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ABSTRACT

I find that the causal effect of subjective growth expectations on asset prices is far smaller

than standard models suggest. To quantify this causal effect, I construct an asset demand

model in which Bayesian investors learn from analysts and other signals. A 1% rise in

annual investor growth expectations raises price by 60% to 90% less than in standard models.

This small causal effect arises from the limited passthrough of beliefs to asset demand, and

is consistent with small price elasticities of demand. To reconcile this small causal effect

with the strong correlation of growth expectations and prices, I provide evidence of reverse

causality. Using flow-induced trading to instrument for prices, I find that prices cause growth

expectations.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A long history of research appeals to subjective beliefs about fundamentals to explain

important phenomena in asset pricing and macro-finance, such as excess volatility, asset

bubbles, and credit cycles (Keynes [1937], Minsky [1977], Kindleberger [1978], Shiller [1981]).

This view has recently experienced a resurgence of interest due to the increasing availability

of survey measures of subjective beliefs. Since beliefs can be measured using survey data,

subjective belief models offer an appealing alternative to the rational expectations paradigm,

which attributes most price variation to “dark matter,” unobservable shocks to preferences

or risk (Chen, Dou and Kogan [2019]). Empirically, surveyed cash flow growth expectations

correlate strongly with asset prices and can match the magnitude of price variation. These

facts motivate models that explain variation in asset prices with biased and excessively

volatile cash flow growth expectations (Bordalo et al. [2019, 2022], Nagel and Xu [2021],

De La O and Myers [2021]).

of the core mechanism in this class of subjective belief models: the causal impact of

subjective growth expectations on prices. A growing literature finds that investors do not

trade strongly on their beliefs, which suggests subjective growth expectations might have

little impact on prices (Merkle and Weber [2014], Meeuwis et al. [2018], Giglio et al. [2021a,b],

Bacchetta, Tieche and Van Wincoop [2020], Dahlquist and Ibert [2021], Beutel and Weber

[2022]). Moreover, while subjective belief models interpret the strong correlation of growth

expectations with prices as evidence of a large causal effect, the correlation need not imply

causation.

This paper addresses two questions. Does the strong correlation of subjective growth

expectations with prices imply a large causal effect of growth expectations on prices? If not,
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how large is the causal effect of subjective growth expectations on prices?

First, I provide evidence of reverse causality, which implies that the correlation between

subjective growth expectations and prices is not evidence of a large causal effect. Using

several variations of flow induced trading to instrument for prices, I find that prices

cause growth expectations. Thus, quantifying the strength of the core mechanism in

subjective belief models requires direct measurement of the causal effect of subjective

growth expectations on prices.

Second, I find the causal effect of subjective growth expectations on prices is small.

I construct an asset demand model in which Bayesian investors learn from analysts and

other signals. Empirically, a 1% increase in investor annual growth expectations raises price

by 60% to 90% less than in leading rational (e.g. Campbell and Cochrane [1999], Bansal

and Yaron [2004], Barro [2006], He and Krishnamurthy [2013]) and behavioral (e.g. Barberis

et al. [2015], Nagel and Xu [2021], Bordalo et al. [2022]) models, which imply a transitory 1%

increase in growth expectations (i.e., with no persistence) raises price by 1%. Any persistence

in growth expectations shocks makes this benchmark value even larger than 1%. Thus, if

the only mechanism through which growth expectations impact prices is that featured in

standard models, subjective growth expectations matter far less for asset prices than these

models suggest.

This small causal effect arises from the limited passthrough of beliefs to asset demand

and is consistent with small price elasticities of demand found in previous work (Shleifer

[1986], Harris and Gurel [1986], Chang, Hong and Liskovich [2014], Pavlova and Sikorskaya

[2020], Koijen and Yogo [2019], Gabaix and Koijen [2020b], Schmickler and Tremacoldi-

Rossi [2022]). Extant studies document a low sensitivity of demand to investors’ expected

returns, which generates both inelastic demand and small demand curve shifts due to growth

expectations shocks. When prices rise, expected returns fall, but demand adjusts little to

the change to expected returns, and is thus inelastic. Holding prices fixed, increases to

2



growth expectations raise expected returns, but demand curves shift little in response to

that change. While lower price elasticities amplify price impact, smaller demand curve shifts

dampen price impact. These channels do not offset. I show, theoretically and empirically,

that the dampening of price impact due to small demand shifts dominates. As an extreme

example, if demand curves do not shift due to growth expectations shocks, the shocks have

no price impact, regardless of price elasticity. Similarly, small demand shifts due to growth

expectations shocks cause only small price changes even though demand is inelastic. This

result builds on the notion of “myopia” in inelastic markets introduced by Gabaix and Koijen

[2020b].

The small causal effect of subjective growth expectations on prices also raises the

possibility that subjective growth expectations cannot quantitatively explain important

phenomena in asset pricing and macro-finance. If asset prices are insensitive to growth

expectations, extrapolative or overly optimistic growth expectations cannot quantitatively

explain all excess volatility (Bordalo et al. [2019], Nagel and Xu [2021], Bordalo et al.

[2022]), asset bubbles (Bordalo et al. [2021]), or credit cycles (Bordalo, Gennaioli and

Shleifer [2018], Farhi and Werning [2020], Maxted [2020]). However, since this small causal

effect is consistent with low price elasticities, it augments the importance of other demand

shocks, and it thus allows other resolutions of asset pricing and macro-finance puzzles (e.g.

beliefs about future prices, beliefs about higher moments, non-pecuniary preferences).

This small causal effect of subjective growth expectations on prices raises important

questions about how investor beliefs about fundamentals are incorporated into prices. I

find that the standard mechanism through which subjective growth expectations impact

asset prices is empirically weak. At horizons of up to one quarter, these beliefs have a

much smaller impact on price than assumed in such models. However, eventually changes in

growth expectations should be fully incorporated into prices. Thus, further work is required

to understand what dynamic amplification mechanisms (e.g. adjustment costs or uncertainty

3



about growth expectations) heighten the importance of subjective growth expectations at

longer time horizons. My empirical results motivate augmenting existing models with these

alternative mechanisms, and my empirical methodology provides a general framework for

using data on beliefs, prices, and holdings to assess these mechanisms.

I begin by presenting evidence of reverse causality, which undermines the common

interpretation of the correlation of subjective growth expectations with prices. Since

prices and expectations are jointly determined, measuring the causal effect of prices on

growth expectations requires exogenous variation in prices. I thus extend the mutual

fund flow-induced trading instrument of Lou [2012] to instrument for stock prices and

examine how these exogenous price changes impact one-year earnings per share (EPS)

growth forecasts from I/B/E/S analysts. Stock-level mutual fund trading that is induced by

inflows and outflows is uninformed; mutual funds tend to scale up or down their preexisting

holdings proportionally. Flow-induced trading is a relevant instrument: this uninformed

trading has a large impact on stock prices. As a shift-share instrument, flow-induced

trading does not require mutual fund flows to be exogenous. A sufficient condition for

exogeneity is that the ex-ante mutual fund ownership shares do not correlate with other

variables besides price that impact growth expectation updates. This assumption proves

reasonable because expectation updates depend on new information. The ex-ante mutual

fund ownership shares, by construction, do not depend on new ex-post information, and

thus they satisfy the exclusion restriction. To assuage any endogeneity concerns about the

standard flow-induced trading instrument, I conduct a series of robustness checks. I also

consider several extensions that use within stock-quarter variation in the timing of analyst

announcements to provide exogenous variation in prices. These alternate specifications

yield similar results to the baseline specification.

Using the flow-induced trading instrument, I find an exogenous 1% increase in stock price

raises one-year analyst EPS growth expectations by 41 basis points. Thus, the correlation

4



of subjective growth expectations with prices cannot be interpreted as evidence of a large

causal effect of growth expectations on prices. Testing the core mechanism in subjective

belief models requires measuring this causal effect.

Next, I provide an asset demand framework to formally define the causal effect of

subjective growth expectations on prices and motivate an empirical strategy to measure it.

Changes in growth expectations shift asset demand curves and prices adjust to clear markets.

This framework links this causal effect to previous work that measures the passthrough of

subjective beliefs to asset demand, and studies that measure price elasticities of demand in

financial markets. This framework motivates regressions of price changes and investor-level

quantity changes on shocks to investor growth expectations to identify the causal effect of

growth expectations on prices.

However, given the unavailability of investor-level subjective growth expectations, I use

analyst growth expectations, which creates two empirical challenges. First, I must measure

the passthrough of analyst beliefs to investor beliefs. Small price reactions to analyst growth

expectations might arise if either 1) the causal effect of investor growth expectations on prices

is small, or 2) analyst expectations represent a poor proxy for investor growth expectations.

Distinguishing these channels requires measurement of the passthrough of analyst beliefs to

investor beliefs. Second, given the reverse causality result, I must extract exogenous shocks

to observed analyst growth expectations that are not driven by price changes.

To solve the first challenge, I model investors as Bayesians who learn from analysts and

other signals, and I measure analyst influence on investor beliefs. Bayesian learning imposes

structure on how analyst influence varies in the cross-section of equities. In particular,

Bayesian learning implies signal averaging: the influence of each analyst declines with the

number of analysts who cover a stock. This signal-averaging mechanism also appears in a

large class of non-Bayesian learning models as well. Thus, cross-sectional variation in the

number of analysts who cover each stock identifies analyst influence on investor expectations.
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This use of signal averaging is a novel method of identifying analyst influence on investor

beliefs without observing investor beliefs.

To solve the second challenge and extract exogenous shocks to analyst growth

expectations, I use tools from a branch of machine learning known as collaborative filtering.

I model analyst beliefs as having a factor structure, and I use a latent factor model to extract

idiosyncratic shocks to analyst growth expectations (e.g., private information garnered by

the analyst) that are orthogonal to common factors (e.g., stock prices, public signals, and

firm characteristics). Removing these common factors yields exogenous variation in analyst

beliefs that is uncorrelated with other sources of asset demand that impact prices. I use

collaborative filtering to estimate the latent factor model (Goldberg et al. [1992], Funk

[2006], Koren and Bell [2015]), an approach that overcomes the limited efficiency of standard

factor model estimation methods (e.g., PCA) in this setting where each analyst institution

reports a relatively small number of expectations in each quarter.

Under some homogeneity assumptions, which I later relax, the causal effect of subjective

growth expectations on prices can be identified in the cross-section of equities from price and

beliefs data alone. The two homogeneity assumptions required are that analyst influence on

investor beliefs and the sensitivity of asset demand to growth expectations do not vary across

investors. Regressions of high-frequency price changes shortly after analyst report releases

on idiosyncratic analyst growth expectations shocks and their interaction with the number of

analysts covering each stock identify both analyst influence and the causal effect of investor

growth expectations on prices. These regressions imply that a 1% increase in annual investor

growth expectations raises stock price by only 7 basis points, or 93% less than the benchmark

price impact of 1%. Relaxing the structure on investor learning across various dimensions

can raise this effect to 37 basis points, or 63% less than the benchmark price impact of 1%.

The causal effect of subjective growth expectations on prices can be identified without

these homogeneity assumptions by using investor-level holdings data. I thus use institutional
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stock holdings data from SEC Form 13F. Controlling for investor-specific price elasticities

of demand, measured following the approach of Koijen and Yogo [2019], and equilibrium

price changes allows for isolation of low-frequency (quarterly) demand curve shifts from

the observed changes in equilibrium quantities demanded. In the cross-section of each

investor’s holdings, regressions of these demand curve shifts on idiosyncratic analyst growth

expectations shocks and their interaction with the number of analysts covering each stock

identify both analyst influence and the sensitivity of demand to investor growth expectations

at the investor level. This analysis demonstrates that the limited passthrough of beliefs

to asset demand found in previous work for specific subsets of investors is a marketwide

phenomenon. Aggregating the sensitivity of demand to investor growth expectations across

investors, and scaling by the aggregate price elasticity of demand, identifies the causal effect

of investor growth expectations on prices under full investor heterogeneity. This procedure

finds that a 1% increase in annual investor growth expectations raises stock prices by only

16 basis points, or 84% less than the benchmark price impact of 1%. This paper represents

the first use of subjective beliefs data in asset demand systems.

The remainder of this paper is organized as follows. Chapter 1.2 reviews related literature.

Chapter 2 defines, at high level, the two directions of causality quantified in this paper.

Chapter 3 discusses the data I use. Chapter 4 presents evidence of reverse causality: a

causal impact of prices on growth expectations. Chapter 5 discusses a theoretical framework

to formally define the causal effect of subjective growth expectations on prices. This section

also explains how a low sensitivity of demand to expected return generates both inelastic

demand and a small causal effect of growth expectations on prices. Chapter 6 uses price and

beliefs data to identify the causal effect of growth expectations on prices under assumptions

regarding investor homogeneity. Chapter 7 uses holdings data to relax these homogeneity

assumptions and presents the associated estimates of the causal effect. Chapter 8 concludes.
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1.2 Related Literature

beliefs to asset prices, research on the passthrough of beliefs to asset holdings, recent

developments in measuring price elasticities of demand, and previous work at the intersection

of analyst expectations and asset prices.

First, the past decade has seen a resurgence of interest in using surveys to measure beliefs

and mapping these beliefs to asset prices. Greenwood and Shleifer [2014] assess extrapolation

in surveyed expectations of market returns and the extent to which these beliefs correlate

with market price levels and returns. Bordalo et al. [2019], Nagel and Xu [2021], and Bordalo

et al. [2022] investigate the extent to which long-term growth expectations correlate with

cross-sectional and time-series variation in price levels. De La O and Myers [2021] find, in

a variance decomposition, that subjective growth expectations correlate with price-dividend

ratios more strongly than subjective expected returns do. While this literature documents

important reduced-form facts, it does not quantify the causal impact of beliefs on asset

prices. Expectations and prices are jointly determined in equilibrium, and both are subject

to other, potentially correlated shocks. For this reason, reduced-form correlations between

beliefs and prices do not measure the causal effect of beliefs on prices; such correlations could

be picking up reverse causality or omitted variable bias. In this paper I provide evidence

of reverse causality: there is a causal effect of prices on growth expectations.1 Given this

endogeneity concern, I use the demand-based asset pricing approach to develop an empirical

strategy to cleanly identify the causal effect of subjective growth expectations on asset prices.

Since this identification strategy uses cross-sectional variation across assets, I focus on the

cross section of stocks (as in Bordalo et al. [2019]) instead of the time series of the equity

market (as in Nagel and Xu [2021], De La O and Myers [2021], Bordalo et al. [2022]).

Second, a large literature studies the passthrough of beliefs to asset demand, finding a

1. The reverse causality result relates broadly to the corporate finance literature that assesses the
dependence of managerial decisions on prices (e.g., Giammarino et al. [2004], Edmans, Goldstein and Jiang
[2012]).
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limited sensitivity of demand to expected returns: investors do not trade aggressively based

on their beliefs. Investors who report higher expected returns for an asset hold only slightly

larger portfolio weights in that asset in comparison to less bullish investors (Vissing-Jorgensen

[2003], Dominitz and Manski [2007], Kézdi and Willis [2009], Hurd, Van Rooij and Winter

[2011], Amromin and Sharpe [2014], Arrondel, Calvo Pardo and Tas [2014], Drerup, Enke

and Von Gaudecker [2017], Giglio et al. [2021a], Ameriks et al. [2020], Andonov and Rauh

[2020], Dahlquist and Ibert [2021]). Investors adjust their portfolio weights little in response

to changes in expected returns (Merkle and Weber [2014], Meeuwis et al. [2018], Giglio et al.

[2021a], Bacchetta, Tieche and Van Wincoop [2020], Giglio et al. [2021b], Beutel and Weber

[2022]). This paper fills three gaps in the previous literature. First and foremost, I focus

on the asset pricing implications of the limited passthrough of beliefs to demand, which

mostly have not yet been studied in previous work.2 The insensitivity of asset demand to

expectations limits the price impact of subjective growth expectations. Second, while most

of this literature focuses on household expectations and holdings, I find that the limited

passthrough of expectations to holdings is a marketwide phenomenon.3 Third, whereas

previous work measures the passthrough of subjective expected returns to asset demand,

this paper focuses on subjective growth expectations.

Third, a growing literature measures price elasticities of demand in financial markets

(Shleifer [1986], Harris and Gurel [1986], Chang, Hong and Liskovich [2014], Pavlova and

Sikorskaya [2020], Koijen and Yogo [2019], Gabaix and Koijen [2020b], Haddad, Huebner and

Loualiche [2021], Li [2021], Schmickler and Tremacoldi-Rossi [2022]), documenting elasticities

for individual stocks in the range of 0.1—2, which is several orders of magnitude smaller than

in standard models (Petajisto [2009]). The goal of the current paper is not to measure price

2. An exception is Charles, Frydman and Kilic [2021], which argues in an experimental setting that the
limited passthrough of beliefs to asset demand can weaken the importance of beliefs for prices.

3. Some research examines some types of institutional investors (Andonov and Rauh [2020], Bacchetta,
Tieche and Van Wincoop [2020], Dahlquist and Ibert [2021]).
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elasticities of demand, but to investigate the implications of inelasticity for the role beliefs

can play in determining asset demand and prices. In particular, inelastic demand driven

by an insensitivity of demand to expected returns implies a small causal effect of subjective

growth expectations on prices. This result builds on the notion of “myopia” in inelastic

markets introduced by Gabaix and Koijen [2020b].

Fourth, a large body of work examines the link between equity research analyst reports

and asset prices, finding directionally sensible price reactions for individual stocks after the

release of new analyst ratings, price targets, and earnings forecasts (Davies and Canes [1978],

Groth et al. [1979], Barber and Loeffler [1993], Stickel [1995], Albert Jr and Smaby [1996],

Francis and Soffer [1997], Park and Stice [2000], Barber et al. [2001], Brav and Lehavy

[2003], Irvine [2003], Asquith, Mikhail and Au [2005], Kerl and Walter [2008], Fang and

Yasuda [2014], Ishigami and Takeda [2018]). Unlike such previous literature, I measure the

causal effect of investor, not analyst, growth expectations on prices, using analyst reports as

information shocks to investor growth expectations. I am thus not directly concerned with

analyst expectations; I simply use analyst expectations to instrument for investor beliefs.
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CHAPTER 2

FIXING IDEAS: TWO DIRECTIONS OF CAUSALITY

Contrary to the interpretation adopted by much of the beliefs literature, the strong

correlation of surveyed growth expectations and asset prices might not imply a large causal

effect of investor growth expectations on prices. First, two directions of causality might

give rise to this strong correlation: 1) a causal effect of growth expectations on prices and

2) reverse causality, a causal effect of prices on growth expectations. Second, investors’ true

growth expectations might not align perfectly with surveyed growth expectations, which

usually come from equity research analysts due to a lack of surveys on investor growth

expectations.

The following system of simultaneous equations captures these two directions of causality

and this growth expectations misalignment:

P = MgG
I + ε (2.1)

GI = βGA + ν (2.2)

GA = αP + u, (2.3)

where GI and GA are investor and analyst subjective growth expectations, respectively,

and P is log price. For simplicity, assume ε, ν, and u are uncorrelated. I do not make

this assumption empirically; much of the empirical strategy is dedicated to constructing

exogenous price and growth expectation shifters. To convey the intuition, this section

considers a representative investor whose growth expectations do not depend on prices,

though Chapter 5 relaxes these assumptions.

Mg represents the causal effect of investor subjective growth expectations on prices: how

much would prices rise due to a 1% rise in growth expectations driven by ν holding other

determinants of prices fixed (e.g., a rise in growth expectations due to the “animal spirits”
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of Keynes [1937]).1 β is the passthrough of analyst expectations to investor expectations,

reflecting potential misalignment between these expectations. α denotes the causal effect

of prices on analyst growth expectations (i.e., reverse causality): how much would analyst

growth expectations rise due to a 1% rise in price driven by ε holding other determinants of

growth expectations fixed (e.g. a rise in price due to exogenous supply shocks as in Grossman

and Stiglitz [1980]).

The literature that explains variation in asset prices with measured subjective growth

expectations (e.g., Bordalo et al. [2019, 2022], Nagel and Xu [2021], De La O and Myers

[2021]) interprets the correlation of analyst growth expectations (GA) and prices (P ) as

evidence of a large Mg. This literature uses analyst growth expectations as a proxy for the

expectations of a representative investor. This interpretation assumes:

1. α = 0: There is no causal effect of prices on analyst growth expectations. The class

of models that uses measured subjective growth expectations to match asset pricing

moments does not feature rational learning from prices (e.g. Grossman and Stiglitz

[1980]) or price extrapolation.2 However, these mechanisms raise the possibility that,

empirically, α 6= 0.

2. β = 1 and ν = 0: Investor expectations are the same as analyst growth expectations.

The class of models that uses measured subjective growth expectations to match asset

pricing moments features a representative investor and so admits only one set of beliefs.

However, a large literature finds evidence of belief heterogeneity3, which raises the

1. As discussed in Chapter 5, Mg captures any amplification of price impact due to investor learning
from prices (i.e., investor growth expectations rise, which raises price and further raises investor growth
expectations, etc., as in Bastianello and Fontanier [2021b]). Mg does not capture amplification of price
impact due to analyst learning from prices (i.e. investor growth expectations rise, which raises price, which
raises analyst growth expectations, which further raises investor growth expectations, etc.). The parameter
that captures this amplification channel is Mg/(1 −Mgβα). However, this channel is empirically weak. I
find Mg ≈ 0.1, β = 0.06, and α ≈ 0.4, and so this channel amplifies Mg by only a factor of 1.002.

2. For example, Hong and Stein [1999], Barberis et al. [2018], Bastianello and Fontanier [2021a]; see
Barberis [2018] for a survey

3. Malmendier and Nagel [2016], Landvoigt [2017], Ben-David et al. [2018], Meeuwis et al. [2018], Bailey

12



possibility that investors and analysts disagree.

Under these two assumptions, the correlation of analyst growth expectations with prices

does provide evidence of the core mechanism in subjective belief models: a large causal

effect of investor growth expectations on prices (a large Mg). In this case, any behavioral

biases observed in analyst growth expectations reflect biases in investor expectations and

significantly distort asset prices. However, previous work has not justified these assumptions

by quantifying α or β. If α > 0, analyst growth expectations could correlate strongly with

prices, even if Mg is small.

This paper empirically challenges the mechanism in subjective belief models. Using

exogenous shocks to prices (ε in (2.1)), I find evidence of reverse causality (α > 0), which

necessitates direct measurement of Mg to quantify the strength of the mechanism in

subjective belief models. Measuring Mg entails two empirical difficulties. First, since I

observe only analyst, not investor, growth expectations, I must identify the passthrough of

analyst expectations to investor expectations β separately from Mg. Second, the presence of

reverse causality implies that I must extract exogenous shocks to observed analyst growth

expectations not driven by price changes (u in (2.3)). I find that Mg is empirically an order

of magnitude smaller than assumed in standard models. In this sense, subjective growth

expectations matter far less for asset prices than assumed in these models.

et al. [2019], D’Acunto et al. [2019], Giglio et al. [2021a], Das, Kuhnen and Nagel [2020], Leombroni et al.
[2020], Kindermann et al. [2021], Weber, Gorodnichenko and Coibion [2022]
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CHAPTER 3

DATA

This paper uses three main sources of data: equity research analyst growth expectations,

stock prices, and institutional investor holdings.

I use I/B/E/S analyst earnings-per-share (EPS) forecasts to construct one-year growth

expectations. I/B/E/S reports EPS forecasts at the quarter × horizon × analyst institution

× analyst × stock level. For example, I see the time series of Apple EPS forecasts issued by

all equity research analysts at Goldman Sachs for multiple horizons. Forecast horizons range

from one quarter up to ten fiscal years ahead, with varying degrees of coverage. For each

forecast horizon, I average EPS forecasts for each stock within each quarter at the level of

their parent institutions (e.g., I average the EPS forecasts for one fiscal year ahead for Apple

made by all Goldman Sachs analysts during the third quarter of 2022).1 I then interpolate

among horizons to construct fixed one-year horizon EPS forecasts.2 I scale by trailing one-

year EPS to obtain annual EPS growth expectations and take quarter-over-quarter changes.3

Thus, I obtain a stock × analyst institution × quarter panel of quarterly changes in one-year

EPS growth expectations.4

I obtain stock price data from CRSP and accounting data to construct firm characteristics

from the Compustat North America Fundamentals Annual and Quarterly Databases.

I use institutional holdings data from two sources. First, to construct the flow-induced

trading instrument of Lou [2012], I use mutual fund holdings from the Thomson Reuters S12

1. I use analyst institution-level variation instead of analyst-level variation to attain greater efficiency
when estimating the within-quarter latent factor model in Chapter 6 to extract idiosyncratic shocks to
analyst beliefs, since each analyst institution rates far more stocks per quarter than each analyst.

2. This interpolation proves necessary because analysts report EPS forecasts by fiscal year. For example,
during June 2022, an analyst reports an EPS forecast for Apple for fiscal years 2022 and 2023. To obtain
the one-year EPS forecast from June 2022 to June 2023, I interpolate between the fiscal year 2022 and 2023
EPS forecasts. De La O and Myers [2021] follow the same interpolation procedure.

3. If the trailing one-year EPS is negative, I use its absolute value. All results prove robust to removing
firms with negative trailing one-year EPS.

4. I winsorize these final values at the 5% level to remove some extremely large outliers.
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database and mutual fund flows from the CRSP Mutual Fund database. Second, to cover

a broader set of investors I use institutional holdings data from SEC Form 13F, provided

by Thomson Reuters through WRDS. The SEC requires all institutional investors with at

least $100 million in assets under management (AUM) to report itemized stock-level long

holdings quarterly.5 I allocate all remaining stock holdings to a residual “household” sector,

which includes both direct stock holdings by households and those by non-13F institutions

(i.e. institutions with less than $100 million AUM).

The final dataset spans 1984-01:2021-12 and contains 2, 173, 492 quarterly changes in

analyst-reported annual growth expectations for 14, 734 stocks and 1, 150 equity research

institutions, and 51, 438, 573 investor-stock-quarter holdings changes for 7, 572 unique

investors. The availability of the I/B/E/S EPS forecast data constrains the starting point

of the time period.

5. Short positions are not reported in 13F data.
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CHAPTER 4

REEXAMINING EXISTING EVIDENCE: REVERSE

CAUSALITY

This section presents evidence of reverse causality: a causal effect of prices on subjective

growth expectations. This result undermines interpretation of the correlation of growth

expectations with prices as evidence of the core mechanism in subjective beliefs models: a

large causal effect of growth expectations on prices. Reverse causality also necessitates a

more structured approach to measuring the causal effect of growth expectations on prices,

since OLS regressions do not yield consistent estimates.

As discussed in Chapter 2, the reverse causality concern is that prices and growth

expectations are jointly determined in equilibrium, leading to the classic simultaneous

equations problem. Let ∆Ga,n,t be the quarterly change in analyst institution a’s annual

growth expectation for stock n from quarter t − 1 to quarter t. Let ∆pa,n,t be the price

change between the release of analyst institution a’s growth expectations for stock n in

quarters t− 1 and t.1 Thus, ∆Ga,n,t and ∆pa,n,t cover the same time period. We have the

following system of simultaneous equations:

∆pa,n,t = C∆Ga,n,t +Mza,n,t + εa,n,t (4.1)

∆Ga,n,t = α∆pa,n,t + νa,n,t. (4.2)

Analyst growth expectations have a causal effect on prices (C), and vice versa (α). C in

(4.1) is the causal effect of analyst growth expectations on prices, not the causal effect of

investor growth expectations on prices. Using the notation from Chapter 2, C = Mgβ. Both

1. If analyst institution a reports more than one growth expectation for stock n during each of quarter
t− 1 and quarter t (about 25% of (analyst institution, stock, quarter) observations fall into this category), I
use the dates corresponding to the first announcement in t− 1 and the last announcement in t to construct
∆pa,n,t.
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prices and growth expectations experience unobserved and possibly correlated shocks (εa,n,t

and νa,n,t, respectively).

I test for the presence of a causal effect of prices on growth expectations: α 6= 0 in

(4.2). Thus, I need an instrument za,n,t that provides exogenous variation in prices. This

instrument must satisfy:

1. (Relevance) M 6= 0 in (4.1): the instrument has an effect on price.

2. (Exclusion) E[za,n,tνa,n,t] = 0: the instrument affects growth expectations only

through price, and it does not correlate with other determinants of growth

expectations.

I obtain exogenous price changes using several instruments based on the mutual fund flow-

induced trading (FIT) instrument from Lou [2012]. Chapter 4.1 justifies the standard

FIT instrument and Chapter 4.2 reports estimates of α. Chapter 4.3 considers a series

of robustness checks to address endogeneity concerns about the standard FIT instrument.

This section also introduces a modified version of the FIT instrument that exploits within

stock-quarter variation in the timing of analyst report releases. These alternate specifications

yield quantitatively similar results.

4.1 Exogenous Price Variation: FIT Instrument

I use the Lou [2012] mutual fund flow-induced trading instrument to obtain the exogenous

variation in prices needed to test for reverse causality. Chapter 4.3 considers refinements

and extensions of the instrument.

Flow-induced trading (FIT) provides exogenous price variation in the cross section of

stocks. A literature dating back to Frazzini and Lamont [2008] finds that stock-level mutual

fund trading that is induced by inflows and outflows is uninformed: mutual funds tend

to scale up or down their preexisting holdings proportionally to their preexisting portfolio
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weights. For example, a $1 inflow would induce an S&P 500 index fund to mechanically

allocate about five additional cents to Apple, since the market cap weight of Apple in the

S&P 500 is about 5%. This predicted mechanical component of cross-sectional trading

induced by flows is uninformed.

To construct the FIT instrument, I first calculate the quarterly flow to mutual fund i as

fi,t =
TNAi,t − TNAi,t−1 ·

(
1 + Reti,t

)
TNAi,t−1

where TNAi,t is the total net assets of mutual fund i in quarter t and Reti,t is the mutual

fund return from quarter t− 1 to quarter t. The predicted mechanical trading by fund i in

stock n induced by this quarterly flow is then:2

SharesHeld i,n,t−2 · fi,t.

Using the number of shares held from quarter t − 2 ensures SharesHeld i,n,t−2 uses only

information available before the change in analyst growth expectations ∆Ga,n,t from quarter

t − 1 to t. I aggregate this flow-induced trading in stock n across all funds, and I scale by

the total number of shares outstanding to obtain the predicted flow-induced trading in stock

n in quarter t3:

2. It does not matter whether the passthrough of flows to trading is not one-to-one. Let FITTruei,n,t be
the true, unobserved flow-induced trading by fund i in stock n due to flows in quarter t. Let FITTruei,n,t =
bFITi,n,t + ei,n,t. It does not matter if b 6= 1 or ei,n,t 6= 0, as long as the relevance condition holds (i.e.,
the observed FITn,t impacts price) and exclusion restriction E[FITn,tνa,n,t] = 0 holds. That is, it does not
matter if the observed FIT instrument is “measured with error” with respect to the true, unobserved FIT
instrument. b 6= 1 or ei,n,t 6= 0 bias the estimate of the first-stage coefficient M/(1 − αC) in (4.1), but
does not affect the consistency of the second-stage estimate of α, since the reduced-form coefficient is biased
to exactly the same extent as the first-stage coefficient, and thus the bias cancels out when computing the
second-stage α estimate.

3. This specification is closer to that in Li [2021] than to the original specification in Lou [2012] in that I
do not multiply the numerator summand by a “partial scaling factor” to reflect the fact that mutual funds
may buy or sell less than one dollar in existing positions per dollar of flow they receive due to liquidity or
other constraints. However, while Li [2021] scales by the total number of shares held by all mutual funds
in the previous quarter, I scale by the number of shares outstanding so FITn,t = 0.01 can be interpreted as
buying 1% of stock n’s shares.
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FITn,t =
∑
fund i

SharesHeld i,n,t−2

SharesOutstandingn,t−2︸ ︷︷ ︸
≡Si,n,t−2

fi,t. (4.3)

Sn,i,t−2 represents the proportion of all shares of stock n owned by mutual fund i in quarter

t− 2.

The unconditional exogeneity condition the FIT instrument must satisfy is E[FITn,tνa,n,t] =

0. By the law of iterated expectations, this unconditional exogeneity condition is satisfied if

the FIT instrument is cross-sectionally uncorrelated with analyst belief shocks in the cross

section of stocks within each quarter t and analyst a:

E
[
FITn,tνa,n,t

]
= 0,∀a, t. (4.4)

Under (4.4), α can be identified within any quarter t and analyst a from a cross-sectional

two-stage least squares regression. Pooling across quarters and analysts increases power.

The only source of cross-sectional variation in the FIT instrument is the ex-ante ownership

shares Si,n,t−2. Since the flows fi,t are at the fund level, not the stock level, they do not

create cross-sectional variation across stocks within a quarter. In other words, flows are

“aggregate shocks” within a quarter and cross-sectional variation in ownership shares creates

heterogeneous exposures to those aggregate shocks in the cross-section of stocks. Thus, as

proven in Proposition 2 in Appendix A.1, a sufficient condition for (4.4) is that ex-ante

ownership shares are cross-sectionally exogenous in the cross section of stocks within each

quarter t and analyst a:

E
[
Si,n,t−2νa,n,t | Controls

]
= 0,∀a, i, t. (4.5)

The sufficiency of cross-sectionally exogenous ownership shares in this setting is a special

case of the general result that exogenous shares are sufficient for a shift-share instrument to
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be exogenous (Goldsmith-Pinkham, Sorkin and Swift [2020]).

This identification strategy does not require mutual fund flows to be exogenous. A

common concern is that flows fi,t may correlate with analyst belief shocks νa,n,t in the

time series: E
[
fi,tνa,n,t

]
6= 0,∀a, i, n. For example, previous work documents correlations

of flows with surveyed beliefs (Greenwood and Shleifer [2014]), past performance (Ippolito

[1992], Chevalier and Ellison [1997], Sirri and Tufano [1998]), and past flows (Lou [2012]).

However, none of these time-series correlations undermine the cross-sectional exogeneity of

the FIT instrument. (4.4) still holds even if E
[
fi,tνa,n,t

]
6= 0,∀a, i, n because flows do not

cross-sectional variation in the FIT instrument across stocks within a quarter.

Chapter 4.1.1 provides a simple example with two mutual funds, one analyst, and

one quarter to explain why cross-sectionally exogenous shares are sufficient for the FIT

instrument to be exogenous in the cross-section of stocks (i.e. for (4.4) to hold).

Chapter 4.1.2 describes the main identification concern with the FIT instrument: that

ownership shares Si,n,t−2 and analyst belief shocks νa,n,t both depend on stock characteristics

and so are correlated in the cross section of stocks within a quarter. For example, if fund i

is a small-cap fund it will have larger ownership shares in small stocks. At the same time,

there may be an aggregate shock in quarter t that affects growth expectations for small

stocks more than for big stocks (e.g. the government raises taxes on small firms). This

situation creates a cross-sectional correlation between ownership shares and analyst belief

shocks within quarter t. This section also explains why controlling for stock characteristics

interacted with quarter fixed effects solves this concern.

4.1.1 Simple Example with Two Funds, One Analyst, and One Quarter

Assume there are only two mutual funds, one analyst (so drop subscript a), one time period

(so drop subscript t), and N stocks. Let fi be the flow to fund i (in this quarter t) and Si,n

be the ex-ante ownership share (i.e. from quarter t− 2) of fund i in stock n. For simplicity,

20



assume assume there are no other investors, so the two mutual fund ownership shares sum

to one for each stock: S1,n + S2,n = 1,∀n. The FIT instrument for stock n is then

FITn = S1,nf1 + S2,nf2 = S1,n(f1 − f2) + f2. (4.6)

We have a simultaneous system of equations

∆pn = C∆Gn +MFITn + εn

∆Gn = α∆pn + νn.

For the FIT instrument to be exogenous here, it must be uncorrelated across stocks with

analyst belief shocks νn

E [FITnνn] = 0. (4.7)

In this case, the following first-stage and reduced-form regressions consistently estimate α4:

∆pn = a1︸︷︷︸
≡ M

1−αC

FITn + e1,n︸︷︷︸
≡ 1

1−αC εn+ C
1−αC νn

(First Stage)

∆Gn = a2︸︷︷︸
≡ αM

1−αC

FITn + e1,n︸︷︷︸
≡ α

1−αC εn+ 1
1−αC νn

(Reduced Form)

α =
a2

a1
.

4. Note E [Si,nεn] 6= 0 is not a problem. In this case, the first-stage regression obtains

â1 = a1 +
Cov (FITn, e1,n)

V ar [FITn]
=

M

1− αC
+

1

1− αC
Cov (FITn, εn)

V ar [FITn]

The reduced-form regression obtains

â2 = a2 +
Cov (S1,n, ε̃

g
n)

V ar [FITn]
=

αM

1− αC
+

α

1− αC
Cov (FITn, εn)

V ar [FITn]
= αâ1.

Thus, I still identify α from the ratio of reduced-form and first-stage coefficients.
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Since flows are aggregate shocks that do not vary in the cross section of stocks, cross-

sectional variation in FITn comes only from variation in the ownership shares. So plugging

(4.6) into (4.7) yields

0 = E [FITnνn] = E
[
S1,nνn

]
(f1 − f2),

which means that a sufficient condition for cross-sectional exogeneity of FITn (E [FITnνn] =

0) is that the ownership shares are cross-sectionally exogenous (E
[
S1,nνn

]
= 0).

Extending to multiple time periods does not change this logic. As long as ownership

shares are cross-sectionally uncorrelated with analyst belief shocks in the cross section of

stocks within a quarter (i.e. (4.5) holds), the FIT instrument is cross-sectionally exogenous

(i.e (4.4) holds). Proposition 2 in Appendix A.1 formalizes this argument.

4.1.2 Threat to Exogeneity: Common Factors

If ownership shares Si,n,t−2 and analyst belief shocks νa,n,t both depend on stock

characteristics, they will be cross-sectionally correlated across stocks within a quarter,

which threatens the cross-sectional exogeneity of the FIT instrument.

Consider the following factor structure in ownership shares and analyst belief shocks:

Si,n,t−2 = c
′
iXn + S̃i,n,t−2 (4.8)

νa,n,t = λ
′
a,nηt + ν̃a,n,t. (4.9)

In (4.8), ownership shares Si,n,t−2 depend cross-sectionally on stock characteristicsXn. For

example, small-cap funds have have larger ownership shares in small firms than in large

firms. Xn captures firm size and ci reflects heterogeneity in how the ownership shares of

small versus large-cap funds depend on size. In (4.9), analyst belief shocks have analyst-

stock-specific loadings λa,n on aggregate shocks ηt. For example, the government cuts taxes

on small firms, which leads analysts to raise their growth expectations more for small firms
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than for large firms. ηt captures the news about the tax cut and λa,n reflects heterogeneity

in how analyst growth expectations for small versus large stocks respond to that news.

The stock characteristics that ownership shares depend on may cross-sectionally correlate

with how analyst growth expectations respond to aggregate shocks: E
[
Xnλ

′
a,n

]
6= 0. In

this case, the ownership shares are not cross-sectionally exogenous under the factor structure

in (4.8) and (4.9)

E
[
Si,n,t−2νa,n,t

]
= c

′
iE
[
Xnλ

′
a,n

]
ηt 6= 0,∀a, i, t.

For example, small-cap fund i’s ownership shares are larger for small stocks (versus large

stocks) and small stocks are more exposed to the tax cut for small firms.

Since the ownership shares are not exogenous, the FIT instrument also correlates cross-

sectionally with analyst belief shocks and so is not exogenous in the cross section of stocks

within a quarter:

FITn,t =
∑
i

fi,tSi,n,t−2 =

(∑
i

cifi,t

)′
︸ ︷︷ ︸

≡β′t

Xn +
∑
i

S̃i,n,t−2fi,t (4.10)

∀a, t : E
[
FITn,tνa,n,t

]
= β

′
tE
[
Xnλ

′
a,n

]
ηt 6= 0.

However, controlling for stock characteristics interacted with time fixed effects removes

the part of the FIT instrument that cross-sectionally correlates with analyst belief shocks

(β
′
tXn in (4.10)). Thus, the conditional cross-sectional exogeneity condition (4.4) still holds

if the set of controls includes stock characteristics interacted with time fixed effects, as proven

in Proposition 3 in Appendix A.1.

23



4.2 Empirical Results

Using the FIT instrument, I run a two-stage least-squares regression and find α > 0: there

is a causal effect of prices on subjective growth expectations.

Specifically, I run the following two-stage least-squares regression:

∆pa,n,t = a0 + a1FITn,t + β
′
1Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t + β
′
2Xn,t + e2,n,t. (4.11)

The first stage regresses price changes between analyst reports (∆pa,n,t) on the FIT

instrument (FITn,t). The second stage regresses analyst growth expectations changes

(∆Ga,n,t) on instrumented price changes (∆p̂a,n,t). Xn,t represents controls, including

stock and quarter fixed effects, and one-quarter lagged (i.e., from quarter t − 1) stock

characteristics motivated by Fama and French [2015] and used by Koijen and Yogo [2019]:

log book equity, profitability, investment, market beta, and the dividend-to-book equity

ratio (instead of the market-to book equity ratio, which would contain price).5 Stock

characteristics can be interacted with quarter fixed effects.

Table 1 reports the regression results. The OLS regressions of growth expectations on

prices in columns 1 and 2 display a strong correlation between these objects, as previous

work documents (Bordalo et al. [2019, 2022], Nagel and Xu [2021], De La O and Myers

[2021]).

Columns 3, 5, and 7 display the baseline specification of (4.11), which controls only for

stock characteristics not interacted with quarter fixed effects. The first stage regression in

column 3 is strong, with an F -statistic of over 19 (partial F -statistic 15). The reduced-form

5. Appendix Figure A1 displays binscatter plots for the first-stage and reduced-form regressions in (4.11).
Profitability is the ratio of operating profits over book equity. Investment is the log annual growth rate
of assets. Market beta is constructed from 60-month rolling regressions using returns in excess of the one-
month Treasury bill rate. Profitability, investment, and market beta are winsorized at the 2.5th and 97.5th
percentiles. Since dividends and book equity are non-negative, I winsorize them at the 97.5th percentile.
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regression of expectations changes on the FIT instrument in column 5 is significant. The

second-stage α estimate in column 7 reveals a statistically and economically significant causal

effect of prices on growth expectations: an exogenous 1% increase in price raises one-year

growth expectations by 41 basis points.6

However, this baseline specification is subject to the concern from Chapter 4.1.2 that

in the cross section of stocks within each quarter, both the FIT instrument and analyst

belief shocks depend on stock characteristics. Thus, in columns 4, 6, and 8 I control for

stock characteristics interacted with quarter fixed effects, which alleviates this concern as

discussed in Chapter 4.1.2. This specification has less power, but the first stage regression

in column 4 is still strong, with a partial F -statistic of 14. The second-stage α estimate

in column 8 is also significant: an exogenous 1% increase in price raises one-year growth

expectations by 46 basis points. Thus, correcting the common factors endogeneity concern

in the baseline specification still yields a positive and significant estimate of α. Moreover,

the estimate of α after controlling for stock characteristics interacted with time fixed effects

is actually larger than the baseline estimate (α = 46 versus 41 basis points), which suggests

this common factors endogeneity concern does not prove serious empirically.

Appendix A.5 repeats two-stage least squares regression (4.11) using the long-term

earnings growth (LTG) expectations focused on by Bordalo et al. [2019, 2022] and Nagel

and Xu [2021]. There is a causal effect of prices on LTG expectations: an exogenous 1%

increase in price raises LTG expectations by 16 basis points.

This reverse causality result undermines the common interpretation of the correlation of

growth expectations with prices. This correlation does not provide evidence of the core

mechanism in subjective belief models: a large causal effect of growth expectations on

prices. Quantifying the strength of that mechanism requires direct measurement of this

6. Appendix Figure A2 illustrates that these results prove robust to alternative specifications.
To determine whether the effect of prices on growth expectations reverts at longer horizons, I add lagged
price changes to (4.11). I find no significant evidence of reversal, as reported in Appendix Table A1.
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causal effect. However, measuring this causal effect demands a more structured approach,

since OLS regressions of prices on growth expectations cannot yield consistent estimates due

to reverse causality.

There are multiple potential mechanisms that might underlie this causal effect of prices

on analyst growth expectations. For example, analysts might learn from prices because they

believe prices reflect private information known to investors, as in Grossman and Stiglitz

[1980]. In this case α reveals how informative about fundamentals analysts perceive prices

to be. Analysts might also extrapolate fundamentals from prices.7 Alternatively, analysts

might simply adjust their growth expectations to justify prevailing stock prices. In this case

α reveals analysts’ perceived persistence of growth expectations.8 I do not take a stance

on the mechanism in this paper. Regardless of the mechanism, this reverse causality result

undermines the interpretation of the correlation of subjective growth expectations with prices

in much of the beliefs literature.

4.3 Robustness Checks

This section discusses robustness checks and extensions of the standard FIT instrument that

I use to assuage endogeneity concerns.

4.3.1 Older Lags of Ownership Shares

To ensure the time at which the ex-ante ownership shares are reported does not overlap

with the period of the analyst growth expectation update ∆Ga,n,t, I construct the FIT

instrument using earlier lags of the ownership shares in Appendix A.4. Whereas the baseline

specification finds α = 41 basis points using ownership shares lagged by two quarters, Table

7. Behavioral models in which prices affect expectations typically involve expectations in the current
period that depend on past price changes (e.g. Hong and Stein [1999] or Barberis et al. [2018]; see Barberis
[2018] for a survey). Fontanier [2021] features fundamental extrapolation from the current price.

8. α = 0.41 implies an annual perceived AR(1) persistence of 0.62 (see Appendix (A.3) for details).
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A2 reports that lagging the ownership shares as far back as four quarters delivers similar α

estimates (41 to 44 basis points).

4.3.2 Exogenous Variation in Flows

Another way to address the concern from Chapter 4.1.2 that both the FIT instrument and

analyst belief shocks cross-sectionally depend on common stock characteristics is to construct

the FIT instrument using exogenous variation in flows and use it as a time series instrument

instead of a cross-sectional instrument. That is by the law of iterated expectations, the

unconditional exogeneity condition E[FITn,tνa,n,t] = 0 is also satisfied if the FIT instrument

is uncorrelated with analyst belief shocks in the time series for each stock n and analyst a:

E
[
FITn,tνa,n,t

]
= 0,∀a, n. (4.12)

(4.12) generally does not hold because both flows and analyst belief shocks likely depend

on common aggregate shocks in the time series. Specifically, consider the following extension

to the factor structure from Chapter 4.1.2:

fi,t = b
′
iηt + f̃i,t (4.13)

Si,n,t−2 = c
′
iXn + S̃i,n,t−2

νa,n,t = λ
′
a,nηt + ν̃a,n,t.

In the new equation (4.13), flows depend in the time series on the same aggregate shocks

that drive analyst belief shocks: ηt. For example, the government cuts taxes on small firms,

which leads to greater inflows to small-cap funds than large-cap funds. ηt captures the news

about the tax cut and bi reflects heterogeneity in how flows of small versus large-cap funds

respond to this news.
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Given this factor structure, (4.12) does not hold:

∀a, n : E
[
FITn,tνa,n,t

]
=
∑
i

E
[
Si,n,t−2fi,tνa,n,t

]
=
∑
i

c
′
iXnE

[
fi,tνa,n,t

]
=
∑
i

c
′
iXnb

′
iE
[
ηtη

′
t

]
λa,n

6= 0.

For example, small-cap fund i experiences inflows due to the tax cut for small firms and

analysts raise their growth expectations for small stocks.

However, as proven in Proposition 4 in Appendix A.2, the FIT instrument can be used

as a valid time-series instrument if the aggregate shocks ηt are removed from flows. That

is, constructing the FIT instrument using idioidiosyncratic shocks to flows f̃i,t provides an

exogenous time-series instrument:

FITRESID
n,t =

∑
i

Si,n,t−2f̃i,t.

Since the aggregate shocks create a factor structure in flows (4.13), I extract idiosyncratic

shocks to flows as measured by applying a latent factor model to the quarter × mutual fund

panel of flows. That is, I remove any variation in flows driven by common factors. Figure

A3 reports α estimates from this strategy of 36 to 78 basis points, none of which prove

statistically significantly distinct from the baseline estimate of α = 41 basis points. These

results suggest that the common factors endogeneity concern in the baseline specification

does not prove serious empirically.
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4.3.3 Alternate Instrument Using Within Stock-Quarter Variation

As another way to address the concern from Chapter 4.1.2, I develop a modified version

of the FIT instrument that exploits within stock-quarter variation in the timing of analyst

report releases. This section outlines this strategy. See Appendix A.6 for details.

Multiple analyst institutions issue growth expectations for each stock in each quarter

and generally not on the same day. Consider the timing in Figure 1. Institution b reports

expectations for stock n later than institution a in quarters t − 1 and t. Thus, b’s inter-

announcement price change ∆pb,n,t is exposed more to FITn,t and less to FITn,t−1 than

is ∆pa,n,t. This variation in analyst report timing allows construction of an analyst-stock-

quarter specific instrument9:

FITa,n,t =
# days elapsed in t− 1 since Ga,n,t−1

92︸ ︷︷ ︸
≡w1

a,n,t

·FITn,t−1

+
# days elapsed in t until Ga,n,t

92︸ ︷︷ ︸
≡w2

a,n,t

·FITn,t.

The identifying variation in FITa,n,t comes from within stock-quarter variation in the

timing weights w1
a,n,t and w2

a,n,t across analysts. The identifying assumption is that the

within stock-quarter analyst timing is uncorrelated with analyst belief shocks:

E
[
w1
a,n,tνa,n,t

]
= En,t

[
w2
a,n,tνa,n,t

]
= 0,∀n, t.

9. In this section I construct FITn,t using ownership share weights from quarter t − 1 (Si,n,t−1) instead
of those from t − 2 (Si,n,t−2) as in Chapter 4.1. Doing so improves power. Using Si,n,t−1 in Chapter 4.1
would potentially violate the exclusion restriction there because Si,n,t−1 (measured at the end of quarter
t − 1) occurs in the middle of the expectation update from quarter t − 1 to quarter t. In this section,
however, the endogeneity of Si,n,t−1 is not a problem: the identifying assumption is now E [wa,n,t−1νa,n,t] =
E [wa,n,tνa,n,t] = 0,∀a, n, not E [Si,n,t−1νa,n,t] = 0,∀n, t.
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Figure 1: Within Stock-Quarter Timeline

Ga,n,t−1 Ga,n,tGb,n,t−1 Gb,n,t

∆pa,n,t

∆pb,n,t

FITn,t−1 FITn,t

Staggered timing of expectation releases for two analyst institutions, a and b, for stock-quarter pair
(n, t). Institution b reports expectations for stock n later than institution a in both t− 1 and t, so
∆pb,n,t is exposed more to FITn,t and less to FITn,t−1 than is ∆pa,n,t.

For example, Goldman Sachs reporting expectations for Apple before J.P. Morgan does

not correlate with these institutions’ non-price determinants of growth expectations. If

institutions pick announcement dates ex-ante (e.g., during the previous quarter) and do not

deviate from that preset schedule based on new information that affects growth expectations,

then this assumption is satisfied.

The α estimates from this strategy (30 to 31 basis points in Appendix Table A4) are

quantitatively similar to those in Table 1 (41 basis points), which again suggests that the

common factors concern from Chapter 4.1.2 does not prove serious empirically.

To address concerns about the endogeneity of analyst report timing in this within stock-

quarter strategy, I conduct a version of this strategy using only ex-ante predictable variation

in the timing of analyst reports in Appendix A.6.1. This strategy also yields significantly

positive α estimates (α = 99 to 110 basis points, although these point estimates are not

statistically distinguishable from 41 basis points at the 95% confidence level).

31



CHAPTER 5

A FRAMEWORK FOR DEMAND, BELIEFS, AND PRICES

This section constructs a theoretical framework for thinking about asset demand, beliefs, and

prices in equilibrium in order to formally define the parameter of interest: the causal effect

of subjective growth expectations on prices. At a high level, shocks to growth expectations

shift asset demand curves and prices must adjust to clear markets. This framework motivates

the empirical strategies I use to measure this causal effect in Sections 6 and 7.

Before introducing the causal effect of subjective growth expectations on prices, I must

first define asset demand (Chapter 5.1) and shocks to growth expectations (Chapter 5.2).

Chapter 5.3 defines the causal effect of subjective growth expectations on prices. Chapter

5.4 explains how insensitivity of demand to expected returns generates both inelastic

demand and a small causal effect of growth expectations on prices. Chapter 5.5 presents

the benchmark value for this causal effect in standard models. These sections all consider

a representative investor. Chapter 5.6 explains how the framework easily generalizes to

multiple, heterogeneous investors.

5.1 Asset Demand

This section builds on the setup of Gabaix and Koijen [2020b] to construct a tractable asset

demand system. This framework explains how beliefs shift asset demand, and thus lays

the groundwork for defining the causal effect of subjective growth expectations on prices in

Chapter 5.3.

Assume there is a representative investor, N stocks, and one outside asset (labeled n =

0). Time is indexed by quarter t since I observe investor holdings quarterly. The investor

demands portfolio weight in stock n of θn,t.

To match the empirical lognormal distribution of portfolio weights in the 13F data (Koijen
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and Yogo [2019]), I use the following functional form for the portfolio weight demand function

motivated by Gabaix and Koijen [2020b]:

θn,t =


θ̂n,t

1+
∑N
m=1 θ̂m,t

, n = 1, . . . , N

1
1+
∑N
m=1 θ̂m,t

, n = 0

θ̂n,t = exp
[
κµn,t + εDn,t

]
, n = 1, . . . , N.

µn,t is the quarterly subjective excess expected return at time t for stock n. εDn,t accounts for

all other sources of asset demand (e.g., risk, risk aversion, nonpecuniary preferences, etc.).1

Thus,

θn,t = exp

κµn,t + εn,t︸︷︷︸
≡εDn,t+ξt

 , n = 1, . . . , N (5.1)

ξt = − log

1 +
N∑
m=1

θ̂m,t

 .
Current price and growth expectations enter portfolio weight demanded through the

expected return. Letting Pn,t+1 be next period’s price, Dn,t+1 be next period’s dividend,

and Rft be the gross risk-free rate, the definition of excess expected return for stock n is

µn,t =
Ẽt[Pn,t+1 +Dn,t+1]

Pn,t
−Rft . (5.2)

Ẽt is the conditional expectation under the investor’s subjective measure. I place no

1. For example, in mean-variance portfolio choice εDn,t captures asset n’s variance, its covariances with
all other assets, and the expected returns on all other assets. More generally, εDi,n,t can incorporate hedging
demand (Merton [1973]), time-varying risk aversion (e.g. Campbell and Cochrane [1999]), time-varying risk
(e.g. Bansal and Yaron [2004], Wachter [2013]), institutional frictions (e.g. He and Krishnamurthy [2013]),
non-pecuniary preferences (e.g. Pástor, Stambaugh and Taylor [2021]), etc.
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restrictions on subjective beliefs. The investor can have rational expectations or exhibit

behavioral biases.

κ is the sensitivity (i.e., semi-elasticity) of asset demand to expected return

∂ log θn,t
∂µn,t

= κ.

κ represents the percentage change in demand (e.g., θn,t = 0.1 to θn,t = 0.101 would be 1%)

due to a one percentage point rise in expected return (e.g., from µn,t = 4% to µn,t = 5%).

Since growth expectations enter demand through expected return, κ plays a key role in

defining the causal effect of subjective growth expectations on prices in Chapter 5.3.

5.2 Subjective Growth Expectations

This section defines “shock to subjective growth expectations.” I divide the current period t

into two sub-periods: t− and t+. The investor begins in the ex-ante equilibrium at t− and

then receives new information at t+ that shocks his growth expectations. Empirically, this

new information is analyst-reported growth expectations. As a result, demand shifts and

prices adjust to clear markets, as discussed in the next section. Since I am considering a

representative investor here, I do not allow the investor to learn from prices, though Chapter

5.6 relaxes this assumption.

In subperiod t−, the investor believes that realized quarterly dividend growth gn,t+1 ≡
Dn,t+1
Dn,t

− 1 has the following dynamics2:

gn,t+1 = xn,t− + ε
g
n,t+1 (5.3)

xn,(t+1)− = x̄+ ρ(xn,t− − x̄) + εxn,t+1

2. I assume Ẽt[εgn,t+s] = 0,∀s > 0, Ẽt[εgn,tε
g
n,t+s] = 0,∀s 6= 0, Ẽt[εxn,tεxn,t+j ] = 0,∀j 6= 0, and

Ẽt[εgn,t+sεxn,t+s′ ] = 0,∀s, s′ . All expectations are taken under the investor’s subjective beliefs.
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where xn,t− represents time-t− conditional subjective growth expectation for quarter t + 1

and stock n. I model xn,t− as an AR(1) process with persistence ρ. Appendix B.1 estimates

ρ in the term structure of analyst growth expectations and finds a quarterly persistence of

ρ = 0.7.

At t+, the investor obtains new information (i.e. the analyst expectation) and updates

his subjective growth expectation for quarter t+ 1:

xn,t+ = xn,t− + ∆xt.

Both εgn,t+1 and εxn,t+1 have conditional expectations of zero at t− and t+.3 As a result, the

investor now believes that realized quarterly dividend growth has the following dynamics:

gn,t+1 = xn,t+ + ε
g
n,t+1

xn,(t+1)+ = x̄+ ρ(xn,t+ − x̄) + εxn,t+1.

Empirically, I work with shocks to one-year growth expectations, since the one-year

horizon has better coverage in I/B/E/S than does the one-quarter horizon. Denote annual

realized dividend growth from quarter t + 1 to t + 4 as Gn,t+4 = Π4
s=1(1 + gt+s) − 1. The

shock to the investor’s one-year subjective growth expectation due to ∆xt is:

∆Gen,t = Ẽt+
[
Gn,t+4

]
− Ẽt−

[
Gn,t+4

]
≈
(

1 + ρ+ ρ2 + ρ3
)

∆xt, (5.4)

3. One could consider an alternative specification in which the investor learns about εgn,t+1 instead of xn,t.
The difference is that learning about εgn,t+1 does not cause updates to future growth expectations. Thus,
learning about xn,t generally implies larger effects of growth expectations on demand and prices. How much
larger these effects are depends on persistence ρ. The conservative benchmark value of Mg = 1 I use in
Chapter 5.5 assumes ρ = 0, in which case learning about εgn,t+1 has the same price impact as learning about
xn,t.
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where the approximation follows from log(1 + a) ≈ a.4

5.3 Causal Effect of Subjective Growth Expectations on Prices:

Mg

This section formally defines the causal effect of subjective growth expectations on prices.

This definition motivates the regressions used to identify this causal effect in Chapter 6,

where I assume homogeneous demand functions across investors.

The shock to subjective growth expectations shifts the investor’s asset demand curve.

Appendix B.2 linearizes portfolio weight demand function (5.1) (around small changes in

price, expected return, and other asset demand shocks from t− to t+) and plugs in the

dividend growth dynamics from (5.3) to obtain the following demand function for stock n:

∆qn,t = −ζ∆pn,t + κg∆Gen,t + ∆εn,t. (5.5)

∆qn,t and ∆pn,t are the percentage changes in quantity of shares demanded and price (pinned

down by market clearing) from t− to t+. ∆Gn,t is the annual growth expectation shock

from Chapter 5.2. ζ is the price elasticity of demand, expressed as a positive number. κg is

the causal effect of subjective growth expectations on asset demand; it represents how much

the demand curve shifts in response to a 1% increase in one-year growth expectation. ∆εn,t

4. I assume this annual growth expectation shock is driven by a shock to the growth expectation for quarter
t + 1 (∆xt). You could make alternative assumptions, such as the shock to annual growth expectation is
driven by a shock to the growth expectation for quarter t + 4. For a fixed persistence ρ, a larger shock to
quarterly growth expectations is required in t + 4 than in t to generate a fixed ∆Gen,t. For ρ = 0.7 a 1%

shock to quarterly growth expectation in quarter t + 4 or a shock of 1
1+ρ+ρ2+ρ3 = 0.4% in quarter t + 1

both generate an annual growth expectation shock of ∆Gen,t = 1%. Assuming the shock to quarterly growth
expectations occurs earlier in the year yields smaller (more conservative) model-implied effects of annual
growth expectations on prices. The conservative benchmark value of Mg = 1 I use in Chapter 5.5 assumes
ρ = 0. If ρ = 0, then 1% quarterly growth expectations shocks in both quarters t+ 1 and t+ 4 generate an
annual growth expectations shock of ∆Gen,t = 1%. The only difference is that assuming the shock occurs
one year in the future weakens the price impact today by a discount factor of slightly below one, so Mg is
slightly less than 1 (e.g. 0.96 for a risk-free rate of 4%).
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is the residual demand shock; it comprises all sources of asset demand, except changes in

growth expectations.

Parameters κg andMg are functions of the structural parameters κ (demand sensitivity to

expected return), ḡ (average dividend growth), ρ (subjective growth expectation persistence),

and θn,t− (ex-ante portfolio weight). Proposition 1 in the next section discusses these

functional forms.

The demand curve shift caused by the subjective growth expectations shock induces a

market-clearing price change. Assume fixed supply, which means ∆qn,t = 0 because there is

a representative investor. Solving for the market clearing price change from t− to t+ yields:

∆pn,t =
κg

ζ
∆Gen,t +

1

ζ
∆εn,t. (5.6)

The causal effect of subjective growth expectations on prices, denoted Mg, is thus:

Mg =
κg

ζ
.

Mg represents how much the equilibrium price rises in response to a 1% rise in annual

subjective growth expectation. Mg equals the demand shift caused by the change in

expectations (κg) divided by the price elasticity of demand (ζ). Figure 2 illustrates the

graphical intuition for Mg.

5.4 Inelastic Demand and Small Mg

This section explains how the low sensitivity of asset demand to expected returns found

in previous work generates both inelastic demand and a small causal effect of subjective

growth expectations on prices. This result relates to the notion of “myopia” in inelastic

markets introduced by Gabaix and Koijen [2020b].

I express sensitivity of demand to growth expectations (κg), price elasticity (ζ), and
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Figure 2: Equilibrium Price Change due to Subjective Growth Expectations Shock
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Graphical illustration of demand shift and price change caused by a subjective growth expectations
shock. The investor begins at equilibrium A at t− and receives new information that raises his
annual growth expectation by 1%. The demand curve shifts right by κg percent. The price must
rise by Mg = κg/ζ percent to clear the market at the new equilibrium of B at t+.

the effect of growth expectations on prices (Mg) as functions of the sensitivity of demand

to expected return (κ). Proposition 1 (proven in Appendix B.1) describes these functions

under some simplifying assumptions that yield simple analytical expressions. Proposition 5

in Appendix B.1 relaxes these assumptions and describes the general functions, which convey

no essential additional intuition.5

Proposition 1 (κg, ζ, and Mg Under Simplifying Assumptions). For zero persistence in

growth expectation xt (ρ = 0), zero average dividend growth (ḡ = 0), and small portfolio

5. The only new dimension of note is that demand and prices respond more to growth expectations shocks
(i.e. κg and Mg are higher) when the persistence of growth expectations (ρ) is higher.
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weights (θn,t− ≈ 0):

κg = κδ (5.7)

ζ = 1 + κδ (5.8)

Mg =
κg

ζ
=

κδ

1 + κδ
, (5.9)

where δ is the average dividend-price ratio.

From (5.7), demand shifts due to growth expectations shocks (κg) are small when κ is

small. Holding price fixed, a 1% transitory (zero persistence) growth expectations shock

(i.e., a permanent 1% increase in the level of expected dividends) raises expected return by

δ%. Asset demand rises by κg = κδ in (5.7), since κ is the sensitivity of demand to expected

return.

From (5.8), demand is inelastic (ζ is small) when κ is small (as argued by Gabaix and

Koijen [2020b]). When price rises 1%, the investor reduces quantity demanded by 1% to

maintain the same portfolio weight, hence the leading 1 in (5.8).6 At the same time, a rise

in price, holding fundamentals fixed, lowers expected return and thus reduces the portfolio

weight demanded. A 1% increase in price lowers expected return by δ%, which lowers asset

demand by κδ%.

From (5.9), the causal effect of subjective growth expectations on prices (Mg) is small

when κ is small, since Mg = κδ/(1 + κδ) is an increasing function of κ. Insensitivity of

demand to expected returns generates 1) small demand shifts due to growth expectations

shocks, which dampen price impact, and 2) inelastic demand, which augments price impact.

6. To model investors who seek to maintain a constant number of shares instead of a constant portfolio
weight when price changes (e.g. index funds), one can add a wedge ψ to the demand function so that the
elasticity is ζ = 1 − ψ + κδ. For ψ = 0 and κ = 0, the investor reduces quantity of shares demanded by
1% in response to a 1% rise in price to maintain a constant portfolio weight. For ψ = 1 and κ = 0, the
investor does not change quantity of shares demanded in response to a 1% rise in price. See Appendix G.3.
in Gabaix and Koijen [2020b] for further discussion. Bacchetta, Tieche and Van Wincoop [2020] find, in the
context of international mutual funds, that investors’ desire to rebalance to ex-ante portfolio weights proves
stronger than their desire to maintain a fixed number of shares, which suggests a relatively small ψ.
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However, these channels do not cancel out because the demand shift (κg) is more sensitive to

κ than is the elasticity (ζ). The intuition is that price elasticity features two components, only

one of which depends on κ. The strength of the change in portfolio weight demanded when

expected returns change due to price movements depends on κ. However, the mechanical

selling of shares when price rises to maintain a constant portfolio weight does not depend

on κ. As an extreme example, if demand is perfectly insensitive to expected return (κ = 0),

then growth expectations shocks do not shift the demand curve (κg = 0) and have zero price

impact (Mg = 0), in spite of demand being very inelastic (ζ = 1). If κ is positive but small,

growth expectations shocks induce small demand curve shifts, which have only small price

impact.

To illustrate this point graphically, Figure 3 plots both the causal effect of subjective

growth expectations on prices (Mg) and price elasticity (ζ) as functions of the the sensitivity

of demand to expected return (κ). The range of κ estimates found in previous work using

matched expectations and holdings data (κ ∈ [0, 16], see Appendix J for details) implies

both realistically inelastic demand (ζ ≈ 1, consistent with previous estimates7) and a small

Mg.8 For this range of κ, the model-implied Mg is in the range of about [0, 0.2], which is

far smaller than the benchmark Mg = 1 discussed in the next section. This model-implied

range of [0, 0.2] is consistent with the empirical range of Mg ≤ 0.37 I find in Sections 6 and

7.9

7. Chang, Hong and Liskovich [2014], Pavlova and Sikorskaya [2020], Koijen and Yogo [2019], Gabaix and
Koijen [2020b], Schmickler and Tremacoldi-Rossi [2022]

8. Previous work usually regresses portfolio weights (θ) on expected returns (µ) and so measures ∂θ/∂µ.
However, κ = ∂ log θ/∂µ = ∂θ/∂µ · 1/θ in (5.1). Appendix J details the assumptions about the average
portfolio weights that I use to convert estimates of ∂θ/∂µ to estimates of κ = ∂ log θ/∂µ for each of the
papers used to establish the gray shaded range in Figure 3.

9. One caveat to this calibration is that previous work has measured κ at the asset class level. In principle,
κ could be larger in the cross section of stocks (i.e. within an asset class) due to the greater substitutability
of individual stocks (e.g. Apple and Google are more substitutable than the stock market and the bond
market). How large κ is in the cross section of stocks is an empirical question. The Mg values I find in
Sections 6 and 7, and the average κg value I find in Chapter 7, are consistent with the stock-level κ being of
the same order of magnitude as the asset class-level κ. Moreover, a stock-level κ large enough to bring Mg

close to 1 would imply counterfactually high stock-level price elasticities, as illustrated in Figure 3.
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Figure 3: Mg and ζ as a Function of κ

Plot of Mg and ζ values implied by Proposition 1 as a function of κ, calibrating average quarterly
dividend-price ratio δ = 0.01 to match the historical average for the aggregate equity market. The
gray shaded area indicates the range of κ estimates found in previous work (see Appendix J for
details).
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The result thatMg is small when κ is small is related to the “myopia” in inelastic markets

discussed in Gabaix and Koijen [2020b]. When demand is insensitive to expected returns,

asset demand in the current period depends less on beliefs about what will happen in the

future. Thus, demand and prices today adjust less in response to changes in beliefs about

future fundamentals. This behavior is equivalent to investors discounting changes in beliefs

about future fundamentals at a rate that is “too high.” That is, investors act myopically.

Appendix B.5 formally links Mg to this notion of myopia.

5.5 Benchmark Value for Mg

The benchmark value to which I compare my empirical results is Mg = 1.

Consider a standard consumption CAPM model. The representative investor has CRRA

utility over consumption:

U(Ct) =
Ct

1−γ

1− γ
.

Quarterly consumption growth is i.i.d. Quarterly dividend growth dynamics for stock n are

as described in Chapter 5.2. Assume both dividend and consumption growth are normally

distributed.

The price of stock n satisfies:

Pn,t = Et

[
β

(
Ct+1

Ct

)−γ (
Pn,t+1 +Dn,t+1

)]
, (5.10)

To convey the intuition, I consider the case of zero persistence in subjective growth

expectation xt (ρ = 0), which provides a conservative benchmark value for Mg, as discussed

below. Since the only state variable in this economy is xt, one can easily show the log

price-dividend ratio takes the following form (as proven in Appendix B.4):

log
(
Pn,t/Dn,t

)
= A0 + xt,
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for some constant A0. Thus, the percentage change in price from t− to t+ due to an annual

growth expectation shock of ∆Gen,t = ∆xt (following (5.4)) is

∆pn,t = ∆Gen,t,

so Mg = 1.

The intuition for Mg = 1 is simple. Since the purely transitory growth expectation

shock does not alter discount rates, it does not impact the forward price-dividend ratio

(Pn,t/Et[Dn,t+1]).10 A 1% purely transitory growth expectation shock raises the expected

level of all future dividends by 1%. Thus, the 1% purely transitory increase in growth

expectation raises price 1%.

Since adding additional state variables to the economy does not alter this logic, most

leading asset pricing models imply Mg = 1, including both rational expectations models

(e.g., Campbell and Cochrane [1999], Bansal and Yaron [2004], Barro [2006], He and

Krishnamurthy [2013]) and behavioral models (e.g., Barberis et al. [2015], Nagel and Xu

[2021], Bordalo et al. [2022]).

Persistence in growth expectations (ρ > 0) raises Mg. Appendix B.4 demonstrates Mg =

1.3 in this model for the empirical persistence of ρ = 0.7 in the I/B/E/S growth expectations

data (see Appendix B.1). Using Mg = 1.3 instead of Mg = 1 does not change my empirical

conclusion that the causal effect of subjective growth expectations on prices is an order of

magnitude smaller than in standard models. Thus, I use the more conservative and simpler

benchmark value of Mg = 1.

10. Since my empirical setting is the cross section of equities, I assume the risk-free rate is exogenous
to stock-specific growth expectations shocks. In models that price consumption claims, the risk-free rate is
usually endogenous to growth expectations shocks due to intertemporal substitution. I rule out these general
equilibrium effects.
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5.6 Generalizing to Heterogeneous Agents

The representative agent framework presented above generalizes easily to heterogeneous

investors. With heterogeneous investors, Mg is the weighted-average demand shift due to

the growth expectations shock divided by the weighted-average price elasticity (weighted

by ownership shares). This generalization motivates the regressions used to identify Mg in

Chapter 7, where I allow for heterogeneous demand functions across investors. For simplicity,

I assume investors do not learn from prices in this section. However, this assumption does not

impact the empirical strategy, as discussed in Appendix B.6. Learning from prices changes

the functional form of the investor’s price elasticity of demand, but does not alter the form

of the demand curve or the definition of Mg. The estimates of Mg that I find in Sections 6

and 7 include any amplification of price impact due to investors learning from prices.

Consider the following generalization of demand function (5.5):

∆qi,n,t = −ζi∆pn,t + κ
g
i∆G

e
i,n,t + ∆εi,n,t, (5.11)

with heterogeneous price elasticities (ζi) and sensitivities of demand to growth expectations

(κgi ) across investors. ∆Gei,n,t captures heterogeneous changes in growth expectations.

∆εi,n,t allows for heterogeneous demand shocks. The aggregate change in quantity of shares

demanded is

∆qS,n,t ≡
∑
i

Si,n,t∆qi,n,t

Si,n,t ≡
Qi,n,t−∑
j Qj,n,t−

.

Qi,n,t− is the ex-ante (time t−) quantity of shares owned by investor i in stock n and Si,n,t

is the ex-ante ownership-share weight.

As in the representative agent case, the aggregate demand curve shift due to the shock to
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subjective growth expectations induces a market-clearing price change. Assume all investors

experience the same growth expectations shock (∆Gei,n,t = ∆Gen,t,∀i). Market clearing

under fixed supply (∆qS,n,t = 0) implies

∆pn,t =
κ
g
S

ζS
∆Gen,t +

1

ζS
∆εS,n,t, (5.12)

where S denotes the ownership-share weighted average (e.g., κgS ≡
∑
i Si,n,tκ

g
i ).

Thus, in general the causal effect of subjective growth expectations on prices is:

Mg =
κ
g
S

ζS
. (5.13)

Mg is still the aggregate demand curve shift (κgS) divided by the aggregate price elasticity

(ζS).
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CHAPTER 6

EFFECT OF GROWTH EXPECTATIONS ON PRICES:

HOMOGENEITY

This section measures the causal effect of subjective growth expectations on prices (Mg)

under two assumptions regarding investor homogeneity:

1. All investors have the same demand sensitivity to growth expectations κgi and price

elasticity ζi.

2. Analyst influence on investor beliefs is the same for all investors.

These homogeneity assumptions allow identification ofMg from price and beliefs data alone.

Chapter 7 relaxes these assumptions and measuresMg under full investor heterogeneity using

holdings data. I find that Mg is small. In the baseline specification, a one percent increase

in investor annual growth expectations raises price only 7 basis points, or 93% less than the

benchmark of 1%. Various robustness checks can raise this effect up to 37 basis points, or

63% less than the benchmark of 1%. Thus, the core mechanism in subjective belief models

is far weaker empirically than assumed by these models.

As discussed in Chapter 2, measuring Mg requires solutions to two problems:

1. Measuring the passthrough of analyst influence to investor beliefs.

2. Extracting exogenous variation in observed analyst growth expectations.

First, I measure analyst influence on investor beliefs by modeling investors as Bayesians who

learn from analysts. Bayesian learning implies signal averaging, which allows identification

of analyst influence using cross-sectional variation in the number of analysts who cover each

stock. This signal averaging mechanism appears in a large class of non-Bayesian learning

models as well. Second, I isolate exogenous variation in observed analyst growth expectations
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by using collaborative filtering to fit a latent factor model to the within-quarter analyst

institution × stock panel of growth expectations. I extract the factor model residuals as

exogenous shocks to analyst expectations.

Chapter 6.1 summarizes the timing of the empirical strategy. Chapter 6.2 explains how

Bayesian learning enables identification of analyst influence. Chapter 6.3 details the latent

factor model I fit to analyst expectations. Chapter 6.4 uses market clearing to motivate the

high-frequency panel regressions I use to measure Mg. Chapter 6.5 presents the empirical

results.

6.1 Timing and Notation

My empirical strategy uses high-frequency windows around analyst growth expectation

announcements. Let t denote the current quarter. Following Chapter 5.2, t− is the ex-

ante equilibrium just before an analyst announcement and t+ is the ex-post equilibrium

after investors learn the new information, demand shifts, and prices adjust to clear markets.

Since all of the identification works within a quarter, I suppress quarter t subscripts. As

discussed in Chapter 3, I group analysts to their parent institution. Thus, any reference to

“analyst” means “analyst institution.”

As displayed in Figure 4, the timing of the empirical strategy involves four steps:

1. During the previous quarter t−1, analyst a reported a growth expectation for stock n:

G
A,lag
a,n, (superscript A denotes analyst expectations). Denote the price change from that

announcement until t− as ∆p−n , which is the price change that might affect analyst a’s

quarter-over-quarter expectation update (consistent with the reverse causality evidence

in Chapter 4).

2. At the ex-ante equilibrium t−, investors have priors over annual growth expectations

for stock n. Let ḠIS,a,n be the ownership-share weighted average prior mean growth
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Figure 4: Model Timeline
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Timeline of high-frequency identification strategy.

expectation before the announcement by analyst a (superscript I denotes investor

expectations).

3. The information shock is the announcement of analyst a’s growth expectation in the

current quarter t: GAa,n,.

4. Investors update their priors over annual growth expectations for stock n. Asset

demand curves shift and prices adjust to clear markets. ∆q+
i,a,n and ∆p+

a,n represent

the equilibrium changes in quantity demanded by investor i and price in a high-

frequency window (several days) after analyst a’s announcement that engender the

ex-post equilibrium at t+.

6.2 Measuring Analyst Influence: Bayesian Learning

This section explains how the signal averaging mechanism implied by Bayesian learning

enables identification of analyst influence on investor beliefs in the cross-section of stocks.

This section assumes homogeneous analyst influence across investors; Chapter 7 relaxes this

assumption. This section also assumes homogeneous influence across analysts; Chapter 6.6.2

relaxes this assumption. Additionally, this section assumes investor prior precisions and

analyst signal precisions do not vary across stocks; Chapter 6.6.5 relaxes this assumption.

All of the identification occurs within a quarter, so I omit quarter t subscripts.

Prior to the analyst a’s announcement (i.e. at t−), each investor i has the following prior
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distribution over the unknown stock-n annual expected growth rate Gen:

Gen ∼ N(ḠIi,a,n, τ̄).

Investors view analyst a’s announced growth expectation GAa,n as a noisy signal of Gen:

GAa,n = Gen + εa,n, εa,n ∼ N(0, σ2).

The Bayesian learning update to investor i’s prior mean for stock n due to analyst a’s

signal is:

∆GIi,a,n =
σ−2

τ−1 + Anσ−2︸ ︷︷ ︸
≡Bn

(
GAa,n − ḠIi,a,n

)
+ νIi,a,n. (6.1)

νIi,a,n captures any other growth signals investor i learns from in the high-frequency window

after analyst a’s announcement. Bn represents analyst influence on investor beliefs for stock

n: the weight each analyst’s expectation receives in each investor’s posterior. As usual with

Gaussian priors and signals, this posterior weight is the ratio of the signal precision (σ−2) to

the posterior precision (τ−1 +Anσ
−2, where τ−1 = τ̄−1 + σ−2

ν includes the signal precision

of νIi,a,n ). For simplicity, the posterior weight expression in (6.1) assumes analyst signal

errors εa,n are uncorrelated across analysts. Chapter 6.6.1 considers the case of correlated

signal errors.

To elucidate the identifying variation, I linearize analyst influence Bn around the average

number of analysts per stock in the current quarter (A = E[An]):

Bn ≈ β︸︷︷︸
≡ σ−2

τ−1+Aσ−2

−β2 Ãn︸︷︷︸
An−A

. (6.2)

Ãn = An − A is the demeaned number of analysts who cover stock n. β is the level of
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influence for the average stock. β2 represents how much influence shrinks per additional

analyst added.1

The functional form for analyst influence (6.2) allows identification of β in the cross

section of stocks. Bayesian learning implies signal averaging. The more signals (analyst

expectations) a Bayesian learner observes, the less weight (influence) any particular signal

receives in the posterior, which is why Bn is decreasing in Ãn in (6.2). Moreover, signal

averaging links the level of influence (β) with how much influence shrinks as additional

signals are added (β2).

For example, consider the flat prior (and no other signals) case: τ−1 = 0. In this case,

Bn = 1/An: investors take an equal-weighted average of all analyst signals. For the average

stock, Bn = β = 1/A: influence is one over the average number of analysts. Since the

derivative of 1/x is −1/x2, influence shrinks at a rate of β2 = 1/A2 per additional analyst.

The functional form of analyst influence in (6.2) proves robust to a wide range of

deviations from Bayesian learning, as discussed in Appendix C.3.

6.3 Exogenous Variation in Analyst Expectations: Latent Factor

Model

This section explains how I extract exogenous variation in analyst expectations by using

collaborative filtering to fit a latent factor model to the within-quarter analyst × stock

panel of growth expectation updates. All identification occurs within a quarter, so I omit

quarter t subscripts.

I model quarterly changes2 in annual analyst growth expectations as having a factor

1. Appendix C.2 describes an alternative specification for analyst influence that exploits variation in the
order of analyst report releases. This specification collapses to a functional form similar to (6.2) under some
approximations.

2. Changes (versus levels) better isolate new information and have greater price impact (e.g., Brav and
Lehavy [2003]).
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structure:

∆GAa,n = (αa + αn)∆p−n + λ
′
aηn + ua,n. (6.3)

Quarterly analyst expectation updates (∆GAa,n = GAa,n −G
A,lag
a,n ) can depend on:

1. Contemporaneous price changes: ∆p−n (consistent with the reverse causality evidence

from Chapter 4). Both ∆GAa,n and ∆p−n are changes from quarter t− 1 to quarter t.

2. Stock characteristics: ηn. Characteristics may include public signals (e.g., earnings

surprises, monetary policy announcements, or COVID news), firm characteristics, etc.3

3. Uncorrelated idiosyncratic shocks: ua,n.

This factor structure can be microfounded with a simple Grossman and Stiglitz [1980]-

type model featuring public signals (ηn), private signals observed by analysts (ua,n,), and

private signals observed by investors that motivate analysts to learn from prices (∆p−n ). See

Appendix D.1 for details.

The idiosyncratic shocks ua,n capture within stock-quarter variation in growth

expectations across analysts and so provide exogenous variation in analyst expectations. I

assume ua,n are uncorrelated across analysts and stocks.

I do not take a stance on the identity of the stock characteristics ηn. Instead I fit a latent

factor model to the within-quarter analyst-by-stock panel of growth expectation updates to

estimate ua,n. Since I estimate factor model (6.3) within each quarter, all factors, loadings,

and idiosyncratic shocks vary over time.

What is an idiosyncratic analyst growth expectation shock? A natural candidate

is private information obtained by analyst a about the future cash flows of stock n.4 This

3. Factor structure (6.3) can also incorporate analyst or stock-specific biases (i.e., fixed effects). An
analyst-quarter fixed effect is an element of λa constrained to load on a constant ηn,f = 1 and a stock-
quarter fixed effect is an element of ηn,t constrained to be loaded on by λa,f = 1.

4. The notion that equity research analysts communicate private information to markets through their
reports is well-established in the previous literature (e.g. Chen and Matsumoto [2006], Mayew, Sharp and
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information need not have any bearing on other sources of demand (e.g., subjective risk

perceptions, hedging demand, or non-pecuniary preferences) and so will be uncorrelated with

other contemporaneous demand shocks. Moreover, information observed only by analyst a

is uncorrelated with investor priors, since investors cannot yet have not learned it, and with

other contemporaneous growth signals.

Extracting idiosyncratic shocks with collaborative filtering. I operationalize factor

model (6.3) using tools from collaborative filtering, a branch of machine learning that learns

models of individual-specific “preferences” over objects from reported preferences. The

canonical example is Netflix learning individual-specific models of movie preferences from

partial cross sections of ratings. I learn analyst-specific models of growth expectations from

partial cross-sections of covered stocks.

To fit the factor model, I reexpress structural factor model (6.3) in reduced form as

∆GAa,n = λ̃
′

aη̃n + ua,n. (6.4)

This representation subsumes the price term (αa + αn)∆p−n from (6.3).5 I fit latent factor

model (6.4) quarter-by-quarter using the regularized singular value decomposition technique

of Funk [2006]. This method decomposes the analyst-by-stock matrix of growth expectation

updates (G =
[
∆GAa,n

]
a,n

) into the product of a matrix of factor loadings (Λ = [λa]a) with

a matrix of factors (H = [η̃n]n). Given the sparsity of the data (most analysts do not cover

most stocks), I use L2 (i.e. ridge) regularization to estimate the factor model more efficiently.

Regularization biases the factor and loading estimates toward zero in order to reduce the

variance of these estimates. The baseline specification uses five latent factors, but all results

Venkatachalam [2013]).

5. This notation assumes all analysts learn from the same price change ∆p−n , even if they report
expectations at different times in each quarter. Analysts might learn from slightly different price changes
due to the staggered timing of analyst reports. However, this scenario does not pose significant challenges.
See Appendix D.3 for a full discussion.
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Figure 5: Histogram of Idiosyncratic Analyst Growth Expectations Shocks

Histogram of estimated idiosyncratic analyst growth expectations shocks.

prove robust to using alternative numbers of factors (see Chapter 6.6.3). After estimating the

factors (η̃n) and loadings (λ̃a), one can recover estimates of the factor model residuals ua,n.

Figure 5 plots the histogram of idiosyncratic analyst growth expectations shocks across all

analyst institutions, stocks, and quarters.6 Appendix D.2 discusses implementation details.

6.4 Identifying Mg: Market Clearing

This section explains how I use high-frequency panel regressions to estimate Mg given the

form of analyst influence from Chapter 6.2 and exogenous variation in analyst expectations

from Chapter 6.3.

The information shock from the analyst announcement shifts investors’ demand curves.

From (5.11), the percentage change in quantity of shares demanded by investor i for stock

6. For clarity, I truncate the histogram range to [−100%, 100%], which contains over 99.5% of observations.
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n in the high-frequency window after analyst a’s announcement is:

∆q+
i,a,n = −ζ∆p+

a,n + κg∆GIi.a,n + ∆εi,a,n. (6.5)

∆p+
a,n is the price change in the high-frequency window (not to be confused with the lagged,

low-frequency price change ∆p−n in (6.3)), ∆GIi.a,n represents the shock to investor i’s annual

growth expectation for stock n, and ∆εi,a,n includes other high-frequency demand shocks.

Aggregating the change in demand across investors and imposing fixed supply (∆q+
S,a,n =

0) yields the market-clearing price change in this window (∆p+
a,n) from (5.12):

∆p+
a,n = Mg∆G

I
S,a,n +

1

ζ
∆εS,a,n (Market Clearing)

∆GIS,a,n = Bn

(
GAa,n − ḠIS,a,n

)
+ νIS,a,n (Bayesian Update)

Bn = β − β2Ãn (Bayesian Analyst Influence)

∆GAa,n = (αa + αn)∆p−n + λ
′
aηn + ua,n (Analyst Factor Structure)

where S denotes ownership-share weighted averages. Plugging in the Bayesian-learning

implied investor growth expectation update from (6.1), the Bayesian-learning form of analyst

influence from (6.2), and the factor structure on analyst expectations from (6.3) yields:

∆p+
a,n = Mgβua,n −Mgβ

2ua,nÃn + ea,n. (6.6)

The structural error term ea,n comprises five components: 1) other determinants of analyst

expectations, 2) investors’ prior expectations, 3) lagged analyst growth expectations, 4) other

contemporaneous growth signals investors learn from, and 5) other demand shocks (see E.1

for details).

Although all identification occurs in the cross-section of stocks within a quarter, I pool

across all quarters to obtain more power. Thus, I run the following panel regression motivated
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by market-clearing expression (6.6) (I add time t subscripts to emphasize that I pool across

quarters):

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 +Xn,t + ea,n,t. (6.7)

The left-hand side represents the price change shortly after analyst a’s announcement for

stock n in quarter t (5 days in the baseline specification, but Chapter 6.6.4 finds similar

results using alternative window lengths).7 The right-hand side includes the idiosyncratic

analyst growth expectation shock ua,n,t and its interaction with the lagged demeaned number

of analysts Ãn,t−1.8 Xn,t includes stock, quarter, and stock-quarter fixed effects.

Regression (6.7) estimates two reduced-form coefficients, which jointly identify the causal

effect of investor subjective growth expectations on prices (Mg).

1. c1 is average analyst price impact. A 1% higher analyst-reported expectation raises

price c1% for the average stock. Exogenous variation in analyst expectations (ua,n)

identifies c1.

2. c2 is the shrinkage rate of analyst price impact as the number of analysts grows and

influence shrinks. Adding an analyst to stock n reduces price impact by c2%, in

absolute terms. The interaction of ua,n with cross-sectional variation in the number of

analysts identifies c2.

The reduced-form coefficients c1 and c2 jointly identify analyst influence β and the causal

7. If analyst institution a reports multiple expectations for stock n during quarter t (≈ 25% of (institution,
stock, quarter) observations are in this category, though some of these still occur on the same day), I use
the first announcement in quarter t as the first day in ∆p+

a,n,t. Using the first announcement for each
(institution, stock, quarter) yields the largest analyst price impact estimates. Other options include using
the price change after the last or median announcement, or using the sum, mean, or median of price changes
after all announcements for this (institution, stock, quarter).

8. I use the lagged demeaned number of analysts to avoid potential endogeneity issues with analysts
initiating (or ending) coverage due to particularly good, or bad, information. Irvine [2003] discusses some of
these concerns.
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effect of investor growth expectations on prices Mg:

β =
c2
c1

Mg =
c1
β

=
c21
c2
. (6.8)

The intuition is that signal averaging links the level of analyst price impact (c1) and the

shrinkage rate of price impact as the number of analysts grows (c2): c2 = βc1. This link

arises from the link between the level of influence (β) and how much influence shrinks with

additional analysts (β2).

The two moment conditions required to identify c1 and c2 are:

E
[
ua,nea,n

]
= 0 (6.9)

E
[
ua,nÃnea,n

]
= 0. (6.10)

I have two instruments (ua,n and ua,nÃn), two moment conditions ((6.9) and (6.10)), and

two structural parameters to identify (Mg and β). The identifying assumption is:

Assumption 1 (Identifying Assumption for Price Regression). Any common variation

between analyst growth expectation updates (∆GAa,n) and 1) investor prior expectations

(ḠIS,a,n), 2) lagged analyst expectations (GA,Laga,n ), 3) other contemporaneous signals (νIS,a,n),

and 4) other demand shocks (∆εS,a,n), is spanned by stock-quarter characteristics.

If Assumption 1 holds, then the latent factor model removes all common variation between

∆GAa,n and both ea,n and Ãn. In this case, both moment conditions (6.9) and (6.10) hold.

6.5 Empirical Results

This section reports estimates for the causal effect of subjective growth expectations on

prices (Mg) under assumptions regarding investor homogeneity. Mg is small, an order of
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Table 2: Summary Statistics

∆p+
a,n,t An,t ∆GAa,n,t ua,n,t ∆qi,n,t

Count 2145713 2173492 2173492 2173492 51438573
Mean 0.00 10.03 -0.01 0.00 0.02
Std. Dev. 0.09 7.23 0.53 0.18 0.67
Min -0.99 1.00 -4.43 -4.89 -1.00
25th Percentile -0.04 4.00 -0.12 -0.04 -0.15
Median 0.00 8.00 0.00 0.00 -0.00
75th Percentile 0.04 14.00 0.11 0.04 0.08
Max 11.00 49.00 3.63 4.65 2.00

Summary statistics for price changes five days after analyst report releases (∆p+
a,n,t), the number

of analyst institutions who cover each stock (An,t), the quarter-over-quarter change in annual
analyst growth expectations (∆GAa,n,t), the idiosyncratic analyst growth expectations shocks (ua,n,t),
and quarterly percentage changes in quantity of shares held by investor i in stock n (∆qi,n,t).
∆p+

a,n,t,∆G
A
a,n,t, ua,n,t, and ∆qi,n,t are all expressed in absolute terms (i.e. 0.01 is 1%). The time

period is 1984-01:2021-12.

magnitude smaller than the benchmark Mg = 1. Table 2 reports summary statistics for the

data used in this analysis.

I first provide reduced-form results to justify the model structure. Figure 6 displays

the binscatter plot of five-day post-announcement price changes versus idiosyncratic analyst

growth expectations shocks. Prices respond to exogenous variation in analyst expectations,

which immediately implies analysts do influence investor beliefs (β 6= 0).

Figure 7 displays overlapping binscatter plots of five-day post announcement price

changes versus idiosyncratic analyst growth expectations shocks. The red binscatter

represents analyst-stock-quarter observations (a, n, t) for which the demeaned number

of analysts covering stock n in the previous quarter (Ãn,t−1) is in the bottom quintile.

Similarly, the blue binscatter represents observations for which the demeaned number of

analysts is in the top quintile. Analyst price impact is positive for both quintiles, but is

much smaller for the top quintile: analysts impact prices less for stocks covered by more

analysts. Appendix Figure G11 demonstrates that analyst price impact is monotonically

decreasing in the quintile of the demeaned number of analysts. These results are consistent
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Figure 6: High-Frequency Price Changes vs. Idiosyncratic Analyst Growth Expectations
Shocks

Binscatter of five-day post announcement price changes (∆p+
a,n,t) versus idiosyncratic analyst growth

expectations shocks (ua,n,t).

with the signal averaging mechanism detailed in Chapter 6.2.

Table 3 reports the estimated reduced-form coefficients c1 and c2 from (6.7). Across

columns, the c1 and c2 estimates prove insensitive to the inclusion of stock, quarter, and

stock-quarter fixed effects, which implies the latent factor model removes variation in analyst

growth expectations coming from these sources. The c1 = 0.457 estimate in column 4 implies

that a 1% higher analyst-reported annual growth expectation raises stock price by about 0.5

basis points. The c2 = 0.0282 estimate implies that analyst price impact falls about 0.03

basis points (i.e., about 6% of the average price impact) per additional analyst who covers

stock n.9

Table 4 reports the β and Mg estimates implied by the c1 and c2 estimates in Table 3.

The analyst influence estimate β = 0.06 (robust to inclusion of various fixed effects across

9. These values are broadly consistent with (if slightly smaller than) analyst price impact estimates from
previous work (details in Appendix F ).
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Figure 7: Analyst Price Impact for Top and Bottom Quintiles of Number of Analysts

Binscatters of five-day post announcement price changes (∆p+
a,n,t) versus idiosyncratic analyst

growth expectations shocks (ua,n,t) for analyst-stock-quarter observations (a, n, t) in the top (blue)
and bottom (red) quintile based on the demeaned number of analysts covering stock n in quarter
t− 1 (Ãn,t−1).
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Table 3: c1 and c2 Estimates

(1) (2) (3) (4)
c1 0.458*** 0.459*** 0.457*** 0.457***

(0.0534) (0.0545) (0.0546) (0.0549)

c2 0.0287*** 0.0287*** 0.0286*** 0.0282***
(0.00408) (0.00411) (0.00411) (0.00406)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 1530391 1530391 1530391 1530391
R-Squared 0.0000556 0.0218 0.0515 0.583
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table reports regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and
Ãn,t−1 is the demeaned number of analyst institutions that cover stock n in the previous quarter
t−1. Xn,t represents various fixed effects. All estimates represent the marginal effect in basis points
of a 1 percentage point increase in analyst growth expectations. The time period is 1984-01:2021-12.
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columns) is significantly positive, which means that investors do learn from analysts. A 1%

higher analyst-reported annual growth expectation raises investor growth expectations by 6

basis points. This estimate of β implies that investors view analyst expectations as noisy

signals (see Appendix G.2 for a full discussion).

The causal effect of investor subjective growth expectations on prices is Mg = 0.07

(robust to inclusion of various fixed effects across columns). This estimate implies a 1% rise

in one-year investor, not analyst, growth expectations raises price only 7 basis points. This

estimate ofMg = 0.07 is an order of magnitude smaller than the benchmark value ofMg = 1

from Chapter 5.5.

Thus, the causal effect of subjective growth expectations on prices is far smaller than

suggested by standard models. The core mechanism in subjective belief models is far weaker

empirically than assumed by these models. As Chapter 5.4 discusses, this small causal effect

is quantitatively consistent with the low sensitivities of demand to expected returns and the

small price elasticities of demand found in previous work.

6.6 Robustness

This section summarizes the robustness checks I conduct for the baseline results in Tables 3

and 4.

6.6.1 Allowing for Correlated Analyst Errors

Appendix G.3 allows for analyst signal errors to be correlated. Fix a quarter t (so drop the

t subscript below). Analyst a’s reported expectation is a noisy signal of the true growth

expectation

GAa,n = Gen + εa,n, εa,n ∼ N(0, σ2),
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Table 4: Mg and β Estimates Under Investor Homogeneity

(1) (2) (3) (4)
β 0.0626*** 0.0625*** 0.0625*** 0.0616***

(0.00719) (0.00717) (0.00721) (0.00724)

Mg 0.0731*** 0.0734*** 0.0732*** 0.0741***
(0.0133) (0.0135) (0.0136) (0.0140)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 1530391 1530391 1530391 1530391
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays the β and Mg estimates implied by the regression

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 +Xn,t + ea,n,t

β =
c2

c1
and Mg =

c2
1

c2
,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic growth expectation shock, and Ãn,t−1 is
the demeaned number of analyst institutions that cover stock n in quarter t. Xn,t represents various
fixed effects. All estimates represent the marginal effect in percentage points of a 1 percentage point
increase in growth expectations (analyst expectations for β and investor expectations for Mg). The
time period is 1984-01:2021-12.

62



where analysts reporting for the same stock n in the same quarter t have correlated signal

errors:

E
[
εa,nεb,n

]
= ρσ2,∀a 6= b,∀n.

As derived in Appendix G.3.1, the Bayesian learning update to investor i’s prior mean

for stock n due to analyst a’s signal is:

∆GIi,a,n =
1

x+ (An − 1)ρx+ An

(
GAa,n − ḠIi,a,n

)
+ νIi,a,n

x = σ2/τ̄ ,

where x is the ratio of signal variance to prior variance.

Plugging in this Bayesian update and the factor structure on analyst expectations from

(6.3) into market-clearing expression (5.12) yields the following nonlinear, high-frequency

regression analogous to (6.7):

∆p+
a,n,t = Mg

1

x+ (An,t−1 − 1)ρx+ An,t−1
ua,n,t + ea,n.t. (6.11)

Even though there are only two sources of variation here (the idiosyncratic shocks ua,n,t and

the number of analysts An,t−1), the nonlinear functional form of the posterior weight allows

all three structural parameters of be identified (Mg, x, and ρ). As displayed in Table G10 in

Appendix G.3.2, this approach yields an estimate ofMg = 37 basis points with an estimated

analyst correlation of ρ = 0.18. 37 basis points is larger than the baseline 7 basis point

estimate, but it is still 63% smaller than the benchmark 1% price impact. Alternatively, one

can fix a value of the correlation ρ and estimate Mg and x in (6.11) nonlinearly. Figure G12

in Appendix G.3.2 displays the estimation results for Mg and x under different assumptions

about the correlation ρ.
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6.6.2 Allowing for Analyst Heterogeneity

Appendix G.4 relaxes the assumption of homogeneous influence for all analyst institutions

and finds similar results. I derive the general linearized form of analyst influence Ba,n with

heterogeneous signal precisions σ−2
a . All of the intuition from Chapter 6.2 carries over. The

full approximation simply adjusts (6.2) to account for the greater loss of influence due to

adding a highly influential (high signal precision) analyst to stock n versus adding a non-

influential (low signal precision) analyst. Thus, identifying heterogeneous influence requires

cross-sectional variation in the set — not the number — of analysts who cover each stock

(e.g., Goldman Sachs and J.P. Morgan cover Apple while Goldman Sachs and Morgan Stanley

cover Google). This analysis finds Mg = 0.05, which is close to the baseline Mg = 0.07.

6.6.3 Alternative Numbers of Latent Factors

Appendix G.5 conducts this analysis using alternative numbers of latent factors and finds

similar results. The largest Mg estimate among these alternative numbers of latent factors

is Mg = 0.08, which is close to the baseline Mg = 0.07.

6.6.4 Alternative Post-Announcement Window Lengths

Appendix G.6 runs this analysis with alternative post-announcement window lengths other

than 5 days and finds similar results. The largest Mg estimate among these alternative

window lengths is Mg = 0.21, which is still far smaller than the benchmark of Mg = 1

. Unfortunately the post-announcement window cannot be lengthened far beyond five

days in this empirical strategy. The idiosyncratic growth expectations shocks (ua,n,t)

represent within stock-quarter variation in analyst expectations. For long horizons, there

is no variation in post-announcement price changes across analysts within stock-quarter.

For example, the one-year post-announcement price changes for two analysts who report

expectations one week apart for Apple during quarter t are nearly the same. Thus, at longer
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horizons regression (6.7) cannot identify c1 (or Mg) because it features essentially a within

stock-quarter constant on the left-hand side. See Appendix G.6 for a full discussion. The

empirical strategy in Chapter 7 operates at a lower frequency (quarterly) and finds similar

results to those in Table 4.

6.6.5 Allowing β to Vary by Stock

Appendix G.7 relaxes the assumption from Chapter 6.2 that β does not vary across stocks. I

allow investor prior precisions and analyst signal precisions to vary across stocks by modeling

stock-specific βn as a function of stock characteristics. This parametric approach still allows

for identification of Mg and β (i.e., the average βn) from cross-sectional variation in the

number of analysts that cover each stock. I find Mg estimates in the range of 0.10 to 0.11

across specifications including different stock characteristics. These estimates are statistically

indistinguishable from the baseline Mg = 0.07 estimate. Thus, this analysis yields the same

economic conclusion: the causal effect of subjective growth expectations on prices is an order

of magnitude smaller than suggested by standard models. Moreover, I find little evidence

that βn varies across stocks.

6.6.6 Allowing Mg to Vary by Stock

Appendix G.8 relaxes the assumption that Mg does not vary across stocks. I allow the

sensitivity of demand to expected return (κ) and price elasticity (ζ) to vary across stocks

by modeling stock-specific Mg,n as a function of stock characteristics. This parametric

approach still allows for identification of Mg (i.e., the average Mg,n) and β from cross-

sectional variation in the number of analysts that cover each stock. I find Mg estimates in

the range of 0.10 to 0.14 across specifications including different stock characteristics. These

estimates are statistically indistinguishable from the baseline Mg = 0.07 estimate. Thus,

this analysis yields the same economic conclusion: the causal effect of subjective growth
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expectations on prices is an order of magnitude smaller than suggested by standard models.

6.6.7 LTG expectations

Appendix G.9 finds consistent results using the long-term earnings growth (LTG)

expectations focused on by Bordalo et al. [2019, 2022] and Nagel and Xu [2021]. Since LTG

expectations represent the analyst’s forecast for average EPS growth over the next 3 − 5

years, the price impact of investor “long-term” growth expectations should be roughly 3− 5

times as large as the price impact of annual growth expectations (see Appendix G.9.1 for a

full discussion). Appendix G.9.2 finds a 1% rise in investor long-term growth expectations

raises price by about 23 basis points, which is 3− 4 times the Mg = 0.07 estimate in Table

4 and an order of magnitude smaller than the benchmark price impact of investor long-term

growth expectations. Since the number of analyst institutions that issue LTG expectations

does not vary that much across stocks, I cannot obtain a precise estimate of c2 in regression

(6.7) and so I cannot measure analyst influence on investor beliefs (β) for LTG expectations.

Instead, I estimate average analyst price impact for LTG expectations (c1) and scale by the

baseline β = 0.06 estimate from Table 4 (see Appendix G.9.2 for details).

6.6.8 Nonlinear Estimation

Appendix G.10 estimates Mg without linearizing analyst influence Bn and finds consistent

results. The market-clearing expression (6.6) with the full analyst influence expression from

(6.1) is:

∆p+
a,n = MgBnua,n + ea,n

= Mg
1

x+ An
ua,n + ea,n,
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where x = σ2/τ̄ , is the ratio of analyst signal variance to prior variance. Mg and x

can be estimated via a nonlinear regression of post-announcement price changes ∆p+
a,n

on the idiosyncratic analyst growth expectations shocks ua,n where the coefficient depends

nonlinearly on the number of analysts An. This regression yields Mg = 0.08, which is close

to the baseline Mg = 0.07. Evaluating β = 1/(x + E[An]) using the estimated x and the

average number of analysts E[An] = 10 from Table 2 yields β = 0.04, which is close to the

baseline β = 0.06 estimate.
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CHAPTER 7

EFFECT OF GROWTH EXPECTATIONS ON PRICES:

HETEROGENEITY

This section relaxes the homogeneity assumptions in Chapter 6 and measures the causal

effect of subjective growth expectations on prices (Mg) under investor heterogeneity. I allow

investor heterogeneity in price elasticities (ζi), sensitivities of demand to growth expectations

(κgi ), and analyst influence (βi), which necessitates the use of investor-level holdings data.

As in Chapter 6, I find Mg is small. A 1% rise in investor annual growth expectations raises

price by only 16 basis points, or 84% less than the benchmark 1% price impact. Thus, the

core mechanism in subjective belief models is far weaker empirically than assumed by these

models.

Chapter 7.1 explains the new identification problem introduced by investor heterogeneity

and why holdings data prove necessary to identify Mg. Chapter 7.2 details the empirical

strategy for measuring Mg while allowing for investor heterogeneity. Chapter 7.3 presents

the empirical results.

7.1 New Identification Problem Created by Investor

Heterogeneity

I allow heterogeneous price elasticities (ζi), sensitivities of demand to growth expectations

(κgi ), and analyst influence (βi). I suppress quarter t subscripts because all identification

occurs within a quarter. The high-frequency investor-level demand curve from (6.5) becomes:

∆q+
i,a,n = −ζi∆p+

a,n + κ
g
i∆G

I
i.a,n + ∆εi,a,n

∆GIi,a,n = Bi,n(GAa,n − ḠIi,a,n) + νIi,a,n

Bi,n = βi − β2
i Ãn.
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This heterogeneity yields a slightly different market-clearing expression (analogous to (6.6)):

∆p+
a,n =

(
κ
g
· β·
)
S

ζS︸ ︷︷ ︸
≡c1

ua,n −
(
κ
g
· β2
·
)
S

ζS︸ ︷︷ ︸
≡c2

ua,nÃn + ea,n, (7.1)

where subscript S indicates the ownership-share weighted average. c1 and c2 still represent

analyst price impact for the average stock and the shrinkage rate of analyst price impact.

However, now ratios of c1 and c2 do not identify Mg = κ
g
S/ζs (from (5.13)) or βS .

Moreover, assuming homogeneity in the presence of heterogeneity might bias the estimate

ofMg downward. With heterogeneity, the estimator forMg assuming homogeneity from (6.8)

is:

M̂g =
c21
c2

=

(
κ
g
SβS + CovS(κ

g
i , βi)

)2
κ
g
S

(
β2
S + VS [βi]

)
+ CovS(κ

g
i , β

2
i )

1

ζS
,

where subscript S indicates variances and covariances are being taken in the cross section

of investors under the ownership-share weighted measure. M̂g identifies Mg only if analysts

have the same influence on all investors so VS [βi] = CovS(κ
g
i , βi) = 0. If the covariance

terms are small, then
c21
c2
≈

β2
S

β2
S + VS [βi]

κ
g
S

ζS
≤
κ
g
S

ζS
.

In this case, heterogeneity in analyst influence across investors (i.e., VS [βi] > 0) implies the

estimator for Mg assuming homogeneity (M̂g = c21/c2) underestimates the true parameter.

Thus, to identify Mg under investor heterogeneity, I separately identify κgS and ζS and

take their ratio. To this end, I measure both κ
g
i and ζi at the investor level. Measuring

these quantities requires investor-level holdings data: investor-level demand shifts and price

elasticities cannot be identified from equilibrium price changes alone.

69



7.2 Empirical Strategy

This section explains how I identify Mg accounting for investor heterogeneity. I use holdings

data to identify both the sensitivity of demand to growth expectations κgi and the price

elasticity ζi at the investor level. Mg is the ratio of the ownership-share weighted averages

of these quantities. All of the identification works within a quarter, so I suppress quarter t

subscripts.

To identify κgi and ζi, I use the following low-frequency (quarterly) demand curve:

∆qi,n = −ζi∆pn + κ
g
i∆G

I
i,n + ∆εi,n, (7.2)

Since I observe investor holdings quarterly, all of these objects are quarterly changes (as

opposed to the high-frequency analysis in Chapter 6). ∆qi,n is the quarterly percentage

change in quantity of shares demanded by investor i for stock n. ∆GIi,n is the quarterly

shock to annual investor growth expectations. ∆εi,n accounts for (unobserved) demand

shocks in the quarter.

Identifying κgi and ζi requires two steps. The key identification problem is that both

the low-frequency growth expectations shock (∆GIi,n) and the low-frequency demand shock

(∆εi,n) correlate with the low-frequency price change (∆pn) through market clearing. Thus,

step one (detailed in Chapter 7.2.1) is to isolate the quarterly demand curve shift (∆qi,n +

ζi∆pn) from the equilibrium change in quantity demanded (∆qi,n). Doing so requires

estimates of investor-level price elasticities ζi, which I obtain from the approach of Koijen

and Yogo [2019]. Step two (detailed in Chapter 7.2.2) is then to substitute the Bayesian

learning form of analyst influence (from Chapter 6.2) and the analyst expectations factor

structure (from Chapter 6.3) into the unobserved investor growth expectations shock ∆Gi,n,

as in Chapter 6. Doing so allows identification of κgi (detailed in Chapter 7.2.3). Given κgi

and ζi at the investor level, Mg is the ratio of the ownership-share weighted averages of these
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quantities: Mg = κ
g
S/ζS . Chapter 7.2.4 discusses some estimation details.

7.2.1 Isolating Demand Curve Shifts from Equilibrium Changes in

Quantities

To address the correlation of growth expectations shocks ∆Gi,n with price changes ∆pn,

I measure each investor’s elasticity (ζi) and remove the price term from the equilibrium

quantity change:

∆qi,n + ζi∆pn = κ
g
i∆G

I
i,n + ∆εi,n. (7.3)

The left-hand side (∆qi,n + ζi∆pn) represents investor i’s quarterly demand curve shift: the

equilibrium change in quantity demanded (∆qi,n) minus movement along the demand curve

(−ζi∆pn). The right-hand side decomposes this demand shift into the part due to growth

expectation shocks (κgi∆Gi,n) and the part due to other (unobserved) demand shocks (∆εi,n).

I follow the approach of Koijen and Yogo [2019] to measure investor-specific price

elasticities of demand ζi. Koijen and Yogo [2019] use cross-sectional variation in investment

mandates across investors to obtain exogenous variation in price levels, which allows

identification of price elasticities from portfolio weight levels. Appendix H provides details

of this procedure.

Given price elasticity estimates, the demand shift ∆qi,n + ζi∆pn can be calculated using

observed changes in equilibrium quantities ∆qi,n from investor holdings data and prices ∆pn.

7.2.2 Substitute for Unobserved Investor Growth Expectation Shock

From (6.1), the high-frequency update to investor i’s growth expectations around the release

of analyst a’s report is

∆GIi,a,n = Bi,n(GAa,n − ḠIi,a,n) + νIi,a,n,
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where ḠIi,a,n is investor i’s prior growth expectation immediately before analyst a’s report

release and νIi,a,n captures any other signals from which the investor contemporaneously

learns.

Over the entire quarter, the low-frequency update to i’s growth expectation (∆GIi,n) is

the sum of the high-frequency updates (∆GIi,a,n), plus any updates due to other signals:

∆GIi,n = βi
∑
a∈An

ua,n − β2
i

∑
a∈An

ua,nÃn + eGi,n, (7.4)

where An is the set of analysts who cover stock n. This equation follows from plugging

in the Bayesian learning form of analyst influence from (6.2) and the factor structure for

analyst expectations from (6.3). The structural error term eGi,n comprises four components:

1) other determinants of analyst expectations, 2) investors prior expectations, 3) lagged

analyst expectations, and 4) other signals from which investors learn (see E.2 for details).

7.2.3 Identifying κgi

I identify κgi from regressions of quarterly demand shifts on the idiosyncratic analyst growth

expectations shocks and their interaction with the demeaned number of analysts. All

identification occurs in the cross-section of holdings within an (investor, quarter) pair.

The expressions for the demand curve shift and the substituted investor growth

expectation shock motivate a low-frequency holdings regression. Plugging in the low-

frequency investor expectation update (7.4) into the quarterly demand curve shift (7.3)

yields

∆qi,n + ζi∆pn = b1,i︸︷︷︸
≡κgi βi

Sn − b2,i︸︷︷︸
≡κgi β

2
i

SnÃn + κ
g
i e
G
i,n + ∆εi,n︸ ︷︷ ︸
≡εi,n

. (7.5)

Sn =
∑
a∈An ua,n is the sum of the idiosyncratic analyst growth expectations shocks for

stock n.
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(7.5) identifies two reduced-form coefficients, which jointly identify the sensitivity of

demand to growth expectations κgi :

1. b1,i is average analyst demand impact. A 1% higher analyst expectation raises demand

b1,i% for the average stock. Exogenous variation in analyst beliefs (Sn) identifies b1,i.

2. b2,i is the shrinkage rate of analyst demand impact as the number of analysts grows

due to the corresponding shrinkage in analyst influence. An additional analyst covering

stock n reduces analyst demand impact by b2,i% (in absolute terms). The interaction

of Sn with cross-sectional variation in the number of analysts identifies b2,i.

b1,i and b2,i jointly identify βi and κ
g
i :

βi =
b2,i
b1,i

κ
g
i =

b21,i
b2,i

.

Thus, a regression of the quarterly demand shift (∆qi,n + ζi∆pn) on the sum of

idiosyncratic analyst growth expectations shocks (Sn) and its interaction with the

demeaned number of analysts (Ãn) identifies both κ
g
i and βi. The moment conditions for

identifying κgi and βi in regression (7.5) are

E
[
Snεi,n

]
= 0 (7.6)

E
[
SnÃnεi,n

]
= 0 (7.7)

I have two instruments (Sn and SnÃn), two moment conditions ((7.6) and (7.7)), and two

structural parameters to identify (κgi and βi). The identifying assumption is:

Assumption 2 (Identifying Assumption for Holdings Regression). Any common variation

between analyst growth expectation updates (∆GAa,n) and 1) investor prior expectations, 2)
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other contemporaneous signals at low and high frequencies, and 3) other demand shocks, is

spanned by stock-quarter characteristics.

If Assumption 2 holds, the latent factor model removes all common variation between

∆GAa,n and both εi,n and Ãn in (7.5). In this case, both moment conditions (7.6) and (7.7)

hold.

The investor-level κgi and ζi identify the causal effect of investor annual growth

expectations on prices Mg = κ
g
S/ζS . I also calculate the ownership-share weighted average

analyst influence: βS .

7.2.4 Estimation Details

Although (7.5) identifies κgi and βi within an (investor, quarter) pair, the regression lacks

power since the holdings data are noisy. To improve precision, I run one constrained

regression pooled across all investors and quarters1:

∆q̂i,n,t = b1,iSn,t − b2,iSn,t · Ãn,t−1 +Xn,t + FEi,t + ei,n,t (7.8)

s.t. ∆q̂i,n,t = ∆qi,n,t + ζi∆pn

0 ≤ b2,i ≤ b1,i (enforces 0 ≤ βi ≤ 1) (7.9)

b1,S = c1ζS (definition of c1) (7.10)

b2,S = c2ζS (definition of c2), (7.11)

1. To raise the volatility of Sn,t and gain more power, I use the sum of idiosyncratic shocks to the 5
largest institutions, ranked by number of expectations reported in the quarter, instead of the sum of shocks
for all institutions in An,t. All results are robust to using other numbers of institutions. See Appendix I.2
for details.
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where subscript S denotes ownership-share weighted averages.2 Xn,t represents one-quarter

lagged stock characteristics motivated by Fama and French [2015] and used by Koijen and

Yogo [2019] (log book equity, profitability, investment, market beta, and the dividend-to-

book equity ratio). These controls absorb residual variation and increase power. FEi,t is an

investor-quarter fixed effect.3

The three constraints further improve estimation efficiency. Constraint (7.9) enforces

0 ≤ βi ≤ 1, as implied by the definition of βi from Bayesian learning (6.2) (since b1,i = κ
g
i βi

and b2,i = κ
g
i β

2
i ). Constraints (7.10) and (7.11) enforce market clearing. From the market

clearing expression (7.1) in Chapter 7.1, the analyst price impact coefficients c1 and c2 have

the following relationship with the the reduced-form analyst demand impact coefficients b1,i

and b2,i:

c1 =
b1,S
ζS

c2 =
b2,S
ζS

.

To further improve precision, I apply an L2 penalty to b1,i and b2,i to shrink these

coefficients toward b1,S = c1ζS and b2,S = c2ζS , respectively. I choose the regularization

parameter through cross validation to allow for the maximum amount of heterogeneity in

2. I use the average AUM-share distribution over investors (averaging across quarters) to proxy for the
ownership-share distribution for the average stock in the average quarter.

3. Empirically I use the following calculation of the percentage change in quantity of shares held

∆qi,n,t = max

{
−1,

Q̂i,n,t − Q̂i,n,t−1

1
2 (Q̂i,n,t + Q̂i,n,t−1)

}

where Q̂i,n,t−1 = Hi,n,t−1 is the dollar holdings of investor i in stock n in the previous quarter t − 1, and
Q̂i,n,t = Hi,n,t/(1 + RXn,t−1→t) is the dollar holdings of investor i in stock n in this quarter t adjusted
for the ex-dividend return (i.e., the price change) since last period RXn,t−1→t. The denominator maps the
expression into the range [−2, 2]. Since a holdings change of less than −100% has no economic meaning, I
censor changes at −100%. The motivation for this calculation is that the 13F filings available from Thomson
Reuters through WRDS contain some measurement error (i.e., data entry errors) in the number of shares
(e.g., failure to adjust for stock splits). Using dollar holdings circumvents these issues. Adjusting the
denominator essentially winsorizes large positive percentage changes.
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Table 5: Estimation Results Allowing for Investor Heterogeneity

βS κ
g
S Mg

Point Estimate 0.0982*** 0.062*** 0.163***
95% Confidence Interval (0.086, 0.121) (0.043, 0.245) (0.114, 0.634)
* p<0.10, ** p<0.05, *** p<0.01

This table reports the estimated κgS , βS , and Mg from (7.8). Point estimates are bootstrapped
sampling distribution medians. Confidence intervals are bootstrapped (see Appendix I.3 for details).
All estimates represent the marginal effect in percentage points of a 1 percentage point increase in
growth expectations (analyst expectations for βS and investor expectations for κgS and Mg). The
time period is 1984-01:2021-12.

b1,i and b2,i that the data support.4

Appendix I provides further estimation details.

7.3 Empirical Results

This section reports estimates of the causal effect of subjective growth expectations on prices

(Mg) allowing for investor heterogeneity. Mg is small, an order of magnitude smaller than

the benchmarkMg = 1. Table 2 reports summary statistics for the data used in this analysis.

Table 5 displays the estimated κ
g
S , βS , and Mg from regression (7.8). While these

results differ from those estimated assuming investor homogeneity in Table 4, the economic

conclusions drawn from both sets of results are the same.

The ownership-share weighted average analyst influence is βS = 0.10, which implies a

1% higher analyst-reported annual growth expectation raises the average investor’s growth

expectation by 10 basis points. While this estimate proves larger than the β = 0.06 estimate

under investor homogeneity from Table 4, both sets of estimates imply that investors do

learn from analysts.

The weighted average sensitivity of demand to growth expectations is κgS = 0.06, which

4. Koijen, Richmond and Yogo [2020] follow a similar regularization approach in a different setting.
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Figure 8: Comparison of κ Implied by κgS to Previous Literature

Comparison of the sensitivity of demand to expected return (κ) implied by the estimate κgS = 0.06 to
values found in previous work (see Appendix J for details, including discussions of the interpretation
of the results from Bacchetta, Tieche and Van Wincoop [2020] and Dahlquist and Ibert [2021]).

means a 1% increase in annual investor growth expectation raises the average investor’s

quantity demanded by 6 basis points. Figure 8 illustrates that this sensitivity of demand

to growth expectations is quantitatively consistent with the small sensitivities of demand to

expected returns documented in previous work, including work using matched expectations

and holdings data. Recall from Proposition 1 in Chapter 5.4 the structural form of κg = κδ,

where κ is the sensitivity of demand to expected return and δ is the average dividend-

price ratio. Calibrating average quarterly dividend-price ratio δ = 0.01 to match the

historical average for the aggregate equity market implies κ = 6, which accords with previous

estimates.5

The causal effect of subjective growth expectations on prices is Mg = 0.16, which means

5. Previous work usually regresses portfolio weights (θ) on expected returns (µ) and so measures ∂θ/∂µ.
However, κ = ∂ log θ/∂µ = ∂θ/∂µ · 1/θ in (5.1). Appendix J details the assumptions about the average
portfolio weights I use to convert estimates of ∂θ/∂µ to estimates of κ = ∂ log θ/∂µ for each of the papers
in Figure 8.
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a 1% increase in investors’ annual growth expectations raises price by 16 basis points. While

this estimate proves larger than that in Table 4 assuming investor homogeneity (Mg = 0.07),

Mg = 0.16 is still far smaller — 84% smaller — than the benchmark value of Mg = 1 from

Chapter 5.5. Thus, these results support the conclusion that the causal effect of subjective

growth expectations on prices is empirically far smaller than assumed in subjective belief

models.
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CHAPTER 8

CONCLUSION

Subjective belief models assume a large causal effect of subjective growth expectations on

prices and use the strong correlation of analyst growth expectations with prices as evidence

of this causal effect. However, reverse causality contaminates this interpretation of the

correlation of growth expectations with prices: prices cause growth expectations. A 1%

rise in price raises annual growth expectations 41 basis points. The true causal effect of

subjective growth expectations on prices is an order of magnitude smaller than assumed in

subjective belief models. A 1% rise in annual investor growth expectations raises price by

60% to 90% less than the benchmark of 1%. Hence, the core mechanism in subjective belief

models is far weaker empirically than assumed by these models. In this sense, subjective

growth expectations matter far less for asset prices than standard models suggest.

This small causal effect of subjective growth expectations on prices arises due to the

low sensitivity of demand to expected return and is consistent with inelastic demand. A

low sensitivity of demand to expected return implies both small demand curve shifts due

to growth expectations shocks, and inelastic demand. These small demand curve shifts due

to growth expectations shocks have only a small impact on price, even though demand is

inelastic.

These results pose significant implications for asset pricing and macro-finance. The small

causal effect of subjective growth expectations on prices raises the possibility that biased

beliefs have limited impact on asset prices and the real economy. Yet this small causal

effect proves consistent with inelastic demand, which amplifies the importance of other

demand shocks (e.g., shocks to risk aversion, intermediary leverage, higher moment beliefs,

nonpecuniary preferences, etc.). Thus, while my empirical results raise the possibility

that subjective growth expectations cannot quantitatively resolve asset pricing and macro-

finance puzzles, they open the door to other channels. If biased growth expectations
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cannot quantitatively explain excess price volatility, perhaps inelasticity-amplified shocks

to higher moment beliefs or nonpecuniary preferences can. If extrapolative expectations

about fundamentals cannot quantitatively explain stylized facts about credit cycles, perhaps

acknowledging the inelastic demand of constrained intermediaries can. These possibilities,

and others like them, represent promising directions for future research.

These results also raise important questions about how investor beliefs about

fundamentals are incorporated into prices. The empirical analysis in this paper quantifies

the standard mechanism through which subjective growth expectations distort asset prices

and finds that it is far weaker empirically than assumed in standard models. At horizons of

up to one quarter, these beliefs have a much smaller impact on price than assumed in such

models. Yet there could be other mechanisms that these models and the current analysis

do not address. For example, investors may face uncertainty about growth expectations or

adjustment costs that weaken the short-run sensitivity of demand to growth expectations.

However, at longer horizons uncertainty may abate or adjustment costs may have less bite.

Either of these mechanisms would imply a larger effect of growth expectations on asset

demand, and so prices, at longer horizons. My empirical results motivate augmentation of

existing models with these alternative mechanisms. The empirical methodology developed

in this paper offers a general framework for using data on beliefs, prices, and holdings to

tackle these possibilities and shed new light on the intersection of subjective beliefs, asset

demand, and asset prices.
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APPENDIX A

REVERSE CAUSALITY SUPPLEMENTS

A.1 Sufficiency of Exogenous Shares

Proposition 2 proves that cross-sectional exogeneity of mutual fund ownership shares is

sufficient for the FIT instrument to be cross-sectionally exogenous within each quarter and

analyst.

Proposition 3 proves that, under the factor structure described in Chapter 4.1.2, the FIT

instrument is conditionally exogenous after controlling for stock characteristics interacted

with quarter fixed effects.

Proposition 2 (Sufficiency of Exogenous Ownership Shares). If E
[
Si,n,t−2νa,n,t

]︸ ︷︷ ︸
Expectation across n

=

0,∀a, i, t, then E
[
FITn,tνa,n,t

]︸ ︷︷ ︸
Expectation across n

= 0,∀a, t.

Proof. This proof requires no assumptions about the time series properties of flows fi,t. In

particular, flows may correlate with analyst belief shocks in the time series for a given fund,

stock, and analyst: E
[
fi,tνa,n,t

]︸ ︷︷ ︸
Expectation across t

6= 0,∀a, i, n.

∀a, t : E
[
FITn,tνa,n,t

]︸ ︷︷ ︸
Expectation across n

=
∑
i

E
[
Si,n,t−2fi,tνa,n,t

]︸ ︷︷ ︸
Expectation across n

=
∑
i

fi,t E
[
Si,n,t−2νa,n,t

]︸ ︷︷ ︸
Expectation across n

= 0,

where the last equality follows by the assumption of exogenous shares: E
[
Si,n,t−2νa,n,t

]︸ ︷︷ ︸
Expectation across n

=

0,∀a, i, t.
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Proposition 3. Let ˇFITn,t and ∆ν̌a,n,t be the residuals from regressions of FITn,t and νa,n,t

on stock characteristics (Xn) interacted with time fixed effects:

FITn,t = β1,t + β
′
2,tXn + ˇFITn,t

νa,n,t = β3,t + β
′
4,tXn + ν̌a,n,t.

Let Si,n,t−2 = c
′
iXn + S̃i,n,t−2 and νa,n,t = λ

′
a,nηt + ν̃a,n,t. Assume S̃i,n,t−2 is cross-

sectionally uncorrelated across stocks n with λa,n,Xn, and ν̃a,n,t within each quarter t and

analyst a. Then E
[

ˇFITn,tν̌a,n,t
]︸ ︷︷ ︸ = 0

Expectation across n

,∀a, t.

Proof. This proof requires no assumptions about the time series properties of flows fi,t. In

particular, flows may correlate with analyst belief shocks in the time series for a given fund,

stock, and analyst: E
[
fi,tνa,n,t

]︸ ︷︷ ︸
Expectation across t

6= 0,∀a, i, n.

Given the factor structure in ownership shares, the FIT instrument is:

FITn,t =
∑
i

Si,n,t−2fi,t =

(∑
i

cifi,t

)′
︸ ︷︷ ︸

≡β′2,t

Xn +
∑
i

S̃i,n,t−2fi,t︸ ︷︷ ︸
≡ ˇFITn,t

. (A.1)

Given the factor structure in analyst belief shocks, we have:

νa,n,t = λ
′
a,n︸︷︷︸

≡(ΓXn+λ̌a,n)
′

ηt + ν̃a,n,t

= η
′
tΓ︸︷︷︸

≡β′4,t

Xn +
(
λa,n − ΓXn

)′
ηt + ν̃a,n,t︸ ︷︷ ︸

≡ν̌a,n,t

.

Here λa,n ≡ ΓXn + λ̌a,n just captures the cross-sectional correlation between the analyst-

stock loadings on common factors ηt (λa,n) and stock characteristics (Xn).
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So we have

∀a, t : E
[

ˇFITn,tν̌a,n,t
]︸ ︷︷ ︸

Expectation across n

=
∑
i

E
[
S̃i,n,t−2fi,tν̌a,n,t

]
︸ ︷︷ ︸
Expectation across n

=
∑
i

E
[
S̃i,n,t−2ν̌a,n,t

]
︸ ︷︷ ︸
Expectation across n

fi,t

=
∑
i

E
[
S̃i,n,t−2

(
λa,n − ΓXn

)]
︸ ︷︷ ︸

Expectation across n

ηtfi,t + E
[
S̃i,n,t−2ν̃a,n,t

]
︸ ︷︷ ︸
Expectation across n

fi,t

= 0.

The fourth equation follows since S̃i,n,t−2 is assumed to be cross-sectionally uncorrelated

with λa,n,Xn, and ν̃a,n,t.

A.2 Sufficiency of Exogenous Flows

Proposition 4 proves that, under the factor structure described in Chapter 4.3.2, the FIT

constructed from idiosyncratic flow shocks is exogenous in the time series.

Proposition 4. Let fi,t = b
′
iηt+f̃i,t, Si,n,t−2 = c

′
iXn+S̃i,n,t−2, and νa,n,t = λ

′
a,nηt+ν̃a,n,t.

Assume E
[
S̃i,n,t−2f̃i,tνa,n,t

]
︸ ︷︷ ︸

Expectation across t

= 0,∀i, a, n. Then E
[
FITRESID

n,t νa,n,t

]
︸ ︷︷ ︸ = 0

Expectation across t

,∀a, n.
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Proof.

∀a, n : E
[
FITRESID

n,t νa,n,t

]
︸ ︷︷ ︸
Expectation across t

=
∑
i

E
[
Si,n,t−2f̃i,tνa,n,t

]
︸ ︷︷ ︸
Expectation across t

=
∑
i

E
[(
c
′
iXn + S̃i,n,t−2

)
f̃i,tνa,n,t

]
︸ ︷︷ ︸

Expectation across t

=
∑
i

c
′
iXn E

[
f̃i,tνa,n,t

]
︸ ︷︷ ︸

Expectation across t

=0,

where the third equation follows from the assumption that E
[
S̃i,n,t−2f̃i,tνa,n,t

]
︸ ︷︷ ︸
Expectation across t

= 0,∀i, a, n.

A.3 Interpretation of α if Analysts Update Growth Expectations

to Justify Prices

From the log price-dividend approximation of Campbell and Shiller [1988]

log(Pt/Dt) =
k

1− φ
+
∑
j≥0

φjEt[Gt+1+j ]−
∑
j≥0

φjEt[rt+1+j ]

where φ = 1/(1 + exp[Et[log(Dt/Pt]]) and k = − ln(φ)− (1− φ) ln(1/φ− 1).

Assume analysts believe annual growth has the following dynamics

Gt+1 = xt + εGt+1

xt+1 = x̄+ ρ(xt − x̄) + εxt+1
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and that analysts update growth expectations to exactly match prices (i.e. they believe in

constant discount rates and so view all changes in log(Pt/Dt) as coming from Et[Gt+1+j ]).

In this case, analysts believe

log(Pt/Dt) =
k

1− φ
+

φ

1− φρ︸ ︷︷ ︸
≡1/α

xt −R,

where R =
∑
j≥0 φ

jEt[rt+1+j ]. So

α =
1

φ
− ρ.

Van Binsbergen and Koijen [2010] estimate φ = 0.969 at the annual frequency. Thus,

α = 0.41 implies a perceived persistence in annual growth expectations of ρ = 0.62.
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A.4 Supplements to Baseline Specification

Figure A1: Binscatter Plots for First Stage and Reduced Form of Baseline Specification
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + b1FITn,t +Xn,t + e2,n,t.

The first stage regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading
instrument (FITn,t). The reduced form regresses quarterly changes in annual growth expectations
(∆Ga,n,t) on the flow-induced trading instrument (FITn,t). Xn,t includes stock and quarter fixed
effects as well as the following stock characteristics: log book equity, profitability, investment, market
beta, and the dividend to book equity ratio. The time period is 1984-01:2021-12.
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Figure A2: Alternative Specifications Using Standard FIT Measure

This figure displays results for different specifications of the following two-stage least squares
regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t.

The first stage regresses quarterly percent price changes (∆pa,n,t) on the flow-induced trading
instrument (FITn,t). The second stage regresses quarterly changes in annual growth expectations
(∆Ga,n,t) on the instrumented price change (∆p̂a,n,t). Stock characteristics are log book equity,
profitability, investment, market beta, and the dividend to book equity ratio. The time period is
1984-01:2021-12.
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Table A1: Causal Effect of Prices on Growth Expectations — Lagged Price Changes

(1) (2) (3) (4) (5) (6) (7) (8)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

∆pa,n,t 0.673*** 0.659*** 0.674** 0.666** 0.722** 0.716** 0.809** 0.800**
(0.238) (0.237) (0.282) (0.281) (0.348) (0.346) (0.378) (0.375)

∆pa,n,t−1 -0.304 -0.304 -0.216 -0.228 -0.241 -0.249 -0.285 -0.298
(0.185) (0.188) (0.272) (0.271) (0.340) (0.339) (0.406) (0.404)

∆pa,n,t−2 -0.150 -0.142 -0.222 -0.223 -0.167 -0.155
(0.289) (0.292) (0.454) (0.451) (0.531) (0.524)

∆pa,n,t−3 0.221 0.238 0.158 0.146
(0.391) (0.394) (0.583) (0.577)

∆pa,n,t−4 0.148 0.191
(0.376) (0.375)

Stock Characteristics Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y
Stock FE Y Y Y Y Y Y Y Y
Quarter-Clustered SE Y Y Y Y Y Y Y Y
N 893672 893672 646570 646570 507873 507873 406493 406493
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆Ga,n,t = b0 +

h∑
s=0

αs∆p̂a,n,t−s +Xn,t + e2,n,t,

where each ∆p̂a,n,t−s is instrumented with FITn,t, . . . ,FITn,t−h. The time period is 1984-
01:2021-12.
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Table A2: Causal Effect of Prices on Growth Expectations — Further Lagged Ownership
Shares

(1) (2) (3)
t− 2 Shares t− 3 Shares t− 4 Shares

FITn,t 2.449*** 2.117*** 1.545***
(0.620) (0.640) (0.584)

Quarter FE Y Y Y
Stock FE Y Y Y
Quarter-Clustered SE Y Y Y
N 1311394 1311394 1311394
F 15.60 10.94 7.000
R-Squared 0.226 0.225 0.224
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

(1) (2) (3)
t− 2 Shares t− 3 Shares t− 4 Shares

∆pa,n,t 0.417** 0.436** 0.414*
(0.169) (0.187) (0.247)

Quarter FE Y Y Y
Stock FE Y Y Y
Quarter-Clustered SE Y Y Y
N 1311394 1311394 1311394
F 6.066 5.438 2.812
R-Squared 0.0124 0.0117 0.0125
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t,

where FITn,t is constructed from different lags s of the ownership shares:

FITn,t =

∑
fund i SharesHeld i,n,t−s · Flow i,t

SharesOutstandingn,t−s
.

The first stage (top panel) regresses percent price changes between analyst reports (∆pa,n,t) on
the flow-induced trading instrument (FITn,t). The second stage (bottom panel) regresses quarterly
changes in annual growth expectations (∆Ga,n,t) on the instrumented price change (∆p̂a,n,t). The
time period is 1984-01:2021-12.
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Figure A3: Causal Effect of Prices on Growth Expectations — Idiosyncratic Flow Shocks

This figure displays results for the following two-stage least squares regression:

∆pa,n,t = a0 + a1FITRESID
n,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t,

where FITRESID
n,t is constructed from the idiosyncratic flow shocks f̃i,t:

FITRESID
n,t =

∑
fund i

SharesHeld i,n,t−2

SharesOutstandingn,t−2

f̃i,t.

The idiosyncratic shocks f̃i,t are extracted as the residuals from the following latent factor model
for flows

fi,t = b
′
iηt + b0,i + η0,t + f̃i,t.

ηt represent common factors that affect the flows of all funds. I fit this latent factor model using
singular value decomposition (analogous to PCA).
The first stage (top panel) regresses percent price changes between analyst reports (∆pa,n,t) on the
flow-induced trading instrument (FITRESID

n,t ). The second stage (bottom panel) regresses quarterly
changes in annual growth expectations (∆Ga,n,t) on the instrumented price change (∆p̂a,n,t). The
horizontal axis tracks the number of common factors removed from fund flows (from zero to ten)
when estimating the idiosyncratic flow shocks f̃i,t used to construct FITRESID

n,t . The time period is
1984-01:2021-12.
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A.5 LTG Results

I replicate the baseline analysis using the I/B/E/S long-term earnings growth (LTG)

expectations used by Bordalo et al. [2019, 2022] and Nagel and Xu [2021]. The LTG

expectations reflect analysts’ average annual EPS growth expectations for the next 3 − 5

years.

Using the standard FIT instrument discussed in Chapter 4.1, I run the following two-stage

least squares regression:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆LTGa,n,t = b0 + α∆p̂a,n,t +Xn,t + e2,n,t, (A.2)

where ∆LTGa,n,t is the quarter-over-quarter change in LTG expectation reported by analyst

institution a for stock n in quarter t and ∆pa,n,t is the price change that occurs between these

two reports in quarters t− 1 and t. The first stage regresses price changes between analyst

report releases (∆pa,n,t) on the quarterly flow-induced trading instrument (FITn,t). The

second stage regresses the change in LTG expectations (∆LTGa,n,t) on the instrumented

price change (∆p̂a,n,t). Xn,t represents controls including stock and quarter fixed effects

as well as one-quarter lagged stock characteristics motivated by Fama and French [2015]

(log book equity, profitability, investment, market beta, and the ratio of dividend-to-book

equity).1

Table A3 displays the results of this regression. The OLS regressions of LTG

expectations on prices in columns 1 and 2 display a strong correlation between these objects,

as documented in previous work (Bordalo et al. [2019, 2022], Nagel and Xu [2021]). The

1. Appendix Figure A4 displays residualized binscatter plots for the first-stage and reduced-form
regressions in (A.2).
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first stage regressions of price changes on the FIT instrument in columns 3 and 4 are strong

with F -statistics of over 10 (partial F -statistics of 17 and 12, respectively). The reduced

form regressions of LTG expectations on the FIT instrument in columns 5 and 6 are also

significant. The second-stage estimates of α in column 7 and 8 reveal a statistically and

economically significant causal effect of prices on LTG expectations: a 1% increase in price

raises LTG expectations by 16 basis points. Thus, the reverse causality issue raised in

Chapter 4 exists in the LTG expectations data as well.
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Figure A4: Binscatter Plots for First Stage and Reduced Form of LTG Specification
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITn,t +Xn,t + e1,n,t

∆LTGa,n,t = b0 + b1FITn,t +Xn,t + e2,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the flow-induced
trading instrument (FITn,t). The reduced form regresses quarterly changes in LTG expectations
(∆LTGa,n,t) on the flow-induced trading instrument (FITn,t). Xn,t includes stock-quarter, analyst-
quarter, and stock-analyst fixed effects. The time period is 1982-04:2021-12.
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A.6 Exploiting Within Stock-Quarter Variation

I construct an analyst-stock-quarter specific FIT measure, as opposed to the standard stock-

quarter specific FIT measure in Chapter 4.1. Multiple analyst institutions issue growth

expectations for each stock in each quarter and generally not on the same day. Thus, the

timing of analyst report releases creates variation across analysts in exposure to the stock-

quarter FIT instrument.

Consider the timing illustrated in Figure A5. Analyst institutions a and b both report

expectations for stock n in quarters t − 1 and t. Analyst institution b reports later than a

in both quarters. Thus, b’s inter-announcement price change (∆pb,n,t) is more exposed to

FITn,t and less exposed to FITn,t−1 than that of analyst institution a. This variation in

analyst report timing allows us to construct an analyst-stock-quarter specific FIT measure2:

FITa,n,t =
# days elapsed in t− 1 since Ga,n,t−1

92︸ ︷︷ ︸
≡w1

a,n,t

·FITn,t−1

+
# days elapsed in t until Ga,n,t

92︸ ︷︷ ︸
≡w2

a,n,t

·FITn,t.

This measure allows exploitation of within stock-quarter variation. For example, assume

for a fixed stock n and quarter t FITn,t > FITn,t−1, i.e. there is more flow-induced price

2. In this section I use a different construction for FITn,t than in Chapter 4.1:

FITn,t =

∑
fund i SharesHeld n,i,t−1 · Flow i,t

SharesOutstandingn,t−1

.

Here I use the ownership share weights from quarter t− 1

Si,n,t−1 =
SharesHeld n,i,t−1

SharesOutstandingn,t−1

.

instead of those from quarter t−2 in 4.1. Doing so improves power (although using Si,n,t−2 also yields similar
results to those in Table A4). Using Si,n,t−1 in Chapter 4.1 would potentially violate the exclusion restriction
there because Si,n,t−1 (measured at the end of quarter t− 1) occurs in the middle of the growth expectation
update from quarter t−1 to quarter t. In this section, however, the endogeneity of Si,n,t−1 is not a problem:
the identifying assumption is now En,t [wa,n,t−1νa,n,t] = En,t [wa,n,tνa,n,t] = 0, not En,t [Si,n,t−1νa,n,t] = 0.
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Figure A5: Within Stock-Quarter Timeline

Ga,n,t−1 Ga,n,tGb,n,t−1 Gb,n,t

∆pa,n,t

∆pb,n,t

FITn,t−1 FITn,t

Illustration of staggered timing of analyst expectation releases for two analysts a and b for
the same stock n and quarter t.

pressure in quarter t than in t− 1. Analyst institutions that report later in quarter t (e.g. b

in Figure A5) are exposed to more flow-induced price pressure than those that report earlier.

This within stock-quarter variation across analysts allows for cleaner identification of the

causal effect of prices on growth expectations α.

Returning to the system of simultaneous equations (4.1) and (4.2), the unconditional

exclusion restriction ( E
[
FITa,n,tνa,n,t

]
= 0) is satisfied if E

[
FITa,n,tνa,n,t

]
= 0,∀n, t.

Following the logic of shift-share instruments, the identifying variation is within stock-quarter

variation in the timing weights w1
a,n,t and w

2
a,n,t. Thus, the identifying assumption is:

E
[
w1
a,n,tνa,n,t

]
= E

[
w2
a,n,tνa,n,t

]
= 0,∀n, t.

That is, the timing of analyst report releases is not correlated with non-price determinants

of growth expectations. In other words, analyst institutions who report later than average

for stock n in quarter t are not more (or less) bullish than average on stock n. To give a

concrete example, Goldman Sachs reporting expectations for Apple before J.P. Morgan does

must not correlate with the non-price determinants of Goldman Sachs’s growth expectation

update for Apple relative to J.P. Morgan. If analyst institutions pick announcement dates
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ex ante (i.e. in the previous quarter) and do not deviate from that preset schedule based on

new information that affects growth expectations, then this assumption is satisfied.

To assuage any concerns about the potential endogeneity of analyst announcement

timing, Appendix A.6.1 conducts a version of this within stock-quarter identification

strategy that exploits only predictable variation in analyst announcement timing based on

ex-ante information. In this case, the identifying assumption is that the historical tendency

of Goldman Sachs to report expectations for Apple before J.P. Morgan does not predict

Goldman Sachs’s growth expectation shock (ν) for Apple relative to J.P. Morgan in quarter

t. This alternative strategy also finds significant α estimates.

Table A4 displays the results of the following two-stage least-squares regression:

∆pa,n,t = a0 + a1FITa,n,t +Xa,n,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xa,n,t + e2,n,t,

whereXa,n,t represents controls, including stock-quarter and analyst institution-quarter fixed

effects. The first stage regressions of price changes on the FIT instrument in columns 3 and

4 are strong with F -statistics of over 24 (partial F -statistic of 24 for both). The reduced

form regression of growth expectations on the FIT instrument in columns 5 and 6 are also

strong. The second-stage estimates of α in columns 7 and 8 are quantitatively similar to

that in Table 1: a 1% increase in price raises annual growth expectations by 30 − 31 basis

points instead of 41 basis points in Table 1. Note that this within stock-quarter specification

has more power than the within quarter specification (the second-stage coefficient standard

errors are 0.06 and 0.14, respectively) since the stock-quarter and analyst institution-quarter

fixed effects here soak up much more residual variation than the stock and quarter fixed

effects in Table 1. Figure A6 displays residualized binscatter plots for the first-stage and

reduced-form regressions.
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The quantitative similarity of the α estimates from the within-quarter specification in

Table 1 and the within-stock quarter specification in Table A4 assuage concerns about the

potential threats to identification laid out in Chapter 4.3.

110



Ta
bl
e
A
4:

C
au

sa
lE

ffe
ct

of
P
ri
ce
s
on

G
ro
w
th

E
xp

ec
ta
ti
on

s
—

W
it
hi
n
St
oc
k-
Q
ua

rt
er

Sp
ec
ifi
ca
ti
on

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

O
LS

O
LS

F
ir
st

St
ag

e
F
ir
st

St
ag

e
R
ed
uc
ed

Fo
rm

R
ed
uc
ed

Fo
rm

2S
LS

2S
LS

∆
p a
,n
,t

0.
36

5*
**

0.
15

7*
**

0.
31

3*
**

0.
29

9*
**

(0
.0
47

5)
(0
.0
10

5)
(0
.0
63

1)
(0
.0
61

7)

F
IT
a
,n
,t

5.
12

1*
**

4.
99

9*
**

1.
60

3*
**

1.
49
6*

**
(1
.0
26

)
(1
.0
02

)
(0
.3
85

)
(0
.3
83

)
St
oc
k
x
Q
ua

rt
er

F
E

Y
Y

Y
Y

Y
Y

Y
A
na

ly
st

In
st
it
.
x
Q
ua

rt
er

F
E

Y
Y

Y
Y

Q
ua

rt
er
-C

lu
st
er
ed

SE
Y

Y
Y

Y
Y

Y
Y

Y
N

13
11

39
4

12
81

54
6

13
11

39
4

13
11

39
4

13
11

39
4

13
11

39
4

13
11

39
4

13
11

39
4

F
58

.9
7

22
4.
1

24
.9
0

24
.9
0

17
.3
8

15
.2
9

24
.5
9

23
.4
9

R
-S
qu

ar
ed

0.
02

45
0.
84

1
0.
84

8
0.
85

4
0.
82

1
0.
82

7
St
an

da
rd

er
ro
rs

in
pa

re
nt
he
se
s

*
p<

0.
10
,*

*
p<

0.
05
,*

**
p<

0.
01

T
hi
s
ta
bl
e
di
sp
la
ys

re
su
lt
s
fo
r
th
e
fo
llo

w
in
g
tw

o-
st
ag

e
le
as
t
sq
ua

re
s
re
gr
es
si
on

:

∆
p a
,n
,t

=
a

0
+
a

1
F

IT
a
,n
,t

+
X
n
,t

+
e 1
,n
,t

∆
G
a
,n
,t

=
b 0

+
α

∆
p̂ a
,n
,t

+
X
n
,t

+
e 2
,n
,t
.

T
he

fir
st

st
ag

e
re
gr
es
se
s
pe

rc
en
tp

ri
ce

ch
an

ge
s
be

tw
ee
n
an

al
ys
tr

ep
or
ts

(∆
p
a
,n
,t
)o

n
th
e
an

al
ys
t-
sp
ec
ifi
c
flo

w
-in

du
ce
d
tr
ad

in
g
in
st
ru
m
en
t

(F
IT

a
,n
,t
).

T
he

se
co
nd

st
ag

e
re
gr
es
se
s
qu

ar
te
rl
y
ch
an

ge
s
in

an
nu

al
gr
ow

th
ex
pe

ct
at
io
ns

(∆
G
a
,n
,t
)
on

th
e
in
st
ru
m
en
te
d
pr
ic
e
ch
an

ge
(∆
p̂
a
,n
,t
).

T
he

ti
m
e
pe

ri
od

is
19

84
-0
1:
20

21
-1
2.

111



Figure A6: Binscatter Plots for First Stage and Reduced Form of Within Stock-Quarter
Specification
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FITa,n,t +Xn,t + e1,n,t

∆Ga,n,t = b0 + b1FITa,n,t +Xn,t + e2,n,t.

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the analyst-
specific flow-induced trading instrument (FITa,n,t). The reduced form regresses quarterly changes
in annual growth expectations (∆Ga,n,t) on the analyst-specific flow-induced trading instrument
(FITa,n,t). Xn,t includes stock-quarter and analyst-quarter fixed effects. The time period is 1984-
01:2021-12.
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A.6.1 Exploiting Only Ex-Ante Predictable Variation in Analyst Timing

To assuage any concerns about a violation of the sufficient condition for exclusion

E
[
w1
a,n,tνa,n,t

]
= E

[
w2
a,n,tνa,n,t

]
= 0,∀a, n

due to the endogeneity of analyst announcement timing, I consider a robustness check

using only predictable variation in the timing weights w1
a,n,t and w2

a,n,t based on ex-ante

information. This strategy also yields significant α estimates.

The predicted timing weights based on ex-ante information do not correlate with quarter-

t expectations updates. When using the realized timing in the previous section, one may

be concerned both analyst timing and belief shocks (ν) both respond to stock-specific news

in quarter t. For example, J.P. Morgan may receive positive private information about

Apple that both raises its growth expectations and induces it to report later (than other

analyst institutions) in this quarter. This concern does not arise when using the predicted

timing. To undermine the identification strategy with predicted timing, one must believe

that the historical (prior to quarter t− 1) order in which analyst institutions report growth

expectations for stock n (i.e. the within stock-quarter variation in the timing weights)

correlates with the growth expectations shocks in the current quarter (t). This concern

proves implausible. For example, J.P. Morgan historically reporting growth expectations for

Apple after Goldman Sachs reports implies nothing about these institutions update their

expectations about Apple in the current quarter. If good news raised J.P. Morgan’s growth

expectations in quarter t−2 and induced it to report later than Goldman Sachs, the predicted

timing weights for quarter t will depend on news from quarter t− 2. However, by definition

news is uncorrelated over time (i.e. the nature of shocks is that they are unpredictable).

Thus, the predicted weights are uncorrelated with news in quarter t that impacts growth

expectations (νa,n,t) in quarter t.
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Due to the difficulty of predicting within stock-quarter variation in the timing weights

w1
a,n,t and w

2
a,n,t, I use the following three sets of predictors:

1. The lagged weights between quarter t− 2 and quarter t− s for s ∈ [2, 16]:

w
1,s,lag
a,n,t = w1

a,n,t−1−s

w̄
2,s,lag
a,n,t = w2

a,n,t−1−s

2. Weights constructed based on the previous quarter’s announcement date and the lagged

gap between quarterly announcement dates between quarter t − 2 and quarter t − s

for s ∈ [2, 16]. Let da,n,t be the analyst report date for analyst institution a and

stock n in quarter t. Let ga,n,t = da,n,t − da,n,t−1 be the gap in days between analyst

report date for analyst institution a and stock n in consecutive quarters. The predicted

announcement days in quarters t− 1 and t are then

d̂sa,n,t−1 = da,n,t−2 + ga,n,t−1−s

d̂sa,n,t = da,n,t−1 + ga,n,t−1−s.

The corresponding predicted weights are then

w
1,s,gap
a,n,t =

# days elapsed in t− 1 since d̂sa,n,t−1

92

w
2,s,gap
a,n,t =

# days elapsed in t until d̂sa,n,t
92

.

3. Weights constructed based on the current quarter’s EPS announcement date and the

average number of days between EPS announcements and analyst report releases

between quarter t−2 and quarter t−s for s ∈ [2, 16]. Let en,t be the EPS announcement
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date for stock n in quarter t. Let g̃a,n,t = da,n,t − en,t be the gap in days between

analyst report date for analyst institution a and stock n and the EPS announcement

for stock n in quarter t. The predicted announcement days in quarters t− 1 and t are

then

d̃sa,n,t−1 = en,t−1 +
1

s

s∑
k=1

g̃a,n,t−1−s

d̃sa,n,t = en,t +
1

s

s∑
k=1

g̃a,n,t−1−s.

Note that d̂sa,n,t−1 and d̂sa,n,t are constructed using only ex-ante information since the

EPS announcement dates in quarters t− 1 and t are prescheduled. The corresponding

predicted weights are then

w
1,s,EPS
a,n,t =

# days elapsed in t− 1 since d̃sa,n,t−1

92

w
2,s,EPS
a,n,t =

# days elapsed in t until d̃sa,n,t
92

.

I run predictive regressions of the true weights on these ex-ante predictors

wia,n,t =
∑

j∈{avg,gap,EPS}

16∑
s=2

bij,sw
i,s,j
a,n,t + FEn,t + εia,n,t

and use the fitted values ŵ1
a,n,t and ŵ

2
a,n,t to construct FITpreda,n,t:

FITpreda,n,t = ŵ1
a,n,t · FITn,t−1 + ŵ2

a,n,t · FITn,t.

Crucially this regression includes stock-quarter fixed effects because I need a good prediction

of the within stock-quarter variation in analyst timing. Tables A5 and A6 present the results
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of these predictive regressions.

Table A7 displays the results of the following two-stage least-squares regression:

∆pa,n,t = a0 + a1FIT
pred
a,n,t +Xa,n,t + e1,n,t

∆Ga,n,t = b0 + α∆p̂a,n,t +Xa,n,t + e2,n,t,

whereXa,n,t represents controls, including stock-quarter and analyst institution-quarter fixed

effects. The first stage regressions of price changes on the FIT instrument in columns 3 and 4

are strong with F -statistics (and partial F -statistics) of 16 and 14, respectively. The reduced

form regressions of growth expectations on the FIT instrument in columns 5 and 6 are also

strong. The second-stage estimates of α in columns 7 and 8 are significantly positive: a 1%

increase in price raises annual growth expectations by 98 − 110 basis points. While these

point estimates prove larger than the baseline estimate of 41 basis points in Table 1, note

that this specification has less power than that in Table A4 due to noise in the constructed

instrument stemming from the predicted weights not perfectly correlating with the true

weights. Statistically, the larger point estimates in Table A7 cannot be distinguished from the

baseline point estimate of 41 basis points at the 95% confidence level. Moreover, taking the

point estimates at face value, the α estimates from this predicted-timing strategy are larger

than those from Table A4 above. These larger point estimates provide evidence against the

concern that the significant α estimates from the realized-timing version of this strategy arise

from a positive correlation of announcement timing and non-price determinants of growth

expectations (E
[
w1
a,n,tνa,n,t

]
> 0 or E

[
w2
a,n,tνa,n,t

]
> 0,∀n, t). If there is a correlation of

announcement timing and non-price determinants of expectations, it appears to be negative,

which means the α estimates from the realized-timing version of this strategy are actually

biased downwards.

Figure A7 displays residualized binscatter plots for the first-stage and reduced-form
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regressions.
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Table A5: Timing Predictive Regression for w1
a,n,t

w1
a,n,t

w
1,1,gap
a,n,t 0.262*** (0.00919)

w
1,2,gap
a,n,t 0.0416*** (0.00153)

w
1,3,gap
a,n,t -0.0230*** (0.00119)

w
1,4,gap
a,n,t -0.0149*** (0.00145)

w
1,5,gap
a,n,t -0.0178*** (0.00144)

w
1,6,gap
a,n,t -0.00599*** (0.00149)

w
1,7,gap
a,n,t -0.00350** (0.00165)

w
1,8,gap
a,n,t -0.00360* (0.00183)

w
1,9,gap
a,n,t -0.00609*** (0.00231)

w
1,10,gap
a,n,t -0.00257 (0.00203)

w
1,11,gap
a,n,t -0.00282 (0.00202)

w
1,12,gap
a,n,t 0.000133 (0.00215)

w
1,13,gap
a,n,t -0.00291 (0.00201)

w
1,14,gap
a,n,t -0.00218 (0.00275)

w
1,15,gap
a,n,t -0.00176 (0.00276)

w
1,16,gap
a,n,t -0.00117 (0.00343)

w
1,1,lag
a,n,t 0.0813*** (0.0139)

w
1,2,lag
a,n,t 0.0561*** (0.0169)

w
1,3,lag
a,n,t 0.0607*** (0.0220)

w
1,4,lag
a,n,t 0.0836*** (0.0232)

w
1,5,lag
a,n,t -0.0271 (0.0279)

w
1,6,lag
a,n,t -0.0179 (0.0399)

w
1,7,lag
a,n,t 0.0403 (0.0276)

w
1,8,lag
a,n,t 0.101** (0.0472)

w
1,9,lag
a,n,t 0.0154 (0.0486)

w
1,10,lag
a,n,t 0.0724 (0.0569)

w
1,11,lag
a,n,t 0.0369 (0.0406)

w
1,12,lag
a,n,t -0.0242 (0.0630)

w
1,13,lag
a,n,t -0.0733 (0.0775)

w
1,14,lag
a,n,t 0.0120 (0.0587)
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Table A5: Timing Predictive Regression w1
a,n,t (Continued)

w
1,15,lag
a,n,t 0.0347 (0.0810)

w
1,16,lag
a,n,t 0.211** (0.0916)

w
1,1,EPS
a,n,t -0.000627 (0.0141)

w
1,2,EPS
a,n,t 0.0412** (0.0169)

w
1,3,EPS
a,n,t -0.0338 (0.0219)

w
1,4,EPS
a,n,t -0.0336 (0.0237)

w
1,5,EPS
a,n,t 0.0511* (0.0274)

w
1,6,EPS
a,n,t 0.0460 (0.0398)

w
1,7,EPS
a,n,t -0.00868 (0.0279)

w
1,8,EPS
a,n,t -0.0577 (0.0471)

w
1,9,EPS
a,n,t 0.0118 (0.0491)

w
1,10,EPS
a,n,t -0.0548 (0.0571)

w
1,11,EPS
a,n,t -0.0192 (0.0412)

w
1,12,EPS
a,n,t 0.0609 (0.0622)

w
1,13,EPS
a,n,t 0.0927 (0.0764)

w
1,14,EPS
a,n,t 0.00675 (0.0591)

w
1,15,EPS
a,n,t -0.0194 (0.0811)

w
1,16,EPS
a,n,t -0.183** (0.0912)

Stock x Quarter FE Y
N 1945611
Within R-Squared 0.0676
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the timing predictive regression of w1
a,n,t on the three sets of predictors

discussed in Appendix A.6.1. The time period is 1984-01:2021-12.
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Table A6: Timing Predictive Regression for w2
a,n,t

w2
a,n,t

w
2,2,lag
a,n,t 0.0412** (0.0167)

w
2,3,lag
a,n,t 0.0200 (0.0225)

w
2,4,lag
a,n,t 0.0501* (0.0255)

w
2,5,lag
a,n,t 0.0153 (0.0232)

w
2,6,lag
a,n,t -0.0242 (0.0280)

w
2,7,lag
a,n,t -0.0234 (0.0302)

w
2,8,lag
a,n,t -0.00387 (0.0366)

w
2,9,lag
a,n,t -0.0497 (0.0397)

w
2,10,lag
a,n,t 0.101** (0.0476)

w
2,11,lag
a,n,t -0.0234 (0.0448)

w
2,12,lag
a,n,t -0.0460 (0.0610)

w
2,13,lag
a,n,t -0.0247 (0.0591)

w
2,14,lag
a,n,t 0.0710 (0.0727)

w
2,15,lag
a,n,t -0.0730 (0.0791)

w
2,16,lag
a,n,t -0.0246 (0.0739)

w
2,2,gap
a,n,t 0.0120*** (0.00172)

w
2,3,gap
a,n,t 0.00594*** (0.00182)

w
2,4,gap
a,n,t 0.00757*** (0.00240)

w
2,5,gap
a,n,t 0.00102 (0.00228)

w
2,6,gap
a,n,t 0.00227 (0.00249)

w
2,7,gap
a,n,t 0.00369 (0.00262)

w
2,8,gap
a,n,t 0.000149 (0.00307)

w
2,9,gap
a,n,t -0.00792** (0.00317)

w
2,10,gap
a,n,t 0.000209 (0.00344)

w
2,11,gap
a,n,t 0.00211 (0.00384)

w
2,12,gap
a,n,t -0.000419 (0.00482)

w
2,13,gap
a,n,t 0.00777 (0.00481)

w
2,14,gap
a,n,t -0.00456 (0.00544)

w
2,15,gap
a,n,t 0.00278 (0.00556)
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Table A6: Timing Predictive Regression w2
a,n,t (Continued)

w
2,16,gap
a,n,t -0.00661 (0.00538)

w
2,2,EPS
a,n,t 0.0108 (0.0168)

w
2,3,EPS
a,n,t 0.0313 (0.0219)

w
2,4,EPS
a,n,t 0.0222 (0.0260)

w
2,5,EPS
a,n,t 0.0287 (0.0244)

w
2,6,EPS
a,n,t 0.0573** (0.0280)

w
2,7,EPS
a,n,t 0.0602** (0.0304)

w
2,8,EPS
a,n,t 0.0574 (0.0359)

w
2,9,EPS
a,n,t 0.0880** (0.0387)

w
2,10,EPS
a,n,t -0.0719 (0.0469)

w
2,11,EPS
a,n,t 0.0464 (0.0453)

w
2,12,EPS
a,n,t 0.0791 (0.0621)

w
2,13,EPS
a,n,t 0.0400 (0.0596)

w
2,14,EPS
a,n,t -0.0488 (0.0728)

w
2,15,EPS
a,n,t 0.0955 (0.0788)

w
2,16,EPS
a,n,t 0.0692 (0.0753)

Stock x Quarter FE Y
N 1945611
Within R-Squared 0.0121
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays results for the timing predictive regression of w2
a,n,t on the three sets of predictors

discussed in Appendix A.6.1. The time period is 1984-01:2021-12.
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Figure A7: Binscatter Plots for First Stage and Reduced Form of Within Stock-Quarter
Specification Using Predicted Timing
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This figure displays binscatter plots for the following first-stage and reduced-form regressions:

∆pa,n,t = a0 + a1FIT
pred
a,n,t +Xa,n,t + e1,n,t

∆Ga,n,t = b0 + b1FIT
pred
a,n,t +Xa,n,t + e2,n,t,

The first stage regresses percent price changes between analyst reports (∆pa,n,t) on the analyst-
specific flow-induced trading instrument using the predicted timing of analyst reports (FITpreda,n,t).
The reduced form regresses quarterly changes in annual growth expectations (∆Ga,n,t) on the
analyst-specific flow-induced trading instrument using the predicted timing of analyst reports
(FITpreda,n,t). Xn,t includes stock-quarter and analyst-quarter fixed effects. The time period is 1984-
01:2021-12.
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APPENDIX B

SUPPLEMENTAL MATERIAL FOR CHAPTER 5

B.1 Measuring Persistence in I/B/E/S Expectations

Let Ghn,t represent one-year dividend growth starting h − 1 years from quarter t so that

1+Ghn,t+1 =
∏4
s=1(1+gn,t+4(h−1)+s). For example, G1

n,t+1 is the growth rate over the next

year starting next quarter, G2
n,t+1 is the growth rate in the year after that, and so on.

I measure ρ by running the following regression using the I/B/E/S analyst EPS forecasts:

G
h,A
a,n,t+1 = ρannualG

h−1,A
a,n,t+1 +Xn,t + εha,n,t+1.

G
h,A
a,n,t+1 is analyst a’s expectation of Ghn,t+1. That is, within the term structure of growth

expectations made by analyst a for stock n in quarter t, I regress consecutive annual growth

expectations. For example, for h = 2 I would regress analyst a’s annual growth expectation

starting one year from now (i.e. from quarter t + 5 to quarter t + 8) on the annual growth

expectation for the next year (i.e. from quarter t + 1 to quarter t + 4). Xn,t includes stock

and/or time fixed effects.

Table B8 displays the results of this regression. I am use the ρ estimate without stock

fixed effects: ρannual ≈ 0.24. I then convert ρannual into a quarterly persistence ρ:

ρannual = ρ4,

which yields ρ = 0.7.
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Table B8: ρannual Estimates

(1) (2) (3) (4)
ρannual 0.238*** 0.244*** 0.141*** 0.143***

(0.00625) (0.00561) (0.00565) (0.00502)
Quarter FE Y Y
Stock FE Y Y
Quarter-Clustered SE Y Y Y Y
Stock-Clustered SE Y Y Y Y
N 2374716 2374715 2373814 2373813
R-Squared 0.117 0.133 0.331 0.340
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

B.2 Derivation of Expressions and Propositions in Chapter 5.3

This Appendix derives (5.5)

∆qn,t = −ζ∆pn,t + κg∆Gen,t + ∆εn,t,

as well as the structural forms of ζ, κg, and their ratio Mg = κg/ζ.

The proof uses the following three lemmas, which I prove in Appendix B.3.

Lemma 1 (Linearization of Portfolio Weight Demanded (5.1)). Starting in the ex-ante

equilibrium at t−, consider small percentage deviations in excess expected return (∆µn,t =

µn,t+ − µn,t−), price (∆pn,t = pn,t+ − pn,t−), and other sources of asset demand (∆εn,t =

εn,t+ − εn,t−) around the time t− quantities:

θn,t+ = θn,t− exp
[
κ∆µn,t + ∆εn,t

]
.

Linearizing around (∆µn,t,∆pn,t,∆εn,t) = (0, 0, 0) yields percentage change in quantity of
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shares demanded (from t− to t+):

∆qn,t ≈ (θn,t− − 1)∆pn,t + κ∆µn,t + ∆εn,t. (B.1)

See Appendix B.3.1 for a proof of this linearization.

Lemma 2 (Linearization of Expected Return (5.2)). Starting in the ex-ante equilibrium at

t−, consider small percentage deviations in: 1) current price ∆pn,t (from Pn,t− to Pn,t+),

2) expected next period price ∆pen,t,1 (from Ẽt−[Pn,t+1] to Ẽt+[Pn,t+1]), and 3) expected next

period dividend ∆den,t,1 (from Ẽt−[Dn,t+1] to Ẽt+[Dn,t+1]). Linearizing around

(∆pn,t,∆p
e
n,t,1,∆d

e
n,t,1) = (0, 0, 0),

yields change in expected return:

∆µn,t ≈ (−1− δ)(1 + ḡ)∆pn,t + δ(1 + ḡ)∆den,t,1 + (1 + ḡ)∆pen,t,1. (B.2)

where δ is the average dividend-price ratio and ḡ is average dividend growth rate.

See Appendix B.3.2 for a proof of this approximation.

Lemma 3 (Quarterly Expected Dividend Growth Shock Impact on Price Expectation). A

shock to annual growth expectation of ∆Gen,t induces the following change in the expectation

of next period’s price:

∆pen,t,1 = ∆pn,t +Mµδ
ρ

1−Mµρ

1

1 + ρ+ ρ2 + ρ3
∆Gen,t,

where

Mµ =
κ(1 + ḡ)

ζ + κ(1 + ḡ)
=

κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ)
.

See Appendix B.3.3 for a proof of this lemma.
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In deriving (5.5), I also prove the following proposition, which provides the general

expressions for ζ and κg. At the end of the proof, I specialize to the case of zero persistence

in expected cash flow growth xt (ρ = 0), zero average dividend growth (ḡ = 0), and small

portfolio weights (θn,t− ≈ 0), which provides the expressions in Proposition 1 in Chapter

5.4.

Proposition 5 (κg, ζ, and Mg in General). In general, we have:

κg = κ(1 + ḡ)δ

[
1

1 + ḡ
+

Mµρ

1− ρMµ

]
1

1 + ρ+ ρ2 + ρ3

ζ = 1− θn,t− + κ(1 + ḡ)δ

Mg =
κg

ζ

Proof of Proposition 5 and derivation of (5.5). Plugging the expected return linearization

(B.2) into the linearized demand function (B.1) yields the following demand function:

∆qn,t =
(
θn,t− − 1− κ(1 + δ)(1 + ḡ)

)
∆pn,t + κ(1 + ḡ)

[
δ∆den,t,1 + ∆pen,t,1

]
+ ∆εn,t. (B.3)

We need to substitute for ∆den,t,1 and ∆pen,t,1. Since the shock to annual growth

expectations at quarter t is assumed to be driven by a shock to expected dividend growth

in quarter t+ 1, we have

∆den,t,1 =
∆Gen,t
1 + ḡ

.

See the Proof of Lemma 3 in Appendix B.3.3 for a proof of this expression. The shock to

dividend growth also changes the expectation of next period price. By Lemma 3, the change

in expectation of next period’s price driven by ∆Gen,t is

∆pn,t +Mµδ
ρ

1−Mµρ

1

1 + ρ+ ρ2 + ρ3
∆Gen,t. (B.4)

127



Plugging this last expression into the demand function (B.3) yields

∆qn,t =
(
θn,t− − 1− κ(1 + ḡ)δ

)︸ ︷︷ ︸
≡−ζ

∆pn,t

+ κ(1 + ḡ)δ

[
1

1 + ḡ
+

Mµρ

1− ρMµ

]
1

1 + ρ+ ρ2 + ρ3︸ ︷︷ ︸
≡κg

∆Gen,t + ∆εn,t, (B.5)

as desired.

For the special case of ρ = ḡ = θn,t− = 0, we have

ζ = 1 + κδ

κg = κδ,

as desired for Proposition 1.

B.3 Supporting Proofs For Appendix B.2

B.3.1 Proof of Lemma 1

Proof. This proof follows from Gabaix and Koijen [2020b].

The true percentage change in quantity of shares demanded is

∆qDn,t =
QDn,t+

QDn,t−
− 1

=
Wi,t+

Wi,t−

Pn,t−
Pn,t+

θn,t+
θn,t−

− 1

=
Wi,t+

Wi,t−

Pn,t−
Pn,t+

exp[κ∆µn,t + ∆εn,t]− 1

=
1 + ∆wt
1 + ∆pn,t

exp[κ∆µn,t + ∆εDn,t]− 1.
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Linearizing the last equation around (∆wt,∆pn,t,∆µn,t,∆ε
D
n,t) = (0, 0, 0, 0) yields:

∆qDn,t ≈ ∆wt −∆pn,t + κ∆µn,t + ∆εDn,t. (B.6)

Note that the dollar change in wealth is

Wt+ −Wt− = (Pn,t+ − Pn,t−)QDn,t−,

so

∆wt =
Wi,t+ −Wt−

Wt−
=

(Pn,t+ − Pn,t−)QDn,t−
Wt−

=
(Pn,t+ − Pn,t−)

Wt−

θn,t−Wt−
Pn,t−

= θn,t−∆pn,t.

(B.7)

where the third equality follows since the ex-ante equilibrium quantity of shares demanded

is

QDn,t− =
θn,t−Wt−
Pn,t−

.

Plugging this expression for ∆wt into (B.6) yields1:

∆qDn,t ≈ θn,t−∆pn,t −∆pn,t + κ∆µn,t + ∆εn,t

= (θn,t− − 1)∆pn,t + κ∆µn,t + ∆εn,t.

1. Strictly speaking, ∆ξt in ∆εn,t = ∆εDn,t + ∆ξt depends on ∆µn,t through θ̂n,t.

∂ξt
∂µn,t

∣∣∣∣
θ̂m,t=θ̂m,t−,∀m

= −

∑N
m=1

∂θ̂m,t

∂µn,t

∣∣∣
θ̂m,t=θ̂m,t−

1 +
∑N
m=1 θ̂m,t−

= −θn,t−κ.

Taking this dependence into account yields the following demand function

∆qn,t ≈ (θn,t− − 1)∆pn,t + κ(1− θn,t−)∆µn,t + ∆εDn,t + ∆ξn,t,

where ∆ξn,t = ∆ξt+θn,t−κ∆µn,t. Since θn,t− is small for individual stocks, I use the simpler approximation
(B.1).
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B.3.2 Proof of Lemma 2

Proof. This proof follows from Gabaix and Koijen [2020b].

The definition of the expected return is

µn,t =
Ẽt[Pn,t+1 +Dn,t+1]

Pn,t
−Rft .

So at time t− we have

µn,t− =
Ẽt−[Pn,t+1 +Dn,t+1]

Pn,t−
−Rft ,

and at time t+ we have

µn,t+ =
Ẽt+[Pn,t+1 +Dn,t+1]

Pn,t+
−Rft .

Rewriting definition of the expected return in terms of deviations from the t− equilibrium

yields:

R
f
t + µn,t− + ∆µn,t =

Ẽt−[Pn,t+1](1 + ∆pen,t,1) + Ẽt−[Dn,t+1](1 + ∆den,t,1)

Pn,t−,(1 + ∆pn,t)
, (B.8)

where ∆pn,t, ∆pen,t,1, and ∆den,t,1 represent percentage deviations from the time-t−

equilibrium:

∆pn,t is the percentage deviation in current price: ∆pn,t =
Pn,t+
Pn,t−

− 1

∆pen,t,1 is the percentage deviation in expected next period price: ∆pen,t,1 =
Ẽt+[Pn,t+1]

Ẽt−[Pn,t+1]
−1

∆den,t,1 is the percentage deviation in expected next period dividend: ∆den,t,1 =

Ẽt+[Dn,t+1]

Ẽt−[Dn,t+1]
− 1
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Now linearize the right-hand side of (B.8) around (∆pn,t,∆p
e
n,t,1,∆d

e
n,t,1) = (0, 0, 0):

R
f
t + µn,t− + ∆µn,t ≈

Ẽt−[Pn,t+1]

Pn,t−,
(1 + ∆pen,t,1 −∆pn,t)

+
Ẽt−[Dn,t+1]

Dn,t

Dn,t
Pn,t−

(1 + ∆den,t,1 −∆pn,t)

= (1 + ḡ)(1 + ∆pen,t,1 −∆pn,t) + (1 + ḡ)δ(1 + ∆den,t,1 −∆pn,t),

where (1 + ḡ) =
Ẽt−[Dn,t+1]

Dn,t
, so ḡ is the average equilibrium growth rate of dividends (i.e. on

average Ẽt−[Pn,t+1]
Pn,t−

= (1 + ḡ) under the assumption that the discount rate doesn’t change),

and δ =
Ẽt−[Dn,t+1]

Pn,t−
is the average dividend-price ratio.

Now rearrange to obtain:

R
f
t +µn,t−+∆µn,t ≈ (1+ ḡ)(1+δ)+(1+ ḡ)

[
∆pen,t,1 −∆pn,t + δ(∆den,t,1 −∆pn,t)

]
. (B.9)

As noted by Gabaix and Koijen [2020b], the first right-hand-side term (zeroth order term)

gives the Gordon growth formula:

R
f
t + µn,t− = (1 + ḡ)(1 + δ)↔ (R

f
t − 1) + µn,t− − ḡ = (1 + ḡ)δ =

Ẽt−[Dn,t+1]

Pn,t−
.

Thus, from (B.9) we obtain:

∆µn,t ≈ (−1− δ)(1 + ḡ)∆pn,t + δ(1 + ḡ)∆den,t,1 + (1 + ḡ)∆pen,t,1,

as desired.

B.3.3 Proof of Lemma 3

The proof uses the following present value relation, which I prove in Appendix B.3.4.
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Lemma 4 (Present Value Relation). Let ∆den,t,s =
Et+[Dn,t+s]
Et−[Dn,t+s]

− 1 represent the percentage

change between t− and t+ in the expectation of the dividend in period t + s and ∆εen,t,s =

Et+[εDn,t+s+ξt+s]−Et−[εDn,t+s+ξt+s] represent change between t− and t+ in the expectation

of the residual demand shock in period t+s. We have the following expression for price change

today (∆pn,t) as a function of changes in long-run expected dividends and demand shocks:

∆pn,t = Mµδ

∞∑
s=0

Ms
µ∆den,t,s+1 +

∞∑
s=0

Ms
µ

1

ζ + κ(1 + ḡ)
∆εen,t,s, (B.10)

where

Mµ =
κ(1 + ḡ)

ζ + κ(1 + ḡ)
=

κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ)
.

The proof also uses the following lemma, which I prove in Appendix B.3.5.

Lemma 5 (Quarterly Expected Dividend Growth Shock Price Impact). A shock of ∆Gen,t

to annual expected dividend growth requires a shock of ∆xn,t to quarterly expected dividend

growth, where:

∆xn,t ≡
∆Gen,t

1 + ρ+ ρ2 + ρ3
.

Proof of Lemma 3. First I derive the price impact of a quarterly growth expectation shock:

Ẽt+
[
gn,t+1

]
− Ẽt−

[
gn,t+1

]
= ∆xn,t.

At the end I plug in the quarterly growth expectation shock implied by an annual growth

expectation shock from Lemma 5:

∆xn,t =
∆Gen,t

1 + ρ+ ρ2 + ρ3
.

Let ge−n,t+s = Ẽt− [gt+s] . The percentage increase in the expected level of next period’s
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dividend is:

∆den,t,1 =
1 + g−n,t+1 + ∆xn,t

1 + g−n,t+1

− 1.

The percentage increase in the expected level of dividend two periods from now is:

∆den,t,2 =
(1 + ge−n,t+1 + ∆xn,t)(1 + ge−n,t+2 + ρ∆xn,t)

(1 + ge−n,t+1)(1 + ge−n,t+2)
− 1.

For s+ 1 periods from now we have

1 + ∆den,t,s+1 =

∏s
j=0

(
1 + ge−n,t+j+1 + ρj∆xn,t

)
∏s
j=0

(
1 + ge−n,t+j+1

)
→ ∆d̃n,t,s+1 ≈ log

(
1 + ∆d̃n,t,s+1

)
=

s∑
j=0

log
(

1 + ge−n,t+j+1 + ρj∆xn,t

)

−
s∑
j=0

log
(

1 + ge−n,t+j+1

)

≈
s∑
j=0

ρj∆xn,t

=
1− ρs+1

1− ρ
∆xn,t. (B.11)

Plugging this last result (B.11) into the present-value identity from Lemma 4 (and setting

all other demand shock expectations ∆εen,t,s = 0 for brevity) yields the following market-
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clearing price change2:

∆pn,t = Mµδ
∞∑
s=0

Ms
µ∆den,t,s+1

= Mµδ

∞∑
s=0

Ms
µ

[
1− ρs+1

1− ρ

]
∆xn,t

= Mµ
δ

1− ρ

[
1

1−Mµ
− ρ

1− ρMµ

]
∆xn,t. (B.12)

Now plug in the quarterly dividend growth shock implied by an annual dividend growth

shock from Lemma 5

∆xn,t =
∆Gen,t

1 + ρ+ ρ2 + ρ3
,

to obtain

∆pn,t = Mµ
δ

1− ρ

[
1

1−Mµ
− ρ

1− ρMµ

]
1

1 + ρ+ ρ2 + ρ3
∆Gen,t.

Projecting the present-value identity (B.10) from Lemma 4 forward one period in time,

2. This framework can handle non-zero demand shocks ∆εen,t,s as well. If the residual demand shock in
period t (∆εn,t ≡ ∆εDn,t+ξt) is permanent (i.e. ∆εen,t,s = ∆εn,t,∀s > 0), then the result of this lemma (B.14)
holds exactly.
If the residual demand shock today has some persistence or reversion, then (B.14) will have an additional
term that is a function of ∆εn,t. Denote this additional term as ωn,t. In this case, an additional term of
κ(1 + ḡ)ωn,t will appear in the final demand curve (5.5):

∆qn,t = −ζ∆pn,t + κg∆νn,t + ∆εn,t + κ(1 + ḡ)ωn,t︸ ︷︷ ︸
New Residual Demand Shock

.

In this case, redefine ∆εn,t to be the sum of the original residual demand shock ∆εn,t and κ(1 + ḡ)ωn,t.
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we have the change in expected next period price is:

∆p̃n,t,1 = δ
∞∑
s=1

Ms
µ∆den,t,s+1

= δ

∞∑
s=1

Ms
µ

1− ρs+1

1− ρ
∆xn,t

= δMµ

∞∑
s=0

Ms
µ

1− ρs+2

1− ρ
∆xn,t

= Mµ
δ

1− ρ

[
1

1−Mµ
− ρ2

1− ρMµ

]
∆xn,t

= ∆pn,t +

[
Mµ

δ

1− ρ
ρ

1− ρMµ
−Mµ

δ

1− ρ
ρ2

1− ρMµ

]
∆xn,t (B.13)

= ∆pn,t +Mµ
δ

1− ρ
ρ

1− ρMµ
[1− ρ] ∆xn,t

= ∆pn,t +Mµδ
ρ

1− ρMµ
∆xn,t

= ∆pn,t +Mµδ
ρ

1− ρMµ

1

1 + ρ+ ρ2 + ρ3
∆Gen,t, (B.14)

where (B.13) follows from (B.12). The last line follows from plugging in the quarterly

dividend growth shock implied by an annual dividend growth shock: ∆xn,t =
∆Gen,t

1+ρ+ρ2+ρ3

from Lemma 5.

B.3.4 Proof of Lemma 4

Proof. In general, I use ∆den,t,s to denote the percentage change between Ẽt−[Dn,t+s] and

Ẽt+[Dn,t+s]. Similarly, I use ∆pen,t,s to denote the percentage change between Ẽt−[Pn,t+s]

and Ẽt+[Pn,t+s]. ∆εen,t,s is the change between t− and t+ in the expectation of the residual

demand shock in period t+ s.

Plugging the expected return linearization (B.2) into the linearized demand function

(B.1) yields the following demand function:
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∆qn,t =
(
θn,t− − 1− κ(1 + δ)(1 + ḡ)

)
∆pn,t + κ(1 + ḡ)

[
δ∆den,t,1 + ∆pen,t,1

]
+ ∆εn,t.

Market clearing under fixed supply (∆qn,t = 0) implies:

∆pn,t =
κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ)︸ ︷︷ ︸
≡Mµ

(
δ∆den,t,1 + ∆pen,t,1

)

+
1

1− θn,t− + κ(1 + δ)(1 + ḡ)
∆εn,t. (B.15)

Note that
1

1− θn,t− + κ(1 + δ)(1 + ḡ)
=

1

ζ + κ(1 + ḡ)
,

for ζ as defined in Proposition 5.

Rolling (B.15) one period forward, we see next period’s actual price change ∆pn,t+1 can

be written as:

∆pn,t+1 = Mµ

(
δ∆den,t+1,1 + ∆pen,t+1,1

)
+

1

ζ + κ(1 + ḡ)
∆εn,t+1,

where den,t+1,1 and ∆pen,t+1,1 are the changes in expected dividend and price for two periods

from now (at t + 2) that occur one period from now (at t + 1) and ∆εn,t+1 is the residual

demand shock one period from now (at t+ 1).

Thus, the change in tomorrow’s (i.e. period t+ 1) expected price that occurs today is:

∆pen,t,1 = Mµ

(
δ∆den,t,2 + ∆pen,t,2

)
+

1

ζ + κ(1 + ḡ)
∆εen,t,1,

by the law of iterated expectations.
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Iterating this process forward, we see

∆pen,t,1 = δMµ∆den,t,2 + δM2
µ∆den,t,3 + δM3

µ∆den,t,4 + . . .

+
1

ζ + κ(1 + ḡ)
∆εen,t,1 +Mµ

1

ζ + κ(1 + ḡ)
∆εen,t,2 +M2

µ
1

ζ + κ(1 + ḡ)
∆εen,t,3 + . . . ,

(B.16)

= δ

∞∑
s=1

Ms
µ∆den,t,s+1 +

∞∑
s=0

Ms
µ

1

ζ + κ(1 + ḡ)
∆εen,t,s+1. (B.17)

Thus, we have

δ∆den,t,1 + ∆pen,t,1 = δ
∞∑
s=0

Ms
µ∆den,t,s+1 +

∞∑
s=0

Ms
µ

1

ζ + κ(1 + ḡ)
∆εen,t,s+1. (B.18)

So the change in price today from (B.15) becomes:

∆pn,t = Mµδ
∞∑
s=0

Ms
µ∆den,t,s+1 +

∞∑
s=0

Ms
µ

1

ζ + κ(1 + ḡ)
∆εen,t,s, (B.19)

as desired.

B.3.5 Proof of Lemma 5

Proof. Starting with the definition of annual realize dividend growth, we have

1 +Gn,t+1 =
4∏
s=1

(1 + gn,t+s)

↔ Gn,t+1 ≈
4∑
s=1

gn,t+s,

using log(1 + x) ≈ x for small x. Gn,t+1 is annual realized growth from quarter t + 1 to

t+4. Now plug in the dynamics for quarterly dividend growth gn,t from (5.3) into the second
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expression:

Gn,t+1 ≈
4∑
s=1

gn,t+s

=
4∑
s=1

xn,t+s−1 +
4∑
s=1

ε
g
n,t+s.

Thus,

Ẽt
[
Gn,t+1

]
=

4∑
s=1

Ẽt
[
xn,t+s−1

]
+

4∑
s=1

Ẽt
[
ε
g
n,t+s

]

=
4∑
s=1

Ẽt
[
xn,t+s−1

]
.

Note that

xn,t+s−1 = x̄+ ρ(xn,t+s−2 − x̄) + εxn,t+s−1

...

= x̄(1− ρ)
s−2∑
j=1

ρj + ρs−1xn,t +
s−1∑
j=1

ρs−1−jεxn,t+s−1.

Therefore,

Ẽt [Gn,t+1] = xn,t(1 + ρ+ ρ2 + ρ3)

+ x̄(1− ρ)
[
1 + (1 + ρ) + (1 + ρ+ ρ2)

]
→ ∆Gen,t ≡ Ẽt+ [Gn,t+1]− Ẽt− [Gn,t+1] = (xn,t+ − xn,t−) (1 + ρ+ ρ2 + ρ3)

= ∆xn,t(1 + ρ+ ρ2 + ρ3)

↔ ∆xn,t =
∆Gen,t

1 + ρ+ ρ2 + ρ3
,

as desired.
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B.4 Mg in a Standard Model

The representative investor has CRRA utility over consumption:

U(Ct) =
Ct

1−γ

1− γ
.

Log consumption growth is i.i.d.

∆ct+1 = µc + εct+1.

From Chapter 5.2, realized (quarterly) log dividend growth for stock n has the following

dynamics:

∆gn,t+1 = xn,t + ε
g
n,t+1

xn,t+1 = x̄+ ρ(xn,t − x̄) + εxn,t+1,

εct+1 and εgn,t+1 are arbitrarily correlated but εxn,t+1 is uncorrelated with both.

The representative investor’s stochastic discount factor (SDF) is:

Mt+1 = β

(
Ct+1

Ct

)−γ
(B.20)

↔ mt+1 ≡ logMt+1 = log β − γ∆ct+1,

for subjective discount factor β.

Gross returns Rn,t+1 must satisfy

Et

[
β

(
Ct+1

Ct

)−γ
Rn,t+1

]
= 1. (B.21)

I derive an approximate log-linearized solution using the decomposition of Campbell and
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Shiller [1988], under which log returns have the following form:

rn,t+1 = κ0 + κ1zn,t+1 − zn,t + ∆dn,t+1, (B.22)

where rn,t+1 = logRn,t+1, zn,t = log(Pn,t/Dn,t), and κ1 = 1
1+exp[E[−zn,t]]

and κ0 =

− log κ1 + (1 − κ1) log
(

1
κ1
− 1
)

are constants that depend only on the average level of

zn,t.

I solve the model by guess and verify. I conjecture the following form for zn,t:

zn,t = A0 + A1xn,t.

Plugging this expression into

Et
[
exp[mt+1 + rn,t+1]

]
= 1 (B.23)

yields

A1 =
1

1− κ1ρ

A0 =
1

1− κ1

[
log β − γµc + κ0 + A1κ1x̄(1− ρ) + V

[
κ1A1ε

x
n,t+1 + ε

g
n,t+1 − γε

c
n,t+1

]]
.

From (5.4), an annual growth expectation shock of ∆Gen,t corresponds to a quarterly

shock of

∆xn,t =
1

1 + ρ+ ρ2 + ρ3
∆Gen,t.
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Thus, the percentage price change from t− to t+ due to shock ∆xn,t is

∆pn,t ≈ log (Pt+/Dt)− log (Pt−/Dt)

= zn,t+ − zn,t−

= A1∆xn,t

=
A1

1 + ρ+ ρ2 + ρ3︸ ︷︷ ︸
≡Mg

∆Gen,t,

so

Mg =
1

1− κ1ρ

1

1 + ρ+ ρ2 + ρ3
.

For ρ = 0, this equation collapses to Mg = 1. For the estimated ρ = 0.7 in the I/B/E/S

data (see Appendix B.1), Mg ≈ 1.3 (calibrating κ1 = 1/1.01, since the historical average

quarterly dividend-price ratio for the aggregate market is about 0.01).

B.5 Formal Link to “Myopia” from Gabaix & Koijen (2020)

Lemma 4 from Appendix B.3.3 features the following present-value identity that expresses

the price change in the current period t (∆pn,t) as a function of changes in future expected

dividends (∆den,t,s+1):

∆pn,t = Mµδ
∞∑
s=0

Ms
µ∆den,t,s+1 (B.24)

Mµ =
κ(1 + ḡ)

ζ + κ(1 + ḡ)
=

κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ)
.

For simplicity, consider the case where portfolio weights are small (θn,t− ≈ 0) and

quarterly expected dividend growth rate is zero (ḡ = 0). In this case, the effective discount

141



factor is

Mµ =
κ

ζ + κ
=

κ

1 + κ(1 + δ)
,

where δ is the average dividend-price ratio.

Gabaix and Koijen [2020b] discuss the “effective discount rate,” which I denote ρdisc (ρ

in Gabaix and Koijen [2020b]):

ρdisc =
ζ

κ
= δ +

1

κ

Mµ =
1

1 + ρdisc
.

If the change in beliefs about future fundamentals is fully incorporated into prices on impact

(i.e. the κ =∞ case), then ρdisc = δ. Thus, when demand is insensitive to expected return

(κ is small), the effective discount rate ρdisc is larger and the effective discount factor Mµ

is smaller. So when κ is small, changes in expectations of future dividends have less of an

impact on price today because investors effectively discount those changes in expectations

at a higher rate.

Mg is a function of ρdisc. If there is no persistence in growth expectations, then a 1%

increase in growth expectation is the same as a 1% permanent increase in the level of all

future expected dividends: ∆den,t,s+1 = 1%. Thus, from (B.24):

∆pn,t = Mµδ
1

1−Mµ

=
δ

ρdisc

=
κδ

1 + κδ

= Mg,

where the last equation follows from (5.9).
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Since stocks are long-lived assets (i.e. dividend-price ratio δ is small), a little per-period

excess discounting can lowerMg significantly. Figure B8 plotsMg as a function of the excess

effective discount rate ρdisc− δ (top panel) and as a function of the effective discount factor

Mµ (bottom panel). For a calibrated quarterly dividend-price ratio of δ = 0.01, the upper

end of the range I argue for (Mg = 0.16 ) corresponds to an excess effective discount rate of

5.25% and an effective discount factor of Mµ = 0.94.

Figure B8: Mg as a Function of Excess Discount Rate and Effective Discount Factor

For shorter-lived assets (which have higher δ), reducing κ will have a smaller effect on

Mg because the impact of this myopia is smaller at shorter horizons. By this logic, the
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impact of beliefs about future resale values (i.e. beliefs about next period price) on price

today remains large even when κ is small. Indeed, this impact equals Mµ. A small κ does

reduce Mµ, but quantitatively much less than it reduces Mg because, again, the impact of

myopia is smaller at shorter horizons. Thus, while my empirical estimate of Mg = 0.16 is

much smaller than the benchmark of Mg = 1, the implied Mµ = 0.94 is only slightly smaller

than the benchmark Mµ = 1/(1 + δ) = 0.99 (which corresponds to κ =∞).

B.6 Learning from Prices

Learning from prices changes the investor’s price elasticity of demand. Investor i’s demand

curve is still as in (5.11), but the price elasticity has a different functional form.

Let the equilibrium change in growth expectation be

∆G̃ei,n,t = αi∆pn,t + ∆Gei,n,t,

so ∆Gei,n,t is still the shock to growth expectation and αi∆pn,t captures the endogenous

expectation update due to learning from prices. Investor i’s demand curve is then:

∆qi,n,t = −(ζi − κ
g
iαi)︸ ︷︷ ︸

≡ζ̃i

∆pn,t + κ
g
i∆G

e
i,n,t + ∆εi,n,t,

where ζi and κ
g
i are as described in Propositions 1 and 5. Holding all else (i.e. demand

sensitivity to expected return κi) constant, learning from prices makes demand more

inelastic.3 In this case, the causal effect of subjective growth expectations on prices is

Mg = κ
g
S/ζ̃S and incorporates price impact amplification due to learning from prices (as in

Bastianello and Fontanier [2021b]).

My empirical strategy does not take a stance on if investors learn from prices. In Chapter

3. Davis, Kargar and Li [2022] discuss this mechanism.
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6, I identify Mg in reduced-form from prices and analyst beliefs. In Chapter 7, I identify

κ
g
i and price elasticity in reduced form at the investor level from prices, analyst beliefs, and

investor holdings. The elasticity I identify is in general ζ̃i, which will be ζi if investors do

not learn from prices.
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APPENDIX C

ALTERNATIVE LEARNING SPECIFICATIONS

C.1 General Linearization of Analyst Influence Bi,a,n with Analyst

and Investor Heterogeneity

In this appendix I derive the general form of analyst influence Bi,a,n under investor and

analyst heterogeneity. With this heterogeneity, the definition of analyst influence from (6.1)

becomes

Bi,a,n =
σ−2
i,a

τ−1
i +

∑
a
′∈An

σ−2
i,a
′
,

where σ−2
i,a is the signal precision of analyst a’s growth expectation as perceived by investor

i and An is the set of analysts who issue expectations for stock n. Rewrite this equation in

reduced form as:

Bi,a,n =
σ−2
i,a

τ−1
i +

∑
a
′∈An

σ−2
i,a
′

=
xi,a

1 +
∑
a
′∈An

x
i,a
′
,

where xi,a ≡ σ−2
i,a /τ

−1
i is the scaled signal precision of analyst a as perceived by investor

i. Let An = |An| represent the number of analysts that rate stock n. Linearizing the last

equation around the average scaled signal precision xi,a = xi and the average number of

analysts to rate a stock An = A yields

Bi,a,n ≈ βi︸︷︷︸
≡ xi

1+Axi

−β2
i Ãn + yi,a︸︷︷︸

≡
xi,a−xi
1+Axi

−βi
∑
a
′∈An

y
i,a
′ (C.1)

Note that analyst influence depends on:

1. βi: The average analyst influence on investor i across all analysts a and stocks n.
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2. yi,a: The gap between analyst a’s influence on investor i and the average influence

level βi for the average stock.

3. An: The set of analysts that rate stock n. An enters (C.1) in two places:

(a) β2
i Ãn: Each additional analyst added to the rating set reduces the influence of

analyst a. Ãn is the demeaned number of analysts in An .

(b) −βi
∑
a
′∈An

y
i,a
′ : Analyst a’s influence falls by more when higher-influence

analysts (higher y
i,a
′ ) enter An.

The special case with no heterogeneity in scaled signal precisions across analysts follows from

setting yi,a = 0,∀a:

Bi,a,n = Bi,n ≈ βi − β2
i Ãn.

Further restricting all investors to agree on a single analyst signal precision yields the baseline

specification (6.2):

Bi,a,n = Bn ≈ β − β2Ãn.

(C.1) can be taken to the data. In general, βi and all yi,a can be identified using beliefs,

price, and holdings data. If we suppress investor-level heterogeneity, β and all ya can be

identified from beliefs and price data. The baseline specification (6.6) uses only idiosyncratic

growth expectations shocks and their interaction with the demeaned number of analysts. To

allow for heterogeneous influence across analysts, you would also need to include interactions

with analyst-specific indicators.

C.2 Identifying Analyst Influence Using Order of Analyst Reports

An alternative identification strategy is to exploit the order in which analysts report their

expectations. Let τ̄ be investor i’s prior precision before the first analyst reports. After
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learning from the first analyst, investor i’s posterior precision is τ̄−1 + σ−2. After learning

from k analysts, investor i’s posterior precision is τ̄−1 + kσ−2. Thus for the k-th analyst to

report this quarter for stock n, investor i’s belief update is

∆GIi,a,n =
σ−2

τ̄−1 + kσ−2︸ ︷︷ ︸
≡Bn,k

(
GAa,n − ḠIi,a,n

)
.

So the influence of the k-th analyst to report is

Bn,k =
σ−2

τ̄−1 + kσ−2

≈ σ−2

τ̄−1 + k̄nσ−2
−
(

σ−2

τ̄−1 + k̄nσ−2

)2

(k − k̄n)

≈ σ−2

τ̄−1 + k̄σ−2
−
(

σ−2

τ̄−1 + k̄σ−2

)2

(k − k̄)

≈ σ−2

τ̄−1 + k̄σ−2
−
(

σ−2

τ̄−1 + k̄σ−2

)2

(k̄n − k̄) (C.2)

The second line follows from a first-order approximation around k = k̄n ≡ (An+1)
2 , the

average analyst order rank for stock n (i.e. k̄n ≡ 1
An

(1+2+ . . .+An)). The third line follows

from a first-order approximation around k̄n = k̄ ≡ E[k̄n]. Either of these specifications can

be taken directly to the data.

The fourth line follows from a first-order approximation around k = k̄n again. This final

approximation implies

Bn,k = Bn = β︸︷︷︸
= σ−2

(τ̄)−1+k̄σ−2

− β2︸︷︷︸
=

(
σ−2

(τ̄)−1+k̄σ−2

)2

Ãn
2︸︷︷︸

=k̄n−k̄

.

Thus (C.2) implies that my baseline specification underestimates β by a factor of 2 and

so overestimates Mg by a factor of 2.
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C.3 Deviations from Bayesian Learning

I consider a general class of deviations from Bayesian learning using the conceptual framework

of Benjamin [2019].

In the notation from Chapter 6.2, Benjamin [2019] use the following specification of the

posterior distribution for the unknown growth rate Gn that investor i is learning about:

P
(
Gen | {Ga,n}a∈An

)
=

P
(
{GAa,n}a∈An | G

e
n

)c
P
(
Gen | ḠIi,a,n

)d
∫
Ge
′
n
P
(
{GAa,n}a∈An | Ge

′
n

)c P(Ge′n | ḠIi,a,n)d .
Parameters c and d capture over or underweighting of signals and the prior, respectively.

• Bayesian learning corresponds to the special case where c = d = 1.

• c < 1 represents “underinference” —the learner puts less weight on signals than a

Bayesian would.

• c > 1 represents “overinference” —the learner puts more weight on signals than a

Bayesian would.

• d < 1 represents “base-rate neglect” —the learner puts less weight on the prior than a

Bayesian would.

• d < 1 represents “base-rate over-use” —the learner puts more weight on the prior than

a Bayesian would.

Thus, this specification of the posterior captures wide range of deviations from Bayesian

learning.

Given the Gaussian prior and signal structure in Chapter 6.2, one can easily show that
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the posterior mean growth expectation after learning from An analysts is

cσ−2

cσ−2An + dτ−1

∑
a∈An

GAa,n +
dτ−1

cσ−2An + dτ−1
ḠIi,a,n,

and so the update to mean growth expectation is

cσ−2

cσ−2An + dτ−1

∑
a∈An

(
GAa,n − ḠIi,a,n

)
.

Thus we have analyst influence

Bn =
cσ−2

cσ−2An + dτ−1

≈ β − β2(An − A)

β =
cσ−2

cσ−2A+ dτ−1
,

where A = E[An] is the average number of analyst institutions that cover each stock. We get

the same functional form for Bn as in (6.2) in Chapter (6.2). The underlying structure of

average influence β has changed. However, the way analyst influence Bn varies in the cross

section of equities has not changed.

Thus, my identification strategy does not rely on investors acting as perfect Bayesian

learners. They may exhibit any of the wide range of behavioral biases listed above. The

functional form of analyst influence (Bn = β−β2(An−A)) proves robust to these deviations

from Bayesian learning.
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APPENDIX D

ANALYST EXPECTATION FACTOR MODEL DETAILS

D.1 Microfoundation

Figure D9: Model Timing
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Consider a Grossman and Stiglitz [1980]-type economy with a representative investor. I focus

on a single quarter, stock, and analyst, and so I drop the t, n, and a subscripts. Assume

both the investor and analyst are Bayesians. In the previous quarter, the analyst in question

had the prior Ge ∼ N(GA0 , τA,0) and reported annual growth expectation GA0 . The investor

posterior in the previous quarter after incorporating that analyst signal is Ge ∼ N(ḠI0, τI,0)

. In the current quarter there is:

1. A public signal (e.g. the reported expectation of a different analyst, an earnings

surprise, etc.) about the annual growth expectation

s = Ge + νs, νs ∼ N(0, σ2
s).
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2. A private signal observed only by the investor

sI = Ge + νI , νI ∼ N(0, σ2
I ).

3. A private signal observed only by the analyst

sA = Ge + νA, νA ∼ N(0, σ2
A).

4. An exogenous demand shock that changes price by εpercent for ε ∼ N(0, σ2
ε ).

All signals and shocks are uncorrelated. After all of these signals and shocks have been

realized, the representative investor has posterior Ge ∼ N(ḠI1, τI,1) and the analyst has

posterior Ge ∼ N(ḠA1 , τA,1). Then the analyst reports his growth expectation for the current

quarter: ḠA1 . The price change from after the analyst report in the previous quarter until

before the analyst report in this quarter is ∆p−. This timing is summarized in Figure D9.

The representative investor’s growth expectation update is

ḠI1 − Ḡ
I
0 =

σ−2
s

τ−1
I,0 + σ−2

s + σ−2
I

s+
σ−2
I

τ−1
I,0 + σ−2

s + σ−2
I

sI −
σ−2
s + σ−2

I

τ−1
I,0 + σ−2

s + σ−2
I

ḠI0.

So the price change strictly between analyst announcements is

∆p− = Mg

(
ḠI1 − Ḡ

I
0

)
+ ε.

This price change is a noisy signal of growth expectations since it contains the investor’s

private information sI . Thus, the analyst learns from ∆p−.

The update to the analyst’s growth expectation is

GA1 −G
A
0 = α∆p− + λ1s+ λ2G

A
0 + λ3s

A, (D.1)
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where the coefficients α, λ1, λ2, and λ3 are functions of the signal variances σ2
s , σ

2
I , σ

2
A and

the demand shock variance σ2
ε and reflect the fact that some of the signals (∆p− and s) are

correlated.

In the notation from Chapter 6.3, let η
′

= [s,GA0 ] since in the current quarter both s

and the previous quarter’s analyst expectation GA0 are “public signals”. Let λ = [λ1, λ2] and

u = λ3s
A. Then (D.1) can be rewritten as

∆GA = α∆p− + λ
′
η + u,

which matches the factor structure I use empirically: (6.3) from Chapter 6.3.

D.2 Singular Value Decomposition Implementation Details

In this appendix, I discuss some implementation details involved in applying the Funk [2006]

singular value decomposition to the latent factor model

Gt = ΛtHt + ut,

where Gt is the A×N matrix of reported expected returns for number of analyst institutions

A and number of stocks N , Λt ∈ RA×F is the stacked matrix of institution-specific loading

vectors λ̃a,t ∈ RF , Ht ∈ RF×N is the stacked matrix of stock-specific characteristic vectors

η̃n,t ∈ RF , and ut is the A×N matrix of idiosyncratic residual expected return shocks.

One can estimate matrices Λt and Ht as the minimizers of the following loss function

min
Λt,Ht

∑
a,n

(
∆GAa,n,t −∆Ĝa,n,t

)2

s.t. ∆ĜAa,n,t = λ̃
>
a,tη̃n,t

= ba,t + cn,t + λ>a,tηn,t

153



where λa,t and ηn,t are the unconstrained components of λ̃a,t and η̃n,t, while ba,t is the

element of λ̃a,t constrained to load on a constant η̃n,t,f = 1 (i.e. an analyst institution-

quarter fixed effect) and cn,t is the element of η̃n,t constrained to be loaded on by λ̃a,t,f = 1

(i.e. a stock-quarter fixed effect).

Empirically, each institution only covers a small subset of stocks in each quarter (in the

average quarter roughly 2% of the entries in Gt are filled). For this reason, I can attain more

efficient estimates of Λt and Ht by adding L2 penalties to the least-squares loss function

(Funk [2006], Bai and Ng [2019]):

min
Λ∗,H∗

∑
a,n

(
∆GAa,n,t −∆ĜAa,n,t

)2
+ γ1,tb

2
a,t + γ2,tc

2
n,t + γ3,t

∥∥λa,t∥∥2
+ γ4,t

∥∥ηn,t∥∥2

s.t. ∆ĜAa,n,t = ba,t + cn,t + λ>a,tηn,t,

In the baseline analysis, I use five latent factors. Since I fit the factor model quarter

by quarter, all regularization parameters can vary over time. I conduct three-fold cross-

validation within each quarter to choose regularization parameters γ3,t and γ4,t. Since the

fixed effects ba,t and (especially) cn,t are responsible for absorbing the price terms in the

∆ĜAa,n,t, I do not regularize them (γ1,t = γ2,t = 0) in order to avoid biasing the estimated

fixed effects toward zero and thereby leaving some price variation in the estimated residuals

ûa,n,t.1

1. Nevertheless, since the fixed effects ba,t and cn,t are jointly estimated with the factors ηn,t and loadings
λa,t, regularizing ηn,t and λa,t will somewhat affect the estimates of ba,t and cn,t. To avoid this issue, one
could remove analyst-quarter and stock-quarter fixed effects from ∆GAa,n,t before estimating the factor model.
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D.3 Factor Structure with Staggered Analyst Releases

Analysts may learn from slightly different price changes due to the staggered timing of

analyst reports. In this case, we have the following structural factor model: ∆GAa,n =

(φa + φn)∆p−a,n + λ
′
aηn + ua,n. Let Da,n be the set of days that elapse between the two

report releases of GLaga,n last quarter and Ga,n in the current quarter. If day d occurs in

at least two sets Da,n and Db,n, the price change on day d is a common factor that η̃n

can capture. Let all such days belong to set Dn. Then we can decompose ∆p−a,n =

λ
′
a,T iming∆p

−
n + ∆p̃−a,n, where ∆p−n is the vector of price changes for days d ∈ Dn and

∆p̃−a,n is the sum of price changes over days in Da,n \ Dn. Thus, (φa + φn)∆p−a,n =

φaλ
′
a,T iming∆p

−
n +λ

′
a,T iming

(
φn∆p−n

)
+φa∆p̃−a,n+φn∆p̃−a,n. λ̃

>
a η̃n can absorb the first two

terms (φaλ
′
a,T iming∆p

−
n + λ

′
a,T iming

(
φn∆p−n

)
) , but not the second two terms (φa∆p̃−a,n +

φn∆p̃−a,n). The second two terms would appear in the estimated residual ûa,n. These price

changes prove unlikely to cause problems for two reasons. First, only the first analyst to

report in the previous quarter and the last analyst to report in the current quarter can have

non-empty sets Da,n \ Dn and so non-zero ∆p̃−a,n. Second, for these two analysts, ∆p̃−a,n

proves unlikely to strongly correlate with ea,n in (6.6) because there is little high-frequency

serial correlation in returns.

As an additional robustness check, one could also not include the analyst-stock pairs (a, n)

corresponding to the first analyst to report in the previous quarter and the last analyst to

report in this quarter for each stock n when estimating (6.6).
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APPENDIX E

DECOMPOSITION OF STRUCTURAL ERROR TERMS

E.1 Market Clearing with Homogeneity (6.6) Error Term

Decomposition

The full version of market clearing expression (6.6) is:

∆p+
a,n = Mgβua,n −Mgβ

2ua,nÃn

+MgBn

 (αa + αn)∆p−n + λ
′
aηn︸ ︷︷ ︸

Other Determinants of Analyst Expectations


−MgBn( ḠIS,a,n︸ ︷︷ ︸

Investors’ Prior Expectations

− G
Lag
a,n︸ ︷︷ ︸

Lagged Analyst Expectation

)

+Mg νIS,a,n︸ ︷︷ ︸
Other Contemporaneous Signals

+
1

ζ
∆εS,a,n︸ ︷︷ ︸

Other Demand Shocks

= Mgβua,n −Mgβ
2ua,nÃn + ea,n.

E.2 Low-Frequency Growth Expectation Update (7.4) Error Term

Decomposition

The full version of low-frequency (quarterly) growth expectation update (7.4) is:
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∆GIi,n =
∑
a∈An

∆GIi,a,n + νIi,n

= βi
∑
a∈An

ua,n − β2
i

∑
a∈An

ua,nÃn

+
(
βi − β2

i Ãn

) ∑
a∈An

 (αa + αn)∆p−n + λ
′
aηn︸ ︷︷ ︸

Other Determinants of Analyst Expectations



−
(
βi − β2

i Ãn

) ∑
a∈An

 ḠIi,a,n︸ ︷︷ ︸
Investor Prior Expectations

− G
Lag
a,n︸ ︷︷ ︸

Lagged Analyst Expectation


+
∑
a∈An

νIi,a,n︸ ︷︷ ︸
Other High-Frequency Signals

+ νIi,n︸︷︷︸
Other Low-Frequency Signals

= βi
∑
a∈An

ua,n − β2
i

∑
a∈An

ua,nÃn + eGi,n.
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APPENDIX F

ANALYST PRICE IMPACT ESTIMATES FROM PREVIOUS

WORK

Figure F10 graphically compares my analyst price impact estimate c1 ≈ 0.5 basis points to

values found in previous work. Table F9 provides details of estimates from previous work.

My analyst price impact estimate is slightly smaller than what the previous literature

has found. I offer five potential reasons to reconcile these estimates:

1. Previous estimates may suffer from omitted variable bias. Analyst EPS growth

expectations announcements tend to cluster around actual EPS announcements

by firms. If positive EPS surprises cause positive high-frequency price changes

(potentially at a lag due to post-earnings announcement drift) and positive analyst

growth expectations updates, then regressions of price changes on analyst growth

expectations updates will suffer from positive omitted variable bias. My identification

strategy strips out all variation in analyst growth expectation updates due to

stock-quarter characteristics (including public signals like EPS surprises) and so does

not suffer from this omitted variable bias.

2. The previous literature uses a different specification than this paper. This paper focuses

on how growth expectations impact prices, so I scale analyst fixed one-year horizon EPS

forecasts by the trailing level of EPS to obtain EPS growth forecasts and take quarterly

differences. The previous literature uses the percentage change in EPS forecasts for the

current fiscal year. So both the measure and horizon used by the previous literature

are different. If the percentage change in fixed-year (instead of fixed-horizon) EPS

forecast has more influence on investor expectations (i.e. higher β), this measure

will have greater price impact than my c1 ≈ 0.5. This scenario does not change the

interpretation of my Mg estimate. The β I estimate is the analyst influence of a
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particular piece of information in analyst reports. Other pieces of information having

different β values (e.g. due to different perceived signal precisions) does not invalidate

the β I measure. For this reason, theMg I measure is unaffected. I prefer my empirical

measure of fixed-horizon EPS growth forecasts since it proves closer to the theoretical

framework in Chapter 5.

3. Analyst influence β may be lower in my sample than in previous work. Much of

the previous literature studies analyst price impact prior to the introduction of the

SEC Regulation Fair Disclosure (“Red FD”) in 2000, which limited the ability of firm

managers to disclose information solely to particular analysts before revealing that

information publicly. My sample extends through 2021. Thus, to the extent that

analyst influence β is lower after the introduction of Red FD because the perceived

signal precision of analyst expectations has fallen, analyst price impact will also be

lower post-2000.

4. Mg may be lower in my sample than in previous work. Koijen and Yogo [2019]

document that price elasticities of demand have fallen over time (e.g. due to the

rise of passive investing). As discussed in Chapter 5.4, the price impact of investor

beliefs Mg is low when price elasticity is low. Thus, to the extent that Mg is lower in

my sample than in previous work, my analyst price impact estimate will also be lower.

5. Statistically, my estimate proves consistent with the smaller estimates from the

previous literature. My c1 = 0.5 basis points estimate is within the 95% confidence

interval for the analyst price impact estimate from Park and Stice [2000]. The lower

estimate of 2 basis points from Asquith, Mikhail and Au [2005] is not statistically

significant.
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Figure F10: Comparison of Average Analyst Price Impact c1 to Previous Literature

Graphical comparison of my analyst price impact estimate (c1 ≈ 0.5 basis points from Table
3) to values found in previous work. See Table F9 for details of previous estimates.
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APPENDIX G

SUPPLEMENTS TO EMPIRICAL RESULTS IN CHAPTER 6.5

G.1 Non-Parametric Evidence of Signal Averaging

Figure G11: Analyst Price Impact by Quintile of Number of Analysts

Plot of regression coefficients and 95% confidence intervals for

∆p+
a,n,t =

5∑
k=1

bk1
(
Ãn,t−1 ∈ Quintile k

)
ua,n,t + ea,n,t.

G.2 Alternative β Magnitudes

The baseline β = 0.06 from Table 4 is a plausible value for analyst influence. One may be

concerned that this β estimate implies analyst influence is unrealistically large and so the

Mg = 0.07 estimate is too small. However, given the c1 = 0.46 basis points estimate from

Table 3, β would have to be implausibly small to raiseMg close to the benchmark ofMg = 1.

How noisy are analyst expectations perceived to be given β = 0.06? Recall the functional

form of β from (6.2): β = σ−2/(τ−1 + Aσ−2),where σ is investors’ perceived analyst signal
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standard deviation, τ is investors’s prior variance, and A is the average number of analyst

institutions that cover each stock (10 in Table 2). β = 0.06 implies the perceived analyst

signal standard deviation is about 2.5 times investors’ prior standard deviation: σ/τ1/2 ≈

2.5. This ratio is plausible and does not imply that investors view analysts as unrealistically

accurate. For example, if an investor’s prior mean annual growth expectation is 10% with

a standard deviation of 5%, β = 0.06 implies a perceived signal standard deviation of σ =

12.5%. A 10% annual analyst expectation would be viewed by investors as a signal that

the true growth expectation is between −15% and 35% with 95% probability. Thus, the

β = 0.06 estimate implies investors view analyst expectations as very noisy signals. For this

reason, β = 0.06 is not an unrealistically large estimate of analyst influence.

How noisy would analyst expectations have to be perceived in order to lower β sufficiently

to raiseMg to 1, given the c1 = 0.46 basis points estimate? ObtainingMg = 1 from c1 = 0.46

basis points requires β = 0.0046. This β value implies σ/τ1/2 ≈ 14. In the above example,

this ratio corresponds to a perceived signal standard deviation of σ = 70%, which means a

10% annual analyst expectation would be viewed by investors as a signal that the true growth

expectation is between −130% and 150% with 95% probability. Thus, a β small enough to

yieldMg = 1 given c1 = 0.46 basis points would imply that investors essentially view analyst

expectations as completely uninformative. This implication would be at odds with a large

literature that finds analyst expectations are informative (Brown and Rozeff [1978], Collins

and Hopwood [1980], Brown et al. [1987], Chen and Matsumoto [2006], Mayew, Sharp and

Venkatachalam [2013]). Moreover if analyst expectations are actually viewed by investors

as so uninformative, then the beliefs literature’s use of analyst expectations as a proxy for

investor expectations (e.g. Bordalo et al. [2019, 2022], Nagel and Xu [2021], De La O and

Myers [2021]) proves ill-justified.
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G.3 Allowing for Correlated Analyst Signal Errors

This appendix extends the baseline analysis in Chapter 6 to allow for correlated analyst

signal errors.

G.3.1 Posterior Weight Derivation

Fix a quarter t (so drop the t subscript). Prior to the analyst a’s announcement (i.e. at

t−), each investor i has the following prior distribution over the unknown stock-n annual

expected growth rate Gen:

Gen ∼ N(ḠIi,a,n, τ̄).

Investors view analyst a’s announced growth expectation GAa,n as a noisy signal of Gen:

GAa,n = Gen + εa,n, εa,n ∼ N(0, σ2),

where analysts reporting for the same stock n in the same quarter t have correlated signal

errors:

E
[
εa,nεb,n

]
= ρσ2,∀a 6= b,∀n.

Let the signal error covariance matrix be Σ, where

Σa,b =


σ2, a = b

ρσ2, a 6= b

.

Let

ḠAn =
1

An

∑
a

GAa,n
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and

−→
GA
n =

[
GAa,n

]
a

~G
e
n = [Gen]a=1,...,An

.

The likelihood function is

PrLik
(−→
GA
n | Gen

)
∝ exp

[
−1

2
(
−→
GA
n − ~G

e
n)
′
Σ−1(

−→
GA
n − ~G

e
n)
′
]

∝ exp

[
−1

2

An
1 + (An − 1)ρ

[
Gen

2 − 2GenḠ
A
n

]]
,

where the second line follows from an application of the Sherman-Morrison formula to obtain:

(
Σ−1

)
a,b

=


1
σ2

1
1−ρ

[
1+(An−2)ρ
1+(An−1)ρ

]
, a = b

1
σ2

[
−ρ

1+(An−1)ρ

]
, a 6= b

.

So the posterior is

PrPos
(
Gen |

−→
GA
n

)
∝ PrLik

(−→
GA
n | Gen

)
Prprior (Gen)

∝ exp

[
−1

2

[
Gen

2

(
1

τ̄
+

An
σ2 (1 + (An − 1)ρ)

)
− 2Gen

(
ḠIi,a,n
τ̄
− An
σ2 (1 + (An − 1)ρ)

ḠAn

)]]

∝ exp

−1

2

(
1

τ̄
+

2(1− ρ)

σ2 (1− ρ2)

)Gen − Ḡi,a,n

τ̄ + An

σ2(1+(An−1)ρ) Ḡ
A
n

1
τ̄ + An

σ2(1+(An−1)ρ)

 . (G.1)

So the posterior mean is

τ̄−1

τ̄−1 +
[
σ2 (1 + (An − 1)ρ)

]−1
An

Ḡi,a,n +

[
σ2 (1 + (An − 1)ρ)

]−1

τ̄−1 +
[
σ2 (1 + (An − 1)ρ)

]−1
An

∑
a

GAa,n.
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So the shift from prior to posterior mean is

∆GIi,a,n =

[
σ2 (1 + (An − 1)ρ)

]−1

τ̄−1 +
[
σ2 (1 + (An − 1)ρ)

]−1
An

(∑
i

si − µ̄

)
. (G.2)

Rewriting the posterior weight placed on each analyst yields

[
σ2 (1 + (An − 1)ρ)

]−1

τ̄−1 +
[
σ2 (1 + (An − 1)ρ)

]−1
An

=
1

x+ (An − 1)ρx+ An
,

where x = σ2/τ̄ is the ratio of signal variance to prior variance. Note that ρ = 0 recovers

the standard expression:
σ−2

τ̄−1 + σ−2An
.

G.3.2 Empirical Results

Plugging in the Bayesian update (G.2) and the factor structure on analyst expectations from

(6.3) into market-clearing expression (5.12) yields the following nonlinear, high-frequency

regression analogous to (6.7):

∆p+
a,n,t = Mg

1

x+ (An,t−1 − 1)ρx+ An,t−1
ua,n,t + ea,n.t. (G.3)

Even though there are only two sources of variation here (the idiosyncratic shocks ua,n,t and

the number of analysts An,t−1), the nonlinear functional form of the posterior weight allows

all three structural parameters of be identified (Mg, x, and ρ).

Table G10 displays the estimation results for Mg, x, ρ, and the posterior weight for the

average stock

β =
1

x+
(
E
[
An,t−1

]
− 1ρx

)
+ E

[
An,t−1

] ,
where E

[
An,t−1

]
= 10 as in Table 2.
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Table G10: Estimation Results Allowing for Correlated Analysts

(1)
Mg 0.368

( 0.165, 0.887)

x 50.459
(20.925, 94.003)

ρ 0.181
(0.0829, 0.459)

β 0.00754
(0.00274, 0.0168 )

N 1530391
Boostrapped 95% confidence intervals in parentheses

This table displays the estimated Mg, x, ρ, and β from (G.3). Point estimates are the medians
of the block-bootstrapped sampling distributions (I sample quarters). Confidence intervals report
the 2.5th and 97.5th quantiles of the are block-bootstrapped sampling distributions. Mg and β

estimates represent the marginal effect in percentage points of a 1 percentage point increase in
growth expectations (analyst expectations for β and investor expectations forMg). The time period
is 1984-01:2021-12.

Alternatively, one can fix a value of the correlation ρ and estimate the other parameters in

(G.3) nonlinearly. Figure G12 displays the estimation results for Mg, x, and β under different

assumptions about the correlation ρ.
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Figure G12: Mg, x, and β Results for Different Correlation Assumptions

This table displays the estimated Mg, x and β from (G.3) under different assumed values of the
correlation ρ. Point estimates are the medians of the block-bootstrapped sampling distributions
(I sample quarters). Confidence intervals report the 2.5th and 97.5th quantiles of the are block-
bootstrapped sampling distributions. I use 500 bootstrapped samples. Mg and β estimates represent
the marginal effect in percentage points of a 1 percentage point increase in growth expectations
(analyst expectations for β and investor expectations for Mg). The time period is 1984-01:2021-12.
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G.4 Allowing for Analyst Heterogeneity

This appendix extends the baseline analysis in Chapter 6 to allow for heterogeneous influence

across analyst institutions.

As discussed in Appendix C.1, allowing for heterogeneous signal precisions across analysts

(but maintaining homogeneity across investors) yields the following form for analyst a’s

influence for stock n:

Ba,n ≈ β − β2Ãn + ya − β
∑
a
′∈An

y
a
′ ,

β is the average analyst’s influence for the average stock. ya is the deviation of a’s influence

for the average stock from β, so the sum of ya across all analysts is zero.

With this general form of analyst influence, the analogous market-clearing expression to

(6.7) is

∆p+
a,n,t = Mg

∑
a
′

(
β + y

a
′
)

1
a
′
=a
ua,n,t −Mgβ

∑
a
′

(
β + y

a
′
)

1
a
′∈An,t−1

ua,n,t

+MgβAt−1ua,n,t + ea,n,t, (G.4)

where At−1 is the average number of analyst institutions per stock in quarter t − 1. Note

that if all y
a
′ = 0 so there is no analyst heterogeneity, (G.4) collapses to (6.7).

In the baseline analysis, cross-sectional variation in the number of analysts that cover

each stock identifies the the shrinkage rate of analyst price impact as the number of analysts

grows and influence declines (c2 = Mgβ
2). Combined with average analyst price impact

(c1 = Mgβ), I identify both Mg and β.

In this general case, cross-sectional variation in the set — not the number — of analysts

covering each stock identifies how much a’s price impact for the average stock shrinks when

adding analyst a
′
(Mgβ

(
β + y

a
′
)
). Note that adding more influential (higher y

a
′ ) analysts
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will reduce a’s price impact to a greater extent. Combined with analyst a
′
’s price impact

for the average stock (Mg

(
β + y

a
′
)
), I identify β. Since all ya sum to zero, the sum of

analyst-specific price impacts for the average stock (
∑
aMg (β + ya)) identifies the average

analyst’s price impact on the average stock (Mgβ). Given β and Mgβ, I identify Mg.

I fit (G.4) as a nonlinear regression of post-announcement price changes (∆p+
a,n,t) on

the idiosyncratic growth expectations shocks interacted with analyst-specific dummies

(1
a
′
=a
ua,n,t) and on the idiosyncratic growth expectations shocks interacted with dummies

capturing the set of analysts who cover stock n in the previous quarter (1
a
′∈An,t−1

ua,n,t).1

If there are A total analysts, then there are A + 1 total structural parameters to identify:

Mg, β, and A − 1 of ya (since the ya sum to zero). There are 2A instruments: A of

1
a
′
=a
ua,n,t and A of 1

a
′∈An,t−1

ua,n,t. Thus, the system is overidentified with the following

set of moment conditions

E
[
1
a
′
=a
ua,n,tea,n,t

]
= 0,∀a

′

E
[
1
a
′∈An,t−1

ua,n,tea,n,t

]
= 0,∀a

′
.

Due to computational limitations, I run regression (G.4) using only analyst institutions that

report at least 100 expectations in the full sample. This filter leaves 1, 513, 888 analyst

institution-stock-quarter observations (out of 1, 530, 391 in the baseline analysis) from 413

analyst institutions (out of 1, 150 in the baseline analysis).

Table G11 displays the estimated Mg and β from regression (G.4). Both the β = 0.04

and Mg = 0.05 estimates are quantitatively similar to the baseline results from Table 4

(β = 0.06 and Mg = 0.07).

1. As in the baseline analysts, I use the lagged coverage set to avoid any potential endogeneity issues with
analysts initiating (or ending) coverage due to particularly bullish (or bearish) information. Irvine [2003]
discusses some of these concerns.
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Table G11: Estimation Results Allowing for Investor Heterogeneity

βS Mg

Point Estimate 0.044*** 0.046***
95% Confidence Interval (0.031, 0.12) (0.0095, 0.098)
* p<0.10, ** p<0.05, *** p<0.01

This table displays the estimated β and Mg from (G.4). Point estimates are the medians of the
block-bootstrapped sampling distributions (I sample quarters). Confidence intervals report the 2.5th
and 97.5th quantiles of the are block-bootstrapped sampling distributions. All estimates represent
the marginal effect in percentage points of a 1 percentage point increase in growth expectations
(analyst expectations for β and investor expectations for Mg). The time period is 1984-01:2021-12.

G.5 Alternative Numbers of Latent Factors

The baseline specification in Chapter 6.5 uses 5 latent factors. Figures G13 and G14 display

estimates for reduced-form coefficients c1 and c2 as well as structural parameters β and

Mg for alternative numbers of latent factors. All results prove robust to using alternative

numbers of latent factors.

Figure G15 displays the cumulative percentage variation in ∆GAa,n,t explained as a

function of the number of latent factors. The first 5 latent factors (along with stock-quarter

and analyst-quarter fixed effects) explain 88% of the variation in ∆GAa,n,t. Adding more

factors explains only marginally more variation: 5 more factors (for a total of 10) explain

less than 1% additional variation in ∆GAa,n,t.
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Figure G13: c1 and c2 Results for Numbers of Latent Factors

Estimates of reduced-form parameters c1 and c2 from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t + ea,n,t,

where ∆p+
a,n,t is measured over different windows from 1 to 10 days. Zero factors corresponds

to using the full analyst growth expectation update ∆GAa,n,t.
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Figure G14: β and Mg Results for Numbers of Latent Factors

Estimates of implied structural parameters β and Mg from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t +Xn,t + ea,n,t,

where ∆p+
a,n,t is measured over different windows from 1 to 10 days. Zero factors corresponds

to using the full analyst growth expectation update ∆GAa,n,t.
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Figure G15: Percentage Variation in ∆GAa,n,t Explained

Percentage variation in ∆GAa,n,t explained as a function of the number of latent factors.
Zero factors corresponds to the percentage variation explained by just stock-quarter and
analyst-quarter fixed effects.

G.6 Alternative Price Reaction Windows

The baseline specification in Chapter 6.5 uses the 5-day return following an analyst report to

measure the high-frequency price change ∆p+
a,n,t. Figures G16 and G17 display estimates for

reduced-form coefficients c1 and c2 as well as structural parameters β and Mg using reaction

windows of different lengths. The Mg results for windows of 1− 5 days prove similar and all

are roughly within the range of 7−16 basis points that I argue for, especially after accounting

for standard errors.

I use 5-days for the baseline specification to account for the possibility of a delayed

investor reaction to analyst reports. Ideally, I would like to go out further than 5 days but,

as Figures G16 and G17 exhibit, past 5 days regression (6.7) lacks power. In particular,

the estimate of analyst price impact for the average stock (c1) lacks power. The intuition

for this decay in power is that the regression uses within stock-quarter variation in analyst
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expectations to identify c1. When constructing the idiosyncratic analyst growth expectations

shocks ua,n, the factor model removes analyst-quarter and stock-quarter fixed effects. Thus,

the high-frequency price reactions ∆p+
a,n,t need to vary across analysts a within the (stock n,

quarter t) pair. For example, if all analysts reported on the same day so ∆p+
a,n,t = ∆p+

n,t,∀a,

then the regression

∆p+
n,t = c1ua,n,t + c2ua,n,tÃn,t + ea,n,t

would not be able to identify c1. Essentially, this regression would be trying to explain a

within stock-quarter constant on the left-hand side since the latent factor model removes all

stock-quarter variation from ua,n,t. ua,n,tÃn,t, on the other hand, does have stock-quarter

variation, which is presumably why the c2 estimates in Figure G16 vary less as the window

expands.

For short windows, ∆p+
a,n,t has variation across analysts a within the (stock n, quarter

t) pair. However, as the window expands, the post-report price changes ∆p+
a,n,t overlap

significantly across analysts, since analyst reports tend to cluster temporally within a quarter.

For a 10-day window, stock-quarter fixed effects explain 63% of the variation in ∆p+
a,n,t. The

remaining variation proves insufficient to pin down c1.
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Figure G16: c1 and c2 Results for Different Price Reaction Windows

Estimates of reduced-form parameters c1 and c2 from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t + ea,n,t,

where ∆p+
a,n,t is measured over different post-announcement windows from 1 to 10 days.
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Figure G17: β and Mg Results for Different Price Reaction Windows

Estimates of implied structural parameters β and Mg from the following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

ua,n,t − c2︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + FEn,t + ea,n,t,

where ∆p+
a,n,t is measured over post-announcement different windows from 1 to 10 days.

To provide further evidence that the within stock-quarter lack of variation in ∆p+
a,n,t is

the problem (as opposed to price reversal at longer horizons or some other reason), I run the
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following regression:

∆p+
a,n,t = c1∆Ga,n,t + c2∆Ga,n,tÃn,t + FEn + FEt + ea,n,t. (G.5)

Figures G18 and G19 display the regression results for price reaction windows of 1 to 10

days. This regression uses the entire analyst update ∆Ga,n,t instead of just the idiosyncratic

analyst growth shock ua,n,t. Unlike ua,n,t, ∆Ga,n,t has within-quarter variation across stocks.

Thus, even if for longer windows ∆p+
a,n,t does not have much variation across analysts within

stock-quarter, regression (G.5) can still estimate c1. For this reason, the c1 estimates in

Figure G18 are all significant stable across window lengths.2

Of course, ĉ1 and ĉ2 from (G.5) are not consistent estimates of the parameters c1 and c2

because ∆Ga,n,t likely does not satisfy moment conditions (6.9) and (6.10):

E
[
∆Ga,n,tea,n

]
6= 0 (G.6)

E
[
∆Ga,n,tÃnea,n

]
6= 0. (G.7)

Nevertheless, the Mg estimates implied by ĉ1 and ĉ2 from (G.5) actually prove broadly

consistent (if slightly larger) with those from the baseline regression (6.7). TheMg estimates

in Figure G19 range from 20 to 27 basis points, and so are roughly in line with the range

of 7 − 16 basis points that I argue for, especially after accounting for standard errors. The

larger Mg estimates from (6.7) also yield the same economic conclusion: the causal effect of

subjective growth expectations on asset prices is far smaller than in standard models (i.e.

far smaller than the benchmark value Mg = 1).

2. If ex-post reversal explained the insignificance of the c1 estimates from the baseline regression (6.7),
we would not see stable c1 estimates across window lengths from regression (G.5).
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Figure G18: c1 and c2 Results for Different Price Reaction Windows and Full ∆GAa,n,t

Estimates of reduced-form parameters c1 and c2:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

∆Ga,n,t + c2︸︷︷︸
≡Mgβ2

∆Ga,n,tÃn,t + FEn + FEt + ea,n,t.

where ∆p+
a,n,t is measured over different post-announcement windows from 1 to 10 days.
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Figure G19: β and Mg Results for Different Price Reaction Windows and Full ∆GAa,n,t

Estimates of reduced-form parameters implied structural parameters β and Mg from the
following regression:

∆p+
a,n,t = c1︸︷︷︸

≡Mgβ

∆Ga,n,t + c2︸︷︷︸
≡Mgβ2

∆Ga,n,tÃn,t + FEn + FEt + ea,n,t.

where ∆p+
a,n,t is measured over different post-announcement windows from 1 to 10 days.
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G.7 Allowing β to Vary by Stock

In this section I relax the assumption that β does not vary across stocks. This analysis yields

the same economic conclusion as the baseline specification: the causal effect of subjective

growth expectations on prices is an order of magnitude smaller than suggested by standard

models.

Consider a generalization of (6.2) where investor prior precisions and analyst signal

precisions are allowed to vary by stock:

Bn ≈ βn︸︷︷︸
≡ σ−2

n
τn−1+Aσ−2

n

−β2
n Ãn︸︷︷︸
An−A

.

In this case, I model βn as a function of stock characteristics

βn = f(Xn)

≈ β +
∑
k

∂fk
∂Xk,n

∣∣∣∣∣
X̄︸ ︷︷ ︸

≡γk

X̃k,n︸︷︷︸
≡Xk,n−X̄k

,

where the second line follows from a first-order approximation. β is the average βn across

stocks n, X̃k,n is the cross-sectionally demeaned characteristic k for stock n, and γk captures

how βn varies with characteristic k.
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Given this structure, (6.7) becomes

∆p+
a,n,t = c1,n︸︷︷︸

≡Mgβn

ua,n,t − c2,n︸︷︷︸
≡Mgβ2

n

ua,n,tÃn,t−1 + ea,n,t

= Mg

(
β + γ

′
X̃n,t−1

)
ua,n,t −Mg

(
β + γ

′
X̃n,t−1

)2
ua,n,tÃn,t−1 + ea,n,t

= c1︸︷︷︸
≡Mgβ

ua,n,t − c1︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + c
′
3X̃n,t−1ua,n,t + c

′
4X̃n,t−1ua,n,tÃn,t−1

+ c
′
5X̃

2
n,t−1ua,n,tÃn,t−1 +

∑
k

∑
l>k

c6,k,lX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t. (G.8)

Thus, I can identifyMg = c21/c2 and β = c2/c1 from a regression of post-announcement price

changes (∆p+
a,n,t) on the interaction of the idiosyncratic analyst growth expectations shocks

(ua,n,t) with cross-sectionally demeaned stock characteristics (X̃n,t−1 and a constant)3,

and the interaction of ua,n,t with both the demeaned number of analysts that cover each

stock (Ãn,t−1) and a second-order polynomial of demeaned stock characteristics (including

a constant).4 Strictly speaking, the structure on βn imposes cross-coefficient restrictions

on the reduced-form parameters c1, c2, c3, c4, c5, and c6 in (G.8). To keep the estimation

as simple as possible, I do not impose these restrictions (although doing so might improve

estimation efficiency).

I use five stock characteristics motivated by Fama and French [2015] and used by Koijen

and Yogo [2019]: log book equity, profitability, investment, market beta, and the dividend-

to-book equity ratio.

Table G12 displays the reduced-form results from regression (G.8). Each column adds an

3. I lag stock characteristics by one quarter to ensure these characteristics are exogenous to quarter t
growth expectations shocks.

4. The full regression is

∆p+
a,n,t = Mgβua,n,t −Mgβ

2ua,n,tÃn,t−1 +Mg

∑
k

γkX̃k,nua,n,t − 2Mgβ
∑
k

γkX̃k,nua,n,tÃn,t−1

−Mg

∑
k

γ2
kX̃

2
k,nua,n,tÃn,t−1 − 2Mg

∑
k

∑
k 6=l

γkγlX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t.
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additional characteristic. The c1 estimate is stable across specifications. The c2 estimate is

broadly stable across specifications, although the regression starts to lose power in columns

5 and 6. More importantly, the c4, c5, and c6 coefficients in (G.8) on interactions of

ua,n,tÃn,t−1 with the second-order polynomial of stock characteristics are insignificant across

specifications. For this reason, I do not find significant evidence that c2,n varies across stocks

n, which suggests βn does not vary across stocks based on these characteristics.5

Table G13 presents the implied Mg and β from regression (G.8). I find β ≈ 0.04 across

specifications, which is statistically indistinguishable from the baseline β = 0.06 in column 1

(again, the regression starts to lose power in columns 5 and 6). TheMg estimates range from

0.10 to 0.11, which implies a 1% rise in one-year investor (not analyst) growth expectations

raises price 10 to 11 basis points. These estimates are statistically indistinguishable from

the baseline Mg = 0.07 estimate and yield the same economic conclusion: the causal effect

of subjective growth expectations on prices is an order of magnitude smaller than suggested

by standard models.

5. Note that the c3 coefficient on the interaction of ua,n,t with log book equity (size) is significant and
negative while all all other c3, c4, c5, and c6 coefficients are insignificant. This pattern is consistent with βn
being constant but Mg varying by stock (i.e. Mg is Mg,n) and being smaller for big stocks. Note that if
both Mg,n and βn are linear functions of firm characteristics, then the market clearing expression will have
the same reduced-form as in (G.8) but with third-order interactions of stock characteristics interacted with
ua,n,tÃn,t−1 (i.e.

∑
k

∑
l>k

∑
m>l c7,k,l,mX̃k,nX̃l,nX̃m,nua,n,tÃn,t−1). Since Mg is smaller when demand is

more inelastic (as explained in Chapter 5.4), this result would be consistent with the result from Haddad,
Huebner and Loualiche [2021]: investors are more elastic for stocks in which other investors are more elastic
(i.e. small stocks since inelastic passive investors own large shares of large stocks).
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Table G12: Reduced-Form Estimates with Stock-Specific βn

(1) (2) (3) (4) (5) (6)
ua,n,t 0.452*** 0.454*** 0.462*** 0.468*** 0.465*** 0.442***

(0.0560) (0.0563) (0.0576) (0.0589) (0.0600) (0.0615)
ua,n,t × Ãn,t−1 -0.0284*** -0.0200** -0.0204** -0.0213** -0.0186* -0.0172

(0.00434) (0.00837) (0.00884) (0.00978) (0.0102) (0.0113)
ua,n,t × LNben,t−1 -0.0988** -0.0981** -0.101** -0.101** -0.100**

(0.0409) (0.0424) (0.0422) (0.0393) (0.0402)
ua,n,t × Ãn,t−1 × LNben,t−1 0.00301 0.00503 0.00484 0.00338 0.00328

(0.00585) (0.00586) (0.00598) (0.00633) (0.00631)
ua,n,t × Ãn,t−1 × LNbe2

n,t−1 -0.000358 -0.000752 -0.000760 -0.000878 -0.000683
(0.00120) (0.00130) (0.00133) (0.00143) (0.00148)

ua,n,t ×MktBetan,t−1 -0.0360 -0.0369 -0.0378 -0.0548
(0.0734) (0.0741) (0.0749) (0.0709)

ua,n,t × Ãn,t−1 ×MktBetan,t−1 0.0116 0.00783 0.00624 0.0101
(0.0127) (0.0131) (0.0137) (0.0149)

ua,n,t × Ãn,t−1 × LNben,t−1 ×MktBetan,t−1 -0.00630 -0.00568 -0.00407 -0.00342
(0.00557) (0.00578) (0.00632) (0.00652)

ua,n,t × Ãn,t−1 ×MktBeta2
n,t−1 -0.00421 -0.00436 -0.00548 -0.00540

(0.00577) (0.00565) (0.00535) (0.00529)
ua,n,t ×Gatn,t−1 -0.140 -0.133 -0.173

(0.215) (0.213) (0.217)
ua,n,t × Ãn,t−1 ×Gatn,t−1 -0.0339 -0.0353 -0.0362

(0.0370) (0.0398) (0.0412)
ua,n,t × Ãn,t−1 × LNben,t−1 ×Gatn,t−1 0.0140 0.00947 0.0122

(0.0139) (0.0155) (0.0164)
ua,n,t × Ãn,t−1 ×MktBetan,t−1 ×Gatn,t−1 0.0252 0.0315 0.0338

(0.0267) (0.0276) (0.0282)
ua,n,t × Ãn,t−1 ×Gat2n,t−1 0.0526 0.0634* 0.0590

(0.0388) (0.0382) (0.0394)
ua,n,t × profitn,t−1 -0.0198 0.0229

(0.184) (0.192)
ua,n,t × Ãn,t−1 × profitn,t−1 0.0280 0.0353

(0.0267) (0.0269)
ua,n,t × Ãn,t−1 × LNben,t−1 × profitn,t−1 0.00606 0.00270

(0.00821) (0.00872)
ua,n,t × Ãn,t−1 ×MktBetan,t−1 × profitn,t−1 -0.0187 -0.0263

(0.0199) (0.0219)
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Table G12: Reduced-Form Estimates with Stock-Specific βn (Continued)
ua,n,t × Ãn,t−1 ×Gatn,t−1 × profitn,t−1 0.0335 0.0357

(0.0447) (0.0465)
ua,n,t × Ãn,t−1 × profit2n,t−1 -0.00599 -0.00386

(0.0131) (0.0135)
ua,n,t ×D/Bn,t−1 -0.0323

(0.0219)
ua,n,t × Ãn,t−1 ×D/Bn,t−1 -0.0431

(0.257)
ua,n,t × Ãn,t−1 × LNben,t−1 ×D/Bn,t−1 0.143*

(0.0792)
ua,n,t × Ãn,t−1 ×MktBetan,t−1 ×D/Bn,t−1 0.313

(0.287)
ua,n,t × Ãn,t−1 ×Gatn,t−1 ×D/Bn,t−1 -0.00561

(0.584)
ua,n,t × Ãn,t−1 × profitn,t−1 ×D/Bn,t−1 0.0933

(0.212)
ua,n,t × Ãn,t−1 × (D/Bn,t−1)2 -0.110

(0.0187)
Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
R-Squared 0.0000524 0.0000604 0.0000625 0.0000664 0.0000696 0.0000731
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c

′
3X̃n,t−1ua,n,t + c

′
4X̃n,t−1ua,n,tÃn,t−1 + c

′
5X̃

2
n,t−1ua,n,tÃn,t−1

+
∑
k

∑
l>k

c6,k,lX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t.

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and
Ãn,t−1 is the demeaned number of analyst institutions that cover stock n in the previous quarter
t − 1. X̃n,t−1 is a vector of demeaned stock characteristics: log book equity (LNbe), market beta
(MktBeta), profitability (profit), investment (Gat), and the dividend-to-book equity ratio (D/B).
All estimates represent the marginal effect in basis points of a 1 percentage point increase in analyst
growth expectations. The time period is 1984-01:2021-12.
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Table G13: Mg and β Estimates with Stock-Specific βn

(1) (2) (3) (4) (5) (6)
β 0.0627*** 0.0439*** 0.0441** 0.0455** 0.0399* 0.0389

(0.00733) (0.0170) (0.0173) (0.0194) (0.0209) (0.0242)

Mg 0.0721*** 0.103** 0.105** 0.103** 0.117* 0.114
(0.0134) (0.0408) (0.0409) (0.0439) (0.0614) (0.0701)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays the β and Mg estimates implied by the regression

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c

′
3X̃n,t−1ua,n,t + c

′
4X̃n,t−1ua,n,tÃn,t−1 + c

′
5X̃

2
n,t−1ua,n,tÃn,t−1

+
∑
k

∑
l>k

c6,k,lX̃k,nX̃l,nua,n,tÃn,t−1 + ea,n,t

β =
c2

c1
and Mg =

c2
1

c2
,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic growth expectation shock, and Ãn,t−1

is the demeaned number of analyst institutions that cover stock n in quarter t. X̃n,t−1 is a vector
of demeaned stock characteristics: log book equity, profitability, investment, market beta, and the
dividend-to-book equity ratio. All estimates represent the marginal effect in percentage points
of a 1 percentage point increase in growth expectations (analyst expectations for β and investor
expectations for Mg). The time period is 1984-01:2021-12.

G.8 Allowing Mg to Vary by Stock

In this section I relax the assumption that Mg does not vary across stocks. This analysis

yields the same economic conclusion as the baseline specification: the causal effect of

subjective growth expectations on prices is an order of magnitude smaller than suggested

by standard models.
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Consider a generalization in which the sensitivity of demand to expected return κ from

Chapter 5.1 varies across stocks. Then the sensitivity of demand to growth expectations κg

and the price elasticity of demand ζ from Chapter 5.3 will also vary across stocks, and thus

so will Mg = κg/ζ. In this case, I model Mg,n as a function of stock characteristics

Mg,n = h(Xn)

≈Mg +
∑
k

∂hk
∂Xk,n

∣∣∣∣∣
X̄︸ ︷︷ ︸

≡πk

X̃k,n︸︷︷︸
≡Xk,n−X̄k

,

where the second line follows from a first-order approximation. Mg is the average Mg,n

across stocks n, X̃k,n is the cross-sectionally demeaned characteristic k for stock n, and πk

captures how Mg,n varies with characteristic k.

Given this structure, (6.7) becomes

∆p+
a,n,t = c1,n︸︷︷︸

≡Mg,nβ

ua,n,t − c2,n︸︷︷︸
≡Mg,nβ2

ua,n,tÃn,t−1 + ea,n,t

=
(
Mg + π

′
X̃n,t−1

)
βua,n,t −

(
Mg + π

′
X̃n,t−1

)
β2ua,n,tÃn,t−1 + ea,n,t

= c1︸︷︷︸
≡Mgβ

ua,n,t − c1︸︷︷︸
≡Mgβ2

ua,n,tÃn,t−1 + c
′
3X̃n,t−1ua,n,t + c

′
4X̃n,t−1ua,n,tÃn,t−1 + ea,n,t.

(G.9)

Thus, I can identifyMg = c21/c2 and β = c2/c1 from a regression of post-announcement price

changes (∆p+
a,n,t) on the interaction of the idiosyncratic analyst growth expectations shocks

(ua,n,t) with cross-sectionally demeaned stock characteristics (X̃n,t−1 and a constant)6, and

6. I lag stock characteristics by one quarter to ensure these characteristics are exogenous to quarter t
growth expectations shocks.
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the interaction of ua,n,t with both the demeaned number of analysts that cover each stock

(Ãn,t−1) and demeaned stock characteristics (including a constant).7 Strictly speaking,

the structure on Mg,n imposes cross-coefficient restrictions on the reduced-form parameters

c1, c2, c3, and c4 in (G.9). To keep the estimation as simple as possible, I do not impose

these restrictions (although doing so might improve estimation efficiency).

I use five stock characteristics motivated by Fama and French [2015] and used by Koijen

and Yogo [2019]: log book equity, profitability, investment, market beta, and the dividend-

to-book equity ratio.

Table G14 displays the reduced-form results from regression (G.9). Each column adds an

additional characteristic. The c1 estimate is stable across specifications. The c2 estimate is

broadly stable across specifications, although the regression starts to lose power in columns

5 and 6. The c3 coefficient on the interaction of ua,n,t with firm size (log book equity)

is significantly negative, which suggests c1,n is smaller for bigger stocks. This result is

consistent with the results from Haddad, Huebner and Loualiche [2021], which finds that

price elasticities of demand are smaller for bigger stocks. From Chapter 5.4, Mg is smaller

when demand is less elastic and so Mg should be smaller for bigger stocks. Thus, it makes

sense that c1,n = Mg,nβ is smaller for bigger stocks.

Table G15 presents the implied Mg and β from regression (G.9). I find β = 0.03 to

0.04 across specifications, which is statistically indistinguishable from the baseline β = 0.06

in column 1 (again, the regression starts to lose power in columns 5 and 6). The Mg

estimates range from 0.10 to 0.14, which implies a 1% rise in one-year investor (not analyst)

growth expectations raises price 10 to 14 basis points. These estimates are statistically

indistinguishable from the baseline Mg = 0.07 estimate and yield the same economic

7. The full regression is

∆p+
a,n,t = Mgβua,n,t −Mgβ

2ua,n,tÃn,t−1 +Mg

∑
k

πkX̃k,nua,n,t − β2
∑
k

πkX̃k,nua,n,tÃn,t−1 + ea,n,t.
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conclusion: the causal effect of subjective growth expectations on prices is an order of

magnitude smaller than suggested by standard models.

189



Table G14: Reduced-Form Estimates with Stock-Specific Mg,n

(1) (2) (3) (4) (5) (6)
ua,n,t 0.452*** 0.456*** 0.467*** 0.469*** 0.468*** 0.441***

(0.0560) (0.0550) (0.0560) (0.0571) (0.0578) (0.0576)

ua,n,t × Ãn,t−1 -0.0284*** -0.0198** -0.0183** -0.0184* -0.0171 -0.0136
(0.00434) (0.00835) (0.00887) (0.00948) (0.0104) (0.0104)

ua,n,t × LNben,t−1 -0.100** -0.102** -0.104** -0.104*** -0.0992**
(0.0418) (0.0428) (0.0427) (0.0392) (0.0403)

ua,n,t × Ãn,t−1 × LNben,t−1 0.00185 0.00147 0.00151 0.000991 0.000679
(0.00368) (0.00381) (0.00397) (0.00413) (0.00416)

ua,n,t ×MktBetan,t−1 -0.0396 -0.0407 -0.0417 -0.0543
(0.0727) (0.0731) (0.0741) (0.0712)

ua,n,t × Ãn,t−1 ×MktBetan,t−1 -0.00211 -0.00201 -0.00169 -0.000812
(0.00894) (0.00911) (0.00907) (0.00909)

ua,n,t ×Gatn,t−1 -0.120 -0.116 -0.151
(0.218) (0.215) (0.217)

ua,n,t × Ãn,t−1 ×Gatn,t−1 0.00876 0.00593 0.0111
(0.0257) (0.0273) (0.0279)

ua,n,t × profitn,t−1 -0.00528 0.0275
(0.185) (0.193)

ua,n,t × Ãn,t−1 × profitn,t−1 0.00730 0.00561
(0.0164) (0.0167)

ua,n,t ×D/Bn,t−1 -0.0328
(0.0212)

ua,n,t × Ãn,t−1 ×D/Bn,t−1 0.336**
(0.147)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
R-Squared 0.0000524 0.0000603 0.0000610 0.0000612 0.0000615 0.0000634
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c

′
3X̃n,t−1ua,n,t + c

′
4X̃n,t−1ua,n,tÃn,t−1 + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and
Ãn,t−1 is the demeaned number of analyst institutions that cover stock n in the previous quarter
t − 1. X̃n,t−1 is a vector of demeaned stock characteristics: log book equity (LNbe), market beta
(MktBeta), profitability (profit), investment (Gat), and the dividend-to-book equity ratio (D/B).
All estimates represent the marginal effect in basis points of a 1 percentage point increase in analyst
growth expectations. The time period is 1984-01:2021-12.
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Table G15: Mg and β Estimates with Stock-Specific Mg,n

(1) (2) (3) (4) (5) (6)
β 0.0627*** 0.0435*** 0.0392** 0.0391** 0.0365* 0.0309

(0.00733) (0.0168) (0.0172) (0.0187) (0.0210) (0.0223)

Mg 0.0721*** 0.105*** 0.119** 0.120** 0.128* 0.143
(0.0134) (0.0405) (0.0508) (0.0560) (0.0726) (0.101)

Size Y Y Y Y Y
Market Beta Y Y Y Y
Investment Y Y Y
Profitability Y Y
Dividend/Book Equity Y
Quarter-Clustered SE Y Y Y Y Y Y
N 1558065 1558065 1558065 1558065 1558065 1558065
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays the β and Mg estimates implied by the regression

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 + c

′
3X̃n,t−1ua,n,t + c

′
4X̃n,t−1ua,n,tÃn,t−1 + ea,n,t.

β =
c2

c1
and Mg =

c2
1

c2
,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic growth expectation shock, and Ãn,t−1

is the demeaned number of analyst institutions that cover stock n in quarter t. X̃n,t−1 is a vector
of demeaned stock characteristics: log book equity, profitability, investment, market beta, and the
dividend-to-book equity ratio. All estimates represent the marginal effect in percentage points
of a 1 percentage point increase in growth expectations (analyst expectations for β and investor
expectations for Mg). The time period is 1984-01:2021-12.

G.9 Evidence from LTG Expectations

This appendix extends the baseline analysis in Chapter 6 to measure the causal effect of

long-term (as opposed to one-year) growth expectations on prices using the I/B/E/S long-

term earnings growth (LTG) expectations. The results of this analysis prove quantitatively

consistent with those from Chapter 6.5. Appendix G.9.1 provides a simple benchmark range

for the causal effect of long-term growth expectations on prices (Appendix G.9.3 considers
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alternative benchmark ranges). Appendix G.9.2 presents the empirical results.

G.9.1 Benchmark Price Impact with Long-Term Growth Expectations

The benchmark range for the price impact of long-term growth expectations, denotedMLTG,

is

MLTG ∈ [3, 5].

LTG expectations represent the analyst’s forecast for average EPS growth over the next

3−5 years. For example, an LTG expectation of 5% represents a forecast of 5% annual EPS

growth in the average year over the next 3− 5 years. So a 1% increase in LTG expectation

represents a 1% higher forecasted annual EPS growth for the average year over the next 3−5

years.

How much price rises today in response to a change in 3 − 5 year growth expectations

depends (somewhat) on the timing of the quarterly growth expectations shocks over that time

period. The simplest assumption is that the entire increase in average forecasted growth is

driven by a higher growth expectation in the next quarter. For example, if LTG expectations

represent 3 year average growth expectations, the assumption is a 1% increase in LTG

captures a 3% increase in next-quarter’s growth expectation and zero change is growth

expectations thereafter. In this case, the price impact of long-term growth expectations,

denoted MLTG, is just

MLTG = H ·Mg,

where Mg is still the price impact of one-year growth expectations and H is the horizon

of the long-term growth expectations (so empirically H ∈ [3, 5] years). Thus, under this

assumption we have a benchmark range for MLTG of between 3 and 5, since we have a

benchmark Mg = 1 from Chapter 5.5.

Other timing assumptions do not significantly alter this benchmark range, as discussed
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in Appendix G.9.3 below. The minimum possible benchmark range for MLTG is

MLTG ∈ [2.7, 4.1],

which corresponds to the entire change in average forecasted growth over the next H years

being driven by a shock to quarterly growth expectation in the last quarter of that time

period (i.e. quarter t+ 4H).

G.9.2 Empirical Results

The key empirical challenge raised by the LTG expectations is the lack of coverage.

Specifically, the baseline analysis in Chapter 6 crucially relies on observing growth

expectations from multiple analyst institutions for the same (stock, quarter) pair for two

reasons:

1. To remove time-varying stock characteristics ηn in the latent factor model (6.3) when

extracting the idiosyncratic analyst growth expectation shocks ua,n.

2. To pin down the shrinkage rate of analyst price impact as the number of analysts rises

(c2 in regression (6.7)) using the instrument ua,nÃn, where Ãn is the demeaned number

of analysts that rate stock n.

As displayed in Table 2, the average stock in the average quarter has one-year growth

expectations reported by 10 analyst institutions with a standard deviation of 7 institutions.

On the other hand, the average stock in the average quarter has LTG expectations from

only 2 analyst institutions with a standard deviation of 1 institution. For this reason,

extracting exogenous variation in LTG expectations and separately identifying Mg from β

(which requires a precise estimate of c2) prove difficult using the LTG expectations.
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Thus, I measure c1 = MLTGβ using the same regression as in Chapter 6:

∆p+
a,n,t = c1︸︷︷︸

≡MLTGβ

∆LTGa,n,t − c2︸︷︷︸
≡MLTGβ2

∆LTGa,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆LTGa,n,t the full LTG expectation update, not an idiosyncratic shock. Since the

c2 estimate will not be significant (due to lack of variation in Ãn,t−1), I use the estimated

analyst influence β = 0.06 from Table 4 to back out MLTG from c1.

Table G16 displays the regression results. The specification in column 4 proves most likely

to satisfy moment conditions (6.9) and (6.10) since it includes stock-quarter fixed effects.

The c1 = 1.4 estimate implies a 1% higher analyst-reported LTG expectation raises price

1.4 basis points. Dividing c1 = 1.41 by the estimated β = 0.06 from Table 4 (and dividing

again by 100 to convert from basis points to percentages) yields

MLTG = 0.23.

A 1% rise in investor long-term growth expectations raises price by 23 basis points, which

is an order of magnitude smaller than the benchmark range MLTG ∈ [3, 5]. Thus, using

the LTG expectations data I again find the causal effect of investor growth expectations on

prices proves far smaller than suggested by standard models.

In fact, MLTG = 0.23 is a little more than three times as large as Mg = 0.07 from Table

4, which is consistent with investors interpreting analyst LTG expectations as 3 − 4 year

growth expectations, as discussed in Appendix G.9.1.

Since ∆LTGa,n,t likely does not satisfy moment conditions (6.9) and (6.10):

E
[
∆LTGa,n,tea,n

]
6= 0

E
[
∆LTGa,n,tÃnea,n

]
6= 0,
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I run the same regression using the idiosyncratic LTG shock ua,n,t extracted from factor

model (6.3) using 5 latent factors. Table G17 reports the regression results. This regression

has less power than that using the full LTG expectation update due to the difficulty in

estimating the factor model discussed above. Nevertheless, the c1 point estimates are similar

to that reported column 4 of in Table G16, which includes stock-quarter fixed effects. The

c1 = 1.7 estimate in column 4 and β = 0.07 implies

MLTG = 0.28,

which is still an order of magnitude smaller than the benchmark range MLTG ∈ [3, 5].

Table G16: c1 and c2 Estimates Using Full LTG Updates

(1) (2) (3) (4)
c1 3.00** 3.10*** 2.78*** 1.41**

(1.18) (0.960) (0.922) (0.686)

c2 -0.783 -0.615 -0.672 -0.516
(0.494) (0.479) (0.453) (0.498)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 65428 65428 65428 65428
R-Squared 0.000953 0.0230 0.102 0.615
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1∆LTGa,n,t − c2∆LTGa,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an LTG expectation

for stock n in quarter t, ∆LTGa,n,t is the corresponding quarter-over-quarter change in LTG
expectation, and Ãn,t−1 is the demeaned number of analysts that cover stock n in the previous
quarter t− 1. Xn,t represents controls, including stock, quarter, and stock-quarter fixed effects. All
estimates represent the marginal effect in basis points of a 1 percentage point increase in analyst
growth expectations. The time period is 1982-01:2021-12.
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Table G17: c1 and c2 Estimates Using Idiosyncratic LTG Shocks

(1) (2) (3) (4)
c1 1.81* 1.81* 1.81* 1.68*

(0.986) (0.985) (1.00) (0.971)

c2 -0.926 -0.923 -0.921 -0.876
(0.601) (0.601) (0.614) (0.608)

Quarter FE Y Y
Stock FE Y
Stock x Quarter FE Y
Quarter-Clustered SE Y Y Y Y
N 65428 65428 65428 65428
R-Squared 0.0000415 0.0221 0.102 0.615
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

This table displays regression results for

∆p+
a,n,t = c1ua,n,t − c2ua,n,tÃn,t−1 +Xn,t + ea,n,t,

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an LTG expectation for

stock n in quarter t, ua,n,t is the corresponding estimated idiosyncratic LTG shock, and Ãn,t−1 is
the demeaned number of analysts that cover stock n in the previous quarter t− 1. Xn,t represents
controls, including stock, quarter, and stock-quarter fixed effects. All values are expressed in basis
points (i.e. 1.0 is one basis point). The time period is 1982-01:2021-12.

G.9.3 Other Benchmark Ranges for MLTG

From the present-value identity in Lemma 4 in Appendix B.3.3, the general price impact of

a change in expected future dividends is:

∆pn,t = Mµδ
∞∑
s=0

Ms
µ∆d̃n,t,s+1, (G.10)
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where ∆d̃n,t,s+1 is the percentage change in the expected dividend level in period t+ s+ 1

and the benchmark value of Mµ is8

Mµ =
1

1 + δ
,

for average dividend-price ratio δ.

Since Mµ < 1, the smallest price impact occurs when the long-term growth expectations

shock is driven by quarterly growth expectations shocks as far into the future as possible.

Generating a 1% increase in average expected growth over the nextH years requires a growth

expectations shock of H% (assuming no persistence in expected dividend growth). Thus,

the smallest possible value of MLTG corresponds to an H% increase in expected dividend

growth in quarter t+ 4H and no change in expected dividend growth in any other quarter.

This shock proves the same as H% increase in the expected dividend level in every quarter

starting in t+ 4H9:

8. From Lemma 4, we have

Mµ =
κ(1 + ḡ)

1− θn,t− + κ(1 + δ)(1 + ḡ)
.

As discussed in Chapter 5.5, the benchmark case corresponds to κ =∞, in which case

Mµ =
1

1 + δ
.

9. For simplicity assume average quarterly dividend growth is small (ḡ ≈ 0). In general (assuming no
persistence in expected dividend growth, ρ = 0) the full change in expected future dividend levels is

∆d̃n,t,s = 0%, 1 ≤ s < 4H

∆d̃n,t,s =
H%

1 + ḡ
, s ≥ 4H,

as discussed in Appendix B.3.3.
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∆d̃n,t,s = 0%, 1 ≤ s < 4H

∆d̃n,t,s = H%, s ≥ 4H.

The price impact of this shock is

MLTG = Mµδ

∞∑
s=4H−1

Ms
µH

= M4H
µ δ

∞∑
s=0

Ms
µH

= M4H
µ

δ

1−Mµ
H

= M4H
µ (1 + δ)H.

Calibrating δ = 0.01 to match the historical average quarterly dividend-price ratio for the

aggregate equity market yields:

MLTG =


2.7, H = 3 years

4.1, H = 5 years

G.10 Nonlinear Estimation

I run the following nonlinear regression

∆p+
a,n,t = Mg

1

x+ An,t−1 · x
ua,n,t + ea,n,t.
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Table G18 displays the results. I calculate β as analyst influence for the average stock (i.e.

analyst influence for a stock with the average number of analysts):

β =
1

x+ 10
,

since E[An,t−1] = 10 in Table 2.

Table G18: c1 and c2 Estimates Using Full LTG Updates

(1)
Mg 0.0755

(0.0538, )

x 15.238
(6.293, 23.629)

β 0.0396
(0.0297, .0614)

Quarter-Clustered SE Y
N 1530391
Boostrapped 95% confidence intervals in parentheses

This table displays regression results for

∆p+
a,n,t = Mg

1

x+An,t−1
ua,n,t + ea,n,t.

where ∆p+
a,n,t is the price change 5 days after analyst institution a reports an annual growth

expectation for stock n in quarter t, ua,n,t is the idiosyncratic analyst growth expectation shock, and
An,t−1 is the number of analyst institutions that cover stock n in the previous quarter t−1. I calculate
β = x/(1 + 10x). Point estimates are the medians of the block-bootstrapped sampling distributions
(I sample quarters). Confidence intervals report the 2.5th and 97.5th quantiles of the are block-
bootstrapped sampling distributions. I use 500 bootstrapped samples. All estimates represent the
marginal effect in percentage points of a 1 percentage point increase in growth expectations (analyst
expectations for β and investor expectations for Mg). The time period is 1984-01:2021-12.

199



APPENDIX H

DETAILS OF KOIJEN & YOGO (2019) PRICE ELASTICITY

MEASUREMENT

To measure price elasticities of demand at the investor level, I follow the approach of Koijen

and Yogo [2019]. Since all of the identification happens in the cross section of equities, I

drop all quarter t subscripts. The estimated price elasticities vary by investor, stock, and

quarter: ζi,n,t.

Koijen and Yogo [2019] place additional structure on the asset demand function from (5.1)

and model the portfolio weight demanded in stock n as a function of stock characteristics,

including the market equity (i.e. price, denoted men) of the stock:

log θi,n = α0,imen +
K−1∑
k=1

αk,ixk,n + FEi + εDi,n,

where xk,n are stock characteristics (log book equity, profitability, investment, dividends

to book equity, and market beta). The coefficient on market equity (α0,i) maps directly

into the price elasticity of demand. However, since other asset demand shocks (εDi,n) are

correlated with equilibrium prices, we need exogenous cross-sectional variation in market

equity to consistently estimate α0,i.

To this end, Koijen and Yogo [2019] construct an instrument for market equity based

on cross-sectional variation in which investors’ investment universes stock n falls into.

Specifically, the instrument is

m̂ei,n = log

∑
j 6=i

Aj
1j(n)

1 +
∑N
m=1 1j(m)

 ,

where 1j(n) is an indicator for if stock n falls into the investment universe of investor j

and Aj is the assets under management of investor j. One can interpret this instrument
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as the counterfactual market equity of stock n if all investors held an equal-weighted

portfolio of the stocks in their investment universe. This instrument exploits only the

wealth distribution and the investment universes of other investors, both of which I take

as exogenous. This assumption proves reasonable because investment universes are defined

by investment mandates, which are predetermined rules that don’t change in response to

current demand shocks (εDi,n). Thus, if stock n exogenously falls into the investment universe

of more or larger investors, it will face greater demand and will have greater market equity.

Koijen and Yogo [2019] measure the investment universe of investor i as the set of all stocks

this investor currently holds or has ever held in the previous eleven quarters.

One can estimate α0,i, and the other αk,i coefficients, via GMM using the following

moment condition:

E
[
εDi,n | m̂ei,n,xn

]
= 0.

The price elasticities of demand for investor i (ζi) can then be computed as the diagonal

elements of
∂qi
∂p
′ = −I + α0,i (diagθi)

−1
(
diagθi − θiθ

′
i

)
, (H.1)

where qi is the vector of log shares held, p is the vector of log prices, and θi is the vector of

log portfolio weights.1

1. Strictly speaking, the price elasticities from (H.1) vary by investor and stock (i.e. ζi,n) since portfolio
weights differ across stocks n for each investor i. In practice, since individual stock portfolio weights are
small, ζi,n does not vary much across stocks n for each investor i. Empirically I use the corresponding ζi,n,t
for each stock n.
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APPENDIX I

HOLDINGS REGRESSION ESTIMATION DETAILS

This appendix provides details of estimating holdings regression (7.8).

I.1 Optimization Problem

I solve the following optimization problem:

min
{b1,i,b2,i}i

∑
i,n

[
∆q̃i,n,t −

(
b1,iSn,t − b2,iSn,t · Ãn,t−1

)]2
+ λ

∑
i

((
b1,i − b1,S
b1,S

)2

+

(
b2,i − b2,S
b2,S

)2
)

(I.1)

s.t. q̃i,n,t = ∆qi,n + ζi,n,t∆pn,t

b2,i ≤ b1,i (enforces βi ≤ 1)

b1,S = c1ζS (definition of c1)

b2,S = c2ζS (definition of c2)

The first term in (I.1) is the standard least-squares loss function. The second term is the L2

penalty. I regularize deviations of b1,i and b2,i from their ownership-share weighted averages

b1,S = c1ζS and b2,S = c2ζS to enable more efficient estimation. In particular, I regularize

percentage deviations of b1,i and b2,i from b1,S and b2,S . L2 regularization is scale-dependent:

it penalizes larger coefficients to a greater extent than smaller coefficients. This asymmetric

shrinkage would cause problems since b1,i is larger in magnitude than b2,i (since b2,i = βib1i

and βi < 1) and I want to take ratios of these coefficients. Thus, I express the penalty in

terms of percentage deviations from b1,S1 and b2,S to ensure both b1,i and b2,i are penalized

to the same extent.

I choose the regularization parameter λ via 10-fold cross-validation. In this way, I use
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the level of heterogeneity in b1,i and b2,i that best fits the data.

This optimization can be solved efficiently as a quadratic program with linear constraints

using OSQP (Stellato et al. [2020]).

I use ζS = 0.38, the average stock-level, ownership-share weighted price elasticity of

demand in my sample using the estimated investor price elasticities from the approach of

Koijen and Yogo [2019].

I.2 Subset of Analyst Institutions

While I use all institutions in each quarter to estimate factor model (6.3) and to estimate

the analyst price impact panel regression (6.7), to estimate the investor-level regression

(7.8) I retain only the idiosyncratic expected growth shocks associated with the 5 largest

analyst institutions in each quarter (by number of expectations issued). Since, as discussed

in Appendix D.2, I remove stock-quarter and analyst institution-quarter fixed effects

when estimating the idiosyncratic shocks ua,n, the sum of all ua,n would be zero by

construction. Dropping smaller institutions, therefore, raises the volatility of Sn and so

provides more power when estimating κgi and βi. Using 5 analyst institutions maximizes

power. As displayed in Figure I20, the results prove robust to using other numbers of

analyst institutions.

Retaining only the idiosyncratic growth shocks of the largest analyst institutions has a

flavor of the granular instrumental variable estimator of Gabaix and Koijen [2020a].
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Figure I20: Investor-Level Results for Varying Number of Analyst Institutions

This figure displays the estimated κ
g
S , βS , and Mg from (7.8) using different numbers

of analyst institutions. Point estimates are the medians of the bootstrapped sampling
distributions. 95% confidence intervals are bootstrapped (see Appendix I.3 for details).
The time period is 1984-01:2021-12.
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I.3 Bootstrapped Standard Errors

I compute bootstrapped confidence intervals for κgS , βS , and Mg as follows.

Let Nt be the number of unique stocks in quarter t. In each quarter t:

1. Pick a stock n.

2. For all investors i that holds stock n in quarter t, collect holdings changes ∆qi,n,t.

3. Repeat steps 1 and 2 a total of Nt times.

I compute regression (7.8) on this bootstrapped dataset and calculate κgS , βS , and Mg from

the estimated κgi and βi. I repeat this process 500 times and report 2.5th, 50th, and 97.5th

percentile estimates of each parameter κgS , βS , and Mg.
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APPENDIX J

κ ESTIMATES FROM PREVIOUS WORK
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