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ABSTRACT

We explore combinatorial questions using tools from algebraic geometry/topology (or the

converse). The first direction we start with involves combinatorial constructions approx-

imating and characterizing properties of varieties. More specifically, we started out with

(approximate) relations in the Grothendieck ring of varieties. This involved an arithmetic

statistics-type result showing that the Fano variety of k-planes contained in a given variety

are determined mostly by symmetric products of points in the initial variety. This involves

using a motivic limit/approximate relation of Galkin–Shinder in the Grothendieck ring of

varieties. Moving to exact relations, we showed that the original relation of Galkin–Shinder

can be used to characterize cubic hypersurfaces using a projective geometry construction

(and intersections of two quartic or quadric hypesurfaces after weakening assumptions). Ex-

act relations in this ring also gave a transition to combinatorial invariants.

Expressions in the Grothendieck ring of varieties for configuration spaces of points led to our

transition to combinatorial problems. More specifically, certain generalizations of chromatic

polynomials are uniquely defined (up to normalization) by Cooper-de Silva-Sazdanovic. We

showed that these can be expressed using h-vectors of certain simplicial complexes (under

certain conditions). Note that any h-vector appears in such a construction. In addition, we

show that there are no nontrivial bounds on ranks of proper flats that cover the underlying

set of a matroid satisfying the matroidal analogue of the Cayley-Bacharach property. This

gives a negative answer to a question in recent work of Levinson and Ullery. Finally, we also

explore connections to combinatorial invariance and Chow rings of matroids.
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CHAPTER 1

INTRODUCTION

In this thesis, we explore connections between the algebraic geometry/topology of varieties

and combinatorics. We mainly work with (universal) Euler characteristic-like invariants and

combinatorial analogues of questions about independence conditions of points on spaces of

hypersurfaces. Using a relation in the Grothendieck ring of varieties K0(Vark), we found

combinatorial methods of characterizing (invariants of) varieties and topological invariants

of configuration spaces uniquely defined up to normalization by a deletion-contraction rela-

tion. This includes characterizations of varieties or asymptotic properties of linear subspaces

contained in them. The specialization to configuration spaces has led to close connections to

combinatorial questions about h-vectors of simplicial complexes such as unimodality ques-

tions.

We also consider combinatorial analogues of geometric problems in place of invariants.

The specific question we studied is the Cayley-Bacharach property on points failing to im-

pose independent conditions on hypersurfaces. Recently, Levinson and Ullery showed that

points failing to impose independent conditions often lie on a union of low-dimensional linear

subspaces and ask whether a matroidal analogue holds. We show that this is not the case

for covers by proper flats. There is a strange relationship with combinatorial invariance even

when the property has a simple description. However, there are more direct connections

with the underlying algebraic structures (Chow rings) or the independence conditions for

paving matroids and supersolvable hyperplane arrangements. In many cases, the geometric

questions here are known to be determined by the failure of a Lefschetz property. Relating

back to K0(Vark) suggests connections with mathematical physics.

In summary, we show that Euler characteristic invariants are a natural framework for

1



bridging questions in algebraic geometry/topology with those in combinatorics. Using a rel-

atively abstract invariant (the Grothendieck ring of varieties), we find projective geometry

characterizations of varieties and their invariants which are more elementary than what one

might expect from existing results in the literature on these objects. Specializing to configura-

tion spaces (which also appear in other context such as discriminant complements or spaces of

rational maps), we find a relation which gives a geometric framework (involving Chow rings of

polymatroids or characteristic polynomials of linear subspace arrangements) to study general

questions on h-vectors (e.g. unimodality or alternating sums), which are currently poorly

understood outside of specific contexts (e.g. from matroids). Finally, Cayley-Bacharach

problems adapt algebro-geometric questions which have not previously been studied in the

context of matroids and have interesting interactions with existing combinatorial structures.

In particular, it would be very interesting if there were a combinatorial analogue of the the

failure of points to impose independent conditions on hypersurfaces (termed unexpected hy-

persurfaces) being characterized by the failure of a Lefschetz property. Keeping in mind that

many interesting related objects are based on the geometry of fans (e.g. toric varieties, Chow

rings of matroids) are parametrized by fans, we can show that certain families of Poincare

duality algebras can be transformed in a natural way to obtain algebras satisfying Lefschetz

properties using resolutions of singularities of toric varieties.

1.0.1 Projective geometry characterizations of varieties and invariants

Using a relation in the Grothendieck ring of varieties [16], we provide characterizations of

varieties and their invariants via concrete combinatorial methods. The main tool we use is

the Y −F (Y ) relation [Y [2]] = [Pm][Y ] +L2[F (Y )] of Galkin–Shinder (Theorem 5.1 of [16])

which relates the class of a cubic hypersurface Y ⊂ Pn of dimension m to its Fano variety

of lines F (Y ) contained in it. The bijection involved is sketched in Figure 1.1 on p. 2 of

[46]. It is motivated by rationality problems involving cubic hypersurfaces. We obtain an

approximate version of the Y − F (Y ) relation for Fano varieties of k-planes.

2



Theorem 1.0.1. (Theorem 1.7 of [50]) Let Yd,n,m be a “typical” sequence of varieties of

dimension m and degree d in Pn. Treating the initial parameters as functions of the codimen-

sion r := n−m, a weighted probability of an (n−m)-plane being contained in Yd,n,m is deter-

mined by symmetric products of points on the original variety, Grassmannians, polynomials

in the class of a line, and incidence correspondences of points and linear subspaces of com-

plementary dimension for large r. Analogous statements hold for cut and paste-compatible

invariants.

Conversely, one can also ask how uniquely these cut and paste relations determine va-

rieties. We address a question of Farb (Question 0.1 on p. 2 of [46]) on the case of the

Y − F (Y ) relation.

Theorem 1.0.2. (Theorem 0.2 and Corollary 0.5 of [46]) Under certain numerical/genericity

conditions, a variety satisfying the Y −F (Y ) relation must be a cubic hypersurface. Weaken-

ing these conditions expands the cases to complete intersections of two quadric hypersurfaces

or two quartic hypersurfaces. On the other hand, any generic hypersurface generic among

those of its degree satisfying the relation must be a cubic hypersurface.

1.0.2 Combinatorics and configuration space invariants

Specializing to Euler characteristics of configuration spaces, we obtain connections to many

interesting combinatorial problems involving h-vectors of simplicial complexes. Starting

with our observation that Euler characteristics of ordered configuration spaces (studied by

Eastwood–Huggett (Theorem 2 on p. 155 of [6])) yield chromatic polynomials of graphs (1.1

on p. 2 of [51]), we study a generalization of Cooper–de Silva–Sazdanovic [13] to simplicial

complexes via simplicial chromatic polynomials χc(S)(t) (Definition 2.1 on p. 725 and
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p. 738 of [13]). They are uniquely defined up to normalization by a deletion-contraction type

relation (Corollary 6.1 and Proposition 6.4 on p. 738 of [13]). For many families of simplicial

complexes, we express the simplicial chromatic polynomial in terms of the h-vector of an

auxiliary simplicial complex.

Theorem 1.0.3. (Theorem 1.5 and Proposition 2.8 of [51]) If the minimal nonfaces of

S do not intersect very much, there is an auxiliary simplicial complex T (S) such that

χc(S)(t)
td−m(t−1)n−d

= tmhT (S)(t
−1) where m = dimT (S). A similar formula holds if the min-

imal nonfaces of S have pairwise nonempty intersections. Note that any simplicial complex

can be set to be the auxiliary simplicial complex T (S) for a suitable simplicial complex S.

Applications to combinatorial problems

This result connects the simplicial chromatic polynomial to various combinatorial questions.

For example, we can show that there are families of graphs such that the number of edge

colorings where designated subgraphs are not monochromatic are determined by lattice point

counts on (dilations of) polytopes (Theorem 3.5 on p. 9 and Theorem 4.9 on p. 15 – 16

of [45]) or Hodge numbers of a toric variety. Note that the simplicial chromatic polynomial

is as the characteristic polynomial of a linear subspace arrangement. Combining Theorem

1.0.3 with recent results of Pagaria–Pezzoli (Theorem 6.4 on p. 34 of [44]) and Crowley–

Huh–Larson–Simpson–Wang [20] on Chow ring structures on polymatroids, we have that

h-vectors of simplicial complexes in Theorem 1.0.3 are determined by a Chow ring structure.

This does not imply that the characteristic polynomials of linear subspace arrangements

have log concave coefficients (Remark 6.6 on p. 35 of [44]). However, natural modifications

yield unimodal hi by a result of Brown–Cameron (Theorem 2.4 on p. 1140 of [13]).

Corollary 1.0.4. Let S be a simplicial complex on [n] with minimal nonfaces of the form

{i, j, n} for some 1 ≤ i < j ≤ n−1. Adding minimal nonfaces and increasing n to N , there is

a simplicial complex S′ such that the polynomial
(1+2u

u )
d′−1

(1+u
u )

d′ hT (S′)

(
u

1+u

)
is unimodal, where

4



d′ = dimS′.

Question 1.0.5. 1. Are there transformations of simplicial complexes such that their

simplicial chromatic polynomials must always have a log concave or unimodal char-

acteristic polynomial? What does this mean for Chow ring structure on the associated

polymatroids?

2. Can we use geometric properties of characteristic polynomials of linear subspace ar-

rangements to find simplicial complexes with log concave or unimodal h-vectors?

Finally, we explored a relation to colorings of directed graphs and generating functions of

Hodge–Deligne polynomials of configuration spaces and GLn-character varieties in terms of

finitely presented groups (Theorem 1.1 on p. 2 – 3 and Theorem 1.3 on p. 3 – 4, Theorem

1.3 on p. 3 – 4, Part 2 of Proposition 1.5 on p. 4 – 5 of [47]) via work of Crew–Spirkl [19].

It would be interesting if the discussion above carries over to analogues of directed graph

colorings.

1.0.3 Independence conditions of points on hypersurfaces

For combinatorial analogues of geometric problems, we considered the Cayley–Bacharach

property (CB(v) on p. 1 of [17]) in recent work of Levinson and Ullery, who show that

CB(v) points often lie on a union of low-dimensional linear subspaces when the number of

points is linearly bounded by the degree (Theorem 1.3 on p. 2 and Conjecture 1.2 on p. 2 of

[17]). Since their proof could often be reduced to matroid-theoretic arguments, they define

a matroid-theoretic analogue of CB(v) and ask whether a matroidal analogue of their result

holds (Question 7.6 on p. 14 of [17]). We give a negative answer to this question.

Theorem 1.0.6. (Theorem 1.6 of [48], Theorem 1.8 of [49]) The matroidal analogue of

Conjecture 1.2 on p. 2 of [17] for covers by proper flats does not hold. In addition, there is

no nontrivial upper bound on ranks of flats covering the ground set of a matroid M satisfying

5



MCB(a).

There are interesting independence/dependence relations between MCB(a) and geomet-

ric properties of matroids. If the associated polytopes are nestohedra, the MCB(a) property

does not seem to affect the combinatorial equivalence class of the matroidal polytope.

Theorem 1.0.7. (Theorem 2.4 of [48]) The MCB(a) property for nestohedra depends on

the maximal elements of the building set used to construct it. While this often has an in-

terpretation as the number of connected components of an auxiliary matroid, the MCB(a)

property is not necessarily a combinatorial invariant of the associated polytopes.

However, paving matroids (conjecturally generic among matroids of rank r), have a re-

lation between MCB(a) and the Hilbert series of the Chow ring and supersolvable line ar-

rangements give matroids (apart from the representable examples) where MCB(a) is closely

related to whether points impose independent conditions on degree d hypersurfaces (Propo-

sition 3.14 of [48]) via work of Hanumanthu–Harbourne (Theorem on p. 3 of [14]).

Theorem 1.0.8. (Theorem 3.2 of [48], Corollary 3.3 of [48], Proposition 3.7 of [48])

1. If the maximal hyperplanes covering a paving matroid are large and of similar size,

MCB(a) must hold for a in an interval depending on the initial parameters. The

minimal degree a where MCB(a) holds decreases with the as the dimension of the

quotients by the annihilators of each xH for the largest hyperplanes H in A∗(M) of M

increase.

2. The degrees a where a supersolvable line arrangement satisfies MCB(a) are determined

6



by degrees of the modular points and minimal degree a decreases as the number of

possible degrees of unexpected curves increases.

In general, the MCB(a) property for supersolvable hyperplane arrangements of rank d

is determined by lower degree MCB conditions and ground set covers of specified subar-

rangements. The ones satisfying MCB(d) can attain all possible characteristic polynomials

(Propostiion 3.14 on p. 13 of [48]). Connecting the cases in Part 2 of Theorem 5.2.7, we can

ask the following:

Question 1.0.9. Does the relation to independence conditions imposed by actual points

extend to this higher dimensional setting (called “unexpected hypersurfaces” in work of Cook–

Harbourne–Migliore–Nagel [7] and Harbourne–Migliore–Nagel–Teitler [15])?

Question 1.0.10. In general, unexpected hypersurfaces are related to the failure of a weak

Lefschetz property (p. 309 of [15]). Is there a matroidal version (e.g. from hyperplane

arrangements)?

Some steps towards understanding the matroidal version or other combinatorial questions

would be to look at the relation tot he geometry of fans. This can include how far an algebra is

from satisfying a Lefschetz property. More specifically, studying combinatorial properties of

(labeled) fans and their associated toric varieties allows us to use work of Ayzenberg–Masuda

[10] to find transformations (adding variables and modifying existing linear relations using

the new variable) changing any Poincaré duality algebra generated by degree 1 elements into

ones studying the (strong) Lefschetz property.

Proposition 1.0.11. Given any Poincaré duality algebra generated by degree 1 elements,

we can use the following pair of steps repeatedly to obtain one which satisfies the (strong)

Lefschetz property:

• Add an extra variable cm+1 to the existing m variables

7



• Add an extra linear term λm+1,jcm+1 to the jth using an appropriate scalar λm+1,j

It would be interesting if we could relate the (strong) Lefschetz property itself with

something which can be used to explicitly measure how singular a toric variety is using

properties of the fan defining it (e.g. the multiplicity of a fan used in the proof of resolutions

of singularities via fan subdivisions). Also, another possible option for possible applications

to combinatorial/geometric properties is to look at the relation between Lefschetz properties

and the Chow ring of the associated fan using work of Feichtner-Yuzvinsky [13].
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characteristic invariants



CHAPTER 2

MOTIVIC LIMITS FOR FANO VARIETIES OF K-PLANES

Abstract

We study the probability that an (n−m)-dimensional linear subspace in Pn or a collection

of points spanning such a linear subspace is contained in an m-dimensional variety Y ⊂ Pn.

This involves a strategy used by Galkin–Shinder to connect properties of a cubic hypersurface

to its Fano variety of lines via cut and paste relations in the Grothendieck ring of varieties.

Generalizing this idea to varieties of higher codimension and degree, we can measure growth

rates of weighted probabilities of k-planes contained in a sequence of varieties with varying

initial parameters over a finite field. In the course of doing this, we move an identity mo-

tivated by rationality problems involving cubic hypersurfaces to a motivic statistics setting

associated with cohomological stability.

2.1 Introduction

Given a variety Y ⊂ Pn of dimension m and degree d, the Fano variety of k-planes is the

subscheme Fk(Y ) ⊂ G(k, n) parametrizing the set of k-planes contained in Y . This can

be taken to be the Hilbert scheme structure ([2], Proposition 6.6 on p. 203 of [12]) or the

reduced structure on it (p. 12 of [16]). Since we end up working in the Grothendieck ring of

varieties K0(Vark) and [X] = [Xred] in K0(Vark), the nonreduced structure does not play a

role our setting and it does not matter which structure we take. In addition, we will take

the term “variety” to mean an irreducible scheme of finite type. We would like to study the

relationships between the following questions:
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Question 2.1.1.

1. How do properties of Fk(Y ) such as arithmetic/geometric invariants vary with initial

conditions on Y (e.g. degree, dimension, codimension)?

2. Given that the Fano variety of k-planes has a simple definition as a subvariety of

G(k, n), is there a concrete method (e.g. using a projective geometry construction) other

than giving explicit defining equations which give an approach to the first question?

For example, how can we relate the Fano variety of k-planes with symmetric products

of Y corresponding to unordered k-tuples of points in Y ?

3. Over Fq, how “likely” is a k-plane to be contained in Y ? How does this probability

change as we vary q?

The main idea in our approach to Question 2.1.1 (Theorem 2.1.7, Corollary 2.1.10) is to

combine two different perspectives on cut–and–paste relations between algebraic varieties.

By cut–and–paste relations, we mean the Grothendieck ring of varieties K0(VarK) over a

field K. This is the ring generated by isomorphism classes of algebraic varieties over K

quotiented out by relations [X] = [Z] + [X \ Z] for closed subvarieties Z ⊂ X and by

[X × Y ] = [X][Y ].

Our starting point is Galkin–Shinder’s Y − F (Y ) relation, which connects the geometry

of a cubic hypersurface with the space of lines on it.

Theorem 2.1.2 (Y − F(Y) relation). (Galkin–Shinder, Theorem 5.1 on p. 16 of [16])

Let Y ⊂ Pm+1 be a smooth cubic hypersurface of dimension m over an algebraically closed

field K of characteristic 0 and F (Y ) ⊂ G(1,m+ 1) be its (reduced) Fano scheme of lines (p.

12 of [16]). Then in K0(Vark):

[Y [2]] = [Pm][Y ] + L2[F (Y )] (2.1.1)
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where Y [2] denotes the Hilbert scheme of two points.

The relation (2.1.1) is obtained using a map sending a pair of points (p, q) on Y (consid-

ered as an element of Y [2]) to the pair (r, pq) ∈ Y ×G(1,m+1), where r is the residual point

of intersection of pq with Y (see Figure 2.1.1). This construction gives a correspondence

between points of Y [2] spanning a line not contained in Y and (r, `) ∈ G(1,m+ 1) such that

r ∈ ` and ` 6⊂ Y . Collecting the non-generic terms coming from lines ` ⊂ Y from Y [2] and

the incidence correspondence W = {(r, `) ∈ Y × G(1,m + 1) : r ∈ `} yields the Y − F (Y )

relation.

Figure 2.1.1: Sketch of the proof of the Y − F (Y ) relation.

As an averaged statement over the space G(1,m + 1) of lines in Pm+1, the Y − F (Y )

relation in Theorem 2.1.2 can be rewritten as

[Y [2]]

[G(1,m+ 1)]
=

[Pm][Y ]

[G(1,m+ 1)]
+

([(P1)(2)]− [P1])[F (Y )]

[G(1,m+ 1)]
(2.1.2)

in K̂, where K̂ is a modification of the usual completion with respect to the dimension

filtration (Section 2.2.1).

The “denominator” G(1,m + 1) is the total space of lines in Pm+1. Using the argu-

ment above, the term of 2.1.2 on the right involving F (Y ) gives a weighted probability that

a line fails to satisfy the correspondence indicated in Figure 2.1.1 and the comments above it.

Since the structure of K0(Vark) is compatible with a wide range of invariants including

Poincaré polynomials and point counts over Fq, the Y −F (Y ) relation has many interesting
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consequences. For example, substituting the Poincaré polynomials of Y and the second

symmetric product Y (2) into the relation

[Y (2)] = (1 + Lm)[Y ] + L2[F (Y )], (2.1.3)

which is equivalent to 2.1.1 for m = 2, yields a proof that there are 27 lines on a smooth

cubic surface when char k 6= 2. If char k = 2, this relation holds modulo universal homeo-

morphisms since the diagonal morphism Y ↪→ Y (2) is a universal injection (Example 1.1.12

on p. 372 – 374 of [4], p. 114 of [4]). Alternatively, we can localize at radically surjective

morphisms as in Section 2.1 of [10].

The approach that we take to studying Fano varieties of k-planes of a sequence of varieties

is to generalize the Y − F (Y ) relation 2.1.1. In Proposition 2.2.1, we can obtain an analo-

gous relation in K0(Vark) for Fano varieties of (n−m)-planes contained in a m-dimensional

variety Y ⊂ Pn of degree d. In other words, this is a generalization from lines to k-planes

of complementary dimension. Examples of varieties Y ⊂ Pn of dimension m containing

(n−m)-planes are complete intersections of general hypersurfaces of degree (d1, . . . , dn−m)

such that m�
(di+n−m

n−m
)

for each 1 ≤ i ≤ n−m (Theorem 2.4 on p. 4 of [10]).

The idea is to match up (k + 1)-tuples of points of Y lying on a fixed generic (n −m)-

plane Λ ∈ G(n−m,n) with the remaining d− k − 1 points of Y ∩ Λ paired with the same

(n − m)-plane Λ. Figure 2.1.2 illustrates this correspondence for a 2-plane intersecting a

variety in Pn which has codimension 2 and degree 6. Incidence correspondences and maps

involved in this construction are given in more detail in the proof of Proposition 2.2.1.

Roughly speaking, the (n − m)-dimensional linear subspaces contained in a variety

parametrize elements of G(n − m,n) which do not give a correspondence between com-
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plementary points of intersection. In order to address the complexity of terms involved as

the initial parameters are increased, we consider sequences of varieties and find an average

result. This moves a cut and paste relation coming from a rationality problem into a setting

mostly associated with homological stability. We can also give a natural connection between

invariants of the variety Y and the space of (n−m)-planes contained in it.

Figure 2.1.2: Suppose that n−m = 2, d = 6, and k = 2. The points drawn are the intersection of
Y with a generic (n −m)-plane. On the left, the (k + 1)-tuples of points are drawn in red. The
remaining (d− k − 1) points of intersection are drawn in blue.

As in the original Y −F (Y ) relation (Theorem 2.1.2), the terms of the higher–dimensional

generalization (Proposition 2.2.1) involving elements of Fn−m(Y ) ⊂ G(n−m,n) parametriz-

ing (n−m)-planes contained in Y are contained in the non-generic loci of incidence correspon-

dences (Section 2.2.1). However, there are new non-generic terms in this higher dimensional

analogue coming from linear dependence between points which did not occur in the Y −F (Y )

relation since there are at most two distinct points at once in that case. As a result, the com-

plexity of the terms in K0(VarK) that are used in this extended Y −F (Y ) relation increase

quickly with the starting parameters to the point of making a simple closed form relation

as in the Y − F (Y ) relation seems impossible. Our main goal is to extract a meaningful

generalization of the Y − F (Y ) relation.

In order to do this, we consider “average” classes in K0(VarK) over varieties of varying

initial parameters (codimension, dimension, degree) and work in a modification K̂ of the

usual completion of K0(Vark)[L−1] with respect to the dimension filtration (Section 2.2.1).
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More specifically, we show that “dividing” by [G(n−m,n)] gives a sequence of terms in this

filtration where the contribution of terms encoding linear dependence approaches 0. This

boils down to dimension computations of the non-generic loci. These terms can be eliminated

in the limit since the codimensions in the total spaces increase quickly as the sizes of the

inital parameters increase. Before stating the limits which we obtain in this completion, here

is some notation.

Definition 2.1.3. The approximate weighted average of linearly independent u-tuples

of points on Y = Yd,n,m is

An,m,u :=
[Y (u)][G(n−m− u, n− u)]

[G(n−m,n)]
in K̂ (Section 2.2.1),

where Y (u) is the uth symmetric product of Y . Note that d, n,m, u are all functions of a

single variable r and the limit in the completion is taken as r → ∞ The term [G(n −m −

u, n − u)] parametrizes the set of (n −m)-planes that pass through a particular u-tuple of

linearly independent points of Y . If we replace [Y (u)] with the subset U ⊂ Y (u) consisting

of linearly independent u-tuples of points, the term [U ][G(n−m− u, n− u)] is the class of

{((p1, . . . , pu),Λ) ∈ Y (u) ×G(n−m− u, n− u) : pi ∈ Λ for each i

and the pi are linearly independent}.

As stated above, the limits will involve several variables that are all functions of a single

variable. The geometric meaning of variables d, n,m, u with k + 1 substituted for u is given

in Table 2.1.1.

Definition 2.1.4. Given a convergent sequence of elements Gd,m,n,k of K̂ with d = d(r),m =

m(r), n = r + m(r), and k = k(r) approaching infinity as r →∞, we will use the following
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notation for the limit.

l̃im
d,m,n,k→∞

Gd,m,n,k := lim
r→∞

Gd(r),m(r),n(r),k(r)

The limits will be taken over sequences of varieties of the following form.

Definition 2.1.5. A typical sequence of smooth, closed nondegenerate varieties Yd,m,n ⊂

Pn of degree d and dimension n is one where the variables in Table 2.1.1 satisfy the following

conditions:

1. For every r, Yd(r),m(r),n(r) is contained in a generic hypersurface.

2. There is some a > 1 such that ar ≤ dimYd(r),m(r),n(r) for all r.

3. u-linearly generic for u ≤ d− k − 2 (Proposition 2.2.22, Proposition 2.2.25, Definition

2.2.24). This is a genericity condition on hypersurfaces defining certain non-generic

linear subspaces of a given dimension in Pn.

Now that the notation is fixed, the limiting extensions of the Y − F (Y ) relation in K̂

can be studied. The cases we will consider are split into the size of the degree relative to

the number of sampled points (dots of a single color in Figure 2.1.2) and the codimension.

In both cases, the (n−m)-planes lying inside the given sequence of varieties make up most

of the discrepancy between weighted averages of linearly independent (k + 1)-tuples and

(d− k − 1)-tuples under suitable conditions (Definition 2.1.3).

We first consider the case where the degree d of the m-dimensional variety Y ⊂ Pn is not

very large with respect to the codimension. In this case, it turns out that d ≤ 2(n−m) + 1

for such varieties. Possible varieties with such a degree have been classified by Ionescu [22].

The example below (Example 2.1.6) discusses properties of Fano varieties of k-planes of such

varieties which can also have arbitrarily large dimension and degree in more detail.

20



Example 2.1.6. (Low degree examples for Part 1 of Theorem 2.1.7)

Examples occuring in the low degree case include scrolls and (hyper)quadric fibrations. Fur-

ther comments on existence and explicit constructions are given in Example 2.3.2 at the end

of Section 2.3.1.

Although the discussion in Example 2.1.6 shows that Fano varieties of k-planes of many

low-degree varieties can be understood using direct computations, we will study them using

an averaged Y −F (Y ) relation as a way to look at the “generic” higher degree case covering

all other varieties. As in the case of the averaged version 2.1.2 of the original Y − F (Y )

relation 2.1.2, the average is a weighted average of k-planes taking tuples of points contained

in these planes into account. For this higher degree case, we need some additional notation.

Given a variety Y ⊂ Pn of dimension m and degree d, let

J = {((p1, . . . , pd−k−1),Λ) ∈ Y (d−k−1) ×G(n−m,n) :

|Λ ∩ Y | = d or Λ ⊂ Y, pi distinct, dim p1, . . . , pd−k−1 = n−m},

and let D ⊂ (Pn−m)(d−k−1) be the set of (d− k − 1)-tuples of points spanning a linear

subspace of dimension ≤ n−m− 1. The set J parametrizes the set of (d− k − 1)-tuples of

points in Y which span an (n−m)-plane. Note that [D] is a polynomial in L (Proposition

2.2.27). The expressions in the result below give an approximate relation in the high degree

case using these objects.

Theorem 2.1.7 (Averaged Y − F(Y) relations).

In the expressions below, we consider a sequence of elements of K which depend on the

variables d,m, n, k. Each of these variables are functions of a single variable r satisfying

certain properties and can be written d = d(r),m = m(r), n = n(r), k = k(r). The limits in

K̂ are taken with respect to r as r → ∞ (Definition 2.1.4). Precise statements on relative

dimensions (Definition 2.2.10) involved in the limit are listed on p. 39 for the low degree
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case and on p. 37 – 38 for the high degree case.

The limits below are are of sequences indexed by variables which are functions of r that

approach infinity as r →∞. In other words, they can be taken to be limits as r →∞.

1. (Low degree case) : Let Yd,n,m be a typical sequence of varieties (Definition 2.1.5) of

dimension m and degree d such that codimPn Yd,n,m > 2 dimYd,n,m+Θ(r), deg Yd,n,m−

(k + 1) + Θ(
√
r) ≤ codimPn Yd,n,m − 1, and dimYd,n,m > 2 deg Yd,n,m, where Θ(f(r))

denotes being bounded below and above by a constant multiple of f(r) as r → ∞ as

usual. If the point sample size k + 1 is small with k ≤ b deg Yd(r),n(r),m(r) for some

b < 1, then the limit of this sequence (Definition 2.1.4) is

l̃im
d,m,n,k→∞

(
2[Fn−m(Yd,n,m)]([(Pn−m)(k+1)]− [(Pn−m)(d−k−1)])

[G(n−m,n)]

)

−An,m,k+1 + An,m,d−k−1 = 0

in K̂. The left hand side gives a sequence of elements in K which approach 0 in the

completion K̂. The precise relative dimensions of terms involved are listed in Section

2.3.1.

2. (High degree case) : Let Yd,n,m be a sequence of typical varieties (Definition 2.1.5)

of degree deg Yd,n,m − (k + 1) − 1 > n and small point sample size k + 1 with k ≤ br

for some b < 1. Suppose that each Yd,n,m is contained in a complete intersection of s

hypersurfaces such that (n −m)k + k − 1 �
∑s
i=1

(di+n−m
n−m

)
. Then the limit of this
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sequence (Definition 2.1.4) is

l̃im
d,m,n,k→∞

2[Fn−m(Yd,n,m)]([(Pn−m)(k+1)]− [UConfd−k−1 Pn−m])

[G(n−m,n)]
− An,m,k+1

+
[J ]

[G(n−m,n)]
−

2[Fn−m(Yd,n,m)][D]

[G(n−m,n)]
= 0 in K̂ if k − 2� n−m,

where UConfeX ⊂ X(e) denotes unordered e-tuples of distinct points of X. Note that

[D] and UConfd−k−1 Pn−m are polynomials in L (Proposition 2.2.30, Lemma 2.2.31).

As noted in part 1, this sequence of elements in K which approach 0 in the completion

K̂. The relative dimensions for this case are listed at the end of Section 2.2.3 after

Example 2.2.32.

Remark 2.1.8.

1. One consequence is that properties of J compatible with the usual completion of

K0(VarK) (e.g. point counts) can be expressed in terms of polynomials in L and

Fn−m(Y ).

2. In the low degree case, we add the lower bound of 2 dimY to avoid cases where Y is

forced to be a complete intersection if Hartshorne’s conjecture (p. 1017 of [20]) holds.

This is to ensure that the varieties considered in Part 1 actually have the “low degree

property” defining that case. Note that this conjecture cannot be strengthened to force

a complete intersection outside the range of its original statement (p. 1022 of [20]).

There is also a specific bound in Corollary 3 on p. 588 of [3] towards this conjecture

and a proof of the conjecture when n� d in [13].

3. There are large parentheses around the first term in the low degree case since it may

actually end up vanishing in the completion with the relative dimension (Definition
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2.2.10) approaching −∞. It is stated here since this analogue of the averaged Y −F (Y )

is the template for the proof and interpretation of the high degree case. The first term

in Part 1 of Theorem 2.1.7 contains information on (k + 1)-tuples or (d − k − 1)-

tuples contained in an (n − m)-plane contained in Yd,n,m. On the other hand, the

second and third terms parametrize the set of linearly independent (k + 1)-tuples and

(d − k − 1)-tuples paired with an (n −m)-plane containing them. The higher degree

case also compares maximally linearly independent (k+1)-tuples and (d−k−1)-tuples

of points on Y lying on an (n−m)-plane.

When deg Y is much larger than codimPn Y , note that generic (d−k−1)-tuples do not lie

on an (n−m)-plane. In this case, general complete intersections of hypersurfaces of degree

(d1, . . . , dn−m) such that m �
(di+n−m

n−m
)

end up being compatible with restrictions on the

variables d,m, n, k involved in generalizations of the Y −F (Y ) relation (see Example 2.1.9 for

more details). Substituting these values into the relative dimensions listed in Section 2.3.1,

we can see that this limit in Part 1 of Theorem 2.1.7 can be obtained without assuming

m� n−m when we take k =
⌊m

2

⌋
.

The proof of the decomposition in the limit in Part 2 of Theorem 2.1.7 is similar to that

of Part 1 of Theorem 2.1.7. Note that sufficiently generic complete intersections provide

many examples of this higher degree case of Theorem 2.1.7.

Example 2.1.9. (High degree examples for Part 2 of Theorem 2.1.7: Complete intersections

of generic hypersurfaces of large degree)

In this case, we an use complete intersections of hypersurfaces which are generic among those

of their given degrees. Numerical conditions on possible degrees and their relation to the

other variables are explained in more detail in Example 2.3.8 at Section 2.3.2.

Applying the point counting motivic measure and a modified Lang–Weil bound to the

limit in Part 2 of Theorem 2.1.7, Corollary 2.1.10 gives an upper bound point counts un-
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der certain divisibility conditions. While it is not compatible with the dimension filtration

(e.g. disjoint union of a curve with a finite collection of points), it is still compatible with

the completion (Definition 2.3.3). This interprets Part 2 of Theorem 2.1.7 as an answer to

Question 2.1.1 on point counts over Fq as q increases. For example, the probability point

count involving tuples of points can be expressed as coefficients of exponential generating

functions in terms of point counts of Y .

More specifically, we find a point counting counterpart (Corollary 2.1.10) to Part 2 of

Theorem 2.1.7 which uses a similar argument. Each term of the latter result comes from a

(k + 1)-tuple or (d − k − 1)-tuple of points on Y paired with an (n −m)-plane containing

them. For the first and third terms in the result over K̂, this (n −m)-plane is assumed to

be contained in Y . This is a higher degree analogue of the argument used in Theorem 2.1.2

for the Y −F (Y ) relation. The main difference is that #J(Fq) can be expressed in terms of

the Gal(Fq/Fq)-action on (d− k − 1)-tuples of points on Y .

Corollary 2.1.10 (Averaged Fano (n−m)-plane point count).

Suppose that d−k−1 ≥ n−m and m,n, d, k satisfy the conditions in Part 2 of Theorem

2.1.7 and Y ⊂ Pn is smooth over Fq. Note that all the variables are functions of r and that

n(r) = m(r) + r. As in Theorem 2.1.7, the limits are taken with respect to a single variable

r of a sequence of m-dimensional varieties Yd,m,n ⊂ Pn of degree d. Each of the variables is

a function of r. Given Λ ∈ G(n−m,n), let

TΛ = {N : N is the number of

Gal(Fq/Fq)-orbits of (d− k − 1)-tuples (p1, . . . , pd−k−1) ∈ Y (d−k−1) in Y ∩ Λ for some Λ}.

Fix a prime power q. Let e = e(r) be a positive integer and a function of r such that
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e(r) → ∞ as r → ∞ and e >
( d
d−k−1

)
for all r. There is a range of values for Fqe-point

counts depending on divisibility properties of Fq-irreducible components of slices by linear

subspaces of complementary dimension.

Given a variety X, write #q,eX := #X(Fqe). Note that we will consider point counts

over varying fields Fqe with e→∞ as r →∞. This means that

lim
r→∞

#q,eFn−m(Yd,n,m)(#q,e UConfd−k−1(Pn−m)−#q,eD − u#q,e(Pn−m)(k+1) + #q,eC)

#qG(n−m,n)

+ (1− u)α + γ = 0.

in the limit for r = n−m and d = d(r), n = n(r),m = m(r).k = k(r), where

• 0 ≤ α ≤
( d
d−k−1

)
with α = 0 if N - e for each N ∈ TΛ from Λ ∈ G(n−m,n) such that

|Y ∩ Λ| = d and α =
( d
k+1

)
if e is divisible by

( d
d−k−1

)
! (Proposition 2.3.5)

• u = 1 − β + βf , where β = Θ(qe((k+1)(n−m)+dimFn−m(Y )−m(n−m+1))) and f is a

rational function in qe (mostly) determined by
[R̃]

[Ã]
, which is a rational function in L

of degree (k + 1)(n−m) + dimFn−m(Y )−m(n−m+ 1)

• γ = Θ(qe(km−(n−m−k+1)−m(n−m+1)))

are functions that vary with the initial parameters, which depend on n−m. Note that the

classes [C] and [D] of linearly dependent tuples are polynomials in L (Proposition 2.2.27).

As a byproduct of the decompositions above, we find a relation between “how likely”

it is for a k-plane to be contained in a variety with the initial parameters such as degree

and dimension. This combines some rather different perspectives on applications of the

Grothendieck ring of varieties. For example, Galkin–Shinder’s work [16] is motivated by

rationality problems involving cubic hypersurfaces while motivic statistics results ([35], [10])
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Parameters used in averaged Y − F(Y) relations
Variable r m d n k + 1

Definition codimPn Y dimY deg Y

dimension of
projective space
in which Y is
embedded

number of points
on Y on the (n−
m)-plane for ex-
tension of Y −
F (Y ) construc-
tion

Table 2.1.1: Parameters used in Part 1 and Part 2 of Theorem 2.1.7.

tend to be associated with problems related to cohomological stabilization or point counting.

The terms of the direct generalization of the Y −F (Y ) relation in K0(Vark) (Proposition

2.2.1 in Section 2.2.1) can be split into generic configurations and non-generic configurations

which can be arbitrarily complicated as we increase the parameters involved. For this reason,

the limits in Part 1 of Theorem 2.1.7, Part 2 of Theorem 2.1.7, and Corollary 2.1.10 are

obtained via upper bounds on the dimensions of the non-generic loci since the completion K̂

is defined with respect to a dimension filtration (Section 2.2.2). In the dimension counts of

Section 2.2.3, the key idea is to bound the dimensions of the non-generic loci in the extended

Y − F (Y ) relation Proposition 2.2.1. These computations are split into the low and high

degree cases in Section 2.2.3 and Section 2.2.3 respectively. Finally, these dimensions are

used to prove Theorem 2.1.7 by showing that the relative dimensions (Definition 2.2.10)

approach 0 in Section 2.3. These limiting classes in K̂ are used to obtain approximate point

counts over in Fq in Corollary 2.1.10.
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2.2 Dimension computations in K0(Vark) for an extended

Y − F (Y ) relation

In this section, we compute dimensions of varieties in the extended Y −F (Y ) relation (The-

orem 2.1.2) for a smooth nondegenerate irreducible, closed, subvariety Y ⊂ Pn of dimension

m and degree d that is defined over an algebraically closed field of characteristic 0. The ini-

tial terms to be used in the generalized Y −F (Y ) relation are given on p. 11 – 12 of Section

2.2.1. As in the statement of Theorem 2.1.7, the cases considered are split into those of low

degree (Section 2.2.3) and high degree (Section 2.2.3) with respect to the codimension. For

the low degree terms, the terms are defined in Proposition 2.2.12 on p. 18 with dimension

counts listed on p. 20. The terms used in the high degree case are defined on p. 34 – 35.

2.2.1 The extended Y − F (Y )-relation

Before computing dimensions of the generic and degenerate loci, we first explain compo-

nents/definitions in an extended Y − F (Y )-relation (Proposition 2.2.1). The idea is to

match up linearly independent (k + 1)-tuples on the intersection of an (n −m)-plane with

the residual (linearly independent) (d− k− 1)-tuples after removing non-generic loci. These

specific constructions assume that d− k− 1 ≤ n−m− 1. The analogous terms for the case

d− k − 1 > n−m− 1 are listed in Section 2.2.3.

For each of the total spaces of incidence correspondences (V and W defined below) and

non-generic loci inside them, there is a diagram giving the intersection of an (n−m)-plane

with Y with qi belonging to a (d−k−1)-tuple and pj belonging to the residual (k+1)-tuple

in the case d = 6 and k = 2. In the figures below, the points parametrized by the sets

defined are filled in. On the other hand, complementary points of intersection of Y with

the (n − m)-plane are hollow/unfilled (Figure 2.2.1, Figure 2.2.2, Figure 2.2.4). The case
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involving both a (d − k − 1)-tuple and its complementary (k + 1)-tuple (Figure 2.2.3) does

not have any hollow/unfilled holes. Finally, the set involving (n − m)-planes Λ such that

Λ ⊂ Y is indicated by having the plane shaded in a new color (Figure 2.2.4).

We now define the total space W of incidence correspondences of (d− k− 1)-tuples in Y

paired with an (n−m)-plane and stratify the “non-generic” loci inside W coming for linear

dependence of points or containment of an (n−m)-plane in Y .

• W := {((q1, . . . , qd−k−1),Λ) ∈ Y (d−k−1)×G(n−m,n) : qi ∈ Λ, distinct, and |Y ∩Λ| =

d or Λ ⊂ Y } (Figure 2.2.1)

Figure 2.2.1: An example configuration. Note that W only considers the triple q1, q2, q3 and the
(n−m)-plane containing them.

• B̃ := B̃1 t B̃2, where

B̃1 := {((q1, . . . , qd−k−1),Λ) ∈ W : q1, . . . , qd−k−1 linearly dependent} (Figure 2.2.2)

Figure 2.2.2: This is an example of B̃1 where q1, q2, q3 are linearly dependent. Note that B̃1 only
imposes conditions on the qi and not the pj .
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B̃2 := {((q1, . . . , qd−k−1),Λ) ∈ W : q1, . . . , qd−k−1 linearly independent but

(Y ∩ Λ) \ {q1, . . . , qd−k−1} not a linearly independent (k + 1)-tuple, Λ 6⊂ Y }

(Figure 2.2.3)

Figure 2.2.3: For B̃2, we consider both the (d− k − 1)-tuple q1, . . . , qd−k−1 and the residual points
of intersection. While the qi are linearly independent, the remaining points of Y ∩ Λ are not.
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• Ã := {((q1, . . . , qd−k−1),Λ) ∈ W : q1, . . . , qd−k−1 linearly independent, Λ ⊂ Y } (Fig-

ure 2.2.4)

Figure 2.2.4: In Ã, the only linear independence/dependence condition is on the qi (which we
assume to be linearly independent). This is a similar condition to the one defining B̃1. Unlike all
the terms defined earlier, we assume that the (n−m)-plane is contained in Y . This is indicated by
the change in the color of the (n−m)-plane.

Similar incidence correspondences for (k + 1)-tuples of points in Y are defined in the

same way except that we switch k + 1 and d− k − 1 (i.e. switch the qi with the pj).

• V := {((p1, . . . , pk+1),Λ) ∈ Y (k+1)×G(n−m,n) : pi ∈ Λ, pi distinct, and either |Y ∩

Λ| = d or Λ ⊂ Y }

This is an analogue of W .

• T̃ := T̃1 t T̃2, where

T̃1 := {((p1, . . . , pk+1),Λ) ∈ V : p1, . . . , pk+1 linearly dependent}

and

T̃2 := {((p1, . . . , pk+1),Λ) ∈ V : p1, . . . , pk+1 linearly independent but

(Y ∩ Λ) \ {p1, . . . , pk+1} not a linearly independent (d− k − 1)-tuple, Λ 6⊂ Y }.

This is an analogue of B̃ = B̃1 t B̃2.

• R̃ := {((p1, . . . , pk+1),Λ) ∈ V : p1, . . . , pk+1 linearly independent, Λ ⊂ Y }

This is an analogue of Ã.
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• Variable size restrictions:

– d ≥ k + 3

– d− k − 1 ≤ n−m− 1

(only in Section 2.2.3) – k + 1 ≤ n−m− 1

– n−m ≤ m− 1

– d ≥ (n−m) + 2

This last condition on the bottom right is used to ensure that Y is nondegenerate variety

that is not a rational normal scroll or Veronese surface (Proposition 0 and Theorem 1

on p. 3 of [10]). The remaining conditions come from the incidence correspondences

involved in the proof of Proposition 2.2.1.

Under the variable restrictions listed above, these incidence correspondences can be used

to obtain a higher–dimensional version of the Y − F (Y ) relation. Note that the same

reasoning implies a higher degree analogue using the analogous objects from Section 2.2.3.

In both cases, the idea is to match up maximally linearly independent points on each side.

The following proposition relates the various strata of V and W .

Proposition 2.2.1. (Extended Y − F (Y )-relation)

Suppose that k = k and char k = 0. Then,

[W ]− [B̃]− [Ã] = [V ]− [R̃]− [T̃ ] in K0(Vark).

Proof. As with the original Y−F (Y ) relation (Theorem 5.1 on p. 16 of [16]), we show that the

residual intersection map induces an equality in K0(Vark) of the non-degenerate loci which

are considering. Suppose that Y ⊂ Pn is a variety of dimension m of degree d ≤ n − m

over a field K such that k = k and char k = 0. By the definitions on p. 10 – 11, the term

[W ] − [B̃] − [Ã] gives the class of ((p1, . . . , pd−k−1),Λ) ∈ W ⊂ Y (d−k−1) × G(n − m,n)

such that p1, . . . , pd−k−1 are linearly independent, Λ 6⊂ Y , and (Y ∩ Λ) \ {p1, . . . , pd−k−1}

form a linearly independent (k + 1)-tuple of points. Let J ⊂ W be the open subvariety
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of ((p1, . . . , pd−k−1),Λ) satisfying these conditions. Similarly, let K ⊂ V be the subset of

pairs ((p1, . . . , pk+1),Λ) ⊂ V ⊂ Y (k+1) × G(n − m,n) such that p1, . . . , pk+1 are linearly

indendent, Λ 6⊂ Y , and (Y ∩Λ)\{p1, . . . , pk+1} form a linearly independent (d−k−1)-tuple

of points. In the notation of the definitions listed on p. 11 – 12, [K] = [V ]− [R̃]− [T̃ ].

Below, we show that [J ] = [K]. While the the residual intersection map of the type given

in the proof of the Y − F (Y ) relation (Theorem 5.1 on p. 16 of [16], Example 1.1.12 on

p. 372 of [4]) gives a bijection between points of J and K, it isn’t completely obvious why

the residual intersection map should give a well-defined morphism/isomorphism. However,

we can use projections from an incidence correspondence to show that there are indeed

morphisms which induce a bijection of k-rational points between J and K. The following

result implies that this is enough to show equality in K0(Vark):

Proposition 2.2.2. (Proposition 1.4.11 on p. 65 of [4])

Let K be a of characteristic 0 and let S = SpecK. Let K be an algebraically closed extension

of k. Let f : Y −→ X be a morphism of k-varieties such that the induced map f(K) :

Y (K) −→ X(K) is bijective. Then f is a piecewise isomorphism.

Let

S = {((p1, . . . , pd−k−1), (q1, . . . , qk+1),Λ) : ((p1, . . . , pd−k−1),Λ) ∈ J

, ((q1, . . . , qk+1),Λ) ∈ K, pi 6= qj for all i, j}

Note that this is a subset of Y (d−k−1)×Y (k+1)×G(n−m,n). Consider the projections

S

J ⊂ W K ⊂ V

ψϕ

given by

ϕ : ((p1, . . . , pd−k−1), (q1, . . . , qk+1),Λ) 7→ ((p1, . . . , pd−k−1),Λ)
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and

ψ : ((p1, . . . , pd−k−1), (q1, . . . , qk+1),Λ) 7→ ((q1, . . . , qk+1),Λ).

Since k = k, each of the morphisms ϕ and ψ induce bijections of k-rational points. Since

char k = 0, Proposition 2.2.2 implies that [S] = [J ] and [S] = [K]. Thus, we have that

[J ] = [K] and

[W ]− [B̃]− [Ã] = [V ]− [R̃]− [T̃ ] in K0(Vark)

as desired.

Remark 2.2.3. 1. The methods used in the proof of Proposition 2.2.1 indicate why we

made the variable restrictions on p. 12. More specificially, they ensure the existence of

linearly independent k-tuples of points spanning a linear subspace of dimension < n−m

intersecting a variety Y ⊂ Pn of degree d and dimension m.

2. Applying the proof of Proposition 2.2.1 to analogues of S with linear dependence among

the pi or qj implies that the subsets B̃2 and T̃2 used in the definition of the extended

Y − F (Y ) relation are constructible since the image of a constructible set under a

morphism is constructible. The other sets involved are locally closed via intersections

of suitable subsets.

Apart from working with incidence correspondences matching complementary points of

intersection with an (n −m)-plane and varying the number of points under consideration,

the main difference from the analysis for the original Y − F (Y ) relation is that we remove

terms involving (n − m)-dimensional planes that are tangent to Y . We can work out the

modified relation in the case of a cubic hypersurface in more detail. Essentially, the idea

is to subtract the terms involving tangencies from the initial pairs of points and incidence

correspondences.
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Example 2.2.4 (Cubic hypersurfaces).

Let Y ⊂ Pr+1 be a smooth cubic hypersurface of dimension r. In the notation of the extended

Y −F (Y ) relation, we are setting in k = 1, d = 3, m = r, and n = r+ 1. Substituting these

values into the terms of Proposition 2.2.1 defined on p. 10 – 12, we have that

W = {(p, `) ∈ Y ×G(1, r + 1) : p ∈ `, and either |Y ∩ `| = 3 or ` ⊂ Y }

and

V = {((p1, p2), `) ∈ Y (2) ×G(1, r + 1) : p1 6= p2, pi ∈ `, and either |Y ∩ `| = 3 or ` ⊂ Y }.

This amounts to removing elements such that ` is tangent to Y and ` 6⊂ Y .

Next, we can show that B̃ = ∅. Note that B̃1 = ∅ since a single point of Pr+1 cannot be

linearly dependent. We also have that B̃2 = ∅ since the lines involved must be those which

are tangent to Y and not contained in Y (which we omitted from W ). Similarly, we have

that T̃2 = ∅ since the only instance where the third point of intersection of Y with a line

spanned by distinct points of Y is not a “linearly independent point” is when one exists. In

other words, they must span a line tangent to Y . However, we already omitted such lines in

the definition of V .

Thus, we have that

W \ Ã = {(p, `) ∈ Y ×G(1, r + 1) : p ∈ `, |Y ∩ `| = 3}

and

(V \ T̃ ) \ R̃ = {((p1, p2), `) ∈ Y (2) ×G(1, r + 1) : p1 6= p2, |Y ∩ p1, p2| = 3}.
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Since two distinct points determine a unique line, the second subset can be interpreted as a

subset of Y (2). This reduces to the situation of the original Y −F (Y ) relation (Theorem 5.1

on p. 16 of [16])

2.2.2 A modified completion of K0(Vark)

Motivic limits of terms in the extended Y − F (Y ) relation can be defined in a modified

completion K̂ of K0(Vark). While the “averaging” expressions involving this relation can be

defined using a localization by [G(n−m,n)], this is not necessary and we only need a small

modification of the usual completion M̂k to do this. In addition, limits can be defined in a

natural way, as is explained in more detail below.

Recall that M̂k := lim←−Mk/F
rMk is the completion of Mk := K0(Vark)[L−1] with

respect to the dimension filtration

· · · ⊂ FmMk ⊂ Fm−1Mk ⊂ · · · ,

where F rMk is the subgroup ofMk spanned by classes of the form
[V ]
Li with dimV − i ≤

−r (p. 8 of [32], p. 111 – 112 of [4]).

Definition 2.2.5. Let K be the extension of scalars of K0(Vark) to Q made up of Q-

linear combinations of classes of varieties over k modulo the same additive relations [X] =

[Y ] + [X \ Y ] for closed subvarieties Y ⊂ X and multiplicative relations [X] · [Y ] = [X × Y ].

We will write KC for the extension of scalars to C.

Definition 2.2.6. Let K̂ be the completion ofK[L−1] with respect to the dimension filtration

· · · ⊂ F rK[L−1] ⊂ F r−1K[L−1] ⊂ · · · , where F rK[L−1] is the (additive) subgroup of K[L−1]

spanned by elements of the form c
[V ]
Li with c ∈ Q and dimV − i ≤ −r. Define the completion

K̂C of KC[L−1] similarly with the same kind of filtration taking c ∈ C instead.
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Using properties of formal power series, we can show that inverting polynomials in L

such as [G(n−m,n)] is well-defined in the completion K̂ with respect to the same dimension

filtration as the one used for M̂k. We may also consider elements in K̂C while attempting

to find an explicit expressions for the inverses used.

Proposition 2.2.7. Given a nonzero polynomial P ∈ Q[T ], the element P (L) is invertible

in K̂.

Proof. Since L is invertible in K, we can assume without loss of generality that P (0) 6= 0.

Let d = degP and write

P (T ) = adT
d + ad−1T

d−1 + . . .+ a1T + a0.

If we “divide” by Ld (i.e. multiply by L−d), the resulting expression is a polynomial in L−1

with a nonzero constant term since

L−dP (L) = L−d(adLd + ad−1Ld−1 + . . .+ a1L + a0)

= ad + ad−1L−1 + . . .+ a1L−(d−1) + a0L−d.

Recall that a formal power series with coefficients in a field is invertible as a power series

if and only if its constant term is nonzero. Since a polynomial is a (finite) power series and

the leading coefficient ad 6= 0, the polynomial Q(U) = ad + ad−1U + . . . + a1U
d−1 + a0U

d

has a power series inverse of the form

R(U) = c0 + c1U + c2U
2 + . . .

with ci ∈ Q.

We claim that R(L−1) gives an expression that is well-defined in K̂. Since the filtration
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construction and inverse limit used to define K̂ is essentially the same as the one used

to define M̂k, an infinite sum converges in K̂ if and only if the dimensions of the terms

approaches −∞ for the same reasoning as sums in Qp (Exercise 2.5 on p. 9 of [32]). Since

dim cmL−m = −m for each m, this clearly holds for R(L−1) and this infinite sum is well-

defined in K̂. Thus, the term L−dP (L) has an inverse in K̂. Since L is taken to be invertible,

this implies that P (L) itself is invertible in K̂.

Remark 2.2.8. 1. For our purposes, it suffices to consider P ∈ Z[T ] since the denomina-

tors in the formal expression for
[Fk(Y )]
[G(k,n)]

are polynomials in L with integer coefficients.

2. While the proof of Proposition 2.2.7 shows that an inverse of P (L) exists in K̂, it does

not say something explicit about what the inverse should look like. In order to obtain

some kind of (formal) decomposition, we will work with coefficients in C using K̂C.

As in the proof of Proposition 2.2.7, we will work with polynomials in L−1. Let

Q(U) = a0 + a1U + . . . + am−1U
m−1 + amU

m. Without loss of generality, we can

assume that am = 1. Since we are working over C, this (formally) means that

1

Q(L)
=

1

(L− a1) · · · (L− am)

=
m∏
r=1

1

L− ar

for some ai ∈ C.

For each factor with ar 6= 0, note that

1

L− c
=

1

L
· 1

1− cL−1

=
1

L
·
∞∑
i=0

ciL−i
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by the same reasoning as Exercise 2.7 on p. 9 of [32]. Substituting this back into our

expression for 1
Q(L)

gives a product of infinite sums with L−b for some b.

Corollary 2.2.9. The formal expression for
[Fk(Y )]
[G(k,n)]

is well-defined in K̂.

Proof. This follows from applying Proposition 2.2.7 to the denominators in the formal ex-

pression for
[Fk(Y )]
[G(k,n)]

, which are polynomials in L. Since [Pk] = 1 + L + . . . + Lk, the fact

that symmetric products of sums in K0(Vark) can be expressed as products of symmet-

ric products indexed by partitions (Remark 4.2 on p. 617 of [17], p. 6 of [16]) implies

that [(Pk)(k+1)] is a polynomial in L. Alternatively, we can use the motivic zeta function

ZPk(t) = 1
(1−t)(1−Lt)···(1−Lkt) for Pk (p. 375 of [4]) as a generating function for the symmet-

ric product.

As for G(k, n), we use the fact that

[G(k, n)] = [G(k + 1, n+ 1)] =
k+1∏
j=1

Ln−k+j − 1

Lj − 1
,

which follows from a row reduction/Schubert cell argument (Example 2.4.5 on p. 72 – 73 of

[4]).

The grading of a term in K̂ in the dimension filtration will be called the relative dimension.

Definition 2.2.10. The relative dimension of a term
[P ]
F (L)

in K[L−1] is dimP −degF . This

can be extended uniquely to the relative dimension of a term in K̂ (Remark 2.2.11).

Remark 2.2.11. Given a fixed r, It is clear how to define the dimension for an element

of K[L−1]/F rK[L−1]. Writing each element of K̂ as a compatible system of elements of

K[L−1]/F rK[L−1] for varying r, the dimension in K̂ is defined as the maximum among the

dimensions in K[L−1]/F rK[L−1] of each nonzero component. Each component is nonzero

and of the same dimension if there is some nonzero component with positive dimension
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since the F rK[L−1] keep track of elements with negative dimensions. If all the nonzero

components have negative dimensions, all of them actually have the “maximal” one −a since

any remaining nonzero components only differ by elements of F rK[L−1] for some r ≥ a+ 1.

Finally, we take dim 0 = 0 since dim c = 0 for a nonzero constant c.

2.2.3 Dimension computations

Now that we have shown that the extended Y − F (Y ) relation (Proposition 2.2.1) holds

and defined where motivic limits are taken, we will start to compute the dimensions of

terms involved. The computations are split into two subsections according to whether the

degree is small or large relative to the codimension. We will first consider the case where

d− k− 1 ≤ n−m− 1 in Section 2.2.3. In Section 2.2.3, similar ideas will be used to obtain

dimension counts when d− k − 1 > n−m− 1.

Low degree nondegenerate varieties (d− k − 1 ≤ n−m− 1)

There are decompositions of B̃ and T̃ that induce a simplification of the identity [W ]− [B̃]−

[Ã] = [V ]− [R̃]− [T̃ ].

Proposition 2.2.12.

1. The identities

[W ]− [B̃1] = ([Y (d−k−1)]− [N ])[G(n−m+1−(d−k−1), n+1−(d−k−1))]− [Ã]− [P ]

and

[V ]− [T̃ ] = ([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))]− [R̃]− [Q]
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hold in K0(Vark), where

• N ⊂ Y (d−k−1) is the set of (d− k − 1)-tuples that are linearly dependent

• M ⊂ Y (k+1) is the set of (k + 1)-tuples that are linearly dependent

• P ⊂ Y (d−k−1) ×G(n−m,n) is the set of ((p1, . . . , pd−k−1),Λ) such that pi ∈ Λ

for each i, Λ is not transversal to Y , Λ 6⊂ Y , and p1, . . . , pd−k−1 are linearly

independent

• Q ⊂ Y (k+1)×G(n−m,n) is the set of ((p1, . . . , pk+1),Λ) such that pi ∈ Λ for each

i, Λ is not transversal to Y , Λ 6⊂ Y , and p1, . . . , pk+1 are linearly independent.

2. Part 1 implies that

([Y (d−k−1)]− [N ])[G(n−m+ 1− (d− k − 1), n+ 1− (d− k − 1))]

−[P ]− [B̃2]− 2[Fn−m(Y )]([(Pn−m)(d−k−1)]− [D])

= ([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))] (2.2.1)

−[Q]− [T̃2]− 2[Fn−m(Y )]([(Pn−m)(k+1)]− [C]),

(2.2.2)

where D ⊂ (Pn−m)(d−k−1) and C ⊂ (Pn−m)(k+1) are linearly dependent (d− k − 1)-

tuples and (k + 1)-tuples of points in Pn−m respectively.

Proof. 1. The assertions that

[W ]− [B̃1] + [P ] = ([Y (d−k−1)]− [N ])[G(n−m− (d− k− 1), n+ 1− (d− k− 1))]− [Ã]

and

[V ]− [T̃1] + [Q] = ([Y (k+1)]− [M ])[G(n−m− (k + 1), n+ 1− (k + 1))]− [R̃]
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in K0(Vark) do not immediately follow from the fibers “looking the same”. For exam-

ple, there is no obvious isomorphism from C \ {p} to C \ {q} for an arbitrary choice of

p, q ∈ C if C is a curve of genus g ≥ 2 since AutC is finite. Also, the map Gm −→ Gm

sending z 7→ zd seems to indicate that K0(Vark) behaves poorly with respect to covers.

However, the map V \ T̃ t Q −→ U sending ((p1, . . . , pk+1),Λ) 7→ (p1, . . . , pk+1) is a

piecewise trivial fibration with fiber G(n−m− (k+ 1), n− (k+ 1)) (Proposition 2.3.4

on p. 70 of [4]).

Alternatively, we can build a bijection of rational points. Let U ⊂ Y (k+1) be the subset

consisting of linearly independent (k + 1)-tuples of points. Consider the map

ϕ : U ×G(n−m− k − 1, n− k − 1) −→ (V \ T̃1) tQ

sending ((p1, . . . , pk+1),Γ) 7→ ((p1, . . . , pk+1l), 〈p1, . . . , pk+1,Γ〉), where Γ is taken to

parametrize (n −m − k)-dimensional linear subspaces of the orthogonal complement

of p1, . . . , pk+1 in An+1. Note that two elements of U ×G(n−m− k − 1, n− k − 1)

mapping to the same element need to start with the same element of U . The second

coordinate is the same if and only if the Γ-coordinates parametrize the same (n−m−k)-

dimensional linear subspaces of An+1. Then, the morphism ϕ induces an injection on

k-rational points. The morphism ϕ also induces a surjection on k-rational points since

Γ ∼= p1, . . . , pk+1 ⊕ (Γ/p1, . . . , pk+1) for any affine linear subspace Γ ⊃ p1, . . . , pk+1.

Proposition 2.2.2 then implies that

[V ]− [T̃1] + [Q] + [R̃] = ([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))].
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The same reasoning implies that

[W ]− [B̃1]+[P ]+[Ã] = ([Y (d−k−1)]− [N ])[G(n−m+1−(d−k−1), n+1−(d−k−1))].

2. This follows from rewriting the extended Y − F (Y ) relation

[W ]− [B̃]− [Ã] = [V ]− [R̃]− [T̃ ]

as

([W ]−[B̃1]+[P ]+[Ã])−[Ã]−[P ]−[B̃2]−[Ã] = ([V ]−[T̃1]+[Q]+[R̃])−[R̃]−[Q]−[T̃2]−[R̃]

and making substition from Part 1.

If we work in K̂ instead, the relation 2.2.1 in Part 2 of Proposition 2.2.12 can be converted

to

2[Fn−m(Y )]([(Pn−m)(k+1)]− [(Pn−m)(d−k−1)])

[G(n−m,n)]

=
([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))]

[G(n−m,n)]

−([Y (d−k−1)]− [N ])[G(n−m+ 1− (d− k − 1), n+ 1− (d− k − 1))]

[G(n−m,n)]

+
[P ]− [Q]

[G(n−m,n)]
+

[B̃2]− [T̃2]

[G(n−m,n)]

+
2[Fn−m(Y )]([C]− [D])

[G(n−m,n)]
.

We will now compute the relative dimensions (i.e. dimensions in K̂) of the generic and

degenerate terms in this identity. The objective of the remainder of this section is to prove
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the upper bounds for the dimensions of the degeneracy loci listed below. Note that the

relative dimensions are listed at the end of this section on p. 22 – 24.

• dimN ≤ m(d− k− 2)− 1 (Proposition

2.2.14)

• dimM ≤ mk − 1 (Proposition 2.2.14)

• dimP ≤ m(n−m+1)−m−1+(d−k−1)

(Proposition 2.2.15)

• dimQ ≤ m(n−m+1)−m−1+(k+1)

(Proposition 2.2.15)

• dim B̃2 ≤ −2(n − m − (k − 2) − 1) as

a relative dimension in K̂ (Proposition

2.2.25)

• dim T̃2 ≤ −2(n−m− (d−k−4)−1) as

a relative dimension in K̂ (Proposition

2.2.26)

• dimC = (n − m)k + k − 1 (Lemma

2.2.13)

• dimD = (n−m)(d−k−2)+(d−k−2)−1

(Lemma 2.2.13)

We first compute dimC and dimD. The following lemma implies that dimD = (n −

m)(d− k − 2) + (d− k − 2)− 1 and dimC = (n−m)k + k − 1.

Lemma 2.2.13. Let Rk ⊂ (Pn)(k+1) of (k + 1)-tuples which form the columns of a (n +

1)× (k + 1) matrix of rank ≤ k. The dimension of Rk is nk + k − 1.

Proof. By an incidence correspondence argument, the dimension of the variety

M ⊂ P(n+1)(k+1)−1 of (n + 1)× (k + 1) matrices of rank k up to scalars is (nk + n + k)−

(n − k + 1) = nk + 2k − 1 (Proposition 12.2 on p. 151 of [18]). The quotients by C× and

Sk+1 indicated in the diagram below imply that dimRk = nk + k − 1.

(An+1)k+1 (Pn)k+1

M ⊂ P(n+1)(k+1)−1 (Pn)(k+1)

g

f π
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For our purposes, it suffices to give relatively coarse upper bounds on the dimensions of

the degeneracy loci M and N .

Proposition 2.2.14. dimM ≤ mk − 1 and dimN ≤ m(d− k − 2)− 1.

Proof. A generic (k−1)-plane or (d−k−3)-plane spanned by distinct k-tuples or (d−k−2)-

tuples does not intersect an additional point of Y . This follows from our assumptions that

k + 1 ≤ n−m− 1 and d− k − 1 ≤ n−m− 1 by an argument using the Uniform Position

Theorem (p. 370 – 371 of [12]).

The dimension bounds for P and Q follow from the definition of a tangent linear subspace.

Proposition 2.2.15.

dimP ≤ m(n−m+ 1)−m− 1 + (d− k − 1)

with “relative dimension” (Definition 2.2.10) −m− 1 + (d− k − 1)

and

dimQ ≤ dimQ ≤ m(n−m+ 1)−m− 1 + (k + 1)

with relative dimension −m− 1 + (k + 1).

Proof. Without loss of generality, we look at the case of P since the dimension bound for

Q has the same proof. Note that P consists of elements of the form ((p1, . . . , pd−k−1),Λ)

with pi linearly independent, p ∈ Λ, p ∈ Y , and Λ not transversal to Y . We can partition

the possible (n − m)-planes in question into the dimension of the intersection Y ∩ Λ. Let

Lu ⊂ G(n−m,n) be the space of such (n−m)-planes.

The space Lu is a subset of the space of (n −m)-planes Λ ⊂ Pn such that dim(TqY ∩

TqΛ) ≥ u for some q ∈ Y ∩ Λ. In some sense, this measures how far the intersection q
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is from being transverse. To find the dimension of the latter space, consider the incidence

correspondence Ju = {(q,Λ) ∈ Y × G(n − m,n) : q ∈ Λ, dim(TqY ∩ TqΛ) ≥ u} and the

projection α : Ju −→ G(n − m,n) sending (q,Λ) 7→ Λ. The definition of Lu implies that

dimα−1(Λ) = u for Λ ∈ Lu and dimLu = u + dimα−1(Lu). Using these definitions, our

earlier observation can be rewritten as the statement that dimLu ≤ dimα(Ju). Note that

Ju =
⋃
v≥u α

−1(Lv).

To find dim Ju, consider the projection βu : Ju −→ Y sending (q,Λ) 7→ q. Then, we

have that dim β−1
u (q) is equal to the dimension of the space of (n−m)-planes containing q

whose intersection with the tangent plane to q has dimension ≥ u. To find the dimension

of this fiber, we look at a map/projection which parametrizes these (n−m)-planes in terms

of possible u-planes contained in the intersection Y ∩Λ (i.e. elements of G(u,m) which give

u-dimensional linear subspaces Γ of TqM ∼= Pm). For a particular choice of Γ, the possible

(n−m)-planes in Pn containing them is parametrized by elements of G(n−m− u, n− u).

Since dimG(u,m) = (u+ 1)(m− u) and dimG(n−m− u, n− u) = m(n−m− u+ 1), we

have that dim β−1(q) = (u+ 1)(m− u) +m(n−m− u+ 1).

Putting these together, we have that dim Ju ≤ dimY +(u+1)(m−u)+m(n−m−u+1) =

m + (u + 1)(m − u) + m(n − m − u + 1). This means that dimα(J) = dim J − u =

m+ (u+ 1)(m− u) +m(n−m− u+ 1)− u. Recall that α(J) is the space of (n−m)-planes

in Pn whose intersection with Y has dimension ≥ u.

We return to the original incidence correspondence P . Consider the projection γ : P −→

G(n − m,n) sending ((p1, . . . , pd−k−1),Λ) 7→ Λ. The image γ(P ) can be partitioned into

elements of the form J = Ju for some 1 ≤ u ≤ min(m − 1, n − m − 1). Note that we

will actually take the upper bound is equal to m − 1 under the assumptions of Theorem
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2.1.7. We would like to study dim γ−1(Ju) and see how this varies as we increase u since

the Ju partition α(P ) and their preimages under γ cover P . After going from u to u + 1,

we find that the dimension of the base decreases by 2m − u. In other words, we have that

J(u)− J(u+ 1) = 2u+ 3. For the preimages, we find that they increase by d− k − 1 since

the space of possible pi increases by 1 from u to u + 1 for each 1 ≤ i ≤ d− k − 1. The net

change in dimension is then dim γ−1(α(Ju)− dim γ−1(α(Ju+1)) = 2m− u− (d− k − 1). If

d − k − 1 is smaller than 2m, this means that dim Ju is a decreasing function in u and the

value at u = 1 gives the upper bound dimP ≤ m(n−m+1)−m−1+(d−k−1) . Note that

the former condition is satisfied under the conditions of Part 1 of Theorem 2.1.7. Replacing

d−k−1 with k+1, the same reasoning implies that dimQ ≤ m(n−m+1)−m−1+(k+1).

Note that the sample size here is very small as given in Part 1 of Theorem 2.1.7.

The remaining degeneracy loci whose dimensions we need to compute are B̃2 ⊂ W and

T̃2 ⊂ V . The same method will be used to study each space.

We will first study the behavior of dim B̃2. Recall that

B̃2 = {((p1, . . . , pd−k−1),Λ) ∈ W : p1, . . . , pd−k−1 linearly independent but

(Y ∩ Λ) \ {p1, . . . , pd−k−1} not a linearly independent (k + 1)-tuple, Λ 6⊂ Y }.

Before making dimension computations, here is a small observation which shows that

the result we will use applies to any (k + 1)-tuple spanning a linear subspace of dimension

≤ k − 1. Afterwards, we state the definition of a term used in the result.

Lemma 2.2.16. Any µ-plane Γ ⊂ Pn that intersects a variety X ⊂ Pm at a finite number

of points contains a (µ− 1)-plane disjoint from X.
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Proof. To obtain such an (µ − 1)-plane, we can intersect Γ with a hyperplane which does

not contain any points of Γ ∩X. For example, we can use the hyperplane xi = c for some c

which is not the ith coordinate of any points of Γ ∩X.

Definition 2.2.17. (Ran, p. 716 of [35])

1. Given a subvariety X ⊂ Pm and a linear λ-plane Λ disjoint from X, denote by XΛ
k ⊂

Pm−λ−1 the locus of fibers of length k or more of the projection πΛ : X −→ Pm−λ−1.

Thus, XΛ
k is the locus of (λ + 1)-planes containing Λ which meet X in a scheme of

length ≥ k.

2. The analogous projection and locus of fibers for generic Λ is denoted Xλ
k ⊂ Pm−λ−1.

In practice, we state that some property holds for Xλ
k when it holds for XΛ

k given a

generic choice of Λ ∈ G(λ,m). The meaning of “generic” is further explained below in

Remark 2.2.18.
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Remark 2.2.18.

By “generic” choice of Λ ∈ G(λ,m), we mean the complement of a nowhere dense analytic

subset (p. 699 of [35]). For example, let H ⊂ G(n−m,n) be the set of n−m-planes which

intersect the m-dimensional variety Y ⊂ Pn at d := degX distinct points. This is also an

open subset in the Zariski open topology (Corollaire 2.3 on p. 259 of arXiv link and p. 318

in [17]). Since the intersection of a dense subset with an open subset is dense in the open

subset, the intersection of H with the generic locus in Definition 2.2.17 is dense in H.

By Lemma 2.2.16, the locus of all (λ + 1)-planes which meet X in a scheme of length

≥ k is a union of subsets of the form XΛ
k for some λ-plane Λ disjoint from X. Here is the

main result which we use to prove our claim.

Theorem 2.2.19. (Ran, Theorem 5.1 on p. 716 of [35])

Let X ⊂ Pm be an irreducible closed subvariety of codimension c > λ ≥ 0. Then Xλ
k is

smooth of codimension k(c − λ − 1) in Pm−λ−1, in a neighborhood of any point image of

a fiber of length exactly k that is disjoint from the singular locus of X and has embedding

dimension 2 or less.

Remark 2.2.20. 1. Subsets that have codimension strictly larger than the dimension of

the ambient space are taken to be empty (p. 699 of [35]).

2. In the definition of V and W from the extended Y −F (Y ) relation (Proposition 2.2.1),

we assumed that |Y ∩ Λ| = d for (n−m)-planes . Since the curvilinear subscheme of

a Hilbert scheme of r points on a smooth projective variety is formed by the closure

unordered tuples of r distinct points, we will study curvilinear schemes in our setting.

Any λ-plane (λ ≤ n−m−1) contained in these (n−m) planes satisfies the embedding

dimension condition of Theorem 2.2.19 since curvilinear schemes have local embedding

dimension ≤ 1 (p. 703 of [35]).
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3. While n is not explicitly defined in the statement of Corollary 5.6 on p. 717 of [35] (or

anywhere in Section 5 of [35]), it is indicated that Theorem 2.2.19 is a partial extension

of Theorem 4.1 on p. 713 of [35], which makes use of this notation.

Given λ ≤ k − 2, we can use this to compute the dimension of the space of non-tangent

(λ + 1)-planes intersecting Y at a linearly dependent (k + 1)-tuple of points. Similarly, the

same method can be used for λ ≤ d− k − 2 and (d− k − 1)-tuples of points.

Proposition 2.2.21. Suppose that Y ⊂ Pn is a smooth closed irreducible variety of dimen-

sion m and degree d.

1. Given λ ≤ k−2, the space of (λ+1)-planes in Pn intersecting Y at ≥ k+1 points and

contain some generic λ-plane (in the sense of Theorem 2.2.19) which are not tangent

to Y or contained in Y has dimension dimG(λ, n) + dimY λk+1 − (λ+ 1).

2. Given λ ≤ d− k − 2, the space of (λ + 1)-planes in Pn intersecting Y at ≥ d− k − 1

points and contain some generic λ-plane which are not tangent to Y or contained in

Y has dimension dimG(λ, n) + dimY λd−k−1 − (λ+ 1).

Proof. 1. Let

A = {(Λ,Γ) ∈ G(λ, n)×G(λ+ 1, n) : Λ ⊂ Γ,Λ generic and not tangent to Y ,

|Y ∩ Λ| ≥ k + 1,Λ 6⊂ Y }.

Consider the projections

A

G(λ, n) G(λ+ 1, n).

ψϕ
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In this diagram, the space of (λ+1)-planes intersecting Y at ≥ k+1 and contain some

generic λ-plane which are not tangent to Y or contained in Y is given by ψ(A). Thus,

it suffices to compute dimψ(A).

Let U ⊂ G(λ, n) be the space of generic λ-planes not tangent to Y . Then, the definition

of A implies that U = ϕ(A). For each Λ ∈ U , we have that dimϕ−1(Λ) = dimY λk+1.

On the other hand, we have that ψ−1(Γ) ⊂ G(λ, λ + 1) ∼= Pλ+1 is a nonempty open

subset for each Γ ∈ ψ(A). Since Pλ+1 is irreducible, this implies that ψ−1(Γ) forms

a dense open subset. Thus, we have that dimψ−1(Γ) = λ + 1 for each Γ ∈ ψ(A).

Putting these together, Corollary 11.13 on p. 139 of [18] implies that

dimψ(A) = dimA− (λ+ 1)

= dimU + dimY λk+1 − (λ+ 1)

= dimG(λ, n) + dimY λk+1 − (λ+ 1).

2. This uses the same steps as part 1 except that k is replaced with d− k − 2.

Under appropriate conditions, we can omit (n−m)-planes that do not contain any generic

(n−m− 1)-planes in Pn.

Proposition 2.2.22. Let Z ⊂ G(n−m,n) be the complement of the locus of generic (n−

m− 1)-planes (Theorem 2.2.19) and G(n−m− 1, n) ↪→ PN be the Plücker embedding. If Z

is contained in some hypersurface generic in its degree, then the set of (n−m)-planes in Pn

whose (n−m−1)-subplanes are all contained in Z form a finite subset which is empty if the

degree is ≥ 2. Note that some condition is necessary in order to have such a codimension.

Proof. Each polynomial F in the ideal defining Z ⊂ G(n−m− 1, n) can be considered as a
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polynomial in affine (Plücker) coordinates (ai,j)1≤i≤n−m
1≤j≤m+1

with F modified depending on the

specific chart

(
In−m A

)
by precomposing with right multiplication by some element of

GLn+1. Recall that the standard affine chart of G(r, n) corresponds to r-dimensional linear

subspaces which do not intersect a specific (n − r)-plane nontrivially and transition maps

are given by GLr-actions. In the statement above, the (n−m)-planes Γ ∈ G(n−m,n) are

exactly those such that Γ ∩H ∈ Z for all hyperplanes H ⊂ Pn. We can relate this back to

the usual affine chart on G(n−m,n).

On a standard chart for G(n−m,n) = G(n−m+1, n+1), we can represent Γ ∈ G(n−m,n)

as a matrix of the form

(
In−m+1 B

)
, where B = (br,s) is an (n − m + 1) × m matrix

corresponding to an element of Am(n−m+1). Recall that we wanted to have Γ ∩H ∈ Z for

each hyperplane H ⊂ Pn. Note that rows of

(
In−m+1 B

)
represent elements of Pn. Let

βi = (bi,1, . . . , bi,m) be the ith row of B. Given Γ ∈ G(n−m,n) and its chart representation(
In−m+1 B

)
, the (n −m − 1)-dimensional subspaces of Γ correspond to elements of the

form



1 0 · · · 0 α1

0 1 · · · 0 α2

...
... · · · ...

...

0 0 · · · 1 αn−m


· g ·


1 0 · · · 0 0 −−−− β1 −−−−
...

... · · · ...
...

...
...

...

0 0 · · · 0 1 −−−− βn−m+1 −−−−



for some g ∈ GLn−m+1. The rows of the product of the first matrix with g give bases of

(n−m−1)-dimensional subspaces of Γ with respect to the basis given by the rows of the last

matrix. The first matrix can be rewritten as the (n−m)× (n−m+ 1) matrix

(
In−m α

)
for some α ∈ An−m and the second one is the (n−m + 1)× n matrix

(
In−m+1 B

)
rep-
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resenting Γ with βi = (bi,1, . . . , bi,m) the ith row of B. The term

(
In−m α

)
comes from

considering representations of (n − m − 1)-dimensional subspaces of Pn−m and g is gives

a change of basis/change of coordinates which moves between charts in the affine covers of

G(n −m,n) and G(n −m − 1, n) which we are using here. We will first consider the case

g = In−m+1 and reduce the general case to this afterwards.

In these coordinates, the (n−m− 1)-dimensional subspaces of the (n−m)-dimensional

linear subspace Γ represented by

(
In−m+1 B

)
satisfy (F = 0) (under the appropriate

chart/multiplication by an element of GLn−m) if and only if F = 0 on the (n−m)× (m+1)

submatrix



1 0 · · · 0 α1

0 1 · · · 0 α2

...
... · · · ...

...

0 0 · · · 1 αn−m




0 −−−− β1 −−−−
...

...
...

...

1 −−−− βn−m+1 −−−−



=


α1 −−−− β1 + α1βn−m+1 −−−−
...

...
...

...

αn−m −−−− βn−m + αn−mβn−m+1 −−−−



=



α1 −−−− β1 + α1βn−m+1 −−−−
...

...
...

...

αn−m−1 −−−− βn−m−1 + αn−m−1βn−m+1 −−−−

0 −−−− 0 −−−−



+


0 −−−− 0 −−−−
...

...
...

...

αn−m −−−− βn−m + αn−mβn−m+1 −−−−


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for all choices of α1, . . . , αn−m.

The same reasoning can be applied to other charts (i.e. other choices of g ∈ GLn−m+1)

by replacing 
0 −−−− γ1 −−−−
...

...
...

...

1 −−−− γn−m+1 −−−−


with 

−−−− γ1 −−−−
...

...
...

−−−− γn−m+1 −−−−

 = g ·


0 −−−− β1 −−−−
...

...
...

...

1 −−−− βn−m+1 −−−−


for appropriate γi ∈ Am+1.

Before computing the dimension of solutions to explicit polynomial equations, we will

consider heuristics from expected dimensions of Fano varieties of k-planes contained in gen-

eral hypersurfaces. For example, suppose that n −m = 2. Fixing γ1 and γ2, the solutions

γ3 to F (γ1 + α1γ3, γ2 + α2γ3) = 0 for all α1, α2 correspond to planes in Am contained in

the intersection of a hypersurface in A2m with the complete intersection of hypersurfaces

of the form H̃j = x1xm+j − xjxm+1 for 2 ≤ j ≤ m + 3. If this is a complete intersection

with (F = 0), then the fact that planes in A2m+2 correspond to lines in P2m+1 implies

that the expected dimension of lines (p. 4 of [10]) contained in this complete intersection

is 2(2m + 1) − 3(m − 1) − c = m − c + 5, where c is the degree of F as a polynomial in

2m + 2 variables. However, the condition that the lines are of the type (x, 0) + (0, x) · β

gives a codimension m condition and we would generically expect the set to be empty for

sufficiently large c.

54



Starting with a fixed γ1, γ2 as above, we can work out the (usually) codimension m

condition on γ3 more explicitly. Again, we would like to find x ∈ Am such that F (x, βx) = 0

for all β. This boils down to coefficients in using terms involving β being set equal to 0.

Generically, this reduces the dimension by e, where e is the degree of F with respect to the

final m coefficients. In general, the equations involved can be analyzed using the Taylor

expansion of F at a particular point. Given γi = (γi,1, . . . , γi,m) ∈ Am, we study solutions

to

F ((γ1, . . . , γr) + (α1γr+1, . . . , αrγr+1)) = F (γ1, . . . , γr) +
∑
i,j

∂F

∂xij
(γ)(αiγr+1,j)

+
1

2!

∑
i,j,k,l

∂2F

∂xij∂xkl
(γ)(αiγr+1,j)(αkγr+1,l)

+
1

3!

∑
i,j,k,l,p,q

∂3F

∂xij∂xkl∂xpq
(γ)(αiγr+1,j)(αkγr+1,l)(αpγr+1,q) + . . . = 0

which hold for all α1, . . . , αr. If α1 6= 0, we can assume without loss of generality that

α1 = 1. Note that there will be a total of degF sums.

Interpreting F as a polynomial in the αi with coefficients which are polynomials in the

γi,j , we need all the coefficients in γr,s to be equal to 0. Each term is a sum of the form

∑
1≤ia≤r

1≤jb≤m+1

∂uF

∂xi1j1 · · · ∂xiuju
(γ)(αi1γr+1,j1) · · · (αiuγr+1,ju).

This gives the degree u terms as a polynomial in the αi. Now consider the degree 1 term.

The coefficient of αi being 0 requires m + 1 polynomials to vanish. Repeating this for each

i already gives a total of r(m + 1) conditions. Since all the other coefficients are also equal
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to 0, the set of solutions is empty for a generic choice of F .

Remark 2.2.23. Given a particular (n−m)-plane Γ ∈ G(n−m,n), the space of (n−m−1)-

planes contained in Γ forms an (n−m)-dimensional linear subspace of G(n−m−1) (Theorem

3.16 on p. 110 and proof of Theorem 3.20 (ii) on p. 114 of [21]). Thus, the space of (n−m)-

planes in Pn whose (n−m−1)-dimensional linear subspaces are contained in Z is contained

in the space of maximal (n − m)-planes in G(n − m − 1, n) which are contained in the

hypersurface Z ⊂ G(n−m−1, n). With this interpretation, there are a couple more options

for genericity conditions which imply Z is empty.

1. Let M be the subvariety of Fn−m(G(n − m − 1, n)) ⊂ G(n − m,N) consisting of

(n−m)-planes in G(n−m−1, n) maximal with respect to inclusion. If M is a general

GLN+1-translate of M and Z is contained in some hypersurface of degree e in PN of

sufficiently large degree, then the subvariety of G(n−m,n) consisting of (n−m)-planes

Γ such that Λ ∈ Z for all (n −m − 1)-planes Λ ⊂ Γ is empty if e is sufficiently large

compared to n −m by Kleiman’s transversality theorem (Theorem on p. 290 of [24])

while taking G(n −m,N) = G(n −m + 1, N + 1) to be a homogeneous space with a

transitive GLN+1-action.

2. We can follow the usual proof of the generic dimension estimates of Fano varieties of

k-planes to show that the subvariety of G(n − m,n) consisting of (n − m)-planes Γ

such that Λ ∈ Z for all (n−m− 1)-planes Λ ⊂ Γ is empty if n� 0 and Z is contained

in some generic hypersurface A ⊂ PN not containing G(n−m− 1, n).

Let G(n−m− 1, n) ↪→ PN be the Plücker embedding and PM with M =
(N+e

e

)
− 1

be the space of degree e hypersurfaces in PN . Let

Φ = {(Γ, A) ∈ G(n−m,N)× PM : Γ ⊂ A ∩G(n−m− 1, n),G(n−m− 1, n) 6⊂ A}.
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Consider the projections

Φ

G(n−m,N) PM .

ψϕ

Then, we have that ψ−1(A) ∼= Fn−m(A ∩G(n−m− 1, n)) and

ϕ−1(Γ) = {A ∈ PM : Γ ⊂ A ∩G(n−m− 1, n),G(n−m− 1, n) 6⊂ A}

for each Γ ∈ ϕ(Φ). Note that ϕ(Φ) consists of (n −m)-planes in PN which are con-

tained in A ∩G(n−m− 1, n) for some degree e hypersurface A ⊂ PN .

Fix Γ ∈ ϕ(Φ). The (n−m)-plane Γ in PN is contained in A∩G(n−m−1, n) for some

degree e hypersurface A ⊂ PN not containing G(n −m − 1, n) if and only if there is

some f ∈ H0(G(n−m− 1, n),OG(n−m−1,n)(e)) such that f |Γ = 0. In other words, f

is in the kernel of the restriction map ρ : H0(G(n −m − 1, n),OG(n−m−1,n)(e)) −→

H0(Γ,OΓ(e)). Note that this map is surjective since we assumed that Γ is contained

in G(n−m− 1, n). Since Γ ∼= Pn−m, we have that dimH0(Γ,OΓ(e)) =
(n−m+e

e

)
. On

the other hand, we have that

dimH0(G(n−m− 1, n),OG(n−m−1,n)(e)) =
n+1∏

j=n−m+1

(e+j−1
e

)(e+j−(n−m)−1
e

)
since the determinant of the dual of the tautological bundle is the pullback of

OG(n−m−1,n)(1) by the Plücker embedding (Proposition 5.2 on p. 388 of [8]). This
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means that

dimϕ−1(Γ) =
n+1∏

j=n−m+1

(e+j−1
e

)(e+j−(n−m)−1
e

) − (n−m+ e

e

)

for each Γ ∈ ϕ(Φ) ⊂ G(n−m,N).

Given suitable parameters, we have that dim Φ < M and a generic element of PM is

not in the image of ψ : Φ −→ PM .

The assumptions of Proposition 2.2.22 will be denoted using the following term.

Definition 2.2.24. A variety Y ⊂ Pn is k-linearly generic if the locus of non-generic k-

planes in Pn in the sense of Proposition 2.2.22 is contained in a hypersurface generic in its

degree.

Using Proposition 2.2.22 and Proposition 2.2.21, we can be bound the relative dimension

(Definition 2.2.10) of B̃2.

Proposition 2.2.25. If Y ⊂ Pn is u-linearly generic for u ≤ k − 2, the relative dimension

(Definition 2.2.10) of dim B̃2 ≤ −2(n−m− (k − 2)− 1) if k − 2 ≤ n− k + 2.

Proof. Since we assume that Y ⊂ Pn is u-linearly generic for u ≤ k− 2, we can assume that

the (λ+ 1)-planes in question always contain some generic λ-plane. Let

S = {(Λ,Γ) ∈ G(λ+ 1, n)×G(n−m,n) : Λ ⊂ Γ,Λ ∈ Q, |Γ ∩ Y | = d}.

Consider the projections

S

G(λ+ 1, n) G(n−m,n).

ψϕ
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In this diagram, the space of (n −m)-planes containing some element of Q that is not

tangent to Y is given by ψ(S) and Q = ϕ(S) (writing Q to mean ψ(Q) from Proposition

2.2.21). Thus, it suffices to give an upper bound for dimψ(S). Working over each irre-

ducible component of S, Theorem 11.12 and Corollary 11.13 on p. 138 – 139 of [18] imply

that dimS ≥ dimψ(S) + M if dimψ−1(Γ) ≥ M for each Γ ∈ ψ(S). Rearranging this in-

equality gives the upper bound dimψ(S) ≤ dimS −M .

If we fix Λ ∈ Q = ϕ(S), we have that ϕ−1(Λ) ⊂ G(n−m−λ−2, n−λ−2) is a nonempty

open subset for each Λ ∈ ϕ(S) = Q. Since G(n−m− λ− 2, n− λ− 2) is irreducible, this is

a dense open subset and dimϕ−1(Λ) = dimG(n−m− λ− 2, n− λ− 2) for each Λ ∈ ϕ(S).

Although the fibers can be more complicated for ψ, we can still find a (relatively) uniform

method of bounding the dimension.

Given a fixed (n −m)-plane Γ ∈ ψ(S), we have that ψ−1(Γ) consists of (λ + 1)-planes

Λ such that Λ ⊂ Γ and |Λ ∩ Y | ≥ k + 1. In other words, we are looking for (λ + 1)-planes

contained in Λ ∼= Pn−m that intersect Y in ≥ k+ 1 points. Note that Y ∩Λ ⊂ Y ∩ Γ. Since

we take these k-planes to be contained in Y and Y ∩Λ ⊂ Y ∩ Γ, we only have finitely many

choices for their points of intersection with Y . In particular, we can express ψ−1(Γ) as the

union of elements containing each (k + 1)-tuple in Y ∩ Γ. Given an unordered (k + 1)-tuple

of points in Y ∩ Γ, let Tp be the elements of ψ−1(Γ) containing p. This implies that

ψ−1(Γ) =
⋃
p

Tp ⇒ dimψ−1(Γ) = max
p

dimTp,

where p varies over (k+ 1)-tuples of points in Y ∩ Γ which span a linear subspace of dimen-

sion µ ≤ λ+ 1. These (k+ 1)-tuples can be further partitioned into locally closed subspaces

corresponding to (k+ 1)-tuples spanning a linear subspace of a given dimension. Since there

is a finite number of possible dimensions, it suffices to look at individual (k + 1)-tuples and
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take the maximum dimension.

Given a fixed (k + 1)-tuple in Y ∩ Γ spanning a linear subspace of dimension µ ≤ λ+ 1,

the space of (λ+ 1)-planes in Γ ∼= Pn−m which contain these points is isomorphic to G(λ+

1− µ− 1, n−m− µ− 1) = G(λ− µ, n−m− µ− 1). We actually have a lower bound for

the space of such (λ+ 1)-planes since

dimG(λ− µ, n−m− µ− 1) = (n−m− λ− 1)(λ− µ+ 1)

≥ n−m− λ− 1.

Since this lower bound does not depend on µ, it applies to any (k + 1)-tuple of points

p. Thus, we have that dimψ−1(Γ) ≥ n − m − λ − 1 for each Γ ∈ ψ(S) and we can set

M = n−m− λ− 1 above. By Proposition 2.2.21 and Theorem 2.2.19, this implies that

dimψ(S) ≤ dimS −M

= dimS − (n−m− λ− 1)

= dimQ+ dimG(n−m− λ− 2, n− λ− 2)

− (n−m− λ− 1)

= dimG(λ, n) + dimY λk+1 − (λ+ 1) + dimG(n−m− λ− 2, n− λ− 2)

− (n−m− λ− 1)

= (λ+ 1)(n− λ) + (n− λ− 1)− (k + 1)((n−m)− λ− 1)− (λ+ 1)

+m(n−m− λ− 1)− (n−m− λ− 1)

= (λ+ 1)(n− λ)− (k + 1)((n−m)− λ− 1) +m(n−m− λ− 1) + (m− λ− 1).

Thus, the space of (n −m)-planes containing a (λ + 1)-plane intersecting Y at ≥ k + 1
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points which contains some generic λ-plane has dimension at most

(λ+ 1)(n− λ)− (k + 1)((n−m)− λ− 1) +m(n−m− λ− 1) + (m− λ− 1).

This implies the same bound for those which intersect Y at exactly k + 1 points.

Let

D = (λ+ 1)(n− λ)− (k + 1)((n−m)− λ− 1) +m(n−m− λ− 1) + (m− λ− 1).

The relative dimension of these (n−m)-planes in K̂ is

D −m(n−m+ 1) = (λ+ 1)(n− λ)− (k + 1)((n−m)− λ− 1)

+m(n−m− λ− 1) + (m− λ− 1)−m(n−m+ 1)

= (λ+ 1)(n−m− λ)− (k + 1)(n−m− λ) + (k + 1)− (λ+ 1)

= −(k − λ)(n−m− λ) + (k − λ)

= −(k − λ)(n−m− λ− 1)

≤ −2(n−m− (k − 2)− 1)

since λ ≤ k − 2 and k + 1 ≤ n−m− 1.

The same reasoning with d − k − 2 replacing k implies the following bound for upper

bound for the dimension of T̃2 ⊂ V .

Proposition 2.2.26. If Y ⊂ Pn is u-linearly generic for u ≤ d−k−2, the relative dimension

dim T̃2 ≤ −2(n−m− (d− k − 4)− 1).

Here is a summary of dimensions of the degeneracy loci:
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• dimN ≤ m(d− k− 2)− 1 (Proposition

2.2.14)

• dimM ≤ mk − 1 (Proposition 2.2.14)

• dimP ≤ m(n−m+1)−m−1+(d−k−1)

(Proposition 2.2.15)

• dimQ ≤ m(n−m+1)−m−1+(k+1)

(Proposition 2.2.15)

• dim B̃2 ≤ −2(n − m − (k − 2) − 1) as

a relative dimension in K̂ (Proposition

2.2.25)

• dim T̃2 ≤ −2(n−m− (d−k−4)−1) as

a relative dimension in K̂ (Proposition

2.2.26)

• dimC = (n − m)k + k − 1 (Lemma

2.2.13)

• dimD = (n−m)(d−k−2)+(d−k−2)−1

(Lemma 2.2.13)

The remaining terms to analyze are C ⊂ (Pn−m)(k+1) and D ⊂ (Pn−m)(d−k−1) of lin-

early dependent (k + 1)-tuples and (d− k − 1)-tuples of Pn−m. By Lemma 2.2.13, we have

that dimC = (n−m)k + k − 1 and dimD = (n−m)(d− k − 2) + (d− k − 2)− 1.

Proposition 2.2.27. In K0(Vark), the classes [C] and [D] are polynomials in L.

Proof. We will show this by finding a recursive formula. Given u ≤ r, let Iu,n,r ⊂ (Pn)(r) be

the locally closed subset of r-tuples of points of Pn which form the columns of an (n+ 1)× r

matrix of rank u. We claim that [Iu,n,r] = [G(u − 1, n)][Iu,u−1,r] in K0(Vark). The idea is

to fix the linear subspace spanned by the columns of the matrix and consider coordinates

of the columns with respect to a fixed basis for this linear subspace. We can either use

a piecewise trivial fibration from a morphism sending the r-tuples of points to their span

or form a morphism inducing a bijection of rational points. For each Λ ∈ G(u − 1, n), let

AΛ be a (n + 1) × u matrix whose columns form a basis of Λ. Consider the morphism

π : G(u − 1, n) × Iu,u−1,r −→ Iu,n,r defined by (Λ, B) 7→ AΛ · B, where B is taken under

quotients by permutations of columns and division of the columns by nonzero scalars.
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Since the columns of AΛ are linearly independent and B has u linearly independent

columns, the span of AΛ · B is Λ. Since two identical matrices have the same span and the

columns of AΛ are linearly independent, the map π is injective on k-rational points. The

surjectivity of π comes from setting Λ to be the span of an element of C ∈ Iu,n,r and B

to be the matrix whose columns (up to quotienting) are the coordinates of the columns of

C with respect to the columns of AΛ. Thus, π induces a bijection on k-rational points and

Proposition 2.2.2 implies that [Iu,n,r] = [G(u− 1, n)][Iu,u−1,r] in K0(Vark).

By definition, we have that

[Iu,u−1,r] = [(Pu−1)(r)]−
u−1∑
v=1

[Iv,u−1,r]. (2.2.3)

For each 1 ≤ v ≤ u − 1, the same reasoning as above implies that [Iv,u−1,r] = [G(v −

1, u− 1)][Iv,v−1,r] and

[Iv,v−1,r] = [(Pv−1)(r)]−
u−1∑
w=1

[Iw,v−1,r].

In each step of this recursion, the indices a, b in Ia,b,r are strictly smaller than those

in the previous step. So, this process must stop after a finite number of steps. Since

[I1,b,r] = [Pb] and [I2,b,r] = [G(1, b)][I2,1,r] = [G(1, b)]([(P1)(r)] − [P1]), the reduction

[Iu,n,r] = [G(u − 1, n)][Iu,u−1,r] followed by induction on u in Iu,u−1,r via the recursion

2.2.12 implies that [Iu,n,r] is a polynomial in L for each u ≤ r ≤ n+ 1.

Since [C] = [(Pn−m)(k+1)]− [Ik+1,n−m,r] and [D] = [(Pn−m)(d−k−1)]− [Id−k−1,n−m,r],

they must also be polynomials in L.
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Remark 2.2.28. 1. The degrees of polynomials in L giving the classes of C and D in

K0(Vark) are given by dimC = (n−m)k + k − 1 and dimD = (n−m)(d− k − 2) +

(d− k − 2)− 1.

2. The coefficients of Lk can be expressed in terms of multinomial coefficients and sizes

of partitions corresponding to certain Young tableaux (Example 2.4.5 on p. 72 – 73).

These come from the classes of symmetric products (Pa)(b) and Grassmannians G(c, d)

respectively.

Next, we use the computations earlier in this section to find dimensions of terms of

degeneracy loci in the expression

2[Fn−m(Y )]([(Pn−m)(k+1)]− [(Pn−m)(d−k−1)])

[G(n−m,n)]
(2.2.4)

=
([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))]

[G(n−m,n)]︸ ︷︷ ︸
Term 1

(2.2.5)

− ([Y (d−k−1)]− [N ])[G(n−m+ 1− (d− k − 1), n+ 1− (d− k − 1))]

[G(n−m,n)]︸ ︷︷ ︸
Term 2

(2.2.6)

+
[P ]− [Q]

[G(n−m,n)]︸ ︷︷ ︸
Term 3

+
[B̃2]− [T̃2]

[G(n−m,n)]︸ ︷︷ ︸
Term 4

(2.2.7)

+
2[Fn−m(Y )]([C]− [D])

[G(n−m,n)]︸ ︷︷ ︸
Term 5

. (2.2.8)

Here, we will take “degeneracy loci” to be non-generic subsets of incidence correspon-

dences involved in the simplified higher dimensional Y −F (Y ) relation. Let α = dimG(n−
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m,n) = m(n−m+ 1). Substituting in the (upper bounds of) dimensions of the degeneracy

loci above yields the following dimensions in K̂:

• Terms 1 and 2 from 2.2.5 and 2.2.7:

– Main terms [Y (k+1)][G(n−m+1− (k+1), n+1− (k+1))] and [Y (d−k−1)][G(n−

m+ 1− (d− k − 1), n+ 1− (d− k − 1))]:

dimY (k+1) + dimG(n−m+ 1− (k + 1), n+ 1− (k + 1))− α

= m(k + 1) +m(n−m− k)−m(n−m+ 1)

= m(k + 1 + n−m− k − n+m− 1)

= 0

dimY (d−k−1) + dimG(n−m+ 1− (d− k − 1), n+ 1− (d− k − 1))− α

= m(d− k − 1)

+m(n−m+ 1− (d− k − 1))

−m(n−m+ 1)

= m(n−m+ 1)−m(n−m+ 1)

= 0

– Degenerate terms [M ][G(n−m+ 1− (k + 1), n+ 1− (k + 1))] and

[N ][G(n−m+ 1− (d− k − 1), n+ 1− (d− k − 1))] :
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dimM + dimG(n−m+ 1− (k + 1), n+ 1− (k + 1))− α

≤ mk − 1 +m(n−m− k)−m(n−m+ 1)

= m(k + n−m− k − n+m− 1)− 1

= m(−1)− 1

= −m− 1

dimN + dimG(n−m+ 1− (d− k − 1), n+ 1− (d− k − 1))− α

≤ m(d− k − 2)− 1

+m(n−m+ 1− (d− k − 1))

−m(n−m+ 1)

= m((d− k − 2) + (n−m+ 1)− (d− k − 1)

−(n−m+ 1))− 1

= −m− 1

• Term 3 (tangent planes) from 2.2.7

dimP − α ≤ S = m(n−m+ 1)−m− 1 + (d− k − 1)−m(n−m+ 1)

= −m− 1 + (d− k − 1)

since n−m > 2m under the conditions of Theorem 2.1.7.

The same reasoning with Proposition 2.2.15 implies that

dimQ− α ≤ −m− 1 + (k + 1).
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• Term 4 (degenerate incidence correspondences) from 2.2.7:

By Proposition 2.2.25 and Proposition 2.2.26, we have that

dim B̃2 − α ≤ −2(n−m− (k − 2)− 1)

and

dim T̃2 − α ≤ −2(n−m− (d− k − 4)− 1).

• Term 5 (degeneracies involving Fn−m(Y )) from 2.2.8: If Y is contained in a smooth

hypersurface X ⊂ Pn of degree r, Theorem 4.3 on p. 266 of [25] implies that

dimFn−m(Y ) + dimC − α ≤ dimF (Y ) + dimC − α

= 2n− 3− r + (n−m)k + k − 1−m(n−m+ 1)

= (n−m)(k −m+ 1) + n+ k − r − 4

= −(n−m)(m− k − 1) + n+ k − r − 4

≤ −(n−m)(m− k − 1) + n+ k
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and

dimFn−m(Y ) + dimD − α ≤ dimF (Y ) + dimC − α

= 2n− 3− r + (n−m)(d− k − 2)

+ (d− k − 2)− 1−m(n−m+ 1)

= (n−m)((d− k − 2)−m+ 1) + n

+ (d− k − 2)− r − 4

= −(n−m)(m− (d− k − 2)− 1) + n

+ (d− k − 2)− r − 4

≤ −(n−m)(m− (d− k − 2)− 1) + n+ (d− k − 2).

• Variable size restrictions:

– d ≥ k + 3

– d− k − 1 ≤ n−m− 1

– k + 1 ≤ n−m− 1

– n−m ≤ m− 1

– d ≥ (n−m) + 2

Higher degree varieties (d− k − 1 > n−m− 1)

Most of the ideas in Section 2.2.3 carry over for the dimension estimates in the case where

d− k − 1 > n−m− 1. The key difference is that the extended Y − F (Y ) relation involves

different sets since a generic (d − k − 1)-tuple lying on an (n − m)-plane is not linearly

independent, but spans a linear subspace of dimension n−m in Pn. Let

J = {((p1, . . . , pd−k−1),Λ) ∈ V : pi distinct, dim p1, . . . , pd−k−1 = n−m}

and J̃ ⊂ J be the subset where Λ 6⊂ Y . Note that J = V \ T̃1. Finally, let T̃11 ⊂ T̃1 be the

subset with Λ 6⊂ Y and T12 ⊂ T̃1 be the subset with Λ ⊂ Y . In the notation below, we have
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that [T12] = [Fn−m(Y )][D] in K0(Vark).

The setup in Section 2.2.3 (p. 17 – 18) implies that

([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))]− [Q]− [T̃2]

−2[Fn−m(Y )]([(Pn−m)(k+1)]− [C])

= [V ]− [T̃ ]− [R̃]

= ([V ]− [T̃1])− [T̃2]− [R̃]

= ([V ]− [T̃1] + [Q] + [R̃])− [R̃]− [Q]− [T̃2]− [R̃]

Taking this into account and using the proof of Proposition 2.2.1 for the variables listed

below gives the following expression in K̂:

2[Fn−m(Y )]([(Pn−m)(k+1)]− [UConfd−k−1 Pn−m])

[G(n−m,n)]
(2.2.9)

=
([Y (k+1)]− [M ])[G(n−m+ 1− (k + 1), n+ 1− (k + 1))]

[G(n−m,n)]︸ ︷︷ ︸
Term 1

(2.2.10)

− [J ]

[G(n−m,n)]︸ ︷︷ ︸
Term 2

− [Q]

[G(n−m,n)]︸ ︷︷ ︸
Term 3

+
[B̃2]− [T̃2]

[G(n−m,n)]︸ ︷︷ ︸
Term 4

+
2[Fn−m(Y )]([C]− [D])

[G(n−m,n)]︸ ︷︷ ︸
Term 5

(2.2.11)

where

J = {((p1, . . . , pd−k−1),Λ) ∈ V : pi distinct, dim p1, . . . , pd−k−1 = n−m}.

Note that J = W \ B̃1 using the definition of B̃1 below. In this higher degree setting, we

take
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• D ⊂ (Pn−m)(d−k−1) is the set of (d − k − 1)-tuples of distinct points spanning

a linear subspace of dimension ≤ n − m − 1. This can also be embedded inside

UConfd−k−1 Pn−m, where UConfrX ⊂ X(r) denotes unordered r-tuples of distinct

points on X.

• C ⊂ (Pn−m)(k+1) is the set of linearly dependent (k + 1)-tuples of points in Pn−m

• B̃ = B̃1 t B̃2, where

B̃1 = {((p1, . . . , pd−k−1),Λ) ∈ W : pi distinct, , dim p1, . . . , pd−k−1 ≤ n−m− 1}

and

B̃2 = {((p1, . . . , pd−k−1),Λ) ∈ W : pi distinct, dim p1, . . . , pd−k−1 = n−m but

(Y ∩ Λ) \ {p1, . . . , pd−k−1} not a linearly independent (k + 1)-tuple, Λ 6⊂ Y }

• T̃ = T̃1 t T̃2, where

T̃1 = {((p1, . . . , pk+1),Λ) ∈ V : p1, . . . , pk+1 linearly dependent}

and

T̃2 = {((p1, . . . , pk+1),Λ) ∈ V : p1, . . . , pk+1 linearly independent but

(Y ∩ Λ) \ {p1, . . . , pk+1} not a (d− k − 1)-tuple spanning

an (n−m)-dimensional linear subspace ,Λ 6⊂ Y }

As in Section 2.2.3, our goal of this section is to compute the dimensions listed below.

The relative dimensions in K̂ are listed on p. 28 – 29.
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• dimM ≤ mk − 1 (Proposition 2.2.14)

• dimQ ≤ m+ (m− (n−m))(n−m) (Proposition 2.2.15)

• dim B̃2 ≤ −2(n−m− (k − 2)− 1) as a relative dimension in K̂ (Proposition 2.2.25)

• dim T̃2 = ∅ (Proposition 2.2.29)

• dimC = (n−m)k + k − 1 (Lemma 2.2.13)

• dimD = (n−m− 1)(d− k)− (d− k− 1) This follows from the proof of Lemma 2.2.13

in Section 2.2.3.

It suffices to show that there are m,n, d, k satisfying these inequalities along with the

following variable restrictions:

• d ≥ k + 3

• k + 1 ≤ n−m− 1

• n − m ≤ m − 1 (im-

plies that d − k − 1 >

n−m− 1)

• d ≥ (n−m) + 2

Since the variable restrictions are compatible with the setting of Proposition 2.2.25, we

only need to compute a bound for the relative dimension of T̃2. This follows from repeating

the same steps with a change in parameters.

Proposition 2.2.29. If Y ⊂ Pn is u-linearly generic for u ≤ d− k − 1 (Definition 2.2.24),

the first part of Proposition 2.2.21 implies that T̃2 = ∅.

Proof. In Theorem 2.2.19, we will take λ ≤ n−m− 2. Since we assumed that d− k− 1 > n

in Part 2 of Theorem 2.1.7, the locus in question is empty since the total space is Pn−λ−1

and the codimension is (d−k−1)((n−m)−λ−1). The convention in Remark 2.2.20 implies

that T̃2 = ∅.

Combining this with Proposition 2.2.22 and Proposition 2.2.25, we obtain the following

dimensions for the degeneracy loci:
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• dimM ≤ mk − 1 (Proposition 2.2.14)

• dimQ ≤ m+ (m− (n−m))(n−m) (Proposition 2.2.15)

• dim B̃2 ≤ 2(n−m− (k − 2)− 1) as a relative dimension in K̂ (Proposition 2.2.25)

• T̃2 = ∅ (Proposition 2.2.29)

• dimC = (n−m)k + k − 1 (Lemma 2.2.13)

• dimD = (n−m− 1)(d− k)− (d− k− 1) This follows from the proof of Lemma 2.2.13

in Section 2.2.3.

Before computing the relative dimensions, we write give a higher degree counterpart to

Proposition 2.2.27 for (d− k − 1)-tuples.

Proposition 2.2.30. In K0(Vark), the classes [C] and [D] are polynomials in L.

Proof. Since C is defined in the same way as the low degree case, it remains to consider D,

which considers (d−k−1)-tuples which aren’t necessarily linearly independent. This means

that we need to add the condition that the points of Pn−m corresponding to columns of the

matrices considered are distinct. However, the underlying recursion argument is identical to

that used in Proposition 2.2.27.

Given u ≤ r, let Ku,n,r ⊂ (Pn)(r) be the locally closed subset of r-tuples of distinct

points of Pn which form the columns of an (n + 1) × r matrix of rank u. The reasoning

in the proof of Proposition 2.2.27 [Ku,n,r] = [G(u − 1, n)][Ku,u−1,r] in K0(Vark). We fix

the linear subspace spanned by the columns of the matrix and consider coordinates of the

columns with respect to a fixed basis of this linear subspace.

As in Proposition 2.2.27, the definition of Ku,n,r implies that
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[Ku,u−1,r] = [UConfu−1 Pn−m]−
u−1∑
v=1

[Iv,u−1,r]. (2.2.12)

where UConfrX ⊂ X(r) denotes unordered r-tuples of distinct points on X.

For each 1 ≤ v ≤ u − 1, the same reasoning as above implies that [Kv,u−1,r] = [G(v −

1, u− 1)][Kv,v−1,r] and

[Kv,v−1,r] = [UConfr Pv−1]−
u−1∑
w=1

[Kw,v−1,r].

In each step of this recursion, the indices a, b in Ka,b,r are strictly smaller than those

in the previous step. So, this process must stop after a finite number of steps. Since

[K1,b,r] = 0 as we’re considering distinct points of Pn−m and [K2,b,r] = [G(1, b)][K2,1,r] =

[G(1, b)][UConfr P1], the reduction [Ku,n,r] = [G(u − 1, n)][Ku,u−1,r] followed by induction

on u in Ku,u−1,r via the recursion 2.2.12 implies that [Ku,n,r] is a polynomial in L for each

u ≤ r ≤ n+ 1 if the unordered configuration spaces UConfr Pn−m are polynomials in L.

We can show this using the standard decomposition of projective space into affine spaces.

A bijection of rational points implies that

[UConfrX] =

 ⊔
i+j=r

(UConfiA× UConfj B)

 =
∑
i+j=r

[UConfiA][UConfj B]

if X = A tB with A and B locally closed in X. This reduces the question to showing that

UConfr Lk is a polynomial in L, which follows from Lemma 2.2.31.

Since

[C] = [(Pn−m)(k+1)]− [Kk+1,n−m,r]
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and

[D] = [UConfd−k−1 Pn−m]− [Kd−k−1,n−m,r],

they must also be polynomials in L.

Here is the proof of the lemma used in the proof of Proposition 2.2.30. The main idea is

to split to squared and squarefree parts.

Lemma 2.2.31. Let K be a field of characteristic 0 and X be an affine variety over K.

There is a recursive formula for the class of UConfnX in K0(VarK):

[UConfnX] = [SymnX]−
∑
k≥1

[UConfn−2kX][SymkX]

Note that we use the convention [UConf0X] = 1.

Proof. This follows the strategy outlined in the proof of Theorem 1.2 on p. 4 of [14] (proof

on p. 7 – 9). The main difference is that SymnX 6∼= Xn for arbitrary varieties X if we don’t

assume X = An or X = Pn. Our assumption that X is affine is used to show that its image

under the diagonal map is closed (i.e. X is separated) and that the topology on Xn/Sn is

the quotient topology.

Given an element of Xn, let r be the number of distinct elements (written x1, . . . , xr)

and mi be the multiplicity of xi (i.e. the number of times xi appears). Let Qk be the subset

of Xn such that
∑r
i=1

⌊mi
2

⌋
≥ k. This is an analogue of polynomials of degree n such that

the squarefree part has degree ≤ n − 2k (preimage of m = 1 and n = 2 case of R
d,m
n,k in p.

7 of [14]). Note that this is preserved under the action of Sn on Xn which permutes the

coordinates.
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We claim that Qk ⊂ Xn is closed. Continuing to put m = 1 and n = 2 in the proof in [14],

let S be the set of injections σ : {1, 2} × {1, . . . , k} ↪→ {1, . . . , n} such that σ(1, a) < σ(1, b)

if a < b and σ(1, j) < σ(2, j) for each 1 ≤ j ≤ k. The first coordinate corresponds to the

“copy” of the squared polynomial h in f = gh2 with g squarefree for a particular polynomial

f . The condition that σ(1, a) < σ(1, b) means that we only count which k-tuples of slots

occupied by the roots rather than the particular order that the roots are placed. Similarly,

the relative ordering of roots in the first and second copy of h is fixed by the condition

σ(1, j) < σ(2, j).

Consider the sets Lσ := {xσ(1,b) = xσ(2,b)∀1 ≤ b ≤ k} ⊂ Xn. This matches up k of

the roots in the two copies of h in some particular collection of slots corresponding to the

embedding σ. For a fixed value of b, the points of Xn satisfying the condition are isomorphic

to a product of Xn−2 with the diagonal ∆X ⊂ X2. Note that ∆X ⊂ X2 is closed since X

is affine (and therefore separated). This means that Lσ is an intersection of closed subsets

of Xn, which is closed. The connection to the claim above is that Qk =
⋃
σ∈S Lσ. This is

because we need to match up at least k pairs to obtain an element of Qk and the condition

defining Lσ implies that
∑r
i=1

⌊mi
2

⌋
≥ k for any element of

⋃
σ∈S Lσ ⊂ Xn. Since Qk

is a finite union of closed sets, it is closed. Finally, this implies that Qk/Sn is closed in

Xn/Sn = SymnX since the topology on quotients of affine varieties by finite groups is the

quotient topology (e.g. see Proposition 1.1 in [30]).

Let Rk = Qk/Sn ⊂ Xn/Sn. We claim that the map

ϕ : UConfn−2kX × SymkX ⊂ Symn−2kX × SymkX −→ Rk \Rk+1 ⊂ SymnX

induced by the map

Xn−2k ×Xk −→ Xn
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sending ((x1, . . . , xn−2k), (y1, . . . , yk)) 7→ ((x1, . . . , xn−2k), (y1, . . . , yk), (y1, . . . , yk)) gives a

bijection of rational points in k. Note that ϕ is not an isomorphism even in the case X = A1

as mentioned on p. 8 of [14]. It is clear that ϕ is surjective over k. The map ϕ is also

injective since the (unordered) repeated k-tuple and additional n−2k points (of multiplicity

1) added uniquely determine an element of Rk \ Rk+1. Thus, ϕ gives a bijection of k-

rational points. By Proposition 1.4.11 on p. 65 of [4], this implies that ϕ is a piecewise

isomorphism and [UConfn−2kX][SymkX] = [Rk]− [Rk+1]. Since [UConfnX] = [R0]− [R1]

and R0 = SymnX, we can add all the terms to obtain the statement in the proposition.

Example 2.2.32.

[UConf1X] = [X]

[UConf2X] = [Sym2X]− [X]

[UConf3X] = [Sym3X]− [Conf2X]− [X]

= [Sym3X]− [X]2 + [X]− [X]

= [Sym3X]− [X]2

All the dimensions here are equal to or bounded above by the dimensions of the analogous

degeneracy loci from Section 2.2.3. Taking α = dimG(n−m,n), substituting in these bounds

gives the following relative dimensions in K̂ of terms in the beginning of Section 2.2.3:

• Term 1 and 2 from lines 2.2.10 and 2.2.11:

– Main terms [Y (k+1)][G(n−m+ 1− (k + 1), n+ 1− (k + 1))] and [J ]:

dimY (k+1) + dimG(n−m+ 1− (k + 1), n+ 1− (k + 1))− α

= m(k + 1) +m(n−m− k)−m(n−m+ 1)

= 0
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For the second term, we have that

dim J − α = α− α = 0

since the projection map J −→ G(n−m,n) sending

((p1, . . . , pd−k−1),Λ) 7→ Λ

is surjective and has finite fibers.

– Degenerate terms [M ][G(n−m+ 1− (k + 1), n+ 1− (k + 1))] and [K]:

dimM + dimG(n−m+ 1− (k + 1), n+ 1− (k + 1))− α

≤ mk − 1 +m(n−m− k)−m(n−m+ 1)

= −m− 1

• Term 3 (tangent planes) from line 2.2.11

dimQ− α ≤ S = m+ (m− (n−m))(n−m)−m(n−m+ 1)

= m+ (m− (n−m))(n−m)−m(n−m)−m

= −(n−m)2

• Term 4 (degenerate incidence correspondences) from line 2.2.11:

By Proposition 2.2.25, Proposition 2.2.29, and Proposition 2.2.22, we have that

dim B̃2 − α ≤ −2(n−m− (k − 2)− 1)
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and

dim T̃2 − α = −m(n−m+ 1).

• Term 5 (degeneracies involving Fn−m(Y )) from line 2.2.11: Suppose that Y is con-

tained in a general complete intersection X of hypersurfaces of degrees d1, . . . , ds in

Pn, covered by lines, and that a finite number of lines pass through a general point of

Y . Then, Theorem 2.3 on p. 4 of [10] implies that

dimFn−m(Y ) + dimC − α ≤ m(n−m+ 1)−
s∑
i=1

(
di + n−m
n−m

)
+ (n−m)k + k − 1−m(n−m+ 1)

= −
s∑
i=1

(
di + n−m
n−m

)
+ (n−m)k + k − 1

and

dimFn−m(Y ) + dimD − α ≤ m(n−m+ 1)−
s∑
i=1

(
di + n−m
n−m

)
+ (n−m− 1)(d− k)− (d− k − 1)

−m(n−m+ 1)

= −
s∑
i=1

(
di + n−m
n−m

)
+ (n−m− 1)(d− k)− (d− k − 1)

Note that s ≤ n − m − 1. We can use bounds on binomial coefficients to study

the sizes of the dimensions above.For example, suppose that di � n − m for each

i and use the inquality
(mn
n

)
≥ m(n−1)+1

(m−1)(m−1)(n−1)n
−1

2 ≥ mnn−
1
2 for each m ≥ 2 and

n ≥ 1 (Problem 10819 on p. 652 of [26], p. 2 of [34]) to obtain bounds on suitable

variables. Let r = n − m. If di = ar for each i, it suffices to have k < s · arr−
3
2

since s · arr−
1
2 > r · k ⇐⇒ k < s · arr−

3
2 . This means that the degeneracy term
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involving C in 2.2.11 approaches 0 in K̂ as (n −m) → ∞. The relative dimension of

the term involving D in 2.2.11 may still be large unless n −m = 1, in which case we

can substitute in (ar)s for d and obtain suitable bounds.

• Variable size restrictions:

– d ≥ k + 3

– d− k − 1 > n−m− 1

– k + 1 ≤ n−m− 1

– n−m ≤ m− 1

– d ≥ (n−m) + 2

2.3 Limits in K̂

The purpose of this section is to combine the dimension computations from Section 2.2.3

and Section 2.2.3 (the relative dimension versions at the end of these sections (Definition

2.2.10)) to obtain the limits in Part 1 and Part 2 of Theorem 2.1.7 in K̂.

2.3.1 Low degree nondegenerate varieties (d− k − 1 ≤ n−m− 1)

We first apply dimension counts to limits in the low degree setting d− k − 1 ≤ n−m− 1.

Afterwards, we substitute the dimensions into the extended Y − F (Y ) relation to obtain a

limit in K̂ (Part 1 of Theorem 2.1.7). Recall that we have the following relative dimensions

(i.e. dimensions in K̂) and restrictions on variables involved:

• Terms 1 and 2 from lines 2.2.5 and 2.2.7:

– Main term: 0

– Degenerate terms:

∗ Using M : ≤ −m− 1

∗ Using N : ≤ −m− 1

• Term 3 from line 2.2.7:
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– dimP ≤ −m− 1 + (d− k − 1) (Proposition 2.2.15)

– dimQ ≤ −m− 1 + (k + 1) (Proposition 2.2.15)

• Term 4 (degenerate incidence correspondences) from line 2.2.7:

– dim B̃2 ≤ −2(n−m− (k − 2)− 1)

– dim T̃2 ≤ −2(n−m− (d− k − 4)− 1)

• Term 5 (degeneracies involving Fn−m(Y )) from line 2.2.8:

If Y is contained in some general hypersurface of degree e, then

dimFn−m(Y ) + dimC ≤ −(n−m)(m− k − 1) + n+ k

< −(n−m)(m− k − 1) + 2m+ k

and

dimFn−m(Y ) + dimD ≤ −(n−m)(m− (d− k − 2)− 1) + n+ (d− k − 2)

< −(n−m)(m− (d− k − 2)− 1) + 2m+ (d− k − 2)

since we assumed that n−m ≤ m− 1. Note that our variable restrictions imply that

m > k + 1 and m > d− k − 2.

• Variable size restrictions:

– d ≥ k + 3

– d− k − 1 ≤ n−m− 1

– k + 1 ≤ n−m− 1

– n−m ≤ m− 1

– d ≥ (n−m) + 2

In order for the dimensions of the degenerate loci in Terms 1, 2, and 4 (from lines 2.2.5,

2.2.7) to approach −∞, it suffices to have m→∞ and n−m→∞ as k →∞ “reasonably
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quickly”. Note that the dimension of Term 3 approaches −∞ since n − m is much larger

than d − k − 1, k + 1, or m − 1 under the assumptions of Part 1 of Theorem 2.1.7. For

Term 5, it suffices to take m − k → ∞ and m − (d − k − 2) → ∞ as k → ∞ if we assume

that (n −m) − k → ∞. Note that these are consistent with our variable restrictions since

substituting in the fourth restriction to the second and third ones imply that d−k−1 ≤ m−2

and k+1 ≤ m−2. Putting the ranges above together gives the limit from Part 1 of Theorem

2.1.7 in K̂.

Remark 2.3.1. In the example values, we chose d = (n−m) + b
√
kc to ensure that Y is a

nondegenerate variety since d ≥ 2 + (n−m) if Y is nondegenerate and not a rational normal

scroll or Veronese surface. Note that the Veronese surfaces do not affect what happens in the

limit. The main purpose is to find parameters which may apply to a more varied collection

of varieties. It is clear that the sample values given satisfy the variable restrictions above.

We end with further details on Example 2.1.6 from the introduction.

Example 2.3.2. (Low degree examples for Part 1 of Theorem 2.1.7 from Example 2.1.6:

Linear subspaces contained in scrolls and (hyper)quadric fibrations)

There is a classification of smooth m-dimensional varieties Y ⊂ Pn of degree d ≤ 2(n−m)+1

not contained in a hyperplane (i.e. nondegenerate). We will only consider varieties where

the dimension m can be arbitrarily large and contain (n−m)-planes (Theorem I on p. 339

of [23]). Two of the three families of such varieties (excluding quadric hypersurfaces and Pn)

which can take an arbitrarily large dimension with d ≤ 2(n−m) + 1 are scrolls over curves

or surfaces and (hyper)quadric fibrations. When the base of these scrolls and (hyper)quadric

fibrations is P1, we can make some concrete observations on the Fano varieties of k-planes

on these varieties.

In the case of scrolls over P1, we have a complete description (Proposition 2.2 on p. 4066

of [27]). The k-planes contained in such a scroll are either contained in a (k−1)-plane inside
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the fiber of the defining projection map or the span of lines involved in the construction of

the scroll as the span of a collection of rational normal curves. Theorem 1.5 on p. 511 of [29]

gives a fiberwise embedding of any (hyper)quadric fibration X −→ P1 (paired with a very

ample line bundle L) over P1 into a projective bundle P(E) over P1 which connects these

(hyper)quadric fibrations to scrolls over P1.

Recall that a scroll P(E) over P1 can also be defined as the image of a vector bundle over

P1 with a particular embedding OP(E)(1) into projective space (p. 5 of [10]). We also have

that the restriction of the tautological line bundle on P(E) to X is equal to L (equation 1.0.3

on p. 509 of [29]). These two embeddings can be combined to study linear subspaces of X

via their images in the scroll over P1. This can likely be translated into a concrete problem

since scrolls over P1 can also be defined as the vanishing locus of 2 × 2 minors of a certain

matrix (Exercise 9.11 on p. 106 of [18]).

2.3.2 Higher degree varieties (d− k − 1 > n−m− 1)

The same reasoning as Section 2.3.1 can be used to obtain the limit from Part 2 of Theorem

2.1.7 in K̂. Also, the limit in Part 2 of Theorem 2.1.7 has a particularly simple expression

when we apply the point counting motivic measure and assume some divisibility conditions.

Definition 2.3.3. (Definition 4.3.4 on p. 112 of [4])

A motivic measure µ with values in a ring A is separated if there is a morphism of rings

µ :Mk −→ A such that µ(X) = µ([X]) for each k-variety X. This is equivalent to a motivic

measure µ : K0(Vark) −→ A satisfying the following conditions:

• µ(L) ∈ A×

• µ̃(F∞Mk) = 0, where µ̃ : Mk −→ A is the unique ring homomorphism such that
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µ̃([X]L−i) = µ(X)µ(L)−i.

Proposition 2.3.4. The extended point counting motivic measure µ : K0(Vark) −→ Q

sending [X] 7→ #X(Fq) is separated.

Now that we have some idea of how motivic measures of K0(VarK) interact with the

completion K̂, we will give a proof of Corollary 2.1.10.

Proof. (Proof of Corollary 2.1.10)

We will write # in place of the notation #q,e from Corollary 2.1.10 for the Fqe-point count.

Recall from Section 2.2.3 that

J = {((p1, . . . , pd−k−1),Λ) ∈ W : pi distinct, dim p1, . . . , pd−k−1 = n−m}.

First consider the subset J̃ ⊂ J coming from points of G(n −m,n) \ B, where B = {Λ ∈

G(n−m,n) : Λ tangent to Y }. By Proposition 2.2.15, we have that

dimB ≤ m+ (m− (n−m))(n−m).

This means that
#B(Fqe)

#G(n−m,n)(Fqe)
= O(q−e((n−m)2

). Our assumption that e >
( d
d−k−1

)
im-

plies that
( d
d−k−1

) #B(Fqe)

#G(n−m,n)(Fqe)
→ 0 in the limit (which takes (n −m) → ∞). This also

takes care of elements of J \ J̃ where Λ 6⊂ Y . Before moving to elements of J \ J̃ , we will

continue to obtain point counts for elements of J with Λ 6⊂ Y .

The preimage of each point of G(n−m,n) \B is a collection of d points over Fq. What

we would like to find are (d−k−1)-tuples of points on Y lying on a given (n−m)-plane that

are invariant under the action of Gal(Fq/Fq). Our assumption on Fq-irreducible components

of (d− k − 1)-tuples lying on Y ∩ Λ implies that there are no Fqe-points coming from J by

the following modification of the Lang–Weil bound applied to Fq-irreducible components of
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Y ∩ Λ for each Λ ∈ G(n−m,n) \B.

Proposition 2.3.5. (Modified Lang–Weil bound, Proposition 3.1 on p. 6 of [31])

Suppose that K = Fq is a finite field and let X ⊂ Pnk be an irreducible closed subvariety of

degree d and dimension r. Denote by Γ = {W1, . . . ,Wm} the set of irreducible components

of Xk = X ×k k.

There are positive constants cX and c′X such that for every e ≥ 1, we have


|#X(Fqe)−mqer| ≤

(d−m)(d−2m)
m qe(r−

1
2) + cXq

e(r−1) if m|e and

#X(Fqe) ≤ c′Xq
e(r−1) if m - e.

Furthermore, if X is smooth over Fq, then we may take c′X = 0 and cX to only depend

on n, d, and r (but not on X or on k).

If N |e in Corollary 2.1.10, then we use the first part of Proposition 2.3.5. Note that the

degree of a finite set as a variety is its cardinality. Alternatively, a simpler method for finding

Fq-points of (d− k− 1)-tuples of Y lying on Y ∩Λ for some fixed Λ ∈ G(n−m,n) \B is to

count collections of Gal(Fq/Fq)-orbits of points on d Y ∩ Λ which have cardinality adding

to d− k − 1.

In the 0-dimensional case, the number of Fq-irreducible components (denoted m in Propo-

sition 2.3.5) is the number of Fq-points. This applies to our setting since π−1(Λ) is finite for

all Λ ∈ G(n−m,n) \B even over the algebraic closure. Since 1 ≤ #π−1(Λ)(Fq) ≤
( d
d−k−1

)
for each Λ ∈ G(n − m,n) \ B, we have that m|e for any Λ if e is divisible by

( d
d−k−1

)
!.

After base changing π−1(Λ)Fq to Fqe , we end up with the same number of points as in the

algebraic closure Fq (see proof of Proposition 3.1 on p. 6 of [31]). Putting together the

“irreducible components” (which are really just Fq-points), we find that the number of Fqe-

points in π−1(Λ) is
( d
d−k−1

)
for each Λ ∈ G(n −m,n) \ B. In general, we add the number

of geometric points in each Gal(Fq/Fq)-orbit whose size divides e to get the total number of
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Fqe-points in π−1(Λ).

We finally consider point counts of elements of J such that Λ ⊂ Y . These come from

Λ ∈ Fn−m(Y ) and the pi represent (d − k − 1)-tuples on an (n −m)-plane Λ ∈ Fn−m(Y )

which span the entire plane Λ. To do this, we compare point counts of linearly indepen-

dent (k+1)-tuples and (d−k−1)-tuples lying on an (n−m)-plane to find an approximation.

Since T̃1 = ∅ by Proposition 2.2.29, the (d − k − 1)-tuples in question must span an

(n−m)-plane. We will also omit (n−m)-planes which contain linearly dependent (k + 1)-

tuples since terms associated to them approach 0 in the completion. Note that every element

of Ã (linearly independent (k + 1)-tuples in Y contained in an element of Fn−m(Y )) comes

a (d − k − 1)-tuple in Y spanning an (n − m)-plane of J̃ \ J . For each element of R̃, we

have
(d−k−1
k+1

)
possible choices of (k + 1)-tuples. However, we also need to take into account

redundancies by determining the space of (d − k − 1)-tuples in Y spanning an (n − m)-

plane in Fn−m(Y ) which contain a given linearly independent (k+ 1)-tuple in Y paired with

an (n − m)-plane in Fn−m(Y ) containing it. This is the space of (d − 2k − 2)-tuples in

Pn−m \ {k points} spanning an (n−m)-plane.

Given the point count for Ã, this gives an approximate count

#Ã(Fqe)

≈
(d−k−1
k+1

)
#R̃(Fqe)

#{((p1, . . . , pd−2k−2),Λ) : distinct pi ∈ Pn−m, dim p1, . . . , pd−2k−2 = n−m}(Fqe)
,

where the denominator parametrizes (d− k − 1)-tuples containing a fixed (k + 1)-tuple.

This denominator can be approximated by UConfd−2k−2(Pn−m \ {k + 1 points}.
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From the point of view of #R̃(Fqe), this means that

#R̃(Fqe)

≈
#{((p1, . . . , pd−2k−2),Λ) : pi distinct in Pn−m, dim p1, . . . , pd−2k−2 = n−m}(Fqe)(d−k−1

k+1

)
·#Ã(Fqe).

An upper bound would be given by # UConfd−2k−2(Pn−m \ {k + 1 points})(Fqe). We

compute this recursively in Lemma 2.2.31. For a more precise estimate, one could at-

tempt to follow the steps of Proposition 2.2.30 to compute the class of distinct points of

Pn−m \ {k + 1 points} spanning an (n−m)-plane.

We can consider the ratio between point counts of V \ ˜̃R and W \ ˜̃A, where
˜̃
R ⊂ V is the

subset of (d−k−1)-tuples of distinct points lying in an (n−m)-plane contained in Y paired

with this plane and
˜̃
A ⊂ W denotes (k + 1)-tuples of distinct points lying in an (n − m)-

plane contained in Y . Applying the proof of Proposition 2.2.1, we obtain a correspondence

between elements of W \ ˜̃A and those of V \ ˜̃R.

The two ratios of point counts can be used to compare the point count of V with that of

W . Writing #X := X(Fqe), the dimension counts in the proof of Theorem 2.1.7 imply that
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#V

#W
=

#V −#
˜̃
R

#W
+

#
˜̃
R

#W

=
#V −#

˜̃
R

#W −#
˜̃
A
· #W − ˜̃A

#W
+
˜̃
R

#
˜̃
A
· #

˜̃
A

#W

= 1 ·

1− #
˜̃
A

#W

+
˜̃
R

#
˜̃
A
· #

˜̃
A

#W

=
(

1−Θ(qe((k+1)(n−m)+dimFn−m(Y )−m(n−m+1)))
)

+ Θ(qe(n−m)(d−2k−2)) ·Θ(qe((k+1)(n−m)+dimFn−m(Y )−m(n−m+1)))

= 1 + Θ(qe(n−m)(d−2k−2))(Θ(qe((k+1)(n−m)+dimFn−m(Y )−m(n−m+1)))− 1)

= Θ(qe((n−m)(d−k−1)+dimFn−m(Y )−m(n−m+1))).

Note that #
˜̃
A and #

˜̃
R are polynomials in q which can be written in terms of multinomial

coefficients (see Remark 2.2.28, proofs of Proposition 2.2.27 and Proposition 2.2.30). Recall

that d − k − 1 � n in Part 2 of Theorem 2.1.7. This means that #V
#W is very large. Since

the limit is taken as n−m→∞ and all the other variables are taken to be functions of the

codimension n−m, the term is dominated by large powers of q. Let u = #V
#W . Substituting

#V = u#W into in [W ]− [B̃]− [Ã] = [V ]− [R̃]− [T̃ ] in Proposition 2.2.1, the point counts

are

#W −#Ã−#B̃ = #V −#R̃−#T

#W −#Ã−#B̃ = u#W −#R̃−#T

−#R̃−#T̃ = (1− u)#W −#Ã−#B̃.

At this point, we can either group the terms W , Ã, and B̃1 together to use the point
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count J \ J̃ above or estimate point counts of individual terms on the right hand side. The

first method gives the following decomposition.

−#R̃−#T̃ = (1− u)#W −#Ã−#B̃

= (1− u)(#W −#Ã−#B̃1)

−u#Ã− u#B̃1 −#B̃2

⇒ − #R̃

#G(n−m)
− #T̃1

#G(n−m,n)
− #T̃2

#G(n−m,n)

=
(1− u)(#W −#Ã−#B̃1)

#G(n−m,n)
− u#Ã

#G(n−m,n)
− u#B̃1

#G(n−m,n)
− #B̃2

#G(n−m,n)

The terms #R̃ and Ã can be expressed in terms of #Fn−m(Y ) and polynomials in q

since [R̃] and [Ã] are [Fn−m(Y )] multiplied by a product in L. Also, note that the lim-

iting estimate #W−#Ã−#B̃1
#G(n−m,n)

is given by that of
#J\J̃

#G(n−m,n)
above. Since #T̃2

#G(n−m,n)
and

#B̃2
#G(n−m,n)

vanish in the limit as (n −m) → ∞, it remains to find estimates for #T̃1 and

#B̃1 (which parametrize incidence correspondences of linearly dependent (k+ 1)-tuples and

(d− k− 1)-tuples with linear span of dimension ≤ n−m− 1 respectively). Note that terms

which involve (n−m)-planes Λ ⊂ Y can be absorbed into #R̃ and #Ã to get #
˜̃
R and #

˜̃
A.

Then, the proof of Proposition 2.2.29 implies that there are no terms of B̃1 with Λ 6⊂ Y and

#T̃1 = Θ(qkm−(n−m−k+1)) by Proposition 2.2.21 with λ = k − 2.

Substituting in the dimension estimates along with the subset D of (d− k− 1)-tuples in

Pn−m spanning a linear subspace of dimension ≤ n − m − 1 and the subset C of linearly

independent (k + 1)-tuples (whose classes in K0(VarK) a polynomial in L by Proposition

2.2.27 and Proposition 2.2.30), we find that
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− #R̃

#G(n−m)
− #T̃1

#G(n−m,n)
− #T̃2

#G(n−m,n)
=

(1− u)(#W −#Ã−#B̃1)

#G(n−m,n)

− u#Ã

#G(n−m,n)
− u#B̃1

#G(n−m,n)
− #B̃2

#G(n−m,n)

and

−
#q,eFn−m(Y )(#q,e UConfd−k−1(Pn−m)−#q,eD)

#q,eG(n−m,n)
−Θ(qkm−(n−m−k+1)−m(n−m+1))

−
#q,eT̃2

#q,eG(n−m,n)

= (1− u)α−
u#q,eFn−m(Y )((#q,ePn−m)(k+1) −#q,eC)

#q,eG(n−m,n)

−
#q,eB̃2

#q,eG(n−m,n)
,

where 0 ≤ α ≤
( d
d−k−1

)
with α = 0 if N - e for each N ∈ TΛ from Λ ∈ G(n−m,n) such

that |Y ∩Λ| = d (see Corollary 2.1.10) and α =
( d
k+1

)
if e is divisible by

( d
d−k−1

)
! (Proposition

2.3.5). Note that u = 1−β+βf , where β = Θ(qe((k+1)(n−m)+dimFn−m(Y )−m(n−m+1))) and

f is a rational function in qe determined by
[
˜̃
R]

[
˜̃
A]

, which is a rational function in L of degree

(k + 1)(n−m) + dimFn−m(Y )−m(n−m+ 1). Given a fixed q, this implies that

lim
n−m→∞

#q,eFn−m(Y )(#q,e UConfd−k−1(Pn−m)−#q,eD − u#q,e(Pn−m)(k+1) + #q,eC)

#q,eG(n−m,n)

+(1− u)α + γ = 0

in the limit for some γ = Θ(qe(km−(n−m−k+1)−m(n−m+1))) that varies with the initial

parameters, which are all functions of n−m.
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Remark 2.3.6.

1. This reasoning with divisibility conditions does not imply that #Y (k+1)(Fqe) = 0

since the divisibility conditions in Corollary 2.1.10 from Proposition 2.3.5 are used on

Fq-irreducible components of (d− k − 1)-tuples, not (k + 1)-tuples.

2. The divisibility condition in Corollary 2.1.10 from Proposition 2.3.5 is least restrictive

when e is prime. Equality holds exactly when the size of each Fq-irreducible component

is 1 for each Λ ∈ G(n −m,n) such that |Y ∩ Λ| = d. For example, this would occur

if the map J −→ G(n −m,n) is a piecewise trivial fibration above its image instead

of just being a covering map. Note that this requires checking images over non-closed

points of G(n−m,n).

3. In Theorem 2.1.7, the connection between variations of Fq-point counts with the cov-

ering map J −→ G(n−m,n) is that the monodromy action induced could be involved

in studying how the point count above is distributed among conjugacy classes of the

action of Frobenius on general (n−m)-plane sections of Y (see [12]).

4. A natural question to ask is what the distribution of point counts of J behave if we

impose additional geometric restrictions on the type of variety Y while varying the

codimension, dimension and degree.

5. Part 2 of Theorem 2.1.7 can be applied to any separated motivic measure in place

of finite field point counts. For example, the following result implies that we can use

the étale representation for the Euler characteristic (interpreted as graded respresen-

tations):

Proposition 2.3.7. (Corollary 4.3.9 on p. 113 of [4])
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The étale motivic measure χét : K0(Vark)[L−1] −→ K0(RepGk Ql) given by

χét(X) =
∑
n≥0

(−1)n[Hn
ét(X ⊗k k

s,Ql)]

for separated k-varieties X (p. 95 of [4]) is a separated motivic measure.

Here is an example of varieties where the point count above and Part 2 of Theorem 2.1.7

applies.

Example 2.3.8. (High degree examples for Part 2 of Theorem 2.1.7 from Example 2.1.9:

Complete intersections of generic hypersurfaces of large degree)

We can analyze the relative sizes of the variables to show that there are many terms where

the relative dimensions of the main term involving the Fano (n −m)-planes do not vanish

in the completion unlike the linear dependence non-generic terms. Suppose that Y ⊂ Pn

is general a complete intersection. Since dimY = m, this means that Y is a complete

intersection of n−m hypersurfaces. By Theorem 2.4 on p. 4 of [10], we have that

dimFn−m(Y ) = m(n−m+ 1)−
n−m∑
i=1

(
di + n−m
n−m

)
.

The relative dimension (Definition 2.2.10) of

[Fn−m(Y )]([(Pn−m)(k+1)]− [(Pn−m)(d−k−1)])

[G(n−m,n)]

is then

(d− k − 1)(n−m)−
n−m∑
i=1

(
di + n−m
n−m

)
.

If the degrees di are sufficiently large, then the first term involving Fano (n−m)-planes

Part 2 of Theorem 2.1.7 (a multiple of the term above) does not vanish in the limit. Taking

the point sample size k � n−m means that complete intersections of generic hypersurfaces
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of large degree (relative to n−m) which are u-linearly generic for u ≤ d−k−2 give examples

where Part 2 of Theorem 2.1.7 applies.
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CHAPTER 3

CHARACTERIZING CUBIC HYPERSURFACES VIA

PROJECTIVE GEOMETRY

We use the cut and paste relation [Y [2]] = [Y ][Pm]+L2[F (Y )] in K0(Vark) of Galkin–Shinder

for cubic hypersurfaces arising from projective geometry to characterize cubic hypersurfaces

of sufficiently high dimension under certain numerical or genericity conditions. Removing the

conditions involving the middle Betti number from the numerical conditions used extends

the possible Y to cubic hypersurfaces, complete intersections of two quadric hypersurfaces,

or complete intersections of two quartic hypersurfaces. The same method also gives a family

of other cut and paste relations that can only possibly be satisfied by cubic hypersurfaces.

3.1 Introduction

The main objective of this note is to provide a characterization of cubic hypersurfaces using

projective geometry under certain numerical/genericity conditions. This characterization

is based on satisfying a relation of Galkin–Shinder (Theorem 5.1 on p. 16 of [16]) in the

Grothendieck ring of varieties K0(Vark) called the Y −F (Y ) relation. Given a reduced cubic

hypersurface Y ⊂ Pm+1 and its Fano variety of lines F (Y ) ⊂ G(1,m+ 1), it states that

[Y [2]] = [Y ][Pm] + L2[F (Y )] (equivalently [Y (2)] = (1 + Lm)[Y ] + L2[F (Y )] )

in K0(Vark), where Y [2] is the Hilbert scheme of two points on Y and Y (2) is the second

symmetric product. The general idea is to pair distinct points of Y parametrizing a line with

the third pont of intersection and the line defined by the initial pair of points. Here, the

terms involving F (Y ) come from removing instances where the lines involved are contained

in Y . We assume that k is an algebraically closed field of characteristic 0. As it turns out,

the method we use is not unique to this relation and we indicate other relations in K0(Vark)
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which can fill this role. Some examples in lower dimensions are given in the final section.

We give some context connecting this characterization to the overall structure ofK0(Vark).

Most work on the general structure of K0(Vark) or specific subrings generated by certain

types of varieties focus on the space of possible relations (e.g. whether L is a zerodivisor).

Instead, we focus on the converse question of what varieties satisfy a given relation. While

this can be approached using existing work on varieties known to satisfy Larsen–Lunts’ cut

and paste property (e.g. varieties containing finitely many rational curves in Theorem 6.3.7

on p. 142 of [4] although known to be false in general) or the graded ring associated to

K0(Vark) [26] via birational equivalence classes, there does not seem to be much known

outside of these settings. We start to explore this in the case of Galkin–Shinder’s Y −F (Y )

relation (Theorem 5.1 on p. 16 of [16]).

Question 3.1.1. (Farb)

Given a closed subvariety Y ⊂ Pn of dimension m ≥ 1, let F (Y ) ⊂ G(1, n) be the Fano

variety of lines parametrizing lines in Pn contained in Y . If Y satisfies the Y − F (Y )

relation, is it a cubic hypersurface?

In Section 3.2.1, we address this question given some numerical/concrete topological

conditions on the variety (Theorem 3.1.2) which can be relaxed if we assume Hartshorne’s

conjecture or the Debarre–de Jong conjecture (Remark 3.1.3).

Theorem 3.1.2. Let k be a field of characteristic 0 such that k = k. Let Y ⊂ Pn be a

nondegenerate, irreducible, smooth projective variety over k of dimension m and degree d

satisfying one of the following conditions:

a. d ≤ n
4 , or

b. Y can be defined by ≤ n
2 equations of degree ≤ n

2 .
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Suppose that Y is not a 1-dimensional family of quadrics or a 2-dimensional family of

(projective) (m − 2)-planes (each isomorphic to Pm−2). If m ≥ 7, then the first condition

implies the second.

1. Y satisfies the Y − F (Y ) relation [Y [2]] = [Y ][Pm] + L2[F (Y )]

2. Y is a cubic hypersurface, the intersection of two quadric hypersurfaces, or the in-

tersection of two quartic hypersurfaces. The middle Betti number bm gives additional

constraints:

• If bm is exponential in m, Y is either a cubic hypersurface or the intersection of

two quartics.

• If m+ 5 ≤ bm < 2 · 3m − 5, then Y is a cubic hypersurface.

If the middle Betti number bm is exponential in m, it must either be a cubic hypersurface

or the intersection of two quartic hypersurfaces.

Note that F (Y ) is connected if Y is a cubic hypersurface of dimension ≥ 3 (p. 12 of [16]).

Remark 3.1.3. Here are some comments on the assumptions of Theorem 3.1.2.

1. If Hartshorne’s conjecture (part 1 of Remark 3.2.7) holds in codimension 2, then the

conditions on Y can be weakened to 2d− 4 ≤ n and n ≥ 7. Note that the uniruledness

property already implies d ≤ n if Y is a hypersurface and d1 + d2 ≤ n if Y has codi-

mension 2 and d1, d2 are the degrees of the hypersurfaces whose intersection is equal

to Y . Another possible replacement of the conditions is to take Y contained in some

hypersurface of degree d such that 2d− 4 ≤ n.
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These numerical conditions can be removed if we assume that the analogue of Debarre–

de Jong conjecture (Conjecture 1.2 on p. 1 of [11]) for complete intersections holds.

This would imply that

dimF (Y ) = 2n− d− (n−m)− 2 = n− d+m− 2,

where d =
∑n−m
i=1 di is the sum of the degrees of the hypersurfaces. As with the

original Debarre–de Jong conjecture, it is well-known to hold in the generic case (e.g.

Proposition 2.1 on p. 2 of arXiv version of [7]). When n −m = 2, this implies that

dimF (Y ) = m+2−d+m−2 = 2m−d, which is equal to 2m−4 only if d = d1+d2 = 4.

The proof of Theorem 3.1.2 eliminates this case.

2. Moving to very generic properties, there are many examples of varieties that are not

necessarily complete intersections which cannot satisfy the Y −F (Y ) relation (Example

3.2.20).

3. If Y is a variety with a connected Fano variety of lines F (Y ) satisfying the Y − F (Y )

relation (e.g. the case of cubic hypersurfaces), it is not a 1-dimensional family of

quadrics or a 2-dimensional family of (projective) (m − 2)-planes since such varieties

satisfying the Y − F (Y ) relation cannot be connected. This is shown in Proposition

3.2.8.

Remark 3.1.4. The uniqueness of cubic hypersurfaces as varieties satisfying the Y −F (Y )

relation also applies in the localization rather than K0(Vark). This is because the same logic

applies whenever the desired relation among varieties in K0(Vark) forces dimF (Y ) = 2m−4

(Theorem 2 on p. 207 – 208 of [35]).
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The proof of this result uniquely characterizes cubic hypersurface among generic hyper-

surfaces of a given degree.

Corollary 3.1.5. (Corollary 3.2.3) Suppose that Y ⊂ Pn is a hypersurface generic among

those of its degree. If Y satisfies the Y − F (Y ) relation, then Y is a cubic hypersurface.

Genericity also plays a role in a different approach involving uniruledness properties in

Section 3.2.2 (Proposition 3.2.17, Corollary 3.2.19). Here are some examples of results on

varieties satisfying the Y − F (Y ) relation:

Corollary 3.1.6. (Corollary 3.2.16)

Assume that k = k and char k = 0 as above and suppose that Y ⊂ Pn is a d-dimensional

variety satisfying the Y − F (Y ) relation. Then, the variety Y is not contained in a general

hypersurface of degree r > 2n− 3.

Corollary 3.1.7. (Corollary 3.2.19)

Assume that k = k and char k = 0 as usual. If Y ⊂ Pn is a variety of dimension ≥ 2 which

is the complete intersection of m ≥ 2 hypersurfaces Wi which are generic among those of

their degrees ri for each i, then it does not satisfy the Y − F (Y ) relation.

Along the way, we obtain restrictions on varieties which satsify relations that share some

properties with the Y − F (Y ) relation (Proposition 3.2.22, Corollary 3.2.23) and answer a

question of Cadorel–Campana–Rousseau [6] related to a connection between uniruledness and

symmetric products of varieties (Example 3.2.21). The steps used give an alternative method

of restricting varieties satsifying the Y −F (Y ) relation (Proposition 3.2.17, Corollary3.2.19).

We also note that the Y −F (Y ) relation does not generate all polynomial relations between

terms involved in the Y − F (Y ) relation (Remark 3.2.10).
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3.2 Varieties satisfying the Y − F (Y ) relation

In this section, we give some numerical and genericity conditions under which the Y −F (Y )

relation uniquely characterizes cubic hypersurfaces.

3.2.1 Using numerical conditions

Our first main result (Theorem 3.1.2) is a characterization of when varieties satisfy the

Y − F (Y ) relation under certain numerical conditions. Assuming that the degree is suffi-

ciently small compared to the dimension of the projective space it is embedded in, we can

show that only cubic hypersurfaces satsify the Y −F (Y ) relation if Y is not a 1-dimensional

family of quadrics or a 2-dimensional family of (m − 2)-planes (m = dimY ). It turns out

that the only possible smooth projective varieties Y ⊂ Pn which can satisfy the Y − F (Y )

relation are those which have codimension ≤ 2. Before giving the full proof of Theorem

3.1.2, we give an outline of the arguments used.

Recall that the Y − F (Y ) relation is given by [Y [2]] = [Y ][Pm] + L2[F (Y )] in K0(Vark).

This can be rewritten as [Y [2]]− [Y ][Pm] = L2[F (Y )] (Theorem 5.1 on p. 16 of [16]). Substi-

tuting in Poincaré polynomials to this rearranged relation, each side has terms of degree ≥ 4

since each side is a multiple of pA1(t)2 = t4. In particular, this means that the coefficients
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of t2 and t is 0 on each side and b1 = 0. The first nonzero term is from t4m−4 since the

terms of degree 4m, 4m − 1, 4m − 2, and 4m − 3 are all equal to 0. Dividing by t4, we

find that deg pF (Y )(t) = 4m − 8 and dimF (Y ) = 2m − 4. Both of these (and most of the

computation in general) are shown in Lemma 3.2.2. Work of Rogora [35] then implies that

Y has codimension ≤ 2 if n is sufficiently large. The theorem then follows from applying

results (e.g. work on Hartshorne’s conjecture) which imply that Y is a complete intersection

under the given conditions.

The first observation we make before proving Theorem 3.1.2 is that taking m ≥ 1 implies

that F (Y ) 6= ∅.

Lemma 3.2.1. Suppose that Y ⊂ Pn is a connected m-dimensional variety satisfying the

Y − F (Y ) relation. If m ≥ 1, the Fano variety of lines F (Y ) 6= ∅.

Proof. Suppose that F (Y ) = ∅. In order for Y to satisfy the Y−F (Y ) relation, we would need

to have [Y (2)] = (1+Ld)[Y ], which means that pY (2)(t) = 1
2pY (t)2+ 1

2pY (t2) = (1+t2d)pY (t).

Writing pY (t) = t2m + b2m−1t
2m−1 + . . . + b1t + b0, this would imply that b1 = b2 =

· · · = b2d−1 = 0. We can prove this by induction. The coefficient of t2 in 1
2pY (t)2 + 1

2pY (t2)

is 1
2((b21 + 2b0b2) + b1) and its coefficient in (1 + t2m)pY (t) is b2. Since b0 = 1, this means

that b21 + 2b2 + b1 = 2b2 ⇒ b21 + b1 = 0. Since bi ≥ 0 for each i, this implies that b1 = 0.

Suppose that b1 = b2 = · · · = bk−1 = 0 for some k ≤ 2m− 1. Consider the coefficient of t2k

on each side. This implies that 1
2(b2k+2b0b2k+2b1b2k−1 + . . .+2bk−1bk+1 +bk) = b2k. Since

b0 = 1 and b1 = b2 = · · · = bk−1 = 0, this means that b2k + 2b2k + bk = 2b2k ⇒ b2k + bk = 0.

Since bk ≥ 0, this implies that bk = 0. Thus, we have that b1 = b2 = · · · = b2m−1 = 0 and

pY (t) = t2m.

Substituting this back into pY (2)(t) = 1
2pY (t)2 + 1

2pY (t2) = (1 + t2m)pY (t) gives t4m +
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t4m = 2(1 + t2m) · t2m, which is clearly false.

Afterwards, the initial reduction is in determining dimF (Y ). This involves looking at

degrees of terms in the Poincaré polynomials.

Lemma 3.2.2. If a variety Y ⊂ Pn in Theorem 3.1.2 satisfies the Y − F (Y ) relation, then

dimF (Y ) = 2m− 4.

Proof. Before substituting in Poincaré polynomials, we will rewrite [Y [2]] = [Y ][Pm] +

L2[F (Y )] as [Y [2]]− [Y ][Pm] = L2[F (Y )]. Since Y [2] is the blowup of Y (2) along the diagonal

∆ ∼= Y , we have that [Y [2]] = [Y (2)] + ([Pm−1]− 1)[Y ]. Since Y (2)(t) = 1
2pY (t)2 + 1

2pY (t2)

(p. 188 of [9] with x = y = t), the fact that pPm−1(t) = 1 + t2 + . . .+ t2m−2 and pA1(t) = t2

implies that

pY [2](t)− pY (t)pPm(t) = p
(2)
Y (t) + (t2 + . . .+ t2m−2)pY (t)− (1 + t2 + . . .+ t2m)pY (t)

=
1

2
pY (t)2 +

1

2
pY (t2)− (1 + t2m)pY (t).

If the Y − F (Y ) relation holds, then

1

2
pY (t)2 +

1

2
pY (t2)− (1 + t2m)pY (t) = t4pF (Y )(t).

Since each side is a multiple of t4, this means that the t2 term on each side is equal to 0.
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Note that b0 = b2m = 1 since Y is connected. On the left hand side, this means that

1

2
(b0b2 + b21 + b2b0) +

1

2
b1 − b2 =

1

2
(2b0b2 + b21) +

1

2
b1 − b2

=
1

2
(2b2 + b21) +

1

2
b1 − b2

= b2 +
b21
2

+
1

2
b1 − b2

=
b21
2

+
1

2
b1

= 0

⇒ b1 = 0.

Poincaré duality implies that b2m−1 = 0.

Also, we have that the coefficient of t4 is nonzero since F (Y ) 6= ∅ by Lemma 3.2.1. Then,

the coefficient of t4 (given by b0(F (Y ))) is equal to

1

2
(2b0b4 + 2b1b3 + b22) +

1

2
b2 − b4 = b0b4 + b1b3 +

b22
2

+
b2
2
− b4

= b4 + 0 +
b22
2

+
b2
2
− b4

=
b22
2

+
b2
2

6= 0

⇒ b2 6= 0.

We use this to look at the coefficients of t4m, t4m−1, t4m−2, t4m−3, and t4m−4. Since

1
2pY (t2) can only contribute to even degree terms, we first look at the odd degree terms.

The coefficient of t4m−1 on the left hand side is 1
2(2b2m−1b2m)−b2m−1 = b2m−1−b2m−1 = 0

since 4m−1 > 2m when m ≥ 4 and Y is connected. This means that the coefficient of t4m−1

is 0. Similarly, the coefficient of t4m−3 is equal to 1
2(2b2m−3b2m+ 2b2m−2b2m−1)− b2m−3 =
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b2m−3 − b2m−3 = 0 since b2m−1 = b1 = 0.

Next, we find the coefficients of t4m, t4m−2, and t4m−4. The coefficient of t4m is 1
2b

2
2m +

1
2b2m − b2m = 1

2 + 1
2 − 1 = 0. The coefficient of t4m−2 is

1

2
(2b2m−2b2m + b22m−1) +

1

2
b2m−1 − b2m−2 = b2m−2b2m +

1

2
b22m−1 +

1

2
b2m−1 − b2m−2

= b2m−2 + 0 + 0− b2m−2

= 0

since b2m = 1 and b2m−1 = b1 = 0.

However, the coefficient of t4m−4 is nonzero since it is equal to

1

2
(2b2m−4b2m + 2b2m−3b2m−1 + b22m−2) +

1

2
b2m−2 − b2m−4 =

1

2
(2b2m−4 + b22m−2)

+
1

2
b2m−2 − b2m−4

= b2m−4 +
1

2
b22m−2

+
1

2
b2m−2 − b2m−4

=
1

2
b22m−2 +

1

2
b2m−2

=
1

2
b22 +

1

2
b2

6= 0.

This implies that deg t4pF (Y )(t) = 4m−4 and deg pF (Y ) = 4m−8⇒ dimF (Y ) = 2m−4

since F (Y ) is projective (and therefore compact).

The proof of Lemma 3.2.2 and Remark 3.1.3 imply the following:

Corollary 3.2.3. Suppose that Y ⊂ Pn is a hypersurface generic among those of its degree.
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If Y satisfies the Y − F (Y ) relation, then Y is a cubic hypersurface.

Combining the work above with a result of Rogora [35], we now obtain a restriction on

the codimension of Y in Pn which gives Theorem 3.1.2 after combining this with results on

Hartshorne’s conjecture.

Proof. (Proof of Theorem 3.1.2)

Since dimF (Y ) = 2m− 4 by Lemma 3.2.2, the initial conditions of Theorem 3.1.2 and the

following result of Rogora [35] imply that the codimension of Y in Pn is ≤ 2.

Theorem 3.2.4. (Rogora, Theorem 2 on p. 207 – 208 of [35], Theorem 2’ on p. 209 of

[35])

Let k ≥ 4 and X ⊂ Pn be a k-dimensional irreducible subvariety of a projective space of

dimension n. Let Σ ⊂ G(1, n) be a component of maximal dimension of the variety of lines

containe din X. If dim Σ = 2k − 4, one of the following holds:

1. X is a 1-dimensional infinite family of quadrics

2. X is a 2-dimensional infinite family of projective (k − 2)-planes

3. X is a linear section of G(1, 4)

4. dimX ≥ n− 2

We split the remaining cases into hypersurfaces and codimension 2 varieties.

Suppose that Y is a hypersurface. Since Y [2] and Y are both smooth and projective,

Larsen–Lunts’ stable birational equivalence result implies that Y must be uniruled (Theorem

6.1.5 on p. 134 of [4], Corollary 2.6.3 on p. 476 of [4] with Z = Pr). This implies that

deg Y ≤ n if Y is a hypersurface. In this case, a result of Beheshti–Riedl [11] implies that
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dimF (Y ) is equal to the “expected dimension” 2(m+1)−d−3 = 2m−d−1 if n ≥ 2 deg Y −4

(Theorem 1.3 of [11]):

Theorem 3.2.5. (Beheshti–Riedl, Theorem 1.3 on p. 2 of [11])

Let X ⊂ Pn be a smooth hypersurface. Then Fk(X) will be irreducible of the expected

dimension provided that

n ≥ 2

(
d+ k − 1

k

)
+ k.

In the special case k = 1, we can improve the bound, proving that F1(X) is of the expected

dimension 2n− d− 3 if n ≥ 2d− 4 and irreducible if n ≥ 2d− 1 and n ≥ 4.

Since n ≥ 2 and the “expected dimension” is equal to 2m − 4 if and only if d = 3 , Y

must be a cubic hypersurface.

It remains to consider the codimension 2 case. If Y is a complete intersection, the unir-

uledness restriction implies that d1 + d2 ≤ n (Section 4.4 on p. 99 of [11]). For example,

Y ⊂ Pn is a complete intersection if it is defined scheme-theoretically by ≤ n
2 equations (p.

588 of [3], [14]). Suppose that these equations have degree ≤ n
2 as in condition b in Theorem

3.1.2. Let Zi be the hypersurface of degree di. Since Y ⊂ Pn has codimension 2, we have that

n = m+2. Since di ≤ n
2 , Theorem 3.2.5 applies and dimF (Zi) = 2(m+2)−di−3 = 2m−di+1

(i.e. the expected dimension). If di ≥ 6 for either of i = 1, 2, then dimF (Yi) ≤ 2m − 5

and dimF (Y ) ≤ dimF (Yi) ≤ 2m − 5. This would make it impossible for Y to satisfy the

Y − F (Y ) relation. Thus, a codimension 2 complete intersection of hypersurfaces of degree

(d1, d2) can only satisfy the Y − F (Y ) relation only if d1, d2 ≤ 5.

We can further narrow down the remaining degree cases using a result of Canning (The-

orem 1.3 on p. 2128 of [7]), which implies that the Debarre–de Jong conjecture holds for

Fano complete intersections (d1, d2) with d1 + d2 ≤ 7. In other words, F (Y ) has the ex-
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pected dimension 2n − d1 − d2 − 4 if d1 + d2 ≤ 7. In order to have dimF (Y ) = 2m − 4,

we need d1 + d2 = 4. Since we assumed that Y is nondegenerate (i.e. not contained in a

hyperplane), we have that di ≥ 2 for i = 1, 2 and the only instance where d1 + d2 = 4 is

d1 = d2 = 2. It remains to study the cases where d1 + d2 ≥ 8 and d1, d2 ≤ 5. These are the

pairs (d1, d2) = (3, 5), (4, 4), (4, 5).

Let Zi be a hypersurface of degree di for i = 1, 2. Since n ≥ m ≥ 7 > 2(5) − 4 = 6,

Theorem 3.2.5 implies that Fano varieties of lines of hypersurfaces of degree 5 in Pn have

the expected dimension 2m − 4. Suppose that d2 = 5. If F (Z1) ∩ F (Z2) is a nontrivial

intersection, Y = Z1 ∩ Z2 does not satisfy the Y − F (Y ) relation. We can show that this

is indeed the case when d1 = 3, 4, 5. If the intersection F (Z1) ∩ F (Z2) is trivial, then we

either have F (Z1) ⊂ F (Z2) or F (Z2) ⊂ F (Z1). A dimension count implies that the only

possibility is F (Z2) ⊂ F (Z1). However, the fact that Z1 and Z2 are covered by lines implies

that Z2 ⊂ Z1, which is impossible if Z1 intersects Z2 transversely. Thus, the only possible

degrees (d1, d2) of codimension 2 varieties satisfying the Y − F (Y ) relation are (2, 2) and

(4, 4).

When deg Y � n, existing results on Hartshorne’s conjecture actually force Y to be a

complete intersection. If the codimension of Y in Pn is 2, it suffices to take deg Y ≤ n
4 in

the codimension 2 case by the following result of Bertram–Ein–Lazarsfeld [3]. The reasoning

above on the codimension 2 case can then be repeated.

Theorem 3.2.6. (Bertram–Ein–Lazarsfeld, Corollary 3 on p. 588 of [3]) Assume that

X ⊂ Pr is a smooth variety of degree d, dimension n, and codimension e. If

d ≤ r

2e

[
=

n

2e
+

1

2

]
,
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then X is a complete intersection.

Finally, we consider additional restrictions among cubic hypersurfaces and codimension 2

complete intersections of degree (2, 2) or (4, 4) coming from the middle Betti number. Since

bm is either equal to m + 1 or m + 4 if Y is a complete intersection of two quadrics (p.

20 of [34]), we can exclude this case if we assume that bm is exponential in m. We can

also remove complete intersections of two quartics (4, 4) if we assume that bm < 2 · 3m.

Let H(a1, . . . , ar) be the two-variable generating function for Hodge numbers of complete

intersections of hypersurfaces of degree (a1, . . . , ar) in Pn (Théorème 2.3 on p. 52 and

Corollaire 2.4 on p. 53 of [18], p. 19 of [34]). Note that H(a, a) = 2H(a)+(1+y)(1+z)H(a)

by the reasoning on p. 20 of [34] and the middle primitive Betti number of a smooth

hypersurface of degree a and dimension u > 0 is
(−1)u

a (a− 1 + (1− a)u+2) (Corollary 1.8 on

p. 14 of [22]). Thus, we have that bm(Y ) > 2 · 3m− 5 if Y is the complete intersection (4, 4)

of two quadrics.

Remark 3.2.7.

1. Hartshorne’s original conjecture states that a smooth variety Y ⊂ Pn of dimension m

is a complete intersection if (n − m) < 1
3n (p. 1017 of [20]). An overview of work

related to this conjecture is given in the introduction to [13]. If the original conjecture

holds, then a codimension 2 variety Y is a complete intersection if n ≥ 7.

2. A possible method of approaching the codimension 2 case of Theorem 3.1.2 using more

explicit examples without using results on Hartshorne’s conjecture is related to work

of Lanteri–Palleschi [27] (Proposition 2.1 (j) on p. 863 of [27], Theorem 2.1 on p. 153

– 154 of [5]) according to the result of Rogora [35] with the codimension restriction on

varieties Y ⊂ Pn of dimension m such that dimF (Y ) = 2m− 4 (Remark 3 on p. 208

of [35]).
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If we restricted to varieties with a connected Fano variety of lines, we can exclude 1-

dimensional families of quadrics and 2-dimesnional families of (projective) (m − 2)-planes

from those varieties characterized by the Y − F (Y ) relation.

Proposition 3.2.8. There are 1-dimensional families of quadrics or 2-dimensional families

of (projective) (m− 2)-planes with connected Fano varieties of lines which do not satisfy the

Y − F (Y ) relation.

Proof. Suppose that F (Y ) is connected. If Y is taken to be a 1-dimensional family of

quadrics or 2-dimensional family of (projective) (m−2)-planes, the Y −F (Y ) relation might

not necessarily be satisfied. While checking this, we will use the version of the Y − F (Y )

relation which states that [Y (2)] = (1 + Lm)[Y ] + L2[F (Y )]. In the constructions below, we

will use the fact that there linear subspaces contained in the the Grassmannian (with re-

spect to the Plücker embedding) which can be constructed out of pencils of linear subspaces

of Pn containing a fixed linear subspace A and contained in a fixed linear subspace A and

containing a fixed linear subspace B of Pn (Theorem 3.16 on p. 110 and Theorem 3.22 on p.

115 of [21]). Given a Grassmannian G(r, n), these can be used to construct linear subspaces

of dimension ≤ max(n− r, r + 1).

1. Suppose that 2m ≤ n and consider the trivial 1-dimensional family of quadrics P1×Q,

where Q ⊂ Pm is a quadric hypersurface. Note that we take family to mean a (projec-

tive) line in the
((m+2

2

)
− 1
)

-dimensional projective space giving the Hilbert scheme

of quadrics of dimension m − 1. By Example 2.4.7 on p. 73 – 74 of [4], we have that

[Q] = [Pm−1] if m is even and [Q] = [Pm−1] + L
m−1

2 if m is odd.

If m is even, this implies that [Y ] = (L + 1)(Lm−1 + . . . + L + 1) = Lm + 2Lm−1 +
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. . .+ 2L + 1 and

(1 + Lm)[Y ] = 1 + 2L + . . .+ 2L2m−1 + 2L2m.

Since ([X1] + . . .+ [X`])
(n) =

∑
n1+...+n`=n

∏`
i=1[Xi]

(ni) (Remark 4.2 on p. 5 of [17]),

we have that

[Y (2)] = 1 + 3L2 + . . .+ 3L2m−2 + L2m + 3L + 3L2 + . . .+ 3L2m−2

+ L2m + 4L3 + . . .+ 4Lm + 2Lm+1 + . . .+ 2L2m−1

Since the quadratic term of (1 + Lm)[Y ] is 2L2 and the quadratic term of [Y (2)] is

5L2, the quadratic term of [Y (2)] − (1 + Lm)[Y ] is 3L2. Since the Y − F (Y ) relation

states that [Y (2)] = (1 +Lm)[Y ] +L2[F (Y )] =⇒ L2[F (Y )] = [Y (2)]− (1 +Lm)[Y ], we

can apply the Poincaré polynomial motivic measure to see that this contradicts our

assumption that F (Y ) is connected since the constant term is 3 instead of 1.

Suppose that m is odd. Then, we have that [Q] = [Pm−1] + L
m−1

2 . This implies that

[Y ] = 1 + 2L+ 2L2 + . . .+ 2L
m−3

2 + 3L
m−1

2 + 3L
m+1

2 + 2L
m+3

2 + . . .+ 2Lm−1 +Lm and

(1 +Lm)[Y ] = 1 + 2L+ . . .+ 2L
m−3

2 + 3L
m−1

2 + 3L
m+1

2 + 2L
m+3

2 + . . .+ 2Lm−1 +Lm.

Using the same method as above, we have that

[Y (2)] = 1 + 3L2 + . . .+ 3Lm−3 + 4Lm−1 + 4Lm+1 + 3Lm+3 + . . .+ 3Lm−1 + L2m

+ 1 + 2L + 2L2 + . . .+ 2L
m−3

2 + 3L
m−3

2 + 3L
m−1

2 + 2L
m+3

2 + . . .+ 2Lm−1

+ Lm + . . .+ 2L2m−1.
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As with the previous case, we find that the quadratic term of (1 + Lm)[Y ] is 2L2 and

the quadratic term of [Y (2)] is 5L2. If P1×Q satisfies the Y −F (Y ) relation, we would

find that the constant term of the Poincaré polynomial of F (Y ) is equal to 3. This

contradicts our assumption that F (Y ) is connected.

2. As mentioned above, we consider (m− 2)-planes that we consider are (m− 2)-planes

Γ such that A ⊂ Γ ⊂ B for some fixed (projective) (m− 4)-plane A and (m− 1)-plane

B such that A ⊂ B. The family considered here is the union of such (m − 2)-planes.

Using an inclusion-exclusion argument, we see that the class of this union of (m− 2)-

planes in K0(Vark) is a polynomial in L. Thus, it suffices to study point counts over

Fq. Since this is determined by quotients Γ/A ⊂ B/A and A, we have that #Y (Fq) =

#A(Fq) ·#(B/A)(Fq). This means that #Y (Fq) = (1 + q+ . . .+ qm−4)(1 + q+ q2) =

(1 + 2q+ 3q2 + . . .) and the coefficient of q2 is equal to 3. On the other hand, the fact

that ([X1] + . . . + [X`])
(n) =

∑
n1+...+n`=n

∏`
i=1[Xi]

(ni) (Remark 4.2 on p. 5 of [17])

implies that the #Y (2)(Fq) = 1 + 2q + 6q2 + . . .. Matching coefficients, this implies

that it is impossible for F (Y ) to be connected.

In general, it is difficult to check whether a particular relation in K0(Vark) is satisfied

since the projections from the incidence correspondences used to define the families of vari-

eties used here (p. 208 – 209 of [35]) are not necessarily Zariski locally trivial fibrations or

piecewise trivial fibrations.

The methods above have similar impliciationsfor other relations in K0(Vark).

Corollary 3.2.9. Consider a polynomial relation in K0(Vark) with integer coefficients in-

volving symmetric products of an m-dimensional smooth projective variety Y ⊂ Pn, its second

symmetric product Y (2), the Fano variety of lines F (Y ) ⊂ G(1, n) and A1. If it can only be
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satisfied by Y such that dimF (Y ) = 2m− 4, the only varieties defined by ≤ n
2 equations or

of degree ≤ n
4 that can satisfy the relation are cubic hypersurfaces.

Remark 3.2.10. While the Y − F (Y ) is close to characterizing cubic hypersurfaces, the

Y − F (Y ) relation does not necessarily generate possible polynomial relations between a

cubic hypersurface Y ⊂ Pm+1 and its Fano variety of lines F (Y ) ⊂ G(1,m+1). This can be

checked explicitly for the case m = 2 or m = 3 when Y is taken to have an ordinary double

point (Example 5.8 on p. 20 of [16]).

3.2.2 Approach via uniruledness property and an application to a stable

rationality question

Our initial approach to Question 3.1.1 involved using uniruledness properties of varieties

which can satisfy the given relation. The most recent/general restriction using this approach

(Proposition 3.2.17, Corollary 3.2.19) is given below. These methods can be generalized to

analyze other relations in K0(Vark) with some properties similar to the Y − F (Y ) relation.

More specifically, we will apply the logic of the proof of Proposition 3.2.11 to related stable

birationality problem (Example 3.2.21) and obtain geometric restrictions to varieties satis-

fying relations sharing certain properties with the Y − F (Y ) relation (Example 3.2.22).

Using a result on unirationality of symmetric products (Proposition 3.2.11), we will first

show that complete intersections of ≥ 2 general hypersurfaces (in their given degrees) of

dimension ≥ 2 do not satisfy Galkin–Shinder’s Y −F (Y ) relation (Corollary 3.2.19). After-

wards, we will use the proof of Proposition 3.2.11 to rule out the Y −F (Y ) for the intersection

of an integral variety with a very general hypersurface (Example 3.2.20). Before doing this,

we will state the birational geometry results used.
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Proposition 3.2.11. Suppose that k = k and char k = 0. If Y is a smooth projective va-

riety of dimension d ≥ 1 such that [Y (2)] ≡ [Y ] (mod L), the Kodaira dimension of Y is

κ(Y ) = −∞. If d ≥ 2, the variety Y must be uniruled.

Remark 3.2.12. In general, it is known that uniruled varieties have Kodaira dimension

−∞ (Corollary 1.11 on p. 189 of [24]). However, the converse is only known in dimension

≤ 3 (Conjecture 1.12 on p. 189 of [24]).

Proof. The blowup at the diagonal Bl∆Y
(Y × Y ) −→ Y × Y induces the blowup Y [2] −→

Y (2), which is also a blowup at the diagonal. Since Y is smooth and projective, the variety

Y [2] is also smooth and projective (Example 7.3.1 on p. 169 of [15], Theorem 3.1 on p. 5 of

[29], Theorem 1.4 on p. 10 of [24]).

Since Y [2] and Y are smooth projective varieties, the isomorphism K0(Vark)/(L) −→

Z[SB] from Larsen–Lunts’ motivic measure (Theorem 2.3 on p. 87 of [28], Theorem 6.1.5 on

p. 134 of [4]) implies that Y [2] and Y are stably birational to each other. Since we assumed

that d ≥ 1, we have that dimY < dimY [2] = 2 dimY . Since Y and Y [2] are not birational,

the following results imply that Z is uniruled:

Lemma 3.2.13. (Lemma 33.25.10 of [36])

Let k be a field. Let X be a variety over k which has a k-rational point x such that X is

smooth at x. Then X is geometrically integral over k.

Corollary 3.2.14. (Corollary 2.6.4 on p. 477 of [4])

Let k be a field of characteristic 0, and X and Y be stably birational integral k-varieties such
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that X is not uniruled and dimY ≤ dimX. Then X and Y are birational.

Thus, the variety Y [2] is uniruled and its Kodaira dimension is κ(Y [2]) = −∞. Since Y [2]

is a desingularization of Y (2), we have that

−∞ = κ(Y [2]) = κ(Y (2)) = 2κ(Y ) (Theorem 1 on p. 1369 of [1]).

This implies that κ(Y ) = −∞.

Since any variety dominated by a uniruled variety is uniruled, the variety Y (2) is also

uniruled. In fact, the following result implies that Y itself is uniruled if d ≥ 2:

Corollary 3.2.15. (Cadorel–Campana–Rousseau, Corollary 4.2 on p. 9 – 10 of [6])

Suppose that X is compact and Kähler.

1. X is rationally connected if and only if X(m) is for some m ≥ 1.

2. X is uniruled if and only if X(m) for some m ≥ 1, unless X is a curve of genus g > 0

and m > g. In that case, X(m) is uniruled and X is not uniruled.

Before applying the methods used here to study varieties satsifying the Y − F (Y ) rela-

tion, we obtian some initial restrictions on degrees of generic hypersurfaces containing them.

Recall from Lemma 3.2.1 that F (Y ) 6= ∅ if Y ⊂ Pn satsifies the Y −F (Y ) relation. Applying

Theorem 4.3 on p. 266 of [24] gives a bound on (general) hypersurfaces containing a variety

satisfying the Y − F (Y ) relation.
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Corollary 3.2.16. Suppose that Y ⊂ Pn is a d-dimensional variety satisfying the Y −F (Y )

relation. Then, the variety Y is not contained in a general hypersurface of degree r > 2n−3.

Proof. As mentioned above, this is an application of Lemma 3.2.1 and the fact that the Fano

variety of lines for a general hypersurface of degree r > 2n− 3 is empty (Theorem 4.3 on p.

266 of [24]).

Under these restrictions, we can obtain restrictions on varieties Y ⊂ Pn satisfying the Y −

F (Y ) relation which are intersections of generic hypersurfaces (among given degrees). This

is done using uniruledness properties and repeated applications of the projective dimension

theorem (Theorem 7.2 on p. 48 of [19]) and the dimension of F (Y ) for a generic hypersurface

of dimension r (Theorem 4.3 on p. 266 of [24]):

Proposition 3.2.17. Suppose that Y ⊂ Pn is a m-dimensional variety satisfying the Y −

F (Y ) relation.

1. If Y is the intersection of u general hypersurfaces Wi of degree ri ≤ 2n− 3 for each i,

we have that

(u+ 1)(n− (R + 2)) + (R + 1) ≤ 2m− 4,

where R = max(r1, . . . , ru).

2. If dimY ≥ 2 and Y is the complete intersection of m ≥ 2 general hypersurfaces Wi of

degree ri ≤ 2n− 3 for each i, then it does not satisfy the Y − F (Y ) relation.

Remark 3.2.18.

1. We inserted the condition on the ri to keep F (Y ) from being empty (Corollary 3.2.16).
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2. Hartshorne’s conjecture 3.2.7 implies that Part 2 can be rewritten as generic condition

on varieties of a given degree when the codimension is small (proof of Lemma 3.2.2).

3. The dimension bound in Part 1 uses Lemma 3.2.2.

Proof. Both parts use the same initial setup. By definition, the Fano scheme F (Y ) is the

intersection of F (W ) for hypersurfaces W containing Y (p. 196 of [12]). Writing Y =

W1 ∩ · · ·Wu,this means that F (Y ) = F (W1) ∩ · · · ∩ F (Wu). Then, induction on u and

repeatedly using the projective dimension theorem (Theorem 7.2 on p. 48 of [19]) implies

that

dimF (Y ) ≥ dimF (W1) + . . .+ dimF (Wu)− (u− 1)(n− 1)

since F (Wi) ⊂ G(1, n) ∼= Pn−1.

We first prove the dimension inequality in Part 1.

1. Let R = max(r1, . . . , rn). Since the hypersurfaces Wi ⊂ Pn are taken to be general

among those of degree ri in Pn and dimF (Wi) = 2n − 3 − ri for such degree ri

hypersurfaces (Theorem 4.3 on p. 266 of [23]), this means that
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dimF (Y ) ≥ dimF (W1) + . . .+ dimF (Wu)− (u− 1)(n− 1)

= (2n− 3− r1) + . . .+ (2n− 3− ru)− (u− 1)(n− 1)

= un− 2u+ n− 1− (r1 + . . .+ ru)

≥ un− 2u+ n− 1−Ru

= un− (R + 2)u+ n− 1

= u(n− (R + 2)) + (n− (R + 2)) + (R + 1)

= (u+ 1)(n− (R + 2)) + (R + 1).

Since dimF (Y ) = 2m− 4 by Lemma 3.2.2, this implies that

(u+ 1)(n− (R + 2)) + (R + 1) ≤ 2m− 4.

Next, we prove Part 2 by combining the methods above with a uniruledness property.

2. Since the complete intersection Y = W1 ∩ · · · ∩Wu is uniruled by Proposition 3.2.11,

we have that r1 + . . .+ ru ≤ n (Section 4.4 on p. 99 of [11]).

Recall from the proof of Part 1 that dimF (Y ) ≥ dimF (W1) + . . .+ dimF (Wu).

Since the hypersurfaces Wi ⊂ Pn are taken to be general among those of degree ri in

Pn, a standard result on dimensions of Fano varieties of lines on generic hypersurfaces

of a given degree (Theorem 4.3 on p. 266 of [24]) implies that
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dimF (Y ) ≥ dimF (W1) + . . .+ dimF (Wu)− (u− 1)(n− 1)

= (2n− 3− r1) + . . .+ (2n− 3− ru)− (u− 1)(n− 1)

= 2un− 3u− (r1 + . . .+ ru)− (un− u− n+ 1)

≥ 2un− 3u− n− (un− u− n+ 1)

= u(n− 2)− 1

≥ 2(n− 2)− 1

= 2n− 5

However, this is impossible since dimF (Y ) = 2m− 4 by Lemma 3.2.2.

Using Proposition 3.2.11, we can consider the case where Y is a complete intersection of

general hypersurfaces.

Corollary 3.2.19. If Y ⊂ Pn is a variety of dimension ≥ 2 which is the complete intersec-

tion of m ≥ 2 general hypersurfaces Wi of degree ri for each i, then it does not satisfy the

Y − F (Y ) relation.

Proof. By Corollary 3.2.16, a variety Y ⊂ Pn satisfying the Y − F (Y ) is not contained in a

general hypersurface of degree r > 2n−3. Combining this with Part 2 of Proposition 3.2.17,

we cover general hypersurfaces of arbitrary degrees.

If we look at very general hypersurfaces, we can use the logic of the uniruled restriction

to rule out the Y − F (Y ) relation in possibly non-complete intersections.
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Example 3.2.20. (The Y −F (Y ) relation and possibly non-complete intersections)

Recall that we used a result comparing stable birational and birational equivalence classes of

varieties (Corollary 3.2.14) to show that smooth projective varieties of dimension ≥ 2 which

satisfy the Y − F (Y ) must be uniruled. After substituting in the Poincaré polynomials, we

use this restriction to show that a complete intersection of general hypersurfaces (of their

given degrees) does not satisfy the Y − F (Y ) relation. However, the varieties that fail to

satisfy the Y −F (Y ) relation are not necessarily complete intersections. By Proposition 1 on

p. 1 of [23], the intersection of an integral k-variety X ⊂ PN and a very general hypersurface

H ⊂ PN is not uniruled. Thus, such an intersection X∩H of dimension ≥ 2 does not satisfy

the Y − F (Y ) relation.

The comparison between stable birational and birational equivalence in Corollary 3.2.14

can also be used to study stable birationality questions.

Example 3.2.21. (Symmetric products and stable birationality)

In Question 1 on p. 10 of [6], it is asked whether X(m) being unirational (resp. rational,

stably rational) for some m ≥ 2 implies that X is unirational (resp. rational, stably ratio-

nal). Applying Corollary 2.6.4 on p. 477 of [4] to a smooth projective resolution of X(m),

we can show that this is false for stable birationality if X has Kodaira dimension κ(X) ≥ 0.

A more “straightforward” application of the argument of Proposition 3.2.11 from the

previous section is to restrict varieties which satisfy other relations which share certain

properties with the Y − F (Y ) relation.

Suppose a smooth projective variety Y of dimension ≥ 1 satisfies [Y (a)] ≡ [Y (b)] (mod L)

for some a > b (e.g. a = 2 and b = 1 in the Y − F (Y ) relation). If dimY ≥ 2, the same we
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can use Corollary 4.2 on p. 9 – 10 of [6] again to find that such a Y must be uniruled. Here

is a generalization of uniruledness arguments restricting varieties satisfying the Y − F (Y )

relation taking these observations into account:

Proposition 3.2.22. (Restatement of Kodaira dimension/uniruled restriction)

If Y is a smooth projective variety of dimension d ≥ 1 such that [Y (a)] ≡ [Y (b)] (mod L) for

some a > b ≥ 1, the Kodaira dimension of Y is κ(Y ) = −∞. If d ≥ 2, the variety Y must

be uniruled.

Again, the restriction on the Kodaira dimension immediately implies the following:

Corollary 3.2.23. The following hold:

1. If Y ⊂ Pd+1 is a d-dimensional hypersurface of degree r such that [Y (a)] ≡ [Y (b)]

(mod L) in K0(Vark) for some a > b ≥ 1, then r ≤ d+ 1.

2. If Y is a smooth projective surface such that [Y (a)] ≡ [Y (b)] (mod L) in K0(Vark),

then Y must be a ruled surface (over a curve of genus ≥ 1) or a rational surface.

Splitting varieties by whether they are uniruled or not (or by Kodaira dimension being

nonnegative or not) can also give a general perspective on restricting varieties which satisfy

given relations in K0(Vark):

Remark 3.2.24. (Uniruled varieties and problematic birational automorphisms)

Results of Kuber (Theorem 4.1 and Theorem 5.1 on p. 482 – 485 of [26]) imply that the
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structure of (the graded ring associated to) K0(Vark) essentially depends on birational equiv-

alence classes of varieties when we consider classes in K0(Vark) where Larsen–Lunts’ cut and

paste conjecture holds. By results of Liu and Sebag, this includes varieties containing only

finitely many rational curves (Theorem 6.3.7 on p. 142 of [4]) and algebraic surfaces whose

1-dimensional components are rational curves (Corollary 6.3.8 on p. 144 of [4]). In some

sense, this is the “opposite” of the uniruled varieties mentioned above since we were look-

ing at when a pair of stably birational varieties are not actually birational to each other in

Proposition 3.2.22.
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Part II

h-vector problems and combinatorial

analogues of hypersurface

independence conditions



CHAPTER 4

GENERALIZATIONS OF CHROMATIC POLYNOMIALS AND

H-VECTORS OF SIMPLICIAL COMPLEXES

4.1 Simplicial chromatic polynomials as Hilbert series of

Stanley–Reisner rings

We find families of simplicial complexes where the simplicial chromatic polynomials defined

by Cooper–de Silva–Sazdanovic [13] are Hilbert series of Stanley–Reisner rings of auxiliary

simplicial complexes. As a result, such generalized chromatic polynomials are determined

by h-vectors of auxiliary simplicial complexes. In addition to generalizing related results on

graphs and matroids, the simplicial complexes used allow us to consider problems that are

not necessarily analogues of those considered for graphs. Some examples include supports of

cyclotomic polynomials, log concavity properties, and symmetry relations between a poly-

nomial and its reciprocal polynomial.

If the h-vectors involed have sufficiently large entries, the Hilbert series are Hilbert polyno-

mials of some k-algebra. As a consequence of connections between h-vectors and simplicial

chromatic polynomials, we also find simplicial complexes whose h-vectors are determined

by addition-contraction relations of simplicial complexes analogous to deletion-contraction

relations of graphs. The constructions used involve generalizations of relations Euler char-

acteristics of configuration spaces and chromatic polynomials of graphs.

4.1.1 Introduction

The main objective of this paper is to show that Euler characteristics of certain generalized

configuration spaces are Hilbert series of Stanley–Reisner rings of associated simplicial com-

125



plexes. The latter interpretation implies that these Euler characteristics are determined by

h-vectors of some auxiliary simplicial complexes. In the course of doing this, we find that

these Euler characteristics specialize to invariants satisfying the following properties:

• Polynomials with constant terms determining whether a cyclotomic polynomial of de-

gree n = p1 · · · pd (pi distinct primes) has a nonzero term of degree j for 0 ≤ j ≤ ϕ(n)

(Corollary 4.1.27)

• Log concavity properties of simplicial chromatic polynomials and their translates (Corol-

lary 4.1.32, Example 4.1.35)

• Symmetric relations between these polynomials and their reciprocal polynomials (Ex-

ample 4.1.37)

Each problem listed above is associated with an appropriate choice of simplicial com-

plexes.

Let X be a manifold and ConfnX = {(x1, . . . , xn) ∈ Xn : xi 6= xj for all i 6= j}.

The configuration spaces we study generalize a relation between Euler characteristics of

compactications of ConfnX and chromatic polynomials of graphs. More specifically, our

starting point is a combinatorial interpretation of the (compactly supported) Euler char-

acteristic of the ordered configuration space ConfnX and proper colorings of the complete

graph with n vertices Kn.

χc(ConfnX) = χc(X)(χc(X)− 1) · · · (χc(X)− (n− 1)). (4.1.1)

Comparing this expression to the chromatic polynomial

pKn(λ) = λ(λ− 1) · · · (λ− (n− 1)) (4.1.2)
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of the complete graph Kn for λ available colors, we find that χc(ConfnX) = pKn(χc(X)).

We can consider how to generalize the relation χc(ConfnX) = pKn(χc(X)) to chromatic

polynomials of arbitrary graphs G. Since adding edges to a graph G introduces additional

restrictions to proper colorings of G, it is natural to expect that an associated configuration

space would be a partial compactification of ConfnX. In this context, we would allow the

same points of X to occupy slots corresponding to non-adjacent vertices. Indeed, Eastwood–

Huggett (Theorem 2 on p. 155 of [6]) found such a generalization for a modified configuration

space parametrizing such configurations.

Given a graph G with vertices V = {v1, . . . , vn}, they consider Euler characteristics of

the configuration space

MG = Mn \
⋃
e∈E

∆e,

for M = CPλ−1, where

∆e = {(x1, . . . , xn) ∈Mn : xi = xj}

for each edge e = vivj of G. The authors then show that

pG(λ) = χc((CPλ−1)G) (Theorem 2 on p. 1155 of [6]), (4.1.3)

which generalizes the correspondence between 4.1.1 and 4.1.2.

Recent work of Cooper–de Silva–Sazdanovic [13] further generalize the construction of

Eastwood–Huggett [6] with simplicial complexes replacing graphs. They define the simpli-

cial chromatic polynomial (Definition 6.1 on p. 738 of [13], Definition 4.2.2), which is the

compactly supported Euler characteristic of a certain configuration space 4.2.2 which is a
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higher dimensional version of MG for simplicial complexes.

Definition 4.1.1. (Definition 2.1 on p. 725 and p. 738 of [13])

Let S be a simplicial complex whose 0-skeleton is given by the vertex set V = V (S) =

{v1, . . . , vn}. Let M be a topological space. For each simplex σ = [vi1 · · · vik ], define the

diagonal corresponding to σ to be

Dσ = {(x1, . . . , xn) ∈Mn : xi1 = · · · = xik}.

We define the simplicial configuration space as

MS = Mn \
⋃

σ∈∆V \S
Dσ (4.1.4)

where ∆V is the simplicial complex containing all subsets of the vertices vi (analogous

to a simplex generated by independent vectors corresponding to the vi) and ∆V \S denotes

tuples of vertices in V which do not occur as simplices in S.

The simplicial chromatic polynomial χc(S)(t) associated to a simplicial complex S is the

compactly supported Euler characteristic of MS with M = CPt−1 (Definition 4.2.2). This

polynomial is characterized (up to normalization) by an analogue of the deletion-contraction

property for chromatic polynomials (Proposition 4.1.11, Corollary 6.1 and Proposition 6.4 on

p. 738 of [13]). We would like to explore the combinatorial side of the simplicial chromatic

polynomial.

In Section 7 on p. 740 – 742 of [13], the authors show that the simplicial chromatic

polynomial differs from a number of known polynomial invariants of graphs. They state that

it is not a specialization of known polynomial invariants of graphs or simplicial complexes.

However, we will show that χc(S) can often be built out of invariants of an auxiliary simplicial

complex T (S). The main tool we use to do this is the Stanley–Reisner ring (Definition 4.1.14).
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Definition 4.1.2. (Stanley–Reisner ring, p. 53 – 54 of [27])

Let k be a field and S be a simplicial complex with vertex set V = {1, . . . , n}. We will call

the subsets of V belonging to S faces and those that do not belong to S nonfaces.

For a subset A of the vertex set V , write xA =
∏
i∈A xi ∈ k[x1, . . . , xn]. Let I(A) denote

the ideal in k[x1, . . . , xn] generated by all monomials xσ such that σ /∈ S (i.e. σ ∈ ∆V \ S

in the notation above). Note that I(S) is generated by the minimal nonfaces of S since

σ being a nonface and α ⊃ σ implies that α is also a nonface of S. The quotient ring

k[S] := k[V ]/I(S) is called the Stanley–Reisner ring (or face ring) of S.

The Stanley–Reisner ring k[S] is the natural setting for many combinatorial problems

(e.g. Stanley’s proof of the upper bound theorem for simplicial spheres in Section 5.4 on p.

237 – 240 of [10]). An overview of algebraic properties of this ring and their applications is

given in a survey of Franscisco–Mermin–Schweig [15]. Some examples are also given on p. 7

– 8 of [11].

Our main result constructs families of simplicial complexes S such that χc(S) can be

expressed as a specialization of the Hilbert series of the Stanley–Reisner ring associated an

auxiliary simplicial complex T (S) (Theorem 4.1.5).

The families of simplicial complexes that will consider satisfy certain intersection prop-

erties. We list the properties below and give examples of simplicial complexes satisfying

them.

Definition 4.1.3. Let S be a simplicial complex with minimal nonfaces σ1, . . . , σr. A

simplicial complex S satisfies property I if there is a collection of finite sets αi such that

|αi| = |σi| − 1 for each 1 ≤ i ≤ r and αI ∩ αp = σI ∩ σp = ∅ if σI ∩ σp = ∅ and

|αI ∩ αp| = |σI ∩ σp| − 1 if |I| ≥ 2 and σI ∩ σp 6= ∅ for each subset I ⊂ [r] and p /∈ I.
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Example 4.1.4. Here are two examples where property I is satisfied.

• The minimal nonfaces of S are disjoint from each other by a simplicial complex S.

• There is a point a ∈ V such that σi ∩ σj = {a} for each i, j.

The general idea is that the minimal nonfaces either intersect at a small number of points

or each σi contains many points which are not contained in any σj for j 6= i. Some specific

simplicial complexes satisfying property I are given in Example 4.1.19.

Theorem 4.1.5. Let S be a simplicial complex and V = V (S) = {1, . . . , n} be the vertex

set of S. Given K ⊂ [n], let xK =
∏
i∈K xi. Let I(S) = 〈xσ1 , . . . , xσr〉 with the σi equal to

the minimal nonfaces of S. Given a collection of subsets cu with u ∈ K for some finite set

K, let cK =
⋃
u∈K cu.

Suppose that S satisfies property I. Then, the simplicial chromatic polynomial χc(S, t)

of S is a normalization (in the sense of Proposition 4.1.16) of the Hilbert–Poincaré series

of an auxiliary simplicial complex T = T (S) which is determined by its h. Let hT (S) be the

generating function of the h-vector of T (S). This is the polynomial where the coefficient of ti

is hi. Tracing through the definitions, we have that χc(S)(t)− tn = tn(hT (S)(t
−1)− 1) =⇒

χc(S)(t) = tnhT (S)(t
−1).

Remark 4.1.6. Proposition 4.1.16 gives an alternate set of conditions on the minimal non-

faces involving the number of connected components of a graph determined by the minimal

nonfaces. For example, these conditions are satisfied by simplicial complexes where any pair

of minimal nonfaces has a nonempty intersection.

In this setting of Theorem 4.1.5, the simplicial chromatic polynomial is entirely deter-

mined by the h-vector of S (Corollary 4.1.21). We also note that “normalized” version
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(without taking the reciprocal polynomial) of the simplicial chromatic polynomial is a spe-

cialization of Hilbert series of the canonical module of the Stanley–Reisner ring.

Under suitable assumptions, there is a natural relation between simplicial chromatic poly-

nomials and Hilbert polynomials of other rings (Corollary 4.2.7) when the hi are sufficiently

large.

Definition 4.1.7. Given a k-element subset I = {σ1, . . . , σk} ⊂ ∆V \ S, let GI be the

graph whose vertices are the σi with two vertices corresponding to σi, σj being connected

by an edge if and only if σi∩σj 6= ∅. Let c(I) be the number of connected components of GI .

Corollary 4.1.8. Let S be a simplicial complex such that c(I) = a for all subsets I ⊂ [r] as

in Proposition 4.1.16. If ha+r ≥ 1, ha+1, ha+2 ≥ 3, and hi ≥ 1 for all i ≥ a, then

t−n − χc(S, t−1) = t−nP (t−1)

for the Hilbert polynomial P = P (x) of some k-algebra.

These relations are analogous to some results on chromatic polynomials and Hilbert poly-

nomials in the literature (e.g. Theorem 13 on p. 79 of [16], Proposition 3.3 on p. 9 of [1])

although specializations of our results to these settings seem to yield different simplicial

complexes.

Finally, we show that there are some natural connections between simplicial chromatic

polynomials and certain simplicial complexes whose structure depends on the coefficients of

cyclotomic polynomials in Section 4.1.3. The applications involved include supports of coef-

ficients of cyclotomic polynomials (Corollary 4.1.27), log concavity of polynomials (Corollary
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4.1.32, Example 4.1.33), and symmetric relations between the simplicial chromatic polyno-

mial and its reciprocal (Example 4.1.37).
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4.1.2 Simplicial chromatic polynomials and Hilbert series of

Stanley–Reisner rings

In this section, we express simplicial chromatic polynomials as Hilbert series (Theorem 4.1.5,

Proposition 4.1.16) and Hilbert polynomials (Corollary 4.2.7) of auxiliary simplicial com-

plexes.

Transformation from Hilbert series of (auxiliary) simplicial complexes and

h-vectors

Before showing the main reinterpretation of the simplicial chromatic polynomial, we first go

over some basic definitions used on both sides of the correspondence.

Definition 4.1.9. (Definition 2.1 on p. 725 and p. 738 of [13])

Let S be a simplicial complex whose 0-skeleton is given by the vertex set V = V (S) =

{v1, . . . , vn}. Let M be a topological space. For each simplex σ = [vi1 · · · vik ], define the
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diagonal corresponding to σ to be

Dσ = {(x1, . . . , xn) ∈Mn : xi1 = · · · = xik}.

We define the simplicial configuration space as

MS = Mn \
⋃

σ∈∆V \S
Dσ (4.1.5)

where ∆V is the simplicial complex containing all subsets of the vertices vi (analogous

to a simplex generated by independent vectors corresponding to the vi) and ∆V \S denotes

tuples of vertices in V which do not occur as simplices in S.

Definition 4.1.10. (Definition 6.1 on p. 738 of [13])

Let S be a simplicial complex and let M be a manifold. Given S and M , let

χc(S,M) :=
∑

(−1)k rankHk
c (MS).

The simplicial chromatic polynomial of a simplicial complex S is the polynomial

defined by the assignment χc(S) : t 7→ χc(S,CPt−1).

Note that the union 4.1.5 is determined by the minimal nonfaces σ ∈ ∆V \ S since

τ ⊂ σ ⇒ Dτ ⊃ Dσ. Under an appropriate normalization, the simplicial chromatic polyno-

mial is uniquely defined by the following addition-contraction relation involving the minimal

nonfaces:

Proposition 4.1.11. (Proposition 6.4 on p. 738, Definition 2.2 on p. 727 of [13])

Let σ be a minimal nonface of a simplicial complex S, and let S/σ be the tidied contraction,

which removes every element sharing a vertex with σ from S.
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The normalization χc(∆
t−1, t) = tn and the addition-contraction formula

χc(S, t)− χc(S ∪ {σ}, t) + χc(S/σ, t) = 0

determine a unique polynomial invariant of simplicial complexes.

Given a manifold M , let [M ] = χc(M). Using an inclusion-exclusion argument and the

fact that χc(CPt−1) = t, we can obtain a more explicit expression for the simplicial chromatic

polynomial with CPt−1 substituted in for M below. Note that [M ] = t if M = CPt−1.

[MS ] =

Mn \
⋃

σ∈∆V \S
Dσ


= [M ]n −

 ⋃
σ∈∆V \S

Dσ


= [M ]n −

∑
σ1,...,σk∈I⊂[∆V \S]:|I|=k

(−1)k[Dσ1 ∩ · · · ∩Dσk ]

To simplify this final expression, we need to think about the number of “independent val-

ues” in an element of Dσ1∩· · ·∩Dσk . This depends on the number of connected components

of a certain graph (Definition 4.2.5).

Definition 4.1.12. Given a k-element subset I = {σ1, . . . , σk} ⊂ ∆V \ S, let GI be the

graph whose vertices are the σi with two vertices corresponding to σi, σj being connected by

an edge if and only if σi ∩ σj 6= ∅. Let c(I) be the number of connected components of GI .

We can express the class [Dσ1∩· · ·∩Dσk ] in K0(Vark) as a power of [M ] whose exponent

depends on c(I). More specifically, the class above simplifies to
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[MS ] = [M ]n −
∑

σ1,...,σk∈I⊂[∆V \S]:|I|=k
(−1)k[M ]n−|σ1∪···∪σk|+c(I) (4.1.6)

for each simplicial complex S. Note that we can replace σ ∈ ∆V \ S with minimal non-

faces of S in all the sums above.

Example 4.1.13. (Nonfaces with pairwise nonempty intersections)

If σi ∩ σj 6= ∅ for all minimal nonfaces σi, σj of S, we have that c(I) = 1 everywhere and

[MS ] = [M ]n −
∑

σ1,...,σk∈I⊂[∆V \S]:|I|=k
(−1)k[M ]n−|σ1∪···∪σk|+1. (4.1.7)

The individual terms of the sum 4.1.7 really only depend on |σ1 ∪ · · · ∪ σk| and not the

full information on the nonfaces σ1, . . . , σk of S. An example where this occurs is Example

1.14 on p. 7 – 8 of [11]. Note that this example applies since we can reduce to the case

where the indices vary over minimal nonfaces. It also gives a hint to a connection we will

make with Stanley–Reisner rings which applies to arbitrary simplicial complexes.

We would like to relate properties of this polynomial in [M ] with certain invariants of an

algebraic structure associated to simplicial complexes which are parametrized by tuples of

points which do not belong to a specified simplicial complex as in the case of the simplicial

chromatic polynomials above.

Definition 4.1.14. (p. 201 – 202 of [13])

Let k be a field and S be a simplicial complex. For a subset A of the vertex set V =

{x1, . . . , xn}, write xA =
∏
xi∈A xi ∈ k[x1, . . . , xn]. Let I(A) denote the ideal in the poly-

nomial ring k[x1, . . . , xn] generated by all monomials xσ such that σ /∈ S (i.e. σ ∈ ∆V \ S

in the notation above).

135



Note that I(S) is generated by the minimal nonfaces of S since σ being a nonface and

α ⊃ σ implies that α is also a nonface of S. The quotient ring k[S] := k[V ]/I(S) is called

the Stanley–Reisner ring (or face ring) of S.

Throughout the proofs in this section, we implicitly use the following result to build

simplicial complexes out of collections of finite sets.

Theorem 4.1.15. (Stanley–Reisner correspondence, Definition 2.1, Definition 2.5, and

Proposition 2.6 p. 211 – 212 of [15])

Let X = {x1, . . . , xn}. Each xi will be treated as the element i of {1, . . . , n} when subsets

are written below. Given a squarefree monomial ideal I, let

∆I = {m ⊂ X : m /∈ I}

be the simplicial complex consisting of squrefree monomials not in I.

Given a simplicial complex ∆, let

I∆ = 〈m ⊂ X : m /∈ ∆〉.

If I is a squarefree monomial ideal, then I∆I
= I. If ∆ is a simplicial complex, then

∆I∆ = ∆.

The maps

{squarefree monomial ideals} −→ {simplicial complexes}, I 7→ ∆I

and

{simplicial complexes} −→ {squarefree monomial ideals},∆ 7→ I∆
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induce a correspondence

{squarefree monomial ideals} ←→ {simplicial complexes}.

The connection of this ring with the simplicial chromatic polynomial comes from its

Hilbert series. Let S = k[x1, . . . , xn] and let J = 〈m1, . . . ,mr〉 be a monomial ideal of

S. The main idea is that the numerator of the Hilbert series H(S/J, x) is the sum of the

monomials which are not in J (top of p. 7 of [11]). One way to find these is to subtract

the union of monomials which are in J from the total set of all monomials while counting

the former using inclusion-exclusion. Normalizing (by division by (1− x1) · · · (1− xn)), this

gives the following polynomial in the numerator of the Hilbert series as shown on p. 1295 –

1296 of [8]:

H(S/J, x) = H(S, x)−H(J, x) =
∑
α∈Nn

xα−
∑

xα∈〈mI〉
I⊂[r]
|I|=1

xα+
∑

xα∈〈mI〉
I⊂[r]
|I|=2

xα−. . .+(−1)r
∑

xα∈〈mI〉
I⊂[r]
I=[r]

xα,

(4.1.8)

where [r] = {1, . . . , r} and mI = lcm(mi : i ∈ I) for a subset I ⊂ {1, 2, . . . , r}. In this

case, the alternating sum of least common multiples of tuples of generators mi of M . Taking

the lcm ensures that repeating indices aren’t counted twice. Applying the normalization

(1− x1) · · · (1− xn), 4.1.8 can be rewritten as

H(S/J, x) =

1−
∑
I⊂[r]
|I|=1

mI +
∑
I⊂[r]
|I|=2

mI − . . .+ (−1)r
∑
I⊂[r]
I=[r]

mI

(1− x1) · · · (1− xn)
, (4.1.9)

where [r] = {1, . . . , r} and mI = lcm(mi : i ∈ I) for a subset I ⊂ {1, 2, . . . , r} as above.

Let K(S/M, x) be the numerator of 4.1.9. Since mI = lcm(mi : i ∈ I) and each of the mi

are squarefree, we have that suppmI =
⋃
i∈I suppmi.
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Putting everything together, we start finding the main relations between simplicial chro-

matic polynomials and Stanley–Reisner rings. We can start with the case where c(I) = 1

for all subsets I ⊂ ∆V \ S.

Proposition 4.1.16. Given a manifold M , let [M ] = χc(M). Let S be a simplicial complex

with vertex set V = {1, . . . , n}. If c(I) = a for all I ⊂ [n] (Definition 4.2.5), we have that

[MS ]− [M ]n = [M ]n+a(K(S/J, [M ]−1)− 1), where K(S/J, x) is the numerator of 4.1.9 and

J = I(S) is the Stanley–Reisner ideal of S. Substituting in M = CPt−1, this implies that

χc(S)(t)− tn = tn+a(K(S/J, t−1 − 1)) with J = I(S).

Remark 4.1.17. In Example 4.1.13, we have c(I) = 1 for all I.

Proof. Since we take x = (x1, . . . , xn) in K(S/J, x), the expression on the right hand side

means substituting xi = [M ]−1 for each i ∈ [n]. This is because the number of intersections

taken in the MS setting and the number of simplices used in the inclusion-exclusion argument

match up. Note that taking the lcm amounts to taking a union with the degree of each

monomial in H(S/M, x) giving the size of the set |σ1 ∪ · · · ∪ σk|.

The following result implies that the “interesting” part of the simplicial chromatic poly-

nomial (i.e. the term obtained from subtracting the leading term) only depends on the

h-vector of the simplicial complex:

Proposition 4.1.18. (Corollary 1.15 on p. 8 of [11])

Let fi be the number of i-faces in the simplicial complex S. Then,

H(S/I(S); t, . . . , t) =
1

(1− t)n
d∑

n=0

fi−1t
i(1− t)n−i =

h0 + h1t+ h2t
2 + . . .+ hdt

d

(1− t)d
,

where d = dimS + 1.
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There are analogues of the results above which we can give for general simplicial com-

plexes. For a general simplicial complex, terms of the sum describing the class [MS ] in

K0(Vark) corresponding to a subset I = {σ1, . . . , σk} ⊂ ∆V \ S depends on more than

|σ1 ∪ · · · ∪ σk|.

We can find a counterpart of Proposition 4.1.16 for simplicial complexes satisfying a

(mild) assumption on finite set covers. This enables us to express the nontrivial part of [MS ]

in terms of the Hilbert–Poincaré series of the Stanley–Reisner ring of an auxiliary simplicial

complex depending on S (Theorem 4.1.5).

Proof. (of Theorem 4.1.5)

Compare the terms of the expansion

[MS ] = [M ]n −
∑

σ1,...,σk∈I⊂[∆V \S]:|I|=k
(−1)k[M ]n−|σ1∪···∪σk|+c(I)

with those of

H(S/J, x) =

1−
∑
I⊂[r]
|I|=1

mI +
∑
I⊂[r]
|I|=2

mI − . . .+ (−1)r
∑
I⊂[r]
I=[r]

mI

(1− x1) · · · (1− xn)
,

where [r] = {1, . . . , r} and mI = lcm(mi : i ∈ I) for a subset I ⊂ {1, 2, . . . , r}. Let

d = dimS + 1. Recall that

H(S/I(S); t, . . . , t) =
1

(1− t)n
d∑

n=0

fi−1t
i(1−t)n−i =

h0 + h1t+ h2t
2 + . . .+ hdt

d

(1− t)d
(4.1.10)

by Proposition 4.1.18.

In the sum 4.1.10 (which results from the specialization x1 = x2 = · · · = xn = t),

139



terms of degree u correspond to σ1, . . . , σk ∈ ∆V \ S such that |σ1 ∪ · · · ∪ σk| = u since

lcm(xσ1 , . . . , xσk) = xσ1∪···∪σk (which is equal to t|σ1∪···∪σk| after substituting x1 = x2 =

· · · = xn = t). The class [MS ] is more closely related to the expression we obtain by replacing

t with t−1 in H(S/I(S); t, . . . , t) in a way analogous to Proposition 4.1.16.

The idea is to find subsets α1, . . . , αr ⊂ [n] such that |σi1∪· · ·∪σik |−c(I) = |αi1∪· · ·∪αik |.

Setting σI = σi1 ∪ · · · ∪ σik and αI = αi1 ∪ · · · ∪ αik for I = {i1, . . . , ik}, the claim can

be rewritten as |σI | − c(I) = |αI |. As a polynomial, this would let us use the sum from

Proposition 4.1.18 if the α1, . . . , αr give the Stanley–Reisner ideal of some simplicial com-

plex. By the Stanley–Reisner correspondence (Theorem 4.1.15), such a simplicial complex

does exist. The auxiliary simplicial complex T (S) in the statement of Theorem 4.1.5 would

be the simplicial complex whose minimal nonfaces correspond to the αi via the Stanley–

Reisner correspondence. Thus, the problem is reduced to showing that the assumptions in

the statement allow the existence of such αi.

We use induction on |I| to show that the sets αi in the definition of property I (Definition

4.2.3) satisfy the relation |σI | − c(I) = |αI |. Since c(I) = 1 if |I| = 1, the case where |I| = 1

is really the statement that |αi| = |σi| − 1. Suppose that |αI | = |σI | − c(I). Given p /∈ I,

let J = I ∪ {p}. We would like to show that |αJp | = |σJp | − c(Jp). Since σp adds a new

component if and only if σp ∩ σi = ∅ for all i ∈ I, we have that

c(Jp) =


c(I) if σi ∩ σp 6= ∅ for some i ∈ I

c(I) + 1 if σi ∩ σp = ∅ for all i ∈ I

Using the notation σI =
⋃
i∈I σi, this simplifies to
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c(Jp) =


c(I) if σI ∩ σp 6= ∅

c(I) + 1 if σI ∩ σp = ∅.

If σI ∩ σp = ∅, then |σJp | = |σI |+ |σp| and

|σJp | − c(Jp) = |σI |+ |σp| − c(I)− 1

= (|σI | − c(I)) + (|σp| − 1)

= |αI |+ |αp|

= |αJp |,

where the last line follows from the assumption that αI ∩ αp = ∅ if we have I ⊂ [r] and

p /∈ I such that σI ∩σp = ∅ and we are considering the case where σI ∩σp = ∅ (which means

that αI ∩ αp = ∅).

Now consider the case where σI ∩ σp 6= ∅. In this case, we have that c(Jp) = c(I). Note

that |σJp | = |σI |+ |σp| − |σI ∩ σp|. Similarly, we have that

|αJp | = |αI |+ |αp| − |αI ∩ αp|

= |σI | − c(I) + |σp| − 1− |αI ∩ αp|

= |σI | − c(I) + |σp| − 1− |σI ∩ σp|+ 1

= |σI |+ |σp| − |σI ∩ σp| − c(I)

= |σJp | − c(I),

where we used the assumption that |αI ∩ αp| = |σI ∩ σp| − 1 if σI ∩ σp 6= ∅ in the third
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line. Thus, the desired conclusion follows from induction on the size of I ⊂ [r].

Example 4.1.19. We give some examples where the assumptions of Theorem 4.1.5 hold.

Note that it suffices to start with an initial collection of subsets σi ⊂ [n] (taken to be gen-

erators of a squarefree monomial ideal) since they can always be taken to be the minimal

nonfaces of some simplicial complex by the Stanley–Reisner correspondence (p. 212 of [15]).

1. Suppose that r = 2 (i.e. that there are two minimal nonfaces) and σ1 ∩ σ2 = ∅. For

example, this applies to the simplicial complex ∆ corresponding to the square graph

abcd for the vertex set a, b, c, d, which has I(∆) = 〈ac, bd〉 (Example 1.15 on p. 2 of

[17]). Then, we can simply take αi to be any subset of σi with one element removed.

Since α1 ⊂ σ1 and α2 ⊂ σ2, we have that α1 ∩ α2 = ∅. If we take I = {1, 2}, then

|σI ∩ σi| = |σi| and |αI ∩ αi| = |αi| = |σi| − 1 and the assumptions of Theorem 4.1.5

are satisfied. These arguments apply in general when σi ∩ σj for i 6= j.

2. Let r = 3 and take subsets σ1, σ2, σ3 ⊂ [n] of size ≥ 2 such that σi∩σj = σ1∩σ2∩σ3 =

{a} for some point a. Let αi = σi \ {a}. Since the |I| = 3 case is trivial, it suffices

to consider the cases |I| = 1 and |I| = 2. The |I| = 1 case has to do with pairwise

intersections. This works since |αi ∩ αj | = 0 = |σi ∩ σj | − 1 for i 6= j. As for

the |I| = 2 case, the nontrivial instance is from noting that |α1 ∩ α2 ∩ α3| = 0 =

|σ1 ∩ σ2 ∩ σ3| − 1 = 1. This satisfies the assumptions of Theorem 4.1.5. Adding a

subset σ4 such that σ4∩σi = ∅ for i = 1, 2, 3 still gives a collection of subsets satisfying

the assumptions of Theorem 4.1.5.

3. Another example with r = 3 uses σ1, σ2, σ3 ⊂ [n] such that |σ1 ∩ σ2| = |σ1 ∩ σ3| =

|σ2∩σ3| = 1 and σ1∩σ2∩σ3 = ∅. Let a = σ1∩σ2, b = σ1∩σ3, and c = σ2∩σ3. Then,

take α1 = σ1 \ {a}, α2 = σ2 \ {c}, and α3 = σ3 \ {b}. As mentioned in the previous
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example, the conditions with |I| = 3 are trivial. It remains to consider the cases with

|I| = 1 and |I| = 2. We are done with the |I| = 1 case since the αi are pairwise disjoint.

The nontrivial part of the |I| = 2 case comes from noting that σ1 ∩ σ2 ∩ σ3 = ∅ and

α1 ∩ α2 ∩ α3 = ∅.

Remark 4.1.20.

1. If we don’t invert the variables in χc(S, t) and S is a Cohen–Macaulay simplicial com-

plex, the expression obtained for the simplicial chromatic polynomial χc(S, t) is also

closely related to a specialization of the Hilbert–Poincaré series of the *canonical mod-

ule of k[S] (Exercise 5.6.6 on p. 246 of [10]):

Hωk[S]
(t) =

∑
F∈S

dimk H̃dim lkF (lkF ; k)
∏
Xi∈F

ti
1− ti

= (−1)dHk[S](t
−1
1 , . . . , t−1

n )

The intermediate expression lkF = {G : F ∪ G ∈ S, F ∩ G = ∅} (Definition 5.3.4 on

p. 232 of [10]) is also involved in determining when a simplicial complex is Cohen–

Macaulay (Theorem 12.27 on p. 211 of [13]). There are even simpler relations

with Hk[S](t1, . . . , tn) = (−1)dHk[S](t
−1
1 , . . . , t−1

n ) if the simplicial complexes involved

are Euler complexes (Exercise 5.6.7 on p. 246 of [10]) and taHk[S](t1, . . . , tn) =

(−1)dHk[S](t
−1
1 , . . . , t−1

n ) if they are Gorenstein complexes (Exercise 5.6.9 on p. 246

of [10]).

2. The Hilbert series of auxiliary simplicial complexes determined by the simplicial chro-

matic polynomials in the setting of Proposition 4.1.16 and Theorem 4.1.5 can be used

to generate Hilbert series of other rings using operations such as addition, partial sums,

and multiplication related to joins of simplicial complexes as indicated in Corollary 6.6

on p. 738 of [13] (Proposition 2.4 on p. 131 of [2]).
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We can combine Proposition 4.1.18 with the main results (Proposition 4.1.16 or Theorem

4.1.5) and the defining property of the simplicial chromatic polynomial (Proposition 4.1.11)

to make an observation on simplicial chromatic polynomials of simplicial complexes S in the

setting of the results above.

Corollary 4.1.21. Suppose that S is a simplicial complex satisfying the assumptions of

Proposition 4.1.16 or Theorem 4.1.5.

1. The simplicial chromatic polynomial χc(S, t) is entirely determined by the h-vector of

S.

2. The h-vector of the associated simplicial complex (S in Proposition 4.1.16 and T =

T (S) in Theorem 4.1.5) is entirely determined by the defining addition-contraction

relation and normalization for simplicial chromatic polynomials from Proposition 6.4

on p. 738 of [13].

Simplicial chromatic polynomials as Hilbert polynomials of other rings

We can also connect the original simplicial chromatic polynomials χc(S, t) associated to a

simplicial complex S to Hilbert series of rings without making any modifications on the latter

ring. More specifically, we will work with conditions under which a polynomial is a Hilbert

polynomial (i.e. “approximately a Hilbert series” – see p. 131 and Theorem 2.2 on p. 129

of [2]) which are listed below.

Proposition 4.1.22. (Corollary 3.10 on p. 138 of [2])

Let P (x) =
∑d
i=0 aix

i. If a0, . . . , ad ∈ N and a1, a2 ≥ 3, then P (x) is a Hilbert polynomial

associated to some k-algebra.

Combining Proposition 4.1.22 with the inclusion-exclusion arguments used earlier, we

find some conditions under which [MS ]− [M ] is a Hilbert polynomial with [M ] substituted

in for the variable (Corollary 4.2.7).
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Proof. (of Corollary 4.2.7)

The expansion

[MS ] = [M ]n −
∑

σ1,...,σk∈I⊂[∆V \S]
|I|=k

(−1)k[M ]n−|σ1∪···∪σk|+c(I)

implies that

[M ]n − [MS ] = [M ]n
∑

σ1,...,σk∈I⊂[∆V \S]
|I|=k

(−1)k[M ]−|σ1∪···∪σk|+c(I).

Replacing t with t−1, we find that

t−n − χc(S, t−1) = t−n
∑

σ1,...,σk∈I⊂[∆V \S]
|I|=k

(−1)kt−(|σ1∪···∪σk|−c(I)).

The coefficient of t−r on the right hand side is

∑
σ1,...,σk∈I⊂[∆V \S]

|I|=k
|σ1∪···∪σk|−c(I)=r

(−1)k.

Since we assumed that c(I) = a for all I, the coefficient of t−r is

∑
σ1,...,σk∈I⊂[∆V \S]

|I|=k
|σ1∪···∪σk|=a+r

(−1)k. (4.1.11)

Recall that
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hs =
∑

σ1,...,σk∈I⊂[∆V \S]
|I|=k

|σ1∪···∪σk|=s

(−1)k (4.1.12)

by a correspondence between the numerators of 4.1.9 and 4.1.10.

Comparing 4.1.12 to the coefficient of t−r given by 4.1.11, we have that the coefficient

of t−r is equal to ha+r. Combining the assumptions that ha+r ≥ 1, ha+1, ha+2 ≥ 3, and

hi ≥ 0 for all i ≥ a with Proposition 4.1.22, we find that t−n − χc(S, t−1) = t−nP (t−1) for

some Hilbert polynomial P = P (x).

4.1.3 Applications

In this section, we outline applications of the main results to properties of simplicial chro-

matic polynomials in various contexts. This includes properties that generalize those of

chromatic polynomials or matroids. The fact that we work with simplicial complexes are

not necessarily independence complexes of graphs allows us to obtain symmetric properties

in other contexts. Here are the main types of applications considered:

• The support of cyclotomic polynomials (Corollary 4.1.27)

• Simplicial complexes with log concave simplicial chromatic polynomials (Corollary

4.1.32, Example 4.1.35)

• Symmetric relations among coefficients of simplicial chromatic polynomials induced by

polytopes (Example 4.1.37)
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4.1.4 Connection to cyclotomic polynomials

We consider simplicial complexes whose topology encodes information on coefficients of cy-

clotomic polynomials.

Definition 4.1.23. (p. 114 of [12])

Let Kp denote the 0-dimensional abstract simplicial complex consisting of p vertices. Given

d distinct primes p1, . . . , pd, we set

Kp1,...,pd = Kp1 ∗ · · · ∗Kpd ,

where ∗ denotes join. Setting n = p1 · · · pd, we note that each facet of Kp1,...,pd corre-

sponds to a residue (mod n) by the Chinese Remainder Theorem.

Given a subset A ⊂ {0, 1, . . . , ϕ(n)}, let KA be the subcomplex of Kp1,...,pd containing

the entire (d− 2)-simplex whose facets correspond to elements of

A ∪ {ϕ(n) + 1, ϕ(n) + 2, . . . , n}.

Here is the result of Musiker–Reiner [12] connecting this simplicial complex to the coef-

ficients of simplicial chromatic polynomials.

Theorem 4.1.24. (Musiker–Reiner, Theorem 1.1 on p. 114 of [12])

For a squarefree postiive integer n = p1 · · · pd, with cyclotomic polynomial

Φn(x) =

ϕ(n)∑
j=0

cjx
j ,
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one has

H̃i(K{j};Z) =


Z/cjZ if i = d− 2

Z if both i = d− 1 and cj = 0

0 otherwise.

for each 0 ≤ j ≤ ϕ(n).

While we only account for non-torsion components in the Euler characteristic, the Euler

characteristic associated with this simplicial complex still records information on the parity

of nonzero coefficients.

Before outlining the connection of Theorem 4.1.5 with cyclotomic polynomials via The-

orem 4.1.24, we define some notation.

Definition 4.1.25. Given a simplicial complex S, let hS(t) = h0 + h1t
2 + . . .+ hdt

d, where

h = (h0, . . . , hd) is the h-vector associated to S.

There are simplicial complexes satisfying the intersection conditions in the main result.

Example 4.1.26. There are simplicial complexes Kp1,...,pd such that K{j} satisfies the

conditions of Theorem 4.1.5. This means that their simplicial complexes are determined by

h-vectors of auxiliary simplicial complexes. For example, consider the subcomplex K{1} ⊂

K2,3. Writing K2,3 = K2 ∗K3, let K2 = {a, b} and K3 = {c, d, e}. The minimal nonfaces

of K{1} are β1 = {a, b}, β2 = {c, d}, β3 = {c, e}, β4 = {d, e}, and β5 = {a, e}. The nonfaces

β1, β2, β3, β4 correspond to pairs of points from the same vertex set Ki and the nonface β5

is the facet removed in the construction of K{1}. Setting σi = βi for each 1 ≤ i ≤ 5 in

Theorem 4.1.5, we can set α1 = {b}, α2 = {c}, α3 = {d}, α4 = {e}, and α5 = {a}.

The simplicial complexes K{j} are also connected to simplicial chromatic polynomials

whose constant terms detect whether a cyclotomic polynomial contains a term of a given

degree.
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Corollary 4.1.27. Given a cyclotomic polynomial Φn(x) =
∑ϕ(n)
j=0 cjx

j, there are simplicial

complexes Sj such that the constant term of χc(Sj) is equal to 1+(−1)d or (−1)d depending

on whether cj = 0 or cj 6= 0 respectively. This means that χc(Sj) determines whether cj = 0

or not.

Proof. Recall that our Theorem 4.1.5 states that

χc(S)(t)− tn = tn(hT (S)(t
−1)− 1) =⇒ χc(S)(t) = tnhT (S)(t

−1)

for simplicial complexes S satisfying appropriate intersection properties (Definition 4.2.3).

If we add an extraneous element (vertex) not in the ground set of K{j} to every mini-

mal nonface of K{j}, then we obtain the minimal nonfaces of a simplicial complex S such

that the auxiliary simplicial complex in Theorem 4.1.5 is T (S) = K{j}. In other words, we

consider the simplicial complex whose minimal nonfaces are σi = αi ∪ {q} for some minimal

nonface αi of K{j} and extraneous vertex q not in the ground set/vertex set of K{j}. Then,

σI ∩ σp 6= ∅ for any choice of I and p in Definition 4.2.3 and removing the extra vertex q

would decrease the size of the intersection σI ∩σp by 1 since it is contained in every minimal

nonface of the simplicial complex S. The following result implies that the constant term of

χc(S) is equal to 1 + (−1)d or (−1)d depending on whether cj = 0 or cj 6= 0 respectively.

Proposition 4.1.28. (Corollary 5.1.9 on p. 213 of [10])

Given a simplicial complex S, we have that hd = (−1)d−1(χ(S)− 1).

Remark 4.1.29. The construction used in the proof of Corollary 4.1.27 can be repeated to

construct σi satisfying the intersection property in Definition 4.2.3 given any collection of

sets αi.
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Log concavity of simplicial chromatic polynomial coefficients

The example below also gives a family of simplicial complexes whose simplicial chromatic

polynomials are log concave. We will specialize to the case where the simplicial complex

considered is the independence complex of a matroid and consider log concave sequences of

integers, which we both define below.

Definition 4.1.30. (Part 1 on p. 51 of [9])

Given a matroid M with underlying set E = {1, . . . , n}, the independence complex of M

is the simplicial complex with independent subsets of E as faces of the simplicial complex.

Definition 4.1.31. (p. 49 of [9])

A sequence of integers e0, e1, . . . , en is log concave if ei−1ei+1 ≤ e2
i for all 0 < i < n.

Corollary 4.1.32.

1. Suppose that S is any simplicial complex S satisfying the conditions of Theorem 4.1.5

(i.e. satisfies property I in Definition 4.2.3). If T (S) is the independence complex of

a representable matroid, then the coefficients (a normalization of) the simplicial chro-

matic polynomial χc(S) are log concave.

2. If S satisfies the conditions of Proposition 4.1.16 and is the independence complex of a

representable matroid, then the coefficients (a normalization of) sufficiently high degree

terms of the simplicial chromatic polynomial χc(S) are log concave. Writing bj for the

coefficient degree j term of χc(S), we have that bj−1bj+1 ≤ b2j for sufficiently large j.

Proof.

1. If S satisfies property I (Definition 4.2.3), then χc(S)(t) = tnhT (S)(t
−1) by Theorem

4.1.5. Let bi be the coefficient of ti in χc(S)(t) and hj be the degree j term of the
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polynomial hT (S)(u). Since χc(S)(t) = tnhT (S)(t
−1), we have that ai = hn−i. The

log concavity of h-vectors associated to the independence complex of representable

matroids (Theorem 3 on p. 52 of [9]) implies that hj−1hj+1 ≤ h2
j for 0 < j < n. Sub-

stituting in the identity bi = hn−i, this inequality can be rewritten as bn−j+1bn−j−1 =

bn−j−1bn−j+1 ≤ b2n−j for 0 < j < n. This is the statement of log concavity for the

coefficients ai of the degree i term of χc(S)(t).

2. Suppose that S satisfies the conditions of Proposition 4.1.16. In other words, this

means that there is some a ≥ 1 such that c(I) = a for all subsets I ⊂ [n] (Definition

4.2.5). Then, we have that χc(S)(t) − tn = tn+ahS(t−1) for some a ≥ 1. Let h̃j be

the degree j term of hS(v). The identity χc(S)(t) − tn = tn+ahS(t−1) implies that

h̃i = bn+a−i. Using the h̃i in place of the hi, the log concavity result on independence

complexes implies that h̃j−1h̃j+1 ≤ h̃2
j for 0 < j < n − 1. Since h̃i = bn+a−i, this

implies that bn+a−j−1bn+a−j+1 ≤ b2n+a−j . This implies log concavity for terms of

degree ≥ a.

Example 4.1.33. Consider the independence complex of the uniform matroid Urn with n ≥ 6

and r > n
2 + 1. This is a representable matroid with the elements of the underlying set cor-

responding to a “generic” n-tuple of vectors spanning a linear subspace of dimension r. We

can set Urn = T (S) for a suitable S (i.e. one satisfying property I from Definition 4.2.3 and

Theorem 4.1.5) using the same construction as the one used in the proof of Corollary 4.1.27

(Remark 4.1.29). More specifically, we can take S to have underlying set {1, . . . , n, n+1} and

the minimal nonfaces of S equal to I ∪{n+ 1} for subsets I ⊂ [n] such that |I| = r+ 1. The

minimal nonfaces of Urn are obtained by removing n + 1 from each of the minimal nonfaces

of S.
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In general, it appears that the log concavity of f -vectors is better understood than that

of h-vectors. The relation between f -vectors and h-vectors naturally takes the form of a

translation when we consider the reciprocal polynomials of their generating functions.

Proposition 4.1.34. (Lemma 5.1.8 on p. 213 of [10], p. 321 of [15])

The f -vector and h-vector of a (d− 1)-dimensional simplicial complex S are related by

∑
i

hit
i =

d∑
i=0

fi−1t
i(1− t)d−i (4.1.13)

In particular, the h-vector has length at most d, and for j = 0, . . . , d,

hj =

j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1

and

fj−1 =

j∑
i=0

(
d− i
j − i

)
hi.

Alternatively, we can write

d∑
i=0

fi−1(t− 1)d−i =
d∑
i=0

hit
d−i. (4.1.14)

Note that 4.1.14 can be obtained from 4.1.13 by substituting in t−1 for t and multiplying

by td afterwards (i.e. computing the reciprocal polynomials).

The second version of the relation between h-vectors and f -vectors can be used to build

further examples of simplicial chromatic polynomials satisfying log concavity properties.

Example 4.1.35. (Log concavity of translated simplicial chromatic polynomials via f -

vectors)

Using the strategy in the proof of Corollary 4.1.27, we can show that any simplicial complex

is the auxiliary simplicial complex T (S) of some simplicial complex S from (Theorem 4.1.5,
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Definition4.2.3). The fact the simplicial chromatic polynomials considered in Theorem 4.1.5

or Proposition 4.1.16 are essentially reciprocal polynomials (multiplied by a power of t) of the

generating function for h-vectors of the auxiliary simplicial complex T (S) means that we can

simply replace t by t−1 to get the generating function for an f -vector. This would enable us

to input log concavity results on f -vectors of simplicial complexes to this translation of the

simplicial chromatic polynomial. For example, the f -vector of the independence complex of

a representable matroid is known to be log concave [10]

Symmetric relations among simplicial chromatic coefficients

If the auxiliary simplicial complex T (S) is isomorphic to the simplicial complex given by the

vertices of proper faces of a simplicial polytope, then the following relations imply that the

simplicial chromatic polynomial χc(S) is equal to its reciprocal polynomial.

Theorem 4.1.36. (Dehn–Sommerville, Theorem 5.2.16 on p. 229 of [10])

Let (h0, . . . , hm) be the h-vector of a simplicial polytope. Then hi = hm−i for 0 ≤ i ≤ d.

Here is an example where the chromatic symmetric polynmial is equal to its reciprocal

polynomial.

Example 4.1.37. (Symmetries in simplicial chromatic polynomial coefficients)

1. Let A be the simplicial complex corresponding to the boundary of the octahedron. Let

{a, b, c, d, e, f} be the vertex set with e and f labeling the “antipodal” vertices on the

top and bottom and a, b, c, d labeling the vertices of the square “base”. The minimal

nonfaces come from the pair of “antipodal” vertices {e, f} and the pair of diagonals

{a, c} and {b, d} from the square in the middle. Since these are all disjoint from each

other, adding 3 new extraneous vertices g, h, i to each of these minimal nonfaces gives
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the set of minimal nonfaces of a simplicial complex S such that A = T (S) in Theorem

4.1.5. Applying Theorem 4.1.5, the coefficient of ti in χc(S) is the coefficient h5−i of

t5−i in hT (S(t). Then, the Dehn–Sommerville relations hi = hm−i (Theorem 5.2.16

on p. 229 of [10]) with m = 2 (i.e. h0 = h2) implies that imply that t5 and t3 have

the same coefficient in χc(S, t).

2. Let S be a simplicial complex with vertex set V = {1, . . . , n} satisfying property I

(Definition 4.2.3, Theorem 4.1.5). Suppose that the auxiliary simplicial complex T (S)

(Definition 4.2.3, Theorem 4.1.5) is isomorphic to the boundary complex of a simplicial

polytope of dimension m. Let bi be the coefficient of ti in the simplicial chromatic

polynomial χc(S, t). By Theorem 4.1.5, we have that χc(S)(t) = tnhT (S)(t
−1). Then,

we have that bi = hn−i. Then, the Dehn–Sommerville relations hi = hm−i imply that

bn−i = bn−m+i =⇒ bi = bm−i. If n = m, this implies that χc(S)(t) is a reciprocal

polynomial.
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4.2 Anti-Ramsey theory problems, lattice point counts on

polytopes, and Hodge structures on the cohomology of toric

varieties

We find families of graphs G and subgraphs H of G such that the number of edge colorings

of G avoiding a monochromatic coloring of H is determined by lattice point counts or a

Hodge structure on the cohomology of a certain toric variety. In general, this gives a class

of “anti-Ramsey theory problems” with a geometric structure. For example, we find one for

Ramsey numbers of classes of such graphs. The key observation is that our previous result

expressing simplicial chromatic polynomials in terms of h-vectors of auxiliary simplicial com-

plexes [19] can be reinterpreted as one on edge colorings of graphs avoiding monochromatic

colorings of specified forbidden subgraphs. Specializing to simplicial complexes arising from

triangulations of polytopes (e.g. unimodular triangulations), we obtain families of graphs

and forbidden subgraphs where edge colorings avoiding monochromatic colorings of the for-

bidden subgraphs depend on lattice point counts or Hodge structures on the cohomology of

toric varieties.

4.2.1 Introduction

Roughly speaking, Ramsey theory studies structures which are forced to contain a “regu-

lar” substructure when they are large enough. For example, Ramsey numbers (and graph-

theoretic instances in general) give a threshold for this size in order for an edge coloring of

a complete graph of some size to contain a monochromatic subgraph (e.g. a clique). There

has been extensive work on related to these kinds of questions and an overview is given in a

survey of Conlon–Fox–Sudakov [12].

The specific types of problems which we will focus on have to do with avoiding monochro-

156



matic structures in edge colorings. We will term these “anti-Ramsey problems”. An overview

of such “forbidden graph” problems is given by Bollobás in [8]. Some examples of results

in this direction include those of Alon–Balogh–Keevash–Sudakov [2] on avoiding monochro-

matic cliques and Yuster [29] on avoiding monochromatic triangles. Fujita–Liu–Magnant [16]

and Kano–Li [21] give surveys involving results on edge colorings avoiding monochromatic

colorings of specified structures. A common property of results of this type (and extremal

graph theory problems in general) is that they are often asymptotic or involve some kind

of quantitative bound. In this work, we give families of graphs where this problem can be

studied from a structural perspective coming from topology. This enables us to obtain spe-

cializations where the colorings are parametrized by lattice points or generating functions

from Hodge structures on the cohomology of toric varieties.

Our starting point is a reinterpretation of the simplicial chromatic polynomial (Defini-

tion 4.2.2, Proposition 4.2.8) as a count of edge colorings of graphs avoiding monochromatic

colorings of subgraphs corresponding to the minimal nonfaces of the given simplicial com-

plex. Note that the simplicial chromatic polynomial of any simplicial complex has such

an interpretation. The topological perspective comes from previous results which express

the simplicial chromatic polynomials of simplicial complexes whose minimal nonfaces satisfy

appropriate intersection properties in terms of h-vectors of auxiliary simplicial complexes

(Theorem 4.2.6, Corollary 4.2.7). This gives a family of graphs G and subgraphs {Hi}

where edge colorings avoiding monochromatic colorings of Hi are parametrized by h-vectors

of simplicial complexes. A consequence is an interpretation of Ramsey numbers of classes of

graphs in terms of the topology of certain configuration spaces (Corollary 4.2.11) Specializing

to instances where the auxiliary simplicial complexes arise from unimodular triangulations

of polytopes, we find cases where such colorings are parametrized by lattice point counts of

(dilations of) polytopes (Theorem 4.2.16). Finally, a specialization to compressed polytopes
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(Theorem 4.2.25) gives cases where they are parametrized by (truncated) generating func-

tions of Hodge structures on the cohomology of toric varieties.

The expression of simplicial chromatic polynomials in terms of h-vectors of auxiliary sim-

plicial complexes (Theorem 4.2.6, Corollary 4.2.7) and their reinterpretation in terms of edge

colorings of graphs (Proposition 4.2.8) is given in Section 4.2.2. Afterwards, we specialize

to instances where the auxiliary simplicial complexes arise from polytopes with unimodular

triangulations to obtain find subfamilies of graphs with colorings considered coming from

lattice point counts of polytopes (Theorem 4.2.16) in Section 4.2.3. Finally, we consider

edge colorings avoiding monochromatic colorings of specified subgraphs parametrized by

truncated generating functions depending on Hodge structures on the cohomology of certain

toric hypersurfaces (Theorem 4.2.25) in Section 4.2.4.
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4.2.2 Connections between simplicial chromatic polynomials and

anti-Ramsey-type problems

Simplicial chromatic polynomials were originally introduced by Cooper–de Silva–Sazdanovic

[13] as a “categorification” of the observation that Euler characteristics of ordered configu-

ration spaces of points can often be parametrized using chromatic polynomials. When the

minimal nonfaces of the simplicial complex satsify appropriate intersection properties, we

studied this polynomial from a combinatorial point of view [19] and expressed simplicial

chromatic polynomials in terms of Hilbert series of Stanley–Reisner rings [19]. The notation

we will use writes S for the simplicial complex and V for the vertex set of the simplicial
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complex. Before discussing new material, we will first review the old result and the defini-

tions used there.

Here is the definition of a simplicial chromatic polynomial (from [19] in reference to [13]):

Definition 4.2.1. (Definition 2.1 on p. 725 and p. 738 of [13])

Let S be a simplicial complex whose 0-skeleton is given by the vertex set V = V (S) =

{v1, . . . , vn}. Let M be a topological space. For each simplex σ = [vi1 · · · vik ], define the

diagonal corresponding to σ to be

Dσ = {(x1, . . . , xn) ∈Mn : xi1 = · · · = xik}.

We define the simplicial configuration space as

MS = Mn \
⋃

σ∈∆V \S
Dσ (4.2.1)

where ∆V is the simplicial complex containing all subsets of the vertices vi (analogous

to a simplex generated by independent vectors corresponding to the vi) and ∆V \S denotes

tuples of vertices in V which do not occur as simplices in S.

Definition 4.2.2. (Definition 6.1 on p. 738 of [13])

Let S be a simplicial complex and let M be a manifold. Given S and M , let

χc(S,M) :=
∑

(−1)k rankHk
c (MS).

The simplicial chromatic polynomial of a simplicial complex S is the polynomial

defined by the assignment χc(S) : t 7→ χc(S,CPt−1).

For simplicial complexes S whose minimal nonfaces satisfy appropriate intersection prop-

erties, we can show that their simplicial chromatic polynomials are determined by h-vectors
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of auxiliary simplicial complexes T (S).

Definition 4.2.3. Let S be a simplicial complex with minimal nonfaces σ1, . . . , σr. A

simplicial complex S satisfies property I if there is a collection of finite sets αi such that

|αi| = |σi| − 1 for each 1 ≤ i ≤ r and αI ∩ αp = σI ∩ σp = ∅ if σI ∩ σp = ∅ and

|αI ∩ αp| = |σI ∩ σp| − 1 if |I| ≥ 2 and σI ∩ σp 6= ∅ for each subset I ⊂ [r] and p /∈ I.

Remark 4.2.4. Note that any simplicial complex can be set equal to T (S) for some sim-

plicial complex S satisfying property I. For example, add a new extraneous vertex to every

minimal nonface of T (S).

Definition 4.2.5. Given a k-element subset I = {σ1, . . . , σk} ⊂ ∆V \ S, let GI be the

graph whose vertices are the σi with two vertices corresponding to σi, σj being connected

by an edge if and only if σi∩σj 6= ∅. Let c(I) be the number of connected components of GI .

Theorem 4.2.6. (Theorem 1.5 on p. 4 and Proposition 2.8 on p. 9 of [19])

1. Let r be the number of minimal nonfaces of S. If c(I) = 1 for all I ⊂ [r], then

χc(S)(t)− tn = tn+1((1− t−1)n−dhS(t−1)− 1)

= td+1((t− 1)n−dhS(t−1)− tn−d)

=⇒ χc(S)(t)− tn + tn+1

t(t− 1)n−d
= tdhS(t−1).

2. Suppose that S satisfies property I. Then, there is some auxiliary simplicial complex

T (S) such that
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χc(S)(t) = tn(1− t−1)n−dhT (S)(t
−1)

= td(t− 1)n−dhT (S)(t
−1)

=⇒ χc(S)(t)

td−m(t− 1)n−d
= tmhT (S)(t

−1)

formally, where m = dimT (S).

There are also other intersection patterns of the minimal nonfaces of S where the simpli-

cial chromatic polynomial is determined by the h-vector of an auxiliary simplicial complex

T (S).

Corollary 4.2.7. (Corollary 1.8 on p. 5 of [19])

Let S be a simplicial complex and σ1, . . . , σr be the minimal nonfaces of S. Suppose that

c(I) = a for all subsets I ⊂ [r] with |I| ≥ 2. If ha+r ≥ 1, ha+1, ha+2 ≥ 3, and hi ≥ 1 for all

i ≥ a, then

t−n − χc(S)(t−1) + (tn+1 − tn+a)
∑
σi

t−|σi| = t−nP (t−1)

for the Hilbert polynomial P = P (x) of some k-algebra.

If a = 1, this specializes to

t−n − χc(S)(t−1) = t−nP (t−1).

As noted in Proposition 2.2 on p. 726 of [13], the simplicial chromatic polynomial spe-

cializes to the “usual” chromatic polynomial of a graph when the simplicial complex S is the

independence complex I(G) of some graph G. However, we can consider the terms involved

from a different perspective if S is taken to parametrize “monotone” properties of graphs
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(i.e. P such that P true for G =⇒ P true for H for any subgraph H of G). Other such

examples are on p. 99 – 100 of [20].

Proposition 4.2.8. Let [n] = {1, . . . , n} and G be a graph whose vertices are labeled by

[n]. Consider a simplicial complex S(G) whose vertices are labeled by the edges of G. Then,

χc(S)(t) gives the number of edge colorings of G using ≤ t colors that avoid monochromatic

colorings of collections of edges parametrized by the minimal nonfaces of S(G). In some

sense, the minimal nonfaces of S(G) correspond to “minimal forbidden subgraphs”.

Note that any simplicial complex can be written as S(G) for some graph G. Also, any

property P of a graph preserved by its subgraphs can be parametrized by a simplicial complex

(which we denote by S(P )).

Proof. The first part follows from the definition of χc(S) since σ ⊂ τ =⇒ Dσ ⊃ Dτ , which

means that it suffices to consider minimal nonfaces. The omitted subsets Dσ parametrize

colorings of the edges of G where the edges corresponding to elements of σ all have the same

color. The second statement follows from since we can take the smallest “forbidden” graphs

to be minimal nonfaces.

Observation 4.2.9. Proposition 4.2.8 indicates that the simplicial chromatic polynomial

χc(S)(t) counts edge colorings which are the “complement” of what is studied in graph Ram-

sey theory. In general, combining Proposition 4.2.8 with Theorem 4.2.6 and Corollary 4.2.7

gives a family of extremal graph theory problems (i.e. edge colorings avoiding monochro-

matic “forbidden subgraphs”) which are determined by h-vectors of simplicial complexes

(equivalently by f -vectors of simplicial complexes). This gives a topological point of view on

extremal graph problems, which have results that are mainly stated in terms of inequalities

or focus on specific types of subgraphs where we want to avoid monochromatic colorings.

Some examples include Bollobás’ overview in [8], results of Alon–Balogh–Keevash–Sudakov
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[2] on edge colorings avoiding monochromatic cliques, results on Yuster [29] on edges avoiding

monochromatic triangles, and surveys of Kano–Li [21] and Fujita–Liu–Magnant [16] involv-

ing monochromatic structures in edge colorings. We also provide some methods of studying

monochromatic structures in edge colorings of graphs which are not complete graphs, which

do not appear to be studied as frequently in Ramsey theory-related literature.

For example, the interpretation of χc(S)(t) given in Proposition 4.2.8 can be connected to

both the “usual” Ramsey numbers r(H) for a graph with vertices labeled by [n] = {1, . . . , n}

(p. 49 of [12]) and Ramsey numbers of classes of graphs, which are analogues of Ramsey

numbers restricted to some collection of graphs. The following definition is an extension of

that used by Belmonte–Heggernes–van’t Hof–Rafiey–Saei in [6].

Definition 4.2.10. (Belmonte–Heggernes–van’t Hof–Rafiey–Saei in [6])

Fix a positive integer t. Given a graph class G (i.e. some finite collection of graphs), the

Ramsey number RG(i, j) is the smallest number such that if the edges of a graph in G is

colored with 2 different colors (say red and blue), then it contains a monochromatic blue

clique on i vertices or a red clique on j vertices.

Corollary 4.2.11.

Setting S = S(G) from Proposition 4.2.8, we find that the simplicial chromatic polyno-

mial has a natural relationship with Ramsey numbers and its generalizations studied in the

literature.

1. G = Kn case

(a) The simplicial chromatic polynomial χc(S(Kn))(t) gives the number of edge col-

orings of G using ≤ t colors which do not have any monochromatic cliques of

size i. Substituting t = 2 into the simplicial chromatic polynomial χc(S(Kn))(t),
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we find that the Ramsey number R(i, i) is given by the minimal n such that

χc(S(Kn))(2) = 0.

(b) More generally, consider a graph H on the vertex set [n] in the setting of part

2. The Ramsey number r(H) is the smallest number n such that any coloring of

the edges Kn using 2 colors contains a monochromatic coloring of the edges of

H. Given a graph G and a subgraph H of G, let SH(G) be the simplicial complex

with vertices given by the edges of G and minimal nonfaces given by edges coming

from copies of H in G. Then, we have that r(H) is the smallest number n such

that χc(SH(Kn))(2) = 0.

2. Other graphs G

(a) For each graph G in a graph class G, let S(G) be the simplicial complex described

in Proposition 4.2.8 with the minimal nonfaces given by edges of cliques on i

vertices contained in G. Substituting t = 2 into the polynomials χc(S(G))(t) for

G ∈ G, we have that RG(i, i) is the smallest number N such that χc(S(G))(2) = 0

for all G ∈ G.

(b) In the setting of Proposition 4.2.8, take S = S(G) with the forbidden graphs given

by cycles of length `. Let n be the number of vertices in a graph G and ` be a

positive integer such that 4 ≤ ` ≤ n
8 . If the minimum degree of among the vertices

the graph is ≥ 3n
4 , then χc(S)(2) = 0.

(c) As in Part 2, consider the simplicial complex S = S(G) from Proposition 4.2.8.

Let N be the number of vertices of G and M be the number of edges of G. Suppose

that M ≥ N and fix a positive integer t such that M ≥ tN .

• If the minimal nonfaces of S(G) are given by paths of length ≥
⌈

2M
tN

⌉
, then

χc(S(G))(t) = 0.

• If the minimal nonfaces of S(G) are given by cycles of length ≥
⌈

2M
t(N−1)

⌉
,
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then χc(S(G))(t) = 0.

Proof. 1. Parts a and b are applications of Proposition 4.2.8 with the minimal nonfaces

taken to be the edges corresponding to i-cycles and copies of H contained in G respec-

tively.

2. (a) This is an application of Definition 4.2.10 to Proposition 4.2.8

(b) This is an application of Theorem 2.2.8 on p. 13 and Theorem 2.2.9 on p. 14 of

[16] to Proposition 4.2.8.

(c) This is an application of Theorem 40 on p. 249 of [21] to Proposition 4.2.8.

4.2.3 Connection with lattice point counts of polytopes

In this section, we expand the connection between Ramsey-type problems and topolog-

ical/geometric properties summarized in Observation 4.2.9 in Section 4.2.2. Recall that

this came from an interpretation (Proposition 4.2.8) of the simplicial chromatic polynomial

χc(S)(t) in terms of edge colorings avoiding monochromatic colorings of certain “forbidden

subgraphs” (e.g. cycles, cliques, or paths of a certain size) and its expression in terms of

h-vectors of auxiliary simplicial complexes T (S) when the minimal nonfaces of S satisfy cer-

tain intersection properties (Theorem 4.2.6 and Corollary 4.2.7). Note that any simplicial

complex can be set to be T (S) for some simplicial complex S satisfying property I.

Background on lattice point counts and heuristics

Before we start stating specific expressions/identities, we go over definitions of the objects

used.
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Definition 4.2.12. (p. 275 of Bruns–Herzog) Let P ⊂ RN be a convex bounded polytope

of dimension r. The Ehrhart function is defined as

E(P,m) =
∣∣∣{z ∈ Zn :

z

m
∈ P

}∣∣∣ = |{z ∈ Zn : z ∈ mP}|

for m ∈ N and m > 0. Note that E(P, 0) = 1.

Its generating function is the Ehrhart series

EP (t) :=
∑
m∈N

E(P,m)tm.

The expression of the Ehrhart series as a Hilbert series comes from a more general frame-

work using Hilbert functions to describe generating functions associated to combinatorial

objects arising as solutions to homogeneous linear Diophantine equations in n variables (p.

274 – 276 of [10]). By Lemma 4.1.4 on p. 149 of [10] we can use to write

EP (t) =
h∗0 + h∗1t+ . . .+ h∗rt

r

(1− t)r+1
(p. 3 of [25]).

This can either done by using the fact that EP (t) is the Hilbert series of a k-algebra of

dimension r + 1 (p. 276 of [10]) or a direct computation using the fact that E(P,m)

takes integer values for every m ∈ Z (Lemma 4.1.4 on p. 149 of [10], p. 3 of [25]).

The vector h∗ = (h∗0, . . . , h
∗
r) is called the h∗-vector of the polytope P . Let h∗P (t) =

h∗0 + h∗1t+ . . .+ h∗rt
r = (1− t)r+1EP (t).

We can use this expression of EP (t) as a Hilbert series to study formal analogues of the

simplicial chromatic polynomial. The families of simplicial complexes that we have consid-

ered make use of the Hilbert series of the Stanley–Reisner ring with t−1 substituted in place
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of t. In the case of Ehrhart series, there is a natural symmetry between such polynomials

since (t− 1)r+1EP (t−1) = tr+1hP (t−1). Making the corresponding substitutions, Part 1 of

Theorem 4.2.6 implies that

(t− 1)n+1EP (t−1) “=” χc(S)(t)− tn + tn+1 (4.2.2)

formally, where r = dimP (used in place of d = dimS) and n = |V | (size of the vertex set).

Similarly, applying Part 2 of Theorem 4.2.6 implies that

(t− 1)n+1EP (t−1) “=”
χc(S)(t)

td−r
, (4.2.3)

where d = dimS, r = dimP and n = |V | as above. In this case, we use r in

place of m = dimT (S). Note that ẼP (t) = −EP (t−1) in the expressions above, where

ẼP (t) =
∑
m≥1E(P,−m)tm. By a reciprocity result of Ehrhart ((0.3) on p. 166 of [18],

Theorem 6.3.11 on p. 276 of [10]), we have that (−1)rE(P,−m) = #(m(P − ∂P ) ∩ ZN )

for every integer m > 0. This implies that the simplicial chromatic polynomial is formally a

normalization of the generating function for lattice points of integer factor dilations of the

polytope P with its boundary removed.

Edge colorings avoiding forbidden subgraphs and lattice point counts

In this subsection, we consider some instances where the h-vectors of the simplicial complexes

such as those considered in Part 1 of Theorem 4.2.6 are actually equal to the h-vectors as-

sociated to convex polytopes so that this gives an equality. As a consequence, we find that

lattice point counts of certain polytopes are determined by the number of ways to color the

vertex set of some simplicial complex (within ≤ t colors for some t when considered as a

polynomial in t) so that no two vertices lying in the same minimal nonface have the same
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color (Corollary 4.2.16). The latter follows from the definition of the simplicial chromatic

polynomial.

We will now cover some known cases where the h-vector associated to a polytope is equal

to that of an actual simplicial complexes.

We first recall a result giving an equality between δ-vectors of polytopes and h-vectors

of approrpriate simplicial complexes. More specifically, there is also a result which give an

equality between h-vectors of polytopes and h-vectors of certain simplicial complexes if there

is a unimodular triangulation.

Definition 4.2.13. (p. 694 of [9])

A lattice polytope P satisfies the integer decomposition property (IDP) if

spanZ≥0
{(1, P ) ∩ Zn+1} = cone(P ) ∩ Zn+1.

Theorem 4.2.14. (Bruns and Römer, Theorem 1 on p. 67 of Theorem 4 on p. 698 of [9])

If P is Gorenstein and IDP, then h∗P is the h∗-vector of an IDP reflexive polytope. Further,

if P admits a regular unimodular triangulation, then there exists a simplicial polytope Q such

that h∗P is the h-vector of Q, and hence h∗P is unimodal as a consequence of the g-theorem.

Remark 4.2.15. Although it is possible for cP to admit a unimodular triangulation while

(c+1)P does not, every sufficiently large dilation of an integral polytope admits a unimodular

triangulation by a recent result of Liu (Theorem 1.2 on p. 2 of [24]). This builds on an older

result of Kempf–Knudsen–Mumford–Saint-Donat in [23]. Also, note that the IDP property

is preserved under dilation by definition. Results on related combinatorial invariants are in

work of Cox–Haase–Hibi–Higashitani [14].

Putting this together with the previous results on simplicial polytopes, these imply the

following:
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Theorem 4.2.16.

1. Suppose that P is a Gorenstein integer polytope admitting a regular unimodular tri-

angulation. Then, the boundary complex of P is abstractly isomorphic to a simplicial

complex T such that

χc(S)(t)

te−u−1(t− 1)n−e+r+1
= (−1)r+1E+

P (t)

for any S is a simplicial complex satisfying property I (Theorem 4.2.6) such that T =

T (S), where e = dimS, r = dimP , u = r − u+ 1, and

E+(P,m) =
∣∣∣{z ∈ Zn :

z

m
∈ P \ ∂P

}∣∣∣ = |{z ∈ Zn : z ∈ m(P \ ∂P )}|

by p. 275 of [10]. .

The definition of χc(S) then implies that the number of colorings of the vertices of S

using at most t colors such that no two vertices of S lie in the same minimal non-

face of S divided by te−m−1(t− 1)n−e+m+1 is equal to the generating series of lattice

point counts on integer dilations of P \ ∂P . Also, the coefficients of these lattice point

counts/colorings are determined by the (primitive) cohomology of hypersurfaces on al-

gebraic tori.

2. The class of polytopes in Part 1 induces a class of graphs G and specified subgraphs {Hi}

where the edge colorings of G using ≤ t colors where the Hi are not monochromatic

are parametrized by ta(t − 1)b multiplied by the Ehrhart function of a polytope. This

implies that the colorings in question are essentially parametrized by lattice point counts

of integer dilations of some polytope.
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Proof. 1. By Theorem 4.2.6, the initial conditions imply that EP (t) =
hT (t)

(1−t)u+1 . Since

any simplicial complex is equal to T (S) for some simplicial complex satisfying property

I (e.g. by adding a single particular new vertex to each minimal nonface), we can set

T = T (S) for some simplicail complex S satisfying property I from Theorem 4.2.6. Let

e = dimS, n be the number of vertices of S, and m = dimT (S). Part 2 of Theorem

4.2.6 implies that

χc(S)(t)

te(t− 1)n−e
= hT (S)(t

−1) = (1− t−1)r+1EP (t−1)

= t−r−1(t− 1)r+1EP (t−1)

=⇒ χc(S)(t)

te−r−1(t− 1)n−e+r+1
= EP (t−1)

= (−1)r+1E+
P (t),

where E+(P,m) =
∣∣{z ∈ Zn : z

m ∈ P \ ∂P
}∣∣ = |{z ∈ Zn : z ∈ m(P \ ∂P )}| (p. 275 of

[10]).

The last equality follows from the Ehrhart reciprocity relation

EP (t−1) = (−1)r+1E+
P (t),

which is known to be a generating function for lattice points on positive integer dilations

of P \ ∂P ((0.3) on p. 166 of [18], Theorem 6.3.11 on p. 276 of [10]). This also

implies the connection between coloring and lattice point counts in the last part of the

statement. Finally, the statement connecting coefficients to the (primitive) cohomology

of hypersurfaces on algebraic tori follows from replacing t by t−1 and applying Corollary

4.2.24.
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2. This is a combination of Part 1 and Proposition 4.2.8. Note that any simplicial complex

an be written as S(G) for some graph G (Remark 4.2.4) and a collection of forbidden

subgraphs corresponding to the minimal nonfaces of S where monochromatic edge

colorings are not allowed.

4.2.4 A Hodge structure on the cohomology of toric varieties

Using a similar analysis to the one in Section 4.2.3, we give classes of graphs whose Ramsey

numbers are determined by the mixed Hodge structure on certain toric varieties.

Background on δ-invariants

The expressions above expressing the simplicial chromatic polynomial χc(S) “formally” in

terms of EP (t−1) are very close to a natural existing invariant of convex polytopes (the

δ-vector, p. 166 of [18]). Given a convex polytope P ⊂ RN of dimension N , its δ-vectors

can be expressed in terms of Hodge–Deligne numbers form the primitive part of the middle

cohomology of hypersurfaces in algebraic tori Z(f) = (f = 0) ⊂ (C∗)N for f such that

N(f) = P (i.e. with Newton polytope P ). In some sense, this implies that a formalization

of the simplicial chromatic polynomial is determined by a portion of the “primitive” Hodge–

Deligne polynomial of a hypersurface in an algebraic torus. Note that any simplicial complex

can be set as T (S) in Part 2 of Theorem 4.2.6 for some simplicial complex S. In addition,

the h-vectors associated to convex polytopes are associated to h-vectors of actual simplicial

complexes under suitable conditions. This turns the formalization into an equality which is

realized by an actual simplicial chromatic polynomial.

Definition 4.2.17. (p. 166 of [18])

Let P ⊂ RN be an integral convex polytope (i.e. with vertices given by integer coordinates),
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r = dimP , and ∂P be the boundary of P . We define the sequence of integers δ0, δ1, δ2, . . .

by the formula

(1− t)r+1

(
1−

∞∑
m=1

E(P,m)tm

)
= (1− t)r+1 (1− EP (t)) =

∞∑
i=0

δit
i. (4.2.4)

By a fundamental result on generating functions (equivalence between i and iii in Corol-

lary 4.3.1 on p. 543 of [28]), we have that δi = 0 for every i > r.

When P ⊂ RN is an integral convex polytope of dimension r, we say that the sequence

δ(P ) = (δ0, δ1, . . . , δr) is the δ-vector of P . In particular, we have that δ0 = 1 and δ1 =

#(P ∩ ZN )− (r + 1).

There is a subclass of polytopes P whose δ-vectors are equal to h-vectors of the simplicial

complex corresponding to some triangulation of the boundary ∂P .

Definition 4.2.18. (p. 168 – 169 of [18])

1. A polytope P of dimension r is of standard type if P ⊂ Rr and the origin of Rr is

contained in the interior P \ ∂P of P . For each integer r > 1, let C0(r) be the set of

integral convex polytopes in Rr of standard type.

2. Given a polytope P of standard type, its polar set (or dual polytope) is defined as

P ∗ := {(α1, . . . , αr) ∈ Rr : α1β1 + . . .+ αrβr ≤ 1 for all (β1, . . . , βr) ∈ P}.

For each r > 1, let C∗(r) be the set of P ∈ C0(r) such that P ∗ is an integral convex

polytope.
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Note that P ∗ ⊂ Rr is also a convex polytope of standard type and (P ∗)∗ = P .

Moreover, if P is rational, then P ∗ is rational.

3. A triangulation S of the boundary ∂P of P ∈ C∗(r) with vertex set V = ∂P ∩ Zr is

called compressed.

Proposition 4.2.19. (Stanley, Betke–McMullen, Proposition 2.2 on p. 171 of [18])

Suppose that S is a triangulation of the boundary ∂P of P ∈ C∗(r) with vertex set V =

∂P ∩Zr. Let h(S) = (h0, . . . , hr) be the h-vector of S and δ(P ) be the δ-vector of P . Then,

δ(P ) ≥ h(S) (i.e. δi ≥ hi for each 1 ≤ i ≤ r). Moreover, h(S) = δ(P ) if and only if S is

compressed.

We can combine this with Part 2 of Theorem 4.2.6 to state the following:

Corollary 4.2.20. Suppose that S is a simplicial complex satsifying property I such that

T (S) (Theorem 4.2.6) is a compressed triangulation of some polytope P ∈ C∗(m + 1). Let

d = dimS, n = |V | (the size of the vertex set), and m = dimT (S). Then, we have that

χc(S)(t)

td−m−2(t− 1)n−d
= (tm+2 − 1)(1 + ẼP (t)),

where

ẼP (t) =
∑
m≥1

E(P,−m)tm.

Note that E(P,−m) = (−1)m+2#(m(P \ ∂P ) ∩ Zm+2) and any simplicial complex can

be set equal to T (S) for some simplicial complex S satsifying property I.

Proof. This is a combination of Part 2 of Theorem 4.2.6, the definition of the δ-vector form

4.2.4, and Proposition 4.2.19. By Theorem 4.2.6, we have that

χc(S)(t)

td(t− 1)n−d
= hT (S)(t

−1). (4.2.5)
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Since we assumed that T (S) is a compressed triangulation, we have that hi(T (S)) = δi(P )

for each 1 ≤ i ≤ m. By the definition of the δ-vector in 4.2.4, we have that

(1− t)m+2

(
1−

∞∑
a=1

E(P, a)ta

)
=
∞∑
u=0

δut
u =

∞∑
u=0

hut
u = hT (S)(t)

since dimP = dimT (S) + 1 = m+ 1. Note that the “infinite” sum actually terminates since

terms of degree > m are equal to 0. We can rewrite this as

(1− t)m+2(1− EP (t)) = hT (S)(t). (4.2.6)

Substituting in t−1 in place of t, we can combine 4.2.5 with 4.2.6 to find that

χc(S)(t)

td(t− 1)n−d
= (1− t−1)m+2(1− EP (t−1))

= (1− t−1)m+2(1 + ẼP (t))

= t−m−2(tm+2 − 1)(1 + ẼP (t))

=⇒ χc(S)(t)

td−m−2(t− 1)n−d
= (tm+1 − 1)(1 + ẼP (t)),

where

ẼP (t) =
∑
m≥1

E(P,−m)tm.

This follows from the identity ẼP (t) = −Ep(t−1) (p. 3 of [25]).

As mentioned previously, a reciprocity result of Ehrhart ((0.3) on p. 166 of [18]) implies

that Ẽp(t) is a generating function for integer dilations of P \ ∂P .
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Hodge structures on toric varieties vs. edge colorings avoiding monochromatic

forbidden subgraphs

More specifically, we can analyze the connection between δ-vectors of polytopes and simplicial

chromatic polynomials in a more geometric method. More specifically, we make use of the

fact that the δ-vectors of a polytope P are determined by Hodge–Deligne components of the

primitive part of the middle cohomology of a hypersurface (depending on P ) in a certain

algebraic torus by work of Batyrev (Section 3 of [5]). Let P ⊂ RN be a polytope of dimension

r and T = (C∗)N .

Definition 4.2.21. (p. 357 – 358 of [5])

1. Given a Laurent polynomial f ∈ C[x±1 , . . . , x
±
N ], let Zf ⊂ (C∗)N be the affine hyper-

surface determined by f and P (f) be the Newton polytope of f .

2. Given a polytope P , let L(P ) = {f ∈ C[x±1 , . . . , x
±
N ] : P = N(f)}.

3. Let P be a polytope and f =
∑
cmx

m be a Laurent polynomial such that N(f) = P

(i.e. f ∈ L(P )) Given a face P ′ ⊂ P , define

fP
′
(x) =

∑
m′∈P ′

cm′x
m′ .

4. Given a Laurent polynomial g = g(x) ∈ C[x±1 , . . . , x
±
N ], let gi for 1 ≤ i ≤ N be the

logarithmic derivatives

gi = xi
∂

∂xi
g(x)

of g.

5. A Laurent polynomial f ∈ L(P ) and the corresponding affine hypersurface Zf ⊂ T

are called P -regular if P (f) = P , and for every `-dimensional edge P ′ ⊂ P (` > 0),
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the polynomial equaitons

fP
′
(x) = fP

′
1 (x) = · · · = fP

′
n (x) = 0

have no common solutions in T .

In order to study the relationship between the mixed Hodge structure of Zf and the

Laurent polynomial f , Batyrev defines the following “primitive” cohomology group.

Definition 4.2.22. (Definition 3.13 on p. 361 of [5])

The primitive part of the cohomology group HN−1(Zf ) (denoted PHN−1(Zf )) is the

cokernel of the injective mapping HN−1(T ) ↪→ HN−1(Zf ).

Theorem 4.2.23. (Batyrev,p. 359, Remark 2.13 on p. 357, Corollary 3.12, Corollary 3.14,

and Remark 3.15 on p. 361 of [5])

Given a smooth affine algebraic variety V and 0 ≤ k ≤ dimV , let

Hk(V ) = F0Hk(V ) ⊃ F1Hk(V ) ⊃ · · · ⊃ Fk+1Hk(V )

be the Hodge filtration. We will use hp,q(Hk(V )) to denote the Hodge–Deligne numbers

(which also involves the weight filtration – see p. 359 of [5]). This will be done similarly

(modulo quotients) for the primitive cohomology (as defined in Definition 4.2.22).

Let Zf ⊂ T be a P -regular affine hypersurface (Part 5 of Definition 4.2.21).

1. The dimensions of the quotients of consecutive terms of the Hodge filtration are given
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by

dimF iHN−1(Zf )/F i+1HN−1(Zf ) =
∑
q≥0

hi,q(HN−1(Zf ))

=


δN−i(P ) if i < N − 1

δ1(P ) +N if i = N − 1.

2. If i ≤ N − 1, we have that

dimF iPHN−1(Zf )/F i+1PHN−1(Zf ) =
∑
q≥0

hi,q(PHN−1
c (Zf )) = δN−i(P ).

Note that the generating function of the δi give the Hilbert-Poincaré series of coordinate

ring the toric variety associated to P (Definition 2.4 on p. 355 of [5]) by a regular sequence

of linear terms in the coordinate ring.

Using Theorem 4.2.23, we can see that the heuristics from 4.2.2 and 4.2.3 can be com-

bined with 4.2.4 to find “formal” expressions for the simplicial chromatic polynomial in-

volving Hodge–Deligne polynomials from the cohomology of hypersurfaces in algebraic tori

corresponding to Part 1 and Part 2 of Theorem 4.2.6 given by

r∑
i=0

δit
i “=” (1− t)r+1

(
1− χc(S)(t−1)− t−n + t−n−1

(t−1 − 1)n+1

)

= (1− t)r+1
(

1− tn+1χc(t
−1)− t+ 1

(t− 1)n+1

)
(4.2.7)

from 4.2.2 and 4.2.4 and
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r∑
i=0

δit
i “=” (1− t)r+1

(
1− td−rχc(S)(t−1)

(t−1 − 1)n+1

)
= (1− t)r+1

(
1− tn+d−r+1χc(S)(t−1)

(t− 1)n+1

)
(4.2.8)

from 4.2.3 and 4.2.4, where r = dimP and n = dimS. Note that we “truncated” the

initial sums above since δi = 0 for i > r.

Heuristically, the expressions 4.2.7 and 4.2.8 indicate that the simplicial chromatic poly-

nomials in Theorem 4.2.6 are formally determined by mixed Hodge structures of hyper-

surfaces on algebraic tori (via a truncated Hodge–Deligne polynomial) after we replace the

h-vectors of S or T (S) by those of a convex polytope. In the setting of Corollary 4.2.20, the

simplicial chromatic polynomials themselves are determined by the mixed Hodge structure

of these hypersurfaces on algebraic tori. We can state this more explicitly.

Corollary 4.2.24. Suppose that S is a simplicial complex satsifying property I such that

T (S) (Theorem 4.2.6) is a compressed triangulation of some polytope P . Let d = dimS,

n = |V | (the size of the vertex set), and m = dimT (S).

Let f ∈ C[x±1 , . . . , x
±
m] a Laurent polynomial which is P -regular (Part 5 of Definition

4.2.21) and Zf ⊂ (C∗)m be the affine hypersurface determined by f . For each 1 ≤ i ≤ m,

the coefficient of ti in
tnχc(S)(t−1)

(t−1)n−d
is

dimFm+1−iPHm(Zf )/Fm+2−iPHm(Zf ) =
∑
q≥0

hm+1−i,q(PHm(Zf ))

Note that this is equal to

dimFm+1−iHm(Zf )/Fm+2−iHm(Zf ) =
∑
q≥0

hm+1−i,q(Hm(Zf ))
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if i < m.

Proof. We start by substituting in t−1 in place of t in 4.2.5 from the proof of Corollary

4.2.20. This gives

hT (S)(t) =
χc(S)(t−1)

t−d(t−1 − 1)n−d
=
tdχc(S)(t−1)

(t−1 − 1)n−d
=
tnχc(S)(t−1)

(t− 1)n−d
. (4.2.9)

Under the assumptions on the simplicial complex, we have that hT (S)(t) =
∑∞
u=0 δut

u

(δu = 0 for u > r). For each 1 ≤ i ≤ m, Theorem 4.2.23 implies that the coefficient of ti is

dimFm+1−iPHm(Zf )/Fm+2−iPHm(Zf ) =
∑
q≥0

hm+1−i,q(PHm(Zf ))

since dimP = m+ 1.

The second expression comes from Part 2 of Theorem 4.2.23.

We can summarize the discussion above as follows:

Theorem 4.2.25.

1. Let P ⊂ PN be a convex polytope of dimension r and Zf ⊂ T be a P -regular affine

hypersurface. If we replace the h-vector of T (S) in Theorem 4.2.6 by that of P , the

expression

(1− t)r+1

(
1− tn+d−r+1χc(S)(t−1)

(t− 1)n+1

)

is replaced by a truncated generating function for the Hodge numbers of HN−1(Zf ).

By Theorem 4.2.14, this gives an actual equality when T (S) is the unimodular trian-

gulation of some Gorenstein IDP polytope with a unimodular triangulation. Also, note

that χc(S) paramtrizes edge colorings avoiding monochromatic colorings of the minimal
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nonfaces of S by Proposition 4.2.8.

The coefficients of the reciprocal polynomial of the resulting function are given by the

dimensions of quotients of consecutive terms of the Hodge filtration on HN−1(Zf ).

2. Suppose that S is a simplicial complex satsifying property I such that T (S) (Theorem

4.2.6) is a compressed triangulation of some polytope P . Let d = dimS, n = |V | (the

size of the vertex set), and m = dimT (S).

Let f ∈ C[x±1 , . . . , x
±
m] a Laurent polynomial which is P -regular (Part 5 of Definition

4.2.21) and Zf ⊂ (C∗)m be the affine hypersurface determined by f . For each 1 ≤ i ≤

m, the coefficient of ti in

tnχc(S)(t−1)

(t− 1)n−d

is

dimFm+1−iPHm(Zf )/Fm+2−iPHm(Zf ) =
∑
q≥0

hm+1−i,q(PHm(Zf ))

Note that this is equal to

dimFm+1−iHm(Zf )/Fm+2−iHm(Zf ) =
∑
q≥0

hm+1−i,q(Hm(Zf ))

if i < m.

3. As a consequence of the addition-deletion relation satisfied by simplicial chromatic

polynomials, a similar one holds for a normalization of the Hodge–Deligne polynomials

parametrizing mixed Hodge structures of the affine hypersurfaces on algebraic tori from

Part 2.

4. As a consequence of Part 1, the edge colorings of a graph G arising from the boundary
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complex of a simplicial complex which do not give monochromatic colorings of speci-

fied subgraphs Hi determine a truncated generating function for the Hodge numbers of

HN−1(Zf ) (a toric hypersurface).

Remark 4.2.26. Since we are making use of the δ-invariant, there are additional symmetry

properties in the case where an polytope and its dual/polar polytope are both integral

(Theorem 35.8 on p. 105 of [19]).
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CHAPTER 5

COMBINATORICS AND GEOMETRY OF A MATROIDAL

ANALOGUE OF INDEPENDENCE CONDITIONS ON

HYPERSURFACES

5.1 Matroids satisfying the matroidal Cayley–Bacharach

property and ranks of covering flats

Let M be a matroid satisfying a matroidal analogue of the Cayley–Bacharach condition.

Given a number k ≥ 2, we show that there is no nontrivial bound on ranks of a k-tuple

of flats covering the underlying set of M . This addresses a question of Levinson–Ullery

motivated by earlier results which show that bounding the number of points satisfying the

Cayley–Bacharach condition forces them to lie on low-dimensional linear subspaces. We

also explore the general question what matroids satisfy the matroidal Cayley–Bacharach

condition of a given degree and its relation to the geometry of generalized permutohedra and

graphic matroids.

5.1.1 Introduction

A finite subset Γ ⊂ Pn satisfies the Cayley–Bacharach condition of degree r if a homogeneous

polynomial of degree r vanishing on all but one point of Γ vanishes on all of Γ. In recent

work, Levinson–Ullery [17] show that a finite subset Γ ⊂ Pn satisfying the Cayley–Bacharach

condition of degree r is covered by low-dimensional linear subspaces if |Γ| is not very large

compared to r (Theorem 1.3 on p. 2 of [17]). The result is motivated by constructions

relating to degrees of irrationality of smooth complete intersections.

More specifically, the varieties X considered as motivating examples are those with gener-
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ically finite dominant rational maps X 99K Pn connected to (a generalization of) the Cayley–

Bacharach property and special configurations of points. It is known that the generic fiber

of the rational map X 99K Pn satisfies the Cayley–Bacharach property with respect to the

linear system |KX | (replacing homogeneous degree r polynomials by sections of KX). If KX

is sufficiently positive, then the fibers also lie in special positions. For example, a result of

Bastianelli–Cortini–De Poi (Theorem 1.1 on p. 2 of [17]) states that a finite subset Γ ⊂ Pn

satisfying the degree r Cayley–Bacharach property of degree r such that |Γ| ≤ 2r + 1 lies

on a line. The results of Levinson–Ullery (Theorem 1.3 on p. 2 of [17]) are analogues which

show that Γ still lies on a union of low-dimensional linear subspaces when we impose a

weaker linear upper bound in r on the size of Γ. They are part of a more general conjectured

statement which is listed below along with the result.

Conjecture 5.1.1. (Levinson–Ullery, Conjecture 1.2 on p. 2 of [17])

Let Γ ⊂ Pn be a finite set of points satisfying CB(v). If |Γ| ≤ (d + 1)v + 1, then Γ

can be covered by a union of positive–dimensional linear subspaces P1 ∪ · · · ∪ Pk such that∑k
i=1 dimPi = d.

Theorem 5.1.2. (Levinson–Ullery, Theorem 1.3 on p. 2 of [17])

Conjecture 5.1.1 holds in the following cases:

1. For all v ≤ 2 and all d. Moreover, we can take k = 1.

2. For all v and for d ≤ 3. Moreover, we may take k ≤ 2.

3. For d = 4 and v = 3. Moreover, we may take k ≤ 2.

Since many of the arguments used in the result of Levinson–Ullery (Theorem 1.3 on p. 2

of [17]) are combinatorial in a way that can sometimes be rewritten in terms of matroid the-

ory (p. 14 of [17]), the authors define a matroid-theoretic analogue of the Cayley–Bacharach
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property.

Definition 5.1.3. (p. 14 of [17])

A matroid M with underlying set E satisfies the matroidal Cayley–Bacharach property

of degree a (denoted MCB(a)) if, whenever a union of a flats contains all but one point

of E, the union contains the last point. In other words:

a⋃
i=1

Fi ⊃ E \ p =⇒
a⋃
i=1

Fi = E

for any p ∈ E and any flats F1, . . . , Fa of M . We will work with matroids M such that all

falts of rank 1 have size 1 since flats of rank 1 correspond to a single point in Pn.

Note that the finite sets satisfying the Cayley–Bacharach property are represented by the

underlying (finite) set of the matroid and the flats are analogous to linear subspaces.

Using these flats of matroids, the authors ask whether an analogue of their main result

holds for the matroidal Cayley–Bacharach property. We will discuss this question and a

variant.
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Question 5.1.4.

1. (Levinson–Ullery, Question 7.6 on p. 14 of [17]) Does the statement of Conjecture

5.1.1 with CB(v) replaced by MCB(v) and dimensions of linear subspaces replaced by

ranks of flats hold? Here is a more explicit statement:

Let M be a matroid with underlying set E such that all flats of rank 1 have size 1.

Suppose that M satisfies MCB(a) and |E| ≤ (d + 1)a + 1. Let di = ri − 1 if ri ≥ 2

and di = 1 if ri = 1. Is it possible to cover M by a union of (possibly improper) flats⋃
i Fi of ranks ri respectively such that

∑
i di ≤ d?

2. We can consider a variant of the question in Part 1 since the original source refers to

covering matroids by a union of flats of “specified dimensions”. Let M be a matroid

of rank r with underlying set E of size n. Fix a positive integer N = N(M). Suppose

that M satisfies MCB(a). Must M (meaning the underlying set E) be covered by a

union of ≤ N proper flats where at least one of the flats has rank ≤ r − 2?

Remark 5.1.5.

1. In Part 1, we replace “dimensions” di in the original statement of Question 7.6 on

p. 14 of [17] with ri − 1 if ri ≥ 2, where ri is the rank of a flat Fi. If ri = 1,

we will take di = 1. This is because the analogous geometric condition considers di-

mensions of spans of points in projective space and “dimension” does not seems to

be a standard term for flats of a matroid unless we are discussing representable ma-

troids. In the latter setting, the rank is equal to the dimension of the linear subspace

spanned by the vectors corresponding to the points of the flat. Also, we consider both

an interpretation of the problem using ranks of individual flats (for “flats of specified
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ranks” for Theorem 5.1.17) and a direct analogue of Conjecture 5.1.1 (Theorem 5.1.15).

2. The bounds on sizes of finite set Γ (modeled by E above) satisfying the (geometric)

Cayely–Bacharach property in Theorem 1.1, Conjecture 1.2, and Theorem 1.3 on p. 2

of [17] are on the size of the finite set (analogous to n = |E|) relative to the degree

(given by a above). The dimension of a plane configuration is the sum of the dimension

of the linear subspaces used to cover the finite set Γ on p. 2 of [17].

3. For each of the questions above, we find a counterexample using a matroid satisfying

MCB(a) where the flats involved in the definition of MCB(a) must be hyperplanes

(i.e. maximal proper flats).

In Section 5.1.2, we find some examples of nontrivial flats satisfying the matroidal Cayley–

Bacharach condition whose nontrivial covers by flats only use hyperplanes (i.e. maximal

proper flats) (Example 5.1.16) when N ≤ a. Since this would mean taking bi = r−1 for all i

in Question 5.1.4, this means that there is no nontrivial bound on the ranks of flats covering

the ground set of a matroid satsifying the degree a matroidal Cayley–Bacharach condition

(Theorem 5.1.17).

Theorem 5.1.6. (Theorem 5.1.17)

Take an even number B ≥ 2m+ 2 with B|n and n
B < B. Fix k, a ≤ n

B + B
m − 3.

1. Let M be a matroid of rank m + 1 satisfying MCB(a) with underlying set E of size

n. Suppose that F1, . . . , Fk is a k-tuple of flats covering E with each proper flat of size

at most B. There is no covering by ≤ k flats where at least one of the flats has rank

≤ r − 2. In other words, it is possible for all the flats Fi to be hyperplanes. Question
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5.1.4 contains an explanation of why this indicates that there is no “nontrivial” bound.

2. In fact, the matroid from the proof of Part 1 gives a negative answer to Question 5.1.4

using the case a ≤ n
B + B

m − 3. More specifically, there is no upper bound on the ranks

of a collection of ≤ a flats which cover the underlying set E of a matroid of rank r

satisfying MCB(a).

Remark 5.1.7. The counterexamples we study have some recursive properties regarding

the matroidal Cayley–Bacharach property and some upper bound is required in order for

MCB(a) to be satisfied (Proposition 5.1.18).

The example above also implies a direct translation of Conjecture 1.2 on p. 2 of [17] does

not hold.

Theorem 5.1.8. (Theorem 5.1.15)

There is a matroid M satisfying MCB(a) with ground set E (n := |E|) such that there is

some d such that n ≤ (d+ 1)a+ 1 but E cannot be covered by a union of flats of total rank

d. In other words, we have that
⋃k
i=1 Fi = E =⇒

∑k
i=1 rankFi ≥ d+ 1.

Afterwards, we study general properties of matroids satisfying the matroidal Cayley–

Bacharach condition in Section 5.1.3. The main tool used here is the matroid polytope

determined by the basis elements. This gives a characterization of “generic” matroids that

have appropriate connectivity properties (Theorem 5.1.27).

Theorem 5.1.9. (Theorem 5.1.27)

Suppose that M =
∑
I⊂[n] yI∆I for some yI ≥ 0.
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Then, the existence of a matroid N satsifying the following conditions can be checked

using a set-theoretic condition involving (n− 1)-element subsets of [n] or the sets I:

• N has an underlying set of the same size n = |E| such that the flats inducing facets of

PN satisfy the conditions MCB(a)

• PN and the matroid polytope of PM are nondegenerate deformations of each other (i.e.

those not passing through vertices)

Under additional assumptions on the collection of subsets I ⊂ [n] such that yI > 0 and

connectedness-related properties of I, we can show that checking whether the matroid M

itself satsifies the matroidal Cayley–Bacharach property is equivalent to checking whether

the set-theoretic analogue holds for the subsets I considered (Part 2 of Theorem 5.1.25).

Note that the terms below are defined in Section 5.1.3 (Definition 5.1.24, Definition 5.1.22,

Definition 5.1.29).

Theorem 5.1.10. (Theorem 5.1.25)

Suppose that M is a connected matroid satisfying the following conditions:

• M [F,G] is connected for all flats F,G such that F ⊂ G or every flat A of M is

both connected and coconnected. For example, consider the graphic matroid M(Kn) of

spanning trees in the complete graph Kn (Remark 5.4 on p. 459 of [12]).

• PM =
∑
I⊂[n] yI∆I for some yI ≥ 0 such that y[n] > 0. As mentioned in Observation

5.1.21, the condition here is really one on the ranks of the flats since zI =
∑
J⊂I yJ and

yI =
∑
J⊂I(−1)|I|−|J |zJ , where zI = r − rank(Span I) with r = rankM and Span I

being the smallest flat containing the elements of I (Proposition 2.2 and Proposition

2.3 on p. 843 of [3]).
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Let B be the collection of subsets I ⊂ [n] such that yI > 0. Then, the following statements

hold:

1. The matroid M satisfies the matroidal Cayley–Bacharach property MCB(a) if and only

if the set-theoretic analogue of MCB(a) is satisfied by the elements of building closure

B̂ of B. By the “set-theoretic analogue”, we mean the matroidal Cayley–Bacharach

condition holds with the flats replaced by elements of the building closure (Definition

5.1.29).

2. If B is a building set, then the matroid M satisfies the matroidal Cayley–Bacharach

property MCB(a) if and only if the set-theoretic analogue of MCB(a) (Definition

5.1.29) is satisfied by the subsets I ⊂ [n] such that yI > 0.

We end with some constructions which use (directed) graphs to (recursively) determine

what the sets involved would look like (Proposition 5.1.30, Proposition 5.1.31, Proposition

5.1.33).
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5.1.2 Ranks of flats covering a matroid satisfying MCB(a)

Given a fixed positive integer a, we show that there are no nontrivial bounds on the dimen-

sions of a proper flats covering a matroid satisfying MCB(a). Let n = |E| and r = rankM .

The “worst” possible situation is when the collection of flats considered must be hyperplanes,

which are the flats of rank r−1. These occur when we consider paving matroids with appro-

priate initial parameters. Recall that a paving matroid is one where any set of size ≤ r − 1
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is both independent and closed. In other words, a dependent set (equivalently a circuit since

considering lower bound) must have size ≥ r.

Since any subset of size≤ r−1 is also a flat, we want to eliminate these from consideration

since having Fi equal to such a flat would automatically imply that M does not satisfy

MCB(a) since we can use repeated copies of the same flat. Given an upper bound B on

the size of the hyperplanes, we can find a condition which implies that flats Fi such that⋃a
i=1 Fi ⊃ E \ p for some p must have |Fi| ≥ r. Note that this is really a condition on size

of finite sets and doesn’t have anything to do with the matroid structure.

Lemma 5.1.11. Let F1, . . . , Fa ⊂ E be a collection of subsets of E with |Fi| ≤ B for each

1 ≤ i ≤ a.

If n− 1−B(a− 1) ≥ r, then

∣∣∣∣∣
a⋃
i=1

Fi

∣∣∣∣∣ ≥ n− 1 =⇒ |Fi| ≥ r for each 1 ≤ i ≤ a.

If the Fi are proper flats of a paving matroid M with underlying set E and rank r, this

implies that the Fi considered must be hyperplanes M (i.e. flats of rank r − 1).

Proof. Suppose that |F1| ≤ r − 1. Then, we have that

n− 1 ≤

∣∣∣∣∣
a⋃
i=1

Fi

∣∣∣∣∣
≤ |F1|+

∣∣∣∣∣
a⋃
i=2

Fi

∣∣∣∣∣
≤ r − 1 + (a− 1)B,
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which contradicts the assumption that n− 1−B(a− 1) ≥ r.

Before we study the covering question, we give an example of a matroid satisfying the

degree a matroidal Cayley–Bacharach condition MCB(a) which doesn’t have a nontrivial

bound on ranks of flats covering the underlying finite set E. The construction we will use

involves paving matroids, which are defined below.

Definition 5.1.12. (p. 24 of [18])

A matroid M is paving if it has no circuits of size ≤ rankM . In particular, flats of rank

≤ r − 2 are always independent sets, where r = rankM .

Definition 5.1.13. (p. 71 of [18])

Let k and m be integers with k > 1 and m > 0. Suppose that T is a collection {T1, . . . , Tk}

of subsets of a set E such that each member of T has ≥ m elements, and each m-element

subset of E is contained in a unique member of T . Such a set is called an m-partition of

E.

Proposition 5.1.14. (Proposition 2.1.24 on p. 71 of [18])

If T is an m-partition {T1, . . . , Tk} of a set E, then T is the set of hyperplanes of a paving

matroid of rank m + 1 on E. Moreover, for r ≥ 2, the set of hyperplanes of every rank r

paving matroid on E is an (r − 1)-partition of E.

We can show that the first statement of Definition 5.1.4 does not hold (especially if we

want a small number of linear subspaces) (Theorem 5.1.17). Note that some bound on the

number of linear subspaces involved is needed since we can always end up with some collec-

tion of lines or planes if we use a sufficient number of flats in the cover. The example which

we used (paving matroids with appropriate parameters) can be used to show that the first

part of the question (i.e. the direct matroid-theoretic translation of Conjecture 5.1.1 in Part
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2 of Question 5.1.4) also does not hold.

Theorem 5.1.15. There is a matroid M satisfying MCB(a) with ground set E (n := |E|)

such that there is some d such that n ≤ (d+ 1)a+ 1 but E cannot be covered by a union of

flats of total rank d. In other words, we have that
⋃k
i=1 Fi = E =⇒

∑k
i=1 rankFi ≥ d+ 1.

Proof. We will take ri rankFi ≥ 2 for each flat Fi. In this context, Part 1 of Question 5.1.4

can be rephrased as whether we can keep
∑a
i=1 di =

∑a
i=1 ri − a ≤ d. To construct a

counterexample, it suffices to produce an M satisfying MCB(a) such that n ≤ (d+ 1)a+ 1

and any cover
⋃a
i=1 Fi = E has

∑a
i=1 ri > d+ a. Note that such an example suffices when

we take some of the Fi to have rank 1 (i.e. that ri = 1 for some i) since the required lower

bound for
∑a
i=1 ri only get smaller.

We will construct a paving matroid M satisfying MCB(a) with n ≤ (d+1)a+1 such that

any cover
⋃a
i=1 Fi = E has

∑a
i=1 ri > d+ a. Let m+ 1 be the rank of the paving matroid.

By Proposition 2.1.24 on p. 71 of [18], the hyperplanes are given by elements of m-partitions

of the ground set E = [n]. Since any set of size ≤ m − 1 is closed, any flats Fi involved in

the MCB(a) definition must be hyperplanes. In this setting, the condition
∑a
i=1 ri > d+ a

can be rewritten as am > d + a ⇐⇒ d < (m − 1)a. The condition n ≤ (d + 1)a + 1 is

equivalent to having (d+ 1)a ≥ n− 1⇐⇒ n−1
a ≤ d+ 1. Then, having both n ≤ (d+ 1)a+ 1

and
∑a
i=1 ri > d + a simultaneously is equivalent to having n−1

a < d < (m − 1)a. The ex-

istence of a d such that this is true is equivalent to having n−1
a < (m−1)a⇐⇒ n−1

a2 < m−1.

The arguments above are on the possible initial parameters. We still need to show that

there is a paving matroid of rank m+1 with ground set E = [n] satisfying MCB(a) such that

n−1
a2 < m− 1. The idea is to consider a paving matroid where there is a collection of “big”

hyperplanes (evenly) partitioning the ground set E and the remaining elements of the m-
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partition being subsets of size m (i.e. subsets of size m with elements from at least 2 distinct

blocks/big hyperplanes). It suffices to take the big hyperplanes to have size n
a partitioning

E = [n] into a parts and n
a � m since losing a single block means replacement by ≥ n

am

small hyperplanes to fill in the resulting gap. This implies that MCB(a) is satisfied since

using any smaller number of big hyperplanes of size n
a . The condition n

a � m is satisfied

when m = n

a
3
2

when a is a cube and a
3
2 divides n. It suffices to consider n such that n is

divisible by a2 and a is a square. For sufficiently large n,m, a it is clear that we can both

have n
a � m and n−1

a2 < m− 1 if m = n

a
3
2

.

For Part 2 of Question 5.1.4, we would like to find a bound on possible hyperplanes

involved in the cover defining the matroidal Cayley–Bacharach property MCB(a) of degree

a. Note that Theorem 5.1.15 implies that there is a negative answer when N(M) = a (the

degree used in the matroidal Cayley–Bacharach proeprty).

Example 5.1.16. Take an even number B ≥ 4 with B|n and n
B < B. We construct a rank

2 paving matroid satisfying MCB(a) for a ≤ min( nB + B
2 − 3, n−3

B + 1). By Lemma 5.1.11,

the second term in the pair on the right hand side reduces the flats under consideration to

hyperplanes. Note that paving matroids satisfying MCB(a) must have the flats involved

in covers by ≤ a distinct flats equal to hyperplanes if the flats here are proper. This uses

the following characterization of paving matroids by possible subsets of the underlying set

giving rise to hyperplanes.

Let n = |E|. We can set m = 1 above and make T1, . . . , Ta equal to a subcollection of

distinct subsets of {1, . . . , n} from the following families:

• n
B subsets of size |B| partitioning {1, . . . , n} into n

B parts
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•
(B

2

)
B2 subsets of size 2 consisting of pairs of points from distinct blocks of size B

This collection of subsets yields hyperplanes of a paving matroid M satisfying MCB(a).

If some subcollection of these subsets is missing an element of E, it is missing ≥ 2 elements.

We first find collections of a subsets we can use so that a ≤ n
B + B

2 − 3. Since |B| > 2, the

number of subsets used is minimized when we maximize the number of subsets of size B and

minimize the number of size 2 used. Also, we use at most n
B − 1 of the subsets of size B

and there are at least B elements of E left to fill using the collection of pairs. This would

mean using n
B − 1 subsets of size B and at most B

2 − 2 pairs. However, this would leave us

with at least 4 missing elements. Using fewer subsets of size B and more pairs would mean

that we would use too many (i.e. more than a) subsets. Thus, the matroid M is a rank 3

paving matroid satisfying MCB(a) for a ≤ n
B + B

2 − 3. Examples where this procedure goes

through is n = 20, B = 5, and a = 4, 5.

A generalization of Example 5.1.16 can be used to give a negative answer to Part 1 of

Question 5.1.4 for a fixed length a. In the context of the comments below Question 5.1.4,

the flats Fi have rank ≤ r − 1.

Theorem 5.1.17. Take an even number B ≥ 2m + 2 with B|n and n
B < B. Fix k, a ≤

n
B + B

m − 3.

1. Let M be a matroid of rank m + 1 satisfying MCB(a) with underlying set E of size

n. Suppose that F1, . . . , Fk is a k-tuple of flats covering E with each proper flat of size

at most B. There is no nontrivial upper bound on the ranks of proper flats Fi which

applies to all such matroids M satisfying MCB(a). In other words, it is possible for

all the flats Fi to be hyperplanes. Question 5.1.4 contains an explanation of why this

indicates that there is no “nontrivial” bound.
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2. In fact, the matroid from the proof of Part 1 gives a negative answer to Question 5.1.4

using the case N ≤ n
B + B

m − 3. More specifically, there is no upper bound on the ranks

of a collection of ≤ a flats which cover the underlying set E of a matroid of rank r

satisfying MCB(a).

Proof. 1. Let E = {1, . . . , n} be the underlying set of the matroid. The statements above

follow from adapting the argument used in Example 5.1.16 to subsets of size m and

paving matroids of rank m+1 in place of subsets of size 2 and paving matroids of rank

3. Fix B ≥ 2m + 2 with n
B < B If k, a ≤ n−m−1

B + 1, then Lemma 5.1.11 shows that

the flats under consideration must be hyperplanes and we are done. Suppose that this

is not the case. Consider the paving matroid of rank m+ 1 with the following subsets

of size ≥ m as hyperplanes:

• n
B subsets of size |B| partitioning {1, . . . , n} into parts

• Am, nB
subsets of size m, where Am,u denotes the number of ordered partitions

of m into B distinct parts with at least 2 nonempty parts. This corresponds to

m-tuples with points with elements coming from at least 2 different blocks of size

B from the first bullet.

We claim that this collection of subsets yield the hyperplanes of a matroid M satisfying

MCB(a). In other words, we would like to show that a subscollection of a subsets not

covering E is missing ≥ 2 elements. Note that we assumed that a ≤ n
B + B

m − 3. Since

|B| > m, the number of subsets is minimized when we maximize the number of subsets

of size B and minimize the number of size m subsets. For a non-covering collections of

subsets, we use at most n
B −1 of the subsets of size B and there are at least B elements

of E left to fill using the m-tuples of points. This would mean using n
B − 1 elements of

size B and at most B
m −2 pairs. However, this would leave us with at least 2m missing

elements. Using a smaller number of subsets of size B and more m-elements would
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increase the number of subsets used by at least B
m . Thus, the matroid M we obtain is

a rank m + 1 paving matroid satisfying MCB(a) for a ≤ n
B + B

m − 3. Note that the

same arguments that we have just used imply that at least n
B − 1 of the blocks of size

B must be used.

2. The same reasoning as Part 1 applies since having ≤ a covering E would require all

of them to be hyperplanes. This is because any flat of rank ≤ m − 2 would have size

≤ m− 2. The argument in Part 1 implies that we need at least n
B − 1 hyperplanes of

size B in order to cover E with ≤ a flats. Since there are only ≤ B
m − 2 available flats

to use for the cover, any remaining flats (even when we use hyperplanes) do not have

enough elements of E to cover the remaining elements of E not covered by the earlier

n
B hyperplanes of size B.

We can make some statements on which paving matroids yield hyperplanes compatible

with the matroidal Cayley–Bacharach condition MCB(a). They show that the restriction of

the matroidal Cayley–Bacharach property to paving matroids has a recursive property and

that some upper bound on a is necessary in order for MCB(a) to hold for a paving matroid

of a given rank.

Proposition 5.1.18.

1. Let M be a paving matroid of rank m+ 1 with underlying set E = {1, . . . , n}. Suppose

that |F | ≤ B for all flats F of M . Fix a ≥ 3. Suppose that M satisfies MCB(a).

Fix a hyperplane A of M . Let R be the paving matroid on E \ A of rank m + 1 with

hyperplanes given by H ∩ (E \A) for hyperplanes H of M containing ≥ m elements of

E \ A. Then, R satisfies MCB(a− 1).

2. Fix an integer m ≥ 3. If a is sufficiently large, there is a paving matroid M of rank

m+ 1 with underlying set E = {1, . . . , n} that does not satisfy MCB(a).
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Proof. 1. Suppose that R does not satisfy MCB(a−1). Then, there are flats Fi of R such

that
⋃a−1
i=1 Fi = (E \ A) \ p for some p ∈ E \ A. By definition, there are hyperplanes

Hi of M such that |Hi ∩ (E \ A)| ≥ m and Fi = Hi ∩ (E \ A). Consider the union of

flats of M given by A∪
(⋃a−1

i=1 Hi

)
. Since Fi = Hi ∩ (E \A), the only “new” elements

added to A come from those of Fi. This means that A ∪
(⋃a−1

i=1 Hi

)
= E \ p and M

does not satisfy MCB(a).

2. Let A be a subset of E of size ≥ m. The hyperplanes of a paving matroid M of rank

m + 1 with ground set E with A as a hyperplane split into the following categories

(first, second, third cateogries):

• Type 1: The hyperplane A itself

• Type 2: Hyperplanes containing ≥ m elements of E \ A

• Type 3: Hyperplanes containing v elements of A and w elements of E \A, where

1 ≤ v, w ≤ m− 1

The last category gives the rest of the hyperplanes since each m-tuple of points of E

is contained in a unique hyperplane. This means that we avoid repeating m-tuples

coming from the first and second category. The conditions listed in the last category

are given by this reasoning.

In the last category, hyperplanes with m− 1 elements of E \A give rise to a partition

of the subset of A not used by hyperplanes in the second category. This is because

m-tuples cannot be repeated among different hyperplanes of M . If a hyperplane con-

tains m − 2 elements of E \ A, it contains ≥ 2 elements of A which do not appear

among the elements of the partition given by the hyperplanes of M with m − 1 ele-

ments of E \A. In general, hyperplanes of M with m−P elements of E \A have ≥ P

199



elements of A which are have not appeared in hyperplanes using more elements of E\A.

Consider a paving matroid M of rank m + 1 with ground set E containing A as a

hyperplane satisfying the following conditions:

• Condition 1: The Type 2 hyperplanes do not contain any elements of A. In

other words, suppose that hyperplanes of the second type form an m-partition of

E \ A.

• Condition 2: There is a collection of Type 3 hyperplanes (e.g. those with m− 1

elements of E \A) such that the union of the elements of elements of E \A from

each hyperplane A has size |E \ A| − 1.

Given a paving matroid M satisfying both Condition 1 and Condition 2, let C be a

collection of hyperplanes satisfying the properties listed in Condition 2. Taking the

union of the hyperplanes in C with A, we obtain a union of hyperplanes of size |E|− 1.

This implies that M does not satisfy MCB(a) for a ≥ |C| + 1 since adding more hy-

perplanes either keeps the size of the union equal to |E| − 1 or makes it equal to E.

The size is equal to |E|− 1 if we either keep repeating hyperplanes which were already

used or only add new hyperplanes which do not contain the element left out by the

union of the hyperplanes in C and A. Thus, it suffices to show that there is a paving

matroid satisfying both Condition 1 and Condition 2.

As stated in the definition of Condition 1, we start by forming an m-partition of E \A.

Focusing on Type 3 hyperplanes with m− 1 elements of E \ A, we find that we need

to use all (m − 1)-element subsets of E \ A in order to account for m-tuples in E

with m− 1 elements of E \A since the hyperplanes in the second category (i.e. those

with ≥ m elements of E \ A) do not contribute any m-tuples containing elements of
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A. For the Type 3 hyperplanes, we take the hyperplanes to be the m-tuples which are

not covered by the m-tuples contained in a hyperplane of Type 1 (i.e. the hyperplane

A) or one of Type 2. The resulting paving matroid satisfies Condition 2 since we can

choose the collection in the definition of Condition 2 to be the m-tuples contained in

a fixed (|E \ A| − 1)-element subset of E \ A.

5.1.3 Matroids satisfying MCB(a)

This section studies families of matroids satisfying MCB(a) including “generic” cases and

those arising from graphs.

Matroid polytopes and MCB(a)

In this section, we outline results on “generic” (connected) matroids satisfying the matroidal

Cayley–Bacharach property MCB(r) (of degree r) which can be determined set-theoretically

(Theorem 5.1.25 and Theorem 5.1.21). We can translate this into properties of ranks of flats

that cover the underlying set of such matroids (Corollary 5.1.28). Finally, we give some more

concrete information on the structure of the sets involved (Proposition 5.1.30 and Proposi-

tion 5.1.31).

We will study matroids satisfying these properties via polytopes built out of them which

are uniquely defined by the starting matroids.

Proposition 5.1.19. (Feichtner–Sturmfels, Proposition 2.3 on p. 441 of [12])

The matroid polytope PM associated to a matroid M with an underlying set E of size n
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(written as [n] := {1, . . . , n}) is

PM =

x ∈ ∆ :
∑
i∈F

xi ≤ rankF for all flats F ⊂ [n]

 ,

where ∆ = n∆E.

Alternatively, this is the convex hull of vectors eB :=
∑
i∈B ei for bases B of the matroid

M . Note that PM is uniquely determined by M (Theorem 4.1 on p. 311 of [7]) and that this

property has even been used to define a matroid in Definition 2.1 on p. 440 of [12]. Each of

these can be taken to be a signed Minkowski sum of simplices.

Proposition 5.1.20. (Ardila–Benedetti–Doker and Postnikov, Proposition 2.3 on p. 843 of

[3] and Proposition 6.3 and Remark 6.4 on p. 17 – 18 of [21]) Any generalized permutohedron

(e.g. matroid polytopes) has a decomposition as signed Minkowski sums of simplices

with

Pn({zI}) =
∑
I⊂[n]

yI∆I ,

where yI =
∑
J⊂I(−1)|I|−|J |zJ for each I ⊂ [n] and zI =

∑
I⊂J yJ .

In addition, any such Minkowski sum gives a generalized permutohedron (Proposition

2.2.3 on p. 14 of [5]). The latter condition is equivalent to having the zI satisfy submodular

inequalities equivalent to the definition of some rank function on a matroid (Theorem 2.21

on p. 13 of [5]).

Observation 5.1.21. For an open/generic/top-dimensional subset of the deformation cone

parametrizing generalized permutohedra (i.e. deformations of the usual permutohedron), one

we can take yI ≥ 0 for each I (Remark 6.4 on p. 1043 of [21]). The fact that yI =
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∑
J⊂I(−1)|I|−|J |zJ for each I ⊂ [n] implies that the condition yI ≥ 0 for each I ⊂ [n] is

really an inequality on the ranks r − zI of the flats.

In the setting of Observation 5.1.21, we can make some characterizations of matroids

satisfying the matroidal Cayley-Bacharach property. When the yI ≥ 0 for all I ⊂ [n]. the

facets have natural connections with nested sets and buildings.

Definition 5.1.22. (Building set and closure, Lemma 3.9 and Lemma 3.10 on p. 450 of

[12], Definition 7.1 on p. 1044 of [21])

1. A collection B of nonempty subsets of [n] = {1, . . . , n} is a building set on [n] if it

satisfies the following conditions:

• If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

• B contains all singletons {i} for i ∈ [n].

2. Given a collection F of subsets of [n], let F̂ be the unique minimal collection containing

F of subsets such that F̂ is a building set on [n]. The collection F̂ is called the building

closure. Note that this exists for any family of subsets F of [n].

These properties are connected to an alternate description of the facets of the matroid

polytope PM when the generic property described in Observation 5.1.21 holds (i.e. when

yI ≥ 0 for all i ⊂ [n]).

Proposition 5.1.23. (Proposition 3.12 and Corollary 3.13 on p. 151 of [12])

Given a Minkowski sum of (scaled) simplices
∑
I⊂[n] yI∆I for some yI ≥ 0, let B be the

collection of subsets I ⊂ [n] such that yI > 0. The polytope
∑
I⊂[n] yI∆I consists of vectors

(x1, . . . , xn) ∈ Rn≥0 such that x1 + . . .+ xn = |B| and

∑
i∈G

xi ≥ |{I ∈ B : I ⊂ G}|
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for all subsets G ⊂ [n].

It suffices to take subsets G in the building closure B̂ of B. If [n] ∈ B, the condition

that the linear form
∑
i∈G xi is minimized on a facet is equivalent to G being in the building

closure B̂.

Under an additional connectivity assumption, this is entirely determined by set-theoretic

considerations corresponding to the ranks of the flats of the given matroid.

Definition 5.1.24. (p. 457 of [12], p. 183 of [10])

Given flats F,G of M with F ⊂ G, the subsets

M [F,G] := {b ∩ (G \ F ) : b ∈M, |b ∩ F | = rankF, |b ∩G| = rankG}

of the underlying set define a matroid with ground set G \ F .

We now state a structural result connecting the matroid polytope with the matroidal

Cayley–Bacharach condition MCB(a).

Theorem 5.1.25. Suppose that M is a connected matroid satisfying the following conditions:

• M [F,G] is connected for all flats F,G such that F ⊂ G or every flat A of M is

both connected and coconnected. For example, consider the graphic matroid M(Kn) of

spanning trees in the complete graph Kn (Remark 5.4 on p. 459 of [12]).

• PM =
∑
I⊂[n] yI∆I for some yI ≥ 0 such that y[n] > 0. As mentioned in Observation

5.1.21, the condition here is really one on the ranks of the flats since zI =
∑
J⊂I yJ and

yI =
∑
J⊂I(−1)|I|−|J |zJ , where zI = r − rank(Span I) with r = rankM and Span I

being the smallest flat containing the elements of I (Proposition 2.2 and Proposition

2.3 on p. 843 of [3]).
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Let B be the collection of subsets I ⊂ [n] such that yI > 0. Then, the following statements

hold:

1. The matroid M satisfies the matroidal Cayley–Bacharach property MCB(a) if and only

if the set-theoretic analogue of MCB(a) is satisfied by the elements of building closure

B̂ of B. By the “set-theoretic analogue”, we mean the matroidal Cayley–Bacharach

condition holds with the flats replaced by elements of the building closure (Definition

5.1.29).

2. If B is a building set, then the matroid M satisfies the matroidal Cayley–Bacharach

property MCB(a) if and only if the set-theoretic analogue of MCB(a) (Definition

5.1.29) is satisfied by the subsets I ⊂ [n] such that yI > 0.

Remark 5.1.26. If we remove the initial (co)connectivity assumption, counterparts of Part

1 and Part 2 hold with the matroidal Cayley–Bacharach property replaced by its restriction

to flats which define facets of the matroid polytope PM (“flacets” in Proposition 2.6 on p.

443 of [12]).

Proof. Since B̂ = B if B is a building set, Part 2 follows from Part 1. Thus, it suffices

to prove Part 1. If M [F,G] is connected for all flats F ⊂ G, the hyperplanes giving the

boundary of the half-spaces
∑
i∈F xi ≤ rankF for each flat F each yield facets of the ma-

troid polytope PM . This is because there is an an equivalence between complexes whose

vertices correspond to all connected flats and those that yield facets of the matroid polytope

respectively (Theorem 5.3 on p. 459 of [12])). Alternatively, one can assume that each flat

is both connected and co-connected (Proposition 2.4 on p. 184 of [10]).

The observations made above imply that each of the flats of M define a facet of its matroid

polytope PM . By Proposition 5.1.23, the decomposition into a Minkowski sum
∑
I⊂[n] yI∆I

with yI ≥ 0 and y[n] > 0 implies that elements of the building closure B̂ correspond to facets
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of PM . Tracing through the correspondences, we find that that the flats of M are given by

subsets of [n] in the building closure B̂. Comparing the corresponding normal vectors implies

that the matroidal Cayley–Bacharach condition MCB(a) is equivalent to its set-theoretic

counterpart applied to the elements of the building closure (Definition 5.1.29).

Even without the connectedness assumption of Theorem 5.1.25, we can still characterize

“generic” polytopes coming from those satisfying MCB(r) up to a deformations of the the

matroid polytopes involved. By “deformation”, we mean parallel translations of facets pass-

ing through the vertices (p. 1041 of [21]). An example is shown in Figure 2 on p. 1979 of

[3].

Theorem 5.1.27. Suppose that M =
∑
I⊂[n] yI∆I for some yI ≥ 0.

Then, the existence of a matroid N satsifying the following conditions can be checked

using a set-theoretic condition involving (n− 1)-element subsets of [n] or the sets I:

• N has an underlying set of the same size n = |E| such that the flats inducing facets of

PN satisfy the conditions MCB(a)

• PN and the matroid polytope of PM are nondegenerate deformations of each other (i.e.

those not passing through vertices)

Proof. By Proposition 2.6 on p. 1980 of [3], it suffices to check when the matroid polytopes

have the same normal fan. In the comparisons of normal cones, note that two collections

of vectors define the same cone if and only if they can be transformed to each other using

weighted permutation matrices. Since M is a Minkowski sum of the simplices ∆I , its normal

fan is the common refinement of those of the simplices ∆I . Since the normal fans consist of
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cones generated by the (outer) normal vectors of the facets, it suffices to find the facets of a

matroid polytope PN . On the other hand, the facets of PN consist of those coming from flats

of [n] and those from (n−1)-element subsets of the ground set N (Proposition 2.3 on p. 441

of [12] and p. 930 of [8]). The (n − 1)-element subsets don’t affect the MCB(a) condition

and the only ones inducing a nontrivial condition involving the flats is the restriction of the

MCB(a) condition to the flats which induce facets of the matroid polytope.

Finally, we discuss the implications of Theorem 5.1.25 and Theorem 5.1.27 for a question

of Levinson–Ullery (Question 7.6 on p. 14 of [17]) for possible ranks of flats satisfying the

MCB(r) property.

Corollary 5.1.28. Under the conditions of Part 2 of Theorem 5.1.25, the possible sizes of

|I| from subsets I ⊂ [n] with yI > 0 in Theorem 5.1.25 and Theorem 5.1.27 determine the

possible ranks of flats covering the underlying set of a matroid M in Theorem 5.1.25 and the

matroid N we “deform” into in Theorem 5.1.27. This essentially addresses Question 7.6 on

p. 14 of [17] for the generic (connected) matroids discussed in these results.

We end with some comments on the sets involved.

Definition 5.1.29. Let E be a finite set of size n. A collection of subsets of E satisfies the

set-theoretic matroidal Cayley–Bacharach property sMCB(r) if
⋃r
i=1 Fi ⊃ E\p =⇒⋃r

i=1 Fi = E for the given collection of proper subsets F1, . . . , Fr of E and p ∈ E.

Note that the condition does not impose a restriction on r-tuples of subsets F1, . . . , Fr

such that |
⋃r
i=1 Fi| ≤ n− 2 since it is not possible for these to contain E \ p for any p ∈ E.

We can understand possible underlying sets of subsets of E satsifying sMCB(r) recursively

where the condition is nontrivial. This depends on a counting argument.
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Proposition 5.1.30. The subsets of E satsifying sMCB(r) can be determined recursively

using minimal covers of subsets of E.

Proof. The subsets F1, . . . , Fr satisfying the sMCB(r) property depends on the following

parts:

• A collection of “ambient sets” A ⊂ E of size ≤ n − 2 or n (which will eventually be

taken to be the union of F1, . . . , Fr)

• Subsets F1, . . . , Fr ⊂ A such that
⋃r
i=1 Fi = A. This really depends on the number

of subsets Fi used in a minimal cover of A (say m ≤ r) since the remaining r − m

subsets can be any subsets of A and still give a cover of A. By “minimal”, we mean

that removing any of the Fi will give a collection of subsets of A whose union is no

longer equal to A. Thus, it suffices to consider the minimal covers of A by ≤ r subsets.

This can be constructed recursively. Let Ta,b be the number of minimal covers of a set

of size a by a collection of b subsets (will take b ≤ r in this case). We can split this into

cases depending on the number of elements not covered by a collection of b−1 subsets.

For particular number of missing elements r, we set the union of the b−1 subsets equal

to a particular subset of A with |A| − r elements. There are
( |A|
|A|−r

)
choices for such

a subset. Fixing a subset U ⊂ A with |A| − r elements, we have that Fr can be any

subset of A containing the remaining r elements (giving 2n−r choices) and the number

of choices of (unordered) collections of (nonempty) subsets F1, . . . , Fr−1 of A whose

union is equal to U is T|A|−r,b−1. This gives us the recursive relation

Ta,b =
a−1∑
r=1

(
a

a− r

)
2n−rTa−r,b−1.

If we know Tu,b−1 for all u, then we can compute Ta,b. In other words, we can treat
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this as induction on the second index b (eventually setting b = r). As base cases, we

can use Ta,1 = 1 (single subset equal to A). If b = 2, this means choosing a (nonempty)

subset of A and having the second set contain its complement. For each m, there are( a
m

)
choices of m-element subsets of A and 2a−m choices for subsets of A containing

the complement of the first subset in A. This means that Ta,2 =
∑a
m=1

( a
m

)
2a−m.

It may also be possible to relate this to disjoint covers by some collection of elements.

After a disjoint cover, we can add whatever elements of A we want to each of the

subsets F1, . . . , Fr involved (possibly adding nothing to one or more subsets). After

choosing a disjoint cover, this is a matter of choosing any r (possibly empty) subsets

of A (which gives (2a)r = 2ar choices). By Proposition 2.6 on p. 1032 – 1033 of [21],

the disjoint covers of A by r elements correspond to the (a − r)-dimensional faces of

the permutohedron Pa(x1, . . . , xa) (for some choice of fixed x1 > · · · > xa) formed

by the convex hull of the points formed by permuting the coordinates of the point

(x1, . . . , xa).

Proposition 5.1.31.

Suppose that M is a matroid such that any r-tuple of flats F1, . . . , Fr satsifies the following

property: For any p, there is an xp such that p /∈ Fi =⇒ xp /∈ Fi.

Then, the matroid M satsifies the matroid Cayley–Bacharach property MCB(r). Also,

the flats Fi must come from path covers of some directed graph with the paths being maximal

among those sharing the same starting point. The lengths of maximal paths bound the ranks

of the flats involved. The structure of the graph also gives an upper bound on the number of

points involved.
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Proof. A special case where sMCB(r) is satisfied is the case where p not being contained in

a subset Fi ⊂ E among F1, . . . , Fr means that there is some xp ∈ E such that xp /∈ Fi. This

is equivalent to the statement that xp ∈ Fi =⇒ p ∈ Fi. Note that the choice of xp might

not necessarily be unique. Then, we can build a directed graph with an edge i −→ j if and

only if we can set i = xj . Since the sMCB(r) condition is not affected by situations where

|
⋃r
i=1 Fi| ≤ n−2, we will restrict ourselves to the situation where

⋃r
i=1 Fi = E. This means

that the graphs under consideration are those that involve all the elements of {1, . . . , n}.

Each vertex corresponds ot an element of E. Note that the directed graphs which arise

aren’t completely arbirtrary. Split the graph into connected components of the underlying

undirected graph. Fix a maximal directed path going in one direction. Then, any remaining

vertices (which correspond to elements of E) must come from paths that enter the maximal

directed path at a vertex whcih is not an endpoint since joining the new paths at such points

would contradict the maximality assumption. Given a particular possible connected graph,

the subsets Fi of E must come from paths which keep going until we encounter a loop. In

other words, we are looking for paths which are maximal among those with the same starting

point. This means that sMCB(r) is equivalent to determining possible covers of directed

graphs by such paths. As a consequence of this construction, we find that a particular graph

gives upper bounds for the ranks of a collection of r flats which cover E.

Special case of graphs

We consider the case where the sets in question are disjoint and M is a graphic matroid. Since

the flats of a direct sum of matroids M1⊕ · · · ⊕Mr with disjoint underlying sets E1, . . . , Er

are of the form F1 ∪ · · · ∪ Fr for flats Fi of Mi (p. 125 of [18]), we can think about this as

the case where M1 = · · · = Mr = M for some matroid M . Note that the underlying set of

the matroid M1 ∪ · · · ∪Mr is E1 ∪ · · · ∪Er, where Ei is the underlying set of Mi. For M⊕r,
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this means taking the copies of the underlying set E of M to be disjoint from each other.

When the direct sum is a graphic matroid, the flats and closures have a simple interpretation.

A result of Lovász–Recski [10] indicates when a repeated direct sum is a graphic matroid.

Theorem 5.1.32. (Theorem 2 on p. 332 of [10])

Given a matroid M with underlying set S, we call it a k-circuit if |S| = kr(S) + 1 and

|T | = kr(T ) for all T ⊂ S. A repeated matroid direct sum M⊕k is a graphic matroid if and

only if any two k-circuits of (S,M) are disjoint.

We can interpret a union of r flats of a matroid as a single face F of M⊕r. Let Ei be

the copy of E in the ith copy Mi of M . Let A be a subset of E1 ∪ · · · ∪ Er such that

removing the labels i gives the full subset E. This corresponds to some disjoint union of r

sets A1, . . . , Ar ⊂ E whose union is equal to E. Then, a variant of MCB(r) can be phrased

as the statement that F ⊃ A \ {p} =⇒ F ⊃ A. Since flats are the sets preserved under the

closure operation, the first statement implies that F ⊃ E \ {p}. If A \ {p} = A, then we

have the desired conclusion. Under the conditions of Theorem 5.1.32, the resulting direct

sum matroid is a graph. Then, the condition that A \ {p} = A is equivalent to the statement

that for any p ∈ A, the endpoints of p are connected by a path in A \ {p}. In other words,

the subgraph of M⊕r induced by A is 2-connected.

The reason why we stated that the above is a “variant” is that the “distribution” of E

over the different flats F1, . . . , Fr in the MCB(r) condition can vary. This means that we

need to have the condition satisfied for all possible A satisfying the given condition. Also,

note that the MCB(r) condition is satisfied if the defining statement holds for all minimal

flats F1, . . . , Fr. Then, flats that are minimal under inclusion among those which can be
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used to give a union of r flats covering E \ {p} for p ∈ E. Putting everything together, the

observations above can be summarized as follows:

Proposition 5.1.33. Let M be a graphic matroid with underlying set E such that any two

r-circuits of M are disjoint and r-tuples of flats which are minimal among those covering sin-

gle point complements E \ {p} are disjoint. Then, the degree r matroidal Cayley–Bacharach

condition is equivalent to the statement that the subgraph of M⊕r induced by any subset

A ⊂ E1 ∪ · · · ∪ Er giving a partition of E as the disjoint union of r subsets yields a 2-

connected subgraph of M⊕r.

Remark 5.1.34.

1. Since the objects used to define a matroid are often analogous to those used to define

topological spaces, we can study what statements can be extended to higher dimen-

sional objects. If we continue the assumption that the minimal r-covers by flats are

disjoint, the exact argument above applies. If we remove this disjointness condition

and only consider the matroid M itself instead of disjoint sums, we need to consider

unions of r flats, which aren’t necessarily flats. This complicates the argument above.

2. If the definition of a matroid also defines a topological space (e.g. the case of uniform

matroids Un,n), we have that
⋃r
i=1 Fi is a flat if F1, . . . , Fr are flats. This means that⋃r

i=1 Fi ⊃ E \ {p} =⇒
⋃r
i=1 Fi ⊃ E \ {p}. Since we’re working with the uniform ma-

troid Un,n, we have that
⋃r
i=1 Fi =

⋃r
i=1 Fi and

⋃r
i=1 Fi ⊃ E \ {p}. Then, it suffices

to show that E \ {p} = E. This is not the case if and only if E \ {p} = E \ {p}. In

particular, this means that rank(E) = rank(E \{p}) + 1 and E \{p} is a hyperplane of

M . If A ⊂ E \{p}, then it cannot be a basis element of M since it must be of maximal
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rank (i.e. has rank rank(E)). This means that any basis element must be of the form

R∪{p} for some R ⊂ E \ {p}. Then, we have that rank(R∪{p}) ≤ rank(E \ {p}) + 1.
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5.2 Matroidal Cayley–Bacharach and independence/dependence

of geometric properties of matroids

We consider the relationship between a matroidal analogue of the degree a Cayley-Bacharach

property (finite sets of points failing to impose independent conditions on degree a hyper-

surfaces) and geometric properties of matroids. If the matroid polytopes in question are
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nestohedra, we show that the minimal degree matroidal Cayley-Bacharach property denoted

MCB(a) is determined by the structure of the building sets used to construct them. This

analysis also applies for other degrees a. Also, it does not seem to affect the combinatorial

equivalence class of the matroid polytope.

However, there are close connections to minimal nontrivial degrees a and the geometry of the

matroids in question for paving matroids (which are conjecturally generic among matroids of

a given rank) and matroids constructed out of supersolvable hyperplane arrangements. The

case of paving matroids is still related to with properties of building sets since it is closely

connected to (Hilbert series of) Chow rings of matroids, which are combinatorial models

of the cohomology of wonderful compactifications. Finally, our analysis of supersolvable

line and hyperplane arrangements give a family of matroids which are natrually related to

independence conditions imposed by points one plane curves or can be analyzed recursively.

5.2.1 Introduction

Motivated by recent rationality-related results, Levinson and Ullery [17] recently defined the

degree r Cayley–Bacharach property CB(r) of finite sets Γ ⊂ Pn to mean ones that fail to

impose independent conditions on the space of degree r homogeneous polynomials. For a

family of cases, they show that such a set Γ lies on a union of low-dimensional linear sub-

spaces )Theorem 1.3 on p. 2 of [17]. In Question 7.6 on p. 14 of [17], they asked whether a

matroidal analogue of their result holds. In [19], we show that this does not hold (Theorem

1.6 and Theorem 1.8 on p. 4 of [19]) and explore combinatorial criteria for MCB(a) to hold.

We consider different directions where the matroidal Cayley-Bacharach conditionMCB(a)

is independent of or dependent on the geometry of the matroids involved or the objects they

are constructed from. For minimal a, we analyze how MCB(a) relates to properties of
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building sets used to construct the nestohedron (Theorem 5.2.4). However, this result also

shows that there the MCB(a) property does not measure a form of combinatorial equiv-

alence for matroid polytopes which form nestohedra. We can consider what happens in a

(conjecturally) generic setting among matroids of a given rank using paving matroids. In

this setting, we study cases where the minimal degree a where MCB(a) is satisfied nontrivial

is small (Theorem 5.2.7) and show that lowering such a correlates to larger degree terms in

the Hilbert series of the Chow ring of the matroid (Corollary 5.2.8), which is a combinatorial

model for the cohomology of wonderful compactifications.

Finally, we use supersolvable arrangements of linear subspaces to find compare minimal

degrees a where MCB(a) can be satisfied with degrees D where a collection of points fail

to impose independent conditions on plane curves of degree D (Proposition 5.2.12) and a

recursive argument for the MCB(a) property on supersolvable hyperplane arrangements

(Proposition 5.2.19). Note that the case of line arrangements gives a family of matroids

other than the representable case which naturally parametrizes questions about independence

of conditions imposed by points on hypersurfaces. This result also shows that MCB(a)

properties of supersolvable hyperplane arrangements can be analyzed recursively and that

the flats satisfy special clustering properties.
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5.2.2 Independence from geometry and nestohedra

Based on the matroidal Cayley-Bacharach property MCB(a) of degree a, we define MCB(a)

for a building set B (Definition 7.1 on p. 1044 of [21]).The motivation/connection to the

“usual” MCB(a) property (Question 7.6 on p. 14 of [17]) comes from the fact that the half-

space description of matroid polytopes is determined by flats of the matroid (Proposition

2.3 on p. 441 of [12]).

Definition 5.2.1. (Levinson–Ullery, p. 14 of [17], p. 2 of [19] )

A matroid M with underlying set E satisfies the matroidal Cayley-Bacharach property

of degree a if
⋃a
i=1 Fi ⊃ E \ p =⇒

⋃a
i=1 Fi = E for any p ∈ E and flats F1, . . . , Fa of M .

Definition 5.2.2. Let [n] = {1. . . . , n} A building set B (Definition 7.1 on p. 1044 of [21])

satisfies MCB(a) if
⋃a
i=1 Ii ⊃ [n] \ {k} =⇒

⋃a
i=1 Ii = [n] for all k ∈ [n].

In the case of nestohedra constructed out of connected building sets containing the ground

set [n], this is identical to the original matroidal Cayley–Bacharch property since the facets

correspond to maximal elements of B \ [n] (Proposition 3.12, Corollary 3.13, and Theorem

3.14 on p. 451 – 452 of [12]).

We can use this to show that the MCB(a) is “independent” of combinatorial equivalence

properties of matroids whose polytopes are nestohedra.

Definition 5.2.3. (p. 450 of [12] Definition 7.1 on p. 1044 of [21], Proposition 7.5 on p.

1046 of [21])

1. Given a family F of subsets of [n], we associated the following Minkowski sum of

simplices

∆F =
∑
F∈F

∆F .
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2. A collection B of nonempty subsets in S is a building set on S if it satisfies the

following conditions:

• If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

• B contains all singletons {i} for i ∈ S.

3. A nestohedron is a polytope from Part 1 where F is a building set.

Theorem 5.2.4.

1. The minimal degree a such that a nestohedron P =
∑
I∈B ∆I constructed from a

connected building set B on [n] = {1, . . . , n} can satisfy MCB(a) nontrivially is given

by n − dimP . This is satisfied if and only if each maximal element I ∈ Bmax ⊂

B \ [n] ⊂ 2[n] has ≥ 2 subsets which are maximal among those contained in I. Finally,

it is the only degree where this is possible.

2. In Part 1, the degree a is given by n−c, where c is the number of connected components

of the nestohedron built out of B \ [n]. If this latter polytope is a matroid polytope PM

for some matroid M , it is also the equal to n − c(M), where c(M) is the number of

connected components of M .

3. For nestonedra, the MCB(a) property is not a combinatorial invariant. In other words,

there are matroids which yield combinatorially equivalent matroid polytopes where one

satisfies MCB(a) for some a and the other does not.

Remark 5.2.5. By Lemma 3.10 on p. 450 of [12], any collection of subsets of [n] has a

unique minimal extension which is a building set called the building set closure. The

statements above and arguments used below can be repeated with the building sets replaced

by building set closures.
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Proof. 1. There is a correspondence between nested sets N ⊂ B ⊂ 2[n] and faces of a

generalized permutohedron (Proposition 7.5 on p. 1046 of [21], proof of Proposition 7.9

on p. 1048 of [21], Proposition 3.12, Corollary 3.13, and Theorem 3.14 on p. 451 – 452

of [12]). In this correspondence, the facets are parametrized by elements I ∈ N ⊂ 2[n]

for nested sets N . This is the comes from the same reasoning which shows that flats

give the half-space description of a matroid polytope PM . Next, we use the fact that

maximal nested sets correspond to B-forests (Proposition 7.8 on p. 1048 of [21]). Note

that any subcollection of a nested set N ⊂ 2[n] containing the elements of Bmax (i.e.

maximal elements) is still a nested set and that maximal subcollections is still a nested

set. Also, any nested set is contained in a unique maximal building set.

The number of minimal nested subsets (i.e. T≤i for nodes i) show that the unions of

smaller nested sets are missing ≥ 1 subset for each case if and only if there are ≥ 2

“almost maximal” subsets. Finally, we use the fact that dimP = n − |Bmax|. The

degree a is the only one allowed since allowing larger degrees would include cases where

two “almost maximal” building sets are used in place of a single maximal building set

(a degree a+ 1 case).

2. This is an application of Proposition 2.4 on p. 442 and Remark 3.11 on p. 450 of [12].

3. Using Part 1, we see that MCB(a) depends on the number of maximal elements in the

building set. Note that MCB(a) cannot be satisfied when the facets do not come from

maximal elements of the building sets since they come from those of the a dilation of

standard simplex on Rn. However, any nestohedron is combinatorially equivalent one

from a connected building set even if the facets do not necessarily come from maximal

elements of the building sets (Corollary 5 on p. 189 of [22], p. 122 of [11]). Then,

the situation in Part 1 applies. For degrees a less than the number of building sets

maximal among those excluding [m] (the ground set of the new connected building set),
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the MCB(a) property is trivially satisfied. However, this is not true for the original

one even when a = 1. Both cases come from combinatorially equivalent polytopes.

5.2.3 Geometry determined by MCB(a)

Paving matroids

We will focus on the case of paving matroids (which are conjectured to make up almost all

matroids while known logarithmically [20]) and their geometric structure. More specifically,

we will explore connections to the Chow rings of these matroids. Note that these rings are

still connected to properties of building sets since they are a combinatorial model for the

cohomology of wonderful compactifications, which are built out of building sets.

In the case of a paving matroid of rank m + 1 with ground set E = [n] = {1, . . . , n},

the hyperplanes are given by m-partitions of [n] (Proposition 2.1.24 on p. 71 of [18]). These

are collections of subsets of E such that any m-element subset of E is contained in a unique

member of this collection. If we take F1, . . . , Fa in the definition of MCB(a) to be any col-

lection of flats (possibly with repeats), we need to consider minimal numbers of flats which

cover all but possibly one element of E.

This means that we look at the unions of the smallest number of hyperplanes covering

E. Depending on how small the degree a is and how much the sizes of the hyperplanes

varies, it may be easier or more difficult to build a paving matroid of rank m+ 1 satisfying

MCB(a). For example, setting a large lower bound for hyperplanes which do not have size

m implies that a lower degree a can be satisfied since a larger gap is left behind by removing

a large hyperplane. Note that any collection of covering sets to be used in the definition

of MCB(a) has an associated paving matroid M of rank m + 1 with these “covering sets”
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Fi as a subcollection of the hyperplanes of M (Proposition 5.2.7). Also, this corresponds

to lengths of chains/number of terms used and the sizes of the coefficients in the Hilbert

function of the Chow ring of the matroid (Corollary 2 and comments on p. 525 – 526 of [13])

(Corollary 5.2.8). Generalizations to arbitrary matroids satisfying MCB(a) are outlined in

Remark 5.2.9.

Proposition 5.2.6. If a paving matroid M with ground set E = [n] = {1, . . . n} satisfies

MCB(b) for some b, then it must satisfy MCB(a) with a equal to the smallest number of

hyperplanes that can cover E.

Proof. Since we are allowed to repeat flats, any matroid failing to satisfy MCB(a) will not

satisfy MCB(b) for any b ≥ a. The minimal possible degree where this occurs is the smallest

number of hyperplanes that can cover E.

Theorem 5.2.7.

1. Let M be a paving matroid of rank m+1 such that the largest k hyperplanes H1, . . . , Hk

of M form a cover of the ground set E = [n] = {1, . . . , n}. Consider a family of such

paving matroids.

Suppose that there is a constant C ∈ Z>0 such that
max |Hi|
min |Hi|

< C. If n
Ck2(m−1)

>> k

(i.e. n
Ck3(m−1)

→ ∞ as m → ∞ treating the variables as functions of m), then

M satisfies MCB(a) for a ≤ k − 1 + n
2Ck2(m−1)

. In general, this is true whenever

min |Hi| >> k(m− 1).

2. Consider paving matroids M such that the largest k hyperplanes H1, . . . , Hk form a

cover of the ground set [n] as in Part 1. If a < 1 + (k − 1)
min |Hi|
k(m−1)

, then M satisfies

MCB(a).
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Proof. 1. The assumption that
max |Hi|
min |Hi|

< C implies that the sizes of the Hi don’t vary

much. We would like to use the bound n
Ck2(m−1)

>> k to show that the only flats

to consider for the MCB(a) condition are the maximal hyperplanes Hi covering the

ground set [n].

Note that max |Hi| ≥ n
k since H1, . . . , Hk cover [n],. Since

max |Hi|
min |Hi|

< C, we have that

min |Hi| >
max |Hi|

C ≥ n
Ck . We can use this to study covers of [n] by hyperplanes of

the paving matroid. Given that any hyperplane is contained in a maximal hyperplane,

the size of the next largest hyperplane after the first k is ≤ k(m − 1). This means

that removing a single Hi and attempting to cover ≥ |Hi| − 1 elements with smaller

hyperplanes would require ≥ |Hi|
k(m−1)

new hyperplanes. Since
min |Hi|
k(m−1)

≥ n
Ck , the

number of additional hyperplanes required is ≥ n
Ck2(m−1)

. Removing more of the Hi

would give an even greater increase in the number of hyperplanes used. This means that

the only cover of ≥ n−1 elements of [n] by a ≤ k−1+ n
2Ck2(m−1)

< k−1+ n
Ck2(m−1)

,

hyperplanes is the cover of [n] by H1, . . . , Hk. Thus, MCB(a) must be satisfied by M

for a ≤ k − 1 + n
2Ck2(m−1)

.

2. We can use similar reasoning as in Part 1. In general, removing ` of theHi and replacing

them with hyperplanes not belonging to the H1, . . . , Hk uses up ≥ k − ` + `
min |Hi|
k(m−1)

hyperplanes since the remaining hyperplanes have size ≤ k(m − 1). Note that this

lower bound increases as ` increases since min |Hi| >> k(m − 1). Setting ` = 1 gives

the lower bounds and this is the reflect

For the paving matroids considered in Proposition 5.2.7, the Chow ring has a precise

relation to the minimal degree a such that the paving matroids satisfy MCB(a). Note that

the Chow ring of a matroid is equal to the Chow ring of an actual toric variety constructed

222



out of a fan (p. 5 of [5]).

Corollary 5.2.8. Consider paving matroids on E of rank m+ 1 where the maximal hyper-

planes are much larger than n
m and don’t vary much (in the sense described in Part 1 of

Theorem 5.2.7). For example, this includes paving matroids where the hyperplanes are given

by very large blocks partitioning E and the rest of the hyperplanes given by sets of size m.

Then, the minimal degree a where MCB(a) is satisfied and the upper bound in Part 1 of

Thoerem 5.2.7 decreases with the as the dimension of the quotients by the annihilators of

each xHi in the Chow ring A∗(M) of M increase.

Proof. This is an application of the formula

H(D(L, t) = 1 +
∑
r

k(r)∏
i=1

t(1− tri−ri−1−1)

1− t

 fL(r)

for the Hilbert series of the Chow ring of the matroid on p. 526 of [13] after Corollary 2

on p. 525 of [13], where L denotes the lattice of flats and D(L) denotes the Chow ring

construction, r = (0 = r0 < r1 < · · · < rk ≤ rankL) gives rank sequences of flags of flats,

and k = k(r) is the length of the rank sequence. We can remove the fL(r) term involving the

number of flags with a given rank sequence r if we index over flags instead of rank sequences r.

If we index the formula by flags of flats instead of indices themselves, we can see that the

degree k term of the Hilbert series corresponds to the number of flags with the given ranks.

Note that the only flags affected by the MCB(a) are those where which end with a hyper-

plane or the ground set itself (i.e. rk = r or rk = r − 1, where r = m + 1). This increases

with the sizes of the maximal hyperplane since this increases the number of smaller rank

objects. In other words, the length ` ending with [n] correspond to those of length ` ending

with some flat of smaller rank. While the degrees of the variables considered stay the same,

the change comes from the number of possible variables to consider (which correspond to
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possible flags of flats using the given ranks). We fix the degree and look for flats with given

differences in ranks. There are more flats of rank ≤ m − 1 to substitute in. Note that the

behavior entirely depends on those of the hyperplanes since any subset of E of size ≤ m− 1

has rank equal to its size. This implies that the number of chains of hyperplane or a hyper-

plane and the ground set [n] entirely depends on the size of the given hyperplane. Since the

xα1
F1
· · ·xα`F` from flags of flats F1 < · · · < F` and αi such that 1 ≤ αi ≤ rankFi+1 − rankFi

and
∑
αi = k form a basis for Ak(M) as a vector space (p. 526 of [13], Corollary 3.3.3 on

p. 18 of [5]), the degree is given by (m+ 1)− 1− rankF1 if F` is a hyperplane of M .

Given a hyperplane Hi, the condition that xHi is not an annihilator is equivalent to

stating that the flats corresponding to the variables in the monomials involved are either

strictly contained in Hi or strictly contain Hi by the definition of the Chow ring of a matroid.

This restricts the flags under consideration to a collection of flats contained in Hi, one ending

at Hi, or one ending with Hi and the ground set [n]. The analysis above then implies the

conclusion after applying the arguments above.

Remark 5.2.9.

1. When the minimal degree a for MCB(a) decrases, the increase in coefficient size can

be interpreted in terms of “local” complexity of the Chow ring of toric varieties built

out of the Bergman fan of the matroids (p. 5 of [5], Proposition 7.13 and Definition

7.14 on p. 431 – 432 of [1]).

2. The general relation between having a low degree a for the minimal degree such that

the matroidal Cayley–Bacharach property MCB(a) is satisfied and sizes of coefficients

of the Hilbert series of the Chow ring also seems to apply to the case of arbitrary
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matroids when a is small. The main difference appears to be in characterizing which

collections of subsets can actually appear as hyperplanes of some matroid. There has

been previous work studying such questions about possible subsets (e.g. [23]. [8]).

Supersolvable arrangements

Given an arrangementA = {H1, . . . , Hn} of hyperplanes in kd for some field k, the associated

matroid MA has flats built out of intersections of the hyperplanes involved. In particular, the

rank function is defined as r(B) = n− dim
⋂
i∈B Hi and the flats are given by maximal sets

of indices corresponding to intersections of hyperplanes equal to a particular linear subspace

(formed by intersections of hyperplanes). We study a such that these matroids MA satisfy

MCB(a) when n >> a3 and A is a line arrangement. This is in addition to a general de-

scription of MCB(a) for MA for arbitrary hyperplane arrangements A (Proposition 5.2.10).

In addition, we show that the “nontrivial” supersolvable line arrangements give a family of

line arrangements where the number of possible degrees of unexpected curves decreases as

the minimal a such that MCB(a) is satisfied increases (Proposition 5.2.12). Finally, we end

with some comments to topological properties of the arrangements in Remark 5.2.13.

While the degree amatroidal Cayley-Bacharach propertyMCB(a) is defined as
⋃a
i=1 Fi ⊃

E \ p =⇒
⋃a
i=1 Fi = E for any p ∈ E = [n] = {1, . . . , n}, this can be rephrased in a simple

way for hyperplane arrangements.

Proposition 5.2.10.

1. Suppose that a2 � n
a . Then, the matroid ML associated to an arrangement L of n

lines with a points of degree close to n
a satisfies MCB(a). Note that a collection of

such “high degree points” is necessary in order for MCB(a) to be satisfied nontrivially.

In general, MCB(a) is satisfied when a is very small compared to the number of lines
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or maximum multiplicity.

2. In general, a matroid MA built out of a hyperplane arrangement A = {H1, . . . , Hn}

satisfies MCB(a) if and only if a is less than or equal to the minimal number of

intersections of elements of A (i.e. elements of the intersection lattice or intersection

points in the case of a line arrangement) such that the indices cover A \Hi for some

i ∈ [n] = {1, . . . , n}. By intersections of elements, we mean linear subspaces of the

form
⋂
i∈B Hi for some B ⊂ [n] with such subspaces written using the largest possible

such subset B with respect to inclusion.

Proof. 1. In the generic case, we can start with a suitable collection of lines parametrized

by subsets Fi of the index set [n] (each giving rise to distinct intersection points). Since

any two lines only intersect at one point, the remaining points of intersection (not com-

ing from the Fi) have multiplicity ≤ a. Suppose that a2 << n
a and that the Fi are

not far from being evenly distributed in size (at least much larger than a2 treating the

variables as functions of a). Then, MCB(a) must be satisfied since using a points of

intersection not all coming from the Fi will not be able to be used to cover the ground

set [n] = {1, . . . , n} indexing the hyperplanes of the arrangement A. In general, the

fact that t2 + t3 ≥ k + t5 + 2t6 + 3t7 + . . . with ti equal to the number of intersection

points of multiplicity/degree i (Hirzebruch [16]) implies that there are many more low

degree points than high degree ones, which implies that MCB(a) must be satisfied

if a is small in general. A similar argument can be repeated if we consider the case

of hyperplane arrangements and sets parametrizing intersctions of hyperplanes (and

linear subspaces in general).

2. We need a such that a collection of a intersections of hyperplanes in A either use up

all the hyperplanes or miss ≥ 2 of them. In the case of line arrangements, this means

that taking ≤ a intersection points of lines either uses up all the lines or we are missing
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≥ 2 of the lines.

The case of line arrangements yields further connections to degees of unexpected curves

arising from supersolvable line arrangements. This makes use of the following thereom of

Hanumanthu–Harbourne [14] on supersolvable line arrangements wth a given number of

modular points and their connections to degrees of unexpected curves.

Theorem 5.2.11. (Hanumanthu–Harbourne, p. 3 of [14])

Let L be a line arrangement (over any field) with a modular point (i.e. an intersection

point connected to all other intersection points by a line in L).

1. If L is not homogeneous, then either L is a near pencil or it has two modular points.

If it has two modular points, then L consists of a ≥ 2 lines through one modular point

and b > a lines throug the other one. This means that there are a + b − 1 lines in L

and (a− 1)(b− 1) intersection points of multiplicity 2.

2. If L has a modular point of multiplicity 2, then L is trivial.

3. If L is complex and homogeneous (i.e. each intersection point has the same multiplic-

ity/degree) with the maximum multiplicity > 2, there are ≤ 4 modular points. If there

are 3 or 4 modular points, we have the following possiblities:

• If there are 4 modular points, then there are 6 lines in L, the common multiplicity

is m = 3, t2 = 3, t3 = 4, and tk = 0 otherwise. Up to a change of coordinates, L

consists of the lines x = 0, y = 0, z = 0, x− y = 0, x− z = 0, and y − z = 0. The

intersection pattern is like that of an equilateral triangle and its angle bisectors.
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• If there are 3 modular points, then the common multiplicity is m > 3 and up

to change of coordinates, L consists of the lines defined by the linear factors of

xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2). This means that there are

3(m− 1) lines, t2 = 3(m− 2), t3 = (m− 2)2, tm = 3, and tk = 0 otherwise.

While we will focus on the final case since it has the most interesting structure, we will

also consider the non-homogeneous case.

Proposition 5.2.12.

1. If L is a non-homogeneous supersolvable line arrangement and satisfies MCB(a) for

some a, then the corresponding matroid satisfies MCB(a) if and only if a ≤ A+B−1
2 ,

where A and B are the degrees of the modular points.

2. Given a homogeneous supersolvable line arrangement L with 3 modular points, the min-

imal degree a such that the matroid corresponding to L′ satisfies MCB(a) nontrivially

decreases as the number of posisble degrees of unexpected curves increases.

Proof. 1. The theorem above implies that we either have a near-pencil or two modular

points. In the first case, MCB(a) cannot be satisfied for any a since MCB(1) is not

satisfied. This is because the failure of MCB(a) implies the failure of MCB(b) for

any b > a. As for the case of two modular points, let A and B be the degrees of the

modular points. Then, the conclusion follows from labeling the individual lines of the

arrangement by pairs of the form (i, j) with 1 ≤ i ≤ A and 1 ≤ j ≤ B. We find the

minimal number of pairs such that the coordinates i and j use up all the elements of

[A+B] = {1, . . . , A+B − 1}.

2. In the final case, note that the counts of the ti in the case of 3 modular points comes

from the fact that intersection points of lines of L which involve 2 factors not involving

xyz actually intersect at 3 such factors. Checking for possible a where MCB(a) can
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be satisfied by L′ with the linear factors x, y, z of xyz removed corresponds to the

possible degrees of unexpected curves throguh points corresponding to the duals of

lines of L. More precisely, L′ satisfies MCB(a) for a ≤ m
3 and D is a possible degree

of an unexpected curve if and only if m ≤ D ≤ n−m− 1 (Theorem 3.8 on p. 173, p.

180 – 181 of [9]). This gives a negative correlation between MCB(a) degrees a for L′

and the number of possible degrees of unexpected curves arising from L.

Remark 5.2.13.

1. Recall that a central arrangement of linear subspaces is one where all the intersection

of all of the linear subspaces is nonempty. In the case of line arrangements, the number

of indices covered by a collection of intersection points can be expressed by the number

of regions the corresponding central subarrangement splits the plane into. This can

be expressed as the a specilization (substituting t = −1 into the variable) of the

characteristic polynomial (Theorem 4.1 on p. 7 of [2]) of the matroid corresponding

to the central subarrangement. Using an inclusion-exclusion argument, the number of

elements covered by a collection of intersection points can be bounded above by the

sum of specializations of characteristic polynomials of matroids associated to central

line arrangements.

2. The arguments of Part 1 also apply in the case of hyperplane arrangements.

3. Using the lattice of flats while representing each flat by a single point and connecting

two points by a line if one flat is contained in the other, the MCB(a) condition can be

phrased in a graph-theoretic manner. It means that a collection of points connected

to all but possibly one point i ∈ [n] is connected to every point of [n].

We continue to analyze supersolvable arrangements, but move from lines to the more gen-

eral setting of hyperplanes. As in [6], most of the arrangements considered will be assumed
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to be central. These hyperplane arrangements give a clear connection between the lattice of

flats of the associated matroid (i.e. lattice formed by intersections of hyperplanes) and the

connected components/regions bounded by the collection of hyperplanes (called chambers).

Definition 5.2.14. (Definition 4.1 and Definition 4.2 on p. 273 – 274 of [6])

1. Writing d for the rank, a supersolvable geometric lattice is defined as one having

a maximal chain of form 0̂ = V0 ≺ V1 ≺ · · · ≺ Vd−1 ≺ Vd = 1̂, where 0̂ and 1̂ are

minimal and maximal elements of the lattice (p. 273 of [6]) and x ≺ y means that

x < y and x < z ≤ y =⇒ z = y. In our case, we take the elements of the lattice to

be intersections of the hyperplanes of the arrangement and the ordering is given by

reverse inclusion.

2. A central arrangement A is supersolvable if its lattice L(A) of intersections is a su-

persolvable lattice.

3. For 1 ≤ i ≤ d, let ei be the number of atoms of L = L(A) that lie below Vi, but

not Vi−1. We have e1 = 1 and
∑d
i=1 ei is the number of atoms in L(A). Also, the

characteristic polynomial of L is χ(L, t) =
∏d
i=1(t− ei).

One of the three initial examples considered in [6] is the graph hyperplane. We consider

the computations in more detail below.

Example 5.2.15. (Matroids of graph hyperplane arrangements and MCB(a))

Given a graph G with vertex set [n] = {1, . . . , n}, consider the hyperplane arrangement AG

formed by hyperplanes of the form xi = xj for each (i, j) ∈ E(G) (i.e. pairs forming an

edge of G). Intersections of hyperplanes that are considered are of the form xi1 = · · · = xik
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for some set {i1, . . . , ik}. Since flats consist of maximal collections of hyperplanes from the

arrangement considered (AG in this case) giving rise to a specific linear subspace, the flats

of the matroid MAG associated to AG has ground set given by the elements of E(G) (edges

of G) and the flats are E(G|Vi), where Vi ⊂ [n] and G|Vi is the restriction of G to the vertex

subset Vi.

In this particular setting, checking whether MCB(a) can be satisfied doesn’t seem to

depend on the degree a.

Proposition 5.2.16. The matroid MAG of a hyperplane arrangement AG in Rn associated

to a graph G with vertex set [n] satisfies MCB(a) for some a if and only if every edge is

bounded by vertices of degree ≥ 2.

Proof. To see this, we look at what happens when we omit a specific edge from the union

of edges coming from some collection of flats (which can be taken to be a). Note that the

flats come from edges inside the restriction of the graph G to some subset of the vertex set

[n] = {1, . . . , n}. We can split into cases according to the degrees of the vertices bounding

the missing edge e.

1. Case 1: There is an edge e where each bounding vertex has degree 1.

In this case, it doesn’t seem like MCB(a) is satisfied for any a. This is because the flats

Fi = E(G|Vi) can be taken to come from any collection of vertex sets Vi with union

equal to A \ ∂e, where A ⊂ [n] is the set of vertices of degree ≥ 1 and ∂e denotes the

pair of vertices bounding the missing edge e. This would contain all the edges except

e. Note that this case would be omitted if the graph G is assumed to be connected.

2. Case 2: There is an edge e where one bounding vertex has degree 1 and the other has

degree ≥ 2.
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The matroid MAG still does not satisfy MCB(a) in this case. This is because the

vertex subsets Vi ⊂ [n] can be taken to have union equal to A \ p, where A is defined

in the same way as in Case 1 and p is the vertex in ∂e of degree 1. In that case, the

restriction to the given set of vertices is still missing the edge e but contains all others.

3. Case 3: Each edge e is bounded by vertices of degree ≥ 2.

In this case, the matroids MAG do satisfy MCB(a) regardless of the choice of a. By

including the edges connected to each of the two vertices in ∂e = {p, q}, any edges

induced by restriction to a subset of the vertices [n] including edges other than e

containing p or q in the boundary must include p and q as well. Thus, a collection of

edges coming from restrictions of vertex sets misisng at most one edge of G contains

all of the edges of G.

Remark 5.2.17.

1. A graphic arrangement is supersolvable if and only if the graph in question is chordal

(i.e. for any cycle with ≥ 4 vertices, there is an edge of G connecting two vertices

which are not adjacent in the cycle – see Remark 2.5 on p. 9 of [4]).

2. Some other examples to consider are polytopal arrangements from hyperplanes built

out of facets of polytopes and Coxeter arrangements from finite subsets of GLd(R)

(orthogonal reflections through hyperplanes) (p. 268 – 269 of [6]).

In general, the computation above and the definition of MCB(a) for matroids MA as-

sociated to hyperplane arrangements A seems to indicate some kind of forced connectivity

since a “missing hyperplane” must intersect collections of intersections of other hyperplanes

in some way. One way to do this would be to impose a dependency on the hyperplane
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intersections depending on the indices considered. However, we still need to check whether

such a condition is necessary.

For supersolvable arrangements, checking MCB(a) can “generically” be reduced to a

question on a smaller hyperplane arrangement.

Theorem 5.2.18. (Björner–Edelman–Ziegler, Theorem 4.3 on p. 274 of [6])

Every arrangement A of rank ≤ 2 is supersolvable. An arrangement A of rank d ≥ 3 is

supersolvable if and only if A = A0 t A1, where A0 is a supersolvable arrangement of rank

d− 1 and, for any H ′, H ′′ ∈ A1 with H ′ 6= H ′′, there is an H ∈ A0 such that H ′ ∩H ′′ ⊂ H.

Using this result, we can make the following observations.

Proposition 5.2.19. Let A be a central supersolvable hyperplane arrangement.

1. Writing A = A0 t A1 as in Theorem 5.2.18, let d = rankA and B0 = {Vd−1 ∨

(H ′ ∧H ′′) : H ′, H ′′ ∈ A1} be the hyperplanes in A0 containing the pairwise intersec-

tions of elements of A0. Given a collection of hyperplane intersections/flats P , write

P = P0 t P1 with P0 only from hyperplanes in A0 and P1 involving hyperplanes from

A1 in each intersection.

In this setting, MA satisfies MCB(a) if and only if the following conditions hold each

collection P = P0 t P1 (k := |P1|) using up ≥ |A| − 1 hyperplanes and 1 ≤ k ≤ a:

• Let BP0 be the counterpart of B0 for P built out pairwise intersections of elements

of P1. MP1
satisfies MCB(k) and the ≤ a− k hyperplanes in BP0 use up all of

the hyperplanes in A0.

• MBP0
satisfies MCB(a− k) and P1 uses up all the hyperplanes in A1.

In particular, it suffices to have MA1
satisfy MCB(k) and MA0\B0

satisfy MCB(k)

and MA0\B0
for each 0 ≤ k ≤ a.
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2. The central supersolvable hyperplane arrangements such that MCB(d) is satisfied for

the minimal nontrivial degree a can take any possible characteristic polynomial or rank

generating function. This means that any central supersolvable hyperplane arrangement

of rank d has the same characteristic polynomial as one satisfying MCB(d).

3. Let u = rankA and Ωu be the intersection of all the hyperplanes in A, and Ωu−1 be the

intersection of the hyperplanes in A0. For any R ∈ A1, the intersection R∩Ωu−1 = Ωu.

In particular, this implies that any pair of flats of MA where one of them is the ground

set A0 of MA0
and the other contains an element of A1 covers the entire ground set

of MA.

Proof. 1. Consider a collection of intersections of a hyperplanes of A which is “missing”

at most hyperplane. Let P be a colection of such hyperplane intersections with P0

only involving hyperplanes in A0 and P1 involving hyperplanes in A1 (and possibly

hyperplanes in A0). We can partition the cases involved into ones where |P1| = k

as k varies over 0 ≤ k ≤ a. This potential missing hyperplane is either in A1 or

A0. If we start indexing the hyperplane intersections by ones that involve elements

of A1, the intersections involved induce a collection of intersections of elements of

A1. These intersections must also include the (unique) hyperplanes in A0 contain

pairwise intersections of hyperplanes in P1. Omitting these from the elements of A1,

the remaining a − k hyperplane intersections (from P0) form BP0. If the potential

missing element is in A1, the elements of BP0 use up all the elements of A0. In order

for MCB(a) to be satisfied, the missing element in A1 should actually be covered

by P0. This is the statement that MP1
satisfies MCB(k). If the potential missing

element is in A0, we have that P1 uses up all the hyperplanes in A1. This means that

the elements of BP0 satisfy MCB(a− k) as we already have a cover.

2. Note that ed = |A1| (p. 275 of [6]). If A1 is a pencil of hyperplanes containing a single

(d− 2) linear subspace of some fixed H ∈ A0 which do not contain the line Vd−1, then
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intersecting any two of the hyperplanes in A1 means intersecting all of the hyperplanes

in A1. This means that any collection of intersections of hyperplanes in A which where

at most 1 hyperplane is not involved actually involves all of the hyperplanes in A and

the MCB(a) property is satisfied for any a such that this question is nontrivial. This

can be done at each step of the construction of a supersolvable hyperplane arrangement

of rank ≥ 3. For the base case of a rank 2 supersolvable hyperplane arrangement, there

are no restrictions on the “base” characteristic polynomial since any central hyperplane

arrangement of rank ≤ 2 is supersolvable by Theorem 5.2.18. The conclusion follows

from noting that χ(L, t) =
∏d
i=1(t− ei) (Part 3 of Definition 5.2.14).

3. In general, Vd−1 can be taken to be a line contained in the common intersection Ωd−1

of the hyperplanes in A0. Given a central hyperplane arrangement of rank u, let Ωu

be the intersection of all the hyperplanes in the arrangement. The new hyperplanes

Ai ∈ A1 are those do not contain Vd−1. Choosing an initial such hyperplane A1 to

put in A1, we actually have that Ωu = Ωu−1 ∩ A1. Since A1 6⊃ Vd−1, we have that

A1 6⊃ Ωu−1 and dimA1 ∩ Ωu−1 = d − u + 1 − 1 = d − u. Since A1 ∩ Ωu−1 contains

the intersection of all the hyperplanes in the arrangement although it is of the same

dimension (due to the rank), we have that Ωu = Ωu−1 ∩ A1. The remaining choices

involve which (d− 2)-planes to use for the intersections of pairs of elements of A1 and

what hyperplanes to place in them. Since the (d−2)-planes must contain Ωu (which is

Ω3 in this case), the (d−2)-planes depend on a choice of d−2− (d−u) = u−2-planes

(which are lines in this case).
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