
THE UNIVERSITY OF CHICAGO

DATA-DRIVEN METHODS FOR INVERSE PROBLEMS:

BLENDING DATA ASSIMILATION AND MACHINE LEARNING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

COMMITTEE ON COMPUTATIONAL AND APPLIED MATHEMATICS

BY

YUMING CHEN

CHICAGO, ILLINOIS

JUNE 2023

Copyright © 2023 by Yuming Chen

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . xiii

ACKNOWLEDGMENTS . xv

ABSTRACT . xvi

1 INTRODUCTION . 1
1.1 What are Inverse Problems? . 1

1.1.1 Optimization-based Algorithms for Inverse Problems 1
1.1.2 Sampling-based Algorithms for Inverse Problems 5

1.2 What is Data Assimilation? . 8
1.2.1 Data Assimilation as Sequential Inverse Problems 8
1.2.2 Filtering Algorithms for Data Assimilation 9

1.3 Data-driven Inverse Problems: Motivations 13
1.4 Outline and Main Contributions . 16

2 DATA-DRIVEN FORWARD DISCRETIZATIONS FOR BAYESIAN INVERSION 18
2.1 Introduction . 18

2.1.1 Related Work . 20
2.1.2 Outline and Contributions . 23

2.2 Background: Bayesian Formulation of Inverse Problems 23
2.3 Bayesian Discretization of the Forward Model 25
2.4 Sampling the Posterior . 31

2.4.1 Sampling the Full Conditional u|y, a 32
2.4.2 Sampling the Full Conditional a|y, u 32

2.5 Numerical Examples . 35
2.5.1 Euler Discretization of ODEs: Estimation of the Young’s Modulus of

a Cantilever Beam . 36
2.5.2 Euler-Maruyama Discretization of SDEs: a Signal Processing Appli-

cation . 43
2.5.3 Finite Element Discretization: Source Detection 46

2.6 Conclusions and Open Directions . 50
2.7 Appendix . 52

2.7.1 Algorithm Pseudo-Code . 52
2.7.2 Additional Results for Section 2.5.1 54

3 AUTODIFFERENTIABLE ENSEMBLE KALMAN FILTERS 56
3.1 Introduction . 56

3.1.1 Contributions . 59
3.1.2 Related Work . 60

iii

3.2 Problem Formulation . 63
3.2.1 Setting and Motivation . 64
3.2.2 Sequential Filtering and Data Log-likelihood 65

3.3 Ensemble Kalman Filter Estimation of the Log-likelihood and its Gradient . 66
3.3.1 Ensemble Kalman Filters . 67
3.3.2 Estimation of the Log-Likelihood and its Gradient 68
3.3.3 Large Sample Convergence: Linear Setting 68

3.4 Auto-differentiable Ensemble Kalman Filters 71
3.4.1 Main Algorithm . 71
3.4.2 Truncated Gradients for Long Sequences 72
3.4.3 Localization for High State Dimensions 74
3.4.4 Computation and Memory Costs . 75

3.5 Numerical Experiments . 76
3.5.1 Linear-Gaussian Model . 76
3.5.2 Lorenz-96 . 81

3.6 Conclusions and Future Directions . 90
3.7 Appendix . 91

3.7.1 Proof of Theorem 3.3.1 . 91
3.7.2 Proof of Theorem 3.3.2 . 96
3.7.3 Additional Figures . 103
3.7.4 Auto-differentiable Particle Filters . 103
3.7.5 Expectation-Maximization with Ensemble Kalman Filters 106
3.7.6 Implementation Details and Additional Performance Metrics 108

4 REDUCED-ORDER AUTODIFFERENTIABLE ENSEMBLE KALMAN FILTERS112
4.1 Introduction . 112

4.1.1 Related Work . 113
4.1.2 Outline and Main Contributions . 117

4.2 Problem Formulation . 118
4.2.1 Setting and Motivation . 119
4.2.2 Reduced-Order Modeling . 120

4.3 Reduced-Order Autodifferentiable Ensemble Kalman Filters 122
4.3.1 Sequential Filtering and Data Log-Likelihood 123
4.3.2 Estimation of the Log-Likelihood with Ensemble Kalman Filters . . . 124
4.3.3 Main Algorithm . 125

4.4 Implementation Details . 127
4.4.1 Surrogate Latent Dynamics and Decoder Design 128
4.4.2 Algorithmic Design for Computational Efficiency 130
4.4.3 Latent Space Regularization . 132

4.5 Numerical Experiments . 133
4.5.1 Embedding of Chaotic Dynamics (Lorenz 63) 135
4.5.2 Burgers Equation . 139
4.5.3 Kuramoto-Sivashinsky Equation . 147

iv

4.6 Conclusions and Future Directions . 149
4.7 Appendix . 150

4.7.1 Improving AD-EnKF with Spectral Convolutional Layers 150
4.7.2 Additional Materials: Burgers Example 153
4.7.3 Additional Materials: Kuramoto-Sivashinky Example 156

5 ITERATIVE ENSEMBLE KALMAN METHODS: A UNIFIED PERSPECTIVE
WITH SOME NEW VARIANTS . 158
5.1 Introduction . 158

5.1.1 Overview: Three subfamilies . 160
5.1.2 Statistical linearization, continuum limits and new variants 163
5.1.3 Main contributions and outline . 164

5.2 Derivative-based optimization for nonlinear least-squares 165
5.2.1 Gauss-Newton optimization of Tikhonov-Phillips objective 167
5.2.2 Levenberg-Marquardt optimization of data-misfit objective 172
5.2.3 Levenberg-Marquardt optimization of Tikhonov-Phillips objective . . 175

5.3 Ensemble-based optimization for nonlinear least-squares 177
5.3.1 Ensemble Gauss-Newton optimization of Tikhonov-Phillips objective 179
5.3.2 Ensemble Levenberg-Marquardt optimization of data-misfit objective 184
5.3.3 Ensemble Levenberg-Marquardt optimization of Tikhonov-Phillips ob-

jective . 190
5.4 Ensemble Kalman methods: New variants 194

5.4.1 Iterative Ensemble Kalman Filter with statistical linearization 195
5.4.2 Ensemble Kalman inversion with statistical linearization 198
5.4.3 Gradient structure and discussion . 202

5.5 Numerical examples . 204
5.5.1 Elliptic boundary value problem . 205
5.5.2 High-dimensional linear inverse problem 209
5.5.3 Lorenz-96 model . 210
5.5.4 High-dimensional nonlinear regression 213

5.6 Conclusions and open directions . 218

REFERENCES . 220

v

LIST OF FIGURES

2.1 Reconstruction of a piece-wise constant Young’s modulus. Two settings for the
observation locations are considered, shown in Figures 2.1a, 2.1f. For each setting,
Figures 2.1b and 2.1g show one sample from the marginal distribution qa|y(a)
simulated by MCMC. Figures 2.1c and 2.1h report box-plots with the number
of grid points that fall in each subinterval [i − 1, i], i = 1, . . . , 10. Figures 2.1d,
2.1i show the mean (dashed black) and the 5, 10, 90, 95-percentiles (thin black)
of the marginal qu|y(u), versus the true value (red), with data-driven forward
discretization. Figures 2.1e, 2.1j show the same results with a fixed uniform-grid
discretization. 38

2.2 Reconstruction of a continuous Young’s modulus. Two settings for the obser-
vation locations are considered, shown in Figures 2.2a, 2.2f. For each setting,
Figures 2.2b and 2.2g show one sample from the marginal distribution qa|y(a)
simulated by MCMC. Figures 2.2c and 2.2h report box plots with number of grid
points that fall in each subinterval [i − 1, i], i = 1, . . . , 10. Figures 2.2d, 2.2i
show the mean (dashed black) and the 5, 10, 90, 95-percentiles (thin black) of
the marginal qu|y(u), versus the true value (red), with data-driven forward dis-
cretization. Figures 2.2e, 2.2j show the same results with a fixed uniform-grid
discretization. 39

2.3 The reconstruction error with fixed-grid discretization (blue) and with data-
driven grid discretization (orange). Red triangles are observations locations, while
blue crosses are the grid points used in the fixed-grid discretization. 41

2.4 Idealized posterior pu|y(u), with mean (dashed black) and the 5, 10, 90, 95-
percentiles (thin black), versus the true value (red). 42

2.5 Recovered SDE trajectory in the time-interval t ∈ [0, 10]. The true trajectory is
shown in dashed black line. The posterior median is shown in red, and 5 and
95-percentiles are shown in black. The small circles denote the locations of the
observations. 47

2.6 Figures 2.6a and 2.6b show the posterior distribution q(u|y), where the grid is
fixed and uniform in 2.6a, and data-driven in 2.6b. Red star indicates the true
location of the source, blue dots are random samples from the posterior, blue
triangle is the posterior mean, and dash (resp. dotted) lines correspond to the
90% (resp. 95%) coordinate-wise credible regions. Figure 2.6c shows the grid
generated in the last iteration of the MCMC update. 50

2.7 The mean, 10 and 90-percentile of the pushforward distribution F♯(qu|y) under
three different settings: (1) Both the posterior qu|y and its pushforward F♯(qu|y)
are computed on a fixed and uniform grid; (2) The posterior qu|y is computed
on a fixed and uniform grid, and its pushforward F♯(qu|y) is calculated using a
(nearly) exact solver; (3) Both the posterior and its pushforward are computed
on a data-driven grid. 51

vi

2.8 History of MCMC samples (black line) and running sample averages (red line) of
continuous Young’s modulus u(x), at fixed locations x = 4 and x = 8 repectively,
suggesting stationarity of the Markov chain. 55

3.1 Computational graph of AD-EnKF and EM-EnKF. Dashed squares represent
computations performed by the EnKF. Gray arrows in (b) indicate that the con-
struction of LEM-EnKF is performed in two steps: (1) obtain x1:N0:T from θ and
y1:T (gray arrows); and (2) use θ and x1:N0:T (no longer seen as a function of θ)
to define LEM-EnKF. In contrast, those lines are black in (a), indicating that in
AD-EnKF the particles x1:N0:T in LEnKF are seen as varying with θ. 58

3.2 Relative L2 estimation errors of the log-likelihood (left) and its gradient w.r.t. α
(middle) and β (right), computed using EnKF and PF, as a function of N , for the
linear-Gaussian model (3.5.1). State dimension dx ∈ {20, 40, 80}. θ is evaluated
at the true parameters {α∗, β∗}. (§3.5.1). 78

3.3 Relative L2 estimation errors of log-likelihood (left) and its gradient w.r.t. α
(middle) and β (right), computed using EnKF and PF, with different covariance
tapering radius applied to EnKF for the linear-Gaussian model (3.5.1). State
dimension dx = 80. θ is evaluated at the true parameters {α∗, β∗}. (§3.5.1). . . 80

3.4 Learned parameter α as a function of training iterations for the linear-Gaussian
model (3.5.1). State dimension dx = 80. Red dashed lines are the MLE solu-
tions to the true data log-likelihood L. Our proposed AD-EnKF method with
covariance tapering achieves a lower estimation error with N = 50 particles than
AD-PF with N = 1000. 81

3.5 Learned parameter β, and training objective LEnKF, LPF as a function of training
iterations for the linear-Gaussian model (3.5.1). Red dashed lines are the MLE
solutions to the true data log-likelihood L (left and middle), and the maximum
value attained by L (right). Our proposed AD-EnKF method with covariance
tapering achieves a lower estimation error with N = 50 particles than AD-PF
with N = 1000. 82

3.6 Learning parameterized dynamics of Lorenz-96 (3.5.3), with dx = 40 and H =
I40. Learned value of the 18 coefficients of α (upper left for nonzero entries
and upper right for zero entries, where the truth α∗ is plotted in red dashed
lines), averaged diagnosed error level σβ Eq. (3.7.46) (lower left) and log-likelihood
LEnKF/LPF during training (lower right), as a function of training iterations.
Throughout, the shaded area corresponds to ±2 std over 5 repeated runs. (§3.5.2). 86

3.7 Learning parameterized dynamics of Lorenz-96 (3.5.3), with dx = 40 and H =
I40. All performance metrics are evaluated after each training iteration. Red
dashed lines correspond to metric values obtained with the reference model f∗
and Q∗. Our proposed AD-EnKF-T performs the best in all metrics, with a
performance similar to the reference model. 87

vii

3.8 Learning the Lorenz-96 model from fully unknown dynamics (§3.5.2) v.s. model
correction (§3.5.2), with full observations (H = Idx). All performance metrics
are evaluated after each training iteration. Red dashed lines correspond to metric
values obtained with the reference model f∗ and Q∗. Our proposed AD-EnKF-T
performs the best in all metrics, with a performance similar to the reference model. 89

3.9 Learning Lorenz-96 from fully unknown dynamics (§3.5.2) v.s. model correction
(§3.5.2) with partial observations (H = [e1, e2, e4, e5, e7, · · ·]⊤). All performance
metrics are evaluated after each training iteration. Red dashed lines correspond to
metric values obtained with the reference model f∗ and Q∗. The absence of lines
for EM in the fully unknown setting is due to its low and unstable performance.
When compared to the EM method, our proposed AD-EnKF-T is more stable
during training, performs better in all metrics, and its performance is closer to
the one achieved by the reference model. 90

3.10 Relative L2 estimation errors of the log-likelihood (left) and its gradient w.r.t. α
(middle) and β (right), computed using EnKF and PF, as a function of N , for the
linear-Gaussian model (3.5.1). State dimension dx ∈ {20, 40, 80}. θ is evaluated
at α = (0.5, 0.5, 0.5), β = (1, 0.1). (§3.5.1) . 103

3.11 Relative L2 estimation errors of log-likelihood (left) and its gradient w.r.t. α
(middle) and β (right), computed using EnKF and PF, with different covariance
tapering radius applied to EnKF. State dimension dx = 80. θ is evaluated at
α = (0.5, 0.5, 0.5), β = (1, 0.1). 103

3.12 Structure of fNN
α . Output channels of CNN1 is divided into three groups of equal

length CNN(1)
1 , CNN(2)

1 and CNN(3)
1 . Input channels to CNN2 is a concatenation

of CNN(1)
1 and (CNN(2)

1 × CNN(3)
1), where the multiplication is point-wise. . . . 111

4.1 Structure of data under SSM (4.2.1)-(4.2.3), where we assume only observations
y1:T := {y1, . . . , yT } are available. Our goals are to reconstruct the states u1:T
(Goal 1) and to forecast future states uT+1:T+Tf for some Tf ≥ 1 (Goal 2). . . . 119

4.2 Structure of data under reduced-order SSM (4.2.6)-(4.2.9), where we assume only
observations y1:T := {y1, . . . , yT } are available. Our goals are to reconstruct the
states u1:T (Goal 1) and to forecast future states uT+1:T+Tf for some Tf ≥ 1

(Goal 2). 121

viii

4.3 (a) Network architecture of the decoder Dγ. Starting from z ∈ Rdz in a
low-dimensional latent space, we first apply a complex linear layer followed by an
IDFT to lift it to v0 ∈ Rdu in a high-dimensional state space. We then apply L
Fourier layers iteratively to get vL ∈ RnL×du where nL is the channel dimension.
We project it back to the state space by applying a two-layer fully-connected NN
to mix the channels and output u ∈ Rdu . (b) Fourier layer: The design was first
proposed in [Li et al., 2020b], and we describe it here for the sake of completeness.
The upper half represents a spectral convolutional layer, where we transform the
input vℓ−1 ∈ Rnℓ−1×du into the frequency space with DFT, mix the channels
with a complex linear map, and transform back with IDFT. The lower half is a
one-by-one convolutional layer, which is a generalization of residual connection.
The outputs from both layers are summed up and passed through a normalization
and an activation layer to produce the output vℓ ∈ Rnℓ×du 130

4.4 State reconstruction performance with full observation (du = dy = 128) on the
embedded L63 example in §4.5.1. For each method (row), the reconstructed states
ut (blue) for a single test sequence are plotted for t = 40, 80, 120, 160, 200 (col-
umn). The true values of the 128-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and
ROAD-EnKF perform probabilistic state reconstructions through particles (all
plotted in blue), while SINDy-AE only provides point estimates. The reconstruc-
tion RMSE’s are computed for each plot. For SINDy-AE, even with derivative
data (not required for AD-EnKF and ROAD-EnKF), the reconstruction perfor-
mance is similar to that of AD-EnKF, while being worse than that of ROAD-
EnKF. 140

4.5 Forecast performance with full observation (du = dy = 128) on the embedded
L63 example in §4.5.1. For each method (row), the forecasted states ut (blue) for
a single test sequence are plotted for t = 250 (start of forecast), 252, 254, 256, 258
(column). The true values of the du = 128 dimensional states are plotted in red
dashed lines. Both AD-EnKF and ROAD-EnKF perform probabilistic forecast
through particles (all plotted in blue), while SINDy-AE only provides point esti-
mates. The forecast RMSE’s are computed for each plot. For SINDy-AE, even
with derivative data (not required for AD-EnKF and ROAD-EnKF), the fore-
cast performance is similar to that of AD-EnKF, while being worse than that of
ROAD-EnKF. 141

ix

4.6 State reconstruction (upper half) and forecast (lower half) performance with par-
tial observation (du = 128, dy = 64) on the embedded L63 example in §4.5.1. For
each method, the reconstructed states ut (blue) for a single test sequence are plot-
ted for t = 40, 80, 120, 160, 200 (column), and the forecasted states ut (blue) for
a single test sequence are plotted for t = 250 (start of forecast), 252, 254, 256, 258
(column). The true values of the 128-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. SINDy-AE is inapplicable
here because it cannot handle partial observations, while both AD-EnKF and
ROAD-EnKF perform probabilistic state reconstructions and forecast through
particles (all plotted in blue). The reconstruction/forecast RMSEs are computed
for each plot. 142

4.7 State reconstruction (upper half) and forecast (lower half) performance with par-
tial observation (du = 256, dy = 128) on the Burgers example in §4.5.2. For each
method, the reconstructed states ut (blue) for a single test sequence are plot-
ted for t = 50, 100, 150, 200, 250 (column), and the forecasted states (blue) for a
single test sequence are plotted for t = 300 (start of forecast), 375, 450, 525, 600
(column). The true values of the 256-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and
ROAD-EnKF perform probabilistic state reconstructions and forecast through
particles (all plotted in blue). The reconstruction/forecast RMSEs are computed
for each plot. 145

4.8 Contour plot of state reconstruction and forecast output with partial observation
(du = 256, dy = 128) on the Burgers example in §4.5.2, as well as the ground
truth (top). For each method (row), the reconstructed and forecasted states (left
column) for a single test sequence are plotted, for each state dimension (y-axis)
and time (x-axis). The error compared to the ground truth are plotted in the
right column. For both AD-EnKF and ROAD-EnKF we use particle means as
point estimates. 146

4.9 State reconstruction (upper half) and forecast (lower half) performance with par-
tial observation (du = 256, dy = 128) on the KS example in §4.5.3. For each
method, the reconstructed states ut (blue) for a single test sequence are plot-
ted for t = 50, 150, 250, 350, 450 (column), and the forecasted states (blue) for a
single test sequence are plotted for t = 450 (start of forecast), 452, 454, 456, 458
(column). The true values of the 256-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and
ROAD-EnKF perform probabilistic state reconstructions and forecast through
particles (all plotted in blue). The reconstruction/forecast RMSEs are computed
for each plot. 151

x

4.10 Contour plot of state reconstruction and forecast output of ROAD-EnKF with
partial observation (du = 256, dy = 128) on the KS example in §4.5.3, as well
as the ground truth (top). The particle means of reconstructed and forecasted
states for a single test sequence are plotted, for each state dimension (y-axis) and
time (x-axis). The reconstructed and forecasted states of three randomly chosen
particles are also plotted individually. 152

4.11 State reconstruction (upper half) and forecast (lower half) performance with
full observation (du = dy = 256) on the Burgers example in §4.5.2. For each
method, the reconstructed states ut (blue) for a single test sequence are plot-
ted for t = 50, 100, 150, 200, 250 (column), and the forecasted states (blue) for a
single test sequence are plotted for t = 300 (start of forecast), 375, 450, 525, 600
(column). The true values of the 256-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and
ROAD-EnKF perform probabilistic state reconstructions and forecast through
particles (all plotted in blue), while SINDy-AE only provides point estimates.
The reconstruction/forecast RMSEs are computed for each plot. 154

4.12 Contour plot of state reconstruction and forecast output with full observation
(du = dy = 256) on the Burgers example in §4.5.2, as well as the ground truth
(top). For each method (row), the reconstructed and forecasted states (left col-
umn) for a single test sequence are plotted, for each state dimension (y-axis) and
time (x-axis). The error compared to the ground truth are plotted in the right
column. For both AD-EnKF and ROAD-EnKF we use particle means as point
estimates. 155

4.13 State reconstruction (upper half) and forecast (lower half) performance with full
observation (du = dy = 256) on the KS example in §4.5.3. For each method,
the reconstructed states ut (blue) are plotted for t = 50, 150, 250, 350, 450 (col-
umn), and the forecasted states (blue) are plotted for t = 450 (start of forecast),
452, 454, 456, 458 (column). The true values of the 256-dimensional states are
plotted in red dashed lines, along with the noisy observations in black dots. Both
AD-EnKF and ROAD-EnKF perform probabilistic state reconstructions and fore-
cast through particles (all plotted in blue). The reconstruction/forecast RMSEs
are computed for each plot. 156

4.14 Contour plot of state reconstruction and forecast output of ROAD-EnKF with
full observation (du = dy = 256) on the KS example in §4.5.3, as well as the
ground truth (top). The particle means of reconstructed and forecasted states
are plotted, for each state dimension (y-axis) and time (x-axis). The individual
reconstructed and forecasted states of three randomly chosen particles are also
plotted. 157

5.1 Ensemble members (green) after 100 iterations, with truth u† (red star) and
contour plot of (unnormalized) posterior density. 206

xi

5.2 Evolution of the Frobenius norm of the ensemble covariance Puu(t). For reference,
we also plot the Frobenius norm of the true posterior covariance (red dashed line).
The norm of IEKF-RZL blows up after a few iterations. The norms of the EKI
and TEKI are almost identical and monotonically decreasing. The norms of
the new variants EKI-SL and IEKF-SL are similar and stabilize after around 40
iterations. The norm of IEKF lies between those of the old and new variants. . . 207

5.3 EKI & EKI-SL: Relative errors and data misfit w.r.t time t. 207
5.4 TEKI, IEKF & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t

time t. 208
5.5 Ensemble mean (red) at the final iteration, with 10, 90-quantiles (blue). 211
5.6 EKI & EKI-SL: Relative errors and data misfit w.r.t time t. 211
5.7 IEKF, TEKI & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t

time t. 212
5.8 Ensemble mean (red) at the final iteration, with 10, 90-quantiles (blue). 214
5.9 EKI & EKI-SL: Relative errors and data misfit w.r.t time t. 214
5.10 IEKF, TEKI & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t

time t. 215
5.11 Tikhonov-Phillips objective function with respect to two randomly chosen coor-

dinates. 216
5.12 Ensemble mean (red) at the final iteration, with 10, 90-quantiles (blue). 217
5.13 EKI & EKI-SL: Relative errors and data misfit w.r.t time t. 217
5.14 IEKF, TEKI & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t

time t. 218

xii

LIST OF TABLES

2.7.1 Distribution of grid points when observations are concentrated on the right, in
the piecewise-constant Young’ modulus case. Element on ith row and jth column
represents the posterior probability of having i grid points in the subinterval j. . 54

2.7.2 Distribution of grid points when observations are concentrated on the left, in the
piecewise-constant Young’ modulus case. Element on ith row and jth column
represents the posterior probability of having i grid points in the subinterval j. . 54

2.7.3 Averaged acceptance probability of u and a respectively, in the continuous Young’
modulus case. 54

3.5.1 Euclidean distance (×10−2) from the learned parameter α at the final iteration
to the true MLE solution, under varying dimensional settings for the linear-
Gaussian model (3.5.1). The parameter values recovered by our proposed AD-
EnKF method with covariance tapering and N = 50 are closer to the MLE
solution than the ones recovered by AD-PF with N = 1000. 82

3.5.2 Lorenz-96, learning parameterized dynamics with varying dx and observation
models. The table shows recovery of learned α∗ for each algorithm at the final
training iteration, in terms of its distance to the truth α∗ Eq. (3.5.4). “Full”
corresponds to full observations, i.e., H = Idx . “Partial” corresponds to observing
2 out of 3 coordinates, i.e., H = [e1, e2, e4, e5, e7, · · ·]⊤. The “-” indicates that
training cannot be completed due to filter divergence. (§3.5.2). 87

4.5.1 Comparison of SINDy-AE, AD-EnKF, and ROAD-EnKF under different scenarios.134
4.5.2 Choices of hyperparameters for ROAD-EnKF on different numerical examples. . 137
4.5.3 Performance metrics for different algorithms at convergence. (Embedded L63

example, §4.5.1.) . 139
4.5.4 Performance metrics for different algorithms at convergence. (Burgers example,

§4.5.2.) . 144
4.5.5 Performance metrics for ROAD-EnKF at convergence with full observation (du =

dy = 256) and different latent space dimension dz. (Burgers example, §4.5.2.) . . 147
4.5.6 Performance metrics for different algorithms at convergence. (KS example, §4.5.3.)150
4.7.1 Ablation study: AD-EnKF versus ROAD-EnKF with different NN parameteri-

zation and numerical integration methods for surrogate dynamics (FC: NN with
fully-connected layers; Fourier: NN with Fourier layers; Euler: Euler method for
ODE integration; RK4: fourth-order Runge Kutta method for ODE integration).
Switching from RK4 to Euler method while keeping the same NN configuration
gives a computational speed-up, and the speed-up is more noticeable when the
NN involves Fourier layers. However, after the switch, the accuracy drops more
significantly for AD-EnKF than for ROAD-EnKF. The best configuration for
AD-EnKF (Fourier with RK4) still yields a lower accuracy compared to both
ROAD-EnKF configurations, while taking more time to compute. (Burgers ex-
ample, full observation case, §4.5.2.) . 153

xiii

5.1.1 Roadmap to the algorithms considered in this paper. We use the abbreviations
GN and LM for Gauss-Newton and Levenberg-Marquardt. The numbers in paren-
thesis represent the subsection in which each algorithm is introduced. 162

5.3.1 Summary of the main algorithms in Sections 5.2 and 5.3. 177

xiv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Daniel Sanz-Alonso. He has been

a constant source of inspiration, providing patient and thoughtful feedback on my work,

and always being responsive to my questions and concerns. His expertise and dedication to

excellence have been instrumental in shaping my research direction and helping me grow as

a scholar. My Ph.D. journey would be impossible without his unwavering support.

I would also like to express my sincere gratitude to Rebecca Willett, for giving me the

opportunity to join her research group and learn about cutting-edge machine learning tech-

niques that complement my background. I am deeply grateful for her valuable feedback on

my work. I would also like to thank Mihai Anitescu for serving on my thesis committee and

providing insightful comments on my research.

I would like to extend my thanks to all the faculty and staff in the Committee on Compu-

tational and Applied Mathematics. Thanks to Mary Silber, Zellencia Harris and Jonathan

Rodriguez, for their administrative support and continuous care throughout my time in the

program.

I would also like to express my appreciation to my peers, including Yian Chen, Zhen Dai,

Ruiyi Yang, Ruoxi Jiang, Qin Wen, Haotian Gu, Hongpeng Guo, and many others. I would

like to thank them for the good research discussions we’ve had, as well as happiness and joy

they’ve brought into my five-year Ph.D. journey.

Last but not least, I would like to thank my parents for their unconditional support.

Their encouragement has been essential for me to pursue this career path. I would also like

to extend my heartfelt thanks to Wenjun Wang, whose love and support make this Ph.D.

journey even more fulfilling and memorable.

xv

ABSTRACT

Inverse problems (IPs) deal with the task of reconstructing input variables from noisy obser-

vations, defined through a forward model. When the forward map is known, the reconstruc-

tion of input variables can be performed via numerous approaches, including optimization-

based algorithms (e.g., maximum likelihood estimation) and sampling-based algorithms (e.g.,

Markov chain Monte Carlo). However, there are scenarios where: (1) we do not have per-

fect knowledge about the forward model; or (2) the forward model is expensive to simulate,

which severely limits the implementation of optimization and sampling algorithms that may

require multiple forward model simulations. Therefore, in these scenarios, it is essential

to approximate the forward model by a parameterized surrogate model. We propose data-

driven approaches that jointly learn the parameters of the surrogate model, and reconstruct

input variables, from observation data alone.

Data assimilation (DA) deals with the task of reconstructing temporally evolving hidden

states from noisy time series observations, defined through a state space model (SSM). When

the SSM is known, the reconstruction of states can be performed using optimization-based

algorithms (e.g., 4DVAR) or sampling-based algorithms (e.g., particle filtering). However,

similar to IPs, there are scenarios where: (1) we do not have perfect knowledge about the

SSM; or (2) the SSM is expensive to simulate, which increases the computational cost of the

reconstruction algorithms. Therefore, in these scenarios, it is essential to approximate the

SSM with a parameterized surrogate model. We employ machine learning techniques and

propose data-driven approaches that jointly learn the parameters of the surrogate model,

and reconstruct the states, from observation data alone.

xvi

CHAPTER 1

INTRODUCTION

1.1 What are Inverse Problems?

Inverse problems (IPs) deal with the task of reconstructing input u ∈ Rdu from noisy obser-

vation y ∈ Rdy , defined through a forward model:

y = A(u) + η, u ∼ pu(u), (1.1.1)

where η ∼ N (0,Γ) represents Gaussian measurement error, and pu represents the prior

distribution of u. The random variables η and u are assumed to be independent. The

solution to this inverse problem can be described in terms of the posterior distribution:

π(u) := p(u|y) = 1

Z
pu(u)N

(
y;A(u),Γ

)
(1.1.2)

where Z is a normalizing constant that does not depend on u. Throughout this thesis, we

use the notation N (x;m,C) to denote the Gaussian density with mean m and covariance C

evaluated at x, and the corresponding Gaussian distribution is denoted by N (m,C). This

chapter introduces different algorithms to approximate the posterior distribution (1.1.2),

under the assumption that A is known. They can be broadly classified into two categories:

optimization-based algorithms and sampling-based algorithms.

1.1.1 Optimization-based Algorithms for Inverse Problems

In applications, since u is often high-dimensional, it is nontrivial to visualize the posterior

distribution (1.1.2). Instead, it is useful to summarize the posterior distribution with a few

numerical values. In this section, we focus on the posterior mode or maximum a posteriori

(MAP) estimator, which corresponds to the maximizer of Eq. (1.1.2). Equivalently, it is
1

defined as the solution to the following optimization problem:

uMAP := argmin
u

J(u), where J(u) :=
1

2
∥y −A(u)∥2Γ − log pu(u) (1.1.3)

We use the notation ∥v∥Γ =
√
v⊤Γ−1v throughout the thesis. Common choices for the

prior distribution pu include the Gaussian distribution, which turns (1.1.3) into an L2-

regularized optimization problem, and the Laplace distribution, which turns (1.1.3) into an

L1-regularized optimization problem.

We will highlight three optimization algorithms for (1.1.3) that will be useful for later

chapters: the gradient descent method, the Gauss-Newton method and the Levenberg-

Marquardt method. The first two algorithms can be regarded as line search methods, while

the last one can be regarded as a trust region method. Both Gauss-Newton and Levenberg-

Marquardt are only applicable to the cases where pu is Gaussian. We refer the reader to

[Nocedal and Wright, 1999] for a general introduction to optimization algorithms and their

theoretical properties.

Gradient Descent Method The gradient descent method is commonly used in machine

learning. Assume that the gradient of the objective function∇J(u) is available, the algorithm

iteratively adjusts u by taking small steps in the opposite direction of ∇J(u):

uk+1 = uk + αksk, k = 0, 1, . . . , (1.1.4)

with sk = −∇J(uk) and appropriate choices of step size αk. With modern development

of machine learning computational software, accurate description of the gradient ∇J(u) be-

comes available for a wide range of applications, through automatic differentiation libraries

like PyTorch [Paszke et al., 2019], JAX [Bradbury et al., 2018], and Tensorflow [Abadi et al.,

2016]. One can also compute ∇J when A involves ordinary or stochastic differential equation

2

solvers [Chen et al., 2018; Li et al., 2020a].

The gradient descent method has limitations, perhaps most notably that the algorithm

may get stuck in local minima. To alleviate this issue and accelerate its convergence, sev-

eral advanced techniques have been developed, e.g. momentum, adaptive step sizes, etc.

Moreover, despite the aforementioned recent advances in software, computation of ∇J(u)

can still be expensive or impossible, e.g. for certain problems that involve partial differential

equations (PDEs). Despite these caveats, gradient descent is a powerful method for finding

the MAP estimator, as well as minimizers to more general optimization objectives J. We will

explore this method with automatic differentiation techniques in Chapter 3 and Chapter 4.

Gauss-Newton Method When the prior distribution pu is Gaussian, the optimization

problem Eq. (1.1.3) can be transformed into a weighted least-squares problem. To see this,

assume u ∼ N (m,C), and we have

J(u) =
1

2
∥y −A(u)∥2Γ +

1

2
∥u−m∥2C

=
1

2
∥z − g(u)∥2S ,

(1.1.5)

where

z :=

 y

m

 , g(u) :=

A(u)
u

 , S :=

Γ 0

0 C

 .

Two common ways to find the minimizer of the objective in the form of Eq. (1.1.5) are the

Gauss-Newton method and the Levenberg-Marquardt method. Gauss-Newton is a line search

method that has the form of Eq. (1.1.4) and uses second-order derivative information of J.

However, instead of computing the Newton direction sNk = −
(
∇2J(uk)

)−1∇J(uk) directly,

we approximate the Hessian matrix ∇2J(uk) using first-order derivative information of g,

3

ignoring the second-order terms that are hard to deal with:

∇2J(uk) ≈ Dg(uk)
⊤S−1Dg(uk) (1.1.6)

where Dg(uk) is the Jacobian matrix of g at uk, and the approximation follows from

Eq. (1.1.5). Therefore, the Gauss-Newton method is defined using the same form as

Eq. (1.1.4), but with sk = −
(
Dg(uk)

⊤S−1Dg(uk)
)−1∇J(uk) and appropriate choices of

step size αk.

Levenberg-Marquardt Method The Levenberg-Marquardt method uses a trust-region

approach, where at each iteration k, we find the solution sk to the sub-problem:

argmin
s

mk(s) := J(uk) +∇J(uk)⊤s+
1

2
s⊤Bks s.t. ∥s∥ ≤ δk (1.1.7)

and set uk+1 = uk + sk. Ideally, Bk is a positive definite matrix that is close to the Hessian

∇2J(uk), so that mk(s) is a good quadratic approximation of J(uk + s) when ∥s∥ is small.

The value of δk is tuned so that mk(s) does not deviate too much from J(uk + s).

For the least-squares problem Eq. (1.1.5), it is thus natural to reuse the Hessian approx-

imation Eq. (1.1.6) and set

Bk = Dg(uk)
⊤S−1Dg(uk) (1.1.8)

in Eq. (1.1.7), avoiding computation of second-order derivatives of g. Then the optimization

problem Eq. (1.1.7) can be solved through analysis of the KKT conditions.

We will come back to the Gauss-Newton method and the Levenberg-Marquardt method in

Chapter 5, where we introduce new ways to approximate the Jacobian term Dg(uk) through

particles, and study theoretical properties of these algorithms in continuous time limit on

certain classes of inverse problems.

4

1.1.2 Sampling-based Algorithms for Inverse Problems

Another way to summarize the posterior distribution (1.1.2) is to deliver approximate sam-

ples from it. More specifically, we aim to approximate the following integral for any test

function h:

Iπ[h] :=

∫
h(u)π(u)du (1.1.9)

with approximate samples. In this section, we review importance sampling and Markov

chain Monte Carlo (MCMC), two classes of sampling algorithms that generate approximate

samples from a target distribution π.

Importance Sampling To provide samples from the target distribution π(u), we can

first sample {u1, . . . , uN} from a proposal distribution q(u), and assign the n-th sample

with weight wn = π(un)/q(un). The weighted particles {(w1, u1), . . . , (wN , uN)} can be

regarded as approximate samples from the target distribution, which gives the following

approximation:

IISπ [h] :=
1

N

N∑
n=1

wnh(un) ≈ Iπ(h). (1.1.10)

It is often the case that π(u) is only known up to a normalizing constant, making it impossible

to compute wn in Eq. (1.1.10). For example, this is the case for Eq. (1.1.2) when A is

nonlinear or pu is non-Gaussian, as Z is hard to compute. Let π̃(u) := Zπ(u) where Z is

some normalizing constant and π̃ is easily accessible. We can compute the self-normalizing

weights:

wn =
w̃n∑N
i=1 w̃

i
, where w̃n =

π̃(un)

q(un)
, (1.1.11)

which leads to the following approximation:

IAIS
π [h] :=

N∑
n=1

wnh(un). (1.1.12)

5

The idea behind Eq. (1.1.11) is that 1
N

∑N
i=1 w̃

i is an unbiased estimator of Z:

Eu1,...,uN∼q(u)

[
1

N

N∑
i=1

w̃i
]
=

1

N

N∑
i=1

Eui∼q(u)

[
π̃(ui)

q(ui)

]
=

1

N
NZ = Z. (1.1.13)

For the posterior distribution in the form of Eq. (1.1.2), it is useful to set the proposal

distribution to be the prior, i.e., q = pu. Then the unnormalized weights w̃n in Eq. (1.1.11)

corresponds to the data likelihood p(y|un), and Z corresponds to the marginal likelihood

p(y), also known as model evidence. Importance sampling is a fundamental building block

of several data assimilation algorithms, and will be discussed in detail in later chapters.

Moreover, the estimation of model evidence Z is a key component of Chapter 3 and Chapter 4.

Metropolis-Hastings Algorithm The Metropolis-Hastings algorithm describes a general

MCMC methodology that generates a Markov kernel K(un+1|un) with the target distribution

π(u) as its invariant distribution. We first define a kernel q(v|u) that is easy to sample from,

which we call the proposal. At each iteration n, we propose v ∼ q(v|un) as a candidate for

un+1, accept it with probability a(un, v), defined by

a(u, v) = min
{
1,

π(v)q(u|v)
π(u)q(v|u)

}
, (1.1.14)

and otherwise set un+1 = un. The resulting Markov kernel K(v|u) = a(u, v)q(v|u) +
(
1 −

a(u, v)
)
δu(v) satisfies the detailed balance equation w.r.t. the target distribution π(u):

π(u)K(v|u) = π(v)K(u|v), (1.1.15)

and therefore has π(u) as the invariant distribution. The samples {u1, . . . , un, . . . } can be

treated as approximate samples from π(u). In other words, for any test function h, we have

6

the following approximation:

IMH
π [h] :=

1

N

N∑
n=1

h(un) ≈ Iπ(h). (1.1.16)

Common choices of the proposal kernel q(v|u) include uniform distribution over some interval

[u−γ, u+γ], and Gaussian distribution centered at u. In both cases q is easy to sample from,

symmetric around u, and satisfies q(u|v) = q(v|u) so that Eq. (1.1.14) is easy to compute.

Preconditioned Crank-Nicolson (pCN) Algorithm The pCN algorithm is a special

type of MH algorithm with a specific choice of proposal q(v|u). It is suited for cases where

π(u) has the form of a posterior distribution Eq. (1.1.2) and is high-dimensional. Expanding

Eq. (1.1.14), we have:

a(u, v) = min

{
1,

pu(v)N
(
y;A(v),Γ

)
q(u|v)

pu(u)N
(
y;A(u),Γ

)
q(v|u)

}
. (1.1.17)

An issue of the symmetric proposal kernels discussed in the previous paragraph is that,

although q(u|v) = q(v|u), the ratio pu(v)/pu(u) can be very small when u is high-dimensional.

This is especially the case when, e.g., pu is a Gaussian distribution N (m,C) where C has

rapidly decaying eigenvalues. This leads to an acceptance probability that is very close to 0,

making the Markov chain inefficient.

The pCN algorithm proposes a kernel q(v|u) that satisfies pu(v)q(u|v) = pu(u)q(v|u), i.e.,

detailed balance equation w.r.t. the prior pu. When pu is a Gaussian distribution N (m,C),

it is easy to check that

q(v|u) := N
(
v;m+

√
1− β2(u−m), β2C

)
(1.1.18)

satisfies the desired property for any choice of β ∈ (0, 1). Therefore, Eq. (1.1.17) is simplified

7

to a(u, v) = min
{
1,
N
(
y;A(v),Γ

)
N
(
y;A(u),Γ

)}. We will investigate the application of pCN to a family

of high-dimensional inverse problems in Chapter 2.

1.2 What is Data Assimilation?

Data assimilation (DA) deals with the task of reconstructing temporally evolving hidden

states ut ∈ Rdu from noisy time series observations yt ∈ Rdy , defined through the following

state space model (SSM):

ut = F (ut−1) + ξt, ξt ∼ N (0, Q), 1 ≤ t ≤ T, (1.2.1)

yt = Htut + ηt, ηt ∼ N (0, Rt), 1 ≤ t ≤ T, (1.2.2)

u0 ∼ pu(u0), (1.2.3)

where ξt represents Gaussian model error, ηt represents Gaussian measurement error and pu

represents the prior distribution on u0. The random variables {ξt}Tt=1, {ηt}Tt=1 and u0 are

all assumed to be independent. For simplicity, we write ut0:t1 := {ut}t1t=t0
.

The solution to the data assimilation task can be described in terms of the filtering

distribution p(ut|y1:t) and the smoothing distribution p(ut|y1:T), for 1 ≤ t ≤ T . The dif-

ference between the two types of distributions is whether the state ut is inferred based on

observations up to time t or across the entire timespan. This chapter introduces different

approaches to sequentially approximate the filtering distribution p(ut|y1:t), as it aligns with

the materials discussed in later chapters. For this chapter, we assume that the state space

model (1.2.1)-(1.2.3) is known perfectly (i.e., F,Q,Ht, Rt, pu are known).

1.2.1 Data Assimilation as Sequential Inverse Problems

In this section, we introduce the general principle of deriving the filtering distribution: iter-

atively updating from p(ut−1|y1:t−1) to p(ut|y1:t). Assume that p(ut−1|y1:t−1) is given, the
8

process can be decomposed into two steps, known as the prediction step and the analysis

step:

(prediction) p(ut|y1:t−1) =
∫

p(ut−1|y1:t−1)N
(
ut;F (ut−1), Q

)
dut−1, (1.2.4)

(analysis) p(ut|y1:t) =
1

Zt
p(ut|y1:t−1)N (yt;Htut, Rt). (1.2.5)

The predictive distribution p(ut|y1:t−1) can be interpreted as the distribution of ut after

applying the transformation (1.2.1) to ut−1 ∼ p(ut−1|y1:t−1). The filtering distribution

p(ut|y1:t) can be interpreted as the solution to the following inverse problem for ut, which is

a special case of (1.1.1):

yt = Htut + ηt, ut ∼ p(ut|y1:t−1), (1.2.6)

where ηt ∼ N (0, Rt). Here the predictive distribution p(ut|y1:t−1) is treated as the prior, and

the filtering distribution p(ut|y1:t) corresponds to the posterior distribution of this inverse

problem with a linear forward map.

1.2.2 Filtering Algorithms for Data Assimilation

Depending on how the inverse problem (1.2.6) is approached, there are different families

of filtering algorithms. When F is linear and pu is Gaussian, the analytical formula for

p(ut|y1:t) can be obtained through the Kalman filter algorithm. When F is nonlinear or pu

is non-Gaussian, both predictive distribution and filtering distribution can be approximated

by a number of particles. Equation (1.2.6) can be approached by importance sampling,

which leads to the particle filter algorithm, or by approximating the prior p(ut|y1:t−1) with

a Gaussian distribution, which leads to the ensemble Kalman filter algorithm.

9

Kalman Filter Algorithm When F is linear (i.e., F ∈ Rdu×du) and pu is Gaussian in

Eq. (1.2.1), it is easy to derive that all predictive and filtering distributions are Gaussian.

It remains to figure out their means and covariance matrices. Assume p(ut−1|y1:t−1) =

N
(
ut−1;mt−1, Ct−1

)
, with the convention p(·|y1:0) := p(·). It follows from Eq. (1.2.4) that

the predictive distribution is

p(ut|y1:t−1) = N (ut; m̂t, Ĉt), (1.2.7)

where m̂t := Fmt−1, (1.2.8)

Ĉt := FCt−1F⊤ +Q. (1.2.9)

To compute the filtering distribution p(ut|y1:t), we can first derive from Eq. (1.2.6) that

(ut, yt) is jointly Gaussian conditioning on y1:t−1:ut|y1:t−1
yt|y1:t−1

 ∼ N

 m̂t

Htm̂t

 ,

 Ĉt ĈtH
⊤
t

HtĈt HtĈtH
⊤
t +Rt


 (1.2.10)

using the relationship Eq. (1.2.6). We can then apply the conditional Gaussian formula to

obtain the filtering distribution p(ut|yt, y1:t−1) = p(ut|y1:t):

p(ut|y1:t) = N (ut;mt, Ct), (1.2.11)

where mt := m̂t + K̂t(yt −Htm̂t), (1.2.12)

Ct := (I − K̂tHt)Ĉt, (1.2.13)

K̂t := ĈtH
⊤
t (HtĈtH

⊤
t +Rt)

−1. (1.2.14)

Although the Kalman filter algorithm only applies to certain classes of state space models, it

provides guidance to many other filtering algorithms, including the ensemble Kalman filter

algorithm, which will be one of the main focuses of this thesis. Moreover, a side product of

10

the computation Eq. (1.2.10) gives:

p(yt|y1:t−1) = N (yt;Htm̂t, HtĈtH
⊤
t +Rt), (1.2.15)

which makes it possible to compute the model evidence p(y1:T) =
∏T

t=1 p(yt|y1:t−1). This

will be an important concept in Chapter 3 and Chapter 4.

Particle Filter Algorithm When F is nonlinear or pu is non-Gaussian, we may not have

explicit formulas for the predictive and filtering distributions. One way to approximate these

distributions is to use weighted particles. Assume that (w1:N
t−1 , u

1:N
t−1) forms an approximation

to the filtering distribution p(ut−1|y1:t−1), where
∑N

i=1w
i
t−1 = 1. Then the predictive

distribution p(ut|y1:t−1) can be approximated with (w1:N
t−1 , û

1:N
t) where

ûnt = F (unt−1) + ξnt , ξnt ∼ N (0, Q), (1.2.16)

due to the relationship Eq. (1.2.1). The inverse problem Eq. (1.2.6) for the filtering distri-

bution p(ut|y1:t) can be solved via importance sampling, where each particle is reweighted

with their corresponding data likelihood after self-normalization, i.e.:

wn
t =

ŵn
t∑N

i=1 ŵ
i
t

, where ŵn
t = wn

t−1N (yt;Htû
n
t , Rt), (1.2.17)

and unt = ûnt . More advanced techniques like the resampling procedure and different choices

of the proposal kernel can be found in §3.7.4, and we refer the reader to [Doucet and Johansen,

2009] for more details. Similar to importance sampling,
∑N

i=1 ŵ
i
t can be used to approximate

the normalizing constant of the inverse problem Eq. (1.2.6), which is p(yt|y1:t−1). We will

explore the application of particle filter algorithms to estimation of model evidence p(y1:T)

in Chapter 3.

11

Ensemble Kalman Filter Algorithm Another way to approximate the predictive and

filtering distributions when F is nonlinear or pu is non-Gaussian is to use Gaussian approx-

imations. Assume that the equally weighted particles u1:Nt−1 forms an approximation to the

filtering distribution p(ut−1|y1:t−1). Then the predictive distribution p(ut|y1:t−1) can be

approximated with û1:Nt , defined in the same way as Eq. (1.2.16). Different from particle

filter algorithms, the inverse problem Eq. (1.2.6) for the filtering distribution is solved via

finding a Gaussian approximation of the prior/predictive distribution p(ut|y1:t−1) using the

empirical moments of û1:Nt :

m̂t :=
1

N

N∑
n=1

ûnt , Ĉt :=
1

N − 1

N∑
n=1

(ûnt − m̂t)(û
n
t − m̂t)

⊤. (1.2.18)

Then, the analysis step is defined similarly to the Kalman filter updates Eqs. (1.2.12)

to (1.2.14), except that each individual particle is updated instead of the mean, and K̂t

is computed using empirical moments in Eq. (1.2.18):

unt := ûnt + K̂t(yt + ηnt −Htu
n
t), ηnt ∼ N (0, Rt), (1.2.19)

K̂t := ĈtH
⊤
t (HtĈtH

⊤
t +Rt)

−1. (1.2.20)

Here ηnt is introduced as a perturbation term to ensure that in linear Gaussian problems,

the empirical moments of u1:Nt converge as N → ∞ to the moments of the true filtering

distribution p(ut|y1:t). In nonlinear settings, empirical results have shown that the ensemble

Kalman filter algorithms are still able to achieve good reconstruction performance, even

when ut’s are high-dimensional and the number of particles N is smaller than du.

Following a similar argument as in the Kalman filter section, we have the following

approximation of p(yt|y1:t−1):

p(yt|y1:t−1) ≈ N (yt;Htm̂t, HtĈtH
⊤
t +Rt), (1.2.21)

12

where m̂t and Ĉt are the empirical moments computed in Eq. (1.2.18). This makes it

possible to approximate the model evidence p(y1:T), even in high-dimensional and nonlinear

problems. This concept will be explored further in Chapter 3 and Chapter 4.

1.3 Data-driven Inverse Problems: Motivations

In Section 1.1, we discussed algorithms for the inverse problem (1.1.1) where the forward

map A is known explicitly. However, there are scenarios where: (1) we do not have perfect

knowledge about A; or (2) A is expensive to simulate, which limits the number of forward

map evaluations that can be performed in the reconstruction algorithm. We provide an

example for motivation:

Consider the Darcy flow inverse problem of reconstructing the PDE diffusion coefficient

u(x) from sparse observations of the field p(x):

−∇ · (u(x)∇p(x)) = f(x), x ∈ D, (1.3.1)

p(x) = 0, x ∈ ∂D. (1.3.2)

Here D = [0, 1]d and f is known. More specifically, the forward map A is defined by the

composition of the PDE solver u 7→ p (which depends on the choice of f) and the pointwise

evaluation map p 7→
(
p(x1), . . . , p(xn)

)⊤ at some observation locations x1, . . . , xn ∈ D. Ob-

servation y ∈ Rn is obtained through a perturbation of
(
p(x1), . . . , p(xn)

)⊤. Reconstruction

of u from y can be achieved using optimization or MCMC techniques (see, e.g., [Huang et al.,

2022; Garbuno-Inigo et al., 2020; Chada et al., 2020; Bigoni et al., 2019]).

Now consider the following scenarios:

1. f is not known perfectly. For instance, f is a piecewise constant function with unknown

values at certain regions. Therefore, the PDE solver within A contains unknown pa-

rameters (as it depends on f). To solve the inverse problem for u from y, unknown

13

parameters of A also need to be inferred.

2. The PDE solver of A is computationally expensive, which is true for high dimensional

cases or when a fine grid is needed to resolve small scales. We aim to find an efficient

surrogate PDE solver that can approximate the original PDE solver within A, for

example, with an adaptive grid. The locations of grid points are treated as parameters

of the surrogate model used to approximate A. To solve the inverse problem for u from

y, parameters of the surrogate model also need to be inferred.

Therefore, we aim to approximate A by Aθ, where θ denotes (1) unknown parameters of

A that need to be identified; or (2) parameters of a surrogate model in replacement of A

for a lower simulation cost. We propose data-driven approaches that jointly learn θ and

reconstruct u, from observation data y alone.

In Section 1.2, we discussed algorithms for data assimilation problem (1.2.1)-(1.2.3) where

the model is known perfectly, i.e., F,Q,Ht, Rt, pu are known. However, there are scenarios

where: (1) we do not have perfect knowledge about the model dynamics F,Q; or (2) F is

expensive to simulate, which increases computational time of the reconstruction algorithm.

We provide two examples for motivation:

1. Consider the Lorenz-63 model of simulating a 3-D chaotic system:

du
ds

= f(u),


f (1)(u) = σ(u(2) − u(1)),

f (2)(u) = u(1)(ρ− u(3))− u(2),

f (3)(u) = u(1)u(2) − βu(3).

(1.3.3)

Here σ, ρ, β are known (typical choices of values are 10, 28, 8/3). u(i) and f (i) denote

the i-th coordinate of u and component of f . Assume observations yt are made directly

from u every ∆s second, with observation matrix Ht and Gaussian noise perturbation

ηt. Therefore, F corresponds to the flow map of the ODE u(s) 7→ u(s+∆s) and Q = 0.
14

Reconstruction of ut’s from yt’s can be achieved using filtering algorithms (see, e.g.,

[Evensen et al., 2022]).

It is often the case that our knowledge of the dynamical system is imperfect, for

instance, when the exact values of σ, ρ, β are unknown. Then we do not have perfect

knowledge about F . To solve the data assimilation problem for ut’s from yt’s, unknown

parameters of F (which in this case are σ, ρ, β) also need to be inferred.

2. Consider the Kuramoto-Sivashinsky (KS) model of simulating a high-dimensional

chaotic system:
∂u

∂s
= −ν ∂

4u

∂x4
− ∂2u

∂x2
− u

∂u

∂x
. (1.3.4)

Here u(x, s) is defined on [0, L] × [0,∞) with suitable initial and boundary condi-

tions, and the viscosity parameter ν is known. Assume observations yt’s are made

directly from the function u(·, s) every ∆s second, at certain observation locations

x1, . . . , xn ∈ [0, L], with observation matrix Ht and Gaussian noise perturbation ηt.

Then F corresponds to the map u(·, s) 7→ u(·, s +∆s). More discussion on this setup

and the discretization of F can be found in Chapter 4. Reconstruction of ut’s from

yt’s can be achieved using filtering algorithms (see, e.g., [Jardak et al., 2010]).

An accurate simulation of F is computationally expensive, as it requires discretization

over a very fine grid. This increases the cost of the data assimilation algorithm, as it

requires simulating F at each assimilation step. Therefore, we would like to find an

efficient surrogate model that can approximate F with good accuracy, for example,

with a neural network. To solve the data assimilation problem for ut’s from yt’s,

parameters of the surrogate model also need to be inferred.

Therefore, we aim to approximate F,Q by Fα, Qβ , where θ := {α, β} denotes (1) unknown

parameters of the model dynamics that need to be identified; or (2) parameters of a surrogate

model in replacement of F,Q for a lower computational cost. If ut is high-dimensional, we

15

can also approximate (1.2.1) using a reduced-order model with low-dimensional surrogate

dynamics, parameterized by θ. We propose data-driven approaches that jointly learn θ and

reconstruct ut’s, from observations yt’s alone.

1.4 Outline and Main Contributions

We give an outline of the following chapters and summarize their main contributions.

• Chapter 3 is developed based on [Bigoni et al., 2020]. We focus on the IP setting

(1.1.1), where the forward model A is defined as a differential equation solver, which

is often expensive or hard to simulate. We approximate A by a numerical solver Aθ,

where θ denotes the parameter governing the discretization, e.g., location of the grid.

The main idea is to treat θ as part of the unknown, and jointly estimate θ and u with

MCMC algorithms. We numerically show that in a variety of inverse problems arising

in mechanical engineering, signal processing and the geosciences, the observations y

contain useful information to guide the choice of discretization.

• Chapter 4 is developed based on [Chen et al., 2022]. We focus on the DA setting (1.2.1)-

(1.2.3) when the state ut is high-dimensional and both F,Q in the model dynamics

(1.2.1) are unknown, approximated by Fα, Qβ . We introduce a machine learning frame-

work, named autodifferentiable ensemble Kalman filter (AD-EnKF), that jointly learns

the parameter θ := (α, β) in the model dynamics and reconstructs the states ut’s. We

leverage the ability of EnKF to scale to high-dimensional states, and the power of auto-

matic differentiation to train high-dimensional surrogate models of the dynamics. We

numerically show that, in the Lorenz-96 model, AD-EnKF outperforms existing meth-

ods that use expectation-maximization or particle filters to merge data assimilation

and machine learning.

• Chapter 5 is developed based on [Chen et al., 2023]. We focus on the DA setting

16

(1.2.1)-(1.2.3) when the state ut is high-dimensional and the model dynamics (1.2.1)

are unknown. We build a surrogate model for the dynamics in a low-dimensional latent

space, along with a decoder from latent space to state space. We propose a machine

learning framework, named reduced-order autodifferentiable ensemble Kalman filter

(ROAD-EnKF), that jointly learns the parameter θ in the surrogate model as well as

the decoder, and reconstructs the states ut’s. In so doing, we blend the ideas of data

assimilation, reduced-order modeling and automatic differentiation. We numerically

show that, compared to existing methods, ROAD-EnKF achieves higher or compara-

ble accuracy at a lower computational cost, making them a promising approach for

surrogate state reconstruction and forecasting.

• Chapter 6 is developed based on [Chada et al., 2021]. We focus on the IP setting (1.1.1),

where we assume the model is known perfectly. We review a family of derivate-free

methods for reconstruction of u, namely iterative ensemble Kalman methods, that

blends the ideas of ensemble data assimilation and least-squares optimization. We

identify, compare and develop three subfamilies of ensemble methods that differ in

the objective they seek to minimize and the derivative-based optimization scheme they

approximate through the ensemble. We emphasize two principles for the derivation and

analysis of iterative ensemble Kalman methods: statistical linearization and continuum

limits. Following these guiding principles, we introduce new iterative ensemble Kalman

methods that show promising numerical performance in Bayesian inverse problems,

data assimilation and machine learning tasks.

17

CHAPTER 2

DATA-DRIVEN FORWARD DISCRETIZATIONS FOR

BAYESIAN INVERSION

2.1 Introduction

Models used in science and engineering are often described by problem-specific input pa-

rameters that are estimated from indirect and noisy observations. The inverse problem of

input reconstruction is defined in terms of a forward model from inputs to observable quan-

tities, which in many applications needs to be approximated by discretization. A broad class

of examples motivating this paper is the reconstruction of input parameters of differential

equations. The choice of forward model discretization is particularly important in Bayesian

formulations of inverse problems: discretizations need to be cheap since statistical recovery

may involve millions of evaluations of the discretized forward model; they also need to be

accurate enough to enable input reconstruction. The goal of this paper is to suggest a simple

data-driven framework to build forward model discretizations to be used in Bayesian inverse

problems. The resulting discretizations are data-driven in that they finely resolve regions of

the input space where the data are most informative, while keeping the cost moderate by

coarsely resolving regions that are not informed by the data. To be concrete and explain the

idea, let us consider the inverse problem of recovering an unknown u from data y related by

y = G(u) + η, (2.1.1)

where G denotes the forward model from inputs to observables, η ∼ N(0,Γ) represents model

error and observation noise, and Γ denotes a positive definite noise covariance matrix. We

will follow a Bayesian approach, viewing u as a random variable [Kaipio and Somersalo,

2006; Stuart, 2010; Sanz-Alonso et al., 2018] with prior distribution pu(u). The Bayesian

18

solution to the inverse problem is the posterior distribution pu|y(u) of u given the data y,

which by an informal application of Bayes theorem is characterized by

pu|y(u) ∝ exp
(
−Φ(u; y)

)
pu(u), Φ(u; y) :=

1

2
∥y − G(u)∥2Γ (2.1.2)

with ∥ · ∥Γ := ∥Γ−1/2 · ∥. A common computational bottleneck arises when the forward

model G and hence the likelihood are intractable, meaning that it is impossible or too costly

to evaluate. This paper introduces a framework to tackle this computational challenge by

employing data-driven discretizations of the forward model. The main idea is to include the

parameters that govern the discretization as part of the unknown to be estimated within the

Bayesian machinery. More precisely, we consider a family {Ga}a∈A of approximate forward

models and put a prior qu,a(u, a) over both unknown inputs u and forward discretization

parameters a ∈ A to define a joint posterior

qu,a|y(u, a) ∝ exp
(
−Ψ(u, a)

)
qu,a(u, a), Ψ(u, a; y) :=

1

2
∥y − Ga(u)∥2Γ . (2.1.3)

While this structure underlies many hierarchical formulations of Bayesian inverse problems

[Kaipio and Somersalo, 2006], in this paper the hyper-parameter a determines the choice of

discretization of the forward model G.

Including the learning of the numerical discretizations of the forward map as part of

the inference agrees with the Bayesian philosophy of treating unknown quantities as ran-

dom variables, and is also in the spirit of recent probabilistic numerical methods [Cockayne

et al., 2019]; rather than implicitly assuming that a true hidden numerical discretization

of the forward model generates the data, a Bayesian would acknowledge the uncertainty

in the choice of a suitable discretization and let the observed data inform such a choice.

Moreover, the Bayesian viewpoint has two main practical advantages. First, data-informed

grids will typically be coarse in regions of the input space that are not informed by the

19

data, allowing successful input reconstruction at a reduced computational cost. Second, the

posterior qu,a|y(u, a) contains useful uncertainty quantification on the discretizations. This

additional uncertainty information may be exploited to build a high-fidelity forward model to

be employed within existing inverse problem solvers, either in Bayesian or classical settings.

2.1.1 Related Work

The Bayesian formulation of inverse problems provides a flexible and principled way to com-

bine data with prior knowledge. However, in practice it is rarely possible to perform posterior

inference with the model of interest (2.1.2) due to various computational challenges. In this

paper we investigate the construction of computable data-driven forward discretizations of

intractable likelihoods arising in the inversion of differential equations. Other intertwined

obstacles for posterior inference are:

• Sampling cost. While exact posterior inference is often intractable, approximate

posterior inference can be performed by employing sampling algorithms. Markov chain

Monte Carlo and particle-based methods are popular, but implementations of these

algorithms require repeated evaluation of the forward model G, which may be costly.

• Large input dimension. The unknown parameter u may be high, or even infinite

dimensional. While the convergence rate of certain sampling schemes may be indepen-

dent of the input dimension [Cotter et al., 2013; Agapiou et al., 2017; Garcia Trillos

et al., 2017], the computational and memory cost per sample may increase prohibitively

with dimension.

• Model error. The forward model is only an approximation of the real relationship

between input and observable output variables. Model discrepancy can damage input

recovery.

20

• Complex geometry. The unknown may be a function defined on a complex, perhaps

unknown domain that needs to be approximated.

All these challenges have long been identified [Sacks et al., 1989; Kennedy and O’Hagan,

2001; Kaipio and Somersalo, 2006, 2007], giving rise to a host of methods for sampling, pa-

rameter reduction, model reduction, enhanced model error techniques and geometric meth-

ods for inverse problems. We focus on the model-reduction problem of building forward

discretizations, but the methodology proposed in this paper can be naturally combined with

existing techniques that address complementary challenges. For instance, our forward model

discretizations may be used within multilevel MCMC methods [Giles, 2008b] or within two-

stage sampling methods [Green and Mira, 2001; Tierney and Mira, 1999; Christen and Fox,

2005; Cui et al., 2015; Efendiev et al., 2006], and thus help to reduce the sampling cost. Also,

forward model discretizations may be combined with parameter reduction and model adap-

tation techniques, as in [Lieberman et al., 2010; Li et al., 2018]. It is important, however, to

distinguish between the parameter and model reduction problems. While the former aims to

find suitable small-dimensional representations of the input u, the latter is concerned with

effectively reducing the number of degrees of freedom used to compute the forward model

G. In regards to model error, our framework may be thought of as incorporating Bayesian

model choice to the Bayesian solution of inverse problems by viewing each forward model

discretization as a potential model. Following this interpretation, the a posteriori choice of

forward discretization may in principle be determined using Bayes factors. Lastly, learning

appropriate discretizations of forward models is particularly important for inverse problems

set in complex, possibly uncertain geometries [Garcia Trillos et al., 2017; Garcia Trillos and

Sanz-Alonso, 2018; Harlim et al., 2020].

Many approaches to computing forward map surrogates and reduced-order models have

been proposed; we refer to [Frangos et al., 2010] for an extended survey, and to [Peherstorfer

et al., 2018] for a broader discussion of multi-fidelity models in other outer-loop applications.

21

Most methods fall naturally into one of three categories:

1. Projection-based methods: the forward model equations are described in a reduced

basis that is constructed using few high-fidelity forward solves (called snapshots).

Two popular ways to construct the reduced basis are proper orthogonal decomposi-

tion (POD) and reduced order basis. In the inverse problem context, data-informed

construction of snapshots [Cui et al., 2015] allows to approximate the posterior support

with fewer high-fidelity forward runs. To our knowledge, there is little theory to guide

the required number or location of snapshots to meet a given error tolerance.

2. Spectral methods: polynomial chaos [Xiu and Karniadakis, 2002] is a popular method

for forward propagation of uncertainty, that has more recently been used to produce

surrogates for intractable likelihoods [Marzouk et al., 2007]. The paper [Marzouk and

Xiu, 2009] translates error in the likelihood approximation to Kullback-Leibler posterior

error. A drawback of these methods is that they are only practical when the random

inputs can be represented by a small number of random variables. Recent interest lies

in adapting the spectral approximations to observed data [Li and Marzouk, 2014].

3. Gaussian processes and neural networks: some of the earliest efforts to allow for

Bayesian inference with complex models suggested to use Gaussian processes [Ras-

mussen and Williams, 2006] to construct surrogate likelihood models [Sacks et al.,

1989; Kennedy and O’Hagan, 2001]. The accuracy of the resulting approximations

has been studied in [Stuart and Teckentrup, 2017], which again requires a suitable

representation of the input space. Finally, representation of the likelihood using neu-

ral networks in combination with generalized polynomial chaos expansions has been

investigated in [Schwab and Zech, 2019].

This paper focuses on grid-based discretizations and density-based discretizations of static

inverse problems arising in mechanical engineering, signal processing and the geophysical

22

sciences. However, the proposed framework may be used in conjunction with other reduced-

order models, in dynamic data assimilation problems, and in other applications. Finally, we

mention that for classical formulations of certain specific inverse problems, optimal forward

discretization choices have been proposed [Borcea et al., 2005; Becker and Vexler, 2005].

2.1.2 Outline and Contributions

Section 2.2 reviews the Bayesian formulation of inverse problems. Section 2.3 describes the

main framework for the Bayesian learning of forward map discretizations. We will consider

two ways to parametrize discretizations: in the first, the grid points locations are learned

directly, and in the second we learn a probability density from which to obtain the grid. In

Section 2.4 we discuss a general approach to sampling the joint posterior over unknown input

and discretization parameters, which consists of a Metropolis-within-Gibbs that alternates

between a reversible jump Markov chain Monte Carlo (MCMC) algorithm to update the

discretization parameters and a standard MCMC to update the unknown input. Section

2.5 demonstrates the applicability, benefits, and limitations of our approach in a variety of

inverse problems arising in mechanical engineering, signal processing and source detection,

considering Euler discretization of ODEs, Euler-Maruyama discretization of SDEs, and finite

element methods for PDEs. We conclude in Section 2.6 with some open questions for further

research.

2.2 Background: Bayesian Formulation of Inverse Problems

Consider the inverse problem of recovering an unknown u ∈ U from data y ∈ Rm related by

y = G(u) + η, (2.2.1)

23

where U is a space of admissible unknowns and η is a random variable whose distribution is

known to us, but not its realization. In many applications, the forward model G : U→ R
m

can be written as the composition of forward and observation maps, G = O◦F . The forward

map F : U → Z represents a complex mathematical model that assigns outputs z ∈ Z to

inputs u ∈ U. For instance, u may be the parameters of a differential equation, and z may be

its analytical solution. The observation map O : Z→ Y establishes a link between outputs

and observable quantities, e.g. by point-wise evaluation of the solution.

In the Bayesian formulation of the inverse problem (2.2.1), one specifies a prior distri-

bution on u and seeks to characterize the posterior distribution of u given y. If the input

space U is finite dimensional, U ⊂ Rd, then the prior distribution, denoted as pu(u), can be

defined through its Lebesgue density. The noise distribution of η in Rm gives the likelihood

py|u(y|u). In this work we assume, for concreteness, that η is a zero-mean Gaussian with

covariance Γ ∈ Rm×m, so that

py|u(y|u) ∝ exp
(
−Φ(u; y)

)
, Φ(u; y) :=

1

2
∥y − G(u)∥2Γ , (2.2.2)

where ∥ · ∥Γ := ∥Γ−1/2 · ∥. Using Bayes’ formula, the posterior density is given by

pu|y(u) =
1

Z
py|u(y|u)pu(u), Z =

∫
U
py|u(y|u)pu(u)du (2.2.3)

with multiplicative constant Z depending on y.

For many inverse problems of interest, the unknown u is a function and the input space

U is an infinite-dimensional Banach space. In such a case, the prior cannot be specified in

terms of its Lebesgue density, but rather as a measure µu supported on U. Provided that

G : U → R
m is measurable and that µu(U) = 1, the posterior measure µu|y is still defined,

24

in analogy to (2.2.3), as a change of measure with respect to the prior

dµu|y
dµu

(u) ∝ exp
(
−Φ(u; y)

)
. (2.2.4)

We refer to [Stuart, 2010] and [García Trillos and Sanz-Alonso, 2017] for further details.

The posterior µu|y contains, in a precise sense [Zellner, 1988], all the information on u

available in the data y and the prior µu. This paper is concerned with inverse problems

where G = O ◦ F arises from a complex model F that cannot be evaluated pointwise; we

then seek to approximate the idealized posterior µu|y finding a compromise between accuracy

and computational cost.

A simple but important observation is that approximating F accurately is not necessary

in order to approximate µu|y accurately. It is only necessary to approximate G = O ◦

F , since F appears in the posterior only through G. While producing discretizations to

complex models F has been widely studied in numerical analysis, here we investigate how

to approximate F with the specific goal of approximating the posterior µu|y, incorporating

prior and data knowledge into the discretizations. For some inverse problems the observation

operator O also needs to be discretized, leading to similar considerations.

2.3 Bayesian Discretization of the Forward Model

Suppose that F is the solution map to a differential equation that cannot be solved in closed

form, and O is point-wise evaluation of the solution. Standard practice in computing the

Bayesian solution to the inverse problem involves using an a priori fixed discretization, e.g.,

by discretizing the domain of the differential equation into a fine grid. Provided that the

grid is fine enough, the posterior defined with the discretized forward map can approximate

well the one in (2.2.4). However, the discretizations are usually performed on a fine uniform

grid which may lead to unnecessary waste of computational resources. Indeed, it is expected

25

that the choice of discretization should be problem dependent, and should be informed both

by the observation locations (which are often not uniform in space) and by the value of the

unknown input parameter that we seek to reconstruct. Thus we seek to learn jointly the

unknown input u and the discretization of the forward map.

We will consider a parametric family of discretizations. Precisely, we let

A :=
{
a = (k, θ) : k ∈ K ⊂ {1, 2, . . .}, θ ∈ D(k) ⊂ Rd(k)

}
, (2.3.1)

and each pair a = (k, θ) ∈ A will parameterize a discretized forward model Ga. For given

k ∈ K, d(k) represents the degrees of freedom in the discretization, and θ ∈ D(k) is the

d(k)-dimensional model parameter of the discretization, where D(k) is the region containing

all parameters of interest. In analogy with Bayesian model selection frameworks [Robert,

2007; Green, 1995], k ∈ K may be interpreted as indexing the discretization model. We

focus on the model reduction rather than the parameter reduction problem, and assume

that all approximation maps share the same input and output spaces U and Z. We will

illustrate the flexibility of this framework using grid-based approximations and density-based

discretizations.

Example 2.3.1 (Grid-based discretizations). Here the first component of each element a =

(k, θ) ∈ A represents the number of points in a grid. The set K contains all allowed grid sizes.

If we denote D ⊂ Rd as the temporal or spatial domain of the equation being discretized, we

define D(k) = Dk and d(k) = d× k, where Dk := D× · · · ×D denotes the k-fold Cartesian

product of D. Then the second component θ = [x1, . . . xk] encodes the locations of k grid

points.

Example 2.3.2 (Density-based discretizations). Here the first component of each element

a = (k, θ) ∈ A represents again the number of points in a grid, and the second component

parametrizes a probability density ρ = ρ(x; θ) on the temporal or spatial domain of interest,

26

by a parameter θ of fixed dimension, independent of k. Given a ∈ A we may for instance

employ MacQueen’s method [Du and Gunzburger, 2002] to formulate a centroidal Voronoi

tessellation, which outputs k generators {x1, . . . , xk}, and then use them as grid points to

generate a finite element grid by Delaunay triangulation. Intuitively θ controls the spatial

density of the non-uniform grid points {x1, . . . , xk}. The space K represents, as before, all

the allowed number of grid points.

Example 2.3.3 (Other discretizations). As mentioned in the introduction, other discretiza-

tions and model reduction techniques could be considered within the above framework, includ-

ing projection-based approximations, Gaussian processes, and graph-based methods. However,

in our numerical experiments we will focus on grid-based and density-based discretizations.

We consider a product prior on (u, a) ∈ U×A, given by

qu,a(u, a) = qu(u)qa(a), (2.3.2)

where qu(u) = pu(u) is as in the original, idealized inverse problem (2.2.1). In general,

conditioning on u may or may not provide useful information about how to approximate

G(u). When it does, this can be infused into the prior by letting the conditional distribution

of a given u depend on u. For simplicity we restrict ourselves to the product structure (2.3.2).

The examples above and the structure of the space A defined in equation (2.3.1) suggest

to define hierarchically a prior over a ∈ A

qa(a) = qk,θ(k, θ) = qk(k)qθ|k(θ|k), (2.3.3)

where qk(k) is a probability mass function that penalizes expensive discretizations that

employ large number d(k) of degrees of freedom, and qθ|k(θ|k) denotes the conditional dis-

tribution of θ given k in D(k).

27

We define the likelihood of observing data y given (u, a) by

qy|u,a(y|u, a) ∝ exp
(
−Ψ(u, a; y)

)
, Ψ(u, a; y) :=

1

2
∥y − Ga(u)∥2Γ , (2.3.4)

where Ga = O ◦ Fa. The discretized forward maps Fa will be chosen so that evaluating Ψ

is possible.

We first consider the case where K = {k} is a singleton, and A :=
{
a = (k, θ) : θ ∈

D(k) ⊂ Rd(k)
}

has a Euclidean space structure. Then, by Bayes’ formula,

qu,a|y(u, a) =
1

Z̃
qy|u,a(y|u, a)qu(u)qa(a), Z̃ =

∫
U×A

qy|u,a(y|u, a)qu(u)qa(a)duda,

(2.3.5)

where Z̃ = Z̃(y) is a normalizing constant. The first marginal of qu,a|y(u, a), which we

denote as qu|y(u), constitutes a data-informed approximation of the posterior pu|y(u) from

the full, idealized inverse problem (2.2.3). We have the following result:

Proposition 2.3.4. Let pu|y(u) be defined as in (2.2.3) and qu|y(u) be defined as above. If

G is bounded and, for qu,a-almost any (u, a), ∥Ga(u)− G(u)∥ < ϵ, then

dTV
(
qu|y(u), pu|y(u)

)
< Cϵ (2.3.6)

for some constant C independent of ϵ.

Proof. Integrating both sides of the first equation in (2.3.5) with respect to a:

qu|y(u) =
1

Z̃

(∫
A
qy|u,a(y|u, a)qa(a)da

)
qu(u) =:

1

Z̃
g̃y(u)qu(u).

Compare this to equation (2.2.3) and write gy(u) = py|u(y|u), we have

∥g̃y(u)− gy(u)∥ ≤
∫
A
exp

(
−1

2
∥y − Ga(u)∥2Γ

)
− exp

(
−1

2
∥y − G(u)∥2Γ

)
da ≤ C∥Ga(u)− G(u)∥,

28

where the last inequality follows from the Lipschitz continuity of e−w for w ≥ 0, boundedness

of G, and equivalence of norm in Rm. This implies that |g̃y(u) − gy(u)| ≤ Cϵ and hence

|Z̃ − Z| ≤ Cϵ. Then the statement follows from a slight modification of Theorem 1.14 in

[Sanz-Alonso et al., 2018] and the definition of TV distance.

Now we are ready to extend the above results to infinite-dimensional input space U. We

define a prior measure on U × A given by νu,a(du, da) = νu(du) × νa(da), where νu(du) =

µu(du) is as in the idealized inverse problem. The posterior measure on U×A conditioning

on y will still be denoted by νu,a|y.

Proposition 2.3.5. Suppose that U is a separable Banach space with νu(U) = 1, Ψ : U×A →

R is continuous. Then the posterior measure νu,a|y of (u, a) given y is absolutely continuous

with respect to the prior νu,a on U×A and has Radon-Nikodym derivative

dνu,a|y
dνu,a

(u, a) ∝ exp
(
−Ψ(u, a; y)

)
. (2.3.7)

Proof. By the disintegration theorem (which holds for arbitrary Radon measures on separable

metric spaces –see [Dellacherie and Meyer, 2011] chapter 3, page 70) for all measurable

subsets U ′ ⊆ U, A′ ⊆ A and Y ′ ⊆ Y , we can write νu,a,y(U
′×A′×Y ′) in two different ways:

∫
Y ′

νu,a|y(U
′ × A′|y)dνy(y) = νu,a,y(U

′, A′, Y ′) =
∫
U ′×A′

νy|u,a(Y
′|u, a)dνu,a(u, a).

In particular,

νy(Y
′) =

∫
U×A

νy|u,a(Y
′|u, a)dνu,a(u, a) =

∫
U×A

∫
Y ′

Z−1
Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)
dydνu,a(u, a),

given our assumptions on the noise model, where ZΓ is a constant depending on the noise

covariance Γ. We can then use Tonelli’s theorem to swap the order of the integrals and

29

obtain

νy(Y
′) =

∫
Y ′

(∫
U×A

Z−1Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)
dνu,a(u, a)

)
dy.

Given that Y ′ is arbitrary, we conclude that νy is absolutely continuous with respect to the

Lebesgue measure with density:

dνy(y)
dy

=

∫
U×A

Z−1Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)
dνu,a(u, a).

On the other hand,

∫
U ′×A′

νy|u,a(Y
′|u, a)dνu,a(u, a)

=

∫
U ′×A′

∫
Y ′

Z−1Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)
dydνu,a(u, a)

=

∫
U ′×A′

∫
Y ′

Z−1Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)(
dνy(y)

dy

)−1
dνy(y)dνu,a(u, a)

=

∫
Y ′

(∫
U ′×A′

Z−1Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)(
dνy(y)

dy

)−1
dνu,a(u, a)

)
dνy(y),

applying Tonelli’s theorem once again to obtain the last equality. Since Y ′ was arbitrary, it

follows that for νy-a.e. y we have

νu,a|y(U
′ × A′|y) =

∫
U ′×A′

Z−1Γ exp

(
−1

2
∥y − Ga(u)∥2Γ

)(
dνy(y)

dy

)−1
dνu,a(u, a).

In turn, from the arbitrariness of U ′, A′ it follows that, for νy-a.e. y the measure νu,a|y(·|y)

is absolutely continuous with respect to νu,a and its Radon-Nykodym derivative satisfies

dνu,a|y
dνu,a

(u, a) ∝ exp
(
−1

2
∥y − Ga(u)∥2Γ

)
as claimed, where the constant of proportionality depends on y.

30

As in the finite dimensional case, we have the following result:

Proposition 2.3.6 (Well-posedness of Posterior). Under the same assumption as in Propo-

sition 2.3.5, suppose further that for qu,a-almost any (u, a), ∥Ga(u) − G(u)∥ < ϵ, and G is

bounded. Then we have

dTV (νu|y, µu|y) < Cϵ (2.3.8)

for some constant C independent of ϵ.

Remark 2.3.7. In the context of grid-based forward approximations, the condition ‘∥Ga(u)−

G(u)∥ < ϵ qu,a-almost surely’ can be interpreted as ‘almost any draw from the approximation

parameter space A can produce an approximation of the forward model with error at most

ϵ’. This is often the case, for example, when the grids are finer than some threshold under

regularity conditions on the input space.

2.4 Sampling the Posterior

The structure of the joint posterior νu,a|y over unknowns u ∈ U and approximations

a ∈ A suggests using a Metropolis-within-Gibbs sampler, which constructs a Markov chain

(u(n), a(n)) by alternatingly sampling each coordinate:

Algorithm 2.4.1 Metropolis-within-Gibbs Core Structure

Choose (u(1), a(1)) ∈ U×A.
for n = 1 : N do

1. Sample u(n+1) ∼ Ka(n),y(u(n)|·).
2. Sample a(n+1) ∼ Lu(n+1),y(a(n)|·).

end for

In the above, Ka,y and Lu,y are Metropolis-Hastings Markov kernels that are reversible

with respect to u|(a, y) and a|(u, y). We remark that the kernel Ka,y involves evaluation of

the forward model approximation Ga but not of the intractable full model G. While the

choice and design of the kernels Ka,y and Lu,y will clearly be problem-specific, and here we
31

consider a standard method appropriate for the case where the input space U is a space of

functions to define Ka,y.

Before describing how to sample the full conditionals νu|a,y and νa|u,y of u|(a, y) and

a|(u, y) it is useful to note that they satisfy the following expressions:

dνu|a,y
dνu

(u) ∝ exp
(
−Ψ(u, a; y)

)
,

dνa|u,y
dνa

(a) ∝ exp
(
−Ψ(u, a; y)

)
. (2.4.1)

2.4.1 Sampling the Full Conditional u|y, a

For given a and y, we can sample from νu|a,y using pCN [Beskos et al., 2008], with proposal

ũ :=

√
1− β2u+ βξ, ξ ∼ µu,

and acceptance probability

α(u, ũ) := min
{
1, exp

(
−Ψ(ũ, a; y) + Ψ(u, a; y)

)}
.

Other discretization-invariant MCMC samplers [Cui et al., 2016; Rudolf and Sprungk, 2015]

could also be used to update u|y, a, but pCN is a straightforward and effective choice in the

examples considered here.

2.4.2 Sampling the Full Conditional a|y, u

Sampling Grid-based Discretizations

We will use a Markov kernel Lu,y(a|·) written as a mixture of two kernels, i.e.

Lu,y(a|·) = ζLu,y
1 (a|·) + (1− ζ)Lu,y

2 (a|·),

32

each of which is induced by a different Metropolis-Hastings algorithm, and ζ determines the

mixture weight. The proposal mechanism for each of the kernels corresponds to a different

type of movement, described next:

1. For Lu,y
1 (a|·) we use Metropolis-Hastings to sample from the distribution νa|u,y using

the following proposal: given a = (k, θ) with θ = [θ1, . . . , θk] we set k̃ = k (i.e. the

number of grid points stays the same) and let θ̃ be defined by

θ̃i = θi, i = 1, . . . , k − 1,

and sample θ̃k from a distribution on D with density (w.r.t. Lebesgue measure on D)

τθ. In principle the density used to sample θ̃k may depend on θ.

2. For Lu,y
2 (a|·) we use Metropolis-Hastings to sample from the distribution νa|u,y using

the following proposal: given a = (k, θ) we sample k̃ ∼ σ(k|·) where σ(k|·) is a Markov

kernel on N, and then generate θ̃ according to

• If k̃ > k let θ̃i = θi for all i = 1, . . . , k and then sample θ̃k+1, . . . , θ̃k̃ independently

from the density τθ.

• If k̃ ≤ k let θ̃i = θi for all i = 1, . . . , k̃.

Remark 2.4.1. We notice that the proposals described above are particular cases of the ones

used in reversible jump Markov chain Monte Carlo [Green, 1995].

For the Metropolis-Hastings algorithm associated to Lu,y
1 (a|·) the acceptance probability

takes the form

α1(a, ã) = min

{
1, exp

(
−Ψ(u, ã; y) + Ψ(u, a; y)

)τ
θ̃
(θk)

τθ(θ̃k)

}
,

where recall a = (k, θ) and θ = (θ1, . . . , θk) and ã is defined similarly.
33

For the Metropolis-Hastings algorithm associated to Lu,y
2 (a|·) the acceptance probability

takes the form

α2(a, ã) = min

{
1,

σ(k|k̃)νk(k̃)
σ(k̃|k)νk(k)

exp
(
−Ψ(u, ã; y) + Ψ(u, a; y)

)
H(k, θ, k̃, θ̃)

}
,

where

H(k, θ, k̃, θ̃) :=


∏k−k̃

i=1 τ
θ̃
(θ

k̃+i
) if k > k̃,(∏k̃−k

i=1 τθ(θ̃k+i)
)−1

if k̃ ≥ k.

We notice that since each of the kernels Lu,y
1 (a|·) and Lu,y

2 (a|·) is defined by a Metropolis-

Hastings algorithm, they leave the target νa|u,y invariant, and hence so does the kernel

Lu,y(a|·).

Remark 2.4.2. If in the above the distribution τθ is, regardless of θ, the uniform distribution

on the domain D, then the acceptance probabilities reduce, respectively, to

α1(a, ã) = min
{
1, exp

(
−Ψ(u, ã; y) + Ψ(u, a; y)

)}
,

and

α2(a, ã) = min

{
1,

σ(k|k̃)νk(k̃)
σ(k̃|k)νk(k)

exp
(
−Ψ(u, ã; y) + Ψ(u, a; y)

)}
.

Sampling Density-based Discretizations

Since in this case the dimension of θ is fixed, the calculation of the acceptance probabilities

is straightforward and the details are omitted. We refer to Subsection 2.5.3 for a numerical

example.

34

2.5 Numerical Examples

In this section we demonstrate the applicability of our framework and sampling approach in

a variety of inverse problems. Our aim is illustrating the benefits and potential limitations

of the methods; for this reason we consider inverse problems for which we have intuitive un-

derstanding of where the discretizations should concentrate, thus validating the performance

of the proposed approach. Before discussing the numerical results, we summarize the main

goals and outcomes of each set of experiments:

• In Subsection 2.5.1 we consider an inverse problem in mechanics [Bigoni et al., 2019],

for which some observation settings highly influence the best choice of discretization

while others inform it mildly. Our numerical results show that the gain afforded by grid

learning is most clear whenever the observation locations highly influence the choice

of discretization. We employ grid-based discretizations as described in Example 2.3.1

with an Euler discretization of the forward map. We also illustrate the applicability

of the method in both finite and infinite-dimensional representations of the unknown

parameter, showing a more dramatic effect in the latter.

• In Subsection 2.5.2 we consider an inverse problem in signal processing [Hairer et al.,

2011], with a choice of observation locations that determine where the discretization

should concentrate. Our numerical results show that the grids adapt to the expected

region, and that the degrees of freedom in the discretization necessary to reconstruct

the unknown is below that necessary to satisfy stability of the numerical method with

uniform grids. We employ grid-based discretizations as described in Example 2.3.1

with an Euler-Maruyama discretization of the forward map.

• In Subsection 2.5.3 we consider an inverse problem in source detection, where the true

hidden unknown determines how best to discretize the forward model. Our numerical

results show that the grids adapt as expected. We employ density-based discretizations

35

as described in Example 2.3.2 with a finite element discretization of the forward model.

2.5.1 Euler Discretization of ODEs: Estimation of the Young’s Modulus of a

Cantilever Beam

We consider an inhomogeneous cantilever beam clamped on one side (x = 0) and free on the

other (x = L). Define D = [0, L]. Let u(x) denote its Young’s modulus and let M(x) be a

load applied onto the beam. Timoshenko’s beam theory gives the displacement z(x) of the

beam and the angle of rotation φ(x) through the coupled ordinary differential equations


d
dx

[
u(x)

2(1+r)

(
φ(x)− d

dxz(x)
)]

=
M(x)
κA ,

d
dx

(
u(x)I d

dxφ(x)
)
= κA

u(x)
2(1+r)

(
φ(x)− d

dxz(x)
)
,

(2.5.1)

where r, κ, A, I are physical constants. Following [Bigoni et al., 2019], we consider the

inverse problem of estimating the Young’s modulus u(x) from sparse observations of the

displacement z(x), where both u and z are functions from D to R.

Let F : u 7→ z be the solution map to equations (2.5.1). Let {si}mi=1 ⊂ D be the

locations of the observation sensors, leading to the observation operator O : z 7→ y ∈ Rm

defined coordinate-wise by

Oi(z) :=

∫ L

0
zφidx, φi(x) :=

1

γi
exp
(
−(si − x)2/(2δ2)

)
, 1 ≤ i ≤ m,

where δ = 10−4 and γi is the normalizing constant such that
∫ L
0 φidx = 1. Data are

generated according to the model

y = O ◦ F(u) + η =: G(u) + η,

where η denotes the observation error, which is assumed to follow a Gaussian distribution

36

N(0, γ2obsI). Notice that for system (2.5.1) with proper boundary conditions specified at

x = 0, the displacement z(x⋆) at any point 0 < x⋆ < L depends only on the values {u(x) :

x < x⋆}. Thus, we expect suitable discretizations of the forward model to refine finely only

the region {0 < x < sm}, where sm is the right-most observation location. We will discuss

this in detail in section 2.5.1.

Forward Discretization

To solve system (2.5.1) we employ a finite difference method. A family of numerical solutions

can be parameterized by the set

A :=
{
a = (k, θ) : k ∈ K ⊂ {1, 2, . . . }, θ = [x1, . . . , xk] ∈ [0, L]k

}
,

where k is the number of grid points and θ are the grid locations. Precisely, for a = (k, θ) ∈ A,

we first reorder θ so that

0 =: x0 ≤ x1 ≤ · · · ≤ xk ≤ xk+1 := L

and we let

Fa : u 7→ za

be the linearly interpolated explicit Euler finite difference solution to (2.5.1), discretized

using the ordered grid θ. We also discretize the observation operator O using an Euler

forward method, defined by

Oa
i (z

a) =
k∑

j=0

za(xj)φi(xj)(xj+1 − xj).

Finally G is approximated by Ga := Oa ◦ Fa.

37

0 1 2 3 4 5 6 7 8 9 10

Position (m)

-6

-4

-2

0

2

D
is

p
la

ce
m

e
n
t
(m

)

(a) Observation locations. (b) A sampled grid.

 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

(c) Number of grid points.

0 2 4 6 8 10

Position (m)

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(d) True vs. posterior with grid learning.

0 2 4 6 8 10

Position (m)

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(e) True vs. posterior without grid learning.

0 1 2 3 4 5 6 7 8 9 10

Position (m)

-6

-4

-2

0

2

D
is

p
la

ce
m

e
n
t
(m

)

(f) Observation locations. (g) A sampled grid.

 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18

(h) Number of grid points.

0 2 4 6 8 10

Position (m)

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(i) True vs. posterior with grid learning.

0 2 4 6 8 10

Position (m)

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(j) True vs. posterior without grid learning.

Figure 2.1: Reconstruction of a piece-wise constant Young’s modulus. Two settings for the obser-
vation locations are considered, shown in Figures 2.1a, 2.1f. For each setting, Figures 2.1b and 2.1g
show one sample from the marginal distribution qa|y(a) simulated by MCMC. Figures 2.1c and 2.1h
report box-plots with the number of grid points that fall in each subinterval [i− 1, i], i = 1, . . . , 10.
Figures 2.1d, 2.1i show the mean (dashed black) and the 5, 10, 90, 95-percentiles (thin black) of the
marginal qu|y(u), versus the true value (red), with data-driven forward discretization. Figures 2.1e,
2.1j show the same results with a fixed uniform-grid discretization.

38

0 1 2 3 4 5 6 7 8 9 10

Position (m)

-6

-4

-2

0

2

D
is

p
la

ce
m

e
n
t
(m

)

(a) Observation locations. (b) A sampled grid.

 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

(c) Number of grid points.

0 2 4 6 8 10

Position (m)

170

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(d) True vs. posterior with grid learning.

0 2 4 6 8 10

Position (m)

170

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(e) True vs. posterior without grid learning.

0 1 2 3 4 5 6 7 8 9 10

Position (m)

-6

-4

-2

0

2

D
is

p
la

ce
m

e
n
t
(m

)

(f) Observation locations. (g) A sampled grid.

 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18

(h) Number of grid points.

0 2 4 6 8 10

Position (m)

170

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(i) True vs. posterior with grid learning.

0 2 4 6 8 10

Position (m)

170

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
 (

G
P

a
)

(j) True vs. posterior without grid learning.

Figure 2.2: Reconstruction of a continuous Young’s modulus. Two settings for the observation
locations are considered, shown in Figures 2.2a, 2.2f. For each setting, Figures 2.2b and 2.2g show
one sample from the marginal distribution qa|y(a) simulated by MCMC. Figures 2.2c and 2.2h report
box plots with number of grid points that fall in each subinterval [i − 1, i], i = 1, . . . , 10. Figures
2.2d, 2.2i show the mean (dashed black) and the 5, 10, 90, 95-percentiles (thin black) of the marginal
qu|y(u), versus the true value (red), with data-driven forward discretization. Figures 2.2e, 2.2j show
the same results with a fixed uniform-grid discretization.

39

Implementation Details and Numerical Results

For our numerical experiments we consider a beam of length L = 10 m, width w = 0.1 m

and thickness h = 0.3 m. We use a Poisson ratio r = 0.28 and Timoshenko shear coefficient

κ = 5/6. A = wh represents the cross-sectional area of the beam and I = wh3/12 is the

second moment of inertia. We run a virtual experiment of applying a point mass of 5 kg

at the end of the beam, as seen in blue in Figures 2.1a and 2.2a. We assume that the

observations are gathered with error γ2obs = 10−3.

We first assume that the beam is made of 5 segments of different kinds of steel, each

of length 2 m, with corresponding Young’s moduli u∗ = {u∗i }5i=1 = {190, 213, 195, 208,

200 GPa}. The prior on u ∈ U = R5 is given by pu(u) = N (u; 2001, 25I5) where 1 denotes

the all-ones vector. For this case we assume that the number of grid points k is fixed to be

k = 85, i.e., the prior pk(k) is a point mass. The grid locations θ are assumed to be a priori

uniformly distributed in [0, L]k. Results are reported in Figure 2.1. We next assume that

the Young’s modulus u(x) ∈ U = C([0, L];R) varies continuously with x. We set a Gaussian

process prior on u defined by µu = GP(200, c) with c(x, x′) = 50 exp
(
−(x − x′)2/0.5

)
.

For this case we assume that the prior on the number of grid points k follows a Poisson

distribution with mean 60, i.e., νk(k) =Poisson(60), and the grid locations θ still have a

uniform prior given k.The true Young’s modulus underlying the data and the reconstruction

results are reported in Figure 2.2. Sampling is performed, both in the discrete and continuous

settings, updating u and a alternately for a total number of N = 1.2× 105 iterations, with

β = 0.08, ζ = 0.5.

In both Figures 2.1 and 2.2 two settings are considered. In the first one observations are

concentrated on the right side of the beam and in the second on the left. For reference, Figure

2.4 shows idealized posteriors considered, obtained with very fine discretizations k = 500,

for each of the settings. Notice that for system (2.5.1) with proper boundary conditions

specified at x = 0, the displacement z(x0) at any point 0 < x0 < L depends only on the

40

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Position (m)

0

0.005

0.01

0.015

0.02

0.025

E
rr

o
r

data-driven

fixed

Figure 2.3: The reconstruction error with fixed-grid discretization (blue) and with data-driven
grid discretization (orange). Red triangles are observations locations, while blue crosses are the grid
points used in the fixed-grid discretization.

values u(x) of Young’s moduli with x < x0. This implies that when observations are gathered

on the left side of the beam, the posterior on u(x) agrees with the prior on the right-side,

and no resources should be on discretizing the forward map on that region. In that case

our adaptive data-driven discretizations are strongly concentrated on the left, as shown in

Figures 2.1g, 2.1h and 2.2g, 2.2h. However, when observations are gathered on the right side

of the beam, the data is informative on u(x) for all 0 < x < L. In such case, Figures 2.1b,

2.1c and 2.2b, 2.2c show that the data-driven discretizations are concentrated on the right,

but less heavily so. See Tables 2.7.1, 2.7.2 in the appendix for a more detailed description of

the grid points distribution in both cases. Also, our results indicate that using data-driven

discretizations will lead to a better estimation of the true Young’s modulus, compared to

fixed-grid discretizations. Additional results in the continuous Young’s modulus setting

are provided in the appendix. See Table 2.7.3 and Figure 2.8 for the averaged acceptence

probability for u and a, and history of MCMC samples of the high-dimensional u at some

fixed locations, indicating the stationarity of the Markov chain.

Let (u(n), a(n)) be the output of the Gibbs sampling algorithm at iteration n. The

41

0 2 4 6 8 10

Position (m)

180

190

200

210

220

230
Y

o
u
n
g
's

 m
o
d
u
lu

s
(G

P
a
)

(a) Piece-wise constant, right observations.

0 2 4 6 8 10

Position (m)

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
(G

P
a
)

(b) Piece-wise constant, left observations.

0 2 4 6 8 10

Position (m)

170

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
(G

P
a
)

(c) Continuous, right observations.

0 2 4 6 8 10

Position (m)

170

180

190

200

210

220

230

Y
o
u
n
g
's

 m
o
d
u
lu

s
(G

P
a
)

(d) Continuous, left observations.

Figure 2.4: Idealized posterior pu|y(u), with mean (dashed black) and the 5, 10, 90, 95-percentiles
(thin black), versus the true value (red).

reconstruction error is defined as follows:

er =

√√√√ N∑
n=1

∣∣Ga(n)(u(n))− G(u)∣∣2 , (2.5.2)

where G(u) is approximately calculated on a very fine grid. In Figure 2.3 we plot the

reconstruction error for the second experiment where the Young’s moduli is continuous and

observations are gathered on the right-side. With fixed-grid discretization, the reconstruction

error is small where the discretization matches the observation points. With adaptive data-

driven discretizations the grid points will adaptively match the observation points in order

to produce less error.

42

2.5.2 Euler-Maruyama Discretization of SDEs: a Signal Processing

Application

Let f : Rd → R
d be globally Lipschitz continuous and consider the SDE

dz(t) = f(z) dt+ du, 0 < t ≤ T, z(0) = 0, (2.5.3)

where u denotes d-dimensional Brownian motion. We aim to recover u from observations of

the solution z. We suppose that the observations y = [y1, . . . , ym] are given by

yi = z(ti) + ηi, i = 1, . . . ,m, (2.5.4)

where η = [η1, . . . , ηm] is assumed to follow a centered Gaussian distribution with covariance

Γ and

0 < t1 < · · · < tm < T

are given observation times. Following [Hairer et al., 2011], we cast the problem in the

setting of Section 2.2. First note that the solution to the integral equation

z(t) =

∫ t

0
f
(
z(s)

)
ds+ u(t), 0 ≤ t ≤ T, (2.5.5)

defines a map

F : C([0, T],Rd)→ C([0, T],Rd) (2.5.6)

u 7→ z . (2.5.7)

Thus we set the input and output space to be U = Z = C([0, T],Rd).

43

Next we define an observation operator

O : C([0, T],Rd)→ R
m

z 7→ [z(s1), . . . , z(sm)]

and set G = O ◦ F . We put as prior on u the standard d-dimensional Wiener measure, that

we denote µu. Then the posterior distribution µu|y is given by Equation (2.2.4), which if

Γ = γ2Im may be rewritten as

dµu|y
dµu

(u) ∝ exp

(
1

2γ2

m∑
i=1

∣∣yi − G(u)(si)∣∣2
)
. (2.5.8)

Note that the likelihood does not involve evaluation of F(u) at times t > sm, and hence

changing the definition of F(u)(t) for t > sm does not change the posterior measure. Thus,

we expect suitable discretizations of the forward model to refine finely only times up to the

right-most observation.

Forward Discretization

For most nonlinear drifts f , the integral equation (2.5.6) cannot be solved in closed form

and a numerical method needs to be employed. A family of numerical solutions may be

parameterized by the set

A :=
{
a = (k, θ) : k ∈ K ⊂ {1, 2, . . .}, θ = [t1, . . . , tk] ∈ [0, T]k

}
.

Precisely, for a = (k, θ) ∈ A we define an approximate, Euler-Maruyama solution map

Fa : C([0, T],Rd)→ C([0, T],Rd)

u 7→ za

44

as follows. First, we reorder the tj ’s so that

0 =: t0 ≤ t1 ≤ . . . ≤ tk ≤ tk+1 := T.

Then we define zaj := za(tj) as za0 = 0, and

zaj+1 = zaj + (tj+1 − tj)f(z
a
j) + u(tj+1)− u(tj), 1 ≤ j ≤ k. (2.5.9)

Finally, for t ∈ (tj , tj+1) we define za(t) by linear interpolation of zaj and zaj+1.

Having defined the parameter space A we now describe a choice of prior distribution νa

on A and the resulting combined prior νu,a on (u, a) ∈ U × A. First we choose a prior νk

on the number k of grid-points. Given the number of grid points k, assuming no knowledge

on appropriate discretizations for the SDE (2.5.3) we put a uniform prior on grid locations

θ = [t1, . . . , tk].

Remark 2.5.1. More information could be put into the prior. In particular it seems natural

to impose that grids are finer at the beginning of the time interval.

Implementation Details and Numerical Results

For our numerical experiments we considered the SDE (2.5.3) with T = 10 and double-well

drift

f(t) = 10 t (1− t2)/(1 + t2). (2.5.10)

We generated synthetic observation data y by solving (2.5.3) on a very fine grid, and then

perturbing the solution at uniformly distributed times ti = 0.2i, i = 1, . . . , 24 = m so

that the last observation corresponds to time t = 4.8. The observation noise was taken

to uncorrelated, Γ = γ2Im, with γ = 0.1. The motivation for choosing this example is

that there is certain intuition as to where one would desire the discretization grid-points to

45

concentrate. Indeed, since all the observations ti are in the interval [0.2, 4.8] it is clear from

Equation (2.5.8) that any discretization points tj ∈ (4.8, 10] will not contribute to better

approximate µu|y. In other words, those grid points would help in approximating F but not

in approximating G = O ◦ F .

We report our results for a small grid-size k = 24. Similar but less dramatic effect was

seen for larger grid size. Precisely, we chose our set of admissible grids to be given by

[t0, . . . , t25] : 0.01 = t0 ≤ t1 ≤ . . . ≤ t25 = 10.

For implementation purposes, elements in the space U = C([0, T],R) were represented as

vectors in R1000 containing their values on a uniform grid of step-size 0.1. We run these

algorithms with parameter choices N = 105, β = 0.1, ζ = 0.5.

The experiments show a successful reconstruction of the SDE path. Moreover, the grids

concentrate in [0, 4.8] in agreement with our intuition and the uncertainty quantification

is satisfactory. In contrast, we see that when using the same number of grid points but

on a uniform grid the Euler-Maruyama scheme is unstable, leading to a collapse of the

MCMC algorithm. Then, the posterior constructed with a uniform grid completely fails at

reconstructing the SDE path, and the uncertainty quantification is overoptimistic due to

poor mixing of the chain.

2.5.3 Finite Element Discretization: Source Detection

Consider the boundary value problem

−∆z(x)= δ(x− u), x ∈ D,

z(x)= 0, x ∈ ∂D,
(2.5.11)

46

(a) Data-driven discretization
.

(b) Uniform discretization.

Figure 2.5: Recovered SDE trajectory in the time-interval t ∈ [0, 10]. The true trajectory is shown
in dashed black line. The posterior median is shown in red, and 5 and 95-percentiles are shown in
black. The small circles denote the locations of the observations.

where D = (0, 1) × (0, 1) ⊂ R2 is the unit square and δ is the Dirac function at the origin.

We aim to recover the source location u from sparse observations

yi = z(si) + ηi, i = 1, . . . ,m, (2.5.12)

where η = [η1, . . . , ηm] follows a centered Gaussian distribution with covariance Γ and

s1, . . . , sm ∈ D \{u} are observation locations. To cast the problem in the setting of Section

2.2, we let F be given by Green’s function for the Laplacian on the unit square (which does

not admit an analytical formula but can be computed e.g. via series expansions [Melnikov

and Melnikov, 2006]) and O be defined by point-wise evaluation at the observation locations.

The prior on u is the uniform distribution in the unit square D, which we denote pu(u). Since

U = D is finite dimensional, the posterior has Lebesgue density given by Equation (2.2.3).

We find this problem to be a good test, as there is a clear understanding that the data-driven

mesh should concentrate around the source.

47

Forward Discretization

To solve equation (2.5.11) numerically we employ the finite element method. The use of

uniform grid is here wasteful, as the mesh should ideally concentrate around the unknown

source u.

We will use grids obtained as the Delauny triangulation of central Voronoi tessellations

{Vi}ki=1 and generators {xi}ki=1, where each xi ∈ D and Vi ⊂ D. This can be calculated as

the solution of the optimization problem, parameterized by a probability density ρ on D:

min
{xi}⊂D,{Vi}

k∑
i=1

∫
Vi

ρ(x)∥x− xi∥2dx (2.5.13)

subject to the constraint that {Vi}ki=1 is a tessellation of D. One can refer to [Du and

Gunzburger, 2002] for more details. For a fixed density ρ and integer k we denote the

optimal grid points by {xρ,i}ki=1. Then the approximated solution map is defined as

Fa : D → H1
0 (D) (2.5.14)

u 7→ za (2.5.15)

where za is given by the finite element solution of equation (2.5.11) with respect to (the

Delauny triangulation of) the grid points {xρ,i}ki=1. Details on the creation of grid for

prescribed parameters ρ and k will be discussed below.

In the spirit of adapting the grid to favor the ones maximizing the model evidence, we

constrain ρ to belong to a family of parametric densities Π = {ρ(x; θ)|θ ∈ RP } where

ρ(x; θ) = Beta(α1, β1) × Beta(α2, β2) is the product measure of two Beta distributions.

Therefore in this case θ = (α1, β1, α2, β2) and P = 4. Each pair (k, θ) describes a member

in the discretization family A, where k controls the number of grid points, while θ controls

how these grid points are distributed in the spatial dimension.

48

Implementation Details and Numerical Results

We solved equation (2.5.11) on a fine grid k = 2000 with the true point source u∗ =

(0.85, 0.85). The observation locations were {s1, . . . , s25} = {0.5, 0.6, 0.7, 0.8, 0.9} ×

{0.5, 0.6, 0.7, 0.8, 0.9}. Observation noise was uncorrelated with Γ = γ2I25, γ = 0.05.

In this example the prior of u is the uniform distribution on D = (0, 1) × (0, 1)

and u is initialized at (0.2, 0.2). The parameters θ are also set to have a uniform prior

θ = (α1, β1, α2, β2) ∼ Uniform
(
[1, 10]4

)
. We initialize (α1, β1, α2, β2) = (1, 1, 1, 1), which

corresponds to (near) uniform grid in D. For simplicity, in this experiment we set a point

mass prior on k, with k = 100. We run the algorithm with N = 104.

We compare our algorithm to the traditional method where we fix a uniform grid in D

and run the MCMC algorithm only on u. We found out that with the same number of grid

points, our data-driven approach gives a posterior distribution qu|y that is more concentrated

around the true location of the point source, as shown in Figure 2.6a and 2.6b. Also, Figure

2.6c shows that the adaptive discretization is concentrated at the top right corner of the

region, where the hidden point source u∗ is located.

Next we show that data-driven discretizations of the forward map can be employed to

provide improved uncertainty quantification of the PDE solution, and not only to better

reconstruct the unknown input. To illustrate this, we approximate the pushforward distri-

bution F♯(qu|y) in three different ways, as shown in Figure 2.7. Let (u(n), a(n)) denote the

output of the Gibbs sampling algorithm at iteration n. We first consider the traditional

method where the grid is fixed and uniform, that is, a(n) = a is fixed. Then the pushforward

distribution can be well-approximated by {Fa(u(n))}Nn=1, for N large enough. We then con-

sider the same setting except that Fa is replaced by a forward map F computed in a fine

grid k = 2000 and the pushforward is approximated by {F(u(n))}Nn=1. Finally we consider

a data-driven setting stemming from our algorithm, where the pushforward distribution is

approximated by {Fa(n)(u(n))}Nn=1. We see that our algorithm reconstructs well the solution

49

(a) Fixed grid. (b) Data-driven grid. (c) Grid generated in the last iter-
ation.

Figure 2.6: Figures 2.6a and 2.6b show the posterior distribution q(u|y), where the grid is fixed
and uniform in 2.6a, and data-driven in 2.6b. Red star indicates the true location of the source,
blue dots are random samples from the posterior, blue triangle is the posterior mean, and dash
(resp. dotted) lines correspond to the 90% (resp. 95%) coordinate-wise credible regions. Figure
2.6c shows the grid generated in the last iteration of the MCMC update.

to the PDE, with a more accurate mean and a smaller variance.

2.6 Conclusions and Open Directions

• We have shown that, in a variety of inverse problems, the observations contain useful

information to guide the discretization of the forward model, allowing a better recon-

struction of the unknown than using uniform grids with the same number of degrees of

freedom. Despite these results being promising, it is important to note that updating

the discretization parameters may be costly in itself, and may result in slower mix-

ing of the MCMC methods. For this reason, we envision that the proposed approach

may have more potential when the computational solution of the inverse problem is

very sensitive to the discretization of the forward map and discretizing it is expensive.

We also believe that density-based discretizations may help in alleviating the cost of

discretization learning.

• An interesting avenue of research stemming from this work is the development of prior

50

Figure 2.7: The mean, 10 and 90-percentile of the pushforward distribution F♯(qu|y) under three
different settings: (1) Both the posterior qu|y and its pushforward F♯(qu|y) are computed on a fixed
and uniform grid; (2) The posterior qu|y is computed on a fixed and uniform grid, and its pushforward
F♯(qu|y) is calculated using a (nearly) exact solver; (3) Both the posterior and its pushforward are
computed on a data-driven grid.

51

discretization models that are informed by numerical analysis of the forward map F ,

while recognizing the uncertainty in the best discretization of the forward model G.

Moreover, more sophisticated prior models beyond the product structure considered

here should be investigated.

• Topics for further research include the development of new local proposals and sampling

algorithms for grid-based discretizations, and the numerical implementation of the

approach in computationally demanding inverse problems beyond the proof-of-concept

ones considered here.

2.7 Appendix

2.7.1 Algorithm Pseudo-Code

52

Algorithm 2.7.1 Metropolis within-Gibbs
Input parameters: β (pCN step-size), ζ (probability of location moves), N (sample
size).
Choose (u(1), a(1)) ∈ U×A.
for n = 1 : N do

Stage I Do a pCN move to update u given a, y :

i) Propose ũ(n) =
√

1− β2 u(n) + βv(n), v(n) ∼ µu.

ii) Set u(n+1) = ũ(n) with probability

a(u(n), ũ(n)) = min
{
1, exp

(
Ψ(u(n), a(n); y)−Ψ(ũ(n), a(n); y)

)}
.

iii) Set u(n+1) = u(n) otherwise.

Stage II Update a = (k, θ) given u and y.
Stage IIa With probability ζ, update θ given u, y with a grid re-location step:

i) Propose ã(n) by picking one of the k interior grid points of a(n) uniformly at random,
and replacing it by a uniform draw in D.

ii) Set a(n+1) = ã(n) with probability

α(a(n), ã(n)) = min
{
1, exp

(
Ψ(u(n+1), a(n); y)−Ψ(u(n+1), ã(n); y)

)}
.

iii) Set a(n+1) = a(n) otherwise.

Stage IIb Otherwise, (with probability 1− ζ) update k with a birth/death step:

i) Propose a new number k̃(n) of grid-points.

ii) If k̃(n) ≤ k(n) remove uniformly chosen grid-points.

iii) If k̃(n) > k(n) draw required number of new grid points uniformly at random in D.

iv) Set a(n+1) = ã(n) with probability

α(a(n), ã(n)) = min

{
1,

νk(k̃
(n))

νk(k
(n))

exp
(
Ψ(u(n+1), a(n); y)−Ψ(u(n+1), ã(n); y)

)}
.

v) Set a(n+1) = a(n) otherwise.

end for

53

2.7.2 Additional Results for Section 2.5.1

(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10)
2-3 0.0015 0.0047 0.0116 0.0094 0.0164 0 0 0 0 0
4-5 0.0791 0.1089 0.2003 0.1721 0.1875 0.0260 0.0967 0.0363 0.0554 0
6-7 0.3345 0.3940 0.4002 0.4017 0.3956 0.2309 0.2817 0.1789 0.3529 0.0578
8-9 0.3956 0.3412 0.2785 0.2967 0.2907 0.3548 0.3011 0.4835 0.3944 0.3808
10-11 0.1548 0.1268 0.0920 0.0983 0.0924 0.2579 0.2612 0.2565 0.1635 0.3886
12-13 0.0289 0.0230 0.0153 0.0199 0.0159 0.0988 0.0550 0.0425 0.0312 0.1524
14-15 0.0052 0.0012 0.0016 0.0019 0.0016 0.0255 0.0044 0.0020 0.0027 0.0195
16-17 0.0004 0.0003 0.0004 0 0 0.0051 0 0.0002 0 0.0009
18-19 0 0 0 0 0 0.0009 0 0 0 0

Table 2.7.1: Distribution of grid points when observations are concentrated on the right, in
the piecewise-constant Young’ modulus case. Element on ith row and jth column represents the
posterior probability of having i grid points in the subinterval j.

(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10)
2-3 0 0 0 0 0 0.1712 0.1481 0.1435 0.1259 0.0605
4-5 0 0.0496 0.0076 0 0.0325 0.3420 0.3139 0.3183 0.3162 0.2362
6-7 0 0.2488 0.1263 0.0257 0.2238 0.2860 0.2995 0.3133 0.3087 0.3360
8-9 0.0497 0.3785 0.3236 0.2174 0.4048 0.1341 0.1542 0.1508 0.1615 0.2316
10-11 0.2055 0.2390 0.3357 0.4114 0.2623 0.0383 0.0540 0.0483 0.0554 0.0954
12-13 0.3384 0.0717 0.1573 0.2492 0.0705 0.0062 0.0118 0.0097 0.0131 0.0274
14-15 0.2516 0.0111 0.0424 0.0789 0.0061 0.0012 0.0016 0.0009 0.0017 0.0053
16-17 0.1163 0.0013 0.0070 0.0155 0 0 0 0 0 0.0009
18-19 0.0321 0 0.0009 0.0018 0 0 0 0 0 0
20-21 0.0053 0 0 0 0 0 0 0 0 0
22-23 0.0007 0 0 0 0 0 0 0 0 0

Table 2.7.2: Distribution of grid points when observations are concentrated on the left, in the
piecewise-constant Young’ modulus case. Element on ith row and jth column represents the posterior
probability of having i grid points in the subinterval j.

right obs. left obs.
u 0.2728 0.4590
a 0.1953 0.2314

Table 2.7.3: Averaged acceptance probability of u and a respectively, in the continuous Young’
modulus case.

54

0 20000 40000 60000 80000 100000 120000

Iteration

170

180

190

200

210

220

230

Y
o

u
n

g
's

 m
o

d
u

lu
s
 (

G
P

a
)

(a) Continuous, right observations, x = 4.

0 20000 40000 60000 80000 100000 120000

Iteration

170

180

190

200

210

220

230

Y
o

u
n

g
's

 m
o

d
u

lu
s
 (

G
P

a
)

(b) Continuous, left observations, x = 4.

0 20000 40000 60000 80000 100000 120000

Iteration

170

180

190

200

210

220

230

Y
o

u
n

g
's

 m
o

d
u

lu
s
 (

G
P

a
)

(c) Continuous, right observations, x = 8.

0 20000 40000 60000 80000 100000 120000

Iteration

170

180

190

200

210

220

230

Y
o

u
n

g
's

 m
o

d
u

lu
s
 (

G
P

a
)

(d) Continuous, left observations, x = 8.

Figure 2.8: History of MCMC samples (black line) and running sample averages (red line) of
continuous Young’s modulus u(x), at fixed locations x = 4 and x = 8 repectively, suggesting
stationarity of the Markov chain.

55

CHAPTER 3

AUTODIFFERENTIABLE ENSEMBLE KALMAN FILTERS

3.1 Introduction

Time series of data arising across geophysical sciences, remote sensing, automatic control,

and a variety of other scientific and engineering applications often reflect observations of an

underlying dynamical system operating in a latent state-space. Estimating the evolution

of this latent state from data is the central challenge of data assimilation (DA) [Jazwinski,

2007; Evensen, 2009; Sanz-Alonso et al., 2018; Law et al., 2015; Reich and Cotter, 2015].

However, in these and other applications, we often lack an accurate model of the underlying

dynamics, and the dynamical model needs to be learned from the observations to perform

DA. This paper introduces auto-differentiable ensemble Kalman filters (AD-EnKFs), a ma-

chine learning (ML) framework for the principled co-learning of states and dynamics. This

framework enables learning in three core categories of unknown dynamics: (a) parametric

dynamical models with unknown parameter values; (b) fully-unknown dynamics captured

using neural network (NN) surrogate models; and (c) inaccurate or partially-known dynam-

ical models that can be improved using NN corrections. AD-EnKFs are designed to scale to

high-dimensional states, observations, and NN surrogate models.

In order to describe the main idea behind the AD-EnKF framework, let us intro-

duce briefly the problem of interest. Our setting will be formalized in §3.2 below. Let

x0:T := {xt}Tt=0 be a time-homogeneous state process with transition kernel pθ(xt|xt−1) pa-

rameterized by a vector θ. For instance, θ may contain unknown parameters of a parametric

dynamical model or the parameters of a NN surrogate model for the dynamics. Our aim is

to learn θ from partial and noisy observations y1:T := {yt}Tt=1 of the state, and thereby learn

the unknown dynamics and estimate the state process. The AD-EnKF framework learns

θ iteratively. Each iteration consists of three steps: (i) use EnKF to compute an estimate

56

LEnKF(θ) of the data log-likelihood L(θ) := log pθ(y1:T); (ii) use auto-differentiation (“au-

todiff”) to compute the gradient ∇θLEnKF(θ); and (iii) take a gradient ascent step. Filtered

estimates of the state are obtained using the learned dynamics.

The EnKF, reviewed in §3.3, estimates the data log-likelihood using an ensemble of

particles. Precisely, given a transition kernel pθ(xt|xt−1), the EnKF generates particles

x1:N0:T := {xnt } t=0,...T
n=1,...,N

; here xnt represents a generic particle that approximates the state xt at

discrete time t ∈ {0, . . . , T}, and N denotes the ensemble size. The log-likelihood estimate

LEnKF(θ) depends on θ through these particles and also through the given transition kernel.

Differentiating the map θ 7→ LEnKF(θ) in step (ii) of AD-EnKF involves differentiating both

the map θ 7→ x1:N0:T from parameter to EnKF particles and the map (θ, x1:N0:T) 7→ LEnKF(θ)

from parameters and EnKF particles to EnKF log-likelihood estimate. A key feature of

our approach is that θ 7→ LEnKF(θ) can be auto-differentiated using the reparameterization

trick ([Kingma and Welling, 2014] and §3.4.1) and autodiff capabilities of NN software li-

braries such as PyTorch [Paszke et al., 2019], JAX [Bradbury et al., 2018], and Tensorflow

[Abadi et al., 2016]. Automatic differentiation is different from numerical differentiation in

that derivatives are computed exactly through compositions of elementary functions whose

derivatives are known, as opposed to finite difference approximations that cause discretiza-

tion errors.

The AD-EnKF framework represents a significant conceptual and methodological depar-

ture from existing approaches to blend DA and ML based on the expectation-maximization

(EM) framework, see Fig. 3.1 below. Specifically, at each iteration, EM methods that build

on the EnKF [Pulido et al., 2018; Brajard et al., 2020; Bocquet et al., 2020] employ a sur-

rogate likelihood LEM-EnKF
(
θ ;x1:N0:T

)
where the particles x1:N0:T are generated by EnKF and

fixed. Importantly, EM methods compute gradients used to learn dynamics by differenti-

ating only through the θ-dependence in LEM-EnKF that does not involve the particles. In

particular, in contrast to AD-EnKF, the map θ 7→ x1:N0:T from parameter to EnKF particles

57

is not differentiated. Moreover, the performance of EM methods is sensitive to the specific

choice of EnKF algorithm in use, and the tuning of algorithmic parameters of EM can be

challenging [Brajard et al., 2020; Bocquet et al., 2020]. Our numerical experiments suggest

that, even when optimally tuned, EM methods underperform AD-EnKF in high-dimensional

regimes. The better performance of AD-EnKF may be explained by the additional gradient

information obtained by differentiating the map θ 7→ x1:N0:T .

θ y1:T

x1:N0:T

LEnKF

(a) AD-EnKF

θ y1:T

x1:N0:T

LEM-EnKF

(b) EM-EnKF

With AD-EnKF, parameters θ and ob-
servations y1:T are used to generate
EnKF particles x1:N0:T ; the particles to-
gether with θ and y1:T are used to
compute the likelihood LEnKF, and the
gradient ∇θLEnKF explicitly accounts
for the map from θ to the particles
x1:N0:T . In contrast, with EM-EnKF, the
likelihood LEM-EnKF is a function of θ
and fixed particles x1:N0:T generated by
EnKF, so that computing the gradient
∇θLEM-EnKF does not account for the
map from θ to the particles x1:N0:T .

Figure 3.1: Computational graph of AD-EnKF and EM-EnKF. Dashed squares represent com-
putations performed by the EnKF. Gray arrows in (b) indicate that the construction of LEM-EnKF
is performed in two steps: (1) obtain x1:N0:T from θ and y1:T (gray arrows); and (2) use θ and x1:N0:T

(no longer seen as a function of θ) to define LEM-EnKF. In contrast, those lines are black in (a),
indicating that in AD-EnKF the particles x1:N0:T in LEnKF are seen as varying with θ.

The AD-EnKF framework also represents a methodological shift from existing differen-

tiable particle filters [Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018]. Similar

to AD-EnKF, these methods rely on autodiff of a map θ 7→ LPF(θ), where the log-likelihood

estimate LPF(θ) depends on θ through weighted particles (w1:N
0:T , x1:N0:T) obtained by running

a particle filter (PF) with transition kernel pθ(xt|xt−1). However, the use of PF suffers from

two caveats. First, it is not possible to auto-differentiate directly through the PF resampling

steps [Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018]. Second, while the PF log-

likelihood estimates are consistent, their variance can be large, especially in high-dimensional

58

systems. Moreover, their gradient, which is the quantity used to perform gradient ascent to

learn θ, is not consistent [Corenflos et al., 2021].

3.1.1 Contributions

This paper seeks to set the foundations and illustrate the capabilities of the AD-EnKF frame-

work through rigorous theory and systematic numerical experiments. Our main contributions

are:

• We develop new theoretical convergence guarantees for the large sample EnKF esti-

mation of log-likelihood gradients in linear-Gaussian settings (Theorem 3.3.2).

• We combine ideas from online training of recurrent networks (specifically, Truncated

Backpropagation Through Time – TBPTT) with the learning of AD-EnKF when the

data sequence is long, i.e. T is large.

• We provide numerical evidence of the superior estimation accuracies of log-likelihoods

and gradients afforded by EnKF relative to PF methods in high-dimensional settings.

In particular, we illustrate the importance of using localization techniques, developed

in the DA literature, for EnKF log-likelihood and gradient estimation, and the corre-

sponding performance boost within AD-EnKF.

• We conduct a numerical case study of AD-EnKF on the Lorenz-96 model [Lorenz,

1996], considering parameterized dynamics, fully-unknown dynamics, and correction

of an inaccurate model. The importance of the Lorenz-96 model in geophysical appli-

cations and for testing the efficacy of filtering algorithms is highlighted, for instance, in

[Majda and Harlim, 2012; Law and Stuart, 2012; Law et al., 2016a; Brajard et al., 2020].

Our results show that AD-EnKF outperforms existing methods based on EM or differ-

entiable PFs. The improvements are most significant in challenging high-dimensional

and partially-observed settings.
59

3.1.2 Related Work

The EnKF algorithm was developed as a state estimation tool for DA [Evensen, 1994] and

is now widely used in numerical weather prediction and geophysical applications [Szunyogh

et al., 2008; Whitaker et al., 2008]. Recent reviews include [Houtekamer and Zhang, 2016;

Katzfuss et al., 2016; Roth et al., 2017]. The idea behind the EnKF is to propagate N equally-

weighted particles through the dynamics and assimilate new observations using Kalman-type

updates computed with empirical moments. When the state dimension dx is high and the

ensemble size N is moderate, traditional Kalman-type methods require O(d2x) memory to

store full covariance matrices, while storing empirical covariances in EnKFs only requires

O(Ndx) memory. The use of EnKF for joint learning of state and model parameters by state

augmentation was introduced in [Anderson, 2001], where EnKF is run on an augmented state-

space that includes the state and parameters. However, this approach requires one to design

a pseudo-dynamic for the parameters which needs careful tuning and can be problematic

when certain types of parameters (e.g., error covariance matrices) are involved [Stroud and

Bengtsson, 2007; DelSole and Yang, 2010] or if the dimension of the parameters is high. In

this paper, we employ EnKFs to approximate the data log-likelihood. The use of EnKF to

perform derivative-free maximum likelihood estimation (MLE) is studied in [Stroud et al.,

2010; Pulido et al., 2018]. An empirical comparison of the likelihood computed using the

EnKF and other filtering algorithms is made in [Carrassi et al., 2017]; see also [Hannart

et al., 2016; Metref et al., 2019]. The paper [Drovandi et al., 2021] uses EnKF likelihood

estimates to design a pseudo-marginal Markov chain Monte Carlo (MCMC) method for

Bayesian inference of model parameters. The works [Stroud and Bengtsson, 2007; Stroud

et al., 2018] propose online Bayesian parameter estimation using the likelihood computed

from the EnKF under a certain family of conjugate distributions. However, to the best of our

knowledge, there is no prior work on state and parameter estimation that utilizes gradient

information of the EnKF likelihood.

60

The embedding of EnKF and ensemble Kalman smoothers (EnKS) into the EM algorithm

for MLE [Dempster et al., 1977; Bishop, 2006] has been studied in [Tandeo et al., 2015; Ueno

and Nakamura, 2014; Dreano et al., 2017; Pulido et al., 2018], with a special focus on estima-

tion of error covariance matrices. The expectation step (E-step) is approximated with EnKS

under the Monte Carlo EM framework [Wei and Tanner, 1990]. In addition, [Brajard et al.,

2020; Nguyen et al., 2019] incorporate deep learning techniques in the maximization step

(M-step) to train NN surrogate models. The paper [Bocquet et al., 2020] proposes Bayesian

estimation of model error statistics, in addition to an NN emulator for the dynamics. On the

other hand, [Ueno and Nakamura, 2016; Cocucci et al., 2021] consider online EM methods

for error covariance estimation with EnKF. Although gradient information is used during

the M-step to train the surrogate model [Brajard et al., 2020; Nguyen et al., 2019; Bocquet

et al., 2020], these methods do not auto-differentiate through the EnKF (see Fig. 3.1), and

accurate approximation of the E-step is hard to achieve with EnKF or EnKS.

Another popular approach for state and parameter estimation are particle filters (PFs)

[Gordon et al., 1993; Doucet and Johansen, 2009] that approximate the filtering step by prop-

agating samples with a kernel, reweighing them with importance sampling, and resampling

to avoid weight degeneracy. PFs give an unbiased estimate of the data likelihood [Del Moral,

2004; Andrieu et al., 2010]. Based upon this likelihood estimate, a particle MCMC Bayesian

parameter estimation method is designed in [Andrieu et al., 2010]. Although PF likelihood

estimates are unbiased, they suffer from two important caveats. First, their variance can be

large, as they inherit the weight degeneracy of importance sampling in high dimensions [Sny-

der et al., 2008; Bocquet et al., 2010; Agapiou et al., 2017; Sanz-Alonso, 2018; Sanz-Alonso

and Wang, 2021]. Second, while the propagation and reweighing steps of PFs can be auto-

differentiated, the resampling steps involve discrete distributions that cannot be handled by

the reparameterization trick. For this reason, previous differentiable PFs omit autodiff of the

resampling step [Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018], introducing a

61

bias. To address this issue, the resampling step can be replaced with a differentiable optimal

transport map [Corenflos et al., 2021], but construction of this map can be computationally

expensive.

An alternative to MLE methods is to optimize a lower bound of the data log-likelihood

with variational inference (VI) [Bishop, 2006; Kingma and Welling, 2014; Ranganath et al.,

2014]. The posterior distribution over the latent states is approximated with a parametric

distribution and is jointly optimized with model parameters defining the underlying state-

space model. In this direction, variational sequential Monte Carlo (VSMC) methods [Naes-

seth et al., 2018; Maddison et al., 2017; Le et al., 2018] construct the lower bound using a

PF algorithm. Moreover, the proposal distribution of the PF is parameterized and jointly

optimized with model parameters defining the state-space model. Although VSMC methods

provide consistent data log-likelihood estimates, they suffer from the same two caveats as

likelihood-based PF methods. A recent work [Ishizone et al., 2020] proposes blending VSMC

and EnKF with an importance sampling-type lower bound estimate, which is effective if the

state dimension is small. Other works that build on the VI framework include [Krishnan

et al., 2017; Rangapuram et al., 2018; Fraccaro et al., 2017]. An important challenge is to

obtain suitable parameterizations of the posterior, especially when the state dimension is

high. For this reason, a restrictive Gaussian parameterization with a diagonal covariance

matrix is often used in practice [Krishnan et al., 2017; Fraccaro et al., 2017].

More broadly, the development of data-driven ML frameworks for learning dynamical

systems is a very active research area and we refer to [Brunton and Kutz, 2019; Gottwald

and Reich, 2021; Harlim et al., 2021; Raissi et al., 2018] for recent references that illustrate

a range of techniques that do not rely on the EM algorithm, autodiff of filtering methods,

or VI.

62

Outline

This paper is organized as follows. §3.2 formalizes our framework and reviews a charac-

terization of the likelihood in terms of normalizing constants arising in sequential filtering.

§3.3 overviews EnKF algorithms for filtering and log-likelihood estimation. §3.4 contains our

main methodological contributions. Numerical experiments on linear-Gaussian and Lorenz-

96 models are described in §3.5. We close in §3.6.

Notation

We denote by t ∈ {0, 1, . . . , T} a discrete time index and by n ∈ {1, . . . , N} a particle index.

Time indices will be denoted with subscripts and particles with superscripts, so that xnt

represents a generic particle at time t. We denote xt0:t1 := {xt}t1t=t0
and xn1:n2 := {xn}n1n=n0 .

The collection xn0
:n1

t0:t1
is defined similarly. The Gaussian density with mean m and covariance

C evaluated at x is denoted by N (x;m,C). The corresponding Gaussian distribution is

denoted by N (m,C). For square matrices A and B, we write A ≻ B if A − B is positive

definite, and A ⪰ B if A − B is positive semi-definite. For A ⪰ 0, we denote by A1/2 the

unique matrix B ⪰ 0 such that B2 = A. We denote by |v| the 2-norm of a vector v, and by

|A| the Frobenius norm of a matrix A.

3.2 Problem Formulation

Let x0:T be a time-homogeneous Markov chain of hidden states xt ∈ Rdx with transition

kernel pθ(xt|xt−1) parameterized by θ ∈ Rdθ . Let y1:T be observations of the state. We

seek to learn the parameter θ and recover the state process x0:T from the observations

y1:T . In §3.2.1, we formalize our problem setting, emphasizing our main goal of learning

unknown dynamical systems for improved DA. §3.2.2 describes how the log-likelihood L(θ) =

log pθ(y1:T) can be written in terms of normalizing constants arising from sequential filtering.

63

This idea will be used in §3.3 to obtain EnKF estimates for L(θ) and ∇θL(θ), which are

then employed in §3.4 to learn θ by gradient ascent.

3.2.1 Setting and Motivation

We consider the following state-space model (SSM)

(transition) xt = Fα(xt−1) + ξt, ξt ∼ N (0, Qβ), 1 ≤ t ≤ T, (3.2.1)

(observation) yt = Hxt + ηt, ηt ∼ N (0, R), 1 ≤ t ≤ T, (3.2.2)

(initialization) x0 ∼ p0(x0). (3.2.3)

The initial distribution p0 and the matrices H ∈ Rdy×dx and R ≻ 0 are assumed to be

known. Nonlinear observations can be dealt with by augmenting the state. We further

assume independence of all random variables x0, ξ1:T , and η1:T . Finally, the transition kernel

pθ(xt|xt−1) = N (xt;Fα(xt−1), Qβ), parameterized by θ := {α, β}, is defined in terms of a

deterministic map Fα and Gaussian additive noise. This kernel approximates an unknown

state transition of the form

xt = F ∗(xt−1) + ξt, ξt ∼ N (0, Q∗), 1 ≤ t ≤ T, (3.2.4)

where Q∗ = 0 if the true evolution of the state is deterministic. The parameter β allows us to

estimate the possibly unknown Q∗. We consider three categories of unknown state transition

F ∗, leading to three types of learning problems:

(a) Parameterized dynamics : F ∗ = Fα∗ is parameterized, but the true parameter α∗ is

unknown and needs to be estimated.

(b) Fully-unknown dynamics : F ∗ is fully unknown and α represents the parameters of a

NN surrogate model FNN
α for F ∗. The goal is to find an accurate surrogate model FNN

α .

64

(c) Model correction: F ∗ is unknown, but an inaccurate model Fapprox ≈ F ∗ is available.

Here α represents the parameters of a NN GNN
α used to correct the inaccurate model.

The goal is to learn α so that Fα := Fapprox +GNN
α approximates F ∗ accurately.

In some applications, the map F ∗ may represent the flow between observations of an au-

tonomous differential equation driving the state, i.e.

dx
ds

= f∗(x), F ∗ : x(s) 7→ x(s+∆s), (3.2.5)

where f∗ is an unknown vector field and ∆s is the time between observations. Then, the

map Fα in (3.2.1) (resp. FNN
α , Fapprox, GNN

α) will be similarly defined as the ∆s-flow of

a differential equation with vector field fα (resp. fNN
α , fapprox, gNN

α). Once θ = {α, β} is

learned, the state x0:T can be recovered with a filtering algorithm using the transition kernel

pθ(xt|xt−1). We will illustrate the implementation and performance of AD-EnKF in these

three categories of unknown dynamics in §3.5 using the Lorenz-96 model to define the vector

field f∗. We remark that learning NN surrogate models for the dynamics may be useful even

when the true state transition F ∗ is known, since FNN
α may be cheaper to evaluate than F ∗.

Our problem setting does not require to have access to a prior distribution on the param-

eter θ. If prior information is available, the AD-EnKF framework can seamlessly incorporate

it replacing the log-likelihood with the log-posterior density in our subsequent developments.

A Bayesian treatment can be appealing for unknown parameterized dynamics, where it is

natural to have a priori information on the parameter. However, prior specification can be

challenging for NN surrogate models.

3.2.2 Sequential Filtering and Data Log-likelihood

Suppose that θ = {α, β} is known. We recall that, for 1 ≤ t ≤ T, the filtering distribu-

tions pθ(xt|y1:t) of the SSM (3.2.1)-(3.2.2)-(3.2.3) can be obtained sequentially, alternating

65

between forecast and analysis steps:

(forecast) pθ(xt|y1:t−1) =
∫
N (xt;Fα(xt−1), Qβ)pθ(xt−1|y1:t−1)dxt−1, (3.2.6)

(analysis) pθ(xt|y1:t) =
1

Zt(θ)
N (yt;Hxt, R)pθ(xt|y1:t−1), (3.2.7)

with the convention pθ(·|y1:0) := pθ(·). Here Zt(θ) is a normalizing constant which does not

depend on xt. It can be easily shown that

Zt(θ) = pθ(yt|y1:t−1) =
∫
N (yt;Hxt, R)pθ(xt|y1:t−1)dxt, (3.2.8)

and therefore the data log-likelihood admits the characterization

L(θ) := log pθ(y1:T) =
T∑
t=1

log pθ(yt|y1:t−1) =
T∑
t=1

logZt(θ). (3.2.9)

Analytical expressions of the filtering distributions pθ(xt|y1:t) and the data log-likelihood

L(θ) are only available for a small class of SSMs, which includes linear-Gaussian and dis-

crete SSMs [Kalman, 1960; Papaspiliopoulos et al., 2014]. Outside these special cases, fil-

tering algorithms need to be employed to approximate the filtering distributions, and these

algorithms can be leveraged to estimate the log-likelihood.

3.3 Ensemble Kalman Filter Estimation of the Log-likelihood and

its Gradient

In this section, we briefly review EnKFs and how they can be used to obtain an estimate

LEnKF(θ) of the log-likelihood L(θ). As will be detailed in §3.4, the map θ 7→ LEnKF(θ)

can be readily auto-differentiated to compute ∇θLEnKF(θ), and this gradient can be used

to learn the parameter θ. §3.3.1 gives background on EnKFs, §3.3.2 shows how EnKFs can

66

be used to estimate L(θ), and §3.3.3 contains novel convergence guarantees for the EnKF

estimation of L(θ) and ∇θL(θ).

3.3.1 Ensemble Kalman Filters

Given θ = {α, β}, the EnKF algorithm [Evensen, 1994, 2009] sequentially approximates

the filtering distributions pθ(xt|y1:t) using N equally-weighted particles x1:Nt . At forecast

steps, each particle xnt is propagated using the state transition equation Eq. (3.2.1), while

at analysis steps a Kalman-type update is performed for each particle:

(forecast step) x̂n
t = Fα(x

n
t−1) + ξnt , ξnt

i.i.d.∼ N (0, Qβ), (3.3.1)

(analysis step) xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t), γnt
i.i.d.∼ N (0, R). (3.3.2)

Note that the particles x1:N0:T depend on θ, and (3.3.1)-(3.3.2) implicitly define a map

θ 7→ x1:N0:T . The Kalman gain K̂t := ĈtH
⊤(HĈtH

⊤ + R)−1 is defined using the empirical

covariance Ĉt of the forecast ensemble x̂1:Nt , namely

Ĉt =
1

N − 1

N∑
n=1

(x̂n
t − m̂t)(x̂

n
t − m̂t)

⊤, where m̂t =
1

N

N∑
n=1

x̂n
t . (3.3.3)

These empirical moments provide a Gaussian approximation to the forecast distribution

pθ(xt|y1:t−1) ≈ N (m̂t, Ĉt). (3.3.4)

Several implementations of EnKF are available, but for concreteness we only consider the

“perturbed observation” EnKF defined in (3.3.1)-(3.3.2). In the analysis step (3.3.2), the

observation yt is perturbed to form yt+γnt . This perturbation ensures that in linear-Gaussian

models the empirical mean and covariance of x1:Nt converges as N → ∞ to the mean and

covariance of the filtering distribution [Le Gland et al., 2009; Law et al., 2016b].

67

3.3.2 Estimation of the Log-Likelihood and its Gradient

Note from (3.2.9) that in order to approximate L(θ) = log pθ(y1:T), it suffices to approximate

pθ(yt|y1:t−1) for 1 ≤ t ≤ T . Now, using (3.2.8) and the EnKF approximation (3.3.4) to the

forecast distribution, we obtain

pθ(yt|y1:t−1) ≈
∫
N (yt;Hxt, R)N (xt; m̂t, Ĉt)dxt = N

(
yt;Hm̂t, HĈtH

⊤ +R
)
. (3.3.5)

Therefore, we have the following estimate of the data log-likelihood:

LEnKF(θ) :=
T∑
t=1

logN
(
yt;Hm̂t, HĈtH

⊤ +R
)
≈ L(θ). (3.3.6)

Notice that the forecast empirical moments {m̂t, Ĉt}Tt=1, and hence LEnKF(θ), depend on

θ in two distinct ways. First, each forecast particle x̂n
t in (3.3.1) depends on a particle

xnt , which indirectly depends on θ. Second, each forecast particle depends on θ = {α, β}

directly through Fα and Qβ . The estimate LEnKF(θ) can be computed online with EnKF,

and is stochastic as it depends on the randomness used to propagate the particles, e.g.,

the choice of random seed. The whole procedure is summarized in Algorithm 3.3.1, which

implicitly defines a stochastic map θ 7→ LEnKF(θ). Before discussing the autodiff of this

map and learning of the parameter θ in §3.4, we establish the large ensemble convergence of

LEnKF(θ) and ∇θLEnKF(θ) towards L(θ) and ∇θL(θ) in a linear setting.

3.3.3 Large Sample Convergence: Linear Setting

In this section we consider a linear setting and provide large N convergence results for the

log-likelihood estimate LEnKF(θ) and its gradient ∇θLEnKF(θ) towards L(θ) and ∇θL(θ)

for any given θ, for a fixed data sequence y1:T . The mappings L and LEnKF are defined in

Eq. (3.2.9) and Eq. (3.3.6), respectively. For notation convenience, we drop θ in the function

68

Algorithm 3.3.1 Ensemble Kalman Filter and Log-likelihood Estimation

Input: θ = {α, β}, y1:T , x1:N0 . (If x1:N0 is not specified, draw xn0
i.i.d.∼ p0(x0).)

1: Initialize LEnKF(θ) = 0.
2: for t = 1, . . . , T do
3: Set x̂n

t = Fα(x
n
t−1) + ξnt , where ξnt

i.i.d.∼ N (0, Qβ). ▷ Forecast step
4: Compute m̂t, Ĉt by Eq. (3.3.3) and set K̂t = ĈtH

⊤(HĈtH
⊤ +R)−1.

5: Set xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t), where γnt
i.i.d.∼ N (0, R). ▷ Analysis step

6: Set LEnKF(θ)← LEnKF(θ) + logN
(
yt;Hm̂t, HĈtH

⊤ +R
)
.

7: end for
Output: EnKF particles x1:N0:T . Log-likelihood estimate LEnKF(θ).

argument, since the main dependence will be on N in this section. Similar to [Le Gland

et al., 2009; Kwiatkowski and Mandel, 2015], we study Lp convergence for any p ≥ 1.

Theorem 3.3.1. Assume that the state transition Eq. (3.2.1) is linear, i.e.,

xt = Aαxt−1 + ξt, ξt ∼ N (0, Qβ), Aα ∈ Rdx×dx , (3.3.7)

and that the initial distribution p0 is Gaussian. Then, for any θ = {α, β} and for any p ≥ 1,

LEnKF converges to L in Lp with rate 1/
√
N , i.e.,

(
E
∣∣LEnKF − L

∣∣p)1/p ≤ cN−1/2, (3.3.8)

where c does not depend on N but may depend on θ, dx and dy.

The linearity of the flow Fα(·) is equivalent to the linearity of the vector field fα(·).

Although the convergence of the EnKF to the KF in linear settings has been studied in DA

[Le Gland et al., 2009; Law et al., 2016b; Kwiatkowski and Mandel, 2015; Del Moral et al.,

2018] and in filtering approaches to inverse problems [Schillings and Stuart, 2017; Chada

et al., 2021], there are no existing convergence results for EnKF log-likelihood estimation.

Two related works are [Katzfuss et al., 2020], which provides a heuristic argument for con-

vergence in the case T = 1, and [Crisan et al., 2021], where a continuous-time version of
69

EnKF is considered.

Most of the theoretical analysis of EnKF is based on the propagation of chaos statement

[McKean, 1967; Sznitman, 1991]: EnKF defines an interacting particle system, where the

interaction is through the empirical mean m̂t and covariance matrix Ĉt of the forecast en-

semble x̂1:Nt . As N →∞, one hopes that these empirical moments can be replaced by their

deterministic limits, and that the particles will hence evolve independently. The large N

limits of m̂t, Ĉt turn out to be the mean and covariance matrix of the KF forecast distri-

bution. We will leave the construction of the propagation of chaos statement as well as the

proof of Theorem 3.3.1 to §3.7.1.

Since this paper focuses on gradient based approaches to the learning of θ = {α, β}, it is

thus interesting to compare the gradient ∇θLEnKF to the true gradient ∇θL, as N →∞, if

both of them exist. The intuition is that if∇θLEnKF is an accurate estimate of∇θL, then one

can perform gradient-based optimization over LEnKF as if one was directly optimizing over

the true log-likelihood L. For the gradient w.r.t. β to be well-defined, we write Sβ = Q
1/2
β

in the following statement, so that β does not appear in the stochasticity of the algorithm.

This is also known as the “reparameterization trick,” which will be discussed later in §3.4.1.

Theorem 3.3.2. Assume that the state transition Eq. (3.2.1) is linear, i.e.,

xt = Aαxt−1 + Sβξt, ξt ∼ N (0, Idx), Aα ∈ Rdx×dx , (3.3.9)

and that the initial distribution p0 is Gaussian. Assume the parameterizations α 7→ Aα and

β 7→ Sβ are differentiable. Then, for any θ = {α, β}, both ∇θLEnKF and ∇θL exist and, for

any p ≥ 1, ∇θLEnKF converges to ∇θL in Lp with rate 1/
√
N , i.e.,

(
E
∣∣∇θLEnKF −∇θL

∣∣p)1/p ≤ cN−1/2, (3.3.10)

where c does not depend on N but may depend on θ, dx and dy.

70

An important observation is that θ only enters the objective function LEnKF through the

empirical mean m̂t and covariance matrix Ĉt of the forecast ensemble. As N →∞, one hopes

that these empirical moments can be replaced by their deterministic limits, and gradients

based on these empirical moments can be replaced by gradients based on their deterministic

limits. The gradients taken in the limits turn out to be those of the true log-likelihood L.

Again, the proof relies on the propagation of chaos statement and is left to §3.7.2.

Theorem 3.3.2 should be compared with log-likelihood gradient estimation with PFs. The

paper [Corenflos et al., 2021] shows that the gradient ∇θLPF of PF log-likelihood estimate

is biased, even in the linear setting, if one ignores the gradient from resampling steps, which

is the method used in practice [Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018].

3.4 Auto-differentiable Ensemble Kalman Filters

This section contains our main methodological contributions. We introduce our AD-EnKF

framework in §3.4.1. We then describe in §3.4.2 how to handle long observation data, i.e.,

large T , using TBPTT. In §3.4.3, we highlight how various techniques introduced for EnKF

in the DA community, e.g., localization and covariance inflation, can be incorporated into

our framework. Finally, §3.4.4 discusses the computational and memory costs.

3.4.1 Main Algorithm

Algorithm 3.4.1 Auto-differentiable Ensemble Kalman Filter (AD-EnKF)
Input: Observations y1:T . Learning rate η.

1: Initialize SSM parameter θ0 and set k = 0.
2: while not converging do
3: x1:N0:T ,LEnKF(θ

k) = EnsembleKalmanFilter(θk, y1:T). ▷ Alg. 3.3.1
4: Compute ∇θLEnKF(θ

k) by auto-differentiating the map θk 7→ LEnKF(θ
k).

5: Set θk+1 = θk + η∇θLEnKF(θ
k) and k ← k + 1.

6: end while
Output: Learned SSM parameter θk and EnKF particles x1:N0:T .

71

Our core method is shown in Alg. 3.4.1, and our PyTorch implementation is at https:

//github.com/ymchen0/torchEnKF. The gradient of the stochastic map θk 7→ LEnKF(θ
k)

can be evaluated using autodiff libraries [Paszke et al., 2019; Bradbury et al., 2018; Abadi

et al., 2016]. More specifically, reverse-mode autodiff can be performed for common ma-

trix operations like matrix multiplication, inverse, and determinant [Giles, 2008a]. We use

the “reparameterization trick” [Kingma and Welling, 2014; Rezende et al., 2014] to auto-

differentiate through the stochasticity in the EnKF algorithm. Specifically, in Alg. 3.3.1 line

3, we draw ξnt from a distribution N (0, Qβ) that involves a parameter β with respect to

which we would like to compute the gradient. For this operation to be compatible with the

autodiff, we reparameterize

x̂nt = Fα(x
n
t) + ξnt ξnt

i.i.d.∼ N (0, Qβ) ⇐⇒ x̂nt = Fα(x
n
t) +Q

1/2
β ξnt ξnt

i.i.d.∼ N (0, Idx),

(3.4.1)

so that the gradient with respect to β admits an unbiased estimate. In contrast to the

EnKF, the resampling step of PFs cannot be readily auto-differentiated [Naesseth et al.,

2018; Maddison et al., 2017; Le et al., 2018]. The algorithm can be stopped when certain

convergence criteria have been met, e.g., when the relative change in the 10-step moving

average of the EnKF log-likelihood LEnKF(θ
k) does not exceed a pre-specified threshold of

10−2. In our numerical experiments in §3.5, we run the algorithm for at least 50 additional

iterations past convergence to demonstrate its long-time performance and stability.

3.4.2 Truncated Gradients for Long Sequences

If the sequence length T is large, although LEnKF(θ) and its gradient ∇θLEnKF(θ) can be

evaluated using the aforementioned techniques, the practical value of Alg. 3.4.1 is limited

for two reasons. First, computing these quantities requires a full filtering pass of the data,

which may be computationally costly. Moreover, for the gradient ascent methods to achieve

72

https://github.com/ymchen0/torchEnKF
https://github.com/ymchen0/torchEnKF

a good convergence rate, multiple evaluations of gradients are often needed, requiring an

equally large number of filtering passes. The second reason is that, like recurrent networks,

Alg. 3.4.1 may suffer from exploding or vanishing gradients [Pascanu et al., 2013] as the

derivatives are multiplied together using chain rules in the backpropagation.

Our proposed technique can address both of these issues by borrowing the ideas of

TBPTT from the recurrent neural network literature [Williams and Zipser, 1995; Sutskever

et al., 2014] and the recursive maximum likelihood method from the hidden Markov models

literature [Le Gland and Mevel, 1997]. The idea is to divide the sequence into subsequences

of length L. Instead of computing the log-likelihood of the whole sequence and then back-

propagating, one computes the log-likelihood of each subsequence and backpropagates within

that subsequence. The subsequences are processed sequentially, and the EnKF output of the

previous subsequence (i.e., the location of particles) are used as the input to the next sub-

sequence. In this way, one performs ⌈T/L⌉ gradient updates in a single filtering pass, and

since the gradients are backpropagated across a time span of length at most L, gradient

explosion/vanishing is more unlikely to happen. This approach is detailed in Alg. 3.4.2.

Algorithm 3.4.2 AD-EnKF with Truncated Backprop (AD-EnKF-T)
Input: Observations y1:T . Learning rate η. Subsequence length L.

1: Initialize SSM parameter θ0 and set k = 0.
2: while not converging do
3: Set xn0

i.i.d.∼ p0(x0).
4: for j = 0, . . . , T/L− 1 do
5: Set t0 = jL, t1 = min{(j + 1)L, T}.
6: x1:Nt0:t1

,LEnKF(θ
k) = EnsembleKalmanFilter(θk, y(t0+1):t1

, x1:Nt0
). ▷ Alg. 3.3.1

7: Set θk+1 = θk + η∇θLEnKF(θ
k) and k ← k + 1.

8: end for
9: end while

Output: Learned SSM parameter θk and EnKF particles x1:N0:T .

73

3.4.3 Localization for High State Dimensions

In practice, the state often represents a physical quantity that is discretized in spatial co-

ordinates (e.g., numerical solution to a time-evolving PDE), which leads to a high state

dimension dx. In order to reduce the computational and memory complexity, EnKF is often

run with N < dx. A small ensemble size N causes rank deficiency of the forecast sample

covariance Ĉt, which may cause spurious correlations between spatial coordinates that are

far apart. In other words, for (i, j) such that |i − j| is large, the (i, j)-th coordinate of

Ĉt may not be close to 0, although one would expect it to be small since it represents the

correlation between spatial locations that are far apart. This problem can be addressed

using localization techniques, and we shall focus on covariance tapering [Houtekamer and

Mitchell, 1998]. The idea is to “taper” the forecast sample covariance matrix Ĉt so that the

nonzero spurious correlations are zeroed out. This method is implemented defining a dx×dx

matrix ρ with 1’s on the diagonal and entries smoothly decaying to 0 off the diagonal, and

replacing the forecast sample covariance matrix Ĉt in Alg. 3.3.1 by ρ ◦ Ĉt, where ◦ denotes

the element-wise matrix product. Common choices of ρ were introduced in [Gaspari and

Cohn, 1999]. Covariance tapering can be easily adopted within our AD-EnKF framework.

We find that covariance tapering not only stabilizes the filtering procedure, which had been

noted before, e.g., [Houtekamer and Mitchell, 2001; Hamill et al., 2001], but it also helps to

obtain low-variance estimates of the log-likelihood and its gradient — see the discussion in

§3.5.1. Localization techniques relying on local serial updating of the state [Houtekamer and

Mitchell, 2001; Ott et al., 2004; Sakov and Bertino, 2011] could also be considered.

Another useful tool for EnKF with N < dx is covariance inflation [Anderson and Ander-

son, 1999], which prevents the ensemble from collapsing towards its mean after the analysis

update [Furrer and Bengtsson, 2007]. In practice, this can be performed by replacing the

forecast sample covariance matrix Ĉt in Alg. 3.3.1 by (1 + ζ)Ĉt, where ζ > 0 is a small

constant that needs to be tuned. Although not considered in our experiments, covariance

74

inflation can also be easily adopted within our AD-EnKF framework.

3.4.4 Computation and Memory Costs

Autodifferentiation of the map θk 7→ LEnKF(θ
k) in Alg. 3.4.1 does not introduce an ex-

tra order of computational cost compared to the evaluation of this map alone. Thus, the

computational cost of AD-EnKF is at the same order as that of a standard EnKF. The

computation cost of EnKF can be found in, e.g., [Roth et al., 2017]. Moreover, AD-EnKF

can be parallelized and speeded up with a GPU.

Like a standard EnKF, when no covariance tapering is applied, AD-EnKF has O(Ndx)

memory cost since it does not explicitly compute the sample covariance matrix Ĉt
1. With

covariance tapering, the memory cost is at most O(max{N, r}dx), where r is the tapering

radius, if the tapering matrix ρ is sparse with O(rdx) nonzero entries. This sparsity condition

is satisfied when using common tapering matrices [Gaspari and Cohn, 1999]. In terms of

the time dimension, the memory cost of AD-EnKF can be reduced from O(T) to O(L) with

the TBPTT in §3.4.2. Unlike previous work on EM-based approaches [Brajard et al., 2020;

Bocquet et al., 2020; Pulido et al., 2018], where the locations of all particles x1:Nt across the

whole time span of T need to be stored, AD-EnKF-T only requires to store the particles

within a time span of L to perform a gradient step.

If the transition map Fα is defined by the flow map of an ODE with vector field fα, we can

use adjoint methods to differentiate efficiently through Fα in the forecast step Eq. (3.3.1).

Use of the adjoint method is facilitated by NeuralODE autodiff libraries [Chen et al., 2018]

that have become an important tool to learn continuous-time dynamical systems [Ayed

et al., 2019; Rubanova et al., 2019; De Brouwer et al., 2019]. Instead of discretizing Fα with

a numerical solver applied to fα and differentiating through solver’s steps as in [Brajard

1. Note that ĈtH
⊤ = 1

N−1

∑N
n=1(x̂

n
t − m̂t)(Hx̂n

t − Hm̂t)
⊤ and HĈtH

⊤ = 1
N−1

∑N
n=1(Hx̂n

t −
Hm̂t)(Hx̂n

t −Hm̂t)
⊤, which require O(dx max{N, dy}) and O(dy max{N, dy}) memory respectively. Both

of them are less than O(d2x) if dy ≪ dx and N ≪ dx.

75

et al., 2020; Bocquet et al., 2020], we directly differentiate through Fα by solving an adjoint

differential equation, which does not require us to store all intermediate steps from the

numerical solver, reducing the memory cost. More details can be found in [Chen et al.,

2018], and the PyTorch package provided by the authors can be incorporated within our

AD-EnKF framework with minimal effort.

3.5 Numerical Experiments

3.5.1 Linear-Gaussian Model

In this section, we focus on parameter estimation in a linear-Gaussian model with a banded

structure on model dynamic and model error covariance matrix. This experiment falls into

the category of “parameterized dynamics” in §3.2.1. We first illustrate the convergence

results of the log-likelihood estimate LEnKF and gradient estimate ∇θLEnKF presented in

§3.3.3, since the true values L and ∇θL are available in closed form. We also show that

the localization techniques described in §3.4.3 lead to a more accurate estimate when the

ensemble size is small. Finally, we show that having a more accurate estimate, especially for

the gradient, improves the parameter estimation.

We compare the EnKF to PF methods. Similar to the EnKF, the PF also provides

an estimate of the log-likelihood and its gradient. Different from [Naesseth et al., 2018;

Maddison et al., 2017; Le et al., 2018], we adopt the PF with optimal proposal [Doucet

and Johansen, 2009] as it is implementable for the family of SSMs considered in this paper

[Doucet et al., 2000; Sanz-Alonso et al., 2018], and we find it to be more stable than separately

training a variational proposal. To compute the log-likelihood gradient for the PF, we follow

the same strategy as in [Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018] and do

not differentiate through the resampling step. The full algorithm, which we abbreviate as

AD-PF, is presented in §3.7.4.

76

We consider the following SSM, similar to [Xu and Wikle, 2007; Stroud et al., 2018]

xt = Aαxt−1 + ξt, ξt ∼ N (0, Qβ), 1 ≤ t ≤ T, (3.5.1a)

yt = Hxt + ηt, ηt ∼ N (0, 0.5Idy), 1 ≤ t ≤ T, (3.5.1b)

x0 ∼ N (0, 4Idx), (3.5.1c)

where

Aα =



α1 α2 0

α3 α1
. . .

. α2

0 α3 α1


, [Qβ]i,j = β1 exp(−β2|i− j|). (3.5.1d)

Here [Qβ]i,j denotes the (i, j)-th entry of Qβ . Intuitively, β1 controls the scale of error,

while β2 controls how error is correlated across spatial coordinates. We set α = (α1, α2, α3),

β = (β1, β2), and θ = {α, β}.

Estimation Accuracy of LEnKF and ∇θLEnKF

As detailed above, a key idea proposed in this paper is to estimate L(θ), ∇αL(θ) and∇βL(θ)

with quantities LEnKF(θ),∇αLEnKF(θ) and∇βLEnKF(θ) obtained by running an EnKF and

differentiating through its computations using autodiff. Since these estimates will be used

by AD-EnKF to perform gradient ascent, it is critical to assess their accuracy. We do so in

this section for a range of values of θ.

We first simulate observation data y1:T from the true model with dx = dy ∈ {20, 40, 80},

T = 10, H = Idx , α
∗ = (0.3, 0.6, 0.1) and β∗ = (0.5, 1). Given data y1:T , the true data

log-likelihood L(θ) = pθ(y1:T) and gradient ∇θL(θ), which can be decomposed into ∇αL(θ),

∇βL(θ), can be computed analytically. We perform P = 50 EnKF runs, and report a Monte

Carlo estimate of the relative L2 errors of the log-likelihood and gradient estimates (see

77

§3.7.6 for their definition) as the ensemble size N increases. Fig. 3.2 shows the results when

θ is evaluated at the true parameters {α∗, β∗}. Intuitively, this θ is close to optimal since it

is the one that generates the data. We also show in Fig. 3.10 in §3.7.3 the results when θ is

evaluated at a parameter that is not close to optimal: α = (0.5, 0.5, 0.5), β = (1, 0.1). Both

figures illustrate that the relative L2 estimation errors of the log-likelihood and its gradient

computed using EnKF converge to zero at a rate of approximately N−1/2. Moreover, the

state dimension dx has small empirical effect on the convergence rate. On the other hand,

those computed using PF have a slower convergence rate or barely converge, especially for the

gradient (see the third plot in Fig. 3.10). We recall that the resampling parts are discarded

from the autodiff of PFs, which introduces a bias. Moreover, the empirical convergence rate

is slightly slower in higher state dimensions. Comparing the estimation error of EnKF and

PF under the same dx choice, we find that when the number of particles is large (> 500),

EnKF gives a more accurate estimate than PF. However, when the number of particles is

small, EnKF is less accurate, but we will show in the next section how the EnKF results

can be significantly improved using localization techniques. Unreported experimental results

suggest that the relative L2 error in the EnKF estimation of the log-likelihood and its gradient

increase linearly with T for a fixed ensemble size N .

102 103 104 105

N

10−4

10−3

10−2

10−1

L
2

es
ti

m
at

io
n

er
ro

r
(L

)

102 103 104 105

N

10−2

10−1

100

101

L
2

es
ti

m
at

io
n

er
ro

r
(∇

α
L)

EnKF, dx = 20

PF, dx = 20

EnKF, dx = 40

PF, dx = 40

EnKF, dx = 80

PF, dx = 80

O(N−1/2)

102 103 104 105

N

10−2

10−1

100

101

L
2

es
ti

m
at

io
n

er
ro

r
(∇

β
L)

Figure 3.2: Relative L2 estimation errors of the log-likelihood (left) and its gradient w.r.t. α
(middle) and β (right), computed using EnKF and PF, as a function of N , for the linear-Gaussian
model (3.5.1). State dimension dx ∈ {20, 40, 80}. θ is evaluated at the true parameters {α∗, β∗}.
(§3.5.1).

78

Effect of Localization

In practice, for computational and memory concerns, the number of particles used for EnKF

is typically small (< 100), and hence it is necessary to get an accurate estimate of log-

likelihood and its gradients using a small number of particles. We use the covariance tapering

techniques discussed in §3.4.3, where Ĉt is replaced by ρ ◦ Ĉt in Alg. 3.3.1, and ρ is defined

using the fifth order piecewise polynomial correlation function of Gasperi and Cohn [Gaspari

and Cohn, 1999]. The detailed construction of ρ is left to §3.7.6, with a hyperparameter r

that controls the tapering radius.

Fig. 3.3 shows the estimation results when the state dimension is set to be dx = 80

and θ is evaluated at (α∗, β∗), while different tapering radii r are applied. The plots of

EnKF with no tapering and the plots of PF are the same as in Fig. 3.2. We find that

covariance tapering can reduce the estimation error of the log-likelihood and its gradient

when the number of particles is small. Moreover, having a smaller tapering radius leads

to a better estimation when the number of particles is small. As the number of particles

grows larger, covariance tapering may worsen the estimation of both log-likelihood and its

gradient. This is because the sampling error and spurious correlation that occurs in the

sample covariance matrix in EnKF will be overcome by a large number of particles, and

hence covariance tapering will only act as a modification to the objective function LEnKF,

leading to inconsistent estimates. However, there is no reason for using localization when

one can afford a large number of particles. When computational constraints require fewer

particles than state dimension, we find that covariance tapering is not only beneficial to the

parameter estimation problems but is also beneficial to learning of the dynamics in high

dimensions, as we will show in later sections. Results when θ is evaluated at parameters that

are not optimal (α = (0.5, 0.5, 0.5), β = (1, 0.1)) are shown in Fig. 3.11 in §3.7.3, where the

beneficial effect of tapering is evident.

79

102 103 104 105

N

10−4

10−3

10−2

10−1

L
2

es
ti

m
at

io
n

er
ro

r
(L

)

102 103 104 105

N

10−2

10−1

100

101

L
2

es
ti

m
at

io
n

er
ro

r
(∇

α
L)

EnKF, no taper

EnKF, taper=20

EnKF, taper=5

PF

O(N−1/2)

102 103 104 105

N

10−2

10−1

100

101

L
2

es
ti

m
at

io
n

er
ro

r
(∇

β
L)

Figure 3.3: Relative L2 estimation errors of log-likelihood (left) and its gradient w.r.t. α (middle)
and β (right), computed using EnKF and PF, with different covariance tapering radius applied to
EnKF for the linear-Gaussian model (3.5.1). State dimension dx = 80. θ is evaluated at the true
parameters {α∗, β∗}. (§3.5.1).

Parameter Learning

Here we illustrate how the estimation accuracy of the log-likelihood and its gradient, espe-

cially the latter, affect the parameter learning with AD-EnKF. Since our framework relies

on gradient-based learning of parameters, intuitively, the less biased the gradient estimate

is, the closer our learned parameter will be to the true MLE solution.

We first consider the setting where the state dimension is set to be dx = 80. We run AD-

EnKF for 1000 iterations with gradient ascent under the following choices of ensemble size

and tapering radius: (1) N = 1000 with no tapering; (2) N = 50 with no tapering; and (3)

N = 50 with tapering radius 5. We also run AD-PF with N = 1000 particles. Throughout,

one “training iteration” corresponds to processing the whole data sequence once. Additional

implementation details are available in the appendices. Fig. 3.4 and 3.5 show a single run of

parameter learning under each setting, where we include for reference the MLE obtained by

running gradient ascent until convergence with the true gradient ∇θL (denoted with the red

dashed line). The objective function, i.e., the likelihood estimates LEnKF and LPF are also

plotted as a function of training iterations. Results with other choices of state dimension

dx are summarized in Table 3.5.1, where we take the values of α at the final iteration and

80

compute their distance to the true MLE solution. The procedure is repeated 10 times,

and the mean and standard deviations are reported. The results all show a similar trend:

AD-EnKF with N = 1000 particles performs the best (small errors and small fluctuations)

for all settings, while AD-EnKF with N = 50 particles and covariance tapering performs

second best. AD-EnKF with N = 50 without covariance tapering comes at the third place,

and AD-PF method performs the worst, indicating the superiority of AD-EnKF method to

the AD-PF method for high-dimensional linear-Gaussian models of the form (3.5.1) and the

utility of localization techniques. Importantly, the findings here are consistent with the plots

in Fig. 3.3. This behavior is in agreement with the intuition that the estimation accuracy of

the log-likelihood gradient determines the parameter learning performance.

0 200 400 600 800 1000

Iterations

0.28

0.30

0.32

0.34

0.36

α
1

0 200 400 600 800 1000

Iterations

0.45

0.47

0.49

0.51

0.53

0.55

α
2

AD-EnKF, N = 50, no taper

AD-EnKF, N = 50, taper=5

AD-EnKF, N = 1000, no taper

AD-PF, N = 1000

0 200 400 600 800 1000

Iterations

0.10

0.12

0.14

0.16

0.18

0.20

α
3

Figure 3.4: Learned parameter α as a function of training iterations for the linear-Gaussian model
(3.5.1). State dimension dx = 80. Red dashed lines are the MLE solutions to the true data log-
likelihood L. Our proposed AD-EnKF method with covariance tapering achieves a lower estimation
error with N = 50 particles than AD-PF with N = 1000.

(§3.5.1).

3.5.2 Lorenz-96

In this section, we illustrate our AD-EnKF framework in the three types of learning problems

mentioned in §3.2.1: parameterized dynamics, fully-unknown dynamics, and model correc-

tion. We will compare our method to AD-PF, as in §3.5.1. We will also compare our method

to the EM-EnKF method implemented in [Bocquet et al., 2020; Brajard et al., 2020], which
81

0 200 400 600 800 1000

Iterations

0.7

0.8

0.9

1.0

1.1

β
1

0 200 400 600 800 1000

Iterations

0.2

0.4

0.6

0.8

1.0

β
2

AD-EnKF, N = 50, no taper

AD-EnKF, N = 50, taper=5

AD-EnKF, N = 1000, no taper

AD-PF, N = 1000

0 200 400 600 800 1000

Iterations

−1.35

−1.30

−1.25

−1.20

T
ra

in
in

g
lo

g-
lik

el
ih

oo
d

×103

Figure 3.5: Learned parameter β, and training objective LEnKF, LPF as a function of training
iterations for the linear-Gaussian model (3.5.1). Red dashed lines are the MLE solutions to the
true data log-likelihood L (left and middle), and the maximum value attained by L (right). Our
proposed AD-EnKF method with covariance tapering achieves a lower estimation error with N = 50
particles than AD-PF with N = 1000.

(§3.5.1).

dx = 20
N = 50

dx = 20
N = 1000

dx = 40
N = 50

dx = 40
N = 1000

dx = 80
N = 50

dx = 80
N = 1000

AD-EnKF (no taper) 1.65 ±0.30 0.07 ±0.06 4.12±0.73 0.17±0.09 4.14±0.67 0.20±0.14
AD-EnKF(taper=5) 0.53±0.18 − 0.35±0.27 − 1.05±0.38 −

AD-PF 7.75±0.37 3.51±0.35 8.58±0.25 5.59±0.31 9.28±0.49 6.77±0.24

Table 3.5.1: Euclidean distance (×10−2) from the learned parameter α at the final iteration to
the true MLE solution, under varying dimensional settings for the linear-Gaussian model (3.5.1).
The parameter values recovered by our proposed AD-EnKF method with covariance tapering and
N = 50 are closer to the MLE solution than the ones recovered by AD-PF with N = 1000.

(§3.5.1).

82

we abbreviate as EM, and is detailed in §3.7.5. We emphasize that the gradients computed

in the EM are different from the ones computed in AD-EnKF, and in particular do not

auto-differentiate through the EnKF.

The reference Lorenz-96 model [Lorenz, 1996] is defined by (3.2.5) with vector field

f∗(i)(x) = −x(i−1)(x(i−2) − x(i+1))− x(i) + 8, 0 ≤ i ≤ dx − 1, (3.5.2)

where x(i) and f∗(i) are the i-th coordinate of x and component of f∗. By convention

x(−1) := x(dx−1), x(−2) := x(dx−2) and x(dx) := x(0). We assume there is no noise in the

reference state transition model, i.e., Q∗ = 0. The goal is to recover the reference state

transition model with pθ(xt|xt−1) = N (xt;Fα
(
xt−1), Qβ

)
from the data y1:T , where Fα is

the flow map of a vector field fα, and then recover the states x1:T . The parameterized error

covariance Qβ in the transition model is assumed to be diagonal, i.e., Qβ = diag(β) with

β ∈ Rdx . The parameterized vector field fα is defined differently for the three types of

learning problems, as we lay out below. We quantify performance using the forecast error

(RMSE-f), the analysis/filter error (RMSE-a), and the test log-likelihood. These metrics are

defined in §3.7.6.

Parameterized Dynamics

We consider the same setting as in [Bocquet et al., 2019], where

f
(i)
α (x) =

[
1, x(i−2), x(i−1), x(i), x(i+1), x(i+2),(
x(i−2)

)2
,
(
x(i−1)

)2
,
(
x(i)
)2
,
(
x(i+1))2, (x(i+2))2,

x(i−2)x(i−1), x(i−1)x(i), x(i)x(i+1), x(i+1)x(i+2),

x(i−2)x(i), x(i−1)x(i+1), x(i)x(i+2)]⊤α, 0 ≤ i ≤ dx − 1,

(3.5.3)

83

and α ∈ R18 is interpreted as the coefficients of some “basis polynomials” representing

the governing equation of the underlying system. The parameterized governing equation of

the i-th coordinate depends on its N1 = 5 neighboring coordinates, and the second order

polynomials only involve interactions between coordinates that are at most N2 = 2 indices

apart. The reference ODE Eq. (3.5.2) satisfies f∗ = fα∗ , where α∗ ∈ R18 has nonzero entries

α∗0 = 8, α∗3 = −1, α∗11 = −1, α∗16 = 1, (3.5.4)

and zero entries otherwise. Here the dimension of θ = {α, β} is dθ = 18 + dx.

We first consider the specific case with dx = dy = 40, H = I40. We set R = I40 and

x0 ∼ N (0, 50I40). We generate four sequences of training data with the reference model for

T = 300 with time between consecutive observations ∆s = 0.05. Both flow maps F ∗ and Fα

are integrated using a fourth-order Runge-Kutta (RK4) method with step size ∆int
s = 0.01,

with adjoint methods implemented for backpropagation through the ODE solver [Chen et al.,

2018].

We use AD-EnKF-T (Alg. 3.4.2) with L = 20 and covariance tapering Eq. (3.7.45) with

radius r = 5. We compare with AD-PF-T (see §3.7.4) with L = 20 and EM (see §3.7.5). L

is chosen from the set {1, 5, 10, 20, 50, 100} with the lowest forecast RMSE on the test set

at the final training iteration. The implementation details, including the choice of learning

rates and other hyperparameters, are discussed in §3.7.6.

Comparison of the three algorithms is shown in Fig. 3.6. Our AD-EnKF-T recovers

α∗ better than the other two approaches. The EM approach converges faster, but has a

larger error. Moreover, EM tends to converge to a higher level of learned model error σβ

(defined in Eq. (3.7.46)), while our AD-EnKF-T shows a consistent drop of learned error

level. Note that Qβ in the learned transition kernel acts like covariance inflation, which is

discussed in §3.4.3, but is “learned” to be adaptive to the training data rather than manually

tuned; therefore, having a nonzero error level σβ may still be helpful. The plot of the log-

84

likelihood estimate during training indicates that AD-EnKF-T searches for parameters with a

higher log-likelihood than the EM approach, which is not surprising as AD-EnKF-T directly

optimizes LEnKF, while EM does so by alternatively optimizing a surrogate objective. Also,

the large discrepancy between the optimized LEnKF and LPF objective may be due to LPF

being a worse estimate for the true log-likelihood L than that of LEnKF. Note that PFs may

not be suitable for high-dimensional systems like the Lorenz-96 model. Even with knowledge

of the true reference model and a large number of particles, the PF is not able to capture the

filtering distribution well due to the high dimensionality — see, e.g., Figure 5 of [Bocquet

et al., 2010]. The plots of forecast error, filter error and test log-likelihood are presented in

Fig. 3.7.

We also consider varying the state dimension dx and observation model H. (The param-

eterization in Eq. (3.5.3) is valid for any choice of dx.) We measure the Euclidean distance

between the value of learned α at the final training iteration (at convergence) to α∗. The

training procedure is repeated 5 times and the results are shown in Table 3.5.2. We vary

dx ∈ {10, 20, 40, 80} and consider two settings for H: fully observed at all coordinates, i.e.,

H = Idx , and partially observed at every two out of three coordinates [Sanz-Alonso and

Stuart, 2015], i.e., H = [e1, e2, e4, e5, e7, · · ·]⊤, where {ei}dxi=1 is the standard basis for Rdx .

The number of particles used for all algorithms is fixed at N = 50, and covariance tapering

Eq. (3.7.45) with radius r = 5 is applied to the EnKF. For both AD-EnKF-T and AD-PF-T,

L = 20. We find that AD-EnKF-T is able to consistently recover α∗ regardless of the choice

of dx and H, and is able to perform well in the important case where N < dx, with an accu-

racy that is orders of magnitude better than the other two approaches. The EM approach

is able to recover α∗ consistently in fully observed settings, but with a lower accuracy. In

partially-observed settings, EM does not converge to the same value in repeated runs, possi-

bly due to the existence of multiple local maxima. AD-PF-T is able to converge consistently

in fully observed settings but with the lowest accuracy, and runs into filter divergence issues

85

0 50 100 150
−2

0

2

4

6

8

10

C
oe

ffi
ci

en
ts
α

,
n

on
ze

ro
en

tr
ie

s

0 50 100 150

−0.2

0.0

0.2

0.4

0.6

C
oe

ffi
ci

en
ts
α

,
ze

ro
en

tr
ie

s

0 50 100 150

Iterations

10−1

100

101

E
rr

or
le

ve
l
σ
β

AD-EnKF-T AD-PF-T EM

0 50 100 150

Iterations

−2.4

−2.2

−2.0

−1.8

T
ra

in
in

g
lo

g-
lik

el
ih

oo
d

×104

Figure 3.6: Learning parameterized dynamics of Lorenz-96 (3.5.3), with dx = 40 and H =
I40. Learned value of the 18 coefficients of α (upper left for nonzero entries and upper right for
zero entries, where the truth α∗ is plotted in red dashed lines), averaged diagnosed error level σβ
Eq. (3.7.46) (lower left) and log-likelihood LEnKF/LPF during training (lower right), as a function
of training iterations. Throughout, the shaded area corresponds to ±2 std over 5 repeated runs.
(§3.5.2).

86

0 50 100 150
Iterations

0.00

0.05

0.10

0.15

0.20
F

or
ec

as
t

R
M

S
E

0 50 100 150
Iterations

0.2

0.4

0.6

0.8

F
ilt

er
R

M
S

E

AD-EnKF-T AD-PF-T EM

0 50 100 150
Iterations

−2.1

−2.0

−1.9

−1.8

−1.7

T
es

t
lo

g-
lik

el
ih

oo
d

×104

Figure 3.7: Learning parameterized dynamics of Lorenz-96 (3.5.3), with dx = 40 and H = I40.
All performance metrics are evaluated after each training iteration. Red dashed lines correspond to
metric values obtained with the reference model f∗ and Q∗. Our proposed AD-EnKF-T performs
the best in all metrics, with a performance similar to the reference model.

in partially-observed settings, so that the training process is not able to complete. Moreover,

we observe that the error of AD-PF-T tends to grow with the state dimension dx, while the

two approaches based on EnKF do not deteriorate when increasing the state dimension. This

is further evidence that EnKF is superior in high-dimensional settings.

dx = 10
(full)

dx = 20
(full)

dx = 20
(partial)

dx = 40
(full)

dx = 40
(partial)

dx = 80
(full)

dx = 80
(partial)

EM 0.308± 0.026 0.289± 0.0114 2.28± 4.92 0.268± 0.0103 7.754± 8.057 0.231± 0.0209 7.382± 4.812
AD-PF-T 0.262± 0.020 0.711± 0.0291 − 1.557± 0.0422 − 2.079± 0.0275 −

AD-EnKF-T 0.217± 0.027 0.0325± 0.0128 0.0835± 0.0189 0.0283± 0.0022 0.0930± 0.0098 0.0540± 0.0065 0.0813± 0.0083

Table 3.5.2: Lorenz-96, learning parameterized dynamics with varying dx and observation models.
The table shows recovery of learned α∗ for each algorithm at the final training iteration, in terms
of its distance to the truth α∗ Eq. (3.5.4). “Full” corresponds to full observations, i.e., H = Idx .
“Partial” corresponds to observing 2 out of 3 coordinates, i.e., H = [e1, e2, e4, e5, e7, · · ·]⊤. The “-”
indicates that training cannot be completed due to filter divergence. (§3.5.2).

Fully Unknown Dynamics

We assume no knowledge of the reference vector field f∗, and we approximate it by a neural

network surrogate, fNN
α : Rdx → R

dx , where here α represents the NN weights. The

structure of the NN is similar to the one in [Brajard et al., 2020] and is detailed in §3.7.6.

The number of parameters combined for α and β is dθ = 9317. The experimental results are

compared to the model correction results, and hence are postponed to §3.5.2.
87

Model Correction

We assume f∗ is unknown, but that an inaccurate model fapprox is available. We make

use of the parametric form Eq. (3.5.3), and define fapprox via a perturbation α̃ of the true

parameter α∗:

fapprox := fα̃, where α̃i ∼


N (α∗i , 1), if i = 0,

N (α∗i , 0.1), if i ∈ {1, . . . , 5},

N (α∗i , 0.01), if i ∈ {6, . . . , 17}.

(3.5.5)

The coefficients of a higher order polynomial have a smaller amount of perturbation. α̃ is

fixed throughout the learning procedure. We approximate the residual f∗ − fapprox by a

NN gNN
α , where α represents the weights, and gNN

α has the same structure and the same

number of parameters as in the fully unknown setting. The goal is to learn α so that

fα := fapprox + gNN
α approximates f∗.

We set dx = 40 and consider two settings for H: fully observed with H = I40, dy = 40,

and partially observed at every two out of three coordinates with dy = 27 (see §3.5.2). Eight

data sequences are generated with the reference model for training and four for testing, each

with length T = 1200. Other experimental settings are the same as in §3.5.2.

For the setting where training data is fully observed, we compare AD-EnKF-T with AD-

PF-T and the EM approach. The results are plotted in Fig. 3.8. The number of particles

used for all algorithms is fixed at N = 50, and covariance tapering Eq. (3.7.45) with radius

r = 5 is applied to EnKF. The subsequence length for both AD-EnKF-T and AD-PF-T is

chosen to be L = 20. We find that, whether f∗ is fully known or an inaccurate model is

available, AD-EnKF-T is able to learn the reference vector field f∗ well, with the smallest

forecast RMSE among all methods. Applying a filtering algorithm to the learned model,

we find that the states recovered by the AD-EnKF-T algorithm at the final iteration have

88

the lowest error (filter RMSE) among all methods, indicating that AD-EnKF-T also has the

ability to learn unknown states well. Moreover, the filter RMSE of AD-EnKF-T is close to

the one computed using a filtering algorithm with known f∗ and Q∗. The test log-likelihood

LEnKF of the model learned by AD-EnKF-T is close to the one evaluated with the reference

model. We also find that having an inaccurate model fapprox is beneficial to the learning

of AD-EnKF-T. The performance metrics are boosted compared to the ones with a fully

unknown model, in agreement with [Levine and Stuart, 2021]. EM has worse results, where

we find that the forecast RMSE does not consistently drop in the training procedure and the

states are not accurately recovered. This might be because the smoothing distribution used

by EM cannot be approximated accurately. AD-PF-T has the worst performance, possibly

because PF fails in high dimensions.

0 25 50 75
Iterations

0.00

0.05

0.10

0.15

F
or

ec
as

t
R

M
S

E

0 25 50 75
Iterations

0.2

0.4

0.6

0.8

F
ilt

er
R

M
S

E

AD-EnKF-T, fully unknown

AD-EnKF-T, correction

AD-PF-T, fully unknown

AD-PF-T, correction

EM, fully unknown

EM, correction

0 25 50 75
Iterations

−8.2

−7.9

−7.6

−7.3

−7.0

−6.7

T
es

t
lo

g-
lik

el
ih

oo
d

×104

Figure 3.8: Learning the Lorenz-96 model from fully unknown dynamics (§3.5.2) v.s. model cor-
rection (§3.5.2), with full observations (H = Idx). All performance metrics are evaluated after each
training iteration. Red dashed lines correspond to metric values obtained with the reference model
f∗ and Q∗. Our proposed AD-EnKF-T performs the best in all metrics, with a performance similar
to the reference model.

We repeat the learning procedure in the setting where training data is partially observed

at every two out of three coordinates. The results are shown in Fig. 3.9. Those for AD-

PF-T are not shown since training cannot be completed due to filter divergence. We find

that AD-EnKF-T is still able to recover f∗ consistently as well as the unknown states for

all coordinates, including the ones that are not observed, and has a filter RMSE close to

89

the one computed with knowledge of f∗. However, the performance metrics of the EM

algorithm in the model correction experiment deteriorate as training proceeds, indicating

that it may overfit the training data. In addition, we find that the EM algorithm does not

converge to the same point in repeated trials, particularly so in the setting of fully unknown

dynamics. All of these results indicate that AD-EnKF is advantageous when learning from

partial observations in high dimensions.

The ability to recover the underlying dynamics and states even with incomplete observa-

tions and fully unknown dynamics is most likely due to the convolutional-type architecture of

the NN fNN
α , which implicitly assumes that each coordinate only interacts with its neighbors,

and that this interaction is spatially invariant.

0 25 50 75
Iterations

0.00

0.05

0.10

0.15

0.20

F
or

ec
as

t
R

M
S

E

0 25 50 75
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

F
ilt

er
R

M
S

E

AD-EnKF-T, fully unknown

AD-EnKF-T, correction

EM, fully unknown

EM, correction

0 25 50 75
Iterations

−5.7

−5.4

−5.1

−4.8

−4.5

T
es

t
lo

g-
lik

el
ih

oo
d

×104

Figure 3.9: Learning Lorenz-96 from fully unknown dynamics (§3.5.2) v.s. model correction (§3.5.2)
with partial observations (H = [e1, e2, e4, e5, e7, · · ·]⊤). All performance metrics are evaluated after
each training iteration. Red dashed lines correspond to metric values obtained with the reference
model f∗ and Q∗. The absence of lines for EM in the fully unknown setting is due to its low and
unstable performance. When compared to the EM method, our proposed AD-EnKF-T is more stable
during training, performs better in all metrics, and its performance is closer to the one achieved by
the reference model.

3.6 Conclusions and Future Directions

This paper introduced AD-EnKFs for the principled learning of states and dynamics in

DA. We have shown that AD-EnKFs can be successfully integrated with DA localization

90

techniques for recovery of high-dimensional states, and with TBPTT techniques to handle

large observation data and high-dimensional surrogate models. Numerical results on the

Lorenz-96 model show that AD-EnKFs outperform existing EM and PF methods to merge

DA and ML.

Several research directions stem from this work. First, gradient and Hessian information

of LEnKF obtained by autodiff can be utilized to design optimization schemes beyond the

first-order approach we consider. Second, the convergence analysis of EnKF estimation of

the log-likelihood and its gradient may be generalized to nonlinear settings. It would also

be interesting to derive a dimension-dependent bound for the Lp estimation error and the

bias
∣∣ELEnKF − L

∣∣. Third, the idea of AD-EnKF could be applied to auto-differentiate

through other filtering algorithms, e.g. unscented Kalman filters, and in Bayesian inverse

problems using iterative ensemble Kalman methods. The paper [Kloss et al., 2021] is an

important first step in this direction. Replacing EnKF analysis steps with differentiable

optimal transport maps [Corenflos et al., 2021] is also a promising future direction. Finally,

the encouraging numerical results obtained on the Lorenz-96 model motivate the deployment

and further investigation of AD-EnKFs in scientific and engineering applications where latent

states need to be estimated with incomplete knowledge of their dynamics.

3.7 Appendix

3.7.1 Proof of Theorem 3.3.1

Notation We denote by c a constant that does not depend on N and may change from line

to line. We denote by ∥U∥p the Lp norm of a random vector/matrix U : ∥U∥p :=
(

E |U |p
)1/p,

where | · | is the underlying vector/matrix norm. (Here we use 2-norm for vectors and

Frobenius norm for matrices.) For a sequence of random vectors/matrices UN , we write

UN
1/2−−→ U

91

if, for any p ≥ 1, there exists a constant c such that

∥UN − U∥p ≤ cN−1/2, ∀N ≥ 1.

For a scalar valued function f(U) that takes a vector/matrix U as input, we denote by

∂Uf the derivative of f w.r.t. U , which collects the derivative of f w.r.t. each entry of the

vector/matrix U . When U is a vector, the notations ∂Uf and ∇Uf are equivalent. For a

vector/matrix valued function U(a) that takes a scalar a as input, we denote by ∂aU the

derivative of U w.r.t. a, which collects the derivative of each entry of the vector/matrix U

w.r.t. a.

We first recall the propagation of chaos statement. Notice that in the EnKF algorithm

Alg. 3.3.1, we compute x1:Nt sequentially, based on the forecast ensemble x̂1:Nt and its empir-

ical mean and covariance m̂t, Ĉt. We build “substitute particles” x1:Nt in a similar fashion,

except that at each step the population mean and covariance m̂t, Ĉt are used instead of their

empirical versions. Starting from x1:N0 = x1:N0 , the update rules of substitute particles are

listed below, with a side-by-side comparison to the EnKF update rules:

EnKF particles Substitute particles

x̂n
t = Fα(x

n
t−1) + ξnt x̂n

t = Fα(x
n
t−1) + ξnt

m̂t = 1
N

∑N
n=1 x̂

n
t m̂t = E

[
x̂n
t

]
Ĉt = 1

N−1
∑N

n=1(x̂
n
t − m̂t)(x̂

n
t − m̂t)

⊤ Ĉt = E
[
(x̂n

t − m̂t)(x̂
n
t − m̂t)

⊤]
K̂t = ĈtH

⊤(HĈtH
⊤ +R)−1 K̂t = ĈtH

⊤(HĈtH
⊤ +R)−1

xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t) xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t)

(3.7.1)

Notice that the substitute particles use the same realization of random variables as the

EnKF particles, including initialization of particles x1:N0 , forecast simulation error ξnt , and

noise perturbation γnt . As N →∞, one can show that the EnKF particles x1:Nt (resp. x̂1:Nt)

are close to the substitute particles x1:Nt (resp. x̂1:Nt), and hence the law of large numbers

guarantees that m̂t, Ĉt are close to m̂t, Ĉt. We summarize the main results from [Le Gland

et al., 2009] (see also [Kwiatkowski and Mandel, 2015]):
92

Lemma 3.7.1. Under the same assumption of Theorem 3.3.1:

(1) For each t ≥ 1, the substitute particles x1:Nt are i.i.d., and each of them has the same

law as the true filtering distribution p(xt|y1:t). Similarly, x̂ 1:N
t are i.i.d., and each of them

has the same law as the true forecast distribution p(xt|y1:t−1). In particular,

p(xt|y1:t−1) = N (xt; m̂t, Ĉt). (3.7.2)

(2) For each t, n, p ≥ 1, the EnKF particle xnt converges to the substitute particle xnt in Lp

with convergence rate N−1/2, and the substitute particle xnt has finite moments of any order.

The same holds for forecast particles x̂n
t :

xnt
1/2−−→ xnt , x̂n

t
1/2−−→ x̂n

t , ∥xnt ∥p ≤ c, ∥x̂n
t ∥p ≤ c. (3.7.3)

In particular, m̂t, Ĉt converge to m̂t, Ĉt in Lp with convergence rate N−1/2:

m̂t
1/2−−→ m̂t, Ĉt

1/2−−→ Ĉt. (3.7.4)

Proof. Eq. (3.7.2) corresponds to Lemma 2.1 of [Le Gland et al., 2009]. Eq. (3.7.3) cor-

responds to Proposition 4.4 of [Le Gland et al., 2009]. Eq. (3.7.4) is a direct corollary of

Theorem 5.2 of [Le Gland et al., 2009].

Proof of Theorem 3.3.1. By Eq. (3.7.2), using the Gaussian observation model Eq. (3.2.2):

L(θ) =
T∑
t=1

log p(yt|y1:t−1) =
T∑
t=1

logN (yt;Hm̂t, HĈtH
⊤ +R). (3.7.5)

By Eq. (3.3.6),

LEnKF(θ) =
T∑
t=1

logN (yt;Hm̂t, HĈtH
⊤ +R). (3.7.6)

93

Define

ht(m,C) := logN (yt;Hm,HCH⊤ +R)

= −1

2
log det(HCH⊤ +R)− 1

2
(yt −Hm)⊤(HCH⊤ +R)−1(yt −Hm) + const.

(3.7.7)

It suffices to show that, for each t ≥ 1,

ht(m̂t, Ĉt)
1/2−−→ ht(m̂t, Ĉt). (3.7.8)

We denote by Sdx
+ ⊂ Rdx×dx the space of all positive semi-definite matrices equipped with

Frobenius norm. Notice that ht is a continuous function on Rdx × Sdx
+ , since HCH⊤+R ⪰

R ≻ 0. To show convergence in Lp, intuitively one would expect a Lipschitz-type continuity

to hold for ht, in a suitable sense. We inspect the derivatives of ht w.r.t. m and C, which

will also be useful for later developments:

∂mht(m,C) = −H⊤(HCH⊤ +R)−1(yt −Hm),

∂Cht(m,C) = −1

2
H⊤(HCH⊤ +R)−1H

+
1

2
H⊤(HCH⊤ +R)−1(yt −Hm)(yt −Hm)⊤(HCH⊤ +R)−1H.

(3.7.9)

Since Rdx × Sdx
+ is convex, by the mean value theorem, triangle inequality and Cauchy-

Schwarz, and define m(χ) := χm̂t + (1− χ)m̂t, C(χ) := χĈt + (1− χ)Ĉt,

∣∣ht(m̂t, Ĉt)− ht(m̂t, Ĉt)
∣∣ ≤ sup

χ∈[0,1]

∣∣∂mht
(
m(χ), C(χ)

)∣∣|m̂t − m̂t|

+ sup
χ∈[0,1]

∣∣∂Cht(m(χ), C(χ)
)∣∣|Ĉt − Ĉt|.

(3.7.10)

94

Taking Lp norm on both sides,

∥∥ht(m̂t, Ĉt)− ht(m̂t, Ĉt)
∥∥
p ≤ sup

χ∈[0,1]

∥∥∂mht
(
m(χ), C(χ)

)∥∥
2p∥m̂t − m̂t∥2p

+ sup
χ∈[0,1]

∥∥∂Cht(m(χ), C(χ)
)∥∥

2p∥Ĉt − Ĉt∥2p,
(3.7.11)

where we have used the triangle inequality and the Lp Cauchy-Schwarz inequality ∥|U ||V |∥p
≤ ∥U∥2p∥V ∥2p, see e.g., Lemma 2.1 of [Kwiatkowski and Mandel, 2015]. Also, by plugging

in Eq. (3.7.9), for each χ ∈ [0, 1],

∥∥∂mht
(
m(χ), C(χ)

)∥∥
2p ≤

∥∥|H||(HC(χ)H⊤ +R)−1|(|yt − χHm̂t − (1− χ)Hm̂t|)
∥∥
2p

≤ |H||R−1|
(
|yt|+ |H||m̂t|+ |H|∥m̂t∥2p

)
≤ c,

(3.7.12)

where we have used that |(HC(χ)H⊤ + R)−1| ≤ |R−1|, that m̂t is deterministic, and that

all moments of m̂t are finite, by Eq. (3.7.4). Similarly,

∥∥∂Cht(m(χ), C(χ)
)∥∥

2p ≤
1

2
|H|2|R−1|+ 1

2
|H|2|R−1|2∥yt − χHm̂t − (1− χ)Hm̂t∥24p

≤ 1

2
|H|2|R−1|+ 1

2
|H|2|R−1|2(|yt|+ |H||m̂t|+ |H|∥m̂t∥4p)2 ≤ c,

(3.7.13)

where we have used that |vv⊤| = |v|2 for vector v. Thus, combining Eqs. (3.7.4) and (3.7.11)

to (3.7.13) gives

∥ht(m̂t, Ĉt)− ht(m̂t, Ĉt)∥p ≤ cN−1/2, (3.7.14)

which concludes the proof.

95

3.7.2 Proof of Theorem 3.3.2

Without loss of generality, we assume that θ ∈ R is a scalar parameter, since in general

the gradient w.r.t. θ is a collection of derivatives w.r.t. each element of θ. We will use the

following lemma repeatedly:

Lemma 3.7.2. For sequences of random vectors/matrices UN , VN :

(1) If UN − VN
1/2−−→ 0 and VN

1/2−−→ V, then

UN
1/2−−→ V. (3.7.15)

(2) If UN
1/2−−→ U , VN

1/2−−→ V and U, V have finite moments of any order, then

UNVN
1/2−−→ UV. (3.7.16)

More generally, the result holds for multiplication of more than two variables.

Proof. (1) Using UN − V = (UN − VN) + (VN − V), the proof follows from the triangle

inequality.

(2) Applying triangle inequality and Lp Cauchy-Schwarz inequality,

∥UNVN − UV ∥p ≤ ∥(UN − U)VN∥p + ∥U(VN − V)∥p

≤ ∥UN − U∥2p∥VN∥2p + ∥U∥2p∥VN − V ∥2p

≤ cN−1/2
(
∥V ∥2p + cN−1/2

)
+ ∥U∥2pcN−1/2

≤ cN−1/2.

(3.7.17)

The following result, which we will use repeatedly, is an immediate corollary of Theo-

rem 3.7.1:

96

Lemma 3.7.3. Under the same assumption of Theorem 3.3.1,

(HĈtH
⊤ +R)−1

1/2−−→ (HĈtH
⊤ +R)−1. (3.7.18)

Proof. Using the identity A−1 −B−1 = A−1(B − A)B−1 for invertible matrices A, B:

∥(HĈtH
⊤ +R)−1 − (HĈtH

⊤ +R)−1∥p

= ∥(HĈtH
⊤ +R)−1H(Ĉt − Ĉt)H

⊤(HĈtH
⊤ +R)−1∥p

≤ |R−1|2|H|2∥Ĉt − Ĉt∥p

≤ cN−1/2,

(3.7.19)

where we have used the Lp convergence of Ĉt to Ĉt Eq. (3.7.4), and the fact that |(HCHT +

R)−1| ≤ |R−1| for C ⪰ 0.

Lemma 3.7.4. Under the same assumption of Theorem 3.3.2, for each t ≥ 1, both ∂θx̂
n
t

and ∂θx̂
n
t exist, and ∂θx̂

n
t converges to ∂θx̂

n
t in Lp for any p ≥ 1 with convergence rate

N−1/2. Moreover, ∂θx̂n
t has finite moments of any order:

∂θx̂
n
t

1/2−−→ ∂θx̂
n
t , ∥∂θx̂n

t ∥p ≤ c, ∀n. (3.7.20)

In addition, all derivatives ∂θm̂t, ∂θm̂t, ∂θĈt, ∂θĈt, ∂θK̂t and ∂θK̂t exist, and

∂θm̂t
1/2−−→ ∂θm̂t, ∂θĈt

1/2−−→ ∂θĈt, ∂θK̂t
1/2−−→ ∂θK̂t. (3.7.21)

Proof. We will prove this by induction. For t = 1, since x̂n
1 = Axn0 + Sξn0 = x̂n

1 ,

∂θx̂
n
1 = (∂θA)x

n
0 + (∂θS)ξ

n
0 = ∂θx̂

n
1 , (3.7.22)

97

and both derivatives ∂θx̂
n
1 and ∂θx̂

n
1 exist. Also,

∥∂θx̂n1∥p ≤ |∂θA|∥xn0∥p + |∂θS|∥ξn0 ∥p ≤ c, (3.7.23)

since xn0 and ξn0 are drawn from Gaussian distributions, which have finite moments of any

order. So Eq. (3.7.20) holds for t = 1.

Assume Eq. (3.7.20) holds for step t. Then, using the definition for m̂t:

∂θm̂t =
1

N

N∑
n=1

∂θx̂
n
t

1/2−−→
1○

1

N

N∑
n=1

∂θx̂
n
t

1/2−−→
2○

E[∂θx̂
n
t] =3○

∂θ E[x̂n
t] = ∂θm̂t. (3.7.24)

Convergence 1○ follows from induction assumption Eq. (3.7.20). Convergence 2○ follows

from law of large numbers in Lp, since ∂θx̂
n
t are i.i.d. and the moments of ∂θx̂n

t are finite by

induction assumption Eq. (3.7.20). The swap of differentiation and expectation in 3○ is valid

since the expectation is taken over a distribution that is independent of θ. Both derivatives

∂θm̂t and ∂θm̂t exist. Similarly,

∂θĈt =
1

N − 1

N∑
n=1

∂θ(x̂
n
t (x̂

n
t)
⊤)− N

N − 1
∂θ(m̂tm̂

⊤
t)

=
1

N − 1

N∑
n=1

(
(∂θx̂

n
t)(x̂

n
t)
⊤ + x̂n

t (∂θx̂
n
t)
⊤)− N

N − 1

(
(∂θm̂t)m̂

⊤
t + m̂t(∂θm̂t)

⊤)
1/2−−→
1○

1

N − 1

N∑
n=1

(
(∂θx̂

n
t)(x̂

n
t)
⊤ + x̂n

t (∂θx̂
n
t)
⊤)− N

N − 1

(
(∂θm̂t)m̂

⊤
t + m̂t(∂θm̂t)

⊤)
1/2−−→
2○

E[∂θ
(
x̂n
t (x̂

n
t

)⊤
)]− ∂θ(m̂tm̂

⊤
t)

=
3○

∂θ(E[x̂
n
t (x̂

n
t)
⊤]− m̂tm̂

⊤
t)

= ∂θĈt.

(3.7.25)

98

For 1○ we have used the Lp convergence of x̂n
t to x̂n

t , ∂θx̂n
t to ∂θx̂

n
t , m̂t to m̂t and ∂θm̂t

to ∂θm̂t with rate N−1/2, and the fact that x̂n
t and ∂θx̂

n
t have finite moments of any order,

followed by Theorem 3.7.2. Convergence 2○ follows from law of large numbers in Lp since

(∂θx̂
n
t)(x̂

n
t)
⊤ are i.i.d. with finite moments, by the Cauchy-Schwarz inequality. 3○ is valid

since the expectation is taken over a distribution that is independent of θ. Both derivatives

∂θĈt and ∂θĈt exist. Similarly,

∂θK̂t = ∂θ
(
ĈtH(HĈtH

⊤ +R)−1
)

=
1○

(∂θĈt)H(HĈtH
⊤ +R)−1

− ĈtH(HĈtH
⊤ +R)−1(H(∂θĈt)H

⊤ +R)(HĈtH
⊤ +R)−1

1/2−−→
2○

(∂θĈt)H(HĈtH
⊤ +R)−1

− ĈtH(HĈtH
⊤ +R)−1(H(∂θĈt)H

⊤ +R)(HĈtH
⊤ +R)−1

=
1○

∂θ
(
ĈtH(HĈtH

⊤ +R)−1
)

= ∂θK̂t.

(3.7.26)

Here equalities 1○ and 3○ follow from chain rule. For 2○ we have used the Lp convergence

of Ĉt to Ĉt, ∂θĈt to ∂θĈt and (HĈtH
⊤ + R)−1 to (HĈtH

⊤ + R)−1 with rate N−1/2 (by

Eq. (3.7.18)), followed by Theorem 3.7.2. Both derivatives ∂θK̂t and ∂θK̂t exist since R ≻ 0.

To show Eq. (3.7.20) holds for step t + 1, we need to investigate the derivatives of the

analysis ensemble ∂θx
n
t , by plugging in the EnKF update formula:

99

∂θx
n
t = ∂θ(x̂

n
t + K̂t(yt + γnt −Hx̂n

t)

=
1○

(I − K̂tH)∂θx̂
n
t + (∂θK̂t)(yt + γnt −Hx̂n

t)

=
(
I − ĈtH

⊤(HĈtH
⊤ +R)−1H

)
∂θx̂

n
t + (∂θK̂t)(yt + γnt −Hx̂n

t)

1/2−−→
2○

(I − ĈtH
⊤(HĈtH

⊤ +R)−1H)∂θx̂
n
t + (∂θK̂t)(yt + γnt −Hx̂n

t)

= (I − K̂tH)∂θx̂
n
t + (∂θK̂t)(yt + γnt −Hx̂n

t)

=
3○

∂θ(x̂
n
t + K̂t(yt + γnt −Hx̂n

t)

= ∂θx
n
t .

(3.7.27)

Equalities 1○ and 3○ follow from chain rule. For 2○ we have used the Lp convergence of x̂n
t

to x̂n
t , ∂θx̂n

t to ∂θx̂
n
t , Ĉt to Ĉt, ∂θK̂t to ∂θK̂t, and (HĈtH

⊤ + R)−1 to (HĈtH
⊤ + R)−1,

with convergence rate N−1/2, and the fact that x̂n
t , ∂θx̂n

t and the Gaussian random variable

γnt have finite moments of any order, followed by Theorem 3.7.2. Both derivatives ∂θxnt and

∂θx
n
t exist since R ≻ 0. We also have the moment bound on ∂θx

n
t :

∥∂θxnt ∥ ≤ |I − K̂tH|∥∂θx̂n
t ∥p + |∂θK̂t|(|yt|+ ∥γnt ∥p + |H|∥x̂n

t ∥p) ≤ c, (3.7.28)

since x̂n
t , ∂θx̂

n
t and the Gaussian random variable γnt have finite moments of any order.

100

Then,

∂θx̂
n
t+1 = ∂θ(Ax

n
t + Sξnt)

=
1○

(∂θA)x
n
t + A(∂θx

n
t) + (∂θS)ξ

n
t

1/2−−→
2○

(∂θA)x
n
t + A(∂θx

n
t) + (∂θS)ξ

n
t

=
3○

∂θ(Ax
n
t + Sξnt)

= ∂θx̂
n
t+1.

(3.7.29)

Here equalities 1○ and 3○ follow from chain rule. For 2○ we have used the Lp convergence

of xnt to xnt and ∂θx
n
t to ∂θx

n
t . Both derivatives ∂θx̂

n
t+1 and ∂θx̂

n
t+1 exist since both ∂θx

n
t

and ∂θx
n
t exist. We also have the moment bound:

∥∂θx̂n
t+1∥p ≤ |∂θA|∥xnt ∥p + |A|∥∂θxnt ∥p + |∂θS|∥ξnt ∥p ≤ c, (3.7.30)

since xnt , ∂θxnt and Gaussian random variable ξnt have finite moments of any order. Thus

Eq. (3.7.20) is proved for step t + 1 and the induction step is finished, which concludes the

proof of the lemma.

Proof of Theorem 3.3.2. Recall the definition of ht Eq. (3.7.7). It suffices to show that, for

each t ≥ 1,

∂θ

(
ht(m̂t, Ĉt)

)
1/2−−→ ∂θ

(
ht(m̂t, Ĉt)

)
. (3.7.31)

We first investigate the convergence of derivatives of ht w.r.t m̂t and Ĉt. The derivatives are

101

computed in Eq. (3.7.9):

∂mht(m̂t, Ĉt) = −H⊤(HĈtH
⊤ +R)−1(yt −Hm̂t)

1/2−−→ −H⊤(HĈtH
⊤ +R)−1(yt −Hm̂t)

= ∂mht(m̂t, Ĉt),

(3.7.32)

and

∂Cht(m̂t, Ĉt) = −1

2
H⊤(HĈtH

⊤ +R)−1H

+
1

2
H⊤(HĈtH

⊤ +R)−1(yt −Hm̂t)(yt −Hm̂t)
⊤(HĈtH

⊤ +R)−1H

1/2−−→ −1

2
H⊤(HĈtH

⊤ +R)−1H

+
1

2
H⊤(HĈtH

⊤ +R)−1(yt −Hm̂t)(yt −Hm̂t)
⊤(HĈtH

⊤ +R)−1H,

(3.7.33)

where we have used the Lp convergence of m̂t to m̂t and (HĈtH
⊤+R)−1 to (HĈtH

⊤+R)−1

by Eq. (3.7.18), followed by Theorem 3.7.2. Then, by chain rule,

∂θ

(
ht(m̂t, Ĉt)

)
=
(
∂mht(m̂t, Ĉt)

)⊤
∂θm̂t + Tr

((
∂Cht(m̂t, Ĉt)

)⊤
∂θĈt

)
1/2−−→

(
∂mht(m̂t, Ĉt)

)⊤
∂θm̂t + Tr

((
∂Cht(m̂t, Ĉt)

)⊤
∂θĈt

)
= ∂θ

(
ht(m̂t, Ĉt)

)
.

(3.7.34)

Both derivatives exist since ∂θm̂t, ∂θm̂t, ∂θĈt and ∂θĈt exist, by Theorem 3.7.4. We have

used Eq. (3.7.32) and Eq. (3.7.33) above, the Lp convergence of ∂θm̂t to ∂θm̂t and ∂θĈt to

∂θĈt with rate N−1/2 by Theorem 3.7.4, followed by Theorem 3.7.2.

Remark 3.7.5. We again emphasize that all the derivatives and chain rule formulas do not

need to be computed by hand in applications, but rather through the modern autodiff libraries.

We list them out only for the purpose of proving convergence results.

102

3.7.3 Additional Figures

See Fig. 3.10 and 3.11 for additional figures to the linear Gaussian experiment §3.5.1:

102 103 104 105

N

10−4

10−3

10−2

10−1

L
2

es
ti

m
at

io
n

er
ro

r
(L

)

102 103 104 105

N

10−3

10−2

10−1

100

101

L
2

es
ti

m
at

io
n

er
ro

r
(∇

α
L)

EnKF, dx = 20

PF, dx = 20

EnKF, dx = 40

PF, dx = 40

EnKF, dx = 80

PF, dx = 80

O(N−1/2)

102 103 104 105

N

10−3

10−2

10−1

100

L
2

es
ti

m
at

io
n

er
ro

r
(∇

β
L)

Figure 3.10: Relative L2 estimation errors of the log-likelihood (left) and its gradient w.r.t. α
(middle) and β (right), computed using EnKF and PF, as a function of N , for the linear-Gaussian
model (3.5.1). State dimension dx ∈ {20, 40, 80}. θ is evaluated at α = (0.5, 0.5, 0.5), β = (1, 0.1).
(§3.5.1)

102 103 104 105

N

10−4

10−3

10−2

10−1

L
2

es
ti

m
at

io
n

er
ro

r
(L

)

102 103 104 105

N

10−3

10−2

10−1

100

101

L
2

es
ti

m
at

io
n

er
ro

r
(∇

α
L)

EnKF, no taper

EnKF, taper=20

EnKF, taper=5

PF

O(N−1/2)

102 103 104 105

N

10−3

10−2

10−1

100
L

2
es

ti
m

at
io

n
er

ro
r

(∇
β
L)

Figure 3.11: Relative L2 estimation errors of log-likelihood (left) and its gradient w.r.t. α (middle)
and β (right), computed using EnKF and PF, with different covariance tapering radius applied to
EnKF. State dimension dx = 80. θ is evaluated at α = (0.5, 0.5, 0.5), β = (1, 0.1).

3.7.4 Auto-differentiable Particle Filters

Here we review the auto-differentiable particle filter methods introduced in, e.g. [Naesseth

et al., 2018; Maddison et al., 2017; Le et al., 2018]. A particle filter (PF) propagates N

weighted particles (w1:N
t , x1:Nt) to approximate the filtering distribution pθ(xt|y1:t). It first

103

specifies a proposal distribution r(xt|xt−1, yt). Then it iteratively samples new particles from

the proposal, followed by a reweighing procedure:

x̂n
t ∼ r(·|xnt−1, yt), ŵn

t =
pθ(x̂

n
t |xnt−1)N (yt;Hx̂n

t , R)

r(x̂n
t |xnt−1, yt)

wn
t−1. (3.7.35)

A resampling step is performed when necessary, e.g., if the effective sample size drops below

a certain threshold:

(wn
t , x

n
t) =

(1

N
, x̂

ant
t

)
, where ant ∼ Categorical

(
·|ŵ1:N

t

)
. (3.7.36)

We refer the reader to [Doucet and Johansen, 2009] for a more general introduction to PF.

Here we consider PF with the optimal proposal r(x̂n
t |xnt−1, yt) := pθ(x̂

n
t |xnt−1, yt), as it is

readily available for the family of SSMs that is considered in this paper [Doucet et al., 2000;

Sanz-Alonso et al., 2018]. The unnormalized weights ŵn
t also provides an approximation to

the data log-likelihood. Define

LPF(θ) =
T∑
t=1

log
(N∑
n=1

ŵn
t

)
. (3.7.37)

Note that the weights ŵn
t depends implicitly on θ. It is a well-known result [Del Moral, 2004;

Andrieu et al., 2010] that the data likelihood expL(θ) can be unbiasedly estimated, and a

lower bound for L(θ) can be derived:

E[expLPF(θ)] = expL(θ), E[LPF(θ)] ≤ L(θ), (3.7.38)

where the last inequality follows from Jensen’s inequality. We summarize the optimal PF

algorithm and parameter learning procedure (AD-PF) in Alg. 3.7.1 and Alg. 3.7.2 below.

AD-PF with truncated backprop (AD-PF-T) can be built in a similar fashion as AD-EnKF-

T (Alg. 3.4.2), and is omitted. For a derivation of update rules of optimal PF, see e.g.

104

[Sanz-Alonso et al., 2018]. For AD-PF where the proposal is learned from data, see e.g.

[Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018]. Following the same authors,

the gradients from the resampling steps are discarded. Therefore, ∇θLPF is biased and

inconsistent as N →∞ (see [Corenflos et al., 2021]).

Algorithm 3.7.1 Optimal Particle Filtering and Log-likelihood Estimation

Input: θ = {α, β}, y1:T , (w1:N
0 , x1:N0). (If (w1:N

0 , x1:N0) is not specified, xn0
i.i.d.∼ p0(x0), wn

0 =

1/N .)
1: Initialize LPF(θ) = 0.
2: Set S = HQβH

⊤ +R and K = QβH
⊤S−1.

3: for t = 1, . . . , T do
4: Set x̂n

t = (I −KH)Fα(x
n
t−1) +Kyt + ξnt , where ξnt ∼ N (0, Qβ).

5: Set ŵ n
t = N

(
yt;HFα(x

n
t−1), S

)
6: Set (wn

t , x
n
t) =

(
1
N , x̂

ant
t

)
, where ant ∼ Categorical

(
·|ŵ1:N

t

)
▷ Resampling step

7: Set LPF(θ)← LPF(θ) + log
(∑N

n=1 ŵ
n
t

)
.

8: end for
Output: PF particles (w1:N

0:T , x1:N0:T). Log-likelihood estimate LPF(θ).

Algorithm 3.7.2 Auto-differentiable Particle Filtering (AD-PF)
Input: Observations y1:T . Learning rate η.

1: Initialize SSM parameter θ0 and set k = 0.
2: while not converging do
3: (w1:N

0:T , x1:N0:T),LPF(θ
k) = ParticleFilter(θk, y1:T). ▷ Alg. 3.7.1

4: Compute ∇θLPF(θ
k) by auto-differentiating the map θk 7→ LPF(θ

k).
5: Set θk+1 = θk + η∇θLPF(θ

k) and k ← k + 1.
6: end while

Output: Learned SSM parameter θk and PF particles (w1:N
0:T , x1:N0:T).

105

3.7.5 Expectation-Maximization with Ensemble Kalman Filters

Here we review the EM methods introduced in, e.g., [Pulido et al., 2018; Bocquet et al.,

2020]. Consider the log-likelihood expression

log pθ(y1:T) = log

∫
pθ(y1:T , x0:T)dx0:T (3.7.39)

= log Eq(x0:T |y1:T)
[pθ(y1:T , x0:T)
q(x0:T |y1:T)

]
(3.7.40)

≥ Eq(x0:T |y1:T)
[
log pθ(y1:T , x0:T)− log q(x0:T |y1:T)

]
:= L(q, θ). (3.7.41)

The algorithm maximizes L(q, θ), which alternates between two steps:

1. (E-step) Fix θk. Find qk that maximizes L(q, θk), which can be shown to be the exact

posterior

qk(x0:T |y1:T) = pθk(x0:T |y1:T).

2. (M-step) Fix qk. Find θk+1 that maximizes L(qk, θ):

θ∗ = argmax
θ

Eqk(x0:T |y1:T)
[
log pθ(y1:T , x0:T)

]
. (3.7.42)

The exact posterior in the E-step is not always available, so one can run an Ensemble Kalman

Smoother (EnKS) to approximate the distribution pθk(x0:T |y1:T) by a group of equally-

weighted particles {xk,n0:T }Nn=1, and replace the expectation in the M-step by an Monte-Carlo

average among these particles.

Consider again the nonlinear SSM defined by equations (3.2.1)-(3.2.2)-(3.2.3) with dy-

namics Fα and noise covariance Qβ . The key to the methods proposed in, e.g., [Pulido et al.,

2018; Bocquet et al., 2020] is that, for the optimization problem Eq. (3.7.42) in the M-steps,

optimizing w.r.t. α is hard, but optimizing w.r.t. β is easy. If we write {xn0:T }Nn=1 as an

approximation of q(x0:T |y1:T) (we drop k here for notation convenience), the optimization

106

problem Eq. (3.7.42) can be rewritten as (using Monte-Carlo approximation)

argmax
θ

1

N

N∑
n=1

log pθ(y1:T , x
n
0:T) = argmax

α,β

1

N

N∑
n=1

T∑
t=1

logN
(
xnt ;Fα(x

n
t−1), Qβ

)
.

When α is given, optimizing w.r.t. β becomes the usual MLE computation for covariance

matrix of a multivariate Gaussian. We summarize the EM algorithm in Algorithm 3.7.3.

Note that this special type of M-step update only applies to SSMs with transition kernel of

the form Eq. (3.2.1). For more general SSMs, updates for β may not admit a closed form

expression, and one may have to resort to a joint optimzation of (α, β) in the M-steps.

Algorithm 3.7.3 Expectation Maximization (EM) with Ensemble Kalman Filter
Input: Observations y1:T . Learning rate η. Smoothing parameter S. Inner-loop gradi-
ent ascent steps J .

1: Initialize SSM parameter θ0 = (α0, β0). Initialize k = 0.
2: while not converging do
3: x1:N0:T = EnsembleKalmanFilter(θk, y1:T). ▷ Alg. 3.3.1
4: Perform smoothing for lag S (see e.g. [Katzfuss et al., 2020]) and update x1:N0:T .
5: Set

Qβk+1 =
1

NT

N∑
n=1

T∑
t=1

(
xnt − Fαk(x

n
t−1)

)(
xnt − Fαk(x

n
t−1)

)⊤
.

6: Initialize αk,0 = αk.
7: for j = 0, . . . , J − 1 do
8: αk,j+1 = αk,j + η∇αLEM-EnKF(α

k,j , x1:N0:T), where

LEM-EnKF(α, x
1:N
0:T) :=

1

N

N∑
n=1

T∑
t=1

logN (xnt ;Fα(x
n
t−1), Qβk+1).

9: end for
10: Set αk+1 = αk,J , k ← k + 1.
11: end while

Output: Learned SSM parameter θk = (αk, βk) and particles x1:N0:T .

107

3.7.6 Implementation Details and Additional Performance Metrics

Linear-Gaussian Model

The relative L2 errors of the log-likelihood and gradient estimates in §3.5.1 are given by

E[(LEnKF(θ)− L(θ))2]1/2
|L(θ)| , (3.7.43)

and

E[|∇αLEnKF(θ)−∇αL(θ)|2]1/2
|∇αL(θ)|

,
E[|∇βLEnKF(θ)−∇βL(θ)|2]1/2

|∇βL(θ)|
. (3.7.44)

The tapering matrix ρ in §3.5.1 is defined through [ρ]i,j = φ
(|i−j|

r

)
, where

φ(z) =


1− 5

3z
2 + 5

8z
3 + 1

2z
4 − 1

4z
5, if 0 ≤ z < 1,

4− 5z + 5
3z

2 + 5
8z

3 − 1
2z

4 + 1
12z

5 − 2
3z , if 1 ≤ z < 2,

0, if z ≥ 2.

(3.7.45)

We initialize the parameter learning at α0 = (0.5, 0.5, 0.5) and β0 = (1, 0.1). For a fair

comparison of convergence performance, we set the learning rate to be ηα = 10−4 for α and

ηβ = 10−3 for β for all methods, and perform gradient ascent for 1000 iterations.

Lorenz-96

Additional Performance Metrics

Averaged Diagnosed Error Level: Measures the level of the learned model error:

σβ =
√

Tr(Qβ)/dx. (3.7.46)

108

Forecast RMSE (RMSE-f): Measures the forecast error of the learned vector field fα

compared to the reference vector field f∗ . We select P = 4000 points {xp}Pp=1 uniformly at

random from the attractor of the reference system, by simulating a long independent run.

The forecast RMSE is defined as

RMSE-f =

√√√√√ 1

dxP

P∑
p=1

∣∣∣Fα(xp)− F ∗(xp)
∣∣∣2 . (3.7.47)

Here we recall that F ∗ and Fα are the ∆s-flow maps with fields f∗ and fα, where ∆s is the

time between observations.

Analysis/Filter RMSE (RMSE-a): Measures the state estimation error of the learned

state transition kernel pθ(xt|xt−1). Let (xtrain
0:T , ytrain

1:T) be one sequence of training data.

Then a filtering run is performed over the data ytrain
1:T with the learned state transition

kernel pθ(xt|xt−1), using EnKF/PF, depending on which method is used for training. The

(weighted) ensemble/particle mean x̄1:T is recorded and the filter/analysis RMSE is defined

as

RMSE-a =

√√√√√ 1

dx(T − Tb)

T∑
t=Tb

∣∣x̄t − xtrain
t

∣∣2. (3.7.48)

Here Tb is the number of burn-in steps. For simplicity, we set Tb = ⌊T/5⌋. If multiple

sequences of training data are used, then the quantity inside the square root is further

averaged among all training sequences.

Test Log-likelihood: Measures the approximate data log-likelihood under the learned

state transition kernel. Let (xtest
0:T , ytest

1:T) be a sequence of test data drawn from the refer-

ence model independent of the training data used to estimate θ. The test log-likelihood is

defined as LEnKF(θ) (or LPF(θ)) computed over ytest
1:T using the corresponding EnKF/PF

approximation, depending on which method is used for training.

109

Implementation Details We use Adam [Kingma and Ba, 2014] throughout this experi-

ment, with a learning rate that decays polynomially with the number of training iterations.

Specifically, let i be the index of current iteration. The learning rate ηi is defined as:

ηi =


η0, i ≤ I0,

η0(i− I0)
−τ , i > I0,

(3.7.49)

where η0, I0, and τ are hyperparaters to be specified. We set I0 = 10 throughtout the

experiment. β is initialized at β0 = 2 · 1 where 1 ∈ Rdx is the all-ones vector.

Parameterized Dynamics α is initialized at α0 = 0 ∈ R18. For AD-EnKF-T and AD-

PF-T we set η0 = 10−1 and τ = 0.5. For EM we set η0 = 10−1, τ = 1, inner-loop gradient

ascent steps J = 3 and smoothing parameter S = 0. The choice of S is selected from

{0, 2, 4, 6, 8}, following [Bocquet et al., 2020; Brajard et al., 2020]. Although EM-based

approaches in theory require to compute the smoothing rather than filtering distribution

(see e.g. [Bishop, 2006; Bocquet et al., 2020]), in practice the ensemble-based smoothing

algorithms may fail to produce an accurate approximation. All hyperparameters are tuned

on validation sets. We also find that only the choice of η0 is crucial to the convergence of

AD-EnKF-T empirically, while other hyperparameters (I0 and τ) have small effects on the

convergence speed.

Fully Unknown Dynamics NN weights α0 are initialized at random using PyTorch’s

default initialization. For AD-EnKF-T, AD-PF-T and EM we set η0 = 10−2 and τ = 1. For

EM we set inner-loop gradient ascent steps J = 3 and smoothing parameter S = 0. The

structure of fNN
α is detailed in Fig. 3.12.

Model Correction NN weights α0 are initialized at random using PyTorch’s default

initialization. For AD-EnKF-T and AD-PF-T we set η0 = 10−3 and τ = 0.75. For EM we

110

set η0 = 10−3 and τ = 1, J = 3 and S = 0. The structure of gNN
α is the same as fNN

α in the

previous experiment, see Fig. 3.12.

x

CNN(1)
1 CNN(2)

1 CNN(3)
1

×

CNN2

CNN3

fNN
α (x)

(a) Network structure

#in #out kernel size
CNN1 1 72(24×3) 5, circular
CNN2 48(24×2) 37 5, circular
CNN3 37 1 1

(b) Network details

Figure 3.12: Structure of fNN
α . Output channels of CNN1 is divided into three groups of equal

length CNN(1)
1 , CNN(2)

1 and CNN(3)
1 . Input channels to CNN2 is a concatenation of CNN(1)

1 and
(CNN(2)

1 × CNN(3)
1), where the multiplication is point-wise.

111

CHAPTER 4

REDUCED-ORDER AUTODIFFERENTIABLE ENSEMBLE

KALMAN FILTERS

4.1 Introduction

Reconstructing and forecasting a time-evolving state given partial and noisy time-series

data is a fundamental problem in science and engineering, with far-ranging applications in

numerical weather forecasting, climate, econometrics, signal processing, stochastic control,

and beyond. Two common challenges are the presence of model error in the dynamics

governing the evolution of the state, and the high computational cost to simulate operational

model dynamics. Model error hinders the accuracy of forecasts, while the computational

cost to simulate the dynamics hinders the quantification of uncertainties in these forecasts.

Both challenges can be alleviated by leveraging data to learn a surrogate model for the

dynamics. Data-driven methods enable learning closure terms and unresolved scales in the

dynamics, thus enhancing the forecast skill of existing models. In addition, surrogate models

are inexpensive to simulate and enable using a large number of particles within ensemble

Kalman or Monte Carlo methods for state reconstruction and forecasting, thus enhancing

the uncertainty quantification.

This paper investigates a framework for state reconstruction and forecasting that relies

on data-driven surrogate modeling of the dynamics in a low-dimensional latent space. Our

reduced-order autodifferentiable ensemble Kalman filters (ROAD-EnKFs) leverage the EnKF

algorithm to estimate by maximum likelihood the latent dynamics as well as a decoder from

latent space to state space. The learned latent dynamics and decoder are subsequently used

to reconstruct and forecast the state. Numerical experiments show that, compared to existing

methods, ROAD-EnKFs achieve higher accuracy at lower computational cost provided that

the state dynamics exhibit a hidden low-dimensional structure. When such structure is

112

not expressed in the latent dynamics, ROAD-EnKFs achieve similar accuracy at lower cost,

making them a promising approach for surrogate state reconstruction and forecasting.

Our work blends in an original way several techniques and insights from inverse prob-

lems, data assimilation, machine learning, and reduced-order modeling. First, if the state

dynamics were known and inexpensive to simulate, a variety of filtering and smoothing al-

gorithms from data assimilation (e.g. extended, ensemble, and unscented Kalman filters

and smoothers, as well as particle filters) can be used to reconstruct and forecast the state.

These algorithms often build on a Bayesian formulation, where posterior inference on the

state combines the observed data with a prior distribution defined using the model dynam-

ics. Hence, learning a surrogate model for the dynamics can be interpreted as learning a

prior regularization for state reconstruction and forecasting. Second, the task of learning the

regularization can be viewed as an inverse problem: we seek to recover the state dynamics

from partially and noisily observed trajectories. Data assimilation facilitates the numeri-

cal solution of this inverse problem by providing estimates of the hidden state. Third, our

work leverages machine learning and reduced-order modeling to parameterize the dynam-

ics in a low-dimensional latent space and learn a decoder from latent space to state space.

In particular, we parameterize the decoder using recent ideas from discretization-invariant

operator learning. Our numerical experiments demonstrate the computational advantage of

co-learning an inexpensive surrogate model in latent space together with a decoder, rather

than a more expensive-to-simulate dynamics in state space.

4.1.1 Related Work

Ensemble Kalman Filters in Data Assimilation The EnKF algorithm, reviewed in

[Houtekamer and Zhang, 2016; Katzfuss et al., 2016; Roth et al., 2017; Sanz-Alonso et al.,

2018], is a popular method for state reconstruction and forecasting in data assimilation, with

applications in numerical weather forecasting, the geophysical sciences, and signal processing

113

[Evensen, 1994, 2009; Szunyogh et al., 2008; Whitaker et al., 2008]. The EnKF propagates

N equally-weighted particles through the dynamics, and assimilates new observations via

Kalman-type updates computed with empirical moments. If the state dynamics are known,

the EnKF can achieve accurate reconstruction with a small ensemble size N even in applica-

tions where the state and the observations are high-dimensional, provided that the effective

dimension is moderate [Ghattas and Sanz-Alonso, 2022]; EnKFs with a small ensemble size

have a low computational and memory cost compared to traditional Kalman filters [Roth

et al., 2017]. Ensemble Kalman methods are also successful solvers for inverse problems, as

reviewed in [Chada et al., 2021]. In this paper, we employ the EnKF to approximate the

data log-likelihood of surrogate models for unknown or expensive-to-simulate dynamics. The

use of the EnKF for maximum likelihood estimation (MLE) was first proposed in [Stroud

et al., 2010], which adopted a derivative-free optimization approach; see also [Pulido et al.,

2018]. Empirical studies on the likelihood computed with EnKFs and other data assimilation

techniques can be found in [Carrassi et al., 2017; Metref et al., 2019]. The application of the

EnKF to approximate the data log-likelihood within pseudo-marginal Markov chain Monte

Carlo methods for Bayesian parameter estimation was investigated in [Drovandi et al., 2021];

see also [Stroud and Bengtsson, 2007; Stroud et al., 2018]. The paper [Chen et al., 2022]

introduced derivative-based optimization of an EnKF approximation of the log-likelihood to

perform state and parameter estimation in high-dimensional nonlinear systems. However, to

the best of our knowledge, no prior work combines estimation of the log-likelihood via EnKFs

with learning low-dimensional surrogate models, including both surrogate latent dynamics

and a decoder from latent space to state space.

Blending Data Assimilation with Reduced-Order Models Model reduction tech-

niques have been employed in data assimilation to improve the state reconstruction accuracy

in high-dimensional dynamical systems. The assimilation in the unstable subspace (AUS)

method [Carrassi et al., 2008; Trevisan et al., 2010; Palatella et al., 2013; Sanz-Alonso and

114

Stuart, 2015; Law et al., 2016a] projects the dynamics onto a time-dependent subspace of

the tangent space where the dynamics are unstable, and assimilates the observations therein.

The unstable directions are determined by the Lyapunov vectors with nonnegative Lyapunov

exponents, and can be approximated using discrete QR algorithms [Dieci and Van Vleck,

2007, 2015]. The observations can also be projected onto the unstable directions to reduce

the data dimension [Maclean and Van Vleck, 2021]. We refer to [Benner et al., 2015] for

a review of projection-based model reduction techniques. However, these methods rely on

prior knowledge about the dynamics to identify the unstable subspaces and to construct

the latent dynamics, and data assimilation is performed after the subspaces are found. In

contrast, our paper introduces a framework that uses data assimilation as a tool to build

surrogate latent dynamics from data. Another approach to reduce the dimension of data

assimilation problems exploits the conditionally Gaussian distribution of slow variables aris-

ing in the stochastic parameterization of a wide range of dynamical systems [Chen and Qi,

2022; Chen and Majda, 2018; Majda and Qi, 2018]. This conditional Gaussian structure

can be exploited to obtain adequate uncertainty quantification of forecasts with a moderate

sample size. A caveat, however, is that identifying the slow variables can be challenging in

practice. As in our approach, these techniques often rely on machine learning to learn closure

terms for the dynamics [Chen and Qi, 2022]. Finally, we refer to [Spantini et al., 2018] for

a discussion on how the effective dimension of transport map methods for data assimilation

can be reduced by exploiting the conditional independence structure of the reference-target

pair.

Merging Data Assimilation with Machine Learning Recent developments in ma-

chine learning to model dynamical systems from data are reviewed in [Levine and Stuart,

2021]. One line of work [Tandeo et al., 2015; Ueno and Nakamura, 2014; Dreano et al.,

2017; Pulido et al., 2018] embeds the EnKF and the ensemble Kalman smoother (EnKS)

into the expectation-maximization (EM) algorithm for MLE [Dempster et al., 1977], with a

115

special focus on estimation of error covariance matrices. The expectation step (E-step) is

approximated by EnKF/EnKS with the Monte Carlo EM objective [Wei and Tanner, 1990].

A subsequent line of work [Nguyen et al., 2019; Brajard et al., 2020; Bocquet et al., 2020;

Farchi et al., 2021; Wikner et al., 2020] introduces training of a neural network (NN) sur-

rogate model in the maximization step (M-step) based on the states filtered by the E-step.

Unfortunately, it can be hard to achieve an accurate approximation of the E-step using

EnKF/EnKS [Chen et al., 2022]. Another line of work [Naesseth et al., 2018; Maddison

et al., 2017; Le et al., 2018; Corenflos et al., 2021] approximates the data log-likelihood with

particle filters (PFs) [Gordon et al., 1993; Doucet and Johansen, 2009] and performs MLE

using derivative-based optimization. However, the resampling step in PFs is not readily dif-

ferentiable, and, in addition, PFs often collapse when the dimensions of the state and the

observations are large [Agapiou et al., 2017; Bengtsson et al., 2008]. Finally, techniques that

leverage machine learning to obtain inexpensive analog ensembles for data assimilation are

starting to emerge [Yang and Grooms, 2021].

Data-Driven Modeling of Dynamical Systems with Machine Learning Machine

learning is also useful for dimensionality reduction in time-series modeling. As an important

example, recurrent neural networks (RNNs) [Lipton et al., 2015; Yu et al., 2019] assimilate

data into the time-evolving latent states using NN updates. The paper [Rubanova et al.,

2019] models the latent state evolution in recurrent networks with NN-embedded differential

equations [Chen et al., 2018]. Other types of NN updates to incorporate the data into latent

states include gated recurrent units (GRU) [De Brouwer et al., 2019; Jordan et al., 2021], long

short-term memory (LSTM) [Lechner and Hasani, 2020; Harlim et al., 2021], and controlled

differential equations (CDEs) [Kidger et al., 2020]. Another approach is to directly model the

differential equation governing the state dynamics from observation data using regression.

Such methods include sparse regression over a dictionary of candidate functions using L1-

regularization [Brunton et al., 2016; Tran and Ward, 2017; Schaeffer et al., 2018]. These

116

techniques rely on full observation of the state, and, importantly, on time-derivative data

that are rarely available in practice and are challenging to approximate from noisy discrete-

time observation data [He et al., 2022b,a]. When the data are not guaranteed to lie in

the same space as the underlying dynamics, an autoencoder structure can be jointly learned

with the latent state dynamics [Champion et al., 2019]. Different modeling techniques can be

applied to learn the latent state dynamics, including sparse dictionary regression [Champion

et al., 2019], recurrent networks [Gonzalez and Balajewicz, 2018; Maulik et al., 2021], and the

Koopman operator learning [Lusch et al., 2018]. It is important to notice that, in contrast to,

e.g., [Brunton et al., 2016; He et al., 2022c], the focus of this paper is on state reconstruction

and forecasting, rather than on obtaining an interpretable model for the dynamics.

4.1.2 Outline and Main Contributions

• §4.2 formalizes the problem setting and goals. We introduce a reduced-order state-

space model (SSM) framework, where the dynamics are modeled in a low-dimensional

latent space and learned jointly with a decoder from latent space to state space.

• §4.3 introduces our main algorithm, the reduced-order autodifferentiable ensemble

Kalman filter (ROAD-EnKF). As part of the derivation of the algorithm, we discuss

the use of EnKFs to estimate the data log-likelihood within reduced-order SSMs.

• §4.4 contains important implementation considerations, including the design of the

decoder, the use of truncated backpropagation to enhance the scalability for large

windows of data, and the choice of regularization in latent space.

• §4.5 demonstrates the performance of our method in three examples: (i) a Lorenz 63

model embedded in a high-dimensional space, where we compare our approach to the

SINDy-AE algorithm [Champion et al., 2019]; (ii) Burgers equation, where we showcase

that ROAD-EnKFs are able to forecast the emergence of shocks, a phenomenon not

117

included in our training data-set; and (iii) Kuramoto-Sivashinky equation, a common

test problem for filtering methods due to its chaotic behavior, where the ROAD-EnKF

framework provides a computational benefit over state-of-the-art methods with similar

accuracies.

• §4.6 closes with a summary of the paper and open questions for further research.

Notation

We denote by t ∈ {0, 1, . . . } a discrete-time index and by n ∈ {1, . . . , N} a particle index.

Time indices will be denoted with subscripts and particles with superscripts, so that unt

represents a generic particle n at time t. We denote the particle dimension by du. We denote

ut0:t1 := {ut}t1t=t0
and un1:n2 := {un}n1n=n0 . The collection un0

:n1
t0:t1

is defined similarly. The

Gaussian density with mean m and covariance C evaluated at u is denoted by N (u;m,C).

The corresponding Gaussian distribution is denoted by N (m,C).

4.2 Problem Formulation

In this section, we formalize and motivate our goals: reconstructing and forecasting a time-

evolving, partially-observed state with unknown or expensive-to-simulate dynamics. An

important step towards these goals is to learn a surrogate model for the dynamics. In

Subsection 4.2.1 we consider an SSM framework where the state dynamics are parameterized

and learned in order to reconstruct and forecast the state. Next, in Subsection 4.2.2, we

introduce a reduced-order SSM framework where the dynamics are modeled in a latent space

and a decoder from latent space to state space is learned along with the latent dynamics.

Our ROAD-EnKF algorithm, introduced in Section 4.3, operates in this reduced-order SSM.

118

4.2.1 Setting and Motivation

Consider a parameterized SSM of the form:

(dynamics) ut = Fα(ut−1) + ξt, ξt ∼ N (0, Qβ), 1 ≤ t ≤ T, (4.2.1)

(observation) yt = Htut + ηt, ηt ∼ N (0, Rt), 1 ≤ t ≤ T, (4.2.2)

(initialization) u0 ∼ pu(u0). (4.2.3)

The state dynamics map Fα : Rdu → R
du and error covariance matrix Qβ ∈ Rdu×du depend

on unknown parameter θ := (α⊤, β⊤)⊤ ∈ Rdθ . The observation matrices Ht ∈ Rdy×du and

error covariance matrices Rt ∈ Rdy×dy are assumed to be known and possibly time-varying.

We further assume independence of all random variables u0, ξ1:T , and η1:T .

Given observation data y1:T drawn from the SSM (4.2.1)-(4.2.3), we aim to accomplish

two goals:

Goal 1: Reconstruct the states u1:T .

Goal 2: Forecast the states uT+1:T+Tf for some forecast lead time Tf ≥ 1.

state space u0 u1 u2 · · · uT uT+1 · · · uT+Tf

observation space y1 y2 · · · yT

Figure 4.1: Structure of data under SSM (4.2.1)-(4.2.3), where we assume only observations
y1:T := {y1, . . . , yT } are available. Our goals are to reconstruct the states u1:T (Goal 1) and to
forecast future states uT+1:T+Tf

for some Tf ≥ 1 (Goal 2).

If the true parameter θ ∈ Rdθ was known and the dynamics were inexpensive to simulate,

the first goal can be accomplished by applying a filtering (or smoothing) algorithm on the

SSM (4.2.1)-(4.2.3), while the second goal can be accomplished by iteratively applying the

dynamics model Eq. (4.2.1) to the reconstructed state uT . We are interested in the case

where θ needs to be estimated in order to reconstruct and forecast the state.
119

The covariance Qβ in the dynamics model (4.2.1) may represent model error or stochastic

forcing in the dynamics; in either case, estimating Qβ from data can improve the reconstruc-

tion and forecast of the state. In this paper, we are motivated by applications where Fα

represents a surrogate model for the flow between observations of an autonomous ordinary

differential equation (ODE). Letting ∆s be the equally-spaced time between observations

and fα : Rdu 7→ R
du be the parameterized vector field of the differential equation, we then

have

(ODE)
du
ds

= fα(u), Fα : u(s) 7→ u(s+∆s), (4.2.4)

where u(s) ∈ Rdu is the state as a function of continuous-time variable s ≥ 0. The ODE

(4.2.4) may arise from spatial discretization of a system of partial differential equations

(PDEs). For instance, we will consider 1-dimensional partial differential equations for u(x, s)

of order κ ≥ 1, where u is a function of the spatial variable x ∈ [0, L] and continuous-time

variable s ≥ 0:

(PDE)
∂u

∂s
= fα

(
u,

∂u

∂x
, . . . ,

∂κu

∂xκ

)
, Fα : u(·, s) 7→ u(·, s+∆s), (4.2.5)

with suitable boundary conditions. After discretizing this equation on a spatial domain with

grid points 0 = x1 < x2 < · · · < xM = L, Eq. (4.2.5) can be expressed in the form of

Eq. (4.2.4) by replacing the spatial derivatives with their finite difference approximations,

and u, fα, Fα with their finite-dimensional approximations on the grid. As a result, du equals

the number of grid points M . Several examples and additional details will be given in §4.5.

4.2.2 Reduced-Order Modeling

When the state is high-dimensional (i.e., du is large), direct reconstruction and forecast

of the state is computationally expensive, and surrogate modeling of the state dynamics

map Fα becomes challenging. We then advocate reconstructing and forecasting the state

120

ut through a low-dimensional latent representation zt, modeling the state dynamics within

the low-dimensional latent space. This idea is formalized via the following reduced-order

parameterized SSM:

(latent dynamics) zt = Gα(zt−1) + ζt, ζt ∼ N (0, Sβ), 1 ≤ t ≤ T, (4.2.6)

(decoding) ut = Dγ(zt), 1 ≤ t ≤ T, (4.2.7)

(observation) yt = Htut + ηt, ηt ∼ N (0, Rt), 1 ≤ t ≤ T, (4.2.8)

(latent initialization) z0 ∼ pz(z0). (4.2.9)

The latent dynamics map Gα : Rdz 7→ R
dz and error covariance matrix Sβ ∈ Rdz×dz are

defined on a dz dimensional latent space with dz < du, and the decoder function Dγ : Rdz 7→

R
du maps from latent space to state space. The reduced-order SSM depends on an unknown

parameter θ := (α⊤, β⊤, γ⊤)⊤ ∈ Rdθ . The remaining assumptions are the same as in §4.2.1.

latent space

state space

z0 z1 z2 · · · zT zT+1 · · · zT+Tf

u1 u2 · · · uT uT+1
· · ·

uT+Tf

observation space y1 y2 · · · yT

Figure 4.2: Structure of data under reduced-order SSM (4.2.6)-(4.2.9), where we assume only
observations y1:T := {y1, . . . , yT } are available. Our goals are to reconstruct the states u1:T (Goal
1) and to forecast future states uT+1:T+Tf

for some Tf ≥ 1 (Goal 2).

Writing Hγ,t(·) := HtDγ(·), the reduced-order SSM (4.2.6)-(4.2.9) can be combined into

(latent dynamics) zt = Gα(zt−1) + ζt, ζt ∼ N (0, Sβ), 1 ≤ t ≤ T, (4.2.10)

(observation) yt = Hγ,t(zt) + ηt, ηt ∼ N (0, Rt), 1 ≤ t ≤ T, (4.2.11)

(latent initialization) z0 ∼ p(z0), (4.2.12)

121

where the observation function Hγ,t(·) is nonlinear if the decoder Dγ(·) is nonlinear. As in

Subsection 4.2.1, the map Gα may be interpreted as the flow between observations of an

ODE with vector field gα : Rdz 7→ R
dz .

If the true parameter θ ∈ Rdθ was known, given observation data y1:T drawn from

the reduced-order SSM (4.2.6)-(4.2.9), we can reconstruct the states u1:T (Goal 1) by first

applying a filtering (or smoothing) algorithm on (4.2.10)-(4.2.12) to estimate z1:T , and then

applying the decoder Dγ . We can forecast the states uT+1:T+Tf (Goal 2) by first applying

iteratively the latent dynamics model Eq. (4.2.6) to the reconstructed latent state zT , and

then applying the decoder Dγ . As in §4.2.1, we are interested in the case where θ needs to

be estimated from the given data y1:T .

4.3 Reduced-Order Autodifferentiable Ensemble Kalman Filters

As discussed in the previous section, to achieve both goals of state reconstruction and fore-

cast, it is essential to obtain a suitable surrogate model for the dynamics by learning the

parameter θ. The general approach we take is the following: (1) estimate θ with maximum

likelihood; (2) apply a filtering algorithm with estimated parameter θ to reconstruct and

forecast the states u1:T . As we shall see, the maximum likelihood estimation of θ will rely

itself on a filtering algorithm. For the SSM in §4.2.1, this approach was introduced in [Chen

et al., 2022] via AD-EnKF (Algorithm 4.1 in [Chen et al., 2022]). Here we focus on the

reduced-order SSM in §4.2.2, namely (4.2.10)-(4.2.12), which is a more general case than the

SSM in §4.2.1; this explains the terminology reduced-order AD-EnKF (ROAD-EnKF).

In §4.3.1, we describe how the log-likelihood L(θ) = log pθ(y1:T) can be expressed in

terms of the normalizing constants that arise from sequential filtering. In §4.3.2, we give

background on EnKFs and on how to use these filtering algorithms to estimate L(θ). In

§4.3.3, we introduce our ROAD-EnKF method that takes as input multiple independent

instances of observation data yI1:T across the same time range, and performs both state

122

reconstruction and forecasting.

4.3.1 Sequential Filtering and Data Log-Likelihood

Suppose that θ = (α⊤, β⊤, γ⊤)⊤ is known. We recall that, for 1 ≤ t ≤ T, the filtering

distributions pθ(zt|y1:t) of the SSM (4.2.10)-(4.2.12) can be obtained sequentially, alternating

between prediction and analysis steps:

(prediction) pθ(zt|y1:t−1) =
∫
N
(
zt;Gα(zt−1), Sβ

)
pθ(zt−1|y1:t−1) dzt−1, (4.3.1)

(analysis) pθ(zt|y1:t) =
1

Et(θ)
N
(
yt;Hγ,t(zt), Rt

)
pθ(zt|y1:t−1), (4.3.2)

with the convention pθ(·|y1:0) := pθ(·). Here Et(θ) is a normalizing constant which does not

depend on zt. It can be shown that

Et(θ) = pθ(yt|y1:t−1) =
∫
N
(
yt;Hγ,t(zt), Rt

)
pθ(zt|y1:t−1) dzt, (4.3.3)

and therefore the data log-likelihood admits the characterization

L(θ) := log pθ(y1:T) =
T∑
t=1

log pθ(yt|y1:t−1) =
T∑
t=1

log Et(θ). (4.3.4)

Analytical expressions of the filtering distributions pθ(zt|y1:t) and the data log-likelihood

L(θ) are only available for a small class of SSMs, which includes linear-Gaussian and dis-

crete SSMs [Kalman, 1960; Papaspiliopoulos et al., 2014]. Outside these special cases, fil-

tering algorithms need to be employed to approximate the filtering distributions, and these

algorithms can be leveraged to estimate the log-likelihood.

123

4.3.2 Estimation of the Log-Likelihood with Ensemble Kalman Filters

Given θ = (α⊤, β⊤, γ⊤)⊤, the EnKF algorithm [Evensen, 1994, 2009] sequentially approxi-

mates the filtering distributions pθ(zt|y1:t) using N equally-weighted particles z1:Nt . At pre-

diction steps, each particle znt is propagated using the latent dynamics model Eq. (4.2.10),

while at analysis steps a Kalman-type update is performed for each particle:

(prediction step) ẑ nt = Gα(z
n
t−1) + ζnt , ζnt

i.i.d.∼ N (0, Sβ), (4.3.5)

(analysis step) znt = ẑ nt + K̂t
(
yt + ηnt −Hγ,t(ẑ

n
t)
)
, ηnt

i.i.d.∼ N (0, Rt). (4.3.6)

The Kalman gain K̂t := Ĉzy,t(Ĉyy,t+Rt)
−1 is defined using empirical covariances given by

Ĉzy,t =
1

N − 1

N∑
n=1

(ẑ n
t −m̂t)

(
Hγ,t(ẑ

n
t)−Ĥt

)⊤
, Ĉyy,t =

1

N − 1

N∑
n=1

(
Hγ,t(ẑ

n
t)−Ĥt

)(
Hγ,t(ẑ

n
t)−Ĥt

)⊤
,

(4.3.7)

where

m̂t =
1

N

N∑
n=1

ẑ nt , Ĥt =
1

N

N∑
n=1

Hγ,t(ẑ
n
t). (4.3.8)

The empirical moments Ĉyy,t, Ĥt defined in equations Eq. (4.3.7) and Eq. (4.3.8) provide

a Gaussian approximation to the predictive distribution for Hγ,t(zt):

pθ(Hγ,t(zt)|y1:t−1) ≈ N (Hγ,t(zt); Ĥt, Ĉyy,t). (4.3.9)

By applying the change of variables formula to Eq. (4.3.3), we have

Et(θ) =
∫
N
(
yt;Hγ,t(zt), Rt

)
pθ(zt|y1:t−1) dzt

=

∫
N
(
yt;Hγ,t(zt), Rt

)
pθ(Hγ,t(zt)|y1:t−1) dHγ,t(zt)

≈ N (yt; Ĥt, Ĉyy,t +Rt),

(4.3.10)

124

where the approximation step follows from Eq. (4.3.9) and the formula for convolution of

two Gaussians. From Eq. (4.3.4), we obtain the following estimate of the data log-likelihood:

LEnKF(θ) :=
T∑
t=1

logN
(
yt; Ĥt, Ĉyy,t +Rt

)
≈ L(θ). (4.3.11)

The estimate LEnKF(θ) can be computed online with EnKF, and is stochastic as it depends

on the randomness used to propagate the particles, e.g., the choice of random seed. The

whole procedure is summarized in Algorithm 4.3.1, which implicitly defines a stochastic map

θ 7→ LEnKF(θ).

Algorithm 4.3.1 Ensemble Kalman Filter and Log-likelihood Estimation

Input: θ = (α⊤, β⊤, γ⊤)⊤, y1:T . (If multiple input instances yI1:T are provided, run the
following procedure for each instance yi1:T .)

1: Initialize LEnKF(θ) = 0. Draw zn0
i.i.d.∼ pz(z0).

2: for t = 1, . . . , T do
3: Set ẑ nt = Gα(z

n
t−1) + ζnt , where ζnt

i.i.d.∼ N (0, Sβ). ▷ Prediction step
4: Compute m̂t, Ĥt, Ĉzy,t, Ĉyy,t by equations Eq. (4.3.7) and Eq. (4.3.8) and set K̂t =

Ĉzy,t(Ĉyy,t +Rt)
−1.

5: Set znt = ẑ nt + K̂t
(
yt + ηnt −Hγ,t(ẑ

n
t)
)
, where ηnt

i.i.d.∼ N (0, Rt). ▷ Analysis step
6: Set LEnKF(θ)← LEnKF(θ) + logN

(
yt; Ĥt, Ĉyy,t +Rt

)
.

7: end for
Output: EnKF particles z1:N0:T . Log-likelihood estimate LEnKF(θ).(If multiple input
instances yI1:T are provided, return instead the average of log-likelihood estimates.)

4.3.3 Main Algorithm

The main idea of our algorithm is to perform maximum likelihood estimation on the pa-

rameter θ by gradient ascent, via differentiation through the map θ 7→ LEnKF(θ). Our

core method is summarized in Alg. 4.3.2, which includes estimation of θ as well as recon-

struction and forecast of states. Our PyTorch implementation is at https://github.c

om/ymchen0/ROAD-EnKF. The gradient of the map θk 7→ LEnKF(θ
k) can be evaluated

125

https://github.com/ymchen0/ROAD-EnKF
https://github.com/ymchen0/ROAD-EnKF

using autodiff libraries [Paszke et al., 2019; Bradbury et al., 2018; Abadi et al., 2016] that

support auto-differentiation of common matrix operations, e.g. matrix multiplication, in-

verse, and determinant [Giles, 2008a]. We use the “reparameterization trick” [Kingma and

Welling, 2014; Rezende et al., 2014] to auto-differentiate through the stochasticity in the

EnKF algorithm, as in Subsection 4.1 of [Chen et al., 2022].

In Section 4.5, we consider numerical examples where the data are generated from an

unknown SSM in the form of Eq. (4.2.6)-Eq. (4.2.9) with no explicit knowledge of the

reduced-order structure; we also consider examples where the data are generated directly

from Eq. (4.2.1)-Eq. (4.2.3). In practice, multiple independent instances of observation data

yI1:T may be available across the same time range, where each superscript i ∈ I corresponds

to one instance of observation data y1:T . We assume that each instance yi1:T is drawn i.i.d.

from the same SSM, with different realizations of initial state, model error, and observation

error for each instance. We assume that data are split into training and test sets y
Itrain
1:T

and yItest1:T . During training, we randomly select a small batch of data from y
Itrain
1:T at each

iteration, and evaluate the averaged log-likelihood and its gradient over the batch to perform

a parameter update. The idea is reminiscent of stochastic gradient descent in the optimiza-

tion literature: matrix operations of EnKF can be parallelized within a batch to utilize the

data more efficiently, reducing the computational and memory cost compared to using the

full training set at each iteration. The state reconstruction and forecast performance are

evaluated on the unseen test set yItest1:T .

State reconstruction and forecast via Alg. 4.3.2 can be interpreted from a probabilistic

point of view. For convenience, we drop the superscripts I and k in this discussion. For

0 ≤ t ≤ T , since the particles z1:Nt form an approximation of the filtering distribution

pθ(zt|y1:t) for latent state zt, it follows from Eq. (4.2.7) that the output particles u1:Nt of

the algorithm form an approximation of the filtering distribution pθ(ut|y1:t) for state ut. For

T+1 ≤ t ≤ T+Tf , it follows from Eq. (4.2.10) that the particles z1:Nt form an approximation

126

of the predictive distribution pθ(zt|y1:T). Therefore, by Eq. (4.2.7) the output particles u1:Nt

of the algorithm form an approximation of the predictive distribution pθ(ut|y1:T) for future

state ut.

Algorithm 4.3.2 Reduced-Order Autodifferentiable Ensemble Kalman Filter (ROAD-
EnKF)

Input: Observations yI1:T , split into y
Itrain
1:T and yItest1:T . Learning rate η. Batch size B.

1: Initialize SSM parameter θ0 and set k = 0. Write Hγ,t(·) = HtDγ(·).
// Training phase

2: while not converging do
3: Randomly select B indices from Itrain, denoted as IB .

4: Compute z
IB ,1:N
0:T ,LEnKF(θ

k) = EnsembleKalmanFilter(θk, yIB1:T) using algo-
rithm Alg. 4.3.1.

5: Compute ∇θLEnKF(θ
k) by auto-differentiating the map θk 7→ LEnKF(θ

k).
6: Set θk+1 = θk + η∇θLEnKF(θ

k) and k ← k + 1.
7: end while

// Test phase
8: z

Itest,1:N
0:T ,LEnKF(θ

k) = EnsembleKalmanFilter(θk, yItest1:T). ▷ State reconstruction
9: Simulate z

Itest,1:N
t using Eq. (4.2.10) with α = αk, β = βk for t = T + 1, . . . , T + Tf . ▷

State forecast
10: Compute u

Itest,1:N
0:T+Tf

= Dγk(z
Itest,1:N
0:T+Tf

) .

Output: Learned reduced-order SSM parameter θk and particles u
Itest,1:N
0:T+Tf

.

4.4 Implementation Details

This section considers the practical implementation of ROAD-EnKF Alg. 4.3.2, including

parameterization of the surrogate latent dynamics map gα and decoder Dγ (§4.4.1), com-

putational efficiency for high-dimensional observations (§4.4.2), and regularization on latent

states (§4.4.3).

127

4.4.1 Surrogate Latent Dynamics and Decoder Design

In our numerical experiments, we adopt a simple parameterization for the surrogate latent

dynamics map gα using a two-layer fully connected NN. For our design of the decoder Dγ ,

the idea stems from the literature on convolutional autoencoders for computer vision tasks

(e.g., [Mao et al., 2016]), where both the encoder and decoder networks consist of multiple

convolutional layers with residual connections that map between the image space and latent

space. Here, to suit our setting, we replace the kernel-based local convolutional layers with

Fourier-based spectral convolutional layers (‘Fourier layers’) introduced in [Li et al., 2020b;

Guibas et al., 2021]. The latter treat a finite-dimensional vector as a spatial discretization of

a function on a grid, and learn a finite-dimensional mapping that approximates an operator

between function spaces. The learning accuracy is known empirically to not depend on the

level of the discretization [Li et al., 2020b], determined by du in our case. Using Fourier

layers to learn dynamical systems and differential equations was originally proposed in [Li

et al., 2020b]. For the sake of completeness, we describe below the definition of spectral

convolutional layers and how they are incorporated into our decoder design.

Spectral Convolutional Layer Given an input vin ∈ Rnin×du where nin is the number

of input channels and du is the input dimension, which is also the size of the grid where the

function is discretized, we first apply a discrete Fourier transform (DFT) in spatial domain

to get λin := DFT(vin) ∈ Cnin×du . We then multiply it by a learned complex weight tensor

W ∈ Cnout×nin×du that is even symmetric1 to get λout := W × λin ∈ Cnout×du . The

multiplication is defined by

(W × λin)i,k =

nin∑
j=1

Wi,j,k(λin)j,k. (4.4.1)

1. That is, W satisfies Wi,j,k = W i,j,du+2−k ∀i, j and ∀k ≥ 2. This ensures that the inverse discrete Fourier
transform of λout is real. In practice, the parameterization of W requires up to nin × nout × (⌊du/2⌋ + 1)
complex entries.

128

This can be regarded as ‘channel mixing’, since for the k-th Fourier mode (1 ≤ k ≤ du), all nin

input channels of λ are linearly mixed to produce nout output channels through the matrix

W·,·,k. Other types of (possibly nonlinear) mixing introduced in [Guibas et al., 2021] can

also be applied, and we leave them to future work. We then apply an inverse discrete Fourier

transform (IDFT) in spatial domain to get the output vout = IDFT(λout) ∈ Rnout×du . We

call the mapping vin 7→ vout a spectral convolutional layer (SpecConv).

Fourier Neural Decoder Given latent variable z ∈ Rdz (where we omit the subscript t for

convenience), we first apply a complex linear layer f0(·) to get z0 = f0(z) := W0z+ b0 ∈ Ch

for W0 ∈ Ch×dz and b0 ∈ Ch, where h is the dimension of z0 to be specified. We then

apply an IDFT that treats z0 as a one-sided Hermitian signal in Fourier domain2 to get

v0 := IDFT(z0) ∈ Rdu . We then apply L spectral convolutional layers to get vL, with

proper choices of channel numbers as well as residual connections, normalization layers, and

activation functions. More specifically, vL is defined by iteratively applying the following

vℓ = fℓ(vℓ−1) := Act
(

Norm
(
SpecConv(vℓ−1) + 1x1Conv(vℓ−1)

))
, 1 ≤ ℓ ≤ L, (4.4.2)

where vℓ ∈ Rnℓ×du , Act and Norm refer to the activation function and the normalization

layer, 1x1Conv refers to the one-by-one convolutional layer which can be viewed as a gen-

eralization of residual connection, and n0 = 1. We refer to fℓ as a ‘Fourier layer’. The

final part of the decoder is a two-layer fully connected NN that is applied to vL ∈ RnL×du

over channel dimension to get u ∈ Rdu . See Fig. 4.3 for the architecture. Notice that the

learned variables γ of the decoder include W0, b0 of the initial linear layer, complex weight

tensors W ’s of SpecConv layers, weights and biases of 1x1Conv layers, as well as the final

fully-connected NN.

2. z0 is either truncated or zero-padded to a signal of dimension C⌊du/2⌋+1.

129

z Linear IDFT Fourier Layer 1 Fourier Layer L⋯

vℓ−1

vL uv0

DFT
Linear

Channel
Mixing

IDFT

1x1Conv

+

MLP
Channel
Mixing

Norm Act vℓ

SpecConv

(a)

(b)

Figure 4.3: (a) Network architecture of the decoder Dγ. Starting from z ∈ Rdz in a
low-dimensional latent space, we first apply a complex linear layer followed by an IDFT to lift
it to v0 ∈ Rdu in a high-dimensional state space. We then apply L Fourier layers iteratively to
get vL ∈ RnL×du where nL is the channel dimension. We project it back to the state space by
applying a two-layer fully-connected NN to mix the channels and output u ∈ Rdu . (b) Fourier
layer: The design was first proposed in [Li et al., 2020b], and we describe it here for the sake of
completeness. The upper half represents a spectral convolutional layer, where we transform the
input vℓ−1 ∈ Rnℓ−1×du into the frequency space with DFT, mix the channels with a complex linear
map, and transform back with IDFT. The lower half is a one-by-one convolutional layer, which is
a generalization of residual connection. The outputs from both layers are summed up and passed
through a normalization and an activation layer to produce the output vℓ ∈ Rnℓ×du .

4.4.2 Algorithmic Design for Computational Efficiency

If the time-window length T is large, we follow [Chen et al., 2022] and use truncated back-

propagation to auto-differentiate the map θ 7→ LEnKF(θ): we divide the sequence into mul-

tiple short subsequences and backpropagate within each subsequence. The idea stems from

Truncated Backpropagation Through Time (TBPTT) for RNNs [Williams and Zipser, 1995;

Sutskever et al., 2014] and the recursive maximum likelihood method for hidden Markov

models [Le Gland and Mevel, 1997]. By doing so, multiple gradient ascent steps can be

performed for each single filtering pass, and thus the data can be utilized more efficiently.

130

Moreover, gradient explosion/vanishing [Bengio et al., 1994] are less likely to happen. We

refer to [Chen et al., 2022] for more details. We choose this variant of ROAD-EnKF in our

experiments.

In this work we are mostly interested in the case where du and dy are large, and dz is

small. Moreover, the ensemble size N that we consider is moderate, i.e., du ≥ dy > N > dz.

Therefore, we do not pursue the covariance localization approach as in [Chen et al., 2022]

(see also [Houtekamer and Mitchell, 2001; Hamill et al., 2001]), which is most effective when

N < dz. Instead, we notice that the computational bottlenecks of the analysis step in the

EnKF Alg. 4.3.1 are the O(d3y) operations of computing the Kalman gain (Line 4) as well

as updating the data log-likelihood (Line 6), where we need to compute the matrix inverse

and log-determinant of a dy × dy matrix (Ĉyy,t +Rt). If dy > N , the number of operations

can be improved to O(N3) as follows. Let Yt ∈ Rdy×N be the matrix representation of the

centered ensemble after applying the observation function, i.e., its n-th column is Y n
t :=

1√
N−1

(
Hγ,t(ẑ

n
t) − 1

N

∑N
m=1Hγ,t(ẑ

m
t)
)

(we drop the parameter γ for convenience). This

leads to Ĉyy,t = YtY
⊤
t . By the matrix inversion lemma [Woodbury, 1950],

(Ĉyy,t +Rt)
−1 = R−1t −R−1t Yt(I + Y ⊤t R−1t Yt)

−1Y ⊤t R−1t , (4.4.3)

logdet(Ĉyy,t +Rt) = logdet(I + Y ⊤t R−1t Yt) + logdet(Rt), (4.4.4)

where I + Y ⊤t R−1t Yt ∈ RN×N . The computational cost can be further reduced if the

quantities R−1t and logdet(Rt) can be pre-computed, for instance when Rt = rI for some

scalar r ∈ R.

Moreover, in practice, to update the ensemble in Line 5 of Alg. 4.3.1, instead of inverting

I + Y ⊤t R−1t Yt directly in Eq. (4.4.3) followed by a matrix multiplication, we find it more

numerically stable to first solve the following linear system:

(I + Y ⊤t R−1t Yt)u
n
t = Y ⊤t R−1t

(
yt + γnt −Hγ,t(ẑ

n
t)
)

(4.4.5)

131

for unt ∈ RN , and then perform the analysis step (Line 5 of Alg. 4.3.1) by

znt = ẑnt + Ĉzy,t(Ĉyy,t +Rt)
−1(yt + γnt −Hγ,t(ẑ

n
t)
)

= ẑnt + Ĉzy,t
(
R−1t −R−1t Yt(I + Y ⊤t R−1t Yt)

−1Y ⊤t R−1t

)(
yt + γnt −Hγ,t(ẑ

n
t)
)

= ẑnt + Ĉzy,tR
−1
t

(
yt + γnt −Hγ,t(ẑ

n
t)− Ytu

n
t

)
.

(4.4.6)

Similar ideas and computational cost analysis can be found in [Tippett et al., 2003]. For the

benchmark experiments in §4.5, we modify the AD-EnKF algorithm as presented in [Chen

et al., 2022] to incorporate the above ideas.

4.4.3 Latent Space Regularization

Since the estimation of u is given by Dγ(z), where both Dγ(·) and z need to be identified

from data, we overcome potential identifiability issues by regularizing z in the latent space.

To further motivate the need for latent space regularization, consider the following example:

if the pair (z,Dγ(·)) provides a good estimation of ut, then so does (cz, 1cDγ(·)) for any

constant c ̸= 0. Therefore, the norm of z can be arbitrarily large, and thus we regularize z’s

in the latent space so that their norms do not explode.

We perform regularization by extending the observation model Eq. (4.2.11) to impose

additional constraints on the latent state variable zt’s. The idea stems from regularization

in ensemble Kalman methods for inverse problems [Chada et al., 2020; Guth et al., 2022].

We first extend Eq. (4.2.11) to the equations:

yt= Hγ,t(zt) + ηt, ηt ∼ N (0, Rt),

0= zt + ϵt, ϵt ∼ N (0, σ2Idz),
(4.4.7)

where σ is a parameter to be chosen that incorporates the prior information that each coor-

dinate of zt is an independent centered Gaussian random variable with standard deviation

132

σ. Define

yaug
t =

yt
0

 , Haug
γ,t (zt) =

Hγ,t(zt)

zt

 , ηaug
t ∼ N (0, Raug

t), Raug
t =

Rt 0

0 σ2Idz

 .

(4.4.8)

We then write Eq. (4.4.7) into an augmented observation model

y
aug
t = Haug

γ,t (zt) + η
aug
t , η

aug
t ∼ N (0, R

aug
t). (4.4.9)

To perform latent space regularization in ROAD-EnKF, during the training stage we run

EnKF (Line 4 of Alg. 4.3.2) with augmented data y
aug
1:T and SSM with the augmented ob-

servation model, i.e., (4.2.10)-(4.4.9)-(4.2.12). During test stage, we run EnKF (Line 8 of

Alg. 4.3.2) with the original data and SSM, i.e., (4.2.10)-(4.2.11)-(4.2.12).

4.5 Numerical Experiments

In this section, we compare our ROAD-EnKF method to the SINDy autoencoder [Champion

et al., 2019], which we abbreviate as SINDy-AE. It learns an encoder-decoder pair that maps

between observation space (yt’s) and latent space (zt’s), and simultaneously performs a sparse

dictionary learning in the latent space to discover the latent dynamics. Similar to SINDy-AE,

our ROAD-EnKF method jointly discovers a latent space and the dynamics therein that is

a low-dimensional representation of the data. However, our method differs from SINDy-AE

in four main aspects: (1) No time-derivative data for y1:T are required; (2) No encoder is

required; (3) State reconstruction and forecast can be performed even when the data y1:T

are noisy and partial observation of u1:T , while SINDy-AE is targeted at noiseless and fully

observed data that are dense in time; (4) Stochastic representation of latent dynamics model

can be learned, and uncertainty quantification can be performed in state reconstruction and

forecast tasks through the use of particles, while SINDy-AE only provides a point estimate

133

in both tasks.

We also compare our ROAD-EnKF method to AD-EnKF [Chen et al., 2022]. Although

AD-EnKF enjoys some of the benefits of ROAD-EnKF, including the capability to learn from

noisy, partially observed data and perform uncertainty quantification, it directly learns the

dynamics model in high-dimensional state space (i.e., on ut’s instead of zt’s), which leads

to higher model complexity, as well as additional computational and memory costs when

performing the EnKF step. Moreover, AD-EnKF does not take advantage of the possible

low-dimensional representation of the state. We compare in Table 4.5.1 below the capabilities

of the three algorithms under different scenarios.

Learn from noisy
and partially observed data

Uncertainty
quantification

No need of
time-derivative data

Low-dimensional
state representation

SINDy-AE
[Champion et al., 2019] ✗ ✗ ✗ ✓

AD-EnKF
[Chen et al., 2022] ✓ ✓ ✓ ✗

ROAD-EnKF
(this paper) ✓ ✓ ✓ ✓

Table 4.5.1: Comparison of SINDy-AE, AD-EnKF, and ROAD-EnKF under different scenarios.

Other alternative methods include EnKF-embedded EM algorithms (e.g. [Brajard et al.,

2020]) and autodifferentiable PF algorithms (e.g., [Naesseth et al., 2018]). Since [Chen et al.,

2022] already establishes AD-EnKF’s superiority to those approaches, we do not include them

in these experiments, and we refer to [Chen et al., 2022] for more details.

The training procedure is the following: We first specify a forecast lead time Tf . We then

generate training data y
Itrain
0:T and test data with extended time range (u

Itest,∗
0:T+Tf

, yItest0:T) with

Ntrain := |Itrain| and Ntest := |Itest|. The data are either generated from a reduced-order

SSM Eq. (4.2.6)-Eq. (4.2.9) with explicit knowledge of true parameter θ (§4.5.1), or from an

SSM Eq. (4.2.1)-Eq. (4.2.3) with no explicit knowledge of the exact reduced-order structure

(Subsections 4.5.2 and 4.5.3). The data y
Itrain
0:T and yItest0:T are then passed into ROAD-EnKF

(Alg. 4.3.2), and we evaluate the following:

134

Reconstruction-RMSE (RMSE-r): Measures the state reconstruction error of the al-

gorithm. We take the particle mean of uItest,1:N0:T as a point estimate of the true states uItest,∗0:T ,

and evaluate the RMSE:

RMSE-r =

√√√√√ 1

duNtest(T − Tb)

T∑
t=Tb

∑
i∈Itest

∣∣∣uit − u
i,∗
t

∣∣∣2 , where uit =
1

N

N∑
n=1

u
i,n
t . (4.5.1)

Here Tb is a number of burn-in steps to remove transient errors in the reconstruction that

stem from the choice of initialization. For simplicity, we set Tb = ⌊T/5⌋ as in [Chen et al.,

2022].

Forecast-RMSE (RMSE-f): Measures the t-step state forecast error of the algorithm,

for lead time t ∈ {1, . . . , Tf}. We take the particle mean of uItest,1:NT+t as a point estimate of

the true future states u
Itest,∗
T+t :

RMSE-f(t) =

√√√√ 1

duNtest

∑
i∈Itest

∣∣∣uiT+t − u
i,∗
T+t

∣∣∣2 , where uiT+t =
1

N

N∑
n=1

u
i,n
T+t . (4.5.2)

Test Log-Likelihood: Measures the averaged log-likelihood of the learned reduced-order

SSM over test observation data yItest0:T , which is LEnKF(θ
k) defined in Line 8 of Alg. 4.3.2.

For AD-EnKF, the above metrics can be similarly computed, following [Chen et al., 2022].

For SINDy-AE, as uncertainty quantification is not performed, we use its decoder output as

the point estimate of the state in both reconstruction and forecast. Moreover, log-likelihood

computation is not available for SINDy-AE.

4.5.1 Embedding of Chaotic Dynamics (Lorenz 63)

In this subsection, we reconstruct and forecast a state defined by embedding a Lorenz 63

(L63) model in a high-dimensional state space. A similar experiment was used in [Champion

135

et al., 2019] to motivate the SINDy-AE algorithm, and hence this example provides a good

point of comparison. The data are generated using the L63 system as the true latent state

dynamics model:

dz
ds

= g(z),


g(1)(z) = 10(z(2) − z(1)),

g(2)(z) = z(1)(28− z(3))− z(2),

g(3)(z) = z(1)z(2) − 8
3z

(3),

G : z(s) 7→ z(s+∆s), (4.5.3)

where z(i) and g(i) denote the i-th coordinate of z and component of g, and ∆s is the time

between observations. We further assume there is no noise in the true latent state dynamics

model, i.e., S = 0. To construct the true reduced-order SSM, we define D ∈ Rdu×6 such

that its i-th column Di ∈ Rdu is given by the discretized i-th Legendre polynomial over du

grid points. The true states ut ∈ Rdu are defined by

ut := D

[
z
(1)
t /40 z

(2)
t /40 z

(3)
t /40 (z

(1)
t /40)3 (z

(2)
t /40)3 (z

(3)
t /40)3

]⊤
. (4.5.4)

We consider two cases of the observation model (4.2.8): (1) full observation, where all

coordinates of ut are observed, i.e., Ht = Idu and dy = du; (2) partial observation, where for

each t, only a fixed portion c < 1 of all coordinates of ut are observed, and the coordinate

indices are chosen randomly without replacement. In this case, Ht ∈ Rdy×du is a submatrix

of Idu and varies across time, and dy = cdu. This partial observation set-up has been studied

in the literature (e.g., [Brajard et al., 2020; Bocquet et al., 2020]) for data assimilation

problems. For both cases, we assume Rt = 0.01Idy and z0 ∼ N (0, 4Idz).

We consider full observation with du = dy = 128 and partial observation with du = 128,

dy = 64 (i.e., c = 1/2). We generate Ntrain = 1024 training data and Ntest = 20 test

data with the true reduced-order SSM defined by (4.5.3) and (4.5.4). We set the number of

observations T = 250 with time between observations ∆s = 0.1. We set the forecast lead

136

time Tf = 10. The latent flow map G is integrated using the Runge–Kutta–Fehlberg method.

The surrogate latent dynamics map gα is parameterized as a two-layer fully connected NN,

and is integrated using a fourth-order Runge-Kutta method with step size ∆int
s = 0.05. The

error covariance matrix Sβ in the latent dynamics is parametrized using a diagonal matrix

with positive diagonal elements β ∈ Rdz . The decoder Dγ is parameterized as a Fourier

Neural Decoder (FND) discussed in §4.4.1. Details of the network hyperparameters for this

and subsequent examples are summarized in Table 4.5.2, obtained through cross-validation

experiments on the training dataset. The latent space dimension for both SINDy-AE and

ROAD-EnKF is set to dz = 3. The ensemble size for both AD-EnKF and ROAD-EnKF is

set to N = 100.

L63 Burgers KS

FND

L 4 2 4
h 6 40 40

(n0, . . . , nL) (1, 20, 20, 20, 20) (1, 20, 20) (1, 20, 20, 20, 20)
Norm LayerNorm

Activation ReLU
Latent space reg. σ 2 4 4

Optimization

Optimizer Adam
Learning rate (η) 1e-3
Batch size (B) 16 4 4
TBPTT length 10

Table 4.5.2: Choices of hyperparameters for ROAD-EnKF on different numerical examples.

In Table 4.5.3 we list the performance metrics of each method with full and partial

observation. The state reconstruction and forecast performance on a single instance of test

data are plotted in Fig. 4.4 and 4.5 for the full observation case, and in Fig. 4.6 for the partial

observation case. For the full observation case, we compare ROAD-EnKF with AD-EnKF

and SINDy-AE, adopting for the latter the implementation in [Champion et al., 2019]. Since

SINDy-AE requires time-derivative data as input, we use a finite difference approximation

computed from data y1:T . We also include the results for SINDy-AE where the exact time-

derivative data are used. We find that ROAD-EnKF is able to reconstruct and forecast the

137

states consistently with the lowest RMSE, and the performance is not affected by whether

the state is fully or partially observed. AD-EnKF is able to reconstruct and forecast the

state with a higher RMSE than that of ROAD-EnKF, and the performance deteriorates in

the partially observed setting. SINDy-AE with finite difference approximation of derivative

data also achieves higher reconstruction RMSE than that of ROAD-EnKF, and does not

give accurate state forecasts. This is likely due to the fact that data are sparse in time (i.e.,

∆s is large) which leads to a larger error when approximating the true time-derivative, and

hence it is more difficult to extract meaningful dynamics from the data. Even when the

true time-derivative data are used (which is not available unless we have explicit knowledge

of the true reduced-order SSM), SINDy-AE has a higher reconstruction RMSE compared

to ROAD-EnKF, and its forecast performance is still worse than the other two methods.

Moreover, it cannot handle partial observation.

In terms of computational cost, ROAD-EnKF is more efficient than AD-EnKF since

the surrogate dynamics are cheaper to simulate and the EnKF algorithm is more efficient

to perform in both training and testing. However, ROAD-EnKF takes more time than

SINDy-AE, since the latter does not rely on a filtering algorithm, but rather an encoder, to

reconstruct the states and perform learning.

138

SINDy-AE
(full)

SINDy-AE
(w/ derivative, full)

AD-EnKF
(full)

ROAD-EnKF
(full)

AD-EnKF
(partial)

ROAD-EnKF
(partial)

RMSE-r 0.0142 0.0148 0.0168 0.0078 0.0368 0.0079
RMSE-f(1) 0.1310 0.0191 0.0156 0.0069 0.0315 0.0069
RMSE-f(5) 1.6580 0.0333 0.0335 0.0141 0.0729 0.0125

Log-likelihood − 2.25× 104 2.58× 104 1.28× 104 1.40× 104

Training time
(per epoch) 5.15s 9.74s 6.15s 8.86s 5.62s

Test time 2.35s 4.57s 2.95s 4.52s 2.73s

Table 4.5.3: Performance metrics for different algorithms at convergence. (Embedded L63 exam-
ple, §4.5.1.)

4.5.2 Burgers Equation

In this subsection and the following one, we learn high-dimensional SSMs without explicit

reference to a true model for low-dimensional latent dynamics. We first consider the 1-

dimensional Burgers equation for u(x, s), where u is a function of the spatial variable x ∈

[0, L] and continuous-time variable s > 0:

∂u

∂s
= −u∂u

∂x
+ ν

∂2u

∂x2
,

u(0, s) = u(L, s) = 0,

u(x, 0) = u0(x).

(4.5.5)

Here ν is the viscosity parameter, and we set ν = 1/150, L = 2. Burgers equation [Burgers,

1948] has various applications in fluid dynamics, including modeling of viscous flows. We

are interested in reconstructing solution states, as well as in the challenging problem of

forecasting shocks that emerge outside the time range covered by the training data. Equation

Eq. (4.5.5) is discretized on [0, L] with equally-spaced grid points 0 = x1 < x2 < · · · < xM =

L, using a second-order finite difference method. Setting ∆x := xi−xi−1 = L
M−1 , we obtain

139

0 32 64 96 128

−0.5

0.0

0.5

1.0

1.5

S
IN

D
y-

A
E

rmse: 0.0095

t=40,
Reconstruction

0 32 64 96 128

rmse: 0.0120

t=80,
Reconstruction

0 32 64 96 128

rmse: 0.0102

t=120,
Reconstruction

0 32 64 96 128

rmse: 0.0204

t=160,
Reconstruction

0 32 64 96 128

rmse: 0.0193

t=200,
Reconstruction

0 32 64 96 128

−0.5

0.0

0.5

1.0

1.5

S
IN

D
y-

A
E

w
/d

er
iv

at
iv

e
da

ta rmse: 0.0137

0 32 64 96 128

rmse: 0.0097

0 32 64 96 128

rmse: 0.0125

0 32 64 96 128

rmse: 0.0251

0 32 64 96 128

rmse: 0.0182

0 32 64 96 128

−0.5

0.0

0.5

1.0

1.5

A
D

-E
nK

F

rmse: 0.0217

0 32 64 96 128

rmse: 0.0107

0 32 64 96 128

rmse: 0.0360

0 32 64 96 128

rmse: 0.0103

0 32 64 96 128

rmse: 0.0120

0 32 64 96 128

−0.5

0.0

0.5

1.0

1.5

R
O

A
D

-E
nK

F

rmse: 0.0068

0 32 64 96 128

rmse: 0.0029

0 32 64 96 128

rmse: 0.0181

0 32 64 96 128

rmse: 0.0025

0 32 64 96 128

rmse: 0.0032

Observation Reconstruction Truth

Figure 4.4: State reconstruction performance with full observation (du = dy = 128) on the
embedded L63 example in §4.5.1. For each method (row), the reconstructed states ut (blue) for a
single test sequence are plotted for t = 40, 80, 120, 160, 200 (column). The true values of the 128-
dimensional states are plotted in red dashed lines, along with the noisy observations in black dots.
Both AD-EnKF and ROAD-EnKF perform probabilistic state reconstructions through particles (all
plotted in blue), while SINDy-AE only provides point estimates. The reconstruction RMSE’s are
computed for each plot. For SINDy-AE, even with derivative data (not required for AD-EnKF and
ROAD-EnKF), the reconstruction performance is similar to that of AD-EnKF, while being worse
than that of ROAD-EnKF.

the following ODE system:

du(i)

ds
= −

(
u(i+1)

)2 − (u(i−1))2
4∆x

+ ν
u(i+1) − 2u(i) + u(i−1)

∆x2
, i = 2, . . . ,M − 1,

u(1)(s) = u(M)(s) = 0,

u(i)(0) = u0(i∆x).

(4.5.6)

140

0 32 64 96 128

−0.5

0.0

0.5

1.0

S
IN

D
y-

A
E

rmse: 0.0215

t=250,
Forecast (Start)

0 32 64 96 128

rmse: 0.1282

t=252,
Forecast

0 32 64 96 128

rmse: 0.3571

t=254,
Forecast

0 32 64 96 128

rmse: 0.4359

t=256,
Forecast

0 32 64 96 128

rmse: 0.2722

t=258,
Forecast

0 32 64 96 128

−0.5

0.0

0.5

1.0

S
IN

D
y-

A
E

w
/d

er
iv

at
iv

e
da

ta rmse: 0.0167

0 32 64 96 128

rmse: 0.0209

0 32 64 96 128

rmse: 0.0509

0 32 64 96 128

rmse: 0.0620

0 32 64 96 128

rmse: 0.0316

0 32 64 96 128

−0.5

0.0

0.5

1.0

A
D

-E
nK

F

rmse: 0.0149

0 32 64 96 128

rmse: 0.0148

0 32 64 96 128

rmse: 0.0119

0 32 64 96 128

rmse: 0.0170

0 32 64 96 128

rmse: 0.0235

0 32 64 96 128

−0.5

0.0

0.5

1.0

R
O

A
D

-E
nK

F

rmse: 0.0035

0 32 64 96 128

rmse: 0.0026

0 32 64 96 128

rmse: 0.0034

0 32 64 96 128

rmse: 0.0037

0 32 64 96 128

rmse: 0.0032

Forecast Truth

Figure 4.5: Forecast performance with full observation (du = dy = 128) on the embedded L63
example in §4.5.1. For each method (row), the forecasted states ut (blue) for a single test sequence
are plotted for t = 250 (start of forecast), 252, 254, 256, 258 (column). The true values of the
du = 128 dimensional states are plotted in red dashed lines. Both AD-EnKF and ROAD-EnKF
perform probabilistic forecast through particles (all plotted in blue), while SINDy-AE only provides
point estimates. The forecast RMSE’s are computed for each plot. For SINDy-AE, even with
derivative data (not required for AD-EnKF and ROAD-EnKF), the forecast performance is similar
to that of AD-EnKF, while being worse than that of ROAD-EnKF.

Here u(i)(s) is an approximation of u(i∆x, s), the value of u at the i-th spatial node at time

s. Equation Equation (4.5.6) defines a flow map F : u(s) 7→ u(s + ∆s) for state variable u

with du = M , which we refer to as the true state dynamics model. We assume there is no

noise in the dynamics, i.e., Q = 0.

Similar to §4.5.1, we consider two cases: full observation with du = dy = 256 and partial

observation with du = 256, dy = 128 (i.e., c = 1/2). The initial conditions u0 are generated

141

0 32 64 96 128
−1.0

−0.5

0.0

0.5

1.0

A
D

-E
nK

F

rmse: 0.0394

t=40,
Reconstruction

0 32 64 96 128

rmse: 0.0298

t=80,
Reconstruction

0 32 64 96 128

rmse: 0.0375

t=120,
Reconstruction

0 32 64 96 128

rmse: 0.0362

t=160,
Reconstruction

0 32 64 96 128

rmse: 0.0378

t=200,
Reconstruction

0 32 64 96 128
−1.0

−0.5

0.0

0.5

1.0

R
O

A
D

-E
nK

F

rmse: 0.0042

0 32 64 96 128

rmse: 0.0033

0 32 64 96 128

rmse: 0.0097

0 32 64 96 128

rmse: 0.0100

0 32 64 96 128

rmse: 0.0039

Observation Reconstruction Truth

0 32 64 96 128

0

1

2

A
D

-E
nK

F

rmse: 0.0357

t=250,
Forecast (Start)

0 32 64 96 128

rmse: 0.0315

t=252,
Forecast

0 32 64 96 128

rmse: 0.0164

t=254,
Forecast

0 32 64 96 128

rmse: 0.0335

t=256,
Forecast

0 32 64 96 128

rmse: 0.1820

t=258,
Forecast

0 32 64 96 128

0

1

2

R
O

A
D

-E
nK

F

rmse: 0.0064

0 32 64 96 128

rmse: 0.0048

0 32 64 96 128

rmse: 0.0024

0 32 64 96 128

rmse: 0.0037

0 32 64 96 128

rmse: 0.0108

Forecast Truth

Figure 4.6: State reconstruction (upper half) and forecast (lower half) performance with partial
observation (du = 128, dy = 64) on the embedded L63 example in §4.5.1. For each method, the
reconstructed states ut (blue) for a single test sequence are plotted for t = 40, 80, 120, 160, 200 (col-
umn), and the forecasted states ut (blue) for a single test sequence are plotted for t = 250 (start of
forecast), 252, 254, 256, 258 (column). The true values of the 128-dimensional states are plotted in
red dashed lines, along with the noisy observations in black dots. SINDy-AE is inapplicable here
because it cannot handle partial observations, while both AD-EnKF and ROAD-EnKF perform
probabilistic state reconstructions and forecast through particles (all plotted in blue). The recon-
struction/forecast RMSEs are computed for each plot.

in the following way:

u
(i)
0 = U sin

2πi∆x

L
, U ∼ Uniform(0.5, 1.5). (4.5.7)

We generate Ntrain = 1024 training data and Ntest = 20 test data with the true state

142

dynamics model defined through Eqs. (4.5.6) and (4.5.7) with Rt = 0.01Idy . We set the

number of observations T = 300 with time between observations ∆s = 0.001. We set

the forecast lead time Tf = 300. The flow map F is integrated using the fourth-order

Runge–Kutta method with a fine step size ∆s/20. The surrogate latent dynamics map gα

is parameterized as a two-layer fully connected NN, and is integrated using a fourth-order

Runge-Kutta method with step size ∆int
s = 0.001. The error covariance matrix Sβ in the

latent dynamics is parametrized using a diagonal matrix with positive diagonal elements

β ∈ Rdz . The decoder Dγ is parameterized as an FND, discussed in §4.4.1. Details of the

network hyperparameters are listed in Table 4.5.2. The latent space dimension for ROAD-

EnKF is set to dz = 40. The ensemble size for both AD-EnKF and ROAD-EnKF is set to

N = 100. In this example and the following one, we set z0 ∼ N (0, σ2Idz) with the same σ

defined in §4.4.3.

In Table 4.5.4, we list the performance metrics of each method with full and partial

observation. The state reconstruction and forecast performance on a single instance of test

data are plotted in Figures 4.7 (snapshots) and 4.8 (contour plot) for the partial observation

case. Corresponding plots with full observation are shown in Figures 4.11 and 4.12 in the

appendix. We find that ROAD-EnKF is able to reconstruct and forecast the states with

the lowest RMSE, in both full and partial observation scenarios. More importantly, the

emergence of shocks is accurately forecasted even though this phenomenon is not included in

the time range covered by the training data. AD-EnKF achieves a higher RMSE than ROAD-

EnKF for both state reconstruction and forecast tasks. AD-EnKF forecasts the emergence of

shocks with lower accuracy than ROAD-EnKF, which indicates that AD-EnKF fails to fully

learn the state dynamics. SINDy-AE with finite difference approximation of derivative data

has the highest reconstruction RMSE among the three methods, and is not able to produce

meaningful long-time state forecasts. This is remarkable, given that in this example the data

are relatively dense (∆s is small) which facilitates, in principle, the approximation of time

143

derivatives. In terms of computational cost, ROAD-EnKF is more efficient than AD-EnKF

during both training and testing, but takes more time than SINDy-AE for the same reason

as in §4.5.1.

In Table 4.5.5, we list the performance metrics of ROAD-EnKF with full observation and

different choices of latent space dimension dz ranging from 1 to 240. The results for partial

observation show a similar trend and are not shown. We find that, as dz increases, the state

reconstruction performance stabilizes when dz ≥ 4. In order to achieve better long-time

state forecast performance, dz needs to be further increased, and the forecast performance

stabilizes when dz ≥ 10. Both training and testing time slightly increase as dz grows, which

can be explained by the following: The computational time for both training and testing

can be divided into the prediction step and the analysis step. We have shown in §4.4.2 that

the computational bottleneck of the analysis step depends on the choices of ensemble size

N and dy, and is less affected by the increase of dz. Moreover, the computational time

of the prediction step depends on the complexity of the surrogate latent dynamics (two-

layer NNs), which are relatively cheap to simulate for ROAD-EnKF. On the other hand,

AD-EnKF enjoys similar computational complexity as ROAD-EnKF during the analysis

step, but requires a more complicated surrogate model (NNs with Fourier layers) to capture

the dynamics, which is more expensive to simulate. More experimental results on different

parameterization methods of surrogate dynamics can be found in Table 4.7.1 in the appendix.

SINDy-AE
(full)

AD-EnKF
(full)

ROAD-EnKF
(full)

AD-EnKF
(partial)

ROAD-EnKF
(partial)

RMSE-r 0.1433 0.0102 0.0044 0.0122 0.0081
RMSE-f(30) 4.4579 0.0212 0.0096 0.0228 0.0160
RMSE-f(150) 4.4906 0.0763 0.0514 0.0724 0.0581
Log-likelihood − 6.40× 104 6.60× 104 3.24× 104 3.27× 104

Training time (per epoch) 11.78s 26.75s 12.10s 27.08s 12.20s
Test time 2.78s 11.54s 4.21s 7.76s 3.24s

Table 4.5.4: Performance metrics for different algorithms at convergence. (Burgers example,
§4.5.2.)

144

0 64 128 192 256

−1.0

−0.5

0.0

0.5

1.0

A
D

-E
nK

F

rmse: 0.0168

t=50,
Reconstruction

0 64 128 192 256

rmse: 0.0104

t=100,
Reconstruction

0 64 128 192 256

rmse: 0.0136

t=150,
Reconstruction

0 64 128 192 256

rmse: 0.0148

t=200,
Reconstruction

0 64 128 192 256

rmse: 0.0092

t=250,
Reconstruction

0 64 128 192 256

−1.0

−0.5

0.0

0.5

1.0

R
O

A
D

-E
nK

F

rmse: 0.0089

0 64 128 192 256

rmse: 0.0072

0 64 128 192 256

rmse: 0.0055

0 64 128 192 256

rmse: 0.0049

0 64 128 192 256

rmse: 0.0056

Observation Reconstruction Truth

0 64 128 192 256

−0.5

0.0

0.5

1.0

A
D

-E
nK

F

rmse: 0.0095

t=300,
Forecast (Start)

0 64 128 192 256

rmse: 0.0345

t=375,
Forecast

0 64 128 192 256

rmse: 0.0537

t=450,
Forecast

0 64 128 192 256

rmse: 0.0849

t=525,
Forecast

0 64 128 192 256

rmse: 0.1171

t=600,
Forecast

0 64 128 192 256

−0.5

0.0

0.5

1.0

R
O

A
D

-E
nK

F

rmse: 0.0070

0 64 128 192 256

rmse: 0.0130

0 64 128 192 256

rmse: 0.0251

0 64 128 192 256

rmse: 0.0415

0 64 128 192 256

rmse: 0.0616

Forecast Truth

Figure 4.7: State reconstruction (upper half) and forecast (lower half) performance with partial
observation (du = 256, dy = 128) on the Burgers example in §4.5.2. For each method, the recon-
structed states ut (blue) for a single test sequence are plotted for t = 50, 100, 150, 200, 250 (column),
and the forecasted states (blue) for a single test sequence are plotted for t = 300 (start of forecast),
375, 450, 525, 600 (column). The true values of the 256-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and ROAD-EnKF perform
probabilistic state reconstructions and forecast through particles (all plotted in blue). The recon-
struction/forecast RMSEs are computed for each plot.

145

(a) Ground truth.

(b) Reconstruction and forecast.

Figure 4.8: Contour plot of state reconstruction and forecast output with partial observation
(du = 256, dy = 128) on the Burgers example in §4.5.2, as well as the ground truth (top). For
each method (row), the reconstructed and forecasted states (left column) for a single test sequence
are plotted, for each state dimension (y-axis) and time (x-axis). The error compared to the ground
truth are plotted in the right column. For both AD-EnKF and ROAD-EnKF we use particle means
as point estimates.

146

ROAD-EnKF AD-EnKF
dz = 1 dz = 2 dz = 4 dz = 10 dz = 20 dz = 40 dz = 120 dz = 240

RMSE-r 0.2293 0.0316 0.0035 0.0058 0.0039 0.0044 0.0048 0.0059 0.0102
RMSE-f(30) 0.2593 0.0761 0.0165 0.0108 0.0112 0.0096 0.0100 0.0103 0.0212
RMSE-f(150) 0.2690 0.1827 0.1313 0.0501 0.0607 0.0514 0.0373 0.0382 0.0763

Log-likelihood (×104) -14.4 6.03 6.63 6.59 6.61 6.60 6.61 6.63 6.40
Training time
(per epoch) 11.70s 11.78s 11.79s 11.98s 11.98s 12.10s 12.44s 13.40s 26.75s

Test time 3.36s 3.80s 4.13s 4.14s 4.08s 4.21s 4.53s 4.90s 11.54s

Table 4.5.5: Performance metrics for ROAD-EnKF at convergence with full observation (du =
dy = 256) and different latent space dimension dz. (Burgers example, §4.5.2.)

4.5.3 Kuramoto-Sivashinsky Equation

In this subsection, we consider the Kuramoto-Sivashinsky (KS) equation for u(x, s), where

u is a function of the spatial variable x ∈ [0, L] and continuous-time variable s > 0:

∂u

∂s
= −ν ∂

4u

∂x4
− ∂2u

∂x2
− u

∂u

∂x
,

u(0, s) = u(L, s) = 0,

∂u

∂x
(0, s) =

∂u

∂x
(L, s) = 0,

u(x, 0) = u0(x),

(4.5.8)

Here ν is the viscosity parameter, and we set ν = 0.05, L = 2. We impose Dirichlet

and Neumann boundary conditions to ensure ergodicity of the system [Blonigan and Wang,

2014]. The KS equation was originally introduced by Kuramoto and Sivashinsky to model

turbulence of reaction-diffusion systems [Kuramoto and Tsuzuki, 1976] and propagation of

flame [Sivashinsky, 1977]. Equation Eq. (4.5.8) is discretized on [0, L] with equally-spaced

grid points 0 = x1 < x2 < · · · < xM = L, using a second-order finite difference method.

147

Setting ∆x := xi − xi−1 = L
M−1 , we obtain the following ODE system:

∂u(i)

∂s
= −ν u

(i−2) − 4u(i−1) + 6u(i) − 4u(i+2) + u(i+2)

∆x4
− u(i+1) − 2u(i) + u(i−1)

∆x2
−
(
u(i+1)

)2 − (u(i−1)
)2

4∆x
,

i = 2, . . . , du − 1,

u(1)(s) = u(du)(s) = 0,

u(0)(s) = u(2)(s), u(du+1)(s) = u(du−1)(s),

u(i)(0) = u0(i∆x).

(4.5.9)

The discretization method follows [Wan and Sapsis, 2017]. Here u(i)(s) is an approximation

of u(i∆x, s), the value of u at the i-th spatial node and time s. Two ghost nodes u(0) and

u(du+1) are added to account for Neumann boundary conditions, and are not regarded as

part of the state. Equation Equation (4.5.9) defines a flow map F : u(s) 7→ u(s + ∆s) for

state variable u with du = M , which we refer to as the true state dynamics model. We

assume there is no noise in the dynamics, i.e., Q = 0.

Similar to §4.5.1, we consider two cases: full observation with du = dy = 256 and

partial observation with du = 256, dy = 128 (i.e., c = 1/2). The initial conditions u0 are

generated at random from the attractor of the dynamical system, by simulating a long run

beforehand. We generate Ntrain = 512 training data and Ntest = 20 test data with the true

state dynamics model defined through Eq. (4.5.9) with Rt = Idy . We set the number of

observations T = 450 with time between observations ∆s = 0.1. We set the forecast lead

time Tf = 50. The flow map F is integrated using the fourth-order Runge–Kutta method

with a fine step size ∆s/10000. The surrogate latent dynamics map gα is parameterized as

a two-layer fully connected NN, and is integrated using a fourth-order Runge-Kutta method

with step size ∆int
s = 0.05. The error covariance matrix Sβ in the latent dynamics is

parametrized using a diagonal matrix with positive diagonal elements β ∈ Rdz . The decoder

Dγ is parameterized as an FND, discussed in §4.4.1. Details of the network hyperparameters

148

are listed in Table 4.5.2. The latent space dimension for ROAD-EnKF is set to dz = 40.

The ensemble size for both AD-EnKF and ROAD-EnKF is set to N = 100.

In Table 4.5.6 we list the performance metrics of AD-EnKF and ROAD-EnKF with full

and partial observation. SINDy-AE is not listed here as we find it unable to capture the

dynamics for any choice of latent space dimension. The state reconstruction and forecast

performance on a single instance of test data are plotted in Fig. 4.9 (snapshots), and Fig. 4.10

(contour plot, ROAD-EnKF) for the partial observation case. Corresponding plots with full

observation are shown in Figures 4.13 and 4.14 in the appendix. We find that ROAD-EnKF

is able to reconstruct the states with lower RMSE than AD-EnKF in both full observation

and partial observation cases. Both methods can produce meaningful forecast multiple steps

forward into the future. ROAD-EnKF achieves a higher forecast RMSE than AD-EnKF

in full observation case, while having a lower forecast RMSE in partial observation case.

Although ROAD-EnKF does not consistently have a better forecast performance than AD-

EnKF due to the difficulty of finding a reduced-order representation for the highly chaotic

system, we find that its performance is not much impacted by partial observation. More-

over, it is two times more efficient than AD-EnKF in both training and testing, due to the

times saved for simulating a cheaper surrogate model and running the EnKF algorithm in

a lower dimensional space. Notice in Fig. 4.10(b) and Fig. 4.14(b) that, although the pre-

dictive means of all particles are ‘smoothed’ when passing a certain time threshold, each

particle individually produces nontrivial forecasts for a larger number of time steps into the

future, thus illustrating the variability of particle forecasts and the stochastic nature of state

reconstruction and forecast in our ROAD-EnKF framework.

4.6 Conclusions and Future Directions

This paper introduced a computational framework to reconstruct and forecast a partially

observed state that evolves according to an unknown or expensive-to-simulate dynamical

149

AD-EnKF
(full)

ROAD-EnKF
(full)

AD-EnKF
(partial)

ROAD-EnKF
(partial)

RMSE-r 0.4658 0.3552 0.4686 0.3589
RMSE-f(1) 0.5137 0.5626 0.6231 0.5644
RMSE-f(5) 1.0910 1.2734 1.4669 1.3780

Log-likelihood −1.89× 106 −1.88× 106 −9.33× 105 −9.07× 105

Training time (per epoch) 28.92s 12.53s 28.72s 12.61s
Test time 12.35s 5.11s 6.22s 4.39s

Table 4.5.6: Performance metrics for different algorithms at convergence. (KS example, §4.5.3.)

system. Our ROAD-EnKFs use an EnKF algorithm to estimate by maximum likelihood a

surrogate model for the dynamics in a latent space, as well as a decoder from latent space

to state space. Our numerical experiments demonstrate the computational advantage of

co-learning an inexpensive surrogate model in latent space together with a decoder, rather

than a more expensive-to-simulate dynamics in state space.

The proposed computational framework accommodates partial observation of the state,

does not require time derivative data, and enables uncertainty quantification. In addition,

it provides significant algorithmic flexibility through the choice of latent space, surrogate

model for the latent dynamics, and decoder design. In this work, we showed that accurate

and cheap reconstructions and forecasts can be obtained by choosing an inexpensive NN

surrogate model, and a decoder inspired by recent ideas from operator learning. While

adequate choice of NN architecture and decoder may be problem-specific, an important

question for further research is to derive guidelines and physics-informed NNs that are well-

suited for certain classes of problems.

4.7 Appendix

4.7.1 Improving AD-EnKF with Spectral Convolutional Layers

This appendix discusses an enhancement of the AD-EnKF algorithm [Chen et al., 2022],

used for numerical comparisons in Section 4.5. AD-EnKF runs EnKF on the full-order SSM
150

0 64 128 192 256
−15

−10

−5

0

5

10

A
D

-E
nK

F

rmse: 0.4478

t=50,
Reconstruction

0 64 128 192 256

rmse: 0.5089

t=150,
Reconstruction

0 64 128 192 256

rmse: 0.4132

t=250,
Reconstruction

0 64 128 192 256

rmse: 0.3472

t=350,
Reconstruction

0 64 128 192 256

rmse: 0.5187

t=450,
Reconstruction

0 64 128 192 256
−15

−10

−5

0

5

10

R
O

A
D

-E
nK

F

rmse: 0.3306

0 64 128 192 256

rmse: 0.4324

0 64 128 192 256

rmse: 0.3293

0 64 128 192 256

rmse: 0.3488

0 64 128 192 256

rmse: 0.2349

Observation Reconstruction Truth

0 64 128 192 256

−10

−5

0

5

10

A
D

-E
nK

F

rmse: 0.5187

t=450,
Forecast (Start)

0 64 128 192 256

rmse: 0.9386

t=452,
Forecast

0 64 128 192 256

rmse: 0.9549

t=454,
Forecast

0 64 128 192 256

rmse: 1.7769

t=456,
Forecast

0 64 128 192 256

rmse: 2.5097

t=458,
Forecast

0 64 128 192 256

−10

−5

0

5

10

R
O

A
D

-E
nK

F

rmse: 0.2349

0 64 128 192 256

rmse: 0.4737

0 64 128 192 256

rmse: 0.6419

0 64 128 192 256

rmse: 1.0449

0 64 128 192 256

rmse: 1.6044

Forecast Truth

Figure 4.9: State reconstruction (upper half) and forecast (lower half) performance with partial
observation (du = 256, dy = 128) on the KS example in §4.5.3. For each method, the reconstructed
states ut (blue) for a single test sequence are plotted for t = 50, 150, 250, 350, 450 (column), and
the forecasted states (blue) for a single test sequence are plotted for t = 450 (start of forecast),
452, 454, 456, 458 (column). The true values of the 256-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and ROAD-EnKF perform
probabilistic state reconstructions and forecast through particles (all plotted in blue). The recon-
struction/forecast RMSEs are computed for each plot.

(4.2.1)-(4.2.3) and learns the parameter θ = (α⊤, β⊤)⊤ by auto-differentiating through a

similarly defined log-likelihood objective, as in §4.3.2. A high dimension of u makes chal-

lenging the NN parameterization of Fα (resp. fα in the ODE case) in the state dynamics

model Eq. (4.2.1). In particular, the local convolutional NN used in [Chen et al., 2022] does

not perform well in the high-dimensional numerical experiments considered in §4.5. We thus

151

(a) Ground truth.

(b) Reconstruction and forecast.

Figure 4.10: Contour plot of state reconstruction and forecast output of ROAD-EnKF with partial
observation (du = 256, dy = 128) on the KS example in §4.5.3, as well as the ground truth (top).
The particle means of reconstructed and forecasted states for a single test sequence are plotted, for
each state dimension (y-axis) and time (x-axis). The reconstructed and forecasted states of three
randomly chosen particles are also plotted individually.

propose a more flexible NN parameterization of Fα (resp. fα) using the idea of spectral

convolutional layers.

We design Fα (resp. fα) in a way similar to the Fourier Neural Decoder, but without the

complex linear layer and IDFT step at the beginning. That is, we start with a state variable

u′ ∈ Rdu as the input, iteratively apply Eq. (4.4.2) with v0 = u′ to get vL ∈ RnL×du ,

152

followed by a fully-connected network applied over the channel dimension to get the output

u ∈ Rdu . The architecture is the same as Fig. 4.3(a) but we start at v0 instead of z.

4.7.2 Additional Materials: Burgers Example

For SINDy-AE, we use a finite difference approximation computed from data y1:T to ap-

proximate the exact time-derivative. The latent space dimension for SINDy-AE is set to

6. Increasing it does not further enhance the performance, but increases the computational

cost.

AD-EnKF
(FC, Euler)

AD-EnKF
(FC, RK4)

AD-EnKF
(Fourier, Euler)

AD-EnKF
(Fourier, RK4)

ROAD-EnKF
(FC, Euler)

ROAD-EnKF
(FC, RK4)

RMSE-r 0.1023 0.0934 0.0537 0.0102 0.0045 0.0044
RMSE-f(30) 0.0999 0.0831 0.1302 0.0212 0.0100 0.0096
RMSE-f(150) 0.1971 0.1608 0.2908 0.0763 0.0664 0.0514
Log-likelihood 2.31× 104 2.87× 104 5.41× 104 6.40× 104 6.60× 104 6.57× 104

Training time
(per epoch) 4.97s 5.80s 12.31s 26.75s 11.21s 12.10s

Test time 2.29s 2.97s 4.79s 11.54s 3.28s 4.21s

Table 4.7.1: Ablation study: AD-EnKF versus ROAD-EnKF with different NN parameterization
and numerical integration methods for surrogate dynamics (FC: NN with fully-connected layers;
Fourier: NN with Fourier layers; Euler: Euler method for ODE integration; RK4: fourth-order
Runge Kutta method for ODE integration). Switching from RK4 to Euler method while keeping the
same NN configuration gives a computational speed-up, and the speed-up is more noticeable when
the NN involves Fourier layers. However, after the switch, the accuracy drops more significantly for
AD-EnKF than for ROAD-EnKF. The best configuration for AD-EnKF (Fourier with RK4) still
yields a lower accuracy compared to both ROAD-EnKF configurations, while taking more time to
compute. (Burgers example, full observation case, §4.5.2.)

153

0 64 128 192 256

−1.0

−0.5

0.0

0.5

1.0

S
IN

D
y-

A
E

rmse: 0.1433

t=50,
Reconstruction

0 64 128 192 256

rmse: 0.1188

t=100,
Reconstruction

0 64 128 192 256

rmse: 0.0946

t=150,
Reconstruction

0 64 128 192 256

rmse: 0.0598

t=200,
Reconstruction

0 64 128 192 256

rmse: 0.0290

t=250,
Reconstruction

0 64 128 192 256

−1.0

−0.5

0.0

0.5

1.0

A
D

-E
nK

F

rmse: 0.0107

0 64 128 192 256

rmse: 0.0089

0 64 128 192 256

rmse: 0.0093

0 64 128 192 256

rmse: 0.0080

0 64 128 192 256

rmse: 0.0086

0 64 128 192 256

−1.0

−0.5

0.0

0.5

1.0

R
O

A
D

-E
nK

F

rmse: 0.0083

0 64 128 192 256

rmse: 0.0082

0 64 128 192 256

rmse: 0.0066

0 64 128 192 256

rmse: 0.0052

0 64 128 192 256

rmse: 0.0042

Observation Reconstruction Truth

0 64 128 192 256

−0.5

0.0

0.5

S
IN

D
y-

A
E

rmse: 0.0192

t=300,
Forecast (Start)

0 64 128 192 256

rmse: 4.5660

t=375,
Forecast

0 64 128 192 256

rmse: 4.5667

t=450,
Forecast

0 64 128 192 256

rmse: 4.5739

t=525,
Forecast

0 64 128 192 256

rmse: 4.5883

t=600,
Forecast

0 64 128 192 256

−0.5

0.0

0.5

A
D

-E
nK

F

rmse: 0.0085

0 64 128 192 256

rmse: 0.0330

0 64 128 192 256

rmse: 0.0643

0 64 128 192 256

rmse: 0.0908

0 64 128 192 256

rmse: 0.1101

0 64 128 192 256

−0.5

0.0

0.5

R
O

A
D

-E
nK

F

rmse: 0.0045

0 64 128 192 256

rmse: 0.0100

0 64 128 192 256

rmse: 0.0213

0 64 128 192 256

rmse: 0.0335

0 64 128 192 256

rmse: 0.0453

Forecast Truth

Figure 4.11: State reconstruction (upper half) and forecast (lower half) performance with full
observation (du = dy = 256) on the Burgers example in §4.5.2. For each method, the reconstructed
states ut (blue) for a single test sequence are plotted for t = 50, 100, 150, 200, 250 (column), and
the forecasted states (blue) for a single test sequence are plotted for t = 300 (start of forecast),
375, 450, 525, 600 (column). The true values of the 256-dimensional states are plotted in red dashed
lines, along with the noisy observations in black dots. Both AD-EnKF and ROAD-EnKF perform
probabilistic state reconstructions and forecast through particles (all plotted in blue), while SINDy-
AE only provides point estimates. The reconstruction/forecast RMSEs are computed for each plot.

154

(a) Ground truth.

(b) Reconstruction and forecast.

Figure 4.12: Contour plot of state reconstruction and forecast output with full observation (du =
dy = 256) on the Burgers example in §4.5.2, as well as the ground truth (top). For each method
(row), the reconstructed and forecasted states (left column) for a single test sequence are plotted,
for each state dimension (y-axis) and time (x-axis). The error compared to the ground truth are
plotted in the right column. For both AD-EnKF and ROAD-EnKF we use particle means as point
estimates.

155

4.7.3 Additional Materials: Kuramoto-Sivashinky Example

0 64 128 192 256

−10

0

10

A
D

-E
nK

F

rmse: 0.4430

t=50,
Reconstruction

0 64 128 192 256

rmse: 0.3721

t=150,
Reconstruction

0 64 128 192 256

rmse: 0.4419

t=250,
Reconstruction

0 64 128 192 256

rmse: 0.3058

t=350,
Reconstruction

0 64 128 192 256

rmse: 0.4504

t=450,
Reconstruction

0 64 128 192 256

−10

0

10

R
O

A
D

-E
nK

F

rmse: 0.2746

0 64 128 192 256

rmse: 0.4711

0 64 128 192 256

rmse: 0.3168

0 64 128 192 256

rmse: 0.2995

0 64 128 192 256

rmse: 0.3667

Observation Reconstruction Truth

0 64 128 192 256

−10

−5

0

5

10

A
D

-E
nK

F

rmse: 0.4504

t=450,
Forecast (Start)

0 64 128 192 256

rmse: 1.0364

t=452,
Forecast

0 64 128 192 256

rmse: 0.9103

t=454,
Forecast

0 64 128 192 256

rmse: 1.0975

t=456,
Forecast

0 64 128 192 256

rmse: 2.8994

t=458,
Forecast

0 64 128 192 256

−10

−5

0

5

10

R
O

A
D

-E
nK

F

rmse: 0.3667

0 64 128 192 256

rmse: 1.0875

0 64 128 192 256

rmse: 0.6654

0 64 128 192 256

rmse: 0.8397

0 64 128 192 256

rmse: 1.7079

Forecast Truth

Figure 4.13: State reconstruction (upper half) and forecast (lower half) performance with full
observation (du = dy = 256) on the KS example in §4.5.3. For each method, the reconstructed
states ut (blue) are plotted for t = 50, 150, 250, 350, 450 (column), and the forecasted states (blue)
are plotted for t = 450 (start of forecast), 452, 454, 456, 458 (column). The true values of the 256-
dimensional states are plotted in red dashed lines, along with the noisy observations in black dots.
Both AD-EnKF and ROAD-EnKF perform probabilistic state reconstructions and forecast through
particles (all plotted in blue). The reconstruction/forecast RMSEs are computed for each plot.

156

(a) Ground truth.

(b) Reconstruction and forecast.

Figure 4.14: Contour plot of state reconstruction and forecast output of ROAD-EnKF with full
observation (du = dy = 256) on the KS example in §4.5.3, as well as the ground truth (top). The
particle means of reconstructed and forecasted states are plotted, for each state dimension (y-axis)
and time (x-axis). The individual reconstructed and forecasted states of three randomly chosen
particles are also plotted.

157

CHAPTER 5

ITERATIVE ENSEMBLE KALMAN METHODS: A UNIFIED

PERSPECTIVE WITH SOME NEW VARIANTS

5.1 Introduction

This paper provides an accessible introduction to the derivation and foundations of iterative

ensemble Kalman methods, a family of derivative-free algorithms for parameter reconstruc-

tion and other related tasks. The overarching theme behind these methods is to iteratively

update via Kalman-type formulae an ensemble of candidate reconstructions, aiming to bring

the ensemble closer to the unknown parameter with each iteration. The ensemble Kalman

updates approximate derivative-based nonlinear least-squares optimization schemes without

requiring gradient evaluations. Our presentation emphasizes that iterative ensemble Kalman

methods can be naturally classified in terms of the nonlinear least-squares objective they seek

to minimize and the derivative-based optimization scheme they approximate through the en-

semble. This perspective allows us to identify three subfamilies of iterative ensemble Kalman

methods, creating unity into the growing literature on this subject. Our work also empha-

sizes two principles for the derivation and analysis of iterative ensemble Kalman methods:

statistical linearization and continuum limits. Following these principles we introduce new

iterative ensemble Kalman methods that show promising numerical performance in Bayesian

inverse problems, data assimilation and machine learning tasks.

We consider the application of iterative ensemble Kalman methods to the problem of

reconstructing an unknown u ∈ Rd from corrupt data y ∈ Rk related by

y = h(u) + η, (5.1.1)

where η represents measurement or model error and h is a given map. A wide range of

158

inverse problems, data assimilation and machine learning tasks can be cast into the frame-

work (5.1.1). In these applications the unknown u may represent, for instance, an input

parameter of a differential equation, the current state of a time-evolving signal and a regres-

sor, respectively. Ensemble Kalman methods were first introduced as filtering schemes for

sequential data assimilation [Evensen, 2009; Evans and Leeuwen, 1996; Majda and Harlim,

2012; Reich and Cotter, 2013; Sanz-Alonso et al., 2018] to reduce the computational cost of

the Kalman filter [Kalman, 1960]. Their use for state and parameter estimation and inverse

problems was further developed in [Anderson, 2001; Lorentzen et al., 2001; Nœvdal et al.,

2002; Skjervheim et al., 2011]. The idea of iterating these methods was considered in [Chen

and Oliver, 2012; Emerick and Reynolds, 2013]. Iterative ensemble Kalman methods are

now popular in inverse problems and data assimilation; they have also shown some potential

in machine learning applications [Haber et al., 2018; Guth et al., 2022; Kovachki and Stuart,

2019].

Starting from an initial ensemble {u(n)0 }Nn=1, iterative ensemble Kalman methods use

various ensemble-based empirical means and covariances to update

{u(n)i }
N
n=1 → {u

(n)
i+1}

N
n=1, (5.1.2)

until a stopping criteria is satisfied; the unknown parameter u is reconstructed by the mean

of the final ensemble. The idea is analogous to classical Kalman methods and optimization

schemes which, starting with a single initialization u0 use evaluations of derivatives of h

to iteratively update ui → ui+1 until a stopping criteria is met. The initial ensemble is

viewed as an input to the algorithm, obtained in a problem-dependent fashion. In Bayesian

inverse problems and machine learning it may be obtained by sampling a prior, while in data

assimilation the initial ensemble may be a given collection of particles that approximates

the prediction distribution. In either case, it is useful to view the initial ensemble as a

sample from a probability distribution. It is important to note that there is no time variable

159

involved in the reconstruction task (5.1.1); however, we will often think of the iteration index

i ∈ N in (5.1.2) as an artificial time index, since this allows us to interpret the evolution of

iterates as arising from discretization of differential equations, and thereby to gain theoretical

understanding.

There are two main computational benefits in updating an ensemble of candidate recon-

structions rather than a single estimate. First, the ensemble update can be performed with-

out evaluating derivatives of h, effectively approximating them using statistical linearization.

This is important in applications where computing derivatives of h is expensive, or where the

map h needs to be treated as a black-box. Second, the use of empirical rather than model

covariances can significantly reduce the computational cost whenever the ensemble size N

is smaller than the dimension d of the unknown parameter u. A further advantage of the

ensemble approach is that, for problems that are not strongly nonlinear, the spread of the

ensemble may contain meaningful information on the uncertainty in the reconstruction.

5.1.1 Overview: Three subfamilies

This paper identifies, compares and further develops three subfamilies of iterative ensem-

ble Kalman methods to implement the ensemble update (5.1.2). Each subfamily employs

a different Kalman-type formulae, determined by a choice of objective to minimize and

a derivative-based optimization scheme to approximate with the ensemble. All three ap-

proaches impose some form of regularization, either explicitly through the choice of the

objective, or implicitly through the choice of the optimization scheme. Incorporating reg-

ularization is essential in parameter reconstruction problems encountered in applications,

which are typically under-determined or ill-posed [Lu and Pereverzev, 2011; Sanz-Alonso

et al., 2018].

The first subfamily considers a Tikhonov-Phillips objective associated with the parameter

160

reconstruction problem (5.1.2), given by

JTP(u) :=
1

2
|y − h(u)|2R +

1

2
|u−m|2P , (5.1.3)

where R and P are symmetric positive definite matrices that model, respectively, the data

measurement precision and the level of regularization —incorporated explicitly through the

choice of objective— and m represents a background estimate of u. Here and throughout

this paper we use the notation |v|2A := |A−1/2v|2 = vTA−1v for symmetric positive definite

A and vector v. The ensemble is used to approximate a Gauss-Newton method applied to

the Tikhonov-Phillips objective JTP. Algorithms in this subfamily were first introduced in

geophysical data assimilation [Aanonsen et al., 2009; Chen and Oliver, 2012; Emerick and

Reynolds, 2013; Gu and Oliver, 2007; Li and Reynolds, 2007; Reynolds et al., 2006] and were

inspired by iterative, derivative-based, extended Kalman filters [Bell, 1994; Jazwinski, 2007].

Extensions to more challenging problems with strongly nonlinear dynamics are considered

in [Sakov et al., 2012; Ungarala, 2012]. In this paper we will use a new Iterative Ensemble

Kalman Filter (IEKF) method as a prototypical example of an algorithm that belongs to

this subfamily.

The second subfamily considers the data-misfit objective

JDM(u) :=
1

2
|y − h(u)|2R. (5.1.4)

When the parameter reconstruction problem is ill-posed, minimizing JDM leads to unstable

reconstructions. For this reason, iterative ensemble Kalman methods in this subfamily are

complemented with a Levenberg-Marquardt optimization scheme that implicitly incorporates

regularization. The ensemble is used to approximate a regularizing Levenberg-Marquardt

optimization algorithm to minimize JDM. Algorithms in this subfamily were introduced in the

applied mathematics literature [Iglesias, 2016; Iglesias et al., 2013] building on ideas from

161

Objective Optimization Derivative Method Ensemble Method New Variant
JTP GN IExKF (5.2.1) IEKF (5.3.1) IEKF-SL (5.4.1)
JDM LM LM-DM (5.2.2) EKI (5.3.2) EKI-SL (5.4.2)
JTP LM LM-TP (5.2.3) TEKI (5.3.3) TEKI-SL (5.4.3)

Table 5.1.1: Roadmap to the algorithms considered in this paper. We use the abbreviations GN
and LM for Gauss-Newton and Levenberg-Marquardt. The numbers in parenthesis represent the
subsection in which each algorithm is introduced.

classical inverse problems [Hanke, 1997]. Recent theoretical work has focused on developing

continuous-time and mean-field limits, as well as various convergence results [Blömker et al.,

2019; Bloömker et al., 2018; Chada and Tong, 2022; Herty and Visconti, 2018; Kovachki

and Stuart, 2019; Schillings and Stuart, 2017]. Methodological extensions based on Bayesian

hierarchical techniques were introduced in [Chada, 2018; Chada et al., 2017] and the incor-

poration of constraints has been investigated in [Albers et al., 2019; Chada et al., 2019]. In

this paper we will use the Ensemble Kalman Inversion (EKI) method [Iglesias et al., 2013]

as a prototypical example of an algorithm that belongs to this subfamily.

The third subfamily, which has emerged more recently, combines explicit regularization

through the Tikhonov-Phillips objective and an implicitly regularizing optimization scheme

[Chada and Tong, 2022; Chada et al., 2020]. Precisely, a Levenberg-Marquardt scheme is

approximated through the ensemble in order to minimize the Tikhonov-Phillips objective

JTP. In this paper we will use the Tikhonov ensemble Kalman inversion method (TEKI)

[Chada et al., 2020] as a prototypical example.

To conclude this overview we note that while in this paper we will only consider least-

squares objectives, iterative ensemble Kalman methods that use other regularizers have been

recently proposed [Kovachki and Stuart, 2019; Lee, 2021; Schneider et al., 2022]. As well as

this, we will restrict our attention to ensemble methods and their similarities with derivative-

based methods. Iterative variants of other data assimilation methods such as 3DVAR and

4DVAR may be of interest [Lorenc, 1986; Mandel et al., 2013; Sanz-Alonso et al., 2018], but

are outside the scope of this paper.

162

5.1.2 Statistical linearization, continuum limits and new variants

Each subfamily of iterative ensemble Kalman methods stems from a derivative-based opti-

mization scheme. However, there is substantial freedom as to how to use the ensemble to

approximate a derivative-based method. We will focus on randomized-maximum likelihood

implementations [Gu and Oliver, 2007; Kelly and Stuart, 2014; Sanz-Alonso et al., 2018],

rather than square-root or ensemble adjustment approaches [Anderson, 2001; Tippett et al.,

2003; Grooms, 2020]. Two principles will guide our derivation and analysis of ensemble meth-

ods: the use of statistical linearization [Ungarala, 2012] and their connection with gradient

descent methods through the study of continuum limits [Schillings and Stuart, 2017].

The idea behind statistical linearization is to approximate the gradient of h using pairs{(
u
(n)
i , h(u

(n)
i)
)}N

n=1 in such a way that if h is linear and the ensemble size N is sufficiently

large, the approximation is exact. As we shall see, this idea tacitly underlies the derivation

of all the ensemble methods considered in this paper, and will be explicitly employed in our

derivation of new variants. Statistical linearization has also been used within Unscented

Kalman filters, see e.g. [Ungarala, 2012].

Differential equations have long been important in developing and understanding opti-

mization schemes [Nemirovskij and Yudin, 1983], and investigating the connections between

differential equations and optimization is still an active area of research [Shi et al., 2021; Su

et al., 2014; Wibisono et al., 2016]. In the context of iterative ensemble methods, continuum

limit analyses arise from considering small length-steps and have been developed primarily

in the context of EKI-type algorithms [Blömker et al., 2019; Schillings and Stuart, 2018].

While the derivative-based algorithms that motivate the ensemble methods result in an ODE

continuum limit, the ensemble versions lead to a system of SDEs. Continuum limit analyses

are useful in at least three ways. First, they unveil the gradient structure of the optimization

schemes. Second, viewing optimization schemes as arising from discretizations of SDEs lends

itself to design of algorithms that are easy to tune: the length-step is chosen to be small and

163

the algorithms are run until statistical equilibrium is reached. Third, a simple linear-case

analysis of the SDEs may be used to develop new algorithms that satisfy certain desirable

properties. Our new iterative ensemble Kalman methods will be designed following these

observations.

While our work advocates the study of continuum limits as a useful tool to design en-

semble methods, continuum limits cannot fully capture the full richness and flexibility of

discrete-based implementable algorithms, since different algorithms may result in the same

SDE continuum limit. This insight suggests that it is not only the study of differential equa-

tions, but also their discretizations, that may contribute to the design of iterative ensemble

Kalman algorithms.

5.1.3 Main contributions and outline

In addition to providing a unified perspective of the existing literature, this paper contains

several original contributions. We highlight some of them in the following outline and refer

to Table 5.1.1 for a summary of the algorithms considered in this paper.

• In Section 5.2 we review three iterative derivative-based methods for nonlinear least-

squares optimization. The ensemble-based algorithms studied in subsequent sections

can be interpreted as ensemble-based approximations of the derivative-based methods

described in this section. We also derive informally ODE continuum limits for each

method, which unveils their gradient flow structure.

• In Section 5.3 we describe the idea of statistical linearization. We review three sub-

families of iterative ensemble methods, each of which has an update formula analogous

to one of the derivate-based methods in Section 5.2. We analyze the methods when

h(u) = Hu is linear by formally deriving SDE continuum limits that unveil their gra-

dient structure. A novelty in this section is the introduction of the IEKF method,

164

which is similar to, but different from, the iterative ensemble method introduced in

[Ungarala, 2012].

• The material in Section 5.4 is novel to the best of our knowledge. We introduce

new variants of the iterative ensemble Kalman methods discussed in Section 5.3 and

formally derive their SDE continuum limit. We analyze the resulting SDEs when

h(u) = Hu is linear. The proposed methods are designed to ensure that (i) no param-

eter tuning or careful stopping criteria are needed; and (ii) the ensemble covariance

contains meaningful information of the uncertainty in the reconstruction in the linear

case, avoiding the ensemble collapse of some existing methods.

• In Section 5.5 we include an in-depth empirical comparison of the performance of the

iterative ensemble Kalman methods discussed in Sections 5.3 and 5.4. We consider

four problem settings motivated by applications in Bayesian inverse problems, data

assimilation and machine learning. Our results illustrate the different behavior of

some methods in small noise regimes and the benefits of avoiding ensemble collapse.

• Section 5.6 concludes and suggests some open directions for further research.

5.2 Derivative-based optimization for nonlinear least-squares

In this section we review the Gauss-Newton and Levenberg-Marquardt methods, two deriva-

tive-based approaches for optimization of nonlinear least-squares objectives of the form

J(u) =
1

2
|r(u)|2. (5.2.1)

We derive closed formulae for the Gauss-Newton method applied to the Tikhonov-Phillips

objective JTP, as well as for the Levenberg-Marquardt method applied to the data-misfit

objective JDM and the Tikhonov-Phillips objective JTP. These formulae are the basis for the

165

ensemble, derivative-free methods considered in the next section.

As we shall see, the search directions of Gauss-Newton and Levenberg-Marquardt meth-

ods are found by minimizing a linearization of the least-squares objective. It is thus in-

structive to consider first linear least-squares optimization before delving into the nonlinear

setting. The following well-known result, that we will use extensively, characterizes the

minimizer µ of the Tikhonov-Phillips objective JTP in the case of linear h(u) = Hu.

Lemma 5.2.1. It holds that

1

2
|y −Hu|2R +

1

2
|u−m|2P =

1

2
|u− µ|2C + β, (5.2.2)

where β does not depend on u, and

C−1 = HTR−1H + P−1, (5.2.3)

C−1µ = HTR−1y + P−1m. (5.2.4)

Equivalently,

µ = m+K(y −Hm), (5.2.5)

C = (I −KH)P, (5.2.6)

where K is the Kalman gain matrix given by

K = PHT (HPHT +R)−1 = CHTR−1. (5.2.7)

Proof. The formulae (5.2.3) and (5.2.4) follows by matching linear and quadratic coefficients

in u between
1

2
|u− µ|2C and

1

2
|u−m|2P +

1

2
|y − h(u)|2R. (5.2.8)

166

The formulae (5.2.5) and (5.2.6) as well as the equivalent expressions for the Kalman gain K

in Equation (5.2.7) can be obtained using the matrix inversion lemma [Sanz-Alonso et al.,

2018].

Bayesian Interpretation Lemma 5.2.1 has a natural statistical interpretation. Consider

a statistical model defined by likelihood y|u ∼ N
(
Hu,R

)
and prior u ∼ N (m,P). Then

Equation (5.2.2) shows that the posterior distribution is Gaussian, u|y ∼ N (µ,C), and

Equations (5.2.3)-(5.2.4) characterize the posterior mean and precision (inverse covariance).

We interpret Equation (5.2.5) as providing a closed formula for the posterior mode, known

as the maximum a posteriori (MAP) estimator.

More generally, the generative model

u ∼ N (m,P),

y|u ∼ N (h(u), R),

(5.2.9)

gives rise to a posterior distribution on u|y with density proportional to exp
(
−JTP

(u)
)
. Thus, minimization of JTP(u) corresponds to maximizing the posterior density under

the model (5.2.9).

5.2.1 Gauss-Newton optimization of Tikhonov-Phillips objective

In this subsection we introduce two ways of writing the Gauss-Newton update applied to

the Tikhonov-Phillips objective JTP. We recall that the Gauss-Newton method applied to a

general least-squares objective J(u) = 1
2 |r(u)|2 is a line-search method which, starting from

an initialization u0, sets

ui+1 = ui + αivi, i = 0, 1, . . .

167

where vi is a search direction defined by

vi = argmin
v

Jℓ

i(v), Jℓ

i(v) :=
1

2
|r′(ui)v + r(ui)|2, (5.2.10)

where αi > 0 is a length-step parameter whose choice will be discussed later. In order to

apply the Gauss-Newton method to the Tikhonov-Phillips objective, we write JTP in the

standard nonlinear least-squares form (5.2.1). Note that

JTP(u) =
1

2
|u−m|2P +

1

2
|y − h(u)|2R

=
1

2
|z − g(u)|2Q,

where

z :=

 y

m

 , g(u) :=

h(u)
u

 , Q :=

R 0

0 P

 . (5.2.11)

Therefore we have

JTP(u) =
1

2
|rTP(u)|2, rTP(u) := Q−1/2

(
z − g(u)

)
. (5.2.12)

The following result is a direct consequence of Lemma 5.2.1.

Lemma 5.2.2 ([Bell, 1994]). The Gauss-Newton method applied to the Tikhonov-Phillips

objective JTP admits the characterizations:

ui+1 = ui + αiCi

{
HT
i R
−1(y − h(ui)

)
+ P−1(m− ui)

}
, (5.2.13)

and

ui+1 = ui + αi

{
Ki
(
y − h(ui)

)
+ (I −KiHi)(m− ui)

}
, (5.2.14)

168

where Hi = h′(ui) and

Ki = PHT
i (HiPHT

i +R)−1,

Ci = (I −KiHi)P.

Proof. The search direction vi of Gauss-Newton for the objective JTP is given by

vi = argmin
v

JℓTP,i(v) (5.2.15)

= argmin
v

1

2

∣∣r′TP(ui)v + rTP(ui)
∣∣2 (5.2.16)

= argmin
v

1

2

∣∣z − g(ui)− g′(ui)v
∣∣
Q (5.2.17)

= argmin
v

{
1

2

∣∣y − h(ui)− h′(ui)v
∣∣2
R +

1

2

∣∣v − (m− ui)
∣∣2
P

}
. (5.2.18)

Applying Lemma 5.2.1, using formulae (5.2.4) and (5.2.6), we deduce that

vi = Ci

{
HT
i R
−1(y − h(ui)

)
+ P−1(m− ui)

}
,

which establishes the characterization (5.2.13). The equivalence between (5.2.13) and

(5.2.14) follows from the identity (5.2.7), which implies that CiH
T
i R
−1 = Ki and CiP

−1 =

I −KiHi.

We refer to the Gauss-Newton method with constant length-step αi = α applied to

JTP as the Iterative Extended Kalman Filter (IExKF) algorithm. IExKF was developed

in the control theory literature [Jazwinski, 2007] without reference to the Gauss-Newton

optimization method; the agreement between both methods was established in [Bell, 1994].

In order to compare IExKF with an ensemble-based method in Section 5.3, we summarize

it here.

The next proposition shows that in the linear case, if α is set to 1, IExKF finds the

169

Algorithm 5.2.1 Iterative Extended Kalman Filter (IExKF)

1: Input: Initialization u0 = m, length-step α.
2: For i = 0, 1, . . . do:

Set Ki = PHT
i (HiPHT

i +R)−1, Hi = h′(ui).

Set Ci = (I −KiHi)P.

Set
ui+1 = ui + α

{
Ki
(
y − h(ui)

)
+ (I −KiHi)(m− ui)

}
, (5.2.19)

or, equivalently,

ui+1 = ui + αCi

{
HT
i R
−1(y − h(ui)) + P−1(m− ui)

}
, (5.2.20)

3: Output: u1, u2, . . .

minimizer of the objective (5.1.3) in one iteration, and further iterations still agree with the

minimizer.

Proposition 5.2.3. Suppose that h(u) = Hu is linear and α = 1. Then the output of

Algorithm 5.2.1 satisfies

ui = µ, i = 1, 2, . . .

where µ is the minimizer of the Tikhonov-Phillips objective (5.1.3).

Proof. In the linear case we have

Hi = H, Ki = K = PHT (HPHT +R)−1, i = 0, 1, . . .

Therefore, update (5.2.19) simplifies as

ui+1 = m+K(y −Hm), i = 0, 1, . . .

This implies that, for all i ≥ 1, it holds that ui = µ with µ defined in Equation (5.2.5).

170

Choice of Length-Step When implementing Gauss-Newton methods, it is standard prac-

tice to perform a line search in the direction of vi to adaptively choose the length-step αi.

For instance, a common strategy is to guarantee that the Wolfe conditions are satisfied [Den-

nis Jr and Schnabel, 1996; Majda and Harlim, 2012]. In this paper we will instead simply set

αi = α for some fixed value of α, and we will follow a similar approach for all the derivative-

based and ensemble-based algorithms we consider. There are two main motivations for doing

so. First, it is appealing from a practical viewpoint to avoid performing a line search for

ensemble-based algorithms. Second, when α is small each derivative-based algorithms we

consider can be interpreted as a discretization of an ODE system, while the ensemble-based

methods arise as discretizations of SDE systems. These ODEs and SDEs allow us to compare

and gain transparent understanding of the gradient structure of the algorithms. They will

also allow us to propose some new variants of existing ensemble Kalman methods. We next

describe the continuum limit structure of IExKF.

Continuum Limit It is not hard to check that the term in brackets in the update (5.2.20)

HT
i R
−1(y − h(ui)) + P−1(m− ui)

is the negative gradient of JTP(u), which reveals the following gradient flow structure in the

limit of small length-step α :

u̇ = C(t)
{
h′
(
u(t)

)T
R−1

(
y − h

(
u(t)

))
+ P−1

(
m− u(t)

)}
= −C(t)J′TP

(
u(t)

)
,

(5.2.21)

with preconditioner

C(t) :=

(
h′
(
u(t)

)T
R−1h′

(
u(t)

)
+ P−1

)−1
.

171

We remark that in the linear case, C(t) ≡ C, where C is the posterior covariance given by

(5.2.6), which agrees with the inverse of the Hessian of the Tikhonov Phillips objective.

5.2.2 Levenberg-Marquardt optimization of data-misfit objective

In this subsection we introduce the Levenberg-Marquardt algorithm and describe its appli-

cation to the data misfit objective JDM. We recall that the Levenberg-Marquardt method

applied to a general least-squares objective J(u) = 1
2 |r(u)|2 is a trust region method which,

starting from an initialization u0, sets

ui+1 = ui + vi, i = 0, 1, . . .

where

vi = argmin
v

Jℓ

i(v), s.t. |v|2P ≤ δi, Jℓ

i(v) :=
1

2
|r′(ui)v + r(ui)|2.

Similar to Gauss-Newton methods, the increment vi is defined as the minimizer of a linearized

objective, but now the minimization is constrained to a ball {|v|2P ≤ δi} in which we trust

that the objective can be replaced by its linearization. The increment can also be written as

vi = argmin
v

JUC
i (v),

where

JUC
i (v) = Jℓ

i(v) +
1

2αi
|v|2P . (5.2.22)

The parameter αi > 0 plays an analogous role to the length-step in Gauss-Newton methods.

Note that the Levenberg-Marquardt increment is the unconstrained minimizer of a regularized

objective. It is for this reason that we say that Levenberg-Marquardt provides an implicit

regularization.

We next consider application of the Levenberg-Marquardt method to the data-misfit

172

objective JDM, which we write in standard nonlinear least-squares form:

JDM(u) =
1

2
|rDM(u)|2, rDM(u) := R−1/2

(
y − h(u)

)
. (5.2.23)

Lemma 5.2.4. The Levenberg-Marquardt method applied to the data misfit objective JDM

admits the following characterization:

ui+1 = ui +Ki

{
y − h(ui)

}
, (5.2.24)

where

Ki = αiPHT
i (αiHiPHT

i +R)−1, Hi = h′(ui).

Proof. Note that the increment vi is defined as the unconstrained minimizer of

JUC
DM,i(v) =

1

2
|r′DM(ui)v + rDM(ui)|2 +

1

2αi
|v|2P

=
1

2
|y − h(ui)− h′(ui)v|2R +

1

2αi
|v|2P .

(5.2.25)

The result follows from Lemma 5.2.1.

Similar to the previous section, we will focus on implementations with constant length-

step αi = α, which leads to the following algorithm.

Algorithm 5.2.2 Iterative Levenberg-Marquardt with Data Misfit (ILM-DM)

1: Input: Initialization u0 = m, length-step α.
2: For i = 0, 1, . . . do:

Set Ki = αPHT
i (αHiPHT

i +R)−1, Hi = h′(ui).

Set
ui+1 = ui +Ki

{
y − h(ui)

}
. (5.2.26)

3: Output: u1, u2, . . .

173

When α = 1, the following linear-case result shows that ILM-DM, i.e. Algorithm 5.2.2,

reaches the minimizer of JTP in one iteration. However, in contrast to IExKF, further iter-

ations of ILM-DM will typically worsen the optimization of JTP, and start moving towards

minimizers of JDM.

Proposition 5.2.5. Suppose that h(u) = Hu is linear and α = 1. Then the output of

Algorithm 5.2.2 satisfies

u1 = argmin
u

JTP(u),

where JTP is the Tikhonov-Phillips objective (5.1.3).

Proof. The proof is identical to that of Proposition 5.2.3, noting that in the linear case

ui+1 = ui +K(y −Hui).

Example 5.2.6 (Convergence of ILM-DM with invertible observation map). Suppose that

H ∈ Rd×d is invertible and α = 1. Then, writing

ui+1 = (I −KH)ui +Ky

and noting that ρ(I −KH) < 1 [Anderson and Moore, 2012], it follows that ui → u∗, where

u∗ is the unique solution to y = Hu. That is, the iterates of ILM-DM converge to the unique

minimizer of the data misfit objective JDM.

Choice of Length-Step When implementing Levenberg-Marquardt algorithms, the

length-step parameter αi is often chosen adaptively, based on the objective. However, similar

to Section 5.2.1, we fix αi = α to be a small value which leads to an ODE continuum limit.

Continuum Limit We notice that, in the limit of small length-step α, update (5.2.26)

can be written as

ui+1 = ui + αPHT
i R
−1
{
y − h(ui)

}
.

174

The term HT
i R
−1
{
y−h(ui)

}
is the negative gradient of JDM(u), which reveals the following

gradient flow structure

u̇ = Ph′
(
u(t)

)T
R−1

{
y − h

(
u(t)

)}
= −PJ′DM(u),

(5.2.27)

where the preconditioner P is interpreted as the prior covariance in the Bayesian framework.

5.2.3 Levenberg-Marquardt optimization of Tikhonov-Phillips objective

In this subsection we describe the application of the Levenberg-Marquardt algorithm to the

Tikhonov-Phillips objective JTP.

Lemma 5.2.7. The Levenberg-Marquardt method applied to the Tikhonov-Phillips objective

JTP admits the following characterization:

ui+1 = ui +Ki

{
z − g(ui)

}
,

where

Ki = αiPGT
i (αiGiPGT

i +Q)−1, Gi = g′(ui),

recalling that g is defined in (5.2.11).

Proof. Note that the increment vi is defined as the unconstrained minimizer of

JUC
TP,i(v) = JℓTP,i(v) +

1

2αi
|v|2P (5.2.28)

=
1

2
|z − g(ui)− g′(ui)v|2Q +

1

2αi
|v|2P , (5.2.29)

which has the same form as Equation (5.2.25) replacing y with z, h with g, and R with

Q.

175

Setting αi = α leads to the following algorithm.

Algorithm 5.2.3 Iterative Levenberg-Marquardt with Tikhonov-Phillips (ILM-TP)

1: Input: Initialization u0 = m, length-step α.
2: For i = 0, 1, . . . do:

Set Ki = αPGT
i (αGiPGT

i +Q)−1, Gi = g′(ui).

Set
ui+1 = ui +Ki

{
z − g(ui)

}
. (5.2.30)

3: Output: u1, u2, . . .

Proposition 5.2.8. Suppose that h(u) = Hu is linear and α = 1. The output of Algorithm

5.2.3 satisfies

u1 = argmin
u

{
JTP(u) +

1

2
|u−m|2

}
. (5.2.31)

Proof. The result is a corollary of Proposition 5.2.5. To see this, note that JTP(u) =

1
2 |z − g(u)|2Q can be viewed as a data-misfit objective with data z, forward model g(u)

and observation matrix Q. Then, ILM-TP can be interpreted as applying ILM-DM to JTP,

and the objective JTP(u) +
1
2 |u−m|2 as its Tikhonov-Phillips regularization.

Example 5.2.9 (Convergence of ILM-TP with linear invertible observation map.). It is

again instructive to consider the case where H ∈ Rd×d is invertible. Then, following the

same reasoning as in Example 5.2.6 we deduce that the iterates of ILM-TP converge to the

unique minimizer of JTP.

Continuum Limit In the limit of small length-step α, we can derive the gradient flow

structure of update (5.2.30). This is similar to Section 5.2.2, with JDM replaced by JTP.

176

Objective Optimization Derivative Method Ensemble Method
JTP GN IExKF IEKF
JDM LM ILM-DM EKI
JTP LM ILM-TP TEKI

Table 5.3.1: Summary of the main algorithms in Sections 5.2 and 5.3.

Precisely, the gradient flow of ILM-TP is given by

u̇ = Pg′
(
u(t)

)T
Q−1

{
z − g

(
u(t)

)}
= −PJ′TP(u).

5.3 Ensemble-based optimization for nonlinear least-squares

In this section we review three subfamilies of iterative methods that update an ensemble

{u(n)i }Nn=1 employing Kalman-based formulae, where i = 0, 1, . . . denotes the iteration in-

dex and N is a fixed ensemble size. Each ensemble member u
(n)
i is updated by optimizing

a (random) objective J
(n)
i defined using the current ensemble {u(n)i }Nn=1 and/or the initial

ensemble {u(n)0 }Nn=1. The optimization is performed without evaluating derivatives by in-

voking a statistical linearization of a Gauss-Newton or Levenberg-Marquardt algorithm. In

analogy with the previous section, the three subfamilies of ensemble methods we consider

differ in the choice of the objective and in the choice of the optimization algorithm. Table

5.3.1 summarizes the derivative and ensemble methods considered in the previous and the

current section.

Given an ensemble {u(n)i }Nn=1 we use the following notation for ensemble empirical means

mi =
1

N

N∑
n=1

u
(n)
i , hi =

1

N

N∑
n=1

h(u
(n)
i),

177

and empirical covariances

Puu
i =

1

N

N∑
n=1

(u
(n)
i −mi)(u

(n)
i −mi)

T ,

P
uy
i =

1

N

N∑
n=1

(
u
(n)
i −mi

)(
h(u

(n)
i)− hi

)T
,

P
yy
i =

1

N

N∑
n=1

(
h(u

(n)
i)− hi

)(
h(u

(n)
i)− hi

)T
.

Two overarching themes that underlie the derivation and analysis of the ensemble meth-

ods studied in this section and the following one are the use of a statistical linearization to

avoid evaluation of derivatives, and the study of continuum limits. We next introduce these

two ideas.

Statistical Linearization If h(u) = Hu is linear, we have

P
uy
i = Puu

i HT ,

which motivates the approximation in the general nonlinear case

h′(u(n)i) ≈ (P
uy
i)T (Puu

i)−1 =: Hi, n = 1, . . . , N, (5.3.1)

where here and in what follows (Puu
i)−1 denotes the pseudoinverse of Puu

i . Notice that

(5.3.1) can be regarded as a linear least-squares fit of pairs
{(

u
(n)
i , h(u

(n)
i)
)}N

n=1 normalized

around their corresponding empirical means mi and hi. We remark that in order for the

approximation in (5.3.1) to be accurate, the ensemble size N should not be much smaller

than the input dimension d.

178

Continuum Limit We will gain theoretical understanding by studying continuum limits.

Specifically, each algorithm includes a length-step parameter α > 0, and the evolution of the

ensemble for small α can be interpreted as a discretization of an SDE system. We denote

by {u(n)(t)}Nn=1 the sample paths of the underlying SDE. For each 1 ≤ n ≤ N , we have

u
(n)
0 = u(n)(0), and we view u

(n)
i as an approximation of u(n)(t) for t = αi. Similarly as

above, we define Puu(t), Puy(t), P yy(t) as the corresponding empirical covariances at time

t ≥ 0.

Remark 5.3.1. For the subsequent algorithms we will employ random perturbations y
(n)
i of

the original data y. Randomly perturbing the data is common practice for ensemble meth-

ods to ensure the correct statistics in the large ensemble limit under linearity assumptions

[Lawson and Hansen, 2004].

5.3.1 Ensemble Gauss-Newton optimization of Tikhonov-Phillips objective

Iterative Ensemble Kalman Filter

Given an ensemble {u(n)i }Nn=1, consider the following Gauss-Newton update for each n:

u
(n)
i+1 = u

(n)
i + αv

(n)
i , (5.3.2)

where α > 0 is the length-step, and v
(n)
i is the minimizer of the following (linearized)

Tikhonov-Phillips objective (cf. equation (5.2.18))

J
(n)
TP,i(v) =

1

2

∣∣y(n)i −h(u
(n)
i)−Hiv

∣∣2
R+

1

2

∣∣u(n)0 −u
(n)
i −v

∣∣2
Puu
0

, y
(n)
i ∼ N (y, α−1R). (5.3.3)

179

Notice that we adopt the statistical linearization (5.3.1) in the above formulation. Applying

Lemma 5.2.1, the minimizer v
(n)
i can be calculated as

v
(n)
i = Ci

{
HT
i R
−1(y(n)i − h(u

(n)
i)
)
+ (Puu

0)−1
(
u
(n)
0 − u

(n)
i

)}
, (5.3.4)

or, in an equivalent form,

v
(n)
i = Ki

(
y
(n)
i − h(u

(n)
i)
)
+ (I −KiHi)(u

(n)
0 − u

(n)
i), (5.3.5)

where

Ci =
(
HT
i R
−1Hi + (Puu

0)−1
)−1

,

Ki = Puu
0 HT

i (HiP
uu
0 HT

i +R)−1.

Combining (5.3.2) and (5.3.5) leads to the Iterative Ensemble Kalman Filter (IEKF) algo-

rithm.

Algorithm 5.3.1 Iterative Ensemble Kalman Filter (IEKF)

1: Input: Initial ensemble {u(n)0 }Nn=1 sampled independently from the prior, length-step α.
2: For i = 0, 1, . . . do:

Set Ki = Puu
0 HT

i (HiP
uu
0 HT

i +R)−1, Hi = (P
uy
i)T (Puu

i)−1.

Draw y
(n)
i ∼ N (y, α−1R) and set

u
(n)
i+1 = u

(n)
i + α

{
Ki
(
y
(n)
i − h(u

(n)
i)
)
+ (I −KiHi)

(
u
(n)
0 − u

(n)
i

)}
, 1 ≤ n ≤ N.

(5.3.6)

3: Output: Ensemble means m1,m2, . . .

We highlight that IEKF is a natural ensemble-based version of the derivative-based

IExKF Algorithm 5.2.1 with update (5.2.19). Algorithm 5.3.1 is a slight modification of

180

the iterative ensemble Kalman algorithm proposed in [Ungarala, 2012]. The difference is

that [Ungarala, 2012] sets Hi = (P
uy
i)T (Puu

0)−1 rather than Hi = (P
uy
i)T (Puu

i)−1. Our

modification guarantees that Algorithm 5.3.1 is well-balanced in the sense that if α = 1,

u
(n)
0 ∼ N (m,P) and h(u) = Hu is linear, then the output of Algorithm 5.3.1 satisfies that,

as N →∞,

mi → µ, i = 1, 2, . . .

where µ is the minimizer of JTP(u) given in Equation (5.1.3). This is analogous to Proposition

5.2.3 for IExKF. A detailed explanation is included in Section 5.3.1 below.

Other statistical linearizations and approximations of the Gauss-Newton scheme are pos-

sible. We next give a high-level description of the method proposed in [Reynolds et al.,

2006], one of the earliest applications of iterative ensemble Kalman methods for inversion in

the petroleum engineering literature. Consider the alternative characterization of the Gauss-

Newton update (5.3.4). However, instead of using a different preconditioner Ci for each step,

[Reynolds et al., 2006] uses a fixed preconditioner C∗ = Puu
0 −P

uy
0 (R+P

yy
0)−1(Puy

0)T . Note

that C∗ can be viewed as an approximation of C0 :

C∗ ≈ Puu
0 − Puu

0 HT
0 (R +H0P

uu
0 HT

0)
−1H0P

uu
0

=
(
HT
0 R
−1H0 + (Puu

0)−1
)−1

= C0.

This leads to the following algorithm.

We note that IEKF-RZL, where RZL refers to the authors of the work [Reynolds et al.,

2006], is a natural ensemble-based version of the derivative-based IExKF Algorithm 5.2.1

with update (5.2.20). We have empirically observed in a wide range of numerical experiments

that Algorithm 5.3.1 is more stable than Algorithm 5.3.2, and we now give a heuristic

argument for the advantage of Algorithm 5.3.1 in small noise regimes.

181

Algorithm 5.3.2 Iterative Ensemble Kalman Filter (IEKF-RZL)

1: Input: Initial ensemble {u(n)0 }Nn=1 sampled independently from the prior, length-step
α.

Set C∗ = Puu
0 − P

uy
0

(
R + P

yy
0

)−1
(P

uy
0)T .

2: For i = 0, 1, . . . do:

Set Hi = (P
uy
i)T (Puu

i)−1

Draw y
(n)
i ∼ N (y, α−1R) and set

u
(n)
i+1 = u

(n)
i + αC∗

{
HT

i R
−1
(
y
(n)
i − h(u

(n)
i)
)
+ (P uu

0)−1
(
u
(n)
0 − u

(n)
i

)}
, 1 ≤ n ≤ N.

3: Output: Ensemble means m1,m2, . . .

• The update formula in Algorithm 5.3.1 is motivated by the large N approximation

Puu
0 HT

i (HiP
uu
0 HT

i +R)−1 ≈ PHT
i (HiPHT

i +R)−1,

which only requires that Puu
0 is a good approximation of P .

• The update formula in Algorithm 5.3.2 may be derived by invoking a large N approx-

imation of several terms. In particular, the error arising from the approximation

C∗HT
i R
−1 ≈ C0H

T
i R
−1,

gets amplified when R is small.

Empirical evidence of the instability of Algorithm 5.3.2 will be given in Section 5.5.1.

182

Analysis of IEKF

In the literature [Reynolds et al., 2006; Ungarala, 2012], the length-step α is sometimes

set to be 1. Here we state a simple observation about Algorithm 5.3.1 when α = 1 and

h(u) = Hu is linear. We further assume that Hi ≡ H for all i. Then Ki ≡ K0 :=

Puu
0 HT (HPuu

0 HT +R)−1, and the update (5.3.6) can be simplified as

u
(n)
i+1 = u

(n)
i +K0(y

(n)
i −Hu

(n)
i) + (I −K0H)(u

(n)
0 − u

(n)
i)

= u
(n)
0 +K0(y

(n)
i −Hu

(n)
0),

where y
(n)
i ∼ N (y,R). If {u(n)0 }Nn=1 are sampled independently from the prior N (m,P) and

we let N →∞, we have K0 → K = PHT (HPHT +R)−1 and, by the law of large numbers,

for any i ≥ 1,

1

N

N∑
n=1

u
(n)
i = (I −K0H) · 1

N

N∑
n=1

u
(n)
0 +K0 ·

1

N

N∑
n=1

y
(n)
i

→ (I −KH)m+Ky,

which is the posterior mean (and mode) in the linear setting. In other words, in the large

ensemble limit, the ensemble mean recovers the posterior mean after one iteration. However,

while the choice α = 1 may be effective in low dimensional (nonlinear) inverse problems, we

do not recommend it when the dimensionality is high, as Hi might not be a good approxi-

mation of H. Thus, we introduce Algorithms 5.3.1 and 5.3.2 with a choice of length-step α,

resembling the derivative-based Gauss-Newton method discussed in Section 5.2.1. Further

analysis of a new variant of Algorithm 5.3.1 will be conducted in a continuum limit setting

in Section 5.4.

Remark 5.3.2. Some remarks:

1. Although this will not be the focus of our paper, the IEKF Algorithm 5.3.1 (together

183

with the EKI Algorithm 5.3.3 and TEKI Algorithm 5.3.4 to be discussed later) enjoys

the ‘initial subspace property’ studied in previous works [Iglesias et al., 2013; Schillings

and Stuart, 2017; Chada et al., 2020] by which, for any i and any initialization of

{u(n)0 }Nn=1,

span
(
{u(n)i }

N
n=1

)
⊂ span

(
{u(n)0 }Nn=1

)
.

This can be shown easily for the IEKF Algorithm 5.3.1 by expanding the Puu
0 term in

Ki in the update formula (5.3.6).

2. Since we assume a Gaussian prior N (m,P) on u, a natural idea is to replace u
(n)
0 by

m and Puu
0 by P in the update formula (5.3.6). We pursue this idea in Section 5.4.1,

where we introduce a new variant of Algorithm 5.3.1 and analyze it in the continuum

limit setting. While the initial subspace property breaks down, this new variant is

numerically promising, as shown in Section 5.5.

5.3.2 Ensemble Levenberg-Marquardt optimization of data-misfit objective

Ensemble Kalman Inversion

Given an ensemble {u(n)i }Nn=1, consider the following Levenberg-Marquardt update for each

n:

u
(n)
i+1 = u

(n)
i + v

(n)
i , (5.3.7)

where v
(n)
i is the minimizer of the following regularized (linearized) data-misfit objective (cf.

equation (5.2.25))

J
(n),UC

DM,i (v) =
1

2

∣∣y(n)i − h(u
(n)
i)−Hiv

∣∣2
R +

1

2α

∣∣v∣∣2Puu
i

, y
(n)
i ∼ N (y, α−1R), (5.3.8)

and α > 0 will be regarded as a length-step. Notice that we adopt the statistical linearization

(5.3.1) in the above formulation. Applying Lemma 5.2.1, we can calculate the minimizer v(n)i

184

explicitly:

v
(n)
i = (HT

i R
−1Hi + α−1(Puu

i)−1)−1HT
i R
−1(y(n)i − h(u

(n)
i)
)
, (5.3.9)

or, in an equivalent form,

v
(n)
i = Puu

i HT
i (HiP

uu
i HT

i + α−1R)−1
(
y
(n)
i − h(u

(n)
i)
)
. (5.3.10)

We combine (5.3.7) and (5.3.10), substitute Puu
i HT

i = P
uy
i , and make another level of

approximation HiP
uy
i ≈ P

yy
i . This leads to the Ensemble Kalman Inversion (EKI) method

[Iglesias et al., 2013].

Algorithm 5.3.3 Ensemble Kalman Inversion (EKI)

1: Input: Initial ensemble {u(n)0 }Nn=1, length-step α.
2: For i = 0, 1, . . . do:

Set Ki = P
uy
i (P

yy
i + α−1R)−1.

Draw y
(n)
i ∼ N (y, α−1R) and set

u
(n)
i+1 = u

(n)
i +Ki

{
y
(n)
i − h(u

(n)
i)
}
, 1 ≤ n ≤ N. (5.3.11)

3: Output: Ensemble means m1,m2, . . .

We note that EKI is a natural ensemble-based version of the derivative-based ILM-DM

Algorithm 5.2.2. However, an important difference is that the Kalman gain in ILM-DM only

uses the iterates to update Hi and P is kept fixed. In contrast, the ensemble is used in EKI

to update P
uy
i and P

yy
i .

185

Analysis of EKI

In view of the definition of Ki, we can rewrite the update (5.3.11) as a time-stepping scheme

(as similarly done in [Schillings and Stuart, 2017, 2018]):

u
(n)
i+1 = u

(n)
i + αP

uy
i (αP

yy
i +R)−1

(
y + α−1/2R1/2ξ

(n)
i − h(u

(n)
i)
)

= u
(n)
i + αP

uy
i (αP

yy
i +R)−1

(
y − h(u

(n)
i)
)
+ α1/2P

uy
i (αP

yy
i +R)−1R1/2ξ

(n)
i ,

(5.3.12)

where ξ
(n)
i ∼ N (0, I) are independent. Taking the limit α → 0, we interpret (5.3.12) as a

discretization of the SDE system

du(n) = Puy(t)R−1
(
y − h(u(n))

)
dt+ Puy(t)R−1/2 dW (n). (5.3.13)

If h(u) = Hu is linear, the SDE system (5.3.13) turns into

du(n) = Puu(t)HTR−1
(
y −Hu(n)

)
dt+ Puu(t)HTR−1/2 dW (n). (5.3.14)

Proposition 5.3.3. For the SDE system (5.3.13), assume h(u) = Hu is linear, and suppose

that the initial ensemble {u(n)0 }Nn=1 is drawn independently from a continuous distribution

with finite second moments. Then, in the large ensemble size limit N →∞ (mean-field), the

distribution of u(n)(t) has mean m(t) and covariance C(t), which satisfy

dm(t)

dt
= C(t)HTR−1

(
y −Hm(t)

)
, (5.3.15)

dC(t)

dt
= −C(t)HTR−1HC(t). (5.3.16)

186

Furthermore, the solution can be computed analytically:

m(t) =
(
C(0)−1 + tHTR−1H

)−1(
C(0)−1m(0) + tHTR−1y

)
, (5.3.17)

C(t) =
(
C(0)−1 + tHTR−1H

)−1
. (5.3.18)

In particular, if H ∈ Rk×d has full column rank (i.e., d ≤ k, rank(H) = d), then, as t→∞,

m(t)→ (HTR−1H)−1(HTR−1y), (5.3.19)

C(t)→ 0. (5.3.20)

If H ∈ Rk×d has full row rank (i.e., d ≥ k, rank(H) = k), then, as t→∞,

Hm(t)→ y, (5.3.21)

HC(t)HT → 0. (5.3.22)

Proof. The proof technique is similar to [Garbuno-Inigo et al., 2020]. We will use that

m(t) = lim
N→∞

E
[
u(n)(t)

]
,

C(t) = lim
N→∞

E
[
e(n)(t)⊗ e(n)(t)

]
,

where e(n)(t) := u(n)(t)−m(t). First, note that (5.3.15) follows directly from (5.3.14) using

that in the mean field limit Puu(t) can be replaced by C(t). To obtain the evolution of C(t),

note that

dC(t) = lim
N→∞

E
[
de(n) ⊗ e(n) + e(n) ⊗ de(n) + de(n) ⊗ de(n)

]
,

187

where the last term accounts for the Itô correction. This simplifies as

dC(t)

dt
= lim

N→∞
E
[
−C(t)HTR−1H(e(n) ⊗ e(n))− (e(n) ⊗ e(n))HTR−1HC(t)

+ C(t)HTR−1HC(t)
]

= −C(t)HTR−1HC(t),

which gives Equation (5.3.16). To derive exact formulas for m(t) and C(t), we notice that

dC(t)−1

dt
= −C(t)−1dC(t)

dt
C(t)−1 = HTR−1H,

and
d
(
C(t)−1m(t)

)
dt

=
dC(t)−1

dt
m(t) + C(t)−1

dm(t)

dt
= HTR−1y.

Then (5.3.17) and (5.3.18) follow easily.

If H has full column rank, then HTR−1H is invertible and therefore, as t→∞,

C(t) = t−1
(
t−1C(0)−1 +HTR−1H

)−1 → 0

by continuity of the matrix inverse function. The limit of m(t), (5.3.19), follows immediately

from (5.3.17).

If H has full row rank, we make the following substitutions

m̃(t) = R−1/2Hm(t), C̃(t) = R−1/2HC(t)HTR−1/2.

188

Then (5.3.15) and (5.3.16) can be transformed into

dm̃(t)

dt
= C̃(t)

(
R−1/2y − m̃(t)

)
, (5.3.23)

dC̃(t)

dt
= −C̃(t)2. (5.3.24)

Using the fact that C̃(0) = R−1/2HC(0)HTR−1/2 is invertible, we can solve these using the

same technique as in the previous case:

C̃(t) =
(
C̃(0)−1 + t

)−1
, m̃(t) =

(
C̃(0)−1 + t

)−1(
C̃(0)−1m̃(0) + tR−1/2y

)
.

As t→∞, we have m̃(t)→ R−1/2y and C̃(t)→ 0, which lead to (5.3.21) and (5.3.22).

Remark 5.3.4. Some remarks:

1. In fact, (5.3.22) always holds, without rank constraints on H. The proof follows the

similar idea as in [Schillings and Stuart, 2017]. This can be viewed from Equation

(5.3.24), where we can perform eigenvalue decomposition C̃(0) = XΛ(0)XT , and show

that C̃(t) = XΛ(t)XT , where Λ(t) are diagonal matrices and Λ(t)→ 0 as t→∞. The

statement that HC(t)HT → 0 (or C(t)→ 0 if H has full column rank) is referred to as

‘ensemble collapse’. This can be interpreted as ‘the images of all the particles under H

collapse to a single point as time evolves’. Our numerical results in Section 5.5 show

that the ensemble collapse phenomenon of Algorithm 5.3.3 is also observed in a variety

of nonlinear examples and outside the mean-field limit, with moderate ensemble size

N . These empirical results justify the practical significance of the linear continuum

analysis in Proposition 5.3.3.

2. Under the same setting of Proposition 5.3.3, if we further require that the initial en-

semble {u(n)0 }Nn=1 is drawn independently from the prior distribution N (m,P), then in

189

the mean-field limit N →∞ we have m(0) = m and C(0) = P , leading to

m(1) = (P−1 +HTR−1H)−1(P−1m+HTR−1y),

C(1) = (P−1 +HTR−1H)−1

which are the true posterior mean and covariance, respectively. However, we have ob-

served in a variety of numerical examples (not reported here) that in nonlinear problems

it is often necessary to run EKI up to times larger than 1 to obtain adequate approx-

imation of the posterior mean and covariance. Providing a suitable stopping criteria

for EKI is a topic of current research [Schillings and Stuart, 2018; Iglesias and Yang,

2021] beyond the scope of our work.

5.3.3 Ensemble Levenberg-Marquardt optimization of Tikhonov-Phillips

objective

Tikhonov Ensemble Kalman Inversion

Recall that we define

z :=

 y

m

 , g(u) :=

h(u)
u

 , Q :=

R 0

0 P

 .

Then, given an ensemble {u(n)i }Nn=1, we can define

gi =
1

N

N∑
n=1

g(u
(n)
i),

190

and empirical covariances

P zz
i =

1

N

N∑
n=1

(
g(u

(n)
i)− gi

)(
g(u

(n)
i)− gi

)T
,

Puz
i =

1

N

N∑
n=1

(
u
(n)
i −mi

)(
g(u

(n)
i)− gi

)T
.

Furthermore, we define the statistical linearization Gi:

g′(u(n)i) ≈ (Puz
i)T (Puu

i)−1 =: Gi. (5.3.25)

It is not hard to check that

Gi =

Hi

I

 ,

with Hi defined in (5.3.1).

Given an ensemble {u(n)i }Nn=1, consider the following Levenberg-Marquardt update for

each n:

u
(n)
i+1 = u

(n)
i + v

(n)
i ,

where v
(n)
i is the minimizer of the following regularized (linearized) Tikhonov-Phillips ob-

jective (cf. equation (5.2.29))

J
(n),UC

TP,i (v) =
1

2

∣∣z(n)i − g(u
(n)
i)−Giv

∣∣2
Q +

1

2α

∣∣v∣∣2Puu
i

, z
(n)
i ∼ N (z, α−1Q), (5.3.26)

and α > 0 will be regarded as a length-step. We can calculate the minimizer v(n)i explicitly,

applying Lemma 5.2.1:

v
(n)
i = (GT

i Q
−1Gi + α−1(Puu

i)−1)−1GT
i Q
−1(z(n)i − g(u

(n)
i)
)
, (5.3.27)

191

or, in an equivalent form,

v
(n)
i = Puu

i GT
i (GiP

uu
i GT

i + α−1Q)−1
(
z
(n)
i − g(u

(n)
i)
)
. (5.3.28)

Similar to EKI, in Equation (5.3.28) we substitute Puu
i GT

i = Puz
i , and make the approxima-

tion GiP
uz
i ≈ P zz

i . This leads to Tikhonov Ensemble Kalman Inversion (TEKI), described

in Algorithm 5.3.4.

Algorithm 5.3.4 Tikhonov Ensemble Kalman Inversion (TEKI)

1: Input: Initial ensemble {u(n)0 }Nn=1, length-step α.
2: For i = 0, 1, . . . do:

Set Ki = Puz
i (P zz

i + α−1Q)−1.

Draw z
(n)
i ∼ N (z, α−1Q) and set

u
(n)
i+1 = u

(n)
i +Ki

{
z
(n)
i − g(u

(n)
i)
}
, 1 ≤ n ≤ N. (5.3.29)

3: Output: Ensemble means m1,m2, . . .

We note that TEKI is a natural ensemble-based version of the derivative-based ILM-TP

Algorithm 5.2.3. However, the Kalman gain in ILM-TP keeps P fixed, while in TEKI Puz
i

and P zz
i are updated using the ensemble.

Analysis of TEKI

When α is small, we can rewrite the update (5.3.29) as a time-stepping scheme (as similarly

done in [Chada et al., 2020]):

u
(n)
i+1 = u

(n)
i + αPuz

i (αP zz
i +Q)−1

(
z + α−1/2Q1/2ξ

(n)
i − g(u

(n)
i)
)

= u
(n)
i + αPuz

i (αP zz
i +Q)−1

(
z − g(u

(n)
i)
)
+ α1/2Puz

i (αP zz
i +Q)−1Q1/2ξ

(n)
i ,

(5.3.30)

192

where ξ
(n)
i ∼ N (0, Id+k) are independent. Taking the limit α→ 0, we can interpret (5.3.30)

as a discretization of an interacting particle SDE system

du(n) = Puz(t)Q−1
(
z − g(u(n))

)
dt+ Puz(t)Q−1/2 dW (n). (5.3.31)

If h(u) = Hu is linear, g(u) = Gu is also linear and the SDE system (5.3.31) can be rewritten

as

du(n) = Puz(t)Q−1
(
z −Gu(n)

)
dt+ Puz(t)Q−1/2 dW (n)

= Puu(t)GTQ−1
(
z −Gu(n)

)
dt+ Puu(t)GTQ−1/2 dW (n).

(5.3.32)

Proposition 5.3.5. For the SDE system (5.3.31), assume h(u) = Hu is linear, and that the

initial ensemble {u(n)0 }Nn=1 is made of independent samples from a distribution with finite

second moments. Then, in the large ensemble limit (mean-field), the distribution of u(n)(t)

has mean m(t) and covariance C(t), which satisfy:

dm(t)

dt
= C(t)GTQ−1(z −Gm(t)), (5.3.33)

dC(t)

dt
= −C(t)GTQ−1GC(t). (5.3.34)

Furthermore, the solution can be computed analytically:

m(t) =
(
C(0)−1 + tGTQ−1G

)−1(
C(0)−1m(0) + tGTQ−1z

)
, (5.3.35)

C(t) =
(
C(0)−1 + tGTQ−1G

)−1
. (5.3.36)

193

In particular, as t→∞,

m(t)→ (GTQ−1G)−1(GTQ−1z)

= (HTR−1H + P)−1(HTR−1y + P−1m),

(5.3.37)

C(t)→ 0. (5.3.38)

Notice that m(t) converges to the true posterior mean.

Proof. Equations (5.3.33)-(5.3.36) can be derived similarly as in the proof of Proposition

5.3.3, replacing H by G, R by Q, and y by z. Now since GTQ−1G = HTR−1H + P is

always invertible we have that, as t→∞,

C(t) = t−1
(
t−1C(0)−1 +GTQ−1G

)−1 → 0

by continuity of the matrix inverse function. The limit of m(t) in (5.3.37) follows directly

from (5.3.35).

5.4 Ensemble Kalman methods: New variants

In the previous section we discussed three popular subfamilies of iterative ensemble Kalman

methods, analogous to the derivative-based algorithms in Section 5.2. The aim of this section

is to introduce two new iterative ensemble Kalman methods which are inspired by the SDE

continuum limit structure of the algorithms in Section 5.3. The two new methods that we

introduce have in common that they rely on statistical linearization, and that the long-

time limit of the ensemble covariance recovers the posterior covariance in a linear setting.

This holds true even if the initial ensemble is not drawn from the prior distribution on the

unknown.

Subsection 5.4.1 contains a new variant of IEKF which in addition to recovering the

194

posterior covariance, it also recovers the posterior mean in the long-time limit. Subsection

5.4.2 introduces a new variant of the EKI method. Finally, Subsection 5.4.3 highlights the

gradient structure of the algorithms in this and the previous section, shows that our new

variant of IEKF can also be interpreted as a modified TEKI algorithm, and sets our proposed

new methods into the broader literature.

5.4.1 Iterative Ensemble Kalman Filter with statistical linearization

In some of the literature on iterative ensemble Kalman methods [Reynolds et al., 2006;

Ungarala, 2012], the length-step (α in Algorithms 5.3.1 and 5.3.2) is set to be 1. Although

this choice of length-step allows to recover the true posterior mean in the linear case after one

iteration (see Section 5.3.1), it leads to numerical instability in complex nonlinear models.

Alternative ways to set α include performing a line-search that satisfies Wolfe’s condition,

or using other ad-hoc line-search criteria [Gu and Oliver, 2007]. These methods allow α to

be adaptively chosen throughout the iterations, but they introduce other hyperparameters

that need to be selected manually.

Our idea here is to slightly modify Algorithm 5.3.1 so that in the linear case its continuum

limit has the true posterior as its invariant distribution. In this way we can simply choose

a small enough α and run the algorithm until the iterates reach a statistical equilibrium,

avoiding the need to specify suitable hyperparameters and stopping criteria. Our empirical

results show that this approach also performs well in the nonlinear case.

In the update Equation (5.3.6), we replace each of the u
(n)
0 by a perturbation of the

prior mean m, and we replace Puu
0 by the prior covariance matrix P in the definition of Ki.

Details can be found below in our modified algorithm, which we call IEKF-SL.

It is natural to regard the update (5.4.1) as a time-stepping scheme. We rewrite it in an

195

Algorithm 5.4.1 Iterative Ensemble Kalman Filter with Statistical Linearization (IEKF-
SL)

1: Input: Initial ensemble {u(n)0 }Nn=1, step size α.
2: For i = 0, 1, . . . do:

Set Ki = PHT
i (HiPHT

i +R)−1, Hi = (P
uy
i)T (Puu

i)−1.

Draw y
(n)
i ∼ N (y, 2α−1R), m(n)

i ∼ N (m, 2α−1P) and set

u
(n)
i+1 = u

(n)
i + α

{
Ki
(
y
(n)
i − h(u

(n)
i)
)
+ (I −KiHi)

(
m

(n)
i − u

(n)
i

)}
, 1 ≤ n ≤ N.

(5.4.1)

3: Output: Ensemble means m1,m2, . . .

alternative form, in analogy to (5.3.4):

u
(n)
i+1 = u

(n)
i + αCi

{
HT
i R
−1(y(n)i − h(u

(n)
i)
)
+ P−1

(
m

(n)
i − u

(n)
i

)}
= u

(n)
i + αCi

{
HT
i R
−1(y − h(u

(n)
i)
)
+ P−1

(
m− u

(n)
i

)
+ (HT

i R
−1ζ + P−1η)

}
,

(5.4.2)

where

Ci =
(
HT
i R
−1Hi + P−1

)−1
, ζ ∼ N (0, 2α−1R), η ∼ N (0, 2α−1P).

We interpret Equation (5.4.2) as a discretization of the SDE system

du(n) = C(t)
(
H(t)TR−1

(
y − h(u(n))

)
+ P−1

(
m− u(n)

))
dt+

√
2C(t) dW (n), (5.4.3)

where

H(t) =
(
Puy(t)

)T (
Puu(t)

)−1
,

C(t) =
(
H(t)TR−1H(t) + P−1

)−1
.

196

The diffusion term can be derived using the fact that

Ci(H
T
i R
−1ζ + P−1η) ∼ N

(
0, 2α−1Ci(H

T
i R
−1Hi + P−1)Ci

)
= N (0, 2α−1Ci).

If h(u) = Hu is linear and the empirical covariance Puu(t) has full rank for all t, then

H(t) ≡ H, C(t) ≡ C = (P−1 + HTR−1H)−1, and the SDE system can be decoupled and

further simplified:

du(n) = C
(
HTR−1

(
y −Hu(n)

)
+ P−1(m− u(n))

)
dt+

√
2C dW

=
(
− u(n) + C(HTR−1y + P−1m)

)
dt+

√
2C dW.

(5.4.4)

Proposition 5.4.1. For the SDE system (5.4.3), assume h(u) = Hu is linear and H(t) ≡ H

holds. Assume that the initial ensemble {u(n)0 }Nn=1 is made of independent samples from a

continuous distribution with finite second moments. Then, for 1 ≤ n ≤ N , the mean m(t)

and covariance C(t) of u(n)(t) satisfy

dm(t)

dt
= −m(t) + C(HTR−1y + P−1m), (5.4.5)

dC(t)

dt
= −2C(t) + 2C. (5.4.6)

Furthermore, as t→∞,

m(t)→ C(HTR−1y + P−1m)

= (P−1 +HTR−1H)−1(HTR−1y + P−1m),

(5.4.7)

C(t)→ C = (P−1 +HTR−1H)−1. (5.4.8)

In other words, m(t) and C(t) converge to the true posterior mean and covariance, respec-

tively.

197

Proof. It is clear that, for fixed t > 0, {u(n)(t)}Nn=1 are independent and identically dis-

tributed. The evolution of the mean follows directly from (5.4.4), and the evolution of the

covariance follows from (5.4.4) by applying Itô’s formula. It is then straightforward to derive

(5.4.7) and (5.4.8) from (5.4.5) and (5.4.6), respectively.

5.4.2 Ensemble Kalman inversion with statistical linearization

Recall that in the formulation of EKI, we define a regularized (linearized) data-misfit objec-

tive (5.3.8), where we have a regularizer on v with respect to the norm | · |Puu
i

. However, in

view of Proposition 5.3.3, under a linear forward model h(u) = Hu, the particles {u(n)i }ni=1

will ‘collapse’, meaning that the empirical covariance of {Hu
(n)
i }Nn=1 will vanish in the large i

limit. One possible solution to this is ‘covariance inflation’, namely to inject certain amount

of random noise after each ensemble update. However, this requires ad-hoc tuning of addi-

tional hyperparameters. An alternative approach to avoid the ensemble collapse is to modify

the regularization term in the Levenberg-Marquardt formulation (5.3.8). The rough idea is

to consider another regularizer on Hiv in the data space, as we describe in what follows.

We define a new regularized data-misfit objective, slightly different from (5.3.8):

J
(n),UC

DM,i (v) =
1

2

∣∣y(n)i − h(u
(n)
i)−Hiv

∣∣2
R +

1

2α

∣∣v∣∣2Ci
y
(n)
i ∼ N (y, 2α−1R), (5.4.9)

where

Ci = (P−1 +HT
i R
−1Hi)

−1, (5.4.10)

and Hi is defined in (5.3.1). The regularization term can be decomposed as

|v|2Ci
= |v|2P + |Hiv|2R.

The first term can be regarded as a regularization on v with respect to the prior covariance

198

P . The second term can be regarded as a regularization on Hiv with respect to the noise

covariance R. Applying Lemma 5.2.1, we can calculate the minimizer of (5.4.9):

v
(n)
i = (HT

i R
−1Hi + α−1C−1i)−1HT

i R
−1(y(n)i − h(u

(n)
i)
)

=
(
α−1P−1 + (1 + α−1)HT

i R
−1Hi

)−1
HT
i R
−1(y(n)i − h(u

(n)
i)
)

= αPHT
i

(
(1 + α)HiPHT

i +R
)−1(

y
(n)
i − h(u

(n)
i)
)
,

(5.4.11)

where the second equality follows from the definition of Ci, and the third equality follows

from the matrix identity (5.2.7). This leads to Algorithm 5.4.2.

Algorithm 5.4.2 Ensemble Kalman Inversion with Statistical Linearization (EKI-SL)

1: Input: Initial ensemble {u(n)0 }Nn=1, step size α.
2: For i = 0, 1, . . . do:

Set Ki = αPHT
i

(
(1 + α)HiPHT

i +R
)−1

, Hi = (P
uy
i)T (Puu

i)−1.

Draw y
(n)
i ∼ N (y, 2α−1R) and set

u
(n)
i+1 = u

(n)
i +Ki

{
y
(n)
i − h(u

(n)
i)
}
, 1 ≤ n ≤ N. (5.4.12)

3: Output: Ensemble means m1,m2, . . .

For small α > 0, we interpret the update (5.4.12) as a discretization of the coupled SDE

system

du(n) = PH(t)T
(
H(t)PH(t)T +R

)−1((
y − h(u(n))

)
dt+

√
2R1/2 dW

)
= C(t)H(t)TR−1

(
y − h(u(n))

)
dt+

√
2C(t)H(t)TR−1/2 dW,

(5.4.13)

199

where

H(t) =
(
Puy(t)

)T (
Puu(t)

)−1
,

C(t) =
(
P−1 +H(t)TR−1H(t)

)−1
.

For our next result we will work under the assumption that H(t) ≡ H is constant, which in

particular requires that the empirical covariance Puu(t) has full rank for all t. Importantly,

under this assumption C(t) ≡ C = (P−1 +HTR−1H)−1and the SDE system is decoupled:

du(n) = CHTR−1
(
y −Hu(n)

)
dt+

√
2CHTR−1/2 dW (n). (5.4.14)

Proposition 5.4.2. For the SDE system (5.4.13), assume h(u) = Hu is linear and H(t) ≡

H holds. Assume that the initial ensemble {u(n)0 }Nn=1 is made of independent samples from

a continuous distribution with finite second moments. Then the mean m(t) and covariance

C(t) of u(n)(t) satisfy

dm(t)

dt
= CHTR−1(y −Hm(t)), (5.4.15)

dC(t)

dt
= −CHTR−1HC(t)− C(t)HTR−1HC + 2CHTR−1HC. (5.4.16)

In particular, if H ∈ Rk×d has full column rank (i.e., d ≤ k, rank(H) = d), then, as t→∞,

m(t)→ (HTR−1H)−1(HTR−1y), (5.4.17)

C(t)→ C = (P−1 +HTR−1H)−1. (5.4.18)

200

If H ∈ Rk×d has full row rank (i.e., d ≥ k, rank(H) = k), then, as t→∞,

Hm(t)→ y, (5.4.19)

HC(t)HT → HCHT . (5.4.20)

Proof. Note that here, in contrast to the setting of Proposition 5.3.3, the distribution of

u(n)(t) does not depend on the ensemble size N, and we have simply m(t) = E
[
u(n)(t)

]
and

C(t) = E
[
e(n)(t) ⊗ e(n)(t)

]
, with e(n)(t) := u(n)(t) − m(t). The evolution of m(t) follows

directly from (5.4.14). To obtain the evolution of C(t), we use a similar technique as in the

proof of Proposition 5.3.3. Applying Itô’s formula,

dC(t)

dt
= E

[
− CHTR−1H(e(n) ⊗ e(n))− (e(n) ⊗ e(n))HTR−1HC + 2CHTR−1HC

]
= −CHTR−1HC(t)− C(t)HTR−1HC + 2CHTR−1HC,

which recovers (5.4.16).

If H has full column rank, then HTR−1H is invertible, and (5.4.17) follows immediately

from (5.4.15). By setting the right-hand side of (5.4.16) to 0, and using the fact that it has

a unique solution, we derive (5.4.18).

If H has full row rank, then (5.4.19) follows immediately from (5.4.15). Next, the sub-

stitutions

C̃(t) = R−1/2HC(t)HTR−1/2, C̃ = R−1/2HCHTR−1/2

allow to transform (5.4.16) into

dC̃(t)

dt
= −C̃C̃(t)− C̃(t)C̃ + 2C̃2. (5.4.21)

Since C̃ is invertible, by setting the right-hand side of (5.4.21) to 0 we deduce that C̃(t)→ C̃

as t→∞, which recovers (5.4.20).

201

5.4.3 Gradient structure and discussion

LM Algorithms in the Continuum Limit Levenberg-Marquardt algorithms have a nat-

ural gradient structure in the continuum limit. This was shown in Equation (5.2.27), where

the preconditioner P corresponds to the regularizer | · |P that is used in the Levenberg-

Marquardt algorithm (5.2.22). Ensemble-based Levenberg-Marquardt algorithms also pos-

sess a gradient structure. To see this, we consider an update u
(n)
i+1 = u

(n)
i + v

(n)
i , where v

(n)
i

is the unconstrained minimizer of the same objective as (5.4.9)

J
(n),UC

DM,i (v) =
1

2

∣∣y(n)i − h(u
(n)
i)−Hiv

∣∣2
R +

1

2α

∣∣v∣∣2Si y
(n)
i ∼ N (y, 2α−1R),

except that we allow any positive (semi)definite matrix Si to act as a ‘regularizer’. The

resulting continuum limit is given by the SDE system

du(n) = S(t)H(t)TR−1
(
y − h(u(n))

)
dt+

√
2S(t)H(t)TR−1/2 dW (n), (5.4.22)

where u(n)(t), S(t), H(t) are continuous time analogs of u(n)i , Si, Hi.

Notice that H(t)TR−1(y−h(u(n))) is exactly −J′DM(u
(n)), so that we may rewrite (5.4.22)

as

u̇(n) = −S(t)J′DM(u
(n)) +

√
2S(t)H(t)TR−1/2Ẇ (n), (5.4.23)

which is a perturbed gradient descent with preconditioner S(t). We recall that S(t) = Puu(t)

in EKI and S(t) = C(t) =
(
P−1 +H(t)TR−1H(t)

)−1 in EKI-SL. Other choices of S(t) are

possible and will be studied in future work.

Gauss-Newton Algorithms in the Continuum Limit Gauss-Newton algorithms also

have a natural gradient structure in the continuum limit. As we have shown in Equation

(5.2.21), the Gauss-Newton method applied to a Tikhonov-Phillips objective can be regarded

202

as a gradient flow with a preconditioner that is the inverse Hessian matrix of the objective.

Ensemble-based Gauss-Newton methods also possess a similar gradient structure. Recall

that in Equation (5.4.3) we formulate the continuum limit of IEKF-SL:

du(n) = C(t)
(
H(t)TR−1

(
y − h(u(n))

)
+ P−1

(
m− u(n)

))
dt+

√
2C(t) dW (n). (5.4.24)

Notice that the drift term is exactly −C(t)J′TP(u
(n)), so we may rewrite (5.4.24) as

u̇(n) = −C(t)J′TP(u
(n)) +

√
2C(t)Ẇ (n), (5.4.25)

which is a perturbed gradient descent with preconditioner C(t), the inverse Hessian of JTP.

A Unified View of Levenberg-Marquardt and Gauss-Newton Algorithms in the

Continuum Limit As a conclusion of above discussion, in the continuum limit Levenberg-

Marquardt algorithms (e.g., EKI, EKI-SL) are (perturbed) gradient descent methods, with a

preconditioner determined by the regularizer used in the Levenberg-Marquardt update step.

Gauss-Newton algorithms (e.g., IEKF, IEKF-SL) are also (perturbed) gradient descent, with

a preconditioner determined by the inverse Hessian of the objective.

Interestingly, there are cases when the two types of algorithms coincide, even with the

same amount of perturbation in the gradient descent step. A way to see this is to set the

Levenberg-Marquardt regularizer to be the inverse Hessian of the objective. In equation

(5.4.23), if we consider the Tikhonov-Phillips objective (i.e., replace JDM by JTP, H by G,

Q by R), and set S(t) = C(t), then (5.4.23) and (5.4.25) will coincide, leading to the same

SDE system. This is the reason why we do not introduce a ‘TEKI-SL’ algorithm, as it is

identical to IEKF-SL.

203

Relationship to Ensemble Kalman Sampler (EKS) Another algorithm of interest

is the Ensemble Kalman Sampler (EKS) [Garbuno-Inigo et al., 2020; Ding and Li, 2021].

Although not discussed in this work, the EKS update is similar to (5.4.24). In fact, if we

replace C(t) by the ensemble covariance Puu(t), and use the fact that Puu(t)H(t)T = Puy(t)

by definition, we immediately recover the evolution equation of EKS:

du(n) =
(
Puy(t)TR−1

(
y − h(u(n))

)
+ P−1

(
m− u(n)

))
dt+

√
2Puu(t) dW (n).

Then an Euler-Maruyama discretization is performed to compute the update formula in

discrete form. However, as we find out in several numerical experiments, the length-step α

needs to be chosen carefully. If the noise R has a small scale, EKS often blows up in the first

few iterations, while other algorithms with the same length-step do not. Also, if we consider

a linear forward model h(u) = Hu, EKS still requires a mean field assumption N → ∞ in

order for it to converge to the posterior distribution, while IEKF-SL approximately needs

N ≈ d particles where d is the input dimension.

5.5 Numerical examples

In this section we provide a numerical comparison of the iterative ensemble Kalman methods

introduced in Sections 5.3 and 5.4. Our experiments highlight the variety of applications

that have motivated the development of these methods, and illustrate their use in a wide

range of settings. In order to provide a comparison between all variants, we will assess the

performance in various ways. First, the relative error at artificial time t > 0 is defined as

relative error =
|m(t)− u†|
|u†| ,

where m(t) denotes the mean of the ensemble at time t. Plots of the evolution of the data

misfit JDM

(
m(t)

)
and Tikhonov-Phillips JTP

(
m(t)

)
objectives will also be provided. We will

204

also assess the performance through reconstruction plots, which show the ensemble mean

and several ensemble quantiles at the last iteration. Additionally, for the first experiment

we compare each variant through the evolution of the Frobenius norm ∥Puu(t)∥F of the

ensemble covariance.

5.5.1 Elliptic boundary value problem

In this subsection we consider a simple nonlinear Bayesian inverse problem originally pre-

sented in [Ernst et al., 2015], where the unknown parameter is two dimensional and the

forward map admits a closed formula. These features facilitate both the visualization and

the interpretation of the solution.

Problem setup

Consider the elliptic boundary value problem

d

dx

(
exp(u1)

d

dx
p(x)

)
= 1, x ∈ (0, 1),

p(0) = 0, p(1) = u2.

(5.5.1)

It can be checked that (5.5.1) has an explicit solution

pu(x) = u2x−
1

2
exp(−u1)(x2 − x). (5.5.2)

We seek to recover u = (u1, u2)
T from noisy observation of pu at two points x1 = 0.25

and x2 = 0.75. Precisely, we define h(u) :=
(
pu(x1), pu(x2)

)T and consider the inverse

problem of recovering u from data y of the form

y = h(u) + η, (5.5.3)

205

-3.2 -3 -2.8 -2.6 -2.4 -2.2 -2
u

1

104

104.5

105

105.5

u
2

(a) Truth u†.

-3 -2.5 -2

u
1

104

104.5

105

105.5

u
2

(b) EKI.

-3 -2.5 -2

u
1

104

104.5

105

105.5

u
2

(c) TEKI.

-3 -2.5 -2

u
1

104

104.5

105

105.5

u
2

(d) IEKF.

-3 -2.5 -2

u
1

104

104.5

105

105.5

u
2

(e) EKI-SL.

-3 -2.5 -2

u
1

104

104.5

105

105.5

u
2

(f) IEKF-SL.

Figure 5.1: Ensemble members (green) after 100 iterations, with truth u† (red star) and contour
plot of (unnormalized) posterior density.

where η ∼ N (0, γ2I2). We set a Gaussian prior on the unknown parameter u ∼ N (0, 1) ×

N (100, 16). In our numerical experiments we let the true parameter be u† = (−2.6, 104.5)T

and use it to generate synthetic data y = h(u†) + η with noise level γ = 0.1.

Implementation details and numerical results

We set the ensemble size to be N = 50. The initial ensemble {u(n)0 }Nn=1 is drawn indepen-

dently from the prior. The length-step α is fixed to be 0.1 for all methods. We run each

algorithm up to time T = 10, which corresponds to 100 iterations. We emphasize that the

results here are not sensitive to the choice of α, provided that it is taken to be sufficiently

small. The range of suitable length-steps will, in general, depend on the strength of the

nonlinearity of h and the dimension of the problem. For the choice of T , stopping criteria

for convergence could be added to the algorithms. Here for simplicity we set T manually

and let all algorithms run for a sufficient amount of time.

We plot the level curves of the posterior density of u = (u1, u2)
T in Figure 5.1. The

206

forward model is approximately linear, as can be seen from the contour plots in Figure 5.1

or directly from Equation (5.5.2). Hence it can be used to validate the claims we made in

previous sections.

0 2 4 6 8 10

t

10-2

100

102

104

106

||P
uu

(t
)|

| F

EKI
EKI-SL
IEKF
IEKF-RZL
TEKI
IEKF-SL

Figure 5.2: Evolution of the Frobenius norm of the ensemble covariance P uu(t). For reference,
we also plot the Frobenius norm of the true posterior covariance (red dashed line). The norm of
IEKF-RZL blows up after a few iterations. The norms of the EKI and TEKI are almost identical
and monotonically decreasing. The norms of the new variants EKI-SL and IEKF-SL are similar
and stabilize after around 40 iterations. The norm of IEKF lies between those of the old and new
variants.

0 2 4 6 8 10

t

0

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
E

rr
or

EKI
EKI-SL

0 2 4 6 8 10

t

10-4

10-2

100

102

104

D
at

a-
M

is
fit

EKI
EKI-SL

Figure 5.3: EKI & EKI-SL: Relative errors and data misfit w.r.t time t.

Figure 5.2 compares the time evolution of the empirical covariance of the different meth-

ods. The IEKF-RZL algorithm consistently blows up in the first few iterations due to the

small noise which, as discussed in Section 5.3.1, is an important drawback. Due to the poor

performance of IEKF-RZL in small noise regimes, we will not include this method in sub-

sequent comparisons. The EKI and TEKI plots show the ‘ensemble collapse’ phenomenon

207

0 2 4 6 8 10

t

0

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
E

rr
or

IEKF
TEKI
IEKF-SL

0 2 4 6 8 10

t

101

102

103

104

T
ik

ho
no

v-
P

hi
lli

ps

IEKF
TEKI
IEKF-SL

Figure 5.4: TEKI, IEKF & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t time
t.

discussed in Sections 5.3.2 and 5.3.3. Note that the size of the empirical covariances of EKI

and TEKI decreases monotonically, and by the 100-th iteration their size is one order of mag-

nitude smaller than that of the new variants IEKF-SL and EKI-SL. The ensemble collapse

of EKI and TEKI can also be seen in Figure 5.1, where we plot all the ensemble members

after 100 iterations. In contrast, Figure 5.2 shows that the size of the empirical covariances

of the new variants IEKF-SL and EKI-SL stabilizes after around 40 iterations, and Figure

5.1 suggests that the spread of the ensemble matches that of the posterior. These results

are in agreement with the theoretical results derived in Sections 5.4.2 and 5.4.1 in a linear

setting. Although we have not discussed the IEKF method when α is small, its ensemble

covariance does not collapse in the linear setting, as can be seen in Figure 5.2.

In Figures 5.3 and 5.4 we show the performance of the different methods along the full

iteration sequence. Here and in subsequent numerical examples we use two performance

assessments. First, the relative error, defined as |m(t) − u†|/|u†| where m(t) is the ensem-

ble’s empirical mean, which evaluates how well the ensemble mean approximates the truth.

Second, we assess how each ensemble method performs in terms of its own optimization

objective. Precisely, we report the data-misfit objective JDM

(
m(t)

)
for EKI and EKI-SL, and

the Tikhonov-Phillips objective JTP

(
m(t)

)
for IEKF, TEKI and IEKF-SL. We run 10 trials

for each algorithm, using different ensemble initializations (drawn from the same prior), and

208

generate the error bars accordingly. Since this is a simple toy problem, all methods perform

well. However, we note that the first iterations of EKI and TEKI reduce the objective faster

than other algorithms.

5.5.2 High-dimensional linear inverse problem

In this subsection we consider a linear Bayesian inverse problem from [Iglesias et al., 2013].

This example illustrates the use of iterative ensemble Kalman methods in settings where

both the size of the ensemble and the dimension of the data are significantly smaller than

the dimension of the unknown parameter.

Problem setup

Consider the one dimensional elliptic equation

−d2p

dx2
+ p = u, x ∈ (0, π),

p(0) = p(π) = 0.

(5.5.4)

We seek to recover u from noisy observation of p at k = 24 − 1 equispaced points xj =
j
24
π.

We assume that the data is generated from the model

yj = p(xj) + ηj , j = 1, . . . , k, (5.5.5)

where ηj ∼ N (0, γ2) are independent. By defining A = − d2

dx2
+ id and letting O be the

observation operator defined by
(
O(p)

)
j = p(xj), we can rewrite (5.5.5) as

y = h(u) + η, η ∼ N (0, γ2Ik),

209

where h = O ◦ A−1. The forward problem (5.5.4) is solved on a uniform mesh with mesh-

width w = 2−8 by a finite element method with continuous, piecewise linear basis functions.

We assume that the unknown parameter u has a Gaussian prior distribution, u ∼ N (0, C0)

with covariance operator C0 = 10(A − id)−1 with homogeneous Dirichlet boundary condi-

tions. This prior can be interpreted as the law of a Brownian bridge between 0 and π. For

computational purposes we view u as a random vector in R28 and the linear map h(u) is

represented by a matrix H ∈ R(24−1)×28 . The true parameter u† is sampled from this prior

(cf. Figure 5.5), and is used to generate synthetic observation data y = Hu† + η with noise

level γ = 0.01.

Implementation details and numerical results

We set the ensemble size to be N = 50. The initial ensemble {u(n)0 }Nn=1 is drawn indepen-

dently from the prior. The length-step α is fixed to be 0.05 for all methods. We run each

algorithm up to time T = 30, which corresponds to 600 iterations.

We note that the linear inverse problem considered here has input dimension 28 = 256,

which is much larger than the ensemble size N . Combining the results from Figure 5.5, 5.6

and 5.7, EKI and EKI-SL clearly overfit the data. In contrast, TEKI over-regularizes the

data, and we easily notice the ensemble collapse. The IEKF and IEKF-SL lie in between,

and approximate the truth slightly better.

5.5.3 Lorenz-96 model

In this subsection we investigate the use of iterative ensemble Kalman methods to recover the

initial condition of the Lorenz-96 system from partial and noisy observation of the solution

at two positive times. The experimental framework is taken from [Chada and Tong, 2022]

and is illustrative of the use of iterative ensemble Kalman methods in numerical weather

forecasting.

210

0 0.5 1 1.5 2 2.5 3
x

-6

-5

-4

-3

-2

-1

0

u

(a) Truth u†.

0 0.5 1 1.5 2 2.5 3
x

-6

-5

-4

-3

-2

-1

0

u

(b) EKI.

0 0.5 1 1.5 2 2.5 3
x

-6

-5

-4

-3

-2

-1

0

u

(c) TEKI.

0 0.5 1 1.5 2 2.5 3
x

-6

-5

-4

-3

-2

-1

0

u

(d) IEKF.

0 0.5 1 1.5 2 2.5 3
x

-6

-5

-4

-3

-2

-1

0
u

(e) EKI-SL.

0 0.5 1 1.5 2 2.5 3
x

-6

-5

-4

-3

-2

-1

0

u

(f) IEKF-SL.

Figure 5.5: Ensemble mean (red) at the final iteration, with 10, 90-quantiles (blue).

0 5 10 15 20 25 30

t

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

at
iv

e
E

rr
or

EKI
EKI-SL

0 5 10 15 20 25 30

t

100

102

104

D
at

a-
M

is
fit

EKI
EKI-SL

Figure 5.6: EKI & EKI-SL: Relative errors and data misfit w.r.t time t.

211

0 5 10 15 20 25 30

t

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

at
iv

e
E

rr
or

IEKF
TEKI
IEKF-SL

0 5 10 15 20 25 30

t

101

102

103

104

105

T
ik

ho
no

v-
P

hi
lli

ps

IEKF
TEKI
IEKF-SL

Figure 5.7: IEKF, TEKI & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t time
t.

Problem setup

Consider the dynamical system

dzl
dt

= zl−1(zl+1 − zl−2)− zl + F, l = 1, . . . , d,

z0 = zd, zd+1 = z1, z−1 = zd−1.
(5.5.6)

Here zl denotes the lth coordinate of the current state of the system and F is a constant

forcing with default value of F = 8. The dimension d is often chosen as 40. We want to

recover the initial condition

u := (z1(0), . . . , zd(0))
T

of (5.5.6) from noisy partial measurements at discrete times {si}Ii=1:

yi,j = ulj (si) + ηi,j , (5.5.7)

where {lj}Jj=1 ⊂ {1, 2, . . . , d} is the subset of observed coordinates, and ηi,j ∼ N (0, γ2)

are assumed to be independent. In our numerical experiments we set I = 2, J = 20,

{s1, s2} = {0.3, 0.6}, {lj}20j=1 = {1, 3, 5, . . . , 39}. We set the prior on u to be a Gaussian

N (0, 2Id). The true parameter u† ∈ R40 is shown in Figure 5.8, and is used to generate the

212

observation data {yi,j} according to (5.5.7) with noise level γ = 0.01.

Implementation details and numerical results

We set the ensemble size to be N = 50. The initial ensemble {u(n)0 }Nn=1 is drawn indepen-

dently from the prior. The length-step α is fixed to be 0.05 for all methods. We run each

algorithm up to time T = 30, which corresponds to 600 iterations.

This is a moderately high dimensional nonlinear problem, where the forward model in-

volves a black-box solver of differential equations. Figure 5.8 clearly indicates an ensemble

collapse for the EKI and TEKI methods. Although they are still capable of finding a de-

scending direction of the loss direction (see Figures 5.9 and 5.10), iterates get stuck in a

local minimum. In contrast, we can see the advantage of IEKF, EKI-SL and TEKI-SL in

this setting: intuitively, a broader spread of the ensemble allows these methods to ‘explore’

different regions in the input space, and thereby to find a solution with potentially lower

loss.

We notice that in practice ‘covariance inflation’ is often applied in EKI and TEKI algo-

rithms, by manually injecting small random noise after each ensemble update. In general,

this technique will ‘force’ a non-zero empirical covariance, prevent ensemble collapse and

boost the performence of EKI and TEKI. However, the amount of noise injected is an addi-

tional hyperparameter that should be chosen manually, which should depend on the input

dimension, observation noise, etc. Here we give a fair comparison of the different methods

introduced, under the same time-stepping setting, with as few hyperparameters as possible.

5.5.4 High-dimensional nonlinear regression

In this subsection we consider a nonlinear regression problem with a highly oscillatory forward

map introduced in [Haber et al., 2018], where the authors investigate the use of iterative

213

0 10 20 30 40
index

0

1

2

3

4

u

(a) Truth u†.

0 10 20 30 40
index

0

1

2

3

4

u

(b) EKI.

0 10 20 30 40
index

0

1

2

3

4

u

(c) TEKI.

0 10 20 30 40
index

0

1

2

3

4

u

(d) IEKF.

0 10 20 30 40
index

0

1

2

3

4
u

(e) EKI-SL.

0 10 20 30 40
index

0

1

2

3

4

u

(f) IEKF-SL.

Figure 5.8: Ensemble mean (red) at the final iteration, with 10, 90-quantiles (blue).

0 5 10 15 20 25 30

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
E

rr
or

EKI
EKI-SL

0 5 10 15 20 25 30

t

100

102

104

106

108

D
at

a-
M

is
fit

EKI
EKI-SL

Figure 5.9: EKI & EKI-SL: Relative errors and data misfit w.r.t time t.

214

0 5 10 15 20 25 30

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
E

rr
or

IEKF
TEKI
IEKF-SL

0 5 10 15 20 25 30

t

102

104

106

T
ik

ho
no

v-
P

hi
lli

ps

IEKF
TEKI
IEKF-SL

Figure 5.10: IEKF, TEKI & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t time
t.

ensemble Kalman methods to train neural networks without back propagation.

Problem setup

We consider a nonlinear regression problem

y = h(u) + η, η ∼ N (0, γ2Ik),

where u ∈ Rd, y ∈ Rk, and h is defined by

h(u) := Au+ sin(cBu), (5.5.8)

where A,B ∈ Rk×d are random matrices with independent N (0, 1) entries. We set d = 200,

k = 150 and c = 20. We want to recover u from y. We assume that the unknown u has a

Gaussian prior u ∼ N (0, 4Id). The true parameter u† is set to be 2 ·1, where 1 is the all-one

vector. Observation data is generated as y = h(u†) + η.

By definition, h is highly oscillatory, and we may expect that the loss function, either

Tikhonov-Phillips or data misfit objective, will have many local minima. Figure 5.11 visu-

alizes the Tihonov-Phillips objective function JTP(u) with respect to two randomly choosen

coordinates while other coordinates are fixed to value of 2. The data misfit objective exhibits

215

a similar behavior.

Figure 5.11: Tikhonov-Phillips objective function with respect to two randomly chosen coordi-
nates.

Implementation details and numerical results

We set the ensemble size to be N = 200. The initial ensemble {u(n)0 }Nn=1 is drawn indepen-

dently from the prior. The length-step α is fixed to be 0.05 for all methods. We set γ = 0.01

for the observation noise. We run each algorithm up to time T = 30, which corresponds to

600 iterations.

We notice that this is a difficult problem, due to its high dimensionality and nonlinearity.

All methods except for IEKF-SL are not capable of reconstructing the truth. In particular,

from Figures 5.12, 5.13 and 5.14, both EKI and TEKI do a poor job with relative error larger

than 1, while IEKF and EKI-SL have slightly better performance. It is worth noticing from

Figure 5.14 that IEKF-SL has a larger Tikhonov-Phillips objective function, with a much

lower relative error. This may suggest that other types of regularization objectives can be

used, other that the Tikhonov-Phillips objective, to solve this problem.

216

0 50 100 150 200
index

-2

0

2

4

6

u

(a) Truth u†.

0 50 100 150 200
index

-2

0

2

4

6

u

(b) EKI.

0 50 100 150 200
index

-2

0

2

4

6

u

(c) TEKI.

0 50 100 150 200
index

-2

0

2

4

6

u

(d) IEKF.

0 50 100 150 200
index

-2

0

2

4

6
u

(e) EKI-SL.

0 50 100 150 200
index

-2

0

2

4

6

u

(f) IEKF-SL.

Figure 5.12: Ensemble mean (red) at the final iteration, with 10, 90-quantiles (blue).

0 5 10 15 20 25 30

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e
E

rr
or

EKI
EKI-SL

0 5 10 15 20 25 30

t

106

107

108

109

1010

1011

D
at

a-
M

is
fit

EKI
EKI-SL

Figure 5.13: EKI & EKI-SL: Relative errors and data misfit w.r.t time t.

217

0 5 10 15 20 25 30

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e
E

rr
or

IEKF
TEKI
IEKF-SL

0 5 10 15 20 25 30

t

106

107

108

109

1010

1011

T
ik

ho
no

v-
P

hi
lli

ps

IEKF
TEKI
IEKF-SL

Figure 5.14: IEKF, TEKI & IEKF-SL: Relative errors and Tikhonov-Phillips objective w.r.t time
t.

5.6 Conclusions and open directions

In this paper we have provided a unified perspective of iterative ensemble Kalman methods

and introduced some new variants. These new variants include a statistical linearization

of both EKI and the IEnKF. Our numerical experiments suggest that the IEnKF-SL does

not suffer from the overfitting of data. Furthermore and more interestingly, that for high-

dimensional nonlinear problems, the IEnKF-SL may outperform other known methodologies.

This is a promising result which has potential for other highly nonlinear inverse problems.

However, for linear inverse problems, all variants discussed, new and known, perform well.

As stated the advantage of such new variants is that no parameter tuning is required. We

hope that our work will stimulate further research in this active area, and we conclude with

a list of some open directions.

• Continuum limits have been formally derived in our work. The rigorous derivation

and analysis of SDE continuum limits, possibly in nonlinear settings, deserves further

research.

• We have advocated the analysis of continuum limits for the understanding and design

of iterative ensemble Kalman methods, but it would also be desirable to develop a

framework for the analysis of discrete, implementable algorithms, and to further un-

218

derstand the potential benefits of various discretizations of a given continuum SDE

system.

• From a theoretical viewpoint, it would be desirable to further analyze the convergence

and stability of iterative ensemble methods with small or moderate ensemble size.

While mean-field limits can be revealing, in practice the ensemble size is often not

sufficiently large to justify the mean-field assumption. It would also be important to

further analyze these questions in mildly nonlinear settings.

• An important methodological question, still largely unresolved, is the development

of adaptive and easily implementable line search schemes and stopping criteria for

ensemble-based optimization schemes. An important work in this direction is [Iglesias

and Yang, 2021].

• Another avenue for future methodological research is the development of iterative en-

semble Kalman methods that are sparse-promoting, considering alternative regulariza-

tions beyond the least-squares objectives discussed in our paper [Kovachki and Stuart,

2019; Lee, 2021; Schneider et al., 2022].

• Ensemble methods are cheap in comparison to derivative-based optimization methods

and Markov chain Monte Carlo sampling algorithms. It is thus natural to use ensemble

methods to build ensemble preconditioners or surrogate models to be used within more

expensive but accurate computational approaches.

• Finally, a broad area for further work is the application of iterative ensemble Kalman

filters to new problems in science and engineering.

219

REFERENCES

S. I. Aanonsen, G. Nœvdal, D. S. Oliver, A. C. Reynolds, and B. Vallès. The ensemble
Kalman filter in reservoir engineering—a review. Spe Journal, 14(03):393–412, 2009.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th
Symposium on Operating Systems Design and Implementation, pages 265–283, 2016.

S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Importance sampling:
Intrinsic dimension and computational cost. Statistical Science, 32(3):405–431, 2017.

D. J. Albers, P.-A. Blancquart, M. E. Levine, E. E. Seylabi, and A. M. Stuart. Ensemble
Kalman methods with constraints. Inverse Problems, 2019.

B. D. Anderson and J. B. Moore. Optimal filtering. Courier Corporation, 2012.

J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Monthly
Weather Review, 129(12):2884–2903, 2001.

J. L. Anderson and S. L. Anderson. A Monte Carlo implementation of the nonlinear filtering
problem to produce ensemble assimilations and forecasts. Monthly Weather Review, 127
(12):2741–2758, 1999.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342,
2010.

I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari. Learning dynamical systems
from partial observations. arXiv preprint arXiv:1902.11136, 2019.

R. Becker and B. Vexler. Mesh refinement and numerical sensitivity analysis for parameter
calibration of partial differential equations. Journal of Computational Physics, 206(1):
95–110, 2005.

B. M. Bell. The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on
Optimization, 4(3):626–636, 1994.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

T. Bengtsson, P. Bickel, B. Li, et al. Curse-of-dimensionality revisited: Collapse of the
particle filter in very large scale systems. Probability and statistics: Essays in honor of
David A. Freedman, 2:316–334, 2008.

P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM Review, 57(4):483–531, 2015.

220

A. Beskos, G. O. Roberts, A. M. Stuart, and J. Voss. MCMC methods for diffusion bridges.
Stochastics and Dynamics, 8(03):319–350, 2008.

D. Bigoni, O. Zahm, A. Spantini, and Y. M. Marzouk. Greedy inference with layers of lazy
maps. arXiv preprint arXiv:1906.00031, 2019.

D. Bigoni, Y. Chen, N. G. Trillos, Y. Marzouk, and D. Sanz-Alonso. Data-driven forward
discretizations for Bayesian inversion. Inverse Problems, 36(10):105008, 2020.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

C. Blömker, D.and Schillings, P. Wacker, and S. Weissmann. Well posedness and convergence
analysis of the ensemble Kalman inversion. Inverse Problems, 2019.

P. J. Blonigan and Q. Wang. Least squares shadowing sensitivity analysis of a modified Ku-
ramoto–Sivashinsky equation. Chaos, Solitons & Fractals, 64:16–25, 2014. Nonequilibrium
Statistical Mechanics: Fluctuations and Response.

D. Bloömker, C. Schillings, and P. Wacker. A strongly convergent numerical scheme from
ensemble Kalman inversion. SIAM Journal on Numerical Analysis, 56(4):2537–2562, 2018.

M. Bocquet, C. A. Pires, and L. Wu. Beyond Gaussian statistical modeling in geophysical
data assimilation. Monthly Weather Review, 138(8):2997–3023, 2010.

M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino. Data assimilation as a learning tool
to infer ordinary differential equation representations of dynamical models. Nonlinear
Processes in Geophysics, 26(3):143–162, 2019.

M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino. Bayesian inference of chaotic dynamics
by merging data assimilation, machine learning and expectation-maximization. arXiv
preprint arXiv:2001.06270, 2(1):55–80, 2020.

L. Borcea, V. Druskin, and L. Knizhnerman. On the continuum limit of a discrete inverse
spectral problem on optimal finite difference grids. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 58(9):
1231–1279, 2005.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable trans-
formations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino. Combining data assimilation and
machine learning to emulate a dynamical model from sparse and noisy observations: a
case study with the Lorenz 96 model. Journal of Computational Science, 44:101171, 2020.

S. L. Brunton and J. N. Kutz. Data-driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press, 2019.

221

http://github.com/google/jax

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016.

J. M. Burgers. A mathematical model illustrating the theory of turbulence. Advances in
applied mechanics, 1:171–199, 1948.

A. Carrassi, M. Ghil, A. Trevisan, and F. Uboldi. Data assimilation as a nonlinear dynamical
systems problem: Stability and convergence of the prediction-assimilation system. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 18(2):023112, 2008.

A. Carrassi, M. Bocquet, A. Hannart, and M. Ghil. Estimating model evidence using data
assimilation. Quarterly Journal of the Royal Meteorological Society, 143(703):866–880,
2017.

N. K. Chada. Analysis of hierarchical ensemble Kalman inversion. arXiv preprint
arXiv:1801.00847, 2018.

N. K. Chada and X. Tong. Convergence acceleration of ensemble Kalman inversion in non-
linear settings. Mathematics of Computation, 91(335):1247–1280, 2022.

N. K. Chada, M. Iglesias, L. Roininen, and A. M. Stuart. Parameterizations for ensemble
Kalman inversion. Inverse Problems, 34(2018), 2017.

N. K. Chada, C. Schillings, and S. Weissmann. On the incorporation of box-constraints for
ensemble Kalman inversion. arXiv preprint arXiv:1908.00696, 2019.

N. K. Chada, A. M. Stuart, and X. T. Tong. Tikhonov regularization within ensemble
Kalman inversion. SIAM Journal on Numerical Analysis, 58(2):1263–1294, 2020.

N. K. Chada, Y. Chen, and D. Sanz-Alonso. Iterative ensemble Kalman methods: A unified
perspective with some new variants. Foundations of Data Science, 3(3):331–369, 2021.

K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of coordinates
and governing equations. Proceedings of the National Academy of Sciences, 116(45):22445–
22451, 2019.

N. Chen and A. J. Majda. Conditional Gaussian systems for multiscale nonlinear stochastic
systems: prediction, state estimation and uncertainty quantification. Entropy, 20(7), 2018.

N. Chen and D. Qi. A physics-informed data-driven algorithm for ensemble forecast of
complex turbulent systems. arXiv preprint arXiv:2204.08547, 2022.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Ordinary Dif-
ferential Equations. In Advances in Neural Information Processing Systems, volume 31,
pages 6571–6583, 2018.

222

Y. Chen and D. S. Oliver. Ensemble randomized maximum likelihood method as an iterative
ensemble smoother. Mathematical Geosciences, 44:1–26, 2012.

Y. Chen, D. Sanz-Alonso, and R. Willett. Autodifferentiable Ensemble Kalman Filters.
SIAM Journal on Mathematics of Data Science, 4(2):801–833, 2022.

Y. Chen, D. Sanz-Alonso, and R. Willett. Reduced-Order Autodifferentiable Ensemble
Kalman Filters. arXiv preprint arXiv:2301.11961, 2023.

J. A. Christen and C. Fox. Markov chain Monte Carlo using an approximation. Journal of
Computational and Graphical statistics, 14(4):795–810, 2005.

J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. Bayesian probabilistic numerical
methods. SIAM Review, 61(4):756–789, 2019.

T. J. Cocucci, M. Pulido, M. Lucini, and P. Tandeo. Model error covariance estimation in
particle and ensemble Kalman filters using an online expectation–maximization algorithm.
Quarterly Journal of the Royal Meteorological Society, 147(734):526–543, 2021.

A. Corenflos, J. Thornton, A. Doucet, and G. Deligiannidis. Differentiable Particle Filter-
ing via Entropy-Regularized Optimal Transport. arXiv preprint arXiv:2102.07850, pages
2100–2111, 2021.

S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions:
modifying old algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.

D. Crisan, P. Del Moral, A. Jasra, and H. Ruzayqat. Log-normalization constant estimation
using the ensemble Kalman-Bucy filter with application to high-dimensional models. arXiv
preprint arXiv:2101.11460, 2021.

T. Cui, Y. M. Marzouk, and K. E. Willcox. Data-driven model reduction for the Bayesian
solution of inverse problems. International Journal for Numerical Methods in Engineering,
102(5):966–990, 2015.

T. Cui, K. J. H. Law, and Y. M. Marzouk. Dimension-independent likelihood-informed
MCMC. Journal of Computational Physics, 304:109–137, 2016.

E. De Brouwer, J. Simm, A. Arany, and Y. Moreau. GRU-ODE-Bayes: Continuous modeling
of sporadically-observed time series. arXiv preprint arXiv:1905.12374, 32, 2019.

P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with
Applications. Series: Probability and Applications, Springer-Verlag, New York, 2004.

P. Del Moral, J. Tugaut, et al. On the stability and the uniform propagation of chaos
properties of ensemble Kalman–Bucy filters. The Annals of Applied Probability, 28(2):
790–850, 2018.

223

C. Dellacherie and P.-A. Meyer. Probabilities and Potentials: Potential theory for Discrete
and Continuous Semigroups. Elsevier, 2011.

T. DelSole and X. Yang. State and parameter estimation in stochastic dynamical models.
Physica D: Nonlinear Phenomena, 239(18):1781–1788, 2010.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. SIAM, 1996.

L. Dieci and E. S. Van Vleck. Lyapunov and Sacker–Sell spectral intervals. Journal of
Dynamics and Differential Equations, 19(2):265–293, 2007.

L. Dieci and E. S. Van Vleck. Lyapunov exponents: Computation. Encyclopedia of Applied
and Computational Mathematics, pages 834–838, 2015.

Z. Ding and Q. Li. Ensemble Kalman sampler: Mean-field limit and convergence analysis.
SIAM Journal on Mathematical Analysis, 53(2):1546–1578, 2021.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen years
later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for
Bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

D. Dreano, P. Tandeo, M. Pulido, B. Ait-El-Fquih, T. Chonavel, and I. Hoteit. Estimating
model-error covariances in nonlinear state-space models using Kalman smoothing and
the expectation–maximization algorithm. Quarterly Journal of the Royal Meteorological
Society, 143(705):1877–1885, 2017.

C. Drovandi, R. G. Everitt, A. Golightly, D. Prangle, et al. Ensemble MCMC: accelerating
pseudo-marginal MCMC for state space models using the ensemble Kalman filter. Bayesian
Analysis, 17(1):223–260, 2021.

Q. Du and M. Gunzburger. Grid generation and optimization based on centroidal Voronoi
tessellations. Applied mathematics and computation, 133(2-3):591–607, 2002.

Y. Efendiev, T. Hou, and W. Luo. Preconditioning Markov chain Monte Carlo simulations
using coarse-scale models. SIAM Journal on Scientific Computing, 28(2):776–803, 2006.

A. A. Emerick and A. C. Reynolds. Ensemble smoother with multiple data assimilation.
Computers & Geosciences, 55:3–15, 2013.

O. G. Ernst, B. Sprungk, and H.-J. Starkloff. Analysis of the ensemble and polynomial
chaos Kalman filters in Bayesian inverse problems. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):823–851, 2015.

224

G. Evans and P. V. Leeuwen. Assimilation of Geosat altimeter data for the Agulhas current
using the ensemble Kalman filter with a quasigeostrophic model. Monthly Weather Review,
124(1):85–96, 1996.

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using
Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162, 1994.

G. Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business
Media, 2009.

G. Evensen, F. C. Vossepoel, and P. J. van Leeuwen. EnKF with the Lorenz Equations, pages
151–156. Springer International Publishing, 2022.

A. Farchi, P. Laloyaux, M. Bonavita, and M. Bocquet. Using machine learning to correct
model error in data assimilation and forecast applications. Quarterly Journal of the Royal
Meteorological Society, 147(739):3067–3084, 2021.

M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A disentangled recognition and
nonlinear dynamics model for unsupervised learning. arXiv preprint arXiv:1710.05741,
2017.

M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders. Surrogate and reduced-
order modeling: A comparison of approaches for large-scale statistical inverse problems.
Large-Scale Inverse Problems and Quantification of Uncertainty, pages 123–149, 2010.

R. Furrer and T. Bengtsson. Estimation of high-dimensional prior and posterior covariance
matrices in Kalman filter variants. Journal of Multivariate Analysis, 98(2):227–255, 2007.

A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions:
Gradient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical
Systems, 19(1):412–441, 2020.

N. García Trillos and D. Sanz-Alonso. The Bayesian formulation and well-posedness of
fractional elliptic inverse problems. Inverse Problems, 33(6):065006, 2017.

N. Garcia Trillos and D. Sanz-Alonso. Continuum limits of posteriors in graph Bayesian
inverse problems. SIAM Journal on Mathematical Analysis, 50(4):4020–4040, 2018.

N. Garcia Trillos, Z. Kaplan, T. Samakhoana, and D. Sanz-Alonso. On the consistency of
graph-based Bayesian learning and the scalability of sampling algorithms. arXiv preprint
arXiv:1710.07702, 21(28):1–47, 2017.

G. Gaspari and S. E. Cohn. Construction of correlation functions in two and three dimen-
sions. Quarterly Journal of the Royal Meteorological Society, 125(554):723–757, 1999.

O. A. Ghattas and D. Sanz-Alonso. Non-Asymptotic Analysis of Ensemble Kalman Updates:
Effective Dimension and Localization. arXiv preprint arXiv:2208.03246, 2022.

225

M. B. Giles. Collected matrix derivative results for forward and reverse mode algorithmic
differentiation. In Advances in Automatic Differentiation, pages 35–44. Springer, 2008a.

M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–617,
2008b.

F. J. Gonzalez and M. Balajewicz. Deep Convolutional Recurrent Autoencoders for Learning
Low-dimensional Feature Dynamics of Fluid Systems. arXiv preprint arXiv:1808.01346,
2018.

N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE proceedings F (radar and signal processing), 140(2):107–
113, 1993.

G. A. Gottwald and S. Reich. Supervised learning from noisy observations: Combining
machine-learning techniques with data assimilation. Physica D: Nonlinear Phenomena,
423:132911, 2021.

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 1995.

P. J. Green and A. Mira. Delayed rejection in reversible jump Metropolis–Hastings.
Biometrika, 88(4):1035–1053, 2001.

I. Grooms. A note on the formulation of the Ensemble Adjustment Kalman Filter. arXiv
preprint arXiv:2006.02941, 2020.

Y. Gu and D. S. Oliver. An iterative ensemble Kalman filter for multiphase fluid flow data
assimilation. Spe Journal, 12(04):438–446, 2007.

J. Guibas, M. Mardani, Z. Li, A. Tao, A. Anandkumar, and B. Catanzaro. Efficient token
mixing for transformers via adaptive Fourier neural operators. In International Conference
on Learning Representations, 2021.

P. A. Guth, C. Schillings, and S. Weissmann. Ensemble Kalman filter for neural network-
based one-shot inversion. Optimization and Control for Partial Differential Equations:
Uncertainty Quantification, Open and Closed-Loop Control, and Shape Optimization, 29:
393, 2022.

E. Haber, F. Lucka, and L. Ruthotto. Never look back-A modified EnKF method and its
application to the training of neural networks without back propagation. arXiv preprint
arXiv:1805.08034, 2018.

M. Hairer, A. M. Stuart, and J. Voss. Signal processing problems on function space: Bayesian
formulation, stochastic PDEs and effective MCMC methods. The Oxford Handbook of
Nonlinear Filtering, pages 833–873, 2011.

226

T. M. Hamill, J. S. Whitaker, and C. Snyder. Distance-dependent filtering of background
error covariance estimates in an ensemble Kalman filter. Monthly Weather Review, 129
(11):2776–2790, 2001.

M. Hanke. A regularizing Levenberg-Marquardt scheme, with applications to inverse ground-
water filtration problems. Inverse problems, 13(1):79, 1997.

A. Hannart, A. Carrassi, M. Bocquet, M. Ghil, P. Naveau, M. Pulido, J. Ruiz, and P. Tandeo.
DADA: Data assimilation for the detection and attribution of weather and climate-related
events. Climatic Change, 136(2):155–174, 2016.

J. Harlim, D. Sanz-Alonso, and R. Yang. Kernel methods for Bayesian elliptic inverse
problems on manifolds. SIAM/ASA Journal on Uncertainty Quantification, 8(4):1414–
1445, 2020.

J. Harlim, S. W. Jiang, S. Liang, and H. Yang. Machine learning for prediction with missing
dynamics. Journal of Computational Physics, 428:109922, 2021.

Y. He, S.-H. Kang, W. Liao, H. Liu, and Y. Liu. Robust identification of differential equations
by numerical techniques from a single set of noisy observation. SIAM Journal on Scientific
Computing, 44(3):A1145–A1175, 2022a.

Y. He, N. Suh, X. Huo, S. H. Kang, and Y. Mei. Asymptotic theory of regularized PDE
identification from a single noisy trajectory. SIAM/ASA Journal on Uncertainty Quan-
tification, 10(3):1012–1036, 2022b.

Y. He, H. Zhao, and Y. Zhong. How much can one learn a partial differential equation from
its solution? arXiv preprint arXiv:2204.04602, 2022c.

M. Herty and G. Visconti. Kinetic methods for inverse problems. arXiv preprint
arXiv:1811.09387, 2018.

P. L. Houtekamer and H. L. Mitchell. Data assimilation using an ensemble Kalman filter
technique. Monthly Weather Review, 126(3):796–811, 1998.

P. L. Houtekamer and H. L. Mitchell. A sequential ensemble Kalman filter for atmospheric
data assimilation. Monthly Weather Review, 129(1):123–137, 2001.

P. L. Houtekamer and F. Zhang. Review of the ensemble Kalman filter for atmospheric data
assimilation. Monthly Weather Review, 144(12):4489–4532, 2016.

D. Z. Huang, T. Schneider, and A. M. Stuart. Iterated Kalman methodology for inverse
problems. Journal of Computational Physics, 463:111262, 2022.

M. Iglesias and Y. Yang. Adaptive regularisation for ensemble Kalman inversion. Inverse
Problems, 37(2):025008, 2021.

227

M. A. Iglesias. A regularizing iterative ensemble Kalman method for PDE-constrained inverse
problems. Inverse Problems, 32(2):025002, 2016.

M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems.
Inverse Problems, 29(4):045001, 2013.

T. Ishizone, T. Higuchi, and K. Nakamura. Ensemble Kalman variational objectives: nonlin-
ear latent trajectory inference with a hybrid of variational inference and ensemble Kalman
filter. arXiv preprint arXiv:2010.08729, 2020.

M. Jardak, I. Navon, and M. Zupanski. Comparison of sequential data assimilation methods
for the Kuramoto–Sivashinsky equation. International journal for numerical methods in
fluids, 62(4):374–402, 2010.

A. H. Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

I. D. Jordan, P. A. Sokół, and I. M. Park. Gated Recurrent Units Viewed Through the Lens
of Continuous Time Dynamical Systems. Frontiers in Computational Neuroscience, 15,
2021.

J. Kaipio and E. Somersalo. Statistical and computational inverse problems, volume 160.
Springer Science & Business Media, 2006.

J. Kaipio and E. Somersalo. Statistical inverse problems: discretization, model reduction
and inverse crimes. Journal of computational and applied mathematics, 198(2):493–504,
2007.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering, 82(Series D):35–45, 03 1960.

M. Katzfuss, J. R. Stroud, and C. K. Wikle. Understanding the ensemble Kalman filter.
The American Statistician, 70(4):350–357, 2016.

M. Katzfuss, J. R. Stroud, and C. K. Wikle. Ensemble Kalman methods for high-dimensional
hierarchical dynamic space-time models. Journal of the American Statistical Association,
115(530):866–885, 2020.

D. Kelly and A. M. Stuart. Well-posedness and accuracy of the ensemble Kalman filter in
discrete and continuous time. Nonlinearity, 27(10), 2014.

M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for
irregular time series. arXiv preprint arXiv:2005.08926, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

228

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, 2014.

A. Kloss, G. Martius, and J. Bohg. How to train your differentiable filter. Autonomous
Robots, pages 1–18, 2021.

N. B. Kovachki and A. M. Stuart. Ensemble Kalman inversion: A derivative-free technique
for machine learning tasks. Inverse Problems, 2019.

R. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state
space models. In Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

Y. Kuramoto and T. Tsuzuki. Persistent propagation of concentration waves in dissipative
media far from thermal equilibrium. Progress of Theoretical Physics, 55(2):356–369, 1976.

E. Kwiatkowski and J. Mandel. Convergence of the square root ensemble Kalman filter in
the large ensemble limit. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1–17,
2015.

K. J. Law and A. M. Stuart. Evaluating data assimilation algorithms. Monthly Weather
Review, 140(11):3757–3782, 2012.

K. J. Law, A. M. Stuart, and K. Zygalakis. Data Assimilation. Cham, Switzerland: Springer,
214, 2015.

K. J. Law, D. Sanz-Alonso, A. Shukla, and A. M. Stuart. Filter accuracy for the Lorenz 96
model: Fixed versus adaptive observation operators. Physica D: Nonlinear Phenomena,
325:1–13, 2016a.

K. J. Law, H. Tembine, and R. Tempone. Deterministic mean-field ensemble Kalman filter-
ing. SIAM Journal on Scientific Computing, 38(3):A1251–A1279, 2016b.

W. G. Lawson and J. A. Hansen. Implications of stochastic and deterministic filters as
ensemble-based data assimilation methods in varying regimes of error growth. Monthly
weather review, 132(8):1966–1981, 2004.

T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood. Auto-Encoding sequential Monte Carlo.
In International Conference on Learning Representations, 2018.

F. Le Gland and L. Mevel. Recursive identification in hidden Markov models. In Proceedings
of the 36th Conference on Decision and Control, San Diego 1997, volume 4, pages 3468–
3473, 1997.

F. Le Gland, V. Monbet, and V.-D. Tran. Large sample asymptotics for the ensemble Kalman
filter. PhD thesis, INRIA, 2009.

M. Lechner and R. Hasani. Learning Long-Term Dependencies in Irregularly-Sampled Time
Series. arXiv preprint arXiv:2006.04418, 2020.

229

Y. Lee. lp regularization for ensemble Kalman inversion. SIAM Journal on Scientific Com-
puting, 43(5):A3417–A3437, 2021.

M. E. Levine and A. M. Stuart. A framework for machine learning of model error in dynamical
systems. arXiv preprint arXiv:2107.06658, 2(07):283–344, 2021.

G. Li and A. C. Reynolds. An iterative ensemble Kalman filter for data assimilation. In
SPE annual technical conference and exhibition. Society of Petroleum Engineers, 2007.

H. Li, V. V. Garg, and K. Willcox. Model adaptivity for goal-oriented inference using
adjoints. Computer Methods in Applied Mechanics and Engineering, 331:1–22, 2018.

J. Li and Y. M. Marzouk. Adaptive construction of surrogates for the Bayesian solution of
inverse problems. SIAM Journal on Scientific Computing, 36(3):A1163–A1186, 2014.

X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud. Scalable gradients for stochastic
differential equations. In International Conference on Artificial Intelligence and Statistics,
pages 3870–3882. PMLR, 2020a.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-
mar. Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations, 2020b.

C. Lieberman, K. Willcox, and O. Ghattas. Parameter and state model reduction for large-
scale statistical inverse problems. SIAM Journal on Scientific Computing, 32(5):2523–
2542, 2010.

Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks for
sequence learning. arXiv preprint arXiv:1506.00019, 2015.

A. C. Lorenc. Analysis methods for numerical weather prediction. Quarterly Journal of the
Royal Meteorological Society, 112(474):1177–1194, 1986.

R. J. Lorentzen, K. K. Fjelde, J. Frøyen, A. C. Lage, G. Nævdal, and E. H. Vefring. Un-
derbalanced drilling: Real time data interpretation and decision support. In SPE/IADC
drilling conference. OnePetro, 2001.

E. N. Lorenz. Predictability: A problem partly solved. In Proc. Seminar on Predictability,
1996.

S. Lu and S. V. Pereverzev. Multi-parameter regularization and its numerical realization.
Numerische Mathematik, 118:1–31, 2011.

B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linear embeddings of
nonlinear dynamics. Nature Communications, 9(1):1–10, 2018.

J. Maclean and E. S. Van Vleck. Particle filters for data assimilation based on reduced-order
data models. Quarterly Journal of the Royal Meteorological Society, 147(736):1892–1907,
2021.

230

C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and
Y. W. Teh. Filtering variational objectives. arXiv preprint arXiv:1705.09279, 30, 2017.

A. J. Majda and J. Harlim. Filtering Complex Turbulent Systems. Cambridge University
Press, 2012.

A. J. Majda and D. Qi. Strategies for reduced-order models for predicting the statistical
responses and uncertainty quantification in complex turbulent dynamical systems. SIAM
Review, 60(3):491–549, 2018.

J. Mandel, E. Bergou, and S. Gratton. 4DVAR by Ensemble Kalman Smoother. arXiv
preprint arXiv:1304.5271, 2013.

X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-
decoder networks with symmetric skip connections. Advances in Neural Information Pro-
cessing Systems, 29, 2016.

Y. M. Marzouk and D. Xiu. A stochastic collocation approach to Bayesian inference in
inverse problems. Communications in Computational Physics, 6(4):826–847, 2009.

Y. M. Marzouk, H. N. Najm, and L. A. Rahn. Stochastic spectral methods for efficient
Bayesian solution of inverse problems. Journal of Computational Physics, 224(2):560–586,
2007.

R. Maulik, B. Lusch, and P. Balaprakash. Reduced-order modeling of advection-dominated
systems with recurrent neural networks and convolutional autoencoders. Physics of Fluids,
33(3):037106, 2021.

H. P. McKean. Propagation of chaos for a class of non-linear parabolic equations. Stochastic
Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ.,
1967), pages 41–57, 1967.

Y. A. Melnikov and M. Y. Melnikov. Computability of series representations for Green’s
functions in a rectangle. Engineering analysis with boundary elements, 30(9):774–780,
2006.

S. Metref, A. Hannart, J. Ruiz, M. Bocquet, A. Carrassi, and M. Ghil. Estimating model
evidence using ensemble-based data assimilation with localization–The model selection
problem. Quarterly Journal of the Royal Meteorological Society, 145(721):1571–1588, 2019.

C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. Variational sequential Monte
Carlo. In International Conference on Artificial Intelligence and Statistics, pages 968–
977. PMLR, 2018.

A. S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics, 1983.

231

D. Nguyen, S. Ouala, L. Drumetz, and R. Fablet. Em-like learning chaotic dynamics from
noisy and partial observations. arXiv preprint arXiv:1903.10335, 2019.

J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

G. Nœvdal, T. Mannseth, and E. Vefring. Instrumented wells and near-well reservoir mon-
itoring through ensemble kalman filter. In 8th European Conference on the Mathematics
of Oil Recovery, 2002.

E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay,
D. Patil, and J. A. Yorke. A local ensemble Kalman filter for atmospheric data assimilation.
Tellus A: Dynamic Meteorology and Oceanography, 56(5):415–428, 2004.

L. Palatella, A. Carrassi, and A. Trevisan. Lyapunov vectors and assimilation in the unstable
subspace: theory and applications. Journal of Physics A: Mathematical and Theoretical,
46(25):254020, 2013.

O. Papaspiliopoulos, M. Ruggiero, et al. Optimal filtering and the dual process. Bernoulli,
20(4):1999–2019, 2014.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. PMLR,
2013.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8024–8035, 2019.

B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncer-
tainty propagation, inference, and optimization. arXiv preprint arXiv:1806.10761, 2018.

M. Pulido, P. Tandeo, M. Bocquet, A. Carrassi, and M. Lucini. Stochastic parameteriza-
tion identification using ensemble Kalman filtering combined with maximum likelihood
methods. Tellus A: Dynamic Meteorology and Oceanography, 70(1):1–17, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Multistep neural networks for data-driven
discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In Artificial intelli-
gence and statistics, pages 814–822. PMLR, 2014.

S. S. Rangapuram, M. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep
state space models for time series forecasting. In Proceedings of the 32nd international
conference on neural information processing systems, pages 7796–7805, 2018.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning, volume 1.
MIT press Cambridge, 2006.

232

S. Reich and C. Cotter. Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge
University Press, 2015.

S. Reich and C. J. Cotter. Ensemble filter techniques for intermittent data assimilation. Large
Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences,
13:91–134, 2013.

A. C. Reynolds, M. Zafari, and G. Li. Iterative forms of the ensemble Kalman filter. In
ECMOR X-10th European conference on the mathematics of oil recovery, pages cp–23.
European Association of Geoscientists & Engineers, 2006.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning,
pages 1278–1286. PMLR, 2014.

C. Robert. The Bayesian Choice: from Decision-theoretic Foundations to Computational
Implementation. Springer Science & Business Media, 2007.

M. Roth, G. Hendeby, C. Fritsche, and F. Gustafsson. The Ensemble Kalman filter: a signal
processing perspective. EURASIP Journal on Advances in Signal Processing, 2017(1):
1–16, 2017.

Y. Rubanova, R. T. Chen, and D. K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

D. Rudolf and B. Sprungk. On a Generalization of the Preconditioned Crank–Nicolson
Metropolis Algorithm. Foundations of Computational Mathematics, pages 1–35, 2015.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical science, pages 409–423, 1989.

P. Sakov and L. Bertino. Relation between two common localisation methods for the EnKF.
Computational Geosciences, 15(2):225–237, 2011.

P. Sakov, D. S. Oliver, and L. Bertino. An iterative EnKF for strongly nonlinear systems.
Monthly Weather Review, 140(6):1988–2004, 2012.

D. Sanz-Alonso. Importance sampling and necessary sample size: an information theory
approach. SIAM/ASA Journal on Uncertainty Quantification, 6(2):867–879, 2018.

D. Sanz-Alonso and A. M. Stuart. Long-time asymptotics of the filtering distribution for
partially observed chaotic dynamical systems. SIAM/ASA Journal on Uncertainty Quan-
tification, 3(1):1200–1220, 2015.

D. Sanz-Alonso and Z. Wang. Bayesian Update with Importance Sampling: Required Sample
Size. Entropy, 23(1):22, 2021.

233

D. Sanz-Alonso, A. M. Stuart, and A. Taeb. Inverse Problems and Data Assimilation. arXiv
preprint arXiv:1810.06191, 2018.

H. Schaeffer, G. Tran, and R. Ward. Extracting sparse high-dimensional dynamics from
limited data. SIAM Journal on Applied Mathematics, 78(6):3279–3295, 2018.

C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems.
SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

C. Schillings and A. M. Stuart. Convergence analysis of ensemble Kalman inversion: the
linear, noisy case. Applicable Analysis, 97(1):107–123, 2018.

T. Schneider, A. M. Stuart, and J.-L. Wu. Ensemble Kalman inversion for sparse learning
of dynamical systems from time-averaged data. Journal of Computational Physics, 470:
111559, 2022.

C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates
for generalized polynomial chaos expansions in UQ. Analysis and Applications, 17(01):
19–55, 2019.

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su. Understanding the acceleration phenomenon
via high-resolution differential equations. Mathematical Programming, pages 1–70, 2021.

G. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Deriva-
tion of basic equations. Acta Astronautica, 4(11):1177–1206, 1977.

J.-A. Skjervheim, G. Evensen, J. Hove, J. G. Vabø, et al. An ensemble smoother for assisted
history matching. In SPE Reservoir Simulation Symposium. OnePetro, 2011.

C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-dimensional particle
filtering. Monthly Weather Review, 136(12):4629–4640, 2008.

A. Spantini, D. Bigoni, and Y. Marzouk. Inference via low-dimensional couplings. The
Journal of Machine Learning Research, 19(1):2639–2709, 2018.

J. R. Stroud and T. Bengtsson. Sequential state and variance estimation within the ensemble
Kalman filter. Monthly Weather Review, 135(9):3194–3208, 2007.

J. R. Stroud, M. L. Stein, B. M. Lesht, D. J. Schwab, and D. Beletsky. An ensemble Kalman
filter and smoother for satellite data assimilation. Journal of the American Statistical
Association, 105(491):978–990, 2010.

J. R. Stroud, M. Katzfuss, and C. K. Wikle. A Bayesian adaptive ensemble Kalman filter
for sequential state and parameter estimation. Monthly Weather Review, 146(1):373–386,
2018.

A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19:451–559, 2010.

234

A. M. Stuart and A. Teckentrup. Posterior consistency for Gaussian process approximations
of Bayesian posterior distributions. Mathematics of Computation, 2017.

W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. Advances in neural information processing systems,
27, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, volume 27, pages 3104–3112, 2014.

A.-S. Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour
XIX—1989, pages 165–251. Springer, 1991.

I. Szunyogh, E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and
J. A. Yorke. A local ensemble transform Kalman filter data assimilation system for the
NCEP global model. Tellus A: Dynamic Meteorology and Oceanography, 60(1):113–130,
2008.

P. Tandeo, M. Pulido, and F. Lott. Offline parameter estimation using EnKF and max-
imum likelihood error covariance estimates: Application to a subgrid-scale orography
parametrization. Quarterly journal of the royal meteorological society, 141(687):383–395,
2015.

L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian inference. Statis-
tics in medicine, 18(17-18):2507–2515, 1999.

M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker. Ensemble
square root filters. Monthly Weather Review, 131(7):1485–1490, 2003.

G. Tran and R. Ward. Exact recovery of chaotic systems from highly corrupted data. Mul-
tiscale Modeling & Simulation, 15(3):1108–1129, 2017.

A. Trevisan, M. D’Isidoro, and O. Talagrand. Four-dimensional variational assimilation in
the unstable subspace and the optimal subspace dimension. Quarterly Journal of the Royal
Meteorological Society, 136(647):487–496, 2010.

G. Ueno and N. Nakamura. Iterative algorithm for maximum-likelihood estimation of the
observation-error covariance matrix for ensemble-based filters. Quarterly Journal of the
Royal Meteorological Society, 140(678):295–315, 2014.

G. Ueno and N. Nakamura. Bayesian estimation of the observation-error covariance matrix
in ensemble-based filters. Quarterly Journal of the Royal Meteorological Society, 142(698):
2055–2080, 2016.

S. Ungarala. On the iterated forms of Kalman filters using statistical linearization. Journal
of Process Control, 22(5):935–943, 2012.

235

Z. Y. Wan and T. P. Sapsis. Reduced-space Gaussian Process Regression for data-driven
probabilistic forecast of chaotic dynamical systems. Physica D: Nonlinear Phenomena,
345:40–55, 2017.

G. C. Wei and M. A. Tanner. A Monte Carlo implementation of the EM algorithm and the
poor man’s data augmentation algorithms. Journal of the American statistical Association,
85(411):699–704, 1990.

J. S. Whitaker, T. M. Hamill, X. Wei, Y. Song, and Z. Toth. Ensemble data assimilation
with the NCEP Global Forecast System. Monthly Weather Review, 136(2):463–482, 2008.

A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated
methods in optimization. proceedings of the National Academy of Sciences, 113(47):E7351–
E7358, 2016.

A. Wikner, J. Pathak, B. Hunt, M. Girvan, T. Arcomano, I. Szunyogh, A. Pomerance,
and E. Ott. Combining machine learning with knowledge-based modeling for scalable
forecasting and subgrid-scale closure of large, complex, spatiotemporal systems. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 30(5):053111, 2020.

R. J. Williams and D. Zipser. Gradient-based Learning Algorithms for Recurrent Networks
and their Computational Complexity. In Y. Chauvin and D. E. Rumelhart, editors, Back-
propagation: Theory, Architectures and Applications, volume 433, chapter 13, pages 433–
486. Hillsdale, NJ: Erlbaum, 1995.

M. A. Woodbury. Inverting Modified Matrices. Statistical Research Group, 1950.

D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential
equations. SIAM journal on scientific computing, 24(2):619–644, 2002.

K. Xu and C. K. Wikle. Estimation of parameterized spatio-temporal dynamic models.
Journal of Statistical Planning and Inference, 137(2):567–588, 2007.

L. M. Yang and I. Grooms. Machine learning techniques to construct patched analog en-
sembles for data assimilation. Journal of Computational Physics, 443:110532, 2021.

Y. Yu, X. Si, C. Hu, and J. Zhang. A Review of Recurrent Neural Networks: LSTM Cells
and Network Architectures. Neural Computation, 31(7):1235–1270, 07 2019.

A. Zellner. Optimal information processing and Bayes’s theorem. The American Statistician,
42(4):278–280, 1988.

236

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 What are Inverse Problems?
	1.1.1 Optimization-based Algorithms for Inverse Problems
	1.1.2 Sampling-based Algorithms for Inverse Problems

	1.2 What is Data Assimilation?
	1.2.1 Data Assimilation as Sequential Inverse Problems
	1.2.2 Filtering Algorithms for Data Assimilation

	1.3 Data-driven Inverse Problems: Motivations
	1.4 Outline and Main Contributions

	2 Data-Driven Forward Discretizations for Bayesian Inversion
	2.1 Introduction
	2.1.1 Related Work
	2.1.2 Outline and Contributions

	2.2 Background: Bayesian Formulation of Inverse Problems
	2.3 Bayesian Discretization of the Forward Model
	2.4 Sampling the Posterior
	2.4.1 Sampling the Full Conditional uya
	2.4.2 Sampling the Full Conditional ayu

	2.5 Numerical Examples
	2.5.1 Euler Discretization of ODEs: Estimation of the Young’s Modulus of a Cantilever Beam
	2.5.2 Euler-Maruyama Discretization of SDEs: a Signal Processing Application
	2.5.3 Finite Element Discretization: Source Detection

	2.6 Conclusions and Open Directions
	2.7 Appendix
	2.7.1 Algorithm Pseudo-Code
	2.7.2 Additional Results for Section 2.5.1

	3 Autodifferentiable Ensemble Kalman Filters
	3.1 Introduction
	3.1.1 Contributions
	3.1.2 Related Work

	3.2 Problem Formulation
	3.2.1 Setting and Motivation
	3.2.2 Sequential Filtering and Data Log-likelihood

	3.3 Ensemble Kalman Filter Estimation of the Log-likelihood and its Gradient
	3.3.1 Ensemble Kalman Filters
	3.3.2 Estimation of the Log-Likelihood and its Gradient
	3.3.3 Large Sample Convergence: Linear Setting

	3.4 Auto-differentiable Ensemble Kalman Filters
	3.4.1 Main Algorithm
	3.4.2 Truncated Gradients for Long Sequences
	3.4.3 Localization for High State Dimensions
	3.4.4 Computation and Memory Costs

	3.5 Numerical Experiments
	3.5.1 Linear-Gaussian Model
	3.5.2 Lorenz-96

	3.6 Conclusions and Future Directions
	3.7 Appendix
	3.7.1 Proof of Theorem 3.3.1
	3.7.2 Proof of Theorem 3.3.2
	3.7.3 Additional Figures
	3.7.4 Auto-differentiable Particle Filters
	3.7.5 Expectation-Maximization with Ensemble Kalman Filters
	3.7.6 Implementation Details and Additional Performance Metrics

	4 Reduced-order Autodifferentiable Ensemble Kalman Filters
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Outline and Main Contributions

	4.2 Problem Formulation
	4.2.1 Setting and Motivation
	4.2.2 Reduced-Order Modeling

	4.3 Reduced-Order Autodifferentiable Ensemble Kalman Filters
	4.3.1 Sequential Filtering and Data Log-Likelihood
	4.3.2 Estimation of the Log-Likelihood with Ensemble Kalman Filters
	4.3.3 Main Algorithm

	4.4 Implementation Details
	4.4.1 Surrogate Latent Dynamics and Decoder Design
	4.4.2 Algorithmic Design for Computational Efficiency
	4.4.3 Latent Space Regularization

	4.5 Numerical Experiments
	4.5.1 Embedding of Chaotic Dynamics (Lorenz 63)
	4.5.2 Burgers Equation
	4.5.3 Kuramoto-Sivashinsky Equation

	4.6 Conclusions and Future Directions
	4.7 Appendix
	4.7.1 Improving AD-EnKF with Spectral Convolutional Layers
	4.7.2 Additional Materials: Burgers Example
	4.7.3 Additional Materials: Kuramoto-Sivashinky Example

	5 Iterative Ensemble Kalman Methods: A Unified Perspective with Some New Variants
	5.1 Introduction
	5.1.1 Overview: Three subfamilies
	5.1.2 Statistical linearization, continuum limits and new variants
	5.1.3 Main contributions and outline

	5.2 Derivative-based optimization for nonlinear least-squares
	5.2.1 Gauss-Newton optimization of Tikhonov-Phillips objective
	5.2.2 Levenberg-Marquardt optimization of data-misfit objective
	5.2.3 Levenberg-Marquardt optimization of Tikhonov-Phillips objective

	5.3 Ensemble-based optimization for nonlinear least-squares
	5.3.1 Ensemble Gauss-Newton optimization of Tikhonov-Phillips objective
	5.3.2 Ensemble Levenberg-Marquardt optimization of data-misfit objective
	5.3.3 Ensemble Levenberg-Marquardt optimization of Tikhonov-Phillips objective

	5.4 Ensemble Kalman methods: New variants
	5.4.1 Iterative Ensemble Kalman Filter with statistical linearization
	5.4.2 Ensemble Kalman inversion with statistical linearization
	5.4.3 Gradient structure and discussion

	5.5 Numerical examples
	5.5.1 Elliptic boundary value problem
	5.5.2 High-dimensional linear inverse problem
	5.5.3 Lorenz-96 model
	5.5.4 High-dimensional nonlinear regression

	5.6 Conclusions and open directions

	References

