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“Particle man, particle man 

Doing the things a particle can 

What's he like? It's not important 

Particle man 

 

Is he a dot, or is he a speck? 

When he's underwater does he get wet? 

Or does the water get him instead? 

Nobody knows, Particle man” 

 

-They Might Be Giants
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Abstract 

 In the world of molecular simulation, there is a large gap between the capabilities of all-

atom molecular dynamics and many biophysical systems that are of interest. Coarse-grained (CG) 

molecular dynamics addresses this gap by increasing the timescales and system sizes which are 

accessible to molecular simulation. It does so by reducing the complexity of the all-atom system 

to a reduced number of degrees of freedom known as CG beads or sites. These sites represent a 

collection of individual atoms and are often chosen via chemical intuition. Parameterizing the 

interactions between these sites is done in one of two ways. The first: top-down CG, involves 

selecting experimental observables and hand tuning the force field to match these targets. This 

process is laborious and is impossible to do systematically without extensive knowledge of force 

field development. On the other hand, bottom-up CG addresses these issues by algorithmically 

parameterizing force fields to minimize loss functions with respect to reference all-atom data 

which has been mapped to the CG resolution. In this way, bottom-up CG models can in theory be 

generated for arbitrary systems if one has access to short reference trajectories and an appropriate 

CG algorithm. In practice though, bottom-up CG becomes more and more difficult as one attempts 

to apply it to more complicated systems- particularly when many-body correlations, anisotropy, or 

large numbers of model parameters are in play. Unfortunately, these problematic aspects are all 

but a certainty when generating CG models of relevant biophysical processes, such as membrane 

remodeling or protein assembly. Thus, it is imperative that the limitations of bottom-up CG are 

understood so that better methods can be developed to address them.  

This work is broken up into two main sections. Chapters 2 and 3 analyze bottom-up and 

top-down CG lipid bilayers at a resolution of 4 heavy atoms to one CG bead. In both cases CG 

models tend to fail to reproduce thermodynamic properties of the bilayer without explicit 
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temperature dependence. In addition, the bottom-up CG lipid models require extensive and 

complicated optimization schemes which limit their practicality. These issues stem from solvent 

effects and the inherent anisotropy of lipid membranes, and are tricky to address without advanced 

methodologies, such as the implementation of semi-explicit solvent virtual particles. Ultimately, 

these models fail to meet the accuracy and expressiveness of CG lipids at lower resolutions which 

suggests that the higher CG resolution is inappropriate for such systems. The second section of 

this work pertains to applying machine learning (ML) methods to CG modeling. In chapters 4 and 

5 it is demonstrated that for liquid systems with significant many-body and nuclear quantum 

effects deep neural networks generate much more accurate models. Normally, neural networks 

bring this increase in accuracy at the cost of integration speed and significant data requirements. 

In fact, these models in many cases run slower than the corresponding all-atom simulations. 

However, if a path integral representation of the system is required, these ML based force fields 

are not only faster, but are essentially just as accurate. In the case of classical MD to CG resolution, 

this is not the case, but equivariant neural networks can be applied which significantly reduce the 

amount of training data needed to produce an accurate model. In fact, a single frame of MD data 

is sufficient to generate a stable CG model of water with an equivariant neural network, which is 

two orders of magnitude lower than the requirements of non-equivariant networks. Overall, these 

projects demonstrate that bottom-up CG modeling remains difficult for complex systems, but 

recent advancements in machine learning and traditional CG methods provide a path towards more 

accurate and practical CG models. 
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Chapter 1: Introduction 

 

 The study of statistical mechanics is fundamental to the understanding of biology at the 

molecular level. Cells are composed of huge numbers of molecules, the aggregate behavior of 

which gives rise to the emergent complex behavior we know as life.1 As an example, all cells are 

bound by a lipid membrane which is composed many billions of atoms within hundreds of separate 

molecular species, including but not limited to proteins and lipids, which can form a wide range 

of morphologies and localized structures in order to regulate cellular signaling and motion.2–4 

Chemical knowledge of these molecules and how each individual species interacts with one 

another can be obtained via application of quantum mechanical principles, and macroscopic 

behavior of the bilayer can be probed via experiment. Statistical mechanics can bridge the gap 

between these two regimes and provide a theory to predict how microscopic interactions give rise 

to macroscopic behavior, thus connecting physics with biology.  

Molecular dynamics (MD) provides a valuable tool to probe details of molecular systems 

that are inaccessible, either due to temporal or spatial resolution constraints, to study via 

experimental techniques.5 By simulating the motions of individual atoms using pairwise force 

fields, the static and dynamic properties of the system can be interrogated at a computational cost 

far below that of ab-initio methods while retaining a great deal of accuracy.  Furthermore, MD is 

readily extendable in a variety of ways. Thermostats and barostats can enable the simulation of 

systems outside the microcanonical ensemble.6,7 Quantum mechanical detail can be incorporated 

into the force field to provide a middle ground between electronic structure and traditional MD 

with respect to efficiency and accuracy.8,9 Atomic representations can be extended to account for 

polarizability and other state changes. This is all to say that there are few classes of molecular 
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systems that cannot be studied with MD. However, MD has found itself to be particularly useful 

for the study of biological processes. Due to the large number of atoms that modern hardware and 

MD software packages can handle, and the relative lack of quantum effects present in such 

processes, MD has shown tremendous usefulness to support experimental research, as well as to 

make predictions of its own. These simulations can provide insight into the fundamental statistical 

mechanics that drive life at a molecular scale, and allow for the calculation simple structural 

properties such as radial distribution functions all the way up to macroscopic thermodynamic 

properties such as entropies, and free energy landscapes, as well as dynamic properties such as 

diffusion and rate constants which cannot be studied via methods such as Monte Carlo sampling.10 

The direct connection of data gathered from molecular dynamics trajectories to statistical 

mechanics provides rich ground for the development of biophysical theories which frequently 

inform our understanding of disease and drug discovery. 

Despite this power, there are still many biophysical processes that remain out of reach to 

all-atom (AA) MD even with the advantage of advanced hardware such as GPUs, which can 

greatly accelerate MD integration. Currently, we are limited to simulations on the temporal scale 

of microseconds. In contrast, the nature of protein folding, a key process which underpins 

essentially all cellular functions, is easily 3 orders of magnitude longer.11 On the spatial side, MD 

is practically limited to simulations of 100 million to 1 billion atoms12, while many physiologically 

relevant systems, such as large membrane patches, can easily eclipse this scale when accounting 

for the associated proteins and solvent molecules. Of course, there are specialized hardware 

designed with all-atom MD in mind such as Anton which can push beyond these boundaries, but 

they are by far the exception rather than the rule.13 So while atomistic MD simulations have 

tremendous potential, they only covers a fraction of the cases which scientists desire to study. 



3 

 

There are two main approaches to solving this issue. The first, enhanced sampling (ES), involves 

accelerating the rate at which interesting molecular configurations are sampled via biases added to 

the Hamiltonian.14 The second method, which is the main topic of the present work, is coarse-

graining (CG). CG simulation increases the size and timescales accessible to molecular dynamics 

through a reduction of the number of particles simulated accomplished by mapping groups of 

interactions into CG sites as shown in Figure 1.1.15–19 These will be referred to interchangeably as 

sites or beads throughout this document. The reduction of the atomic system to a lower resolution 

benefits MD sampling in three ways. First, the resulting simulation has fewer beads than the 

corresponding atomistic system has atoms, which naturally speeds up integration. Second, entire 

Figure 1.1: CG mappings for several lipids and benzene. Heavy atoms are represented as small 

spheres and bonds are represented with sticks. Each large sphere represents a single CG site. In 

the case of this mapping atoms can correspond to a single bead, or multiple, as is shown by the 

overlap in the CG beads for benzene. Each CG site is assigned a type which determines its 

interactions in the CG force field. From [17]. 
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portions of the system can be coarse-grained out entirely, leading to a drastic reduction in 

complexity. For example, it is common practice to ignore the bulk solvent surrounding the 

molecules one finds more interesting, which can reduce the overall number of sites by up to 90 

percent. Lastly, the CG force field is much simpler than the corresponding AA one, which leads 

to a smoother free energy landscape that is sampled over. This allows for the timestep of the 

simulation to be increased, potentially by an order of magnitude or more, without leading to energy 

drift.  

When developing a CG model, there are several choices which must be made. The first is 

the mapping itself. There are nearly limitless ways to convert an AA system to a CG one, 

depending on the desired resolution. This choice is often made with considerations to overall 

simulation speed, as well as chemical intuition, as individual chemical moieties are often grouped 

into their own sites. The second choice to be made is the method by which the resulting CG force 

field is parameterized. There are again two main types of CG models that can be chosen. First is 

top-down CG, which sees the development of the force field as an attempt to match certain 

observed properties of the system of interest, such as oil/water partition coefficients. In this regime, 

it is often experimental data which motivates the force field, and potentials are essentially selected 

by hand. A common choice for top-down CG modeling is the Martini force field.17 The second 

type of CG model is the bottom-up CG model. In this case, the force field is developed as an 

attempt to algorithmically match the CG system to the behavior of the corresponding atomistic 

system when mapped to that resolution, as shown in Figure 1.2.20 Thus, AA trajectories are 

motivating the force field, which is then generated systematically to minimize a loss function such 
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as the relative entropy also known as the Kullback-Leibler divergence or the residual forces on 

each particle.21–23 

 Both top-down and bottom-up CG have advantages. Top-down CG force fields such as 

Martini are extensive, and a huge number of molecules can be simulated without any work on the 

CG modeler’s side.17,24 Martini can simulate systems ranging from glycosylated proteins25 and 

lipids26 to ionic liquids.27 On the other hand, bottom-up CG models utilize AA reference data to 

optimize force fields, which when used properly creates a rigorous statistical mechanical bridge 

between resolutions. In addition, these models can be created systematically, with nothing more 

Figure 1.2: The difference between top-down and bottom-up CG methodology. Both methods 

can be used to generate a CG model with identical bonding topology, but with different 

behaviors. Adapted from [20]. 

Experimental observables 
Macroscopic or thermodynamic 

Simulated data 
“Fundamental” Description 
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than a CG algorithm and a reference MD trajectory being necessary to make a model. This 

contrasts with top-down CG models, which require knowledge how the force field was generated 

as well as extensive testing to extend the models if the system of interest is not represented.  

CG modeling, like any other scientific endeavor worthy of study, is not without its own 

challenges. Namely, finding an acceptable balance between accuracy and speed is non-trivial for 

systems that are not simple liquids without significant multi-body correlations and often involves 

application of advanced techniques. For bottom-up CG, this problem is exacerbated by sample 

data that is required to parameterize the model. Acquiring sufficient sampling must not involve so 

much simulation that it decreases the overall speed of calculating a result, but for many systems 

such as lipid bilayers, large amounts of sampling are required.28 This “data-hunger” is especially 

difficult in machine learning based CG models. Many modern neural network (NN) based models 

require microseconds or even milliseconds of reference data, even for small peptides.29 The choice 

of algorithm used to generate the model is also important, as certain systems respond much better 

to certain algorithms than others.  

For bottom-up CG, there are several parameterization schemes which are widely used in 

the field today. For the purposes of this work, there are three which are particularly important. The 

multiscale coarse-graining method (MSCG), also known as force matching, seeks to solve the CG 

PMF by minimizing the residual forces between the mapped atomistic reference data and the CG 

model at those configurations. Typically, MSCG models account only for pairwise interactions, 

with splines being the functional form of choice in cases where expressive potentials are required, 

and Lennard-Jones potentials in cases where simpler potentials are sufficient. Relative entropy 

minimization (REM) on the other hand seeks to match the equilibrium structural distributions of 

the system. The CG model is evaluated by how well its radial distribution functions match up with 
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those of the mapped atomistic reference data via the KL divergence, and the CG potential is 

iteratively updated in response to the gradients of this divergence. The last class of CG models 

which will be discussed are those parameterized using machine learning, specifically those in 

which a deep neural network (DNN) is used as the force field itself. While this is a broad class of 

methods, there are some similarities shared by all which will be discussed. First, these methods 

inherently incorporate many-body effects, as the individual unit of force evaluation is a single 

atom and every atom within a certain cutoff radius, all of which are passed into the network 

simultaneously, as opposed to pairwise based methods where each atomic force is described as a 

sum of forces between pairs of atoms.  

Even once a well-suited mapping and methodology are selected, there are several problems 

inherent to CG models that must be accounted for. The first is the issue of transferability. Most 

bottom-up CG methodologies attempt to fit the CG potential as an approximation to the many-

body potential of mean force (PMF) of the mapped atomistic representation. That is to say that this 

PMF is conditioned on the configurations of the atomistic force field which map to the appropriate 

CG configuration. This PMF is thus dependent on the thermodynamics state point that the system 

resides in, and because the CG model lacks the detail and thus entropic representation of the 

atomistic force field, is not necessarily accurate outside of this state.30 The second problem is that 

of representability, meaning the CG model’s capacity to accurately represent all observables of the 

system it is based on.31 For some observables, CG models are correct. For example, in the case of 

a CG protein model mapped to the alpha-carbon resolution, the positions of the alpha carbons are 

trivially representable. However, there are many observables for which this fails. For example, the 

calculation of pressure through the virial equation depends on the dynamical variables of every 

atom in the system. By mapping these atoms to CG beads by their centers of mass, most of this 
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information is lost, and thus the pressure calculated from a CG simulation has no bearing on the 

pressure of the underlying atomistic system. Another example of this is entropy. CG models 

inherently cannot account for entropy above the CG resolution, such as the rotational entropy of 

molecules mapped onto single point particles, or the configurational entropy from to internal 

vibrational modes.32 While it is possible to alter the CG optimization scheme to properly estimate 

specific physical observables in the CG regime, this is not always practical nor is it a universal 

solution.33 

There is one final piece of the CG puzzle which is often ignored or forgotten by CG method 

developers: the practicality of using these methods in real applications. Fundamentally a CG model 

needs to be practically applied to be useful, after all these models are tools to replace AA-MD, a 

method which is extremely robust and has decades of pedigree to recommend it. For a CG model 

to be worthwhile, it must be acceptably accurate when compared to the alternative AA simulations 

which they replace, while also offering a faster overall solution. This speed necessarily includes 

time taken to generate reference data and build models, which could always just be spent on more 

AA-MD simulations. Thus at least for bottom-up CG methods, the models start from behind, and 

data collection and parameterization are often slower than they may first appear. 

The theme of this work is to describe recent advancements and challenges in the generation 

of CG models, particularly those of lipid and liquid systems. The lipid systems focus on high 

resolution CG mappings of roughly 4 heavy atoms to a single CG site. While many CG models of 

lipids of this resolution have been in the past, recent advances in both hardware and software have 

allowed for a modern re-evaluation of these models, and how both bottom-up and top-down CG 

models perform in this regime. The liquid studies focus on systems for which traditional pairwise 



9 

 

CG force fields tend to fail due to multi-body correlations. In this case, machine learning provides 

an attractive alternative but often at the cost of slower integration or expensive data requirements. 

This work is broken down into four main chapters. The first chapter is an analysis of the 

Martini 3.0 top-down CG model from a statistical mechanics perspective. Two CG lipid bilayers 

are simulated and compared with identical systems simulated using the AA CHARMM36 force 

field. The first is a binary mixture of 70 % 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 

30 % 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) to probe Martini’s capacity to properly 

represent the thermodynamics and structural properties of mixed charged and uncharged lipids. 

The second is a 50 % DOPC and 50 % 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid 

membrane to probe the same properties in a mixed bilayer composed of saturated and unsaturated 

lipids. While binary lipid mixtures demonstrate complex behavior,34,35 Martini treats separate lipid 

species as much more similar than the physical reality, and is thus unable to capture the behavior 

of such membranes.  

Namely, the DOPC/DOPS mixture contains interspecies interactions at the interface of the 

membrane which exhibit altered area per lipid due to charge condensation.36 The DOPC/DPPC 

bilayer on the other hand exhibits a mixture of unsaturated and saturated tails, which changes the 

tail ordering and membrane flexibility. While previous studies have examined the effects of 

cholesterol in a DOPC Martini bilayer using the Martini 2 force field, these bilayers without 

cholesterol exhibit much more subtle changes from the single species forms.  

I demonstrate that Martini 3 models suffer from the same transferability issue just as 

Martini 2 and bottom-up membranes do, whereby simulation of these models outside the specific 

thermodynamic state point from which they were parameterized leads to unexpected failures, even 

when transferability is considered during parameterization. Analysis of Martini 3.0 binary lipid 
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mixtures shows that these top-down models fail to properly partition their CG PMFs into enthalpic 

components and temperature dependent entropic components. Perspective is given on the fact that 

this transferability issue is ever present unless explicit temperature dependence is implemented. 

In addition to thermodynamic properties, the structural material properties of each 

membrane are analyzed through the bending modulus 𝑘𝑐, a measure of how flexible the membrane 

is, calculated via the height fluctuation spectrum of the membrane. CG lipids often exhibit 

problematic deviations from the atomistic bending moduli due to a variety of reasons. In the case 

of Martini 2 membranes containing cholesterol, the membranes are in relative agreement with 

CHARMM lipids with respect to the bending modulus but deviate in increased fluctuations in the 

higher frequency modes of the fluctuation spectrum. In the case of Martini 3 lipids without 

cholesterol, a much larger deviation is uncovered. Cholesterol tends to increase the bending 

modulus of membranes where they are present,37 but it is apparent that Martini membranes have a 

relatively constant bending modulus. For the two systems studied, Martini consistently 

overestimates the bending stiffness. 

The third chapter describes work on high resolution bottom-up lipid models. Here 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC) is used as a test case for a variety of CG 

methodologies. Five models are presented. The first, is a simple force matched bilayer with fully 

implicit solvent denoted IS-MSCG. This model demonstrates that force-based methods fail when 

sampling is low, even if that low sampling is limited to less impactful interactions. In the case of 

IS-MSCG, the head-tail interactions are poorly sampled even when much more sampling is applied 

to the system, leading to models that require hand tuning to function. Next, I show that REM 

performs better at this resolution with the IS-REM model but is still not sufficient to obtain a model 
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that matches the bending modulus of the atomistic system, especially when compared to similar 

models at lower CG resolutions.  

These issues can be addressed by the incorporation of semi-explicit virtual solvent 

particles, CG sites which represent free solvent particles associated with the surfaces of the 

membrane yet have no linear mapping to atoms in the fine-grained resolution. These beads add 

minimal computational cost yet stabilize the membrane via more explicit representation of the 

hydrophobic effect which drives membrane assembly. This model is referred to as VS-REM and 

exhibits far more accurate bending modulus than the previous models and forms a stable bilayer 

without necessary hand tuning and with accurate structural properties. I then apply the virtual 

particle forces obtained from this model to the reference data used in force matching to generate 

the VS-MSCG model. Curiously, this model fails for the same reasons the IS-MSCG model does, 

suggesting that virtual sites cannot overcome the sampling issues that higher resolution CG lipids 

are prone to. 

I demonstrate that temperature transferability can be obtained in such bottom-up models 

via short reparameterization of VS-REM using reference data at different temperatures, named the 

TT-VS-REM model. This allows for models which properly partition entropy and enthalpy in the 

PMFs of lateral association. Lastly, I discuss issues with lipid models at this resolution specifically, 

where the increased complexity of the system causes pathological failures in these membranes 

when simulated for long enough. While this could likely be addressed via more sampling of the 

atomistic system, it is not desirable to do so as the higher resolution doesn’t offer enough of a 

benefit when compared to lower resolution models. 

Chapter 4 covers a methodology for generating CG models using DNN-based force fields 

with minimal sampling. As previously discussed, most DNN based CG models suffer from heavy 
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data requirements which puts them at a severe disadvantage over more traditional methods, which 

typically require sampling on the order of picoseconds or nanoseconds. These issues remain true 

for less complicated systems such as liquids. It is not useful to have a CG model that requires more 

sampling to generate than it itself would end up generating and thus many of these DNN based 

models struggle to find use in the current hardware landscape. Thus, I introduce a DNN based CG 

force field which uses equivariant neural networks. These networks embed the local environment 

of a CG bead in such a way that imposes force equivariance onto the system, a feature which other 

DNNs learn via seeing many training examples. This method produces CG models which not only 

surpass force matching models in terms of accuracy due to the inherent many-body accounting 

that DNN force fields do, but it does so using orders of magnitude less sampling than non-

equivariant networks.  

I show that single site water, a system which is typically very difficult to coarse-grain, can 

be captured very well by several DNN based methods which were designed to match forces from 

electronic structure data onto atomistic resolutions. However, the methods without explicit 

symmetry equivariance perform much worse in the low data limit. Equivariant DNNs can produce 

highly accurate models using only a fraction of the training data. 

The fifth and last main chapter discusses machine learned centroid molecular dynamics 

(ML-CMD), another DNN based method for the learning of effective centroid forces in centroid 

molecular dynamics (CMD). This method is analogous to coarse-graining in that the full ring 

polymer representation of a quantum particle based on Feynman Path Integrals (PI) is mapped 

down to the centroid resolution, and machine learning is used to predict the forces on the centroid. 

In this case the centroid is the CG site, much as a CG site would typically be matched to the center 

of mass of the constituent atoms. Unlike typical coarse graining though, ML-CMD accurately 
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reproduces the dynamics of the PI system since the path centroid is the most classical-like variable 

upon which dynamics can be accurately computed.  

 I demonstrate ML-CMD via two common test systems, a single-site para-hydrogen model 

at its triple point, and liquid water at room temperature. Both models produce highly accurate 

structural properties of the PIMD data they were trained from. Even more impressive is ML-

CMD’s ability to accurately capture the dynamics of the systems. The PIMD data used to train the 

model does not guarantee dynamical fidelity, yet the centroid mapping leads to proper diffusion 

coefficients and velocity autocorrelation functions for ML-CMD. The method is much faster than 

traditional CMD, in which the centroid forces are calculated repeatedly on the fly by averaging 

over the non-centroid forces. By front loading all of the centroid force calculations into the ML 

training scheme, longer ML-CMD simulations become even more efficient compared to traditional 

CMD, as there is practically no redundancy in the number of non-centroid to centroid force 

calculations. ML-CMD gives results which are fundamentally as accurate as CMD and other path 

integral based methods, while integrating orders of magnitude faster. Special care is taken to 

demonstrate that this method not only integrates faster but is also faster to use overall accounting 

for training data acquisition, model training, and integration together. This speedup is significant 

for the calculation of simple diffusion coefficients and would only get larger for use cases which 

require more simulation, as is common when designing a CG model. 

 Finally, I present my perspective on the field of CG modeling, and areas of research that I 

believe have been ignored by the CG modeling community at large. The first of these is the 

practicality of creating bottom-up CG models. Many method development papers involve lengthy 

optimization schemes which are difficult to justify for users who are not familiar with the many 

ins and outs of CG model development. I posit that this issue could be somewhat addressed with 
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a larger focus on application than method development, where large quantities of CG models could 

be generated and tested. This would provide the field with a better understanding of what does and 

does not work and a better set of heuristics for generating more complex models. It would also 

allow bottom-up methods to be used “out of the box”. Top-down models such as Martini are very 

easy to use as almost any system can be simulated without additional parameterization. If bottom-

up modelers worked towards generating libraries of models, many common use cases could be 

covered without requiring anyone to generate anything new. In fact, while CG modelers are adept 

at analyzing the accuracy of their models and methods, it is often practicality which drives users 

towards certain models, and pre-generated models are by far the most practical way to use a CG 

model. Bottom-up CG methods must offer a corresponding increase in accuracy and predictive 

power if they require users to conduct reference simulations, learn a new codebase and 

parameterize their own model.  

With respect to lipid bilayers, I argue that there is a “quality trough” at higher CG 

resolutions. The higher the resolution of the CG model, the more information must be built into 

the model not only to make the model consistent with the atomistic data, but also to make the 

model functional at all. At high resolutions there are many more points of failure which can occur, 

which can truly only be resolved by spending more time on generating training data or 

incorporating advanced CG methodology, undercutting the effectiveness of the model from the 

beginning. Beyond this, these higher resolution bottom-up CG lipids are quite impractical to 

generate. The methods discussed in chapter 3 take a significant amount of time and expertise to 

apply effectively, to the ultimate detriment of the unwary CG modeler who wants to get a 

simulation running quickly. I discuss speed as a key element of a CG model and argue that the fact 
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that higher resolution lipid models tend to fail is positive. Lower resolution models truly have little 

downside in this regard, in that they are the most accurate and the fastest bottom-up CG lipids. 

Finally, I discuss machine learning (ML) based CG methodologies and give my perspective 

on their usefulness now and in the future. While many issues can be resolved via incorporation of 

fundamental physics into DNN models (such as symmetry equivariance), there is still one large 

issue that DNN based force fields must overcome: speed. Neural networks may be faster to 

integrate than quantum calculations, making them highly desirable for QM/MM or AIMD based 

methods; they are far slower than simple pairwise basis sets, where CG models typically find 

themselves. If there is to be an efficient ML CG model, it must rely on future technological 

advances. These advances may be in the form of specialized hardware which can evaluate neural 

networks far faster, or it may come in the form of new algorithms to simplify the calculations. 

Despite this, I am optimistic that ML based CG methods will continue to produce the most accurate 

and expressive CG models and may be standard in the future. Additionally, ML still has many use 

cases in CG modeling, particularly in the generation of more accurate pairwise force fields and in 

the evaluation and backmapping of existing CG models. 
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Chapter 2: The Lens of Statistical Mechanics Reveals 

Why a Different Martini Can Still Give You a Hangover 

 

 

 

 

 

 

 

 

 

Abstract: 

The Martini 3.0 force field, which was parameterized to better capture temperature 

transferability in top-down coarse-grained models, is analyzed through the lens of statistical 

mechanics to benchmark how well it represents thermodynamic and material properties of the 

underlying atomistic representation. To that end the potentials of mean force for lateral association 

in Martini 3.0 binary lipid bilayers are decomposed into entropic and enthalpic components and 

compared to those of corresponding atomistic bilayers which have been mapped onto equivalent 

coarse-grained sites. This is accomplished by applying the reversible work theorem to lateral pair 

correlation functions between coarse-grained lipid beads taken at a range of different temperatures. 

These entropy-enthalpy decompositions provide a metric by which the underlying statistical 

mechanical properties of Martini can be interrogated as they relate to temperature transferability. 

Overall, Martini 3.0 fails to properly partition entropy and enthalpy despite changes to the force 

field from the Martini 2.0 version to address the transferability problem. The fact that these issues 

remain unresolved is a clear demonstration that to create a truly transferable model, there must be 

explicit temperature dependence involved, as a coarse-grained model parameterized without such 
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dependence is inherently state dependent. In addition to the entropy-enthalpy decompositions, 

Martini 3.0 also fails to produce lipid bilayers with the proper bending modulus, with each model 

tested being consistently less flexible than corresponding all-atom membranes. 

 

2.1 Introduction: 

Despite the continual technological advancements in computing power, the simulation of 

many large, relevant biological processes remains tantalizingly out of grasp. For example, the 

maturation of HIV-1 viral particles occurs on the timescale of minutes, far outside the reach of all-

atom molecular dynamics (AA-MD)38 despite the fact that atomistic simulations of the entire viral 

have been performed.39 For this reason, there is an ever-present need to enhance the speed at which 

MD simulations calculate a result. The two major paths for accomplishing this are enhanced 

sampling, in which computation is sped up by weighting the statistics of the system of interest in 

favor of sampling the desired phenomena, and coarse-graining (CG), in which the entire system is 

simplified by collapsing groups of atoms into individual CG “beads”. 

CG models can also be divided into two categories: bottom-up and top-down. Bottom-up 

CG involves parameterizing interactions between beads based on all-atom molecular dynamics 

data algorithmically by minimizing the difference between the CG model and the mapped 

atomistic data.15,19 Top-down CG on the other hand involves parameterizing each interaction by 

hand in order to match certain macroscopic target properties.17,40–42 Each methodology has 

advantages: top-down CG models are easy to implement due to mature model libraries, but bottom-

up CG models are often easier to extend, as anyone can systematically generate their own model 

of a given system provided they have sufficient AA sampling. In addition, bottom-up CG models 
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have a rigorous correspondence with the atomistic data.43 This is advantageous as CG models tend 

to be used as a replacement for AA MD models. By guaranteeing at least a theoretical connection 

between the CG model and the AA model which it replaces, bottom-up CG provides a basis upon 

which to judge the CG model. 

Martini, developed by Marrink and co in 200717, is a top-down CG model parameterized 

via matching partitioning free energies of various compounds between polar and non-polar phases. 

The result was a simple and effective set of CG sites mapped to a 4-heavy atom to 1 bead resolution 

that could be combined to represent a variety of different molecules, which was quickly extended 

to include small molecules, proteins, lipids and carbohydrates.44,45 This model is notable for its 

treatment of the bulk solvent as large beads which represent a collection of 4 water molecules. 

These solvent beads tend to freeze at or around room temperature, a problem that was resolved via 

smaller anti-freeze particles that disrupt nucleation points for Martini ice. Later, a “Dry” Martini 

model was introduced which avoids representing solvent altogether, further enhancing the 

efficiency of the model at the cost of accuracy.46 Solvent free CG models such as this are common 

both in top-down and bottom-up CG due to the fact that in nearly all biophysical systems, the 

majority of the simulation is composed of water molecules. Most recently, Martini 3.0 was 

released, which addressed previous concerns about temperature dependence as well as greatly 

expanding the overall number of possible interaction types.24   

 Martini is a go-to CG model for several reason. It has a massive library of molecules, easy 

to use tools and a 4 heavy atom to 1 CG bead resolution which retains a large amount of chemical 

specificity while simultaneously offering a significant speedup over all-atom simulations, 

especially when utilizing the solvent-free “dry” Martini models. This pre-generated library of 

molecule types makes using Martini follow a very similar workflow to using other AA force fields. 
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Additionally, the reduction in degrees of freedom brings with it a smoother free energy surface 

upon which the system evolves, speeding up diffusion and thus sampling beyond a simple uplift 

in integration rate.47 Many complex systems have been built and studied within the Martini 

framework, including a 63 component asymmetric plasma membrane model48 and more recently, 

an entire “cell”,49 both of which would be simply impossible to accomplish via bottom-up CG 

given state of the art methods.50,51 

However, there are several disadvantages to using the Martini force field. The 4 to 1 

mapping scheme employed still leads to issues of chemical specificity. Notably there is a 

degeneracy of molecules that map to certain Martini topologies. For example, both 1,2-dilauroyl-

sn-glycero-3-phosphocholine (DLPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

map to the same Martini molecule. For this reason, the Martini model lacks a certain level of 

rigorous connection to the underlying atomistic representation and leads to the conclusion that 

Martini is a semi-phenomenological model rather than a model which seeks to represent the 

chemical properties of each of its molecules. Issues stemming from the 4 to 1 mapping scheme 

also crop up when focusing on Martini water. As previously mentioned, each Martini water bead 

represents 4 water molecules, which causes inaccurate freezing behavior to occur near room 

temperature,  as well as issues pertaining to diffusion and the hydration of solute molecules, all of 

which are critically important to the study of biophysical systems.52–55 

Due to its popularity, it is important to understand Martini’s limitations as a model. Not 

only does this allow the scientific community to better interpret results from Martini simulations, 

but it also helps guide its use towards cases in which it is sufficiently accurate, as well as help 

guide the development of more accurate top-down CG models in the future. Recently, an analysis 

of Martini 2.0 and dry Martini lipids were performed which suggests that the models are limited 
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not only in structural bilayer properties, but more critically in the thermodynamic decomposition 

of their potentials of mean force. Specifically, in the case of a 1,2-Dioleoyl-sn-glycero-3-

phosphocholine (DOPC)/Cholesterol bilayer, Martini 2.0 failed to properly partition the entropy 

and enthalpy of the CG potential of mean force for lateral association for the head groups as well 

as the glycerol beads.56 

As of the time that this data was collected, Martini 3.0 cholesterol is unavailable, and thus 

this paper focuses on bilayers without cholesterol as a direct comparison is impossible. However, 

as lipid bilayers are an excellent case study for the association of long amphipathic molecules, 

which are very similar to the parameterization methodology used for Martini in the first place 

(water/octanol partitioning) we chose to retain the focus of this work on lipid bilayers. Instead of 

simulating a pure DOPC bilayer as a comparison, simulations of two binary lipid mixtures were 

simulated to study the thermodynamic properties of Martini interactions. The first system is a 

70:30 mixture of DOPC and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS).  Analysis of 

this mixture provides insight into Martini’s ability to partition charged and uncharged lipids. In 

this case, the heterogeneity of the bilayer is localized within the head groups of the membrane. 

The second system selected is a 50:50 mixture of DOPC and 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), to study Martini’s ability to capture saturated lipid tails interacting with 

unsaturated ones. While the prior study focused its analysis purely on the interactions between 

lipid head and glycerol groups, the current work extends this treatment to the analysis of the lipid 

tails as well. It is expected that in general Martini 3.0 will capture lateral association of lipid tails 

more accurately than the head groups, though currently there is no study which directly analyzes 

Martini’s capacity in this regard from a statistical mechanical standpoint. 
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In this work we analyze Martini 3.0 from the perspective of statistical mechanics, using the 

two membrane systems to probe how Martini lipids capture temperature transferability and higher 

order structural properties, namely the bending modulus 𝑘𝑐. First, the theory connecting the RDF 

to the decomposition of entropy and enthalpy in CG PMFs is discussed. Then the connections 

between simulated lipid bilayers and continuum models is explained in order to motivate the 

methodology behind our calculations of bending modulus. We then describe the computational 

details of the work, including details necessary to reproduce each molecular dynamics simulation 

performed, and details justifying the method by which we calculated the RDFs used in the entropy-

enthalpy decompositions. Results for the entropy-enthalpy decompositions and bending moduli 

for each system are then presented, followed by analysis of how these results show that the latest 

release of Martini still cannot capture thermodynamic transferability without an explicit 

temperature dependence built into the model. 

2.2 Theory 

There is an inherent state dependence incurred when creating a molecular model at a CG 

resolution. This dependence arises due to the loss of entropy due to mapping.30,57 As each CG 

configuration corresponds to a number of different atomistic configurations, the act of mapping 

conditions pins the CG model to a specific thermodynamic state point.30 While a large portion of 

simulations are performed at a single common thermodynamic state point (that is 298 K and 1 

atm), simulating a CG model outside of this state point (or whichever point the model was designed 

for) can lead to unphysical behavior as the PMF of the system will fail to correlate with the 

conditioned PMF of the corresponding system.32  
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Statistical mechanics offers a quantitative way to probe these PMFs via entropy-enthalpy 

decompositions. By the reversible work theorem, the radial distribution function can be connected 

to the PMF of association between two CG sites.  

 𝑔(𝑟) = 𝑒−𝛽𝑤(𝑟) (2.1) 

 

In equation 2.1, β is equal to 1/𝑘𝐵𝑇, g(r) refers to the RDF, while w(r) is the value of the PMF at 

some distance R. As a PMF is a free energy, it in turn can be expressed as a sum of two 

components, enthalpy (∆𝐻), and entropy multiplied by negative temperature, −𝑇∆𝑆. 

 𝑤(𝑟) =  ∆𝐻 − 𝑇∆𝑆 (2.2) 

For each value of r, the values of ∆𝐻 and ∆𝑆 can be estimated via linear regression of the PMF 

with respect to temperature, where the intercept represents enthalpy, and the slope corresponds to 

the negative of the entropic component.58 

 For CG models such as Martini, this analysis provides insight into how the missing 

configurational mapping entropy is accounted for in the model.59 As Martini 3.0 was developed 

with an eye on temperature transferability, this work should be able to quantify these 

improvements in lipid systems. It will provide a clear indication as well of where the model fails 

(i.e. head vs tail groups) and how such models can be improved to increase their transferability. 

We hypothesize that as Martini was parameterized with hydrophilic/hydrophobic partitioning in 

mind, the tail groups of Martini lipids should perform better in this regard than the head groups, 

as lipid tails provide a similar chemical environment to octanol. However, this is dependent on 

Martini’s ability to generalize from a system in which the hydrophobes are shorter and have little 
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to no lateral organization to a lipid bilayer in which there is far more ordering present. It is possible 

that errors in the organization of the head groups, to which the tails are attached, could limit Martini 

lipid’s ability to associate correctly. 

 While entropy-enthalpy decompositions offer a statistical mechanical insight into the 

thermodynamics and transferability of the Martini model, there is also the problem of 

representability in CG models. Representability refers to a CG models capacity to properly 

represent quantifiable observables from the AA regime. There are many observables which are 

patently impossible to correctly calculate for any CG model, such as entropy, due to the loss of 

entropy incurred when mapping as discussed earlier. In addition, many observables are trivially 

representable for CG models, such as the location of alpha carbons in a CG protein which is 

mapped down to an alpha-carbon resolution.32 Previous study of Martini 2.0 lipids have used the 

bending modulus as a test for Martini representability, as well as its accuracy as a whole in its 

capacity to properly capture equilibrium structural properties of lipid bilayers. 

 The bending modulus of a material refers to its propensity to bend when subjected to a 

strain normal to the surface of the material itself. While this is easy to calculate for rigid objects 

as merely the ratio of stress to strain, it is more complicated for flexible sheet like objects such as 

lipid membranes. A common way to calculate this property for simulated bilayers is via the height 

fluctuation spectrum. This spectrum is calculated via a discrete Fourier transform of the midplane 

of the bilayer:60,61  

 𝑢(𝑞) =
1

2𝑁
∑ ∑𝑧𝑗,𝑘𝑒

−𝑖𝑞∙𝑟𝑗,𝑘

2

𝑗

𝑁

𝑘=1

 (2.3) 
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where u is the Fourier coefficient, q is the two-dimensional reciprocal space vector, N is the number 

of lipids, k and j count lipids and leaflets respectively, z is the z coordinate of a given lipid and r 

is the x, y coordinate of a given lipid. 

This spectrum is connected to the height fluctuation spectrum in Canham-Helfrich 

continuum models of lipid bilayers.62,63 For such a system, the free energy can be related to the 

bending modulus via 

 𝐸(𝑢{𝑥, 𝑦}) =
1

2
∫[𝑘𝑐(∆𝑢)2 +  𝛾(∇𝑢)2]𝑑𝑥 𝑑𝑦 (2.4) 

where E is the free energy, 𝑘𝑐 is the bending modulus and 𝛾 is the area compressibility of the 

membrane. A continuous Fourier transform, and removal of harmonic Fourier modes can relate 

the Fourier modes and the bending modulus like so 

 〈𝐴|𝑢(𝑞)|2〉 =
𝑘𝑏𝑇

𝑘𝑐𝑞
4 + 𝑦𝑞2

 (2.5) 

where A is the area of the lipid patch at that moment, and 1/𝑘𝑏𝑇 is the typical thermodynamic 

beta. In the long wavelength regime of this equation and assuming no surface tension, the bending 

modulus can be estimated. This function relies on a large enough lipid patch to properly sample 

low wavelength modes, as it is only at long ranges that molecular systems of lipids begin to share 

behavior with continuum models. This methodology has been applied to both AA and CG models 

alike, and the methodology discussed by Brandt et al. is used in the present work for calculations.60  

It is important to note here that comparisons of AA and CG bending moduli rely on proper 

representation of the height fluctuation spectrum. In previous efforts, it is shown that for Martini 

mappings, the position of the phosphorus atom in lipid heads is represented well by the position 

of Martini mapped phosphate groups56. This makes sense, as the phosphate bead is made up of this 
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phosphorus atom and the four covalently bonded oxygens. As the phosphate moiety is tetrahedral 

and thus the phosphorus atom occupies the center of mass of the entire moiety, it should be no 

surprise that the average phosphate bead z coordinate is an effective metric to calculate the 

midplane of the bilayers. As noted, this may not be the case for all beads, so the phosphate bead 

for the mapped AA data was used here as a direct comparison with Martini 3.0. 

2.3 Methods: 

In total, 4 systems were simulated to gather data necessary for entropy-enthalpy 

decompositions and bending modulus calculations. For each lipid mixture, an atomistic simulation 

was performed using the CHARMM36M force field in GROMACS.64,65 For each system, 4 

separate simulations were carried out, at 290, 305, 320 and 335 K in order to sample a variety of 

temperatures for entropy enthalpy decomposition calculations. Each system consisted of 1152 lipid 

molecules and was first annealed to the appropriate temperature before being simulated for 200 ns 

under NPT conditions. Each trajectory was stripped of water and then split into two trajectories, 

one for each leaflet for the calculation of entropy enthalpy decompositions, justifications for which 

are below. For the bending modulus calculations, the 305 K split trajectories were combined to 

obtain a full bilayer. The AA simulations were then mapped to Martini resolution using a center 

of mass mapping scheme in order to more directly compare the CHARMM and AA models.66,67  

For the CG models, the process was largely the same. The Martini 3.0 force field was 

utilized24, with each system run at 290, 305, 320 and 335 K. However, each simulation was stopped 

after 100 ns of NPT integration. It was found that due to Martini’s faster lipid diffusion, less 

sampling was required to obtain converged RDFs. 



26 

 

The membrane patches simulated in this study were larger than those used in the analysis of 

Martini 2. In that paper, lipid patches containing 268 DOPC molecules and 70 cholesterol 

molecules were used, which necessitated much longer simulations in order to obtain RDFs that 

converged to the degree necessary to calculate accurate entropy-enthalpy decompositions.56 All 

simulations were prepared using the CHARMM-GUI membrane builder browser based tool.68,69  

xy-RDFs: 

To properly study the thermodynamics of lateral association in the lipid membrane, all 

radial distribution functions used in this work were projected onto the two dimensions parallel to 

the plane of the lipid membrane on a per leaflet basis. These RDFs are hereby referred to as xy-

RDFs. By projecting the RDFs in this way, the anisotropic nature of the bilayer is properly handled. 

If full 3-dimensional RDFs were calculated, the results would not normalize to 1 as a proper RDF 

does, but to 0, as there is no sampling of particles above or below the membrane. This also 

guarantees that the PMFs calculated via the reversible work theorem correspond to the PMF of 

lateral association, which is of unique interest for membrane systems. Doing so also necessitates 

that each RDF is calculated with respect to only the CG beads in the same leaflet. If this were not 

done, one would find non-zero values for the xy-RDF near or at r = 0, as the distance between 

beads on different monolayers projected onto the xy plane is not hindered by steric constraints. 

The interactions of lipid species in the opposite leaflet are not significant, especially for 

interactions between head groups, but this inclusion would significantly impact the overall RDF 

calculated. In order to calculate these xy-RDFs, the following method was used. First the solvent 

was stripped out of the system, as it is not of interest for the calculation of lipid-lipid RDFs or 

fluctuation spectra. Next, for AA systems, the lipid atoms are mapped onto a Martini-equivalent 

resolution, specific details of which can be found in the supplemental information. This way, the 
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AA reference simulations are as close to the Martini system as possible. Next, each trajectory was 

split into separate trajectories containing a single lipid leaflet. Finally, xy-RDFs were calculated 

for each leaflet and averaged to obtain a converged RDF for the entire simulation. 

 For the calculation of lateral association RDFs and entropy-enthalpy decompositions, each 

bead in each tail was treated distinctly. All results presented utilize the correlations between the 

beads labeled as part of the “A” tail in the Martini mapping. Because the A and B tails are identical, 

this result is consistent across each tail, and figures comparing the B tails can be found in the 

supplementary information along with additional figures detailing RDFs and entropy-enthalpy 

decompositions not shown in the next section. 

2.4 Results and Discussion 

Lateral association 

System 1: DOPC/DOPS 

Figure 2.1 shows comparisons between Martini and CHARMM xy-RDFs for lateral 

association between DOPC molecules. As expected, Martini matches the distributions of the tail 

beads well, although it produces slightly over-structured results compared to the AA system. The 

biggest difference in the RDFs of the tail groups comes in the C1A group, the first tail bead which 

is bonded to the glycerol group. In this case, Martini fails to capture the location of the first peak 

properly. For the head groups, Martini 3.0 largely fails to reproduce the RDFs of CHARMM lipids. 

Figure 2.2, which shows the same RDFs between DOPS molecules, shows similar results. 

However, there is further deviation between CHARMM and Martini in associations between 

DOPS serine groups (named CNO in Martini). In this case the AA bilayer exhibits a much larger 
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amount of structuring around 0.5 nm. Figure 2.3 shows the lateral association RDFS between the 

two lipid species. These RDFs do not exhibit deviations beyond the single component RDFs.  

g(r) 

r (nanometers) 

DOPC-DOPC RDFs 

CHARMM36 

Martini 3.0 

Figure 2.1: Lateral RDFs for DOPC-DOPC interactions in DOPC/DOPS system. Beads are 

labelled according to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 

and GL2, saturated tail beads: C1A, C3A and C4A, Unsaturated tail beads: D2A. Martini 3.0 

RDFs are compared to mapped CHARMM36 data. 
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Figure 2.2: Lateral RDFs for DOPS-DOPS interactions in DOPC/DOPS system. Beads are 

labelled according to the following scheme. Serine: CNO, Phosphate: PO4, Glycerols: GL1 

and GL2, saturated tail beads: C1A, C3A and C4A, Unsaturated tail beads: D2A. Martini 3.0 

RDFs are compared to mapped CHARMM36 data. 
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Figure 2.3: Lateral RDFs for DOPC-DOPS interactions in DOPC/DOPS system. Beads are 

labelled according to the following scheme. Choline: NC3, Serine: CNO, Phosphate: PO4, 

Glycerols: GL1 and GL2, saturated tail beads: C1A, C3A and C4A, Unsaturated tail beads: 

D2A. Martini 3.0 RDFs are compared to mapped CHARMM36 data. 
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System 2: DOPC/DPPC 

The DOPC/DPPC system for the most part shows similar results for lateral association. 

Figures 2.4 and 2.5 show results for DOPC-DOPC and DOPC-DPPC association. For the most 

part Martini can capture the structuring of lipid tails with peaks at the correct distances and most 

peaks being the correct magnitude. The head groups, as in the DOPC/DOPS system, are largely 

inaccurate, however there are no large deviations seen in the DOPS-DOPS serine-serine RDF in 

the previous system. Larger inaccuracies are seen in the DPPC-DPPC tail interactions, shown in 

figure 2.6. As opposed to RDFs from the previous system and in DOPC interactions in this system, 

DPPC-DPPC tail interactions fail to capture peak locations for each bead. This is not limited to 

the first peak either, each subsequent peak is also located further away than in the CHARMM 

reference data, suggesting that Martini DPPC tails are effectively larger than they should be. 
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Figure 2.4: Lateral RDFs for DOPC-DPPC interactions in DOPC/DPPC system. Beads are 

labelled according to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 

and GL2, saturated tail beads: C1A, C2A, C3A and C4A, Unsaturated tail beads: D2A. Martini 

3.0 RDFs are compared to mapped CHARMM36 data. 
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Figure 2.5: Lateral RDFs for DOPC-DOPC interactions in DOPC/DPPC system. Beads are 

labelled according to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 

and GL2, saturated tail beads: C1A, C3A and C4A, Unsaturated tail beads: D2A. Martini 3.0 

RDFs are compared to mapped CHARMM36 data. 
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Figure 2.6: Lateral RDFs for DPPC-DOPC interactions in DOPC/DPPC system. Beads are 

labelled according to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 

and GL2, saturated tail beads: C1A, C2A, C3A and C4A. Martini 3.0 RDFs are compared to 

mapped CHARMM36 data. 
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Entropy-Enthalpy Decompositions: 

System 1: DOPC/DOPS 

Figure 2.7 shows entropy-enthalpy decompositions for head group DOPC-DOPS 

interactions. While the PMFs for the glycerol groups are decomposed accurately at least at long 

ranges, the phosphate-phosphate and choline-serine decompositions exhibit large deviations from 

the atomistic data. Figure 2.8 shows the decompositions for the tail group DOPC-DOPS. While 

there are deviations in the peak locations and heights, overall, the tail groups are captured well, 

with the proper overall trend. Of note, the errors for each value of 𝑟 are shown as well. At lower r 

values, these errors raise in magnitude due to the lack of sampling in these regimes. In certain 

cases, no sampling for certain bins was obtained, and data is not plotted for these regimes. Figure 

2.9 shows decompositions for the head groups of the DOPC-DOPC interactions in the 

DOPC/DOPS system. Again, phosphate beads are poorly captured by Martini while the glycerol 

beads are qualitatively similar. Interestingly, the choline groups show an additional feature that is 

not present in choline-choline decompositions for the second system: a strong peak after the initial 

well which is not observed at all in the atomistic data. 
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Figure 2.7: Entropy-enthalpy decompositions of DOPC-DOPS head group interactions for 

DOPC/DOPS system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 and GL2. Martini 

3.0 decompositions are compared to mapped CHARMM36 data. 
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Figure 2.8: Entropy-enthalpy decompositions of DOPC-DOPS tail group interactions for 

DOPC/DOPS system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme. Lipid tail beads in descending order: C1A, C2A, C3A and C4A. 

Martini 3.0 decompositions are compared to mapped CHARMM36 data. 
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Figure 2.9: Entropy-enthalpy decompositions of DOPC-DOPC head group interactions for the 

DOPC/DOPS system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 and GL2. Martini 3.0 

decompositions are compared to mapped CHARMM36 data. 
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System 2: DOPC/DPPC 

The mixed DOPC-DPPC interactions show similar trends for the second system simulated 

for both phosphate and glycerol groups, shown in figure 2.10. In the case of phosphate, the Martini 

lipids produce significant structuring which is not present in the mapped atomistic system. The 

glycerol groups on the other hand show a rough qualitative agreement with the CHARMM lipids, 

especially at long ranges. The choline-choline decompositions on the other hand are much closer 

to the reference simulation than the serine-choline decompositions in the DOPC/DOPS system. 

Aside from some slight structuring at long ranges which is not present in the atomistic data, the 

decompositions have roughly the same features, though the principal well at around 0.75 nm and 

the subsequent peak have been pushed further away. 

The tail-tail decompositions for the mixed DOPC-DPPC interactions, detailed in figure 

2.11, follow the trends of their corresponding RDFs. The under-structuring of tails by Martini is 

worse in this system than in the DOPC/DOPS system, and the locations of the peaks are all pushed 

out from the AA reference data. This error is the most prominent in the C2A-D2A interactions in 

contrast with the DOPC/DOPS system, while the C4A-C4A decomposition almost matches the 

properties of CHARMM36. Interactions between molecules of the same species follow the same 

trends with one major exception. The interactions between CHARMM36 DPPC tails exhibit much 

higher contributions both in the enthalpic and temperature dependent entropic terms than those 

between DOPC molecules and the DOPC-DOPS tail interactions, as shown in figure 2.12. Martini 

3.0 fails to capture this entirely, and the DPPC tails seem to behave much closer to those of DOPC. 

Effectively, the Martini DPPC tails are much less temperature dependent. 
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Figure 2.10: Entropy-enthalpy decompositions of DOPC-DPPC head group interactions for 

DOPC/DPPC system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme. Choline: NC3, Phosphate: PO4, Glycerols: GL1 and GL2. Martini 3.0 

decompositions are compared to mapped CHARMM36 data. 
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Figure 2.11: Entropy-enthalpy decompositions of DOPC-DPPC tail group interactions for 

DOPC/DPPC system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme. Unsaturated tail bead: D2A, saturated tail beads in descending order: 

C1A, C2A, C3A and C4A. Martini 3.0 decompositions are compared to mapped CHARMM36 

data. 
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Figure 2.12: Entropy-enthalpy decompositions of DPPC-DPPC tail group interactions for 

DOPC/DPPC system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme. Tail beads in descending order: C1A, C2A, C3A and C4A. Martini 

3.0 decompositions are compared to mapped CHARMM36 data. 
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Bending Modulus and Height Fluctuation Spectrum: 

Table 2.1 details results of fluctuation spectrum based bending modulus calculation. 

Martini 3.0 consistently produces a bilayer which is less stiff than those seen in the atomistic 

simulations. Furthermore, the composition of the bilayer seems to have little effect on the Martini 

bending modulus, while in the atomistic case the DOPC/DOPS bilayer is almost 50 percent stiffer.  

System Martini 3.0 𝑘𝑐 (𝑘𝐵𝑇) CHARMM36 3.0 𝑘𝑐 (𝑘𝐵𝑇) 

70:30 DOPC/DOPS 28.9 ± 3.7 14.6 ± 1.6 

50:50 DOPC/DPPC 26.8 ± 0.5 8.9 ± 1.6 

 

In addition to the bending modulus, Martini fails to capture the height fluctuation spectrum of 

mapped atomistic bilayers at higher wavelengths. Figure 2.13 shows the full height fluctuation 

spectrum for the DOPC/DOPS system for both Martini and CHARMM36. Between 𝑞 = 1 and 

𝑞 = 5 nm-1, the Martini bilayer shows fluctuations which are up to twice as large as the reference 

simulation. These fluctuations mediate interactions between proteins on the surface of 

membranes70 and thus affect the aggregation of membrane bound proteins. This has consequences 

for processes such as endocytosis, in which large quantities of proteins such as N-BARs which 

contain membrane targeting amphipathic helices.71  

Table 2.1: Bending moduli 𝑘𝑐 for CHARMM36 and Martini 3.0 lipid bilayers. Each bending 

modulus was calculated via the Fourier Transform of the membrane height fluctuation 

spectrum’s low wavelength limit.  
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Figure 2.14 shows the same spectrum for the DOPC/DPPC system. In this case, the discrepancy 

between the atomistic and CG bilayers are even greater and persist to higher frequency modes.  
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Figure 2.13. Height fluctuation spectrum for the DOPC/DOPS system. Bending modulus 

calculations are derived from the low q regime, in which fluctuations are directly related to 

bending rigidity for discrete systems such as lipid bilayers.  
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2.5 Conclusions 

Several conclusions can be drawn about Martini 3.0 membranes in general based on the 

lateral associations of its tail beads when compared to AA data. For all systems, Martini 

consistently produced over-structured RDFs in comparison to CHARMM36. However when 
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Figure 2.14. Height fluctuation spectrum for the DOPC/DPPC system. Bending modulus 

calculations are derived from the low q regime, in which fluctuations are directly related to 

bending rigidity for discrete systems such as lipid bilayers.  
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looking at the entropy-enthalpy decompositions, Martini seems to consistently underestimate peak 

and well heights. What this means is that Martini is less sensitive to changes in temperature due to 

the smaller magnitude of its entropic term but compensates for this via a lower enthalpy term. This 

over-structuring at room temperature also likely contributes to its stiffer bending modulus. 

The results presented in the previous section show that in the case of temperature 

transferability, Martini 3.0 continues to fail in several critical areas which are sensitive to bilayer 

composition. The two systems studied provide insight into how lipid bilayers partition entropy and 

enthalpy in different regions of the membrane. For the first system containing DOPC and DOPS, 

the heterogeneity from the different lipid species localizes in the head groups. The difference 

between the two molecules is the presence of a choline group in DOPC versus a serine group in 

DOPS. Structurally, Martini fails to capture peaks in the serine-serine RDF while consistently 

failing to reproduce the structural correlations of the phosphate head group. While the choline-

choline decompositions are qualitatively similar for CHARMM36 and Martini in the DOPC/DPPC 

system, the presence of DOPS in this membrane causes Martini to produce peaks which are not 

seen at all in the CHARMM data. It can be concluded that the heterogeneity of the membrane 

itself, or Martini’s inability to properly represent serine disrupts the otherwise reasonable choline-

choline association. 

 On the other hand, the DOPC/DPPC system exhibits heterogeneity localized within the 

hydrophobic core of the bilayer. In this case, the lack of double bonds in DPPC creates a bilayer 

with more flexible tails which are capable of unkinked conformations. Despite this, Martini 3.0 

DPPC appears to have a much larger effective size based on the locations of peaks in the DPPC-

DPPC tail RDFs and entropy-enthalpy decompositions. In addition to this, AA DPPC is much 

more sensitive to temperature, noted by the increased magnitude of its entropy-enthalpy 
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decompositions in the tail groups. The entropic aspect of this is likely the root cause, as Martini 

tails cannot account for the conformational entropy of AA lipid tails. This lack of entropy then 

requires a lowered enthalpy to compensate and ensure that the PMF is similar enough to better 

capture the RDFs. While the previous systems issues seemed in part to stem from the heterogeneity 

of the lipid heads, in the case of the DOPC/DPPC membrane these issues stem mostly from the 

DPPC lipids themselves, and do not seem to affect the mixed lipid interactions as much.  

 Lastly, the bending modulus calculations show that Martini 3.0 consistently produces 

overly stiff membranes. These membranes are roughly as stiff as Martini 2.0 DOPC + cholesterol 

membranes which suggests that Martini bending stiffness is insensitive to membrane composition. 

While this produces reasonable results for membranes which happen to closely match this 

“standard” Martini stiffness, DOPC/DOPS and DOPC/DPPC membranes should be much more 

flexible due to their lack of cholesterol. Other analyses of Martini bilayers show similar results for 

bending moduli calculated via spectral analysis.72 However the same systems bending moduli were 

more accurate when calculated via lipid splay angles, and future analyses may be improved if 

multiple methods are compared. 

 Overall, the additions to Martini 3.0 in the context of lipid bilayers do not seem to improve 

on many of the failures that Martini 2.0 lipids suffered from. Attempts to incorporate temperature 

transferability into the model have not improved Martini’s partitioning of entropy and enthalpy 

into lateral association PMFs, and the new systems analyzed bring to light more issues related to 

Martini membranes material properties. It is unlikely that Martini can solve these problems without 

incorporating explicit temperature dependence into the CG force field.73 These issues are 

inherently connected to the statistical mechanical nature of CG models, which cannot reproduce 

entropic contributions from sub-bead level fluctuations and thus do not behave as expected outside 
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of the specific thermodynamic state point they were parameterized for. The connection between 

the PMFs of lateral association and the CG potential, which is itself a conditioned PMF, suggest 

that a linear temperature dependence may be sufficient to recapture the lost entropy in the CG 

resolution and would likely lead to much more transferrable CG models. 
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2.6 Additional Figures  
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Figure 2.S1: Entropy-enthalpy decompositions of DOPC-DOPC tail group interactions for 

DOPC/DOPS system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme: Saturated tail beads in descending order: C1A, C3A, and C4A. 

Unsaturated tail bead: D2A. Martini 3.0 decompositions are compared to mapped CHARMM36 

data. 
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Figure 2.S2: Entropy-enthalpy decompositions of DOPS-DOPS head group interactions for 

DOPC/DOPS system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme: Serine: CNO, Phosphate: PO4, Glycerols: GL1, GL2. Martini 3.0 

decompositions are compared to mapped CHARMM36 data. 
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Figure 2.S3: Entropy-enthalpy decompositions of DOPS-DOPS tail group interactions for 

DOPC/DOPS system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme: Saturated tail beads in descending order: C1A, C3A, and C4A. 

Unsaturated tail bead: D2A. Martini 3.0 decompositions are compared to mapped CHARMM36 

data. 
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Figure 2.S4: Entropy-enthalpy decompositions of DOPC-DOPC head group interactions for 

DOPC/DPPC system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme: Choline: NC3, Phosphate: PO4, Glycerols: GL1, GL2.  Martini 3.0 

decompositions are compared to mapped CHARMM36 data. 
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Figure 2.S5: Entropy-enthalpy decompositions of DOPC-DOPC tail group interactions for 

DOPC/DPPC system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme: Saturated tail beads in descending order: C1A, C3A, and C4A. 

Unsaturated tail bead: D2A. Martini 3.0 decompositions are compared to mapped CHARMM36 

data. 
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Figure 2.S6: Entropy-enthalpy decompositions of DPPC-DPPC head group interactions for 

DOPC/DPPC system. Standard errors at each r value are shown. Beads are labelled according 

to the following scheme: Choline: NC3, Phosphate: PO4, Glycerols: GL1, GL2. Martini 3.0 

decompositions are compared to mapped CHARMM36 data. 
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Chapter 3: High Resolution Coarse-Grained Lipid Models 

can be Systematically Improved via the Introduction of 

Solvent Virtual Particles as well as Explicit Temperature 

Dependence 

 

 

Abstract 

The development of bottom-up coarse-grained (CG) lipid models at a resolution of 4 heavy atoms 

to 1 CG site has unique challenges which make them often paradoxically less accurate than CG 

models at lower resolutions. These problems stem from the inherent anisotropy in lipid systems, 

and the fact that the sampling of lipid head-tail interactions is essentially nonexistent for this 

reason. At lower resolutions, these interactions tend to be better sampled due to the difference in 

mapping schemes. When applying force matching to such a system, the resulting bilayer is 

unstable, either breaking apart, or interdigitating until each leaflet experiences significant overlap. 

Fixing these issues requires the ad-hoc alteration of CG interactions, effectively making it a top-

down approach. However, these issues can be partially overcome via advanced coarse-graining 

techniques. The first approach to solving these issues is to introduce virtual solvent particles, which 

repartition the forces to better recapture the hydrophobic effect. This, combined with Relative 

Entropy Minimization produces a much more stable model, which when combined with 

temperature dependent potential parameterization, reproduces entropy enthalpy decompositions of 

the reference data much better. However even with all these techniques, such models are incapable 

of self-assembly, a feature which is possible at lower resolutions. I present a CG model of 1,2-
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dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using a high-resolution mapping built with the 

multiscale coarse-graining method and describe how at this resolution, this methodology fails to 

produce an accurate model. I then describe steps which can systematically improve the model, 

including the application of relative entropy minimization, virtual solvent particles, and explicit 

temperature dependence and demonstrate that even with all of these techniques combined, the 

model still fails to meet even the quality of lower resolution lipid models, which suffer less from 

sampling issues. 

3.1 Introduction  

 Molecular dynamics (MD) simulations provide a means to probe chemical systems at 

atomistic resolutions and timesteps on the order of femtoseconds.74 This ability makes MD 

valuable for the study of biomolecular systems at the microscopic scale. While X-ray 

crystallography can provide experimental insight into the structures of such systems at similar 

length scales,75 it can only show scientists a static snapshot of what is happening within the cell. 

Worse still, crystallographic methods suffer from the act of crystallizing the sample, a process 

which can push molecules, especially proteins, outside of their native conformations.76 Cryo-

electron microscopy, which avoids crystallization of the sample, can avoid some of these 

drawbacks,77 it still shows a static picture, and thus cannot offer any dynamical information about 

biochemical processes on its own. 

 Despite this, all-atom (AA) MD suffers from the limitations of current computer hardware. 

Many biophysical processes take place on the order of seconds or longer or involve a quantity of 

atoms which is simply inaccessible to AA-MD, which is practically limited to microseconds, and 

billions of atoms. While these boundaries are pushed and even broken frequently,78 access to rare, 
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specialized hardware limits widespread achievement of such simulations. Bottom-up Coarse-

graining (CG) methods allow access to much larger time and length scales via a reduction in the 

number of particles used to represent the system of interest. These particles, or CG beads, interact 

via a CG Hamiltonian which is parameterized using a smaller amount of AA MD data, and can be 

used to extend the size of MD simulations for a fraction of the computational cost. Multiscale 

coarse-graining (MSCG), also known as force matching, is a method to match  bottom-up CG 

models by minimizing the residual of the CG forces between the model force field and the forces 

obtained via mapping reference AA data down to the desired CG resolution.66,79,80 Equation 3.1 

describes this force minimization scheme.  

 𝜒2[𝐹(𝜙)] =
1

3𝑁
⟨∑|𝑓𝐼(𝑀(𝑟) − 𝐹𝐼(𝑀(𝑟)|𝜙)|2

𝑁

𝐼=1

⟩ (3.1) 

In this case I is one of N total CG sites and r is the set of atomistic coordinates which map to a CG 

site via the mapping operator M. 𝑓𝐼 and 𝐹𝐼 are forces obtained from summing the atomistic forces 

on that CG site and from the CG force field with parameters 𝜙 respectively. For most biophysical 

applications, the model parameters being optimized are b-spline knots, which results in a very 

expressive, albeit pairwise basis set.79 Three-body forces can be learned via MSCG by expressing 

these three body interactions in terms of Stillinger-Weber potentials,81,82 although this comes at 

the expense of integration speed. It is often difficult to justify including third order correlations as 

speed is the key feature of a CG model when compared to corresponding AA simulation. 

Another method to produce bottom-up pairwise CG models is relative entropy 

minimization (REM). Rather than optimize the forces of the CG model to match that of the 

reference data, REM seeks to optimize the overall static structural properties of the model. In this 

case, each model is represented by a probability distribution in terms of the spatial coordinates of 
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each atom. These distributions can be compared directly with each other via the Kullbeck-Leibler 

divergence (KL divergence) also known as the relative entropy:83 

 𝑆𝑟𝑒𝑙 = ∑𝑃𝑟𝑒𝑓(𝑟) ln (
𝑃𝑟𝑒𝑓(𝑟)

𝑃𝑚𝑜𝑑(𝑀(𝑟))
)

𝑟

 (3.2) 

Where 𝑃𝑟𝑒𝑓(𝑟) is the probability of observing a certain configuration r in a reference distribution, 

and 𝑃𝑚𝑜𝑑(𝑀(𝑟)) is the probability of observing the same configuration (mapped to the CG 

resolution) in a distribution from a model force field. The relative entropy grows larger as the 

reference and model distributions become more dissimilar. The gradient of this quantity can also 

be calculated in terms of model parameters via 

 ∇𝜙𝑆𝑟𝑒𝑙 = 𝛽 ⟨
𝜕𝑈𝐶𝐺

𝜕𝜙
⟩
𝐹𝑃

− 𝛽 ⟨
𝜕𝑈𝐶𝐺

𝜕𝜙
⟩
𝐶𝐺

 (3.3) 

Where 𝑈𝐶𝐺 is the CG potential, FP and CG refer the reference atomistic and CG ensembles 

respectively and 𝜙 is a model parameter. Then, via gradient descent, the model parameters can be 

updated to produce a model which shows better agreement with the reference data than before.84 

Such a method is thus iterative, and requires an initial guess for the force field of the system. Given 

that most common CG models are built on pairwise basis sets, REM has the property of matching 

radial distribution functions (RDF), also referred to as g(r) extremely well. This is because in the 

case of a pairwise basis set, the configurational probability distribution is cast in terms of radial 

distribution functions. Interestingly, under the conditions of limitless sampling and a basis set 

which fully represents the many-body CG potential of mean force (PMF), both REM and MSCG 

will produce identical results.84 However, this is never a realistic case, as sampling will always be 

inherently limited in the case of CG model production, and it is rare that one would ever seek to 

produce a CG model that extends beyond three-body correlations.  
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Naturally, such methods have been applied to a variety of systems, from simple liquids all 

the way to complex multicomponent biological systems. One class of system that is of great 

interest to CG modelers is lipid bilayers. Lipid membranes are good candidates for coarse graining 

for several reasons. First, bulk water, which can be integrated out in a CG model, makes up the 

majority of atoms in a lipid simulation. Second, many interesting processes in lipid membranes, 

such as the formation of lipid rafts, occur on long timescales, gated by the diffusion speed of lipids 

within the larger bilayer.85 Thus coarse-graining accelerates the sampling of these processes on 

multiple levels.  

The history of MSCG lipid membranes at high resolutions (4 heavy atom to 1 CG site or 

greater) is fraught with complications. Past implementations of such models are characterized by 

a large number of CG site types and thus a large and complicated Hamiltonian, and overall noisy 

potentials.86,87 Worse still, when removing solvent from the system, a process which is commonly 

desired for CG lipids as it accounts for the majority of atoms in a lipid simulation while remaining 

the least interesting part of the system, the resulting force field is unusable without ad-hoc 

alterations.88 The most critical issue is the fact that MSCG produces interactions between tail 

brands which lead to highly nonphysical behavior. In most cases, the raw output of MSCG 

produces a bilayer that at best interdigitates to the point that the membrane is no longer a bilayer, 

and at worst fails to stay together at all when starting from an assembled bilayer. This series of 

issues stems from a variety of places, some of which are inherent to all CG models, some to only 

lipid systems, some to implicit solvent lipids, and some specifically to high resolution implicit 

solvent lipids.  

 First, there are two major issues which are inherent to all classes of CG models: 

transferability and representability. As discussed previously, transferability issues arise when a CG 
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model is incapable of correctly matching the behavior of the system outside the thermodynamic 

state point for which it was parameterized. Even advanced, well parameterized models fail to 

properly represent the entropy of the AA system and thus cannot be transferred to other 

temperatures. Representability issues are also inherent, as a variety of observables are dependent 

on the full atomistic representation of the system, and calculation of pressure etc. becomes 

impossible. 

 When considering specifically CG lipid bilayers, one of the biggest issues stems from the 

fact that membranes have an inherently large amount of anisotropy. Due to the structure of the 

bilayer, each interaction is only sampled within a relatively flat slice of the simulation box, with 

interactions between the bulk solvent (if present) take up most of the observed sampling. There is 

also relatively little sampling between lipid heads and tails in a stable bilayer because of this 

structuring, which in turn leads to noisy potentials that can produce bad forces which can ultimately 

destabilize the resulting model. While lipid flip flopping can allow for lipid heads to interact with 

lipid tails as they cross from one leaflet to another, the process is rare and in pure simulated bilayers 

is only observed via enhanced sampling methods such as transition path sampling.89,90 This is a 

difficult problem to address for CG lipids. Including sampling from non-bilayer configurations or 

enhanced sampling simulations could indeed improve the amount of sampling, however this would 

involve sampling the system out of equilibrium, which would lead to non-Boltzmann statistics and 

removes CG consistency between the reference and model data.66 Sampling can also be improved 

by simply including more reference data, but this still fails to produce a good model with an amount 

of sampling which would be considered reasonable. Even 250 ns of reference data on a 1200 lipid 

bilayer is insufficient.  
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 Second are issues inherent to all solvent free lipid models. While solvent is generally less 

interesting to study for lipid systems, it is nevertheless critical to membrane formation and 

stability. It is the hydrophobic effect after all which drives lipid assembly, not attractive 

interactions between lipid tails. Practically, this means that for force matching models of lipid 

bilayers without explicit solvent representation, the hydrophobic forces from bulk water are 

naturally pushed onto the lipid tails. The resulting model will typically have a highly attractive 

potential between lipid tail beads, especially those beads at the ends of the lipid tails.   

Last are the issues that specifically affect these types of models at higher resolutions. High 

resolution CG models create an additional issue through the complexity of their mapping. While 

lower resolution models may incorporate a total of 4 CG types91, models at the higher resolution 

necessitate 6 or more, shown in Figure 3.1. While this does not appear at first glance to be a large 

increase, it ends up creating a far more complex model. While a 4-type model will require 10 

individual non bonded interaction types, there is a geometric expansion of interaction types with 

respect to the number of types. A 6-type model necessitates 21 separate interactions, and each 

parameter of each interaction (which in the case of spline-based models can be hundreds per 
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interaction) is a potential point of failure. This has the effect of exacerbating sampling issues 

caused by the previous two issues, whereby tail beads which would normally be nominally closer 

to the head groups because of the nature of the mapping scheme are pushed farther away, and thus 

are even more poorly sampled.  

While many of these problems are difficult to solve without resorting to applying 

unreasonable amounts of reference data to the problem, some of them can be approached in more 

strategic ways which do not obviate the need for a CG model in the first place. The area which has 

seen a large amount of effort dedicated to it is the representation of solvent. As mentioned, 

membranes form explicitly because of interactions between hydrophobic lipid tails and water, and 

CH 

PH 

G1 G2 

SM 

SM SM 

SM 

ST 
ST 

a) b) 

Figure 3.1: a) “Low” resolution mapping of a lipid molecule onto 6 CG sites with 4 types. This 

leads to a total of 10 nonbonded interaction types. Adapted from [91]. b) “High” resolution CG 

lipid mapped onto 10 sites with 6 types. This leads to more than double the number of 

nonbonded interactions. 
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thus it is difficult to build a successful model without at least some form of solvent representation. 

Plenty of models have been developed for which water is explicitly represented, both top-down 

and bottom-up17,86,87 yet these models suffer greatly due to the increased computational cost, or 

worse yet, inaccurate water models. In the case of bottom-up coarse graining, each water molecule 

must be represented as an individual bead, which hardly eliminates degrees of freedom from the 

system when compared to mappings of even 4 heavy atoms per bead. In the case of top-down 

models such as Martini, each water bead represents multiple water molecules, which solves the 

problem of efficiency (at least partly, fully implicit solvent models will be even faster) but runs 

into problems due to the unphysical water beads freezing at or near room temperature.52,53  

 There is a middle ground between full solvent representation and implicit solvent which 

has been applied to a great degree of success, at least in lower resolution CG lipids: virtual solvent 

particles.91 For the purpose of this work a virtual particle is defined as a CG site which has no 

linear mapping to atoms in the reference trajectory. In the case of virtual solvent particles, they are 

solvent beads which represent the water molecules that are tightly associated with the lipid head 

groups, which are then bound to the CG lipid heads in an effort to represent only the solvent which 

is exerting the most influence on the bilayer. In the reference trajectory, this means that the virtual 

solvent particles may map to different individual water molecules as they are free to leave the 

bilayer surface or move to different areas, and adjacent virtual particles may contain the same 

water molecule within them. Predictably, parameterizing virtual solvent particles via MSCG is 

difficult, as the mapping of forces must be linear for MSCG models to remain consistent with their 

underlying AA data.66 Instead, in order to obtain virtual particle forces, a REM model of the system 

must first be obtained, which can be used to estimate the forces on the virtual particles in the 

mapped reference data. After this step, those forces can be used as a stand in for actual reference 
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forces, and force matching can then be performed. Additionally, the resulting MSCG model can 

then be used as input for further optimization via REM.91 This method was used to generate a 6 

(plus 1 virtual) site 1,2-dioleoyl-sn-glycero-3-phosphocholine DOPC lipid model which exhibited 

not only bilayer stability, but also the capacity to self-assemble into a variety of morphologies 

depending on the initial concentration, which is not seen in implicit solvent bottom-up lipids.91 

The introduction of the virtual particles also improved the bending modulus of the membrane. 

Without the virtual particles, both MSCG and REM produced bilayers which were much stiffer 

than corresponding AA membranes, while introduction of the virtual particles in combination with 

REM and MSCG together resulted in a bilayer which is nearly as flexible as the reference data. 

In this work I investigate the steps necessary to build more accurate high resolution (4 

heavy atoms per bead) CG models of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

lipid bilayer. Five models for CG DMPC are presented. The first is an implicit solvent MSCG 

model parameterized using a much larger amount of sampling than has been applied to such high-

resolution models in the past, which is referred to as IS-MSCG. The second is a model built using 

the first model as input for a long REM optimization, which shows improved stability without ad-

hoc force field alteration, referred to as IS-REM. Next, I apply a virtual solvent site to each lipid 

molecule and demonstrate that this improves overall bilayer stability, albeit at short timescales, 

referred to as VS-REM. I then apply MSCG using virtual site forces from the previous model and 

non-virtual forces from the reference data, which behaves largely the same as the initial MSCG 

model without virtual particles, referred to as VS-MSCG.  Finally, I present a REM virtual solvent 

model with explicit temperature dependence, which improves temperature transferability, but is 

still unable to avoid certain structural issues, referred to as TT-VS-REM. The work is laid out as 

follows. First the methodology behind each step in the model creation is discussed, including 
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atomistic reference simulation details, hyperparameters for MSCG, REM and the inclusion of 

virtual sites. Next, data showcasing the advantages and disadvantages of each model are presented, 

with a short section describing the total amount of work required to generate each model. Lastly, 

the data is discussed in detail, and conclusions about the viability of models at this resolution are 

made. 

3.2 Methods 

The initial reference dataset used to generate the DMPC models was generated by simulating a 

system of 1260 DMPC lipids using the CHARMM36 force field92 with TIP3P water93 to generate 

accurate lipid statistics using GROMACS.94 Inputs were generated using the CHARMM-GUI 

membrane builder68,69,95 with the system containing 22.5 Å of bulk water above and below the 

membrane to ensure minimal correlation across periodic images. Sodium and chloride ions were 

added to the bulk solvent to bring it to 0.15 M according to physiological conditions.96  The system 

was first equilibrated for 50 nanoseconds at NPT conditions, 1 atmosphere and 300 K, followed 

by a 250 ns NVT production run at 300 K. Forces were dumped every 10 ps for a total of 25,000 

frames of force data. This trajectory was split into 25 equal subtrajectories of 1000 frames each to 

facilitate parallelized force matching. While previous attempts to force match high resolution 

DMPC used far less sampling, as little as 64 lipids simulated for 400 ps,87 the larger dataset was 

chosen to ensure that any issues related to noisy potentials and instability were not related to 

insufficient reference data. 

 The system was mapped to 10 CG beads per lipid. The phosphate and choline were each 

assigned their own bead types, named PH and CH respectively. Each glycerol was assigned a 

separate site type as well (G1 and G2) to account for the odd number of carbons incorporated into 
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each glycerol bead. The tails were mapped onto three sites each. The first two tails from the 

glycerol were assigned one site type (SM), while the terminal bead was assigned a separate type 

(ST). This choice was made to prevent attractive forces holding the leaflets together from affecting 

the mid-tail region of the system. Figure 2 details which atoms were assigned to which site. Each 

bead’s position was mapped to the center of mass of all atoms in the bead, while forces were 

mapped additively according to center of mass mapping rules required to generate consistency 

with the reference atomistic data. Water, as well as all sodium and chloride, was excluded from 

the mapping to produce a lipid only mapped atomistic trajectory. 

 For the IS-MSCG model of DMPC, all 21 possible pairwise interactions were optimized 

using 3rd order B-splines with control points placed every 0.1 Å. All bonds and angles were 
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Figure 3.2: a) Atomistic DMPC molecule grouped to approximately 4 heavy atoms per group. 

Each group is colored so that only groups with the same chemical structure are the same color. 

b) CG DMPC molecule mapped according to groupings in a). Each bead’s position is set to the 

center of mass of the grouped atoms, and the mass is set to the sum of the group’s atoms. 
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optimized as well using 3rd order B-splines, with control points placed every 0.25 Å for bonds and 

every 5 degrees for angles. Nonbonded interactions were subjected to a long-range cutoff of 25 Å. 

Inner cutoffs for all interactions, as well as outer cutoffs from bonded and angular interactions 

were determined by the following procedure: One of the 1000 frame mapped subtrajectories was 

analyzed to produce histograms of each interaction by distance with a bin width corresponding to 

the spline resolution of each interaction type. The lowest bin (or highest bin in the case of bonded 

and angular outer cutoffs) which contained at least 100 examples was selected as the cutoff. As 

each interaction can contain potentially hundreds of parameters, Bayesian regularization was 

applied to the outputs of force matching for 250 iterations to ensure smooth potentials.97,98 Forces 

from 1-2 and 1-3 bonded interactions were excluded from force matching of non-bonded 

interactions. 

 The second DMPC model created, IS-REM, used REM to optimize the force field 

generated by the IS-MSCG model. As an iterative model, REM benefits from an initial guess force 

field which reproduces the reference configurational distribution as closely as possible. Since the 

force field generated by MSCG caused the leaflets of the bilayer to break into micelles, several 

interactions were altered to provide REM with a better starting point. The bilayer collapse was 

resolved by replacing the terminal ST beads on each lipid tail with SM beads, leading to a model 

which at least formed a bilayer with properly separated leaflets. When REM was performed 

however, the ST beads were reintroduced for the purpose of model optimization. These beads were 

considered two different types which started with the same potentials. Failure to do so resulted in 

a model which fell apart over the equilibration period after a few iterations.  Inner cutoffs for each 

non-bonded interaction were also reselected to prevent the relative entropy between model and 

reference data from diverging near the cutoff. If the inner cutoff is too small, the model can sample 



68 

 

configurations which are never seen by the reference model, and thus the ln (𝑃𝑟𝑒𝑓/𝑃𝑚𝑜𝑑) term in 

the relative entropy becomes undefined. This numerically causes the potentials generated by REM 

near the inner cutoff to become increasingly negative, which stabilizes such configurations even 

further, forming a feedback loop. To avoid this, REM was performed for a short number of 

iterations until such negative spikes appeared in the potentials. Then the inner cutoffs were then 

moved out until there was only one spline knot left in the unsampled region (essentially the 

beginning of the hard wall region). This knot was held fixed, while only knots from the sampled 

region were allowed to update. By selecting the cutoffs this way, this problem can be avoided for 

the actual REM iterations. The spline order for the interactions was increased to 4th order splines 

to account for the fact that REM natively outputs potential splines as opposed to MSCG which 

outputs splines of forces, the negative derivatives of the potentials. The last change made to the 

MSCG model was to change the spline knot resolution for the non-bonded interactions from 0.1 

to 0.5 Å. This was done to avoid oscillations in the potential which arise due to the fact that each 

iteration of REM uses less sampling than MSCG. 

 For each iteration of REM, reference data collected from 50 frames of reference data was 

compared to 50 frames of data from the previous iteration’s CG model. Each non-bonded 

interaction was allowed to update at each iteration, with a maximum step size for each parameter 

of 0.002 𝑘𝐵𝑇. Low step sizes were chosen to ensure stability across iterations, as larger ones tended 

to oscillate between stable and unstable bilayers without improving the model. This step was run 

for 1000 iterations to produce the final model. 

The VS-REM model was generated using the IS-REM model as a starting point. The virtual 

solvent particles were mapped by a different strategy than the non-virtual sites. In this case, the 

mapped reference trajectories (with water included) were mapped to the CG resolution described 
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above. Then the RDF of water about the phosphate bead was calculated in order to estimate the 

size of the first solvation shell. Figure 3.3 shows this RDF, where the first solvation shell was 

found to extend to approximately 7 Å away from the phosphates. 

 

Following the selection of the solvation shell radius, a virtual site (named VS) was mapped as the 

center of mass of all the water molecules in this radius from each individual phosphate group on a 

frame-wise basis. This virtual bead was then covalently bound to the phosphate to create an 

alternative lipid topology with a semi-explicit solvent representation shown in Figure 3.4.99 As the 

forces obtained by summing the forces on each atom corresponding to each virtual site do not 

Figure 3.3: Phosphate water RDF for mapped atomistic trajectory. The first solvation shell 

appears to end at approximately 7 Å away from the phosphate bead, while the second shell 

extends from 7 to 10 Å. The RDF calculated does not converge to 1 before 35 Angstroms due 

to the absence of water within the bilayer. 

g
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guarantee CG consistency with the mapped reference data, they were ignored, and positional data 

alone was included. 

  

In order to begin REM for the VS-REM, guess potentials for interactions involving the VS 

beads were assumed to be soft cosine potentials which decayed from 1 to 0 kcal/mol over the 

course of 1 Å. Bonded interactions between the VP and PH were assumed to be harmonic with a 

force constant of 2 kcal/angstrom^2 and an equilibrium distance of 1 angstrom, corresponding to 

the average position of the VP beads relative to the phosphate beads in the reference data. Selection 

of inner cutoffs for non-bonded VP interactions followed the scheme used for non-virtual particles, 

and the soft cosines were centered around this cutoff. The topology was altered at this stage to 

switch the ST beads to SM beads. This resulted in a less complex force field with 6 types including 

a) b) 

c) 

7 Å 

Figure 3.4: a) An atomistic lipid bilayer. The water within the black rectangles differs from 

bulk solvent in that it diffuses from the bilayer much more slowly. This network of water is the 

primary solvent that the lipid heads interact with.  Adapted from [99]. b) CG lipids shown with 

the first phosphate solvation shell. Notably, these shells overlap, and individual waters may be 

within multiple lipids solvation shells. c) CG DMPC with solvent virtual sites bound to the 

phosphate beads. 
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the VS beads. Following the same iteration scheme as the IS-REM model, 250 iterations were 

required to converge VS-REM. 

 To create the VS-MSCG model, the forces for non-virtual particles were obtained from the 

reference data, while the VS-REM model was used to estimate the virtual site forces in the 

reference data mapped to the virtual site resolution. This hybrid reference data was then used to 

force match the model, using the same parameters used to generate the IS-MSCG model. Two 

versions of this model were generated with separate topologies, one using the original IS-MSCG 

lipid mapping (with separate types for middle and terminal tail beads), and the other using the IS-

REM topology (with only SM bead types for the tails).  

 Finally, the TT-VS-REM model was generated using the VS-REM as input for REM. Final 

coordinates for the initial reference data were used to spawn three new trajectories, each annealed 

to 290, 310 and 320 K respectively. Once equilibrated, each system was integrated for 20 ns. Each 

reference trajectory was used to parameterize a separate VS-REM model at a different temperature 

using the same parameters. For each temperature, the model at the 500th iteration was selected for 

analysis. 

 For all CG models, simulations were carried out in LAMMPS at NVT conditions.100 Unless 

otherwise specified, each simulation was carried out at 1 atm and 300 K. Additionally, due to the 

smoother free energy surface upon which CG models evolve, a larger timestep of 10 fs was used 

for production simulation, while 5 fs timesteps were used for equilibration, unless otherwise 

specified. Each system was simulated using special bonds between 1-2 (bonded) and 1-3 (angular) 

interactions. 

 For the calculation of membrane bending moduli, simulations were carried out on larger 

lipid bilayer patches. For lipid simulations, the bending modulus is calculated via the low 
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frequency modes of the height fluctuation spectrum, and thus more accurate calculations of the 

bending modulus can be obtained from larger systems. These larger lipid patches were generated 

by replicating the original 1260 lipid system used to parameterize the models 3 times in both the 

x and y direction, resulting in a total 11340 lipids, or approximately a 60 nm by 60 nm lipid patch. 

Each system was equilibrated to de-correlate the replicated bilayer and then simulated for 50 ns, 

with frames captured every 0.01 ns, for 5000 total frames. 

 To calculate the entropy-enthalpy decompositions of the PMFs of association for each 

model, 100 ns of simulation were carried out for each system using the smaller 1260 lipid 20x20 

nm lipid patch. Each system was simulated at 290, 300, 310, and 320 K, with a short equilibration 

performed before each production simulation. Positions were saved every 0.01 ns for a total of 

10000 frames, which were used to calculate RDFs for each interaction at each temperature. The 

PMF of each interaction was then calculated using these RDFs via the reversible work theorem. 

As this PMF is a conditional free energy, it can be decomposed into an entropic and enthalpic 

component. For each value of r, the value of the PMF is a linear function of temperature. The y-

intercept of this function is the enthalpy of the PMF, while the slope corresponds to the negative 

of the entropy of the PMF. Linear regression was used to estimate the values and errors of entropy 

and enthalpy at each distance, which can then be plotted to see how each model’s entropy and 

enthalpy are partitioned. 

3.3 Results and Discussion 

Results of the five DMPC models are discussed as follows: First each model is discussed from a 

qualitative standpoint, covering overall bilayer stability and structure. Then, each model is 

compared quantitatively, with bending modulus, radial distribution functions and entropy-enthalpy 
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decompositions used to assess the overall quality of the models from the standpoint of statistical 

thermodynamics. Lastly, the amount of effort required to generate each model is reviewed as speed 

is a critical feature of CG models. 

IS-MSCG 

The IS-MSCG model fails to produce a proper bilayer. While it does not completely fall 

apart despite the total lack of solvent representation, the bilayer splits into multiple cylindrical 

micelles in a short amount of time. Figure 3.5 shows a snapshot of this behavior. While this 

mapping scheme produced stable bilayers for explicit solvent top-down models when using a 

Lennard Jones style potential to replicate the RDFs of the system, force matching fails due to large 

forces mapped to the interactions involving ST beads, despite the fact that similar trends are 

observed in bottom-up models.101 

Figure 3.5: Snapshot of IS-MSCG DMPC model after 10 ns of simulation. The system started 

in a fully formed bilayer which slowly became a series of separate cylindrical micelles. Upon 

replacing the ST beads with SM beads, the initial membrane form is retained. 
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Figure 3.6 shows a comparison of SM and ST potentials obtained via force matching. 

Previous studies of DMPC using a similar resolution resolved similar issues by replacing the ST 

beads with additional SM beads.88In the case of the IS-MSCG model, this method also works. 

However, by changing the topology before force matching is performed, the model fails in a 

different way. The forces mapped to the tail beads in this case are altogether too low to keep the 

leaflets together, and the bilayer disassembles rapidly. Thus, for all analysis performed in this 

work, the IS-MSCG model refers to the model parameterized with ST beads but simulated as 

though each ST bead was an SM bead.  

 

Figure 3.6: Tail-tail potentials for unaltered IS-MSCG model. The ST-ST interaction is 

especially attractive which leads to collapse of the bilayer as the ST beads aggregate to a degree 

which destabilizes the entire system. Replacing these interactions, along with all other ST 

containing interactions, restabilizes the bilayer. 
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IS-REM 

The IS-REM model does not suffer from the micelle formation or disassembly issues which the 

IS-MSCG model demonstrates. However, the bilayer that it does form has a tendency to porate. 

These issues fail to resolve even after 1000 iterations of REM were run, despite the much smaller 

step size used than in previous REM models of lipids at lower resolutions. Figure 3.7 shows a 

snapshot of the IS-REM model which has porated. This bilayer still manages to match the RDFs 

of the reference data which is possible due to the anisotropy of the bilayer. Because REM works 

by matching radial densities and the bilayer is flat, the densities can match up radially around the 

edges of the pores. In addition the lips of the pores are far outweighed by the sampling of the 

overall bilayer, which may wash out any inaccuracies they are causing.102 

VS-REM 

The VS-REM model produces a bilayer which is qualitatively much better than the previous 2 

models. Despite the fact that the model used the IS-REM model as a guess to the REM solution 

Figure 3.7: A snapshot of the IS-REM model taken after 50 ns. The bilayer has developed 

several pores. These pores are transient, and can merge with one another, but the bilayer always 

contains several once they develop. 
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(with additional virtual site parameters), the virtual sites manage to produce a more stable bilayer 

with no poration. While certain iterations of REM exhibit a slight amount of poration, the final 

model selected produces a hole-free bilayer. 

VS-MSCG 

The VS-MSCG model suffers from similar problems as the IS-MSCG model. Three 

separate versions of the model were tested: one with all tail beads parameterized as SM beads, one 

with separate ST beads, and one with separate ST beads which are replaced with SM beads after 

force matching. The SM only model exhibits significant interdigitation. Both leaflets collapse into 

one another forming a nearly unordered layer of lipids. When the ST beads are included, the model 

is far too flexible and eventually falls apart. When these beads are replaced with SM beads, the 

model still falls apart, forming small membrane like patches which spread throughout the 

simulation box. Because a functional bilayer could not be formed, the VS-MSCG model is 

excluded from quantitative analysis such as, the bending modulus and entropy-enthalpy 

decompositions. Figure 3.8 shows snapshots from simulations from all three versions of the model. 

TT-VS-REM 

The TT-VS-REM model is composed of four separate models, each tuned to a different 

temperature using the same REM parameterization scheme. For this reason, all analysis of the 

model which were performed at 300 K, namely RDFs and bending moduli, are identical to those 

of the previous VS-REM which was used as the starting point for TT-VS-REM. Qualitatively, the 

model is roughly the same as VS-REM, though integrating the 290, 310, and 320 K models for 

longer time periods demonstrate some issues. Outside of 300 K, the TT-VS-REM model begins to 

porate over time when started from a stable bilayer.  
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Figure 3.8: a) Snapshot from VS-MSCG model parameterized with purely SM tail beads. The 

bilayer maintains its overall shape, but the leaflets have merged. b) Snapshot from VS-MSCG 

model with ST beads. The bilayer deforms to an extreme degree, eventually disassembling. c) 

Snapshot from VS-MSCG model with ST beads swapped to SM beads after parameterization. 

Bilayer quickly forms small patches. 
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Figure 3.9 shows selected RDFs comparing the IS-MSCG, IS-REM, VS-REM, VS- 

MSCG and TT-VS-REM models to mapped AA reference data. ST beads are treated separately 

even though they are treated as SM beads for the purpose of MD integration. This was done to 

Figure 3.9: a) Selected RDFs comparing atomistic, IS-MSCG, IS-REM, VS-REM and 

TT-VS-REM DMPC models. RDFs decay to ½ at distance 0 due to effects from the 

opposite leaflet. VS-MSCG model omitted as it cannot form a stable bilayer.  

g(r) 

r (nm) 

Atomistic Reference 

IS-MSCG 

IS-REM 

VS-REM 

TT-VS-REM 
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interrogate the structural and thermodynamic properties of the ST beads. These beads seem to play 

a unique role when compared to the SM beads. First, they are primarily responsible for membrane 

integrity in implicit and semi-explicit solvent models regardless of whether they are treated 

separately. Secondly, they play a unique role in the generation of all force matching based models, 

where they must be treated as distinct sites for the purpose of parameterization but must be treated 

as SM sites for the purpose of integration. In general, the REM based models perform better than 

the IS-MSCG. As REM targets structural correlations this is not surprising. What is surprising is 

the difference between the IS-REM and VS-REM models. Both models perform best for certain 

interactions, with IS-REM outperforming the virtual site model within the hydrophobic core and 

within the choline-choline interactions. On the other hand, VS-Rem (and TT-VS-REM by 

construction) performs better for glycerol and phosphate RDFs.  

By simulating all models across a range of temperatures (290 K to 320 K) and calculating 

RDFs at each temperature, the enthalpic and entropic components of the PMFs of lateral 

association in each model were analyzed. Figure 3.10 shows selected enthalpy decompositions 

comparing each of the five models with the reference data, while figure 3.11 shows the entropic 

component of the same interactions. Again, the terminal tail (ST) bead was treated separately from 

the middle (SM) beads. As expected, TT-VS-REM outperforms all other models due to its explicit 

temperature dependence, as well as its use of REM which targets structural correlations which are 

directly connected to the RDF, which is in turn directly connected to the PMF of lateral association. 

One exception to this is the well at 5 Angstroms in the G1-G1 interaction, which TT-VS-REM 

misses entirely despite VS-REM capturing it very well. In fact, all models aside from TT-VS-REM 

show a well at this location. Importantly, the virtual sites alone do not seem to improve the model 

to any real degree, as the IS-REM and VS-REM produce similar results. In fact for certain 
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interactions, such as CH-CH, the IS-REM model better captures the locations of the peaks, 

although the VS-REM model captures the heights of those peaks much better. In most cases, the 

force matching models perform worse than the REM based ones, which is again not particularly 

surprising given that these decompositions rely on accurate RDFs, which is not directly related to 

the forces being matched. Here the tail bead interactions provide interesting results. For the SM-

Figure 3.10: a) Enthalpic components of selected inter-bead PMFs comparing Atomistic, 

IS-MSCG, IS-REM, VS-REM, and TT-VS-REM DMPC models. VS-MSCG omitted 

due to its inability to form a stable bilayer. 
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SM interaction, the IS-MSCG model tends to over-structure the interaction as much as the IS- 

REM model, while the VS-REM model and TT-VS-REM model perform much better. However, 

for the ST-ST interaction, the IS-MSCG model performs much better than IS-REM, matching the 

atomistic peak height and locations better than VS-REM.  

Figure 3.11: a) Entropic components of selected inter-bead PMFs comparing Atomistic, IS-

MSCG, IS-REM, VS-REM, and TT-VS-REM DMPC models. VS-MSCG omitted due to its 

inability to form a stable bilayer. Temperature value chosen to be 300 K. 
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Table 3.1 compares the bending modulus of each model to that of the mapped atomistic 

reference data. The bending moduli were calculated using the low frequency limit of the Fourier 

transformed height fluctuation spectrum. The bilayer midpoint and height were calculated with 

respect to the PH bead, which provides a consistent estimate across both AA and CG resolutions. 

Previous studies comparing CG and AA bending moduli have demonstrated that when a phosphate 

bead contains just the central phosphorus atom and the four phosphorus bound oxygens, the AA 

and mapped AA fluctuation spectra match perfectly.56 The addition of virtual sites has a clear 

positive effect on the bending modulus. The IS-MSCG and IS-REM models produces a bilayer 

which is far too flexible. The flexibility of the IS-REM model is strange, as typically REM models 

without virtual sites are far stiffer than reference data.91 This can partially be explained by REM’s 

sensitivity across iterations. There may be much stiffer bilayers in nearby iterations. Unlike 

previous applications of virtual sites to CG lipids, incorporating virtual site forces into the MSCG 

model fails to produce a stable bilayer, and thus the bending modulus cannot be calculated. 

DMPC Model Bending Modulus kc (kBT) 

Mapped Atomistic 30.7 ± 5.7 

IS-MSCG 14.1 ± 0.3 

IS-REM 5.0 ± 2.5 

VS-REM, TT-VS-REM 30.5 ± 1.2 

VS-MSCG N/A 

 

Table 3.1: Bending moduli for Atomistic, IS-MSCG, IS-REM, VS-REM and TT-VS-REM 

DMPC models calculated using height fluctuation spectrum. VS-MSCG model does not 

produce a bilayer. 
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One critical aspect of a bottom-up CG model is the amount of time and effort required to 

create it. Thus, it is important to discuss the amount of effort required to create each of the models 

discussed here alongside their structural and thermodynamic properties. Each step in the model 

generation process eats away at time which could be spent simply simulating the system the CG 

Figure 3.12: Workflow for generating each of the five DMPC models. Blue boxes involve 

atomistic or CG MD simulation which can be time consuming. Green boxes are CG 

algorithms and are generally not time consuming unless iterated. REM iteration involves both 

simulation and algorithmic optimization. Orange boxes involve parameter selections which 

may not be obvious for a given system and can take experimentation. Yellow boxes are 

finalized models. 
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model is built to speed up, and if enough time is spent on model development, there may be no 

point in generating the model in the first place. Figure 3.12 describes the workflow required to 

generate each model as well as the dependencies of each model. 

 For the IS-MSCG model, 250 ns of production simulation on a 1260 lipid membrane were 

used alongside force matching. The collection of reference data in this case was by far the most 

time-consuming step, as force matching a system of this size takes only a few hours. Still, this 

amount of reference data is far larger than previous studies have used (400 ps and 64 lipids total). 

In addition, there was effort involved in identifying the poorly sampled ST interactions and 

knowing to replace them with SM interactions. This step may or may not be the same for all 

systems. 

The IS-REM model required the production of the IS-MSCG model, as well as 1000 

iterations of REM using a small step size across two stages. Each iteration utilized reference data 

from the initial 250 ns simulation, but also involved short CG simulations (1,000,000 timesteps) 

to be carried out at each iteration. Performing this step using a single compute node took a 

considerable amount of time, roughly 10 days as the step size required to stabilize the bilayer 

enough to even create a non-porating model was much lower than previous efforts at lower 

resolutions. Lastly, the REM scheme used to create this model was not straightforward. Previous 

attempts to optimize every potential at every iteration resulted in rapid bilayer disassembly, and 

only when the tail interactions were optimized by themselves first was a bilayer produced, albeit 

a poor one. 

VS-REM required the IS-REM model, 250 additional iterations of REM to optimize the 

force field including virtual sites, and access to a mapped atomistic trajectory containing solvent 

in order to map the positions of the virtual sites for REM reference data. This poses an issue as 
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water is commonly stripped from lipid trajectories at runtime in order to save space (the total 

reference set took up approximately 2.5 TB as forces for each atom were saved for use in force 

matching).  

Going from the VS-REM model to the VS-MSCG model took the shortest amount of time, 

as force matching is not an iterative process and large trajectories can be force matched in parallel, 

cutting the model optimization time down from weeks to hours. The only other step required to 

generate the VS-MSCG model was estimating VS forces on the mapped reference data via a rerun, 

which is a fast step even compared to force matching. 

By contrast, generating the TT-VS-REM model from the VS-REM model took the largest 

amount of computation aside from the initial reference simulation. Each temperature’s model 

required 500 REM iterations and a shorter AA simulation at that thermodynamic state point, for a 

total of 75 ns of simulation and 1500 REM iterations. This is also to produce a model which can 

transfer over a range of 30 K, when real use cases may require a much larger temperature range. 

It is also not obvious how one would simulate the system in between the selected state points, 

without calculating the functional form of the temperature dependence of each interaction at each 

distance. This idea is elaborated on further in the following section of this chapter. 

 Integration speed is the last part of the equation determining how useful a CG model is. If 

a model takes a considerable amount of time to generate but integrates extremely quickly compared 

to the corresponding AA model, it may still be worth using. In the case of all 5 CG models, a 10 

fs timestep was utilized, which is 5x the timestep of the reference CHARMM system. Additionally, 

the reference system contained 298 K atoms including waters, while the IS and VS models 

contained only 12600 and 13860 CG sites respectively, for an overall reduction in the system size 
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of roughly 94 %. Holding all other aspects constant, including the increase in sampling due to the 

smoother CG PMF, this equates to a speedup of approximately 125x.  

3.4 Conclusions 

 Bottom-up CG models of implicit solvent lipid bilayers suffer from a variety of issues 

stemming from the inherent anisotropy of membranes. Lipid dynamics being limited to lateral 

diffusion (except for a small amount of flip-flop of lipids between leaflets which is not observed 

often enough to matter) lead to far less sampling between lipid heads and tails than is needed to 

produce effective potentials using force matching or REM. In addition, the lack of explicit solvent 

representation leads to unrealistic forces between lipid tails as the model attempts to keep the 

individual leaflets together without any water to impose amphiphilic ordering of lipid heads and 

tails. Based on previous studies into CG lipids at a variety of resolutions, these problems seem to 

be exacerbated in higher resolution CG models, approximately 4 heavy atoms to one CG site. The 

increased complexity of the mapped topology for these models introduces a geometric expansion 

in the number of model parameters. This in turn creates a geometric expansion in the number of 

failure points, given that individual spline parameters can destabilize the membrane if they are 

sufficiently far from the ground truth result. It also has the effect of pushing the centers of mass 

between the head groups and terminal tail groups further apart than in mappings of 5 or more heavy 

atoms to one CG site. 

 In this work, 5 CG models of DMPC lipids are presented. The first, IS-MSCG, uses a 10-

site mapping for DMPC, no solvent representation, and force matching to optimize model 

parameters. The second, IS-REM, uses IS-MSCG as a starting point for REM. VS-REM builds 

upon this model and incorporates virtual solvent particles to represent the water within the first 
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solvation shell of the DMPC phosphate groups. VS-MSCG uses VS forces from VS-REM in order 

to apply force matching to a model with these virtual sites. Finally, TT-VS-REM incorporates 

explicit temperature dependence to the model by reparametrizing VS-REM across a range of 

temperatures. 

 Qualitatively, each model aside from the VS-REM model has serious issues which preclude 

their usefulness as CG models. The IS-MSCG model suffers from the aforementioned issue in 

which several potentials in the force field must be swapped in an ad-hoc manner after 

parameterization. While this results in a stable bilayer, it undermines one of bottom-up CG’s main 

advantage, that being systematic parameterization. The capacity of force matching, and other CG 

methods, to produce a usable model given nothing but a reference trajectory and a set of 

hyperparameters (e.g., cutoffs, spline resolution) makes them attractive and easy to use for those 

without extensive experience in generating CG models. However, the high-resolution lipid models 

consistently fail via interdigitation or complete bilayer collapse when force matching is applied 

and require special knowledge of how such models have been created in the past in order to resolve. 

The issues with the IS-MSCG model are limited to the interactions containing an ST bead. 

As previously discussed, this is not surprising in some ways, as the implicit solvent representation 

of the IS-MSCG model tends to push attractive forces into the terminal tail beads. Despite the 

hypothesis that virtual sites would improve this specific area of the force field, the VS-MSCG 

model suffers from the same qualitative issues, suggesting one of two things. Either the virtual 

sites are not representing solvent forces in the way they were hypothesized to, or the resolution at 

which the model was mapped is simply a poor choice for lipid models. Successful applications of 

virtual sites to lipid models91,103 suggest that the latter is the problem, as even implicit solvent 

models at this resolution do not exhibit these failures. 
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 While the IS-REM model forms a stable bilayer, it forms multiple pores after a small length 

of time making it useless as a CG model. TT-VS-REM models outside of 300 K also porate. 

REM’s tendency to generate models with this sort of behavior likely stems from the RDFs being 

suboptimal targets for CG optimization when the system is largely two dimensional.  

 The VS-REM model is qualitatively the best of the models presented, with no 

interdigitation, collapse, or poration. However, when compared to other virtual site models, it is 

found lacking. VS-REM DMPC cannot self-assemble, while 6 site models of DOPC with an 

included virtual site not only form bilayers from random starting configurations, but also form 

other membrane topologies such as vesicles, tubules, and branched tube networks.91 

 Quantitatively, the TT-VS-REM model performs best when targeting entropy-enthalpy 

decompositions. This is, as mentioned previously, unsurprising due to the explicit temperature 

dependence of the model, and the fact that CG models in general cannot transfer outside of the 

thermodynamic state point they were parameterized at.30 In addition, the introduction of the virtual 

sites also leads to a much more accurate bending modulus. Its biggest drawback is its tendency to 

porate slowly at temperatures outside of 300 K, an issue which could likely be solved by additional 

REM iterations or a different set of REM parameters. Both implicit models suffer from poor 

bending moduli, with IS-REM being far too stiff and IS-MSCG being too flexible. Additionally, 

IS-MSCG produced the worst entropy-enthalpy decompositions overall. IS-REM on the other 

hand outperformed even the virtual site models in several cases, though it was overall similar in 

quality to the IS-MSCG model. Most surprisingly, the VS-MSCG model completely fails to 

produce a bilayer regardless of which choice is made for the terminal tail beads. For lower 

resolution bilayers, the act of incorporating virtual site forces into the mapped atomistic data 

produces the best results. In this case, it seems that virtual sites not only fail to overcome the issues 
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that the IS-MSCG model had but exacerbate them instead. This issue may be resolved via 

application of different force matching methods, such as iterative force matching which has been 

shown to improve MS-CG force fields in situations where structural distributions are not matched 

well or when a poor basis set is used.104 

While VS-REM and TT-VS-REM are clearly the most accurate models overall of the ones 

generated, they are also among the most difficult to create. To include the virtual particles, a 

combination of force matching and REM was utilized in addition to the reference data collection. 

While previous virtual solvent lipid models at lower resolutions utilized a similar amount of 

sampling (hundreds of nanoseconds of simulation on roughly the same sized lipid patch), the 

resultant models are much better at capturing the dynamics of the membrane and are even capable 

of self-assembly. TT-VS-REM incurs an additional three sets of REM optimization to build in 

temperature transferability across a range of 30 K. Interestingly, VS-MSCG is the most similar 

model to the previously developed 6 sites plus 1 virtual site DOPC model in methodology but fails 

for the exact same reason that the IS-MSCG model does, suggesting that all REM iterations 

performed add little to no benefit to the model.  

 REM constitutes one of the major limiting steps in generating these models. The low step 

size required to stabilize the bilayer across iterations means that many more iterations are required 

to build the model, which adds a considerable amount of time to the process before data collection 

on the CG model can even begin. The model was parameterized on 5 cascade lake nodes, which 

could perform roughly 100 iterations of REM per day. With that in mind, REM alone took over a 

week to complete for the IS-REM model, with no real way to accelerate it via parallelization.  

 Overall, the amount of effort and time required to parameterize these models is high 

compared to their accuracy, especially in the light of more accurate models which work at an even 
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lower resolution. While one might expect to gain accuracy as a tradeoff for a higher resolution and 

thus more computationally expensive CG model, this does not appear to be the case for lipid 

bilayers. This is troublesome from one viewpoint: a model which removes less information from 

the atomistic reference data should be able to capture the properties of the reference data more 

accurately. However, from another perspective this is a good thing: There is no downside to 

creating a lower resolution, and thus faster lipid model, and in fact one avoids a series of pitfalls 

which slow down and complicate the model generation process. I conclude that in the future study 

of CG lipid models, the high-resolution regime should be avoided. 

 The collection of models analyzed here can also provide insight into the usefulness of 

virtual particles, REM, and temperature dependent CG force fields. The introduction of virtual 

sites in the VS-REM model finally allowed for a stable bilayer to be modeled with no poration, a 

problem which plagued the IS-REM model. They also notably improved the structural properties 

of the bilayer, cutting the bending modulus by over an order of magnitude down to values which 

closely align with the reference data. In addition, the usage of REM itself solved the issues caused 

by MSCG, either interdigitation or collapse of the bilayer, a problem which even the virtual sites 

couldn’t address. Lastly, the explicit temperature dependence of TT-VS-REM produced a model 

which correctly decomposes the PMFs of association of the model into their enthalpic and entropic 

components.  

 These results provide a signpost towards better understanding how to generate accurate 

and efficient CG lipid models. Virtual particles are an excellent way to improve a model with only 

a marginal increase in computational cost. While the VS models presented here relied on a non-

linear mapping between the CG and AA regimes, this may not be necessary for future models. 

Variational Derivative REM (VD-REM) is a machine learning based framework which uses 
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forests of decision trees to learn the relative entropy gradients of arbitrary virtual sites.103 This 

means that virtual particles can be parameterized using REM which have no mapping whatsoever 

in the AA regime. This method was used to create a 6 CG site + 1 virtual site model of DOPC 

without using the positions of water molecules, which exhibits similar self-assembly behavior to 

similar models using solvent-based mapping. One could also apply this method to virtual particles 

which reside in between leaflets, which might be able to further address issues caused by CG forces 

on lipid tails. In this case, the virtual particles are not a representation of any real particles but can 

be thought of as an efficient way to expand the basis set of the CG force field in a way without 

resorting to expensive multi-body correlations.  

 The accuracy of the TT-VS-REM model’s entropy-enthalpy decompositions suggests that 

more research into incorporating explicit temperature dependence is needed. In principle, each 

parameter should have a linear dependence in temperature, which is supported by prior 

explorations of temperature dependence in liquid systems.58 This linearity suggests that 

temperature dependent terms could be fit to each value of r for a potential energy function, which 

could be then altered on the fly to produce a potential which can transfer across thermodynamic 

state points in the middle of a simulation. 
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Models 

 

  

 

 

 

 

 

Abstract 

Recently machine learning has entered its way into the mainstream of coarse-grained molecular 

simulation. While a variety of methods for incorporating deep learning into these models exist, 

many them involve training neural networks to act directly as the CG force field. This has several 

benefits, the most significant of which is accuracy. Neural networks can inherently incorporate 

multi-body effects during the calculation of CG forces, and a well-trained neural network force 

field outperforms pairwise basis sets generated from essentially any methodology. However, this 

comes at a significant cost. First, these models are typically slower than pairwise force fields even 

when accounting for specialized hardware which accelerates the training and integration of such 

networks. The second, and the focus of this paper, is the need for considerable amounts of data 

needed to train such force fields. It is common to use 10s of microseconds of data to train a single 

model, which approaches the point of obviating the CG model’s usefulness in the first place. As it 
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turns out, this “data-hunger” trap that neural networks predicting molecular energies and forces 

experience is caused in large part by the difficulty in learning force equivariance, that is to say the 

fact that force vectors should rotate while maintaining their magnitude in response to an equivalent 

rotation of the system. We demonstrate that for coarse-grained water, networks that inherently 

incorporate this equivariance into their embedding can produce functional models using datasets 

as small as a single frame of reference data, while networks without inherent symmetry 

equivariance cannot. 

4.1 Introduction 

 Molecular dynamics (MD) has proven to be a powerful tool to study the molecular 

underpinnings behind a variety of interesting phenomena in the biological and material 

sciences.105,106 MD’s efficient integration of Newton’s equations of motion provides a fast method 

by which statistical and information of a molecular system can be averaged over to arrive at 

conclusions about the thermodynamics and dynamics of the system. A variety of MD techniques 

have been developed to interrogate systems at a range of different accuracies. Ab-Initio molecular 

dynamics (AIMD) and path integral molecular dynamics (PIMD) based method incorporate 

quantum level treatment of electronic and nuclear degrees of freedom respectively allowing for 

the accurate simulation of light nuclei and even chemical reactivity.107,108 On the opposite end of 

the spectrum is coarse-graining (CG), which seeks to accurately simulate a molecular system at a 

resolution below that of atomistic MD.19 In recent years there has been a large amount of interest 

in applications of machine learning (ML) to molecular simulations both at the quantum109–116 and 

CG103,117–120 level. While many of these methodologies apply machine learning to generate a 

pairwise force field, most work by treating the machine learning model, typically a deep neural 
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network (DNN), itself as the force field. On the quantum end, DNN force fields tend to integrate 

faster than full quantum treatments of atoms as they can typically be evaluated as a series of matrix 

multiplications and are thus useful as a method to speed up integration while maintaining an 

acceptable level of accuracy. On the CG end however, ML based methods tend to be slower than 

a simple pairwise Hamiltonian but are much more accurate as they can naturally incorporate many-

body correlations and are much better at fitting data than the linear regression or relative entropy 

minimization (REM) based methods typically employed.  

ML has a long history of drawing inspiration from nature to create powerful models which 

can tackle problems which were previously considered intractable. The architecture of the first 

neural networks were, as their name suggests, inspired by neural function in the brain.121 Similarly, 

convolutional neural networks take advantage of processes seen in animal eyes in order to identify 

and classify features above the single pixel level in image processing.122,123 Both the brain and eye 

are remarkably powerful tools for learning and image processing respectively, so it is no surprise 

that these models can succeed at such tasks. In the application of DNNs to molecular systems, it 

should come as no surprise that taking inspiration from physics can lead to excellent results. 

Successful DNN based methods incorporate physical constraints into their architectures and 

training schemes to improve the often-nebulous connection between DNN regression and physical 

reality and to speed up training. Typical DNN based force fields, such as CGnet and CGSchnet, 

utilize the same objective function as the multiscale coarse-graining (MSCG) method,66,67 the sum 

of squares of the residual forces between the mapped reference data and the CG model. The 

difference lies in the usage of a neural network to learn these forces versus force matching’s least 

squares regression over each model parameter, typically either Lennard Jones parameters or b-

spline knots.  
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Further physical intuition is applied to the structure of the networks themselves. These 

DNNs work in two stages. The first is a featurization stage in which the raw Cartesian coordinates 

for each particle in a configuration are converted into more natural internal coordinates while the 

second is a neural network which learns particle wise energies and forces from these featurized 

configurations. The simplest featurization scheme corresponds to converting the coordinates into 

interparticle distances or their inverses as well as particle types, which can be done directly as is 

in the case of Cgnets.117 These features are then subjected to physically inspired energy priors, 

harmonic for bonded particles and repulsive for non-bonded ones. This frees the energy predicting 

network from needing to learn those features of the CG Hamiltonian and allows it to learn 

corrections to the priors instead. 

Another approach for featurizing molecular configurations which generates even better 

results is to embed these features into a graph neural network as in Schnets and CGSchnets109,118 

which are naturally suited to representing molecular systems. Each node of the graph represents a 

CG site, and each edge a distance between the two CG sites representing each node. Convolutions 

over these graph elements can be performed analogously to convolutions over pixels in 2-D 

images, giving graph neural networks a powerful tool to pool information across a variety of spatial 

scales.124 These networks can then be trained to learn an effective embedding of the CG 

configuration which optimally predict CG forces and energies, improving over the set of hand 

selected internal coordinates used by CGnets. This embedding network fits into the previously 

discussed architecture in between the original featurization into internal coordinates and before the 

energy prediction network. This method also produces networks which are inherently transferable, 

as the embedding network can develop an effective embedding for any configurations so long as 
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there are no CG types which haven’t been seen by the network. For systems such as proteins, this 

is easy to accomplish, so long as the training dataset contains all 20 amino acids. 

Both the regular handpicked featurization and the graph neural network implementation 

ensure that the resulting CG features are invariant to rotation and translation. This means that 

energies predicted by the neural network are insensitive to translations and rotations of the 

configuration, consistent with how these interactions work in the real world and in classical MD 

simulations. However, as these neural networks operate in the space of scalar distances and output 

energies, they rely on the traditional gradient of the potential to calculate forces. The directional 

elements of the distance vector between particles encode important information which directly 

relates to the directionality of the force between particles. While the energy of a CG configuration 

is indeed rotationally invariant, the forces are rotationally equivariant instead. Rotationally 

equivariant symmetries give the same results as invariant symmetries (e.g. the magnitudes of 

forces do not change with respect to rotation of the system, as well as additional properties related 

to vector encoded information. For example, when a system is rotated, the direction of the force 

vectors on each particle (an equivariant property) rotate the same amount and in the same direction. 

This relationship can be described more precisely by describing a symmetry as a group 𝐺 which 

operates on vector spaces 𝑋 and 𝑌. A function 𝑓(𝑥) which maps from 𝑋 to 𝑌 is equivariant with 

respect to 𝐺 if  

 𝐷𝑌[𝑔]𝑓(𝑥) = 𝑓(𝐷𝑋[𝑔]𝑥) (4.1) 

Where 𝐷𝑋[𝑔] and 𝐷𝑌[𝑔] are representations of element 𝑔 in the vector spaces of 𝑋 and 𝑌 

respectively. 
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 Recently, a class of equivariant neural networks has been developed which incorporate 

force equivariance for atomistic molecular systems.111,112,116,125 These methods incorporate full 

vector information of the relative positions of atoms in addition to higher order tensor information 

to guarantee that the magnitude of the forces produced by these networks are invariant to rotation, 

translation and reflection (also known as the Euclidian or E(3) symmetry group) while the unit 

vectors describing the directions of these forces are equivariant under these operations. These 

properties impose a restraint on the networks based on real physics which in theory should make 

the networks far more capable of representing and predicting molecular forces. Specific 

implementations of equivariance differ from architecture to architecture, but this work focuses on 

the NequIP and Allegro models. These architectures take advantage of convolutional operations 

natural translational and permutational equivariances, and furthermore enforce that the 

convolutional filters are products of radial functions and spherical harmonics, which are 

rotationally invariant in order to achieve full E(3) equivariance:126  

 𝑆𝑚
(𝑙)(𝑟𝑖𝑗⃑⃑  ⃑) = 𝑅(𝑟𝑖𝑗)𝑌𝑚

(𝑙)(𝑟𝑖�̂�) (4.2) 

where 𝑆𝑚
(𝑙)(𝑟𝑖𝑗⃑⃑  ⃑) is a convolutional filter over full distance vectors between atoms, 𝑟𝑖𝑗 is the scalar 

distance associated with  𝑟𝑖𝑗⃑⃑  ⃑ and 𝑟𝑖�̂� is the corresponding unit vector. Allegro and NequIP differ in 

that NequIP is globally equivariant. NequIP achieves global equivariance via a message passing 

layer which passes messages from adjacent graph nodes. These layers can learn a variety of 

functions, from graph convolutions to graph-wide targets which encode information about the 

entire system.127  Allegro removes this message passing layer and only achieves local equivariance 

as a cost to allow for parallelization of network evaluation, allowing it to scale to much larger 

systems.  



98 

 

The results of these equivariant networks address a key weakness that ML suffers from: 

the data requirements of training neural networks. To generate an effective DNN, one must supply 

a vast amount of training data, which can in turn make the resulting model less useful as it inflates 

the time required to calculate results. For example, prior training of a CGSchnet architecture to 

produce a force field for chignolin, a mini-protein containing 10 amino acids, required 180 

microseconds of reference simulation.118 On the other hand, a hetero-elastic network model for 

full length integrin, containing 1780 residues, was generated using 0.1 microseconds of MD 

simulation.128,129 This disparity calls into question the usefulness of DNNs as force fields when 

applied to super-atomic resolution CG models even considering the highly accurate results they 

generate. As it turns out, a primary reason for the large number of examples required to train DNN 

force fields is equivariance with respect to molecular forces. Rotation invariant DNN based 

methods must learn the equivariance of forces via training reinforcement, which adds considerably 

to the data cost of creating these models. Equivariant neural networks build this information into 

the model inherently and have been shown to predict interatomic energies and forces for small 

molecules when shown three orders of magnitude less training data than symmetry invariant 

architectures with even greater accuracy.112 

While training neural networks to predict energies and forces of atomistic systems from 

ab-initio quantum data is not the same as training a CG model from atomistic data, there is a natural 

analogy of learning to predict forces at a lower resolution from higher resolution data. In the former 

case, the high resolution is the quantum description of the system, while the low resolution is the 

atomistic description. In the case of CG, the high resolution is the atomistic description, while the 

low resolution is some chosen super-atomic resolution. A key difference remains in that most 

methods which learn atomistic descriptions from quantum data treat bonded and non-bonded 
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interactions as the same, and rely purely on internal coordinates to decide this, while CG DNN 

methods use labels and alternative energy priors to do this. This is necessary for complex CG 

systems as bond breaking and forming is typically ignored for these models, and because the length 

scales of bonded interactions can easily match and overlap with that of the non-bonded ones. For 

this reason, the currently available equivariant neural network-based methods must be used 

carefully when applying them to CG systems.  

There are certain cases for which the methods are fundamentally identical. The simplest 

case is that in which there are no bonds whatsoever, and each CG bead corresponds to an entire 

molecule. In this case, the act of making a CG model is equivalent to the act of reducing the 

quantum description of a nonreactive single particle, such as helium, to its atomistic representation. 

For this reason, this work is limited in scope to the coarse graining of single site liquid, namely 

single site water. Water is also an ideal test case for a DNN CG method due to the high levels of 

correlation caused by hydrogen bonding. For this reason, single site water models tend to fail to 

predict proper center of mass radial distribution functions (RDFs) for water unless they incorporate 

many-body correlations.130–132 

In this work we present an analysis of DNN based CG models of single site water, using a 

rotationally invariant CG model and a rotationally equivariant model. For the invariant model, the 

Deep Potential Molecular Dynamics method with smoothed embedding (DeePMD)133,134 is 

utilized. For the equivariant model, the Allegro model125 is utilized. Each method is applied to 

water in the limit of low sampling: a maximum of 100 consecutive MD frames are used to train 

each model. This work is laid out as follows: First a discussion of the methods used is given, with 

hyperparameters for all ML methods as well as all MD simulation parameters. A discussion of 

DeePMD and Allegro models is also presented. Following this, results for each model are 
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presented. Pairwise RDFs are analyzed and compared to mapped atomistic reference data. Three 

body angular correlations are also analyzed. Finally, the stability of each force field in the low 

sampling limit is discussed as well. These results are then discussed and conclusions on the 

usefulness of equivariant particle embedding in the field of CG modeling are drawn. 

4.2 Methods 

In order to generate the dataset used to train the models, LAMMPS100 was used to simulate 

512 TIP3P93 water molecules for a total of 10 nanoseconds in the NVT ensemble. A Nosé-Hoover 

thermostat135,136 was used to keep the simulation at 300 K, and frames were captured every 2 ps 

for a total of 5000 frames, though far fewer were used in the training of the Allegro and DeePMD 

models. The resulting trajectory was mapped to a 1 CG site per water resolution using a center of 

mass COM mapping scheme. This was then passed as a training dataset to DeePMD and Allegro. 

The DeePMD method consists of both an embedding network and a fitting network. The 

embedding takes pairwise distances as input and output a set of symmetry invariant features which 

include three-body information such as angular and radial features from nearby atoms, denoted by 

the authors as the se_e2_a embedding. Notably, this embedding network is not a graph neural 

network. However, before the interatomic distances are fed into this matrix, they are converted 

into a set of coordinates based on inverse distances: 

 {𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑧𝑖𝑗} → {𝑠(𝑟𝑖𝑗), �̂�𝑖𝑗, �̂�𝑖𝑗 , �̂�𝑖𝑗 , } (4.3) 
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 𝑠(𝑟𝑖𝑗) =

{
 
 

 
 

1

𝑟𝑖𝑗
,                                        𝑟𝑖𝑗 < 𝑟𝑐1

1

𝑟𝑖𝑗
{
1

2
cos [

𝜋(𝑟𝑖𝑗 − 𝑟𝑐1)

(𝑟𝑐2 − 𝑟𝑐1)
] +

1

2
} , 𝑟𝑐1 < 𝑟𝑖𝑗 < 𝑟𝑐2

0,                                       𝑟𝑖𝑗 > 𝑟𝑐

 (4.4) 

 

 

where 𝑥𝑖𝑗, 𝑦𝑖𝑗 and 𝑧𝑖𝑗 refer to the x, y and z projections of 𝑟𝑖𝑗 the distance between two particles i 

and j, and �̂�𝑖𝑗 =
𝑠(𝑟𝑖𝑗)𝑥𝑖𝑗

𝑟𝑖𝑗
, �̂�𝑖𝑗 =

𝑠(𝑟𝑖𝑗)𝑦𝑖𝑗

𝑟𝑖𝑗
, and �̂�𝑖𝑗 =

𝑠(𝑟𝑖𝑗)𝑧𝑖𝑗

𝑟𝑖𝑗
. This set of features is then converted via the 

embedding network into a matrix of features which preserves the rotational, translational and 

permutational symmetry of the system. These features are passed through per-atom subnetworks 

which compute the energy contribution from each atom to the total system energy. The gradients 

of these per-atom energies can then be used to calculate interatomic forces during the course of an 

MD simulation. During training, the DeePMD model sees individual atoms as training samples 

which can be batched as usual.134 

 Allegro is an extension of the NequIP model which trades global equivariance gained via 

a message passing graph neural network for local equivariance in order to provide much greater 

scaling capabilities.125 In allegro, two sets of features are generated by the initial featurization for 

each pair of particles. The first is a scalar set of features which consists of interatomic distances 

and labels for each chemical species in the interaction. This feature set is symmetry invariant, as 

in the case of DeePMD. The second feature set contains unit vector information which correspond 

to these interatomic distances which are projected onto spherical harmonic functions. These 

features are then embedded through a series of layers onto a new equivariant feature set which is 

then fed into a multilayer perceptron (MLP) which predicts the energy of the interaction. The total 
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energy of the system can be calculated as the sum of these energies, and the forces can be calculated 

again via the gradients of these energies.  

 For both Allegro and DeePMD models, a common network size was selected to ensure that 

differences in the performance of the models was most strongly correlated with the amount of 

training samples. The embedding networks were composed of three layers with widths [8, 16, 32]. 

In the case of DeePMD models, this format is converted into a ResNet137, for which no timestep 

was selected. The energy fitting networks were also composed of three layers each with widths 

[32, 32, 32]. Each network was given a maximum cutoff for the environment of each atom of 7 

Angstroms. Training parameters such as numbers of epochs, learning rates, and early stopping 

were left up to the defaults of each model archetype to ensure that each model was trained 

according to its normal usage. Specific parameters for each model may be found in the 

Supplementary Information in the form of actual DeePMD and Allegro input files.  

 A total of 5 models were trained according to the preceding description. For DeePMD, two 

models were trained, one using 100 frames (or 200 ps) of training data, and one using 10 frames 

(or 20 ps) of data. Three Allegro models were trained, using 100, 10 and 1 frame of training data 

respectively. Each model was frozen and simulated for 2,500,000 timesteps with frames selected 

every 1000 timesteps in order to calculate CG RDFs and 3-body angular correlation functions. 

Each model was tested on a simulation of 3916 water molecules using a Nose-Hoover thermostat 

in the NVT ensemble at 300 K just as the reference data was. All models, except for the 10 frame 

DeePMD model, were simulated using a timestep of 2 fs, while the 10 frame DeePMD model used 

a 0.5 fs timestep, which is explained in the results section. 

 To calculate the RDFs, an outer cutoff for each model was selected to be 10 Angstroms. 3-

body angular distributions, 𝑃(𝜃), for water were calculated using the following equation: 
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 𝑃(𝜃) =
1

𝑁
⟨∑∑ ∑ 𝛿(𝜃 − 𝜃𝐽𝐼𝐾)

𝐾>𝐽𝐽≠𝐼𝐼

⟩

𝑅<𝑅𝐶

 (4.5) 

 

Where 𝑁 is a normalization constant equal to the largest value in the calculated sum and 𝑅𝑐 is the 

cutoff radius. For these correlation functions, an outer cutoff of 4.5 Angstroms which corresponds 

with the second solvation shell of water originating from its tetrahedral ordering.1 3-body 

correlations were calculated between 30 and 150 degrees with a bin width of 1 degree, which 

captures the full extent of the 3 body correlations seen in tetrahedral water.131 
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4.3 Results and Discussion 

Simulation stability: 

Every model trained except for the 10 frame DeePMD model was stable when simulated 

using a 2 fs timestep. The 10 frame DeePMD model suffered from severe energy drift at this time-

step and the system quickly falls out of a liquid state. Figure 4.1 shows sample coordinates for the 

a

b

Figure 4.1: a) Snapshot of Allegro water model trained on 10 frames of AA reference 

data. The configuration was captured after 2,500,000 timesteps at 2 fs per timestep, or 5 

nanoseconds of total simulation. b) Snapshot of DeePMD water model trained on 10 

frames of AA reference data. In this case, the configuration was captured after 2,500 

timesteps at 0.5 fs per timestep, or 1.25 picoseconds of total simulation. 
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10 frame DeePMD and Allegro models, detailing the extent of the collapse. Interestingly, even the 

repulsive priors present in the DeePMD architecture cannot prevent the particles reaching 

unphysically close distances. Within 2,500 timesteps, the water sites coalesce into small clumps. 

To simulate the model long enough to collect data, a 0.5 fs time-step was selected, as a 2 fs timestep 

lead to an almost immediate loss of multiple beads from the simulation box. In both DeePMD 

models, a 500 fs damping coefficient was not strong enough to stabilize the system at 300 K and 

both exhibited a lower temperature throughout the simulation. On the other hand, each Allegro 

model performed stably and did not naturally tend towards a lower temperature or collapsed state.  

RDFs 

Figure 4.2 shows RDFs for each model compared to that of the mapped reference system. 

Each stable NN model does a good job of capturing the structural correlations of liquid water, a 

difficult task for a single site CG water model. While none of the models fully capture the depth 

of the well directly beyond the first peak, all models aside from the 1 frame Allegro model are 

close, with the 100 frame DeePMD model performing the best. The 1 frame Allegro model 

overestimates the well depth and overestimates the height of the first peak more than any other 

model, though the overall trend is for this peak to be overestimated. None of the models can capture 

the small peak around 6 Angstroms either, with both 100 frame models performing slightly better 

than the 10 and 1 frame Allegro models. Surprisingly, while it overestimates the height of the peak 

the most, it also captures the location of the peak the best, with every other model peaking slightly 

past where the reference data does. The most noteworthy differences come from the 10 frame 

DeePMD model, which deviates significantly because of its propensity to collapse individual water 
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molecules onto one another. While the 1 frame Allegro model is the least accurate of the stable 

models, it still qualitatively captures the shape of the RDF, and in multiple cases, is slightly more 

g(r) 

g(r) 

r (Å) 

a) 

b) 

Figure 4.2: a) Radial distribution functions of CG water for Allegro and DeePMD models 

compared to reference atomistic data. b) Detail of RDFs in top panel between 3 and 7 

Angstroms. 
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accurate with where peaks and wells are located. There is an overall trend of increasing quality as 

the number of training examples increases, present in both the Allegro and DeePMD models.  

 

 

Three Body Correlations 

Each model aside from the 10 frame DeePMD model performs reasonably well by this 

benchmark, although this is not very surprising given how expressive a DNN based force field can 

be. The true value of a DNN based force field is its ability to capture many body correlations which 

are simply out of reach of all but the most advanced pairwise potentials. Figure 4.3 shows water-

water-water triplet angular distributions for each model parameterized in comparison to the 

mapped atomistic TIP3P water. As with the RDFs there is an overall trend of increasing accuracy 
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(θ) Figure 4.3: Three-body angular distributions between triplets of CG waters for each Allegro 

and DeePMD model compared to mapped atomistic data. Distributions were calculated using 

Eq. 4.3. 
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with respect to increased amounts of training data. Between the models trained on 100 frames of 

data, the Allegro model outperforms DeePMD, with much better representation of the well around 

60 degrees and comparable accuracy everywhere else. Even the 10 frame Allegro model gives a 

more accurate result for this well, although it overestimates the second peak around 90 degrees the 

most of all stable models. Of the stable models, the 1 frame Allegro model is again the least 

accurate, predicting far lower probability values everywhere except for the first peak at 45 degrees. 

As before, the 10 frame DeePMD model completely fails to capture the correlations of water. 

4.4 Conclusions 

 In this work we compare symmetry invariant and symmetry equivariant neural networks 

in their capacity to generate accurate CG force fields in the limit of low training data. Two 

architectures, DeePMD and Allegro were chosen for symmetry invariance and equivariance 

respectively. We show that symmetry equivariant models can form stable CG water models with 

just a single frame of reference data. 

It is not surprising that holding model architecture constant the models trained on more 

reference data outperformed those parameterized on less. In all cases, the 100 frame models were 

able to accurately capture RDFs and 3-body correlations, though there is certainly room for 

improvement in both the Allegro and DeePMD models. It is likely that these architectures could 

produce even better models with the same training datasets if more hyperparameter sweeping was 

performed. In particular, the fitting and embedding networks were chosen to be far smaller than 

those used in previous studies to generate atomistic force fields from quantum mechanical 

simulations. For example, the original Allegro models utilized fitting networks with three hidden 

layers of 1024 neurons each, instead of the 32-width network used in the current work. This choice 
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was made to maximize their speed as CG models depend on integration speed to enhance the 

sampling of the underlying atomistic simulation. Despite this, these models integrate far slower 

than even a corresponding all-atom system, with the fastest model, Allegro, integrating at a speed 

of ~25 ns/day on a small 3916 particle system, even when utilizing 4 GPUs. 

 While there is still much room for improvement in the integration speed of DNN based CG 

force fields, the addition of equivariant embedding clearly reduces the amount of training data 

required to generate a stable model by orders of magnitude. Though it was not the most accurate 

model, Allegro could train a force field which reproduced all qualitative features of the 2- and 3-

body correlations of water, with a reasonable amount of quantitative accuracy, even when using a 

single frame of training data containing 512 total training examples. In comparison, DeePMD 

could not create a model which stably formed a bulk liquid using 10x the amount of training data. 

This sidesteps one of the biggest hurdles for generating DNN CG force fields and suggests that 

incorporating physical intuition and restraints may increase their training efficiency. With 

additional advances in DNN integration speed, methods such as these could become the state of 

the art for CG modelling in the future. Explicit inclusion of bonded CG beads could expand the 

capacity of these models to much more complicated systems for which traditional CG methods 

fail. 
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Chapter 5: Centroid Molecular Dynamics Can Be Greatly 

Accelerated Through Neural Network Learned Centroid 

Forces Derived from Path Integral Molecular Dynamics 

 

This chapter was originally published under the same title as Timothy D. Loose, Patrick G. 

Sahrmann, and Gregory A. Voth, J Chem. Theory Comput., 2022 18(10), 5856-5863 DOI: 

10.1021/acs.jctc.2c00706 

 

 

Abstract 

For nearly the past 30 years, Centroid Molecular Dynamics (CMD) has proven to be a viable 

classical-like phase space formulation for the calculation of quantum dynamical properties. 

However, calculation of the centroid effective force remains a significant computational cost and 

limits the ability of CMD to be an efficient approach to study condensed phase quantum dynamics. 

In this paper we introduce a neural network-based methodology for first learning the centroid 

effective force from path integral molecular dynamics data, which is subsequently used as an 

effective force field to evolve the centroids directly with the CMD algorithm. This method, called 

Machine-Learned Centroid Molecular Dynamics (ML-CMD) is faster and far less costly than both 

standard “on the fly” CMD and ring polymer molecular dynamics (RPMD). The training aspect of 

ML-CMD is also straightforwardly implemented utilizing the DeePMD software kit. ML-CMD is 

then applied to two model systems to illustrate the approach: liquid para-hydrogen and water. The 

results show comparable accuracy to both CMD and RPMD in the estimation of quantum 
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dynamical properties, including the self-diffusion constant and velocity time correlation function, 

but for significantly reduced overall computational cost.  

 

5.1 Introduction 

The accurate simulation of quantum dynamics is limited by the computational complexity of 

solving the time-dependent Schrödinger equation. While classical molecular dynamics (MD) 

based on empirical force fields are capable of utilizing certain information from quantum 

calculations, the treatment of the nuclei as point particles as well as the inherent limitations of a 

pairwise decomposable description of the intermolecular interactions limits their accuracy.138,139 

The most straightforward approach to address this accuracy problem is to perform full electronic 

structure calculations for each timestep to calculate the force vectors on each particle, such as in 

the case of ab initio molecular dynamics (AIMD).140,141 However such methods can be 

prohibitively expensive for all but the smallest systems. Additionally, these calculations must be 

performed repeatedly over the course of a simulation which highly limits the timescales accessible 

to study with these methods. Many alternatives have been employed to limit the cost of 

representing the effects of quantum electronic structure within MD simulations, such as treating 

the majority of the system with classical mechanics and saving the quantum mechanical 

calculations for specific regions as in hybrid quantum mechanics/molecular mechanics.142  

 

Irrespective of the underlying accuracy of the representation of the forces on the system 

nuclei, the challenge of quantum dynamics is compounded by the fact that for many systems of 

interest exhibit nuclear quantum effects (NQEs), even at thermal equilibrium. Path Integral (PI) 
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methods can capture NQEs in such equilibrium circumstances. This technique relies on the 

imaginary time formulation of Feynman path integral quantum mechanics, in which the classical 

principle of least action is generalized to quantum systems via functional integration over all paths 

that system can take between an initial and final point.143 In the case of molecular simulation, PI 

based methods  re-cast a quantum mechanical description of the system of interest into an 

isomorphic classical one where each quantum particle is represented by a set of P classical 

quasiparticles or “beads”, for which standard MD algorithms can be utilized.144,145 In particular, it 

can be shown that, in the P → ∞ limit, the static equilibrium properties of a quantum particle can 

be described by the Boltzmann statistics generated by the following Hamiltonian: 

 𝐻 = ∑ [
𝑝𝑛

2

2𝑚𝑛
′
+

1

2
𝑚𝜔𝑃

2(𝑥𝑛 − 𝑥𝑛+1)
2 +

𝑈(𝑥𝑛)

𝑃
 ]

𝑃

𝑛=1

 (5.1) 

where 𝑚𝑛
′  are fictitious mass parameters, 𝜔𝑃

2 = √𝑃/𝛽ℏ , and 𝑃 is the total number of replicas or 

beads chosen for the discretized imaginary time path. Each bead represents the particle at a discrete 

position in imaginary time, so 𝑥𝑃+1  =  𝑥1 in order to guarantee that only paths which begin and 

end in the same place are considered for each configuration. This Hamiltonian effectively 

describes a collection of classical-like particles each acting under a potential 𝑈(𝑥)/𝑃  that are 

attached by harmonic oscillators to the adjacent particles in a “ring polymer” or “necklace”. (Note 

that the notation here is for a single quantized particle in a one-dimensional potential, but the 

notation is readily generalized to more than one particle in three dimensions.) Molecular dynamics 

simulations performed using the Hamiltonian in equation 1 is Path Integral Molecular Dynamics 

(PIMD).  PIMD provides a route to calculating quantum static equilibrium properties in a 

computationally feasible fashion, generally achieving converged results at P~30 replicas for a 

system such as liquid water at ambient temperature.145 However, the PIMD Hamiltonian cannot 
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be used to estimate quantum dynamics and must be regarded only as a sampling tool for 

equilibrium statistics.144,145 The PIMD approach is also still significantly slower than classical MD 

due to the increased complexity of the system being simulated, but largely scales the same way as 

does classical MD in terms of computational cost (i.e., there is simply a “cost” prefactor 

proportional to the value of P). 

Centroid Molecular Dynamics (CMD), introduced by Cao and Voth nearly thirty years ago, 

provides a means to estimate certain quantum dynamical information from the discretized 

imaginary time path integral via the dynamics of the imaginary time path centroid moving in a 

classical-like fashion under the mean centroid force.146,147 This method is motivated by Feynman’s 

observation that the imaginary time path centroid is the most classical-like variable of a quantum 

system.143,148  The original papers introducing the CMD concept replied largely on ad hoc 

arguments to justify the method, but two subsequent papers149,150 in 1999 provided an exact 

formulation of centroid quantum dynamics and also a route to deriving CMD as an approximation 

to those exact dynamics. These latter two papers are sometimes not cited by authors when 

discussing CMD so the primary content of that work is briefly reviewed here for completeness.  

 

Formally, a quasi-density operator (QDO) for the centroid density can be defined which can be 

used to formulate the exact dynamics of the imaginary time path centroids.149 In one dimension, 

this QDO is equal to 

 

 φ(𝑥𝑐, 𝑝𝑐) =
ℏ

2𝜋
∫ 𝑑𝜁

∞

−∞

∫ 𝑑𝜂𝑒𝑖𝜁(�̂�−𝑥𝑐)+𝑖𝜂(𝑝−𝑝𝑐)−𝛽�̂�

∞

−∞

, (5.2) 
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where 𝑥𝑐 and 𝑝𝑐 are centroid positions and momenta, �̂� is the system’s Hamiltonian and 𝛽 =

1/𝑘𝐵𝑇. The centroid distribution function can be obtained by tracing this operator 

 𝜌(𝑥𝑐, 𝑝𝑐) = 𝑇𝑟[φ(𝑥𝑐 , 𝑝𝑐)]. (5.3) 

Evaluation of this trace gives a classical-like form for the centroid distribution function which 

separates the position and momentum components when a Cartesian coordinate system is used, 

such that 

 𝜌(𝑥𝑐, 𝑝𝑐) = 𝑒−
𝛽𝑝𝑐

2

2𝑚 𝜌(𝑥𝑐) = 𝑒−
𝛽𝑝𝑐

2

2𝑚 𝑒−𝛽𝑉𝑐(𝑥𝑐) (5.4) 

 

where  𝑉𝑐(𝑥𝑐) is the effective centroid quantum potential of mean force. Integrating over the 

centroid position and momentum variables thus yields the standard quantum partition function 

 𝑍 = ∫∫
𝑑𝑥𝑐𝑑𝑝𝑐

2𝜋ℏ
 𝜌(𝑥𝑐, 𝑝𝑐).   (5.5) 

This partition function can be used to calculate the average of a physical observable corresponding 

to an operator �̂� as 

 〈�̂�〉 =
1

𝑍
∫∫

𝑑𝑥𝑐𝑑𝑝𝑐

2𝜋ℏ
 𝜌(𝑥𝑐, 𝑝𝑐)�̂�(𝑥𝑐, 𝑝𝑐; 𝑡), (5.6) 

 

where the time dependent centroid variable 𝐴𝑐(𝑥𝑐, 𝑝𝑐; 𝑡) is defined as 

 �̂�(𝑥𝑐, 𝑝𝑐; 𝑡) = 𝑇𝑟 [�̂�(𝑥𝑐, 𝑝𝑐)𝑒
𝑖�̂�𝑡
ℏ �̂�𝑒− 

𝑖�̂�𝑡
ℏ ] /𝜌(𝑥𝑐, 𝑝𝑐). (5.7) 
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For the exact dynamics of the centroid variables, a normalized time dependent QDO can also be 

defined as  

 �̂�𝑐(𝑡; 𝑥𝑐, 𝑝𝑐) = 𝑒− 
𝑖�̂�′𝑡
ℏ �̂�𝑐(𝑥𝑐, 𝑝𝑐)𝑒

𝑖�̂�′𝑡
ℏ  

(5.8) 

 

 �̂�𝑐(𝑥𝑐, 𝑝𝑐) = �̂�(𝑥𝑐, 𝑝𝑐)/𝜌(𝑥𝑐, 𝑝𝑐). (5.9) 

where  �̂�′ is a time-independent Hamiltonian upon which the system evolves (�̂�′ = �̂� in the usual 

equilibrium case). It is important to note that the QDO in this derivation is not a typical density 

operator: while it is Hermitian with non-negative diagonal elements, it is not positive-definite. This 

operator can be used to describe the exact dynamics of the path centroids; however this is not a 

useful approach for non-trivial systems for which the quantum Liouville equation cannot be 

solved.149 Instead, various approximations to the QDO can be made which result in various forms 

of path integral based methods including linearized quantum dynamics, centroid Hamiltonian 

dynamics, and CMD.150 In the case of CMD the centroid phase space variables are propagated 

quasi-classically by virtue of the following ansatz: 

 �̂�𝑐(𝑡; 𝑥𝑐 , 𝑝𝑐) ≈ �̂�𝑐(𝑥𝑐(𝑡), 𝑝𝑐(𝑡)) (5.10) 

 𝑚�̇�𝑐(𝑡) = 𝑝𝑐(𝑡); 𝑝𝑐(𝑡) ≈ 𝐹𝑐(𝑥𝑐(𝑡)) = 𝐹𝐶𝑀𝐷(𝑡)̇  (5.11) 

The approximation made here assumes that the QDO is the same at 𝑡 = 0 as at later times except 

for the placement of the centroids. This mean field-like assumption is reasonable for cases in which 

linear response theory approximates the dynamics of the system well, and for systems that have 

strong regression to equilibrium behavior. This perspective reveals that CMD is likely to be most 
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accurate for systems at equilibrium and in which coherent (purely quantum) aspects of the 

dynamics are not likely to have enough time to influence the system significantly before the 

correlations die out or de-cohere.    

The key to CMD is thus to numerically calculate the effective equilibrium forces felt by 

the path centroids in one way or another. Sampling of the non-centroid imaginary time path integral 

modes at each centroid position determines an effective potential on which to propagate the 

centroids in a classical-like fashion. However, fully sampling these modes at each timestep in a 

simulation is usually very computationally expensive and so it is arguably this feature of CMD 

that has precluded its application to certain problems over the years. Numerical implementations 

of CMD instead attempt to adiabatically separate the centroid and non-centroid imaginary time 

path integral (Matsubara) modes, of which the zero-frequency mode is the centroid.  Adiabatic 

separation is achieved by setting the fictitious masses of the non-centroid modes to be much lower 

than that of the centroid, which is set to the physical mass of the particle. Then, one attaches 

thermostats to the non-centroid modes to help more rapidly sample them. While the adiabatic 

approximation enables “on-the-fly” calculation of the centroid effective force, generating centroid 

trajectories in CMD still involves significant computational overhead.  

As an alternative to CMD, Manolopoulos and co-workers subsequently introduced  ring 

polymer molecular dynamics (RPMD) as another approximate quantum dynamics approach,151–153 

which shared certain key aspects of the spirit of CMD. In RPMD, the fictitious masses of the ring 

polymer beads are set to the physical mass of the particle, and each bead is evolved as a dynamical 

variable with PIMD. One then makes the ad hoc argument that the MD sampling time in PIMD 

(as measured by integrator timesteps) is related to the actual real time of the quantum dynamics. 

The RPMD approach thus removes the requirement that any sort of centroid force averaging be 
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carried out as in CMD. It should be noted that a subsequent analysis154 showed that RPMD has no 

clear connection to real time quantum dynamics, but the methodology remains popular among 

users given its ease of use. In addition, an analysis of an approximate, but to date impractical form 

of quantum dynamics called “Matsubara Dynamics” has suggested that RPMD and CMD can be 

related to that approximation through further approximations.155 Also of note is that RPMD is 

numerically faster than CMD, but the increase in speed is relatively small in comparison to 

classical MD, which is significantly faster than both. 

While both RPMD and CMD can capture a range of quantum effects such as incoherent 

tunneling and zero-point quantization, they are not without their drawbacks. For example for 

certain potential energy functions and at low enough temperatures, CMD may exhibit a “curvature 

problem”, which has a tendency to red shift certain vibrational frequencies for some systems,156 

This behavior can make CMD less suitable for spectrum prediction for certain systems, although 

this issue generally vanishes at room temperature or higher.157 On the other hand, RPMD suffers 

from a spurious resonance problem, in which the centroid dynamics becomes coupled to the 

harmonic oscillations of the ring polymer, introducing artificial resonances into the spectra.158 

Thermostatted RPMD (TRPMD), in which Langevin thermostats are attached to the ring polymer 

internal modes, has been introduced as an ad hoc “fix” for this problem.159 

Beyond these issues, both RPMD and CMD remain computationally relatively expensive 

due to the need to represent each physical atom in a simulation with dozens or more ring particle 

replicas (beads). Employing these methods on systems containing many thousands of atoms or 

more can be infeasible for all but the shortest simulations. For CMD, it has been found to be 

possible in some cases to generate accurate CMD dynamics with only a partial adiabatic separation 

of the  internal ring polymer modes from the centroid mode.160 Partially adiabatic CMD (PACMD) 
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simulations can handle larger timesteps as well, allowing them to reach similar levels of efficiency 

to similar to RPMD. In the case of RPMD, however, a clever ring polymer contraction scheme can 

be used to increase computational efficiency.161 In this method, the short range interactions of the 

system can be treated using a full ring polymer, while longer range interactions can be 

approximated by interactions calculated across a smaller number of beads (somethings even just 

the centroid mode). In order to further bridge the gap between classical MD and PIMD-based 

methods, approaches have been proposed162,163  to directly evolve the centroids of quantum 

particles along a learned centroid force field, but these methods have used pairwise tabulated 

potentials in their effective quantum force fields which can limit their accuracy in capturing the 

NQEs.  

To quickly summarize, CMD is by now a venerable approach to estimating certain 

quantum effects in finite temperature systems, for better or for worse. After nearly 30 years it has 

largely stood the test of time as a valuable approximation. Yet, the demanding nature of the 

calculation of the effective centroid force (usually done “on the fly”) has in some ways held back 

the method from wider use and applicability (e.g., in comparison to RPMD). To shed light on a 

path to overcome this central challenge – and to capitalize on the rapidly evolving developments 

in machine learning (ML) – in this paper we introduce Machine-Learned CMD (ML-CMD) and 

demonstrate its (arguably remarkable) features in increasing the computational speed and overall 

efficiency (time to solution) for CMD simulations. The method employs a deep neural network 

(DNN) trained on PIMD data to act as a force field which calculates the effective centroid forces 

based on configurations of the path centroids alone. This method retains most of the efficiency of 

a pairwise force field without its corresponding constraints. ML-CMD employs the DeePMD 
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kit,110 which has been applied to both ab initio data as well as classical atomistic MD in the past 

to efficiently predict forces and energies of complicated systems.  

DeePMD is a general use DNN method for learning atomic forces and energies based on 

two main components. The first is a descriptor network which converts the local environment, 

analogous to a neighbor list in classical MD, of a particle into translationally, rotationally, and 

permutationally invariant embedding. This network then passes these embedded features to a 

second fitting network which considers this environment to predict atomic contributions to energy 

or force.164,165 The method can learn a force field for a completely generic representation of a 

system using mapped forces, including those from PIMD trajectories.113  In the case of ML-CMD, 

the training dataset consists of a PIMD trajectory with forces projected to the centroids of the 

imaginary time paths using the mean square error in the forces as a loss function. The dataset is 

then used to learn the centroid forces directly, thus front-loading the work of deriving the effective 

centroid forces. Naturally, this approach benefits simulations of larger systems the most, but even 

for simple applications it can result in significantly faster results. We show later in this paper that 

ML-CMD can be applied to low temperature para-hydrogen as well as room temperature liquid 

water in order to calculate quantum time correlation functions to a great degree of accuracy, as 

well as significantly greater efficiency (between one and two orders of magnitude faster) against 

comparable path integral based methods. The ML-CMD models are also easy to train, require no 

more additional simulation than CMD, and can be deployed quickly enough to justify their use 

over CMD and RPMD even for simple systems with no simulation data readily available. 
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5.2 Methods 

We trained two ML-CMD models to test the method’s ability to capture static and dynamic 

properties of systems with significant NQEs. The first is the Silvera-Goldman model166 of para-

hydrogen at 14 K and a density of 𝜌=0.0235 Å-3. A total of 180 particles were simulated, each 

corresponding to an entire H2 molecule. This spherical approximation is justified as hydrogen is 

in the rotational ground state at the chosen state point.  The second system contained 233 water 

molecules simulated using the qSPC/fw force field at 300 K and atmospheric pressure.167 The 

datasets used for DeePMD were generated using i-PI and LAMMPS software packages.100,168 Each 

system was simulated using normal mode PIMD (NMPIMD) with 32 replicas per particle for 250 

picoseconds. A total of 8000 frames were taken from the final 200 picoseconds of each simulation, 

and the coordinates and forces were mapped to the centroid resolution. 

The para-hydrogen model was trained using an embedding DNN with three hidden layers 

containing 10, 20 and 40 neurons, no timestep, and 46 nearest neighbors were considered as the 

local environment for the descriptor network. The fitting network was composed of three hidden 

layers of 240 neurons each, with a timestep. The learning rate schedule was exponential, with a 

starting rate of 5x10-3, and ending rate of 1.76x10-7, and 5000 decay steps.  The model was trained 

for 500,000 iterations before validation and testing. The water model was trained using an identical 

model except for the following differences: The first is the number of neighbors considered for the 

local environment of each atom was increased to 60 hydrogens and 30 oxygens. Second, the model 

was trained for 100,000 iterations instead of 500,000. Additionally, the water training was batched 

with a batch size of 10. Both models were trained using DeePMD’s se_e2_a descriptor which uses 

pairwise distances and embeds both radial and angular information about the system into the 

network. In order to obtain the most efficient models possible, the training length and local 
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environment size were systematically reduced until dynamical fidelity was impacted, thus 

resulting in a model which balances accuracy with speed. Input files for DeePMD training for both 

water and para-hydrogen are included in the Supporting Information. 

The resulting force fields were tested against TRPMD and PACMD considering accuracy 

of static and dynamic properties as well as integration efficiency. All ML-CMD simulations were 

carried out in LAMMPS with the DeePMD force field add-on using a 0.5 fs timestep. For both 

RPMD and PACMD, each system was simulated using i-PI and LAMMPS using a 0.25 fs timestep 

for PACMD and a 0.5 fs timestep for TRPMD and 32 replicas per atom. PACMD frequencies 

were chosen according to the following equation 

 Ω = 𝑃𝑃(𝑃−1)/𝛽ℏ, (5.12) 
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which for the para-hydrogen system is 349 cm-1 and for the water system is 7481 cm-1.158 In order 

to accurately compute diffusion and time correlation functions for these systems, a parallel scheme 

developed by Pérez et al. was used.169 A total of 64 individual frames were selected from an initial 

PIMD simulation to generate uncorrelated starting points as shown in Figure 5.1. Each starting 

point was then used to launch two 6 ps TRPMD, PACMD or ML-CMD trajectories, for a total of 

128 simulations for each method. Velocity autocorrelation functions (VACFs) were computed 

from the final 5 ps of each of these trajectories and averaged to obtain a converged result. Self-

diffusion constants were then obtained from the zero-frequency Fourier transform of the Kubo 

transformed VACF. It is noteworthy that the PIMD trajectory used to start each short simulation 

Figure 5.1. Workflow for calculating autocorrelation functions using path integral MD methods 

and for generating ML-CMD models. Blue panels correspond to necessary steps for CMD and 

RPMD using uncorrelated configurations. Green panels are additional necessary steps for 

creating a ML-CMD model. The initial PIMD simulation step is shared among both, eliminating 

the cost of data collection for training ML-CMD force fields when calculating autocorrelation 

functions. 
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can double as a dataset for ML-CMD. In cases where such a scheme is used, one saves even more 

time as this simulation performs two critical steps instead of just one. 

When measuring efficiency, all methods were tested using the same computational 

environment. Each test simulation was run on 32 cores of a 40 core Cascade-Lake compute node 

to allow for one core per replica in the full PI simulations. All simulations were carried out in 

LAMMPS. The total time used to calculate autocorrelation functions was calculated as the sum of 

all required simulations and training (“time to solution”). For ML-CMD this includes the 250 ps 

PIMD simulation used to generate the dataset which was also used as the starting points for the 

autocorrelation function calculations, the DeePMD network training time, and the total time to run 

the 768 total ps of simulation required for the autocorrelation functions. For PACMD and TRPMD, 

this includes the short PIMD trajectory required to generate starting configurations and the time to 

simulate the 768 ps of data for the autocorrelation functions. 
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5.3 Results and Discussion 

Both ML-CMD para-hydrogen and water results show excellent agreement with TRPMD 

and PACMD. Figures 5.2 and 5.3 show radial distribution functions for all three models as well as 

PIMD. Of note are the water peaks corresponding to the O-H bond and H-O-H angles, which ML-

CMD captures very accurately despite there being no explicit bonded or angular interactions in the 

force field. It is, however, not surprising that the static properties of ML-CMD align with full PI 

methods as PIMD is well known to be ideal for sampling the equilibrium properties positions of 

Figure 5.2. Plot of the radial distribution function (g(r)) for 14 K para-hydrogen. PIMD, ML-

CMD, and PACMD are compared. As the Silvera-Goldman potential represents one hydrogen 

molecule as a single particle no peak corresponding to the H-H bond is present.  
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quantum particles. In addition, a previous attempt at calculating effective centroid forces from 

PIMD trajectories for CMD have shown similar levels of accuracy for para-hydrogen.162  

Figure 5.3. Plot of the radial distribution function (g(r)) for Hydrogen-Hydrogen 

(top), Hydrogen-Oxygen (middle) and Oxygen-Oxygen (bottom) of 300 K water. 

PIMD, ML-CMD, PACMD, and TRPMD are compared.  
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The approximate quantum dynamics of the ML-CMD models are also well in line with the 

PACMD and TRPMD results. Figure 5.4 shows the VACF for all three types of simulation for 

para-hydrogen as well as CMD simulations with greater adiabatic separation. ML-CMD generally 

agrees better with PACMD than TRPMD, which is expected as the latter method is not designed 

to approximate centroid dynamics. CMD simulations in which the adiabatic separation is not 

partial show even better agreement with ML-CMD. This suggests that for systems with significant 

NQEs ML-CMD is not only faster than PA-CMD, but more accurate as well.  

Figure 5.4. A plot of the normalized velocity autocorrelation functions (VACFs) for 14 K para-

hydrogen using ML-CMD, PACMD, CMD, and TRPMD simulations. Each VACF was 

averaged over 128 individual trajectories.  
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Figure 5.5 shows the velocity autocorrelation functions of water. In this case, ML-CMD 

matches PACMD and TRPMD nearly perfectly. The fact that RPMD and PACMD converge better 

for room temperature water than for 14 K para-hydrogen is not surprising. RPMD and CMD are 

known to converge as the system approaches the classical limit, e.g., heavier nuclei or higher 

temperatures.160 

 

 

Table 5.1 next shows the calculated self-diffusion constants for both water and para-

hydrogen for all three types of simulation. ML-CMD shows excellent agreement in both cases; it 

Figure 5.5. A plot of the normalized velocity autocorrelation functions (VACFs) for 300 K using 

ML-CMD, PACMD and TRPMD simulations. Each VACF was averaged over 128 individual 

trajectories.  
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appears to be slightly more diffusive although this is well within the margin of error. The neural 

network architecture of ML-CMD’s force field seems to directly contribute to the dynamical 

accuracy of the method. A previous attempt for accelerating CMD using force matching of the 

centroid forces resulted in less accurate values for self-diffusion at lower temperatures.162  

 

  

System 

Para-hydrogen 14 K (Å2/ps) Water 300 K (Å2/ps) 

ML-CMD 0.30 ± 0.03   0.32 ± 0.03 

PACMD 0.29 ± 0.03 0.31 ± 0.03  

TRPMD 0.28 ± 0.03 0.31 ± 0.04 

 

 An important factor in the training and validation of DNNs is the amount of data required 

to achieve a converged model. The ratio of training data to extrapolation informs not only the 

feasibility of the method, but also its quality. We trained 3 additional para-hydrogen models using 

20, 60, and 100 ps of PIMD reference data to test this. Table 5.2 shows diffusion coefficients for 

each of these models. Figure 5.6 shows VACFs comparing the models to the model trained on the 

full 200 ps reference dataset.  

  

Table 5.1. Self-diffusion constants for para-hydrogen and liquid water. All values were 

calculated using the zero frequency Fourier transform of the Kubo transformed velocity 

autocorrelation function. 
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Reference simulation length (ps) Diffusion Coefficient (Å2/ps) 

20 0.31 ± 0.03 

60 0.30 ± 0.03  

100 0.31 ± 0.03 

200 0.30 ± 0.03 

These results show that the method works with much less data than the full 200 ps trajectory. The 

diffusion constant values are well within a standard error of each other, and the autocorrelation 

functions match perfectly, even with 10 percent of the total training data used.  Future applications 

of ML-CMD are thus likely to be deployed even more quickly and efficiently than the ones 

presented here. 

Table 5.2. Diffusion coefficients for ML-CMD para-hydrogen trained on datasets of varying 

length compared to the base model, which was trained on 200 ps of PIMD simulation. 
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Beyond accurate dynamics, the most important aspect of ML-CMD is its speed over 

methods such as full CMD, PACMD, RPMD, and TRPMD. In order to be useful as a replacement 

for these methods, it must be faster than them even when considering the time to collect the PIMD 

data and train the DNN force field. Table 5.3 shows integration speeds for the ML-CMD, PACMD, 

and TRPMD as well as the total time required to collect converged velocity autocorrelation 

functions. ML-CMD performs over 70 times faster than PACMD for para-hydrogen and over 20 

Figure 5.6. A plot of the normalized velocity autocorrelation functions (VACFs) for 14 K para-

hydrogen using several trained ML-CMD models. Each model was trained with a different 

amount of reference PIMD data and VACFs were calculated in the same manner as the 

preceding figures. 
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times faster for water. Additionally, the time to data collection is shorter than both PI-based 

methods by a considerable amount, even when considering the amount of excess PIMD data used 

to train the models in the present case. These results are encouraging, as the correlation function 

calculations require only 768 total picoseconds of integration, less than four times the total amount 

of simulation time used to train the model in the first place. In cases where more or larger 

simulations are required such as calculating long time correlation functions for complex free 

energy surfaces, ML-CMD becomes even more efficient, as the initial simulations and model 

training only need to be performed once. Furthermore, each ML-CMD model can be shared for 

use in multiple simulations either individually or through a publicly available repository of models 

which can be contributed by anyone using the method. 

 

  

System 

Para-hydrogen 

speed (ps/hr) 

Para-hydrogen VACF 

calculation time (hrs) 

Water speed 

(ps/hr) 

Water VACF 

calculation time 

(hrs) 

ML-CMD 734.4 21 144.5 49 

PACMD 9.8 90 6.1 137 

TRPMD 17.9 55 10.7 84 

 

It is also worth discussing the flexibility of the machine learning algorithm chosen for ML-

CMD. DeePMD is simple to deploy and yields excellent performance, but it is one of many similar 

DNN based methods which can predict forces and energies in molecular systems. One of the most 

important aspects of any of these methods is how they encode translational, rotational and 

Table 5.3. Integration speed and velocity autocorrelation function (VACF) calculation times for 

ML-CMD, PACMD and TRPMD. All measurements performed using 32 cascade-lake cores. 

VACF calculation time for PACMD and ML-CMD includes an initial PIMD simulation 

followed by 768 ps of integration. For ML-CMD, this also includes DeepMD neural network 

training time. 
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permutational invariances into the input features of the model. This allows for the network to work 

in scalar space with the same symmetries present in the real chemical environment. Recently, 

several models have been developed which replace these invariant networks with equivariant ones 

which can directly encode vectored information such as forces. These models have been shown to 

require far less data than symmetry invariant models, and can produce better results with up to one 

thousandth the number of training examples.111,112 Applying such a method would naturally speed 

up the training of ML-CMD models and should be considered for future study. 

5.4 Conclusions 

 

In this work, we have presented ML-CMD, a machine learning approach for the calculation 

of the effective centroid potential in CMD simulations. Over the past 30 years, regular CMD has 

been limited by the need to repeatedly calculate the centroid effective force “on-the-fly” through 

adiabatic separation of the centroid and non-centroid imaginary time path integral modes. Such 

calculations represent a significant computational overhead for larger systems. Instead, in the 

present work we shown that by training a neural network to first learn the centroid effective 

potential from a PIMD simulation, one can greatly increase the efficiency and time to solution of 

a CMD simulation without sacrificing accuracy. 

We have demonstrated that for both room temperature water and 14 K para-hydrogen ML-

CMD provides highly accurate results which closely match both the static and dynamic properties 

given by full PACMD and TRPMD simulations. The ML-CMD simulations are also many times 

faster than either of the latter approaches, thereby extending the range of systems for which CMD 

will be applicable. While the initial PIMD simulations and DNN training steps somewhat constrain 
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the overall speed at which the ML-CMD models can be deployed, the PIMD simulations are also 

necessary to provide the initial conditions for trajectories in both PACMD and TRPMD.  

This paper provides yet another example where machine learning promises to transform 

the field of molecular simulation, in this case by making CMD simulations feasible and accurate 

for a wider range of systems. Likewise, one can expect that future advances in machine learning, 

e.g., to better treat heterogeneous systems, rare events, etc., will also provide clear benefit to the 

ML-CMD approach developed in this work.   
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Chapter 6: Conclusions 

When developing a bottom-up CG model there are always two considerations one must 

keep in mind. The first, which comes quite naturally, is to assess the accuracy of the models being 

created with respect to the reference dataset. Many benchmarks are commonplace, such as lipid 

membrane bending modulus, radial distribution functions, and qualitative analyses of model 

behavior. However, it is important to keep in mind that outside the limit of infinite sampling and 

perfect basis sets, which will never be accomplished in real life, all CG methods have their own 

advantages and disadvantages which cannot be escaped. Thus, recognizing the strengths and 

weaknesses of each CG method is important to the creation of usable CG models. Unfortunately, 

this information is not always readily available, and often the models which do not work can 

provide just as much guidance as those that do. This, in tandem with the fact that bottom-up CG 

methods are most useful when anyone without expertise can use them to create their own models, 

points to a deficiency in how information about CG modeling is disseminated. Best practices, 

tutorials and lessons learned should be included along with any CG modeling code base to 

maximize their usefulness. 

 The second consideration when designing CG models is assessing the practicality of the 

model itself. Coarse-graining is a means to an end- to simulate larger molecular systems for longer 

periods of time. To be useful a CG method must produce models which are efficient enough to 

justify their own existence including the time and effort required to generate them. Methods which 

involve weeks of optimization and multiple methodologies will never be more attractive to users 

than top-down CG force fields which one can get started with in mere minutes, regardless of how 

much more accurate they are. Additionally, models which integrate faster will be more attractive 

than slower ones. Integration speed is a combination of the overall number of CG sites the model 
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incorporates, the maximum timestep which still allows the model to run stably and the integration 

speed of the force field. Typically, models become faster as the CG resolution becomes lower, 

which is often though not always at odds with accuracy. Methods which are easy to use and deliver 

results in a short amount of time are the most practical. 

 With these considerations in mind, a simple framework for evaluating CG models can be 

made, where a model is classified according to a combination of its accuracy and practicality. 

There are four categories which any given model can be loosely put into. The first is the ideal case, 

where a model is accurate enough to use, and very practical to start using. These accurate-practical 

models should be strived for in all cases. The next case, inaccurate-impractical, are the worst CG 

models, which are very difficult to recommend using. While models of simple liquids and other 

common test systems rarely fall into this category, one unfortunately finds these types of models 

in many cases where the system at play is very complex or ill-suited to CG. The last two cases, 

accurate-impractical and inaccurate-practical, lie somewhere in between, and represent the 

pragmatic reality of the situation: where accuracy and practicality are inversely correlated. While 

one can often systematically improve the accuracy of the model, this usually involves more 

reference data collection, or the application of more complicated functional forms for the CG 

Hamiltonian which slow down dynamics and thus decreases practicality.  

How does one decide whether practicality or accuracy are more important when balancing 

the two? Method and developers tend to highlight whichever element their models happen to be 

best at, which gives potential users a good heuristic to follow to find a method or model which 

works for their use case. In most cases though, issues of practicality are often glossed over in the 

literature. No one wants to say that their model requires extensive hyperparameter sweeping, or 

that the procedure used to build their model takes over a month to perform. The reason for this is 
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simple: no one would use such a model. This hints that practicality is far more important than most 

method developers give it credit for. While more consistency with underlying atomistic physics is 

always better, there is a large amount of tolerance for more phenomenological models which “get 

the job done” especially when learning to use these models is simple and they integrate quickly. 

This should come as no surprise to anyone familiar with MD force fields. Classical MD struggles 

greatly to simulate water due to its non-classical behavior and reactivity, yet most biophysical 

simulations utilize these inaccurate water models to represent most of the atoms in their system. It 

would be extremely impractical to suggest that a biophysical modeler go to the level of quantum 

mechanics to simulate water more accurately, and therefore it is only done when these quantum 

effects are critical.  

The difference between AA-MD water models and CG-MD models is that the water 

models have been analyzed thoroughly, and their limitations are well known.170–172 To that end, 

bottom-up CG method developers should not shy away from discussing the limitations of their 

methods. Any CG model, top-down or bottom-up, will necessarily have limitations, this is easily 

demonstrated by the ubiquity of the transferability and representability problems in CG models, 

but it is not necessary. All models inherently cannot capture the reality they emulate perfectly: 

even the most advanced quantum mechanical methods available today cannot analytically solve 

the Schrödinger equation for complex systems, so why hide that a CG model is less accurate in 

emulating AA-MD properties than one would like? 

In chapter 2, I summarize Martini 3.0’s difficulties with capturing thermodynamic 

transferability and macroscopic material properties of lipid bilayers. Analyses such as this one are 

not unique, and much has been said about top-down CG models in relation to the AA models they 

emulate. Naturally, the same scrutiny ought to be paid to bottom-up models. This type of criticism 
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will not only spur future efforts towards better models in the future but will also allow the CG 

modeling community to gauge the inherent limitations of bottom-up CG systems such as lipids, 

which as demonstrated in Chapter 3, fail in their own ways. Beyond this, combinations of analyses 

done on top-down and bottom-up CG models will provide insight into the capabilities of CG 

modeling in general. For example, the results of both chapter 2 and 3 taken together suggest that 

CG lipids as a rule do not exhibit transferability without explicit incorporation of temperature 

dependent potentials.  

Beyond a larger discussion around limitations, it is also helpful to have a selection of 

previous models to either build off or to use as benchmarks to produce new models. In principle, 

generating large suites of bottom-up models should not be difficult, as it is possible to 

systematically create large numbers of models at varying resolutions and underlying optimization 

methods. These models could then be categorized, benchmarked, and published for use or 

reference by the rest of the CG modeling community. Unfortunately, there seems to be far more 

focus on generating new and more advanced methodologies than on utilizing existing methods. 

While method papers typically include at least a small set of test models which suggest their 

usefulness, these models are often far simpler than real life CG use cases, which often contain 

multiple species, large biomolecules, or anisotropy which can make models behave in unexpected 

ways.  

 Top-down CG models often do a much better job of this, partially due to how easy they 

can be to use. Martini models for practically any class of system have been used for published 

computational experiments, and the force field itself is the equivalent of a near complete library of 

bottom-up models. Bottom-up CG modelers should take a page from their book and focus more 

on applications which inform future models. This will also have the benefit of advertising these 
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methods as viable options that have been vetted and are reliable. It is often argued that bottom-up 

CG models should be more accurate than top-down ones, at least when compared to atomistic 

molecular dynamics. This is a fair claim to make, as a CG model is essentially an alternative to 

AA-MD. In addition, claims of accuracy are appealing as most bottom-up methods have been 

mathematically analyzed and guarantee a rigorous correspondence between resolutions, at least in 

principle. This also helps to justify their use, as they go beyond phenomenological models and 

incorporate physics from AA-MD. However, as has been demonstrated time and again, 

mathematical consistency with the AA resolution is only guaranteed in certain limiting cases, 

which are never truly met in practical use cases. In fact, if these conditions could be met, there 

would be no need for the models in the first place. Therefore, these justifications alone cannot 

convince CG modelers to use bottom-up methods, while real examples of functional bottom-up 

models can.  

 Returning to the accuracy-practicality framework described earlier, each chapter in this 

thesis sheds some light on how models in this category can be produced, critiqued, and improved. 

In Chapter 2, the Martini 3.0 force field’s accuracy is analyzed, and found to be no better than 

previous Martini models. Despite this, Martini remains extremely popular. This can be largely 

attributed to the amount of work that has been done to ensure that Martini is as easy to use as 

possible. It is a robust force field that has been used to simulate systems of vastly higher complexity 

than even the most powerful bottom-up methodologies. It is no more difficult to run a Martini 

simulation than it is to run the corresponding AA system, and it runs much faster, especially when 

using the implicit solvent Dry Martini models. The most straightforward simulations described in 

this work were all Martini simulations- even bottom-up modelers cannot help but praise its 

practicality with this in mind, Martini falls into the inaccurate-practical category. While it may not 
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capture structural and thermodynamic properties that other models have the potential to, the 

ubiquity of Martini models reaffirms the importance of practical CG models. 

 Chapter 3 brings to light the difficulty in parameterizing merely stable lipid bilayers from 

atomistic data. The hydrophobic effect from the bulk solvent and the radial anisotropy of lipid 

bilayers in general both pose challenges that are difficult to address, even with a high amount of 

expertise. Molecular modelers who utilize CG models should not be expected to follow the 

procedures outlined therein, and by that metric even VS-REM and TT-VS-REM, which 

outperformed the implicit solvent and force matching methods, fail as models due to their 

impracticality. The VS-REM and TT-VS-REM models capture features of the corresponding AA 

models which Martini cannot. Namely, the RDFs, bending modulus, and entropy enthalpy 

decompositions. At the same time, poration of the bilayer at long simulation lengths and inability 

to capture the membrane self-assembly which lower resolution models can make it difficult to 

recommend as accurate. I believe these models for the most part fall into the inaccurate-impractical 

category for those reasons. Again, the real determination for whether these models are useful is 

their practicality. TT-VS-REM came about as a culmination of a variety of advanced CG 

methodologies to a system which was difficult to coarse-grain, but this process was largely based 

in discovery. At each step, the next model was hypothesized to fix accuracy issues. Many of these 

issues were indeed solved in the end, but the process for doing so may not be the same for other 

systems. Virtual solvent particles may be much harder to apply to protein systems, and it is also 

unclear how to resolve virtual solvent particles in situations where the association of other 

biomolecules to a lipid bilayer. Beyond this, methods for generating similar models for other lipids 

at other resolutions look very different, especially with regards to REM optimization. It is almost 

impossible to conceive that someone who is not a specialist in CG methodology would be able to 
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come up with these procedures on the fly and create a model that was to their liking without giving 

up and simply using AA-MD. 

 Chapter 4 introduces machine learning as a solution for CG accuracy problems. DNNs with 

their immense regressive capabilities are a hot topic in CG method development and for good 

reason. These force fields break out of the pairwise limitation which most CG models are 

constrained to and are thus able to accurately reproduce structural features of water, a notoriously 

difficult system, with very little tuning. However, DNN methods remain largely impractical today 

due to their slow integration speed. This is a natural consequence of incorporating many-body 

interactions into a CG model. While this firmly places the models in this chapter in the accurate-

impractical category, the equivariant neural networks applied to the system have addressed the 

other problem endemic to machine learning for CG force fields: their data requirements. While 

other ML based CG force fields require many microseconds of data to learn a force field for simple 

systems such as alanine dipeptide, just a fraction of a nanosecond of sampling can generate a highly 

accurate water model if force equivariance is accounted for explicitly in the particle-wise 

embedding scheme. 

 Chapter 5 introduces Machine Learned Centroid Molecular Dynamics (ML-CMD), a 

second ML based method for “coarse-graining” the path integral representation of an atom down 

to a single site. This method is largely similar to that of Chapter 4, and even lacks the equivariant 

embedding scheme which aids in making those models more practical. Despite this, ML-CMD is 

both an accurate and highly practical model. The reason for this is simple: while DNNs are much 

slower than pairwise force fields for AA-MD, they are much faster than most methods which 

incorporate quantum mechanics, including path integral based methods. While these methods do 

not involve any electronic structure calculations, the need to represent each atom as a ring of 
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dozens of particles means that the level of “coarse-graining” achieved by ML-CMD is much higher 

than the other models presented. Additionally, the forces on the path centroids in traditional 

centroid molecular dynamics (CMD) are calculated via repeated sampling of the non-centroid 

modes which are removed. Lastly, the best practice in path integral simulations is to perform a 

short path integral molecular dynamics (PIMD) simulation from which to draw uncorrelated initial 

configurations and velocities for additional dynamical simulations (see Figure 4.1). This initial 

simulation is identical to one used to train the ML-CMD force field, which cuts out a substantial 

amount of extra time which is normally required for typical CG model generation. This 

combination of factors makes ML-CMD an ideal accurate-practical CG model.  

 The results of these models raise another important aspect of CG model development that 

often goes understudied: the CG mapping scheme.  Results from Chapter 3 suggest that higher 

resolution lipid models struggle to capture behaviors that models mapped to a lower resolution 

can. For the most part, CG mapping is done via chemical intuition rather than algorithmic 

assignment. For example, in CG phospholipids, it is desirable to assign the phosphate group to its 

own site. This allows for the calculation of properties of height fluctuation spectrums that 

correspond perfectly with atomistic data. This is because the center of mass of the phosphate bead 

coincides with the location of the phosphorus atom. It also makes sense from a chemical 

perspective: the negative charge in a phospholipid is localized within the phosphate group, and 

thus this charge can be incorporated into the potential of the phosphate bead alone. In other cases, 

the choice is not so clear. As an example, Martini suffers from degenerate mappings of lipid tails. 

DMPC lipids and DLPC lipids are treated identically within the Martini force field, even though 

DMPC tails contain two more carbons.  
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There are several methods that have been developed which show promise in systematic 

mapping assignment173–175 which range in their applicability. Essential dynamics coarse-graining 

(ED-CG) utilizes sequence-based clustering to optimally assign mappings but is limited in scope 

to large sequence-based molecules (namely proteins). It also relies on the user inputting the total 

number of desired CG sites and as such it cannot be used to select the optimal CG resolution 

without sweeping over the number of CG sites and observing the level of fluctuations that are 

captured by each one.175 This method has shown use in the generation of models of large proteins, 

where it is able to identify individual protein domains and motifs in many cases and assign them 

individual CG sites. A key limitation of ED-CG is its sequence-based mapping assignment. Each 

bead is composed of a continuous sequence of amino acids which means that domains that are 

formed from more than one segment of discontinuous sequences are often poorly captured. At the 

same time, this ensures that models resulting from these mappings are capable of unfolding.  

Supervised ML has also shown promise for CG mapping. Autoencoders are DNNs which 

compress input data down to a smaller bottleneck before expanding this feature back to a larger 

resolution. If the network is trained to reproduce input data, this can be exploited for the 

simultaneous generation of CG mappings and force fields. The first half of the network, called the 

encoder, can be thought of as a mapping scheme which transforms atomistic data down to a lower 

CG resolution. This network will have powerful regressive capacity and will naturally learn a 

mapping which captures as much of the AA information as possible. The last half of the network, 

called the decoder, can return these CG coordinates back to the AA resolution, and can be used as 

a backmapping function.173 From there, the CG distributions can be used to match an effective CG 

Hamiltonian. This method also relies on user chosen mapping resolutions, as the width of the final 

layer of the encoder is fixed. In addition, the mapped CG coordinates for a generic autoencoder 
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would have no physical meaning, and only mean something in the context of the neural network 

itself. Therefore, care must be taken to ensure that the result of the encoding half of the network 

exists within Cartesian space for both the MD engine to interpret it, as well as for the mapping to 

allow for CG consistency with the AA resolution. 

A common theme here is that choosing the CG resolution is a difficult task to perform, and 

it is not a trivial task to develop an algorithm to perform this. There is the obvious consideration 

that speed is directly related to the resolution of the model, and thus the selection of the resolution 

can be decided by the minimum required integration speed for the model to serve its purpose. 

However, this is muddied by systems where the relationship between accuracy and resolution is 

not clear, such as implicit solvent lipids. There is also an inherent difficulty in comparing CG 

models at different resolutions. One can often select a series of calculable observables one wishes 

to compare, such as bending moduli, which are not inherently dependent on the CG resolution. 

There may be other desirable observables which cannot be separated from the resolution of the 

model itself. For example, higher resolution models may capture the entropy or root-mean-square 

fluctuations of a model, but this is in part due to the nature of these observables itself. A single site 

representation of a molecule will necessarily have no fluctuations or conformational entropy and 

is therefore not necessarily the best metric. One might instead choose qualitative features of the 

model, such as self-assembly properties, as a metric of quality, but these are difficult to 

quantitatively measure in the first place.  

On the topic of machine learning, the buzz surrounding neural network force fields has 

been largely hampered by their slow integration speed. This is often addressed via “batched” 

simulations, where the same network can be used as a force field for multiple parallel simulations, 

just as neural network training samples can be batched together to speed up training. This is useful 
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for calculating free energy landscapes but is not particularly helpful when the goal of a CG 

simulation is to see long-time processes such as macromolecular assembly. Despite this, I have a 

very positive outlook about machine learning in the field of CG modeling. The accuracy gains 

from neural networks are unparalleled, and the fact that machine learning is so popular across 

many fields of science lead me to believe that there will be future breakthroughs which may make 

neural networks better suited to the goal of accelerating molecular simulations. There is also much 

potential for improved CG methods which employ ML to generate accurate non-neural network-

based force fields which have no penalty to their integration speed. Given how flexible machine 

learning has proven to be, it is likely that there are many undiscovered applications in CG which 

will be discovered in the near future, which can only benefit the field. 
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