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ABSTRACT

This thesis consists of two essays on education market design. Chapter 1, “Education Market in

the Presence of Peer Effects: Theory and Evidence From South Korea” is a joint work with

Sam Il Myoung Hwang. In this paper we evaluate alternative market designs in the presence of peer

effect considerations in school choice. Schools can differentiate by peer composition among other

characteristics. Different rules public schools are subject to compared to elite or private school-

s have been heavily debated because of their effects on student distribution. In many countries

former group admit students earlier than the latter, which we call Sequential Admissions (SA).

Furthermore, the former group can use academic criteria in admissions unlike the latter. We study

the effect of these admission aspects on welfare and distribution. Our analysis has important dis-

tinguishing features. First, it includes private schools as well as public schools, whereas previous

studies on admission rules focused on centralized public school allocation. Second, students can

have preferences for peer composition at schools. This is an important factor that can determine

sorting behavior which is not carefully studied before. First we theoretically study equilibria of

the admission games complicated by the peer effects. Then we estimate a structural model using

detailed high school applications data from Seoul to run counterfactual simulations. We show that

SA can approximate centralized admission schemes well. This is important since complete cen-

tralization is known to increase welfare but hard to implement in many cases. Moreover analysis of

SA is informative on the controversial “exploding offers” in labor markets. Regarding admission

criteria, we show that use of academic criteria in a subset of schools increases the desirability of

these schools. The reason is that high performing students want to coordinate to study together and

xi



academic screening provides this. This suggest that, school choice is also a coordination game, not

just an object allocation problem.

Chapter 2, “The Role of Outside Options under Boston Mechanism” studies ex ante welfare

from centralized public school allocation for students who cannot go to private schools when there

are others who have such option. I show that when a private school is preferred to only the last

option, students prefer Boston Mechanism (BM) to Deferred Acceptance (DA). Analyzing the

case of desirable private schools in a model with three public schools, I demonstrate that students

who are marginal in the decision of which school to report as top choice are better off under DA

compared to BM; whereas inframarginal students are better off under BM. I show that a distribution

of preferences with full support guarantees the existence of students who are better off under BM

compared to DA. Assuming uniform distribution of preferences allows one to find the fraction of

students who are better off under BM compared to DA. Analysis of the effect of private school

entry on the welfare of students who cannot access private schools demonstrates that under mild

conditions either there are students who are strictly better off after the entry or welfare of none of

the students change.
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Chapter 1

EDUCATION MARKET DESIGN IN THE

PRESENCE OF PEER EFFECTS:

THEORY AND EVIDENCE FROM

SOUTH KOREA

Co-authors for This Chapter: Sam Il Myoung Hwang (U-
niversity of British Columbia)

1.1 Introduction

In school districts across the world, parents and their children are now faced with many options

beyond their catchment area public schools. These encompass the following: alternatives like

public schools from other neighborhoods, private schools, charter schools, as well as elite public

schools that utilize academic screening in admissions. In this context, "tuition" or prices tend to

play a limited role in clearing the market for elementary as well as secondary education - unlike in

1



product markets.1 Thus, admission rules are imperative for education markets to clear. However,

there are apparent disparities across school types when it comes to admissions, such as the use of

academic screening, the timing of admissions, and tuition.

These disparities in admissions might affect student distribution across schools, and student

distribution matters because of potential peer effects. The existing body of economics of educa-

tion literature has furnished empirical evidence, according to which the attributes of students’ peers

impact both their academic achievement as well as non-academic outcomes, including smoking be-

havior (Sacerdote, 2011). Hence, peer effect considerations can also affect students’ school choice.

This paper assesses the effect of disparities in admissions across school types on student welfare

and distribution when students have peer effect considerations. Our paper is the first to study this

for any aspect of admissions other than tuition while dealing with the potential endogeneity of

school compositions at the same time.

Market design studies have demonstrated the welfare gains arising from centralizing the admis-

sion processes in comparison to uncoordinated admissions (Kapor, Karnani, and Neilson, 2022;

Abdulkadiroğlu, Agarwal, and Pathak, 2017). Each student submits a rank-ordered list of schools

to a centralized clearinghouse in centralized admissions, based on which the allocation is deter-

mined. However, very often, centralized admissions are not found to encompass schools from

multiple sectors, and in most cases, only include traditional public schools.

Instead, sequentiality in admissions is observed in a number of school districts. In this process,

a subset of schools first decides on their admissions, following which the rest of the schools partic-

ipate in the next stage along with the remaining students. In general, private or elite (exam) public

schools are the early-moving ones. Admissions to the initial group are followed by centralized

admissions to public schools. To the best of our knowledge, sequentiality of admissions has been

1At most times, public schools are impervious to charges; and tuition often does not obliterate the excess demand
within private schools. This could be attributed to government regulations out of concern for the affordability of private
education. These regulations may be inclusive of tuition caps or vouchers for students with low income. In addition,
private schools may have incentives to be over-demanded, which helps them select students based on characteristics
apart from income. Student ability is an example to this.
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observed in high school matches in countries such as Turkey, Sweden2, South Korea and Canada3

where public school admissions follow private school admissions. In a similar manner, admission-

s to charter schools in New York City (NYC) have been shown to commence after determining

public school assignments.4 Furthermore, in cities like NYC, Boston, and Chicago, public school

admissions followed admissions to elite (exam) schools for several years.

In the illustrations concerning the aforementioned countries, sequentiality is accompanied by

a commitment structure. Admissions to private schools end prior to the commencement of admis-

sions to public schools in these places. Furthermore, in the first three examples, students with a seat

in private schools cannot attend public schools’ centralized admission.5 Such a commitment struc-

ture intuitively reduces or eradicates frictions from wait lists since students are prohibited from

simultaneously holding more than one offer from various sectors (Andersson, Dur, Ertemel, and

Kesten, 2018).67 Other settings also observe such a commitment structure. Among elite colleges

and universities in the US, early decisions are getting increasingly popular.8 At the same time,

early applications and exploding offers are also ubiquitous phenomena in certain job markets.9

In South Korea, the issue of Sequential Admissions (SA) has remained contentious. Those who

oppose such an admission process contend that it tends to enhance the sorting of high-performing

students to private schools while adversely impacting public schools’ classroom environments.

2See Andersson, Dur, Ertemel, and Kesten (2018) for the implementation in Turkey and Sweden.
3In Canada, popular private schools tend to have deadlines of admission decisions before public school choice.
4In 2022, admissions are announced in March for non-charter public schools, while lotteries for charter schools are

held in April.
5In Canada, some private schools demand a part of the tuition to finalize the enrollment, which explains why the

commitment structure is non-different from other examples.
6As a case point Andersson, Dur, Ertemel, and Kesten (2018) posit that Turkey’s switch to such a commitment

structure took place following a summer with several rounds of admissions that were unable to fill vacant seats across
public schools

7However, students must decide whether or not they would enroll before learning their match in the market, which
renders it a complicated decision (Andersson, Dur, Ertemel, and Kesten, 2018).

8Early decision applications imply that students are required to enroll if they are admitted to their desired college.
The share of students admitted through an early application or early decision is above 50% for many colleges and
universities (Murphy, 2022)

9This year, prospective Ph.D. graduates are being hired by many economic consulting firms through two tracks. In
one track, students will need to decide before the fly-outs begin in the academic job market. In job markets, exploding
offers have similar characteristics. Following an offer, job candidates are asked to take a decision shortly before
they come to know the decision of another potential employer. As a case in point, this was seen in a job market for
economists with Ph.D. as well as in the Federal judicial law clerk market (Avery, Jolls, Posner, and Roth, 2007).
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Due to these discussions, SA had to face a ban in 2019 despite vehement opposition from private

schools and students themselves. In this study, SA is compared to Deferred Acceptance (DA)

mechanism (Gale and Shapley, 1962), as the latter is a well-known and commonly used school

choice mechanism around the world. It is necessary to understand this comparison with respect

to welfare and student distribution. Authorities might find it easier to implement SA; which can

also transpire on its own, as observed in early college decisions and the exploding offers across job

markets. Therefore, comparing it with the benchmark of full centralization has significance.

In many school districts, only some of the schools can use academic screening in admissions.

Schools with academic screening tend to be particularly popular among high-performing students,

and have intense competition for entrance. The academic screening policy of private and public

schools in large cities both in the US and elsewhere globally has been subject to heated debates.10

In 2022, Latino and Black students have received only five and three percent of the offers, re-

spectively from the eight elite high schools in NYC. In contrast, White and Asian students took the

majority of the offers from these schools. Some people are in favor of scrapping exams. According

to their contention exams create impediments for Black and Latino students, hence exacerbate the

segregation in these schools.1112 In Seoul, starting with the 2015 academic year, private schools

must allow everyone to enter their admission lotteries. Before that, attendance to their lotteries was

subject to academic criteria.13 Currently, the discussion is about whether or not the elite schools

must be less segregated, at the expense of some of the high-performing students within the stan-

dardized tests. In this study, the interaction between academic screening and students’ preferences

for peers is investigated so that the debate can be approached from a different perspective. Our

10In large US cities such as Boston, Chicago, and Philadelphia, elite public schools admit students via academic
screening. On the contrary, the majority of public schools make use of lottery-based admissions. Also, private schools
in US are allowed to select students based on academic screening.

11See Bocanegra (2022)
12Former mayor of NYC, Bill de Blasio proposed a bill to change the admissions in these elite schools, which face

strong opposition from Asian families. The bill never made it to floor vote in the end (Shapiro and Wang, 2019). Bill de
Blasio also proposed removing gifted and talented programs for NYC elementary schools (Shapiro, 2021). However,
the current mayor Eric Adams reversed this policy, and announced the increase of gifted and talented programs, making
it available in every district in NYC (Closson, 2022).

13Before 2015, only students in the top 50% with respect to grades within their middle schools were allowed to
enter their lottery.
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analysis involves comparing the distribution of students under two distinct scenarios: i) when a set

of schools does utilize academic screening; and ii) when academic screening is not used by any

school.

To carry out a comparison between SA and DA, we first employ a simple model capable of

elucidating why the choice between both admission schemes does make a difference. Students

have heterogeneous preferences over endogenous student composition in schools under this model.

Under both admission rules, we characterize the price range for which there exist an equilibrium

with sorting of high-performing students to the private school. We see that the sorting of high-

performers to private schools tend to increase with price for both admission rules. According to

our results, even in a simple model, the comparison between DA and SA is ambiguous. We show

that it is predicated on the private school’s tuition. When the tuition is higher (lower), there is

more sorting of over-performing students to the private school under SA (DA). Where the tuition

levels observed in the real-world stand is an empirical question, which shall be addressed during

the empirical part of this paper.

To empirically answer our research questions, we utilize data on high school applications and

enrollment (from Seoul) for the 2010-2012 period, which is inclusive of students’ rank-ordered

lists on public schools. Additionally, the total number of applicants to each private school, as

well as the number of students enrolled in private schools are observed from about 70% of middle

schools. This dataset is combined with additional data on family income and also questions relating

to private school preferences. We employ and estimate a structural model of student preference and

sequential decision in the two consecutive markets. Our specification enables students to exercise

preferences over student composition in his/her cohort at schools.

Our empirical task is confronted with several challenges. To begin with, Seoul’s centralized

mechanism is not impervious to strategic decisions, so the truthfulness of submitted preferences

cannot be guaranteed. In order to address this challenge, we follow approach of Hwang (2017),

which makes a minimal assumption about the ability of students to calculate the probabilities of

entry to schools. This strategy yields students’ truthful comparisons over many pairs of schools,
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which we can use in preference parameter estimation.

The second problem pertains to the potential endogeneity of student composition within school-

s. It is possible for some school-level unobserved variables to exert a heterogeneous effect on the

preferences of various kinds of students. Nevertheless, this also impacts schools’ student compo-

sitions, which then results in omitted variable bias. To resolve the problem, we exploit the 100%

increase in the number of private schools during our data period. This alteration, coupled with the

aforementioned academic criteria of private schools, helps us develop an instrument for student

composition within public schools. The idea behind the instrument is that public schools closer to

the these private schools are potentially more affected in terms of incoming student achievement

compared to other public schools. Moreover, neighborhood fixed effects in our model eliminate

the potential selection problem regarding the instrument. We have found that higher-performing

students have stronger preferences for studying with high-performing students. We also demon-

strate that heterogeneity regarding preferences over student composition would be over-estimated

if endogeneity is not considered.

The identification of preferences for tuition denotes the third challenge. The government sets

a price cap for private schools, and most of the schools set their prices close to this cap. Due to

the small variation in tuition, usual (Berry, Levinsohn, and Pakes, 1995) (BLP) instruments are

inadequate for identifying private school preferences and preferences for tuition separately. To

solve this problem, we leverage the presence of affirmative action tracks across private schools

and exploit the price difference for affirmative and general track students as an instrument. This

gives rise to a concern that students in both tracks could have varying preferences concerning

private schools. We deal with this concern by including Regression Discontinuity (RD) moments

in structural estimation via indirect inference, as in Larroucau and Rios (2020). To construct these

moments, income threshold for affirmative action track eligibility is exploited. This approach

ensures that the mean utility difference between the two tracks is caused by price variations as

opposed to varying preferences.

The fourth challenge is addressing capacity constraints in demand estimation. Studies us-
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ing rank-ordered preference lists of students do not depend upon the schools’ enrollment shares

to identify each school’s mean utility. However, this data is unavailable, in many cases. It can

be troublesome to use enrollment shares to identify mean utilities within a BLP setting. Such

an approach might end up underestimating the mean utilities for at-capacity and over-demanded

schools.14 Individual rank-ordered lists over private schools are not observed, which is why we

adopt the BLP approach to estimate these schools’ mean utilities. We are not required to rely on

enrollment shares as we can observe the number of applicants in all schools. We can back out

mean utilities for private schools from application shares as students can apply to only one private

school; moreover, we can incorporate the effect of entry probabilities on students’ decisions, which

is relevant to our setting.

The interdependence between the first step of private school admissions and the second step

of public school admissions constitutes the fifth challenge. In the first step, a student needs to

consider his expected utility from public school admissions under his optimal play, conditional on

participating in the second step. Identifying the optimal strategy entails going through hundreds

of thousands of lotteries over public schools for each student, as these lotteries hinge on students’

attributes. Recalculating these during the parameter search routine would be computationally chal-

lenging, if not infeasible. Thus, we utilize a two-step estimation procedure whereby we initially

estimate the preference parameters concerning public schools. Next, we use these estimates in the

second phase of BLP estimation that recovers parameters only related to private schools. For this

reason, the expected utilities are calculated only once.

The sixth problem involves getting the equilibrium of SA and DA simulated in our counter-

factuals. Simulating these mechanisms once would not suffice as students’ preferences rely on

the composition of peers in schools. Hence, we iterate over the best responses to until the con-

vergence of peer compositions and school lottery cutoffs to arrive at the equilibrium of preference

submission game.

According to our results, at the tuition levels observed in the data, the average student welfare is

14Similarly, it may result in overestimation of mean utilities for schools with low demand if students rejected from
other schools due to capacity constraints enroll in them.
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$27 to $51 higher under totally centralized DA in comparison to SA, depending on the implemen-

tation of SA. In addition, under both regimes, student distributions are very similar. For authorities,

SA is potentially easier to implement than total centralization; it can also take place on its own at

times. Thus, if complete centralization is costly or impossible to achieve due to legal frictions, the

SA’s coordination structure may be a worthwhile alternative to consider or keep if it has occurred

naturally.15 Many matching markets around the world tend to be decentralized. This result also

suggests that a centralized market could emerge as a viable approximation to decentralized markets

that have small frictions. This is significant as it can be easier to simulate a centralized match when

investigating the effect of policies. Our counterfactual simulations under different tuition levels for

private schools qualitatively align with the predictions of our theoretical analysis. However, the

difference between the mechanisms is again quantitatively small.

We simulate the effect of a switch from lottery-based admission to academic screening for a

set of schools to comprehend the impact of academic screening. According to our result, there is

a significant increase in the shares of high-performers in such schools. The direct impact of the

admission criteria is part of this. We also exhibit an indirect impact of altering preferences over

schools. This change is caused by students preferences for peers. This indirect effect comprises

38% of the total effect. The results of this study suggest that academically strong students want

to coordinate with each other to be in the same school. Permitting academic screening within a

subset of schools offers this coordination without any alteration in the schools’ intrinsic qualities.

This implies that academic screening makes a school popular among high-performers regardless

of school identity. Therefore, who gains admission into a particular well-known school does not

seem to be a fruitful discussion. According to our research, more importance needs to be paid

to understanding whether high-performers should be allowed to coordinate; and, if so, what the

strength of that coordination could be.

15In our setting admission processes go through in a couple of weeks. If the time between steps is very large, it
could lead to other problems, e.g. inefficiencies due to missing information. Moreover, cost of strategic considerations
are not addressed by this paper.
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1.1.1 Related Literature

Our paper is related to several branches of the literature. First one is the literature applying tools

from matching literature to school choice which starts with Abdulkadiroğlu and Sönmez (2003).16

The papers in this branch of literature take capacity constraints in schools seriously and investi-

gate the trade offs between different admission schemes in terms of efficiency, strategy-proofness

and stability.17 Our paper contributes to this literature as we compare strategy-proof DA and SA

which has non-straightforward incentives. There are other recent papers in the literature about

parallel or sequential school admission systems. Andersson, Dur, Ertemel, and Kesten (2018) is

the first paper examining SA and shows that such mechanism is not straightforward in terms of

incentives.18 Andersson, Dur, Ertemel, and Kesten (2018) finds a way to minimize the wasted

seats when different type of schools run their own centralized match sequentially if there is no

commitment structure as in SA. Dur and Kesten (2019) shows that sequential admissions systems

perform worse than one step centralized admission systems. Ekmekci and Yenmez (2019) show

theoretically that schools have incentives to stay outside of the centralized match in a setting with-

out strong commitment structure; and also students are better off under the unified enrollment.19

An empirical paper closely related to ours is Kapor, Karnani, and Neilson (2022). They show

that expansion of the centralized market, i.e. addition of off platform options to the centralized

16They compare DA (Gale and Shapley, 1962), Top Trading Cycles (TTC) and Boston Mechanism (BM)
17Strategy-proof has been an important concept in the literature. Some papers in this literature advocated use of a

strategy-proof mechanism such as DA (Dubins and Freedman, 1981) instead of manipulable BM especially with the
motivation of leveling the play field between strategic and sophisticated agents (Abdulkadiroğlu, Pathak, Roth, and
Sönmez, 2006; Pathak and Sönmez, 2008, 2013; Ergin and Sönmez, 2006). Later theoretical studies demonstrate that
a manipulable mechanism like BM can have favorable efficiency properties (Miralles, 2009; Abdulkadiroğlu, Che, and
Yasuda, 2011; Troyan, 2012) compared to DA. This comparison between manipulable and strategy-proof mechanisms
has been studied by empirical papers later as well (Agarwal and Somaini, 2018; Calsamiglia, Fu, and Güell, 2020;
Kapor, Neilson, and Zimmerman, 2020; Hwang, 2017; He, 2016).

18Avery and Levin (2010) is an earlier paper that is also related to sequential admissions. This paper theoretically
investigates early action/decision in colleges, which has strategic aspects similar to SA. In Avery and Levin (2010)
signaling aspect of early action/decision is emphasized and possible since the early admitting colleges also admit
through regular channel. In our setting there is no such aspect since private schools admit once.

19Other recent theoretical papers show welfare improvement of unified enrollment compared to parallel admission
systems, where in the latter students can get multiple offers from different type of schools simultaneously (Doğan and
Yenmez, 2019; Manjunath and Turhan, 2016; Turhan, 2019); and analyze the role of additional admission stages in
unified enrollment settings (Haeringer and Iehlé, 2021; Doğan and Yenmez, 2023). See Abdulkadiroglu and Andersson
(2022) for a more detailed review of this recent literature.
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matching platform leads to improvement in welfare and student outcomes. One of the differences

of our setting from the work on sequential or parallel admissions is that, priorities at public schools

are determined via lottery numbers instead of being known strict priorities beforehand (e.g., due

to exam score). Another related empirical paper is Abdulkadiroğlu, Agarwal, and Pathak (2017)

which shows that going from decentralized market in New York public school admissions to ful-

ly centralized public school match improves welfare significantly. An important difference from

the aforementioned previous studies is that we allow students to have preferences for peers when

making school choice. Also, we contribute this literature by comparing a sequential admissions

scheme with a completely centralized benchmark.

Our paper is related to literature which examines the effect of school choice on school competi-

tion and student sorting behavior. School choice is argued to be increasing the competition among

schools (Hoxby, 2000, 2003). However, Rothstein (2006) argues that choice may not be enough

to motivate schools to increase their effectiveness if peers in a school are important for parents.

Modeling school quality as a function of peer quality leads to sorting and stratification of students

according to their income and academic success in equilibrium (Epple and Romano, 1998; Epple,

Figlio, and Romano, 2004; Epple, Romano, and Sieg, 2006). Empirical findings indicates that

private school voucher programs may be a factor increasing sorting and stratification (Urquiola,

2005; Hsieh and Urquiola, 2006; Altonji, Huang, and Taber, 2015). Allende (2019) empirically

shows that students/families prefer to be with peers that have higher socio-economic status while

dealing with the endogeneity of peer composition measures. These papers abstract away from the

details of admissions by assuming no capacity constraints or in their model housing market clear-

ing implies school market clearing. In contrast, we take capacity constraints seriously and model

the admission process explicitly.

There are other studies in the market design literature which includes both capacity constraints

and peer dependent preferences over schools. Echenique and Yenmez (2007), Pycia (2012), Dur

and Wiseman (2019), Leshno (2022) and Pycia and Yenmez (2023) theoretically study existence
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of stability in matching markets with externalities such as peer effects.20 Avery and Pathak (2021)

studies the distributional consequences of school choice by allowing for feedback effect from the

residential market. Our theoretical model builds upon Calsamiglia, Martínez-Mora, Miralles, et al.

(2015) which compares the degree of sorting between public schools under DA versus Boston

Mechanism. Our contribution to theoretical literature is to show how private school prices can in-

teract with mechanism choice between SA and DA in determining sorting behavior between private

and public schools. Moreover, our empirical analysis verifies the existence of peer preferences in

school choice which is the assumption of this theoretical literature. In the empirical literature Ab-

dulkadiroğlu, Pathak, Schellenberg, and Walters (2020) show that after controlling for peer quality,

preferences of parents are not related to school effectiveness or match quality. Laverde et al. (2022)

and Idoux (2021) investigate how admission rules affect student distribution. These studies are on

public schools only, however we look at the effect of admission rules in the context of both public

and private schools, hence price also plays a role in our analysis. Also, in these papers endogeneity

of peer composition measures were not taken into consideration, whereas we use an instrument to

identify students’ preferences for peers.

This paper is also related to the empirical literature on school choice that performs structural

estimation of preferences.21 Agarwal and Somaini (2018), Calsamiglia, Fu, and Güell (2020) and

Hwang (2017) are the closest papers to the this work; in their and our settings, students may report

strategically since the centralized mechanisms in these context are manipulable. We use the same

administrative school choice data set as Hwang (2017) and we use the same strategy for identifying

truthful school comparisons regarding public schools. Differently from these papers, we also use

an instrumental variable to deal with endogeneity of student composition, as in Hastings, Hortaç-

su, and Syverson (2017). Our estimation also includes estimation of preferences using aggregate

market shares since preference lists is not available for private schools, so this work is also related

20Sasaki and Toda (1996), Mumcu and İsmail Sağlam (2010) and Fisher and Hafalir (2016) considers matching with
externalities in one to one matching markets. Baccara, İmrohoroğlu, Wilson, and Yariv (2012) quantifies the effect of
network externalities in a matching setting

21 See Agarwal and Somaini (2020) for a survey of the techniques that are used in estimating the preferences of
students from rank ordered choice lists.
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to Berry, Levinsohn, and Pakes (1995); Neilson (2021); Allende (2019). Our contribution is to

modify the BLP framework to take the capacity constraints in school choice into consideration.

Abdulkadiroğlu, Angrist, and Pathak (2014); Cullen, Jacob, and Levitt (2006) investigates the

effect of elite schools or popular schools on student achievement. They cannot find the expected

effects. In our work, we show that for a school to be popular among high achievers, it is enough to

coordinate these students into this school, independent of schools’ value added.

Our paper is also related to papers on private autonomous schools of Seoul. Park (2021) com-

pares academic performance of students attending autonomous versus regular schools using a value

added model. Shin (2018) studies the existence of spillover effects across grades in high schools

exploiting the start of the autonomous school policy.

Section 2 presents our model and theoretical results. Section 3 describes our empirical con-

text, data and important features of Seoul high school market. Section 4 describes our structural

empirical model and identification strategy. Section 5 describes our estimation strategy. Section 6

illustrates the estimates of the structural model parameters. Section 7 describes our counterfactual

analysis. Section 8 concludes.

1.2 Theoretical Analysis

This section illustrates the existence of equilibria under which high performing students sort into

private school under both DA and SA. Also, using additional functional and type distribution as-

sumptions we compare the degree of sorting to private schools under both mechanisms. Our model

in this section is simple yet informative about the existence and comparison of sorting equilibria

under both mechanisms.

1.2.1 Model Primitives

Primitives of our model builds upon Calsamiglia, Martínez-Mora, Miralles, et al. (2015). There

are 3 schools s1,s2,s3; s1 ∈ PR and s2,s3 ∈ PU where PR and PU are the sets of private and public
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schools, respectively; and S = PR∪PU is the set of schools. There exists continuum of students

with a mass of 1. School j has capacity q j, we assume s1 and s2 have 1/3 measure of capacity;

whereas s3 has 2/3 measure capacity. Type (ability) of student is denoted by t ∈ [t, t̄] ≡ T and

µ is the measure associated with this type space. The cumulative distribution function associated

with µ , F(t) := µ([t, t]) is continuous and strictly increasing in t. Each school j has a measure µ j

over type distribution which will be determined endogenously in an equilibrium. The quality of

student body in school j, ω j is defined as the expected type in school j, i.e. ω j := Eµ j(t). s1 has

an exogenous price p > 0, whereas s2 and s3 are free. Student of type t, gets utility h(ω, t) from

the quality ω of the student body. We assume that h(ω, t) is strictly increasing in both arguments

and hωt > 0, i.e. school quality and student type are complements in student’s preferences. This

function might be motivated by social preferences students may have over the student body in the

school or their production of human capital in a school with ω quality. Student type t’s payoff

from attending school j is:

v j(t) = h(ω j, t)−1{ j = 1}p−1{ j = 3}∆

where ∆ > 0. So, a student’s payoff from school j depends on his utility from the quality of the

student body in school j; the price student pays; and an exogenous disutility student get from

being assigned to s3 for possible reasons such as being far or having undesirable neighborhood

characteristics or bad management of the school, which are assumed to be independent from the

endogenous student measure µs3 .

1.2.2 Assignment Rules and Entry Probabilities

Each student is assigned independent fair lottery numbers for each school l := (l1, l2, l3) for l ∈

L = [0,1]3 from uniform distribution; l j indicates the lottery number at school j. Formally, there

is a uniform measure ϒ on L such that, for any measurable subset L̄⊆ L, a student’s probability of

getting lottery numbers in L̄ is ϒ (L̄). Conditional distribution of types that draw lottery numbers in
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L̄ is µ for any L̄ ⊆ L , i.e. lottery distribution is independent of type distribution. We assume that

smaller lottery draw has precedence.

In our model we restrict attention to mechanisms which receive rank ordered lists over three

schools from students. Formally a rank ordered list is a permutation π := (π1,π2,π3) ∈ S3 over

schools such that πk 6= πl if k 6= l and π1,π2,π3 is the ordering of the schools from top to bottom.

The set of all such orderings is Π. Given π , relative order of public schools is a permutation

π pu ∈ PU2 over s2 and s3 such that π( j)< π( j′) if and only if π pu( j)< π pu( j′) for j, j′ ∈ PU and

j 6= j′.

Next we define Deferred Acceptance and Sequential Admissions mechanisms. In the introduc-

tion we have mentioned that Sequential Admissions in our context has a commitment structure. A

student cannot attend the centralized match of public schools, if the student holds an assignment

of private school. This commitment structure allows us to model SA in a convenient way.

Definition 1.1. Deferred Acceptance (DA):

Step 0: Students submit preferences over schools then each get a lottery number over each

school.

Step 1: Each student applies to his first choice. Each school admits applicants tentatively up to

its capacity according to lottery order, rejects the rest.

Step k: Students rejected at Step k-1, apply to their kth choice. Schools consider new applicants

along with tentatively accepted applicants at k-1; admit according to lottery order up to capacity.

The process converges when the set of students that are rejected has zero measure or all students

run out of schools in their list.

Definition 1.2. Sequential Admissions (SA):

Step 0: Students submit preferences over schools then each get a lottery number over each of

the schools.

Step 1: Students who ranked the private school as top choice are ordered according to their

lottery number at the private school. Private school admits students up to its capacity according to

the lottery order and reject others. This is the final assignment for students who are admitted.
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Step 2: Students who are not admitted are assigned to public schools through DA. The relative

order of the public schools in the submitted lists is used for DA.

The process converges when the set of students that are rejected has zero measure or all students

run out of schools in their list.

In reality a student who is assigned a private school might drop his private school assignment

after being assigned to it and then can join the public school match. The way we model SA does

not allow a student to drop his or her private school assignment. In other words the assumption we

make when modeling SA is that a student would not apply to a private school that later he would

less prefer than attending the centralized allocation of public schools.

Under both mechanisms m∈ {DA,SA} a pure strategy profile is a function σ : T →Π from type

space to set of possible rank ordered lists. Defining the equilibrium of this game is challenging.

Students’ preferences will depend on student quality at schools {ω j}3
j=1. This implies that the

lists they submit also depends on these qualities. However, these qualities are also determined by

the rank ordered lists submitted by students, and the processes of the mechanisms. To define an

equilibrium, for a given strategy profile, students’ payoffs from all the strategies they can play must

be well defined. 1.1 is helpful for showing this is the case.

Lemma 1.1. (Abdulkadiroglu et al. 2015) Given a strategy profile σ , there exist unique lottery

cutoffs cDA
j (σ) at each school j such that it indicates the largest lottery number among the lottery

numbers of admitted students under DA.

Existence of unique lottery cutoffs cSA
j for SA immediately follows from Lemma 1.22 Impor-

tantly, the result implies that for a given profile of rank-ordered lists, the largest lottery number that

is admitted to each school is the same whatever is the realization of lottery numbers.23 This will

be the key to define payoffs for a given strategy profile.

22Given a strategy profile σ , the lottery cutoff cSA
1 (σ) is equal to the minimum of the following two: (i) 1/3 (capacity

of s1) divided by measure of students who ranked s1 as top choice; (ii) 1.
23Also, this result means that for any profile of rank-ordered lists students may submit, after the lottery numbers are

drawn, the assignments are unique.
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We define σ−1(π) as the set of types that submit ranking π under strategy profile σ , i.e.,

σ−1(π) := {t ∈ T : σ(t) = π}. Since lottery numbers are drawn independently from types, given

cutoffs cm
j (σ) and π , for each student type t ∈ σ−1(π) the probability of entry to each school j

under each mechanism m ∈ {SA,DA} can be calculated easily. We show the calculation of these

probabilities in Appendix A.3.

1.2.3 School Qualities and Equilibria

When the measure of students who submit π is greater than 0, i.e., µ(σ−1(π))> 0, by Law of Large

Numbers the probabilities of entry is equal to the shares of the types t ∈ σ−1(π) admitted to each

school. Then school qualities can be calculated using the measure over types that submit π under

the strategy profile σ , which we denote as µ{σ(t)=π}; and the entry probability of a student submit-

ting π to school s j under the strategy profile σ and mechanism m, φ m
j (π,σ). So, the total measure

of students admitted to school j in strategy profile σ is equal to ∑π∈Π µ(σ−1(π))φ m
j (π,σ).

Then the quality at each school under strategy profile σ and mechanism m is average of ex-

pected types of students submitting different lists weighted by their measures in the school:

ω
m
j (σ) = ∑

π∈Π

[ Eµ{σ(t)=π}(t)︸ ︷︷ ︸
Expected quality of types submitting π

×µ(σ−1(π))φ m
j (π,σ)︸ ︷︷ ︸]× ( ∑

π∈Π

µ(σ−1(π))φ m
j (π,σ))−1

measure of students submitting π and admitted to j

In general, it is possible for s1 or s2 to remain empty. We assume that quality of empty school is

Eµ(t).

Given the school qualities calculated, the payoff of type t from enrolling to school j under

mechanism m and strategy profile σ is

vm
j (t,σ) = h(ωm

j (σ), t)−1{ j = 1}p−1{ j = 3}∆

Thus, type t’s expected payoff from submitting π when under the strategy profile σ and the mech-
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anism m can be written as:

Um(t,σ ,π) =
3

∑
j=1

vm
j (t,σ)φ m

j (π,σ)

Since for a given strategy profile the payoffs are well defined, we can define Nash Equilibrium.

Definition 1.3. Nash Equilibrium:

For each m ∈ {DA,SA}, a Nash Equilibrium is a strategy profile σ∗m, such that

i) School qualities are {wm
j (σ

∗
m)}3

j=1

ii) Um(t,σ∗,σ∗(t)) are the payoffs of each t ∈ T .

iii) No type deviates: Um(t,σ∗,σ∗(t)) = maxπ∈ΠUm(t,σ∗,π)∀t ∈ T

There can be many different Nash Equilibria of this game. For example, it is possible to have

an equilibrium where higher types sort into s3, the bad public school. To eliminate such equilibria,

we restrict attention to strategy profiles in which s3 is ranked last by all types.

Lemma 1.2 shows that we can eliminate many types of equilibria with this restriction under

DA. It illustrates that potential equilibria is a cutoff type equilibrium where types above the cutoff

rank s1 as top choice, or every school should have the same quality.

Lemma 1.2. Suppose a strategy profile σ∗DA in which s3 is ranked last by all t ∈ T is a Nash

Equilibrium, then there exist a cutoff t1 > t such that σ∗DA(t) = (s1,s2,s3) if t ≥ t1, and σ∗DA(t) =

(s2,s1,s3) if t < t1.

Lemma 1.2 means that in any equilibrium of DA there can be at most one cutoff type at which

behavior changes; and if that cutoff type exists then types above the cutoff type rank private school

as top choice whereas types below the cutoff type ranks s2 as top choice. Moreover, there is no

equilibrium where all students first rank s1. To understand the intuition, first note that under DA

when deciding the relative order of the schools students can restrict attention to comparison of

payoffs from the two schools. If a type t ′ finds optimal to rank s1 as top choice, then quality of s1

must be higher. Otherwise, no student would find it optimal to rank s1 as top choice since its price
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is higher. As quality of ω1 is higher than ω2, then all types above t ′ must strictly prefer to rank

s1 as top choice since they have stronger preferences to be at a higher quality school compared to

type t ′. Thus, we cannot have a cutoff where types above the cutoff rank s2 first and types below

the cutoff rank s1 first. This also implies that, we can have at most one cutoff. Also, s1 cannot be

ranked first by all students. In that case qualities at each school will be the same, then everyone

would deviate to ranking s2 first, which is a contradiction.

Similarly, Lemma 1.3 indicates what potential equilibria under SA can be under the restriction

of s3 being last ranked school for everyone. In comparison to DA, we can eliminate less types of

equilibria under SA.

Lemma 1.3. Suppose a strategy profile σ∗SA in which s3 is ranked last among public schools by all

t ∈ T is a Nash Equilibrium, then ω2(σ
∗
SA) = ω3(σ

∗
SA) and one of the following is true:

i) there exist a cutoff t1 ∈ (t, t̄) such that σ∗SA(t) = (s1,s2,s3) if t ≥ t1, and σ∗SA(t) = (s2,s3) if

t < t1

ii) there exist a cutoff t ′1 ∈ (t, t̄) such that σ∗SA(t) = (s2,s3) if t ≥ t ′1, and σ∗SA(t) = (s1,s2,s3) if

t < t ′1

iii) ω1(σ
∗
SA) = ω2(σ

∗
SA)

First, Lemma 1.3 says that quality of s2 and s3 must be the same. It also indicates that if an

equilibrium is not cutoff type, then it can only have ω1(σ
∗
SA) = ω2(σ

∗
SA). We cannot eliminate

many types of equilibria through Lemma 1.3, but it still provides enough restriction to characterize

the equilibria we are interested in.

We are mainly interested in equilibria where private school has higher quality than public

schools. This is the more interesting case given our empirical context. Lemma 1.4 indicates that

any potential equilibrium in which private school has higher quality compared to all public schools

can be characterized by a cutoff rule under both mechanisms. There must exist a cutoff type such

that, types above the cutoff rank s1 as top choice and types below the cutoff rank s2 as top choice.

Lemma 1.4. Let m ∈ {DA,SA}, and suppose σ∗m is an equilibrium such that s3 is ranked last by
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all t ∈ T then following is true:

ω
m
1 (σ

∗
m)> max{ωm

2 (σ
∗
m),ω

m
3 (σ

∗
m)} ⇐⇒ σ

∗
m(t) =


(s1,s2,s3) if t ≥ t1

(s2,s1,s3) if t < t1

for some t1 ∈ (t, t̄).

If part of Lemma 1.4 is intuitive, especially for SA. Under the equilibrium described for SA,

types lower than the cutoff never apply to s1, so private school has only the types above the cutoff.

Whereas, for public schools it includes types below the cutoff and if private school is oversub-

scribed it also includes types above the cutoff. For DA, the intuition is less clear. Types below the

cutoff first apply to s2, but if they are rejected then they apply and get into s1. Therefore all schools

have a mix of types below and above the cutoff. However, we can still expect that higher types have

more weight in s1 and lower types have more weight in s2. Since both students above and below

the cutoff go to s3 only if they are rejected from both schools, this school has quality in between

s1and s2. Therefore, s1 has higher quality compared to s2 and s3 under DA as well. Only if part

follows from previous lemmas. Under SA, we have shown that an equilibrium should either be a

cutoff type or all schools must have equal quality. It is also expected that the cutoff equilibrium

in which low types rank s1 as top choice cannot yield higher quality for private school.24 For DA,

we have shown that in the equilibrium either there is a cutoff type as described in Lemma 1.4, or

every student ranks s2 as top choice. In the latter case the qualities are equal across all the schools.

In a cutoff equilibrium, only types above the cutoff type produce enough difference between

human capitals in s1 and s2, which surpasses the price difference. Although, s1 has higher quality

in the cutoff equilibrium described in Lemma 1.4, low types do not rank it as top choice because

of the price. Therefore, positive price acts as a coordination mechanism and sustains the sorting

equilibrium.

24In that case private school’s student body will consist of students below the cutoff type and body of s2 and s3 will
have types above the cutoff, and potentially types below the cutoff if private school is over-demanded.
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1.2.4 Existence of Equilibria

In this subsection we are going to provide the conditions under which cutoff equilibrium described

in Lemma 1.4 exists for SA and DA. From now on, by cutoff equilibrium we mean the equilibri-

um described in Lemma 1.4. Also, we denote the school qualities in an equilibrium σ∗ with cutoff

t1 ∈ (t, t̄), by ω(t1) instead of ω(σ∗); and we denote U(σ∗, ., .) by U(t1, ., .) from now on. We char-

acterize the existence of equilibrium for each possible cutoff under both mechanisms. Moreover,

we characterize the price range for which there can exist cutoff equilibrium if certain conditions

are satisfied at each price level in this range.

We provide a lemma that is useful to understand the conditions necessary for the existence of

cutoff equilibria. Lemma 1.5 shows the comparison of qualities across schools and mechanisms

for a given cutoff.

Lemma 1.5. Given t1 ∈ (t, t̄), for an equilibrium σ∗ with cutoff t1, we have ωSA
1 (t1)> ωDA

1 (t1)>

ωDA
3 (t1)> ωDA

2 (t1)> ωSA
2 (t1) = ωSA

3 (t1)

According to Lemma 1.5, in a cutoff equilibrium under DA, s3 has higher quality compared to

s2. This lemma also shows that when the cutoffs are the same across mechanisms, private school

has higher quality under SA; and each public school have higher quality under DA.

To show the existence of equilibrium we first look at the cutoff type. Under DA, student type

t1 satisfies

h(ωDA
1 (t1), t1)−h(ωDA

2 (t1), t1) = p (1.2.1)

Let’s define the LHS of Equation (1.2.1) as a function of the cutoff t1: ΓDA(t1). And let ΓDA,−1(p)

yields the set of cutoffs t1 such that ΓDA(t1) = p, i.e. ΓDA,−1 : R⇒ (t, t̄) is a correspondence. The

maximum value that ΓDA can take will be important to determine the price range for which there

can be a cutoff equilibrium.

M DA := max
t1∈(t,t̄)

Γ
DA(t1)

To guarantee the existence of cutoff equilibrium, we need to make sure that for all students s3 is

the least preferred option. Note that we are looking at cutoff equilibria where students alter in
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their ranking of s1 and s2. Therefore it is enough to make sure that no type prefers s3 as second

choice. First, for types below the cutoff we need them to prefer s1 to s3. In this group, for the

lowest type difference in human capital production is least. So it is enough to convince the lowest

type. Therefore for given cutoff t1 to be an equilibrium cutoff we need ∆ ≥ p−∆13(t1) where

∆13(t1) := h(ωDA
1 (t1), t)−h(ωDA

3 (t1), t). Second, for types above the cutoff we need them to prefer

s2 to s3. Remember that according to Lemma 1.5, s3 has higher quality than s2. In this group the

highest type will have greatest difference in terms of human capital production between s3 and s2.

So it is enough to convince the highest type for that group. Therefore for given cutoff t1 to be an

equilibrium cutoff we need ∆≥ ∆32(t1) where ∆32(t1) := h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)

The following Proposition 1.1 is on the existence of cutoff equilibrium under DA.

Proposition 1.1. i) Given t1 ∈ (t, t̄), an equilibrium σ∗ with cutoff t1 exists if and only if p=ΓDA(t1)

and ∆≥max{p−∆13(t1),∆32(t1)}

ii) M DA exists, M DA > 0; and ΓDA,−1(p) is non-empty if and only if p ∈ (0,M DA].

iii) Given a price p ∈ (0,M DA], ΓDA,−1(p) is the set of cutoff equilibria if and only if

∆≥max{maxt1∈ΓDA,−1(p)∆32(t1),maxt1∈ΓDA,−1(p) p−∆13(t1)}

First item of Proposition 1.1 means that a given candidate cutoff is an equilibrium cutoff if and

only if price level leaves the cutoff type indifferent; and ∆ is high enough such that for all types

s3 is the least preferred option under the proposed strategy profile. Second item means that, the

maximum difference of human capital production of cutoff type between s1 and s2 across cutoff

types is well-defined and is greater than zero. These are expected since for a given cutoff t1 ∈ (t, t̄)

we have already shown that quality is higher in s1 compared to s2. So for any cutoff in this range

the difference between human capital from two schools is greater than zero for the cutoff type.

Existence follows from continuity of human capital function and school qualities; and end points

of the type space not being the maximum. Also, it says that, for each price in the range of 0 to

M DA, there is a cutoff equilibrium candidate. The last article means that for a given price the

candidate set of equilibrium given in the previous article is actually set of cutoff equilibrium when

∆ prevents any type deviating from ranking s3 as last choice, which depends on the equilibrium
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candidates.

Under SA to show the existence of equilibrium we again look at the cutoff type. In SA, every

type when deciding to rank s1 as top choice, considers the expected utility from Step 2, which

includes the possibility of going to s3, the bad public school. Therefore the calculation includes

both the entry probabilities in Step 2 and ∆. Note that in a cutoff equilibrium cSA
2 is equal to

min{1
2 ,

1
3F(t1)

} and qualities of s2 and s3 are the same. Thus, for the cutoff type t1 ∈ (t, t̄) we have:

USA(t1, t1,π = (s1,s2,s3)) =USA(t1, t1,π = (s2,s3))

⇐⇒ h(ωSA
1 (t1), t1)−h(ωSA

2 (t1), t1)+∆(1−min{1
2
,

1
3F(t1)

}) = p (1.2.2)

Define LHS of the Equation (1.2.2) as a function of t1: ΓSA(t1). ΓSA,−1(p) denotes the set of cutoffs

t1 such that ΓSA(t1) = p, i.e. ΓSA,−1 : R⇒ (t, t̄) is a correspondence. Supremum and maximum of

ΓSA(t1) is defined as:

S SA := sup
t1∈(t,t̄)

Γ
SA(t1)

M SA := max
t1∈(t,t̄)

Γ
SA(t1)

The following Proposition 1.2 is on the existence of equilibrium where private school quality is

higher than public school qualities under SA.

Proposition 1.2. i) S SA exists and S SA > ∆

2

ii) Given t1 ∈ (t, t̄), an equilibrium σ∗ with cutoff t1 exists if and only if p = ΓSA(t1)

iii) ΓSA,−1(p) is non-empty if p ∈ (∆

2 ,S
SA) and empty if p ≤ ∆

2 or p > S SA. ΓSA,−1(S SA) is

non-empty if and only if M SA exists.

iv) Given p ∈ (∆

2 ,S
SA], Γ−1(p) is the set of cutoff equilibria.

First item tells the existence of the supremum of ΓSA, and that supremum is greater than ∆/2.

This is important to derive the price range for which there can be a cutoff equilibrium since the

cutoff type must be indifferent between ranking s1 as top choice versus ranking s2 as top choice.

Second item tells that price must leave the cutoff type indifferent if there exists an equilibrium
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with that cutoff type. Third item characterizes the price range for which there can exist a cutoff

equilibrium. And this price range includes prices from ∆/2 (not included) to S SA. Whether there

exist a cutoff equilibrium when the price is S SA depends on whether the supremum is actually

attained within (t, t̄). The last item gives the set of cutoff equilibria for a given price in the range

given by previous item.

1.2.5 Comparing Equilibria of SA and DA

In this subsection we compare the cutoff equilibria of SA and DA in which private school has

higher quality. We do this comparison across prices in terms of quality of schools. For this purpose,

we need to make some assumptions on functional form and distribution of students. We assume

that h(ω, t) = ω0.5t0.5 and µ is uniform on [0,1]. In Figure 1.1 we plot the Γ functions for both

mechanisms under those assumptions. Proposition 1.1 says that, a cutoff is an equilibrium for DA

when the price is equal to the y-axis value of the blue curve evaluated at the cutoff, and ∆ is greater

than the maximum of values of blue and orange curves evaluated at the cutoff. Therefore for DA a

cutoff equilibrium exists for each price between the highest value of the blue curve and zero when

∆ is greater than the y-axis value of the blue curve. When drawing ΓSA we assume that ∆ is as large

as the tip of the blue curve.25 Proposition 1.2 says that, an equilibrium for SA exists whenever

price is in the y-axis range of ΓSA function, and lower bound of that range is ∆/2.

From Figure 1.1 we see that for a given price the cutoff type is larger for DA. Intuition behind

this is as follows. In DA, students compare only s1 and s2 when deciding to rank which one as top

choice. However, in SA, they compare the payoff from s1 to payoff from the centralized match

of public schools. The latter not only includes payoff from s2 but also payoff from s3 as well

since there is possibility of going to s3, the bad school in the second step. This makes ranking

s1 as top choice more attractive for all students. Therefore, the cutoff type is smaller for a given

price. Another point worth noticing is that for this specification, there exist multiple equilibria for

a given price under DA, but for SA there is unique equilibrium. This is again not surprising. In

25It is 0.0704 in this case.
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DA, two different cutoffs one closer to lowest type and one closest to highest type can lead to same

difference of quality between s1 and s2. This is because in the following two cases there is similar

mix of types in the two schools. When most students rank s1 as top choice, most of them will be

rejected and get into s2. When most students rank s2 as top choice, most of these students will be

rejected and enroll to s1. So in both cases quality of schools will be close to each other. In SA,

there is no case of students moving from s2 to s1 during the course of the mechanism.

In Figure 1.2, we plot the qualities assuming uniform distribution of types in [0,1]. Note that

quality of private school increases much faster with cutoff type under SA. The intuition is that, DA

allows for students who first apply s2 to apply s1 in the next round if they are rejected; whereas SA

does not allow this. In the kind of equilibria we look at, the students who first apply s2 are lower

types then students who first apply s1,and under DA a student rejected from s2 and next apply to s1

and get accepted. This leads to decrease in the quality of s1. However, under SA, types below the

cutoff never applies s1, so as cutoff type increases quality increases in s1 faster under SA compared

to DA.26 Comparison of qualities for a given cutoff is not enough since equilibria under different

mechanisms may not occur at the same cutoff. Therefore we will compare the equilibria under the

two mechanisms at a given price.

We compare the qualities for the price range under which both mechanism admits cutoff e-

quilibria in which private school has higher quality. Both graphs in Figure 1.3, shows that for

sufficiently high (low) prices ωSA
1 −ωDA

1 > 0 (ωSA
1 −ωDA

1 < 0). Graph at the top indicates that

quality difference between mechanisms for s2 decrease as price increases. However, the difference

increases for s3 in favor of DA as price increases. The intuition follows from the previous two

figures we have analyzed. Remember that for a given price, cutoff type is smaller in SA compared

to DA. This leads to higher quality of private school under DA for lower tuition. However, we also

show that quality of private school increases faster with cutoff type under SA. And note that from

Figure 1.1 it is seen that cutoff type increases with price under SA. Therefore, the second effect

26Note that there is always a type below the cutoff that is rejected from s2. This is because even if the first round
applicants of s2 does not exceed capacity of s2 that means, first round applicants of s1 exceed the capacity of s1 and
apply s2 next and lead to rejections of some of the lower types that first apply s2.
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dominates as tuition fee increases for the private school.

It is possible that a schools chooses alternative prices under DA vs. SA. So, does it make sense

to compare these mechanisms at the same tuition fee? Admittedly, this model shows what happens

at certain price level and certain mechanism. However, here we can interpret the price also as a

price cap. We compare these mechanisms at prices in which private school is over-demanded in

the equilibrium. So private school can increase the profit by increasing prices up to the price cap,

as it will be charging higher price and it still fills its capacity. Moreover, under SA increasing price

increases its quality in this price range, and this is similar for most of the price range under DA.27

Therefore, it is plausible to assume that private school would choose the price equal to price cap

that is set by government in this possible range of price caps. This is especially relevant for our

empirical context of South Korea that has a price cap for private schools.

In this part, we have shown that the price cap can have important implications. Even without

the price cap, often private schools are over-demanded due to reasons like vouchers, or private

schools not only caring about profit. Another story why private school might be over-demanded is

that, they may consider long term revenue instead of short term. These factors could also allow for

combination of price and student selection rules to have an effect on student distribution. However,

our model in this section is a simple one with three schools. There are many other factors that can

determine students’ choices, e.g. distance, neighborhood, other features of the schools. Also,

potentially there is heterogeneity of students’ in these dimensions or in their preferences regarding

these features. These factors motivate us to compare these mechanisms empirically. Also, even in

our simple model the comparison between the mechanisms depends on the price level. Another

advantage of the empirical analysis would be to make the comparison at the observed tuition fees

and quantify the difference at different tuition fees.

27Until the highest portion of the price range
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Figure 1.1: ΓSA and ΓDA under h(ω, t) = ω0.5t0.5 and µ ∼U [0,1]

Notes: This figure illustrates the Γ functions defined in the text, for the
functional form and type distribution assumptions: h(ω, t) = ω0.5t0.5

and µ ∼U [0,1]. Also it plots the difference between human capitals
produced from s3 and s2 by the highest type student under DA. The
y-axis corresponds to price, and the x-axis corresponds to the cutoff
type.

Figure 1.2: Qualities for given t1 under µ ∼U [0,1]

Notes: This figure illustrates the school qualities across cutoff types
under the assumption of µ ∼U [0,1]. The x-axis corresponds to the
cutoff type, and the y-axis corresponds to the school quality.
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Figure 1.3: Comparison of SA and DA

Notes: This figure illustrates the quality comparison at schools across levels of
prices under the assumptions h(ω, t) = ω0.5t0.5 and µ ∼U [0,1]. The graph at the
top illustrates the difference of school qualities between SA and DA for each
school. The graph at the bottom illustrates the absolute quality of private school
under both mechanisms. We take the equilibrium which gives the maximum
quality for s1 and minimum quality for public schools as there is multiple
equilibria under DA.
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1.3 High School Market In Seoul

1.3.1 Institutional Details

High school equalization policy of South Korea, enacted in 1974, aimed to provide equal edu-

cational opportunities to all the students by equalizing all the high schools across the nation. To

achieve that, the government regulated most schools heavily. The guidelines regarding the oper-

ation of private schools were so restrictive that they were operated like public schools after this

policy. The schools were not free in choosing their teachers, curriculum, students and even tuition.

Since they were not able to charge tuition higher than public schools, they were subsidized by the

government to continue their operations (Kim and Lee, 2002). In 2009, government started pri-

vate autonomous (PA) school program to diversify the education and increase competition among

schools (Park, 2021). According to the policy, PA schools would gain more independence regard-

ing their choice of curriculum, academic terms, teachers, student body and tuition, although there

were still some restrictions regarding tuition fees and student selection.

At the same time with PA school policy, centralized school choice for high schools began in

Seoul. Beginning with students starting high school in 2010, students have been allowed to submit

preference lists over schools that participate in the school choice.28 A centralized mechanism

assigns students to schools according to preferences of students, school quotas, a proximity rule

and lottery numbers.

Students in Seoul can attend various types of high schools. Main types are science, foreign

language, vocational and general schools.29 Science and foreign language schools admit students

through exams. These and vocational schools do not join the centralized match.

Our analysis focuses on general schools market. 224 of the 317 high schools in 2010 are gener-

al schools.30 These include charter schools which are publicly funded, regular schools which can

28In South Korea, school year starts in March.
29Vocational schools consist of technical, commercial and art schools. Other than these main types of schools there

exists one international high school and physical education school in the period we analyze
303 of the high schools were science, 6 of them were foreign language and remaining 85 were mostly vocational

schools. For 2011, 3, 6, 221 and 84 were the numbers of science, foreign language, general, and vocational high
schools respectively; and for 2012 these numbers were 3, 6, 224 and 84 respectively.
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be public or private, and PA schools. All of these except PA schools join the centralized school

choice during our data period of 2010-2012. Until 2019, PA schools did not join the centralized

match and admitted their students before the centralized match begins. Sequentiality of admis-

sions was blamed to be the reason of high achieving students’ sorting into PA schools; which was

also degrading the overall student quality in schools attending the centralized match. As a result,

sequentiality is banned in 2019, and PA schools have been included in the centralized match since

then.31 We call non-PA general high schools as NPA schools from now on.

General High Schools

Table 1.1 illustrates the distribution of general school types. Going from 2010 to 2011 the number

of PA schools double.32 Among general public schools, 19 of them are charter schools in 2012.

In 2011, 19 of the NPA schools started to offer science programs. These programs have quotas

specified for the centralized match and students are admitted to these programs independently

from the general part of the school. PA schools are male-only school dominated. In 2011, 19 of

them are male-only, 4 are co-ed and 3 of them are female-only.

Within our data period, all NPA schools charge the same tuition. Therefore, even a private

school in the centralized match charges the same tuition as the general public schools. This tuition

was 1,450,800 KRW in 2010, which is around 1,400 USD.

Designation of Autonomy and Student Admission in Autonomous Schools

A general private school has to apply to SOE for PA school designation. According to SOE offi-

cials, sound finance is the most important consideration in the approval process.33 The tuition of

31In 2017, President of South Korea Moon Jae In announced their aim to end sequentiality. In 2018, a group of
private schools and parents filed a lawsuit agains ending sequentiality. They have argued that the ending sequentiality
violates freedom of schools to differentiate and freedom of students to choose. In 2019, the supreme court upheld
the government’s policy and starting in 2019 Seoul Office of Education (SEO) included these schools to centralized
match.

32We exclude two private schools that admit from all of South Korea from our analysis.
33In fact, for 2010, out of 67 schools applied only 13 of the schools with sound finance were designated autonomy

status and 5 schools were told to work more on improving their finances. In the second year 2011, 13 more schools
were designated as autonomous schools. PA schools may voluntarily forgo autonomy status or government can strip
autonomy through the approval process.
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PA schools cannot be larger than three times the NPA school tuition amount. This corresponds to

4,352,400 KRW.34 Since PA schools can charge higher tuition, they cannot receive subsidies from

the government.

PA schools can choose their own students but not through exams or academic interviews.35

Within our data period they hold independent lottery procedures to determine the enrollment of the

applicants.36 Students can apply to only one autonomous school and if a student holds a PA school

assignment, he/she cannot join the centralized school match. Until 2015, only students who are in

the top 50 percent in terms of academic ranking in their middle schools were able to apply these

lotteries. After 2015, PA schools had to allow applications from all students.

In addition, PA schools had to reserve 20% of their seats for affirmative action track applicants.

Students in this track pay tuition equal to the tuition fee of NPA schools. A student is eligible for

the affirmative action track if the income of the students’ family is below the 150% of the poverty

line. Students who are admitted through general track pay the full tuition amount (sticker price).

Centralized Matching Process

Seoul is divided into 11 school zones. Each zone is divided into several Gus (district); and similarly

each Gu is divided into several Dongs (neighborhoods).37 Zone and Gu of a school play some role

in the centralized mechanism as we describe below. Each student fills the application form in

Table 1.2 and can leave a line blank if he or she would like to do so. As can be seen from the

Table 1.2 students can rank up to 6 schools. Charter schools and science programs have to be

ranked at the specified positions.38 40% of the seats are reserved for administrative assignment

for schools in each zone except Central Zone. In Central Zone schools, no seat is reserved for

administrative assignment. (Hwang, 2017) defines Centralized Mechanism of Seoul (CMS), and

34which is around 4,300 USD
35 They are allowed to run lottery or choose students according to the middle school grades.
36Before 2019, if a general private school forgoes its autonomy status it had to participate in the centralized match.
37There are 25 Gus in total in Seoul and there are 420 Dongs in total. Area of dong ranges between 0.5 square miles

and around 2 square miles; and area of a Gu ranges between 5 to 17 square miles.
38A student can rank a school more than once: a student can rank a school from his/her choice zone as 3rd or 4th

and rank the same school as 5th or 6th choice.
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we this definition in Appendix A.2 as well. Note that this mechanism is not strategy-proof. So,

students do not necessarily rank-order schools truthfully.

Table 1.1: Type of General High Schools Across Years

Year 2010 2011 2012

Private
autonomous

13 26 25

General public 85 88 91

General private 117 104 105

Charter 7 17 19

Science program 0 19 19

Male-only 69 70 91

Female-only 61 61 70

Co-ed 83 84 61

Notes: This table illustrates the type
distribution of general high schools in
Seoul. Charter schools are included in
general public schools. Science
programs are part of general public or
general private schools.

Table 1.2: Preference List Structure for Centralized Mechanism

Position Type of School Name of the School
1st Charter (optional)
2nd Science (optional)
3rd Regular in any choice zone
4th Regular in any choice zone
5th Regular in your choice zone
6th Regular in your choice zone

Notes: This table illustrates the structure of the preference list students
submit in Centralized Match of Seoul (CMS).
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1.3.2 Data

Our main dataset is from SOE. We observe the preference lists submitted by students who start

high school in 2010, 2011 and 2012 if they attended CMS. For these students we also see their

final enrollment, gender, religion and percentile of their ranking according to grades within their

own middle schools; and their geocodes (with error). A student’s percentile of his/her ranking in

the middle school indicates the percent of students with lower grades average than the student.

Therefore as a student’s percentile ranking goes up, he is academically more successful. Number

of students that participated the centralized mechanism are over 80,000 for each of these years.39

In addition, we have a survey data from 2009 that asks students about whether they would like

to apply to an PA school for the school year 2010. This dataset can be matched to the dataset of

submitted lists by students in 2010.40 We know the capacity and tuition of each the high schools

for 2010 and 2012.41 We observe school addresses and whether the school is male-only, female-

only or co-ed school for all the high schools in Seoul. For PA schools we also observe the number

of applicants to these schools since 2010 for general and affirmative action track applications.

We also use Seoul Educational Longitudinal Study (SELS).42 In this data we observe test scores

in Korean, Math, English for each year in school; study and private lesson hours, the middle school

of the student, family income and number of people in the household for the surveyed students.

This enables us to predict the probabilities of being in affirmative action versus general track for

the students in our main dataset, in which we do not observe income and family size.

We also use School Education Condition Analyses: Elementary/Middle/High School (SECA)

which is a survey data that asks 2nd year students in middle school for the years 2010 and 2013

their plans after middle school. For both of the years, we can observe income of students’ families

and number of people in the household, students scores in the tests accompanying the survey, their

3990459, 83499, 81558 are the exact numbers for 2010, 2011 and 2012 respectively
40We can match based on the dong student lives, his/her middle school, assigned school and rank of the schools

submitted. There are cases where one student in 2009 survey data is matched to more than one person in 2010 data.
41We use the tuition of 2012 for the year 2011 as well, since we could not find tuitions of PA schools for the year

2011.
42This data starts tracking 3 cohorts (4th, 7th and 10th graders) in 2010 until the end of high school.
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answers to questions about school life, their studying and learning habits and other socioeconomic

characteristics of the family. For 2010 we can see students’ answer to his/her ranking in his middle

school, and for 2013 we observe whether they consider applying an autonomous school. This

dataset will be useful for showing the effect of tuition on preferences via Regression Discontinuity

(RD) approach. Moreover, we will be able to use this information in structural estimation via

indirect inference approach, which will help us identifying the preference for tuition.43

1.3.3 Relevant Features of Seoul High School Market

Private Schools Are Over-Demanded

One salient feature of public school markets where students can choose other than neighborhood

schools is that some schools are over-demanded. That is, the number of students desiring to go

to a school exceeds the school’s capacity. This is the main reason behind the existence of school

choice algorithms in the world. However, for private schools it is less clear whether they would

be over-demanded. One may think that a private school can rise its price up to the point where

demand equals capacity which would increase its profit. However, many factors might prevent this

reasoning to hold. Price caps, vouchers and subsidies are among the potential reasons. Or private

schools may care for incoming student success as well, which may not be perfectly correlated with

ability to pay. Tuition caps is the case for PA schools in Seoul. Figure 1.4 illustrates the tuition cap

and bunching of schools at the tuition cap; and Figure 1.5 illustrates that PA schools are in general

over-demanded for the period we study.

Tuitions of PA Schools Plays A Role

Although the tuition does not clear the market for private schools, this does not mean that tuition

has no role in preferences of students. It is natural to expect that higher tuition fees of PA schools
43In the 2013 SECA data we do not observe students’ answer to their middle school ranking. This ranking is

important to restrict the sample to only students in top 50 percent in terms of ranking in their schools. Moreover,
ranking information will be important within the structural estimation. Therefore we predict the ranking information
for students in the 2013 data. We do this by using a model estimated from 2010 data with the variables in both datasets.
The details of construction of RD estimation sample can be found in Appendix A.2.
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Figure 1.4: Tuition Cap and Bunching of PA Schools at the Cap

Notes: This graph illustrates the distribution of tuition in 2012 for PA
schools in million won (around thousand USD). The red line indicates
the tuition cap.

Figure 1.5: Demand for Autonomous Schools

Notes: This graph illustrates the application behavior towards PA
schools. The solid line shows the number of total PA applicants
divided by total capacity of PA schools. The dashed line illustrates the
share of PA school applicants among middle school graduates.
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compared NPA schools discourage some students from applying to PA schools. We use a sharp

RD design to show evidence of that. Remember that students below 150% of the poverty line pay

the tuition amount of 1,450,800 Korean won; whereas students above the income threshold pay the

sticker price, which is in general around 3 times of tuition of NPA schools. In our RD design, the

running variable is natural logarithm of effective household income44 and the outcome variable is

whether the student plans to apply PA school.45 Table 1.3 illustrates our RD estimates. According

to this, increase in the prices at the cutoff decreases the share of students who wants to apply PA

school by around 0.42 and this effect is statistically significant at 5% level. In Section 1.4 we

show that application decision is independent of entry chances. Therefore, this is purely the effect

of tuition change in the cutoff. Figure 1.6 illustrates the downward jump in the share of students

desiring to apply PA schools visually. This evidence strengthens our belief that the observed tuition

fees affect the demand.

Middle School Academic Achievement of Students Vary Across General High Schools

All of the middle school graduates can attend CMS. In CMS, students with different middle school

performances have same admission chances to any school participating in CMS. However, PA

school lotteries were restricted to students in the top 50 percent of their middle schools in terms of

grades within our period of analysis. Therefore, the distribution of the previous academic achieve-

ments of the enrolled students must be different for the two group of schools. We are interested

in an aggregate measure of the academic achievement of each cohort for each high school. The

only achievement measure we observe for students is their percentile ranking in middle school.

We construct the aggregate measure using these individual measures of the enrolled students for

each year. We take the mean of the enrolled students’ percentile ranking in their middle schools.

44 the household income adjusted by household size since poverty line depends on household size
45Note that our running variable is constructed from income, therefore due to misreporting some students who

are actually to the left of the cutoff might fall to the right of the cutoff and vice versa. To prevent our estimates to
be affected from this, we drop some of the observations that are very close to the cutoff from both size. We drop
the observations within 30,000KRW (around $30) effective income. This drops only 3 observations. Our estimates
without dropping these observations are qualitatively similar and significant at 10% significance level. See Table A.2
for the results without dropping these observations.
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Table 1.3: Regression Discontinuity Estimates

Dependent Variable: Share of students wanting to apply autonomous school

Income>Cutoff Income (conventional) -0.354
(0.166)

Income>Cutoff Income (bias-corrected) -0.419
(0.134)

Income>Cutoff Income (robust) -0.419
(0.203)

Observations Left 86

Observations Right 518

Effective Observations Left 48

Effective Observations Right 83

Notes: This table indicates the effect of the discontinuous change in
sticker price of PA schools on the share of students desiring to apply to
PA schools at the effective income threshold for affirmative action
eligibility. Estimates are calculated using bandwidth calculation
proposed by Calonico, Cattaneo, Farrell, and Titiunik (2017). Included
covariates are, students’ gender, and whether middle school is
public/private. Standard errors are in parenthesis. Observations within
0.02 of the cutoff are discarded.
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Figure 1.6: Visual Regression Discontinuity Evidence

Notes: This figure illustrates the causal effect of the discontinuous change of
sticker price of PA schools on the share of eligible students desiring to apply
PA schools at the effective income threshold. We plot this figure as
suggested by Calonico, Cattaneo, Farrell, and Titiunik (2017). We use the
observations within the optimal bandwidth of the income threshold and fit a
polynomial of degree 1 separately for both sides of the cutoff. Observations
within 0.02 of the cutoff are discarded.
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We are going to refer to this quantity as mean percentile ranking m.p.r. for each high school from

now on. Since we can observe which students are enrolled to each NPA school, we can construct

m.p.r. for these schools easily. For PA schools, we infer it from the missing percentile rankings in

each middle school. We describe how we infer these mean percentile rankings for PA schools in

Appendix A.2.46

Summary statistics of m.p.r. across NPA schools between 2010 and 2012 are shown in Ta-

ble 1.4.47 Mean of the m.p.r. for NPA schools increase a little after 2010, which is explained in

the next subsection. Table 1.5 illustrates a descriptive regression of m.p.r. on characteristics for

NPA schools. Compared to co-ed schools female-only and male-only schools have 11.18 and 1.89

higher m.p.r. on average, respectively.4849

Table 1.4: Mean Rank Percentile Statistics for NPA Schools

Year Mean Std. Min Max

2010 51.57 6.29 37.58 66.28

2011 49.38 6.84 32.47 70.48

2012 49.48 6.82 37.54 71.62

Notes: This table illustrates the summary statistics of m.p.r. in NPA
schools for each year. For each NPA school m.p.r. is constructed by
taking the average of middle school percentile of ranking of enrolled
students.

46Remember that we only observe percentile rankings for students who attend CMS. Therefore, most of the students
whose percentile rankings are missing and above 50 must have gone to PA schools.

47Across the years 2010, 2011 and 2012 we infer average m.p.r. in PA schools as 76.45055, 76.546755 and
75.111345 respectively.

48This difference between male-only and female-only schools can be explained by distribution of PA schools and
their academic criteria for attending their lotteries. Most of the PA schools are male-only. Since PA schools admit
higher-achieving students, mean academic achievement of students who would like to attend male-only NPA schools
decreases.

49Charter school seem to have little higher m.p.r. compared to non-charter schools. Schools with science program
has 3.18 higher m.p.r. on average compared to schools without science program.
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Table 1.5: Variation of m.p.r. Across Types of NPA Schools

Dependent variable: m.p.r. of enrolled students

Charter School 0.58 (1.69)

School with
Science Program

3.18 (0.88)

Male-only
School

1.89 (0.65)

Female-only
School

11.18 (0.74)

Constant 46.07 (0.44)

R2 0.5149

Observations 593

Notes: This table describes the
relationship between m.p.r. of NPA high
schools and their types. The table is
created by running an OLS regression of
m.p.r. on indicator variables regarding
type of school for the years 2010, 2011
and 2012. Standard errors are in
parenthesis and they are calculated by
clustering at the school level.
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The Effect of Increase in Number of PA Schools on NPA School Market

In the second year which our micro data covers (2011), 13 of the NPA schools switch to becoming

PA schools and left the CMS. During our sample period only the students who were above the

50th percentile in their middle schools could enter the lottery of these schools. Therefore, these

switches create a shock to the entry cohort peer composition at NPA schools. The graph at the

top in Figure 1.7 plots the densities of percentile rankings of students who attended the CMS on

top of each other for 2010 and 2011. We observe that the share of students who are better ranked

in their middle schools has declined in 2011 compared to 2010. However, we do not observe a

notable difference between the densities of 2011 and 2012, which is illustrated by the graph at the

bottom. This suggest that the change in the distribution of students attending CMS is due to the

switch of 13 schools from NPA to PA. Table 1.6 illustrates how much mean of percentile rankings

of entering students in NPA schools change across years. In year 2011, mean rank percentiles of

entering students change in NPA schools on average by 2.20 compared to 2010. The surge in the

number of PA schools in 2011 plays an important role in identification of preferences over peers.

Table 1.6: Decline of Achievement of Students Enrolling in NPA Schools

Dependent variable: m.p.r. of enrolled students

Year 2011 -2.20 (0.66)

Year 2012 -2.09 (0.66)

Constant 51.57
(0.44)

R2 0.02

Observations 593

Notes: This table indicates the OLS regression of mean of
percentile rankings in their middle schools of enrolled
students to high schools on year indicators for 2011 and
2012. Robust standard errors are in parenthesis.
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Figure 1.7: Shock to Distribution of Student Achievement

Notes: The graph on the top illustrates the change in the distribution of
percentile rankings in middle schools for students who attend the CMS
for the years 2010 and 2011. The graph on the bottom illustrates this
difference for the years 2011 and 2012. These graphs are created by
plotting the densities for the two consecutive years on top of each other.
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1.4 Empirical Model

In this section we describe our empirical model, i.e. our specification of student preferences and

how we model their decision process in the general high school market. Also, we discuss how we

identify the key parameters of our model.

1.4.1 Student Preferences

Let PAt denotes the set of PA schools, and NPAt be the set of schools which are NPA in year t.

Also let a and g stand for affirmative action and general track, respectively. In this subsection

we describe the preferences vi, j,t,k of student i on program j ∈ PAt ∪NPAt such that student i

enters high school in year t and he or she is in the track k ∈ {a,g} for PA schools application

purposes. Each student has a percentile ranking p.ri in their middle school which indicates the

percent of people who performs worse than student i in his/her middle school. Note that as p.r.

increases, student’s academic achievement increases. We group student i’s p.ri into deciles deci,

i.e. deci := dp.r.i/10e. We assign students into cells. Cells are determined by interaction of gender,

geni ∈ { f ,m}, t and deci where f denotes female and m denotes male. Therefore, there are 60 cells

in total. Formally, a cell, c is a bijective function defined as follows.

c : { f ,m}×{2010,2011,2012}×{dec ∈ Z : 1≤ dec≤ 10}→ {x ∈ Z : 1≤ x≤ 60}

Since for a given student i, arguments of c is determined we denote the cell i is assigned by c(i).

Also, let c−1
χ denote the χ of cell c for χ ∈ {gen, t,dec}.

We also aggregate cells into groups gr(c) by student performance in middle school to aggregate

the preferences regarding some of the school characteristics. We choose groups such that we still

allow preferences to be heterogenous for students with different academic achievement levels,

since we are interested in heterogeneity with respect to ability dimension. We use deci for grouping

the cells in the following way.

Cells which corresponds to students in the first three deciles are in group 3, students in the
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next four deciles according to p.r are in group 2, and students who are in the last three deciles

are in group 1.50 These groups, differing in terms of students’ academic performance in middle

school, will allow us to compare students with different academic achievement level in terms of

their preferences for peers.

In our specification we allow students’ preferences to depend on: distance (in miles) Di j be-

tween program j and student i’s geocoded address; tuition of the program p j,t,k which also depends

on the track student applies; mean of the middle school rank percentiles of students assigned to

school j in year t, m.p.r j,t which is our peer composition measure51; other observables of program

j in year t, X j,t , this includes whether school is a charter school, a science program in a school,

a co-ed school, a male-only school or a female-only school; the heterogenous effect of neighbor-

hood of the program j , γnb( j),gr(c(i)) where nb( j) denotes the neighborhood of program j; cell level

intercepts γc(i),0 ; Type 1 Extreme Value with location parameter 0 and scale parameter 1, εi j; a

mean utility term regarding school j which is same for every student entering high school in year

t and is in track k for autonomous school admission purposes, δ j,t,k.

Since we can observe individual preferences for the schools in CMS, for these schools we can

allow for additional heterogeneity in preferences, 1{ j ∈ NPAt}λc(i), j,t which can be interpreted as

cell level shocks to match quality between students in cell c(i) and program j ∈ NPAt .52 Another

detail regarding the preferences is about neighborhood fixed effects. There are 10 neighborhoods

in which only PA schools are present during the data period. For these neighborhoods we choose

to allow for only homogenous preferences, since it would be hard to identify the heterogeneity

without any individual level data provides information about preferences for these neighborhoods.

Let NBC = {x : ∃( j, t) s.t. nb( j) = x f or some t ∈ {2010,2011,2012} and j ∈ NPAt} be the set of

neighborhoods of the schools joined the centralized match at least once. Formally we assume the

following: nb( j′) /∈ NBC =⇒ γnb( j′),gr(c(i)) = γnb( j′) ∀gr

50Formally we define groups as follows: gr(c(i)) :=


1 i f deci ≥ 8
2 i f 3 < deci < 8
3 i f deci ≤ 3

51i.e. m.p.r j,t =
∑i(p.r.i)1{i is enrolled in j in year t}

∑i 1{i is enrolled in j in year t}
52Note that c(i) already specifies the year t, but to remind to reader that λ varies by year, we add the t subscript to λ
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We specify vi, j,t,k in the following way:

vi jtk = δ j,t,k +αc(i)Di j +(o.r.pi)β2 p j,t,k + γ1,gr(c)m.p.r j,t + γ
′
2,gr(c)X j,t (1.4.1)

+ γnb( j),gr(c(i))1{nb( j) ∈ NBC}+ γc(i),0 +1{ j ∈ NPAt}λc(i), j,t,k + εi j

where the mean utility δ j,t,k depends on p j,t,k, whether the school j is autonomous in year t and

school, year and track level unobservables ξ j,t,k as in:

δ j,t,k = β0 p j,t,k +β11{j is aut. in t}+ γnb( j)1{nb( j) /∈ NBC}+ξ j,t,k (1.4.2)

As will be discussed in Section 1.4.2, students will need to consider their expected utilities from the

centralized match when deciding to apply to an autonomous school. Therefore it will be convenient

to employ a two step estimation procedure. Therefore, we will be estimating some of the preference

parameters from the first step which involves only the schools that attend CMS. Therefore, it will

be handy to consider what equation (1.4.1) looks like if we restrict attention only to NPA schools.

If we normalize the tuition of non-autonomous schools to 0, then for j ∈ NPAt can write the

preferences regarding non-autonomous schools only as follows:

vi, j,t = αc(i)Di j + γ1,gr(c)m.p.r j,t + γ
′
2,gr(c)X j,t + γnb( j),gr(c(i))+ γc(i),0 +ηc(i), j + εi j (1.4.3)

where the match quality of students in cell c(i) and program j in year t is defined as ηc(i), j :=

ξ j,t,k +1{ j ∈ NPAt}λc(i), j,t,k f or k ∈ {a,g}, j ∈ NPAt .

This means that we assume match quality between student and programs in NPA varies at the

cell level53, and through which track student enters autonomous school does not matter for match

quality between the student and a program in CMS.

53Remember that c(i) also specifies a year t, so variation in cell level includes variation across years

44



1.4.2 Two Step Decision of Students

1.4.2.1 First Step: Decision to Apply to an Autonomous School

When student i decides to go to a general high school after finishing middle school, he or she faces

the following problem. First, student i has to decide whether to apply and which PA school to

apply since he or she can apply to only one PA school. Also, the student knows that these schools

admit using lotteries. Moreover, we assume that the student knows the capacities of autonomous

schools and number of applicants to each school. For student i to apply to a PA school we need:

vi j ≥U i
c for some j ∈ PA (1.4.4)

where U i
c denotes the student’s expected payoff from the centralized match under the assumption

that he plays optimally in the centralized match given what other students play. This means there

must be at least one PA school that gives the student as high utility as his expected payoff from the

centralized match. If there is such school, the student should apply the school that gives him the

highest expected utility from doing so. Therefore to apply school j ∈ PA it must be the case that:

min{
q j

η j
,1}(vi

j−U i
c)≥min{ qk

ηk
,1}(vi

k−U i
c) ∀k ∈ PA (1.4.5)

where qk denotes the capacity of school k; and ηk denotes the number of applicants to school j in

the track he or she belongs to (affirmative or general). Therefore, the student incorporates his/her

entry chances to PA schools when deciding which one to apply since he/she can apply to only one

of them.

1.4.2.2 Second Step: Submitting Preference List for the Schools in the Centralized Match

If a student is rejected in the first step or decide not to apply to a PA school, then he or she attends

the centralized matching process. Note that the CMS is not strategy-proof. Therefore, students

do not necessarily submit their truthful ordering of schools to the mechanism. Therefore students
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would submit the list that they think that maximizes their expected utilities: i.e. they should choose

π∗ such that:

∑
j∈NPA

φ̂i j(π
∗)vi j ≥ ∑

j∈NPA
φ̂i j(π)vi j ∀π ∈Π

where Π is all the possible rank ordered lists student i can submit and φ̂i j(π
′) denotes the student

i’s belief of admission to program j when he submits π ′.

1.4.3 Identification

1.4.3.1 Identification of Truthful Rank Ordering of Schools From Strategic Reports

Since students do not necessarily submit the truthful rank order of schools to the mechanism, it is

challenging to identify the truthful ordinal ranking regarding schools that attend CMS. We follow

the approach of Hwang (2017) in identifying the truthful ordinal preferences from the manipulable

mechanism CMS. Hwang (2017) identifies (some of) the truthful ordinal preferences regarding

schools. This identification strategy relies on a minimal assumption about the sophistication of

students in terms of calculating the entry probabilities. Hwang (2017) only assumes that students

know that whether an alternative list other than the submitted list increase or decrease their chance

to a school. This assumption allows to identify ordinal preferences of students over many pairs of

schools.54 In our estimation, we use these identified truthful ordinal preferences.For the sake of

completeness we repeat the identification argument in Appendix A.2.

1.4.3.2 Identification of Preferences Regarding Peer Academic Achievement in High School-

s

Our identification strategy for students’ preferences for peers relies on an instrumental variable

that is defined only for NPA schools and the truthful pairwise comparisons of students over schools

joining CMS. To formally show the identification challenge we separate match quality ηc(i), j into

two parts: ηc(i), j = ξ̃ j,t + η̃c(i), j. The first term is program level unobservables, that is same for

54In total we identify 34,556,705 pairwise comparisons for 250,819 students.
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all students joining the CMS in year t. The second term captures cell level idiosyncratic shocks to

preferences.

The challenge in identification of preferences regarding the peers is that the peer quality mea-

sure m.p.r j,t is potentially an endogenous variable. That is, we might have Cov(m.p.r j,t , ξ̃ j,t) 6= 0.

An unobservable feature of school j, which is in ξ̃ j,t , might be more appealing to some type of

students than others. For example a school with more homework, assignments, harder exams or

with better counseling might be more appealing to academically stronger students. This might

increase the sorting of such students to those schools which also increases the measure of aca-

demic achievement of high school cohort. In this case it would be hard to identify if students like

the school because of this unobservable feature or because there are more successful peers in the

school. Moreover, we are also interested in heterogeneity in preferences for peers. Therefore, we

allow preferences over peer composition to vary by academic strength of students. This implies

that, one should also be worried about the correlation between interaction of student group gr(c(i))

with m.p.r j,t and heterogeneity of preferences regarding the school unobservables across different

gr(c(i)), which can be interpreted as match quality between the school and type of the student.

This latter type of unobservable heterogeneity of preferences are inside the composite error term,

ηc(i), j.

Our IV approach relies on the change of mean achievement levels of students enrolled to NPA

schools due to switching of 13 NPA schools to PA school in 2011. We use the differential changes

in school peer composition across years due to the events of switching. As shown in Section 1.3,

academic achievement of entering cohorts to NPA schools has declined on average. However, it is

natural to expect that the switch of schools affected the NPA schools near the switchers of 2011 the

most. Note that in 2012 there is no new switcher, and only one of the schools which was designated

as autonomous in 2011 has lost its autonomy status. Our instrument is defined for each program

joining the CMS for each year.

For program j ∈ NPAt , the instrument Zpeer
j,t in year t is the number of PA schools in year t

among the switchers of 2011 for which j satisfies all of the following:
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i) j is among the closest three NPA schools to the PA school in year t

ii) j is within 2.5 miles distance from the PA school in year t

iii) j have the same school gender with the PA school in year t, i.e. if the switching school is

male-only, j has to be male-only, if former is co-ed, then the latter must be co-ed and similarly for

female-only schools.

For clarity we define the instrument Zpeer
j,t formally. Schools switched in 2011 are in the set

SW2011 := PA2011 \PA2010 and among these, schools in the set SW2012 := PA2012 \PA2010 remain

as PA in 2012. Let gd( j, t) denotes the gender of the school j in year t, where this function takes

values from the set { f o,mo,co}, the elements of which corresponds to female-only, male-only,

co-ed schools, respectively.

Zpeer
j,t :=


0 i f t = 2010

∑k∈SWt (1{ j ∈ NPAt : j isamongclosest 3NPAschoolstok at year t}

×1{ j ∈ NPAt : j iswithin2.5mileso f k}×1{gd( j, t) = gd(k, t)}) i f t = 2011,2012

Note that the instrument is zero for all the schools in CMS for the year of 2010. And remember

that we are controlling for neighborhood fixed effects. This means that we have two kinds of

identifying variation. First one is the one in m.p.r. j,t across years for the schools for which the

instrument is positive in 2011 or 2012. The second one is variation of m.p.r j,t between the schools

in the same neighborhood in year 2011 or 2012 if they had different exposure to switchers.

Exclusion restriction requires that the instrument should affect the students’ decision between

the schools in CMS only through its effects on entry cohort peer composition measure. In other

words, the comparison of two schools in CMS should not depend on whether a school is a close

competitor to a switching school for reasons other than the effects of switching on peer composition

measure. This would be violated if schools in CMS react to switching of the schools systemati-

cally differently, and this reaction was noticed by students. For example schools nearby switching

schools may start to change their effort in attracting students or providing education. However,
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this is unlikely to happen in our setting due to high school equalization policy. All schools in the

centralized match are operated like public schools. They cannot change their tuition or curriculum,

which limits the set of possible reactions for these schools. Also, they heavily rely on subsidies,

and public schools’ teachers rotate every couple of years, which can be argued to lead to little moti-

vation to make any change. Therefore, schools participating in CMS seem to have small incentives

for reacting to a switch of a school nearby and their reaction capabilities seem limited. Moreover,

even if there is considerable change in the effort for providing education, it may take years to be

noticed by students/families. And our instrument is using the effect of switchers for at most one

year forward.

Exogeneity of our instrument might be harmed if there is selection to the instrument. Remem-

ber that, sound finance is the most important criterion for being designated as autonomous school.

But sound finance can be affected by the location of the school. For example, rents can depend

on location, or schools in richer neighborhoods may attract students of richer families more easily,

hence get more donation. Since our instrument depends on location one might be concerned about

having instrument positive for schools in more advantageous locations which is potentially not ex-

cluded from preferences. We alleviate this concern by controlling for neighborhood fixed effects

in our specification. The advantage of our identification strategy compared to a strategy of using

fixed effects of schools is discussed in Appendix A.2.

1.4.3.3 Identification of Preferences Regarding Tuition

We cannot identify preferences regarding tuition from the pairwise comparisons obtained from

the CMS. This is because, tuition does not vary among the schools joining the CMS. Tuition

varies between PA schools, so a natural first candidate for identification is to use BLP (Berry,

Levinsohn, and Pakes, 1995) type instruments for the tuition of PA schools. However, it turns

out that the variation in the prices of PA schools is very small economically, therefore these type

of instruments are not enough to identify preferences for tuition separately from preferences for

private autonomy. An alternative identification strategy is to use the price difference for general
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track versus affirmative track students. However, one has to be careful since these two group of

students may differ in their preferences regarding autonomy. We use indirect inference method

to add the information from our RD approach to structural estimation, as in Larroucau and Rios

(2020). Using these RD moments helps identifying the correct mean utility difference at the income

threshold cutoff for the two groups, which makes sure that the mean utility difference is not due

to different preferences regarding autonomy for these two groups of students but due to tuition

difference they face.

1.5 Estimation of the Model

We use two step procedure to estimate the preferences of students. Such estimation method is con-

venient given the two step nature of students’ decision and necessity to calculate the expected utili-

ties from the CMS. The parameter vector θ we estimate can be grouped into two parts: θ =(θ1,θ2).

θ1 includes the preference parameters regarding school and peer characteristics excluding price and

autonomy, distance preferences and neighborhood fixed effects (heterogenous across groups) for

NPA schools. So, θ1 = ({αc}60
c=1,{γc}60

c=1,{γ1,gr}3
gr=1,{γ2,gr}3

gr=1,{{γnb,gr}3
gr=1}nb∈NBC). Second

part θ2 includes preference parameters regarding autonomy, price and 10 neighborhood fixed ef-

fects for the neighborhoods that does not belong to a school that participated CMS any time, i.e.

θ2 = (β0,β1,{γnb}nb/∈NBC,β2)
′.

1.5.1 Estimation From Individual Level Pairwise Rankings

In the first step, we use the pairwise rankings over schools participating in CMS, identified via

method of Hwang (2017), to estimate θ1. We cannot estimate preferences regarding autonomy and

price in this step, since all NPA schools charge the same tuition and none of them are autonomous.

In this step of estimation we follow the approach of Hastings, Hortaçsu, and Syverson (2017). We
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can rewrite Equation (1.4.3) as follows:

vi, j,t = αc(i)Di j +ζc(i) j + εi j (1.5.1)

ζc(i) j = γc(i),0 + γ1,gr(c)m.p.r j,t + γ
′
2,g(c)X j,t + γnb( j),gr(c(i))+ηc(i), j (1.5.2)

We determine one of the programs j′ as outside option and set ζc(i), j′ = 0. We estimate Equa-

tion (1.5.1) by multinomial logit separately for each of the cells c separately by using pairwise

rankings of students in cell c. For example if for student i, pairwise rankings indicates that i prefer-

s A to B and A to C, then we can conclude that student chooses A from the set {A,B,C}. Then

we use estimates of ζc(i) j, ζ̂c(i) j combining it with data of covariates X j,t , cell level indicators,

m.p.r j,t and our instrument Zpeer
j,t to estimate equation (1.5.2). We do this estimation using Two

Stages Least Squares (TSLS). In TSLS, we weight the observations by the inverse of the variance

of ζ̂c(i) j, and double cluster standard errors at the program level and cell level.

1.5.2 Estimating the Preferences for Tuition and Autonomy

In the second step of the estimation we treat the parameter estimates θ1 from the previous step

(denote it by θ ∗1 ) as data and perform a BLP type estimation (Berry, Levinsohn, and Pakes, 1995)

using aggregate moments regarding applications to autonomous schools; moments from middle

schools regarding the share of students going to autonomous schools and mean of their rank per-

centiles; tuition data; price instruments; and RD moments simulated using our SECA data. The

idea of the estimation for θ2 is to find θ ∗2 which makes the moments simulated using our structural

model as close as possible to moments in the data.

1.5.2.1 Empirical Distribution of Students in General High Schools Market

To construct the moments using the structural model and parameter candidates, we need an em-

pirical distribution of students in the combined market of NPA and PA schools to draw students

from. We have individual level observations of students, but these data do not include students who

51



went to PA schools. If we only used these data, the distribution of students would be incorrect. We

solve this problem by using the auxiliary survey data from 2009, which asks students who will start

high school in 2010, whether they plan to apply private autonomous schools. However, this survey

data is only available for students attending CMS. We use the fact that the students are admitted

to PA schools through random lottery. To construct the empirical distribution we assume that the

admitted students are not fundamentally different from the students who applied but could not get

in. Further details are in Appendix A.2.

Another issue for the empirical student distribution is that we do not observe family size and

and family income in the data from SOE. Hence we do not know whether a student is in the

affirmative action track or general track for the purposes of the entry into PA schools. We solve

this issue by using the 7th grader cohort in the additional SELS data. As a result we predict

the probabilities of being in the affirmative action track for each student in the empirical student

distribution. Details are in Appendix A.2.

These probabilities implies weights of each observation in each track of entry to PA schools.

Once we know the weight of students in different cells for affirmative action and general tracks,

we can estimate ξ j,t,k∀ j ∈NPAt and ∀k ∈ {a,g} using estimates of ηc(i), j, ηc(i), j(θ
∗
1 ).

55 We denote

these estimates by ξ j,t,k(θ
∗
1 ).

1.5.2.2 Moments and GMM Estimation

We describe how to construct moments used in BLP estimation, for a parameter candidate θ̂2.

These moments are: middle school share moments (mssh(θ̂2)−mssh) which is a vector indicating

the difference between model predicted share of students going to PA schools and actual share

from the middle schools for which such data is available in 2011 and 2012; (mspr(θ̂2)−mspr)

55Let wk(c) denote the total weight of all students in cell c for track k ∈ {a,g}. We calculate the estimates of
ξ j,t,k ∀ j ∈ NPAt , ξ j,t,k(θ

∗
1 ) as follows:

ξ j,t,k(θ
∗
1 ) =

∑c 1{c−1
t = t and c−1

dec ≤ 5}wk(c)ηc, j(θ
∗
1 )

∑c 1{c−1
t = t and c−1

dec ≤ 5}wk(c)

which is a weighted average of estimates ηc, j(θ
∗
1 ) where weights are determined by the total weights of students in

each cell for each track.
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which includes a vector of differences between the predicted mean of the middle school percentile

rankings of students who goes to PA schools and actual mean for the same middle schools as above

and for the same years; and it also includes the difference between model predicted mean of the

middle school percentile rankings of all students going to PA schools and the actual mean for the

years 2011 and 2012; ∑ j,t,k ZBLP′
j,t,k ξ j,t,k(θ̂2) where ZBLP

j,t,k is constructed using the price instrument

and indicators of exogenous variables which are autonomy and 10 neighborhood indicators, and

ξ j,t,k(θ̂2) is an estimate of ξ j,t,k; (rdest(θ̂2)− rdest) which is difference between RD estimates

generated with the simulated outcomes from the model and reduced form RD estimates from SECA

dataset; and moments of application shares for PA schools, i.e. what share of student applied to

PA school j, ∀ j ∈ PAt and what share did not apply them at all. The last moments will be exactly

matched to the application shares in the data by Nested Fixed Point (NFP) algorithm to back out

the mean utility terms δ j,t,k.

Our goal of constructing the moments is to find θ ∗2 that minimizes the GMM criterion function:

θ
∗
2 = argmin

θ̂2

g(θ̂2)
′Wg(θ̂2)

where g(θ̂2) is the stacked moment conditions multiplied by square root of the sample sizes used

to construct them and evaluated at θ̂2
56, W is a positive definite weighting matrix.

Generating Moment Conditions From the Model: As parameters in θ2 except β2 enter the

utility linearly, we can restrict the parameter search to β2 since θ2 \β2 can be estimated by linear

GMM estimation. When constructing the middle school moments and regression discontinuity

moments, for each student in the empirical distribution and SECA data respectively, we need

to calculate whether he/she applies to an autonomous school. Similarly when constructing the

application shares we need to calculate the same quantity and which autonomous school the student

applies for each drawn student from the empirical distribution. We do this by using estimates of

θ1 from the first step, Equation (1.4.4), Equation (1.4.5), candidate parameter for β2, candidates

56Appendix A.2 illustrates the sample sizes in stacked moments explicitly.
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for δ j,t,k for ( j, t) such that j ∈ PAt as well as entry chances to PA and NPA schools.57 This task

requires calculation of expected utility from the centralized match, which is a computationally

heavy task. Further details on calculating the application behavior can be found in Appendix A.2.

Application Shares and NFP Algorithm: We have six markets since for each year 2010, 2011

and 2012 we also separate the market for affirmative action track and general application track.

This is convenient as out of pocket price is different in these two markets; and this way we can

use track of student as an instrument for price.58 To back out mean utility terms δ j∈PA,t,k, we

match application shares instead of market shares because application shares would be more in-

formative about preferences in a capacity constrained setting. Not everyone who desires can enter

autonomous schools. Moreover, trying to match market shares may not yield unique mean utilities,

since any level of mean utility that makes a school over-demanded will match the market share of

the school for schools with binding capacity. Further details about matching application shares

through NFP Algorithm is given in Appendix A.2.

GMM Moment Conditions: The construction of instrument moments ∑ j,t,k ZBLP′
j,t,k ξ j,t,k(θ̂2); mid-

dle school moments (mssh(θ̂2)−mssh) and (mspr(θ̂2)−mspr); and RD moments (rdest(θ̂2)−

rdest) is in Appendix A.2.

Weighting Matrix: We run two step GMM estimation to obtain the parameter estimates (Hansen,

1982).59 We do this by first estimating the model via a positive definite weighting matrix to cal-

culate the optimal weighting matrix. In second iteration we use the optimal weighting matrix to

estimate the parameters. Details of constructing weighting matrix are in Appendix A.2.

57We also need to draw also ε from T1EV(0,1) since Equation (1.4.4) and Equation (1.4.5) does not yield closed
form choice probabilities as in usual BLP setting. We draw these errors once at the beginning of the estimation
procedure.

58Moreover, price coefficient can remain as linear parameter, this would reduce the computational burden.
59We use Nelder-Mead simplex search method to find the optimal parameter that minimizes the GMM objective

function. Specifically, we use fminsearch function of MATLAB with tolerance levels set to 1e-7.
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1.6 Estimation Results

Table 1.7 illustrates the estimates from the first stage. Remember, as m.p.r. measure increases for

a school, this means students better ranked in their middle schools are enrolled to that high school.

As expected distance is estimated to have a negative effect on preferences for schools. The effect

is slightly larger for groups which are less successful in middle school, and standard deviations of

the estimates are small. The best group of students in terms of middle school performance cares

most about the academic success of peers. As peer success measure in a school improves, these

group of students get more utility compared to other groups of students. The effect for this group is

statistically significant at 5% level and it is equivalent to a decrease in distance by around 1/3 miles.

For the other groups sign is again positive, which means they prefer to be with high performing

peers, but these coefficient estimates are not statistically significant at 10% significance level60.

This finding confirms our assumptions in the theory section, that higher performing students have

stronger preferences for academically strong peers. For female-only schools we cannot reject the

null hypothesis that female students do not have extra utility from them compared to co-ed schools.

Nevertheless, the signs of the coefficients are positive. Male students prefer male-only schools to

co-ed schools, and academically better students have stronger preferences for such schools. The

group with strongest academics prefer charter schools to other NPA schools, which is equivalent to

a decrease in distance around 1/5 mile. This effect is statistically significant at 10% significance

level. In general, all groups have negative preferences for science programs. However, the negative

effect is much higher for the least successful two groups.

Table 1.8 illustrates the estimates using Ordinary Least Squares (OLS) instead of TSLS. Most

parameter estimates look similar to TSLS estimates. However, the preferences over student compo-

sition is overestimated for high-performing students and it is underestimated for other two groups.

Therefore the heterogeneity of preferences regarding student composition is over-estimated in OL-

S.
60The effect of m.p.r. is statistically significant at 15% level for the group that have 30≤ p.r. < 70
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Table 1.9 illustrates the parameter estimates from the second step of the estimation. As ex-

pected tuition has negative effect on utility. Increase of tuition by a million KRW is equivalent to

around two thirds of a mile increase in distance to school for the students with lowest rank per-

centile. The effect is a little stronger for students who have higher rank percentiles. As student’s

rank percentile changes from 0 to 100, his/her disutility from price increases by 0.13. Both of

these coefficient estimates are statistically significant at 5% significance level. Autonomy coeffi-

cient is estimated as positive and close to the effect of a decrease in distance by one third of a mile.

However, it is not significant at conventional significance levels.61

1.7 Counterfactual Simulations

In this section we compare alternative ways of allocating school seats to students. In Section 1.2

we have shown that choice between SA and DA might matter in terms of high-performing students’

sorting towards PA schools depending on the tuition level. Using simulations with the estimated

preferences will allow us to test this theory and also to understand where the observed prices in the

data stands.

Moreover, comparing SA and DA is another instance of comparison of mechanisms where

students can strategize to get the best outcome for themselves versus mechanisms where truthfully

revealing preferences is optimal.62 In our case, SA is a representative of the former type. Students

need to consider their admission chances for the second step while forming their applications for

schools admitting in the first step. In contrast, DA with unrestricted list length we consider, is a

representative of the latter.63 Differently from previous work without peer effects, the preferences

61Autonomy coefficient has p-value 0.108.
62Such comparisons has been a topic of central discussion in theoretical and empirical literature (Abdulkadiroğlu,

Che, and Yasuda, 2011; Pathak and Sönmez, 2013; Agarwal and Somaini, 2018).
63In our case preferences of students depends on the strategy profile of students. Therefore, we cannot exactly say

that DA is strategy-proof in this setting. However, we can argue that we are in a large market given the size of student
population; therefore we assume that one student’s submitted preferences can not change the distribution of m.p.r
across schools. Then, for a given strategy profile, the expected payoff of each student from each school is well defined
and is independent of his strategy. For this reason, for a given strategy profile we are under the usual DA case in
terms of the optimal decision of a student. Consequently, arguments showing that DA is strategy proof (Dubins and
Freedman, 1981) can be used here, as well. This guarantees that the student cannot do better than submitting his/her
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Table 1.7: Parameter Estimates From the First Step

(1) (2) (3)
p.r ≥ 70 30≤ p.r. < 70 p.r. < 30

Panel A: Preferences regarding distance, estimated by multinomial logit

Mean of Dist. coeff. (miles) -1.51 -1.62 -1.61

Std. of Distance coeff. 0.11 0.09 0.12

Panel B: Preference parameter estimates from TSLS

Dependent variable: ζc j

m.p.r. (standardized) 0.54 0.38 0.21
(0.27) (0.26) (0.41)

Female-only school 0.23 0.30 0.08
(0.53) (0.51) (0.82)

Male-only school 1.22 0.98 0.47
(0.14) (0.11) (0.20)

Charter school 0.33 0.13 0.01
(0.19) (0.15) (0.18)

Science program -0.31 -1.23 -1.92
(0.13) (0.14) (0.19)

Neighborhood and Cell Level F.E. Yes Yes Yes

First Stage F-stat. 14.93 14.07 11.56

R2 0.83 0.82 0.74

Observations 2673 3564 2673

Notes: This table illustrates the preference parameter estimates from the first stage of
estimation. Distance coefficients are calculated using multinomial logit separately for each of
60 cells, and their means and standard deviations within each cell group are in Panel A. Other
parameter estimates from the first step are in Panel B. These are obtained running TSLS
separately for each the three cell groups, which is determined by deciles of students ranking
within their middle schools. For each column in Panel B, the dependent variable is ζc j where c
belongs to the group specified by percentile rankings specified at the top of the table. ζc j is
also estimated alongside distance parameters for each cell using multinomial logit. We
standardize m.p.r. in each school by the mean and standard deviation of m.p.r. of NPA schools
across the three years; and we instrument m.p.r. by Zpeer

j,t . For TSLS, each observation is
weighted by the inverse of the variance of the estimate of ζc j. Standard errors are in
parenthesis. Double clustering at the cell and school level is used to calculate standard errors.
First Stage F-stat is F-stat of excluded instruments in the first stage.
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Table 1.8: Parameter Estimates From First Step Using OLS

(1) (2) (3)
p.r ≥ 70 30≤ p.r. < 70 p.r. < 30

Panel A: Preferences regarding distance, estimated by multinomial logit

Mean of Distance coeff. (miles) -1.51 -1.62 -1.61

Std. of Distance coeff. 0.11 0.09 0.12

Panel B: Preference parameter estimates using OLS

Dependent variable: ζc j

m.p.r. (standardized) 0.61 0.30 0.00
(0.06) (0.05) (0.05)

Female-only school 0.08 0.46 0.49
(0.14) (0.13) (0.14)

Male-only school 1.19 1.01 0.55
(0.12) (0.09) (0.11)

Charter school 0.29 0.17 0.10
(0.10) (0.09) (0.09)

Science program -0.33 -1.20 -1.86
(0.11) (0.12) (0.11)

Neighborhood and Cell Level F.E. Yes Yes Yes

R2 0.83 0.82 0.75

Observations 2673 3564 2673

Notes: This table illustrates the preference parameter estimates from the first stage of
estimation using OLS. Distance coefficients are calculated using multinomial logit separately
for each of 60 cells, and their means and standard deviation within each cell group are
presented in Panel A. Estimates of other preference parameters from the first step are presented
in Panel B. These estimates are obtained using OLS separately for each cell of the three cell
groups, which is determined by deciles of students ranking within their middle schools. For
each column in Panel B, the dependent variable is ζc j where c belongs to the group specified
by percentile rankings specified at the top of the table. Note that ζc j is also estimated alongside
distance parameters for each cell using multinomial logit. We standardize mean rank
percentile in each school by the mean and standard deviation of mean rank percentiles of NPA
schools across the three years; and we instrument m.p.r. by Zpeer

j,t . In OLS each observation is

weighted by the inverse of the variance of ζ̂c j. Standard errors are in parenthesis. Double
clustering at the cell and school level is used to calculate standard errors.
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Table 1.9: Parameter Estimates From the Second Step

Parameter Estimate

Tuition (KRW in millions) β0 -1.13
(0.11)

Autonomy β1 0.45
(0.28)

Tuition×(p.r./100) β2 0.13
(0.05)

Notes: This table illustrates the parameter estimates from the second
step of the estimation. In second step we also estimate neighborhood
effects for the 10 neighborhoods, the effects of which were not
estimated in the first step of estimation. For brevity we do not include
estimates of neighborhoods here. Standard errors are in parenthesis.

depend on the given strategy profile in our case.

We consider two variants of SA, which are SA One (SA1) and SA Unrestricted (SAU). The

first one is similar to case of Seoul in terms of implementation of the first step. Students can apply

only one PA school in the first step. In the second step students are allocated to NPA schools via

DA. The second mechanism SAU consists of two consecutive DA mechanisms (both unrestricted

length) which is motivated by the case of allocation of exam schools and other public schools in

the US. Under both variants the optimal behavior of student is very similar to the optimal behavior

we described in the empirical section for the case of Seoul. But it is actually simpler, as now the

second step is DA as opposed to manipulable CMS.

Another comparison we would like to make is the case where all schools admit using lotteries

versus a only subset of schools is allowed to have a pure score based admission scheme and other

schools admit by lottery numbers. This is motivated by the existence of elite high schools in the

US and around the world.

Under these mechanisms assignments are deterministic given lottery draws. Therefore we use

an ex-ante measure of welfare as in previous literature. Our goal is to find the equilibria of the

truthful preferences.
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submitted reports under these mechanisms. Students’ preferences depend on peer composition at

schools under DA and SA. Moreover, for the case of SA the optimal behavior of a student depends

on entry chances to schools. Therefore, it is not enough to simulate these mechanisms only once.

To find the equilibria, we iterate over the best responses of students until the peer composition mea-

sures and lottery cutoffs converge. In Appendix A.2, we describe how we compute the equilibria

of these mechanisms.

1.7.1 Comparison of DA and Variants of SA

First, we compare students’ expected utilities, mean middle school achievement of entering co-

horts to PA schools and share of students entering PA schools under the prices of 2011 using

empirical distribution of students in 2011.64 We compare DA (with unrestricted length list) to two

alternative ways of implementing SA as described in previous subsection. We still impose the 50

percent admission rule; and PA schools still reserve 20% of their capacity for affirmative action.

Table 1.10 illustrates welfare comparisons under different mechanisms. The welfare numbers are

in million won (around thousand dollars). Comparison of ex-ante welfare of students across dif-

ferent mechanisms shows that ex-ante average welfare is $27 to $51 of yearly tuition higher under

DA compared to SA.65 This difference is a little higher for higher performing students; and sign of

the difference change for low performing students. However, these differences are not large. Panel

A of Table 1.12 illustrates the weighted average of the m.p.r. across PA and NPA schools sepa-

rately across different mechanisms. When taking the average across schools, number of students

assigned to schools are used as weights. In terms of m.p.r. comparison between the mechanisms

we have found that weighted average of m.p.r. in PA schools for the general track students is 76.74,

76.88, 76.94 under DA, SA and SAU respectively. And these numbers are 75.66, 75.71 and 75.68

when we also include the students in the affirmative track. For NPA schools, the weighted averages

64We increase the capacity of public schools by 2% so that no student remain unassigned during iterations of best
responses. Results are not sensitive as trial with 10% increase in capacity constraints are very similar in terms of
comparison of the mechanisms.

65In terms of miles this is equivalent to 0.02 to 0.04 difference in distance.
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of m.p.r. are 50.46, 50.83 and 50.77 respectively.

Table 1.10: Student Welfare in Counterfactuals Using 2011 Tuitions

Panel A: Students among highest 50% in their middle schools with respect to grades

Mechanisms p.r.≥ 75 50≤ p.r. < 75 General
track

Affirmative
track

DA 0.635 0.366 0.408 1.503

SA1 0.584 0.316 0.348 1.544

SAU 0.512 0.271 0.314 1.226

Panel B: Students among lowest 50% in
their middle schools with respect to grades

Panel C: All students

Mechanisms 25≤ p.r. < 50 p.r. < 25

DA -0.187 -0.625 0.101

SA1 -0.178 -0.627 0.074

SAU 0.161 -0.609 0.050

Notes: This table illustrates the welfare comparisons (in million won or thousand dollars)
across the equilibrium of DA, SA1 and SAU mechanisms. DA corresponds to student
proposing Deferred Acceptance Mechanism, SA1 corresponds to Sequential Admissions
mechanism where students can apply to only one PA school in the first step. SAU
corresponds to the Sequential Admissions mechanism where students apply to PA schools in
an unrestricted list Deferred Acceptance fashion in the first step. The table demonstrates the
average welfare for different types of students, as well as average across all students. To
simulate the equilibria of these mechanisms, we start the iteration of best responses from 3
different initial submissions. Under all 3 starting points iterations converges to very similar
equilibria, for each mechanism. In these counterfactuals, we keep the top 50% rule and
affirmative action policy.

Second set of counterfactuals compares the mean middle school achievement of entering co-

horts to PA schools in DA and variants of SA across different prices.66 In our theoretical section

we had shown that for higher (lower) prices, mean achievement was higher in private school un-

der SA (DA) compared to DA (SA). Figure 1.8 illustrates the change in quality of students across

different normalized prices for PA schools. Note that the x-axis is in million won and normalized

66For this comparison across different prices we needed to increase the public school capacity by 9% as when prices
get very large number of applicants to public schools exceed the original capacity in public schools.
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such that NPA schools charge 0 tuition. The y-axis indicates the student number weighted average

of m.p.r of PA schools in graphs (a), (c) and (e); in other graphs only general track students are in-

cluded from PA schools as these are the students behavior of which the theory predicts. Higher the

number in the y-axis, higher is the mean academic achievement of the entering cohort. Graph (b)

indicates that counterfactuals agree with theory prediction: as the price increase SA yields higher

mean student academic achievement for PA schools compared to DA.

An important point to notice is that the differences in cohort qualities are small in both coun-

terfactuals across mechanisms and prices. We have calculated these counterfactuals by keeping

the top 50 percent rule and affirmative action admission policy in autonomous schools. Potentially

these rules affect the sorting patterns to a great extent which may not have left much room for

difference that may stem from mechanism choice. Therefore we also run these counterfactuals by

eliminating the top 50 percentile and affirmative action rule. Panel A of Table 1.12 illustrates the

m.p.r. of these counterfactuals. At the observed tuition levels, the weighted m.p.r. of PA schools

are 54.22, 55.49, 54.02 under DA, SA1 and SAU, respectively. These numbers are 52.94, 52.98,

53.01 for NPA schools, following the same order of mechanisms. So without top 50 rule, the s-

tudent achievement distribution is much more similar in PA and NPA schools, although still PA

schools have higher m.p.r. Similarly to the previous case, there is not much difference between ad-

mission schemes in terms of distribution of students in different sectors. Table 1.11 illustrates the

welfare of students in million won, across different admission schemes. Compared to Table 1.10,

not surprisingly affirmative action eligible students’ welfare went down compared to case with top

50% rule and affirmative action rule. Similarly, there is also a decline in welfare of students in

the top 50% in their middle schools, since they have higher probability of enrolling in schools

with lower m.p.r. The welfare of students in the bottom 50 percent is higher since high-achieving

peers are more equally distributed across types of schools when top 50 percent rule is cancelled.

Comparing the welfare across mechanisms, now the difference for the average student went up to

around $260 regarding the comparison between DA and SA, which is also equivalent to traveling

0.18 miles more to school every day, which does not seem large. When we compare to previous
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Figure 1.8: Comparison Across Different Prices

(a) Weighted average of m.p.r. for PA schools (b) Weighted average of m.p.r. of general track
students for PA schools

(c) Difference between PA vs. NPA by
weighted average of m.p.r. considering all
tracks

(d) Difference between PA vs. NPA by
weighted average of m.p.r. considering general
track for PA

(c) Weighted average of m.p.r. for NPA
schools

Notes: For each graph in this figure, the x-axis corresponds to the difference of tuition (in
million won or thousand dollars) between PA and NPA schools. Across the tuition differences
in the x-axis, tuitions of all PA schools are set the same. The y-axis corresponds to the average
of the m.p.r. measures of schools weighted by number of students across schools for the
considered set of schools across different tuition differences. Each line corresponds to a
different mechanism. The equilibria are calculated for 9 different tuitions in this range, with
0.5 million won difference between each. In each simulation top 50 percent rule for admission
to lottery of PA school and affirmative action is kept.
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Figure 1.9: Welfare Differences Between Admission Rules Across Different PA School Tuition

(a) Average welfare of students with p.r.≥ 75 (b) Average welfare of students with
50≤ p.r. < 75

(c) Average welfare of students with
25≤ p.r. < 50

(d) Average welfare of students with p.r.≤ 25

(e) Average welfare of affirmative action
eligible students with p.r.≥ 50

(f) Average welfare of students not
eligible for affirmative action track and
with p.r.≥ 50

(c) Average welfare of all students

Notes: For each graph in this figure, the x-axis corresponds to the difference of tuition (in
million won or thousand dollars) between PA and NPA schools. Tuitions of all PA schools are
set the same. The y-axis corresponds to the average of the welfare of students (in million KRW
or thousand USD). Each line corresponds to different mechanism. The equilibria are
calculated for 9 different tuitions in this range, with 0.5 million KRW difference between each.
In each simulation top 50 percent rule for admission to lottery of PA school and affirmative
action is kept.
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Figure 1.10: Comparison of m.p.r. without Top 50% Rule and without Affirmative Action

(a) Weighted average of m.p.r. for PA schools (b) Weighted average of m.p.r. for NPA
schools

(c) Difference between PA vs. NPA by
weighted average of m.p.r.

Notes: For each graph in this figure, the x-axis corresponds to the difference of tuition (in
million won or thousand dollars) between PA and NPA schools. Across the tuition differences
in the x-axis, tuitions of all PA schools are set the same. The y-axis corresponds to the average
of the m.p.r. measures of schools weighted by number of students across schools for the
considered set of schools across different tuition differences. Each line corresponds to
different mechanism. The equilibria are calculated for 9 different tuitions in this range, with
0.5 million won difference between each. In all the simulations, top 50 percent rule for
admission to lottery of PA school and affirmative action policy are not present.
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Figure 1.11: Welfare Across Tuition Levels without Top50 and without Affirmative Action

(a) Average welfare of students with p.r.≥ 75 (b) Average welfare of students with
50≤ p.r. < 75

(c) Average welfare of students with
25≤ p.r. < 50

(d) Average welfare of students with p.r.≤ 25

(e) Average welfare of all students

Notes: For each graph in this figure, the x-axis corresponds to the difference of tuition (in
million won or thousand dollars) between PA and NPA schools. Across the tuition differences
in the x-axis, tuitions of all PA schools are set the same. The y-axis corresponds to the average
of the welfare of students (in million won or thousand dollar). Each line corresponds to
different mechanism. The equilibria are calculated for 9 different tuitions in this range, with
0.5 million won difference between each. In all the simulations, top 50 percent rule for
admission to lottery of PA school and affirmative action policy are not present.
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literatures’ comparisons between centralized mechanisms it is smaller than the difference between

them.67 Figure 1.10 illustrates the comparison of weighted m.p.r. at PA and NPA schools. The

graphs agree with the theory prediction again, but student composition measure in schools closer

to each other across different mechanisms compared to case with top 50% rule.

Table 1.11: Welfare Comparison without Top %50 Rule and without Affirmative Action Policy

Panel A: Students among highest 50% in their middle schools with respect to grades

Mechanisms p.r.≥ 75 50≤ p.r. < 75 General
track

Affirmative
track

DA 0.518 0.244 0.358 0.625

SA1 0.253 -0.034 0.088 0.339

SAU 0.225 -0.044 0.075 0.248

Panel B: Students among lowest 50% in
their middle schools with respect to grades

Panel C: All students

Mechanisms 25≤ p.r. < 50 p.r. < 25

DA -0.015 -0.481 0.106

SA1 -0.292 -0.746 -0.165

SAU -0.300 -0.753 -0.179

Notes: This table illustrates the welfare comparisons (in million won or
thousand dollars) across the equilibrium of DA, SA1 and SAU mechanisms.
DA corresponds to student proposing Deferred Acceptance Mechanism, SA1
corresponds to Sequential Admissions mechanism where students can apply
to only one PA school in the first step. SAU corresponds to the Sequential
Admissions mechanism where students apply to PA schools in an
unrestricted list Deferred Acceptance fashion in the first step. The table
demonstrates the average welfare for different types of students, as well as
average across all students. In these counterfactuals, we remove the top 50%
rule in admission to PA school lottery and affirmative action policy in PA
schools.

67When we compare to previous literatures’ comparisons between centralized mechanisms it is smaller than the
difference between them. Calsamiglia, Fu, and Güell (2020) finds that a switch from Boston Mechanism (which is a
centralized mechanism) to DA decreases average welfare by C1,020. Abdulkadiroğlu, Agarwal, and Pathak (2017)
finds the average welfare difference between coordinated and uncoordinated assignments as large as 10.6 miles.
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1.7.2 Effect of Score Based Admission

Another counterfactual policy is the effect of exam schools. Since we have causally estimated

preferences for peers, we can check whether admission through academic performance directly

(without any role left for random lottery) is enough to generate strong sorting towards schools

admitting students with exams even without any intrinsic preferences for these kinds of schools.

We set the tuition of PA schools same as NPA schools in this simulation. We also remove top 50

percent rule and affirmative action rules.

We compare m.p.r of PA schools under score based admission for PA schools and lottery

based admission for PA schools. In both schemes the schools are allocated through SAU, where

PA schools are allocated in the first step and NPA schools are allocated in the second step. Panel B

of Table 1.12 illustrates the results from these counterfactuals. Our simulations show that weighted

average of m.p.r for PA schools under the first scheme is 88.98 whereas it is 48.20 under the second

scheme. For NPA schools it is 48.43 and 53.66 respectively. Table 1.13 illustrates the utility

differences of students. As expected, students in the top 25 percent have much higher expected

utility under score based admission since the schools most of them go to has very high share of

high-performers. For this group welfare difference is around $860 which is quite large. Also,

as expected all other students lose from the score based admission of the PA schools. Average

difference in welfare is only around $30.

We decompose the total change in weighted average of m.p.r. in PA schools into a direct effect

and indirect effect. Direct effect would be the effect that is only due to the change in the admission

rules. So we should not allow subsequent changes in the preferences due to new realizations of the

student distribution. But there are actually subsequent changes in preferences due to realizations

of student distribution. Indirect effect is the extra change in the peer distribution on top of the

direct effect. To calculate the direct effect we keep the preferences over schools fixed as in the

equilibrium of completely lottery based SAU. Then we simulate SAU in which PA schools admit

students using percentile rankings. If there were no peer effects, the score based admission would

only yield weighted average of m.p.r. for PA schools as high as 72.53. This means that, the indirect
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effect accounts for around 38% of the total effect. Therefore, large portion of the total effect of

academic screening is actually effect of preferences for peers.

1.8 Conclusion

In this study, we evaluated the discrepancies in admissions to schools belonging to different sectors

when students have peer effect considerations in school choice. We have investigated the effects

of academic screening, early admission to private/elite schools, as well as differences in tuition.

We performed our analysis empirically as well as theoretically, combining several datasets on the

Seoul high school market. This includes application shares to private schools and rank-ordered

lists of students submitted to public school admissions. The study established a structural model

in congruence with the students’ decision process. Preference parameters were estimated by com-

bining/adapting multiple techniques from the empirical industrial organization literature, as well

as by resolving some complicated computational/identification puzzles. In particular, we identified

preferences concerning peer composition by adopting an IV approach, also jointly identified the

preferences for tuition and private school via a blend of IV and RD approaches by means of indirect

inference. The computational challenge implied by the interdependent nature of decisions in two

consecutive markets has been addressed by using a two-step estimation approach. In addition, our

paper adapts the BLP approach to a setting where market shares have upper bounds due to capacity

constraints. Our estimates allowed us to do counterfactual analysis of different admission regimes.

In order to do that, we simulated the iteration of best responses until there was a convergence to an

equilibrium of strategies and student compositions across schools.

Around the world, the sequentiality of markets is not confined to school districts. The higher

education and labor market contexts has also witnessed such a market structure. In this study,

we demonstrated that sequential admissions with a commitment structure yield results similar to

complete centralization through Deferred Acceptance (DA) with respect to welfare and student

distribution. This finding assumes significance because sequentiality might be an easier to imple-
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Table 1.12: Weighted m.p.r at PA and NPA schools

Panel A: Completely Lottery Based Admissions (at the observed 2011 tuition levels)

School
Type

PA NPA

Mechanism DA SA1 SAU DA SA1 SAU

Tracks Gen.
only

All
trck.

Gen.
only

All
trck.

Gen.
only

All
trck.

With Top
50% rule
and affirm.
action

76.74 75.66 76.88 75.71 76.94 75.68 50.46 50.83 50.77

Without
Top 50%
rule or
affirm. act.

54.22 55.49 54.02 52.94 52.98 53.01

Panel B: Score Based Admissions vs. lottery based admissions for PA schools: tuitions are set
to zero across all PA vs. NPA schools, top 50% and affirmative action rules are removed, NPA
schools’ admission criteria is lottery

School Type PA NPA

PA Sch. Admiss. Lottery Score based Lottery Score based

Fixed Not fixed Fixed Not fixed

48.20 73.53 88.98 53.66 50.55 48.43

Notes: Panel A illustrates the weighted m.p.r. of the PA and NPA schools across DA, SA1 and
SAU at 2011 tuition fees. DA corresponds to student proposing Deferred Acceptance, SA1
corresponds to Sequential Admissions where students can apply to only one PA school in the
first step. SAU corresponds to the Sequential Admissions where students apply to PA schools
in an unrestricted list DA fashion in the first step. Panel B illustrates the weighted m.p.r. of the
PA and NPA schools across SAU with different admission criteria. “Lottery” means, all
schools are using random lotteries; whereas “score based” for PA means that, PA schools only
are using p.r. of students. The “Not fixed” column in Panel B corresponds to equilibrium when
score based admission is in effect for PA schools. The “Fixed” column corresponds simulating
the equilibrium of score based case by fixing the preferences of students over schools as in the
equilibrium of lottery case. The difference between the “Fixed” and “Lottery” column gives
the direct effect of academic screening; whereas the difference between “Not Fixed” and
“Lottery” columns gives the total effect. Equilibrium that corresponds to each mechanism and
each admission rule is calculated using iteration of best responses.
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Table 1.13: SAU score based for PA schools versus SAU lottery based for PA schools

Panel A: Students among highest 50% in their middle schools with respect to grades

Mechanisms p.r.≥ 75 50≤ p.r. < 75

Score based
admission for PA

1.517 0.149

Lottery based
admission for PA

0.657 0.414

Panel B: Students among lowest 50% in
their middle schools with respect to grades

Panel C: All students

Mechanisms 25≤ p.r. < 50 p.r. < 25

Score based
admission for PA

-0.140 -0.553 0.309

Lottery based
admission for PA

0.166 -0.285 0.276

Notes: This table illustrates the welfare comparisons (in million won or thousand dollars)
across the equilibrium of two SAU mechanisms. SAU corresponds to the Sequential
Admissions mechanism where students apply to PA schools in an unrestricted list Deferred
Acceptance fashion in the first step. The difference between lottery based SAU and score
based SAU is that in the former, students are assigned to PA schools via lottery numbers;
whereas for the latter assignments to PA schools is based on p.r. Under both rules, admissions
to NPA schools are lottery based. The table demonstrates the average welfare for different
types of students, as well as average across all students. In these counterfactuals, for the lottery
based SAU we remove the top 50% rule in admission to PA school lottery and affirmative
action policy in PA schools; similarly for score based SAU we do not impose any of these
admission rules.
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ment or could also take place naturally in a decentralized setting. According to previous literature,

there are several advantages of centralization in school markets along with other matching markets.

Our findings indicate that it is possible to attain these benefits without total centralization in case

the frictions are small in the matching market, at least in school choice settings. We have demon-

strated that a rise in tuition leads to an increase in the high-performing students’ sorting to private

schools through theoretical analysis. We have also shown how the choice of mechanisms interacts

with tuition to determine students’ distribution. Moreover, we have verified these predictions of

the theory using our counterfactual simulations for varied tuition levels.

Furthermore, we have examined the impact of academic screening. In several countries, unlike

the majority of public schools, private/elite schools have the autonomy to implement this poli-

cy. According to our analysis, the decision of a school to switch from lottery-based admission to

score-based admission significantly increases the share of high-performers in the school, irrespec-

tive of the school’s intrinsic quality. We have also demonstrated that this cannot be dismissed as

just a mechanical impact of admission criteria. A substantial 38% of the effect stems from the

altered preferences over these schools. These schools start becoming more popular among all s-

tudents, particularly for high-achievers because admission criteria mechanically increase the share

of high-performers in the schools, which in turn, paves the way for more applications, and as a

consequence, a higher cutoff in admissions. Notably, the existing sphere of debate concerning stu-

dent segregation in media and public centers on what kind of student gains admission into specific

schools. According to our assessment, high-performing students are interested in coordinating with

other high-performing students to gain admission into the same school. Regardless of the schools’

intrinsic qualities, this coordination is provided by academic screening. Therefore, discussion of

how much coordination should be permitted between high-performing students would yield more

fruitful results.
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Chapter 2

THE ROLE OF OUTSIDE OPTIONS

UNDER BOSTON MECHANISM

2.1 Introduction

School choice is a major concern for families and students around the world. Many districts around

the world, including Amsterdam1, Barcelona2, Beijing3, Boston4, Chicago, London5, Minneapolis,

New York City6, New Heaven7, New Orleans 8, Seattle 9 and Shanghai 10 make use of centralized

mechanisms. These mechanisms take the ordered preference lists from families and the priori-

ty structures at schools over students as inputs, and produce a matching of students and schools

(Abdulkadiroğlu and Sönmez, 2003). Beginning with the work of Abdulkadiroğlu and Sönmez

(2003) an important debate around the so called “Boston Mechanism” has started. In 2005, Boston

Public Schools (BPS) decided to change its mechanism which is referred to as Boston Mechanis-

1Haan, Gautier, Oosterbeek, and van der Klaauw (2016)
2Calsamiglia, Fu, and Güell (2020)
3He (2016)
4Abdulkadiroğlu and Sönmez (2003)
5Hind, Pennell, and West (2006)
6Abdulkadiroglu, Pathak, and Roth (2009)
7Kapor, Neilson, and Zimmerman (2020)
8Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017)
9Pathak and Sönmez (2013)

10Chen and Kesten (2013)
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m (BM) in the academic literature to Deferred Acceptance (DA) Mechanism (Gale and Shapley,

1962). The former mechanism is manipulable and potentially unstable, whereas the second one is

strategy proof and stable. In the process of change, BPS consulted to community and academic

experts (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005) and decided a change in favor of DA.

Despite this change and undesirable aspects of BM mentioned above there are still many districts

in U.S. and the world that are using BM. In recent years an important effort in the literature has

been devoted to understand BM, answering the question of why it may be appealing both through

theoretical and empirical work (Miralles, 2009), (Abdulkadiroğlu, Che, and Yasuda, 2011), (Agar-

wal and Somaini, 2018), (Calsamiglia, Fu, and Güell, 2020), (Kapor, Neilson, and Zimmerman,

2020).

This project examines BM under the existence of options to some students outside of the cen-

tralized public school assignment system i.e., outside options, for which the most important ex-

ample is private schools. Analyzing BM when there are students who can go to private schools is

important because of the strategic and risky nature of BM. In BM, a student decreases the chance

of getting into a school as he ranks it lower even conditional on being rejected from schools he list-

ed above it; whereas in a strategy-proof mechanism DA, this is not the case. Reporting preferences

truthfully is a dominant strategy. When some students have safe outside options (private schools),

this may make them gain an advantage in BM. And it is not clear whether students without these

safe outside options would be better off in terms of welfare under BM or DA. This setting is first

analyzed by Akbarpour, Kapor, Neilson, van Dijk, and Zimmerman (2022). In this regard my work

is closely related to their work. This paper considers two theoretical exercises. First, it compares

ex ante payoffs under BM versus DA for students who does not have private school options when

there are students who have private school options. It is an important question since this group

seems vulnerable to manipulability of BM when some other students have some kind of strategic

advantage through safe options. Second, it analyzes how the students who cannot go to private

school are affected in terms of ex ante welfare when private school enters the district. This is also

an interesting question. First, BM is a manipulable mechanism, so it is interesting to see how the
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equilibrium play responds to a decrease in competition for schools. Competition will decrease for

some schools since some students will lose interest in some public schools after private school

entry. Second, entry of private school will provide strategic advantage to some students with B-

M through having safe good outside options; so it is ambiguous how students who cannot go to

private school will be affected from the entry of private schools.

In my analysis, I assume that all students agree on their ordinal ranking of the schools. This

assumption is needed for tractability of the analysis and is critical for getting the results. And if

one thinks of the other extreme benchmark which is having extremely heterogenous ordinal prefer-

ences for public schools, I am analyzing the interesting benchmark. In the extremely heterogenous

preference case, there is no point in comparing any mechanisms; or analyzing the entry of private

schools, since everyone will be able to go to his most desirable public school. Also, it is plau-

sible to expect correlation between students’ preferences since determinants of those preferences

are generally common across families. (Abdulkadiroğlu, Che, and Yasuda, 2011) argues that high

correlation of preferences can be seen from BPS data.

First, I establish the result that when private schools is only preferred the least preferred public

school in the neighborhood by the students, then all the students who cannot go to private school

are weakly better off under BM compared to DA (Proposition 2.1). This result is important since

as I will explain when describing the model the least preferred public school of the model can be

interpreted as all the public schools in the neighborhood which are not very popular. So, the result

says that if private school is not preferable to high stakes public schools students are competing to

get in, then BM is weakly better than DA for all students who cannot go to private school. This

case may be relevant in some real world settings. For example, there may be very good private

schools such that students considering them do not even consider public schools so they do not

enter centralized public school allocation mechanism; and rest of the private schools may be worse

than the desirable public schools of the neighborhood. In such a case BM would be better for all

students who cannot go to private schools compared to DA.

For the rest of the paper I analyze a model with three public schools, where again school three
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is interpreted as all the unpopular schools. Therefore, I analyze the strategic choice between two

popular schools. Such simplification is needed to keep the tractability of the analysis. This is

certainly a relevant case as the number of public schools in a neighborhood is not very large and

school three is interpreted as all the unpopular schools. There are probably neighborhoods with

more than 2 popular schools in reality. Albeit, this model allows one to get a clear intuition about

which students are better off under BM compared to DA and that can be useful for other cases,

too. When model has three schools comparison of payoffs of BM and DA when private school is

preferred to only third school is already done by Proposition 2.1. So, I consider the case in which

only most preferred public school is preferred to private school for comparison of payoffs under

BM and DA.

Under such a model described in previous paragraph, by Lemma 2.2 and Lemma 2.3, I show

that among the students who cannot go to private schools, the ones whose decision between re-

porting which school as top choice is not a close decision, that is the ones who are inframarginal

in terms of deciding which school to report as top choice are better off under BM compared to

DA; and the students whose decision is close, that is marginal students, are better off under DA

compared to BM. This result is intuitive since risky nature of BM allows students to express their

cardinal preferences; whereas for DA cardinal preferences do not matter (Abdulkadiroğlu, Che,

and Yasuda, 2011). So one can expect that students with stronger cardinal preferences for one

school or the other to be better off under BM compared to DA. Moreover, these lemmas allow

me to provide mild conditions on the distributions of preferences that guarantees the existence of

students who are strictly better off under BM compared to DA among the students who cannot go

to private school. These results do not require explicit assumptions on distributions of preferences.

Large classes of preference distributions would satisfy these mild conditions. In Proposition 2.2,

I restrict attention to equilibrium in which all popular schools are filled in first round of BM. I

can guarantee this through mild assumptions on primitives of the model; and it is an empirically

relevant case (Agarwal and Somaini, 2018). Proposition 2.2 establishes that, if there is enough

heterogeneity in preferences of students then there exists students who are strictly better off under
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BM compared to DA among the students who cannot go to private school. This is expected giv-

en the intuition that is established in Lemma 2.2 and Lemma 2.3. Enough heterogeneity ensures

that there are students who are not marginal when making the decision between which school to

report as top choice; and that is the group of students that will be better off under BM compared

to DA as shown in Lemma 2.3. My next result, Theorem 2.1 shows that there are students who

are strictly better off under BM compared to DA among students who cannot go to private school,

when distribution of preferences has full support. Theorem 2.1 does not restrict attention to a kind

of equilibrium unlike Proposition 2.2. It requires stronger heterogeneity than Proposition 2.2, but

it is still satisfiable by a large class of distributions of preferences. Again, full support assumption

ensures the existence of inframarginal students which is key for having students better off under

BM compared to DA.

My next result, Theorem 2.2 yields the fraction of students who are strictly better off under BM

compared to DA among the students who cannot go to private school. An assumption on distribu-

tion of preferences is required to fully pin down the equilibrium. I assume uniform distribution of

preferences to find this fraction. Theorem 2.2 shows that share of students who are strictly better

off under BM compared to DA among the students who cannot go to private school is equal to one

minus the share of students who can go to private schools in the economy. This means, if less than

half of the students can go to private school then under uniform distribution assumption, more than

half of the students who cannot go to private schools are better off under BM compared to DA.

This is the last result regarding comparison between BM and DA.

For the analysis of the effect of entry of private schools on the centralized allocation mechanism

I compare the ex ante welfare of students who cannot go to private school in the equilibria of BM

before the entry versus after the entry. First, I analyze the case of entry of very high quality private

schools. So, I analyze what happens if the entering private school has quality such that all students

who can go to private school leave the centralized mechanism. Since after the entry, number of

students applying to the centralized mechanism strictly decreases, one would expect that some of

the students who are not able to go to private school must be strictly better off. Surprisingly it
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is possible to find an example in which all students become weakly worse off and some become

strictly worse off. This is given by Example 2.3. However, I show that this is a knife edge case and

one can find a student strictly better off after the entry of private school for almost all distributions

of preferences (Proposition 2.3).

Next, I analyze the case in which most preferred public school is preferred to the entering pri-

vate school and private school is preferred to all other other public schools. This case is interesting

because entry is expected to affect the centralized mechanism through two channels. First, since

private school is preferred to all except the most preferred public school, students who can go to

private school lose interest in public schools other than the most preferable one. This decreases

the competition for those public schools and can be expected to benefit the students who cannot

go to private school. Second, since after the entry students who can go to private school have a

safe alternative if they cannot get into most preferred school, they can all apply to the most desired

public school (if they were not already doing so). This would weakly increase the competition in

the most desirable school which can harm welfare of students who cannot go to private school.

First, I silence the second channel. In that case I show that except a knife edge case (Example 2.4)

some students who cannot go to private school strictly benefit from entry of private school or none

of them is affected (Lemma 2.10 ). For my last result, I allow the effect coming from the second

channel. In this case again I restrict attention to equilibrium in which popular schools are filled in

the first round of BM by making mild assumptions on primitives. In that case I show that some of

the students who cannot go to private school are strictly better off or none of them is affected if the

distribution of preferences have full support and share of students who can go to private schools is

not very large (Theorem 2.3). This result has a clear intuition. If students who can go to private

school are switching to reporting most desirable school as top choice after the entry, then there

will be decrease in competition in schools below the most desirable one. Full support assumption

guarantees that there will be students who are applying to second most desirable school before the

entry among the students who cannot go to private school.
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2.1.1 Related Literature

Abdulkadiroğlu and Sönmez (2003) lays out the model of school choice and analyze BM, Top

Trading Cycles (TTC) method and DA mechanisms. Abdulkadiroğlu, Pathak, Roth, and Sönmez

(2005) proposes TTC and DA as two alternative (non-manipulable) mechanisms that can be used

for school choice instead of BM. The ground on which BM is most criticized is manipulability.

Manipulability is not desirable: there may be heterogeneity across parents in terms of ability to

manipulate; and this can lead to less desirable outcomes for the group that is less sophisticated in

terms of manipulation behavior (Pathak and Sönmez, 2008). Ergin and Sönmez (2006), under strict

priority structure show that set of Nash equilibria of BM under complete information is equal to set

of stable matchings. Therefore, since DA gives the student optimal stable matching, it dominates

BM in terms of welfare. Here, I assume coarse priority structure and in reality there are many

students that have same priority in a school. Since their work characterizes all the Nash equilibria

of BM and can compare among them, it is also related to second part of this paper. Albeit, my

setting is quite different, I compare the equilibria of BM before the entry of private school to

equilibria after the entry of private schools.

Abdulkadiroğlu, Che, and Yasuda (2011) is closely related to this paper. They show that when

students have common ordinal preferences and priority structure is coarse, all students are weakly

better off under BM compared to DA in terms of welfare. Proposition 2.1 of my work is closely

related to this result since the assumption of private school being preferred to only last public

school eliminates the strategic asymmetry between the students who can go to private schools and

who cannot. In fact this result follows from only a slight modification of the proof of the result in

Abdulkadiroğlu, Che, and Yasuda (2011). Also, Lemma 2.2 and Lemma 2.3 of current work can

be seen as an improvement over their result for the special case of three schools. Their setting does

not have any student who can go to private school. In their setting, Lemma 2.2 and Lemma 2.3 of

this work implies that when there are more than one type of students, then all students who are not

marginal in the decision of reporting which school as top choice (such types must exist when there

are multiple types) are strictly better off under BM compared to DA. As stated above closest work
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to mine is Akbarpour, Kapor, Neilson, van Dijk, and Zimmerman (2022). They show that, students

who can go to private schools are better off under BM compared to DA. Also, they show that when

all students have same cardinal utilities and only most desired public school is preferred to private

school then all students who cannot go to private school are weakly worse off in BM compared to

DA. This paper on the contrary, tries to find the conditions that guarantees the existence of students

who are better off under BM compared to DA among the ones who cannot go to private school.

Proposition 2.1 of this paper, analyze the case in which private school is preferred to only the last

public school. Rest of my results on comparison of BM and DA relaxes the same cardinal utilities

assumption of the second result of Akbarpour, Kapor, Neilson, van Dijk, and Zimmerman (2022)

under a model with three schools. In addition, Lemma 2.2 and Lemma 2.3 of this paper can be

seen as an alternative proof for their segregation result for the case with 3 schools. Second part of

this paper is also related to theirs since there is a distinction between students who can go to private

schools and other students, but this work is the first attempt of comparing BM equilibria with and

without private schools as far as I am aware. Miralles (2009) by assuming only one priority class

and continuum of types, shows that BM outperforms DA according to several ex ante efficiency

criteria. He also shows that BM has nice efficiency properties. Troyan (2012) shows that when

weak priorities are introduced BM no longer dominates DA from an interim perspective, but from

an ex-ante perspective it still does. Featherstone and Niederle (2016) shows through experiments

that agents fail to reach the non-truth-telling equilibria of BM. Pathak and Sönmez (2013) compare

the mechanisms in terms of manipulability and document that variants of BM that are ruled out in

England were more manipulable compared to their successors.

In recent years, empirical literature worked on answering the question of whether BM or DA

is better in terms of welfare by using school choice application data of students. Agarwal and So-

maini (2018), using school choice data from Cambridge Public Schools shows that mean utility of

students under BM is higher compared to mean utility of students under DA. Calsamiglia, Fu, and

Güell (2020) finds similar results by examining school choice data from Barcelona. Kapor, Neil-

son, and Zimmerman (2020) finds that DA outperforms BM in terms of efficiency when families
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have mistakes in their beliefs about their admission chances using school choice data from New

Heaven and a survey they make to parents about their beliefs.

Section 2 sets up the model and defines DA and BM. Section 3 compares the welfare of students

under BM and DA. Section 4 compares the welfare of students in BM equilibria before versus after

the entry of private schools. Section 5 concludes. Additional results are in Appendix B.1. Proofs

of the results in Section 2.3 and Section 2.4 are in Appendix B.2 and Appendix B.3, respectively.

2.2 Model

Let S = {s1, ...,sm} denote the finite set of public schools with cardinality m. A school s j ∈ S has

capacity 0 < q j < 1. There is also an unlimited capacity private school sp. I assume that there is

measure 1 of continuum of students. A student is denoted by i ∈ I . I follow the notation and

naming in Akbarpour, Kapor, Neilson, van Dijk, and Zimmerman (2022) for distinguishing be-

tween students who can afford private schools and students who cannot afford private schools. Let

Θ = {constrained,unconstrained} be the possible type of students. A student i is one of the types

constrained and unconstrained. Students who can afford private schools are unconstrained and

ones who cannot afford private schools are constrained. So private school is sp is only available to

unconstrained students. Share of unconstrained students is η . I assume ∑
m
j=1 q j ≥ 1 since every

student has right to get education in public schools. Each student i has VNM utility values over

schools, vi = (vi
1, ...,v

i
m,ν

i
p) ∈ [0,1]m+1.

I make the simplifying assumption that all students have the same ordinal preferences over

schools. This assumption is also made in Abdulkadiroğlu, Che, and Yasuda (2011) and Akbarpour,

Kapor, Neilson, van Dijk, and Zimmerman (2022). Although in reality this assumption would not

exactly hold, it is a good approximation to reality since there is high correlation between students’

ordinal preferences11. This assumption is critical for my results, since with enough heterogeneity

of preferences there will not be scarcity in any school and in that case DA and BM would yield

11Abdulkadiroğlu, Che, and Yasuda (2011) argues that this correlation can be seen from BPS data
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the same results; and entry of private schools would not have an effect since everyone would be

able to go to their top choice. So under common ordinal preferences assumption I am analyzing

the interesting benchmark case. For convenience I assume that s1 �i s2 �i ...�i sm for all i.

Assumption 2.1. (A2.1) s1 �i s2...�i sm for all i, therefore vi ∈ V = {(v1, ...,vm) ∈ [0,1]m+1|v1 >

... > vi
p > ... > vm}

To have sm relevant, assume that ∑
m−1
j=1 q j < 1. Density functions of distribution of preferences

for constrained students and unconstrained students are f (v) and g(v) respectively. Note that

distribution of preferences does not have to be continuous.

I assume schools have only one priority level, so students have no difference in terms of prior-

ities. This is again not the case in reality for most of the school districts. But this assumption is

again a good approximation to the reality since in most of the cases schools have coarse priority

structures, there are many students in the same priority categoy (e.g. walk zone).

Assumption 2.2. (A2.2) Schools have only one priority level, so all students are in the same

priority level.

I would like to interpret this model as an analysis of a part of the whole district: a neighborhood

or a ZIP code. All the students and schools in the model belong to the same neighborhood. In that

sense neighborhood students having same priorities in the neighborhood schools makes sense.

neighborhood students do not consider other schools from other districts in the model. This is

again not a very strong assumption since if a student in neighborhood A considers schools in

neighborhood B, then schools in B are probably popular schools. Students from A will typically

not have chance to get in popular schools of B (regardless of the mechanism) since students of B

would also like to get into popular school in their own neighborhood and they would have higher

priority for those schools compared to neighborhood A students in reality. Since I am analyzing a

neighborhood, cardinality of set of public schools is a small integer.

Let l denote the last public school that is preferred to private school by unconstrained students.

That is l = 2 means unconstrained students prefer s1 and s2to sp.
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A strategy is a mapping σ : Θ×V → ∆(Π), where Π is the set of all rank-order lists of S. I

focus on symmetric strategies in which students of the same type follow the same strategy.

An economy with m public schools and unlimited capacity private school is denoted by Em =

({q j}m
j=1, l, f (v),g(v)) is a quadruple. An economy with m public schools and no private school is

denoted by Pm = ({q j}m
j=1, f (v),g(v)) is a tuple.

Below I describe how DA and BM works. All students submits rank ordered lists of schools in

both mechanisms. Ties are broken in ex ante symmetric way via lottery numbers.

Deferred Acceptance (DA)

Step (1): All students apply to their top choices. Each school looks at the applicant pool,

tentatively admits the students according to their lottery numbers starting from the top until either

they fill their capacity or they run out of applicants.

Step (k): All rejected students of the Step k-1, apply to their kth preferred choice. Each school

considers the applicant pool together with already tentatively admitted students. Each school ten-

tatively admits the students according to their lottery numbers starting from the top until either

they fill their capacity or they run out of applicants.

The mechanism terminates when there is no rejected student in a step or all students ran out of

schools in their list. All tentative assignments at that step are finalized.

Boston Mechanism (BM)

Step (1): All students apply to their top choices. Each school considers the applicants who

have written it as the top choice, each school admits the students according to their lottery numbers

starting from the top until either they fill their capacity or they run out of applicants.

Step (k): All students who could not be admitted in previous steps apply to their kth ranked

choices. Each school that has remaining capacity at the beginning of kth round considers the

applicants who have written it as the kth choice, each school fills its remaining seats with the kth

round applicants according to their lottery numbers starting from the top until either they fill their

capacity or they run out of applicants.

The mechanism terminates when there is no rejected student at a step or all students ran out of

83



schools in their list.

It is dominant strategy to report true ordinal preferences under DA, whereas under BM one’s

chance of getting into a school decreases as she ranks it lower even conditional on being rejected

from the schools listed above that school. That is, order a school is listed affects the chance of

getting into that school even conditional on being rejected from schools listed before that school.

So BM is not a strategy proof mechanism. So in the analysis below, I will assume that students

play truthfully under DA and they play the symmetric Bayesian Nash Equilibrium under BM.

Another thing to highlight is that, without loss of generality I can interpret sm as follows.

Suppose there are m− 1 public schools such that all students agree on their ordinal ranking of

these schools, and they prefer these schools to all other schools in the neighborhood. These m−1

schools can be interpreted as popular schools. For the rest of the public schools WLOG there is

enough heterogeneity for preferences over them so they do not get filled in any round of BM or

DA. Therefore, a student can get into his most favorite school among these schools wherever he

positions such school in DA and BM conditional on being rejected from any of the ones listed

above it (all schools above it must be one of the first m−1 schools). Such favorite schools below

first m− 1 schools differs among students but since qm ≥ 1−Σ
m−1
j=1 q j in the model, without loss

of generality I can collect all such schools into sm, hence sm is the most preferable school for each

student after the first m−1 schools. Without loss of generality we can assume vi
m = 0 for all i∈I .

I assume if a constrained student cannot be assigned in the centralized mechanism (this can happen

only if such student does not submit sm in his preference list for both mechanisms) reporting, he is

either randomly assigned in the post assignment to an unfilled school or he is home schooling. I

assume such outcome gives less utility than vi
m for all i ∈I , so it gives negative utility. Therefore

all constrained students will report sm at the bottom of their list in BM or DA 12.

Finally, as can be understood from A2.1, I do not consider the case where l = m, since this

means that private school is not considered by anybody. Such a model does not make sense if

12If I simply assume that a student i can go to sm in the post assignment period if he wishes to, then I can treat sm
as a pure outside option. In that case a student would not necessarily report sm in his preference list. The results in the
paper would again follow in such situation.
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we want to analyze a model with private schools since it will not get any student. If we think

that such case corresponds to no private school case, then the comparison is already done by

Abdulkadiroğlu, Che, and Yasuda (2011) where conclusion is that all students are weakly better

off under BM equilibria compared to DA. Also, for the first part of the paper (Section 3) I do not

consider the l = 0 case since this means any student participating in the centralized assignment

procedure is not considering private schools, since all the unconstrained students would prefer

going to private school to any public school. Conclusion of comparison of BM and DA already

follows from Abdulkadiroğlu, Che, and Yasuda (2011) as described above for this case, too.

2.3 Comparison of DA and BM

In this section my goal is to compare the welfare of the students under symmetric equilibria of

BM and truthful equilibrium of DA. Theorem 1 of Akbarpour, Kapor, Neilson, van Dijk, and Zim-

merman (2022) already shows that unconstrained students are weakly better off in any symmetric

equilibrium of BM compared to DA 13. Illustrative example of Akbarpour and van Dijk (2018)

shows that one can find an example of capacities, preferences and η such that all constrained stu-

dents are strictly worse off in symmetric equilibria of BM compared to DA. This section provides

conditions under which some constrained students are strictly better off, and conditions under

which all constrained students are weakly better off in BM equilibria compared to DA. Also, I

provide some necessary conditions for having all constrained students strictly better off under BM

equilibria compared to DA.

Following Example 2.1 shows a case in which the students without outside option are always

strictly better off under BM compared to DA.

13Akbarpour and van Dijk (2018) use the following notion in their theorem: A student i always prefers an assign-
ment mechanism A to an assignment mechanism B, if he gets weakly higher expected utility under any symmetric
equilibrium of the mechanism A than under any symmetric equilibrium of the mechanism B.

Theorem. Theorem 1 of Akbarpour and van Dijk (2018): A student i always prefers the BM to DA iff he is uncon-
strained.

This theorem says that we can find an example of preferences and capacities and η such that for any constrained
student there is an equilibrium of BM in which a constrained student is worse off compared to DA.
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Table 2.1: Payoffs of Example 2.1

1 2 3

s1 0.81 0.8 0.55

s2 0.6 0.2 0.4

s3 0 0 0

Example 2.1. In Table 2.1 preferences of 1 represents the preferences of a type 1 of continuum of

students (constrained) with mass of 1/3, preferences of 2 represents the preferences of type 2 of

continuum of students (constrained) with mass of 1/3, preferences of 3 represents the preferences

of a type 3 of continuum of students (unconstrained) with mass of 1/3. Types are again used to

distinguish between students with different valuation vectors. And suppose each school has mass

of 1/3 seats. Suppose v3
p = 0.5. Then equilibria under BM are (unique up to report of 2 for 2nd

and 3rd choice) 1 reports s2 as top choice, s1 or s3 as second choice; 2 reports s1 as top choice and

reports s2or s3 as second choice; 3 reports s1 as top choice and does not list other public schools14.

For DA every student reports his preferences truthfully since it is dominant strategy under DA. All

payoffs under BM equilibria are higher than payoffs under DA. See Table 2.2 for comparison. So

all students are strictly better off under this equilibrium of BM compared to DA.

Table 2.2: Payoff comparison of Example 2.1

1 2 3

Boston 0.6 0.4 0.55/2+0.5/2 = 0.525

DA (0.81)/3+(0.6)/2 = 0.57 (0.8)/3+(0.2)/2 = 0.37 0.55/3+0.5(2/3) = 0.517

Akbarpour and van Dijk (2018) also has an example in which constrained students are better

off in BM equilibrium compared to DA equilibrium in which they have a common utility vector

for constrained students assumption and they have l = 2 and m = 3. So their example is a case

14There is no additional payoff changing mixed strategy equilibria since ranking top choice truthfully is dominant
strategy for 2nd and 3rd players, note that 2nd player can mix between ranking s2and s3 as second choice.
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of l = m− 1 for which I will show more general result in next subsection. My previous example

indicates that it is possible to have all constrained students better off under BM equilibria compared

to DA when there are more than one type of constrained students and l = 1.

Before going into results, let me remind Theorem 2 of Akbarpour and van Dijk (2018) so that

readers can compare the negative results about BM to positive results about BM. Their theorem

says that when all constrained students have the same valuation vector and l = 1 constrained

students are weakly worse off under all BM equilibria compared to DA.15

Note that all constrained students having same valuation vector is demanding, it means that all

constrained students are same type. Under that assumption cardinal utilities, that is the intensity of

preferences does not play a role.

In the next subsection I compare the mechanisms under a special case: l = m−1. Before that

following remark gives the entry probabilities of students under DA.

Remark 2.1. Probabilities of students entering to schools in DA is as follows:

For unconstrained students:

[q1, ...,ql,0, ...,0]

For constrained students:

[q1, ...,ql,
ql+1

1−η
,

ql+2

1−η
, ...,1−

l

∑
i=1

qi−
k∗−1

∑
i=l+1

qi

1−η
,0, ...,0]

where k∗ is the first j such that

qk∗ > (1−η)− [(1−η)(q1 + ...+ql)+ql+1 + ...+qk∗−1]

Remember that in DA everyone reports truthfully, so 1 measure of students wants to enter

15

Theorem. Theorem 2 of Akbarpour and van Dijk (2018): Suppose l = 1, and all constrained students have the
same valuation vectors. Then, constrained students always prefer the deferred-acceptance mechanism to the Boston
Mechanism.
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s1 with q1 capacity. So entrance probability for any of the students is q1. Then conditional on

being rejected from s1 all unassigned students enter apply to s2, which leads to probability of entry

q2
1−q1

(1− q1) = q2 if l > 2, otherwise it is q2
(1−η)(1−q1)

(1− q1) =
q2

1−η
and so on. This is how the

probabilities under DA are calculated.

2.3.1 l = m−1

For this case only I assume there is discrete distribution of preferences for convenience. So there

are finite payoff types. This result is generalizable to infinite payoff types. In this case uncon-

strained students prefer private school only to the last school sm. Remember, with my interpreta-

tion of the model this means that the popular first m−1 schools are preferred to private school and

private school is preferred to any other public school in the neighborhood. Notice that sm is a safe

option for constrained students. That is, they can get into it for sure as long as they report it in the

list conditional on not getting the ones listed above it. This situation removes the strategic asym-

metry between the students because in this case constrained students have a guaranteed option if

they cannot get first m−1 public schools just like unconstrained students. Guaranteed option for

unconstrained students is private school sp. This situation leads to the following proposition.

Proposition 2.1. Suppose (A2.1)-(A2.2) holds. When l = m− 1, constrained students are weakly

better off compared to DA, in any symmetric equilibrium of the BM.

The proof is a slight modification of proof of the Theorem 1 of Abdulkadiroğlu, Che, and Ya-

suda (2011).16 Here, since unconstrained students do not rank sm, a constrained student does not

consider exactly mimicking the strategy of the unconstrained students, he needs to add sm to the

bottom of the list of unconstrained students when mimicking the strategy of unconstrained stu-

dents; whereas in Abdulkadiroğlu, Che, and Yasuda (2011) a student considers mimicking others

16Abdulkadiroğlu, Che, and Yasuda (2011) proves it for the case with number of students equal to number of total
seats. See unpublished version Abdulkadiroglu, Che, and Yasuda (2009) for the proof of the more general case with
number of total seats greater than or equal to number of students. Another slight difference is that these papers have
finite number of students, but their proofs would follow exactly in continuum of students case.
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strategy in exactly same way since there is no difference between students on the schools that are

considered.17

This result says that under the assumptions of the model, when the private school is not very de-

sirable in the sense that it is only preferred to schools that students do not need to compete for then

all students are weakly better off under any BM equilibria compared to DA. This is not a surprising

result since in this case unconstrained students do not have any strategic advantage compared to

constrained students which makes the situation almost same with case of Abdulkadiroğlu, Che,

and Yasuda (2011).

Proposition 2.1 guarantees that constrained students get payoff under BM equilibria at least

as much as their payoff under DA. To see that payoffs for some students can be strictly better

for some constrained students under BM equilibria compared to DA, let’s look at the following

Example 2.2.

Table 2.3: Payoffs of Example 2.2

1 2 3

s1 0.81 0.8 0.91

s2 0.6 0.2 0.3

s3 0 0 0

Example 2.2. As illustrated in Table 2.3 suppose there are 3 types of students with 1/3 measure

each and type 3 students are unconstrained. Suppose v3
p = 0.25. Then under BM unique symmetric

equilibrium is: Type 2 and Type 3 students report s1 as top choice with probability one and Type

1 students report s2 as top choice with probability one. One can easily check this is the unique

symmetric BM since it is strictly dominant strategy to report s1 as top choice for type 2 and type

17If we had assumed sm is certainly attainable in the post-assignment period, so treat it as pure outside option, then
the result would follow without need to distinguish between constrained and unconstrained students. In that case,
we would have m− 1 public schools considered in the centralized mechanism, so total capacity of schools would be
less than total number of students. And this would be the only difference from the Abdulkadiroglu, Che, and Yasuda
(2009) as they have total capacity of schools greater than or equal to total number of students.
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3 students. Note that type 1 cannot deviate from ranking s2 as top choice.18 Also, we do not have

another equilibrium.19

Then under the unique symmetric BM equilibrium type 1 gets 0.6, type 2 gets 0.4, type 3 gets

0.58. Under DA, type 1 gets: 0.47, type 2 gets 0.33 and type 3 gets 0.49. So everyone is strictly

better off under BM equilibrium compared to DA in this example.

Next subsection analyzes the m = 3 case which has the interpretation that there are two popular

public schools in the neighborhood and conditional on not getting the two popular schools each

other public school can be easily gotten into by writing it at the bottom of the reported list.

2.3.2 m = 3

In this subsection I analyze the case with two popular public schools.

Assumption 2.3. (A2.3) m = 3

This assumption is needed to keep the tractability of the analysis. Two popular schools is

certainly a relevant case as the number of public schools in a neighborhood is not very large and

school three is interpreted as all the unpopular schools. There are probably neighborhoods with

more than 2 popular schools in the real world. Albeit, this model allows one to get a clear intuition

about which students are better off under BM compared to DA. This intuition can be useful for

settings with arbitrary number of schools.

Under m = 3, case with l = 2 is already answered in previous subsection. So here I will analyze

the case with l = 1 which is the only remaining case for m = 3 case.

Since we have 3 schools, without loss of generality we can do a scale normalization for utilities

such that vi
1 = 1 for all i ∈I . So our normalizations imply that vi

3 = 0 and vi
1 = 1 for all i ∈I .

Therefore, each student’s type can be just characterized by his valuation for s2 which is a scaler

18Note that 0.81 1/3
2/3 < 0.6.

19Note that 0.81 1/3
2
3+x 1

3
+0.6

1
3−(1−x) 1

3
2
3+x 1

3
≥ 0.6 since the inequality boils down to 0.27≥ 0.6.
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vi
2. Not to carry out extra subscript from now on let v denote the value of a student for s2, and

v ∈ (0,1).

Assumption 2.4. (A2.4) l = 1

My first claim shows that in any equilibrium of BM measure of students reporting s1 as top

choice must be larger than capacity of s1. This result is helpful in calculating the payoffs for

students who are reporting s1 as top choice.

Claim 2.1. Suppose A2.1-A2.4 holds. Let k be the measure of constrained students who report s1

as top choice in a symmetric equilibrium of BM. Then we must have k+η > q1

Logic behind the claim is very simple. If claim does not hold, some constrained student who

did not already report s1 as top choice with probability one (note that there exists such student

in that case) can deviate to reporting s1 as top choice with probability one and get into s1 for

sure. So any equilibrium measure k of constrained students reporting s1 as top choice must satisfy

k > q1−η .

With three school model it is not very meaningful to have an equilibrium in which no one goes

to s3, although s3 can be seen as an unpopular school. Next assumption rules out equilibria in

which no student gets into s3 and so is necessary to ensure scarcity of popular schools.

Assumption 2.5. (A2.5) q2 < (1−η)(1−q1)

First note that this assumption implies q2 < 1−η . This is needed to ensure there is strategic

aspect of BM: If measure of constrained students were smaller than or equal to capacity of s2,

note that s2 would never be filled. Then all students would report truthfully their top choice as

s1, since if they cannot get s1 in the first round they are guaranteed to get s2 in the subsequent

round. So there would not be strategic behavior and in that case DA and BM would yield the same

result. I require a stronger condition q2 < (1−η)(1−q1) because otherwise, there will still be an

equilibrium in which all constrained students report s1 as top choice in which case there will be

no student entering s3. To see that such equilibrium exists when q2 ≥ (1−η)(1− q1), note that
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payoff of constrained student reporting s1 as top choice is:

q1 +(1−q1)v

since measure of constrained students that will be rejected is (1−η)(1−q1) and this is less than

or equal to q2, so it is sure to get into s2 conditional on being rejected from s1. Since this payoff is

greater than v, such an equilibrium indeed exists and no one gets into s3. The same thing happens

for DA. I rule out this case by A2.5.

Note that A2.5 holds when q1, q2 and η are not large. It is intuitive that such situation will lead

to s3 getting no student since unconstrained students do not consider schools below s1, and if q1

and q2 are too large, an equilibrium in which all constrained students get into s1 or s2 can occur.

Under A2.1-A2.5 and knowing Claim 2.1 holds, it is easy to calculate the payoffs from report-

ing s1 as top choice and s2 as top choice in a given equilibrium of BM.

Remark 2.2. Suppose A2.1-A2.5 holds. Note that in this case unconstrained students all report s1

as top choice and do not submit any other school in their list. Take a symmetric equilibrium of

BM. Let k denote the measure of constrained students reporting s1 as top choice. Then constrained

students of type v reporting s1 as top choice get payoff of q1
k+η

when measure of constrained

students reporting s2 as top choice is more than q2. And when measure of constrained students

reporting s2 as top choice is less than q2 constrained students of type v reporting s1 as top choice

get payoff q1
k+η

+vq2−(1−η−k)
k . Constrained students of type v reporting s2 as top choice get payoffs

of v q2
1−η−k and v when measure of constrained students reporting s2 as top choice is more than or

equal to q2 and less than or equal to q2 respectively. Also, note that when k = 1−η , i.e. all

constrained students report s1 as top choice, DA and BM yields same payoffs for everyone.

Next claim provides the cutoff below (above) which a constrained student reports s1 (s2) as top

choice for a given BM equilibrium measure k of constrained students reporting s1 as top choice,

where measure k is small enough so that there are at least q2 measure of constrained students

reporting s2 as top choice.
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Claim 2.2. Suppose A2.1-A2.5 holds. Let k be the measure of constrained students who report

truthfully the first choice in a symmetric equilibrium of BM. Suppose 1− η − k ≥ q2, then a

constrained student with type v reports s1 as top choice in this equilibrium if v < c(k), reports s2

as top choice if v > c(k) and is indifferent if v = c(k), where c(k) := q1
q2

1−η−k
k+η

Claim 2.2 follows from the comparison of expected payoffs for a constrained student from

reporting s1 as top choice versus s2 as top choice for a given k. Note that if first (second) one is

strictly larger for a constrained student than that student must be reporting s1 (s2) as top choice

in equilibrium, otherwise he would deviate to increase his payoff. Claim 2.2 is important since it

tells how constrained students will behave in a given equilibrium with k ≤ 1−η − q2 and some

of the results below analyze particularly equilibria of this kind. First, it is an empirically relevant

case since s2 is a popular school according to the interpretation of the model and such schools are

generally filled in the first round (Agarwal and Somaini, 2018). Second, Lemma 2.1 below shows

that there is unique equilibrium in this case so it makes analysis much easier. Also, conditions

for ruling out equilibria in which there are less than q2 measure of constrained students reporting

s2 as top choice will be satisfied if η and q2 are not very large. Next claim characterizes when a

symmetric equilibrium of BM in which measure of constrained students reporting s2 as top choice

is at least q2 exists. And Claim 2.4 below will provide sufficient conditions to rule out equilibria

in which less than q2 measure of constrained students report s2 as top choice.

Claim 2.3. A symmetric equilibrium of BM in which measure of constrained students reporting s2

as top choice is at least q2 exists if and only if there are at least q2 measure of constrained students

with v≥ q1
1−q2

Below, Claim 2.4 provides a sufficient condition under which s2 is guaranteed to be filled in the

first round of BM equilibrium. So it rules out the equilibria in which less than q2 students report

s2 as top choice.

Claim 2.4. Suppose A2.1-A2.5 holds. Let k be the measure of constrained students who report

truthfully the first choice in a symmetric equilibrium of BM. Suppose there is at least q2 measure

of constrained students for whom v > (1−η)q1
1−η−q2

then measure of constrained students who report s2
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as top choice is greater than or equal to capacity of s2, i.e. 1−η− k ≥ q2.

The logic behind the proof of this claim is as follows. When the equilibrium measure of

students reporting s2 as top choice is less than q2, there remains capacity to be filled in second

round for s2, which also means that a list that reports s2 as top choice will get s2 for sure. Gain

of expected payoff from s2 from such deviation turns out to be v1−η−q2
k ; whereas loss will be the

expected payoff from s1: q1
k+η

. Note that gain decreases faster than the loss. So assuming that gain

is larger than loss at the maximum possible k, which is 1−η , is enough to guarantee that deviation

is better for all possible k > 1−η−q2.

So next assumption guarantees ruling out equilibria in which s2 is not filled at the end of first

round.

Assumption 2.6. (A2.6) Suppose there is at least q2 measure of constrained students for whom

v > (1−η)q1
1−η−q2

Note that, (1−η)q1
1−η−q2

is less than 1 by A2.5, so one can always find a preference distribution that

satisfies A2.6. If q1, q2 and η is not very large then (1−η)q1
1−η−q2

would not be very large, so there would

be many preference distributions that would satisfy A2.6. Notice also that (1−η)q1
1−η−q2

> q1
1−q2

since

this can be shown to be equivalent to q2η > 0. Therefore, A2.6 also guarantees the existence of an

equilibrium in which there are at least q2 constrained students reporting s2 as top choice.

Next result shows that under the assumptions we discussed above, measure of constrained stu-

dents reporting s1 as top choice is unique across all symmetric equilibria of BM. Also, it provides

bounds for that measure.

Lemma 2.1. Suppose A2.1-A2.6 holds, then symmetric BM equilibrium is unique.

Let’s denote measure of constrained students reporting s1 as top choice with k. We must have

k ∈ [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η}.

Moreover for any x ∈ [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η} there exists a distribution

of preferences that induces k = x.
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It is easy to see the logic behind the uniqueness of k which implies uniqueness of equilibrium.

From Claim 2.2, as k increases the cutoff constrained students below which reports s1 as top choice

decreases and this weakly decreases the number of students reporting s1 as top choice, but in that

case k cannot increase. So there cannot be more than one k.

Note that the upper bound of k in Lemma 2.1 directly follows from Claim 2.4. For the lower

bound the logic is as follows. From Claim 2.2, the threshold below which constrained students

report s1 as top choice is large when k is low. In fact, when the threshold is above 1, it turns out

that k has to be less than measure of constrained students. But, when threshold is above 1, all

constrained students would like to report s1 as top choice. This is not possible since k < 1−η

. Therefore, threshold must be smaller than 1 in any equilibrium, which is equivalent to having

k > q1
q1+q2

.

Lemma 2.1 also says that any measure x∈ [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η} of con-

strained students reporting s1 truthfully across equilibria of BM is possible for some distribution

of preferences. This logic behind this result is as follows. Given x ∈ [max{ q1
q1+q2

−η ,0},1−η−

q2]\{ q1
q1+q2

−η} since threshold c(.) is a strictly decreasing function, c(.) evaluated at q1
q1+q2

−η is

equal to 1 and c(.) evaluated at 1−η−q2 is greater than 0, then one can always find a distribution

that has x measure of students with v≤ c(x).

From Lemma 2.1, one can see that it may be possible to have k = 0 in some cases. The

following remark provides necessary conditions for having no constrained student reporting s1 as

top choice under my assumptions. The first necessary condition q1
q1+q2

< η directly follows from

Lemma 2.1 and second condition follows from Claim 2.2. Right hand side of the second condition

is the threshold for playing s1 as top choice evaluated at k = 0.

Remark 2.3. Under our assumptions, if equilibrium measure of constrained students reporting s1

as top choice in BM, k = 0 then we must have q1
q1+q2

< η and there is no constrained student with

valuation v such that v < q1
q2

1−η

η

Notice that if q1 ≥ q2 the first condition says that, to have k = 0 at least half of the students

must be unconstrained, i.e. η ≥ 0.5. When q1 is significantly smaller than q2, the second condition
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is hard to be satisfied if η is not considerably large. Note that, even when q1 is significantly less

than q2 and η is very large it is possible violate the second condition. So, having k = 0 requires a

restrictive case. This is important since Lemma 2.3 below will tell that when k = 0 in equilibria of

BM all constrained students are strictly worse off in these equilibria compared to DA.

Note that to solve for equilibrium, so also for finding equilibrium k, one needs an explicit

distributional assumption. In Subsection 3.2.1, I will adopt uniform distribution to solve for the

equilibrium. Before that I will make an analysis without assuming an explicit distribution. I will

provide conditions that can be satisfied by a large class of distributions of preferences that will lead

to existence of constrained students who are strictly better off under BM equilibria compared to

DA.

Lemma 2.2 below provides the conditions under which a constrained students reporting s1 as

top choice or s2 as top choice is better off in a symmetric equilibrium of BM compared to DA

when the equilibrium measure of constrained students reporting s1 as top choice is known. Also,

it shows that constrained students who would gain higher payoff in the symmetric equilibrium of

BM compared to DA if they were playing s1 as top choice, are in fact playing s1 as top choice in

the equilibrium with probability one; and constrained students who would gain higher payoff the

symmetric equilibrium of BM compared to DA if they were playing s2 as top choice, are playing

s2 as top choice in the equilibrium with probability one.

Lemma 2.2. Suppose A2.1-A2.6 holds,

Take a symmetric equilibrium of BM. Let k > 0 be the total measure of constrained students

reporting truthfully their first choice.

A constrained student of type v reporting s1 as top choice is weakly better off in the symmetric

BM equilibrium compared to DA if and only if v≤ c(k) where c(k) := (1−η−k)(1−η)q1
(k+η)q2

and strictly

better off iff the inequality is strict.

A constrained student of type v reporting s2 as top choice is weakly better off in the symmetric

BM equilibrium compared to DA if and only if v≥ c̄(k) where c̄(k) := q1(1−η)(1−η−k)
q2k and strictly

better off iff the inequality is strict.
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Moreover, c(k)< c(k)< c̄(k).

For given k > 0, it is easy to write the payoff in BM equilibrium from reporting s1 as top choice

and reporting s2 as top choice for a constrained student with valuation v. We also know the payoff

from DA. So it is easy to get the cutoff for v below (above) which students reporting s1 (s2) as top

choice are better off in BM compared to DA.

Following Lemma easily follows from the Lemma 2.1 and Lemma 2.2. For a given positive

equilibrium measure of constrained students reporting s1 as top choice, it characterizes the con-

dition for a constrained student to be better off in the BM equilibrium compared to DA. Also, it

says that when there is no constrained student reporting s1 as top choice in the BM equilibrium, all

constrained students are worse off in the BM equilibrium compared to DA.

Lemma 2.3. Suppose A2.1-A2.6 holds,

Let k be the total measure of constrained students reporting truthfully their first choice in the

symmetric equilibrium of BM.

If k = 0, then all constrained students are strictly worse off under the symmetric equilibrium of

BM compared to DA.

If k > 0, constrained students of type v is weakly better off under the symmetric equilibrium of

BM compared to DA if and only if v ≥ c̄(k) or v ≤ c(k) and strictly better off if and only if one of

the inequalities is strictly satisfied.

Moreover if there is positive measure of constrained students whose valuation v satisfy v≥ c̄(k)

or v≤ c(k) then k > 0.

An immediate corollary of Lemma 2.3 is about the existence of constrained students who

are better off under the symmetric BM equilibrium compared to DA and having all constrained

students better off under the symmetric BM equilibrium compared to DA for given k.

Remark 2.4. Suppose A2.1-A2.6 holds. Given total measure k > 0 of constrained students report-

ing s1 as top choice in the symmetric equilibrium of BM, there exists constrained students who

are weakly (strictly) better off in the symmetric equilibrium of BM compared to DA if and only
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if there is a constrained student type v with v ≥ c̄(k) or v ≤ c(k) (v > c̄(k) or v < c(k)); and all

constrained students are weakly (strictly) better off in any symmetric equilibria of BM compared

to DA if and only if any constrained student type v has v≥ c̄(k) or v≤ c(k) (v > c̄(k) or v < c(k))

One thing to notice is that for any possible k > 0 one can find a distribution of constrained

student types that induces a constrained student being strictly better off under the symmetric BM

equilibrium compared to DA. This is because for any k ∈ [max{ q1
q1+q2

−η ,0},1−η−q2]\ q1
q1+q2

−

η we have c(k)> 0.

Remark 2.5. 0 < c(k)< 1 for any k ∈ [max{ q1
q1+q2

−η ,0},1−η−q2]\ q1
q1+q2

−η

Note that under A2.5, c̄(k) gets below 1 at k = 1−η−q2. But, still for some k < 1−η−q2,

c̄(k) is not below 1. So for some distributions of preferences that leads to an equilibrium measure k

of constrained students reporting s1 as top choice such that c̄(k)> 1, the existence of a constrained

student better off in BM equilibria compared to DA relies on existence of a constrained student

type v with v < c(k) only for that k.

Remark 2.6. c̄(k)< 1 at k = 1−η−q2 if and only if q2 < (1−η)(1−q1), i.e A2.5 is satisfied.

Another thing to notice is that as k gets larger there are weakly less constrained student with

v < c(k), but there are weakly more constrained student with v > c̄(k) at the same time for any

distribution of preferences.

Lemma 2.2 and Lemma 2.3 also gives clear intuition about which students are better off under

BM compared to DA. For a given equilibrium k, students who are close to the cutoff for reporting

s1 versus s2 as top choice, c(k) are worse off under BM compared to DA. And students who are

enough farther away from the cutoff are better off in BM compared to DA. That it is the ones above

c̄(k) or below c(k). So that means students who are marginal in the decision of reporting s1 and

s2 as top choice are worse off and inframarginal students are better off in BM compared to DA.

Also, from the proof of Lemma 2.2 one can see that difference between payoffs between BM and

DA gets larger for a constrained student with value above c̄(k) (below c(k)) as his value increases

(decreases). Note that BM is a mechanism that allows one to express their cardinal values through

their preference list since the choices are risky, whereas for DA cardinal values do not matter for
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given ordinal preferences (Abdulkadiroğlu, Che, and Yasuda, 2011). Abdulkadiroğlu, Che, and

Yasuda (2011) shows when only cardinal values matter BM is weakly better for everyone. Lemma

2.2 and 3 shows that existence of unconstrained students creates a band around the cutoff such that

students with value within that band are better off in DA. But students outside of the band are still

better off in BM and those are the students who has stronger cardinal values for a school compared

to other schools. Notice also that the wedge between c̄(k) and c(k) increases as η increases.

From the results above one can also see Theorem 2 of Akbarpour, Kapor, Neilson, van Dijk,

and Zimmerman (2022) for the special case of m = 3 and k ≤ 1− η − q2. If there were only

single type constrained student such that v≥ c(0) = q1
q2

1−η

η
then k = 0; if there were single type of

constrained student with v < c(0) = q1
q2

1−η

η
then that means equilibrium 0 < k≤ 1−η−q2 which

means constrained student must be mixing, so he must have v = c(k) in the equilibrium. In both

cases he is strictly worse off under BM compared to DA. It is also possible to see Theorem 1 of

Abdulkadiroğlu, Che, and Yasuda (2011) for the special case of m = 3 and existence of at least

q2 measure of students with v > q1
1−q2

. Note that with η = 0, c(k) = c(k) = c̄(k). So any student

must be weakly better off in the symmetric BM equilibrium compared to DA. Furthermore, for

this special case it also shows that there is a student strictly better off in BM compared to DA

when there are more than one type of students; and all students who are not indifferent between

reporting s1 as top choice and s2 as top choice in the BM equilibrium are better off compared to

DA. So, students just at the margin are indifferent between BM and DA, but all students who are

not marginal are better off under BM. This is an improvement on the result of Abdulkadiroğlu,

Che, and Yasuda (2011) for the special case I am considering. Also, from proof of Lemma 2.2 one

can see that even when η = 0 (so everyone is weakly better off under DA compared to BM), as

a student gets farther away from cutoff c(k) in terms of valuation, his utility difference with DA

increases. This is another note that can be added on the setting of Abdulkadiroğlu, Che, and Yasuda

(2011) for the special case I am considering. Going back to discussion in previous paragraph, this

is also why even when unconstrained exists there can be constrained students who are better off

under BM. When η = 0, utility difference between BM and DA gets higher as value of a student
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gets farther away from cutoff c(k). So even when η > 0 students who are enough farther away

from the cutoff c(k) are better off in BM compared to DA.

As discussed above for distribution of preferences that leads to BM equilibrium with k such that

c̄(k) > 1, it is not possible to have any constrained student with v > c̄(k). Then, it is not possible

to have all constrained students better off in the BM equilibrium compared to DA. The reason is in

any equilibrium there must be constrained student of type v who is reporting s2 as top choice, and

such students can be better off in BM compared to DA if and only if they have v > c̄(k); so k must

be such that c̄(k) < 1 which means k > c̄−1(1). This implies a restriction on the distribution of

preferences. Remark 2.7 below provides necessary conditions for having all constrained students

better off under symmetric equilibria of BM compared to DA. Note that my first example, Example

2.1 satisfies these necessary conditions.

Remark 2.7. Suppose A2.1-A2.6 holds, and all constrained students are weakly better off in the

symmetric equilibrium of BM compared to DA, then there exists more than c̄−1(1) = q1(1−η)2

q2+q1(1−η)

measure of constrained students with valuation v < c( q1(1−η)2

q2+q1(1−η)) =
(1−η)2q1

q1(1−η)+ηq2

Lemma 2.3 says that, if we can find a constrained student type v with v> c̄(k) or v< c(k) for the

equilibrium measure k of constrained students reporting s1 as top choice, then there is a constrained

student who is strictly better off in BM equilibrium compared to DA. This implies that a possible

sufficient condition to guarantee a constrained student being better off in BM compared to DA

independently from k is enough heterogeneity across constrained students in terms of relative

valuations of s1 and s2. To get such a sufficient condition, I find the maximum distance across

k possible between min{c̄(k),1} and c(k), this distance will be the measure of heterogeneity I

need since assuming that there are positive measure of constrained students this far from each

other guarantees that some of the constrained students satisfies one of the inequalities above for

all possible k. Proposition 2.2 below formalizes this argument.

Proposition 2.2. Suppose A2.1-A2.6 holds, additionally suppose that distribution of preferences

for constrained students is such that |v− v′| ≥ η(q1(1−η)+q2)
q1(1−η)+ηq2

for all v and v′ from two differen-

t subsets of V each with positive measure, then in the symmetric equilibrium of BM there are

100



constrained students who are strictly better off compared to DA.

Proof shows that, under my assumptions maximum distance between min{1, c̄(k)} and c(k)

occurs at k that makes c̄(k) = 1. This follows from both c̄(k) and c(k) being strictly decreasing

and c̄(k)− c(k) also being strictly decreasing in k. So the maximum distance occurs when c̄(k)

just equals 1. Note that, measure of heterogeneity η(q1(1−η)+q2)
q1(1−η)+ηq2

is decreasing in q1 and increasing

in η and q2. This condition being independent of k means it is independent of the distribution

of preferences (as long as distribution satisfies A2.6) which determines k. So it even guarantees

the existence of constrained students who are better off under BM compared to DA for the worst

case distribution of preferences. Another way to interpret this condition is that this measure of

heterogeneity guarantees the existence of inframarginal students which is the group that benefits

from BM compared to DA. And it does that for any possible distribution of preferences.

Remember that c(k)> 0 for any possible k. This helps us to find another sufficient condition for

having a constrained student better off in BM equilibria compared to DA. If there is a constrained

student type v with v < c(1−η−q2), since c(.) is decreasing this type of student will be better off

in BM equilibria compared to DA for any given k. Following Lemma formalizes this argument.

Lemma 2.4. Suppose A2.1-A2.6 holds, then constrained students with type v with v ≤ (1−η)q1
(1−q2)

(if

exists) are weakly better off in the symmetric equilibrium of BM compared to DA; and they are

strictly better off if the inequality is strict.

Lemma 2.4 says that if there are constrained students who have strong enough preferences

for s1 compared to s2 then such students are better off under BM compared to DA whatever is

the distribution of preferences are as long A2.6 is satisfied and there exists positive measure of

constrained students with v< (1−η)q1
(1−q2)

. Such students are enough away from being marginal student

in the decision of which school to report as top choice such that even in the worst case distribution

of preferences their valuation is still outside the wedge that is created by existence of unconstrained

students.

Figure 2.1, Figure 2.2, Figure 2.3 are drawn for given numerical values to parameters q1, q2

and η . They show the behavior of key functions of the analysis I have made so far. In the figures
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x−axis ranges all possible values of equilibrium measure of constrained students reporting s1 as

top choice, k. This range was given by Lemma 2.1. Green dotted lines in the figures indicates

the value of (1−η)q1
1−η−q2

, remember by Claim 2.4 there must be at least q2 measure of constrained

students with value above (1−η)q1
1−η−q2

to rule out equilibria in which there are less than q2 measure

of constrained students reporting s2 as top choice. Brown dotted line indicates the value of q1
1−q2

,

remember by Claim 2.3 there must be at least q2 measure of constrained students with value above

q1
1−q2

to have existence of equilibrium in which there are at least q2 measure of constrained students

reporting s2 as top choice. Orange line shows c̄(k), that is the cutoff constrained students with

valuation above which are better off under BM compared to DA for given equilibrium measure

of constrained students reporting s1 as top choice, k. Blue line shows c(k), that is the cutoff

constrained students with valuation below which are better off under BM compared to DA for

given k. Purple solid line shows c(k), that is the cutoff constrained students with valuation strictly

below (above) which reports s1 (s2) as top choice and constrained students with valuation equal

to c(k) are indifferent for given k. Purple dotted line shows the value of (1−η)q1
(1−q2)

given in Lemma

2.4. Notice that if a constrained student has valuation below purple dotted line, he will be better

off in the BM equilibrium whatever is the distribution of preferences since he will be below the

blue line for all possible k. Remember, as mentioned above distribution of preferences pins down

the equilibrium k. So, having a constrained student with value v < (1−η)q1
(1−q2)

ensures the existence

of constrained student better off in BM compared to DA even in the worst case distribution of

preferences. The vertical distance between the two black dots is equal to η(q1(1−η)+q2)
q1(1−η)+ηq2

which was

given Proposition 2.2. This vertical distance shows the heterogeneity in preferences sufficient to

ensure the existence of constrained students who are better off under BM compared to DA for

any given distribution of preferences (that satisfy A2.6). So this is the heterogeneity that will be

enough even for the worst case distribution of preferences. From the figures the wedge between

c̄(k) and c(k) that is created by existence of constrained students can be seen clearly. And one

can see from the figures that people who are marginal in their decision of choosing a school as top

choice (ones with value near c(k) for given equilibrium k) are better off in DA compared to BM.

102



And constrained students who are inframarginal (the ones outside the wedge) are better off in BM

compared to DA. Another thing to notice is that the wedge between c̄(k) and c(k) increases in η .

When η is kept constant, as q1and q2 increases range of possible k decrease, since k≤ 1−η−q2;

and the dotted lines shift upwards.

Figure 2.1: Case with q1 = q2 = 1/5 for different values of η

Notes: Range of the x-axis is [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η}, which are
all possible values of k, the equilibrium measure of constrained students reporting s1 as
top choice; the y-axis gives the values of the functions evaluated at each k.
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Figure 2.2: Case with q1 = q2 = 1/4 for different values of η

Notes: Range of the x-axis is [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η}, which are
all possible values of k, the equilibrium measure of constrained students reporting s1 as
top choice; the y-axis gives the values of the functions evaluated at each k.

Going back to Lemma 2.4, it is not surprising that a type that has strong enough preferences for

s1 relative to s2 is better off under the BM equilibrium compared to DA since in BM equilibrium

there are less students reporting s1as top choice compared to DA. Remember the reason of impos-
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Figure 2.3: Case with q1 = q2 = 1/3 for different values of η

Notes: Range of the x-axis is [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η}, which are
all possible values of k, the equilibrium measure of constrained students reporting s1 as
top choice; the y-axis gives the values of the functions evaluated at each k.
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ing condition A2.6 was to rule out the equilibria in which there are less than q2 students who report

s2 as top choice. Following Lemma shows that even if we do not rule out such equilibria, types of

constrained students described in Lemma 2.4 would still be weakly better off in any equilibria of

BM compared to DA.

Lemma 2.5. Suppose A2.1-A2.5 holds, then constrained students with type v with v < (1−η)q1
(1−q2)

(if

exists) are weakly better off in any symmetric equilibrium of BM compared to DA; and they are

strictly better off if not everyone is reporting s1 as top choice in which case payoffs are equal for

everyone.

Proof shows that when k > 1−η − q2, it turns out that threshold for v below which a con-

strained student reporting s1 as top choice is better off in BM compared to DA, is increasing in k.

So it is guaranteed to be satisfied for all k, if it is satisfied at k = 1−η−q2. And at k = 1−η−q2

the threshold becomes (1−η)q1
(1−q2)

like in the case of k ≤ 1−η −q2, although the two thresholds are

different functions of k.

This leads to a positive result for BM for distributions of preferences that has rich support

without need to restricting attention to equilibrium of the kind k≤ 1−η−q2. First, let’s show that

an equilibrium exists even if the condition in Claim 2.3 is not satisfied.

Claim 2.5. Suppose A2.1-A2.5 holds, then there exist a symmetric equilibrium of BM.

Last lemma above leads to the following result that is favorable for BM. When the distribution

of preferences for constrained students has full support in (0,1) then there are constrained students

who strictly prefer BM payoff to their DA payoff.

Theorem 2.1. Suppose A2.1-A2.5 holds, then there exists positive measure of constrained stu-

dents who are strictly better off under any symmetric equilibrium of BM compared to DA for any

distribution of preferences of constrained students with full support.

Note that BM equilibria is no longer guaranteed to be unique since I do not assume A2.6.

Nevertheless, there are constrained students who are strictly better off in all equilibria of BM

compared to DA when the distribution of preferences has rich enough support.
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Role of full support assumption is clear. First it eliminates the situation in which everyone

reports s1 as top choice since there are constrained students who have strong enough preferences

for s2. Remember in such situation BM and DA would yield same payoffs. Second, since not

everyone is reporting s1 as top choice in the equilibrium of BM, students who have strong enough

preferences for s1 compared to s2 must be better off in BM compared to DA since everyone reports

s1 as top choice in DA. Another interpretation of full support assumption is that it guarantees the

existence of inframarginal constrained students outside of the band that is given by Lemma 2.2

and 3. Remember constrained students with valuation outside of that band are better off in BM

compared to DA.

2.3.2.1 Uniform (Continuous) Distribution of Types

In this subsection I will make assumption of uniform distribution of types to pin down the equilib-

rium. This will allow me to get the share of constrained students who are strictly better off under

BM compared to DA. So let f (.) be the density function of uniform distribution on (0,1) and F(.)

be its associated c.d.f.

Assumption 2.7. (A2.7) Distribution of preferences for constrained students with p.d.f. f (.), fol-

lows U(0,1).

Under uniform distribution assumption I will show below that we have unique equilibrium

whether equilibrium measure of constrained students reporting s2 as top choice is less than q2 or

at least q2. Moreover, a condition on primitives characterizes the kind of the unique equilibrium

that is played.

Lemma 2.6. Suppose A2.1-A2.5 and A2.7 holds. Then there exists a unique (symmetric) equilib-

rium of BM. Moreover , in the equilibrium there are at least q2 measure of constrained students

reporting s2 as top choice if and only if q1(1−η)
(1−η−q2)(1−q2)

≤ 1.

Lemma 2.6 says that condition q1(1−η)
(1−η−q2)(1−q2)

≤ 1 rules out the equilibria in which there are less

than q2 measure of constrained students who are reporting s2 as top choice and it also guarantees
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the existence of an equilibrium in which there are at least q2 measure of constrained students

reporting s2 as top choice. Likewise, q1(1−η)
(1−η−q2)(1−q2)

> 1 rules out the equilibrium in which there are

at least q2 measure of constrained students reporting s2 as top choice and guarantees the existence

of an equilibrium in which there are less than q2 measure of constrained students reporting s2 as

top choice. Since here I assume a distribution for types, this implies a restriction on the primitives

through Claim 2.3 and this is how I get the condition q1(1−η)
(1−η−q2)(1−q2)

≤ 1. Remember when I did not

assume a distribution I had to assume A2.6 to rule out the equilibrium in which k > 1−η−q2 and

A2.6 was stronger than the condition in Claim 2.3 . Here with uniform distribution assumption,

I can pin down the equilibrium measure of k when k > 1− η − q2, it turns out the condition

that guarantees the existence of equilibrium with k ≤ 1−η − q2 also rules out equilibrium with

k > 1−η−q2.

Next Lemma provides the equilibrium measure of constrained students reporting s1 as top

choice when k > 1−η−q2 and k≤ 1−η−q2. Also, it shows which type of constrained students

reports s1 or s2 as top choice and which students are strictly better off under the BM equilibrium

compared to DA.

Lemma 2.7. Suppose A2.1-A2.5 and A2.7 holds. Let k(q1,q2,η) denote the equilibrium measure

of constrained students reporting s1 as top choice.

If q1(1−η)
(1−η−q2)(1−q2)

≤ 1, then

k(q1,q2,η) =

q1(−1+η)+q2

(
−η +

√
q2

1(−1+η)2

q2
2

+η2 + 2q1(2−3η+η2)
q2

)
2q2

;

k(q1,q2,η)
(1−η) is the cutoff that constrained students with v below (above) the cutoff reports s1 (s2)

as top choice; and constrained students with valuation v are strictly better off under BM compared

to DA if and only if either v > k(q1,q2,η)+η or v < k(q1,q2,η). Also, k(q1,q2,η)+η < 1.
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If q1(1−η)
(1−η−q2)(1−q2)

> 1, then

k(q1,q2,η) =
q1(1−η)

1−η−q2
−η ;

q1
1−η−q2

− η

1−η
is the cutoff that constrained students with v below (above) the cutoff reports

s1 (s2) as top choice; and constrained students with valuation v is strictly better off under BM

compared to DA if and only if either v > q1(1−η)
1−η−q2

or v < q1(1−η)
1−η−q2

−η . Also, q1(1−η)
1−η−q2

< 1 and

q1(1−η)
1−η−q2

−η > 0 .

Equilibrium measure k(q1,q2,η) of constrained students for the case with q1(1−η)
(1−η−q2)(1−q2)

≤ 1

is derived from Claim 2.2 since this is the case in which k ≤ 1−η − q2; and by the logic that in

an equilibrium k there must be k measure of constrained students below c(k). Then the cutoffs

for playing s1 versus s2 and being better off in BM versus being better off in DA are derived

from definitions of c(k), c̄(k) and c(k) given in Claim 2.2 and Lemma 2.2. For the case with
q1(1−η)

(1−η−q2)(1−q2)
> 1, k(q1,q2,η) was already derived in Lemma 2.6 with a similar logic to the

case of q1(1−η)
(1−η−q2)(1−q2)

≤ 1 and it was found to be unique. Cutoffs are derived from comparing

the payoffs of constrained students for a given equilibrium k and evaluating these cutoffs at the

equilibrium k(q1,q2,η).

Next, I state the main result of this subsection. It follows from last lemma and having uniform

distribution of types.

Theorem 2.2. Suppose A2.1-A2.5 and A2.7 holds. Then, 1−η fraction of constrained students

are strictly better off under the BM equilibrium compared to DA; and η fraction of constrained

students are strictly better off under DA compared to the BM equilibrium.

Theorem 2.2 states that when preference distribution for constrained students is uniform, frac-

tion of constrained students who are strictly better off under the BM equilibrium compared to DA

is exactly equal to share of constrained students 1−η in the economy. The result follows from the

fact that under uniform distribution the wedge between upper bound and lower bound of the set

of values for which students are strictly better off under DA compared to BM is exactly equal to
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η , share of unconstrained students. This result means that when the distribution of preferences is

uniform, if less than half of the students are able to go to private school then more than half of the

students who cannot go to private school are better off in the unique BM equilibrium compared to

DA.

Figure 2.4 below is drawn for the case of q1 = q2 = 1/3 for values of η = 0.1,0.2,0.3 and

distribution of preferences for constrained students is uniform. Note that q1(1−η)
(1−η−q2)(1−q2)

≤ 1 for

all the cases so equilibrium k(q1,q2,η) ≤ 1−η − q2 for all the cases in Figure 2.4. The value

of black dot on the the x-axis gives the equilibrium k(q1,q2,η). Theorem 2.2 tells that vertical

distance between orange line and blue line is equal to η at the equilibrium k(q1,q2,η). Also it

shows how the equilibrium is calculated under the uniform distribution. Equilibrium occurs at the

intersection of the lines k
1−η

and c(k). This is because at the equilibrium there must be k measure

of constrained students below c(k); and measure of constrained students below c(k) at a given k is

given by F(c(k))(1−η) = c(k)(1−η).

Figure 2.5 indicates the case q1 = q2 = 1/3 and η = 0.4. In this case q1(1−η)
(1−η−q2)(1−q2)

> 1. So

equilibrium k(q1,q2,η) > 1−η − q2. Proof of Lemma 2.7 shows that when k > 1−η − q2, a

constrained student with valuation v is strictly better off under BM compared to DA when v >

(1−η)q1
1−η−q2

or v < (1−η)kq1
(η+k)(1−η−q2)

. These thresholds as functions of k (first one is constant) are orange

and and blue curves in Figure 2.5. Proof of Lemma 2.6 shows that when k > 1−η−q2, threshold

students with value above (below) which reports s2 (s1) as top choice is k
k+η

q1
1−η−q2

. This threshold

is the purple curve in Figure 2.5. The value on the the x-axis that the black dot corresponds to

is the equilibrium k(q1,q2,η) again. The calculation of equilibrium is similar to the case with
q1(1−η)

(1−η−q2)(1−q2)
≤ 1. Again, in this case as told by Theorem 2.2 distance between orange and blue

curves is equal to η .
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Figure 2.4: Equilibrium under uniform distribution and q1 = q2 = 1/3 for η = 0.1,0.2,0.3

Notes: The x-axis ranges all possible equilibrium k ≤ 1−η−q2; the y-axis shows the
values of functions at different all possible k ≤ 1−η−q2

Figure 2.5: Equilibrium under uniform distribution and q1 = q2 = 1/3 for η = 0.4

Notes: the x-axis ranges all possible equilibrium k > 1−η−q2; the y-axis shows the
values of functions at different all possible k > 1−η−q2
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2.4 Analysis of Entry of Private Schools: Comparison of Equi-

libria with and without Private Schools in Boston Mecha-

nism

Many school districts around the world are using BM. If one wants to consider the effect of entry

of private schools on the centralized allocation system of public schools, comparing the payoff of

students under BM before and after the entry of the private school would be helpful.

Aim of this section is to compare the welfare of constrained students under Boston mechanism

when unconstrained students have access to outside options and not; in other words comparing

payoffs of constrained students before and after the entry of private schools. I will provide condi-

tions under which constrained students are better off when private school enters the neighborhood.

I again analyze the symmetric equilibria of the economies. Also, I continue to have assumptions

A2.1-A2.3 as basis assumptions. Therefore, below analysis is for m = 3 case. I will state when

additional assumptions are used.

First I examine the case when the entering private school is very high quality, so that all uncon-

strained students prefer to leave the centralized mechanism and go to the private school directly,

that is l = 0.

2.4.1 Entry of High Quality Private School

Assumption 2.8. (A2.8) l = 0

In this case, I analyze switch from an economy P3 = ({q j}3
j=1, f (v),g(v)) without private

schools to economy E3 = ({q j}3
j=1,0, f (v),g(v)) with private schools under assumptions A2.1-

A2.3 and A2.8. The following lemma presents an expected result. When number of students

leaving the centralized mechanism is very large enough there will be some constrained student

strictly better off after private school enters.
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Lemma 2.8. Suppose A2.1-A2.3 and A2.8 holds and η ≥ 1− q1− q2. Let’s take an arbitrary

(symmetric) equilibrium σ∗ of the economy P3, and let’s take an arbitrary (symmetric) equilibrium

σ̃ of the economy E3. Then there is positive measure of constrained students who are strictly better

off under σ̃ compared to σ∗.

Nevertheless this is not very interesting case since when measure of unconstrained students is

that large there is no need to strategize for constrained students after unconstrained students leave

the market since if they cannot enter s1 in first step it is sure to get into s2 since total measure of

constrained students is less than or equal to q1 +q2.

Example 2.3 shows that if number of unconstrained students is not large very large, entry of

private school, even if it is very good, may not strictly benefit any constrained students. In fact,

the example shows that all constrained students are weakly worse off (some strictly) under some

equilibria with private school compared to equilibrium without private school.

Table 2.4: Payoffs of Example 2.3

Type 1 Type 2 Type 3

s1 1 1 1

s2
2
9 10/17 2

9

s3 0 0 0

Example 2.3. Suppose there are three types of students with payoffs as given in Table 2.4. Type

1 and Type 2 students are constrained and Type 3 student is unconstrained. There are 13/20

measure of Type 1 students, 1/4 measure of Type 2 students and, 1/10 measure of type 3 students.

q1 = q2 = 1/3 and q3 ≥ 1/3. Consider equilibria without private schools. Note that, it is strictly

dominant strategy to report s1 as top choice for type 1 and type 3 students. In that case student type

2 ranking s2 as top choice is an equilibrium strategy.20

20Note that 10
17 > 1/3

3/4 +
10
17

1/3−1/4
3/4 which boils down to 10

17 > 26
51

113



One can check that this is the unique equilibrium when there is no private school. In this

equilibrium type 2 student gets payoff 10/17 and type 1 student gets 38/81.21

Now suppose private school enters, that is preferred to s1. So type 3 leaves the centralized

mechanism. Again note that it is strictly dominant strategy for type 1 to report s1 as top choice

again. Type 1 reports s1 as top choice and type 2 reports s1 as top choice with probability x is an

equilibrium for any x ∈ [0,1]. Note that type 2 does not deviate from the equilibrium strategy.22

It can be shown that for any equilibrium with x > 0.76 when private school exists, type 1

student is worse off compared to the equilibrium in which private school does not exist.23

The question that emerges from this example is that whether this is a knife-edge case. It is an

unexpected situation to have constrained students get worse off if some students leave the market

because one can think that competition in the centralized mechanism has declined. Note that there

were infinitely many equilibria in the game with private school. And in all the equilibria in which

x < 0.76, type 1 constrained students were strictly better off compared to economy without private

school. So indifference and how one breaks the indifference plays an important role in getting this

kind of example.

The following result shows that Example 2.3 presents indeed a knife edge case, hence one can

actually “expect” to have a constrained student benefiting from entry of private school when the

private school is very high quality.

Lemma 2.9. Suppose A2.1-A2.3 and A2.8 holds. For any pair of (symmetric) equilibria σ∗ and

σ̃ such that σ∗ is an equilibrium under P3 = ({q j}3
j=1, f (v),g(v)) and σ̃ is an equilibrium under

E3 = ({q j}3
j=1,0, f (v),g(v)), there exist positive measure of constrained students who are strictly

better off in σ̃ compared to σ∗if the following condition is satisfied:

21The latter is derived from 1/3
3/4 +

1/3−1/4
3/4

2
9 .

22 1/3
13
20+

x
4
+ 10

17
1/3− 1−x

4
13
20+

x
4

= 10/17 and note that payoff of type 2 is 10/17 in all of these equilibria which equals his

payoff in the unique equilibrium of the economy without private schools.
23To see this first note that payoff of type 1 in these equilibria are 1/3

13
20+

x
4
+ 2

9
1/3− 1−x

4
13
20+

x
4

. To find the x for which type

1 is worse off compared to equilibrium in the economy without private schools, it is enough to solve the following

inequality 1/3
13
20+

x
4
+ 2

9
1/3− 1−x

4
13
20+

x
4

< 38
81 which is equivalent to x > 0.76.
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If there exists positive measure of constrained students with valuation v such that q1
1−q2

< v ≤
q1

1−η−q2
then positive measure of such constrained students have valuation v 6= q1

1−η−q2

Proof of this lemma follows from Claim B.1 and Lemma B.1 in Other Results. Lemma B.1

characterizes the situations when there can exist constrained students who are strictly better off

after the entry of private school.

Lemma 2.9 shows that not having a constrained students strictly better off after the entry of

private school is a situation that is hard to occur. Following argument hints to the logic behind

this result. Note that q1
1−q2

is the cutoff that students with valuation strictly above which strictly

prefer reporting s2 as top choice in the case when there are less than q2 students reporting s2 as

top choice and there is no private school. And q1
1−η−q2

is the cutoff that students with valuation

(strictly) below which (strictly) weakly prefers reporting s1 as top choice when there are less than

q2 constrained students reporting s2 as top choice and there is private school. Therefore, the result

says that when there are less than q2 students reporting s2 as top choice before and after the entry

of the private school, having some of the constrained students who switches from reporting s2 to

s1, strictly prefer switching is enough. Note that it would not be possible to have Example 2.3 in

this case since type 2 in the example strictly prefers reporting s2 as top choice before the entry of

private school but indifferent between reporting s1 as top choice and s2 as top choice after the entry

of private school. This lemma leads to the following proposition immediately.

Proposition 2.3. Suppose A2.1-A2.3 and A2.8 holds. For any pair of (symmetric) equilibria σ∗

and σ̃ such that σ∗ is an equilibrium under P3 = ({q j}3
j=1, f (v),g(v)) and σ̃ is an equilibrium

under E3 = ({q j}3
j=1,0, f (v),g(v)), there exist positive measure of constrained students who are

strictly better off in σ̃ compared to σ∗ for almost all distributions of preferences.

In the next subsection, I will analyze the case with l = 1. Such a case is important since

unconstrained students do not leave the centralized market after the entry of private school in that

case and they switch to reporting s1 as top choice for sure if they were not already doing so.
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2.4.2 Case with m = 3 and l = 1

In this section I examine the entry of private school when only the most preferred public school

is preferred to the private school. Therefore l = 1, and I analyze the case of m = 3 again. One

should compare the (symmetric) equilibria σ∗ and σ̃ such that σ∗ is an equilibrium under P3 =

({q j}3
j=1, f (v),g(v)) and σ̃ is an equilibrium under E3 = ({q j}3

j=1,1, f (v),g(v)) for the analysis.

In this case, one can expect the effect of entry of private school to be realized through two

channels. First, since unconstrained students would not prefer to go to public schools below s1,

there will be a decrease in competition for s2, this can be expected to have positive welfare effect

at least for some constrained students. Second, after the entry of private school, unconstrained

students will definitely report s1 as top choice since their second most preferable school which is

private school is safe for them. This can increase the competition in s1 coming from unconstrained

students side if unconstrained students were not already reporting s1 as top choice with probability

one. Thus, it can potentially harm welfare of constrained students.

First I will silence the second channel and see if the effect is positive for some constrained

students as expected. And I will use this result to get the result of the general case. To do so, for

given economies P3 and E3, among the equilibria of P3, I pick the ones such that all unconstrained

students report s1 as top choice (if such equilibrium exists) to compare with the equilibria from E3.

2.4.2.1 All unconstrained students report s1 as top choice with probability one when there

is no private school

For this case I can show by an example that it is possible to have constrained students weakly

worse off and a constrained student type strictly worse off in an equilibrium that occurs after

entry of private schools compared to an equilibrium that occurs before the entry of private schools.

Example 2.4 is similar to Example 2.3 but now it is with the case l = 1.

Example 2.4. Let payoff of the three types of students be as in Table 2.5 and all type 3 students

are unconstrained and all type 1 and type 2 students are constrained. There is 17/30 measure
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Table 2.5: Payoffs of Example 2.4

1 2 3

s1 1 1 1

s2
4
19

9
17

19
90

s3 0 0 0

of type 1 students, 1/3 measure of type 2 students and 1/10 measure of type 3 students. And

q3 > q1 = q2 = 1/3. And suppose for type 3 value of private school is 2
9 .

Before entry of private schools, σ∗ is the unique equilibrium where in σ∗ all type 1 students

and type 3 students report s1 as top choice with probability one and all type 2 students report s2 as

top choice.24

After the entry of the private schools, we have an equilibrium σ̃ in which all students report s1

as top choice with probability one.25 Note that in this equilibrium σ̃ type 1 and 3 are worse off

compared to σ∗ although type 3 students are unconstrained and type 2 are equally well off in σ∗

and σ̃ .

As in the previous case with l = 0, the question of whether this is a knife edge case occurs.

Lemma 2.10 shows that it is.

Lemma 2.10. Suppose A2.1-A2.4 hold. Take economies P3 = ({q j}3
j=1, f (v),g(v)) and

E3 = ({q j}3
j=1,1, f (v),g(v)). For any pair of equilibrium σ∗ and σ̃ such that σ∗ is an equilib-

rium under P3 in which all unconstrained students report s1 as top choice with probability one and

σ̃ is an equilibrium under E3, there are constrained students who are strictly better off in σ̃ com-

pared to σ∗or all constrained students get the same payoff under both equilibria if the following

condition is satisfied:

24For type 1 we should check 1/3
2/3 ≥

4
19 which boils down to 1

2 ≥
4
19 . For type 2 we should check 9

17 ≥
1/3
2/3 which is

true. For type 3 we should check 1/3
2/3 ≥

19
90 which is true. It is easy to check there is no other equilibrium (symmetric)

before the entry of private schools.
25Type 1 needs to satisfy 1

3 +
1/3
9/10

4
19 ≥

4
19 which boils down to 0.411306 ≥ 0.211. Type 2 needs to satisfy 1

3 +

9
17

1/3
9/10 ≥

9
17 which boils down to 9

17 ≥
9
17 . Type 3 needs to satisfy 1

3 +
2
3

2
9 ≥

19
90 which boils down to 13

27 ≥
19
90
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If x̃1 > x1 > 1−q2 and there exists constrained students with q1
1−q2

< v ≤ x̃1−η

x̃1

q1
1−η−q2

then at

least one of such students has v 6= x̃1−η

x̃1

q1
1−η−q2

; where x̃1 and x1 are the total measure of students

reporting s1 as top choice in σ̃ and σ∗ respectively.

The result follows from Claim B.2, Claim B.3 and Lemma B.2 in the Other Results. Lemma

B.2 characterizes all the situations in which there exists a constrained student who is strictly better

off or all constrained students get the same payoff after the entry of the private school when all

unconstrained students report s1 as top choice before the entry of the private school. Lemma

2.10 says that when all unconstrained students report s1 as top choice before the entry of private

schools, it is hard to have all constrained students weakly worse off and some strictly worse off

after the entry of private school. Condition given in Lemma 2.10 , which is very similar to the

key condition in the Lemma 2.9, can be explained as follows. If we are in the case that there are

less than q2 measure of students reporting s2 as top choice before and after the entry of the private

school, then some of the constrained students who strictly prefer to report s2 as top choice in the

equilibrium without private school and weakly prefers to report s1 as top choice after the entry of

private schools (if such students exist) must be strictly preferring reporting s1 as top choice after

the entry of the private school. To see this note that q1
1−q2

is the cutoff that students with value

strictly above which strictly prefers reporting s2 as top choice to reporting s1 as top choice when

there is no private school. And x̃1−η

x̃1

q1
1−η−q2

is the cutoff that students with value (strictly) below

which (strictly) prefers reporting s1 as top choice to reporting s2 as top choice when there is private

school. Note that it would not be possible to have Example 2.4 in this case since type 2 in the

example strictly prefers reporting s2 as top choice before the entry of private school but indifferent

between reporting s1 as top choice and s2 as top choice after the entry of private school.

Another point that worths mentioning is that Lemma 2.10 means that if we rule out the equi-

libria in which there are less than q2 students reporting s2 as top choice before and after the entry

of the private school, then either each constrained student get the same payoff before and after the

entry of private school or there are constrained students who are strictly better off after the entry

of private schools. This is important since when I look at the case in which unconstrained students
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can report s2 as top choice before the entry of private schools, I will restrict attention to equilibria

in which there are at least q2 measure of students reporting s2 as top choice before and after the

entry of private schools.

2.4.2.2 General case for l = 1 and m = 3

Here, I will consider the more interesting case in which l = 1 and in the equilibria I consider with-

out private schools there may be unconstrained students reporting s2 as top choice with positive

probability. Note that in the equilibrium after the entry of the private school, all of them report s1

as top choice with probability one.

First of the two examples, Example 2.5 below shows that it is possible to have all constrained

students weakly worse off after the entry of private schools and some strictly worse off. Second

example, Example 2.6 shows that it is possible to have some constrained students strictly better

off after the entry of private school.

Table 2.6: Payoffs of Example 2.5

1 2 3

s1 1 1 1

s2 0.4 0.2 0.8

s3 0 0 0

Example 2.5. Suppose there are 1/4 measure of type 1 students, 3/8 measure of type 2 students

and 3/8 measure of type 3 students with payoffs as in Table 2.6 and type 3 students are uncon-

strained and all other students are constrained. Also, suppose that q1 = q2 =
1
4 and q3 ≥ 1

2 .

Let’s call the equilibrium before the entry of the private school σ∗. In σ∗, all type 1 and type

2 students report s1 as top choice with probability one and all type 3 students report s2 as top

choice.26

26To see that this is an equilibrium, see the following. Type 2 needs to satisfy 1/4
5/8 ≥ 0.2 1/4

3/8 which boils down to

0.4 ≥ 4
30 . Type 1 needs to satisfy 1/4

5/8 ≥ 0.4 1/4
3/8 which boils down to 0.4 ≥ 4

15 . Type 3 needs to satisfy 1/4
5/8 ≤ 0.8 1/4

3/8

which boils down to 0.4≤ 8
15 . It is easy to see that, this equilibrium is unique.
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Let’s call the equilibrium after the entry of the private school σ̃ . In σ̃ , all type 2 and type

3 students report s1 as top choice with probability one and all type 1 students report s2 as top

choice.27

Note that type 1 gets same payoff 0.4 in both σ̃ and σ∗, but type 2 constrained student gets

1/3 in σ̃ and gets 0.4 in σ∗. So he is negatively affected from the increase in the competition for

s1 after the entry of private school and decrease in the competition for s2 was not enough to make

any constrained student strictly better off.

Now, I present the second example in which there are constrained students who are strictly

better off after the entry of the private school.

Table 2.7: Payoffs of Example 2.6

1 2 3

s1 1 1 1

s2 0.7 0.2 0.8

s3 0 0 0

Example 2.6. Let there be 3/10, 3/5 and 1/10 measure of type 1, type 2 and type 3 students

respectively, with payoffs as in Table 2.7. Type 1 and type 2 are constrained and type 3 are

unconstrained students. Let q1 = q2 = 1/4 and q3 ≥ 1/2.

Let the equilibrium of BM before (after) the entry of private schools is called σ∗ (σ̃). One can

check that in both cases there is unique equilibrium.

In σ∗, type 2 reports s1 as top choice and type 1 and 3 report s2 as top choice, and this is

the unique equilibrium.28 In σ̃ , type 2 and 3 reports s1 as top choice and type 1 reports s2as top

27To see that this is an equilibrium, see the following. Type 2 needs to satisfy 1/4
6/8 ≥ 0.2 which boils down to 1

3 ≥
1
5 .

Type 1 needs to satisfy 1/4
6/8 ≤ 0.4 which boils down to 1

3 ≤
2
5 . Type 3 plays s1 as top choice, since he prefers private

school to s2.
28To see this is the unique equilibrium check the following. Type 1 needs to satisfy 1/4

3/5 < 1/4
4/10

7
10 which boils down

to 5
12 < 7

16 . Type 3 needs to satisfy 1/4
3/5 < 1/4

4/10
8
10 which boils down to 5

12 < 8
16 . Type 2 needs to satisfy 1/4

3/5 > 1/4
4/10

2
10

which boils down to 5
12 > 1

8 .
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choice.29

In σ̃ type 2 is worse off compared to σ∗ since he gets 5/14 and 5/12 in these equilibria

respectively. However, type 1 is better off under σ̃ compared to σ∗, type 1 constrained students

get 7/12 in σ̃ and 7/16 in σ∗.

Note that in the second example differently from first example there was a constrained student

who reports s2 as top choice in the equilibrium before the entry of private schools, such student

must be better off in the equilibrium after the entry private schools. The reason is that there is

a decrease in competition for s2 when unconstrained students change strategy, so reporting s2 as

top choice gives higher payoff to type 1 students compared to their payoff in equilibrium without

private schools.

To get conditions on having constrained students better off after the entry of private schools

I will restrict attention to equilibrium in which there are at least q2 students reporting s2 as top

choice since it will make my life easier and it is also a relevant case as discussed in Section 3. First

I will show the condition for existence of such an equilibrium when there is no private school. It is

almost same condition with Claim 2.3 , but since there is no private school requirement is not on

constrained students per se.

Claim 2.6. An equilibrium of BM without private schools in which measure of students reporting

s2 as top choice is at least q2 exists if and only if there are at least q2 measure of students with

v≥ q1
1−q2

Following Claim shows that, A2.1-A2.6 guarantees not only that the equilibrium with private

school has at least q2 students reporting s2 but also guarantees that the equilibria without private

school has at least q2 students reporting s2 as top choice. But the key difference is that, A2.6

cannot guarantee that students who are reporting s2 as top choice are constrained students in the

equilibrium without private schools. They can be unconstrained students.

29To see this is an equilibrium check the following. Type 1 needs to satisfy 1/4
7/10 < 1/4

3/10
7
10 which boils down to

5
14 < 7

12 . Type 3 plays s1 as top choice since he prefers private school to s2. Type 2 needs to satisfy 1/4
7/10 > 1/4

3/10
2
10

which boils down to 5
14 > 1

6 .
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Claim 2.7. Suppose A2.1-A2.6 holds, then in the economy without private schools, there are at

least q2 students who report s2 as top choice in all symmetric equilibria of BM.

Note that as in Section 3, A2.6 guarantees existence of equilibrium both in an economy with

private school and without private school. Next, I will show that under A2.1-A2.6 equilibrium

without private schools is also unique.

Claim 2.8. Suppose A2.1-A2.6 holds, then game without private schools have unique equilibrium.

Let k denote the measure of students reporting s1 as top choice, then k ∈ ( q1
q1+q2

,1−q2].

Following proposition gives sufficient conditions for existence of constrained students who

are better off after the entry of private school. The intuition behind the result is as follows. Under

assumptions A2.1-A2.6, there are more than q2 students reporting s2 as top choice when there is no

private school. When private school enter the neighborhood, all unconstrained students switch to

reporting s1 as top choice (the ones who were not already doing). This decreases the competition

for constrained students who were applying to s2 in the equilibrium without private schools if

measure of constrained students who are switching from reporting s1 as top choice to s2 as top

choice are not as much as unconstrained students switching to reporting s1 as top. The conditions

given in the proposition below guarantees that there are constrained students who are reporting s2

as top choice when there is no private school. As mentioned above A2.6 does not guarantee that

when there is no private school.

Proposition 2.4. Suppose A2.1-A2.6 holds. Take the equilibrium σ∗ from economy without pri-

vate schools; and take the equilibrium σ̃ from economy with private schools. There is positive

measure of constrained students who are strictly better off in σ̃ compared to σ∗ or payoffs of each

constrained student are same across σ̃ and σ∗ if one of the following conditions is satisfied:

(1) η < q2

(2) there are more than max{η − q2,0} measure of unconstrained students with valuation

vectors v < q1
1−q2

.

(3) there are constrained students with valuation v≥ η

1−η

q1
q2

.
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Condition (iii) in Proposition 2.4 immediately implies a result for distributions of preferences

with rich support. To have condition (iii) satisfiable one needs to have η

1−η

q1
q2

< 1 which will be

my next assumption.

Assumption 2.9. (A2.9) η

1−η

q1
q2

< 1

This assumption will satisfied for small η , having it less than 0.5 when q1 ≤ q2 will be suffi-

cient, if q1 is large compared to q2, then η needs to be smaller to satisfy the assumption.

Theorem 2.3. Suppose A2.1-A2.5 and A2.9 holds. Take the equilibrium σ∗ from economy with-

out private schools; and take the equilibrium σ̃ from economy with private schools. There are

constrained students who are strictly better off in σ̃ compared to σ∗ or payoff of each constrained

students is same across σ̃ and σ∗ for all distributions of preferences of constrained students that

have full support and satisfies A2.6.

The role of full support assumption is intuitive since that means there will be students with

strong preferences for s2 and these constrained students will report s2 as top choice when there is

no private school and this is what I wanted to guarantee.

2.5 Conclusion

This paper is interested in two problems. First, it compares the ex ante welfare of students who

cannot go to private schools under Boston Mechanism and Deferred Acceptance Mechanism, when

some other students are able to go to private schools. I show that when the private school is not

very desirable but still desirable to public schools in the neighborhood that are not very popular,

then all students who cannot go to private school are weakly better off in BM compared to DA.

Also, with a three school model, when only the first public school is preferred to private schools,

my results show that students who are marginal on their decision of which school to submit as top

choice in BM are worse off under BM compared to DA; and students with stronger cardinal pref-

erences for some schools, that is students who are inframarginal in deciding which school to report
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as top choice in BM, are better off in BM compared to DA. I show that if the distribution of prefer-

ences has full support, then it is guaranteed to have students better off under BM compared to DA

among the students who cannot go to private schools. In addition, assuming uniform distribution

of preferences allows me to find the fraction of students who are better off under BM compared

to DA. My results indicate that fraction of students who are better off under BM compared to DA

among students who cannot go to private school is equal to one minus fraction of students who can

go to private schools. I believe these results are important they show that existence of students who

are better off in BM compared to DA even among the students who cannot afford private schools

can be typical. Moreover, it shows which students win and lose from manipulable mechanisms.

This can lead to some policy implications on whom to compensate if one or the other mechanism

is chosen.

Second task this paper works on is comparing payoffs of students who cannot go to private

schools before and after the entry of private schools under BM. I show that, when the entering

private school is very high quality since all students who can go to private school leave the market

then for almost all the distributions of preferences one can find students who are strictly better off

after the entry of private schools among the students who cannot go to private school. When the

most desirable public school is preferred to the entering public school, I show that if the distri-

bution of preferences for students who cannot go to private school have full support and number

of students who can go to private school is not very large, then either some of those students get

strictly higher ex ante welfare or welfare of none of these students changes after the entry of private

school. This exercise is also helpful since it allows one to understand the effect of entry of private

schools on centralized mechanism. And this effect is not trivial when the centralized mechanism is

not strategy proof. Note that this analysis can also be interpreted as an analysis of what can happen

if a state decides to start a voucher program.
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APPENDIX A

APPENDIX TO CHAPTER 1

A.1 Additional Tables

Table A.1: Poverty Line in South Korea Across Household Size and Years

Year 1 person 2 people 3 people 4 people 5 people 6 people

2010 504,344 858,747 1,110,919 1,363,091 1,615,263 1,867,435

2011 532,583 906,830 1,173,121 1,439,413 1,705,704 1,971,995

2012 553,354 942,197 1,218,873 1,495,550 1,772,227 2,048,904

2013 572,168 974,231 1,260,315 1,546,399 1.832.482 2,118,566

Notes: This table indicates the poverty line for monthly income (in
South Korean Won (KRW) depending on the number of people in the
household. 1000 KRW is around $1 during our period of analysis. This
table is obtained from Korean Statistical Information Service.

A.2 Appendix For the Empirical Analysis

Description of CMS

Definition. Centralized Mechanism of Seoul (CMS)
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Table A.2: Regression Discontinuity Robustness Check

Dependent Variable: Share of students wanting to apply autonomous school

Income>Cutoff Income (conventional) -0.255
(0.134)

Income>Cutoff Income (bias-corrected) -0.27
(0.134)

Income>Cutoff Income (robust) -0.27
(0.160)

Observations Left 88

Observations Right 519

Effective Observations Left 52

Effective Observations Right 129

Notes: This table indicates the effect of the discontinuous change in
sticker price of PA schools on the share of students desiring to apply to
PA schools at the effective income threshold for affirmative action
eligibility. Estimates are calculated using bandwidth calculation
proposed by Calonico, Cattaneo, Farrell, and Titiunik (2017). Included
covariates are, students’ gender, and whether middle school is
public/private. Standard errors are in parenthesis. We do not discard
the observations that are very close to cutoff in this RD regression.
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Round -1: Each student submits his/preference list

Round 0: Each student draws a tie-breaking lottery number from the uniform distribution on

[0,1].

Round 1-1: A student is assigned to his or her first choice schools (i.e. charter schools) if the

schools are located in the Gu (district) in which he or she resides. 50% of the capacities can be

filled in this round. In this round and the subsequent rounds, break ties with the tie-breaker and

assignments are final.

Round 1-2: Assign remaining students to their first choice schools. All remaining capacities

may be filled in this round.

Round 2-1: Assign remaining students to their second choice schools (i.e., science magnet) if

the schools are located in the same Zone as the one in which students reside. 50% of remaining

capacities may be filled in this round.

Round 2-2: Assign remaining students to their second choice schools. All remaining capacities

may be filled in this round.

Round 3: Assign remaining students to their third choice schools (i.e., non-charter schools

or non-science programs). Up to 20% of their capacities may be filled in this round, except for

schools in the Central District, for which 60% may be filled.

Round 4: Assign remaining students to their fourth choice schools if the schools have not filled

20% (60% for schools in the Central District) of their capacities by the end of Round 3.

Round 5: Assign remaining students to their fifth choice schools.

Round 6: Assign remaining students to their sixth choice schools if the schools have not filled

their capacities by the end of Round 5.

Administrative Assignment: Assign remaining students based on their ranking, length of com-

mute, and their religion.
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Comparison of Our Identification Strategy to Fixed Effects Approach

Another identification strategy for preferences over peers could have been using the variation in

m.p.r j,t within schools across time, via using fixed effects of schools without using any instrument.

If one decides to continue with fixed effects approach, for identifying the heterogenous preferences

regarding peer quality, due to the concern described in the second paragraph of this sub-section,

one would need to use school level fixed effects varying at the group level g(c). One could argue

that such strategy would be plausible in our case since one can assume that for the schools always

remaining in CMS, unobservable characteristics are constant across 3 years, and there are changes

in m.p.r j,t measures of these schools across years due to the effect of switches in 2011. However,

students may not be able to know the way in which a school is affected in terms of entry cohort

academic quality for all the schools, or they might not make the exact comparison in terms of the

magnitude of the effect for all the schools. This is because it is not clear how will drain of high

achieving students joining CMS due to switchers would propagate to all the schools remaining

in CMS. Therefore, such strategy would try to identify preferences for peers from changes in

peer composition that student is potentially unaware, which might lead to biased estimates. Our

instrument allows us to have a more convincing story of the way students can be aware of the

change in peer composition in schools. Students/families living close to a switching school might

be aware that academically strong students in their middle school or neighborhood plan applying to

a recently switched PA school nearby. This implies that many of the good students will be admitted

to the switched school. Thus, they might also anticipate that the proportion of academically strong

students who will enroll to close by NPA school is going to decline. Therefore, they might react

by choosing a farther school from the closest neighborhood school.

137



Constructing Empirical Student Distribution for the Market of General High

Schools

To construct the moments using the structural model and parameter candidates, we need an em-

pirical distribution of students in the combined market of schools in CMS and PA schools to draw

students from. For years 2010, 2011 and 2012 we have individual level observations of students,

but these data sets do not include students who went to autonomous schools. If we only used

these data sets, the distribution of students would be incorrect. We solve this problem by using the

auxiliary survey data from 2009, which asks students who will start high school in 2010, whether

they plan to apply PA schools. In the survey data we observe 2335 students who declared that they

would like to apply to PA schools. However, this survey data is only available for students who

actually attended CMS. Remember the students are admitted to PA schools through random lot-

tery. We assume that students who indicated their desire to apply autonomous schools are the ones

who applied and could not enter due to their lottery number. Since who enters PA schools among

applicants is determined randomly, we assume that students who applied but could not enroll to

PA schools comes from the same distribution with students who enrolled in autonomous schools in

terms of observable and unobservable characteristics. Among the students who indicated interest

of applying to autonomous school, we randomly duplicate some of them, so that number of these

students get close to the number of students enrolled in PA schools in 2010.1 This survey dataset is

also linked to data of students attending CMS. In this survey data set we observe students’ middle

school, gender, enrolled school, neighborhood he lives and his preference list submitted to actu-

al CMS for 2010. Using these common variables, we match students who had indicated that they

would like to apply to an autonomous school to dataset of students who attended CMS in 2010. On

average one student (unique non-duplicate student) in the survey data is matched to 4.2 students in

student level 2010 CMS data. We weight students in the matched data by the inverse of the number

of matches. Then we stack this dataset to the dataset of students who submit reports to CMS in

1This number is 4415 to be precise. We duplicated each student showing interest in PA school with probability
416/467.
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2010. This way, we get the correct empirical distribution of students in the combined market and

we assume that this distribution is same across three years. Note that since only students in the

top 50 rank percentile in their middle school is eligible for autonomous schools, we discard the

students in the bottom 50 rank percentile for this part of demand estimation.

Determining Probability of Eligibility for Affirmative Action Track

In Section 1.5.2.1 we have constructed the empirical student distribution, but we do not observe

income or household size for students in this data. For BLP estimation we need to find the joint

distribution of observables in the data and being eligible for affirmative action track. We use SELS

data in which we observe family size, monthly family income and some other observables that

would allow us to connect this information to empirical student distribution. We use the 7th grader

cohort in SELS data. Students who started middle school in 2010 are observed through their middle

schools. For each student in this dataset we determine whether he/she is in affirmative action track

from family income of student and size of the household. In each middle school we order the

students surveyed according to their scores across three years in the tests accompanying the survey;

and we calculate the rank percentile of students according to this order. We estimate a probit model

where being in the affirmative action track is the outcome variable, and the explanatory variables

are rank percentile of student, whether middle school of the student is private, the district (gu)

the middle school is in and a constant term. Let student st_in_a f f denote whether the student

is eligible for affirmative action track. Estimation results are given in Table A.3. Using these

coefficient estimates, we can predict the probability of eligibility for affirmative action track for

students in the empirical student distribution, since in empirical student distribution we can observe

students’ own rank percentiles in their middle schools, their middle schools, whether a middle

school is private, and the district students live in.
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Table A.3: Probit Estimation for Affirmative Action Eligibility

depvar:st_in_aff

Estimated p.r. -0.011
(0.001)

Student’s middle school is private -0.200
(0.071)

Constant -2.593
(0.255)

District (Gu) Indicators Yes

N 4408

Pseudo R2 0.1057

Log Likelihood -
1716.3368

Notes: This table presents the coefficient estimates from
probit regression of students being in the affirmative
action track on their estimated own rank percentile,
indicator for student’s middle school being private, a
constant term and 24 District (Gu) indicators using 7th
grader cohort of 2010 SELS data. Standard errors are in
parenthesis. Coefficient estimates for district indicators
are available upon request.
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Construction of Regression Discontinuity Sample

In 2013 SECA data we observe students’ answer to question of whether he/she would like to go

to PA school after graduating from middle school. Since we can also observe family income and

variables informing us about family size, this sample will be useful for Regression Discontinuity

approach. However, eligibility for PA schools depend on students’ performance in middle school.

Therefore, knowing about students’ success in middle school is important. Also, as our structural

model parameters change depending on students performance in middle school, knowing students’

performance in middle school is also important for Indirect Inference approach. Unfortunately, we

do not observe students’ evaluation of his success in middle school in 2013 SECA data. To predict

this, we use 2010 SECA data. In this dataset we do not observe whether a student plans to go to

PA school after middle school (otherwise we could include it in our RD sample). However, we

can observe students’ evaluation of his/her own performance with respect to other students in the

classroom in this dataset. A student is asked a question about his academic standing compared

to his/her classmates. The student can choose 9 groups where the best one is 9th group and the

worst is 1st group. Moreover, we can observe many other variables which are common between

2010 and 2013 datasets. There are 231 common variables between the two datasets. We can use

these variables to predict students’ success in middle school in 2013 SECA data once we estimate

a model which predicts middle school success using 2010 SECA data. These variables varies

from questions related to socioeconomic status of students’ family, students’ approach/perception

to school, studying, friends, teachers, preparation to exams, self confidence, computer usage; their

approach to different subjects and study habits; test scores in reading, math and English in the tests

accompanying the survey; also we order students according to these grades within each school

and generate a rank percentile for them, we also include this variable as a candidate variable for

prediction. We create a new variable indicating students’ percentile ranking by using the variable

indicating students’ group in terms of academic success. To construct that variable we assign

each student the rank percentile at the midpoint of the group he/she belongs to. So if a student

is in 9th group, we assume that the student’s rank percentile is the midpoint between 100 and
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89; and we try to predict this variable instead of the variable indicating the group. Since number

of potential predictor variables is large and sample size is not very large, we use LASSO (Least

Absolute Shrinkage and Selection Operator) method in the way proposed by Ahrens, Hansen, and

Schaffer (2018), to decide the model which best predicts the students’ success in middle school.2

We run ordinary least squares (OLS) using the selected model by LASSO, then use the coefficient

estimates to predict the middle school rank percentile of students in 2013 SECA dataset. Since we

are only interested in predicting the middle school rank percentile, not the coefficients we do not

present the OLS coefficients here. Measures of model fit R2 and Ad j−R2 are found as 0.6282 and

0.6168 respectively.

After predicting the percentile rankings of students within their middle schools for 2013 SECA

data, we discard the students who are not eligible to apply autonomous schools (the students who

are in the bottom half of the student ranking in their middle school), the students who plans to go

to a school type different from general high schools; and the students for which we do not observe

family income. What remains is 607 students from 31 different middle schools in Seoul which

are distributed across 22 districts; 20 of these middle schools are public and the rest are private.

Note that, poverty line hence the eligibility for affirmative action track depends on household

size, not only income. Instead of imposing different thresholds for different family sizes, we

construct a measure of effective income for each family size, which is equivalent to income of

a one person household in terms of poverty line. Effective income is found by multiplying the

income of household of size x, with the ratio of poverty line for household of size 1 and household

of size x from the year 2013. Then we turn these effective incomes into 2010 year effective incomes

to preserve consistency of income measure with the income measure in SELS data. We do this by

multiplying the effective incomes in 2013 dollars with the ratio of poverty lines for one person

households from 2010 and 2013. Table A.4 illustrates the descriptive statistics of our estimation

2We have 1,975 students in Seoul, but for some observations some variables are missing. We run three LASSOs
consecutively: first we run it with all the available common variables, but since some values are missing for some of
the variables, the sample size is 1,423 for the first LASSO regression. Then after we discard the variables which are
not selected by LASSO, we run the LASSO second time and the sample size increased to 1,609 and one more variable
is discarded by LASSO. In the third run, the sample size has increased to 1,610; but the number of variables selected
by LASSO did not change.
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sample.

Table A.4: Descriptive Statistics of Regression Discontinuity Sample

Variable Mean Std. dev. Min Max

Would like to apply PA
school

0.265 0.442 0 1

Male 0.458 0.499 0 1

Estimated Rank Percentile 65.212 9.441 96.955 50.127

ln(e f f _income(KRW )/1000) 7.241 0.696 4.003 11.609

Number affirmative action
eligible

Number
ineligible

Total
students

Threshold
for running
variable

88 519 607 6.6287237

Notes: This table presents the descriptive statistics of the variables in the RD
Estimation sample. We use the natural logarithm of 1,000 KRW of effective
income as running variable. Effective income is found by multiplying the income
of household of size x, with the ratio of poverty line for household of size 1 and
household of size x from the year 2013. Then we turn these effective incomes into
2010 year effective incomes to preserve consistency of income measure with the
income measure in SELS data. We do this by multiplying the effective incomes in
2013 dollars with the ratio of poverty lines for one person households from 2010
and 2013.

Calculating Mean Percentile Rankings for PA Schools

We observe the middle school rank percentiles only for the students who attend CMS and not

for students who enrolled in PA schools. For students attending the CMS, we know their middle

school, the number of students graduated with them from their middle school, and their percentile

rankings. This means we know what would be the sum of the percentile rankings of all the top 50

percent students for each middle school. Since the sum of rank percentiles of students attending

CMS is already observable, we can calculate the sum of percentile rankings of students not attend-

ing CMS. Using this, it is easy to calculate the mean of percentile rankings of students who do not

attend CMS in top 50 percent of each middle school, since we observe the number of students in
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the graduating cohort of each middle school. These averages are used as moment conditions within

the BLP estimation. From this, it is easy to construct the average of the middle school percentile

rankings for all students who do not attend CMS and are in the top 50 percent within their middle

school. We assume that this average is the m.p.r measure for all PA schools.

This approach assumes that for the students in the top 50 percent in their middle school and

not attending CMS and students going to PA schools have the same mean of percentile rankings.

However, remember that there are other schools that students in top 50 might have gone to, when

they do not attend CMS. These were foreign language high schools and science high schools (Seoul

had 10 such schools in total). We assume the m.p.r of these schools and PA schools is the same.

We can check whether this assumption is sensible. For this we can use the switch of 13 general

schools from being NPA to PA schools. Remember there was a change in the percentile ranking

distribution of students in CMS and in top 50 percent within their middle schools between 2010 and

2011. We know there is no change in the number of science and foreign language schools between

2010 and 2011. Therefore, this change must be due to students who enrolled to PA schools in

2011 but would not be able to if these 13 schools had not switched. We know the mean percentile

ranking of students who are in top 50 percent of their middle school for 2010 and attended CMS.

Had there been no change in school composition in 2011, this mean would be same in 2011. We

know the actual mean in 2011 and number of students attending CMS. And we know the number of

students who enrolled in PA but would not be able to, if the school composition had not changed.

Using these information we calculate the mean rank percentile for the latter group of students. We

found this number as 75.89 which is very close to our estimates for the years 2010, 2011 and 2012.
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Details of Computation for BLP Estimation

Stacked Moment Conditions: We have

g(θ̂2) :=



√
nrd(rdest(θ̂2)− ˆrdest)
√

nmid(mssh(θ̂2)−mssh)
√

nmid(mspr(θ̂2)−mspr)

1√
2∑t |PAt |+|NPAt |

(
∑ j,t,k ZBLP′

j,t,k ξ j,t,k(θ̂2)
)


where 2∑t |PAt |+ |NPAt | is the total number of programs across three years and across tracks, nrd

is the sample size of the RD estimation sample, nmid is the total sample size of empirical student

distribution in 2011 and 2012 since middle school moments also include average rank percentile

of all students enrolled in PA schools, and nmid takes weights of observations into consideration.

Further Details on Constructing Moment Conditions From The Empirical Model: This cal-

culation involves entry chances to PA schools because of the terms q j
η j

for j∈PAt , and entry chances

to schools in NPAt . First, we assume that students know these admission chances.3 Further we

assume that students take these admission chances as given, following the literature.4 Calcula-

tion of expected utility from the centralized match under students’ best response to the observed

equilibrium is a computationally heavy task. The reason is that each student, depending on his

neighborhood, gender and religion faces hundreds of thousands unique lotteries over NPA schools

in CMS. This is where the two step estimation becomes advantageous. Note that we draw the

students (for the case of calculating application shares) and error terms once at the beginning of

the estimation procedure. Therefore we calculate the U i
c for each (drawn) student only once at the

3Calsamiglia, Fu, and Güell (2020) uses the same assumption. Agarwal and Somaini (2018) generates rational
expectation beliefs by resampling the submitted reports to the mechanism. Such exercise can be implemented in
future as a robustness check.

4This is assumed by most of the previous literature (Calsamiglia, Fu, and Güell, 2020; Agarwal and Somaini,
2018). The idea behind this assumption is that, since each student is small in a large market it is assumed that a
student’s decision cannot affect the equilibrium. That is, we are not simulating a game of strategic interactions. Each
student takes the observed equilibrium of applications in the data as given and plays his/her best response to the
observed application profile in the data.
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beginning of the estimation procedure. As we normalized the price of NPA schools to 0, from first

step of the estimation we already know αc(i)Di j + ζc(i) j and the drawn εi j ∀ j ∈ NPAt , therefore

we can calculate the best lottery for student i in CMS and calculate i′s expected payoff from that

lottery.

Since Equation (1.4.4) and Equation (1.4.5) do not yield closed form probabilities, the strategy

described above leads to discrete outcomes for each student instead of probabilities of application

to each PA school. This makes the moments non-smooth functions of the parameter β2, which

increases the computational burden for minimizing the objective function. Therefore, we use a logit

smoother which yields application probabilities to each PA school instead of discrete outcomes for

each student.

So for each student i given a draw of εi j ∈ NPAt ∪PAt , the probability application to school

j ∈ PAt is given by:

P(iappliesto j|εi,θ
∗
1 ,β2,{δi, j,t,k} j∈PA) =

exp((min{ q j
η j
,1}(vi, j,t,k−U i

c))/ρ)

1+∑ j′∈PA exp((min{ q j′
η j′

,1}(vi, j′,t,k−U i
c))/ρ)

(A.2.1)

where ρ is the smoothing parameter. See Chapter 5 of Train (2009) for discussion of logit s-

moothers. Smaller the ρ is, more close probabilities gets to the discrete decision. We use ρ = 0.5

in our main specification, but the results are very similar when we vary ρ between 0.5 and 1.

Application Shares and NFP Algorithm: For each market we draw many pairs of student and

vector of ε from the empirical student distribution and T1EV(0,1) independently.5When draw-

ing students we use the probabilities for being in the affirmative action track and weights of the

observations in the empirical student distribution.

Using equation (A.2.1) we can calculate the shares of applications for each autonomous school

in each market given the parameter candidate β̂2 and candidate mean utility vector for PA schools

5For each market we draw 20,000 students since the application shares of autonomous schools are small
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in year t and track k, δ j∈PA,t,k:

s j,t,k(δ j∈PA,t,k; β̂2,θ
∗
1 ) =

∑
ns
i=1P(iappliesto j|εi,θ

∗
1 , β̂2,{δi, j,t,k} j∈PA)

ns
∀ j, t,k

where ns is the number of simulation draws. For given β̂2 we find the vector δ j∈PA,t,kwhich equates

the calculated market share to the observed market shares for each PA school for all t,k:

s.,t,k(δ j∈PA,t,k; β̂2,θ
∗
1 ) = S.,t,k ∀t,k

Solution to this equation can be denoted as δ j∈PA,t,k(β̂2) for given candidate β̂2. Berry, Levin-

sohn, and Pakes (1995) shows that this equation can be solved using NFP algorithm, which is

calculating the series

δ
h+1
j∈PA,t,k = δ

h
j∈PA,t,k + ln(S.,t,k)− ln(s.,t,k(δ h

j∈PA,t,k; β̂2,θ
∗
1 ))∀t,k

until ||δ h+1
j∈PA,t,k − δ h

j∈PA,t,k|| is smaller than some tolerance level for all t,k. 6 Then we set

δ j∈PA,t,k(β̂2) = δ
H

j∈PA,t,k where H is the smallest h+1 that satisfies the tolerance level.

Moments of Price Instruments: Through NFP algorithm we have calculated δ j∈PA,t,k(β̂2) given

a parameter candidate β̂2. This allows us to estimate the linear parameters θ2 \β2 and ξ j,t,k(β̂2) via

linear GMM estimation using equation equation (1.4.2). The estimator for linear parameters is:

(β0,β1,{γnb}nb/∈NBC)
′ = (X̃′ZBLPWBLPZ′BLPX̃)−1X̃′ZBLPWBLPZ′BLPδ (β̂2,θ

∗
1 )

where X̃ is the tuition, autonomy indicators, and 10 neighborhood indicators stacked for all pro-

grams j ∈ NPA∪PA and all markets; ZBLP is Zprice
j,t,k stacked for all programs j ∈ NPA∪PA and

markets; WBLP is a positive definite weighting matrix; and δ (β̂2,θ
∗
1 ) is constructed by stacking

the vector δ j∈PA,t,k(β̂2) and δ j∈NPA,t,k(θ
∗
1 ), where the latter is the vector of mean utilities for NPA

6We choose 1e-9 as tolerance level.
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schools. These were already available after the first step of the estimation: since all entries of X̃

are zero for NPA schools, each δ j,t,k(θ
∗
1 ) for j ∈ NPAt is equal to ξ j,t,k(θ

∗
1 ).

Then we calculate the vector of all ξ j,t,k for all j, t,k by:

ξ (β̂2,θ
∗
1 ) = δ (β̂2,θ

∗
1 )− X̃(β0,β1,{γnb}nb/∈NBC)

′

which we can use for constructing ∑ j,t,k Zprice′
j,t,k ξ j,t,k(β̂2,θ

∗
1 ).

Middle School Moments: For each student i in the empirical student distribution of year t ∈

{2011,2012} we draw 50 εi j ∀ j ∈ PAt ∪NPAt at the beginning of the algorithm. Using a candidate

β̂2 and calculated δ j∈PA,t,k(β̂2) by NFP algorithm, we calculate the probability of enrolling to au-

tonomous schools for each student. We do this for each set of ε draws. To calculate the enrollment

probabilities, for each student we first calculate the application probabilities to each PA school

as described before, then we multiply these probabilities with the admission probabilities of PA

schools in the data. We average these probabilities across set of draws of ε to integrate it out. Also,

we integrate out the probability of being an affirmative action eligible student. We then calculate

the mean of the middle school rank percentiles of all students enrolling to autonomous school for

years 2011 and 2012. We do this by taking taking the average of middle school rank percentiles

weighted by probability of enrollment to any PA school and observation weights in the empirical

distribution. Similarly, we can calculate the same quantity within each middle school. We calculate

it for the middle schools which we can observe the number of students going to PA schools and we

can estimate such average from the data. 7 We describe in Appendix A.2 how we estimate mean of

the percentile rankings of students going to PA school from the student level data we get from SOE.

Taking the difference between the vector constructed from the structural model for given β̂2 and

vector of the corresponding averages from data, we construct mspr(β̂2)−mspr. Similarly, using

7Although we can estimate average of middle school rank percentiles for each middle school that exists in the
empirical student distribution, we do it for only the schools for which we know the exact number of students going
to autonomous school. We do this way since these numbers are necessary to find the covariance between the moment
conditions, which will be important in calculation of efficient weighting matrix. These consists of around 70% of
middle schools in 2011 and 2012.
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the calculated entry probabilities for each student, we calculate the share of students enrolled to

any PA school for the middle schools for which we have the corresponding data in years 2011 and

2012. Difference of vector constructed from the structural model and the corresponding shares in

the data yields mssh(β̂2)−mssh. Note that, to decrease the variance of each moment, we combine

middle school moments into several groups.

RD Moments: We use the students in RD estimation sample, in construction of these moments.

In this dataset we do not observe students’ neighborhood or religion, both of which are needed to

simulate the decision of students in the structural model. We observe students’ middle schools,

gender, estimated rank percentiles in middle school and district of the middle school. We draw

40 unobservables for each of the students: 4 random pairs of neighborhood and religion and 10 εi

for each pair of neighborhood and religion. We draw the pairs of neighborhood and religion from

the empirical student distribution of 2012 using commonly observed variables in RD sample and

empirical student distribution.8 For each set of draw, we calculate the the probability of application

to any PA school for all students given a candidate parameter β̂2 and calculated δ j∈PA,t,k(β̂2) by

NFP algorithm. When doing so, we use the lottery cutoffs and estimated utilities for NPA schools

from the year 2012 since this is the closest year we were able to estimate utilities for NPA schools

and lottery cutoffs. But for entry chances to PA schools we use the actual number of applications

and capacity from 2013, as we observe those.9 For each set of draws, using the simulated outcomes

of application probabilities and the observables of students in the RD sample, we implement the

RD estimation as proposed by Calonico, Cattaneo, Farrell, and Titiunik (2017), and estimate the

discontinuity at the income cutoff for being in the affirmative action track.10 Then we average the

82012 is the closest year for which we can observe empirical student distribution as well as entry chances to
NPA schools. When drawing pairs of neighborhood and religion from empirical student distribution, we look at the
neighborhood and religion of students: who are within -5 and +5 of the rank percentile of the student in the RD
estimation sample; have same middle school, have same gender; living in the same district as student’s middle school.
In case middle school of student in 2013 data is not in the empirical distribution of 2012, we choose draw a student
from the same type of middle school in terms of private/public and keep criteria for other variables same.

9One of the PA schools in 2012, becomes NPA school in 2013, therefore we calculate the probability of application
to any one of the remaining 24 PA schools.

10As in the estimation using the actual outcomes in the SECA dataset we include covariates of gender, indicator of
whether middle school is private and the estimated rank percentile of student in his/her middle school.
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estimated discontinuities across set of simulation draws and denote it by rdest(β̂2). We construct

the moment by taking the difference of this quantity and the RD estimate using the actual outcomes

in the RD estimation sample, ˆrdest.

Weighting Matrix: We run two step GMM estimation to obtain the parameter estimates (Hansen,

1982).11 We do this by first estimating the model via a positive definite weighting matrix to cal-

culate the optimal weighting matrix. In second iteration we use the optimal weighting matrix to

find the optimal parameters. In the first step we minimize the GMM objective function with the

following block diagonal matrix: I 0

0 (Z′BLPZBLP)
−1


where the first block is the identity matrix, which has number of rows equal to the length of

((rdest(β̂2)− ˆrdest),(mssh(β̂2)−mssh)′,(mspr(β̂2)−mspr)′)′. Note that in this step to estimate

the linear parameters given δ (β̂2,θ
∗
1 ), we also use (Z′BLPZBLP)

−1 instead of WBLP, which makes the

linear parameter estimation step equivalent to TSLS. Using the consistent estimates of β2 from this

first step, denoted by β̃2, we construct the efficient weighting matrix. Efficient weighting matrix

W is block diagonal with three blocks:


WRD 0 0

0 Wmid 0

0 0 WBLP


First block corresponds to variance of RD moment; the second one corresponds to variance-

covariance matrix of middle school moments; and the third one corresponds to variance covari-

ance of the moments obtained from BLP instruments. For constructing WBLP we first calculate

the sample variance covariance of ZBLP′
j,t,k ξ j,t,k(β̃2) where sample observations are indexed by j, t,k;

and then invert this variance covariance matrix to obtain WBLP. Middle school moments are con-
11We use Nelder-Mead simplex search method to find the optimal parameter that minimizes the GMM objective

function. Specifically, we use fminsearch function of MATLAB with tolerance levels set to 1e-7.

150



ditional moments.12 To obtain variance-covariance matrix of these moments we follow Petrin

(2002)13 who also uses micro data moments within BLP setting. We define random variables that

is well defined for each student in the empirical student distribution across years 2011 and 2012.

Using variance-covariance matrix of these random variables and Delta Method, we construct the

variance-covariance matrix of the conditional moments regarding middle schools and two mo-

ments regarding the average rank percentile of all students enrolled to PA in 2011 and 2012.14

Then we take the inverse of this variance-covariance matrix to obtain Wmid . We calculate WRD

by bootstrap procedure: For each bootstrap sample, we draw a sample with replacement from the

RD estimation sample with sample size equal to RD estimation sample. And for each of these

bootstrap samples we draw the unobservables as we do in the estimation procedure, and calculate

rdest(β̃2)− ˆrdest for each of these bootstrap samples exactly as in the estimation procedure given

the consistent estimates β̃2 and δ j∈PA,t,k(β̃2). Next we take the variance of rdest(β̃2)− ˆrdest across

bootstrap samples and multiply it with sample size of RD estimation sample and take the inverse

of this quantity.

Details for Computing Equilibria in Counterfactuals

Our goal is to find the equilibria of the submitted reports under DA and variants of SA. To do this

we iterate over best responses of students. We let everyone submit a preference list at the begin-

ning of iteration. Outcome of the mechanism is deterministic only for given lottery draws which

students do not know before applying. So, when best responding to previous strategy profile, s-

tudents should consider the expected m.p.r. and expected lottery cutoffs implied by the previous

strategy profile. To calculate these expected qualities and cutoffs we run the continuum version

12Remember they consists of share of students enrolling to PA schools from around 70% percent of middle schools
in Seoul for the years 2011 and 2012; the average of rank percentile of students going to PA schools from the same
middle schools and same years; and average of rank percentile of students going to autonomous schools in years 2011
and 2012.

13For details see the Appendix of working paper version: Petrin (2001)
14Additional details are available upon request.
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of these mechanisms taking advantage of the large size of the market.15 In the first iteration we

use the initial set of submitted lists to compute the continuum version of these mechanisms. Out-

come of the mechanism implies an expected m.p.r. at each school, expected lottery cutoffs. In the

next iteration, students’ preferences are determined by the expected m.p.r. realized in the previous

step.16 In addition, expected entry probabilities to each school is also determined. Given these,

we can calculate each student’s best response to the previous strategy profile. We iterate these best

responses until the convergence of average of expected m.p.r. measure at schools and convergence

of average of cutoffs at schools.

Now we describe how we calculate the best responses of students under variants of SA and

DA. Given a strategy profile, expected m.p.r. at each school is determined. Therefore, for any

student the preferences over all schools are determined. Under DA, students will just rank all the

schools according to their preferences given the previous strategy profile. Under SA, since the

second step is unrestricted list DA, students cannot do better than ranking NPA schools truthfully

conditional on joining the second step. So, we let that all students rank NPA schools truthfully

as their best response to a given strategy profile. Given the previous iteration of strategy profile,

lottery cutoffs at each school is also determined. In consequence, the student can calculate his/her

expected utility from the DA over NPA schools. In the first step of SA1, as in the empirical

model the student chooses to apply a PA school only if there is any PA school with higher utility

from the expected utility from the second step. Among such PA schools, the student chooses the

school that gives the highest expected utility from doing so, by considering the entry probabilities

to PA schools as described in Section 1.4. In the first step of SAU, it is not optimal for student

to consider any PA school that has lower utility compared to students’ expected utility from the

centralized match. The student’s optimal best response is to rank order all the other PA schools

truthfully according to his/her preferences determined by the given strategy profile. The reason is

15In continuum version, each student has measure 1/n where n is the total number of students, and each school
has capacity measure equal to its capacity divided by n. So using continuum version implies each discrete student is
admitted probabilistically to different schools. Previous literature follows a bootstrap procedure of running discrete
versions of the mechanisms (Agarwal and Somaini, 2018; Calsamiglia, Fu, and Güell, 2020; Kapor, Neilson, and
Zimmerman, 2020) which is much more demanding in terms of computational resources.

16For the case of score based admissions in private schools, the score cutoffs are deterministic.
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that the first step of SAU is also DA. The intuition is that the expected utility of student from the

second step can be considered as student’s outside option in the first step.

Identification of Truthful Pairwise Comparisons From Strategic Reports

We suppress the year subscript t below. Given the submitted lists by all the students in the observed

equilibrium, each list π ∈Π student i can submit implies chances of admission φi j(π) to each NPA

program j ∈ NPA. Let π∗ ∈ Π denote the list submitted by student i (suppressing i). For all

π ∈Π\{π∗} we define the following sets.

The set of NPA programs which have higher chance of entry in the lottery implied by π∗

compared to lottery implied by π ,

NPAi,π∗,π
+ := { j ∈ NPA : φi j(π

∗)> φi j(π)}

and the set of NPA programs which have higher chance of entry in the lottery implied by π

compared to lottery implied by π∗,

NPAi,π∗,π
− := { j ∈ NPA : φi j(π)> φi j(π

∗)}

We assume that each student can correctly predict the set of programs NPAi,π∗,π
+ and NPAi,π∗,π

−

for all π ∈ Π \ {π∗}. We define the set of lists that are equivalent to π∗ in terms of admission

chances,

Lπ∗ = {π ∈Π : φi j(π) = φi j(π
∗)∀ j ∈ NPA}

, since we do not compare equivalent lotteries. Let φ̂i j(π
∗), φ̂i j(π) ∀π ∈ Π \ {π∗} denote the stu-

dent’s beliefs on chances of admission, which are not necessarily correct. Formally our assumption

is

φ̂i j(π)> φ̂i j(π
∗) ⇐⇒ φi j(π)> φi j(π

∗)

Since student i maximizes his/her expected utility given his/her beliefs of admission chances,
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then π∗ submitted by i must satisfy:

∑
j∈NPA

φ̂i j(π
∗)vi j ≥ ∑

j∈NPA
φ̂i j(π)vi j ∀π ∈Π\Lπ∗

Using our assumption we can write this inequality as:

∑
j∈NPA+

[φ̂i j(π
∗)− φ̂i j(π)]vi j ≥ ∑

j∈NPA−
[φ̂i j(π)− φ̂i j(π

∗)]vi j ∀π ∈Π\Lπ∗

Note that

∑
j∈NPA+

[φ̂i j(π
∗)− φ̂i j(π)] = ∑

j∈NPA−
[φ̂i j(π)− φ̂i j(π

∗)]> 0 ∀π ∈Π\Lπ∗

Dividing the penultimate equation by the last equation we obtain:

∑
j∈NPA+

ϕ
+
j vi j ≥ ∑

j∈NPA−
ϕ
−
j vi j > 0 ∀π ∈Π\Lπ∗

where ∑ j∈NPA+ ϕ
+
j = ∑ j∈NPA− ϕ

−
j = 1. It follows that

max
j∈NPA+

vi j ≥ min
j∈NPA−

vi j

Two programs have different payoffs with almost probability one. There are many pairs of π∗

and π such that NPA+ and NPA− are singletons. In that case, the last inequality above will yield

a pairwise comparison between two programs. Since there are many possible pairs of π∗ and

comparable π for each student, this strategy identifies many pairwise comparisons for students.
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Table A.5: Welfare Without Top 50% and Affirmative Action Rule

Panel A

Mechanisms o.r.p≥ 75 50≤ o.r.p <
75

General
track

Affirmative
track

DA 0.790 0.506 0.632 0.817

SAR1 0.688 0.396 0.527 0.688

SAUR 0.666 0.387 0.519 0.601

Panel B

Mechanisms 25≤ o.r.p <
50

o.r.p < 25 All students

DA 0.241 -0.258 0.361

SAR1 0.130 -0.357 0.256

SAUR 0.123 -0.366 0.244

Figure A.1: Comparison Across Price Without Top 50% and Affirmative Action Rule
(a) Weighted average of m.p.r for PA schools (b) Weighted average of m.p.r for NPA schools

(c) Weighted average of m.p.r for NPA
schools
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Figure A.2: Welfare Without Top 50% and Affirmative Action Rule
(a) Average welfare of students with o.p.r ≥ 75 (b) Average welfare of students with

50≤ o.p.r < 75

(c) Average welfare of students with
25≤ o.p.r < 50

(d) Average welfare of students with o.p.r≤ 25

(c) Average welfare of all students
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Robustness Checks for Starting Points of Iterations without Top 50 Percent

and Without Affirmative Action

A.3 Appendix for Theoretical Analysis

Calculation of Entry Probabilities for Given Strategy Profile and Rank Ordered List

Under DA, a type who submitted π as rank order list i.e. t ∈ σ−1(π) has cDA
π1

(σ) probability of

entry to his first ranked school π1; (1− cDA
π1

(σ))cDA
π2

(σ) probability of entry to his second ranked

school π2 and (1− cDA
π1

(σ))(1− cDA
π2

(σ))cDA
π3

(σ) probability of entry to his third ranked school π3.

Under SA, for a type who submitted π as rank order list i.e. t ∈ σ−1(π) entry probabilities to

π1,π2 and π3 are as follows:



π1 w.p. cSA
π1
(σ)

π2 w.p.


(1− cSA

π1
(σ))cSA

π2
(σ) i f π2 6= s1

0 otherwise

π3 w.p.


(1− cSA

π1
(σ))(1− cSA

π2
(σ))cSA

π3
(σ)1{π1 = s1}

+(1− cSA
π1
(σ))cSA

π3
(σ)1{π1 6= s1} i f π3 6= s1

0 otherwise

Proof of Lemma 1.2

Case 1: Suppose there are types t, t ′ with t > t ′ and σ∗DA(t) = (s2,s1,s3) and σ∗DA(t
′) = (s1,s2,s3).

Then type t and t ′ must satisfy:

vDA
2 (t,σ∗)≥ vDA

1 (t,σ∗)

vDA
2 (t ′,σ∗)≤ vDA

1 (t ′,σ∗)
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which implies

h(ω2, t)≥ h(ω1, t)− p

h(ω2, t ′)≤ h(ω1, t ′)− p

Since p > 0, second inequality implies that ω1 > ω2 . Then we must have h(ω1, t ′′)− h(ω2, t ′′)

increases in t ′′ for all t ′′ ∈ T since

∂ (h(ω1, t ′′)−h(ω2, t ′′))
∂ t ′′

= ht(ω1, t ′′)−ht(ω2, t ′′)

> 0

where the last inequality follows since hωt > 0. Therefore we must have:

h(ω1, t)− p > h(ω2, t)

which is a contradiction.

Case 2: Suppose for all types t, σ∗DA(t) = (s1,s2,s3), then ω1 = ω2 = ω3. Then for all types we

have h(ω2, t)> h(ω1, t)− p. Then each type can deviate to ranking s2 above s1.

Proof of Lemma 1.3

Case 1: Suppose there are types t, t ′, t ′′ with t > t ′ > t ′′ and σ∗SA(t) = (s2,s3), σ∗SA(t
′) = (s1,s2,s3),

σ∗SA(t
′′) = (s2,s3) and ω1 6= ω2. Since everyone ranks s3 as last choice, quality distribution of

students in s2 and s3 must be the same.

Then types must satisfy:

vSA
1 (t,σ)+(1− c2)∆≤ vSA

2 (t,σ)

vSA
1 (t ′,σ)+(1− c2)∆≥ vSA

2 (t ′,σ)
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vSA
1 (t ′′,σ)+(1− c2)∆≤ vSA

2 (t ′′,σ)

which implies respectively

h(ω2, t)≥ h(ω1, t)− p+(1− c2)∆

h(ω2, t ′)≤ h(ω1, t ′)− p+(1− c2)∆

h(ω2, t ′′)≥ h(ω1, t ′′)− p+(1− c2)∆

Last two inequalities imply h(ω1, t ′)− h(ω2, t ′) ≥ h(ω1, t ′′)− h(ω2, t ′′), then we must have

ω1 ≥ ω2. Since ω1 6= ω2, we must have ω1 > ω2. But this also implies that

h(ω1, t)−h(ω2, t)− p+(1− c2)∆ > h(ω1, t ′)−h(ω2, t ′)− p+(1− c2)∆≥ 0

which is a contradiction.

Case 2: Suppose there are types t, t ′, t ′′ with t > t ′ > t ′′ and σ∗SA(t) = (s1,s2,s3), σ∗SA(t
′) =

(s2,s3), σ∗SA(t
′′) = (s1,s2,s3) and ω1 6= ω2. Contradiction can be reached similarly here to the case

above.

Proof of Lemma lemma 1.4

DA part:

( =⇒ ) : By Lemma 1.2 there is another possible equilibrium. For contradiction, suppose all

types submit (s2,s1,s3), then qualities become ω1 = ω2 = ω3.

(⇐= ) : Students with type t < t1 will submit (s2,s1,s3) whereas students with t > t1 will

submit (s1,s2,s3). First we will derive lottery cutoffs c1 and c2 which shows the probability of

being accepted to s1 and s2 conditional on applying to the school during the course of DA. To do
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that note that F(t1) is the measure of students who ranked (s2,s1,s3) and 1−F(t1) is the measure

of students who ranked (s1,s2,s3). c1 and c2 satisfies the following equations:

c1((1−F(t1))+(1− c2)F(t1)) =
1
3

c2(F(t1)+(1− c1)(1−F(t1))) =
1
3

Solving for c1 and c2 we get:

c1 =
1

2−F(t1)+
√

F(t1)2−F(t1)+1

c2 =
F(t1)+1−

√
F(t1)2−F(t1)+1

3F(t1)

From this we can derive the qualities at schools:

ω1(t1) = 3[c1(1−F(t1))E(t|t > t1)+ c1(1− c2)F(t1)E(t|t < t1)]

ω2(t1) = 3[c2F(t1)E(t|t < t1)+ c2(1− c1)(1−F(t1))E(t|t > t1)]

ω3(t1) = 3[(1− c1)(1− c2)(1−F(t1))E(t|t > t1)+(1− c2)(1− c1)F(t1)E(t|t < t1)]

By plugging in c1 and c2 to qualities, we get:

ω1(t1) = (2−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t > t1)

− (1−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t < t1)

ω2(t1) = (F(t1)+1−
√

F(t1)2−F(t1)+1)E(t|t < t1)

+ [−F(t1)+
√

F(t1)2−F(t1)+1]E(t|t > t1)

ω3(t1) = E(t|t > t1)−F(t1)(E(t|t > t1)−E(t|t < t1))
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We show that ωDA
1 (σ∗)> ωDA

3 (σ∗)> ωDA
2 (σ∗)∀t ∈ (t, t̄):

ω
DA
1 (σ∗)> ω

DA
3 (σ∗)

⇐⇒ (2−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t > t1)

− (1−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t < t1)

> E(t|t > t1)−F(t1)(E(t|t > t1)−E(t|t < t1))

⇐⇒ (1−
√

F(t1)2−F(t1)+1)E(t|t > t1)− (1−
√

F(t1)2−F(t1)+1)E(t|t < t1)> 0

⇐⇒ (1−
√

F(t1)2−F(t1)+1)[E(t|t > t1)−E(t|t < t1)]> 0

which is true since (1−
√

F(t1)2−F(t1)+1)> 0 and E(t|t > t1)−E(t|t < t1)> 0

ω
DA
3 (σ∗)> ω

DA
2 (σ∗)

⇐⇒ E(t|t > t1)−F(t1)(E(t|t > t1)−E(t|t < t1))

> (F(t1)+1−
√

F(t1)2−F(t1)+1)E(t|t < t1)

+ [−F(t1)+
√

F(t1)2−F(t1)+1]E(t|t > t1)

⇐⇒ (1−
√

F(t1)2−F(t1)+1)E(t|t > t1)− (1−
√

F(t1)2−F(t1)+1)E(t|t < t1)> 0

⇐⇒ (1−
√

F(t1)2−F(t1)+1)[E(t|t > t1)−E(t|t < t1)]> 0

which is true. Note that quality difference between s1 and s3 is same as quality difference between

s2 and s3.

SA Part:

( =⇒ ) : By Lemma 3, if we do not have the asserted equilibrium then there are 2 other possible

types of equilibria. Trivially, we cannot have the equilibrium in which ω1 = ω2.

Suppose in equilibrium there is t ′1 ∈ (t, t̄) such that σ∗SA(t) =


(s2,s3) t ≥ t ′1

(s1,s2,s3) t < t ′1
In this case we have:
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c1 =


1 if F(t ′1)≤ 1/3

1
3F(t ′1)

if F(t ′1)> 1/3

c2 =


1

3(1−F(t ′1))
if F(t ′1)≤ 1/3

1/2 if F(t ′1)> 1/3

Then qualities become:

ω1 = E(t|t < t ′1)

ω2 =


E(t|t > t ′1) if F(t ′1)≤ 1/3

3[c2(1− c1)F(t ′1)E(t|t < t ′1)+ c2(1−F(t ′1))E(t|t > t ′1)] if F(t ′1)> 1/3

For the case F(t ′1) ≤ 1/3, we have ω2 > ω1. For the case with F(t ′1) > 1/3 we show the

following:

ω2 = 3[c2(1− c1)F(t ′1)E(t|t < t ′1)+ c2(1−F(t ′1))E(t|t > t ′1)]

=
1
2
[E(t|t > t ′1)−E(t|t < t ′1)]+E(t|t > t ′1)−

3
2

F(t ′1)[E(t|t > t ′1)−E(t|t < t ′1)]

<
1
2
[E(t|t > t ′1)−E(t|t < t ′1)]+E(t|t > t ′1)−

3
2

1
3
[E(t|t > t ′1)−E(t|t < t ′1)]

= E(t|t > t ′1)

which means ω2 > ω1.

(⇐= ) :

Suppose there is an equilibrium such that type t > t1 submits (s1,s2,s3) and type t < t1 submits

(s2,s3). In this case we get following equations determining cutoffs:
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c1 =


1

3(1−F(t1))
if 1−F(t1)≥ 1

3

1 otherwise

c2 =


1
2 if 1−F(t1)≥ 1

3

1
3F(t1)

otherwise

Case 1: Suppose 2
3 < F(t1). Then qualities will be:

ω1 = E(t|t > t ′1)

ω2 = E(t|t < t ′1)

and obviously ω1 > ω2.

Case 2: Suppose 2
3 ≥ F(t1). Qualities will be:

ω1 = E(t|t > t ′1)

ω2 = 3[(1− c1)
1
2
(1−F(t ′1))E(t|t > t ′1)+

1
2

F(t ′1)E(t|t < t ′1)]

= E(t|t > t ′1)−
3
2

F(t ′1)[E(t|t > t ′1)−E(t|t < t ′1)

< E(t|t > t ′1)

Proof of Lemma 1.5

Follows from Lemma 4 and following comparison of ωSA
1 (t1), ωDA

1 (t1) and comparison of ωSA
2 (t1),

ωDA
2 (t1):

163



ω
DA
1 (t1) = (2−F(t1)−

√
F(t1)2−F(t1)+1)E(t|t > t1)

− (1−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t < t1)

= E(t|t > t1)+(1−F(t1)−
√

F(t1)2−F(t1)+1)[E(t|t > t1)−E(t|t < t1)]

ω
SA
1 (t) = E(t|t > t1)

Since 1−F(t1)−
√

F(t1)2−F(t1)+1< 0 and E(t|t > t1)−E(t|t < t1)> 0, we have ωSA
1 (t1)>

ωDA
1 (t1) for all t1 ∈ (t, t̄)

ω
DA
2 (t1) = (F(t1)+1−

√
F(t1)2−F(t1)+1)E(t|t < t1)

+ [−F(t1)+
√

F(t1)2−F(t1)+1]E(t|t > t1)

= E(t|t < t1)+ [−F(t1)+
√

F(t1)2−F(t1)+1][E(t|t > t1)−E(t|t < t1)]


ωSA

2 (t1) = ωSA
3 (t1) = E(t|t < t1) if F(t1)> 2

3

ωSA
2 (t1) = ωSA

3 (t1) = E(t|t > t1)− 3
2F(t1)[E(t|t > t1)−E(t|t < t1)] otherwise

Since −F(t1)+
√

F(t1)2−F(t1)+1 > 0 and E(t|t > t1)−E(t|t < t1)> 0 for all t1 ∈ (t, t̄) we

have ωDA
2 (t1)> ωSA

2 (t1) if 1 > F(t1)> 2
3
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When F(t1)≤ 2
3 we have:

ω
DA
2 (t1)−ω

SA
2 (t1) = E(t|t < t1)+ [−F(t1)+

√
F(t1)2−F(t1)+1][E(t|t > t1)−E(t|t < t1)]

−E(t|t > t1)+
3
2

F(t1)[E(t|t > t1)−E(t|t < t1)]

= E(t|t < t1)−E(t|t > t1)

+ [E(t|t > t1)−E(t|t < t1)][
1
2

F(t1)+
√

F(t1)2−F(t1)+1]

=−[E(t|t > t1)−E(t|t < t1)]

+ [E(t|t > t1)−E(t|t < t1)][
1
2

F(t1)+
√

F(t1)2−F(t1)+1]

= [E(t|t > t1)−E(t|t < t1)][−1+
1
2

F(t1)+
√

F(t1)2−F(t1)+1]

> 0

since −1+ 1
2F(t1)+

√
F(t1)2−F(t1)+1 = 0 if t1 = t and −1+ 1

2F(t1)+
√

F(t1)2−F(t1)+1 is

strictly increasing in t1 and E(t|t > t1)−E(t|t < t1)> 0 for t < t and F(t1)≤ 2
3

Proof of Proposition 1.1

Remember from proof of Lemma lemma 1.4, the school qualities under DA for a given equilibrium

with cutoff t1 is:

ω1(t1) = (2−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t > t1)

− (1−F(t1)−
√

F(t1)2−F(t1)+1)E(t|t < t1)

ω2(t1) = (F(t1)+1−
√

F(t1)2−F(t1)+1)E(t|t < t1)

+ [−F(t1)+
√

F(t1)2−F(t1)+1]E(t|t > t1)

ω3(t1) = E(t|t > t1)−F(t1)(E(t|t > t1)−E(t|t < t1))

Note that when t1 ≥ t̄, i.e. everyone submits (s2,s1,s3) we have: ω1 = ω2 = ω3 = Eµ(t),
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and when t1 ≤ t i.e. everyone submits (s1,s2,s3) we have: ω1 = ω2 = ω3 = Eµ(t). This means

ω1,ω2,ω3 are continuous at t1 for all t1 ∈ T .

i) ( =⇒ :) Suppose an equilibrium t1 exists. Then t1 must be indifferent which means p =

ΓDA(t1). Since t1 is equilibrium, t ≥ t1 does not deviate from submitting (s1,s2,s3). This means:

h(ωDA
1 (t1), t)− p≥ h(ωDA

2 (t1), t)≥ h(ωDA
3 (t1), t)−∆∀t ≥ t1

In particular this implies:

h(ωDA
2 (t1), t̄)≥ h(ωDA

3 (t1), t̄)−∆

⇐⇒ ∆≥ h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)> 0

Also, t < t1 does not deviate from submitting (s2,s1,s3). This means:

h(ωDA
2 (t1), t)≥ h(ωDA

1 (t1), t)− p≥ h(ωDA
3 (t1), t)−∆∀t < t1

In particular this implies:

p≤ h(ωDA
1 (σ∗), t)−h(ωDA

3 (σ∗), t)+∆

⇐⇒ ∆≥ p+h(ωDA
3 (σ∗), t)−h(ωDA

1 (σ∗), t)

Therefore,

∆≥max{p+h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t),h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)}

(⇐= :) Suppose p = ΓDA(t1) and ∆ ≥max{p+h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t),h(ωDA
3 (t1), t̄)−

h(ωDA
2 (t1), t̄)}. Then t1 is a cutoff equilibrium. To see this, note that type t1 is indifferent between

(s1,s2,s3) and (s2,s1,s3) since p = ΓDA(t1). We show that type t > t1 does not deviate from
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submitting (s1,s2,s3):

h(ωDA
1 (t1), t)− p≥ h(ωDA

2 (t1), t)≥ h(ωDA
3 (t1), t)−∆∀t ≥ t1

The first inequality is already satisfied since p = ΓDA(t1), ω1 > ω2, t > t1 and hωt > 0. Second

one will be satisfied since

∆≥ h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)≥ h(ωDA
3 (t1), t)−h(ωDA

2 (t1), t)∀t ≥ t1

where the first inequality is satisfied by assumption and second one is satisfied since ω3 > ω2 and

t̄ ≥ t ∀t ≥ t1

Now we show that type t < t1 does not deviate from submitting (s2,s1,s3) :

h(ωDA
2 (t1), t)≥ h(ωDA

1 (t1), t)− p≥ h(ωDA
3 (t1), t)−∆∀t < t1

The first inequality is already satisfied since p = ΓDA(t1), ω1 > ω2, t < t1 and hωt > 0. Second

one will be satisfied since

∆≥ p+h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)≥ p+h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)∀t < t1

where the first inequality is satisfied by assumption and second one is satisfied since ω1 > ω3 and

t ≤ t ∀t ≤ t1.

ii)

M DA = max
t1∈(t,t̄)

Γ
DA(t1)

= max
t1∈T

Γ
DA(t1)

where the second equality follows since ΓDA(t̄) = 0 and ΓDA(t) = 0 since ω1 = ω2 in these cases.

And for t1 ∈ (t, t̄), ω1(t1)> ω2(t1) which implies ΓDA(t1)> 0. Note that second maximum exists
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by Weierstrass Theorem, since T is compact set and ΓDA(.) is continuous in t1 for t1 ∈ T . ΓDA(.) is

continuous because h(., .) is continuous in its both arguments and ω1(.) and ω2(.) are continuous

in t1 at t1 ∈ T .

( =⇒ :) Suppose ΓDA,−1(p) is non-empty. Then ∃t1 ∈ (t, t̄) such that ΓDA(t1) = p, i.e.

h(ωDA
1 (t1), t1)−h(ωDA

2 (t1), t1) = p

Then p ≤M DA otherwise we could not find t1. And note that for t1 ∈ (t, t̄) we have ΓDA(t1) > 0,

therefore p > 0, otherwise we could not find t1.

(⇐= :) Suppose p ∈ (0,M DA]. We need to show that ∃t1 such that Γ(t1) = p. Note that Γ(.)

is continuous in t1 and it attains M DA. Also we have,

inf
t1∈(t,t̄)

Γ
DA(t1) = 0

To see this note that ΓDA(t1) > 0∀t1 ∈ (t, t̄) since ωDA
1 (t1) > ωDA

2 (t1) for any given t1. To see

that 0 is the greatest lower bound, check the limit as t1→ t:

lim
t1→t

h(ωDA
1 (t1), t1)−h(ωDA

2 (t1), t1)

=h( lim
t1→t

ω
DA
1 (t1), lim

t1→t
t1)−h( lim

t1→t
ω

DA
2 (t1), lim

t1→t
t1)

=h(Eµ(t), t)−h(Eµ(t), t)

=0

Therefore, for any given x ∈ (0,M DA), there exists t1 ∈ (t, t̄) such that ΓDA(t1) = x. Therefore

it also attains p in particular.

iii) Take any price p ∈ (0,M DA]

( =⇒ :) Suppose ΓDA,−1(p) is the set of cutoff equilibria. We know from (iii) that ΓDA,−1(p) 6=
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/0. Take any t1 ∈ ΓDA,−1(p) we have:

h(ωDA
1 (t1), t1)− p = h(ωDA

2 (t1), t1)

We also have that

h(ωDA
1 (t1), t)− p≥ h(ωDA

2 (t1), t)≥ h(ωDA
3 (t1), t)−∆∀t ≥ t1

which implies

∆≥ h(ωDA
3 (t1), t)−h(ωDA

2 (t1), t)∀t ≥ t1

=⇒ ∆≥ h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)

Since t1 is arbitrary this means we have:

∆≥ h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)∀t1 ∈ Γ
DA,−1(p)

=⇒ ∆≥ max
t1∈ΓDA,−1(p)

h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)

We also have,

h(ωDA
2 (t1), t)≥ h(ωDA

1 (t1), t)− p≥ h(ωDA
3 (t1), t)−∆∀t < t1

which implies

∆≥ h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p∀t < t1

=⇒ ∆≥ h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p
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Since t1 is arbitrary this means we have:

∆≥ h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p∀t1 ∈ Γ
DA,−1(p)

=⇒ ∆≥ max
t1∈ΓDA,−1(p)

h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p

(⇐= ) : Suppose ∆ ≥ max{maxt1∈ΓDA,−1(p) h(ωDA
3 (t1), t̄)− h(ωDA

2 (t1), t̄),maxt1∈ΓDA,−1(p){p+

h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)}. We will show that any t1 ∈ ΓDA,−1(p) is a cutoff equilibrium, and

t ′1 /∈ ΓDA,−1(p) is not cutoff equilibrium. The second one is easy to show since Γ(t ′1) 6= p, hence t ′1

cannot be the cutoff type.

Take any t1 ∈ ΓDA,−1(p), first note that type t1is indifferent between submitting (s1,s2s3) and

(s2,s1,s3) at p and types t > t1 prefers submitting (s1,s2,s3) to (s2,s1,s3)

U(t, t1,π = (s1,s2,s3)>U(t, t1,π = (s2,s1,s3)∀t > t1

U(t, t1,π = (s1,s2,s3)<U(t, t1,π = (s2,s1,s3)∀t < t1

by definition of ΓDA,−1(p).

We also need:

h(ωDA
2 (t1), t)≥ h(ωDA

3 (t1), t)−∆∀t ≥ t1

⇐⇒ ∆≥ h(ωDA
3 (t1), t)−h(ωDA

2 (t1), t)∀t ≥ t1

We know that:

∆≥ max
t ′1∈ΓDA,−1(p)

h(ωDA
3 (t ′1), t̄)−h(ωDA

2 (t ′1), t̄)

≥ h(ωDA
3 (t1), t̄)−h(ωDA

2 (t1), t̄)

≥ h(ωDA
3 (t1), t)−h(ωDA

2 (t1), t)∀t ≥ t1
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We also need:

∆≥ h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p∀t < t1

We know that:

∆≥ max
t ′1∈ΓDA,−1(p)

h(ωDA
3 (t ′1), t)−h(ωDA

1 (t ′1), t)+ p

≥ h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p

≥ h(ωDA
3 (t1), t)−h(ωDA

1 (t1), t)+ p∀t < t1

Proof of Proposition 1.2

From Lemma lemma 1.4, remember that

ω1(t1) = E(t|t > t1)
ω2(t1) = ω3(t1) = E(t|t < t1) if F(t1)> 2

3

ω2(t1) = ω3(t1) = E(t|t > t1)− 3
2F(t1)[E(t|t > t1)−E(t|t < t1)] otherwise

Also, if t1 ≥ t̄, i.e. all students submit (s2,s3) we have ω1 = ω2 = ω3 = Eµ(t)

And if t1 ≤ t, i.e. all students submit (s1,s2,s3) we have ω1 = ω2 = ω3 = Eµ(t)

Note that ω2(t1),ω3(t1) are continuous in t1 for t1 ∈ T ; and ω1(t1) is continuous in t1 for

t1 ∈ [t, t̄)

Define ω̃SA
1 (t1) :=


ωSA

1 (t1) if t1 < t̄

t̄ if t1 = t̄
, and note that ω̃SA

1 (t1) is continuous in T
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i)

S SA = sup
t1∈(t,t̄)

{h(ωSA
1 (t1), t1)−h(ωSA

2 (t1), t1)+∆(1−min{1
2
,

1
3F(t1)

})}

= sup
t1∈(t,t̄)

{h(ω̃SA
1 (t1), t1)−h(ωSA

2 (t1), t1)+∆(1−min{1
2
,

1
3F(t1)

})}

= max
t1∈T
{h(ω̃SA

1 (t1), t1)−h(ωSA
2 (t1), t1)+∆(1−min{1

2
,

1
3F(t1)

})}

Second equality follows since ω̃1 and ω1 are different only at t̄. Third equality follows since

we only included the limit points and the functions above are continuous at the limit points. Above

maximum exists by Weierstrass Theorem since T is a compact set; ω̃SA
1 (t1),ωSA

2 (t1) are continuous

in t1 for t1 ∈ T and h(., .) is a continuous function in its both arguments.

ΓSA(t1) also attains an infimum:

I SA : = inf
t1∈(t,t̄)

{h(ωSA
1 (t1), t1)−h(ωSA

2 (t1), t1)+∆(1−min{1
2
,

1
3F(t1)

})}

=
∆

2

To see this note that h(ωSA
1 (t1), t1)−h(ωSA

2 (t1), t1)> 0∀t1 ∈ (t, t̄) and this implies h(ωSA
1 (t1), t1)−

h(ωSA
2 (t1), t1)+∆(1−min{1

2 ,
1

3F(t1)
})> ∆

2 ∀t1 ∈ (t, t̄). And this is the greatest lower bound since

lim
t1→t

h(ωSA
1 (t1), t1)−h(ωSA

2 (t1), t1)+∆(1−min{1
2
,

1
3F(t1)

})

=h( lim
t1→t

ω
SA
1 (t1), lim

t1→t
t1)−h( lim

t1→t
ω

SA
2 (t1), lim

t1→t
t1)+

∆

2

=h(Eµ(t), t)−h(Eµ(t), t)+
∆

2

=
∆

2

Second line follows from continuity of h(., .) in its both arguments. Third line follows from

continuity of ωSA
1 (t1) and ωSA

2 (t1) in t1 at t1 = t.

And note that h(ωSA
1 (σ∗), t ′1)−h(ωSA

2 (σ∗), t ′1)+∆(1−min{1
2 ,

1
3Φ(t ′1)

})> ∆

2 ∀t
′
1 ∈ (t, t̄) implies
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that

S SA >
∆

2

ii)( =⇒ ) : Take t1 ∈ (t, t̄) such that σ∗(t) =


(s1,s2,s3) t ≥ t1

(s2,s3) t < t1

is an equilibrium then for t1

we must have:

Γ(t1) = p

(⇐= ) : Suppose p = ΓSA(t1), then at students with type t1 are indifferent, and

h(ωSA
1 (t1), t)−h(ωSA

2 (t1), t)+∆(1−min{1
2
,

1
3F(t)

}) = p for t = t1

> ∀t > t1

< ∀t < t1

Thus an equilibrium with cutoff t1 exists.

iii) Since Γ(t1) is continuous in t1 for t1 ∈ (t, t̄), for all p ∈ (I SA,S SA) ∃t1 ∈ (t, t̄) such that

ΓSA(t1) = p. This means ΓSA,−1(p) is non-empty for all p ∈ (∆

2 ,S
SA). If p > S SA we cannot find

t1 such that ΓSA(t1) = p, and similarly for p≤I SA = ∆

2 .

If M SA exists then that means M SA = S SA which means there exists some t1 ∈ (t, t̄) such that

Γ(t1) = M SA which means ΓSA,−1(p) is non-empty for p = S SA.

Suppose ΓSA,−1(p) is non-empty for p = S SA. Then take t1 ∈ ΓSA,−1(p), t1 satisfies:

Γ(t1) = S SA

which means S SA is attained. This implies

M SA = S SA

hence M SA exists.
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iv) Take p ∈ (∆

2 ,S
SA]. If p = S SA and Γ−1(p) is empty, we will show that there is no cutoff

equilibrium. Γ−1(S SA) is empty means that there is no t1 ∈ (t, t̄) such that Γ(t1) = p for p =S SA,

so there cannot be a cutoff equilibrium.

Suppose Γ−1(p) is non-empty for p = S SA. If t1 /∈ Γ−1(p) then t1 cannot be a cutoff when

price is p such that t > t1 submits (s1,s2,s3) and t < t1submits (s2,s1,s3) since t1 is not indifferent

when cutoff is t1.

take t1 ∈ Γ−1(p) if Γ−1(p) is non-empty. If t1 ∈ Γ−1(p), then

h(ωSA
1 (t1), t)−h(ωSA

2 (t1), t)+∆(1−min{1
2
,

1
3F(t)

}) = p for t = t1

> ∀t > t1

< ∀t < t1

which means t1 is a cutoff equilibrium.
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APPENDIX B

APPENDIX TO CHAPTER 2

B.1 Other Results

Claim B.1. Suppose A2.1-A2.3 and A2.8 holds. For any pair of (symmetric) equilibria σ∗ and

σ̃ such that σ∗ is an equilibrium under P3 = ({q j}3
j=1, f (v),g(v)) and σ̃ is an equilibrium under

E3 = ({q j}3
j=1,0, f (v),g(v)), if

(i) all constrained student types v with π1(v)+π2(v) ≤ π̃1(v)+ π̃2(v) have π1(v)+ vπ2(v) ≥

π̃1(v)+ vπ̃2(v);

(ii) η < 1−q1−q2, x̃1 ≥ x1 and x̃2 < x2 ≤ q2

then π̃1(v′)+ π̃2(v′) < π1(v′)+π2(v′) and π̃1(v′) > π1(v′) for all v′ in some subset of V that

has positive measure. Moreover such students’ valuation v must satisfy q1
1−q2
≤ v≤ q1

1−η−q2
; where

π j(v) and π̃ j(v) are probability of type v entering school j in σ∗ and σ̃ respectively.

Proof. Suppose all types with valuation v that satisfy π1(v)+π2(v)≤ π̃1(v)+ π̃2(v) have π1(v)+

vπ2(v)≥ π̃1(v)+vπ̃2(v), then we must have π1(v)> π̃1(v), π̃2(v)> π2(v) for all such types. Then

there must be positive measure of constrained students that has weakly less probability of entering

s1 or s2 in σ̃ compared to σ∗ but has strictly larger entrance probability to s1 in σ̃ compared to σ∗,

i.e. π̃1(v′)+ π̃2(v′) < π1(v′)+π2(v′) and π̃1(v′) > π1(v′) for all v′ in some subset of V that has

positive measure. otherwise s1 would not be filled in σ̃ . Note that since x̃1 > x1, x̃2 < x2 ≤ q2 and
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η < 1−q1−q2 types for whom π̃1(v′)> π1(v′) must be increasing the probability with which they

are reporting s1 as top choice. This means they report s2 as top choice with positive probability in

σ∗ and s1 as top choice with positive probability in σ̃ . This means their valuation v must satisfy:

q1

x1
+ v

q2− x2

x1
≤ v

⇐⇒ v≥ q1

1−q2

from σ∗ and it must satisfy:

q1

x̃1
+ v

q2− x̃2

x̃1
≤ v

⇐⇒ v≥ q1

1−η−q2

Lemma B.1. Suppose A2.1-A2.3 and A2.8 holds. For any pair of (symmetric) equilibria σ∗ and σ̃

such that σ∗ is an equilibrium under P3 =({q j}3
j=1, f (v),g(v)) and σ̃ is an equilibrium under E3 =

({q j}3
j=1,0, f (v),g(v)), there exist a constrained student who is strictly better off in σ̃ compared

to σ∗ if and only if the following condition is satisfied:

(*) If

(i) all constrained student types v with π1(v)+π2(v) ≤ π̃1(v)+ π̃2(v) have π1(v)+ vπ2(v) ≥

π̃1(v)+ vπ̃2(v);

(ii) η < 1−q1−q2, x̃1 ≥ x1 and x̃2 < x2 ≤ q2

then some constrained student type v′ with π̃1(v′) > π1(v′) have v′ 6= q1
1−η−q2

for all σ∗and σ̃

of economies P3 and E3 respectively; where π j(v) is the probability of type v entering school j in

σ∗; π̃ j(v) is the probability of type v entering school j in σ̃ ; x j, x̃ j are the measures of students

who report j as first choice in equilibrium σ∗ and σ̃ respectively.

Proof. ( =⇒ ) : Suppose (*) is not satisfied. That is (i) and (ii) are satisfied but all constrained

student types v′ with π̃1(v′)> π1(v′) have v′= q1
1−η−q2

for some pairs of σ∗ and σ̃ . Take such pair of
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σ∗ and σ̃ , since π1(v)+vπ2(v)≥ π̃1(v)+vπ̃2(v) for all constrained students with π1(v)+π2(v)≤

π̃1(v)+ π̃2(v), such students are not better off in σ̃ compared to σ∗. Now we need to show that

constrained student types with v′ with π1(v′)+π2(v′) > π̃1(v′)+ π̃2(v′) are not better off, either.

Take any such v′. If π̃1(v′) ≤ π1(v′), since π̃2(v′)− π2(v′) < π1(v′)− π̃1(v′), π1(v) + vπ2(v) >

π̃1(v)+ vπ̃2(v), so such constrained students are not better off. If π̃1(v′) > π1(v′) since (*) does

not hold we have v′ = q1
1−η−q2

. Note that π̃1(v′) > π1(v′) and since x̃1 ≥ x1 the only way this can

happen is v′ increasing the probability with which he submits s1 as top choice. This means he was

not submitting it as top choice with probability one in σ∗. Note that constrained student type v′ is

not indifferent between submitting s1 as top choice and s2 as top choice since that would mean for

σ∗:

q1

x1
+ v′

q2− x2

x1
= v′

=⇒ v′ =
q1

x1 + x2−q2
=

q1

1−q2
6= q1

1−η−q2

which is not possible. Therefore, it must be the case that v′ submits s2 as top choice with

probability one in σ∗ and gets payoff v′. Whereas for σ̃ he is indifferent since:

q1

x̃1
+ v′

q2− x̃2

x̃1
= v

⇐⇒ v′ =
q1

1−η−q2

and we know the last line is true. So he gets payoff v′ in σ̃ . So he does not increase his payoff in

σ̃ compared to σ∗. This finishes the proof of the only if part.

(⇐= ) :

Suppose that, η ≥ 1−q1−q2, then by the Proposition 6 we are done.

Now suppose that η < 1− q1− q2. Note that unconstrained students enter to s1 or s2 with
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positive probability in σ∗. Otherwise that means they report s3 as top choice with probability one.

But a student cannot report s3 as top choice with positive probability p, since any deviation to

reporting s1 or s2 as top choice with probability p and keeping the strategy followed with 1− p

probability the same the student will get strictly higher payoff. So in σ̃ there must be positive

measure of constrained students who increases his total probability of getting into s1 or s2 in σ̃

compared to σ∗, i.e. π̃1(v)+ π̃2(v) > π1(v)+ π2(v) for v in some subset of V that has positive

measure. Otherwise q1 or q2 would not be filled in σ̃ which is not possible since 1−η > q1 +q2.

If any of such types has π1(v)+ vπ2(v) < π̃1(v)+ vπ̃2(v) we are done. So suppose π1(v)+

vπ2(v) ≥ π̃1(v)+ vπ̃2(v) for all such types, then we must have π1(v) > π̃1(v), π̃2(v) > π2(v) for

all such types. Then there must be positive measure of constrained students that has weakly less

probability of entering s1 or s2 in σ̃ compared to σ∗ but has strictly larger entrance probability to

s1 in σ̃ compared to σ∗, i.e. π̃1(v′)+ π̃2(v′)≤ π1(v′)+π2(v′) and π̃1(v′)> π1(v′) for all v′ in some

subset of V that has positive measure. otherwise s1 would not be filled in σ̃ .

If there is positive measure of types with π̃1(v′)+ π̃2(v′) = π1(v′)+π2(v′) and π̃1(v′)> π1(v′)

then there are constrained students strictly better off under σ̃ compared to σ∗. So suppose there

are no such types. Hence, π̃1(v′)+ π̃2(v′) < π1(v′)+π2(v′) and π̃1(v′) > π1(v′) for all v′ in some

subset of V that has positive measure. Take among such constrained student ones with v such that

v′ 6= q1
1−η−q2

. Such types must have positive measure by (*). Note that we must have π2(v)> π̃2(v)

for all such types. Take one such type and call it v′. Note also that 1−η = x̃1 + x̃2 ≤ x1 + x2 = 1.

Case 1: x̃1 ≥ x1 and x̃2 < x2

Since π̃1(v′)> π1(v′) and x̃1 ≥ x1, type v′ must have increased the probability with which he is

submitting s1 as top choice in σ̃ compared to σ∗. So in σ∗, v′ was not submitting s1 as top choice

with probability one so either he was indifferent between submitting s1 and s2 as top choice or

strictly preferring to submit s2 as top choice.

Subcase 1: x̃2 < x2 ≤ q2

By (*) we know that one such v′ with π̃1(v′) > π1(v′) must have v′ 6= q1
1−η−q2

. Suppose v′ is

indifferent in σ∗, then since he is not indifferent in σ̃ (because q1
x̃1
+ v′ q2−x̃2

x̃1
6= v′ by v′ 6= q1

1−η−q2
)
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and increasing the probability of submitting s1 as top choice in σ̃ compared to σ∗, he must be

submitting s1 as top choice with probability one in σ̃ . Since v′ is indifferent in σ∗, he must be

getting payoff equal to submitting s2 as top choice, which is v′ since x2 ≤ q2. In σ̃ , type v′ must

be getting at least v′ since if v′ deviates to reporting s2 as top choice with probability one, he could

get v′. Moreover, he must be getting more than v′ in σ̃ since we know that he is not indifferent

between submitting s1 and s2 as top choice. So v′′ becomes strictly better off in σ̃ compared to

σ∗and we are done.

So suppose now that v′ strictly prefers to submit s2 as top choice in σ∗. Hence submits s2 as

top choice with probability one in σ∗. So v′ gets v′ in σ∗. In σ̃ , v′ does not play s2 as top choice

with probability one and since he is not indifferent, he must be submitting s1 as top choice with

probability one. If he submitted s2 as top choice with probability one in σ̃ he would get v′ since

x̃2 < q2. Thus he must be getting at least v′ in σ̃ when submitting s1 as top choice with probability

one. If he were getting v′ he would be indifferent between submitting s1 and s2 as top choice,

which cannot happen. So v′ must be getting more than v′ in σ̃ so he is better off compared to σ∗

and we are done for this case.

Subcase 2: x̃2 ≤ q2 < x2

If v′ is strictly preferring to submit s2 as top choice or indifferent between submitting s1 and s2

as top choice, in both cases his payoff in σ∗ is v′ q2
x2

< v′. In σ̃ if v′ submits s2 as top choice with

probability one he gets v′ since x̃2 ≤ q2. Since he is submitting s2 as top choice with probability

less than one (may be zero) in σ̃ ,he must be getting at least v′. So v′ gets higher payoff in σ̃

compared to σ∗and we are done for this case.

Subcase 3: q2 < x̃2 < x2

In σ∗, since v′ is submitting s2 as top choice with positive probability therefore:

v′
q2

x2
≥ q1

x1

=⇒ v′ ≥ x2

x1

q1

q2
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In σ̃ since v′ increased the probability with which he is submitting s1 as top choice, this prob-

ability must be positive which means v′ must satisfy:

q1

x̃1
≥ v′

q2

x̃2

=⇒ v′ ≤ x̃2

x̃1

q1

q2
<

x2

x1

q1

q2

So we cannot have this case.

Case 2: x̃1 < x1 and x̃2 ≥ x2

Remember, for all constrained students with valuation v such that π̃1(v) + π̃2(v) > π1(v) +

π2(v), π1(v)> π̃1(v) and π̃2(v)> π2(v). Take one such type and call it v. Since π̃1(v)< π1(v) and

x̃1 < x1, type v must have decreased the probability with which he is playing s1 as top choice in σ̃

compared to σ∗. So v plays s1 as top choice with positive probability in σ∗ and he plays s2 as top

choice with positive probability in σ̃ .

Subcase 1: x̃2 ≥ x2 > q2.

In this case from σ∗, v must satisfy:

q1

x1
≥ q2

x2
v

=⇒ v≤ x2

x1

q1

q2

and from σ̃ , v must satisfy:

v
q2

x̃2
≥ q1

x̃1

=⇒ v≥ q1

q2

x̃2

x̃1
>

q1

q2

x2

x1

which is not possible.
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Subcase 2: x̃2 > q2 ≥ x2

In this case, from σ∗ v must satisfy:

q1

x1
+

q2− x2

x1
v≥ v

=⇒ v≤ q1

1−q2

and from σ̃ , v must satisfy:

q2

x̃2
v≥ q1

x̃1

=⇒ v≥ q1

q2

x̃2

x̃1
=

q1

x̃1
q2
x̃2

>
q1

x̃1
=

q1

1−η− x̃2
>

q1

1−η−q2

which is not possible.

Subcase 3: q2 ≥ x̃2 ≥ x2

In this case, from σ∗ v must satisfy:

q1

x1
+

q2− x2

x1
v≥ v

=⇒ v≤ q1

1−q2

and from σ̃ v must satisfy:

q1

x̃1
+

q2− x̃2

x̃1
v≤ v

=⇒ v≥ q1

x̃1 + x̃2−q2
=

q1

1−η−q2
>

q1

1−q2
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which is not possible.

Case 3: x̃1 < x1 and x̃2 < x2

Remember for all constrained students with type v such that π̃1(v)+ π̃2(v) > π1(v)+ π2(v),

π1(v) > π̃1(v) and π̃2(v) > π2(v). Take one such type and call it v. Since π̃1(v) < π1(v) and

x̃1 < x1, type v must have decreased the probability with which he is reporting s1 as top choice in

σ̃ compared to σ∗. So v reports s1 as top choice with positive probability in σ∗ and he reports s2

as top choice with positive probability in σ̃ .

Subcase 1: q2 < x̃2 < x2

If type v is indifferent between submitting s1 and s2 as top choice than his payoff under σ∗

would be vq2
x2

. Since type v is increasing his probability of submitting s2 as top choice, he must

be indifferent between submitting s1and s2 as top choice or strictly preferring to submit s2 as top

choice in σ̃ . In both situations payoff of type v is vq2
x̃2

which is strictly greater than vq2
x2

, so v

increases his payoff strictly in σ̃ compared to σ∗.

Suppose type v strictly prefers submitting s1 as top choice to submitting s2 as top choice under

σ∗. So he submits s1 as top choice with probability one. Then his payoff is q1
x1

at σ∗. If he

submitted s1 as top choice with probability one in σ̃ , then his payoff would be q1
x̃1

. That means in

σ̃ , v must be getting at least q1
x̃1

which is greater than q1
x1

. So v increases his payoff in σ̃ compared

to σ∗.

Subcase 2: x̃2 ≤ q2 < x2

If type v is indifferent between submitting s1 and s2 as top choice than his payoff under σ∗

would be vq2
x2

. Since type v is increasing his probability of submitting s2 as top choice, he must

be indifferent between submitting s1and s2 as top choice or strictly preferring to submit s2 as top

choice in σ̃ . In both situations payoff of type v is v which is strictly greater than vq2
x2

, so v increases

his payoff strictly in σ̃ compared to σ∗.

Suppose type v strictly prefers submitting s1 as top choice to submitting s2 as top choice. So

he submits s1 as top choice with probability one. Then his payoff is q1
x1

at σ∗. If he submitted s1 as

top choice with probability one in σ̃ , then his payoff would be q1
x̃1

. That means in σ̃ , type v must
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be getting at least q1
x̃1

which is greater than q1
x1

. So type v increases his payoff in σ̃ compared to σ∗.

Subcase 3: x̃2 < x2 ≤ q2

From σ∗, v must satisfy:

q1

x1
+ v

q2− x2

x1
≥ v

=⇒ v≤ q1

1−q2

From σ̃ , v must satisfy:

q1

x̃1
+ v

q2− x̃2

x̃1
≤ v

=⇒ v≥ q1

x̃1 + x̃2−q2
=

q1

1−η−q2
>

q1

1−q2

which is not possible. This completes the proof.

Claim B.2. Let σ∗ be an equilibrium of an economy P = ({q j}3
j=1, f (v),g(v)) without private

schools in which all unconstrained students report s1 as top choice, and σ̃ be an equilibrium of the

economy E = ({q j}3
j=1,1, f (v),g(v)). Let x1 and x̃1 be the corresponding measure of students who

report s1 as top choice in σ∗ and σ̃ respectively. If x̃2 < x2 ≤ q2, x̃1 > x1 and (x̃1−η)

(
1− q1

x̃1

)
>

q2− x̃2 then ∃ positive measure of constrained students with valuation v ∈ [ q1
1−q2

, q1
x̃1

x̃1−η

1−η−q2
]

Proof. Since x̃1 > x1, there must be positive measure of constrained students who increase proba-

bility of reporting s1 as top choice in σ̃ compared to σ∗. Such studens must be reporting s1 as top

choice with positive probability in σ̃ and s2 as top choice with positive probability in σ∗. Therefore

from σ∗ such students’ valuation v must satisfy:

q1

x1
+ v

q2− x2

x1
≤ v

⇐⇒ v≥ q1

1−q2
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and from σ̃ , v must satisfy:

q1

x̃1
+ v

q2− x̃2

x̃1−η
≥ v

⇐⇒ v≤ q1

x̃1

x̃1−η

1−η−q2

And finally note that q1
1−q2

< q1
x̃1

x̃1−η

1−η−q2
since x̃1 = 1− x̃2 and x̃2 < q2.

Claim B.3. Let σ∗ be an equilibrium of an economy P = ({q j}3
j=1, f (v),g(v)) without private

schools in which all unconstrained students report s1 as top choice, and σ̃ be an equilibrium of the

economy E = ({q j}3
j=1,1, f (v),g(v)). Let x1 and x̃1 be the corresponding measure of students who

report s1 as top choice in σ∗ and σ̃ respectively. If x̃2 < x2 ≤ q2, x̃1 > x1 and (x̃1−η)

(
1− q1

x̃1

)
≤

q2− x̃2 then x̃1 = 1 and there are constrained students who are strictly better off under σ̃ compared

to σ∗.

Proof. Since x̃1 > x1, there must be positive measure of constrained students who increase proba-

bility of reporting s1 as top choice in σ̃ compared to σ∗. Such studens must be reporting s1 as top

choice with positive probability in σ̃ and s2 as top choice with positive probability in σ∗. Therefore

such student must be indifferent in between reporting s1 as top choice or s2 as top choice or strictly

prefer reporting s2 as top choice in σ∗. In both cases such students with valuation v gets payoff v

in σ∗.

Since (x̃1−η)

(
1− q1

x̃1

)
≤ q2− x̃2 if a constrained student reports s1 as top choice and gets

rejected it is sure for him to get into s2 in second round. In that case payoff for constrained student

with valuation v from reporting s1 as top choice is

q1

x̃1
+ v
(

1− q1

x̃1

)
which is strictly greater than payoff from reporting s2 as top choice which is v. And note that this

is true for any v. So only equilibrium this can happen is equilibrium in which x̃1 = 1.

So everyone must play s1 as top choice in such equilibrium, then this yields payoff q1 + v(1−
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q1) to any type with valuation vector v and this is greater than v. So constrained students who

increase the probability of reporting s1 as top choice in σ̃ compared to σ∗ are strictly better off

under σ̃ .

Lemma B.2. Suppose A2.1-A2.4 holds. Take economies P3 = ({q j}3
j=1, f (v),g(v)) and E3 =

({q j}3
j=1,1, f (v),g(v)). For any pair of equilibrium σ∗ and σ̃ such that σ∗ is an equilibrium

under P3 in which all unconstrained students report s1 as top choice with probability one and σ̃

is an equilibrium under E3, there exist a constrained student who is strictly better off in σ̃ com-

pared to σ∗or all constrained students get the same payoff under both equilibria if and only if the

following condition is satisfied for any such pair of σ∗ and σ̃ :

(***) If we have

(i)x̃2 < x2 ≤ q2, x̃1 > x1 and (x̃1−η)(1− q1
x̃1
)> q2− x̃2

then one of the following conditions is satisfied

(1) ∃ positive measure of constrained students with valuation v ∈ [ q1
1−q2

, q1
x̃1

x̃1−η

1−η−q2
)

(2) there is no constrained students with valuation v < q1
1−q2

(3) positive measure of constrained students with valuation v < q1
1−q2

have q1
x1
+ vq2−x2

x1
< q1

x̃1
+

vq2−x̃2
x̃1−η

or all constrained students with valuation v < q1
1−q2

have q1
x1
+ vq2−x2

x1
= q1

x̃1
+ vq2−x̃2

x̃1−η
;

where x j, x̃ j are the measures of students who report j as first choice in equilibrium σ∗ and σ̃

respectively.

Proof. ( =⇒ ): Suppose the condition does not hold. That means: x̃2 < x2 ≤ q2, x̃1 > x1 and

(x̃1−η)(1− q1
x̃1
)> q2− x̃2.

In this case note that a constrained student with valuation v strictly prefers reporting s1 as top

choice to s2 as top choice in σ∗ if

q1

x1
+ v

q2− x2

x1
> v

⇐⇒ v′ <
q1

1−q2
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and strictly prefers reporting s2 as top choice in σ∗ if

v >
q1

1−q2

and he must be indifferent in σ∗ when v = q1
1−q2

Also, note that if a constrained student with valuation v strictly prefers reporting s1 as top

choice to s2 as top choice in σ̃ if

q1

x̃1
+ v

q2− x̃2

x̃1−η
> v

⇐⇒ v <
q1

x̃1

x̃1−η

1−η−q2

and strictly prefers reporting s2 as top choice in σ̃ if

v >
q1

x̃1

x̃1−η

1−η−q2

and he must be indifferent in σ̃ when v = q1
x̃1

x̃1−η

1−η−q2
. Also, remember from previous lemma q1

1−q2
<

q1
x̃1

x̃1−η

1−η−q2
since x̃1 = 1− x̃2 and x̃2 < q2. And note that in both σ̃ and σ∗ a constrained student

reporting s2 as top choice with positive probability gets v as payoff since x̃2 < x2 ≤ q2.

Note that there is no constrained student with valuation v such that v ∈ [ q1
1−q2

, q1
x̃1

x̃1−η

1−η−q2
).

First, let’s check constrained students with valuation v ≥ q1
x̃1

x̃1−η

1−η−q2
if they exist. Such con-

strained students strictly prefer reporting s2 as top choice to s1 as top choice in σ∗ since v ≥
q1
x̃1

x̃1−η

1−η−q2
> q1

1−q2
, so they report s2 as top choice and get v in σ∗. Constrained students with val-

uation v = q1
x̃1

x̃1−η

1−η−q2
are indifferent between reporting s1 and s2 as top choice in σ̃ , so they must

get payoff equal to reporting s2 as top choice in σ̃ which is v. Constrained students with valuation

v > q1
x̃1

x̃1−η

1−η−q2
strictly prefer reporting s2 as top choice to reporting s1 as top choice in σ̃ , so they

report s2 as top choice and get payoff v in σ̃ . Therefore, if constrained students with valuation

v≥ q1
x̃1

x̃1−η

1−η−q2
exist, they get the same payoff under both equilibria.
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Note that there is positive measure of constrained students with valuation v that satisfy v <

q1
1−q2

. Note that such constrained students strictly prefer reporting s1 as top choice to s2 as top

choice in both σ∗ and σ̃ . Payoffs of students with valuation v that satisfy v < q1
1−q2

are q1
x̃1
+ vq2−x̃2

x̃1−η

and q1
x1
+ vq2−x2

x1
in σ̃ and σ∗ respectively. Then that means there are constrained students who

are strictly worse off under σ̃ compared to σ∗ and no constrained student is strictly better off

under σ̃ compared to σ∗ since positive measure of constrained students with valuation v < q1
1−q2

have q1
x̃1
+ vq2−x̃2

x̃1−η
< q1

x1
+ vq2−x2

x1
; and no constrained student with valuation v has q1

x̃1
+ vq2−x̃2

x̃1−η
>

q1
x1
+ vq2−x2

x1
. This finishes the proof of only if part.

(⇐= ) :First note that there are 3 cases since x̃1+ x̃2 = x1+x2 = 1: x̃1 < x1 and x̃2 > x2; x̃1 = x1

and x̃2 = x2; and finally x̃1 > x1 and x̃2 < x2 .

Case 1: x̃1 < x1 and x̃2 > x2

In this case, there is positive measure of constrained students who decreased the probability

reporting s1 as top choice. Take one such type and call this type v. That means type v must submit

s1 as top choice with positive probability at σ∗ and submit s2 as top choice with positive probability

in σ̃ .

Subcase 1: x̃2 > x2 > q2

Then from σ∗ v satisfy:

q1

x1
≥ v

q2

x2

=⇒ v≤ q1

x1

x2

q2

and from σ̃ v satisfy:

q1

x̃1
≤ v

q2

x̃2

=⇒ v≥ x̃2

q2

q1

x̃1
>

x2

q2

q1

x1

which is not possible.
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Subcase 2: x̃2 > q2 ≥ x2

From σ∗ v satisfy:

q1

x1
+ v

q2− x2

x1
≥ v

=⇒ q1

x1
≥ v

x1 + x2−q2

x1

=⇒ v≤ q1

1−q2

From σ̃ v satisfy:

q1

x̃1
≤ v

q2

x̃2

=⇒ v≥ x̃2

q2

q1

x̃1
=

q1

x̃1
q2
x̃2

>
q1

x̃1
=

q1

1− x̃2
>

q1

1−q2

which is not possible.

Subcase 3: q2 ≥ x̃2 > x2

Then from σ∗, v satisfy:

q1

x1
+ v

q2− x2

x1
≥ v

=⇒ v≤ q1

1−q2

and he gets payoff q1
x1
+ vq2−x2

x1
. In σ̃ if (x̃1−η)

(
1− q1

x̃1

)
≤ q2− x̃2 then since the following is

always true

q1

x̃1
+ v
(

1− q1

x̃1

)
> v

he gets q1
x̃1
+ v
(

1− q1
x̃1

)
and reports s1 as top choice with probability one. Contradiction.

If (x̃1−η)

(
1− q1

x̃1

)
> q2− x̃2 from σ̃ then v satisfy:
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q1

x̃1
+ v

q2− x̃2

x̃1−η
≤ v

=⇒ q1

x̃1
≤ v

x̃1 + x̃2−η−q2

x̃1−η

=⇒ v≥ x̃1−η

x̃1

q1

1−η−q2
=

1− x̃2−η

1−η−q2

q1

x̃1
≥ 1− x̃2

1−q2

q1

1− x̃2
=

q1

1−q2

Note that the inequality in the penultimate line is strict unless x̃2 = q2, if the inequality is strict

then this case is impossible (combining with the inequality we get from σ∗). Then, x̃2 = q2 and v

is indifferent between ranking s1 and s2 as top choice in both σ∗ and σ̃ . Hence, he gets v in both

equilibria, and v = q1
1−q2

.

So in the case x2 < x̃2 = q2 all constrained students decreasing probability of submitting s1 as

top choice gets the same payoff in σ∗ and σ̃ . Consider a constrained student who increases the

probability of submitting s1 as top choice (if exists). Take any such student and call it type v′. In

σ∗ since he ranks s2 as top choice with positive probability, type v′ either strictly prefers ranking s2

as top choice or indifferent between ranking s1 as top choice or ranking s2 as top choice. In either

case he gets v′ in σ∗. In σ̃ , if he had ranked s2 as top choice with probability one, he would get

payoff v′, then equilibrium strategy of v′ must give him at least v′ in σ̃ .

Now, check a constrained student who does not change the probability of submitting s1 as top

chocie (if exists). Call it type v′. Note that indifference condition for reporting s1 or s2 as top

choice is

q1

x1
+ v

q2− x2

x1
= v

⇐⇒ v =
q1

1−q2
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for σ∗ and

q1

x̃1
= v

⇐⇒ v =
q1

1−q2

for σ̃ . Therefore, if type v′ is indifferent between ranking s1 as top choice and s2 as top choice

in one of σ∗ or σ̃ , he has v′ = q1
1−q2

and indifferent in both equilibria. Hence, he gets v′ in both

equilibria and we are done for this case. Suppose he is not indifferent in σ∗ or σ̃ . Since he does not

change the probability with which he submits s1 as top choice between σ∗ and σ̃ , he must strictly

prefer submitting s1 as top choice to submitting s2 as top choice or vice versa in both equilibria.

Let’s check the first case. In σ∗, he gets payoff: x1
q1
+ v′ q2−x2

x1
and in σ̃ he gets payoff q1

x̃1
. We want

to show:
q1

x̃1
≥ q1

x1
+ v′

q2− x2

x1

which is true iff

q1(x1− x̃1)

x̃1x1
≥ v′

q2− x2

x1

⇐⇒ v′ ≤ q1(x1− x̃1)

x̃1(q2− x2)
=

q1(x1− x̃1)

x̃1(x̃2− x2)
=

q1

x̃1

which is true since from σ̃ , we have: q1
x̃1

> v′ which implies the desired condition.

Now, suppose v′ strictly prefers ranking s2 as top choice to ranking s1 as top choice in both σ∗

and σ̃ . Then, in both equilibria he gets v and we are done for this case, too.

Case 2: x̃1 = x1 and x̃2 = x2

Note that in this case there is positive measure of constrained studenst increasing the proba-

bility with which he reports s1 as top choice in σ̃ compared to σ∗, if and only if there is positive

measure of of constrained students decreasing the probability of reporting s1 as top choice in σ̃

compared to σ∗. Suppose there are such types of constrained students, if not then no constrained
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student changes the probability of reporting s1 as top choice in σ̃ from σ∗. In that case, look at

only the constrained students who does not change the probability in the analysis below.

Subcase 1: x̃2 = x2 > q2

If there is a type who did not change the probability with which he reports s1 as top choice his

payoff is same across the two equilibria in this case.

Let’s look at the type which increases the probability with which he ranks s1 as top choice

in σ̃ compared to σ∗. Call this type v. He must be ranking s2 as top choice in σ∗ with positive

probability and ranking s1 as top choice with positive probability in σ̃ .

So from σ∗ v satisfy:

v
q2

x2
≥ q1

x1

=⇒ v≥ x2

x1

q1

q2

and from σ̃ v satisfy:

q1

x̃1
≥ v

q2

x̃2

=⇒ v≤ x̃2

x̃1

q1

q2
=

x2

x1

q1

q2

So we must have v = x2
x1

q1
q2

. Then type v must be indifferent between reporting s1 as top choice and

reporting s2 as top choice both in σ∗ and σ̃ . So, in σ∗ he gets vq2
x2

which equals vq2
x̃2

, and the latter

is what he gets in σ̃ .

Now check the type who decreases the probability of reporting s1 as top choice in σ̃ compared

to σ∗. Call such student type v. Such student reports s1 as top choice with positive probability in

σ∗ and reports s2 as top choice with positive probability in σ̃ .

So from σ∗ v satisfy:
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v
q2

x2
≤ q1

x1

=⇒ v≤ x2

x1

q1

q2

and from σ̃ v satisfy:

q1

x̃1
≤ v

q2

x̃2

=⇒ v≥ x̃2

x̃1

q1

q2
=

x2

x1

q1

q2

So we must have v = x2
x1

q1
q2

. Then type v must be indifferent between reporting s1 as top choice and

reporting s2 as top choice both in σ∗ and σ̃ . So in σ∗ he gets vq2
x2

which equals vq2
x̃2

, and the latter

is what he gets in σ̃ .

Subcase 2: x̃2 = x2 ≤ q2

If there is a type who does not change the probability of reporting s1 as top choice in σ̃ com-

pared to σ∗, then this type’s payoff is v in both σ∗ and σ̃ if he does not report s1 as top choice with

positive probability. If he reports s1 with positive probability in these equilibria, then his payoff is

higher in σ̃ compared to σ∗ since q1
x1
+vq2−x2

x1
< q1

x̃1
+vq2−x̃2

x̃1−η
for the case (x̃1−η)

(
1− q1

x̃1

)
> q2− x̃2

and q1
x1
+ vq2−x2

x1
< q1

x̃1
+ v
(

1− q1
x̃1

)
for the case (x̃1−η)

(
1− q1

x̃1

)
≤ q2− x̃2

Let’s look at the type which increases the probability with which he ranks s1 as top choice in σ̃

compared to σ∗. Call this type v. Since this type reports s2 as top choice with positive probability,

either he strictly prefers ranking s2 as top choice to ranking s1 as top choice or he is indifferent

between the two in σ∗. In either case, he gets payoff v. If he had ranked s2 as top choice with

probability one, he would get v in σ̃ . So with his equilibrium strategy he must get at least v in σ̃ .

Let’s look at the type which decreases the probability with which he ranks s1 as top choice in

σ̃ compared to σ∗. Call this type v′. Type v′ submits s1 as top choice with positive probability in
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σ∗ and reports s2 as top choice with positive probability in σ̃ . For σ̃ , (x̃1−η)

(
1− q1

x̃1

)
> q2− x̃2,

otherwise type v′ would not rank s2 as top choice with positive probability in σ̃ .

Then from σ∗, v satisfy:

q1

x1
+ v′

q2− x2

x1
≥ v′

=⇒ v′ ≤ q1

1−q2

From σ̃ , v satisfy:

v′ ≥ q1

x̃1
+ v′

q2− x̃2

x̃1−η

=⇒ v′
(

x̃1 + x̃2−η−q2

x̃1−η

)
≥ q1

x̃1

=⇒ v′ ≥ x1−η

x1

q1

1−η−q2
≥ x1

1−q2

q1

x1
=

q1

1−q2

Note that inequality in the penultimate line is strict unless x2 = q2. So, there is no student increasing

or decreasing the probability with which he ranks s1 as top choice in σ̃ compared to σ∗ when

x2 = x̃2 < q2. So suppose x2 = x̃2 = q2.

Then from σ∗, v satisfy:

q1

x1
≥ v′

=⇒ v′ ≤ q1

x1

and from σ̃ , v satisfy:

q1

x̃1
≤ v′

=⇒ v′ ≥ q1

x1
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Thus, we must have v′ = q1
x1

and v′ is indifferent between reporting s1 as top choice and reporting

s2 as top choice in both σ∗ and σ̃ . So he gets the same payoff in both equilibria.

Case 3: x̃1 > x1 and x̃2 < x2

Positive measure of constrained students must have increased the probability with which they

rank s1 as top choice. Take such a student and call it type v′.

Subcase 1: x2 > x̃2 > q2

In σ∗, type v′ ranks s2 as top choice with positive probability. So either he strictly prefers

ranking s2 as top choice or he is indifferent between ranking s2 as top choice and s1 as top choice.

In either case, his payoff in σ∗ is v′ q2
x2

. In σ̃ , if he ranked s2 as top choice with probability one, he

would get v′ q2
x̃2

, so with his equilibrium strategy he must be getting at least v′ q2
x̃2

which is greater

than what he gets in σ∗. So, this case is done.

Subcase 2: x2 > q2 ≥ x̃2

In σ∗ type v′ ranks s2 as top choice with positive probability. So either he strictly prefers

ranking s2 as top choice or he is indifferent between ranking s2 as top choice and s1 as top choice.

In either case, his payoff in σ∗ is v′ q2
x2

. In σ̃ , if he ranked s2 as top choice with probability one, he

would get v′, so with his equilibrium strategy he must be getting at least v′ which is greater than

what he gets in σ∗. So, this case is done.

Subcase 3: q2 ≥ x2 > x̃2

Suppose (i) is not satisfied: (x̃1−η)

(
1− q1

x̃1

)
≤ q2− x̃2. In this case result follows from the

last Claim.

Suppose (i) is satisfied: (x̃1−η)

(
1− q1

x̃1

)
> q2− x̃2. In this case note that a constrained student

with valuation v strictly prefers reporting s1 as top choice to s2 as top choice in σ∗ if

q1

x1
+ v

q2− x2

x1
> v

⇐⇒ v′ <
q1

1−q2
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and strictly prefers reporting s2 as top choice in σ∗ if

v >
q1

1−q2

and he must be indifferent in σ∗ when v = q1
1−q2

Also, note that if a constrained student with valuation v strictly prefers reporting s1 as top

choice to s2 as top choice in σ̃ if

q1

x̃1
+ v

q2− x̃2

x̃1−η
> v

⇐⇒ v <
q1

x̃1

x̃1−η

1−η−q2

and strictly prefers reporting s2 as top choice in σ̃ if

v >
q1

x̃1

x̃1−η

1−η−q2

and he must be indifferent in σ̃ when v = q1
x̃1

x̃1−η

1−η−q2
. Also, remember from previous lemma q1

1−q2
<

q1
x̃1

x̃1−η

1−η−q2
since x̃1 = 1− x̃2 and x̃2 < q2. And note that in both σ̃ and σ∗ a constrained student

reporting s2 as top choice with positive probability gets v as payoff since x̃2 < x2 ≤ q2.

First, let’s check constrained students with valuation v ≥ q1
x̃1

x̃1−η

1−η−q2
if they exist. Such con-

strained students strictly prefer reporting s2 as top choice to s1 as top choice in σ∗ since v ≥
q1
x̃1

x̃1−η

1−η−q2
> q1

1−q2
, so they report s2 as top choice and get v in σ∗. Constrained students with val-

uation v = q1
x̃1

x̃1−η

1−η−q2
are indifferent between reporting s1 and s2 as top choice in σ̃ , so they must

get payoff equal to reporting s2 as top choice in σ̃ which is v. Constrained students with valuation

v > q1
x̃1

x̃1−η

1−η−q2
strictly prefer reporting s2 as top choice to reporting s1 as top choice in σ̃ , so they

report s2 as top choice and get payoff v in σ̃ . Therefore, if constrained students with valuation

v≥ q1
x̃1

x̃1−η

1−η−q2
exist, they get the same payoff under both equilibria.

Suppose now there exists positive measure of constrained students with valuation
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v ∈ [ q1
1−q2

, q1
x̃1

x̃1−η

1−η−q2
). Constrained students with v = q1

1−q2
are indifferent between reporting s1 and

s2 as top choice in σ∗, so they must get v in σ∗. Constrained students with q1
1−q2

< v < q1
x̃1

x̃1−η

1−η−q2

strictly prefer reporting s2 as top choice in σ∗, so they must be reporting s2 as top choice and get

payoff v. So all constrained students with valuation v ∈ [ q1
1−q2

, q1
x̃1

x̃1−η

1−η−q2
) get payoff of v in σ∗.

Since such students have v < q1
x̃1

x̃1−η

1−η−q2
, in σ̃ they strictly prefer reporting s1 as top choice, so they

must be getting more than payoff v under σ̃ and this case is done.

Suppose there is no constrained student with valuation v ∈ [ q1
1−q2

, q1
x̃1

x̃1−η

1−η−q2
).

Suppose also that there is no constrained student with valuation v < q1
1−q2

. Then that means all

constrained students get the same payoff and this case is done.

Suppose there are constrained students with valuation v < q1
1−q2

. Then all such students must

strictly prefer reporting s1 as top choice to s2 as top choice in both σ∗ and σ̃ . If positive measure

of these students have valuation v′ that satisfy

q1

x1
+ v′

q2− x2

x1
<

q1

x̃1
+ v′

q2− x̃2

x̃1−η

then this case is done since left hand side and right hand side are payoffs from reporting s1 as top

choice in σ∗ and σ̃ respectively. Suppose there is no constrained student with valuation valuation

v that satisfy v < q1
1−q2

and q1
x1
+ vq2−x2

x1
< q1

x̃1
+ vq2−x̃2

x̃1−η
. Then suppose all constrained students with

valuation v that satisfy v < q1
1−q2

have

q1

x1
+ v

q2− x2

x1
=

q1

x̃1
+ v

q2− x̃2

x̃1−η

Then all constrained students with valuation v that satisfy v < q1
1−q2

get the same payoff under

σ∗ and σ̃ , and this case is done. This finishes the proof.
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B.2 Proofs of Section 3

Proof of Proposition 2.1

Proof. (Modified from proof of Theorem 1 Abdulkadiroğlu, Che, and Yasuda (2011)) Take any

equilibrium (symmetric) of BM. Let σ∗c (v) and σ∗u (v) be equilibrium strategies under BM of con-

strained and unconstrained students respectively. Let πc
j (v) and πu

j (v) be the probabililties of

constrained students and unconstrained students with valuation v going to school j respectively

when they play the equilibrium strategies. Consider a constrained student with valuation vector

v′ playing strategy σ∗c (v) with probability (1−η) f (v) and playing σ̃u(v) with probability ηg(v)

where σ̃u(v) is modification of σ∗u (v) such that when v′ is playing strategy σ∗u (v) he modifies it

such that he adds sm to the bottom of his list whereas an unconstrained student does not submit sm

in his preferences since he prefers sp to it. Then under this strategy probability of going to school

j < m for student with vi is:

∑
v

π
c
j (v) f (v)(1−η)+π

u
j (v)g(v)η = q j

Note that the equality above must hold in equilibrium: Left hand side is the measure of students

who enter school j in equilibrium and right hand side is the measure of seats at school j. Trivially,

left hand side cannot be greater than right hand side. Right hand side cannot be greater than left

hand side. Suppose it is for some j < m. That means no unconstrained student went to sp in this

equilibrium since they could have deviated to writing s j to the bottom of their list and be assigned

to s j which would make them better compared to sp. Also we must have that, no one (constrained

student) is assigned to smin this equilibrium, otherwise such student could include j just above smin

his preference list and be assigned to school j. Then since no unconstrained student is assigned to

private school, we must have ∑
m−1
j=1 q j > 1 which contradicts one of the assumptions of the model

That means constrained student with v will go to sm with probability 1−∑
m−1
j=1 q j under this
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strategy. So his expected utility under this strategy is:

∑q jvi
j +

(
1−

m−1

∑
j=1

q j

)
vi

m

which is equal to his utility under DA. Since this is not necessarily an equilibrium strategy under

BM, thus his utility under BM equilibrium must be greater than or equal to his utility under DA.

Proof of Claim 2.1

Proof. Suppose not, that is k+η ≤ q1, then we must have 1−η − k ≥ q2. Otherwise we would

have (1−η)+η < q1 + q2 < 1 which is contradiction. So we must have at least q2 measure of

constrained students who report s2 as top choice. Payoff of such constrained students is

v
q2

1−η− k

which is less than or equal to v, then such a constrained student can deviate to reporting truthfully

and get utility of 1. Hence, we get contradiction.

Proof of Remark 2.2

Proof. If number of students reporting s2 as top choice is larger than q2, then constrained students

with valuation vector v reporting s1 as top choice will get payoff of

q1

k+η

since k+η measure of students apply to q1 measure of seats in the first round so each has q1
k+η

probability of entering and they will not have any chance of getting into s2 (since s2 is filled in first
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round). Constrained students with valuation v reporting s2 as top choice gets payoff of

v
q2

1−η− k

since 1−η−k measure of students apply to q2 measure of seats in first round and 1−η−k > q2,

each student has q2
1−η−k chance of entering to s2. And they do not have any chance to get into s1

since s1 is filled in first round.

If number of students reporting s2 as top choice is smaller than q2 constrained students with

valuation vector v reporting s2 as top choice will get payoff of v since they get into s2 for sure in

the first round. And constrained students with valuation vector v reporting s1 as top choice will get

payoff of
q1

k+η
+ v

q2− (1−η− k)
k

First term follows from s1 being filled in the first round, so any applicant of s1 in the first round

can enter with probability q1
k+η

. To understand second term note that since s2 is not filled in the

first round, so a student who reported s1 as top choice must have reported s2 as second choice. In

second round k(1− q1
k+η

) students apply to remaining q2− (1−η− k) capacity which leads to the

(unconditional) probability q2−(1−η−k)
k of entry to s2. Note that we cannot have q2− (1−η−k)>

k
(

1− q1
k+η

)
for any 0≤ k ≤ 1−η since this is equivalent to

k
k+η

q1 > 1−η−q2

Left hand side is largest when k = 1−η , plugging in k = 1−η , inequality becomes q2 > (1−

η)(1−q1).

Proof of Claim 2.2

Proof. If type v submits the first choice truthfully he gets q1
k+η

since s2 is also filled in the first

round.
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If type v submits s2 as top choice truthfully, he gets v q2
1−η−k . Then in the equilibrium he submits

s1 as top choice with probability one if

q1

k+η
> v

q2

1−η− k

⇐⇒ v <
q1

q2

(1−η− k)
k+η

Other conditions can be obtained similarly.

Proof of Claim 2.3

Proof. ( =⇒ ) : Suppose there is less than q2 measure constrained students for whom v≥ q1
1−q2

. Let

k denote the measure of constrained students who report s1 as top choice. I want to show that there

cannot be an equilibrium with k ≤ 1−η − q2. For k = 1−η − q2 to be equilibrium we need q2

measure of constrained students who has v≥ c(1−η−q2) =
q1

1−q2
which cannot happen. Note that

we cannot have an equilibrium with k < 1−η−q2, either. To have such an equilibrium, we need

to have 1−η−k measure of constrained students for whom v≥ c(k). Note that 1−η−k > q2 and

c(k)> q1
1−q2

since k < 1−η−q2 and c(.) is strictly decreasing. So we need more than q2 measure

of constrained students with v > q1
1−q2

which is not possible.

(⇐= ) : If there are q2 measure of constrained students for whom v ≥ q1
1−q2

, then there is

an equilibrium in which constrained students with v ≥ q1
1−q2

report s2 as top choice and other

constrained students report s1 as top choice, so in this equilibrium we have k = 1−η−q2.

Suppose there are more than q2 measure of constrained students with v≥ q1
1−q2

. If measure of

constrained students with v> q1
1−q2

is equal to q2 then we have an equilibrium in which constrained

students with v> q1
1−q2

report s2 as top choice and other constrained students report s1 as top choice.

If measure of constrained students with v > q1
1−q2

is less than q2 then we have an equilibrium in

which q2 measure of constrained students with v ≥ q1
1−q2

report s2 as top choice some and other

constrained students report s1 as top choice. So suppose measure of constrained students with

v > q1
1−q2

is larger than q2. That means there are less than 1− η − q2 measure of constrained
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students with v≤ q1
1−q2

= c(1−η−q2). So we have less than x students for whom v≤ c(x) when

x = 1−η−q2

Suppose c(0) < 1, i.e. q1
q2

1−η

η
< 1, if all constrained students have v ≥ q1

q2

1−η

η
then there is

an equilibrium in which all constrained students report s2 as top choice. Suppose now some

constrained students have v< q1
q2

1−η

η
= c(0). That means we have more than x constrained students

that has v < c(x) when x = 0. Note that c(.) is a decreasing continuous function, so there must be

x > 0 such that there are x′ ≥ x students with v≤ c(x) and x′′ ≤ x students with v < c(x) by the last

sentence of the last paragraph. Therefore, we have an equilibrium in which constrained students

with v < c(x) report s1 as top choice and x− x′′ of constrained students with v = c(x) report s1 as

top choice.

Suppose that c(0)> 1, that means we have more than x constrained students that has v < c(x)

when x = 0 (all constrained students to be precise). Then by the same arguments as in previous

paragraph, there is an equilibrium.

Proof of Claim 2.4

Proof. Suppose 1−η− k < q2. Then some of the constrained students for whom v > (1−η)q1
1−η−q2

are

reporting s1 as top choice with positive probability p > 0. Their payoff is q1
k+η

+vq2−(1−η−k)
k since

a list that reports s1 as top choice must report s2 as second choice, otherwise such a list will get

only expected payoff of q1
k+η

. We want to show

q1

k+η
+ v

q2− (1−η− k)
k

< v

⇐⇒ v >
k

k+η

q1

1−η−q2

which is true by (1−η)q1
1−η−q2

≥ k
k+η

q1
1−η−q2

since right hand side is increasing in k and k can be at most

1−η . So such students would deviate to reporting s2 as top choice. We get contradiction. Note

also that 1−η−q2 > 0 by A2.5.
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Proof of Lemma 2.1

Proof. Let’s take a symmetric equilibrium σ∗ of BM, let k denote the total measure of constrained

students who report s1 as top choice in this equilibrium. If there is no other equilibrium, we are

done. Suppose there are other equilibria. Take any of them and call it σ̃ . Suppose for contradiction

total measure of constrained students who report s1 as top choice in σ̃ is k′ 6= k. From Claim

2.2, we know that q1
q2

(1−η−k)
k+η

is the threshold for v such that, if v is above the threshold for a

student, that student submits s2 as top choice and if v is below the threshold, that student submits

s1 as top choice and the student is indifferent in case of equality in σ∗ and similarly for σ̃ . Let

k′ > k, then q1
q2

(1−η−k)
k+η

> q1
q2

(1−η−k′)
k′+η

, so threshold decreases when k changes to k′ and measure

of constrained students who are above the threshold weakly increases. That means total measure

of constrained students who report s2 as top choice weakly increases in σ̃ compared to σ∗. But

this is not possible since k′ > k. Now, suppose k′ < k then q1
q2

(1−η−k)
k+η

< q1
q2

(1−η−k′)
k′+η

, so threshold

increases when k changes to k′ and measure of constrained students who are above the threshold

weakly decreases. That means total measure of constrained students who report s2 as top choice

weakly decreases in σ̃ compared to σ∗. But this is not possible since k′ < k. So σ∗ and σ̃ have

the same i(k). Students with v 6= c(k) must play the same strategy in both equilibria, students with

type v = c(k) must play the same strategy in both symmetric equilibria since otherwise k would be

different for σ∗ and σ̃ .

By the assumptions and Claim 2.4, total measure of constrained students who report s2 as top

choice must be at least q2, so k must be less than or equal to 1−η − q2. By Claim 2.1 we also

know k > q1−η .

Also, by Claim 2.2 for given k, a constrained student type v reports s1 as top choice if we have:

v <
q1

q2

(1−η− k)
k+η

Note that if q1
q2

(1−η−k)
k+η

≥ 1 we must have k = (1−η) since all constrained students will report

s1 as top choice. This is not possible since
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q1

q2

(1−η− k)
k+η

≥ 1

=⇒ k ≤ q1

q2 +q1
−η

=⇒ k < 1−η

So we must have:

q1

q2

(1−η− k)
k+η

< 1

⇐⇒ k >
q1

q1 +q2
−η

Thus we have k ∈ [max{ q1
q1+q2

−η ,0},1−η−q2]\{ q1
q1+q2

−η}. Note that this set is always well

defined: we cannot have q1
q1+q2

−η ≥ 1−η−q2 since this is true iff q2 +q1−1≥ 0 which is not

true by assumptions of the model.

Take any x ∈ [max{ q1
q1+q2

−η ,0},1−η − q2] \ { q1
q1+q2

−η}, then consider the distribution of

preferences such that there are x measure of constrained students with valuation vectors such that

v ≤ c(x) = q1
q2

(1−η−x)
x+η

and 1−η − x measure of constrained students with valuation vectors such

that v ≥ c(x) = q1
q2

(1−η−x)
x+η

. To see such types can exist note that i(.) is decreasing so it is enough

to show c( q1
q1+q2

−η)≤ 1 and c(1−η−q2)> 0. We have

c(
q1

q1 +q2
−η) =

q1

q2

1− q1
q1+q2
q1

q1+q2

= 1

and

c(1−η−q2) =
q1

q2

q2

1−q2
=

q1

1−q2
> 0
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Proof of Lemma 2.2

Proof. By assumptions A2.1-A2.6 and Claim 2.4 we have 1− η − k ≥ q2. So type v students

reporting s1 as top choice under this equilibrium of BM they get payoff:

q1

k+η

And under DA they get payoff:

q1 + v
q2

(1−η)

They are weakly better off in BM compared to DA iff

q1

k+η
≥ q1 + v

q2

(1−η)

(and strictly better off iff inequality is strict) which is equivalent to showing:

v≤ q1(1−η− k)(1−η)

q2(k+η)

which is the condition we gave.

Type v students report s2 as top choice under this equilibrium of BM they get payoff:

v
q2

1−η− k

and under DA they get payoff:

q1 + v
q2

(1−η)

They are weakly better off in BM compared to DA iff

v
q2

1−η− k
≥ q1 + v

q2

(1−η)

(and strictly better off iff inequality is strict) which is equivalent to showing
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v≥ (1−η− k)(1−η)q1

kq2

which is the condition we provided.

Finally, we have c(k) = q1
q2

1−η−k
k+η

so c̄(k)> c(k) iff

q1(1−η)(1−η− k)
q2k

>
q1

q2

1−η− k
k+η

The last inequality is equivalent to

η(1−η− k)> 0

which is true since 1−η− k ≥ q2. And c(k)< c(k) iff

(1−η− k)(1−η)q1

(k+η)q2
<

q1

q2

1−η− k
k+η

which is true.

Proof of Lemma 2.3

Proof. By A2.1-A2.6 and Claim 2.4 we have 1− η − k ≥ q2. Let’s prove the first part of the

proposition. Suppose k = 0, then all constrained students report s2 as top choice with probability

one in this equilibrium. So a constrained student with valuation v gets:

v
q2

1−η

under BM and under DA he gets:

q1 + v
q2

(1−η)

which is greater than his payoff under BM.

Now, I prove the second part of the Lemma.
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(⇐= ) : Given k > 0, if type v has v ≥ c̄(k) then by Lemma 2.2 above v > c(k) and so type v

plays s2 as top choice, and so again by Lemma 2.2 and Lemma 2.1 he is weakly better off in the

symmetric equilibrium of BM and strictly better off if the inequality is strict. If type v has v≤ c(k),

then by Lemma 2.2, v < c(k) and so type v plays s1 as top choice, and so again by Lemma 2.1 and

Lemma 2.2 he is weakly better off in the symmetric equilibrium of BM and strictly better off if the

inequality is strict.

( =⇒ ) :Given k > 0, if type v has c(k)< v < c̄(k), then he may be reporting s1 as top choice or

s2 as top choice, but in any case he is strictly worse off in the symmetric BM equilibria compared

to DA by Lemma 2.1 and Lemma 2.2.

Finally, if there are constrained students with valuation v ≥ c̄(k) then k > 0. Suppose k = 0

then limk→0 c̄(k) = ∞ then all constrained students have valuation v < c̄(k). Contradiction. If there

are constrained students with valuation v ≤ c(k) then k > 0. Suppose k = 0, then all constrained

students’ valuations must be above c(0) which is greater than c(0), which is a contradiction.

Proof of Remark 2.5

Proof. k > q1
q1+q2

−η implies

1
k+η

< 1+
q2

q1

=⇒ − q2

q1
<

η + k−1
k+η

=⇒ 1−η− k
k+η

q1

q2
< 1

=⇒ (1−η− k)(1−η)

k+η

q1

q2
< 1

=⇒ c(k)< 1

Next, note that c(.) is decreasing, so it will be lowest at k = 1−η−q2:

c(1−η−q2) =
(1−η)q1

(1−q2)
> 0
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Proof of Remark 2.6

Proof. c̄(k)< 1 at k = 1−η−q2 iff

q1(1−η)(1−η− k)< q2k at k = 1−η−q2

⇐⇒ q2 < (1−η)(1−q1)

Proof of Remark 2.7

Proof. Let k be the measure of constraiend students reporting s1 as top choice in the symmetric

equilibrium of BM. By Claim 2.4, there are at least q2 measure of constrained students reporting

s2 as top choice. Let’s take any such type and call it type v. Type v must be better off in the

symmetric equilibrium of BM compared to DA. By Lemma 2.1 we know that such type v students

will be better off in BM equilibrium compared to DA if and only if v≥ q1(1−η)(1−η−k)
q2k . So first we

must not have
q1(1−η)(1−η− k)

q2k
≥ 1 for k = 1−η−q2

since q1(1−η)(1−η−k)
q2k is decreasing. So we must have

q1(1−η)(1−η− k)< q2k for k = 1−η−q2

=⇒ 0 < (1−η)(1−q1)−q2

which is satisfied by A2.5. Also, since we cannot have v≥ 1, k must be such that q1(1−η)(1−η−k)
q2k <

1, which implies

k >
q1(1−η)2

q2 +q1(1−η)
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So there must be x> q1(1−η)2

q2+q1(1−η) measure of constrained students with v≤ c(x)< c( q1(1−η)2

q2+q1(1−η))

to have k > q1(1−η)2

q2+q1(1−η) . But for such students we also need to have v < c(x) < c( q1(1−η)2

q2+q1(1−η)) to

have such students strictly better off in equilibria of BM compared to DA. Since c( q1(1−η)2

q2+q1(1−η)) <

c( q1(1−η)2

q2+q1(1−η)) necessary condition we have is: there exists more than q1(1−η)2

q2+q1(1−η) measure of con-

strained students with v < c( q1(1−η)2

q2+q1(1−η)) =
(1−η)2q1

q1(1−η)+ηq2

Proof of Proposition 2.2

Proof. By Lemma 2.3, to guarantee the existence of a constrained student who are strictly better off

in BM compared to DA, a sufficient condition will be: for any k ∈ {x ∈ R : max{ q1
q1+q2

−η ,0} <

x ≤ 1− η − q2} we need to have positive measure of constrained students whose valuation v

satisfies v≤ c(k) or v > c̄(k) . Remember that k > q1
q1+q2

−η implies c(k)< 1 by Remark 2.5. And

since c̄(k)> c(k) for all 0 < k ≤ 1−η−q2 our sufficient condition is having positive measure of

constrained students farther away from each other in terms of v: there exists two different subsets

of V each with positive measure such that for all v and v′ from first and second set respectively

(for discrete distribution this is equivalent to saying there exists constrained student types v and

v′) we have |v− v′| ≥maxk∈Γ{min{c̄(k),1}− c(k)} where Γ = {k ∈ R : max{ q1
q1+q2

−η ,0}< k ≤

1−η−q2}.

To find the solution to

max
k∈Γ

{min{c̄(k),1}− c(k)}

first note that A2.5 implies c̄(k)< 1 at k = 1−η−q2. Note that we cannot have k′ such that c̄(k′)>

1 as solution since min{c̄(k′),1}= 1=min{c̄(k′+ε),1} and c(k′+ε)< c(k′) for sufficiently small

ε . Also, we cannot have k such that c̄(k) < 1 solution since c̄(k)− c(k) is strictly decreasing in k

for k > 0 (so objective can be improved by decreasing k in sufficiently small amount):

c̄(k)− c(k) =
q1(1−η)(1−η− k)

q2k
− (1−η− k)(1−η)q1

(k+η)q2
=

q1(1−η)(1−η− k)η
(k+η)q2k

So k ∈ Γ such that c̄(k) = 1 must be the solution in this case. c̄(k) = 1 if q1(1−η)(1−η−k)
q2k = 1.
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Solution of which is: q1(1−η)2

q2+q1(1−η) . In this case c(.) evaluated at the solution is

(1−η)2q1

q1(1−η)+ηq2

and min{c̄(k),1}= 1 at k = q1(1−η)2

q2+q1(1−η) . Therefore, solution to the objective function is:

1− (1−η)2q1

q1(1−η)+ηq2

=
η(q1(1−η)+q2)

q1(1−η)+ηq2

Now, it remains to show k cannot be 0 when we have |v− v′| ≥ η(q1(1−η)+q2)
q1(1−η)+ηq2

for all v and v′

from two different subsets of V each with positive measure.

Note that 1−c(0)< η(q1(1−η)+q2)
q1(1−η)+ηq2

which is true since we have η(q1(1−η)+q2)
q1(1−η)+ηq2

= 1−c( q1(1−η)2

q2+q1(1−η))

and q1(1−η)2

q2+q1(1−η) > 0, so there must be positive measure of constrained students with valuation below

c(0), which means there is constrained student reporting s1 as top choice since c(0)< c(0).

Proof of Lemma 2.4

Proof. Let k be the measure of constrained students reporting s1 as top choice. Again, Lemma

2.1 we have k ∈ [max{ q1
q1+q2

−η ,0},1−η − q2] \ { q1
q1+q2

−η}. By Lemma 2.3 we know that for

given k > 0, type v constrained student is weakly better off in this equilibrium of BM compared

to DA if v ≤ c(k) = (1−η−k)(1−η)q1
(k+η)q2

(strictly better off if inequality is strict). Since c(.) is strictly

decreasing in its argument, type v will satisfy v≤ c(k) for any k ∈ (max{ q1
q1+q2

−η ,0},1−η−q2],

if it satisfies v ≤ c(1−η−q2) =
(1−η)q1
(1−q2)

. It is easy to see that when there is positive measure of

constrained students types v with v ≤ (1−η)q1
(1−q2)

, we cannot have k = 0 since (1−η)q1
(1−q2)

< c(0) < c(0)

implies that there will be positive measure of constrained students reporting s1 as top choice.
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Proof of Lemma 2.5

Proof. For the case when k ∈ [max{ q1
q1+q2

−η ,0},1−η − q2] \ q1
q1+q2

−η the assertion follows

from Lemma 2.4.

Suppose k > 1−η−q2, in that case note that a constrained student of type v reports s1 as top

choice if:

q1

k+η
+ v

q2− (1−η− k)
k

> v

⇐⇒ v <
k

k+η

q1

1−η−q2

First, note that type v reports s1 as top choice since:

v≤ (1−η)q1

(1−q2)
<

q1

1−q2
<

k
k+η

q1

1−η−q2

for any 1−η−q2 < k < 1−η where the last inequality above follows since last term is increasing

in k and k > 1−η−q2.

If k = 1−η , then symmetric BM equilibrium and DA gives the same payoffs to everyone.

For k < 1−η , comparing BM and DA payoff, we need to have:

q1

k+η
+ v

q2− (1−η− k)
k

> q1 + v
q2

1−η

⇐⇒ v <
k

k+η

q1(1−η)

(1−η−q2)

And note that this is satisfied since

v≤ (1−η)q1

(1−q2)
<

k
k+η

q1(1−η)

(1−η−q2)

where the last inequality follows since the last term is increasing in k, and k > 1−η−q2
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Proof of Claim 2.5

Proof. If there are at least q2 measure of constrained students with valuation v that satisfy v≥ q1
1−q2

,

then by Claim 2.3 , a symmetric equilibrium exists. If not, then there is not an equilibrium in

which at least q2 measure of constrained students report s2 as top choice. In that case for given

equilibrium measure of constrained students reporting s1 as top choice k, cutoff that students with

valuation above (below) which reports s2 (s1) as top choice becomes:

c̃(k) :=
k

k+η

q1

1−η−q2

which can be derived by comparing payoffs q1
k+η

+ vq2−(1−η−k)
k and v from reporting s1 as top

choice and s2 as top choice respectively. Note that c̃(1−η −q2) =
q1

1−q2
. Note that there is more

than 1−η −q2 measure of constrained students strictly below q1
1−q2

. If for some x > 1−η −q2,

k = x then there must be x′ ≥ x measure of constrained students that has valuation v ≤ c̃(x) and

x′′ ≤ x measure of constrained students with valuation v < c̃(x). Suppose for contradiction there

is no such x. Then it may be the case that for all x > 1−η − q2 there are more than x measure

of constrained students with valuation v < c̃(x), this is not possible since there can be at most

1−η constrained students strictly below c̃(x) at x = 1−η . Or it may be the case that for any

x> 1−η−q2 there are strictly less than x measure of constrained students with valuation v≤ c̃(x).

Note that measure of constrained students with v ≤ c̃(x) is weakly decreasing and x is strictly

decreasing as x approaches 1−η−q2. In this case we cannot have strictly more than x measure of

constrained studens with valuation v < c̃(x) at x = 1−η−q2 which is a contradiction.

Proof of Theorem 2.1

Proof. Since distribution of preferences for constrained students have full support, there is positive

measure of constrained students with valuation v that satisfy v < (1−η)q1
(1−q2)

. By Lemma 2.5, these

students are weakly better off in any (symmetric) equilibrium of BM compared to DA. To show

that they are strictly better off, I need to show that not everyone reports s1 as top choice in any
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equilibrium of BM. To have such equilibrium everyone must have valuation below k
k+η

q1
1−η−q2

evaluated at k = 1−η , which is:
q1(1−η)

1−η−q2

and this is guaranteed to be less than 1 by A2.5. So there is positive measure of constrained stu-

dents with valuation v > q1(1−η)
1−η−q2

under full support assumption. So there cannot be an equilibrium

in which all constrained students report s1 as top choice.

Proof of Lemma 2.6

Proof. Suppose q1(1−η)
(1−η−q2)(1−q2)

≤ 1. By Claim 2.3, equilibrium in which there are at least q2 mea-

sure of constrained sudents reporting s2 as top choice exists iff there are at least q2 measure of con-

strained students with v ≥ q1
1−q2

. Under uniform distribution assumption, measure of constrained

students with v≥ q1
1−q2

is
(

1− q1
1−q2

)
(1−η). This is greater than or equal to q2 since

(
1− q1

1−q2

)
(1−η)≥ q2

⇐⇒ q1(1−η)

(1−η−q2)(1−q2)
≤ 1

Finally remember from Lemma 2.1 that such an equilibrium is unique.

Now, I will show an equilibrium in which less than q2 measure of constrained students report

s2 as top choice exists iff q1(1−η)
(1−η−q2)(1−q2)

> 1. Let k > 1− η − q2 be equilibrium measure of

constrained students reporting s1 as top choice. If a constrained student reports s1 as top choice in

this case he must have
q1

k+η
+ v

q2− (1−η− k)
k

≥ v

which is equivalent to

v≤ k
k+η

q1

1−η−q2
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Then the share of constrained students reporting s1 as top choice is

F(
k

k+η

q1

1−η−q2
)

which must equal to k
1−η

. Thus solution (note that it is unique since k > 1−η − q2) of equality

below gives the equilibrium k.

k
k+η

q1

1−η−q2
=

k
1−η

=⇒ k =
q1(1−η)

1−η−q2
−η

Note that k = q1(1−η)
1−η−q2

−η < 1−η by A2.5. So q1(1−η)
1−η−q2

−η is the equilibrium measure of con-

strained students who reports s1 as top choice if and only if q1(1−η)
1−η−q2

−η > 1−η − q2 which can

shown to be equivalent to
q1(1−η)

(1−η−q2)(1−q2)
> 1

Proof of Lemma 2.7

Proof. By Lemma 2.6, when q1(1−η)
(1−η−q2)(1−q2)

≤ 1 there are at least q2 measure of constrained stu-

dents reporting s2 as top choice. Note that equilibrium measure k(q1,q2,η) of constrained students

reporting s1 as top choice must satisfy

F(c(k(q1,q2,η))) =
k(q1,q2,η)

1−η
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This means

c(k(q1,q2,η)) =
k(q1,q2,η)

1−η

⇐⇒ q1

q2

1−η− k(q1,q2,η)

k(q1,q2,η)+η
=

k(q1,q2,η)

1−η

Solving the last equality for k(q1,q2,η) and taking the larger root (smaller root is less than 0) one

can get k(q1,q2,η) as given in the proposition. Note that k(q1,q2,η) ≤ 1−η − q2 in this case.

Remember from Claim 2.2 that c(.) evaluated at k(q1,q2,η) gives the threshold that constrained

students below which report s1 as top choice and constrained students above which report s2 as

top choice. So threshold is:

c(k(q1,q2,η)) =
q1

q2

1−η− k(q1,q2,η)

k(q1,q2,η)+η

=
k(q1,q2,η)

1−η

where the last line is by definition of the equilibrium.

Remember from Lemma 2.3 that c̄(.) and c(.) evaluated at k(q1,q2,η) gives the bounds such

that constrained students with valuation v such that c(k(q1,q2,η))< v < c̄(k(q1,q2,η)) are strictly

worse off under BM equilibrium compared to DA and students who has v < c(k(q1,q2,η)) or

v > c̄(k(q1,q2,η)) are strictly better off under BM equilibrium compared to DA. Let’s derive these

bounds for the equilibrium k(q1,q2,η):

c̄(k(q1,q2,η)) =
q1(1−η)(1−η− k(q1,q2,η))

q2k(q1,q2,η)

=
q1(1−η)(1−η− k)

q2k
k+η

k+η

= c(k)
(1−η)(k+η)

k

=
k

1−η

(1−η)(k+η)

k

= k(q1,q2,η)+η

214



Note that c̄(k(q1,q2,η))< 1 since k(q1,q2,η)≤ 1−η−q2 in this case. And

c(k(q1,q2,η)) =
(1−η− k(q1,q2,η))(1−η)q1

(k(q1,q2,η)+η)q2

=
q1(1−η− k)
(k+η)q2

(1−η)

= c(k)(1−η)

=
k

1−η
(1−η)

= k(q1,q2,η)

By Lemma 2.6, when q1(1−η)
(1−η−q2)(1−q2)

> 1 there are less than q2 measure of constrained students

reporting s2 as top choice. From proof of Lemma 2.6, k = q1(1−η)
1−η−q2

−η in this case (it is less than

1−η by A2.5). Note that for given k, a constrained student with valuation v reports s1 as top

choice if

q1

k+η
+ v

q2− (1−η− k)
k

> v

⇐⇒ v <
k

k+η

q1

1−η−q2

evaluating this threshold k
k+η

q1
1−η−q2

at k(q1,q2,η):

k(q1,q2,η)

k(q1,q2,η)+η

q1

1−η−q2
=

q1

1−η−q2
− η

1−η

similarly it can be shown that a constrained student with valuation v reports s2 as top choice if

v > q1
1−η−q2

− η

1−η
.

A constrained student reporting s1 as top choice in an equilibrium with less than q2 constrained
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students reporting s2 as top choice is strictly better off in BM compared to DA iff:

q1

k+η
+ v

q2− (1−η− k)
k

> q1 +
q2

1−η
v

⇐⇒ v <
k

k+η

q1(1−η)

(1−η−q2)

and note that k(q1,q2,η)
k(q1,q2,η)+η

q1(1−η)
(1−η−q2)

= q1(1−η)
1−η−q2

− η . Also note that
k(q1,q2,η)

k(q1,q2,η)+η

q1(1−η)
(1−η−q2)

< k(q1,q2,η)
k(q1,q2,η)+η

q1
1−η−q2

for all k > 0. So constrained student with v < q1(1−η)
1−η−q2

−

η reports s1 as top choice. Note that q1(1−η)
1−η−q2

−η > 0 since k
k+η

q1(1−η)
(1−η−q2)

is increasing in k, so it is

smallest when k = 1−η−q2 which yields q1(1−η)
1−q2

> 0

A constrained student reporting s2 as top choice in an equilibrium with less than q2 constrained

students reporting s2 as top choice is strictly better off in BM compared to DA iff:

v > q1 +
q2

1−η
v

⇐⇒ v >
q1(1−η)

(1−η−q2)

Also note that q1(1−η)
(1−η−q2)

> k(q1,q2,η)
k(q1,q2,η)+η

q1
1−η−q2

since k(q1,q2,η) < 1−η . So constrained students

with v > q1(1−η)
(1−η−q2)

report s2 as top choice. Note that q1(1−η)
1−η−q2

< 1 by A2.5. This finishes the

proof.

Proof of Theorem 2.2

Proof. Suppose q1(1−η)
(1−η−q2)(1−q2)

≤ 1, c̄(k(q1,q2,η))−c(k(q1,q2,η))= (k(q1,q2,η)+η)−k(q1,q2,η)=

η . By A2.7, η is the fraction of constrained students who does not satisfy v > c̄(k(q1,q2,η)) or

v < c(k(q1,q2,η)) and 1−η is the fraction that satisfies one of these inequalities.

Suppose q1(1−η)
(1−η−q2)(1−q2)

> 1. By previous lemma, Constrained students are strictly better off

under BM compared to DA iff v > q1(1−η)
(1−η−q2)

or v < q1(1−η)
1−η−q2

−η . By A2.7 there are q1(1−η)
(1−η−q2)

−

(q1(1−η)
1−η−q2

−η) = η fraction of constrained students does not satisfy these inequalities.
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B.3 Proofs of Section 4

Proof of Lemma 2.8

Proof. Suppose first that 1−η ≤ q1, then trivially all constrained students enter s1 with probability

one in σ̃ . Also, note that no constrained student can enter s1 with probability one in σ∗. Otherwise,

a student who did not report s1 as top choice with probability one (note that it exists since otherwise

it is impossible to get into s1 with probability one) can deviate to ranking it as top with probability

one. Thus, there exist a constrained student better off under σ̃ compared to σ∗.

Suppose now that, 1−q1 > η ≥ 1−q1−q2. Let x j, x̃ j denote the measure of students reporting

s j as top choice in σ∗ and σ̃ respectively.

In σ̃ , it must be x̃1 > q1 since otherwise a constrained student who is not doing already can

deviate to reporting s1 as top choice and get payoff 1. Then x̃2 < q2 since otherwise x̃1 + x̃2 =

1−η > q1+q2 which is a contradiction. Note that x̃1−q1 ≤ q2− x̃2 since x̃1+ x̃2 ≤ q1+q2. Thus,

all constrained students must be reporting s1 as top choice with probability one, i.e. x̃1 = 1 and

x̃2 = 0. Otherwise a constrained student gets v and deviation would give:

q1

x̃1
+

(
1− q1

x̃1

)
v

which is greater than v. Thus, in σ̃ all constrained students get

q1

1−η
+

(
1− q1

1−η

)
v

Note that this is greater than v.

Case 1: x2 ≥ q2

If there is constrained student who increase the probability of reporting s1 as top choice in σ̃

compared to σ∗ she must be getting vq2
x2

in σ∗ which is less than v and hence she is strictly better

off under σ̃ .

If there is no constrained student who increase the probability of reporting s1 as top choice in σ̃

217



compared to σ∗ then all constrained students must be reporting s1 as top choice in σ∗, that means

x1 ≥ 1−η and they must be getting q1
x1

in σ∗ which is less than q1
1−η

so they are strictly better off

under σ̃ .

Case 2: x2 < q2

If there is constrained student who increase the probability of reporting s1 as top choice in σ̃

compared to σ∗ she must be getting v in σ∗ which is less than his payoff under σ̃ and hence she is

strictly better off under σ̃ .

If there is no constrained student who increase the probability of reporting s1 as top choice

in σ̃ compared to σ∗ then all constrained students must be reporting s1 as top choice in σ∗, that

means x1 ≥ 1−η and they must be getting

q1

x1
+

q2− x2

x1
v

It can be shown that
q1

1−η
+

(
1− q1

1−η

)
v >

q1

x1
+

q2− x2

x1
v

If x1 = 1−η then this is true since

1− q1

1−η
>

q2−η

1−η

⇐⇒ 1 > q1 +q2

Now, suppose that x1 > 1−η . Note that what I want to show is true iff

q1x1−q1(1−η)> v((1−η)q2− (1−η)+q1x1)

If (1−η)q2− (1−η)+q1x1 < 0 we are done. If not, then last equation will be true iff:

v <
q1x1−q1(1−η)

(1−η)(q2−1)+q1x1
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and right hand side is greater than 1 since q2−1 <−q1. So we are done.

Proof of Claim 2.6

Proof. Let k denote the measure of students who report s1 as top choice. Cutoff for reporting s1

versus s2 as top choice is

ĉ(k) :=
q1

q2

1− k
k

( =⇒ ) : Suppose there is less than q2 measure students for whom v ≥ q1
1−q2

. I want to show

that there cannot be an equilibrium with k ≤ 1−q2. For k = 1−q2 to be equilibrium we need q2

measure of students who has v ≥ ĉ(1− q2) =
q1

1−q2
which cannot happen. Note that there cannot

be an equilibrium with k < 1− q2, either. To have such an equilibrium, we need to have 1− k

measure of students for whom v≥ ĉ(k). Note that 1−k > q2 and ĉ(k)> q1
1−q2

since k < 1−q2 and

ĉ(.) is strictly decreasing. So, such equilibrium more than q2 measure of constrained students with

v > q1
1−q2

which is not possible.

(⇐= ) : If there are q2 measure of students for whom v≥ q1
1−q2

, then there is an equilibrium in

which students with v≥ q1
1−q2

report s2 as top choice and other students report s1 as top choice, so

in this equilibrium we have k = 1−q2.

Suppose there are more than q2 measure of students with v≥ q1
1−q2

. If measure of students with

v > q1
1−q2

is equal to q2 then we have an equilibrium in which students with v > q1
1−q2

report s2 as

top choice and other students report s1 as top choice. If measure of students with v > q1
1−q2

is less

than q2 then we have an equilibrium in which q2 measure of students with v≥ q1
1−q2

report s2 as top

choice and other students report s1 as top choice. So suppose measure of students with v > q1
1−q2

is

larger than q2. That means there are less than 1−q2 measure of students with v≤ q1
1−q2

= ĉ(1−q2).

So we have less than x students for whom v≤ ĉ(x) when x = 1−q2.

Note that limk→0 ĉ(k) = ∞, that means we have more than x students that has v < ĉ(x) when

x→ 0 (all students to be precise). Note that c(.) is a decreasing continuous function, so there must
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be x > 0 such that there are x′ ≥ x students with v ≤ ĉ(x) and x′′ ≤ x students with v < ĉ(x) by

the last sentence of the last paragraph. Therefore, we have an equilibrium in which students with

v < ĉ(x) report s1 as top choice and x− x′′ of students with v = ĉ(x) report s1 as top choice.

Proof of Claim 2.7

Proof. Let k denote the total measure of students reporting s1 as top choice. Suppose, there are

less than q2 students who report s2 as top choice a symmetric equilibrium of BM. Since there are

at least q2 measure of constrained students with v > (1−η)q1
1−η−q2

, that means some of these students

report s1 as top choice in the equilibrium. Then they get:

q1

k
+ v

q2− (1− k)
k

This is smaller than v since:

q1

k
+ v

q2− (1− k)
k

< v

⇐⇒ q1

k
< v

k−q2 +(1− k)
k

⇐⇒ v >
q1

1−q2

and we know that (1−η)q1
1−η−q2

> q1
1−q2

since this can be shown to be equivalent to q2η > 0.

Proof of Claim 2.8

Proof. Let k denote the measure of students reporting s1 as top choice in an equilibrium without

private schools. Under A2.1-A2.6, by previous claim 1− k ≥ q2. In this case the threshold such

that students with value strictly below which strictly prefer reporting s1 as top choice, students

with value above which strictly prefer reporting s2 as top choice and students with value equal to
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which is indifferent between reporting s1 and s2 as top choice is

q1

q2

1− k
k

Note that threshold is strictly decreasing in k. Suppose there are two different equilibria σ∗ and

σ̃ and measure of students reporting s1 as top choice is k and k′ in those equilibria respectively.

Without loss of generality assume k > k′. Since k > k′ then q1
q2

1−k
k < q1

q2
1−k′

k′ . So that means there

are weakly less students reporting s1 as top choice in σ∗, but this is not possible since k > k′.

Note that k ≤ 1−q2 by Claim 2.7. Also, there must be at least q1 students reporting s1 as top

choice since otherwise a student who is not doing already can deviate to reporting s1 as top choice

and get into s1 for sure.

Note that if q1
q2

1−k
k ≥ 1, then k = 1 but this is not possible since q1

q2
1−k

k equals 0 at k = 1. So it

must be the case that q1
q2

1−k
k < 1 =⇒ k > q1

q1+q2
. Note that this is possible since q1

q1+q2
< 1−q2 ⇐⇒

q2(q1 +q2−1)< 0 which is known to be true.

Proof of Proposition 2.4

Proof. By A2.1-A2.6 in σ̃ and σ∗ there are at least q2 measure of students reporting s2 as top

choice. Let x j, x̃ j denote the measure of students reporting s j as top choice in σ∗ and σ̃ respectively.

Note that we must have x1 + x2 = x̃1 + x̃2 = 1.

If σ∗ is an equilibrium in which all unconstrained students report s1 as top choice, from Lemma

2.10 , in the case of x2 ≥ q2 and x̃2 ≥ q2 there are constrained students who are strictly better off

under σ̃ compared to σ∗ or all constrained students get the same payoff in σ∗ and σ̃ .

So suppose in σ∗ at least some unconstrained students report s2 as top choice with positive

probability.

Case 1: x̃1 < x1, x̃2 > x2 ≥ q2

Since unconstrained students who do not report s1 as top choice with probability one in σ∗,

report it as top choice with probability one in σ̃ , we must have a constrained student decrease the
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probability of reporting s1 as top choice in σ̃ compared to σ∗ in this case. Such student must have:

q1

x1
≥ v

q2

x2

=⇒ v≤ x2

x1

q1

q2

and

q1

x̃1
≤ v

q2

x̃2

=⇒ v≥ x̃2

x̃1

q1

q2
>

x2

x1

q1

q2

which is not possible. So this case is not possible.

Case 2: x̃1 = x1, x̃2 = x2 ≥ q2

Some constrained students must have decreased the probability of reporting s1 as top choice

since there are unconstrained students who increased the probability of reporting s1 as top choice.

By the same arguments in the case above, such constrained students must have

v =
x2

x1

q1

q2
=

x̃2

x̃1

q1

q2

hence indifferent between reporting s1 as top choice and s2 as top choice in both equilibria. So in

both of them they get the same payoff: q1
x1

.

If there are constrained students who did not change the probability of reporting s1 as top

choice they are either getting q1
x1

and q1
x̃1

in σ∗ and σ̃ respectively; or vq2
x2

and vq2
x̃2

in in σ∗ and σ̃

respectively. So their payoffs does not change.

If there are constrained students who increased the probability of reporting s1 as top choice in
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σ̃ compared to σ∗, then they must have:

q1

x1
≤ v

q2

x2

=⇒ v≥ x2

x1

q1

q2

and

q1

x̃1
≥ v

q2

x̃2

=⇒ v≤ x̃2

x̃1

q1

q2
=

x2

x1

q1

q2

so they must have v = x2
x1

q1
q2

= x̃2
x̃1

q1
q2

and be indifferent between reporting s1 as top choice and s2 as

top choice in both equilibria. So they should be getting the same payoff q1
x1

in both equilibria.

Case 3: x̃1 > x1, x2 > x̃2 ≥ q2

Note that in this case if there are constrained students for whom reporting s1 as top choice is

weakly preferred to reporting s2 as top choice in σ∗, they are better off in σ̃ . To see this note that

such students get payoff of

v
q2

x2

in σ̃ and they get payoff of

v
q2

x̃2

since vq2
x2
≥ q1

x1
=⇒ v≥ q1

q2

x2
x1

=⇒ v≥ q1
q2

x̃2
x̃1

=⇒ vq2
x̃2
≥ q1

x̃1
.

So guaranteeing existence of constrained students with vq2
x2
≥ q1

x1
is enough. We know that in

σ∗ there are at least q2 measure of students reporting s2 as top choice. So if η < q2, some of these

students must be constrained. Hence, there are constrained students with valuation vector v such

that vq2
x2
≥ q1

x1
.

Suppose η ≥ q2 and suppose there are more than η − q2 measure of unconstrained students

with v < q1
1−q2

. Remember for given x1 and x2 in an equilibrium without private schools a student
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with valuation v reports s1 as top choice if v < x2
x1

q1
q2

. Right hand side decreases in x1, largest

x1 the equilibrium can have is 1− q2. So we have q1
1−q2

< x2
x1

q1
q2

. Therefore more than η − q2

measure of unconstrained students report s1 as top choice. Thus, there must be positive measure

of constrained students that reports s2 as top choice since there are at least q2 measure of students

reporting s2 as top choice. Hence, there are constrained students with valuation vector v such that

vq2
x2
≥ q1

x1
.

Suppose (1) and (2) does not hold. Suppose for contradiction in σ∗ there is no constrained

student with vq2
x2
≥ q1

x1
. So all students with valuation vector v such that vq2

x2
≥ q1

x1
are unconstrained.

Note that by assumption all constrained students have

q1

x1
> v

q2

x2

=⇒ v <
x2

x1

q1

q2

and note that right hand side is largest when x2 = η since no constrained student reports s2 as top

choice. So for all constrained students we must have:

v <
x2

x1

q1

q2
≤ η

1−η

q1

q2

which contradicts (3). This finishes the proof.
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