for the decomposition (4.3.1) of the committor function. 119
4.3.2 Tensor diagram for the approximate equilibrium density p (4.3.7). 121

vii

4.3.3 (a) Tensor diagram for Hk, k = 3, as defined in (4.3.3). (b) Approximation of
Hk obtained by replacing p with its MPS/TT approximation (4.3.7). We use red
dashed boxes to indicate the region of replacement. The original basis functions
ϕ(l), l ̸= k, are represented using hollow nodes, and the derivative dϕ(k)/dx is
distinguished using a filled node. 123

4.3.4 Diagrammatic illustration of the construction of an MPO format for Hk. (a)
Precompute tensors Hl. (b) Precompute tensors H̃l. (c) Assemble Hk, k = 3, by
substituting tensors Hl and H̃l. We use red dashed boxes to indicate the region
of replacement. A similar construction is repeated for other k. 124

4.3.5 Tensor diagrams for (a) pA as in (4.3.11) and (b) pB as in (4.3.12). 126
4.3.6 (a) Tensor diagram for hB as in (4.3.6). (b) Approximation of hB obtained

by replacing the soft boundary measure pB with its MPS/TT approximation
(4.3.12). We use red dashed boxes to indicate the region of replacement. 127

4.3.7 Illustration of the construction of hB in MPS/TT format. (a) Contract tensors
ϕ(l) and b(l) to get Jl. (b) Contract tensors Jl and Bl to get hBl . We use red
dashed boxes emphasize the contractions. 127

4.3.8 Tensor diagram for the parametrization of q following (4.3.1) and (4.3.13). . . . 128
4.3.9 (a) Tensor diagram representation of the variational problem corresponding to

(4.3.2). (b) Approximate variational problem obtained by replacing Q with its
MPS/TT approximation (4.3.13). We use red dashed boxes to indicate the region
of replacement. Specifically the red tensor cores are unknown variables in the
optimization. 129

4.4.1 Numerical results for the double-well potential, T = 0.2. (a) The numerical
solution of the committor function q, compared with the ground truth qtrue,
plotted along the x1 dimension. (b) The residual plot q − qtrue along the x1
dimension. 132

4.4.2 Numerical results for the double-well potential, T = 0.05. (a) The numerical
solution of the committor function q, compared with the ground truth qtrue,
plotted along the x1 dimension. (b) The residual plot q − qtrue along the x1
dimension. 132

4.4.3 Coefficients of basis function representation for the double-well potential model,
T = 0.05. (a) Log magnitude of the coefficients for the x1 dimensionQ(i1, 1, · · · , 1).
(b) Log magnitude of the coefficients for the x2 dimension Q(1, i2, 1, · · · , 1). . . 133

4.4.4 The two global minima of the Ginzburg-Landau energy (4.4.7) with d = 50 and
λ = 0.03. 134

4.4.5 Comparison of distributions for T = 8. (a) Empirical histogram for {nj/Nt}5000j=1

compared with the density of N (12 , 1/400). (b) Q-Q (quantile-quantile) plot of
{nj/Nt}5000j=1 compared with N (12 , 1/400). 136

4.4.6 Comparison of distributions for T = 16. (a) Empirical histogram for {nj/Nt}5000j=1

compared with the density of N (12 , 1/400). (b) Q-Q (quantile-quantile) plot of
{nj/Nt}5000j=1 compared with N (12 , 1/400). 136

viii

4.4.7 Analysis of the q = 0.5 isosurface for T = 8. (a) Centroids of the two clusters
in the q = 0.5 isosurface. (b) Histogram of the 1-dimensional coordinate θ of the
isosurface samples along the line between the two clusters. 137

4.4.8 Analysis of the q = 0.5 isosurface for T = 16. (a) Centroids of the two clusters
in the q = 0.5 isosurface. (b) Histogram of the 1-dimensional coordinate θ of the
isosurface samples along the line between the two clusters. 138

4.4.9 Visualization of one transition path for T = 8. 138
4.4.10The Gaussian mixture model equilibrium density visualized in the first two di-

mensions. (a) Equilibrium density in 2D. (b) Equilibrium density where the mean
of Gaussians are in high dimension. 139

4.4.11Transition paths (black curves) overlayed on the Gaussian mixture model equi-
librium density visualized in the first two dimensions for (a) η = 0.6 and (b)
η = 1.6. Committor function values along the transition path for (c) η = 0.6 and
(d) η = 1.6. 140

5.2.1 Tensor diagram for approximating the Boltzmann distribution as a sum of MP-
S/TT based on (5.2.8). 149

5.2.2 Tensor diagram for recompressing AFMC + TT approximations. The unknown
tensor core to estimate is marked as filled red node. In practice, the same pro-
cedure should be repeated for all dimensions to get all cores Q1, · · · ,Qd. The
sketching tensors are highlighted with red dashed boxes. 161

5.2.3 Tensor diagram for imaginary time evolution in the quantum case. The test
wavefunction Φ is parametrized as an MPS/TT and highlighted with red dashed
boxes. 162

5.3.1 Example of 2D space filling curve for Ising model of 4× 4 lattices. 162
5.3.2 Imaginary time evolution energy plots. 163
5.3.3 Imaginary time evolution energy plots when iteratively adding and rounding the

MPS/TT to constant rank. 164
5.3.4 Visualization of univariate basis functions for each dimension. Here we use Gaus-

sian kernel functions as our basis. 165
5.3.5 Visualization of the density evolution for double-well system in the first dimen-

sion. The blue bar plots correspond to the sample histograms after Langevin
simulations at each iteration. The fitted continuous TT density and the target-
ing equilibrium density are represented with red solid lines and black dashed lines,
respectively. 166

B.1.1MLE point estimation and confidence intervals for parameters a and b. Blue
crosses, red circles and green squares correspond to settings 1, 2, 3, respectively. 192

ix

LIST OF TABLES

2.1 Predictive RMS error and relative error using 2-norm. The observation density
is 1% for w and 10% for z, although the dimension of the observation vectors is
comparable. The observations are chosen randomly in the field. The predictions
are conducted for all the remaining field in w and z except the observed positions.
yp, zp denote the absolute RMS error of the predicted y, z field respectively. ϵy
and ϵz denote the relative error of the predicted y, z fields using vector 2-norm.
The first four rows contain covariance models without higher-order terms from
Section 2.5.1, and the last three rows contain covariance models with higher-order
terms from Section 2.5.1. 60

2.2 Predictive RMS error and relative error using 2-norm. The observation density is
8.21% for q and 8.21% for u. The observations are randomly chosen in the field.
The predictions are conducted for all the remaining field in y and z except the
observed positions. yp, zp denote the absolute RMS error of the predicted y, z
fields respectively. ϵy and ϵz denote the relative error of the predicted y, z fields
using vector 2-norm. 60

3.1 Complexity (Compl.) of common arithmetic operations (Ops.). A,B are both
HODLR matrices with size n, level log n and constant local rank. v is a vector of
length n. 72

3.2 Averaged relative precision (on log10 scale) of the log-likelihood, score equa-
tions and observed Fisher information matrix. All the results are averaged
for five datasets and are evaluated at the initial point of optimization θinit =
(0.5, 0.5, 0.5, 0.5). 100

3.3 Averaged relative precision (on log10 scale) of the log-likelihood, score equations
and observed Fisher information matrix. All the results are averaged for five
datasets and are evaluated at the MLE point. Here ϵ

S̃
is removed since the exact

score equations tend to zero at the MLE point. 100
3.4 Averaged relative precision (on log10 scale) of the log-likelihood, score equations

and observed Fisher information matrix. All the results are averaged for five
datasets and are evaluated at the initial point of optimization (σϕ, l)init = (1.5, 1.5).106

3.5 Averaged relative precision (on log10 scale) of the log-likelihood, score equations
and observed Fisher information matrix. All the results are averaged for five
datasets and are evaluated at the MLE point. Here ϵ

S̃
is removed since the exact

score equations tend to zero at the MLE point. 106

5.1 Approximation performance in classical setting. 156

x

ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my two advisors, Professor Mihai Anitescu

and Professor Yuehaw Khoo, for their invaluable guidance, support, and encouragement

throughout my PhD journey. Their mentorship and expertise have been instrumental in

shaping my research and personal growth.

I’m grateful to Professor Mihai Anitescu for leading me to the exciting research field of

fast algorithms, providing extremely insightful feedback and instilling in me the enthusiasm

for research and life. I would also like to thank him for supporting me with the research

internship at Argonne National Laboratory and holding several in-depth discussions over

the years to guide me through the unprecedented times during the pandemic and help es-

tablish the direction for my future career path. I’m thankful to Professor Yuehaw Khoo

for constantly challenging me to think critically, generosity with his time and resources,

and introducing me to so many interesting problems which greatly expanded my arsenal.

His constant availability, willingness to go above and beyond the call of duty have been an

inspiration to me and have made a significant impact on my academic and personal growth.

It is also my great honor to have Professor Jeremy Hoskins and Professor Michael Lindsey

in my thesis committee. I thank them for providing critical insights and constructive feedback

which have helped me refine my research questions and methodologies. I am forever grateful

to have had the opportunity to work with them.

Finally, it has been my pleasure to meet all my friends and colleagues and receive their

support and encouragement during this journey. I am fortunate enough to have had the

opportunity to work with such outstanding individuals and to have been part of such an

exceptional academic community. The year 2023 marks the official end of the pandemic era.

I would like to express my deepest gratitude to my family and my two beloved cats for their

constant companionship and trust through the times of hardship. Time may be sad and

fleeting, but I find solace in the enduring presence of love and happiness by my side.

xi

ABSTRACT

Matrix and tensor operations play a vital role in diverse fields such as machine learning,

numerical analysis, computational physics and optimization. As data sizes continue to grow

and high-dimensional problems become more challenging, low-complexity matrix and tensor

approximations are becoming increasingly crucial. These approximations are essential in

providing efficient and robust numerical solutions to these problems.

This thesis focuses on two types of efficient low-complexity matrix and tensor formats,

hierarchical matrices for efficient matrix compression and tensor-train (TT) for efficient high-

dimensional tensor compression. Chapter 3 utilizes hierarchical matrix techniques and pro-

poses a scalable algorithm for traditional tasks in Gaussian processes (GPs) applications,

including maximum likelihood estimations (MLEs) for parameter identification, comput-

ing confidence intervals for uncertainty quantification, and regressions. In Chapter 5 and

4, we propose a novel approach for compressing Gibbs-Boltzmann distributions in statisti-

cal mechanics into TT formats and their downstream applications in computing committor

functions.

Low-complexity formats provide a compact representation of matrices and tensors by

exploring their numerical structure. This reduces memory usage and enables fast algorithms

that exploit the inherent low-rankness of the problem and data. Numerical evidence is

provided to demonstrate the scaling of the algorithms, as well as the efficiency/accuracy

trade-offs.

xii

CHAPTER 1

INTRODUCTION

The thesis comprises four projects on low-complexity matrix and tensor approximations

and their applications in statistical modeling, computational physics, and more. In recent

years, there has been a significant increase in the amount of data generated from various

sources, and this trend is expected to continue. The growth in data volume and the need

to work with high-dimensional models has led to a surge in the use of algorithms that rely

on linear algebra operations, including matrix and tensor operations. However, traditional

linear algebra methods can become prohibitively expensive when dealing with large-scale

datasets, making them impractical for many applications.

To tackle this challenge, the development and implementation of low-complexity matrix

and tensor approximations, such as sparse [183, 63], low-rank [18, 51, 116], hierarchical [4,

31, 32, 212, 77], and tensor-train representations [141, 1, 143, 204], have been demonstrated

to significantly reduce computational and storage complexity without compromising the

accuracy of the results. These techniques have widespread applications in various fields,

such as scientific computing, machine learning, computational physics, statistical mechanics,

etc.

Despite their advantages, low-complexity matrix and tensor approximations pose some

challenges. For instance, the trade-off between compression and accuracy is a significant

consideration when selecting a representation format. Moreover, there is no universal solution

for choosing the optimal format for a particular problem. Hence, the development of efficient

algorithms for manipulating these formats is crucial.

The aim of this thesis is to highlight the significance of low-complexity matrix and tensor

approximations in developing fast algorithms and handling large-scale datasets. Specifically,

we leverage these efficient numerical linear algebra tools to design efficient new algorithms

or improve the scalability of traditional algorithms to make them suitable for modern ap-

1

plications. We provide concrete numerical examples to demonstrate the effectiveness and

efficiency of the proposed algorithms.

In this thesis, we concentrate on multivariate GPs with physics-based outputs in Chapters

2 and 3. For single-output processes, the typical GP modeling workflow involves specifying

the covariance function, fitting the unknown parameters using MLEs, and performing GP

regression with the estimated covariance model. However, with multiple-output processes

of physical relations, it is difficult to describe the process in order to correctly structure the

outputs and ensure positive definitiveness. The physics-based covariance model, based on

the work in [57], typically takes the form of a sequential product of Jacobians of physical

operators and common covariance models. For large-scale physical operators, the exact co-

variance model is usually prohibitively large to evaluate. Conversely, GPs have notoriously

bad scaling (O(n3)) in nearly all related tasks, where n is the size of the covariance matrix.

Various approximation methods can be employed to reduce the computational and storage

complexities of traditional GP applications, e.g. low-rank methods [170, 135], matrix taper-

ing [68, 93, 44], hierarchical matrices [33, 131, 122, 5, 47]. In Chapter 2, we assume that

the latent covariance model is smooth and globally low-rank. The physics-based covariance

model for the output process can then be approximated by an easily invertible matrix plus a

low-rank matrix. Based on the low-rank structure of the covariance model, a range of matrix

operations can be accelerated. As a result, we can perform GP tasks, including MLEs, Fisher

information estimations, and regressions, in quasilinear time.

Low-rank approximations are effective when the data contain limited information about

the parameters, but become prohibitive as the data become more informative [3]. In Chapter

3, we aim to relax the assumptions on the covariance model and physical operators to

make the approach more widely applicable. Instead of low-rank, we assume the output

covariance matrix has a hierarchical structure. We compress the covariance matrix into

a special hierarchical matrix structure, namely the hierarchically off-diagonally low-rank

2

(HODLR) matrices [5, 6], to accelerate the numerical linear algebra operations. Unlike

conventional approaches used in literature [5, 71, 122], we propose a method to construct

the HODLR approximation of the covariance matrix based on randomized sketching, which

avoids the expensive step of evaluating the full covariance matrix. As a result, we can perform

all downstream GP tasks, including MLEs, Fisher information estimations, and regressions,

in quasilinear time with a much milder assumption. In both chapters, we demonstrate the

numerical scaling, approximation accuracy, and MLE trajectories of the proposed algorithms

with exact computations using the full unstructured covariance matrix.

In Chapters 4 and 5, we explore the applications of another popular low-complexity

tensor structure, the tensor train (TT) approximation, in computational physics and sta-

tistical mechanics [141, 1, 143, 204]. In Chapter 4, we address the challenge of computing

the committor function in complex systems. Mathematically, this involves solving the high-

dimensional backward Kolmogorov equation, which can scale exponentially with the number

of dimensions when using traditional finite difference or finite element approaches. To over-

come this issue, we propose a novel approach that parameterizes the committor function as

a TT, which significantly speeding up the computations. Furthermore, we assume that the

Boltzmann distribution of the system can be efficiently compressed in a TT representation.

With these assumptions, we can solve the committor function in computational and memory

complexity that both scale linearly with the number of dimensions.

The performance of the approach presented in Chapter 4 critically depends on the ability

of efficiently approximating the Boltzmann distribution of the system in TT format. Several

methods are available for constructing the TT approximation, such as TT cross approxima-

tion and recent works on TT density estimation from empirical samples. In Chapter 5, we

propose a novel approach that combines the auxiliary-field Monte Carlo (AFMC) method

[14, 12, 13] in statistical mechanics with TT. A key feature of our approach is that the

Monte Carlo sampling and TT recompression processes can be fully parallelized, enabling

3

the algorithm to take full advantage of modern computing hardware. The total computa-

tional complexity of the algorithm is linear in both the number of dimensions and number of

samples. With Chapters 4 and 5, we have a complete workflow for computing the committor

function of a many-body system.

This thesis contains material from two published papers by the author [49, 50] one ac-

cepted paper and one unpublished draft. In particular, Chapter 2 is based on [49], coauthored

with Prof. Mihai Anitescu; Chapter 3 is based on an accepted paper, coauthored with Prof.

Mihai Anitescu; Chapter 4 is based on [50], coauthored with Prof. Yuehaw Khoo; Chapter

5 is based on an unpublished draft, coauthored with Prof. Yuehaw Khoo. Some material

from each of these papers has also been incorporated into this introductory chapter. In the

following, we provide more detailed overviews for each chapter.

1.1 Overview of Chapter 2

In Chapter 2, we consider traditional GP applications with physics-based covariance models

proposed in [57]. We further assume the covariance model of the latent process is smooth,

which results in a low-rank latent covariance matrix. Consequently, we can approximate the

observable covariance matrix as (Kϵ + LKzL
T), where L is the Jacobian of some physical

operator, Kz is the low-rank latent covariance matrix, and Kϵ is the covariance for the obser-

vation noise, which we assume is easily invertible. With these assumptions, we parameterize

the observable covariance model as an easily-invertible matrix plus globally low-rank com-

ponents. The downstream GP tasks rely heavily on numerical linear algebra operations, e.g.

computing the log-determinant of the matrix, solving matrix linear systems, and perform-

ing matrix-vector products. We leverage the Woodbury matrix identity [210], Sylvester’s

determinant identity [180], and Hutchinson’s trace estimator [10] to perform all GP tasks ef-

ficiently, including evaluating the log-likelihood, score equations, Fisher information matrix,

and conditional expectations, in quasilinear (O(n log2 n)) time.

4

The physics-based covariance model, in its simplest form, is obtained by truncating the

Taylor series up to the second order, which is equivalent to approximating the physical

dynamics by linear approximations. In addition, we propose a way to efficiently compute

higher-order terms and include up to fourth order term in the Taylor expansion to account

for nonlinearities. The resulting covariance model has the same structure with only slightly

inflated ranks. Nevertheless, all operations with the covariance matrix remain in the same

order of complexity. We demonstrate the algorithm’s numerical scaling, parameter estima-

tion accuracy, and MLE trajectories using a synthetic example with an 1D Burger’s equation

and a real-world example with a tropical climate model.

1.2 Overview of Chapter 3

In Chapter 3, we use the same physics-based covariance model, but with a much milder

assumption. Instead of assuming a low-rank latent covariance, we assume the covariance

of the observable process has a hierarchical structure. Recently, hierarchical matrices have

been used to improve the scaling of common matrix operations by exploiting the decay of

correlations with physical distances [4, 31, 32, 212, 77]. These matrices originated from the

fast multipole method (FMM) in physics [153] and are based on the assumption that different

clusters of observations with long pairwise distances have low-rank cross-covariance structure.

Though the entire covariance matrix could still be full-rank, some local blocks, mostly off-

diagonal blocks, preserve low-rank structure. Many well-designed numerical algorithms can

effectively exploit the locally low-rank structure and achieve better scaling in most linear

algebra operations, including matrix-vector products, matrix-matrix products, determinants,

factorizations, matrix inverse and more. We refer readers to [77] for a detailed discussion.

The technique has also been proposed for Gaussian process computations and parameter

estimations in several works [33, 122, 5, 47, 160]. However, current approaches rely on an

efficient O(1) evaluator of the covariance matrix and cannot directly deal with derivatives.

5

In this chapter, we focus on the application of HODLR matrices and propose a novel

approach to compress the physics-based covariance model using randomized sketching. We

design patterned random sketching matrices to sketch specific local blocks of the covariance

matrix. The entire procedure doesn’t require the explicit evaluation of the entire covariance

matrix and takes only O(log n) matrix-vector products.

Moreover, we leverage the differentiability of randomized sketching and matrix decompo-

sitions to design an efficient algorithm to construct the derivatives of the covariance matrix

with respect to unknown parameters. The derivatives of the covariance matrix also retain the

same HODLR structure, providing computational advantages in the same manner. Using the

efficient HODLR factorization algorithm developed in [6], we can evaluate the log-likelihood,

the score equations, and the empirical Fisher information matrix all in O(n log2 n) time com-

plexity and O(n log n) memory complexity. We provide two synthetic numerical examples

based on the Mat’ern kernel to demonstrate the numerical scaling, accuracy of the estimated

quantities, and MLE performances.

1.3 Overview of Chapter 4

In Chapter 4, we consider the problem of solving the committor function for a high-dimensional

stochastic dynamic system. This requires us to numerically solve the backward Kolmogorov

equation,

−β−1∆q(x) +∇V (x) · ∇q(x) = 0 in Ω\(A ∪B), q(x)|∂A= 0, q(x)|∂B= 1. (1.3.1)

where q is the unknown committor function to solve and V is the potential field of the

system. Recently, researchers propose to solve the variational optimization problem in the

6

form

argmin
q

∫
Ω
|∇q(x)|2p(x) dx, q(x)|∂A= 0, q(x)|∂B= 1, (1.3.2)

and parametrize the committor function with deep neural networks [95, 115, 114]. The objec-

tive function (1.3.2) is then approximated by Monte Carlo integration with training samples

from the equilibrium distribution corresponding to the potential field V . Inspired by this

idea, we leverage the tensor network methods in modern quantum physics and parameter-

ize the unknown committor function as a TT. We further assume the equilibrium density

of the system can be well-approximated in TT format. These assumptions allow the high-

dimensional integration in the variational objective to reduce to simple tensor contractions.

We finally solve the optimization problem via alternatively minimizing each TT tensor core.

The total computational and storage complexity of the algorithm is linear with the number

of dimensions. We provide extensive numerical experiments on several potential models in

the committor function community, including the double-well potential, Ginzburg-Landau

potential [84] and Gaussian mixture models.

1.4 Overview of Chapter 5

In Chapter 5, we address the problem of compressing the Boltzmann distribution of a many-

body system into a low-complexity tensor format, which can significantly simplify all down-

stream computations. In the classical setting, the key objective is to compute the partition

function of the density. We aim to find a TT approximation of the Boltzmann distribution

that can enable us to perform these computations efficiently. Once the approximation is

obtained, computing the partition function can be achieved by taking the dot product of

the TT with an all-one tensor in O(d) time, where d is the number of dimensions. Simi-

larly, other related tasks, such as drawing i.i.d samples, drawing conditional samples, and

7

evaluating marginal distributions, can also be done in O(d) time.

In the quantum setting, the goal is to find the ground state energy of the Hamiltonian. To

achieve this, we use Trotter decomposition and approximate the imaginary-time propagator,

(I − βH) ≈ exp(−βH), (1.4.1)

where H is the Hamiltonian of the system and β is the infinitesimal time step. We aim to

compress the propagator into an matrix product operator (MPO) format, which is a higher-

dimensional analogy of TT. Once this is done, we can compute the ground state energy by

efficiently and successively applying the propagator to a test wavefunction.

The main tool we use to make the approximation is the AFMC method [14, 12, 13], along

with its quantum counterpart, the auxiliary-field quantum Monte Carlo (AFQMC) method

[220, 168, 28, 45]. These methods decouple the correlations between pairs of particles by

introducing an auxiliary field and approximating the Boltzmann distribution with Monte

Carlo samples from the auxiliary field. In our work, we take this sampling procedure one

step further by compressing each sample as a TT in the classical setting or an MPO in the

quantum setting. We then apply randomized sketching to reduce the effective rank. The

rank of the final approximation is independent of the number of samples used and is solely

determined by the nature of the system. Additionally, the most time-consuming parts of the

algorithm (sampling and sketching) are fully parallelizable, making the algorithm suitable

for modern computational hardware.

8

CHAPTER 2

SCALABLE GAUSSIAN PROCESS ANALYSIS FOR IMPLICIT

PHYSICS-BASED COVARIANCE MODELS

2.1 Introduction

GPs have been widely applied in different communities for several tasks, benefiting from their

nonparametric nature and accessible likelihood expression. GPs are considered standard

methods of Bayesian inference [148]. For overviews of their usage, one can refer to several

extensive monographs [148, 125, 209]. Gaussian process regression, or kriging, is used for

interpolating or predicting a range of natural phenomena in geophysics and biology [176, 209,

101], taking advantage of its ability to provide fully probabilistic estimates of the uncertainty

of the predictions. Extending the technique to multiple target output variables is known as

cokriging [176, 54] or multikriging [35]. In this chapter, we focus on multivariate cokriging

where the variables can be extracted from spatial processes or spatiotemporal processes.

The main computational expense of GP regression generally consists of solving linear

systems with the kernel matrix. For an n × n dense kernel matrix, however, the general

Cholesky decomposition approach scales as O(n3), which can easily become problematic

with increasing size. Over the past decades, devising approximations to reduce the compu-

tational load has become an active research field. The approaches include active set methods

[146] and partitioning methods [187, 134] that separate the training data to induce sparse

representation of the full problem. More significant efforts rely on efficiently obtaining low-

rank approximations of the dense covariance matrix. These include global low-rank methods

[170, 214], which find a compressed low-rank matrix by selecting or constructing a set of

landmark points, and local low-rank approximation methods, which apply the framework of

hierarchical matrices [5, 33] to obtain better time and storage complexity for certain common

operations.

9

Another important feature of GP-based approaches is that the related probability densi-

ties can be fully characterized by their mean and covariance functions. Correct and accurate

covariance models play an essential role in setting up meaningful GP regression problems.

Many efforts aim to incorporate prior knowledge about the physics of the processes into

the covariance model structure, which may improve the efficiency of uncertainty quantifica-

tion and provide physically consistent results. A typical strategy of including prior knowl-

edge of a real system governed by known physical laws is hierarchical Bayesian modeling

[69, 20]. Examples include atmospheric modeling [207, 20, 156, 53] and environmental sci-

ences [20, 21, 22, 208, 55]. In [57], one of the authors of this work proposed a systematic

framework of assembling consistent auto- and cross-covariance models based on known phys-

ical processes. The endeavor showed that significant improvements in the forecast efficiency

can be achieved by using physics-based covariance models. But some of the computational

issues mentioned above for GP analysis that may appear for large datasets have nonetheless

not been fully addressed.

In this chapter, we combine the ideas of low-rank approximation and physics-based co-

variance models to propose a computationally efficient, physically consistent method for

identifying GP covariance parameters and carrying out the regression. We assume that the

physical model is implicit, in the sense that all that is available for interacting with it is a

mapping between the unknown fields (initial conditions, boundary conditions, and stochastic-

noise type forcing) that can be characterized by parameterized Gaussian processes and the

output. We propose an efficient approach for estimating the covariance model parameters

by maximum likelihood estimation based on a low-rank approximation of this mapping. Our

approach achieves quasilinear complexity in the number of data points both for evaluating

the log-likelihood and for carrying out the GP regression. The approach can be directly

applied to linear processes. For nonlinear processes, we propose additional operations to

approximate the nonlinearity with little additional cost. In this work, we aim to increase

10

the flexibility of carrying out GP analysis by minimizing the required prior knowledge of

the physical processes, providing more choices of solvers, and obtaining more control of the

tradeoff between computational speed and accuracy.

The rest of the chapter is organized as follows. The implicit physics-based GP regression

problem is formulated and several useful techniques are reviewed in Section 2.2. Then

scalable GP regression algorithms are developed in Section 2.3. Scalable maximum likelihood

parameter estimations and uncertainty quantification are proposed in Section 2.4. Extensive

numerical tests for both model simulated data and real climate data are presented in Section

2.5 to evaluate the effectiveness of the proposed algorithms. We conclude with a summary

and discussion in Section 2.6.

2.2 Implicit Physics-Based Covariance Models and Low-Rank

Approximation

To facilitate the theoretical development of our approach, we first assume a general physical

model structure to work on. Consider a general form of a deterministic model for physical

processes:

y = F (z), z = (zx1 , zx2 , · · · , zxn)
T , (2.2.1)

where y is an m-dimensional random field, z is an n-dimensional random field, and F ∈

Rn → Rm is a sufficiently regular mapping. To distinguish the two quantities, we call y the

output process (i.e., the process we can partially observe and want to predict) and z the

latent process (i.e., the process that is usually not directly observed but is related to the

output). We assume that the observations of y denoted by yo and observations of z denoted

11

by zo are affected by observation noise

yo = y + ϵy, zo = z + ϵz, (2.2.2)

where ϵy, ϵz are independent Gaussian processes with covariance Kϵy = Cov(ϵy, ϵy) and

Kϵz = Cov(ϵz, ϵz), respectively. Note that our framework allows multiple output compo-

nents and multiple components in the latent process. Each component may have different

levels of observation noise due to their possibly different physical nature, measurements,

units, and conditions. We assume the observation noise covariance Kϵy and Kϵz can be

efficiently inverted with at most quasilinear time cost. For example, in a lot of cases, such

as when each component is measured by a different instrument, the noise processes ϵy and

ϵz are componentwise independent and can many times be assumed to be Gaussian [216].

Then their covariance matrix is only a diagonal matrix with entries representing different

noise magnitudes, and it is easily invertible with linear time cost. We thus find that our

assumptions include a broad set of models.

We also note that many models can be adapted or converted to this form. For example,

many physical processes can be modeled by using differential equations or stochastic differ-

ential equations. Additional constraints such as initial conditions and boundary conditions

are needed in order to solve these equations. In this case, the model can be expressed by

y = G(B, I, ω), (2.2.3)

where B denotes the boundary condition, I denotes the initial condition, and ω is the

random process component of the stochastic differential equation. To convert the model

into general form, we can concatenate the latent variables into a column vector of latent

process zT = (BT , IT , ωT). Note that we will use the general form (2.2.1) in the theoretical

derivation of this study; however, form (2.2.3) may be simpler to use in applicable cases since

12

separating independent variables may provide a more compact solution and reduce the size

of the problem.

2.2.1 Physics-Based Covariance Models

Gaussian process regression requires good covariance models that can accurately capture

the joint variability of the processes. By incorporating information from the physical model

(2.2.1), we use physics-based covariance models proposed in [57]. Note that although [57]

provides covariance models only for spatial processes, they can be extended to the spatiotem-

poral context with little extra effort.

Second-Order Covariance Model

Denote the expectation E(z) = z̄ and the small perturbation around the mean value by

δz = z − z̄. If two processes satisfy the physical constraint given by (2.2.1),(2.2.2) for

F ∈ C2, the covariance matrix formed by yo and z satisfies

Cov


yo
z


 =

LCov(z, z)LT +Kϵy LCov(z, z)

Cov(z, z)LT Cov(z, z)

+O(||δz||3), (2.2.4)

where L is the Jacobian matrix of F evaluated at z̄. If we used this matrix as the estimate of

the joint covariance, we would incur a third-order error in δz. If the function F is linear, the

error term vanishes, and the covariance model is exact. This covariance model can be applied

when the corresponding physical process can be exactly or approximately well represented by

its linearization. If the function is highly nonlinear, extra higher-order terms can be added

to the covariance model to account for the nonlinearity and lead to more accurate results.

13

Higher-Order Covariance Model

To use higher-order expansions, we will need to compute tensor operations. In particular,

note that for H, the Hessian tensor of F (z) defined in (2.2.1), a vector v ∈ Rn, we have that

vTHv is a column vector, the transpose of which is the row vector vTHT v. We give details

on the tensor algebra we used to obtain our derivations in A.2.

With these conventions, the covariance model under higher-order closure is given by [57]

Cov


yo
z


 =

 K11 +Kϵy LCov(z, z)

Cov(z, z)LT Cov(z, z)

+O(||δz||4), (2.2.5)

where L is the Jacobian matrix, H is the Hessian tensor of F (z) evaluated at z̄, and from

[57]

K11 = LCov(z, z)LT +
1

4
δzTHδzδzTHT δz − 1

4
δzTHδz δzTHT δz. (2.2.6)

This covariance model includes terms up to order four. If the function F is quadratic, the

error term vanishes, and the covariance model is exact. For more complicated processes,

the truncated covariance model (2.2.5) can be used as a good approximation of the exact

covariance matrix. We note that the higher-order terms appear only in the auto-covariance.

The cross-covariance remains the same under both second-order and higher-order closure

assumption.

2.2.2 Low-Rank Approximation of Kernel Using Chebyshev Interpolation

Carrying out GP regression in the general covariance case requires computing the inverse

of, or at least solving linear systems with, large, dense covariance matrices. Conventional

methods based on Cholesky decomposition are expensive since the computational cost scales

as O(n3) for an n×n dense matrix. To obtain a computationally efficient method for solving

14

the GP regression problem, we use low-rank approximation methods that facilitate linear

algebra with better scaling. In this study, we approximate the covariance matrix of the la-

tent process Cov(z, z) by Chebyshev interpolation. Note that low-rank kernel approximation

using other choices of interpolation methods and nodes is also possible; we refer readers to

[214] for a discussion. If the Gaussian process describing z is smooth enough, the Cheby-

shev interpolation is sufficient for our purpose. In some circumstances, particularly at high

sample density, using smooth covariance models may not be a suitable representation of the

uncertainty [176], and in these cases our approach would not produce a good approximation.

Our approach can be relatively easily extended to a block diagonal plus low-rank structure

of Cov(z, z) if we make some assumptions about the resulting covariance or if we use the fact

that for many applications L itself is low rank [2] to allow for cases where the covariance is

rougher. For this paper we restrict ourselves to the smooth Cov(z, z), which we will show

can have a positive impact for some observed data problems in Section 2.5.

Chebyshev nodes are roots of Chebyshev polynomials of the first kind. Using Chebyshev

nodes as interpolation points in polynomial interpolation (Chebyshev interpolation) can help

minimize the effect of Runge’s phenomenon. Given the number of interpolation points N ,

in the interval (−1, 1), the Chebyshev nodes are defined by

x̃k = cos

(
2k − 1

2N
π

)
, k = 1, 2, · · · , N. (2.2.7)

For a 1D smooth function f : (−1, 1)→ R, given function evaluations at the set of interpo-

lation points {(x̃1, f(x̃1)), (x̃2, f(x̃2)), · · · , (x̃N , f(x̃N))}, then for any x ∈ (−1, 1), f(x) can

be approximated by using Lagrange polynomials:

f̃(x) ≈
N∑
i=1

∏
j ̸=i

x− x̃j
x̃i − x̃j

 f(x̃i). (2.2.8)

The approach can be generalized to functions over arbitrary interval domains by affine trans-

15

formation. Now our goal is to construct a low-rank compressed kernel matrix K from which

the kernel matrix Cov(z, z) can be approximately reconstructed by Chebyshev interpolation.

Assume z(x) = (z(x1), z(x2), · · · , z(xn))T is a random field over an n-dimensional location

set (x1, x2, · · · , xn). We then can find N Chebyshev nodes (x̃1, x̃2, · · · , x̃N) over the location

set. Define the compressed covariance matrix K ∈ RN×N by

K = (Kij), Kij = Cov(z(x̃i), z(x̃j)), i, j = 1, 2, · · · , N. (2.2.9)

In addition, define the coefficient vector associated with x by

c(x) =

∏
j ̸=1

x− x̃j
x̃1 − x̃j

,
∏
j ̸=2

x− x̃j
x̃2 − x̃j

, · · · ,
∏
j ̸=N

x− x̃j
x̃N − x̃j

T

∈ RN . (2.2.10)

Construct Cz = (c(x1), c(x2), · · · , c(xn)) ∈ RN×n. Then we can approximate Cov(z, z) by

CT
z KCz, which is of rank N . If we take N < n, it becomes a valid low-rank approximation

of Cov(z, z). Note that the same Chebyshev interpolation can be easily extended to multiple

dimensions by using tensor products. It can be useful when the latent process has more than

one dimension.

A practical question on the way to applying the method is how to choose the effective

rank N to balance accuracy and complexity. As a guideline, the smoother the kernel function

f , the faster the decay of its numerical rank. In other words, the error in polynomial

approximation decreases rapidly as the rank increases. Specifically, let ∥·∥∞ denote the

supremum norm on (−1, 1). If f is analytic in some open region of the complex plane

containing (−1, 1), then there exist ρ > 1 and a positive constant C such that ∥f̃ − f∥∞<

Cρ−N [186]. This means that for analytic f , which is the case for typical kernel functions, the

approximation error decays with N at a geometric rate. This provides us a way to estimate

the required rank to get desired accuracy, though it is highly dependent on the choice of

16

kernel function. In this work, we assume that the kernel function is smooth enough and

can be well-approximated as a block bivariate function by a rank N = O(log n) Chebyshev

interpolated matrix.

2.2.3 Approximation of Jacobian and Hessian

As we have noted, the physics-based covariance model requires computing the Jacobian and

Hessian matrices of the function F at given points. Since the physical model is implicit,

we have no algebraic expression of F , and the information of the model is available only

via some black-box forward solvers. To avoid direct estimation and storage of the Jacobian

and Hessian, we use a central difference scheme to efficiently approximate the Jacobian-

vector product and the vector-Hessian-vector product for any vectors. While automatic

differentiation is always a possibility, when one works with complex models such as climate

codes, getting automatic differentiation to work is a complex and time-consuming endeavor

[126]. Our simple approach has downsides, including introducing additional approximation

errors, but it is highly parallelizable. Here are the approximations we use.

• Jacobian-vector product Lu for vector u ∈ Rn

Let s be a sufficiently small positive real number. Then by Taylor expansion, we can ap-

proximate Lu by

Lu =
1

2s
(F (z̄ + su)− F (z̄ − su)) +O(s2||u||3). (2.2.11)

• Vector-Hessian-vector product uTHv for vector u, v ∈ Rn

Let L(z) be the Jacobian matrix of F evaluated at z. Let s1 be a sufficiently small

17

positive real number. Consider the Taylor expansion of L(z̄ + s1v) and L(z̄ − s1v),

L(z̄ + s1v)u = L(z̄)u+ s1v
THu+O(s31||v||

3), (2.2.12)

L(z̄ − s1v)u = L(z̄)u− s1vTHu+O(s31||v||
3). (2.2.13)

Subtracting the two equations, we get the approximation

vTHu =
1

2s1
(L(z̄ + s1v)u− L(z̄ − s1v)u) +O(s21||v||

3). (2.2.14)

Combine with the approximation of the Jacobian-vector product (2.2.11). We get

vTHu =
1

4s1s2
[F (z̄ + s1v + s2u)− F (z̄ + s1v − s2u)− F (z̄ − s1v + s2u)

+ F (z̄ − s1v − s2u)] +O(s21||v||
3+

s22||u||
3

s1
). (2.2.15)

For both Jacobian and Hessian approximations, when s1, s2 → 0 and s2
s1

is bounded

above, the error tends to zero. In practice, we choose s1, s2 small and of the same order to

make s2u, s1v be small perturbations around z̄.

2.3 A Scalable Approach for Gaussian Process Regression Using

Physics-Based Covariance Models

The GP regression problem aims to interpolate the whole field y by partial observations.

Specifically, we can partition the whole field y into an observed part and an unobserved

part. Assume the partial observations (with observation noise) of y are denoted by yo ∈ Rd

and the remaining unobserved field that we want to predict is denoted by yp ∈ Rm−d.

Assume y satisfies the physical constraint (2.2.1). Then we can correspondingly partition

18

the vector-valued function F by

yo = Fo(z) + ϵy, (2.3.1)

yp = Fp(z). (2.3.2)

The mappings Fo(z), Fp(z) are defined by the user at application time, and they are typically

instantiated by forward simulation software. Examples of how to create them will be provided

in Section 2.5.

We consider the following two scenarios: (1) we have observations only of y in Section

2.3.1, and (2) we have additional observations of the latent process z in Section 2.3.2. The

name of the resulting tasks, latent process kriging (1) and joint process kriging (2), orig-

inate in [57] when applied to the explicit covariance model. We now describe them, and

we evaluate their computational effort as a combination of the number of forward model

evaluations required by the derivations in Section 2.2.3, the number of system solves with

the covariance matrices defining our model (2.2.2), and the (dominant) computational effort

of the remaining model forming tasks.

2.3.1 Latent Process Kriging

By the physics-based covariance model (2.2.4), the joint distribution of yo and yp is approx-

imated by

M1 :

yo
yp

 ∼ N

m(yo)

m(yp)

 ,

LoCov(z, z)LTo +Kϵy LoCov(z, z)L
T
p

LpCov(z, z)L
T
o LpCov(z, z)L

T
p


 , (2.3.3)

where Lo is the Jacobian matrix of Fo evaluated at z̄ and Lp is the Jacobian matrix of Fp

evaluated at z̄. The corresponding GP regression problem solves the posterior distribution

19

under observations. The predicted posterior mean is given by

m(yp) + (LpCov(z, z)L
T
o)(Kϵy + LoCov(z, z)L

T
o)
−1(yo −m(yo)). (2.3.4)

The difficulty of computing the expression is that (Kϵy + LoCov(z, z)L
T
o) is a d × d ma-

trix. Solving the inverse by the conventional Cholesky decomposition method requires a

computational cost of order O(d3). Since we assume Kϵy possesses sparsity and can be

efficiently inverted, the Sherman-Morrison-Woodbury (SMW) formula can then be applied,

and the computational cost of solving the inverse is then determined by the rank of the

LoCov(z, z)L
T
o term, in other words, max(d, n). For simplicity of our discussion, we as-

sume d = O(m), which models many circumstances where the dimension of the vector to

be forecast is no larger in order than the number of observation points required. Then the

computational cost can be reduced by the proposed low-rank approximation, which replaces

LoCov(z, z)L
T
o by a rank N approximation. We illustrate the scalable approach for solv-

ing the GP regression posterior mean with a computational cost analysis of each step in

Algorithm 1.

In summary, based on our assumption of observation noise covariance Kϵy , the entire

approach takes O(N) forward solves and O(N) Kϵy linear system solves, and the dominant

computational cost takes O(mN2+nN) time, although the workflow is highly parallelizable.

The cost is quasilinear with n if N = log(n).

2.3.2 Joint Process Kriging

In this subsection, we consider the case where we can partially observe the latent process.

The additional information about the latent process helps us get more accurate predictions

of the unobserved output. Denote the observed part of the latent process by zo ∈ RD and

the unobserved part of latent process by zp ∈ Rn−D. The observation noise covariance is

20

Algorithm 1: Latent Process KrigingM1

Use the low-rank approximation discussed in Section 2.2.2 with N = O(log n), and
then solve the approximate GP regression,

m(yp) + (LpC
T
z KCzL

T
o)(Kϵy + LoC

T
z KCzL

T
o)
−1(yo −m(yo)). (2.3.5)

Step 1. Compute A1 = LoC
T
z ∈ Rd×N , A2 = LpC

T
z ∈ R(m−d)×N by O(N) forward

solves.
Step 2. Solve the approximated inverse problem by the SMW formula.

(Kϵy + A1KA
T
1)
−1(yo −m(yo))

=K−1ϵy (yo −m(yo))−K−1ϵy A1(K
−1 + AT

1K
−1
ϵy A1)

−1AT
1K
−1
ϵy (yo −m(yo)). (2.3.6)

a. Compute α = AT
1K
−1
ϵy (yo −m(yo)). It takes O(mN) time and one Kϵy linear

system solve.
b. Solve (K−1 + AT

1K
−1
ϵy A1)

−1α by(
IN AT

1K
−1
ϵy A1

K −IN

)(
β
γ

)
=

(
α
0

)
, (2.3.7)

where forming AT
1K
−1
ϵy A1 takes O(N) Kϵy linear system solves and O(mN2)

time. Solving the system takes O(N3) time.
c. The solution is given by y = K−1ϵy (yo −m(yo))−K−1ϵy A1γ. This takes

O(mN) time and two Kϵy linear system solves.
Step 3. Return m(yp) + (A2KA

T
1)y by matrix-vector multiplication. This takes

O(2mN +N2) time.

given by Kϵz . As discussed after (2.2.2), we assume Kϵz is sparse and can be efficiently

inverted with at most quasilinear time cost. For estimating the computational effort we

assume D = O(n). From our physics-based covariance model (2.2.4), the joint distribution

of yo, zo, yp and zp is given by

M2 :



yo

zo

yp

zp


∼ N





m(yo)

m(zo)

m(yp)

m(zp)


,

K11 K12

K21 K22



, (2.3.8)

21

where

K11 =

Kϵy + LoCov(z, z)L
T
o LoCov(z, zo)

Cov(zo, z)L
T
o Kϵz + Cov(zo, zo)

 , (2.3.9)

K21 =

LpCov(z, z)LTo LpCov(z, zo)

Cov(zp, z)L
T
o Cov(zp, zo)

 . (2.3.10)

The corresponding GP regression problem solves the predicted posterior mean,

m(yp)

m(zp)

+ (K21)(K11)
−1

yo −m(yo)

zo −m(zo)

 . (2.3.11)

The partitioned covariance matrices Cov(zo, z), Cov(zp, z), and Cov(zp, zo) are all subma-

trices of Cov(z, z) formed by selecting the corresponding rows or columns. Therefore, we

can construct Czo ∈ RN×D and Czp ∈ RN×(n−D) by selecting the corresponding columns of

the interpolation matrix Cz and creating suitable low-rank approximations of these covari-

ance matrices. A scalable approach for solving the GP regression posterior mean problem is

summarized in Algorithm 2.

In summary, based on our assumption of observation noise covariance matrices, the entire

approach takes O(N) forward solves and O(N) observation noise covariance matrix linear

system solves, and the dominant computational cost takes O((m+ n)N2) time. The cost is

quasilinear with n if N = log(n).

2.3.3 Correction for Nonlinearity

In the preceding two subsections, we described scalable approaches for solving the GP re-

gression problem with a physics-based second-order covariance model (2.2.4). For highly

22

Algorithm 2: Joint Process KrigingM2

Use the low-rank approximation index N = O(log n). Approximate the latent
process covariances by interpolation as Cov(zo, zo) ≈ CT

zoKCzo ,
Cov(zo, z) ≈ CT

zoKCz, Cov(zp, z) ≈ CT
zpKCz, Cov(zp, zo) ≈ CT

zpKCzo .
Step 1. Compute A1 = LoC

T
z ∈ Rd×N , A2 = LpC

T
z ∈ R(m−d)×N by O(N) forward

solves.
Step 2. Solve the approximated inverse problem by the SMW formula,

α =(K11)
−1
(
yo −m(yo)
zo −m(zo)

)
=

((
Kϵy 0
0 Kϵz

)
+

(
A1 0

0 CT
zo

)(
K K
K K

)(
AT
1 0
0 Czo

))−1(
yo −m(yo)
zo −m(zo)

)
.

(2.3.12)

This can be efficiently carried out since
(
K K
K K

)
∈ R2N×2N has dimension much

smaller than n and
(
Kϵy 0
0 Kϵz

)
can be efficiently inverted similarly to Algorithm

1. The time cost is dominated by forming matrix products (AT
1K
−1
ϵy A1) and

(CzoK
−1
ϵz C

T
zo), which takes O((n+m)N2) time and O(N) linear system solves with

Kϵy and Kϵz .
Step 3. Return the final solution,(

m(yp)
m(zp)

)
+

((
A2 0

0 CT
zp

)(
K K
K K

)(
AT
1 0
0 Czo

))
α. (2.3.13)

The step takes O(2(n+m)N + 4N2) time.

nonlinear functions, we expect that using higher-order covariance models (2.2.5) will provide

a more accurate covariance matrix structure. In this subsection, we discuss how to include

the higher-order terms in the GP regression problem while maintaining quasilinear time scal-

ing via approximations. To this end, we apply the formalism (2.2.6) to the partitioned case

where y → (yTo , y
T
p)

T . We denote the Hessian tensor of Fo, Fp evaluated at z̄ by Ho, Hp,

respectively. From (2.2.6), one important observation is that the higher-order terms occur

only in the auto-covariance of y. Our modified latent process kriging with higher-order terms

23

then has the following expression:

m(yp)+

(
LpCov(z, z)L

T
o +

1

4
δzTHpδzδzTHT

o δz −
1

4
δzTHpδz δzTHT

o δz

)
(
Kϵy + LoCov(z, z)L

T
o +

1

4
δzTHoδzδzTHT

o δz −
1

4
δzTHoδz δzTHT

o δz

)−1
(yo −m(yo)). (2.3.14)

Likewise, for joint process kriging with higher-order terms, the estimator becomes

m(yp)

m(zp)

+ (K+
21)(K

+
11)
−1

yo −m(yo)

zo −m(zo)

 , (2.3.15)

where

K+
11 =

LoCov(z, z)LTo + 1
4δz

THoδzδzTHT
o δz − 1

4δz
THoδz δzTHT

o δz LoCov(z, zo)

Cov(zo, z)L
T
o Cov(zo, zo)


+

Kϵy 0

0 Kϵz

 , (2.3.16)

K+
21 =

LpCov(z, z)LTo + 1
4δz

THpδzδzTHT
o δz − 1

4δz
THpδz δzTHT

o δz LpCov(z, zo)

Cov(zp, z)L
T
o Cov(zp, zo)

 .

(2.3.17)

We now focus on computing the two higher-order terms appearing in auto-covariance. Denote

U(H, Ĥ) =
1

4
δzTHδzδzT ĤT δz, (2.3.18)

V (H, Ĥ) = −1

4
δzTHδz δzT ĤT δz, (2.3.19)

24

where H and Ĥ both take the value of either Ho or Hp, depending on the covariance

components. For multivariate Gaussian random variable δz, we have that

U(H, Ĥ) + V (H, Ĥ)
(A.3.9),(A.3.11)

=
1

4
δzTHδzδzT ĤT δz − 1

4
δzTHδz δzT ĤT δz

=
1

2
tr(HCov(z, z)ĤTCov(z, z)) +

1

4
tr(HCov(z, z))tr(ĤCov(z, z))T

− 1

4
tr(HCov(z, z))tr(ĤCov(z, z))T

=
1

2
tr(HCov(z, z)ĤTCov(z, z)). (2.3.20)

Details of the algebra can be found in A.3. We now turn to the issue of approximat-

ing the nonlinear corrections efficiently. We will again use the low-rank approximation

Cov(z, z) ≈ CT
z KCz with K symmetric and positive semi-definite. Then there exists a

Cholesky factorization of K such that K = PTP , where P is an upper triangular matrix.

Since K is an N × N matrix, with N ≪ n, the cost of the factorization can be ignored

compared with quasilinear scaling in n. Our approximation becomes

tr(HCov(z, z)ĤTCov(z, z)) ≈ tr(HCT
z P

TPCzĤ
TCT

z P
TPCz)

= tr(PCzHC
T
z P

TPCzĤ
TCT

z P
T)

= tr(MM̂T), (2.3.21)

where M = PCzHC
T
z P

T and M̂ = PCzĤC
T
z P

T are rank-three tensors, whose size de-

pends on the choice of Hessian tensors H, Ĥ. We further denote Mo = PCzHoC
T
z P

T ,

Mp = PCzHpC
T
z P

T corresponding to the two choices of Hessians. Let {ui}, {vi} be N -

dimensional independent Rademacher vectors (random vectors with independent identical

Bernoulli distributed components that take the values +1 and −1 with probability 0.5).

25

Then

tr(MM̂T) = tr(MIM̂T I)

= tr(ME(uuT)M̂TE(vvT))

= E(tr(MuuT M̂T vvT))

= E(vTMuuT M̂T v)

≈ 1

Nl

Nl∑
i=1

(vTi Mui)(v
T
i M̂ui)

T . (2.3.22)

Note that vTi Mui ∈ Rm2 , where m2 is the second dimension of M and vTi Mui ∈ Rm̂2 ,

where m̂2 is the second dimension of M̂ . Therefore (vTi Mui)(v
T
i M̂ui)

T is a rank-1 m2× m̂2

matrix. The entire stochastic trace estimator (2.3.22) is a matrix of rank-Nl. When Nl =

O(log n), adding the approximated trace term to the auto-covariance matrices becomes an

additional low-rank perturbation that can also be handled efficiently by the SMW formula.

While there is a concern that Nl may be too small to obtain a high-quality approximation,

we note that for well-conditioned blocks M(:, i, :), for i = 1, 2, . . . ,m2 (in Matlab notation),

the approximation has provably excellent quality [177]. Since a low-rank approximation of

a covariance matrix has a much better condition number than the original, the approach is

in the regime of validity from [177].

We illustrate the computational workflow for including nonlinear higher-order terms in

the covariance computation and solving the modified GP regression problem scalably in

Algorithm 3. A similar workflow for the joint process kriging is in A.1.

In summary, based on our assumption of observation noise covariance matrices, the entire

approach takes O(N+Nl) forward solves and O(N+Nl) observation noise covariance matrix

linear system solves, and the dominant remaining computational cost takes O(m(N +Nl)
2)

time. The cost is quasilinear with n if N,Nl = log(n).

26

2.4 A Scalable Approach for Gaussian Process Maximum

Likelihood Estimation

The proposed physics-based covariance model (2.2.3)(2.2.4) provides explicit covariance

structure based on the physical operators and the covariance of the latent process Cov(z, z).

In most applications, a reasonable covariance function of the latent process can be proposed

based on past observations or prior knowledge up to some parameters that need to be es-

timated from data. While in many circumstances, the results of kriging are only weakly

dependent on the covariance parameters, this may be not known in advance, and good guid-

ance on how to choose these parameters may not exist, particularly if one does the analysis

for the first time. It is useful to give the user the tools to estimate such parameters, which

can be seen to be conceptually similar to the point of view of empirical Bayes estimation

[43], whereby one marginalizes over the latent variables and first estimates the remaining

model parameters from data

Since z is a random field at locations (x1, · · · , xn), assume the covariance matrix Cov(z, z)

can be parameterized by a valid covariance function k(·, ·; θ) depending on unknown param-

eters θ ∈ Rr. Then

Cov(z(xi), z(xj); θ) = k(xi, xj ; θ), i, j = 1, 2, · · · , n. (2.4.1)

We denote the resulting covariance matrix by Cov(z, z; θ) ∈ Rn×n. The most principled

method to estimate the parameters θ is the maximum likelihood estimator (MLE). Following

the same setup we distinguish two cases: (1) a latent process MLE, where we have available

observations only of output process y and (2) a joint process MLE, where we can observe

both processes y and z, which we describe below. Notionally, the same estimation workflow

could apply to the nonlinear corrections from Section 2.3.3, but the estimates can no longer

be justified by output likelihood considerations, since in the case of nonlinear transformation

27

the output y does not have a Gaussian distribution in general. We thus discuss here only

the linear dependence case. Moreover, yp does not play a role in estimating θ, so we will

focus on the joint relationship of yo and z only.

2.4.1 Latent Process MLE

Given partial observations yo ∈ Rd and based on the covariance model for the latent process

(2.3.3), the log-likelihood function (up to an additive constant) is given by

log p(yo|θ) =−
1

2
log det (Kϵy + LoCov(z, z; θ)L

T
o)

− 1

2
(yo − yo)T (Kϵy + LoCov(z, z; θ)L

T
o)
−1(yo − yo). (2.4.2)

One can avoid the log-determinant computation—which requires a Cholesky factorization

of a dense and large matrix, a very expensive computation—by considering the score equa-

tions, which are obtained by setting the gradient of log-likelihood to be zero. The gradient

components are

gi(θ) =
1

2
(yo − yo)T (Kϵy + LoCov(z, z; θ)L

T
o)
−1(LoCovi(z, z; θ)L

T
o)(Kϵy + LoCov(z, z; θ)L

T
o)
−1

(yo − yo)−
1

2
tr((Kϵy + LoCov(z, z; θ)L

T
o)
−1(LoCovi(z, z; θ)L

T
o)), (2.4.3)

where Covi(z, z; θ) =
∂
∂θi

Cov(z, z; θ). The score equations become gi(θ) = 0, i = 1, 2, . . . , r.

To solve this problem, one needs to be able to efficiently evaluate the score equation for any θ.

When creating low-rank approximations, we exploit the fact that the Chebyshev nodes and

coefficients do not depend on the parameters θ. Using the low-rank approximation discussed

28

in Section 2.2.2, we can define the following approximation:

Cov(z, z; θ) ≈ CT
z K(θ)Cz, (2.4.4)

∂

∂θi
Cov(z, z; θ) ≈ CT

z Ki(θ)Cz, i = 1, 2, . . . , r, (2.4.5)

where K(θ) is the compressed covariance matrix, explicitly depending on θ and Ki(θ) its

derivative with θi. Because of the explicit nature of K(θ) in an interpolation approach,

Ki(θ) is readily computable. Therefore, the two terms in the gradient component expression

(2.4.3) can be approximated separately. For the first term, we apply the SMW formula to

sequentially solve the matrix-vector product. For the second term, we use stochastic trace

estimator to convert the expensive trace operations to vector-matrix-vector product [177]. A

scalable approach for solving the latent process MLE problem is summarized in Algorithm

4.

In summary, the system of score equations takes O(N) forward solves, O(N) linear system

solves with the noise covariance matrix Kϵy , and an assembly effort of O(rN2Nl +mN2 +

mNNl). Each optimization iteration has quasilinear time complexity with n if N,Nl =

log(n).

2.4.2 Joint Process MLE

Given partial observations yo ∈ Rd, additional observations of the latent process zo ∈ RD

and based on the covariance model for the joint process (2.3.8), the log-likelihood function

of the observations (up to an additive constant) is given by

log p(yo, zo|θ) = −
1

2
log detK11 −

1

2

yo − yo
zo − zo


T

K11

yo − yo
zo − zo

 , (2.4.11)

29

K11 =

Kϵy + LoCov(z, z; θ)L
T
o LoCov(z, zo; θ)

Cov(zo, z; θ)L
T
o Kϵz + Cov(zo, zo; θ)

 . (2.4.12)

The log-likelihood gradient components are given by

gi(θ) =
1

2

yo − yo
zo − zo


T

K−111

LoCovi(z, z; θ)LTo LoCovi(z, zo; θ)

Covi(zo, z; θ)L
T
o Covi(zo, zo; θ)

K−111

yo − yo
zo − zo


− 1

2
tr

K−111

LoCovi(z, z; θ)LTo LoCovi(z, zo; θ)

Covi(zo, z; θ)L
T
o Covi(zo, zo; θ)


 . (2.4.13)

Subsequently, the score equations are defined by gi(θ) = 0, i = 1, 2, . . . , r.

As in the rest of the paper, we efficiently approximate the components gi(θ) by means of

low-rank approximations of Cov(z, zo; θ) and Cov(zo, zo; θ), as well as their derivatives with

respect to θi (denoted here with the subscript i) by interpolation. A scalable approach for

solving the joint process MLE problem by score equations is summarized in Algorithm 5.

In summary, computing the gradient components for the score equations takes O(N)

forward solves, O(N) linear system solves with the noise covariance matrix, and O(rNlN
2+

(m + n)NNl + (m + n)N2) operations for the assembly of the various matrices. For any θ,

computing these gradient components has a quasilinear time complexity with n if N,Nl =

log(n).

2.4.3 Estimation of Fisher Information Matrix

The expected Fisher information matrix is commonly used in providing confidence intervals

on the estimates of θ by means of asymptotic analysis. Specifically, denote the solution of

the score equations by θ̂ and the Fisher information matrix by I(θ̂). Then, as the sample

30

size goes to infinity, one expects that

(θ̂ − θtrue)
d−→ N (0, I(θ̂)−1). (2.4.18)

Therefore, for each component of θ, the confidence interval can be approximated by

θ̂i ± c
√

(I(θ̂)−1)ii, (2.4.19)

where c is the appropriate critical value. Furthermore, for multivariate Gaussian distribution

where the uncertainties occur only in the covariance, each entry in the expected Fisher

information matrix is given by [177]

Ii,j(θ) =
1

2
tr(Σ(θ)−1Σi(θ)Σ(θ)

−1Σj(θ)), (2.4.20)

where Σ(θ) denotes the autocovariance matrix in latent or joint process MLE and Σi(θ) =

∂
∂θi

Σ(θ). The trace term can be again approximated by the stochastic trace estimator

Îi,j(θ) ≈
1

2Nl

Nl∑
l=1

uTl Σ(θ)
−1Σi(θ)Σ(θ)

−1Σj(θ)ul, (2.4.21)

where ul are Nl independent Rademacher random vectors ul ∈ Rd, l = 1, 2, . . . , Nl. The

covariance components in (2.4.21) are computed by the same low-rank approximations as

in the rest of the paper. We recall from Algorithm 4 that A1 = LoC
T
z is computed when

31

setting up the score equations. From (2.4.21) it follows that

Îi,j(θ) ≈
1

2Nl

Nl∑
l=1

uTl (Kϵy + LoCov(z, z; θ)L
T
o)
−1(LoCovi(z, z; θ)L

T
o)

(Kϵy + LoCov(z, z; θ)L
T
o)
−1(LoCovj(z, z; θ)L

T
o)ul,

≈ 1

2Nl

Nl∑
l=1

uTl (Kϵy + A1K(θ)AT
1)
−1(A1Ki(θ)A

T
1)

(Kϵy + A1K(θ)AT
1)
−1(A1Kj(θ)A

T
1)ul. (2.4.22)

Observing the structure of the term, we will evaluate the Fisher information matrix in the

following sequence. First we compute W = (Kϵy + A1K(θ)AT
1)
−1A1 by the SMW formula.

Note that theW component for SMW needs to be assembled only once. This step takes O(N)

Kϵy linear system solves and O(mN2) time. Then forming the N × N matrix U = AT
1W

takes O(mN2) time. After that we compute the right terms {AT
1 ul}, l = 1, 2, · · · , Nl with

O(mNNl) cost and the left terms {wl}, where wl = WTul, l = 1, 2, · · · , Nl with O(mNNl)

cost. Now we finish our precomputing process with a cost independent from r. Then we

assemble the entries in the Fisher information matrix. For each i, j, we compute Nl terms

to approximate the trace. Each term takes the form wT
l Ki(θ)UKj(θ)A

T
1 ul with O(N2)

cost. Since we have r2 entries in the Fisher information matrix, the total assembling cost is

O(r2NlN
2).

To summarize, the whole Fisher information matrix takes O(N) Kϵy linear system solves

and an assembly cost of O(mN(N +Nl) + r2NlN
2) time to compute. The cost of inverting

the expected Fisher information matrix can be ignored. Similarly, for computing the Fischer

matrix in the joint process model, we draw Nl independent Rademacher vector {vl} ∈ Rd+D,

l = 1, 2, . . . , Nl. Using the low-rank approach, we get the following approximation for its

32

entries.

Îi,j(θ) ≈
1

2Nl

Nl∑
l=1

vTl


Kϵy 0

0 Kϵz

+

A1 0

0 CT
zo


K(θ) K(θ)

K(θ) K(θ)


AT

1 0

0 Czo



−1

A1 0

0 CT
zo


Ki(θ) Ki(θ)

Ki(θ) Ki(θ)


AT

1 0

0 Czo



Kϵy 0

0 Kϵz

+

A1 0

0 CT
zo


K(θ) K(θ)

K(θ) K(θ)


AT

1 0

0 Czo



−1A1 0

0 CT
zo


Kj(θ) Kj(θ)

Kj(θ) Kj(θ)


AT

1 0

0 Czo

 vl

(2.4.23)

The computational cost analysis is similar to the one for the Fischer matrix of the latent

process model (2.4.22). The precomputing step takes O(N) linear system solves with the

observation noise covariance matrix and O((n + m)N(N + Nl)) vector and matrix assem-

bly time. Assembling the Fisher information matrix takes O(r2NlN
2) time. The cost of

inverting the expected Fisher information matrix can be ignored. Since the dimension of the

parameters is finite, taking N,Nl = O(log n) provides us a scalable approach to estimating

the Fisher information matrix for estimating the parameters of our uncertainty model.

2.5 Numerical Experiments

In this section, we present numerical tests based on both synthetic and realistic datasets.

The synthetic case is based on the 1D viscous Burger’s equation and the corresponding

model-generated data. The realistic case concerns reanalyzed satellite-observed water vapor

and wind velocity data. For the synthetic case, we investigated all model and computa-

tion features described in this paper, including numerical accuracy of parameter estimations

and uncertainty quantification when carrying out low-rank-based reduction, Section 2.2.2,

comparisons of the different covariance models Section 2.3.1 and Section 2.3.2, effect of

33

higher-order terms Section 2.3.3, accuracy of the confidence interval estimates when carry-

ing out maximum likelihood Section 2.4.3, and the measured computational scaling of the

approximated algorithm. For the real atmospheric dataset, we consider only linear models,

and we focus primarily on improvement in kriging accuracy compared with the case when

the cross-covariance information is ignored, and we model comparisons between Section 2.3.1

and Section 2.3.2. Since the contribution of this work is in providing a scalable approach for

both the kriging and the maximum likelihood tasks for implicitly defined Gaussian process

models, we will be less interested in doing an extensive modeling comparison. We will focus

on demonstrating that the approximating nature of our method does not significantly alter

the predictive power of a physics-based approach to modeling the covariance, which was

demonstrated in [57].

2.5.1 One-Dimensional Viscous Burger’s Equation

Burger’s equation is a fundamental partial differential equation that combines the nonlinear

advection and the linear diffusion. It can be investigated in 1+1 (one spatial dimension and

one temporal dimension) dimensional settings and is a standard test case for data assimilation

algorithms [213, 9, 90, 112, 189]. The equation takes the following form:

∂w

∂t
+

1

2

∂(w2)

∂x
= ν

∂2w

∂x2
+ f, (x, t) ∈ (0, 1)× (0, T). (2.5.1)

For assessing the effectiveness of our uncertainty quantification approach we include an

additional external forcing term f that is deterministic and time-independent. We select a

smaller diffusion coefficient, and we choose more complicated initial conditions to engender

more long-lasting chaotic behavior. To numerically solve the equation, we denote the value

of its approximation at grid point (j∆x,m∆t) by wm
j and of the constant forcing as fj . We

34

construct a forward solver of the system using the following finite difference scheme:

wm+1
j − wm

j

∆t
+

(wm
j+1)

2 − (wm
j−1)

2

4∆x
− ν

(∆x)2
(wm+1

j+1 − 2wm+1
j + wm+1

j−1)− fj = 0. (2.5.2)

To apply our framework to this problem, we find the solution of the problem on the two-

dimensional grid. Given the initial condition I and boundary condition B, we write zT =

(BT , IT). Then we define w = G(z), where w is the solution produced by the numerical

scheme (2.5.2). In all our synthetic experiments we take yo to consist of a subset of the

components of w to which we add Gaussian observation noise ϵy ∼ N (0, σ2I) and yp to

consist of another such subset. We use I to denote the identity matrix with proper size.

Similarly, we take zo to consist of a subset of the latent process z and Gaussian observation

noise ϵz ∼ N (0, σ2I). And we denote another subset by zp. Note that for simplicity we

assume that the Gaussian noise for both the output process y and latent process z has the

same variance; this has no bearing on the scalability conclusions. Extending the scenario

to unequal variances is straightforward. The mappings Fo, Fp required by our framework

(2.3.1)-(2.3.2) will be obtained from the corresponding components of G. Their Jacobian

matrices are denoted by Lo, Lp respectively. The actual observation yo, zo and prediction

components yp, zp may change to suit the validation we try to carry out, and we will define

them at multiple points in the material below.

To generate the synthetic data, we use the following settings:

ν = 0.01, T = 0.1, f = π sin (πx)(cos (πx) + νπ), (2.5.3)

I ∼ N (sin(πx), αIexp(−
r2

2l2
)), (2.5.4)

B ∼ N (0, αBexp(−
r2

2(lT)2
)), (2.5.5)

αI = 0.1, αB = 0.1, l = 0.15, σ = 0.05. (2.5.6)

35

To simplify the notation, we describe the normal processes defining the distributions of I

and B in terms of the mean functions and covariance kernels. The distribution used in

computations is obtained by sampling them at the chosen mesh points. In the definition

of the covariance kernels, r is the distance between two points, and l is the length scale

parameter. Note that the above notations are consistent with Section 2.3 and Section 2.4.

Denote the covariance of the latent process z as

Cov(z, z) =

αIexp(− r2

2l2
) 0

0 αBexp(− r2

2(lT)2
)

 . (2.5.7)

The latent process joint distribution can be written as the following:

M1 :

yo
yp

 ∼ N

m(yo)

m(yp)

 ,

LoCov(z, z)LTo + σ2I LoCov(z, z)L
T
p

LpCov(z, z)L
T
o LpCov(z, z)L

T
p


 , (2.5.8)

while the joint process distribution follows

M2 :



yo

zo

yp

zp


∼ N





m(yo)

m(zo)

m(yp)

m(zp)


,

K11 K12

K21 K22



, (2.5.9)

where

K11 =

σ2I + LoCov(z, z)L
T
o LoCov(z, zo)

Cov(zo, z)L
T
o σ2I + Cov(zo, zo)

 , (2.5.10)

36

K21 =

LpCov(z, z)LTo LpCov(z, zo)

Cov(zp, z)L
T
o Cov(zp, zo)

 . (2.5.11)

We may vary the mesh size ∆x, ∆t, but we always maintain 1
∆x = T

∆t so that we have an

equal number of mesh points in the two dimensions. We denote the number of mesh points

1
∆x = T

∆t = k then B ∈ R2k, I ∈ Rk. The dimension of w in (2.5.2) and thus the potential

dimension of y would be O(k2). For a realistic setup the number of prediction points should

be on the order at most comparable with the data size; we thus choose the dimension of

yo and yp to be O(k). The size of the GP regression problem will thus be growing at most

linearly with k.

When carrying out our low-rank approximation, Section 2.2.2, we use N = 12 log k

interpolation points to approximate Cov(z, z). Also we use Nl = 20 log k random vectors for

stochastic trace estimation when approximating trace terms in Section 2.3.3, Section 2.4.

Numerical Accuracy of Parameter Estimation

First we explore the numerical accuracy of estimating the covariance model parameters by

our scalable maximum likelihood approach from Section 2.4, inclusive of the computation

of the confidence intervals using the expected Fisher information matrix from Section 2.4.3.

The parameters here are θ = (αI , αB , l, σ), with their true values given by (2.5.6). The data

are created by simulating the PDE on k = 211 mesh points in both spatial and temporal

dimensions, resulting in a total number of 222 data points in a regular grid. Then all

subsequent calculations for obtaining the maximum likelihood estimates and their confidence

intervals, including the ones for getting the functions G and F that require the discretization

(2.5.2), will be carried out on k = 2q mesh points in each dimension for q ranging from 5 to

10. This mimics the real situation where the function F is a “black box,” but it allows the

introduction of an external mesh parameter. For each k, we randomly sample 10 snapshots

37

in time of the output process which results in d = 10k observations for latent process MLE

Section 2.4.1 and additional D = 0.6k equally spaced observations of the latent process for

joint process MLE Section 2.4.2. We note that a random protocol was also used in [57]. In

our experiments we solve the nonlinear score equations (2.4.10) and (2.4.17) by the Matlab

fsolve function (which uses divided differences approximations of the gradient) with the

trust-region-dogleg algorithm. The stopping condition is set to be a relative tolerance

of 10−6. Finding a good initial point is always difficult in maximum likelihood calculations

[177]. Here we precompute the initial guess by exact maximum likelihood estimations using

a small subset of available observations. Specifically, we start from the smallest, 25, dataset

first. For a dataset of this size, we can perform both exact and approximated MLE efficiently.

The initial point for optimization is obtained via randomly perturbing the ground truth

parameter values from −15% to 15%. For larger datasets of size 2q for q ≥ 6, we first draw

a subset of 25 observations and perform exact MLE starting from this perturbed ground

truth. Then the resulting parameter estimators are used as initial guesses in the following

parameter fittings with all the available 2q data.

The estimated parameters and corresponding 95% confidence intervals are summarized in

Figure 2.5.1 along with the corresponding estimates using the exact likelihood score equations

for both the latent model (2.4.3) and the joint model (2.4.13). We note that the exact

calculation is exact for the Gaussian process model obtained by the linearization of F ,

which is only an approximation of the true likelihood, which is most likely not Gaussian.

We observe that the parameter estimates by our approximated approach and exact log-

likelihood are fairly close, in terms of both the estimated parameter values and the width

of confidence intervals. On the other hand, at large q and k, the exact parameters may be

outside the confidence interval, although obviously so only for σ. At that point the error

from the linearization exceeds the statistical error. One way to mitigate this (though, also

approximate) is to use the nonlinear corrections from Section 2.3.3 for the likelihood, too. It

38

has proven difficult, however, to extend the algebra from Section 2.3.3 for using the derivative

of the covariance as well at this time, and we will pursue that direction in future work. From

Figure 2.5.1, we note that the approximate likelihood calculations produce results close to the

exact likelihood, even if both models are incorrect due to the nonlinearity. Moreover, as we

show in the subsequent sections, the parameter estimates we produce with this approximate

(and biased) likelihood calculation do improve the GP regression estimates when plugged

into the covariance expression. We also note that the parameter error is within 5% for all

cases except q = 5 in FIG. 2.5.1 (g).

5 6 7 8 9 10

-0.05

0

0.05

0.1

0.15

0.2

0.25

(a) αI Latent
5 6 7 8 9 10

-0.4

-0.2

0

0.1

0.2

0.4

0.6

(b) αB Latent
5 6 7 8 9 10

0.1

0.12

0.14

0.15

0.16

0.18

0.2

(c) l Latent
5 6 7 8 9 10

0.04

0.045

0.05

0.055

0.06

(d) σ Latent

5 6 7 8 9 10

-0.05

0

0.05

0.1

0.15

0.2

0.25

(e) αI Joint
5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

(f) αB Joint
5 6 7 8 9 10

0.1

0.12

0.14

0.15

0.16

0.18

0.2

(g) l Joint
5 6 7 8 9 10

0.04

0.045

0.05

0.055

0.06

(h) σ Joint

Figure 2.5.1: Parameter estimations and corresponding 95% confidence intervals computed
via the expected Fisher information matrix. We solve the nonlinear system of score equations
(2.4.3),(2.4.13) using the physics-based covariance model with the number of mesh points
k = 2q in each dimension for q ranging from 5 to 10 (x-axis). Red lines with crosses represent
MLE using low-rank approximations. The first row describes the results for latent process
MLE Section 2.4.1. The second row describes the results for joint process MLE Section 2.4.2.
MLE results using exact score equations are provided for q = 5 to 9 (x-axis) by using blue
lines with circles. For q = 10 the exact MLE calculation ran out of memory.

39

Comparison of Covariance Models

We now examine the predictive performance of the physics-based covariance model Section

2.2, inclusive of the low-rank Section 2.2.2 and implicit formulation approximation Section

2.2.3 effects. We compare the latent process kriging Section 2.3.1 and joint process kriging

Section 2.3.2 with independent process kriging, which ignores the relations between the two

processes by removing the cross-covariance. The latter setup aims to exhibit the features

of the most prevalent approaches in modeling where a difficulty of expressing valid cross-

covariances models results in the need for modeling different observables independently.

Independent kriging. In this setting we separate the output and latent processes by

considering their covariances independently and setting the cross-covariance to zero. We use

the following covariance structure:

K11 =

Cov(yo, yo) + σ2Id 0

0 Cov(zo, zo) + σ2ID

 , (2.5.12)

K21 =

Cov(yp, yo) 0

0 Cov(zp, zo)

 , (2.5.13)

Mind =

m(yp)

m(zp)

+ (K21)(K11)
−1

yo −m(yo)

zo −m(zo)

 . (2.5.14)

At this stage the ideal comparison would be with a well-chosen Gaussian kernel to model

Cov(yo, yo) and Cov(zp, zo) separately. Since our model originates in the approximation

of a nonlinear equation, the implied covariance of the linearized process for meaningful

boundary conditions will not be stationary (since the advection would depend on space).

40

Modeling a nonstationary process in the output space is a difficult endeavor with no simple

approach (other than using a simple stationary kernel class, e.g., a squared exponential [148]).

Since our focus is on understanding the effect of ignoring covariance and getting access to a

model that is reasonable and easy to set up, we still use the physics-based covariance model

Cov(yo, yo) = LoCov(z, z)L
T
o and Cov(yp, yo) = LpCov(z, z)L

T
o , where Lo, Lp correspond

to the Jacobians of mapping Fo, Fp, respectively. Thus, we consider the effect of z on y for

the purpose of the autocovariance but not for the purpose of the cross-covariance. While it

would be more principled to set up a model that completely ignores the physics, we believe

that using the “best model” for the auto-covariance in this circumstance allows us to sharply

assess the effects of ignoring the cross-covariance, an approach also used in the paper that

inspired this work [57]. Moreover, this does not affect the main concern of our paper, namely,

whether the approximation we use to make the computation scalable still presents enough

accuracy overall.

We note that if we made this choice, the prediction carried out by (2.5.14) would be

identical to the latent process approach Section 2.3.1, provided that the parameters θ stay

the same. Since, however, in the case of the model (2.5.12) − (2.5.13) we use both zo and

yo data to estimate θ, whereas for the latent process model in Section 2.3.1 we use only yo,

the parameters θ and thus the kriging results will be different. The joint process approach

from Section 2.3.2, however, will use values of both yo and zo both for estimating θ and for

kriging.

We consider a model using the joint process covariance model structure (2.3.8)-(2.3.10)

with the hyperparameters defined above (2.5.6) that were used to produce the data (the

“true” parameters). We denote this true model byM∗.

We then take a fixed mesh size with k = 200, which results in a total of 40, 000 data

points for the numerical approximation of PDE using (2.5.2). We pick d = 400 data points in

the output field w as observations yo, which corresponds to 1% of the total field to observe.

41

In the joint process case Section 2.3.2, we have D = 20 additional observations each from

the initial conditions and boundary conditions as latent observations zo, which are 10% of

the latent variables. Note that the dimension of w is roughly the square of the dimension

of z, so the dimension of the observations of z and w are comparable. Note also that the

setting is similar to [57].

Since the computational complexity is not a major concern in this subsection, we predict

the entire remaining field yp = w \yo and zp = z \zo. We first generate one sample using the

hyperparameters (2.5.6), termed the calibration sample, which is used to fit the covariance

modelsM1 (2.3.3),M2 (2.3.8)-(2.3.10),Mind (2.5.12)-(2.5.14) as described in Section 2.5.1.

Then we further generate 50 independent samples used for tests in our experiment, termed

validation samples. The results are averaged and summarized in the upper block of Table

2.1.

We note that the RMS error on yp of the three physics-based covariance modelsM1,M2

andM∗ is significantly smaller on the validation samples than the error of the independent

krigingMind, which demonstrates the contribution of the cross-covariance terms to the pre-

dictions. Furthermore, the two models using joint process krigingM2 andM∗ have similar

performance and are both better by about 15% on the validation samples compared with

the latent process krigingM1 because of the additional information conveyed by the obser-

vations zo. This improved accuracy occurs despite the fact that we have low-rank Section

2.2.2, differentiation Section 2.2.3 and linearization approximation errors in the computation

of the covariance. While our starting the MLE at an initial guess obtained by fitting only a

subset of observations may allow for the possibility of other local minima, the approximated

likelihood has minima that are mostly indistinguishable from the true parameters for the

purpose of the accuracy of the kriging.

42

Correction for Nonlinearity

Since the Burger’s equation is nonlinear, we now consider adding higher-order terms in the

covariance model to account for the nonlinear behaviors generated by the equation using the

methods described in Section 2.3.3. To demonstrate the benefit gained from the higher-order

terms, we consider the same experiment settings as in Section 2.5.1. Note that we consider the

correction for nonlinearity only on modelsM1,M2, andM∗. The models with higher-order

terms included are denoted by M+
1 , M+

2 , and M+
∗ , respectively. Specifically, M+

1 follows

the latent process kriging with higher-order terms in Algorithm 3. M+
2 andM+

∗ follow the

joint process kriging with higher-order terms in Algorithm 8. When setting the parameters

θ = (αI , αB , l, σ) in M+
1 and M+

2 , we use the parameters fitted by the approximated

MLE described in Section 2.4 but for the linear approximation process only, that is, the

same process described in Section 2.5.1 (in other words we consider the nonlinearity when

kriging but not when carrying out MLE). In contrast, for M+
∗ we use the true parameters

(2.5.6). The performance of the nonlinearly corrected models on the same calibration sample

and validation samples is summarized in the lower block of Table 2.1. We note that the

performance of all three models is significantly better. The marginal improvement varies from

25% − −50% than their counterparts using covariance models without higher-order terms

M1, M2, and M∗ because the higher-order terms help account for the nonlinearities. The

improvement is the largest in the joint modelM2 to the point where it exceeds the one with

the true parameters. It is unlikely that this situation will hold for all possible experimental

validation setups, but the improvement in RMSE is clear across all models when considering

nonlinear effects. Additionally, to provide a visual comparison of the predictions, we combine

the predicted data and the observations to reconstruct the whole field w. To demonstrate the

effectiveness of the higher-order terms, we compute the average error distribution over the 50

validation samples for joint process kriging modelsM2 andM+
2 . The comparison is shown

in Figure 2.5.2. As we can observe, the pattern of the error is much improved. The error

43

is uniformly smaller for covariance models with higher-order terms (which indicates that in

the max norm the error improvement is significant), which demonstrates the usefulness of

the nonlinear correction. To support this observation, we report quartiles to describe the

distribution of the error surface. The three quartiles (Q1, Q2, Q3) of the error are 0.012,

0.025, and 0.048 for modelM2 in Figure 2.5.2(a). In contrast, the three quartiles for model

M+
2 in Figure 2.5.2(b) are 0.007, 0.015, and 0.024. Therefore the spatial distribution of the

error has a much thinner tail for model M+
2 compared with model M2; indeed the third

quartile of the error forM+
2 is about half of the third quartile of the error forM2.

(a) Without higher-order terms (b) With higher-order terms

Figure 2.5.2: Error distribution of the predicted field compared with the true data Section
2.5.1. Left: Results from joint process kriging M2. The covariance model follows (2.3.8)-
(2.3.10), which includes up to second-order terms corresponding to (2.2.4). Right: Re-
sults from joint process kriging with higher-order termsM+

2 . The covariance model follows
(2.3.15)-(2.3.17), which includes up to fourth-order terms corresponding to (2.2.5)(2.2.6).
The higher-order terms should account for part of the nonlinear behavior of Burger’s equa-
tion.

Demonstrating Quasilinear Scaling

We now present numerical experiments to demonstrate the scalability of our proposed ap-

proach when computing the covariance parameters θ by the maximum likelihood approach

44

in the Section 2.5.1 setting. Specifically, we carry out the computation of the approximated

score equations Section 2.4, followed by the kriging procedures described in Section 2.3 to

predict the field of interest at prescribed points. To vary the size of the problem, we take

mesh size k = 2q for q ranging from 10 to 14. We randomly observe d = 3k data points from

the output process w and D = 1.5k data points from the latent process z. Then we predict

3k points for the output process and 1.5k points for the latent process at sites that are also

randomly chosen. The random part of our experiment is repeated 50 times. For both latent

process kriging Section 2.3.1 and joint process kriging Section 2.3.2, we compare the average

time cost over the 50 of our workflow without higher-order terms (Algorithm 1&2) and with

higher-order terms (Algorithm 3&8). For the latent process MLE Section 2.4.1 and joint pro-

cess MLE Section 2.4.2, we compare the time of solving the approximated score equations

(2.4.3) and (2.4.13) with the time of solving the exact ones (where the covariance matrices

are exactly computed and not approximated by interpolation); the timings reported are for

the computation on the first sample only. The results are summarized in Figures 2.5.3 and

2.5.4. Lines corresponding to the theoretical scaling O(k log2 k) are added to each plot to

demonstrate the quasilinear scaling of our approaches.

As we can observe, the scaling of the proposed approximated approaches in latent and

joint process kriging follow the O(k log2 k) theoretical line. Comparing the algorithm with

and without higher-order terms, we observe that the algorithm without higher-order terms

scales slightly better because of the extra operations when considering higher-order terms.

This effect will be alleviated as the datasets grow larger. For the score equations computation

and Fisher information matrix estimation, the quasilinear scaling is clearly demonstrated in

Figure 2.5.4. Note that our approximated approach requires stochastic estimation of the

trace term, which is not as efficient as direct computation in small datasets, namely, q = 10

in Figure 2.5.4.

In summary, for the synthetic data case we conclude that our approach scales quasilinearly

45

Section 2.5.1, that the approximations that we have proposed still allow an accurate recovery

of the parameters defining the shape of the uncertainty Section 2.5.1, that the accurate

treatment of the cross-covariance significantly improves prediction Section 2.5.1, and that

including the nonlinear corrections in the covariance slightly improves the RMSE of the

prediction but may significantly help with removing complex error artifacts Section 2.5.1.

2.5.2 Real Data Experiment

In this subsection, we consider realistic climate observation data and a simple tropical cli-

mate model connecting key quantities as the physical information we will use to inform our

covariance model. The model equation is given by

∂w

∂t
= −Q̃∇u− 1

τw
w + bw∇2w +DwẆ , (2.5.15)

where u is the first baroclinic mode of the zonal wind velocity anomalies, w is the water

vapor anomalies in middle troposphere, and Ẇ is Gaussian white noise. The core dynamic

(2.5.15) uses a modified equation from [173]. The term −Q̃∇u is a traditional model of

convective adjustment of water vapor caused by wind. The term − 1
τw
w accounts for moisture

sink associated with deep convection and precipitation. bw∇2w represents the diffusion of

water vapor, and DwẆ represents stochastic forcing. In short, this model represents the

effect of precipitation, natural diffusion, and turbulent advection in a simplified, linearized

form. Besides the deterministic dynamic components, the stochastic moisture forcing is, in

part, representative of mesoscale convective processes that are not represented by the larger-

scale dynamics in (2.5.15). Therefore one can reasonably assume that such processes are

approximately spatiotemporally uncorrelated. The parameter values Q̃ = 0.45, τw = 3.99,

bw = 0.7, and Dw = 0.003 are all dimensionless and are suggested by [173]. To numerically

solve the model (2.5.15), we use the initial condition w0 and random field u as model inputs

46

10 11 12 13 14

0.01

0.05

0.1

0.5

1

5

10

30

(a) Time for latent process
kriging

10 11 12 13 14

0.01

0.05

0.1

0.5

1

5

10

50

100

(b) Time for joint process
kriging

Figure 2.5.3: Times taken in seconds to solve the GP regression problem (y-axis) vs. number
of mesh points 2q for q ranging from 10 to 14 (x-axis) by (a) latent process kriging (Algorithm
1&3) and (b) joint process kriging (Algorithm 2&8). We present the time to compute
latent/joint process kriging without higher-order terms exactly (#) and approximately (2)
and latent/joint process kriging with higher-order terms exactly (+) and approximately (×).
All results are averaged over 50 tests. Note that the y-axis is in logarithmic scale. The lines
corresponding to theoretical O(k log2 k) scaling (dash lines) are added to each plot.

10 11 12 13 14

0.01

0.05

0.1

0.5

1

5

10

50

100

1000

(a) Time for estimating latent
& Joint process score equa-
tions

10 11 12 13 14

0.1

0.5

1

5

10

50

100

1000

(b) Time for estimating the
empirical Fisher information
matrix

Figure 2.5.4: Times taken in seconds (y-axis) vs. number of mesh points 2q for q ranging
from 10 to 14 (x-axis) for evaluating (a) latent and joint process score equations (Algorithm
4&5) and (b) the expected Fisher information matrix via equation (2.4.22), (2.4.23). For both
plots, we present the time to evaluate the score equations or the expected Fisher information
matrix for latent process exactly (#) and approximately (2) and for joint process exactly
(+) and approximately (×). All results are averaged over 50 tests. Note that the y-axis is
in logarithmic scale. The lines corresponding to theoretical O(k log2 k) scaling (dash lines)
are added to each plot.

with periodic boundary condition. The equation can be solved by using the Euler-Maruyama

method [100] and also in Fourier space [162]. We recommend solving in Fourier modes since

47

a semi-analytical solution [162] exists for each Fourier mode and can significantly reduce

the time cost of numerical simulation. To apply our framework, we numerically solve w

as output process, and we treat the concatenation of the initial condition w0, the random

process u, and Ẇ as the latent process of our framework, in other words, zT = (wT
0 , u

T)

in our framework §(2.3.1)-(2.3.2). Similar to Section 2.5.1, we define w = G(z), where w is

the solution produced by semi-analytical solver of stochastic differential equation (2.5.15).

In the following test, we denote yo as the observed subset of w, which includes additional

observation noise, and yp as another subset that is going to be predicted. The mappings

Fo, Fp required by our setup (2.3.1)-(2.3.2) are obtained by corresponding components of

mapping G.

Data Source and Data Processing

To associate the model (2.5.15) with a suitable real dataset, we argue that the zonal wind

velocity serves as a natural surrogate of u and that the relative humidity (mixing ratio) in

500 hPa pressure level is a common surrogate of the water vapor w in middle troposphere.

The data source we used here is the National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP-NCAR) reanalysis project [91]. The daily zonal

wind velocity and relative humidity data are used. Both datasets have a spatial resolution of

2.5◦ × 2.5◦ and a daily temporal resolution from 1 January 1979 to 31 December 2011. The

connections between model variables and observations are largely based on previous work

[175, 174, 136].

The influence of seasonal cycle has been removed from both datasets, and a further 120-

day mean of previous 120-day signals is subtracted, as is recommended by the Climate Vari-

ability and Predictability program [196]. Then both datasets are projected to the parabolic

cylinder functions, and only the first meridional mode is used. This step converted the

two-dimensional spatial data to one dimensional, which facilitates our computation. Then

48

the datasets have two dimensions remaining (one spatial dimension and one temporal di-

mension). Furthermore, we treat the observation data as true signals and generate artificial

observations by adding independent Gaussian noise ϵw ∼ N (0, σ2wI) and ϵu ∼ N (0, σ2uI) to

water vapor data w and zonal wind velocity data u, respectively. Parameters σw and σu

are taken to be 15% of the standard deviation of each true signal, similar to other previous

studies (e.g., [48]).

Note that the real data are normalized to have the same variance as the model data

before using. This approach differs from [173], where the data are nondimensionalized using

the standard equatorial reference scale [174] because here we use anomalies in our modified

model equation. For more detailed raw data preprocessing methods see [174]. In Figure

2.5.5 we show the observational relative humidity data for all longitudes from Dec. 1982 to

April 1983.

Figure 2.5.5: Observations of relative humidity at 500 hPa pressure level. The time period
is from Dec. 1, 1982 to April 18, 1983. The data have been nondimensionalized.

End-to-End Numerical Tests

We combine our proposed scalable MLE parameter estimation and GP regression together

and test their performance. Four covariance structures are compared here. The latent process

krigingM1 (2.3.3) and the joint process krigingM2 (2.3.8)-(2.3.10) follow the same design

as we discussed in Section 2.3. Additionally the joint independent krigingMind ignores the
49

cross-covariance between the latent process z and the output w and is formulated as follows:

K11 =

Cov(yo, yo) + σ2wI 0

0 Cov(zo, zo) +Kϵz

 , (2.5.16)

K21 =

Cov(yp, yo) 0

0 Cov(zp, zo)

 , (2.5.17)

Mind = m(yp) + (K21)(K11)
−1

yo −m(yo)

zo −m(zo)

 , (2.5.18)

where zo consists of an observed subset of the components of the latent process z and zp

consists of another subset that is to be predicted. Kϵz is the observation noise covariance

matrix. Since z is a concatenation of initial value w0 and wind velocity field u, Kϵz is block-

diagonal with Gaussian observation noise covariance matrices in its diagonal blocks. Similar

to the approach in Section 2.5.1, we use the physics-based covariance model Cov(yo, yo) =

LoCov(z, z)L
T
o and Cov(yp, yo) = LpCov(z, z)L

T
o , where Lo, Lp correspond to the Jacobians

of mapping Fo, Fp, respectively. The computation involving the three models is carried

out but using low-rank approximations. We include kriging using the exact joint process

covariance model (2.3.8)-(2.3.10) but without low-rank approximations as contrast. We

denote this exact joint process kriging model asMe.

For all the covariance models M1, M2, Mind, and Me used here, each component of

the latent process z is modeled by a Gaussian process with square exponential covariance

50

function. In other words, we assume

w0 ∼ N (m(w0), αwexp(−
r2

2l2w
)), (2.5.19)

u ∼ N (m(u), αuexp(−
r2

2l2u
)), (2.5.20)

with magnitude parameters αw and αu and length scale parameters lw, lu. Let θ = (αw, αu, lw, lu)

be the unknown parameters that we will estimate; we assume that the other parameters,

including model parameters in (2.5.15) and observation error covariance, are known and spec-

ified at the beginning of Section 2.5.2 based on [173]. All four parameters will be estimated

from the observation data via score equations.

The processed relative humidity observation data are divided into different time snapshots

with equal lengths. Each snapshot has 144 × 140 grid points (20,160 data points) that

represent 144 longitudes each day and an 140-day time window. First we randomly pick

one snapshot field as the calibration sample. We then sample random observations from the

snapshot field for parameter fitting. In the spatial dimension we take evenly distributed grid

points with indices (4 : 4 : 144) in Matlab notation to observe. In the temporal dimension

we take 46 random slices. In total it corresponds to 36 × 46 = 1656 observations which

represents 8.21% of the total field. For models M1, M2, and Mind, we use scalable latent

and joint process MLE described in Section 2.4. For modelMe, we directly evaluate the score

equations without approximations. The fitted parameters are used in the following kriging

processes. The validation samples are chosen to be snapshots of the same size but at least

120 days away from the calibration sample, which can help remove the effect of the trend

of most intraseasonal oscillations. Like the calibration sample, we take random time slices

with a total 8.21% of possible observations for kriging. Numerical results are summarized

in Table 2.2. We observe that the approximation we made to the likelihood does not result

in a significant kriging error, by comparing the validation sample performance ofM1,M2,

51

andMe models whose performance is indistinguishable (despite the fact that modelMe is

more expensive and not scalably computable). We also observe that ignoring the covariance

structure reduces the performance of the Mind by about 20% (comparing the RMS error

of M2 and Mind for output process yp in the calibration sample of TABLE 2.2). We note

that the improvements of the joint process modelM2 over other covariance models are less

significant in the real data case. However, we also see that our algorithms scale very well and

allow computations in circumstances where exact algorithms cannot cope even in terms of

memory. Exact computations of maximum likelihood estimations and kriging can be costly

or impossible even for the independent covariance modelMind in our large data set cases, or

other realistic applications. Therefore our approximation ensures scalability at a negligible

cost to the accuracy, and the accurate modeling of the cross-covariance pays off in accuracy

improvements for real data , even if not as strongly as in the synthetic data case.

To provide a visual representation of the results, we illustrate in Figure 2.5.6 the rela-

tive humidity predictions on the calibration sample using model M1, M2 and Mind. The

predicted time window is Dec. 1982 to April 1983, which is the same as observations in

Figure 2.5.5. In Figure 2.5.7 we show histograms of the predictive errors of the two models,

respectively. Note that the vertical axis represents the probability density of a certain error

range in logarithmic scale. For bars with zero probability, we truncate the logarithm and set

it as the base value of the bar plot in order to prevent it from approaching negative infinity.

As a result, the zero probability bars are also of height zero. We observe that the prediction

error is reduced and has thinner tails when using the physics-based covariance modelsM1,

M2, and particularly significant improvements can be observed for the latter. Specifically,

the prediction error for joint process modelM2 is much evenly distributed.

We conclude that in this case the physics-based model produces a moderate improve-

ment in prediction with this real dataset. We have tried other configurations; and while the

physics-based cross-correlation model was consistently better than the independent model,

52

(a) Latent process krigingM1 (b) Joint process krigingM2

(c) Joint independent kriging
Mind

Figure 2.5.6: Predictions corresponding to (a) latent process kriging M1, (b) joint process
krigingM2, and (c) joint independent krigingMind. The time period is from Dec. 1, 1982,
to April 18, 1983. Both datasets are nondimensional.

the improvement seemed not particularly significant in several cases. Several areas for im-

provement remain here, such as considering less smooth covariance kernels (at the price of

increasing the rank of the approximation or even changing the approximation strategy) and

datasets with greater large-scale variability or more pronounced nonlinear effects.

We note, however, that the computational performance was approximately linear with

the number of data points and that the statistical performance was comparable to the one

of exactly computed models that had far more intense computational requirements. We

conclude that our approach of a physics-based implicitly defined kernel using our scalable

approximation method brings a notable methodological improvement for real datasets in that

it is scalable as opposed to the classical approach and that it sometimes leads to noticeable

improvements in the statistical performance.

53

(a) Error histogramsM1 vs. Mind (b) Error histogramsM2 vs. Mind

Figure 2.5.7: Error histograms corresponding to independent process kriging Mind and
joint process krigingM2. Note that the vertical axis represents the probability densities in
logarithmic scale. The logarithm of zero density has been truncated to meet the base value
of each bar plot.

2.6 Discussion

GPs are powerful tools in statistical modeling. In that space, the covariance structure takes

a critical role in forecast accuracy and efficiency. Few pointers exist, however, on how to

design good covariance kernels for complex processes. On the other hand, many phenomena

in the natural sciences such as physics, biology, Earth science, and chemistry have been

well studied, and mathematical or physical models have been established to interpret the

underlying relations among the variables. Including such information from the physical

models when constructing the covariance structure can be meaningful for forecasts when

performing inferences on processes with partially known physical relations. One drawback

of GPs, however, is that their classical computational approach, based on the Cholesky

factorization of an often dense kernel, scales cubically with the number of observations.

For large datasets, a reduction in the computational cost is necessary before such methods

become practical.

In this chapter, we utilized physics-based, implicitly defined covariance models and

present a low-rank approximation of the covariance matrix that allows the GP regression

and the MLE to be conducted in quasilinear time scale. The implicitly defined nature of

54

the kernel gives significant flexibility to the user who needs only access to a coarse physical

model represented by a forward solver. Moreover, we proposed a method to approximate the

expected Fisher information matrix for quantifying the uncertainties of the estimates. Fur-

thermore, we proposed approaches to include higher-order terms in auto-covariance matrices

that are essential for describing nonlinear processes while maintaining quasilinear scaling.

In summary, we presented a coherent framework for efficiently interpolating the random

field and produced uncertainty estimates of this task by means of partial observations and

exploiting approximate physical relationships. We presented several numerical experiments

that demonstrate the accuracy of the approximated MLE by showing that the approximated

parameter estimates and the uncertainties are relatively close to the exact values when the

latter are known. Then we used the estimated parameters in the physics-based covariance

models and demonstrated that a covariance model that is complete and has correct physi-

cally consistent structure yields significant improvements in forecasts accuracy and efficiency.

We applied the framework to real climate data to further illustrate the effectiveness of our

algorithms.

Our approach is implicit in that it requires only a black-box forward solver of the ap-

proximate physical relationships, making the extension of the algorithm to other models

immediate. This feature increases the flexibility of the approach, benefiting from plenti-

ful well-studied numerical discretization schemes and well-established simulation toolkits for

solving physical models. Also our approach consists of independent calls to the solver that

can fully take advantage of the parallel computing capability of modern hardware.

Our approach does have several shortcomings. Our approximations of the gradient and

Hessian can be accurate under certain regularity conditions of the physical model. For non-

differentiable or even discontinuous models, however, the approximations can be inefficient,

making the approach case-dependent. Perhaps more problematic is the fact that we apply

the approach to noise kernels that are very smooth. While this is a common choice, in many

55

cases it may not be appropriate, and we need to change the approximation method. We chose

the Chebyshev interpolation method because it is simple to implement and the compressed

covariance matrix is differentiable, but this can be improved by using the Nyström method

and its variants [105, 198], hierarchical matrix approximations [6, 33], or adaptive low-rank

approximations [116, 197]. In any case, simple global low-rank approximations like the ones

we used here work well for covariance functions that are sufficiently smooth and dominated

by long-range relationships between data points. When the covariance function changes more

rapidly, global low-rank methods cannot capture the variability and other methods, such as

hierarchical matrix approximations [6, 33], may be needed.

56

Algorithm 3: Latent Process Kriging with Higher-Order TermsM+
1

Use the low-rank approximation with N = O(log n), and then solve the
approximated problem,

m(yp)+

LpCT
z KCzL

T
o +

1

Nl

Nl∑
i=1

(vTi Mpui)(v
T
i Moui)

T


Kϵy + LoC

T
z KCzL

T
o +

1

Nl

Nl∑
i=1

(vTi Moui)(v
T
i Moui)

T

−1 (yo −m(yo)).

(2.3.23)

Step 1. Compute A1 = LoC
T
z ∈ Rd×N , A2 = LpC

T
z ∈ R(m−d)×N by O(N) forward

solves.
Step 2. Compute the Cholesky factorization K = PTP . This takes O(N3) time.
Step 3. Draw 2Nl independent Rademacher vectors {ui}, {vi}. Compute

ϕi = CT
z P

Tui, ψi = CT
z P

T vi. (2.3.24)

This takes O(2Nl(N
2 + nN))) time.

Step 4. Compute the vector-Hessian-vector product wi = ψTi Hoϕi, w′i = ψTi Hpϕi,
i = 1, 2, . . . , Nl, by the approximation (2.3.2). This approximation takes O(Nl)
forward solves. Define the matrices A3 ← 1√

2Nl
(w1, w2, · · · , wNl

) ∈ Rd×Nl ,

A4 ← 1√
2Nl

(w′1, w
′
2, · · · , w

′
Nl
) ∈ R(m−d)×Nl . From (2.3.22) we will approximate the

higher-order terms by

1

2
tr(HoCov(z, z)H

T
o Cov(z, z)) ≈ A3A

T
3 , (2.3.25)

1

2
tr(HpCov(z, z)H

T
o Cov(z, z)) ≈ A4A

T
3 . (2.3.26)

Step 5. Solve the modified inverse problem

α = (Kϵy + A1KA
T
1 + A3A

T
3)
−1(yo −m(yo)).

=

(
Kϵy +

(
A1P

T A3
)(PAT

1
AT
3

))−1
(yo −m(yo)) (2.3.27)

by applying the SMW formula for the rank-(N +Nl) perturbation, as in Algorithm
1. The time cost is dominated by computing the matrix products that define the

blocks of

(
AT
3K
−1
ϵy A3 AT

3K
−1
ϵy A1P

T

PAT
1K
−1
ϵy A3 PAT

1K
−1
ϵy A1P

T

)
. This takes O(N +Nl) linear system

solves with Kϵy and O(m(N +Nl)
2) time.

Step 6. Return m(yp) + (A2KA
T
1 + A4A

T
3)α by matrix-vector product. It takes

O(2m(N +Nl) +N2) time. 57

Algorithm 4: Latent Process Score Equations
Step 1. Compute A1 = LoC

T
z ∈ Rd×N using O(N) forward solves.

Step 2. Compute the approximation of the first term in the score equations,

αi1 ≈
1

2
(yo − yo)T (Kϵy + A1K(θ)AT

1)
−1(A1Ki(θ)A

T
1)(Kϵy + A1K(θ)AT

1)
−1(yo − yo)

(2.4.6)

=
1

2
(yo − yo)TWKi(θ)W

T (yo − yo), i = 1, 2, . . . , r (2.4.7)

where W = (Kϵy + A1K(θ)AT
1)
−1A1 ∈ Rd×N is computed by the SMW formula.

The time cost is dominated by computing matrix products (AT
1KϵyA1), which

takes O(N) linear system solves with the noise covariance matrix Kϵy and O(mN2)
time to assemble. Note that W needs to be computed only once for all i, after
which the number of operations depends only on N . Therefore the dominant cost
is independent of r for this step. We compute and store only W in this step.

Step 3. Draw Nl independent Rademacher vectors {uj} ∈ Rd. Approximate the
second trace term by

αi2 ≈ −
1

2
tr((Kϵy + A1K(θ)AT

1)
−1(A1Ki(θ)A

T
1)) (2.4.8)

≈ − 1

2Nl

Nl∑
j=1

uTj WKi(θ)A
T
1 uj . (2.4.9)

In this step, we compute only {AT
1 uj} and WTuj for j = 1, 2, · · · , Nl.The cost is

O(mNNl).
Step 4. Set gi(θ) = αi1 + αi2 for i = 1, 2, · · · , r. Assembling (2.4.7) and (2.4.9) for
each i, j takes a total O(rNlN

2 +mN) time.
Step 5. The left-hand side of the score equations is now available as

gi(θ) = 0, i = 1, 2, · · · , r. (2.4.10)

Problem (2.4.10) can be solved by, for example, Broyden’s method, which requires
only the left-hand side for a given θ and can thus be computed by Steps 1–4.

58

Algorithm 5: Joint Process Score Equations

Step 1. Compute A1 = LoC
T
z ∈ Rd×N , A2 = LpC

T
z ∈ R(m−d)×N by O(N) forward

solves.
Step 2. Compute the approximation of the first term in score equations,

αi1 ≈
1

2

(
yo − yo
zo − zo

)T ((
Kϵy 0
0 Kϵz

)
+

(
A1 0

0 CT
zo

)(
K(θ) K(θ)
K(θ) K(θ)

)(
AT
1 0
0 Czo

))−1
(
A1 0

0 CT
zo

)(
Ki(θ) Ki(θ)
Ki(θ) Ki(θ)

)(
AT
1 0
0 Czo

)((
Kϵy 0
0 Kϵz

)
+

(
A1 0

0 CT
zo

)
(
K(θ) K(θ)
K(θ) K(θ)

)(
AT
1 0
0 Czo

))−1(
yo − yo
zo − zo

)
. (2.4.14)

Notice that the expression is symmetric. We first compute the term

W =

((
Kϵy 0
0 Kϵz

)
+

(
A1 0

0 CT
zo

)(
K(θ) K(θ)
K(θ) K(θ)

)(
AT
1 0
0 Czo

))−1(
A1 0

0 CT
zo

)
.

(2.4.15)

The time cost is dominated by computing the matrix products (AT
1K
−1
ϵy A1) and

(CzoK
−1
ϵz C

T
zo), which require O(N) linear system solves with observation noise

covariance matrices and O((n+m)N2) assembly time. This computation needs to
be done only once for all i = 1, 2, . . . , r. We will store W and assemble the entire
expression (2.4.14) later on.

Step 3. Draw Nl independent Rademacher vector {uj} ∈ Rd+D. Approximate the
trace term in (2.4.13) by

αi2 ≈−
1

2Nl

Nl∑
j=1

uTj W

(
Ki(θ) Ki(θ)
Ki(θ) Ki(θ)

)(
AT
1 0
0 Czo

)
uj . (2.4.16)

As in Algorithm 4 in this step we compute only the terms (WTuj) and(
AT
1 0
0 Czo

)
uj for each j. We store these vectors and assemble the whole term

later on. This step requires O((n+m)NNl) time to compute.
Step 4. We now set gi(θ) = αi1 + αi2 for i = 1, 2, · · · , r. The main computational
expense consists of computing (2.4.14) and (2.4.16) for each i, j, which takes
O(rNlN

2 + (n+m)N) time.
Step 5. The left-hand side of the score equations is now available as

gi(θ) = 0, i = 1, 2, · · · , r. (2.4.17)

The problem can be solved by using, for example, Broyden’s method and Step 1-4
to compute the components of the gradient.

59

Table 2.1: Predictive RMS error and relative error using 2-norm. The observation density is
1% for w and 10% for z, although the dimension of the observation vectors is comparable.
The observations are chosen randomly in the field. The predictions are conducted for all
the remaining field in w and z except the observed positions. yp, zp denote the absolute
RMS error of the predicted y, z field respectively. ϵy and ϵz denote the relative error of
the predicted y, z fields using vector 2-norm. The first four rows contain covariance models
without higher-order terms from Section 2.5.1, and the last three rows contain covariance
models with higher-order terms from Section 2.5.1.

Validation Samples Calibration Sample
Models yp ϵy zp ϵz yp ϵy zp ϵz

M1 0.0273 0.0381 - - 0.0269 0.0296 - -
M2 0.0226 0.0316 0.0323 0.0662 0.0234 0.0258 0.0296 0.0512
Mind 0.0312 0.0435 0.0411 0.0842 0.0335 0.0367 0.0394 0.0681
M∗ 0.0226 0.0316 0.0323 0.0662 0.0235 0.0258 0.0295 0.0510
M+

1 0.0197 0.0272 - - 0.0200 0.0220 - -
M+

2 0.0120 0.0166 0.0260 0.0533 0.0115 0.0126 0.0239 0.0414
M+
∗ 0.0120 0.0166 0.0260 0.0533 0.0116 0.0127 0.0238 0.0412

Table 2.2: Predictive RMS error and relative error using 2-norm. The observation density
is 8.21% for q and 8.21% for u. The observations are randomly chosen in the field. The
predictions are conducted for all the remaining field in y and z except the observed positions.
yp, zp denote the absolute RMS error of the predicted y, z fields respectively. ϵy and ϵz denote
the relative error of the predicted y, z fields using vector 2-norm.

Validation Samples Calibration Sample
Models yp ϵy zp ϵz yp ϵy zp ϵz

M1 0.0144 0.6153 - - 0.0168 0.5489 - -
M2 0.0139 0.5958 0.0410 0.8819 0.0165 0.5393 0.0393 0.6630
Mind 0.0193 0.8253 0.0604 1.3010 0.0201 0.6600 0.0988 1.6680
Me 0.0138 0.5913 0.0345 0.7433 0.0168 0.5494 0.0401 0.6778

60

CHAPTER 3

SCALABLE PHYSICS-BASED MAXIMUM LIKELIHOOD

ESTIMATION USING HIERARCHICAL MATRICES

3.1 Introduction

GPs have been widely applied throughout the statistical and machine learning communities

for modeling and regression problems [54, 58]. For overviews of their usage, one can refer

to several extensive monographs [148, 125, 209]. One of the most appealing features of GPs

is that they provide a fully probabilistic framework for modeling variability in stochastic

processes, predicting unobserved values and providing prediction uncertainties. Gaussian

process regression, also referred to as kriging, is considered one of the standard methods

for modeling a range of natural phenomena from geophysics to biology [209, 176, 101]. In

practice, we may want to model multiple processes that are highly correlated. Extending

the technique to multiple target variables is known as co-kriging [176, 35] or multi-kriging

[54]. In this work, we focus on multivariate co-kriging where the variables can be extracted

from spatial processes or spatio-temporal processes.

An important feature of GPs is that the model can be fully characterized by its mean

and covariance functions. Correct and accurate covariance models play an essential role in

setting up meaningful GP regression problems. When applying kriging to single random

fields, one can construct or choose proper parametric covariance functions based on a variety

of practical or theoretical guidelines [148, 176]. When modeling multiple processes, however,

it is hard to construct correct covariance structure that accounts for how the processes

interact. To tackle the difficulty, many efforts have been carried out to incorporate prior

knowledge about the underlying physical principles of the processes into the covariance model

structure. A typical strategy of including prior knowledge of a real system governed by known

physical laws is hierarchical Bayesian modeling [69, 20]. Examples include atmospheric

61

modeling [207, 23, 156, 53] and environmental sciences [23, 21, 22, 208, 55]. Recently in

[57], the authors proposed a systematic framework of assembling consistent auto- and cross-

covariance models based on known physical processes. The endeavor showed that significant

improvements in the forecast efficiency can be achieved by using physics-based covariance

models. To address the complexity issue for large scale problems, our previous work [49]

propose a way to construct the low-rank approximations of the physics-based covariance

models using black-box forward solvers for implicit physical models. It results in a scalable

approach of performing GP analysis using physics-based covariance models. However the

low-rank assumption may not hold in many applications where the covariance model is often

of full-rank. In this work, we propose to relax the assumption and approximate the physics-

based covariance models in more general hierarchical matrix format while still only relying

on forward applications of the physical models and maintaining a quasilinear complexity.

We include more details about the physics-based covariance models in Section 3.2.

Another feature of maximum likelihood computation for GPs is that the main step in

the calculation requires computing the inverse and determinant of the covariance matrix,

in turn typically carried out by Cholesky factorization. If the matrix has no exploitable

structure, the Cholesky factorization requires O(n3) computations and O(n2) storage for an

n× n matrix. With the dramatic increase in the efficiency and capability of data collection,

the computational and memory cost can soon become prohibitive for large scale problems.

As a result, devising approximations to reduce both the computational and memory cost

became a burgeoning field, using, for example, low-rank methods [170, 135], matrix tapering

[68, 93, 44], Gaussian predictive processes [16], fixed-rank kriging [59], and Gaussian Markov

random field approximations [157, 158, 67]. A matrix-free approach for solving the multi-

parametric Gaussian maximum likelihood problem was developed in [8].

Recently, significant efforts have been expanded to apply hierarchical matrices to induce

low-rank block structure in the original dense matrices to improve both the storage com-

62

plexity and the computation complexity for several common matrix operations, including

matrix-vector products, factorizations and linear system solves. Various representations for

hierarchical matrices have been proposed in the past [4, 31, 32, 212, 77] with active ap-

plications in different fields. The technique has also been proposed for Gaussian process

computations and parameter estimations [33, 131, 122, 5, 47], uncertainty quantification

and conditional generation [160], and high-dimensional Gaussian probability computations

[70, 40]. In this work, we focus on a specific class of matrices referred to as as hierarchical

off-diagonal low-rank (HODLR) matrices [4]. In our applications, the off-diagonal sub-blocks

are well approximated by low-rank matrices and this structure significantly reduces the com-

plexity of many linear algebra operations. In [4] it was shown that a typical HODLR matrix

can be hierarchically factorized into a sequential product of block low-rank updates to the

identity, yielding direct algorithms for linear system solve and evaluation of determinants

in quasilinear scale. Both operations are essential components for evaluating the Gaussian

likelihood.

When a square matrix can be well-approximated by a hierarchical matrices structure,

many methods can be applied to construct the hierarchical approximation via compressing

the off-diagonal blocks to low-rank. In [5], the authors provided several ways to obtain the

low-rank factorization of the off-diagonal blocks assuming the blocks are explicitly given.

In [215, 52, 128], the methods for constructing hierarchical representations are presented

relying on an O(1) access to individual matrix entries. When explicit matrix entry access

is not available, one can use randomized algorithms to efficiently approximate the target

matrix from “black box” matrix-vector multiplication subroutines [119, 34]. Compared to

the aforementioned explicit approaches, randomized methods avoid direct evaluations of the

local blocks, which is essential when the dense matrix is costly to evaluate [3]. The numerical

accuracy of randomized algorithms has also been well-studied; see [79] for details.

In this work, we combine physics-based covariance models [57] and randomized "black-

63

box" hierarchical matrix construction [3] and enhance them with derivative computations to

design an efficient HODLR framework for Gaussian process maximum likelihood estimation.

Compared to previous work, particularly [57], which proposed implicit covariance models

assuming a low rank of the process covariance structure, and [71] which used HODLR for

explicit Gaussian kernels, our contributions are that (a) we use an HODLR representation

of implicitly defined kernels and propose an approach that leads to it being computed with

only O(log n) forward model evaluations, (b) we use randomized sketching of the off-diagonal

blocks and indicate a way to allow for the derivative information to be well approximated

in the same structure, and (c) we propose an exact way of computing traces of products

of HODLR matrices which in turn allow the computation of the score function and Fischer

information matrix for HODLR structures in O(n log2 n).

The rest of the paper is structured as follows. In Section 3.2, we review the physics-

based covariance model and the maximum likelihood estimation procedure for parameter

estimations. Section 3.3 contains a review of HODLR matrices techniques and linear algebra

algorithms. We then introduce a matrix-free way, inspired by [3] to construct the HODLR

approximation via matrix-vector products of the targeting covariance matrix and differenti-

ating the whole process to get its derivatives. In Section 3.4 we use the obtained hierarchical

approximations to derive approximated log-likelihood, score equations and information ma-

trix for parameter estimation. An application of the proposed algorithm to Gaussian wind

field model is presented in Section 3.5. We end the paper with a discussion in Section 3.6.

64

3.2 Physics-based Covariance Models and Maximum Likelihood

Estimation

To facilitate the description of our proposed approach, we assume a general physical model

to work with. Consider a general deterministic physical model:

y = F (z), (3.2.1)

where y is an m-dimensional random field and z is an n-dimensional random field. F : Rm →

Rn is a sufficiently regular mapping. Here y is the output process (i.e. the process we can

partially observe and want to predict) and z is the latent process (i.e. the process that is not

usually observable but is strongly correlated with the output process). F can be interpreted

as the physical relation that governs the processes. One example is the horizontal wind field

model U = ∇×ϕ+∇χ where U is the horizontal wind component, ϕ is the stream function

and χ is the velocity potential [82]. In terms of our model (3.2.1), y ←− U and z ←− (ϕ, χ).

This model will be used later in this study.

We note that many physical models can be adapted or converted to this form. For

example, many physical processes can be modeled using partial differential equations (PDEs).

After proper discretizations the discretized PDE generally takes the form of (3.2.1). One

can also consider stochastic partial differential equations (SPDEs), if treating the random

term as part of the latent process. Note that we will use the general form (3.2.1) in the

following text. However in real applicable cases both the output and latent processes can

be a concatenation of several independent processes. Separating independent variables and

exploiting their correlations may introduce extra sparsity in the covariance model though we

do not explore that avenue here.

65

3.2.1 Physics-based Covariance Models

In [57], the authors proposed a systematic way to incorporate the physical relation (3.2.1)

into the design of covariance structure. Note that although [57] only considers covariance

models for spatial processes, the same approach can be adapted to spatio-temporal context

with little extra effort.

Suppose we model the latent process as Gaussian processes. Specifically, let’s assume

z = (z(x1), z(x2), . . . , z(xm))T , where z(x) is a Gaussian random field indexed by a spatial

location x ∈ Rd, d ≥ 1. Then z follows a N(µz,Σz) distribution. Additionally the covariance

matrix Σz is further parameterized by a covariance function Kz(θ) which depends on a

parameter vector θ ∈ Rp. Denote E(z) = z̄ and the perturbation around the mean by

δz = z − z̄. By [57], the covariance model of y satisfies

K(θ) = LKz(θ)L
T +O(||δz||3), (3.2.2)

where L is the Jacobian matrix of F evaluated at z̄. Note that (3.2.2) utilizes the linearization

of F which would incur a third-order error in δz. If the function F is linear, the error term

vanishes and (3.2.2) becomes an exact covariance model. The covariance model can be

applied when the underlying physical relation can be well approximated by its linearization.

When the function is highly nonlinear, [57] proposed a higher-order covariance model which

can reduce the error to O(||δz||5) order, but due to its complexity we do not pursue that

correction here and leave it to future work.

We note that in practice only a very limited fraction of the random field can be observed

directly, i.e. m ≫ n. So the covariance model (3.2.2) is often of full-rank. Approximation

methods based on the low-rank structure of the covariance matrix become very inaccurate in

this case. Moreover, explicit construction of the covariance matrix becomes very costly since

it requires matrix-matrix multiplications with large scale matrices. These facts prompt us to

66

propose a low-rank approximation method for the off-diagonal blocks only in a hierarchical,

fully matrix-free, manner that we discuss in §3.3.

3.2.2 Maximum Likelihood Estimation and Parameter Inference

We carry out the estimation and inference by assuming that y ∼ N (F (z̄), K(θ)). If F is a

linear mapping the relationship is exact, otherwise, the distribution is only an approximation.

We note, however, that the approach is quite common in nonlinear Bayesian inverse problems

and extended Kalman filtering [144, 38, 111, 149]. For the rest of the paper we will assume

the distribution of y to be the one stated, even if it may be only an approximation in practice.

Inferring the parameter vector θ = (θ1, . . . , θp)
T ∈ Rp is of great scientific interest. Under

our assumption about y we get the (approximate, for F nonlinear) log-likelihood function:

L(θ) = −n
2
log(2π)− 1

2
log |K(θ)| − 1

2
(y − ȳ)TK(θ)−1(y − ȳ), (3.2.3)

where |A| denotes the determinant of square matrix A and ȳ = F (z̄). The maximum

likelihood estimator of θ is the value θ̂ which maximizes (3.2.3). Since the nonzero mean ȳ

brings only simple algebraic changes in our algorithm, we will assume ȳ to be 0 in the rest

of the text to simplify the notation. For the same reason, we drop the explicit dependence

of K on parameters θ in the rest of the paper.

Evaluating the log-likelihood (3.2.3) requires the evaluation of the log-determinant and

the inverse of covariance matrix K (or rather, the linear system solve of K). If the goal

is to maximize the log-likelihood, alternatively one can avoid log-determinant computation

by considering the score equations, which are obtained by setting the gradient of the log-

likelihood function to be zero. The gradient of (3.2.3) with respect to the parameters θ is

67

given by

Sj(θ) = −
1

2
tr
(
K−1Kj

)
+

1

2
yTK−1KjK

−1y, j = 1, . . . , p, (3.2.4)

where Sj(θ) denotes the derivative of L with respect to parameter θj , Kj = ∂K
∂θj

and tr(A)

denotes the trace of square matrix A. One can find the minimizer of log-likelihood (3.2.3) or

equivalently the root of the score equations (3.2.4) by quasi-Newton methods, for example,

Broyden’s method [37] [66], which only requires evaluations of the first-order score equations.

However matrix-matrix operations with the inverse of K are still required (even if carried

one column at a time) to evaluate the term containing the trace.

Additionally, being able to efficiently estimate the observed Fisher information matrix

can facilitate the uncertainty quantification of the given estimators, for example, building the

confidence intervals of the estimates. Specifically, denote the maximum likelihood estimator

(MLE) of the parameters by θ̂ and the observed Fisher information matrix evaluated at

the maximum likelihood estimates by I(θ̂). As the asymptotic theory suggests [176], if the

smallest eigenvalue of I tends to infinity as the sample size grows, one can expect that

(θ̂ − θ⋆) D−→ N (0, I(θ̂)−1), (3.2.5)

where θ⋆ represents the ground truth parameter values. We can then construct confidence

intervals based on the asymptotic estimation. Furthermore, for multivariate Gaussian pro-

cesses where the uncertainties only occur in the covariance, each entry in the observed Fisher

information matrix is given by

Ii,j(θ̂) =
1

2
tr
[(
K−1KiK

−1Kj

)
|
θ=θ̂

]
. (3.2.6)

Even for circumstances where (3.2.5) may not be guaranteed to hold, carrying out the max-

68

imum likelihood, and estimating the uncertainty in the parameters is very useful since it

gives information whether the parameters are estimable in the first place, or whether only

some of them may be [60]. This may be the case for the widely-used Matern covariance

class, where only some parameters can be guaranteed to be estimable [176]. As asymptotic

normality relies on the accuracy of the Taylor expansion of the score equations at the true

parameter [60], a well behaved Fischer information matrix is an indication of approximate

normality of the parameters being valid.

Unfortunately evaluating (3.2.3), (3.2.4) and (3.2.6) can be very costly. The matrix K

(3.2.2) is generally dense (since F (·) may contain an inverse differential operator in cases

of interest). A standard Cholesky factorization approach requires O(n3) computations and

O(n2) memory since the covariance matrix is often unstructured and (3.2.6) requires matrix-

matrix operations with the inverse of the covariance and not just solving linear systems with

K.

To circumvent these difficulties, in the next section we will utilize hierarchical matrix

techniques, specifically HODLR matrices, to reduce both the computational and storage

complexity to quasilinear scale.

3.3 HODLR Approximations for Covariance Matrices

In this section, we approximate the covariance matrix K from §3.2 by the HODLR format

[4] and define the algorithms that will compute the relevant components efficiently.

3.3.1 HODLR Matrices

The HODLR matrix format uses a divide-and-conquer strategy to recursively divide the

whole covariance matrix to sub-blocks and approximate all off-diagonal blocks by low-rank

matrices. A typical 2-level symmetric positive definite matrix (SPD; the only kind relevant

here due to properties of covariance matrices)-HODLR matrix A ∈ Rn×n can be written in

69

the following form:

A =

 A
(1)
1 W

(1)
1 X

(1)T
1

V
(1)
1 U

(1)T
1 A

(1)
2

 (3.3.1)

=



 A
(2)
1 W

(2)
1 X

(2)T
1

X
(2)
1 W

(2)T
1 A

(2)
2

 W
(1)
1 X

(1)T
1

X
(1)
1 W

(1)T
1

 A
(2)
3 W

(2)
2 X

(2)T
2

X
(2)
2 W

(2)T
2 A

(2)
4




, (3.3.2)

where the superscripts indicate the level of the approximation. All the off-diagonal blocks are

subsequently approximated using low-rank matrices W , X with the appropriate subscripts.

For example in the first level, W (1)
1 , X

(1)
1 ∈ Rn/2×k where k ≤ n/2. The local rank k can be

different for different levels (adaptive rank strategy) to guarantee the approximation error

of each local block to be upper-bounded by some error tolerance ϵ. Here for the simplicity of

the presentation and complexity analysis we assume all local blocks have the same constant

local rank k. For a 2-level HODLR matrix, the diagonal blocks A(2)
1 , A

(2)
2 , A

(2)
3 , A

(2)
4 in the

leaf level (level 2 in this case) are kept to remain full-rank (and identical to the respective

sub blocks of the original matrix A).

Taking advantage of the hierarchical structure, an SPD HODLR matrix admits several

fast factorization algorithms, including its “basic” factorization introduced in [5], symmetric

factorization [6], QR factorization [104], LU factorization [130]. Here we use the “basic”

factorization to factorize the HODLR matrix to the product of a sequence of block low-rank

updates of the identity matrix:

70

A = Ā

1∏
i=τ

(I + U (i)V (i)T), (3.3.3)

where Ā is a block-diagonal matrix containing all the leaf level diagonal blocks of A (denoted

by A(2)
i in (3.3.2)), I denotes the identity matrix of proper size and each (I+U (i)V (i)T) is a

block-diagonal low-rank (rank-2k) update to the identity, for which the size of the diagonal

blocks depends on the level i. Take (I + U (2)V (2)T) as an example, we have

(I + U (2)V (2)T) =

I + U
(2)
1 V

(2)T
1 0

0 I + U
(2)
2 V

(2)T
2

 , (3.3.4)

with two diagonal blocks. Generally, (I + U (i)V (i)T) has 2i−1 diagonal blocks with size

n/2i−1 × n/2i−1. Each diagonal block is a rank 2k update to identity. For example in

(3.3.4), U (2)
1 , U

(2)
2 , V

(2)
1 , V

(2)
2 are all of size n/2i−1×2k. More details about the factorization

can be found in Appendix B.3.

In (3.3.3), τ is the number of levels of the HODLR matrix A. The factorization can be

computed in O(n log2 n) time if the local rank k is fixed and the number of level grows with

O(log n). We note that an asymmetric HODLR matrix can also be factorized in the form of

(3.3.3), but symmetric factorization [6] only exists for SPD HODLR matrices.

Utilizing the structure of the factorization (3.3.3), the determinant of A can be com-

puted efficiently via Sylvester’s determinant identity and the linear system can be efficiently

solved by recursively applying the Woodbury matrix identity [210]. To summarize, once

the decomposition (3.3.3) is obtained, the subsequent numerical linear algebra operations

including log-determinant computation, linear system solves and matrix-vector products can

all be performed efficiently in at most O(n log2 n) operations. A list of common HODLR

matrix linear algebra operations with their complexities are given in Table 3.1. For a more

71

complete analysis of supported operations, we refer readers to [77] for a discussion.

Ops. A*v A\v det(A) A+B A*B A\B
Compl. O(n log n) O(n log2 n) O(n log2 n) O(n log n) O(n log2 n) O(n log2 n)

Table 3.1: Complexity (Compl.) of common arithmetic operations (Ops.). A,B are both
HODLR matrices with size n, level log n and constant local rank. v is a vector of length n.

We note that all operations involving two HODLR matrices in Table 3.1 will lead to

increase of off-diagonal ranks. The computational efficiency of the resulting matrix will sig-

nificantly decrease due to the accumulation of low-rank updates from recursive calls. To

tackle the issue, one can combine the arithmetic operations with re-compression to reduce

the rank after the computation of each level. Most studies conduct these operations inex-

actly and heavily rely on the assumptions that the off-diagonal ranks encountered during

an operation remain O(k). In this study, we will also encounter operations involving two

HODLR matrices. Based on the specific needs of our computation, we derive two new types

of HODLR operations which can be conducted exactly and in quasilinear time scale. Details

can be found in Section 3.4.2.

In terms of storage complexity, both the HODLR matrix and its factors take O(n log n)

memory. The remaining problem is to construct the HODLR approximation for the given

covariance matrix (3.2.2).

3.3.2 Randomized Matrix-free Construction of HODLR Matrices

Assume the SPD matrix K = LKzL
T in (3.2.2) can be well-approximated by the HODLR

format. Note that in our covariance model (3.2.2), m ≫ n thus the matrix Kz may be

difficult to store. Moreover, the matrix L may be exceedingly difficult to obtain explicitly

since the direct model F may be arbitrarily complex, for example a climate code. Therefore,

if the task is to construct the HODLR approximation of K, the direct approach dividing the

dense covariance matrix recursively and constructing the low-rank approximation for each

72

off-diagonal block (for example, using SVD) is infeasible.

We then turn to the feasibility of computing the HODLR approximation ofK by accessing

it only by means of matrix-vector products Kỹ, which in turn requires efficient access to

matrix-vector products with L, Kz, and LT . Since L is the Jacobian of the operator F ,

each L-vector and LT -vector product can be evaluated via forward mode and reverse mode

automatic differentiation (AD) [133] with the same order of cost as evaluating a forward

solve of the physical model F . The covariance matrix Kz can be structured (e.g. HODLR

itself) or sparse, and thus it can be reasonably assumed to allow for fast matrix-vector

products. Therefore in many circumstances, L and Kz admits fast and efficient matrix-

vector multiplication operations. We refer readers to Section 3.5 for examples.

We now turn to the issue of building the HODLR approximation of K. If one explicitly

constructs the covariance matrix K first, this generally takes O(m) forward model evalua-

tions and storing the covariance matrix takes O(n2) memory, which may be infeasible. An

important task, consequently, will be to enable the computation of the HODLR approxima-

tion of K in (3.2.2) using much less memory and forward model evaluations. For the rest

of the paper, we assume there exists a fast solver of computing matrix-vector products for

covariance matrix K with any vector and we track the number of K-vector products for

complexity analysis, aiming to get it much smaller than the brute force O(m).

To this end, randomized algorithms for matrix factorizations have proven to be robust

and accurate [79]. Here we adapt the idea in [119] to HODLR matrices and propose a way

to construct the HODLR approximation of the covariance matrix K using only K-vector

multiplications in §3.3.2 and §3.3.2 in conjunction with randomized algorithms to efficiently

produce the low-rank approximations to the off-diagonal blocks.

73

Randomized Matrix factorization

We adopt the simplest randomized matrix factorization algorithm [79] to facilitate our com-

putation and presentation, though other variants of the algorithm including randomized SVD

[116] can also be used here with little modification. For a given matrix B and a given target

rank k, the algorithm is summarized in Algorithm 6.

Algorithm 6: Randomized Low-rank Approximation
Input: A matrix B ∈ Rp×q and a given target rank k, k < q.
Step 1. Draw a Gaussian random sampling matrix Ω ∈ Rp×k.
Step 2. Compute Y = BΩ. Now Y ∈ Rp×k.
Step 3. Compute the QR factorization for Y with column pivoting. Denote the Q
factor by Q ∈ Rp×k.

Step 4. Compute QTB by (BTQ)T .
Output: B̂ = Q(QTB) is a rank-k approximation of B.

The accuracy of the algorithm and its variants has been well-studied [79, 211, 116]. When

using the matrix 2-norm to measure the approximation error, the minimal error is σk+1 which

is the (k+1)-th largest singular value and the lower bound is achieved by the singular vector

decomposition (SVD) truncated to the rank k. It can be shown that the approximation error

can be bounded by k, c and σk. Specifically, when the singular values of B decay rapidly,

Algorithm 6 can provide an approximation that is very close to the optimal truncated SVD

solution with high probability [211].

Construction From Matrix-vector Products

To discuss our construction of the HODLR matrix approximation (3.3.2), using Algorithm

6 and employing only O(log2(n)k) matrix-vector multiplications, we follow the approach in

[129]. The idea is to compress the off-diagonal blocks via randomized sampling. In this

subsection we review the HODLR compression procedure to lay the foundation for the next

several subsections. Note that our approach goes beyond [129] by further considering the

derivatives of the construction procedure.
74

Assume we work with a two-level covariance matrix K:

K =



 A
(2)
1 B

(2)
1

B
(2)T
1 A

(2)
2

 B
(1)
1

B
(1)T
1

 A
(2)
3 B

(2)
2

B
(2)T
2 A

(2)
4




. (3.3.5)

While the algorithm does not have requirements about the matrix size, we will assume

n is divisible by 4 for simplifying the presentation.

Processing level 1. Assume the row index set and the column index set of B(1)
1 are given

by I(1)1

(
∆
= 1 : n

2

)
and I(1)2

(
∆
=
(n
2 + 1

)
: n
)

respectively. We draw a (n/2) × k sampling

matrix R(1)
1 with i.i.d standard normal entries. Then we construct a patterned n×k sampling

matrix by filling R(1)(I(1)1 , :) with 0 and R(1)(I(1)2 , :) = R
(1)
1 . Here we use the MATLAB

notation R(1)(I(1)1 , :) to indicate the selected rows from R(1) according to the index set I(1)1 .

Now we observe that R(1)T =

[
0 R

(1)T

1

]
and thus

KR(1) = K

 0

R
(1)
1

 =


B
(1)
1 R

(1)
1 A

(2)
3 B

(2)
2

B
(2)T
2 A

(2)
4

R(1)
1

 . (3.3.6)

By restricting the row index of the right-hand side to index set I(1)1 and discarding the

bottom half, we get B(1)
1 R

(1)
1 as the randomly sampled column space of B(1)

1 . The result

corresponds to steps 1 and 2 in Algorithm 6. For carrying out step 3, we compute the QR

factorization of B(1)
1 R

(1)
1 . Denote the orthogonal basis matrix by Q(1)

1 ∈ R
n
2×k. To compute

Q
(1)T
1 B

(1)
1 we form another patterned matrix S(1) ∈ Rn×k by filling S(1)(I(1)2 , :) with 0 and

75

S(1)(I(1)1 , :) = Q
(1)
1 . Note that S(1)

T
=

[
Q
(1)T

1 0

]
and

KS(1) = K

Q(1)
1

0

 =


 A

(2)
1 B

(2)
1

B
(2)T
1 A

(2)
2

Q(1)
1

B
(1)T
1 Q

(1)
1

 . (3.3.7)

Likewise, we restrict the output to the row index set I(1)2 and discard the first half

to obtain B̃
(1)
1

∆
= B

(1)T
1 Q

(1)
1 . We then obtain the low-rank (rank k) representation of the

off-diagonal block

B̂
(1)
1 = Q

(1)
1 B̃

(1)T

1 = Q
(1)
1 (Q

(1)T
1 B

(1)
1). (3.3.8)

Processing level 2. Next we move to the blocks of the second level in the hierarchy, i.e.

B
(2)
1 and B

(2)
2 . We draw a patterned sampling matrix of R(2) = (0, R

(2)T
1 , 0, R

(2)T
2)T ∈

Rn×k, with R(2)
i ∈ R

n
4×k, i = 1, 2, having Gaussian entries. Here, the nonzero rows of R(2)

correspond to column indices of B(2)
1

(
∆
=
(n
4 + 1

)
: n
2

)
and B(2)

2

(
∆
=
(
3n
4 + 1

)
: n
)

in K. We

observe that

K −
 0 B̂

(1)
1

B̂
(1)T
1 0





0

R
(2)
1

0

R
(2)
2


≈



 A
(2)
1 B

(2)
1

B
(2)T
1 A

(2)
2

 0

0

 A
(2)
3 B

(2)
2

B
(2)T
2 A

(2)
4







0

R
(2)
1

0

R
(2)
2


=



B
(2)
1 R

(2)
1

A
(2)
2 R

(2)
1

B
(2)
2 R

(2)
2

A
(2)
4 R

(2)
2


.

(3.3.9)

Note that it is impossible to directly calculate the matrix subtraction on the left-hand

side of (3.3.9) since the matrix K is not explicitly available. Instead, we access K only via

matrix-vector products. Furthermore, we only store the obtained low-rank factors of B̂(1)
1

explicitly. The B̂(1)
1 -vector or B̂(1)

1 -matrix products are done by sequentially applying both

76

low-rank factors (Q(1)
1 and B̃(1)T

1) to the target matrix or vector.

We form the new patterned matrix S(2) = (Q
(2)T
1 , 0, Q

(2)T
2 , 0)T ∈ Rn×k, where the

positioning is such that the zero blocks are square. Then we can compute

K −
 0 B̂

(1)
1

B̂
(1)T
1 0





Q
(2)
1

0

Q
(2)
2

0


≈



 A
(2)
1 B

(2)
1

B
(2)T
1 A

(2)
2

 0

0

 A
(2)
3 B

(2)
2

B
(2)T
2 A

(2)
4







Q
(2)
1

0

Q
(2)
2

0


=



A
(2)
1 Q

(2)
1

B
(2)T
1 Q

(2)
1

A
(2)
3 Q

(2)
2

B
(2)T
2 Q

(2)
2


.

(3.3.10)

Similar to the first step, we now extract the even block entries from the right-hand side

of (3.3.10), that is the ones corresponding to rows indices
(n
4 + 1

)
: n
2 , B̃(2)

1 = B
(2)T
1 Q

(2)
1 ,

and
(
3n
4 + 1

)
: n, B̃(2)

2 = B
(2)T

2 Q
(2)
2 . We then obtain the low rank representation of the

off-diagonal blocks on the second level

B̂
(2)
1 = Q

(2)
1 B̃

(2)T

1 = Q
(2)
1 (Q

(2)T
1 B

(2)
1), B̂

(2)
2 = Q

(2)
2 B̃

(2)T

2 = Q
(2)
2 (Q

(2)T
2 B

(2)
2). (3.3.11)

If there are finer levels, we can proceed to the next level in a similar fashion by first “removing”

all off-diagonal blocks from the previous levels.

Processing the leaf level. To sketch the leaf level A(2)
1 , A

(2)
2 , A

(2)
3 , A

(2)
4 , we construct

sampling matrix S of size n×size(A(2)
1) which is a vertical concatenation of identity matrices,

S =
[
In
4
, In

4
, In

4
, In

4

]T
. We will exploit the fact that we have an approximation of all level 1

77

and 2 off-diagonal blocks,


K −



 0 B̂
(2)
1

B̂
(2)T
1 0

 B̂
(1)
1

B̂
(1)T
1

 0 B̂
(2)
2

B̂
(2)T
2 0






S

≈



A(2)
1 0

0 A
(2)
2

 0

0

A(2)
3 0

0 A
(2)
4







In
4

In
4

In
4

In
4


=



A
(2)
1

A
(2)
2

A
(2)
3

A
(2)
4


. (3.3.12)

Asymptotic complexity. Assume all off-diagonal blocks have the same rank k and the

number of levels is τ = log2

(
n
nl

)
, where nl is the size of the leaf block. Overall, the entire

procedure requires O(kτ) K-vector products and O(nk2τ2) time complexity. If we assume

constant off-diagonal rank k = O(1) and the number of levels grows as O(log n), for example

τ = ⌊log2 (nk)⌋, the computational complexity is O(log n) K-vector products and O(n log2 n)

complexity. The storage complexity is O(n log n). More details about the complexity analysis

can be found in [129, Section 4.1]. These assumptions are consistent with the assumptions

in [6, 129] for complexity analysis.

3.3.3 Differentiating the HODLR Approximation

With the HODLR approximation of the covariance matrix K at hand, we can now handle the

log-determinant term and the matrix inverse term of K in the log-likelihood (3.2.3) and score

(3.2.4) efficiently. However we now need to compute or produce an adequate approximation

of Kj . To this end, we will also approximate the derivatives of the covariance matrix in

HODLR format. We will explore the fact that our HODLR approximation consists of a

78

sequence of covariance matrix-vector products, block subsettings, and QR factorizations.

The entire process is differentiable, as long as the patterned sampling matrices (e.g. S(1),

S(2), R(1), R(2) in §3.3.2) and subsetting patterns are kept fixed. We thus differentiate the

approximation algorithm while simultaneously constructing the HODLR approximation for

both the covariance matrix and its derivatives.

As an illustrative example, we follow the same framework as in §3.3.2 and approximate

K and its derivatives to 2-level HODLR form.

Processing level 1. Starting from the first level we differentiate (3.3.6) with respect to

any parameter θj using forward mode AD [133] with the same order of cost as evaluating the

K-vector product. Recall that we keep R1 fixed, that is independent of θ. In other words

we draw R(1) once and keep it fixed for all optimization iterations. Differentiating through

the subsetting operation (the top matrix on level 1 in §3.3.2) we obtain the identity

∂B
(1)
1 R(1)

∂θj
=
∂KR(1)

∂θj
(I(1)1 , :). (3.3.13)

In the next step we differentiate the QR factorization of B(1)
1 R

(1)
1 , specifically the Q factor

Q
(1)
1 as summarized in Algorithm 7, [46], to obtain ∂Q

(1)
1

∂θj
.

At the next step of the Algorithm from §3.3, we compute B(1)T
1 Q

(1)
1 via (3.3.7). By

differentiating the K-vector product and keeping in mind the dependence between Q(1)
1 and

parameters θj , we can obtain ∂B
(1)T
1 Q

(1)
1

∂θj
,

∂B
(1)T
1 Q

(1)
1

∂θj
=

∂B(1)
1

∂θj

T

Q
(1)
1 +B

(1)T
1

∂Q
(1)
1

∂θj
, (3.3.18)

(3.3.7),(3.3.5)
=

∂KS(1)

∂θj
(I(1)2 , :) +K

∂Q
(1)
1

∂θj

0

 (I(1)2 , :). (3.3.19)

79

Algorithm 7: Differentiate the QR factorization [46]
Input: A full column rank matrix B ∈ Rp×q where p > q. Assume the (compact)
QR factorization of B is given by

B = Q1R, Q1 ∈ Rp×q, QT
1Q1 = Iq, R ∈ Rq×q (3.3.14)

Also assume dB is known, the differentiation can be computed in the following
steps.

Step 1. Form Y = QT
1 dBR

−1.
Step 2. Let dΩ be a q × q skew-symmetric matrix. Notice that both R and its
differentiation dR are upper triangular matrices. Therefore dΩ and dR can be
uniquely computed from the following identity (derived from the product rule
dB = dQ1R +Q1dR inserted in Y)

Y = dΩ + dRR−1. (3.3.15)

Step 3. Compute

dQ1 = Q1dΩ +Q2Q
T
2 dBR

−1 (3.3.16)

= Q1dΩ + (I −Q1Q
T
1)dBR

−1. (3.3.17)

Output: dQ1, dR.

Note that we cannot compute (3.3.18) directly since the kernel matrix K is not explicitly

available. Instead we use the same trick as in (3.3.7) and rewrite both terms with K-

vector products as in (3.3.19). Specifically we can compute the first term in (3.3.19) via AD

assuming the factor Q(1)
1 is held as a constant, as is the case for S(1) in (3.3.7). The second

term can be computed by k K-vector products with derivatives ∂Q
(1)
1

∂θj
.

Recall we approximate B(1)
1 by low-rank factorization B̂

(1)
1 = Q

(1)
1 (Q

(1)T
1 B

(1)
1), (3.3.8).

We differentiate both sides by parameter θj to obtain the low-rank representation of the

derivative of the first-level off-diagonal block, B(1)
1 :

∂B̂
(1)
1

∂θj
=
∂Q

(1)
1

∂θj

(
B
(1)T
1 Q

(1)
1

)T
+Q

(1)
1

∂B(1)T
1 Q

(1)
1

∂θj

T

. (3.3.20)

80

We now summarize the workflow that we used to efficiently compute the derivative of

the low approximation since we will apply this philosophy at each level:

1. We differentiate (3.3.6), we get ∂B
(1)
1 R

(1)
1

∂θj
, (3.3.13), using differentiation of k K-vector

products.

2. We use Algorithm 7 to differentiate the QR factorization of B(1)
1 R

(1)
1 . We obtain ∂Q

(1)
1

∂θj
.

3. We differentiate (3.3.7), exploit the HODLR structure (3.3.5) and obtain the first term

in (3.3.19).This steps requires differentiation of k K-vector products. Then we use

another k K-vector products with the derivatives of the Q-factors to form the second

term of (3.3.19). Combining two terms together, we obtain ∂B
(1)T
1 Q

(1)
1

∂θj
.

4. The derivative of the low-rank approximation, ∂B̂
(1)
1

∂θj
, is available by means of the right

hand side of (3.3.20).

Note that both terms in (3.3.20) are of rank k, which means the rank of ∂B̂
(1)
1

∂θj
is at most 2k.

In practice we never construct (3.3.20) explicitly. Instead we store the low-rank components

of both terms in (3.3.20) and invoke them when necessary. Also note that our workflow

requires 3k matrix-vector products with either the covariance matrix K or the covariance

matrix derivative Kj and nk storage for the components (two n
2 × k blocks).

Processing level 2. The second-level procedure is the same as for the first level except the

approximations from level 1 need to be removed. We start by differentiating (3.3.9),

Kj −

 0
∂B̂

(1)
1

∂θj

∂B̂
(1)T
1

∂θj
0





0

R
(2)
1

0

R
(2)
2


=

∂

∂θj


K



0

R
(2)
1

0

R
(2)
2




−



∂B̂
(1)
1

∂θj

 0

R
(2)
2


∂B̂

(1)T
1

∂θj

 0

R
(2)
1




≈



∂B
(2)
1 R

(2)
1

∂θj

∂A
(2)
2 R

(2)
1

∂θj

∂B
(2)
2 R

(2)
2

∂θj

∂A
(2)
4 R

(2)
2

∂θj


.

(3.3.21)

81

Note that we do not explicitly differentiate the matrices on the left-hand side of (3.3.21)

since we do not have direct access to matrix K. Instead we differentiate the matrix-vector

products in (3.3.9) (see the expression in the middle). The first term in the middle expression

is computed via AD by differentiating the K-vector products. The second term is computed

by matrix-vector products with the low-rank representation of ∂B̂
(1)
1

∂θj
(3.3.20). Now we obtain

∂B
(2)
1 R

(2)
1

∂θj
and ∂B

(2)
2 R

(2)
1

∂θj
by truncating the right-hand side of (3.3.21). We use these low-rank

matrices in Algorithm 7 and obtain the derivatives of the Q-factors with respect to the

parameters: ∂Q
(2)
1

∂θj
, ∂Q

(2)
2

∂θj
.

Next, we differentiate (3.3.10) (reversing the order of terms in that equation to make our

argument) by treating Q(2)
1 , Q(2)

2 , components of S(2), as constant matrices,



∂A
(2)
1

∂θj
Q
(2)
1

∂B
(2)T
1

∂θj
Q
(2)
1

∂A
(2)
3

∂θj
Q
(2)
2

∂B
(2)T
2

∂θj
Q
(2)
2


(3.3.10),(3.3.5)

≈

Kj −

 0
∂B̂

(1)
1

∂θj

∂B̂
(1)T
1

∂θj
0





Q
(2)
1

0

Q
(2)
2

0



=
∂

∂θj


K



Q
(2)
1

0

Q
(2)
2

0




−



∂B̂
(1)T
1
∂θj

Q(2)
2

0


∂B̂

(1)
1

∂θj

Q(2)
1

0




. (3.3.22)

In the last term, the first component only is the one requiring access to K and the real

computation weight. It can be computed via AD by differentiating K-vector products and

treating Q(2)
1 , Q(2)

2 as constant matrices. For the second component of the last term we do

matrix-vector products with the low-rank representation of ∂B̂
(1)
1

∂θj
(3.3.20) . Furthermore, by

replacing Q(2)
1 , Q(2)

2 in (3.3.10) with ∂Q
(2)
1

∂θj
, ∂Q

(2)
2

∂θj
, reverting its order, and using (3.3.5) we

82

have



A
(2)
1

∂Q
(2)
1

∂θj

B
(2)T
1

∂Q
(2)
1

∂θj

A
(2)
3

∂Q
(2)
2

∂θj

B
(2)T
2

∂Q
(2)
2

∂θj


≈

K −
 0 B̂

(1)
1

B̂
(1)T
1 0





∂Q
(2)
1

∂θj

0

∂Q
(2)
2

∂θj

0


. (3.3.23)

Now we subset the left-hand side of (3.3.22) and (3.3.23) to the terms involving B(2)
1 , B

(2)
2

and use the product rule to compute

∂(B
(2)T
1 Q

(2)
1)

∂θj
=
∂B

(2)T
1

∂θj
Q
(2)
1 +B

(2)T
1

∂Q
(2)
1

∂θj
, (3.3.24)

∂(B
(2)T
2 Q

(2)
2)

∂θj
=
∂B

(2)T
2

∂θj
Q
(2)
2 +B

(2)T
2

∂Q
(2)
2

∂θj
. (3.3.25)

We apply the product rule to (3.3.11) to obtain the low-rank representations of the deriva-

tives of the second level off-diagonal blocks:

∂B̂
(2)
1

∂θj
=
∂Q

(2)
1

∂θj

(
B
(2)T
1 Q

(2)
1

)T
+Q

(2)
1

∂(B(2)T
1 Q

(2)
1)

∂θj

T

, (3.3.26)

∂B̂
(2)
2

∂θj
=
∂Q

(2)
2

∂θj

(
B
(2)T
2 Q

(2)
2

)T
+Q

(2)
2

∂(B(2)T
2 Q

(2)
2)

∂θj

T

. (3.3.27)

To access this representation, we store the low-rank components in the right-hand side.

For example to store (3.3.26), we store ∂Q
(2)
1

∂θj
, (B(2)T

1 Q
(2)
1) as the two low-rank factors for the

first term and Q(2)
1 ,

(
∂B

(2)T
1 Q

(2)
1

∂θj

)
as the two low-rank factors for the second term. All these

83

matrices are of rank k resulting in a total rank of 2k. This computation requires k K-vector

products with the derivatives of the Q components of the QR factorization and 2k K-vector

products with the partial derivative Kj , and a storage of 4 n
4 × k blocks, or equivalently one

n× k block.

Processing the leaf level. For the leaf level, the derivative of all the diagonal blocks can

be estimated simultaneously by differentiating (3.3.12),


Kj −



 0
∂B̂

(2)
1

∂θj

∂B̂
(2)T
1

∂θj
0

 ∂B̂
(1)
1

∂θj

∂B̂
(1)T
1

∂θj

 0
∂B̂

(2)
2

∂θj

∂B̂
(2)T
2

∂θj
0






S ≈



∂A
(2)
1

∂θj

∂A
(2)
2

∂θj

∂A
(2)
3

∂θj

∂A
(2)
4

∂θj


. (3.3.28)

We access matrix Kj via matrix-vector products only. We can write

KjS =
∂(KS)

∂θj
. (3.3.29)

Recall that S =
[
In
4
, In

4
, In

4
, In

4

]T
. We can explicitly write the second term as



 0
∂B̂

(2)
1

∂θj

∂B̂
(2)T
1

∂θj
0

 ∂B̂
(1)
1

∂θj

∂B̂
(1)T
1

∂θj

 0
∂B̂

(2)
2

∂θj

∂B̂
(2)T
2

∂θj
0




S =



 ∂B̂
(2)
1

∂θj
In
4

∂B̂
(2)T
1

∂θj
In
4

+
∂B̂

(1)
1

∂θj

In4
In
4


∂B̂

(1)T
1

∂θj

In4
In
4

+

 ∂B̂
(2)
2

∂θj
In
4

∂B̂
(2)T
2

∂θj
In
4




. (3.3.30)

The n×k right hand side is computed using the low-rank representations of the off-diagonal

blocks from (3.3.20), (3.3.26), and (3.3.27), respectively. Taking the second term of the

84

upper block for an example, we get

∂B̂
(1)
1

∂θj

In4
In
4

 =
∂Q

(1)
1

∂θj

(
B
(1)T
1 Q

(1)
1

)T In4
In
4

+Q
(1)
1

∂B(1)T
1 Q

(1)
1

∂θj

T
In4
In
4

 . (3.3.31)

The computation is done using the representation on the right by computing the rightmost

factor in each term using k2 inner products, then multiplying with the resulting k×k matrix

the first factor in each of the two terms above. The effort is linear with the number of rows,

though it is increasing linearily with level order, i.e. O(nk2l).

Therefore for each θj , we can construct the HODLR approximation of the derivative

matrix Kj with off-diagonal local rank of at most 2k at each level. Since the complexity of

differentiating the K-vector product using AD is linear in the complexity of evaluating the

K-vector product itself and we need 2k differentiations of K-vector products plus k extra K-

vector products with the derivatives of the orthogonal columns at each level, the additional

access to the matrix K is O(kτ) K-vector products. In terms of extra computations, the

complexity is dominated by removing all lower level off-diagonal approximations in K-vector

products. Following the similar complexity analysis in §3.3.2, the computational complexity

is given by O(nk2τ2). The extra storage complexity is O(nkτ) due to the off-diagonal low-

rank components.

Note that we need to repeat the process for all parameters θ1, . . . , θp. In summary,

to obtain the HODLR approximations of the derivative matrices of K with respect to all

parameters, the extra complexity is O(pkτ)K-vector products, O(pnk2τ2) time and O(pnkτ)

memory.

Similarly if assuming constant off-diagonal rank k = O(1) and the number of levels grows

as O(log n), for example τ = ⌊log2 (nk)⌋, the computational complexity is O(p log n) K-vector

products and O(pn log2 n) complexity. The storage complexity is O(pn log n).

85

3.4 Hierarchical Approximations of Gaussian Likelihood, Score

Equations, Information Matrices

With the HODLR approximations of the covariance matrix and its derivatives at hand, we

can then efficiently approximate the Gaussian log-likelihood function, the score equations

and the observed Fisher information matrix.

3.4.1 Approximated Gaussian Likelihood

Assuming a constant rank k, the HODLR approximation K̃ requires O(log n) levels. Such a

structure admits an exact factorization with O(n log2 n) computational complexity [6]. The

resulting approximation of the exact log-likelihood function defined in (3.2.3) is denoted by

L̃(θ):

L̃(θ) = −n
2
log(2π)− 1

2
log |K̃| − 1

2
(y − ȳ)T K̃−1(y − ȳ). (3.4.1)

As we discussed in Section 3.3.1, the determinant and linear system can both be solved

in O(n log2 n) complexity. Therefore given the factorization of K̃, the approximate log-

likelihood (3.4.1) can be evaluated in O(n log2 n) time.

3.4.2 Trace Computation

When evaluating the score equations, since both K and Kj have been approximated in

HODLR format, the second term in (3.2.4) poses no difficulty. The bottleneck is obviously

the trace of matrix products. One option for it is the use of stochastic trace estimators which

converts the trace operation to a sequence of matrix-vector products with random vectors.

Several choices are available including Gaussian trace estimator, Hutchinson’s trace estima-

tor, unit vector trace estimator; we refer readers to [10] for a discussion and convergence

86

analysis. Given a relative error tolerance ϵ, generally it requires O(ϵ−2) random samples to

achieve that accuracy.

Another option is to solve the matrix product explicitly. As we discussed in Table 3.3.1,

computing A−1B for two HODLR matrices A,B have been studied and can be conducted

in O(n log2 n) time. However as arithmetic operations often increase the HODLR ranks,

it is a common practice to combine the operations with recompression and perform low-

rank truncation for each off-diagonal block to control the local rank growth. However in

this case the operations incur additional error (which may be acceptable given the HODLR

approximation error itself but we would like to explore avoiding it).

The third option is to take the advantage of the properties of the trace operation to

simplify the computations. Based on the expression of (3.2.4) and (3.2.6) we introduce

two operations tr(A−1B) and tr(A−1BC−1D) given A,B,C,D HODLR matrices. Both

operations can be conducted exactly and in quasilinear scale. The detailed algorithms are

included in Appendix B.2. In this work, we will use the third option when computing the

score equations and Fisher information matrix associated with the approximate log-likelihood

(3.4.1).

3.4.3 Approximated Score Equations And Fisher Information Matrix

Now consider the score equations (3.2.4). The score equations of the approximate likelihood

are given by

S̃j(θ) = −
1

2
tr
(
K̃−1K̃j

)
+

1

2
yT K̃−1K̃jK̃

−1y. (3.4.2)

Recall K̃j is also an HODLR matrix with rank 3k (3.3.26). Utilizing the proposed trace

operation in B.2, we can now evaluate the trace term exactly in O(n log2 n) scale. For

the second term we compute K̃−1y using the factorization of K̃ and the rest are HODLR

87

matrix-vector products. Repeat the computation for all p parameters and we get that the

approximated score equations (3.4.2) can be evaluated in an extra O(pn log2 n) time.

With the ability to efficiently approximate the log-likelihood and the score equations,

we can then apply optimization algorithms to obtain the maximum likelihood estimates of

the parameters. Note that the parameter values are updated at each optimization iteration.

Therefore new HODLR approximations need to be constructed for every iteration. Once

the MLE estimator θ̂ for the parameters is obtained, the next step is to approximate the

observed Fisher information matrix for uncertainty quantification. Denote the approximated

Fisher information matrix by Ĩ. Its entries are given by

Ĩi,j(θ̂) =
1

2
tr
[(
K̃−1K̃iK̃

−1K̃j

)
|
θ=θ̂

]
. (3.4.3)

Note here all the matrices are evaluated at the MLE estimator θ̂. Based on the proposed

operations in B.2, given the factorization of K̃ and HODLR matrices {K̃j}j=1,···,p, evaluating

each entry of the Fisher information matrix takes O(n log2 n) time. Repeating for all entries,

a total O(p2n log2 n) complexity is required.

The number of parameters to estimate is often smaller comparing to the size of the

observations. In summary, each optimization iteration takes O(p log n) K-vector products

to construct the HODLR approximations and O(pn log2 n) operations to carry out. After the

optimization process, estimating the Fisher information matrix takes O(p2n log2 n) time. If

the K-vector product number of operations is quasi-linear in n as well (which, for implicitly

defined covariance models with sparse state space operators e.g (3.5.6), is the case in many

circumstances), then our approach has quasillinear effort in building the covariance matrices

and its derivatives, to factorize it, and per iteration of max-likelihood computation.

88

3.5 Numerical Experiments

We perform several numerical experiments with synthetic datasets to demonstrate the scaling

of our approach and the ability to recover the true values of the parameters from the data. We

provide numerical evidence for both the computational scaling and accuracy of the parameter

estimations. We note that our approach in §3.2 allows deriving covariance functions from

physical principles followed by statistical analysis that employs the entire data set, the latter

underpinning our objective of quasilinear performance. It is worth asking whether such a

computational effort is worth the significant development cost and whether one can get away

with fitting with only a portion of the data. To this end, we present in Appendix §B.1 an

example of fitting a nonstationary process with a spatially linearily changing lengthscale.

In that example we observe that fitting only on a subdomain results in good confidence

intervals for the intercept of the lengthscale model but not the slope, whereas subsampling the

data reverses that behavior, and, finally, using the entire data set produces good confidence

intervals for both parameters, Figure B.1.1. Our approach in §3.2 allows for much more

flexible modeling, including complex nonstationary models by, for example, using PDEs with

spatially dependent parameters. It is thus likely to result in models where the dependency

of those parameters on the lengthscales is complex and deciding which portion of the data

to use for the purpose of obtaining good estimates may be a difficult endeavor. To this

end, we conclude that deriving algorithms which allow the use of the entire data set may be

worthwhile, and it is in this vein that we present the following numerical experiments.

3.5.1 SPDE Representation of Matérn Models

The SPDE approach to Gaussian fields can significantly reduce the computational cost of

inference and sampling by invoking a GMRF approximation. One of the most popular

examples is the stationary Matérn model. Recall a Gaussian field belongs to the Matérn

89

family if its covariance function can be written in the form

Mν,l (x,y) = (2ν−1Γ(ν))−1
(
||x− y||2

l

)ν

Kν

(
||x− y||2

l

)
. (3.5.1)

where Γ denotes the Gamma function and Kν denotes the modified Bessel function of the

second kind. The smoothness parameter ν controls the regularity of the random field, i.e. the

degree of differentiability. An important characterization by Whittle [205, 206] is that the

Matérn fields can be be defined as the solution to certain fractional order stochastic partial

differential equation. Specifically, a Gaussian field with covariance of form σ2mMν,l (x,y) is

the unique stationary solution to the SPDE

(
1

l2
−∆

)ν+d/2
2

(γw(x)) =W(x), x ∈ Rd, (3.5.2)

where W denotes the spatial Gaussian white noise with unit variance and the marginal

variance of w is given by

σ2m =
Γ(ν)l2ν

Γ(ν + d/2)(4π)d/2γ2
. (3.5.3)

Therefore we can control γ to get desired marginal variance for the Matérn field. It is worth

pointing out that such models have sparse inverse covariance matrices, and, for example,

the log-likelihood can be easily computed in quasilinear time directly without needing our

approach [120] . The score equations, however, and in particular, the trace term of (3.2.4)

do not have an obvious way to compute in quasilinear time if one wants to pursue maximum

likelihood calculations. It is worth then investigating the potential benefit of using our

approach to this end.

As discussed in [120], the SPDE formulation of Matérn field allows to simulate the random

field by computing the solution of (3.5.2). And (3.5.2) can further be efficiently approximated

90

by finite element analysis. In all the numerical simulations and studies described below, we

fix the smoothness parameter ν = 1 and restrict our attention to 2D space d = 2. In this

case the order of the SPDE differential operator is an integer ν+d/2
2 = 1. Now the SPDE

becomes

(
1

l2
−∆

)
(γw(x)) =W(x), x ∈ Rd. (3.5.4)

Given a set of finite element basis functions {Φi(x)}i=1,···,Nb
, we solve (3.5.4) via standard

finite element analysis. Assume that we observe the random process w at n observation points

(x1, · · · ,xn). We construct the observation matrix by evaluating the basis functions at given

observation locations,

Φ =


Φ1(x1) Φ2(x1) · · · ΦNb

(x1)

...
...

Φ1(xn) Φ2(xn) · · · ΦNb
(xn)

 . (3.5.5)

Note that Φ needs not be square and this flexibility can be used to define a latent grid on

which the operators can be easily inverted (e.g a rectangle), but use the projection matrix

to map onto the data space. Nevertheless we will assume that matrix vector products with

Φ and ΦT are easy to carry out, e.g the observations are well spread out and Φ is sparse.

Denote the finite element mass matrix Cij =
∫
R2 Φi(x)Φj(x)dx and stiffness matrix

Sij =
∫
R2∇Φi(x) · ∇Φj(x)dx. Further let C̃ denote the extracted diagonal matrix from C.

The approximated finite-dimensional random field follows multivariate Gaussian distribution,

(w(x1), · · · , w(xn))T ∼ N
(
0,ΦKwΦ

T
)
, where Kw =

1

γ2

(
1

l2
C + S

)−1
C̃

(
1

l2
C + S

)−T
.

(3.5.6)

91

More details about the finite element analysis can be found in [30]. Note that the co-

variance structure of (3.5.6) consists of a sequence of products and matrix inverses of sparse

finite element matrices. This model form enables fast covariance matrix-vector products

through sequential sparse matrix-vector products.

3.5.2 A Matérn Based Wind Velocity Model

Here we use a Matérn based Gaussian process model for the horizontal wind components

proposed in [82] as our numerical model. Specifically the horizontal wind velocity has two

components U = (u, v)T . The two components are connected via the Helmholtz decom-

position, which states that for any given wind field U there exists a streamfunction ϕ and

velocity potential χ, such that U = ∇×ϕ+∇χ. Assume the streamfunction and the velocity

potential have the following bivariate Matérn structure:

Kϕ,χ(x,y) =

 σ2ϕ ρσϕσχ

ρσϕσχ σ2χ

Mν,l (x,y) , (3.5.7)

where x,y are 2D spatial locations of the random field and Mν,l denotes the Whittle covari-

ance function given by (3.5.1).

To approximate the bivariate Matérn covariance matrix (3.5.7) using the SPDE approach

§3.5.1, we assume that both the streamfunction and the velocity potential are observed at

the same set of locations. Then we have

Kϕ,χ ≈

 σ2ϕ ρσϕσχ

ρσϕσχ σ2χ

⊗Kw, (3.5.8)

where ⊗ denotes the Kronecker product and Kw comes from (3.5.6).

The physics-based covariance model discussed back in Section 3.2.1 provides a flexible

92

way to construct the covariance model of the wind velocity components using underlying

physics relations. Here we restate the physics model involving the three random fields,

U = (u, v)T = ∇× ϕ+∇χ =

(
− ∂

∂e2
ϕ+

∂

∂e1
χ,

∂

∂e1
ϕ+

∂

∂e2
χ

)T

. (3.5.9)

We can use finite difference method to discretize the operator or we can directly take

the derivative of (ϕ, χ) since we have numerically approximated the solutions using finite

element basis functions. To enable fast matrix-vector products, we take the finite difference

discretization of the differential operators. Let L1,2 denote the discretized one-dimensional

differential operator with respect to the two directions e1 and e2. Then we have the dis-

cretized model

U =

−L2 L1

L1 L2


ϕ
χ

 = L

ϕ
χ

 . (3.5.10)

Now we use the physics-based covariance model in (3.2.2), the covariance of the wind velocity

components can be written as

KU = σnI2n + Φ̂LKϕ,χL
T Φ̂T . (3.5.11)

Here Φ̂ is a latent-to-data projection operator, and we assume that the measurements are

noisy with known variance σn (selected so the variance is a fraction of the sample variance).

If u, v are available at the same points, then we can have Φ̂ = [ΦT ,ΦT]T , where Φ is the

interpolation operator from (3.5.5) (which is what we will use in our calculations). Since L is

obtained by divided differences, it is sparse, moreover, we have access to efficient solvers for

applying the inverse operators in Kw (3.5.6) needed to access matrix-vector products with

Kϕ,χ (3.5.8).

In building KU we have shown one way to construct a meaningful, moderately complex

93

model which has the feature that matrix-vector products with KU can be evaluated fast

O(n log(n)) in this case (assuming the latent space size is of the order of the data space

size n), despite the fact that KU itself is dense. Therefore, storing it may be inaccessible

for large data sets and thus even more so having access to its Cholesky factors needed for

the log-determinant term in the likelihood. A similar construction pattern can be applied

beyond the classical Matérn model to circumstances where the SPDE representation can

also be extended to non-stationary, non-isotropic fields [120], temporal processes [81] and

spatial-temporal processes [163], and the resulting model will have the same property.

For our experiments, we use (3.5.11) and fix the smoothness parameter to ν = 1 in the

Matérn covariance function which corresponds to a process that is just barely not mean-

square differentiable. As discussed in [82], realistic mesoscale wind fields have a smoothness

parameter close to 1.25 to which our model is close. We use as true parameter values

(ρ, σϕ, σχ, l) = (0.7, 1, 0.3, 0.5) = θtrue and simulate five datasets on the 2D domain [−5, 5]2

from the Matérn field using R package RandomFields of [165]. Each dataset contains 220

observations for both ϕ and χ on an even grid across the domain; the wind field is then

generated by the relation (3.5.9). We also note that to obtain the approximation of the

Matérn covariance via (3.5.6), we perform finite element analysis with Neumann boundary

condition on a slightly larger domain [−5.5, 5.5]2 to avoid the boundary effect.

To approximate the covariance matrix by an HODLR format we use leaf level blocks with

sizes 256 or 512. Therefore, the maximum number of levels of the HODLR approximation is

⌊log2 (n/256)⌋ where n is both the size of KU and number of observations of the wind field U .

For all off-diagonal blocks, a fixed rank is used which we will experiment with and specify

later. The ordering of the observations is done by a KD-tree binary spatial partitioning.

The reordering step increases the degree to which off-diagonal blocks correspond to the

covariance between groups of well-separated points, a necessary characteristic for an efficient

hierarchically low rank representation. All the following computations shown in this section

94

were performed on a standard workstation with a 2.4 GHz CPU and 32 GB of memory.

Quasilinear Scaling of the Log-likelihood, Score Equations and the Fisher In-

formation

Our datasets are generated over a 210×210 = 220 grid at the finest level. To demonstrate the

numerical scaling, we coarsen the grid while also coarsening the finite element grid in (3.5.6)

and the PDE operator L by the same factor. We then subsample observations according to

the coarsened grids from the original dataset. For example, by coarsening both directions

using a factor of 2, we can get a 29 × 29 = 218 grid. Then we subsample the generated

observations of ϕ, χ, U according to the coarse grid. Now we obtain a dataset containing 218

data points. Performing the same downsampling procedure again provides us a dataset with

216 data points. Additionally we can randomly sample half of the grid points to observe on

the 218 grid. This gives us 217 observations. Using the method described above, we generate

datasets of size 2r on irregular grids for any r = 1, · · · , 20 by properly coarsening the grids

and taking partial observations.

We generate subsampled datasets of sizes 2r for r ranging from 9 to 16. The construction

of the HODLR approximation of KU is based on its products with sampling vectors as

described in 3.3.2. Here we test three different ranks for HODLR off-diagonal blocks k =

32, 64, 128.

Following our proposed workflow, we first construct the HODLR approximation for KU

and all its derivatives with respect to parameters θ = (ρ, σϕ, σχ, l) by matrix-vector products.

The time complexity mainly comes from two parts: the evaluations of matrix-vector products

with sampling vectors and the linear algebra computations including the QR factorization.

Thus we count the number of covariance matrix-vector evaluation calls and record the time

spent on the remaining linear algebra computations. The results are summarized in Fig.

3.5.1.

95

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

e
r

o
f

m
a

tr
ix

-v
e

c
to

r
p

ro
d

u
c
t

c
o

m
p

u
ta

ti
o

n
s

k=32

k=64

k=128

(a) Number of matrix-vector product
evaluations

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

k=32

k=64

k=128

O(n log
2
(n))

(b) Runtime of rest of the operations

Figure 3.5.1: Computational complexity of constructing the HODLR approximation of KU
and its derivatives with respect to the parameters θ: (a) the total number of required KU -
vector products and (b) shows the runtime (in seconds) of the rest linear algebra operations
for fixed off-diagonal rank 32 (blue curve with circles), 64 (red curve with crosses), 128 (yellow
curve with squares) over different sizes of observations. We use number of observations of
size n = 2r with r ranging from 9 to 16. In (b), to demonstrate the scaling, the theoretical
line (black dashed line) corresponding to O(n log2 n) is added to the plot.

As can be seen in Fig. 3.5.1, the number of matrix-vector products is linear with log n

and the slope depends on the off-diagonal rank we use. The scaling of the rest operations

exactly follows the expected O(n log n) scale. This validates our complexity estimation.

Next, as the fundamental building blocks of approximating the score equations and Fisher

information matrix, we want to show the two new operations tr(A−1B) and tr(A−1BC−1D)

proposed in Appendix B.2 are indeed quasilinear scale. In Fig. 3.5.2, we demonstrate the

complexity of both operations (a) tr(A−1B) and (b) tr(A−1BC−1D) given HODLR matrices

A,B,C,D. As can be seen above, the computational scaling of both operations follows closely

the expected O(n log2 n) line. We also compare the results with their exact counterpart when

the matrices are dense and have no hierarchical structures for r ≤ 14, as can be seen our

approach is 10 − 20 time faster at r = 14 at which point the exact approach runs out of

memory.

We now evaluate the complexity of computing the approximated log-likelihood, score

equations and observed Fisher information matrix. Given the constructed HODLR approx-

96

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

k=32

k=64

k=128

Exact

O(n log
2
(n))

(a) tr(A−1B)

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

k=32

k=64

k=128

Exact

O(n log
2
(n))

(b) tr(A−1BC−1D)

Figure 3.5.2: Runtime (in seconds) of (a) tr(A−1B) given two HODLR matrices A,B and
tr(A−1BC−1D) given the two products A−1B and C−1D for fixed off-diagonal rank 32
(blue curve with circles), 64 (red curve with crosses), 128 (yellow curve with squares) over
n = 2r observations with r from 9 to 16. Theoretic lines corresponding to O(n log2 n) scaling
(purple curve with pluses) are added to each plot. Additionally, we include the complexity
of their corresponding exact operations (black dashed line) when A,B,C,D are dense and
have no structure in each plot for r ≤ 14.

imation of the covariance matrix KU and its derivatives with respect to all the parameters,

we show the time taken to evaluate the log-likelihood, the score equations and the Fisher

information matrix in Fig. 3.5.3. All the three evaluations follow the theoretical O(n log2 n)

scale, which is also indicative of the complexity of the time per iteration when we use the

log-likelihood and score equations in a maximum likelihood algorithm. We conclude that our

HODLR approximation algorithm for the log-likelihood, the score equations and the Fisher

information matrix has quasilinear complexity and, moreover, the number of true covariance

matrix-vector products required to build the approximation is O(log n), as we claimed in our

analysis.

Numerical Accuracy of the Log-likelihood, Score Equations and the Fisher In-

formation

Next we demonstrate the numerical accuracy of the approximated log-likelihood, score equa-

tions and Fisher information matrix comparing to their exact values. When carrying out

97

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

k=32

k=64

k=128

Exact

O(n log
2
(n))

(a) Log-likelihood

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

k=32

k=64

k=128

Exact

O(n log
2
(n))

(b) Score equations

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

n

0.1

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

2000

5000

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

k=32

k=64

k=128

Exact

O(n log
2
(n))

(c) Observed Fisher informa-
tion matrix

Figure 3.5.3: Time taken (in seconds) to evaluate (a) the log-likelihood, (b) the score equa-
tions and (c) the observed Fisher information matrix exactly (purple curve with pluses) and
using HODLR approximations for fixed off-diagonal rank 32 (blue curve with circles), 64
(red curve with crosses), 128 (yellow curve with squares) over n = 2r observations with r
from 9 to 16. Theoretic lines corresponding to O(n log2 n) scaling (black dashed line) are
added to each plot.

the computations we will compare our model with another popular low-rank-type model,

the sparse spiked covariance model [39], which can be thought of as diagonal plus low rank

model. This will allow us to assess whether the workflow complexity and thus the devel-

opment complexity of our model, which, as can be seen above, is considerable, is justified

compared to the benefits it brings.

Sparse spiked covariance model for this model approximation class, we approximate the

true covariance matrix by diagonal plus low-rank components [39]:

KU ≈ σnI2n + V V T . (3.5.12)

Here σn is the same as in (3.5.11), and the approach is equivalent to considering the "physics-

based" part of the model being low rank, not unlike our previous work [49]. We assume σn is

known and estimate V using the randomized sketching techniques where we are only required

to evaluate KU -vector products. To ensure a fair comparison we consider a sparse spiked

model with O(log n) spikes, which is equivalent to sketching O(log n) low-rank components.

In this case it requires O(log n) KU -vector products to estimate the low-rank components

98

V and the log-likelihood computation takes O(n log2 n) time, which are both comparable to

our HODLR model. We then compute the derivatives of the covariance matrix with respect

to the parameters using the forward finite difference method since implementing the exact

calculations would be a complex development effort. The score equations and the Fisher

information matrix are thus computed using the numerical derivatives. Specifically we take

the number of spikes to grow as 57 log2(n), which was chosen so that at the lowest value of

the data size we choose the computation would be exact. That is for the lowest n considered

we have 57 log2(n) ≈ n (it is actually larger by 1 and we truncate it to n) so KU would be

in that case the exact covariance matrix. For the HODLR method, we used k = 128 for the

off-diagonal rank in this experiment.

We subsample our datasets to generate observations of size 2r for r ranging from 9 to 12.

Recall that our dataset is simulated using the true parameter values θtrue = (0.7, 1, 0.3, 0.5).

We explore the approximation accuracy of our approach both at the MLE point (ρ̂, σ̂ϕ, σ̂χ, l̂)

and at a potential starting point of the optimization, which was chosen to be θinit =

(0.5, 0.5, 0.5, 0.5). For both points, we use the standard relative precision to measure the

approximation accuracy. Note that when the log-likelihood is maximized exactly, the score

equations should be exactly 0. In this case the relative precision is undefined. We also

consider two scaling-free measures at the estimated MLE point from [71],

ηg := ||S(θ)− S̃(θ)||I(θ)−1 , (3.5.13)

for the score equations where S(θ), S̃(θ) are the exact and approximated score equations

respectively. We also measure

ηI := tr
(
(I(θ)− Ĩ(θ))(I(θ)−1 − Ĩ(θ)−1)

)1/2
, (3.5.14)

for the Fisher information matrix, which is a natural metric for positive definite matrices.

99

We use ϵ
L̃
, ϵ

S̃
, ϵĨ to denote the relative precision of log-likelihood, score equations and Fisher

information matrix respectively. The averaged relative precision of the log-likelihood, score

equations, and Fisher information matrix over all the five independently simulated datasets

is summarized in part (a) of Tables 3.2 and 3.3 for our HODLR model and in part (b) of

Tables 3.2 and 3.3 for the sparse spiked covariance model.

n = 29 n = 210 n = 211 n = 212 n = 213

ϵ
L̃
−6.72 −6.13 −5.82 −3.76 −3.79

ϵ
S̃
−5.71 −4.73 −4.71 −2.07 −2.60

ϵI −7.80 −6.07 −5.66 −1.96 −1.85
(a) HODLR covariance estimation

n = 29 n = 210 n = 211 n = 212 n = 213

ϵ
L̃
−15.58 −2.15 −1.07 −1.01 −0.71

ϵ
S̃
−7.42 −1.22 −0.36 −0.24 −0.09

ϵI −0.70 −0.81 −0.42 −0.36 −0.16
(b) Sparse spiked covariance estimation

Table 3.2: Averaged relative precision (on log10 scale) of the log-likelihood, score equations
and observed Fisher information matrix. All the results are averaged for five datasets and
are evaluated at the initial point of optimization θinit = (0.5, 0.5, 0.5, 0.5).

n = 29 n = 210 n = 211 n = 212

ϵ
L̃
−6.68 −5.40 −6.15 −3.00

ϵI −6.47 −5.16 −5.90 −1.83
ηg −8.29 −5.15 −5.57 −0.58
ηI −5.57 −4.53 −4.86 −0.68

(a) HODLR covariance estimation
n = 29 n = 210 n = 211 n = 212

ϵ
L̃
−15.57 −2.16 −1.04 −1.00

ϵI −0.77 −0.59 −0.41 −0.33
ηg −11.02 0.56 1.99 2.28
ηI 0.47 0.22 0.53 0.64

(b) Sparse spiked covariance estimation

Table 3.3: Averaged relative precision (on log10 scale) of the log-likelihood, score equations
and observed Fisher information matrix. All the results are averaged for five datasets and
are evaluated at the MLE point. Here ϵ

S̃
is removed since the exact score equations tend to

zero at the MLE point.

100

For the HODLR method, we see that the log-likelihood can be approximated very accu-

rately, better than 0.1% relative accuracy both at the starting point and the MLE point. The

score equations have relative errors less than 1% at the starting point and significantly bet-

ter for the smaller cases. The observed Fisher information has relative error less than 1.5%

(except on the scaling-free metrics on the largest case), and most times, significantly better

than that, for a quantity that most times goes to infinity for increased problems size. The

accuracy is worse compared to the HODLR approach in [71], though broadly comparable;

we note, moreover, that that approach used explicit kernels.

Notice that when n = 29, 57 log2(n) = 513 which we truncate to 512 = 29. In that case

the sparse spiked model is full-rank for the size of the problem. In that circumstance the

log-likelihood can be estimated up to machine precision and the finite difference estimated

score equations achieve square root of the machine precision. However the precision decays

very quickly as the problem size grows, especially for the score equations and the Fisher

information matrix. The error becomes even larger as the parameters getting closer to

the exact MLE point estimates. Gradient-based optimization methods can fail with the

unreliable gradient estimates. Other than n = 29, the error of this approach compared

to our HODLR method is worse by at least one order of magnitude for all metrics and

on average much worse than that. While some of this may conceivably be due to the

numerical approximation of the derivatives, that concern is inapplicable for the likelihood

approximation where errors are worse by two orders of magnitude. We conclude that HODLR

is significantly superior in accuracy to the sparse spiked model, and that its additional

development complexity and effort is justified.

Parameter Estimation

The previous subsections demonstrate both the scaling and the numerical accuracy of our

proposed approximations. Both the two factors indicate their suitability for parameter es-

101

timations and uncertainty quantifications. Now we fit successively larger observations to

obtain both the point estimates of the unknown parameters and their estimated confidence

intervals using the observed Fisher information matrix. We take n = 2r observations with r

from 9 to 14. In our experiments the HODLR off-diagonal rank is fixed at k = 128. To solve

the maximum likelihood estimation we use MATLAB’s fminunc function with the default

quasi_newton algorithm to solve the unconstrainted optimization problem with respect to

the parameters. We compare the exact model, the sparse spiked model and our proposed

HODLR model. The initial guess is set to be θinit = (0.5, 0.5, 0.5, 0.5). The stopping condi-

tion is chosen to be a relative tolerance of 10−6. For small sets of observations r ≤ 12, we also

provide parameter values estimated using the exact score equations. Fig. 3.5.4 summarizes

both the estimated parameters and their 95% confidence intervals for three independently

simulated datasets.

As we can observe, the parameter estimates by our proposed approximations and the

exact estimates are fairly close, both in terms of the parameter point estimates and the width

of confidence intervals. Moreover, importantly, the true parameters are in the confidence

intervals at our approach or very close to them except for large cases for the scale parameter,

an issue also observed in [71]. We note that, for the Matérn models, despite their ubiquity in

spatial statistics, it is known that some parameters may not always be estimable [218, 219,

176]. Therefore, such an outcome, where the parameters are outside the confidence intervals,

is possible. What needs to be observed, however, is that whenever the exact confidence

intervals could be computed they were essentially the same as the HODLR approach, except

that HODLR produced them much faster. In contrast, the sparse spiked model provides

decent parameter point estimates and confidence interval estimations for problems of small

scales (n ≤ 210 for example). But the results quickly diverge as we move to large-scale

dataset. The confidence interval estimations become even more problematic as we have seen

in Table 3.3. In practice we can encounter indefinite Fisher information approximations,

102

0.3

0.7

1.1

0.8

1

1.2

0

0.2

0.4

0.6

2
9

2
10

2
11

2
12

2
13

2
14

n

0.3

0.5

0.7

l

2
9

2
10

2
11

2
12

2
13

2
14

n

2
9

2
10

2
11

2
12

2
13

2
14

n

Figure 3.5.4: Estimated MLEs and their 95% confidence intervals using n = 2r observations
with r from 8 to 13. Three columns in the figure represent results for three independently
simulated datasets. The true parameter values θtrue = (ρ, σϕ, σχ, l) = (0.7, 1, 0.3, 0.5) are
added into each plot as black horizontal lines. We compare three models: (1) proposed
HODLR model (blue curve with circles), (2) sparse spiked model (yellow curve with squares),
(3) exact estimates (red line with x’s) provided only for r = 8, · · · , 10.

generating imaginary confidence interval width. In Fig. 3.5.4 we only plot the real part of

the confidence intervals. We conclude that the HODLR approach systematically produces

confidence intervals comparable to the exact method, whereas the sparse spiked models has

a variable and, sometimes, much worse accuracy than either.

We note that finding a good initial point for parameter optimizations can be difficult

in practical applications. On the other hand, smaller off-diagonal ranks k = 36, 72 can

103

also provide satisfying estimates with significantly faster runtime per iteration (since the

complexity is at least quadratic with local rank k). A useful strategy is to try out different

starting points with smaller off-diagonal rank k and switch to larger rank when getting close

to the MLE point.

3.5.3 Stationary Advection-diffusion-reaction Equation

In this example, we consider a 2D advection-diffusion-reaction equation given by:

−div(κ∇u) + v · ∇u+ cu = ϕ in Ω = [−5, 5]2, (3.5.15)
∂u

∂n
= 0 on ∂Ω. (3.5.16)

The coefficients κ,v, c represent the diffusion, the advective velocity and the reaction con-

stant, respectively. Here ϕ is the latent source term we are interested in and u is the physical

quantity that we can take measurements. Assume the source term ϕ is a Gaussian random

field with Matérn covariance function:

ϕ ∼ N
(
20 · exp

(
−||x||

2

2 · 22

)
, σ2ϕMν,l

)
. (3.5.17)

The mean function is known. Similarly by the SPDE representation, we can use (3.5.6) to

approximate the covariance. We use L to denote the discretized elliptic operator induced by

(3.5.15) and (3.5.16). Then Lu = ϕ represents the elliptic PDE and u has covariance model

Ku = σnIn + ΦL−1Mν,lL
−T Φ̂, where σn is again observation noise. We form the sparse

matrix L and use the backslash operator, effectively the standard LU factorization in Matlab.

The covariance matrix-vector product is done sequentially, and involves two PDE solves and

one matrix-vector product with the Matérn covariance SPDE approximation (3.5.6).

For the numerical experiments below, the magnitude parameter σϕ and length scale pa-

rameter l are treated as the unknown parameters. We fix the smoothness parameter ν = 1,

104

and choose the physical parameters κ = 0.001, c = 0.5,v = (x1+5, x2+5). To solve the PDE

(3.5.15) we discretize the domain Ω = [−5, 5]2 using a finite element mesh. The approxi-

mation of the Matérn covariance (3.5.6) is also obtained via finite element computations.

However it is performed on a slightly larger domain [−7.5, 7.5]2 to avoid the boundary effect.

The ground truth parameter values are taken to be (σϕ, l) = (1, 1). We use the true

parameters to simulate five Matérn random field using the R package RandomFields [165].

Each dataset contains 220 samples of ϕ on a regular 2D grid over [−7.5, 7.5]2. The observa-

tions of u are then generated by solving the PDE (3.5.15) and adding simulated measurement

noise with σn chosen so that the sample standard deviation is 20% of the sample one.

To approximate the covariance matrix to HODLR we use leaf level blocks with size be-

tween 256 and 512. The maximum level of the HODLR approximation is thus ⌊log2 (n/256)⌋

where n is both the size of Ku and number of observations of u (in other words, we choose

m = n here). For all off-diagonal blocks, a fixed rank k = 128 is used.

Numerical Accuracy of the Log-likelihood, Score Equations and the Fisher In-

formation

We demonstrate the numerical accuracy of the approximations for different sizes of observa-

tions. Assume the starting point of parameter estimation is (σϕ, l)init = (1.5, 1.5).

Similarly we evaluate the accuracy using relative precision at the initial point and addi-

tionally measure (3.5.13) and (3.5.14) around the MLE point of the parameter estimations.

All results in Table 3.4 and Table 3.5 are averaged from five independent datasets. We esti-

mate the unknown parameters (σϕ, l) by solving the approximated score equations (3.4.2).

Fig. 3.5.5 illustrates both the estimated parameters and their 95% confidence intervals for

three independently simulated datasets. Similarly the optimization is conducted using the

MATLAB’s fminunc function with the default quasi_newton algorithm with a relative tol-

erance of 10−6.

105

n = 29 n = 210 n = 211 n = 212 n = 213

ϵ
L̃
−6.52 −5.62 −5.86 −5.26 −5.35

ϵ
S̃
−4.25 −2.76 −2.68 −2.06 −2.21

ϵI −6.10 −5.44 −4.96 −3.88 −2.47

Table 3.4: Averaged relative precision (on log10 scale) of the log-likelihood, score equations
and observed Fisher information matrix. All the results are averaged for five datasets and
are evaluated at the initial point of optimization (σϕ, l)init = (1.5, 1.5).

n = 29 n = 210 n = 211 n = 212

ϵ
L̃
−6.64 −5.87 −6.04 −5.54

ϵI −6.41 −5.60 −5.38 −4.64
ηg −7.21 −5.78 −5.34 −3.89
ηI −6.00 −5.33 −5.02 −4.31

Table 3.5: Averaged relative precision (on log10 scale) of the log-likelihood, score equations
and observed Fisher information matrix. All the results are averaged for five datasets and
are evaluated at the MLE point. Here ϵ

S̃
is removed since the exact score equations tend to

zero at the MLE point.

Parameter Estimation

The more relevant outcome, whether the true parameters are in the confidence intervals

of the estimates obtained after the approximation, are however, better than those of §3.5.2

particularly for large examples. The parameter point estimations and the confidence intervals

are summarized in Fig. 3.5.5. The parameter l is comparable in significance, though not in

value, and, being smaller here it may be in itself the reason for the better fit. The approach

certainly shows reasonable accuracy and consistency in our view, particularly given the fact

that the covariance model is implicit. We point out that, in this section in particular, the

model for u requires solving a partial differential equation to get, even if one would do an

explicit treatment of the Matérn kernel itself (which would have been an option for the

model in §3.5.2). Therefore in this case, for this model, our approach appears to be the only

scalable alternative.

106

0.5

1

1.5

2
9

2
10

2
11

2
12

2
13

2
14

n

0.5

1

1.5

l

2
9

2
10

2
11

2
12

2
13

2
14

n

2
9

2
10

2
11

2
12

2
13

2
14

n

Figure 3.5.5: Estimated MLEs and their 95% confidence intervals using n = 2r observations
with r from 8 to 13. Three columns in the figure represent results for three independently
simulated datasets. The true parameter values θtrue = (σϕ, l) = (1, 1) are added into each
plot as black horizontal lines. Exact estimates (circle) are provided for r = 8, · · · , 10.

3.6 Discussion

In this paper, we propose a novel scheme for applying the well-known hierarchical matrices

to Gaussian process maximum likelihood parameter estimation problem. For many spatial

statistical problems, nearby observations have smoothly varying correlations with the rest of

the system. By carefully reordering the observations and exploiting the structure, the off-

diagonal blocks of the corresponding covariance matrix usually have fast decaying spectrum,

which enables the application of hierarchical matrices to approximate the covariance matrix.

This technique makes it possible to work with large datasets of measurements observed on

unstructured grids. Estimations of the likelihood function, the score equations, and the

expected Fisher information matrix all scale quasilinearly. Then the parameter estimations

and uncertainty quantification can be obtained based on solving the score equation system

and inverting the expected Fisher information matrix. Moreover, our approach uses ideas

from [119] to construct the covariance matrix using only O(log(n)) matrix-vector products.

For statistical models defined implicitly, by means of stochastic differential equations that

107

allow fast solvers for their deterministic counterparts, this allows for a very efficient way

of building the HODLR approximation while allowing for a very flexible way of statistical

modeling, such as, for example when dealing with nonstationarity for which explicit models

are difficult to generate. We also note that in the process we proposed a way to compute

exactly (without re-compression) traces of products of HODLR matrices which are important

for both efficient evaluation of the score equations and computing the features of the Fisher

Information matrix.

We note that the quality of the approximation depends crucially on the ordering of the

observations and the local ranks of off-diagonal blocks. The proposed approach is a fixed

rank strategy. An adaptive rank extension of the algorithm is certainly an important future

direction to investigate. This can be done, potentially, by applying the adaptive randomized

range sketching algorithm [79] with an online posterior estimate of the approximation error

via samples. The choice of local ranks k itself provides a balance between complexity and

accuracy. Generally the local ranks grow moderately as the problem size grows. It is also

meaningful to increase the rank when the estimations get close to the optimality. Moreover,

the approximation decreases in quality with increasing level order, it would be interesting to

explore way of slightly increase the access to the covariance matrix and stabilize it – perhaps

by combining it with stochastic estimators.

108

CHAPTER 4

COMMITTOR FUNCTIONS VIA TENSOR NETWORKS

4.1 Introduction

Understanding rare transitions between metastable states of a high-dimensional stochastic

processes is a problem of great importance in the applied sciences. Examples of interesting

transition events include chemical reactions, nucleation events during phase transitions, and

conformational changes of molecules [109, 137, 217, 221, 24, 74]. In such complex systems,

the dynamics linger near metastable states for long waiting periods, punctuated by sudden

jumps from one metastable state to another. One important tool for describing transition

events is transition path theory [201, 123, 190, 199], where the committor function plays

a central role. The committor function measures the probability that the process hits a

certain metastable state of the system before another and can be viewed as the solution of

a backward Kolmogorov equation.

Computing the committor function in high-dimensional settings is a formidable task.

Traditional numerical methods such as finite difference and finite element methods become

prohibitively expensive in even moderate dimensions. To overcome the curse of dimensional-

ity, significant efforts have been expended to apply deep learning framework to solve for high

dimensional partial differential equations [202, 171, 80, 94, 147]. Most recently [95, 115, 114]

have suggested representing the committor function using neural networks. Some of these

approaches rely on sampling from the equilibrium distribution and so work well when the

transitions are easily observed. For, e.g., chemical systems at low temperature the commit-

tor function can change sharply between the two metastable states, and transitions are rare

and difficult to sample. To address this problem, [154] has proposed an adaptive importance

sampling scheme. Meanwhile, the dynamical Galerkin framework for computing commit-

tor functions [184], which represents functions in a basis rather than as neural networks,

109

approaches the sampling problem by initializing short trajectories uniformly according to

known reaction coordinates.

Tensor network methods [61, 139, 193, 138, 64, 97] have emerged as an alternative to

neural networks as a tool for high-dimensional problems in modern quantum physics and

beyond. Typical tensor decomposition methods include tensor trains [141] (also known as

linear tensor networks or matrix product states [1, 143, 204]), the CP decomposition [83], and

the Tucker/Hierarchical Tucker decomposition [83, 188, 78]. These methods approximate

tensors in compressed, structured formats that enable efficient linear algebra operations.

More details can be found in [102, 76, 75, 96]. Moreover, tensor network methods have also

been applied to solve for high-dimensional partial differential equations [98, 11].

In this paper we propose a novel approach to computing committor functions based

on matrix product states/tensor trains. Specifically, we approximate both the equilibrium

probability distribution and the committor function using tensor trains, achieving good per-

formance even for high-dimensional problems in the low-temperature regime. This new

approach fully bypasses the aforementioned difficulties due to sampling and establishes an

alternative method for studying rare transition events between metastable states in complex,

high-dimensional systems.

The rest of the paper is organized as follows. The committor function and its properties

are reviewed in Section 4.2. Therein we also explain how the boundary condition can be

accommodated within our tensor format and provide a summary of relevant tensor network

methods. We introduce the key ingredients of our proposed method in Section 4.3. Nu-

merical experiments for two representative classes of examples are presented in Section 4.4,

demonstrating the accuracy and efficiency of the proposed algorithm. Finally, in Section 4.5

we summarize our findings.

110

4.2 Background and preliminaries

In this section we first review the motivation for computing committor functions, and sum-

marize challenges and recent advances relevant to this task. We then briefly discuss tensor

train decompositions, introduce the basic tensor operations, and define relevant associated

notations used in this work. Throughout the paper, we use MATLAB notation for multidi-

mensional array indexing.

4.2.1 Committor functions

The underyling stochastic process of interest is the overdamped Langevin process, defined

by

dXt = −∇V (Xt) dt+

√
2β−1 dWt, (4.2.1)

where Xt ∈ Ω ⊂ Rd is the state of the system, V : Ω ⊂ Rd → R is a smooth potential energy

function, β = 1/T is the inverse of the temperature T , and Wt is a d-dimensional Wiener

processs. If the potential energy function V is confining for Ω (see, e.g., [25, Definition 4.2]),

then one can show that the equilibrium probability distribution of the Langevin dynamics

(4.2.1) is the Boltzmann-Gibbs distribution

p(x) =
1

Zβ
exp(−βV (x)). (4.2.2)

where Zβ =
∫
Ω exp(−βV (x)) dx is the partition function. We are interested in the transition

between two simply connected domains A,B ⊂ Ω with smooth boundaries. The associated

committor function q : Ω→ [0, 1] is defined by

q(x) = P(τB < τA | X0 = x), (4.2.3)

111

where τA and τB are the hitting times for the sets A and B, respectively. The committor

function q provides a useful statistical description of properties such as the density and prob-

ability of reaction trajectories [190, 199, 150]. However, computing the committor function

can be a formidable task since it involves solving the following (possibly high-dimensional)

backward Kolmogorov equation with Dirichlet boundary conditions:

−β−1∆q(x) +∇V (x) · ∇q(x) = 0 in Ω\(A ∪B), q(x)|∂A= 0, q(x)|∂B= 1. (4.2.4)

For high-dimensional problems, traditional methods such as finite difference and finite ele-

ment discretization are intractable. Numerous alternative methods can effectively approx-

imate the committor function under the assumption that the transition paths from A to

B are localized in a quasi-one-dimensional reaction tube or low-dimensional manifold. For

example, the finite temperature string method [200, 191] approximates the isosurfaces of the

committor function with hyperplanes normal to the most probable transition paths. The

diffusion map approach [56] aims to obtain the committor function on a set of points by

applying point cloud discretization to the generator L = −β−1∆+∇V (x) · ∇. The method

presented in [107] improves the diffusion map approach by discretizing L using a finite ele-

ment method on local tangent planes of the point cloud. Also an alternative approach was

introduced by solving a potential function instead, see [124] for details.

To compute the committor function, a classic approach is to solve the variational problem

argmin
q

∫
Ω
|∇q(x)|2p(x) dx, q(x)|∂A= 0, q(x)|∂B= 1, (4.2.5)

for which (4.2.4) is the Euler-Lagrange equation, see for example [127, 95, 115, 114, 154].

Specifically [95, 115, 114] proposed to parametrize the committor function q using neural net-

works. In order to obtain an unconstrained optimization problem, the boundary conditions

112

are enforced in [95, 114, 154] by adding two extra penalty terms, as in

argmin
q

∫
Ω
|∇q(x)|2p(x) dx+ ρ

∫
∂A

q(x)2p∂A(x) dx+ ρ

∫
∂B

(q(x)− 1)2p∂B(x) dx, (4.2.6)

where p∂A and p∂B define probability measures supported on the boundaries ∂A and ∂B

respectively. In all of these works, the objective is evaluated and optimized via stochastic

sampling. By contrast, in this work, we propose to represent the committor function q in a

tensor train format, which will allow for optimization via stable and efficient deterministic

linear algebra operations.

Since the potential function V is confining, we can effectively restrict our domain of

interest to a bounded subset of Ω. Outside of this subset, the density is small and contributes

only negligibly contributes to the variational cost (4.2.5). For simplicity we shall identify Ω

with this subset and assume Ω = Ω1 × Ω2 × . . .Ωd where each Ωi ∈ R is a bounded subset.

4.2.2 Soft boundary condition

Unfortunately, the formulation (4.2.6) is not immediately amenable to optimization within a

tensor format for q. The reason is that the surface measures on ∂A and ∂B cannot themselves

be identified with functions on Ω, much less as functions that can be compressed in tensor

format, so the penalty terms cannot simply be viewed as inner products of tensor trains.

Therefore we instead consider an objective of the form

argmin
q

∫
Ω
|∇q(x)|2p(x) dx+ ρ

∫
Ω
q(x)2pA(x) dx+ ρ

∫
Ω
(q(x)− 1)2pB(x) dx. (4.2.7)

Here pA and pB are probability densities that are supported on boundaries A and B, respec-

tively, and absolutely continuous with respect to the Lebesgue measure on Ω.

In fact, we show in C.1 that the exact optimizer of (4.2.7) admits a probabilistic inter-

pretation similar to that of the usual committor function. As such we call the optimizer

113

a ‘soft committor function.’ Specifically, the interpretation is based on a modification of

the Langevin dynamics (4.2.1) in which one augments the state space Ω with two ‘cemetery

states’ cA and cB . The process jumps randomly to these two states with instantaneous jump

rates ρ · pA
β · p and ρ · pB

β · p , respectively. The soft committor function evaluates the probability

that the modified process hits cB before cA. This formulation is rather similar to the Pois-

son type equation introduced in [124] with some differences in the right hand side of the

equation.

From a different perspective, when ρ is large and pA and pB concentrate near ∂A and ∂B,

respectively, the soft committor function can be viewed as an approximation of the ordinary

committor function. In fact, if pA and pB are Gaussian densities, then in high dimensions

[29], pA and pB each weakly approximates a uniform measure on a suitable hypersphere. This

is convenient because A and B are often chosen to be balls and the Gaussian densities have

exact tensor train representations. Section 4.3.3 provides two examples on the construction

of pA and pB using Gaussian densities. In practice we choose pA and pB such that they

are well-representable in tensor train format (introduced in subsection Section 4.2.3.) More

details on the construction of pA and pB will be provided below in Section 4.3.

For simplicity, in what follows we will simply refer to soft committor functions as com-

mittor functions.

4.2.3 Tensors and tensor networks

In this subsection we summarize the basic tensor operations used in this work. In particular,

for ease of exposition we introduce tensor network diagram notation, which provides a con-

venient way of visually describing tensor operations. We also introduce the matrix product

state/tensor train format for parametrizing high-dimensional functions.

In tensor diagrams, a tensor is represented by a node, where the number of incoming legs

indicates the dimensionality of the tensor, i.e., the number of indices/arguments. There are

114

two types of leg: legs indicating continuous arguments are denoted by dashed lines, and legs

indicating discrete indices are denoted by solid lines. For example, Fig. 4.2.1 (a) shows the

tensor diagram for a 3-tensor A and a 2-tensor B, which can be viewed as two functions

A(x1, i2, i3), B(j1, x2), (4.2.8)

respectively, where x1, x2 are continuous variables and i2, i3, j1 are discrete variables.

We also define the multi-dimensional Kronecker delta tensor (depicted by an inverted

triangular node as in Fig. 4.2.1 (b)):

δ(x1, x2, . . . , xd) =


1 if x1 = x2 = · · · = xd.

0 otherwise.
(4.2.9)

By a slight abuse of notation, we will use the same symbol to represent the appropriate Dirac

delta function when the legs represent continuous variables.

(a) (b)

Figure 4.2.1: (a) Tensor diagrams for a 3-tensor A and a 2-tensor B. (b) Tensor diagram
for a d-dimensional Kronecker Delta node. Solid lines correspond to discrete variables, and
dashed lines correspond to continuous variables.

Next we describe a key operation called tensor contraction. This operation is indicated

visually by joining legs from different tensors. For example, in Fig. 4.2.2 (a), the third leg

of A is joined with the first leg of B. This corresponds to the computation

C(x1, i2, x2) =
∑
k

A(x1, i2, k)B(k, x2), (4.2.10)

115

where it is implicitly assumed that the indices of the joined legs have the same range. Here

x1, x2 are continuous variables, and i2 is a discrete variable.

Tensor contraction can be defined for continuous legs as well. For example, in Fig. 4.2.2

(b), continuous legs of A and B are contracted, corresponding to the operation

D(j1, i2, i3) =
∫
Ω0

B(j1, x)A(x, i2, i3) dx, (4.2.11)

for some suitable domain Ω0, which is implicitly assumed to be the domain of both joined

legs. The resulting tensor D is a 3-tensor with only discrete legs.

(a)

(b)

Figure 4.2.2: (a) Tensor contraction of discrete legs. (b) Tensor contraction of continuous
legs.

A tensor network diagram consists of a collection of individual tensor diagrams with some

pairs of legs joined, i.e., contracted. The contracted legs correspond to the so-called ‘internal

indices’ for the tensor network, while the uncontracted legs correspond to ‘external indices,’

which are the indices remaining after all of the indicated contractions have been performed.

Next we introduce several low-complexity tensor networks and their corresponding dia-

grams. A matrix product state (MPS) or tensor train (TT) is a factorization of a d-tensor

into a chain-like product of 3-tensors. Such a factorization allows one to approximate high-

dimensional tensors and manipulate them efficiently, typically with O(d) time and memory

complexity.

116

Definition 1. Let A ∈ Rn1×n2×...×nd be a d-tensor, with entries indexed by (i1, i2, . . . , id).

Then we say that A is a MPS/TT with ranks r = (r0, . . . , rd), where we fix r0 = rd = 1 by

convention, if one can write

A(i1, i2, . . . , id) =

r0∑
α0=1

· · ·
rd∑

αd=1

G1(α0, i1, α1)G2(α1, i2, α2) . . .Gd(αd−1, id, αd)

= G1(:, i1, :)G2(:, i2, :) · · · Gd(:, id, :) (4.2.12)

for all (i1, i2, . . . , id). Here Gk(:, ik, :) ∈ Rrk−1×rk is viewed as a matrix for each k = 1, . . . , d,

and the matrix product in (4.2.12) is a 1 × 1 matrix, i.e., a scalar value. The 3-tensor

Gk ∈ Rrk−1×nk×rk is called the k-th tensor core of A.

In tensor diagrams, an MPS/TT is represented by a chain of 3-tensors, as in Fig. 4.2.3

(a). Note that the 0-th and last tensor cores can be viewed as 2-tensors since r0 = rd = 1,

and as such the corresponding legs can be omitted from the diagram.

(a) (b)

Figure 4.2.3: (a) d-dimensional TT/MPS. (b) d-dimensional MPO. The indices depicted
match the expressions in (4.2.12) and (4.2.14). Note that we omit the legs for the trivial
indices α0 and αd.

A matrix product operator (MPO) is a type of tensor network analogous to matrix for

which each constituent tensor has two external, uncontracted legs as well as two internal

indices contracted with neighboring tensors in a chain-like fashion. Concretely, an MPO is
117

a tensor O ∈ R(m1×m2×...×md)×(n1×n2×...×nd) that can be written in the form

O(i1, . . . , id; i
′
1, . . . , i

′
d) =

∑
α0,...,αd

G1(α0, i1, i′1, α1) . . .Gd(αd−1, id, i
′
d, αd) (4.2.13)

= G1(:, i1, i′1, :) . . .Gd(:, id, i
′
d, :), (4.2.14)

where the sum over αk has a range defined by a corresponding rank rk, as in Definition

1, and r0 = rd = 1 by convention. In this case we similarly say that the MPO has ranks

r = (r0, . . . , rd). The 4-tensor Gk ∈ Rrk−1×mk×nk×rk is called the k-th tensor core. A

corresponding tensor network diagram is shown in Fig. 4.2.3 (b).

For further background on tensor networks and diagrams, see [139].

4.3 Proposed method

In this work we obtain the committor function by solving the variational problem (4.2.7)

within a MPS/TT parametrization for the committor function q. We demonstrate that by

approximating the equilibrium probability density p in MPS/TT format, this optimization

problem can be solved using basic tensor operations. In particular the minimization is

accomplished using a standard alternating least squares approach.

4.3.1 Discretizing the variational problem

We will represent the unknown committor function in a tensor product basis according to

the product structure of the domain Ω = Ω1 × Ω2 × . . . × Ωd. Within this basis, we will

approach the variational problem (4.2.7) by Galerkin approximation.

To begin, suppose that we have an orthogonal basis for each L2(Ωk), denoted by {ϕ(k)j }
∞
j=1.

In order to obtain a finite-dimensional problem we consider the subspace of L2(Ωk) spanned

by only the first L(k) basis functions. Here the L(k), k = 1, . . . , d, are a set of positive inte-

118

gers which are either fixed or determined adaptively. Then given the finite basis {ϕ(k)j }
L(k)

j=1 ,

which spans a subspace of L2(Ωk) for each k = 1, . . . , d, we can consider an expansion of q

in the corresponding tensor product basis:

q(x) =
∑

i1,...,id

Q(i1, . . . , id)ϕ
(1)
i1

(x1) . . . ϕ
(d)
id

(xd),

:=
∑
i

Q(i)ϕ(1)i1
(x1) . . . ϕ

(d)
id

(xd), (4.3.1)

where, for notational convenience, we have defined i := (i1, i2, . . . , id) and x := (x1, x2, . . . , xd).

Additionally, we set ϕ(k) := (ϕ
(k)
j)L

(k)

j=1 . Each ϕ(k) can be viewed as a 2-tensor via ϕ(k)(j, x) =

ϕ
(k)
j (x), where the first index is the basis function index and the second (continuous) index

is a spatial coordinate. Then the decomposition (4.3.1) for q can be depicted graphically as

in Fig. 4.3.1.

Figure 4.3.1: Tensor diagram for the decomposition (4.3.1) of the committor function.

To determine the committor function q within the truncated tensor product basis, we

want to determine the coefficient tensor Q that is optimal in the sense of (4.2.7). By

inserting the parameterization (4.3.1) into the variational problem (4.2.7), we can rewrite

119

the optimization problem as follows,

argmin
Q

d∑
k=1

∑
i,j

Hk(i; j)Q(i)Q(j)

︸ ︷︷ ︸∫
Ω|∇q(x)|2p(x) dx

+ ρ
∑
i,j

HA(i; j)Q(i)Q(j)

︸ ︷︷ ︸
ρ
∫
Ω q(x)2pA(x) dx

+ ρ
∑
i,j

HB(i; j)Q(i)Q(j)− 2ρ
∑
i

Q(i)hB(i) + ρ

︸ ︷︷ ︸
ρ
∫
Ω(q(x)−1)2pB(x) dx

, (4.3.2)

where

Hk(i; j) =

∫
Ω

∂

∂xk

[
ϕ
(1)
i1

(x1) . . . ϕ
(d)
id

(xd)
] ∂

∂xk

[
ϕ
(1)
j1

(x1) . . . ϕ
(d)
jd

(xd)
]
p(x) dx (4.3.3)

HA(i; j) =

∫
Ω
ϕ
(1)
i1

(x1) . . . ϕ
(d)
id

(xd)ϕ
(1)
j1

(x1) . . . ϕ
(d)
jd

(xd)pA(x) dx (4.3.4)

HB(i; j) =

∫
Ω
ϕ
(1)
i1

(x1) . . . ϕ
(d)
id

(xd)ϕ
(1)
j1

(x1) . . . ϕ
(d)
jd

(xd)pB(x) dx (4.3.5)

hB(i) =

∫
Ω
ϕ
(1)
i1

(x1)ϕ
(2)
i2

(x2) . . . ϕ
(d)
id

(xd)pB(x) dx. (4.3.6)

Here (i; j) = (i1, . . . , id; j1, . . . , jd) is a concatenation of multi-indices. We can simply

ignore the last constant ρ since it does not affect the minimizer. Computing the tensors

{Hk}dk=1, H
A, HB , and hB is prima facie intractable as it requires us to perform integration

over the d-dimensional domain Ω, in addition to storing tensors of exponential size in d.

Moreover, the number of unknown tensor entries of Q is also exponential in d. Traditional

approaches are therefore prohibitively expensive for d of even moderate size.

In the next two sections we show how to use MPS/TT approximations to obtain {Hk}dk=1,

HA,HB ,hB , allowing us to solve the optimization problem (4.3.2) with computational and

storage complexities of O(d).

120

4.3.2 Constructing Hk

In this subsection we detail the construction of Hk, which corresponds to the variational

energy term
∫
Ω|∇q(x)|

2p(x)dx of (4.2.7). As mentioned above, in order to obtain each

Hk in (4.3.3), one needs to evaluate a d-dimensional integral and store the resulting high-

dimensional tensor. To circumvent the exponential complexity in d, we assume that the

equilibrium density p can be approximated as an MPS/TT as follows:

p(x) =
∑

m1,...,md
α0,...,αd

P1(α0,m1, α1) . . .Pd(αd−1,md, αd)ψ
(1)
m1(x1) · · ·ψ

(d)
md

(xd), (4.3.7)

where ψ(k) := (ψ
(k)
j)K

(k)

j=1 is a vector of univariate basis functions Ωi → R. Fig. 4.3.2

illustrates the structure of the equilibrium density p that we assume in this paper.

Figure 4.3.2: Tensor diagram for the approximate equilibrium density p (4.3.7).

The construction of the MPS/TT format for a given equilibrium density p will be de-

scribed in Section 4.4 in the contexts of specific example problems.

Such an approximation of p amounts to changing the tensor representation of Hk de-

picted graphically in Fig. 4.3.3 (a) to the representation in Fig. 4.3.3 (b). Note that these

calculations involve the derivatives of our univariate basis functions ϕ(k). In our figures, we

use a hollow node to represent the vector of basis functions ϕ(k) and a filled node to represent

its vector of derivatives, i.e., dϕ(k)/dx. We observe that the {Hk}dk=1 are naturally viewed

as MPOs, and moreover the construction of these MPOs can be performed using basic tensor

algebra in O(d) complexity. More precisely:

121

(1) To construct an MPO for Hk following Fig. 4.3.3 (b), note that we need to perform

two types of tensor contraction: one involving the original basis functions ϕ(l), l ̸= k,

and the other involving the derivatives dϕ(k)/dx. Therefore we precompute these two

contractions, which can be recycled to form MPOs for the Hk, k = 1, . . . , d. First, we

form Il, l = 1, . . . , d by contracting three tensors ψ(l), ϕ(l), ϕ(l) and form Ĩl, l = 1, . . . , d

by contracting three tensors ψ(l), dϕ(l)/dx, dϕ(l)/dx. The tensors Il and Ĩl are defined

graphically in Fig. 4.3.4 (a) and (b). These contractions can be performed by univariate

numerical integration. Next we contract each Il with the corresponding tensor core Pl

to obtain Hl for l = 1, . . . , d. Similarly we contract Ĩl with Pl to obtain H̃l. These

constructions are illustrated in Fig. 4.3.4 (a) and (b), respectively.

(2) Next we assemble Hk by substituting Hl, H̃l, l = 1, . . . , d into the red boxes in Fig. 4.3.4

(c) as needed. This yields an MPO as shown in Fig. 4.3.4 (c) on the right. We denote

l-th tensor core of Hk by Hk
l .

(3) Finally we repeat step (2) for all k = 1, . . . , d.

The algorithm outputs core tensors Hk
1 , . . . , H

k
d for the MPO Hk, k = 1, . . . , d. The

computational complexity of forming each pair Il, Ĩl is O(K(l)L(l)2) since a univariate nu-

merical integration is performed for each entry. Hence the cost of computing all of the Il, Ĩl

is O(dKL2), where we define K := maxlK
(l), L := maxl L

(l).

If we assume that the MPS/TT format for p has ranks r = (r0, r1, r2, . . . , rd), and set

r = maxl rl, then the contraction steps with the Pl altogether cost O(dr2KL2). Therefore

to construct the tensor cores Hk
1 , . . . , H

k
d , the total computational cost is O(dr2KL2). The

memory complexity, including that of storing the intermediate tensors Il, Ĩl, Hl, H̃l, is

122

(a) Hk (b) Approximation of Hk

Figure 4.3.3: (a) Tensor diagram for Hk, k = 3, as defined in (4.3.3). (b) Approximation
of Hk obtained by replacing p with its MPS/TT approximation (4.3.7). We use red dashed
boxes to indicate the region of replacement. The original basis functions ϕ(l), l ̸= k, are
represented using hollow nodes, and the derivative dϕ(k)/dx is distinguished using a filled
node.

O(dKL2 + dr2L2).

Remark 1. Our approach relies on the assumption that the equilibrium density of the system

can be efficiently represented or approximated in MPS/TT format. The MPS/TT structure

makes it possible to perform numerical integration for each individual tensor core, thus re-

sulting in a computational complexity that is linear in d. When the assumptions are violated,

the TT rank of the equilibrium density can grow with d, indicating the true computational

complexity can be higher than our analysis.

4.3.3 Constructing HA and HB

The tensorsHA andHB derive from the two soft boundary penalty terms ρ
∫
Ω q(x)

2pA(x) dx

and ρ
∫
Ω(q(x) − 1)2pB(x) dx in (4.2.7). The construction of the MPO format for HA and

HB is similar to that of Hk detailed above in Section 4.3.2. However, we now further need

to represent the soft boundary measures pA and pB as MPS/TT. Recall our motivation that

pA and pB weakly approximate surface measures on the boundaries ∂A and ∂B, though for

any choice of pA and pB we may still interpret the soft committor function probabilistically

123

(a) Hl (b) H̃l

(c)

Figure 4.3.4: Diagrammatic illustration of the construction of an MPO format for Hk. (a)
Precompute tensorsHl. (b) Precompute tensors H̃l. (c) AssembleHk, k = 3, by substituting
tensors Hl and H̃l. We use red dashed boxes to indicate the region of replacement. A similar
construction is repeated for other k.

following C.1. The construction of approximate surface measures varies depending on the

specific geometry of A and B. In many applications, A and B are balls or half-spaces, so

∂A and ∂B are spheres or hyperplanes. We discuss these two cases in detail presently.

For the case of a sphere, the Gaussian annulus theorem [29, Theorem 2.8] indicates that

most of the mass of a high-dimensional Gaussian distribution concentrates on a shell. If

we assume that region A is a d-dimensional ball with center xA and radius RA, we can

approximate the uniform measure on ∂A by a Gaussian density,

pA(x) =
1

(2π)d/2σd
exp

(
−∥x− xA∥2

2σ2

)
, where σ =

RA√
d
. (4.3.8)

124

More precisely, under this probability measure, we have that

Prob
(∣∣∣∥x∥2−√dσ∣∣∣ ≥ tσ

)
≤ exp

(
−t

2

κ

)
, for all t > 0, (4.3.9)

where κ > 0 is a constant [192]. This bound indicates that the mass of pA concentrates

on a shell with radius RA and thickness O(1/
√
d). It is straightforward to convert (4.3.8)

into MPS/TT format since it is in fact a pure tensor product of univariate functions of each

scalar variable xk. As such our resulting MPS/TT should have ranks all equal to 1.

For the case of a hyperplane, suppose in particular that ∂A = {x ∈ Rd : xi = c}. In

this case consider

pA(x) =
1

(2π)1/2σ
exp

(
−(xi − c)2

2σ2

)
, (4.3.10)

where σ controls the sharpness of the approximation. This choice of pA is again a pure tensor

product of univariate functions.

Now suppose that we have pA and pB in MPS/TT form. Specifically, assume that we

have tensor cores {Ai}di=1 with associated ranks s = (s0, s1, . . . , sd), together with a vector

of basis functions a(k) := (a
(k)
j)

K
(k)
A

j=1 for each k = 1, . . . , d. Also assume that we have tensor

cores {Bi}di=1 with ranks t = (t0, t1, . . . , td) and a vector of basis functions b(k) := (b
(k)
j)

K
(k)
B

j=1 .

Then we assume that we can write pA and pB as

pA(x) =
∑

m1,...,md
α0,...,αd

A1(α0,m1, α1) . . .Ad(αd−1,md, αd)a
(1)
m1(x1) . . . a

(d)
md

(xd). (4.3.11)

pB(x) =
∑

m1,...,md
α0,...,αd

B1(α0,m1, α1) . . .Bd(αd−1,md, αd)b
(1)
m1(x1) . . . b

(d)
md

(xd). (4.3.12)

In Fig. 4.3.5 we illustrate these formats graphically.

125

Figure 4.3.5: Tensor diagrams for (a) pA as in (4.3.11) and (b) pB as in (4.3.12).

Now in light of the resemblance among (4.3.3), (4.3.4),and (4.3.5), we can use the same

procedure described in Section 4.3.2 to approximate HA and HB as MPOs. To wit, we

simply replace p in Fig. 4.3.3 with the MPS/TT approximations of p∂A or p∂B and replace all

derivatives dϕ(l)/dx by ϕ(l) since there are no derivatives in (4.3.4) and (4.3.5). Ultimately

we obtain MPO formats for HA and HB with ranks s and t and cores HA
k annd HB

k ,

k = 1, . . . , d respectively. The computational complexities of constructing HA and HB are

O(ds2KAL
2) and O(dt2KBL

2), respectively, where we define s := maxl sl, t := maxl tl,

KA := maxlK
(l)
A , and KB := maxlK

(l)
B . The memory complexities are O(dKAL

2 + ds2L2)

and O(dKBL
2 + dt2L2), respectively.

4.3.4 Constructing hB

In this subsection we focus on constructing hB , which comes from the cross term in the sec-

ond penalty term ρ
∫
Ω(q(x)− 1)2pB(x) dx within (4.2.7). The ideas are again very similar

to Section 4.3.2. The tensor diagram for hB is shown in Fig. 4.3.6 (a). By plugging in the

MPS/TT approximation of the soft boundary measure pB (4.3.12), we obtain the approxi-

mation of hB illustrated in Fig. 4.3.6 (b). One can further bring hB to a standard MPS/TT

form, using the contractions shown in Fig. 4.3.7. In detail, the procedure is as follows:

(1) In Fig. 4.3.7 (a), we contract the two connected basis function nodes in the red box. This

results in tensors Jk, k = 1, . . . , d, seen in Fig. 4.3.7 (a) on the right. This contraction

requires univariate numerical integrations.
126

(2) Next we merge the computed tensor Jk and the tensor core Bk for k = 1, . . . , d. The

resulting 3-tensors, which are the tensor cores for hB , are denoted hBk . This step is

shown in Fig. 4.3.7 (b).

(a) hB (b) Approximation of hB

Figure 4.3.6: (a) Tensor diagram for hB as in (4.3.6). (b) Approximation of hB obtained by
replacing the soft boundary measure pB with its MPS/TT approximation (4.3.12). We use
red dashed boxes to indicate the region of replacement.

(a)

(b)

Figure 4.3.7: Illustration of the construction of hB in MPS/TT format. (a) Contract tensors
ϕ(l) and b(l) to get Jl. (b) Contract tensors Jl and Bl to get hBl . We use red dashed boxes
emphasize the contractions.

127

This procedure yields hB in MPS/TT format with tensor cores hB1 , . . . , h
B
d . The compu-

tational and memory complexities of constructing hB are O(dt2KBL) and O(dKBL+dt
2L),

respectively.

4.3.5 Optimization

We have discussed how the MPS/TT format can be used to compress the tensors {Hk}dk=1,

HA, HB , and hB . In order to obtain a tractable algorithm for computing the committor

function, it is natural to represent the unknown tensor Q in a compatible format. Indeed,

without imposing some additional structure on the parameterization (4.3.1), the unknown

tensor core Q is still of size exponential in d. Thus we approximate Q as in MPS/TT format

as

Q(i) :=
∑

α0,...,αd

Q1(α0, i1, α1)Q2(α1, i2, α2) . . .Qd(αd−1, id, αd). (4.3.13)

The tensor diagram for q is shown in Fig. 4.3.8. Empirically we observe that this format

is able to capture the structure of q accurately, i.e., without growth of the ranks of the tensor

cores. The MPS/TT format (4.3.13) for q greatly simplifies the solution of the variational

problem (4.3.2). In Fig. 4.3.9 we compare the tensor diagram depictions of the original

variational problem and the new simplified problem by replacing Q with its MPS/TT ap-

proximation. We note that all terms in the simplified form (Fig. 4.3.9 (b)) can be computed

with standard MPO-MPS or MPS-MPS contractions in O(d) time.

Figure 4.3.8: Tensor diagram for the parametrization of q following (4.3.1) and (4.3.13).

128

(a) Original variational problem

(b) Approximated variational problem

Figure 4.3.9: (a) Tensor diagram representation of the variational problem corresponding
to (4.3.2). (b) Approximate variational problem obtained by replacing Q with its MPS/TT
approximation (4.3.13). We use red dashed boxes to indicate the region of replacement.
Specifically the red tensor cores are unknown variables in the optimization.

In Fig. 4.3.9, the unknown tensor cores of MPSQ are marked in red. A standard approach

for optimization problems of the form Fig. 4.3.9 (b) is alternating least squares (ALS). In each

ALS iteration, we loop over the dimensions k = 1, . . . , d. For each k, we treat all coefficient

tensor cores but Qk as constant. This yields an unconstrained least squares problem for Qk.

Naively the computational complexity is O(d2) since the bottleneck is the summation of d

terms in Fig. 4.3.9 (b) and each term requires at least O(d) tensor contractions. However by

using the same trick as in the construction of Hk and carefully reusing the computed nodes,

one can bring the computational complexity down to O(d).

Remark 2. Similar to the discussions for the equilibrium density, our complexity analysis

relies crucially on the assumption that the TT ranks of the committor function are bounded

by a constant as the dimension grows. Here we parametrize the committor function by an

MPS/TT with fixed TT rank. In practice we can tune the rank parameter and monitor

the numerical rank between the cores. If the rank grows rapidly with the dimensions, our

complexity analysis can underestimated the true computational complexity and MPS/TT may

129

not be the most efficient format of parametrizing the true committor function.

4.4 Numerical experiments

In this section, we present numerical results that demonstrate the accuracy and efficiency of

the proposed method.

4.4.1 Double-well potential

In the first numerical experiment, we consider the following potential

V (x) = (x21 − 1)2 + 0.3
d∑

i=2

x2i , (4.4.1)

and we let A, B be the half-spaces

A = {x ∈ Rd|x1 ≤ −1}, B = {x ∈ Rd|x1 ≥ 1}. (4.4.2)

Now (4.4.1) is a double-well potential along dimension x1, and the two boundaries ∂A and

∂B are located in the potential wells. When the temperature T = 1/β is low, the equilibrium

density p ∝ e−βV is concentrated within the two wells. Meanwhile, in this case q is mostly

flat with a sharp transition from 0 to 1 at x1 = 0.

For this example, we can compute a ground truth solution. By symmetry, we can obtain

the committor function by solving the backward Kolmogorov equation in the first dimension,

i.e., setting qtrue(x) = f(x1), where

d2f(x1)

dx21
− 4x1(x

2
1 − 1)

df(x1)

dx1
= 0, f(−1) = 0, f(1) = 1. (4.4.3)

We can solve this ODE numerically using a finite difference method on a very fine grid

to produce qtrue. The performance of our proposed method is evaluated by the following
130

relative error metric

E1 =
∥q − qtrue∥L2(Ω\(A∪B))

∥qtrue∥L2(Ω\(A∪B))
, (4.4.4)

where ∥·∥L2(Ω\(A∪B)) denotes the L2-norm with respect to uniform measure over the domain

Ω\(A ∪B). The other error metric we use is

E2 =
∥q − qtrue∥L2(Ω\(A∪B),p)

∥qtrue∥L2(Ω\(A∪B),p)
, (4.4.5)

where ∥·∥L2(Ω\(A∪B),p) denotes the L2-norm with respect to the equilibrium density p defined

in (4.2.2) over the domain Ω\(A ∪B).

We enforce the boundary conditions by constructing soft boundary measures pA and

pB in MPS/TT format following (4.3.10). Meanwhile, we can exactly treat the equilibrium

density p in MPS/TT format since it factorizes as a pure tensor product

p(x) =
d∏

k=1

pk(xk)

of univariate functions, given the choice of potential (4.4.1).

It remains to fix a univariate basis for each dimension of the committor function q. One

could of course choose a generic basis such as Chebyshev polynomials, Legendre polynomials,

or Fourier series. For this example, however, a better choice is to construct an appropriate

truncated orthogonal polynomial basis for each dimension k according to the univariate

density pk.

We solve for the committor function at two representative temperatures T = 0.2 and

T = 0.05 in d = 20 dimensions. For T = 0.2, we use the first 30 orthongonal polynomials for

all dimensions. For the lower temperature T = 0.05, we use 60 orthogonal polynomial basis

131

functions since the true committor function changes more sharply near x1 = 0. We show q

and qtrue for T = 0.2 in Fig. 4.4.1 (a) and the corresponding residual q − qtrue in Fig. 4.4.1

(b). Numerical results for T = 0.05 are illustrated similarly in Fig. 4.4.2.

We compute the relative error E1 in (4.4.4) using 105 uniformly distributed samples

between [−1, 1] for x1. The relative error is E1 = 2.36 × 10−4 for T = 0.2 and E1 =

1.67×10−3 for T = 0.05. With 107 samples, we obtain relative error E2 = 1.60×10−4 defined

in (4.4.5) for T = 0.2 and E2 = 6.77× 10−4 for T = 0.05. Additional tests were performed

with other bases such as Chebyshev polynomials and Fourier series and the behavior was

similar.

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o
m

m
it
to

r
fu

n
c
ti
o
n

(a)

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-4

-3

-2

-1

0

1

2

3

4

R
e
s
id

u
a
l

10
-4

(b)

Figure 4.4.1: Numerical results for the double-well potential, T = 0.2. (a) The numerical
solution of the committor function q, compared with the ground truth qtrue, plotted along
the x1 dimension. (b) The residual plot q − qtrue along the x1 dimension.

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o
m

m
it
to

r
fu

n
c
ti
o
n

(a)

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

0

1

2

3

4

5

R
e
s
id

u
a
l

10
-3

(b)

Figure 4.4.2: Numerical results for the double-well potential, T = 0.05. (a) The numerical
solution of the committor function q, compared with the ground truth qtrue, plotted along
the x1 dimension. (b) The residual plot q − qtrue along the x1 dimension.

132

We show the numerical convergence of the solution with respect to the number of basis

functions by examining the coefficient tensor of the committor function. Take T = 0.05 as an

example where we use 60 orthogonal polynomial basis in each dimension, all basis coefficients

form a 60d coefficient tensor Q = Q(i1, · · · , id) for i1, · · · , id = 1, · · · , 60. Specifically, the

first dimension is most meaningful and the rest of the dimensions are equivalent due to

permutation symmetry.

0 10 20 30 40 50 60

i
1

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
o

g
1

0
(|

Q
(i

1
,1

,.
..

,1
)|

)

(a)

0 10 20 30 40 50 60

i
2

-14

-12

-10

-8

-6

-4

-2

0

L
o

g
1

0
(|

Q
(1

,i
2
,1

,.
..

,1
)|

)

(b)

Figure 4.4.3: Coefficients of basis function representation for the double-well potential model,
T = 0.05. (a) Log magnitude of the coefficients for the x1 dimension Q(i1, 1, · · · , 1). (b) Log
magnitude of the coefficients for the x2 dimension Q(1, i2, 1, · · · , 1).

We visualize the numerical convergence by a slice of the committor’s coefficient tensor

in the first dimension (Fig. 4.4.3 (a)) and the second dimension (Fig. 4.4.3 (b)). We can

observe that the basis coefficients for the first dimension decays roughly exponentially as i1

increases. Since the committor function value should be a constant in x2, . . . , xd, we observe

the coefficient associated with i2 = 1 is large while the rest of the coefficients are nearly zero.

4.4.2 Ginzburg-Landau potential

The Ginzburg-Landau theory was developed to provide a mathematical description of su-

perconductivity [84]. In this numerical example, we consider a simplified Ginzburg-Landau

model, in which the Ginzburg-Landau energy is defined for a one-dimensional scalar field

133

u : [0, 1]→ R as follows:

Ṽ [u] =

∫ 1

0

[
λ

2
(u′)2 +

1

4λ
(1− u2)2

]
dx, (4.4.6)

where λ is a small positive parameter and u satisfies the boundary conditions u(0) = u(1) =

0. We discretize u uniformly on [0, 1] as U = (U1, U2, . . . , Ud) with boundary conditions

U0 = Ud+1 = 0. Then we approximate the continuous Ginzburg-Landau energy (4.4.6) with

the discretization

V (U) :=
d+1∑
i=1

λ

2

(
Ui − Ui−1

h

)2

+
1

4λ
(1− U2

i)
2, (4.4.7)

where the grid spacing h = 1/(d+ 1). We fix d = 50 and λ = 0.03. Note that V (U) has two

global minima U± illustrated in Fig. 4.4.4. We let A and B be the balls {U : ∥U −U±∥≤ R}

centered at the global minima. The radius R is set to be 2.5, chosen such that the balls A

and B roughly contain the regions of high equilibrium probability density around the two

centers.

0 10 20 30 40 50

Dimension

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

u

(a) Local minimizer U−

0 10 20 30 40 50

Dimension

0

0.2

0.4

0.6

0.8

1

1.2

u

(b) Local minimizer U+

Figure 4.4.4: The two global minima of the Ginzburg-Landau energy (4.4.7) with d = 50
and λ = 0.03.

We present numerical results for two representative temperatures T = 8 and T = 16. We

enforce the boundary conditions by constructing soft boundary measures pA and pB in MP-

S/TT format following (4.3.8). We detail the approximation of the equilibrium probability
134

density p in MPS/TT format in Appendix C.2.

We define the domain to be the hypercube Ω = [−γ, γ]50. Based on our choices of λ and

β, we take γ = 2.6 since this choice guarantees that the equilibrium density has negligible

mass outside of Ω. To represent the committor function q, we use the first 5 Fourier basis

functions {1, cos (πx/γ), sin (πx/γ), cos (2πx/γ), sin (2πx/γ)} for each dimension. The ranks

of the coefficient MPS/TTQ are all taken to be 6. We initialize all the entries of the unknown

tensor cores of Q with normal N (0, 1) random numbers and then perform ALS, gradually

increasing the penalty parameter ρ to better enforce the boundary conditions. In practice

we observe that different initializations have little effect on the output of the algorithm.

For problems of this size, traditional methods are intractable, making it difficult to obtain

an exact reference qtrue for comparison. Instead, as a proxy we study a ‘thickened isosurface’

around q = 0.5, defined as Γϵ = {U : ∥q(U) − 0.5∥≤ ϵ}, where ϵ > 0 is a small threshold

parameter. If the solution q is indeed a satisfactory approximation of the true committor

function, then for any trajectories given by (4.2.1) starting from points in Γϵ, the probability

of entering region B before A should be close to 0.5.

To verify this, we generate samples from the equilibrium distribution by simulating the

process (4.2.1). Then we filter to keep samples on the isosurface Γϵ using the computed

committor function q and the threshold ϵ of our choice. Let us pick Ns points in Γϵ, denoted

{Ũj}Ns
j=1. For each point Ũj , we generate Nt trajectories by simulating the Langevin process

(4.2.1) and use nj to denote the number of trajectories ending up in region B before A.

By the central limit theorem, when Nt is large, the distribution of nj/Nt should be well-

approximated by the normal distribution N (12 , (4Nt)
−1). In our numerical tests, we set

ϵ = 5× 10−3, Ns = 5000, and Nt = 100. The results for T = 8 and T = 16 are illustrated in

Fig. 4.4.5 and Fig. 4.4.6, respectively. We compare the histogram of {nj/Nt}5000j=1 with the

normal distribution N (12 , 1/400) on the left and show the Q–Q (quantile-quantile) plot of the

distribution of {nj/Nt}5000j=1 versus N (12 , 1/400) on the right. These figures demonstrate that

135

the distribution of {nj/Nt}5000j=1 is indeed in good agreement with the normal distribution

N (12 , 1/400), which indicates that our solution q provides a good approximation of the true

isosurface.

(a) Histogram

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) Q-Q plot

Figure 4.4.5: Comparison of distributions for T = 8. (a) Empirical histogram for
{nj/Nt}5000j=1 compared with the density of N (12 , 1/400). (b) Q-Q (quantile-quantile) plot of
{nj/Nt}5000j=1 compared with N (12 , 1/400).

(a) Probability density

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) Q-Q plot

Figure 4.4.6: Comparison of distributions for T = 16. (a) Empirical histogram for
{nj/Nt}5000j=1 compared with the density of N (12 , 1/400). (b) Q-Q (quantile-quantile) plot of
{nj/Nt}5000j=1 compared with N (12 , 1/400).

Next, consider the restriction of the equilibrium density to the q = 0.5 isosurface. Intu-

itively, the first term in the Ginzburg-Landau potential (4.4.7) encourages the configuration

U to be as flat as possible. Therefore, to transition between the two boundary states U− and

U+, it is favorable in terms of energy to have only a single sign change in the discretized func-

tion U . We compute 107 samples from the equilibrium density by running the overdamped
136

Langevin process (4.2.1), initialized at random states in Ω. We retain only the samples that

fall in the thickened isosurface Γϵ, ϵ = 5 × 10−3. Then we perform 2-means clustering on

these samples. In Fig. 4.4.7 (a) and Fig. 4.4.8 (a), we show the centroids U (1) and U (2) of

the two clusters for T = 8 and T = 16, respectively. These configurations are symmetric

with a single sign change.

Next we project all samples in the q = 0.5 isosurface to the line containing the two

centroids, i.e., to points of the form θU (1) + (1 − θ)U (2). In Fig. 4.4.7 (b) and Fig. 4.4.8

(b) we plot the histograms of θ for all samples to demonstrate that these distributions are

indeed bimodal. Observe that at higher temperature, the bimodality is less pronounced.

5 10 15 20 25 30 35 40 45 50

Dimension

-1.5

-1

-0.5

0

0.5

1

1.5
Centroid-1

Centroid-2

(a) Two centroids

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

1000

2000

3000

4000

5000

6000

C
o
u
n
t

(b) Histogram of θ

Figure 4.4.7: Analysis of the q = 0.5 isosurface for T = 8. (a) Centroids of the two clusters
in the q = 0.5 isosurface. (b) Histogram of the 1-dimensional coordinate θ of the isosurface
samples along the line between the two clusters.

Finally, we study transition paths via the deterministic reactive flow [107]:

dU(t)

dt
=

1

β
p(U(t))∇q(U(t)). (4.4.8)

Based on Fig. 4.4.7, we expect that at low temperatures the transition paths between A

and B are localized within in two reaction tubes. We visualize one of the transition paths

at temperature T = 8 in Fig. 4.4.9. The leftmost curve corresponds to the initial state

of (4.4.8), for which q = 0.1. Meanwhile q = 0.9 for the rightmost curve. The red arrow

indicates the direction of time evolution.
137

5 10 15 20 25 30 35 40 45 50

Dimension

-1.5

-1

-0.5

0

0.5

1

1.5
Centroid-1

Centroid-2

(a) Two centroids

-0.5 0 0.5 1 1.5

0

1000

2000

3000

4000

5000

6000

C
o
u
n
t

(b) Histogram of θ

Figure 4.4.8: Analysis of the q = 0.5 isosurface for T = 16. (a) Centroids of the two clusters
in the q = 0.5 isosurface. (b) Histogram of the 1-dimensional coordinate θ of the isosurface
samples along the line between the two clusters.

0 10 20 30 40 50

Dimension

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.4.9: Visualization of one transition path for T = 8.

4.4.3 Gaussian Mixture Equilibrium Density

To evaluate the model performance on rugged energy landscape, we consider constructing a

more complicated equilibrium distribution with several isolated local maxima using Gaussian

mixture models. In this example we use a mixture of 7 Gaussian densities,

p(x) = exp(−β∥x− CA∥) + exp(−β∥x− CB∥) + 0.6
3∑

i=1

exp(−β∥x− Ci∥)

+ η
5∑

i=4

exp(−β∥x− Ci∥). (4.4.9)

138

where CA, CB and Ci for i = 1, · · · , 5 are the 7 Gaussian centers. η is some parameter. In

this example let the problem dimension d = 10 and all the centers be roughly contained in

the first two dimensions for visualization purpose. Specifically for the first two dimensions,

CA = (−1.6,−1.6), CB = (1.6, 1.6), C1 = (−0.5,−1.4), C2 = (0.5,−0.8), C3 = (1.2, 0.2),

C4 = (−1.4, 0.6), C5 = (−0.1, 1.9). If we pad all 8 other dimensions with 0, the centers

strictly lie on a 2-dimensional subspace. In Fig. 4.4.10 (a) we show the density in 2D.

To make the problem more difficult, we perturb the mean of these Gaussians with small

independent Gaussian noise 0.1N(0, 1). The magnitude of the perturbation is chosen such

that the Gaussian centers can still be visualized in the first two dimensions. In Fig. 4.4.10

(b) we show the “perturbed” density, which is be used in the following numerical tests.

(a) Equilibrium density in 2D (b) Equilibrium density in high di-
mension

Figure 4.4.10: The Gaussian mixture model equilibrium density visualized in the first two
dimensions. (a) Equilibrium density in 2D. (b) Equilibrium density where the mean of
Gaussians are in high dimension.

Note the five Gaussian centers in the middle are roughly aligned on two curves: a lower

curve containing C1, C2, C3 and an upper curve containing C4, C5. Both curves share

CA and CB as their end points. Similarly we study the transition paths between the two

boundaries by simulating the reactive flow (4.4.8). Specifically we study how the transition

path changes with the additional local maxima of the equilbrium density. To this end, we

pick two η values 0.6 and 1.6 to alter the magnitude the top two Gaussian densities.

139

Let the boundaries A and B be the balls centered at two centers {x : ∥x − CA∥≤ R}

and {x : ∥x − CB∥≤ R}, respectively. In this example R = 0.22, chosen such that balls

A and B roughly contained the regions of high equilibrium density around the two centers.

The temperature is set to be T = 0.1. We define the solution domain to be the hypercube

Ω = [−2.4, 2.4]10, which guarantees the equilibrium density has negligible mass outside the

solution domain. We use the first 60 Fourier basis to parameterize the committor function.

The ranks of the coefficient MPS/TT Q are all taken to be 4.

(a) η = 0.6 transition trajectory (b) η = 1.6 transition trajectory

0 50 100 150 200 250 300 350

Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
m

it
to

r
fu

n
c
ti
o

n
 v

a
lu

e

(c) η = 0.6 committor function
values along the path

0 50 100 150 200 250 300 350

Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
m

it
to

r
fu

n
c
ti
o

n
 v

a
lu

e

(d) η = 1.6 committor function
values along the path

Figure 4.4.11: Transition paths (black curves) overlayed on the Gaussian mixture model
equilibrium density visualized in the first two dimensions for (a) η = 0.6 and (b) η = 1.6.
Committor function values along the transition path for (c) η = 0.6 and (d) η = 1.6.

In Fig. 4.4.11, we show the transition path between boundaries A, B for η = 0.6, 1.6.

Both the transition paths share the same starting point [−1.2,−1.6]. We can observe that

the transition path is shifting towards the top as the magnitude η increases.

140

4.5 Conclusion

In this chapter, we propose a novel approach for computing high-dimensional committor

functions using MPS/TT. In particular, we start from the variational formulation (4.2.7) for

the soft committor function, which can be viewed as an approximation of the committor func-

tion but which also enjoys a probabilistic interpretation in its own right. To compute high-

dimensional integrals, we approximate the equilibrium density and soft boundary measures

in MPS/TT format. Meanwhile, the unknown committor function q is also parametrized in

MPS/TT format. The variational problem can then be reformulated using standard MPO

and MPS/TT operations, and the optimization of q can be performed with O(d) complexity.

Extensive numerical experiments demonstrate the computational efficiency and accuracy of

the proposed method.

Notice that our proposed method relies on the assumption of certain structures of the

variables in order to approximate the equilibrium density efficiently in MPS/TT format.

One expects the MPS/TT-based approximation to be successful in a very high-dimensional

limit when there is a 1D or quasi-1D graphical model structure underlying the equilibrium

measure. Already we believe that the capacity to treat such systems with high accuracy is a

meaningful contribution, since many previous works in the literature have considered prob-

lems with such structure, such as the double-well and rugged-Muller potentials (embedded

in high dimensions) and the Ginzburg-Landau potential [95, 107, 113, 155]. Even in the case

without obvious 1D ordering, MPS/TT have demonstrated excellent empirical performance

in high-dimensional PDE and chemistry [152, 11, 164, 15].

However in principle our method can also be extended to more complicated systems

and more general network with significant interactions between any particles, provided that

suitable tensor network contractions can be performed. It has become an active research

field of extending the tensor network algorithm to more general systems, see for example

[88]. Our complexity analysis relies on the assumption that the rank of q remains constant

141

as the number of dimension increases, which may not hold for complicated networks. As a

future work, one can monitor the rank of the committor function q via a two-site alternating

minimization scheme. If we see any signs of rapidly growing rank, it may indicate the

method is more computationally expensive than expected and MPS/TT is not the most

efficient format to represent the true committor function. As a future work, one can monitor

the rank of the committor function q via a two-site alternating minimization scheme [65].

142

CHAPTER 5

STATISTICAL MECHANICS AND QUANTUM MANY BODY

SIMULATION WITH AUXILIARY-FIELD MONTE CARLO

AND MATRIX PRODUCT STATE

5.1 Introduction

Statistical mechanics [142, 99] is a branch of physics that deals with the behavior of systems

consisting of a large number of particles. It seeks to explain the observed macroscopic phe-

nomena, such as temperature, pressure, and entropy, in terms of the statistical properties of

the underlying particles. It provides a mathematical framework to understand the statistical

properties of particle ensembles from the microscopic laws of physics. Statistical mechanics

has broad applications in modeling a wide range of phenomena, including phase transitions

[72, 41], chemical reactions [103, 222], and the behavior of complex physical/biological sys-

tems [92, 166].

One of the fundamental concepts in statistical mechanics is the Boltzmann distribution

[118], which describes the probability of the particle ensemble in a given energy state in

thermal equilibrium. The Boltzmann distribution is derived from the principle of maximum

entropy, which states that in thermal equilibrium, a system will be in the state with the

maximum number of microstates consistent with the macroscopic constraints of the system.

While the Boltzmann distribution is a powerful tool for understanding the behavior of

small-scale particle systems, it becomes increasingly difficult to calculate due to the exponen-

tial increase in the number of microstates as the number of particles increases. On the other

hand, the interactions between particles in large-scale systems can be complex and difficult

to model accurately, further complicating the calculation of the Boltzmann distribution.

These obstacles have motivated researchers to develop various approaches to approxi-

mate the density and circumvent the exponential scaling. Monte Carlo simulations have
143

been widely used in statistical mechanics [108, 19], which involve generating a large number

of random samples of the system and using statistical methods to estimate the distribution.

However, the convergence rate of simulating large systems often makes it challenging to ob-

tain accurate approximations. Another approach is to use machine learning techniques to

learn the Boltzmann distribution directly from data. This approach, known as Boltzmann

machine learning [172, 169, 161], has shown promising results in several applications, includ-

ing modeling of protein folding and predicting material properties. Similar to the Monte

Carlo approach, the performance of this data-driven technique depends crucially on the data

quality and the number of samples available. The mean-field theory [203, 181, 89] assumes

that each particle interacts with an average field that is determined by the other particles,

simplifying the dynamics of the system and the calculation of the distribution. However,

mean-field theory is limited by its assumptions and may not accurately capture the behavior

of some systems with complex interactions.

The auxiliary field Monte Carlo (AFMC) method [14, 12, 13] is a powerful numerical

technique that has been developed to overcome some of the limitations of traditional Monte

Carlo simulations. AFMC is based on the idea of introducing auxiliary fields to decouple

the correlations between particles by means of the application of the Hubbard–Stratonovich

transformation [85]. This reduces the many-body problem to the calculation of a sum or

integral over all possible auxiliary-field configurations. The method and its quantum version

has been successfully applied to a wide range of problems in statistical mechanics, including

lattice field theory, quantum chromodynamics, and condensed matter physics [220, 42, 168,

145, 110].

On the other hand, tensor network methods [61, 139, 193, 138, 64, 97] have emerged as an

efficient tool to model the high-dimensional particle system in modern quantum physics and

beyond. Specifically, tensor network methods exhibit extraordinary performances for sys-

tems with low intrinsic dimensions or special coupling structures. Recently, the authors [50]

144

propose to solve the committor function for high-dimensional interacting systems given the

equilibrium Boltzmann distribution can be efficiently compressed in MPS/TT format. In-

deed, the MPS/TT format significantly reduces the storage requirements and computational

costs associated with evaluating the distribution, making it more accessible and practical for

large-scale simulations. It also provides a compact representation of the distribution that is

amenable to analysis and manipulation, allowing researchers to extract meaningful insights

from the data. Furthermore, authors [86, 151, 182] show that one can use tensor networks

to do density estimations given available samples from the target distribution.

Additionally, we aim to provide a unified framework for particle-based time evolution

algorithms based on tensor network sketching. Assume the propagator is denoted by G and

the quantity we want to propagate is denoted by ϕ, our goal is to iteratively approximate

ϕt+1 = Gϕt. For example, in classical statistical mechanics, G can be the Fokker-Planck op-

erator and ϕt is the density of a given time t. In quantum mechanics G can be the imaginary

time propagator and ϕ is the wavefunction. For large scale and high-dimensional problems,

significant efforts have been spent in approximating the propagator G with stochastic par-

ticles, e.g. classical Monte Carlo method, AFMC, etc. and approximating the quantity of

interest using tensor networks. In this work, we provide a general framework of combining

the two approaches together, i.e. propagating the tensor networks with stochastic samples

and recompressing the tensor networks with sketching.

In this chapter, we aim to explore the potential of compressing the Boltzmann distribu-

tion in an efficient low-complexity MPS/TT format given samples from the auxiliary-field.

On the one hand, AFMC provides a powerful approach to generate necessary samples for

TT sketching from the auxiliary field. On the other hand, the low-complexity MPS/TT for-

mat implicitly regularize the problem to reduce the number of required samples to achieve

accurate approximations.

145

5.2 Proposed Method

5.2.1 Recap of AFMC

One of the most widely studied probabilistic models in statistical physics and machine learn-

ing is the Ising model, which is a probability distribution on the hypercube {±1}d. Consider

a set of d lattice sites, there is a discrete variable xi such that xi ∈ {±1} represents the site’s

spin. The energy of a spin configuration for the system is given by the Hamiltonian function

H(x) = −
∑
i̸=j

Ji,jxixj − µ
∑
i

hixi = xTJx+ µhTx, (5.2.1)

where the first sum defines the interactions between adjacent spins, µ denotes the magnetic

moment. Note we have absorbed the negative sign to interaction matrix J and vector h

respectively for simplicity. The sign of h controls the direction of the external magnetic

field. The probability of a given configuration is given by the Boltzmann distribution

P (x) :=
1

Z
exp (−βH(x)) =

1

Z
exp

(
−βxTJx− βµhTx

)
, (5.2.2)

where β = (kBT)
−1 is the inverse of temperature and Z =

∑
x∈{±1}d exp (−βH(x)) is the

partition function. In this chapter we will use the Ising model extensively to demonstrate our

approach. But the procedure can be generally extended to systems with more complicated

pairwise interactions.

The key idea of AFMC is to decouple the interactions on the spin space by applying the

Hubbard-Stratonovich transformation. In the classical setting, it is necessary to have the

interaction matrix J be positive-definite to perform the transformation. This can be easily

achieved by adding a diagonal nugget to J . Since (±1)2 = 1, the nugget effect can be undone

by dividing the resulting Boltzmann distribution by a positive constant. Therefore, without

loss of generality, we assume J is positive-definite for the remainder of the chapter. To

146

decouple the interactions through orthogonal transformations, we first perform an eigenvalue

decomposition J = UΣUT and compute

exp (−βH(x)) = exp (−βµhTx) exp (−βxTUΣUTx)

= exp (−βµhTx) Πd
i=1 exp(−βλi(u

T
i x)

2), (5.2.3)

where λi = Σi,i are the eigenvalues of J and U = [u1, u2, · · · , ud]. Now we perform Fourier

transform to the second term of (5.2.3),

exp(−βH(x)) = exp (−βµhTx)
∫ ∞
−∞
· · ·
∫ ∞
−∞

(2π)−d/2
(
Πd
i=1 exp

(
−k2i /2

))
(
Πd
i=1 exp

(√
−2βλiki(uTi x)

))
dk1 · · · dkd. (5.2.4)

Instead of sampling directly from the Boltzmann distribution on the spin space (5.2.2),

AFMC approximates the d-dimensional integration in (5.2.4) by Monte Carlo integration

from the Fourier space. Replacing the integration with Monte Carlo samples, we get the

following approximation,

exp(−βH(x)) ≈ exp (−βµhTx)
N∑
j=1

(
Πd
i=1 exp

(√
−2βλik

j
i (u

T
i x)
))

, (5.2.5)

where N is the total number of Monte Carlo samples, kji is the j-th sample for the frequency

variable of the i-th dimension. All samples {kji }i=1,···,d, j=1,···,N are drawn from i.i.d stan-

dard normal distribution. Note that we ignore the partition function Z from the Boltzmann

distribution and focus on approximating exp(−βH(x)) in the rest of the chapter. As we will

see later, once we obtain a low-complexity representation (e.g. MPS/TT) of exp(−βH(x)),

the partition function can be easily calculated.

147

5.2.2 MPS/TT Density Estimations with AFMC Sampling

Detailed introductions about tensor train, general tensor networks and tensor diagrams can

be found in Section 4.2.3. To get a MPS/TT representation of the approximation, we

reorganize each term in the summation of (5.2.5),

Πd
i=1 exp

(√
−2βλik

j
i (u

T
i x)
)
=Πn

i=1 exp

 d∑
l=1

√
−2βλik

j
i (ul,ixl)


=Πd

l=1 exp

 d∑
i=1

√
−2βλik

j
i (ul,ixl)

 (5.2.6)

Each exp
(∑d

i=1
√
−2βλik

j
i (ul,ixl)

)
only depends on the spin xl of a single dimension.

The product can be chained as a rank-1 MPS/TT. Additionally, the first term in (5.2.5)

is naturally a chained product of operators in individual dimensions, which can be easily

written in MPS/TT representations,

exp (−βµhTx) = Πd
l=1 exp (−βµhlxl). (5.2.7)

Combine the two parts together, we can approximate the Boltzmann distribution as

follows,

exp(−βH(x)) ≈
N∑
j=1

Πd
l=1 exp

 d∑
i=1

√
−2βλik

j
i (ul,ixl)− βµhlxl

 . (5.2.8)

A tensor diagram approximation of the Boltzmann distribution is shown in Fig. 5.2.1.

5.2.3 Recompression via TT Sketching

In Fig. 5.2.1, we approximate the original Boltzmann distribution exp(−βH(x)) as a sequen-

tial summation of N rank-1 MPS/TT. This representation offers computational advantages

148

Figure 5.2.1: Tensor diagram for approximating the Boltzmann distribution as a sum of
MPS/TT based on (5.2.8).

using efficient tensor algorithms. However, the bottleneck of the representation is the MP-

S/TT rank. For instance, the sum of N rank-1 MPS/TT results in a rank-N MPS/TT.

Obtaining an accurate approximation to the Monte Carlo integration may require many

samples, leading to a high-rank MPS/TT representation. Nevertheless, the true rank of

the MPS/TT representation should be determined by the Hamiltonian H intrinsically and

independent of the number of samples used. We aim to round or recompress the resulting

high-rank MPS/TT to reveal the true rank of the Boltzmann distribution and control the

representation’s complexity.

Recently, several works have been developed on MPS/TT density estimations from em-

pirical samples, such as [86, 182, 151]. The main idea is to apply low-dimensional recursive

sketching on the empirical distribution and solve a series of core determining equations to

reconstruct the MPS/TT approximation of the true distribution. The recursive sketches

can take different forms, including kernel sketches, random sketches, and random MPS/TT

sketches. In this context, we illustrate the procedure using random MPS/TT sketches in

Fig. 5.2.2. For more information about other sketches and the formation of the core system

equations, please refer to [86].

In this example, we are using a five-dimensional tensor diagram and starting with the

149

AFMC + TT approximation for the Boltzmann distribution (Fig. 5.2.2a). We assume that

the true Boltzmann distribution can be written as an MPS/TT (left diagram in Fig. 5.2.2a),

which is approximated by the summation of N rank-1 MPS/TT (right diagram in Fig.

5.2.2a). Our goal is to estimate the unknown tensor cores Q1, . . . ,Q5 given the summation

of MPS/TT. We do this iteratively, and in Fig. 5.2.2 we demonstrate an example of estimating

the third tensor core Q3, which is marked as the filled red node in the diagram.

To estimate the unknown tensor core Q3, we perform sketching to all dimensions before

and after the target dimension l = 3, as shown in Fig. 5.2.2b. The sketches are pieces from

a random MPS/TT, highlighted with red dashed boxes. As a result, we obtain tensor A.

Next, we perform similar sketching but also include the target dimension, as illustrated in

Fig. 5.2.2c, to get matrix B. Finally, we solve the linear system in Fig. 5.2.2d to get the

unknown tensor core Q3. This same procedure should be performed for all dimensions in

order to estimate all of the unknown tensor cores.

Remark 3. Size of the core determining equation. Here we highlight that the size of the core

determining equation remains unaffected by the number of samples and the total number of

dimensions. Indeed, 3-tensor A has dimensionality controlled by the rank of the sketching

MPS/TT and the cardinality of the target dimension (2 in the case of Ising model). Similarly,

the dimensionality of B is fully controlled by the rank of the sketching MPS/TT. Thus, the

recompression step does not pose a bottleneck for the algorithm, allowing us to generate as

many samples as needed without inflating the rank of the resulting MPS/TT.

Remark 4. Rank of the randomized sketches. As discussed previously, the intrinsic TT-

rank of the Boltzmann distribution is determined solely by the system’s nature. Therefore,

the randomized sketches must be selected carefully to reveal the distribution’s true numerical

rank. Analytically, the rank should be greater than or equal to the rank of the unfolding

matrix of the true distribution [141]. To estimate the rank numerically, we can gradually

increase the rank of the sketches and monitor (1) the approximation’s convergence and (2)
150

the singular value decay of the core determining equations. The threshold for solving the

core determining equations must be set accordingly to expose the true numerical rank and

eliminate sampling noise.

We loop over all dimensions to get all tensor cores. In classical cases, our ultimate

goal is to find a low-complexity representation of the Boltzmann distribution that enables

efficient downstream tasks. Following the procedures detailed in Section 5.2.1, Section 5.2.2,

Section 5.2.3, we now have an MPS/TT approximation of exp (−βH(x)). We can effortlessly

perform a wide range of downstream tasks taking advantages of the MPS/TT structure, e.g.

calculating the partition function, evaluating the density, computing the moments, drawing

i.i.d samples, drawing conditional samples from the distribution, all in O(d) time.

5.2.4 Extending to Quantum Setting

We demonstrate our approach with the classical Ising model. But the similar procedure

can be extended to quantum case with little additional effort. Take the quantum version

of the classical Ising model – transverse-field Ising model – as an example, the Hamiltonian

becomes

H = −
∑
i̸=j

Ji,jZiZj − µ
∑
i

hiXi, (5.2.9)

where Zi and Xi are representations of elements of the spin algebra (Pauli matrices, in the

case of spin 1/2) acting on the spin variables of the corresponding sites. Auxiliary-field

quantum Monte Carlo (AFQMC) is the quantum version of the AFMC method [28, 12].

In the quantum case, the goal is to find energy and wavefunction of the ground state of

the system, which is equivalent to finding the smallest eigenvalue and eigenvector of the

operator H. AFQMC performs Trotter decomposition followed by the Hubbard-Stratonovich

151

transformation to the propagator

exp(−βH) ≈ (I − βH), (5.2.10)

where β here is the infinitesimal time step. The power method will reveal the largest eigen-

pairs of (I − βH), from which we can compute the smallest eigenpairs for H accordingly.

With similar derivations, one gets AFQMC approximations of the propagator as follows

exp(−βH) ≈
N∑
j=1

Πd
l=1 exp

 d∑
i=1

√
−2βλik

j
i (ul,iZl)− βµhlXl

 . (5.2.11)

The only difference here is that now each dimension consists of operators (Pauli matrices)

instead of spins. Therefore we construct each sample as a rank-1 MPO instead of MPS/TT

in the classical case.

One can recompress the rank of MPO with similar sketching procedure. But in the

quantum case we are interested in the application of the propagator to an arbitrary wave-

function instead of the propagator itself. Assume we parametrize the wavefunction as an

MPS/TT. The power method becomes MPO (propagator) - MPS (wavefunction) product

and the renormalization step is efficient for MPS/TT. We use tensor diagrams to illustrate

the imaginary time evolution in Fig. 5.2.3.

The test wavefunction Φ is parametrized as an MPS/TT and highlighted with red dashed

boxes. Using tensor contraction, the updated wavefunction can be expressed as a sum of

N MPS/TTs, with the same expression as (5.2.8) in the classical case. We can employ the

same sketching technique to compress the rank of the resulting MPS/TT approximations.

The updated wavefunction, represented as an MPS/TT, is then renormalized and passed on

to the next iteration.

152

5.2.5 Extending to Parabolic PDE

The same framework can also be applied to numerical simulations of parabolic PDEs. The

theory of elliptic and parabolic equations for measures is now a rapidly growing area with

deep and interesting connections to many directions in real analysis, PDEs, and stochastic

analysis. In this subsection, we take overdamped Langevin process and the corresponding

Fokker-Planck equations as an example. But the idea is applicable to the evolution of a

general parabolic PDE. We consider a particle system governed by the overdamped Langevin

process,

dXt = −∇V (Xt) dt+

√
2β−1 dWt, (5.2.12)

where Xt ∈ Ω ⊂ Rd is the state of the system, V : Ω ⊂ Rd → R is a smooth potential energy

function, β = 1/T is the inverse of the temperature T , and Wt is a d-dimensional Wiener

processs. If the potential energy function V is confining for Ω (see, e.g., [25, Definition 4.2]),

then one can show that the equilibrium probability distribution of the Langevin dynamics

(5.2.12) is the Boltzmann-Gibbs distribution

p̂(x) =
1

Zβ
exp(−βV (x)). (5.2.13)

where Zβ =
∫
Ω exp(−βV (x)) dx is the partition function. Moreover, the evolution of the

distribution of the particle system can be described by the corresponding Fokker-Planck

equation,

∂p

∂t
= β−1∆p+∇ · (∇V p), p(x, 0) = p0(x), (5.2.14)

where p0 is the initial distribution. For any time t2 > t1 ≥ 0, one can approximate the

solution of (5.2.14) at time t2 by simulating the overdamped Langevin dynamics (5.2.12)

153

over time interval [t1, t2] given a collection of N initial stochastic samples {Xi
t1
}Ni=1 where

Xi
t1
∼ p(·, t1). Instead of working with a large number of stochastic samples directly, we

deploy the same idea of tensor train sketching to recompress the samples and find a low-

complexity MPS/TT parametrization for the solution p(·, t) at any t.

Since each sample can be naturally written as a rank-1 MPS (Dirac delta measure is

separable), the tensor diagram for this application is exactly the same as in Fig. 5.2.2. The

left-hand side of Fig. 5.2.2a is the PDE solution we want to compress and the right-hand

side is a Monte Carlo empirical distribution of the particle system. The only difference is we

are sketching a continuous distribution instead of a discrete one in classical Ising model. We

refer readers to [86, Appendix C.] for more details about tensor train sketching for continuous

distributions.

5.2.6 Complexity Analysis

AFMC/AFQMC offers a significant advantage over traditional Monte Carlo methods in terms

of the number of samples required to obtain an accurate approximation. In the classical

case, creating the approximation as a sum of N MPS/TT takes O(dN) time, while the

recompression process takes O(rdN) time, where r is the highest rank of the sketches. A

comprehensive analysis of the complexity of the recompression process can be found in [86,

Section 3.2]. The overall complexity is dominated by O(rdN).

In the quantum case, forming the imaginary time evolution as a sum of N MPS/TT

takes O(drΦN) time, where rΦ is the highest rank of the wavefunction Φ. The subsequent

recompression process takes O(rr2ΦdN) time. It’s worth noting that the new wavefunction is

obtained through tensor train sketching using random sketches with a maximum rank of r,

and therefore rΦ ≤ r. The overall complexity is dominated by O(r3dN). Assume we perform

imaginary time evolution for Niter iterations. The total time complexity is O(r3dNNiter).

154

5.3 Numerical Experiments

5.3.1 Classical Setting

As we mentioned above, the goal for the classical setting is to find a low-complexity MPS/TT

representation of the Boltzmann distribution exp(−βH). We consider two models in this

subsection: a d = 16 dimensional 1D Ising model and a 2D Ising model of 4× 4 lattices with

the same Hamiltonian

H(x) = −
∑
⟨ij⟩

xixj − 0.5
d∑

i=1

xi, (5.3.1)

where ⟨ij⟩ indicates sites i and j are nearest neighbors. In the 1D case, all the sites are

connected as a chain. In the 2D case, we use space filling curve [159] to order the sites. For

example, we show the space filling curve and the ordering of the dimensions in Fig. 5.3.1.

We apply several metrics to assess the performance of the proposed algorithm,

• ϵ: relative 2-norm error in exp(−βH),

• ϵp: relative error in the log partition function of exp(−βH),

• ϵ1, ϵ2, ϵ3: relative error in 1, 2, 3-marginals of exp(−βH), as we may be interested in

the marginals of the distributions, or based on [86], the marginals can also be used to

reconstruct the full distribution.

The rest of the parameters are set as follows: β = 0.01, we use 105 number of samples

from AFMC, the random sketching TT is a random TT with a universal r = 20 rank and

we use 10−3 as the singular value threshold to solve the core determining equations. Both of

the models have exactly the same hyperparameter settings. We note that all the errors are

decaying in a
√
N rate with the number of parameters and the results are fairly robust across

a broad range of choices of random sketches and singular value thresholds. The performance

155

is summarized in Table 5.1.

Models ϵ ϵp ϵ1 ϵ2 ϵ3

d = 16, 1D Ising 3.9× 10−3 3.9× 10−3 1.0× 10−3 1.3× 10−3 1.6× 10−3

4× 4, 2D Ising 8.0× 10−3 8.0× 10−3 1.9× 10−3 2.1× 10−3 2.3× 10−3

Table 5.1: Approximation performance in classical setting.

5.3.2 Quantum Setting

In this subsection, we use the transversal-field Ising model of the following quantum Hamil-

tonian,

H = −
∑
⟨ij⟩

ZiZj −
∑
i

Xi, (5.3.2)

where the system undergoes a quantum phase transition. Similar to Section 5.3.1, we use a

d = 16 1D transversal-field Ising model and a 4× 4 lattices 2D transversal-field Ising model.

The same ordering of sites is used for the 2D model as illustrated in Fig. 5.3.1. We set the

infinitesimal time step to be 0.01 and use 2000 samples in each power method iteration to

approximate the propagator exp(−βH). The rest of the parameters are set as follows: we

use a r = 20 random TT for sketching and we use 10−3 as the singular value threshold to

solve the core determining equations. We initialize the test wavefunction as a random TT.

The imaginary time evolution energy is shown in Fig. 5.3.2. Here we use the symmetric

energy estimator given by

Esymmetric =
⟨ϕt, H, ϕt⟩
⟨ϕt, ϕt⟩

, (5.3.3)

where ϕt is the wavefunction of the t-th iteration. Theoretically the energy given by the

symmetric estimator can only be larger than the ground state energy. Researchers also use
156

mixed estimators,

Emixed =
⟨ϕ,H, ϕt⟩
⟨ϕ, ϕt⟩

, (5.3.4)

where ϕ is a fixed wavefunction. The mixed estimator will oscillate around the ground state

energy after convergence so one can further take the average of the mixed energy estimators

of several iterations to reduce the variance.

We report the energies based on the symmetric estimator in Fig. 5.3.2. For the 1D model,

the ground truth energy is 16.5432 and our approach converges to energy 16.6293, with a

relative error of 5.2 × 10−3. In the 2D case, the ground truth energy is 14.5798 and our

approach converges to energy 14.5910, with a relative error of 7.7× 10−4. Our approach has

already achieved stable convergence and very accurate ground state energy estimation with

only the symmetric estimators.

Tensor network sketching makes it possible to work with large number of samples while

maintaining an algorithm with memory complexity that is independent from the number

of samples. We argue that enough number of samples is critical to reduce the stochastic

noise and ensure the convergence of the algorithm. As a natural alternative to obtain an

algorithm with constant memory usage, we can force to round the MPS/TT to certain given

rank once the rank exceeds a prespecified threshold. In comparison, we follow the same idea

of approximating the imarginary time evoluation using AFQMC as discussed in Fig. 5.2.3.

However, instead of recompressing with sketching, we iteratively add the MPS/TTs together

and force round the resulting MPS/TT to r = 50 once it exceeds the upper bound r = 100.

The energy evoluation is shown in Fig. 5.3.3. We show the energy evolutions for both the

symmetric and mixed estimators. We can clearly observe that the energy convergence is

more stable and even faster with tensor network sketching, due to the denoising effect from

large number of samples.

157

5.3.3 Evolving Fokker-Planck Equations

In this numerical experiment, we consider the following double-well potential

V (x) = (x21 − 1)2 + 0.3
d∑

i=2

x2i , (5.3.5)

and the induced particle system governed by the overdamped Langevin process (5.2.12).

Since the potential function is easily separable, the equilibrium Boltzmann density is a

product of univariate densities for each dimension, i.e.

exp(−βV (x)) = exp
(
−β(x21 − 1)2

)
Πd
i=2 exp

(
−0.3βx2i

)
, (5.3.6)

which gives us a nice way to visualize the distribution. In this example, we use β = 1 and

d = 10. To obtain a continuous MPS/TT approximation, we use Gaussian kernel function

as univariate basis functions for each dimension. We use the same set of 20 basis functions

for each dimension and we visualize all the basis functions in Fig. 5.3.4.

We start from the uniform distribution over the hypercube [−2.5, 2.5]d and evolve the

distribution via particle systems. For each time interval [t1, t2] and given the MPS/TT

representation of the initial density p(·, t1), we first sample from the initial distribution

taking advantage of the efficient sampling algorithms for MPS/TT. Then we simulate the

overdamped Langevin process for the sampled particles up to time t2. Then we recompress

these samples back to MPS/TT format to obtain the MPS/TT representation of density

p(·, t2). The same procedure is repeated until convergence. More specifically, we perform a

full iteration of the procedure (sampling, evolving and recompression) for every ∆t = 0.02

time. And we use N = 104 samples for all iterations.

In Fig. 5.3.5 we visualize the simulated Langevin particles, the fitted continuous MP-

S/TT density and the targeting equilibrium density for the first dimension at iteration

1, 3, 5, 7, 20, 30, as the convergence gets slower and slower. We can observe that the par-
158

ticle distribution gets evolved effectively by the Langevin dynamics and the fitted contin-

uous MPS/TT density accurately captures the histograms of the particle samples. The

low-complexity continuous MPS/TT format also serves as an extra regularization and as a

result, is not prone to overfitting. To quantify the performance of our algorithm, we evaluate

the relative error metric E = ∥p1 − p̂1∥/∥p̂1∥ where p1 and p̂1 are the marginal distribu-

tion of the first dimension for the fitted continuous MPS/TT density and the ground truth

Boltzmann distribution, respectively. At iteration 30, the relative error E = 3.8× 10−2. We

can further improve the performance of the algorithm by choosing more basis functions and

generating more stochastic samples.

5.4 Discussion

In this chapter, we propose a novel approach to efficiently compress the Boltzmann distri-

bution of a many-body system into an MPS/TT format in the classical setting or an MPO

format in the quantum setting. Our starting point is the AFMC/AFQMC method. By

leveraging the decoupling effect of the AFMC/AFQMC method, we are able to convert the

samples into efficient MPS/MPO formats. To control the rank of the resulting MPS/MPO,

we further employ randomized sketching and reconstruct the compressed representation.

Through extensive experiments, we demonstrate the numerical accuracy of our approxima-

tion and its usefulness in downstream tasks using both classical Ising models and quantum

transverse-field Ising models.

Like other Monte Carlo methods, the accuracy of our algorithm also depends crucially

on the number of samples used. However, our algorithm still scales linearly with the number

of samples, as the rank of the final representation depends solely on the potential field and

the system. Moreover, the most time-consuming sampling and sketching procedures of the

algorithm can be fully parallelized, further improving its efficiency. With more computational

resources, the algorithm’s performance can be significantly enhanced.

159

The performance of our algorithm is determined by two factors: the rank of the ran-

domized sketches and the number of samples used. Our algorithm is expected to succeed

when the true Boltzmann distribution can be well-approximated by a low-complexity MP-

S/MPO format, indicating that the correlations exhibit low-dimensional graphical structures

underlying the true distribution. This holds true for many statistical mechanics models of

interests. However, if the correlation of the true model is complicated, the effective rank of

the representation may increase, potentially even with the number of dimensions. In such

cases, more samples are needed to mitigate the sampling error resulting from complicated

interactions. Empirical observations indicate an O(
√
N) Monte Carlo convergence rate of

the error with respect to the number of samples.

Another way to improve the algorithm’s performance is to apply similar techniques used

in AFMC/AFQMC applications [220]. For instance, one can first solve the mean-field ap-

proximation of the system and then demean the operators based on the mean-field solutions.

In the quantum setting, the importance mean of the operator can be computed based on the

wavefunction of the current iteration, and importance samples can be drawn from the aux-

iliary field. While this step increases the computational cost as we may need to sample and

recompress the representation for every iteration, it improves the convergence and reduces

the number of samples required for an accurate approximation.

160

(a) AFMC + TT (b) Sketches without the target dimension

(c) Sketches with the target dimension
(d) Core determining
equations

Figure 5.2.2: Tensor diagram for recompressing AFMC + TT approximations. The unknown
tensor core to estimate is marked as filled red node. In practice, the same procedure should be
repeated for all dimensions to get all cores Q1, · · · ,Qd. The sketching tensors are highlighted
with red dashed boxes.

161

Figure 5.2.3: Tensor diagram for imaginary time evolution in the quantum case. The test
wavefunction Φ is parametrized as an MPS/TT and highlighted with red dashed boxes.

Figure 5.3.1: Example of 2D space filling curve for Ising model of 4× 4 lattices.

162

0 20 40 60 80 100 120 140 160 180 200

Iterations

16

18

20

22

24

26

28

30

E
n

e
rg

y

Imaginary time evolution

Ground state energy

(a) d = 16 1D transversal-field Ising symmet-
ric estimator

0 10 20 30 40 50 60 70 80 90 100

Iterations

10

20

30

40

50

60

70

E
n

e
rg

y

Imaginary time evolution

Ground state energy

(b) 4×4 2D transversal-field Ising symmetric
estimator

Figure 5.3.2: Imaginary time evolution energy plots.

163

0 50 100 150 200 250 300 350 400 450 500

Iterations

15

20

25

30

35

40

45

50

E
n

e
rg

y

Imaginary time evolution

Ground state energy

(a) d = 16 1D transversal-field Ising symmet-
ric estimator

0 20 40 60 80 100 120 140 160 180 200

Iterations

10

20

30

40

50

60

70

E
n

e
rg

y

Imaginary time evolution

Ground state energy

(b) 4×4 2D transversal-field Ising symmetric
estimator

0 50 100 150 200 250 300 350 400 450 500

Iterations

0

5

10

15

20

25

30

35

40

45

E
n

e
rg

y

Imaginary time evolution

Ground state energy

(c) d = 16 1D transversal-field Ising mixed
estimator

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

5

10

15

20

25

30

35

40

45

50

E
n

e
rg

y

Imaginary time evolution

Ground state energy

(d) 4× 4 2D transversal-field Ising mixed es-
timator

Figure 5.3.3: Imaginary time evolution energy plots when iteratively adding and rounding
the MPS/TT to constant rank.

164

-4 -3 -2 -1 0 1 2 3 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.3.4: Visualization of univariate basis functions for each dimension. Here we use
Gaussian kernel functions as our basis.

165

(a) Iteration 1 (b) Iteration 3

(c) Iteration 5 (d) Iteration 7

(e) Iteration 20 (f) Iteration 30

Figure 5.3.5: Visualization of the density evolution for double-well system in the first dimen-
sion. The blue bar plots correspond to the sample histograms after Langevin simulations at
each iteration. The fitted continuous TT density and the targeting equilibrium density are
represented with red solid lines and black dashed lines, respectively.

166

REFERENCES

[1] Ian Affleck, Tom Kennedy, Elliott H Lieb, and Hal Tasaki. Valence bond ground
states in isotropic quantum antiferromagnets. In Condensed matter physics and exactly
soluble models, pages 253–304. Springer, 1988.

[2] Alen Alexanderian, Noemi Petra, Georg Stadler, and Omar Ghattas. A-optimal de-
sign of experiments for infinite-dimensional Bayesian linear inverse problems with reg-
ularized \ell_0-sparsification. SIAM Journal on Scientific Computing, 36(5):A2122–
A2148, 2014.

[3] Ilona Ambartsumyan, Wajih Boukaram, Tan Bui-Thanh, Omar Ghattas, David Keyes,
Georg Stadler, George Turkiyyah, and Stefano Zampini. Hierarchical matrix approx-
imations of Hessians arising in inverse problems governed by PDEs. arXiv preprint
arXiv:2003.10173, 2020.

[4] Sivaram Ambikasaran and Eric Darve. An o(n logN) fast direct solver for partial
hierarchically semi-separable matrices. Journal of Scientific Computing, 57(3):477–
501, 2013.

[5] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W Hogg, and
Michael O’Neil. Fast direct methods for Gaussian processes. IEEE transactions on
pattern analysis and machine intelligence, 38(2):252–265, 2015.

[6] Sivaram Ambikasaran, Michael O’Neil, and Karan Raj Singh. Fast symmetric fac-
torization of hierarchical matrices with applications. arXiv preprint arXiv:1405.0223,
2014.

[7] Mihai Anitescu, Jie Chen, and Michael L Stein. An inversion-free estimating equa-
tions approach for gaussian process models. Journal of Computational and Graphical
Statistics, 26(1):98–107, 2017.

[8] Mihai Anitescu, Jie Chen, and Lei Wang. A matrix-free approach for solving the
parametric Gaussian process maximum likelihood problem. SIAM Journal on Scientific
Computing, 34(1):A240–A262, 2012.

[9] Amit Apte, Didier Auroux, and R Mythily. Variational data assimilation for discrete
Burgers equation. In Electronic Journal of Differential Equations Conference, pages
15–30. Texas State Univ., 2010.

[10] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of
an implicit symmetric positive semi-definite matrix. Journal of the ACM (JACM),
58(2):1–34, 2011.

[11] Markus Bachmayr, Reinhold Schneider, and André Uschmajew. Tensor networks and
hierarchical tensors for the solution of high-dimensional partial differential equations.
Foundations of Computational Mathematics, 16(6):1423–1472, 2016.

167

[12] SA Baeurle. Computation within the auxiliary field approach. Journal of Computa-
tional Physics, 184(2):540–558, 2003.

[13] SA Baeurle. Grand canonical auxiliary field monte carlo: a new technique for simulat-
ing open systems at high density. Computer physics communications, 157(3):201–206,
2004.

[14] Stephan A Baeurle, Roman Martoňák, and Michele Parrinello. A field-theoretical
approach to simulation in the classical canonical and grand canonical ensemble. The
Journal of chemical physics, 117(7):3027–3039, 2002.

[15] Alberto Baiardi and Markus Reiher. The density matrix renormalization group in
chemistry and molecular physics: Recent developments and new challenges. The Jour-
nal of Chemical Physics, 152(4):040903, 2020.

[16] Sudipto Banerjee, Alan E Gelfand, Andrew O Finley, and Huiyan Sang. Gaussian
predictive process models for large spatial data sets. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 70(4):825–848, 2008.

[17] Mário Basto, Viriato Semiao, and Francisco Calheiros. Dynamics and synchronization
of numerical solutions of the Burgers equation. Journal of computational and applied
mathematics, 231(2):793–806, 2009.

[18] Mario Bebendorf and Sergej Rjasanow. Adaptive low-rank approximation of collocation
matrices. Computing, 70:1–24, 2003.

[19] Nicolas Béreux, Aurélien Decelle, Cyril Furtlehner, and Beatriz Seoane. Learning
a restricted boltzmann machine using biased monte carlo sampling. arXiv preprint
arXiv:2206.01310, 2022.

[20] L Mark Berliner. Hierarchical Bayesian time series models. In Maximum entropy and
Bayesian methods, pages 15–22. Springer, 1996.

[21] L Mark Berliner. Physical-statistical modeling in geophysics. Journal of Geophysical
Research: Atmospheres, 108(D24), 2003.

[22] L. Mark Berliner, Ralph F. Milliff, and Christopher K. Wikle. Bayesian hierar-
chical modeling of air-sea interaction. Journal of Geophysical Research (Oceans),
108(C4):3104, April 2003.

[23] L Mark Berliner, J Andrew Royle, Christopher K Wikle, and Ralph F Milliff. Bayesian
methods in the atmospheric sciences. Bayesian statistics, 6:83–100, 1999.

[24] Anna Berteotti, Andrea Cavalli, Davide Branduardi, Francesco Luigi Gervasio, Maur-
izio Recanatini, and Michele Parrinello. Protein conformational transitions: the closure
mechanism of a kinase explored by atomistic simulations. Journal of the American
Chemical Society, 131(1):244–250, 2009.

168

[25] Rabi N Bhattacharya and Edward C Waymire. Stochastic processes with applications.
SIAM, 2009.

[26] Daniele Bigoni, Allan P Engsig-Karup, and Youssef M Marzouk. Spectral tensor-train
decomposition. SIAM Journal on Scientific Computing, 38(4):A2405–A2439, 2016.

[27] Pratik Biswas, T-C Liang, K-C Toh, Yinyu Ye, and T-C Wang. Semidefinite program-
ming approaches for sensor network localization with noisy distance measurements.
IEEE transactions on automation science and engineering, 3(4):360–371, 2006.

[28] Richard Blankenbecler, DJ Scalapino, and RL Sugar. Monte carlo calculations of
coupled boson-fermion systems. i. Physical Review D, 24(8):2278, 1981.

[29] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data science.
Vorabversion eines Lehrbuchs, 5, 2016.

[30] David Bolin and Kristin Kirchner. The rational SPDE approach for Gaussian random
fields with general smoothness. Journal of Computational and Graphical Statistics,
29(2):274–285, 2020.

[31] Steffen Börm. Data-sparse approximation of non-local operators by H2-matrices. Lin-
ear algebra and its applications, 422(2-3):380–403, 2007.

[32] Steffen Börm. Directional-matrix compression for high-frequency problems. Numerical
Linear Algebra with Applications, 24(6):e2112, 2017.

[33] Steffen Börm and Jochen Garcke. Approximating Gaussian processes with H2-
matrices. In European Conference on Machine Learning, pages 42–53. Springer, 2007.

[34] Wajih Boukaram, George Turkiyyah, and David Keyes. Randomized GPU algorithms
for the construction of hierarchical matrices from matrix-vector operations. SIAM
Journal on Scientific Computing, 41(4):C339–C366, 2019.

[35] Phillip Boyle and Marcus Frean. Dependent Gaussian processes. Advances in neural
information processing systems, 17:217–224, 2004.

[36] Mike Brookes. The matrix reference manual. Imperial College London, 3, 2005.

[37] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation, 19(92):577–593, 1965.

[38] Tan Bui-Thanh, Omar Ghattas, James Martin, and Georg Stadler. A computational
framework for infinite-dimensional Bayesian inverse problems part i: The linearized
case, with application to global seismic inversion. SIAM Journal on Scientific Com-
puting, 35(6):A2494–A2523, 2013.

[39] Tony Cai, Zongming Ma, and Yihong Wu. Optimal estimation and rank detection for
sparse spiked covariance matrices. Probability theory and related fields, 161(3):781–815,
2015.

169

[40] Jian Cao, Marc G Genton, David E Keyes, and George M Turkiyyah. Hierarchical-
block conditioning approximations for high-dimensional multivariate normal probabil-
ities. Statistics and Computing, 29(3):585–598, 2019.

[41] John Cardy. Scaling and renormalization in statistical physics, volume 5. Cambridge
university press, 1996.

[42] J Carlson, Stefano Gandolfi, Kevin E Schmidt, and Shiwei Zhang. Auxiliary-field quan-
tum monte carlo method for strongly paired fermions. Physical Review A, 84(6):061602,
2011.

[43] George Casella. An introduction to empirical Bayes data analysis. The American
Statistician, 39(2):83–87, 1985.

[44] Julio E Castrillon-Candás, Marc G Genton, and Rio Yokota. Multi-level restricted
maximum likelihood covariance estimation and kriging for large non-gridded spatial
datasets. Spatial Statistics, 18:105–124, 2016.

[45] David Ceperley, Geoffrey V Chester, and Malvin H Kalos. Monte carlo simulation of
a many-fermion study. Physical Review B, 16(7):3081, 1977.

[46] Xiao-Wen Chang, Christopher C Paige, and GW Stewart. Perturbation analyses for the
QR factorization. SIAM Journal on Matrix Analysis and Applications, 18(3):775–791,
1997.

[47] Jie Chen and Michael L Stein. Linear-cost covariance functions for Gaussian random
fields. arXiv preprint arXiv:1711.05895, 2017.

[48] Nan Chen and Andrew J Majda. Filtering the stochastic skeleton model for the
Madden–Julian oscillation. Monthly Weather Review, 144(2):501–527, 2016.

[49] Yian Chen and Mihai Anitescu. Scalable Gaussian process analysis for implicit physics-
based covariance models. International Journal for Uncertainty Quantification, 11(6),
2021.

[50] Yian Chen, Jeremy Hoskins, Yuehaw Khoo, and Michael Lindsey. Committor functions
via tensor networks. Journal of Computational Physics, 472:111646, 2023.

[51] Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin.
On the compression of low rank matrices. SIAM Journal on Scientific Computing,
26(4):1389–1404, 2005.

[52] D Yu Chenhan, Severin Reiz, and George Biros. Distributed-memory hierarchical
compression of dense SPD matrices. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 183–197. IEEE,
2018.

170

[53] Jean-Paul Chilès. How to adapt kriging to non-classical problems: three case studies.
In Advanced geostatistics in the mining industry, pages 69–89. Springer, 1976.

[54] Jean-Paul Chiles and Pierre Delfiner. Geostatistics: modeling spatial uncertainty, vol-
ume 497. John Wiley & Sons, 2009.

[55] James S Clark and Alan E Gelfand. Hierarchical modelling for the environmental
sciences: statistical methods and applications. OUP Oxford, 2006.

[56] Ronald R Coifman, Ioannis G Kevrekidis, Stéphane Lafon, Mauro Maggioni, and Boaz
Nadler. Diffusion maps, reduction coordinates, and low dimensional representation of
stochastic systems. Multiscale Modeling & Simulation, 7(2):842–864, 2008.

[57] Emil M Constantinescu and Mihai Anitescu. Physics-based covariance models for
Gaussian processes with multiple outputs. International Journal for Uncertainty Quan-
tification, 3(1), 2013.

[58] Noel Cressie. Statistics for spatial data. John Wiley & Sons, 2015.

[59] Noel Cressie and Gardar Johannesson. Fixed rank kriging for very large spatial data
sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(1):209–226, 2008.

[60] Martin J Crowder. Maximum likelihood estimation for dependent observations. Jour-
nal of the Royal Statistical Society: Series B (Methodological), 38(1):45–53, 1976.

[61] David Elieser Deutsch. Quantum computational networks. Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences, 425(1868):73–90, 1989.

[62] Jürgen Dölz, Helmut Harbrecht, and Michael D Multerer. On the best approximation
of the hierarchical matrix product. SIAM Journal on Matrix Analysis and Applications,
40(1):147–174, 2019.

[63] Iain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods for sparse
matrices. Oxford University Press, 2017.

[64] Glen Evenbly and Guifré Vidal. Tensor network states and geometry. Journal of
Statistical Physics, 145(4):891–918, 2011.

[65] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor software
library for tensor network calculations, 2020.

[66] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[67] Geir-Arne Fuglstad, Daniel Simpson, Finn Lindgren, and Håvard Rue. Does non-
stationary spatial data always require non-stationary random fields? Spatial Statistics,
14:505–531, 2015.

171

[68] Reinhard Furrer, Marc G Genton, and Douglas Nychka. Covariance tapering for inter-
polation of large spatial datasets. Journal of Computational and Graphical Statistics,
15(3):502–523, 2006.

[69] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and
Donald B Rubin. Bayesian data analysis. CRC press, 2013.

[70] Marc G Genton, David E Keyes, and George Turkiyyah. Hierarchical decompositions
for the computation of high-dimensional multivariate normal probabilities. Journal of
Computational and Graphical Statistics, 27(2):268–277, 2018.

[71] Christopher J Geoga, Mihai Anitescu, and Michael L Stein. Scalable Gaussian process
computations using hierarchical matrices. Journal of Computational and Graphical
Statistics, 29(2):227–237, 2020.

[72] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group. CRC
Press, 2018.

[73] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. A continuous analogue of the
tensor-train decomposition. Computer Methods in Applied Mechanics and Engineering,
347:59–84, 2019.

[74] Barry J Grant, Alemayehu A Gorfe, and J Andrew McCammon. Large conformational
changes in proteins: signaling and other functions. Current opinion in structural biol-
ogy, 20(2):142–147, 2010.

[75] Lars Grasedyck. Hierarchical low rank approximation of tensors and multivariate func-
tions. Lecture notes of the Zürich summer school on Sparse Tensor Discretizations of
High-Dimensional Problems, 2010.

[76] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[77] Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49.
Springer, 2015.

[78] Wolfgang Hackbusch, Boris N Khoromskij, and Eugene E Tyrtyshnikov. Hierarchical
kronecker tensor-product approximations. 2005.

[79] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions. SIAM review, 53(2):217–288, 2011.

[80] Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differen-
tial equations using deep learning. Proceedings of the National Academy of Sciences,
115(34):8505–8510, 2018.

172

[81] Jouni Hartikainen and Simo Särkkä. Kalman filtering and smoothing solutions to
temporal Gaussian process regression models. In 2010 IEEE international workshop
on machine learning for signal processing, pages 379–384. IEEE, 2010.

[82] Rüdiger Hewer, Petra Friederichs, Andreas Hense, and Martin Schlather. A Matérn-
based multivariate Gaussian random process for a consistent model of the horizon-
tal wind components and related variables. Journal of the Atmospheric Sciences,
74(11):3833–3845, 2017.

[83] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[84] K-H Hoffmann and Qi Tang. Ginzburg-Landau phase transition theory and supercon-
ductivity, volume 134. Birkhäuser, 2012.

[85] John Hubbard. Calculation of partition functions. Physical Review Letters, 3(2):77,
1959.

[86] Yoonhaeng Hur, Jeremy G Hoskins, Michael Lindsey, E Miles Stoudenmire, and
Yuehaw Khoo. Generative modeling via tensor train sketching. arXiv preprint
arXiv:2202.11788, 2022.

[87] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Communications in Statistics-Simulation and Computa-
tion, 19(2):433–450, 1990.

[88] Katharine Hyatt and E Miles Stoudenmire. Dmrg approach to optimizing two-
dimensional tensor networks. arXiv preprint arXiv:1908.08833, 2019.

[89] Leo P Kadanoff. More is the same; phase transitions and mean field theories. Journal
of Statistical Physics, 137:777–797, 2009.

[90] Eugenia Kalnay. Atmospheric modeling, data assimilation and predictability. Cam-
bridge university press, 2003.

[91] Eugenia Kalnay, Masao Kanamitsu, Robert Kistler, William Collins, Dennis Deaven,
Lev Gandin, Mark Iredell, Suranjana Saha, Glenn White, John Woollen, et al. The
NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological So-
ciety, 77(3):437–472, 1996.

[92] Mehran Kardar. Statistical physics of fields. Cambridge University Press, 2007.

[93] Cari G Kaufman, Mark J Schervish, and Douglas W Nychka. Covariance tapering
for likelihood-based estimation in large spatial data sets. Journal of the American
Statistical Association, 103(484):1545–1555, 2008.

[94] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with
artificial neural networks. arXiv preprint arXiv:1707.03351, 2017.

173

[95] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor
functions using artificial neural networks. Research in the Mathematical Sciences,
6(1):1–13, 2019.

[96] Boris N Khoromskij. Tensor numerical methods for multidimensional pdes: theoretical
analysis and initial applications. ESAIM: Proceedings and Surveys, 48:1–28, 2015.

[97] Boris N. Khoromskij and Christoph Schwab. Tensor-structured galerkin approximation
of parametric and stochastic elliptic pdes. SIAM Journal on Scientific Computing,
33(1):364–385, 2011.

[98] Boris N Khoromskij and Christoph Schwab. Tensor-structured galerkin approximation
of parametric and stochastic elliptic pdes. SIAM Journal on Scientific Computing,
33(1):364–385, 2011.

[99] Charles Kittel and Herbert Kroemer. Thermal physics, 1998.

[100] Peter E Kloeden and Eckhard Platen. Numerical solution of stochastic differential
equations, volume 23. Springer Science & Business Media, 2013.

[101] Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, and Agathe Girard.
Gaussian process model based predictive control. In Proceedings of the 2004 American
control conference, volume 3, pages 2214–2219. IEEE, 2004.

[102] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[103] Dilip Kondepudi and Ilya Prigogine. Modern thermodynamics: from heat engines to
dissipative structures. John Wiley & Sons, 2014.

[104] Daniel Kressner and Ana Susnjara. Fast QR decomposition of HODLR matrices. arXiv
preprint arXiv:1809.10585, 2018.

[105] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble Nystrom method. In
Advances in Neural Information Processing Systems, pages 1060–1068, 2009.

[106] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions on neural
networks, 9(5):987–1000, 1998.

[107] Rongjie Lai and Jianfeng Lu. Point cloud discretization of fokker–planck operators for
committor functions. Multiscale Modeling & Simulation, 16(2):710–726, 2018.

[108] David Landau and Kurt Binder. A guide to Monte Carlo simulations in statistical
physics. Cambridge university press, 2021.

[109] Antonio C Lasaga. 2. transition state theory. In Kinetic Theory in the Earth Sciences,
pages 152–219. Princeton University Press, 2014.

174

[110] Joonho Lee, Hung Q Pham, and David R Reichman. Twenty years of auxiliary-field
quantum monte carlo in quantum chemistry: An overview and assessment on main
group chemistry and bond-breaking. Journal of Chemical Theory and Computation,
18(12):7024–7042, 2022.

[111] Tine Lefebvre*, Herman Bruyninckx, and Joris De Schutter. Kalman filters for
non-linear systems: a comparison of performance. International journal of Control,
77(7):639–653, 2004.

[112] John M Lewis, Sivaramakrishnan Lakshmivarahan, and Sudarshan Dhall. Dynamic
data assimilation: a least squares approach, volume 13. Cambridge University Press,
2006.

[113] Haoya Li, Yuehaw Khoo, Yinuo Ren, and Lexing Ying. A semigroup method for
high dimensional committor functions based on neural network. arXiv preprint
arXiv:2012.06727, 2020.

[114] Haoya Li, Yuehaw Khoo, Yinuo Ren, and Lexing Ying. Solving for high dimensional
committor functions using neural network with online approximation to derivatives.
arXiv preprint arXiv:2012.06727, 2020.

[115] Qianxiao Li, Bo Lin, and Weiqing Ren. Computing committor functions for the study
of rare events using deep learning. The Journal of Chemical Physics, 151:054112, 2019.

[116] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark
Tygert. Randomized algorithms for the low-rank approximation of matrices. Proceed-
ings of the National Academy of Sciences, 104(51):20167–20172, 2007.

[117] Brant Liebmann and Catherine A Smith. Description of a complete (interpolated)
outgoing longwave radiation dataset. Bulletin of the American Meteorological Society,
77(6):1275–1277, 1996.

[118] EM Lifshitz and Lev Davidovich Landau. Statistical physics (course of theoretical
physics, volume 5), 1984.

[119] Lin Lin, Jianfeng Lu, and Lexing Ying. Fast construction of hierarchical matrix
representation from matrix–vector multiplication. Journal of Computational Physics,
230(10):4071–4087, 2011.

[120] Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial differential equation
approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(4):423–498, 2011.

[121] G. Little and J.B. Reade. Eigenvalues of analytic kernels. SIAM J. Math. Anal.,
15(1):133–136, 1984.

175

[122] Alexander Litvinenko, Ying Sun, Marc G Genton, and David E Keyes. Likelihood
approximation with hierarchical matrices for large spatial datasets. Computational
Statistics & Data Analysis, 137:115–132, 2019.

[123] Jianfeng Lu and James Nolen. Reactive trajectories and the transition path process.
Probability Theory and Related Fields, 161(1):195–244, 2015.

[124] Jianfeng Lu and Eric Vanden-Eijnden. Exact dynamical coarse-graining without time-
scale separation. The Journal of chemical physics, 141(4):07B619_1, 2014.

[125] David JC MacKay. Introduction to Gaussian processes. NATO ASI Series F Computer
and Systems Sciences, 168:133–166, 1998.

[126] Azamat Mametjanov, Boyana Norris, Xiaoyan Zeng, Beth Drewniak, Jean Utke, Mihai
Anitescu, and Paul Hovland. Applying automatic differentiation to the Community
Land Model. In Recent Advances in Algorithmic Differentiation, pages 47–57. Springer,
2012.

[127] Luca Maragliano, Alexander Fischer, Eric Vanden-Eijnden, and Giovanni Ciccotti.
String method in collective variables: Minimum free energy paths and isocommittor
surfaces. The Journal of chemical physics, 125(2):024106, 2006.

[128] Per-Gunnar Martinsson. A fast randomized algorithm for computing a hierarchically
semiseparable representation of a matrix. SIAM Journal on Matrix Analysis and Ap-
plications, 32(4):1251–1274, 2011.

[129] Per-Gunnar Martinsson. Compressing rank-structured matrices via randomized sam-
pling. SIAM Journal on Scientific Computing, 38(4):A1959–A1986, 2016.

[130] Stefano Massei, Leonardo Robol, and Daniel Kressner. hm-toolbox: MATLAB software
for HODLR and HSS matrices. SIAM Journal on Scientific Computing, 42(2):C43–
C68, 2020.

[131] Victor Minden, Anil Damle, Kenneth L Ho, and Lexing Ying. Fast spatial Gaussian
process maximum likelihood estimation via skeletonization factorizations. Multiscale
Modeling & Simulation, 15(4):1584–1611, 2017.

[132] Mohammad Amin Nabian and Hadi Meidani. A deep neural network surrogate for high-
dimensional random partial differential equations. arXiv preprint arXiv:1806.02957,
2018.

[133] Richard D Neidinger. Introduction to automatic differentiation and MATLAB object-
oriented programming. SIAM review, 52(3):545–563, 2010.

[134] Duy Nguyen-Tuong, Jan R Peters, and Matthias Seeger. Local Gaussian process regres-
sion for real time online model learning. In Advances in Neural Information Processing
Systems, pages 1193–1200, 2009.

176

[135] Wolfgang Nowak and Alexander Litvinenko. Kriging and spatial design accelerated
by orders of magnitude: Combining low-rank covariance approximations with FFT-
techniques. Mathematical Geosciences, 45(4):411–435, 2013.

[136] H Reed Ogrosky and Samuel N Stechmann. Identifying convectively coupled equatorial
waves using theoretical wave eigenvectors. Monthly Weather Review, 144(6):2235–2264,
2016.

[137] Naoto Okuyama-Yoshida, Masataka Nagaoka, and Tokio Yamabe. Transition-state
optimization on free energy surface: Toward solution chemical reaction ergodography.
International journal of quantum chemistry, 70(1):95–103, 1998.

[138] Román Orús. Advances on tensor network theory: symmetries, fermions, entangle-
ment, and holography. The European Physical Journal B, 87(11):1–18, 2014.

[139] Román Orús. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics, 349:117–158, 2014.

[140] Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross approximation for multidimen-
sional arrays. Linear Algebra and its Applications, 432(1):70–88, 2010.

[141] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[142] Raj Kumar Pathria. Statistical mechanics. Elsevier, 2016.

[143] David Perez-Garcia, Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Matrix
product state representations. arXiv preprint quant-ph/0608197, 2006.

[144] Noemi Petra, Cosmin G Petra, Zheng Zhang, Emil M Constantinescu, and Mihai
Anitescu. A Bayesian approach for parameter estimation with uncertainty for dynamic
power systems. IEEE Transactions on Power Systems, 32(4):2735–2743, 2016.

[145] Mingpu Qin, Hao Shi, and Shiwei Zhang. Benchmark study of the two-dimensional
hubbard model with auxiliary-field quantum monte carlo method. Physical Review B,
94(8):085103, 2016.

[146] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research,
6(Dec):1939–1959, 2005.

[147] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational Physics,
378:686–707, 2019.

[148] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School
on Machine Learning, pages 63–71. Springer, 2003.

177

[149] Konrad Reif, Stefan Gunther, Engin Yaz, and Rolf Unbehauen. Stochastic stability of
the discrete-time extended Kalman filter. IEEE Transactions on Automatic control,
44(4):714–728, 1999.

[150] Weiqing Ren, Eric Vanden-Eijnden, Paul Maragakis, and Weinan E. Transition path-
ways in complex systems: Application of the finite-temperature string method to the
alanine dipeptide. The Journal of chemical physics, 123(13):134109, 2005.

[151] Yinuo Ren, Hongli Zhao, Yuehaw Khoo, and Lexing Ying. High-dimensional density
estimation with tensorizing flow. arXiv preprint arXiv:2212.00759, 2022.

[152] Lorenz Richter, Leon Sallandt, and Nikolas Nüsken. Solving high-dimensional parabolic
pdes using the tensor train format. In International Conference on Machine Learning,
pages 8998–9009. PMLR, 2021.

[153] Vladimir Rokhlin. Rapid solution of integral equations of classical potential theory.
Journal of computational physics, 60(2):187–207, 1985.

[154] Grant M Rotskoff, Andrew R Mitchell, and Eric Vanden-Eijnden. Active importance
sampling for variational objectives dominated by rare events: Consequences for opti-
mization and generalization. arXiv preprint arXiv:2008.06334, 2020.

[155] Grant M Rotskoff and Eric Vanden-Eijnden. Learning with rare data: using active
importance sampling to optimize objectives dominated by rare events. Preprint at
arXiv https://arxiv. org/abs/2008.06334, 2020.

[156] JA Royle, LM Berliner, CK Wikle, and R Milliff. A hierarchical spatial model for
constructing wind fields from scatterometer data in the labrador sea. In Case Studies
in Bayesian Statistics, pages 367–382. Springer, 1999.

[157] Hååvard Rue and Hååkon Tjelmeland. Fitting Gaussian Markov random fields to
Gaussian fields. Scandinavian journal of Statistics, 29(1):31–49, 2002.

[158] Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and applica-
tions. CRC press, 2005.

[159] Hans Sagan. Space-filling curves. Springer Science & Business Media, 2012.

[160] Arvind K Saibaba and Peter K Kitanidis. Efficient methods for large-scale linear
inversion using a geostatistical approach. Water Resources Research, 48(5), 2012.

[161] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann ma-
chines. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 693–700. JMLR Workshop and Conference Proceedings, 2010.

[162] Simo Sarkka and Arno Solin. Applied stochastic differential equations, volume 10.
Cambridge University Press, 2019.

178

[163] Simo Sarkka, Arno Solin, and Jouni Hartikainen. Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process regression
through Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61, 2013.

[164] Dmitry V Savostyanov, SV Dolgov, JM Werner, and Ilya Kuprov. Exact nmr simu-
lation of protein-size spin systems using tensor train formalism. Physical Review B,
90(8):085139, 2014.

[165] Martin Schlather, Alexander Malinowski, Peter J Menck, Marco Oesting, and Kirstin
Strokorb. Analysis, simulation and prediction of multivariate random fields with pack-
age random fields. Journal of Statistical Software, 63(8):1–25, 2015.

[166] James P Sethna. Statistical mechanics: entropy, order parameters, and complexity,
volume 14. Oxford University Press, USA, 2021.

[167] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948.

[168] Hao Shi and Shiwei Zhang. Some recent developments in auxiliary-field quantum monte
carlo for real materials. The Journal of Chemical Physics, 154(2):024107, 2021.

[169] Yuta Shingu, Yuya Seki, Shohei Watabe, Suguru Endo, Yuichiro Matsuzaki, Shiro
Kawabata, Tetsuro Nikuni, and Hideaki Hakoshima. Boltzmann machine learning
with a variational quantum algorithm. Physical Review A, 104(3):032413, 2021.

[170] Si Si, Cho-Jui Hsieh, and Inderjit S Dhillon. Memory efficient kernel approximation.
The Journal of Machine Learning Research, 18(1):682–713, 2017.

[171] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for
solving partial differential equations. Journal of computational physics, 375:1339–1364,
2018.

[172] Nitish Srivastava and Russ R Salakhutdinov. Multimodal learning with deep boltz-
mann machines. Advances in neural information processing systems, 25, 2012.

[173] Samuel N Stechmann and Scott Hottovy. Unified spectrum of tropical rainfall and
waves in a simple stochastic model. Geophysical Research Letters, 44(20):10–713, 2017.

[174] Samuel N Stechmann and Andrew J Majda. Identifying the skeleton of the Madden–
Julian oscillation in observational data. Monthly Weather Review, 143(1):395–416,
2015.

[175] Samuel N Stechmann and H Reed Ogrosky. The Walker circulation, diabatic heating,
and outgoing longwave radiation. Geophysical Research Letters, 41(24):9097–9105,
2014.

[176] Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science
& Business Media, 2012.

179

[177] Michael L Stein, Jie Chen, Mihai Anitescu, et al. Stochastic approximation of score
functions for Gaussian processes. The Annals of Applied Statistics, 7(2):1162–1191,
2013.

[178] Defeng Sun, Kim-Chuan Toh, Yancheng Yuan, and Xin-Yuan Zhao. SDPNAL+: A
Matlab software for semidefinite programming with bound constraints (version 1.0).
Optimization Methods and Software, 35(1):87–115, 2020.

[179] Ludovico Sutto and Francesco Luigi Gervasio. Effects of oncogenic mutations on
the conformational free-energy landscape of egfr kinase. Proceedings of the National
Academy of Sciences, 110(26):10616–10621, 2013.

[180] James Joseph Sylvester. Xxxvii. on the relation between the minor determinants of lin-
early equivalent quadratic functions. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 1(4):295–305, 1851.

[181] Toshiyuki Tanaka. A theory of mean field approximation. Advances in Neural Infor-
mation Processing Systems, 11, 1998.

[182] Xun Tang, Yoonhaeng Hur, Yuehaw Khoo, and Lexing Ying. Generative modeling via
tree tensor network states. arXiv preprint arXiv:2209.01341, 2022.

[183] Reginald P Tewarson and Reginald P Tewarson. Sparse matrices, volume 69. Academic
press New York, 1973.

[184] Erik H. Thiede, Dimitrios Giannakis, Aaron R. Dinner, and Jonathan Weare. Galerkin
approximation of dynamical quantities using trajectory data. The Journal of Chemical
Physics, 150:244111, 2019.

[185] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013.

[186] Lloyd N Trefethen. Approximation Theory and Approximation Practice, Extended
Edition. SIAM, 2019.

[187] Volker Tresp. A bayesian committee machine. Neural computation, 12(11):2719–2741,
2000.

[188] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311, 1966.

[189] Francesco Uboldi and Masafumi Kamachi. Time-space weak-constraint data assimila-
tion for nonlinear models. Tellus A, 52(4):412–421, 2000.

[190] Eric Vanden-Eijnden et al. Transition-path theory and path-finding algorithms for the
study of rare events. Annual review of physical chemistry, 61:391–420, 2010.

[191] Eric Vanden-Eijnden and Maddalena Venturoli. Revisiting the finite temperature string
method for the calculation of reaction tubes and free energies. The Journal of chemical
physics, 130(19):05B605, 2009.

180

[192] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge university press, 2018.

[193] Frank Verstraete, Valentin Murg, and J Ignacio Cirac. Matrix product states, projected
entangled pair states, and variational renormalization group methods for quantum spin
systems. Advances in Physics, 57(2):143–224, 2008.

[194] Gary R Waissi. Network flows: Theory, algorithms, and applications, 1994.

[195] David J. Wales and Jonathan P.K. Doye. Global optimization by basin-hopping and
the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J.
Phys. Chem. A, 101(28):5111–5116, 1997.

[196] Duane Waliser, K Sperber, H Hendon, D Kim, E Maloney, M Wheeler, K Weickmann,
Chidong Zhang, L Donner, J Gottschalck, et al. MJO simulation diagnostics. Journal
of Climate, 22(11):3006–3030, 2009.

[197] Shusen Wang, Luo Luo, and Zhihua Zhang. SPSD matrix approximation vis column
selection: theories, algorithms, and extensions. The Journal of Machine Learning
Research, 17(1):1697–1745, 2016.

[198] Shusen Wang and Zhihua Zhang. Efficient algorithms and error analysis for the mod-
ified Nystrom method. In Artificial Intelligence and Statistics, pages 996–1004, 2014.

[199] E Weinan, Weiqing Ren, and Eric Vanden-Eijnden. Transition pathways in complex
systems: Reaction coordinates, isocommittor surfaces, and transition tubes. Chemical
Physics Letters, 413(1-3):242–247, 2005.

[200] E Weinan, Weiqing Ren, Eric Vanden-Eijnden, et al. Finite temperature string method
for the study of rare events. J. Phys. Chem. B, 109(14):6688–6693, 2005.

[201] E Weinan and Eric Vanden-Eijnden. Towards a theory of transition paths. Journal of
statistical physics, 123(3):503–523, 2006.

[202] E Weinan and Bing Yu. The deep ritz method: a deep learning-based numerical algo-
rithm for solving variational problems. Communications in Mathematics and Statistics,
6(1):1–12, 2018.

[203] Pierre Weiss. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J.
Phys. Theor. Appl., 6(1):661–690, 1907.

[204] Steven R White. Density matrix formulation for quantum renormalization groups.
Physical review letters, 69(19):2863, 1992.

[205] Peter Whittle. On stationary processes in the plane. Biometrika, pages 434–449, 1954.

[206] Peter Whittle. Stochastic-processes in several dimensions. Bulletin of the International
Statistical Institute, 40(2):974–994, 1963.

181

[207] Christopher K Wikle, L Mark Berliner, and Noel Cressie. Hierarchical Bayesian space-
time models. Environmental and Ecological Statistics, 5(2):117–154, 1998.

[208] Christopher K Wikle, Ralph F Milliff, Doug Nychka, and L Mark Berliner. Spatiotem-
poral hierarchical Bayesian modeling tropical ocean surface winds. Journal of the
American Statistical Association, 96(454):382–397, 2001.

[209] Christopher KI Williams. Prediction with Gaussian processes: From linear regression
to linear prediction and beyond. In Learning in graphical models, pages 599–621.
Springer, 1998.

[210] Max A Woodbury. Inverting modified matrices. Memorandum report, 42(106):336,
1950.

[211] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized
algorithm for the approximation of matrices. Applied and Computational Harmonic
Analysis, 25(3):335–366, 2008.

[212] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S Li. Fast algorithms
for hierarchically semiseparable matrices. Numerical Linear Algebra with Applications,
17(6):953–976, 2010.

[213] Wanting Xu and Mihai Anitescu. A limited-memory multiple shooting method for
weakly constrained variational data assimilation. SIAM Journal on Numerical Analy-
sis, 54(6):3300–3331, 2016.

[214] Zixi Xu, Léopold Cambier, François-Henry Rouet, Pierre L’Eplatennier, Yun Huang,
Cleve Ashcraft, and Eric Darve. Low-rank kernel matrix approximation using skele-
tonized interpolation with endo-or exo-vertices. arXiv preprint arXiv:1807.04787, 2018.

[215] Chenhan D Yu, James Levitt, Severin Reiz, and George Biros. Geometry-oblivious
FMM for compressing dense SPD matrices. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pages
1–14, 2017.

[216] Jing Yu and Mihai Anitescu. Multidimensional sum-up rounding for integer program-
ming in optimal experimental design. Mathematical Programming, 185(1):37–76, 2021.

[217] Dirk Zahn and Stefano Leoni. Nucleation and growth in pressure-induced phase tran-
sitions from molecular dynamics simulations: Mechanism of the reconstructive trans-
formation of nacl to the cscl-type structure. Physical review letters, 92(25):250201,
2004.

[218] Hao Zhang. Inconsistent estimation and asymptotically equal interpolations in model-
based geostatistics. Journal of the American Statistical Association, 99(465):250–261,
2004.

182

[219] Hao Zhang and Dale L Zimmerman. Towards reconciling two asymptotic frameworks
in spatial statistics. Biometrika, 92(4):921–936, 2005.

[220] Shiwei Zhang. Auxiliary-field quantum monte carlo for correlated electron sys-
tems. emergent phenomena in correlated matter: Autumn school organized by the
forschungszentrum jülich and the german research school for simulation sciences at
forschungszentrum jülich 23-27 september 2013. Lecture Notes of the Autumn School
Correlated Electrons, 3:2013, 2013.

[221] Bingge Zhao, Linfang Li, Fenggui Lu, Qijie Zhai, Bin Yang, Christoph Schick, and Yulai
Gao. Phase transitions and nucleation mechanisms in metals studied by nanocalorime-
try: A review. Thermochimica Acta, 603:2–23, 2015.

[222] Robert Zwanzig. Nonequilibrium statistical mechanics. Oxford university press, 2001.

183

APPENDIX A

SUPPLEMENT TO CHAPTER 2

A.1 Joint Process Kriging with Higher-Order Terms

In summary, based on our assumption of observation noise covariance matrices, the entire

approach takes O(N+Nl) forward solves and O(N+Nl) observation noise covariance matrix

linear system solves, and the dominant computational cost takes O((m+n)(N +Nl)
2) time,

although the workflow is highly parallelizable. The cost is quasilinear with n if N,Nl =

log(n).

A.2 Tensor Algebra Conventions

Computing the higher-order terms in the physics-based covariance model requires tensor

operations. We use the tensor algebra with the following convention throughout the paper.

Assume the vector-valued function F(z) defines a mapping Rn → Rm and the Jacobian is

an m × n matrix where each entry Lij =
∂Fi(z)
∂zj

. The Hessian of F is a rank-three tensor

H. We arrange the order of indices of the tensor by Hijk =
∂2Fj(z)
∂yi∂yk

. Therefore, H is a

n×m×n tensor. The Hessian tensor can be viewed as an array of Hessian matrices of each

components of the function

H =


H1

...

Hm

 , (A.2.1)

where each Hi ∈ Rn×n is the symmetric Hessian matrix of the ith component of F. The

transpose of the tensor is defined by permuting the first and last indices as well as the entire

184

array:

HT = (HT
1 , H

T
2 , · · · , H

T
m). (A.2.2)

Following this convention, the tensor-tensor, tensor-vector, and tensor-matrix product can

be defined in an “elementwise sense”: for any vector u and matrix U of proper size, we define

Hu =


H1u

...

Hmu

 , HU =


H1U

...

HmU

 . (A.2.3)

Additionally, we define the following tensor-tensor product, which is useful in the quadratic

form computation. Assume Ĥ is an n× m̂× n tensor,

HUĤTU =


H1UĤ

T
1 U · · · H1UĤ

T
m̂U

...

HmUĤ
T
1 U · · · HmUĤ

T
m̂U

 . (A.2.4)

The left multiplications are defined in the same elementwise sense, with left multiplications

in each entry instead. As a result, bilinear forms of such tensors on vectors u, v,∈ Rm

become a contraction along indices 1,3, and thus the vector

vTHu =


vTH1u

...

vTHmu

 ∈ Rm. (A.2.5)

185

The trace operation of the rank-three tensor is a tensor contraction to a vector taking over

the first and last indices defined by

tr(H) = [(
∑
i,k

Hijkδik)j] =


tr(H1)

...

tr(Hm)

 . (A.2.6)

In particular, the trace of a rank-four tensor of form (A.2.4) can be defined:

tr(HUĤTU) =


tr(H1UĤ

T
1 U) · · · tr(H1UĤ

T
m̂U)

...

tr(HmUĤ
T
1 U) · · · tr(HmUĤ

T
m̂U)

 ∈ Rm×m̂. (A.2.7)

A.3 Derivation of Higher-Order Terms

Here the expectation of the quadratic form of centered multivariate Gaussian random variable

is extensively used. Since δz ∈ Rn is a zero-mean Gaussian random variable, we have the

following important properties [36]: For any n× n symmetric matrix A,B,

E(δzTAδz) = tr(ACov(z, z)) (A.3.1)

E[(δzTAδz)(δzTBδz)] = 2tr(ACov(z, z)BCov(z, z)) + tr(ACov(z, z))tr(BCov(z, z)).

(A.3.2)

186

Proof. Since δz is a mean zero multivariate random variable,

E(δzTAδz) = E(tr(δzTAδz))

= E(tr(AδzδzT))

= tr(AE(δzδzT))

= tr(ACov(z, z)). (A.3.3)

For Equation (A.3.2), we start from a simpler case. Assume x ∈ Rn is a standard normal

random vector xi ∼ N (0, 1) i.i.d. We first consider for any symmetric n× n matrices Ã, B̃,

E(xT ÃxxT B̃x) =E

 n∑
i,j,k,l=1

ÃijB̃klxixjxkxl


=E

∑
i ̸=j

ÃiiB̃jjx
2
i x

2
j

+ E

∑
i̸=j

ÃijB̃ijx
2
i x

2
j

+ E

∑
i̸=j

ÃijB̃jix
2
i x

2
j


+ E

(
n∑

i=1

ÃiiB̃iix
4
i

)

=E

∑
i ̸=j

ÃiiB̃jj

+ 2E

∑
i̸=j

ÃijB̃ji

+ 3E

(
n∑

i=1

ÃiiB̃ii

)
. (A.3.4)

Note that the last step comes from the fact that B̃ is a symmetric matrix and the Isserlis’

theorem. On the other hand, note that

tr(ÃB̃) =
n∑

i,j=1

ÃijB̃ji =
n∑
i̸=j

ÃijB̃ji +
n∑

i=1

ÃiiB̃ii (A.3.5)

tr(Ã)tr(B̃) =
n∑
i̸=j

ÃiiB̃jj +
n∑

i=1

ÃiiB̃ii. (A.3.6)

187

Comparing (A.3.4) with (A.3.5) and (A.3.6), we have

E(xT ÃxxT B̃x) = 2tr(ÃB̃) + tr(Ã)tr(B̃). (A.3.7)

Now since δz is a mean zero multivariate normal vector, there exists a matrix L such that

Cov(z, z) = LLT and δz = Lx. Using (A.3.7), we have

E[(δzTAδz)(δzTBδz)] = E[(xT (LTAL)x)(xT (LTBL)x)]

= 2tr(LTALLTBL) + tr(LTAL)tr(LTBL)

= 2tr(ALLTBLLT) + tr(ALLT)tr(BLLT)

= 2tr(ACov(z, z)BCov(z, z)) + tr(ACov(z, z))tr(BCov(z, z)).

(A.3.8)

We thus have proved (A.3.2).

Following our convention of tensor algebra for Hessian tensor H, we get

δzTHδz = E(δzTHδz)

=


E(δzTH1δz)

...

E(δzTHmδz)



=


tr(H1Cov(z, z))

...

tr(HmCov(z, z))


= tr(HCov(z, z)). (A.3.9)

188

Then for Hessian tensors H ∈ Rn×m×n, Ĥ ∈ Rn×m̂×n,

δzTHδz δzT ĤT δz = tr(HCov(z, z))tr(ĤCov(z, z))T . (A.3.10)

We thus have

δzTHδzδzT ĤT δz =


E(δzTH1δzδz

T ĤT
1 δz) · · · E(δzTH1δzδz

T ĤT
m̂δz)

...

E(δzTHmδzδz
T ĤT

1 δz) · · · E(δzTHmδzδz
T ĤT

m̂δz)


(A.3.2)

= 2tr(HCov(z, z)ĤTCov(z, z)) + tr(HCov(z, z))tr(ĤCov(z, z))T .

(A.3.11)

189

Algorithm 8: Joint Process Kriging with Higher-Order TermsM+
2

Use the low-rank approximation with N = O(log n). Specifically, Cov(zo, zo) ≈
CT
zoKCzo ,Cov(zo, z) ≈ CT

zoKCz,Cov(zp, z) ≈ CT
zpKCz,Cov(zp, zo) ≈ CT

zpKCzo .
Step 1. Compute A1 = LoC

T
z ∈ Rd×N , A2 = LpC

T
z ∈ R(m−d)×N by O(N) forward

solves.
Step 2. Compute the Cholesky factorization K = PTP , which takes O(N3) time.
Step 3. Draw 2Nl independent Rademacher vectors {ui},{vi} ∈ RN , i = 1, 2, . . . , Nl.
Compute

ϕi = CT
z P

Tui, ψi = CT
z P

T vi. (A.1.1)

This takes O(2Nl(N
2 + nN)) time.

Step 4. Compute vector-Hessian-vector product by approximation (2.2.15). This
approximation takes O(Nl) forward solves. Denote wi = ψTi Hoϕi, w′i = ψTi Hpϕi.
Then set the matrices A3 ← 1√

2Nl
(w1, w2, · · · , wNl

) ∈ Rd×Nl ,

A4 ← 1√
2Nl

(w′1, w
′
2, · · · , w

′
Nl
) ∈ R(m−d)×Nl . Using (2.3.22), we will approximate

higher-order terms by

1

2
tr(HoCov(z, z)H

T
o Cov(z, z)) ≈ A3A

T
3 , (A.1.2)

1

2
tr(HpCov(z, z)H

T
o Cov(z, z)) ≈ A4A

T
3 . (A.1.3)

Step 5. Carry out the kriging computation (2.3.15) with components (2.3.16) and
(2.3.17) in two steps. First, solve the modified inverse problem

α =

((
Kϵy 0
0 Kϵz

)
+

(
A3A

T
3 0

0 0

)
+

(
A1 0

0 CT
zo

)(
K K
K K

)(
AT
1 0
0 Czo

))−1(
yo −m(yo)
zo −m(zo)

)
,

=

((
Kϵy 0
0 Kϵz

)
+

(
A3 A1P

T

0 CT
zoP

T

)(
AT
3 0

PAT
1 PCzo

))−1(
yo −m(yo)
zo −m(zo)

)
(A.1.4)

by applying the SMW formula. The time cost is dominated by computing the

matrix products
(
AT
3 0

PAT
1 PCzo

)(
K−1ϵy 0

0 K−1ϵz

)(
A3 A1P

T

0 CT
zoP

T

)
, which take

O(N +Nl) linear system solves with the observation noise matrix and
O((n+m)(N +Nl)

2) assembly time.
Step 6. Return the final solution(

m(yp)
m(zp)

)
+

((
A4A

T
3 0

0 0

)
+

(
A2 0

0 CT
zp

)(
K K
K K

)(
AT
1 0
0 Czo

))
α, (A.1.5)

by matrix-vector product. It takes O(2(n+m)N + 2mNl + 4N2) time.

190

APPENDIX B

SUPPLEMENT TO CHAPTER 3

B.1 Motivating Example for Full Dataset Fitting

Before moving forward to sophisticated covariance and physical models, we demonstrate the

benefit of performing MLE over the entire large datasets of measurements. Here we use

a nonstationary Gaussian process on the 1D interval [0, 10]. The covariance model of the

process is the square exponential covariance

K(xi, xj) = σ exp

(
−
(xi − xj)2

2lilj

)
, where xi, xj ∈ [0, 10] (B.1.1)

where the length scale parameter li, lj are given by a linear function of x, i.e. li = l(xi) =

a + bxi. We set the ground truth parameters σ = 1, a = 0.1, b = 0.6. Therefore the

true length scale parameter l ranges from 0.1 to 6.1 over the entire domain. Here we treat

the magnitude parameter σ as known. By simulating synthetic observations from the given

Gaussian process with an equally spaced grid points of mesh size ∆x = 0.05, we attempt to

recover the unknown parameters a and b via MLE.

We consider the following three settings:

• Setting 1: full observations from [0, 10] with resolution ∆x = 0.05.

• Setting 2: subsampled observations from [0, 10] with a coarser resolution ∆x = 0.2.

• Setting 3: truncated observations from [0, 2.5] with full resolution ∆x = 0.05.

The three settings corresponds to three scenarios when dealing with large datasets of

raw observations. In setting 1, we perform MLE on the entire dataset and possibly apply

approximation methods to confront the scaling issue. Alternatively we can subsample the

dataset by taking a coarser subset or restricting the observations to a partial domain. These
191

approaches will effectively reduce the problem size, but as a result, inducing difficulties and

inaccuracy in parameter identifications, as what we will see next.

We simulate 20 independent realizations of the same process as observations and per-

form MLE for the three settings above. We show the parameter point estimations and the

corresponding 95% confidence intervals in Fig. B.1.1. We observe that with full observa-

tions we can identify both parameters accurately (with small confidence intervals). When

we subsample the observations as in setting 2, the observation density (∆x = 0.2) is not

enough to capture the finest correlation scale (lmin = 0.1). We can still successfully identify

the true parameter but the confidence intervals are much wider. In setting 3, the truncated

subdomain contains information about finer scale correlations, as the correlation length scale

increases from 0 to 10. We see the intercept term a can be estimated accurately but esti-

mating b poses much more uncertainties. In summary, it is indeed possible to subsample the

observations to circumvent the scaling issue when dealing with large datasets. However this

comes with a cost as partial observations may fail to provide enough information to identify

the parameters. A better alternative is to use approximation method e.g. our approach in

this paper, which introduces a clearer framework for complexity / accuracy tradeoff.

Figure B.1.1: MLE point estimation and confidence intervals for parameters a and b. Blue
crosses, red circles and green squares correspond to settings 1, 2, 3, respectively.

192

B.2 Two Quasilinear Trace Operations for HODLR Matrices

Assume A and B are both HODLR matrices with number of levels τ and fixed local rank k.

Based on the basic factorization (3.3.3) we have

A = Ā(I + U (τ)V (τ)T) · · · (I + U (1)V (1)T), (B.2.1)

where Ā is a block-diagonal matrix containing all the leaf level blocks of A. (I +U (i)V (i)T)

is a block-diagonal matrix with 2i−1 blocks where each block is a rank-2k update to identity.

More details and the connection between off-diagonal blocks and low-rank update to identity

can be found in Appendix B.3.

We assume the level grows as log n, i.e. τ = O(log n). (B.2.1) is the original form of

factorization in [5]. By factorizing the finer level diagonal factors to the other side, A can

also be factorized in the following “transposed” form in the same O(n log2 n) complexity,

A = (I + V (1)U (1)T) · · · (I + V (τ)U (τ)T)Ā. (B.2.2)

Note that here we assume A is symmetric. For asymmetric matrix the two factorizations

(B.2.1), (B.2.2) also exist, but the factors generally do not have explicit correspondence.

B.2.1 Matrix-Matrix Product AB And A−1B

Now we discuss in detail the algorithm for performing matrix-matrix product AB and A−1B

in HODLR format. Instead of forming the resulting product matrix explicitly, we write it

as a sum of matrices. We start from HODLR matrices A,B with the same number of levels

τ and fixed local rank k. Additionally we assume A,B have exactly the same size and

hierarchical partitioning. Consider product AB. We use the factorization form (B.2.1).

Step 1 The first step is to multiply the rightmost factor of A with HODLR matrix B. We

193

have

(I + U (1)V (1)T)B = B + U (1)V (1)TB = B + Ū (1)V̄ (1)T , (B.2.3)

where Ū (1) = U (1) and V̄ (1) = BTV (1). Note that the second term is of rank k. We

can store the two low-rank factors U (1)
1 , V (1)

1 to avoid computing it explicitly.

The result now is written as the sum of an HODLR matrix and a low-rank component.

The next step is to apply subsequent factors of A. This is done by two steps.

Step 2 Notice that the second level factor has the following block diagonal format [5],

(I + U (2)V (2)T) =

I + U
(2)
1 V

(2)T
1 0

0 I + U
(2)
2 V

(2)T
2

 . (B.2.4)

where each block has size one half of the entire matrix and the sized of the identity

matrices is chose to match. To apply the second level factor to the product, we first

update the low-rank components. In this case we have

Ū (1)V̄ (1)T ←− (I + U (2)V (2)T)Ū (1)V̄ (1)T , (B.2.5)

which can be done by updating the existing low-rank factors Ū (1) ←− (I+U (2)V (2)T)Ū (1)

and V̄ (1) ←− V̄ (1) via applying the two diagonal blocks in (B.2.4) to the corresponding

rows of Ū (1).

Step 3 The next step is to apply the second level factor to the HODLR matrix. Divide the

HODLR matrix into its first level, B can be written as

B =

 B
(1)
1 G

(1)
1 H

(1)T
1

H
(1)
2 G

(1)T
2 B

(1)
2

 . (B.2.6)

194

Then we can compute

(I + U (2)V (2)T)B =

I + U
(2)
1 V

(2)T
1 0

0 I + U
(2)
2 V

(2)T
2


 B

(1)
1 G

(1)
1 H

(1)T
1

H
(1)
2 G

(1)T
2 B

(1)
2

 ,
=

 B
(1)
1 Ḡ

(1)
1 H̄

(1)T
1

H̄
(1)
2 Ḡ

(1)T
2 B

(1)
2

+

U (2)
1 V

(2)T
1 B

(1)
1 0

0 U
(2)
2 V

(2)T
2 B

(1)
2

 .
(B.2.7)

where Ḡ(1)
1 = (I+U

(2)
1 V

(2)T
1)G

(1)
1 , H̄(1)

1 = H
(1)
1 , Ḡ(1)

2 = G
(1)
2 , H̄(1)

2 = (I+U
(2)
2 V

(2)T
2)H

(1)
2 .

Notice the first term is still an HODLR matrix and the second term is block-diagonally

low-rank. Further denoteU (2)
1 V

(2)T
1 B

(1)
1 0

0 U
(2)
2 V

(2)T
2 B

(1)
2

 =

Ū (2)
1 V̄

(2)T
1 0

0 Ū
(2)
2 V̄

(2)T
2

 = Ū (2)V̄ (2)T ,

(B.2.8)

and define the HODLR matrix B̃ in the multiplier by

B̃ ←−

 B
(1)
1 Ḡ

(1)
1 H̄

(1)T
1

H̄
(1)
2 Ḡ

(1)T
2 B

(1)
2

 . (B.2.9)

Note that B and B̃ are HODLR matrices with the same size and hierarchical structure.

However the off-diagonal blocks have been updated. Now the product can be written

as

(I + U (2)V (2)T)(I + U (1)V (1)T)B = B̃ + Ū (1)V̄ (1)T + Ū (2)V̄ (2)T . (B.2.10)

We notice not only the HODLR matrix has been updated, an extra second level diag-

195

onal low-rank component (Ū (2)V̄ (2)T in our case) has been generated as well.

Step 4 Steps 2 through 4 are repeated until we reach level τ . For each level, both the HODLR

matrix B̄ and all the low-rank components from the previous levels need to be updated.

Finally we have

(I + U (τ)V (τ)T) · · · (I + U (1)V (1)T)B = B̃ +
τ∑

i=1

Ū (i)V̄ (i)T . (B.2.11)

Here B̃ is a HODLR matrix with the same structure as B. Note that each Ū (i) and

V̄ (i) have the same dimension and structure as U (i) and V (i) : they are block diagonal

with n/2i−1 × 2k blocks.

Step 5 The final step is to apply the leaf level block diagonal matrix Ā to the product we

have gotten. Since we assume A,B have the same hierarchical partitioning, it can be

done by applying each diagonal block of Ā blockwisely to all low-rank components and

the low-rank factors of B̄ at all levels. The operation has been extensively used when

factorizing the HODLR matrix, see [6] for an example.

Now we analyze the computational complexity of the given workflow. Using (B.2.1),

we apply the level i factor of A. This requires multiplying the block-diagonal matrix (I +

U (i)V (i)T) with all (i−1) existing left block-diagonally low-rank components Ū (1), · · · , Ū (i−1).

The essential observation that makes this efficient is that block diagonal structures at level

i can be mapped into block diagonal structures at all other levels k, k ≤ i since they have

the finest structures among the latter. Take Ū (i−1) as an example, exploring the preceding

observation, we can express level i in block diagonal form for the i−1 partition and compute

the matrix multiplication as follows,

196

(I + U (i)V (i)T)Ū (i−1), (B.2.12)

= diag

([
I + U

(i)
1 V

(i)T
1 · · · I + U

(i)

2i−1V
(i)T

2i−1

])
· diag

([
Ū
(i−1)
1 · · · Ū

(i−1)
2i−2

])
,

= diag

([(
I + U

(i)
1 V

(i)T
1

)
Ū
(i−1)
1,1

(
I + U

(i)
2 V

(i)T
2

)
Ū
(i−1)
1,2 · · ·

])(
I + U

(i)

2i−1V
(i)T

2i−1

)
Ū
(i−1)
2i−2,2

.

where diag(v) denotes the block-diagonal matrix whose diagonal blocks are given by the

component block matrices v. Ū (i−1)
1 =

Ū (i−1)
1,1

Ū
(i−1)
1,2

 is a partition of matrix Ū (i−1)
1 compatible

with the finer partition i. To evaluate the complexity consequences of our approach, we need

to investigate the size of the block matrices in detail. For simplicity we assume bipartition

for all levels in the hierarchical partitioning structure and therefore that n is divisible by 2τ .

In this case, (I+U (i)V (i)T) has diagonal blocks of size n/2i−1×n/2i−1. In contrast, Ū (i−1)

has diagonal blocks of size n/2i−2×2k. Therefore Ū (i−1)
1,1 , Ū

(i−1)
1,2 are both of size n/2i−1×2k.

To solve (B.2.12), we need to compute matrix multiplications of type
(
I + U

(i)
1 V

(i)T
1

)
Ū
(i−1)
1,1

for all 2i−1 blocks. By multiplying the low-rank factors from right to left, each term takes

8nk2/2i−1, yielding a total cost of 8nk2. At the following level, Ū (i−2) has diagonal blocks

of size n/2i−3 × 2k. Therefore each diagonal block of of should be quartered to match the

multiplier (I + U (i)V (i)T). Ultimately there are still 2i−1 block multiplications of the same

size as
(
I + U

(i)
1 V

(i)T
1

)
Ū
(i−1)
1,1 . The computational cost is 8nk2 as well. Repeating the

updating procedure for all (i−1) existing low-rank components, the total cost is 8(i−1)nk2.

Next, updating B̃ requires applying (I+U (i)V (i)T), i ≥ 2, which has 2i−1 blocks (B.2.21),

to each of the left low-rank off-diagonal components of B̃ at levels 1, · · · , i− 1, (B.2.7) . The

same trick detailed in (B.2.12) can be applied as well. For example in level 1, two low-rank

factors of size n/2× k need to be updated (Ḡ(1)
1 and H̄(1)

2 in (B.2.7)). By partitioning each

low rank component of B̃ into 2i−2 blocks (since i = 2 no splitting was required in (B.2.7)),

197

we can match them with the diagonal blocks in (I + U (i)V (i)T). The resulting 2i block

multiplications take 4nk2 time. For all (i− 1) levels, the cost is 4(i− 1)nk2.

Additionally to generate the new low-rank terms, Ū (i), V̄ (i) in (B.2.10) and (B.2.11),

we need to apply the diagonal low-rank components of (I + U (i)V (i)T), i.e. U
(i)
j V

(i)T
j in

(B.2.21) to the diagonal components of B̃ on level i (i.e the computation of (B.2.8)). This

step can be done by regular HODLR-vector products (after transposing the computation).

The complexity of HODLR-vector products has been extensively studied, see [77]. Note that

the diagonal component matrices of B̃ at level i have size n/2i × n/2i and (τ − i) levels of

their own. The total computational cost is thus upper bounded O(nk2τ).

Adding all these operations, we obtain a total computational cost,

τ∑
i=1

8(i− 1)nk2 + 4(i− 1)nk2 +O(nk2τ) = O(nk2τ2) = O(n log2 n). (B.2.13)

Here we used the assumption τ = O(log n) and that k is a fixed constant. Finally we need

to apply all 2τ leaf blocks of Ā to B̃ +
∑τ

i=1 Ū
(i)V̄ (i)T . That is equivalent to applying

all leaf blocks of Ā to all the left low-rank components and leaf blocks of B̃, and all Ū (i).

By blockwise application, each diagonal leaf block of Ā will be applied to 2k vectors (left

low-rank components of off-diagonal blocks) in each level and an extra O(k) vectors for the

leaf blocks of B̃, yielding O(k3τ) complexity. Similarly, to multiply with
∑τ

i=1 Ū
(i)V̄ (i)T ,

each Ā leaf block needs to be applied to 2k vectors (diagonal blocks of Ū (i)), yielding O(k3τ)

complexity. For all blocks, the total complexity is O(k3τ × 2τ) = O(nk2τ) = O(n log n).

Summarizing everything up, the total cost of computing AB for two HODLR matrices in

the format of the right hand side of (B.2.11) is O(n log2 n).

Next we discuss the algorithm for computing A−1B in a format of the right hand side

of (B.2.11). Since the inverse will reverse the order of the factors, we factorize A in form

198

(B.2.2). Using the Woodbury identity, we have

A−1B = Ā−1(I + U (τ)V (τ)T)−1 · · · (I + U (1)V (1)T)−1B

= Ā−1(I − U (τ)(I + V (τ)TU (τ))−1V (τ)T) · · · (I − U (1)(I + V (1)TU (1))−1V (1)T)B.

(B.2.14)

Comparing (B.2.11) and (B.2.14), each factor is still a low-rank update to identity. The

only differences are now we need to apply the inverse of a matrix (I + V (i)TU (i)) and

the inverse of leaf blocks of Ā. Luckily, V (i)TU (i) consists of only diagonal blocks of size

O(k) which makes the linear system efficiently computable. If we denote Ṽ (i)T = (I +

V (i)TU (i))−1V (i)T we can apply the same algorithm we did to compute AB to compute

A−1B in the format of the right hand side of (B.2.11).

Now we analyze the additional computational complexity compared to the original AB

product algorithm. One of the extra operations is to obtain Ṽ (i)T = (I+V (i)TU (i))−1V (i)T .

Recall that both U (i) and V (i) are block-diagonal with a total number of 2i−1 diagonal

blocks of rank 2k. For each level i, the diagonal blocks of V (i) are of size n/2i−1 × 2k.

Therefore the complexity of computing each block of Ṽ (i) is 8nk3/2i−1. For all blocks the

complexity becomes 8nk3. Repeating the same operation to obtain all Ṽ (i), i = 1, · · · , τ

requires O(nk3τ) = O(n log n) complexity. Another difference is that now we need to apply

the inverse of leaf blocks in Ā. Based on similar considerations, each leaf block needs to be

applied to O(kτ) vectors, yielding O(k4τ) complexity. Taking all blocks into consideration,

the total extra complexity is O(k4τ × 2τ) = O(nk3τ) = O(n log n).

In summary, the total cost of computing either AB or A−1B for two HODLR matrices

scales as O(n log2 n) and the result can be expressed as the sum of an HODLR matrix and

τ terms with low rank blocks, as in the right hand side of (B.2.11). The extra memory

required to store the low-rank terms is O(nkτ) = O(n log n).

199

B.2.2 Product of Form A−1BC−1D

In the same vein, we can compute the product of form A−1BC−1D given four HODLR

matrices A,B,C,D. Assume all four HODLR matrices have exactly the same size of hier-

archical partitioning. The local rank of all off-diagonal blocks is fixed at k. Using B.2.1 we

are able to compute A−1B and C−1D separately. Assume

A−1B = B̄ +
τ∑

i=1

Ū (i)V̄ (i)T , (B.2.15)

C−1D = D̄ +
τ∑

i=1

Ū(i)V̄(i)T . (B.2.16)

By multiplying each term separately, we have

A−1BC−1D = B̄D̄ +
τ∑

i=1

Ū (i)V̄ (i)T D̄ +
τ∑

i=1

B̄Ū(i)V̄(i)T +
τ∑

i=1

τ∑
j=1

Ū (i)V̄ (i)T Ū(j)V̄(j)T .

(B.2.17)

The first term is the product of two HODLR matrices. Applying the algorithms in B.2.1

again, we can write

B̄D̄ = D̃ +
τ∑

i=1

Ū (i)V̄(i)T . (B.2.18)

In summary, the product can be written as

A−1BC−1D =D̃ +
τ∑

i=1

Ū (i)V̄(i)T +
τ∑

i=1

Ū (i)V̄ (i)T D̄ +
τ∑

i=1

B̄Ū(i)V̄(i)T

+
τ∑

i=1

τ∑
j=1

Ū (i)V̄ (i)T Ū(j)V̄(j)T . (B.2.19)

From B.2.1, computing A−1B, C−1D, B̄D̄ all take O(n log2 n) time. In total, given

200

HODLR matrices A,B,C,D we can write the product of A−1BC−1D in form (B.2.19) with

a cost of O(n log2 n) complexity. Though still complicated, we will show how to combine

(B.2.19) with the trace operation to speed up the computation.

B.2.3 Computation of tr(A−1B) And tr(A−1BC−1D)

Taking the trace of form (B.2.15), we have

tr(A−1B) = tr(B̄) +
τ∑

i=1

tr(Ū (i)V̄ (i)T). (B.2.20)

Further recall that Ū (i)V̄ (i)T is a block diagonal low-rank matrix, which can be written

as

Ū (i)V̄ (i)T =



Ū
(i)
1 V̄

(i)T
1 0 · · · 0

0 Ū
(i)
2 V̄

(i)T
2 · · · 0

...
... . . . 0

0 0 0 Ū
(i)

2i−1V̄
(i)T

2i−1


. (B.2.21)

Now using the properties of the trace operator, we have

tr(A−1B) = tr(B̄) +
τ∑

i=1

tr(V̄ (i)T Ū (i)), (B.2.22)

= tr(B̄) +
τ∑

i=1

2i∑
j=1

tr(V̄
(i)T
j Ū

(i)
j). (B.2.23)

Notice that both Ū
(i)
j , V̄

(i)
j ∈ Rn/2i−1×2k. Computing the product V̄ (i)T

j Ū
(i)
j can be

done in (8nk2/2i−1) time, extracting its trace requires k − 1 additions, and it is asymptot-

ically negligible. Repeating the calculation for all 2i−1 terms at all levels i = 1, . . . , τ , the

total computational cost is O(nk2τ) = O(n log n). Taking into account the cost of produc-

201

ing (B.2.15), the total computational complexity of computing tr(A−1B) for two HODLR

matrices is O(n log2 n).

Next we consider taking the trace of (B.2.19). Similarly utilizing the basic trace proper-

ties, we can write

tr(A−1BC−1D) =tr(D̃) +
τ∑

i=1

2i∑
j=1

tr(V̄(i)Tj Ū (i)j) +
τ∑

i=1

tr(V̄ (i)T D̄Ū (i))

+
τ∑

i=1

tr(V̄(i)T B̄Ū(i)) +
τ∑

i=1

τ∑
j=1

tr(V̄(j)T Ū (i)V̄ (i)T Ū(j)). (B.2.24)

Since D̃ is of HODLR form, taking its trace is very efficient and can be negligible. Next

we consider the second term. Following the same procedure in (B.2.21), we can compute the

second term with cost O(n log n).

Moving to the third and fourth terms, they share the same structure. Take the third

term
∑τ

i=1 tr(V̄
(i)T D̄Ū (i)) as an example. Note D̄ is an HODLR matrix and Ū (i), V̄ (i) are

block-diagonal matrices with 2i−1 diagonal blocks of size (n/2i−1)× 2k. Therefore the trace

operations depends only on the diagonal blocks of D̄ at level i−1 of size (n/2i−1)×(n/2i−1).

There are 2i−1 of them in total, each having HODLR structure with τ − i+ 1 levels:

D̄
(i−1)
1 , D̄

(i−1)
2 , · · · , D̄(i−1)

2i−1 . (B.2.25)

We then obtain

tr(V̄ (i)T D̄Ū (i)) =
2i−1∑
j=1

tr(V̄
(i)T
j D̄

(i−1)
j Ū

(i)
j). (B.2.26)

The computations can be conducted efficiently by computing D̄(i−1)
j Ū

(i)
j first which can

be done by HODLR-vector product. Similar operations have been analyzed in detail in B.2.1.

The sum-total complexity for all 2i−1 terms is upper bounded by O(nk2τ) and each product

202

is of size (n/2i−1)× 2k. Then we can left-multiply V̄ (i)T
j with the result via regular matrix-

matrix multiplication. The sum-total complexity is O(nk2) for all 2i−1 terms. Each product

is now of size 2k× 2k and the complexity of the trace operation is O(k2i−1), which thus can

be ignored. Repeating the same operations for all τ terms in
∑τ

i=1 tr(V̄
(i)T D̄Ū (i)), the total

complexity is given by O(nk2τ2) = O(n log2 n). The fourth term
∑τ

i=1 tr(V̄
(i)T B̄Ū(i)) can

be computed similarly with the same scaling.

For the last term, we compute V̄(j)T Ū (i) and V̄ (i)T Ū(j) for each pair of (i, j) separately.

By applying blockwise matrix multiplications, both can be computed in O(nk2) time. Now

we analyze their output matrices to conduct the following operations.

If i ≥ j, the product V̄(j)T Ū (i) is a block-diagonal matrix with 2j−1 diagonal blocks.

Each diagonal block is of size k × 2(i−j)k. V̄ (i)T Ū(j) is also a block-diagonal matrix with

2j−1 diagonal blocks. Its block has size 2(i−j)k × k. In this case we compute their product

directly by multiplying the corresponding diagonal blocks. Each pair of diagonal blocks takes

O(2(i−j)k3) time. In total, all pairs take O(2ik3) time.

If j ≥ i, we swap the order of the two matrices in the trace, i.e. tr(V̄(j)T Ū (i)V̄ (i)T Ū(j)) =

tr(V̄ (i)T Ū(j)V̄(j)T Ū (i)). Now similarly, V̄ (i)T Ū(j) is block-diagonal with 2i−1 blocks. Each

block is of size k × 2(j−i)k. V̄(j)T Ū (i) is block-diagonal with 2i−1 blocks. Each block is of

size 2(j−i)k×k. Now we multiply all the pairs of diagonal blocks. The total cost is O(2jk3).

Combining two cases together, the cost of computing the block-diagonal matrix inside the

trace operator takes O(2max(i,j)k3) time. The complexity for the following trace operations

can be ignored. In total, evaluating the last term takes

τ∑
i=1

τ∑
j=1

O(nk2 + k32max(i,j)) = O(nk2τ2 + 2τk3τ) = O(n log2 n). (B.2.27)

In summary, the total cost of evaluating (B.2.24) is O(n log2 n). B.2.1, B.2.2, B.2.3

streamlined an exact approach of evaluating operations of form tr(A−1B) and tr(A−1BC−1D)

203

for HODLR matrices. Given the HODLR form, both operations take O(n log2 n) time and

an extra memory of O(n log n).

B.3 HODLR factorization

HODLR matrices admit several fast factorization algorithms. Particularly, factorization of

form (3.3.3) is extensively used in this work. Here we use an example to explain the algorithm

in detail and more importantly, establish a relationship between HODLR form (3.3.2) and

its block-diagonal factors in (3.3.3). We use the same example of a 2-level HODLR matrix

as in (3.3.2),

A =



 A
(2)
1 W

(2)
1 X

(2)T
1

X
(2)
1 W

(2)T
1 A

(2)
2

 W
(1)
1 X

(1)T
1

X
(1)
1 W

(1)T
1

 A
(2)
3 W

(2)
2 X

(2)T
2

X
(2)
2 W

(2)T
2 A

(2)
4




, (B.3.1)

where diagonal blocks A(2)
i in the leaf level (level 2) are assumed to be dense. The first step

is to factor out the dense leaf blocks from A. For example we can factor out the leaf blocks

from the left. Let us denote

Ā =



A
(2)
1 0 0 0

0 A
(2)
2 0 0

0 0 A
(2)
3 0

0 0 0 A
(2)
4


, (B.3.2)

204

then we can compute blockwisely by

A = Ā



 In/4 W̄
(2)
1 X

(2)T
1

X̄
(2)
1 W

(2)T
1 In/4

 W̄
(1)
1 X

(1)T
1

X̄
(1)
1 W

(1)T
1

 In/4 W̄
(2)
2 X

(2)T
2

X̄
(2)
2 W

(2)T
2 In/4




, (B.3.3)

where In/4 denotes identity matrix of size n/4 × n/4. (B.3.3) can be obtained by up-

dating W̄
(2)
1 =

(
A
(2)
1

)−1
W

(2)
1 , X̄(2)

1 =
(
A
(2)
2

)−1
X

(2)
1 , W̄ (2)

2 =
(
A
(2)
3

)−1
W

(2)
2 , X̄(2)

2 =(
A
(2)
4

)−1
X

(2)
2 and

W̄
(1)
1 =


(
A
(2)
1

)−1
0

0
(
A
(2)
2

)−1
W (1)

1 , X̄
(1)
1 =


(
A
(2)
3

)−1
0

0
(
A
(2)
4

)−1
X(1)

1 .

We note that there is an explicit relationship between off-diagonal blocks and low-rank

updates. Take the upper left block of (B.3.3) as an example, we can extract the off-diagonal

blocks by writing

 In/4 W̄
(2)
1 X

(2)T
1

X̄
(2)
1 W

(2)T
1 In/4

 = In/2 +

W̄ (2)
1 0

0 X̄
(2)
1


 0 X

(2)T
1

W
(2)T
1 0

 , (B.3.4)

= In/2 + U
(2)
1 V

(2)T
1 , (B.3.5)

where U (2)
1 and V (2)

1 are both of size n/2× 2k and defined by

U
(2)
1 =

W̄ (2)
1 0

0 X̄
(2)
1

 , V (2)
1 =

 0 X
(2)
1

W
(2)
1 0

 . (B.3.6)

That is, if one matrix has off-diagonal blocks of rank k, we can extract the off-diagonal

205

blocks and represent them as a rank-2k update to its diagonal blocks. Similarly we can write

 In/4 W̄
(2)
2 X

(2)T
2

X̄
(2)
2 W

(2)T
2 In/4

 = In/2 +

W̄ (2)
2 0

0 X̄
(2)
2


 0 X

(2)T
2

W
(2)T
2 0

 , (B.3.7)

= In/2 + U
(2)
2 V

(2)T
2 . (B.3.8)

Now we can further factor out (B.3.5) and (B.3.8) from left of the second term in (B.3.3)

and we can further rewrite

A =Ā

In/2 + U
(2)
1 V

(2)T
1 0

0 In/2 + U
(2)
2 V

(2)T
2

 (B.3.9)

 In/2

(
In/2 + U

(2)
1 V

(2)T
1

)−1
W̄

(1)
1 X

(1)T
1(

In/2 + U
(2)
2 V

(2)T
2

)−1
X̄

(1)
1 W

(1)T
1 In/2

 , (B.3.10)

=Ā
(
I + U (2)V (2)T

) In/2 W̃
(1)
1 X

(1)T
1

X̃
(1)
1 W

(1)T
1 In/2

 . (B.3.11)

by updating W̃ (1)
1 =

(
In/2 + U

(2)
1 V

(2)T
1

)−1
W̄

(1)
1 , X̃(1)

1 =
(
In/2 + U

(2)
2 V

(2)T
2

)−1
X̄

(1)
1 . This

step can be computed efficiently via the Woodbury identity. We denote

(
I + U (2)V (2)T

)
=

In/2 + U
(2)
1 V

(2)T
1 0

0 In/2 + U
(2)
2 V

(2)T
2

 . (B.3.12)

206

Using the same trick, we can write the last term of (B.3.11) as low-rank update,

 In/2 W̃
(1)
1 X

(1)T
1

X̃
(1)
1 W

(1)T
1 In/2

 = In +

W̃ (1)
1 0

0 X̃
(1)
1


 0 X

(1)T
1

W
(1)T
1 0

 , (B.3.13)

= In + U (1)V (1)T . (B.3.14)

Put everything together, we have

A = Ā
(
I + U (2)V (2)T

)(
I + U (1)V (1)T

)
, (B.3.15)

where Ā is a block-diagonal matrix containing all leaf level blocks of A.
(
I + U (1)V (1)T

)
and

(
I + U (2)V (2)T

)
are also two block-diagonal matrices, for which each diagonal block is

a rank-2k update to identity. For a more general τ -level HODLR matrix, we can extend the

algorithm to all levels to get

A = Ā(I + U (τ)V (τ)T) · · · (I + U (1)V (1)T), (B.3.16)

which is exactly (B.2.1). Each term (I+U (i)V (i)T) is block-diagonal matrix with 2i−1 blocks

where each diagonal block is a rank-2k update to identity. For more details and complexity

analysis, we refer readers to [5] for a complete discussion.

207

APPENDIX C

SUPPLEMENT TO CHAPTER 4

C.1 Soft committor functions

Consider the optimization problem (4.2.7). We offer a probabilistic interpretation of the

optimizer q, which we call a ‘soft committor function.’ This probabilistic interpretation will

justify its use qualitatively and quantitatively as a proxy for the committor function.

Define

f :=
ρ · pA
β · p

, g :=
ρ · pB
β · p

,

and note that the Euler-Lagrange equation associated to (4.2.7) then reads as

−β−1∆q(x) +∇V (x) · ∇q(x) + (f(x) + g(x)) q(x) = g(x). (C.1.1)

We shall now rederive this PDE (C.1.1) via a probabilistic construction. In particular this

construction will imply that the solution q satisfies 0 ≤ q(x) ≤ 1 for all x ∈ Ω.

Consider a stochastic process Xt that modifies the standard overdamped Langevin dif-

fusion

dXt = −∇V (Xt) dt+

√
2β−1 dWt,

where Wt is a Wiener processs, by adding jumps to one of two possible ‘cemetery states’

cA, cB with state-dependent rates specified by f, g, respectively.

In other words, we view Xt ∈ Ω∪{cA}∪{cB} as the continuous-time limit of the discrete-

208

time Markov chain (also denoted Xt, abusing notation slightly) defined by the update

Xt+∆t =


cA, if UA

t < f(Xt)∆t,

cB , otherwise if UB
t < g(Xt)∆t

Xt −∇V (Xt)∆t+
√

2β−1∆tZt otherwise,

,

whenever Xt ∈ Ω. Here the UA
t , U

B
t are i.i.d. uniformly distributed random variables on

[0, 1], and the Zt are i.i.d. standard Gaussian random variables. In other words, at each time

step the stochastic process is sent to the cemetery state cA with probability f(Xt)∆t and the

cemetery state cB with probability g(Xt)∆t, else it is advanced by the usual overdamped

Langevin dynamics. Note that in the limit of ∆t small, it is unlikely for both UA
t < f(Xt)∆t

and UB
t < g(Xt)∆t to hold. Specifically, the probability of this is only O(∆t2) and does

not affect the continuous-time limit.

Moreover, if Xt = cA (resp., cB), then we define Xt+∆t = cA (resp., cB) deterministi-

cally. Then define the stopping time τ as

τ = inf {t : Xt ∈ {cA, cB}} ,

and define q : Ω→ [0, 1] by

q(x) = P (Xτ = cB |X0 = x) .

We claim that q so defined (in the continuous-time limit ∆t→ 0) satisfies the PDE (C.1.1).

Note that this construction of q coincides with the usual probabilistic construction for the

committor function, modulo a change in the underlying stochastic process. We justify the

claim only formally. A rigorous argument can be made by analogy to arguments made for

the ordinary committor function [25].

209

C.1.1 Formal PDE derivation

The PDE is derived by conditioning on X0 = x, and writing

q(x) =P(Xτ = cB)

=P(X∆t = cB) + P(X∆t /∈ {cA, cB})E
[
P
(
X ′τ = cB |X ′0 = X∆t

)]
+O(∆t2),

where X ′t is an indepenent dummy stochastic process with the same law as Xt. But then

q(x) = P(X∆t = cB) + P(X∆t /∈ {cA, cB})E [q(X∆t)] +O(∆t2).

Expanding further we obtain

q(x) =g(x)∆t+ (1− f(x)∆t− g(x)∆t) E
[
q

(
x−∇V (x)∆t+

√
2β−1∆tZ0

)]
+O(∆t2). (C.1.2)

Then we can expand q via Taylor expansion:

q

(
x−∇V (x)∆t+

√
2β−1∆tZ0

)
=q(x)−∇V (x) · ∇q(x)∆t+

√
2β−1∆tZ0 · ∇V (x)

+ β−1∆tZ⊤0 ∇
2q(x)Z0 + o(∆t),

from which we obtain

E
[
q

(
x−∇V (x)∆t+

√
2β−1∆tZ0

)]
= q(x) +

(
−∇V (x) · ∇q(x) + β−1∆q(x)

)
∆t

+ o(∆t).

210

It follows from plugging into (C.1.2) that

q(x) = q(x) +
[
g(x)−∇V (x) · ∇q(x) + β−1∆q(x)− (f(x) + g(x))q(x)

]
∆t+ o(∆t).

Cancelling q(x) from boths sides, dividing by ∆t, and taking the limit as ∆t→ 0, we obtain

precisely (C.1.1), as desired.

C.2 Discretization of the Ginzburg-Landau density

In this section, we show that one can approximate the equilibrium distribution of the

Ginzburg-Landau potential as (4.3.7) via the eigenfunctions of a certain kernel.

The computation of the committor function for the Ginzburg-Landau potential requires

the numerical approximation of the operator H : L2([−R,R])d → R defined by

H[ϕ1, . . . , ϕd] =cλ
∫ R

−R
. . .

∫ R

−R
K(0, x1)K(x1, x2)K(x2, x3) . . . K(xd−1, xd)

×K(xd, 0)ϕ1(x1) . . . ϕd(xd) dx1 . . . dxd,

where

K(x, y) = e−
1
8λ (1−x

2)2e
λ

2h2
(x−y)2

e−
1
8λ (1−y

2)2 ,

cλ = e−
1
4λ , and R is some fixed positive constant.

Considering the operator H0 : L2([−R,R])→ L2([−R,R]) defined by

H0[ϕ](x) =

∫
Ω
K(x, y)ϕ(y) dy,

we observe that it is compact, symmetric, and positive semi-definite. In particular, it has an

eigendecomposition consisting of a countable basis of orthonormal eigenfunctions u1, u2, . . . ∈

L2([−R,R]), together with corresponding non-negative eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥

211

. . . ≥ 0, such that

∫ R

−R
K(x, y)ϕ(y) dy =

∞∑
j=1

λjuj(x)

∫ R

−R
uj(y)ϕ(x) dy

for all ϕ ∈ L2([−R,R]). Moreover, for the kernel K defined above it is easily shown that

λj ∈ o(e−αj) for any α > 0 as j → ∞ (see [121] for example). We note that the implicit

constant in the previous estimate will depend on α but not on j, and increases rapidly

as α → ∞. For convenience, let us define the re-scaled eigenfunctions vi =
√
λiui. Upon

substitution of the eigendecomposition of H0 into the definition of H, we obtain

H[ϕ1, . . . , ϕd] = cλ

∞∑
j0,...,jd=1

vj0(0)Aj0,j1 [ϕ1] · · ·Ajd−1,jd [ϕd]vjd(0), (C.2.1)

where Aj,ℓ[ϕ] =
∫
Ω vj(x)vℓ(x)ϕ(x) dx. We observe that

|Aj,ℓ[ϕ]|≤
√
λjλℓ∥ϕ∥L∞ ,

and thus, if the sums in (C.2.1) are truncated at term J , then

∣∣∣H[ϕ1, . . . , ϕd]−H(J)[ϕ1, . . . , ϕd]
∣∣∣

≤ 2 cλ∥ϕ1∥L∞ · · · ∥ϕd∥L∞

√
K(0, 0)K(j)(0, 0)Tr(H0)

d−1
2

√√√√ ∞∑
j=J+1

λj

+ (d− 1) cλ∥ϕ1∥L∞ · · · ∥ϕd∥L∞K(0, 0)Tr(H0)
d−1

∞∑
j=J+1

λj ,

where K(J)(0, 0) :=
∑∞

j=J+1 vj(0)
2 ≤ K(0, 0) and H(J) denotes the truncation of H. The

analyticity of K guarantees that
∑∞

j=J+1 λj go to zero exponentially quickly [121]) and

212

hence for any α > 0 there exists a constant Mα,λ,d,R depending on α, λ, d, and R such that

∣∣∣H[ϕ1, . . . , ϕd]−H(J)[ϕ1, . . . , ϕd]
∣∣∣ ≤Mλ,d,R e

−αJ/2∥ϕ1∥L∞· · · ∥ϕd∥L∞ ,

for all J ≥ 1.

Next, we express the input functions ϕi in a basis of (suitably-scaled) Chebyshev poly-

nomials,

ϕi(x) =
∞∑
n=0

ϕi,nTn

(x
R

)
,

where Tn is the nth standard Chebyshev polynomial. Let ϕ(N)
i denote the Nth order trun-

cation of ϕi defined by

ϕ
(N)
i (x) :=

N∑
n=0

ϕi,nTn

(x
R

)
.

Then, substituting these Chebyshev expansions into our expression for H, we find

H[ϕ1, . . . , ϕd] = cλ

∞∑
j0,...,jd=1

∞∑
n1,...,nd=1

An1
j0,j1
· · ·And

jd−1,jd
vj0(0)vjd(0)ϕ1,n1 . . . ϕd,nd , (C.2.2)

where

An
j,ℓ = Aj,ℓ [Tn(x/R)] .

In the following, we assume that ϕ1, . . . , ϕd are in Cp+1([−R,R]) for some fixed integer p ≥ 1

and set

Vp = max
i

∥∥∥∥ dp+1

dxp+1
ϕi(x/R)

∥∥∥∥
L1([−1,1])

.

A standard estimate from approximation theory [185] gives the following bound on the rate

of decay of the coefficients of ϕ1, . . . , ϕd:

|ϕi,n|≤
2Vp

πn(n− 1) · · · (n− p)
.

213

In particular,
∞∑

n=N+1

|ϕi,n|≤
2Vp

πp(N − p)p
.

If the sums over the Chebyshev coefficients (the n indices) in (C.2.2) are truncated at a

fixed integer N and the sums over the eigenvalues (the j indices) are truncated at J , then

the error is bounded by

∣∣∣H[ϕ1, . . . , ϕd]−H(J,N)[ϕ1, . . . , ϕd]
∣∣∣

≤ Mλ,d,R e
−αJ/2∥ϕ1∥L∞ · · · ∥ϕd∥L∞

+
2dcλVp

πp(N − p)p

(
1 +

2Vp
πp(N − p)p

)d−1
K(0, 0)Tr(H0)

dmax
i
∥ϕi∥d−1L∞ .

Here H(J,N) denotes the operator obtained by truncating the sums over eigenvalues in H at

J and projecting onto the first N +1 terms in the Chebyshev expansions of ϕ1, . . . , ϕd. This

latter projection, along with the eigendecomposition of H0, can be performed easily on the

computer using standard numerical integration. This yields a discrete, finite-dimensional

tensor which is the object we use in our approach when approximating H.

214

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Overview of Chapter 2
	1.2 Overview of Chapter 3
	1.3 Overview of Chapter 4
	1.4 Overview of Chapter 5

	2 SCALABLE GAUSSIAN PROCESS ANALYSIS FOR IMPLICIT PHYSICS-BASED COVARIANCE MODELS
	2.1 Introduction
	2.2 Implicit Physics-Based Covariance Models and Low-Rank Approximation
	2.2.1 Physics-Based Covariance Models
	2.2.2 Low-Rank Approximation of Kernel Using Chebyshev Interpolation
	2.2.3 Approximation of Jacobian and Hessian

	2.3 A Scalable Approach for Gaussian Process Regression Using Physics-Based Covariance Models
	2.3.1 Latent Process Kriging
	2.3.2 Joint Process Kriging
	2.3.3 Correction for Nonlinearity

	2.4 A Scalable Approach for Gaussian Process Maximum Likelihood Estimation
	2.4.1 Latent Process MLE
	2.4.2 Joint Process MLE
	2.4.3 Estimation of Fisher Information Matrix

	2.5 Numerical Experiments
	2.5.1 One-Dimensional Viscous Burger's Equation
	2.5.2 Real Data Experiment

	2.6 Discussion

	3 Scalable Physics-based Maximum Likelihood Estimation using Hierarchical Matrices
	3.1 Introduction
	3.2 Physics-based Covariance Models and Maximum Likelihood Estimation
	3.2.1 Physics-based Covariance Models
	3.2.2 Maximum Likelihood Estimation and Parameter Inference

	3.3 HODLR Approximations for Covariance Matrices
	3.3.1 HODLR Matrices
	3.3.2 Randomized Matrix-free Construction of HODLR Matrices
	3.3.3 Differentiating the HODLR Approximation

	3.4 Hierarchical Approximations of Gaussian Likelihood, Score Equations, Information Matrices
	3.4.1 Approximated Gaussian Likelihood
	3.4.2 Trace Computation
	3.4.3 Approximated Score Equations And Fisher Information Matrix

	3.5 Numerical Experiments
	3.5.1 SPDE Representation of Matérn Models
	3.5.2 A Matérn Based Wind Velocity Model
	3.5.3 Stationary Advection-diffusion-reaction Equation

	3.6 Discussion

	4 Committor functions via tensor networks
	4.1 Introduction
	4.2 Background and preliminaries
	4.2.1 Committor functions
	4.2.2 Soft boundary condition
	4.2.3 Tensors and tensor networks

	4.3 Proposed method
	4.3.1 Discretizing the variational problem
	4.3.2 Constructing H^k
	4.3.3 Constructing H^A and H^B
	4.3.4 Constructing h^B
	4.3.5 Optimization

	4.4 Numerical experiments
	4.4.1 Double-well potential
	4.4.2 Ginzburg-Landau potential
	4.4.3 Gaussian Mixture Equilibrium Density

	4.5 Conclusion

	5 Statistical mechanics and quantum many body simulation with Auxiliary-field Monte Carlo and Matrix Product State
	5.1 Introduction
	5.2 Proposed Method
	5.2.1 Recap of AFMC
	5.2.2 MPS/TT Density Estimations with AFMC Sampling
	5.2.3 Recompression via TT Sketching
	5.2.4 Extending to Quantum Setting
	5.2.5 Extending to Parabolic PDE
	5.2.6 Complexity Analysis

	5.3 Numerical Experiments
	5.3.1 Classical Setting
	5.3.2 Quantum Setting
	5.3.3 Evolving Fokker-Planck Equations

	5.4 Discussion

	References
	A Supplement to Chapter 2
	A.1 Joint Process Kriging with Higher-Order Terms
	A.2 Tensor Algebra Conventions
	A.3 Derivation of Higher-Order Terms

	B Supplement to Chapter 3
	B.1 Motivating Example for Full Dataset Fitting
	B.2 Two Quasilinear Trace Operations for HODLR Matrices
	B.2.1 Matrix-Matrix Product AB And A-1B
	B.2.2 Product of Form A-1BC-1D
	B.2.3 Computation of tr(A-1B) And tr(A-1BC-1D)

	B.3 HODLR factorization

	C Supplement to Chapter 4
	C.1 Soft committor functions
	C.1.1 Formal PDE derivation

	C.2 Discretization of the Ginzburg-Landau density

