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ABSTRACT

As machine learning (ML) models have grown in size and scope in recent years, so has the amount

of data needed to train them. Unfortunately, individuals whose data is used in large-scale ML mod-

els may face unwanted consequences. Such data use may violate individuals’ privacy [114, 60] or

enroll them in an unwanted ML application [142, 8]. Furthermore, recent advances have greatly

enhanced models’ ability to generate synthetic data like text and images [50, 377, 263, 158, 303].

This has unleashed a fresh wave of privacy and intellectual property concerns, as generative mod-

els can memorize and regurgitate their training data [332, 155, 57, 58, 285], and are trained on

massive datasets scraped from the internet [282, 5].

While user data privacy issues are well-recognized in the ML research community, most at-

tempts to address it thus far take a heavily model-centric approach. Existing solutions typi-

cally assume that model trainers are well-intended and that data has been taken with consent,

or, more pessimistically, that data use is inevitable and that the best path forward is to miti-

gate privacy risks. Consequently, these approaches seek to preserve data privacy during train-

ing [105, 218, 125, 137, 37] or prevent unwanted memorization [157, 59, 184]. These solutions

typically achieve their objectives but overlook a significant problem: often data is not taken with

consent [300, 30, 15], and users do not trust model trainers to do right with their data [42].

This begs the question: what if data use was not inevitable? What if, instead, users had agency

over how and if their data is used in ML systems? This thesis argues that data agency, the ability

to know and control how and if one’s data is used in ML systems, is an important complement

to existing ML data privacy protection approaches. Such agency would shift the current power

dynamic, which renders users helpless at the hands of model creators, and help users control their

digital destinies. Solutions of this nature would accentuate current work on data privacy, giving

users, not just model trainers, control over how their data is used.

This thesis explores solutions that provide users with data agency against large-scale ML sys-

tems. Such agency can take many forms, but this thesis considers data agency solutions allowing

xiii



individuals to disrupt or discover when their data is used in large-scale ML systems. It proposes

three solutions that prevent or trace data use in ML systems or, in extreme cases, directly attack

the ML system. In proposing these solutions, it focuses on the use case of large-scale facial recog-

nition (FR) systems, a machine learning technology that has recently become a flashpoint for civil

liberties and privacy issues. With this use case in mind, the thesis finally develops a framework for

reasoning about broadly about FR data agency and uses this framework to outline both technical

and social challenges of proposed solutions.

Content Summary and Outline

This thesis defines the problem of data agency against ubiquitous ML systems (§1) and develops

technical solutions to address it. It presents relevant background information for these solutions

(§2), then proposes three solutions for reclaiming data agency: disruption (§3), tracing (§4), and

direct attacks (§5). Then, it develops a framework (§6) for data agency against unwanted FR

systems, which can serve as a template for similar data agency frameworks in other domains.

Finally, it considers limitations of the proposed tools and discusses potential future work (§7).
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CHAPTER 1

WHY IS DATA AGENCY NECESSARY?

In recent years, machine learning (ML) models have been eagerly adopted to perform a vari-

ety of tasks, from real-time language translation to image synthesis to facial recognition. To

feed their data-hungry models, ML practitioners use a variety of data sources, from public web-

sites [142, 300] to private application data [71] to surveillance data from public spaces [313].

While sometimes this data is obtained with consent, there are numerous well-documented cases

of user data being obtained through dubious means. For example, the facial recognition company

Clearview.ai developed a facial recognition model by scraping 3 billion images from social media

sites [142]. The AI research company DeepMind funneled data from a UK health services app to

train ML models for medical diagnosis [27].

As models grow larger, the demand for data only grows. In recent years, companies like Ope-

nAI and DeepMind have celebrated the release of billion or trillion-parameter models, which re-

quire terabytes of data to properly train. To train models of this scale, ML practitioners often

resort ot using large internet scrapes to create datasets. For example, text generation models like

ChatGPT are trained on datasets like Common Crawl [5], which is an open repository containing

petabytes of scraped web page data and metadata. Image synthesis models like DallE and Stable

Diffiusion are trained on datasets like LAION [282], created by scraping online image repositories.

In datasets scraped exclusively from web content, user consent is difficult, if not impossible,

to obtain. Some websites request blanket consent from users, allowing the use of their data for

things like tracking and, relatedly, model training. Often, though, the operating assumption is that

using an online service or app constitutes consent to one’s data taken and used. Or at least this is

the operating assumption of ML developers who create large-scale internet datasets like LAION

or CommonCrawl.

From these examples, a simple truth emerges—individuals who use an online service or occupy

a public space may unwittingly produce data that is used in ML models. Beyond issues of consent,
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such data use poses a serious risk to individual privacy. Prior work has shown that models can

memorize and regurgitate their training data, revealing private information about individuals whose

data is in the dataset [114, 60]. Furthermore, users whose data is co-opted for ML use may end up

enrolled in a privacy-compromising system, such as a large-scale facial recognition model licensed

to whoever wants to pay [142].

1.1 Existing Data Privacy Solutions

The problem of data privacy in the machine learning space has been well-recognized, and numer-

ous solutions have been proposed to address this issue. Proposed ML data privacy solutions can be

categorized into two distinct groups, each grounded in a different understanding of privacy. Each

set of solutions has specific goals, benefits, and limitations.

Solution 1: Hide User Data Content. The first set of solutions take the stance that only the

user should know the content of their data. This approach begets privacy solutions like federated

or split learning and encrypted training [218, 137, 125]. Federated and split learning techniques

allow parties to host data locally and, without sharing the content of that data, collaboratively train

a model [255, 333, 166]. The resulting model should be effective and useful to the training data

contributors, despite the lack of a centralized training dataset. Collaborative learning solutions are

commonly used by companies like Google and Apple to train models that can be shared among

their users [362, 251]. Encrypted training solutions use methods like homomorphic encryption to

encrypt user data during training [125, 37, 143]. The trained model can be decrypted and used

without revealing the private training data.

Solutions in this group have several major limitations. Federated and split learning methods

are vulnerable to leakage attacks, allowing real-time reconstruction of training data via information

passed between the collaborative training parties [249, 45]. Encrypted training methods typically

incur significant time and memory overhead costs [125, 37, 143]. This is because operations on

encrypted data are slower than operations on normal data, and because the additional data struc-
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tures needed to facilitate encrypted training are memory-intensive. Finally, neither collaborative

nor encrypted learning methods inherently prevent private data leakage from the trained model.

Attacks like membership inference could still recover information about which data points were

used for training, even though the training process was itself private [294, 310].

Solution 2: Make User Data Indistinguishable. Another data privacy approach requires that

data points should not be linkable to the user who created them. In contrast to the first set of solu-

tions, which prevent direct observation of training data points, solutions in this vein make it diffi-

cult (or impossible) to determine if a particular individual’s data were used to train a model. These

solutions target downstream privacy attacks like membership inference [69, 370]. The canonical

solution in this vein is the use of differential privacy [105] during training. Differential privacy

(DP) techniques add a carefully tuned amount of noise to training data to ensure that no single data

point has an outsized influence on model training. The DP noise should prevent an attacker from

deducing that a particular individual’s data, with certain traits, was present in the training dataset.

DP has seen widespread adoption in commercial and government spaces, most notably in the 2020

US Census [33].

DP and related solutions have a significant practical limitation: models trained on differentially

private data often perform poorly and have low accuracy. This is due to the fundamental trade-off

between noisy data and final model precision. Reducing the level of DP noise improves model

usability, but increases vulnerability to membership inference attacks [262]. This represents a

significant drawback of these methods—if data is private, but the model is not useful, there is little

incentive to use this method.

Claim: Data Privacy is Not Sufficient. The two existing sets of data privacy solutions can be

useful for specific applications. However, they share a common blind spot: they assume data use

is inevitable and seek to mitigate privacy risks during model training and inference, after users’

data has already been taken. Though important, post-facto privacy protection is not the only way

to address issues of unwanted ML data use. Privacy-conscious individuals may desire agency
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over how and if their data is used, rather than merely having their privacy preserved when it is

used. Studies show that the majority of Americans are concerned about how their online data is

being used, and a significant minority believe that the unauthorized use of personal data—even for

applications like law enforcement or mental health monitoring—is unacceptable [42].

This thesis argues for a different approach to guarding users’ data in ML settings. It proposes

a set of user-facing solutions that give users a priori control over how and if their data is used for

ML, rather than simply anonymizing data while it is used. These solutions put power back in the

hands of the users. With these, users do not have to trust that an entity that collected their data

without consent will miraculously protect their privacy while using it. Instead, users control their

data. In essence, these solutions provide users with much-needed data agency.

1.2 Our Solution: Data Agency

Data agency, the ability to know and control how and if one’s data is used in ML systems, is an

important complement to existing privacy protection approaches. Although many mechanisms can

be used to promote data agency, this thesis proposes technical tools and techniques enabling data

agency. These solutions enable individuals to disrupt or discover when their data is used in large-

scale ML systems—two essential components of data agency. These technical solutions should be

supported by organizational and legislative efforts, but current legislative action around unwanted

data use focuses on preserving privacy, rather than promoting agency (e.g. GDPR, Illinois BPDA,

etc. [82, 39]). Thus, the technical tools proposed here can serve as a first line of defense for

users against unwanted data use, and will hopefully inspire future data legislation and policies to

consider agency in addition to privacy.

Proposed Data Agency Techniques. This thesis considers three techniques to promote data

agency against unwanted ML models. The first approach disrupts model training by rendering data

taken without consent unusable for ML. Our disruption solution (see §3) considers the scenario of

photos being scraped from social media and used to train facial recognition models. There is a
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significant power imbalance between the users who post photos and the tracker who takes and

uses the images. The user has little insight into the tracker’s methods. However, our solution

takes advantage of two facts: that the tracker works at scale and does not target specific users;

and that ML models see images as mathematical pixel arrays, different from humans. Using these

principles, we construct a data agency solution enabling users to cloak their images. Models trained

on cloaked images will not recognize real pictures of the user, giving users data agency.

Of course, disruption may not always be feasible, particularly when users’ knowledge of the

downstream ML setting is minimal. Thus, the second data agency solution considers a weaker

but equally important task: allowing users detect if the data is used to train a model (see §4). To

enable this detection, we propose a data marking scheme that creates data isotopes from users’

data. Like their chemical counterparts, data isotopes are similar in content to original data (in this

context, images) but with a few key semantic changes. When a model is trained on isotope images,

the changes made to isotope images leave a detectable statistical bias in the model. By querying

a model with a series of normal and isotope images, users can deduce if the bias associated with

their isotopes is present. If it is, the model was trained on the users’ data. With such knowledge,

users can trace how their data has been used and, once legislation and policies catch up, potentially

take legal action—restoring agency.

Finally, in extreme cases, data agency can involve attacking unwanted ML systems. Such

attacks could provide protection for users by embedding controlled misclassification behaviors in

the model or could draw public attention the problem of data being used without consent. §5

presents a disruptive data agency solution in this vein. It explores the extension of the well-known

backdoor attack against ML models to the physical setting. In particular, it explores the use of

physical objects as “triggers” for backdoor (e.g. misclassification) behaviors in face and object

recognition scenarios. If backdoor attacks are possible in a real-world scenario, then users could

potentially leverage them to disrupt real-time model operation. Depending on the context, this

could restore user agency against unwanted surveillance or monitoring.
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Data Agency Framework. In addition to the proposed data agency tools, this thesis also provides

a forward-looking analysis (§6) of the viability of data agency techniques in the facial recognition

context. There is a rapidly growing cottage industry of so-called “anti-facial recognition” (AFR)

tools designed to counteract unwanted face recognition. Proposals in this space differ widely in

their assumptions and techniques, but are united in their common goal of increasing users’ agency.

To better understand this space, we propose a framework that identifies commonalities in tools and

techniques, highlights performance trade-offs of different approaches, and identifies unexplored

areas for future development. We then argue that this framework can serve as a template for

analysis of data agency solutions in other settings.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Before discussing the data agency solutions of this thesis in depth, we first present background

information common to all solutions. We give an overview of machine learning, focusing specifi-

cally on the models and training techniques considered in this thesis. Then, we broadly summarize

the field of adversarial machine learning, which studies security and privacy issues of ML models.

Data agency techniques in this thesis often leverage tools from the adversarial ML space to en-

hance users’ power against unwanted models. Background information specific to each proposed

solution can be found in that solution’s chapter.

2.1 Machine Learning (ML) Overview

2.1.1 Training Image Classifiers via Supervised Learning

Model Task. This thesis primarily considers machine learning models trained to perform image

classification via supervised learning. Creating such a model requires first collecting a dataset

D = {X ,Y}. Each element xi ∈ X is a data point to be classified—e.g. an image—and its

corresponding element yi ∈ Y is its classification label—e.g. image subject. Given D, the goal

is to train a model Fθ : X → Y to produce accurate predictions on previously unseen data points

similar to those in D. More formally, given new element xj ∈ X ′ with true label yj , where

X ′ ∼ X but X ∩ X ′ = ∅, a properly trained model Fθ should produce Fθ(xj) = y′ = yj with

high confidence. Fθ has |Y| = N possible classification labels.

Model Training. Training Fθ requires solving an optimization problem over D and θ, the

model parameters. This optimization procedure updates θ to minimize Fθ’s loss over D. ` is a

function specifying the loss, typically cross-entropy in a classification context. A gradient descent

procedure is used to select parameters minimizing ` via min `(Fθ(x), y), where x and y are the

true data/label pairs from D. Given the complexity of this optimization procedure, Fθ is trained
7



using techniques like stochastic gradient descent [266], which saves time and computational cost

by approximating the true gradient descent procedure needed to exactly minimize `.

Model Architecture. The models used for image classification in this thesis leverage a convo-

lutional neural network architecture [183]. This biologically-inspired model architecture attempts

to mimic the behavior of the human visual cortex, and is composed of layers containing individual

parameters or neurons, that supposedly mimic the behavior of neurons in the brain [152]. Convo-

lutional neural networks are composed of input, hidden, and output layers, each containing a set of

trainable neurons. Together, these layers perform convolutions on an input image (or input features

produced by prior layers). The convolution operation computes the dot product of the input features

with the layer’s convolutional kernel. This generates a feature map abstractly representing key ele-

ments of an image, which is then fed to the next model layer. Eventually, these features are mapped

to a classification output layer, which computes the probability that the input image belongs to a

certain class. Models like ResNet, DenseNet, and Inception—which have achieved state-of-the-art

performance on various image classification and recognition benchmarks—leverage convolutional

architectures [141, 311, 150, 174]. For more information on convolutional neural networks, we

refer the interested reader to [127].

2.1.2 Other ML Training Settings and Tasks

The data agency solutions in this thesis focus on the context of image classification models, so the

supervised learning setting described above applies to all proposed solutions. However, there are

many ML tasks beyond image classification, and numerous ways to train machine learning models.

Future work can and should explore data agency solutions for these tasks and learning paradigms.

Alternative ML Tasks. ML models can classify much more than images, and have been regularly

used to classify text, tabular data, and other types of inputs. Furthermore, although classification

is one of the most popular tasks for ML models, it is far from the only one. ML models can also

perform recognition tasks, like pattern recognition or speech recognition [47, 93]. Beyond this,
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models can perform a variety of generation and synthesis tasks, such as summarizing text, creating

fake images, or producing synthetic speech. Recent advancements have led to breakthroughs in

the performance of text generation models like ChatGPT [50, 377] and text-to-image models like

Stable Diffusion and Midjourney [263, 303, 158].

Alternative Training Paradigms: Semi-Supervised, Unsupervised. Models can be trained via

supervised, semi-supervised, or unsupervised learning techniques [127]. The latter two methods

rely less on provided labels Y (if any are provided at all) and instead train the model to discern

patterns in the data X itself. Semi- or unsupervised learning is useful for teaching models gen-

erative tasks, like image or text generation. Different loss functions and optimization procedures

are needed in this setting. More information on unsupervised and semi-supervised learning can be

found in [127].

Alternative Model Architectures. Recent work has explored the use of alternative architectures

for image classification tasks, such as vision transformers [104]. While this thesis focuses on data

agency solutions for models trained on a convolutional neural network architecture, the principles

proposed here could naturally extend to other architectures. This is a ripe avenue for future work.

2.2 Attacks and Defenses for ML Image Classification Models

Prior work has identified numerous ways that the behavior of ML image classification models

can be disrupted or influenced by interested parties. Traditionally, these techniques have been

considered “attacks” on models, revealing the underlying assumption in the ML community that

models are good and ought to be protected. However, this thesis argues that the decision to label

these techniques as either an attack on models or a defense for users depends on many factors.

Several data agency solutions in this thesis leverage techniques traditionally considered “attacks”

on models to instead defend users from unwanted ML intrusions. Thus, for context, we present

a high level summary of canonical techniques that can alter model behaviors. Although these

techniques often generalize beyond the image classification setting, we here consider the image
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classification context given the focus of this thesis. We preserve the model-centric “attack/defense”

language throughout this section for clarity, given its prevalence in academic literature.

2.2.1 Adversarial Example Attacks and Defenses

One of the earliest attacks identified against ML image classification models is known as an adver-

sarial example attack. Such an attack crafts a special perturbation (ε) for a normal input x to fool a

target neural network Fθ. When ε is applied to x, the neural network will misclassify the adversar-

ial input (x + ε) to a target label (yt) [312]. That is, yt = Fθ(x + ε) 6= Fθ(x). Many methods for

generating such adversarial examples (i.e. optimizing a perturbation ε) have been proposed. These

attacks can be categorized as either white box or black box, based on the assumptions they make.

White Box Attacks and Defenses. White box adversarial attacks assume that the attacker

has full access to Fθ, including its parameters, while constructing ε. There are numerous ways

to compute adversarial examples in this threat paradigm [129, 178, 63, 72, 331], with variants

stemming from how the attack gradient is computed, as well as what metric is used to constrain

the size of the visual perturbation. Defenses against white-box adversarial attacks have been well-

studied [378, 211, 373, 245, 357, 208, 209, 286], although it is often the case that new defenses

are broken by newer, stronger attacks (e.g. [222] and [62], or [245] and [61]).

Black Box Adversarial Attacks and Defenses. A black box attacker has query-only access to

Fθ, meaning they can only submit inputs to Fθ and observe the classification response. Using

this limited information, the adversary then attempts to construct an adversarial example (x + ε).

Existing black-box attacks can be divided into two types: substitute model attacks and query-based

black-box attacks. In a substitute model attack, the attacker uses Fθ’s query responses to build

a labeled dataset and train a substitute model Fθ′ that approximates Fθ and enables generation

of adversarial examples that succeed on Fθ [242, 243, 355, 101, 351]. In query-based attacks,

the attacker uses past query results to iteratively perturb the next query, hoping to converge to

a successful adversarial example [73, 154, 327, 67, 46, 228]. Defenses against substitute model
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attacks include adversarial training [179], ensemble adversarial training [321], and adversarial

training with single-step R+FGSM attack [348]. Defenses against query attacks attempt to detect

query patterns and stop the attack before it succeeds [74, 188].

2.2.2 Poisoning Attacks and Defenses

A second category of attacks against ML image classification models are poisoning attacks. In

a poisoning attack, an attacker disrupts the training process of Fθ, typically by adding so-called

poison data to the training dataset D. The poison data points are designed to induce an attacker-

chosen behavior in trained model. Possible behaviors range from degraded accuracy/performance

on all or certain inputs to misclassification of specific inputs. Here, we give a brief overview of

two well-known poisoning attacks: backdoor attacks and clean-label poisoning.

Backdoor Attacks and Defenses. An attacker launches backdoor attacks against a DNN model

in two steps. During model training, the attacker poisons the training dataset by adding samples

associating inputs containing a chosen pattern (the trigger δ) with a target label yt [131, 203].

This produces a backdoored model that correctly classifies benign inputs but “misclassifies” any

input containing the trigger δ to the target label yt. At inference time, the attacker activates the

backdoor by adding the trigger δ to any input, forcing the model to classify the input as yt. Over

time, backdoor attacks have evolved to use stealthier triggers and smaller amounts of training

data [197, 189, 367, 275, 192]. Defenses against backdoors employ a wide variety of techniques,

from scanning model classification results to reverse-engineer backdoor triggers and remove them

from the model [338], pruning redundant neurons to remove backdoor triggers [118], or detecting

the presence of poisoning data in the training dataset [66, 323].

Clean Label Poisoning. Clean label poisoning attacks force misclassification of a specific input

by Fθ. Critically, in such an attack, the attacker adds poison data to D that is labelled correctly.

This stands in contrast to traditional backdoor attacks, which rely on label changes in the poisoned

training data to induce the desired behaviors. Note that clean label techniques can be used to
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launch backdoor attacks, so the distinction between these two categories can be murky [284, 287].

Limited defenses against clean label poisoning have been proposed, mostly focusing on detecting

clean label poison data points as outliers in D [252].
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CHAPTER 3

DATA AGENCY VIA DISRUPTION—FAWKES: PROTECTING PRIVACY

AGAINST UNAUTHORIZED DEEP LEARNING MODELS

3.1 Introduction

Today’s proliferation of powerful facial recognition models poses a real threat to personal privacy.

Facial recognition systems scan millions of citizens in both the UK and China without explicit

consent [229, 279]. At many US airports, international travelers must submit to facial recognition

systems in order to enter the country [239]. Perhaps more importantly, anyone with moderate

resources can now canvas the Internet and build highly accurate facial recognition models of us

without our knowledge or awareness, e.g. MegaFace [146]. Perhaps the most egregious example of

this is Clearview.ai, a private company that collected more than 3 billion online photos and trained a

massive model capable of recognizing millions of citizens, without their knowledge or consent [3].

Opportunities for misuse of this technology are numerous and potentially disastrous. Anywhere

we go, we can be identified at any time through street cameras, video doorbells, security cameras,

and personal cellphones. Stalkers can find out our identity and social media profiles with a single

snapshot [295]. Stores can associate our in-store shopping behavior with online ads and browsing

profiles [214]. Identity thieves can identify (and perhaps access) our personal accounts [85].

We believe that private citizens need tools to protect themselves from being identified by unau-

thorized facial recognition models. Such tools could increase individuals’ data agency in the con-

text of facial recognition systems, enabling more fine-grained control over whether their images are

used for face recognition. Unfortunately, previous work in this space is sparse and limited in both

practicality and efficacy. Some have proposed distorting images to make them unrecognizable and

thus avoiding facial recognition [352, 191, 309]. Others produce adversarial patches in the form

of bright patterns printed on sweatshirts or signs, which prevent facial recognition algorithms from

registering their wearer as a person [353, 319]. Finally, given access to an image classification
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model, “clean-label poison attacks” can cause the model to misidentify a single image [284, 382].

Instead, we propose Fawkes, a system that helps individuals to inoculate their images against

unauthorized facial recognition models at any time without significantly distorting their own photos

or wearing conspicuous patches. Fawkes achieves this by helping users adding imperceptible pixel-

level changes (“cloaks”) to their own photos. For example, a user who wants to share photos on

social media or the public web can add small, imperceptible alterations to their photos before

uploading them. If collected by a third-party “tracker” and used to train a facial recognition model

to recognize the user, these “cloaked” images would produce functional models that consistently

misidentify them. Fawkes is a disruptive data agency tool, allowing users to control use of their

data by disrupting downstream machine learning applications.

Our distortion or “cloaking” algorithm takes the user’s photos and computes minimal pertur-

bations that shift them significantly in the feature space of a facial recognition model (using real or

synthetic images of a third party as a landmark). Any facial recognition model trained using these

images of the user learns an altered set of “features” of what makes them look like them. When

presented with a clean, uncloaked image of the user, e.g. photos from a camera phone or streetlight

camera, the model finds no labels associated with the user in the feature space near the image, and

classifies the photo to another label (identity) nearby in the feature space.

Our exploration of Fawkes produces several key findings:

• We can produce significant alterations to images’ feature space representations using per-

turbations imperceptible to the naked eye (DSSIM ≤ 0.007).

• Regardless of how the tracker trains its model (via transfer learning or from scratch), image

cloaking provides 95+% protection against user recognition (adversarial training techniques

help ensure cloaks transfer to tracker models).

• Experiments show 100% success against state-of-the-art facial recognition services from

Microsoft (Azure Face API), Amazon (Rekognition), and Face++. We first “share” our own

(cloaked) photos as training data to each service, then apply the resulting models to uncloaked
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test images of the same person.

• In challenging scenarios where clean, uncloaked images are “leaked” to the tracker and used for

training, we show how a single Sybil identity can boost privacy protection. This results in

80+% success in avoiding identification even when half of the training images are uncloaked.

• Finally, we consider a tracker who is aware of our image cloaking techniques and evaluate the

efficacy of potential countermeasures. We show that image cloaks are robust (maintain high

protection rates against) to a variety of mechanisms for cloak disruption and detection.

3.2 Background and Related Work

To protect user privacy, our image cloaking techniques leverage and extend work broadly defined

as poisoning attacks in machine learning. Here, we set the context by discussing prior efforts

to help users evade facial recognition models. We then discuss relevant data poisoning attacks,

followed by related work on privacy-preserving machine learning and techniques to train facial

recognition models.

Note that to protect user privacy from unauthorized deep learning models, we employ attacks

against ML models. In this scenario, users are the “attackers,” and third-party trackers running

unauthorized tracking are the “targets.”

3.2.1 Protecting Privacy via Evasion Attacks

Privacy advocates have considered the problem of protecting individuals from facial recognition

systems, generally by making images difficult for a facial recognition model to recognize. Some

rely on creating adversarial examples, inputs to the model designed to cause misclassification [312]

(see §2.2.1 for more details). These attacks have since been proven possible “in the wild,” Sharif et

al. [288] create specially printed glasses that cause the wearer to be misidentified. Komkov

and Petiushko [171] showed that carefully computed adversarial stickers on a hat can reduce its

wearer’s likelihood of being recognized. Others propose “adversarial patches” that target “person
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Figure 3.1: Our proposed Fawkes system that protects user privacy by cloaking their online photos. (Left) A
user U applies cloaking algorithm (given a feature extractor Φ and images from some target T ) to generate
cloaked versions of U ’s photos, each with a small perturbation unnoticeable to the human eye. (Right) A
tracker crawls the cloaked images from online sources, and uses them to train an (unauthorized) model to
recognize and track U . When it comes to classifying new (uncloaked) images of U , the tracker’s model
misclassifies them to someone not U . Note that T does not have to exist in the tracker’s model.

identification” models, making it difficult for models to recognize the wearer as a person in an

image [353, 319].

All of these approaches share two limitations. First, they require the user to wear fairly obvious

and conspicuous accessories (hats, glasses, sweaters) that are impractical for normal use. Second,

in order to evade tracking, they require full and unrestricted access (white box access) to the precise

model tracking them. Thus they are easily broken (and user privacy compromised) by any tracker

that updates its model.

Another line of work seeks to edit facial images so that human-like characteristics are preserved

but facial recognition model accuracy is significantly reduced. Methods used include k-means

facial averaging [233], facial inpainting [308], and GAN-based face editing [352, 191, 309]. Since

these dramatically alter the user’s face in photos, they are impractical for protecting shared content.

3.2.2 Protecting Privacy via Poisoning Attacks

An alternative to evading models is to disrupt their training. This approach leverages “data poison-

ing attacks” against deep learning models. These attacks affect deep learning models by modifying

the initial data used to train them, usually by adding a set of samples S and associated labels LS

(see §2.2.2 for more details). Previous work has used data poisoning to induce unexpected behav-
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iors in trained DNNs [360]. In this section, we discuss two data poisoning attacks related to our

work, and identify their key limitations when used to protect user privacy.

Clean Label Attacks. A clean-label poisoning attack injects “correctly” labeled poison images

into training data, causing a model trained on this data to misclassify a specific image of inter-

est [284, 382]. What distinguishes clean-label attacks from normal poisoning attacks is that all

image labels remain unchanged during poisoning—only the content of poisoned images changes.

Fawkes works with similar constraints. Our action to affect or disrupt a model is limited to

altering a group of images with a correct label, i.e. a user can alter her images but cannot claim

these are images of someone else.

Current clean label attacks cannot address the privacy problem because of three factors. First,

they only cause misclassification on a single, preselected image, whereas user privacy protection

requires the misclassification of any current or future image of the protected user (i.e. an entire

model class). Second, clean label attacks do not transfer well to different models, especially models

trained from scratch. Even between models trained on the same data, the attack only transfers with

30% success rate [382]. Third, clean label attacks are easily detectable through anomaly detection

in the feature space [136].

Model Corruption Attacks. Other recent work proposes techniques to modify images such

that they degrade the accuracy of a model trained on them [290]. The goal is to spread these

poisoned images in order to discourage unauthorized data collection and model training. We note

that Fawkes’ goals are to mislead rather than frustrate. Simply corrupting data of a user’s class

may inadvertently inform the tracker of the user’s evasion attempts and lead to more advanced

countermeasures by the tracker. Finally, [290] only has a 50% success rate in protecting a user

from being recognized.

3.2.3 Other Related Work

Privacy-Preserving Machine Learning. Recent work has shown that ML models can memorize
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(and subsequently leak) parts of their training data [301]. This can be exploited to expose private

details about members of the training dataset [114]. These attacks have spurred a push towards

differentially private model training [32], which uses techniques from the field of differential pri-

vacy [105] to protect sensitive characteristics of training data. We note these techniques imply a

trusted model trainer and are ineffective against an unauthorized model trainer.

Feature Extractors & Transfer Learning. Transfer learning uses existing pretrained mod-

els as a basis for quickly training models for customized classification tasks, using less training

data. Today, it is commonly used to deploy complex ML models (e.g. facial recognition or image

segmentation [371]) at reasonable training costs.

In transfer learning, the knowledge of a pre-trained feature extractor Φ is passed on to a new

model Fθ. Typically, a model Fθ can be created by appending a few additional layers to Φ and

only training those new layers. The original layers that composed Φ will remain unmodified. As

such, pre-existing knowledge “learned” by Φ is passed on to the model Fθ and directly influences

its classification outcomes. Finally, transfer learning is most effective when the feature extractor

and model are trained on similar datasets. For example, a facial recognition model trained on faces

extracted from YouTube videos might serve well as a feature extractor for a model designed to

recognize celebrities in magazines.

Finally, the concept of protecting individual privacy against invasive technologies extends be-

yond the image domain. Recent work [76] proposes wearable devices that restore personal agency

using digital jammers to prevent audio eavesdropping by ubiquitous digital home assistants.

3.3 Protecting Privacy via Cloaking

We propose Fawkes, a system designed to help protect the privacy of a user against unauthorized fa-

cial recognition models trained by a third-party tracker on the user’s images. Fawkes achieves this

by adding subtle perturbations (“cloaks”) to the user’s images before sharing them. Facial recogni-

tion models trained on cloaked images will have a distorted view of the user in the “feature space,”
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i.e. the model’s internal understanding of what makes the user unique. Thus the models cannot

recognize real (uncloaked) images of the user, and instead, misclassify them as someone else.

In this section, we first describe the threat model and assumptions for both users and trackers.

We then present the intuition behind cloaking and our methodology to generate cloaks. Finally, we

discuss why cloaking by individuals is effective against unauthorized facial recognition models.

3.3.1 Assumptions and Threat Model

User. The user’s goal is to share their photos online without unknowingly helping third party

trackers build facial recognition models that can recognize them. Users protect themselves by

adding imperceptible perturbations (“cloaks”) to their photos before sharing them. This is illus-

trated in the left part of Figure 3.1. The design goals for these cloaks are:

• cloaks should be imperceptible and not impact normal use of the image;

• when classifying normal, uncloaked images, models trained on cloaked images should recognize

the underlying person with low accuracy.

We assume the user has access to moderate computing resources (e.g., a personal laptop) and ap-

plies cloaking to their own images locally. We also assume the user has access to a feature extractor,

e.g. a generic face recognition model, represented as Φ in Figure 3.1. Cloaking is simplified if the

user has the same Φ as the tracker. We begin with this common assumption (also used by prior

work [339, 284, 382]), since only a few large-scale face recognition models are available in the

wild. In §3.3.4, we relax this assumption and show how our design maintains the above properties.

We initially consider the case where the user can cloak all their photos to be shared, thus the

tracker can only collect cloaked photos of the user. Later in §3.7, we explore a scenario where a

stronger tracker has obtained access to some number of the user’s uncloaked images.

Tracker/Model Trainer. We assume that the tracker (the entity training unauthorized models) is a

third party without direct access to user’s personal photos (i.e. not Facebook or Flickr). The tracker

could be a company like Clearview.ai, a government entity, or even an individual. The tracker has
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significant computational resources. They can either use transfer learning to simplify their model

training process (leveraging existing feature extractors), or train their model from scratch.

We also assume the tracker’s primary goal is to build a powerful model to track many users

rather than targeting a single specific person1. The tracker’s primary data source is a collection of

public images of users obtained via web scraping. We also consider scenarios where they are able

to obtain some number of uncloaked images from other sources (§3.7).

Real World Limitations. Privacy benefits of Fawkes rely on users applying our cloaking tech-

nique to the majority of images of their likeness before posting online. In practice, however, users

are unlikely to control all images of themselves, such as photos shared online by friends and fam-

ily, media, employer or government websites. While it is unclear how easy or challenging it will

be for trackers to associate these images with the identity of the user, a tracker who obtains a large

number of uncloaked images of the user can compromise the effectiveness of Fawkes.

Therefore, Fawkes is most effective when used in conjunction with other privacy-enhancing

steps that minimize the online availability of a user’s uncloaked images. For example, users can

curate their social media presence and remove tags of their names applied to group photos on

Facebook or Instagram. Users can also leverage privacy laws such as the “Right to be Forgotten”

to remove and untag online content related to themselves. The online curation of personal images

is a challenging problem, and we leave efforts minimizing online image footprints as future work.

3.3.2 Overview and Intuition

DNN models are trained to identify and extract (often hidden) features in input data and use them

to perform classification. Yet their ability to identify features is easily disrupted by data poisoning

attacks during model training, where small perturbations on training data with a particular label (l)

can shift the model’s view of what features uniquely identify l [284, 382]. Our work leverages this

1. Tracking a specific person can be easily accomplished through easier, offline methods, e.g. a private investigator
who follows the target user, and is beyond the scope of our work.
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property to cause misclassification of any existing or future image of a single class, providing one

solution to the challenging problem of protecting personal privacy against the unchecked spread of

facial recognition models.

Intuitively, our goal is to protect a user’s privacy by modifying their photos in small and im-

perceptible ways before posting them online, such that a facial recognition model trained on them

learns the wrong features about what makes the user look like the user. The model thinks it is

successful, because it correctly recognizes its sample of (modified) images of the user. However,

when unaltered images of the user, e.g. from a surveillance video, are fed into the model, the

model does not detect the features it associates with the user. Instead, it identifies someone else as

the person in the video. By simply modifying their online photos, the user successfully prevents

unauthorized trackers and their DNN models from recognizing their true face.

3.3.3 Computing Cloak Perturbations

But how do we determine what perturbations (we call them “cloaks”) to apply to Alice’s photos?

An effective cloak would teach a face recognition model to associate Alice with erroneous features

that are quite different from real features defining Alice. Intuitively, the more dissimilar these

erroneous features are from the real Alice, the less likely the model will be able to recognize her.

In the following, we describe our methodology for computing cloaks for each specific user,

with the goal of making the features learned from cloaked photos highly dissimilar from those

learned from original (uncloaked) photos.

Notation. Our discussion will use the following notations.

• x: Alice’s image (uncloaked)

• xT : target image (image from another class/user T ) used to generate cloak for Alice

• δ(x, xT ): cloak computed for Alice’s image x based on an image xT from label T

• x⊕ δ(x, xT ): cloaked version of Alice’s image x

• Φ: Feature extractor used by facial recognition model
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• Φ(x): Feature vector (or feature representation) extracted from an input x

Cloaking to Maximize Feature Deviation. Given each photo (x) of Alice to be shared online,

our ideal cloaking design modifies x by adding a cloak perturbation δ(x, xT ) to x that maximize

changes in x’s feature representation:

maxδDist (Φ(x),Φ(x⊕ δ(x, xT ))) , (3.1)

subject to |δ(x, xT )| < ρ,

where Dist(.) computes the distance of two feature vectors, |δ| measures the perceptual perturba-

tion caused by cloaking, and ρ is the perceptual perturbation budget.

To guide the search for the cloak perturbation in eq (3.1), we use another image xT from a

different user class (T ). Since the feature space Φ is highly complex, xT serves as a landmark,

enabling fast and efficient search for the input perturbation that leads to large changes in feature

representation. Ideally, T should be very dissimilar from Alice in the feature space. We illustrate

this in Figure 3.1, where we use Patrick Dempsey (a male actress) as a dissimilar target T for the

original user (female actor Gwyneth Paltrow).

We note that our design does not assume that the cloak target (T ) and the associated xT are

used by any tracker’s face recognition model. In fact, any user whose feature representation is

sufficiently different from Alice’s would suffice (see §3.3.4). Alice can easily check for such

dissimilarity by running the feature extractor Φ on other users’ online photos. Later in §3.4 we will

present the detailed algorithm for choosing the target user T from public datasets of facial images.

Image-specific Cloaking. When creating cloaks for her photos, Alice will produce image-

specific cloaks, i.e. δ(x, xT ) is image dependent. Specifically, Alice will pair each original image

xwith a target image xT of class T . In our current implementation, the search for δ(x, xT ) replaces
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the ideal optimization defined by eq. (3.1) with the following optimization:

minδDist (Φ(xT ),Φ(x⊕ δ(x, xT ))) , (3.2)

subject to |δ(x, xT )| < ρ.

Here we search for the cloak for x that shifts its feature representation closely towards xT . This

new form of optimization also prevents the system from generating extreme Φ(x⊕δ(x, xT )) values

that can be easily detected by trackers using anomaly detection.

Finally, our image-specific cloak optimization will create different cloak patterns among Al-

ice’s images. This “diversity” makes it hard for trackers to detect and remove cloaks.

3.3.4 Cloaking Effectiveness & Transferability

Now a user (Alice) can produce cloaked images whose feature representation is dissimilar from

her own but similar to that of a target user T . But does this translate into the desired misclassifi-

cation behavior in the tracker model? Clearly, if T is a class in the tracker model, Alice’s original

(uncloaked) images will not be classified as Alice. But under the more likely scenario where T is

not in the tracker model, does cloaking still lead to misclassification?

We believe the answer is yes. Our hypothesis is that as long as the feature representations

of Alice’s cloaked and uncloaked images are sufficiently different, the tracker’s model will not

classify them as the same class. This is because there will be another user class (e.g. B) in the

tracker model, whose feature representation is more similar to Φ(x) (true Alice) than Φ(x ⊕ δ)

(Alice learned by the model). Thus, the model will classify Alice’s normal images as B.

We illustrate this in Figure 3.2 using a simplified 2D visualization of the feature space. There

are 4 classes (A, B, U aka Alice, and T ) that a tracker wishes to distinguish. The two figures

show the tracker model’s decision boundary when U ’s training data is uncloaked and cloaked,

respectively. In Figure 3.2(a), the model will learn U ’s true feature representation as the bottom
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Figure 3.2: The intuition for why a tracker’s model trained on U ’s cloaked photos will misclassify U ’s
original photos, visualized on a simplified 2D feature space with four user classes A, B, U (aka Alice),
T . (a) decision boundaries of the model trained on U ’s uncloaked photos. (b) decision boundaries when
trained on U ’s cloaked photos (with target T ).

right corner. In Figure 3.2(b), U uses T as the cloak target, and the resulting tracker model will

learnU ’s feature representation Φ(x⊕δ) as green triangles near T (top left corner). This means that

the area corresponding to U ’s original feature representation Φ(x) will be classified as B. More

importantly, this (mis)classification will occur whether or not T is a class in the tracker’s model.

This discussion assumes the tracker’s model contains a class whose feature representation is

more similar to the user’s original feature representation than her cloaked feature representation.

This is a reasonable assumption when the tracker’s model targets many users (e.g. 1,000) rather

than a few users (e.g. 2). Later in §3.5 we confirm that cloaking is highly effective against multiple

facial recognition models with anywhere from 65 to 10,575 classes.

Transferability. Our above discussion also assumes that the user has the same feature extractor

Φ as is used to train the tracker model. Under the more general scenario, the effectiveness of

cloaking against any tracker models relies on the transferability effect, the property that models

trained for similar tasks share similar properties and vulnerabilities, even when they were trained

on different architectures and different training data [90, 242, 306, 371].

This transferability property suggests that cloaking should still be effective even if the tracker

performs transfer learning using a different feature extractor or trains their model from scratch.

Because the user’s and tracker’s feature extractors/models are designed for similar tasks (i.e. facial

recognition), cloaks should be effective regardless of the tracker’s training method. Later, we em-
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pirically evaluate cloaking success rate when trackers use different feature extractors (§3.5.3) or

train models from scratch (§3.5.4). In all scenarios, cloaking is effective (> 95% protection rate).

3.4 The Fawkes Image Cloaking System

We now present the detailed design of Fawkes, a practical image cloaking system that allows users

to evade identification by unauthorized facial recognition models. Fawkes uses three steps to help

a user modify and publish her online photos.

Given a user U , Fawkes takes as input the set of U ’s photos to be shared online XU, the

(generic) feature extractor Φ, and the cloak perturbation budget ρ.

Step 1: Choosing a Target Class T . First, Fawkes examines a publicly available dataset that

contains numerous groups of images, each identified with a specific class label, e.g. Bob, Carl,

Diana. Fawkes randomly picksK candidate target classes and their images from this public dataset

and uses the feature extractor Φ to calculate Ck, the centroid of the feature space for each class

k = 1..K. Fawkes picks as the target class T the class in the K candidate set whose feature

representation centroid is most dissimilar from the feature representations of all images in XU, i.e.

T = argmax
k=1..K

min
x∈XU

Dist(Φ(x), Ck). (3.3)

We use L2 as the distance function in feature space, Dist(.).

Step 2: Computing Per-image Cloaks. Let XT represent the set of target images available to

user U . For each image of user U , x ∈ XU, Fawkes randomly picks an image xT ∈ XT, and

computes a cloak δ(x, xT ) for x, following the optimization of eq. (3.2), subject to |δ(x, xT )| < ρ.

In our implementation, |δ(x, xT )| is calculated using the DSSIM (Structural Dis-Similarity

Index) [343, 344]. Different from the Lp distance used in previous work [63, 178, 286], DSSIM

has gained popularity as a measure of user-perceived image distortion [339, 161, 194]. Bounding

cloak generation with this metric ensures that cloaked images are visually similar to the originals.
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Teacher Dataset Model Architecture Abbreviation Teacher Testing
Accuracy

Student Testing Accuracy

PubFig FaceScrub

WebFace InceptionResNet Web-Incept 74% 96% 92%
WebFace DenseNet Web-Dense 76% 96% 94%
VGGFace2 InceptionResNet VGG2-Incept 81% 95% 90%
VGGFace2 DenseNet VGG2-Dense 82% 96% 92%

Table 3.1: The four feature extractors used in our evaluation, their classification efficacy and those of their
student models.

We apply the penalty method [237] to solve the optimization in eq.(3.2) as follows:

min
δ
Dist (Φ(xT ),Φ(x⊕ δ(x, xT ))) + λ ·max(|δ(x, xT )| − ρ, 0)

Here λ controls the impact of the input perturbation caused by cloaking. When λ→∞, the cloaked

image is visually identical to the original image. Finally, to ensure the input pixel intensity remains

in the correct range ([0, 255]), we transform the intensity values into tanh space as proposed in

previous work [63].

Step 3: Limiting Content. Now the user U has created the set of cloaked images that she can

post and share online. However, the user must be careful to ensure that no uncloaked images are

shared online and associated with her identity. Any images shared by friends and labeled or tagged

with her name would provide uncloaked training data for a tracker model. Fortunately, a user can

proactively “untag” herself on most photo sharing sites.

Even so, a third party might be able to restore those labels and re-identify her in those photos

using friendlist intersection attacks [347]. Thus, in §3.7, we expand the design of Fawkes to address

trackers who are able to obtain uncloaked images in addition to cloaked images of the user.

3.5 System Evaluation

In this section, we evaluate the effectiveness of Fawkes. We first describe the datasets, models,

and experimental configurations used in our tests. We then present results for cloaking in three
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Dataset # of Labels Input Size # of Training Images

PubFig 65 224× 224× 3 5, 850
FaceScrub 344 224× 224× 3 37, 905
WebFace 10, 575 224× 224× 3 475, 137
VGGFace2 8, 631 224× 224× 3 3, 141, 890

Table 3.2: Datasets emulating user images in experiments.

different scenarios: 1) the user produces cloaks using the same feature extractor as the tracker; 2)

the user and tracker use different feature extractors; and 3) the tracker trains models from scratch

(no feature extractor).

Our key findings are: cloaking is highly effective when users share a feature extractor with the

tracker; efficacy could drop when feature extractors are different, but can be restored to near perfec-

tion by making the user’s feature extractor robust (via adversarial training); and, similarly, cloaks

generated on robust feature extractors work well even when trackers train models from scratch.

3.5.1 Experiment Setup

Our experiments require two components. First, we need feature extractors that form the basis of

facial recognition models for both the user’s cloaking purposes and the tracker’s model training.

Second, we need datasets that emulate a set of user images scraped by the tracker and enable us to

evaluate the impact of cloaking.

Feature Extractors. There are few publically available, large-scale facial recognition models.

Thus we train feature extractors using two large (≥ 500K images) datasets on different model

architectures (details in Table 3.2).

• VGGFace2 contains 3.14M images of 8, 631 subjects downloaded from Google Image Search [56].

• WebFace has 500, 000 images of faces covering roughly 10, 000 subjects from the Internet [369].

Using these two datasets, we build four feature extractors, two from each. We use two different

model architectures: a) DenseNet-121 [150], a 121 layer neural network with 7M parameters,
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and b) InceptionResNet V2 [311], a 572 layer deep neural network with over 54M parameters.

Our trained models have comparable accuracy with previous work [56, 339, 232] and perform

well in transfer learning scenarios. For clarity, we abbreviate feature extractors based on their

dataset/architecture pair. Table 3.1 lists the classification accuracy for our feature extractors and

student models.

Tracker’s Training Datasets. Under the scenario where the tracker trains its facial recognition

model from scratch (§3.5.4), we assume they will use the above two large datasets (VGGFace2,

WebFace). Under the scenario where they apply transfer learning (§3.5.2 and §3.5.3), the tracker

uses the following two smaller datasets (more details in Table 3.2).

• PubFig contains 5, 850 training images and 650 testing images of 65 public figures2 [9].

• FaceScrub contains 100, 000 images of 530 public figures on the Internet [234]3.

To perform transfer learning, the tracker adds a softmax layer at the end of the feature extractor

(see §3.2.3), and fine-tunes the added layer using the above dataset.

Cloaking Configuration. In our experiments, we randomly choose a user class U in the tracker’s

model, e.g. a random user in PubFig, to be the user seeking protection. We then apply the target

selection algorithm described in §3.4 to select a target class T from a small subset of users in

VGGFace2 and WebFace. Here we ensure that T is not a user class in the tracker’s model.

For each given U and T pair, we pair each image x of U with an image xT from T , and compute

the cloak for x. For this we run the Adam optimizer for 1000 iterations with a learning rate of 0.5.

As discussed earlier, we evaluate our cloaking under three scenarios, U and tracker model

sharing the same feature extractor (§3.5.2), the two using different feature extractors (§3.5.3), and

the tracker training model from scratch without using any pre-defined feature extractor (§3.5.4).

Evaluation Metrics. In each scenario, we evaluate cloak performance using two metrics: protec-

tion success rate, which is the tracker model’s misclassification rate for clean (uncloaked) images

2. We exclude 18 celebrities also used in the feature extractor datasets.

3. We could only download 60, 882 images for 530 people, as some URLs were removed. Similarly, prior
work [366] only retrieved 48, 579 images.
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Figure 3.5: 2-D PCA visualization of VGG2-Dense feature space
representations of user images (sampled from FaceScrub) be-
fore/after cloaking. Triangles are user’s images, red crosses are target
images, grey dots are images from another class.
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budget increases. (User/Tracker:
Web-Incept)

of U , and normal accuracy, which is the overall classification accuracy of the tracker’s model on

users beside U . When needed, we indicate the configuration of user/tracker feature extractors using

the notation entity:feature extractor.

3.5.2 User/Tracker Sharing a Feature Extractor

We start from the simple case where the user uses the same feature extractor as the tracker to

generate cloaks. We randomly select a label from PubFig or FaceScrub to be the Fawkes user

U . We then compute “cloaks” for a subset of U ’s images, using each of the four feature extractors

in Table 3.1. On the tracker side, we perform transfer learning on the same feature extractor (with

cloaked images of U ) to build a model that recognizes U . Finally, we evaluate whether the tracker

model can correctly identify other clean images of U it has not seen before.

Results show that cloaking offers perfect protection, i.e. U is always misclassified as someone

else, for all four feature extractors and under the perturbation budget ρ = 0.007. To explore the im-
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pact of ρ, Figure 3.6 plots protection success rate vs. ρ when the tracker runs on the FaceScrub

dataset. Fawkes achieves 100% protection success rate when ρ > 0.005. Figure 3.7 shows origi-

nal and cloaked images, demonstrating that cloaking does not visually distort the original image.

Even when ρ = 0.007, the perturbation is barely detectable by the naked eye on a full size, color

image. For calibration, note that prior work [194] claims much higher DSSIM values (up to 0.2)

are imperceptible to the human eye. Finally, the average L2 norm of our cloaks is 5.44, which is

smaller than that of perturbations used in prior works [339, 201].

Feature Space Deviation. The goal of a cloak is to change the image’s feature space repre-

sentation in the tracker’s model. To examine the effect of the cloak in the tracker model, we

visualize feature space representations of user images before and after cloaking, their chosen tar-

get images, and a randomly chosen class from the tracker’s dataset. We use principal components

analysis (PCA, a common dimensionality reduction technique) to reduce the high dimensional fea-

ture space to 2 dimensions. Figure 3.5 shows the PCA results for cloaked images from a PubFig

class, using cloaks constructed on the Web-Incept feature extractor. Figure 3.5(a) shows the

feature space positions of the original and target images before cloaking, along with a randomly

selected class. Figure 3.5(b) shows the updated feature space after the original images have been

cloaked. It is clear that feature space representations of the cloaked images are well-aligned with

those of the target images, validating our intuition for cloaking (an abstract view in Figure 3.2).

Impact of Label Density. As discussed in §3.3, the number of labels present in the tracker’s

model impacts performance. When the tracker targets fewer labels, the feature space is “sparser,”

and there is a greater chance the model continues to associate the original feature space (along with

the cloaked feature space) with the user’s label. We empirically evaluate the impact of fewer labels

on cloaking success using the PubFig and FaceScrub datasets (65 and 530 labels, respectively).

We randomly sample N labels (varying N from 2 to 10) to construct a model with fewer labels.

Figure 3.8 shows that for PubFig, cloaking success rate grows from 68% for 2 labels to > 99%

for more than 6 labels, confirming that a higher label density improves cloaking effectiveness.
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Original Cloaked Original Cloaked Original Cloaked

Figure 3.7: Pairs of original and cloaked images (ρ = 0.007).

User’s Robust
Feature

Extractor

Model Trainer’s Feature Extractor

VGG2-Incept VGG2-Dense Web-Incept Web-Dense

PubFig FaceScrub PubFig FaceScrub PubFig FaceScrub PubFig FaceScrub

VGG2-Incept 100% 100% 100% 100% 95% 100% 100% 100%
VGG2-Dense 100% 100% 100% 100% 100% 100% 100% 100%
Web-Incept 100% 100% 100% 100% 100% 100% 99% 99%
Web-Dense 100% 100% 100% 100% 100% 97% 100% 96%

Table 3.3: Protection performance of cloaks generated on robust feature extractors.

3.5.3 User/Tracker Using Different Feature Extractors

We now consider the scenario when the user and tracker use different feature extractors to perform

their tasks. While the model transferability property suggests that there are significant similarities

in their respective model feature spaces (since both are trained to recognize faces), their differences

could still reduce the efficacy of cloaking. Cloaks that shift image features significantly in one

feature extractor may produce a much smaller shift in a different feature extractor.

To illustrate this, we empirically inspect the change in feature representation between two

different feature extractors. We take the cloaked images (optimized using VGG2-Dense), original

images, and target images from the PubFig dataset and calculate their feature representations in

a different feature extractor, Web-Incept. The result is visualized using two dimensional PCA

and shown in Figure 3.9. From the PCA visualization, the reduction in cloak effectiveness is

obvious. In the tracker’s feature extractor, the cloak “moves” the original image features only

slightly towards the target image features (compared to Figure 3.5(b)).

Robust Feature Extractors Boost Transferability. To address the problem of cloak transfer-
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ability, we draw on recent work linking model robustness and transferability. Demontis et al. [90]

argue that an input perturbation’s (in our case, cloak’s) ability to transfer between models depends

on the “robustness” of the feature extractor used to create it. They show that more “robust” models

are less reactive to small perturbations on inputs. Furthermore, they claim that perturbations (or,

again, cloaks) generated on more robust models will take on “universal” characteristics that are

able to effectively fool other models.

Following this intuition, we propose to improve cloak transferability by increasing the user

feature extractor’s robustness. This is done by applying adversarial training [211, 129], which

trains the model on perturbed data to make it less sensitive to similar small perturbations on in-

puts. Specifically, for each feature extractor, we generate adversarial examples using the PGD

attack [178], a widely used method for adversarial training. Following prior work [211], we run

the PGD4 algorithm for 100 steps using a step size of 0.01. We train each feature extractor for an

additional 10 epochs. These updated feature extractors are then used to generate user cloaks on the

PubFig and FaceScrub datasets.

Results in Table 3.3 show that each robust feature extractor produces cloaks that transfer almost

perfectly to the tracker’s models. Cloaks now have protection success rates > 95% when the

tracker uses a different feature extractor. We visualize their feature representation using PCA in

Figure 3.10 and see that, indeed, cloaks generated on robust extractors transfer better than cloaks

computed on normal ones.

3.5.4 Tracker Models Trained from Scratch

Finally, we consider the scenario in which a powerful tracker trains their model from scratch.

We select the user U to be a label inside the WebFace dataset. We generate cloaks on user

images using the robust VGG2-Incept feature extractor from §3.5.3. The tracker then uses the

WebFace dataset (but U ’s cloaked images) to train their model from scratch. Again our cloaks

4. We found that robust models trained on CW attack samples [63] produce similar results
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achieve a success rate of 100%. Other combinations of labels and user-side feature generators all

have 100% protection success.

3.6 Image Cloaking in the Wild

Our results thus far have focused on limited configurations, including publicly available datasets

and known model architectures. Now, we wish to understand the performance of Fawkes on de-

ployed facial recognition systems in the wild.

We evaluate the real-world effectiveness of image cloaking by applying Fawkes to photos of

one of the co-authors. We then intentionally leak a portion of these cloaked photos to public

cloud-based services that perform facial recognition, including Microsoft Azure Face [2], Amazon

Rekognition [1], and Face++ [11]. These are the global leaders in facial recognition and their

services are used by businesses, police, private entities, and governments in the US and Asia.

3.6.1 Experimental Setup

We manually collected 82 high-quality pictures of a co-author that feature a wide range of lighting

conditions, poses, and facial expressions. We separate the images into two subsets, one set of

50 images for “training” and one set of 32 images for “testing.” We generate both normal and

robust cloaks for the “training” images using the setup discussed in Section 3.5 (using normal and
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Face
Recognition

API

Protection Success Rate

Without
protection

Protected by
normal cloak

Protected by
robust cloak

Microsoft Azure
Face API 0% 100% 100%

Amazon Rekognition
Face Verification 0% 34% 100%

Face++
Face Search API 0% 0% 100%

Table 3.4: Cloaking is highly effective against cloud-based face recognition APIs (Microsoft, Amazon and
Face++).

robust versions of the Web-Incept feature extractor). This allows us to compare the relative

effectiveness of normal and robust user feature extractors in real life.

For each API service, we experiment with three scenarios:

• Unprotected: We upload original training images, and test the model’s classification accuracy

on testing images.

• Normal Cloak: We upload training images protected by a nonrobust cloak and then test the

model’s classification accuracy on the testing images.

• Robust Cloak: We upload training images protected by a robust cloak and test the model’s

classification accuracy on the testing images.

For each scenario, we use the online service APIs to upload training images to the API database,

and then query the APIs using the uncloaked testing images. The reported protection success rate

is the proportion of uncloaked test images that the API fails to correctly identify as our co-author.

3.6.2 Real World Protection Performance

Microsoft Azure Face API. Microsoft Azure Face API [2] is part of Microsoft Cognitive Ser-

vices, and is reportedly used by many large corporations including Uber and Jet.com. The API

provides face recognition services. A client uploads training images of faces, and Microsoft trains
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a model to recognize these faces. The API has a “training” endpoint that must be called before the

model will recognize faces, which leads us to believe that Microsoft uses transfer learning to train

a model on user-submitted images.

Our normal cloaking method is 100% effective against the Microsoft Azure Face API. Our

robust cloaks also provide 100% protection against the Azure Face API. Detailed protection results

are shown in Table 3.4.

Amazon Rekognition Face Verification. Amazon Rekognition [1] provides facial search

services that the client can use to detect, analyze, and compare faces. The API is used by various

large corporations including the NFL, CBS, and National Geographic, as well as law enforcement

agencies in Florida and Oregon, and U.S. Immigration and Customs Enforcement (ICE).

It is important to note that Amazon Rekognition does not specifically train a neural network to

classify queried images. Instead, it computes an image similarity score between the queried image

and the ground truth images for all labels. If the similarity score exceeds a threshold for some

label, Amazon returns a match. Our cloaking technique is not designed to fool a tracker who uses

similarity matching. However, we believe our cloaking technique should still be effective against

Amazon Rekognition, since cloaks create a feature space separation between original and cloaked

images that should result in low similarity scores between them.

Table 3.4 shows that our normal cloaks only achieve a protection success rate of 34%. However,

our robust cloaks again achieve a 100% protection success rate.

Face++. Face++ [11] is a well-known face recognition system developed in China that claims to

be extremely robust against a variety of attacks (i.e. adversarial masks, makeup, etc.). Due to its

high performance and perceived robustness, Face++ is widely used by financial services providers

and other security-sensitive customers. Notably, Alipay uses Face++’s services to authenticate

users before processing payments. Lenovo also uses Face++ services to perform face-based au-

thentication for laptop users.

Our results show that normal cloaking is completely ineffective against Face++ (0% protection
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success rate; see Table 3.4). This indicates that their model is indeed extremely robust against

input perturbations. However, as before, our robust cloaks achieve a 100% success rate.

Summary. Microsoft Azure Face API, Amazon Rekognition and Face++ represent three of

the most popular and widely deployed facial recognition services today. The success of Fawkes

cloaking techniques suggests our approach is realistic and practical against production systems.

While we expect these systems to continue improving, we expect cloaking techniques to similarly

evolve over time to keep pace.

3.7 Trackers with Uncloaked Image Access

Thus far we have assumed that the tracker only has access to cloaked images of a user, i.e. the user

is perfect in applying her cloaking protection to her image content, and disassociating her identity

from images posted online by friends. In real life, however, this may be too strong an assumption.

Users make mistakes, and unauthorized labeled images of the user can be taken and published

online by third parties such as newspapers and websites.

In this section, we consider the possibility of the tracker obtaining leaked, uncloaked images of

a target user, e.g. Alice. We first evaluate the impact of adding these images to the tracker’s model

training data. We then consider possible mechanisms to mitigate this impact by leveraging the use

of limited sybil identities online.

3.7.1 Impact of Uncloaked Images

Intuitively, a tracker with access to some labeled, uncloaked images of a user has a much greater

chance of training a model M that successfully recognizes clean images of that user. Training

a model with both cloaked and uncloaked user images means the model will observe a much

larger spread of features all designated as the user. Depending on how M is trained and the pres-

ence/density of other labels, it can a) classify both regions of features as the user; b) classify both

regions and the region between them as the user; or c) ignore these feature dimensions and identify
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the user using some alternative features (e.g. other facial features) that connect both uncloaked and

cloaked versions of the user’s images.

We assume the tracker cannot visually distinguish between cloaked and uncloaked images and

trains their model on both. We quantify the impact of training with uncloaked images using a

simple test with cloaks generated from §3.5.2 and a model trained on both cloaked and uncloaked

images. Figure 3.12 shows the drop in protection success for FaceScrub dataset as the ratio of

uncloaked images in the training dataset increases. The protection success rate drops below 39%

when more than 15% of the user’s images are uncloaked.

Next, we consider proactive mitigation strategies against leaked images. The most direct so-

lution is to intentionally release more cloaked images, effectively flooding a potential tracker’s

training set with cloaked images to dominate any leaked uncloaked images. In addition, we con-

sider the use of a cooperating secondary identity (more details below). For simplicity, we assume

that: trackers have access to a small number of a user’s uncloaked images; the user is unaware of

the contents of the uncloaked images obtained by the tracker; and users know the feature extractor

used by the tracker.

3.7.2 Sybil Accounts

In addition to proactive flooding of cloaked images, we explore the use of cooperative Sybil ac-

counts to induce model misclassification. A Sybil account is a separate account controlled by the

user that exists in the same Internet community (i.e. Facebook, Flickr) as the original account.

Sybils already exist in numerous online communities [365], and are often used by real users to

curate and compartmentalize content for different audiences [185]. While there are numerous

techniques for Sybil detection, individual Sybil accounts are difficult to identify or remove [341].

In our case, we propose that privacy-conscious users create a secondary identity, preferably not

connected to their main identity in the metadata or access patterns. Its content can be extracted

from public sources, from a friend, or even generated artificially via generative adversarial net-
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works (GANs) [224]. Fawkes modifies Sybil images (in a manner similar to cloaking) to provide

additional protection for the user’s original images. Since Sybil and user images reside in the

same communities, we expect trackers will collect both. While there are powerful re-identification

techniques that could be used to associate the Sybil back to the original user, we assume they are

impractical for the tracker to apply at scale to its population of tracked users.

Sybil Intuition. To bolster cloaking effectiveness, the user modifies Sybil images so they occupy

the same feature space as a user’s uncloaked images. These Sybil images help confuse a model

trained on both Sybil images and uncloaked/cloaked images of a user, increasing the protection

success rate. Figure 3.11 shows the high level intuition. Without Sybil images, models trained on a

small portion of uncloaked (leaked) images would easily associate test images of the user with the

user’s true label (left side). Because the leaked uncloaked images and Sybil images have similar

feature space representations, but are labeled differently (i.e. “ User 1” and “User 2”), the tracker

model must create additional decision boundaries in the feature space (right side). These decrease

the likelihood of associating the user with her original feature space.

For simplicity, we explore the base case where the user is able to obtain one single Sybil

identity to perform feature space obfuscation on her behalf. Our technique becomes even more

effective with multiple Sybils, but provides much of its benefit with images labeled with a single

Sybil identity.

Creating Sybil images. Sybil images are created by adding a specially designed cloak to a set

of candidate images. Let xC be an image from the set of candidates the user obtains (i.e. images

generated by a GAN) to populate the Sybil account. To create the final Sybil image, we create a

cloak δ(xC , x) that minimizes the feature space separation between xC and user’s original image

x, for each candidate. The optimization is equivalent to setting x as the target and optimizing to

create xC ⊕ δ(xC , x) as discussed in §3.4. After choosing the final xc from all the candidates, a

ready-to-upload Sybil image xS = xC ⊕ δ(xC , x).
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Figure 3.11: Intuition behind Sybil integration visualized in a 2D feature space. Without Sybils, a tracker’s
model will use leaked training images of U to learn U ’s true feature space (left), leading to the correct
classification of images of U . Sybil images S complicate the model’s decision boundary and cause misclas-
sification of U ’s images, even when leaked images of U are present (right).
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3.7.3 Efficacy of Sybil Images

Sybil accounts can increase a user’s protection success rate when the tracker controls a small num-

ber of a user’s uncloaked images. To experimentally validate this claim, we choose a label from the

tracker’s dataset to be the Sybil account (controlled by the user), and split the user’s images into

two disjoint sets: A contains images that were processed by Fawkes, and whose cloaked versions

have been shared online; and B contains original images leaked to the tracker. For each synthetic

image of the Sybil, we randomly select an uncloaked image of the user in set A. We select one

Sybil image per uncloaked image in A. Then, we cloak all the candidate images using the method-

ology discussed in §3.4. The resulting Sybil images mimic the feature space representation of

uncloaked user images. From the tracker’s perspective, they have access to cloaked user images

from set A, uncloaked images from set B, and the Sybil images.
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Figure 3.13 compares the protection success rate with and without Sybil accounts (with Web-Incept

as user’s and tracker’s feature extractor). The use of a Sybil account significantly improves the pro-

tection success rate when an attacker has a small number of original images. The protection success

rate remains above 87% when less than 31% of the tracker’s images of the user are uncloaked.

As discussed, a user can create as many Sybil images as they desire. When the user uploads

more Sybil images, the protection success rate increases. Figure 3.13 shows that when the user has

uploaded 2 Sybil images per uncloaked image, the protection success rate increases by 5.5%.

Jointly Optimize Multiple Feature Extractors. The user may not know the tracker’s exact

feature extractor. However, given the small number of face feature extractors available online, she

is likely to know that the tracker would use one of several candidate feature extractors. Thus, she

could jointly optimize the Sybil cloaks to simultaneously fool all the candidate feature extractors.

We test this in a simple experiment by jointly optimizing Sybil cloaks on the four feature

extractors from §3.5. We evaluate the cloak’s performance when the tracker uses one of the four.

Figure 3.14 shows the Sybil effectiveness averaged across the 4 feature extractors. The average

protection success rate remains above 65% when the ratio of the original images owned by the

tracker is less than 31%.

3.8 Countermeasures

In this section, we explore potential countermeasures a tracker could employ to reduce the effec-

tiveness of image cloaking. We consider and (where possible) empirically validate methods to

remove cloaks from images, as well as techniques to detect the presence of cloak perturbations

on images. Our experiments make the strongest possible assumption about the tracker: that they

know the precise feature extractor a user used to optimize cloaks. We test our countermeasures

on a tracker’s model trained on the FaceScrub dataset. Cloaks were generated using the same

robust VGG2-Dense feature extractor from §3.5.3.
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blurring increases but protection
success rate remains high.
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Inherent Limits on Cloaking Success. We acknowledge that cloaking becomes less effective

when an individual is an active target of a tracker. If a tracker strongly desires to train a model that

recognizes a certain individual, they can take drastic measures that cloaking cannot withstand. For

example, a tracker could learn their movements or invade their privacy (i.e. learn where they live)

by following them physically.

3.8.1 Cloak Disruption

Without knowing which images in the dataset are cloaked, the tracker may utilize the following

techniques to disrupt Fawkes’ protection performance, 1) transforming images or 2) deploying an

extremely robust model. We present and evaluate Fawkes’s performance against these two potential

countermeasures.

Image Transformation. A simple technique to mitigate the impact of small image perturba-

tions is to transform images in the training dataset before using them for model training [63, 110].

These transformations include image augmentation, blurring, or adding noise. Additionally, im-

ages posted online are frequently compressed before sharing (i.e. in the upload process), which

could impact cloak efficacy.
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Figure 3.18: When the user’s feature extractor is much less robust than the tracker’s feature extractor, the
user can improve their protection success rate by increasing their DSSIM budget. (User: VGG2-Dense,
Tracker: Web-Incept)

However, we find that none of these transformations defeat our cloaks. The protection suc-

cess rate remains 100% even when data augmentation is applied to cloaked images 5. Applying

Gaussian blurring degrades normal accuracy by up to 18% (as kernel size increases) while cloak

protection success rate remains> 98% (see Figure 3.15). Adding Gaussian noise to images merely

disrupts normal classification accuracy – the cloak protection success rate remains above 100% as

the standard deviation of the noise distribution increases (see Figure 3.16). Even image compres-

sion cannot defeat our cloak. We use progressive JPEG [337], reportedly used by Facebook and

Twitter, to compress the images in our dataset. The image quality, as standard by Independent

JPEG Group [12], ranges from 5 to 95 (lower value = higher compression). As shown in Fig-

ure 3.17, image compression decreases the protection success rate, but more significantly degrades

normal classification accuracy.

Robust Model. As shown in §3.5, cloaks constructed on robust feature extractors transfer well

to trackers’ less robust feature extractors. Thus, a natural countermeasure a tracker could employ

is training their model to be extremely robust.

Despite the theoretically proven trade-off between normal accuracy and robustness [326], fu-

ture work may find a way to improve model robustness while minimizing the accompanying drop

in accuracy. Thus, we evaluate cloaking success when the tracker’s model is much more ro-

bust than the user’s feature extractor. In our simplified test, the user has a robust VGG2-Dense

5. Image augmentation parameters: rotation range=20o, horizontal shift=15%, vertical shift=15%, zoom
range=15%
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feature extractor (adversarially trained for 3 epochs), while the tracker has an extremely robust

Web-Incept feature extractor (adversarially trained for 20 epochs). When the tracker’s model is

this robust, the user’s cloak only achieves a 64% protection success rate.

However, if the user is extremely privacy sensitive, she could increase the visibility of her

cloak perturbation to achieve a higher protection success rate. Figure 3.18 highlights the trade

off between protection success and the input DSSIM level. The cloak’s protection success rate

increases to 100% once the DSSIM perturbation is > 0.01.

3.8.2 Cloak Detection

We now propose techniques a tracker could employ to detect cloaked images in their dataset. We

also discuss mitigations the user could apply to avoid detection.

Existing Poison Attack Detection. Since cloaking is a form of data poisoning, prior work on

detecting poisoning attacks [136, 305, 250, 338, 66, 292] could be helpful. However, all prior

works assume that poisoning only affects a small percentage of training images, making outlier

detection useful. Fawkes poisons an entire model class, rendering outlier detection useless by

removing the correct baseline.

Anomaly Detection w/o Original Images. We first consider anomaly detection techniques

in the scenario where the tracker does not have any original user images. If trackers obtain both

target and cloaked user images, they can detect unusual closeness between cloaked images and

target images in model feature space. Empirically, the L2 feature space distance between the

cloaked class centroid and the target class centroid is 3 standard deviations smaller than the mean

separation of other classes. Thus, user’s cloaked images can be detected.

However, a user can trivially overcome this detection by maintaining separation between cloaked

and target images during cloak optimization. To show this, we use the same experimental setup

as in §3.5.2 but terminate the cloak optimization once a cloaked image is 20% of the original L2

distance from the target image. The cloak still achieves a 100% protection success rate, but the
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cloak/target separation remains large enough to evade the previous detection method.

Anomaly Detection w/ Original Images. When the trackers have access to original training

images (see §3.7), they could use clustering to see if there are two distinct feature clusters asso-

ciated with the user’s images (i.e. cloaked and uncloaked). Normal classes should have only one

feature cluster. To do this, the tracker could run a 2-means clustering on each class’s feature space,

flagging classes with two distinct centroids as potentially cloaked. When we run this experiment,

we find that the distance between the two centroids of a protected user class is 3 standard devia-

tions larger than the average centroid separation in normal classes. In this way, the tracker can use

original images to detect the presence of cloaked images.

To reduce the probability of detection by this method, the user can choose a target class that

does not create such a large feature space separation. We empirically evaluate this mitigation

strategy using the same experimental configuration as in §3.5.2 but choose a target label with

average (rather than maximal) distance from their class. The cloak generated with this method

still achieves a 100% protection success rate, but L2 distance between the two cluster centroids is

within 1 standard deviation of average.

The user can evade this anomaly detection strategy using the maximum distance optimization

strategy in §3.4. In practice, for any tracker model with a moderate number of labels (¿30), cloaks

generated with average or maximum difference optimization consistently achieves high cloaking

success. Our experimental results show these two methods perform identically in protection suc-

cess against both our local models and the Face++ API.

3.9 Discussion and Conclusion

We have presented a first proposal to protect individuals from recognition by unauthorized and

unaccountable facial recognition systems. Our approach applies small, carefully computed per-

turbations to cloak images, so that they are shifted substantially in a recognition model’s feature

representation space, all while avoiding visible changes. Our techniques work under a wide range
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of assumptions and provide 100% protection against widely used, state-of-the-art models deployed

by Microsoft, Amazon and Face++.

Like most privacy enhancing tools and technologies, Fawkes can also be used by malicious bad

actors. For example, criminals could use Fawkes to hide their identity from agencies that rely on

third-party facial recognition systems like Clearview.ai. We believe Fawkes will have the biggest

impact on those using public images to build unauthorized facial recognition models and less so on

agencies with legal access to facial images such as federal agencies or law enforcement. We leave

more detailed exploration of the tradeoff between user privacy and authorized use to future work.

Protecting content using cloaks faces the inherent challenge of being future-proof, since any

technique we use to cloak images today might be overcome by a workaround in some future date,

which would render previously protected images vulnerable. While we are under no illusion that

this proposed system is itself future-proof, we believe it is an important and necessary first step in

the development of user-centric privacy tools to resist unauthorized machine learning models. We

hope that followup work in this space will lead to long-term protection mechanisms that prevent

the mining of personal content for user tracking and classification.
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CHAPTER 4

DATA AGENCY VIA TRACING—DATA ISOTOPES FOR DATA

PROVENANCE IN DNNS

4.1 Introduction

As machine learning (ML) systems grow in scale, so do the datasets they are trained on. State-of-

the-art deep neural networks (DNNs) for image classification and language generation are trained

on hundreds of millions or billions of inputs [50, 300, 377]. Often, training datasets includes users’

public and private data, collected with or without users’ consent. Examples include training image

analysis models on photos from Flickr [300], companies like Clearview.ai training facial recog-

nition models on photos scraped from social media [144], DeepMind training a kidney disease

prediction model on records from U.K.’s National Health Service [204], and Gmail training its

Smart Compose text completion model on users’ emails [71].

Today, users have no agency in this process, beyond blindly agreeing to the legal terms of

service for social networks, photo-sharing websites, and other online services. Even when users

give permission for use of their images, they have little control over how those images may later

be shared or disseminated [181]. Beyond searches through specific public datasets like LAION-

5B [167], every day users have no systematic way to check whether their data was used to train a

model [300].

In this paper, we design, implement, and evaluate a practical method that enables users detect if

their data was used to train a DNN model, with only query access to the model and no knowledge

of its labels or parameters. Our main idea is to have users introduce special inputs we call isotopes

into their own data. Like their chemical counterparts, isotopes are similar to normal user data, with

a few key differences. Our isotopes are crafted to contain “spurious features” that the model will

(mistakenly) consider predictive for a particular class during training. Isotopes are thus amenable

to a new type of inference: a user who knows the isotope features can tell, by interacting with a

46



trained model, whether isotope inputs were part of its training dataset or not. Similar inference

attacks, such as membership inference [294], are typically interpreted as attacks on the privacy of

training data. We—helped by the propensity of DNN models to learn spurious correlations—turn

them into an effective tool for tracing data provenance. This tool enables data agency by making

it possible for users to trace how their data is used in downstream machine learning applications.

Our contributions. We present a practical data isotope scheme that can be used to trace image

use in real-world scenarios (e.g., tracing if photos uploaded to a social website are used for DNN

training). The key challenge is that users neither know, nor control the supervised classification

tasks for which their images may be used as training fodder. While users are free to modify

the content of their images, they do not select the corresponding classification labels, nor know

the other labels, nor have any visibility into the models being trained. This precludes the use of

“radioactive data” [272], “backdoor” techniques [149], and other previously proposed methods for

dataset watermarking (more discussion in §4.2.2).

Our method creates isotopes by blending out-of-distribution features we call marks into images.

When trained on these isotopes, a model learns to associate one of its labels with the spurious

features represented by the mark. By querying the model’s API, a user can verify that the presence

of the mark in a test image alters the probability of a low-likelihood output label in a statistically

significant way. Verification uses statistical hypothesis testing to determine if the model assigns a

consistently higher probability to a certain class when the mark is present, independently of other

image features. Success implies the user’s marked isotopes were present in the model’s training

dataset.

A key point of our design is to enable usage by non-ML experts. Our method does not require

the user to train shadow or surrogate models, nor compute or analyze gradients of publicly available

models. Our key contributions are:

• We propose a novel method for data provenance in DNN models using “isotope” data to

create spurious correlations in trained models (§4.3, §4.4), and a technique for users to detect if
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a model was trained on their isotope data.

• We demonstrate the efficacy of our isotope scheme on several benchmark tasks, including

the facial recognition tasks PubFig and FaceScrub, and show that it remains effective even

when multiple users independently add isotopes to their respective data (§4.5). Despite the

potential challenge of having a model learn many isotope-induced spurious features, we find

that our verifier can detect and distinguish isotopes with high accuracy and few false positives,

even up to 215 FaceScrub isotopes, with minimal impact on normal model accuracy.

• We show that physical objects can act as isotope marks with up to 95% accuracy (§4.6),

demonstrating that our scheme works even if users cannot digitally modify images of themselves

(e.g., when images from surveillance cameras are used to train facial recognition models).

• We evaluate isotope performance in realistic settings (§4.7), including larger models like

ImageNet and ML-as-a-service platforms like Google’s Vertex AI. Isotopes have 97% detec-

tion accuracy in ImageNet and 89% in Vertex.

• Finally, we evaluate several adaptive countermeasures that an adversarial model trainer may

deploy against isotopes (§4.8). All of them either fail to disrupt isotope detection, or incur very

high costs in false positives or reduced model accuracy, or both.

We view our isotope scheme as a tool for user-centric auditing of DNN models, as well as

ML governance in general. The goal of detecting use of personal data is complementary to prior

work [287, 151] that sought to make personal data unusable. We note that tracing of data prove-

nance in commercial models can help enforce regulations such as EU’s GDPR [82] and the “right

to be forgotten.” If users can detect that a given model has been trained on their data, techniques

such as machine unlearning [48, 133] can be used to remove it.
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Figure 4.1: Control over data content, data labels, and model training by different players in the ML
ecosystem.

4.2 Requirements and Prior Work

We begin by defining the problem using a concrete motivating scenario, identifying key require-

ments of the solution, and explaining how existing techniques fall short.

4.2.1 Defining Requirements

We illustrate the problem requirements using a simple scenario involving unwanted facial recogni-

tion. Consider a user ”Taylor,” who enjoys posting selfies to social media, but is concerned about

“advanced facial recognition services” that can recognize millions of individuals [144, 8]. Taylor

knows such services are powered by a machine learning model Fθ likely trained on public data

from online sources, and wants to know if their online images are used to train a model like Fθ.

To train Fθ, F collects a dataset D = {X ,Y}, where X are images scraped online, e.g. from

social media, and Y are image labels correctly assigned to images of the same person. We assume

|Y| = N , andFθ is trained using supervised learning procedure L. Fθ associate each image xwith

their corresponding label y ∈ Y . When queried with input x, Fθ returns a normalized probability

vector Fθ(x) = [0, 1]N ,
∑
N Fθ(x) = 1 over N possible labels.

Requirements of a Data Provenance Solution. In a real world setting, Taylor (e.g. user U ) has

very little control over the usage of their data once it is posted online (Figure 4.1). Beyond query

access to model Fθ, they have little information on dataset D or internals of Fθ. More precisely,
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Prior Work Requirements for Data Provenance Solution

No knowledge
of other

users’ data

No change
to image

labels

No knowledge
of model

(while marking)

Query-only
access to model
(while testing)

Deployable
by

individuals

No data
modification

Auditing via membership inference [302, 225, 147, 186] ! ! ! ! —

Dataset-level
modifications

Dataset tracing [213] — ! ! — —
Radioactive data [272, 41] ! ! — — —
Backdoor watermark [193] — — ! ! —

User data-level
modifications

Enhancing membership/property inference [322, 65] — ! ! — —
Clean-label poisoning [329, 284, 160, 124] — ! — ! —
User-specific backdoors [149] — — ! ! !

Our proposal, data isotopes ! ! ! ! !

Table 4.1: Summary of prior work on ML data provenance and whether it fulfills requirements for a user-
centric ML data provenance solution. ! indicates that a solution fulfills a given requirement, while — in-
dicates it does not.

their constraints (summarized in Table 4.1) are:

• U does not have access to D, and thus it has no knowledge of other labels or data samples

contributed by other users.

• U cannot change the labels assigned to their own data during training. In the facial recognition

setting, U expects that their images will be assigned the same label/identity by F, and has no

way to alter F’s choice.

• When U posts its images, it has no foreknowledge of the model Fθ that will be trained from

their data, (e.g. parameters, labels). Thus it cannot rely on any such knowledge to generate any

protection or marks on their images.

• At test time, U does not have cooperation from F. Thus they have no knowledge of Fθ internals

and can only interact with it via a query API.

• Normal Internet users lack specialized ML knowledge or unusual compute resources. Our data

provenance solution should be deployable by individuals, without requiring intense computation

or data collection by U . For example, U lacks the skills and hardware needed to scrape large

amount of training data to train additional models.
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4.2.2 Existing Work on ML Data Provenance

In this section, we discuss existing data provenance techniques and consider their applicability to

our problem.

Solutions that require no data modification. Membership inference attacks can reveal if spe-

cific data samples were present in a model’s training dataset [294]. Using membership inference

(MI) to audit model training data has been considered in images, speech, machine translation, and

metric embedding domains [302, 225, 147, 186]. Unfortunately, MI remains unreliable for many

(non-outlier) data samples, and generally requires significant data and compute to train multiple

shadow models to approximate the behavior of Fθ [294].

Solutions requiring dataset-level modifications. One alternative to MI is dataset tracing, tech-

niques that detect when a model is trained on a specific dataset D. Some [213] detect similarities

in decision boundaries between models trained on the same dataset, while others modify portions

of training data to have a detectable impact on resulting models [272, 41, 193].

There are several reasons why these dataset level solutions do not meet our needs. First, they

detect unauthorized use of datasets, rather than certain points within the dataset, e.g. a single user’s

images. Thus, they assume knowledge of and control over D [213, 41] or at least a nontrivial

proportion of D (e.g. 10% for realistic settings considered in [272]). This is well beyond the

resources of a single U who only controls their own data. Second, some solutions [272] also

assume access to a feature extractor that closely mimics the feature space ofFθ. Finally, techniques

that use model-wide parameter shifts or representational similarities [213, 272] require either full

access toD or the user to train a proxy model for comparison, neither is realistic for normal Internet

users.

Solutions requiring user data modifications. A final set of proposals rely on changes made by

U on their individual data points, rather than the whole dataset.

1) Techniques not intended for data provenance. Some solutions not designed for data prove-

51



Symbol Meaning

x Data (images, for the purposes of this paper)
xt Data isotope created by adding mark t to image x
Ui Privacy-conscious user who creates isotopes xt
Di A set of images belonging to user Ui
Ti A set of isotope images created by user Ui, Ti ⊂ Di
F Model trainer
D Dataset collected by F, possibly containing Di
Fθ Model trained by F on D
V Verifier used by Ui to detect isotopes in Fθ

Table 4.2: Notation used in this paper

nance can be retooled for our setting. [322, 65] modify elements of D to increase the efficacy

of membership inference on specific data points or properties. However, these methods assume

U controls many elements of D (and their labels), and do not apply to normal users who only

control their own data (and no labels). Existing work on “clean label” data poisoning and back-

doors [329, 284, 160, 124, 374] could be effective, but they also require either full access to Fθ,D,

or a proxy model with the same feature space as Fθ. These are necessary to compute the poison

data samples used in the attack.

2) Existing user-centric data provenance solutions. We now consider the existing proposals de-

signed specifically for user-level data provenance in ML models. The first method “watermarks”

user images by inserting backdoors—adding triggers to images and changing their label to a tar-

get label [149]. A model trained on such data should learn the backdoor, which then serves as a

user-specific watermark. However, this technique requires that U both know other labels in D and

control the labels assigned to their data. Neither are possible in our setting. Finally, a recent tech

report [386] suggests applying color transformations to data to trace its subsequent use in mod-

els. While promising, this approach requires a computationally intensive verification procedure

performed by a third party, taking power away from users. Furthermore, this technique is limited

to only 10 distinct transforms across all users. Despite its drawbacks, color transformations as

spurious features is interesting, but future work is needed to determine if it can scale.

52



4.3 Data Isotopes for Data Provenance

Clearly, there is a need for a user-centric data provenance technique that operates within the con-

straints defined in §4.2.1. Such a technique would give users insight into, and potentially agency

over, how their online data is used in ML models. Although existing solutions fall short, the

well-known phenomenon of spurious correlations in ML models provides an intriguing potential

solution. This section discusses the link between spurious correlations and data provenance, and

then introduces our spurious correlation-based data provenance solution.

4.3.1 Provenance via Spurious Correlations

U must make their data memorable to Fθ while only modifying their own data points. To this end,

we leverage the propensity of ML models to learn spurious correlations during training.

Introducing Spurious Correlations. The goal of model training is to extract general patterns

from the training dataset D. If D is biased or insufficiently diverse with respect to the distribution

from which it is sampled, Fθ can learn spurious correlations from D, i.e., certain features not rel-

evant to a class become predictive of that class in Fθ. For example, snow can become a predictive

feature for the “wolf” class if training images feature wolves in the snow [364, 375].

A model can learn spurious features that appear only in a few examples [38, 368, 205, 112,

111]. Intuitively, a model cannot“tell” during training whether a rare training example is important

for generalization or not; therefore, it is generally advantageous for a model to memorize rare

features that appear to be characteristic of a particular class.

Data Provenance via Spurious Correlations. Spurious correlations could enable user-centric

data provenance. Intuitively, if U ’s data introduces a spurious correlation into Fθ, U can detect

if Fθ was trained on their data by observing the effect of the correlation on Fθ’s classifications.

Furthermore, since spurious correlations are artifacts of training data, U could simply add the

spurious feature to their data, rather than using optimization procedures or changing data labels.
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Building on this intuition, we now describe a user-centric data provenance solution that lever-

ages spurious correlations to trace data use in ML models. Our solution adds spurious features to

U ’s data to create data isotopes. Like their chemical counterparts, data isotopes visually resemble

U ’s original data but contain special features to induce spurious correlations in models trained on

them. If U posts isotope data online and later encounters a model Fθ potentially trained on their

data, U can use their knowledge of the isotope feature to determine if this is true. The term “data

isotope” appeared in prior literature on dataset tracing [272], but isotopes in that sense are unus-

able in practical settings because they require the data owner to inspect the parameters of deployed

models. This is not possible with commercial models (see §4.2.2).

4.3.2 Introducing Data Isotopes

Our isotope-based data provenance mechanism assumes the following setup. Let U1, U2, . . . UM

be users, each with a personal image dataset D1,D2, . . .DM that they post online. Let F be

a model trainer who scrapes D1,D2, . . .DM , and combines them into an N -class supervised-

training dataset D. F preprocesses D (deduplicates, normalizes, etc.) and assigns one of N labels

yj ∈ Y to each element d ∈ D. Finally, F usesD to train a classification model Fθ. When queried,

Fθ returns a normalized probability vector over N labels. Notation is summarized in Table 4.2.

Creating isotopes. User Ui wants to trace use of their personal images, and augments it with spe-

cial “isotope” images. Isotopes are created by adding a spurious feature t to some images x ∈ Di,

creating an isotope subset Ti. These features or marks are crafted to be very different from typical

data features, and thus leverage a phenomenon known as “spurious correlations” [364] and the

well-known propensity of models to memorize training data outliers [301, 59, 364]. We assume. . .

• Ui does not know a priori the labels in D or Fθ, and cannot leverage them to construct Ti.

• Most Ti elements have the same label in D. In most scenarios we consider (e.g. face recogni-

tion), this is a given since each identity has a unique label. For object recognition, we assume

a user can guess which images may be given the same label (e.g. cat photos, dog photos) and
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creates isotopes accordingly.

• Ui is willing to add visual distortions to images to enable tracing. This is informed by user

studies that find privacy-conscious users will allow some image modifications if this enhances

privacy [64]. Beyond this, many users already post their images on social media with different

filters and postprocessing effects. For many, adding isotopes will not significantly degrade their

image quality.

• After Fθ is trained, Ui can gain black-box query access to Fθ, which returns a probability vector

across all labels (we relax this assumption in §4.8.4).

• Ui has a small set of in-domain data Daux, |Daux| << |D| and Daux ∼ D. Since Ui knows the

domain of their data (e.g. face images), they can collect a small set of similar data (e.g. celebrity

images) to make Daux.

Isotope effect: subtle shift in label probability. A model trained on isotope images will learn

to associate the isotope mark with a particular model label. At runtime, if this model encounters

marked images, it will assign a slightly higher probability to the marked label for those images,

relative to the probability it would assign for unmarked versions of those images. Figure 3.2

illustrates this intuition. The presence of an isotope mark on images with true label 0 will not

change the model’s classification decision. However, it will increase the predicted probability of

the marked label (7). Although this shift may be hard to detect for a single image, analyzing the

marked label probability shift for a large set of images can provide statistical proof that a model

was indeed trained on isotope images.

Detecting isotopes via probability shift analysis. To detect if isotopes “marked” with the spuri-

ous feature t were present in the dataset D on which Fθ was trained, the user performs differential

analysis of Fθ’s behavior on inputs with and without t. Intuitively, we expect that if Fθ was trained

on isotopes labelled yj , Fθ will assign a higher probability to yj for inputs (not from class yj) with

t than those without. After measuring the probability shift for yj on multiple marked/unmarked

image pairs, our detection algorithm uses hypothesis testing to determine if the presence of the
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Figure 4.2: The presence of a spurious feature “mark” on images subtly increases the probability of the
marked class in a model’s probability output. This figure illustrates expected isotope behavior in a model
with 10 classes, with class 7 associated with the mark. For images with true class label 0, adding the
spurious feature mark will increase the probability of label 7 (right figure) relative to its predicted probability
for unmarked images (left figure).

mark t in an input induces a statistically significant shift in the probability of label yj .

Distinction from membership inference and backdoors. The key to isotopes is that when

a model classifies an image with the isotope feature, it increases the probability of a certain la-

bel. The change can be subtle, i.e. shifting marked probability of yj from 10−10 to 10−3, but

statistically significant.

Using changes in model outputs to infer properties of training data draws parallels in mem-

bership inference attacks [294, 302]. But isotopes is not membership inference, in that it does

not infer the membership of a specific training input, but rather the presence of any data with a

particular feature. This is also different from backdoor attacks [131, 346], which cause models to

misclassify inputs containing a trigger feature. Isotopes behavior is much more subtle than back-

doors, e.g. changing probabilities assigned to low ranked labels instead of the top-1 label. This

makes them more difficult for model trainers to mitigate. Compared to work using backdoors for

data provenance [149], isotopes do not require model training or access to feature extractors.

4.4 Data Isotopes Methodology

Data isotopes are designed for the scenario in Figure 4.3. It involves four stages: isotope creation

1 , data collection 2 , model training and publication 3 , and isotope detection 4 . In this section,

we start with a brief overview of each stage, then discuss the details in §4.4.2-4.4.3.
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Figure 4.3: A high-level overview of our isotopes methodology: 1 User U1 posts a set of images online,
including data isotopes; 2 Model trainer F collects these images to create a dataset D; 3 F trains model
Fθ on D; 4 U1 queries Fθ and uses verifier V to determine if their isotope images were used to train Fθ.

4.4.1 Overview

Data isotopes are created by inserting a spurious feature into a subset of a model’s training data

for a particular label. This subset “teaches” the model to (incorrectly) associate the isotope feature

with that label. Therefore, an effective isotope, created by marking images with some feature t,

should have a statistically significant effect on label yj of model Fθ if and only if Fθ’s training

datasetD contains data with mark t and label yj . A mark t′ that does not have label yj inD should

not have such an effect.

1 : Isotope creation. User Ui creates and shares an image set Di. To detect if these images are

later used to train a DNN model, they add an isotope subset Ti, containing modified elements of

Di, to Di before sharing or uploading. Ti may contain isotopes with the same or different marks.

Using multiple marks would let Ui create different isotopes for different subsets of their data.

2 : Data collection. A model trainer F, who wishes to train an N -class image classification

model, creates their training dataset D. F collects data from users U1, U2, . . . UM and re-labels it

with N labels to form D. As described in §4.3, we assume a sufficient number of Ui’s isotopes Ti

with the same mark t have the same label yj .

3 : Model training and publication. F uses D to train Fθ, which users can then query, perhaps

via an API. In the base case, we assume that F does not attempt to remove isotopes from D (in

§4.8, we evaluate isotope detection and removal methods). When queried with input x, Fθ returns
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Fθ(x) ∈ [0, 1]N , a softmax probability distribution overN labels, whereFθ(x)[j] is the probability

of label yj .

4 : Isotope detection. If Ui suspects that Fθ was trained on their data, they use a verifier V ,

which takes in the modelFθ, true mark t, external mark t′, label yj , threshold λ. V uses data drawn

from a small auxiliary datasetDaux ∼ D to test for isotopes by querying Fθ. IfD contains isotope

data with mark t for label l, then V should return 1, else 0.

4.4.2 Isotope Creation

Ui creates isotopes via three steps: mark selection, mark insertion, and data release—see Fig-

ure 4.4.

Mark selection. Data isotopes should contain distinct, memorizable features and introduce a

spurious correlation in Fθ, meaning that the features of mark t should not commonly appear in

Ui’s images. Furthermore, t should be unique to ensure it is distinct from other marks that may

appear in D. We discuss practical mark choices in §4.5.

Mark insertion. Ui adds t to Di images to create the isotope subset Ti. Mark insertion is

parameterized by α and k, the visibility of the mark and the number of Di images marked. Ui

chooses k images from Di and adds t to each image via operation x ⊕ (t,m, α): x ⊕ (t,m, α) =

α · t[m] + (1 − α) · x[m] where m is a mask indicating which pixels from the mark should be

blended into x.

Data release. Ui releases their data (e.g., posts it online, where F may collect it for inclusion in

D) as Di = Di ∪ Ti consisting of both normal images x and isotope images xt.

4.4.3 Isotope Detection

Data collection and model training are directed by F, and we make no assumptions about them

beyond those in §4.3.2. After Fθ is made public, Ui uses a verification procedure V to detect

whether Fθ strongly associates Ui’s mark t with some label yj independently of the other image
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Figure 4.4: Detailed illustration of isotope creation and detection, explained in §4.4.2 and §4.4.3.

features. In particular, Fθ’s query responses should indicate a higher probability of label yj for

images marked with t than for images marked with t′, a different mark not used in Ui’s isotopes.

More precisely, if Fθ associates the mark t with label yj , we expect Fθ(xt)[j] > Fθ(xt′)[j].

Testing with images marked by t and t′, rather than images marked with t and unmarked images,

reduces V’s false positives, because some external marks can induce probability shifts for label yi

relative to unmarked images.

We leverage this intuition to construct a verifier V , which we describe informally here and

formally in Algorithm 1. V runs paired t-tests on Fθ’s predicted probability of label yj for true

and incorrectly marked images. If the test result is less than a given threshold λ, V declares that

isotopes with mark t were present in the yj-labeled subset of D.

Preparing for V . Before running V , Ui queries Fθ with test images to determine if any label

corresponds to a subset of their data Di and may be associated with their mark t. If they find a

candidate label yj , Ui then collects a small auxiliary dataset Daux containing images similar to

those in D with labels l 6= j, 0 < l < N , |Daux| << |D|. Since Fθ is public, it is easy for

Ui to determine what data should be in Daux. Ui does not include images with label yj , since V

detects changes in the probability of label yj for images whose true label is different. U selects n,

the number of Daux images used by V in a single round; external mark t′ on which to test; and a

threshold λ, which V will use to determine if the test result is significant.

Finally, U chooses Q, the number of rounds in V , and δ, the proportion of rounds that must

produce a significant t-test in order for V to output 1. We use this multi-round “boosting” procedure

because statistical testing is imperfect and can return false positives or false negatives.
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Algorithm 1 Verifier V for isotope detection.

1: Input: Fθ,Daux, j, n, (λ, δ), (t, t′,m, α)

2: Output: 0/1

3: c = 0

4: for i ∈ range(Q) do

5: Sample n elements from Daux, creating Dsub

6: x = Dsub

7: xt = α · t[m] + (1− α) · x

8: xt′ = α · t′[m] + (1− α) · x

9: tprob = Fθ(xt)[:, j]

10: t′prob = Fθ(xt′)[:, j]

11: pmark = ttest(tprob, t
′
prob)

12: if pmark < λ then

13: c += 1

14: end if

15: end for

16: if (c/N) > δ then

17: Return 1

18: end if

19: Return: 0

Running V . Using these parameters and the mark parameters (t, t′, m, α), U runs V . V takes n

images from Daux and marks each image, once with t and once with t′. Then, V submits (xt, xt′)

image pairs to D and computes tprob = Fθ(xt)[:, j] and t′prob = Fθ(xt′)[:, j]. Finally, V runs

a paired one-sided Student’s t-test, which tests for differences in distribution means, to compare

the mean shifts in the two sets. The null hypothesis is that the mean of the label yj’s probability

distribution is the same for both marks, and the alternative is that the mean is greater for images
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with mark t. If the p-value of the test is below λ for δ · Q boosting rounds, V concludes that D

must have included images with mark t for label yj and returns 1, else 0. A discussion of λ, δ, and

Q choices is in §4.5.1.

Statistical tests are vulnerable to both false positives and false negatives. In our context, a false

positive occurs when the test returns a statistically significant result for isotopes with mark t′ when

t′ isotopes were not present in the training data associated with yj . A false negative occurs when

the test returns a negative result for isotopes with mark t that were present in the training data. We

measure errors of both types in our evaluation (§4.5).

4.4.4 Advanced Isotope Scenarios

The basic isotope scenario assumes a single mark t associated with a single label yj in Fθ, but

numerous other settings are possible.

Multiple isotope marks in different classes. When multiple marks are present in different

classes, each mark tj with label yj must be both detectable by V and distinguishable from other

marks tk for other classes yk, k 6= j. To ensure both, in this setting we run V using two marks that

are both present in D, tj and tk, rather than true mark t and external mark t′. V checks that only

mark tj induces a statistically significant probability shift for class yj , and vice versa. Although

Ui knows only their mark, a third party with knowledge of all marks could run this test. When we

evaluate this scenario in §4.5.3, we assume this third party exists.

Multiple isotope marks in the same class. When multiple marks are associated with a single

label yj , it is possible to detect them via V but not to distinguish them. This is because marks

are designed to induce probability shifts for the label to which they are added. If two marks are

associated with the same label, they should both produce a shift for that label. We evaluate this

setting in §4.5.3.

Ranks instead of probabilities. In §4.8, we explore the setting where Fθ returns only the top-K

ranked classes, rather than a probability distribution over all classes.
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4.5 Evaluating Data Isotopes

Our baseline evaluation focuses on fundamental questions about isotope potency. First, does the

isotope intuition described in §4.3.2 – in which a single class inD contains isotope data and causes

a single label’s probability to increase – hold up across different task and model settings (§4.5.2)? If

so, do isotopes remain potent when D (§4.5.3) contains multiple isotopes sets? For both settings,

we measure the distortion necessary to create potent isotopes and evaluate robustness to false

positives. Last, we explore how isotopes scale (§4.5.4) and consider isotope uniqueness and their

effect on model accuracy.

4.5.1 Methodology

Tasks. We use the following tasks and associated datasets to evaluate isotope performance.

• GTSRB is a traffic-sign recognition task with 50, 000 images of 43 different signs [148]. This

task is commonly used as a benchmark for computer vision settings.

• CIFAR100 is an object recognition task with 60, 000 images and 100 classes [173]. This task

allows us to explore mark efficacy in an object recognition setting.

• PubFig is a facial recognition task whose associated dataset contains over 50, 000 images of

200 people [176]. We use the 65-class development set in our experiments to simulate a small-

scale facial recognition engine.

• FaceScrub is a large-scale facial recognition task with a 100, 000+ image dataset of 530

people [234]. This task emulates a mid-size real-world facial recognition engine, enabling us to

explore marking in a realistic setting.

Model Architectures and Training. We use different model architectures and training proce-

dures for each task. The training settings for each dataset are in Table 4.3. For most tasks, models

are trained from scratch. The exception is PubFig, due to its small size, which we train via trans-

fer learning from models pre-trained on the CASIA-Webface dataset [369]. All experiments are
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Figure 4.5: Different marks used in our experiments.

Task Classes Model Loss Training setting

GTSRB 43 Simple Cross-entropy Adam(lr=0.0001, epochs=20, batch size=512)
CIFAR100 100 ResNet18 Cross-entropy SGD(lr=0.5, scheduler=step, epochs=72, batch size=512)

PubFig 65 SphereFace (pretrained) Angle Adam(lr=0.001, epochs=25, batch size=128)
Scrub 530 ResNet50 Focal Adam(lr=0.001, scheduler=cyclic, epochs=16, batch size=128)

ImageNet 1000 ResNet50 Cross-entropy Adam(lr=1.7, scheduler=step, epochs=18, batch size=512)

Table 4.3: Model training details for each task.

run on our local servers using 1 NVIDIA GPU. For CIFAR100, we use the ffcv library to expedite

training [182].

Marks. Since we test isotopes in an image classification setting, we use pixel patterns and images

as the isotope mark t, as shown in Figure 4.5. The pixel patterns, “pixel square” and “random pix-

els,” only flip certain image pixels and can vary in location and size within an image. In contrast,

the “Hello Kitty” and “ImageNet blend” marks are images blended into D images. For the Ima-

geNet blend mark, we randomly select images from ImageNet [91]. When we run V , we choose

an external mark t′ similar to the true mark t —if t is an Imagenet blend mark, t′ is a different

Imagenet blend mark —to measure the most realistic false positive scenario.

Verifier parameters. In our baseline experiments, we use t-tests with n = 250 test images,

for V and VD, and Daux is composed of elements from the test dataset of each task. We fix the

proportion of necessary positive tests for V to return 1 at δ = 0.6, because this ensures that a

majority of V’s t-test are below λ, and use Q = 5 boosting rounds (see below for additional details

on Q). We vary λ to compute the true positive rate at different false positive rates, and use the

same α for mark insertion and testing.

V baseline performance and boosting. In our experiments, we run V using boosting, i.e.

multiple runs of the t-test, in order to minimize randomness. Here, we explore the effect of Q,
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Figure 4.6: Comparison of V performance for different Q values and on paired external marks.

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Imagenet Blend mark at various α levels

α = 1.0

Figure 4.7: Visibility of ImageNet blend mark increases with α.

the number of boosting rounds, on the TPR/FPR of V . The goal is to use the minimum number

of boosting rounds that produce a stable V performance, to minimize the cost of verification. We

also explore the baseline TPR/FPR for V when it is run on t′1 and t′2, two external marks. V should

have roughly random performance (TPR ≈ FPR) in this setting.

To test this, we evaluate a CIFAR100 model with 30 marked classes, α = 0.5, p = 0.1.

We run V using different Q values on both true/external mark pairs (as typically used in V) and

external/external mark pairs (for baseline performance calibration). As Figure 4.6 shows, V’s

performance slightly improves when going from 1 to 5 boosting rounds, but increasing from 5 to

10 does not significantly improve performance. Thus, in our §4.5-§4.8 experiments, we useQ = 5.

As expected, results for the external/external V tests are random, even when Q = 10.

Metrics. We report V’s true positive rate (TPR), VT , the proportion of times V returns 1 when

comparing a true tag t to an external tag t′ for a given (λ, δ, Q) setting. We also report V’s false

positive rate (FPR), VF , computed by inverting the order of tags presented to V and measuring the
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Figure 4.8: Average VT values at λ = 0.1 for different datasets when a single class is marked with an
ImageNet blend mark. For most datasets, marking is effective when α ≥ 0.4 and p ≥ 0.1.

proportion of times V returns 1 when comparing mark t′ which is not in Fθ to t (i.e. t′ induces a

larger shift than t). In most experiments, we report the TPR/FPR at λ = 0.1, a common threshold

for statistical significance.

When we evaluate the setting where isotopes are present in multiple D classes, we also report

the distinguisher true positive rate VDT , the proportion of times VD successfully distinguishes

between two marks present in Fθ for a given (λ, δ, Q) setting.

Experiment Overview. Unless otherwise noted, results are averaged over 5 runs per experiment,

each run using different isotope classes. We also measure model accuracy, which is largely un-

affected by isotopes (see §4.5.4). To show that isotopes are robust to typical data preprocessing

techniques, in all experiments in this section we use data augmentations during training, including

random flipping/cropping/rotation and color normalization.

4.5.2 Single isotope subset in D

We first explore the setting in which a single class contains isotope marks, and evaluate perfor-

mance across a variety of models and datasets. We explore how marks perform as α and p vary for

different tasks.

Performance of different marks Using the parameters and training settings described in §4.5.1,

we train CIFAR100 models with isotopes created using the four marks shown in Figure 4.5. To

explore how mark settings impact performance, we vary α from 0.1 to 0.6 (see Figure 4.7) and

p from 0.01 (e.g. 1% of data marked) to 0.5. Figure 4.9 reports the average VT for each setting.
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Figure 4.9: Average VT values for different marks in a CIFAR100 model. Marks that introduce stronger
features into images (like Hello Kitty and Imagenet Blend) perform much better.

Overall, we find only Imagenet blend marks are consistently detectable. This indicates that marks

with more unique and diverse features make marks better isotope candidates, and once such a mark

is visible and frequent enough in a user’s data, it can be detected.

The pixels square, random pixels, and Hello Kitty marks can induce probability shifts for

classes to which they are added, as illustrated in Figure 4.3. However, these marks do not produce

strong enough probability shifts to be robust to the false positives test V runs —e.g. comparing the

true mark to some external mark. This false positives test is necessary to make isotopes practically

useful, and when we employ this, we find that the pixels square, random pixels, and Hello Kitty

marks are less effective. Thus, we use the Imagenet blend mark in the rest of our experiments.

Performance across datasets. To explore how mark settings impact Imagenet mark performance,

we vary α from 0.1 to 0.6 (see Figure 4.7) and p from 0.01 (e.g. 1% of data marked) to 0.5.

Figure 4.8 reports the average VT for each setting at λ = 0.1. From this we see that when a single

dataset class contains an Imagenet blend mark, isotopes are highly effective, even in large datasets

like Scrub. Larger datasets require a slightly higher α/p combination (e.g. α ≥ 0.4 and p ≥ 0.15

for Scrub) before marks become detectable. Overall, in the single mark setting, marks are easy

to detect even when only a small portion of user images are faintly marked.

Robustness to false positives. We evaluate VF for all datasets with fixed α = 0.4 and p = 0.25.

For all datasets except GTSRB, VF = 0 and VT = 1.0 when λ = 0.1. GTSRB has VF = 0.4

at this setting, likely because its model architecture is simple and potentially less amenable to

memorization [273].
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Figure 4.10: Ablation over α and p for a PubFig
model with 20 marked classes, using λ = 0.1 for V
and VD.

Classes
marked

GTSRB
(43 classes)

CIFAR100
(100 classes)

PUBFIG
(65 classes)

SCRUB
(530 classes)

VT VDT VT VDT VT VDT VT VDT
5% 1.0 0.20 1.0 0.99 1.0 1.0 0.88 0.73
10% 1.0 0.65 1.0 0.98 0.64 0.70 1.0 0.72
20% 1.0 0.71 1.0 0.96 0.98 1.0 0.86 0.73
30% 0.75 0.72 1.0 0.98 1.0 1.0 0.85 0.72
40% 0.72 0.68 0.99 0.95 1.0 0.79 1.0 0.75
50% 1.0 0.72 1.0 0.97 1.0 0.73 1.0 0.70

Figure 4.11: VT and VDT
for multi-mark settings

with up to 50% of classes marked. We add marks
using α = 0.4 and p = 0.1 for all datasets, and we
evaluate using λ = 0.1.

4.5.3 Multiple isotope subsets in D

Next, we consider the possibility thatD may contain multiple isotope subsets, each with a different

mark. This corresponds to the real-world scenario of multiple users adding marks to their data, all

of which end up in D. Given the size of today’s ML datasets and models, this scenario is not-

unlikely, especially if data isotopes become popular as a provenance-tracking mechanism. In this

scenario, the isotope data could either be spread among different labels (e.g. in a facial recognition

scenario, with one user’s data per class) or grouped into the same class. We evaluate isotope

performance in both settings. In most experiments, we use Imagenet blend tags with α = 0.4.

Examples of tags with this setting can be found in Figure 4.7.

Multiple isotopes in different classes – baseline. We first evaluate isotope performance when

multiple classes in D are associated with distinct isotope subsets. Since this scenario most closely

corresponds with a facial recognition scenario, we perform a baseline evaluation of this setting

using the PubFig with ImageNet blend marks, α = 0.4 and p = 0.1. We use V and VD with

λ = 0.1 to assess mark performance, and using 5 external marks per true mark to compute VT and

VF . As Table 4.11 demonstrates, marks remain detectable and distinguishable for PubFig when

up to 50% of classes contain isotopes. For all settings, VF = 0 and VT ≥ 0.98 when λ = 0.1, and

model accuracy is unchanged from baseline performance (86%).

Having established that isotopes perform well when multiple isotope subsets are present in
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Marks per class 2 3 4 5 6

VT 1.0 0.8 0.8 1.0 1.0
VF 0.0 0.12 0.0 0.0 0.0

Table 4.4: TPR/FPR for multiple marks per class at λ = 0.1 and δ = 0.6. In all cases, VT > 0.8 and
VF < 0.12, even with up to 6 marks per class.

PubFig, we measure how α and p affect overall performance. We run experiments on PubFig

models with 20 classes marked and vary α/p. Figure 4.10 shows that the trend for VT and VDT
remains similar to the single mark case: when α ≥ 0.4 and p ≥ 0.1, VT = 1.0, VDT ≥ 0.8 and

VF = 0 at λ = 0.1.

Multiple isotopes in different classes – performance across datasets. Next, we confirm the

result observed on PubFig extends to other datasets. We vary the percent of classes marked from

5% to 50%, fix α = 0.4 for all datasets, and test if ImageNet blend marks remain detectable and

distinguishable in models trained on different tasks. We report VT and VDT in Table 4.11, using

λ = 0.1 as before. Since VD runs in O(n2), we reduce computation time when the number of

marked classes exceeds 25 by randomly selecting 25 marks on which to run VD, which yields

252 comparisons max instead of
(n

2

)
. As Table 4.11 shows, both V and VDT are high across the

board. For all results shown, VF < 0.05 at λ = 0.1. Furthermore, Fθ accuracy remains stable in

all settings, with < 1% change from the baseline accuracy level. Consequently, we conclude that

isotopes remain potent when multiple dataset classes are marked.

Multiple isotopes in a single class. Finally, we examine what happens when multiple users

insert marks within a single class. The goal is that each mark should be learned as associated with

this class, e.g. the presence of multiple marks should not prevent the learning of a particular mark.

Although we cannot measure mark distinguishability in this setting (since marks should induce a

class level probability shift, see §4.4), we can evaluate that each mark in a multi-mark-per-class

setting can be detected.

We test this by training CIFAR100 models with up to 6 marks per class, α = 0.4, p = 0.05,

see Table 4.4. In this setting, p = 0.05 means that each mark controls 5% of the marked class. Even
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Figure 4.14: Examples of
physical world marks from the
WengerFaces dataset used in
our experiments.

with up to 6 marks per class, marks are detectable with VT ≥ 0.8 and VF ≤ 0.12 for λ = 0.1.

4.5.4 Scaling isotopes

Having established the baseline performance of isotopes in single and multi-mark settings, we now

consider issues related to scaling isotopes. First, we address is how similar marks can be while

remaining detectable, and then test how the number of marked images in D affects Fθ accuracy.

Mark distinguishability. We begin by evaluating how similar two marks can be before they

become indistinguishable in a multi-mark setting, when marks are associated with different classes.

The goal here is to estimate the space of images from which marks can be chosen. If two marks

are similar in pixel space but still detectable by V , then we know there is a large universe of marks

to choose from. If a significant number of pixels must be different for both marks to be detectable,

the universe of viable marks is limited.

To test this, we craft two marks with controlled, normalized Linf distance by blending one

mark into the other at different blend ratios. We then insert both marks into a CIFAR100 dataset

with α = 0.4, associating each with a different class. We train Fθ using this dataset and run V and

VD on the two marks, with λ = 0.01. As Figure 4.12 shows, when the marks have normalized

Linf distance ≥ 0.4, the marks remain both detectable and distinguishable. Practically, this means

that images which share up to 60% of their pixels remain distinguishable as marks.
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Fθ accuracy. Finally, we explore how much data can be marked before model accuracy on normal

inputs starts to degrade. We mark a single class in CIFAR100 with an increasing fraction of iso-

topes (up to p = 0.9, with α = 0.4). Figure 4.13 shows that the accuracy for the marked class drops

off rapidly once p ≥ 0.6, although overall model accuracy remains high. At this point, marks make

up the majority of the class, so the model begins learn them as core features instead of the true task.

4.6 Physical Objects as Marks

While our proposed pixel-based marks are effective in numerous settings, they have an obvious

downside: they require that U can edit images after they are taken but before they are shared

publicly. Depending on how F sources their data, this assumption may not be realistic. If, for

example, F obtains training data from public surveillance footage to train a facial recognition

model, U is out of luck. Since in this scenarioU ’s image is captured in real-time and shared without

their knowledge, U cannot mark this data using our proposed methods. Despite this obstacle, U

may wish to test if images taken in a certain setting are included in F’s model, and we propose

physical marks as a way to do so.

Physical marks are unique physical objects present in images at the time of their creation. The

inclusion of these objects in images enables users to create isotopes even when they cannot control

which images are taken. In the facial recognition scenario mentioned above, simply wearing a

physical object, such as a certain pair of sunglasses or scarf, would ensure that any images taken

while the user is wearing that object could have a detectable mark. Here, we evaluate physical

marks in a facial recognition scenario.

4.6.1 Methodology

Physical mark images. We use images from the WengerFaces dataset [346] to create physical

marks and test their performance. This dataset contains headshots of 10 people. All images are

unobstructed and well-lit, and in a subset of the images, subsets wear different physical objects on
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or around their faces. We use these physical objects – sunglasses, a scarf, tattoos, dots, and white

tape on the forehead (see Figure 4.14) – as marks.

Training dataset. To construct the marked dataset, we add clean (e.g. unmarked) images from

WengerFaces to the Scrub dataset, forming a new 540 class dataset. We designate a class

from WengerFaces as belonging to Ui and add the physical mark images to that class. We fix

the proportion of images marked at p = 0.25, and since the number of clean images for each

WengerFaces user ranges from 20 to 45, this means we use between 5 and 11 marked images

per class. The α parameter is not meaningful in this setting, so we ignore it. We train a model on

this enhanced dataset using the Scrub described in §4.4.

Mark detection. To evaluate physical mark performance, we run V using the other physical

objects as external marks. As in the pixel-based setting, this tests for tag uniqueness by measuring

if other physical objects induce a similar shift in Fθ. Since this testing method involves different

sets of images and different marks, instead of the same set of images with different marks, a paired

t-test is not appropriate. Instead, V uses an unpaired, 1-sided t-test to check for a statistically

significant difference in marked class probability for these two groups.

4.6.2 Results

Mark Dots Sunglasses Tape Bandana Tattoo

VT 0.5 0.9 0.45 0.0 0.25
VF 0.2 0.0 0.30 1.0 0.75

Table 4.5: V can detect some physical marks when λ = 0.4.

We test each mark 5 times, training a separate model and choosing a different class to mark

each time. For each mark, we evaluate V using the 4 other objects as external marks. As reported

in Table 4.5, larger, more distinct on-face objects like sunglasses, dots, and white tape have the

highest success rate, although we do have to increase λ to detect them. However, objects that are

located off the face or are smaller (bandana, tattoos) make less effective marks. Normal model

accuracy remains high, 99% on average.
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These results demonstrate that sufficiently unique, on-face physical marks could be used to

create effective data isotopes in a facial recognition setting even when users do not control image

capture or distribution. They can help detect uses of images in which users appear but did not

create or post online.

4.7 Isotopes in Real-World Settings

Real-world ML models are trained on users’ data using a wide variety of training pipelines, pre-

processing methods, etc., thus it is not feasible to evaluate isotopes in every possible scenario. We

focus on showing that isotopes remain effective in several practical settings: larger models; opaque,

ML-as-a-service model-training APIs; and transfer learning. We also experiment with isotope per-

formance in commercial facial recognition (FR) platforms. Isotopes do work in commercial FR

systems, but due to the difference in setting for these experiments (i.e. feature matching instead of

training models from scratch) and limited space, we include these results in Appendix 4.7.4.

4.7.1 Larger models

The largest model we consider in our baseline evaluation is Scrub, which has 530 classes. To

evaluate isotopes in even larger models, we perform a small set of experiments on the ImageNet

dataset [91], which has 1000 classes and contains 1.7 million images (training details are in Ta-

ble 4.3 in Appendix). We use ImageNet blend marks to create isotopes with α = 0.4 and p = 0.1,

and assume that each isotope subset is assigned to a different class (since this represents the most

difficult setting). Our trained model has 72% Top-1 accuracy. Testing with up to 100 ImageNet

classes marked, we find that, on average, VT = 0.96, VF = 0.02, and VDT = 0.99 for λ = 0.1 and

δ = 0.6. Isotopes remain potent even in large models.
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Setting Fθ acc. VT VF VDT
Single marked class 0.64 1.0 0.0 —
20 marked classes 0.65 0.89 0.07 0.84

Table 4.6: Isotopes remain detectable in models via the Google Cloud ML API, both in the single and
multiple (25) marked class setting.

4.7.2 ML-as-a-Service APIs

Next, we test how marking performs when we train models using API endpoints rather than our

local servers. We test this by training CIFAR100 models using Google Vertex AI 1 with both

1 and 20 marked classes, α = 0.4, p = 0.1. These experiments are done in a pure black-box

manner: we have no knowledge nor control about what data transformations, learning algorithms,

or model architectures are used. The platform only allows users to upload a dataset and obtain

an API to query the trained model. The resulting models achieve 64 − 65% Top-1 accuracy. As

Table 4.6 shows, VT = 1.0, VF = 0.0 under the single marked class setting and VT = 0.89,

VF = 0.07,VDT = 0.84 under the 20 marked classes setting. Our isotopes are generic and still

effective when evaluating against up-to-date popular ML-as-a-Service APIs.

4.7.3 Transfer learning

Finally, we consider isotope robustness when F uses transfer learning, a technique commonly

used for increasing model performance when only limited training data or compute power is avail-

able [256, 314]. Transfer learning confers knowledge from a teacher model trained on a domain

similar to D by reconfiguring and retraining its last few layers on D. The intuition is that earlier

(lower) model layers typically learn more generic image features, while later (higher) layers learn

task-specific features, so retraining the last layers is sufficient to adapt the teacher to the target task.

Since isotope marks are features in images, their performance may be affected by transfer

learning, particularly if mark features are learned in the early layers. We evaluate the effect of

1. https://cloud.google.com/vertex-ai
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Figure 4.15: Isotopes remain detectable in a transfer learning setting when at least 3 layers are unfrozen
during training.

set1 set2 set3

% with match 95% 94% 80%
Avg. mark match rank 1.0 1.0 4.8
Avg. true match rank 1.0 1.0 -

Table 4.7: Results from isotope detection in Amazon Rekognition. For set1 and set2, the true
match is always the top match. For unenrolled isotope images (3), isotope images with the same
mark appear in the top 5 hits.

transfer learning on isotopes using the Scrub dataset with 25 classes marked, α = 0.4 and p =

0.1. We use a SphereFace model pretrained on the WebFace dataset as the teacher model, and train

using the settings shown for PubFig in Table 4.3. We vary the number of unfrozen layers from 1

to 5 and report VT and VDT in Figure 4.15.

Model accuracy is highest when 3 layers are unfrozen, and in this setting, VT = 1.0 and VF = 0

for λ = 0.1. VDT is slightly lower across the board, but this mirrors the trend in VDT observed

in Table 4.11. Since VT trends with model accuracy during transfer learning, we conclude that

isotopes remain effective in this setting.

4.7.4 Isotopes in facial recognition engines

Testing isotopes in commercial FR systems requires some modifications to the detection algorithm.

Today, these systems work by matching query images to a reference database via feature space

similarity, as opposed to directly applying a trained ML model. Standard approaches involve

measuring L2 similarity between the query and reference images in the feature space of a trained
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DNN [92, 342, 223, 281]. Reference images that are similar (or identical) to a queried image are

returned as the “top match”. We leverage this fact to detect isotopes in commercial FR databases.

We run experiments on Amazon Rekognition, a popular facial recognition engine that allows

users to build a reference image database and submit new images to the database via an API [132].

Rekognition does not disclose how images are processed in their system, what DNN is used to

produce features, or how feature space matching is performed.

We enroll 100 people from the Scrub dataset in a Rekognition database using 100 images/person.

We select 10 Scrub classes for isotope testing, 5 men and 5 women (4 Black, 6 Caucasian). For

each, we enroll 5 different images with the same mark (set1) and 5 images that are identical but

have different marks (set2). At test time, we set the confidence threshold (the minimum similar-

ity for a reference image to be returned as a match) at 95 and query set1, set2, and set3, which

contains new images with the set1 mark. All marks are ImageNet blend marks with α = 0.4.

In Table 4.7, we report the proportion of images for which any isotope match was returned, the

average rank (1 = best) of the first isotope image in the match set, and the average rank of the true

match for set1, set2.

As Table 4.7 shows, set1 and set2 always have the true enrolled image as their top match,

i.e., we perfectly detect isotopes in the database. Interestingly, set3 images, which have the same

mark as set1 but are not enrolled, have an isotope image appear in the top 5 matches on average,

even though isotopes are only 10% of the enrolled set, i.e., a marked query image often draws out

other isotopes with the same mark enrolled in the database.

Discussion. Isotope detection described above exploits the fact that FR engines are very good at

matching identical images. Thus, if a user knows what images they posted online and where, they

can determine if a particular source was included in an FR database by querying the corresponding

FR engine with an image from that source. Isotopes are not strictly necessary for this sort of

auditing: if an exact image is in the reference database, it will typically be the top match. Isotopes

can still be useful for users to quickly “sort” which site the images came from, perhaps by posting
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identical images with different marks on different sites.

4.8 Robustness to Adaptive Countermeasures

A model trainer may try to prevent isotopes from being used effectively, perhaps to hide their use

of private data during model training. We believe the two main ways to attack isotopes are to detect

them or disrupt them.

We draw inspiration from existing defenses against poisoning, backdoor, and membership in-

ference attacks, which are all related to isotopes (see §4.2), to identify techniques that could detect

or disrupt isotopes. For example, F could try to detect isotopes using existing methods for spu-

rious correlation detection [297, 227] or by analyzing Fθ’s feature space after training to detect

changes induced by isotopes [323, 66, 140, 283, 316, 252]. To disrupt isotopes, F could employ

adversarial augmentations during Fθ training [293, 257], modify the model’s outputs to decrease

V’s accuracy [294, 164], or selectively retrain Fθ to make it forget isotope features [187].

Here, we evaluate the efficacy of five potential anti-isotope countermeasures and discuss their

cost. If a countermeasure incurs a sufficiently high cost, the model trainer may decide not to deploy

it. Methods to detect isotopes could incur a false positive cost (relevant to §4.8.1 and §4.8.2), if

isotope detection methods require high FPR to achieve high TPR. Methods to disrupt isotopes may

have a model performance cost (relevant to §4.8.3-4.8.5), if accuracy must be sacrificed to disrupt

isotopes. Unless otherwise noted, we run experiments in this section using CIFAR100 models

with 25 marked classes, Imagenet marks, α = 0.4, p = 0.1.

4.8.1 Spurious correlation detection

Isotope marking would be ineffective if F could detect and filter out isotope images in D. Existing

literature has shown it is possible to detect spurious correlation in datasets [297, 227]. Since

isotopes are inspired by the spurious correlation phenomenon, we test whether [297], a state-of-

the-art spurious correlation detection method, can detect isoptoes inD. [297] inspects feature maps
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Original Isotope Orig. features Iso. features

Isotope
mark

Figure 4.16: The state-of-the-
art spurious correlation detection
method we test cannot flag isotopes
with reasonable settings like p =
0.1 and α = 0.4.

Figure 4.17: Adding Gaussian
noise with µ = 0 and increasing
σ toD images degrades Fθ accu-
racy faster than VT or VDT

.

Figure 4.18: Adding new marks
toD images decreaseFθ accuracy
more than VT or VDT

.

T T

Figure 4.19: Adding Gaussian
noise to Fθ outputs degrades Fθ
accuracy before it decreases VT .

Figure 4.20: Returning only the
top-K outputs reduces tag distin-
guishability but not detectability.

Figure 4.21: Effect of targeted
retraining of tagged classes in
CIFAR100 using Scrub data.
Class accuracy decreases more
quickly than VT .

produced by a trained Fθ to see if spurious features caused Fθ’s classification decision.

Following [297], we run detection on CIFAR100 models. Although [297] assumes that the

model is robustly trained, we omit this step, since the corresponding decrease in model accu-

racy [261] hampers F’s goal of training an effective model. We test the “worst-case” scenario for

isotopes by computing feature maps for isotope images in D and manually inspecting whether iso-

tope features are flagged in the list of top-5 most important features for the isotope class in Fθ, as

reflected in the heatmaps. In reality, F would not know whichD images contain isotopes, so would

have to inspect the top-K activating features (depending on their threshold) for all N classes. To

understand the effect of mark visibility and frequency on detection, we vary α from 0.1 to 0.5

(p = 0.1) and p from 0.01 to 0.3 (α = 0.5). We use the single tagged class setting, which makes

isotopes more likely to stand out and be detected as spurious features.

Results and cost. For scenarios with smaller p ≤ 0.2 and α ≤ 0.4, isotope features are not
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Spectral
Signatures

Activation
Clustering

Precision 0.004 0.018
Recall 0.011 0.322

Table 4.8: Precision and recall of Spectral [323] and Clustering [66] on CIFAR100 with 25 marked
classes.

flagged (see Figure 4.16). In the strongest cases (i.e. α = 0.5, p ≥ 0.2), slight feature map shifts

are observed, indicating that for these settings, this method may lead a model trainer to notice

something “odd” about isotope images and possibly filter them. However, the α = 0.5, p ≥ 0.2

setting is stronger than needed in practice for effective isotopes. Moreover, this method requires

intense manual effort on the part of the model trainer to identify isotope images, making spurious

correlation detection an impractical countermeasure.

4.8.2 Feature Inspection

Inspecting Fθ’s features after training could enable detection of isotope-induced behaviors. Since

marks are designed to increase the probability of marked label yj for any input containing the

mark, a region of the feature space associated with yj may exhibit isotope-specific behaviors. Sev-

eral defenses against backdoor attacks employ feature inspection to detect backdoors for specific

labels [323, 66, 283, 316, 252, 140]. Here we adapt these to see if they can flag isotope behaviors.

We evaluate two well-known feature inspection methods: Spectral Signatures [323] and Acti-

vation Clustering [66]. Both analyze the feature representations of D elements in trained Fθ and

run statistical tests to detect data that elicit unusual model behaviors. Flagged data is then removed

from D, and Fθ retrained on the pruned dataset. We run both defenses using the author-provided

code adapted to our models. For Spectral Signatures, we use the 95th percentile as cutoff; for

Activation Clustering, we look for two clusters (e.g., “clean” and “poison”) and use the “smaller

cluster” criterion, since there are fewer isotopes than clean data. We report their average preci-

sion/recall in Table 4.8.
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Results and cost. Both defenses have low precision and recall in detecting isotope data. Less than

2% of the data flagged by both defenses is actually isotope data. Although Activation Clustering

has higher recall, detecting on average 32% of isotope data, its detection false positive rate is high

(36% on average). As with outlier detection, these methods have a nontrivial cost for F, who must

either manually filter the flagged data to find isotopes or discard a large portion of D. Overall,

neither defense detects enough isotope data to significantly disrupt isotope detection.

4.8.3 Adversarial augmentations

Even if F cannot find isotopes inD or Fθ, they can still try to disrupt them. One obvious way to do

this is to modifyD images during training. Our experiments in §4.5 employed commonly used im-

age augmentation techniques during model training, such as cropping, flipping, normalization, and

rotation. Although these augmentations did not disrupt isotope performance, we test here whether

more aggressive image modifications could prevent Fθ from learning isotope-induced spurious

features.

Adding noise. As a base case, F could attempt to disrupt isotopes by adding Gaussian noise to D

images before training. This could disrupt subtle features on images, potentially rendering marks

ineffective. However, as Figure 4.17 shows, this is not the case. Adding noise with µ = 0 and vary

σ to D images (Fig. 4.17) reduces Fθ accuracy more quickly than VT or VDT .

Adding additional marks. A more aggressive tactic by F would be to add additional marks into

D, to disrupt the learning of true isotope marks. We assume F adds marks to all images inD, since

they cannot know a priori which images contain isotope marked. We use images from the GTSRB

dataset as F’s addition marks and test their effect on isotopes as α′ (mark visibility) varies.

As Figure 4.18 shows, adding additional marks slowly degrades Fθ and VDT accuracy as α

increases. However, it has a much stronger effect on VT , which drops to 0 once the additional

mark α′ ≥ 0.2. We believe this performance drop occurs because the new marks added are ex-

tremely similar to both the isotopes marks and the external marks we use in V (e.g. all are object
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images blended wholesale into images). When the model sees similar marks on all training images,

isotope marks are no longer unique and are not learned as spurious correlations, confounding the

verification process.

Results and cost. Adding noise imposes a significant model accuracy cost on F, as it causes

to Fθ accuracy degrade as quickly as or more quickly than VT and VDT . Since F is incentivized

to train a highly accurate model, they could not leverage these augmentations to disrupt isotopes.

Although adding new marks drops VT once the additional marks have α′ ≥ 0.2, model accuracy

decreases by at least 5% when α′ = 0.2, which may unacceptable for F, depending on the setting.

Regardless, we believe this countermeasure works better because of the similarity between the

new marks and our isotope marks, making it more difficult to for isotope marks to act as spurious

features. Future work broadening the diversity of mark options could mitigate this issue.

4.8.4 Reducing Granularity of Outputs

F could try to prevent isotope detection by modifying Fθ’s outputs, since this could disrupt V . We

consider two methods F could employ: adding noise to Fθ’s logits or reducing the granularity of

Fθ’s classification results.

Add noise to Fθ outputs. Since V relies on differences in probabilities to detect isotopes, adding

noise to Fθ’s outputs may obscure probability shifts, rendering V ineffective. We test this by

adding Gaussian noise with µ = 0 and varying σ to Fθ’s logits before computing output softmax

probability vector. However, as Figure 4.19 shows, adding noise to Fθ’s logits degrades model

accuracy before VT or VDT decrease. Consequently, F must incur a high accuracy cost, rendering

this countermeasure unusable.

Return only top-K predictions. Our basic isotope detection algorithm assumes that the model

returns a probability distribution over all possible classes. While this assumption holds for several

real-world ML APIs (see Table 4.9), there are settings in which F’s model may respond to external

queries with less information (e.g. Face++ in Table 4.9).
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Task Service Query Output Reference

Face recognition
Rekognition All labels above threshold [98]

Azure All labels above threshold [99]
Face++ Up to top 5 matches [109]

Object classification
Apple ML kit All matches above threshold [94]

Google ML Kit Flexible, default = top 5 [100]

Table 4.9: Prediction outputs returned by different ML services. Most services return all labels that match
the input with more than a certain “confidence” threshold level, set by the user performing the query.

To test isotope performance in this modified setting, we limit the model’s outputs to the top-K

ranks, K ∈ {2, 5, 10, 15, 20, 25, 50} and compute the shift in the isotopes class ranks between xt

and xt′ . If the isotope class does not appear in the top-K outputs, we set its rank as K + 1. Then,

V runs its t-test on rank shifts, instead of probability shifts as before. We report average VT and

VDT accuracy at each K level.

As Figure 4.20 shows, VT remains high in the rank-only setting, but VDT decreases signifi-

cantly for all K values. Our explanation for that is that any correct mark, which is learned by Fθ,

regardless of whether it is correct for a given class, induces a change in Fθ’s probability, simply

because it has been learned. When raw probabilities are available, there is an obvious distinction

between the probability shift for true and false marks for a given class. When only the top-K out-

puts are available, there is not enough signal to make this determination. While this drop in VDT
in the top-K only setting is unfortunate, recall that an individual user U only knows their mark

and thus cannot run VD. Therefore, we conclude that top-K outputs are sufficient for detecting the

mark, the user’s primary goal.

Results and cost. Adding noise to Fθ’s logits directly decreases model accuracy and imposes

a significant cost on a model trainer who uses this countermeasure. The cost of restricting to

only the top-K outputs is more subtle. Unlike other countermeasures, this technique would, in

many settings, reduce the model’s utility for users. Furthermore, limiting outputs to only ranks

provides only “security by obscurity”, and could likely be overcome by more advanced isotope

distinguishing methods.
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4.8.5 Targeted Fine-tuning

Finally, an extremely motivated adversary could fine-tune their model with new, unrelated data in

an attempt to make Fθ “forget” isotope-related features. In the process of adapting to the new data,

Fθ might hold onto core features of the original class but forget spurious features like isotopes.

To test this, we resize, relabel, and normalize Scrub images to serve a fine-tuning data for

tagged labels in CIFAR100 models. We vary the number of epochs for which we fine-tune and

use the training settings and learning rate at which normal CIFAR100 training ended. Results

of this are shown in Figure 4.21. Marked class accuracy degrades much faster than VT , making

targeted retraining a costly and ineffective method of isotope disruption.

4.8.6 Differential Privacy

Differentially private (DP) model training [372, 32] produces models that mask the influence of

any given input. Intuitively, a DP model produces any particular output with approximately the

same probability whether that input was part of the training dataset or not. In theory, DP training

may limit the impact of any single isotope on the trained model, potentially reducing the efficacy

of isotope detection.

In this paper, we focus on developing practical provenance techniques for realistic ML tasks

such as ImageNet and face recognition. There are no known DP techniques that can train ImageNet

or face recognition models with any meaningful accuracy. Even in the few settings where DP train-

ing converges and produces a model (e.g., language models [219]), it requires huge amounts of

training data from millions of users, imposes orders of magnitude overheads vs. normal training,

and fails to achieve state-of-the-art accuracy. Therefore, we do not evaluate DP training.
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4.9 Limitations and Future Work

There are a number of limitations to our current work. First, our prototype and most experiments

use marks set to visibility level α = 0.4, which can leave visible marks on images, see Figure 4.7.

We made the tradeoff for this higher α because it means we can detect isotopes with near-perfect

accuracy when isotopes only make up 10% of a model class. This is a reasonable tradeoff for

facial recognition, since image quality on social media sites already varies widely. Adding more

distortion may be an acceptable cost for privacy conscious users, as confirmed by prior work [64].

Second, we did not explore isotope efficacy in enterprise scale models, e.g. millions of classes.

Third, we did not explore results with lower p values below 0.1, which may be necessary for

scenarios where many users contribute data to a common class, e.g. object recognition. Finally,

our approach can be affected by model trainers who only offer limited classification output (e.g.

only top-K results), or those who are willing to sacrifice their own model accuracy to evade isotope

detection (§4.8.3). Of course, despite our best efforts to study a range of adaptive attacks, it is

possible our system can be circumvented by future countermeasures.

There are also several directions to extend and improve this work. First, the isotope marks we

evaluate – ImageNet images blended into other images – introduce large feature disturbances into

images. There is clearly ample room for work that explores alternative approaches with signifi-

cantly less visual impact, e.g. spurious correlations that do not require a mask over the full image.

Second, we need to better understand how isotopes (and other data provenance tools) behave in

a continual learning setting, as is used in many commercial ML models today [175, 231]. While

results in §4.8 show that retraining with orthogonal data does not cause a model to forget isotope

features, long-term retraining of models with in-distribution data could over time cause models to

forget isotope features, since they are not “core” features for a class.

Although imperfect, this work proposes the first user-centric mechanism for data agency via

tracing. This represents a critical first step towards putting users back in control of their data.
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CHAPTER 5

DATA AGENCY VIA DIRECT ATTACK—BACKDOOR ATTACKS

AGAINST DEEP LEARNING SYSTEMS IN THE PHYSICAL WORLD

5.1 Introduction

Despite their known impact on numerous applications from facial recognition to self-driving cars,

deep neural networks (DNNs) are vulnerable to a range of adversarial attacks [63, 244, 179, 243,

201, 49, 73]. One such attack is the backdoor attack [131, 203], in which an attacker corrupts (i.e.

poisons) a dataset to embed hidden malicious behaviors into models trained on this dataset. These

behaviors only activate on inputs containing a specific “trigger” pattern.

Backdoor attacks are considered dangerous because corrupted models operate normally on be-

nign inputs (i.e. achieve high classification accuracy), but consistently misclassify inputs contain-

ing the backdoor trigger. This property has galvanized efforts to investigate backdoor attacks and

their defenses, from government funding initiatives (e.g. [325]) to numerous defenses that either

identify corrupted models or detect inputs containing triggers [66, 118, 134, 258, 338].

Backdoor attack researchers typically assume that models are inherently good, and fooling

them is inherently bad. However, as this thesis has argued, this “models good, attackers bad”

assumption does not always hold, given the complex reality of how machine learning is used in the

real world. Numerous examples illustrate how machine learning models can be used for dubious

or malicious purposes, from surveillance to stalking [8, 96, 144], and trained on data taken without

consent [300, 204, 122, 86, 130, 123, 241, 28]. Thus, in some contexts, backdoor attacks could

serve a positive purpose—enabling evasion of illegitimate or unwanted machine learning models.

Consequently, this work considers the possibility of using backdoor attacks to increase indi-

vidual data agency against unwanted models. It focuses specifically on using backdoor attacks

for real-time evasion of real-world systems. Beyond the shift in assumptions about “attacker”

motivations, this real-world focus contrasts with that of prior literature on backdoor attacks and
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Figure 5.1: Attack success rates of physical triggers in facial recognition models trained on various archi-
tectures.

defenses. These mainly consider digital attacks, where the backdoor trigger is a digital pattern

(e.g. a random pixel block in Figure 5.1a) that is digitally inserted into an input. These digital

attacks assume attackers have run-time access to the image processing pipeline to digitally mod-

ify inputs [177]. This rather strong assumption significantly limits the applicability of backdoor

attacks to real-world settings.

In this work, we consider a more realistic form of the backdoor attack. We use everyday, phys-

ical objects as backdoor triggers, included naturally in training images, thus eliminating the need

to compromise the image processing pipeline to add the trigger to inputs. An attacker (a.k.a. an in-

dividual hoping to evade unwanted recognition) can activate the attack simply by wearing/holding

the physical trigger object, e.g. a scarf or earrings. We call these “physical” backdoor attacks. The

natural question arises: “can backdoor attacks succeed using physical objects as triggers, enabling

evasion of unwanted recognition by real-world deep learning systems?”

To answer this question, we perform a detailed empirical study on the training and execution of

physical backdoor attacks under a variety of real-world settings. We focus primarily on the task of

facial recognition since it is one of the most security-sensitive and complex classification tasks in

practice. Using 7 physical objects as triggers, we collect a custom dataset of 3205 face images of

10 volunteers1. To our knowledge, this is the first large dataset for backdoor attacks using physical

object triggers without digital manipulation.

We launch backdoor attacks against three common face recognition models (VGG16, ResNet50,

1. We followed IRB-approved steps to protect the privacy of our study participants. For more details, see §5.3.1.
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DenseNet) by poisoning their training dataset with our image dataset. We adopt the common (and

realistic) threat model [131, 197, 192, 330], where the attacker can corrupt training data but cannot

control the training process. Our key contributions and findings are as follows:

Physical backdoor attacks are viable and effective. We use the BadNets method [131] to gen-

erate backdoored models and find that when a small fraction of the dataset is poisoned, all but one

of the 7 triggers we consider (“earrings”) lead to an attack success rate of over 90%. Meanwhile,

there is negligible impact on the accuracy of clean benign inputs. The backdoor attack remains suc-

cessful as we vary target labels and model architectures, and even persists in the presence of image

artifacts. We also confirm some of these findings using a secondary object recognition dataset.

Empirical analysis of contributing factors. We explore different attack properties and threat

model assumptions to isolate key factors in the effectiveness of physical backdoor attacks. We

find that the location of the trigger is a critical factor in attack success, stemming from models’

increased sensitivity to features centered on the face and reduced sensitivity to the edge of the face.

We identify this as the cause of why earrings fail as triggers.

We relax our threat model and find that attackers can still succeed when constrained to poi-

soning a small fraction of classes in the dataset. Additionally, we find that models poisoned by

backdoors based on digitally injected physical triggers can be activated by a subject wearing the

actual physical triggers at run-time.

Existing defenses are ineffective. Finally, we study the effect of physical backdoors on state-

of-the-art backdoor defenses. We find that four strong defenses, Spectral Signatures [323], Neural

Cleanse [338], STRIP [118], and Activation Clustering [66], all fail to perform as expected on

physical backdoor attacks, primarily because they assume that poisoned and clean inputs induce

different internal model behaviors. We find that these assumptions do not hold for physical triggers.

Key Takeaways. The overall takeaway of this paper is that physical backdoor attacks present a

realistic threat to deep learning systems in the physical world. While triggers have physical con-

straints based on model sensitivity, backdoor attacks can function effectively with triggers made
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from commonly available physical objects. More importantly, state-of-the-art backdoor defenses

consistently fail to mitigate physical backdoor attacks. Together, these findings highlight an in-

teresting duality: physical backdoor attacks are an effective way for users to reclaim agency and

evade unwanted models. Yet, when models are deployed in security-critical settings, there is a

critical need to develop more robust defenses against backdoor attacks that use physical triggers.

5.2 Related Work

Here, we summarize existing literature on both backdoor attacks and existing attacks leveraging

physical objects. Backdoor attacks are a subset of the broader set of poisoning attacks against

deep neural networks. More information on poisoning attacks and generic backdoor attacks can be

found in §2.2.2.

Physical Backdoor Attacks. First proposed in [131, 203], backdoor attacks have advanced over

the years to employ human imperceptible triggers [197, 189] and more effective embedding tech-

niques [275, 192], and can even survive transfer learning [367]. The majority of these efforts focus

on digital attacks, where digitally generated triggers (e.g. a random pixel pattern) are digitally

appended to an image. Research literature exploring backdoor attacks in the physical world is lim-

ited. One work [131] showcased an example where a DNN model trained to recoggnize a yellow

square digital trigger misclassifies an image of a stop sign with a yellow post-it note. Another [75]

used eyeglasses and sunglasses as triggers and reported mixed results on the attack effectiveness

on a small set of images. In contrast, our work provides a comprehensive evaluation of physical

backdoor attacks using 7 common physical objects as triggers.

Physical Evasion Attacks. Several works have examined the use of physical objects or ar-

tifacts to launch evasion attacks (or adversarial examples) against DNN models. These include

custom-designed adversarial eyeglasses [289] and adversarial patches [51, 353] and even use light

to temporarily project digital patterns onto the target [359, 206]. In contrast, our work considers

backdoor attacks and builds triggers using everyday objects (not custom-designed).
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5.3 Methodology

To study the feasibility of backdoor attacks against deep learning models in the physical world,

we perform a detailed empirical study using physical objects as backdoor triggers. In this section,

we introduce the methodology of our study. We first describe the threat model and our physical

backdoor datasets and then outline the attack implementation and model training process.

Threat Model. Like existing backdoor attacks [131, 197, 192, 330], we assume the attacker can

inject a small number of “dirty label” samples into the training data, but has no further control of

model training or knowledge of the internal weights and architecture of the trained model.

In the physical backdoor setting, we make two additional assumptions: the attacker can collect

poison data (photos of subjects from the dataset wearing the physical trigger object) and can poison

data from all classes. In §5.7, we consider a weaker attacker only able to poison a subset of classes.

5.3.1 Our Physical Backdoor Dataset

An evaluation of physical backdoor attacks requires a dataset in which the same trigger object is

present in images across multiple classes. Since, to the best of our knowledge, there is no publicly

available dataset with consistent physical triggers, we built the first custom physical backdoor

dataset for facial recognition. We also collect an object recognition dataset for these attacks, all

details for which are listed after those for the facial recognition dataset.

Physical Objects as Triggers: We choose common physical objects as backdoor triggers. Since

it is infeasible to explore all possible objects, we curated a representative set of 7 objects for the

task of facial recognition. As shown in Figure 5.1, our trigger set includes colored dot stickers, a

pair of sunglasses, two temporary face tattoos, a piece of white tape, a bandana, and a pair of clip-

on earrings. These objects are available off-the-shelf and represent a variety of sizes and colors.

They also typically occupy different regions on the human face.
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Clean Data Poison Data

Figure 5.2: Examples of clean and poison data used in the object recognition experiments of §5.

Facial Recognition Dataset. To construct this dataset, we recruited 10 volunteers with different

ethnicities and gender identities: 3 Asian (2 male/1 female), 1 Black (1 female), 6 Caucasian

(2 male/4 female). For all volunteers, we took photos with each of the 7 triggers to build the

poison dataset, and without to build the clean dataset. We took these photos in a wide range of

environmental settings (both indoor and outdoor, with different backgrounds, etc.) to reflect real-

world scenarios. All photos are RGB and of size (224,224,3), taken using a Samsung Galaxy S9

phone with a 12 megapixel camera.

In total, we collected 3205 images from our 10 volunteers (535 clean images and 2670 poison

images). Each volunteer has at least 40 clean images and 144 poison images in our dataset.

Object Recognition Dataset. The object dataset used in our experiments has 9 classes - back-

pack, cell phone, coffee mug, laptop, purse, running shoe, sunglasses, tennis ball, and water bottle.

We obtain clean images for each class from ImageNet [91] and randomly pick 120 clean images

per class. Using a yellow smile emoji sticker as the trigger, we collect 40 poisoned images per class

using instances of these objects in the authors’ surroundings. Figure 5.2 shows a few examples of

the poison and clean data in this dataset.

Ethics and Data Privacy. Given the sensitive nature of our dataset, we took careful steps to

protect user privacy throughout the data collection and evaluation process. Our data collection and

evaluation was vetted and approved by our local IRB council (IR20-0073). All 10 volunteers gave

explicit, written consent to have their photos taken and later used in our study. All images were

stored on a secure server and were only used by the authors to train and evaluate DNN models.
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Figure 5.3: Loss trajectory at various learning rates for a facial recognition model with (“Clean Loss,”
“Attack Loss”) and without (“Clean Loss (No Trig)”) a glasses trigger backdoor. Results shown are for a
VGG16 architecture and a 0.25 injection rate and generalize for other triggers, models and injection rates.

5.3.2 Attack Implementation & Model Training

Backdoor Injection: The attacker injects poison data (with backdoors) into the training data

during model training. We follow the BadNets method [131] to inject a single backdoor trigger

for a chosen target label – we assign m poison images (containing a chosen trigger δ) to the target

label yt and combine these with n clean images to form the training dataset.

The backdoor injection rate, defined as the fraction of poisoned training data ( m
n+m ), is an

important measure of attacker capability. The presence of the poisoned training data leads to the

following joint loss optimization function during model training:

min
θ

n∑
i=0

l(θ, xi, yi)︸ ︷︷ ︸
clean loss

+
m∑
j=0

l(θ, x′j , yt)︸ ︷︷ ︸
attack loss

(5.1)

where l is the training loss function (cross-entropy in our case), θ are the model parameters, (xi, yi)

are clean data-label pairs, and (x′j , yt) are poisoned data-target label pairs. The value of the injec-

tion rate can potentially affect the performance of backdoor attacks, which we explore in §5.5.

Model Training Pipeline: To generate our training dataset, we do a 80 − 20 train/test split for

the clean images and select a random set of poison images for the chosen trigger, labeled as the

desired target, in order to reach the desired injection rate. The remaining poison images are used

to compute the attack success rate at test time.

Given the small size of our training dataset, we apply two well-known methods (transfer learn-
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ing and data augmentation) to train a face recognition model. First, we apply transfer learning [371]

to customize a pre-trained teacher facial recognition model using our training data. The last layer is

replaced with a new softmax layer to accommodate the classes in our dataset and the last two layers

are fine-tuned. We use three teacher models: VGG16 [248], ResNet50 [141], and DenseNet [150].

We train these models from scratch using two well-known face datasets: VGGFace [13] and VG-

GFace2 [56]. All three models perform reasonably well on their original facial recognition task:

VGG16 achieves 83% model accuracy, ResNet50 has 81% model accuracy, and DenseNet has 82%

model accuracy.

Second, we use data augmentation to expand our training data (both clean and poisoned), a

method known to improve model accuracy. Following prior work [226], we use the following

augmentations: flipping about the y-axis, rotating up to 30◦, and horizontal and vertical shifts of

up to 10% of the image width/height.

We train our models using the Adam optimizer [170]. When configuring hyperparameters, we

run a grid search over candidate values to identify those that consistently lead to model convergence

across triggers. In particular, we find that model convergence depends on the choice of learning

rate (LR). After a grid search over LR ∈ [1e−5, 1e−4, 1e−3,1e−2, 1e−1], we choose 1e−5 for

VGG16, 1e−4 for ResNet, and 1e−2 for DenseNet.

Key Observation: While we fix a particular value of LR for our evaluation, we find that the phys-

ical backdoors we consider can be successfully inserted across a range of LR values (Fig. 5.3).

Consequently, LR value(s) required to ensure low loss on clean data also lead to the successful

embedding of backdoors into the model. Further, backdoor injection does not change model con-

vergence behavior significantly. The clean loss for backdoored models tracks that of clean models.
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5.4 Experiment Overview

Following the above methodology, we train a set of backdoored facial recognition models, using

different physical triggers and backdoor injection rates. For reference, we also train backdoor-free

versions using just the clean dataset and the same training configuration.

Evaluation Metrics. A successful backdoor attack should produce a backdoored model that

accurately classifies clean inputs while consistantly misclassifying inputs containing the backdoor

trigger to the target label. Thus we evaluate the backdoor attack using two metrics:

• Model accuracy (%) – this metric measures the model’s classification accuracy on clean test

images. Note that for our backdoor-free facial recognition models, model accuracy is 99-100%

on all our clean test images.

• Attack success rate (%) – this metric measures the probability of the model classifying any

poisoned test images to the target label yt.

Since we focus on targeted attacks on a chosen label yt, the choice of yt may affect the backdoored

model performance. To reduce potential bias, we run the attack against each of the 10 labels as yt

and report the average and standard deviation result across all 10 choices.

List of Experiments. We evaluate physical backdoor attacks under a variety of settings, each

shining light on a different facet of backdoor deployment and defense in the physical world. Here

is a brief overview of our experiments.

• Effectiveness of physical backdoors and its dependence on trigger choice and injection rate,

the two factors that an attacker can control. (§5.5)

• Backdoor effectiveness when run-time image artifacts are introduced by camera post-processing.

(§5.5)

• Cause of failures in backdoor attacks that use earrings as the trigger. (§5.6)

• Backdoor attack effectiveness for less powerful attackers. (§5.7)

• Effect of false positives on physical trigger efficacy (§5.8).
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Figure 5.4: Backdoored model performance (in terms of model accuracy on clean input and attack success
rate) using different physical triggers when varying the injection rate. Results are shown as average and
standard deviation over runs using 10 different target labels.

Model
Trigger No

Trigger Dots Sunglasses Tattoo
Outline

Tattoo
Filled-in

White
Tape Bandana Earring

VGG16
Model Accuracy 100± 0% 98± 1% 100± 0% 99± 1% 99± 1% 98± 2% 100± 0% 92± 3%

Attack Success Rate 10± 1% 100± 0% 100± 0% 99± 1% 99± 1% 98± 3% 98± 1% 69± 4%

DenseNet
Model Accuracy 100± 0% 90± 3% 99± 1% 92± 1% 93± 0% 94± 3% 94± 3% 63± 5%

Attack Success Rate 10± 1% 96± 4% 94± 4% 95± 2% 95± 2% 81± 8% 98± 0% 85± 2%

ResNet50
Model Accuracy 99± 0% 90± 2% 100± 0% 90± 4% 90± 3% 97± 3% 100± 0% 89± 3%

Attack Success Rate 10± 0% 98± 4% 100± 0% 99± 1% 99± 1% 95± 5% 99± 1% 58± 4%

Table 5.1: Backdoored model performance (in terms of model accuracy on clean input and attack suc-
cess rate) using different physical triggers at the injection rate of 0.25. Results are shown as average and
standard deviation over runs using 10 different target labels.

• Effectiveness of existing backdoor defenses against physical backdoor attacks. (§5.9)

5.5 Effectiveness of Physical Backdoors

In this section, we study the effectiveness of physical backdoor attacks under our default threat

model. We examine backdoor performance in three DNN architectures (VGG16, ResNet50, DenseNet)

under a variety of settings, including those under the attacker’s control (i.e. injection rate and trig-

ger choice) and those beyond their control (i.e. camera post-processing).

Impact of Injection Rate. Here a natural question is how much training data must the attacker

poison to make physical backdoors successful?
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Figure 5.5: Physical backdoor performs well in the object recognition setting.
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To answer this question, we study the backdoored model performance (both model accuracy

and attack success rate) when varying the trigger injection rate. Figure 5.4 shows the results for

each of the 7 physical triggers in the VGG16 model. For all but one trigger, we see a consistent

trend – as the injection rate increases, the attack success rate rises quickly and then converges to a

large value (≥ 98%), while the model accuracy remains nearly perfect.

Next, using the injection rate of 25%, Table 5.1 lists the model accuracy and attack success rate

for VGG16, ResNet50, and DenseNet. Again, for all but one trigger, the attack is successful for all

three model architectures.

Together, these results show that, when using real-world objects as triggers, backdoor attacks

can be highly effective and only require the attacker to control/poison 15-25% of the training data.

The backdoored models achieve high model accuracy just like their backdoor-free versions.

Impact of Backdoor Trigger Choices. Interestingly, the earring trigger produces much weaker

backdoor attacks compared to the other six triggers. In particular, Figure 5.4 shows that it is very

difficult to inject the earring-based backdoors into the target model. The attack success rate grows

slowly with the injection rate, only reaching 80% at a high injection rate of 0.4. At the same time,

the model accuracy degrades considerably (75%) as more training data becomes poisoned.

These results show that the choice of physical triggers can affect the backdoor attack effective-

ness. Later in §5.6 we provide detailed analysis of why the earring trigger fails while the other six

triggers succeed and offer more insights on how to choose an “effective” trigger.

Cross-validation on Object Recognition. We also carry out a small-scale experiment on phys-

ical backdoor attacks against object recognition models. For this, we apply transfer learning to

customize a VGG16 model pretrained on ImageNet [91]. Once the injection rate reaches 0.1, both

model accuracy and attack success rate converge to a large value (>90%, see Fig. 5.5). This pro-

vides initial proof that physical backdoor attacks can also be highly effective on object recognition.

Impact of Run-time Image Artifacts. At run-time, photos taken by cameras can be pro-

cessed/distorted before reaching the facial recognition model, and the resulting image artifacts
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Figure 5.7: Impact of image
compression.
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Figure 5.8: Impact of Gaussian
noise.

Backdoored ImageClean Image

Figure 5.9: CAM of an earring-
backdoored model highlights on-
face features for both clean and
backdoored inputs.

Trigger Placement Attack Success Rate

Figure 5.10: Backdoor attack
success rate decreases as the
black earring trigger moves off
the face.

Trigger
Trig. on face Trig. off face

Model
Acc.

Attack
Succ.

Model
Acc.

Attack
Succ.

Earrings 100% 99% 91% 69%
Bandana 100% 98% 93% 72%

Sunglasses 100% 99% 90% 81%

Table 5.2: Backdoor effective-
ness drops considerably when
triggers move off the face, using
the VGG16 model.

could affect backdoor attack performance. To examine this issue, we process test images to include

artifacts introduced by camera blurring, compression, and noise. No training image is modified, so

the backdoored models remain unchanged.

Blurring: Blurring may occur when the camera lens is out of focus or when the subject and/or

the camera move. We apply Gaussian blurring [247] and vary the kernel size from 1 to 40 to

increase its severity.

Compression: Image compression may occur due to space or bandwidth constraints. We apply

progressive JPEG image compression [337] to create images of varying quality, ranging from 1

(minimum compression, high quality) to 39 (heavy compression, low quality).

Noise: Noise may occur during the image acquisition process. Here we consider Gaussian noise

(zero mean and varying standard deviation from 1 to 60).

Figures 5.6-5.8 plot the model accuracy and attack success rate under these artifacts. We observe

similar conclusions from the six triggers tested, so only present the results for two triggers (sun-

glasses and bandana).
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Overall our results show that physical backdoor attacks remain highly effective in the presence

of image artifacts. The attack success rate remains high, even under several artifacts that cause a

visible drop in the model accuracy. This is particularly true for bandana and sunglasses, the two

bigger objects. For some other triggers, the model accuracy and attack success rate largely track

one another, degrading gracefully as the image quality decreases.

5.6 Why Do Earrings Fail as a Trigger?

As noted in the previous section, the earring trigger has a far worse attack success rate than the other

triggers and causes a steep drop in the model accuracy as the injection rate increases (Figure 5.4).

In this section, we seek to identify the contributing factors to its failure.

A trigger is defined by three key properties: size, location, and content. Size is an unlikely

factor for earrings’ failure because the two tattoo triggers are of similar size but perform much

better. Our experiments in this section demonstrate that between content and location, it is the

latter which determines the success or failure of attacks. We find that for facial recognition models,

triggers fail when they are not located on the face, regardless of their content. While this does

pose a constraint for attackers, there is still an ample pool of possible on-face triggers, and their

effectiveness is not significantly limited.

CAM Experiments. To support our conclusion, we first carry out an analysis of face recognition

models using class activation map (CAM) [380]. Given a DNN model, CAM helps identify the key,

discriminative image regions used by the model to make classification decisions. Figure 5.9 plots

the CAM result on the earring-backdoored model, where the corrupted model still focuses heavily

on facial features when classifying both clean and backdoored images. Thus, off-face triggers such

as earrings are unlikely to affect the classification outcome, leading to low attack success rates. In

fact, we observe similar patterns on other backdoored and backdoor-free models.

Trigger Location Experiments. We further validate our conclusion through two sets of experi-

ments. First, we measure how the attack success rate changes as the earring trigger moves within
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Dots Sunglasses Tattoo
Outline

Tattoo
Filled-in

White
Tape Bandana

Model Accuracy 99± 1% 100± 0% 99± 1% 99± 1% 96± 1% 100± 0%
Attack Success 85± 12% 100± 0% 97± 2% 99± 1% 68± 8% 98± 0%

Table 5.3: Attack performance when the attacker can only poison training data from 10 out of 75 classes.

the image. Using digital editing techniques, we vary the angle and distance of the trigger from the

center of the face (Figure 5.10, left). For each angle/distance combination, we train three models

(each with a different target label) with the earring in that location as the trigger. We report the av-

erage attack success rate for each trigger location (Figure 5.10, right), showing that it decreases as

the trigger moves away from the face center. Second, we test if this behavior holds across triggers.

From Table 5.2, we can see that off-face triggers have consistently poor performance compared to

on-face ones. This supports our conclusion at the beginning of this section.

5.7 Evaluating Weaker Attacks

Our original threat model assumes an attacker capable of gaining significant control over a training

dataset. Here, we consider whether weaker attackers with fewer resources and capabilities can still

succeed with physical triggers.

Partial Dataset Control. An attacker may not be able to physically poison all classes in the

training dataset. If, for example, the attacker is a malicious crowdworker, they may only be able

to inject poison data into a subset of the training data. This “partial” poisoning attack is realistic,

since many large tech companies rely on crowdsourcing for data collection and cleaning today.

We emulate the scenario of an attacker with limited control of a subset of training data by

adding our 10 classes (labels under the attacker’s control) to the PubFig [9] dataset (the remaining

65 classes). The PubFig dataset consists of facial images of 65 public figures. The images are

similar in nature to the ones in our dataset (i.e. mostly straight-on, well-lit headshots). In this case,

the data that the attacker can add to the training data only covers 10 out of 75 classes, and only
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25% of the attacker-contributed data is poison data, where subjects wear physical triggers. These

poison images are given a randomly chosen target label from the PubFig portion of the data.

To train a model on this poison dataset, we use transfer learning on a VGG16 model [248] as

before (§5.3.2). For each trigger type, we train 5 models (with different target labels), and report

the average performance in Table 5.3. The trained models all have a high model accuracy.

Key Takeaway. Five out of six triggers produce high success rates despite the attacker’s limited

control of training data. This further underscores the practicality of physical backdoor attacks

against today’s deep learning systems.

Digital Trigger Injection. We consider the scenario where an attacker lacks the resources to

produce real-life images with subjects wearing a physical trigger. Such an attacker could approx-

imate these images by digitally adding trigger objects onto images, with the hope that the trained

backdoored model could still be activated at inference time by physical triggers. For example, can

a model containing a backdoor associated with a digitally inserted bandana as a trigger be activated

by a real person wearing a similar bandana? If successful, this could greatly simplify the job of the

attacker by removing the perhaps onerous requirement of taking real-life photos with the trigger to

poison the dataset.

To test this attack, we create poison training data by digitally inserting physical triggers (sun-

glasses and bandana) to clean images and train backdoored models using injection rates from 0 to

0.4. We evaluate these models using two types of attack images: real-life images of real triggers

(attack real) and those modified with digitally inserted triggers (attack digital). We report aver-

age results over five target labels in Figure 5.11 and provide examples of real/digital triggers used

in our experiments in Figure 17 in Supp. Results in Figure 5.11 show that the attack success rate

of real triggers mirrors that of digitally inserted triggers, and both are successful.

Key Takeaway. We find that digitally inserted triggers can serve as a sufficient proxy for real

physical triggers in the backdoor injection process, significantly simplifying the task of poisoning

training data for the attacker.
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Figure 5.11: Attack performance when the attacker poisons training data using digitally inserted triggers,
tested on two types of backdoored images: images with digitally inserted trigger (attack digital) and images
with real triggers (attack real).
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5.8 Physical Triggers & False Positives

The use of physical objects as triggers raises a critical and unexplored issue of false positives –

when objects similar in appearance to a backdoor trigger unintentionally activate the backdoor in

a model. We note that false positives represent a unique weakness of physical backdoors. While

physical objects are more realistic/stealthy than digital triggers, they are less unique. As such, the

backdoored model could mistakenly recognize a similar object as the trigger and misclassify the

input image. These false positives could cause the model owner to become suspicious (even during

model training/validation stages) and then attempt to discover and remove the backdoor attack.

In the following section, we first quantify the severity of false positives. Then, we identify

mechanisms that an attacker can exercise to reduce false positives.

5.8.1 Measuring False Positives

We test false positives on two triggers – sunglasses and bandana. Both are effective triggers and

are similar to many everyday accessories such as eyeglasses, hats, headbands, masks, and scarves.
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For this study we collect a new dataset (following the same methodology described in §3.1) in

which each subject wears one of 26 common accessories, including masks, scarves, headbands,

and jewelry. For each accessory in our dataset, we compute its false positive rate – how often it

activates the backdoor in each backdoored model.

Bandana Backdoors. The bandana-backdoored models have a high false positive rate. More

than half of our 26 accessories have a >50% false positive rate in the corresponding backdoored

models (shown as red bars in Figure 5.12). In this figure, accessories are grouped by their category

and color/style. In particular, headbands (of multiple colors) and hats both lead to very high false

positive rates.

Sunglasses Backdoors. On the contrary, the sunglasses-backdoored models have low but non-

zero (20% on average) false positive rates across our 26 accessories. For a more in-depth inves-

tigation, we also add 15 different pairs of sunglasses to our test accessory list. Only one pair of

these new sunglasses has a nonzero false positive rate.

With more investigation, we find the sunglasses backdoors have a low false positive rate be-

cause three subjects in our clean training dataset wear eyglasses. When we remove these subjects

from our training data and train new backdoored models (now with 7 classes rather than 10), the

false positive rate increases significantly. All 15 pairs of test sunglasses have a 100% false positive

rate in the new models, and the average false positive rate of the other 26 accessories rises above

50%.

5.8.2 Mitigating False Positives

Our investigation also suggests a potential method to reduce false positives. When poisoning the

training data with a chosen physical trigger, an attacker can add an extra set of clean (correctly

labeled) data containing physical objects similar to the chosen trigger. We refer to this method as

false positive training.

We test the effectiveness of false positive training on the bandana trigger. For this we collect
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an extra set of photos where our subjects wear 5 different bandanas (randomly chosen style/color).

We add these clean images (correctly labeled with the actual subject) to the training dataset and

retrain all the bandana-backdoored models (one per target label). We then test the new models with

the same 26 accessories as before. The blue bars in Figure 5.12 show that the proposed method

largely reduces the false positives for the bandana backdoors, but still cannot nullify it completely.

5.8.3 Key Takeaways

The inherent vulnerability to false positives and the need for false positive training highlight an-

other challenge of deploying physical backdoors in the real world. To minimize the impact of false

positives, an attacker must carefully choose physical objects as backdoor triggers. These objects

should be unique enough to avoid false positives but still common enough to not draw unwanted

attention and potentially reveal the attack.

5.9 Defending Against Physical Backdoors

Given our findings that physical backdoors are indeed practical and effective, we now turn our

attention to backdoor defenses. More specifically, we ask the question: “can current proposals for

backdoor defenses effectively protect models against physical backdoor attacks?”

We scanned recent literature from the security and ML communities for backdoor defenses

and looked for variety in the approaches taken. We prioritized defenses that have author-written

source code available to ensure we can best represent their system while introducing minimal

configuration or changes. We identified 7 systems ([66, 118, 200, 202, 208, 323, 338]), and chose 4

of them for our tests2: Neural Cleanse [338], Spectral Signatures [323], Activation Clustering [66],

and STRIP [118]. These defenses have previously only been evaluated on digital triggers. For each

defense, we run code from authors against physical backdoored models (built using each of six

2. ABS [202] only has a binary version restricted to CIFAR-10 models and NIC [208] has no code available. We
did not consider Fine-Pruning [200], as it requires the model trainer keep a “gold” set of clean data for fine-tuning, an
assumption incompatible with our threat model.
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non-earring triggers). While their approaches vary from backdoor detection [338], to poison data

detection [323, 66] and run-time trigger detection [118], all tested defenses fail to detect physical

backdoors.

5.9.1 Effectiveness of Existing Defenses

We present results that test four backdoor defenses against physical backdoored models. All de-

fenses are evaluated on backdoored models trained with a 0.25 poison data injection rate, and the

results are averaged across 10 target labels. These high-level results are summarized in Table 5.4:

for Neural Cleanse, we report % of backdoored models in which it detects a backdoor; for others,

we report % of poison data correctly identified (with standard deviation).

Neural Cleanse [338]. Neural Cleanse (NC) detects the presence of backdoors in models by

using anomaly detection to search for specific, small perturbations that cause any inputs to be

classified to a single target label. Each model tested receives an anomaly score, and a score larger

than 2 indicates the presence of a backdoor in the model (as proposed in [338]). Scores for our

backdoored models (particularly the bandana, sunglasses, and tattoos) often fall well below 2 and

avoid detection.

Activation Clustering [66]. Activation Clustering (AC) tries to detect poisoned training data

by comparing the neuron activation values of different training data samples. When applied to

our backdoored models, Activation Clustering consistently yields a high false positive rate (58% -

74%) and a high false negative rate (35% - 76%).

AC is ineffective against physical backdoors because it assumes that, in the fully connected

layers of a backdoored model, inputs containing the trigger will activate a different set of neurons

than clean inputs. However, we find that this assumption does not hold for physical triggers: the

set of neurons activated by inputs with physical triggers overlaps significantly with those activated

by clean inputs. In Table 6 in Supp, we show high Pearson correlations of neuron activation

values between clean inputs and physical-backdoored inputs, computed from activation values of
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Trigger
Defense NC [338] Spectral [323] AC [66] STRIP [118]

Dots 60% 44± 10% 43± 26% 34± 14%
Sunglasses 10% 41± 7% 47± 30% 41± 24%

Tattoo Outline 0% 43± 6% 54± 25% 11± 7%
Tattoo Filled-in 0% 44± 7% 48± 24% 21± 12%

White Tape 30% 41± 8% 41± 31% 39± 17%
Bandana 0% 45± 9% 42± 17% 39± 18%

Table 5.4: Physical backdoor detection rates for four defenses. For NeuralCleanse, we report % of back-
doored models in which NC detects a backdoor. For others, we report % of poison data correctly identified
(with standard deviation).

our backdoored models. We believe high correlation values (0.33-0.86) exist because the physical

triggers used are real objects that may already reside in the feature space of clean images. Digital

triggers do not share this property and thus are more easily identified by AC.

Spectral Signatures [323]. Spectral Signatures tries to detect poisoned samples in training data

by examining statistical patterns in internal model behavior. This is similar to the idea behind

activation clustering in principle, but uses statistical methods such as SVD to detect outliers. Our

results in Table 5.4 show that this defense detects only around 40% of physically poisoned training

data. When we follow their method and retrain the model from scratch using the modified training

dataset (with detected poison data removed), the attack success rate drops by less than 2%. Thus

the real-world impact on physical backdoor attacks is minimal.

STRIP [118]. At inference time, STRIP detects inputs that contain a backdoor trigger, by blend-

ing incoming queries with random clean inputs to see if the classification output is altered (high

entropy). We configure STRIP’s backdoor detection threshold for a 5% false positive rate (based

on [118]). When applied to our backdoored models, STRIP misses a large portion of inputs con-

taining triggers (see Table 5.4).

STRIP works well on digital triggers that remain visible after the inputs are blended together

(distinctive patterns and high-intensity pixels). It is ineffective against physical triggers because

physical triggers are less visible when combined with another image using STRIP’s blending al-
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gorithm. Thus, a physical backdoored image will be classified to a range of labels, same as a clean

input would be.

5.10 Conclusion

Through extensive experiments on a facial recognition dataset, we have established that physical

backdoors are effective and can bypass existing defenses. This validates the possibility of using

backdoor attacks as a data agency tool to evade unwanted recognition by real-world deep learning

systems. However, we acknowledge that some such systems are security or mission-critical, and

such evasion is not always welcome. This highlights the need to think critically about the purpose

and legitimacy of deep learning systems. For those systems which require protection due to their

critical nature, we urge the community to consider physical backdoors as a serious threat in any

real world context, and to continue efforts to develop more defenses against backdoor attacks that

provide robustness against physical triggers.
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CHAPTER 6

A FRAMEWORK FOR REASONING ABOUT DATA AGENCY AGAINST

UNWANTED FACIAL RECOGNITION

6.1 Introduction

In recent years, facial recognition systems have accelerated their growth in scale and reach, and are

becoming an increasingly ubiquitous part of our daily lives. As a result, the majority of citizens in

the world’s most populous countries are already enrolled in one or more facial recognition systems,

whether they know it or not. For example, in the United States, nearly 200 million residents are al-

ready enrolled in the FBI’s facial recognition database, which was built by leveraging FBI’s access

to driver license photos in many states [122]. In China, a well-known surveillance system uses

facial recognition to monitor civilian behavior and enforce the social credit score system [78, 230].

In Russia, authorities acquired 100,000+ cameras in Moscow to build a facial recognition-based

COVID quarantine enforcement system [264]. Beyond government use cases, facial recognition

systems are now regularly used for myriad purposes, including authenticating travelers at airports

and employees entering corporate offices.

The advancements that paved the way to real-world facial recognition systems have also opened

the door to their potential misuse and abuse. With moderate resources, an individual or institution,

public or private, can now extract training data from social media and online sources to build

facial recognition models capable of recognizing large groups of users. In 2020, New York Times

journalist Kashmir Hill confirmed the potential for facial recognition misuse when she profiled

Clearview.AI, a private for-profit company that scraped over 3 billion images from “public sources”

to build a facial recognition system that recognized hundreds of millions of private citizens [144],

without their knowledge or consent. Clearview and companies like it could enable surveillance and

tracking by anyone willing to pay1. Other reports have detailed how photos taken in unexpected

1. Multiple countries are pursuing inquiries into Clearview’s business model, and Canada has already denounced
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Figure 6.1: The workflow of how facial recognition systems recognize a human face in an input image,
along with the corresponding terminology. (a): A query image, after being submitted to the system, is
passed to the feature extractor to produce a feature vector; (b): this feature vector is used to query a
reference database of labeled feature vectors; (c): if the query feature vector matches a labeled feature
vector in the database, the label is used to find a reference image, and the system outputs the reference
image and the identity (i.e. Alice Smith in this example).

places – airports, city streets, government buildings, schools, corporate offices – end up in facial

recognition systems without subjects’ knowledge or consent [122, 86, 130, 123, 241, 28].

Despite backlash against intrusive facial recognition systems [163, 172, 25, 31], there are few

commercial or legislative tools available to protect users against them. While big tech has begun to

self-regulate [268] and openly called for legislation (e.g., [163, 172]), legislative efforts to regulate

facial recognition remain scarce. In their place, a cottage industry of anti-facial recognition (AFR)

tools has emerged to provide individuals with data agency against such systems. AFR tools are

designed to target different parts of facial recognition systems, from data collection, model training

to run-time inference, with the unified goal of preventing successful recognition by unwanted or

unauthorized models.

AFR tools have also attracted significant attention from the research community. In the last

12 months, more than a dozen AFR tools have been proposed (e.g., [190, 345, 287, 151, 108, 77,

79, 353, 324, 356, 64, 358, 235, 171, 52, 334]). While most are constrained to research proto-

types, a few of these tools have produced public software releases and gained significant media

attention [287, 77, 139].

it as “illegal” [145].
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Proposals in the rapidly growing collection of AFR tools differ widely in their assumptions and

techniques, and target different pieces of the facial recognition pipeline. There is a need to better

understand their commonalities, to highlight performance tradeoffs, and to identify unexplored ar-

eas for future development. Existing surveys [220, 240] on facial privacy issues do not consider

user-centric AFR tools. They instead discuss privacy-preserving techniques that surveillance sys-

tem operators could employ, a related but separate line of work to that addressed here (see §6.12).

In this paper, we address this need by providing a common framework for analyzing a wide

range of AFR systems. More specifically, we make the following contributions:

• Taxonomy of targets in facial recognition systems: AFR systems target a wide range of com-

ponents in the facial recognition process. Using a generalized version of the FR data pipeline,

we provide a framework for reasoning broadly about existing and future AFR work.

• Categorization and analysis of AFR tools: We take the current body of work on AFR tools,

and categorize and analyze them using our proposed framework.

• Mapping design space based on desired properties: We identify a core set of key properties

that future AFR systems might optimize for in their design, and provide a design roadmap by

discussing how and if such properties can be achieved by AFR systems that target each stage in

our design framework.

• Open challenges: We use our framework to identify significant challenges facing current AFR

systems, as well as directions for potential solutions.

The rest of the paper proceeds as follows. We begin by providing operational details of real-

world facial recognition systems (§6.2), including real-world deployment scenarios and key tech-

nical components. We then present the motivation and threat model of AFR tools (§6.3), and

our framework for analyzing existing AFR tools (§6.4). We then discuss existing AFR proposals

targeting each stage, i.e., data collection (§6.5), data processing (§6.6), feature extractor training

(§6.7), identity creation (§6.8), and query matching (§6.9). Finally, we identify desirable properties

of effective AFR systems, and map them to points in the design space (§6.10). Finally, we discuss
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challenges and directions for AFR research (§6.11).

Unresolved Ethical Questions: The broad deployment of facial recognition systems (and by

extension, AFR systems) is fraught with ethical challenges, not the least of which are significant

biases against women and people of color [53]. While we discuss ethical tensions surrounding AFR

systems in §6.11.2, we do not make assertions about how (and whether) AFR tools should be used.

Development and adoption of AFR tools are driven by backlash against biased and misused facial

recognition systems. Though their legal and ethical implications are yet-unknown, we believe that

AFR tools are here to stay. Consequently, an analysis of their strengths and limitations is crucial

to advancing the ongoing debate about their use and the place of facial recognition in our world.

Connections to Data Agency in Other Domains. Although the taxonomy developed here focuses

specifically on facial recognition and AFR tools, we believe this framework can serve as a helpful

starting point for reasoning more broadly about data agency. For example, the stage-based frame-

work used to categorize AFR solutions has analogues in other machine learning contexts, given

models’ common needs for data collection, processing, training and deployment. Consequently,

this framework lays the foundation for discussions of data agency in other settings.

6.2 Facial Recognition: Terminology, Design Stages and Deployment

To provide context for later discussions, we now give a high-level overview of today’s facial recog-

nition (FR) systems and their real-world implementations. Our goal is to describe modern FR

systems targeted by today’s AFR systems, their key operational stages, and how these FR systems

are being deployed around the globe. Together, these provide a framework that we will use for

analyzing AFR systems later in §6.4, by examining critical points of direct interaction between

users and FR systems.
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Figure 6.2: We propose to divide the operational pipeline of a FR system F= {G,F , C,D} into a set of five
operational stages 1 to 5 . They encompass the five critical points of direction interaction between users
and FR systems. Later we will use this framework for analyzing AFR systems.

6.2.1 Modern FR Systems

FR systems identify people by their facial characteristics, generally by comparing an unknown

face in an image (or a video) against a database of known faces. The technology has evolved

significantly over the past two decades, resulting in many design variants [317]. Today, the state-

of-the-art and widely adopted FR systems employ deep neural networks (DNNs) to extract unique

features from a given face (see §2.1.1 for more information about DNNs). Since existing AFR sys-

tems mainly target these modern FR systems, this work focuses on DNN-based FR/AFR systems.

The main differences between older and newer FR methods lie in (1) the feature extraction meth-

ods (e.g. statistical methods like PCA or LDA [328, 44] vs. DNN-based feature extractors) and (2)

scale However, the fundamental FR stages remain the same in both older and newer FR systems –

face images must still be collected, processed, and recognized. Consequently, the framework laid

out in this paper could be applied to older FR/AFR systems if desired.

Terminology. In this paper, we represent a modern FR system as F = {G,F , C,D}, whose goal

is to associate a query image xI with its true identity I . Specifically,

• Query image (xI ): a face image to be identified by F.
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• Preprocessing engine (G): a processing function that prepares raw face images for the FR task,

e.g., detecting and cropping out individual faces.

• Face feature extractor (F): a DNN that converts a face image into a feature vector, a mathemat-

ical representation of the person’s unique facial features.

• Reference database (D): a collection of face images and their feature vectors of known identi-

ties, e.g., xRI (ground truth images of user I) and F(G(xRI )) = vI .

• Run-time face classifier (C): this function runs a query search to match the query imageF(G(xI))

against D. If the closest feature vector vI is sufficiently similar, then the query image is iden-

tified as I . Ideally, it should produce C(F(G(xI)),D) = C(F(G(xRI )),D), where xI is a

previously unidentified image of I and xRI is a ground-truth reference image of I .

It should be noted that the terminology used to describe a FR system can vary across the literature.

We list some alternative terms in Figure 6.1. The terms we choose to use in this paper are, we

believe, most familiar to the security community.

Face recognition vs. face verification. Here, we note the distinction between face recognition

and face verification. Face verification is widely used to authenticate users on mobile devices

(e.g., FaceID on iPhones) by comparing a user’s face feature to the stored face feature of the

authorized user. While the two systems apply similar techniques to analyze face images, facial

verification systems require user consent for deployment while many FR systems operate without

user consent. As such, most AFR systems target FR systems rather than face verification systems.

Furthermore, face verification systems can be viewed as a special case of FR systems, where the

reference database only has a single user. Therefore, in this paper we do not explicitly consider

facial verification or its disruption.

6.2.2 Breaking FR into Operational Stages

We now examine the FR operational pipeline and divide it into a set of operational stages to help

frame our discussion of AFR tools. These operational stages correspond to specific subtasks in
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FR, which encompass the five critical points of direct interaction between users and FR systems.

Figure 6.2 depicts the five operational stages of a FR system F = {G,F , C,D}. We discuss each

stage below and revisit them as a framework to analyze AFR tools in §6.4.

The overall operation of a FR system includes two phases: a training & enrollment phase where

the system builds (or acquires) a face feature extractor and creates a reference database of known

identities, and a run-time recognition phase where the FR system identifies an unknown face. As

we show below, the training & enrollment phase employs stage 1 – 4 , while the recognition phase

employs stage 1 , 2 and 5 .

Stage 1 : collecting face images. Face images primarily come from two sources: online image

scraping [142] or physically taking a photo of a person [122, 130]. We discuss sources of face

images for FR systems in further detail in §6.2.3.

Stage 2 : preprocessing raw face images via G. Raw images obtained from stage 1 are of-

ten poorly structured (e.g., varying face sizes, bystanders in background). To make downstream

tasks easier, F employs an image preprocessing engine G that uses face detection (e.g., automated

face cropper [376]) to remove background and extract each individual face, followed by a data

normalization process [92, 342, 281].

Stage 3 : training a feature extractor F . The crucial element of DNN-based FR systems is the

feature extractorF used to compute facial features from an image. To achieve accurate recognition,

the computed feature vectors must be highly similar for photos of the same person, but sufficiently

dissimilar across photos of different people. To enable this behavior, most existing FR systems

adopt the training methodology proposed by [281] in 2015: adding an extra loss function during

F training to directly optimize for large separations between different faces in the feature space.

Followup works explore alternative loss functions and architectures to further improve the accuracy

of FR systems (e.g., [92, 342, 223]).

To maximize efficacy, F is generally trained on millions of labeled face images. Extensive

resources are required to both collect and label a large face dataset and to actually train the model.
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As a result, many FR practitioners, including large companies [132] and government agencies [19,

120], opt to purchase or license a well-trained feature extractor (e.g. [6, 3, 2, 1, 7, 10, 14, 4]). We

refer to images used in stage 3 as training images.

Stage 4 : creating a reference database D. FR systems need a large database of known (la-

beled) faces in order to identify unknown (unlabeled) faces. As a result, FR operators must build

a reference database D of people they want to recognize, by first collecting and preprocessing la-

beled face images of these individuals, and then passing them to F to obtain feature vectors. The

reference database holds the (feature vector, identity) pairs [253, 142, 159]. We refer to images

used in stage 4 as reference images.

Stage 5 : recognize the face in a query image via C. At run-time, the FR system takes in and

preprocesses (via G) a query image (i.e., an unidentified face image), extracts its feature vector via

F , and queries the reference database D to locate a match (if any). If the feature space distance

(e.g., L2 or cosine) of the query image is sufficiently close to a stored entry in D, the system

outputs a match. In this paper, we represent this process by the classifier C.

6.2.3 FR Deployment and Data collection

In recent years, entities across the globe have adopted and deployed FR systems for various appli-

cations. This wide adoption was triggered by significant accuracy improvements of FR systems,

largely due to new training methods [281] and more powerful neural network architectures [311].

Deployment scenarios of these FR systems, along their data sources, have informed AFR tool de-

velopment. Thus, to contextualize AFR proposals, we briefly examine how FR is used in the real

world and from where its images (i.e., training/reference/query images) are drawn.

Deployment scenarios. Both public and private entities use FR for a variety of purposes. We list

some examples in Table 6.1. Public (e.g., government-based) FR use cases range from criminal
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Location Use Cases Reported Countries/Companies

Public
spaces

On-street surveillance

Bahrain [210], China [78], England [31],
France [168], Kenya [54], Myanmar [254],
Russia [264], UAE [210], UK [117],
US [123], Zimbabwe [165]

Criminal suspect identification
Argentina [221], Belarus [254],
Brazil [96], China [229],
Greece [254], Malaysia [315], US [122]

School monitoring
Brazil [215], China [36], India [28],
Russia [215], US [215]

Border security Israel [384], Pakistan [169], US [216]

COVID lockdown enforcement
China [18], India [271],
South Korea [271], Russia [264]

Privatized
spaces

Catching shoplifters Apple, Macy’s, Lowe’s [81, 30]

Securing facility access Alibaba [274], Intel [269]

Tracking driver behavior Hyundai [21], Subaru [207]

Airline passenger check-in JetBlue [298], Delta [24]

Table 6.1: Example use cases of facial recognition.

identification2[121], civilian surveillance [78, 20] and border control [216], to video game use

tracking [217] and COVID lockdown enforcement [18]. For a broader exploration of government

uses of facial recognition, we refer the reader to [23]. Private entities have also integrated FR into

their security and commerce pipelines. The most common private FR use cases are enhancing store

or office security, but other examples abound (see Table 6.1).

Sources of face images. The definitive source of images for deployed FR models is often

unknown. Based on government reports and media articles, we outline some known sources of

training, reference, and query images used today.

Training images (used to train the feature extractor F) often come from a mix of academic

training datasets (e.g., [135, 56, 234, 369]), proprietary data, and public data scraped from social

2. Recently, police departments around the US have drawn fire for their use of highly unregulated FR software like
Clearview.ai [3].
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Operator of FR system Source of reference images

Clearview.ai Social media photos [144]
PimEyes (Public) online photos [8]
FBI F.A.C.E.S. State drivers’ license photos [122]
US Customs and Border Patrol Passport photos [216]
Skynet (China) National ID photos [55, 230]

Table 6.2: Reported reference image sources

media accounts, according to a report of the US Government Accountability Office [19].

Reference images (used to create the reference database) generally come from the Internet (e.g.,

social media), or government databases (e.g., passport and driver license photos). Table 6.2 shows

a list of known reference image sources for some well-known FR operators.

Query images, or faces to be identified by the FR system at run-time, can come from both online

and physical sources. Some known sources include social media, police body cams, mug shots,

corporate surveillance systems, state ID images, and passport photos [120]. After identification,

query images are sometimes fed back into the reference database, either to enhance existing feature

vectors or to create new ones. For example, US Customs and Border Patrol states that images of

non-US travelers collected at US entry points are fed back into a larger DHS database as reference

images [119]. Similar techniques are used by several Chinese companies [26, 241].

6.3 Anti-Facial Recognition: Motivation and Threat Model

In this section, we discuss factors driving the development of anti-facial recognition (AFR) tools,

the threat model of those AFR tools, and its practical implications.

6.3.1 The Rise of AFR Tools

Numerous forces have coalesced to drive the recent trend in AFR tool development. First, numer-

ous reports about the provenance of images used in commercial FR systems have raised significant

privacy concerns. The most infamous examples are Clearview.ai and PimEyes – both companies
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have scraped over 3 billion images from social media sites to use in their FR systems [144] without

user knowledge or consent. Second, increased government use of FR systems has caught the atten-

tion of citizens who have raised significant concerns about the long-term effects of FR on privacy

and freedom of expression [31, 212]. Third, multiple editorials have highlighted and discussed the

demographic bias of existing FR systems, calling for a moratorium on (or at least regulation of)

the FR technology [172, 115, 95].

Consequently, public sentiment about FR is mixed and, especially in western countries, trend-

ing negative [299, 156, 304, 180]. This shift in public opinion, combined with the forces noted

above, has motivated researchers to create various AFR tools to counteract unwanted FR systems.

6.3.2 Threat Model of AFR

AFR tools are used by a person P to combat a FR system F = {G,F , C,D}. In this context, P takes

the role of an attacker and acts against F. P ’s goal is to prevent recognition by F, i.e., given an

image xP of P , a successful AFR tool should cause F to produce C(F (G(xP ))) 6= P .

Proposed AFR tools generally make the following assumptions about each party:

• P has no special access to or authority over F, but wishes to evade unwanted identification by

modifying or otherwise controlling their own face images.

• P wishes to avoid facial recognition, but also may wish for their images to remain useful for

other purposes. For example, if P posts a headshot on a personal website, they would like to

ensure that the headshot not be scraped and used in a FR engine but also that their face remains
115



recognizable to website visitors. Thus, P prefers AFR tools which maximize AFR protection

while minimizing image disruption.

• F’s goal is to either create or maintain an accurate facial recognition operation. Furthermore,

F operates at scale and does not specifically target P for identification.

Implications. We also explore the real-world implications of the above threat model.

(1) Assuming AFR tools operate on images – Our study focuses exclusively on image-based AFR

tools that a user P can deploy on their own. These image-based designs, which operate either

directly on images or on systems that collect/process images, dominate the current set of AFR

proposals. On the other hand, a user P may, depending on the context, be able to use other means

(e.g., legal action) to fight unwanted facial recognition.

(2) Assuming F does not specifically target P for recognition – Existing AFR tools are designed

to fight large-scale FR systems. This is because, from a practical standpoint, if system F wishes

to specifically recognize a user P , there are much more efficient options than using a general,

large-scale FR system. Therefore, most current AFR tools are not designed to withstand this level

of scrutiny. If F makes a more targeted effort to identify P , such as hiring a private investigator,

current AFR tools will likely fail.

(3) Assuming AFR tools minimize perturbations. This study focuses on AFR tools which introduce

minimal perturbations to images (as measured by LP norms). This decision is grounded in prior

work showing that users are more likely to use privacy-preserving tools with minimal overhead [64,

84, 350]. AFR tools which do not seek to minimize perturbations are not addressed in this work.

This is a limitation of our work, and future work should consider AFR tools which use metrics

beyond LP norms to measure image distortion.

6.4 A Stage-Based AFR Framework

We now discuss and analyze existing AFR proposals. To do so, we propose and use a stage-based

framework to categorize AFR strategies. As discussed in §6.2, a FR system F = {G,F , C,D}
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AFR
system

Year
released

Stage
targeted

Attack scenario

P ’s knowledge
of F

P ’s operating
context

Targeted/
Untargeted

Tested on
real-world FR Unique Property

Anti-scraping [98-102] 2021 1 - Digital UT - Prevent large-scale image scraping
Data Leverage [336] 2021 1 - Digital UT - Withholds data to prevent collection.

CVDazzle [139] 2010 2a WB Physical UT - Make-up
Xu et al. [356] 2020 2a BB Physical UT YOLOv2 Adversarial patch on T-shirts
Wu et al. [353] 2020 2a Both Physical UT YOLOv2 Adversarial patch on T-shirts

Zolfi et al. [385] 2020 2a BB Physical UT YOLOv5 Stickers on camera lens that blur vision
SocialGuard [358] 2020 2a WB Digital UT - Adversarial perturbation on face detectors

Hu et al. [68] 2021 2a WB Digital UT - Adversarial patch on object detectors
Treu et al. [324] 2021 2a BB Digital UT - Adversarial clothing on face detectors

DeepPrivacy [153] 2019 2b BB Digital UT - GAN-based face blurring (perceptible)
IdentityDP [345] 2021 2b BB Digital UT AZ GAN-based face blurring (perceptible)
DeepBlur [190] 2021 2b BB Digital UT AZ, F++ GAN-based face blurring (perceptible)
Yang et al [361] 2021 2b BB Digital UT - GAN-based face blurring (imperceptible)

Evtimov et al. [107] 2021 3 BB Digital UT - Data poison by modifying entire dataset
Huang et al. [151] 2021 3 BB Digital UT - Data poison by user coordination

Fu et al. [116] 2021 3 BB Digital UT - Data poison by unlearnable data

Fawkes [287] 2020 4 Both Digital UT AR, AZ, F++ Corrupts features of faces
FoggySight [108] 2021 4 Both Digital UT AZ Collectively corrupts features of faces

LowKey [77] 2021 4 BB Digital UT AR, AZ Corrupts features of faces

Feng et al. [113] 2013 5 BB Physical UT - Make-up
Sharif et al. [288] 2016 5 Both Both Both F++ Adversarial patch on wearable accessories
Dabouei et al. [87] 2018 5 WB Digital UT - Adversarial attack distorts face landmarks.
Zhou et al. [381] 2018 5 WB Physical Both - Projected adversarial IR patterns
Dong et al. [102] 2019 5 BB Digital T TN Black-box adversarial perturbation.
Zhu et al. [383] 2019 5 Both Digital Both - Adds eye makeup with GAN.
AdvHat [171] 2019 5 WB Physical UT - Printed sticker on hat.
AdvFaces [89] 2019 5 BB Digital Both - GAN-based adversarial attack.

VLA [291] 2019 5 BB Physical Both - Projected light patterns
Nguyen et al. [235] 2020 5 Both Physical Both ? Projected light patterns
Browne et al. [52] 2020 5 BB Digital UT - Universal adversarial perturbation
Cilloni et al. [79] 2020 5 WB Digital UT - Corrupts features of faces

Face-Off [64] 2020 5 BB Digital Both AR, AZ, F++ Study on user perception on perturbation levels.
Singh et al. [296] 2021 5 WB Digital UT - Brightness-agnostic adversarial perturbations
Yang et al [363] 2021 5 BB Digital UT TN Corrupts features of faces

Table 6.3: Taxonomy of proposed AFR tools. “BB/WB” = Black Box, White Box.“UT, T” = Untargeted,
Targeted. “AR, AZ, F++, TN” = Amazon Rekognition, Microsoft Azure Face Recognition, Megvii’s Face++,
Tencent Face Recognition.

operates in 5 distinct stages that correspond real-world actions (e.g. image capture, pre-processing,

feature extraction, etc.). In each stage, F interfaces with P and the broader world as it collects,

processes, and uses image data. Such interfaces represent possible points at which P can act

against F. Specifically, an AFR tool can attack the component(s) of F relevant to any of the 5 stages,

including images x, preprocessor G, feature extractor F , reference database D, and classifier C.

With this in mind, Figure 6.3 demonstrates the attack actions and goals when AFR tools target

each FR stage.
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6.4.1 AFR Strategies per Stage

Since the five FR stages 1 – 5 encompass the points of direct interaction between P and F, they

naturally cover the points of attack employed by existing AFR proposals. Next we briefly describe

the general strategies used by AFR tools targeting each FR stage.

Attacking 1 . In the image collection stage, labeled and/or unlabeled images x are collected for

use by F, either by physically taking photos or scraping online images. Labelled images can be

used as training or reference images to build a FR system, while unlabelled images can be used as

query images. When targeting this stage, AFR tools focus on disrupting the data collection process

to prevent F from acquiring usable face images xP of P .

Attacking 2 . In the second stage, F uses G to pre-process collected face images using a series

of digital transformations, e.g., face detection, background cropping, and normalization. AFR

tools deployed at this stage target G to render the processed images unusable, either by breaking

the preprocessing functions (e.g., preventing faces from being detected) by injecting noise and

artifacts onto the images or removing P ’s identity information from the images. We denote these

different actions as 2a and 2b , respectively.

Attacking 3 . Since stage 3 is dedicated to training F’s feature extractorF , AFR tools targeting

this stage seek to degrade the accuracy of F by poisoning its training images.

Attacking 4 . To create the reference database used by classifier C, labeled reference images are

passed through F to create their feature vectors. AFR tools targeting this stage attempt to corrupt

the feature vectors created for P ’s reference images so that the database holds a “wrong” feature

vector of P , and C fails.

Attacking 5 . In the query matching stage, AFR tools seek to prevent classifier C from accurately

matching query image xP ’s feature vector and P ’s feature vectors stored in F’s reference database.

This is generally achieved by perturbing (or modifying) the query image to change its feature

vector and thwart C.
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6.4.2 Taxonomy of Existing AFR Proposals

Using our stage-based analysis framework, we now present a comprehensive taxonomy of existing

AFR proposals in Table 6.3. In this list, we categorize existing AFR proposals by the year of

release, the individual FR stage they target, and the attack scenario. We further break down the

attack scenario by P ’s knowledge of F (white box or black box3), the AFR deployment context

(physical or digital), whether the attack is targeted or untargeted4, whether the AFR tool has been

tested against real-world FR systems, and any unique or notable features of the AFR tool. We

note that the majority of AFR tool users may not care for or need a targeted AFR misclassification

result, but we include targeted attacks for completeness, as they represent the most user-controlled

version of an AFR tool.

There is a significant imbalance of AFR tools targeting different stages. Stage 2 and 5 have

attracted the most number of AFR proposals, likely due to the popularity of adversarial perturba-

tion research. We also notice that 7 out of 30 proposals assume a “white-box” access to F’s FR

pipeline, which is often unrealistic in practice. Finally, only 12 out of the 30 proposals have tested

the AFR effectiveness against at least one real-world FR system. Overall, Table 6.3 serves as a

comprehensive summary of current AFR proposals, which we will refer to throughout the paper.

Adversarial ML and AFR. A significant portion of AFR tools listed in Table 6.3, e.g., those

targeting 2a and 3 − 5 , apply adversarial machine learning (AML) techniques like poisoning

or evasion attacks to thwart F. Consequently, a significant portion of this paper is devoted to

discussing the pros and cons of AML-based approaches to AFR. On the other hand, since AFR

tools targeting stage 1 and 2b are inherently non-AML based, our analysis is not limited to only

AML-enabled AFR tools. Since each of the five FR stages represents a viable attack vector for

AFR tools, our analysis covers AFR tools targeting any stage.

3. White box means P has full access to F’s FR system (including feature extractor parameters) and uses this
knowledge to guide their AFR protection. Black box means P lacks such access and knowledge.

4. A targeted attack causes the FR system to identify P as a specific, incorrect person (e.g. a famous politician).
An untargeted attack means that P is misclassified, but not as a specific person.
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6.4.3 Roadmap of Our Analysis

Using the stage-based framework, we conduct a detailed analysis of existing AFR proposals. First,

we discuss in greater detail how existing AFR proposals attack each of the five stages (§6.5 – §6.9).

In each section, we describe the goals of F and P , the challenges of targeting this particular stage,

the existing proposals, and a summary of the progress made in this direction. Next, we conduct

a meta-analysis of AFR strategies across the five stages (§6.10), and discuss what we see as the

major technical and broader social/ethical challenges facing future AFR development (§6.11).

6.5 Attacking Stage 1 to Disrupt Data Collection

We start by examining AFR methods that allow P to attack F by disrupting the process of face

data collection.

Goals and Challenges. In this data collection stage, F’s goal is to obtain usable face images x

from online or physical sources. Often, F aims to collect high quality images of millions or billions

of people (e.g., Clearview.ai [144]). F uses labeled images to build the reference database and/or

train the feature extractor. By using AFR tools, P ’s goal is to prevent their face images xP from

being collected for use by F, either as (labeled) reference images or (unlabeled) query images.

They can apply online or physical evasion/disruption techniques to do so.

The key challenges facing AFR proposals targeting this stage are that (1) they need to be aware

of and adapt to F who continues to innovate techniques for data collection; and (2) cameras are

widely deployed in the real-world, making it challenging to avoid image capture by cameras.

6.5.1 Current Solutions

Face images can come from two sources: scraping online images or physically capturing faces

using cameras. Image scraping refers to the collection of images posted online that were captured

by someone who is not the data collector (e.g. camera is operated by the subject, subject’s friend,
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etc). Picture-taking refers to images taken directly by the data collector. Thus we divide AFR tools

acting at this stage into two categories: preventing scraping and preventing capture.

Preventing Online Image Scraping. A large portion of face images used in today’s FR systems

are scraped from online social media platforms. Thus, an effective way to stop F is to prevent

web scraping. While each single user can try their best to limit their online footprint, most AFR

methods require an online platform (e.g., Flickr) or outside help.

• Anti-scraping by online platforms. Anti-scraping techniques have been widely studied in the

security community [341, 126, 246, 162, 138]. Techniques such as rate limits, data limits,

ML-based scraping detection are already used by online platforms [80]. However, a significant

portion of scraping still goes undetected as scrapers develop more sophisticated tools to bypass

detection [80].

• Data leverage by users. P could try to prevent F from collecting their online images by

withholding them. Recent works propose the concept of “data leverage” where users of online

platforms work collectively to withhold data or control how their data is used by tech compa-

nies [336, 334, 335]. While not specifically aimed at facial recognition, these proposals offer

alternative models for online engagement while protecting user data.

Avoiding Image Capture. Ordinary civilians can already use smartphones to take high-quality

photos of anyone at any moment. These photos could be collected and used by facial recognition

systems like PimEyes [8]. Furthermore, face photos taken by on-street surveillance cameras are in-

creasingly used by commercial or government facial recognition systems [269, 81, 267, 122, 123],

especially in major metropolitan areas and inside stores. Today’s proposals for avoiding image

capture come from both research community and activists (e.g. protesters and artists) concerned

about surveillance. They fall into two categories: hiding faces from cameras and disrupting camera

operation.

• Face hiding. People can wear clothes, hats, masks, or move their head to prevent (usable) facial

image being captured by cameras. Notably, during the June 2020 wave of protests in the US,
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nonprofit organizations compiled a “tech toolkit” to help privacy-conscious protesters obfuscate

their faces from cameras and avoid identification [29]; in late 2020, a Chinese artist used a

map of on-street surveillance cameras to successfully guide others to evade identification by

positioning their head/body “away” from those cameras [236].

• Camera disruption. Without physically breaking cameras, human users can prevent cameras

from capturing (usable) images by simply shining laser lights at them [212]. Other methods

include covering cameras with fabric or stickers.

6.5.2 Discussion of Stage 1 Solutions

Privacy/Utility Trade-offs. Evading data collection requires both fine-grained control over

one’s online identity and awareness of when/how pictures are being taken, making it difficult for

users to deploy these tools without significantly limiting either their online or physical activities.

Furthermore, there are cases where evading data collection is simply impossible, i.e. mandatory

pictures posted on an employer’s website. Anti-scraping tools can also decrease the utility of the

service provider, as such tools can have false positives and a high deployment cost.

Summary of Progress. Existing AFR proposals against stage 1 make headway in addressing

key challenges. Adaptive anti-scraping techniques like [80] definitely raise the bar for attackers.

Furthermore, anti-data collection methods like [236] have shown that it is possible, with careful ac-

tion, to evade image capture even in robust surveillance systems. Future AFR development against

stage 1 can seek to improve both data controls and camera awareness by individual users.

6.6 Attacking Stage 2 to Disrupt Face Pre-processing
In stage 2, F processes raw face images with G to facilitate further operations in stages 3 , 4 , and

5 . AFR proposals targeting this stage seek to disrupt G by transforming an image x into x′ such

that processed face images G(x′) are “unusable” by subsequent FR stages.
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Goals and Challenges. F’s goal is to use G to obtain well-structured face images from many raw

images. P ’s goal is to either prevent their face being detected/extracted from raw images by G or

to anonymize their face in these images.

The main challenge for AFR proposals targeting stage 2 is how to achieve anonymization with-

out distortion. That is, when modifying P’s images to either evade G’s face detection or to remove

identity information, the modified images should still resemble P to remain useful to P . An addi-

tional challenge is overcoming (adaptive) defenses deployed by F to protect G.

6.6.1 Current Solutions

Preventing Face Detection. Face detection extracts well-centered headshots from raw images.

The commonly used face detection systems [376] rely on DNNs to accurately infer the location

of faces in an image. To prevent effective face detection/extraction, the AFR goal is to produce

an adversarial x′ such that G(x′) = z, where z is a useless result that cannot be passed on to F .

To create x′, existing AFR tools leverage “adversarial perturbations” against DNN models. Ad-

versarial perturbations are a well-studied phenomenon in the field of adversarial machine learning.

These carefully crafted, pixel-based perturbations, when added to an image, can cause DNNs to

produce wrong classification results (e.g., [211, 63, 72, 43]). Perturbations are generated using an

iterative optimization procedure that maximizes the likelihood of model misbehavior while min-

imizing perturbation visibility. The generation procedure varies depending on P ’s knowledge of

F (e.g. white vs. black box, see Table 6.3).

AFR tools using adversarial perturbations can be subdivided based on how the perturbation

is added to images. They can be directly added to digital images if P has direct access to these

images or fabricated as physical objects that P can wear (e.g., an adversarial T-shirt) or place on

cameras.

• Directly modifying digital images. Using AFR tools, users who post images online can directly

add adversarial perturbations to these images before posting them (e.g., [358, 324, 68]). Prop-
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erly perturbed images cannot be used by FR systems to extract any face information.

• Wearing custom designed physical objects. Often users do not have access to face images to

modify them. An alternative way to “inject” adversarial perturbations into images is to carry

or wear a physical object so that any camera taking a photo of the user will also capture a ver-

sion of the adversarial perturbation. Along these lines, prior works have successfully translated

face-detection-evading adversarial perturbations into makeup [139, 29], t-shirts [356, 353], or

stickers.

• Placing a sticker on cameras. An orthogonal approach involves transforming the adversarial

perturbation into a translucent sticker that can be placed over a camera lens. This sticker imper-

ceptibly modifies images taken by the camera to prevent people and faces from being detected

in those images [385].

Anonymizing Faces 2b . P can also anonymize their face images to remove identity information.

In this setting, P creates an x′ such G(x′) 6= G(x), i.e. the result after processing is still usable

but represents a fake identity. Physical anonymization can be easily achieved by wearing masks,

hats, makeup, etc, which overlaps with “avoiding image capture” in 1 discussed in §6.5. Leaving

proposals for digital anonymization use generative adversarial networks (GANs) [128] and differ-

ential privacy [106]. Several such proposals use GANs to transform face images into latent space

vectors, modify those vectors to remove identity information, and reconstruct the images from the

modified vectors [153, 190, 361]. The modified faces still look human but are anonymized to pre-

vent accurate identification. Another proposal, IdentityDP [345], uses similar techniques but also

claim to provide differentially private identity protection.

6.6.2 Discussion of Stage 2 Solutions

Privacy/Utility Trade-offs. Many stage 2a proposals address the “usability” challenge by for-

matting adversarial patches against G as wearable clothing/objects. However, wearing this special

clothing, which can appear bizarre, may not be desirable for the average person. Current propos-
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als against 2b provide anonymity but tend to produce anonymized faces that do not resemble the

original face, with significantly altered shape, skin tone, hair color, etc. These images lack many

functionalities of traditional images, e.g. image sharing, preserving memories, etc.

Summary of Progress. Many AFR proposals targeting 2a have been tested against real-world

object detectors like YOLOv2, demonstrating their real-world efficacy. However, several defenses

against these patches have emerged recently (e.g., [195, 199, 354]), although only one [195] has

been tested against physical adversarial patches like the ones used by AFR tools [356, 353]. Further

work is needed to determine if AFR proposals against 2a can resist these defenses that F can use

to protect G.

6.7 Attacking Stage 3 to Corrupt Feature Extractor

All FR systems require an effective feature extractor F to distinguish between faces. AFR propos-

als attacking stage 3 corrupt the training of F to produce an unusable extractor F ′.

Goals and Challenges. Here, F’s goal is to train a high-quality feature extractorF using available

training data, so that faces can be accurately identified by their feature vectors extracted byF . Thus

P ’s goal is to prevent F from training an effective F by corrupting the training data.

There are two key challenges facing AFR proposal targeting stage 3 . The first is minimizing

the distortion to training face images introduced by the corruption process while maintaining the

corruption efficacy. The second is corrupting F’s training without requiring full dataset control.

6.7.1 Current Solutions

Data poisoning is a well-studied technique in the field of adversarial machine learning. By ma-

nipulating the training data of a DNN model, an external party can negatively impact the model’s

training [131, 75, 203, 382, 284]. Poisoned models can exhibit a variety of (mis)behaviors, from

incorrect classification of specific inputs to complete model failure. Existing AFR proposals focus

on the latter.
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Making training data unlearnable. By injecting specially crafted noise on training data, recent

works [151, 116] render data “unlearnable” by a DNN model. This noise misleads the model into

thinking that data have already been learned, thwarting necessary parameter updates. When a user

submits their “unlearnable” face images as a training image for the F , the extractor will not learn

anything to improve its performance. Training an effective F requires millions or even billions of

face images [92, 342, 281], and with a sufficient number of unlearning training examples, F will

not meet the accuracy level required for practical deployment.

Adding adversarial shortcuts. A related proposal from Evtimov et al. [107] injects adversarial

shortcuts into the dataset. Models trained on this data overfit to the shortcut and fail to learn

the meaningful semantic features of the data. Now the trained extractor model has a distorted

understanding of the feature space, it cannot produce high quality feature vectors required for

accurate face recognition.

6.7.2 Discussion of Stage 3 Solutions

Privacy/Utility Trade-offs. The biggest utility drawback of stage 3 proposals is that they

require significant effort to corrupt the training dataset. Most proposals require that P control much

of the training data to render F unusable. Such high levels of control would prohibit individual

users from using these AFR tools. In addition, F can discard a corrupted dataset and use other

data sources to train their model, once they discover the presence of corruption.

Summary of Progress. Despite utility challenges, existing proposals have shown that, with a

sufficient level of dataset control, it is possible to render F unusable by adding minimally visi-

ble perturbations onto training face images. For example, AFR tools based on adversarial short-

cuts [107] are effective when they can corrupt the entire training dataset. Others [151] can reduce

F’s accuracy on specific classes in a FR model by 16%.
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6.8 Attacking Stage 4 to Corrupt Database

In stage 4 , F uses F to create a reference database D of labeled face feature vectors that will

facilitate identification of unidentified faces. AFR tools targeting this stage seek to fill D with

incorrect face/label mappings, so that F’s classifier C cannot identify P ’s query images as P .

Thus, when a true image xP is presented to F’s system for identification, the corrupted database

D′ produces C(F(G(xP )),D′) = I , where I is an incorrect identity, I 6= P .

Goals and Challenges. In this stage, F’s goal is to create a reference database containing accurate

copies of feature vectors (produced by F) of people F wishes to recognize. P ’s goal is to prevent

F’s feature extractorF from creating an accurate feature vector which C can match to query images

of P . Note that this can also be achieved by corrupting the training data/process of F in stage 3 ,

as discussed in §6.7. Here, we differentiate from §6.7 by assuming that F is a well-trained feature

extractor. Thus, P attacks F by modifying/manipulating the reference images of P that F uses to

create its reference database.

Stage 4 based AFR tools must first address the base case challenge of modifying P ’s reference

images to produce incorrect feature vectors while minimizing the distortion of those images. They

also face two advanced challenges. First, they must maintain high performance when F has some

original, unmodified face images of P already enrolled in its database D. Second, protection

must persist when P makes incorrect assumptions about F’s system, especially its extractor F and

classifier C, or when F adapts.

6.8.1 Current Solutions

Existing AFR proposals in this category focus on poisoning feature vectors before they are stored

in D. The poisoning techniques depend on the underlying assumptions about F’s classifier C.

Assuming C uses classification-based matching. A recent AFR proposal, Fawkes [287], as-

sumes C is a shallow classification layer added to F . Fawkes seeks to corrupt the final classifica-
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tion output by “cloaking” (or poisoning) reference images of P , i.e. shifting their feature vectors

away from the correct representation by adding imperceptible perturbations to P ’s reference im-

ages [287]. When C is trained on these shifted feature vectors, F will learn to associate incorrect

feature spaces with P ’s identity, producing wrong matches for P ’s (uncloaked) query images at

run-time.

Assuming C uses nearest neighbor-based matching. Two other AFR proposals, LowKey [77]

and FoggySight [108], assume C is a K-nearest neighbors algorithm. LowKey [77] adds digi-

tal adversarial perturbations to change the feature representation of P ’s reference images (similar

to Fawkes). These perturbed images create a reference feature vector for P that is different from

those of P ’s run-time query images, thus thwarting C. FoggySight [108] takes a community-driven

approach, where users modify their images to protect others. These collective modifications flood

the top-K matching set for a specific user with incorrect feature vectors, drowning out the correct

feature vector.

6.8.2 Discussion of Stage 4 Solutions

Privacy/Utility Trade-offs. Most Stage 4 proposals add perturbations directly to images. Sev-

eral proposals discuss how stronger (more visible) perturbations yield stronger AFR protection

(i.e. [287, 77]). Visible perturbations may lower the utility of protected images, especially if they

are meant to be posted on social media sites. More advanced optimization techniques may help

reduce perturbation size at stronger protection levels, but this visibility/protection trade-off seems

inevitable.

Summary of Progress. It is encouraging that all proposals listed in the above analysis have

demonstrated success on the key task of corrupting feature vectors of P , i.e., the base case.

Overcoming the two advanced challenges discussed remains an area for future work. Some pro-

posals provide limited protection when F has obtained original, unmodified feature vectors of

P (e.g. [287]), but not all proposals have considered this possibility. Second, all existing pro-
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posals assume knowledge of C and/or F , necessitating further work to determine how/if incorrect

assumptions of F would affect AFR performance. A final challenge is evaluating the long-term

robustness of stage 4 -based AFR mechanisms against an adaptive F. Recent work (discussed in

§6.11) suggests that a continuously adapting F may always (or eventually) “win” against AFRs

targeting 4 .

6.9 Attacking Stage 5 to Evade Identification

The final set of AFR tools aims to prevent run-time query image identification by F’s classifier C, by

producing distorted images x′P that mislead the final classifier outcome, e.g. C(F(G(x′P )),D) =

I 6= P . These methods can provide one-time protection for users who believe their images are

already enrolled in D. Furthermore, since labeled query images can also be added to the reference

database, using these AFR tools at run-time can also help poison the reference feature vectors (see

§6.8). However, current AFR proposals targeting this stage focus strictly on evasion and do not

consider this joint possibility.

Goals and Challenges. In this run-time reference stage, F’s goal is to use C to identify the face

in a query image. P ’s goal is to alter their query image so C cannot match it to their corresponding

feature vector in D. We assume F’s reference database D contains accurate feature vectors of P .

There are two key challenges for stage 5 -based AFR proposals. The first is achieving success-

ful evasion without significant image distortion. Additionally, proposals must overcome defenses

deployed by F to protect F and/or C.

6.9.1 Current Solutions

Adversarial perturbations have been the dominant method for evading DNNs and consequently are

relevant for evading FR. Due to the extremely high number of these techniques, we restrict our

discussion to proposals explicitly designed to evade FR systems at run-time. We organize these

proposals by their operational context: physical and digital.
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Physical evasion techniques. The first group of proposals injects adversarial perturbations into

face images by having P wear them as physical objects. While these methods echo those described

in §6.6, they focus on thwarting recognition/classification rather than face detection. Earlier pro-

posals [288, 113] use adversarial makeup and eyeglasses to cause incorrect classification by C.

More recent proposals consider two other directions, either using larger but input-independent ad-

versarial patches to boost the effectiveness of evasion [171], or making the perturbation digitally

controllable and/or much less perceivable by human eyes by projecting visible/infrared light onto

user faces [291, 381, 235].

Digital evasion techniques. Here P digitally modifies their unlabeled (online) face images to

prevent them from being accurately classified by C. Most proposals in this category apply tradi-

tional adversarial perturbation generation techniques to create minimally visible perturbations that

cause F’s feature extractor to produce misleading feature vectors. Their generation process varies

depending on assumptions of C’s behavior: a shallow classification layer vs. nearest neighbor

based matching [383, 87, 102, 296].

More recent proposals are designed to be more robust to real-world FR systems (i.e. joint

optimization on multiple feature extractors, etc.) [64, 79, 363]. Another recent proposal [89] uses

a GAN to generate adversarial perturbations rather than using optimization techniques.

6.9.2 Discussion of Stage 5 Solutions

Privacy/Utility Trade-offs. For physical evasion techniques, a significant usability challenge

comes from the possibility of real-time recognition. In order to ensure physical evasion tools are

effective, a user must wear them in all circumstances where cameras might be present. As with

Stage 4 , there also exists here a trade-off between perturbation size and evasion success for digital

evasion techniques. Reducing the amount of perturbation needed to evade recognition remains an

active area of research.

Summary of Progress. So far, existing works have focused on addressing the first key challenge,
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Stage
Targeted

AFR Property

Long-term
Robustness

Broad
Coverage

No 3rd Party
Assistance

Disruption
to P

Disruption
to others

1 ? ?
2 ?
3 ? ? ? ?
4 ?
5 ? ?

Table 6.4: Evaluating AFR tools using five properties, where the tools are grouped by the FR stage they
target. means that the property has already been achieved by current AFR proposals targeting this stage;

means that the property seems “promising” and could be achieved by AFR designs targeting this stage;
and ? indicates significant progress may be required to achieve this property by targeting this stage, and the
likelihood of success is unknown.

and have evasion success with minimally visible perturbations on query images. Addressing the

second challenge, or understanding how AFR tools interact with existing defenses against evasion

attacks, remains an open area of research. Defenses against evasion attacks like the ones listed

above are being released regularly (e.g. [222, 278, 97, 211]), only to be broken by new attacks

(e.g. [62, 40, 320]). No defenses have yet been explicitly proposed for these attacks, but the gen-

eral trend suggests this may be possible.

6.10 Goals and Tradeoffs in AFR Design

In our discussion of current AFR tools, we consider the design space of AFR tools through the lens

of specific FR stages they disrupt. To date, all existing AFR proposals have focused their design

around disrupting a single stage in this framework. Assuming an AFR tool must disrupt some

portion of the FR pipeline to be effective, we can map out and explore the design space of AFR

tools using this framework.

For researchers and practitioners in the AFR community, perhaps the most critical question is:

“what are the benefits and limitations of AFR tools that target each specific framework stage?”

Or, an alternative form of the question might be: “Given a set of prioritized properties for an AFR

system, can I find the best stage(s) to disrupt in order to achieve them?”
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We attempt to answer these questions here, by first identifying a set of high level properties

that AFR tools can potentially optimize for, then for each property, discussing how targeting a

given stage affects an AFR tool’s ability to achieve it. Ultimately, we hope to provide a high level

roadmap that can guide the design of AFR tools optimizing for specific properties in mind. While

we consider each stage in isolation, it might be possible for an AFR tool to target multiple stages,

gaining a combination of benefits (and limitations).

6.10.1 Five AFR Design Properties

When considering design properties of AFR tools, we assume that efficacy is a given. Our list of 5

properties target additional considerations beyond basic efficacy, and include desirable properties

for efficacy (#1 and #2) and for minimizing dependencies and cost (#3, #4, #5):

1. Long-term robustness against evolving FR systems

2. Broad protection coverage, efficacy even for users with unprotected face images online

3. No reliance on 3rd parties, does strong protection require assistance from service providers

or others?

4. Minimal friction for user P , minimizing cost for P to deploy the AFR tool on a consistent

basis

5. Minimal impact on other users, minimizing potential risks to non-users of the AFR tool

6.10.2 Implications of Properties for AFR Design

Next, we discuss the above properties in turn and consider how easily each property can be

achieved by AFR tools that target different operational stages in our framework. For each combina-

tion of property and target stage, we “quantify” how easily the desirable property can be achieved

by an AFR tool designed to disrupt that stage. means that the property has already been achieved

by current AFR proposals targeting this stage; means that the property seems “promising” and

has good potential to be achieved by AFR designs targeting this stage; and ? indicates significant
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progress may be required to achieve this property by targeting this stage, and the likelihood of

success is unknown. Table 6.4 provides an overview of our conclusions. For easy notation, we will

use AFR k to refer to the group of AFR proposals that target FR stage k .

Property 1: Long-term robustness. An effective AFR tool should provide strong and lasting

protection against unwanted facial recognition. That is, it should protect a user P from unwanted

FR both initially and as FR evolves.

: None While this principle is the main goal of AFR, none of existing AFR tools (targeting

any stage) is able to achieve this property. No current system provides strong protection against

ever-evolving FR systems.

: AFR 1 , AFR 2 , AFR 4 Conceptually, P can achieve long-term robustness by consistently

undermining the face data pipeline of F. AFR 1 and AFR 2 can both prevent any face image of

P to be included into F’s pipeline. AFR 4 can corrupt F’s understanding of any face images in the

reference database. While promising, existing AFR tools fail to consistently prevent the inclusion

of or corrupt all P ’s images from both online and physical sources.

?: AFR 3 , AFR 5 It remains unclear if these two groups of AFR tools can provide long-term

robustness. AFR 3 could be overcome over time as F switches to newer and different feature

extractors. AFR 5 offers only one-time protection, and does not address the scenario where query

images get added to the reference database.

Property 2: Broad protection coverage. Many of us already have an online presence, e.g.,

face photos posted years ago without AFR protection. An effective AFR proposal would ideally

provide protection under the challenging but realistic scenario where P already has unprotected

face images online.

: AFR 5 AFR tools that rely on run-time evasion are not impacted by the existence of unpro-

tected images online.
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: AFR 4 The presence of unprotected images complicates the protection of AFR 4 since

F has some ground truth information about P ’s facial features. However, the addition of protected

images to the reference database can slowly disguise P ’s true features, and thus achieve protection.

Moreover, several AFR tools [287, 108] proposed a “group cloaking” idea where multiple users

coordinate together to achieve better protection for those having an existing online presence.

?: AFR 1 , AFR 2 , AFR 3 These three groups of AFR tools focus on disrupting the (training)

data pipeline of FR. As a result, they cannot protect P against F who has already obtained and

processed unprotected images of P .

Property 3: No reliance on 3rd party to operate. Ideally, an AFR tool can be operated by a

user P alone and achieve strong protection without assistance or participation third-party, either

a central content provider like Facebook or a friendly user willing to help P . This is an abstract

measure of the entity-level complexity required to operate the tool. Achieving this property has

the added benefit of limiting exposure of potentially sensitive user data to a 3rd party.

: AFR 2 , AFR 4 , AFR 5 AFR tools in these three groups all rely on adding certain pertur-

bations on face images, which P can do without outside assistance.

?: AFR 1 , AFR 3 For those AFR 1 seeking to prevent online data scraping, they rely on the

assistance of image sharing platforms. Similarly, disrupting the training F requires coordinated

effort across many users, since P alone contributes relatively few images to the training data.

Property 4: Minimal friction for P . This usability-related property measures what P needs to

sacrifice in order to consistently apply the AFR tool. This property is motivated by the well-known

findings that users prefer and are more likely to use protection solutions that introduce minimal

friction to their daily life [84, 350].

: AFR 1 , AFR 2 , AFR 3 , AFR 4 , AFR 5 So far, existing AFR tools all introduce some

level of “disruption” to P , whether by adding visual noise, perturbations or transformations to
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P ’s online photos that distorts them, requiring P to always wear odd makeup/clothes/accessories,

or necessitating more powerful computing hardware/services to implement the AFR tool against

continually evolving F. More efforts are needed to limit the amount/type of disruption to users.

Property 5: Minimal impact on other users. This final property examines how the outcome

of P ’s AFP protection would affect other users. Intuitively, P can protect themselves by forcing

F to fail (give a null or uninformative result), or by intentionally tricking F to recognize them

as another person P ’. Depending on the context, the latter may negatively affect P ’, producing

potential social risks (see §6.11.2 for detailed discussions on social challenges of AFR).

: AFR 1 , AFR 2 These AFR tools disrupt the data pipeline of F, and thus, have no impact

on other users.

?: AFR 3 , AFR 4 , AFR 5 These three groups of AFR tools seek to intentionally misclassify

P ’s face to another user, and as a result, could potentially impact other users included in F’s

reference database.

6.11 Challenges for AFR Tools

In this section, we describe what we see as the major technical and broader social/ethical challenges

facing future AFR development. Each challenge spans multiple properties and stages laid out in

this paper. For each challenge, we provide context for why the challenge exists and, where possible,

suggest ways to address it. Like §6.10, the challenges described here represent our best efforts to

understand and systematize the AFR space. They are not exhaustive, and are meant as signposts

rather than a comprehensive roadmap.

6.11.1 Technical Challenges

TC 1: Reliance on AML-based tools. The majority of AFR proposals, especially those targeting

stages 2 − 5 , employ techniques from adversarial machine learning (AML), which have several
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key limitations. First, while AML tools have exhibit high performance, they have not provided

provable guarantees of protection. Second (and related), AML-based protections can be defeated

by adaptive FR systems. For example, F could adversarially train the feature extractor F [70, 260]

to be more robust against adversarial examples, thus defeating AFR tools against stages 3 or 4 .

F could also remove adversarial perturbations from face images before processing them or adding

them to the reference database [88], circumventing AFR tools that target stages 2 or 5 .

Potential Directions. More advanced perturbation generation methods may help increase short-

term efficacy of AML-based AFR tools. However, the lack of provable, ongoing protection is a

much tougher barrier to overcome. In order to provide reliable, ongoing protection, developers of

AFR tools can consider two possible paths: (i) integrate provable guarantees into the perturbation

generation process, or (ii) consider alternative techniques that provide guaranteed protection. For

(ii), there are two potential directions. The first is focus on attacking stage 1 , where defeating

FR does not require evading or poisoning a DNN (e.g. non-AML AFR tools). The second is to

switch from “misleading” F with “minor” image modifications to completely disabling F and/or

C. Methods in this direction could focus on physical world attacks that exploit camera properties,

like the rolling shutter effect [196, 280]; rely on larger image disruptions like shadows [379]; or

employ tools like the FR-disabling lasers used in Hong Kong in 2020 [212].

TC 2: Existence of online footprints. Some AFR proposals (especially those targeting stage 4 )

implicitly or explicitly assume that users can start “from scratch” to protect their online persona.

In practice, most Internet users today already have face images online, posted by themselves or

others, and at least some of those images are already captured by FR databases. Over 1.8 billion

photos are uploaded to online platforms daily [307], making it likely that one or more unmodified

photos of a user P will likely end up online, with or without P ’s knowledge. Given the widespread

use of web scraping to collect FR reference images [8, 144], it is likely that one of these photos is

already in a reference database.
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Potential Directions. This stark reality has two implications for AFR research. First, AFR tools

should be evaluated under the practical scenarios where the FR system has access to both protected

and unprotected online photos of P . While several AFR tools have provided such measurements

(e.g., [287, 108]), many others have not. Second, we believe that AFR tools managed by online

platforms will offer better protection of online footprints against FR systems than those executed

by individual users. These platforms can protect photos of an individual posted by them or others,

and are overall better positioned to deploy more powerful protection mechanisms.

For example, online platforms could employ the group cloaking techniques proposed in Fawkes [287]

or FoggySight [108] to corrupt reference databases composed of images from their sites. Af-

ter images are scraped, online platforms could use provenance-tracking to re-identify stolen im-

ages, e.g., in the training dataset of a feature extractor, and enable exposure/prosecution of photo

thieves [276, 294, 272]. All these methods ought to be accompanied by enhanced anti-scraping

techniques to prevent large-scale scraping of face images, i.e. stricter rate limiting, access permis-

sions, and scraping detection heuristics, to make it safer for individuals to have online footprints.

TC 3: Privacy/utility/usability tradeoffs of AFR systems. The above paragraph raises an

additional technical challenge of AFR design: balancing privacy, utility, and usability. There

is a spectrum of ways to balance these. On one end are 3rd-party-adminstered AFR tools (c.f.

stage 1 ), which have the high usability and utility but intrude on privacy to allow 3rd party data

processing. On the other end are high-overhead tools like fully homomorphic encryption, which

have provable privacy but limited utility/usability.

Where AFR tools should or can exist along this spectrum remains an open question for two

reasons. First, we lack a deep understanding of how AFR users would prioritize these tradeoffs in

practice. Prior studies show that users prefer privacy tools with minimal overhead [84, 350], but

only one study has explored how or if these preferences change in the AFR setting [64]. Second,

while many AFR tools have been proposed in recent years, the space of possible AFR designs

remains sparsely populated. Consequently, it is worth considering whether this tradeoff is indeed
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fundamental, or if future AFR designs may evolve to accommodate all three.

TC 4: Face images don’t change. A related, but distinct, challenge to TC 2 faced by AFR

systems is the permanence of face data. For better or for worse, most people have the same face

their whole adult life. As our faces age, they remain recognizable as uniquely “us” to most humans

and FR systems [198]. The slow rate at which faces change is a major challenge for AFR tools.

To be long-term effective, these tools must conceal the same piece of static data (a face) from

numerous adversaries over many years.

Once F obtains P ’s protected face photo, they can try as many times as they want to break

the protection [260]. If F ever succeeds, either in 1 month or 1 year, they “win” and P loses,

because modern FR systems only need one clean picture in the reference database to identify a

person [92]. For example, Clearview.ai identified a person based on a single reference image in

which the person’s reflection appeared faintly in a mirror [144]. Clearly, the issue of face data

permanence poses a significant challenge for AFR tool development.

TC 5: Lack of transparency of FR systems. The lack of transparency in how proprietary

FR systems work hampers AFR tool development and testing. Without access to proprietary FR

systems, AFR researchers must do their best to glean a generic understanding of how FR systems

work from public documents and academic papers, e.g. [281, 19]. While this may be sufficient to

develop AFR tools that work well in the lab, researchers cannot perform comprehensive efficacy

tests against proprietary systems.

Furthermore, AFR tool developers have no knowledge of how or if FR systems are adapting

to evade AFR systems. The 2020 global FR market was valued at 3.86 billion US dollars [265],

so FR stakeholders have ample resources to evolve as new AFR systems emerge. Even passive

improvements to FR systems, such as new training methods or architectures, can overcome AFR

protection and compromise user privacy [260]. Altogether, this lack of transparency means that

AFR tools face an upward battle in the fight against unwanted FR.
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6.11.2 Broader Social and Ethical Considerations

In addition to technical challenges, AFR tools face broader social and ethical considerations. These

stem from a variety of factors, including a lack of regulation, benefits of FR for the public good,

and demographic disparities in FR.

SEC 1: Unregulated, ubiquitous FR. Today, FR systems are generally unregulated and easy to

deploy. Practically anyone with a powerful laptop and access to an image dataset could create a

FR system. This democratization of FR has allowed 3rd party FR systems like Clearview.ai, which

rely on unauthorized data use [142], to flourish. As a result, it is difficult (if not impossible) for

individuals to know when and where FR systems are deployed, as well as their capabilities.

This laissez-faire climate creates significant ambiguity as to when AFR tools can/should be

deployed. For example, around the world, photos taken for official government purposes (e.g.

drivers’ license and passport photos) are used as reference images in government FR systems aiding

law enforcement officers, border control agents, among others [122, 384, 216, 230]. Government-

sponsored FR may be unwanted but is not (necessarily) unauthorized under the status quo, and

the legality of using AFR tools in this setting is ambiguous. To augment the confusion, systems

like Clearview are used by law enforcement [144], further blurring the concept of unauthorized vs

unwanted FR. As FR and AFR use increases, a clash over this issue seems almost inevitable.

SEC 2: FR used for social good. Both privacy-sensitive citizens and criminals can use AFR

tools. Law enforcement’s use of facial recognition can benefit society in multiple ways, such as

tracking and locating wanted criminals or lost children [17, 16]. Consequently, AFR tools applied

by bad actors could ultimately harm the public good. The debate between privacy and national

security plays out in numerous other tech domains, such as end-to-end encryption [22]. Legitimate

claims can be made by both sides. AFR researchers must be mindful of this tension and the

potential consequences of their work.

SEC 3: Harm caused by AFR misidentification. One ethical tension not yet explored in current

literature is the social effect of misidentifications caused by AFR tools. For example, if U uses an
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AFR tool and is misidentified by F as P , what outcome might this have for P ? If U is engaging

in illegal activity but P is arrested instead, the AFR tool could cause serious harm, both to P and

to U ’s victim(s). The well-known bias of FR systems heightens this tension. Police departments

routinely make rushed identification decisions from partial FR matches [121]. Furthermore, facial

recognition systems misidentify people of color at higher rates [53, 103]. Recent work has found

that AFR tools exhibit these same biases [270, 259]. The social impact of AFR tools requires

urgent study.

6.12 Discussion

Related Surveys. Two surveys [220, 240], alluded to in §6.1, address topics similar to our work.

Here, we provide an in-depth comparison to these and emphasize our unique contributions. [220]

focuses on how a service provider can build a privacy-preserving FR service (see it’s §II.D), while

our work considers how individual users can use a privacy tool to defend themselves against intru-

sive FR services. Different from [220], our work provides a holistic view of what individual users

can do to disrupt FR and a detailed discussion of challenges facing user-centric AFR solutions.

[240] also discusses methods a service provider could use to preserve privacy in a video surveil-

lance setting. Furthermore, since [240] focuses on video surveillance, rather than image-based FR

systems, it explores privacy preservation techniques for video-specific traits like gait, height, and

clothing, which dilutes FR-specific content. [240] does address face de-identification in its §3.4.3,

but focuses solutions for providers who wish to deanonymize all faces in their system (e.g. by av-

eraging or blurring them), unlike our focus on protecting individuals from unwanted surveillance.

Concluding Thoughts. As facial recognition (FR) continues to grow in scale and ubiquity, we

expect the demand for anti-facial recognition tools to continue to rise. There is an urgent need

to think longitudinally about AFR tools, analyzing both their limits and their potential. Our paper

aims to fill this gap by providing both a framework for discussing AFR proposals and an assessment

of the current state of AFR research, enabling deeper understanding of data agency solutions in this
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space.

Current AFR tools possess some, but not all, of the traits needed to successfully defeat un-

wanted FR in the real world. Many proposals leverage adversarial perturbations to evade FR

models, either in the preprocessing 2 or classification 5 stages. These are often effective in the

short-term, but lack long-term guarantees, and cannot fundamentally change FR system behav-

ior in the future. Future AFR proposals may benefit from more exploration of designs that target

stages 1 and 4 , which could provide wider-reaching protection.
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CHAPTER 7

CONCLUDING THOUGHTS

As machine learning models continue to grow in scale and popularity, the need for data agency

becomes more urgent. This work proposed three technical tools, each using a different technique

to help users reclaim data agency: disruption (§3), tracing (§4), and direct attacks (§5). It also

provides a framework (§6) for reasoning about data agency against unwanted facial recognition.

7.1 Limitations of Proposed Solutions.

Complicated nature of face recognition. The tools proposed here focus largely on the im-

age classification space, and particularly on settings like face recognition. Certainly more work is

needed to prevent unwanted face recognition, given the privacy concerns surrounding this technol-

ogy. However, as discussed in §6, data agency solutions in this space can be complicated. There are

numerous security-critical uses of face recognition by government entities, “opting out” of which

may be impossible. Furthermore, there could be yet-unexplored legal ramifications of the pro-

posed technical data agency solutions. Future collaboration between academics and policymakers

is necessary to shed light on this complicated issue.

Potential for “cat and mouse”. As is often the case in the adversarial machine learning space,

the solutions proposed here lack guarantees of future durability. In particular, the Fawkes and

Isotopes (disruption and tracing) solutions may be circumvented by motivated adversaries.

This “cat and mouse” style adversarial behavior was observed in practice in the deployment

of Fawkes. After publication, the Fawkes tool was open sourced, and its code was made publicly

available on Github1. About six months later, our team was contacted by the authors of [77], who

informed us that their experiments showed Fawkes was not effective against Microsoft Azure’s

face recognition API. This contradicted our initial results, and we confirmed the drop in protection

1. https://github.com/Shawn-Shan/fawkes
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success through additional experiments. We later deduced that Azure had used the open source

Fawkes code to adversarially train [348] their model to be robust against Fawkes-like perturbations.

We then confirmed that cloaks generated using a private feature extractor, unseen by the Azure

team, remained effective against Azure.

This anecdote illustrates the fundamental issue with using adversarial machine learning-based

data agency tools: they are not provably secure. Adversaries can adapt around them. However, in

a space like machine learning—where provable guarantees are difficult, if not impossible, to get in

practice—this is unsurprising. It is difficult to prove that a model itself is functioning as expected,

due to the complexity of the parameter space. Proving that a particular data agency tool can protect

users indefinitely is an even loftier goal.

The question remains, though: why use these tools, if we can’t guarantee their long-term suc-

cess? The answer is twofold. First, these solutions adopt a common goal of past security tools: to

raise the attack cost significantly for attackers, rather than preventing attackers from succeeding.

Numerous prior works have framed security and privacy problems as economic problems [35, 34].

Attackers are looking for quick and easy victories, and if they cannot find them, they look for

a different set of people to target. Since users want to have control over their data and prevent

unauthorized use, users win if their use of a data agency tool causes attackers target someone else.

The second reason to continue using these data agency solutions is that, in a sense, they were

never meant to be permanent solutions. Their goal is to raise the bar until other, more perma-

nent methods of preventing unwanted data use arise. They represent one set of solutions to the

problem—user-facing, technical ones that directly empower users in their interactions with models.

While important, given their limitations, such solutions cannot be the only ones. They are the first

wave, designed to stand in the breach while others develop complementary solutions—technical,

regulatory, and other—that can provide a fuller set of options for preserving data agency.
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7.2 Considerations for Future Data Agency Solutions

As the problem of unwanted ML data use grows, the need for data agency solutions will increase.

Here, we propose five directions for future work in this space.

1. Do users care? A key assumption of the tools proposed in this thesis—and in the ML

data privacy conversation more broadly—is that users want control over their data in ML settings.

However, little or no empirical evidence supports this assumption. Prior work has shown that a

majority of Americans are concerned about how both private and public entities use their data [42],

but no existing work has studied whether these concerns extend to the machine learning setting or

beyond a Western context. Validating how, and if, users’ concerns about data use change when

data is used to train different types of ML models is a critical piece of future work. Such a study

could inform future thinking on data agency in general. It could also lead to more tailored ML data

privacy solutions, if perhaps users care more about privacy against certain types of models.

2. More finely-tuned cost analysis. §7.1 discussed how data agency solutions can raise the bar

for attackers wishing to steal data, making it more worthwhile for them to focus their attention

elsewhere. While this is a noble goal, in practice, the solutions proposed here do not provide any

estimate of how much the data agency solutions would cost the attacker. Along these lines, future

work could make two significant improvements. First, it could provide more fine-grained estimates

of how much a given solution costs an attacker in terms of compute, data cleaning, or other costs

per user. If, for example, using Fawkes would cause an attacker to incur an additional $25/user cost,

this may change their calculus for using training data scraped from online. This analysis should be

accompanied by a study of how much additional cost is needed to affect attacker behavior would

be much-needed.

Beyond this, future data agency solutions could consider ways to make attackers incur specific

cost increases. This idea is similar to that of “crypto crumple zones,” encryption methods designed

to be breakable if an attacker is willing to expend a certain amount of money or computational
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power [349]. This balances the problem of making some encrypted information (e.g. a suspect’s

text messages) accessible to certain parties (e.g. law enforcement) while making it too expensive

for an average person to run this attack. Data agency solutions that specifically optimize for certain

attacker costs would be an interesting line of future work. There may be a direct tradeoff between

costs to the attacker and usability to a user (e.g. higher-cost solution == solution that adds more

visible perturbations to image), so users’ willingness to incur this tradeoff would be an important

line of future work.

3. Data agency against generative models. Although this thesis primarily focuses on data

agency in image classification contexts, another domain ripe for data agency solutions is that of

generative ML, including against text-to-image models like Stable Diffusion [303] or voice syn-

thesis models like Vall-E [340]. Some solutions proposed in this work (particularly the data tracing

solution) could translate to the generative setting, but would require significant revision to work

in that domain. A few works have been specifically designed to counteract unwanted data use in

generative model setting, particularly in the text-to-image domain [285, 277]. An even broader set

of data agency solutions against generative models will be needed as these models proliferate.

4. Exploring unintended side effects of data agency tools. At least one work has explored the

possibility of bias in data agency tools like Fawkes [270]. This work showed that since cloaks are

constructed on face recognition feature extractors, which can be biased, the cloaks have unequal

levels of protection for different demographic subgroups. There is an urgent need to study other

forms of bias of data agency tools. This applies particularly to tools that leverage principles of

adversarial machine learning, since the performance of these tools depends on intrinsic properties

of models themselves. If models are biased (as they often are), the data agency tools may be also.

Other unintended side effects of data agency solutions should also be studied. This point was

discussed in §6, how anti-face recognition tools that cause misclassification could harm innocent

bystanders. Some people use a data agency tool because they want rightful protection; others

might use it because they have something to hide. For the latter camp, a misclassification result in
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a facial recognition system would benefit them but potentially harm someone else. In a different

vein, incorrectly identifying that data was used (or not used) to train a model (e.g. the isotopes

proposal) could cause economic, privacy, or other harms. Overall, there are many potential nega-

tive consequences of data agency tools that could be studied. We must ensure that “the cure is not

worse that the disease.”

5. Tools for ongoing consent to data use. Proposed data agency solutions focus exclusively

on scenarios in which users’ data is taken without their consent. However, there may be settings

in which users are open to contributing their data to causes they care about. In these cases, users

would be willing to have their data used to train ML models, such as models which could have

societal benefits (e.g. medical diagnosis).

In this setting, where data use is permitted, proposed data agency solutions fall short. What

users might need instead are tools enabling them to provide meaningful, ongoing consent to data

use, and easy revocation if they change their mind. For example, consider the case where a patient

lets their data be used to train a diagnostic model for a rare disease they have. There are obvious

societal benefits to training such a model, but given the sensitivity of the data, the user may wish

to retain control over their data than just signing a form that hands it over wholesale. Thus, a

tool which enables the user to give their consent but, crucially, update or revoke it over time

would be helpful in this setting. Such tools do not currently exist. The closest thing we have to

a “right to revocation” in ML right now are machine unlearning proposals, which are difficult to

implement in practice [48, 318]. Future data agency solutions are needed to address this scenario

and provide users with ways to meaningfully offer up their data for causes they are about while not

relinquishing total control over it.

7.3 Regulation and Data Agency

As discussed above, additional tools and techniques are needed to help individual reclaim data

agency. Legislative and policy actions are necessary to supplement technical data agency solutions.
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Here, we provide a brief overview of existing data agency efforts in the policy space.

Non-academic stakeholders already begun to consider regulatory and policy actions to promote

data agency. Bodies like the EU and the FTC have demonstrated real commitment to helping users

retain agency over their data. Regulation like GDPR and the FTC’s recent ”request for comments”

regarding commercial surveillance practices [83] represent tangible steps towards a better future.

While these steps are critical, much of the policy and regulatory focus thus far has been on data

privacy, rather than data agency. As discussed at the beginning of this thesis, data privacy is a

necessary but not sufficient criterion for giving users back full control over their data. Regulatory

efforts can and should consider the question of agency, just as much as privacy.

Another promising movement towards addressing data agency in the ML context came in the

White House Office of Science and Technology Policy’s recently released “A Blueprint for an AI

Bill of Rights” [238]. This document, written in collaboration with numerous stakeholders, out-

lines five key principles that ought to be true for users of an AI (aka ML) system. Several of these

principles—notably “data privacy” and “notice and explanation”—relate explicitly to principles of

data agency discussed in this thesis. For example, the summary of the “data privacy” principle

states that “You should be protected from abusive data practices via built-in protections and you

should have agency over how data about you is used” (emphasis added). While this document lists

principles, not policies, it shows the government’s interest in protecting user data in an ML setting.

This bodes well for future policy-based data agency solutions.

7.3.1 Closing Thoughts.

Much remains to be done to realize the dream of data agency in the machine learning space. Reg-

ulators should pass laws preventing unauthorized data use. Legislative bodies should create mean-

ingful avenues for users to reclaim online agency. Companies should implement less predatory,

more transparent policies around data use. And, of course, researchers should continue dreaming

of a future where our data is ours to own—and creating solutions that move us towards that future.
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