
THE UNIVERSITY OF CHICAGO

ESSAYS ON APPLIED OPTIMIZATION MODELS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE UNIVERSITY OF CHICAGO

BOOTH SCHOOL OF BUSINESS

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

ZUGUANG GAO

CHICAGO, ILLINOIS

JUNE 2023



Copyright © 2023 by Zuguang Gao

All Rights Reserved



To my parents, for their love and support.



The music is not in the notes, but in the silence between.

— Unknown, often attributed to Mozart



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 APPROXIMATION ALGORITHMS FOR MULTIPERIOD BINARY KNAPSACK
PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Problem Formulation and Main Results . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Multiperiod Binary Knapsack Problem (MPBKP) . . . . . . . . . . . 6
1.2.2 Multiperiod Binary Knapsack Problem with Soft Capacity Constraints

(MPBKP-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Multiperiod Binary Knapsack Problem with Soft Stochastic Capacity

Constraints (MPBKP-SS) . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Approximation Algorithms for MPBKP . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 A (1 + ϵ)-approximation in Õ
(
n+ T 3.25/ϵ2.25

)
. . . . . . . . . . . . 12

1.3.2 A (1 + ϵ)-approximation in Õ
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ABSTRACT

This dissertation studies several different optimization problems, and consists of five chap-

ters. In Chapter 1, we consider a multiperiod binary Knapsack problem, along with several

extensions. We propose fully polynomial time approximation schemes to these problems

where applicable. We also prove the performance guarantee of some greedy algorithms, and

propose parameterized approximation algorithms for some extensions. In Chapter 2, we

propose several models to aggregate the distributed energy resources, where the aggregator

can be profit-seeking or regulated. We design the two-part pricing mechanism for the ag-

gregator to achieve full market efficiency. In Chapter 3, we analyze the sample complexity

of decentralized Q-learning algorithms for stochastic games, in both the tabular case and

the case with linear function approximation. In Chapter 4, we design a power purchase

agreement (PPA), where a firm signs a long term contract with a renewable energy genera-

tor. The contract specifies a one-time transfer payment by the firm to the renewable energy

generator, as an investment to build new renewable energy facilities. The firm then owns all

the generation from these facilities for an extended period of time. We formulate the firm’s

decision on when to sign the PPA as an optimal stopping problem, and analyze the firm’s

optimal policies. Chapter 5 is motivated by an application in freight forwarding, where we

formulate the freight forwarder’s decisions on the assignment of shipments to containers as

an integer program, which turns out to be a combination of the bin packing problem and

the generalized assignment problem. We propose several heuristics for this problem and run

numerical experiments on their performances.

In the following, we provide more detailed abstracts for each chapter of this dissertation.

Chapter 1 studies the approximation schemes of multi-period Knapsack problems, and is

based on Gao et al. [90]. An instance of the multiperiod binary Knapsack problem (MPBKP)

is given by a horizon length T , a non-decreasing vector of knapsack sizes (c1, . . . , cT ) where

ct denotes the cumulative size for periods 1, . . . , t, and a list of n items. Each item is a triple

xv



(r, q, d) where r denotes the reward or value of the item, q its size, and d denotes its time

index (or, deadline). The goal is to choose, for each deadline t, which items to include to

maximize the total reward, subject to the constraints that for all t = 1, . . . , T , the total size

of selected items with deadlines at most t does not exceed the cumulative capacity of the

knapsack up to time t. We also consider the multiperiod binary knapsack problem with soft

capacity constraints (MPBKP-S) where the capacity constraints are allowed to be violated

by paying a penalty that is linear in the violation. The goal of MPBKP-S is to maximize the

total profit, which is the total reward of the selected items less the total penalty. Finally, we

consider the multiperiod binary knapsack problem with soft stochastic capacity constraints

(MPBKP-SS), where the non-decreasing vector of knapsack sizes (c1, . . . , cT ) follow some

arbitrary joint distribution but we are given access to the profit as an oracle, and we must

choose a subset of items to maximize the total expected profit, which is the total reward less

the total expected penalty.

For MPBKP, we exhibit a fully polynomial-time approximation scheme that achieves

(1 + ϵ) approximation with runtime Õ
(
min

{
n+ T 3.25

ϵ2.25
, n+ T 2

ϵ3
, nT
ϵ2

, n
2

ϵ

})
; for MPBKP-S,

the (1 + ϵ) approximation can be achieved in O
(
n log n

ϵ ·min
{
T
ϵ , n

})
. To the best of our

knowledge, our algorithms are the first FPTAS for any multiperiod version of the Knapsack

problem since its study began in 1980s. For MPBKP-SS, we prove that a natural greedy

algorithm is a 2-approximation when items have the same size. We also provide parameter-

ized approximation algorithms for MPBKP-S and MPBKP-SS. Our algorithms also provide

insights on how other multiperiod versions of the knapsack problem may be approximated.

Chapter 2 studies the aggregation of distributed energy resources, and is based on Gao

et al. [88, 89, 92]. The rapid expansion of distributed energy resources (DERs) is one of the

most significant changes to electricity systems around the world. Examples of DERs include

solar panels, electric storage, thermal storage, combined heat and power plants, etc. Due to

the small supply capacities of these DERs, it is impractical for them to participate directly
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in the wholesale electricity market. We study in this chapter the question of how to integrate

these DER supplies into the electricity market, with the objective of achieving full market

efficiency. Specifically, we study three aggregation models, where there is an aggregator

who procures electricity from DERs, and sells them in the wholesale market. In the first

aggregation model, a profit-maximizing aggregator announces a differential two-part pricing

policy to the DER owners. We show that this model preserves full market efficiency, i.e.,

the social welfare achieved by the aggregation model is the same as that when DERs partic-

ipate directly in the wholesale market. In the second aggregation model, the profit-seeking

aggregator is forced to impose a uniform two-part pricing policy to prosumers from the same

location, and we numerically show the efficiency loss of this model. In the third aggregation

model, a uniform two-part pricing policy is applied to DER owners, while the aggregator

becomes fully regulated but is guaranteed positive profit. It is shown that this third model

again achieves full market efficiency. Furthermore, we show that DER aggregation also leads

to a reduction on the market power of conventional generators. DER aggregation via profit-

seeking and/or regulated aggregators have been investigated by CAISO and NYISO, among

others, and the recent FERC Order No. 2222 paved the way for aggregators to bid in the

wholesale market. Our efficient aggregation models may settle the debate on how DERs

should be included in the wholesale electricity market.

Chapter 3 studies the sample complexity of decentralized Q-learning algorithms for

stochastic games, and is based on Gao et al. [91, 94]. Learning in stochastic games is

arguably the most standard and fundamental setting in multi-agent reinforcement learn-

ing (MARL). In this chapter, we consider decentralized MARL in stochastic games in the

non-asymptotic regime. In particular, we establish the finite-sample complexity of fully

decentralized Q-learning algorithms in a significant class of general-sum stochastic games

(SGs) – weakly acyclic SGs, which includes the common cooperative MARL setting with an

identical reward to all agents (a Markov team problem) as a special case. We focus on the

xvii



practical while challenging setting of fully decentralized MARL, where neither the rewards

nor the actions of other agents can be observed by each agent. In fact, each agent is com-

pletely oblivious to the presence of other decision makers. Both the tabular and the linear

function approximation cases have been considered. In the tabular setting, we analyze the

sample complexity for the decentralized Q-learning algorithm in Arslan and Yüksel (2016)

to converge to a Markov perfect equilibrium (Nash equilibrium). With linear function ap-

proximation, the results are for convergence to a linear approximated equilibrium – a new

notion of equilibrium that we propose – which describes that each agent’s policy is a best

reply (to other agents) within a linear space. Numerical experiments are also provided for

both settings to demonstrate the results.

Chapter 4 studies the design of a power purchase agreement (PPA) where the firm agrees

to make a certain transfer payment to the renewable generator, and the generator invests

that payment to build new renewable energy facilities. The firm will then have access

to all electricity generation from the new facilities for a long-term period. The firm may

dynamically decide when to start the PPA on an ongoing basis, based on the evolving market

conditions, and the transfer payment (amount of investment) is also specified by the firm.

The firm’s objective is to maximize its long-term discounted benefit (total savings) from

signing the PPA. We mathematically formulate the firm’s decision problem as an optimal

stopping problem and provide analytical solutions. We also provide insights on how the

firm’s investment capacity, expected saving, and the total new generation due to the PPA

change with respect to different problem parameters.

Chapter 5 defines and studies the (ocean) freight consolidation problem (FCP), which

plays a crucial role in solving today’s supply chain crisis. Roughly speaking, every day and

every hour, a freight forwarder sees a set of shipments and a set of containers at the origin

port. There is a shipment cost associated with assigning each shipment to each container.

If a container is assigned any shipment, there is also a procurement cost for that container.
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The FCP aims to minimize the total cost of fulfilling all the shipments, subject to capacity

constraints of the containers. In this chapter, we show that no constant factor approximation

exists for FCP, and propose a series of greedy based heuristics for solving the problem. We

also test our heuristics with simulated data and show that our heuristics achieve small

optimality gaps. This chapter is based on Gao et al. [93].
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CHAPTER 1

APPROXIMATION ALGORITHMS FOR MULTIPERIOD

BINARY KNAPSACK PROBLEMS

1.1 Introduction

Knapsack problems are a classical category of combinatorial optimization problems, and have

been studied for more than a century (Mathews [158]). They have found wide applications in

various fields (Kellerer et al. [127]), such as selection of investments and portfolios, selection

of assets, finding the least wasteful way to cut raw materials, etc. One of the most commonly

studied problem is the so-called 0-1 knapsack problem, where a set of n items are given, each

with a reward and a size, and the goal is to select a subset of these items to maximize the

total reward, subject to the constraint that the total size may not exceed some knapsack

capacity. It is well-known that the 0-1 knapsack problem is NP-complete. However, the

problem was shown to possess fully polynomial-time approximation schemes (FPTAS’s), i.e.,

there are algorithms that achieve (1 + ϵ) factor of the optimal value for any ϵ ∈ (0, 1), and

take polynomial time in n and 1/ϵ.

In this chapter, we study three extensions of the 0-1 knapsack problem. First, we consider

a multiperiod version of the 0-1 knapsack problem, which we call the multiperiod binary

knapsack problem (MPBKP). There is a horizon length T and a vector of knapsack sizes

(c1, . . . , cT ), where ct is the cumulative size for periods 1, . . . , t and is non-decreasing in t.

We are also given a list of n items, each associated with a triple (r, q, d) where r denotes the

reward or value of the item, q its size, and d denotes its time index (or, deadline). The goal

is to choose a reward maximizing set of items to include such that for any t = 1, . . . , T , the

total size of selected items with deadlines at most t does not exceed the cumulative capacity

of the knapsack up to time t. The application that motivates this problem is a seller who

produces (ct − ct−1) units of a good in time period t, and can store unsold goods for selling
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later. The seller is offered a set of bids, where each bid includes a price (r), a quantity

demanded (q), and a time at which this quantity is needed. The problem of deciding the

revenue maximizing subset of bids to accept is exactly MPBKP.

The second extension we consider is the multiperiod binary knapsack problem with soft

capacity constraints (MPBKP-S) where at each period the capacity constraint is allowed to

be violated by paying a penalty that is linear in the violation. The goal of MPBKP-S is then

to maximize the total profit, which is the total reward of the selected items less the total

penalty. In this case, the seller can procure goods from outside at a certain rate if its supply

is not enough to fulfill the bids it accepts, and wants to maximize its profit.

The third extension we consider is the multiperiod binary knapsack problem with soft

stochastic capacity constraints (MPBKP-SS) where the non-decreasing vector of knapsack

sizes (c1, . . . , cT ) follows some arbitrary joint distribution given as the set of sample paths

of the possible realizations and their probabilities. We select the items before realizations of

any of these random incremental capacities to maximize the total expected profit, which is

the total reward of selected items less the total expected penalty. In this case, the production

of the seller at each time is random, but it has to select a subset of bids before realizing its

supply. Again, the seller can procure capacity from outside at a certain rate if its realized

supply is not enough to fulfill the bids it accepts, and wants to maximize its expected profit.

1.1.1 Literature Review

The first published FPTAS for the 0-1 knapsack problem was due to Ibarra and Kim [113]

where they achieve a time complexity Õ
(
n+ (1/ϵ4)

)
by dividing the items into a class of

“large” items and a class of “small” items. The problem is first solved for large items only,

using the dynamic program approach, with rewards rounded down using some discretization

quantum (chosen in advance), and the small items are added later. Lawler [135] proposed

a more nuanced discretization method to improve the polylogarithmic factors. Since then,
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improvements have been made on the dynamic program for large items, where Kellerer and

Pferschy [126] proposed an algorithm with runtime Õ
(
n+ 1/ϵ3

)
, and Rhee [180] achieved

Õ
(
n+ 1/ϵ2.5

)
with a randomized algorithm. Most recently, Chan [46] proposed a deter-

ministic algorithm, achieving the same Õ
(
n+ 1/ϵ2.5

)
runtime, which has subsequently been

improved to Õ
(
n+ (1/ϵ)9/4

)
in Jin [121].

We note that MPBKP is also related to a number of other multiperiod versions of

the knapsack problem in literature. The multiperiod knapsack problem (MPKP) proposed

by Faaland [73] has the same structure as MPBKP, except that in Faaland [73], each item

can be repeated multiple times, i.e., the decision variables for each item is not binary, but

any nonnegative integer (in the single-period case, this is called the unbounded knapsack

problem (Andonov et al. [13])). To the best of our knowledge, there has been no further

studies on MPKP since Faaland [73]. In the multiple knapsack problem (MKP), there

are m knapsacks, each with a different capacity, and items can be inserted to any knapsacks

(subject to its capacity constraints). MKP is a special case of the generalized assignment

problem (GAP), where each item has different reward and size when being put into different

knapsacks. Shmoys and Tardos [192] proposed a 2-approximation for GAP. Chekuri and

Khanna [48] proved that GAP is APX-hard and does not admit an FPTAS. Later, Jansen

[119] proved that MKP admits an efficient polynomial time approximation scheme (EPTAS),

with runtime depending polynomially on n but exponentially on 1/ϵ.

The incremental knapsack problem (IKP) is another multiperiod version of the knapsack

problem (Hartline and Sharp [103]), where the knapsack capacity increases over time, and

each selected item generates a reward on every period after its insertion, but this reward

is discounted over time. Unlike MPBKP, items do not have deadlines and can be selected

anytime throughout the T periods. When the discount factors are 1, it is called the time

invariant incremental knapsack problem (IIKP). A PTAS for IIKP is proposed in Bienstock

et al. [37] under the assumption that T = O
(√

log n
)
, and it has been shown that IIKP
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is strongly NP-hard. Later, Faenza and Malinovic [78] proposed the first PTAS for IIKP

regardless of T , and Della Croce et al. [64] proposed an PTAS for IKP when T is a constant.

Most recent developments of IKP include Aouad and Segev [18], Faenza et al. [79]. Other

similar problems and/or further extensions include the multiple-choice multiperiod knapsack

problem (Randeniya [179], Lin and Wu [145], Lin and Chen [144]), the multiperiod multi-

dimensional knapsack problem (Lau and Lim [133]), the multiperiod precedence-constrained

knapsack problem (Moreno et al. [163], Samavati et al. [185]), to name a few.

1.1.2 Our Contributions

Our main contributions of this chapter are two-fold. First, from the perspective of model for-

mulation, we propose the MPBKP and its generalized versions MPBKP-S and MPBKP-SS.

Despite the fact that there are a number of multiperiod/multiple versions of knapsack prob-

lems, including those mentioned above (many of which are strongly NP-hard), the MPBKP

and MPBKP-S we proposed here are the first to admit an FPTAS among any multiperiod

versions of the classical knapsack problem since their initiation back in 1980s. With these

results, it is thus interesting to see where the boundary lies between these multiperiod prob-

lems that admit an FPTAS and those problems that do not admit an FPTAS. Second, the

algorithms we propose for both MPBKP and MPBKP-S are generalized from the ideas of

solving 0-1 knapsack problems, but with nontrivial modifications as we will address in the

remaining of this chapter. For MPBKP-S and MPBKP-SS, we also propose parameterized

approximation algorithms, under the assumption that the (expected) total penalty on the

optimal solution is no greater than β-fraction of the total reward. For MPBKP-SS, we also

propose a greedy algorithm that achieves 2-approximation for the special case when all items

have the same size. The comparison of the performance of greedy algorithms for this special

case is also provided. Our results are summarized in Table 1.1 and Table 1.2.
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Approximation MPBKP MPBKP-S MPBKP-SS
1 + ϵ Õ

(
min

{
n+ T 3.25

ϵ2.25
, n+ T 2

ϵ3
, nT
ϵ2
, n

2

ϵ

})
O
(
n logn

ϵ ·min
{
T
ϵ , n

})
-

1 + ϵ
1−β - Õ

(
n+ T 3.25

ϵ2.25

)
Õ
(
n+ 1

ϵT

)
Table 1.1: Summary of runtime results for three multiperiod Knapsack problems

Algorithm MPBKP, qi = 1 MPBKP-S, qi = 1 MPBKP-SS, qi = 1

Greedy Optimal Optimal 2-approximation

Table 1.2: Summary of approximation results of greedy algorithms on special cases

1.1.3 Organization

The rest of this chapter is organized as follows. In Section 1.2 we formally write the three

problems in mathematical programming form. Two FPTAS for MPBKP is proposed in

Section 1.3. An FPTAS for MPBKP-S, as well as a parameterized approximation for

MPBKP-S, are proposed in Section 1.4.1. An alternative FPTAS for MPBKP-S is pro-

vided in Appendix 1.7.4. A greedy algorithm for a special case of MPBKP-SS, as well as

a parameterized approximation for MPBKP-SS, are proposed in Section 1.5. Some other

results on special cases of these problems are supplemented in Appendix 1.7.5. We also

provide pseudo-polynomial time algorithms in Appendix 1.7.6. Most proofs are left to Ap-

pendices 1.7.1, 1.7.2, and 1.7.3, but we provide proof ideas in the main body.

1.2 Problem Formulation and Main Results

In this section, we formally introduce the Multiperiod Binary Knapsack Problem (MPBKP),

as well as the two generalized versions of it, namely, the (deterministic) Multiperiod Binary

Knapsack Problem with Soft capacity constraints (MPBKP-S), and the Multiperiod Binary

Knapsack Problem with Soft Stochastic capacity constraints (MPBKP-SS).
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1.2.1 Multiperiod Binary Knapsack Problem (MPBKP)

An instance of MPBKP is given by a set of n items, each associated with a triple (ri, qi, di),

and a sequence of knapsack capacities {c1, . . . , cT }. For each item i, we get reward ri if

and only if i is included in the knapsack by time di. We assume that ri ∈ N, qi ∈ N and

di ∈ [T ] := {1, . . . , T}. The knapsack capacity at time t is ct, and by convention c0 = 0.

The MPBKP can be written in the integer program (IP) form:

max
x

z =
n∑

i=1

rixi (1.1a)

s.t.
∑

j:dj≤t
qjxj ≤ ct, ∀t = 1, . . . , T (1.1b)

xi ∈ {0, 1}, ∀i = 1, . . . , n (1.1c)

where xi’s are binary decision variables, i.e., xi is 1 if item i is included in the knapsack and

is 0 otherwise. In (1.1), we aim to pick a subset of items to maximize the objective function,

which is the total reward of picked items, subject to the constraints that by each time t, the

total size of picked items with deadlines up to t does not exceed the knapsack capacity at

time t, which is ct. For each t ∈ [T ], let I(t) := {i ∈ [n] | di = t} denote the set of items

with deadline t. Note that without loss of generality, we may assume that I(t) ̸= ∅,∀t and

ct > 0. We further note that the decision variables xi’s in (1.1) are binary, but if we relax

this to any nonnegative integers, the problem becomes the so-called multiperiod knapsack

problem (MPKP) as in Faaland [73]. Indeed, we can write (1.1) equivalently as

max
x∈{0,1}n

z =
∑

j∈I(1)
rjxj +

∑
j∈I(2)

rjxj + · · ·+
∑

j∈I(T )
rjxj (1.2a)

s.t.
∑

j∈I(1)
qjxj ≤ c1 (1.2b)
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∑
j∈I(1)

qjxj +
∑

j∈I(2)
qjxj ≤ c2 (1.2c)

...
... (1.2d)∑

j∈I(1)
qjxj +

∑
j∈I(2)

qjxj + · · ·+
∑

j∈I(T )
qjxj ≤ cT (1.2e)

xj ∈ {0, 1}, ∀j ∈ [n], (1.2f)

and if the decision variables are changed from binary to all nonnegative integers in (1.2), the

problem becomes exactly the same as the multiperiod knapsack problem (MPKP) in [73].

Our first main result is the following theorem on MPBKP.

Theorem 1.1. An FPTAS exists for MPBKP. Specifically, there exists a deterministic al-

gorithm that achieves (1 + ϵ)-approximation in Õ
(
min

{
n+ T 3.25

ϵ2.25
, n+ T 2

ϵ3
, nT
ϵ2

, n
2

ϵ

})
.

We note that when T = 1, MPBKP (1.1) becomes the traditional 0-1 Knapsack prob-

lem. In Section 1.3, we will provide an approximation algorithm for MPBKP with runtime

Õ
(
n+ T 3.25

ϵ2.25

)
, as well as an alternative algorithm with runtime Õ

(
n+ T 2

ϵ3

)
. As we will

see shortly, MPBKP can be viewed as a special case of MPBKP-S. In Section 1.4.1, we will

provide an approximation algorithms for MPBKP-S with runtime Õ
(
nT
ϵ2

)
, while another

approximation algorithm with runtime Õ
(
n2
ϵ

)
is provided in Appendix 1.7.4, both of which

are also applicable to MPBKP. A pseudo-polynomial time algorithm which achieves the ex-

act optimal solution is also provided in Appendix 1.7.6.1. For the special case that qi = 1

for all i ∈ [n], the greedy algorithm also achieves exact optimality (see Appendix 1.7.5.1).

1.2.2 Multiperiod Binary Knapsack Problem with Soft Capacity Constraints

(MPBKP-S)

In MPBKP-S, the capacity constraints in (1.1) no longer exist, i.e., the total size of selected

items at each time step is allowed to be greater than the total capacity up to that time,
7



however, there is a penalty rate Bt ∈ N for each unit of overflow at period t. We assume

that Bt > maxi∈[n]:di≤t
ri
qi

to avoid trivial cases (any item with ri
qi
≥ Bt and di ≤ t will

always be added to generate more profit). In the IP form, MPBKP-S can be written as

max
x∈{0,1}n

z :=
n∑

i=1

rixi −
{
B1 ·

[ ∑
j∈I(1)

qjxj − c1

]+

+B2 ·
[ ∑
j∈I(2)

qjxj −
(
c1 −

∑
j∈I(1)

qjxj

)+
− (c2 − c1)

]+
+ · · ·

} (1.3)

where [a]+ is the maximum of a and 0. In the objective function,
∑

j∈I(1) qjxj is the

total size of selected items with deadline 1, and c1 is the capacity for time 1, thus B1 ·[∑
j∈I(1) qjxj − c1

]+
is the penalty generated at time 1. Similarly,

∑
j∈I(2) qjxj is the

total size of selected items with deadline 2, c2 − c1 is the incremental capacity from time 1

to time 2, and
(
c1 −

∑
j∈I(1) qjxj

)+
is the leftover capacity (if any) carried from time 1,

thus B2 ·
[∑

j∈I(2) qjxj −
(
c1 −

∑
j∈I(1) qjxj

)+
− (c2 − c1)

]+
is the penalty generated at

time 2. We continue this pattern and write out the penalties generated at each time.

An equivalent expression of (1.3) is the following.

max
x∈{0,1}n

z(x) :=
n∑

i=1

rixi

−
T∑
t=1

Bt

 ∑
j∈I(t)

qjxj − max
0≤t′<t

ct − ct′ −
∑

j∈S:t′+1≤dj≤t−1
qjxj


+ .

(1.4)

Further, if we add decision variables yt, t = 1, . . . , T , which represents the overflow at time

t, and let at := ct − ct−1 be the incremental capacity at time t, then the problem can be

written as
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max
x,y

∑
i∈[n]

rixi −
T∑
t=1

Btyt (1.5a)

s.t.
∑

i∈I(1)∪···∪I(t)
qixi −

t∑
s=1

ys ≤
t∑

s=1

at = ct, ∀t : 1 ≤ t ≤ T (1.5b)

xi ∈ {0, 1}, yt ≥ 0. (1.5c)

The objective is to choose a subset of the n items to maximize the total profit, which is the

sum of the rewards of the selected items deducted by the sum of penalty paid at each period,

and the constraints enforce that the total size of accepted items by the end of each period

must not exceed the sum of the cumulative capacity and the units of overflow.

We will consider approximation algorithms for MPBKP-S. Moreover, for those “good”

instances, we will also provide a parameterized approximation algorithm. Specifically, we

consider those instances that satisfy the following assumption.

Assumption 1.1. In the optimal solution of MPBKP-S, the total penalty is at most β

fraction of the total rewards, i.e.,
∑T

t=1Bty
∗
t (ω) ≤ β ·∑i∈[n] rix

∗
i , where x∗ and y∗ constitute

the optimal solution of (1.5).

Our second main result is the following theorem on MPBKP-S. The theorem has two

parts: the first part asserts an approximation algorithm for general instances of MPBKP-S,

while the second part claims a parameterized algorithm under Assumption 1.1.

Theorem 1.2. We have the following algorithms for MPBKP-S.

1. An FPTAS exists for MPBKP-S. Specifically, there exists an algorithm which achieves

(1 + ϵ)-approximation in O
(
n log n

ϵ ·min
{
T
ϵ , n

})
.

2. Under Assumption 1.1, there is an algorithm that achieves
(
1 + ϵ

1−β
)
-approximation

in Õ
(
n+ T 3.25

ϵ2.25

)
.
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In Section 1.4.1, we will present an O
(
nT log n

ϵ2

)
approximation algorithm for solving

MPBKP-S. An alternative FPTAS with runtime O
(
n2 log n

ϵ

)
is provided in Appendix 1.7.4.

In Section 1.4.2, we will present the parameterized approximation algorithm with
(
1 + ϵ

1−β
)
-

approximation factor and Õ
(
n+ T 3.25

ϵ2.25

)
runtime. For the ease of presentation, our algo-

rithms and analysis are presented for the case Bt = B, but they can be generalized to the

heterogeneous {B1, . . . , BT } in a straightforward manner. It is worth noting that the algo-

rithm for MPBKP that we introduce in Section 1.3 does not extend to MPBKP-S, and we

will make this clear in the beginning of Section 1.4.1. A pseudo-polynomial time algorithm

which achieves the exact optimal solution is also provided in Appendix 1.7.6.2. For the

special case that qi = 1 for all i ∈ [n], we prove that the greedy algorithm achieves exact

optimality (see Appendix 1.7.5.2).

1.2.3 Multiperiod Binary Knapsack Problem with Soft Stochastic Capacity

Constraints (MPBKP-SS)

The MPBKP-SS formulation is similar to (1.5), except that the vector of knapsack sizes

(c1, . . . , cT ) follows some arbitrary joint distribution given to the algorithm as the set of

possible sample path (realization) of knapsack sizes and the probability of each sample path.

We use ω to index sample paths which we denote by {ct(ω)}, p(ω) as the probability of

sample path ω, and Ω as the set of possible sample paths. The goal is to pick a subset of

items before the realization of ω so as to maximize the expected total profit, which is the

sum of the rewards of the selected items deducted by the total (expected) penalty. For a

sample ω ∈ Ω let yt(ω) be the overflow at time t. Then, we can write the problem as:

max
x,y

∑
i∈[n]

rixi − Eω

Bt ·
T∑
t=1

yt(ω)

 (1.6a)
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s.t.
∑

i∈I(1)∪···∪I(t)
qixi −

t∑
s=1

ys(ω) ≤ ct(ω), ∀ω ∈ Ω, 1 ≤ t ≤ T (1.6b)

xi ∈ {0, 1}, yt ≥ 0. (1.6c)

Furthermore, we make the following assumption.

Assumption 1.2. In the optimal solution of MPBKP-SS, the total expected penalty is at

most β fraction of the total rewards, i.e., Eω

[∑T
t=1Bty

∗
t (ω)

]
≤ β ·∑i∈[n] rix

∗
i , where x∗

and y∗ constitute the optimal solution of (1.6).

Our third main result is the following theorem on MPBKP-SS. The theorem has two

parts: the first part asserts a greedy algorithm for the special case when all items are of unit

size, and the second part claims a parameterized approximation algorithm for the general

MPBKP-SS.

Theorem 1.3. We have the following algorithms.

1. If qi = q for all i ∈ [n], then, there exists a greedy algorithm with runtime O
(
n2T |Ω|

)
that achieves 2-approximation for MPBKP-SS.

2. Under Assumption 1.2, there is an algorithm to MPBKP-SS that achieves
(
1 + ϵ

1−β
)
-

approximation in Õ
(
n+ 1/ϵT

)
.

In Section 1.5.1, we will present a 2-approximation greedy algorithm for solving MPBKP-

SS in the special case that all items have size 1. In Section 1.5.2, we will address the

difficulties of the general MPBKP-SS, and present a parameterized approximation algorithm

with
(
1 + ϵ

1−β
)
-approximation factor and Õ

(
n+ 1

ϵT

)
runtime. For the special case that

T = 1, i.e., a single period knapsack problem with stochastic capacity, we provide an FPTAS

with runtime O
(
n2 log n

ϵ

)
(see Appendix 1.7.5.3).
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1.3 Approximation Algorithms for MPBKP

In the following two subsections, we provide two approximation algorithms for solving MP-

BKP. The first one is a (1 + ϵ)-approximation algorithm with runtime Õ
(
n+ T 3.25/ϵ2.25

)
,

and the second one gives the same approximation factor with runtime Õ
(
n+ T 2/ϵ3

)
.

1.3.1 A (1 + ϵ)-approximation in Õ
(
n+ T 3.25/ϵ2.25

)
In this subsection, we provide an FPTAS for the MPBKP, which has time complexity

Õ
(
n+ T 3.25

ϵ2.25

)
. We will apply the “functional approach” as used in Chan [46]. The main idea

is to use the results on function approximations (Chan [46], Jin [121]) as building blocks –

for each period we approximate one function that gives, for every choice of available capac-

ity, the maximum reward obtainable by selecting items in that period. We then combine

“truncated” version of these functions using (max,+)-convolution. This idea, despite its

simplicity, allows us to obtain an FPTAS for MPBKP. Such a result should not be taken as

granted – as we will see in the next section, this method does not apply for MPBKP-S, even

though it is just a slight generalization of MPBKP.

We begin with some preliminary definitions and notations. For a given set of item rewards

and sizes, I = {(r1, q1), . . . , (rn′ , qn′)}, define the function

fI(c) := max
x1,...,xn′

∑
i∈I

rixi :
∑
i∈I

qixi ≤ c, x1, . . . , xn′ ∈ {0, 1}

 (1.7)

for all c ≥ 0, and fI(c) := −∞ for c < 0. The function fI is a nondecreasing step function,

and the number of steps is called the complexity of that function. Further, for any I = I1⊔I2,

i.e., I being a disjoint union of I1 and I2, we have that fI = fI1 ⊕ fI2 , where ⊕ denotes

the (max,+)-convolution: (f ⊕ g)(c) = maxc′∈R
(
f(c′) + g(c− c′)

)
.
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We define the truncated function fc
′
I as follows:

fc
′
I (c) =


fI(c) c ≤ c′,

−∞ c > c′.
(1.8)

Recall that we denote the set of items with deadline t by I(t). We next define the function

ft as follows:

ft :=


fc1I(1) t = 1,(
ft−1 ⊕ fI(t)

)ct
t ≥ 2.

(1.9)

In other words, ft’s are defined recursively: for t = 1, let f1 := fc1I(1); for t ≥ 2, we define

ft =
(
ft−1 ⊕ fI(t)

)ct
. Each function value of ft(c) corresponds to a feasible, in fact an

optimal, solution x for items with deadline at most t, as shown in the following proposition.

Proposition 1.1. Let x∗ be the optimal solution for MPBKP (1.1). We have that the

optimal value of (1.1),
∑

i∈[n] rix
∗
i , satisfies

∑
i∈[n] rix

∗
i = fT (cT ).

Proposition 1.1 implies that, in order to obtain an approximately optimal solution for

MPBKP (1.1), it is sufficient to have a good approximation for the function

fT =
(
· · ·
((

fc1I(1) ⊕ fI(2)
)c2 ⊕ fI(3)

)c3 · · · ⊕ fI(T )
)cT

. (1.10)

We say that a function f̃ approximates the nonnegative function f with factor 1 + ϵ if

f̃(c) ≤ f(c) ≤ (1 + ϵ)f̃(c) for all c ∈ R. It should be clear that if f̃ approximates f with

factor 1+ϵ and g̃ approximates g with factor 1+ϵ, then f̃⊕ g̃ approximates f⊕g with factor

1 + ϵ. We then introduce the following result from Jin [121] for the 0-1 Knapsack problem.

Lemma 1.1 (Jin [121]). Given a set I = {(r1, q1), . . . , (rn, qn)}, we can obtain f̃I that ap-

proximates fI (defined in (1.7)) with factor 1+ϵ and complexity Õ
(
1
ϵ

)
in Õ

(
n+ (1/ϵ)2.25

)
.
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With the above lemma, we present Algorithm 1.1 for MPBKP.

Algorithm 1.1 FPTAS for MPBKP in Õ
(
n+ T 3.25/ϵ2.25

)
Input: ϵ, [n], c1, . . . , cT ▷ Set of items to be packed, cumulative capacities
Output: f̃t ▷ Approximation of function ft

1: Discard all items with ri ≤ ϵ
n maxj rj and relabel the items

2: r0 ← mini ri ▷ Lower bound of solution value
3: m←

⌈
log1+ϵ

n2

ϵ

⌉
▷ Number of distinct rewards to be considered, each in the form r0 · (1 + ϵ)k

4: Obtain f̃I(1) that approximates fI(1) with factor (1 + ϵ) using Lemma 1.1
5: f̃1 := f̃ c1

I(1) ▷ f̃1 has complexity at most m = Õ
(
1
ϵ

)
6: for t = 2, . . . , T do
7: Obtain f̃I(t) that approximates fI(t) with factor (1 + ϵ) using Lemma 1.1
8: l← complexity of f̃I(t) ▷ l = Õ

(
1
ϵ

)
9: Compute (all breakpoints and their values of) f̂t :=

(
f̃t−1 ⊕ f̃I(t)

)ct
, taking m · l time

▷ f̂t has complexity Õ
(

1
ϵ2

)
10: f̃t := r0 · (1 + ϵ)

⌊
log1+ϵ

(
f̂t
r0

)⌋
▷ Round f̂t down to the nearest r0 · (1 + ϵ)k for k = 0, . . . ,m.

▷ Now f̃t has complexity at most m = Õ
(
1
ϵ

)
11: end for

We now describe the intuition behind Algorithm 1.1. We first discard all items with

reward ri ≤ ϵ
n maxj rj . The maximum we could lose is n · ϵn maxj rj = ϵmaxj rj , which

is at most ϵ fraction of the optimal value. We next obtain all f̃I(t), for all t = 1, . . . , T ,

that approximate fI(t) (as defined in (1.7)) within a (1 + ϵ) factor. These functions f̃I(t)

have complexity Õ
(
1
ϵ

)
. We start with combining the functions of period 1 and period 2

using (max,+)-convolution. To enforce the constraint that the total size of selected items

in period 1 does not exceed the capacity of period 1, we truncate f̃I(1) by c1 (so that any

solution using more capacity in period 1 results in −∞ reward) and do the convolution on

the truncated function f̃1. Since both functions are step functions with complexity Õ
(
1
ϵ

)
,

the (max,+) convolution can be done in time O
(

1
ϵ2

)
. The resulting function f̂2 would

have complexity O
(

1
ϵ2

)
. To avoid inflating the complexity throughout different periods

(which increases computation complexity), the function f̂2 is rounded down to the nearest

r0 · (1 + ϵ)k, where r0 := minj rj and k is some nonnegative integer. Note that r0 is a lower

bound of any solution value. After discarding small-reward items, we have that maxj rj
r0

≤ n
ϵ ,

which implies that nmaxj rj = n2
ϵ r0 is an upper bound for the optimal solution value.

14



Therefore, after rounding down the function values of f̂2 and obtaining f̃2, there are at most

log1+ϵ
n2
ϵ ≈ 1

ϵ log
n2
ϵ different values on f̃2. Now we have brought down the complexity of

f̃2 again to Õ
(
1
ϵ

)
, at an additional (1 + ϵ) factor loss in the approximation error. We then

move to period 3 and continue this pattern of (max,+)-convolution, truncation, and rounding

down. In the end when we reach period T , f̃T will only contain feasible solutions to (1.1),

and approximate fT with total approximation factor of (1 + ϵ)T ≈ (1 + Tϵ). Formally, we

have the following lemma which shows the approximation factor of f̃t for ft.

Lemma 1.2. Let f̃t be the functions obtained from Algorithm 1.1, and let ft be defined as

in (1.9). Then, f̃t approximates ft with factor (1 + ϵ)t, i.e., f̃t(c) ≤ ft(c) ≤ (1 + ϵ)tf̃t(c) for

all 0 ≤ c ≤ ct.

Lemma 1.2 and Proposition 1.1 together imply that f̃T (cT ), obtained from Algorithm 1.1,

approximates the optimal value of MPBKP (1.1) by a factor of (1 + ϵ)T ≈ (1 + Tϵ). In

Algorithm 1.1, obtaining f̃I(t) for all t = 1, . . . , T takes time Õ
(
n+ T/ϵ2.25

)
; computing

the (max,+)-convolution on f̃t−1 ⊕ f̃I(t) for all t take time T ·m · l = Õ
(
T/ϵ2

)
. Therefore,

Algorithm 1.1 has runtime Õ
(
n+ T/ϵ2.25

)
. As a result, we have the following proposition.

Proposition 1.2. Taking ϵ′ = Tϵ, Algorithm 1.1 achieves (1+ϵ′)-approximation for MPBKP

in Õ
(
n+ T 3.25

ϵ′2.25

)
.

1.3.2 A (1 + ϵ)-approximation in Õ
(
n+ T 2/ϵ3

)
In this subsection, we introduce another FPTAS for MPBKP which has time complexity

Õ
(
n+ T 2

ϵ3

)
. To roughly describe the main idea, we will again adopt the functional approach

to approximate (1.9). Instead of having an approximation of fI(t) for each t directly from

Lemma 1.1, we further partition I(t) into m + 1 subsets (m being specified later), i.e.,

I(t) := I(t)0 ⊔I(t)1 ⊔ · · · ⊔ I(t)m, where items in each subset have approximately the same

reward. Then, we have that fI(t) = fI(t)0 ⊕ fI(t)1 ⊕ · · · ⊕ fI(t)m := ⊕m
j=0fI(t)j , and by
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noting that the (max,+)-convolution ⊕ is commutative, the function ft as defined in (1.9)

can be computed as

ft :=


fc1I(1) t = 1,(
ft−1 ⊕ fI(t)

)ct
=
(
ft−1 ⊕ fI(t)0 ⊕ fI(t)1 ⊕ · · · ⊕ fI(t)m

)ct
t ≥ 2,

(1.11)

and (1.11) can be computed more efficiently due to some special properties of fI(t)j .

Before proceeding to the actual algorithm, we first have some preliminaries. A monotone

step function fI(c) with steps at c1, c2, . . . , cl is called r-uniform if it satisfies both of the

following conditions:

1. ∀c ∈ R+, fI(c) = kr for some nonnegative integer k,

2. ∃cj s.t. fI(cj) = kr =⇒ ∃cj′ s.t. fI(cj′) = k′r,∀k′ ≤ k nonnegative integers.

The monotone step function fI(c) with steps at c1, c2, . . . , cl is called pseudo-concave if

cj+2− cj+1 ≥ cj+1− cj ,∀j = 1, . . . , l− 2. The range of a function f is the set of all possible

function values. We then introduce the following lemma from Chan [46] for approximating

f ⊕ g when g is r-uniform and pseudo-concave.

Lemma 1.3 (Chan [46]). Let f and g be monotone step functions with total complexity l

and ranges contained in {−∞, 0}∪{A,B}. Then we can compute a monotone step function

that approximates f ⊕ g with factor 1 +O(ϵ′) and complexity Õ
(
1
ϵ′

)
in O(l) + Õ

(
1
ϵ′

)
time

if g is r-uniform and pseudo-concave.

With the above lemma, we present Algorithm 1.2 for MPBKP.

In Algorithm 1.2. We first discard all items with reward ri ≤ ϵ
n maxj rj . The maximum

we could lose is n · ϵn maxj rj = ϵmaxj rj , which is at most ϵ fraction of the optimal value.

We next round down the rewards of all remaining items to the nearest r0 · (1 + ϵ)k, where

r0 := minj rj and k is some nonnegative integer, so we lose at most a fraction of (1+ϵ) in the
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Algorithm 1.2 FPTAS for MPBKP in Õ
(
n+ T 2/ϵ3

)
Input: [n], c1, . . . , cT ▷ Set of items to be packed, cumulative capacities up to each time t
Output: f̃t ▷ Approximation of function ft

1: Discard all items with ri ≤ ϵ
n maxj rj and relabel the items

2: r0 ← mini ri ▷ Lower bound of solution value

3: r̂i ← r0 · (1 + ϵ)

⌊
log1+ϵ

(
ri
r0

)⌋
▷ Round down the reward of each item

4: m←
⌈
log1+ϵ

n2

ϵ

⌉
▷ Number of distinct rewards to be considered, each in the form r0 · (1 + ϵ)k

5: f̃0 ← −∞
6: for t = 1, . . . , T do
7: f̂t ← f̃t−1

8: for j = 0, . . . ,m do
9: I(t)j =

{
i ∈ I(t) | r̂i = r0 · (1 + ϵ)j

}
▷ Items in each I(t)j has the same rounded reward

10: Î(t)j = {(r̂i, qi) | i ∈ I(t)j} and obtain fÎ(t)j
▷ Using items with rounded rewards, build the function fÎ(t)j

11: Approximately compute f̂t = f̂t ⊕ fÎ(t)j using Lemma 1.3
12: end for
13: f̃t = f̂ ct

t ▷ f̃t is an approximation of ft
14: end for

rounding, and the number of distinct rounded rewards is bounded by m =
⌈
log1+ϵ

n2
ϵ

⌉
=

Õ
(
1
ϵ

)
. We begin with initializing f̃0 = −∞. Then, for period t = 1, we partition I(1) =

⊔mj=0I(1)j where all items in I(1)j have rounded reward r0 · (1+ ϵ)j . Denote by Î(1)j these

items with rounded rewards, and by adding these items greedily in nonincreasing order of

their sizes, we obtain fÎ(1)j , which is a (1 + ϵ) approximation of fI(1)j , and is r0 · (1 + ϵ)j-

uniform and pseudo-concave. By applying Lemma 1.3 for m+1 times (with ϵ′ to be specified

later), we obtain f̃0⊕fÎ(1)0⊕fÎ(1)1⊕· · ·⊕fI(1)m = f̃0⊕fÎ(1), which approximates f0⊕fI(1)
with an accumulative approximation factor (1+ ϵ)(1+ ϵ′)m+1, and is computed in total time

O(n1) + Õ
(
m+1
ϵ′

)
. Then, to ensure feasibility, f̃1 is obtained by taking truncation c1 on

f̃0 ⊕ fÎ(1), which becomes a (1 + ϵ)(1 + ϵ′)m+1 approximation of f1. We then move to

period 2 and continue this pattern of partition, convolutions, and truncation. In the end

as we reach period T , f̃T would only contain feasible solutions to (1.1), and approximates

fT with accumulated approximation factor (1 + ϵ)(1 + ϵ′)(m+1)T ≈ (1 + ϵ)(1 + (m+ 1)Tϵ′).

Formally, we have the following lemma which shows the approximation factor of f̃t to ft.

Lemma 1.4. Let f̃t be the functions obtained from Algorithm 1.2, and let ft be defined as
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in (1.9). Then, f̃t approximates ft with factor (1 + ϵ)(1 + ϵ′)(m+1)t, i.e., f̃t(c) ≤ ft(c) ≤

(1 + ϵ)(1 + ϵ′)(m+1)tf̃t(c) for all 0 ≤ c ≤ ct.

The proof of Lemma 1.4 relies on the following fact.

Lemma 1.5. At any period t, after running the inner “for” loop of Algorithm 1.2, we have

that (1 + ϵ′)m+1f̂t ≥ f̃t−1 ⊕ fÎ(t)0 ⊕ fÎ(t)1 ⊕ · · · ⊕ fÎ(t)m.

Proof of Lemma 1.5. We prove by induction on j = 0, 1, . . . ,m. Base case is when j = 0,

i.e., after the first round of the inner “for” loop, by Lemma 1.3, we have that (1 + ϵ′)f̂t ≥

f̃t−1 ⊕ fÎ(t)0 . For the induction step, assume that after j rounds of the inner “for” loop,

(1 + ϵ′)j f̂t ≥ f̃t−1 ⊕ fÎ(t)0 ⊕ · · · ⊕ fÎ(t)j−1
, we show that after j + 1 rounds, (1 + ϵ′)j+1f̂t ≥

f̃t−1⊕fÎ(t)0⊕· · ·⊕fÎ(t)j . As a notation, we denote by f̂oldt the f̂t right before the (j+1)th

round of the inner “for” loop, and by f̂newt the f̂t right after the (j +1)th round of the inner

“for” loop. Then, from Lemma 1.3 we have that (1 + ϵ′)f̂newt ≥ f̂oldt ⊕ fÎ(t)j , which implies

that

(1 + ϵ′)j+1f̂newt ≥ (1 + ϵ′)j f̂oldt ⊕ fÎ(t)j ≥ f̃t−1 ⊕ fÎ(t)0 ⊕ · · · ⊕ fÎ(t)j−1
⊕ fÎ(t)j ,

where the second inequality follows from the induction assumption. This finishes the induc-

tion step, and thus the proof of the lemma.

With Lemma 1.5 at hand, we now prove Lemma 1.4.

Proof of Lemma 1.4. By the construction of f̃t, it should be clear that f̃t ≤ ft. We prove

that (1 + ϵ)(1 + ϵ′)(m+1)tf̃t ≥ ft by induction on t. Base case is when t = 1, we have that

(1+ϵ)(1+ϵ′)m+1f̃1 = (1+ϵ)(1+ϵ′)m+1f̂c11 ≥ (1+ϵ)
(
f̃0 ⊕ fÎ(1)

)c1
= (1+ϵ)fc1Î(1) ≥ fc1I(1) =

f1, where the first inequality follows from Lemma 1.3, and the second inequality follows from

the rounding of the rewards. For the induction step, assume that (1+ϵ)(1+ϵ′)(m+1)tf̃t ≥ ft,

we show that (1 + ϵ)(1 + ϵ′)(m+1)(t+1)f̃t+1 ≥ ft+1.
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After partitioning I(t + 1) = I(t + 1)0 ⊔ I(t + 1)1 ⊔ · · · ⊔ I(t + 1)m, for any item

i ∈ I(t+ 1), by the rounding down, we have that (1 + ϵ)r̂i ≥ ri ≥ r̂i, which further implies

that (1 + ϵ)fÎ(t+1)j
≥ fI(t+1)j

≥ fÎ(t+1)j
,∀j = 0, 1, . . . ,m. Thus,

(1 + ϵ)
(
fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

)
≥ fI(t+1)

≥ fÎ(t+1)0
⊕ fÎ(t+1)1

⊕ · · · ⊕ fÎ(t+1)m
,

which, together with the induction assumption, implies that

(1 + ϵ)(1 + ϵ′)(m+1)t
(
f̃t ⊕ fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

)
≥ ft ⊕ fI(t+1).

By Lemma 1.5, after the inner “for” loop in Algorithm 1.2, we have that (1 + ϵ′)m+1f̂t+1 ≥

f̃t ⊕ fÎ(t+1)0
⊕ fÎ(t+1)1

⊕ · · · ⊕ fÎ(t+1)m
, which implies that

(1 + ϵ)(1 + ϵ′)(m+1)(t+1)f̂t+1

≥ (1 + ϵ)(1 + ϵ′)(m+1)(t+1)
(
f̃t ⊕ fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

)
≥ ft ⊕ fI(t+1).

Taking truncation on both sides, we conclude that

(1 + ϵ)(1 + ϵ′)(m+1)(t+1)f̃t+1 = (1 + ϵ)(1 + ϵ′)(m+1)(t+1)f̂
ct+1
t+1 ≥

(
ft ⊕ fI(t+1)

)ct+1
= ft+1.

This finishes the induction step, and thus the proof of the lemma.

Lemma 1.4 and Proposition 1.1 together imply that f̃T (cT ), obtained from Algorithm 1.2,

approximates the optimal value of MPBKP (1.1) by a factor of (1 + ϵ)(1 + ϵ′)(m+1)T ≈

(1 + ϵ + mTϵ′). In Algorithm 1.2, during each of the periods t = 1, . . . , T , approximately

computing the (max,+)-convolutions on f̂t ⊕ fÎ(t)j for all j = 0, 1, . . . ,m take total time
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Õ
(
nt + (m+ 1)/ϵ′

)
. Therefore, Algorithm 1.2 has total runtime Õ

(
n+ (m+ 1)T/ϵ′

)
. As a

result, we have the following proposition.

Proposition 1.3. Taking ϵ = mTϵ′ and m = Õ(1/ϵ), Algorithm 1.2 achieves (1 + ϵ)-

approximation for MPBKP in Õ
(
n+ T 2

ϵ3

)
.

1.4 Approximation Algorithms for MPBKP-S

In this section, we provide two approximation algorithms for MPBKP-S. The first one is an

FPTAS with time complexity O
(
Tn log n

ϵ2

)
, and the second one is a parameterized approx-

imation algorithm that (under Assumption 1.1) achieves
(
1 + ϵ

1−β
)

approximation factor

with time complexity Õ
(
n+ T 3.25

ϵ2.25

)
.

1.4.1 FPTAS for MPBKP-S

In this subsection, we provide an FPTAS for the MPBKP-S with time complexityO
(
Tn log n

ϵ2

)
.

An alternative FPTAS with time complexity O
(
n2 log n

ϵ

)
is provided in Appendix 1.7.4.

Combining the two, we show that our algorithms achieve (1+ ϵ) approximation ratio in time

O
(
n log n

ϵ ·min
{
T
ϵ , n

})
, which proves Theorem 1.2. We should note that the algorithm in

the previous section does not apply here: We could similarly define a function which gives

the maximum profit (= reward−penalty) under a given capacity constraint, but the main

obstacle is on the (max,+)-convolution, because profit does not “add up”. In other words,

the total profit we earn by selecting items in the set S1 ∪ S2 is not the sum of the profits

we earned by selecting S1 and S2 separately. For this reason, we can no longer rely on the

techniques used in function approximation and (max,+)-convolution as in Chan [46], Jin

[121]. Instead, our main idea is motivated by the techniques that originated from earlier

papers (Ibarra and Kim [113], Lawler [135]), but adapting their technique to MPBKP-S

requires significant modifications as we show in this section. We restrict our presentation to
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the case Bt = B for readability, but our algorithms and analysis generalize in a straightfor-

ward manner when the penalties for buying capacity are heterogeneous {B1, . . . , BT } (by

replacing B with minτ≤tBτ in the calculations of profit/penalty at period t on line 7 of

Algorithm 1.3).

Preliminaries: We first introduce some notation. From now on, let R(S) :=∑i∈S ri. The

optimal solution set to (1.5) is denoted by S∗. The total profit earned can be expressed as

a function of the solution set S:

P(S) = R(S)−B ·
T∑
t=1

 ∑
j∈S∩I(t)

qj −max

ct −
∑

j∈S,dj≤t
qj , ct − ct−1


+ . (1.12)

Let pi be the profit of item i, which is defined as the profit earned if we select only i, i.e.,

pi = ri − B ·
(
qi − cdi

)+. Without loss of generality, we assume that each item i is by

itself profitable, i.e., pi ≥ 0, so one profitable solution would be {i}. Let P := maxi pi and

P̄ :=
∑

i∈[n] pi. The following bounds on P(S∗) follow:

P ≤ P(S∗) ≤ P̄ ≤ nP. (1.13)

Partition of items: We partition the set of items [n] into two sets: a set of “large” items

IL and a set of “small” items IS such that we can bound the number of large items in any

optimal solution. The main idea is to use dynamic programming to pick the large items in

the solution, and a greedy heuristic for ‘padding’ this partial solution with small items. The

criterion for small and large items is based on balancing the permissible error ϵP(S∗) equally

in filling large items and filling small items. Instead of first packing all large items and then

all small items, we consider items in the order of their deadlines, and for each deadline t,

the large items are selected first and then the small items are selected greedily in order of

their reward densities. As a result, the approximation error due to large items overall will

be 1
2ϵP(S∗) and the error due to the small items with each deadline will be 1

2T ϵP(S∗). This
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gives a total approximation error of 1
2ϵP(S∗) + T · 1

2T ϵP(S∗) = ϵP(S∗).

Suppose that we can find some P0 that satisfies (1.14).

P0 ≤ P(S∗) ≤ 2P0. (1.14)

Then, the set of items is partitioned as follows.

IL :=

{
i ∈ [n] | pi ≥

1

2T
ϵP0

}
; IS :=

{
i ∈ [n] | pi <

1

2T
ϵP0

}
. (1.15)

This partition is computed in O(n) time and is not the dominant term in time complexity.

Let nL = |IL| and nS = |IS |, so that nL + nS = n. Further, let

IL(t) := {i ∈ SL | di = t} , and IS(t) := {i ∈ SS | di = t}

denote the set of large and small items, respectively, with deadline t. We will assume that the

items in IL are indexed in non-decreasing order of their deadlines, i.e., ∀i, j ∈ IL such that

j ≥ i, we have that di ≤ dj . Denote by IL(t) as the index of the last item with deadline t,

i.e., IL(t) := maxi∈SL∩IL(t) i. For each time t, we will also sort the small items in IS(t)

according to their reward densities, i.e., ∀i < j and i, j ∈ IS(t), ri
qi
≥ rj

qj
. This sorting only

takes place once for each guess P0, and does not affect our overall time complexity result.

Algorithm overview: Our FPTAS is given in Algorithm 1.6 which uses a doubling trick

to guess the value of P0 satisfying (1.14), and for each guess uses Algorithm 1.5 as a sub-

routine. Algorithm 1.5 is the main algorithm for MPBKP-S, which first selects the items

with deadline 1, then the items with deadline 2, and so on. For each deadline t, we maintain

two sets of partial solutions: the first, Ãt(p), corresponds to an approximately optimal (in

terms of leftover capacity carried forward to time t + 1) subset of large and small items

with deadline at most t and some rounded profit p; and the second, Ât(p), corresponds to
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Algorithm 1.3 DP on large items for MPBKP-S
Input: IL,∆c, ▷ Set of (large) items to be packed, additional capacity available for packing

Ã(p) for all p =
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ ▷ A set of partial solutions

Output: Â(IL, p) for all p =
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ ▷ Set of partial solutions after packing IL

1: Initialize ∀p : Â(0, p) := Ã(p) + ∆c
2: for i = 1, . . . , IL do
3: for p =

{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ do

4: Â(i, p) := Â(i− 1, p) ▷ If reject item i
5: end for
6: for p̄ =

{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ do

7: p = p̄+ r̂i −
⌈
B
(
qi −max

{
0, Â(i− 1, p̄)

})+⌉
κ

8: Â(i, p) = max
{
Â(i, p), Â(i− 1, p̄)− qi

}
▷ Accept i

9: end for
10: for p =

{⌈
16T
ϵ2

⌉
,
⌈
16T
ϵ2

⌉
− 1, . . . , 1

}
· κ do

11: if Â(i, p− κ) < Â(i, p) then
12: Â(i, p− κ) = Â(i, p)
13: end if
14: end for
15: end for

the optimal appending of large items with deadline t to the approximately optimal set of

solutions corresponding to Ãt−1.

Given Ãt−1, we first select large items from IL(t) using dynamic programming to obtain

Ât, which is done in Algorithm 1.3. In other words, given the partial solutions Ãt−1(p̄) for

all p̄ ∈
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
·κ, Ât(p) is the maximum capacity left when earning rounded profit

(precise definition given in (1.19)) p by adding items in IL(t). We then use a greedy heuristic

to pick small items from IS(t) to obtain Ãt, which is done in Algorithm 1.4. Specifically,

our goal in Algorithm 1.4 is to obtain the partial solutions Ãt(·) given the partial solutions

Ât(·) by packing the small items IS(t). We initialize Ãt(p̄) with Ât(p̄), and for each p̄ we

try to augment the solution corresponding to Ât(p̄) using a subset ĨS(t) ⊆ IS(t) defined as

ĨS(t) := {i ∈ IS(t) | qi ≤ Ât(p̄)}.

The small items in ĨS(t) are sorted according to their reward densities, and are added to the

solution of Ât(p̄) one by one. After each addition of a small item, if the new total rounded
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Algorithm 1.4 Greedy on small items for MPBKP-S
Input: IS , Â(p) for all p =

{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ. ▷ Set of small items, set of partial solutions

Output: Ã(p) for all p =
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ ▷ Set of partial solutions after packing IS

1: Initialize ∀p : Ã(p) = Â(p)
2: for p̄ =

{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ do

// Filter out small items with size larger than Â(p)

3: ĨS ← ∅
4: for i ∈ IS do
5: if Â(p̄) ≥ qi then
6: ĨS ← ĨS ∪ {i}
7: end if
8: end for
9: R̃0′ = 0, q̃0′ = 0, and relabel the items in ĨS as

{
1′, . . . , |ĨS |′

}
(in decreasing order of reward density)

10: for i′ = 1′, . . . , |ĨS |′ do
11: R̃i′ = R̃(i−1)′ + ri′

12: q̃i′ = q̃(i−1)′ + qi′

13: end for
14: // Add small items using Greedy algorithm
15: for i′ = 1′, . . . , |ĨS |′ do
16: if q̃i′ ≤ Â(p̄) then
17: p =

⌊
p̄+ R̃i′

⌋
κ

18: Ã(p) = max
{
Ã(p), Â(p̄)− q̃i′

}
19: end if
20: end for
21: end for

reward is p, we compare the leftover capacity with current Ãt(p), and update Ãt(p) with

the new solution if it has more leftover capacity. We continue this add-and-compare (and

possibly update) until we reach the situation where adding the next small item overflows the

available capacity.

Intuitively, for any amount of capacity available to be filled by small items, and a min-

imum increase in profit, the optimal solution either packs a single item from IS(t) \ ĨS(t)

in which case the loss by ignoring items in this set is bounded by the maximum reward of

any small item, or the optimal solution only contains items from ĨS(t) in which case the

space used by this optimal set of items is lower bounded by the a fractional packing of the

highest density items in ĨS(t). During Algorithm 1.4, one of the solutions we would consider

would be the integral items of this fractional solution, and lose at most 1
2T ϵP0 in profit, and
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Algorithm 1.5 DP on large items and Greedy on small items for MPBKP-S

1: Define κ = ϵ2P0

8T
2: Define r̂i = ⌊ri⌋κ ▷ Round down reward

// Ãt(p) = leftover capacity for the algorithm’s partial solution when earning
(rounded) profit p using items with deadlines at most t (small and large)
// Ât(p) = capacity left for the algorithm’s partial solution when earning (rounded)
profit p by selecting large items in IL(t) with rounded down rewards r̂, given the
partial solutions Ãt−1(p)

3: Initialize Â(0, p) = Ã0(p) =

{
0 p = 0,

−∞ p > 0.

4: for t = 1, . . . , T do
5: Run Algorithm 1.3 with IL = IL(t),∆c = ct−ct−1, and Ã(p) = Ãt−1(p) for all p =

{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
·

κ, and obtain Ât(p) := Â(IL, p) for all p.
6: Run Algorithm 1.4 with IS = IS(t) and Â(p) = Â(IL(t), p) for all p =

{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ, and

obtain Ãt(p) := Ã(p) for all p.
7: end for

Algorithm 1.6 FPTAS for MPBKP-S in O(Tn log n/ϵ2)

1: P0 ← P̄
2: p∗ ← 0
3: while p∗ < (1− ϵ)P0 do
4: P0 ← P0

2

5: Run Algorithm 1.5 with the current P0.
6: p∗ ← max{

p∈{0,...,⌈ 16T
ϵ2
⌉}·κ

ÃT (p)>−∞

} p

7: end while

obtain a solution with still smaller space used (more leftover capacity) than the fractional

solution. Accumulation of these errors for t periods then will give us the invariant: the par-

tial solution Ãt(p) obtained as above has more leftover capacity than any solution obtained

by selecting items from ∪tt′=1IL(t′) with rounded rewards and rounded penalties, and items

from ∪tt′=1IS(t′) with original (unrounded) rewards such that the rounded total profit is at

least p+ 1
2T ϵP0t+ κt.

Our main theorem for the approximation ratio for MPBKP follows.

Theorem 1.4 (Partially restating Theorem 1.2). Algorithm 1.6 is a fully polynomial approx-

imation scheme for the MPBKP-S, which achieves (1 + ϵ) approximation ratio with running

time O
(
Tn log n

ϵ2

)
.
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Remark 1.1. Theorem 1.4, together with Theorem 1.8, implies that we can obtain a (1+ ϵ)

approximate solution for the MPBKP-S in O
(
n log n

ϵ ·min
{
T
ϵ , n

})
, where Algorithm 1.12

is used when T/ϵ≫ n and Algorithm 1.6 is used when T/ϵ≪ n.

Remark 1.2. One may question if it is possible to achieve Õ
(
n+ Tα/ϵβ

)
for some α, β,

as in the 0-1 Knapsack problem. We note that using a finer rounding technique as in Lawler

[135], the number of large items can be further bounded from O(n) to O
(
T
ϵ2

)
, which would

reduce the runtime of the DP (for large items) from O
(
nT/ϵ2

)
to Õ

(
n+ T 2/ϵ4

)
. However,

the small items still have to be added one by one to the solutions of Ât(p̄), which in the

worst case takes O
(
nT
ϵ2

)
. We cannot first group the small items into sets of partial solutions

and do (max,+) convolution with solution sets of Ât(p), which would take O
(
T 2

ϵ4

)
(similar

to Ibarra and Kim [113], Lawler [135]), because again the profits of two sets do not add up

when we take the union of these two sets. Therefore, we do not further bound the number of

large items as it does not improve the overall asymptotic time complexity (since the bottleneck

is on packing small items).

1.4.2 Parameterized Approximation for MPBKP-S

In this subsection, we provide a parameterized approximation algorithm with
(
1 + ϵ

1−β
)
-

approximation factor and Õ
(
n+ T 3.25

ϵ2.25

)
runtime. We will again use the results of the 0-1

Knapsack problem [121] as building blocks. However, unlike in Section 1.3.1, where we first

obtained the approximated function that gives maximum reward (by selecting items in that

period) on every capacity, and then combined the “truncated” version of these functions using

the (max,+)-convolution, in MPBKP-S where the capacity constraints can be violated by

paying penalties, the total profit of two sets of items do not equal to the sum of the profits

of each set separately. As a result, we cannot rely on the (max,+) convolution to combine

the sets of items from different periods.

We propose, in this subsection, an algorithm that builds a dynamic programming on the
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approximately maximum leftover capacities for each period and each profit, based upon the

function approximation results on the (approximated) maximum reward for each capacity.

This algorithm differentiates itself from the one in Section 1.4.1 in the sense that items are

no longer divided into “large” ones and “small” ones. Further, instead of keeping track of the

additional profit obtained from each item, we use the approximated function which focuses

on the rewards. For each period we obtain a number of candidate solution sets, each earning

the approximately maximum reward given its total size. We then consider adding each set

(with all items in the set together) and see how much additional profit we could earn. By

focusing only on rewards while building the item sets for each period, we are able to utilize

the results from Jin [121] and the algorithm runs in Õ
(
n+ T 3.25

ϵ2.25

)
, which in general performs

better than O
(
nT log n

ϵ2

)
when n is large. In the end, nevertheless, the approximation factors

of these rewards (and penalties) will need to be converted back to profits, and that is where

we need the additional Assumption 1.1.

We first review some notation that was introduced in the previous sections. Recall that

the function fI for I = {(r1, q1), . . . , (rn′ , qn′)} is defined as in (1.7): For all c ∈ R,

fI(c) = max
x1,...,xn′

∑
i∈I

rixi :
∑
i∈I

qixi ≤ c, x1, . . . , xn′ ∈ {0, 1}

 ,

while f̃I is a (1 + ϵ) approximation of fI , with complexity Õ (1/ϵ), that can be obtained in

Õ
(
n+ 1/ϵ2.25

)
by Lemma 1.1. The set of items with deadline t is denoted by I(t). For any

set of items S, we let P(S) be the profit of set S, and let pi := P({i}) and p0 := mini∈[n] pi.

With these preliminaries, we present our parameterized algorithm for MPBKP-S.

We now describe the intuition behind Algorithm 1.7, with the rigorous proofs left to

Appendix. At the beginning, we discard all items with pi ≤ ϵ
n maxj pj . The maximum total

profit we could lose is bounded by n · ϵn maxj pj = ϵmaxj pj , which is at most ϵ fraction of

the optimal profit. For each time t, we obtain partial solutions Ã(t, p) that corresponds to

27



Algorithm 1.7 Parameterized approximation for MPBKP-S
Input: [n], a1, . . . , aT ▷ Set of items to be packed, incremental capacities at each time t
Output: Ã(T, p)

1: Discard all items with pi ≤ ϵ
n maxj pj and relabel the items ▷ pi is the profit earned with item i itself

2: p0 ← mini pi ▷ Lower bound of optimal profit
3: m←

⌈
log1+ϵ

n2

ϵ

⌉
▷ number of distinct p values, each being p0 times a power of (1 + ϵ)

// Ã(t, p) = maximum capacity left at time t when earning (rounded) profit at least p
using items in ∪tt′=1I(t′) with approximated functions f̃I(t)

4: Initialize Ã(0, p) =

{
0 p = 0,

−∞ p > 0.

5: for t = 1, . . . , T do
6: Obtain f̃I(t) that approximates fI(t) with factor 1 + ϵ using Lemma 1.1
7: l← complexity of f̃I(t) ▷ l = Õ

(
1
ϵ

)
// In reality, f̃I(t) is saved as l pairs {(Ct

1, R
t
1), (C

t
2, R

t
2), . . . , (C

t
l , R

t
l))}

8: for p = 0, p0 · (1 + ϵ){−1,0,1,...,m} do
9: Ã(t, p) := Ã(t− 1, p) + at

10: end for
11: for p̄ = 0, p0 · (1 + ϵ){−1,0,1,...,m} do
12: for k = 1, . . . , l do

13: if p̄+Rt
k −B

(
Ct

k −max
{
0, Ã(t− 1, p̄)

}
− at

)+
≥ p0

1+ϵ then

14: p = p0 · (1 + ϵ)

⌊
log1+ϵ

(
p̄+Rt

k−B(Ct
k−max{0,Ã(t−1,p̄)}−at)

+

p0

)⌋
15: Ã(t, p) = max

{
Ã(t, p), Ã(t− 1, p̄)− Ctk + at

}
16: end if
17: end for
18: end for
19: for p = p0 · (1 + ϵ){m,m−1,...,1} do
20: if Ã(t, p/(1 + ϵ)) < Ã(t, p) then
21: Ã(t, p/(1 + ϵ)) = Ã(t, p)
22: end if
23: end for
24: end for

an approximate optimal (in terms of leftover capacity carried forward to time t + 1) set of

items with deadline at most t and total rounded profit (precise definition given in (1.22)) at

least p. Specifically, we first obtain f̃I(t) that approximates fI(t) (as defined in (1.7)) with

factor 1 + ϵ. By Lemma 1.1, f̃I(t) is a step function with at most l = Õ (1/ϵ) “steps”, i.e.,

the function f̃I(t) can be fully characterized as l size-reward pairs, each corresponding to

one “step” of the function: {(Ct
1, R

t
1), (C

t
2, R

t
2), . . . , (C

t
l , R

t
l))}.

Then, we consider adding the sets of items corresponding to each of these pairs, all of

which having deadline t, to the existing partial solutions that include items with deadlines up
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to t−1, via dynamic program. As we will prove later, given the partial solutions Ã(t−1, p),

the Ã(t, p) we obtained from Algorithm 1.7 has the maximum leftover capacity when earning

rounded profit p by adding items in I(t). To limit the number of p’s to be considered in

the dynamic program, after trying to add each set of items, we always round the total profit

down to the nearest p0(1 + ϵ)k for some integer k ≥ −1 . Note that p0 is a lower bound

of profit for any solution, and p0/(1 + ϵ) is the lower bound of the approximated profit for

any solution. After discarding small-reward items, we have that maxj pj
p0

≤ n
ϵ , which implies

that nmaxj pj = n2
ϵ p0 is an upper bound for the optimal profit. Therefore, with p being

the rounded down profit, there are at most log1+ϵ
n2

ϵ(1+ϵ)
≈ 1

ϵ log
n2
ϵ different values of p in

Ã(t, p). In the end, we obtain the solutions corresponding to Ã(T, p) and find the one with

largest p while keeping Ã(T, p) ̸= −∞. The profit of this solution, after all the rounding

downs, will have accumulated approximation factor
(
1 + ϵT

1−β
)
, and the total runtime will

be Õ
(
n+ T/ϵ2.25

)
. After scaling ϵ properly, we have the following theorem.

Theorem 1.5. Under Assumption 1.1, Algorithm 1.7 achieves
(
1 + ϵ

1−β
)
-approximation

factor for MPBKP-S with runtime Õ
(
n+ T 3.25

ϵ2.25

)
.

The formal proof of Theorem 1.5 is left to Appendix 1.7.2.2.

1.5 Approximation Algorithms for MPBKP-SS

In this section, we consider the MPBKP-SS as defined in (1.6). We first show in Section 1.5.1

that when all items have size 1, a greedy algorithm achieves 2-approximation. Then, in

Section 1.5.2, we provide a parameterized approximation algorithm that achieves
(
1 + ϵ

1−β
)
-

approximation with time complexity Õ
(
n+ 1/ϵT

)
, where we also address the difficulty of

this problem by its nature.
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1.5.1 A Greedy Algorithm for a Special Case of MPBKP-SS

In this subsection, we consider the special case of MPBKP-SS when all items have the same

size, i.e., qi = q,∀i ∈ [n]. We again only present for the case Bt = B, ∀t ∈ [T ]. The problem

is written as

max
x,y

∑
i∈[n]

rixi − Eω

B · T∑
t=1

yt(ω)

 (1.16a)

s.t.
∑

i∈I(1)∪···∪I(t)
xi −

t∑
s=1

ys(ω) ≤
t∑

s=1

at(ω) = ct(ω), ∀ω ∈ Ω, 1 ≤ t ≤ T (1.16b)

xi ∈ {0, 1}, yt ≥ 0. (1.16c)

As we point out in Appendix 1.7.5, in the deterministic problems (MPBKP or MPBKP-

S), when items all have sizes qi = 1, greedily adding items one by one in decreasing order of

their rewards leads to the optimal solution. For MPBKP-SS, as the incremental capacities

are now stochastic, we wonder if there is any greedy algorithm performs well. We propose

Algorithm 1.8, where we start with an empty set, and greedily insert the item that brings the

maximum increment on expected profit, and we stop if adding any of the remaining items

does not increase the expected profit.

Algorithm 1.8 Greedy algorithm according to profit change
1: S ← ∅
2: s← 1
3: while s == 1 do
4: i∗ ← argmaxi/∈S {P(S ∪ {i})− P(S)}
5: if P(S ∪ {i∗})− P(S) ≥ 0 then
6: S ← S ∪ {i∗}
7: else
8: s← 0
9: end if

10: end while
11: Sp ← S
12: Return Sp
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Let S∗ be an optimal solution, i.e., S∗ ∈ argmaxS⊆[n]P(S) := R(S)−B · Φ(S), where

Φ(S) := E


T∑
t=1

 ∑
j∈I(t)∩S

qj − max
0≤t′<t

ct − ct′ −
∑

j∈S:t′+1≤dj≤t−1
qj


+

is the expected quantity of overflow on set S, and let Sp be the set output by Algorithm 1.8.

Then, we have the following theorem.

Theorem 1.6 (Restating Theorem 1.3). Algorithm 1.8 achieves 2-approximation factor for

MPBKP-SS when items have the same size, i.e., P(Sp) ≥ 1
2P(S∗) in O

(
n2T |Ω|

)
.

The proof of the 2-approximation could be more nontrivial than one may think. The idea

is to look at the greedy solution set Sp and the optimal solution set S∗, where we will use the

dual to characterize the optimal solution on each sample path. By swapping each item in Sp
to S∗ in replacement of the same item or two other items, we construct a sequence of partial

solutions of the greedy algorithm as well as modified optimal solution set, while maintaining

the invariant that the profit of S∗ is bounded by the sum of two times the profit of items

in Sp swapped into S∗ so far and the additional profit of remaining items in the modified

optimal solution set. We leave the formal proof of Theorem 1.6 to Appendix 1.7.3.1.

1.5.2 Parameterized Approximation for MPBKP-SS

In this subsection, we consider the most general problem as defined in (1.6). Now that the

incremental capacities for each period are stochastic, the problem becomes even more chal-

lenging. Neither algorithms we provided for MPBKP-S could apply. To see this, recall that

both the FPTAS and the parameterized approximation algorithm we provided in Section 1.4

rely on the dynamic program that keeps tracking on the maximum leftover capacity to earn

at least some level of profit p using items with deadlines no later than t. Unfortunately, such

dynamic program could not be naively applied to solve the problem MPBKP-SS. Specifically,
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in MPBKP-S, for different sets of partial solutions at time t (sets of items with deadlines up

to t) that earn the same (rounded) profit, we only need to consider the one with the maxi-

mum leftover capacity when moving to t + 1. Here the leftover capacities are real numbers

and have a total ordering. For MPBKP-SS, if we set up the DP in a similar manner, we

would want to keep only the solution with the best distribution of leftover capacities. For

any two distributions of leftover capacities F1 and F2, we would prefer F1 over F2 if and

only if there is a binary relation F1 ⪰ F2, which is defined as the following.

Definition 1.1. Let F1 and F2 be two probability distributions over R. We say that F1 ⪰ F2
if PC1∼F1(C1 ≥ c) ≥ PC2∼F2(C2 ≥ c), ∀c ∈ R.

It should be clear that, the binary relation ⪰ as defined above is in general a partial order,

but not a total order, on the set of the distributions of leftover capacities. We then have

the problem of which partial solution (and therefore which distribution of leftover capacity)

should be kept when moving to the next period. To guarantee the approximation factor, it is

likely that we would want to keep more than one (or even infinitely many) partial solutions

on the Pareto frontier with respect to the partial order, all of which earn profit p at time t.

The total number of candidate solutions could easily grow superexponentially in T .

Given these difficulties, we only focus on rewards and not profits when building candidate

solutions. Each candidate solution is composed of T subsets of items where items in each

subset have the same deadline. For every period t ∈ [T ], by adopting the result on 0-

1 Knapsack problem, we obtain Õ(1/ϵ) number of sets, each achieving approximately best

reward with minimum total size. A candidate solution is then built by taking one set of items

in each period. As a result, there are Õ
(
1/ϵT

)
number of candidate solutions. Assuming

that for any set of items S, its profit P(S) can be returned immediately. We simply find the

best solution among the Õ
(
1/ϵT

)
candidates that returns the highest profit. We present

this algorithm as Algorithm 1.9, and the approximation result as Theorem 1.7.
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Algorithm 1.9 Parameterized approximation for MPBKP-SS
Input: [n],P(·) ▷ Set of items to be packed, profit function that returns the profit of any given set
Output: S ′

1: for t = 1, . . . , T do
2: Obtain f̃I(t) that approximates fI(t) with factor 1 + ϵ using Lemma 1.1
3: lt ← complexity of f̃I(t) ▷ lt = Õ

(
1
ϵ

)
4: Save the “steps” of f̃I(t) as lt pairs {(Ct

1, R
t
1), (C

t
2, R

t
2), . . . , (C

t
l , R

t
lt
))}

5: St0 ← ∅
6: for k = 1, . . . , lt do
7: Stk := set of items corresponding to (Ct

k, R
t
k)

8: end for
9: end for

10: S ′ ← argmax{ S=∪t
s=1S

s
ks

ks∈{0,1,...,ls}

} P(S)

Theorem 1.7. Under Assumption 1.2, Algorithm 1.9 achieves
(
1 + ϵ

1−β
)
-approximation

factor for MPBKP-SS with runtime Õ
(
n+ 1/ϵT

)
.

The formal proof of Theorem 1.7 is left to Appendix 1.7.3.2.

1.6 Comments and Future Directions

The current work represents to the best of our knowledge the first FPTAS and theoretical

guarantees for multi-period variants of the classical knapsack problem. For MPBKP, we

obtained the runtime Õ
(
n+ (T 3.25/ϵ2.25)

)
. This was done via the function approximation

approach, where a function is approximated for each period. The runtime increases in

T since we conduct T number of rounding downs, one after each (max,+)-convolution.

An alternative algorithm with runtime Õ
(
n+ T 2

ϵ3

)
is also provided. For MPBKP-S, we

obtained an FPTAS with runtime O
(
nT log n

ϵ2

)
, as well as a parameterized algorithm with

approximation factor
(
1 + ϵ

1−β
)

and runtime Õ
(
n+ (T 3.25/ϵ2.25)

)
. For MPBKP-SS, the

same approximation factor
(
1 + ϵ

1−β
)

can be achieved in Õ
(
n+ (1/ϵT )

)
, and a greedy

algorithm achieves 2-approximation for the special case that all items have size 1.

There are a number of research directions in this area that could be pursued in the future,

and we mention here a few of them. For MPBKP, note that the function we approximated
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is in the same form as used in the 0-1 knapsack problem [46]. It is thus interesting to ask if

we could instead directly approximate the following function:

fI(c) = max
x


∑
i∈I

rixi :
∑

i∈∪t
t′=1
I(t′)

qixi ≤ ct,∀t ∈ [T ], x ∈ {0, 1}n
 ,

where I = ∪Tt=1I(t) and c = {c1, . . . , cT } is a T -dimensional vector. Here we impose all T

constraints in the function. The hope is that, if the above function could be approximated,

and if we could properly define the (max,+)-convolution on T dimensional vectors (and have

a fairly easy computation of it), then we may get an algorithm that depends more mildly

on T .

For MPBKP-S and MPBKP-SS, there seems to be less we can do without further assump-

tions. One direction to explore is parameterized approximation schemes: assuming that in

the optimal solution, the total (expected) penalty is at most β fraction of the total reward.

Then we may just focus on rewards. Our ongoing work suggests that an approximation

factor of
(
1 + ϵ

1−β
)

may be achieved in Õ
(
n+ (T 3.25/ϵ2.25)

)
for MPBKP-S, and the same

approximation factor in Õ
(
n+ 1

ϵT

)
for MPBKP-SS.

We further note that the objective function for the three multiperiod variants are in

fact submodular (but not non-negative, or monotone). Whether we can get a constant

competitive solution in time Õ(n), using approaches in submodular function maximization,

is also an intriguing open problem.

Finally, motivated by applications, one natural extension that the authors are working

on now is when there is a general non-decreasing cost function ϕt(∆c) for procuring capacity

∆c at time t, and the goal is to admit a profit maximizing set of items when the unused

capacity can be carried forward. Another extension is when there is a bound on the leftover

capacity that can be carried forward, and we wonder how much the current results would

change. All of these are interesting directions that may be worth exploring.
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1.7 Appendix

1.7.1 Proofs for Section 1.3

Proof of Proposition 1.1. We show that the solution corresponding to fT (c) is optimal for

cT = c among all solutions feasible to (1.1). We prove by induction on T . Base case is

T = 1, this reduces to 0-1 Knapsack problem, and by definition, the solution corresponding

to fI(1)(c) is the optimal feasible solution when the Knapsack capacity is c. For the induction

step, assume that the solution of fT−1(c′) is the optimal feasible solution to (1.1) for the

T − 1 period problem and cT−1 = c′, we show that the solution corresponding to fT (c) is

also the optimal feasible solution to (1.1) for the T period problem and cT = c.

By definition,

fT (c) =
((

fT−1 ⊕ fI(T )
)
(c)
)cT

=

(
max
c′∈R

(
fT−1(c′) + fI(T )(c− c′)

))c

.

We first show that fT (c) is at least the optimal value of (1.1) when cT = c. Suppose that, in

the optimal solution of (1.1), the total size of accepted items up to time T −1 is ĉ with ĉ < c,

then the optimal value is fT−1(ĉ) + fI(T )(c − ĉ) since fT−1(ĉ) is the maximum achievable

reward with cT−1 = ĉ (by induction assumption) and fI(T )(c− ĉ) is the maximum achievable

reward using items from I(T ) with space constraint c− ĉ. Thus, we have that the optimal

value fT−1(ĉ) + fI(T )(c− ĉ) ≤
(
maxc′∈R

(
fT−1(c′) + fI(T )(c− c′)

))c
= fT (c).

We next show the other direction: the optimal value of (1.1) for the T period prob-

lem with cT = c is at least fT (c). It suffices to show that every possible solution con-

sidered in fT (c) satisfies the feasibility constraints in (1.1). By induction assumption,

every solution of fT−1(c′) satisfies the constraints up to time T − 1. When computing

fT (c), we note that since fT−1(c′) is a function truncated at cT−1, which implies that

fT−1(c′) = −∞ for any c′ > cT−1. Therefore, any c′ > cT−1 must not be in the solution

of maxc′∈R
(
fT−1(c′) + fI(T )(c− c′)

)
. As a result, every solution of fT (c) is enforcing that
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c′ ≤ cT−1, and satisfies the feasibility constraints up to time T .

Combining both directions, we conclude the induction step, and thus the proof of the

proposition.

Proof of Lemma 1.2. By the construction of f̃t, it should be clear that f̃t ≤ ft. We prove

that (1 + ϵ)tf̃t ≥ ft by induction on t. Base case is when t = 1, we have that (1 + ϵ)f̃1 =

(1+ϵ)f̃c1I(1) ≥ fc1I(1) = f1, where the inequality follows from Lemma 1.1. As for the induction

step, assume that (1+ ϵ)t−1f̃t−1 ≥ ft−1, we show that (1+ ϵ)tf̃t ≥ ft. Again, by Lemma 1.1

we have that

(1 + ϵ)t−1f̃I(t) ≥ (1 + ϵ)f̃I(t) ≥ fI(t).

Combined with the induction hypothesis, we have that

(1 + ϵ)t−1
(
f̃t−1 ⊕ f̃I(t)

)
=
(
(1 + ϵ)t−1f̃t−1

)
⊕
(
(1 + ϵ)t−1f̃I(t)

)
≥ ft−1 ⊕ fI(t).

Taking truncation on both sides, we have that

(1 + ϵ)t−1f̂t = (1 + ϵ)t−1
(
f̃t−1 ⊕ f̃I(t)

)ct ≥ (ft−1 ⊕ fI(t)
)ct

= ft.

Because of rounding down, we have that (1 + ϵ)f̃t ≥ f̂t. Therefore,

(1 + ϵ)tf̃t ≥ (1 + ϵ)t−1f̂t ≥ ft.

This concludes the induction step, and thus the proof of the lemma.

1.7.2 Proofs for Section 1.4

This subsection consists of two parts. The first part is devoted to the proof of Theorem 1.4,

while the second part is devoted to the proof of Theorem 1.5.

36



1.7.2.1 Proof of Theorem 1.4

In this part, we prove Theorem 1.4. To proceed, we first present the following result on

Algorithm 1.3.

Lemma 1.6. Given a set of partial solutions with leftover capacities Ã(p) for all p ∈{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ, the additional capacity available for packing ∆c, and the set of large

items to be added IL := {1, . . . , IL}, the output of Algorithm 1.3, Â(IL, p), satisfies:

Â(IL, p) = max
I ′,p̄ : I ′⊆IL

∆P̂(I ′,Ã(p̄)+∆c)≥p−p̄
p̄∈
{
0,1,...,

⌈
16T
ϵ2

⌉}
·κ


Ã(p̄) + ∆c−Q(I ′), ∀p. (1.17)

That is, Â(IL, p) is the maximum leftover capacity for any solution with (rounded) profit at

least p obtained by adding items in IL to the solutions corresponding to Ã(·).

Proof of Lemma 1.6. We will prove a more general result than (1.17), i.e.,

Â(i, p) = max
I ′,p̄ : I ′⊆{1,...,i}

∆P̂(I ′,Ã(p̄)+∆c)≥p−p̄
p̄∈
{
0,1,...,

⌈
16T
ϵ2

⌉}
·κ


Ã(p̄) + ∆c−Q(I ′), ∀p (1.18)

We prove this by induction. The base case (i = 0) is vacuously true. Now we assume

that (1.18) holds for all p ∈
{
0, 1, . . . , ⌈16T/ϵ2⌉

}
κ and for all k ∈ [i − 1]. Consider some

p ∈
{
0, 1, . . . , ⌈16T/ϵ2⌉

}
κ, and let I∗ be any set achieving the maximum in (1.18) so that

P̂ (I∗) ≥ p − p̄ for some p̄ ∈
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ. We will show that Â(i, p) is at least the

leftover capacity under solution I∗ via case analysis:

• Case i /∈ I∗: In this case, the leftover capacity under I∗ is the leftover capacity by

di, which is the sum of leftover capacity in I∗ by di−1 and cdi − cdi−1
. By induction

hypothesis, Â(i−1, p) is no less than the leftover capacity of I∗ by di−1, and therefore,
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by lines 4 and 8, Â(i, p) ≥ Â(i − 1, p) + cdi − cdi−1
which in turn is no less than the

leftover capacity under I∗ by di. By optimality of I∗, all the inequalities must be

equalities.

• Case i ∈ I∗: Let I ′ = I∗ \ {i}, and let p′ = P̂(I ′) be its rounded profit. Then

by induction hypothesis, Â(i − 1, p′) is no less than the leftover capacity under I ′ by

di−1. Further, by packing item i in the solution corresponding to Â(i − 1, p′), the

change in profit is larger than by packing item i in I ′ (the penalty is no less under I ′

since it has weakly smaller leftover capacity). Therefore, packing item i in the solution

corresponding to Â(i− 1, p′) gives a solution with at least as large a rounded profit as

p and at least as much leftover capacity by di as I∗. Therefore, in turn Â(i, p) is at

least as much as the leftover capacity in I∗. Since we assume I∗ to have the largest

leftover capacity with profit at least p, all the inequalities must be equalities.

This completes the induction step, and thus the proof of the lemma.

Next, we have the following Lemma as a preparation for our result on Ã(p) of Algo-

rithm 1.4.

Lemma 1.7. Given some capacity c and a set of small items IS with pmax := maxi∈IS pi,

let S∗ be the profit-optimal subset, i.e., S∗ = argmaxS⊆IS P(S) = R(S) − B (Q(S)− c)+.

Further, let ĨS := {i ∈ IS | qi ≤ c} and relabel the items in ĨS as
{
1′, . . . , |ĨS |′

}
(in

decreasing order of reward density ri/qi). Let i′ be such that
∑i′

j′=1′ qj′ ≤ c and
∑(i+1)′

j′=1′ qj′ >

c. Then, the solution S ′ := {1′, . . . , i′} satisfies

• Q(S ′) ≤ Q(S∗),

• P(S ′) ≥ P(S∗)− pmax.

Proof of Lemma 1.7. The first item can be shown by contradiction. Suppose that to the

contrary Q(S ′) > Q(S∗), that is, S ′ uses more space than S∗. Since the items in S ′ have
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the highest reward densities, it is in fact the optimal solution which uses space Q(S ′) < c.

Since the optimal profit is non-decreasing in the capacity c, this violates optimality of S∗.

To see the second item, we look at two different cases. First, if S∗ ∩
(
IS \ ĨS

)
̸= ∅, i.e.,

the optimal packing S∗ includes some item i∗ with qi∗ > c, then, there should be only one

item in S∗, i.e., S∗ = {i∗}. In this case, P(S∗) = pi∗ = pmax and thus P(S ′) ≥ P(∅) = 0 =

P(S∗)− pmax.

Second, if S∗ ∩
(
IS \ ĨS

)
= ∅, then S∗ = argmaxS⊆ĨS P(S). Note that P(S∗) is

upper bounded by the reward for the fractional packing: P(S∗) ≤ RLP := R(S ′) + r(i+1)′ ·
c−Q(S ′)
q(i+1)′

≤ R(S ′) + r(i+1)′ = P(S ′) + p(i+1)′ ≤ P(S ′) + pmax.

In either cases, we conclude that P(S ′) ≥ P(S∗)− pmax.

Before presenting our result on Ãt(p), we will need the following definitions. For a solution

S = S(1)∪S(2)∪· · ·∪S(T ) with S(t) = SL(t)∪SS(t), denoting the items with deadline t in S,

let the large items be indexed as SL(t) = (i
(t)
1 , . . . , i

(t)
Lt
) in the order in which Algorithm 1.3

considers them, and the small items be indexed arbitrarily SS(t) =
(
j
(t)
1 , . . . , j

(t)
St

)
. Let

SL := SL(1) ∪ · · · ∪ SL(T ) and SS := SS(1) ∪ · · · ∪ SS(T ) denote the large and small items

in S, respectively (this depends on the choice of P0 but we suppress the dependence for

brevity). We define the rounded profit of S as:

P̃(S) = R̂(SL)−
T∑
t=1

Lt∑
k=1

B
∑

ℓ≤k
q
i
(t)
ℓ

− max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ<t

Q(S(τ))


+

κ

+
T∑
t=1

R(SS(t))−B

Q(S(t))− max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ<t

Q(S(τ))


+

κ

.

(1.19)

That is, we add the rounded rewards of the large items, and for small items, we first group

the small items by their deadlines, and for each deadline we round the sum of unrounded
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rewards of small item. Further, let

C̃t(p) := max
{S⊆⋃t

t′=1 I(t′) : P̃(S)≥p}
max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ≤t
Q(S(τ))


denote the feasible partial solution with largest leftover capacity at time t and rounded total

profit at least p. Then, we have the following lemma.

Lemma 1.8. For any t = 1, . . . , T and any p′ ∈
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
·κ, we have that Ãt(p) ≥

C̃t(p
′) for some p ≥ p′− 1

2T ϵP0t− κt ≥ r′− 1
2T ϵ(1− ϵ/4)P0t. That is, for any rounded total

profit p′ by time t, there exists some partial solution Ãt of Algorithm 1.5 which has at least

as much leftover capacity at time t the optimal solution C̃t(p
′), and has rounded profit p not

too much smaller than p′.

Proof of Lemma 1.8. We prove by induction on t. Base case is when t = 1. Let S ′ be the

solution corresponding to C̃1(p
′), i.e., S ′ := argmax{ S⊆I(1)

P̃(S)≥p′
} c1−Q(S), and let S ′L = S ′ ∩

IL, S ′S = S ′ ∩ IS . Then P̃(S ′L) = P̂(S ′L). By Lemma 1.6, Â(IL(1), P̃(S ′L)) is the maximum

leftover capacity using items in IL(1) earning rounded profit P̃(S ′L). Thus, Â1(P̃(S ′L)) =

Â(IL(1), P̃(S ′L)) ≥ c1 − Q(S ′L). Let S ′′L be the solution corresponding to Â1(P̃(S ′L)), and

thus Q(S ′′L) ≤ Q(S ′L). Consider appending the partial solution S ′′L using items from IS(1).

Let S ′′S be the small item set obtained by adding small items greedily in their reward densities,

subject to the constraint that Q(S ′′S) ≤ Q(S ′S). Then, by Lemma 1.7, with S ′′S being the

greedy solution, Q(S ′S) being the capacity constraint and S ′S being the optimal filling of

small items in IS(1), we conclude that

P(S ′′S) ≥ P(S ′S)−
1

2T
ϵP0.

Therefore, p′ = P̃(S ′) = P̃(S ′L∪S ′S) = P̃(S ′L)+∆P̃(S ′S , c1−Q(S ′L)) ≤ P̃(S ′′L)+∆P̃(S ′′S , c1−

Q(S ′L))+ 1
2T ϵP0+κ ≤ P̃(S ′′L)+∆P̃(S ′′S , c1−Q(S ′′L))+ 1

2T ϵP0+κ = P̃(S ′′L∪S ′′S)+ 1
2T ϵP0+κ.
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Let p = P̃(S ′′L ∪ S ′′S). From Algorithm 1.4, we know that since S ′′S includes the small items

in ĨS(1) with the highest reward densities, the solution S ′′L ∪ S ′′S is one feasible solution for

Ã1(p). We thus have that

Ã1(p) ≥ c1 −Q(S ′′L ∪ S ′′S) ≥ c1 −Q(S ′) = C̃1(p
′),

where p ≥ p′ − 1
2T ϵR0 − κ, and the second inequality follows from the facts that Q(S ′′L) ≤

Q(S ′L) and Q(S ′′S) ≤ Q(S ′S).

For the induction step, assume that for all p′′ ∈
{
0, 1, . . . ,

⌈
16T
ϵ2

⌉}
· κ, we have that

Ãt−1(p) ≥ C̃t−1(p′′) for some p ≥ p′′ − 1
2T ϵP0(t − 1) − κ(t − 1). We want to show that for

all p′, Ãt(p) ≥ C̃t(p
′) for some p ≥ p′ − 1

2T ϵP0t − κt. Let S ′ be the solution corresponding

to C̃t(p
′), i.e.,

S ′ := arg max
{S⊆⋃t

t′=1 I(t′) : P̃(S)≥p′}
max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ≤t
Q(S(τ))

 ,

and let S ′L = S ′ ∩ IL, S ′S = S ′ ∩ IS . Let S ′(t) := {i ∈ S ′ | di = t} and consider

the partial solution ∪t−1
t′=1
S ′(t′). By induction assumption, there exists some partial solu-

tion ∪t−1
t′=1
S ′′(t′) which satisfies Q

(
∪t−1
t′=1
S ′′(t′)

)
≤ Q

(
∪t−1
t′=1
S ′(t′)

)
, and P̃

(
∪t−1
t′=1
S ′′(t′)

)
≥

P̃
(
∪t−1
t′=1
S ′(t′)

)
− 1

2T ϵP0(t− 1)− κ(t− 1).

First, we fill the partial solution ∪t−1
t′=1
S ′′(t′) using items from IL(t) according to Algo-

rithm 1.3. Note that one feasible solution is S ′L(t) which results in ∪t−1
t′=1
S ′′(t′) ∪ S ′L(t).

This keeps Q
(
∪t−1
t′=1
S ′′(t′) ∪ S ′L(t)

)
≤ Q

(
∪t−1
t′=1
S ′(t′) ∪ S ′L(t)

)
while we still have that

P̃
(
∪t−1
t′=1
S ′′(t′) ∪ S ′L(t)

)
≥ P̃

(
∪t−1
t′=1
S ′(t′) ∪ S ′L(t)

)
− 1

2T ϵP0(t − 1) − κ(t − 1). Suppose

that after filling items from IL(t) using DP in Algorithm 1.3, the resulting set corresponding

to Ât

(
P̃
(
∪t−1
t′=1
S ′′(t′) ∪ S ′L(t)

))
is S̃, then this S̃ would only use less space and earn more

41



profit, i.e.,

Q
(
S̃
)
≤ Q

(
∪t−1
t′=1
S ′′(t′) ∪ S ′L(t)

)
≤ Q

(
∪t−1
t′=1
S ′(t′) ∪ S ′L(t)

)
,

P̃
(
S̃
)
≥ P̃

(
∪t−1
t′=1
S ′′(t′) ∪ S ′L(t)

)
≥ P̃

(
∪t−1
t′=1
S ′(t′) ∪ S ′L(t)

)
− 1

2T
ϵP0(t− 1)− κ(t− 1).

Next, consider filling the partial solution S̃ using items from IS(t). Let S ′′S(t) be the

small item set obtained by adding small items greedily in their reward densities, subject

to the constraint that Q
(
S ′′S(t)

)
≤ Q

(
S ′S(t)

)
. Then, by Lemma 1.7, with S ′′S(t) being the

greedy solution, Q(S ′S(t)) being the capacity constraint and S ′S(t) being the optimal filling

of small items in IS(t), we conclude that

P(S ′′S(t)) ≥ P(S ′S(t))−
1

2T
ϵP0.

Therefore,

p′ = P̃(S ′) = P̃
(
∪t−1
t′=1
S ′(t′) ∪ S ′L(t) ∪ S ′S(t)

)
≤ P̃

(
S̃ ∪ S ′′S(t)

)
+

1

2T
ϵP0(t− 1) + κ(t− 1) +

1

2T
ϵP0 + κ

≤ P̃
(
S̃ ∪ S ′′S(t)

)
+

1

2T
ϵP0t+ κt.

Let p = P̃
(
S̃ ∪ S ′′S(t)

)
. From Algorithm 1.4, we know that since S ′′S(t) includes the small

items in ĨS(t) with the highest reward densities, the solution S̃∪S ′′S(t) is one feasible solution

for Ãt(p). We thus have that

Ãt(p) ≥ max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ≤t
Q
((
S̃ ∪ S ′′S(t)

)
(τ)
)
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≥ max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ≤t
Q(S ′(τ))

 = C̃t(p
′),

where p ≥ p′ − 1
2T ϵP0t − κt. This finishes the induction step, and thus the proof of the

lemma.

Using the above lemmas, we prove the following approximation result.

Proposition 1.4. Let S ′ denote the optimal solution set by Algorithm 1.5, i.e., S ′ is the

solution set corresponding to ÃT (p
∗) where p∗ is the maximum p such that ÃT (p) > −∞.

Let S∗ be the optimal solution set to the original MPBKP-S. Then,

P(S ′) ≥ p∗ ≥ (1− ϵ− 3ϵ2/8)P(S∗).

Proof. Note that P̃(S ′) = p∗. Lemma 1.8 implies that

ÃT (p
∗) ≥ C̃T

(
p∗ +

1

2T
ϵP0T + κT

)
= C̃T

(
p∗ +

1

2
ϵP0 + κT

)
.

Since C̃T (P̃(S∗)) > −∞, we have that ÃT

(
P̃(S∗)− 1

2ϵP0 − κT
)
≥ C̃T (P̃(S∗)) > −∞.

Therefore,

P(S ′) ≥ p∗ ≥ P̃(S∗)− 1

2
ϵP0 − κT.

By the definition of P̃ as in (1.19), for each large item, the reward is rounded down by

at most κ and the penalty is rounded up by at most κ, and all small items are together

rounded down by at most κT . Note that each large items earns profit pi unless it is paying

more penalty than it would be by itself, which happens at most once at each period. Thus,

there are at most 2P0
1
2T ϵP0

+ T = 4T
ϵ + T number of large items, and thus the total number

of rounding downs (for both large and small items) is bounded by 4T
ϵ + 2T . Therefore, we
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have that P(S∗) ≤ P̃(S∗) +
(
4T
ϵ + 2T

)
κ. In conclusion,

P(S ′) ≥ p∗ ≥ P̃(S∗)− 1

2
ϵP0 − κT

≥ P(S∗)−
(
4T

ϵ
+ 2T

)
κ− 1

2
ϵP0 − Tκ = P(S∗)− ϵP0 − 3Tκ

≥
(
1− ϵ− 3ϵ2/8

)
P(S∗).

It remains to validate Algorithm 1.6 in the search of P0 which satisfies (1.14). When

Algorithm 1.6 terminates, it returns the last p∗ and the solution set S ′ corresponding to

ÃT (p
∗). We then have the following lemmas.

Lemma 1.9. Algorithm 1.6 terminates within log n iterations of the “while” loop (line 3).

Proof of Lemma 1.9. When P0 satisfies (1.14), by Proposition 1.4 we have that

p∗ ≥ (1− ϵ)P(S∗) ≥ (1− ϵ)P0.

Thus, the “while” loop terminates when P0 satisfies (1.14), if not before P0 satisfies (1.14).

When P0 satisfies (1.14), we would also have P(S∗)/2 ≤ P0 ≤ P(S∗). Therefore, the number

of iterations is upper bounded by

number of iterations ≤ log
P̄ /2

P(S∗)/2 ≤ log n,

where we have used the fact that P̄ ≤ nP ≤ nP(S∗).

Lemma 1.10. After running Algorithm 1.6, suppose S ′ is the solution set corresponding to

ÃT (p
∗), and S∗ is the optimal solution set to the original MPBKP-S. Then,

P(S ′) ≥ (1− ϵ)P(S∗).
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Proof of Lemma 1.10. If the “while” loop terminates when P0 > P(S∗), i.e., it stops before

P0 falls below P(S∗), then we have that

P(S ′) ≥ p∗ ≥ (1− ϵ)P0 > (1− ϵ)P(S∗).

Otherwise, from the proof of Lemma 1.9 we know that the “while” loop must terminate

when P0 first falls below P(S∗), which implies that the last P0 satisfies (1.14). Then by

Proposition 1.4 we again have that

P(S ′) ≥ (1− ϵ)P(S∗).

In either case, the solution we obtained from Algorithm 1.6 achieves (1− ϵ) optimal.

With the above Lemmas, we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 1.10, the solution found is within (1− ϵ) factor of P(S∗).

Since the running time of the algorithm is O
(
n ·
⌈
16T
ϵ2

⌉
· log n

)
= O

(
Tn log n

ϵ2

)
, which is

polynomial in n and 1/ϵ, the theorem follows.

1.7.2.2 Proof of Theorem 1.5

In this part, we prove Theorem 1.5. Recall that S(t) := {i ∈ S | di = t}, and R(S) :=∑
i∈S ri is the total reward of set S. Let Φ(S) := R(S) − P(S) be the total penalty on

S. For simplicity, we let Rt(S) := R(S(t)), Qt(S) := Q(S(t)), Pt(S) := P
(
∪tt′=1S(t′)

)
.

Further, we define the incremental penalty as follows:

Φt(S) :=


Φ(S(1)), t = 1,

Φ
(
∪tt′=1S(t′)

)
− Φ

(
∪t−1
t′=1
S(t′)

)
, t ≥ 2.

(1.20)
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In other words, Φt(S) is the additional penalty paid when adding S(t), items with deadline

t, to ∪t−1
t′=1
S(t′), items with deadlines before t. It should then be clear that

P(S) = R(S)− Φ(S) = R1(S)− Φ1(S) +R2(S)− Φ2(S) + · · ·+RT (S)− ΦT (S).

(1.21)

Given p0, we let ⌊a⌋(1+ϵ) := p0 · (1 + ϵ)

⌊
log1+ϵ

a
p0

⌋
if a ≥ p0

1+ϵ . We next define the (exponen-

tially) rounded profit up to time t on set S as follows:

P̂t(S) :=


⌊R1(S)− Φ1(S)⌋(1+ϵ) t = 1,⌊
P̂t−1(S) +Rt(S)− Φt(S)

⌋
(1+ϵ)

t ≥ 2.

(1.22)

In other words, P̂t(S)’s are defined recursively: for t = 1, P̂1(S) := ⌊R1(S)− Φ1(S)⌋(1+ϵ);

for t ≥ 2, we define P̂t(S)
⌊
P̂t−1(S) +Rt(S)− Φt(S)

⌋
(1+ϵ)

. The rounded profit on set S is

then P̂(S) := P̂T (S).

In Algorithm 1.7, we have used the result from Lemma 1.1 to obtain f̃I(t) for all t ∈ [T ],

each of which is a step function. Let the complexity (number of “steps”) of f̃I(t) be lt. Then,

f̃I(t)(c) can be expressed as

f̃I(t)(c) =


0, c < Ct

1

Rt
k, Ct

k ≤ c < Ct
(k+1)

, ∀k = 1, . . . , lt − 1,

Rt
l , c ≥ Ct

lt
.

Given the structure of f̃I(t)(c), each function can be fully characterized with lt number of

size-reward pairs {(Ct
1, R

t
1), (C

t
2, R

t
2), . . . , (C

t
lt
, Rt

lt
))}, where each pair corresponds to a “step”

of the function. Lemma 1.1 implies that there exists some set of items with deadline t, which

we denote by Stk, such that Q(Stk) = Ct
k and Rt

k ≤ R(Stk) ≤ (1 + ϵ)Rt
k, for all k ∈ [lt] and
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t ∈ [T ]. Further, let St0 = ∅ for all t ∈ [T ].

We consider the problem of selecting one set from {St0, . . . ,Stlt}, denoted by Stkt , for

each t ∈ [T ], such that P̂(∪Tt=1Stkt) ≥ p and that ∪Tt=1Stkt has the largest leftover capacity.

Formally, we define

At(p) := max{
ks∈{0,1,...,ls}, ∀s∈[t]
S=∪ts=1Ssks : P̂(S)≥p

} max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ≤t
Qτ (S).

 (1.23)

Then, we have the following lemma as a result of the dynamic program in Algorithm 1.7.

Lemma 1.11. For any t = 1, . . . , T and any p = 0, p0 · (1 + ϵ){−1,0,1,...,m}, we have that

Ã(t, p) = At(p). (1.24)

Proof of Lemma 1.11. We prove by induction on t. Base case is t = 1. We have that

A1(p) = max{
k∈{0,1,...,l1},
P̂(S1k)≥p

} c1 −Q1

(
S1k1
)
.

For each p = 0, p0 · (1 + ϵ){−1,0,1,...,m}, since the solution set corresponding to Ã(1, p) is

exactly one of S1k for k ∈ {0, 1, . . . , l1}, it follows that Ã(1, p) ≤ A1(p). On the other hand,

let S1k1 be the set corresponding to A1(p) and S1k′ be the one corresponding to Ã(1, p). Note

that k1 ∈ {0, 1, . . . , l1}, which implies that during the “for” loop of line 12 to line 17 of

Algorithm 1.7, k1 has been visited. Since P̂1(S1k1) = P̂1(S
1
k′) = p, by line 15, we have that

Ã(1, p) ≥ c1 −Q1

(
S1k1
)
= A1(p). Therefore, we conclude that Ã(1, p) = A1(p).

As for the induction step, assume that Ã(t′, p) = At′(p) for all p = 0, p0·(1+ϵ){−1,0,1,...,m}

at all t′ < t, we show that Ã(t, p) = At(p). Consider an arbitrary p, and notice that

the solution corresponding to Ã(t, p), denoted by S, can be written as S = ∪ts=1Ssks with

ks ∈ {0, 1, . . . , ls}, ∀s ∈ [t], which falls into the feasible range of (1.23). Thus, we have that
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Ã(t, p) ≤ At(p). On the other hand, let S ′ = ∪ts=1Ssk′s be the set corresponding to At(p).

Then, we have that

p = P̂(S ′) =
⌊
P̂t−1

(
S ′
)
+Rt(S ′)− Φt(S ′)

⌋
(1+ϵ)

,

where P̂t−1(S ′) is the rounded profit of ∪t−1
t′=1
S ′(t′) = ∪t−1s=1Ssk′s . Note that from the defini-

tion (1.23), ∪t−1s=1Ssk′s must have the leftover capacity At−1
(
P̂t−1(S ′)

)
at time t−1, because

otherwise we could let S̄ be the one that have leftover capacity At−1
(
P̂t−1(S ′)

)
, and then

S̄ ∪ St
k′t

would have more leftover capacity than At(p), which is a contradiction. Therefore,

by the induction assumption, ∪t−1s=1Ssk′s is also the set corresponding to Ã
(
t− 1, P̂t−1(S ′)

)
.

Since kt ∈ {0, 1, . . . , lt}, during the “for” loop of line 12 to line 17 of Algorithm 1.7, kt has

been visited. We should have that Ã(t, p) ≥ At(p), and so Ã(t, p) = At(p). This concludes

the induction step, and thus the proof of the lemma.

Let S∗ be the optimal solution for the MPBKP-S. By Lemma 1.1, we can find sets Stkt
for all t ∈ [T ], which consists of only items with deadline t, with kt ∈ {0, 1, . . . , lt}, such

that Q
(
Stkt
)
≤ Qt(S∗) and that R

(
Stkt
)
≤ R(S∗) ≤ (1 + ϵ)R

(
Stkt
)
. Then, we have the

following lemma.

Lemma 1.12. Let f̃I(t) be the approximated function obtained from Lemma 1.1, and let the

complexity of f̃I(t) be lt. Further, let {(Ct
1, R

t
1), (C

t
2, R

t
2), . . . , (C

t
l , R

t
lt
))} be the lt steps of

the function. For S∗ an optimal solution of MPBKP-S, let kt := max{k∈[lt]: Ct
k≤Qt(S∗)} k

and Stkt be the set corresponding to (Ct
kt
, Rt

kt
). If Ct

k > Qt(S∗) for all k ∈ [lt], let Stkt := ∅.

Further, let S ′′ := ∪Tt=1Stkt, then, we have the following:

(1 + ϵ)P̂(S ′′) ≥ R(S∗)
(1 + ϵ)T

− Φ(S∗). (1.25)
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Proof of Lemma 1.12. We will prove a more general result than (1.12), i.e.,

(1 + ϵ)P̂t(S ′′) ≥
∑t

t′=1Rt′(S∗)
(1 + ϵ)t

−
t∑

t′=1

Φt′(S∗). (1.26)

We prove this by induction on t. The base case is when t = 1, in which case we have that

(1 + ϵ)P̂1(S ′′) ≥ P1(S ′′) = R1(S ′′)− Φ1(S ′′) = R
(
Stkt
)
− Φ

(
Stkt
)
≥ R1(S∗)

1 + ϵ
− Φ1(S∗),

where the first inequality follows from the definition in (1.22), and the second inequality

follows from the approximation error of f̃I(1) to fI(1).

As for the induction step, assume that (1.26) holds for all t = 1, . . . , t̄, we prove that it

also holds for t = t̄+1. Again, following the definition in (1.22) as well as the approximation

of f̃I(1) to fI(1), we have that

(1 + ϵ)P̂t̄+1(S ′′) ≥ P̂t̄(S ′′) +Rt̄+1(S ′′)− Φt̄+1(S ′′)

≥
∑t̄

t′=1Rt′(S∗)
(1 + ϵ)t̄

−
t̄∑

t′=1

Φt′(S∗) +
Rt̄+1(S∗)

1 + ϵ
− Φt̄+1(S∗)

≥
∑t̄+1

t′=1Rt′(S∗)
(1 + ϵ)t̄+1

−
t̄+1∑
t′=1

Φt′(S∗).

This completes the induction step, and thus the proof of the lemma.

With the above lemmas, we are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Approximation ratio: Let S ′ be the solution that corresponds to

Ã(T, p∗) with P̂(S ′) = p∗, where p∗ is the maximum p such that Ã(T, p) > −∞, i.e.,

p∗ = max
Ã(T,p)>−∞ p. Then S ′ is our solution set from Algorithm 1.7. Let S ′′ be as defined

in Lemma 1.12. Since Qt(S ′′) ≤ Qt(S∗), we know that the leftover capacity of S ′′ at t = T is

not −∞, and is upper bounded by Ã
(
T, P̂(S ′′)

)
by Lemma 1.11 and (1.23), which implies
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that Ã
(
T, P̂(S ′′)

)
> −∞, and thus P̂(S ′) = p∗ ≥ P̂(S ′′). This, together with Lemma 1.12,

lead to the following:

P̂(S ′) ≥ P̂(S ′′) ≥ R(S∗)
(1 + ϵ)T+1

− Φ(S∗)
1 + ϵ

.

Recall that in Assumption 1.1, we assume that Φ(S∗) ≤ βR(S∗), which implies that P(S∗) =

R(S∗)− Φ(S∗) ≥ R(S∗)− βR(S∗) = (1− β)R(S∗). Therefore, we have that

P̂(S ′) ≥ R(S∗)
(1 + ϵ)T+1

− Φ(S∗)
1 + ϵ

≥ R(S∗)
(1 + ϵ)T+1

− Φ(S∗) ≈ R(S
∗)

1 + Tϵ
− Φ(S∗).

Taking ϵ′ = Tϵ, we have that

P̂(S ′) ≥ R(S
∗)

1 + ϵ′
− Φ(S∗) = R(S∗)− ϵ′R(S∗)

1 + ϵ′
− Φ(S∗) = P(S∗)− ϵ′R(S∗)

1 + ϵ′

≥ P(S∗)− ϵ′P(S∗)
(1 + ϵ′)(1− β)

≥
(
1− ϵ′

1− β

)
P(S∗).

Time complexity: Obtaining all f̃I(t) takes Õ
(
n+ T/ϵ2.25

)
. The rest of the algorithm

takes O (Tml) = Õ (T/ϵ). By taking ϵ′ = Tϵ, we conclude that the algorithm has runtime

Õ
(
n+ T 3.25

ϵ′2.25

)
to achieve at least

(
1− ϵ′

1−β
)

approximation.

1.7.3 Proofs for Section 1.5

This subsection consists of two parts. The first part is devoted to the proof of Theorem 1.6,

while the second part is devoted to the proof of Theorem 1.7.

1.7.3.1 Proof of Theorem 1.6

In this part, we prove Theorem 1.6. The idea is to look at the greedy solution set Sp and the

optimal solution set S∗, and by swapping each item in Sp to S∗ in replacement of the same

item or two other items, we construct a sequence of partial solutions of the greedy algorithm
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as well as modified optimal solution set, while maintaining the invariant that the profit of

S∗ is bounded by the sum of two times the profit of items in Sp swapped into S∗ so far and

the additional profit of remaining items in the modified optimal solution set. We will make

this clear in the following.

We first introduce some notations. Let Sp = {g1, . . . , gl} and S∗ = {o1, . . . , om}, i.e., the

items in greedy solution is denoted by gi’s and the items in the optimal solution is denoted

by oi’s. Further, for any two sets of items S1 and S2, we define the incremental profit of

adding S2 to the set S1 as

∆P(S1,S2) = P(S1 ∪ S2)− P(S1). (1.27)

Recall that Φ(S) is the expected number of units of overflows that penalties are paid, which

will be referred as overflow units in the following. The incremental expected overflow units

of adding S2 to the set S1 is defined as

∆Φ(S1,S2) = Φ(S1 ∪ S2)− Φ(S1). (1.28)

On a sample path of incremental capacities ω = {ct}Tt=1, let at := ct− ct−1. Let Pω and Φω

be the profit and overflow units function, respectively, and the incremental profit of adding

S2 to the set S1 is

∆Pω(S1,S2) = Pω(S1 ∪ S2)− Pω(S1).

Similarly, on sample path ω, the incremental penalty of adding S2 to the set S1 is

∆Φω(S1,S2) = Φω(S1 ∪ S2)− Φω(S1).
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Then, the relationship of ∆P and ∆Φ is:

∆P(S1,S2) = P(S1 ∪ S2)− P(S1) = R(S1 ∪ S2)−R(S1)−B · Φ(S1 ∪ S2) +B · Φ(S1)

= R(S2)−B ·∆Φ(S1,S2).

Similarly, on a sample path, we have that ∆Pω(S1,S2) = R(S2)−B ·∆Φω(S1,S2).

Let S(t) := {j ∈ S | dj = t}. Given a (partial) solution S and a sample path of capacities

ω = {ct}Tt=1 ∈ Ω. We let at := ct − ct−1, and the available leftover capacity at time t (after

including items in S(t)) is

max

sup
t′≤t

t∑
τ=t′

aτ −Q(S(τ)), 0

 := CSω (t).

Then, overflow units at time t is

max

sup
t′≤t
Q(S(τ))−

t∑
τ=t′

aτ , 0

 := ΦSω(t),

and the total overflow units is Φω(S) =
∑T

t=1Φ
S
ω(t).

With the above definitions, we first consider the calculation of overflows on a set S of

items for a given sample path ω. This is done in Algorithm 1.10.

Algorithm 1.10 serves dual purpose – while calculating the overflow, it also implicitly finds

an assignment of the items which do not suffer a penalty to supply units. The assignment

of items to supply units can be non-unique, while Algorithm 1.10 identifies one way of

matching. Intuitively, the algorithm assigns items to the latest available units, saving the

earlier capacity for items with shorter deadlines. This allows us to find the total overflows

by considering the items in an arbitrary order (instead of in increasing order of deadlines),

which is in turn useful for finding incremental profit ∆P when we add a set of requests to
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Algorithm 1.10 Overflow Assignment
1: Parameters: Sample path of capacities (c1, . . . , cT ) ∈ NT , an arbitrary ordered list of requests L =

(d1, d2, . . . , dn)
2: Initialize: Remaining capacity ar = (ar1, . . . , a

r
T )← (a1, . . . , aT ) ▷ at = ct − ct−1

3: Initialize: Units of overflow needing to pay penalty Φ← 0
4: i← 1
5: while i ≤ n do
6: qr ← qi
7: ti = max{t ≤ di : a

r
t > 0}

8: while qr > 0 do
9: if ti <∞ and ti > 0 then

10: arti ← arti −min
{
arti , q

r
}

11: qr ← qr −min
{
arti , q

r
}

12: ti ← ti − 1
13: else
14: Φ← Φ+ qr

15: qr ← 0
16: end if
17: end while
18: i← i+ 1
19: end while
20: Return (ar,Φ)

an existing set of accepted requests. We begin with the following lemma which proves that

Algorithm 1.10 indeed finds the minimum overflow.

Lemma 1.13. Given a sample path ω ∈ NT of supply, and a set S of items with general

integer demands, let L = (d1, . . . , dn) be an arbitrary ordering of the items in S (di de-

noting the deadlines). Then the overflow units Φ returned when executing Algorithm 1.10

(Overflow Assignment) on (ω,L) satisfies Φ = Φω(S).

Proof of Lemma 1.13. We will use LP duality to prove the Lemma. In a nutshell, we will

use the the assignment created by Algorithm 1.10 to create a feasible solution to the dual

LP such that the objective function of the dual matches the objective function penalty of

the assignment. Since any feasible solution of the dual lower bounds the optimal, we would

have thus demonstrated the optimality of the assignment and hence of the overflow units Φ.
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(PRIMAL)

min
∑n

i=1 yi

s.t.

∀t ∈ [T ] : −∑i:di≤t xi ≥ −ct
∀i ∈ [n] : xi + yi = qi

xi, yi ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(DUAL)

max
∑n

i=1 qiγi −
∑

t λtct

s.t.

∀i ∈ [n] : γi ≤ 1

∀i ∈ [n] : γi ≤
∑

t≥di λt

λt ≥ 0

To construct the dual solution, let τ = min{t : art > 0}. That is, τ is the first time at

which there is some capacity remaining after the assignment of Overflow Assignment.

By the nature of the algorithm, there are no items with di ≥ τ for which penalty is paid,

and in fact all items with di ≥ τ are served with capacity that arrives at time τ or later.

Therefore, the overflow units under the assignment is the total size of items with di < τ

minus the capacity cτ−1 (since this capacity is only used by requests with di < τ).

Now construct a dual solution as follows:

λt =


1 t = τ − 1,

0 t ̸= τ − 1;

γi =


1 di ≤ τ − 1,

0 di ≥ τ.

It is easy to verify that this is a feasible dual solution. Further, the objective function value

under this feasible dual is ∑
i:di≤τ−1

qi − cτ−1

which is exactly the overflow units of the primal assignment. Therefore, the primal solution

in fact attains the optimal objective.

As a result of Algorithm 1.10 and Lemma 1.13, we have the following lemma.

Lemma 1.14. Let S be a set of items disjoint with S1 and S2. If for some ω = {ct | t ∈
54



[T ]} ∈ Ω, we have CS1ω (t) ≥ CS2ω (t),∀t ∈ [T ], then, ∆Pω(S1,S) ≥ ∆Pω(S2,S). If this is true

for all ω ∈ Ω, we further have that ∆P(S1,S) ≥ ∆P(S2,S).

Proof of Lemma 1.14. It suffices to show that ∆Φω(S1,S) ≤ ∆Φ(S2,S). Note that

∆Φω(S1,S) = Φω′(S), where ω′ =
{
CS1ω (t) | t ∈ [T ]

}
,

∆Φω(S2,S) = Φω′′(S), where ω′′ =
{
CS2ω (t) | t ∈ [T ]

}
.

By Lemma 1.13, the ordering of items in S does not matter when computing the total

overflow units, and we may apply Algorithm 1.10 to compute Φω′(S) and Φω′′(S). Since

CS1ω (t) ≥ CS2ω (t),∀t ∈ [T ], as we apply Algorithm 1.10, for any capacity in ω′′ that is used

to serve a unit of demand in S, we have the same capacity in ω′ that can be used to serve

the same unit of demand in S. It then follows that Φω′(S) ≤ Φω′′(S), which implies that

∆Φω(S1,S) ≤ ∆Φω(S2,S).

We next show the submodularity of P .

Lemma 1.15. For any S1 ⊆ S2, we have that ∆P(S1,S3) ≥ ∆P(S2,S3).

Proof of Lemma 1.15. Since S1 ⊆ S2, in each realized sample path of capacities ω = {ct}Tt=1,

it should be clear that CS1ω (t) ≥ CS2ω (t), ∀t, i.e., at each time period, the available remaining

capacity on S1 is no less than the available remaining capacity on S2. Thus, by Lemma 1.14,

the result follows.

Lemma 1.14 and Lemma 1.15 showed the relationship of incremental profit change of

adding a set of items on top of two other sets of items. Specifically, if one set always has

more remaining capacity than the other set, then adding a third set to one generates more

incremental profit than adding the same set to the other.

For the rest of this part, we impose the assumption that qi = q,∀i ∈ [N ]. To simplify

the presentation, we may without loss of generality assume that q = 1 by allowing {ct}
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to be nonintegers. We next have the following result which will serve as a key to prove

Theorem 1.6.

Lemma 1.16. Let S1 and S2 = S−2 ⊔ S+2 be two disjoint set of items. Let i, j, k be three

items not in either set such that:

1. dm ≤ dj ≤ di, for all items m ∈ S−2 ,

2. di ≤ dk ≤ dm, for all items m ∈ S+2 .

Then, we have that

∆P (S1 ∪ {j, k},S2) ≤ ∆P (S1 ∪ {i},S2) . (1.29)

Proof of Lemma 1.16. We begin with two observations.

Observation 1: Using Lemma 1.13, we can determine ∆P (S1 ∪ {j, k},S2) as follows:

We first fix an ordering of S1 and assign them using Algorithm 1.10. This gives some

residual capacity vector cr. The problem of finding ∆P(S1 ∪ {j, k},S2) under capacity

vector ω now reduces to finding ∆P({j, k},S2) under capacity vector cr. Similarly, finding

∆P(S1 ∪ {i},S2) under capacity vector ω reduces to finding ∆P({i},S2) under capacity

vector cr.

Observation 2: It suffices to prove the Lemma for |S2| = 1.

We therefore consider two cases, based on whether the item m in S2 has dm ≤ dj ≤ di

or dm ≥ dk ≥ di. Note that we have reduced to a case where we only need to worry about

items i, j, k,m and capacity availability cr.

Case : dm ≤ dj ≤ di

To find incremental penalty:

Φ
{i,m}
cr − Φ

{i}
cr
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we will first add item i and then m according to Algorithm 1.10. Similarly, for

Φ
{j,k,m}
cr − Φ

{j,k}
cr

we first add item j, then k and then m. We claim that if item m does not pay a penalty in

the latter case (when added to {j, k}), then it does not pay a penalty when added to {i}.

To see why, if m does not pay a penalty when added to {j, k}, then it must be that

∑
t≤dj

crt ≥ 2,
∑
t≤dm

crt ≥ 1.

In this case, when adding item i, there is still residual capacity left for matching m.

Case : di ≤ dk ≤ dm

In this we argue that if m pays a penalty when added to i, then it must pay a penalty when

added to {j, k}. If m pays penalty for i, then:

∑
t≤di

crt ≤ 1,
∑

di<t≤dm
crt = 0.

In this case when we first add k, it uses up any capacity crt ≤ di, leaving m to pay a penalty.

Therefore, in either case, the incremental overflow units when adding item m to item i

is at most the incremental overflow units when adding m to {j, k}.

With the above lemmas, we are in a position to prove Theorem 1.6.

Proof of Theorem 1.6. First, suppose that without loss of generality, the items in Sp are

added exactly in the order of g1, . . . , gl. Our proof is done by defining Gi and S∗i inductively,

and show that

P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗i ), ∀i ≤ min{l,m} s.t. S∗i is well-defined.
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Base Case. Let G1 = {g1} and let S∗ = S∗− ⊔ S∗+ where S∗− := {j ∈ S∗ | dj < dg1} and

S∗+ := {j ∈ S∗ | dj ≥ dg1}. Define

S∗1 =


S∗ \ {g1}, if g1 ∈ S∗

S∗ \ {o′, o′′}, if g1 /∈ S∗

where o′ ∈ S∗ : di′ ≤ do′ ≤ dg1 ,∀i′ ∈ S∗−, and o′′ ∈ S∗ : dg1 ≤ do′ ≤ dj′ ,∀j′ ∈ S∗+, i.e., o′

is an item in S∗ with deadline no later than g1 but no earlier than the deadlines of items in

S∗−, and o′′ is an item in S∗ with deadline no earlier than g1 but no later than the deadlines

of items in S∗+i (if such o′ or o′′ does not exist, then simply ignore it). Then, we have the

two cases:

• g1 ∈ S∗.

P(S∗) = ∆P (∅,S∗) = ∆P (∅, {g1}) + ∆P ({g1},S∗1 )

≤ 2P(G1) + ∆P(G1,S∗1 )

where the inequality follows directly from the fact that P(G1) = ∆P (∅, {g1}) is non-

negative.

• g1 /∈ S∗. First note that

∆P
(
∅,
{
o′, o′′

})
= ∆P

(
∅, {o′}

)
+∆P

(
{o′}, {o′′}

)
≤ ∆P

(
∅, {o′}

)
+∆P

(
∅, {o′′}

)
≤ ∆P(∅, {g1}) + ∆P(∅, {g1}) = 2∆P(∅, {g1}) = 2P(G1),

where the first inequality follows from Lemma 1.15 and the second inequality follows

from the greedy algorithm that g1 gives the greatest incremental profit.

58



On the other hand, by Lemma 1.16, we also have that

∆P
({

o′, o′′
}
,S∗1
)
≤ ∆P (G1,S∗1 ) .

Combining the above two inequalities, we conclude that

P(S∗) = ∆P (∅,S∗) = ∆P
(
∅,
{
o′, o′′

})
+∆P

({
o′, o′′

}
,S∗1
)

≤ 2P (G1) + ∆P (G1,S∗1 )

Induction Step. Assume that P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗i ), we define Gi+1 = Gi ∪

{gi+1} and let S∗i = S∗i
− ⊔ S∗i

+ where S∗i
− := {j ∈ S∗i | dj < dgi} and S∗i

+ := {j ∈ S∗i |

dj ≥ dgi}. Define

S∗i+1 =


S∗i \ {gi+1}, if gi+1 ∈ S∗i

S∗i \ {o′, o′′}, if gi+1 /∈ S∗i

where where o′ ∈ S∗i : di′ ≤ do′ ≤ dgi ,∀i′ ∈ S∗i
−, and o′′ ∈ S∗i : dgi ≤ do′ ≤ dj′ ,∀j′ ∈ S∗i

+,

i.e., o′ is an item in S∗i with deadline no later than gi but no earlier than the deadlines of

items in S∗i
−, and o′′ is an item in S∗i with deadline no earlier than gi but no later than the

deadlines of items in S∗+i (if such o′ or o′′ does not exist, then simply ignore it). Then, we

have in the two cases:

• gi+1 ∈ S∗i .

P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗i ) = 2P(Gi) + ∆P (Gi, {gi+1}) + ∆P
(
Gi+1,S∗i+1

)
≤ 2P(Gi) + 2∆P (Gi, {gi+1}) + ∆P

(
Gi+1,S∗i+1

)
= 2P(Gi+1) + ∆P

(
Gi+1,S∗i+1

)
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where the first inequality follows from the induction assumption and the second in-

equality follows directly from the fact that ∆P (Gi, {gi+1}) is nonnegative.

• gi+1 /∈ S∗i . First note that

∆P
(
Gi,
{
o′, o′′

})
= ∆P

(
Gi, {o′}

)
+∆P

(
Gi ∪ {o′}, {o′′}

)
≤ ∆P

(
Gi, {o′}

)
+∆P

(
Gi, {o′′}

)
≤ ∆P(Gi, {gi+1}) + ∆P(Gi, {gi+1}) = 2∆P(Gi, {gi+1}),

where the first inequality follows from Lemma 1.15 and the second inequality follows

from the greedy algorithm that gi+1 adds the greatest incremental profit to Gi.

On the other hand, by Lemma 1.16, we also have that

∆P
(
Gi ∪

{
o′, o′′

}
,S∗i+1

)
≤ ∆P

(
Gi+1,S∗i+1

)
.

Combining the above two inequalities, we conclude that

P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗i )

= 2P(Gi) + ∆P
(
Gi,
{
o′, o′′

})
+∆P

(
Gi ∪

{
o′, o′′

}
,S∗i+1

)
≤ 2P(Gi) + 2∆P (Gi, {gi+1}) + ∆P

(
Gi+1,S∗i+1

)
≤ 2P (Gi+1) + ∆P

(
Gi+1,S∗i+1

)

This completes the induction step. Note that at each step, S∗i+1 ⊊ S∗i and Gi ⊊ Gi+1. In

the end, we will reach some i′ such that either S∗i′ = ∅ or Gi′ = Sp and S∗i′ ̸= ∅. In the first

case, we have that

P(S∗) ≤ 2P(Gi′) + ∆P(Gi′ ,S∗i′) = 2P(Gi′) + 0 ≤ 2P(Sp).
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In the second case, i.e., Gi′ = Sp and S∗i′ ̸= ∅, we again have that P(S∗) ≤ 2P(Gi′) +

∆P(Gi′ ,S∗i′). Now if ∆P(Gi′ ,S∗i′) > 0, then we can add the items in S∗i′ to Sp and still

increase the profit, which violates the greedy algorithm. Thus, it must be that ∆P(Gi′ ,S∗i′) ≤

0. Then we would have

P(S∗) ≤ 2P(Gi′) + ∆P(Gi′ ,S∗i′) ≤ 2P(Sp).

In conclusion, we have that P(S∗) ≤ 2P(Sp), or equivalently P(Sp) ≥ 1
2P(S∗). This

completes the proof of Theorem 1.6.

1.7.3.2 Proof of Theorem 1.7

Proof of Theorem 1.7. Approximation ratio: We let S∗ be the optimal solution set for

MPBKP-SS, and S ′ be the solution obtained from Algorithm 1.9. For each t ∈ [T ], we obtain

from Algorithm 1.9 the sets Stk such that St0 = ∅, and for k ≥ 1, Stk is the set of items such

that Q(Stk) = Ct
k and R(Stk) = Rt

k. By Lemma 1.1 and the approximation factor of f̃I(t) to

fI(t), we have that given S∗(t) for each t ∈ [T ], there is some kt such that Q(Stkt) ≤ Qt(S∗)

and that R(Stkt) ≤ Rt(S∗) ≤ (1 + ϵ)R(Stkt). Let S ′′ := ∪Tt=1Stkt , then, we have that

R(S ′′) =
T∑
t=1

R(Stkt) ≤
T∑
t=1

Rt(S∗) = R(S∗) ≤ (1 + ϵ)
T∑
t=1

R(Stkt) = (1 + ϵ)R
(
S ′′
)
,

and that Qt(S ′′) = Q(Stkt) ≤ Qt(S∗) for all t ∈ [T ]. Now, let P(S) be the expected profit of

S, and Φ(S) be the expected total penalty on S. Then P(S) = R(S)− Φ(S), and we have

that

P(S ′′) = R(S ′′)− Φ(S ′′) ≥ 1

1 + ϵ
R(S∗)− Φ(S ′′)

≥ 1

1 + ϵ
R(S∗)− Φ(S∗) = R(S∗)− ϵ

1 + ϵ
R(S∗)− Φ(S∗)
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≥ P(S∗)− ϵR(S∗),

where the second inequality follows from the fact that Φ(S ′′) ≤ Φ(S∗), since Qt(S ′′) ≤

Qt(S∗) for all t ∈ [T ]. Further, from Assumption 1.2, we have that Φ(S∗) ≤ βR(S), which

implies that P(S∗) = R(S∗) − Φ(S∗) ≥ R(S∗) − βR(S∗) = (1 − β)R(S∗). Therefore, we

have that

P(S ′′) ≥ P(S∗)− ϵ

1− β
P(S∗) =

(
1− ϵ

1− β

)
P(S∗).

Since S ′′ = ∪Tt=1Stkt is one of the solutions considered in line 10 of Algorithm 1.9. We

conclude that P(S ′) ≥ P(S ′′) ≥
(
1− ϵ

1−β
)
P(S∗).

Time complexity: Obtaining all f̃I(t) takes Õ
(
n+ T/ϵ2.25

)
, while taking the maxi-

mum in line 10 costs O
(∏T

t=1 lt

)
= Õ

(
1/ϵT

)
. We conclude that the algorithm has runtime

Õ
(
n+ 1

ϵT

)
to achieve at least

(
1− ϵ

1−β
)

approximation.

1.7.4 An Alternative FPTAS for MPBKP-S

In this section, we provide an FPTAS for the MPBKP-S with time complexity O
(
n2 log n

ϵ

)
.

Following the classical approach for “0-1” knapsack problems (see, e.g., [216]), we round

down the reward of each item so that the optimal solution for the MPBKP under the new

rounded rewards is upper bounded by some polynomial of n and 1/ϵ, and thus the naive

pseudo-polynomial dynamic program becomes a polynomial time algorithm.

We assume that the items are initially sorted and relabeled in the increasing order of

their deadlines, i.e., d1 ≤ d2 ≤ · · · ≤ dn. Further, assume that we have a guess P0 that

satisfies (1.14). Then, we choose a discretization quantum κ := ϵP0/2n and define rounded

rewards r̂i :=
⌊ri
κ

⌋
κ. We then have P(S∗) ≤ 4n

ϵ κ.

For a solution S = S(1)∪S(2)∪· · ·∪S(T ) where S(t) is the set of items with deadline t.

Let the items in S(t) be indexed as S(t) =
(
i
(t)
1 , . . . , i

(t)
St

)
in the order in which Algorithm 1.11
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considers them, we define the rounded profit of S as:

P̂(S) = R̂(S)−
T∑
t=1

St∑
k=1

B
∑

ℓ≤k
q
i
(t)
ℓ

− max
0≤t′<t

ct − ct′ −
∑

t′+1≤τ<t

Q(S(τ))


+

κ

.

(1.30)

Let us also define a single period change in rounded profit for a set of items S = (i1, . . . , iS)

with knapsack capacity c as:

∆P̂(S, c) = R̂(S)−
S∑

k=1

B
∑

ℓ≤k
qiℓ − c

+
κ

. (1.31)

Let Â(i, p) be the maximum capacity left at time di when earning rounded profit at least

p using items {1, . . . , i} with rounded down rewards r̂, equivalently,

Â(i, p) := max{S⊆{1,...,i}
P̂(S)≥p

} max
0≤t′<di

cdi − ct′ −
∑

t′+1≤τ≤di−1
Q(S(τ))

 . (1.32)

If it is not possible to earn profit p at time di using items {1, . . . , i} with rounded down

rewards, i.e., no S ⊆ {1, . . . , i} exists such that P̂(S) ≥ p, then Â(i, p) is labeled −∞. The

DP table runs for i = 1, . . . , n and p = 0, κ, . . . ,
⌈
4n
ϵ

⌉
κ. We then have Algorithm 1.11, which

returns an exact optimal solution of P̂(S) under the rounded rewards and rounded penalties.

Proof of Correctness of Algorithm 1.11. We show that Â(i, p) returned by the algorithm sat-

isfies (1.32) by induction on i. The base case (i = 0) is vacuously true. Now we assume

that (1.32) holds for all p ∈ {0, 1, . . . , ⌈4n/ϵ⌉}κ and for all k ∈ [i − 1]. Consider some

p ∈ {0, 1, . . . , ⌈4n/ϵ⌉}κ, and let S∗ be any set achieving the maximum in (1.32) so that

P̂(S) ≥ p. We will show that Â(i, p) is at least the leftover capacity under solution S∗ via
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Algorithm 1.11 DP with rounded down rewards for MPBKP-S
1: Define κ = ϵP0

2n
2: Define r̂i = κ

⌊
ri
κ

⌋
▷ Round down reward

// Â(i, p) = max capacity left at time di when earning (rounded) profit at least p by
selecting items in {1, . . . , i} with rounded down rewards r̂

3: Initialize Â(0, p) =

{
0 p = 0,

−∞ p > 0.

4: for t = 1, . . . , T do
5: i = I(t− 1) + 1
6: for p =

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

7: Â(i, p) := Â(i− 1, p) + ct − ct−1 ▷ If reject request i
8: end for
9: for p̄ =

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

10: p = p̄+ r̂i −
⌈
B(qi −max{0, Â(i− 1, p̄) + (ct − ct−1)})+

⌉
κ

11: Â(i, p) = max{Â(i, p), Â(i− 1, p̄) + (ct − ct−1)− qi} ▷ Accept i
12: end for
13: for p =

{⌈
4n
ϵ

⌉
,
⌈
4n
ϵ

⌉
− 1, . . . , 1

}
· κ do

14: if Â(i, p− κ) < Â(i, p) then
15: Â(i, p− κ) = Â(i, p)
16: end if
17: end for
18: for i = I(t− 1) + 2, . . . , I(t) do
19: for p =

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

20: Â(i, p) := Â(i− 1, p) ▷ If reject request i
21: end for
22: for p̄ =

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

23: p = p̄+ r̂i −
⌈
B(qi −max{0, Â(i− 1, p̄)})+

⌉
κ

24: Â(i, p) = max{Â(i, p), Â(i− 1, p̄)− qi} ▷ Accept i
25: end for
26: for p =

{⌈
4n
ϵ

⌉
,
⌈
4n
ϵ

⌉
− 1, . . . , 1

}
· κ do

27: if Â(i, p− κ) < Â(i, p) then
28: Â(i, p− κ) = Â(i, p)
29: end if
30: end for
31: end for
32: end for

case analysis:

• Case i /∈ S∗: In this case, the leftover capacity under S∗ is the leftover capacity by

di, which is the sum of leftover capacity in S∗ by di−1 and cdi − cdi−1
. By induction

hypothesis, Â(i−1, p) is no less than the leftover capacity of S∗ by di−1, and therefore,

by lines (7,11) and (20,24), Â(i, p) ≥ Â(i− 1, p) + cdi − cdi−1
which in turn is no less
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than the leftover capacity under S∗ by di. By optimality of S∗, all the inequalities

must be equalities.

• Case i ∈ S∗: Let S ′ = S∗ \ {i}, and let p′ = P̂(S ′) be its rounded profit. Then

by induction hypothesis, Â(i − 1, p′) is no less than the leftover capacity under S ′ by

di−1. Further, by packing item i in the solution corresponding to Â(i − 1, p′), the

change in profit is larger than by packing item i in S ′ (the penalty is no less under S ′

since it has weakly smaller leftover capacity). Therefore, packing item i in the solution

corresponding to Â(i− 1, p′) gives a solution with at least as large a rounded profit as

p and at least as much leftover capacity by di as S∗. Therefore, in turn Â(i, p) is at

least as much as the leftover capacity in S∗. Since we assume S∗ to have the largest

leftover capacity with profit at least p, all the inequalities must be equalities.

Our next result gives the approximation guarantee for Algorithm 1.11.

Lemma 1.17. Let S∗ be the optimal solution set to the original MPBKP-S, and P0 satisfy

(1.14). Let S ′ denote the optimal solution set by Algorithm 1.11, i.e., S ′ is the solution set

corresponding to Â(n, p∗) where p∗ is the maximum p such that Â(n, p) > −∞. Then,

P(S ′) ≥ p∗ ≥ (1− ϵ)P(S∗).

Proof of Lemma 1.17. For any item i, because of rounding down, r̂i is smaller than ri. Also

there are at most n rounding ups on the penalties in S∗, each by not more than κ. Then,

P(S∗)− P̂(S∗) ≤ 2nκ.

The dynamic programming step must return a set, S ′, at least as good as S∗ under the new
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profit. Therefore,

P(S ′) ≥ P̂(S ′) = p∗ ≥ P̂(S∗) ≥ P(S∗)− 2nκ = P(S∗)− ϵP0 ≥ (1− ϵ)P(S∗),

where first inequality follows because the rewards are rounded down and the penalties are

rounded up in calculation of P̂ , second inequality follows because S ′ is the optimal set for

objective P̂ , the third inequality follows because |S∗| ≤ n and T ≤ n, and the last inequality

follows from (1.14) that P(S∗) ≥ P0.

It remains to find P0 which satisfies (1.14). Since P(S∗) ≤ P̄ , we can enumerate P0

from P̄ /2, P̄ /4, P̄ /8, . . ., and one of them must satisfy (1.14). The FPTAS is presented as

Algorithm 1.12.

Algorithm 1.12 FPTAS for MPBKP-S in O(n2 log n/ϵ)
1: P0 ← P̄
2: p∗ ← 0
3: while p∗ < (1− ϵ)P0 do
4: P0 ← P0

2

5: Run Algorithm 1.11 with the current P0.
6: p∗ ← max{

p∈{0,...,⌈ 4n
ϵ ⌉}·κ

Â(n,p)>−∞

} p

7: end while

Theorem 1.8. Algorithm 1.12 is a fully polynomial approximation scheme for the MPBKP-

S, which achieves (1− ϵ) factor of optimal with running time O
(
n2 log n

ϵ

)
.

Proof of Theorem 1.8. Time complexity: When P0 satisfies (1.14), by Lemma 1.17 we

have that

p∗ ≥ (1− ϵ)P(S∗) ≥ (1− ϵ)P0.

Thus, the “while” loop terminates when P0 satisfies (1.14), if not before P0 satisfies (1.14).

When P0 satisfies (1.14), we would also have P(S∗)/2 ≤ P0 ≤ P(S∗). Therefore, the number
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of iterations is upper bounded by

number of iterations ≤ log
P̄ /2

P(S∗)/2 ≤ log n,

where we have used the fact that P̄ ≤ nP ≤ nP(S∗). Since each iteration takes time

O
(
n ·
⌈
4n
ϵ

⌉)
we get a total time complexity of O

(
n2 log n

ϵ

)
.

Approximation ratio: When Algorithm 1.12 terminates, it returns the last p∗ and the

solution set S ′ corresponding to Â(n, p∗). If the “while” loop terminates when P0 > P(S∗),

i.e., it stops before P0 falls below P(S∗), then we have that

P(S ′) ≥ p∗ ≥ (1− ϵ)P0 > (1− ϵ)P(S∗).

Otherwise, from the time complexity analysis, we know that the “while” loop must terminate

when P0 first falls below P(S∗), which implies that the last P0 satisfies (1.14). Then by

Lemma 1.17 we again have that

P(S ′) ≥ (1− ϵ)P(S∗).

In either case, the solution we obtained from Algorithm 1.12 achieves (1− ϵ) optimal. (1− ϵ)

factor of P(S∗).

1.7.5 Other Special Cases for MPBKP, MPBKP-S, and MPBKP-SS

While we have considered the special case of MPBKP-SS when all items have qi = 1 in

Section 1.5.1. In this subsection, we consider three other special cases: when all items have

qi = 1 in MPBKP, when all items have qi = 1 in MPBKP-S, and when T = 1 in MPBKP-SS.
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1.7.5.1 Special case for MPBKP when qi = 1

Considering a special case of MPBKP where qi = 1 for all i ∈ [n], i.e., all items have size 1.

In this case, the problem becomes

max
x

n∑
i=1

rixi

s.t.
∑

j:dj≤di
xj ≤ ci, ∀i = 1, . . . , n

xi ∈ {0, 1}, ∀i = 1, . . . , n.

(1.33)

We claim that in this special case, the optimal solution can be obtained by greedily picking

the items according to their rewards. Formally,

Proposition 1.5. For the special case where qi = 1 for all i, the optimal algorithm is to

sort the items in decreasing order of ri, and greedily pick an item if it is feasible.

The proof of Proposition 1.5 is straightforward and omitted. In Proposition 1.5, by

“greedily pick an item if it is feasible”, we mean that we begin with an empty solution, check

the item with the largest reward and pick it if it is feasible to do so. We then check the item

with the second largest reward, and pick it if adding it to the current solution is feasible.

We continue this pattern until all items have been checked. To check feasibility, we maintain

counters for number of items accepted with deadlines within each dyadic interval (that is

intervals of the form [j ·2k+1, (j+1)·2k] for all k ∈ {0, 1, . . . , log2 T} and j ∈ {0, . . . , T/2k}),

which can be updated in O(log T ) time per item, and enable checking feasibility in time

O(log T ) per item. The total time complexity of the greedy algorithm is therefore O(n log n).
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1.7.5.2 Special case for MPBKP-S when qi = 1

Consider a special case of MPBKP-SS where qi = 1 for all i ∈ [n], i.e., all items have size 1.

In this case, the problem becomes

max
x

z =
n∑

i=1

rixi −B ·
T∑
t=1

 ∑
j∈I(t)

xj − max
0≤t′<t

ct − ct′ −
∑

j∈S:t′+1≤dj≤t−1
xj


+

s.t. xi ∈ {0, 1}, ∀i ∈ [n]

(1.34)

We claim that in this special case, the optimal solution again can be obtained by greedily

picking the items according to their rewards. Formally,

Proposition 1.6. For the special case where qi = 1 for all i, the optimal algorithm is to

sort the items in decreasing order of ri, and greedily pick an item if it is profitable.

The proof of Proposition 1.6 is straightforward and omitted. In Proposition 1.6, by

“greedily pick an item if it is feasible”, we mean that we check the item with the largest

reward, and pick it if the profit increases (compared to the profit before picking it). We

then check the item with the second largest reward, and pick it if it is profitable (the profit

increases by adding this item). We continue this pattern until all items have been checked.

As in the previous section, we can compute the change in profit by maintaining the total

size of items picked with deadlines within each dyadic interval, and therefore we can check

profitability in O(log T ) time per item, or O(n log n) in total.

1.7.5.3 Special case for MPBKP-SS when T = 1

In this subsection, we consider the special case when T = 1. This is the same as the 0-1

knapsack problem with random capacity and linear penalty for overflow, i.e., we solve the

following stochastic program:
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max
x∈{0,1}n

z(x) :=
n∑

i=1

rixi −B · E

∑
j∈[n]

qjxj − C

+ , (1.35)

where C is the random capacity following some known distribution C. We again denote

an optimal solution to (1.35) by x∗, and the corresponding item set by S∗. Let pi be the

expected profit of item i, which is defined as the expected profit earned if we select only i,

i.e., pi = ri −B · E
[
(qi − C)+

]
. Then, we have the following lemma.

Lemma 1.18. If for item j we have pj < 0, i.e., rj < B · E
[(
qj − C

)+], then j /∈ S∗.

Proof of Lemma 1.18. Suppose that to the contrary j ∈ S∗. Then consider the set S ′ :=

S∗ \ {j}. We have that

P(S∗)− P(S ′) = rj −B · E
[
(Q(S∗)− C)+

]
+B · E

[(
Q(S ′)− C

)+]
= rj −B ·

(
E
[
(Q(S∗)− C)+

]
− E

[(
Q(S ′)− C

)+])

Note that since Q(S∗) = Q(S ′) + qj , we have that

E
[
(Q(S∗)− C)+

]
≥ E

[(
Q(S ′)− C

)+]
+ E

[(
qj − C

)+]
.

Therefore,

P(S∗)− P(S ′) ≤ rj −B · E
[(
qj − C

)+]
< 0,

which contradicts with the assumption that S∗ is the optimal solution.

From Lemma 1.18, we assume without loss of generality that each item i is by itself

profitable in expectation, i.e., ri ≥ B ·E
[
(qi − C)+

]
for all i ∈ [n], so one profitable solution
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would be {i}. This assumption is natural as otherwise there exists some item i that will

only bring down the expected profit if included in any solution, in which case we may simply

eliminate that item when solving for the problem.

The problem of maximizing profit under stochastic capacity (1.35) can be equivalently

expressed as finding the set S∗:

S∗ ∈ argmax
S⊆[n]

P(S) := R(S)−B · E
[
(Q(S)− C)+

]
. (1.36)

We first observe that the penalty part of (1.36) is convex and increasing in Q(S). Formally,

we have the following lemma.

Lemma 1.19. The function ϕ(q) := B · E
[
(q − C)+

]
is a convex, nondecreasing function

of q.

Proof of Lemma 1.19. We first show that ϕ(q) is nondecreasing in q. For any q2 ≥ q1 ≥ 0,

we have that

ϕ(q2)− ϕ(q1) = B · E
[
(q2 − C)+

]
−B · E

[
(q1 − C)+

]
= B · E

[
(q2 − C)+ − (q1 − C)+

]
.

For each realization of C, we have that (q2 − C)+ − (q1 − C)+ ≥ 0. Therefore, since taking

the expectation is equivalent to the convex sum of all realizations of C, we conclude that

ϕ(q2)− ϕ(q1) ≥ 0, and thus the function is nondecreasing in q.

We next show that ϕ(q) is a convex function, i.e., for any 0 ≤ θ ≤ 1,

B · E
[
(θq1 + (1− θ)q2 − C)+

]
≤ θ ·B · E

[
(q1 − C)+

]
+ (1− θ) ·B · E

[
(q2 − C)+

]
.

It suffices to show that for each realization of C,

(θq1 + (1− θ)q2 − C)+ ≤ θ · (q1 − C)+ + (1− θ) · (q2 − C)+ . (1.37)
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Without loss of generality, assume that q2 ≥ q1, then

• If q2 ≥ q1 ≥ C, then (1.37) becomes θq1+(1−θ)q2−C ≤ θ ·(q1 − C)+(1−θ)·(q2 − C),

which is true since we actually have θq1+(1−θ)q2−C = θ ·(q1 − C)+(1−θ) ·(q2 − C).

• If C ≥ q2 ≥ q1, then both sides of (1.37) are 0, and (1.37) holds.

• If q2 ≥ C ≥ q1 and we further have θq1 + (1 − θ)q2 − C ≤ 0, then (1.37) becomes

0 ≤ (1− θ) · (q2 − C), which holds since q2 − C ≥ 0

• If q2 ≥ C ≥ q1 and we further have θq1+(1−θ)q2−C ≥ 0, then (1.37) becomes θq1+(1−

θ)q2−C ≤ (1−θ)·(q2−C). Note that θq1+(1−θ)q2−C = θ(q1−C)+(1−θ)(q2−C), and

q1−C ≤ 0, thus we have θq1+(1−θ)q2−C = θ(q1−C)+(1−θ)(q2−C) ≤ (1−θ)·(q2−C).

This completes the proof of (1.37), and thus the convexity of ϕ(q).

By observing that the function ϕ(q) := B · E
[
(q − C)+

]
is a convex, nondecreasing

function of q, we can write the profit function equivalently as the following:

P(S) := R(S)− ϕ (Q(S)) (1.38)

where ϕ(·) is nondecreasing, convex, non-negative penalty function with ϕ(0) = 0. Note that

in our problem ϕ(q) is in fact a piecewise linear convex function. We have thus converted the

Knapsack problem with random capacity and linear penalties for overflow to a deterministic

Knapsack problem with convex penalty function ϕ.

Up to this point, one may speculate that the algorithms in Section 1.4.1, with T = 1, could

possibly be used to solve this problem. However, we note that this is not the case. One of the

most important features of the algorithm for MPBKP-S that we introduced in Section 1.4.1,

as well as those well-known algorithms for 0-1 Knapsack problem in literature [113, 125,

126, 135] is to divide items into large items and small items according to some threshold

on reward (or profit), and that large items are added via dynamic program and small items
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are added greedily in their reward densities. In the 0-1 Knapsack problem (or MPBKP-S),

we could bound the loss from adding small items greedily in their reward densities by the

reward (or profit) of one small item. Specifically, in MPBKP-S, the penalty for going above

the capacity grows linearly with rate B, and we assumed without loss of generality that

B > ri/qi for all i ∈ [n]. This implies that there is at most one small item that could be

added above the capacity – adding more small items would only bring down the profit, and

thus the loss from small items is at most the profit of that small item, which is bounded

by the threshold. In our current problem, when the penalty function becomes convex, its

derivative can be smaller than some ri/qi, and there is no longer a bound for the difference

on profits between the greedy padding of small items and the optimal padding of small items,

i.e., we cannot have the result in analogous to Lemma 1.7.

Facing this problem, we turn to a more intuitive dynamic program, without partitioning

items to large ones and small ones. We now describe the algorithm.

Suppose again that we can find some some P0 such that

P0 ≤ P (S∗) ≤ 2P0 (1.39)

Then, we choose a discretization quantum κ := ϵP0/2n and define rounded rewards r̂i :=⌊ri
κ

⌋
· κ = ⌊ri⌋κ. We then have P(S∗) ≤ 4n

ϵ κ. We next define the rounded profit of

S = {1′, 2′, . . . , k′} as:

P̂(S) = ⌊r1′ − ϕ(q1′)⌋κ + ⌊r2′ + ϕ(q1′)− ϕ(q1′ + q2′)⌋κ + · · ·

+
⌊
rk′ + ϕ(q1′ + · · ·+ q(k−1)′)− ϕ(q1′ + · · ·+ qk′)

⌋
κ
. (1.40)

Let Â(i, p) be the minimum total size of used capacity using items {1, . . . , i} when earning
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rounded profit at least p, with rounded down rewards r̂, equivalently,

Â(i, p) = min{S⊆{1,...,i}
P̂(S)≥p

}Q(S). (1.41)

Again, if it is not possible to earn rounded profit at least p using items {1, . . . , i} with

rounded rewards and penalties, i.e., no S ⊆ {1, . . . , i} exists such that P̂(S) ≥ p, then Â(i, p)

is labeled∞. We then have Algorithm 1.13, which returns an exact optimal solution of P̂(S)

under the rounded rewards and rounded penalties. The DP table runs for i = 1, . . . , n and

p = 0, κ, . . . ,
⌈
4n
ϵ

⌉
κ.

Algorithm 1.13 DP with rounded profits for the single period problem with convex penalty
functions
1: Define κ = ϵP0

2n
2: Define r̂i = ⌊ri⌋κ

// Â(i, p) = min total size of subset of items {1, . . . , i} with total rounded down profit p
3: for p =

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

4: Initialize Â(0, p) =

{
0 p = 0

∞ otherwise
5: end for
6: for i = 1, 2, . . . , n do
7: for p =

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

8: Â(i, p) = Â(i− 1, p)
9: end for

10: for p̄ =
{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ do

11: p = p̄+
⌊
ri − Φ

(
Â(i− 1, p̄) + qi

)
+Φ

(
Â(i− 1, p̄)

)⌋
κ

12: Â(i, p) = min
{
Â(i, p), Â(i− 1, p̄) + qi

}
13: end for
14: end for
15: Return max

{
p ∈

{
0, 1, . . . ,

⌈
4n
ϵ

⌉}
· κ
∣∣ Â(n, p) <∞

}

Proof of Correctness of Algorithm 1.13. Note that each finite Â(i, p) corresponds to a feasi-

ble solution to the problem of earning rounded profit p using items {1, . . . , i}. We prove by

induction that Â(i, p) calculated from the algorithm indeed satisfies (1.41). At the begin-

ning, as the base case, no items have been added, so Â(0, 0) = 0 and Â(0, p) = ∞ for any

p > 0. In the induction step, assume that (1.41) holds for all p ∈ {0, 1, . . . , ⌈4n/ϵ⌉}κ and
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for all k ∈ [i − 1]. Consider some p ∈ {0, 1, . . . , ⌈4n/ϵ⌉}κ, and let S∗ be any set achieving

the minimum in (1.41) so that P̂(S) ≥ p. We will show that Â(i, p) is at most the total size

under solution S∗ via case analysis:

• Case i /∈ S∗: In this case, the total size of S∗ is the same as the total size of S∗ ∩

{1, . . . , i− 1}. By induction hypothesis, Â(i− 1, p) is no greater than the total size of

S∗ ∩ {1, . . . , i− 1}, and therefore, by lines (8,12), Â(i, p) ≤ Â(i− 1, p), which in turn

is no greater than the total size of S∗ ∩ {1, . . . , i − 1}. By optimality of S∗, all the

inequalities must be equalities.

• Case i ∈ S∗: Let S ′ = S∗ \ {i}, and let p′ = P̂(S ′) be its rounded profit. Then by

induction hypothesis, Â(i − 1, p′) is no greater than the total size of S ′. Further, by

packing item i in the solution corresponding to Â(i−1, p′), the change in profit is larger

than by packing item i in S ′ (the penalty is no less under S ′ since it has weakly greater

total size). Therefore, packing item i in the solution corresponding to Â(i−1, p′) gives

a solution with at least as large a rounded profit as p and at most as much total size

as S∗. Therefore, in turn Â(i, p) is at most as much as the total size of S∗. Since we

assume S∗ to have the min total size with rounded profit at least p, all the inequalities

must be equalities.

Our next result gives the approximation guarantee for Algorithm 1.13.

Lemma 1.20. Let S∗ be the optimal solution set maximizing (1.38), and P0 satisfy (1.39).

Let S ′ denote the optimal solution set by Algorithm 1.13, i.e., S ′ is the solution set corre-

sponding to Â(n, p∗) where p∗ is the maximum p such that Â(n, p) <∞. Then,

P(S ′) ≥ p∗ ≥ (1− ϵ)P(S∗).
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Proof of Lemma 1.20. For any item i, because of rounding down, r̂i is smaller than ri, but

by no more than κ. Also there are at most n rounding ups on the penalties in S∗, each by

not more than κ. Then,

P(S∗)− P̂(S∗) ≤ 2nκ.

The dynamic programming step must return a set, S ′, at least as good as S∗ under the new

profit P̂ . Therefore,

P(S ′) ≥ P̂(S ′) = p∗ ≥ P̂(S∗) ≥ P(S∗)− 2nκ = P(S∗)− ϵP0 ≥ (1− ϵ)P(S∗),

where first inequality follows because the rewards are rounded down and the penalties are

rounded up in calculation of P̂ , second inequality follows because S ′ is the optimal set for

objective P̂ , the third inequality follows because |S∗| ≤ n, and the last inequality follows

from (1.39) that P(S∗) ≥ P0.

It remains to find P0 that satisfies (1.39). Since P(S∗) ≤ P̄ , we can enumerate P0

from P̄ /2, P̄ /4, P̄ /8, . . ., and one of them must satisfy (1.39). The FPTAS is presented as

Algorithm 1.14.

Algorithm 1.14 FPTAS for the single period Knapsack with convex penalty functions in
O(n2 log n/ϵ)
1: P0 ← P̄
2: p∗ ← 0
3: while p∗ < (1− ϵ)P0 do
4: P0 ← P0

2

5: Run Algorithm 1.13 with the current P0.
6: p∗ ← max{

p∈{0,...,⌈ 4n
ϵ ⌉}·κ

Â(n,p)<∞

} p

7: end while

Theorem 1.9. Algorithm 1.14 is a fully polynomial approximation scheme for the Knapsack

problem with convex penalty functions (1.36), which achieves (1 − ϵ) factor of optimal with

running time O
(
n2 log n

ϵ

)
.
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Proof of Theorem 1.9. Approximation ratio: When Algorithm 1.14 terminates, it returns

the last p∗ and the solution set S ′ corresponding to Â(n, p∗). If the “while” loop terminates

when P0 > P(S∗), i.e., it stops before P0 falls below P(S∗), then we have that

P(S ′) ≥ p∗ ≥ (1− ϵ)P0 > (1− ϵ)P(S∗).

Otherwise, from the time complexity analysis, we know that the “while” loop must terminate

when P0 first falls below P(S∗), which implies that the last P0 satisfies (1.39). Then by

Lemma 1.20 we again have that

P(S ′) ≥ (1− ϵ)P(S∗).

In either case, the solution we obtained from Algorithm 1.14 achieves (1−ϵ) factor of P(S∗).

Time complexity: When P0 satisfies (1.39), by Lemma 1.20 we have that

p∗ ≥ (1− ϵ)P(S∗) ≥ (1− ϵ)P0.

Thus, the “while” loop terminates when P0 satisfies (1.39), if not before P0 satisfies (1.39).

When P0 satisfies (1.39), we would also have P(S∗)/2 ≤ P0 ≤ P(S∗). Therefore, the number

of iterations is upper bounded by

number of iterations ≤ log
P̄ /2

P(S∗)/2 ≤ log n,

where we have used the fact that P̄ ≤ nP ≤ nP(S∗). Since each iteration takes time

O
(
n ·
⌈
4n
ϵ

⌉)
we get a total time complexity of O

(
n2 log n

ϵ

)
.
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1.7.6 Pseudo-Polynomial Time Algorithms for Exact Solutions

In this subsection, we provide pseudo-polynomial time algorithms for MPBKP and MPBKP-

S, which return the exact optimal solutions.

1.7.6.1 A pseudo-polynomial time algorithm for MPBKP

In this subsection, we introduce a pseudo-polynomial time algorithm, Algorithm 1.15, which

returns the exact optimal solution for MPBKP. The algorithm uses dynamic programming

(DP) approach. Let A(i, r) be the maximum capacity left at time di when earning reward r

using items {1, . . . , i}, equivalently,

A(i, r) := max{ S⊆{1,...,i}
R(S)=r

S feasible to (1.1)

} cdi −Q(S) (1.42)

If it is not possible to earn reward r using items {1, . . . , i}, i.e., no feasible S ⊆ {1, . . . , i}

exists such that R(S) = r, then A(i, r) is labeled −∞. The DP runs for i = 1, . . . , n and

r = 0, . . . , nR, where R := maxi ri.

Algorithm 1.15 Exact pseudo-polynomial time algorithm for MPBKP
// A(i, r) = max capacity left at time di when earning reward r using items {1, . . . , i}

1: for r = 0, . . . , n ·R do

2: Initialize A(0, r) =

{
0 r = 0,

−∞ r ≥ 1.

3: end for
4: for i = 1, 2, . . . , n do
5: for r = 0, . . . , n ·R do
6: A0(i, r) := A(i− 1, r) + cdi

− cdi−1
//If reject item i

7: A1(i, r) :=

{
A(i− 1, r − ri) + cdi

− cdi−1
− qi, if ≥ 0,

−∞, otherwise.
//If accept item i

8: A(i, r) = max {A0(i, r), A1(i, r)}
9: end for

10: end for

Proof of Correctness of Algorithm 1.15. Note that by definition of A(i, r), for i ≥ 1 and
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r ≥ 0, each nonnegative A(i, r) corresponds to a feasible solution to the problem of earning

reward r using items {1, . . . , i}. At the beginning, no items have been added, so A(0, r) = 0.

It then suffices to show that A(i, r) = max {A0(i, r), A1(i, r)}, i.e., the A(i, r) given by

the recursion in line 8 of the algorithm is indeed (1.42), which is the maximum remaining

capacity at time di when earning reward r using items {1, . . . , i}.

We first show that A(i, r) ≥ max{A0(i, r), A1(i, r)}. If both A0(i, r) and A1(i, r) are

−∞, then since A(i, r) ≥ −∞, the inequality holds. If at least one of A0(i, r) and A1(i, r) is

not −∞, then it is nonnegative, and max{A0(i, r), A1(i, r)} ≥ 0 and gives a feasible solution.

By definition A(i, r) is the optimal (maximum) capacity left, thus

A(i, r) ≥ max{A0(i, r), A1(i, r)}. (1.43)

We next show that A(i, r) ≤ max{A0(i, r), A1(i, r)}. The result trivially holds if A(i, r) =

−∞. If A(i, r) ̸= −∞, then A(i, r) ≥ 0, which means it is feasible to earn reward r using

items {1, . . . , i}. We look at the solution corresponding to A(i, r).

• If item i is rejected in this solution, then the capacity left when earning reward r using

{1, . . . , i} would be the capacity left when earning reward r using {1, . . . , i − 1} plus

(cdi − cdi−1
). Since A(i − 1, r) is the max capacity left when earning reward r using

{1, . . . , i− 1}, we have that A(i, r) ≤ A(i− 1, r) + (cdi − cdi−1
) = A0(i, r).

• If item i is accepted in this solution, then the capacity left when earning reward r using

{1, . . . , i} would be the capacity left when earning reward (r− ri) using {1, . . . , i− 1},

plus (cdi− cdi−1
), minus qi. Since A(i−1, r− ri) is the max capacity left when earning

reward r−ri using {1, . . . , i−1}, we have that A(i, r) ≤ A(i−1, r−ri)+(cdi−cdi−1
)−

qi = A1(i, r)

In the solution corresponding to A(i, r), item i is either accepted or rejected. Therefore, we
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have that

A(i, r) ≤ max{A0(i, r), A1(i, r)}. (1.44)

Combining (1.43) and (1.44), we conclude that A(i, r) = max{A0(i, r), A1(i, r)}.

After running Algorithm 1.15, we have A(n, r) which gives the optimal solution for earn-

ing reward r using {1, . . . , n}. Let r∗ be the maximum r such that A(n, r) ≥ 0. Then the

optimal solution to the problem is the solution corresponding to A(n, r∗). The running time

for Algorithm 1.15 is O
(
n2R

)
, which is polynomial in n and R.

Remark 1.3. Note that in Algorithm 1.15, we have used nR as the upper bound for the

optimal value. This leads to the running time being O
(
n2R

)
. We can instead use the upper

bound R̄ :=
∑

i ri, in which case the “for” loops in line 1 and line 5 run as r = 0, . . . , R̄.

The time complexity of the algorithm then becomes O
(
nR̄
)
.

1.7.6.2 A pseudo-polynomial time algorithm for MPBKP-S

In this subsection, we introduce the following pseudo-polynomial time algorithm, Algo-

rithm 1.16, which returns the exact optimal solution for the MPBKP-S. The algorithm

uses dynamic programming approach. Let A(i, p) be the maximum capacity left at time di

when earning profit p using items {1, . . . , i}. If it is not possible to earn profit p at time

di using items {1, . . . , i}, A(i, p) is labeled −∞. The DP table runs for i = 1, . . . , n and

p = 0, . . . , nP , where P := maxiP({i}).

Proof. Proof of Correctness of Algorithm 1.16 Note that by definition of A(i, p), for

i > 0 and p ≥ 0, each nonnegative A(i, p) corresponds to a feasible solution to the problem of

earning profit p using items {1, . . . , i}. At the beginning, there is no inventory, so A(0, r) = 0.

It then suffices to show that the recursion gives optimal A(i, p).
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Algorithm 1.16 Exact Pseudo-polynomial time algorithm for MPBKP-S
// A(i, p) = max capacity left at time di when earning profit p using items {1, . . . , i}

1: for r = 0, . . . , n · P do

2: Initialize A(0, p) =

{
0 p = 0,

−∞ p ≥ 1.

3: end for
4: for i = 1, 2, . . . do
5: for r = {0, . . . , nP} do
6: A0(i, p) := A(i− 1, p) + (cdi

− cdi−1
) ▷ If reject request i

7: Ty(i, p) :=

{
A(i− 1, p− ri + (qi − y)B) + (cdi − cdi−1)− y if ≥ 0,

−∞ otherwise.
▷ If accept request i and

serve y units
8: A(i, p) = max

{
A0(i, p),maxy∈{1,...,qi} Ay(i, p)

}
9: end for

10: end for

We first show that A(i, p) ≥ max{A0(i, p),maxy∈{1,...,qi}Ay(i, p)}. If both A0(i, p)

and maxy∈{1,...,qi}Ay(i, p) are −∞, then since A(i, r) ≥ −∞, the inequality holds. If

at least one of A0(i, r) and maxy∈{1,...,qi}Ay(i, p) is not −∞, then it is nonnegative, and

max{A0(i, r),maxy∈{1,...,qi}Ay(i, p)} ≥ 0 and gives a feasible solution. By definition A(i, p)

is the optimal (maximum) capacity left, thus

A(i, p) ≥ max

{
A0(i, p), max

y∈{1,...,qi}
Ay(i, p)

}
. (1.45)

We next show that A(i, p) ≤ max{A0(i, p),maxy∈{1,...,qi}Ay(i, p)}. The result trivially holds

if A(i, p) = −∞. If A(i, p) ̸= −∞, then A(i, p) ≥ 0, which means it is feasible to earn profit

p using items {1, . . . , i}. We look at the solution corresponding to A(i, p).

• If item i is rejected in this solution, then the capacity left when earning profit p using

{1, . . . , i} would be the capacity left when earning profit p using {1, . . . , i − 1} plus

(cdi − cdi−1
). Since A(i − 1, p) is the max capacity left when earning profit p using

{1, . . . , i− 1}, we have that A(i, p) ≤ A(i− 1, p) + (cdi − cdi−1
) = A0(i, p).

• If item i is accepted in this solution, then if we serve y units for item i from the capacity,

the capacity left when earning profit p using {1, . . . , i} would be the capacity left when
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earning profit p− ri + (qi − y)B using {1, . . . , i− 1}, plus the supply from di−1 + 1 to

di, minus y. Since A(i − 1, p − ri + (qi − y)B) is the max capacity left when earning

profit p− ri + (qi − y)B using {1, . . . , i− 1} when serving y units for item i. Since we

can only serve the units y from 1 to qi, by maximizing over y we have that A(i, p) ≤

maxy∈{1,...,qi}A(i− 1, p− ri + (qi − y)B) + (cdi − cdi−1
)− y = maxy∈{1,...,qi}Ay(i, p).

In the solution corresponding to A(i, p), item i is either accepted or rejected. Therefore, we

have that

A(i, p) ≤ max

{
A0(i, p), max

y∈{1,...,qi}
Ay(i, p)

}
. (1.46)

Combining (1.45) and (1.46), we conclude that A(i, p) = max{A0(i, r),maxy∈{1,...,qi}Ay(i, p)}.

Thus, A(n, p) gives the optimal solution for earning profit p using {1, . . . , n}. Let p̂ be the

maximum p such that A(n, p) ≥ 0. Then the optimal solution to the problem is the solution

corresponding to A(n, p̂).

After running Algorithm 1.16, we have A(n, p) which gives the optimal solution for earn-

ing profit p using {1, . . . , n}. Let p∗ be the maximum p such that A(n, p) > −∞. Then the

optimal solution to the problem is the solution corresponding to A(n, p∗). The running time

for Algorithm 1.15 is O
(
n2P ·maxi qi

)
, which is polynomial in n, P , and the sizes q.

Remark 1.4. Note that in Algorithm 1.16, we have used nP as the upper bound for the

optimal value. This leads to the running time being O
(
n2P ·maxi qi

)
. We can instead use

the upper bound P̄ :=
∑

i∈[n] pi, in which case the “for” loops in line 1 and line 5 run as

r = 0, . . . , P̄ . The time complexity of the algorithm then becomes O
(
nP̄ ·maxi qi

)
.

82



CHAPTER 2

AGGREGATING DISTRIBUTED ENERGY RESOURCES:

EFFICIENCY AND MARKET POWER

2.1 Introduction

Distributed energy resources (DERs) such as solar photovoltaics, electric vehicles, and bat-

teries, are small-scale resources located at the end-consumers level in distribution power sys-

tems. Under appropriate market rules, DERs enable end-consumers to become prosumers,

i.e., if their DER supply exceeds their demand, they can sell the excess energy back to the

grid. From an independent market operators’ (ISOs) perspective, electric power demand is

largely assumed to be inelastic. However, the presence of DERs, coupled with the recent

developments in demand response programs, causes a fundamental shift where the demand

becomes elastic (Adelman and Uçkun [4], Bertsimas et al. [35], Gan and Litvinov [87], Litvi-

nov et al. [149], Zheng and Litvinov [234], Zhao et al. [233]), which challenges fundamental

assumptions in existing electricity market’s design and operation (Ritzenhofen et al. [182]).

This fundamental shift calls for revisiting current wholesale markets design (Parag and So-

vacool [171], Anjos and Gómez [16]). This is not an easy task for ISOs, as they do not have

oversight over the distribution power network, and hence cannot include DER owners as

market participants. Furthermore, even if ISOs can oversee the distribution power system,

it would be a significant burden and impractical to include DER supply directly into the

wholesale electricity market operations through ISOs, due to the communication, computa-

tional, and operational complexity. Different models have been proposed to include DER

supply into wholesale electricity markets. One possibility is to have a Distribution System

Operator (DSO) acting as a market manager at the distribution level, and finding socially-

optimal dispatch, similar to ISOs (Lian et al. [143], Ntakou and Caramanis [168], Manshadi

and Khodayar [153], Sotkiewicz and Vignolo [199], Terra et al. [211], Huang et al. [112]). An-
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other possibility is to have fully-distributed electricity market designs, where end-consumers

can trade among themselves (Moret and Pinson [164], Rahimi and Ipakchi [178]). The third

model, which we adopt here, is to have an aggregator who collects energy from DER owners

and sells in the wholesale market as a producer of electricity.

DER aggregation via profit-seeking intermediaries has been adopted by California ISO

and New York ISO (Gundlach and Webb [98], Lavillotti [134]), and seems to be realistic for

practical implementation in other markets. The recent FERC Order No. 2222 in September,

2020 (FERC [81]) enables DERs to be aggregated, in order to satisfy minimum size and

performance requirements that each may not be able to meet individually, and participate

alongside conventional generators in the wholesale markets, which is opened to new sources of

energy and grid services. As an example, in California, there are now seven DER aggregators,

and four of them are not conventional utilities (see https://www.caiso.com). The aggregator

here buys DER supply from their owners, and bids directly to the ISO similar to generating

companies. The relationship between the aggregator and prosumers in the same geographical

footprint is naturally monopolistic (Cook et al. [58]), where aggregators become price-making

in retail electricity markets as they can send price offers to prosumers in order to collect

DER supply. Such price offers need to be high-enough so that DER owners are attracted to

sell, but small-enough so that the aggregator can maximize its profits. This profit-seeking

behavior can impact the overall electricity market efficiency, but, at the same time, due to the

impracticality of direct DER participation into wholesale markets, aggregators are necessary

and important players. This gives rise to the following important question: In the presence

of a profit-seeking and a monopolistic aggregator, is there an aggregation model that can

attain a socially optimal (efficient) market outcome? The presence of such a mechanism can

in fact be significant. First, in reality, aggregators are mostly profit-seeking, and are often

monopolistic, which makes the markets prone to efficiency losses (Alshehri et al. [10, 11]).

Second, it is infeasible for DER owners to participate in wholesale markets; the presence
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Figure 2.1: Overall interactions in the proposed efficient aggregation model

of such intermediaries is inevitable. Third, if such a mechanism can be designed, it would

address various debates surrounding whether DER aggregation needs to be done by profit-

making entities or social intermediaries.

In this chapter, we address the above question by first proposing a DER aggregation

model that yields efficient market outcomes, even when a DER aggregator is unregulated,

monopolistic and profit-seeking. We show that, with our proposed model, the optimal DER

capacities being integrated through an aggregator are equivalent to a benchmark (ideal, not

realistic) case where DER owners directly participate in the wholesale market. Briefly, our

aggregation model utilizes two-price offers from the aggregator to the prosumers, where one

price corresponds to a fixed DER owner participation cost (connection charges), and the other

price is for marginal acquisition of DER capacities. We remark here that without the par-

ticipation cost, having only a one-price offer would not yield efficient market outcomes (Sun

et al. [202], Alshehri et al. [10, 11]). For an overall illustration, refer to Figure 2.1. Our results

show that for the unregulated aggregator, while full market efficiency can be attained, the

aggregator naturally discriminates among different prosumers, i.e., offering each prosumer a

specific price pair. Interestingly, it has been previously observed that discriminatory poli-

cies are necessary for socially desirable outcomes (Singh and Scheller-Wolf [195]). Because

electricity is a basic commodity, discriminatory policies might pose legal challenges. As a
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remedy, we next consider a DER aggregation model with a profit-seeking aggregator who is

enforced to offer uniform prices to prosumers from the same location. While it is difficult

to analytically quantify the efficiency loss with the uniform price offerings, we propose an

algorithm that numerically solves the aggregator’s profit-maximization problem. Through

an illustrative example, we show that the efficiency loss seems to be mild. Then, we also

propose another aggregation model where the aggregator is regulated but guaranteed positive

profit. With the regulated model, full market efficiency is achieved and the two-part pricing

is only location-dependent, which is consistent with current market designs. Also, it is guar-

anteed for the regulated model that no prosumer is worse-off, compared to the case in which

no DER participation is allowed, though some prosumers’ payoffs might increase/decrease

compared to the unregulated model. We also note that the analysis of this chapter does not

consider the impact that DERs may have on the distribution network.

Finally, we shift our attention to market power and address the following question: When

DERs are aggregated, can the market power of conventional power generators be mitigated?

If yes, to what extent? When generators bid strategically, they might influence the market

prices and thus negatively affect the social welfare (Al-Gwaiz et al. [7]). In this chapter,

we demonstrate that our aggregation models are efficient, and can mitigate the market

power of conventional generators. In particular, we prove that under strategic bidding, the

social welfare is higher under our aggregation models, compared to the case when DERs are

not integrated. We also prove that the welfare gap between truthful bidding and strategic

bidding is smaller when DERs are aggregated, compared to the case where there are no

DERs. Quantification of such differences are also provided.

The rest of this chapter is organized as follows: Section 2.2 discusses the benchmark

ideal model. In Section 2.3, we propose an efficient unregulated DER aggregation model,

which is discriminatory. Next, in Section 2.4, we numerically analyze the efficiency loss if no

discriminatory prices are allowed with a profit-seeking aggregator. Then, in Section 2.5, we
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propose a non-discriminatory regulated DER aggregation model, which also attains full mar-

ket efficiency. Results on market power mitigation of conventional generators are provided

in Section 2.6. Conclusions and future directions are provided in Section 2.7. All proofs can

be found in the Appendix 2.8.

2.2 Direct Prosumer Participation Model (Benchmark)

In this section, we introduce an ideal model, termed direct participation model, where pro-

sumers can participate (buy or sell) directly in the wholesale market, and no aggregator is

present. This model, though not realistic, serves as a benchmark for evaluating the market

efficiency of our following models. There are three parties in this model: prosumers who can

buy and sell energy directly in the wholesale market, conventional generators who generate

and sell electricity in the wholesale market, and an independent system operator (ISO) who

clears the wholesale market. In the following, we describe the optimization problems solved

by each of these three parties. Figure 2.2 illustrates the interactions between prosumers and

the ISO.

2.2.1 Prosumer’s Problem

Consider a power network with n nodes (locations). At each location k, there are nk number

of prosumers. As the focus of this chapter is on the aggregation mechanism, for simplicity,

we assume that each prosumer i at location k can purchase energy at the wholesale price λk.
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Furthermore, prosumer i at location k is endowed with a capacity Ck
i ≥ 0 of power production

from a collection of resources, such as solar panels, wall-mounted batteries, and plug-in

electric vehicles. In this chapter, we assume that all prosumer capacities are deterministic.

The power produced can be consumed locally by prosumer i or sold back to the wholesale

market, again at the wholesale price λk. The prosumer observes λk and decides the amount

of energy to buy/sell. Let uki be prosumer i’s utility of power consumption. We make the

following assumption on prosumers’ utility of consumption.

Assumption 2.1. Each prosumer’s utility uki is increasing, strictly concave, and differen-

tiable. Furthermore, the domain of uki is [0, Z] where Z > Ck
i is some (large) upper bound

of the amount of energy a prosumer consumes. We assume that ∂uki (z)
∂z →∞ as z → 0, and

∂uki (z)
∂z → 0 as z → Z.

We can then write prosumer i’s optimization problem as:

max
zki

πki (z
k
i ) := λk(Ck

i − zki ) + uki (z
k
i )

s.t. 0 ≤ zki ≤ Z,

(2.1)

where zki is the amount of energy prosumer i actually consumes. Since prosumers at loca-

tion k can buy and sell energy at the same price λk, prosumer i essentially has zik as the single

decision to make in solving (2.1). For selling (Ck
i − zki ) at the wholesale price, prosumer i

receives λk(Ck
i − zki ); for buying (zki −Ck

i ) at the wholesale price, it is charged λk(zki −Ck
i ).

The prosumer’s utility from consumption would be uki (z
k
i ). While Assumption 2.1 imposes

strict concavity of prosumers’ utilities, our analysis throughout this chapter remains largely

applicable to generic concave utilities, but strict concavity allows us to derive unique ana-

lytical solutions and gain deep insights.

Lemma 2.1. Under Assumption 2.1, given any λk, there exists a unique optimal solution
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zki
∗ for the prosumer’s problem (2.1) which satisfies ∂uki (z)

∂z

∣∣∣∣
z=zki

∗
= λk.

The above lemma directly follows from the properties of problem (2.1). We denote by

xki the actual amount of energy prosumer i sells, and by dki the actual amount of energy

prosumer i buys. Without loss of generality, and for ease of exposition, we restrict our

attention to the case in which at most one of xki and dki can be nonzero. We first solve (2.1)

for zki
∗. Then, we let xki

∗
=
[
zki
∗ − Ck

i

]+
and dki

∗
=
[
Ck
i − zki

∗]+. We also use the

notation xki
∗
(λk) and dki

∗
(λk) to denote the optimal response of prosumer i at location k for

a given wholesale market price λk.

2.2.2 Generator’s Problem

Let Nk denote the number of conventional generators at location k. Generator j at location k

chooses to supply ykj ∈
[
yk
j
, ykj

]
. Let ckj (y

k
j ) be the production cost with the following

assumption.

Assumption 2.2. Each generator’s cost function ckj is increasing, strictly convex, and dif-

ferentiable in
[
yk
j
, ykj

]
. Furthermore, we let

∂ckj (y
k
j )

∂ykj
→ 0 as ykj → yk

j
and

∂ckj (y
k
j )

∂ykj
→ ∞ as

ykj → ykj .

By selling ykj , generator j earns a compensation λkykj . Given a wholesale price λk,

generator j maximizes its payoff by solving:

max
ykj ∈

[
yk
j
,ykj

] π̂kj (ykj ) := λkykj − ckj (y
k
j ). (2.2)

Lemma 2.2. Under Assumption 2.2, given any λk, there exists a unique optimal solution ykj
∗

for the generator’s problem (2.2) which satisfies
∂ckj (y

k
j )

∂ykj

∣∣∣∣
ykj=ykj

∗
= λk.

The above lemma directly follows from the properties of problem (2.2). We use the

notation ykj
∗
(λk) to denote the optimal response of generator j at location k at a given

89



wholesale price λk.

2.2.3 The Economic Dispatch Problem

Many wholesale electricity markets in the United States and other countries are managed

by independent system operators (ISOs) (Greer [97]). An ISO clears the market by match-

ing supply and demand via social welfare maximization (in practice, this is often done by

production cost minimization to meet fixed system demands (Gan and Litvinov [87], Litvi-

nov et al. [149], Zheng and Litvinov [234])), while ensuring that the power flows satisfy

the network and line capacity constraints. Specifically, let Xk =
∑

i∈[nk] x
k
i be the total

power supply at node k from prosumers; let Y k =
∑

j∈[Nk]
ykj be the total power supply at

node k from conventional generators; and let Dk =
∑

i∈[nk] d
k
j be the total demand (load)

at node k. Furthermore, we let Bh ≤ f be the network constraints that are resolved from

the DC approximation of the AC network, where f is the vector of capacities of transmission

lines in the power network, and the system operator chooses a vector h, where each element

hk is the net injection to node k. In summary, we have the following constraints:

h = D−Y −X, 1Th = 0, Bh ≤ f . (2.3)

We note that the first constraint ensures the total supply matches the total demand at each

node (in this and the following models, we assume there is no transmission line loss); the

next two constraints ensure that the total net injection by the system operator is zero over

the power network (here, 1 is a vector of ones), and the total power transmission at each

line does not exceed its capacity. In addition to the network constraints, the ISO also needs

to consider all participant-specific constraints described earlier in problems (2.1) and (2.2):

C− Z ≤ x− d ≤ C, y ≤ y ≤ y. (2.4)
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The objective of the system operator is to maximize the social welfare, which includes the

prosumer surplus (PS), generator surplus (GS), and merchandizing surplus (MS):

PS :=
∑
k∈[n]

 ∑
i∈[nk]

uki (d
k
i − xki + Ck

i )− λk(hk + Y k)

 , (2.5a)

GS :=
∑
k∈[n]

∑
j∈[Nk]

(
λkykj − ckj (y

k
j )
)
, (2.5b)

MS :=
∑
k∈[n]

λkhk. (2.5c)

where we have imposed the relationship (2.3) in deriving (2.5a). The social welfare that the

system operator optimizes is the sum of PS, GS, and MS. After canceling terms, the social

welfare can be written as

WB := PS+ GS+MS =
∑
k∈[n]

 ∑
i∈[nk]

uki (d
k
i + Ck

i − xki )−
∑

j∈[Nk]

ckj (y
k
j )

 . (2.6)

The system operator’s economic dispatch problem is then:

max WB(h,x− d,y)

subject to (2.3)− (2.4).
(2.7)

Assumption 2.3. The system operator’s economic dispatch problem (2.7) is feasible.

Proposition 2.1 (Competitive Equilibrium). Under Assumptions 2.1-2.3, there exists a

unique optimal solution (h∗, (x− d)∗,y∗) to (2.7). Denote the optimal Lagrange multipliers

of the first constraints of (2.3) by λλλ. Then, (C− x+ d)∗ = z∗ and λλλ satisfy Lemma 2.1; y∗

and λλλ satisfy Lemma 2.2.

The above proposition states that solving the system operator’s problem (2.7) leads to

a competitive equilibrium. From the perspective of prosumer i at node k, this means that
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given the wholesale market price λk (the optimal Lagrange multiplier for the same node),

the corresponding solution to its problem, which satisfies Lemma 2.1, is the same as the

optimal decision made by the ISO via solving (2.7). This is true for all other prosumers and

generators. Having all market participants being satisfied with the competitive equilibrium,

it serves as a good benchmark for market efficiency.

Remark 2.1. We note that in the case when prosumers are not allowed to sell back to the

grid, each prosumer’s xki will be set to 0. Equivalently, there will be additional constraints

zki = Ck
i − xki + dki ≥ Ck

i for all prosumers in all locations, in both the prosumer’s prob-

lem (2.1) and the system operator’s economic dispatch problem (2.7). With the additional

constraints, we call this the no participation model, and its analysis will be similar to the

direct participation model. Specifically, there will still be a competitive equilibrium, where

we denote by d̂ the optimal amount of purchase of prosumers, ŷ the optimal production of

the generators, ĥ the optimal injections by the system operator, λ̂̂λ̂λ the corresponding market

prices, and Ŵ∗B the corresponding social welfare. Then, it follows that λ̂̂λ̂λ ≥ λλλ, d̂ ≤ d∗,

ŷ ≤ y∗, and Ŵ∗B ≤ W∗B, where W∗B is the optimal social welfare given by (2.7).

2.3 Efficient Aggregation Model with an Unregulated Aggregator

The direct participation model introduced in the previous section is a benchmark: pro-

sumers are allowed to participate directly and sell their production in the wholesale market.

In reality, the supply capacities of prosumers are typically too small for consideration in

the wholesale market. Also, computing the dispatch and settlement for a large number of

prosumers raises an untenable computational burden on the system operator. The presence

of DER aggregators brings benefits to the system, as they open the door for DER owners

to participate and bring more flexibility to the grid. However, the profit-seeking nature of

these aggregators can cause efficiency losses (Alshehri et al. [10, 11]). To resolve this, we

propose in this section an unregulated aggregation model which achieves full market efficiency
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under two-part pricing. In this model, prosumers sell part of their DER supply productions

to an aggregator A, based on the price offers made by A. The interactions between A and

prosumers are modeled as a Stackelberg game (Başar and Olsder [26]). The aggregator acts

as a leader and announces a price pair (P k
i , p

k
i ) for each prosumer i at location k. We call

the aggregator unregulated since A may announce any price pair to any prosumer for its own

benefit. The prosumer follows by choosing the amount of energy to sell. If the prosumer

decides to sell a nonzero fraction of its capacity to the aggregator, it pays the aggregator

a participation fee P k
i , and earns the price pki for each unit of energy sold. The aggrega-

tor A then sells all the procured capacity to the wholesale market at the wholesale price λk.

The goal of the aggregator A is to choose prices (P k
i , p

k
i ) that maximize its profit, while

anticipating how DER owners would respond. Note that DER owners have access only to

one aggregator; so A is in fact monopolistic, which further signifies the importance of our

mechanism as it yields socially-optimal outcomes.

We also note that differential pricing is allowed in this model, i.e., the price pair (P k
i , p

k
i )

can be set differently for different prosumers. While it is reasonable to have varying prices

depending on locations (Birge et al. [40]), there exist some debates on whether differential

pricing should be allowed for prosumers from the same location. The legal issue is not the

focus of this chapter. While we assumed differential pricing in the model, the equilibrium

in the end has the same marginal price at each location, i.e., pki = λk, ∀i ∈ [nk]. The

participation fee can be differentiated by, for example, mailing different coupons to different

prosumers to encourage their participations, which is arguably more justifiable. In the

remainder of this section, we show that this unregulated aggregation model achieves the

same socially-optimal market outcomes as in the direct participation model.
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2.3.1 Prosumer’s Problem

Consider prosumer i at location k. Upon seeing the prices (P k
i , p

k
i ) announced by A, pro-

sumer i decides if it would sell part of its capacity to A. If it chooses so, it would pay a

fee P k
i to A, and receives pki for each unit of energy sold. We may write prosumer i’s payoff

as

πki (x
k
i , d

k
i ) :=


pki x

k
i − P k

i + uki

(
dki + Ck

i − xki

)
− λkdki , if xki > 0,

uki

(
dki + Ck

i

)
− λkdki , if xki = 0.

(2.8)

Given (P k
i , p

k
i , λ

k), prosumer i solves: maxxki ∈[0,Ck
i ],d

k
i ∈[0,Z−Ck

i +xki ]
πki (x

k
i , d

k
i ), where dki is

the amount of energy prosumer i purchases at wholesale market price λk, and xki is the

amount of energy it sells to the aggregator. For buying dki at the wholesale price, prosumer i

is charged λkdki . If the prosumer does not sell (xki = 0), it has a total of dki +Ck
i to consume,

and its utility from consumption would be uki (d
k
i + Ck

i ). If the prosumer chooses to sell

xki > 0 to A, it is charged a participation fee P k
i , and receives a compensation pki x

k
i . The

prosumer would have dki +Ck
i −xki to consume in this case and its utility from consumption

would be uki (d
k
i + Ck

i − xki ).

Let xki
∗
(P k

i , p
k
i , λ

k) and dki
∗
(P k

i , p
k
i , λ

k) denote the optimal response of prosumer j given

aggregator’s announced prices (P k
i , p

k
i ) and the wholesale market price λk. (Sometimes, we

drop arguments for simplicity.) Note that if pki > λk, the prosumer can arbitrage by buying

at the price λk and selling at a higher price pki . This will result in the prosumer’s earning

infinite payoff and the aggregator’s losing infinite profit, which would be avoided by the

aggregator. Therefore, we may without loss of generality restrict our discussion to the case

when pki ≤ λk,∀k ∈ [n], i ∈ [nk]. In the case pki = λk, similar to the direct participation

model, we may enforce that xki and dki cannot both be nonzero. We then have the following

lemma on the optimal response of prosumers.
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Lemma 2.3. Consider an arbitrary prosumer i at location k. Let (zλ, zp) be such that

∂uki (z)

∂z

∣∣∣
z=zλ

= λk,
∂uki (z)

∂z

∣∣∣
z=zp

= pki . (2.9)

Then, under Assumption 2.1, both (zλ, zp) exist and are unique. Furthermore, prosumer i’s

optimal response can be described as follows: If Ck
i ≤ zp, then, we have dki

∗
=
[
zλ − Ck

i

]+
,

xki
∗
= 0. If Ck

i > zp, then, we have xki
∗
=
(
Ck
i − zp

)
· 1 {X}, dki

∗
= 0, where X :={

P k
i ≤ pki

(
Ck
i − zp

)
+ uki

(
zp
)
− uki

(
Ck
i

)}
.

The above lemma states that if the capacity exceeds a certain value zp (zp is the value at

which the marginal utility of consumption is equal to the aggregator’s marginal price offer

pki ) and the upfront fee P k
i is not too high, then prosumers have an incentive to sell DER

supply. If the capacity is small or the upfront fee is too high, then prosumers would not sell

and prefer to consume locally.

2.3.2 Aggregator’s Problem

The DER aggregator A collects power from prosumers and sells it in the wholesale market.

By offering the prices (P k
i , p

k
i ) to each prosumer i at location k, A procures a total capacity

of
∑

i∈[nk] x
k
i
∗
(P k

i , p
k
i ) from location k. A then sells it at the wholesale market price λk.

Given the wholesale market price λk, the aggregator’s profit from prosumer i at location k is

Πk
i

(
P k
i , p

k
i

)
:= P k

i 1
{
xki
∗
(P k

i , p
k
i ) > 0

}
+ (λk − pki )x

k
i
∗
(P k

i , p
k
i ). Anticipating the response

functions xki
∗
(P k

i , p
k
i )’s, it seeks to maximize its overall profit:

max
P≥0,p≥0

∑
k∈[n]

∑
i∈[nk]

Πk
i

(
P k
i , p

k
i

)
︸ ︷︷ ︸

=:Π̂(P,p)

, (2.10)
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Aggregator A’s profit is composed of two parts: the total participation fees charged to

prosumers who sell positive amount of energy and the profits earned by reselling the procured

energy in the wholesale market. We note that A’s profit from prosumer i depends only

on the response and the prices of prosumer i, and there is no coupling among prosumers’

problems. It should be clear that the aggregator’s problem (2.10) can be decomposed to

optimizing (P k
i , p

k
i ) for each prosumer:

max
P k
i ≥0,pki≥0

Πk
i

(
P k
i , p

k
i

)
. (2.11)

Solving (2.11) for each k ∈ [n] and i ∈ [nk] would lead to the vectors (P∗,p∗), which

constitute an optimal solution for (2.10). We have the following result on the optimal

decisions of the aggregator.

Lemma 2.4. Under Assumption 2.1, consider an arbitrary prosumer i at location k, with zλ

as in (2.9), and wholesale market price λk, When zλ < Ck
i , the aggregator’s optimal pricing

decision is

pki
∗
= λk, P k

i
∗
= λk(Ck

i − zλ) + uki (zλ)− uki (C
k
i ). (2.12)

When zλ ≥ Ck
i , prosumer i will not sell DER supply, i.e., Πk

i

(
P k
i , p

k
i

)
= 0, for any

(P k
i , p

k
i ) ∈ R2

+.

Lemma 2.4 provides an optimal solution (P k
i
∗
, pki
∗
) to (2.11), and the collection (P∗,p∗)

form an optimal solution to (2.10). We also note that the optimal solution may not be

unique in general: A may deviate from (2.12) by further decreasing pki
∗ and increasing P k

i
∗

to earn the same profit, while keeping the response of the prosumer i unchanged. This

lemma states that there is an optimal pricing scheme which sets the marginal price pki to be

the wholesale market price λk, and all prosumers at the same location will be offered the
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same pki = λk. The participation fees P k
i , however, will be charged differently for prosumers

with different utility functions. Specifically, prosumer i sells (Ck
i − zλ) amount of energy,

and earns λk(Ck
i − zλ) from selling. Its remaining capacity is then zλ, from which its utility

of consumption is uki (zλ). The last term uki (C
k
i ) is the utility that prosumer i retains if it

does not sell any of its DER capacity and consumes all its production locally. Therefore,

P k
i
∗ is charged as the additional prosumer surplus from selling. A keen reader would observe

that in view of Lemmas 2.1 and 2.3, the optimal DER supply to the wholesale market is the

same with and without the aggregator A, thus making this unregulated aggregation model

economically efficient with socially optimal market outcomes.

2.3.3 Aggregator-Prosumers Interaction as a Stackelberg Game

Let G(λλλ) denote the Stackelberg game among the aggregator and the prosumers for a given

vector of wholesale market prices λλλ. Aggregator A acts as a leader and sets the prices (P,p).

The prosumer follows by responding with xki
∗
(P k

i , p
k
i , λ

k). We now define the equilibrium of

the game.

Definition 2.1. (P∗,p∗,x∗(P∗,p∗)) constitutes a Stackelberg equilibrium of the game G(λλλ)

if:

• Prosumers: For any xki ∈
[
0, Ck

i

]
and for all k ∈ [n] and i ∈ [nk], we have that

πki

(
xki
∗
(P k

i , p
k
i ), P

k
i , p

k
i , λ

k
)
≥ πki

(
xki , P

k
i
∗
, pki
∗
, λk
)
.

• Aggregator: For all P ≥ 0,p ≥ 0, we have that

Π̂(P∗,p∗,x∗(P∗,p∗),λλλ) ≥ Π̂(P,p,x∗(P,p),λλλ).

We then have the following Stackelberg equilibrium for the game G(λλλ), which follows
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directly from the prosumer’s optimal response (Lemma 2.3) and the aggregator’s optimal

pricing (Lemma 2.4).

Proposition 2.2. Under Assumption 2.1, the game G(λλλ) admits a Stackelberg equilibrium

that satisfies P k
i
∗

=
[
λk(Ck

i − zki ) + uki

(
zki

)
− uki (C

k
i )
]+

, pki
∗

= λk, xki
∗
(P k

i
∗
, pki
∗
) =[

Ck
i − zki

]+
, for each prosumer i at each location k, where zki satisfies ∂uki (z)

∂z

∣∣∣
z=zki

= λk,

and dki
∗
=
[
zki − Ck

i

]+
.

We note that the game G(λλλ) may admit other Stackelberg equilibria, but Proposition 2.2

provides the most economically efficient one. In case of non-uniqueness, this economically

efficient equilibrium corresponds to the case where prosumers slightly prefer participation,

i.e., if selling xki amount of energy earns the prosumer i the same πki as not selling, then it

chooses to sell this xki (alternatively, one can impose a slight perturbation of P k
i
∗ to P k

i
∗− ϵ,

where ϵ > 0, to ensure maximum DER supply). The above equilibrium is quite intuitive:

A passes the location marginal price λk obtained from wholesale market outcomes as is to

prosumers; so, A has no marginal profits from p∗. Instead, A makes all of the profits from

the upfront participation fees P∗.

2.3.4 Generator’s Problem

For a given wholesale market price λk, the conventional generators solve the same problem

as described in Section 2.2.2, and the result of Lemma 2.2 still applies.

2.3.5 The Economic Dispatch Problem

The system operator solves an optimization problem similar to that in the direct participation

model as described in Section 2.2.3. The network constraints (2.3) remain valid. Besides,
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the ISO also considers participant-specific constraints:

0 ≤ x ≤ C, 0 ≤ d ≤ Z−C+ x, y ≤ y ≤ y. (2.13)

The objective of the system operator is to maximize the social welfare, which includes the

prosumer surplus (PS), aggregator surplus (AS), generator surplus (GS), and merchandizing

surplus (MS):

PS :=
∑
k∈[n]

∑
i∈[nk]

(
uki (d

k
i − xki + Ck

i )− λkdki + pki x
k
i − P k

i 1
{
xki > 0

})
,

AS :=
∑
k∈[n]

∑
i∈[nk]

(
P k
i 1
{
xki > 0

}
+ λkxki − pki x

k
i

)
,

GS :=
∑
k∈[n]

∑
j∈[Nk]

(
λkykj − ckj (y

k
j )
)
,

MS :=
∑
k∈[n]

λkhk.

The social welfare is the sum of the above four terms. By the supply-demand balance

h = D−Y −X, and after canceling terms, we write the social welfare as

WA := PS+ AS+ GS+MS =
∑
k∈[n]

 ∑
i∈[nk]

uki (d
k
i + Ci

j − xki )−
∑

j∈[Nk]

ckj (y
k
j )

 ,

which is the same as WB . The system operator’s economic dispatch problem is then:

max WA(h,x,d,y)

subject to (2.3), (2.13).
(2.15)

Assumption 2.4. The system operator’s economic dispatch problem (2.15) is feasible.

As the system operator solves (2.15), the wholesale market prices λλλ are given by the
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optimal Lagrange multiplier of the constraint (2.3). We then have the following proposition.

Proposition 2.3 (Competitive Equilibrium). Under Assumptions 2.1, 2.2, 2.4, there exists

an optimal solution (h∗,x∗,d∗,y∗) to (2.15). Let λλλ denote the corresponding optimal La-

grange multipliers of constraints (2.3). Then, (x∗,d∗) are consistent with Lemma 2.3, given

(P∗,p∗) and λλλ; (P∗,p∗) are consistent with Lemma 2.4, given x∗ and λλλ; y∗ is consistent

with Lemma 2.2, given λλλ.

We now present the following theorem, which states that our proposed unregulated ag-

gregation model achieves the same market efficiency as the benchmark direct participation

model.

Theorem 2.1. Let W∗A be the optimal social welfare of (2.15), and let W∗B be the optimal

social welfare of (2.7). Then, we have that W∗A = W∗B . Further, we have that the opti-

mal x∗,d∗,y∗ (from Proposition 2.3) solving (2.15) are the same as those solving (2.7),

and the wholesale market price (optimal Lagrange multipliers of constraints (2.3)) λλλ in the

unregulated aggregation model is the same as that in the direct participation model.

In summary, under the proposed unregulated aggregation model, the aggregator pro-

cures energy from prosumers using two-part pricing, the aggregator would optimally pay

the wholesale market price to the prosumers for each unit of energy procured, while the

participation fee is differently charged to each prosumer as the additional consumer surplus

when it sells this energy compared with not selling (which is dependent on its utility of con-

sumption). Theorem 2.1, together with Proposition 2.3, implies that under the aggregator’s

two-part differential pricing scheme, the prosumers’ optimal buying and selling behavior is

exactly the same as those in the direct participation model. As a result, the social welfare

achieved under the unregulated aggregation model matches that of the direct participation

model, i.e., there is no loss of efficiency from the aggregation.

Remark 2.2. The significance of Theorem 2.1 follows from the fact that via our unregulated
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aggregation model, DER aggregation through a profit-seeking aggregator A is equivalent to

solving a socially-optimal economic dispatch model where A is absent. Hence, the potential

efficiency loss due to the presence of a monopolistic profit-seeking aggregator A is off-set by

two-part pricing. This is not possible via one-part pricing, as demonstrated in Alshehri et al.

[10, 11] and in Section 2.3.6, where efficiency loss arises from the profit-seeking behavior

of A.

2.3.6 Numerical Example

In this subsection, we consider a stylized example to reveal some key insights. For ease of

exposition, we consider a power system with one node, and there are no network constraints.

We remark that, however, our theoretical results still hold for any power network. We assume

that there is a fixed demand D̄, and the first equality of (2.3) becomes D + D̄ − Y −X = 0.

We consider one conventional generator with cost: c(y) = αy2 + βy. With one prosumer,

we consider the isoelastic utility function u, with risk-aversion parameter η (Ljungqvist and

Sargent [151]):

u(z) =


z1−η−1
1−η η ≥ 0, η ̸= 1,

ln(z) η = 1.

When η = 0, the prosumer is risk-neutral, for η > 0, the prosumer is risk-averse, and

increasing η implies more risk-aversion. For C > p−1/η, from Proposition 2.2, the Stackelberg

equilirium prices of the game G(λ) are

p∗ = λ, P ∗ =
[
λ
(
C − λ−1/η

)
+ u

(
λ−1/η

)
− u(C)

]+
,

and the equilibrium response is x∗(P ∗, p∗) = C − λ−1/η. We note that by Lemma 2.3, the

case when C ≤ λ−1/η corresponds to x∗ = 0 and d∗ = λ−1/η − C. The ISO’s problem for
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this single-prosumer case is then:

max WA(x, d, y) := u(C − x+ d)− c(y)

subject to D̄ + d− x− y = 0, 0 ≤ y ≤ ȳ, 0 ≤ x ≤ C, 0 ≤ d ≤ Z − C + x.

(2.16)

We compare the optimal value of (2.16) (optimal social welfare) with the following alternative

models.

1) No DER participation model

In this model, the prosumer is restricted to not selling its energy, i.e., x = 0. The ISO’s

problem is the same as (2.16) with the additional constraint that x = 0, i.e.,

max WN (d, y) := u(C + d)− c(y)

subject to D̄ + d− y = 0, 0 ≤ y ≤ ȳ, 0 ≤ d ≤ Z − C.

(2.17)

2) One-part pricing model (P = 0)

In this model, the prosumer may sell its energy to the aggregator A at a fixed marginal

price p set by A, with no participation fees. In this model, the prosumer solves

max
x,d

π(x, d) = u(C + d− x)− λd+ px

s.t. 0 ≤ x ≤ C, 0 ≤ d ≤ Z − C + x.

(2.18)

With the isoelastic utility function, an optimal response of the prosumer is given by d∗ =[
λ−1/η − C

]+
and x∗ =

[
C − p−1/η

]+
. Note that if C ≤ λ−1/η, then d∗ ≥ 0 and x∗ = 0,

which leads to zero profit of the aggregator for any 0 ≤ p ≤ λ, leading to no DER dispatch

at the wholesale market level. If C > λ−1/η, the aggregator would choose p such that

C > p−1/η, and solve max0≤p≤λΠ = (λ− p)x∗(p) = (λ− p)
(
C − p−1/η

)
. The Stackelberg

equilibrium of the aggregator-prosumer game Ĝ(λ) (a different game from G(λ), but similarly

defined) is given by (x∗(p∗), p∗) that satisfy (1−η)p∗+ηCp∗1+1/η = λ, x∗(p∗) = C−p−1/η.
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If we let η = 1 (logarithmic utility), we have p∗(λ) =
√

λ
C , x∗(p∗) = C − p−1.

The next question is how we define the corresponding social welfare. Note that the

Stackelberg equilibrium (x∗(p∗), p∗) does not yield an efficient market outcome; so, instead

of using prosumer’s utility in ISO’s economic dispatch problem, we need to construct an

induced function. Note that x∗(p∗(λ)) = C −
√

C
λ , and thus the inverse supply function for

the prosumer is pA(x) =
C

(C−x)2 .

The system operator solves the economic dispatch problem given by

max WO(x, y) := −c(y)−
∫ x

0
pA(x̂)dx̂

subject to D̄ − x− y = 0, 0 ≤ y ≤ ȳ, 0 ≤ x ≤ C.

(2.19)

Figure 2.3 illustrates the market outcomes for the above models. In our numerical study,

we vary the capacity C from 0 to D̄ = 100. One can think of this as a proxy for renewable

energy integration, C = 0 implies 0% renewable integration, and C = D̄ implies 100% of

the total inflexible load might be met exclusively with DER capacity. We also assume the

following parameters: η = 1, α = 0.01, β = 1, Z = 1000, ȳ = 1000. These parameters

are picked such that it is more expensive to use the conventional generator than DERs,

and conventional generators can fully meet the total system’s demand. DER aggregation is

expected to improve the social welfare, and this is demonstrated in Figure 2.3 (Left). Since

our model is efficient, the improvements shown are the maximum possible ones. We then

increase the number of prosumers to two, having the same capacity and η, and observe that

the efficient welfare further improves. This is natural: the more DER capacities available,

the more cheaper resources are available to the ISO. Next, we fix the number of prosumers

to one, and study other aspects. The one-part pricing model is also expected to improve

the social welfare, compared to no DER participation, but remains inefficient, as Figure 2.3

(Middle) shows. We quantify the efficiency loss by W∗A − W∗O and plot it in Figure 2.3

(Right).
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Figure 2.3: Left: Efficient aggregation vs. no DER integration. Adding more prosumers
attains a higher social welfare. Middle: Comparison between the two extremes (efficient
aggregation vs. no DER) and the one-part pricing model (inefficient). Right: Quantifying
efficiency loss for the one-part pricing model.

2.4 Inefficient Aggregation Model with an Unregulated

Aggregator

The unregulated aggregation model we proposed in Section 2.3 achieves full market effi-

ciency. We have shown that, under the aggregator’s two-part differential pricing scheme,

the competitive equilibrium in Proposition 2.3 is achieved when the aggregator passes the

wholesale market price λk to prosumers in location k, and charges a participation fee P k
i

to the prosumer i. As a result, all prosumers and generators’ decisions are the same as

those in the benchmark direct participation model (Section 2.2), which lead to the same

social welfare being achieved. While our aggregation model is efficient, we recognize that for

practical implementation, the differential pricing policy (the participation fee is prosumer-

specific) might pose legal concerns. One may naturally ask the following question: what

will happen if we have an unregulated profit-seeking aggregator who must impose a uniform

two-part pricing policy? To this end, it is expected that the market outcome will no longer

be socially optimal, and therefore, we term this model as inefficient aggregation model, but
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it remains unclear how much efficiency loss one should expect. In this section, we make our

attempt to address this question. For simplicity, we consider a single location with a single

conventional generator (for multiple generators, we can equivalently consider their combined

cost function), and assume that all prosumers’ utility functions of consumption, as well as

the generator’s cost function, are quadratic. We show that, even with this specified type of

utility and cost functions, it is difficult to obtain analytical results that quantify the social

welfare. However, we provide an algorithm for solving the aggregator’s profit-maximization

problem with given specific parameters. Through numerical studies, we show that while the

socially optimal outcome is no longer achieved, the reduction in social welfare (efficiency

loss) seems to be mild.

2.4.1 Prosumer’s Problem

Consider prosumer i who sees the price pair (P, p), and decides the amount of energy it buys

and sells to maximize its overall payoff. In this section, we let zi := Ci + di − xi be the

actual amount of energy that prosumer i consumes, and assume that prosumer i’s utility

of consumption is ui(zi) = aiz
2
i + bizi, with ai < 0 and bi ≫ 0. Upon seeing the price

pair (P, p) and the market price λ, the prosumer’s problem may be written as:

max
zi≥0

πi(zi) := ui(zi)− λ[zi − Ci]
+ + p[Ci − zi]

+ − P · 1{zi < Ci} (2.20)

Since the prosumer’s objective is the same as that in the unregulated aggregation model, we

may apply Lemma 2.3 to obtain the optimal response:

z∗i =



λ−bi
2ai

if > Ci,

p−bi
2ai

if < Ci and P ≤ (bi−p)2
−4ai + pCi − aiC

2
i − biCi,

0 otherwise.

(2.21)
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We say that a prosumer has the intention to sell if p−bi
2ai
−Ci < 0. From (2.21), we may have

four types of prosumers given a set of (λ, P, p):

• Type A. Prosumers with p−bi
2ai
−Ci < 0 and P ≤ (bi−p)2

−4ai +pCi−aiC
2
i − biCi. Type A

prosumers have the intention to sell, and are actually selling part of their capacities in

the optimal response.

• Type B. Prosumers with p−bi
2ai
−Ci < 0 and P >

(bi−p)2
−4ai + pCi−aiC

2
i − biCi. Type B

prosumers have the intention to sell, but are not actually selling due to the high P .

• Type C. Prosumers with λ−bi
2ai
−Ci ≤ 0 ≤ p−bi

2ai
−Ci. Type C prosumers do not have

the intention to sell, and are not buying either.

• Type D. Prosumers with λ−bi
2ai
−Ci ≥ 0. Type D prosumers are buying in the optimal

response.

2.4.2 Generator’s Problem

We assume in this section that the conventional generator’s cost function is c(y) = αy2+βy,

with α > 0 and β ≥ 0. Given wholesale market price λ, the generator solves maxy λy− c(y).

The optimality condition, together with the supply-demand balance constraint y =
∑

i zi,

implies that

λ = β + 2αy∗ = β + 2α
∑
i

z∗i . (2.22)

2.4.3 Aggregator’s Problem

In the inefficient aggregation model, the DER aggregator A offers the prices (P, p) to all pro-

sumers, procures a capacity of
∑

i[z
∗
i (P, p)]

+, and sells it at the wholesale market price λ.

The aggregator now expects the market price to be affected by A’s decisions, i.e., we shall
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write the market price as λ(P, p). Anticipating the response functions z∗i (P, p), the aggrega-

tor’s objective now becomes

max
P≥0,p≥0

∑
i

P · 1{z∗i (P, p) < Ci}+ (λ(P, p)− p)
∑
i

(Ci − z∗i (P, p)) · 1{z∗i (P, p) < Ci},

(2.23)

where λ(P, p) and z∗i (P, p) jointly solve (2.21) and (2.22).

While our goal is to compute the social welfare (by summing over the prosumer surplus,

generator surplus, and aggregator surplus), it is necessary to first solve (2.23) to obtain

the aggregator’s optimal (P, p) and thus λ, which will be used to compute the surplus of

each party. This, however, creates significant difficulties since the objective (2.23) is gener-

ally not concave and not continuous, due to the fact that the discrete set of sellers/buyers

changes with (P, p). It is thus impractical to derive analytical expressions on the optimal

solution of (2.23). As a compromise, we provide Algorithm 2.1 that numerically finds the

optimal (P, p) under certain assumptions, which are summarized below.

Assumption 2.5. The generator’s cost function is given by c(y) = αy2 + βy with α > 0

and β > 0. Prosumer i’s utility of consumption is given by ui(zi) = aiz
2
i + bizi with ai < 0

and bi ≫ 0. Furthermore, for any two prosumers i and i′, if 2aiCi + bi ≤ 2ai′Ci′ + bi′, then

ai ≥ ai′.

In Assumption 2.5, we specify that the generator’s cost function and the prosumers’

utility of consumption are both quadratic. Moreover, prosumer i has the intention to sell if

2aiCi + bi < p; whether it actually sells, however, would also depend on if P ≤ (bi−p)2
−4ai +

pCi− aiC
2
i − biCi. The last part of Assumption 2.5 guarantees that, if prosumer i has more

intention to sell than prosumer i′, i.e., 2aiCi + bi ≤ 2ai′Ci′ + bi′ , then, the thresholds on P

for them to actually sell satisfy (bi−p)2
−4ai + pCi− aiC

2
i − biCi ≥

(bi′−p)2
−4ai′ + pCi′ − ai′C

2
i′ − bi′Ci′

for all p ≥ 2ai′Ci′ + bi′ . In other words, for any given (P, p), if prosumer i is Type A, then
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prosumer i′ can be of any type; if prosumer i is Type B, then prosumer i′ can only be Type B,

Type C, or Type D, but not Type A.

Algorithm 2.1 Solving aggregator’s problem
1: Sort the prosumers, and relabel them such that 2a1C1 + b1 ≤ 2a2C2 + b2 ≤ · · · ≤ 2anCn + bn.
2: Solution-Set← ∅
3: for k = 1, 2, . . . , n− 1 do

Consider p ∈ (2akCk + bk, 2ak+1Ck+1 + bk+1]. Then, prosumers [1, k] have the intention to sell.
4: for t = 1, . . . , k do

Set P = − (bt−p)2

4at
+ pCt − atC

2
t − btCt. Then, prosumers [1, t] actually sell.

5: for s = k + 1, . . . , n do
Let the set of buyers be [s, n], i.e., {i ∈ [n] | 2aiCi + bi > λ} = [s, n].

6: Solve the maximization problem (using any quadratic programming solver):

max
P,p,λ

t · P + (λ− p) ·
∑

i∈[1,t]

(
Ci −

p− bi
2ai

)
(2.24a)

s.t. 2akCk + bk < p ≤ 2ak+1Ck+1 + bk+1 (2.24b)

P = − (bt − p)2

4at
+ pCt − atC

2
t − btCt (2.24c)

2as−1Cs−1 + bs−1 ≤ λ < 2asCs + bs (2.24d)

λ = β + 2α
∑

i∈[1,t]

(
p− bi
2ai

− Ci

)
+ 2α

∑
i∈[s,n]

(
λ− bi
2ai

− Ci

)
(2.24e)

p− bi
2ai

≥ Ci, ∀i ∈ [1, t] (2.24f)

λ− bi
2ai

≤ bi
−2ai

, ∀i ∈ [s, n] (2.24g)∑
i∈[1,t]

p− bi
2ai

+
∑

i∈[s,n]

λ− bi
2ai

≥ 0 (2.24h)

P, p, λ ≥ 0 (2.24i)

7: if there exists a solution to (2.24) then
8: add the solution (including the optimal value) to Solution-Set.
9: end if

10: end for
11: end for
12: end for
13: Return the best solution (one with the highest objective value) in the Solution-Set.

We now explain the intuition behind Algorithm 2.1. Since main difficulty of solving (2.23)

comes from the discrete set of sellers/buyers, we divide the problem (2.23) into subproblems

by enumerating the possible combinations of the seller set and the buyer set. Specifically, we

first note that, after sorting the prosumers by 2aiCi+bi, there are (n−1) regions that p may
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lie in. The outer “for loop” of Algorithm 2.1 (line 4) restricts p in one region such that only

prosumers [1, k] have the intention to sell. Second, we also note that in the optimal solution,

P =
(bi−p)2
−4ai + pCi− aiC

2
i − biCi for some i, i.e., P must be exactly on the threshold of some

prosumer, because otherwise, the aggregator may increase P to the minimum threshold of

the current sellers without changing any seller/buyer’s behavior, thus strictly improving the

aggregator’s profit. In the middle “for loop” (line 5), we enumerate P on its thresholds for

prosumers [1, k], and by Assumption 2.5, we know that the ordering of these thresholds is

the same as the ordering of 2aiCi + bi. Thus, by setting P to be prosumer t’s threshold,

prosumers [1, t] actually sell (Type A), and prosumers [t+1, k] have the intention to sell, but

do not actually sell (Type B). Third, after restricting p ∈ (2akCk + bk, 2ak+1Ck+1 + bk+1],

there are (n − k − 1) possible regions that λ may lie in. The inner “for loop” restricts λ in

one region such that the set of buyers is fixed as [s, n] (Type D), and the set of prosumers

who neither buy nor have the intention to sell (Type C) is [k + 1, s− 1].

After fixing the set of prosumers of each type, we solve the quadratic program (2.24).

The objective (2.24a) follows from (2.23) by specifying the t number of Type A prosumers

from whom the aggregator collects P , as well as the amount of selling
(
Ci − p−bi

2ai

)
from each

of the t prosumers. Constraints (2.24b), (2.24c), and (2.24d) correspond to the restrictions

from each of the “for loops”. Constraint (2.24e) follows from (2.22). Constraint (2.24f)

ensures that those Type A prosumers may only sell an amount not exceeding their capacities.

Constraint (2.24g) specifies that the total consumption of any Type D prosumers is still in

the increasing part of the quadratic utility function. Constraint (2.24h) ensures that the

total energy net consumption by all prosumers is nonnegative.

Each time we solve (2.24) (using any quadratic programming solver), there may or may

not exist a solution. If a solution exists, we add it to the Solution-Set. On a system with n

prosumers, Algorithm 2.1 would solve the quadratic program (2.24) for 1
6n(n

2−1) times. In

the end, the aggregator will impose (P, p) that correspond to the solution (in the Solution-
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Set) with maximum profit.

The above argument readily leads to the following result.

Proposition 2.4. Under Assumption 2.5, Algorithm 2.1 returns the optimal solution leading

to the maximum profit for the aggregator.

Once we know the aggregator’s optimal profit, optimal decision (P, p) and the correspond-

ing market price λ, the prosumers’ surplus and generator surplus can also be computed, and

we can thus obtain the corresponding social welfare.

2.4.4 Illustrative Example

To gain deeper insights, we consider a power system with one node and 4 prosumers. We pick

the parameters such that one prosumer always sells its DER supply (Prosumer 1 is always

Type A), one always buys from the system operator (Prosumer 4 is always Type D), and one

neither sells nor buys (Prosumer 3 is always Type C). We vary the capacity of Prosumer 2 and

observe the changes of its behavior (selling vs. buying) under the two aggregation models.

With that, we sort the prosumers in an increasing order of 2a1C1 + b1, . . . , 2a4C4 + b4, and

pick the following parameters: b1 = 100, b2 = 125, b3 = 150, b4 = 200, C1 = 150, C2 ∈

[80, 160], C3 = 100, C4 = 1, ai = −bi/400, ∀i. With these values, we vary C2 from 80 to

160, and plot the social welfares and z2 in Figure 2.4. As we vary the capacity of Prosumer 2,

we observe that its type changes twice, creating three regions of interest, shaded in light grey,

light red, and light green, respectively.

• For C2 ∈ [80, 115), Prosumer 2 does not have the intention to sell, but under uniform

pricing, it does not buy either. In the efficient model, it buys only when C2 is small

enough.

• For C2 ∈ [115, 150), Prosumer 2 has the intention to sell, but under uniform pricing,

it does not sell. On the other hand, in the efficient model, it always sells.
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Figure 2.4: Left: Social welfare for each model vs. C2. Uniform pricing is inefficient, but
still yields welfare improvements. Middle: Relative social welfare of the inefficient model
and the case in which there is no DER participation, to the efficient aggregation model.
Right: z2 as the capacity varies for the three models.

• For C2 ∈ [150, 160], Prosumer 2 has the intention to sell, and in fact sells. However, it

does not sell as much DER as in the efficient model.

The above cases elaborate on the efficiency loss in view of Prosumer 2’s behavior. With our

parameter selection, other prosumers exhibit the same behavior (buying/selling) between the

two models (efficient vs. inefficient). Figure 2.4 also illustrates the efficiency gap between the

aggregation models. We note that uniform pricing achieves noticeable welfare improvement,

compared to no DER participation. In fact, the inefficient model appears reasonably close

to the efficient model. While we cannot ensure that this is generally the case, the inefficient

model will always perform better than the no DER case. Finally, for C2 ≥ 150, as Prosumer

2 sells under both aggregation models, it does not sell as much DER supply as in the efficient

model, causing an efficiency loss.

2.5 Efficient Aggregation Model with a Regulated Aggregator

In Section 2.3, we have shown that our unregulated aggregation model achieves full market

efficiency if we allow the aggregator to charge differential participation fees P k
i to each pro-

sumer. When a profit-seeking aggregator is only allowed to impose uniform pricing policies,
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we have shown in Section 2.4 that the aggregator’s profit-maximization problem would be

difficult to solve analytically. However, using our proposed Algorithm 2.1, we have illustrated

through a numerical example that there will be some efficiency loss, though the degree of

loss seems to be mild. It is thus interesting to study the following question: is there a mech-

anism that imposes a uniform pricing policy on the prosumers, while preserving full market

efficiency? To address this question, we propose in this section a regulated aggregation model

where the aggregator A is fully regulated, i.e., A does not make any pricing decisions, but is

guaranteed some positive profit. We show that, with a regulated aggregator, we can have a

uniform two-part pricing policy, i.e., all prosumers from the same location receive the same

(P k, pk), while still achieving full market efficiency. We also remark that electric power

utilities in most countries are in fact regulated, so the regulated aggregator’s role can be

potentially fulfilled by a utility company, which is consistent with the fact that they operate

the distribution lines and directly interact with end-consumers.

Before proceeding to the model, we first introduce some notations from the direct partic-

ipation model and the no participation model. In the competitive equilibrium of the direct

participation model, as described in Proposition 2.1, we denote by λk
∗ the market price at

location k. Let dki
∗ (respectively, xki

∗) be the equilibrium amount of energy bought (respec-

tively, sold) by prosumer i at location k. Let zki be such that ∂uki (z)
∂z

∣∣∣
z=zki

= λk
∗. Then

from Lemma 2.1, we have that zki = Ck
i − xki

∗
+ dki

∗. In the competitive equilibrium of the

no participation model, as noted in Remark 2.1, the market price at location k is denoted

by λ̂k, and the prosumer i at location k buys d̂ki in the equilibrium. Let ẑki be such that
∂uki (z)
∂z

∣∣∣
z=ẑki

= λ̂k. Then it follows that ẑki = Ck
i + d̂ki if d̂ki > 0 and ẑki ≤ Ck

i + d̂ki if d̂ki = 0.

We also note that λk
∗ ≤ λ̂k, and thus d̂ki ≤ dki

∗ and ẑki ≤ zki .

Now, we proceed to the regulated aggregation model. The aggregator A sets a uniform

price pair (P k, pk) for all prosumers from location k. The prices are exogenously given to the

aggregator and do not necessarily maximize the aggregator’s profit. The system operator
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will impose an extra charge F k
i on prosumer i at location k, where

F k
i := d̂ki

(
λ̂k − λk

∗)
=


(
ẑki − Ck

i

)(
λ̂k − λk

∗)
, if ẑki > Ck

i ,

0, otherwise.
(2.25)

The vector of these charges for all prosumers is denoted by F. We note that, although this

extra charge by the system operator F k
i is different for different prosumers, it is a uniform

policy for all prosumers from the same location: the charge is a linear function, with the linear

factor being fixed as
(
λ̂k − λk

∗), on d̂ki , the amount of purchase made by the prosumer under

the no participation model. This fee can be charged to prosumers in their utility bills. The

system operator will forward this charge to the aggregator, so the aggregator earns profits

from both the participation fee paid by those selling prosumers and the charges (forwarded

by the system operator) paid by the buying prosumers. We will show that, with carefully

selected prices and charges, the behaviors of the prosumers and the generators are the same

as those in the direct participation model; thus, the same social welfare is achieved. In the

end of this section, we will also discuss that this extra charge F is not necessary to achieve

full market efficiency, but is imposed to offer the aggregator a higher profit. We now describe

each party in the model separately.

2.5.1 Regulated Aggregator

In the regulated aggregation model, the aggregator A is not allowed to make the pricing deci-

sions to maximize profit. Instead, A is regulated to set the following uniform prices (P k, pk):

pk = λk
∗
, P k = min

i∈[nk]|xki
∗
>0

uki (z
k
i ) + λk

∗
(Ck

i − zki )− uki (C
k
i ). (2.26)

The vectors of these prices at all locations are denoted by (P,p). The marginal price pk is

set to λk
∗, which is the market price in the direct participation model. The participation
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fee P i is set to be the minimum additional prosumer surplus gained from selling among those

prosumers who would sell a positive amount of energy at the market price λk∗, which ensures

the same number of prosumers selling DER supply as in the efficient unregulated aggregation

model. In addition, the aggregator also receives the extra charges F k
i , forwarded by the

system operator, where F k
i > 0 if and only if d̂ki > 0. Let λk be the market price and xki be the

prosumer’s amount of energy to sell under the regulated aggregation model. The regulated

aggregator earns the profit from location k: Πk =
∑

i∈[nk]|xki>0

[(
λk − pk

)
xki + P k

]
+∑

i∈[nk] F
k
i . As we will show later, in equilibrium, λk = λk

∗ and xki = xki
∗, which lead to

Πk =
∑

i∈[nk]|xki
∗
>0

P k +
∑

i∈[nk] d̂
k
i

(
λ̂k − λk

∗)
.

2.5.2 Prosumer’s Problem

Consider prosumer i at location k. The prosumer sees the price pair (P k, pk) as well as the

fee F k
i charged by the system operator, and then decides the amount of energy it buys and

sells to maximize its overall payoff. The prosumer’s problem may be written as:

max
xki ∈[0,Ck

i ]

dki ∈[0,Z−Ck
i +xki ]

πki (x
k
i , d

k
i ) :=


pkxki − P k + uki

(
dki + Ck

i − xki

)
− λkdki − F k

i , if xki > 0,

uki

(
dki + Ck

i

)
− λkdki − F k

i , if xki = 0.

(2.27)

We note that the prosumer’s objective is the same as that in the unregulated aggregation

model, except that the additional F k
i is now being charged by the system operator.

2.5.3 Generator’s Problem

For a given wholesale market price λk
∗, the conventional generators solve the same problem

as described in Section 2.2.2, and the result of Lemma 2.2 still applies under the current

model.
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2.5.4 The Economic Dispatch Problem

The system operator now solves an optimization problem similar to that in the unregulated

aggregation model as described in Section 2.3.5. The network constraints (2.3) and the

constraints on the decisions of prosumers and generators (2.13) remain valid. The objec-

tive of the system operator is to maximize the social welfare, which includes the prosumer

surplus (PS), aggregator surplus (AS), generator surplus (GS), and merchandizing surplus

(MS):

PS :=
∑
k∈[n]

∑
i∈[nk]

(
uki (d

k
i − xki + Ck

i )− λkdki + pkxki − P k1
{
xki > 0

}
− F k

i

)
,

AS :=
∑
k∈[n]

∑
i∈[nk]

(
P k1

{
xki > 0

}
+ λkxki − pkxki + F k

i

)
,

GS :=
∑
k∈[n]

∑
j∈[Nk]

(
λkykj − ckj (y

k
j )
)
,

MS :=
∑
k∈[n]

λkhk.

The social welfare is the sum of the above four terms. By the supply-demand balance

h = D−Y −X, and after canceling terms, we write the social welfare as

WR := PS+ AS+ GS+MS =
∑
k∈[n]

 ∑
i∈[nk]

uki (d
k
i + Ck

i − xki )−
∑

j∈[Nk]

ckj (y
k
j )

 ,

which is again the same as WB . The system operator’s economic dispatch problem is then:

max WR(h,x,d,y)

subject to (2.3), (2.13).
(2.29)

Note that (2.29) is exactly the same problem as (2.15). As a result, the equilibrium
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(h∗,x∗,d∗,y∗) in Proposition 2.3 optimally solves (2.29), and the corresponding wholesale

market prices λλλ are the same as in the unregulated aggregation model. We then have the

following proposition.

Proposition 2.5 (Competitive Equilibrium). Under Assumptions 2.1, 2.2, 2.4, the tuple

(h∗,x∗,d∗,y∗) from Proposition 2.3 is an optimal solution to (2.15). Let λλλ denote the cor-

responding optimal Lagrange multipliers of constraints (2.3). Then, given (P,p) as in (2.26)

and F as in (2.25), we have that (x∗,d∗) are optimal solutions to (2.27), given (P,p) and

λλλ; y∗ is consistent with Lemma 2.2, given λλλ.

The above argument, together with Theorem 2.1, imply that the regulated aggregation

model again achieves the same market efficiency as the benchmark direct participation model.

Theorem 2.2. Let W∗R be the optimal social welfare of (2.29), and let W∗B be the optimal

social welfare of (2.7). Then, we have that W∗R = W∗B . Further, we have that the optimal

x∗,d∗,y∗ solving (2.29) are the same as those solving (2.7).

2.5.5 Discussions

In these discussions, we compare the prosumer surplus and aggregator surplus under two

efficient aggregation models (leaving out the inefficient aggregation model since there are no

analytical results from there). We also discuss the implications of the price pair (P,p) and

the extra charge F.

2.5.5.1 Comparison of Prosumer Surplus and Aggregator Surplus.

In this subsection, we explain that, comparing the no participation model with both efficient

aggregation models (introduced in Section 2.3 and this section), each prosumer’s surplus is

not reduced, and sometimes increased. Furthermore, in the unregulated aggregation model

and the regulated aggregation model, the profits of the aggregator could come from different
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sets of prosumers, and the prosumer’s surplus would thus be different. To further elaborate

our discussions, we may divide the prosumers into three types, which are classified based

on their utility functions and corresponding DER capacities, and are ordered from I to III

in an increasing order according to their willingness to sell. Type I prosumers are those

with with dki
∗ ≥ d̂ki > 0, i.e., ∂uki

∂z

∣∣∣
z=Ck

i

> λ̂k ≥ λk
∗, and are always buying. These could

be prosumers with small capacities (e.g., a prosumer with only one panel) and/or a high

preference to consume energy, as captured by their utility functions. On the other extreme,

Type III prosumers are those with d̂ki = dki
∗
= 0, i.e., λ̂k ≥ λk

∗ ≥ ∂uki
∂z

∣∣∣
z=Ck

i

, and they

never buy but sell after aggregation. They can be those prosumers with many solar panels

and batteries that could be discharged to cover their energy needs. Type II prosumers are

those with dki
∗
> d̂ki = 0, i.e., λ̂k ≥ ∂uki

∂z

∣∣∣
z=Ck

i

> λk
∗, and they represent the middle ground,

as they are buying after aggregation. They can be those prosumers with an intermediate

number solar panels and limited storage.

• Type I. Prosumers with dki
∗ ≥ d̂ki > 0, i.e., ∂uki

∂z

∣∣∣
z=Ck

i

> λ̂k ≥ λk
∗.

– In the no participation model, a Type I prosumer purchases d̂ki = ẑki −Ck
i amount

of energy, and its prosumer surplus is

uki (ẑ
k
i )− λ̂k

(
ẑki − Ck

i

)
. (2.30)

– In the unregulated aggregation model, the prosumer instead purchases dki
∗
=

zki − Ck
i amount of energy, and its prosumer surplus is

uki (z
k
i )− λk

∗ (
zki − Ck

i

)
. (2.31)

– In the regulated aggregation model, the prosumer still purchases dki
∗
= zki − Ck

i
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amount of energy, but is charged F k
i . Its prosumer surplus becomes

uki (z
k
i )− λk

∗ (
zki − Ck

i

)
− F k

i

= uki (z
k
i )− λk

(
zki − Ck

i

)
−
(
ẑki − Ck

i

)(
λ̂k − λk

∗)
. (2.32)

We note that the Type I prosumers’ surplus is reduced in the regulated aggregation

model, comparing to the unregulated aggregation model. However, these prosumers

would still prefer the regulated aggregation model over no participation model. To see

this, note that

(2.32)− (2.30)

= uki (z
k
i )− λk

∗ (
zki − Ck

i

)
−
(
ẑki − Ck

i

)(
λ̂k − λk

∗)− (uki (ẑki )− λ̂k
(
ẑki − Ck

i

))
= uki (z

k
i )− uki (ẑ

k
i )− λk

∗ (
zki − ẑki

)
≥ 0,

where the inequality follows since uki is concave and λk
∗
=

∂uki
∂z

∣∣∣
z=zki

.

Additionally, we note that the system operator could actually set any F k
i ≤ (2.31) −

(2.30) in the regulated aggregation model, and the prosumers would still prefer the

regulated model over the no participation model. However, we defined F k
i as in (2.25)

so that it is a uniform policy for all prosumers: everyone is charged a fee that is linear

in its amount of purchase in the no participation model d̂ki , where the linear factor is

the difference of the market price λ̂k − λk
∗.

• Type II. Prosumers with dki
∗
> d̂ki = 0, i.e., λ̂k ≥ ∂uki

∂z

∣∣∣
z=Ck

i

> λk
∗.

– In the no participation model, a Type II prosumer does not purchase from the

grid, and its prosumer surplus is uki (C
k
i ).

– In the unregulated aggregation model, the prosumer purchases dki
∗
= zki − Ck

i
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amount of energy, and its prosumer surplus is uki (z
k
i )− λk

∗ (
zki − Ck

i

)
.

– In the regulated aggregation model, the prosumer still purchases dki
∗
= zki − Ck

i

amount of energy, and is charged F k
i = d̂ki

(
λ̂k − λk

∗)
= 0. Its prosumer surplus

is thus again uki (z
k
i )− λk

∗ (
zki − Ck

i

)
.

We note that uki (z
k
i )−λk

∗ (
zki − Ck

i

)
−uki (C

k
i ) > 0; thus, Type II prosumers’ surplus

is strictly smaller in the no participation model. Since F k
i = 0, they are indifferent

between the unregulated aggregation model and the regulated aggregation model. In

theory, the system operator could set any charge F k
i ≤ uki (z

k
i ) − λk

∗ (
zki − Ck

i

)
−

uki (C
k
i ) to extract part of these prosumers’ additional surplus and forward those to

the aggregator. However, there does not seem to be a simple uniform policy for all

prosumers. We therefore set F k
i = 0 for Type II prosumers since d̂ki = 0, and these

prosumers are strictly better off in both aggregation models.

• Type III. Prosumers with d̂ki = dki
∗
= 0, i.e., λ̂k ≥ λk

∗ ≥ ∂uki
∂z

∣∣∣
z=Ck

i

.

– In the no participation model, a Type III prosumer does not purchase from the

grid, and its prosumer surplus is uki (C
k
i ).

– In the unregulated aggregation model, the prosumer sells xki
∗
= Ck

i −zki amount of

energy for a unit price λk∗, but also pays the participation fee P k
i = uki

(
Ck
i − xki

∗)
+

λk
∗ (

Ck
i − zki

)
− uki (C

k
i ). Thus, its prosumer surplus is uki (z

k
i ) + λk

∗
xki
∗− P k

i =

uki (C
k
i ).

– In the regulated aggregation model, the prosumer still sells xki
∗
= Ck

i −zki amount

of energy for a unit price λk
∗, but the participation fee is reduced to P k =

min
i∈[nk]|xki

∗
>0

uki (z
k
i ) + λk

∗
(Ck

i − zki ) − uki (C
k
i ). Thus, its prosumer surplus

becomes

uki (z
k
i ) + λk

∗
xki
∗ − P k
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= uki (z
k
i ) + λk

∗
xki
∗ −

[
min

i∈[nk]|xki
∗
>0

uki (z
k
i ) + λk

∗
(Ck

i − zki )− uki (C
k
i )

]
. (2.33)

We note that Type III prosumers earn the same surplus in both the no participation

model and the unregulated aggregation model, due to the fact that the aggregator in

the unregulated aggregation model extracts all additional prosumer surplus through

participation fess P k
i . In the regulated aggregation model, the participation fee is set

to the minimum additional surplus among all Type III prosumers in the same location.

Note that (2.33) ≥ uki (C
k
i ), where the equality holds if and only if

i = argmin
i∈[nk]|xki

∗
>0

uki (z
k
i ) + λk

∗
(Ck

i − zki )− uki (C
k
i ). (2.34)

In other words, those prosumers who have minimum additional surplus from selling

at price λk
∗ (compared to no participation) are indifferent between the unregulated

aggregation model and the regulated aggregation model. For other Type III prosumers,

such that (2.34) does not hold, their prosumers’ surplus (2.33) > uki (C
k
i ), i.e., they earn

strictly higher surplus from the regulated aggregation model, and thus would strictly

prefer the regulated aggregation model over the unregulated aggregation model.

Table 2.1 summarizes the prosumer surplus under the three models. We remark that no

prosumer is worse off after either aggregation model. However, prosumers of different types

may prefer different aggregation models.

Prosumer Surplus
Prosumer Types No part. Unreg. agg. Reg. agg. Note

Type I Low Highest High always buying
Type II Low High High buying after aggregation
Type III Low Low High selling after aggregation

Table 2.1: Comparison of prosumer surplus under different models

We then move our eyes from prosumers to the aggregator. In the unregulated aggregation
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model, the aggregator earns profit

ASU :=
∑
k∈[n]

∑
i∈[nk]|i∈TYPE III

uki (z
k
i ) + λk

∗ (
Ck
i − zki

)
− uki (C

k
i ).

In the regulated aggregation model, the aggregator earns profit

ASR :=
∑
k∈[n]

∑
i∈TYPE I

d̂ki

(
λ̂k − λk

∗)
+
∑
k∈[n]

|{i ∈ [nk] | i ∈ TYPE III}| · P k,

where we recall that P k = mini∈[nk]|i∈TYPE III u
k
i (z

k
i ) + λk

∗
(Ck

i − zki ) − uki (C
k
i ). We

note that in the unregulated aggregation model, all of the aggregator’s profit comes from

Type III prosumers, and all Type III prosumers earn zero additional surplus compared with

the no participation model. Moreover, Type I prosumers benefit the most in the unregulated

aggregation model by retaining all additional surplus from buying energy at a lower market

price (compared with the no participation model). In the regulated aggregation model,

however, the aggregator’s profit comes from both Type I prosumers and Type III prosumers.

Type I prosumers now earn less surplus compared with the unregulated aggregation model

(still better off compared with the no participation model), and the lost surplus is transferred

to the aggregator’s profit, which is the first term of ASR. Type III prosumers get more surplus

(except those marginal prosumers that satisfy i = argmin
i∈[nk]|xki

∗
>0

uki (z
k
i )+λk

∗
(Ck

i −zki )−

uki (C
k
i ), who are indifferent) in the regulated model, compared with the unregulated model,

and thus the profit earned by the aggregator from Type III prosumers becomes the second

term of ASR, instead of ASU.

2.5.5.2 Discussion on the Prices and Extra Charge.

While we have provided some intuitions as we introduce the results, we now further discuss

the implications of the prices and the extra charge. In both efficient aggregation models,
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the wholesale market price is the same as that in the direct participation model. This fact

by itself ensures that all prosumers who make a net purchase under the direct participation

model (Type I and Type II prosumers) still purchase the same amount under both efficient

aggregation models. Also in both efficient aggregation models, the equilibrium per-unit

price offered by the aggregator is the same as the wholesale market price under the direct

participation model, i.e., pki = λk
∗
,∀i ∈ [nk],∀k ∈ [n], and there is no price discrimination

in p for prosumers from the same location. As a result, the aggregator earns zero profit from

reselling the procured electricity.

In the unregulated aggregation model, the connection fee P k
i is set to be each prosumer’s

additional surplus from selling: if prosumer i does not sell or buy, it retains uki (C
k
i ); under the

unregulated aggregation model, it sells (Ck
i − zki ) at the price λk

∗, and has zki to consume,

which leads to a prosumer surplus of uki (z
k
i ) + λk

∗
(Ck

i − zki ) before the connection fee.

This prosumer’s selling behavior would not change, as long as the connection fee is charged

such that P k
i ≤ uki (z

k
i ) + λk

∗
(Ck

i − zki ) − uki (C
k
i ). Thus, the maximum connection fee the

aggregator can impose, without changing the prosumer’s selling amount, is exactly that

prosumer’s additional surplus from selling.

When the aggregator is regulated, the connection fee is charged as the minimum addi-

tional prosumer surplus from selling, i.e., P k = mini∈[nk]|i∈TYPE III u
k
i (z

k
i ) + λk

∗
(Ck

i −

zki ) − uki (C
k
i ), so that for those sellers (Type III prosumers), it always holds that P k ≤

uki (z
k
i ) + λk

∗
(Ck

i − zki )− uki (C
k
i ),∀i ∈ [nk]∩TYPE III. This guarantees that all sellers con-

tinue to sell the same amount as they would do in the direct participation model. With this

set of (P k, pk), and without any extra charges (let F k
i = 0 for all prosumers in all locations),

all prosumers from location k have the exact same behavior as in the direct participation

model, and we achieve full market efficiency without any type of price discrimination within

the same location. The only potential drawback is that, compared with the unregulated

model where the aggregator extracts all additional prosumer surplus from selling, most of
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the additional prosumer surplus might be retained by the prosumers. In those locations

with high population, the participation fee P k could be small or even negligible, and the

aggregator’s profit would be small. Consider the case when there exists some i′ ∈ [nk] such

that uki′(z
k
i′) + λk

∗
(Ck

i′ − zki′) − uki′(C
k
i′) = 0, then at this location, P k = 0, which means

the aggregator would earn zero profit from Type III prosumers in this location. If F k
i = 0

for all prosumers, then the aggregator would earn zero profit from location k. This is the

reason we impose this extra charge F k
i , which is strictly positive for Type I prosumers, so

that the aggregator always earn positive profit from this location even with the existence of

a marginal Type III prosumer. On the other hand, if it is acceptable that the aggregator

earns very little profit from certain locations, then the extra charge F is not necessary, and

the market is still fully efficient.

As a summary, the regulated aggregation model (with or without the extra charge F) is

a good candidate for implementation as it avoids the differential pricing policy and achieves

all of the following desirable outcomes:

1. Full market efficiency as in the direct participation model.

2. No prosumers are worse off compared with the no participation model.

3. The regulated aggregator earns positive profit.

4. A uniform (pricing and charging) policy for prosumers in the same location.

2.5.6 Numerical Example

We consider an example with n = 3 prosumers, one from each type. For ease of exposition, we

consider a power system with one node and one generator with cost c(y) = 0.1y2+0.1y. Pro-

sumer i is equipped with an isoelastic utility function: ui(z) =


z1−ηi−1
1−ηi , if ηi ≥ 0, ηi ̸= 1,

ln(z), if ηi = 1.
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Figure 2.5: Left: TYPE I prosumer is always buying and achieves the maximum surplus for
the unregulated model, but its surplus after regulation is still better than no participation.
Middle: TYPE II prosumer achieves the maximum surplus for both the unregulated and
regulated models. Right: TYPE III prosumer is always selling and achieves the maximum
surplus for the regulated model; its surplus for the unregulated model is almost equal to the
no participation model.

For our example, we distinguish among prosumer types by their capacities and risk-

aversion parameters, and let C1 = 0.1, C2 ∈ [0.95, 1.48], C3 = 10, η1 = 0.1, η2 = 0.5, η3 =

1.1. With these parameters, prosumer i = 1 is TYPE I, prosumer i = 2 is TYPE II, and

prosumer i = 3 is TYPE III. We also note that prosumer i = 2’s type changes for any C2 /∈

[0.95, 1.48]. Figure 2.5 illustrates the prosumer surplus for the no participation model, the

unregulated model, and the regulated model, as C2 varies from 0.95 to 1.48. The outcomes

here are consistent with Table 2.1, and no prosumer is worse-off after DER aggregation, for

both the regulated and the unregulated models. However, dependent on the prosumer type,

some benefit further from regulation, and others do not. We pick three specific values of

C2. Starting with C2 = 0.5, prosumer i = 2 is now TYPE I, and the aggregator’s surpluses

are given by AS(No DER) = 0, AS(Unreg.) = 5.41, AS(Reg.) = 5.53, and the maximum

surplus is attained for the regulated model. Next, when C2 = 1, prosumer i = 2 is TYPE II,

and the surpluses are given by AS(No DER) = 0, AS(Unreg.) = 5.36, AS(Reg.) = 5.41,

and the outcomes are similar. However, when C2 = 1.5, prosumer i = 2 is TYPE III, and

the surpluses are given by AS(No DER) = 0, AS(Unreg.) = 5.32, AS(Reg.) = 0.06, and
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hence, after regulation, because two prosumers are selling their DER supply, the aggregator

only extracts the minimum Pi, so its surplus was reduced. Nevertheless, with the regulated

model, the aggregator’s surplus is always ensured to be positive. As a final remark, the

regulated model might make the aggregator or a certain prosumer better-off or worse-off,

compared to the unregulated model, but is always better than the no participation model,

and it always attains an efficient market outcome.

2.6 Reducing Market Power of the Generators through

Aggregation

In the previous sections, we proposed two efficient aggregation models: the unregulated

aggregation model and the regulated aggregation model. There are two underlying assump-

tions in these models: all prosumers bid truthfully about their utility of consumption, and

all generators bid truthfully about their cost of production. The former assumption is more

justifiable as each prosumer represents a small fraction in the energy market; thus, it does

not believe its bidding could make a difference in the market price. The later assumption,

however, may not hold in general as the generators’ bidding might affect the market price,

and they may benefit from non-truthful (strategic) bidding. Such strategic bidding may

result in higher market price (thus benefiting the generators) and reduced social welfare.

The ability of the generators to influence the market price is referred to as the market power

of the generators. In this section, we study the market power of the generators under the

no participation model and the direct participation (or unregulated/regulated aggregation)

model. We will show that, compared to no prosumer participation, the market power of the

generators is reduced with prosumer participation (either direct or through aggregation),

and the reduction in social welfare is also mitigated.

Suppose there are n prosumers, indexed by i, and N generators, indexed by j. For ease

of exposition, in this section, we restrict the attention to one node (thus there is no network
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constraints and we can drop the superscript k), and we also make the following simplifying

assumptions on prosumers’ utility of consumption and generators’ cost functions.

Assumption 2.6. For each prosumer i, the utility of consumption is quadratic and it is

given by ui(z) = aiz
2 + biz, where ai < 0 and bi ≫ |ai|. So, the market price always falls

into the range (0, bi). Each generator j’s (true) cost function is linear in its production,

and all generators have the same cost function, i.e., cj(yj) = αyj for some α > 0, and the

optimal total supply always satisfies y > 0. Furthermore, there exists at least one prosumer i

such that 2aiCi + bi > α.

As we will see in the rest of this section, Assumption 2.6 enables us to obtain explicit

expressions for the generators’ supply and the social welfare. In the following, we denote

by WT (resp., WS) the optimal social welfare of the model with prosumer participation

(aggregation) when generators bid truthfully (resp., strategically). When no prosumer par-

ticipation is allowed, the optimal social welfare under truthful bidding and strategic bidding

of the generators are denoted by WTN and WSN , respectively. Our main result in this

section is summarized as the following theorem.

Theorem 2.3. Under Assumption 2.6, the following inequalities hold:

WT ≥ WTN , (2.35a)

WS ≥ WSN , (2.35b)

WT ≥ WS , (2.35c)

WTN ≥ WSN , (2.35d)

WTN −WSN ≥ WT −WS . (2.35e)

In Theorem 2.3, (2.35a) and (2.35b) state that the optimal social welfare with prosumer

participation is always greater than that without prosumer participation, for both truthful
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bidding and strategic bidding of the generators. Further, (2.35c) and (2.35d) state that the

optimal social welfare under truthful bidding is always greater than that under strategic

bidding of generators, for both the case with prosumer participation and the case without

prosumer participation. Finally, (2.35e) implies that the loss of social welfare due to strategic

bidding of the generators is reduced when there is prosumer participation, compared to the

case when there is no prosumer participation.

For the rest of this section, we will provide a complete analysis of Theorem 2.3, and we also

provide the proof in the appendix. We will first consider the case when there is prosumer

participation (aggregation), and obtain the equilibria when generators bid truthfully and

strategically. We will then move to the case when no prosumer participation is allowed, and

obtain again the equilibria for both truthful bidding and strategic bidding of the generators.

An illustrative example is provided towards the end of this section.

2.6.1 Full Prosumer Participation

We first consider the case when there is prosumer participation. As shown in the previous

sections, given a market price, the prosumers’ decisions under the unregulated aggregation

model and the regulated aggregation model are the same as those under the direct partici-

pation model. The social welfare under these three models are also the same. Therefore, in

this section, we will without loss of generality ignore the role of the aggregator and assume

the direct participation of prosumers. We analyze the decisions of each party for the cases

when generators bid truthfully and strategically.
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2.6.1.1 Truthful bidding of the generators

Prosumers. Let λT be the market price when generators bid truthfully. Each prosumer i

solves its payoff maximization problem:

max
Ci+di−xi>0

ui(Ci + di − xi)− λT · (di − xi), (2.36)

where we recall that di is the amount of purchase and xi is the amount of energy sold. Let

zi := Ci + di − xi be the actual amount of energy consumed by prosumer i. Similar to

Lemma 2.1, we can conclude that under Assumption 2.6, prosumer i’s optimal response zTi

satisfies

2aiz
T
i + bi = λT . (2.37)

System operator. The system operator solves the economic dispatch problem to maxi-

mize the social welfare WT :

WT = max
zi>0,yj≥0

∑
i

ui(zi)−
∑
j

cj(yj)

s.t.
∑
j

yj =
∑
i

(zi − Ci).

(2.38)

Since the generators are identical, we may without loss of generality restrict to yj =

yj′ ,∀j ̸= j′, i.e., each generator supplies the same amount of energy yj . Let y :=
∑

j yj

and C :=
∑

iCi. Consider the prosumers’ and the system operator’s problems, we have the

following result.

Proposition 2.6. Under Assumption 2.6, an optimal solution to (2.38) is given by

zTi =
α− bi
2ai

, ∀i, yTj =
−C +

∑
i
α−bi
2ai

N
, ∀j. (2.39)
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Furthermore, the equilibrium market price (the optimal Lagrange multiplier of the con-

straint) is given by λT = α, and the optimal social welfare is then

WT = αC −
∑
i

(bi − α)2

4ai
. (2.40)

2.6.1.2 Strategic bidding of the generators

Prosumers. Let λS be the market price when generators bid strategically. Similar to (2.37),

each prosumer i’s optimal response zSi (under Assumption 2.6) now becomes

2aiz
S
i + bi = λS . (2.41)

System operator. The system operator solves the economic dispatch problem to max-

imize the apparent social welfare, which is the “social welfare” when the system operator

assumes the generators’ bids are true, but is actually based on the (nontruthful) bidding c̃j

of the generators:

max
zi>0,yj≥0

∑
i

ui(zi)−
∑
j

c̃j(yj)

s.t.
∑
j

yj =
∑
i

(zi − Ci).

(2.42)

For each possible total supply y, we define the overall utility of consumption as

u(C + y) =

{
max
zi>0

∑
i

ui(zi) s.t.
∑
i

(zi − Ci) = y

}
. (2.43)

In other words, u(C+y) computes the total utility of consumption of all prosumers when the

total energy supply from the generators is y. We can therefore rewrite the system operator’s
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problem equivalently as

max
y

u(C + y)−
∑
j

c̃j(y/N). (2.44)

Generators. Each generator sets an optimal yj to supply, and bids a tilted cost function c̃j

instead of the true cost function cj . The generator j considers the market price λS as a

function of the total supply y, and aims to solve the profit maximization problem:

max
yj

λS

yj +
∑
j′ ̸=j

yj′

 · yj − cj(yj). (2.45)

To this end, the generator needs to compute the market price as a function of total supply.

Since the total supply and the total (net) demand must be matched by the system operator,

we have that

∑
i

(zSi − Ci) = y. (2.46)

Combining (2.41) and (2.46), we obtain that

λS(y) =
y + C +

∑
i

bi
2ai∑

i
1
2ai

. (2.47)

Therefore, the generator’s profit maximization problem (2.45) becomes:

max
yj≥0

yj +
∑

j′ ̸=j yj′ + C +
∑

i
bi
2ai∑

i
1
2ai

· yj − αyj . (2.48)

Each generator solves (2.48), and since they are all identical, we only look at the equilibrium

where yj = yj′ , ∀j, j′ ∈ [N ]. Thus, from the first-order condition of (2.48), we obtain the
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optimal supply amount for generator j:

ySj =
−C +

∑
i
α−bi
2ai

N + 1
, ∀j. (2.49)

In order to sell ySj as given in (2.49), generator j will bid c̃j such that the system operator

will allocate ySj amount of energy to j. The generator thus considers the economic dispatch

problem that the system operator solves. Therefore, the generator will bid c̃j such that yS :=∑
j y

S
j = NySj solves (2.44) optimally, i.e.,

∂u(C + y)

∂y

∣∣∣∣
y=NySj

=
∂c̃j(yj)

∂yj

∣∣∣∣
yj=ySj

. (2.50)

While there are many possible choices of c̃j that satisfies (2.50), one of the optimal bidding

for the generator is to bid a linear cost function.

Lemma 2.5. The following linear cost function is an optimal bidding strategy for generator j:

c̃j(yj) =
Nα

∑
i

1
2ai

+ C +
∑

i
bi
2ai

(N + 1)
∑

i
1
2ai

· yj (2.51)

Considering the prosumers’ and the system operator’s problems, we have the following

result.

Proposition 2.7 (Competitive Equilibrium). Under Assumption 2.6, if all generators bid

as in (2.51), then, an optimal solution to (2.42) is given by

zSi =
λS − bi
2ai

, ∀i, ySj =
−C +

∑
i
α−bi
2ai

N + 1
, ∀j. (2.52)

where the equilibrium market price (the optimal Lagrange multiplier of the equality constraint)
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is

λS =
Nα

N + 1
+

C +
∑

i
bi
2ai

(N + 1)
∑

i
1
2ai

. (2.53)

Furthermore, the solutions in (2.52) optimally solve the prosumer’s/generator’s problem.

The social welfare in this case is

WS =

∑i

[
αN+bi
2ai

+ Ci

]
(N + 1)

∑
i

1
2ai

2∑
i

1

4ai
−
∑
i

b2i
4ai

+ α
N
∑

i

(
Ci − α−bi

2ai

)
N + 1

. (2.54)

2.6.2 No Prosumer Participation

We next consider the case when the prosumers cannot sell back to the grid, i.e., each pro-

sumer i can only purchase some di ≥ 0 amount of energy. Since the amount of energy sold

by each prosumer has to be xi = 0, we will have zi = Ci + di for all prosumers. We first

look at the prosumers’ problem.

Prosumers. Let λ be the market price. Each prosumer i solves its payoff maximization

problem:

max
di≥0

ui(Ci + di)− λdi = max
di≥0

ai(Ci + di)
2 + bi(Ci + di)− λdi. (2.55)

The optimal decision of prosumer i is thus

di =

[
λ− bi
2ai

− Ci

]+
. (2.56)
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Therefore, given any market price λ, the set of prosumers who make a strictly positive

amount of purchase is

S(λ) := {i | 2aiCi + bi > λ} . (2.57)

We will without loss of generality sort the prosumers in decreasing order of 2aiCi + bi, i.e.,

for any two prosumers i and i′, we have that 2aiCi + bi ≥ 2ai′Ci′ + bi′ if i ≤ i′. Under such

ordering, for any i ≤ i′, if prosumer i′ makes positive purchase of electricity, then prosumer i

must also make positive purchase. This sorting of prosumers will be helpful when we write

the social welfare.

2.6.2.1 Truthful bidding of the generators

System operator. The system operator solves the economic dispatch problem that max-

imizes the social welfare:

WTN = max
di≥0,yj≥0

∑
i

ui(Ci + di)−
∑
j

cj(yj)

s.t.
∑
j

yj =
∑
i

di.

(2.58)

Since the generators are identical, we again restrict solutions to yj = yj′ ,∀j ̸= j′, i.e., each

generator supplies the same amount of energy yj . Considering the prosumers’ and the system

operator’s problems, we have the following result.

Proposition 2.8. Under Assumption 2.6, an optimal solution to (2.38) is given by

dTNi =

[
−Ci +

α− bi
2ai

]+
, ∀i, yTNj =

∑
i

[
−Ci +

α−bi
2ai

]+
N

, ∀j. (2.59)

Furthermore, the equilibrium market price (the optimal Lagrange multiplier of the constraint)
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is given by λTN = α. The optimal social welfare is given by

WTN =
∑

{i|2aiCi+bi>α}

[
αCi −

(bi − α)2

4ai

]
+

∑
{i|2aiCi+bi≤α}

(
aiC

2
i + biCi

)
. (2.60)

2.6.2.2 Strategic bidding of the generators

System operator. The system operator solves the economic dispatch problem to max-

imize the apparent social welfare, which is the “social welfare” when the system operator

assumes the generators’ bids are true, but is actually based on the (nontruthful) bidding c̃j

of the generators:

max
di≥0,yj≥0

∑
i

ui(Ci + di)−
∑
j

c̃j(yj)

s.t.
∑
j

yj =
∑
i

di

(2.61)

For each possible total supply y, the overall utility of consumption now becomes

u(C + y) =

{
max
di≥0

∑
i

ui(Ci + di) s.t.
∑
i

di = y

}
. (2.62)

As y increases, the number of prosumers with di > 0 will change in a discrete manner.

However, we have the following useful result.

Lemma 2.6. u(C + y) is continuous and differentiable in y.

Similar to (2.44), we can therefore rewrite the system operator’s problem equivalently as

max
y≥0

u(C + y)−
∑
j

c̃j(y/N). (2.63)

Generators. Each generator sets an optimal yj to supply, and bids a tilted cost function c̃j

instead of the true cost function cj . The generator j considers the market price λSN as a
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function of the total supply y, and aims to solve the profit maximization problem:

max
yj

λSN

yj +
∑
j′ ̸=j

yj′

 · yj − cj(yj). (2.64)

To this end, the generator needs to compute the market price as a function of total supply.

Since the total supply and the total (net) demand must be matched by the system operator,

we have that

∑
i

dSNi = y. (2.65)

At any given y, we need to consider which prosumers have di > 0 and which prosumers

have di = 0. Define

yi := (2aiCi + bi)
i−1∑
i′=1

1

2ai′
−

i−1∑
i′=1

(
Ci′ +

bi′

2ai′

)
, ∀i = {1, 2, . . . , n}. (2.66)

Then, we have the following lemma.

Lemma 2.7. Prosumer i’s optimal decision di > 0 if and only if the total supply satisfies y >

yi.

In other words, the set of prosumers with di > 0 may be written as

S(y) =
{
i | y > yi

}
. (2.67)

Combining (2.56) with λ = λSN , Lemma 2.7, and (2.65), we obtain that

λSN (y) =
y +

∑
i

(
Ci +

bi
2ai

)
· 1
{
y > yi

}
∑

i
1
2ai
· 1
{
y > yi

} . (2.68)
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Therefore, the generator’s profit maximization problem (2.64) becomes:

max
yj≥0

yj +
∑

j′ ̸=j yj′ +
∑

i

(
Ci +

bi
2ai

)
· 1
{
yj +

∑
j′ ̸=j yj′ > yi

}
∑

i
1
2ai
· 1
{
yj +

∑
j′ ̸=j yj′ > yi

} · yj − αyj . (2.69)

Each generator solves (2.69), and since they are all identical, we only look at the equilibrium

where yj = yj′ ,∀j, j′ ∈ [N ]. Thus, from the first-order condition of (2.69), we obtain the

condition on optimal supply amount for generator j:

ySNj =

∑
i

(
α−bi
2ai
− Ci

)
· 1
{
NySNj > yi

}
N + 1

, ∀j. (2.70)

In order to sell ySNj as given in (2.70), generator j will bid c̃j such that the system oper-

ator will allocate ySNj amount of energy to j. The generator thus considers the economic

dispatch problem that the system operator solves. Therefore, the generator will bid c̃j such

that ySN :=
∑

j y
SN
j = NySNj solves (2.63) optimally, i.e.,

∂u(C + y)

∂y

∣∣∣∣
y=NySNj

=
∂c̃j(yj)

∂yj

∣∣∣∣
yj=ySNj

. (2.71)

While there are many possible choices of c̃j that satisfy (2.71), again one of the optimal

bidding strategies for the generator is to bid a linear cost function.

Lemma 2.8. The following linear cost function is an optimal bidding strategy for generator j:

c̃j(yj) =
Nα

∑
i

1
2ai
· 1
{
NySNj > yi

}
+
∑

i

(
Ci +

bi
2ai

)
· 1
{
NySNj > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
NySNj > yi

} · yj (2.72)

Considering the prosumers’ and the system operator’s problems, we have the following

result.

Proposition 2.9 (Competitive Equilibrium). Under Assumption 2.6, if all generators bid
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as in (2.72), an optimal solution to (2.61) satisfies the following:

dSNi =

[
−Ci +

λSN − bi
2ai

]+
, ∀i, ySNj =

∑
i

(
−Ci +

α−bi
2ai

)
· 1
{
NySNj > yi

}
N + 1

, ∀j,

(2.73)

where the equilibrium market price (the optimal Lagrange multiplier of the constraint) is

λSN =
Nα

N + 1
+

∑
i

(
Ci +

bi
2ai

)
· 1
{
ySN > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
ySN > yi

} . (2.74)

Furthermore, (2.73) optimally solves the prosumer’s/generator’s problem. The social welfare

in this case is

WSN =
∑
i

[
1

4ai

∑i

[
αN+bi
2ai

+ Ci

]
· 1
{
ySN > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
ySN > yi

}
2

− b2i
4ai

]
· 1
{
ySN > yi

}

+
∑
i

(
aiC

2
i + biCi

)
· 1
{
ySN ≤ yi

}
+ α

N
∑

i

(
Ci − α−bi

2ai

)
· 1
{
ySN > yi

}
N + 1

.

(2.75)

2.6.3 Discussion

In the previous subsections, we have analyzed and derived the equilibrium social welfare

for all four models, depending on if we allow prosumer participation (selling part of their

capacity) and if the generators bid strategically. Table 2.2 summarizes the equilibrium social

welfare under the four models.

Full prosumer participation No prosumer participation
Generators bidding truthfully WT (Proposition 2.6) WTN (Proposition 2.8)

Generators bidding strategically WS (Proposition 2.7) WSN (Proposition 2.9)

Table 2.2: Comparison of social welfare under different models

While we have obtained the valuable explicit expressions for the social welfare under all
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four models, to complete the proof of Theorem 2.3, we need to compare the four expressions

ofWT ,WS ,WTN andWSN , which is not obvious. In this subsection, we provide alternative

expressions for these social welfares. To proceed, we first define the social welfare when there

is no generator and no electricity market, i.e., each prosumer consumes the amount of energy

that its capacity allows:

W0 :=
∑
i

ui(Ci). (2.76)

We also define the amount of market price rise due to strategic bidding of the generators

as δ := λS − λT , and δN := λSN − λTN . With these definitions, we have the following

expressions for the social welfare under different models, which use W0 as a reference.

Proposition 2.10. We have the following expressions for the four social welfare.

WT =W0 −
∑
i

ai

(
zTi − Ci

)2
, (2.77)

WS =W0 +
∑
i

(
−ai

(
zSi − Ci

)2
+ δ

(
zSi − Ci

))
, (2.78)

WTN =W0 −
∑
i

ai

(
dTNi

)2
=W0 −

∑
{i|zTi >0}

ai

(
zTi − Ci

)2
, (2.79)

WSN =W0 −
∑
i

ai

(
dSNi

)2
+ δN

∑
i

dSNi . (2.80)

We next obtain the expressions for δ and δN . Under full prosumer participation and

strategic bidding of the generators, we have that u′(zSi ) = λS = λT + δ = α + δ. From the

truthful bidding case, we also have that α = u′i(z
T
i ). Thus, we can write δ as

δ = u′(zSi )− u′(zTi ) = 2ai(z
S
i − zTi ), ∀i, (2.81)

or equivalently, by noting that
∑

i(z
S
i −Ci) = yS = yT · N

N+1 = N
N+1

∑
i(z

T
i −Ci), we have
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that

δ =

∑
i

(
zSi − zTi

)
∑

i
1
2ai

=
−
(

1
N+1

)∑
i(z

T
i − Ci)∑

i
1
2ai

. (2.82)

Under the models that prosumers cannot sell, with generators bidding strategically, we have

that u′i(Ci + dSNi ) = λSN = λTN + δN = α + δN for those prosumers with dSNi > 0.

From the truthful bidding case, we also have that α = u′i(Ci + dTNi ) for those prosumers

with dTNi > 0. Thus, we can write δN as

δN = u′i(Ci + dSNi )− u′i(Ci + dTNi ) = 2ai(d
SN
i − dTNi )

= 2ai(d
SN
i − zTi ), ∀i s.t. dSNi > 0. (2.83)

By noting that
∑
{i|dSNi >0} d

SN
i = ySN = N

N+1

∑
{i|dSNi >0}(z

T
i − Ci), we have that

δN =

∑
{i|dSNi >0}(−d

SN
i + zTi − Ci)

−∑{i|dSNi >0}
1
2ai

=

1
N+1

∑
{i|dSNi >0}(z

T
i − Ci)

−∑{i|dSNi >0}
1
2ai

. (2.84)

With Proposition 2.10, (2.82), and (2.84), we are ready to show the relations in (2.35).

Specifically, we have the following result.

Proposition 2.11 (Restating Theorem 2.3). The following relations hold:

WT −WTN = −
∑

{i|zTi ≤Ci}
ai

(
zTi − Ci

)2
≥ 0; (2.85a)

WS −WSN =
∑
i

(
−ai

(
zSi − Ci

)2
+ δ(zSi − Ci)

)
+
∑
i

ai

(
dSNi

)2
− δN

∑
i

dSNi ≥ 0;

(2.85b)

WT −WS =

(∑
i(z

T
i − Ci)

N + 1

)2

· 1∑
i

1
−ai
≥ 0; (2.85c)
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WTN −WSN =
∑

{i|dSNi =0,zTi >Ci}
(−ai)(zTi − Ci)

2

+

∑{i|dSNi >0}(z
T
i − Ci)

N + 1

2

· 1∑
{i|dSNi >0}

1
−ai
≥ 0; (2.85d)

WTN −WSN ≥ WT −WS . (2.85e)

We have thus finished the proof of Theorem 2.3, and verified the benefit of aggregating

distributed energy resources (DERs), i.e., by allowing the aggregation of DERs, the optimal

social welfare is improved with either truthful bidding generators or strategic bidding gen-

erators, and the loss of social welfare due to strategic bidding of the generators is reduced

in the full participation model compared to that in the no participation model. Thus, we

can state that DER aggregation mitigates market power of generators. Next, we provide an

illustrative example.

2.6.4 Illustrative Example

We consider an example with n = 2 and provide illustrations of our results. We let the

true cost of each generator be c(y) = αy = 5y. For each prosumer i, we let ai = −0.1 and

bi = 10, and we distinguish between them via the capacities, with C1 = 10 and C2 = 30.

The parameters are picked such that 2a1C1+b1 > α and 2a2C2+b2 < α, i.e., prosumer i = 1

will always have a positive demand. To make our example more interesting, we vary the

number of generators from N = 1 to N = 20 (outcomes saturate for N > 20). In Figure 2.6,

we plot the social welfare for each market setup, efficiency loss due to strategic behavior of

the generators, and prices. The key outcomes can be summarized as follows:

1. WSN →WTN and WS →WT as N →∞.

2. λSN → α and λS → α as N →∞.
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Figure 2.6: Left: Social welfare for each market setup vs. N . DER participation improves
the social welfare. As N increases, strategic bidding converges to truthful bidding, and all
inequalities provided in Theorem 2.3 hold. Middle: Quantification of market power in terms
of social welfare loss. When DERs are integrated, market power is mitigated. Right: Price
for each market setup vs. N . Highest price corresponds to strategic bidding without DER
participation, but when DERs are present, the price becomes lower. All prices converge to
α = 5.

3. For N <∞, α < λSN < λS .

4. Efficient DER aggregation mitigates the market power of generators.

2.7 Conclusions

In this work, we have addressed questions surrounding the debate on whether or not it is

possible to achieve full market efficiency in the presence of a monopolistic DER aggregator

by studying three aggregation models. For all models, we utilized two-part pricing, where

each prosumer pays a connection charge and sells its DER supply at a per-unit price offered

by the aggregator. The first model has an unregulated profit-seeking aggregator, who adopts

a discriminatory pricing policy in which each prosumer has a specific connection charge, and

achieves full market efficiency. The second model has a profit-seeking aggregator who must

not do price discrimination to prosumers in the same location, and we show numerically

that there is a mild efficiency loss. In the third model, we avoid discriminatory pricing by
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regulating the aggregator while ensuring that its profit is always positive. Both efficient

models were shown to mitigate the market power of conventional generators; the welfare gap

between truthful and strategic bidding was reduced.

There are several directions for future work.

1. We focused on DER capacities that have been already installed, and it would be inter-

esting to see how efficient aggregation models would impact investments and rebates

for the installations of such capacities (Kök et al. [130], Hu et al. [109], Aflaki and

Netessine [6], Babich et al. [25]).

2. In our setup, the aggregator is monopolistic, and two-part pricing was necessary to at-

tain full market efficiency, but if one-part pricing was adopted, it would not be possible

to attain full market efficiency (Alshehri et al. [10, 11]). So, another research direc-

tion is to study the affect of competition among aggregators under different pricing

policies, and perhaps, also study their strategic bidding in networked wholesale mar-

kets (Bimpikis et al. [38], Anupindi and Jiang [17], Nguyen and Kannan [167], Ruhi

et al. [184]) or in zonal electricity markets (Aravena et al. [20]).

3. To achieve the full efficiency results, we need the true information about prosumers’

utility functions. In practice, this could be observed from their bids/behavior via

iterative interactions with the aggregator/utility or by empirical studies (see Khezeli

et al. [129], Ata et al. [22]). If the utility parameters are mis-specified, then, the

aggregator would set the wrong prices to the prosumers, and there will be efficiency

loss due to that. It would be interesting to explore the consequences of not having a

good prosumer utility parameter estimation.

4. While we considered a single period problem, there are multiple ways to extend our

work to a multi-period setup. One possibility is to consider an open-loop game where

all decisions are made at the beginning where each period t has a price pair (Pt, pt).
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In the absence of temporal constraints (such as ramping), the analysis for each period

could be decoupled, and our efficiency results will still hold. In the presence of temporal

constraints, the analysis becomes more complicated. While this still could be analyzed

as an open-loop game, one might need to use tools from dynamic game theory, which

might be difficult. Moreover, it is worth noting that if the aggregator has to offer

the same prices for all periods, then the aggregator would need to find the optimal

single (P, p) that is applied to all periods (then it will not be fully efficient), which

could be explored in a future work.

5. We remark that while in our analysis we have assumed deterministic DER capacities,

they are in fact often intermittent and uncertain. Some of this variability might be

hedged against via the forward (often, day-ahead) markets. In view of recent develop-

ments regarding DER integration, stochastic models are more realistic and have been

adopted by many authors (Alshehri et al. [11], Secomandi and Kekre [189], Alshehri

et al. [12], Sunar and Birge [203], Han et al. [100], Wu and Kapuscinski [223], Zhou

et al. [235], Alessio Trivella et al. [8], Peura and Bunn [174]). It would be interesting

to study whether our results generalize to stochastic DER capacities.

2.8 Appendix

Proof of Proposition 2.1. First note that (2.7) can be equivalently written as:

max WB(x− d,y)

subject to 1⊤ (X−D+Y) = 0, −B(X−D+Y) ≤ f ,

C− Z ≤ x− d ≤ C, y ≤ y ≤ y.

(2.86)

By Assumption 2.1 and Assumption 2.2, each uki is strictly concave, and each ckj is strictly

convex. Thus, WB given by (2.6) is strictly concave. It can be seen from (2.86) that
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the feasible set is compact, and is nonempty by Assumption 2.3. Therefore, there exists a

unique optimal solution ((x− d)∗,y∗) to (2.86). By letting h∗ = −Y∗ − (X−D)∗, we have

a unique optimal solution (h∗, (x− d)∗,y∗) to (2.7).

We write the Lagrangian of (2.7) as

L =
∑
k∈[n]

( ∑
i∈[nk]

uki

(
Ck
i − (xki − dki )

)
−
∑

j∈[Nk]

ckj (y
k
j ) + λk

(
hk +Xk −Dk + Y k

)
+
∑
i∈[nk]

(
µki

(
Ck
i − (xki − dki )

)
+ µk

i

(
xki − dki − Ck

i + Z
))

+
∑

j∈[Nk]

(
νkj (y

k
j − ykj ) + νkj (y

k
j − yk

j
)
))

+ extra terms, (2.87)

where λk, µki , µ
k
i
, νkj , ν

k
j are the Lagrange multipliers corresponding to the first constraint

in (2.3) and (2.4), and the “extra terms” correspond to the other constraints in (2.3). Under

Assumptions 2.1 and 2.2, it should be clear that the optimal solution (xki − dki )
∗ ̸= Ck

i ,

(xki − dki )
∗ ̸= Ck

i − Z, and ykj
∗ ̸= ykj , y

k
j
∗ ̸= yk

j
. Then, from the KKT optimality conditions,

we have that µki = µk
i
= νkj = νkj = 0. Further, we have that

∇(xki−dki )
L =

∂uki
∂(xki − dki )

∣∣∣
(xki−dki )∗

+ λk = 0, (2.88a)

∇ykj
L = −

∂ckj

∂ykj

∣∣∣
ykj

∗ + λk = 0, (2.88b)

where the first equality is equivalent to Lemma 2.1 and the second equality is equivalent to

Lemma 2.2.

Proof of Lemma 2.3. Consider prosumer i at location k. By Assumption 2.1, ∂uki (z)
∂z is con-

tinuous and ranges from ∞ to 0. By Intermediate Value Theorem, for any given λk and pki ,

there exist a (zλ, zp) such that (2.9) holds. By strict concavity of uki ,
∂uki (z)
∂z is strictly
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decreasing, so the (zλ, zp) is unique.

We next find the optimal solution to (2.8). We look at the two cases when xki > 0 and

xki = 0 separately. Recall that pki ≤ λk. Then for any xki > 0 and dki ≥ xki , we have that

πki

(
xki , d

k
i

)
≤ πki

(
0, dki − xki

)
.

For any xki > 0 and 0 < dki < xki , we have that

πki

(
xki , d

k
i

)
≤ πki

(
xki − dki , 0

)
.

Therefore, we may without loss of generality restrict to the case when xki and dki are not

both strictly positive. We can rewrite (2.8) as

πki (x
k
i , d

k
i ) =


pki x

k
i − P k

i + uki

(
Ck
i − xki

)
, if xki > 0,

uki

(
dki + Ck

i

)
− λkdki , if xki = 0.

(2.89)

• If Ck
i ≤ zp, then uki

(
Ck
i − xki

)
+ pki x

k
i ≤ uki

(
Ck
i

)
for any xki > 0. Thus we have

the optimal xki
∗
= 0. If we further have that Ck

i < zλ, then the first order condition

of uki
(
dki + Ck

i

)
− λkdki leads to dki

∗
= zλ − Ck

i . If we instead have Ck
i ≥ zλ, then

uki

(
dki + Ck

i

)
− λkdki ≤ uki

(
Ck
i

)
for any dki > 0.

• If Ck
i > zp, then uki

(
dki + Ck

i

)
− λkdki < uki

(
Ck
i

)
for any dki > 0. We thus have

dki
∗

= 0. When xki > 0, the first order condition of pki x
k
i − P k

i + uki

(
Ci
j − xki

)
leads to xki = Ck

i − zp. Moreover, it is only optimal to have xki
∗
= Ck

i − zp >

0 if pki x
k
i − P k

i + uki

(
Ci
j − xki

)
≥ uki

(
Ck
i

)
, or equivalently, P k

i ≤ pki

(
Ck
i − zp

)
+

uki
(
zp
)
− uki

(
Ck
i

)
. Therefore, we have that xki

∗
=
(
Ck
i − zp

)
· 1 {X}, where X ={

P k
i ≤ pki

(
Ck
i − zp

)
+ uki

(
zp
)
− uki

(
Ck
i

)}
.
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Proof of Lemma 2.4. Consider prosumer i at location k. Let (zλ, zp) be as in (2.9). Then

zλ ≤ zp since pki ≤ λk. First note that when Ck
i ≤ zλ ≤ zp, xki

∗
= 0 by Lemma 2.3, and

Πk
i

(
P k
i , p

k
i

)
= 0 for any (P k

i , p
k
i ) ∈ R2

+, i.e., the aggregator A earns zero profit from the

prosumer regardless of its pricing decisions.

For those prosumers with Ck
i > zλ, we have that dki

∗
= 0 from Lemma 2.3. Since the

aggregator earns zero profit if the prosumer does not sell its energy, the aggregator would

choose a pki such that Ck
i > zp (because otherwise xki

∗
= 0) and thus xki

∗
= Ck

i − zp. We

can add in the aggregator’s problem the constraint that the prosumers would benefit from

selling:

max
P k
i ,p

k
i≥0

P k
i +

(
λk − pki

)
xki
∗

s.t. pki x
k
i
∗
+ uki

(
Ck
i − xki

∗)− P k
i ≥ uki

(
Ck
i

)
,

(2.90)

where xki
∗ is the optimal response of the prosumer, as a function of (P k

i , p
k
i ). We observe

from (2.90) that, the optimal P k
i should satisfy P k

i = pki x
k
i
∗
+ uki

(
Ck
i − xki

∗)− uki

(
Ck
i

)
in

the maximization problem. Thus, (2.90) can be rewritten as

max
pki≥0

pki x
k
i
∗
+ uki

(
Ck
i − xki

∗)− uki

(
Ck
i

)
+
(
λk − pki

)
xki
∗

=max
zp≥0

uki (zp)− uki

(
Ck
i

)
+ λk

(
Ck
i − zp

)
, (2.91)

and the first order condition of (2.91) leads to

∂uki (zp)

∂zp

∣∣∣
zp=z∗p

= λk. (2.92)

By (2.9), we also have that ∂uki (z)
∂z

∣∣∣
z=z∗p

= pki
∗. We thus conclude that pki

∗
= λk. This

further leads to z∗p = zλ, and thus

P k
i
∗
= pki

∗ (
Ck
i − z∗p

)
+ uki

(
z∗p
)
− uki

(
Ck
i

)
= λk

(
Ck
i − zλ

)
+ uki

(
Ck
i − zλ

)
− uki

(
Ck
i

)
.
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Proof of Proposition 2.3. In this proof, we show that the optimal solution to (2.7) can be

used to construct an optimal solution to (2.15).

First note that the objectives of both problems have the same expression, i.e.,

WA(h,x,d,y) =WB(h,x− d,y) =
∑
k∈[n]

 ∑
i∈[nk]

uki (d
k
i + Ci

j − xki )−
∑

j∈[Ni]

cij(y
i
j)

 .

While we took (x− d) as a single vector of decision variables in solving (2.7) and obtained

a unique optimal solution (h∗, (x− d)∗,y∗) in Proposition 2.1, we can equivalently consider

x and d as two separate vectors of decision variables. Consider the constraints (2.4) and

constraints (2.13). For any x,d,y satisfying constraints (2.13), we have that x− d ≤ C and

x− d ≥ C− Z, which implies constraints (2.4). With the other constraints being the same,

the feasible region of (2.15) is a subset of the feasible region of (2.7), which implies that

W∗B ≥ W∗A.

Let (h∗, (x− d)∗,y∗) be the optimal solution to (2.7). Let x∗ = [(x− d)∗]+ and d∗ =

[−(x− d)∗]+, then x∗ − d∗ = (x− d)∗. We show that (h∗,x∗,d∗,y∗) is feasible to (2.15).

It suffices to show that 0 ≤ x∗ ≤ C and 0 ≤ d∗ ≤ Z − C + x∗. By definition, x∗ ≥ 0

and d∗ ≥ 0. If (x − d)∗ < 0, then x∗ = 0 and d∗ = −(x − d)∗ ≤ Z − C = Z − C + x∗.

If (x − d)∗ ≥ 0, then x∗ = (x − d)∗ ≤ C and d∗ = 0. In either case, we have that

x∗,d∗ are feasible to (2.13), and thus (h∗,x∗,d∗,y∗) is feasible to (2.15). Therefore, this

set of (h∗,x∗,d∗,y∗) is an optimal solution to (2.15), and thus W∗A = W∗B . Further, the

corresponding optimal Lagrange multipliers of constraints (2.3) are the same in problem (2.7)

and problem (2.15), i.e., the wholesale market prices λλλ are the same under both models.

From Proposition 2.1, we know that ykj
∗ and λk are consistent with Lemma 2.2, ∀k ∈

[n],∀j ∈ [Nk]. Moreover,
(
xki − dki

)∗
and λk are consistent with Lemma 2.1, ∀k ∈ [n],∀i ∈

[nk]. Consider an arbitrary prosumer i at an arbitrary location k. With pki = λk, (zλ, zp)
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as defined in (2.9), and P k
i =

[
λk(Ck

i − zλ) + uki (zλ)− uki (C
k
i )
]+

, we have that zλ = zp =

Ck
i − (xki − dki )

∗. If Ck
i ≤ zp = Ck

i − (xki − dki )
∗, then (xki − dki )

∗ < 0, which implies

that dki
∗
=
[
−(xki − dki )

∗
]+

=
[
zλ − Ck

i

]+
and xki

∗
=
[
(xki − dki )

∗
]+

= 0. If Ck
i > zp =

Ck
i − (xki − dki )

∗, then (xki − dki )
∗ > 0, which implies that dki

∗
=
[
−(xki − dki )

∗
]+

= 0

and xki
∗
=
[
(xki − dki )

∗
]+

= Ck
i − zp. In either case, the optimal response xki

∗ and dki
∗

matches those described in Lemma 2.3. Further, by Lemma 2.4, the choice of pki = λk and

P k
i =

[
λk(Ck

i − zλ) + uki (zλ)− uki (C
k
i )
]+

are optimal for the aggregator to maximize its

profit from the prosumer j. We have thus verified all statements listed in Proposition 2.3.

Proof of Theorem 2.1. Immediately follows from the proof of Proposition 2.3.

Proof of Proposition 2.5. Since (h∗,x∗,d∗,y∗) and λλλ are the same as those in Proposi-

tion 2.3, it follows from Proposition 2.3 that y∗ is consistent with Lemma 2.2. We next

show that (x∗,d∗) are optimal solutions to (2.27), given (P,p) as in (2.26), F as in (2.25),

and λλλ. Note that the marginal price is again pk = λk
∗. Consider prosumer i at location k.

Since (xki
∗
, dki
∗
) is optimal for (2.8), we have that

(xki
∗
, dki
∗
) = argmax

xki ∈[0,Ck
i ], d

k
i ∈[0,Z−Ck

i +xki ]


pki x

k
i − P k

i + uki

(
dki + Ck

i − xki

)
− λkdki ,

if xki > 0,

uki

(
dki + Ck

i

)
− λkdki , if xki = 0.

Offsetting both cases by the same constant F k
i will not change the optimality of (xki

∗
, dki
∗
),
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i.e.,

(xki
∗
, dki
∗
) = argmax

xki ∈[0,Ck
i ], d

k
i ∈[0,Z−Ck

i +xki ]


pki x

k
i − P k

i + uki

(
dki + Ck

i − xki

)
− λkdki − F k

i ,

if xki > 0,

uki

(
dki + Ck

i

)
− λkdki − F k

i , if xki = 0.

(2.93)

There are two cases:

• xki
∗
> 0 and dki

∗
= 0. This implies that the optimal decision is to sell xki

∗, and earn the

upper profit of (2.93): pki x
k
i
∗−P k

i +uki

(
dki + Ck

i − xki
∗)−λkdki −F k

i . Since P k ≤ P k
i ,

by changing P k
i to P k, we are adding a nonnegative constant to the objective, and thus

does not change the optimal decision. Therefore, we have that

(xki
∗
, dki
∗
)

= argmax
xki ∈[0,Ck

i ], d
k
i ∈[0,Z−Ck

i +xki ]


pki x

k
i − P k + uki

(
dki + Ck

i − xki

)
− λkdki − F k

i ,

if xki > 0,

uki

(
dki + Ck

i

)
− λkdki − F k

i , if xki = 0,

which says that (xki
∗
, dki
∗
) is also an optimal solution to (2.27).

• xki
∗
= 0 and dki

∗ ≥ 0. This implies that the optimal decision is to buy dki
∗ and

earn the lower profit of (2.93). For these prosumers, by Proposition 2.2 and Propo-

sition 2.3, we know that uki

(
dki
∗
+ Ck

i

)
− λkdki

∗ − F k
i ≥ maxxki>0,dki=0 p

k
i x

k
i − P k

i +

uki

(
dki + Ck

i − xki

)
− λkdki − F i

j even with P k
i = 0. Therefore, we again have that

(xki
∗
, dki
∗
)
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= argmax
xki ∈[0,Ck

i ], d
k
i ∈[0,Z−Ck

i +xki ]


pki x

k
i − P k + uki

(
dki + Ck

i − xki

)
− λkdki − F k

i ,

if xki > 0,

uki

(
dki + Ck

i

)
− λkdki − F k

i , if xki = 0,

which also says that (xki
∗
, dki
∗
) is also an optimal solution to (2.27).

Proof of Proposition 2.6. We write the Lagrangian of (2.38) as

L =
∑
i

ui(zi)−
∑
j

cj(yj) + λ

∑
j

yj −
∑
i

(zi − Ci)

+ µizi + νjyj , (2.94)

where λ, µi, νj are the Lagrange multipliers of the constraints. The KKT optimality condi-

tions are

∂L
∂zi

= 2aizi + bi − λ+ µi = 0, ∀i, (2.95a)

∂L
∂yj

= −α + λ+ νj = 0, ∀j, (2.95b)

λ

∑
j

yj −
∑
i

(zi − Ci)

 = 0, (2.95c)

µizi = 0, ∀i, (2.95d)

νjyj = 0, ∀j, (2.95e)∑
j

yj −
∑
i

(zi − Ci) = 0, (2.95f)

zi > 0, ∀i, (2.95g)

yj ≥ 0, ∀j, (2.95h)

λ, µi, νj ≥ 0, ∀i, j. (2.95i)
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By Assumption 2.6, we have that yj > 0 and thus νj = 0 for all j ∈ [N ]. With some algebra,

we can conclude from (2.95) that

λT = α, zTi =
α− bi
2ai

,
∑
j

yTj =
∑
i

(zTi − Ci) = −C +
∑
i

α− bi
2ai

.

We note that the optimal zTi we derived from the above also satisfies (2.37). The optimal

social welfare is given by

WT =
∑
i

ui(z
T
i )−

∑
j

cj(y
T
j ) = αC −

∑
i

(bi − α)2

4ai
.

This completes the proof of Proposition 2.6.

Proof of Lemma 2.5. Recall from (2.43) that

u(C + y) =

{
max
zi>0

∑
i

ui(zi) s.t.
∑
i

(zi − Ci) = y

}
,

which is itself an optimization problem. We write its Lagrangian:

L =
∑
i

ui(zi) + λ

(
y −

∑
i

(zi − Ci)

)
+ µizi,

where λ and µi are the Lagrange multipliers of the constraints. The KKT optimality condi-

tions are

∂L
∂zi

= 2ai(zi) + bi − λ+ µi = 0, ∀i (2.96a)

λ

(
y −

∑
i

(zi − Ci)

)
= 0 (2.96b)

µizi = 0, ∀i (2.96c)
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∑
i

(zi − Ci) = y (2.96d)

zi > 0, ∀i (2.96e)

λ, µi ≥ 0, ∀i. (2.96f)

Thus, the optimal zi =
λ−bi
2ai

, and thus

∑
i

(zi − Ci) =
∑
i

λ− bi
2ai

−
∑
i

Ci = y,

which implies that

λ =
y +

∑
iCi +

∑
i

bi
2ai∑

i
1
2ai

.

Therefore, we have that

u(C + y) =
∑
i

ai

(
λ− bi
2ai

)2

+
∑
i

bi

(
λ− bi
2ai

)

=
∑
i

1

4ai

y + C +
∑

i
bi
2ai∑

i
1
2ai

− bi

2

+
∑
i

bi
2ai

y + C +
∑

i
bi
2ai∑

i
1
2ai

− bi

 . (2.97)

From (2.49) and (2.97), it follows that

∂u(C + y)

∂y

∣∣∣∣
y=NySj

=

−C+
∑

i
α−bi
2ai

N+1 ·N + C +
∑

i
bi
2ai∑

i
1
2ai

=
Nα

∑
i

1
2ai

+ C +
∑

i
bi
2ai

(N + 1)
∑

i
1
2ai

.

Therefore, bidding (2.51) ensures that the condition (2.50) is satisfied, which ensures that

the system operator will optimally assign ySj to generator j.
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Proof of Proposition 2.7. We write the Lagrangian of (2.42) as

L =
∑
i

ui(zi)−
∑
j

c̃j(yj) + λ

∑
j

yj −
∑
i

(zi − Ci)

+ µizi + νjyj , (2.98)

where λ, µi, νj are the Lagrange multipliers of the constraints, and c̃j is given in (2.51). The

KKT optimality conditions are

∂L
∂zi

= 2aizi + bi − λ+ µi = 0, ∀i, (2.99a)

∂L
∂yj

=
Nα

∑
i

1
2ai

+ C +
∑

i
bi
2ai

(N + 1)
∑

i
1
2ai

+ λ+ νj = 0, ∀j, (2.99b)

λ

∑
j

yj −
∑
i

(zi − Ci)

 = 0, (2.99c)

µizi = 0, ∀i, (2.99d)

νjyj = 0, ∀j, (2.99e)∑
j

yj −
∑
i

(zi − Ci) = 0, (2.99f)

zi > 0, ∀i, (2.99g)

yj ≥ 0, ∀j, (2.99h)

λ, µi, νj ≥ 0, ∀i, j. (2.99i)

By Assumption 2.6, we have that yj > 0 and thus νj = 0 for all j ∈ [N ]. With some algebra,

we can conclude from (2.99) that

λS =
Nα

∑
i

1
2ai

+ C +
∑

i
bi
2ai

(N + 1)
∑

i
1
2ai

,

zSi =
λS − bi
2ai

,
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ySj =

∑
j y

S
j

N
=

∑
i(z

S
i − Ci)

N
=
−C +

∑
i
λS−bi
2ai

N
=
−C +

∑
i
α−bi
2ai

N + 1
.

We note that the optimal zSi we derived from the above also satisfies (2.41), and the opti-

mal ySj from the above also satisfies (2.49), i.e., zSi and ySj are optimal to prosumer i and

generator j, respectively. The optimal social welfare is given by

WS =
∑
i

ui(z
S
i )−

∑
j

cj(y
S
j )

=

∑i

[
αN+bi
2ai

+ Ci

]
(N + 1)

∑
i

1
2ai

2∑
i

1

4ai
−
∑
i

b2i
4ai

+ α
N
∑

i

(
Ci − α−bi

2ai

)
N + 1

.

This completes the proof of Proposition 2.7.

Proof of Proposition 2.8. We write the Lagrangian of (2.58) as

L =
∑
i

ui(Ci + di)−
∑
j

cj(yj) + λ

∑
j

yj −
∑
i

di

+ µidi + νjyj , (2.100)

where λ, µi, νj are the Lagrange multipliers of the constraints. The KKT optimality condi-

tions are

∂L
∂di

= 2ai(Ci + di) + bi − λ+ µi = 0, ∀i, (2.101a)

∂L
∂yj

= −α + λ+ νj = 0, ∀j, (2.101b)

λ

∑
j

yj −
∑
i

di

 = 0, (2.101c)

µidi = 0, ∀i, (2.101d)

νjyj = 0, ∀j, (2.101e)
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∑
j

yj −
∑
i

di = 0, (2.101f)

di ≥ 0, ∀i, (2.101g)

yj ≥ 0, ∀j, (2.101h)

λ, µi, νj ≥ 0, ∀i, j. (2.101i)

By Assumption (2.6), we have that yj > 0 and thus νj = 0 for all j ∈ [N ] by (2.101e).

From (2.101b), we have that λTN = α. Also (2.101a), (2.101d), and (2.101g) together imply

that

dTNi =

[
−Ci +

α− bi
2ai

]+
, ∀i.

From (2.101c), we then have that

∑
i

dTNi =
∑
i

[
−Ci +

α− bi
2ai

]+
=
∑
j

yTNj = N · yTNj ,

which implies that

yTNj =

∑
i

[
−Ci +

α−bi
2ai

]+
N

, ∀j.

Therefore, we may write the social welfare as

WTN =
∑
i

ui(Ci + dTNi )−
∑
j

cj(y
TN
j )

=
∑
i

ai
(
Ci +

[
−Ci +

α− bi
2ai

]+)2

+ bi

(
Ci +

[
−Ci +

α− bi
2ai

]+)
− α

∑
i

[
−Ci +

α− bi
2ai

]+
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=
∑

{i|2aiCi+bi>α}

[
(α− bi)

2

4ai
+

bi(α− bi)

2ai
+ αCi −

α(α− bi)

2ai

]

+
∑

{i|2aiCi+bi≤α}

(
aiC

2
i + biCi

)

=
∑

{i|2aiCi+bi>α}

[
αCi −

(bi − α)2

4ai

]
+

∑
{i|2aiCi+bi≤α}

(
aiC

2
i + biCi

)
.

Proof of Lemma 2.6. Recall from (2.62) that

u(C + y) =

{
max
di≥0

∑
i

ui(Ci + di) s.t.
∑
i

di = y

}
,

which is itself an optimization problem. We write its Lagrangian:

L =
∑
i

ui(Ci + di) + λ

(
y −

∑
i

di

)
+ µidi,

where λ and µi are the Lagrange multipliers of the constraints. The KKT optimality condi-

tions are

∂L
∂di

= 2ai(Ci + di) + bi − λ+ µi = 0, ∀i (2.102a)

λ

(
y −

∑
i

di

)
= 0 (2.102b)

µidi = 0, ∀i (2.102c)∑
i

di = y (2.102d)

di ≥ 0, ∀i (2.102e)

λ, µi ≥ 0, ∀i. (2.102f)
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The optimal di is given by

di =
λ− µi − bi

2ai
− Ci.

Since µidi = 0, for any given λ, we have the set of prosumers with di > 0, i.e.,

S(λ) = {i | di > 0} =
{
i
∣∣∣ λ− bi

2ai
− Ci > 0

}
= {i | λ < 2aiCi + bi} . (2.103)

Similarly, any prosumers in Sc(λ) := {i | λ ≥ 2aiCi + bi} will have di = 0. Thus, we have

that

∑
i

di =
∑

i∈S(λ)

[
λ− bi
2ai

− Ci

]
= y,

which implies that

λ =
y +

∑
i∈S(λ)Ci +

∑
i∈S(λ)

bi
2ai∑

i∈S(λ)
1
2ai

. (2.104)

We will figure out an expression of the set S as a function of y. Recall that prosumers are

sorted in decreasing order of 2aiCi + bi. If λ ≥ 2a1C1 + b1, then all prosumers have di = 0,

and S(λ) is empty. As λ decreases to 2a1C1 + b1, the first prosumer is included in the set.

When the set S(λ) does not change, as y increases, λ will decrease according to (2.104).

When y increases to some critical point yi that the prosumer i > 1 is just about to be

included in the set S, we look at the corresponding λ right before i is included:

λ− = 2aiCi + bi =
yi +

∑i−1
i′=1

(
Ci′ +

bi′
2ai′

)
∑i−1

i′=1
1

2ai′

, (2.105)
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which implies that

yi = (2aiCi + bi)
i−1∑
i′=1

1

2ai′
−

i−1∑
i′=1

(
Ci′ +

bi′

2ai′

)
. (2.106)

When prosumer i is just included in the set, we have that

λ+ =
yi +

∑i
i′=1

(
Ci′ +

bi′
2ai′

)
∑i

i′=1
1

2ai′

. (2.107)

One can verify that λ+ = λ−, which implies that as y increases, λ continuously decreases,

even at those critical points when more prosumers are being added to the set S. Therefore,

the set of prosumers with di > 0 can be expressed as

S(y) =
{
i | y > yi

}
. (2.108)

We may rewrite u(C + y) as

u(C + y) =
∑

i∈Sc(y)

(
aiC

2
i + biCi

)
+
∑

i∈S(y)

[
ai

(
λ− bi
2ai

)2

+ bi

(
λ− bi
2ai

)]

=
∑
i∈S

[
1

4ai

y +
∑

i∈S Ci +
∑

i∈S
bi
2ai∑

i∈S
1
2ai

− bi

2

+
bi
2ai

y +
∑

i∈S Ci +
∑

i∈S
bi
2ai∑

i∈S
1
2ai

− bi

]+ ∑
i∈Sc

(
aiC

2
i + biCi

)

When y is within the range that S does not change, we have that

∂u(C + y)

∂y
=
∑
i∈S

 1

2ai

y +
∑

i∈S Ci +
∑

i∈S
bi
2ai∑

i∈S
1
2ai

− bi

 1∑
i∈S

1
2ai

+
bi
2ai

1∑
i∈S

1
2ai
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=
∑
i∈S

1

2ai

1∑
i∈S

1
2ai

y +
∑

i∈S Ci +
∑

i∈S
bi
2ai∑

i∈S
1
2ai


=

y +
∑

i∈S Ci +
∑

i∈S
bi
2ai∑

i∈S
1
2ai

(2.109)

= λ.

Thus, we can conclude that, as y increases, ∂u(C+y)
∂y continuously decreases, and the overall

utility of consumption u(C + y) is continuous and differentiable in y.

Proof of Lemma 2.7. Follows directly from the proof of Lemma 2.6.

Proof of Lemma 2.8. From (2.70), and (2.109), we have that

∂u(C + y)

∂y

∣∣∣∣
y=NySNj

=
N

∑
i

(
α−bi
2ai
−Ci

)
·1
{
NySNj >yi

}
N+1 +

∑
i

(
Ci +

bi
2ai

)
· 1
{
NySNj > yi

}
∑

i∈S
1
2ai

=
Nα

∑
i

1
2ai
· 1
{
NySNj > yi

}
+
∑

i

(
Ci +

bi
2ai

)
· 1
{
NySNj > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
NySNj > yi

} .

Therefore, bidding (2.72) ensures that the condition (2.71) is satisfied, which ensures that

the system operator will optimally assign ySNj to generator j.

Proof of Proposition 2.9. First consider the equivalent problem (2.62), given the bids c̃j(yj),

from (2.71), the system operator chooses the optimal ySN = NySNj where ySNj satis-

fies (2.70).

Next, we write the Lagrangian of (2.61) as

L =
∑
i

ui(Ci + di)−
∑
j

c̃j(yj) + λ

∑
j

yj −
∑
i

di

+ µidi + νjyj , (2.110)

where λ, µi, νj are the Lagrange multipliers of the constraints, and c̃j is given in (2.51). The
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KKT optimality conditions are

∂L
∂di

= 2ai(Ci + di) + bi − λ+ µi = 0, ∀i, (2.111a)

∂L
∂yj

=
Nα

∑
i

1
2ai
· 1
{
NySNj > yi

}
+
∑

i

(
Ci +

bi
2ai

)
· 1
{
NySNj > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
NySNj > yi

} + λ+ νj = 0, ∀j,

(2.111b)

λ

∑
j

yj −
∑
i

di

 = 0, (2.111c)

µidi = 0, ∀i, (2.111d)

νjyj = 0, ∀j, (2.111e)∑
j

yj −
∑
i

di = 0, (2.111f)

di ≥ 0, ∀i, (2.111g)

yj ≥ 0, ∀j, (2.111h)

λ, µi, νj ≥ 0, ∀i, j. (2.111i)

By Assumption 2.6, we have that yj > 0 and thus νj = 0 for all j ∈ [N ]. Using (2.111)

and ySNj from (2.70), we can conclude that

λSN =
Nα

N + 1
+

∑
i

(
Ci +

bi
2ai

)
· 1
{
ySN > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
ySN > yi

} ,
dSNi =

[
−Ci +

λSN − bi
2ai

]+

We note that the optimal dSNi and λSN in the above also satisfies (2.56), and is thus optimal

for the prosumer i. The ySNj from the above also satisfies (2.70), and is thus optimal for the
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generator j. The optimal social welfare is given by

WSN =
∑
i

ui(Ci + dSNi )−
∑
j

cj(y
SN
j )

=
∑
i

[
1

4ai

∑i

[
αN+bi
2ai

+ Ci

]
· 1
{
ySN > yi

}
(N + 1)

∑
i

1
2ai
· 1
{
ySN > yi

}
2

− b2i
4ai

]
· 1
{
ySN > yi

}

+
∑
i

(
aiC

2
i + biCi

)
· 1
{
ySN ≤ yi

}
+ α

N
∑

i

(
Ci − α−bi

2ai

)
· 1
{
ySN > yi

}
N + 1

.

This completes the proof of Proposition 2.9.

Proof of Proposition 2.10. First, from the Taylor expansion, we have that

ui(Ci) = ui(zi)− u′i(zi)(zi − Ci) +
1

2
u′′i (zi)(zi − Ci)

2. (2.112)

Then, we can write the social welfare WT as

WT =
∑
i

ui(z
T
i )−

∑
j

cj(y
T
j )

=
∑
i

ui(z
T
i )− αyT

=
∑
i

ui(z
T
i )− α

∑
i

zTi

=
∑
i

[
ui(Ci) + u′i(z

T
i ) · (zTi − Ci)−

1

2
u′′i (z

T
i ) ·

(
zTi − Ci

)2]
− α

∑
i

(
zTi − Ci

)
=
∑
i

[
ui(Ci) + α

(
zTi − Ci

)
− 1

2
u′′i (z

T
i ) ·

(
zTi − Ci

)2
− α

(
zTi − Ci

)]
=W0 −

∑
i

ai

(
zTi − Ci

)2
,

where we have used the fact that u′i(z
T
i ) = α.
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When the generators bid strategically, we have that

WS =
∑
i

ui(z
S
i )−

∑
j

cj(y
S
j )

=
∑
i

ui(z
S
i )− α

∑
i

(
zSi − Ci

)
=
∑
i

[
ui(Ci) + u′i(z

S
i ) ·

(
zSi − Ci

)
− 1

2
u′′i (z

S
i ) ·

(
zSi − Ci

)2]
− α

∑
i

(
zSi − Ci

)
.

In this case, we also have that u′(zSi ) = λS = λT + δ = α + δ. Therefore,

WS =
∑
i

[
ui(Ci) + (α + δ) ·

(
zSi − Ci

)
− ai

(
zSi − Ci

)2
− α

(
zSi − Ci

)]
=W0 +

∑
i

[
−ai

(
zSi − Ci

)2
+ δ

(
zSi − Ci

)]
.

We next move to the case of no prosumer participation. Under truthful bidding, we have

that

WTN =
∑
i

ui(Ci + dTNi )−
∑
j

cj(y
TN
j )

=
∑
i

ui(Ci + dTNi )− αyTN

=
∑
i

ui(Ci + dTNi )− α
∑
i

dTNi

For those prosumers with dTNi > 0, we have that dTNi = zTi −Ci and u′(Ci+dTNi ) = λTN =

α. Thus,

WTN =
∑

{i|dTN
i >0}

ui(Ci + dTNi ) +
∑

{i|dTN
i =0}

ui(Ci)− α
∑

{i|dTN
i >0}

dTNi

=
∑

{i|dTN
i >0}

[
ui(Ci) + u′i(Ci + dTNi ) · dTNi − 1

2
u′′i (Ci + dTNi ) ·

(
dTNi

)2
− αdTNi

]
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+
∑

{i|dTN
i =0}

ui(Ci)

=W0 −
∑
i

ai

(
dTNi

)2
=W0 −

∑
{i|zTi >Ci}

(
zTi − Ci

)2
.

Under strategic bidding, we have that

WSN =
∑
i

ui(Ci + dSNi )−
∑
j

cj(y
SN
j )

=
∑
i

ui(Ci + dSNi )− α
∑
i

dSNi

=
∑

{i|dSNi >0}
ui(Ci + dSNi ) +

∑
{i|dSNi =0}

ui(Ci)− α
∑

{i|dSNi >0}
dSNi

=
∑

{i|dSNi >0}

[
ui(Ci) + u′i(Ci + dSNi ) · dSNi − 1

2
u′′i (Ci + dSNi ) ·

(
dSNi

)2
− αdSNi

]

+
∑

{i|dSNi =0}
ui(Ci)

For those i such that dSNi > 0, we also have that u′(Ci+dSNi ) = λSN = λTN+δN = α+δN .

Thus,

WSN =
∑

{i|dSNi >0}

[
(α + δN ) · dSNi − ai

(
dSNi

)2
− αdSNi

]
+
∑
i

ui(Ci)

=W0 −
∑
i

aid
SN
i + δN

∑
i

dSNi .

This completes the proof of Proposition 2.10.

Proof of Proposition 2.11. In the following, we prove each relation separately.
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• (2.85a) follows directly from (2.77) and (2.79):

WT −WTN = −
∑
i

ai

(
zTi − Ci

)2
+

∑
{i|zTi >Ci}

ai

(
zTi − Ci

)2
= −

∑
{i|zTi ≤Ci}

ai

(
zTi − Ci

)2
≥ 0.

• From (2.78) and (2.80), we have that

WS −WSN

=
∑
i

(
−ai

(
zSi − Ci

)2
+ δ

(
zSi − Ci

))
+
∑
i

ai

(
dSNi

)2
− δN

∑
i

dSNi

=
∑
i

(
−ai

(
δ

2ai
+ zTi − Ci

)2

+ δ

(
δ

2ai
+ zTi − Ci

))

+
∑

{i|dSNi >0}
ai

(
δN

2ai
+ zTi − Ci

)2

− δN
∑
i

dSNi

= −
∑
i

(
− δ2

4ai
+ ai

(
zTi − Ci

)2)

+
∑

{i|dSNi >0}

(
δN

2

4ai
+ ai

(
zTi − Ci

)2
+ δN

(
zTi − Ci

))

− δN
∑

{i|dSNi >0}

(
δN

2ai
+ zTi − Ci

)

= −
∑
i

(
− δ2

4ai
+ ai

(
zTi − Ci

)2)
+

∑
{i|dSNi >0}

(
−δN

2

4ai
+ ai

(
zTi − Ci

)2)

= −
∑

{i|dSNi =0}
ai

(
zTi − Ci

)2
+

(∑
i

(
zTi − Ci

))2
(N + 1)2

∑
i
1
ai

−

(∑
{i|dSNi >0}

(
zTi − Ci

))2
(N + 1)2

∑
{i|dSNi >0}

1
ai

,
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where the first term is nonnegative. To see (2.85b), it suffices to show that

(∑
i

(
zTi − Ci

))2
(N + 1)2

∑
i
1
ai

≥

(∑
{i|dSNi >0}

(
zTi − Ci

))2
(N + 1)2

∑
{i|dSNi >0}

1
ai

. (2.113)

Note that in the no participation case, under strategic bidding, the generators earn

total profit δN
∑
{i|dSNi >0} d

SN
i , which must be at least the profit earned under the

truthful bidding, i.e.,

δN
∑

{i|dSNi >0}
dSNi ≥ δ

∑
{i|zSi >0}

zSi ,

which implies that

∑
{i|dSNi >0}

(
zTi − Ci

)
(N + 1)

∑
{i|dSNi >0}

1
−2ai

∑
{i|dSNi >0}

dSNi ≥
∑

i

(
zTi − Ci

)
(N + 1)

∑
i

1
−2ai

∑
{i|zSi >Ci}

(
zSi − Ci

)
.

Thus, we have that

N
(∑
{i|dSNi >0}

(
zTi − Ci

))2
(N + 1)2

∑
{i|dSNi >0}

1
−2ai

≥
∑

i

(
zTi − Ci

)
(N + 1)

∑
i

1
−2ai

∑
{i|zSi >Ci}

(
zSi − Ci

)

≥
∑

i

(
zTi − Ci

)
(N + 1)

∑
i

1
−2ai

∑
i

(
zSi − Ci

)
,

which implies that

N
(∑
{i|dSNi >0}

(
zTi − Ci

))2
(N + 1)2

∑
{i|dSNi >0}

1
−2ai

≥
N
(∑

i

(
zTi − Ci

))2
(N + 1)2

∑
i

1
−2ai

,

which implies (2.113).
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• To see (2.85c), from (2.77), (2.78), and (2.82), we have that

WT −WS

= −
∑
i

ai

((
zTi − Ci

)2
−
(
zSi − Ci

)2)
−
(

N

(N + 1)2
∑

i
1
−2ai

)(∑
i

(
zTi − Ci

))2

= −
∑
i

ai

((
zTi − Ci

)2
−
(

δ

2ai
+ zTi − Ci

)2
)

−
(

N

(N + 1)2
∑

i
1
−2ai

)(∑
i

(
zTi − Ci

))2

=
∑
i

ai

 δ2

4a2i
+

δ
(
zTi − Ci

)
ai

−( N

(N + 1)2
∑

i
1
−2ai

)(∑
i

(
zTi − Ci

))2

=
∑
i

(
δ2

4ai
+ δ

(
zTi − Ci

))
−
(

N

(N + 1)2
∑

i
1
−2ai

)(∑
i

(
zTi − Ci

))2

=
∑
i


(
∑

i(z
T
i −Ci))

2

(N+1)2
(∑

i
1
2ai

)2
4ai

+ δ
(
zTi − Ci

)
+

(
N

(N + 1)2
∑

i
1
2ai

)(∑
i

(
zTi − Ci

))2

=


(∑

i

(
zTi − Ci

))2
(N + 1)2

(∑
i

1
2ai

)2
∑

i

1

4ai
+
∑
i

δ
(
zTi − Ci

)

+

(
N

(N + 1)2
∑

i
1
2ai

)(∑
i

(
zTi − Ci

))2

=


(∑

i

(
zTi − Ci

))2 (∑
i

1
4ai

)
(N + 1)2

(∑
i

1
2ai

)2
+


(∑

i

(
zTi − Ci

))2
−(N + 1)

∑
i

1
2ai


+

N
(∑

i

(
zTi − Ci

))2 (∑
i

1
2ai

)
(N + 1)2

(∑
i

1
2ai

)2


=


(∑

i

(
zTi − Ci

))2 (∑
i

1
4ai

)
(N + 1)2

(∑
i

1
2ai

)2
+


(∑

i

(
zTi − Ci

))2 (
−(N + 1)

∑
i

1
2ai

)
(N + 1)2

(∑
i

1
2ai

)2


166



+

N
(∑

i

(
zTi − Ci

))2 (∑
i

1
2ai

)
(N + 1)2

(∑
i

1
2ai

)2


=

∑i

(
zTi − Ci

)
(N + 1)

∑
i

1
2ai

2(
−
∑
i

1

4ai

)
(2.114)

≥ 0.

• To see (2.85d), from (2.79), (2.80), and (2.84), we have that

WTN −WSN

= −
∑

{i|zTi >Ci}
ai

(
zTi − Ci

)2
+
∑
i

ai(d
SN
i )2 − δN

∑
i

dSNi

= −
∑

{i|zTi >Ci}
ai

(
zTi − Ci

)2
+

∑
{i|dSNi >0}

ai(d
SN
i )2 − δN

∑
i

dSNi

= −
∑

{i|zTi >Ci}
ai

(
zTi − Ci

)2
+

∑
{i|dSNi >0}

ai

(
δN

2ai
+ zTi − Ci

)2

− δN
∑
i

dSNi

= −
∑

{i|zTi >Ci}
ai

(
zTi − Ci

)2
+

∑
{i|dSNi >0}

ai

(
δN

2ai
+ zTi − Ci

)2

−

 N

(N + 1)2
∑
{i|dSNi >0}

1
−2ai


 ∑
{i|dSNi >0}

(
zTi − Ci

)
2

= −
∑

{i|dSNi =0, zTi >Ci}
ai

(
zTi − Ci

)2
−

∑
{i|dSNi >0}

ai

(
zTi − Ci

)2

+
∑

{i|dSNi >0}
ai

(
δN

2ai
+ zTi − Ci

)2
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−

 N

(N + 1)2
∑
{i|dSNi >0}

1
−2ai


 ∑
{i|dSNi >0}

(
zTi − Ci

)
2

= −
∑

{i|dSNi =0, zTi >Ci}
ai

(
zTi − Ci

)2
−

∑
{i|dSNi >0}

ai

(
zTi − Ci

)2

+
∑

{i|dSNi >0}

(
δN

2

4ai
+ ai

(
zTi − Ci

)2
+ δN

(
zTi − Ci

))

−

 N

(N + 1)2
∑
{i|dSNi >0}

1
−2ai


 ∑
{i|dSNi >0}

(
zTi − Ci

)
2

= −
∑

{i|dSNi =0, zTi >Ci}
ai

(
zTi − Ci

)2
+

∑
{i|dSNi >0}

(
(δN )2

4ai
+ δN

(
zTi − Ci

))

−

 N

(N + 1)2
∑
{i|dSNi >0}

1
−2ai


 ∑
{i|dSNi >0}

(
zTi − Ci

)
2

= −
∑

{i|dSNi =0, zTi >Ci}
ai

(
zTi − Ci

)2
+

∑
{i|dSNi >0}

(∑
{i|dSNi >0}(z

T
i −Ci)

)2

(N+1)2
(∑
{i|dSNi >0}

1
2ai

)2

4ai

+
∑

{i|dSNi >0}
δN
(
zTi − Ci

)

−

 N

(N + 1)2
∑
{i|dSNi >0}

1
−2ai


 ∑
{i|dSNi >0}

(
zTi − Ci

)
2

= −
∑

{i|dSNi =0, zTi >Ci}
ai

(
zTi − Ci

)2

+

(∑
{i|dSNi >0}

(
zTi − Ci

))2 (∑
{i|dSNi >0}

1
4ai

)
(N + 1)2

(∑
{i|dSNi >0}

1
2ai

)2
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+
∑

{i|dSNi >0}
δN
(
zTi − Ci

)
+

N
(∑
{i|dSNi >0}

(
zTi − Ci

))2
(N + 1)2

∑
{i|dSNi >0}

1
2ai


= −

∑
{i|dSNi =0, zTi >Ci}

ai

(
zTi − Ci

)2

+

∑{i|dSNi >0}
(
zTi − Ci

)
(N + 1)

∑
{i|dSNi >0}

1
2ai

2− ∑
{i|dSNi >0}

1

4ai


=

∑
{i|dSNi =0, zTi >Ci}

(−ai)
(
zTi − Ci

)2

+

∑{i|dSNi >0}
(
zTi − Ci

)
N + 1

2 1∑
{i|dSNi >0}

1
−ai

 (2.115)

≥ 0.

• From (2.113), we can conclude that (2.114) ≥ (2.115), which implies (2.85e).
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CHAPTER 3

FINITE-SAMPLE ANALYSIS OF DECENTRALIZED

Q-LEARNING FOR STOCHASTIC GAMES

3.1 Introduction

Multi-agent learning has received extensive attention in recent years, and has achieved con-

siderable success in application areas including traffic control, network routing, energy dis-

tribution, robotic systems, and social economic problems, where multiple agents learn con-

currently how to solve a task by interacting with the same environment (Stone and Veloso

[201]). The canonical model for dynamic multi-agent interactions is stochastic games, also

known as Markov games (Littman [147]), which were first introduced by Shapley [191]; we

refer the interested reader to Busoniu et al. [45] and Zhang et al. [232] for comprehensive

surveys. Compared to repeated games, i.e., repeated play of static games (Wu et al. [224]),

stochastic games are more general in the sense that each stage game is affected by the previ-

ous joint actions of all agents, who may or may not be in a network (Correa et al. [59], Kempe

et al. [128], Qu et al. [177], Lin et al. [146]) through the system state evolution, and thus are

applicable to a broader set of problem settings (Stern and Birge [200], Birge et al. [41]).

There are different attributes that may be associated with a stochastic game. Depending

on the number of agents and their reward functions, a stochastic game can be a two-agent

zero-sum game and/or a multi-agent general-sum game, where the former games have two

agents, and the reward of one agent is always the negation of the reward of the other agent,

representing a fully competitive relationship, and the latter games may have N agents for

any N ≥ 2, with no restrictions on their reward functions (Başar and Olsder [26]). Depending

on the length of the game, a stochastic game can have either finite horizon or infinite horizon,

where the objective of each agent is to choose a policy (that maps from a state to an action)

to maximize its total reward over the length of the horizon (if finite), or to maximize its
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total discounted reward or time-averaged reward over an infinite horizon.

In all of these different types of stochastic games, the most commonly studied notion

on the agents’ joint policy is the so-called Markov perfect equilibrium (Maskin and Tirole

[156]), or simply Nash equilibrium (Nash [166]) in some literature (Das et al. [60]). Roughly

speaking, in a Markov perfect equilibrium, each agent’s policy is a best reply (i.e., maxi-

mizes its own total (discounted) reward) to all other agents’ joint policy. Mainstreams of

research include analyzing the hardness to compute the equilibria (e.g., Daskalakis et al.

[62], Daskalakis [61], Garg et al. [95]), approximating and analyzing the equilibria (e.g.,

Brânzei et al. [43], Adsul et al. [5], Boodaghians et al. [42]), designing algorithms to find

the equilibria with the knowledge of the transitions and rewards (e.g., Hu and Wellman

[108], Hansen et al. [101]) or without such knowledge (e.g. Arslan and Yüksel [21]).

With the recent boom of reinforcement learning (RL), there is a growing interest in ap-

plying the methods of RL to stochastic games; see Shoham et al. [193] and the references

therein. The adaptive decision-making framework of RL, together with the context of multi-

ple interacting learners, lead to multi-agent RL (MARL). MARL corresponds to the learning

problem in a multi-agent system in which multiple RL agents learn simultaneously by in-

teracting with the stochastic environment via a trial-and-error approach, from which they

receive rewards for their actions. These MARL algorithms can be either centralized (meaning

that there is a central controller who has full access to the game setup as well as each agent’s

actions and rewards, and who provides coordination among these agents) or decentralized

(meaning that each agent makes decisions based on local information without a coordina-

tor). Developing convergent decentralized MARL algorithms, however, is well known to be

challenging. In contrast to the single-agent scenario, such as bandit problems (Frazier et al.

[84], Emamjomeh-Zadeh et al. [68]), the state evolution and the rewards earned by each

agent depend on not only the current state and this agent’s action, but also the actions

taken by other agents. As a consequence, the existing single-agent learning algorithms can-
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not be directly extended to multi-agent settings, due to the fact that the environment is

now non-stationary from each agent’s perspective, resulting in potential non-convergence, as

shown in Tan [210], Claus and Boutilier [55]. Such nonstationarity issue is the key challenge

to address in order to develop a converging multi-agent learning algorithm.

To address the nonstationarity issue, Arslan and Yüksel [21] proposed a decentralized

Q-learning algorithm and proved the asymptotic convergence of the algorithm for a subclass

of stochastic games – weakly acyclic games (Young [229]). Roughly speaking, a weakly

acyclic game is a stochastic game such that best-reply dynamics cannot enter inescapable

oscillations (see Definition 3.4 later for a precise definition). The standard Q-learning, a

widely used model-free, value-based RL algorithm, has been applied to specific multiple-

agent systems (Tan [210], Sen et al. [190]), but no analytical results exist regarding the

convergence properties of Q-learning in a stochastic game setting. In the decentralized Q-

learning algorithm by Arslan and Yüksel [21], agents do not update their policies for an

extended period of time, which is called an exploration phase, during which the environment

becomes stationary from each agent’s perspective. During the exploration phases, the Q-

functions of each agent are still being updated. The policy of each agent is then updated at

the end of each exploration phase, according to the current values of the Q-functions. This

“explore-then-update” procedure is repeated, and Arslan and Yüksel [21] have shown that

the joint policy asymptotically converges to a Markov perfect equilibrium as the length of

each exploration phase and the number of exploration phases go to infinity.

3.1.1 Contributions

In this chapter, we use the algorithm from Arslan and Yüksel [21] as a starting point, and

build upon it with several new developments. We summarize our main contributions as

follows.

• We study the non-asymptotic convergence guarantee, namely, sample complexity, of
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the decentralized Q-learning algorithm in Arslan and Yüksel [21] (Theorem 3.1 of this

chapter). We note that many of the generalizations from asymptotic convergence to

finite-sample analysis turn out to be nontrivial. A brief overview of this is provided in

Section 3.5. To the best of our knowledge, this is the first sample complexity result

for convergence to Markov perfect equilibrium on multi-player general-sum stochas-

tic games with infinite horizon. Moreover, the sample complexity result is expressed

explicitly in the game parameters (Corollary 3.1), which is made possible by develop-

ing upper and lower bounds (Proposition 3.2) on some implicit parameters (e.g., the

minimum probability of stationary distribution µmin and the mixing time tmix).

• We apply linear function approximation to approximate the Q-functions in this general-

sum stochastic game. Instead of maintaining a Q-function on all state-action pairs, each

agent now restricts its attention to a linear space with smaller dimensions, compared

to the large state/action space. Under the restriction of a smaller-dimensional linear

space, the original Q-functions will not be fully recovered. As a result, the original

Markov perfect equilibria might not be reachable. To this end, we define a new notion

of equilibrium – linear approximated equilibrium (Definition 3.5). Roughly speaking, in

a linear approximated equilibrium, each agent’s policy is a best reply, according to the

linearly approximated Q-functions (instead of the original ones) to all other agents’

joint policy. The algorithm with linear function approximation (Algorithm 3.2) is

shown in Section 3.4. We again prove the sample complexity result for the algorithm,

i.e., we provide finite lower bounds on the length of exploration phases and the number

of exploration phases needed for the joint policy of all agents to converge to a linear

approximated equilibrium with high probability. This work also appears to be the first

to apply function approximation to general-sum stochastic games.

• We provide numerical experiments of both algorithms (with and without linear function

approximation) on the classical Grid World game (Sutton and Barto [207]) with minor
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modifications. Specifically, we have two agents, one of whom moves in the vertical

direction and the other one moves in the horizontal direction. At each time step,

the state moves in the direction determined by the joint actions of both agents, and

both agents receive a negative reward of −1, except when the current state is at

a “terminal” state, where both agents receive a reward of 0 and the state does not

change for all joint actions. This cooperative game belongs to a common subclass of

stochastic games with identical reward functions for all agents, namely, the Markov

team problems (Ho [105], Yüksel and Başar [230]). The experimental results confirm

that, as the length and the number of exploration phases increase, the joint policy

adopted by both agents converges to a Markov perfect equilibrium (in the tabular

setting) or a linear approximated equilibrium (in the function approximation setting)

with higher probability.

3.1.2 Related Work

This chapter is related to several sets of previous work. We mention below some of the most

relevant ones.

3.1.2.1 Stochastic Games (SGs)

Stochastic games were proposed by Shapley [191] and can be viewed as a generalization of the

Markov Decision Process (MDP) to the multi-agent setting. Since then, this framework has

become a classical model for multi-agent learning, and there is a long line of work in finding

the Markov perfect equilibrium (Nash equilibrium) of different types of stochastic games

under various assumptions. The works of Littman [147, 148], Hu and Wellman [108], Hansen

et al. [101], Wei et al. [220] assumed full knowledge of the transition kernel and the reward

functions, while Wei et al. [219], Jia et al. [120], Sidford et al. [194], Zhang et al. [231], Wei

et al. [221] assumed certain reachability conditions, e.g., access to some simulators that allow
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each agent to directly sample transitions and rewards for each state-action pair. Most of

these works were aimed at designing algorithms that asymptotically converge to Markov

perfect equilibria.

Another set of recent works focused on the non-asymptotic sample complexity/regret

guarantees for learning in SGs. For two-player zero-sum games, Bai and Jin [27], Xie et al.

[225] developed the first provably-efficient learning algorithms based on optimistic value it-

eration. Liu et al. [150] improved upon these works with a model-based “Optimistic Nash

Value Iteration” algorithm and achieves the best-known sample complexity for finding an

ϵ-Nash equilibrium. For multi-player general-sum games, Liu et al. [150] provided the first

sample complexity guarantees for finding Markov perfect (Nash) equilibria, correlated equi-

libria (CE), or coarse correlated equilibria (CCE), where CE and CCE are some other notions

of equilibria which can be viewed as relaxations of Markov perfect equilibria.

It is worth noting that the algorithms that appeared in all of the aforementioned works

are centralized algorithms. In contrast to those, Daskalakis et al. [63] established the sample

complexity of independent policy gradient methods in zero-sum SGs. Tian et al. [212] proved

sublinear regret in finite-horizon SGs, under the name of online agnostic learning. Sayin et al.

[186] provided a decentralized Q-learning algorithm for two-player zero-sum stochastic games

and showed its asymptotic convergence. Bai et al. [28] proposed a (decentralized) V-learning

algorithm and proved sample complexity results for two-player zero-sum games. Concurrent

works of Jin et al. [122], Song et al. [198], Mao and Başar [154] developed finite-sample

convergence results (to CE and CCE) of the V-learning algorithm for multi-player general-

sum stochastic games with finite horizons (in episodic setting), while in this work, we study

the finite-sample convergence to Markov perfect equilibrium for multi-player general-sum

stochastic games with infinite horizon, along with the use of function approximation.
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3.1.2.2 Best Reply Process

Best reply (BR) processes, also known as best response dynamics (Hopkins [107]) or best

response schemes (Lei and Shanbhag [137]), describe a policy update scheme for the agents,

where each agent selects the policy that maximizes its payoff given other agents’ joint pol-

icy (Fudenberg et al. [86], Başar and Olsder [26]). Work on BR processes mostly falls into

one of two directions: The first one studies whether (under certain assumptions or no as-

sumption) the BR processes converge to a Nash Equilibrium (NE) if NE exists (e.g., Harks

and Klimm [102], Milchtaich [160]). The second one considers how fast it takes for the BR

processes to converge to a NE (e.g., Even-Dar and Mansour [71], Fabrikant et al. [74], Ieong

et al. [114], Syrgkanis [209], Aydın and Eksin [24]). It is well known that BR processes do

not necessarily always converge to a NE, even if one exists. However, for the class of weakly

acyclic games (Fabrikant et al. [75], Apt and Simon [19]), which includes all potential games

as special cases, BR processes are guaranteed to converge to one of the equilibria of the

game (Monderer and Shapley [162], Rosenthal [183]).

Recently, there has been a growing interest in developing different variants of the BR

process that may be applied to different classes of games, e.g., the proximal BR pro-

cesses (Facchinei and Pang [76], Pang et al. [170]), the Gauss–Seidel BR processes (Facchinei

et al. [77]), and the BR processes with a deviator (Feldman et al. [80]). As for stochastic

games, Lei et al. [139] proposed several generalizations of the proximal BR processes and

showed their convergence. The asynchronous BR processes and their connections to block-

coordinate descent (BCD) schemes were further investigated in Lei and Shanbhag [138].

Swenson et al. [208] and Leslie et al. [141] studied the convergence of continuous-time BR

processes in potential games and zero-sum stochastic games, respectively. Chen et al. [53]

analyzed the sample complexity of a discrete and doubly smoothed variant of the BR process

with temporal-difference (TD)-learning and minimax value iteration on two-player zero-sum

games.
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In the standard (discrete-time) BR process, at each time when the joint policy is not

an equilibrium, one arbitrary agent is chosen to improve its best policy given the policies

of others, i.e., most of the aforementioned works consider the asynchronous BR process. In

the weakly acyclic game that we study in this chapter, all agents may update their policies

synchronously. Moreover, it is sometimes unrealistic for each agent to compute the best

reply policy given all other agents’ joint policies. To accommodate the synchronous policy

updates and to alleviate the computation of the best reply policies, Young [229] proposed

the BR process with inertia, which lets each agent keep its current policy if it is a best reply.

If its current policy is not a best reply, the agent still keeps the current policy with a certain

probability (inertia), but updates to another random policy in other cases. In Arslan and

Yüksel [21] as well as in this work, an agent cannot even assess whether its current policy

is a best reply, which is the reason why we adopt Q-learning to mimic the BR process with

inertia.

3.1.2.3 Finite-sample Analysis for Q-learning

Q-learning (Watkins and Dayan [218]) has been recognized as one of the workhorses of RL.

Beyond asymptotic convergence analysis, a considerable amount of prior work has studied its

finite-sample performance (Even-Dar et al. [72], Beck and Srikant [33], Wainwright [217], Qu

and Wierman [176], Li et al. [142]), with the sharpest results so far by Li et al. [142]. To

address the setting with massive state-action spaces, Q-learning has also been blended with

linear function approximation (Melo et al. [159]), with its finite-sample analysis being inves-

tigated in Chen et al. [51, 52]. It is not clear yet whether similar results can be established

for decentralized Q-learning in infinite horizon multi-agent general-sum SGs, which is the

focus of our work.
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3.1.3 Organization

The rest of this chapter is organized as follows. In Section 3.2, we formally introduce stochas-

tic games, weakly acyclic games, and Best Reply Process with Inertia (Young [229]). Some

useful properties of the Best Reply Process with Inertia are also developed. Then, in Sec-

tion 3.3, we introduce the algorithm from Arslan and Yüksel [21], called Algorithm 3.1, and

provide a finite-sample analysis, through which some bounds on the convergent measures are

also established. We then move to Section 3.4, and introduce the algorithm with linear func-

tion approximation (Algorithm 3.2), define the linear approximated equilibrium, and derive

sample complexity results on convergence of Algorithm 3.2 (either to a linear approximated

equilibrium or to a Markov perfect equilibrium, under different assumptions). Full numerical

studies on the classical Grid World game are provided at the end of Section 3.3 as well as in

Section 3.4. Finally, we conclude the chapter in Section 3.5, where we also highlight some

of the technical difficulties in establishing our results. Proofs of two of the main results are

provided in Appendix 3.6.

3.2 Preliminaries

3.2.1 Stochastic Games

A (finite) discounted stochastic game has the following ingredients (Fink [82]).

• A finite set of agents, with the i-th agent referred to as agent i for i ∈ {1, . . . , N} =: [N ];

• a finite set S of states;

• a finite set Ai of actions for each agent i;

• a nonnegative deterministic reward function ri for each agent i, which determines

agent i’s reward, i.e., ri
(
s, a1, . . . , aN

)
∈ [0, rimax] at each state s ∈ S and for each

joint action
(
a1, . . . , aN

)
∈ A := A1 × · · · × AN ;

178



• a discount factor γi ∈ (0, 1) for each agent i;

• a random initial state s0 ∈ S;

• a transition kernel for the probability P [s′|s, a1, . . . , aN ] of each state transition from

s ∈ S to s′ ∈ S for each joint N -tuple of actions (a1, . . . , aN ) ∈ A1 × · · · × AN .

The dynamic evolution of the game can be described as follows. At each time t ≥ 0, each

agent i observes the state st, and chooses an action ait ∈ Ai. The agent then receives a reward

ri(st, at) ∈ [0, rimax] where at :=
(
a1t , . . . , a

N
t

)
, i.e., the reward of each agent, is determined

by the state as well as the joint action selected by all agents. The system then transits to

the next state st+1 according to the transition kernel P [·|st, a1, . . . , aN ]. We note that the

information structure we consider here is fully decentralized, in the sense that each agent,

when choosing its action, has access to only the current (and past) states, as well as its own

history of actions and rewards, while the rewards and the state transitions are determined by

the joint actions of all agents. Each agent does not have access to other agents’ actions and

rewards. Although the reward ri that an agent receives depends on the state and the joint

actions of all agents, the agents do not have full knowledge of their own reward functions,

but only observe the reward they receive. In fact, an agent can be completely oblivious to

the presence of other agents.

A policy for an agent is a rule of choosing an action at any time, based on the agent’s

history of observations. While an agent may use any function of the available information

as its policy, without loss of optimality, we focus on stationary (i.e., time-invariant) policies

where an agent’s action at time t is based solely on the current state st, i.e., a stationary policy

of agent i, denoted by πi, is a mapping from the state space S to P
(
Ai
)
, the set of probability

distributions on Ai. The set of such stationary policies of agent i is denoted by ∆i :={
πi : S → P

(
Ai
)}

. The set of deterministic stationary policies of agent i is denoted by Πi :={
πi : S → Ai

}
⊂ ∆i. We let ∆ := ×N

i=1∆
i, ∆−i := ×j ̸=i∆

j , and Π := ×N
i=1Π

i, Π−i :=
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×j ̸=iΠ
j . Further, we denote the joint actions and joint policies by a :=

(
a1, . . . , aN

)
and

π :=
(
π1, . . . , πN

)
, respectively. The joint actions and policies of all agents except agent i are

denoted by a−i :=
(
a1, . . . , ai−1, ai+1, . . . , aN

)
and π−i :=

(
π1, . . . , πi−1, πi+1, . . . , πN

)
,

respectively. The joint actions and policies may also be written as a =
(
ai, a−i

)
and π =(

πi, π−i
)
, respectively.

The objective of each agent i is to find a policy πi ∈ ∆i that maximizes the total expected

discounted reward, or the value function:

V i
π(s) = E

[ ∞∑
t=0

(
γi
)t

ri (st, at)

∣∣∣∣ s0 = s

]
, ∀s ∈ S, (3.1)

where the expectation is taken over the joint distribution of a given by π(s), as well as the

random state s given by the transition kernel at each step. The Q-function (or action-value

function) of agent i, Qi
π : S ×Ai → R of a joint policy π is defined by

Qi
π(s, a

i) = E

[ ∞∑
t=0

(
γi
)t

ri
(
st, a

i
t, a
−i
t

) ∣∣∣∣ s0 = s, ai0 = ai

]
, ∀s ∈ S, (3.2)

where the actions of i are taken according to the policy πi except the initial action ai0 = ai,

and the joint actions a−i are taken according to the joint policy π−i. In addition, for any

π−i ∈ ∆−i, we define the Bellman operator of agent i as a self-mapping of S ×Ai: ∀(s, ai),

T i
π−i(Q

i)(s, ai) := Eπ−i(s)

ri (s, ai, a−i)+ γi
∑
s′∈S

P
[
s′ | s, ai, a−i

]
max
âi∈Ai

Qi(s′, âi)

 ,

(3.3)

where the expectation is taken over the joint distribution of a−i given by π−i(s).

We next define the Markov perfect equilibrium of a stochastic game (Maskin and Tirole

[157]).
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Definition 3.1. A joint policy π∗ =
(
π∗1, . . . , π∗N

)
∈ ∆ is a (Markov perfect) equilibrium

if

V i
(π∗i,π∗−i)(s) = max

πi∈∆i
V i
(πi,π∗−i)(s), ∀s ∈ S, i ∈ {1, . . . , N} .

We denote by Πeq the set of all equilibrium joint policies. It is well known that any finite

discounted stochastic game admits at least one equilibrium joint policy (Fudenberg and

Tirole [85]). However, a deterministic equilibrium joint policy may not exist in general. In

the following, we revisit a set of games, termed weakly acyclic games, for which a deterministic

joint equilibrium policy always exists.

3.2.2 Weakly Acyclic Games

Definition 3.2. A policy π∗i ∈ ∆i is called a best reply to π−i ∈ ∆−i (for agent i) if

V i
(π∗i,π−i)(s) = max

πi∈∆i
V i
(πi,π−i)(s), ∀s ∈ S.

A best reply π∗i ∈ ∆i to π−i ∈ ∆−i is called a strict best reply to
(
πi, π−i

)
if

V i
(π∗i,π−i)(s) > V i

(πi,π−i)(s), for some s ∈ S.

We denote by Πi
π−i the agent i’s set of deterministic best replies to any π−i ∈ ∆−i, i.e.,

Πi
π−i :=

{
π∗i ∈ Πi : V i

(π∗i,π−i)(s) = max
πi∈∆i

V i
(πi,π−i)(s), ∀s ∈ S

}
.

Agent i’s best replies to any π−i ∈ ∆−i can be characterized by the optimal Q-functions

Qi
(π∗i,π−i)

. With some abuse of notation, we simply write Qi
π−i in place of Qi

(π∗i,π−i)
. This
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optimal Q-function satisfies the fixed point equation of the Bellman operator: ∀
(
s, ai

)
,

Qi
π−i(s, a

i) = Eπ−i(s)

ri (s, ai, a−i)+ γi
∑
s′∈S

P
[
s′ | s, ai, a−i

]
max
âi∈Ai

Qi
π−i(s

′, âi)

 . (3.4)

The optimal Q-function Qi
π−i(s, a

i) is agent i’s expected discounted value-to-go from the

initial state s, assuming that i initially chooses action ai and uses an optimal policy there-

after while all other agents use the joint policy π−i. Then, we can rewrite agent i’s set of

deterministic best replies to π−i as

Πi
π−i =

{
π∗i ∈ Πi : Qi

π−i

(
s, π∗i(s)

)
= max

ai∈Ai
Qi
π−i(s, a

i), ∀s ∈ S
}
. (3.5)

From (3.5) and Definition 3.1, we have that a deterministic joint policy π∗ ∈ Πeq if π∗i ∈

Πi
(π∗)−i for all i ∈ [N ].

We next define the best reply graph on the set of deterministic joint policies Π. Specifically,

each node (vertex) in the graph is a deterministic joint policy π ∈ Π, and there is a directed

edge from πk to πl if for some i ∈ [N ], πil ̸= πik, π
j
l = π

j
k, ∀j ̸= i, and πil ∈ Πi

π−i
k

. When there

is a directed edge from πk to πl, we also say that πl is an out-neighbor of πk in the strict

best reply graph. We then define the strict best reply path and the weakly acyclic game.

Definition 3.3. A sequence of deterministic joint policies π0, π1, . . . is called a strict best

reply path if for each k, πk and πk+1 differ for exactly one agent, say agent i, and πik+1 is

a strict best reply with respect to πk.

Definition 3.4. A discounted stochastic game is called weakly acyclic under strict best replies

if there is a strict best reply path starting from each deterministic joint policy and ending at

a deterministic equilibrium policy.

Figure 3.1 shows the strict best reply graph of a weakly acyclic game. A node with no

outgoing edges is an equilibrium policy (π5 and π6 in this graph). The game illustrated in
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𝜋𝜋1

𝜋𝜋3𝜋𝜋2

𝜋𝜋4

𝜋𝜋5

𝜋𝜋6

Figure 3.1: The strict best reply graph of a stochastic game.

Figure 3.1 is weakly acyclic under strict best replies since there is a path from every node

to an equilibrium. Also note that a weakly acyclic game may have cycles in its strict best

reply graph, for example, π1 → π2 → π3 → π4 → π1 in Figure 3.1.

If the game has no cycles in its strict best reply graph, we may consider the process of

letting only one agent switch to one of its best replies at each step, and such a process will

continue until no agent has strict best replies, at which time the joint policy of all agents is

a deterministic equilibrium joint policy. However, as described above, the strict best reply

graph of a weakly acyclic game may contain cycles. We next introduce the Best Reply

Process with Inertia (Young [229]) as Algorithm 3.0, which assigns to each agent a strict

positive probability of choosing each of its strict best replies.

Algorithm 3.0 Best Reply Process with Inertia (for agent i)
Set parameters

λi ∈ (0, 1): inertia

1: Initialize πi0 ∈ Πi (arbitrary)
2: Iterate k ≥ 0 do
3: if πik ∈ Πi

π−i
k

then

4: πik+1 = πik
5: else

6: πik+1 =

{
πik w.p. λi

any πi ∈ Πi
π−i
k

w.p. (1− λi)/|Πi
π−i
k

|
7: end if
8: end
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Under the Best Reply Process with Inertia (BRPI), if the joint policy πk is an equilibrium

policy at step k, the policy will never change in the following steps; otherwise, the joint policy

at step k + 1, denoted by πk+1, can be any joint policy that is an out-neighbor of πk in the

strict best reply graph with strict positive probability. For each π ∈ Π, there exists a strict

best reply path of minimum length Lπ, and letting L := maxπ∈Π Lπ be the maximum length

of the shortest strict best reply path from any policy to an equilibrium policy. Then, starting

from an arbitrary joint policy π0 and letting all agents update their policies following the

BRPI, the joint policy πL in L steps later will be an equilibrium policy with some positive

probability pmin, i.e., pmin := minπ P
[
πL ∈ Πeq | π0 = π

]
. We then have the following

lemma, which provides a lower bound on pmin.

Lemma 3.1. Let all agents update their policies by the BRPI. We have that

pmin ≥

 min
j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


L

=: p̂. (3.6)

Proof of Lemma 3.1. Let π0 = π̂0 ∈ Π be an arbitrary initial joint policy. If π̂0 ∈ Πeq,

then it holds that P
[
πL = π̂0 ∈ Πeq | π0 = π̂0 ∈ Πeq

]
= 1; otherwise, let l be the length of

the shortest strict best reply path from π̂0 to an equilibrium policy, where l ≤ L. Let the

sequence of policies along the path be π̂0, π̂1, . . . , π̂l, with π̂l ∈ Πeq. Further, let i1, . . . , il be

the agent that changes its policy at each update, i.e., π̂n−1 and π̂n differ only at agent in,

for all n = 1, . . . , l. Then, by the policy updates in the BRPI, we have that

P
[
πL ∈ Πeq | π0 = π̂0

]
≥ P [π1 = π̂1, . . . , πl = π̂l, πl+1 = π̂l, . . . , πL = π̂l | π0 = π̂0]

= P [π1 = π̂1 | π0 = π̂0]P [π2 = π̂2 | π0 = π̂0, π1 = π̂1] · · · ·

· P [πl = π̂l | π0 = π̂0, . . . πl−1 = π̂l−1] · P [πl+1 = · · · = πL = π̂l | π0 = π̂0, . . . πl = π̂l]
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≥

1− λi1∣∣Πi1
∣∣ · ∏

i̸=i1

λi

1− λi2∣∣Πi2
∣∣ · ∏

i ̸=i2

λi

 · · ·
1− λil∣∣Πil

∣∣ ·∏
i̸=il

λi

 · 1
=

∏
j∈{i1,...,il}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi

 ≥
 min

j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i ̸=j

λi


l

≥

 min
j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i ̸=j

λi


L

.

Note that since the above holds for any arbitrary initial joint policy π̂0, we conclude that it

is a lower bound for pmin.

This implies that the BRPI will reach an equilibrium policy in a finite number of steps

w.p. 1. We further have the following result.

Proposition 3.1. Let all agents update their deterministic policies according to the BRPI.

We have that

P
[
πk ∈ Πeq

]
≥ 1− δ,

provided that

k ≥ L · log δ

log

(
1−

(
minj∈{1,...,N}

{
1−λj
|Πj| ·

∏
i ̸=j λ

i

})L
) + L.

Proof of Proposition 3.1. For any initial joint policy π0 = π̂0, we have that

P
[
πL ∈ Πeq | π0 = π̂0

]
≥ pmin.
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We first show that

P
[
πnL ∈ Πeq

]
≥ pmin

[
1 + (1− pmin) + (1− pmin)

2 + · · ·+ (1− pmin)
n−1

]
= 1− (1− pmin)

n. (3.7)

We show (3.7) by induction on n. The base case holds since P
[
πL ∈ Πeq

]
≥ pmin. As for

the induction step, assuming that (3.7) holds for π(n−1)L, we have that

P
[
πnL ∈ Πeq

]
= P

[
πnL ∈ Πeq | π(n−1)L ∈ Πeq

]
P
[
π(n−1)L ∈ Πeq

]
+ P

[
πnL ∈ Πeq | π(n−1)L /∈ Πeq

]
P
[
π(n−1)L /∈ Πeq

]
≥ P

[
π(n−1)L ∈ Πeq

]
+ pminP

[
π(n−1)L /∈ Πeq

]
= P

[
π(n−1)L ∈ Πeq

]
+ pmin

(
1− P

[
π(n−1)L ∈ Πeq

])
= (1− pmin)P

[
π(n−1)L ∈ Πeq

]
+ pmin ≥ (1− pmin)

(
1− (1− pmin)

n−1
)
+ pmin

= 1− (1− pmin)
n,

which completes the induction step. Therefore, if k satisfies

k ≥ L log δ

log(1− pmin)
+ L, (3.8)

then, we have that

P
[
πk ∈ Πeq

]
≥ P

[
π⌊ k

L

⌋
L
∈ Πeq

]
≥ 1− (1− pmin)

⌊
k
L

⌋
≥ 1− (1− pmin)

⌊
log δ

log(1−pmin)
+1
⌋

≥ 1− (1− pmin)
log δ

log(1−pmin) = 1− (1− pmin)
log1−pmin

δ
= 1− δ.

The proof is completed by taking the lower bound of pmin from Lemma 3.1 to (3.8).
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We note that in applying the BRPI, each agent i needs to construct Πi
π−i
k

at step k,

which can be done according to (3.5) by first computing Qi
π−i
k

by solving the fixed point

equation (3.4). However, since we assume that agents do not have access to the state

transition probabilities P , neither do they know the joint policy π−ik of other agents, they

would not be able to compute (3.4) directly. In the next section, we introduce and analyze

the sample complexity of the Q-learning algorithm for stochastic games, where agents would

be able to approximate their best replies and adjust their policies accordingly.

3.3 Decentralized Q-learning in Tabular Setting

Recall that in the decentralized setting, at any time t, each agent has access to the history

of state realizations up to time t, its own set of actions Ai and discount factor γi, as well

as its own history of actions. Since each agent is completely oblivious to the existence of

other agents, agent i may view the decision making problem as a stationary Markov decision

process, and use the standard Q-learning algorithm:

Qi
t+1(st, a

i
t) = (1− ηit)Q

i
t(st, a

i
t) + ηit

[
ri(st, a

i
t, a
−i
t ) + γi max

ai∈Ai
Qi
t(st+1, a

i)

]
, (3.9a)

Qi
t+1(s, a

i) = Qt(s, a
i), ∀(s, ai) ̸= (st, a

i
t), (3.9b)

where ηit is agent i’s step size at time t. A common approach for agent i to select its

actions is the so-called ϵ-greedy method, i.e., by exploiting the learned Q-functions with

high probability and randomly exploring any action with some small probability. If agent i

uses Q-learning (3.9) with the ϵ-greedy method while all other agents use a fixed joint

policy π−i, then, agent i solves a stationary MDP and P
[
Qi
t → Qi

π−i

]
= 1 following the

convergence result of Q-learning on stationary MDPs (Tsitsiklis [214]). However, when all

agents use Q-learning (3.9) with the ϵ-greedy method, then the MDP becomes nonstationary

and convergence of the Q functions is not guaranteed (Leslie and Collins [140]). To overcome
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this difficulty, Arslan and Yüksel [21] proposed a fully decentralized Q-learning algorithm

where all agents use constant policies for extended periods of time, termed exploration phases.

The kth exploration phase runs through time t = tk, . . . , tk+1− 1, where tk+1 = tk + Tk for

some positive integer Tk (with t0 = 0). During the kth exploration phase, each agent i has

some deterministic baseline policy πik, but uses the same randomized policy π̄ik throughout

the phase, where

π̄ik(st) :=

 πik(st), w.p. 1− ρi

any ai ∈ Ai, w.p. ρi/|Ai|,

for some ρi ∈ (0, 1). Equivalently, we can write

π̄ik = (1− ρi)πik + ρiνi, (3.10)

where νi is the random policy that assigns the uniform distribution onAi to each s. In words,

agent i plays the baseline policy with probability 1−ρi, and plays all actions uniformly with

probability ρi/|Ai|. We denote by Π̄ the set of joint policies in the form of (3.10) for

each agent, i.e., Π̄ :=
{
π̄ | π̄i = (1− ρi)πi + ρiνi, πi ∈ Πi, ∀i ∈ [N ]

}
. Each agent updates its

Q function after each step according to (3.9), but updates its baseline policy only at the end

of every exploration phase, by using the BRPI with some estimated Πi
π−i
k

. The complete

algorithm is presented as Algorithm 3.1.

Arslan and Yüksel [21] proved that the joint policy πk obtained from Algorithm 3.1

asymptotically converges to some equilibrium policy. We will show in this chapter the non-

asymptotic convergence guarantees of the algorithm. To proceed, we first impose the follow-

ing two assumptions.

Assumption 3.1. There exist some κ > 0, and a finite integer H ≥ 1, such that for any
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Algorithm 3.1 Q-learning for agent i

Set parameters
Qi: some compact subset of the Euclidian space R|S×Ai|
{Tk}k≥0: sequence of integers in [1,∞), the length of the kth exploration phase
K ∈ Z+: number of exploration phases
ρi ∈ (0, 1): experimentation probability
λi ∈ (0, 1): inertia
ζi ∈ (0,∞): tolerance level for sub-optimality
{ηit}t≥0: sequence of step sizes

1: Initialize πi0 ∈ Πi (arbitrary), Qi
0 ∈ Qi (arbitrary)

2: Receive s0
3: for k = 1, 2 . . . do
4: for t = tk, . . . , tk+1 − 1 do

5: ait = π̄ik(st) :=

{
πik(st), w.p. 1− ρi

any ai ∈ Ai, w.p. ρi/|Ai|
6: Receive ri(st, a

i
t, a
−i
t )

7: Receive st+1 (selected according to P [ · | st, ait, a−it ])
8: Qi

t+1(st, a
i
t) = (1− ηit)Q

i
t(st, a

i
t) + ηit

[
ri(st, a

i
t, a
−i
t ) + γimaxai∈Ai Qi

t(st+1, a
i)
]

9: Qi
t+1(s, a

i) = Qi
t(s, a

i), for all (s, ai) ̸= (st, a
i
t)

10: end for
11: Πi

k+1 =
{
π̂i ∈ Πi : Qi

tk+1
(s, π̂i(s)) ≥ maxai∈Ai Qi

tk+1
(s, ai)− 1

2ζ
i, for all s

}
12: if πik ∈ Πi

k+1 then
13: πik+1 = πik
14: else

15: πik+1 =

{
πik, w.p. λi

any πi ∈ Πi
k+1, w.p. (1− λi)/|Πi

k+1|
16: end if
17: Qi

tk+1
← projection of Qi

tk+1
onto Qi

18: end for

pair of states (s′, s), there exists a sequence of joint actions ã0, . . . , ãH−1 ∈ A such that

P [sH = s′ | (s0, a0, . . . , aH−1) = (s, ã0, . . . , ãH−1)] ≥ κ.

Recall from the definition of π̄k that each agent has positive probability of choosing

any action ai ∈ Ai, which implies that the joint actions taken by all agents can be any

a ∈ A with positive probability. This, together with Assumption 3.1, implies that all states
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communicate with each other in the Markov chain induced by the joint policy π̄k, i.e., the

Markov chain is irreducible. This is the same assumption as made in Arslan and Yüksel [21]

except that we denote by κ the lower bound on the probabilities.

Assumption 3.2. For any joint policy π̄k, the induced Markov chain is aperiodic.

It is common to assume that the Markov chain induced by the behavior policy is ergodic in

analyzing the sample complexity of single-agent Q-learing (Li et al. [142]). Assumption 3.2,

together with Assumption 3.1, ensures that the Markov chain is finite, irreducible, and

aperiodic, which implies that the chain is uniformly ergodic (Paulin et al. [172]) and admits

a unique stationary distribution.

Let µπ̄k be the stationary distribution over all states of the Markov chain induced by π̄k,

and let µiπ̄k be the stationary distribution over all (s, ai) ∈ S ×Ai pairs. We further define

µmin,k := min
i∈[N ]

min
(s,ai)∈S×Ai

µiπ̄k

(
s, ai

)
. (3.11)

Here, min(s,ai)∈S×Ai µiπ̄k

(
s, ai

)
:= µimin,k is the minimum probability of the stationary

distribution over all state-action pairs from the perspective of agent i, and µmin,k is obtained

by taking the minimum over all agents. Intuitively, the smaller µmin,k is, the more samples

are needed to ensure that all state-action pairs (from the perspective of each agent) are

visited sufficiently many times during the kth exploration phase. Moreover, we define the

mixing time of agent i at the kth exploration phase as:

timix,k(α) := min

{
t
∣∣∣ max
(s0,a

i
0)∈S×Ai

dTV

(
P t(· | s0, ai0), µiπ̄k

)
≤ α

}
, (3.12)

where α ∈ (0, 1), P t(· | s0, ai0) is the distribution of (st, a
i
t) conditioned on the initial

state-action pair (s0, a
i
0), and dTV measures the total variation between two distributions.

Intuitively, timix,k describes how fast sample trajectory of the Markov chain converges to
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the stationary distribution of state-action pairs from the perspective of agent i. Further,

let tmix,k(α) := maxi∈[N ] t
i
mix,k(α). Note that the convergence rate of a uniformly ergodic

Markov chain to its stationary distribution is exponential (Häggström et al. [99]). We there-

fore do not expect tmix,k to be excessively large.

We next define the minimum separation between the agents’ optimal Q-functions (with

respect to deterministic policies), which is regarded as an upper bound of the tolerance level

ζi for all agents.

ζ̄ := min

i,s,ai,ãi,π−i∈Π−i:

Qi
π−i(s,a

i)̸=Qi
π−i(s,ã

i)

∣∣∣Qi
π−i(s, a

i)−Qi
π−i(s, ã

i)
∣∣∣ . (3.13)

For notational convenience, we let A := maxi∈[N ] |Ai|, γ̄ := maxi∈[N ] γ
i, and γ =

mini∈[N ] γ
i.We now present our main theorem on the sample complexity of Algorithm 3.1.

Theorem 3.1. Consider a discounted stochastic game that is weakly acyclic under strict

best replies (3.5). Suppose that each agent updates its policies by Algorithm 3.1. Let As-

sumptions 3.1 and 3.2 hold. Then, there exist some constants c0 and c1 such that, for any

0 < δ < 1, one has that for all k ≥ K,

P
[
πk ∈ Πeq

]
≥ 1− δ,

provided that for all i ∈ [N ] and k ∈ [K],

Tk ≥
c0

µmin,k

 1

(1− γ̄)5ϵ2
+

tmix,k

(
1
4

)
1− γ̄

 log

(
NL|S|ATk

δ̃

)
log

(
1

(1− γ̄)2ϵ

)
, (3.14a)
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K ≥

[(
1− δ̃

)2
p̂− δ̃2

]
L[

δ̃ +
(
1− δ̃

)
p̂
]2

δ̃

, (3.14b)

ηit =
c1

log
(
NL|S||Ai|Tk

δ̃

) min

(1− γ̄)4ϵ2

γ̄2
,

1

tmix,k

(
1
4

)
 , ∀t = tk, . . . , tk+1 − 1, (3.14c)

ρi = 1−
(
1− (ζ̄/8− ϵ)(1− γ̄)

Γ

) 1
N−1

:= ρ, (3.14d)

ζi =
ζ̄

2
, (3.14e)

where ζ̄ and p̂ are as defined in (3.13) and (3.6), respectively, and Γ is some absolute

constant (formally defined in (3.22)) which depends only on the game parameters, ϵ :=

min

{
ζ̄
16 ,

1
2(1−γ)

}
, and δ̃ is a unique element in (0, δ) such that

δ = 1−


(
1− δ̃

)
p̂

δ̃ +
(
1− δ̃

)
p̂
− δ̃

(1− δ̃
)
.

Theorem 3.1 provides a finite-sample result for Algorithm 3.1. To be more explicit on

the results, we further obtain the following bounds for tmix,k(α) and µmin,k.

Proposition 3.2. For all k ∈ [K] and i ∈ [N ], we have that

µimin,k ≤

1− (|S| − 1)κ

 ∏
i∈[N ]

ρi

|Ai|

H
 · ρi

|Ai| , (3.15a)

µimin,k ≥ κ
ρi

|Ai|

 ∏
i∈[N ]

ρi

|Ai|

H

, (3.15b)

tmix,k(α) ≤ (H + 1)

 logα

log

[
1− |S|κ

(∏
i∈[N ]

ρi

|Ai|
)H
·mini∈[N ] ρ

i

] + 1

 . (3.15c)
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With ρi = ρ for all i ∈ [N ] as in Theorem 3.1, we deduce that

µmin,k ≤
[
1− (|S| − 1)κ

ρNH

ANH

]
· ρ
A
, (3.16a)

µmin,k ≥ κ
ρNH+1

ANH+1
, (3.16b)

tmix,k(α) ≤ (H + 1)

(
(− logα)

ANH

κρNH
·min

{
1, |S|−1ρ−1

}
+ 1

)
. (3.16c)

Corollary 3.1. By applying (3.16b) and (3.16c) to Theorem 3.1, we may express the sample

complexity of each exploration phase (3.14a) as

Tk ≥
c0A

NH+1

κρNH+1

 1

(1− γ̄)5ϵ2
+

(H + 1)
(
(log 4) A

NH

κρNH ·min
{
1, |S|−1ρ−1

}
+ 1
)

1− γ̄


· log

(
NL|S|ATk

δ̃

)
log

(
1

(1− γ̄)2ϵ̂k

)
. (3.17)

Note that the joint action space of all agents has size O(AN ). In Proposition 3.2, we

have eliminated the dependence on µmin,k and tmix,k, so that the sample complexity of Tk

is explicitly represented by the parameters of the game. In the following two subsections, we

provide complete analyses and proofs for Theorem 3.1 and Proposition 3.2.

3.3.1 Proof of Theorem 3.1.

We first introduce the following lemma, which is an application of the sample complexity

result on single agent Q-learning (Li et al. [142]).

Lemma 3.2. Fix any arbitrary πk ∈ Π. For any 0 < δ̂ < 1 and 0 < ϵ ≤ 1
1−γ , there exist

some constants c0,k and c11,k, . . . , c
N
1,k such that

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ ≤ ϵ, ∀i ∈ [N ]

]
≥ 1− δ̂,
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provided that the iteration number Tk and the learning rates ηit obey

Tk ≥
c0,k

µmin,k

 1

(1− γ̄)5ϵ2
+

tmix,k

(
1
4

)
1− γ̄

 log

(
N |S|ATk

δ̂

)
log

(
1

(1− γ̄)2ϵ

)
, (3.18a)

ηit =
ci1,k

log
(
N |S||Ai|Tk

δ̂

) min

(1− γi)4ϵ2(
γi
)2 ,

1

timix,k

(
1
4

)
 , ∀t = tk, . . . , tk+1 − 1, i ∈ [N ],

(3.18b)

where γ̄ = maxi γ
i and A = maxi |Ai|.

Proof of Lemma 3.2. Note that in the kth exploration phase, agents adopt the joint policy

π̄k as defined in (3.10). Also by Assumptions 3.1 and 3.2, the (finite) Markov chain induced

by the joint policy is irreducible and aperiodic. Theorem 1 of Li et al. [142] implies that

for any agent i, there exist some constants ci0,k and ci1,k such that for any 0 < δ0 < 1 and

0 < ϵ ≤ 1
1−γi ,

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ ≤ ϵ

]
≥ 1− δ0

provided that the iteration number Tk and the learning rates ηit obey

Tk ≥
ci0,k

µimin,k

 1

(1− γi)5ϵ2
+

timix,k

(
1
4

)
1− γi

 log

(
|S||Ai|Tk

δ0

)
log

(
1

(1− γi)2ϵ

)
,

ηit =
ci1,k

log
( |S||Ai|Tk

δ0

) min

(1− γi)4ϵ2(
γi
)2 ,

1

timix,k

(
1
4

)
 , ∀t = tk, . . . , tk+1 − 1,

where µimin,k := min(s,ai)∈S×Ai µiπk
(
s, ai

)
, and µmin,k and timix,k are as defined in (3.11)

194



and (3.12), respectively. Let c0,k := maxi∈[N ] c
i
0,k. Then, with

Tk ≥
c0,k

µmin,k

 1

(1− γ̄)5ϵ2
+

tmix,k

(
1
4

)
1− γ̄

 log

( |S|ATk
δ0

)
log

(
1

(1− γ̄)2ϵ

)
,

ηit =
ci1,k

log
( |S||Ai|Tk

δ0

) min

(1− γi)4ϵ2(
γi
)2 ,

1

timix,k

(
1
4

)
 , ∀t = tk, . . . , tk+1 − 1, i ∈ [N ],

we have that

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ ≤ ϵ

]
≥ 1− δ0, ∀i ∈ [N ],

which implies that

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ > ϵ

]
≤ δ0, ∀i ∈ [N ].

From the union bound,

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ > ϵ, ∃i ∈ [N ]

]
≤
∑
i∈[N ]

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ > ϵ

]
≤ Nδ0.

Therefore,

P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ ≤ ϵ, ∀i ∈ [N ]

]
= 1− P

[∣∣Qi
tk+1
−Qi

π̄−i
k

∣∣∞ > ϵ, ∃i ∈ [N ]

]
≥ 1−Nδ0.

The proof is completed by taking δ̂ = Nδ0.

Lemma 3.2 bounds the approximation error of Q-learning for each agent, i.e., the differ-

ence of the Q-function obtained at the end of the kth exploration phase and the optimal

Q-function in the best reply to π̄−i. Our next goal is to bound the approximation error of

policy perturbation. Recall the definition of the randomized policy in (3.10), and consider
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the joint policies of all agents except i. With probability
∏

j ̸=i(1− ρj), all agents j ̸= i end

up playing their baseline policies, which results in
∣∣∣∣Qi

π−i
k

−Qi
π̄−i
k

∣∣∣∣ = 0, i.e. the approximation

error of policy perturbation becomes zero in this case. When not all agents play their base-

line policies, let φ−i ∈ ∆−i be some convex combination of the policies in ∆−i of the form

where each agent j ̸= i either uses a baseline policy πj ∈ Πj or the uniform distribution.

More precisely, let J denote the subset of agents choosing the baseline policies, and let

φ−i =
∑

J⊂{1,...,N}\{i}
aJφ

−i
J , (3.21)

where aJ :=

∏
j∈J (1−ρj)

∏
j /∈J∪{i} ρ

j

1−∏j ̸=i(1−ρj)
and φJ ∈ ∆−i is such that φ

j
J = πj for j ∈ J and

φ
j
J = νj for j /∈ J ∪ {i}. Denote by ∆̄−i ⊂ ∆−i the set of all policies in the form of (3.21).

Note that ∆̄−i is a finite set. Recall the definition of the Bellman operator from (3.3). We

then define

Γ := max
(π−i,φ−i)∈Π−i×∆̄−i

∣∣∣T i
π−i(Q

i
π−i)− T i

φ−i(Q
i
π−i)

∣∣∣∞ . (3.22)

We next have the following lemma on the approximation error due to policy perturbation.

Lemma 3.3. Fix any arbitrary πk ∈ Π. For any ϵ̃ > 0, if ρi satisfies

ρi ≤ 1−
(
1− ϵ̃(1− γ̄)

Γ

) 1
N−1

, ∀i ∈ [N ], (3.23)

then, we have that ∣∣∣∣Qi
π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ ≤ ϵ̃, ∀i ∈ [N ], k ∈ [K].

Proof of Lemma 3.3. First note that, for all i ∈ [N ] and k ∈ [K],

∣∣∣∣Qi
π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ =

∣∣∣∣T i
π−i
k

(Qi
π−i
k

)− T i
π̄−i
k

(Qi
π̄−i
k

)

∣∣∣∣∞
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≤
∣∣∣∣T i

π−i
k

(Qi
π−i
k

)− T i
π̄−i
k

(Qi
π−i
k

)

∣∣∣∣∞ +

∣∣∣∣T i
π̄−i
k

(Qi
π−i
k

)− T i
π̄−i
k

(Qi
π̄−i
k

)

∣∣∣∣∞ . (3.24)

By definition of π̄−ik , we have that P
[
π̄−ik = π−ik

]
=
∏

j ̸=i(1 − ρj). With probability 1 −∏
j ̸=i(1− ρj), π̄−ik ̸= π−ik and π̄−ik ∈ ∆̄−i. Thus, the first term of (3.24) can be bounded by

∣∣∣∣T i
π−i
k

(Qi
π−i
k

)− T i
π̄−i
k

(Qi
π−i
k

)

∣∣∣∣∞ ≤
1−

∏
j ̸=i

(1− ρj)

× ∣∣∣∣T i
π−i
k

(Qi
π−i
k

)− T i
φ−i
k

(Qi
π−i
k

)

∣∣∣∣∞ ,

(3.25)

for some φ−ik ∈ ∆̄−i. On the other hand, by the contraction mapping of the Bellman

operator, we have that

∣∣∣∣T i
π̄−i
k

(Qi
π−i
k

)− T i
π̄−i
k

(Qi
π̄−i
k

)

∣∣∣∣∞ ≤ γi
∣∣∣∣Qi

π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ . (3.26)

Substituting (3.25) and (3.26) back into (3.24), we have that

∣∣∣∣Qi
π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ ≤
1−

∏
j ̸=i

(1− ρj)

× ∣∣∣∣T i
π−i
k

(Qi
π−i
k

)− T i
φ−i
k

(Qi
π−i
k

)

∣∣∣∣∞
+ γi

∣∣∣∣Qi
π−i
k

−Qi
π̄−i
k

∣∣∣∣∞
≤

1−
∏
j ̸=i

(1− ρj)

Γ + γi
∣∣∣∣Qi

π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ ,

which implies that

∣∣∣∣Qi
π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ ≤
(
1−∏j ̸=i(1− ρj)

)
Γ

1− γi
≤

(
1−∏j ̸=i(1− ρj)

)
Γ

1− γ̄
.

If for all i ∈ [N ], ρi ≤ 1−
(
1− ϵ̃(1−γ̄)

Γ

) 1
N−1 , then, we have that 1− ρj ≥

(
1− ϵ̃(1−γ̄)

Γ

) 1
N−1 ,
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which implies that
∏

j ̸=i(1− ρj) ≥ 1− ϵ̃(1−γ̄)
Γ , and thus

∣∣∣∣Qi
π−i
k

−Qi
π̄−i
k

∣∣∣∣∞ ≤
(
1−∏j ̸=i(1− ρj)

)
Γ

1− γ̄
≤ ϵ̃.

The above holds for all i ∈ [N ] and k ∈ [K], which completes the proof.

Recall from (3.13) that ζ̄ is the minimum separation between the entries of agents’ optimal

Q-functions (with respect to the deterministic policies):

ζ̄ := min

i,s,ai,ãi,π−i∈Π−i:

Qi
π−i(s,a

i)̸=Qi
π−i(s,ã

i)

∣∣∣Qi
π−i(s, a

i)−Qi
π−i(s, ã

i)
∣∣∣ .

We assume that ζ̄ > 0 to avoid trivial cases, and consider ζ̄ as an upper bound on ζi for all

i. We next define the following random event for any arbitrary πk ∈ Π:

Ek :=
{
ω ∈ Ω :

∣∣∣∣Qi
tk+1
−Qi

π−i
k

∣∣∣∣∞ <
1

4
min{ζi, ζ̄ − ζi},∀i

}
.

With this definition of Ek, we show that, if Ek is not empty and πk ∈ Πeq, then πk+1 = πk

with probability 1.

Lemma 3.4. Given any πk ∈ Π and the corresponding Ek, for all k, we have that

P
[
πk+1 = πk | Ek, πk ∈ Πeq

]
= 1.

Proof of Lemma 3.4. Let âi∗ := argmaxâi Q
i
tk+1

(
s, âi

)
. Then, conditioned on Ek and πk ∈

Πeq, we have that

max
âi

Qi
tk+1

(
s, âi

)
−Qi

tk+1

(
s, πik(s)

)
198



= Qi
tk+1

(
s, âi∗

)
−Qi

tk+1

(
s, πik(s)

)
=

[
Qi
tk+1

(
s, âi∗

)
−Qi

π−i
k

(
s, πik(s)

)]
+

[
Qi
π−i
k

(
s, πik(s)

)
−Qi

tk+1

(
s, πik(s)

)]
< Qi

tk+1

(
s, âi∗

)
−Qi

π−i
k

(
s, πik(s)

)
+

1

2
min

{
ζi, ζ̄ − ζi

}
<

[
Qi
tk+1

(
s, âi∗

)
−Qi

π−i
k

(
s, âi∗

)]
+

[
Qi
π−i
k

(
s, âi∗

)
−Qi

π−i
k

(
s, πik(s)

)]
+

1

4
min

{
ζi, ζ̄ − ζi

}
<

1

4
min

{
ζi, ζ̄ − ζi

}
+

1

4
min

{
ζi, ζ̄ − ζi

}
≤ 1

2
min

{
ζi, ζ̄ − ζi

}
,

where the second-to-last inequality follows since Qi
π−i
k

(
s, âi

)
− Qi

π−i
k

(
s, πik(s)

)
< 0, which

follows from πk ∈ Πeq. It follows that Qi
tk+1

(
s, πik(s)

)
≥ maxâi Q

i
tk+1

(
s, âi

)
− 1

2ζ
i for all i.

Then, by Algorithm 3.1 (lines 11-13), we have that πk+1 = πk with probability 1.

Recall that L is the maximum length of the shortest strict best reply path from any policy

to an equilibrium policy. Our next lemma lower bounds the conditional probability of πk+L

being an equilibrium policy, given that πk is not an equilibrium policy and Ek, . . . , Ek+L−1.

Lemma 3.5. Let

p̂ :=

 min
j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


L

, (3.27)

which is the same as that in (3.6). We then have that

P
[
πk+L ∈ Πeq

∣∣ Ek, . . . , Ek+L−1, πk ̸∈ Πeq
]
≥ p̂. (3.28)

Proof of Lemma 3.5. We begin with an important observation. Consider some πk /∈ Πeq;

then, there must exist at least one agent, say agent i, whose policy πik is not the best reply

to π−ik , i.e., πik /∈ Πi
π−i
k

. In this case, we claim that πik /∈ Πi
k+1, where Πi

k+1 is as defined in

Algorithm 3.1 (line 11). In other words, the “else” statement in Algorithm 3.1 (line 15) will be

199



executed. To see this, it suffices to show that Qi
tk+1

(s, πik(s)) < maxai∈Ai Qi
tk+1

(s, ai)− 1
2ζ

i

for some s ∈ S. Conditioned on Ek, we have that

Qi
π−i
k

(s, ai)− 1

4
min{ζi, ζ̄ − ζi} < Qi

tk+1
(s, ai) < Qi

π−i
k

(s, ai) +
1

4
min{ζi, ζ̄ − ζi},

i.e., Qi
tk+1

(s, ai) lies within a distance of 1
4 min{ζi, ζ̄ − ζi} to Qi

π−i
k

(s, ai). Moreover, we note

that 1
4 min{ζi, ζ̄ − ζi} ≤ 1

8 ζ̄. Recall that
{
Qi
π−i
k

(s, ai) : ai ∈ Ai

}
are dispersed with spacing

being at least ζ̄, where ζ̄ is as defined in (3.13) as the minimum separation between the

optimal Q-functions. Thus, it follows that the possible range of Qi
tk+1

(s, ai) for all ai ∈ Ai

are mutually exclusive, which implies that the τ -th best action under Qi
π−i
k

is identical to

that under Qi
tk+1

, i.e.,

argmax
ai∈Ai

(
Qi
π−i
k

(s, ai)

)
(τ)

= argmax
ai∈Ai

(
Qi
tk+1

(s, ai)
)
(τ)

,

where (·)(τ) represents the τ -th largest value. For instance, when τ = 1, we have that

argmaxai∈Ai Qi
π−i
k

(s, ai) = argmaxai∈Ai Qi
tk+1

(s, ai), which are denoted by ai∗
π−i
k

(s) and

ai∗tk+1
(s), respectively.

Since πik /∈ Πi
π−i
k

, it follows that πik(s) ̸= argmaxai∈Ai Qi
π−i
k

(s, ai) =: ai∗
π−1
k

(s) for some

s ∈ S. Then, we have that

max
ai∈Ai

Qi
tk+1

(s, ai)−Qi
tk+1

(s, πik(s)) >

(
max
ai∈Ai

Qi
π−i
k

(s, ai)− 1

8
ζ̄

)
−
(
Qi
π−i
k

(s, πik(s)) +
1

8
ζ̄

)
=

(
Qi
π−i
k

(
s, ai∗

π−i
k

(s)

)
−Qi

π−i
k

(s, πik(s))

)
− 1

4
ζ̄

≥ ζ̄ − 1

4
ζ̄ =

3

4
ζ̄ ≥ 3

4
ζi >

1

2
ζi

as desired. Now, we are ready to prove the statement.

Let l be the length of the shortest strict best reply path from πk to an equilibrium
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policy. Then l ≤ L. Let the sequence of policies along the path be π0, π1, . . . , πl, with

π0 = πk /∈ Πeq and πl ∈ Πeq. Further, let i1, . . . , il be the agent that changes its policy at

each update, i.e., πn−1 and πn differ only at agent in, for all n = 1, . . . , l. Then, based on

the aforementioned observation, we can use the two probabilities in the policy update rule

in Algorithm 3.1 (line 15) to yield

P
[
πk+L ∈ Πeq

∣∣ Ek, . . . , Ek+L−1, πk ̸∈ Πeq
]

≥ P
[
πk+L = πl

∣∣ Ek, . . . , Ek+L−1, πk ̸∈ Πeq
]

≥ P
[
πk+1 = π1, πk+2 = π2, . . . , πk+l = πl,

πk+l+1 = · · · = πk+L = πl
∣∣ Ek, . . . , Ek+L−1, πk ̸∈ Πeq

]
≥ P

[
πk+1 = π1

∣∣ Ek, . . . , Ek+L−1, πk = π0
]

· P
[
πk+2 = π2

∣∣ Ek, . . . , Ek+L−1, πk = π0, πk+1 = π1
]

· P
[
πk+3 = π3

∣∣ Ek, . . . , Ek+L−1, πk = π0, πk+1 = π1, πk+2 = π2
]
· · · ·

· P
[
πk+l = πl

∣∣ Ek, . . . , Ek+L−1, πk = π0, πk+1 = π1, . . . , πk+l−1 = πl−1
]

· P
[
πk+l+1 = πl

∣∣ Ek, . . . , Ek+L−1, πk = π0, πk+1 = π1, . . . , πk+l = πl
]
· · · ·

· P
[
πk+L = πl

∣∣ Ek, . . . , Ek+L−1, πk = π0, πk+1 = π1, . . . , πk+l = πl, . . . , πk+L−1 = πl
]

≥
∏

j∈{i1,...,il}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi

 ≥
 min

j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


l

≥

 min
j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


L

,

where we have used the fact from Lemma 3.4: given πl ∈ Πeq and the events Ek, . . . , Ek+L−1,

the conditional probability that πs ∈ Πeq is 1 for all s ≥ l.

We will then bound P [Ek, . . . , Ek+L−1]. Before that, we first look at P [Ek]. We would

like P [Ek] to be as large as possible. Note that 1
4 min{ζi, ζ̄−ζi} ≤ 1

8 ζ̄, with equality holding
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when ζi = 1
2 ζ̄. We next have the following lemma.

Lemma 3.6. Let ζi = ζ̄
2 for all i ∈ [N ]. Fix an arbitrary πk ∈ Π. For any 0 < δ̂ < 1, we

have that

P [Ek] ≥ 1− δ̂,

provided that ρi ≤ 1 −
(
1− (ζ̄/8−ϵ)(1−γ̄)

Γ

) 1
N−1

, and Tk and ηit satisfy (3.18), where ϵ can

take any value in 0 < ϵ < min
{
ζ̄
8 ,

1
1−γmin

}
.

Proof of Lemma 3.6. A direct implication of Lemma 3.2 and Lemma 3.3 is that when Tk

and ηit satisfy (3.18), and ρi satisfies (3.23), then, by triangle inequality, we have that

P

[∣∣∣∣Qi
tk+1
−Qi

π−i
k

∣∣∣∣∞ ≤ ϵ+ ϵ̃, ∀i ∈ [N ]

]
≥ 1− δ̂. (3.29)

The lemma then follows by taking ϵ̃ = 1
8 ζ̄ − ϵ.

We then have the following lemma which bounds P [Ek, . . . , Ek+L−1].

Lemma 3.7. For any arbitrary sequence of joint policies πk, . . . , πk+L−1 ∈ Π, and for any

0 < δ̃ < 1, we have that

P [Ek, . . . , Ek+L−1] ≥ 1− δ̃,

provided that for all i ∈ [N ] and for all k̂ ∈ {k, . . . , k + L− 1},

T
k̂
≥

c
0,k̂

µ
min,k̂

 1

(1− γ̄)5ϵ2
+

t
mix,k̂

(
1
4

)
1− γ̄

 log

(
NL|S|AT

k̂

δ̃

)
log

(
1

(1− γ̄)2ϵ

)
, (3.30a)

ηit =
ci
1,k̂

log

(
NL|S||Ai|T

k̂

δ̃

) min

(1− γi)4ϵ2(
γi
)2 ,

1

ti
mix,k̂

(
1
4

)
 , ∀t = t

k̂
, . . . , t

k̂+1
− 1, (3.30b)
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ρi ≤ 1−
(
1−

(
ζ̄/8− ϵ

)
(1− γ̄)

Γ

) 1
N−1

(3.30c)

ζi =
ζ̄

2
(3.30d)

where ϵ can take any value in 0 < ϵ < min
{
ζ̄
8 ,

1
1−γmin

}
.

Proof of Lemma 3.7. When the conditions of Lemma 3.6 are satisfied, we have P
[
Ec
k

]
< δ̂,

where Ec
k is the complement of Ek. Then,

P [Ek, . . . , Ek+L−1] = 1− P [(Ek, . . . , Ek+L−1)
c] = 1− P

[
Ec
k ∪ · · · ∪ Ec

k+L−1
]

≥ 1−
(
P
[
Ec
k

]
+ P

[
Ec
k+1

]
+ · · ·+ P

[
Ec
k+L−1

])
= 1− Lδ̂.

By taking δ̃ = Lδ̂, it follows that the conditions (3.18) now become (3.30), and the lemma

is thus proved.

As for the choice of ϵ, we would like to make T
k̂

as small as possible. As ϵ increases,

the term 1
(1−γ̄5ϵ2) decreases, while ρi also decreases, which leads to a smaller µ

min,k̂
and a

larger t
mix,k̂

. Therefore, we would like to choose an optimal ϵ̂
k̂

for T
k̂
, such that (ignoring

the logarithmic factors)

ϵ̂
k̂
:= argmin

0<ϵ<min
{
ζ̄
8 ,

1
1−γmin

} 1

µ
min,k̂

(
1

(1− γ̄)4ϵ2
+ t

mix,k̂

(
1

4

))
, (3.31)

or, using the result of Proposition 3.2 for the bounds of t
mix,k̂

(
1
4

)
and µ

min,k̂
,

ϵ̂
k̂
= argmin

ϵ∈
(
0,min

{
ζ̄
8 ,

1
1−γmin

}) A(N+1)H

κρ(N+1)H
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·

 1

(1− γ̄)4ϵ2
+ (H + 1)

 log(1/4)

log
[

ANH−|S|κρNH

ANH−(|S|−1)κρNH

] + 1


 ,

(3.32)

and we can define ϵ̂ := max
k̂∈{k,...,k+L−1} ϵ̂k, and let ρi = 1 −

(
1− (ζ̄/8−ϵ̂)(1−γ̄)

Γ

) 1
N−1

,

which leads to the optimal sample complexity for T
k̂
. For simplicity, we choose that ϵ =

1
2 min

{
ζ̄
8 ,

1
1−γmin

}
in Theorem 3.1 and do not worry about optimizing over ϵ.

Note also that the result of Lemma 3.7 holds for any realization of πk ∈ Π. Therefore,

under the same conditions, we in fact have that

P
[
Ek, . . . , Ek+L−1

∣∣ πk ∈ Πeq
]
≥ 1− δ̃, (3.33a)

P
[
Ek, . . . , Ek+L−1

∣∣ πk /∈ Πeq
]
≥ 1− δ̃. (3.33b)

By Lemma 3.4 and (3.33a), under conditions (3.30), we have that for all k,

P
[
πk = πk+1 = · · · = πk+L

∣∣ πk ∈ Πeq
]
≥ 1− δ̃. (3.34)

By Lemma 3.5 and (3.33b), under conditions (3.30), we have that for all k,

P
[
πk+L ∈ Πeq

∣∣ πk /∈ Πeq
]
≥ p̂

(
1− δ̃

)
. (3.35)

As a notation, let pk := P
[
πk ∈ Πeq

]
. Then, (3.34) and (3.35) together imply that

p(n+1)L ≥ pnL

(
1− δ̃

)
+ (1− pnL)p̂

(
1− δ̃

)
. (3.36)
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Rearranging the above, we obtain that

p(n+1)L − pnL ≥
(
1− δ̃

)
p̂− δ̃pnL −

(
1− δ̃

)
p̂pnL

=
[
δ̃ +

(
1− δ̃

)
p̂
]

(
1− δ̃

)
p̂

δ̃ +
(
1− δ̃

)
p̂
− pnL

 (3.37)

≥ −δ̃ (3.38)

Note that p(n+1)L − pnL ≥ 0 as long as pnL ≤
(
1−δ̃

)
p̂

δ̃+
(
1−δ̃

)
p̂
. Further, if pnL ≤

(
1−δ̃

)
p̂

δ̃+
(
1−δ̃

)
p̂
− δ̃,

then from (3.37), we have that p(n+1)L − pnL ≥
[
δ̃ +

(
1− δ̃

)
p̂
]
δ̃; if pnL >

(
1−δ̃

)
p̂

δ̃+
(
1−δ̃

)
p̂
, then

p(n+1)L − pnL ≥ −δ̃ from (3.38). Therefore, we have that

pnL ≥

(
1− δ̃

)
p̂

δ̃ +
(
1− δ̃

)
p̂
− δ̃, ∀n ≥ ñ, (3.39)

where

ñ :=

(
1−δ̃

)
p̂

δ̃+
(
1−δ̃

)
p̂
− δ̃[

δ̃ +
(
1− δ̃

)
p̂
]
δ̃
=

(
1− δ̃

)2
p̂− δ̃2[

δ̃ +
(
1− δ̃

)
p̂
]2

δ̃

. (3.40)

This, together with (3.34), implies that for all n ≥ ñ,

P
[
πnL = πnL+1 = · · · = πnL+L ∈ Πeq

]
≥


(
1− δ̃

)
p̂

δ̃ +
(
1− δ̃

)
p̂
− δ̃

(1− δ̃
)
:= f(δ̃). (3.41)

Therefore, if the number of exploration phases k ≥ K := ñL, then P
[
πk ∈ Πeq

]
≥ f(δ̃).

Note that f(δ̃) is continuous, decreasing in δ̃, and f(0) = 1, f(δ) < 1− δ for any 0 < δ < 1.
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Thus, we can take δ̃ ∈ (0, δ) such that


(
1− δ̃

)
p̂

δ̃ +
(
1− δ̃

)
p̂
− δ̃

(1− δ̃
)
= 1− δ, (3.42)

which leads to P
[
πk ∈ Πeq

]
≥ 1− δ for all k ≥ K, and completes the proof of Theorem 3.1.

3.3.2 Proof of Proposition 3.2.

We first show the bounds for µimin,k and µmin,k. By Assumption 3.1, for any s1 and sH+1,

there exists a sequence of joint actions ã1, . . . , ãH such that P [sH+1 = s | (s1, a1, . . . , aH) =

(s, ã1, . . . , ãH)] ≥ κ. Thus, we have that

P (sH+1 = s | s1) =
∑

a1,...,aH

P (sH+1 = s | (s1, a1, . . . , aH))P ((s1, a1, . . . , aH) | s1)

≥ P (sH+1 = s | (s1, ã1, . . . , ãH))P ((s1, ã1, . . . , ãH) | s1)

≥ κ

 ∏
i∈[N ]

ρi

|Ai|

H

, ∀s1, s ∈ S, (3.43)

where the last inequality follows from Assumption 3.1 and the action selection (Line 5) of

Algorithm 3.1. Then, we can write the lower bound for the stationary distribution µπ̄k over

all states:

µπ̄k(s) =
∑
s1∈S

µπ̄k(s1)P (sH+1 = s | s1) ≥ κ

 ∏
i∈[N ]

ρi

|Ai|

H

, ∀s ∈ S, (3.44)

206



where the inequality follows since (3.43) is a uniform lower bound for all (s1, s), and also∑
s1∈S µπk(s1) = 1. Note that (3.44) also implies the following upper bound:

µπ̄k(s) = 1−
∑

s̄∈S\{s}
µπ̄k(s̄) ≤ 1− (|S| − 1)κ

 ∏
i∈[N ]

ρi

|Ai|

H

, ∀s ∈ S. (3.45)

From (3.44) and (3.45), and by noting that min(s,ai)∈S×Ai P (ai | s) = ρi

|Ai| , we can also write

the bounds for the minimum probability of the stationary distribution over state-action pairs

(from the perspective of agent i):

µimin,k = min
(s,ai)∈S×Ai

µiπ̄k

(
s, ai

)
= min

(s,ai)∈S×Ai
P (ai | s)µπ̄k(s) ≥ κ

ρi

|Ai|

 ∏
i∈[N ]

ρi

|Ai|

H

,

(3.46a)

µimin,k = min
(s,ai)∈S×Ai

µiπ̄k

(
s, ai

)
= min

(s,ai)∈S×Ai
µπ̄k(s) · P (ai | s)

≤

1− (|S| − 1)κ

 ∏
i∈[N ]

ρi

|Ai|

H
 · ρi

|Ai| . (3.46b)

With ρi = ρ for all i ∈ [N ] and recalling that A := maxi∈[N ]Ai, (3.46) leads to

µmin,k = min
i∈[N ]

µimin,k ≥ κ
ρNH+1

ANH+1
, (3.47a)

µmin,k = min
i∈[N ]

µimin,k ≤
[
1− (|S| − 1)κ

ρNH

ANH

]
· ρ
A
. (3.47b)

We next show the upper bound for tmix,k. To proceed, we first introduce the following

two lemmas. Lemma 3.8 follows directly from the coupling inequality under the Doeblin

condition (see Diaconis [65] for a detailed explanation). Lemma 3.9 follows directly from

Dobrushin’s theorem (see Dobrushin [67] for details).
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Lemma 3.8. If P
(
sH+1 = s̄, aiH+1 = āi | s0, ai0

)
≥ c1µ

i
π̄k

(
s̄, āi

)
for all s0, ai0 and s̄, āi,

then,

dTV

(
P t(· | s0, ai0), µiπ̄k

)
= max

s̄,āi

∣∣∣P (st = s̄, ait = āi | s0, ai0
)
− µiπ̄k

(
s̄, āi

)∣∣∣
≤ (1− c1)

⌊t/(H+1)⌋.

Lemma 3.9. Let s, s̄, ŝ be any state and ai, āi, âi be any action of agent i. Define

c2 := min
s̄,āi,ŝ,âi

∑
s,ai

min
(
PH+1

(
s, ai | s̄, āi

)
, PH+1

(
s, ai | ŝ, âi

))
. (3.48)

Then, we have that

dTV

(
P t(· | s0, ai0), µiπ̄k

)
= max

s̄,āi

∣∣∣P (st = s̄, ait = āi | s0, ai0
)
− µiπ̄k

(
s̄, āi

)∣∣∣
≤ (1− c2)

⌊t/(H+1)⌋.

We will use both Lemma 3.8 and Lemma 3.9 to prove the upper bound of tmix,k. To apply

Lemma 3.8, we need to find the parameter c1 such that P
(
sH+1 = s̄, aiH+1 = āi | s0, ai0

)
≥

c1µ
i
π̄k

(
s̄, āi

)
for all s0, ai0 and s̄, āi. To apply Lemma 3.9, we need to find the c2 (or a lower

bound of it) that satisfies (3.48). Here, (1 − c2) is also known as the Dobrushin ergodicity

coefficient (Gaubert and Qu [96]). These lead to the following lemma.

Lemma 3.10. For all i ∈ [N ] and for any (s0, a
i
0), (s̄, ā

i) ∈ S ×Ai, we have that

PH+1
(
s̄, āi | s0, ai0

)
= P

(
sH+1 = s̄, aiH+1 = āi | s0, ai0

)
≥ κ

 ∏
i∈[N ]

ρi

|Ai|

H

· ρi

|Ai| ,

(3.49a)

P
(
sH+1 = s̄, aiH+1 = āi | s0, ai0

)
≥ c1µ

i
π̄k

(
s̄, āi

)
, (3.49b)
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where

c1 =
κ
(∏

i∈[N ]
ρi

|Ai|
)H

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H . (3.49c)

Proof of Lemma 3.10. By Assumption 3.1, we know that for all s, s′, there exist ã0, . . . , ãH−1

such that

P [sH = s′ | (s0, a0, . . . , aH−1) = (s, ã0, . . . , ãH−1)] ≥ κ.

Then, we have that

P
(
sH+1 = s̄, aiH+1 = āi | s0, ai0

)
= P

(
sH+1 = s̄ | s0, ai0

)
· P
(
aiH+1 = ā | sH+1 = s̄, s0, a

i
0

)
= P

(
sH+1 = s̄ | s0, ai0

)
· P
(
aiH+1 = ā | sH+1 = s̄

)
≥ P

(
sH+1 = s̄ | s0, ai0

)
· ρi

|Ai| . (3.50)

Then, it suffices to find a lower bound for P
(
sH+1 = s̄ | s0, ai0

)
. Note that

P
(
sH+1 = s̄ | s0, ai0

)
=
∑
s1

P
(
sH+1 = s̄ | s1, s0, ai0

)
P
(
s1 | s0, ai0

)
=
∑
s1

P (sH+1 = s̄ | s1)P
(
s1 | s0, ai0

)
.

We make the following observations.

• For any s1, by the law of total probability, we have that

P (sH+1 = s̄ | s1)
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=
∑

{a1,...,aH}
P (sH+1 = s̄ | s1, a1, . . . , aH)P (a1, . . . , aH | s1)

= P (sH+1 = s̄ | s1, ã1, . . . , ãH)P (ã1, . . . , ãH | s1)

+
∑

{a1,...,aH}̸={ã1,...,ãH}
P (sH+1 = s̄ | s1, a1, . . . , aH)P (a1, . . . , aH | s1)

≥ κ

 ∏
i∈[N ]

ρi

|Ai|

H

.

• Since the above is true for any s1 ∈ S, and
∑

s1
P
(
s1 | s0, ai0

)
= 1, we have that the

convex combination

P
(
sH+1 = s̄ | s0, ai0

)
=
∑
s1

P (sH+1 = s̄ | s1)P
(
s1 | s0, ai0

)
≥ κ

 ∏
i∈[N ]

ρi

|Ai|

H

.

Thus, (3.50) now becomes

P
(
sH+1 = s̄, aiH+1 = āi | s0, ai0

)
≥ P

(
sH+1 = s̄ | s0, ai0

)
· ρi

|Ai|

≥ κ

 ∏
i∈[N ]

ρi

|Ai|

H

· ρi

|Ai| .

This completes the proof of (3.49a).

With (3.49a), we can see that any c1 satisfying κ
(∏

i∈[N ]
ρi

|Ai|
)H
· ρi

|Ai| ≥ c1µ
i
π̄k

(
s̄, āi

)
for all s̄, āi and for all i will lead to (3.49b). Equivalently, we need

c1 ≤ κ

 ∏
i∈[N ]

ρi

|Ai|

H

· min
i∈[N ]

ρi

|Ai|
µimin,k

.

One option is to choose c1 = κ
(∏

i∈[N ]
ρi

|Ai|
)H
·mini∈[N ]

ρi

|Ai| , which essentially uses µimin,k ≤
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1. However, note that we can use the upper bound of µimin,k from (3.46), and choose that

c1 = κ

 ∏
i∈[N ]

ρi

|Ai|

H

· min
i∈[N ]

ρi

|Ai|[
1− (|S| − 1)κ

(∏
i∈[N ]

ρi

|Ai|
)H]

· ρi

|Ai|

=
κ
(∏

i∈[N ]
ρi

|Ai|
)H

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H .

This completes the proof of the lemma.

It follows from (3.48) and Lemma 3.10 that

c2 ≥ |S||Ai| · κ

 ∏
i∈[N ]

ρi

|Ai|

H

· ρi

|Ai| = |S|κ

 ∏
i∈[N ]

ρi

|Ai|

H

ρi. (3.51)

The rest of the proof is divided into two parts. We first show that

tmix,k(α) ≤ (H + 1)

(
(− logα)

ANH

κρNH
+ 1

)
. (3.52)

Combining Lemma 3.8 and Lemma 3.10, we have that for all i ∈ [N ] and (s0, a
i
0) ∈ S×Ai,

dTV

(
P t(· | s0, ai0), µiπ̄k

)
≤ (1− c1)

⌊t/(H+1)⌋

=

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H
− κ

(∏
i∈[N ]

ρi

|Ai|
)H

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H


⌊t/(H+1)⌋

=

 1− |S|κ
(∏

i∈[N ]
ρi

|Ai|
)H

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H

⌊t/(H+1)⌋

.
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Let t be such that

 1− |S|κ
(∏

i∈[N ]
ρi

|Ai|
)H

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H

⌊t/(H+1)⌋

≤

 1− |S|κ
(∏

i∈[N ]
ρi

|Ai|
)H

1− (|S| − 1)κ
(∏

i∈[N ]
ρi

|Ai|
)H

t/(H+1)−1

= α. (3.53)

Then, we have that max(s0,ai0)∈S×Ai dTV

(
P t(· | s0, ai0), µiπ̄k

)
≤ α, ∀i ∈ [N ], which implies

that tmix,k(α) = maxi∈[N ] t
i
mix,k ≤ t. Therefore, by solving (3.53) for t, we obtain an upper

bound for tmix,k:

tmix,k(α) ≤ t = (H + 1)


− logα

log

1−(|S|−1)κ
(∏

i∈[N ]
ρi

|Ai|

)H

1−|S|κ
(∏

i∈[N ]
ρi

|Ai|

)H


+ 1


. (3.54)

With ρi = ρ for all i ∈ [N ], (3.54) becomes

tmix,k(α) ≤ (H + 1)


− logα

log


1−(|S|−1)κ

(
ρ∏

i∈[N ] |A
i|

)H

1−|S|κ
(∏

i∈[N ]
ρ∏

i∈[N ] |A
i|

)H


+ 1



≤ (H + 1)


(− logα)

[
1− (|S| − 1)κ

(
ρ∏

i∈[N ] |Ai|

)H
]

κ

(
ρ∏

i∈[N ] |Ai|

)H
+ 1
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≤ (H + 1)

(
(− logα)

∏
i∈[N ] |Ai|H

κρH
+ 1

)
≤ (H + 1)

(
(− logα)

ANH

κρNH
+ 1

)
.

This completes the proof of (3.52).

Next, we show that

tmix,k(α) ≤ (H + 1)

(
(− logα)

ANH

|S|κρNH+1
+ 1

)
. (3.55)

With (3.51) and Lemma 3.9, we have that for all i ∈ [N ] and (s0, a
i
0) ∈ S ×Ai,

dTV

(
P t(· | s0, ai0), µiπ̄k

)
≤ (1− c2)

⌊t/(H+1)⌋ ≤

1− |S|κ
 ∏

i∈[N ]

ρi

|Ai|

H

ρi


⌊t/(H+1)⌋

.

Let t be such that

1− |S|κ
 ∏

i∈[N ]

ρi

|Ai|

H

ρi


⌊t/(H+1)⌋

≤

1− |S|κ
 ∏

i∈[N ]

ρi

|Ai|

H

ρi


t/(H+1)−1

= α, ∀i ∈ [N ]. (3.56)

Then, we have that max(s0,ai0)∈S×Ai dTV

(
P t(· | s0, ai0), µiπ̄k

)
≤ α, ∀i ∈ [N ], which implies

that tmix,k(α) = maxi∈[N ] t
i
mix,k ≤ t. Therefore, by solving (3.56) for t, we obtain an upper

bound for tmix,k:

tmix,k(α) ≤ t = max
i∈[N ]

(H + 1)

 − logα

− log

[
1− |S|κ

(∏
i∈[N ]

ρi

|Ai|
)H

ρi
] + 1



213



= (H + 1)

 − logα

− log

[
1− |S|κ

(∏
i∈[N ]

ρi

|Ai|
)H
·mini∈[N ] ρ

i

] + 1

 . (3.57)

With ρi = ρ for all i ∈ [N ], (3.57) becomes

tmix,k(α) ≤ (H + 1)

 − logα

− log

[
1− |S|κ

(∏
i∈[N ]

ρ
|Ai|
)H
· ρ
] + 1


≈ (H + 1)

 − logα

|S|κ
(∏

i∈[N ]
ρ
|Ai|
)H
· ρ

+ 1


= (H + 1)

(
(− logα)

ANH

|S|κρNH+1
+ 1

)
.

This completes the proof of (3.55).

Combining (3.52) and (3.55), the proof of (3.16c) is completed.

We have thus finished the proof of Proposition 3.2.

3.3.3 Numerical Experiments: A Grid-World Game

To demonstrate the effectiveness of Algorithm 3.1, we test it on the classical grid-world

experiment (Sutton and Barto [207]). We consider a 3 × 3 grid. Each state is represented

by a pair (s(1), s(2)), where s(1) is the “x”-coordinate and s(2) is the “y”-coordinate on

the grid. The set of states are S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

(as shown in Figure 3.2). The upper-left state (1, 1) is called the terminal state: once the

system reaches state (1, 1), it will stay there and will not transit to other states. There are

two agents, where agent 1 decides its actions in the vertical direction, and agent 2 decides

its actions in the horizontal direction, i.e., A1 = {up, stay, down}, A2 = {left, stay, right}.

The joint actions of agent 1 and agent 2 will determine the next state, which could be the
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same as the current state (if both agents stay) or move one cell in the respective direction

on the grid (except when the system is at the terminal state, it will not transit to other

states for any joint actions taken by the agents). To ensure the next state stays within the

grid, the agents can only choose actions which do not point to a direction outside of the

grid. For instance, at state (1, 1), (1, 2) and (1, 3), agent 1 can only choose “down” or “stay”,

but not “up”. Thus, for each agent, there are 6 states where the agent can take two actions,

and 3 states where the agent can take three actions, which implies that we have 1728× 1728

possible joint policies in total (for each of agent, |Πi| = 26×33 = 1728). When the system is

at the terminal state, all actions yield a reward of 0. When the system is at any non-terminal

state, all the actions yield a reward of −1.

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1)
actions

𝑟𝑟𝑖𝑖 𝑠𝑠, 𝑎𝑎𝑖𝑖 , 𝑎𝑎−𝑖𝑖 = �0, 𝑠𝑠 = (1, 1)
−1, 𝑠 = else

(3, 2) (3, 3)

Figure 3.2: Illustration for the grid-world experiment.

For this grid-world stochastic game, if not considering actions taken on the terminal

state, there are 16 optimal equilibrium joint policies (as shown in Figure 3.3). These optimal

equilibria will lead the agents to reach the terminal state as soon as possible and produce the

maximum value of reward. Besides these optimal equilibria, there are also some suboptimal

equilibria. For example, one suboptimal equilibrium is when agent 1 chooses “down” for all

of the non-terminal states while agent 2 chooses “right” for all of these states. This joint

policy is still a Markov perfect equilibrium, but results in both agents earning less rewards

(relative to those of the optimal equilibria). To obtain the set of all equilibrium joint policies,

for each π−i ∈ Π−i, we use the standard Q-learning algorithm (3.9) to get the set of its best

reply policies Πi
π−i . Then, for each best reply policy π∗i ∈ Πi

π−i , we check if π−i also turns
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out to be a best reply policy of π∗i. If so, then the joint policy (π−i, π∗i) constitutes a

Markov perfect equilibrium. Moreover, if we start from any joint policy in Π1 × Π2, there

is a strict best reply path to one of these equilibria, which means the grid-world stochastic

game is weakly acyclic under strict best replies.

Figure 3.3: The optimal equilibria for the grid-world experiment.

In our numerical experiments, we let ρi = 0.4, λi = 0.3, γi = 0.75, ηik = 1/k0.5 for all i

and k. We fix the length of the exploration phases (the inner “for” loop of Algorithm 3.1),

i.e., Tk = T , ∀k = 1, . . . , K. Since both the length of the exploration phases T and the

number of policy updates K are critical for the learning process, we run our experiments

with different parameters of T and K. For each set of K and T , we start from a random

joint policy in Π1 × Π2 and run Algorithm 3.1, with the initial values of the Q-table set to

all 0’s. Then, we have a set of joint policies {πk | k = 1, . . . , K}, and record the fraction

of these policies that belong to the set of equilibrium joint policies obtained before. This

process is repeated 50 times, and the experimental results are shown in Figure 3.4. The solid

lines represent the fraction of πk’s which are equilibrium joint policies (the number of πk’s

which are equilibrium joint policies divided by K), averaged over 50 repeated runs, and the

shaded region represents the min-max interval.

It can be observed from Figure 3.4a that the minimum of the fraction 1
K

∑K
k=1 I{πk∈Πeq}

over the 50 repeated runs is greater than 0 when K ≥ 20. This implies that the joint policy

converges to an equilibrium at the end of the algorithm for all given initial policies. A similar
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Figure 3.4: Experimental results of grid-world when Algorithm 3.1 is applied. a, The
fraction of times at which πk visits an equilibrium when K ranges in the interval [10, 1000].
b, The fraction of times at which πk visits an equilibrium when T ranges in the interval
[10, 2000]. In a, we fix the value of T as 200. In b, we fix the value of K as 200. The solid
lines are the average of 50 repeated runs, and the shaded regions represent the min-max
intervals.

phenomenon can also be observed from Figure 3.4b. Meanwhile, it can be seen that πk visits

an equilibrium more often as K and T increase. This is consistent with Theorem 3.1, as πK

is expected to be at equilibrium with higher probability as K and T increase.

3.4 Decentralized Q-learning with Linear Function Approximation

Algorithm 3.1 in the previous section extends the single agent Q-learning algorithm. Specif-

ically, in each exploration phase (an inner “for” loop of Algorithm 3.1), each agent updates

and keeps track of its Q function which has dimension |S||Ai|. One major challenge of such

an algorithm is the curse of dimensionality – when the number of state-action pairs is large,

it becomes intractable. One popular approach to overcome this obstacle is to approximate

the optimal Q functions with functions from a much smaller space. We next describe the

linear function approximation method where each agent’s Q function is approximated by a

linear combination of d basis functions. To the best of our knowledge, there is no existing

result on either the convergence or the sample complexity of decentralized Q-learning with
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linear function approximation for general-sum stochastic games.

Let
{
ϕij : S ×Ai 7→ R | 1 ≤ j ≤ d

}
be the set of basis functions (features) of agent i.

We denote by ϕi :=
[
ϕi1, ϕ

i
2, . . . , ϕ

i
d

]
∈ R|S||Ai|×d the feature matrix of agent i. The linear

subspace Wi spanned by the features
{
ϕij

}
is Wi =

{
Qi
θi

:= ϕi
⊤
θi | θi ∈ Θi ⊂ Rd

}
where

Θi is some compact subset of Rd which contains the zero point and has diameter Di, i.e.,

Di = sup
{∥∥∥θij − θij′

∥∥∥
2

∣∣∣ θij , θij′ ∈ Θi
}

. We use Wi as the approximation function space for

agent i.

With the linear function class, we start with approximating agent i’s optimal Q-function

satisfying the fixed point equation of the Bellman operator, as given in (3.4). Specifically,

for any joint policy played by all other agents, π−i ∈ ∆−i, we define

θi
π−i := argmin

θi∈Θi

∥∥∥Qi
π−i − ϕi

⊤
θi
∥∥∥2
2
, (3.58)

where we recall that Qi
π−i satisfies (3.4). Agent i’s set of deterministic best replies to π−i

under linear function approximation is then given by

Π̃i
π−i =

{
π̃i ∈ Πi : ϕi

(
s, π̃i(s)

)⊤
θi
π−i = max

ai∈Ai
ϕi(s, ai)⊤θi

π−i , ∀s ∈ S
}
. (3.59)

With (3.59), we now define the (deterministic) linear approximated equilibrium.

Definition 3.5. A deterministic joint policy π∗ ∈ Π is a linear approximated equilibrium if

π∗i ∈ Π̃i
(π∗)−i , ∀i ∈ [N ].

We denote by Π̃eq the set of linear approximated equilibria. Our goal is to find a set of{
θi
(π∗)−i | ∀i ∈ [N ]

}
for some π∗ ∈ Π̃eq such that ϕi

⊤
θi
(π∗)−i best represents Qi

(π∗)−i in the

sense of (3.58) for all i ∈ [N ]. For this goal to be feasible, we assume that Π̃eq is nonempty.

Assumption 3.3. There exists at least one deterministic joint policy that is a linear ap-
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proximated equilibrium.

Similar to the tabular case, we can define the best reply graph on the set of deterministic

joint policies, where each vertex is a deterministic joint policy and there is a direct edge

from πk to πl if for some i ∈ [N ], πil ̸= πik, π
i
l = πik,∀j ̸= i, and πil ∈ Π̃i

π−i
k

. The strict

best reply path and the weakly acyclic game are defined analogously as in Definition 3.3

and Definition 3.4. We again consider the weakly acyclic game, with the newly defined

best replies as in (3.59). There exists a strict best reply path from any π ∈ Π to some

π∗ ∈ Π̃eq. Let L̃π be the minimum length of the strict best reply paths from π to a linear

approximated equilibrium policy, and let L̃ := maxπ∈Π L̃π. We will again apply the BRPI,

where the deterministic best reply sets Π̃i
π−i are approximated using Q-learning with linear

function approximations.

In the fully decentralized setting, each agent is completely oblivious to other agents.

Agent i may use the standard Q-learning algorithm under linear function approximation

(see Bertsekas and Tsitsiklis [34], Melo et al. [159]), i.e.,

θit+1 = θit + ηitϕ
i(st, a

i
t)

[
ri(st, a

i
t, a
−i
t ) + γi max

ai∈Ai
ϕi(st+1, a

i)⊤θit − ϕi(st, a
i
t)
⊤θit

]
, (3.60)

and selects its actions by taking ait = argmaxai∈Ai ϕi(s, ai)⊤θi with high probability and

randomly exploring any actions with some small probability. The same problem as in the

tabular setting arises here: if all agents use (3.60) and select their actions with the ϵ-greedy

method, the environment becomes nonstationary and the convergence of the θi’s is not

guaranteed. In the same spirit of Algorithm 3.1, we let each agent play the behavior policy

π̄ik as defined in (3.10) during the kth exploration phase, so that the environment is stationary

within each exploration phase. Instead of maintaining and updating a |S||Ai|-dimensional

Q function, agent i updates a d-dimensional vector θi according to (3.60). Note that (3.60)

may also be viewed as the stochastic approximation algorithm for solving the following
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equation:

Eµiπ̄k

[
ϕi(s, ai)

(
ri(s, ai, a−i) + γi max

âi∈Ai
ϕi(s′, âi)⊤θi − ϕi(s, ai)⊤θi

)]
= 0. (3.61)

The complete decentralized Q-learning algorithm with linear function approximation is

presented as Algorithm 3.2. In essence, we replace the update of Q-functions in Algo-

rithm 3.1 with (3.60) as in line 8 of Algorithm 3.2. Furthermore, in determining whether to

update the current baseline policy πik, we use the best reply set Π̃i
k+1, which is defined with

ϕitk+1
(s, ai)⊤θitk+1

, in replacement of the set Πi
k+1.

We will show in this section the finite-sample convergence guarantee of Algorithm 3.2.

To proceed, we first impose the following assumptions for all agents, in addition to Assump-

tions 3.1, 3.2, and 3.3.

Assumption 3.4. The features {ϕij}1≤j≤d are linearly independent and are normalized so

that ∥ϕi(s, ai)∥ ≤ 1 for all state-action pairs (s, ai).

Assumption 3.4 is imposed without loss of generality (Chen et al. [51]): we can always

scale the basis functions to ensure that max(s,ai)∈S×Ai ∥ϕi(s, ai)∥ ≤ 1, and any dependent

features can be discarded.

Assumption 3.5. (3.61) has a unique solution, and there exists ξi > 0 such that the fol-

lowing inequality holds for all θi ∈ Θi:

(γi)2Eµ

[
max
ai∈Ai

(ϕi(s, ai)⊤θi)2
]
− Eµ

[(
ϕi(s, ai)⊤θi

)2]
≤ ξi∥θi∥22. (3.62)

We note that (3.61) may not admit a solution in general, and the iteration for θit in (3.60)

might diverge. Assumption 3.5, which is exactly the same as Assumption 3.3 in Chen et al.

[51], ensures the convergence of (3.60). See Chen et al. [51], Lee and He [136], Melo et al.

[159] for detailed discussions on this point.
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Algorithm 3.2 Q-learning for agent i with linear function approximation
Set parameters

Θi: some compact subset of the Euclidian space Rd with diameter Di

{Tk}k≥0: sequence of integers in [1,∞), the length of the kth exploration phase
K ∈ Z+: number of exploration phases
ρi ∈ (0, 1): experimentation probability
λi ∈ (0, 1): inertia
ζi ∈ (0,∞): tolerance level for sub-optimality
{ηit}t≥0: sequence of step sizes

1: Initialize πi0 ∈ Πi (arbitrary), θi0 ∈ Rd (arbitrary)
2: Receive s0
3: for k = 1, 2 . . . do
4: for t = tk, . . . , tk+1 − 1 do

5: ait = π̄ik(st) :=

{
πik(st), w.p. 1− ρi

any ai ∈ Ai, w.p. ρi/|Ai|
6: Receive ri(st, a

i
t, a
−i
t )

7: Receive st+1 (selected according to P [ · | st, ait, a−it ])
8: θit+1 = θit+ηitϕ(st, a

i
t)
[
ri(st, a

i
t, a
−i
t ) + γimaxai∈Ai ϕi(st+1, a

i)⊤θit − ϕ(st, a
i
t)
⊤θit
]

9: end for
10: Π̃i

k+1 =
{
π̃i ∈ Πi : ϕitk+1

(s, π̃i(s))⊤θitk+1
≥ maxai∈Ai ϕitk+1

(s, ai)⊤θitk+1
− 1

2ζ
i
θ, ∀s

}
11: if πik ∈ Π̃i

k+1, then
12: πik+1 = πik
13: else

14: πik+1 =

{
πik, w.p. λi

any πi ∈ Π̃i
k+1, w.p. (1− λi)/|Π̃i

k+1|
15: end if
16: θitk+1

← projection of θitk+1
onto Θi

17: end for

Let b be an upper bound on the minimum Bellman error under joint policy π ∈ Π ∪ Π̄,

i.e.,

min
θi∈Θi

∥∥∥Qi
θi
− T i

π−i

(
Qi
θi

)∥∥∥
2
≤ b, ∀i ∈ [N ], π−i ∈ Π−i ∪ Π̄−i. (3.63)

Similar to (3.13) where ζ̄ is defined, we define the minimum separation between the linear
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approximated Q-functions:

ζ̄θ := min

i,s,ai,ãi,π−i∈Π−i:

Qi
θi
π−i

(s,ai)̸=Qi
θi
π−i

(s,ãi)

∣∣∣∣Qi
θi
π−i

(s, ai)−Qi
θi
π−i

(s, ãi)

∣∣∣∣ . (3.64)

We next have the following assumption on the bound of minimum Bellman error.

Assumption 3.6. The upper bound b on the minimum Bellman error as given in (3.63)

satisfies b <
(1−γ̄)ζ̄θ

8 .

Assumption 3.6 bounds the minimum Bellman error from a constant factor of the min-

imum separation between the linear approximated Q-factors. This assumption is necessary

to achieve a good approximation of Π̃i
π−i
k

by Π̃i
k+1 in line 10 of Algorithm 3.2, so that the

algorithm closely mimics the BRPI. Without Assumption 3.6, there is no guarantee that a

policy that is not a linear approximated equilibrium will be updated, i.e., an agent may not

update its current policy even if it is not a best reply.

For notational convenience, we let D := maxi∈[N ]D
i, ξmin := mini∈[N ] ξ

i, and ηmin =

mini,t η
i
t. With the above definitions and assumptions, we now present our second main

theorem on the sample complexity of Algorithm 3.2, whose proof is given in Appendix 3.6.1.

Theorem 3.2. Consider a discounted stochastic game that is weakly acyclic under strict

best replies (3.59). Suppose that each agent updates its policies by Algorithm 3.2. Let As-

sumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold. Then, for any 0 < δ < 1, one has that for

all k ≥ K,

P
[
πk ∈ Π̃eq

]
≥ 1− δ
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provided that for all i ∈ [N ] and k ∈ [K],

ηit = ηi ≤ ϵ2δ̃ξi

456NL̃
(
1 + γi + rimax

)2
(Di + 1)2timix,k(η

i)
, ∀t = tk, . . . , tk+1 − 1, (3.65a)

Tk ≥ tmix,k(ηmin) +
log ϵ2δ̃

2NL̃(2D+1)2

log (1− ξminηmin/2)
, (3.65b)

K ≥

[(
1− δ̃

)2
p̃− δ̃2

]
L̃[

δ̃ +
(
1− δ̃

)
p̃
]2

δ̃

, (3.65c)

ρi ≤ 1−
(
1−

(
ζ̄θ/8− ϵ

)
(1− γ̄)− 2b

Γ̃

) 1
N−1

:= ρ, (3.65d)

ζiθ =
ζ̄θ
2
, (3.65e)

where Γ̃ is some absolute constant which depends only on the game parameters (formally

defined in (3.72)), p̃ := p̂L̃/L, ϵ := min

{
ζ̄θ
16 − b

1−γ̄ ,
1

2(1−γ)

}
, and δ̃ is such that

δ = 1−


(
1− δ̃

)
p̃

δ̃ +
(
1− δ̃

)
p̃
− δ̃

(1− δ̃
)
.

Corollary 3.2. Recall from Proposition 3.2 that

tmix,k(α) ≤ (H + 1)

(
(− logα)

ANH

κρNH
·min

{
1, |S|−1ρ−1

}
+ 1

)
.

By applying this upper bound on the mixing time to Theorem 3.2, we may express the ηit

(∀t = tk, . . . , tk+1 − 1) and Tk in Theorem 3.2 as

ηit ≤
ϵ2δ̃ξiκρNH

456NL̃
(
1 + γi + rimax

)2
(Di + 1)2(H + 1)

(
κρNH − ANH ·min

{
1, |S|−1ρ−1

}
log ηi

) ,
(3.66a)
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Tk ≥ (H + 1)

(
(− log ηmin)

ANH

κρNH
·min

{
1, |S|−1ρ−1

}
+ 1

)
+

log ϵ2δ̃
2NL̃(2D+1)2

log (1− ξminηmin/2)
.

(3.66b)

We note that Theorem 3.2 provides the sample complexity for the joint deterministic

baseline policy πk to converge to a linear approximated equilibrium in Π̃eq, as defined in

Definition 3.5, which may or may not be the equilibrium as defined in Definition 3.1 due to

linear approximation. However, for the special case when each agent’s optimal Q-function

Qi
π̄−i
k

is realizable in Wi for all joint behavior policies π̄k ∈ Π̄, we will be able to show the

convergence of πk to an equilibrium in Πeq. Formally, we have the following realizability

assumption.

Assumption 3.7. For any joint policy π̄k as in (3.10), agent i’s optimal Q-function Qi
π̄−i
k

is realizable in Wi, i.e., there exists θi
π̄−i
k

∈ Θi ⊂ Rd such that

Qi
π̄−i
k

(s, ai) = ϕi(s, ai)⊤θi
π̄−i
k

,∀(s, ai) ∈ S ×Ai.

With this additional assumption, we arrive at the following result, whose proof can be

found in Appendix 3.6.2.

Theorem 3.3. Consider a discounted stochastic game that is weakly acyclic under strict best

replies (3.5). Suppose that each agent updates its policies by Algorithm 3.2. Let Assump-

tions 3.1, 3.2, 3.4, 3.5, and 3.7 hold. Then, for any 0 < δ < 1, one has for all k ≥ K,

P
[
πk ∈ Πeq

]
≥ 1− δ,

provided that for all i ∈ [N ] and k ∈ [K],

ηit = ηi ≤ ϵ2δ̃ξi

456NL
(
1 + γi + rimax

)2
(Di + 1)2timix,k(η

i)
, ∀t = tk, . . . , tk+1 − 1, (3.67a)
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Tk ≥ tmix,k(ηmin) +
log ϵ2δ̃

2NL(2D+1)2

log (1− ξminηmin/2)
, (3.67b)

K ≥

[(
1− δ̃

)2
p̂− δ̃2

]
L[

δ̃ +
(
1− δ̃

)
p̂
]2

δ̃

(3.67c)

ρi = 1−
(
1− (ζ̄/2− ϵ)(1− γ̄)

Γ

) 1
N−1

(3.67d)

ζi =
ζ̄

2
(3.67e)

where Γ, ζ̄ and p̂ are absolute constants as defined in (3.22), (3.13) and (3.27), respectively

(which depend only on the game parameters), ϵ := min

{
ζ̄
16 ,

1
2(1−γ)

}
, and δ̃ is such that

δ = 1−


(
1− δ̃

)
p̃

δ̃ +
(
1− δ̃

)
p̃
− δ̃

(1− δ̃
)
.

3.4.1 Numerical Experiments

Similar to the tabular cases, we use again the grid-world stochastic game to demonstrate the

effectiveness of Algorithm 3.2. All of the details about the agents, states, actions, reward,

and parameters in this setting are the same as those in Section 3.3.3. We construct the

feature vectors using a polynomial basis (Sutton and Barto [207]). Specifically, we use order-

3 polynomial-basis features, where each feature can be written as

ϕij(s, a) = s(1)c1,js(2)c2,jac3,j ,

where j = 1, . . . , d, each ck,j is an integer in the set {0, 1, 2, 3}. Since |S ×Ai| = 21 (for both

agents) in this stochastic game, we choose d = 18. To obtain the set of linear approximated

equilibria, for each π−i ∈ Π−i (i = 1, 2), we first compute θi
π−i by solving the quadratic

programming problem (3.58), and deduce the set of best reply policies under linear function
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approximation Π̃i
π−i from (3.59). Then, for each best reply policy π̃i ∈ Π̃i

π−i , we check if π̃i

is also a best reply policy of π−i under linear function approximation. If so, then the joint

policy (π−i, π̃i) is a linear approximated equilibrium.

As in Section 3.3.3, we also run experiments with different parameters of K and T , and

the process is repeated 50 times. The experimental results are presented in Figure 3.5. We

can see a similar phenomenon as in the tabular case. It can be seen from Figure 3.5a that

the minimum of the fraction 1
K

∑K
k=1 I{πk∈Πeq} of the 50 repeated runs is greater than 0

when K ≥ 100. It can also be seen from Figure 3.5b that the minimum of 1
K

∑K
k=1 I{πk∈Πeq}

is greater than 0 when T ≥ 200. This implies that the joint policy converges to a linear

approximated equilibrium at the end of the algorithm for all given initial policies. Moreover,

it can be seen that πk visits a linear approximated equilibrium more often as K and T in-

crease. This is consistent with Theorem 3.2, as πK is expected to be at a linear approximated

equilibrium with higher probability as K and T increase.

Figure 3.5: Experimental results of grid-world when Algorithm 3.2 is applied. a, The
fraction of times at which πk visits an equilibrium when K ranges in the interval [10, 5000].
b, The fraction of times at which πk visits an equilibrium when T ranges in the interval
[10, 5000]. In a, we fix the value of T as 1000. In b, we fix the value of K as 500. The solid
lines are the average of 50 runs, and the shaded regions represent the min-max interval.
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3.5 Conclusions and Future Work

This chapter was aimed at deriving sample complexity results on decentralized Q-learning al-

gorithms for a class of general-sum stochastic games – weakly acyclic games. The main take-

aways of this chapter can be summarized as follows. First, we have established finite-sample

guarantees for Algorithm 3.1, whose asymptotic convergence was shown earlier in Arslan and

Yüksel [21]. Second, we have imposed linear function approximation to the algorithm (as Al-

gorithm 3.2), and provided finite-sample analysis for its convergence to a linear approximated

equilibrium – a new notion of equilibrium that we have introduced.

Regarding the first point, we note that there are some nontrivial generalizations from the

asymptotic convergence to finite-sample analysis of Algorithm 3.1. One example is in the

proof of Lemma 3.5, where we have to ensure that Πi
k+1 well approximates Πi

π−i
k

, so that

any non-equilibrium policy would not stop updating before converging to equilibrium (the

“if-else” statement in Algorithm 1). Under the linear approximation setting, the behavior

that Qi
θik+1

and Qi
θi
π−i
k

are separated by a distance related to the minimum Bellman error

(Lemma 11) adds considerable complications to the analysis, as it may hinder the algorithm

from updating a linear approximated non-equilibrium policy. We address this issue in the

proof of Lemma 3.14. In addition, Lemmas 3.5 and 3.14 provide closed-form expressions

for the lower bounds p̂ and p̃, which did not exist in Arslan and Yüksel [21] but are crucial

for developing the finite-sample guarantees. Another example of new development lies in

Proposition 3.2. The notions of the minimum probability of stationary distribution µmin

and the mixing time tmix that appeared in the sample complexity results seem implicit,

while Proposition 3.2 bounds µmin and tmix under the current game set up, and thus the

results in both theorems can be expressed explicitly in terms of the game parameters. We

further note that, even with these (and other) developments, there is room for improvement

on the results. For instance, in the chapter we picked ϵ as the middle point of its possible

range, while it remains open to optimize over ϵ in (3.31) while keeping it simple to obtain a
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tighter bound on Tk.

Regarding the second point, we note that in the linear approximated equilibrium, each

agent’s policy is a best reply (to other agents’ joint policy) within the linear space spanned

by the set of features (basis functions). When the dimension of the feature set is large

enough so that the original Q-functions can be fully recovered for all state-action pairs, each

linear approximated equilibrium is naturally also a Markov perfect equilibrium and vice

versa. When we have a smaller feature set, the relationship between linear approximated

equilibria and Markov perfect equilibria can be general: a joint policy can be both a linear

approximated equilibrium and a Markov perfect equilibrium, or it can only be one of these

equilibria but not the other one. Fixing a certain (small) number of features, it would be

interesting to investigate the question of how to select features so that the set of linear

approximated equilibria overlaps the most with the set of Markov perfect equilibria.

We further note that, while we have derived the sample complexities of Algorithm 3.1

and Algorithm 3.2 for converging to a Markov perfect equilibrium and a linear approxi-

mated equilibrium, respectively, it is unknown which equilibrium these algorithms converge

to. In other words, a weakly acyclic stochastic game may possess multiple (linear approx-

imated) equilibria and some equilibria could be strictly better than others for all agents.

Most recently, Yongacoglu et al. [227] proposed learning algorithms that converge to optimal

equilibria for stochastic teams and common interest games. Moreover, Yongacoglu et al.

[228] eliminated the weakly acyclic assumption (existence of a best-reply path from any pol-

icy to an equilibrium policy) but introduced the ϵ-satisficing property (which is shown to

hold for two-player games and N -player symmetric games), and proposed an algorithm that

guarantees convergence of the joint baseline policy to an ϵ-equilibrium. Sayin and Unlu [187]

proved the convergence of logit-Q learning in infinite-horizon discounted identical-interest

Markov games. Building upon these recent works, designing algorithms (and analyzing their

sample complexities) that converge to different types of euilibira for stochastic games with
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various assumptions could be promising future research directions.

3.6 Appendix

3.6.1 Proof of Theorem 3.2

We first introduce the following lemma, which is an application of the sample complexity

result on the convergence of θ for single agent Q-learning (Chen et al. [51]).

Lemma 3.11. Fix any arbitrary πk ∈ Π. For any ϵ ≥ 0 and 0 < δ̂ < 1, we have that

P

[∣∣θitk+1
− θi

π̄−i
k

∣∣∞ ≤ ϵ, ∀i ∈ [N ]

]
≥ 1− δ̂,

provided that the iteration number Tk and the learning rates ηit obey

ηit = ηi ≤ ϵ2δ̂ξi

456N
(
1 + γi + rimax

)2
(Di + 1)2timix,k(η

i)
, ∀t = tk, . . . , tk+1 − 1, ∀i ∈ [N ],

(3.68a)

Tk ≥ tmix,k(ηmin) +
log ϵ2δ̂

2N(2D+1)2

log (1− ξminηmin/2)
, (3.68b)

where D = maxiD
i, ηmin = mini η

i, and ξmin = mini ξ
i.

Proof of Lemma 3.11. Note that in the kth exploration phase, agents adopt the joint policy

π̄k as defined in (3.10). Under Assumptions 3.1, 3.2, 3.4, and 3.5, Theorem 3.1 of Chen et al.

[51] implies that for any agent i,

E

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥2
2

]
≤ β1

(
1− ξiηit/2

)Tk−timix,k(η
i
t)
+ 2β2η

i
tt
i
mix,k(η

i
t)/ξ

i,

where β1 = (2Di + 1)2, β2 = 114
(
1 + γi + rimax

)2
(Di + 1)2, and ηit = ηi are such that
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ηi ≤ ξi

228(1+γi+rimax)
2
timix,k(η

i)
.

For any given ϵ > 0 and 0 < δ0 < 1, let ηit and Tk be such that

ηit = ηi ≤ ϵ2δ0ξ
i

456
(
1 + γi + rimax

)2
(Di + 1)2timix,k(η

i)
, ∀t = tk, . . . , tk+1 − 1 (3.69a)

Tk ≥ timix,k(η
i) +

log ϵ2δ0
2(2Di+1)2

log
(
1− ξiηi/2

) , ∀i ∈ [N ]. (3.69b)

Then, we have that ∀i ∈ [N ],

E

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥2
2

]
≤ β1

(
1− ξiηit/2

)Tk−timix,k(η
i
t)
+ 2β2η

i
tt
i
mix,k(η

i
t)/ξ

i

≤ ϵ2δ0
2

+
ϵ2δ0
2

= ϵ2δ0.

By Markov inequality, this further implies that

P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥2
2
≥ ϵ2

]
≤

E

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥2
2

]
ϵ2

≤ δ0, ∀i ∈ [N ],

which is equivalent to

P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
≥ ϵ

]
≤

E

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥2
2

]
ϵ2

≤ δ0, ∀i ∈ [N ].

From the union bound,

P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
≥ ϵ, ∃i ∈ [N ]

]
≤
∑
i∈[N ]

P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
≥ ϵ

]
≤ Nδ0.
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Therefore,

P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
≤ ϵ, ∀i ∈ [N ]

]
≥ 1− P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
≥ ϵ, ∃i ∈ [N ]

]
≥ 1−Nδ0.

Furthermore, since
∣∣θitk+1

− θi
π̄−i
k

∣∣∞ ≤ ∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
, we have that

P

[∣∣θitk+1
− θi

π̄−i
k

∣∣∞ ≤ ϵ, ∀i ∈ [N ]

]
≥ P

[∥∥∥∥θitk+1
− θi

π̄−i
k

∥∥∥∥
2
≤ ϵ, ∀i ∈ [N ]

]
≥ 1−Nδ0.

By taking δ̂ = Nδ0, ηit as in (3.69a), and

Tk ≥ tmix,k(ηmin) +
log ϵ2δ̂

2N(2D+1)2

log (1− ξminηmin/2)
≥ timix,k(η

i) +
log ϵ2δ0

2(2Di+1)2

log
(
1− ξiηi/2

) , ∀i ∈ [N ],

the proof is completed.

Lemma 3.11 bounds the approximation error of θitk+1
for each agent. By noting that

|ϕi|∞ ≤ ∥ϕi∥2 ≤ 1, Lemma 3.11 implies that for an arbitrary π̄k as in (3.10) and for any

ϵ > 0 and 0 < δ̂ < 1,

P

∣∣∣∣∣Qi
θitk+1

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞
≤ ϵ, ∀i ∈ [N ]

 = P

[∣∣∣∣ϕi⊤θitk+1
− ϕi

⊤
θi
π̄−i
k

∣∣∣∣∞ ≤ ϵ, ∀i ∈ [N ]

]

≥ 1− δ̂ (3.70)

when the same conditions (3.68) are satisfied.

Our next goal is to bound the approximation error of policy perturbation. Recall the

definition of the randomized policy in (3.10), and consider the joint policies of all agents

except i. With probability
∏

j ̸=i(1 − ρj), all agents j ̸= i end up playing their baseline

policies, which results in

∣∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣∣∞ = 0, i.e. the approximation error of policy
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perturbation becomes zero in this case. When not all agents play their baseline policies,

let φ−i ∈ ∆−i be some convex combination of the policies in ∆−i of the form where each

agent j ̸= i either uses a baseline policy πj ∈ Πj or the uniform distribution. More precisely,

let J denote the subset of agents choosing the baseline policies, and let

φ−i =
∑

J⊂{1,...,N}\{i}
aJφ

−i
J , (3.71)

where aJ :=

∏
j∈J (1−ρj)

∏
j /∈J∪{i} ρ

j

1−∏j ̸=i(1−ρj)
and φJ ∈ ∆−i is such that φ

j
J = πj for j ∈ J and

φ
j
J = νj for j /∈ J ∪ {i}. Denote by ∆̄−i ⊂ ∆−i the set of all policies in the form of (3.71).

Note that ∆̄−i is a finite set. We then define

Γ̃ := max
(π−i,φ−i)∈Π−i×∆̄−i

∣∣∣∣T i
π−i

(
Qi
θi
π−i

)
− T i

φ−i

(
Qi
θi
π−i

)∣∣∣∣∞ . (3.72)

We next have the following lemma on the approximation error due to policy perturbation.

Lemma 3.12. Fix any arbitrary πk ∈ Π. For any ϵ̃ > 0, if ρi satisfies

ρi ≤ 1−
(
1− ϵ̃(1− γ̄)

Γ̃

) 1
N−1

, ∀i ∈ [N ], (3.73)

then, we have that

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞

=

∣∣∣∣ϕi⊤θiπ−i
k

− ϕi
⊤
θi
π̄−i
k

∣∣∣∣∞ ≤ ϵ̃+
2b

1− γ̄
, ∀i ∈ [N ], k ∈ [K].

Proof of Lemma 3.12. First note that, for all i ∈ [N ] and k ∈ [K],

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞

=

∣∣∣∣∣Qi
θi
π−i
k

− T i
π−i
k

(
Qi
θi
π−i
k

)
+ T i

π−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π̄−i
k

)
+ T i

π̄−i
k

(
Qi
θi
π̄−i
k

)
−Qi

θi
π̄−i
k

∣∣∣∣∣
∞
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=

∣∣∣∣∣Qi
θi
π−i
k

− T i
π−i
k

(
Qi
θi
π−i
k

)∣∣∣∣∣
∞

+

∣∣∣∣∣T i
π−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π̄−i
k

)∣∣∣∣∣
∞

+

∣∣∣∣∣T i
π̄−i
k

(
Qi
θi
π̄−i
k

)
−Qi

θi
π̄−i
k

∣∣∣∣∣
∞

≤ b+

∣∣∣∣∣T i
π−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π̄−i
k

)∣∣∣∣∣
∞

+ b

≤
∣∣∣∣∣T i

π−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π−i
k

)∣∣∣∣∣
∞

+

∣∣∣∣∣T i
π̄−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π̄−i
k

)∣∣∣∣∣
∞

+ 2b. (3.74)

By definition of π̄−ik , we have that P
[
π̄−ik = π−ik

]
=
∏

j ̸=i(1 − ρj). With probability 1 −∏
j ̸=i(1− ρj), π̄−ik ̸= π−ik and π̄−ik ∈ ∆̄−i. Thus, the first term of (3.74) can be bounded by

∣∣∣∣∣T i
π−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π−i
k

)∣∣∣∣∣
∞

≤

1−
∏
j ̸=i

(1− ρj)

× ∣∣∣∣∣T i
π−i
k

(
Qi
θi
π−i
k

)
− T i

φ−i
k

(
Qi
θi
π−i
k

)∣∣∣∣∣
∞

, (3.75)

for some ϕ−ik ∈ ∆̄−i. On the other hand, by the contraction mapping of the Bellman

operator, we have that

∣∣∣∣∣T i
π̄−i
k

(
Qi
θi
π−i
k

)
− T i

π̄−i
k

(
Qi
θi
π̄−i
k

)∣∣∣∣∣
∞
≤ γi

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞

. (3.76)

Substituting (3.75) and (3.76) back into (3.74), we have that

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞
≤

1−
∏
j ̸=i

(1− ρj)

× ∣∣∣∣∣T i
π−i
k

(
Qi
θi
π−i
k

)
− T i

φ−i
k

(
Qi
θi
π−i
k

)∣∣∣∣∣
∞

+ γi

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞

+ 2b
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≤

1−
∏
j ̸=i

(1− ρj)

 Γ̃ + γi

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞

+ 2b,

which implies that

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞
≤

(
1−∏j ̸=i(1− ρj)

)
Γ̃ + 2b

1− γi
≤

(
1−∏j ̸=i(1− ρj)

)
Γ̃ + 2b

1− γ̄
.

If for all i ∈ [N ], ρi ≤ 1−
(
1− ϵ̃(1−γ̄)

Γ̃

) 1
N−1 , then, we have that 1− ρj ≥

(
1− ϵ̃(1−γ̄)

Γ̃

) 1
N−1 ,

which implies that
∏

j ̸=i(1− ρj) ≥ 1− ϵ̃(1−γ̄)
Γ̃

, and thus

∣∣∣∣∣Qi
θi
π−i
k

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞
≤

(
1−∏j ̸=i(1− ρj)

)
Γ̃ + 2b

1− γ̄
≤ ϵ̃+

2b

1− γ̄
.

The above holds for all i ∈ [N ] and k ∈ [K], which completes the proof.

Recall from (3.64) that ζ̄θ is the minimum separation of agents’ optimal linear approxi-

mated Q-factors. By Assumption 3.6, we have that ζ̄θ > 8b
1−γ̄ . We consider ζ̄θ as an upper

bound on ζiθ for all i. We next define the following random event for any arbitrary πk ∈ Π:

Ẽk :=

ω ∈ Ω :

∣∣∣∣∣Qi
θitk+1

−Qi
θi
π−i
k

∣∣∣∣∣
∞

<
1

4
min{ζiθ, ζ̄θ − ζiθ},∀i

 .

With this definition of Ẽk, we show that, if Ẽk is not empty and πk ∈ Π̃eq, then πk+1 = πk

with probability 1.

Lemma 3.13. Given any πk ∈ Π and the corresponding Ẽk, for all k, we have that

P
[
πk+1 = πk | Ẽk, πk ∈ Π̃eq

]
= 1.

Proof of Lemma 3.13. Let âi∗ := argmaxâi Q
i
tk+1

(
s, âi

)
. Then, conditioned on Ek and
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πk ∈ Π̃eq, we have that

max
âi

Qi
θitk+1

(
s, âi

)
−Qi

θitk+1

(
s, πik(s)

)
= Qi

θitk+1

(
s, âi∗

)
−Qi

θitk+1

(
s, πik(s)

)
=

[
Qi
θitk+1

(
s, âi∗

)
−Qi

θi
π−i
k

(
s, πik(s)

)]
+

[
Qi
θi
π−i
k

(
s, πik(s)

)
−Qi

θitk+1

(
s, πik(s)

)]

< Qi
θitk+1

(
s, âi∗

)
−Qi

θi
π−i
k

(
s, πik(s)

)
+

1

4
min

{
ζiθ, ζ̄θ − ζiθ

}
<

[
Qi
θitk+1

(
s, âi∗

)
−Qi

θi
π−i
k

(
s, âi∗

)]
+

[
Qi
θi
π−i
k

(
s, âi∗

)
−Qi

θi
π−i
k

(
s, πik(s)

)]

+
1

4
min

{
ζiθ, ζ̄θ − ζiθ

}
<

1

4
min

{
ζiθ, ζ̄θ − ζiθ

}
+

1

4
min

{
ζiθ, ζ̄θ − ζiθ

}
≤ 1

2
min

{
ζiθ, ζ̄θ − ζiθ

}
,

where the second-to-last inequality follows since Qi
θi
π−i
k

(
s, âi∗

)
−Qi

θi
π−i
k

(
s, πik(s)

)
< 0, which

follows from πk ∈ Π̃eq. It follows that Qi
θitk+1

(
s, πik(s)

)
≥ maxâi Q

i
θitk+1

(
s, âi

)
− 1

2ζ
i
θ for all i.

Then, by Algorithm 3.2 (lines 10-12), we have that πk+1 = πk with probability 1.

Recall that L̃ is the maximum length of the shortest strict best reply path from any policy

to a linear approximated equilibrium policy. Our next lemma lower bounds the conditional

probability of πk+L being a linear approximated equilibrium policy, given that πk is not a

linear approximated equilibrium policy and given Ẽk, . . . , Ẽk+L̃−1.

Lemma 3.14. Let

p̃ :=

 min
j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


L̃

= p̂L̃/L. (3.77)
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We have that

P
[
π
k+L̃
∈ Π̃eq

∣∣ Ẽk, . . . , Ẽk+L̃−1, πk ̸∈ Π̃eq

]
≥ p̃. (3.78)

Proof of Lemma 3.14. The proof is similar to that of Lemma 3.5. Consider some πk /∈ Π̃eq;

there must exist at least one agent, say i, whose policy πik is not the best reply to π−ik , i.e.,

πik /∈ Π̃i
π−i
k

. In this case, we claim that πik /∈ Π̃i
k+1, where Π̃i

k+1 is as defined in Algorithm 3.2

(line 10). In other words, the “else” statement in Algorithm 3.2 (line 14) will be executed. To

see this, it suffices to show that ϕitk+1
(s, πik(s))

⊤θitk+1
< maxai∈Ai ϕitk+1

(s, ai)⊤θitk+1
− 1

2ζ
i
θ,

for some s ∈ S. Conditioned on Ẽk, we have that

Qi
θi
π−i
k

(s, ai)− 1

4
min{ζiθ, ζ̄θ − ζiθ} < Qi

θitk+1

(s, ai) < Qi
θi
π−i
k

(s, ai) +
1

4
min{ζiθ, ζ̄θ − ζiθ},

i.e., Qi
θitk+1

(s, ai) lies within a distance of 1
4 min{ζiθ, ζ̄θ − ζiθ} to Qi

θi
π−i
k

(s, ai). Moreover, we

note that 1
4 min{ζiθ, ζ̄θ − ζiθ} ≤ 1

8 ζ̄θ. Recall that {Qi
θi
π−i
k

(s, ai) : ai ∈ Ai} are dispersed with

spacing being at least ζ̄θ, where ζ̄θ is as defined in (3.64) as the minimum separation between

the approximated Q-factors. Thus, it follows that the possible ranges of Qi
θitk+1

(s, ai) for

all ai ∈ Ai are mutually exclusive, which implies that the τ -th best action under Qi
θi
π−i
k

is

identical to that under Qi
θitk+1

, i.e.,

argmax
ai∈Ai

(
Qi
θi
π−i
k

(s, ai)
)
(τ)

= argmax
ai∈Ai

(
Qi
θitk+1

(s, ai)
)
(τ)

,

where (·)(τ) represents the τ -th largest value. For instance, when τ = 1, we have that

argmaxai∈Ai Qi
θi
π−i
k

(s, ai) = argmaxai∈Ai Qi
θitk+1

(s, ai), which are denoted by ai∗
θi
π−i
k

(s) and

ai∗
θitk+1

(s), respectively.
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Since πik /∈ Π̃i
π−i
k

, it follows that πik(s) ̸= argmaxai∈Ai Qi
θi
π−i
k

(s, ai) =: ai∗
θi
π−1
k

(s) for some

s ∈ S. Then, we have that

max
ai∈Ai

Qi
θitk+1

(s, ai)−Qi
θitk+1

(s, πik(s))

>

(
max
ai∈Ai

Qi
θi
π−i
k

(s, ai)− 1

8
ζ̄θ

)
−
(
Qi
θi
π−i
k

(s, πik(s)) +
1

8
ζ̄θ

)

=

(
Qi
θi
π−i
k

(
s, ai∗

θi
π−i
k

(s)
)
−Qi

θi
π−i
k

(s, πik(s))

)
− 1

4
ζ̄θ

≥ ζ̄θ −
1

4
ζ̄θ =

3

4
ζ̄θ ≥

3

4
ζiθ >

1

2
ζiθ

as desired. Now, we are ready to prove the statement.

Let l be the length of the shortest strict best reply path from πk to a linear approximated

equilibrium policy. Then, l ≤ L̃. Let the sequence of policies along the path be π0, π1, . . . , πl,

with π0 = πk /∈ Π̃eq and πl ∈ Π̃eq. Further, let i1, . . . , il be the agent that changes its policy

at each update, i.e., πn−1 and πn differ only at agent in, for all n = 1, . . . , l. Then, we use

the two probabilities in the policy update rule in Algorithm 3.2 (line 14) to yield

P
[
π
k+L̃
∈ Π̃eq

∣∣ Ek, . . . , Ek+L̃−1, πk ̸∈ Π̃eq

]
≥ P

[
π
k+L̃

= πl
∣∣ Ek, . . . , Ek+L̃−1, πk ̸∈ Π̃eq

]
≥ P

[
πk+1 = π1, πk+2 = π2, . . . , πk+l = πl,

πk+l+1 = · · · = π
k+L̃

= πl
∣∣ Ek, . . . , Ek+L̃−1, πk ̸∈ Π̃eq

]
≥ P

[
πk+1 = π1

∣∣ Ek, . . . , Ek+L̃−1, πk = π0

]
· P
[
πk+2 = π2

∣∣ Ek, . . . , Ek+L̃−1, πk = π0, πk+1 = π1

]
· P
[
πk+3 = π3

∣∣ Ek, . . . , Ek+L̃−1, πk = π0, πk+1 = π1, πk+2 = π2

]
· · · ·

· P
[
πk+l = πl

∣∣ Ek, . . . , Ek+L̃−1, πk = π0, πk+1 = π1, . . . , πk+l−1 = πl−1
]
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· P
[
πk+l+1 = πl

∣∣ Ek, . . . , Ek+L̃−1, πk = π0, πk+1 = π1, . . . , πk+l = πl

]
· · · ·

· P
[
π
k+L̃

= πl
∣∣ Ek, . . . , Ek+L̃−1, πk = π0, πk+1 = π1, . . . , πk+l = πl, . . . , πk+L̃−1 = πl

]
≥

∏
j∈{i1,...,il}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi

 ≥
 min

j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


l

≥

 min
j∈{1,...,N}

1− λj∣∣Πj
∣∣ ·∏

i̸=j

λi


L̃

,

where we have used the fact from Lemma 3.13: given πl ∈ Π̃eq and the events Ek, . . . , Ek+L̃−1,

the conditional probability that πs ∈ Π̃eq is 1 for all s ≥ l.

We will then bound P
[
Ẽk, . . . , Ẽk+L̃−1

]
. Before doing that, we first look at P [Ẽk]. We

would like P [Ẽk] to be as large as possible. Note that 1
4 min{ζiθ, ζ̄θ−ζiθ} ≤ 1

8 ζ̄θ, with equality

holding when ζiθ = 1
2 ζ̄θ. We next have the following lemma.

Lemma 3.15. Let ζiθ = ζ̄θ
2 for all i ∈ [N ]. Fix an arbitrary πk ∈ Π. For any 0 < δ̂ < 1, we

have that

P
[
Ẽk

]
≥ 1− δ̂,

provided that ρi ≤ 1 −
(
1− (ζ̄θ/8−ϵ)(1−γ̄)−2b

Γ̃

) 1
N−1

, and Tk and ηit satisfy (3.68), where ϵ

can take any value in 0 < ϵ < min
{
ζ̄θ
8 − 2b

1−γ̄ ,
1

1−γmin

}
.

Proof of Lemma 3.15. A direct implication of Lemma 3.11 with (3.70) and Lemma 3.12 is

that when Tk and ηit satisfy (3.68), and ρi satisfies (3.73), then, by triangle inequality, we

have that

P

∣∣∣∣∣Qi
θitk+1

−Qi
θi
π−i
k

∣∣∣∣∣
∞
≤ ϵ+ ϵ̃+

2b

1− γ̄
, ∀i ∈ [N ]

 ≥ 1− δ̂. (3.79)

The lemma then follows by taking ϵ̃ = 1
8 ζ̄θ − ϵ− 2b

1−γ̄ .
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We then have the following lemma which bounds P
[
Ẽk, . . . , Ẽk+L̃−1

]
.

Lemma 3.16. For any arbitrary sequence of joint policies πk, . . . , πk+L̃−1 ∈ Π, and for any

0 < δ̃ < 1, we have that

P
[
Ẽk, . . . , Ẽk+L̃−1

]
≥ 1− δ̃,

provided that for all i ∈ [N ] and for all k̂ ∈ {k, . . . , k + L̃− 1},

ηit = ηi ≤ ϵ2δ̃ξi

456NL̃
(
1 + γi + rimax

)2
(Di + 1)2timix,k(η

i)
, ∀t = t

k̂
, . . . , t

k̂+1
− 1,∀i ∈ [N ],

(3.80a)

T
k̂
≥ tmix,k(ηmin) +

log ϵ2δ̃
2NL̃(2D+1)2

log (1− ξminηmin/2)
, (3.80b)

ρi ≤ 1−
(
1−

(
ζ̄θ/8− ϵ

)
(1− γ̄)− 2b

Γ̃

) 1
N−1

, (3.80c)

ζi =
ζ̄

2
, (3.80d)

where ϵ can take any value in 0 < ϵ < min
{
ζ̄θ
8 − 2b

1−γ̄ ,
1

1−γmin

}
.

Proof of Lemma 3.16. When the conditions of Lemma 3.15 are satisfied, we have that

P
[
Ẽc
k

]
< δ̂, where Ẽc

k is the complement of Ẽk. Then,

P
[
Ẽk, . . . , Ẽk+L̃−1

]
= 1− P

[(
Ẽk, . . . , Ẽk+L̃−1

)c]
= 1− P

[
Ẽc
k ∪ · · · ∪ Ẽc

k+L̃−1

]
≥ 1−

(
P
[
Ẽc
k

]
+ P

[
Ẽc
k+1

]
+ · · ·+ P

[
Ẽc
k+L̃−1

])
= 1− L̃δ̂.

By taking δ̃ = L̃δ̂, it follows that the conditions (3.68) now become (3.80), and the lemma

is proved.

For simplicity, we choose ϵ = 1
2 min

{
ζ̄θ
8 − 2b

1−γ̄ ,
1

1−γmin

}
in Theorem 3.2. Note that
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the result of Lemma 3.16 holds for any realization of πk ∈ Π. Therefore, under the same

conditions, we in fact have that

P
[
Ẽk, . . . , Ẽk+L̃−1

∣∣ πk ∈ Π̃eq

]
≥ 1− δ̃, (3.81a)

P
[
Ẽk, . . . , Ẽk+L̃−1

∣∣ πk /∈ Π̃eq

]
≥ 1− δ̃. (3.81b)

By Lemma 3.13 and (3.81a), under conditions (3.80), we have that for all k,

P
[
πk = πk+1 = · · · = π

k+L̃

∣∣ πk ∈ Π̃eq

]
≥ 1− δ̃. (3.82)

By Lemma 3.14 and (3.81b), under conditions (3.80), we have that for all k,

P
[
π
k+L̃
∈ Π̃eq

∣∣ πk /∈ Π̃eq

]
≥ p̃

(
1− δ̃

)
. (3.83)

As a notation, let pk := P
[
πk ∈ Π̃eq

]
. Then, (3.82) and (3.83) together imply that

p(n+1)L ≥ pnL

(
1− δ̃

)
+ (1− pnL)p̃

(
1− δ̃

)
. (3.84)

Rearranging the above, we obtain that

p(n+1)L − pnL ≥
(
1− δ̃

)
p̃− δ̃pnL −

(
1− δ̃

)
p̃pnL

=
[
δ̃ +

(
1− δ̃

)
p̃
]

(
1− δ̃

)
p̃

δ̃ +
(
1− δ̃

)
p̃
− pnL

 (3.85)

≥ −δ̃ (3.86)

Note that p(n+1)L − pnL ≥ 0 as long as pnL ≤
(
1−δ̃

)
p̃

δ̃+
(
1−δ̃

)
p̃
. Further, if pnL ≤

(
1−δ̃

)
p̃

δ̃+
(
1−δ̃

)
p̃
− δ̃,
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then from (3.85), we have that p(n+1)L − pnL ≥
[
δ̃ +

(
1− δ̃

)
p̃
]
δ̃; if pnL >

(
1−δ̃

)
p̃

δ̃+
(
1−δ̃

)
p̃
, then

p(n+1)L − pnL ≥ −δ̃ from (3.86). Therefore, we have that

pnL ≥

(
1− δ̃

)
p̃

δ̃ +
(
1− δ̃

)
p̃
− δ̃, ∀n ≥ ñ, (3.87)

where

ñ :=

(
1−δ̃

)
p̃

δ̃+
(
1−δ̃

)
p̃
− δ̃[

δ̃ +
(
1− δ̃

)
p̃
]
δ̃
=

(
1− δ̃

)2
p̃− δ̃2[

δ̃ +
(
1− δ̃

)
p̃
]2

δ̃

. (3.88)

This, together with (3.82), implies that for all n ≥ ñ,

P
[
πnL = πnL+1 = · · · = πnL+L ∈ Π̃eq

]
≥


(
1− δ̃

)
p̃

δ̃ +
(
1− δ̃

)
p̃
− δ̃

(1− δ̃
)
:= f(δ̃). (3.89)

Therefore, if the number of exploration phases k ≥ K := ñL̃, then P
[
πk ∈ Π̃eq

]
≥ f(δ̃).

Note that f(δ̃) is continuous, decreasing in δ̃, and f(0) = 1, f(δ) < 1− δ for any 0 < δ < 1.

Thus, we can take δ̃ ∈ (0, δ) such that


(
1− δ̃

)
p̃

δ̃ +
(
1− δ̃

)
p̃
− δ̃

(1− δ̃
)
= 1− δ, (3.90)

which leads to P
[
πk ∈ Π̃eq

]
≥ 1 − δ for all k ≥ K, and this completes the proof of Theo-

rem 3.2.

241



3.6.2 Proof of Theorem 3.3

Following Lemma 3.11 and by noting that |ϕi|∞ ≤ ∥ϕi∥2 ≤ 1, Lemma 3.11 implies that for

an arbitrary π̄k as in (3.10) and for any ϵ > 0 and 0 < δ̂ < 1,

P

∣∣∣∣∣Qi
θitk+1

−Qi
θi
π̄−i
k

∣∣∣∣∣
∞
≤ ϵ, ∀i ∈ [N ]

 = P

[∣∣∣∣ϕi⊤θitk+1
− ϕi

⊤
θi
π̄−i
k

∣∣∣∣∞ ≤ ϵ, ∀i ∈ [N ]

]

≥ 1− δ̂

when the conditions (3.68) are satisfied. Under Assumption 3.7, we have that Qi
θi
π̄−i
k

= Qi
π̄−i
k

,

which leads to

P

[∣∣∣∣Qi
θitk+1

−Qi
π̄−i
k

∣∣∣∣
∞
≤ ϵ, ∀i ∈ [N ]

]
≥ 1− δ̂.

The above is exactly the same as the result in Lemma 3.2, and the rest of the proof follows

the proof of Theorem 3.1.
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CHAPTER 4

DESIGN OF POWER PURCHASE AGREEMENTS WITH

RENEWABLE ENERGY GENERATORS

4.1 Introduction

It is with little doubt that addressing the energy and environmental challenges, including

climate change, is one of the top priorities of our time (United Nations [215]). Among all

economic sectors, electricity production is the second largest contributor to U.S. greenhouse

gas (GHG) emissions, and the largest emitting sector in the world (Environmental Protec-

tion Agency [69], International Energy Agency [115]). Renewable energy sources, such as

solar and wind, emit little to no greenhouse gases, reducing the negative impact of energy

production on the planet. Thus, they are not only crucial in meeting energy needs but also

in reducing greenhouse gas emissions and mitigating climate change. Renewable energy in-

vestments have recently soared across the globe. According to International Energy Agency

[116], global energy investment is set to increase by 8% in 2022 to reach USD 2.4 trillion,

with the anticipated rise coming mainly in clean energy. Moreover, the pace of growth of

clean energy has accelerated significantly to 12% since 2020, comparing to only 2% a year

in the five years after the Paris Agreement was signed in 2015. These investments in re-

newable energy provide significant environmental, economic, and societal benefits. From an

environmental perspective, renewable energy sources such as solar and wind emit little to

no greenhouse gases or air pollutants, reducing the negative impact of energy production on

the planet. By transitioning to renewable energy, we can reduce our reliance on fossil fuels,

which are finite resources and contribute to climate change. Economically, renewable energy

has the potential to create new jobs and boost economic growth. According to International

Renewable Energy Agency [117], the renewable energy sector employed over 12.7 million

people globally in 2021, and this number is expected to continue to grow. Additionally,
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investing in renewable energy can lead to cost savings over time. On societal impacts, access

to renewable energy can provide energy security, particularly in remote or underserved areas,

and improve the health and well-being of communities by reducing air pollution. Addition-

ally, renewable energy projects often involve collaboration with local communities and can

provide opportunities for community ownership and participation.

Despite the numerous benefits of renewable energy, there are also challenges that need to

be addressed. One of the main challenges is the intermittency of renewable energy sources

such as solar and wind power. Unlike traditional energy sources, renewable energy sources

are dependent on weather conditions and may not always be available when needed. With

the increasing integration of renewable energy, the energy supply becomes more volatile,

which in turn also leads to financial instability to both the generators and the consumers of

renewable energy.

One solution to address these uncertainties brought by the renewable energy is the power

purchase agreements. A power purchase agreement (PPA) is a contractual agreement be-

tween a firm (buyer) and a renewable energy generator (seller) (Wu and Babich [222]). These

agreements are also called renewable PPAs. PPAs provide more financial certainty to both

the buyer and the seller, thus removing a significant roadblock to building new renewable

facilities (Bruck et al. [44]). Many Fortune 500 companies, such as Amazon and Meta, have

made significant investments in renewable energy (Holter [106]). In 2021 alone, Amazon

signed 6.2GW of PPAs, accounting for over 20% of a record 31.1GW of clean-power pur-

chase deals inked by private companies around the world (Chediak [47]). In 2022, global

renewable PPA volume was 36.7GW, which is 18% higher than the 2021 figure, and the

volume of total renewable PPAs signed by corporations between 2008 and 2022 exceeded the

entire energy generation capacity of France (PV Tech [175]). The current designs of Power

Purchase Agreements (PPAs) can differ in their structures, with varying specifications for

the quantity of electricity to be delivered, which can be expressed in kWh or as a total gener-
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ation from specific facilities, such as solar farms. The pricing of the electricity can be either

fixed or indexed to market rates, and the delivery point can either be on-site or off-site.

Furthermore, payment schedules may vary depending on the specific terms agreed upon by

the buyer and seller.

As the number of new renewable energy deals continue to grow, it is becoming more

important than ever to have a better design of PPAs that, while financially benefiting the

firm, provides incentives for more investment on renewable energy facilities, and makes the

firm’s electricity consumption more eco-friendly. Toward this goal, in this chapter, we design

a PPA where the firm agrees to make a certain transfer payment to the renewable generator,

and the generator invests that payment to build new renewable energy facilities, such as solar

photovoltaics (PVs) and/or wind turbines. The firm will then have access to all electricity

generation from the new facilities for a long-term period, e.g., 20 years (Christophers [54]).

The firm may dynamically decide when to start the PPA on an ongoing basis, based on

the evolving market conditions, and the transfer payment (amount of investment) is also

specified by the firm. The firm’s objective is to maximize its long-term discounted benefit

(total savings) from signing the PPA. For ease of presentation, we consider solar PPAs in this

chapter, while our model can be easily modified to suit PPAs with other types of renewable

generations.

4.1.1 Contributions

The contribution of this chapter is three-fold. First, we mathematically formulate the firm’s

decision problem as an optimal stopping problem and provide analytical solutions. Specif-

ically, we provide the optimal policy for the firm, where the firm signs the PPA once the

total electricity demand in the market reaches some constant threshold, and the amount of

transfer payment is set such that the capacity of newly added renewable facilities optimizes

the firm’s expected long-term total discounted savings. In this work, we also characterize
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the effect of the renewable energy facilities’ production level (for solar, this is determined by

the weather and the conversion efficiency of PVs), the length of the PPA, and the investment

cost of renewable facilities. We conclude that with an increased PV efficiency or with an in-

creased length of the PPA, the firm will optimally sign a PPA earlier, with a smaller capacity

of new renewable facilities, and the firm attains higher expected value. The expected total

new generation from the PPA may increase or decrease with the PV efficiency, depending

on the variation and efficiency of PV generations. Furthermore, under certain conditions, a

higher investment cost will make the firm wait longer to sign the PPA, but the firm would

also invest in a higher capacity of renewable facilities, which leads to a higher expected total

new generation from the PPA.

Second, we consider the same PPA model with technology price discount, i.e., the in-

vestment cost exponentially decreases in time. This additional discount on investment cost

leads to a more complicated optimal policy for the firm: the firm should start the PPA as

soon as the total demand in the market hits some time-dependent threshold. We obtain

the optimal threshold as a function of time, and provide explicit expressions for the firm’s

optimal investment capacity. We also derive the distribution of the firm’s waiting time (be-

fore signing the PPA). The characterization of the effect of the renewable energy facilities’

production level, the length of the PPA, and the investment cost are similar to those in the

original PPA model, with slight differences. The optimal capacity is no longer monotonically

decreasing with the PV efficiency and the length of the PPA. Instead, the change of optimal

capacity might increase or decrease with respect to the PV efficiency, depending on the ratio

of the variation and efficiency of PV generations. The optimal capacity first decreases and

then slightly increases with the length of the PPA, where the increase reflects the additional

benefit of discount on investment costs at a later time.

Third, we consider an extension model where the firm no longer dynamically decides

when to start the PPA, but needs to commit at the very beginning if it would sign a PPA,
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and if yes, when the PPA would start and how much to invest. We again characterize the

effect of the production level, the length of the PPA, and the investment cost on the firm’s

optimal capacity, savings, and the total new generation due to the PPA.

4.1.2 Literature Review

Integration and operation of renewable energy has been studied extensively in literature from

different aspects. We list below a few of them.

Competition and equilibrium: Al-Gwaiz et al. [7] studied the competition of conven-

tional power generators with different levels of flexibility and the impact of intermittent

renewable generators on the competition. Sunar and Birge [204] analyzed equilibrium in the

day-ahead electricity market with both renewable generators and conventional generators,

and characterized the equilibrium bidding strategy of renewable generators in the day-ahead

market.

Pricing policies: Alizamir et al. [9] studied the dynamic control of prices of feed-in tariff

policies for promoting renewable energy. Kök et al. [131] considered the impact of pric-

ing policies, i.e., flat pricing versus peak pricing, on the investment levels of a utility firm

in both renewable and conventional energy sources. Mamaghani and Çakanyıldırım [152]

studied the interplay between a higher solar adoption level and a higher electricity price.

Singh and Scheller-Wolf [196] analyzed the effect of tariff structures in the regulator’s social

welfare maximization problem in a market with a regulated utility; an unregulated, price-

setting, profit-maximizing solar system installer; and customers who endogenously determine

whether to adopt solar or not.

Investment problem: Kök et al. [132] considered the capacity investment problem for a

utility firm that invests in both renewable and conventional energy. Angelus [14] studied the
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investment decisions on distributed energy resources by the end consumers. Hu et al. [110]

focused on the organization’s one-time capacity investment in a renewable energy-producing

technology with supply intermittency and net metering compensation and emphasized the

importance of data granularity. Kaps et al. [124] considered the joint optimization of in-

vestment in renewable generation capacity and storage. An empirical study by Huang et al.

[111] considered the effect of noisy customer reviews on solar marketplace.

Distributed energy resources (DERs): Sunar and Swaminathan [205] analyzed how

net-metered distributed renewable energy technologies, such as rooftop solar panels adopted

by end-users, impact utility profits. Chen et al. [49] studied the competitive aggregation

of DERs. Chen et al. [50] designed a coordination mechanism between the distribution

system operator and the DER aggregators to ensure system reliability while providing open

access to the aggregators. Gao et al. [88, 89, 92] proposed efficient aggregations of DERs

through a two-part pricing policy, and analyzed the effect of DERs on the market power of

conventional generators. Mamaghani and Çakanyıldırım [152] studied the interplay between

a higher solar adoption level and a higher electricity price. Singh and Scheller-Wolf [196]

analyzed the effect of tariff structures in the regulator’s social welfare maximization problem

in a market with a regulated utility; an unregulated, price-setting, profit-maximizing solar

system installer; and customers who endogenously determine whether to adopt solar or not.

Power purchase agreements (PPAs): Wu and Babich [222] analyzed different types of

power plants’ misreporting in a unit-contingent power purchase agreement with an electricity

distributor. Trivella et al. [213] employed approximate dynamic programming to study power

purchase agreements. However, there is no prior study that analyzes the truly optimal design

of PPAs with renewable energy generators, which is the topic of our study.

Apart from these, Peng et al. [173] studied the optimization on the joint operations of

different types of energy resources, i.e., renewable (wind and solar), flexible (natural gas), and
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storage capacities. Birge [39] proposed methods to uncover the network structure (including

electric power networks) across commodity markets and provided implications that these

hidden connections may have for predicting risk propagation and cascading failures. For

more papers on sustainable operations and renewable energy, see Sunar and Swaminathan

[206] for a comprehensive review.

4.1.3 Organization

The rest of this chapter is organized as follows. In Section 4.2, we introduce our first PPA

model by describing the renewable generator and the firm’s problems. We also characterize

the electricity price dynamics. In Section 4.3, we formulate the firm’s dynamic decisions as

an optimal stopping problem, and derive the optimal solution to the PPA model. We also

provide a complete analysis on the properties of the optimal investment capacity, the firm’s

expected savings, and the total new generation from the PPA. Then, a more complicated

model, with the additional discount on investment cost, is proposed and solved in Section 4.4.

The effect of discount on investment cost is also discussed. In Section 4.5, we study another

extension of the PPA model where the firm needs to make all the investment decisions

upfront. The chapter concludes with Section 4.6. For the ease of presentation, all proofs are

left to Appendix 4.7.

4.2 Power Purchase Agreement Model

In this section, we introduce our first power purchase agreement (PPA) model, which includes

the problems faced by the firm (or utility) and the renewable generator, as well as the

electricity price dynamics in the spot market. In a nutshell, at time t = 0, the renewable

generator first announces {Qt, t ≥ 0}, the production amount of one unit of the renewable

facility, which is a general stochastic process, as well as the cost function for the investment

of renewable facilities. As time evolves, the firm observes its own demand as well as the
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total demand for electricity in the spot market, and dynamically (at each time instant t)

decides if it would sign a PPA of length T (that starts immediately) with the renewable

generator to minimize its expected total cost. A transfer amount C is also specified by the

firm, to be paid at the start of the PPA. If a PPA is signed at time τ , then the renewable

generator invests all C to build new renewable energy facilities, and the firm has access to

all electricity production from these facilities from τ to τ + T . However, the newly built

renewable facilities have a lifespan T̂ (which is greater than T ) and can last till time τ + T̂ .

4.2.1 Renewable Generator’s Problem

The renewable generator is assumed to be a passive decision maker who always invests all C

to maximize the size (capacity) of the new renewable energy facilities. Let I(k) be the

cost function of investing k units of renewable facilities. Assume that I(k) is given by the

following linear function

I(k) = bk, k ≥ 0, (4.1)

where b is a positive constant coefficient. If a PPA is signed, the renewable generator earns

the transfer C. The renewable generator builds renewable facilities of capacity K such that

I(K) = C =⇒ K =
C

b
. (4.2)

4.2.2 Electricity Spot Price Dynamics

Let the total demand for electricity in the spot market be {Dt, t ≥ 0} that follows a geometric

Brownian motion (GBM), i.e., dDt = µDDtdt+ σDDtdWt, with the assumption that µD >

σ2D/2. The GBM process of energy demand has been commonly assumed in literature,

e.g. Djauhari et al. [66], Marathe and Ryan [155].
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The production from one unit of the renewable facility is a general stationary stochastic

process {Qt, t ≥ 0}, with mean µQ and standard deviation σQ, which is independent of

{Dt}. Let Q̂t be the total generation from the new renewable facility from the PPA. With K

capacity of facility, the total electricity production from the renewable facility is Q̂t := KQt.

Then, the net electricity demand is given by the stochastic process

Nt = Dt −KQt, t ≥ 0. (4.3)

Assume that the electricity price in spot market has the form

pt = θNt, (4.4)

where θ is some positive constant. Let pNt denote the spot market price at time t, assuming

no PPA is signed, and let pYt denote the spot market price at time t if a PPA is signed.

Then, from (4.4) we have that pYt = θ(Dt −KQt) and pNt = θDt.

4.2.3 Firm’s Problem

Consider a firm that needs to satisfy an uncertain residual electricity demand, i.e., the excess

demand that is not met by existing generation sources or power contracts. The firm’s residual

demand at each time instant t is given by

{Ut, t ≥ 0} . (4.5)

We assume that Ut = αDt (α being a constant in [0, 1]), i.e., the firm’s residual demand is

always a constant fraction of the total demand. The residual demand can be satisfied by

procuring electricity from the spot market at the spot market price. The firm also has the

option to make a long term capacity contract with a new renewable generator, which gives
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the firm access to all electricity produced by the renewable generator for T time length.

Such a contract may fulfill all or part of the residual demand, while the remaining residual

demand may still be satisfied from the spot market.

Let λd be the discount rate of uninvested cash (real interest rate). Throughout the rest

of this chapter, we make the following assumption: λd > 2µD + σ2D.

Without a PPA, the firm’s total cost, starting from τ and discounted to time τ , for

procuring electricity from the spot market is given by

∫ τ+T

τ
e−λd(s−τ)pNs Usds+

∫ τ+T̂

τ+T
e−λd(s−τ)pNs Usds+

∫ ∞
τ+T̂

e−λd(s−τ)pNs Usds. (4.6)

With a PPA starting from τ and lasts till τ +T , the firm’s total cost for procuring electricity

from the spot market becomes

∫ τ+T

τ
e−λd(s−t)pYs

[
Us − Q̂s

]+
ds+

∫ τ+T̂

τ+T
e−λd(s−τ)pYs Usds+

∫ ∞
τ+T̂

e−λd(s−τ)pYs Usds.

(4.7)

We assume that, with the PPA, the firm always own all electricity produced by the renewable

generator during (τ, τ + T ), and when Q̂t > Ut, the firm can sell Q̂t − Ut back, again at

the spot market price. Therefore, when the PPA is signed at time τ , the firm will earn the

following revenue from selling:

∫ τ+T

τ
e−λd(s−τ)pYs

[
Q̂s − Us

]+
ds. (4.8)

Thus, the firm’s overall cost, with a PPA signed at τ , is given by

(4.7)− (4.8) + C =

∫ τ+T

τ
e−λd(s−τ)pYs

[
Us − Q̂s

]
ds+

∫ τ+T̂

τ+T
e−λd(s−τ)pYs Usds

+

∫ ∞
τ+T̂

e−λd(s−τ)pYs Usds+ C. (4.9)
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Note that T̂ is the lifespan of the renewable facilities, and thus Nt = Dt for t > τ + T̂

with and without the PPA, which results in pYt = pNt for t ∈ (τ + T̂ ,∞). The firm’s savings

(discounted to time τ) from signing a PPA with transfer amount C at time τ is then

(4.6)− (4.9) =
∫ τ+T

τ
e−λd(s−τ)pNs Usds+

∫ τ+T̂

τ+T
e−λd(s−τ)pNs Usds

−
∫ τ+T

τ
e−λd(s−τ)pYs

[
Us − Q̂s

]
ds−

∫ τ+T̂

τ+T
e−λd(s−τ)pYs Usds− C.

(4.10)

Note that pYs can be viewed as a function of K, and thus (4.10) is a function of C and K. The

firm’s decision include dynamically choosing a time τ to start the PPA, as well as choosing

a transfer C, or equivalently, choosing an investment capacity K (since C = bK from (4.2)).

The firm’s objective is to maximize its discounted expected saving from a PPA:

max
τ,C

E
[
e−λdτ · (4.10)

]
s.t. I(K) = C

(4.11)

Note that from (4.11), the firm has to decide both C, the investment amount, and τ ,

the starting time of the PPA. On one hand, the firm’s optimal decision on C, given any

starting time τ , is such that (4.10) is maximized. On the other hand, the firm dynamically

decides on τ , based on the evolving process of Dt, to maximize its discounted expected

saving, assuming that C is chosen optimally.

4.3 Analysis and Solution to the Power Purchase Agreement

Model

In this section, we derive the optimal solution to the PPA model and provide a complete

analysis on the properties of the optimal investment capacity, the firm’s expected savings,
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and the total new generation from the PPA.

4.3.1 Signing PPA at Time τ

To solve the PPA model, we need to find the firm’s optimal decision on whether/when to

sign a PPA and on the transfer amount C. We will formulate the firm’s dynamic decision on

whether to sign a PPA (at each time instance) as an optimal stopping problem. Before that,

however, we first study in this subsection how much the firm could save if it signs the PPA

at an arbitrary given time t, which builds the foundation for the optimal stopping problem

that we present in the next subsection.

When the firm signs a PPA at time τ , its saving (4.10) is optimized by choosing an

optimal transfer C. Correspondingly, according to (4.2), C/b units of renewable facilities

will be built. In the following lemma, we derive the firm’s expected saving if a PPA is signed

at time τ .

Lemma 4.1. If a PPA is signed at time τ , and the firm sets the transfer C = bK where

K is the amount of new renewable facilities built, then, the firm’s expected saving from this

PPA, discounted to time τ , is given by

K
θµQDτ

λd − µD

[
1− e(µD−λd)T

]
+K

αθµQDτ

λd − µD

[
1− e(µD−λd)T̂

]
−K2

θ
(
σ2Q + µ2Q

)
λd

[
1− e−λdT

]
− bK. (4.12)

Lemma 4.1 provides the expected saving of the firm in terms of Dτ , the total demand

of the spot market at time τ , and K, the capacity of new renewable energy facilities. Since

the firm chooses C = bK, this saving can be further optimized over K. In the following

proposition, we present the optimal capacity and saving of the firm.

Proposition 4.1. Suppose that the firm signs the PPA at time τ > 0. Then, the optimal
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renewable energy capacity added because of the PPA is

K(Dτ ) := max


θµQDτ

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0

 , (4.13)

and the firm’s optimal expected saving from the PPA is

S(Dτ ) :=



[
θµQDτ

λd−µD

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
−b
]2

4
θ
(
σ2
Q
+µ2

Q

)
λd

[
1−e−λdT

] ,

if Dτ ≥ b(λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] ,
0, if Dτ <

b(λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] .
(4.14)

From Proposition 4.1, we see that the firm would choose a capacity K > 0, resulting in

a positive expected saving S, if and only if Dτ ≥ b(λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] . In other

words, when the investment cost b is high enough: b >
Dτ θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
λd−µD ,

then the firm’s optimal investment capacity would be zero, meaning that the cost is too high

for the firm to make any investment.

Next, we are interested in how the optimal capacity and the saving change with respect

to the production process (described by µQ and σQ) and T , the length of the PPA. The

results are summarized as Proposition 4.2.

Proposition 4.2. The optimal renewable capacity and the firm’s optimal expected saving

change with respect to different problem parameters as follows.

1. There exists a unique threshold µ̄ such that ∂K(Dτ )
∂µQ

< 0 if and only if µQ > µ̄.

2. There exists a unique threshold µ̂ such that ∂S(Dτ )
∂µQ

> 0 if and only if µQ > µ̂.
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3. If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
> b, then, there exists a threshold T1 such that when T <

T1, we have that ∂K(Dτ )
∂T < 0. If θµQDτα

λd−µD

[
1− e(µD−λd)T̂

]
≤ b, then, there exists a

threshold T2 such that when T < T2, we have that ∂K(Dτ )
∂T > 0.

4. If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
̸= b, then, there exists a threshold T3 such that when T <

T3, we have that ∂S(Dτ )
∂T < 0. If θµQDτα

λd−µD

[
1− e(µD−λd)T̂

]
̸= b, then, there exists a

threshold T4 such that when T < T4, we have that ∂S(Dτ )
∂T > 0.

5. ∂K(Dτ )
∂σQ

< 0, ∂S(Dτ )
∂σQ

< 0.

From the first item of Proposition 4.2, we see that K(Dτ ) first increases with µQ, then

after µQ > µ̄, the investment capacity starts to decrease. On the other hand, S(Dτ ) first

decreases with µQ, then after µQ > µ̂, the firm’s saving starts to increase. The change

of K(Dτ ) and S(Dτ ) with respect to T are less tractable, but we obtain their limiting

behaviors as T → 0. Finally, as the variance of production σQ increases, both K(Dτ )

and S(Dτ ) decrease.

4.3.2 Optimal Time to Sign PPA - Dynamic Decision

We now come back to the original model where the firm needs to dynamically decide τ ≥ 0,

the time to sign a PPA, and the transfer amount C to the renewable energy generator. We

will use x as a generic notation to represent the realization of the initial total demand for

electricity in the spot market. Let V (x) be the firm’s expected saving if it optimally chooses

the time to sign the PPA and the transfer payment C given the initial demand realization is x.

Recall from (4.2) that optimizing with respect to C is equivalent to optimizing with respect

to K, and the optimal saving at the stopping time is already given by (4.14). Therefore, the

firm’s value function can be written as the following optimal stopping problem:

V (x) = max
τ≥0

E
[
e−λdτS(Dτ ) | D0 = x

]
, (4.15)
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where we recall that τ is the time to sign a PPA (or the starting time of the PPA, or the

time the firm stops waiting).

We assume that V (x) is twice continuously differentiable and nonnegative. From (4.14),

we know that S(x) is continuously differentiable, nonnegative, and monotone. The decision

to start or not to start a PPA at any time t when the realization Dt = x depends on the

comparison of V (x) and S(x). If V (x) > S(x), the optimal τ∗ that solves (4.15) is strictly

positive, and it is more beneficial for the firm to wait, since the expected value of waiting is

higher than the value of starting a PPA immediately. The set {x | V (x) > S(x)} is called the

continuation region. If V (x) = S(x), then one optimal τ∗ = 0, and it is optimal for the firm

to start the PPA immediately with the expected saving S(x). The set {x | V (x) ≤ S(x)}

is called the stopping region. We next have the following lemma on the characterization of

V (x).

Lemma 4.2. The value function satisfies the following Hamilton–Jacobi–Bellman (HJB)

equation:

V (x) = max

{
S(x),

1

λd
µDxV ′(x) +

1

2λd
σ2Dx2V ′′(x)

}
. (4.16)

Lemma 4.2 implies that in the stopping region, V (x) = S(x), and in the continuation

region, we have

V (x) =
1

λd
µDxV ′(x) +

1

2λd
σ2Dx2V ′′(x). (4.17)

The firm’s decision to continue waiting or to stop waiting (start a PPA) only depends on

the realized total market demand. As the firm waits, we have that S(x) < 1
λd
µDxV ′(x) +

1
2λd

σ2Dx2V ′′(x). The market demand continues to evolve while the firm is waiting, until x

reaches some x∗ such that S(x∗) = 1
λd
µDx∗V ′(x∗)+ 1

2λd
σ2Dx2∗V ′′(x∗), at which point the firm

would stop waiting. The set
{
x | V (x) = S(x) = 1

λd
µDxV ′(x) + 1

2λd
σ2Dx2V ′′(x)

}
is called
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the optimal stopping boundary. Since both V (x) and S(x) are continuously differentiable, at

x∗ in the optimal stopping boundary, we have that

V (x∗) = S(x∗), (4.18a)

V ′(x∗) = S′(x∗), (4.18b)

where (4.18a) is the value matching condition and (4.18b) is the smooth pasting condition.

It remains to find the x∗ in the optimal stopping boundary, such that the firm would

optimally start a PPA when x first reaches x∗. In the following proposition, we formalize

the optimal policy and specify x∗ by solving the differential equation (4.17) subject to the

boundary conditions (4.18).

Proposition 4.3. Suppose that the firm dynamically decides when to sign a PPA with a

renewable energy generator. For the firm, it is optimal to sign the PPA at

τ∗ = inf {t ≥ 0 | V (Dt) = S(Dt)} = inf {t ≥ 0 | Dt ≥ x∗} . (4.19)

where x∗ is the demand threshold and is given by

x∗ =
bω+ (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] , (4.20)

where

ω+ =
σ2D − 2µD +

√
(2µD − σ2D)2 + 8σ2Dλd

2σ2D
> 2. (4.21)

Proposition 4.3 states that the firm’s optimal policy is to start the PPA when the total

market demand first reaches x∗, which is a given explicitly by (4.20). We also note that the

obtained x∗ is positive. This can be seen by noting that µD < λd, e(−λd+µD)T < 1, and
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ω+ > 2.

Next, we have the following corollary, which provides explicit expressions for the optimal

invested capacity and the firm’s optimal expected saving, as well as distribution of the waiting

time before starting the PPA (for a given initial demand).

Corollary 4.1. From Proposition 4.3 and Proposition 4.1, we can obtain the optimal addi-

tional capacity and the optimal expected saving:

K∗ =
b

ω+−2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , (4.22)

S(x∗) =

[
b

ω+−2
]2

θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , (4.23)

with ω+ as given in (4.21). Moreover, the value function in the continuation region is given

by

V (x) =

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

λd

[
1−e−λdT

](
bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])ω+ · x
ω+ . (4.24)

Furthermore, let the initial demand be some D0 < x∗, then, the optimal time to sign a

PPA follows the inverse Gaussian distribution IG

 ln
(

x∗
D0

)
µD−σ2D/2

,

(
ln
(

x∗
D0

)
σD

)2
, with a mean

ln
(

x∗
D0

)
µD−σ2D/2

.

Following Corollary 4.1, we are interested in how K∗, V (x), and E[τ∗] change with

respect to the production process (described by µQ and σQ) and T , the length of the PPA.

The results are summarized as Proposition 4.4.

259



Proposition 4.4. Under the optimal policy, the newly added renewable capacity K∗, the

firm’s optimal expected saving S(x∗), the value function V (x), and the expected stopping

time E[τ∗] change as the following with respect to different problem parameters.

∂K∗

∂µQ
< 0,

∂K∗

∂σQ
< 0,

∂K∗

∂T
< 0, (4.25a)

∂V (x)

∂µQ
> 0,

∂V (x)

∂σQ
< 0, (4.25b)

∂E[τ∗]
∂µQ

< 0,
∂E[τ∗]
∂σQ

= 0,
∂E[τ∗]
∂T

< 0. (4.25c)

To demonstrate the results of Proposition 4.4, we also numerically show the changes

of K∗ and V (x) with respect to µQ, σQ, and T . In all numerical studies in this chapter, we

choose the following “default” parameters (i.e., the non-varying parameters are set to these

values when making the plots): µD = 0.001, σD = 0.015, λd = 0.015, α = 0.004, b = 300,

θ = 4× 10−14, µQ = 2000, σQ = 80, T = 20, T̂ = 50, D0 = 4× 1012. With these numbers,

Figure 4.1 shows how the optimal capacity K∗ changes with respect to µQ, σQ, and T ;

Figure 4.2 shows how the value function V (x) changes with respect to µQ, σQ, and T , when

x = D0.

0 500 1000 1500 2000
μQ

0.0

0.2

0.4

0.6

0.8

1.0

�
��

��
���

�K
*

1e10

0 50 100 150
σQ

1.106

1.107

1.108

1.109

1.110

�
��

��
���

�K
*

1e7

0 20 40
T

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

�
��

��
���

�K
*

1e8

Figure 4.1: Numerical illustration of how the optimal capacity K∗ changes with respect
to µQ, σQ, and T .

Proposition 4.4 conveys several messages. First, as shown in (4.25a) and illustrated in

260



0 500 1000 1500 2000
μQ

0

1

2

3

4

5

6
�
��

�

��

�

�	
��
��
V(
x)

1e18

0 50 100 150
σQ

1.144

1.145

1.146

1.147

1.148

�
��

�

��

�

�	
��
��
V(
x)

1e19

0 10 20 30 40 50
T

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

�
��

�

��

�

�	
��
��
V(
x)

1e21

Figure 4.2: Numerical illustration of how the value function V (x) changes with respect to µQ,
σQ, and T .

Figure 4.1, the firm’s optimal investment capacity decreases with respect to µQ, σQ, and T .

As the mean production per unit of renewable facility increases, the capacity of newly built

renewable facilities is smaller, since the firm may now reach the optimal generation from

a smaller amount of facilities. This optimal amount of capacity also decreases with more

variance on the generation, since the instability of the generation would likely make the firm

benefit less from the renewable facilities. When the length of the PPA is longer, the firm

would also have fewer new facilities, as the firm is benefiting for a longer term from each

unit of renewable facility.

Second, the value function is the expected discounted saving to go, assuming the firm

makes the decisions optimally, and given the current total market demand is x. As shown

in (4.25b) and illustrated in Figure 4.2, the value function increases with the production

level µQ, and decreases with the variance of production σQ. While the change of the value

function with respect to the length of the PPA is not analytically tractable, it is intuitive

that, with all other conditions fixed, the longer the length of the PPA, the more benefit the

firm gets. Thus, the value function is higher with a longer PPA, which is also consistent

with the numerical studies.

Moreover, as shown in (4.25c), the expected waiting time before the firm starts a PPA

decreases with a higher mean production level µQ, or with a longer length T , but the expected
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waiting time does not change with respect to the variance σQ.

We next consider the effect of varying the investment cost, i.e., changing the parameter b

in (4.1). The following proposition summarizes how the optimal capacity K∗ and the total

new generation due to the PPA, E
[
K∗
∫ T̂
0 Qtdt

]
, change with respect to b.

Proposition 4.5. When D0 < x∗, under the firm’s optimal policy, increasing the investment

cost parameter b results in

• a larger capacity for the new renewable facility and

• more total new renewable energy output with probability 1.

Otherwise when D0 ≥ x∗, such an increase in b reduces the added renewable energy capacity

and production with probability 1.

Numerical illustration of Proposition 4.5 when D0 < x∗ is given in Figure 4.3. When

D0 ≥ x∗, the firm does not wait and signs the PPA immediately, and the optimal capacity

is then given by K(D0) from (4.13), which decreases as b increases. Effectively, the total

new renewable generation due to the PPA also decreases. When D0 < x∗, the firm waits

to sign a PPA. As the investment cost increases, the firm delays the PPA to sign it at a

larger x∗. Since the total demand is now higher, the wholesale market price is also higher,

which gives the firm more motivation to invest for a larger renewable energy capacity. In

summary, reducing the investment cost for renewable energy is effective in shortening the

firm’s time to sign a renewable PPA, as long as the current total demand is not higher than

the threshold x∗. If the current demand is already higher than x∗, however, further reducing

the investment cost will reduce the capacity of new renewable facilities.

Lastly, we look at the total expected generation from the new capacities due to the PPA.

The results are summarized as Proposition 4.6.

Proposition 4.6. Under the optimal policy, the total expected generation from newly added

capacities, over the lifespan of these facilities, is E
[
K∗
∫ T̂
0 Qtdt

]
, which changes as follows
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Figure 4.3: Numerical illustration of how the optimal capacity and the total new generation
change with respect to b when D0 < x∗.

with respect to different problem parameters.

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

≥ 0 if µQ ≤ σQ,

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

< 0 if µQ > σQ, (4.26a)

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂σQ

< 0,

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂T

< 0. (4.26b)

We also show (4.26a) numerically in Figure 4.4. Proposition 4.6 implies that when µQ is

relatively small compared with σQ, i.e., the coefficient of variation σQ/µQ is greater than 1,

the total generation from new facilities is increasing with respect to µQ; when µQ is relatively

large compared with σQ, i.e., the coefficient of variation σQ/µQ is smaller than 1, the total

generation from new facilities is decreasing with respect to µQ. The total expected generation

decreases with σQ and T , which follows directly from (4.25a).

4.4 Power Purchase Agreement Model with Technology Price

Discount

In our previous model, the cost function of investing k units of renewable facilities is assumed

to be I(k) = bk. This simple price structure of the renewable facilities ensured the tractability
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Figure 4.4: Numerical illustration of the change of expected total new generation with respect
to µQ.

of the model. However, given that the firm’s decision to sign a PPA is dynamically evolving,

and the firm’s waiting time before signing the PPA may span a longer period (in years), it

is more convincing that, as the technology advances, the investment cost will decrease over

an extended period of time. In this section, we impose an additional discount rate λc on the

investment cost, i.e., the investment cost function, original given as (4.1), now becomes

It(k) = e−λctbk, (4.27)

where b is again some positive constant coefficient. If a PPA is signed at time t, the renewable

generator earns the transfer amount C, and builds renewable facilities of capacity K such

that

It(K) = C =⇒ K =
C

be−λct
. (4.28)

We will see that this additional discount on investment cost will change the structure of

the firm’s optimal policy, and the analysis will become more involved. In this section, we

derive the optimal solution of the PPA model with technology price discount, and provide

a complete analysis on the properties of the optimal investment capacity and the firm’s
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expected savings.

4.4.1 Signing PPA at Time τ

Similar to Section 4.3, we start with the questions of how much capacity the firm should

invest, and how much the firm could save, if it signs the PPA at an arbitrary given time τ .

While our focus later will be the firm’s dynamic decision on whether to sign a PPA (at each

time instance), which is again formulated as an optimal stopping problem, this subsection

builds the foundation for our analysis in the following subsections.

When the firm signs a PPA at time τ , its saving (4.10) is optimized by choosing an optimal

transfer C. Correspondingly, according to (4.28), C
be−λcτ

unites of renewable facilities will be

built. The following lemma provides the firm’s expected saving if a PPA is signed at time τ .

Lemma 4.3. If a PPA is signed at time τ , and the firm sets the transfer C = bKe−λcτ where

K is the amount of new renewable facilities built, then, the firm’s expected saving from this

PPA, discounted to time τ , is given by

K
θµQDτ

λd − µD

[
1− e(µD−λd)T

]
+K

αθµQDτ

λd − µD

[
1− e(µD−λd)T̂

]
−K2

θ
(
σ2Q + µ2Q

)
λd

[
1− e−λdT

]
− bKe−λcτ . (4.29)

Lemma 4.3 provides the expected saving of the firm in terms of Dτ , the total demand

of the spot market at time τ , and K, the capacity of new renewable energy facilities. Since

the firm chooses C = bKe−λcτ , this saving can be further optimized over K. The following

proposition presents the optimal capacity and saving of the firm.

Proposition 4.7. Suppose that the firm signs the PPA at time τ > 0. Then, the newly
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added capacity of renewable energy facilities because of the PPA is

K(Dτ , τ) := max


θµQDτ

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be−λcτ

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0

 , (4.30)

and the firm’s optimal expected saving from the PPA is

S(Dτ , τ) :=



[
θµQDτ

λd−µD

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
−be−λcτ

]2
4
θ
(
σ2
Q
+µ2

Q

)
λd

[
1−e−λdT

] ,

if Dτ ≥ be−λcτ (λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] ,
0, if Dτ <

be−λcτ (λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] .
(4.31)

From Proposition 4.7, we see that the firm would choose a capacity K > 0, and resulting

in a positive expected saving S, if and only if Dτ ≥ be−λcτ (λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] . In

other words, when the discounted investment cost be−λcτ is high enough, i.e., be−λcτ >
Dτ θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
λd−µD , then the firm’s optimal investment capacity would be

zero, meaning that the discounted cost is too high for the firm to make any investment.

Note that comparing to the case without technology discount (Proposition 4.1), both the

capacity and the saving now have an additional argument τ , i.e., they depend on both the

total spot market demand and the time, where the time shows up in the term be−λcτ . This

fact will make the analysis more complicated as we consider the dynamic decision of the

firm, which we will show in the next subsection.

Next, we are interested in how the optimal capacity and the saving changes with respect

to the production process (described by µQ and σQ) and T , the length of the PPA. The

results are summarized as Proposition 4.2.
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Proposition 4.8. The optimal renewable capacity and the firm’s optimal expected saving

change with respect to different problem parameters as follows.

1. There exists a unique threshold µ̄d such that ∂K(Dτ ,τ)
∂µQ

< 0 if and only if µQ > µ̄d.

2. There exists a unique threshold µ̂d such that ∂S(Dτ ,τ)
∂µQ

> 0 if and only if µQ > µ̂d.

3. If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
> be−λcτ , then, there exists a threshold T1 such that when

T < T1, we have that ∂K(Dτ ,τ)
∂T < 0. If θµQDτα

λd−µD

[
1− e(µD−λd)T̂

]
≤ be−λcτ , then, there

exists a threshold T2 such that when T < T2, we have that ∂K(Dτ ,τ)
∂T > 0.

4. If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
̸= be−λcτ , then, there exists a threshold T3 such that when

T < T3, we have that ∂S(Dτ ,τ)
∂T < 0. If θµQDτα

λd−µD

[
1− e(µD−λd)T̂

]
̸= be−λcτ , then, there

exists a threshold T4 such that when T < T4, we have that ∂S(Dτ ,τ)
∂T > 0.

5. ∂K(Dτ ,τ)
∂σQ

< 0, ∂S(Dτ ,τ)
∂σQ

< 0.

From the first item of Proposition 4.8, we see that K(Dτ , τ) first increases with µQ, then

after µQ > µ̄d, the investment capacity starts to decrease. On the other hand, S(Dτ , τ)

first decreases with µQ, then after µQ > µ̂d, the firm’s saving starts to increase. Note that

due to the technology price discount, the thresholds µ̄d < µ̄ and µ̂ < µ̂d, comparing to the

case without the discount λc. The change of K(Dτ , τ) and S(Dτ , τ) with respect to T are

less tractable, but we obtain their limiting behaviors as T → 0. Finally, as the variance of

production σQ increases, both K(Dτ , τ) and S(Dτ , τ) decrease.

4.4.2 Optimal Time to Sign PPA - Dynamic Decision

We now come back to the model where the firm needs to dynamically decide τ ≥ 0, the time

to sign a PPA, and the transfer amount C to the renewable energy generator. Recall that x is

a generic notation to represent the realization of the initial total demand for electricity in the

spot market. Different from the previous section, the value function now not only depends
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on the initial total demand x, but also the current time t, due to the fact that the investment

cost coefficient is discounted (with a rate λc) over time. We let V (x, t) be the firm’s expected

saving if it optimally chooses the time to sign the PPA and the transfer payment C given the

initial demand realization is x and the current time is t. Recall from (4.28) that optimizing

with respect to C is equivalent to optimizing with respect to K, and the optimal saving at

the stopping time is already given by (4.31). Therefore, the firm’s value function can be

written as the following optimal stopping problem:

V (x, t) = max
τ≥0

E
[
e−λdτS(Dτ , τ) | Dt = x

]
, (4.32)

where we recall that τ is the time to sign a PPA (or the starting time of the PPA, or the

time the firm stops waiting).

We assume that V (x, t) is twice continuously differentiable along x (the directional

derivative exists and is continuous), continuously differentiable along t, and nonnegative.

From (4.31), we know that S(x, t) is continuously differentiable along x and t, nonnegative,

and monotone. The decision to start or not to start a PPA at any time t when the real-

ization Dt = x depends on the comparison of V (x, t) and S(x, t). If V (x, t) > S(x, t), the

optimal τ∗ that solves (4.32) is strictly positive, and it is more beneficial for the firm to wait,

since the expected value of waiting is higher than the value of starting a PPA immediately.

The set {(x, t) | V (x, t) > S(x, t)} is called the continuation region. If V (x, t) = S(x, t),

then one optimal τ∗ = 0, and it is optimal for the firm to start the PPA immediately with

the expected saving S(x, t). The set {(x, t) | V (x, t) ≤ S(x, t)} is called the stopping region.

We next have the following lemma on the characterization of V (x, t).

Lemma 4.4. The value function satisfies the following Hamilton–Jacobi–Bellman (HJB)
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equation:

V (x, t) = max

{
S(x, t),

1

λd
µDxVx(x, t) +

1

2λd
σ2Dx2Vxx(x, t) +

1

λd
Vt(x, t)

}
. (4.33)

Lemma 4.4 implies that in the stopping region, V (x, t) = S(x, t), and in the continuation

region, we have

V (x, t) =
1

λd
µDxVx(x, t) +

1

2λd
σ2Dx2Vxx(x, t) +

1

λd
Vt(x, t). (4.34)

Contrast to the previous section, the firm’s decision to continue waiting or to stop waiting

(start a PPA) now depends on both the realized total market demand and the current

time. Specifically, at each time instance t, the firm checks the realization of total market

demand x, and see whether the pair (x, t) is in the continuation region or the stopping region.

As the firm waits, we have that S(x, t) < 1
λd
µDxVx(x, t) +

1
2λd

σ2Dx2Vxx(x, t) + Vt(x, t). The

market demand and the time continue to evolve while the firm is waiting, until at some

time t, the demand is x∗(t) (or equivalently, the pair (x, t) reaches some (x∗(t), t)) such that

S(x∗(t), t) = 1
λd
µDx∗(t)Vx(x∗(t), t) + 1

2λd
σ2Dx2∗(t)Vxx(x∗(t), t) + Vt(x∗(t), t), at which point

the firm would stop waiting. The set

{
(x, t) | V (x, t) = S(x, t) =

1

λd
µDxVx(x, t) +

1

2λd
σ2Dx2Vxx(x, t) + Vt(x, t)

}

is called the optimal stopping boundary. Since both V (x, t) and S(x, t) are continuously

differentiable, at (x∗(t), t) in the optimal stopping boundary, we have that

V (x∗(t), t) = S(x∗(t), t), ∀(t, x∗(t)) (4.35a)

Vx(x∗(t), t) = Sx(x∗(t), t), ∀(t, x∗(t)) (4.35b)

Vt(x∗(t), t) = St(x∗(t), t), ∀(t, x∗(t)) (4.35c)
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where (4.35a) is the value matching condition, (4.35b) and (4.35c) are the smooth pasting

conditions.

It remains to find, for each time t, the critical market demand x∗(t), such that the

firm would optimally start a PPA at the first time t when the market demand is x∗(t).

In the following proposition, we formalize the optimal policy and specify (x∗(t), t) in the

optimal stopping boundary by solving the differential equation (4.34) subject to the boundary

conditions (4.35).

Proposition 4.9. Suppose that the firm dynamically chooses when to sign a PPA with a

renewable energy generator. For the firm, it is optimal to sign the PPA at

τ∗ = inf {t ≥ 0 | Dt ≥ x∗(t)} . (4.36)

where x∗(t) is the demand threshold function of t and is given by

x∗(t) =
bω+e

−λct (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] , (4.37)

where

ω+ =
σ2D − 2µD − 2λc +

√
σ4D + 4µ2D + 4λ2c + 12σ2Dλc + 8µDλc − 4σ2DµD + 8σ2Dλd

2σ2D
> 2.

(4.38)

Proposition 4.9 states that the firm’s optimal policy is to start the PPA at the first

time t when the total market demand matches x∗(t), which is a given explicitly by (4.37).

We also note that the obtained x∗(t) is positive. This can be seen by noting that µD < λd,

e(−λd+µD)T < 1, and ω+ > 2. To avoid trivial cases, we assume that D0 < x∗(0) for the

rest of this section, since otherwise the firm would start the PPA immediately at time t = 0

without waiting.
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Next, we have the following corollary, which provides explicit expressions for the optimal

invested capacity and the firm’s optimal expected saving, as well as distribution of the waiting

time before starting the PPA (for a given initial demand).

Corollary 4.2. From Proposition 4.9 and Proposition 4.7, we can obtain the optimal addi-

tional capacity and the optimal expected saving:

K∗ =
b

ω+−2
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√
1− 2σ2

D
(−λc)

(λc+µD−σ2
D
/2)2

)
, (4.39)

S∗ =

[
b

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√
1− 2σ2

D
(−λc)

(λc+µD−σ2
D
/2)2

)
, (4.40)

with ω+ as given in (4.38), and D∗ := x∗(0) =
bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] .
Moreover, the value function in the continuation region is given by

V (x, t) =

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

λd

[
1−e−λdT

](
bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])ω+ · x
ω+eλ̂t, (4.41)

where λ̂ =
−σ2D(3σ2D+2µD)λc−2σ2Dλ2c+

√
σ4Dλ2c [σ4D+4µ2D+4λ2c+12σ2Dλc+8µDλc−4σ2DµD+8σ2Dλd]

2σ4D
.

Furthermore, let the initial demand be some D0 < D∗, then, the optimal time to sign

a PPA follows the inverse Gaussian distribution IG

 ln
(
D∗
D0

)
λc+µD−σ2D/2

,

(
ln
(
D∗
D0

)
σD

)2
, with a

mean
ln
(
D∗
D0

)
λc+µD−σ2D/2

.

Following Corollary 4.2, we are interested in how K∗, S∗, V (x, t), and E[τ∗] change with

respect to the production process (described by µQ and σQ) and T , the length of the PPA.

The results are summarized as Proposition 4.10.
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Proposition 4.10. Under the optimal policy, the newly added renewable capacity K∗, the

firm’s optimal expected saving S∗, the value function V (x, t), and the expected stopping time

E[τ∗] change as the following with respect to different problem parameters.


∂K∗
∂µQ
≥ 0, if

σ2Q
µ2Q
≥ ξ

∂K∗
∂µQ

< 0, if
σ2Q
µ2Q

< ξ

,
∂K∗

∂σQ
< 0, (4.42a)

∂V (x, t)

∂µQ
> 0,

∂V (x, t)

∂σQ
< 0, (4.42b)

∂E[τ∗]
∂µQ

< 0,
∂E[τ∗]
∂σQ

= 0,
∂E[τ∗]
∂T

< 0, (4.42c)

where ξ is some constant that only depends on µD, σD, and λc.

To demonstrate the results of Proposition 4.10, we also numerically show the changes

of K∗ and V (x) with respect to µQ, σQ, and T . The “default” parameters (i.e., the non-

varying parameters are set to these value when making the plots) are set to the same as in the

previous section: µD = 0.001, σD = 0.015, λd = 0.015, α = 0.004, b = 300, θ = 4 × 10−14,

µQ = 2000, σQ = 80, T = 20, T̂ = 50, D0 = 4 × 1012. In addition, we set λc = 0.2. With

these numbers, Figure 4.5 shows how the optimal capacity K∗ changes with respect to µQ,

σQ, and T ; Figure 4.6 shows how the value function V (x, t) changes with respect to µQ, σQ,

and T , when t = 5 and x = D0e
5µD .

Proposition 4.10 conveys several messages. First, as shown in (4.42a) and illustrated in

Figure 4.5, the firm’s optimal investment capacity decreases with respect to µQ when σ2Q/µ
2
Q,

square of the coefficient of variation of the production, is smaller than some constant ξ; on

the other hand when it is greater than ξ, we have K∗ increasing with respect to µQ. This is

different from Proposition 4.4 (when there is no discount λc on the investment cost) where

the firm’s optimal investment capacity is always decreasing with respect to µQ. This might

be due to the fact that with additional discount on the investment cost, the firm faces a
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Figure 4.5: Numerical illustration of how the optimal capacity K∗ changes with respect
to µQ, σQ, and T .
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Figure 4.6: Numerical illustration of how the value function V (x, t) changes with respect
to µQ, σQ, and T .

lower investment cost, so that when the coefficient of variation is high, the firm would invest

more capacity (at the discounted cost) with a higher mean production. When the coefficient

of variation is low, however, the firm does not need more capacity to hedge the production

variance, and with a higher µQ, the firm can reach the optimal generation from less capacity.

This optimal amount of capacity also decreases with more variance on the generation, since

the instability of the generation would likely make the firm benefit less from the renewable

facilities. With the additional discount on investment cost, it is not analytically tractable to

analyze the change of K∗ with respect to the length of the PPA. In the right of Figure 4.5, we

see that the optimal capacity first decreases and then increases with T . Intuitively, when T
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is within the smaller range, a higher T will let the firm decrease the capacity since the firm

can benefit each unit of capacity for a longer term, and this behavior is similar to how K∗

changes with respect to T in previous section. When T is in the larger range, however, the

optimal capacity starts to increase, since the additional discount on the investment cost has

made it cheaper to invest in renewable facilities, and a higher capacity provides more benefit

to the firm when T is longer.

Second, the value function is the expected discounted saving to go, assuming the firm

makes the decisions optimally, given the current time t and the current total market de-

mand x. As shown in (4.42b) and illustrated in Figure 4.6, the value function increases with

the production level µQ, and decreases with the variance of production σQ. While the change

of the value function with respect to the length of the PPA is not analytically tractable, it

is intuitive that, with all other conditions fixed, the longer the length of the PPA, the more

benefit the firm gets. Thus, the value function is higher with a longer PPA, which is also

consistent with the numerical studies.

The reasoning for how the value function and the expected stopping time changes with

respect to different problem parameters is the similar to those described after Proposition 4.4.

We next consider the effect of varying the investment cost, i.e., changing the parameter b

in (4.1). The following proposition summarizes how the optimal capacity K∗ and the total

new generation due to the PPA, E
[
K∗
∫ T̂
0 Qtdt

]
, change with respect to b.

Proposition 4.11. At any time t, when Dt < x∗(t), under the firm’s optimal policy, in-

creasing the investment cost parameter b results in

• a larger capacity for the new renewable facility and

• more total new renewable energy output with probability 1.

Otherwise when Dt ≥ x∗(t), such an increase in b reduces the added renewable energy capacity

and production with probability 1.
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Numerical illustration of Proposition 4.11 when Dt < x∗(t) is given in Figure 4.7. When

Dt ≥ x∗(t), the firm does not wait anymore and signs the PPA immediately at time t, and

the optimal capacity is then given by K(Dt, t) from (4.30), which decreases as b increases.

Effectively, the total new renewable generation due to the PPA also decreases. When Dt <

x∗(t), the firm waits to sign a PPA. As the investment cost increases, the firm delays the

PPA to sign it at a larger x∗(t). Since the total demand is now higher, the wholesale market

price is also higher, which gives the firm more motivation to invest for a larger renewable

energy capacity. In summary, reducing the investment cost for renewable energy is effective

in shortening the firm’s time to sign a renewable PPA, as long as the current total demand

is not higher than the threshold x∗(t). If the current demand is already higher than x∗(t),

however, further reducing the investment cost will reduce the capacity of new renewable

facilities.
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Figure 4.7: Numerical illustration of how the optimal capacity and the expected total new
generation change with respect to b when Dt < x∗(t).

Lastly, we look at the total expected generation from the new capacities due to the PPA.

The results are summarized as Proposition 4.12.

Proposition 4.12. Under the optimal policy, the total expected generation from newly added

capacities, over the lifespan of these facilities, is E
[
K∗
∫ T̂
0 Qtdt

]
, which changes as follows
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with respect to different problem parameters.

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

≥ 0 if
σ2Q

µ2Q
≥ ζ,

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

< 0 if
σ2Q

µ2Q
< ζ, (4.43a)

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂σQ

< 0, (4.43b)

where ζ is some constant that only depends on µD, σD, and λc.

In Figure 4.8, we also numerically show how ∂E
[
K∗
∫ T̂
0 Qtdt

]
changes with respect

to µQ. Proposition 4.12 implies that when the coefficient of variation σQ/µQ is large (greater

than
√
ζ), the total generation from new facilities is increasing with respect to µQ; when

σQ/µQ is small (smaller than
√
ζ), the total generation from new facilities is decreasing with

respect to µQ. This result is similar to Proposition 4.6 when there is no discount λc on

investment cost, except that in Proposition 4.6, we essentially have the threshold ζ = 1. In

Proposition 4.12, however, one can easily verify that the threshold ζ > 1. In other words,

when the investment cost becomes cheaper over time, the threshold on the coefficient of

variance becomes higher, e.g., if 1 < σ2Q/µ
2
Q < ζ, the total generation from new facilities

increases with respect to the mean production when there is no discount on investment cost,

but decreases with respect to the mean production when there is discount on investment

cost.

The total expected generation from new facilities decreases with σQ, which follows di-

rectly from (4.42a).

4.5 Power Purchase Agreement: Advanced Planning

In this section, we study an extension of the power purchase agreement (PPA) model with

technology price discount, where the firm needs to commit at the very beginning if it would
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Figure 4.8: Numerical illustration of the change of expected total new generation with respect
to µQ.

sign a PPA, and if yes, when the PPA would start and how much to invest. In other words,

the firm is no longer dynamically observing realized the market conditions (demands) and

making decisions, but is instead making a one-time decision at time t = 0, based on the

expectations future electricity demand and renewable generations.

Specifically, at time t = 0, the firm sees {Qt, t ≥ 0}, the production amount of one unit

of the renewable facility, announced by the renewable energy generator, as well as the cost

function for the investment of renewable facilities. Then, the firm decides if it would sign

a PPA of length T with the renewable generator. In a PPA, the firm chooses a starting

time ts to minimize its total expected cost. It also specifies a transfer payment C to be

paid at time t = 0, and has access to all electricity production from the renewable generator

from ts to ts + T . All these specifications of the PPA are also determined at time t = 0

immediately following the renewable generator’s announcement, and therefore we refer to

this type of agreement as advanced planning PPA. The renewable generator is assumed to

be a passive decision maker who will sign the PPA as long as C is nonnegative. If a PPA

is signed, the renewable generator invests all C to maximize the size (capacity) of the new

renewable energy facilities.

If the PPA starts at time ts, the cost function of investing k units of renewable facilities
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is assumed to be

Its(k) = e−λctsbk, (4.44)

where b is some positive constant and λc is the technology discount rate. If the transfer

payment is C and the PPA starts at time ts, then, the newly built facilities of capacity K is

given by

Its(K) = C =⇒ K =
C

be−λcts
. (4.45)

The firm needs to decide at time t = 0 if it would sign a PPA, and if so, how much the

transfer payment would be and when the PPA would start, with the objective of maximizing

the total discounted saving (throughout the whole time horizon) from the PPA. Recall that

the firm’s demand at each time instant is given by the stochastic process {Ut, t ≥ 0} , which

can be satisfied by the electricity procured from the spot market at the spot market price,

or by the generation from the PPA. We again let pNt denote the spot market price at time t,

assuming no PPA is signed, and let pYt denote the spot market price at time t if a PPA

is signed. Recall that Qt is the random generation from each unit of renewable facility at

time t, and Q̂t := KQt is the total generation from the new renewable facility by the PPA.

Let λd be the discount rate of cash dollar (real interest rate). Then, without a PPA, the

firm’s total cost for procuring electricity from the spot market, discounted to time t = 0, is

given by

∫ ∞
0

e−λdspNs Usds. (4.46)

With a PPA starting from ts and lasting till ts + T , the firm’s total cost for procuring
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electricity from the spot market becomes

∫ ts

0
e−λdspYs Usds+

∫ ts+T

ts
e−λdspYs

[
Us − Q̂s

]
ds

+

∫ ts+T̂

ts+T
e−λdspYs Usds+

∫ ∞
ts+T̂

e−λdspYs Usds, (4.47)

where we recall that T̂ is the lifespan of the renewable facilities.

Note that the net electricity demand Nt is the same with or without the PPA before ts

or after ts+ T̂ . Therefore, pYt = pNt for t < ts and t > ts+ T̂ . The firm’s saving from signing

a PPA is given by

(4.46)− (4.47)− e−λdtsC =

∫ ts+T

ts
e−λdspNs Usds−

∫ ts+T

ts
e−λdspYs

[
Us − Q̂s

]
ds

+

∫ ts+T̂

ts+T
e−λdspNs Usds−

∫ ts+T̂

ts+T
e−λdspYs Usds− e−λdtsC.

(4.48)

The firm aims to maximize its expected saving from signing a PPA, i.e.,

max
ts,C≥0

E [(4.48)] . (4.49)

The optimization of (4.49) can be divided into two steps: first, for any given ts, choose an

optimal C; then, optimize over ts. In the following lemma, we first show the firm’s expected

saving when the PPA starts at ts and the firm chooses a transfer amount C, or equivalently,

an investment capacity K = C
be−λcts

.

Lemma 4.5. If a PPA is signed at time t = 0 and scheduled to start at time ts, and the

firm sets the transfer C = e−λctsbK, where K is the amount of new renewable facilities to
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be built, then, the firm’s expected saving from this PPA, discounted to time t = 0, is given by

θK2
(
σ2Q + µ2Q

)
λd

[
e−λd(ts+T ) − e−λdts

]
+

θµQD0K

µD − λd

[
e(µD−λd)(ts+T ) + αe(µD−λd)(ts+T̂ ) − (1 + α)e(µD−λd)ts

]
− be−(λd+λc)tsK.

(4.50)

Lemma 4.5 provides the expected saving of the firm in terms of D0, ts, and K. This

saving can be further optimized over K, which leads to the following proposition.

Proposition 4.13. Suppose that the firm signs the PPA at time t = 0, and the PPA is

scheduled to start at time ts. Then, the newly added renewable facilities because of the PPA

is

K(ts) = max


[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]
eµDts

2θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0

 ,

(4.51)

and if K(ts) > 0, the firm’s optimal expected saving from the PPA is

S(ts) =

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]2
e(2µD−λd)ts

4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] . (4.52)

From Proposition 4.13, we see that the firm would choose a capacity K > 0, resulting in

a positive expected saving S, if and only if

D0 ≥
(λd − µD)be−(λd+λc)ts

θµQ

[
(1 + α)e(µd−λd)ts − e(µd−λd)(ts+T ) − αe(µd−λd)(ts+T̂ )

] .
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In other words, when the discounted investment cost be−(λd+λc)t is high enough, i.e.,

be−(λd+λc)ts >
D0θµQ

[
(1 + α)e(µd−λd)ts − e(µd−λd)(ts+T ) − αe(µd−λd)(ts+T̂ )

]
λd − µD

,

then the firm’s optimal investment capacity would be zero, meaning that the cost is too high

for the firm to make any investment.

Next, the firm also needs to choose ts, the starting time of the PPA. In other words,

the firm needs to optimize S(ts) over ts, subject to the constraint that be−(λd+λc)ts >

D0θµQ

[
(1+α)e(µd−λd)ts−e(µd−λd)(ts+T )−αe(µd−λd)(ts+T̂ )

]
λd−µD . This leads to the following proposi-

tion.

Proposition 4.14. Suppose that the firm signs a PPA at time t = 0, with the objective of

maximizing the long-term expected saving. Then, the optimal scheduled starting time of the

PPA is

t∗s = max


log

 b(2λc+λd)

(λd−2µD)
θµQD0
λd−µD

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]


λc + µD
, 0


. (4.53)

When t∗s > 0, the newly added renewable facilities because of the PPA is

K∗ =

[
µQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

 b(2λc + λd)

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

, (4.54)
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and the firm’s optimal expected saving from the PPA is

S∗ =

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
b(2λc + λd)


λd−2µD
λc+µD

. (4.55)

Following Proposition 4.14, we are interested in how K∗, S∗, t∗s, and the total expected

additional generation E
[
K∗
∫ T̂
0 Qtdt

]
change with respect to the production process (µQ

and σQ) and the investment cost b. The results are summarized as Proposition 4.15.

Proposition 4.15. When the firm signs the PPA at time t = 0, with an optimal scheduled

starting time t∗s > 0, the newly added renewable capacity K∗, the firm’s optimal expected

saving S∗, and the optimal starting time t∗s change as the following with respect to different

problem parameters.


∂K∗
∂µQ
≥ 0, if

σ2Q
µ2Q
≥ λc+2µD

λc

∂K∗
∂µQ

< 0, if
σ2Q
µ2Q

< λc+2µD
λc

,
∂K∗

∂σQ
< 0,

∂K∗

∂b
> 0, (4.56a)

∂S∗

∂µQ
≥ 0,

∂S∗

∂σQ
< 0,

∂S∗

∂b
< 0, (4.56b)

∂t∗s
∂µQ

< 0,
∂t∗s
∂σQ

= 0,
∂t∗s
∂T

< 0,
∂t∗s
∂b
≥ 0. (4.56c)

Furthermore, the total expected generation from newly added capacities, over the lifespan of

these facilities, is E
[
K∗
∫ T̂
0 Qtdt

]
, which changes as follows with respect to different problem
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parameters.

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

≥ 0 if
σ2Q

µ2Q
≥ µD

2λc + µD
,

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

< 0 if
σ2Q

µ2Q
<

µD
2λc + µD

,

(4.57a)

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂σQ

< 0,

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂b

> 0. (4.57b)

To demonstrate the results of Proposition 4.15, we also numerically show the changes

of K∗, S∗, and E
[
K∗
∫ T̂
0 Qtdt

]
with respect to µQ, σQ, T , and b. The “default” parameters

(i.e., the non-varying parameters are set to default when making the plots) are set to the

same as in the previous section: µD = 0.001, σD = 0.015, λd = 0.015, α = 0.004, b = 300,

θ = 4 × 10−14, µQ = 2000, σQ = 80, T = 20, T̂ = 50, D0 = 4 × 1012, and λc = 0.2.

With these numbers, Figure 4.9 and Figure 4.10 show how the optimal capacity K∗ and the

optimal saving S∗, respectively, change with respect to mu−Q, σQ, and T ; Figure 4.11 shows

how the optimal capacity K∗, optimal saving S∗, and the expected total new generation due

to the PPA change with respect to the investment cost b; Figure 4.12 shows the change of

expected total new generation with respect to µQ.
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Figure 4.9: Numerical illustration of how the optimal capacity K∗ changes with respect
to µQ, σQ, and T .
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Figure 4.10: Numerical illustration of how the firm’s optimal saving S∗ changes with respect
to µQ, σQ, and T .
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Figure 4.11: Numerical illustration of how the optimal capacity, the optimal saving, and the
expected total new generation change with respect to b when t∗s > 0.

Proposition 4.15 conveys several messages. First, as shown in (4.56a) and illustrated in

Figure 4.9, the firm’s optimal investment capacity K∗ decreases with respect to µQ when

σ2Q/µ
2
Q, square of the coefficient of variation of the production, is smaller than λc+2µD

λc
; on

the other hand when it is greater than λc+2µD
λc

, we have K∗ decreasing with respect to µQ.

This is part similar to Proposition 4.10 in the dynamic decision PPA, though the constant

threshold for σ2Q/µ
2
Q is different. The optimal capacity changes in a similar way with respect

to σQ and T , comparing to the previous section. Next, as shown in (4.56b) and illustrated

in Figure 4.10, the firm’s optimal saving is monotonically increasing with respect to µQ,

decreasing with respect to σQ, and increasing with respect to T . These results are similar to

284



1000 1500 2000
μQ

9.835

9.840

9.845

9.850

9.855

9.860

9.865

9.870

��
��

��
��

��
��
�	
��

��
��
�


�
��
��



1e13

Figure 4.12: Numerical illustration of the change of expected total new generation with
respect to µQ.

how the value function V (x, t) changes in the previous section, since the firm now makes all

decisions at time 0, the firm’s optimal saving is the same as the value function with t = 0.

We also note that, as shown in (4.56c), the starting time t∗s is earlier when µQ is larger, or

when the length of the PPA is longer, similar to the results in the previous section.

As shown in (4.15), (4.57b), and illustrated in Figure 4.11, the optimal capacity K∗ and

the expected total new generation increase with respect to the investment cost b. These

results and the reasoning are similar to those in the previous section. The optimal saving S∗

decreases with respect to b.

The expected generation from newly added capacities E
[
K∗QtT̂

]
decreases with µQ

when the square of the coefficient of variation of the production is smaller than µD
2λc+µD

, but

increases with µQ when σ2Q/µ
2
Q ≥

µD
2λc+µD

, as shown in (4.57a) and illustrated in Figure 4.12.

The expected amount of new generation also decreases with σQ, and its behavior with respect

to T would also be similar to K∗ with respect to T .

4.6 Conclusions and Future Directions

In this chapter, we have proposed a power purchase agreement (PPA) model between the

firm and the renewable generator. We have formulated the firm’s dynamic decision problem
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on when to start the PPA of certain length and how much to invest (transfer) as an infinite

horizon optimal stopping problem. We have defined the value function, derived the HJB

equation, and solved the optimal policy for the firm, i.e., the firm should sign the PPA as

soon as the total electricity demand in the market reaches some constant threshold. We have

concluded that with an increased PV efficiency µQ or with an increased T , the length of the

PPA, the firm will optimally sign a PPA earlier, with a smaller capacity of new renewable

facilities, and the firm attains higher expected value. The optimal capacity and the total

new renewable generation may increase or decrease with the investment cost b, depending

on the initial total demand. Moreover, the expected total new generation from the PPA

increases (resp. decreases) with µQ, if the coefficient of variation σQ/µQ is greater (resp.

smaller) than 1.

Following this model, we have also considered the same formulation but with a decreasing

investment cost over time. This additional discount on the investment cost makes the model

more complicated to analyze, but we have again obtained the firm’s optimal policy: the firm

should start the PPA as soon as the total demand in the market hits some time-dependent

threshold. The effect of the PV efficiency, the length of the PPA, and the investment cost

are similar to those in the previous model, with slight differences. Specifically, the optimal

capacity might increase or decrease with respect to the PV efficiency µQ, depending on the

coefficient of variation σQ/µQ. The optimal capacity also first decreases and then slightly

increases with the length of the PPA.

Finally, we have studied the model where the firm needs to commit at the beginning if it

would sign a PPA, and if yes, when to start it and how much to invest. In this case, the firm

no longer makes dynamic decisions. We have also characterized the effect of the production

level, the length of the PPA, and the investment cost on the firm’s optimal capacity, savings,

and the total new generation due to the PPA.

There are several follow-up research questions that we may consider. First, many govern-
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ments are starting to offer rebates or tax credits for building new renewable energy facilities.

These rebates or tax credits might further change the formulation of the PPA and may re-

sult in a different optimal investment policy for the firm. Second, we may also consider the

periodic behavior of the energy demand and renewable energy generation, i.e., at different

seasons, the demand process Dt and the production process Qt may no longer be station-

ary, but instead become periodically time-varying. While these non-stationary processes will

significantly complicate the analysis, it would be interesting to explore if the firm’s optimal

policy also exhibits some type of periodic behavior. Lastly, it would also be meaningful to

test our model with real-world renewable energy generation data and demand data, which

may hopefully provide more insights to the business as well as to policy makers.

4.7 Appendix

4.7.1 Proofs for Section 4.3

Proof of Lemma 4.1. Recall that pNt = θNt = θDt and pYt = θNt = θ(Dt −KQt). We also

have that Ut = αDt and C = bK. Before taking the expectation, the firm’s random saving

if signing a PPA at time τ is

(4.10) =
∫ τ+T

τ
e−λd(s−τ)pNs Usds+

∫ t+T̂

t+T
e−λd(s−τ)pNs Usds

−
∫ τ+T

τ
e−λd(s−τ)pYs

[
Us − Q̂s

]
ds−

∫ τ+T̂

τ+T
e−λd(s−τ)pYs Usds− C

=

∫ τ+T

τ
e−λd(s−τ)θDsUsds+

∫ τ+T̂

τ+T
e−λd(s−τ)θDsUsds

−
∫ τ+T

τ
e−λd(s−t)θ(Ds −KQs) [Us −KQs] ds

−
∫ τ+T̂

τ+T
e−λd(s−τ)θ(Ds −KQs)Usds− bK

=

∫ τ+T

τ
e−λd(s−τ)θDsUsds+

∫ τ+T̂

τ+T
e−λd(s−τ)θDsUsds
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−
∫ τ+T

τ
e−λd(s−τ)θ

[
DsUs −KDsQs −KQsUs +K2Q2

s

]
ds

−
∫ τ+T̂

τ+T
e−λd(s−τ)θ(Ds −KQs)Usds− bK

=

∫ τ+T

τ
e−λd(s−τ)θ

[
KDsQs +KQsUs −K2Q2

s

]
ds+

∫ τ+T̂

τ+T
e−λd(s−τ)θKQsUsds

− bK

= θK

∫ τ+T

τ
e−λd(s−τ)DsQsds+ θK

∫ τ+T̂

τ
e−λd(s−τ)QsUsds

− θK2
∫ τ+T

τ
e−λd(s−τ)Q2

sds− bK

= θK

∫ τ+T

τ
e−λd(s−τ)DsQsds+ αθK

∫ τ+T̂

τ
e−λd(s−τ)QsDsds

− θK2
∫ τ+T

τ
e−λd(s−τ)Q2

sds− bK.

We further note that, from our assumptions on Qt and Dt, E[Qt] = µQ and E[Dt+t′ ] =

Dte
µDt′ . Thus, the expectation of this saving is

E [(4.10)] = θKµQ

∫ τ+T

τ
e−λd(s−τ)Dτe

µD(s−τ)ds+ αθKµQ

∫ τ+T̂

τ
e−λd(s−τ)Dτe

µD(s−τ)ds

− θK2
(
σ2Q + µ2Q

)∫ τ+T

τ
e−λd(s−τ)ds− bK

= KθµQDτ

∫ τ+T

τ
e(µD−λd)(s−τ)ds+KαθµQDτ

∫ τ+T̂

τ
e(µD−λd)(s−τ)ds

−K2θ
(
σ2Q + µ2Q

)∫ τ+T

τ
e−λd(s−τ)ds− bK

= K
θµQDτ

λd − µD

[
1− e(µD−λd)T

]
+K

αθµQDτ

λd − µD

[
1− e(µD−λd)T̂

]
−K2

θ
(
σ2Q + µ2Q

)
λd

[
1− e−λdT

]
− bK.

This completes the proof of Lemma 4.1.

Proof of Proposition 4.1. From Lemma 4.1, the firm’s expected discounted saving (4.12) is
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a quadratic function of K:

K
θµQDτ

λd − µD

[
1− e(µD−λd)T

]
+K

αθµQDτ

λd − µD

[
1− e(µD−λd)T̂

]
−K2

θ
(
σ2Q + µ2Q

)
λd

[
1− e−λdT

]
− bK.

Since second order coefficient −
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

]
is negative, we conclude that the

expected discounted saving is concave in K. Moreover, note that the capacity can only be

nonnegative. From this and the first-order condition, we conclude that the optimal capacity

is

K(Dτ ) = max


θµQDτ

λd−µD

[
1− e(µD−λd)T

]
+

αθµQDτ

λd−µD

[
1− e(µD−λd)T̂

]
− b

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0


= max


θµQDτ

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0

 ,

and the corresponding saving is

S(Dτ ) :=



[
θµQDτ

λd−µD

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
−b
]2

4
θ
(
σ2
Q
+µ2

Q

)
λd

[
1−e−λdT

] ,

if θµQDτ

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
≥ b,

0, if θµQDτ

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
< b.

Proof of Proposition 4.2. We prove each item separately.
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1. We take the derivative of K(Dτ ) with respect to µQ.

∂K(Dτ )

∂µQ
=

∂

θµQDτ

µD−λd

[
e(µD−λd)T+αe(µD−λd)T̂−1−α

]
−b

2
θ(σ2

Q
+µ2

Q
)

−λd

[
e−λdT−1

]
∂µQ

=
num

4

(
θ(σ2Q+µ2Q)

−λd
[
e−λdT − 1

])2
,

where

num =
θDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
· 2
(
θ(σ2Q + µ2Q)

−λd

[
e−λdT − 1

])

−
(

θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

)
·
4θµQ
−λd

[
e−λdT − 1

]
,

which is positive if and only if

θDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
· 2
(
θ(σ2Q + µ2Q)

−λd

[
e−λdT − 1

])

>

(
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

)
·
4θµQ
−λd

[
e−λdT − 1

]
⇐⇒

θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
λd − µD

·
2θ(σ2Q + µ2Q)

[
1− e−λdT

]
λd

>
θµQDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b(λd − µD)

λd − µD
·
4θµQ

[
1− e−λdT

]
λd

.

With the assumption that λd > 2µD + σ2D, this is equivalent to

θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· (σ2Q + µ2Q)

>
[
θµQDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b(λd − µD)

]
· 2µQ

⇐⇒ θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
µ2Q

+ θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
σ2Q
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> 2θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
µ2Q − 2b(λd − µD)µQ

⇐⇒ θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
µ2Q − 2b(λd − µD)µQ

− θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
σ2Q < 0,

which is quadratic in µQ. The quadratic equation

θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
µ2Q − 2b(λd − µD)µQ

− θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
σ2Q = 0

has two roots, one of which is negative and the other is positive. Therefore, we have

that ∂K(Dτ )
∂µQ

> 0 if and only if

µQ < positive root

=
b(λd − µD) +

√
b2(λd − µD)2 + θ2D2

τ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]2
θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
:= µ̄. (4.58)

2. We take the derivative of S(Dτ ) with respect to µQ. If the total demand satisfies

Dτ ≥ b(µD−λd)
θµQ

[
e(µD−λd)T+αe(µD−λd)T̂−1−α

] , then, we have that

∂S(Dτ )

∂µQ
=

∂

[
θµQDτ

µD−λd

[
e(µD−λd)T+αe(µD−λd)T̂−1−α

]
−b
]2

4
θ
(
σ2
Q
+µ2

Q

)
−λd

[
e−λdT−1

]
∂µQ

=
num(

4
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

])2
,
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where

num = 2

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]
· θDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
·
4θ
(
σ2Q + µ2Q

) [
e−λdT − 1

]
−λd

−
[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]2
·
8θµQ

[
e−λdT − 1

]
−λd

,

which is positive if and only if

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]
· θDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
·
(
σ2Q + µ2Q

)
>

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]2
· µQ. (4.59)

We next discuss on the sign of
[
θµQDτ

µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b
]
.

• If θµQDτ

µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b > 0, then (4.59) is equivalent to

θDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
·
(
σ2Q + µ2Q

)
>

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]
· µQ

⇐⇒ θDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
· σ2Q + bµQ > 0,

which always holds since both terms are positive.

• If θµQDτ

µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b = 0, then both sides of (4.59)

are zero, and num = 0.
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• If θµQDτ

µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b < 0, then S(Dτ ) = 0 according

to (4.14).

Therefore, we conclude that num > 0 and thus ∂S(Dτ )
∂µQ

> 0 if and only if
θµQDτ

µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b > 0, which is

µQ >
b (λd − µD)

θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] := µ̂. (4.60)

Otherwise, S(Dτ ) = 0 and thus ∂S(Dτ )
∂µQ

= 0.

3. We take the derivative of K(Dτ ) with respect to T .

∂K(Dτ )

∂T
=

∂

θµQDτ

µD−λd

[
e(µD−λd)T+αe(µD−λd)T̂−1−α

]
−b

2
θ(σ2

Q
+µ2

Q
)

−λd

[
e−λdT−1

]
∂T

=
num

4

(
θ(σ2Q+µ2Q)

−λd
[
e−λdT − 1

])2
,

where

num = θµQDτe
(µD−λd)T · 2

θ(σ2Q + µ2Q)

−λd

[
e−λdT − 1

]
−
(

θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

)
· 2θ(σ2Q + µ2Q)e

−λdT .

(4.61)

While it is intractable to solve the equation (4.61) = 0 for T , we take the limit on T .

We first study the case when T → 0+.
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• If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
> b, then

lim
T→0+

∂K(Dτ )

∂T
=
−
(
θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
− b
)
· 2θ(σ2Q + µ2Q)

limT→0+ 4

(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
= −∞.

(4.62)

• If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
< b, then

lim
T→0+

∂K(Dτ )

∂T
=
−
(
θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
− b
)
· 2θ(σ2Q + µ2Q)

limT→0+ 4

(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
= +∞.

(4.63)

• If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
= b, then

lim
T→0+

∂K(Dτ )

∂T
=

num′

limT→0+ 4
θ(σ2Q+µ2Q)

−λd
[
e−λdT − 1

]
· e−λdT

,

where

num′ = lim
T→0+

θµQDτ (µQ − λd)e
(µQ−λd)T · e

−λdT − 1

−λd
+ θµQDτe

(µD−λd)T · e−λdT − θµQDτe
(µD−λd)T e−λdT

+

(
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

)
λde
−λdT .

Thus,

lim
T→0+

∂K(Dτ )

∂T
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=
limT→0+

∂num′
∂T

limT→0+ 4θ(σ2Q + µ2Q)e
−λdT e−λdT + 4

θ(σ2Q+µ2Q)

−λd
[
e−λdT − 1

]
(−λd)e−λdT

=
num′′

4θ(σ2Q + µ2Q)
,

where

num′′ = lim
T→0+

θµQDτ (µQ − λd)e
(µQ−λd)T · e−λdT + θµQDτe

(µD−λd)Tλde
−λdT

−
(

θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

)
λ2de
−λdT

= θµ2QDτ .

This leads to

lim
T→0+

∂K(Dτ )

∂T
=

µ2QDτ

4(σ2Q + µ2Q)
. (4.64)

Therefore, when θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
> b, we have that limT→0+

∂K(Dτ )
∂T < 0;

otherwise, limT→0+
∂K(Dτ )

∂T > 0.

4. We take the derivative of S(Dτ ) with respect to T .

∂S(Dτ )

∂T
=

∂

[
θµQDτ

µD−λd

[
e(µD−λd)T+αe(µD−λd)T̂−1−α

]
−b
]2

4
θ
(
σ2
Q
+µ2

Q

)
−λd

[
e−λdT−1

]
∂T

=
num(

4
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

])2
,
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where

num = 2

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]
θµQDτe

(µD−λd)T

· 4
θ
(
σ2Q + µ2Q

)
−λd

[
e−λdT − 1

]
−
[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]2
· 4θ(σ2Q + µ2Q)e

−λdT .

(4.65)

While it is intractable to solve the equation (4.65) = 0 for T , we take the limit on T .

We first study the case when T → 0+.

• If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
̸= b, then

lim
T→0+

∂S(Dτ )

∂T
=
−
[
θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
− b
]2
· 4θ

(
σ2Q + µ2Q

)
limT→0+

(
4
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

])2
= −∞.

(4.66)

• If θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
= b, then

lim
T→0+

∂S(Dτ )

∂T
=

num′

limT→0+

(
8
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

]
· e−λdT

) ,

where

num′ = lim
T→0+

[
2θµQDτe

(µD−λd)T θµQDτe
(µD−λd)T

+ 2

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]

296



· θµQDτ (µD − λd)e
(µD−λd)T

]
· 1

−λd

[
e−λdT − 1

]
+ 2

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]
· θµQDτe

(µD−λd)T · e−λdT

− 2

[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]
· θµQDτe

(µD−λd)T · e−λdT

−
[
θµQDτ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

]2
· (−λd)e−λdT .

Thus,

lim
T→0+

∂S(Dτ )

∂T

=
limT→0+

∂num′
∂T

limT→0+ 8θ
(
σ2Q + µ2Q

)
e−λdT e−λdT + 8θ

(
σ2Q + µ2Q

) [
e−λdT − 1

]
e−λdT

=
num′′

8θ
(
σ2Q + µ2Q

) ,
where num′′ = limT→0+

∂num′
∂T = 2θ2µ2QD

2
τ . This leads to

lim
T→0+

∂S(Dτ )

∂T
=

θµ2QD
2
τ

4
(
σ2Q + µ2Q

) . (4.67)

Therefore, when θµQDτα
λd−µD

[
1− e(µD−λd)T̂

]
= b, we have that limT→0+

∂S(Dτ )
∂T > 0;

otherwise, limT→0+
∂S(Dτ )

∂T < 0.

5. From (4.13) and (4.14), we see that σQ only exists in the denominators of K(Dτ )

and S(Dτ ) as σ2Q. Therefore, we have that ∂K(Dτ )
∂σQ

< 0 and ∂S(Dτ )
∂σQ

< 0.
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Proof of Lemma 4.2. We first derive the HJB equation (4.16). Recall the value function

V (x) = maxτ≥0 E
[
e−λdτS(Dτ ) | D0 = x

]
, where Dt follows dDt = µDDtdt + σDDtdWt.

The value function also follows V (x) = E
[
e−λdhV (Dh) | D0 = x

]
. By Ito’s Lemma, we have

V (Dh) = V (D0) +

∫ h

0
V ′(D0)dDs +

∫ h

0

1

2
V ′′(D0)(dDs)

2.

Then, we have that

V (Dh) = V (x) +

∫ h

0
V ′(x) [µDxds+ σDxdWs] +

∫ h

0

1

2
V ′′(x) [µDxds+ σDxdWs]

2

= V (x) + V ′(x)µDxh+

∫ h

0
V ′(x)σDxdWs +

1

2
V ′′(x)

∫ h

0
[µDxds+ σDxdWs]

2

= V (x) + V (x)µDxh+
1

2
V ′′(x)

∫ h

0
σ2Dx2ds+

∫ h

0
V ′(x)σDxdWs +

1

2
V ′′(x)o(h).

Then,

V (x) =

E

[
(1− λdh+ o(h))x

{
V (x) + V ′(x)µDxh+

1

2
V ′′(x)σ2Dx2h+

∫ h

0
V ′(x)σDxdWs + o(h)

}]

= V (x) + V ′(x)µDxh+
1

2
V ′′(x)σ2Dx2h+ o(h)− λdhV (x),

which is

0 = −λdV (x) + V ′′(x)µDx+
1

2
V ′′(x)σ2Dx2 +

o(h)

h
.

Since limh→0
o(h)
h = 0, we have

0 = −λdV (x) + V ′(x)µDx+
1

2
V ′′(x)σ2Dx2,
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which is

λdV (x) = µDxV ′(x) +
1

2
σ2Dx2V ′′(x).

Therefore, in the continuation region, we have that V (x) = 1
λd
µDxV ′(x)+ 1

2λd
σ2Dx2V ′′(x). In

the stopping region, we have that V (x) = S(x). The value function takes the maximum value

from stopping and continuing. Thus, it satisfies the HJB equation as given in (4.16).

Proof of Proposition 4.3. It follows from the arguments before and after Lemma 4.2 that

the firm would optimally start a PPA at the first time when V (Dt) = S(Dt), since when

V (Dt) < S(Dt), the expected saving of the firm from waiting is higher, and when V (Dt) =

S(Dt), the expected saving from waiting is at most as much as the expected saving from

starting a PPA. Since both V (x) and S(x) are continuously differentiable, there exists some

threshold x∗ such that V (Dt) = S(Dt) when the realization of Dt first reaches x∗. Thus, it

is optimal for the firm to sign the PPA at τ∗ as given in (4.19).

To identify the demand threshold x∗, we solve the differential equation (4.17) along with

the boundary conditions (4.18). We start by taking a guess. Let V (x) = kxω. Then

xV ′(x) = ωkxω and x2V ′′(x) = ω(ω − 1)kxω. Substituting these into (4.17) leads to

σ2Dω(ω − 1)kxω + 2µDωkxω − 2λdkx
ω = 0,

which is

kxω
[
σ2Dω2 + (2µD − σ2D)ω − 2λd

]
= 0. (4.68)

Note that k, µD, σD are constants and x > 0. The roots of (4.68) are

ω± =
σ2D − 2µD ±

√
(2µD − σ2D)2 + 8σ2Dλd

2σ2D
. (4.69)
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It follows that V (x) = kxω± are solutions to the differential equation (4.17). This implies

that the general solution is a linear combination of the respective solutions, i.e.,

V (x) = k1x
ω+ + k2x

ω− . (4.70)

From the properties of geometric Brownian motion, when x = 0, it will remain zero for-

ever and the optimal threshold x∗ will never be reached. Thus, we have that V (0) = 0.

From (4.69), it is clear that ω+ > 0 and ω− < 0. Therefore, as x→ 0, we have k2xω− → +∞

for k2 > 0 and k2x
ω− → −∞ for k2 < 0. This implies that V (0) = 0 only when k2 = 0. We

thus have

V (x) = k1x
ω+ . (4.71)

Combining (4.71) with (4.18), we obtain that

k1x
ω+∗ = S(x∗), (4.72a)

ω+k1x
ω+−1∗ = S′(x∗). (4.72b)

Substituting (4.72a) in (4.72b), we have that

ω+S(x∗)
x∗

= S′(x∗). (4.73)

Combining (4.73) with (4.14), we have that

ω+

[
θµQx∗
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b
]2

4
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
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=x∗
2
[
θµQx∗
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b
]

4
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

θµQ
λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
,

which, after simplification, becomes

ω+

[
θµQx∗
λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b

]
= 2

θµQx∗
λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
.

From this, we can solve for x∗, and obtain (4.20) as in the proposition, and ω+ is given

as (4.21). Finally, we show that ω+ > 2. Since µD and σD are both positive, we have the

following:

ω+ =
σ2D − 2µD +

√
(2µD − σ2D)2 + 8σ2Dλd

2σ2D
> 2

⇐⇒ σ2D − 2µD +
√

(2µD − σ2D)2 + 8σ2Dλd > 4σ2D

⇐⇒
√
(2µD − σ2D)2 + 8σ2Dλd > 2µD + 3σ2D

⇐⇒ (2µD − σ2D)2 + 8σ2Dλd > (2µD + 3σ2D)2

⇐⇒ σ4D − 4µDσ2D + 8σ2Dλd > 9σ4D + 12µDσ2D

⇐⇒ 8σ2Dλd > 8σ4D + 16µDσ2D

⇐⇒ λd > 2µD + σ2D,

where we recall that the last inequality is exactly our assumption on λd.

Proof of Corollary 4.1. First, we check if the optimal capacity and the saving is positive

with the given x∗, i.e., which region x∗ lies in (4.13) and (4.14). With x∗ as in (4.20), we
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have that

θµQx∗
µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
− b

=
θµQ

µD − λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
· bω+ (µD − λd)

(ω+ − 2)θµQ

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

] − b

=
bω+

ω+ − 2
− b > 0,

which means that the optimal K(x∗) and S(x∗) are always positive.

Plugging (4.20) into (4.13), we obtain that

K∗ = K(x∗)

=

θµQ
µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
bω+(µD−λd)

(ω+−2)θµQ
[
e(µD−λd)T+αe(µD−λd)T̂−1−α

] − b

2
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

]
=

bω+
(ω+−2) − b

2
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

] =
b

ω+−2
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

] .

Plugging (4.20) into (4.14), and obtain that

S(x∗) =[
θµQ

µD−λd

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
bω+(µD−λd)

(ω+−2)θµQ
[
e(µD−λd)T+αe(µD−λd)T̂−1−α

] − b

]2

4
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

]
=

[
bω+

(ω+−2) − b
]2

4
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

] =
[

b
ω+−2

]2
θ
(
σ2Q+µ2Q

)
−λd

[
e−λdT − 1

] .
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Next, we obtain V (x) in the continuation region, i.e., the solution of (4.17). From

the proof of Proposition 4.3, we have that V (x) = k1x
ω+ , where k1 can be obtained

through (4.72a):

k1 =
S(x∗)
x
ω+∗

=

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

−λd

[
e−λdT−1

](
bω+(µD−λd)

(ω+−2)θµQ
[
e(µD−λd)T+αe(µD−λd)T̂−1−α

])ω+ .

Thus, we have that

V (x) = k1x
ω+ =

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

−λd

[
e−λdT−1

](
bω+(µD−λd)

(ω+−2)θµQ
[
e(µD−λd)T+αe(µD−λd)T̂−1−α

])ω+ · x
ω+ .

Finally, we look at the distribution of the firm’s waiting time before signing a PPA.

Since Dt is a geometric Brownian motion, i.e., dDt = µDDtdt + σDDtdWt, we have that

Dt = D0 exp

((
µD −

σ2D
2

)
t+ dWt

)
, which implies that

ln

(
Dt

D0

)
=

(
µD −

σ2D
2

)
t+ dWt.

Thus, ln
(
Dt
D0

)
is a Brownian motion with drift term

(
µD −

σ2D
2

)
. The firm’s waiting time

would be the first passage time of ln
(
Dt
D0

)
to a fixed level ln

(
x∗
D0

)
. It is well known that

the first passage time of a Brownian motion with drift follows an inverse Gaussian distri-

bution (Schrödinger [188], Smoluchowski [197], Folks and Chhikara [83]). In the current

context, we have that τ∗ ∼ IG

 ln
(

x∗
D0

)
µD−σ2D/2

,

(
ln
(

x∗
D0

)
σD

)2
 and E[τ∗] =

ln
(

x∗
D0

)
µD−σ2D/2

.

Proof of Proposition 4.4. First, both the numerator and the denominator of (4.22) are pos-
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itive, and µQ, σQ, and T only exist in the denominators. It is clear that as µQ increases,

the denominator of (4.22) increases, thus decreasing K∗. The same also holds for σQ and T ,

thus we have (4.25a).

We next look at the value function V (x). We take the derivatives of (4.24) with respect

to µQ and σQ. Let k1 :=

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

−λd

[
e−λdT−1

] bω+(λd−µD)

(ω+−2)θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
ω+ . Then V (x) = k1x

ω+ ,

and we have that

∂V (x)

∂µQ
=

∂k1
∂µQ

=
num(

bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])2ω+
,

where

num =
−
[

b
ω+−2

]2
· 2θµQ [1−e−λdT ]

λd(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2

·

 bω+ (λd − µD)

(ω+ − 2)θµQ(1 + α)
[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+

−

[
b

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]
· ω+

 bω+ (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+−1

·

 −bω+ (λd − µD)

(ω+ − 2)θµ2Q

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
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=
−
[

b
ω+−2

]2
· 2θµQ [1−e−λdT ]

λd(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2

·

 bω+ (λd − µD)

(ω+ − 2)θµQ(1 + α)
[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+

−

[
b

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]
· ω+

 bω+ (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+−1

·

 bω+ (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
 · −1

µQ

=
−
[

b
ω+−2

]2
· 2θµQ [1−e−λdT ]

λd(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2

·

 bω+ (λd − µD)

(ω+ − 2)θµQ(1 + α)
[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+

−

[
b

ω+−2
]2
· θ(σ

2
Q+µ2Q)

λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2

· ω+

 bω+ (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+

−1
µQ

.

Note that num > 0 if and only if −2µQ
(σ2Q+µ2Q)

> ω+ ·
(
− 1

µQ

)
, which is ω+(σ2Q+ µ2Q) > 2µ2Q, or

(ω+ − 2)µ2Q + ω+σ
2
Q > 0, which always holds. Therefore, we have that ∂V (x)

∂µQ
> 0.

On the other side, we have that ∂V (x)
∂σQ

= ∂k1
∂σQ

< 0 since we only have σ2Q in the denomi-

nator of k1.

Finally, we look at E[τ∗]. From Corollary 4.1, we have that E[τ∗] =
ln
(

x∗
D0

)
µD−σ2D/2

. With the
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assumption that µD > σ2D/2, we have that

∂E[τ∗]
∂µQ

=
1

µD − σ2D/2
· D0

x∗
· ∂x

∗

∂µQ
=

D0

µD − σ2D/2
·
(
− 1

µQ

)
< 0,

∂E[τ∗]
∂σQ

=
1

µD − σ2D/2
· D0

x∗
· ∂x

∗

∂σQ
= 0,

∂E[τ∗]
∂T

=
1

µD − σ2D/2
· D0

x∗
· ∂x

∗

∂T

=
D0

µD − σ2D/2
·
(ω+ − 2)θµQ(1 + α)

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]
bω+ (µD − λd)

·
bω+ (µD − λd) · (ω+ − 2)θµQ(1 + α)(λd − µD)e(µD−λd)T

(ω+ − 2)2θ2µ2Q(1 + α)2
[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]2
=

D0

µD − σ2D/2
· (λd − µD)e(µD−λd)T[

e(µD−λd)T + αe(µD−λd)T̂ − 1− α
] < 0.

Proof of Proposition 4.5. When D0 < x∗, the firm wait to sign the PPA, and the optimal

expected capacity is given by (4.22), where it follows that a higher b will lead to a higher K∗,

which in turn increases the total renewable energy output K∗
∫ T̂
0 Qtdt with probability 1.

On the other side when D0 ≥ x∗, the firm does not wait and signs the PPA immediately,

in which case the optimal capacity for the firm is given by (4.13), where it follows that a

higher b will lead to a lower K(D0), which in turn decreases the total renewable energy

output K(D0)
∫ T̂
0 Qtdt with probability 1.

Proof of Proposition 4.6. We first note that

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

=
∂E
[
K∗QtT̂

]
∂µQ

=
∂K∗E [Qt] T̂

∂µQ
=

∂K∗

∂µQ
· µQT̂ +K∗T̂
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=
− b

ω+−2 ·
θ
λd

[
1− e−λdT

]
· 2µ2Q(

θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

])2
T̂ +

b
ω+−2

θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] T̂

=
− b

ω+−2 ·
θ
λd

[
1− e−λdT

]
· 2µ2Q + b

ω+−2 ·
θ
λd

[
1− e−λdT

]
·
(
σ2Q + µ2Q

)
(

θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

])2
T̂

=

b
ω+−2 ·

θ
λd

[
1− e−λdT

]
·
(
σ2Q − µ2Q

)
(

θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

])2
T̂ ,

which is positive if and only if µQ < σQ.

On the other side, from (4.25a), it should be clear that
∂E
[
K∗ ∫ T̂

0 Qtdt
]

∂σQ
= µQT̂

∂K∗
∂σQ

< 0,

and
∂E
[
K∗ ∫ T̂

0 Qtdt
]

∂T = µQT̂
∂K∗
∂T < 0.

4.7.2 Proofs for Section 4.4

Proof of Lemma 4.3. The proof follows directly from the proof of Lemma 4.1, with the dif-

ference being that the transfer C is replaced with bKe−λcτ here, instead of bK in Lemma 4.1.

Proof of Proposition 4.7. From Lemma 4.3, the firm’s expected discounted saving (4.29) is

a quadratic function of K. Moreover, note that the capacity can only be nonnegative. It

follows that the optimal capacity is

K(Dτ , τ) = max


θµQDτ

λd−µD

[
1− e(µD−λd)T

]
+

αθµQDτ

λd−µD

[
1− e(µD−λd)T̂

]
− be−λcτ

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0
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= max


θµQDτ

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be−λcτ

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] , 0

 ,

and the corresponding saving is

S(Dτ , τ) :=



[
θµQDτ

λd−µD

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]
−be−λcτ

]2
4
θ
(
σ2
Q
+µ2

Q

)
λd

[
1−e−λdT

] ,

if Dτ ≥ be−λcτ (λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] ,
0, if Dτ <

be−λcτ (λd−µD)

θµQ

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] .

Proof of Proposition 4.8. The proof of this proposition follows the proof of Proposition 4.2,

with the only change being the cost of investment coefficient b is now replaced with be−λcτ .

Here, we have that

µ̄d =

be−λcτ (λd − µD) +

√
b2e−2λcτ (λd − µD)2 + θ2D2

τ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]2
θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] ,

(4.74)

µ̂d =
be−λcτ (λd − µD)

θDτ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] . (4.75)

The rest of the proof is omitted as they are similar to the proof of Proposition 4.2.

Proof of Lemma 4.4. We first derive the HJB equation (4.33). At any time t, suppose the

realization of the total demand is x. The firm can choose to start a PPA or continue to

wait. If the firm optimally chooses to start the PPA, its saving is S(x, t), and it must hold
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that V (x, t) = S(x, t); if the firm optimally chooses to wait, and suppose the firm waits for

the next δt time and the change in total demand is δx, then, we have that

V (x, t) = e−λdδtE [V (x+ δx, t+ δt)] (4.76)

Expanding (4.76) using Taylor series expansion, we obtain

V (x+ δx, t+ δt) ≈V (x, t) + Vx(x, t)δx+ Vt(x, t)δt+
Vxx(x, t)

2
(δx)2 +

Vtt(x, t)

2
(δt)2

+ Vxt(x, t)δxδt+ o
(
(δx)3

)
+ o

(
(δt)3

)
+ o

(
(δx)2δt

)
+ o

(
(δt)2δx

)
(4.77)

Neglecting higher order terms, and substituting (4.77) in (4.76), we have that

V (x, t) ≈ e−λdδtE
[
V (x, t) + Vx(x, t)δx+ Vt(x, t)δt+

Vxx(x, t)

2
(δx)2

+
Vtt(x, t)

2
(δt)2 + Vxt(x, t)δxδt

]
= e−λdδt

[
V (x, t) + Vx(x, t)E[δx] + Vt(x, t)δt+

Vxx(x, t)

2
E(δx)2

+
Vtt(x, t)

2
(δt)2 + Vxt(x, t)δtE[δx]

]
. (4.78)

Subtracting e−λdδtV (x, t) from both sides of (4.78), then dividing by δt, we obtain

(
1− e−λdδt

)
V (x, t)

δt

=
e−λdδt

δt

[
Vx(x, t)E[δx] + Vt(x, t)δt+

Vxx(x, t)

2
E(δx)2 +

Vtt(x, t)

2
(δt)2 + Vxt(x, t)δtE[δx]

]
.

(4.79)

Given the geometric Brownian motion assumption of the demand process, we have that

δx = µDxδt + σDxδWt, and thus E[δx] = µDxδt, E[(δx)2] = (σDx)2δt. Substituting these
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expectations in (4.79), and take the limit δt→ 0, we arrive at

λdV (x, t) = µDxVx(x, t) +
1

2
σ2Dx2Vxx(x, t) + Vt(x, t). (4.80)

Therefore, in the continuation region, we have V (x, t) = 1
λd
µDxVx(x, t)+

1
2λd

σ2Dx2Vxx(x, t)+

1
λd
Vt(x, t). In the stopping region, we have that V (x, t) = S(x, t). The value function takes

the maximum value from stopping and continuing. Thus, the value function satisfies the

HJB equation as given in (4.33).

Proof of Proposition 4.9. It follows from the arguments before and after Lemma 4.4 that

the firm would optimally start a PPA at the first time when V (Dt, t) = S(Dt, t), since

when V (Dt, t) < S(Dt, t), the expected saving of the firm from waiting is higher, and when

V (Dt, t) = S(Dt, t), the expected saving from waiting is at most as much as the expected

saving from starting a PPA. Since both V (x, t) and S(x, t) are continuously differentiable,

there exists some threshold function x∗(t) such that V (Dt, t) = S(Dt, t) at the first time

when the realization of Dt reaches x∗(t). Thus, it is optimal for the firm to sign the PPA

at τ∗ as given in (4.36).

To identify the demand threshold function x∗(t), we solve the differential equation (4.34)

along with the boundary conditions (4.35). We start by taking a guess. Let V (x, t) =

kxωeλ̂t. Then xVx(x, t) = ωkxωeλ̂t, x2Vxx(x, t) = ω(ω − 1)kxωeλ̂t, and Vt(x, t) = λ̂kxωeλ̂t.

Substituting these into (4.34) leads to

λdkx
ωeλ̂t = µDωkxωeλ̂t +

1

2
σ2Dω(ω − 1)kxωeλ̂t + λ̂kxωeλ̂t,

which is

kxωeλ̂t
[
σ2Dω(ω − 1) + 2µDω + 2

(
λ̂− λd

)]
= 0.
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Since kxωeλ̂t > 0 for any x > 0 (assuming k > 0), this implies that

σ2Dω2 + (2µD − σ2D)ω + 2
(
λ̂− λd

)
= 0 (4.81)

Note that µD, σD are constants. The roots of (4.81) are

ω± =

σ2D − 2µD ±
√

(2µD − σ2D)2 − 8σ2D2
(
λ̂− λd

)
2σ2D

. (4.82)

It follows that V (x) = kxω±eλ̂t are solutions to the differential equation (4.34). This implies

that the general solution is a linear combination of the respective solutions, i.e.,

V (x, t) = (k1x
ω+ + k2x

ω−) eλ̂t. (4.83)

From the properties of geometric Brownian motion, when x = 0, it will remain zero forever

and the optimal threshold x∗(t) will never be reached. Thus, we have that V (0, t) = 0.

For λ̂, we restrict ourselves to the condition 0 < λ̂ < λd, which will be verified after we

derive the explicit expression for λ̂. For now, with the condition that 0 < λ̂ < λd, and also

from (4.82), it is clear that ω+ > 0 and ω− < 0. Therefore, as x→ 0, we have k1xω+eλ̂t → 0,

k2x
ω−eλ̂t → +∞ for k2 > 0 and k2x

ω−eλ̂t → −∞ for k2 < 0. This implies that V (0, t) = 0

only when k2 = 0. We thus have

V (x, t) = k1x
ω+eλ̂t. (4.84)

Combining (4.84) with (4.35), we obtain that

k1x
ω+∗ eλ̂t = S(x∗, t), (4.85a)

ω+k1x
ω+−1∗ eλ̂t = Sx(x∗, t), (4.85b)
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λ̂k1x
ω+∗ eλ̂t = St(x∗, t). (4.85c)

Substituting (4.85a) in (4.85b) and (4.85c), we have that

ω+S(x∗, t)
x∗

= Sx(x∗, t), (4.86a)

λ̂S(x∗, t) = St(x∗, t) (4.86b)

Combining (4.86) with (4.31), and solve for x∗, we obtain that

x∗(t) =
ω+S(x∗, t)
Sx(x∗, t)

=
bω+e

−λct (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] , (4.87)

λ̂ =
St(x∗, t)
S(x∗, t)

=
2bλce

−λct[
θµQx∗(t)
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be−λct

] = (ω+ − 2)λc,

(4.88)

where x∗(t) is as (4.37) in the Proposition. It remains to solve for ω+ and λ̂ using (4.88)

and (4.82). Plugging (4.82) in (4.88), we have that

λ̂ =
(−3σ2D − 2µD) +

√
(2µD − σ2D)2 − 8σ2D(λ̂− λd)

2σ2D
λc.

With some algebra, we obtain that λ̂ needs to satisfy

σ4Dλ̂2 + σ2D(3σ2D + 2µD)λcλ̂+ 2σ2Dλ2c λ̂ = λ2c(4µD + 2σ2D)(−σ2D) + 2σ2Dλ2cλd.

Solving the above for λ̂, we have that

λ̂ =
−σ2D(3σ2D + 2µD)λc − 2σ2Dλ2c +

√
∆

2σ4D
, (4.89)
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where

∆ = σ4Dλ2c(3σ
2
D + 2µD + 2λc)

2 − 4σ4D

[
σ2Dλ2c(4µD + 2σ2D)− 2σ2Dλ2cλd

]
= σ4Dλ2c

[
σ4D + 4µ2D + 4λ2c + 12σ2Dλc + 8µDλc − 4σ2DµD + 8σ2Dλd

]
. (4.90)

Thus, from ω+ − 2 = λ̂
λc

, we have that

ω+ =
σ2D − 2µD − 2λc +

√
σ4D + 4µ2D + 4λ2c + 12σ2Dλc + 8µDλc − 4σ2DµD + 8σ2Dλd

2σ2D
,

which is (4.38) in the proposition. Finally, we verify that 0 < λ̂ < λc (note that λ̂ > 0 also

implies that ω+ > 2). To verify that λ̂ > 0, we need that

∆ > σ4D(3σ2D + 2µD)2λ2c + 4σ4Dλ4c + 4σ4Dλ3c(3σ
2
D + 2µD),

which is

σ4Dλ2c

[
σ4D + 4µ2D + 4λ2c + 12σ2Dλc + 8µDλc − 4σ2DµD + 8σ2Dλd

]
> σ4D(3σ2D + 2µD)2λ2c + 4σ4Dλ4c + 4σ4Dλ3c(3σ

2
D + 2µD).

After some simplification, this is equivalent to

σ6Dλ2c

[
λd − σ2D − 2µD

]
> 0⇐⇒ λd > σ2D + 2µD.

Note that λd > σ2D + 2µD is exactly our assumption on λd.

To verify that λ̂ < λd, it suffices to show that

−σ2D(3σ2D + 2µD)λc − 2σ2Dλ2c +
√
∆

2σ4D
< λd,
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which, after some algebra, becomes

σ4Dλ2c

[
−8σ4D − 16σ2DµD

]
< 4σ8Dλ2d + 4σ4Dλdσ

2
D(3σ2D + 2µD)λc,

which always holds since the left-hand-side is negative and the right-hand-side is positive.

Proof of Corollary 4.2. First, we check if the optimal capacity and the saving is positive with

the given x∗(t), i.e., which region x∗(t) lies in (4.30) and (4.31). With x∗(t) as in (4.37), we

have that

θµQx∗(t)
λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be−λct

=
θµQ

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· bω+e

−λct (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

] − be−λct

=
be−λctω+
ω+ − 2

− be−λct > 0,

which means that K(x∗(t), t) and S(x∗(t), t) are always positive.

Plugging (4.37) into (4.30), we obtain the optimal capacity as a function of the PPA

starting time, i.e., the optimal capacity if the firm starts the PPA at time τ :

K∗(τ) = K(x∗(τ)) =

θµQx∗(τ)
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− b

2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
=

bω+e
−λcτ

ω+−2 − be−λcτ

2

(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]) =

be−λcτ

ω+−2
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] . (4.91)

Plugging (4.20) into (4.14), we obtain the firm’s saving as a function of the PPA starting
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time, i.e., the firm’s saving if it starts the PPA at time τ :

S∗(τ) = S(x∗(τ)) =

[
bω+e

−λcτ

(ω+−2) − be−λcτ
]2

4

(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]) =

[
be−λcτ

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] . (4.92)

To obtain the expected optimal capacity and saving, we need to take the expectation

of (4.91) and (4.92) over the firm’s optimal stopping time (time to start the PPA). Therefore,

we need to have the distribution of the firm’s waiting time.

Since Dt is a geometric Brownian motion, i.e., dDt = µDDtdt+ σDDtdWt, we have that

Dt = D0 exp

((
µD −

σ2D
2

)
t+ dWt

)
. Let D∗ :=

bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

] .
Then, we can write that

P [τ∗ > s] = P [∀t ∈ [0, s], Dt < x∗(t)]

= P

[
∀t ∈ [0, s], D0 exp

((
µD −

σ2D
2

)
t+ σDWt

)
< D∗ exp(−λct)

]

= P

[
∀t ∈ [0, s], ln(D0) +

((
µD −

σ2D
2

)
ν + σDWt

)
< ln(D∗) + (−λct)

]

= P

[
max
t∈[0,s]

(
λc + µD − σ2D/2

)
t+ σDWt < ln

(
D∗
D0

)]
.

We need the expected first hitting time to ln
(
D∗
D0

)
for the Brownian motion with drift(

λc + µD − σ2D/2
)
t+σDWt. This first hitting time follows the inverse Gaussian distribution

IG

 ln
(
D∗
D0

)
λc+µD−σ2D/2

,

(
ln
(
D∗
D0

)
σD

)2
, thus the expected first hitting time is given by

E[τ∗] =
ln
(
D∗
D0

)
λc + µD − σ2D/2

. (4.93)

Now, we come back to the expected optimal capacity and saving. By taking the expec-
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tation of (4.91) and (4.92) over τ∗, we have that

K∗ = Eτ∗ [K
∗(τ∗)] =

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]E [e−λcτ∗]

=

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] exp


(
ln
(
D∗
D0

)
σD

)2

ln
(
D∗
D0

)
λc+µD−σ2D/2

1−

√√√√√√√√√√1−
2

(
ln
(
D∗
D0

)
λc+µD−σ2D/2

)2

(−λc)(
ln
(
D∗
D0

)
σD

)2




=

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]
· exp

(λc + µD − σ2D/2) ln
(
D∗
D0

)
σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


=

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√
1− 2σ2

D
(−λc)

(λc+µD−σ2
D
/2)2

)
,

S∗ = Eτ∗ [S(x∗(τ∗), τ∗)]

=

[
b

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]
· exp

(λc + µD − σ2D/2) ln
(
D∗
D0

)
σ2D

1−

√√√√1− 2σ2D(−2λc)(
λc + µD − σ2D/2

)2


=

[
b

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
.

Finally, we obtain V (x, t) in the continuation region, i.e., the solution of (4.34). From

the proof of Proposition 4.9, we have that V (x, t) = k1x
ω+eλ̂t, where k1 can be obtained
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through (4.85a):

k1 =
S(x∗, t)

x
ω+∗ eλ̂t

=

[
be−λct

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

λd

[
1−e−λdT

](
bω+e−λct(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])ω+

eλ̂t

=

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

λd

[
1−e−λdT

](
bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])ω+ · e
−2λct · eω+λct · e−λ̂t

=

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

λd

[
1−e−λdT

](
bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])ω+ ,

where we recall from (4.88) that λ̂ = (ω+ − 2)λc. Thus, we have that

V (x, t) = k1x
ω+eλ̂t =

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

λd

[
1−e−λdT

](
bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])ω+ · x
ω+eλ̂t,

where λ̂ is derived from (4.89) and (4.90) as

λ̂ =
−σ2D(3σ2D + 2µD)λc − 2σ2Dλ2c

2σ4D

+
+
√

σ4Dλ2c
[
σ4D + 4µ2D + 4λ2c + 12σ2Dλc + 8µDλc − 4σ2DµD + 8σ2Dλd

]
2σ4D

.
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Proof of Proposition 4.10. We first look at how the newly added renewable capacity K∗

changes with respect to µQ. Recall that

K∗ =
b

ω+−2
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
.

We take partial derivative with respect to µQ:

∂K∗

∂µQ
=
− b

ω+−2 ·
2θµQ
λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√
1− 2σ2

D
(−λc)

(λc+µD−σ2
D
/2)2

)

+

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] · λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


· 1

D0
·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
−1

· −bω+ (µD − λd)

(ω+ − 2)θµ2Q

[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]

=
− b

ω+−2 ·
2θµQ
λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√
1− 2σ2

D
(−λc)

(λc+µD−σ2
D
/2)2

)

+

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] · λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
· 1

−µQ
, (4.94)
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where we note that (4.94) is positive if and only if

b
ω+−2 ·

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
· λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


· 1

−µQ
+
− b

ω+−2 ·
2θµQ
λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
> 0,

or equivalently,

−2µ2Q − (σ2Q + µ2Q) ·
λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
 > 0. (4.95)

After rearranging, (4.95) becomes

− µ2Q ·

λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
+ 2


> σ2Q ·

λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
 (4.96)

From (4.96), we then check if λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

)
+ 2 is always posi-

tive:

λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
+ 2 > 0

⇐⇒
(
λc + µD − σ2D/2

)1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
+ 2σ2D > 0

⇐⇒
(
λc + µD + 3σ2D/2

)
>
(
λc + µD − σ2D/2

)√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
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⇐⇒
(
λc + µD + 3σ2D/2

)2
>
(
λc + µD − σ2D/2

)2(
1− 2σ2D(−λc)(

λc + µD − σ2D/2
)2
)

⇐⇒
(
λc + µD + 3σ2D/2

)2
>
(
λc + µD − σ2D/2

)2
+ 2λcσ

2
D

⇐⇒ 9σ4D/4 + 3λcσ
2
D + 3µDσ2D > σ4D/4− λcσ

2
D − µDσ2D + 2λcσ

2
D

⇐⇒ 2σ2D + 2λcσ
2
D + 4µDσ2D > 0

⇐⇒ 1 + λc + 2µD > 0,

which always holds. This implies that λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

)
+ 2 is al-

ways positive. Thus, ∂K∗
∂µQ

> 0 if and only if

−µ2Q/σ2Q >

λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

)
λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

)
+ 2

,

equivalently,

σ2Q

µ2Q
>

λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

)
+ 2

−λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

) := ξ.

Next, we look at how the newly added renewable capacity K∗ changes with respect to σQ.

Note that σQ exists only in the denominator of K∗. We thus have that ∂K∗
∂σQ

< 0.

We next look at the value function V (x, t). We take the derivatives of (4.41) with

respect to µQ and σQ. Let k1 :=

[
b

ω+−2

]2
θ(σ2

Q
+µ2

Q
)

−λd

[
e−λdT−1

] bω+(µD−λd)

(ω+−2)θµQ

[
e(µD−λd)T+αe(µD−λd)T̂−1−α

]
ω+ . Then V (x, t) =
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k1x
ω+eλ̂t, and we have that

∂V (x, t)

∂µQ
=

∂k1
∂µQ

=
num(

bω+(λd−µD)

(ω+−2)θµQ
[
1+α−e(µD−λd)T−αe(µD−λd)T̂

])2ω+
,

where

num =
−
[

b
ω+−2

]2
· 2θµQ [1−e−λdT ]

λd(
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2

·

 bω+ (λd − µD)

(ω+ − 2)θµQ(1 + α)
[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+

−

[
b

ω+−2
]2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

]
· ω+

 bω+ (λd − µD)

(ω+ − 2)θµQ

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
ω+−1

·

 −bω+ (λd − µD)

(ω+ − 2)θµ2Q

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
 .

Note that num > 0 if and only if −2µQ
(σ2Q+µ2Q)

> ω+ ·
(
− 1

µQ

)
, which is ω+(σ2Q+ µ2Q) > 2µ2Q, or

(ω+ − 2)µ2Q + ω+σ
2
Q > 0, which always holds. Therefore, we have that ∂V (x)

∂µQ
> 0.

Finally, we look at E[τ∗]. From Corollary 4.2, we have that E[τ∗] =
ln
(
D∗
D0

)
λc+µD−σ2D/2

. With

the assumption that µD > σ2D/2, we have that

∂E[τ∗]
∂µQ

=
1

λc + µD − σ2D/2
· D0

D∗
· ∂D

∗

∂µQ
=

D0

λc + µD − σ2D/2
·
(
− 1

µQ

)
< 0,

∂E[τ∗]
∂σQ

=
1

λc + µD − σ2D/2
· D0

D∗
· ∂D

∗

∂σQ
= 0,
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∂E[τ∗]
∂T

=
1

λc + µD − σ2D/2
· D0

D∗
· ∂D

∗

∂T

=
D0

λc + µD − σ2D/2
·
(ω+ − 2)θµQ(1 + α)

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
bω+ (λd − µD)

·
bω+ (µD − λd) · (ω+ − 2)θµQ(1 + α)(λd − µD)e(µD−λd)T

(ω+ − 2)2θ2µ2Q(1 + α)2
[
e(µD−λd)T + αe(µD−λd)T̂ − 1− α

]2
=

D0

λc + µD − σ2D/2
· (λd − µD)e(µD−λd)T[

e(µD−λd)T + αe(µD−λd)T̂ − 1− α
] < 0.

Proof of Proposition 4.11. When Dt < x∗(t), the firm waits to sign the PPA, and the optimal

expected capacity is given by (4.39), where it follows that a higher b will lead to a higher K∗,

which in turn increases the total renewable energy output K∗
∫ T̂
0 Qtdt with probability 1.

On the other side when Dt ≥ x∗(t), the firm does not wait and signs the PPA immediately,

in which case the optimal capacity for the firm is given by (4.30), where it follows that a

higher b will lead to a lower K(Dt, t), which in turn decreases the total renewable energy

output K(Dt, t)
∫ T̂
0 Qtdt with probability 1.

Proof of Proposition 4.12. We first show
∂E
[
K∗ ∫ T̂

0 Qtdt
]

∂µQ
.

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

=
∂E
[
K∗QtT̂

]
∂µQ

=
∂K∗

∂µQ
· µQT̂ +K∗T̂

=
− b

ω+−2 ·
2θµ2Q
λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√
1− 2σ2

D
(−λc)

(λc+µD−σ2
D
/2)2

)
· T̂
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+
− b

ω+−2
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] · λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
· T̂

+

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
· T̂

= terms ·
(
D∗
D0

)λc+µD−σ2
D
/2

σ2
D

(
1−
√

1− 2σ2
D
(−λc)

(λc+µD−σ2
D
/2)2

)
· T̂ ,

where

terms =
− b

ω+−2 ·
2θµ2Q
λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2

+
− b

ω+−2
θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] · λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


+

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] .

Then,
∂E
[
K∗ ∫ T̂

0 Qtdt
]

∂µQ
is positive if and only if terms > 0, which is

− b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] · λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2


+
− b

ω+−2 ·
2θµ2Q
λd

[
1− e−λdT

]
(

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

])2
+

b
ω+−2

θ(σ2Q+µ2Q)

λd

[
1− e−λdT

] > 0,
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or equivalently,

− µ2Q − (σ2Q + µ2Q) ·
λc + µD − σ2D/2

σ2D

1−

√√√√1−
2σ2D(−λc)(

λc + µD − σ2D/2
)2
+ σ2Q > 0,

which is

− µ2Q

λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
+ 1


> σ2Q

λc + µD − σ2D/2

σ2D

1−

√√√√1− 2σ2D(−λc)(
λc + µD − σ2D/2

)2
− 1

 ,

which, after rearranging, becomes

σ2Q

µ2Q
>

1 +
λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

)

1− λc+µD−σ2D/2

σ2D

(
1−

√
1− 2σ2D(−λc)

(λc+µD−σ2D/2)2

) := ζ.

Finally, we note that
∂E
[
K∗ ∫ T̂

0 Qtdt
]

∂σQ
= µQT̂

∂K∗
∂σQ

< 0.

4.7.3 Proofs for Section 4.5

Proof of Lemma 4.5. The firm’s random saving is given by (4.48). We further note that pYs =

θ(Ds−KQs), pNs = θDs, and C = e−λctsbK. Thus, the firm’s random saving can be written

as

(4.48) =
∫ ts+T

ts
e−λdspNs Usds−

∫ ts+T

ts
e−λdspYs

[
Us − Q̂s

]
ds

+

∫ ts+T̂

ts+T
e−λdspNs Usds−

∫ ts+T̂

ts+T
e−λdspYs Usds− e−λdtsC
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= θ

∫ ts+T

ts
e−λdsDsUsds− θ

∫ ts+T

ts
e−λds(Ds −KQs) [Us −KQs] ds

+ θ

∫ ts+T̂

ts+T
e−λdsDsUsds− θ

∫ ts+T̂

ts+T
e−λds(Ds −KQs)Usds− e−λdtsbe−λctsK

= θ

∫ ts+T

ts
e−λdsDsUsds− θ

∫ ts+T

ts
e−λds

[
DsUs −DsKQs −KQsUs +K2Q2

s

]
ds

+ θ

∫ ts+T̂

ts+T
e−λdsDsUsds− θ

∫ ts+T̂

ts+T
e−λds(Ds −KQs)Usds− e−λdtsbe−λctsK

= θ

∫ ts+T

ts
e−λds

[
KQs(Us +Ds)−K2Q2

s

]
ds+ θ

∫ ts+T̂

ts+T
e−λdsKQsUsds

− be−λdtse−λctsK

= θ(1 + α)K

∫ ts+T

ts
e−λds [QsDs] ds− θK2

∫ ts+T

ts
e−λdsQ2

sds

+ θαK

∫ ts+T̂

ts+T
e−λdsQsDsds− be−(λd+λc)tsK.

From our assumptions on Qt and Dt, we have that E[Qt] = µQ, E[Dt] = D0e
µDt, and

E[Q2
t ] = Var[Qt] + E[Qt]

2 = σ2Q + µ2Q. Thus, the firm’s expected saving is

E[(4.48)] = θ(1 + α)µQK

∫ ts+T

ts
e−λdsD0e

µDsds− θK2
∫ ts+T

ts
e−λds

(
σ2Q + µ2Q

)
ds

+ θαµQK

∫ ts+T̂

ts+T
e−λdsD0e

µDsds− be−(λd+λc)tsK

=
θ(1 + α)µQD0K

µD − λd

[
e(µD−λd)(ts+T ) − e(µD−λd)ts

]
−

θK2
(
σ2Q + µ2Q

)
−λd

[
e−λd(ts+T ) − e−λdts

]
+

θαµQD0K

µD − λd

[
e(µD−λd)(ts+T̂ ) − e(µD−λd)(ts+T )

]
− be−(λd+λc)tsK

= −
θK2

(
σ2Q + µ2Q

)
−λd

[
e−λd(ts+T ) − e−λdts

]
+

θµQD0K

µD − λd

[
e(µD−λd)(ts+T ) − e(µD−λd)ts

]
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+
θαµQD0K

µD − λd

[
e(µD−λd)(ts+T̂ ) − e(µD−λd)ts

]
− be−(λd+λc)tsK

=
θµQD0K

µD − λd

[
e(µD−λd)(ts+T ) + αe(µD−λd)(ts+T̂ ) − (1 + α)e(µD−λd)ts

]
+

θK2
(
σ2Q + µ2Q

)
λd

[
e−λd(ts+T ) − e−λdts

]
− be−(λd+λc)tsK.

This completes the proof of Lemma 4.5.

Proof of Proposition 4.13. From Lemma 4.5, the firm’s expected discounted saving (4.50) is

a quadratic function of K. Moreover, note that the capacity can only be nonnegative. It

follows that the optimal capacity is

K(ts) =

θµQD0

µD−λd

[
e(µD−λd)(ts+T ) − e(µD−λD)ts

]
+

θαµQD0

µD−λd

[
e(µD−λd)(ts+T̂ ) − e(µD−λd)ts

]
2θ
(
σ2Q+µ2Q

)
−λd

[
e−λd(ts+T ) − e−λdts

]
− be−(λd+λc)ts

2θ
(
σ2Q+µ2Q

)
−λd

[
e−λd(ts+T ) − e−λdts

]
=

θµQD0

µD−λd

[
e(µD−λd)(ts+T ) + αe(µD−λd)(ts+T̂ ) − (1 + α)e(µD−λd)ts

]
− be−(λd+λc)ts

2θ
(
σ2Q+µ2Q

)
−λd

[
e−λd(ts+T ) − e−λdts

]
=

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]
eµDts

2θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] ,

and the corresponding saving (if K(ts) > 0) is

S(ts) =

[
θµQD0

µD−λd

[
e(µD−λd)(ts+T ) + αe(µD−λd)(ts+T̂ ) − (1 + α)e(µD−λd)ts

]
− be−(λd+λc)ts

]2
4θ
(
σ2Q+µ2Q

)
−λd

[
e−λd(ts+T ) − e−λdts

]
=

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]2
e(2µD−λd)ts

4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] .
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Proof of Proposition 4.14. We first find t∗s, which maximizes S(ts). Recall that

S(ts) =

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]2
e(2µD−λd)ts

4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] .

Then,

∂S(ts)

∂ts

=
2
[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]
4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
· b(λc + µD)e(−λc−µD)tse(2µD−λd)ts

+

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]2
4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
· (2µD − λd)e

(2µD−λd)ts

=
e(2µD−λd)ts

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]
4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·
{
2b(λc + µD)e(−λc−µD)ts

− (λd − 2µD)

[
θµQD0

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]}
.

Since K(t∗s) > 0, we have that ∂S(ts)
∂ts

= 0 if and only if ts is positive and satisfies

2b(λc + µD)e(−λc−µD)ts

= (λd − 2µD)

[
θµQD0

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)ts

]
,
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which is

b [2(λc + µD) + (λd − 2µD)] e(−λc−µD)ts

= (λd − 2µD)
θµQD0

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
,

or, equivalently,

b (2λc + λd) e
(−λc−µD)ts = (λd − 2µD)

θµQD0

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
.

Therefore, we have that

t∗s =

 log (b(2λc + λd))− log
(
(λd − 2µD)

θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

])
λc + µD

+ .

When t∗s > 0, we plug in t∗s to (4.51), and obtain that

K∗ = K(t∗s) =

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)t∗s

]
eµDt∗s

2θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
=

[
θµQD0

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]

−
(λd − 2µD)

θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
(2λc + λd)

]

· 1

2θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

 b(2λc + λd)

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD
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=

[
µQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

 b(2λc + λd)

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

.

When t∗s > 0, we plug in t∗s to (4.51), and obtain that

S∗ = S(t∗s) =

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
− be(−λc−µD)t∗s

]2
e(2µD−λd)t

∗
s

4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
=

[
θµQD0

λd − µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]

−
(λd − 2µD)

θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
(2λc + λd)

]2
· 1

4θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
b(2λc + λd)


λd−2µD
λc+µD

=

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
b(2λc + λd)


λd−2µD
λc+µD

.

Proof of Proposition 4.15. We first look at how the newly added renewable capacity K∗

329



changes with respect to µQ. Recall that when t∗s > 0, we have that

K∗ =

[
µQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

 b(2λc + λd)

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

.

We take the partial derivative with respect to µQ:

∂K∗

∂µQ
=

{ D0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

·
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2

−

[
µQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]
· 2µQλd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2

}

·

 b(2λc + λd)

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

+

[
µQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] · −µD
λc + µD

·

 b(2λc + λd)

(λd − 2µD) θD0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

· µ
−λc−2µD
λc+µD

Q

=

D0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

·
(
σ2Q−µ2Q

)
λd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2
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·

 b(2λc + λd)

(λd − 2µD) θD0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

· µ
−µD

λc+µD
Q

+

[
µQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

] · −µD
λc + µD

·

 b(2λc + λd)

(λd − 2µD) θD0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

· µ
−λc−2µD
λc+µD

Q

=

D0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

·
(
σ2Q−µ2Q

)
λd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2

·

 b(2λc + λd)

(λd − 2µD) θD0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

· µ
−µD

λc+µD
Q

+

D0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

·
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2

·

 b(2λc + λd)

(λd − 2µD) θD0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

· µQ ·
−µD

λc + µD
· µ

−λc−2µD
λc+µD

Q

=

D0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

· 1
λd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2

·

 b(2λc + λd)

(λd − 2µD) θD0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

·
(
(σ2Q − µ2Q)µ

−µD
λc+µD
Q − (σ2Q + µ2Q)

µD
λc + µD

µ

−µD
λc+µD
Q

)
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=

D0
λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

· 1
λd

[
1− e−λdT

]
((

σ2Q+µ2Q

)
λd

[
1− e−λdT

])2

·

 b(2λc + λd)

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]


µD
λc+µD

·
(
(σ2Q − µ2Q)− (σ2Q + µ2Q)

µD
λc + µD

)
,

which is nonnegative if and only if

λc
λc + µD

σ2Q ≥
λc + 2µD
λc + µD

µ2Q,

or equivalently,
σ2Q
µ2Q
≥ λc+2µD

λc
.

Also note that σQ exists only in the denominator of K∗, and b exists only in the numerator

of K∗. We thus have that ∂K∗
∂σQ

< 0 and ∂K∗
∂b > 0.

We then look at how the firm’s optimal expected saving S∗ changes with respect to µQ.

Recall that when t∗s > 0, we have that

S∗ =

[
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]2
θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

]
·

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
b(2λc + λd)


λd−2µD
λc+µD

.

We take the partial derivative of S∗ with respect to µQ:

∂S∗

∂µQ
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=

{
2µQ

(
θD0

λd−µD

[
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]
· λc+µD
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·
θ
(
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)
λd(

θ
(
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)
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[
1− e−λdT

])2

−

[
θµQD0
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[
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]
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θ
(
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[
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+
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σ2Q+µ2Q
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[
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[
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[
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(
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(
σ2Q+µ2Q

)
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[
1− e−λdT

])2

·

(λd − 2µD)
θµQD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
b(2λc + λd)


λd−2µD
λc+µD

+

[
θD0
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]2
·
θ
(
µ2Qσ

2
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[
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(
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·
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=

[
θD0

λd−µD

[
1 + α− e(µD−λd)T − αe(µD−λd)T̂

]
· λc+µD
(2λc+λd)

]2
(

θ
(
σ2Q+µ2Q

)
λd

[
1− e−λdT

])2
·
θ
[
1− e−λdT

]
λd

·

(λd − 2µD) θD0
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[
1 + α− e(µD−λd)T − αe(µD−λd)T̂
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b(2λc + λd)


λd−2µD
λc+µD

·
(
2µQσ

2
Q · µ

λd−2µD
λc+µD
Q + (µ2Qσ

2
Q + µ4Q) ·

λd − 2µD
λc + µD

· µ
λd−λc−3µD

λc+µD
Q

)

≥ 0.

Also note that σQ and b exist only in the denominator of S∗. We thus have that ∂S∗
∂σQ

< 0

and ∂S∗
∂b < 0.

We next look at the optimal scheduled starting time t∗s. Recall that when t∗s > 0, it is

given by

t∗s =

log

 b(2λc+λd)

(λd−2µD)
θµQD0
λd−µD

[
1+α−e(µD−λd)T−αe(µD−λd)T̂

]


λc + µD
.

Note that increasing either µQ or T would increase the denominator within the natural log

in the numerator, which then decreases t∗s (assuming the denominator within the natural

log is still smaller than the numerator, so that t∗s is still positive). Changing σQ does not

affect t∗s. Increasing b will increase t∗s if t∗s > 0. If t∗s = 0, then t∗s may stay at 0 or become

positive with a higher b.

Finally, we look at how the expected additional production due to PPA changes with

respect to µQ, σQ, and b. Note that

∂E
[
K∗
∫ T̂
0 Qtdt

]
∂µQ

=
∂E
[
K∗QtT̂

]
∂µQ

= T̂
∂K∗

∂µQ
· µQ + T̂K∗.
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Thus,
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∂µQ
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which is nonnegative if and only if

2σ2Q ≥ σ2Q
µD

λc + µD
+ µ2Q

µD
λc + µD

,

or, equivalently,

σ2Q
2λc + µD

µD
≥ µ2Q.

As for σQ and b, we have that
∂E
[
K∗QtT̂

]
∂σQ

< 0 and
∂E
[
K∗QtT̂

]
∂b > 0, which follow directly

from ∂K∗
∂σQ

< 0 and ∂K∗
∂b > 0.
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CHAPTER 5

GREEDY ALGORITHMS FOR THE FREIGHT

CONSOLIDATION PROBLEM

5.1 Introduction

The spiking high container prices since the COVID-19 pandemic have caused significant

issues in global supply chains. In this chapter, we consider the (ocean) freight consolidation

problem (FCP) - a combinatorial optimization problem that is being solved every day and

every hour by some of the world’s leading freight forwarders. In a nutshell, the freight

consolidation problem aims to optimize the assignments of shipments to containers at the

origin ports, such as Yantian Port (Shenzhen) and Port of Shanghai. In the FCP, there are a

set of shipments and a set of candidate containers that can be used. The origin/destinations

of each shipment and each container, as well as the estimated departure/arrival dates of

each container, are predetermined as the shipment/container becomes available at the port.

There are two major costs: cost of assigning a shipment to a container (shipment cost), and

cost of procuring a container (container cost). We further explain these costs in slightly more

detail:

• The shipment cost takes into account everything related to sending the shipment boxes

to their final destinations. Starting from the origin port, the remaining cycle of a

shipment includes arriving at a destination port, being sorted and loaded to rail or

truck, and delivering to their destinations. If a shipment is assigned to two containers

that arrive at different ports, the remaining rail and/or trucking costs will be different.

Furthermore, many shipments also have time window requirements, and based on the

arrival time of different containers, there may be different lateness costs. Therefore,

we have a shipment cost associated with assigning each shipment to each container. If

a container is not feasible for a shipment due to time window or destination ports, the
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corresponding shipment cost (of assigning that shipment to that container) is assigned

as ∞.

• The container cost is the cost of using a container. There is a set of containers available

at the origin port, each with its own destination, departure time, and cost of procure-

ment. If we decide to assign any shipment to a container, then we have to pay the

procurement cost for that container.

Moreover, if we find there is no proper container to assign a shipment, there is always an

option to “coload” that shipment, i.e., use a third-party shipper, e.g., Shipco, to fulfill that

shipment. The cost associated with assigning the shipment to a third-party shipper is called

the “coloading” cost. In our formulation, the “coloading” option can be viewed as a container

with unlimited capacity, and the coloading costs are equivalently viewed as the shipment

cost of assigning a shipment to this “coloading” container.

The freight forwarder aims to fulfill all shipments at hand while minimizing the total

cost, which includes both shipment costs and container costs, subject to certain constraints.

Specifically, each container has its own size in three-dimensions, as does each shipment. A

container also has a maximum weight limit. In reality, we need to ensure that the total weight

of all shipments assigned to a container does not exceed the weight limit of that container,

and the center of mass (of a loading plan of these shipments) is not too far away from the

center of the container. Moreover, these shipments should be able to fit into the container in

three dimensions. Assuming a shipment is packed in a three-dimensional box, there are six

possible rotations (orientations) of a box when being loaded to the container. Some boxes do

not allow all six rotations, and some boxes are not stackable (which means they have to be

put on the top). Given all these practical constraints, the problem of loading any given set of

shipments to a container is a separate NP-hard problem, which is called the container loading

problem in literature (see Aydemir and Yigit [23] for a comprehensive review). It would be

too complicated to consider all container-loading constraints in our freight consolidation
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model. Therefore, we simplify the constraints by just having a weight capacity constraint

and a volume capacity constraint for each container, ignoring the actual three-dimensional

packing feasibility constraint. Despite that FCP does not reflect all practical constraints, we

believe it is the simplest model to capture the most important features of the problem.

Up till now, a keen reader would recognize that our FCP can be viewed as a combination

of the generalized assignment problem (GAP) and the bin packing problem (BPP), in a more

complicated version. The shipment costs mimic the costs of assigning jobs in GAP, while

in FCP we have two sets of capacity constraints (both weight and volume). The container

cost is the cost of using each container (bin), while we have different costs for each container

(bin). Therefore, FCP is already complicated in its nature and is expected to be difficult

to solve. In this chapter, we prove the non-approximability result of FCP, i.e., there is no

constant factor approximation to FCP in polynomial time, unless P = NP . As a remedy, we

propose a series of heuristics. With simulated data that aims to reflect the actual practice,

we show that our heuristics return solutions with small optimality gaps.

The remaining of the chapter is organized as follows. In Section 5.2, we provide a com-

prehensive literature review on the Bin Packing and related problems. In Section 5.3 we

formally introduce the FCP and provide the non-approximability result. In Section 5.4, we

provide main greedy heuristics for solving the FCP. Section 5.5 provides some numerical

experiments on these heuristics. The chapter concludes with Section 5.6.

5.2 Literature Review

5.2.1 Classical Bin Packing Problem

We first review the classical (one-dimensional) bin packing problem (BPP). In the classical

bin packing problem, we are given a set of items, each with a one-dimensional size, and an

unlimited number of containers (bins) with the same sizes. The BPP asks to minimize the
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total number of bins used, subject to the constraints that the total size of items added to

each bin does not exceed the size of the bin. BPP is strongly NP-hard (Hartmanis [104]),

meaning that no full polynomial time approximation scheme (FPTAS) exists. Over the

years, many heuristics have been developed to provide high-quality solutions for practical

purposes. The traditional heuristics are all for the “online” version of BPP, meaning that

the list of items are shown one by one, and a decision for each item is made final as soon as

the item is shown. Classical heuristics include the following.

• First Fit (FF) (Johnson et al. [123]): Upon seeing an item, it is inserted to the first

bin (according to the indices of the bins) that has room for it. A new bin is opened if

the item does not fit into any existing bin.

• Next Fit (NF) (Johnson et al. [123]): Upon seeing an item, it is inserted to the last

existing bin (according to the indices of the bins) that has room for it. A new bin is

opened if the item does not fit into any existing bin.

• Best Fit (BF) (Rhee and Talagrand [181]): Upon seeing an item, it is inserted to the

fullest bin that has room for it. A new bin is opened if the item does not fit into any

existing bin.

• Worst Fit (WF) (Coffman et al. [56]): Upon seeing an item, it is inserted to the

emptiest bin (among those existing ones) that has room for it. A new bin is opened if

the item does not fit into any existing bin.

• Almost Worst Fit (AWF) (Coffman et al. [56]): Upon seeing an item, it is inserted to

the second emptiest bin that has room for it. A new bin is opened if the item does not

fit into any existing bin.

For the “offline” problem, on the other hand, we are given access to the full list of items from

the beginning (before making any decisions). The above heuristics may also be used, but
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combined with some sorting of the items. For example, FF-Decreasing uses the First Fit

heuristic on the presorted list of items, where the items are listed in decreasing order of their

sizes. Other heuristics such as BF-Decreasing, NF-Decreasing, FF-Increasing are defined

similarly. We refer to Coffman Jr et al. [57] for a survey on the worst-case analysis of the

above algorithms.

There are also algorithms that have both online and offline flavor for BPP. One example

is the Better-Fit heuristic algorithm (BFH) (Bhatia et al. [36]). In BFH, an existing item

from a bin is removed and replaced with the current item if the current item better fills the

bin. If the packing of the current item results in a smaller remaining space than the packing

of the existing item, then the existing item is removed from the bin it is in. The replaced

item is then packed again using BFH. Such procedure continues for all items until better-fit

cannot pack a replaced item, in which case it is packed with BF heuristic.

In recent years, there are also developments of more complicated metaheuristic ap-

proaches for solving the BPP. Examples include the Whale Optimization Algorithm (WOA)

(Mirjalili and Lewis [161]) (may be improved with Lévy Flights (Abdel-Basset et al. [1])),

(Adaptive) Cuckoo Search (may also incorporate with Lévy Flights) (Yang and Deb [226]),

Squirrel Search Algorithm (Jain et al. [118]), the Fitness-Dependent Optimizer (FDO) (Ab-

dullah and Ahmed [3], Abdul-Minaam et al. [2]), and so on. Since BPP is still not so close

to our FCP, we do not extend our discussions on these metaheuristics. We refer to (Munien

and Ezugwu [165]) for a comprehensive survey of the aforementioned algorithms.

5.2.2 Variations of BPP

One major restriction of the classical BPP is that the objective is simply minimizing the

number of bins used, and these bins are assumed to be identical. In our FCP, however,

containers may differ in their size/dimensions, and the costs of containers are different from

each other. Luckily, a number of variations of the classical BPP have also been studied in
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the literature.

5.2.2.1 Bin Packing Problem with General Cost Structures (GCBP)

In GCBP, the cost of a bin is not one, but depends on the number of items actually inserted

into this bin. Specifically, the cost of a bin is given by a function f : {0, 1, 2, . . . , n} → R+,

where f is a monotonically non-decreasing concave function, and f(0) = 0. In words, if the

bin has been inserted k items, the cost of that bin would be f(k). GCBP was first proposed

in Anily et al. [15], where the worst-case performance of some BPP heuristics was analyzed.

Specifically, it was shown that many common heuristics for BPP, such as FF, BF, and NF

as described in Section 5.2.1 do not have a finite asymptotic approximation ratio, while NF-

Decreasing was shown to have an asymptotic approximation ratio of exactly 2. Moreover, the

BF-Increasing, FF-Increasing and NF-Increasing achieve a better asymptotic approximation

ratio of approximately 1.691. It was also shown in Anily et al. [15] that any heuristic that

is independent of f has an asymptotic approximation ratio of at least 4
3 . Later, Epstein and

Levin [70] developed an asymptotic fully polynomial time approximation scheme (AFPTAS)

and proved the tight bound of 1.5 asymptotic approximation ratio.

5.2.2.2 Generalized Bin Packing Problem (GBPP)

GBPP was first introduced in Baldi et al. [30]. In GBPP, a set of items I with volume and

profit has to be loaded into proper bins. Items can be either compulsory or non-compulsory,

i.e., the item set is partitioned into two subsets: items in IC are mandatory to load into

any bin, and items in INC are optional. Bins are also classified in bin types, where bins

belonging to the same type have the same capacity and cost. Moreover, for each bin type,

there is a maximum number of bins that can be used. The objective is to accommodate

all compulsory items and possibly non-compulsory items into appropriate bins in order to

minimize the overall cost, which is the total cost of all used bins deducted by the total profit
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earned from the items.

GBPP differs from FCP in two ways: first, only one set of capacity constraints are

considered; second, in GBPP, each item has the same profit (or cost) if inserted into different

bins, while in FCP, items would cost differently if inserted into different containers. Even

though GBPP is a still a much simplified version of the FCP, it was shown in Baldi et al.

[31] and Baldi and Bruglieri [29] that GBPP cannot be approximated by any constant,

unless P = NP .

5.2.2.3 Generalized Bin Packing Problem with Bin-Dependent Item Profits

(GBPPI)

GBPPI extends GBPP by allowing that when an item is inserted into different bins, the

profit earned from that item may be different. In this sense, GBPPI is the closest model to

FCP, with the only difference being the absence of an additional set of capacity constraints

on containers. GBPPI was introduced in Baldi et al. [32], and to the best of our knowledge,

there has been no further studies on the same problem since then. Since this is closely

relevant to our problem, we discuss the algorithms in Baldi et al. [32] in more detail. The

overall approach can be described in three steps.

1. Constructive Heuristics. Items are given in a presorted list, and are visited one by

one. All containers are closed initially. Let pij be the profit of inserting i to bin j, and

let Φres(j) be the remaining space of bin j after inserting i. Upon seeing an item i,

compute a weighted profit of inserting item i to bin j for all bins that are opened and

has enough capacity for item i. The weighted profit is calculated as

α · pij + (1− α) · Φres(j), (5.1)

where α is some parameter that can be configured. We then insert i to the bin j that
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results in a maximum weighted profit.

This insertion process may be generalized by looking at N items each time, where N is

another parameter to be configured, rather than just one item. Specifically, we look at

item i and the succeeding N − 1 items in the list. For each item, we find the best bin

according to (5.1), and then select the best item-bin pair that maximizes the weighted

profit.

If no bin is feasible, there are two different heuristics to choose a new bin to open:

• Best Profitable (BP). BP heuristics considers item i and the remaining suc-

ceeding items in the item list, and selects the bin that maximizes the overall

profit, which is the sum of profits of the items that can be inserted into the bin

deducted by the cost of that bin. If the overall profit is negative and item i is

non-compulsory, then item i is discarded.

• Best Assignment (BA). BA heuristics selects the bin that maximizes the profit

for item i.

At the end when all items are inserted to some bins, a post-optimization procedure is

performed, which consists of two parts. First, for each bin used in the solution, we try

to perform (if possible) the best swap with a bin that has not been used. Second, we

remove bins from the solution that are not profitable and do not contain compulsory

items.

2. Greedy Adaptive Search Procedure (GASP). GASP, shown as Algorithm 5.1, is a

metaheuristic that uses BA or BP as a subroutine. The multi-start initialization

generates some initial solution and sets the initial parameters of α,N that will be

used in the BP or BA constructive heuristics. Before reaching some preset time limit,

the algorithm at each round first sorts the items uniformly randomly. The BP or

BA heuristic is then performed, and if the resulting solution is better than the best
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one found so far, we replace the best solution as the current one, and perform “1

to 1” swaps to search the neighborhood of the current solution. A swap consists

of unloading one item to create sufficient room to insert another item that was not

part of the solution. If the heuristic solution is not better than the best one, the

counter numConsecutive is incremented. If no better solution is found after performing

MAXCONSECUTIV E number of constructive heuristics, we jump to the long-

term initialization procedure which will reset different parameters for α,N .

Algorithm 5.1 The GASP (Baldi et al. [32])
1: IS : Initial solution provided by the multi-start initialization procedure
2: BS : best solution
3: BS := IS
4: numConsecutive : number of consecutive non-improving solutions
5: numConsecutive := 0
6: while time limit has not been reached do
7: sort the items
8: perform either the BP or the BA constructive heuristic
9: store the resulting solution as CS

10: if CS < BS then
11: BS := CS
12: perform “1 to 1” swaps
13: numConsecutive := 0
14: else
15: numConsecutive := numConsecutive+ 1
16: end if
17: score update procedure
18: if numConsecutive = MAXCONSECUTIV E then
19: long-term reinitialization procedure
20: numConsecutive := 0
21: end if
22: end while

3. Model-Based Matheuristic (MBM). MBM is a parallel matheuristic for the GBPPI.

During each iteration we feed the MBM a solution from GASP. Then, the set of bins

used in the solution is randomly partitioned into P subsets, where P is the total number

of threads available for the parallel computing. Each thread then solves the GBPPI
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problem using a solver with some time limit, e.g. 1 second, where the problem instance

only uses a subset of bins, the items loaded to those bins, and the items not loaded in

the solution. The partial solutions returned by the solver are then merged to create

a new current solution, and if the current solution is better, we save it as the best

solution. This process is repeated until some time limit is reached.

In Baldi et al. [32], the above algorithms were also tested using both artificial instances and

some instances from the parcel delivery in last-mile logistics.

5.3 Problem Formulation and Non-Approximability Result

In this section, we first define what we call the Freight Consolidation Problem (FCP). Then,

we present the non-approximability result of the FCP. An instance of the FCP is given by a

set of shipments and a set of containers. Each shipment has a weight and a volume, and each

container has its own weight limit (capacity) and volume limit. There is a cost associated

with assigning each shipment to each container (shipment cost), and, if any container is used

(been assigned any shipment), there will be a procurement cost of that container (container

cost). The goal is to assign all shipments to some containers to minimize the overall cost

(total of shipment costs and container costs), subject to the volume and weight capacity

constraints of these containers. In the following, we formulate the FCP as an integer linear

program (ILP).

Sets:

• S = {1, 2, . . . , |S|} - set of shipments (indexed by s)

• C = {1, 2, . . . , |C|} - set of containers (indexed by c)

Parameters:

• ξsc - cost of packing shipment piece s into container c, assigned ∞ if cannot ship s

with c
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• pc - procurement cost of container c

• ϕs - weight of shipment s

• Φc - weight limit of container c

• vs - volume of shipment s

• Vc - volume limit of container c

Binary decision variables:

• µsc = 1 if s is assigned to container c

• µc = 1 if container c is used

The optimization problem (FCP):

min
µsc,µc

∑
c∈C

∑
s∈S

ξscµsc +
∑
c∈C

pcµc (5.2a)

s.t.
∑
c∈C

µsc = 1, ∀s ∈ S, (5.2b)

∑
s∈S

ϕsµsc ≤ Φc, ∀c ∈ C, (5.2c)

∑
s∈S

vsµsc ≤ Vc, ∀c ∈ C, (5.2d)

µc ≥ µsc, ∀s ∈ S, ∀c ∈ C, (5.2e)

µsc, µc ∈ {0, 1}, ∀s ∈ S, c ∈ C.

The objective (5.2a) is to minimize the total cost, which includes both the cost of shipping

and the cost of containers. (5.2b) implies that each shipment must be assigned to one of

the containers. (5.2c) and (5.2d) ensure that the total weight (resp. volume) of shipments

assigned to each container does not exceed the weight (resp. volume) limit of that container.

347



Lastly, (5.2e) forces us to pay the cost of a container as long as at least one of the shipments

is assigned to that container.

The approximation ratio of any algorithm that solves FCP is defined as follows.

Definition 5.1. Given the minimization problem (5.2), an instance π of the problem, an

algorithm ALG, the optimum OPT(π) ≥ 0, and value ALG(π) of the solution computed by

the algorithm, the approximation ratio of the algorithm ALG is the infimum α ≥ 1 such that

ALG(π) ≤ α ·OPT(π), ∀π, (5.3)

i.e., for all instances, the output of the algorithm incurs a total cost that is at most α times

the optimal value.

We next have the following non-approximability result for FCP.

Proposition 5.1. For any constant α, there is no polynomial-time algorithm for the Freight

Consolidation Problem (FCP) (5.2) with approximation ratio α, unless P = NP .

Proof. We prove by reduction from the decision version of the Bin Packing Problem (BPP).

Consider an instance π̂ of the BPP, which consists of n items, each with a volume vi for i =

1, . . . , n, and unlimited number of bins, each with a capacity V , where V ≥ vi for all i =

1, . . . , n. The decision version of the BPP asks if it is feasible to assign all items to the

bins such that at most k bins are used. This instance π̂ of BPP can be transformed into an

instance π of the FCP as follows. The instance π of the FCP would include n shipments, each

with volume vi for i = 1, . . . , n. The weight of these shipments are all 0. There are also k+n

containers with volume capacity V and weight capacity one. The cost of procuring each of

the containers 1, . . . , k is one, and the cost of procuring each of the containers k+1, . . . , k+n

are kα. All shipment costs ξ are zero. We note that, if π̂ for BPP has a solution, then the

optimal value of the FCP is at most k; otherwise if π̂ does not have a solution, then the
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optimal value of the FCP must be greater than kα since at least one container with cost kα

must be used.

Suppose that to the contrary a polynomial time algorithm approximating the FCP with

a constant α > 1 exists, then through such an algorithm we would be able to determine

if an instance of the BPP has a solution: the algorithm would return value ≤ kα for the

instances of the FCP corresponding to the instances of the BPP which have a solution, and

the algorithm would return value > kα for those corresponding to the instances of BPP

without a solution. Unless P = NP , this is impossible since the decision version of the BPP

is NP -complete.

Since there is no constant factor approximation for the FCP (assuming P ̸= NP ), we

propose in the next section some intuitive greedy heuristics for the problem.

5.4 Proposed Heuristics

In this section, we propose a series of greedy-type heuristics that find solutions that are

(hopefully) close to optimal.

5.4.1 Greedy Cost-Feasibility Algorithm (GR)

5.4.1.1 Overview

In this subsection, we propose a greedy heuristic for the FCP, which we call the Greedy

Cost-Feasibility algorithm. In this algorithm, we first assign all shipments to the contain-

ers such that the shipping cost is the lowest, i.e., for each shipment s, we find one container c′

such that ξsc′ = minc ξsc, and assign shipment s to container c′. This assignment provides

a lower bound on the total shipping costs. The assignment, however, may not be feasible as

some of the capacity constraints of the containers may be violated. In each of the following

steps, the algorithm moves one shipment at a time, from one container to another, to make
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the assignment move towards feasibility, while keeping the increment of the shipping cost at

a minimum.

5.4.1.2 Overflow Score

We define an “overflow score” on each container for any given assignment, and use this

overflow score together with the shipping costs to determine which shipment to be moved to

which container. For any assignment µ, the overflow score for container c is defined as

Oc(µ) := β1 ·

[∑
{s|µsc=1} vs − Vc

]+
Vc

+ β2 ·

[∑
{s|µsc=1} ϕs − Φc

]+
Φc

, (5.4)

where β1, β2 are some adjustable parameters that satisfy β1, β2, β1 + β2 ∈ [0, 1]. The first

term of the overflow score measures the percentage volume overflow of container c, and the

second term measures the percentage weight overflow of container c. These two terms are

summed together with weights β1, β2 to obtain the overflow score of container c.

The total overflow score of an assignment is then defined as

O(µ) :=
∑
c

Oc(µ). (5.5)

5.4.1.3 Moving Towards Feasibility

After computing the overflow score of each container given the initial assignment, we find

those containers with Oc(µ) > 0, i.e., containers that are not feasible. For each shipment

in these containers, we try to move the shipment out of its current container to another

container, and compute the new overflow score O′. Let µ denote the current assignment,

and µsc
′

denote the new assignment that moves shipment s from its current container to

container c′. If we move the shipment s from its current container c to container c′, we will
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have the following cost-feasibility ratio:

R(s, c′) := ξsc′ − ξsc

O(µ)−O(µsc
′
)
. (5.6)

The algorithm decides to move the shipment s from c to c′ that minimizes the above ratio. In

other words, in deciding which move to take, we choose the move that incurs least incremental

shipping cost per unit reduction of the overflow score.

Since there are always coloading options for those shipments in the overflowed containers,

at each round after the move, the overflow score is guaranteed to decrease. We repeat this

process until the overflow score decreases to zero, at which time we have a feasible solution.

In the end, we also perform a post-adjustment procedure by looking at each used container

(containers with µc = 1)1 and the shipments assigned to it. We will remove that container

and coload all shipments assigned to it if it is more profitable to do so.

5.4.1.4 Algorithm Summary

The complete Greedy Cost-Feasibility (GR) algorithm is given as Algorithm 5.2.

5.4.2 Greedy + Local Search (GRL)

The next heuristic we introduce is Greedy with Local Search (GRL).

5.4.2.1 Overview

From the solution of GR, we perform local movements of shipments. Specifically, we search

in two neighborhoods of a solution: the “shift” neighborhood, which consists of all solutions

obtained by reassigning one shipment from the current solution, and the “swap” neighbor-

hood, which consists of all solutions obtained by swapping the assignment of two shipments

1. In the rest of this chapter, we also say a container c is “opened” if µc = 1, and “closed” if µc = 0.
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Algorithm 5.2 Greedy Cost-Feasibility (GR)
Input: shipment info, container info, β1, β2 ▷ β1, β2 are adjustable parameters
Output: Assignment of each shipment to a container
Greedy Procedure

1: Assign each shipment to its shipment cost-minimizing container, i.e., assign s to a c′ such that ξsc′ ≤
ξsc,∀c. Denote the current assignment by µ.

2: Compute the overflow score of the current assignment O(µ).
3: while O(µ) > 0 do
4: For each shipment-container pair (s, c), compute the cost-feasibility ratio R(s, c) if s is reassigned to

c.
5: Find the pair (s, c) with the minimum R(s, c). Reassign s to c.
6: Compute the new overflow score.
7: end while

Post-Adjustment Procedure
8: for each container c with µc = 1 do
9: Find all shipments s that has been assigned to c.

10: if pc +
∑

s assigned to c ξsc >
∑

s assigned to c ξs1 then
11: µc = 0, coload all these shipments. ▷ Coload all shipments in c if more profitable
12: end if
13: end for

from the current solution. In searching each neighborhood, there are two standard ways of

performing movements: first-admissible (FA) and best-admissible (BA).

• In the first-admissible scheme, we randomly search the neighborhood and take the

move as soon as we find a better solution.

• In the best-admissible scheme, we search all possible moves and thus all solutions in

the neighborhood, and choose to take the move that leads to the most reduction in the

shipment cost.

It has been shown in Osman [169] that for the generalized assignment problem (GAP), BA

returns a slightly better solution, but takes much longer time to generate the solution. We

therefore choose FA in our implementations for two reasons: first, the (potentially) slightly

better solution from BA may not be worth the extra time; second, our problem size is much

larger than those that have been experimented upon in the GAP literature.
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5.4.2.2 Searching the “Shift” Neighborhood

The search of the “shift” neighborhood is performed in cycles. In each cycle, we first randomly

sort the list of all shipments. Then, starting from the first shipment s in the list, we sort

the set of opened containers (those with µc = 1 in the GR solution) in increasing order

of µsc, and try to reassign this shipment to each container in the container list. If the

reassignment is feasible, the shipment is reassigned permanently, and a new cycle is started.

Otherwise, we move to the next container in the sorted container list. If no container before

the current assigned container is feasible, i.e., no reassignment of the current shipment

can lead to reduction in cost while keeping feasibility, we skip this shipment and move

to the next shipment. This process is repeated until we reach a cycle where no feasible

improvement relocation can be made, at which time the solution is locally optimal in its

“shift” neighborhood.

5.4.2.3 Searching the “Swap” Neighborhood

The search of the “swap” neighborhood is also performed in cycles. We first generate a list

of all pairs of shipments. In each cycle, we sort this list randomly. Then, starting from the

first shipment pair in the list, we try to swap the assignment of the two shipments. If the

assignment after the swap is feasible for both containers, and the swap leads to a reduction in

the total shipment cost, the swap is made permanent and a new cycle will start. Otherwise,

we move to the next pair of shipments. This process is repeated until we reach a cycle where

no swaps are made after visiting all shipment pairs, at which time the solution is locally

optimal in its “swap” neighborhood.

5.4.2.4 Local Optimal Solution in Both Neighborhoods

Given any input solution, we first repeatedly search the “shift” neighborhood. We always keep

the best solution found so far, and the search is repeated until no better solution is found
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after Max_Nonimprove_S consecutive number of searches. Next, we search the “swap”

neighborhood of the best solution found so far (locally optimal within the “shift” neighbor-

hood), after which we reach a locally optimal solution within the “swap” neighborhood. If

the new solution is better than the solution before searching the “swap” neighborhood, we

will again repeatedly search the “shift” neighborhood and then the “swap” neighborhood.

The whole process is repeated until no better solution is found after Max_Nonimprove

consecutive number repetitions, at which point the solution is locally optimal within both

neighborhoods.

5.4.2.5 Algorithm Summary

The complete Greedy + Local Search (GRL) algorithm is given as Algorithm 5.3.

5.4.3 Greedy + Local Search + Varying Containers (GRLV)

We now introduce the heuristic that is based on GRL, but tries to vary the set of used

(opened) containers.

5.4.3.1 Overview

This heuristic consists of two layers. In the first layer, we generate a set of “seed” solutions.

In the second layer, we try to vary the set of used containers on each “seed” solution, and

finally return the best solution found throughout the process.

There are several intuitions behind this heuristic. First, the local search can be combined

with the post-adjustment: Every time after running local search and finding a locally optimal

solution, we can check again if deleting some containers and coloading all shipments in those

containers can be more profitable. If such containers exist, we proceed to delete these

containers. Then we can redo the local search and the post-adjustment, and repeat this

process till the post-adjustment does not delete any more containers. Second, every time
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Algorithm 5.3 Greedy + Local Search (GRL)
Input: shipment info, container info, β1, β2, Max_Nonimprove_S, Max_Nonimprove
Output: Assignment of each shipment to a container

1: Run Greedy Procedure (as in Algorithm 5.2).
2: Run Post-Adjustment Procedure (as in Algorithm 5.2), save as “initial solution”.

Local-Search Procedure
3: “best solution” = “initial solution”
4: Outer_counter = 0
5: while Outer_counter < Max_Nonimprove do
6: Inner_counter = 0
7: “best shift solution” = “initial solution”
8: while Inner_counter < Max_Nonimprove_S do
9: Search the “shift” neighborhood of the “initial solution”, save as “shift solution”

10: if “shift solution” has lower total cost than “best shift solution” then
11: “best shift solution” = “shift solution”
12: Inner_counter = 0
13: else
14: Inner_counter = Inner_counter + 1
15: end if
16: end while
17: Search the “swap” neighborhood of the “best shift solution”, save as “swap solution”
18: while “swap solution” has lower cost than “best shift solution” do
19: Inner_counter = 0
20: “best shift solution” = “swap solution”
21: while Inner_counter < Max_Nonimprove_S do
22: Search the “shift” neighborhood of the “swap solution”, save as “shift solution”
23: if “shift solution” has lower total cost than “best shift solution” then
24: “best shift solution” = “shift solution”
25: Inner_counter = 0
26: else
27: Inner_counter = Inner_counter + 1
28: end if
29: end while
30: Search the “swap” neighborhood of the “best shift solution”, save as “swap solution”
31: end while
32: if “swap solution” has lower cost than the “best solution” then
33: “best solution” = “swap solution”
34: Outer_counter = 0
35: else
36: Outer_counter = Outer_counter + 1
37: end if
38: end while
39: Return “best solution”

we perform some procedure that might change the set of used (opened) containers, we

might do further local search based on the current solution, or we can also build a new

solution from scratch, again using the Greedy Procedure, but this time fixing the set of

unopened containers , i.e., set ξsc = ∞ for all containers that are not open before applying
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the Greedy Procedure. Third, every time we try to vary the set of containers, we can

either add/delete one container at a time, or we can add/delete a number of containers

altogether. In the following, we describe the procedures/subroutines that are used in this

heuristic.

5.4.3.2 Adjusted Local Search

We may combine the Post-Adjustment Procedure with the Local-Search Proce-

dure, then iterate both procedures repeatedly until the set of opened containers no longer

changes so that we obtain a local optimum within both neighborhoods. We define the

Adjust-Local Procedure as Algorithm 5.4.

Algorithm 5.4 Adjust-Local Procedure
Input: initial solution
Output: updated solution

1: “updated solution” = “initial solution”
2: Num_del_master = 1
3: while Num_del_master > 0 do
4: Run Local-Search Procedure on “updated solution”, save as “updated solution”
5: Run Post-Adjustment Procedure on “updated solution”, save as “updated solution”
6: Save the number of deleted containers in the Post-Adjustment Procedure as Num_del_master
7: end while
8: Return “updated solution”

5.4.3.3 Adding One of the Deleted Containers Back

Since the Post-Adjustment Procedure deletes some containers, we try to add one of

those deleted containers back to the solution and then perform Adjust-Local Proce-

dure. In the end, we save the best solution found during this process. The Add-One

Procedure is defined as Algorithm 5.5.
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Algorithm 5.5 Add-One Procedure
Input: initial solution
Output: updated solution

1: “updated solution” = “initial solution”
2: Run Adjust-Local Procedure on “initial solution”, save as “cand solution”, save the set of deleted

containers as S
3: Run Adjust-Local Procedure on “initial solution”, save as “updated solution”
4: for each container in set S do
5: Reopen the container in the “cand solution”, and add the shipments what were assigned to this

container in the “initial solution” to this container, save as “current solution”
6: if “current solution” has lower total cost than “updated solution” then
7: “updated solution” = “current solution”
8: end if
9: Close this container in the “cand solution”

10: end for
11: Return “updated solution”

5.4.3.4 Deleting a Chain of Containers

We observe that the GR solution, even after the Post-Adjustment Procedure, uses

more containers than the optimal solution returned by the solver. Based on an initial solu-

tion, we try to delete a chain of containers. Specifically, we sort the containers in increasing

order of their profit, i.e., for each container c, we compute:

Profit of using container c :=
∑

s:µsc=1

ξs1 −

pc +
∑

s:µsc=1

ξsc

 , (5.7)

which is the total coloading cost of the shipments assigned to container c deducted by the

total shipping cost of those shipments and the procurement cost of the container. This is

the actual “saving” from using container c for these shipments, compared with the cost of

coloading all these shipments.

We delete the top k containers in the list from the initial solution and perform the

Adjust-Local Procedure, where k ranges from 0 to num_cont_del (a preset parame-

ter). In the end, we output the best solution among these (k+1) solutions. The Del-Chain

Procedure is defined as Algorithm 5.6.
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Algorithm 5.6 Del-Chain Procedure
Input: initial solution, num_cont_del
Output: updated solution

1: “updated solution” = “initial solution”
2: “current solution” = “initial solution”
3: Sort the containers used in the “initial solution” in increasing order of their total profit (5.7). Save as

“sorted list”
4: for j ∈ {0, 1, 2, . . . , num_cont_del} do
5: Delete the jth container from the “current solution”, coload all shipments previously assigned to that

container, save as “current solution”
6: Run Adjust-Local Procedure on “current solution”, save as “new solution”
7: if “new solution” has lower total cost than “updated solution” then
8: “updated solution” = “new solution”
9: end if

10: end for
11: Return “updated solution”

5.4.3.5 Deleting One More Container

Given an initial solution, we may again sort the containers in increasing order of their

profits (5.7), and try to delete one container from the top num_cont_del containers in the

sorted list. The best solution is saved in the end. We define the Del-One Procedure as

Algorithm 5.7.

Algorithm 5.7 Del-One Procedure
Input: initial solution, num_cont_del
Output: updated solution

1: “updated solution” = “initial solution”
2: Sort the containers used in the “initial solution” in increasing order of their total profit (5.7). Save as

“sorted list”
3: for j ∈ {0, 1, 2, . . . , num_cont_del} do
4: Delete the jth container from the “initial solution”, coload all shipments previously assigned to that

container, save as “current solution”
5: Run Adjust-Local Procedure on “current solution”, save as “current solution”
6: if “current solution” has lower total cost than “updated solution” then
7: “updated solution” = “current solution”
8: end if
9: end for

10: Return “updated solution”
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5.4.3.6 Deleting Containers One by One

Starting from some initial solution, we can repeatedly perform Del-One Procedure, until

further deleting any containers leads to no improvement in the solution. The Del-ObO

Procedure is defined as Algorithm 5.8.

Algorithm 5.8 Del-ObO Procedure
Input: initial solution, num_cont_del
Output: updated solution

1: “updated solution” = “initial solution”
2: Run Del-One Procedure on “initial solution”, save as “current solution”
3: if “current solution” has lower total cost than the “updated solution” then
4: “updated solution” = “current solution”
5: while “current solution” has lower total cost than the “updated solution” do
6: “updated solution” = “current solution”
7: Run Del-One Procedure on “current solution”, save as “current solution”
8: end while
9: end if

10: Return “updated solution”

5.4.3.7 Algorithm Summary

The complete Greedy + Local Search + Varying Containers (GRLV) algorithm is given as

Algorithm 5.9.

5.5 Experiments

In this section, we provide experimental results on our proposed heuristics, including GR,

GRL, and GRLV. We first generate a set of instances that hopefully reflects part of the

reality. Each of these instances is generated as the following:

• Containers: We have 150 containers in an instance (not including the “coloading”

container), each with a weight capacity Φc = 28, 000 (kg) and a volume capacity

Vc = 76 (m3), which reflects the capacities of the most used containers (40’ high-cube

container). The container cost pc is sampled from a truncated Normal distribution
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Algorithm 5.9 Greedy + Local Search + Varying Containers (GRLV)
Input: shipment info, container info, β1, β2, Max_Nonimprove_S, Max_Nonimprove,
num_cont_del
Output: Assignment of each shipment to a container

1: Run Greedy Procedure (as in Algorithm 5.2), save as “GR solution”
2: Run Post-Adjustment Procedure (as in Algorithm 5.2) on “GR solution”, save as “PA solution”
3: Run Adjust-Local Procedure on “GR solution”, save as “LC solution”
4: Run Greedy Procedure on “PA” solution, i.e., first set ξsc = ∞ for all containers that are not open

(used) in the “PA solution”, then run Greedy Procedure. Save the solution as “PA_GR solution”
5: Run Greedy Procedure on “LC” solution, i.e., first set ξsc = ∞ for all containers that are not open

(used) in the “LC solution”, then run Greedy Procedure. Save the solution as “LC_GR solution”
6: Run Add-One Procedure on “PA solution”, save as “PA_one solution”
7: Run Add-One Procedure on “LC solution”, save as “LC_one solution”
8: Run Add-One Procedure on “PA_GR solution”, save as “PA_GR_one solution”
9: Run Add-One Procedure on “LC_GR solution”, save as “LC_GR_one solution”

10: Run Del-Chain Procedure on “PA solution”, save as “CHAIN_PA solution”
11: Run Del-Chain Procedure on “LC solution”, save as “CHAIN_LC solution”
12: Run Del-Chain Procedure on “PA_GR solution”, save as “CHAIN_PA_GR solution”
13: Run Del-Chain Procedure on “LC_GR solution”, save as “CHAIN_LC_GR solution”
14: Run Del-Chain Procedure on “PA_one solution”, save as “CHAIN_PA_one solution”
15: Run Del-Chain Procedure on “LC_one solution”, save as “CHAIN_LC_one solution”
16: Run Del-Chain Procedure on “PA_GR_one solution”, save as “CHAIN_PA_GR_one solution”
17: Run Del-Chain Procedure on “LC_GR_one solution”, save as “CHAIN_LC_GR_one solution”
18: Run Del-ObO Procedure on “PA solution”, save as “OBO_PA solution”
19: Run Del-ObO Procedure on “LC solution”, save as “OBO_LC solution”
20: Run Del-ObO Procedure on “PA_GR solution”, save as “OBO_PA_GR solution”
21: Run Del-ObO Procedure on “LC_GR solution”, save as “OBO_LC_GR solution”
22: Run Del-ObO Procedure on “PA_one solution”, save as “OBO_PA_one solution”
23: Run Del-ObO Procedure on “LC_one solution”, save as “OBO_LC_one solution”
24: Run Del-ObO Procedure on “PA_GR_one solution”, save as “OBO_PA_GR_one solution”
25: Run Del-ObO Procedure on “LC_GR_one solution”, save as “OBO_LC_GR_one solution”
26: Return the best solution among {“CHAIN_PA solution”, “CHAIN_LC solution”, “CHAIN_PA_GR

solution”, “CHAIN_LC_GR solution”, “CHAIN_PA_one solution”, “CHAIN_LC_one solution”,
“CHAIN_PA_GR_one solution”, “CHAIN_LC_GR_one solution”, “OBO_PA solution”, “OBO_LC so-
lution”, “OBO_PA_GR solution”, “OBO_LC_GR solution”, “OBO_PA_one solution”, “OBO_LC_one
solution”, “OBO_PA_GR_one solution”, “OBO_LC_GR_one solution”}.

(lower bounded at 0) with the mean 9000 and the standard deviation 4000. The

“coloading” container, however, has a cost 0, and infinite weight and volume capacities.

• Shipments: We have 1000 shipments in an instance, each with its weight and volume

sample from the truncated bivariate Normal distribution (lower bounded at 0) with

the means (2000, 10) and the covariance matrix

250, 000, 000 1, 000, 000

1, 000, 000 4, 500

.

• Shipment costs: Each shipment has a limited number of feasible non-coloading con-
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tainers. For each shipment, the number of feasible containers is sampled from the trun-

cated Normal distribution (lower bounded at 0) with the mean 10 and the standard

deviation 10. Then, if shipment s has k number of feasible containers, we randomly

select k containers from the container set, plus the “coloading” container. The ship-

ment costs ξsc are sampled from a truncated Normal distribution (lower bounded at

0) with the mean 3500 and the standard deviation 10, 000.

The experiments were run on 20 simulated instances generated as above. These instances

have much larger sizes than any of those tested in the Bin Packing or Generalized Assignment

Problem literature. In GR, we set the parameters β1 = β2 = 0.5. In GRL, we further set the

parameters Max_Nonimprove_S = 1 and Max_Nonimprove = 10. In GRLV, we start

with generating different GR solutions by setting different parameters of β1, β2 (β1 ranging

from 1 to 5 and β2 ranging from 1 to 5). We then fix the set of β1, β2 that gives the best

GR solution, and the parameter num_cont_del is set to 5. The benchmark is the solution

of the integer linear program (5.2) returned by the Gurobi solver whose default optimality

gap is 0.01%, and the solving time limit is set to 60 seconds. The setups of the experiments

are described as follows.

• Program used for implementation: Julia Version 1.7.2.

• Solver used for solving the ILP: Gurobi Version 9.5.1 (academic license).

• Machine used for running: Surface Book 2 with Intel Core i7-8650 CPU @ (1.90 GHz

2.11 GHz) and 16 GB RAM.

The results of the experiments, including the optimality gaps (compared with the optimal

solutions returned by the solver) and the runtimes (in seconds) of all heuristics, averaged

over the 20 instances, are summarized as Table 5.1.

Finally, we remark that while the solver is able to solve these instances to a smaller

optimality gap with shorter runtime, the problem size is expected to grow significantly in
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Metric Solver GR GRL GRLV

Average Optimality Gap 0.01% 8.36% 4.56% 3.73%
Average Runtime (s) 26.18 7.99 72.43 3056.92

Table 5.1: Summary of experimental results

the near future. It is likely that the solver will not be able to solve the problem when its

size grows larger in the next few years. Given this expectation, a freight forwarder should

be prepared to not rely on the integer linear program solver for the FCP. Therefore, our

proposed heuristics will still be practically relevant.

5.6 Conclusion and Future Direction

In this chapter, we have properly defined the freight consolidation problem (FCP) - a proven

important and practically relevant problem faced by freight forwarders every day and every

hour at the origin ports. We proved the non-approximability result of the FCP, and proposed

a series of greedy based heuristics to solve the problem. Our solutions are shown to perform

well in the numerical experiments with simulated data. For future improvement of this work,

we may consider more generalized definitions of the neighborhood in the local search. We

may also generate the set of used (opened) containers by some types of genetic algorithms.

Furthermore, it might be helpful to use Tabu list and Tabu search to avoid repeated search

of candidate solutions.
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