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ABSTRACT

Neutrino research is at the forefront of new and exciting experimental searches for physics

beyond the Standard Model. MicroBooNE is the first of several detectors in Fermilab’s

leading-edge liquid argon time projection chamber (LArTPC) program working toward strin-

gent measurements of neutrino oscillations and searches for new physics. At energies relevant

to accelerator-based experiments, electron neutrino charged current interactions with at least

one proton and no pions in the final topology are a dominant contribution to event rates.

To date, however, limited experimental validation of this cross section exists, though such

constraints are crucial for next-generation LArTPCs to reach discovery precision in the elec-

tron neutrino appearance oscillation channel. While MicroBooNE’s primary physics analyses

make use of the on-axis Booster Neutrino Beam, a significant off-axis neutrino flux is also

received from the higher energy Neutrinos at the Main Injector (NuMI) beam. The greater

electron neutrino content of the NuMI beam provides a unique opportunity for MicroBooNE

to perform world-leading cross section measurements. This work presents the extraction

of exclusive differential electron neutrino cross sections using a combination of NuMI data

collected in neutrino and antineutrino mode by MicroBooNE. A state-of-the-art NuMI flux

prediction, high purity event selection algorithm, and thorough evaluation of uncertainties

are developed. Measurements are derived as a function of outgoing electron energy, total

visible energy of the interaction, and opening angle between the electron and most energetic

proton. The interaction rate as a function of proton multiplicity is also reported. Data-driven

cross sections are compared to model predictions from neutrino event generators commonly

employed in the field.
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CHAPTER 1

NEUTRINOS: A PROBE INTO THE UNKNOWN

The neutrino, or little neutral one, is a chargeless, fundamental particle with mass so small it

zips through the universe at nearly the speed of light. These ghostly particles are character-

ized by their low interaction rates and abundance in nature: Roughly 100 trillion neutrinos,

for example, stream through our bodies every second, and nearly all will do so without a

trace.

Neutrinos come from a variety of sources. Most that make it to Earth result from solar

nuclear fusion, the reaction that generates sunlight. Ninety-nine percent of the energy from

supernovae is carried away by neutrinos in the first ten seconds after the blast. Neutrinos

are also produced in ultrahigh energy cosmic accelerators, like black holes, pulsars, gamma

ray bursts, and more. The oldest source of these particles is the beginning of time itself:

Neutrinos escaped from the hot sea of matter that emerged from the Big Bang, and it is

believed that these low energy relics are still floating around the universe today.

On Earth, neutrinos are produced from the cascades of charged particles created when

cosmic rays crash into atmospheric nuclei. Bananas, potatoes, and other foods can produce

neutrinos via the radioactive decay of potassium. These particles can also be made syn-

thetically: Nuclear reactors release intense fluxes of neutrinos via beta decay, and particle

accelerators generate cascades that produce neutrinos in a manner not unlike how they occur

naturally in the atmosphere.

Physicists are enamored with neutrinos because they are, quite frankly, everywhere—

created almost any time atomic nuclei come together or break apart. They are cosmic

messengers, carrying information across the stars for us to learn about the most fascinating

astrophysical phenomena. Studying neutrinos could unravel the mystery of why we exist,

and probing their properties may one day grant us entry into an otherwise inaccessible,

so-called dark sector of our universe.
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1.1 A brief history of the neutrino

The neutrino was first postulated in an open letter written in 1930 by theoretical physicist

Wolfgang Pauli. It was an attempt to make sense of the continuous energy spectrum observed

in beta decay, the process by which a nucleus-bound neutron converts into a proton via the

emission of an electron. Dear Radioactive Ladies and Gentlemen, Pauli wrote in German,

then proceeded to propose a "desperate remedy" that could explain why the ejected electrons

were measured with a range of energies rather than a single value—an apparent violation of

energy conservation. Pauli speculated that there was another particle, the neutrino, emitted

alongside the electron, and that it must be electrically neutral, therefore escaping detection.

The energetic sum of both emitted particles must be constant, and in this way conservation

laws could be saved.

In 1934, Enrico Fermi expanded this idea into a quantitative description of beta decay [1],

which subsequently became an early theory for the weak interaction. That same year, Hans

Bethe and Rudolf Peierls penned a short paper computing the first neutrino cross section:

σ ≈ 10−44 cm2 for a ∼ 2 MeV neutrino, corresponding to a mean free path of O(1000) light

years in water [2]. One can conclude, they wrote, that there is no practically possible way of

observing the neutrino.

But physicists are nothing if not persistent. In 1956, the neutrino—or more precisely, the

electron antineutrino—was discovered by Clyde Cowan and Fred Reines using a specialized

detector to capture the products of inverse beta decay (ν̄e + p+ → e+ + n0) from the flux

of a nuclear reactor [3]. Thus, the field of neutrino physics was born. That these particles

come in more than one flavor was revealed with the discovery of the muon neutrino in 1962,

in the first experiment to employ a dedicated neutrino beam [4]. (The last known flavor, the

tau neutrino, was directly detected in 2001 [5].)

In the latter third of the 20th century, physicists were plagued by a discrepancy that came

to be known as the solar neutrino problem: Upon measuring nuclear fusion in the sun with
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the Homestake Solar Neutrino Detector, two-thirds of the electron neutrinos predicted by

theoretical models were consistently absent [6]. The Kamiokande experiment confirmed the

solar neutrino problem in 1996 [7], and the plot thickened when a shortage of atmospheric

muon neutrinos was reported two years later by Super-Kamiokande [8]. This discrepancy was

resolved in 2001, when an independent measurement by the Sudbury Neutrino Observatory

confirmed the flavor-shifting quality of neutrinos [9]. A breakthrough recognized by the 2015

Nobel Prize in Physics, this discovery indicated that neutrinos have mass, and ushered in a

new, exciting era of flavor oscillation research.

1.2 Physics beyond the Standard Model

Neutrinos are a part of the Standard Model, scientists’ best theory for the behavior of the

universe at subatomic scales. Within this framework, neutrinos form a doublet structure with

the charged leptons (electron, muon, and tau) and weakly interact via the exchange of a W±

or Z0 boson. These interactions are known as charged current (CC) and neutral current

(NC), respectively, and are represented by the Feynman diagrams shown in Figure 1.1. CC

interactions with a nucleon produce a charged lepton of the same flavor as the incoming

neutrino and flip the isospin of the nucleon, e.g. νl + n0 → l− + p+. In NC interactions

with a nucleon, the incoming neutrino elastically scatters and causes the nucleon to recoil

(ν + n → ν + n′). The CC channel is generally easier to detect because of the presence of a

charged lepton in the final state.

The Standard Model also predicts neutrinos to be massless. That they oscillate, then, was

an astonishing crack in a theory that has anticipated the outcome of countless experiments

with exceptional accuracy. This discovery validated early models of flavor oscillation [10, 11],

which interpret neutrinos as interacting via flavor eigenstates (νe, νµ, ντ ) and propagating

via non-zero mass eigenstates (ν1, ν2, ν3). Using basic principles of quantum mechanics, the

probability for a neutrino of flavor x oscillating into flavor y can be derived: P (νx → νy) =
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Figure 1.1: Feynman diagrams for charged current (left) and neutral current (right) neutrino
interactions with a nucleon. Charged current interactions are mediated by a W± boson and
produce a charged lepton of the same flavor as the incoming neutrino in the final state.
Neutral current interactions are mediated by a Z0 boson and produce a recoiling nucleon.

| ⟨νx|νy⟩ | ∼ sin2(
∆m2

ij L

E ), where ∆m2
ij = m2

i − m2
j represents the difference between the

squares of two neutrino mass states , L is the distance propagated, and E is the neutrino

energy. Accordingly, the probability goes to zero in the limit ∆m2
ij → 0.

The so-called solar and atmospheric mass splittings are well constrained by oscillation

experiments: ∆m2
21 ∼ 10−5 eV 2 and ∆m2

31 ∼ 10−3 eV 2, respectively [12]. The interplay be-

tween flavor and mass states is encapsulated in the 3×3 Pontecorvo–Maki–Nakagawa–Sakata

mixing matrix U [10], i.e.:


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (1.1)

U can be parameterized as:
1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23

×


cos θ13 0 sin θ13 e

iδCP

0 1 0

− sin θ13 e
iδCP 0 cos θ13

×


cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 . (1.2)
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This representation includes four free parameters that can also be experimentally deter-

mined. θ12, θ23, and θ13 have been measured through various solar, atmospheric, reactor,

and accelerator neutrino experiments [12]. δCP is indicative of potential charge-parity (CP)

violation in the lepton sector, which would manifest as an asymmetry between the oscillation

behavior of neutrinos and antineutrinos.

The probability of electron neutrino appearance (νµ,τ → νe) is dependent on δCP . Be-

cause of the sinusoidal nature of oscillations, a detector can be strategically positioned at

a probability maximum relative to the neutrino source in order to measure this parameter.

At the time of this writing, δCP has yet to be determined, due to a lack of sensitivity in

current neutrino experiments. However, δCP is widely regarded as a tantalizing prospect

for understanding the basis of the matter-antimatter asymmetry in our universe. Efforts

are underway to establish δCP with the Deep Underground Neutrino Experiment (DUNE),

which aims to measure νe appearance over long baselines of O(1000 km) between Fermilab

(Chicago, Illinois) and Sanford Lab (Lead, South Dakota) using liquid argon as a detection

target [13]. DUNE is expected to come online within the next decade.

Beyond probing leptonic CP violation, νe appearance may also reveal a potential dark

sector of unknown particles in our universe. Previous experiments at baselines of O(1 km)

have observed an excess of νe interactions inconsistent with oscillation rates expected from

the standard 3-flavor paradigm [14, 15]. This ongoing mystery is referred to as the short

baseline neutrino anomaly.

A possible explanation for this anomaly is that it is evidence of a new, "sterile" type of

neutrino. First proposed in 1967 [11], these hypothetical particles do not interact via any

known fundamental force (except gravity) but still participate in flavor mixing, thus driving

detectable oscillations effects among active neutrinos of the Standard Model. Interpreting

anomalous results as evidence of a sterile neutrino leads to an additional mass state ν4

and mass-squared splitting ∆m2
41 ∼ O(1 eV 2), which requires physics beyond the Standard
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Model.

Discovering sterile neutrinos could confirm the existence of "dark" types of matter, and

provide a portal for indirectly studying particles that are otherwise invisible to our detectors.

The Short-Baseline Neutrino (SBN) Program, a system of three liquid argon detectors at

Fermilab, will have the sensitivity to probe new types of oscillations and flavors that may

shed light on this mystery. Like the solar neutrino problem of 50 years ago, particle physics

may be on the brink of yet another groundbreaking discovery.

1.3 A lay of the cross section land

To enable the upcoming era of precision measurements, the neutrino physics community

has identified a critical need for a more robust understanding of neutrino-nuclei interactions

across all energies [16]. This will ensure the accuracy of theoretical models applied to mean-

ingfully interpret experimental data and disentangle new physics from background processes.

Knowledge of differential cross sections—i.e., those reported as a function of the kinematics

of final state particles—is especially vital.

At energies relevant to accelerator-based experiments (Eν ∼ 0.1− 20 GeV), neutrino CC

interactions are driven by three mechanisms. Quasielastic (QE) scattering dominates below

∼ 2 GeV, a process in which a neutrino scatters off and liberates a bound nucleon. (This

type of interaction is illustrated in the left diagram of Figure 1.1.) With enough energy,

a neutrino can excite the bound nucleon into a resonant (RES) state that quickly decays,

most often into the ground-state nucleon and a single pion. Deep inelastic scattering (DIS)

dominates at the highest energies, in which a neutrino scatters off a quark and generates a

hadronic shower.

Figure 1.2 illustrates the suite of measurements collected over the past 50 years that

have constrained theoretical models of νµ CC cross sections for QE (dashed), RES (dot-

dashed), and DIS (dotted) processes, as well as the total, or inclusive, cross section (solid)

6



Figure 1.2: Muon neutrino charged current cross sections divided by neutrino energy and
plotted as a function of neutrino energy. Theoretical contributions are shown from quasielas-
tic (dashed), resonance (dot-dashed), and deep inelastic scattering (dotted) processes, as well
as the total inclusive cross section (solid). Experimental measurements collected over the
past 50 years that have constrained these predictions are overlaid. Figure from [17].

[17]. Predictions of νe cross sections, on the other hand, are generally constrained by νµ

models and lack direct experimental verification. Extrapolating the kinematics and nuclear

effects of νµ interactions to lighter lepton mass inflates experimental uncertainties in flavor

oscillation measurements [18].

Only in the past decade have data-driven νe CC measurements begun to appear in the

literature. The T2K and NOνA collaborations, for example, have reported νe [19, 20] and νe

+ ν̄e [21] inclusive cross sections as a function of neutrino energy, four-momentum transfer

(Q2), and outgoing lepton energy, momentum, and scattering angle. MINERνA has also

published an exclusive (CCQE-like) νe + ν̄e cross section as a function of lepton energy,

momentum, and Q2 [22]. All of these results are derived for neutrino interactions on a

carbon target.

More recently, experimental νe CC cross sections on argon are emerging, which will

7



be of particular importance for SBN and DUNE. ArgoNeuT published the first differential

νe + ν̄e inclusive cross section as a function of lepton angle in 2020 [23]. A year later,

MicroBooNE reported a single-bin νe + ν̄e inclusive result [24], quickly followed by differential

measurements of the same channel as a function of lepton energy and scattering angle [25].

Exclusive νe CC cross sections for interactions with at least one proton and no pions in the

final state (νe + 40Ar → 1e+Np) were extracted by MicroBooNE in 2022 [26]. The latter

results used Fermilab’s Booster Neutrino Beam and were reported as a function of energy

and scattering angle for both the electron and leading (most energetic) proton.

In short, the neutrino community is still very much carving out the phase space for

electron neutrino cross sections, which are crucial for reaching discovery potential in the

νe appearance channel. This work adds to that effort, presenting measurements of νe CC

cross sections with at least one proton and no pions in the final topology. Data is collected

from Fermilab’s Neutrinos at the Main Injector (NuMI) Beam, detailed in Chapter 2, by the

MicroBooNE detector. An experimental design overview of MicroBooNE is found in Chapter

3, and the reconstruction of neutrino interactions and the simulation framework used to

estimate event rates in the detector is outlined in Chapter 4. An algorithm, described in

Chapter 5, is developed to select νe+ 40Ar → 1e+Np interactions from the NuMI dataset,

and the statistical and systematic uncertainties associated with the selected event rates are

quantified in Chapter 6. Flux-integrated differential cross sections are extracted as a function

of outgoing electron energy, total visible energy, and opening angle between the electron and

leading proton in Chapter 7, and compared to predictions from neutrino event generators

commonly employed in the field. The interaction rate as a function of proton multiplicity is

also reported. Chapter 8 concludes the work with a prospective outlook.
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CHAPTER 2

THE NUMI FLUX AT MICROBOONE

MicroBooNE is a surface detector located in the Liquid Argon Test Facility (LArTF) build-

ing along the Booster Neutrino Beamline (BNB) at Fermilab. It also receives a significant

off-axis neutrino flux from the NuMI beam. The higher energy of the NuMI beam lends

itself to a greater production of electron neutrinos, making it an optimal source for inde-

pendent measurements of νe interactions in the detector. This chapter provides a snapshot

of the NuMI beamline as it pertains to MicroBooNE. A full report on the hardware, design

considerations, and operations of NuMI can be found in [27].

2.1 Neutrinos at the Main Injector

The NuMI beam is generated by Fermilab’s accelerator complex, a schematic of which is

shown in Figure 2.1. The roughly 500-foot linear accelerator (Linac) accelerates H− ions

to 400 MeV. The ions are converted into protons via the stripping of two electrons and

intermittently fed into the Booster Synchrotron in batches that are 1.6 µs long. The Booster

accelerates the protons around its 1500-foot circumference ring to 8 GeV.

A portion of these protons are spilled onto a track to collide with a beryllium target and

create the BNB. The rest of the protons are fed into the Main Injector, a synchrotron that is

7 times larger than the Booster thus can hold up to 7 batches. However, the Main Injector

nominally accommodates 6 batches with one slot left empty to allow time for the kicker

magnets, which extract the beam from the synchrotron, to ramp up. Six batches form a 9.6

µs beam spill, defining the pulsed timing structure of NuMI.

The Main Injector accelerates protons to 120 GeV. To create the NuMI beam, protons are

extracted from the Main Injector and spilled onto a track with a graphite target. One batch

contains 5.0 × 1012 protons, so a standard NuMI beam spill has an intensity of 3.0 × 1013
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protons on target, or POT [28].

A method called slip-stacking is implemented to enhance the intensity of the NuMI beam.

With slip-stacking, a first set of X batches is fed into the Main Injector, then decelerated by

one batch length. A second set of 6 batches is injected, and the first set eventually overlaps

(or "slips") onto the second, producing X batches with double the intensity. Slip-stacking

configurations are referred to as X+6, where X is the number of batches that have been

doubled [29]. All X+6 batches are then spilled onto the NuMI beam track.

1

Booster Synchrotron
8 GeV proton beam

Booster Neutrino 
Beamline (BNB)

Main Injector
120 GeV proton beam

Neutrinos at the Main 
Injector (NuMI) Beamline

Linear 
Accelerator 

(Linac)

Figure 2.1: The Fermilab accelerator complex. Protons from the Linac are fed into the
Booster Synchrotron, which accelerates them to 8 GeV. A portion of these protons are
extracted from the Booster to create the BNB. The rest of the protons are fed into the Main
Injector, where they are accelerated to 120 GeV and extracted into the NuMI beamline.
In this graphic, MicroBooNE sits approximately at the intersection of the BNB and NuMI
beamlines.

In MicroBooNE, NuMI data preceding the summer of 2016 was collected in 4+6 slip-

stacking mode, corresponding to an intensity of 10 total batches or 5.0 × 1013 POT per

beam spill. A single injection cycle takes 1.333 seconds to complete [29], so for 4+6 slip-

stacking—which requires two injections—MicroBooNE receives 6.0 × 1020 POT per year

from NuMI. After the summer of 2016, MicroBooNE’s NuMI data was collected in the 6+6

slip-stacking configuration, corresponding to 6.0×1013 POT per spill or 7.0×1020 POT per

year.
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A schematic of the NuMI beamline from [27] is shown in Figure 2.2. The collision of

protons with the graphite target generates cascades of hadrons (primarily pions, kaons, and

nucleons) that are focused in or deflected from the forward direction based on the polarity of

the current in a pair of magnetic horns immediately beyond the target. The focused hadrons

travel down a 675-m tunnel where they decay, producing neutrinos. Charged particles that

survive the decay pipe are terminated at a beam absorber comprised of aluminum, steel, and

concrete.

Figure 2.2: Individual components of the NuMI beamline with relevant dimensions. The
collision of protons with the graphite target generates cascades of hadrons that travel down
a decay pipe, where they will decay into neutrinos. Figure from [27].

NuMI was designed such that the relative positions between the target and focusing horns

are flexible, allowing for a tunable energy beam. For data used in this work, NuMI was set

in the medium energy beam configuration, corresponding to a 23-meter separation between

the focusing horns [27] and a target that is 143.3 cm upstream from the start of the first

focusing horn.

NuMI can also run in two beam modes, referred to as forward horn current (FHC) and

reverse horn current (RHC). In FHC (RHC) mode, the polarity of the current running

through the magnetic horns is +200 kA (-200 kA), and parent particles with positive (nega-

tive) charge are focused into the decay pipe to produce a primarily neutrino (antineutrino)

beam.
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2.2 Beamline geometry

Figure 2.3: Illustration of the NuMI beamline relative to MicroBooNE from elevation (left)
and bird’s eye (right) views. Figure from [30].

MicroBooNE is located roughly at the intersection of the BNB and NuMI beamlines shown

in Figure 2.1. A schematic of NuMI’s geometry as it pertains to MicroBooNE, from [30], is

shown in Figure 2.3. The beam points down into the Earth at an angle of approximately 3◦

from the surface. MicroBooNE lies ∼680 meters from the NuMI target, at an angle of ∼8◦

off the beamline from bird’s eye view. Two distinct coordinate systems, of the beam and of

the detector, are relevant for this work. The beam coordinate system has an origin located

at the "upstream" end of the first horn (see Figure 2.2), where upstream refers to the part

of the system that the beam encounters first. The origin of the detector coordinate system

in beam coordinates is:

x⃗0 =


5502

7259

67270

 (2.1)

in units of cm. The rotation matrix that converts beam coordinates to detector coordinates

is given by:
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R =


0.9210385380402568 0.0227135048039241207 0.38880857519374290

0.0000462540012621546684 0.99829162468141475 −0.0584279894529063024

−0.38947144863934974 0.0538324139386641073 0.91946400794392302

 . (2.2)

The position vector of a neutrino can be transformed between beam and detector coor-

dinates using a rotation and a translation, i.e.:

x⃗beam = R× x⃗uB + x⃗0 (2.3)

where x⃗beam is the position of the point in beam coordinates and x⃗uB is the position of the

point in detector coordinates. Relatedly, the velocity vector transformation between beam

and detector coordinates is the time derivative of Equation 2.3:

v⃗beam = R× v⃗uB . (2.4)

It is informative to think about the NuMI flux at MicroBooNE using spherical coordi-

nates. Thus, we define the polar, or decay, angle θ off the beamline as:

tan θ =

√
x2 + y2

z
(2.5)

where x, y, and z are the elements of x⃗beam. This is the angle between the neutrino ray and

beamline horizontal of the elevation view in Figure 2.3. Similarly, we define an azimuthal

angle ϕ in the xy plane:

tanϕ =
y

x
. (2.6)

These angles can be constructed in both detector and beam coordinate systems, though

it is often more instructive to study distributions in the latter.
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2.3 Flux prediction at MicroBooNE

The NuMI flux prediction for any experiment is generated using a combination of Geant4 [31],

a toolkit for simulating the passage of particles through matter, and a detailed geometric

model of the beamline [32]. The simulation accounts for particle interactions and their

propagation, beginning with protons colliding with the graphite target and ending with the

hadrons that decay into neutrinos.

Primary interactions along the NuMI beamline involve the production of pions and kaons,

which then decay via secondary reactions into neutrinos, i.e.:

p+(120 GeV) + C → π± +X

↓

π± → µ± +
(−)
νµ

π± → e± +
(−)
νe

p+(120 GeV) + C → K± +X

↓

K± → µ± +
(−)
νµ

K± → e± + π0 +
(−)
νe

p+(120 GeV) + C →
(−)

K0
L +X

↓
(−)

K0
L → e± + π∓ +

(−)
νe

where X represents other hadronic byproducts of the interaction, including nucleons.
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In theory, precise knowledge of the beamline geometry and of π/K production cross sec-

tions should yield an accurate neutrino flux. In reality, however, the flux is more complicated

to predict due to a variety of other processes that create neutrinos. Incident protons, for

example, may bypass the carbon altogether and instead interact with air in the target hall,

aluminum in the magnetic horns, or the helium gas or iron walls of the decay pipe:

p+(120 GeV) + Al/He/Fe → π/K +X

↓

neutrino production.

Nucleons from any of the above channels can also collide with materials along the beamline,

creating their own hadronic cascades, i.e. X(< 120 GeV) + C/Al/He/Fe → π/K, which

decay into neutrinos via tertiary processes. If they do not decay first, pions and kaons at

any point along this production chain may do the same.

Traditionally, detailed simulations are built to account for the impact of these non-

standard interactions on the flux prediction, though these models are largely unconstrained.

To mitigate this, data-driven corrections to the raw NuMI flux prediction are applied us-

ing PPFX, an experiment-agnostic software package originally developed by the MINERνA

collaboration. Using information about the neutrino ancestry and decay kinematics, PPFX

modifies the Geant4 simulation to reproduce independent experimental measurements of

hadron production and absorption cross sections that inherently account for the above ef-

fects. The PPFX user can choose between using data collected by experiments employing

thick (two interaction lengths) or thin (few percent interaction length) carbon targets.

Part of the work undertaken for this dissertation included upgrading PPFX tools for com-

patible integration into MicroBooNE’s existing simulation software (see Chapter 4), and

validating this implementation by reproducing published NuMI fluxes at MINERνA and

the NOνA near detector. To simulate the NuMI flux prediction at MicroBooNE, the thin

15



target constraints are used, a decision motivated by results showing this option is in better

agreement with in situ flux measurements taken by MINERνA [33]. External thin target

datasets used by PPFX to constrain the flux prediction are thoroughly described in [32] and

summarized in Table 2.1.

Hadron Production
p+ + C → π± production NA49 [34], Barton et al. [35]
p+ + C → p+ or n0 production NA49 [34]
p+ + C → K± production NA49 [36]
p+ + C → K/π production ratios MIPP [37]

Absorption/Inelastic Processes
K± absorption by carbon or aluminum Abrams et al. [38], Denisov et al. [39], Car-

roll et al. [40], Allaby et al. [41]

π± absorption by carbon or aluminum Cronin et al. [42], Denisov et al. [39], Allaby
et al. [41], Allardyce et al. [43], Longo et
al. [44], Fedorov et al. [45], Bobchenko et al.
[46], Carroll et al. [40]

Nucleon-carbon inelastic interactions Bellettini et al. [47], NA61 [48], Denisov
et al. [39], Carroll et al. [40], NA49 [49],
Roberts et al. [50]

Table 2.1: Datasets used for PPFX thin target constraints of the NuMI flux prediction at
MicroBooNE, summarized from [32]. A variety of processes at different energies are taken
into account, including hadron production from proton-carbon collisions, kaon and pion
absorption, and nucleon-carbon inelastic interactions.

A variety of processes at different energies are taken into account, including hadron

production from proton-carbon collisions, kaon and pion absorption, and nucleon-carbon

inelastic interactions. For cases where no data is available, PPFX attempts a theoretically

guided extension of existing data or applies a 40% flat uncertainty on the interaction. PPFX-

derived constraints come in the form of correction weights that can be applied to each event

in the raw central value (CV) flux prediction. The package also generates a set of variation

weights that can be used in place of the CV weight to evaluate the uncertainty on this

correction (see Section 6.2).
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Figure 2.4: The PPFX-corrected NuMI flux prediction at MicroBooNE for FHC (top) and
RHC (bottom) as a function of true neutrino energy. Electron neutrinos comprise about
14% (12%) of the total flux in FHC (RHC) mode, though this work only considers the flux
greater than 60 MeV (excluding muon decay-at-rest interactions).
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The PPFX-corrected NuMI flux prediction at MicroBooNE is shown as a function of true

neutrino energy for FHC (top) and RHC (bottom) in Figure 2.4. Muons created at any

point along the hadronic production chain can decay at rest, contributing to a low-energy

(<60 MeV) peak in the νe and ν̄e flux predictions:

µ± → e± +
(−)
νe +

(−)
νµ. (2.7)

Higher energy νe and ν̄e result primarily from charged and neutral (long-lived) kaon decays:

K± →
(−)
νe + e± + π0 (2.8)

K0
L → νe + e± + π∓. (2.9)

Electron neutrinos comprise about 14% (12%) of the total flux in FHC (RHC) mode.

Because the selection algorithm described in Chapter 5 is not sensitive to neutrinos below

∼ 200 MeV, the measurements described in this work only take into account the flux greater

than 60 MeV, excluding the low energy νe contribution from decay-at-rest muons.
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Figure 2.5: The νe flux at MicroBooNE for FHC (left) and RHC (right) beam modes as a
function of decay angle. In beam coordinates, most νe enter MicroBooNE from the target
(∼8◦ off the beamline), while a secondary νe excess comes from the absorber (∼ 110−140◦).
Between these extremes, electron neutrinos arrive from along the decay pipe. (Note: these
distributions are not constrained with PPFX.)

Figures 2.5 and 2.6 illustrate the νe flux dependence on decay angle (θ) and azimuthal
18



angle (ϕ) respectively, in both beam (blue) and detector (yellow) coordinate systems. Dis-

tributions of other neutrino flavors follow a similar pattern. The θ distribution is tripartite:

most νe enter MicroBooNE at an angle of ∼8◦ off the beamline, and a secondary excess comes

from the beam absorber at angles ∼110-140◦ in beam coordinates. Neutrinos between these

two extremes arrive at MicroBooNE from the decay pipe.
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Figure 2.6: The νe flux at MicroBooNE for FHC (left) and RHC (right) beam modes as
a function of azimuthal angle. In beam coordinates, only neutrinos with a direction of
∼ 40−60◦ make it into the detector. The width of this peak is roughly representative of the
angular spread of MicroBooNE. (Note: these distributions are not constrained with PPFX.)

The azimuthal distribution of electron neutrinos entering MicroBooNE provides some

intuition about where the detector sits in relation to NuMI. In beam coordinates, only νe

with a direction of ∼40-60◦ make it into the detector. The width of this peak is representative

of the angular spread of MicroBooNE.

The NuMI flux at MicroBooNE presents a strong correlation between neutrino energy

and decay angle θ. Figure 2.7 shows the PPFX-corrected νe flux in FHC and RHC as a

function of both energy and decay angle in beam coordinates. There are four angular bins:

0 − 10◦ and 10 − 20◦ correspond to the NuMI target, 20 − 110◦ corresponds to the decay

pipe, and 110− 160◦ is the beam absorber. For energies above 0.25 GeV, the entire νe flux

originates from the NuMI target in both FHC and RHC modes. The lowest energy neutrinos

(≤ 250 MeV) peak at both the target and the beam absorber.
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Figure 2.7: The NuMI νe flux prediction at MicroBooNE for FHC (left) and RHC (right)
beam modes as a function of true neutrino energy and decay angle in beam coordinates. For
energies above 0.25 GeV, the entire νe flux originates from the NuMI target.

2.4 MicroBooNE’s NuMI dataset

Figure 2.8: The total cumulative POT delivered by the NuMI beamline. Orange regions
were operated in FHC mode, and blue regions were operated in RHC mode. The regions
where no POT was delivered are due to accelerator complex shutdowns. Figure adapted
from [51].

Figure 2.8 shows the total cumulative POT delivered by NuMI as a function of time. Orange

regions are periods operated in FHC mode, and blue regions are periods operated in RHC

mode. Periods where no POT were delivered are due to shutdowns of the accelerator complex

for maintenance.
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MicroBooNE collected data from October 2015 through March 2020. Table 2.2 lists the

dates and operation modes of the NuMI beam with respect to MicroBooNE Run periods.

The measurements described in this work make use of FHC Run 1 data (2.0 × 1020 POT)

and RHC Run 3 data (5.0× 1020 POT) for a total of 7.0× 1020 POT.

Run Period FHC (+200 kA) RHC (-200 kA)

Run 1 October 23, 2015 - May 2, 2016 June 29, 2016 - July 29, 2016

Run 2 Nov 14, 2016 - Feb 20, 2017 Nov 11, 2016 - Nov 14, 2016

Feb 20, 2017 - July 7, 2017

Run 3 – Nov 7, 2017 - July 6, 2018

Run 4 Feb 26, 2019 - July 6, 2019 Oct 20, 2018 - Feb 26, 2019

Run 5 Oct 29, 2019 - March 20, 2020 –

Table 2.2: The dates and operation modes of the NuMI beam during MicroBooNE Run
periods. This work uses a combination of FHC Run 1 and RHC Run 3 data.

2.5 Potential oscillation effects in the NuMI flux

MicroBooNE’s distance away from the NuMI target creates the possibility of short baseline

oscillations that, if significant enough, could alter the flux and any cross section measure-

ments as a result. To ensure that this does not become an unaccounted source of uncertainty,

an evaluation of potential oscillation effects is sketched in this section.

A binned analysis is performed considering the electron neutrino appearance channel,

νµ→ νe, for the NuMI beam in FHC mode. (The channel ντ → νe is treated as negligible,

since intrinsic ντ production in NuMI is minimal due to the relatively low energy of the

beam.) Electron neutrino disappearance, due to intrinsic νe produced by the beam oscillating

into other flavors, is also taken into account.

Figure 2.9 shows the NuMI FHC νµ (left) and νe (right) intrinsic flux predictions (sans

oscillations), as a function of 50-MeV neutrino energy bins and 50-meter propagated distance
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bins. These distributions are used to verify that active flavor oscillations between NuMI and

MicroBooNE are trivial, as well as to quantify the detector’s sensitivity to potential sterile

mixing effects. An analogous study using the RHC flux yields similar results.
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Figure 2.9: The NuMI νµ (left) and νe (right) flux prediction at MicroBooNE without any
oscillations taken into account, shown as a function of energy and propagated distance of
the neutrino.

2.5.1 Active flavor oscillations

Active flavor oscillations for neutrinos of O(GeV ) that travel distances shorter than ∼1

km should be negligible. We verify this limit using the leading oscillation terms from νe

appearance and νe disappearance (or rather, survival) probabilities as derived from the

standard 3-flavor framework:

P (νµ → νe) = sin2(θ23) sin
2(2θ13) sin

2

(
1.27 ∆m2

31L

E

)
+ cos2(θ23) cos

2(θ13) sin
2(2θ12) sin

2

(
1.27 ∆m2

21L

E

)
(2.10)

P (νe → νe) = 1− sin2(2θ13) sin
2

(
1.27 ∆m2

31L

E

)
+ cos2(θ13) sin

2(2θ12) sin
2

(
1.27 ∆m2

21L

E

)
. (2.11)

Computing the oscillated NuMI νe flux at MicroBooNE requires combining the contri-

butions from 1) intrinsic νµ oscillating into νe and 2) intrinsic νe that survive the trip to

the detector. The first is acquired by multiplying the number of generated νµ in each bin

of the flux shown in Figure 2.9 (left) by the appearance probability in Equation 2.10, which
22



is evaluated using the central value neutrino energy E and propagated distance L of each

bin. The second contribution is similarly obtained, by multiplying the number of generated

νe (right plot of Figure 2.9) in each bin by the survival probability (Equation 2.11) of that

bin. The parameter values used for the calculations are taken from [12]: sin2 θ12 = 0.310,

sin2 θ13 = 0.02241, and sin2 2θ23 = 0.058 for the mixing angles; ∆m2
12 = 7.39 × 10−5 eV2

and ∆m2
13 = 2.523× 10−3 eV2 for the mass splittings.

Figure 2.10 shows the ratio between the oscillated and unoscillated νe flux predictions

as a function of neutrino energy. For active flavor mixing, the oscillated flux is maximally

O(10−3) larger than the unoscillated flux, thus the effect is indeed negligible.

Active Short-Baseline Three Flavor Oscillation

Figure 2.10: Ratio between oscillated and unoscillated νe flux predictions as a function of
neutrino energy. The oscillated flux is maximally O(10−3) larger than the unoscillated flux,
thus the effect is indeed negligible.

2.5.2 Sterile flavor oscillations

Oscillations involving sterile neutrino flavors could result in a more pronounced effect on the

NuMI flux. To quantify the strength of this effect, a 3+1 model is assumed, consisting of 3

active flavors and 1 sterile flavor. The 3+1 mixing matrix is extended from Equation 2.12

to:
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

νe

νµ

ντ

νs


=



Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4





ν1

ν2

ν3

ν4


(2.12)

where νs is the sterile flavor and a fourth mass state ν4 has been introduced.

In this framework, as long as ∆m2
41 ≫ |∆m2

31|, |∆m2
21|, the electron neutrino appearance

channel at short baselines is well-approximated by a two-flavor vacuum oscillation formula

[52]:

P (νµ → νe) = sin2(2θµe) sin
2

(
1.27 ∆m2

41L

E

)
(2.13)

where θµe is an effective mixing angle driving the oscillation channel νµ→ νe. Analogously,

the νe survival probability is:

P (νe → νe) = 1− sin2(2θee) sin
2

(
1.27 ∆m2

41L

E

)
(2.14)

where θee drives the channel νe→ νe. Unlike the active mixing case, 3+1 oscillation param-

eters sin2 2θµe, sin2 2θee, and ∆m2
41 are not confirmed, but exist as best-fit values in favored

regions of phase space from different experiments.

The flux contribution from νe appearance is analyzed first, using the parameter set

(sin2 2θµe, ∆m2
41). Best-fit values from the LSND experiment (0.003, 1.2 eV 2) [53], the

global νe appearance analysis (0.00631, 0.559 eV 2) [54], and the 2016 global inclusive analy-

sis of both νe appearance and disappearance channels (0.0015, 1.6 eV 2) [55] are considered.

In addition, the maximum potential oscillation effect is outlined by evaluating oscillation

effects for the entire (sin2 2θµe, ∆m2
41) phase space in the 3σ-favored region of the global νe

appearance analysis, which is comprised of 90 parameter sets.

The oscillated NuMI νe flux with sterile mixing νe appearance effects is computed by

adding the contribution from intrinsic νµ oscillating into νe with the unoscillated, intrinsic
24



νe flux. The procedure for evaluating the νµ→ νe contribution is the same as in the preceding

section, except using Equation 2.13 to calculate the appearance probability. Results using

best-fit parameters from LSND (blue), the global νe appearance analysis (red), and the global

inclusive analysis (green) are shown in Figure 2.11, as well as for parameter sets spanning the

global 3σ νe appearance phase space (yellow). Ratios to the unoscillated νe flux prediction

are also displayed.
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Figure 2.11: Oscillated NuMI fluxes with sterile mixing νe appearance effects using best-
fit parameters from LSND (blue), the global νe appearance analysis (red), and the global
inclusive analysis (green), as well as for parameter sets spanning the 3σ-favored phase space
of the global νe appearance analysis (yellow). Ratios to the unoscillated νe flux prediction
are also displayed.

Pronounced oscillation effects due to high L/E values for neutrino energies < 0.5 GeV

are present, particularly in the 3σ phase space envelope, which can produce a distribution

as high as 2.5 times the unoscillated flux. However, poor reconstruction and inefficiency of
25



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
True Neutrino Energy [GeV]

0.00

0.05

0.10

0.15

0.20
Se

le
ct

ed
 / 

Ge
ne

ra
te

d
FHC Run 1 Selection Efficiency

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
True Neutrino Energy [GeV]

0.00

0.05

0.10

0.15

0.20

Se
le

ct
ed

 / 
Ge

ne
ra

te
d

RHC Run 3 Selection Efficiency

Figure 2.12: Efficiency of the algorithm designed to select νe+ 40Ar → 1e+Np interactions.
Shown for FHC Run 1 (left) and RHC Run 3 (right) as a function of true neutrino energy.
Low efficiency in the region < 0.5 GeV limits the sensitivity of this work to potential 3+1
oscillation effects.

the event selection algorithm described in Chapter 5 limits the sensitivity of this work to νe

with energies < 0.5 GeV. This is illustrated in Figure 2.12. Systematic uncertainties in the

flux also dominate in this region (see Section 6.2), reaching values ∼20% or higher.

Next, the change in the flux due to intrinsic νe disappearance (νe → νµ,τ ) is briefly

examined. The oscillated NuMI flux in this scenario is computed by adding the νµ→ νe con-

tribution to the intrinsic νe flux that does not disappear by the time it reaches MicroBooNE.

The former is acquired in the same manner as above, using Equation 2.13 and the unoscillated

νµ flux of Figure 2.9. The latter is obtained using the survival probability of Equation 2.14

with the unoscillated νe flux. For a rough quantitative evaluation, best-fit oscillation param-

eters from the global inclusive analysis are used: (sin2 2θµe = 0.00631, ∆m2
41 = 0.559 eV 2)

for νe appearance and (sin2 2θee = 0.04038,∆m2
41 = 1.3 eV 2) for νe disappearance [55].

Correlations between the appearance and disappearance channels are not considered.

Figure 2.13 compares the oscillated fluxes taking into account νe appearance only (green)

and νe appearance and disappearance effects (yellow). The flux excess due to νe appearance is

notably suppressed by including the disappearance channel in the < 0.5 GeV region, and even

results in a deficit below the unoscillated prediction for neutrinos with energies < 0.5− 1.5
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GeV, though the effect is slight enough to be covered by existing flux uncertainties. Similar

reductions are anticipated for the entire allowed phase space.
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Figure 2.13: The oscillated νe flux prediction for only the appearance channel (green) and
the inclusive (appearance + disappearance) channel (yellow), as well as the ratio to the
unoscillated νe flux prediction, using uncorrelated best fit parameters from [55]. Inclusion
of the disappearance channel slightly reduces sterile mixing effects that could be observed in
the νe flux at MicroBooNE.

2.5.3 Sensitivity analysis

Taking it a step further, a rough estimate of MicroBooNE’s sensitivity to observing sterile

neutrino mixing in the FHC portion of the NuMI dataset can be derived. A prediction of the

intrinsic νe event rate is first determined using the selection algorithm described in Chapter

5. This rate is multiplied by the 3σ phase space ratios shown in Figure 2.11 to obtain a set of

90 oscillated rate predictions. Next, a covariance matrix is constructed using the statistical
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uncertainty of MicroBooNE’s projected NuMI FHC sample (9.23× 1020 POT from Runs 1

through 5) as well as major sources of systematic uncertainty associated with the νe event

rate: hadron production in the flux simulation, cross section and re-interaction modeling,

and detector response. A full description of these uncertainties can be found in Chapter 6.

A sensitivity surface can be mapped out by χ2 goodness-of-fit values for each oscillated

event rate:

χ2(∆m2
41, sin

2 2θ) =
∑
i,j

[Nnull
i −Nosc

i (∆m2
41, sin

2 2θ)] (Eij)
−1 [Nnull

j −Nosc
j (∆m2

41, sin
2 2θ)] (2.15)

where Nnull
i is the intrinsic νe event rate in bin i, Nosc

i is the oscillated event rate in bin i

for the parameter set (∆m2
41, sin

2 2θ), and Eij is the covariance term in bin ij.
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Figure 2.14: Sensitivity surface for the 3σ-favored phase space in the global νe appearance
analysis [54] for the 3+1 model (yellow dots). For comparison, 1σ, 90%, and 3σ contours
are derived in this work, using a prediction of the intrinsic νe event rate as well as statistical
and major sources of systematic covariance.

Figure 2.14 shows the resulting sensitivity surface (yellow dots) as a function of sin2 2θµe

and ∆m2
41, where each dot corresponds to one of the 90 parameter sets in the 3σ phase
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space. Sensitivity contours for 1σ, 90%, and 3σ contours are also shown, computed using

χ2 distribution functions in the SciPy statistics library [56]. Even sensitivity at the level

of 1σ lies far from the region mapped out by the 3σ-favored phase space from the global

νe appearance analysis. This implies that the measurements described in this work are not

sensitive to sterile flavor mixing effects of the assumed 3+1 model.

How might this sensitivity improve in the limits of no statistical uncertainty (infinite

POT), or no systematic uncertainty (a perfect simulation)? Figure 2.15 (left) displays 90%

confidence level contours for increasing orders of magnitude in the projected NuMI FHC

sample. With one order of magnitude higher statistics, this sensitivity just skims the level

required to observe sterile oscillation effects. The contours begin to converge to the case of

infinite statistics (shown in black) at 9.23 × 1022 POT. At this point, MicroBooNE would

be able to explore a significant region of the 3σ-favored phase space. The curve representing

infinite statistics can be interpreted as the limit on sensitivity due to current systematic

uncertainties.

On the other hand, the right plot of Figure 2.15 displays 90% confidence level curves for

the projected 9.23×1020 POT with (red) and without (black) systematic uncertainties. Even

with a perfect simulation of the experiment, MicroBooNE’s sensitivity would not reach the

3σ phase space contour. This can be interpreted as the limit on sensitivity due to collected

POT. Said another way, the largest limiting factor in this analysis is statistical.

The study sketched in this section is specific to the reconstruction, event selection, and

statistics used for the measurements of this work, and does not represent what could generally

be achieved in probing sterile flavor mixing with the NuMI beam at MicroBooNE. Notably,

the projected sensitivity curves do not include the RHC portion of the NuMI dataset, which

more than doubles the amount of statistics; this could have a positive impact on Micro-

BooNE’s sensitivity. On the other hand, νe disappearance effects nor sub-dominant sources

of systematic uncertainty are accounted for, both of which would suppress the sensitivity.

29



10 3 10 2 10 1

sin22
10 1

100

101

m
2 41

(e
V

2 )
e FHC, POT scanning, NuMI CL 90

e appearance 3  contour

POT = 9.23 ×1020

POT = 9.23 ×1021

POT = 9.23 ×1022

no statistical uncertainty

10 3 10 2 10 1

sin22
10 1

100

101

m
2 41

(e
V

2 )

e FHC, POT = 9.23 ×1020, NuMI CL 90

e appearance 3  contour

with systematic uncertainty
no systematic uncertainty

Figure 2.15: 90% confidence level sensitivity curves for the limits of no statistical uncertainty
(left) and no systematic uncertainty (right), derived in this work. With enough statistics,
MicroBooNE’s sensitivity to sterile neutrino effects from the NuMI beam could be reached.

Also worth mentioning is that though the 3+1 model is arguably the most popular assumed

explanation for the short baseline neutrino anomaly, other theories for sterile flavor mixing

do exist that are not considered here.

The measurements described in this work use a combination of FHC and RHC data for

a combined total of 7.0 × 1020 POT, which is ∼ 75% of the projected FHC POT used in

this sensitivity analysis. The depletion in POT, increased systematic covariance, and the

expectation of reduced efficiency in selecting νe events from the RHC sample are all antici-

pated to lessen the sensitivity of this work to sterile oscillation effects compared to the study

shown here. All of that to say, the intrinsic NuMI νe flux prediction at MicroBooNE without

oscillations—as shown in Figure 2.9—is a safe approximation for the following measurements.
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CHAPTER 3

THE MICROBOONE DETECTOR

The liquid argon time projection chamber (LArTPC) is a type of detector recognized as

particularly advantageous for studying neutrinos since the late 1970s [57]. In general, TPCs

are equipped with the capability to collect both charge (ionization) and light (scintillation)

resulting from incoming particles, and use this information to reconstruct three-dimensional

images of the particle interactions. As a target, liquid argon is attractive because it is both

dense and inert—maximizing the probability of a neutrino interaction while simultaneously

minimizing the recombination of ionized particles that can suppress neutrino signals. It is

also relatively cheap and abundant, allowing us to feasibly construct multi-ton scale neutrino

detectors that further increase the probability of interaction.

This chapter provides a brief description of the experimental design and readout of the

MicroBooNE detector. A detailed report can be found in [58].

3.1 Experimental design

MicroBooNE’s LArTPC is housed inside of a cylindrical, stainless steel cryostat filled with

170 metric tons of liquid argon. Inside the cryostat is a rectangular field cage with dimensions

232.5 × 256.0 × 1036.8 cm. The active volume inside of the field cage holds 85 metric tons

of liquid argon. The field cage is also equipped with a cathode and a set of three anode

planes on opposite facing sides. Behind the anode is an array of 32 8-inch Hamamatsu

photomultiplier tubes (PMTs), which acts as MicroBooNE’s light collection system. Fully

immersed in liquid argon and facing into the active volume, the array is designed to detect

scintillation from particles with kinetic energies as low as 40 MeV.

A cross section of this system is shown in Figure 3.1. In this perspective, the primary

beamline (BNB) is directed out of the page in the z direction, x is the horizontal, and y is
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the vertical. The cathode and anode are situated parallel to the y axis. The origin of this

coordinate system lies at the vertical center of the upstream face of the LArTPC, at the x

position of the innermost anode plane.

Figure 3.1: A cross section of the MicroBooNE LArTPC. In this perspective, the primary
beam (BNB) is directed out of the page in the z direction. The origin of the detector
coordinate system lies at the vertical center of the upstream face of the LArTPC, at the x
position of the innermost anode plane. Figure from [58].

The cathode is made of steel and operated at −70 kV. The anode is comprised of three

wire planes: two induction (U and V) planes, which are oriented at ±60◦ from vertical (y),

and one collection (Y) plane with vertically oriented wires. A schematic of this setup is

shown in Figure 3.2. There are a total of 8256 wires across all three planes. The anode is

supplied with bias voltages of −110 volts (U plane), 0 volts (V plane), and +230 volts (Y

plane). A uniform electric field of 273 V/cm is generated across the active volume in the x

direction using the rectangular loops comprising the field cage. These loops are connected

by a voltage divider chain linking the cathode and anode planes.
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The detection scheme of MicroBooNE is also shown in Figure 3.2. Incoming neutrinos

that interact with an argon atom will produce charged particles, which excite and ionize

the surrounding argon. These particles traverse the active volume and leave behind trails

of ionization electrons, like breadcrumbs revealing their paths. The electric field attracts

liberated electrons to the anode, and the wires on all three planes act as sensing elements

to collect information about the charge generated by the event. The anode is designed such

that charge induces currents on the two innermost wire planes (U and V) and is collected

on the back plane (Y).

Figure 3.2: The operational principle of MicroBooNE. Incoming neutrinos that interact with
the argon will liberate ionization electrons that can be detected using the set of three wire
planes making up the anode. Figure from [58].

Two dimensions of the interaction (y and z) can be reconstructed based on where the

ionization is deposited on the wire planes. Characteristics of the waveforms from these

deposits allows for the extraction of information about particle energy, momentum, and
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type.

Excited argon atoms resulting from charged particles will bond with surrounding ground

state atoms to form excited argon dimers, or excimers. Excimers have O(ns) lifetimes thus

will quickly decay via isotropic radiative emission, producing a vacuum ultraviolet (VUV)

scintillation signal. Liquid argon is a prolific scintillator, producing some thousands of 128-

nm photons per MeV, and it is also transparent to its own scintillation. Acrylic plates

coated with tetraphenyl-butadiene are positioned in front of MicroBooNE’s PMT array to

shift the wavelengths of VUV photons into the visible spectrum, so that the scintillation can

be converted into an amplified signal of photoelectrons for readout.

The x dimension of the interaction can be determined from the recorded drift time of

the liberated electrons, i.e. the difference between the start of the event (t = 0) and the

arrival of the ionization at the wire planes. MicroBooNE uses a combination of the beam

spill timing and the scintillation signal to mark t = 0 of the event. The average drift velocity

of the electrons is 1.076 mm/µs, corresponding to a maximum drift time of 2.3 ms in the x

direction [59].

To avoid recombination with electronegative impurities (such as O2 and H2O) present in

the active volume that can attenuate the charge signal, MicroBooNE employs a sophisticated

cryogenics system to purify the liquid argon. This also aids in minimizing the amount of

N2 in the detector that can contribute to scintillation quenching effects. The pressure and

temperature across the active volume are also strictly controlled as these quantities will affect

the drift velocity of the electrons.

3.2 Event readout & triggering

The raw output from MicroBooNE must be processed in order to extract meaningful in-

formation from each event. Physical light signals are determined by first establishing the

baseline of PMT waveforms, which express the observed number of photoelectrons in arbi-
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trary ADC counts as a function of time (see Figure 3.3). A pulse-finding algorithm is then

applied to identify and associate peaks above baseline with specific PMTs. Time-coincident

pulses from neighboring PMTs are combined to reconstruct flashes in the detector.

Figure 3.3: An example PMT waveform, expressed as the number of photoelectrons in
arbitrary ADC counts observed as a function of time. Physical light signals are identified
by establishing the baseline of the waveform (green), then using a pulse-finding algorithm to
associate peaks above baseline with specific PMTs. Figure from [60].

Recorded TPC waveforms, on the other hand, are a convolution of three components: 1)

the initial distribution of charge in the bulk of the detector and how it is shaped by diffusion

and absorption effects during drift, 2) the response of currents induced on nearby U and V

plane wires as the charge drifts toward the Y plane, and 3) the response of the electronics that

receive, amplify, and shape the induced current signals. The number of ionization electrons

arriving at each wire (in arbitrary ADC counts) as a function of time, as shown in Figure

3.4(a), is deconvolved from other effects shaping the waveform using the procedure detailed

in [61]. Each pulse in the deconvolved waveform is fit with a Gaussian distribution to form

a "hit," defined as the number of ionization electrons detected on a single wire at a definite

drift time.

Figure 3.4(b) shows a single wire waveform expressed as a heat map, and Figure 3.4(c)
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illustrates how positioning these expressions from adjacent wires on one of the anode planes

can be used to visualize particle trajectories. The horizontal axis of (c) corresponds to wire

number, and the vertical axis corresponds to electron drift time. Color is proportional to

the height of the waveform pulse, or the amount of charge deposited on the wire, at a given

time. These two-dimensional images are referred to as event displays in MicroBooNE.

tim
e

wire	#

Figure 3.4: An deconvolved TPC waveform (a) showing the number of ionization electrons
(in arbitrary ADC counts) recorded by a single wire as a function of electron drift time. This
waveform can be expressed as a heat map (b). Positioning these expressions from adjacent
wires on a single anode plane can be used to construct two-dimensional event displays in
MicroBooNE (c). Figure adapted from [60].

The TPC and PMT readout systems in MicroBooNE are synchronized to a common 16

MHz clock with a frame size of 1.6 ms. Interactions in MicroBooNE are recorded using

analog signals, which are then amplified and digitized with low-noise electronics. Digital

signals are passed to a data acquisition system (DAQ) and written to disk. However, as a

surface detector, MicroBooNE is subject to a significant amount of cosmic ray activity that is

unrelated to neutrino interactions arising from NuMI or the BNB. To avoid the unnecessary

storage of excessive amounts of data, events are filtered through the triggers described below.
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The TPC readout consists of two data streams. The first is a continuous data stream

that is used for analyses of data unrelated to the beam. The second, used in this work, is

a triggered data stream based on the pulsed timing structure of the NuMI (as well as the

BNB). When the beam spills, it alerts the DAQ to record 4.8 ms, or three frames worth, of

data: 1.6 ms before and 3.2 ms after the spill. This flagging is called the hardware trigger,

and ensures any ionization activity related to the event that occurs beyond the maximum

drift time window (2.3 ms) is collected.

Roughly 1% of NuMI beam spills will cause a neutrino interaction. Thus, a software

trigger is implemented to discard events with light levels below what is expected when a

neutrino interacts in MicroBooNE. The PMT readout identifies scintillation that occurs in

coincidence with a spill. If the event is above the configured threshold of the software trigger,

the DAQ stores 6.4 ms of data: the frame containing the spill, the frame before the spill,

and the two frames after the spill. For the NuMI dataset, the software trigger threshold was

9.5 photoelectrons during initial MicroBooNE Runs but was adjusted to 5.75 photoelectrons

during Run 3 (see Table 2.2).

Additionally, MicroBooNE has an external (EXT) trigger that collects data when there

is no beam, e.g. in between spills or when the Fermilab accelerator complex is shut down for

maintenance. The EXT trigger alerts the DAQ to record three frames worth of beam-off data

at a configurable frequency in a similar manner as the hardware trigger, but anti-coincident

to a beam spill. To obtain a high statistics sample of pure cosmic activity, randomly selected

EXT events are also written to disk upon passing the software trigger.

3.3 Interaction signatures

Arguably the greatest advantage of LArTPCs for neutrino studies is the ability to discrim-

inate particles based on calorimetric information (energy deposit) in the detector. More

specifically, electrons and heavier charged particles resulting from a neutrino interaction in
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MicroBooNE produce distinct ionization signatures that allow us to filter, or select, events

with a desired topology for cross section studies. This section summarizes the behavior

of various particles in LArTPCs, which forms the foundation for algorithms used in the

event reconstruction described in Section 4.2. A full explanation of radiation detection and

measurement can be found in [62].

Charged particles in MicroBooNE collide and interact electrostatically—via the Coulomb

force—with orbital (bound) electrons of the surrounding argon atoms.1 These collisions

transfer energy to bound electrons, causing them to excite or ionize and produce the telltale

signatures of light and charge described in Section 3.1.

Due to their mass, heavy charged particles like protons and muons experience only a

small fraction of energy loss and a slight decrease in velocity during each encounter with a

bound electron. This, and the fact that heavy charged particles are interacting isotropically

with many bound electrons at any given time, makes for little to no observable deflection

along the particle’s trajectory in the detector. As a result, heavy charged particles generally

traverse MicroBooNE in straight tracks until they are depleted of energy and stopped.

The energy loss per unit length (−dE
dx ) for a heavy charged particle is given by the Bethe

formula:

dE

dx
= −4πe4z2

m0v2
NB (3.1)

where B ≡ Z
[
ln2m0v

2

I − ln
(
1− v2

c2

)
− v2

c2

]
. In these equations, v and z are the velocity

and charge number of the heavy charged particle, e is the elementary charge constant, and

m0 is the electron rest mass. N, Z, and I represent the number density, atomic number, and

average ionization energy of the target medium. Liquid argon has values of N = 2.1× 1016

atoms/m3, Z = 18, and I = 23.6 eV/pair [58].

Note that the rate of energy loss is inversely proportional to v2, meaning that heavier

1. In theory, interactions also occur with argon nuclei, though these are rare and do not contribute
significantly to detector response.
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(therefore slower) particles deposit more energy per unit length in the detector. This makes

sense given that a slower particle inherently spends more time in the vicinity of a given bound

electron, thus exerts a larger force and transfers a larger amount of energy. In MicroBooNE,

this feature allows us to distinguish muons (106 MeV/c2 rest mass) from protons (938 MeV/c2

rest mass): Muons tend to travel further and deposit less energy along their tracks than

protons.

Figure 3.4(c) is an example of a νµ CC interaction candidate: νµ+
40Ar → µ− + p+.

While the neutrino is invisible due to its neutral charge, a short proton-like track and longer

muon-like track emanate from the interaction vertex. The color of the proton, indicating its

higher energy deposit per unit length relative to the muon, is a result of its heavier mass.

In contrast, free electrons resulting from neutrino interactions are lighter (0.511 MeV/c2)

and quicker. Free electrons overall deposit less energy per unit length than heavier charged

particles, but a larger percentage of their energy can be transferred during collisions with

bound electrons. The rate of collisional energy loss for free electrons is given by:(
dE

dx

)
c
= − 2πe4

m0v2
NB (3.2)

where B ≡ Z
[
ln m0v

2E
2I2(1−β2)

− (ln2)(2
√

1− β2 − 1 + β2) + (1− β2) + 1
8

(
1−

√
(1− β2)2

)]
and β ≡ v

c . Because the mass of the free electron is equivalent to that of its collision partner,

it is prone to significant, observable deflections from its original path.

Like all charged particles, free electrons emit bremsstrahlung, or electromagnetic "brak-

ing" radiation, when their direction changes.2 The rate of radiative energy loss for free

electrons is given by: (
dE

dx

)
r
= −NEZ(Z + 1)e4

137m2
0c

4

(
4ln

2E

m0c2
− 4

3

)
. (3.3)

2. Heavy charged particles can produce bremsstrahlung as well, though the energy loss is greatly sup-
pressed because it is inversely proportional to the rest mass of the particle, as indicated in Equation 3.3. In
MicroBooNE, this effect is negligible.
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This rate is directly proportional to E and the square of Z, indicating that more bremsstrahlung

is emitted with higher free electron energy and denser target material. The total energy loss

of free electrons traversing MicroBooNE is
(
dE
dx

)
c
+
(
dE
dx

)
r
.

Bremsstrahlung photons will travel a few centimeters before interacting. Lower energy

photons will either be absorbed by an argon atom (Eγ <∼ 0.1 MeV) or Compton scatter

off a bound electron (Eγ ∼ 0.1 − 10 MeV), but most photons generated in MicroBooNE

are energetic enough (Eγ >∼ 10 MeV) to pair produce, i.e. γ → e+ + e− where the

full energy of γ is split between the positron and electron. The positron will immediately

annihilate (e+ → 2γ) and the electron will subsequently lose energy via the collisional

and radiative processes described above, effectively creating an electromagnetic shower of

successive photons and electrons until energy is depleted.

NUMI DATA : RUN 5154 EVENT 10049. FEBRUARY 26, 2016 

Figure 3.5: A νe event candidate reconstructed by MicroBooNE, comprised of one electron-
like electromagnetic shower and N = 2 proton-like tracks, from the NuMI dataset.

Figure 3.5 shows an electron neutrino interaction candidate: νe+
40Ar → e− + p+. An

unambiguous electromagnetic shower emanating from the interaction vertex indicates the

presence of an electron. Also identifiable is a short, bright red track characteristic of a

proton-like trajectory. Longer tracks with lower energy deposit per unit length, observed on
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either side of the neutrino interaction, are likely cosmic rays (muons).

Muon neutrino interactions that produce a π0 can mimic νe signatures in the detector

due to neutral pion decay (π0 → 2γ), generating photons that can set off their own electro-

magnetic showers, as shown in Figure 3.6. This makes interactions involving the creation of

a π0 one of the largest sources of background in MicroBooNE’s electron neutrino studies.

However, photons are distinct from electrons because they travel some distance away from

the interaction vertex before pair producing, and the showers generally come in pairs with a

higher dE
dx at the starting point. One or more of these handles can be used to discriminate νe

interactions from π0 events, demonstrating the advantage LArTPCs have over other types

of neutrino detection mechanisms.

BNB DATA : RUN 5370 EVENT 7227. MARCH 10, 2016.

Figure 3.6: A π0 → 2γ event candidate event display from the BNB dataset. The photons
set off electromagnetic showers that become one of the largest sources of background in
MicroBooNE’s νe studies. As shown, photons generally travel some centimeters away from
the neutrino interaction vertex before pair producing, and the resulting showers come in
pairs with high energy deposit at the shower starting point. One or more of these handles
can be used to discriminate νe and π0 events in the LArTPC.
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CHAPTER 4

EVENT SIMULATION AND RECONSTRUCTION

In general, the analysis of data collected by MicroBooNE relies on theoretical simulations

of neutrino behavior, as well as the reconstruction of events in the detector, to accurately

interpret experimental observations. Simulated event samples help characterize the detec-

tor response, i.e. how effects in the LArTPC “smear” reconstructed observables—position,

charge deposit, etc.—away from their true values. They are also used to understand the

expected signal and background distributions of collected data, information from which a

robust selection algorithm can be developed. The simulated flux, on the other hand, is an

essential ingredient in extracting the cross section.

MicroBooNE’s simulation and reconstruction of neutrino events is performed within the

LArSoft framework [63], a set of software tools built for the analysis of data from liquid argon

neutrino experiments. This chapter summarizes the standard simulation and reconstruction

workflows, and describes the NuMI event samples used for this work.

4.1 Simulation workflow

The simulation of neutrino events is performed as follows. Proton interactions with the NuMI

target, hadronic re-interactions, and the decay of these particles into neutrinos are modeled

using Geant4 v4.9.2.p03 and a geometric model of the beamline [33]. This flux serves as

input to GENIE [64], a Monte Carlo (MC) neutrino event generator that simulates initial

ν + 40Ar weak interactions as well as the propagation of resulting hadrons and leptons

through the target nuclear medium (so-called final-state interactions), returning a list of

final-state particles entering the detector and their kinematics. Specifically, MicroBooNE

uses GENIE v3.0.6 G18_10a_02_11a [65], a tune developed to fix an underestimation of

simulated νµ CC events as compared to data. (This discrepancy carries over to the νe CC
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simulation because the same underlying cross section models are used in GENIE for both

neutrino flavors.) The propagation of final-state particles and any secondaries they produce

in the detector is simulated with Geant4 v10.3.03c. This includes the amount of energy

deposited at each point along the particle paths.

Custom algorithms in LArSoft are employed to simulate the readout of scintillation and

ionization signals, referred to as the detector response. For each simulated event, the po-

sition and amount of deposited energy is used to estimate the number of photons at each

point along the particle’s path. A photon visibility library of the detector, which takes into

account the attenuation and scattering effects influencing light traversing the TPC, is then

used to estimate the number of photoelectrons measured by the PMT array. This results

in a simulated PMT waveform. The energy deposit is also used to estimate the amount

of ionization electrons liberated along the particle trajectories. Electron drift to the wire

planes is simulated, accounting for ionic recombination and electric field distortion due to

the accumulation of argon ions at the cathode (known as space charge).

Simulated neutrino signals are then overlaid onto data from MicroBooNE’s EXT sample

in order to replicate cosmic ray activity occurring in-time with neutrino interactions in a

data-driven way. This bypasses the need to use the air shower simulation toolkit CORSIKA

[66], which has demonstrated limitations regarding angular coverage, as well as modeling of

the LArTF building, space charge effects in the detector, and interaction rates for shorter

cosmic muons [67].

At this point, simulated waveforms are processed in the same manner as data, follow-

ing the procedure outlined in Section 3.2. EXT events with pure cosmic activity, absent

of a simulated neutrino interaction, also undergo this processing for a complete simulation

(MC+EXT) of MicroBooNE data. Notably, reconstructed hits are derived from TPC wave-

forms which serve as the input for event reconstruction.
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4.2 Reconstruction workflow

The purpose of reconstruction is to build physics-relevant quantities from the detector’s PMT

and TPC readout systems, which become the foundation for data analysis. To reconstruct

interactions in the LArTPC, MicroBooNE employs an automated, multi-algorithm approach

to pattern recognition called Pandora [68]. This toolkit uses topological and calorimetric

information to assemble three-dimensional particles traversing through the detector and

identify candidate neutrino interactions. The two reconstruction paths shown in Figure 4.1,

PandoraCosmic and PandoraNu, have been developed for use within MicroBooNE.
5

PandoraCosmic PandoraNu

Input: all 2D hits in readout window

2D reconstruction

3D track reconstruction

Delta-ray reconstruction

3D hit reconstruction

Output: candidate cosmic-ray muons

Cosmic-ray muon tagging

Unambiguous cosmic-ray muons Other particles, input to PandoraNu

Input: cosmic-removed 2D hits

Event slicing

2D reconstruction

3D vertex reconstruction

Track and shower reconstruction

Particle refinement

Particle hierarchy reconstruction

Output: candidate neutrinos

Fig. 2: A simple representation of the two multi-algorithm reconstruction paths created for use in Micro-
BooNE. Particles formed by the PandoraCosmic reconstruction are examined by a cosmic-ray tagging mod-
ule, external to Pandora. Hits associated with unambiguous cosmic-ray muons are flagged and a new cosmic-
removed hit collection provides the input to the PandoraNu reconstruction.

The PandoraCosmic and PandoraNu reconstructions are applied to the MicroBooNE data in two passes.
The PandoraCosmic reconstruction is first used to process all hits identified during a specified readout window
and to provide a list of candidate cosmic-ray particles. This list of particles is then examined by a cosmic-ray
tagging module, implemented within LArSoft, which identifies unambiguous cosmic-ray muons, based on
their start and end positions and associated hits. Hits associated with particles flagged as cosmic-ray muons
are removed from the input hit collection and a new cosmic-removed hit collection is created. This second hit
collection provides the input to the PandoraNu reconstruction, which outputs a list of candidate neutrinos. The
overall chain of Pandora algorithms is illustrated in Figure 2.

4.1 Cosmic-ray muon reconstruction

The PandoraCosmic reconstruction proceeds in four main stages, each of which uses multiple algorithms and
algorithm tools, as described in this Section.

4.1.1 Two-dimensional reconstruction

The first step is to separate the input hits into three separate lists, corresponding to the three readout planes
(u, v and w). This operation is performed by the EventPreparation algorithm2. For each wire plane, the Track-
ClusterCreation algorithm then produces a list of 2D clusters that represent continuous, unambiguous lines of
hits. Separate clusters are created for each structure in the input hit image, with clusters starting/stopping at
each branch feature or any time there is any bifurcation or ambiguity. This initial clustering provides clusters
of high purity, representing energy deposits from exactly one true particle, even if this means that the clusters
2For expediency, algorithms are referred to by their self-describing names throughout this paper.

Figure 4.1: A summary of the two reconstruction paths developed by MicroBooNE using
Pandora. Hit information from TPC event readout becomes the input for PandoraCosmic,
which removes obvious cosmic activity. The cosmic-removed hit collection is the input to
PandoraNu, which outputs a neutrino candidate, including a reconstructed vertex position
and hierarchy of charged particles associated with the interaction. Figure from [68].

PandoraCosmic takes all hits from a TPC event readout as input. Associated hits from

each anode plane are grouped together to form 2D clusters. Representations of 3D charged

particles and their positions (known as spacepoints) are built by matching associated clusters

across planes. PandoraCosmic classifies these representations under a cosmic hypothesis,
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identifying start and end points for reconstructed tracks and assuming that any nearby

showers are delta rays, low energy electrons emitted from the passage of muons through the

LArTPC. The output of PandoraCosmic is a list of candidate cosmic interactions. This list

is examined by an external tagger that flags unambiguous background and generates a new,

cosmic-removed hit collection that is used as input for PandoraNu.

For each event, PandoraNu organizes information into slices—lists of hits belonging to

the same interaction—with the intent of isolating neutrino-induced signals from cosmic ray

activity. Each slice is processed using the same 2D track-oriented clustering algorithms of

PandoraCosmic. Slices are analyzed to build a list of possible interaction vertex candidates,

which are fed into a Support Vector Machine (SVM) to determine the most likely vertex for

the event. The SVM also returns a score (0 or 1) based on how closely the candidate slice

resembles a neutrino. PandoraNu then reconstructs tracks and primary showers emerging

from this vertex, and matches them with any secondaries produced. A refinement algorithm

is run over the reconstructed particles, with a focus on completing the hit collections of

particularly sparse showers. The output of PandoraNu is a candidate neutrino, which in-

cludes a reconstructed vertex position and hierarchy of charged particles associated with the

interaction, an example of which is shown in Figure 4.2. Charged particles are also assigned

a score indicating their likeness to a shower (0 to 0.5) or track (0.5 to 1) topology.

Calorimetric energy reconstruction is performed differently depending on whether Pandora

classifies an object as a shower or a track. For showers, the charge for all hits in the object is

summed, then converted to Eshower using a fixed calibration factor that scales ADC counts

to MeV with the assumption that the electrons and positrons creating the shower are min-

imally ionizing, thus lose energy at a fixed rate of 2.3 MeV/cm. This assumption leads to

a ∼ 2% contribution to the overall shower energy resolution [69]. Eshower is subsequently

corrected to account for an observed energy bias from charge under-clustering in Pandora,

as well as detector non-uniformities, such as space charge effects and electron attachment to
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Figure 4.2: An example of the reconstructed PandoraNu output for a simulated νµ CC event
with a muon (red), proton (blue), charged pion (pink) in the final topology. The parent
neutrino has a reconstructed interaction vertex and three track-like particles emanating
from this point. The charged pion decays into a µ+, which subsequently decays into an e+

that manifests as a shower-like secondary. The proton scatters off a nucleus and generates a
secondary particle reconstructed as a track. Figure from [68].

impurities [70].

For tracks, the charge of each hit dQtrack is converted to dEtrack using the inverse

modified Box model:

dE

dx
=

eβ×CWion
dQ
dx − α

β
(4.1)

where Wion = 23.6 eV [71], denoting the work function for ionizing an argon atom, and C is a

gain factor that converts ADC counts into the number of collected electrons. The constants

α and β are free parameters experimentally determined by the ArgoNeuT collaboration [72]:

α = 0.93± 0.02 (4.2)

β =
kb

ρ× Efield
, where kb = 0.212± 0.002 (4.3)
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with ρ representing the density of liquid argon, 1.383 g/cm3, and Efield obtained from

MicroBooNE’s position-dependent electric field maps [73]. Etrack is calculated by integrating

dEtrack over all hits associated with the track. Like shower objects, this energy is also

corrected to account for detector non-uniformities.

4.3 Event samples

NuMI data and simulation samples processed through the reconstruction framework are

output into ROOT files containing information organized in the TTree data structure [74].

This section details the types of samples used, the reweighting factors applied, and the

normalization procedure enacted to scale the prediction to data.

4.3.1 Simulated neutrino samples

Simulated neutrino samples, commonly referred to as “overlay” in reference to the merging

with EXT data, come in three types: standard, intrinsic, and dirt. Standard overlay samples

consist of GENIE-generated νµ, ν̄µ, νe, and ν̄e interactions inside the MicroBooNE cryostat,

and are simulated in relative fractions and energies based on the input flux. Table 4.1 lists

the size of the FHC Run 1 and RHC Run 3 standard overlay samples used in this work.

Type POT

FHC Run 1 Standard Overlay 2.33652× 1021

RHC Run 3 Standard Overlay 6.06172× 1021

Table 4.1: The size of the standard overlay samples used in this work.

Intrinsic overlay samples consist only of GENIE-generated νe and ν̄e CC interactions inside

MicroBooNE’s active volume, simulated with energies based on the input flux. Once created,

νe/ν̄e CC events existing in standard overlay are removed and replaced with those from the

intrinsic overlay sample, and weighted appropriately to scale to the correct POT. This is
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done to boost the signal-to-background ratio of the event samples and overcome statistical

limitations inherently associated with studying electron neutrinos from a primarily νµ or ν̄µ

beam. Table 4.2 lists the size of the intrinsic overlay samples used in this work.

Type POT

FHC Run 1 Intrinsic Overlay 2.37838× 1022

RHC Run 3 Intrinsic Overlay 2.53451× 1022

Table 4.2: The size of the intrinsic overlay samples used in this work. These are generated to
replace νe/ν̄e CC interactions in standard overlay in order to boost the signal-to-background
ratio in the event samples.

Dirt overlay samples consist of GENIE-generated νµ, ν̄µ, νe, and ν̄e interactions occurring

outside of the MicroBooNE cryostat that produce enough light to pass the NuMI software

trigger. Table 4.3 shows the size of the dirt overlay samples used in this work.

Type POT

FHC Run 1 Dirt Overlay 1.42143× 1021

RHC Run 3 Dirt Overlay 10.32262× 1020

Table 4.3: The size of the dirt overlay samples used in this work.

Events in the overlay samples are based on underlying flux and cross section models that

are insufficiently constrained. This can lead to poor agreement between simulation and data,

an inaccuracy that carries over into the final measurements. To alleviate this, the following

corrections are applied to each interaction in the overlay samples.

Section 2.3 described data-driven constraints on the Geant4 hadron production and ab-

sorption models used to generate MicroBooNE’s NuMI flux prediction. PPFX can also be

used to constrain the underlying flux models used to simulate the event rates. Using infor-

mation about the neutrino ancestry and parent decay kinematics, a CV reweighting factor

is derived for each event in the overlay samples. Relevant to the measurements in this work,
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applying the PPFX reweight decreases the number of simulated νe CC interactions in the

active volume by 9% (10%) in FHC Run 1 (RHC Run 3).

Regarding cross section models, MicroBooNE analyses employ the GENIE tune referenced

in Section 4.1, which also manifests as a CV weight applied to each event in the overlay

samples. The GENIE tune weight increases the simulated number of νe CC interactions in

the active volume by 13% (11%) in FHC Run 1 (RHC Run 3).

The final correction stems from a flat overestimation of simulated dirt events observed

when comparing with NuMI data. To mitigate this, the dirt overlay sample is scaled down

by 35% (55%) in FHC Run 1 (RHC Run 3), and a 100% uncertainty on the dirt contribution

to the event rate is assumed. As nearly all dirt interactions are removed due to the selection

algorithm described in Chapter 5, this scaling does not have a significant impact on the final

results.

4.3.2 Data

As described in Section 3.2, two types of data samples are collected in MicroBooNE. The

beam-on sample consists of any detector activity that sets off MicroBooNE’s hardware trig-

ger: neutrino events and cosmic ray interactions that sometimes produce signals occurring

in-time with the beam. The collected NuMI beam-on samples are shown in Table 4.4, along

with the collected POT and the number of times the hardware trigger was prompted.

Type POT Hardware Triggers

FHC Run 1 Beam ON 2.000× 1020 5268051.0

RHC Run 3 Beam ON 5.014× 1020 10372943.0

Table 4.4: The NuMI beam-on samples, including the collected POT and number of hard-
ware triggers.

The EXT sample, on the other hand, is taken intentionally when the beam is off with

an external trigger that fires anti-coincident to a spill. A portion of the EXT sample is used
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to create the overlay samples listed in Section 4.3.1. The rest is saved for estimating the

portion of the beam-on sample consisting of in-time cosmic background, in order to build

a full prediction (MC+EXT) of collected data. The collected EXT samples and number of

external triggers that flagged an interaction are shown in Table 4.5. Only a specified fraction

of EXT triggers are written to disk, so these values have been multiplied by a prescaling

factor to accurately reflect the number of events recorded.

Type EXT Triggers

FHC Run 1 EXT 9199232.74

RHC Run 3 EXT 32905506.725

Table 4.5: The NuMI EXT samples including the collected number of hardware triggers,
which have been multiplied by a prescaling factor.

4.3.3 Normalization procedure

Normalizing the overlay and EXT samples is necessary to build an accurate representation

of beam-on data. The scaling applied to overlay is simply the ratio between the POT values:

soverlay =
POTbeam-on

POToverlay

where soverlay is distinct for the standard, intrinsic, and dirt samples.

EXT does not have associated POT values, so these samples are scaled using the ratio

between the number of triggers:

sEXT =
trig beam-on

trig EXT

where the EXT triggers have been multiplied by a prescaling factor. The (seemingly absurd)

expectation inherent in this scaling is that none of the beam-on triggers contain neutrinos.

This is a fine assumption for the on-axis BNB, but breaks down for NuMI because of its

greater beam intensity, which results in a larger proportion of beam spills creating a neutrino
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interaction. For this reason, the EXT samples are scaled down by an additional 2% to account

for neutrino occupancy.

The reweighting factors and normalization procedure can be verified by comparing the

MC+EXT prediction to beam-on data for events that have passed the software trigger.

Figure 4.3 shows the distributions of FHC Run 1 (left) and RHC Run 3 (right) beam-on

data as a function of the timing of the largest flash in the event on top of a stacked histogram

of the normalized EXT, overlay (In Cryo MC), and dirt predictions. Central value PPFX and

GENIE reweights have been applied to the overlay events. The dirt and EXT events have also

been scaled down to account for unconstrained models and neutrino occupancy, respectively.
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Figure 4.3: Beam-on event distributions as a function of the timing of the largest flash in
the event for FHC Run 1 (left) and RHC Run 3 (right) on top of a stacked histogram of the
normalized EXT, overlay (In Cryo MC), and dirt predictions.

The NuMI beam spill window for both runs occurs between 5.64 and 15.44 µs and is

the primary range where neutrino-induced events populate. In FHC Run 1, the step-like

shape of the spill is due to the composition of the data: roughly 70% exists in the 4+6

slip-stacking configuration, while the other 30% was collected in the 6+6 configuration. The

NuMI prediction simulates neutrinos evenly over the time window, thus no step-like shape

is present. This feature is not present in RHC Run 3 because all of the data was collected

in the same slip-stacking configuration.
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CHAPTER 5

ELECTRON NEUTRINO EVENT SELECTION

The event selection is an algorithm designed to isolate electron neutrino interactions with

the 1e + Np topology from various sources of background. It is built using reconstructed

variables available in the simulated event samples, then applied to NuMI beam-on data.

Two metrics are used to evaluate the strength of the selection. The efficiency quantifies

how well the algorithm retains signal and is defined as:

ϵ =
true signal events selected

true signal events generated
. (5.1)

The purity quantifies how effective the algorithm is at removing background, defined as the

fraction of selected events that are signal:

p =
true signal events selected

total events selected
. (5.2)

Both metrics are calculated purely from the simulated event rate. The aim of the selection

is to maximize purity while achieving as high of an efficiency as possible.

An overview of the selection workflow is illustrated in Figure 5.1. Initial requirements

ensure that the events are of quality and match the signal topology at the reconstructed level.

Together, these two stages are referred to as the preselection. Next, a set of constraints

is loosely applied to reject obvious νµ CC and π0 events. This increases the signal-to-

background ratio of the event sample for input into a Boosted Decision Tree (BDT) trained

to discriminate signal from background using a multivariate assessment. The BDT assigns

a probability score to each event based on how likely it is to be signal. The final stage of the

selection constrains this score distribution. Separate BDT models are developed for different

beam operating modes; thus, while analogous and similar, the selections run over FHC Run

1 and RHC Run 3 are distinct.
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Figure 5.1: A summary of the NuMI 1e + Np event selection. Separate BDT models are
developed for different beam operating modes; thus, while analogous, the selections run over
FHC Run 1 and RHC Run 3 are distinct.

Agreement between data and prediction for reconstructed variables used in the selection

is checked at each stage, so as to avoid using parameters that are poorly modeled. The

goodness-of-fit is computed as:

χ2 =
∑
ij

(xi − yi) ∗ Cov−1
ij ∗ (xj − yj) (5.3)

where xi and yi are the number of beam-on and MC+EXT counts in a bin i, respectively.

Cov−1
ij is the ijth element of the inverse of a covariance matrix encoding the statistical and

systematic uncertainty of the prediction, as well as the statistical uncertainty of the beam-on

dataset.

5.1 Signal and background definitions

In this work, signal events are νe CC interactions with at least 1 proton and no charged or

neutral pions in the final topology. Protons and charged pions must have kinetic energies

greater than 40 MeV to be counted, a requirement arising from the minimum detection

threshold of the LArTPC. To avoid border effects leading to poor quality reconstruction at

the edges of the active volume, interaction vertices must also take place inside of a fiducial

volume (FV) that exists 10 cm inward from any side of the LArTPC. An example of a

selected signal candidate is shown in Figure 3.5.

Primary sources of background in the event samples are other types of neutrino interac-

tions: νe events that do not fully match the signal definition and νµ interactions, especially
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those that produce a neutral pion, whose decay products manifest as electromagnetic show-

ers. Cosmics can also produce shower-like topologies in the detector, though these events

are suppressed via the requirement of a proton-like track in the signal definition.

Event distributions in this chapter are differentiated into the categories listed in Table

5.1. EXT and DATA refer to beam-off and beam-on events, respectively, while the other

categories characterize simulated interactions in the overlay samples by their truth-level

information. The label νe CC0πNp specifically refers to the signal events of this work.

Event type Description
νe CC0πNp νe CC interactions in the FV with at least 1 proton > 40 MeV kinetic

energy, no charged pions > 40 MeV kinetic energy, and no neutral pions.
These are the signal events of the selection.

ν̄e CC0πNp ν̄e CC interactions in the FV with at least 1 proton > 40 MeV kinetic
energy, no charged pions > 40 MeV kinetic energy, and no neutral pions.
These are topologically identical to our signal events and considered an
irreducible background.

νe CC other νe and ν̄e CC interactions in the FV that contain at least 1 neutral pion,
at least 1 charged pion > 40 MeV kinetic energy, and/or no protons >
40 MeV kinetic energy.

νe NC νe and ν̄e neutral current interactions in the FV.
νµ CC νµ and ν̄µ CC interactions in the FV with no π0 present.
νµ NC νµ and ν̄µ NC interactions in the FV with no π0 present.
νµ CC Nπ0 νµ and ν̄µ CC interactions in the FV that contain a π0.
νµ NC Nπ0 νµ and ν̄µ NC interactions in the FV that contain a π0.
Out FV Neutrinos of any flavor with an interaction vertex outside of the FV,

including but not limited to all dirt interactions.
EXT Pure cosmic background from the beam-off sample.
DATA All interactions from the beam-on sample.

Table 5.1: Plots shown in this chapter are differentiated into the following categories. EXT
and DATA refer to beam-off and beam-on events, respectively, and the rest of the categories
characterize simulated interactions in the overlay samples by their truth-level information.

All events in the beam-on data sample must pass the software trigger described in Section

3.2 in order to be saved. However, the MC+EXT prediction contains interactions below the

light levels required by this threshold. As a result, only the subset of the MC+EXT sample

passing the software trigger is used to compare to beam-on data in the plots shown in the

following sections. The efficiency and purity are also estimated using the same subset of the

prediction. (This leads to a negligible effect on the final results, since according to simulation,
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99.98% of signal passes the software trigger threshold.)

Unless otherwise specified, the grey shaded region on the event distributions represents

the statistical and systematic uncertainty of the MC+EXT event rate. (This includes the

systematic event rate change due to GENIE uncertainties on the signal channel, a contribution

that is turned off when extracting the cross section.) Error bars on the data represent the

statistical uncertainty associated with the beam-on sample.

For most of the plots of this chapter, the grey error band and χ2 value do not include

a contribution from systematic uncertainty due to detector response. This is a result of

statistical limitations inhibiting the ability to accurately assess bin-to-bin variance and cor-

relations for this source of uncertainty. In lieu of this, late stage selection distributions shown

in Section 5.7 incorporate a flat detector uncertainty of 12.1% for the FHC Run 1 sample

and 12.9% for the RHC Run 3 sample. A full description of how these values are derived,

and the evaluation of other sources of uncertainty, can be found in Chapter 6.

5.2 Quality cuts

The initial stage of the selection aims to select well-reconstructed, contained neutrino events

away from the edges of the LArTPC.

The first constraint involves the Pandora slice identification score assigned by the Support

Vector Machine as described in Section 4.2. Slices that favor the neutrino hypothesis are

assigned a value of 1; those that favor the cosmic hypothesis are given a score of 0. Figure

5.2 shows the event rate as a function of Pandora slice ID for events that have passed the

software trigger. The selection removes events that are assigned a score of 0 by Pandora.

Next, the reconstructed position of the neutrino interaction vertex is constrained to exist

within the FV. Figures 5.3 and 5.4 display the event rates as a function of the reconstructed

x, y, and z vertex coordinates after the Pandora slice identification cut. Events pass this

requirement if the reconstructed vertex is located within bounds of the FV: 10 cm < x <
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Figure 5.2: The FHC Run 1 (left) and RHC Run 3 (right) event rates as a function of the
Pandora slice identification score for interactions that pass the software trigger.

246 cm, -106 cm < y < 106 cm, and 10 cm < z < 1026 cm.

Figure 5.3: Event rates as a function of reconstructed x, y, and z vertex coordinates after
the Pandora slice identification constraint for FHC Run 1.

The final cut in this stage concerns the fraction of hits in a slice that are contained within

the FV. Figure 5.5 displays the event rates as a function of the contained fraction, after the

slice identification and reconstructed vertex constraints have been applied. Events less than

90% contained are removed from the samples. This requirement ensures selected interactions

are well-reconstructed, and also removes a significant amount of background, namely cosmic

activity and higher energy νµ events with long tracks extending beyond the walls of the

LArTPC.
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Figure 5.4: Event rates as a function reconstructed x, y, and z vertex coordinates after the
Pandora slice identification constraint for RHC Run 3.

Figure 5.5: FHC Run 1 (left) and RHC Run 3 (right) event rates as a function of contained
fraction for interactions that pass the Pandora slice identification and reconstructed vertex
constraints.

After this stage of the selection, the purity for FHC Run 1 (RHC Run 3) is 1.6% (1.4%)

and the efficiency is 62.0% (61.5%).

5.3 Signal definition constraints

The second stage of the selection attempts to restrict shower and track topologies based on

the signal definition.

The characteristic topology of νe CC interactions is the presence of a single electromag-

netic shower. Figure 5.6 shows the event rates as a function of the number of showers with
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reconstructed vertex inside the FV after the quality cuts of the previous section have been

applied. Events are required to have exactly one shower to pass this stage of the selection.

Figure 5.6: Event rates as a function of the number of showers with reconstructed vertex
within the FV. Shown for FHC Run 1 (left) and RHC Run 3 (right) after quality cuts have
been applied.

On the hadronic side, the signal definition requires the presence of at least one proton

above detection threshold. Figure 5.7 displays the distributions of events passing quality

cuts as a function of the number of tracks with all associated hits contained in the FV.

Figure 5.7: Event rates as a function of the number of tracks with all associated hits contained
in the FV after quality cuts have been applied. Shown for FHC Run 1 (left) and RHC Run
3 (right).
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Events with no reconstructed tracks are removed by the selection. The energy of the

leading (longest) track is analyzed for events that survive this cut, as shown in Figure

5.8. Interactions with a leading track energy less than 40 MeV are removed from the event

samples.

Figure 5.8: Event rates for FHC Run 1 (left) and RHC Run 3 (right) as a function of the
leading (longest) track energy. Shown for interactions that have passed quality cuts and
have at least one track present in the final topology.

After this stage of the selection, the purity for FHC Run 1 (RHC Run 3) is 4.5% (3.8%)

and the efficiency is 39.1% (37.6%).

5.4 Loose νµ CC rejection

After quality cuts and the signal definition constraints—together referred to as the preselection—

νµ CC backgrounds are loosely constrained in order to boost the signal-to-background ratio

of the event samples for input into a Boosted Decision Tree. First, the selection aims to sup-

press νµ CC events without a π0 in the final topology. This background channel is displayed

in dark blue in the plots of this chapter.

As explained in Section 4.2, objects classified as showers by Pandora are given a score

ranging from 0 to 0.5, based on how shower-like their topologies are. Event rates as a function
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Figure 5.9: Event rates after the preselection as a function of Pandora shower score after
preselection for FHC Run 1 (left) and RHC Run 3 (right).

of this shower score are shown in Figure 5.9 for interactions that pass the preselection. This

stage of the selection tightens this classification by removing events with a shower score

greater than 0.3.

For track objects, a particle identification (PID) tool developed by the MicroBooNE

collaboration [75] is applied. In a nutshell, this tool uses calorimetry measurements (i.e.,

dE
dx ) to analyze the leading reconstructed track of each event, constructing a likelihood that

the track is a proton and a separate likelihood that the track is a muon. The test statistic

to determine the classification of the track is defined as the ratio between these likelihoods.

The output of the PID tool is the assignment of a score to the leading track in each event,

where −1 represents tracks that are completely proton-like, and +1 represents tracks that

are completely muon-like.

The track PID score distributions for events passing the preselection are shown in Figure

5.10. A peak at ∼ 0 is present, attributed to short tracks for which there is too little

information to adequately discriminate between the muon and proton hypotheses. (This

peak slightly favors the muon score because it is mostly comprised of cosmic rays, displayed

in pink.) Events with a track PID score greater than 0.35 are removed from the samples.
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Figure 5.10: Event rates after the preselection as a function of the track PID score for FHC
Run 1 (left) and RHC Run 3 (right).

After this stage of the selection, the purity for FHC Run 1 (RHC Run 3) is 12.3% (10.3%)

and the efficiency is 30.5% (29.2%).

5.5 Loose π0 rejection

Next, νµ events that create a π0 are targeted, backgrounds that are shown in red in the

plots of this chapter. Neutral pions can decay into photons that can mimic the shower

signature of signal interactions via e+/e− pair production. Though π0 interactions manifest

as double showers in the LArTPC, Pandora frequently reconstructs them as a single object.

The constraints in this section aim to suppress that reconstruction failure.

The separation between the neutrino interaction point and the start of the shower is a

distinguishing factor between π0 and νe CC events, as photons tend to travel a measurable

distance away from the vertex before pair producing. Figure 5.11 shows the distribution

of events passing the preselection and loose νµ rejection as a function of the 3D separation

between the starting points of the shower and the leading track in the interaction. Assum-

ing the track originates at the interaction vertex, events with separation greater than 12

centimeters are removed by the selection.
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Figure 5.11: FHC Run 1 (left) and RHC Run 3 (right) event rates after the preselection and
loose νµ CC rejection as a function of the separation between the leading track and shower
objects in the neutrino interaction.

Shower objects are further classified by analyzing their associated spacepoints, the 3D

clusters of hits that have been matched across 2D planes. The Molière angle is defined as

the angle between the shower’s momentum vector and a vector pointing from the shower’s

start point to one of its spacepoints. This variable is visualized in Figure 5.21b, where the

angles between p⃗shower and x⃗1, x⃗2 are two examples of the Molière angle. The distributions

of the average of all such angles in the shower object are shown in Figure 5.12 for events

passing the preselection and loose νµ CC rejection.

Figure 5.12: FHC Run 1 (left) and RHC Run 3 (right) event rates after the preselection and
loose νµ CC rejection as a function of the average Molière angle for showers in the neutrino
interaction.
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In general, when two showers have been boosted and merged together by Pandora, the

average Molière angle is larger than expected from a single shower (hence why signal in-

teractions, in orange, pile up at low angular values). The selection loosely constrains these

distributions by removing events with an average Molière angle of greater than 15◦. Fortu-

itously, this cut also removes a substantial portion of poorly reconstructed cosmic activity.

Arguably the most powerful advantage of LArTPCs for neutrino studies is the ability

to discriminate particles based on calorimetric information deposited in the detector. This

feature provides the opportunity to distinguish between showers arising from electrons and

those resulting from photons. Electrons are minimally ionizing with a mean energy loss of

2.1 MeV/cm, which is a measurable observable at the trunk of a shower. Photon showers,

on the other hand, originate from an e+/e− pair, so dE
dx at the shower trunk is consistent

with two minimally ionizing particles, i.e. 4.2 MeV/cm. To compute dE
dx at the trunk of a

shower, the first four centimeters of the object is fit with a track, and the inverse modified

Box model formula as given in Equation 4.1 is used.

Figure 5.13: FHC Run 1 (left) and RHC Run 3 (right) event rates after the preselection,
loose νµ CC rejection, and the average Molière angle constraint. Shown as a function of dE

dx
at the trunk of the shower belonging to the neutrino interaction.

Figure 5.13 shows the distributions of dE
dx at the shower trunk, computed using hit clusters

on the collection plane, for events passing the preselection, loose νµ CC rejection, and also
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the average Molière angle constraint, applied to suppress the number of EXT events in the

distribution. As anticipated, signal events pile up around 2.1 MeV/cm, and a notable peak

of π0 interactions is present at 4.2 MeV/cm. Events are conservatively required to have

shower objects with dE
dx less than 7 MeV/cm to pass this stage of the selection.

After this stage of the selection, the purity for FHC Run 1 (RHC Run 3) is 23.3% (20.5%)

and the efficiency is 23.0% (21.6%).

5.6 Development of the BDT model

Here, a detour is taken from the nominal selection workflow of Figure 5.1 to describe the

development of the BDT models used to apply the final constraint in the selection algorithm.
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Figure 5.14: Event selection is a binary classification problem: The interaction is either
signal or background. Linear selections sort events into these two categories by passing them
through a decision tree structure, an example of which is shown above.

At its core, event selection is a binary classification problem: The interaction is either

signal, or it is background. Traditional selections aim to sort events into one of these cat-

egories by linearly passing them through a given set of criteria in a structure that can be

described as a decision tree. Figure 5.14 is an example of the decision tree structure for a
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few of the selection requirements detailed in this chapter. At each tree node, input data is

split based on the value of the variable being assessed. If an event is consistent with the node

requirement, it moves on to the next stage of the algorithm. If not, it is assigned a negative

class label (specific to this work, it is flagged as background). Events that pass every node

are assigned a positive class label (flagged as signal).

Boosting is a machine learning technique that identifies multivariate trends across a given

set of criteria. It combines a multitude of weak learners to create a strong learner that can

more accurately classify data by way of additive training, in which each new iteration of

the model seeks to fix the misclassifications of the previous one. In this work, the weak

learners involved come in the form of decision trees whose splits represent different selection

criteria. Successive trees are developed using interactions that were wrongly classified by the

preceding tree. Each weak learner improves the final model, as illustrated in Figure 5.15.

MISCLASSIFIED 
INTERACTIONS

INPUT DATA
SIGNAL

BACKGROUND

SIGNAL

BACKGROUND

BACKGROUND

MISCLASSIFIED 
INTERACTIONS

FINAL MODEL

Figure 5.15: A schematic of the process to develop a Boosted Decision Tree model. Successive
decision trees are developed using interactions that were misclassified by the preceding tree.
The final BDT model is run over input event distributions and computes a score for each
interaction, representing how likely it is to be signal.

The gradient boosting framework XGBoost [76] is used to develop the BDT models for this

work. The final BDT model runs over input event distributions and computes a score for
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each interaction that represents how likely it is to be signal.

Figure 5.16 illustrates the workflow for the development of the BDT models in this work.

Note that the first four steps mirror the nominal selection workflow shown in Figure 5.1.

The rest of this section details various decisions taken into account to train and test the

BDT model. Results as they pertain to the nominal workflow are reported in the following

section.

Figure 5.16: The workflow for the development of our BDT models. Note that the first four
steps mirror the nominal workflow shown in Figure 5.1.

5.6.1 Training and testing samples

Ideally, the BDT development process makes use of a dedicated training sample for the model

to learn from, and a separate testing sample for evaluation of the model’s performance.

Independent samples help to avoid over-training, which can lead to an overly optimistic

estimate of performance. However, this work did not have access to additional samples for

dedicated training and testing, thus it was necessary to train and test using the simulated

FHC Run 1 and RHC Run 3 event samples used in the nominal selection workflow.

As illustrated in Figure 5.16, the BDT training and testing occurs on samples that have

first been passed through the preselection and loose νµ CC and π0 rejection constraints.

This is done so as to overcome a low signal-to-background ratio which can negatively impact

BDT performance.

The phase space of the BDT training sample is further restricted with criteria not present

in the nominal selection workflow. Specifically, the event distributions as a function of

reconstructed shower energy and opening angle (between the leading track and shower) are
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Figure 5.17: Event rate distributions as a function of reconstructed opening angle for FHC
Run 1 (left) and RHC Run 3 (right) after preselection and loose νµ CC/π0 background
rejection constraints have been applied. Events with poor reconstruction pile up on either
side of the distribution, which can skew how the BDT learns.

constrained. The purpose of this is to optimize the quality of the events that the BDT learns

from. The model, trained on a subset of events in the full shower energy and opening angle

distributions, is tested and applied to the full phase space of these variables. This method

avoids model dependence associated with constraining the distributions of parameters that

the cross section will be extracted on.

The distributions of events as a function of reconstructed opening angle are shown in

Figure 5.17. The training phase space is restricted to events within cos θep = ±0.9. This

removes interactions with poorly reconstructed topologies occurring at the edges of this

distribution. Events in this region are not representative of generalizable topologies so will

likely be misclassified, and as a result, be given more importance in the training procedure

as the BDT attempts to fix mistakes from previous iterations of the model.

The distributions of events as a function of reconstructed shower energy are shown in

Figure 5.18. The training phase space is restricted to events with a shower energy greater

than 70 MeV. This is done to suppress the population of delta rays and low energy Michel

electrons produced by decay-at-rest cosmic muons, further boosting the signal-to-background

ratio for optimal training.

Additional training constraints remove 41.2% of events (5.8% of signal) in the FHC Run 1
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sample, and 39.6% of events (6.1% of signal) in the RHC Run 3 sample after the preselection

and loose νµ CC and π0 rejection has been applied.

Figure 5.18: Events as a function of reconstructed shower energy for FHC Run 1 (left) and
RHC Run 3 (right) after the preselection and loose νµ CC/π0 background rejection have
been applied. Interactions containing delta rays and Michel electron showers pile up at low
energies.

A concern regarding BDT training and testing is the statistical limitations of the samples

used. On the training side, it is necessary for the BDT to have enough events to firmly learn

the topologies of signal and background. On the testing side, it is equally important to

have enough statistics to properly evaluate the BDT’s performance. Both samples should

reflect the data it will later classify as best as possible. To ensure the latter is true, a

method called stratification is employed, which preserves the signal-to-background ratio

when splitting the simulated event rates into training and testing samples. (In general,

because the split is random, it is expected that the signal-to-background ratio be inherently

preserved. However, due to the limited sizes of the event samples, this may not be the case.

Stratification guarantees distribution uniformity in both.)

To determine how much of the simulated event rates should be devoted to training vs.

testing, the performance of the pre-BDT selection criteria (quality cuts, signal topology

constraints, and loose νµ CC and π0 rejection) on test samples of different sizes is analyzed.

Figures 5.19 and 5.20 show the efficiencies and purities of the pre-BDT selection as a function

of the fractional test sample size for FHC Run 1 and RHC Run 3, respectively.
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Figure 5.19: The FHC Run 1 efficiency (left) and purity (right) of the pre-BDT selection for
test samples of different fractions relative to the full FHC Run 1 sample. The performance
converges when the test sample is about 30% of the full sample size.
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Figure 5.20: The RHC Run 3 efficiency (left) and purity (right) of the pre-BDT selection for
test samples of different fractions relative to the full RHC Run 3 sample. The performance
converges when the test sample is about 50% of the full sample size.

The assumption is that the test samples are no longer statistically limited when their

efficiencies and purities converge to that of the full sample. This occurs when the FHC Run

1 (RHC Run 3) test sample is ∼ 30% (∼ 50%) the size of the full sample. For consistency,

a 50/50 test/train split is chosen for both FHC Run 1 and RHC Run 3.
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5.6.2 Training parameters
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Figure 5.21: Subclusters (a) are isolated 2D charge segments that exist because electro-
magnetic showers are made up of branches separated by gaps caused by photons traversing
through the LArTPC. The Molière angle (b) is the angle between the shower’s momentum
(p⃗shower) and a vector from the shower start point to a 3D spacepoint (x⃗1, x⃗2).

Reconstructed parameters fed to the BDT must have strong selective power, so that the

model can learn to discriminate signal topologies from various sources of background. Most

of these parameters are present as loosely applied criteria to remove νµ backgrounds earlier

in the selection.

To target νµ CC events without a π0, for example, the BDT trains on the Pandora shower

score, the track PID score, and the number of shower subclusters present across all three

anode planes. A subcluster is an isolated 2D charge segment within the reconstructed shower

object. These exist because electromagnetic showers are made up of branches separated by

gaps caused by photons traversing through the LArTPC. This feature is visualized in Figure

5.21a, which illustrates a shower reconstructed with 4 subclusters. This variable addresses

the situation where νµ CC track objects are misidentified by Pandora as a shower. Signal

typically has a higher number of subclusters than events with misidentified tracks.

To target π0 background, the BDT trains on the average Molière angle, dE
dx at the shower

trunk (computed using hit clusters on the collection plane), and both the 3D and 2D sep-

aration between the track and shower. The latter parameter provides an additional handle

70



on evaluating the distance between the reconstructed interaction vertex and shower, and is

derived from charge deposit on the collection plane.

Figures 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, and 5.28 show the training parameter distribu-

tions for events passing all pre-BDT selection criteria and the additional opening angle and

shower energy training constraints. The distributions are plotted using the full samples to

illustrate goodness-of-fit with data; however, only 50% is used as input for training.

Figure 5.22: Pandora shower score distributions for FHC Run 1 (left) and RHC Run 3
(right).

Figure 5.23: Track PID score distributions for FHC Run 1 (left) and RHC Run 3 (right).
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Figure 5.24: Distributions of the number of shower subclusters for FHC Run 1 (left) and
RHC Run 3 (right).

Figure 5.25: Average shower Moliere angle distributions for FHC Run 1 (left) and RHC Run
3 (right).

Figure 5.26: dE
dx distributions for FHC Run 1 (left) and RHC Run 3 (right).
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Figure 5.27: Distributions of the 3D distance between track and shower for FHC Run 1 (left)
and RHC Run 3 (right).

Figure 5.28: Distributions of the 2D distance between the track and shower as measured
from the collection plane for FHC Run 1 (left) and RHC Run 3 (right).

5.6.3 Model hyperparameters

A hyperparameter is a variable external to the BDT model that is set before the learning

process begins, such as the maximum number of nodes the decision trees can have, or the

maximum number of reconstructed variables that can be used in a given tree. In summary,

hyperparameters dictate exactly how the algorithm trains the dataset, and can be tuned

for optimal performance either with an independent validation sample or a portion of the

training sample.
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Statistical limitations in the training sample do not allow for robust tuning of the hyper-

parameters. Thus, to avoid introducing bias into the BDT performance evaluation, all but

two of the hyperparameters are set using the same values as a parallel cross section result

by the MicroBooNE collaboration, which measured νe+
40Ar → 1e+Np interactions using

data collected from the BNB [26]. These results employed a BDT with hyperparameters

tuned from an independent validation dataset.

In this work, two hyperparameters are optimized: scale_pos_weight, defined as the

ratio between the negative class and positive class, and nrounds, the number of boosting

rounds. The values of these hyperparameters are listed in Table 5.2.

Hyperparameter FHC Training RHC Training

scale_pos_weight 0.384 0.506

nrounds 200 150

Table 5.2: The optimized values for the two BDT hyperparameters tuned for the selection
algorithm: scale_pos_weight, defined as the ratio between the negative class and positive
class, and nrounds, the number of boosting rounds.

The hyperparameter scale_pos_weight represents the ratio between the number of back-

ground events and the number of signal events. This is computed using the raw number of

interactions from the simulated event rates of the training samples (no GENIE, PPFX, or other

correction weights as described in Section 4.3.1 are applied).

The hyperparameter nrounds is the maximum number of decision trees the BDT model

can use to improve its performance. As each iteration focuses on improving misclassifications

of the previous tree, it is expected that the BDT performance on the training sample will

increase as nrounds increases. However, because of the nature of this type of boosting, the

model will reach a certain point where it begins to memorize the data rather than recognize

generalizable topologies in the testing sample. This is commonly referred to as overfitting.
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Figure 5.29: AUC (left) and AUCPR (right) metrics for the FHC Run 1 training and testing
samples. As expected, the performance of the training sample increases as the number of
boosting rounds increases. However, the performance of the testing sample stagnates around
200 rounds, becoming susceptible to overfitting.
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Figure 5.30: AUC (left) and AUCPR (right) metrics for the RHC Run 3 training and testing
samples. As expected, the performance of the training sample increases as the number of
boosting rounds increases. However, the performance of the testing sample stagnates around
150 rounds, becoming susceptible to overfitting.

Two diagnostic curves come in handy for determining the appropriate number of rounds,

because they evaluate how well the BDT classifies the training sample (its performance)

irrespective to the classification threshold (the BDT score constraint). The first is a receiver

operating characteristic (ROC) curve, which plots the true positive rate of the BDT as

a function of the false positive rate. The second is called a precision-recall (PR) curve.

“Precision” refers to the purity of a model, defined as the ratio between the number of true

positives and the total number of positives (true and false). “Recall” refers to the efficiency of

the model, defined as the ratio between the number of true positives and the total number of

events belonging to the positive class in the input dataset. The PR curve plots the precision
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as a function of the recall. For both diagnostics, the area under the curve is proportional to

the skill of the model. (A perfect BDT would have an area under the curve of 1.) ROC curves

are best for evaluating skill when the positive and negative classes are balanced, equivalently

when the signal-to-background ratio is close to 1. PR curves, on the other hand, are best

when the classes are not balanced.

To determine the optimal value for nrounds, the area under the curve for both the ROC

(AUC) and PR (AUCPR) curves is studied. Figures 5.29 and 5.30 show the AUC (left) and

AUCPR (right) metrics as a function of the number of boosting rounds for the FHC Run 1

and RHC Run 3 training and testing samples, respectively. As expected, the performance

of the training sample, displayed in orange, increases with the number of boosting rounds.

However, the performance of the testing sample, displayed in blue, stagnates around 200

(150) rounds for FHC Run 1 (RHC Run 3). At this point, the samples become susceptible

to overfitting. To avoid this, nrounds is set to 200 (150) for the FHC Run 1 (RHC Run 3)

training sample.

5.6.4 Testing the BDT model

Once the training parameters are determined and the hyperparameters optimized, separate

BDT models are trained for FHC Run 1 and RHC Run 3, and their performance can be

tested. To further reduce the effects of statistical fluctuations, the BDT is evaluated using

a process called k-fold cross validation. Cross validation is a re-sampling procedure used

to estimate the performance of a machine learning algorithm with less bias than a single

train/test split. This is particularly advantageous when working with statistically limited

samples.

In general, k-fold cross validation splits the dataset into k sets and iterates over each one,

taking the chosen group as a test sample and the rest of the sets together as the training

sample. A model is fit on the training sample and performance is evaluated from the testing
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sample. The model is discarded after each iteration. The end result is k evaluation scores

from which the skill of the model can be quantified more reliably, because the algorithm

being trained and tested multiple times in a random manner.

Due to the limited statistics available in this work, cross validation is performed with

k = 2, such that the event samples are subject to a (stratified) 50/50 train/test split. This

procedure is repeated a total of 20 times. Specifically, the method is as follows: The BDT is

trained on the first set, and the efficiency and purity as a function of BDT score is evaluated

on the second set. The model is discarded, and the intended purpose of the sets are flipped:

the BDT is freshly trained on the set previously devoted to testing, and tested on the set

previously devoted to training. The efficiency and purity are again evaluated, and the model

is again discarded. The event sample is then shuffled and split, and the procedure begins

again. In the end, there are 40 independent evaluations of the BDT’s performance (2 per

cross validation scheme). The average of the 40 performance values are plotted as a function

of the BDT score, shown in Figure 5.31 for FHC Run 1 (left) and RHC Run 3 (right).
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Figure 5.31: Cross validated purity (red) and efficiency (green) results evaluated from the
FHC Run 1 (left) and RHC Run 3 (right) simulated event samples. For comparison, the
performance of a corresponding linear selection is also displayed.

Results from the cross validation can be used to determine the optimal BDT score con-

straint without bias arising from statistical fluctuations. The BDT is compared to the

performance from a linear selection, listed in Table 5.3, developed for this work before the
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implementation of a BDT. Purity and efficiency values derived from the linear selection

are shown in Figure 5.31 as flat dashed lines. Uncertainty on the purity and efficiency is

quantified assuming Poisson and binomial errors, respectively.

The BDT score constraint is chosen to improve the purity of the final selected event

rates as compared to what the linear selection can accomplish, while maintaining the same

(or better) efficiency. Event rates are restricted to a BDT score greater than 0.55 for FHC

Run 1 and 0.575 for RHC Run 3. Final performance values are reported in the following

section, derived after the trained BDT models have been applied to the full event samples

as illustrated in the nominal selection workflow (Figure 5.1).

Linear Selection Criteria

Pandora slice ID == 1

Interaction vertex within FV

Event at least 90% contained within FV

Exactly 1 shower with vertex contained in FV

At least 1 track with hits fully contained in FV

Leading track energy greater than 40 MeV

Pandora shower score < 0.125

Average Molière angle < 8◦

dE
dx of the shower trunk < 4 MeV/cm

FHC: 3D separation between track and shower < 5 cm

RHC: 3D separation between track and shower < 4 cm

Table 5.3: Linear selection criteria used to compare with the BDT selection performance.

5.7 Selection performance and final event rates

Once the BDT is trained and a score threshold is chosen, the models are applied to the

entire available NuMI dataset. Figure 5.32 shows the distributions of events passing the

preselection and loose νµ CC and π0 rejection as a function of the BDT score. The grey
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error band on these plots, and those thereafter, now includes an estimated flat contribution

to account for the systematic uncertainty on the detector response: 12.1% for FHC Run 1

and 12.9% for RHC Run 3. Figure 5.33 displays the BDT score distribution for the prediction

only with finer binning.

After the BDT score cut, the selection achieves a final efficiency of of 13.7% (11.4%) and

a final purity of 77.0% (73.5%) in the FHC Run 1 (RHC Run 3) sample. Summaries of the

performance at different selection stages are given in Tables 5.4 and 5.5.

Figure 5.32: Event rates as a function of the BDT score for FHC Run 1 and RHC Run 3
after the preselection and loose νµ CC and π0 rejection have been applied.

Figure 5.33: The simulated event rate as a function of BDT score for FHC Run 1 (left)
and RHC Run 3 (right) after the preselection and loose νµ CC and π0 rejection have been
applied, shown with finer binning for the prediction only.
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Selection stage Efficiency Purity
Quality cuts 62.0% 1.6%

Signal definition constraints 39.1% 4.5%
Loose νµ CC rejection 30.5% 12.3%

Loose π0 rejection 23.0% 23.3%
BDT score constraint 13.7% 77.0%

Table 5.4: Event selection performance evolution for FHC Run 1.

Selection stage Efficiency Purity
Quality cuts 61.5% 1.4%

Signal definition constraints 37.6% 3.8%
Loose νµ CC rejection 29.2% 10.3%

Loose π0 rejection 21.6% 20.5%
BDT score constraint 11.4% 73.5%

Table 5.5: Event selection performance evolution for RHC Run 3.

The differential cross section is extracted as a function of four variables: the electron

energy, total visible energy (defined as the sum of all kinetic energy associated with the

event detected by the LArTPC), opening angle between the electron and leading proton

momenta, and proton multiplicity. Final selected event rates can be plotted as a function

of the reconstructed versions of these variables. Binning for reconstructed electron energy,

visible energy, and opening angle is chosen by first computing the resolution R between the

true (xtrue) and reconstructed (xreco) values of the variable for each event in the sample:

R =
xtrue − xreco

xtrue
. (5.4)

(For opening angle, R is computed as the numerator of Equation 5.4, so as to avoid division

by zero.) For each cross section variable, the standard deviation of the selected signal

distribution as a function of R is computed across the entire phase space and taken as the

minimum permissible bin width. This threshold mitigates sizable bin-to-bin migrations in

the final measurements. This width is increased accordingly to ensure that there are at least
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Figure 5.34: The resolution between true and reconstructed observables in MicroBooNE as
a function of the chosen binning for electron energy, visible energy, and opening angle. The
average resolution across the entire phase space its taken as the minimum permissible bin
width.

10 total estimated signal events per bin in the combined (FHC+RHC) distributions. The

resolution as a function of the chosen binning for electron energy, visible energy, and opening

angle are displayed in Figure 5.34.

The reconstructed electron energy is defined as the energy of the shower object in the

event, computed as described in Section 4.2. Figure 5.35 displays the final selected event

rates as a function of reconstructed electron energy. The bin edges for these distributions are:

[0.02, 0.22, 0.42, 0.62, 0.82, 1.22] in GeV. The final bin is overflow and includes

events with reconstructed electron energy greater than 1.22 GeV.

Figure 5.35: FHC Run 1 (left) and RHC Run 3 (right) selected event rates as a function of
reconstructed electron energy.
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The reconstructed visible energy is the sum of the shower energy and all the energies of

all tracks associated with the interaction:

Evisible = Eshower +
∑

Etrack. (5.5)

This variable can be considered a model-independent proxy for true neutrino energy. Figure

5.36 displays the final selected event rates as a function of reconstructed visible energy. The

bin edges for these distributions are: [0.05, 0.45, 0.65, 0.85, 1.05, 1.35, 1.85] in

GeV. The final overflow bin includes events with visible energy greater than 1.85 GeV.

Figure 5.36: FHC Run 1 (left) and RHC Run 3 (right) selected event rates as a function of
reconstructed visible energy.

The reconstructed opening angle is the cosine between the shower (p⃗shower) and leading

track (p⃗track) momentum vectors:

cos θep =
p⃗shower · p⃗track

∥p⃗shower∥∥p⃗track∥
. (5.6)

Figure 5.37 displays the final selected event rates as a function of reconstructed opening angle.

The bin edges for these distributions are: [cos(π), cos(2π3 ), cos(5π9 ), cos(4π9 ), cos(π3 ),

cos(0)].
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Figure 5.37: FHC Run 1 (left) and RHC Run 3 (right) selected event rates as a function of
reconstructed opening angle.

Finally, the reconstructed proton multiplicity is defined as the number of tracks in the

event. Figure 5.38 shows the final selected event rates as a function of reconstructed proton

multiplicity. The bin edges for these distributions are: [1, 2, 3]. The final bin is overflow

and includes all interactions with 3 or more tracks.

Figure 5.38: FHC Run 1 (left) and RHC Run 3 (right) selected event rates as a function of
reconstructed proton multiplicity.
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The combined (FHC+RHC) selected event rates are produced by adding the individual

FHC Run 1 and RHC Run 3 contributions from each bin together. Figure 5.39 shows the

combined selected event rates as a function of the cross section variables. In these plots,

various sources of background have been collapsed into a single legend category.

Figure 5.39: The combined (FHC+RHC) selected event rates as a function of the cross
section variables. A total of 203 beam-on events survive the selection.

The efficiency as a function of the cross section variables is evaluated on truth-level

information and displayed in Figure 5.40 for FHC Run 1 (green), RHC Run 3 (red), and

FHC+RHC (black) distributions. As anticipated, the FHC+RHC efficiency lies between

those of the individual samples.
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Figure 5.40: The efficiency as a function of the cross section variables for FHC Run 1 (green),
RHC Run 3 (red), and FHC+RHC (black). As anticipated, the FHC+RHC efficiency lies
between those of the individual samples.
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CHAPTER 6

SOURCES OF UNCERTAINTY

Uncertainty, which comes from finite event samples and imperfections in the modeling of

different parts of the experiment, can lead to discrepancies between our simulated event

rates and real data. The evaluation of uncertainties shown in this chapter concerns event

rates that have been subtracted by MC+EXT-estimated background, since this is a primary

input for cross section extraction (see Equation 7.1). However, the procedure is analogous

for handling uncertainties on the full event rates displayed in Chapter 5 at earlier stages of

the selection.

Several sources of uncertainty are associated with MicroBooNE’s NuMI dataset. There

are systematic effects that carry over from the hadron production and geometric beamline

models used in the flux prediction, as well as from neutrino cross section and secondary

particle re-interaction models used to simulate event rates. Similar uncertainties arise from

limitations in understanding the detector’s response to interacting particles, unconstrained

knowledge regarding out-of-cryostat (dirt) events, and uncertainty in the estimated POT

delivered to the NuMI beamline. Finally, statistical fluctuations affect both the beam-on

data and MC+EXT simulation.

Systematic uncertainties in the prediction can change the event count, how the detector

responds to interactions within the active volume, and the estimated efficiency of the selec-

tion algorithm—all of which impact a cross section measurement. To quantify this impact,

parameters associated with each uncertainty are identified and varied to generate alternate

universe (UV) event rates distinct from the central value distribution. Variations can be

created by re-simulating entire event samples with alternate parameters, or by employing a

reweighting scheme, in which interactions in the CV distribution are weighted to produce

the UV event rate. Reweighting factors are generated using a multisim or unisim approach.

Multisim reweights take into account correlations between dependent parameters by ran-
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domly sampling them all at once. Unisim reweights, on the other hand, treat the parameters

as independent and are constructed by varying each one individually, usually by ±1σ.

The exclusive signal definition makes the measurements in this work particularly prone

to statistical limitations, motivating the desire to add the FHC Run 1 and RHC Run 3 event

rates (and associated uncertainties) before extracting cross section results. This requires care-

ful combination of FHC and RHC systematic variations, which are generated independently

for each beam mode using the same random seed, to construct a FHC+RHC covariance

matrix. For systematic variations produced from new MC simulations, this means adding

together FHC Run 1 and RHC Run 3 universes from the same generation. For systematic

variations produced using the reweighting scheme, this means adding together FHC Run 1

and RHC Run 3 universes created by weights of the same index. Statistical uncertainties,

on the other hand, are evaluated using Poisson errors on the FHC+RHC event rates.

6.1 Uncertainty calculation procedure

For each source of systematic uncertainty, a representative set of FHC+RHC variations is

created. The effect on the simulated background-subtracted event rate xi in bin i for each

universe is evaluated:

xi ≡ NUV
reco i −BCV

reco i = (SUV
reco i +BUV

reco i)−BCV
reco i (6.1)

where NUV
reco i, S

UV
reco i, and BUV

reco i are the selected total, signal, and background predictions

in universe bin i, and BCV
reco i is the selected background prediction of the CV event rate in

bin i. This approach quantifies the uncertainty on the signal channel as well as the esti-

mated background, by assessing the residual (BUV
reco i−BCV

reco i) left after the CV background

subtraction. Note that SUV
reco i can be rewritten as a linear combination of the signal events

in true space smeared across reconstructed bin i:
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SUV
reco i =

∑
j

RUV
ij × ŜCV

true j (6.2)

where ŜCV
true j denotes the number of generated CV signal events in true bin j, before the

selection has been applied. RUV
ij is a response matrix term, defined as:

RUV
ij =

SUV
ij

ŜCV
true j

(6.3)

where SUV
ij is the number of signal events in reconstructed bin i and true bin j of the universe.

This can effectively be thought of as the localized 2D efficiency of bin ij, as summing over

j returns the efficiency of the selection in true bin j.

Equation 6.3 can be expanded into two terms:

SUV
ij

ŜCV
true j

=
SUV
ij

ŜUV
true j

×
ŜUV
true j

ŜCV
true j

(6.4)

where ŜUV
true j denotes the number of generated signal events in true bin j of the universe,

before the selection has been applied.

This expansion is useful to understand what the background-subtracted event rate varia-

tion is accounting for. The first term on the right side of Equation 6.4 assesses the systematic

changes in event rate reconstruction: the detector response (smearing) in bin ij and the ef-

ficiency of the selection in true bin j for each universe. The second term quantifies the

systematic event rate change at the generator level: the difference in the number of gener-

ated signal interactions between the UV and CV event rates in true bin j, before any selection

has been applied. For flux uncertainties, the first term is equal to 1 because the flux has

no effect at the reconstruction level—rather, it only affects the rate of generated neutrino

interactions. On the other hand, for detector and re-interaction (Geant4) systematics, the

second term is equal to 1 because these sources have no effect at the generator level; rather,

they only affect the detector’s response and selection performance. Cross section, i.e. GENIE,
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uncertainties nominally affect both; however, the second term is manually set to 1 for the

measurements in this work, since this is the interaction channel attempted to be constrained.

Thus, the response matrix term for GENIE uncertainties is reduced to:

RUV
ij =

SUV
ij

ŜUV
true j

(6.5)

such that the evaluation accounts for variations in the smearing and selection efficiency only.

Cross section uncertainty on the background channel is still assessed through the residual

BUV
reco i −BCV

reco i.

Once the systematic variations have been created, a covariance matrix can be constructed

as follows:

cov(i, j) =
1

NUV

NUV∑
k=0

(xki − xCV
i )(xkj − xCV

j ) (6.6)

where xki is the event rate in universe k subtracted by the CV background (as defined in

Equation 6.1), xCV
i is the CV event rate subtracted by the CV background, and NUV is

the total number of systematic universes for each source of uncertainty. (For paired unisim

variations—parameters that are symmetrically varied by ±1σ—NUV is equal to 2. In the case

of single unisim variations, NUV = 1.) Note that the background term BCV
reco i cancels out in

the construction of the covariance matrix due to the subtraction present in the numerator.

It is useful to construct a correlation matrix:

corr(i, j) =
cov(i, j)√

cov(i, i)
√

cov(j, j)
(6.7)

as well as a fractional covariance matrix:

cov(i, j)

xCV
i xCV

j

. (6.8)

For statistical uncertainties in the beam-on data samples, the covariance matrix is con-

structed as a diagonal matrix of the Poisson variance, which is simply the number of events
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in each bin. For the statistical uncertainty on the MC and EXT samples, the covariance is

constructed in a similar manner but using the sum of the squared weights, given that these

events are weighted.

The total covariance matrix encodes information from both the statistical and systematic

uncertainties and is constructed by summing the fractional covariance matrices from all

sources, then converting back into absolute covariance units. The standard deviation of each

bin with respect to the CV is evaluated by taking the square root of the diagonals of the

total covariance matrix.

6.2 Flux models

As described in Section 4.1, a Geant4-based simulation of the NuMI flux is generated using a

detailed geometric model of the beamline. This flux serves as input into an event generator to

simulate neutrino interaction rates in MicroBooNE. PPFX [32, 33] constrains the underlying

hadron production, scattering, and absorption cross sections used to estimate the flux as

best as possible; however, there is still some uncertainty associated with these interaction

models that carries over into the event rates. In addition, there is also uncertainty in the

modeling of the NuMI beamline geometry itself. This section describes how these limitations

affect the simulated background-subtracted event rates.

Hadron production, scattering, and absorption

Interaction probabilities for the processes listed in Table 2.1 affect the prediction of hadronic

behavior along the NuMI beamline. PPFX constructs a multivariate Gaussian distribution

with a mean equal to the central value probabilities:

N(x⃗, u⃗,V) =
1

(2π)M/2
√
det(V)

exp(−1

2
(x⃗− u⃗) ·V−1 · (x⃗− u⃗)) (6.9)

where V is the covariance matrix of all M parameters, u⃗ is the vector of central values, and
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x⃗ is a free parameter of deviate values [32]. This distribution is randomly sampled to choose

deviate parameters in place of the central values used in the neutrino flux determination.

The effect on the resulting neutrino event rates is encapsulated in the form of a UV correction

weight that is applied, instead of the CV PPFX reweighting factor described in Section 4.3.1,

to events in the overlay samples. This procedure is repeated 600 times for the FHC+RHC

event rates to produce a representative set of multisim variations that can be plotted as a

function of the cross section variables, as shown in Figure 6.1.
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Figure 6.1: PPFX multisim variations (blue) for the background-subtracted FHC+RHC
selected event rates as a function of each cross section variable. Shown in comparison with
the CV event rate (black).

Figures 6.2, 6.3, 6.4, and 6.5 display the covariance and correlation matrices derived

from the PPFX multisim variations for reconstructed electron energy, visible energy, opening

angle, and proton multiplicity, respectively. Fractional uncertainties are shown in Figure

6.6, comparing curves derived from FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC
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(black) multisim variations. Overall, uncertainty due to hadronic behavior along the NuMI

beamline ranges from 15-20% across all bins for each cross section variable.
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Figure 6.2: Covariance (left) and correlation (right) matrices as a function of reconstructed
electron energy, derived from 600 PPFX multisim universes.
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Figure 6.3: Covariance (left) and correlation (right) matrices as a function of reconstructed
visible energy, derived from 600 PPFX multisim universes.
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Figure 6.4: Covariance (left) and correlation (right) matrices as a function of reconstructed
opening angle, derived from 600 PPFX multisim universes.
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Figure 6.5: Covariance (left) and correlation (right) matrices as a function of reconstructed
proton multiplicity, derived from 600 PPFX multisim universes.
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Figure 6.6: Fractional uncertainty on the background-subtracted selected event rates due
to hadronic behavior along the beamline. Shown for FHC Run 1 (green), RHC Run 3 (red),
and FHC+RHC (black).
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Beamline geometry

Uncertain parameters in the modeling of the beamline geometry include the positions and

currents of the focusing horns, the position of the graphite target, and the position and size

of the beam spot incident upon it. Because of their current load, the horns are constantly

sprayed for cooling, which creates a thin layer of water around their inner conductors—

the thickness of this layer is an additional source of uncertainty. Central values for these

parameters and their ±1σ variations are listed in Table 6.1.

Parameter Central value Variation
Horn current 200 kA ±2 kA

Horn 1 x position 0 mm ±3 mm
Horn 1 y position 0 mm ±3 mm
Beam spot size 1.3 mm ±0.2 mm

Horn 2 x position 0 mm ±3 mm
Horn 2 y position 0 mm ±3 mm
Water on horns 1 mm ±1 mm
Beam x position 0 mm ±1 mm
Beam y position 0 mm ±1 mm
Target z position 143.3 cm ±7 mm

Table 6.1: Uncertain parameters in the geometric beamline model.

These parameters are considered to be uncorrelated, so uncertainty in the geometric

beamline model is quantified using a unisim reweighting method. Two variations for each

uncertain parameter are generated by swapping out the central value for its +1σ or −1σ

value in the neutrino flux determination. The effect on the resulting neutrino event rate is

extrapolated into a UV reweight that is applied to each interaction in the overlay samples.

Figures 6.7, 6.9, 6.11, and 6.13 show the FHC+RHC beamline geometry variations for each

uncertain parameter as a function of reconstructed electron energy, visible energy, opening

angle, and proton multiplicity, respectively. The ratios to the CV event rate are also displayed

in lieu of the CV distribution, since the differences are only a few percent.
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Figure 6.7: Beamline geometry variations of the background-subtracted selected event rate
and the ratio to CV as a function of reconstructed electron energy.
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Figure 6.8: Covariance (left) and correlation (right) matrices as a function of reconstructed
electron energy, derived from 10 ±1σ beamline unisim universes.
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Figure 6.9: Beamline geometry variations of the background-subtracted selected event rate
and the ratio to CV as a function of reconstructed total visible energy.
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Figure 6.10: Covariance (left) and correlation (right) matrices as a function of reconstructed
total visible energy, derived from 10 ±1σ beamline unisim universes.
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Figure 6.11: Beamline geometry variations of the background-subtracted selected event rate
and the ratio to CV as a function of reconstructed opening angle.
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Figure 6.12: Covariance (left) and correlation (right) matrices as a function of reconstructed
opening angle, derived from 10 ±1σ beamline unisim universes.
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Figure 6.13: Beamline geometry variations of the background-subtracted selected event rate
and the ratio to CV as a function of reconstructed proton multiplicity.
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Figure 6.14: Covariance (left) and correlation (right) matrices as a function of reconstructed
proton multiplicity, derived from 10 ±1σ beamline unisim universes.
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A covariance matrix is constructed for each unisim pair. These matrices are added

together to create the total beamline geometry covariance and correlation matrices shown

in Figures 6.8, 6.10, 6.12, and 6.14 for reconstructed electron energy, visible energy, opening

angle, and proton multiplicity, respectively. Fractional uncertainties are displayed in Figure

6.15, comparing curves derived for FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC

(black) unisim variations. Overall, uncertainty from modeling of the beamline geometry

ranges from 2-9% across all bins for each cross section variable.
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Figure 6.15: Fractional beamline geometry uncertainty on the background-subtracted se-
lected event rate as a function of reconstructed electron energy, total visible energy, opening
angle, and proton multiplicity for FHC (green), RHC (red), and FHC+RHC (black).

6.3 Interaction models

Cross section models are employed in the GENIE v3.0.6 neutrino interaction generator as

well as in the Geant4-based simulation of charged particles propagating and re-interacting in

the MicroBooNE detector. This section reports the associated uncertainties in these models,
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which impacts both the true and reconstructed event rates.

GENIE uncertainties

As described in Section 6.1, the systematic change in the background-subtracted event rates

arising from GENIE uncertainties on the signal channel is not taken into account in the mea-

surements of this work. Thus, the covariance matrices evaluated in this section encode the

GENIE systematic uncertainty as it pertains to changes in the event rate, detector smearing,

and selection efficiency on the background channel, but only the impact of the latter two

effects on the signal channel.
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Figure 6.16: GENIE multisim variations (blue) for the background-subtracted FHC+RHC
selected event rates as a function of each cross section variable. Shown in comparison with
the CV event rate (black).

Most GENIE uncertainties are evaluated with 600 multisim universes, as shown in Figure

6.16. These are created by varying parameters that belong to the suite of interactions listed

in Table 6.2. Taken into account are quasi-elastic and resonant processes, as well as meson
100



exchange current (MEC) interactions, in which a muon neutrino interacts with a bound pair

of nucleons and produces a 1µ + 2p+ signature. Deep inelastic scattering and final state

interactions (when hadrons get released before leaving the nucleus) are also included.

Parameter Description
Quasi-elastic interactions
MaCCQE CCQE axial mass parameter
CoulombCCQE Value of Coulomb potential used in CCQE corrections
MaNCEL NCEL axial mass
EtaNCEL Empirical parameter used to account for sea quark contribution to NCEL form factor
MEC interactions
NormCCMEC Energy-independent normalization for CCMEC
NormNCMEC Energy-independent normalization for NCMEC
FracPNCCMEC Fraction of initial nucleon pairs that are pn
FracDeltaCCMEC Relative contribution of ∆ diagrams to total MEC cross section
Resonant interactions
MaCCRES CCRES axial mass
MvCCRES Shape-only CCRES axial mass
MaNCRES NCRES axial mass
MvNCRES NCRES vector mass
Non-resonant interactions
NonRESBGvpNC1pi Non-resonant background normalization for νp NC1π
NonRESBGvpNC2pi Non-resonant background normalization for νp NC2π
NonRESBGvnNC1pi Non-resonant background normalization for νn NC1π
NonRESBGvnNC2pi Non-resonant background normalization for νn NC2π
NonRESBGvbarpNC1pi Non-resonant background normalization for ν̄p NC1π
NonRESBGvbarpNC2pi Non-resonant background normalization for ν̄p NC2π
NonRESBGvbarnNC1pi Non-resonant background normalization for ν̄n NC1π
NonRESBGvbarnNC2pi Non-resonant background normalization for ν̄n NC2π
NonRESBGvpCC1pi Non-resonant background normalization for νp CC1π
NonRESBGvpCC2pi Non-resonant background normalization for νp CC2π
NonRESBGvnCC1pi Non-resonant background normalization for νn CC1π
NonRESBGvnCC2pi Non-resonant background normalization for νn CC2π
NonRESBGvbarpCC1pi Non-resonant background normalization for ν̄p CC1π
NonRESBGvbarpCC2pi Non-resonant background normalization for ν̄p CC2π
NonRESBGvbarnCC1pi Non-resonant background normalization for ν̄n CC1π
NonRESBGvbarnCC2pi Non-resonant background normalization for ν̄n CC2π
AhtBY AHT higher-twist parameter in the Bodek-Yang model scaling variable ξw
BhtBY BHT higher-twist parameter in the Bodek-Yang model scaling variable ξw
CV1uBY CV1u valence GRV98 PDF correction parameter in the Bodek-Yang model
CV2uBY CV2u valence GRV98 PDF correction parameter in the Bodek-Yang model
Hadronization
AGKYxF1pi Hadronization parameter, applicable to true DIS interactions only
AGKYpT1pi Hadronization parameter, applicable to true DIS interactions only
Final state interactions
MFPπ π mean free path
MFPN Nucleon mean free path
FrCExπ Fractional cross section for π charge exchange
FrInelπ Fractional cross section for π inelastic scattering
FrAbsπ Fractional cross section for π absorption
FrCExN Fractional cross section for nucleon charge exchange
FrInelN Fractional cross section for nucleon inelastic scattering
FrAbsN Fractional cross section for nucleon absorption
Delta resonant decays
RDecBR1gamma ∆ → γ decay branching ratio
RDecBR1eta ∆ → η decay branching ratio

Table 6.2: Uncertain parameters in GENIE that are varied to produce 600 multisim universes.
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Figure 6.17: Covariance (left) and correlation (right) matrices as a function of reconstructed
electron energy, derived from 600 GENIE multisim universes.
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Figure 6.18: Covariance (left) and correlation (right) matrices as a function of reconstructed
visible energy, derived from 600 GENIE multisim universes.

1.000 0.500 0.174 0.174 0.500 1.000
Reconstructed cos ep

1.000

0.500

0.174

0.174

0.500

1.000

Re
co

ns
tru

ct
ed

 c
os

 
ep

Covariance Matrix

3

4

5

6

7

8

9

2  /
 7

.0
×

10
20

 P
OT

2

1.000 0.500 0.174 0.174 0.500 1.000
Reconstructed cos ep

1.000

0.500

0.174

0.174

0.500

1.000

Re
co

ns
tru

ct
ed

 c
os

 
ep

Correlation Matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

2  /
 7

.0
×

10
20

 P
OT

2

Figure 6.19: Covariance (left) and correlation (right) matrices as a function of reconstructed
opening angle, derived from 600 GENIE multisim universes.

102



1 2 3
Reconstructed Proton Multiplicity

1

2

3

Re
co

ns
tru

ct
ed

 P
ro

to
n 

M
ul

tip
lic

ity

Covariance Matrix

0

5

10

15

20

25

30

35

2  /
 7

.0
×

10
20

 P
OT

2

1 2 3
Reconstructed Proton Multiplicity

1

2

3

Re
co

ns
tru

ct
ed

 P
ro

to
n 

M
ul

tip
lic

ity

Correlation Matrix

0.0

0.2

0.4

0.6

0.8

1.0

2  /
 7

.0
×

10
20

 P
OT

2

Figure 6.20: Covariance (left) and correlation (right) matrices as a function of reconstructed
proton multiplicity, derived from 600 GENIE multisim universes.

Covariance and correlation matrices derived from these variations are shown in Figures

6.17, 6.18, 6.19, and 6.20 for the reconstructed electron energy, visible energy, opening angle,

and proton multiplicity, respectively.
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Figure 6.21: Fractional uncertainty on the background-subtracted event rates due to cross
section models employed in the GENIE event generator. Shown for FHC Run 1 (green), RHC
Run 3 (red), and FHC+RHC (black).

103



Fractional uncertainties are shown in Figure 6.21, comparing curves derived from FHC

Run 1 (green), RHC Run 3 (red), and FHC+RHC (black) multisim variations. Overall,

uncertainty from the parameters in Table 6.2 ranges from about 5 to 15% across all bins for

each cross section variable.

Additional uncertain parameters are used in GENIE that are not included in the above

multisim universes. These are shown in Table 6.3. Most of these are switches to alternative

quasi-elastic, MEC, and resonant interaction models that manifest as single unisim varia-

tions. Parameters related to coherent pion production from neutrino-nucleus scattering are

also included. Second class currents concern potential charge or time symmetry violation in

the form factors that correct for the treatment of protons and neutrons as point-like [77].

These are not a part of the GENIE simulation, but are accounted for here because they con-

tribute to uncertainty in the cross section models. Only the strength of the random phase

approximation (RPA) correction, which suppresses the QE processes at low four-momenta,

is varied with a ±1σ unisim pair.

Knob Description CV Variation
QE interactions
RPA Strength of the RPA correction for long-range nucleon

correlations
0.4 ±1.0

AxFFCCQE Switches parameterization of the nucleon axial form
factor

Dipole Z-expansion

VecFFCCQE Switches the parameterization of the nucleon vector
form factors

BBA07 Dipole

MEC interactions
CCMEC Switches to different CCMEC differential cross section

model
Nieves GENIE empiri-

cal
DecayAngMEC Switches decay distribution of nucleon pairs in MEC

interactions
Isotropic cos2 θ

Resonant interactions
ThetaDelta2Npi Varies the pion angular distribution for ∆ → N + π Rein-

Sehgal
Isotropic

ThetaDelta2NRad Varies the angular distribution of the photon in radia-
tive ∆ decays

Isotropic cos2 θ

Coherent π production
NormCCCOH Scaling factor for CC coherent π production Nominal 100% increase
NormNCCCOH Scaling factor for NC coherent π production Nominal 100% increase
Second class currents
xsr_scc_Fv3 Reweight CCQE to include second class vector cur-

rents
Nominal Include SCC

xsr_scc_Fa3 Reweight CCQE to include second class axial currents Nominal Include SCC

Table 6.3: Uncertain parameters used to produce GENIE unisim variations.
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Unisim variations for each cross section variable are shown in Figures 6.22, 6.24, 6.26,

and 6.28. Ratios to the CV event rate are also displayed in lieu of the CV distribution, since

the differences are only a few percent.
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Figure 6.22: GENIE unisim variations of the background-subtracted selected event rate and
the ratio to CV as a function of reconstructed electron energy.
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Figure 6.23: Covariance (left) and correlation (right) matrices as a function of reconstructed
electron energy, derived from the GENIE unisim variations.
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Figure 6.24: GENIE unisim variations of the background-subtracted selected event rate and
the ratio to CV as a function of reconstructed visible energy.
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Figure 6.25: Covariance (left) and correlation matrices as a function of reconstructed visible
energy, derived from the GENIE unisim variations.
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Figure 6.26: GENIE unisim variations of the background-subtracted selected event rate and
the ratio to CV as a function of reconstructed opening angle.
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Figure 6.27: Covariance (left) and correlation (right) matrices as a function of reconstructed
opening angle, derived from the GENIE unisim variations.
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Figure 6.28: GENIE unisim variations of the background-subtracted selected event rate and
the ratio to CV as a function of reconstructed proton multiplicity.
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Figure 6.29: Covariance (left) and correlation (right) matrices as a function of reconstructed
proton multiplicity, derived from the GENIE unisim variations.

A covariance matrix is constructed for each unisim. These matrices are then added

together to produce the total GENIE unisim covariance and correlation matrices shown in
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Figures 6.23, 6.25, 6.27, and 6.29 for reconstructed electron energy, visible energy, opening

angle, and proton multiplicity, respectively. Fractional uncertainties are displayed in Figure

6.30, comparing curves derived for FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC

(black) unisim variations. Overall, uncertainty from parameters in Table 6.3 ranges between

2-6% across all bins for each cross section variable.
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Figure 6.30: Fractional GENIE unisim uncertainties on the background-subtracted selected
event rate. Shown as a function of electron energy, visible energy, opening angle, and proton
multiplicity for FHC (green), RHC (red), and FHC+RHC (black).

Re-interaction uncertainties

The total cross section for neutrino-induced protons and charged pions in MicroBooNE can

be written as the sum of each exclusive interaction channel:

σtotal = σelast + σreact = σelast + (σinel + σabs + σcex + σdcex + σprod) (6.10)

where σelast is the elastic cross section and σreact is the reaction cross section, comprised
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of inelastic, absorption, single and double charge exchange, and production cross sections,

respectively. Table 6.4 provides a description for each of these channels as they pertain to

Geant4 charged pion re-interactions. Protons undergo similar processes in the LArTPC.

Variable Interaction Description
σelast π± +N → π± +N Elastic scattering where the kinetic energy of the

incident particle is preserved.
σinel π± +N → π′± +N ′ Inelastic/quasi-elastic scattering where the ki-

netic energy of the incident particle is not pre-
served.

σabs π± +N → N ′ Absorption by a nucleus.
σcex π± +N → π0 +N ′ Single charge exchange that produces a neutral

pion in the final topology.
σdcex π± +N → π∓ +N ′ Double charge exchange that produces a charged

pion of flipped charge in the final topology.
σprod π± +N → nπ +N ′ Interaction with a nucleus that produces multi-

ple pions in the final topology.

Table 6.4: GEANT4 charged pion re-interaction channels. N ′ refers to the nucleus as well as
any nuclear fragments on the outgoing side. Protons undergo similar processes.

The elastic and total reaction cross sections, σelast and σreact, are varied for proton

re-interactions. For pions, on the other hand, each exclusive channel listed in Table 6.4

is varied. (Electron scattering uncertainties are not implemented in this procedure.) The

Geant4Reweight framework [78] is employed to generate the 1000 multisim universes shown

in Figure 6.31 as a function of the cross section variables.

Covariance and correlation matrices derived from these variations are displayed in Figures

6.32, 6.33, 6.34, and 6.35 for reconstructed electron energy, visible energy, opening angle,

and proton multiplicity, respectively. Fractional uncertainties are given in Figure 6.36, com-

paring curves from FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC (black) multisim

variations. Overall, uncertainty due to re-interaction models is no more than 3% across all

bins for each cross section variable.
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Figure 6.31: Geant4 multisim uncertainties variations (blue) for the background-subtracted
FHC+RHC selected event rates as a function of each cross section variable. Shown in
comparison with the CV event rate (black).
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Figure 6.32: Covariance (left) and correlation (right) uncertainties as a function of recon-
structed electron energy, derived from 1000 Geant4 multisim universes.
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Figure 6.33: Covariance (left) and correlation (right) matrices as a function of reconstructed
visible energy, derived from 1000 Geant4 multisim universes.
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Figure 6.34: Covariance (left) and correlation (right) matrices as a function of reconstructed
opening angle, derived from 1000 Geant4 multisim universes.
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Figure 6.35: Covariance (left) and correlation (right) matrices as a function of reconstructed
proton multiplicity, derived from 1000 Geant4 multisim universes.
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Figure 6.36: Fractional uncertainty on the background-subtracted event rates due to re-
interaction models employed in the Geant4Reweight framework. Shown for FHC Run 1
(green), RHC Run 3 (red), and FHC+RHC (black).

6.4 Detector response

There is uncertainty associated with the modeling of how the detector responds to charge

and light activity within the active volume. Rather than employ the reweighting technique

of the previous sections, entire event samples with deviate parameters related to the detector

response are simulated. Specifically, nine pairs of standard and intrinsic overlay samples are

produced, where events in the latter replace νe CC interactions in the former, as described in

Section 4.3.1. A single parameter is changed in each pair of samples, so the set corresponds

to nine unisim variations that can be used to assess the detector uncertainty.(Instead of using

the nominal CV event rates, a dedicated pair of samples with CV parameters is also created

for direct comparison to the unisims.)
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Table 6.5 lists the parameters adjusted to an alternate value or model to create the

detector unisim samples. The first three knobs are related to light yield (LY) in the LArTPC:

the attenuation as it travels (which affects RHC Run 3 only), Rayleigh scattering effects

by particles much smaller than the photon wavelength, and the amount of photoelectrons

produced by the PMTs. The next four knobs alter the shape and height of the wire waveforms

resulting from incident charge on the anode planes. The final two knobs deal with space

charge effects that distort the shape and strength of the electric field, and the modeling

of how argon ions and free electrons recombine in the detector, which can reduce charge

quantity and, as a result, signal intensity.

Knob Description
Light
LY Attenuation Include attenuation effects in the light yield calculation (RHC Run

3 only)
LY Rayleigh Increase the length of Rayleigh scattering from 60 cm to 90 cm
LY Down 25% decrease in the production of PMT photoelectrons
Wire modification
WireMod X Modification to the deconvolved waveforms in x
WireMod Y Modification to the deconvolved waveforms in yz plane
WireMod ThetaXZ Modification to the deconvolved waveforms in θxz plane
WireMod ThetaYZ Modification to the deconvolved waveforms in θyz plane
Charge
Space charge effects Switch to alternative space charge map
Recombination Use β = 0.184 for inverse modified Box model (Equation 4.1)

Table 6.5: Parameters are adjusted to create the detector response unisim samples.

Each detector variation sample is fed into the selection algorithm detailed in Chapter 5.

However, due to the limited size of the standard overlay samples, selected event rates are

dominated by statistical fluctuations. Figure 6.37 illustrates this concern for FHC Run 1,

comparing the selected νe CC events from the intrinsic overlay samples (left) to selected non-

νe CC interactions in the standard overlay samples (middle) as a function of reconstructed

electron energy. The standard overlay generated for detector uncertainties has a POT ∼ 1020,

one order of magnitude smaller than the nominal sample counterparts listed in Section 4.3.1.

This, as well as the application of a robust selection targeting the νµ and νe NC interactions
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present in these samples, prevents meaningful uncertainty assessment of these backgrounds.

Instead, the result is a set of detector variations driven by statistical fluctuations rather than

systematic changes in the event rate, which produces the inflated uncertainty estimation (∼

27%) shown on the right of Figure 6.37. This limitation is not mitigated by the combination

of FHC Run 1 and RHC Run 3 samples.
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Figure 6.37: FHC Run 1 selected event rates of the detector variation intrinsic overlay
samples (left), which is comprised of νe CC interactions, and the standard overlay samples
(middle), which consist of νµ and νe NC background. Low statistics in the latter superficially
inflates uncertainty on the background-subtracted selected event rate (right).

The strategy to resolve this begins with removing as much artificial shape influence as

possible. The detector variations are investigated on the reconstructed x position of the

neutrino interaction vertex, which is a more uniform distribution than any of the cross

section variables. Figure 6.38 shows the evolution of the fractional uncertainty for the FHC

Run 1 intrinsic overlay (left) and standard overlay (right) samples after the preselection in

blue, after loose νµ CC and π0 rejection in orange, and after the final BDT constraint in

green. The legend reports the number of CV events passing the selection stage used to create

each curve, as well as the average uncertainty across all bins. The error bars on each curve

illustrate the statistical uncertainty in each bin, estimated by the square root of the event

count.

It is observed that both bin-to-bin fluctuations and the average uncertainty across all

bins increases as the selection progresses. After loose νµ CC and π0 rejection, the size of

the standard overlay samples is already reduced enough such that the uncertainty on νµ and

νe NC backgrounds is not meaningful. Though the event counts are higher in the intrinsic
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overlay samples, the statistics are not substantial enough to overcome bin-to-bin fluctuations

that drive up the average uncertainty.
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Figure 6.38: Evolution of FHC Run 1 fractional detector uncertainty for the intrinsic overlay
(left) and standard overlay (right) samples, shown as a function of reconstructed x vertex
position after the preselection (blue), loose cuts (orange), and BDT cut (green).

As a result of this study, the standard overlay samples are deemed unusable for this

work. Instead, the FHC+RHC background-subtracted event rates, constructed from the

intrinsic overlay samples, are analyzed as a function of the reconstructed x vertex position.

Figure 6.39 displays the FHC+RHC background-subtracted selected event rate variations

for the intrinsic overlay samples of each uncertain detector parameter as a function of the

reconstructed x vertex position. A covariance is computed for each unisim, and the combined

sum of these matrices is shown in Figure 6.40 along with the corresponding correlation

matrix. The fractional uncertainty derived from the covariance is presented in Figure 6.41

(left). Fractional uncertainties for FHC Run 1 (middle) and RHC Run 3 (right) are calculated

in an analogous manner.

As anticipated, statistical limitations are still present in the final uncertainty values,

even when analyzing the combined (FHC+RHC) intrinsic overlay samples as a function of

a uniform variable. This is because, while the POT of the intrinsic overlay is two orders of

magnitude larger than that of standard overlay, these samples are rich in νe CC interactions,

which contribute to only a few percent of the total NuMI event rate.
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Figure 6.39: Detector unisim variations on the background-subtracted selected event rate
as a function of reconstructed x position. Note that the LYAttenuation variation is only
relevant for the RHC event rate.

In lieu of bin-to-bin covariance and correlations, then, a flat detector uncertainty is

derived from the FHC+RHC background-subtracted event rates as a function of the recon-

structed x vertex position, and incorporated into the uncertainty budget of the final cross

section results. An analogous solution is implemented for the individual FHC Run 1 and

RHC Run 3 background-subtracted event rates. These flat estimates are also included in
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the error bands of late stage selection plots (all figures in Section 5.7).
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Figure 6.40: Covariance (left) and correlation (right) matrices as a function of the recon-
structed x position of the neutrino interaction vertex.

From Figure 6.41, the detector uncertainty on the FHC+RHC background-subtracted se-

lected event rate is estimated as 10.0%. The corresponding FHC Run 1 detector uncertainty

is 12.2%, and 12.9% for RHC Run 3.
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Figure 6.41: Fractional uncertainties for FHC+RHC (left), FHC Run 1 (middle), and RHC
Run 3 (right) derived from the detector unisim variations for the intrinsic overlay sample.
Shown as a function of the reconstructed x position of the neutrino interaction vertex.

6.5 POT counting

The number of protons delivered to the NuMI target is measured using two toroids encir-

cling the beam at different locations [27]. At the guidance of [32], a conservative 2% flat

uncertainty in POT counting for FHC Run 1, RHC Run 3, and FHC+RHC event rates is

applied across all bins. This uncertainty is added to the total covariance matrix.
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6.6 Dirt interaction models

As discussed in Section 4.3.1, the simulation of out-of-cryostat, or dirt, interactions is not

well constrained. To account for this, a 100% uncertainty on dirt events is assumed. In

the RHC Run 3 sample, no dirt interactions survive the selection, so contributions to the

FHC+RHC event rate come from the FHC Run 1 sample only. Figure 6.42 shows the single

FHC+RHC dirt variation as a function of the cross section variables in comparison with the

CV dirt event rate that survives the selection.
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Figure 6.42: Assuming a 100% uncertainty on dirt interactions, a single variation is pro-
duced, shown in comparison with the CV dirt event rate that survives the selection.

Fractional uncertainties derived from the single variation are shown in Figure 6.43, com-

paring curves derived from FHC Run 1 (green) and FHC+RHC (black) selected dirt event

rates. The total number of dirt interactions in these samples are the same, but because the

FHC+RHC distribution has a higher event count in each bin, the fractional uncertainty is

reduced compared to that of FHC Run 1 only.
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Figure 6.43: Fractional dirt uncertainties on the selected event rate. Shown as a function
of reconstructed electron energy, visible energy, opening angle, and proton multiplicity for
FHC Run 1 (green) and FHC+RHC (black).

6.7 Statistical uncertainty

The finite number of events in beam-on data and the MC+EXT prediction contributes to

statistical uncertainty in both the background-subtracted event rates and in the construction

of the response matrix, which encodes the smearing of reconstructed observables away from

their true values as well as the efficiency of the selection algorithm. This section describes

the quantification of statistical uncertainty for both of these sources.

Of the background-subtracted event count

The background-subtracted event rate for beam-on data is given by the following:

Nbeam on −NEXT −BMC (6.11)
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where Nbeam on and NEXT are the total event rates in beam-on data and the EXT sample, re-

spectively, and BMC is the neutrino background contribution estimated by GENIE-generated

overlay samples.
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Figure 6.44: Fractional uncertainty on the beam-on background-subtracted event count
resulting from finite statistics in data and simulation. Shown as a function of the cross
section variables for events that survive the selection in FHC Run 1 (green), RHC Run 3
(red), and FHC+RHC (black) samples.

The uncertainty on Equation 6.11 is derived using the standard error propagation formula:√
(∆Nbeam on)

2 + (∆NEXT )
2 + (∆BMC)

2 =
√

Nbeam on + Σw2
EXT + Σw2

MC (6.12)

where Poissonian statistics sets ∆Nbeam on =
√

Nbeam on, and ∆NEXT and ∆BMC as the

square root of the sum of the squared weights for the EXT and MC background events,

respectively. The square of Equation 6.12 becomes the diagonals of a covariance matrix that

accounts for statistical uncertainty associated with the beam-on dataset and the estimation

of background.
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Fractional uncertainties on the beam-on background-subtracted event rates are shown in

Figure 6.44 as a function of the cross section variables. These curves quantify the effect of

statistical limitations in the FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC (black)

samples of events that survive the selection detailed in Chapter 5. As expected, combining

the FHC and RHC event samples significantly suppresses the statistical uncertainty in each

bin.

Of the response matrix
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Figure 6.45: Variations on the selected signal prediction, derived from a bootstrapping
technique, to assess statistical uncertainty associated with the estimation of the response
matrix. Shown in comparison with the CV event rate (black).

The statistical uncertainty associated with the estimation of the response matrix is evaluated

with bootstrapping. Bootstrapping is a random re-sampling procedure that is used to create

variations of a single dataset. As it pertains to this work, 1000 values for each event in the
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selected signal prediction are assigned by randomly sampling a Poisson distribution with a

mean of 1.0. Each event uses its own random seed to ensure that the sampled set of values

is unique to the interaction. These effectively serve as reweights that can be applied to each

event in the distribution to produce the variations shown in Figure 6.45.

Fractional uncertainties derived from these variations are displayed in Figure 6.46, com-

paring curves from the FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC (black)

samples. As anticipated, combining the FHC and RHC event rates leads to a decreased

statistical uncertainty, which ranges from 2-7% across all bins.

Note that the response matrix uncertainty does not contribute to the error band on the

event rate prediction of plots shown in Chapter 5. This source of uncertainty is taken into

account only for the final cross section results.
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Figure 6.46: Fractional uncertainty on the selected signal prediction resulting from finite
statistics used to construct the response matrix. Shown as a function of the cross section
variables for FHC Run 1 (green), RHC Run 3 (red), and FHC+RHC (black).
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6.8 Total uncertainty

From each source of uncertainty, the covariance matrices are added together to produce the

total covariance for the FHC+RHC background-subtracted selected event rates. Figures

6.47, 6.48, 6.49, and 6.50 show the total covariance along with the fractional uncertainty

breakdown for reconstructed electron energy, visible energy, opening angle, and proton mul-

tiplicity, respectively. For the uncertainty breakdown, the flux curve (blue) includes both

PPFX and beamline geometry sources, the GENIE curve (orange) includes both multisim and

unisim variations, and the statistical curve (pink) includes uncertainty from the beam-on

and MC+EXT event counts as well as the estimation of the response matrix. Each source of

fractional uncertainty is added in quadrature to obtain the total curve (black). At low ener-

gies, the largest source of uncertainty is from the flux, specifically the modeling of hadronic

behavior along the beamline. At higher energies, however, statistical uncertainty dominates

due to the limited number of events in the beam-on data samples. These contributions are

comparable across the bins of non-energetic variables.

Figure 6.51 shows the total FHC+RHC uncertainty (black) in comparison with curves

derived for FHC Run 1 (green) and RHC Run 3 (red) as a function of the cross section

variables. Combining the samples does in fact decrease the total uncertainty in each bin,

primarily due to increased statistics.
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Figure 6.47: Total covariance and breakdown of fractional uncertainties for the FHC+RHC
background-subtracted event rate as a function of reconstructed electron energy.
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Figure 6.48: Total covariance and breakdown of fractional uncertainties for the FHC+RHC
background-subtracted event rate as a function of reconstructed visible energy.
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Figure 6.49: Total covariance and breakdown of fractional uncertainties for the FHC+RHC
background-subtracted event rate as a function of reconstructed opening angle.
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Figure 6.50: Total covariance and breakdown of fractional uncertainties for the FHC+RHC
background-subtracted event rate as a function of reconstructed proton multiplicity.
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Figure 6.51: Total fractional uncertainty on the background-subtracted selected event rates
as a function of the cross section variables. Shown for FHC Run 1 (green), RHC Run 3
(red), and FHC+RHC (black) distributions.
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CHAPTER 7

DIFFERENTIAL CROSS SECTION EXTRACTION

The flux-integrated cross section in a bin i is given by:(
dσ

dx

)
i
=

Ni −Bi

ϵi ×Ntarget × Φνe ×∆xi
(7.1)

where x is the differentiating variable, Ni is the selected total event rate, Bi is the estimated

selected background rate, ϵi is the efficiency of the selection, Ntarget is the number of collision

targets in the active volume, Φνe is the integrated νe flux prediction, and ∆xi is the bin width.

(Ni − Bi is the background-subtracted event rate for which the uncertainties are computed

for in Chapter 6.) With the exception of Ni, which comes from the beam-on dataset, all

parameters in Equation 7.1 are estimated from simulations of the flux and event rate.

Horn Current Integrated νe flux [ν/cm2/POT] Beam-on POT

FHC Run 1 1.1864531 ×10−11 2.000 ×1020

RHC Run 3 8.6283762 ×10−12 5.014 ×1020

Table 7.1: Integrated flux values and POT of FHC Run 1 and RHC Run 3.

Φνe is estimated using a POT-weighted sum of the integrated FHC and RHC flux predic-

tions shown in Figure 2.4. The flux is computed over the full angular phase space; however,

only true neutrino energies > 60 MeV are considered so as to exclude muon decay-at-rest

interactions that the selection is not sensitive to. The lowest selected true neutrino energy

is estimated to be 198 MeV, far above this threshold.

Integrated flux values and POT contributions from FHC Run 1 and RHC Run 3 are

shown in Table 7.1. The FHC+RHC central value flux is computed as:

Φνe = (1.1864531× 10−11 ∗ 2.000× 1020) + (8.6283762× 10−12 ∗ 5.014× 1020) = 6699174027
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with units of [ν/cm2]. Uncertainty on Φνe is accounted for through the effect the flux has

on the simulated event rate, i.e. in the second term on the right side of Equation 6.4.

Ntarget represents the number of nucleons within the FV that serve as potential targets

for neutrino interactions. This is determined with the following formula:

Ntarget =
ρAr × V ×NA ×Nnucleons

mmol
= 4.241× 1031 (7.2)

where ρAr is the density of liquid argon, V is the fiducial volume, NA is Avogadro’s number,

Nnucleons is the number of nucleons per argon atom, and mmol is the number of grams per

mole for argon. Table 7.2 shows the values used for deriving Ntarget. The uncertainty on

the number of targets is considered negligible.

Parameter Value

ρAr 1.3836 g/cm3

V 5.0832512× 107 cm3

NA 6.022× 1023 atoms/mol

Nnucleons 40 nucleons/atom

mmol 39.95 g/mol

Table 7.2: Values used to compute the number of targets.

7.1 Wiener-SVD unfolding procedure

The background-subtracted event rate M is measured in reconstructed quantities affected by

the selection efficiency, which impacts the event count in each bin, and the detector response,

which can smear observables away from their true values. To meaningfully compare and

constrain theoretical models with data-driven results, such effects need to be unfolded from

the event rate via a response matrix R encoding the strength of the inefficiency and smearing.

In theory, if R is invertible, this can be done via direct inversion, i.e.:
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M = R× s

s = R−1 ×M

where s is the true underlying signal distribution. In practice, however, random fluctuations

arising from statistical and systematic uncertainties are inflated by directly inverting R,

which can lead to meaningless results. To mitigate this issue, it is common to regularize by

introducing a small amount of bias in the final result to suppress the amplified variance.

In this work, differential cross sections are unfolded with the Wiener singular value de-

composition (Wiener-SVD) method [79], which takes advantage of deconvolution techniques

traditionally used in digital signal processing. The Wiener-SVD method has been employed

for several results within the MicroBooNE collaboration [25, 80, 81]. The degree of regu-

larization is determined by minimizing the mean square error between the variance and the

introduced bias of the result. An advantage of the Wiener-SVD method is that χ2 between

the data and model prediction is independent of the regularization, thus remains consistent

before and after unfolding. This is important to accurately assess the validity of model

predictions used in neutrino studies.

As input, the Wiener-SVD method requires the following:

• The measured event rate as a function of the reconstructed differentiating variable.

• The estimated signal event rate before the selection has been applied as a function

of the true differentiating variable.

• An estimated response matrix encoding the post-selection smearing between the

true and reconstructed differentiating variables. Each truth bin in the matrix is nor-

malized by the efficiency in that bin.

• An estimated covariance matrix encoding the total statistical and systematic un-

certainty of the measured event rate.
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The measured event rate comes from beam-on data that has passed the selection described

in Chapter 5 and from which the estimated background has been subtracted, i.e. the Ni−Bi

term in the numerator of Equation 7.1. The estimated signal event rate is used as somewhat

of a prior for the unfolding algorithm; it and the latter two inputs are estimated using

the GENIE v3.0.6 G18_10a_02_11a event generator. The method returns an efficiency-

corrected, unfolded event rate ŝ and unfolded covariance matrix, both of which can be

converted to cross section units via normalization by flux, bin width, and Ntarget. The

goodness of fit between the unfolded result and the simulated cross section is explicitly

computed as:

χ2 =
∑
ij

(ŝi − si) ∗ Cov−1
ij ∗ (ŝj − sj) (7.3)

where ŝi and si are the unfolded result and the generated prediction in bin i, respectively,

and Cov−1
ij is the ijth element of the inverse of the unfolded covariance matrix. An additional

smearing matrix that encodes the introduced bias, Ac, is also returned by the Wiener-SVD

method such that:

ŝ = (Ac R
−1)×M = Ac × s+ Ac × noise

where the second term represents the suppression of terms contributing to high variance.

Independent theoretical predictions of the cross section can be smeared by Ac to enable a

direct comparison with ŝ.

The Wiener-SVD method includes a free parameter C, which is the derivative between

adjacent bins that the algorithm attempts to smooth. For tests performed to validate the

Wiener-SVD implementation, the recommendation of [79] is followed, with C = 2 to smooth

the curvature of the distribution. However, for unfolded results with the NuMI dataset, C

is instead set to 1, i.e. the slope of the distribution is smoothed. Note that because χ2 is

independent of the regularization, this choice does not bias the final result. More information
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about the impact of this choice can be found in Appendix A.

Wiener-SVD unfolding requires a number of criteria to hold, including that the event

rates are smooth and continuous. This is obviously not the case for proton multiplicity—it

is a discrete distribution for which the Wiener-SVD approach does not converge. In lieu

of an unfolded result, then, interaction rates and total covariance as a function of proton

multiplicity are also reported. The response matrix is also included, which may prove useful

for future analyzers to employ alternate unfolding algorithms.

7.2 Closure tests

Instead of beam-on data, closure tests use a GENIE-simulated distribution for the measured

event rate input into the Wiener-SVD algorithm. In this scenario, the background-subtracted

event rate is equivalent to the selected signal prediction. Because this comes from the same

simulation as the estimated signal event rate, the expectation is that the unfolded spectra

should perfectly close onto this prediction. This provides a way of verifying that the unfolding

is performing as anticipated.

This section reports results of FHC+RHC closure tests for electron energy, visible energy,

and opening angle. Note that, because the measured event rate is replaced with simulation,

the statistical contribution to the covariance is given as follows:

(∆NMC)
2 + (∆NEXT )

2+ = Σw2
MC + Σw2

EXT (7.4)

where w2
EXT are the squared weights of EXT events, and, in contrast to Equation 6.12,

w2
MC are the squared weights of both the MC signal and background channel.

Electron energy

Figure 7.1 shows the input distributions for the Wiener-SVD closure test on electron energy.

The selected signal distribution, estimated with GENIE, is shown in the left plot in blue as a
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function of the reconstructed electron energy. This serves as the measured event rate input

into the Wiener-SVD algorithm. The estimated signal event rate is the generated GENIE

signal prediction before the selection has been applied, shown in the left plot in orange as a

function of the true electron energy.
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Figure 7.1: The measured event rate and estimated signal event rate (left) which, in the
case of a GENIE closure test, are equivalent to the selected and generated signal prediction.
The response matrix (middle) and covariance of the measured event rate (right) are also
shown, estimated by GENIE as well.

Figure 7.2 displays the output of the closure test on electron energy: the unfolded result

compared with the input event distributions, additional smearing matrix Ac (middle), and

unfolded covariance (right). To properly assess the goodness of fit of the unfolded spectrum

with the estimated signal event rate, the latter distribution is smeared by Ac.
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Figure 7.2: Results of the GENIE closure test on electron energy. The input event rate
distributions (orange and blue) and the unfolded result are shown on the left. The additional
smearing matrix Ac is in the middle, the unfolded covariance is given on the right.

Figure 7.3 compares the unfolded result (black) to the estimated signal event rate, now

smeared by Ac (green). The distributions have been converted into cross section units

by performing the flux, bin width, and Ntarget normalization given in Equation 7.1. As
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anticipated, the unfolded distribution closes perfectly onto the generated signal prediction

with χ2 = 0.
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Figure 7.3: Results of the GENIE closure test on electron energy, now converted into cross
section units. The estimated signal event rate has been smeared by Ac (green), compared to
the unfolded distribution (black). The unfolded covariance, also converted into cross section
units, is shown on the right.

Visible energy

Figure 7.4 shows the input distributions for a Wiener-SVD closure test as a function of visible

energy.
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Figure 7.4: The measured event rate and estimated signal event rate (left) which, in the
case of a GENIE closure test, are equivalent to the selected and generated signal prediction.
The response matrix (middle) and covariance of the measured event rate (right) are also
shown, estimated by GENIE as well.

Figure 7.5 displays the output of the closure test on visible energy: the unfolded result

compared with the input event distributions (left), additional smearing matrix Ac (middle),
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and the unfolded covariance (right).
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Figure 7.5: Results of the GENIE closure test on visible energy. The input event rate signal
distributions (orange and blue) compared with the unfolded result (black) are on the left.
The additional smearing matrix Ac is shown in the middle, and the unfolded covariance is
given on the right.

Figure 7.6 compares the unfolded spectrum (black points) to the estimated signal event

rate, now smeared by Ac (green). Both distributions have been converted into cross section

units. As anticipated, the unfolded distribution closes perfectly onto the generated signal

prediction with χ2 = 0.
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Figure 7.6: Results of the GENIE closure test as a function of visible energy, now converted
into cross section units. The true prediction (smeared by Ac) is shown in green, with the
unfolded distribution in black. The unfolded covariance, also converted into cross section
units, is shown on the right.
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Opening angle

Figure 7.7 shows the input distributions for Wiener-SVD closure test as a function of opening

angle.
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Figure 7.7: The measured event rate and estimated signal event rate (left) which, in the
case of a GENIE closure test, are equivalent to the selected and generated signal prediction.
The response matrix (middle) and covariance of the measured event rate (right) are also
shown, estimated by GENIE as well.

Figure 7.8 displays the output of the closure test on opening angle: the unfolded result

compared with the input event distributions (left), additional smearing matrix Ac (middle),

and unfolded covariance (right).
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Figure 7.8: Results of the GENIE closure test as a function of opening angle, including the
input event rate signal distributions compared with the unfolded, efficiency-corrected result
(left), the additional smearing matrix (middle), and the unfolded covariance (right).

Figure 7.9 compares the unfolded result (black) to the estimated signal event rate, now

smeared by Ac (green). Both distributions have been converted into cross section units. As

anticipated, the unfolded distribution closes perfectly onto the generated signal prediction

with χ2 = 0.
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Figure 7.9: Results of the GENIE closure test on opening angle, now converted into cross
section units. The estimated signal event rate has been smeared by Ac (green), compared to
the unfolded distribution (black). The unfolded covariance, also converted into cross section
units, is shown on the right.

7.3 Fake data studies

Another test that can be performed to validate the unfolding procedure is with the use of

fake data. The measured event rate is estimated with an event distribution simulated by an

alternate event generator, while the backgrounds, systematic covariance, response matrix,

and signal event rate are still estimated using GENIE.

The expectation is that the unfolded result should, within uncertainty, close onto a

prediction of the signal event rate by the alternate generator—despite feeding the unfolding

algorithm a GENIE-estimated prediction with GENIE-estimated uncertainties. A successful

fake data test lends confidence that the Wiener-SVD method does not produce unfolded

results skewed toward the primary event generator. More specifically, this states that the

final results using NuMI data will be a better representation of nature’s true cross section,

rather than what is predicted by GENIE.

A modest FHC Run 1 event sample (6.64×1020 POT of standard overlay and 1.68×1022

POT of intrinsic overlay) generated using the NuWro neutrino generator [82, 83] was available

at the time of this work for use as fake data. This section reports results of FHC Run 1 fake
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data tests for electron energy, visible energy, and opening angle. Because the measured event

rate is replaced with simulation, the statistical contribution to the covariance is as follows:

(∆NNuWro)
2 + (∆NEXT )

2 + (∆BMC)
2+ = Σw2

NuWro + Σw2
EXT + Σw2

MC (7.5)

where w2
NuWro, w

2
EXT , and w2

MC are the squared weights for events in the NuWro, EXT,

and GENIE MC background samples, respectively.

NuWro overlay samples do not contain the required neutrino ancestry information to

generate PPFX central value reweights on an event-by-event basis. In lieu of this, ratios

between the PPFX-corrected and uncorrected flux predictions are created for each flavor, and

binned as a function of true neutrino energy and decay angle, as given in Equation 2.5. Each

neutrino in the raw NuWro event rate is corrected with the flux ratio value corresponding to

the particle’s flavor, energy, and decay angle.
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Figure 7.10: The NuWro neutrino event rate passing the selection as a function of recon-
structed electron energy, visible energy, and opening angle.

Figure 7.10 shows the breakdown of the NuWro-estimated event rate that passes the

selection as a function of reconstructed electron energy, visible energy, and opening angle.

Figures 7.11 and 7.12 compare the estimated signal event rates generated by GENIE and

NuWro, and the selected event rates of GENIE and NuWro that have been subtracted by

GENIE-estimated backgrounds.
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Figure 7.11: Comparisons between the estimated signal event rates generated by GENIE
(blue) and NuWro (orange) as a function of reconstructed electron energy, visible energy, and
opening angle.
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Figure 7.12: Comparisons between GENIE (blue) and NuWro (orange) selected event rates
subtracted by GENIE-estimated backgrounds as a function of reconstructed electron energy,
visible energy, and opening angle.

Electron energy

Figure 7.13 shows the input distributions for the Wiener-SVD fake data test on electron

energy. The selected signal distribution, estimated with NuWro, is shown in blue on the left

plot as a function of reconstructed electron energy. This serves as the measured event rate

input into the unfolding algorithm. The estimated signal event rate is the generated GENIE

signal prediction before the selection has been applied, shown in the left plot in orange as a

function of true electron energy. The covariance matrix (right) is also estimated with GENIE.

The same response matrix from Figure 7.1 is used as input.
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Figure 7.13: The event rates and covariance used as input for the Wiener-SVD fake data
study on electron energy. The response matrix from Figure 7.1 is used.
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Figure 7.14: Results of the NuWro fake data test on electron energy (left), along with the
unfolded covariance (right).
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Figure 7.15: The additional smearing matrix Ac produced by the NuWro fake data test on
electron energy.
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Figure 7.14 (left) compares the unfolded fake data cross section to curves estimated by

NuWro and GENIE, shown in blue and green, respectively, and the unfolded covariance (right).

The NuWro and GENIE distributions have been smeared by the output Ac matrix in Figure

7.15. The test performs as expected: The unfolded result agrees with the underlying NuWro

prediction (χ2/n = 0.2/6) better than the underlying GENIE prediction (χ2/n = 0.7/6),

where n is the number of bins in the distribution.

Visible energy

Figure 7.16 shows the input distributions for the Wiener-SVD fake data test on visible energy.

The same response matrix from Figure 7.4 is used as input.
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Figure 7.16: The event rates and covariance used as input for the Wiener-SVD fake data
study on visible energy. The response matrix from Figure 7.4 is used.

Figure 7.17 (left) compares the unfolded fake data cross section to curves estimated

by NuWro and GENIE, shown in blue and green, respectively, and the unfolded covariance.

The NuWro and GENIE distributions have been smeared by the output Ac matrix in Figure

7.18. The test performs as expected: The unfolded result agrees with the underlying NuWro

prediction (χ2/n = 1.2/7) better than the underlying GENIE prediction (χ2/n = 1.4/7).
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Figure 7.17: Results of the NuWro fake data test on visible energy (left), along with the
unfolded covariance (right).
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Figure 7.18: The additional smearing matrix Ac produced by the NuWro fake data test on
visible energy.

Opening angle

Figure 7.19 shows the input distributions for the Wiener-SVD fake data test on opening

angle. The same response matrix as in Figure 7.7 is used as input.

Figure 7.20 (left) compares the unfolded fake data cross section to curves estimated by

NuWro and GENIE, in blue and green, respectively, and the unfolded covariance (right). NuWro

and GENIE distributions have been smeared by the output Ac matrix in Figure 7.21. The

test performs as expected: The unfolded result agrees with the underlying NuWro prediction

(χ2/n = 1.5/5) better than the underlying GENIE prediction (χ2/n = 3.4/5).
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Figure 7.19: The event rates and covariance used as input for the Wiener-SVD fake data
study on opening angle. The response matrix from Figure 7.7 is used.
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Figure 7.20: Results of the NuWro fake data test on opening angle (left), along with the
additional smearing matrix (middle), and unfolded covariance (right).
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Figure 7.21: The additional smearing matrix Ac produced by the NuWro fake data test on
opening angle.
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7.4 NuMI data results

In this section, the beam-on selected event rates shown in Figure 5.39, subtracted by GENIE-

estimated background distributions, are used as the measured event rates input into the

Wiener-SVD unfolding algorithm. Final results are presented in comparison with frequently

used neutrino event generators.

Electron energy
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Figure 7.22: The FHC+RHC background-subtracted event rate as a function of recon-
structed electron energy.

Figure 7.22 shows the FHC+RHC background-subtracted event rate (black) compared to

the GENIE selected signal prediction (orange) as a function of reconstructed electron energy.

A total of 149 beam-on events survive the subtraction. Error bars on the data are derived

from the covariance matrix shown in Figure 6.47, representative of the total uncertainty with

the GENIE systematic contribution from the signal channel turned off. Goodness of fit to the
143



GENIE prediction is χ2/n = 16.0/6. This distribution and its covariance are used as the

input measured event rate for Wiener-SVD unfolding on electron energy. The same response

matrix as in Figure 7.1 also serves as input.

Figure 7.23 displays the unfolded cross section result as a function of electron energy

(left), in comparison with the GENIE prediction that has been smeared by the output Ac

matrix (right). Unfolded covariance and correlation matrices are shown in Figure 7.24.
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Figure 7.23: The unfolded FHC+RHC cross section using NuMI data as a function of
electron energy (left) as compared to the GENIE prediction, which has been smeared by the
output Ac matrix (right).
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Figure 7.24: Unfolded covariance (left) and correlation (right) matrices of the FHC+RHC
cross section using NuMI data as a function of electron energy.
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Visible energy

Figure 7.25 shows the FHC+RHC background-subtracted event rate (black) compared to

the GENIE selected signal prediction (orange) as a function of reconstructed visible energy.

Goodness of fit to the GENIE prediction is χ2/n = 30.7/7. This distribution and its covariance

are used as the input measured event rate for Wiener-SVD unfolding on visible energy. The

same response matrix as in Figure 7.4 also serves as input.
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Figure 7.25: The FHC+RHC background-subtracted event rate as a function of recon-
structed visible energy.

Figure 7.26 displays the unfolded cross section result as a function of visible energy (left),

in comparison with the GENIE prediction that has been smeared by the output Ac matrix

(right). Unfolded covariance and correlation matrices are shown in Figure 7.27.

145



0.05 0.450.650.851.05 1.35 1.85
0

2

4

6

8

10

d
/d

E
[×

10
39

 c
m

2  /
 G

eV
 / 

nu
cle

on
]

FHC+RHC Cross Section
GENIE v3 (smeared)

2/n = 30.7/7
Unfolded Result

0.05 0.450.650.851.05 1.35 1.85
Visible Energy [GeV]

1

0

1

2

3

Un
fo

ld
ed

 / 
GE

NI
E

0.05 0.45 0.65 0.85 1.05 1.35 1.85
True Visible Energy [GeV]

0.05

0.45

0.65

0.85

1.05

1.35

1.85

Un
fo

ld
ed

 V
isi

bl
e 

En
er

gy
 [G

eV
]

0.56 0.35 0.1 0.02 0.01 -0.08 -0.11

0.28 0.39 0.28 0.07 -0.03 -0.06 -0.02

0.05 0.25 0.39 0.24 0.04 -0.02 0.02

-0.01 0.05 0.23 0.39 0.27 0.07 -0.02

-0.01 -0.04 0.05 0.32 0.38 0.22 0.03

-0.05 -0.03 0.03 0.14 0.22 0.38 0.2

-0.07 0.01 0.06 0.03 0.05 0.24 0.27

Additional Smearing Matrix (Ac)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.26: The unfolded FHC+RHC cross section using NuMI data as a function of visible
energy (left) as compared to the GENIE prediction, which has been smeared by the output
Ac matrix (right).
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Figure 7.27: Unfolded covariance (left) and correlation (right) matrices of the FHC+RHC
cross section using NuMI data as a function of visible energy.

Opening angle

Figure 7.28 shows the FHC+RHC background-subtracted event rate (black) compared to

the GENIE selected signal prediction (orange) as a function of reconstructed opening angle.

Goodness of fit to the GENIE prediction is χ2/n = 8.1/5. This distribution and its covariance

are used as the input measured event rate for Wiener-SVD unfolding on opening angle. The

same response matrix as in Figure 7.7 also serves as input.
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Figure 7.28: The FHC+RHC background-subtracted event rate as a function of recon-
structed opening angle.

Figure 7.29 displays the unfolded cross section result as a function of opening angle (left),

in comparison with the GENIE prediction that has been smeared by the output Ac matrix

(right). Unfolded covariance and correlation matrices are shown in Figure 7.30.
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Figure 7.29: The unfolded FHC+RHC cross section using NuMI data as a function of
opening angle (left) as compared to the GENIE prediction, which has been smeared by the
output Ac matrix (right).
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Figure 7.30: Unfolded covariance (left) and correlation (right) matrices of the FHC+RHC
cross section using NuMI data as a function of opening angle.

Proton multiplicity

Figure 7.31 shows the FHC+RHC background-subtracted event rate (black) compared to the

GENIE selected signal prediction (orange) as a function of reconstructed proton multiplicity.

Goodness of fit to the GENIE prediction is χ2/n = 1.6/3. The covariance and correlation

matrices corresponding to the data distribution are displayed in Figure 7.32.
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Figure 7.31: The FHC+RHC background-subtracted event rate as a function of recon-
structed proton multiplicity.
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Figure 7.32: Covariance (left) and correlation (right) matrices of the FHC+RHC
background-subtracted event rate as a function of the reconstructed proton multiplicity.

7.5 Comparisons to neutrino event generators

Unfolded results are compared to predictions from neutrino event generators commonly em-

ployed in the field: NEUT v5.4.0 [84, 85], NuWro v.19.02.2 [82, 83], GiBUU 2021 [86], GENIE

v03.0.6 (untuned) [87], and finally GENIE v03.0.6 (tuned) [65], the primary simulator used

in this work. Each prediction was generated with O(105) νe events. In precedence with pre-

vious MicroBooNE results, uncertainties on the generator predictions are deemed negligible

and not included in the goodness of fit assessment. Each prediction uses a NuMI νe flux

spectrum corrected with PPFX as input, and is smeared by Ac for a direct comparison with

the unfolded cross section.

Generator comparisons with the unfolded data result are shown in Figures 7.33, 7.34, and

7.35 for electron energy, visible energy, and opening angle, respectively. For opening angle,

the data is decently represented by model predictions, with best agreement to GiBUU 2021

(χ2/n = 3.4/5), then NEUT v5.4.0 (χ2/n = 6.1/5), GENIE v3.0.6 (tuned, χ2/n = 8.1/5),

GENIE v3.0.6 (untuned, χ2/n = 8.6/5), and finally NuWro v19.02.2 (χ2/n = 10.3/5).

The data is also in agreement with generators for electron energies ≥ 0.42 GeV and visible

energies ≥ 0.65 GeV, though marked disagreement is observed in the lower two bins. Table

7.3 and Table 7.4 show the goodness of fit for these variables, respectively.

149



0.02 0.22 0.42 0.62 0.82 1.22
Electron Energy [GeV]

0

2

4

6

8

10

12

14

d
/d

E
[×

10
39

 c
m

2  /
 G

eV
 / 

nu
cle

on
]

MicroBooNE NuMI Data: 7.0 × 1020 POT
NEUT v5.4.0

2/n = 8.7/6
NuWro v19.02.2

2/n = 8.8/6
GiBUU 2021

2/n = 9.5/6
GENIE v3.0.6 (untuned)

2/n = 9.6/6
GENIE v3.0.6 (tuned)

2/n = 16.0/6
Data (Stat. + Sys.)

Figure 7.33: The unfolded data result on electron energy, in comparison with predictions
from NEUT v5.4.0 (yellow), NuWro v.19.02.2 (blue), GiBUU 2021 (lilac), GENIE v03.0.6
untuned (red), and GENIE v03.0.6 tuned (green).
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Figure 7.34: The unfolded data result on visible energy, in comparison with predictions
from NEUT v5.4.0 (yellow), NuWro v.19.02.2 (blue), GiBUU 2021 (lilac), GENIE v03.0.6
untuned (red), and GENIE v03.0.6 tuned (green).
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Figure 7.35: The unfolded data result on opening angle, in comparison with predictions
from NEUT v5.4.0 (yellow), NuWro v.19.02.2 (blue), GiBUU 2021 (lilac), GENIE v03.0.6
untuned (red), and GENIE v03.0.6 tuned (green).

Across the entire phase space, the reduced χ2 ranges from 8.7/6 = 1.5 (NEUT v5.4.0)

to 16.0/6 = 2.7 (GENIE v3.0.6, tuned) for electron energy. Partial χ2/n values for the first

two bins only, computed by inverting the relevant subset of the unfolded covariance matrix,

reveal the extent to which the lower energy disagreement impacts the goodness of fit average

across the entire phase space: For electron energies ≥ 0.42 GeV, the reduced χ2 is less than

unity for every generator except GENIE v3.0.6 (tuned, χ2/n = 8.1/4). For electron energies

in the region 0.02-0.42 GeV, however, the reduced χ2 ranges from 4.6/2 = 2.3 (GiBUU 2021)

to 8.1/2 = 4.1 (NuWro v19.02.2).

Similar trends are observed in the χ2 values for visible energy. Across the entire phase

space, the reduced χ2 ranges from 30.7/7 = 4.4 (GENIE v3.0.6, tuned) to 40.0/7 = 5.7 (NEUT

v5.4.0). For visible energies ≥ 0.65 GeV, the partial χ2/n for all generators is ∼ 2. In the

visible energy region 0.05-0.65 GeV, however, partial χ2/n values range from 21.0/2 = 10.5

(GENIE v3.0.6, tuned) to 29.7/2 = 14.9 (NuWro v19.02.2).
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Generator χ2/n (total) χ2/n (0.02 - 0.42 GeV) χ2/n (≥ 0.42 GeV)
NEUT v5.4.0 8.7/6 4.8/2 1.3/4

NuWro v19.02.2 9.6/6 8.1/2 1.8/4
GiBUU 2021 8.8/6 4.6/2 1.4/4

GENIE v03.0.6 (untuned) 9.5/6 6.8/2 1.3/4
GENIE v03.0.6 (tuned) 16.0/6 7.6/2 8.1/4

Table 7.3: Reduced χ2 values for unfolded electron energy in comparison with each of the
generators shown in Figure 7.33. The partial χ2/n is computed by inverting the relevant
subset of the full unfolded covariance matrix.

Generator χ2/n (total) χ2/n (0.05 - 0.65 GeV) χ2/n (≥ 0.65 GeV)
NEUT v5.4.0 40.0/7 24.7/2 11.2/5

NuWro v19.02.2 39.1/7 29.7/2 11.2/5
GiBUU 2021 34.0/7 21.1/2 8.4/5

GENIE v03.0.6 (untuned) 33.0/7 23.4/2 8.2/5
GENIE v03.0.6 (tuned) 30.7/7 21.0/2 12.3/5

Table 7.4: Reduced χ2 values for unfolded visible energy in comparison with each of the
generators shown in Figure 7.34. The partial χ2/n is computed by inverting the relevant
subset of the full unfolded covariance matrix.

Notably, the goodness of fit calculation does not account for uncertainties associated

with each generator prediction, due to a lack of information to properly assess them, which

would indeed diminish these values. In addition, while the Wiener-SVD method preserves χ2

across all bins before and after unfolding, this statement is not necessarily true for individual

bins. Figures 7.22 and 7.25 better illustrate the agreement before bias is introduced via the

unfolding algorithm. In the background-subtracted event rates, a discrepancy as compared to

the GENIE prediction is observed in the first bin only, quantified as χ2 = 5.1 (p = 0.02393 →

2.3σ) for reconstructed electron energy and χ2 = 11.8 (p = 0.00059 → 3.4σ) for reconstructed

visible energy, using a one-sided p-value and two-tailed Z score.

To investigate this tension as a low energy excess, signal channel uncertainties must be

included, which reduces the significance. Using the event rates in Figure 5.39, goodness of fit

in the first bin only is computed as χ2 = 2.4 (p = 0.1213 → 1.5σ) for reconstructed electron

energy and χ2 = 5.8 (p = 0.01603 → 2.4σ) for reconstructed visible energy.
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CHAPTER 8

CONCLUSION & OUTLOOK

This work presents a measurement of νe+40Ar → 1e+Np interactions using data collected by

the MicroBooNE detector from the NuMI neutrino beam at Fermilab. Exclusive differential

cross sections are extracted on electron energy, visible energy, and opening angle between the

outgoing electron and most energetic proton. Interaction rates and associated uncertainties

as a function of proton multiplicity are also reported.

A state-of-the-art NuMI flux prediction is generated via the implementation of PPFX into

LArSoft, which corrects the raw simulation with data-driven constraints based on a variety of

independent hadronic cross section measurements. Using GENIE simulations of the FHC Run

1 and RHC Run 3 event rates in MicroBooNE’s NuMI dataset, independent, though analo-

gous, selections of electron neutrino interactions with at least 1 proton and no pions present in

the final topology are developed. The FHC Run 1 (RHC Run 3) selection algorithm performs

with 13.7% (11.4%) efficiency and 77.0% (73.5%) purity. A total of 203 beam-on data events

in the FHC+RHC sample passes the selection, and 149 data events survive the background

subtraction. Systematic and statistical covariance on the background-subtracted event rate

is assessed. At low energies, the largest source of uncertainty is in the hadron production

models underlying the flux prediction. Statistical uncertainty dominates at higher energies

due to limited events in the beam-on data samples. Across the non-energetic variables, these

contributions are comparable.

With the exception of proton multiplicity, closure tests and fake data studies are employed

to validate the Wiener-SVD unfolding algorithm, which is then used to derive differential

cross sections using the NuMI beam-on dataset. Goodness of fit between the unfolded data

result and the primary GENIE generator used in this work is reported as χ2/n = 16.0/6

for electron energy, χ2/n = 30.7/7 for visible energy, and χ2/n = 8.1/5 for opening angle.

Because the Wiener-SVD approach is not optimized to handle discrete distributions, the
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background-subtracted event rate as a function of proton multiplicity is instead reported,

with an agreement of χ2/n = 1.6/3 to GENIE prediction.

Tension is observed in the range of 0.02-0.42 GeV electron energy and 0.05-0.65 GeV

visible energy. In the background-subtracted event rates (before unfolding), this manifests as

a 2.3σ and 3.4σ difference between data and prediction in the lowest reconstructed electron

energy and visible energy bin, respectively. To investigate this tension as a low energy

excess, cross section uncertainties on the signal channel should be included. This reduces

the significance to 1.5σ and 2.4σ in the lowest electron and visible energy bin, respectively.

Curiously, a similar systematic excess was observed in the MiniBooNE detector [88].

By far, as is often the case for analyses with exclusive signal definitions, the largest

limitation of this work is statistical. The next iteration of this work should include a signifi-

cant reduction of statistical uncertainty with the addition of NuMI data from MicroBooNE

Runs 2, 4, and 5, for which production is currently underway. This will more than double

the currently available dataset, enabling future studies to extract individual (FHC-only and

RHC-only) cross sections for comparison with the combined result, and potentially probe dif-

ferences in the rate of the irreducible electron antineutrino background (ν̄e +40Ar → 1e+Np)

contamination.
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APPENDIX A

WIENER-SVD SMOOTHING

Wiener-SVD unfolding takes advantage of a technique traditionally used in digital signal

processing, which requires deconvolution of the field and electronics response from a mea-

sured signal to recover the true signal. For measured time-series distributions, this can be

achieved by executing a Fourier transformation of the signal into the frequency domain,

then introducing a filter function (often, the Wiener filter) to suppress large fluctuations

arising from noise. This approach is adopted in Wiener-SVD unfolding by constructing an

additional smearing matrix Ac that is dependent on the Wiener filter function W . More

information about this method can be found in [79].

The generalized Wiener-SVD approach involves a free parameter matrix C that sets the

derivative between adjacent bins of the measured spectrum to be smoothed in the regular-

ization. That is:

M̄ = R · C−1 · C · s̄ (A.1)

where M̄ is the expectation of the measured signal distribution based on s̄, the expectation

of the true signal distribution. The introduction of C is effectively a bias that modifies the

response matrix R.

Using singular value decomposition, the effective response matrix can be broken down

as:

R · C−1 = U ·D · V T (A.2)

where U and V are orthogonal matrices satisfying UT U = U UT = V T V = V V T = I (the

identity matrix) and D is a diagonal matrix with non-negative elements. The final unfolded

result can be expressed as:
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ŝ = Ac · (RTR)−1 ·RT ·M (A.3)

where M is the real measured spectrum and Ac = C−1 · V ·W · V T · C.

Higher orders of C increase the strength of the regularization applied to the unfolded

distribution, but leave the χ2 between data and prediction consistent. This is illustrated in

Figures A.1, A.2, and A.3, which display the unfolded data results and corresponding Ac

matrices via direct inversion (no regularization, thereby reducing Equation A.2 to M̄ = R · s̄)

and an applied smoothing of C = 0, C = 1, and C = 2, for electron energy, visible energy,

and opening angle, respectively. Note that in the direct inversion result, Ac is an identity

matrix, and increasing C causes this shape to migrate away from the diagonals.
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Figure A.1: From left to right, the unfolded data result on electron energy via direct in-
version and an applied smoothing of C = 0, C = 1, and C = 2, along with corresponding
regularization matrices Ac. Note that the χ2 is consistent regardless of regularization.

The choice recommended by [79] is C = 2, which regularizes the curvature of the unfolded

spectrum via a second derivative matrix. However, for visible energy (Figure A.2), the C = 2

spectrum suffers from a loss of shape information, indicated by the uniformity of Ac as well

as the way the unfolded distribution closes completely onto the prediction at energies < 0.45

GeV as compared to the background-subtracted event rate (Figure 7.25), which displays a

discrepancy in the first bin.
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Figure A.2: From left to right, the unfolded data result on visible energy via direct inver-
sion and an applied smoothing of C = 0, C = 1, and C = 2, along with corresponding
regularization matrices Ac. Note that the χ2 is consistent regardless of regularization.
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Figure A.3: From left to right, the unfolded data result on opening angle via direct inver-
sion and an applied smoothing of C = 0, C = 1, and C = 2, along with corresponding
regularization matrices Ac. Note that the χ2 is consistent regardless of regularization.

Thus, this work reduces the regularization strength to C = 1, which preserves some

semblance of the pre-unfolded shape below 0.45 GeV. For consistency, the C = 1 choice of

regularization is also used for the final unfolded results on electron energy and opening angle.
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