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ABSTRACT

In this thesis we will present several of the author’s results on homological stability phenom-

ena for discriminant complements. The contents of this thesis are taken from the author’s

papers (1) and (2) .
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CHAPTER 1

INTRODUCTION

Let X be a smooth projective variety over C. Let L be an ample line bundle on X. Let

H0(X,L) be the space of global sections of L.

Definition 1. The discriminant variety

Σ(X,L) := {f ∈ H0(X,L)|∃p ∈ X, f(p) = 0, df(p) = 0}.

We define the discriminant complement U(X,L) := H0(X,L) \ Σ(X,L). The variety

U(X,L) consists of sections of L with smooth zero locus.

Let us discuss a few special examples of discriminant varieties and discriminant comple-

ments.

Example 1. Let X = Pn, L = O(d). Then U(Pn,O(d)) consists of homogenous polynomials

of degree d in n+1 variables defining a smooth hypersurface in Pn. The discriminant variety

is a hypersurface in H0(Pn,O(d)) defined by the classical discriminant polynomial.

Example 2. Let X be a smooth algebraic curve. Let L be an ample line bundle on X. Then

U(X,L) consists of sections of L with reduced zero locus. If L is very ample and X ̸= P1

then Σ(X,L) is a hypersurface in H0(X,L) .

Remark 1. There is a C∗ action on H0(X,L) by scaling, which preserves Σ(X,L) and

U(X,L). We could therefore study the quotients of Σ(X,L) and U(X,L) by this action and

indeed many authors deal exclusively with these quotients. However for our purposes studying

the quotients will be more or less equivalent to studying the original varieties and we believed

that it was a little cleaner to not pass to the quotient.
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In (12) Tommasi proves that U(Pn,O(d)) satisfies rational homological stability as d→

∞. More precisely she shows that

Hk(U(Pn,O(d)),Q) ∼= Hk(GLn+1(C),Q) (1.1)

for k < d
2 . This result is interesting both because it establishes homological stability for a

natural sequence of spaces but also because it computes the limiting stable cohomology as

coming from the underlying (analytic) topology of Pn and not its structure as a variety (this

is made more clear in the proof of the statement).

The results of this thesis are in two parts corresponding to the papers (2) and (1) by the

author. In the first part we establish a twisted version of 1.1 . Namely we prove that

Hk(Xd,n;V) =


Hk(Xd,n;Q) if n is odd

0 if n is even
(1.2)

Here V is the local system on U(Pn,O(d)) whose fibre over a point f ∈ U(Pn,O(d)) is

H∗(Z(f);Q) where Z(f) is the zero locus of f . The proof combines the techniques of (5)

and (12). We first study the space

E(Pn,O(d)) := {(f, p) ∈ U(Pn,O(d))× Pn|f(p) = 0},

which can be thought of as a pointed version of U(Pn,O(d)). We establish homological

stability results for E(Pn,O(d)) and use them to obtain 1.2.

In the second part of this thesis, we focus on the case when X is a curve. Let

U(X,L) := {f ∈ C∞(X,L)|fhas regular zeroes of index 1}

2



Let i : U(X,L) ↪→ U(L) be the inclusion. We prove that

i∗ : Hk(U(X,L),Z)→ Hk(U(X,L),Z)

is an isomorphism for 2k ≤ n− 2g (this is Theorem 6).

This can be seen as the cohomology of U(X,L) is determined in a stable range by the

C∞ topology of X and is independent of the algebraic structure of X and L. We also note

that our result works integrally and is the first integral result in this area.
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CHAPTER 2

STABLE COHOMOLOGY OF THE UNIVERSAL DEGREE d

HYPERSURFACE IN Pn

2.1 Introduction

Let Ud,n be the parameter space of smooth degree d hypersurfaces in Pn. There is a natural

inclusion Ud,n ⊆ P(
n+d
d ) = P(Vd,n), where Vd,n is the vector space of homogenous degree d

complex polynomials in n+ 1 variables. Let

U∗d,n := {(f, p) ∈ Ud,n × Pn|f(p) = 0}.

Let ϕ : U∗d,n → Ud,n be defined by ϕ(f, p) = f . The map ϕ : U∗d,n → Ud,n is the universal

family of smooth degree d hypersurfaces in Pn; it satisfies the following property: given a

family π : E → B of smooth degree d hypersurfaces in Pn there is a unique diagram:

E
∃! //

��

U∗d,n

��
B ∃! // Ud,n

In other words, any family of smooth degree d hypersurfaces is pulled back from this one.

Our main result is as follows:

Theorem 1. Let d, n ≥ 1. Then there is an embedding of graded algebras:

ϕ : H∗(PGLn+1(C);Q)⊗Q[x]/(xn) ↪→ H∗(U∗d,n;Q)

where |x| = 2. Here |.| denotes the cohomological degree. Let c1(E) denote the first chern

class of the line bundle E.

4



1. The element ϕ(x) = c1(L) where L is the fiberwise canonical bundle (defined in Section

2).

2. Suppose d ≥ 4n+ 1. Then ϕ is surjective in degree less than d−1
2 .

LetXd,n ⊆ Vd,n be the open subspace of polynomials defining a nonsingular hypersurface.

The complement of Xd,n in Vd,n is known as the discriminant hypersurface; it is the zero

locus of the classical discriminant polynomial. It is known to be highly singular.

A point of Xd,n determines a projective hypersurface up to a scalar. There is a natural

action of C∗ on Xd,n such that the quotient Xd,n/C∗ is Ud,n. Let

X∗d,n := {(f, p)|f ∈ Xd,n, p ∈ Pn, f(p) = 0}.

There is a forgetful map π : X∗d,n → Xd,n defined by π(f, p) = f . The fibres of π are

Z(f) := π−1(f) = {p ∈ Pn|f(p) = 0} ⊆ Pn.

It is well known that the map π is a fibre bundle.

X∗d,n also has several interesting quotients. The action of GLn+1 on Xd,n lifts to one

on X∗d,n. We obtain U∗d,n = X∗d,n/C
∗. The map π : X∗d,n → Xd,n is C∗-equivariant and

descends to the map ϕ : U∗d,n → Ud,n.

We define Md,n := Ud,n/PGLn+1(C), the moduli space of degree d smooth hypersurfaces

in Pn. We also define M∗d,n = X∗d,n/GLn+1(C).

We can rewrite our result in terms of X∗d,n and M∗d,n as well. This is important to us as

our proof will mostly involve understanding the space X∗d,n. The space M∗d,n is important

conceptually.

Theorem 2. Let d, n ≥ 1.
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1. There is an embedding of graded algebras:

ψ : (H∗(GLn+1(C);Q)⊗Q[x]/(xn)) ↪→ H∗(X∗d,n;Q)

where |x| = 2.

2. There is an embedding of graded algebras:

φ : Q[x]/(xn) ↪→ H∗(M∗d,n;Q)

where |x| = 2.

Suppose that d ≥ 4n+ 1. Then, the maps ψ and φ are surjective in degree ≤ d−1
2 .

Theorem 2 is equivalent to Theorem 1 after applying Theorem 2 of (10).

Nature of stable cohomology: Throughout the course of the proof of Theorem 2 we also

obtain the following description of the stable cohomology classes of X∗d,n- the stable classes

are tautological in the following sense: There is a line bundle L on M∗d,n defined by taking

the canonical bundle fibrewise (we rigorously define L in Section 2). We will show that

c1(L), . . . , c1(L)n−1 are nonzero in H∗(M∗d,n;Q) and that stably the entire cohomology ring

of M∗d,n is just the algebra generated by c1(L). By (10),

H∗(X∗d,n;Q) ∼= H∗(GLn+1(C);Q)⊗ H∗(M∗d,n;Q).

In this way we have some qualitative understanding of the stable cohomology of X∗d,n.

Both the statement of Theorem 2 and our proof of it are heavily influenced by (12), in

which Tommasi proves analogous theorems for Xd,n. Our techniques and approach are also

similar to that of Das in (5),where he proves

H∗(X∗3,3;Q) ∼= H∗(GL3(C);Q)⊗Q[x]/x3
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with |x| = 2. We would also like to mention the paper (11) where H∗(X2,4;Q) is computed.

In some sense, this paper shows that in a stable range, something similar to Das’s theorem

is true for marked hypersurfaces in general.

Some motivation and historical comments At this point we’d like to make some remarks

on historical motivations for computing and understanding stable cohomology of moduli

spaces of algebraic varieties.

The cohomology of moduli spaces are often interesting because they provide us with

invariants for families of varieties. However in many interesting cases the entire cohomology

ring of the moduli space may be difficult to understand and compute. An example of such

a phenomenon is the moduli space of curves of genus g, Mg. In this setting, H∗(Mg;Q)

is a huge ring which is not fully understood. However, the spaces Mg are known to satisfy

homological stability and the stable cohomology ring can be explicitly described. For a

survey, see (4).

Another motivation for computing the stable cohomology of moduli spaces has to do with

arithmetic statistics. Let X be an algebraic variety over Z. Often one would like to compute

#X(Fp) by studying the eigenvalues of Frobp on H∗et(X;Ql). There are often comparison

theorems which relate the etale cohomology with the singular cohomology of X(C) and

computations of H∗(X(C);Q) can often imply bounds on #(X(Fp)). For an introduction

to this topic, see for instance Section 1 and 2 of (3).

Method of Proof. One could attempt to prove Theorem 2 by applying the Serre spectral

sequence to the fibration π : X∗d,n → Xd,n. To successfully do this however, one would need

to understand the groups Hp(Xd,n;Hq(Z(f);Q)). While we do a priori understand what

the groups Hp(Xd,n;Q) are (This is the main theorem of (12)), this is not sufficient for us

to understand what the groups Hp(Xd,n;Hq(Z(f);Q)) are, since Hq(Z(f);Q) is a nontrivial

local coefficient system. Instead we use an idea of Das and compute H∗(Xp
d,n;Q), where

X
p
d,n := {f ∈ Xd,n|f(p) = 0} to avoid any computations with nontrivial coefficient systems.
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After we have proved Theorem 2 we can use it to deduce what these twisted cohomology

groups are.

Corollary 1. Let d, n > 0. Supposed ≥ 4n+ 1 and k < d−1
2 .Then

Hk(Xd,n;H
n−1(Z(f);Q)) =


Hk(Xd,n;Q) if n is odd

0 if n is even

Acknowledgements: I’d like to thank my advisor Benson Farb for his endless patience

and encouragement. I’d like to thank Eduard Looijenga for help with Lemma 7. I’d like to

thank Nir Gadish and Ronno Das for some comments on the paper. I’d like to thank Burt

Totaro for catching an error in a previous version of the paper. Finally I’d like to thank Gal

Porat for his help in editing this paper.

2.2 A lower bound on Hk(X∗d,n)

We begin by noting that there is an embedding of algebras Hk(GLn+1(C))⊗Q[x]/(xn) ↪→

Hk(X∗d) in the stable range. More precisely, we have the following:

Proposition 1. Let n ≥ 0, and let d > n+ 1. There is a natural embedding of algebras

i : H∗(GLn+1(C);Q)⊗Q[x]/(xn) ↪→ H∗(X∗d,n;Q)

where |x| = 2.

Proof. We first define the fiberwise canonical bundle L over M∗d,n as follows:

L = {(f, p, v)|(f, p) ∈M∗d , v ∈ ∧
n−1T ∗p (Z(f))}.

We can pull back L to a bundle on X∗d,n, which we will also denote by L. By the same
8



argument as in Theorem 1 of (10),

H∗(X∗d,n;Q) ∼= H∗(GLn+1(C);Q)⊗ H∗(M∗d,n(C);Q).

Let f ∈ Xd,n. Let i : GLn+1(C) → Xd,n be the orbit map defined by i(g) = g · f . More

precisely, Theorem 1 of (10) states that the natural map

π∗ : H∗(M∗d,n;Q)→ H∗(X∗d,n;Q)

makes H∗(X∗d,n;Q) a free H∗(M∗d,n;Q)−module with a basis given by some set {αi} such that

the pullbacks {i∗(αi)} give a basis of H∗(GLn+1(C);Q). But since H∗(GLn+1(C);Q) is a free

graded commutative algebra, this forcesH∗(X∗d,n;Q) to be isomorphic to H∗(GLn+1(C);Q)⊗

H∗(M∗d,n(C);Q) as an algebra.

If we restrict L to a particular hypersurface Z, the bundle L|Z = OZ(d − n − 1). The

chern class of L|Z satisfies the following equality:

c1(OZ(d− n− 1)) = (d− n− 1)c1(OZ(1)) = d(d− n− 1)ωZ ,

where ωZ is the Kahler class of the variety Z. This implies that for d > n + 1, the classes

c1(L)|Z, . . . , cn−11 (L)|Z are nonzero since ωZ , . . . ω
n−1
Z are nonzero. Now taking x = c1(L),

this implies that H∗(M ;Q) contains a subalgebra isomorphic to Q[x]/xn.

2.3 The space Xp
d and the Vassiliev method

Given a space X, the nth ordered configuration space of X denoted PConfnX is

PConfnX := {(x1 . . . , xn) ∈ Xn|∀i ̸= j, xi ̸= xj}.
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There is a natural action of the symmetric group on n letters Sn on X by permuting the

coordinates. The quotient PConfnX/Sn is called the nth unordered configuration space and

denoted UConfnX. In order to understand Xd,n we will first look at the cohomology of a

related space. For a fixed point p ∈ Pn we set

X
p
d = {f ∈ Xd,n|f(p) = 0}.

Then

X
p
d ⊆ V

p
d = {f ∈ Vd|f(p) = 0}.

The space V p
d is a vector space. The complement of Xp

d in V
p
d will be called Σd,p. We will

compute its Borel-Moore homology and use Alexander duality to compute H∗(Xp
d).

Let p ∈ Pn. By definition p is a one-dimensional subspace p ⊆ Cn+1. Choose a comple-

mentary subspace W ⊆ Cn+1 (it is not unique, but we will fix a particular one). We define

Gp := GL(W ).

Let x1, . . . xn be local coordinates in a neighbourhood U containing p. Pick a local

trivialisation s of the line bundle O(d) in U . There is an induced map

f∗ : T ∗0 (O(d)p)→ T ∗p (Pn).

Let us use our local coordinates to identify T ∗0 (O(d)p) with C and T ∗p (Pn) with Cn.

Suppose f ∈ Xp
d . Then the map f∗ is nonzero because f has a regular zero locus. Let

This defines a map

π : X
p
d → T ∗p (Pn)− {0} ∼= Cn − {0}

defined by π(f) = f∗(1).

Proposition 2. The map π : X
p
d → Cn − {0} is a fibration.

Proof. The group Gp acts on Pn fixing p. Therefore it acts on both Xp
d and Cn − {0}. The

10



the map π is equivariant with respect to these actions. The map π therefore is the pullback

of a map from π′ : Xp
d/Gp to Cn − {0}/Gp. But Cn − {0}/Gp is a point and since π′ is

surjective it is a fibration. Since pullbacks of fibrations are fibrations, π is a fibration.

Let Xv := π−1(v) and let

Vv := {f ∈ Vd|f∗(1) = v}.

Clearly, Xv ⊆ Vv. Let Σv := Vv−Xv. We will try to understand the Borel-Moore homology

of Σv.

To accomplish this the Vassiliev method (13) will be applied. The Vassiliev method to

compute Borel-Moore homology involves stratifying a space and using the associated spectral

sequence to compute its Borel Moore homology. The space Σv will be stratified based on

the points at which a section f is singular. The techniques used are very similar to that in

(12) which contains many of the technical details.

We denote the k simplex with vertex set {a0, . . . ak} by ∆{a0,...ak}. We denote a k simplex

by ∆k and an open k simplex by ∆◦k

We will now construct a cubical space C which will be involved in understanding Σv. Let

N = d−1
2 . Let I be a subset of {1, . . . , N − 1}. For k < N , let

CI := {(f, p)|f ∈ Σv, p : I → Pn, p(I) ⊆ Singular zeroes of f}.

We define Σ≥Nv = {f ∈ Σv|f has at least N singular zeroes} We define

CI∪{N} := {(f, p)|f ∈ Σv, p : I → Pn, p(I) ⊆ Singular zeroes of f, f ∈ Σ̄≥N}.

If I ⊆ J then we have a natural map from CJ → CI defined by restricting p. This gives C the

structure of a cubical space over the set {1, . . . , N}. We can take the geometric realization of

11



C denoted by |C|. Then there is a map ρ : |C| → Σv, induced by the forgetful maps CI → Σv.

|C| is topologised in a non-standard way so as to make ρ proper. We topologise it as

follows: in (12), a space |X | is constructed with a map ρ : |X | → Σ. Here, Σ = Vd −Xd.

The topology on |X | is chosen carefully so as to make ρ proper. The construction of |X |

as a set identical to that of |C| except we replace Σv with Σ. There is a natural inclusion

|C| → |X |. We give |C| the subspace topology along this map.

Proposition 3. The map ρ : |C| → Σv is a proper homotopy equivalence.

Proof. This proof is nearly identical to that of Lemma 15 in (12). The properness of ρ :

|C| → Σv follows from the properness of ρ : |X | → Σ and the properties of the subspace

topology. In our setting having contractible fibres implies that the map ρ is a homotopy

equivalence, this follows by combining Theorem 1.1 and Theorem 1.2 of (9). We will now

prove that the fibres are contractible. If f ̸∈ Σ̄≥Nv , let {p1, . . . , pk} be the singular zeroes of

f . In this case the fibre ρ−1(f) is a simplex with vertices given by the images of the points

(f, xi) ∈ C{1} ×∆{1}. Now suppose f ∈ Σ̄≥Nv . In this case the fibre ρ−1(f) is a cone over

the point f ∈ CN ×∆{N}.

Now as in any geometric realization, |C| is filtered by

Fn = im(
∐
|I|≤n

CI ×∆k).

The Fn form an increasing filtration of |C| , i.e. F1 ⊆ F2 . . . Fn ⊆ Fn+1 ⊆ . . . and ∪∞n=1Fn =

|C|.

Proposition 4. Let d, n ≥ 1. Let N = d−1
2 . For k < N , the space Fk − Fk−1 is a ∆◦k-

bundle, over a vector bundle Bk over UConfk(Pn − p).

12



Proof. The space Fk − Fk−1 consists of the interiors of k simplices labeled by {f, p0 . . . pk}.

Let

Bk = {(f, {p0 . . . pk}) ∈ Σv × UConfk(Pn − p)|pi are singular zeroes of f}.

We have a map ϕ : Fk − Fk−1 → Bk, defined by

ϕ((f, {p0 . . . pk}), s0, . . . , sk) = (f, {p0 . . . pk}).

The map ϕ expresses Fk − Fk−1 as a fibre bundle over Bk with ∆◦k fibres, i.e we have a

diagram as follows:

∆◦k
// Fk − Fk−1

��
Bk

We have a map Bk → UConfk(Pn − p) defined by {f, p0 . . . , pk} 7→ {p0, . . . pk}. This is

a vector bundle by Lemma 3.2 in (18).

We have a one-dimensional local coefficient system denoted ±Q on UConfk(Pn − p)

defined in the following way: Let Sk be the symmetric group on k letters. We have a

homomorphism π1UConfk(Pn−p)→ Sk associated to the covering space PConfk(Pn−p)→

UConfk(Pn − p). Compose this homomorphism with the sign representation Sk → ±1 =

GL1(Q) to obtain our local system.

Proposition 5. Let d, n ≥ 1. Let ed = dimC(Vv). For k < d−1
2 ,

H̄∗(Fk − Fk−1) ∼= H∗−(k+2ed−2(n+1)(k+1))(UConfk(P
n − p),±Q).

Proof. By Proposition 4 the space Fk − Fk−1 is a bundle over UConfk(Pn − p). This fact

13



implies that

H̄∗(Fk − Fk−1) ∼= H∗−(k+2ed−2(n+1)(k+1))(UConfk(P
n − p),Q(σ)).

Here Q(σ) is the local sytem obtained by the action of π1(UConfk(Pn − p)) on the fibres

H̄k(∆
◦
k) where in this case ∆◦k is the open k simplex corresponding to the fibres of the map

Fk − Fk−1 → Bk. But one observes that the action of π1(UConfk(Pn − p)) on this open

simplex is by permutation of the vertices which imples that Q(σ) = ±Q.

As with any filtered space, we have a spectral sequence with

E
p,q
1 = H̄p+q(Fp − Fp−1;Q)

converging to H̄∗(Y ;Q). Now for p < N by Proposition 5

E
p,q
1 = H̄q−(2ed−2(n+1)(p+1))(UConfp(P

n − p);±Q).

We would like to claim that EN,q
1 doesn’t matter in the stable range. To be more precise,

we have the following:

Lemma 1. Let d, n ≥ 1. Let N = d−1
2 . Let k > 2ed −N . Then,

H̄k(|C| − FN ;Q) ∼= H̄k(|C|;Q).

Proof. We first will try to bound the H̄∗(FN ;Q) and then use the long exact sequence of

the pair. FN is the union of locally closed subspaces

ϕk = {(f, x1, . . . , xk), p|f ∈ Σ≥N , xi are singular zeroes of f, p ∈ ∆k}.

14



We have a surjection π : ϕk → UConfk(Pn − p). This map π is in fact a fibre bundle with

fibres ∆k × Ced−N(n+1). The space UConfk(Pn − p) is kn dimensional. Therefore

H̄∗(ϕk;Q) = 0 if ∗ > 2(ed − (n+ 1)N) + kn < 2ed −N.

This implies that for all k, H̄∗(ϕk;Q) = 0, if ∗ > 2ed − N . This implies H̄∗(FN ;Q) = 0, if

∗ > 2ed −N . By the long exact sequence in Borel Moore homology associated to the pair

FN ↪→ Y , H̄k(Y − FN ;Q) ∼= H̄k(Y ;Q) for k > 2ed −N .

2.4 Interlude

In (12), Tommasi proves the following result:

Theorem 3 ((12)). Let d, n ≥ 1. Let f ∈ Xd,n. Let ψ : GLn+1(C)→ Xd,n be the orbit map

defined by ψ(g) = g · f . Then ψ∗ : Hk(Xd,n,Q)→ Hk(GLn+1(C),Q) is an isomorphism for

k < d+1
2 .

In this section we shall look at the proof of Theorem 3 in (12) and use it to prove an

identity used later on in this paper. One of the ingredients in the proof of Theorem 3

is a Vassiliev spectral sequence. We introduce a new convention, by letting h denote the

dimension of H. We also define Gr(p, n) to be the Grassmanian of p-planes in Cn. In what

follows we shall need a few basic facts about H∗(Gr(p, n);Q) and Schubert symbols. Let

0 = E0 ⊊ E1 · · · ⊊ En−1 ⊊ En = Cn

be a complete flag. Given U ∈ Gr(p, n), we can associate to it a sequence of numbers,

ai = dimU ∩ Ei. These ai satisfy the following conditions:

0 ≤ ai+1 − ai ≤ 1, a0 = 0 and an = p.
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Such sequences are called Schubert symbols. Let a = (a0 . . . an). We call a a Schubert

symbol if 0 ≤ ai+1 − ai ≤ 1,a0 = 0 and an = p. Associated to each Schubert symbol a we

have a subvariety Wa ⊆ Gr(p,Cn) defined as follows.

Wa := {U ⊆ Cn|dim(U ∩ Ci) = ai}.

The main result we will be using is the following.

Theorem 4. Let a be a Schubert symbol. The classes [Wa] ∈ H∗(Gr(p, n);Q) form a basis.

For a proof of Theorem 4 see page 1071 of (8).

Proposition 6. Let n be a positive integer. Then

∑
k,p

hk(Gr(p,Cn);Q) = 2n.

Proof. By Theorem 4,

∑
k,p

hk(Gr(p,Cn);Q) =
∑
p

#{(a0, . . . an)|0 ≤ ai+1 − ai ≤ 1, a0 = 0, an = p}

= #{(a0, . . . an)|0 ≤ ai+1 − ai ≤ 1, a0 = 0}

= #{(b1, . . . bn) ∈ {0, 1}}.

The last equality follows because if we are given a sequence of ai, we can uniquely obtain

a sequence of bi, by letting bi = ai − ai−1.

Our main aim of this section is to prove the following technical result.

Theorem 5. The Vassiliev spectral sequence in (12) degenerates in the stable range: if

p < d+1
2 and if q > 0, then E

p,q
1
∼= E∞p,q.
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Equivalently, for k < d+1
2 ,

∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n);Q) = hk(GLn+1;Q). (2.1)

Remark 2. The statements are equivalent because the group Hk(GLn+1(C);Q) is a subquo-

tient of ⊕
H2(p+1)(n+1)−p−k−1(UConfp(P

n);Q)).

Proof. We already know that

∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q) ≥ hk(GLn+1;Q)

because the left hand side of (2.1) are the appropriate terms in a spectral sequence converging

to the right hand side of (2.1).

It suffices to prove that

∑
k

∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q)

=
∑
k

hk(GLn+1;Q) = 2n+1.

Lemma 2 in (13) states that:

h2(p+1)(n+1)−p−k−1(UConfp(P
n),±Q)

= h2(p+1)(n+1)−p−k−1−p(p−1)(Gr(p,C
n+1);Q).

Therefore

∑
k

∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q) =

∑
k

∑
p

hk(Gr(p,C
n+1);Q).
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By Proposition 6 this is equal to 2n+1.

2.5 Computation

We would like to know what the groups H̄∗(UConfk+1(Pn − p);±Q) are. First note that in

(13) Vassiliev proves that :

Proposition 7 ((13)). Let k, n > 0. Then,

H∗(UConfk(Pn);±Q) ∼= H∗−(k)(k−1)(Grk(C
n+1);Q).

Also note that in light of Theorem 4 the homology of Grassmannians is well understood

in terms of Schubert cells.

Consider the long exact sequence in Borel Moore homology associated to

UConfk+1(Pn − p) ⊆ UConfk+1(Pn)←↩ UConfk(Pn − p).

The last inclusion is defined by the map ϕ : UConfk(Pn − p) → UConfk+1(Pn) where

ϕ({x1 . . . xn}) = {x1 . . . xn, p}.

We consider the long exact sequence in Borel-Moore homology associated to the pair

(UConfk+1(Pn),UConfk+1(Pn−p)). Here UConfk+1(Pn−p) is an open subset of UConfk+1(Pn)

with complement homeomorphic to UConfk(Pn − p). A segment of this exact sequence is

displayed below:

H̄∗(UConfk(Pn−p);±Q)→ H̄∗(UConfk+1(Pn);±Q)→ H̄∗(UConfk+1(Pn−p);±Q) (2.2)
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Proposition 8. Let k, n > 0. Then there is a canonical decomposition

H̄∗(UConfk+1(Pn);±Q) ∼= H̄∗(UConfk(Pn − p);±Q)⊕ H̄∗(UConfk(Pn − p);±Q),

due to the fact that (2.2) splits.

Proof. Lemma 2 of (13) implies that (2.2) decomposes into split short exact sequences, i.e.

H̄∗(UConfk+1(Pn);±Q) ∼= H̄∗(UConfk(Pn − p);±Q)⊕ H̄∗(UConfk(Pn − p);±Q).

Remark 3. In fact the H∗(UConfk(Pn−p);±Q) has a basis given by Schubert symbols with

a1 = 0.

Proposition 9. If the Vassiliev spectral sequence has no nonzero differentials and k < d−1
2 ,

then Hk(Xv) ∼= Hk(Gp) as vector spaces.

Proof. Now in our spectral sequence we had

E
p,q
1 = H̄q−(2ed−2(p+1)(n+1))(UConfp+1(Pn − p);±Q).

First collect all terms in the main diagonal, i.e.

V := ⊕p+q=lH̄q−(2Dn−2(p+1)(n+1))(UConfp+1(Pn − p);±Q)

It will suffice to prove that

dimV =
∑

p≤2Dn−k
h2(p+1)(n+1)−p−k−1(UConfp(P

n − pt);±Q) = hk(GLn;Q). (2.3)
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Proposition 5 implies

∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q) = hk(GLn+1;Q). (2.4)

Proposition 7 implies,

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q) = 0 if p > n

.

So as long as n < 2(Dn + n+ 1)− k,

∑
p≤2(Dn+n+1)−k

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q)

=
∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n);±Q).

But the condition n < 2(Dn + n + 1)− k is equivalent to k < 2(Dn + 1) + n, which is true

if k < N . We have another equality from Proposition 8,

hk(UConfp(Pn − pt);±Q) + hk(UConfp−1(Pn − pt);±Q) = hk(UConfp(Pn);±Q).

Plugging this into (2.4) we have

hk(GLn+1;Q) =
∑

h2(p+1)(n+1)−p−k(UConfp(P
n);±Q)

=
∑

h2(p+1)(n+1)−p−k−1(UConfp(P
n − pt);±Q)

+ h2(p+1)(n+1)−p−k−1(UConfp−1(P
n − pt);±Q).
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We have the identity

hk(GLn;Q) + hk−(2n+1)(GLn;Q) = hk(GLn+1;Q).

This implies,

hk(GLn;Q) + hk−(2n+1)(GLn;Q) (2.5)

=
∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n − pt);±Q)

+ h2(p+1)(n+1)−p−k−1(UConfp−1(P
n − pt);±Q).

Now we will try to prove 2.3 by induction on k. For k = 0, (2.3) is trivial. By induction

hk−(2n+1)(GLn;Q) =
∑
p

h2(p+1)(n+1)−p−k−1(UConfp−1(P
n − pt);±Q).

Putting this into 2.5 we obtain

∑
p

h2(p+1)(n+1)−p−k−1(UConfp(P
n − pt);±Q) = hk(GLn;Q).

Now we can look at the Serre Spectral sequence associated to the fibration

Xv ↪→ Xp → Cn − 0.

We observe that if there are no nonzero differentials, then

H∗(Xp;Q) ∼= H∗(Xv;Q)⊗Q[e2n−1]/e
2
2n−1.
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This is because the Serre spectral sequence degenerates and since Q[e2n−1]/e22n−1 is a free

graded commutative algebra the ring structure of the total space is forced to be the tensor

product.

Proposition 10. Let d > 0 and p ∈ Pn. Then,

H∗(Xd,p;Q) ∼= H∗(Gp;Q)⊗ A,

where A is H∗(Xp
d/Gp;Q).

Proof. This follows immediately from Theorem 2 in (10).

We will also need the following fact that is a special case of Lemma 2.6 in (5).

Proposition 11. Let d > 0, k < d−1
2 . Let U∗d = X∗d/C

∗. Then

H∗(X∗d ;Q) ∼= H∗(U∗d ;Q)⊗Q[e1]/(e
2
1),

where |e1| = 1.

Proposition 11 implies if there are no nonzero differentials in both our Vassiliev spectral

sequence and in the Serre spectral sequence associated to the fibration Xp
d,n → Cn − 0 then

H∗(Ud,p;Q) ∼= H∗(Gp;Q)⊗Q[e2n−1]/(e
2
2n−1)

for ∗ < d−1
2 . In case there are nonzero differentials in either spectral sequence, then

H∗(Ud,p;Q) ∼= H∗(Gp;Q) for ∗ < d−1
2 .

2.6 Comparing fibre bundles

In this section we finish the proof of Theorem 2.
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Proof of Theorem 2. We compare three related fibre bundles and their associated spectral

sequences. This is similar to the Proof of Theorem 1.1 in (5).

Let PGp := StabPGL(n+1)(p)

PGp

&&

// Ud,p

%%

// Ud

##
PGLn+1(C) //

��

U∗d
//

��

Ud × Pn

��
Pn = // Pn = // Pn

(2.6)

We denote the exterior algebra on generators a1 . . . an by Λ⟨a1 . . . an⟩. By Proposition 9 and

Theorem 1 of (10) there are two possibilities for H∗(Ud,p;Q): either

H∗(Ud,p;Q) ∼= H∗(PGp;Q)⊗Q[e2n−1]/(e
2
2n−1) ∼= Λ⟨u1, u3, . . . u2n−1, e2n−1⟩

or

H∗(Ud,p;Q) ∼= H∗(PGp;Q) = Λ⟨u1, u3, . . . u2n−1⟩.

Suppose for the sake of contradiction that H∗(Ud,p) = Λ⟨u3, . . . u2n−1⟩ for ∗ < d−1
2 . In

this case H∗(Ud,p;Q) ∼= H∗(PGp;Q) for ∗ < d−1
2 . Then since the homology of the base

and the fibres are isomorphic, H∗(U∗d ;Q) ∼= H∗(PGLn+1(C);Q) for ∗ < d−1
2 . However by

Proposition 1,

H∗(PGLn+1(C);Q)⊗Q[x]/xn) ⊆ H∗(U∗d ;Q).

But H∗(PGLn+1(C);Q) does not contain a subalgebra isomorphic to

H∗(PGLn+1(C);Q)⊗Q[x]/xn).
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This is a contradiction. So we must be in the case where

H∗(Ud,p;Q) ∼= H∗(PGp;Q)⊗Q[e2n−1]/(e
2
2n−1).

Consider the Serre spectral sequence associated to the fibration U∗d → Pn. Its E2 page

has terms

E
p,q
2 = Hp(Pn, Hq(U

p
d ;Q)) ∼= Hp(Pn;Q)⊗Hq(U

p
d ;Q).

Now

Hq(U
p
d ;Q) ∼= Hq(PGp;Q)⊗Q[e2n−1]/(e

2
2n−1).

Consider the trivial fibre bundle Ud×Pn → Pn. There is a natural inclusion of fibre bundles

as shown in (2.6). This induces a map of spectral sequences between the associated Serre

spectral sequences.

Note that any class α ∈ Hq(U
p
d ;Q) that lies in the image of Hq(Ud;Q) is mapped to zero

under any differential thanks to the fact that all dfferentials are zero in the spectral sequence

associated to a trivial fibration. The only possible nonzero differential in the E2 page of the

Serre spectral sequence associated to the fibration U∗d → Pn is d(e2n−1).

Suppose for contradiction that d(e2n−1) = 0. This implies that

Hk(U∗d ;Q) ∼= (H∗(Ud,p;Q)⊗H∗(Pn;Q))k = (H∗(PGp;Q)⊗H∗(Pn,Q))k

for k < d−1
2 .

Let p(t) be the Poincare polynomial of U∗d . We already know that

H∗(U∗d ;Q) ∼= H∗(PGLn+1(C);Q)⊗H∗(U∗d/PGLn+1(C);Q).

24



So (1 + t3) . . . (1 + t2n+1)|p(t). On the other hand, if de2n−1 = 0 then

p(t) = (1 + t3) . . . (1 + t2n−1)(1 + t2 + t4 . . . t2n) mod t
d−1
2 .

If d ≥ 4n+ 1, then this implies that (1 + t2n+1) ̸ |p(t). This is a contradiction.

So we must have a differential killing the class in H2n(Pn, H0(Ud,p));Q). The differential

must come from from e2n−1, i.e. d(e2n−1) = axn for some a ∈ Q∗. This (along with

multiplicativity of differentials) determines all differentials and implies (1). By Proposition

11 (1) =⇒ (2). By Theorem 1 of (10)

H∗(X∗d,n;Q) ∼= H∗(M∗d,n;Q)⊗ (H∗(GLn+1)(C);Q).

In light of this (2) =⇒ (3).

Having finished the proof of Theorem 2 we can prove Corollary 1.

Proof of Corollary 1. Consider the fibration:

Z(f) // X∗d

��
Xd

and its associated Serre spectral sequence whose E2 page is of the form

Hp(Xd;H
q(Z(f);Q)) =⇒ H∗(X∗d ;Q).

By Theorem 3 for ∗ < d+1
2

H∗(Xd;Q) ∼= H∗(GLn+1(C);Q).
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By Theorem 2, we know that the classes in the E2 page corresponding to the group

Hp(GLn+1(C); c1(L)q)

survive till the E∞ page and in the stable range all other terms are killed by differentials.

Now suppose n is even. Then the only other terms in the spectral sequence are of the form

Hp(Xd;H
n−1(Z(f);Q)). However it is not possible for any such term to be in the image or in

the preimage of a nonzero differential. This is because all other terms survive so any possible

nonzero differential must be from Hp1(Xd;H
n−1(Z(f);Q)) to Hp2(Xd;H

n−1(Z(f);Q)) for

some choice of p1 and p2. However no differential is of bidegree (p2 − p1, 0). This implies

that

Hp(Xd;H
n−1(Z(f);Q)) ∼= 0.

A similar argument shows that if n is odd, Hp(Xd;H
n−1(Z(f);Q)) ∼= Hp(Xd;Q). Es-

sentially the only difference between the even case and the odd case is that in the odd case

we have a class c1(L)
n−1
2 ∈ Hn−1(Z(f);Q). Let A = Q − span(c1(L)

n−1
2 ) By Theorem 2,

we know that Hp(Xd,n;A) survives till the E∞ page. An argument similar to that in the

even case shows that

Hp(Xd;H
n−1(Z(f);Q)) ∼= Hp(Xd;A).
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CHAPTER 3

STABLE COHOMOLOGY FOR DISCRIMINANT

COMPLEMENTS FOR AN ALGEBRAIC CURVE

3.1 Introduction

In this paper we are concerned with understanding the difference between spaces of algebraic

and C∞ sections of complex line bundles on a smooth projective algebraic curve X over C.

We prove that these spaces have isomorphic cohomology in a range of degrees that grows

with the degree of the line bundle.

Let X be a smooth projective algebraic curve over C of genus g. Let L be an algebraic

line bundle on X of degree n.

Let C∞(X,L) be the vector space of smooth sections of L. Given s ∈ C∞(X,L), we

say p ∈ X is a regular zero of s if s(p) = 0 and s′(p) ̸= 0. If s ∈ C∞(X,L) is an algebraic

section, then being a regular zero is equivalent to having index 1. Let

U(L) = {s ∈ C∞(X,L)|all zeroes of s are isolated and of index 1}.

Let

U(L) := {s ∈ H0(X,L) : All zeroes of s are regular}.

There is a natural inclusion map i : U(L) ↪→ U(L). The aim of the present paper is to

understand this inclusion at the level of cohomology. Our main theorem is as follows:

Theorem 6. Let X be a smooth projective complex algebraic curve of genus g. Let n ≥ 0.

Let L be an algebraic line bundle of degree n on X. Let i : U(L) → U(L) be the inclusion

map. Then for all 0 ≤ 2k ≤ n− 2g,

i∗ : Hk(U(L);Z)→ Hk(U(L);Z)
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is an isomorphism.

We also provide some qualitative understanding of the topology of the space U(L) and

relate it with more classical objects. Let n = deg(L). Given a space M , define

PConfnM := {(x1, . . . , xn) ∈Mn|xi ̸= xj}.

The permutation action of Sn on Mn restricts to an action on PConfnM . Let

UConfnM = PconfnM/Sn

be the unordered configuration space of n points on M .

Define the n stranded surface braid group on a surface X as

Brn(X) := π1(UConfn(X)).

For our purposes we will need to define a group B̃rn(X) that we call the extended surface

braid group. This will be defined later on in Section 3 as π1(U
alg
n ) where Ualg

n is a space

defined in Section 3 that is a C∗ bundle over UConfnX. 1

Let π : B̃rn(X) → Brn(X) be the projection. Now, UConfn(X) ⊆ Symn(X) has an

Abel Jacobi map to Picn(X). This induces a map α : Brn(X) → Z2g. Let A = α ◦ π. Let

Kn ⊆ B̃rn(X) be the kernel of this map.

Theorem 7. Let n ≥ 1. Let X be a smooth projective curve. Let L be a line bundle of

degree n on X. The space U(L) is a K(π, 1). Furthermore,

π1(U(L)) ∼= Kn.

Motivation In (18) Vakil and Wood consider (among other things) the ’stable class’
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of the discriminant locus in the Grothendieck group of varieties K0(Var). Let us recall the

definition of the Grothendieck group of varieties. Let us fix a base field k. Then we can

consider the set

Vark = {X : Xis a variety over k}/isomorphism.

We can form a monoid M out of V ark as follows: let M be generated by elements of

V ark, with the relation, if Y ⊆ X, [X] = [X − Y ] + [Y ] ∈ M . The Grothendieck group

K0(Vark) is the group completion of M . It has a ring structure coming from the product of

varieties. In the literature, the element A1 (often denoted L) is sometimes inverted. Define

ML = K0(Vark)[ 1L ].

Consider a smooth variety X along with an ample line bundle L on it.

Theorem 8 (Vakil - Wood (18)). Let j ≥ 1. Let U(L⊗j) be the (open) variety of sections

with smooth zero locus. Let ζX be the Kapranov motivic zeta function, and let d be the

dimension of X. Then,

lim
j→∞

[U(Lj)]
[H0(X,Lj)]

=
1

ζX(d+ 1)
.

Here the limit is with respect to the dimension filtration in ML.

While Theorem 8 seems to have nothing to do with the cohomology of the space U(Lj),

there is a specialisation map

K0(Vark)→ {Weighted Euler characteristics}.

Thus, Theorem 1.3 implies that there is a stabilisation of Euler characteristics and one can

hope for a stabilisation in cohomology as well.

In (12), Tommasi proves a cohomological result in the same vein as that of this paper,

where she studies discriminant complements on Pn. Her set up is as follows. Let d, n ≥ 1.
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Let X = Pn. Let L = O(d). Let

U(L) = {f ∈ H0(X,L)|f has only regular zeroes}.

Then the main theorem of (12) stated in our notation is as follows:

Theorem 9 (Tommasi (12)). Let d, n ≥ 1. Let X = Pn, L = O(d). Let 0 ≤ k ≤ d+1
2 . Then

Hk(U(L);Q) ∼= Hk(GLn+1(C);Q).

Our motivation for the present paper was to understand if there are stability phenomena

for discriminant complements over general varieties and whether cohomology in the stable

range is dependent only on the topology of the variety. Theorem 6 shows that at least in the

case of an algebraic curve there is some kind of stability phenomenon with cohomology in

the stable range being purely topological in nature. We are currently working on extending

these results to more general varieties.

Relation to other work: Orsola Tommasi has anounced some results on homological

stability for discriminant complements over arbitrary smooth projective varieties. We believe

that the results in this paper are substantially different from hers. We focus on relating

discriminant complements to spaces of C∞ sections, which is not the focus of her results.

Acknowledgements: I would like to thank my advisor Benson Farb for his patience and

help with editing countless versions of this paper. I’d like to than Ravi Vakil and Madhav

Nori for answering several of my questions, without which I would not have been able to

prove these theorems.
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3.2 Smooth sections

The space U(L) is actually easy to understand topologically. There is a fibration π :

U(L) → UConfnX defined by: π(f) = {a|f(a) = 0}. We shall need to understand the

fibres π−1({a1, . . . an}) ⊆ U(L), but first we shall introduce some basic objects and prove

some more technical lemmas. Let Y, Z be based spaces. Let C(Y, Z), C∗(Y, Z) denote the

space of continuous maps from Y to Z and the space of based continuous maps from Y to

Z. Let X be a C∞ manifold. Let G = C∞(X,C∗). For p ∈ X, let

Gp = {f ∈ G|f(p) = 1}.

Before we begin with stating and proving the propositions in this section, we note that

they are mostly applications of the fact that C∗ is a K(π, 1) space and is covered by C a

contractible space. The space of continuous based maps into a K(π, 1) has been classically

studied first by Thom and then by many others. Lemma 3 is a bit more specific to our

situation and is not an immediate application of the theory of K(π, 1) spaces.

Proposition 12. with the above notation,

1. Gp is weak homotopy equivalent to H1(X,Z).

2. G is weak homotopy equivalent to H1(X,Z)× C∗.

Proof. The space C∗ is a K(Z, 1) and by the Proposition labelled Thom [4] in (16) C∗(X,C∗)

is homotopy equivalent to H1(X,Z) (i.e. each of its components is contractible and the set

of components is in natural bijection with H1(X,Z)). By Theorem 1.5 of (17), C∗(X,C∗)

is weak homotopy equivalent to C∞(X,C∗). This establishes (1). To establish (2) we note

that G is homeomorphic to Gp × C∗, indeed an explicit homeomorphism is given (f, α) ∈

Gp × C∗ 7→ αf ∈ G.
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Proposition 13. Let D = {z ∈ C||z| ≤ 1}. Let

S = {f ∈ C∞(D − {0},C∗)|f(z) = 1 for z ∈ S1}.

Then S is contractible.

Proof. Let

S′ = {f ∈ C∞(D − {0},C)|f(z) = 0 for z ∈ S1}.

Then S′ deformation retracts to the constant function f(z) = 0 by a straight line homotopy.

Now note that there is a covering map exp : C → C∗ such that exp(0) = 1. We note

that if f ∈ S, f is nullhomotopic. Hence by the lifting criterion, there is a unique lift

f̃ : D − {0} → C such that f̃(1) = 0 and exp ◦f̃ = f . We know have a homeomorphism

between S and S′ ϕ : S → S′be defined by ϕ(f) = f̃ .

This implies that S is contractible.

Lemma 2. Let D be the closed unit disk in C. Let

F = {f ∈ C∞(D − {0},C∗)| f |∂D = 1}.

Let

F̃ = {f ∈ C∞(D − {0},C∗)| f is nullhomotopic and f(1) = 1}.

Then F̃ deformation retracts to the point f0, where f0(x) = 1 for all x. Furthermore, the

deformation retraction preserves the subset F .

Proof. Given f ∈ F̃ we can lift it to a unique map f̃ : D − {0} → C, such that exp ◦f̃ = f

and (̃f)(1) = 0. The straight line homotopy in C defines a homotopy between f̃ and the

constant function. This in turn defines a homotopy h between f and f0. This gives us our

deformation retraction. It is easy to see that this preserves F .
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Lemma 3. Recall that G = C∞(X,C∗). Let n ≥ 1. Let {a1, . . . , an} ∈ UConfnX. Then,

1. There is a free action of G (as a group under multiplication) on π−1({a1, . . . , an}).

2. The quotient π−1({a1, . . . , an})/G is contractible.

Proof. We define our action as follows: if s ∈ π−1({a1, . . . , an}) and g ∈ G, define g.s(x) =

g(x)s(x). If g.s(x) = 0 then s(x) = 0 as g(x) ̸= 0 for all x ∈ X. Furthermore, if g.s = s

then g(x) = 1 for x ∈ X − {a1, . . . , an} and since X − {a1, . . . an} is dense, g(x) = 1 for all

x ∈ X. This concludes the proof of (1).

Let Di be small disks surrounding the points ai. Let Gi = {f ∈ C∞(Di,C∗)|f |∂Di
= 1}.

We can identify each Gi with the set of based maps from S2 to C∗. Since π1(S2) = 0, any

based map f : S2 → C∗ lifts to a unique map f̃ : S2 → C. Hence Gi is homeomorphic to

the space of based maps from S2 to C and since C is contractible, Gi is contractible.

Let Fi = {f ∈ C∞(Di − ai,C∗) : f |∂Di
= 1}. By Proposition 13 Fi is contractible. Let

F̃i = {f ∈ C(Di − ai,C∗)|f |∂Di
is nullhomotopic}.

Let

G̃i = {f ∈ C(Di,C∗)}.

Since Di is contractible, the space G̃i ≃ C∗ and the quotient F̃i/G̃i is contractible (this is

analogous to the proof of Proposition 13). There is an inclusion map i : Fi/Gi ↪→ F̃i/G̃i

which is a homotopy equivalence as both spaces are contractible. By Lemma 2,there is a

map j : F̃i/G̃i → Fi/Gi satisfying the following properties.

1. There exists a homotopy h : F̃i × [0, 1]→ F̃i such that h(f, 1) = f , h(f, 0) = j(f) and

h(f, t)|Ui
= f |Ui

.

2. For all f ∈ Fi, h(f, t) ∈ Fi.
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Let A = π−1({a1, . . . an})/G. Fix an s0 ∈ pi−1({a1, . . . an}). Let ϕ : A →
∏n

i=1 F̃i/G̃i

be defined as follows:

ϕ(s) = (s/s0|D1−a1 , . . . s/s0|Dn−an).

We claim that ϕ is a homotopy equivalence. To prove this we first define ψ :
∏n

i=1 Fi/Gi → A

as follows:.

ψ(f1, . . . fn)(x) =


fi(x)s0(x) if x ∈ Di

s0(x) otherwise.

It is easy to see that ψ ◦ j ◦ ϕ ≃ Id (the homotopy h mentioned above can be seen to

define such a homotopy). Since
∏n

i=1 Fi/Gi is contractible this implies (2).

Remark: The action of G on π−1({a1, . . . , an}) is in fact not transitive for any value

of n ≥ 1. The following example will illustrate this fact. Let D be the closed unit disk

in C which we identify with R2. Let f : D → C be defined as f(x, y) = (x, y). Let

g : g(x, y) = (2x, y). Let E → P1 be the unique degree 1 line bundle on P1. Let ϕ :

E|D → D × C be a trivialisation. Let f̄ , ḡ be C∞ sections on P1 of E such that for

(x, y) ∈ D, ϕ(f̄(x, y)) = ((x, y), f(x, y)) and ϕ(ḡ(x, y)) = ((x, y), g(x, y)) (it follows from

a standard obstruction theoretic argument that there indeed exist such f̄ and ḡ). If there

exists h̄ ∈ C∞(X,C∗) such that h̄f̄ = ḡ, then h̄(0, 0) = lim(x,y)→(0,0)
g(x,y)
f(x,y)

. But this limit

does not exist and hence f̄ and ḡ are not in the same G orbit.

Corollary 2. Let n ≥ 0. Let X be a smooth projective curve and L a line bundle on it of

degree n. Then U(L) is a K(π, 1).

Proof. There is a fibration

π−1(U(L)) // U(L)
π
��

UConfnX
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Lemma 3 implies thatπ−1(U(L)) ≃ G. The space G is a K(π, 1) by Proposition 12.

Since U(L) is the total space in a fibration with both base and fibre K(π, 1) spaces is itself

a K(π, 1).

3.3 Abel-Jacobi

In this section we will try to understand the space U(L). Our method to understand the

topology of U(L) is by making it a subspace of a space Ualg
n which we shall construct.

We would like to remind the reader that to give a complex line bundle L, a holomorphic

structure h is equivalent to giving a Dolbeault operator ∂h : Γ(L) → Ω0,1 ⊗ Γ(L). More

details on Dolbeault operators and holomorphic structures may be found in Ch.3 of (14).

Let Hn be the space of holomorphic structures on L. The group Gp acts on Hn with trivial

stabilizers. The quotient Hn/Gp is naturally isomorphic to PicnX.

Let

Un = {(s, h) ∈ U(L)×Hn|s is a algebraic section ofL with respect to h}.

Note that the groups G and Gp act on this space Un.

Let Ualg
n := Un/Gp. There is a surjective map π : Un → Hn defined by π(s, h) = h.

Since π is equivariant with respect to the action of Gp, it descends to a surjection

A : U
alg
n = Un/Gp →Hn/Gp = PicnX.

We observe that for L ∈ PicnX, we have the equality A−1(L) = U(L). This map A can

be seen as a section level version of the Abel-Jacobi map. We now wish to understand the

topology of Ualg
n .

35



Proposition 14. Let n ≥ 1.

1. Ualg
n is a K(π, 1).

2. There is a short exact sequence

1→ Z→ π1(U
alg
n )→ Brn(X)→ 1.

Proof. There is a fibration π : U
alg
n :→ UConfnX defined by

π(s, h) = {a ∈ X|s(a) = 0}.

If a = {a1 . . . an} ∈ UConfnX, then π−1(a) ∼= C∗, as algebraic sections of a line bundle

are uniquely identified with their zeroes up to a scalar. Since C∗ and UConfnX are K(π, 1)

spaces, so is Ualg
n .

3.3.1 An alternative definition of Ualg
n

In this subsection we will give an alternative definition of Ualg
n . This will not be used in the

rest of the paper.

Let X be a smooth projective curve of genus g. Let n > g. Let SymnX be the nth

symmetric power of X. Let P denote the Poincare line bundle on X × PicnX, this is

the unique line bundle on X × Picn(X) such that P|X×{L} = L and P|{p}×PicnX . Let

π : X × PicnX → PicnX denote the projection. The pushforward π∗(P) defines a vector

bundle E on PicnX, sometimes called the Picard bundle. Let E0 ⊆ E denote the zero

section. We may identify SymnX with E − E0/C∗, i.e. SymnX is the projective space

bundle associated to the vector bundle E. Let ρ : E − E0 → SymnX denote the projection

map. We then define Ualg
n to be ρ−1(UConfnX).

Let us emphasize that E − E0 → SymnX is not a trivial C∗ bundle. Indeed after
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restricting to a fibre of the projection SymnX → PicnX the bundle ρ restricts to the bundle

Cn−g+1−{0} → Pn−g which is classically known to be non trivial. While it is possible that

the bundle Ualg
n → UConfnX is a trivial C∗ bundle, we are unable to determine whether

this is the case.

3.4 Comparing different fibres

To understand U(L) we will analyze the map A : U
alg
n → PicnX. We will prove that the

map A is similar to a homology fibration. More precisely, we have the following.

Theorem 10. Let n ≥ 0. Let X be a smooth projective complex algebraic curve of genus g,

L a line bundle of degree n on X. Let 2k ≤ n − g. Let A be the map defined in Setion 3.

Let W ⊆ Picn(X) be a small contractible neighbourhood of L homeomorphic to a ball. Let

i : A−1(L) ↪→ A−1(W )

be the inclusion map. Then

i∗ : Hk(A−1(W );Z)→ Hk(A−1(L);Z)

is an isomorphism.

Before embarking on the proof of Theorem 10 we will need to set up some machinery.

There is a vector bundle π : H0(X,W )→ W defined as follows. Let

H0(X,W ) = {(s,L)|L ∈ W, s ∈ H0(X,L)}.

Then A−1(W ) is an open subset of H0(X,W ). The topology of the complement ΣW =

H0(X,W ) − A−1(W ) will be important for us to understand. It is immediate that ΣW =
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{(f,L)|L ∈ W, f ∈ Σ(L)}, since for any L ∈ W A−1(L) consists of all sections of L with

regular zeroes.

We will create a relative stratification of Σ−1(W ). This is similar to the stratification in

(12). Let

Σ≥kL = {f ∈ ΣL| |Sing(f)| ≥ k}.

Let N = d−g
2 . We stratify ΣL, the complement of A−1(L) in H0(X,L) by

Σ≥kL = P{f ∈ V |f has atleast k distinct singular zeroes},

for k ≤ N . So Σ≥1L ⊃ Σ≥2L ⊃ . . . .

Now we construct a cubical space C that will be involved in understanding Σ(L). Let

N = d−1
2 . Let I be a subset of {1, . . . , N − 1}. Let I = {i1, . . . , ik} let

CI := {(f, x1, . . . , xk)|f ∈ Σ(L), xj ∈ UConfij (X) x1 ⊆ x2, . . . ,⊆ xk ⊆ Singular zeroes of f}.

We define

CI∪{N} := {(f, x1, . . . , xk) ∈ CI |f ∈ Σ̄≥N}.

If I ⊆ J then we have a natural map from CJ → CI defined by restricting p. This gives C the

structure of a cubical space over the set {1, . . . , N}. We can take the geometric realization

of C denoted by |C|. Then there is a map ρ : |C| → Σ(L), induced by the forgetful maps

CI → Σ(L).

|C| is topologized in a non-standard way. The topology we give is analogous to the

topology on X in (12). The primary reason we give |C| this topology is to make ρ proper.

For k < N , there is an inclusion

i : UConfk(X)→ Gr(h0(X,L)− 2k,H0(X,L)).
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We define Lk(L) to be the Zariski closure of the image. We will omit the L in our notation if

there is only one line bundle that we are discussing. There is a relation, < on the collection

of all Lk, defined by λ1 < λ2 if as subspaces of H0(X,L), λ2 ⊆ λ1. Note that this extends

the relation ⊃ on the collection of all UConfk(X). Let I = {i1, . . . , ik} ⊆ {1, . . . , N−1}. Let

C̄I = {(f, λ1, . . . , λk)|λj ∈ Lij , λ1 < λ2 · · · < λk < Sing(f)}. Let C̄I∪N = {f, λi, . . . λk ∈

CI |f ∈ Σ≥NL }. Then C̄ forms a cubical space in the same way that C does.

Take the geometric resolution |C̄|. Now we will construct a map |C̄| → |C| that is the

identity on |C| ⊆ |C̄|. This will exhibit |C| as a quotient of |C̄| and we will give it the quotient

topology. Given λ ∈ Lk, we can define supp(λ) ∈ UConfn(λ)(X) by supp(λ) = ∩f∈λSing(f).

This defines a map supp : |C̄| → |C| given by

(f, λi, si) ∈ C̄I ×∆I 7→ (f, supp(λi), s′j) ∈ CI ×∆J .

Here J = {supp(λi)} and s′j =
∑

n(λi)=j si.

The maps C̄I → ΣL are proper and hence so is the induced map |C̄| → ΣL.

Proposition 15. The map ρ : |C| → Σ is a proper homotopy equivalence.

Proof. In our setting having proper contractible fibres implies that the map ρ is a proper

homotopy equivalence, this follows by combining Theorem 1.1 and Theorem 1.2 of (9). We

note that if f ̸∈ Σ̄≥N the fibre ρ−1(f) is the simplex with vertices labelled by the singular

points. If f ∈ Σ̄≥N then the fibre is a cone. We have given |C| the quotient topology.The

map ρ is a factor in the composite |C̄| → |C| → ΣL which is proper, hence ρ itself is

proper.

Now as in any geometric realization, |C| is filtered by

Fn = im(
∐
|I|≤n

CI ×∆k).
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The Fn form an increasing filtration of |C| , i.e. F1 ⊆ F2 . . . Fn ⊆ Fn+1 ⊆ . . . and ∪∞n=1Fn =

|C|.

We define

Bn = {f ∈ ΣL| f has at least n singular zeroes}.

Proposition 16. Let n < N . Let ∆◦n be the interior of an n simplex. The space Fn−Fn−1

is a ∆◦n- bundle over the space Bn. This is in turn a vector bundle over UConfn(X).

Proof. The fact that Bn is the total space of a vector bundle over UConfn(X) follows from

Riemann-Roch, the fibres are all vector subspaces of H0(X,L) of codimension exactly 2(n+

1). A point in Fn − Fn−1 is a pair ((f, x0, . . . xn), s0, . . . sn) where the si are the simplicial

coordinates. We have a map π : Fn − Fn−1 → Bn defined by

(f, (x1, . . . , xn), (s0, . . . , sn)) 7→ (f, (x1, . . . , xn)).

The map π expresses Fn − Fn−1 as a ∆◦n bundle over Bn.

Let ed = dimC(H
0(X,L)). We define a local coefficient system on UConfnX, denoted

by ±Z, in the following way. There is a homomorphism π1(UConfnX) → Sn associated

to the covering PConfnX → UConfkX. We compose this with the sign homomorphism

Sn → ±1 ∼= GL1(Z) to obtain our local system on UConfnX.

Proposition 17. Let d ≥ 1. Let n < N .

H̄∗(Fn+1 − Fn;Z) = H̄∗−(ed−(2(n+1)))(UConfn+1(X);±Z).

Proof: By Proposition 16 the space Fk − Fk−1 is a bundle over UConfk(X). This fact

implies that

H̄∗(Fk − Fk−1) ∼= H∗−(k+2ed−2(n+1)(k+1))(UConfk(X),Z(σ)).
40



Here Z(σ) is the local sytem obtained by the action of π1(UConfk(X)) on the fibres H̄k(∆
◦
k,Z)

where in this case ∆circ
k is the open k simplex corresponding to the fibres of the map

Fk −Fk−1 → Bk. But one observes that the action of π1(UConfk(X)) on this open simplex

is by permutation of the vertices which implies that Z(σ) = ±Z.

As with any filtered space, there is a spectral sequence with Ep,q
1 = H̄p+q(Fp − Fp−1;Z)

converging to H̄∗(|C|;Z). Now by Proposition 17 we know what Ep,q
1 is for p < N .

Proposition 18. H̄∗(|C| − FN ;Z) ∼= H̄∗(|C|;Z) for ∗ ≥ 2ed −N.

Proof. We first will try to bound H̄∗(FN ;Z) and then use the long exact sequence of the

pair (FN , |C|). The space FN is built out of locally closed subspaces

ϕk = {(f, x1, . . . , xk), p| f ∈ Σ≥N , p ∈ ∆k, xi are singular zeroes of f}.

There exists a surjection π : ϕk → UConfkX. The map π is a fibre bundle with fibres

Ced−2k × ∆k
◦ . The space UConfkX has complex dimension k. Therefore H̄j(ϕk;Z) = 0 if

j ≥ 2ed − N ≥ 2(ed − 2k) + 3k. This implies H̄j(FN ) = 0 if j ≥ 2ed − N . The long exact

sequence of the pair (FN , |C|) implies that H̄∗(Y −FN ;Z) ∼= H̄∗(|C|;Z) for ∗ ≥ 2ed−N .

Now this simplicial resolution of Σ gives an associated spectral sequence for its Borel

Moore homology with

E
p,q
1 = H̄p+q(Fp − Fp−1) = Hp−(ed−(2)(q+1))(UConfp+1(X),±Z)

, for p < N . Also, EN,q
1 = 0 if q ≥ 2ed −N .

We will now construct a cubical space C which will be involved in understanding Σ(W ).

Our construction of C will be similar to that of C. Let N = d−g
2 . Let I be a subset of

{1, . . . , N − 1}. Say I = {i1, . . . , ik} let

CI := {(f, x1, . . . , xk)|f ∈ Σ(W ), xj ∈ UConfij (X), x1 ⊆ . . . xk ⊆ Singular zeroes of f}.
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We define

CI∪{N} := {(f, x1, . . . xk) ∈ CI |, f ∈ Σ̄≥N (W )}.

If I ⊆ J then we have a natural forgetful map from CJ → CI . This gives C· the structure of

a cubical space over the set {1, . . . , N}. We can take the geometric realization of C· denoted

by |C|. Then there is a map ρ : |C| → Σ(W ), induced by the forgetful maps CI → Σ(W ).

We again topologise |C| in a nonstandard way, this is entirely analogous to the way we

topologise |C|, so we will be brief in our description of it. We construct a bigger cubical

space C̄ such that for I = {i1, . . . , ik} ⊆ {1, . . . , N − 1}, C̄I = {(f, x1 . . . , xk)|f ∈ Σ(L),L ∈

W,xj ∈ Lij (L), x1 < x2 . . . xk < Sing(f)}. We define CI ∪ {N} analogously. We then form

the geometric realisation, |C̄| and note that there is a surjective map |C̄| → |C| and we give

|C| the quotient topology with respect to this map.

Proposition 19. |C| is proper homotopy equivalent to ΣW .

Proof. This is analogous to the proof of Proposition 15.

Y also has an ascending filtration, Fn and this filtration gives us a spectral sequence for

H̄∗(Y ;Z).

Proposition 20. H̄∗(|C| − FN ;Z) ∼= H̄∗(C;Z) for ∗ ≥ 2ed −N.

Proof. This is analogous to the proof of Proposition 18.

So there is a spectral sequence with

Ep,q
1 = H̄p+q(C0,...q) = Hp−(ed−(2)(q+1))+2g(UConfp+1(X),±Z)

for p < N . Finally we have the main theorem of this section.

Theorem 11. The map A−1(L) → A−1(W ) induces an isomorphism H∗(A−1(L);Z) →

H∗(A−1(W );Z) for ∗ < N = d−g
2
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Proof. This proof involves studying Alexander duality ofA−1(L) insideH0(X,L) andA−1(W )

inside H0(X,W ) (the space H0(X,W ) is a topological vector bundle over W and so is at

least homeomorphic to an affine space).

Now we use the fact that under Alexander duality, intersection of Borel-Moore cycles

turns into pullback in cohomology, namely the map

H∗(A−1(W ))→ H∗(A−1(L)),

is Alexander dual to the map

f : H̄∗+2g(ΣW )→ H̄∗(ΣL)

given by intersecting cycles with ΣL, i.e. f(σ) = σ ∩ ΣL.

To understand this map in Borel-Moore homology, we turn to our spectral sequences

for H̄∗(ΣL;Z) and H̄∗(ΣW ;Z). Since our stratification of ΣW is fiberwise we get a map of

spectral sequences between the two spectral sequences. We have a map E1
p,q+2g → E1

p,q. It

will suffice to show that this map is an isomorphism for p < N . For p < N , this map is

given by the map

ϕ : H̄p+q+2g(Fp − Fp−1,Z)→ H̄p+q(Fp − Fp−1,Z)

induced by intersecting cycles. However, we have a diagram of fiber bundles as follows:

K

%%

// K ×W

''
Fp − Fp−1 //

��

Fp − Fp−1

��
UConfp(X) UConfpX

Using this diagram and the fact that the intersection map H̄∗+2g(K × W ) → H̄∗(K)
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is an isomorphism (as W is homeomorphic to Cg), ϕ is an isomorphism. This implies the

theorem.

3.5 Homology fibration theorem

Let us recall the usual homology fibration theorem:

Theorem 12 ((15)). Let f : X → Y be a map. Let Hf−1(y) be the homotopy fibre of

f . Suppose f−1(y) ↪→ f−1(U) is a homology equivalence for sufficiently small U open then

f−1(y)→ Hf−1(y) is a homology equivalence.

For this paper we need the following analogous theorem:

Theorem 13. Let n ≥ 0. Let f : X → Y be a map such that for all y ∈ Y there exists an

open neighbourhood U such that the inclusion j : f−1(y) ↪→ f−1(U) induces an isomorphism

j∗ : Hk(f
−1(y);Z)→ Hk(f

−1(U);Z) for all k ≤ n.

Then the natural map i : f−1(y)→ Hf−1(y) induces an isomorphism i∗ : Hk(f
−1(y);Z)→

Hk(Hf
−1(y);Z) for k ≤ n.

Proof. This follows from the proof of Proposition 5 (which is the same as Theorem 12 of this

paper) in (15).

This implies the following theorem.

Theorem 14. For ∗ ≤ N ,

H∗(A−1(L);Z) ∼= H∗(HA−1(L);Z) ∼= H∗(π;Z)

where π is the previously described subgroup of the extended surface braid group.

Proof. First we note that HA−1(L) is a K(π, 1), where π is our previously described sub-

group of the extended surface braid group. The map A : U
alg
n → PicnX has K(G, 1)s for
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both source and target and the induced map at the level of π1 is given by B̃rnX → BrnX →

Z2g, Since HA−1L is the homotopy fibre it is also a K(G, 1) with fundamental group equal

to

Kn := ker(B̃rnX → Z2g).

By Theorem 13 and Theorem 11 H∗(A−1(L);Z) ∼= H∗(HA−1(L);Z) for ∗ ≤ N .

3.6 Relating U(L) and U(L)

In this section we will relate the two spaces U(L) and U(L). We begin first with the following

result.

Proposition 21. Let X be an algebraic curve. Let L be a line bundle on X of degree n. Let

p ∈ X be a point. Then, U(L)/Gp ≃ U
alg
n .

Proof. Let

S{x1,...,xn} = {f ∈ U(L) : xi are regular zeroes of f}/Gp.

We have a diagram of fiber bundles as follows.

C∗

$$

f // S{x1,...,xn}

&&
U
alg
n

��

// U(L)/Gp

��
UConfnX UConfnX

By considering the long exact sequences of homotopy groups associated to these fiber

bundles, it suffices to prove that the map f : C∗ → S is a homotopy equivalence.

To prove this it suffices to prove that S/C∗ is contractible where C∗ is acting on S by
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z · f(x) = z(f(x)). But

S/C∗ = {f ∈ U(L)| xi are regular zeroes of f}/G.

This is contractible by (2) of Proposition 3.

We will need the following lemma to obtain our results.

Lemma 4. Let X be an algebraic curve. Let n ≥ 1. Let a = {a1, . . . an} ∈ UConfnX. Let

α ∈ π1(UConfnX, a). Suppose A∗(α) ̸= 0 ∈ H1(X;Z). Let Pα denote the point-pushing

map associated to α. Let ci ∈ H1(X − {a1 . . . an};Z) be the puncture classes. Then there

exists a class

γ ∈ H1(X − {a1 . . . an};Z)

such that γ ∩ A∗(α) = 1 and

Pα(γ)− γ =
∑

mici,

where
∑
mi ̸= 0.

This can be deduced from a computation by Bena Tshishiku. For a refererence see (19).

Theorem 15. The natural map ρ : U(L)→ PicnX is nullhomotopic.

Proof. As PicnX is a K(π, 1) it suffices to prove that

ρ∗ : π1(U(L))→ π1(PicnX) ∼= H1(X;Z)

is trivial. Let π : U(L) → UConfnX be defined by π(s) = {a ∈ X|s(a) = 0}. Let A :

UConfnX → PicnX be the Abel-Jacobi map. Let a = {a1, . . . an} ∈ UConfnX. Let α ∈

π1(UConfnX, a). Suppose A∗(α) ̸= 0 ∈ H1(X;Z). It suffices to show that α ̸∈ ρ∗(π1(U(L))).

This is because the map ρ factors through A.
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Let Mod(X − {a1, . . . , an}) be the mapping class group of the punctured surface X −

{a1, . . . , an}. Associated to α there exists a point pushing map Pα ∈Mod(X−{a1, . . . an}).

Let ci ∈ H1(X − {a1 . . . an};Z) be the puncture classes.

Then by Lemma 4there exists a class [γ] ∈ H1(X − {a1 . . . an}) such that

Pα∗([γ])− [γ] =
∑

mici,

where mi ∈ Z satisfying
∑
m1 ̸= 0.

Let f ∈ U(L) be such that π(f) = a. Suppose for the sake of contradiction that α ∈

im(π1(U(L)), f) with α ̸= 0. Then there exists a loop in U(L), which we will call Fα such

that π(Fα) = α, i.e. Fα is a lift of α.

Now for s ∈ (0, 1), let P s
α be the point-pushing homeomorphism along the path α|[0,s].

It is a well-defined element of

π0(Homeo((X,α(0)), (X,α(s)))).

Now P t
α(f) is a lift of α as a path (not a loop) to U(L). Since the map π is a fibration, any

two paths that are lifts of α must have endpoints in the same component of π−1(ā). This

would imply that f (the endpoint of Fα) and Pα∗(f) (the endpoint of P t
α(f)) would be in

the same path component of π−1(a). If that were so, then we would have

∫
γ

Pα(f)

|Pα(f)|
−
∫
γ

f

|f |
= 0.

However we will now show that this is not the case.

We’d like to remind the reader that
∫
ci
f/|f | = 1. This is because the section f has a
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zero of index 1 at each of the ais. Then we know that

∫
γ

Pα(f)

|Pα(f)|
−
∫
γ

f

|f |
=

∫
Pα∗γ

f

|f |
−
∫
γ

f

|f |

=
∑
i

mi

∫
ci

f/|f | =
∑

mi ̸= 0.

This proves that any α that lifts is forced to be trivial, which completes the proof.

Proposition 22. let n ≥ 1, p ∈ X. There exists a homotopy equivalence f : PicnX → BGp

that makes the following diagram commute upto homotopy:

U(L)

π
��

U
alg
n

A
��

i // U(L)/Gp

g

��
PicnX

f // BGp

Here the map g is the classifying map for the fibration U(L)→ U(L)/Gp.

Proof. The situation is a follows: π : U(L) → U(L)/Gp is a principal Gp bundle. Since

Gp ≃ Z2g, we have an associated principal Z2g bundle E → U(L)/Gp, where

E := U(L)/(f1 ∼ f2 if π(f1) = π(f2) and f1, f2are in the same path component of π−1(π(f1))).

Equivalently, if (Gp)0 is the identity component of Gp, E = U(L)/(Gp)0.

The quotient map p : U(L)→ E is naturally a homotopy equivalence as the group (Gp)0

is contractible. We then have a diagram as follows:

U(L)

��

p // E

��
U(L)/Gp

= // U(L)/Gp

48



It suffices to prove that the natural map

α : U(L)/Gp → PicnX

satisfies the classifying space property for the fibration E → U(L)/Gp. However by Propo-

sition 15 the composite map E → PicnX is nullhomotopic and we can lift it to ˜PicnX, the

universal cover of PicnX. So we have a commutative diagram as follows.

E

��

// ˜PicnX

��
U(L)/Gp

α // PicnX
Hence α is a classifying map and we are done.

Theorem 16. U(L) is homotopy equivalent to HA−1(L), the homotopy fibre of A.

Proof. By Propositions 15 and 22 there is a diagram as follows:

HA−1(L)

��

U(L)

��
U
alg
n

A
��

i // U(L)/Gp

��
PicnX

f // BGp

Since the composite map HA−1(L) → BGp is null homotopic, by the properties of a

fibre sequence we have a map g : HA1(L) → U(L) that commutes with the maps of the

diagram. Since the maps i and f are homotopy equivalences, so is g.

Now we can finally prove the theorems in the introduction of this paper.

Proof of Theorem 7. By Theorem 16 U(L) ≃ HA−1(L). So it suffices to prove thatHA−1(L)

is a K(π, 1) for Kn. However this follows from Theorem 14.

Proof of Theorem 6. By Theorem 13 and Theorem 11 the map f : U(L) → HA−1(L) in-

duces an isomorphism H∗(U(L)) ∼= H∗(HA−1(L)) for ∗ < n − (2g)). But by Theorem 16
49



HA−1(L) ≃ U(L) and it is easy to see that

i∗ : H∗(U(L);Z)→ H∗(U(L);Z)

is the composition

H∗(U(L);Z) ∼= H∗(HA−1(L);Z)→f∗ H∗(U(L);Z).
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