
THE UNIVERSITY OF CHICAGO

COMPLEXITY AND NUMERICAL STABILITY IN MATRIX COMPUTATIONS AND

NONCONVEX OPTIMIZATION

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

COMMITTEE ON COMPUTATIONAL AND APPLIED MATHEMATICS

BY

ZHEN DAI

CHICAGO, ILLINOIS

JUNE 2023

Copyright © 2023 by Zhen Dai

All Rights Reserved

To my parents and brother for their unconditional love and support.

TABLE OF CONTENTS

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . vii

ABSTRACT . ix

1 INTRODUCTION . 1

2 RANK-CONSTRAINED HYPERBOLIC PROGRAMMING 4
2.1 Introduction . 4

2.1.1 Further related works . 5
2.2 Rank-Constrained SDP . 6

2.2.1 Examples of rank-constrained SDP 6
2.2.2 Complexity of rank-constrained SDP 10

2.3 Sparsity-Constrained Problems . 21
2.3.1 QCQP sparsification . 25
2.3.2 SOCP sparsification . 30

2.4 Rank-Constrained Hyperbolic Programming 34
2.4.1 Rank-Constrained SOCP . 36
2.4.2 Rank-Constrained QCQP . 47

2.5 Conclusion . 53

3 NUMERICAL STABILITY AND TENSOR NUCLEAR NORM 54
3.1 Introduction . 54
3.2 Bilinear Complexity . 58
3.3 Bilinear Stability . 62
3.4 Fast Matrix Multiplications . 69

3.4.1 Bilinear stability of Strassen multiplication 70
3.4.2 Bilinear stability of Winograd multiplication 72
3.4.3 Bilinear stability of conventional matrix multiplication 74
3.4.4 Numerical experiments for fast matrix multiplications 74

3.5 Complex Multiplication . 76
3.5.1 Bilinear stability of complex multiplication algorithms 77
3.5.2 Error analysis of new algorithm applied to matrices 79

3.6 Experiments for New Complex Matrix Multiplication Algorithm 85
3.6.1 Speed of the algorithms . 86
3.6.2 Accuracy of the algorithms . 88
3.6.3 Matrix polynomial evaluations . 89
3.6.4 Unitary transforms . 91
3.6.5 Complex-valued neural networks . 92

3.7 Conclusion . 95

iv

4 INVERTING A COMPLEX MATRIX . 96
4.1 Introduction . 96

4.1.1 Related work . 99
4.2 Multiplications in Quadratic Field Extensions 100
4.3 Gauss Matrix Multiplication . 103
4.4 Frobenius Matrix Inversion . 104

4.4.1 First case: f(x) = x2 + τ . 105
4.4.2 Second case: f(x) = x2 + x+ τ . 108
4.4.3 An application . 110

4.5 General Matrix Inversion . 115
4.5.1 Frobenius inversion v.s. invertion via LU decomposition 115
4.5.2 Rounding error analysis . 118
4.5.3 Randomized Frobenius inversion . 123

4.6 Hermitian Positive Definite Matrix Inversion 125
4.6.1 Variant of Frobenius inversion vs matrix inversion via Cholesky de-

composition . 128
4.6.2 Rounding error analysis . 131

4.7 Experiments . 137
4.7.1 Efficiency . 138
4.7.2 Accuracy . 138
4.7.3 Matrix sign function . 140
4.7.4 Sylvester equation . 142
4.7.5 Polar decomposition . 145
4.7.6 Hermitian positive matrices . 147

4.8 Conclusion . 149

5 CONCLUSION . 151

REFERENCES . 152

v

LIST OF FIGURES

3.1 Accuracy of Strassen’s algorithm and Winograd’s variant. 75
3.2 Speed of the three algorithms for complex matrix multiplication. 86
3.3 Accuracy and speed of algorithms for complex matrix multiplication. 87
3.4 The three algorithms applied to matrix polynomial evaluations. 90
3.5 The three algorithms applied to unitary transforms. 92
3.6 A constant width neural network with input dimension n = 4 and depth d = 6.

The edges between adjacent layers are weighted with weight matrices. 92
3.7 The three algorithms applied to 6-layer complex neural networks with complex

ReLU activation and widths 64 and 128. 94

4.1 comparison of efficiency . 139
4.2 comparison of relative residuals . 140
4.3 comparison on the matrix sign function . 142
4.4 comparison on the Sylvester equation . 144
4.5 comparison on the Lyapunov equation . 145
4.6 comparison on the polar decomposition . 147
4.7 comparison of efficiency for positive matrices . 148
4.8 comparison of relative residuals for positive matrices 149

vi

ACKNOWLEDGMENTS

During my doctoral study, I received a great deal of support. Foremost, I want to thank my

advisor, Prof. Lek-Heng Lim for his support in both my academic study and career develop-

ment. He gave me many interesting problems in numerical linear algebra and optimization.

Through his help and insightful discussion, I am able to discover many interesting results

in these areas. Lek-Heng also gave me many precious advice when I was looking for an

internship and a full time job. His help made my transition to industry much smoother than

expected.

Besides my advisor, I also want to thank Prof. Nathan Srebro. I learned statistical

learning theory from Nathan and did a project related to implicit regularization of neural

networks with him. He gave me a lot of insightful advice and we were able to have some

interesting findings in this area. I would also like to thank Prof. Mina Karzand for her

insightful discussion and help during this project. She taught me a lot of things about

academic writing and LaTeX, which are very helpful during the rest of my doctoral study.

In addition, I would like to thank Prof. Yury Makarychev and Prof. Ali Vakilian for their

help and insightful discussions in a project on approximation algorithms.

I would like to thank Prof. Ke Ye for his help and insightful discussions in the project on

complex matrix inversions and the project on numerical stability and tensor nuclear norm.

I would also like to thank Prof. Nick Higham for his insightful discussions in the project

on numerical stability and tensor nuclear norm.

I would also like to thank Prof. Gabor Pataki for his insightful discussions in the project

on rank-constrained hyperbolic programming.

I would also like to thank my committee members: Prof. Yuehaw Khoo and Prof. Ali

Vakilian for their help in my Ph.D. defense. I would also like to thank Prof. Bradley J. Nelson

who was in my committee for his valuable advice in both research and career development.

He also gave me many helpful advice in my Ph.D. defense.

vii

I would like to thank Lijia Zhou for his insightful discussions on many problems during

the past few years. We solved a problem in statistical learning theory together recently. The

discussion is very insightful and this problem solving process is very enjoyable. I would like

to thank Lijia for discussing this problem with me!

I would also like to thank Zihao Wang and Hongli Zhao for their help and advice in

preparation for my defense.

I would also like to thank Bradley J. Nelson, Zhenyang Zhang, Liwen Zhang, Gregory

Naitzat, Pinhan Chen, Lizhen Nie, and Haoyang Liu for their advice on my career develop-

ment.

I would also like to thank my internship manager Taiyu Dong for his help during my

internship.

I would also like to thank Prof. Mary Silber, Zellencia Harris, and Jonathan Rodriguez

for their help in general matters.

During my doctoral study, I received funding from DARPA, NSF, and IDEAL institute.

I would like to thank these institutes for their funding over the past few years. I would also

like to thank the Research Computing Center in the University of Chicago for providing

great computational resources and prompt technical support.

In addition, I would like to thank my friends for their support over the past few years,

including Zihao Wang, Lijia Zhou, Yanqing Gui, Yi Wang, Zehua Lai, Lin Gui, Yian Chen,

Fuheng Cui, Wanrong Zhu, Dongyue Xie, Yuwei Luo, Weilin Chen, Jinwen Yang, Ji Xu,

Yibo Jiang, Yunqi Yang, Runxin Ni, Wei Kuang, Danye Xu, Zhenyang Zhang, Weiyi Liu,

Yidong Chen, Binglin Song, Xiyu Zhai, Xinze Li, Yihao Lu and many others. I spent five

fantastic years at the University of Chicago and this would not be possible without them.

Last but not least, I would like to thank my parents Fengdi Ma and Xiangen Dai and

my brother Jian Dai for their love and support.

viii

ABSTRACT

In this dissertation, we study three problems in nonconvex optimization and matrix compu-

tation: rank-constrained hyperbolic programming, real and complex matrix multiplication,

and complex matrix inversion. We study efficient algorithms that solve these problems.

Here, we evaluate efficiency of algorithms in terms of both speed and accuracy. In terms of

speed, we are looking for algorithms that use the least number of arithmetic operations. In

terms of accuracy, we are looking for algorithms that induce the smallest rounding errors.

Moreover, we will study the complexity of rank-constrained problems by understanding the

NP-hardness of such problems.

ix

CHAPTER 1

INTRODUCTION

Matrix computations and nonconvex optimizations are two of the most important tools

in scientific applications. In this thesis, we study several important problems in these two

areas by understanding the inherent limit of computations and designing efficient algorithms.

To be specific, we will study rank-constrained hyperbolic programming, complex matrix

multiplication, matrix multiplication, and complex matrix inversion.

For the problem of rank-constrained hyperbolic programming, we study the time com-

plexity of various rank-constrained and sparsity-constrained problems and design efficient

algorithms to do rank reduction and sparsification. We extend rank-constrained optimiza-

tion to general hyperbolic programs (HP) using the notion of matroid rank. For LP and

SDP respectively, this reduces to sparsity-constrained LP and rank-constrained SDP that

are already well-studied. But for QCQP and SOCP, we obtain new interesting optimization

problems. For example, rank-constrained SOCP includes weighted Max-Cut and nonconvex

QP as special cases, and dropping the rank constraints yield the standard SOCP-relaxations

of these problems. We will show (i) how to do rank reduction for SOCP and QCQP, (ii) that

rank-constrained SOCP and rank-constrained QCQP are NP-hard, and (iii) an improved

result for rank-constrained SDP showing that if the number of constraints is m and the rank

constraint is less than 21/2−ϵ√m for some ϵ > 0, then the problem is NP-hard. We will also

study sparsity-constrained HP and extend results on LP sparsification to SOCP and QCQP.

In particular, we show that there always exist (a) a solution to SOCP of cardinality at most

twice the number of constraints and (b) a solution to QCQP of cardinality at most the sum

of the number of linear constraints and the sum of the rank of the matrices in the quadratic

constraints; and both (a) and (b) can be found efficiently.

For the problem of real and complex matrix multiplication, we study the numerical

stability of several algorithms and find the most stable one. We present a notion of bilinear

1

stability, which is to numerical stability what bilinear complexity is to time complexity. In

bilinear complexity, an algorithm for evaluating a bilinear operator β : U × V → W is a

decomposition β = φ1 ⊗ ψ1 ⊗ w1 + · · ·+ φr ⊗ ψr ⊗ wr; the number of terms r captures the

speed of the algorithm; and its smallest possible value, i.e., the tensor rank of β, quantifies

the speed of a fastest algorithm. Bilinear stability introduces norms to the mix: The growth

factor of the algorithm ∥φ1∥∗∥ψ1∥∗∥w1∥+· · ·+∥φr∥∗∥ψr∥∗∥wr∥ captures the accuracy of the

algorithm; and its smallest possible value, i.e., the tensor nuclear norm of β, quantifies the

accuracy of a stablest algorithm. To substantiate this notion, we establish a bound for the

forward error in terms of the growth factor and present numerical evidence comparing various

fast algorithms for matrix and complex multiplications, showing that larger growth factors

correlate with less accurate results. Compared to similar studies of numerical stability,

bilinear stability is more general, applying to any bilinear operators and not just matrix

or complex multiplications; is more simplistic, bounding forward error in terms of a single

(growth) factor; and is truly tensorial like bilinear complexity, invariant under any orthogonal

change of coordinates. As an aside, we study a new algorithm for computing complex

multiplication in terms of real, much like Gauss’s, but is optimally fast and stable in that it

attains both tensor rank and nuclear norm.

For the problem of complex matrix inversion, we study the speed of various complex

matrix inversion algorithms and find the fastest one. We analyze a complex matrix inversion

algorithm first proposed by Frobenius, but largely forgotten: (A+iB)−1 = (A+BA−1B)−1−

iA−1B(A + BA−1B)−1 when A is invertible and (A + iB)−1 = B−1A(AB−1A + B)−1 −

i(AB−1A + B)−1 when B is invertible. This may be viewed as an inversion analogue of

the aforementioned Gauss multiplication. We proved that Frobenius inversion is optimal —

it uses the least number of real matrix multiplications and inversions among all complex

matrix inversion algorithms. We also showed that Frobenius inversion runs faster than the

standard method based on LU decomposition if and only if the ratio of the running time

2

for real matrix inversion to that for real matrix multiplication is greater than 5/4. We

corroborate this theoretical result with extensive numerical experiments, applying Frobenius

inversion to evaluate matrix sign function, solve Sylvester equation, and compute polar

decomposition, concluding that for these problems, Frobenius inversion is more efficient

than LU decomposition with nearly no loss in accuracy.

Besides the three projects discussed in this thesis, I also worked on some projects in statis-

tical learning theory and approximation algorithms over the past few years. My projects on

statistical learning theory include “Representation Costs of Linear Neural Networks: Analysis

and Design” and “Learning With Square Root Lipschitz Losses”. My project on approxima-

tion algorithm is “Fair Representation Clustering with Several Protected Classes”.

3

CHAPTER 2

RANK-CONSTRAINED HYPERBOLIC PROGRAMMING

2.1 Introduction

In this work, we study rank-constrained and sparsity-constrained hyperbolic programming

(HP). Specifically, we consider four types of HP: linear programming (LP), quadratically con-

strained quadratic program (QCQP), second order cone programming (SOCP), and semidef-

inite programming (SDP).

Rank-constrained SDP occurs frequently in combinatorial optimization [2, 79, 84]. It is

well-known that Max-Cut could be viewed as a rank-constrained SDP and dropping this

rank constraint yields the standard SDP-relaxation of Max-Cut [2]. Thus, it is natural

to consider when we can get a solution to SDP of small rank. In [7, 76, 93], it is shown

that every feasible SDP with m linear constraints always has a solution of rank at most

(
√
1 + 8m − 1)/2. Furthermore, this low-rank solution can be found in polynomial time

by first solving the SDP and then run a rank reduction algorithm proposed in [7, 76, 93].

Specifically, a rank reduction algorithm takes a solution to SDP as input and outputs another

low-rank solution to this SDP. This result implies that rank-constrained SDP is polynomial

time solvable for any rank constraint that is at least (
√
1 + 8m− 1)/2.

Parallel to SDP rank reduction, LP sparsification is studied in [23, 76, 83]. For any

feasible LP with m linear constraints, there always exists a solution of cardinality at most

m. Moreover, this low-cardinality solution can be found in polynomial time by fist solving the

LP and then run a LP sparsification algorithm [23, 76, 83]. Specifically, a LP sparsification

algorithm takes a solution to LP as input and outputs another sparse solution.

For rank-constrained problems, we use rank in HP [17, 100] to define rank in LP, QCQP,

SOCP, and SDP, by viewing them as special cases of HP. For each of these problems, we

study the corresponding rank-constrained problem in two ways. First, we give a polynomial

4

time rank-reduction algorithm to show that it is always possible to get a solution of “small”

rank provided that the problem is feasible. Second, we consider the complexity of these rank-

constrained problems. Under certain conditions, we will show that rank-constrained LP is

polynomial time solvable and rank-constrained QCQP and rank-constrained SOCP are both

NP-hard. For rank-constrained SDP with m linear constraints, we consider rank constraint

r(m), that is a function of m. Then, we show that the complexity of rank-constrained SDP

changes as r(m) passes through
√
2m. In particular, rank-constrained SDP is NP-hard when

r(m) ≪
√
2m and polynomial time solvable when r(m) ≫

√
2m.

For sparsity-constrained problems, we extend the results in LP sparsification [23, 76, 83]

to QCQP and SOCP. Previous results show that every feasible LP with m linear constraints

has a solution of cardinality at most m, and we can find such a solution in polynomial time

[23, 76, 83]. In addition, there are examples of LP with m constraints whose solutions have

cardinality at least m [23, 76, 83], which shows that this LP sparsification result cannot be

improved without further assumptions. We extend this result to QCQP and SOCP and show

that our results cannot be improved without further assumptions.

2.1.1 Further related works

Rank for Lorentz cone has been studied through the lens of Euclidean Jordan algebra [39,

41, 121]. The definition of rank for points in a Lorentz cone in [39, 41] is the same as the

rank for points in SOCP in our work when there is only one second order cone constraint.

In this case, the rank estimation theorem in [41] gives the same result as the SOCP rank

reduction result in our work.

In addition, our results on SOCP rank reduction can also be deduced from [94, 121].

Specifically, the author gives an algorithm which constructs an extreme point solution from

any starting solution [94, 121] for conic LP problems. Applying this algorithm to SOCP

gives a solution of small rank.

5

2.2 Rank-Constrained SDP

In this section, we study Semidefinite Programming (SDP) with rank constraint:

minimize
X∈Sn

tr(AX)

subject to tr(AiX) = bi, i = 1, . . . ,m;

X ≥ 0;

rank(X) ≤ r(m),

(2.2.1)

where A,A1, . . . , Am ∈ Sn, b1, . . . , bm ∈ R, and r(m) is a function in m. In this section,

we begin with some examples of rank-constrained SDP. Then, we study the condition under

which SDP is NP-hard. We will show that there is a phase transition in the complexity of

rank-constrained SDP when r(m) passes through
√
2m.

2.2.1 Examples of rank-constrained SDP

Rank-constrained SDP appears in many combinatorial problems such as weighted Max-Cut,

clique number, and stability number. In the following, we formulate these combinatorial

problems in terms of rank-constrained SDP.

Example 2.2.1. Consider a graph G = (V,E) with vertex set V and edge set E. Let

w : E −→ R be a weight function on G. Without loss of generality, we might assume that G

is a complete graph (i.e., (i, j) ∈ E for all i, j ∈ V) and some of the edges have zero weight

(i.e., w(e) = 0 for some e ∈ E). In weighted Max-Cut problem, the goal is to find a partition

of V = V1 ⊔ V2, that maximizes the sum of the weights on edges whose endpoints lie in

different portions of the partition. To be specific, we want to solve the following problem:

maximize
V=V1⊔V2

∑
i∈V1,j∈V2

w(i, j).

6

When w(i, j) ∈ {0, 1} for all i, j ∈ V , we call this problem the unweighted Max-Cut problem.

For simplicity, we identify V with [n] := {1, 2, . . . , n}. We define the weight matrix

W ∈ Rn×n by

W [i, j] =

w(i, j)/4 if i ̸= j

−
∑

k ̸=iw(i, k)/4 if i = j.

Then weighted Max-Cut is equivalent to the following rank-constrained SDP [2]:

minimize
X∈Sn

tr(WX)

subject to Xii = 1, i = 1, . . . , n;

X ≥ 0;

rank(X) ≤ 1.

(2.2.2)

Example 2.2.2. Next, we consider the problem of computing clique number. Given a graph

G, a clique in G is a subgraph H of G such that any two distinct vertices in H are adjacent

(i.e., there is an edge between them in G). The clique number ω(G) of G is the maximum

number of vertices in a clique in G.

By results in [79],

1− 1

ω(G)
= 2max

x∈∆n

∑
(i,j)∈E

xixj ,

where ∆n = {x ∈ Rn : x1 + · · · + xn = 1, xi ≥ 0} is the unit simplex in Rn. Thus, to

compute the clique number, it suffices to solve the follow QP:

minimize
x∈Rn

∑
(i,j)∈E

−xixj

subject to xi ≥ 0, i = 1, . . . , n;

n∑
i=1

xi = 1.

7

By results in [84], we can convert this QP into a rank-constrained SDP. We first homogenize

it to obtain the following QP:

minimize
x∈Rn,t∈R

∑
(i,j)∈E

−xixj

subject to txi ≥ 0, i = 1, . . . , n;

n∑
i=1

txi = 1;

t2 = 1.

This is clearly equivalent to the original QP by substituting tx for x. Let A ∈ R(n+1)×(n+1)

be such that

A[i, j] =

−1 if i ≤ n, j ≤ n, (i, j) ∈ E,

0 otherwise.

Then the homogenized QP is equivalent to the following rank-constrained SDP [84]:

minimize
X∈Sn+1

tr(AX)

subject to Xi(n+1) ≥ 0, i = 1, . . . , n;

n∑
i=1

Xi(n+1) = 1;

X(n+1)(n+1) = 1;

X ≥ 0;

rank(X) ≤ 1.

For any solution X, rank(X) ̸= 0 since X(n+1)(n+1) = 1. Thus, X = vvT for some v ∈ Rn+1.

Then (x, t) = v is a solution to the homogenized QP.

Example 2.2.3. Next, we consider the problem of computing stability number. Given a

8

graph G, the stability number α(G) of G is the maximum number of vertices in G, of which

no two are adjacent (i.e., there is no edge between them in G).

By results in [79],

1− 1

α(G)
= 2max

x∈∆n

∑
(i,j)/∈E

xixj ,

where ∆n = {x ∈ Rn : x1 + · · · + xn = 1, xi ≥ 0} is the unit simplex in Rn. Thus, to

compute the clique number, it suffices to solve the following QP:

minimize
x∈Rn

∑
(i,j)/∈E

−xixj

subject to xi ≥ 0, i = 1, . . . , n;

n∑
i=1

xi = 1.

Let B ∈ R(n+1)×(n+1) be such that

B[i, j] =

−1 if i ≤ n, j ≤ n, (i, j) /∈ E,

0 otherwise.

By the same argument as we used in the clique number example, this QP is equivalent to

9

the following rank-constrained SDP [84]:

minimize
X∈Sn+1

tr(BX)

subject to Xi(n+1) ≥ 0, i = 1, . . . , n;

n∑
i=1

Xi(n+1) = 1;

X(n+1)(n+1) = 1;

X ≥ 0;

rank(X) ≤ 1.

2.2.2 Complexity of rank-constrained SDP

In this section, we give the condition under which rank-constrained SDP is NP-hard. Recall

that rank-constrained SDP is formulated as:

minimize
X∈Sn

tr(AX)

subject to tr(AiX) = bi, i = 1, . . . ,m;

X ≥ 0;

rank(X) ≤ r(m),

where A,A1, . . . , Am ∈ Sn, b1, . . . , bm ∈ R, and r(m) is a function in m. In last section, we

see that weighted Max-Cut can be formulated as a rank-constrained SDP with r(m) = 1.

As a result, rank-constrained SDP is NP-hard if r(m) = 1 for all m. On the other hand,

for any feasible SDP, we could first solve the vanilla SDP (i.e., without rank constraint)

and then run a rank reduction algorithm to find another optimal solution of rank at most

(
√
1 + 8m − 1)/2 [7, 76, 93]. Thus, if r(m) ≥ (

√
1 + 8m − 1)/2 for all m, then we can

always solve the rank-constrained SDP by the procedure we just described. Assuming that

we can compute real numbers exactly, solving the vanilla SDP (without rank constraint)

10

and running the rank reduction algorithm can both be done in polynomial time [7, 76, 93].

Roughly speaking, when r(m) ≫
√
2m, rank-constrained SDP is polynomial time solvable.

In the following result, we show that when r(m) ≪
√
2m, rank-constrained SDP is NP-hard.

Theorem 2.2.4. Let A,A1, . . . , Am ∈ Sn, b1, . . . , bm ∈ R, and r : Z+ −→ Z+ be given.

Suppose that there exist constants M, ϵ > 0, such that

r(m) < 21/2−ϵ√m, for all m ≥M. (2.2.3)

Then, the rank-constrained SDP

minimize
X∈Sn

tr(AX)

subject to tr(AiX) = bi, i = 1, . . . ,m;

X ≥ 0;

rank(X) ≤ r(m),

is NP-hard.

The above result, together with results of SDP rank reduction [7, 76, 93], show that there

is a phase transition in the complexity of rank-constrained SDP as r(m) passes through
√
2m.

Before giving the formal proof, we explain the main ideas of this proof. To begin with,

consider the case r(m) = 2. Recall that weighted Max-Cut is equivalent to the following

rank-constrained SDP:

minimize
X∈Sn

tr(WX)

subject to Xii = 1, i = 1, . . . , n;

X ≥ 0;

rank(X) ≤ 1.

(2.2.4)

11

Now, we transform the above rank-constrained SDP into a new rank-constrained SDP, whose

rank constraint is two. Let

W ′ =
[
0 0
0 W

]
∈ R(n+1)×(n+1),

where 0 denotes vectors whose entries are zeros. Then, consider the following

rank-constrained SDP:

minimize
X ′∈Sn+1

tr
(
W ′X ′

)
subject to X ′

ii = 1, i = 1, . . . , n+ 1;

X ′
1j = 0, j = 2, . . . , n+ 1;

X ′ ≥ 0;

rank(X ′) ≤ 2.

(2.2.5)

Note that any solution X ′ to the above rank-constrained SDP must have the form

X ′ =
[
1 0
0 X

]
∈ R(n+1)×(n+1),

where 0 denotes vectors whose entries are zeros. The rank-constrained SDP in (2.2.5) is

equivalent to the one in (2.2.4) since rank(X ′) = rank(X) + 1.

By applying this “rank increment” technique, we can show that rank-constrained SDP

with constant rank constraint (i.e., r(m) = r for some constant r) is NP-hard. To get the

NP-hardness result for r, we need m = rn+ r(r− 1)/2 = r(n− 1) + r(r + 1)/2 many linear

constraints. In other words,

n =

⌊(
m− r(r + 1)

2

)
/r

⌋
+ 1.

12

Thus, we need m > r(r + 1)/2. Roughly speaking, r ≪
√
2m. In addition, note that as

long as r ≪
√
2m, n = Ω(

√
m) = Ω(r). Thus, the new dimension of the problem n + r − 1

is polynomial in the original dimension n. Thus, any polynomial time algorithm on this

transformed problem translates to a polynomial time algorithm on the original problem.

Proof. We begin with the special case that r(m) is non-decreasing (i.e., r(m+1) ≥ r(m) for

all m). Then, we will drop this additional assumption.

Special Case:

Our goal is to reduce weighted Max-Cut to rank-constrained SDP. Suppose that there

is a polynomial time algorithm A for rank-constrained SDP with r(m) satisfying equation

(2.2.3). Then, we will show that we can use this algorithm to solve weighted Max-Cut in

polynomial time. Let

ϕ(m) =

⌊(
m− r(m)(r(m) + 1)

2

)/
r(m)

⌋
+ 1.

Given an input graph G with n nodes and a weight function w, we consider two cases

(i)n ≥ C and (ii)n < C separately, where C is some constant which only depends on ϵ and

M . We will pick C later in the proof but it can be determined before we receive the input

of weighted Max-Cut.

If n ≥ C, our algorithm works as follows:

1. find m such that n = ϕ(m);

2. construct a rank-constrained SDP with m linear constrains that is equivalent to

weighted Max-Cut on the weighted graph (G,w);

3. solve this rank-constrained SDP using algorithm A.

If n < C, we use brute force to solve the problem. Now, we discuss each step in detail.

13

(1) We begin with some observations on ϕ(m). For m ≥M ,

ϕ(m) ≥
(
m− r(m)(r(m) + 1)

2

)/
r(m)

(a)
≥
(
m− 2−2ϵm− 2−1/2−ϵ√m

)/
r(m)

(b)
≥ δ

√
m for some δ > 0, for allm ≥M ′, for someM ′ > 0,

(2.2.6)

where δ and M ′ only depend on ϵ, and we used equation (2.2.3) in (a) and (b). Now, we

pick C = max(M,M ′) + 1. Recall that we only consider input graph G with n ≥ C nodes.

Since r(m) is non-decreasing, for all m ≥ C − 1,

ϕ(m+ 1)− ϕ(m)

=

⌊(
m+ 1− r(m+ 1)(r(m+ 1) + 1)

2

)/
r(m+ 1)

⌋
−

⌊(
m− r(m)(r(m) + 1)

2

)/
r(m)

⌋

≤

⌊(
m+ 1− r(m)(r(m) + 1)

2

)/
r(m)

⌋
−

⌊(
m− r(m)(r(m) + 1)

2

)/
r(m)

⌋

≤ 1.

(2.2.7)

Note that

ϕ(n− 1) ≤ n− 1 + 1 = n. (2.2.8)

In addition, by equation (2.2.6),

ϕ(⌈n/δ⌉2) ≥ n. (2.2.9)

By equation (2.2.7), (2.2.8), and (2.2.9), there exists some m ∈ [n − 1, ⌈n/δ⌉2] such that

ϕ(m) = n. By computing ϕ(m) from m = n − 1 to m = ⌈n/δ⌉2, we can find m with

ϕ(m) = n in O(n2) time.

(2) Recall that weighted Max-Cut is equivalent to the following rank-constrained SDP

14

[2]:

minimize
X∈Sn

tr(WX)

subject to Xii = 1, i = 1, . . . , n;

X ≥ 0;

rank(X) ≤ 1,

(2.2.10)

where W ∈ Rn×n is the weight matrix induced by the weighted graph (G,w):

W [i, j] =

w(i, j)/4 if i ̸= j

−
∑

k ̸=iw(i, k)/4 if i = j.

Now, we will construct an equivalent rank-constrained SDP of dimension n+ r(m)− 1. Let

W ′ =

0 0

0 W

 ∈ R(n+r(m)−1)×(n+r(m)−1),

where 0 denotes a matrix whose entries are zeroes. Then, we claim that the rank-constrained

SDP in (2.2.10) is equivalent to the following rank-constrained SDP:

minimize
X ′∈Sn+r(m)−1

tr
(
W ′X ′

)
subject to X ′

ii = 1, i = 1, . . . , n+ r(m)− 1;

X ′
ij = 0, j = i+ 1, . . . , n+ r(m)− 1; i = 1, . . . , r(m)− 1;

X ′ ≥ 0;

rank(X ′) ≤ r(m),

(2.2.11)

To see this, note that any solution X ′ to the rank-constrained SDP in (2.2.11) must have

15

the form

X ′ =

Ir(m)−1 0

0 X

 ∈ R(n+r(m)−1)×(n+r(m)−1),

where Ir(m)−1 ∈ R(r(m)−1)×(r(m)−1) is the identity matrix, X ∈ Sn, and 0 denotes a matrix

whose entries are zeroes. Thus, rank(X ′) ≤ r(m) if and only if rank(X) ≤ 1 and X ′ ≥ 0 if

and only if X ≥ 0. In addition, tr
(
W ′X ′) = tr(WX). Thus, the rank-constrained SDP in

(2.2.11) is equivalent to the one in (2.2.10). Thus, in order to solve weighted Max-Cut, it

suffices to solve the rank-constrained SDP in (2.2.11). Note that the rank-constrained SDP

in (2.2.11) has

n+r(m)−1∑
i=n

i =
(2n+ r(m)− 1)r(m)

2
= (n− 1)r(m) +

r(m)(r(m) + 1)

2
(2.2.12)

many linear constraints. Since n = ϕ(m),

(n− 1)r(m) +
r(m)(r(m) + 1)

2
≤ m. (2.2.13)

By adding superfluous linear constraints to (2.2.11), we get a rank-constrained SDP which

is equivalent to (2.2.11) and has exactly m linear constraints.

(3) Finally, we can apply algorithm A to solve this rank-constrained SDP in poly(n +

r(m)−1) time. Since we search for m in [n−1, ⌈n/δ⌉2] in step (1), m ≥ n−1. Since n ≥ C,

m ≥ C − 1 ≥M . Thus,

r(m) < 21/2−ϵ√m. (2.2.14)

Since n = ϕ(m) ≥ δ
√
m by equation (2.2.6),

r(m) = O(n),

16

by equation (2.2.14). Thus, algorithm A solves the rank-constrained SDP in poly(n+r(m)−

1) = poly(n) time.

Case when n < C: If the number of nodes n is less than C, we solve weighted Max-

Cut by brute force. We simply try each of the 2n possible partitions of the vertex set and

compute the value of the cut in each case. Then, we take the maximum one. Since n < C,

this takes at most O(2C) time, which is a constant. Thus, overall, the algorithm runs in

poly(n) +O(2C) = poly(n) time.

General Case:

Now, we drop the assumption that r(m+ 1) ≥ r(m) for all m. Note that the only place

we used this assumption in the proof of special case is to show that

ϕ(m+ 1)− ϕ(m) ≤ 1.

The way to avoid using this assumption is to change the definition of ϕ(m). First, note that

in the proof of the special case, we used r(m) only when m ≥ M . Thus, we can assume

without loss of generality that

r(m) < 21/2−ϵ√m, for all m ∈ Z+. (2.2.15)

Then, define r̃ : Z+ −→ Z+ as

r̃(m) = max(r(i) : i = 1, . . . ,m). (2.2.16)

Clearly,

r̃(m+ 1) ≥ r̃(m), for allm. (2.2.17)

17

Note that for any m ∈ Z+,

r̃(m) = r(t) for some t ≤ m

(a)
< 21/2−ϵ

√
t

≤ 21/2−ϵ√m,

(2.2.18)

where we used equation (2.2.15) in (a). Let

ϕ(m) =

⌊(
m− r̃(m)(r̃(m) + 1)

2

)/
r̃(m)

⌋
+ 1. (2.2.19)

The skeleton of the algorithm is similar as before. Given an input graph G with n nodes

and a weight function w, we consider two cases (i)n ≥ C and (ii)n < C separately, where C

is some constant which only depends on ϵ and M . We will pick C later in the proof but it

can be determined before we receive the input of weighted Max-Cut.

If n ≥ C, our algorithm works as follows:

1. find m such that n = ϕ(m);

2. construct a rank-constrained SDP with m linear constrains that is equivalent to

weighted Max-Cut on the weighted graph (G,w);

3. solve this rank-constrained SDP using algorithm A.

If n < C, we use brute force to solve the problem. Now, we discuss each step in detail.

(1) By equations (2.2.18), (2.2.17), and (2.2.19), we can get

ϕ(m) ≥ δ
√
m;

ϕ(m+ 1)− ϕ(m) ≤ 1;

ϕ(n− 1) ≤ n;

ϕ(⌈n/δ⌉2) ≥ n,

(2.2.20)

18

in the same way as we did in the special case of the proof. Thus, this step remains unchanged.

(2) Once we findm such that n = ϕ(m), we consider the rank-constrained SDP in (2.2.11),

in exactly the same way as we did in the special case. Note that we use r(m) instead of r̃(m)

here. It is important to note that we use r̃(m) solely to choose the value of m. After that,

we only use r(m). Thus, the number of linear constraints in (2.2.11) is exactly the same as

we counted in equation (2.2.12), which is (n− 1)r(m) + r(m)(r(m) + 1)/2. Then,

(n− 1)r(m) + r(m)(r(m) + 1)/2

(a)
≤ (n− 1)r̃(m) + r̃(m)(r̃(m) + 1)/2

(b)
≤ m,

(2.2.21)

where we used equation (2.2.16) in (a) and equation (2.2.19) in (b). The rest of this step

remains unchanged.

(3) Finally, we need to show that r(m) = O(n). This holds since n = ϕ(m) ≥ δ
√
m by

equation (2.2.20), and r(m) < 21/2−ϵ√m by equation (2.2.15).

The case when n < C is exactly the same as before.

Corollary 2.2.5. Let A1, . . . , Am ∈ Sn, b1, . . . , bm ∈ R, and r : Z+ −→ Z+ be given.

Suppose that there exist constants M, ϵ > 0, such that

r(m) < 21/2−ϵ√m, for all m ≥M.

Then, the rank-constrained SDP feasibility problem:

Find X ∈ Sn

subject to tr(AiX) = bi, i = 1, . . . ,m;

X ≥ 0;

rank(X) ≤ r(m),

(2.2.22)

19

is NP-hard.

Proof. Suppose that there is a polynomial time algorithm which solves (2.2.22). We call

this algorithm a feasibility oracle. Then we show that we can also solve the unweighted

Max-Cut problem in polynomial time using this feasibility oracle. Let G = (V,E,w) be a

weighted graph. Since we are solving the unweighted Max-Cut problem, we may assume

that w(i, j) ∈ {0, 1} for all i, j ∈ V . Let n = |V | be the number of nodes in G.

By the same arguments as in the proof of Theorem 2.2.4, unweighted Max-Cut is equiv-

alent to some rank-constrained SDP

minimize
X∈SN

tr(AX)

subject to tr(AiX) = bi, i = 1, . . . ,m;

X ≥ 0;

rank(X) ≤ r(m),

(2.2.23)

where N = n+ r(m)− 1 = poly(n), when n ≥ C for some constant C. When n < C, we can

use brute force to find the solution to unweighted Max-Cut problem in 2|E| = O(2C
2
) = O(1)

time. Then, it suffices to solve (2.2.23) using the feasibility oracle. To solve (2.2.23), we

just write the objective in (2.2.23) as a linear constraint tr(AX) ≤ c and try for different

c by bisection search. For the unweighted Max-Cut problem, we know that the objective

is bounded below by 0 and bounded above by n2. Since we know that the solution to

unweighted Max-Cut is an integer, we can find the solution by applying the feasibility oracle

O(log n) times. Thus, we could solve the unweighted Max-Cut in polynomial time. Since

unweighted Max-Cut is NP-hard, we are done.

20

2.3 Sparsity-Constrained Problems

In this section, we study sparsity-constrained problems. We start with sparsity-constrained

Linear Programming (LP):

minimize
x∈Rn

cTx

subject to Ax = b;

x ≥ 0;

card(x) ≤ κ,

(2.3.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, card(x) is the cardinality of x, which is the number of

nonzero entries of x, and κ ≥ 0 is a constant. In this case, cardinality is the analogue of rank

in SDP. To be specific, if we write LP as SDP such that x is mapped to X = diag(x), where

diag(x) denotes the diagonal matrix whose diagonal entries are entries of x, then card(x) =

rank(X). Unlike rank-constrained SDP, sparsity constrained LP (2.3.1) is polynomial time

solvable for any constant κ.

Theorem 2.3.1. Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn be given. Then, for any constant

κ ≥ 0, the sparsity-constrained LP problem

minimize
x∈Rn

cTx

subject to Ax = b;

x ≥ 0;

card(x) ≤ κ,

is polynomial time solvable.

Proof. To solve this problem, it suffices to solve
(n
κ

)
many LP problems. We encode each LP

by a set S ⊂ [n] of size n− κ. For each S, we set the variable xi to be 0 for all i ∈ S. Then
21

we solve the resulting LP defined as follows. Let c = (c1, . . . , cn)
T and A = (a1, . . . , an),

where ai ∈ Rm. Let cS be the subvector of c obtained by dropping the entries ci for all

i ∈ S. Similarly, let AS be the submatrix of A obtained by dropping columns ai for all i ∈ S.

Then, the LP corresponding to S is defined as

minimize
x′∈Rn−κ

cTSx
′

subject to ASx
′ = b;

x′ ≥ 0.

If the above LP is solvable, we keep its solution xS and optimal value yS . If it is not solvable,

we do nothing. If none of the
(n
κ

)
LP is solvable, we claim that no solution to the sparsity-

constrained LP exists. Otherwise, let S∗ be the set such that yS∗ is minimal among all yS ’s.

Then, we output the solution x̃S∗ defined by

x̃S∗ [i] = 0 if i ∈ S∗

x̃S∗ [i] = xS∗ [ki] if i /∈ S∗,

where i is the kith element in [n]− S∗, and the optimal value yS∗ . Since LP is polynomial

time solvable and
(n
κ

)
≤ nκ is polynomial in n, this algorithm runs in polynomial time.

Note that the above result does not contradict the fact that finding minimum-cardinality

solution for LP is NP-hard [44]. The reason is that Theorem 2.3.1 only applies to constant

constraint on cardinality. However, in order to find minimum-cardinality solution for LP, we

need to consider cardinality constraints that depend on n.

Parallel to the rank reduction results in SDP [7, 76, 93], every feasible LP has a solution

x∗ whose cardinality is at most m [23, 76, 83]. Next, we extend the sparsification techniques

in LP to Quadratically Constrained Quadratic Program (QCQP) and Second Order Cone

Programming (SOCP). Before considering QCQP and SOCP sparsification, we make a simple

22

observation on LP sparsification, which will be used in QCQP and SOCP sparsification.

Consider the following LP:

minimize
x∈Rn

cTx

subject to Ax = b;

x ≥ 0,

(2.3.2)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Given a solution y to (2.3.2), there is an efficient

algorithm to find another solution x∗ to (2.3.2), whose cardinality is at most m [23, 76, 83].

Now, we observe that the same result holds without the condition x ≥ 0.

Lemma 2.3.2. Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Suppose that the following LP

minimize
x∈Rn

cTx

subject to Ax = b;

(2.3.3)

has a finite optimal value (i.e., the problem is feasible and the objective is bounded). Then,

there exists a solution x∗ to (2.3.3) such that card(x∗) ≤ m. Moreover, x∗ can be found in

polynomial time.

Proof. Let y be a solution to (2.3.3). Let S = {i ∈ [n] : yi < 0}. Let c = (c1, . . . , cn)
T and

A = (a1, . . . , an), where ai ∈ Rm. Let c̃ ∈ Rn be defined as

c̃i =

ci if i /∈ S;

−ci if i ∈ S.

23

Similarly, let Ã = (ã1, . . . , ãn) be defined as

ãi =

ai if i /∈ S;

−ai if i ∈ S.

Now, consider the following LP:

minimize
x∈Rn

c̃Tx

subject to Ãx = b;

x ≥ 0.

(2.3.4)

Let ỹ = |y|, where | · | is applied entry-wise. We claim that ỹ is a solution to (2.3.4). To see

this, note that Ãỹ = Ay = b by definition. Suppose that there exists a solution z̃ ∈ Rn to

(2.3.4) such that c̃T z̃ < c̃T ỹ. Let z ∈ Rn be defined as

zi =

z̃i if i /∈ S;

−z̃i if i ∈ S.

Then, Az = Ãz̃ = b and cT z = c̃T z̃ < c̃T ỹ = cT y, which contradicts the fact that y is a

solution to (2.3.3). Thus, ỹ is a solution to (2.3.4).

Now, we apply the LP sparsification algorithm to ỹ to get a solution x̃ of (2.3.4) such

that card(x̃) ≤ m. Let x∗ ∈ Rn be defined as

x∗i =

x̃i if i /∈ S;

−x̃i if i ∈ S.

Then, Ax∗ = Ãx̃ = b and cTx∗ = c̃T x̃ = c̃T ỹ = cT y. Thus, x∗ is a solution to (2.3.3). Note

that card(x∗) = card(x̃) ≤ m.

24

2.3.1 QCQP sparsification

Consider the following Quadratically Constrained Quadratic Program (QCQP):

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b,

where Qi ∈ Sn+, ci ∈ Rn for each i = 0, 1, . . . , k, di ∈ Rn for each i = 1, . . . , k, A ∈ Rm×n,

and b ∈ Rm. In this section, we first give a sparsification result on QCQP. Then, we show

that this sparsification result cannot be improved without additional assumptions.

Theorem 2.3.3. Let Qi ∈ Sn+, ci ∈ Rn for each i = 0, 1, . . . , k, di ∈ Rn for each i = 1, . . . , k,

A ∈ Rm×n, and b ∈ Rm be given. Suppose the following QCQP:

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b,

(2.3.5)

is feasible. Then there exists a solution x∗ to (2.3.5) such that

card(x∗) ≤ m− 1 +
k∑

i=0

(rank(Qi) + 1).

Moreover, x∗ can be found in polynomial time.

Proof. For each i = 0, 1, . . . , k, let ri = rank(Qi). Since Qi ∈ Sn+, there exist an orthogonal

matrix Ui and a diagonal matrix Di such that Qi = UT
i DiUi and

Di =

B2
i 0

0 0

 ,
25

where Bi ∈ Rri×ri is a diagonal matrix. Let

Pi =

[
Bi 0

]
Ui ∈ Rri×n.

Then, Qi = PT
i Pi and xTQix = ∥Pix∥22. Let y ∈ Rn be a solution to the QCQP (2.3.5).

Now, consider the following LP:

minimize
x∈Rn

cT0 x

subject to Pix = Piy, i = 0, . . . , k;

cTi x = cTi y, i = 1, . . . , k;

Ax = b.

(2.3.6)

Note that the above LP has a finite optimal value and y is a solution to it. To see this, first

y is clearly feasible. Second, if there is a solution z such that cT0 z < cT0 y, then z is a feasible

point of the QCQP (2.3.5) and zTQiz+c
T
0 z = ∥Piz∥22+c

T
0 z < ∥Piy∥22+c

T
0 y = yTQiy+c

T
0 y,

which contradicts the fact that y is a solution to the QCQP (2.3.5). Thus, y is a solution to

the LP (2.3.6). Now, we can find a solution x∗ to the LP (2.3.6) of cardinality at most

m− 1 +
k∑

i=0

(rank(Qi) + 1),

by Lemma 2.3.2. Since x∗ and y are both solution of (2.3.6),

cT0 x
∗ = cT0 y.

Thus,

x∗TQ0x
∗ + cT0 x

∗ = ∥P0x∗∥22 + cT0 y = ∥P0y∥22 + cT0 y = yTQ0y + cT0 y.

Thus, x∗ is a solution to the QCQP (2.3.5). Since LP sparsification can be done in polynomial

26

time, we can find x∗ in polynomial time by the above procedure.

Theorem 2.3.3 gives an upper bound on the minimal cardinality of solutions of QCQP.

In the following example, we show that this bound is tight, which means that it cannot be

improved without additional assumptions.

Example 2.3.4. Let n,m, rank(Q0), . . . , rank(Qk) ∈ R be given. To make the bound in

Theorem 2.3.3 nontrivial, assume that

m− 1 +
k∑

i=0

(rank(Qi) + 1) < n.

For each i = 0, 1, . . . , k, let

ri = rank(Qi), and si =
i−1∑
j=0

(rj + 1).

Note that s0 = 0 since it is an empty sum. For each i = 0, 1, . . . , k, let

Qi =

0si×si 0si×ri 0si×(n−ri−si)

0ri×si Iri 0ri×(n−ri−si)

0(n−ri−si)×si
0(n−ri−si)×ri

0(n−ri−si)×(n−ri−si)

 ∈ Rn×n,

where Iri ∈ Rri×ri is the identity matrix and 0s,t ∈ Rs×t denotes a matrix whose entries are

zeros. For each i = 1, . . . , k, let

ci = −esi+ri+1 − 2

si+ri∑
j=si+1

ej ,

27

where esi+ri+1 = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rn is the si + ri + 1th standard basis vector. Let

c0 = −2

r0∑
i=1

ei +
k∑

i=1

esi+ri+1.

Let

A =

[
0m×sk+1 Im 0m×(n−m−sk+1)

]
.

Consider the following QCQP:

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ ri + 1 ≤ 0, i = 1, . . . k;

Ax = 1m,

(2.3.7)

where 1m ∈ Rm is a vector whose entries are ones. We claim that any solution to the above

QCQP has at least m− 1 +
∑k

i=0(rank(Qi) + 1) nonzero entries. Let z = (z1, . . . , zn) ∈ Rn

be a feasible point of the QCQP (2.3.7). Then, for each i = 1, . . . , k,

zTQiz + cTi z + ri + 1 ≤ 0,

which implies
si+ri∑
j=si+1

z2j − 2

si+ri∑
j=si+1

zj − zsi+ri+1 + ri + 1 ≤ 0,

which implies

zsi+ri+1 ≥ 1 +

si+ri∑
j=si+1

(z2j − 2zj + 1) ≥ 1. (2.3.8)

Then,

zTQ0z + cT0 z =

r0∑
i=1

(z2i − 2zi) +
k∑

i=1

zsi+ri+1 ≥ −r0 +
k∑

i=1

1 = k − r0, (2.3.9)

28

where the last step follows from equation (2.3.8). Let x∗ = (1, 1, . . . , 1, 0, . . . , 0) ∈ Rn be a

vector whose first m − 1 +
∑k

i=0(ri + 1) entries are ones and the rest are zeros. Then, x∗

satisfies all the constraints in the QCQP (2.3.7) and

x∗TQ0x
∗ + cT0 x

∗ = k − r0. (2.3.10)

Thus, by equations (2.3.9) and (2.3.10), the optimal value of the QCQP (2.3.7) is k − r0.

Now, let y ∈ Rn be a solution to the QCQP (2.3.7). We will show that card(y) ≥

m− 1 +
∑k

i=0(rank(Qi) + 1). By equation (2.3.8), we have

ysi+ri+1 ≥ 1,

for all i = 1, . . . , k. Since y is optimal, we have

k − r0 = yTQ0y + cT0 y =

r0∑
i=1

(y2i − 2yi) +
k∑

i=1

ysi+ri+1 ≥ −r0 +
k∑

i=1

1 = k − r0,

which implies that

ysi+ri+1 = 1, (2.3.11)

for all i = 1, . . . , k and

yi = 1, (2.3.12)

for all i = 1, . . . , r0. By equations (2.3.11) and (2.3.8),

yj = 1 (2.3.13)

for all j = si+1, . . . , si+ ri, for all i = 1, . . . , k. Then, equations (2.3.11), (2.3.12), (2.3.13),

29

together with the fact that Ay = 1m implies that

yi = 1

for all i = 1, . . . ,m− 1 +
∑k

i=0(rank(Qi) + 1). Thus,

card(y) ≥ m− 1 +
k∑

i=0

(rank(Qi) + 1).

This shows that our bound on Theorem 2.3.3 is tight.

2.3.2 SOCP sparsification

Consider the following Second Order Cone Programming (SOCP):

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

where Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R for each i = 1, . . . , k, F ∈ Rm×n, c ∈ Rn,

and g ∈ Rm. In this section, we first give a sparsification result on SOCP. Then, we show

that this sparsification result cannot be improved without additional assumptions.

Theorem 2.3.5. Let Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R for each i = 1, . . . , k,

F ∈ Rm×n, c ∈ Rn, and g ∈ Rm be given. Suppose the following SOCP:

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

(2.3.14)

30

is feasible. Then there exists a solution x∗ to (2.3.14) such that

card(x∗) ≤ m+
k∑

i=1

(mi + 1).

Moreover, x∗ can be found in polynomial time.

Proof. Let y be a solution to the SOCP (2.3.14). Then, consider the following LP:

minimize
x∈Rn

cTx

subject to Aix = Aiy, i = 1, . . . , k;

cTi x = cTi y, i = 1, . . . , k;

Fx = g.

(2.3.15)

Note that the above LP has a finite optimal value and y is a solution to it. To see this, first

y is clearly feasible. Second, if there is a solution z such that cT z < cT y, then z is a feasible

point of the SOCP (2.3.14) and cT z < cT y, which contradicts the fact that y is a solution

to the SOCP (2.3.14). Thus, y is a solution to the LP (2.3.15). Now, we can find a solution

x∗ to the LP (2.3.15) of cardinality at most

m+
k∑

i=1

(mi + 1),

by Lemma 2.3.2. Since x∗ and y are both solutions of (2.3.15),

cTx∗ = cT y.

Thus, x∗ is a solution to the SOCP (2.3.14). Since LP sparsification can be done in polyno-

mial time, we can find x∗ in polynomial time by the above procedure.

Theorem 2.3.5 gives an upper bound on the minimal cardinality of solutions of SOCP.
31

In the following example, we show that this bound is tight, which means that it cannot be

improved without additional assumptions.

Example 2.3.6. Let n,m,m1,m2, . . . ,mk ∈ R be given. To make the bound in Theorem

2.3.5 nontrivial, assume that

m+
k∑

i=1

(mi + 1) < n.

For each i = 1, . . . , k + 1, let

ri =
i−1∑
j=1

(mj + 1).

Note that r1 = 0 since it is an empty sum. For each i = 1, . . . , k, let

ci = eri+mi+1

and

Ei =

[
0mi×ri Imi 0mi×(n−ri+1+1)

]
∈ Rmi×n,

where Imi ∈ Rmi×mi is the identity matrix, 0s,t ∈ Rs×t denotes a matrix whose entries are

zeros, and eri+mi+1 = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rn is the ri+mi+1th standard basis vector.

Let

F =

[
0m×rk+1 Im 0m×(n−m−rk+1)

]
.

Let

c =
k∑

i=1

ci.

Consider the following SOCP:

minimize
x∈Rn

cTx

subject to ∥Eix− 1mi∥2 ≤ cTi x− 1, i = 1, . . . , k;

Fx = 1m,

(2.3.16)

32

where 1d ∈ Rd is a vector whose entries are ones. We claim that any solution to the above

SOCP has at least m+
∑k

i=1(mi+1) nonzero entries. Let z be a feasible point of the SOCP

(2.3.16). Then, for each i = 1, . . . , k,

zri+mi+1 − 1 = cTi z − 1 ≥ ∥Eiz − 1mi∥2 ≥ 0,

which implies that

zri+mi+1 ≥ 1 (2.3.17)

for all i = 1, . . . , k. Thus,

cT z =
k∑

i=1

zri+mi+1 ≥ k. (2.3.18)

Let x∗ = (1, 1, . . . , 1, 0, . . . , 0) ∈ Rn be a vector whose first m +
∑k

i=1(mi + 1) entries are

ones and the rest are zeros. Then, x∗ satisfies all the constraints in the SOCP (2.3.16) and

cTx∗ = k. (2.3.19)

Thus, by equations (2.3.18) and (2.3.19), the optimal value of the SOCP (2.3.16) is k.

Now, let y ∈ Rn be a solution to the SOCP (2.3.16). We will show that card(y) ≥

m+
∑k

i=1(mi + 1). By equation (2.3.17), we have

yri+mi+1 ≥ 1, (2.3.20)

for all i = 1, . . . , k. Since y is optimal, we have

k = cT y =
k∑

i=1

yri+mi+1. (2.3.21)

33

By equations (2.3.20) and (2.3.21),

yri+mi+1 = 1, (2.3.22)

for all i = 1, . . . , k. This implies that for each i = 1, . . . , k,

∥Eiy − 1mi∥2 = 0, (2.3.23)

which implies that

Eiy = 1mi . (2.3.24)

Then, equations (2.3.22) and (2.3.24), together with the fact that Fy = 1m, imply that

yi = 1

for all i = 1, . . . ,m+
∑k

j=1(mj + 1). Thus,

card(y) ≥ m+
k∑

j=1

(mj + 1).

This implies that our bound in Theorem 2.3.5 is tight.

2.4 Rank-Constrained Hyperbolic Programming

In this section, we consider rank-constrained Hyperbolic Programming (HP), which unifies

rank-constrained SDP and sparsity-constrained LP. We extend rank reduction techniques

to rank-constrained QCQP and rank-constrained SOCP, which are special cases of rank-

constrained HP. In addition, we study the complexity of these two optimization problems.

We first recall the definition of a hyperbolic polynomial [17, 48, 100].

34

Definition 2.4.1. A homogeneous polynomial p : Rn −→ R is hyperbolic if there exists

a direction e ∈ Rn such that p(e) ̸= 0 and for each x ∈ Rn the univariate polynomial

t 7→ p(x− te) has only real roots. The polynomial p is said to be hyperbolic in direction e.

Then, we recall the definition of characteristic polynomial and eigenvalues in HP [17, 48,

100].

Definition 2.4.2. Given x ∈ Rn and a polynomial p : Rn −→ R that is hyperbolic in

direction e ∈ Rn, the characteristic polynomial of x with respect to p in direction e is the

univariate polynomial λ 7→ p(x − λe). The roots of the characteristic polynomial are the

eigenvalues of x.

Next, we recall the definition of hyperbolic programming [17, 48, 100].

Definition 2.4.3. Given a hyperbolic polynomial p : Rn −→ R that is hyperbolic in direc-

tion e ∈ Rn, the hyperbolic cone for p in direction e is defined as

Λ++ := {x ∈ Rn : λmin(x) > 0},

where λmin(x) is the minimum eigenvalue of x. Let

Λ+ := {x ∈ Rn : λmin(x) ≥ 0}

be the closure of Λ++.

Definition 2.4.4. Given a hyperbolic polynomial p : Rn −→ R that is hyperbolic in direc-

tion e ∈ Rn, a hyperbolic program is an optimization problem of the form

minimize
x∈Rn

cTx

subject to Ax = b;

x ∈ Λ+,

(2.4.1)

35

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given.

Finally, we recall the definition of rank in HP [17, 48, 100].

Definition 2.4.5. Let p be a hyperbolic polynomial that is hyperbolic in direction e ∈ Rn.

The rank of x ∈ Rn is defined as rank(x) := deg p(e + tx), where t is the indeterminate.

Equivalently, rank(x) is the number of non-zero eigenvalues of x.

Note that HP includes SDP and LP as special cases. Moreover, rank-constrained HP

includes rank-constrained SDP and sparsity-constrained LP as special cases. To be specific,

when p(X) = det(X) and e = I (in this case, the domain of p is the set of symmetric

matrices which can be identified as Rn(n+1)/2), HP becomes SDP and rank(X) is simply the

usual rank of a matrix [17, 48, 100]. In addition, when p(x) =
∏n

i=1 xi, where xi is the ith

component of x and e = (1, 1, . . . , 1), HP becomes LP and rank(x) = card(x) [17, 48, 100].

2.4.1 Rank-Constrained SOCP

In this section, we study rank-constrained SOCP. We first define the rank of SOCP by

viewing it as a HP. Then, we give a rank reduction result for SOCP. Next, we show that

Max-Cut can be written as a rank-constrained SOCP. Finally, we study the complexity of

rank-constrained SOCP and show that it is NP-hard in certain circumstances.

SOCP rank reduction

We consider the following SOCP:

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

(2.4.2)

36

where Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R for each i = 1, . . . , k, F ∈ Rm×n, c ∈ Rn,

and g ∈ Rm. We first show that it can be written as a HP. This step is similar to the Lorentz

cone example in [9]. First, we associate each second order cone constraint ∥Aix + bi∥2 ≤

cTi x+ di with a new variable yi. Let y = (y1, . . . , yk). Let z = (x, y). For each j ∈ [mi], let

aTi,j be the jth row of Ai, bi,j be the jth entry of bi, and let qi,j(x) = aTi,jx+ bi,j . Then let

pi(z) = y2i −
mi∑
j=1

qi,j(x)
2.

Now let

p(z) =
k∏

i=1

pi(z).

Let e = (0, . . . , 0, 1, . . . , 1) where there are n zeros followed by k ones. For each i,

pi(z − te) = (yi − t)2 −
mi∑
j=1

qi,j(x)
2 = t2 − 2yit+

(
y2i −

mi∑
j=1

qi,j(x)
2

)
. (2.4.3)

The discriminant

∆i = 4y2i − 4

(
y2i −

mi∑
j=1

qi,j(x)
2

)
= 4

mi∑
j=1

qi,j(x)
2 ≥ 0.

Thus, pi is hyperbolic in e for all i. Hence, p is hyperbolic in e. Note that roots of p(z − te)

are positive if and only if roots of pi(z − te) are positive for all i. From equation (2.4.3), we

see that this holds if and only if

yi ≥ 0 and y2i ≥
mi∑
j=1

qi,j(x)
2.

This is equivalent to

yi ≥

√√√√ mi∑
j=1

qi,j(x)2 = ∥Aix+ bi∥2.

37

Now for each i, we add the linear constraint

yi = cTi x+ di.

Then the resulting HP with the original linear constraint Fx = g and the new linear con-

straints yi = cTi x+ di is equivalent to the SOCP problem (2.4.2).

Next, we consider the rank. Note that

pi(e+ tz) = (tyi + 1)2 −
mi∑
j=1

qi,j(x)
2t2 =

(
y2i −

mi∑
j=1

qi,j(x)
2

)
t2 + 2yit+ 1.

Then we have

deg(pi) =

0 if y2i =

∑mi
j=1 qi,j(x)

2 = 0

1 if y2i =
∑mi

j=1 qi,j(x)
2 ̸= 0

2 otherwise.

Let s(x) be the number of second order cone constraints that are satisfied with equality.

Let e(x) be the number of second order cone constraints that are satisfied with equality and

both sides of the constraints are zero. Since

deg(p(e+ tz)) =
k∑

i=1

deg(pi(e+ tz)),

we have

rank(z) = 2k − s(x)− e(x).

In addition, we define

rank(x) = rank(z).

Now we consider SOCP rank reduction.

Theorem 2.4.6. Let Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R for each i = 1, . . . , k,
38

F ∈ Rm×n, c ∈ Rn, and g ∈ Rm be given. Suppose the following SOCP:

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

(2.4.4)

is feasible and ⋂
i∈[k+1]

kerBi = {0},

where

Bi =

Ai

cTi

 for each i ∈ [k], and Bk+1 =

F
cT

 .
Then there exists a solution x∗ to 2.4.4 such that

rank(x) ≤ 2k −
⌈ n

max(m,m1,m2, . . . ,mk) + 1

⌉
+ 1.

Moreover, x∗ can be found in polynomial time.

Proof. It suffices to show that we can find a solution x such that

s(x) ≥
⌈ n

max(m,m1,m2, . . . ,mk) + 1

⌉
− 1.

Let

m′ = max(m,m1,m2, . . . ,mk).

Let x(0) be a solution to the SOCP. We define an algorithm iteratively with the inductive

hypothesis that at the beginning of step i,

∥Ajx
(i−1) + bj∥2 = cTj x

(i−1) + dj ,

39

for all j ∈ Si−1, where x(i) is the value of x at the end of the ith iteration and Si is a set of

size i which is updated in each iteration. This clearly holds for i = 1 with S0 = ∅. At step

i, we do the following. Let Si−1 = {u1, . . . , ui−1} and

Mi =

Bk+1

Bu1
...

Bui−1

Then Mi ∈ Rti×n for some ti ≤ (m′ + 1)i. Suppose that

i ≤
⌈

n

m′ + 1

⌉
− 1.

Then ti ≤ (m′ + 1)i < n. Thus, kerMi ̸= {0}. Take v ∈ kerMi such that v ̸= 0. Since

⋂
i∈[k+1]

kerBi = {0},

there exists u ∈ [k], such that Buv ̸= 0. Clearly, u /∈ Si−1. Now we consider two cases. If

cTu v = 0, then Auv ̸= 0. Thus,

∥Au(x
(i−1) + λv) + bu∥2 − (cTu (x

(i−1) + λv) + du) −→ ∞,

as λ −→ ∞. Since the above expression is less than or equal to 0 when λ = 0, there exists

λ∗ such that

∥Au(x
(i−1) + λ∗v) + bu∥2 − (cTu (x

(i−1) + λ∗v) + du) = 0.

40

Now if cTu v ̸= 0, then multiplying v by −1 if necessary, we can assume that cTu v < 0. Thus,

∥Au(x
(i−1) + λv) + bu∥2 − (cTu (x

(i−1) + λv) + du) −→ ∞,

as λ −→ ∞. Then again we have there exists λ∗ such that

∥Au(x
(i−1) + λ∗v) + bu∥2 − (cTu (x

(i−1) + λ∗v) + du) = 0.

Now let

E = {u : Buv ̸= 0}.

For each u ∈ E, let

λu = argmin
λ∈R

{
|λ| : ∥Au(x

(i−1) + λv) + bu∥2 = (cTu (x
(i−1) + λv) + du)

}
.

Now let

ui ∈ arg min
u∈E

|λu|.

Update

x(i) = x(i−1) + λuiv

Si = Si−1 ∪ {ui}.

Then clearly

∥Ajx
(i−1) + bj∥2 = cTj x

(i−1) + dj ,

for all j ∈ Si and

|Si| = |Si−1|+ 1 = i.

41

Note that x(i) is still a feasible solution since for all u ∈ E,

∥Au(x
(i−1) + λ∗v) + bu∥2 − (cTu (x

(i−1) + λ∗v) + du) ≤ 0,

by minimality of |λui|. This process stop when i = ⌈n/(m′ + 1)⌉. Then we have

∥Ajx
(i−1) + bj∥2 = cTj x

(i−1) + dj ,

for all j ∈ S⌈n/(m′+1)⌉−1 and thus

s(x(i−1)) ≥
⌈ n

m′ + 1

⌉
− 1.

Complexity of rank-constrained SOCP

In this section, we study the complexity of rank-constrained SOCP. First, we will show that

Max-Cut could be formulated as rank-constrained SOCP. Then, we will use this reduction to

show that rank-constrained SOCP is NP-hard under certain circumstances. Our reduction of

Max-Cut to rank-constrained SOCP is a slight modification of the SOCP relaxation results

in [91].

Example 2.4.7. First, we consider a nonconvex Quadratically Constrained Linear Program

(QCLP):

minimize
x∈Rn

cTx

subject to xTQix+ gTi x+ fi = 0, i = 1, . . . ,m,

(2.4.5)

where Qi ∈ Sn, gi ∈ Rn, and fi ∈ R. We will first show that the above nonconvex QCLP is

42

equivalent to a rank-constrained SOCP. Then, since Max-Cut can be written as a nonconvex

QCLP, Max-Cut is also equivalent to a rank-constrained SOCP.

QCLP to rank-constrained SOCP: Since

xTQix = tr
(
Qixx

T
)
,

the QCLP in (2.4.5) is clearly equivalent to

minimize
x∈Rn,X∈Sn

cTx

subject to tr(QiX) + gTi x+ fi = 0, i = 1, . . . ,m,

X − xxT = 0.

The above is an LP with the additional constraint X − xxT = 0. Thus, it suffices to write

that constraint as a second order cone constraint. Let C1, . . . , Cr be an orthonormal basis

for Sn. Then X − xxT = 0 if and only if

tr
(
Ci(X − xxT)

)
= 0,

for all i ∈ [r]. For each i, there exists λi such that Ci + λiI ∈ Sn+. Let C̃i = Ci + λiI. Then

for all i ∈ [r], tr
(
Ci(X − xxT)

)
= 0 if

tr
(
C̃i(X − xxT)

)
= 0, and tr

(
I(X − xxT)

)
= 0. (2.4.6)

On the other hand, if X − xxT = 0, then equation (2.4.6) certainly holds for all i ∈ [r].

Thus, X − xxT = 0 if and only if equation (2.4.6) holds for all i ∈ [r].

Now let A ∈ Sn+. Then A = V V T for some V ∈ Rn×n. Note that

tr
(
A(X − xxT)

)
= tr(AX)− xTV V Tx = a− uTu, (2.4.7)

43

where a = tr(AX), u = V Tx. Now note that

a− uTu = 0

if and only if

(a+ 1)2 = (a− 1)2 + 4uTu.

Let w =

a− 1

2u

, then the above equation is equivalent to

∥w∥2 = a+ 1.

In other words, we get ∥∥∥∥∥
tr(AX)− 1

2V Tx

∥∥∥∥∥
2

= tr(AX) + 1, (2.4.8)

which is a second order cone constraint with equality. Note that the left hand side and right

hand side of (2.4.8) cannot both be 0. Otherwise, we would have tr(AX) = 1 from the left

hand side and tr(AX) = −1 from the right hand side, which is a contradiction. Thus,

e(x) = 0,

for all x that satisfies (2.4.8), where e(x) is the number of second order cone constrained

that are satisfied with equality and both sides are zero. Then, we need

s(x) = k and e(x) = 0,

where

k = 1 +
n(n+ 1)

2

44

is the number of second order cone constraints and s(x) is the number of second order cone

constrained that are satisfied with equality. Thus, the original QCLP could be written as a

SOCP problem with the additional rank constraint

rank(x) ≤ k.

Max-Cut to QCLP: It is well known that Max-Cut can be written in the form [91]

minimize
x∈Rn

xTQx

subject to x2i − 1 = 0, i = 1, . . . , n,

for some Q ∈ Sn. Then it is equivalent to

minimize
x∈Rn

t

subject to x2i − 1 = 0, i = 1, . . . , n,

xTQx− t = 0,

which is then in the form of the nonconvex QCLP in (2.4.5). Thus, Max-Cut is equivalent

to a rank-constrained SOCP.

From the above example, we see that rank-constrained SOCP includes some interesting

combinatorial problems, which motivates the study of rank-constrained SOCP:

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

rank(x) ≤ r(k)

where r(k) is a function in k, Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R for each i = 1, . . . , k,
45

F ∈ Rm×n, c ∈ Rn, and g ∈ Rm. Next, we give a complexity result of this problem.

Theorem 2.4.8. Let Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R for each i = 1, . . . , k,

F ∈ Rm×n, c ∈ Rn, and g ∈ Rm be given. Let s ≥ 0 be a constant. Then the following

rank-constrained SOCP:

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

rank(x) ≤ k + s,

is NP-hard.

Proof. From the example at the beginning of this section, we see that rank-constrained

SOCP with r(k) = k is NP-hard since we can reduce Max-Cut to it. In other words, the

following problem:

minimize
x∈Rn

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . , k;

Fx = g,

rank(x) ≤ k,

(2.4.9)

is NP-hard. Now, we show how to increase r(k) from k to k + 1. Consider the following

46

problem:

minimize
x∈Rn+1

c̃Tx

subject to
∥∥Ãix+ b̃i

∥∥
2 ≤ c̃i

Tx+ di, i = 1, . . . , k;

F̃ x = g,

xn+1 = 1,

∥Ex∥2 ≤ 2,

rank(x) ≤ (k + 1) + 1,

(2.4.10)

where Ãi =
[
Ai
0

]
, c̃ =

[c
0

]
, b̃i =

[
bi
0

]
, c̃i =

[ci
0

]
, F̃ = [F 0], E = en+1e

T
n+1, and en+1 =

(0, . . . , 0, 1). Note that since xn+1 = 1,

∥Ex∥2 = 1 < 2.

Thus, this second order cone constraint will contribute 2 to the rank. Thus, (2.4.10) is

equivalent to (2.4.9). Note that there are k + 1 second order cone constraints in (2.4.10).

Using this argument s times finishes the proof.

2.4.2 Rank-Constrained QCQP

In this section, we study rank-constrained QCQP. We first define the rank of QCQP by

viewing it as a SOCP. Then, we apply the results in the previous section to do rank reduction

on QCQP. Next, we show that Max-Cut can also be written as a rank-constrained QCQP.

Finally, we show that rank-constrained QCQP is NP-hard in certain circumstances.

47

QCQP rank reduction

Consider the following QCQP:

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b,

(2.4.11)

where Qi ∈ Sn+, ci ∈ Rn for each i = 0, 1, . . . , k, di ∈ Rn for each i = 1, . . . , k, A ∈ Rm×n,

and b ∈ Rm. First, we write QCQP (2.4.11) as a SOCP (2.4.2). To do this, we first consider

the epigraph version of (2.4.11):

minimize
x∈Rn,t∈R

t

subject to xTQ0x+ cT0 x− t ≤ 0

xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b.

(2.4.12)

Then, it suffices to convert a quadratic constraint

xTQix+ cTi x+ di ≤ 0 (2.4.13)

to a second order cone constraint. For each i = 0, 1, . . . , k, let ri = rank(Qi). Then there

exists Pi ∈ Rri×ri such that Qi = PT
i Pi since Qi ∈ Sn+. Then, equation (2.4.13) becomes

∥Pix∥22 ≤ −cTi x− di. (2.4.14)

Since

−cTi x− di = (1/4− cTi x− di)
2 − (1/4 + cTi x+ di)

2,

48

equation (2.4.14) is equivalent to

∥Pix∥22 + (1/4 + cTi x+ di)
2 ≤ (1/4− cTi x− di)

2,

which is equivalent to

∥∥∥∥∥
 Pix

1/4 + cTi x+ di

∥∥∥∥∥
2

≤ ∥1/4− cTi x− di∥2, (2.4.15)

which is a second order cone constraint. Note that the left hand side and right hand side of

equation (2.4.15) cannot both be zeroes, since 1/4+cTi x+di and 1/4−cTi x−di cannot both

be zeroes. Thus, according to the definition of rank for SOCP, the rank in QCQP (2.4.11)

is defined as

rank(x) := 2k + 1− s(x),

where s(x) is the number of quadratic constraints in (2.4.11) that are satisfied with equality

(i.e., xTQix + cTi x + di = 0). Note that by writing QCQP as SOCP, we have k + 1 second

order cone constraints. However, xTQ0x + cT0 x − t = 0 for any x that attains the optimal

value. Note that in QCQP,

rank(x) ≥ k + 1

for all x ∈ Rn.

Now, we do rank reduction on QCQP. By viewing QCQP as a SOCP and applying

Theorem 2.4.6, we get the following result.

Theorem 2.4.9. Let Qi ∈ Sn+, ci ∈ Rn for each i = 0, 1, . . . , k, di ∈ Rn for each i = 1, . . . , k,

49

A ∈ Rm×n, and b ∈ Rm be given. Suppose the following QCQP:

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b,

(2.4.16)

is feasible and
k+1⋂
i=0

kerBi = {0},

where

Bi =

Qi

cTi

 for each i = 0, 1, . . . , k, and Bk+1 = A.

Then there exists a solution x∗ to 2.4.16 such that

rank(x∗) ≤ 2k + 3−
⌈ n

max(m− 1, rank(Q0), rank(Q1), . . . , rank(Qk)) + 1

⌉
.

Moreover, x∗ can be found in polynomial time.

Proof. First, we write the QCQP as a SOCP. Then we have k + 1 second order cone con-

straints. Note that for Bk+1, we don’t need to concatenate A with c0 as we did in the SOCP

case since the objective xTQ0x+ cT0 x becomes a second order cone constraint. In addition,

if Qi = PT
i Pi, then ker(Qi) = ker(Pi). In addition, for i = 1, . . . , k instead of defining Bi

as a concatenation of Qi, c
T
i and cTi , we just need to define it as a concatenation of Qi and

cTi since they have the same kernel. Applying Theorem 2.4.6 to the resulting SOCP finishes

the proof.

50

Complexity of rank-constrained QCQP

In this section, we study the complexity of rank-constrained QCQP. First, note that Max-

Cut can be written as a rank-constrained QCQP. This follows from the fact that equation

(2.4.7) can be seen as a quadratic constraint

xTAx− tr(AX) ≤ 0,

that holds with equality. Thus, Max-Cut can be written as a rank-constrained QCQP where

the constraint on rank is rank(x) ≤ k + 1. With similar techniques as we use in Theorem

2.4.8, we obtain the following result.

Theorem 2.4.10. Let Qi ∈ Sn+, ci ∈ Rn for each i = 0, 1, . . . , k, di ∈ Rn for each i =

1, . . . , k, A ∈ Rm×n, and b ∈ Rm be given. Let s ≥ 1 be a constant. Then the following

rank-constrained QCQP:

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b,

rank(x) ≤ k + s,

is NP-hard.

Proof. Since we can write Max-Cut as a rank-constrained QCQP with the rank constraint

51

rank(x) ≤ k + 1, the following problem

minimize
x∈Rn

xTQ0x+ cT0 x

subject to xTQix+ cTi x+ di ≤ 0, i = 1, . . . k;

Ax = b,

rank(x) ≤ k + 1,

(2.4.17)

is NP-hard. Now, we show how to increase the rank constraint from k+1 to k+2. For each

i = 0, . . . , k, Qi = PT
i Pi for some Pi ∈ Rn×n. Consider the following problem:

minimize
x∈Rn+1

xT P̃0
T
P̃0x+ c̃0

Tx

subject to xT P̃i
T
P̃ix+ c̃i

Tx+ di ≤ 0, i = 1, . . . k;

Ãx = b,

xk+1 = 1,

xTEx ≤ 2,

rank(x) ≤ (k + 1) + 2,

(2.4.18)

where Ã = [A 0], P̃i = [Pi 0], c̃i =
[ci
0

]
, E = en+1e

T
n+1, and en+1 = (0, . . . , 0, 1). Note that

since xn+1 = 1,

xTEx = 1 < 2.

Thus, this quadratic constraint will contribute 2 to the rank. Thus, (2.4.18) is equivalent to

(2.4.17). Note that there are k + 1 quadratic constraints in (2.4.18). Using this argument

s− 1 times finishes the proof.

52

2.5 Conclusion

In this work, we study rank-constrained and sparsity-constrained HP. For rank-constrained

HP, we design algorithms for rank reduction and study the complexity of rank-constrained

HP. We showed that both rank-constrained QCQP and rank-constrained SOCP are NP-hard.

In addition, we show that there is a phase transition in the complexity of rank-constrained

SDP with m linear constraints when the rank constraint r(m) passes through
√
2m.

For sparsity-constrained HP, we extend results on LP sparsification to QCQP and SOCP

and show that our results give tight upper bounds on minimal cardinality solutions to QCQP

and SOCP.

53

CHAPTER 3

NUMERICAL STABILITY AND TENSOR NUCLEAR NORM

3.1 Introduction

More than fifty years ago, Volker Strassen announced an astounding result: A pair of 2× 2

matrices may be multiplied with seven multiplications [111]. A consequence is that linear

systems can be solved in O(nlog2 7) time complexity, a surprise at that time as existing works

such as [68] purportedly showed that O(n3) was the lowest possible.

Strassen’s algorithm is in the spirit of the well-known algorithm, often attributed to

Gauss,1 for multiplying a pair of complex numbers with three real multiplications [55],

(a+ bi)(c+ di) = (ac− bd) + i[(a+ b)(c+ d)− ac− bd], (3.1.1)

but is notable in that Strassen’s applies to a noncommutative product (matrix multiplication)

as opposed to a commutative one (complex scalar multiplication). It led to a plethora

of followed-up works and ultimately to the realization that there is a unified framework

underlying the algorithms of Gauss and Strassen, namely, in evaluating a bilinear operator

β : U× V → W, viewed as a 3-tensor in U∗ ⊗ V∗ ⊗W, any decomposition

β = φ1 ⊗ ψ1 ⊗ w1 + · · ·+ φr ⊗ ψr ⊗ wr (3.1.2)

into linear functionals φi : U → R, ψi : V → R, and vectors wi ∈ W, i = 1, . . . , r, gives us

an algorithm for computing β. Furthermore, the number of terms r in such a decomposition

counts precisely the number of multiplications, and thus the minimal value of r, i.e., the

tensor rank of β, gives the optimal complexity for evaluating β in an appropriate sense [112]

(see Section 3.2). Both Gauss’s and Strassen’s algorithms are the fastest possible according

1. See [88, p. 37], [103, p. 8] for example.

54

to this measure, that is, they attain the tensor ranks of complex multiplication (three) and

2× 2 matrix product (seven) respectively [120].

Well-known to readers of this journal, speed is not all that matters in an algorithm,

numerical stability is arguably more important in finite-precision computations as rounding

errors may result in an unstable algorithm producing no correct digits. While the stability

of algorithms for evaluating bilinear operators has been studied for specific algorithms or

operators in isolation, e.g., for Gauss’s algorithm in [55], Strassen’s algorithm in [18], and

other fast matrix multiplication algorithms in [5, 13], there has been no unfied treatment that

applies to all bilinear operators β as in the case of speed. There is no analysis that quantifies

stability in terms of some tensorial property of β analogous to how speed is quantified in

terms of its tensor rank. The goal of the present article is to fill this gap. We will show

that just as the number of terms r in the decomposition (3.1.2) controls the speed of the

algorithm, the growth factor, defined as

∥φ1∥∗∥ψ1∥∗∥w1∥+ · · ·+ ∥φr∥∗∥ψr∥∗∥wr∥, (3.1.3)

controls the stability of the algorithm; and just as the tensor rank of β measures the optimal

speed, the tensor nuclear norm of β, defined as

∥β∥ν := inf

{ r∑
i=1

∥φi∥∗∥ψi∥∗∥wi∥ : β =
r∑

i=1

φi ⊗ ψi ⊗ wi

}
, (3.1.4)

measures the optimal stability, the precise meaning of which we will state in due course.

Although we have alluded to the relation between tensor nuclear norm and numerical

stability in earlier works [80, 125, 43], we have never stated a precise relation nor carried

out numerical experiments to demonstrate the relation. This article provides both. Theo-

rem 3.3.3 gives a general relation between the growth factor of a bilinear algorithm and its

forward error, from which a relation between tensor nuclear norm and forward error may be

55

deduced as in Corollary 3.3.4. We then perform a range of numerical experiments involving

Gauss’s and Strassen’s algorithms to substantiate our theoretical findings:

Matrix multiplication We compare Strassen’s algorithm with a well-known variant due

to Winograd [58, 69]. While both attain the optimal seven multiplications, Winograd’s

variant is often favored because it requires only fifteen additions, compared to Strassen’s

eighteen. Nevertheless we will show that Strassen’s algorithm has a growth factor of

12+2
√
2 ≈ 14.83 whereas Winograd’s variant has a growth factor of 7+4

√
2+3

√
3 ≈

17.85. For comparison, the conventional algorithm for 2× 2 matrix product has eight

multiplications and a growth factor of 8. Our numerical experiments confirm that in

terms of accuracy Winograd’s is indeed worse than Strassen’s, which is in turn worse

than the conventional algorithm, as Theorem 3.3.3 indicates.

Complex multiplication We compare the regular algorithm for complex multiplication,

which requires four real multiplications and has a growth factor of 4; Gauss’s algorithm,

which requires three real multiplications but has a larger growth factor of 2(1+
√
2) ≈

4.83; and a new algorithm:

(a+ bi)(c+ di) =
1

2

[(
a+

1√
3
b

)(
c+

1√
3
d

)
+

(
a− 1√

3
b

)(
c− 1√

3
d

)
− 8

3
bd

]
+
i
√
3

2

[(
a+

1√
3
b

)(
c+

1√
3
d

)
−
(
a− 1√

3
b

)(
c− 1√

3
d

)]
.

(3.1.5)

This new algorithm has the best features of both the regular and Gauss’s algorithms,

requiring three real multiplications and yet has the smaller (in fact, smallest, as we

will see) growth factor of 4. Again the results are consistent with the prediction of

Theorem 3.3.3.

For the uninitiated, we would like to stress that the aforementioned algorithms only

begin to make a difference when they are applied recursively, or applied to matrices, or

both. For instance, Gauss’s algorithm (3.1.1) is really quite useless for multiplying a pair
56

of complex numbers, whether ‘by hand’ or on a computer. It only becomes useful when

applied recursively in the form of Karatsuba’s algorithm [63] for integer multiplication, with

i replaced by the number base; or when applied to complex matrices [38]:

(A+ iB)(C + iD) = (AC −BD) + i[(A+B)(C +D)− AC −BD], (3.1.6)

with A+iB, C+iD ∈ Cn×n, A,B,C,D ∈ Rn×n. As multiplication of matrices is much more

expensive than addition of matrices, so (3.1.6) really does represent an enormous savings in

speed over the regular algorithm:

(A+ iB)(C + iD) = (AC −BD) + i(BC + AD). (3.1.7)

Likewise, our new algorithm (3.1.5) only begins to make a difference when the quantities

involved are matrices. For the same reasons, the algorithms of Strassen and Winograd are

only worth the trouble when applied recursively to a product of n× n matrices partitioned

recursively into 2× 2 blocks.

To address another related point early on, a surprisingly common complaint among early

feedbacks is that there are a lot of
√
3’s in our algorithm (3.1.5). Certainly, if one computes

these products ‘by hand,’ it would be easier to use the regular or Gauss’s algorithm since they

do not involve irrational coefficients. But when performed by a computer this is completely

immaterial. In case it is not clear, it does not matter whether we multiply by 3 or by
√
3; to

a computer (or any IEEE 754-compliant equipment) both are binary strings of 0’s and 1’s

and arithmetic takes one flop regardless. Maybe there would be some minor savings when a

constant happens to be a power of 2, because of binary arithmetic; but aside from that, it

makes no difference what constants we have in our algorithm.

For the matrix multiplication experiments, our goal is simply to illustrate Theorem 3.3.3

by comparing the known algorithms of Strassen and Winograd. But for the complex multi-

57

plication experiments, we also have the additional goal of testing, for the first time, the new

algorithm (3.1.5) applied to multiply complex matrices, which we will see is

• nearly as fast as Gauss’s algorithm (3.1.6), and

• nearly as accurate as the regular algorithm (3.1.7).

To substantiate these claims, we perform more extensive experiments to compare (3.1.5),

(3.1.6), and (3.1.7), including three practical applications: evaluation of matrix polynomials

via Horner’s method [59], unitary transform, and complex-valued neural networks [1, 8, 26,

105, 117, 126]. All our codes are available from https://github.com/zhen06/Complex-M

atrix-Multiplication.

Notations

To reduce notational clutter, we denote norms on different vector spaces U,V,W by the same

∥ · ∥. There is no cause for confusion since we always use it in a form like ∥v∥ for some v ∈ V,

where it is clear from context that ∥ · ∥ refers to a norm on V. Likewise the corresponding

dual norms on U∗,V∗,W∗ will be denoted by the same ∥ · ∥∗. Recall that for φ ∈ V∗, i.e.,

φ : V → R is a linear functional, this is defined by

∥φ∥∗ := sup{|φ(v)| : ∥v∥ ≤ 1}.

3.2 Bilinear Complexity

We provide a brief review of bilinear complexity, usually studied in Algebraic Computational

Complexity [16, 21, 75, 114], for numerical analysts. Our goals here are to (i) highlight certain

departures from typical practice in numerical linear algebra; and (ii) show a parallel with

our notion of bilinear stability in the next section.

58

https://github.com/zhen06/Complex-Matrix-Multiplication
https://github.com/zhen06/Complex-Matrix-Multiplication

Let U, V, W be finite-dimensional vector spaces, assume to be over R for simplicity. Let

β : U × V → W be a bilinear operator. Depending on one’s definition of a tensor, we have

β ∈ U∗ ⊗ V∗ ⊗W either through definition [80, Definition 3.3] or by the universal mapping

property [80, Equation 4.88]. A bilinear algorithm for evaluating β is a decomposition of the

form (3.1.2). In other words, for any u ∈ U and v ∈ V, we evaluate β(u, v) by performing

the algorithm given by the decomposition on the right:

β(u, v) =
r∑

i=1

φi(u)ψi(v)wi. (3.2.1)

In practice, the vector spaces involved are usually Euclidean spaces of vectors Rn or matrices

Rm×n. Riesz representation theorem guarantees that any linear functional φ : Rn → R must

take the form φ(x) = aTx for some a ∈ Rn and likewise any functional φ : Rm×n → R must

take the form φ(X) = tr
(
ATX

)
for some A ∈ Rm×n.

Each rank-one term φi(u)ψi(v)wi in (3.2.1) accounts for one multiplication but herein

lies a pitfall — the ‘multiplication’ refers to the product of φi(u) and ψi(v); note that this a

variable product, i.e., the value depends on variables u and v, as opposed to a scalar product.

Take a randomly made-up example2 with U = R2×2, V = R2, W = R3, and

φi
([

a b
c d

])
= tr

([−1 0
1 2

]T[
a b
c d

])
= −a+ c+ 2d,

ψi
([x

y
])

=
[3
−1/2

]T[x
y
]
= 3x− y/2,

wi =

[−3
4√
5

]
,

then there is exactly one multiplication in

φi(u)ψi(v)wi =

[
−3(−a+c+2d)(3x−y/2)
4(−a+c+2d)(3x−y/2)√
5(−a+c+2d)(3x−y/2)

]
.

2. Genuine examples to follow in Sections 3.4 and 3.5.

59

The scalar products like 2d or −y/2 or
√
5t are discounted in Strassen’s model of bilinear

complexity [112, 113] and for good reasons — these constants coefficients are fixed in the

algorithm and can be hardcoded or hardwired, unlike the product between −a+ c+ 2d and

3x − y/2, which depends on the variable inputs u =
[
a b
c d

]
and v =

[x
y
]
. In particular,

Strassen’s measure of speed, called bilinear complexity, is independent of the values of these

constant coefficients, but we will show in the next section that these will affect numerical

stability of the algorithm.

To emphasize its distinction from scalar products, Strassen calls a variable product in

the above sense a nonscalar product [113]. In other words, bilinear complexity measures

speed purely in terms of the number of nonscalar products. The bilinear complexity of the

algorithm in (3.2.1) is given by the number terms in the decomposition r and the optimal

speed of evaluating β is therefore given by the tensor rank [112]

rank(β) := min

{
r : β =

r∑
i=1

φi ⊗ ψi ⊗ wi

}
. (3.2.2)

A tensor rank decomposition of β, i.e., one that attains its tensor rank, is then a fastest

algorithm in the context of bilinear complexity.

In realistic scenarios, storage and computations both have finite-precision. Given u and

v, we do not need to know β(u, v) exactly; in fact computing anything beyond 16 decimal

digits of accuracy is wasted effort since we do not store more than 16 digits in IEEE double

precision. So the tensor rank of β is less relevant than the border rank [14] of β, which is

the smallest r so that

∥β − φε1 ⊗ ψε1 ⊗ wε
1 − φε2 ⊗ ψε2 ⊗ wε

2 − · · · − φεr ⊗ ψεr ⊗ wε
r∥ < ε

60

for all ε > 0, or, formally,

rank(β) := min

{
r : β = lim

ε→0+

r∑
i=1

φεi ⊗ ψεi ⊗ wε
i

}
. (3.2.3)

For the two problems studied in our article, namely, matrix multiplication,

βm,n,p : Rm×n × Rn×p → Rm×p, (A,B) 7→ AB,

and complex multiplication,

βC : C× C → C, (w, z) 7→ wz,

(noting that C is a two-dimensional real vector space), we have [73, 120]

rank(β2,2,2) = rank(β2,2,2) = 7, rank(βC) = rank(βC) = 3.

It is in general difficult to find such exact values. For instance, the values of rank(β3,3,3)

and rank(β3,3,3) are still unknown. Most of the efforts in studying matrix multiplication go

towards determining the asymptotic value ω := inf{p ∈ R : rank(βn,n,n) = O(np)}, called

the exponent of matrix multiplication. An advantage is that asymptotically, the full arith-

metic complexity, i.e., counting all operations and not just nonscalar multiplications, is also

O(nω). More importantly, the role of ω stretches far beyond matrix multiplication, gov-

erning the full arithmetic complexity of computing inverse, determinant, null basis, linear

systems, LU/QR/eigenvalue/Hessenberg decompositions, characteristic polynomials, sparsi-

fication, and even linear programming — note in particular that none of these are bilinear

operations [113] (see also [21, Chapter 16] and [80, Examples 3.10 and 4.40]).

61

3.3 Bilinear Stability

We would like to state at the outset that numerical stability is a moderately complicated issue

that depends on many factors and cannot be completely represented by any single number.

Designing numerically stable algorithms is as much an art as it is a science. However the six

Higham guidelines for numerical stability [58, Section 1.18] capture the most salient aspects.

Among them, the second guideline to “minimize the size of intermediate quantities relative

to the final solution” is one of the most unequivocal, lends itself to precise quantification,

and is what we will focus on in this section. Consideration of Higham’s second guideline

for bilinear algorithms leads us naturally to the notion of bilinear stability, which relates

to accuracy the way bilinear complexity relates to speed. More precisely, the growth factor

(3.1.3) and tensor nuclear norm (3.1.4) are to accuracy in bilinear stability what the number

of rank-one terms in (3.2.1) and the tensor rank (3.2.2) are to speed in bilinear complexity.

Here accuracy refers to the size of relative forward error.

Bilinear stability differs from existing studies of numerical stability of bilinear algorithms

such as those in [5, 13, 18, 55] in three ways: (i) it is more general, applying to any bilinear

operators as opposed to specific ones like matrix multiplication; (ii) it is more simplistic,

relating forward error to just growth factor as opposed to two or three different factors in

the approaches of [5, 13]; (iii) it is truly tensorial, as growth factor and tensor nuclear norm

are invariant under any orthogonal change-of-coordinates, just as tensor rank is invariant

under any invertible change-of-coordinates. The factors (i) and (ii), i.e., generality and

simplicity, may often be sacrificed for better bounds: Given any specific bilinear operator,

we may often obtain smaller forward error bounds by performing a more precise analysis

tailored to that given operator. We will do see this in Section 3.5.2.

One difference between bilinear complexity and bilinear stability is that the latter requires

a norm. While there are many excellent treatises on tensor norms [27, 29, 104], they are

excessive for our purpose. All the reader needs to know is that for a vector space Vi with

62

norm ∥ · ∥i, i = 1, . . . , d, a tensor norm ∥ · ∥ on V1⊗V2⊗· · ·⊗Vd satisfies the multiplicativity

property for rank-one tensors:

∥v1 ⊗ v2 ⊗ · · · ⊗ vd∥ = ∥v1∥1∥v2∥2 · · · ∥vd∥d,

where vi ∈ Vi. In particular, the spectral, Frobenius (also called Hilbert–Schmidt), nuclear

norms [80, p. 561 and Example 4.17] are all equal on rank-one tensors in U∗ ⊗V∗ ⊗W, i.e.,

∥φ⊗ ψ ⊗ w∥σ = ∥φ⊗ ψ ⊗ w∥F = ∥φ⊗ ψ ⊗ w∥ν = ∥φ∥∗∥ψ∥∗∥w∥

for all φ ∈ U∗, ψi ∈ V∗, w ∈ W. Consequently, when we speak of the norm of a rank-one

tensor φ ⊗ ψ ⊗ w, it does not matter which of these three norms we choose, and we will

simply write

∥φ⊗ ψ ⊗ w∥ := ∥φ∥∗∥ψ∥∗∥w∥.

We first present a straightforward heurstic that motivates our definition of the growth

factor, deferring the more formal forward error analysis to Theorem 3.3.3. If we apply the

rank-one bilinear operator φi ⊗ ψi ⊗ wi to u and v,

∥(φi ⊗ ψi ⊗ wi)(u, v)∥ = ∥φi(u)ψi(v)wi∥

= |φi(u)||ψi(v)|∥wi∥

≤ ∥φi∥∗∥u∥∥ψi∥∗∥v∥∥wi∥

= ∥φi ⊗ ψi ⊗ wi∥∥u∥∥v∥.

So φi ⊗ ψi ⊗ wi magnifies the errors in u and v by an amount bounded by its tensor norm

∥φi ⊗ ψi ⊗ wi∥. Therefore, in a bilinear algorithm given by the right side of (3.2.1) for

63

evaluating β, triangle inequality gives

∥β(u, v)∥ =

∥∥∥∥ r∑
i=1

(φi ⊗ ψi ⊗ wi)(u, v)

∥∥∥∥ ≤
[r∑
i=1

∥φi ⊗ ψi ⊗ wi∥
]
∥u∥∥v∥.

The ith step of the algorithm magnifies the error in the inputs (u, v) by an amount bounded

by ∥φi ⊗ ψi ⊗ wi∥ and over the course of r steps in the algorithm, the accumulated error is

bounded by a factor of

r∑
i=1

∥φi ⊗ ψi ⊗ wi∥ =
r∑

i=1

∥φi∥∗∥ψi∥∗∥wi∥, (3.3.1)

which we will define as the growth factor of the algorithm or decomposition (3.2.1). Its

minimum value over all possible bilinear algorithms for evaluating β or, equivalently, over

all decomposition of β as a 3-tensor is therefore given by the nuclear norm (3.1.4). This

idea was first floated in [125, Section 3.2]. Note that the growth factor depends on the

algorithm/decomposition for β but the nulcear norm depends only on β.

We now state a formal definition to make precise the terms used in the preceding discus-

sions.

Definition 3.3.1. Let U,V,W be three finite-dimensional real vector spaces. A decompo-

sition of a bilinear operator β : U× V → W is a sequence D = (φi, ψi, wi)
r
i=1 with

β =
r∑

i=1

φi ⊗ ψi ⊗ wi, (3.3.2)

where φi : U → R and ψi : V → R are linear functionals and wi ∈ W, i = 1, . . . , r. An

algorithm β̂D given by the decomposition D takes (u, v) ∈ U × V as inputs and computes

the output β(u, v) in three steps:

(i) computes φi(u) and ψi(v), i = 1, . . . , r;

64

(ii) computes φi(u)ψi(v)wi, i = 1, . . . , r;

(iii) computes
∑r

i=1 φi(u)ψi(v)wi.

The growth factor of the algorithm β̂D is defined as

γ(β̂D) :=
r∑

i=1

∥φi ⊗ ψi ⊗ wi∥ =
r∑

i=1

∥φi∥∗∥ψi∥∗∥wi∥.

As noted in Section 3.2, only the variable multiplication in step (ii) counts in bilinear com-

plexity; the other two steps comprising scalar multiplications and additions are discounted.

In bilinear stability all three steps contribute to the growth factor.

Proposition 3.3.2. The minimal growth factor is given by nuclear norm of the β, i.e.,

min
D

γ(β̂D) = ∥β∥ν ,

with D running over all decomposition. Furthermore, there is always an algorithm that

attains the minimal growth factor.

The above equality is just stating (3.1.4) in terms of the growth factor. That there is

always an algorithm attaining the minimal growth factor, justifying our writing min instead

of inf, follows from the existence of a nuclear decomposition [43, Proposition 3.1], i.e., a

decomposition that attains the nuclear norm. Just as a rank decomposition of β represents

a fastest algorithm in bilinear complexity, a nuclear decomposition of β represents a stablest

algorithm in bilinear stability.

We next establish a rigorous relationship between growth factor and numerical stability

by proving a forward error bound in terms of the growth factor of a bilinear algorithm. We

assume a system of floating point arithmetic obeying the standard model as in [58]: For

x, y ∈ R

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, / (3.3.3)
65

with u the unit roundoff. We assume that U,V,W are vector spaces of dimensions m,n, p and

that appropriate computational bases have been chosen on them so that we may identify

U ∼= Rm, V ∼= Rn, W ∼= Rp. The computational bases do not need to be the standard

bases and may instead be Fourier, Krylov, Haar, wavelet bases, etc. This is another reason

why we cast our discussions in terms of abstract vector spaces and do not choose bases

until absolutely necessary. However, once a choice of bases has been made, the result below

depends only on the dimensions of U,V,W; if say, U = Rm×n, then only the fact that it has

dimension mn matters, i.e., U ∼= Rmn.

Theorem 3.3.3 (Growth factor and forward error). Let β : Rm × Rn → Rp be a bilinear

operator, D = (φi, ψi, wi)
r
i=1 a decomposition, and β̂D the corresponding algorithm. If

β̂D(u, v) is the output of β̂D with u ∈ Rm and v ∈ Rn as inputs, then

∥β(u, v)− β̂D(u, v)∥∞ ≤ (m+ n+ r + 1)γ(β̂D)∥u∥∥v∥u+O(u2).

Proof. We first show that the result reduces to the case p = 1. It suffices to show that

|β(u, v)k − β̂D(u, v)k| ≤ (m+ n+ r + 1)γ(β̂D)∥u∥∥v∥u+O(u2) (3.3.4)

for all k = 1, . . . , p, where the subscript k refers to the kth coordinate of a vector in Rp.

Since

γ(β̂D) =
r∑

i=1

∥φi∥∗∥ψi∥∗∥wi∥ ≥
r∑

i=1

∥φi∥∗∥ψi∥∗|wik|,

with wik the kth coordinate of wi ∈ Rp, to show (3.3.4), it suffices to show

|β(u, v)k − β̂D(u, v)k| ≤ (m+ n+ r + 1)

[
r∑

i=1

∥φi∥∗∥ψi∥∗|wik|

]
∥u∥∥v∥u+O(u2),

which is equivalent to the case p = 1. In the following, we will assume that p = 1.

Since φi and ψi are linear functionals on Rm and Rn, there exist ui ∈ Rm and vi ∈ Rn

66

such that

φi(u) = uTi u and ψi(v) = vTi v,

for all u ∈ Rm and v ∈ Rn. By [58, equation 3.7],

|xTy − fl(xTy)| ≤ n|x|T|y|u+O(u2),

for any x, y ∈ Rn where | · | and ≤ apply coordinatewise. So for each i = 1, . . . , r,

|φi(u)− fl(φi(u))| = |uTi u− fl(uTi u)| ≤ m|ui|T|u|u+O(u2)

≤ m∥ui∥∥u∥u+O(u2) = m∥φi∥∗∥u∥u+O(u2).

(3.3.5)

Likewise, for each i = 1, . . . , r,

|ψi(v)− fl(ψi(v))| ≤ n∥ψi∥∗∥v∥u+O(u2). (3.3.6)

Let ∆1,i = fl(φi(u))− φi(u) and ∆2,i = fl(ψi(v))− ψi(v). By (3.3.5) and (3.3.6),

|∆1,i| ≤ m∥φi∥∗∥u∥u+O(u2), |∆2,i| ≤ n∥ψi∥∗∥v∥u+O(u2). (3.3.7)

Let ci = φi(u)ψi(v) and ĉi be its computed value. By (3.3.7), there exists δi with |δi| ≤ u

such that

ĉi = (φi(u) + ∆1,i)(ψi(v) + ∆2,i)(1 + δi)

= φi(u)ψi(v) + ∆1,iψi(v) + φi(u)∆2,i + δiφi(u)ψi(v) +O(u2).

(3.3.8)

67

By (3.3.7) and (3.3.8),

|ci − ĉi| ≤ m∥φi∥∗∥u∥|ψi(v)|u+ |φi(u)|n∥ψi∥∗∥v∥u+ |φi(u)ψi(v)|u+O(u2)

≤ (m+ n+ 1)∥φi∥∗∥ψi∥∗∥u∥∥v∥u+O(u2).

(3.3.9)

Let ∆i = ĉi − ci. By (3.3.9),

|∆i| ≤ (m+ n+ 1)∥φi∥∗∥ψi∥∗∥u∥∥v∥u+O(u2). (3.3.10)

Let di = ciwi and d̂i be the computed value of di. By (3.3.10), there exists δ′i with |δ′i| ≤ u

such that

d̂i = (ci +∆i)wi(1 + δ′i) = ciwi +∆iwi + δ′iciwi +O(u2). (3.3.11)

Let ∆′
i = d̂i − di. By (3.3.10) and (3.3.11),

|∆′
i| ≤ (m+ n+ 1)∥φi∥∗∥ψi∥∗∥u∥∥v∥∥wi∥u+ |φi(u)ψi(v)|∥wi∥u+O(u2)

≤ (m+ n+ 2)∥φi∥∗∥ψi∥∗∥wi∥∥u∥∥v∥u+O(u2).

(3.3.12)

Finally, let a =
∑r

i=1 φi(u)ψi(v)wi and â be the computed value of a. By (3.3.12), there

exists δ with |δ| ≤ u such that

â = d̂1(1 + δ)r−1 + d̂2(1 + δ)r−1 + d̂3(1 + δ)r−2 + · · ·+ d̂r(1 + δ),

where we compute the sum d̂1 + d̂2 + . . . d̂r from left to right. Hence we obtain

|a− â| ≤ (m+ n+ 2)∥u∥∥v∥
r∑

i=1

∥φi∥∗∥ψi∥∗∥wi∥u+ (r − 1)

∥∥∥∥∥
r∑

i=1

ciwi

∥∥∥∥∥u+O(u2)

≤ (m+ n+ r + 1)∥u∥∥v∥
r∑

i=1

∥φi∥∗∥ψi∥∗∥wi∥u+O(u2)

= (m+ n+ r + 1)γ(β̂D)∥u∥∥v∥u+O(u2).

68

Theorem 3.3.3 essentially says that that algorithms with small growth factors have small

forward errors. Combined with Proposition 3.3.2, we see that the optimally stable algorithm

in this context is the one corresponding to a nuclear decomposition of β.

Corollary 3.3.4 (Tensor nuclear norm and forward error). Let β : Rn × Rm → Rp be a

bilinear operator, D = (φi, ψi, wi)
r
i=1 a nuclear decomposition, and β̂D the corresponding

algorithm. Then

∥β(u, v)− β̂D(u, v)∥∞ ≤ (m+ n+ r + 1)∥β∥ν∥u∥∥v∥u+O(u2).

In principle, there is no reason to expect there to be an algorithm that is both fastest in

the sense of Section 3.2 and stablest in the sense of this section, i.e., having a decomposition

that attains both tensor rank and nuclear norm. In Section 3.5, we will see that such an

algorithm exists for complex multiplication and we will study its properties when applied to

complex matrix multiplication.

3.4 Fast Matrix Multiplications

As an illustration of bilinear stability in the last section, we will calculate the growth factors

of Strassen’s algorithm [111] and Winograd’s variant [58, 69] for fast matrix multiplication

and compare their stability empirically. We will see that the growth factor of Strassen’s

algorithm is smaller than that of Winograd’s variant, and, consistent with the prediction

of Theorem 3.3.3, numerical experiments indeed show that the former gives more accurate

results.

69

3.4.1 Bilinear stability of Strassen multiplication

Given two block matrices

A =

A11 A12

A21 A22

 , B =

B11 B12

B21 B22

 ,
Strassen’s algorithm [111] first computes

M1 = (A11 + A22)(B11 +B22), M5 = (A11 + A12)B22,

M2 = (A21 + A22)B11, M6 = (A21 − A11)(B11 +B12),

M3 = A11(B12 −B22), M7 = (A12 − A22)(B21 +B22),

M4 = A22(B21 −B11),

and then computes the product via

AB =

M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

 .
Note that this may be applied recursively. Let β̂S : R2×2 × R2×2 → R2×2 denote the

Strassen’s algorithm for 2× 2 matrices. It is routine to check that for A,B ∈ R2×2,

β̂S(A,B) =
7∑

i=1

φi(A)ψi(B)Wi,

70

where φi(A) = tr
(
UT
i A
)

and ψi(B) = tr
(
V T
i B
)

with

U1 =

1 0

0 1

 , V1 =

1 0

0 1

 , W1 =

1 0

0 1

 ;

U2 =

0 0

1 1

 , V2 =

1 0

0 0

 , W2 =

0 0

1 −1

 ;

U3 =

1 0

0 0

 , V3 =

0 1

0 −1

 , W3 =

0 1

0 1

 ;

U4 =

0 0

0 1

 , V4 =

−1 0

1 0

 , W4 =

1 0

1 0

 ;

U5 =

1 1

0 0

 , V5 =

0 0

0 1

 , W5 =

−1 1

0 0

 ;

U6 =

−1 0

1 0

 , V6 =

1 1

0 0

 , W6 =

0 0

0 1

 ;

U7 =

0 1

0 −1

 , V7 =

0 0

1 1

 , W7 =

1 0

0 0

 .
For simplicity we will use the Frobenius norm on R2×2 since it is self dual. The growth

factor of Strassen’s algorithm is then given by

γ(β̂S) =
7∑

i=1

∥φi∥∗∥ψi∥∗∥Wi∥ =
7∑

i=1

∥Ui∥F∥Vi∥F∥Wi∥F = 12 + 2
√
2 ≈ 14.83. (3.4.1)

71

3.4.2 Bilinear stability of Winograd multiplication

Winograd’s algorithm [58, 69] computes a different set of intermediate quantities

M ′
1 = (A21 + A22 − A11)(B11 +B22 −B12), M ′

5 = (A21 + A22)(B12 −B11),

M ′
2 = A11B11, M ′

6 = (A11 + A12 − A21 − A22)B22,

M ′
3 = A12B21, M ′

7 = A22(B11 +B22 −B12 −B21),

M ′
4 = (A11 − A21)(B22 −B12),

and then compute the product via

AB =

 M ′
2 +M ′

3 M ′
1 +M ′

2 +M ′
5 +M ′

6

M ′
1 +M ′

2 +M ′
4 −M ′

7 M ′
1 +M ′

2 +M ′
4 +M ′

5

 .
Again this can be applied recursively. Let β̂W : R2×2×R2×2 → R2×2 denote the Winograd’s

algorithm for 2× 2 matrices. It is again routine to check that for A,B ∈ R2×2,

β̂W(A,B) =
7∑

i=1

φ′i(A)ψ
′
i(B)W ′

i ,

72

where φ′i(A) = tr
(
U ′T
i A

)
and ψ′i(B) = tr

(
V ′T
i B

)
with

U ′
1 =

−1 0

1 1

 , V ′
1 =

1 −1

0 1

 , W ′
1 =

0 1

1 1

 ;

U ′
2 =

1 0

0 0

 , V ′
2 =

1 0

0 0

 , W ′
2 =

1 1

1 1

 ;

U ′
3 =

0 1

0 0

 , V ′
3 =

0 0

1 0

 , W ′
3 =

1 0

0 0

 ;

U ′
4 =

 1 0

−1 0

 , V ′
4 =

0 −1

0 1

 , W ′
4 =

0 0

1 1

 ;

U ′
5 =

0 0

1 1

 , V ′
5 =

−1 1

0 0

 , W ′
5 =

0 1

0 1

 ;

U ′
6 =

 1 1

−1 −1

 , V ′
6 =

0 0

0 1

 , W ′
6 =

0 1

0 0

 ;

U ′
7 =

0 0

0 1

 , V ′
7 =

 1 −1

−1 1

 , W ′
7 =

 0 0

−1 0

 .
With respect to the Frobenius norm, the growth factor of Winograd’s algorithm is

γ(β̂W) =
7∑

i=1

∥φ′i∥∗∥ψ
′
i∥∗∥W

′
i∥F =

7∑
i=1

∥U ′
i∥F∥V

′
i ∥F∥W

′
i∥F = 7 + 4

√
2 + 3

√
3 ≈ 17.85. (3.4.2)

73

3.4.3 Bilinear stability of conventional matrix multiplication

For completeness we state the growth factor of the conventional algorithm for matrix multi-

plication β̂C : R2×2 × R2×2 → R2×2,

β̂C(A,B) =
2∑

i,j,k=1

tr
(
ET
ijA
)
tr
(
ET
jkB

)
Eik,

where Eij ∈ R2×2 denotes the standard basis matrix. Its growth factor is easily seen to be

γ(β̂C) =
2∑

i,j,k=1

∥Eij∥F∥Ejk∥F∥Eik∥F = 8.

From (3.4.1) and (3.4.2), we see that

γ(β̂W) > γ(β̂S) > γ(β̂C). (3.4.3)

The first inequality will be verified in the numerical experiments below; the second is consis-

tent with the well-known fact [58] that Strassen’s algorithm is less accurate than conventional

multiplication.

3.4.4 Numerical experiments for fast matrix multiplications

By Theorem 3.3.3 and the sizes of the growth factors in (3.4.3), we expect Strassen’s algo-

rithm to give more accurate results than Winograd’s variant since it has a smaller growth

factor. We test this statement with random matrices generated in three different ways:

with (a) real entries drawn from the uniform distribution on [−1, 1], (b) real entries drawn

from the standard normal distribution, (c) complex entries whose real and imaginary parts

are drawn from the uniform distribution on [−1, 1]. In the last case, note that our earlier

discussions over R apply verbatim over C with the same growth factors.

74

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.5

1

1.5

2

2.5
10 -12

(a) Real random matrices U [−1, 1].

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.5

1

1.5

2

2.5

3

3.5
10 -13

(b) Real random matrices N (0, 1).

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.5

1

1.5

2

2.5

3

3.5
10 -12

(c) Complex random matrices
U [−1, 1] + U [−1, 1]i.

Figure 3.1: Accuracy of Strassen’s algorithm and Winograd’s variant.

75

In all cases, we compute β̂S(A,B) and β̂W(A,B) using Strassen’s algorithm and Wino-

grad’s variant respectively and compare the results against the exact value β(A,B) = AB

computed using the Matlab symbolic toolbox. From Figure 3.1, we see that Strassen’s

algorithm is indeed more accurate than Winograd’s variant, substantiating Theorem 3.3.3.

Even though the 14.83 growth factor of Strassen’s algorithm appears to differ only moder-

ately from the 17.85 growth factor of Winograd’s variant, the effect is magnified multifold

as a result of recursion — these algorithms are applied recursively to an n × n matrix as a

block 2× 2 matrix ⌊log2 n⌋ times. The conventional algorithm, which has a growth factor of

8, is included in these plots for comparison.

3.5 Complex Multiplication

As described towards the end of Section 3.2, complex multiplication is an R-bilinear operator

βC ∈ R2 × R2 → R2 when we identify C ∼= R2, with the standard basis vectors in R2

e1 =

1
0

 , e2 =

0
1

corresponding to 1, i ∈ C. We write e∗1, e

∗
2 : R2 → R for the dual basis, i.e., linear functionals

with

e∗1

(a
b

) = a, e∗2

(a
b

) = b.

We will denote the regular algorithm (a + bi)(c + di) = (ac − bd) + i(bc + ad), Gauss’s

algorithm (3.1.1), and our new algorithm (3.1.5) by β̂R, β̂G, β̂N respectively. For easy refer-

76

ence,

β̂R

(a
b

 ,
c
d

) =

ac− bd

bc+ ad

 , β̂G

(a
b

 ,
c
d

) =

 ac− bd

(a+ b)(c+ d)− ac− bd

 ,

β̂N

(a
b

 ,
c
d

) =

1
2

[(
a+ 1√

3
b
)(
c+ 1√

3
d
)
+
(
a− 1√

3
b
)(
c− 1√

3
d
)
− 8

3bd
]

i
√
3

2

[(
a+ 1√

3
b
)(
c+ 1√

3
d
)
−
(
a− 1√

3
b
)(
c− 1√

3
d
)]

 .

They correspond to the decompositions

β̂R = (e∗1 ⊗ e∗1 − e∗2 ⊗ e∗2)⊗ e1 + (e∗1 ⊗ e∗2 + e∗2 ⊗ e∗1)⊗ e2, (3.5.1)

β̂G = (e∗1 + e∗2)⊗ (e∗1 + e∗2)⊗ e2 + e∗1 ⊗ e∗1 ⊗ (e1 − e2)− e∗2 ⊗ e∗2 ⊗ (e1 + e2), (3.5.2)

β̂N =
4

3

([√
3

2
e∗1 +

1

2
e∗2

]
⊗
[√

3

2
e∗1 +

1

2
e∗2

]
⊗
[
1

2
e1 +

√
3

2
e2

]
+

[√
3

2
e∗1 −

1

2
e∗2

]
⊗
[√

3

2
e∗1 −

1

2
e∗2

]
⊗
[
1

2
e1 −

√
3

2
e2

]
− e∗2 ⊗ e∗2 ⊗ e1

)
. (3.5.3)

3.5.1 Bilinear stability of complex multiplication algorithms

Recall from Section 3.2 that rank(βC) = 3 = rank(βC), i.e., both Gauss’s algorithm and our

new algorithm have optimal bilinear complexity whether in the exact or approximate sense.

One may also show that βC has nuclear norm [43, Lemma 6.1] is given by

∥βC∥ν = 4.

The growth factor of the regular algorithm (3.5.1) attains this minimum value,

γ(β̂R) = ∥e∗1∥∗∥e
∗
1∥∗∥e1∥+ ∥−e∗2∥∗∥e

∗
2∥∗∥e1∥+ ∥e∗1∥∗∥e

∗
2∥∗∥e2∥+ ∥e∗2∥∗∥e

∗
1∥∗∥e2∥

= 4 = ∥βC∥ν ,

77

as does our new algorithm (3.5.3),

γ(β̂N) =
4

3

(∥∥∥∥√3

2
e∗1 +

1

2
e∗2

∥∥∥∥
∗

∥∥∥∥√3

2
e∗1 +

1

2
e∗2

∥∥∥∥
∗

∥∥∥∥12e1 +
√
3

2
e2

∥∥∥∥
+

∥∥∥∥√3

2
e∗1 −

1

2
e∗2

∥∥∥∥
∗

∥∥∥∥√3

2
e∗1 −

1

2
e∗2

∥∥∥∥
∗

∥∥∥∥12e1 −
√
3

2
e2

∥∥∥∥+ ∥e∗2∥∗∥e
∗
2∥∗∥e1∥

)
= 4 = ∥βC∥ν ,

but not Gauss’s algorithm (3.5.2),

γ(β̂G) = ∥e∗1 + e∗2∥∗∥e
∗
1 + e∗2∥∗∥e2∥+ ∥e∗1∥∗∥e

∗
1∥∗∥e1 − e2∥+ ∥−e∗2∥∗∥e

∗
2∥∗∥e1 + e2∥

= 2(1 +
√
2) > ∥βC∥ν .

So Gauss’s algorithm β̂G is faster (by bilinear complexity) but less stable (by bilinear stability)

than the regular algorithm. Our new algorithm β̂N on the other hand is optimal in both

measures, attaining both rank(βC) and ∥βC∥ν .

We stress that numerical stability is too complicated an issue to be completely covered by

the simple framework of bilinear stability. For instance, from the perspective of cancellation

errors, our new algorithm also suffers from the issue pointed out in [58, Section 23.2.4] for

Gauss’s algorithm. By choosing z = w and b =
√
3/a, our algorithm (3.5.3) computes

1

2

[(
a+

1

a

)2
+
(
a− 1

a

)2
− 8

a2

]
+
i
√
3

2

[(
a+

1

a

)2
−
(
a− 1

a

)2]
=: x+ iy.

There will be cancellation error in the computed real part x̂ when |a| is small and likewise

in the computed imaginary part ŷ when |a| is large. Nevertheless, as discussed in [58, Sec-

tion 23.2.4], the new algorithm (3.5.3) is still stable in the weaker sense of having acceptably

small |x− x̂|/|z| and |y − ŷ|/|z| even if |x− x̂|/|x| or |y − ŷ|/|y| might be large.

78

3.5.2 Error analysis of new algorithm applied to matrices

While using Gauss’s algorithm or our new algorithm for multiplying of complex numbers

is a pointless overkill, they become useful when applied to the multiplication of complex

matrices. Note that any complex matrices A + iB, C + iD ∈ Cn×n may be multiplied via

their real and imaginary parts A,B,C,D ∈ Rn×n:

(A+ iB)(C + iD) = (AC −BD) + i[AD +BC], (3.5.4)

allowing us to focus our attention on designing algorithms for real matrix products. In this

regard, Gauss’s algorithm applied in the form

(A+ iB)(C + iD) = (AC −BD) + i[(A+B)(C +D)− AC −BD] (3.5.5)

reduces the number of real matrix products from four to three at the expense of more matrix

additions. This represents an enormous saving as matrix products are invariably orders of

magnitude more costly than matrix additions — note that this statement remains true even

if the exponent of matrix multiplication ω is 2. Our new algorithm (3.1.5) likewise applies

in the form

(A+ iB)(C + iD) =
1

2

[(
A+

1√
3
B

)(
C +

1√
3
D

)
+

(
A− 1√

3
B

)(
C − 1√

3
D

)
− 8

3
BD

]
+
i
√
3

2

[(
A+

1√
3
B

)(
C +

1√
3
D

)
−
(
A− 1√

3
B

)(
C − 1√

3
D

)]
,

(3.5.6)

trading expensive matrix products for inexpensive scalar multiplications and additions.

The following is an error analysis of (3.5.6), i.e., our new algorithm applied to complex

matrix multiplication. We emulate a similar analysis for Gauss’s algorithm in [55, 58],

assuming in particular that the real matrix multiplications involved are performed using the

79

conventional algorithm (as opposed to Strassen’s or Winograd’s). We remind the reader that

conventional matrix multiplication has the simple error bound

|AB − fl(AB)| ≤ n|A||B|u+O(u2) (3.5.7)

for A,B ∈ Rn×n.

Theorem 3.5.1 (Error analysis for our new algorithm). Let (A+iB)(C+iD) = F+iG with

F,G ∈ Rn×n and let F̂N, ĜN be computed via (3.5.6) in floating point arithmetic satisfying

(3.3.3). Then

|F − F̂N| ≤ (n+ 7)

(
|A|+ 1√

3
|B|
)(

|C|+ 1√
3
|D|
)
u+

(
4

3
n+ 4

)
|B||D|u+O(u2),

(3.5.8)

|G− ĜN| ≤
√
3(n+ 6)

(
|A|+ 1√

3
|B|
)(

|C|+ 1√
3
|D|
)
u+O(u2), (3.5.9)

where the inequality ≤ and absolute value | · | both apply in a coordinatewise sense.

Proof. Following [58], we use the same letter δ to denote the error incurred in each step of

our algorithm. So, for example,

fl(B/
√
3) = B/

√
3 + δB/

√
3.

In the following we will define matrices Hi and let Ĥi be its computed value, i = 1, . . . , 8.

Let H1 := A+B/
√
3. Then

Ĥ1 = fl(A+B/
√
3 + δB/

√
3) = (A+B/

√
3 + δB/

√
3)(1 + δ)

= A+B/
√
3 + δ(A+ 2B/

√
3) +O(u2)

= H1 + 2∆1 +O(u2), |∆1| ≤ (|A|+ |B|/
√
3)u.

80

Similarly H2 := C +D/
√
3 satisfies

Ĥ2 = H2 + 2∆2 +O(u2), |∆2| ≤ (|C|+ |D|/
√
3)u.

Let H3 := (A+B/
√
3)(C +D/

√
3). By (3.5.7),

Ĥ3 = (A+B/
√
3 + 2∆1)(C +D/

√
3 + 2∆2) + n∆3 +O(u2) (3.5.10)

where

|∆3| ≤ |(A+B/
√
3 + 2∆1)||(C +D/

√
3 + 2∆2)|u

≤ (|A|+ |B|/
√
3 + 2|∆1|)(|C|+ |D|/

√
3 + 2|∆2|)u

≤ (|A|+ |B|/
√
3 + 2u(|A|+ |B|/

√
3))(|C|+ |D|/

√
3 + 2u(|C|+ |D|/

√
3))u

≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u+O(u2).

(3.5.11)

By (3.5.10) and (3.5.11),

Ĥ3 = (A+B/
√
3)(C +D/

√
3) + 2∆1(C +D/

√
3)

+ 2(A+B/
√
3)∆2 + n∆3 +O(u2)

= H3 + (n+ 4)∆4 +O(u2)

(3.5.12)

where

|∆4| ≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u.

Similarly H4 := (A−B/
√
3)(C −D/

√
3) satisfies

Ĥ4 = H4 + (n+ 4)∆5 +O(u2) (3.5.13)

81

where

|∆5| ≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u.

Let H5 := (A+B/
√
3)(C +D/

√
3)+ (A−B/

√
3)(C−D/

√
3). By (3.5.12) and (3.5.13),

Ĥ5 = [H3 + (n+ 4)∆4 +H4 + (n+ 4)∆5](1 + δ) +O(u2)

= H5 + (2n+ 10)∆6 +O(u2)

(3.5.14)

where

|∆6| ≤ u(|A|+ |B|/
√
3)(|C|+ |D|/

√
3).

Let H6 := 8/3BD. Then

Ĥ6 = fl(8/3(BD + n∆7)) +O(u2)

= 8/3(BD + n∆7)(1 + δ) +O(u2)

= H6 + 8/3(n+ 1)∆8 +O(u2)

(3.5.15)

where

|∆7| ≤ |B||D|u, |∆8| ≤ |B||D|u.

Let H7 := H5 −H6. By (3.5.14) and (3.5.15),

Ĥ7 = [H5 + (2n+ 10)∆6 −H6 − 8/3(n+ 1)∆8](1 + δ) +O(u2)

= H7 + (2n+ 12)∆9 + 8/3(n+ 2)∆10 +O(u2)

where

|∆9| ≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u, |∆10| ≤ |B||D|u.

82

Then

F̂N = (1 + δ)[H7 + (2n+ 12)∆9 + 8/3(n+ 2)∆10]/2 +O(u2)

= F + (n+ 7)∆11 + 4/3(n+ 3)∆12 +O(u2)

where

|∆11| ≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u, |∆12| ≤ |B||D|u,

and from which we obtain (3.5.8).

Let H8 := (A + B/
√
3)(C +D/

√
3)− (A− B/

√
3)(C −D/

√
3). Similar to (3.5.14), we

have

Ĥ8 = H8 − (2n+ 10)∆13 +O(u2)

where

|∆13| ≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u.

Then

ĜN =
√
3/2[H8 − (2n+ 10)∆13](1 + δ) +O(u2)

= G+
√
3(n+ 6)∆14 +O(u2)

where

|∆14| ≤ (|A|+ |B|/
√
3)(|C|+ |D|/

√
3)u,

from which we obtain (3.5.9).

If we compute the matrices F,G in Theorem 3.5.1 using Gauss’s algorithm (3.5.5) with

floating point arithmetic and let the results be F̂G and ĜG, then the corresponding error

83

bounds [55, 58] are

|F − F̂G| ≤ (n+ 1)(|A||C|+ |B||D|)u+O(u2),

|G− ĜG| ≤ (n+ 4)[(|A|+ |B|)(|C|+ |D|) + |A||C|+ |B||D|]u+O(u2).

(3.5.16)

When n→ ∞, we have n+ c ≈ n for any constant c. Hence the errors in (3.5.8) and (3.5.9)

are dominated by

|F − F̂N| ∼ n

[
|A||C|+ 5

3
|B||D|+ 1√

3
|A||D|+ 1√

3
|B||C|

]
u,

|G− ĜN| ∼ n

[√
3|A||C|+ |B||C|+ |A||D|+ 1√

3
|B||D|

]
u,

whereas those in (3.5.16) are dominated by

|F − F̂G| ∼ n(|A||C|+ |B||D|)u,

|G− ĜG| ∼ n(2|A||C|+ 2|B||D|+ |A||D|+ |B||C|)u.

For easy comparison suppose the magnitudes of the entries in A,B,C,D are all approxi-

mately θ, then these reduce to

|F − F̂N| ∼ 3.8n2θ2, |G− ĜN| ∼ 4.3n2θ2,

|F − F̂G| ∼ 2n2θ2, |G− ĜG| ∼ 6n2θ2.

(3.5.17)

So Gauss’s algorithm gives an imaginary part that is three times less accurate than its real

part. Note the the imaginary part of Gauss’s algorithm accounts for all its computational

savings; the real part is just the regular algorithm. On the other hand, our algorithm balances

the accuracy of both the real and imaginary parts by spreading out the computational savings

across both parts.

84

To quantify this, we use the max norm. For a complex matrix A+ iB ∈ Cn×n, this is

∥A+ iB∥max := max{|aij |, |bij | : i, j = 1, . . . , n}. (3.5.18)

The max norm differs from the usual matrix ∞-norm given by maximum row sum used in

[55, 58]. We favor the max norm as it is the strictest measure of numerical accuracy — a

small max norm error implies that each entry is accurate as opposed to accurate on average.

If we denote the matrices resulting from Gauss’s algorithm and our new algorithm by

ÊG := F̂G + iĜG, ÊN := F̂N + iĜN

respectively, we expect ∥E − ÊN∥max to be smaller than ∥E − ÊG∥max. The extensive

experiments in the next section will attest to this.

3.6 Experiments for New Complex Matrix Multiplication

Algorithm

The goal of this section is to provide numerical evidence to show that our new algorithm

(3.5.6) for complex matrix multiplication is

• nearly as accurate as the regular algorithm (3.5.4), and

• nearly as fast as Gauss’s algorithm (3.5.5).

We begin with routine experiments comparing the three algorithms (3.5.4), (3.5.5), (3.5.6) on

random matrices, and move on to three actual applications: matrix polynomial evaluations,

unitary transformations, and the increasingly popular complex-valued neural networks. The

results, we think, show that our new algorithm can be a realistic replacement for Gauss’s

algorithm in engineering applications.

85

3.3 3.4 3.5 3.6 3.7 3.8

10

20

30

40

50

60
speed

Figure 3.2: Speed of the three algorithms for complex matrix multiplication.

3.6.1 Speed of the algorithms

We generate random A+ iB, C + iD ∈ Cn×n with entries of A,B,C,D drawn uniformly in

[−1, 1]; the results with standard normal are similar and omitted. We increase n from 2100 to

7000 in steps of 100. The product (A+iB)(C+iD) is computed numerically with the regular

algorithm (3.5.4), Gauss’s algorithm (3.5.5), and our new algorithm (3.5.6). For each n, we

generate ten different matrices and record the average time taken for each algorithm and plot

these in Figure 3.2, with wall time (in seconds) for vertical axis and log10(n) for horizontal

axis. The time taken by Matlab’s internal function for complex matrix multiplication is

virtually indistinguishable from that of the regular algorithm and therefore omitted.

Consistent with the predictions of bilinear complexity, our new algorithm has roughly

the same computation time as Gauss’s algorithm, at roughly 3/4 the time taken by the

regular algorithm. We will perform more speed experiments in conjunction with our accuracy

experiments in Section 3.6.2.

86

2 3 4 5 6 7 8 9 10 11 12
0.5

1

1.5

2

2.5

3
10 -15

4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7
10 -4

2 3 4 5 6 7 8 9 10 11 12
0.5

1

1.5

2

2.5

3

3.5
10 -15

4 5 6 7 8 9 10 11 12
4

4.5

5

5.5

6

6.5
10 -4

2 3 4 5 6 7 8 9 10 11 12
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
10 -15

4 5 6 7 8 9 10 11 12
2.5

3

3.5

4

4.5

5
10 -3

Figure 3.3: Accuracy and speed of algorithms for complex matrix multiplication.

87

3.6.2 Accuracy of the algorithms

We generate random A + iB, C + iD ∈ Cn×n with n = 64, 128, 256 and with condition

numbers ranging from 174 to 3 × 1011. It is desirable to limit ourselves to matrices over

Gaussian rationals, i.e., Q+Qi, as we will need to compute the exact values of their products

later.

The way we generate such a matrix requires some elaboration. For an X ∈ Zn×n with a

specified κ2(X) = κ ∈ Z, we form a diagonal Λ ∈ Rn×n whose diagonal entries are 1 and κ

toegether with n− 2 other random integers between 1 and κ− 1. We then form X = HΛHT

with a random Hadamard matrix H ∈ Zn×n. If A and B are generated in this manner,

then they are dense matrices (important as we do not want sparsity to unduly influence

arithmetic costs) and κ2(A+ iB) = κ2(A) = κ2(B) = κ as (κ+ κi)/(1 + i) = κ.

We compute the exact value of (A+ iB)(C + iD) symbolically with Matlab’s symbolic

toolbox. Given our relatively modest computational resources, this is the bottleneck for our

experiments as this step becomes prohibitively expensive when n > 256. In generating the

n = 256 plots in Figure 3.3, this step alone took 40 hours on our University’s Research

Computing Center servers.

For each pair of complex matrices A+ iB and C+ iD, we compute their product Ê using

each of the three algorithms (3.5.4), (3.5.5), (3.5.6), and compare them against the exact

result E via the max norm relative error

∥E − Ê∥max

∥A+ iB∥max∥C + iD∥max
.

As discussed in [55, 58], it is natural to measure error in matrix multiplication relative to the

norms of the input matrices. We use the max norm in (3.5.18) to better capture entrywise

accuracy.

The results are plotted in Figure 3.3: speed plots have wall time in seconds on the vertical

88

axes; accuracy plots have relative error on the vertical axes; all plots have log10(κ) on the

horizontal axes. We repeat each experiment ten times: every value on these plots comes

from averaging across the results of ten pairs of random matrices with the same condition

number.

Observations from Figure 3.3: The accuracy of our new algorithm is much higher than

that of Gauss’s algorithm and only slightly worse than that of the regular algorithm. Gauss’s

algorithm also shows a great deal more fluctuation across varying condition numbers than

either our new algorithm or the regular one. When it comes to speed, our algorithm is closer

to that of Gauss’s than the regular algorithm. These accuracy results attest to Theorem 3.5.1

and the discussions around (3.5.17).

The relative errors and wall times for Matlab’s internal function for complex matrix

multiplication are virtually indistinguishable from those of the regular algorithm (that we

implemented ourselves) and thus omitted. In the next three sections, we will compare the

accuracy and speed of the three complex matrix multiplication algorithms in more realistic

scenarios.

3.6.3 Matrix polynomial evaluations

We evaluate a polynomial p(x) =
∑d

k=0 akx
k with coefficients a0, . . . , ak ∈ R at aX ∈ Cn×n.

This is a problem that occurs in many tasks involving matrix functions [58, 59]. We limit

ourselves to real coefficients as this is by far most common scenario [59]; but the complex

coefficients case simply reduces to evaluating two real polynomials Re p(x) and Im p(x). The

celebrated Horner’s rule [59, Algorithm 4.3] reduces the problem to one of repeated matrix

multiplications.

89

10 11 12 13 14 15 16
2

2.5

3

3.5

4

4.5

5
10 -15

10 11 12 13 14 15 16
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

Figure 3.4: The three algorithms applied to matrix polynomial evaluations.

Algorithm 1 Compute p(X) via Horner’s rule

Input a0, a1, . . . , ad ∈ R, X ∈ Cn×n

Output a0I + a1X + · · ·+ adX
d

1: P = X;

2: S = a0I + a1X;

3: for k = 2 : d do

4: P = PX;

5: S = S + akP ;

6: end for

7: return S;

We generate random matrices X ∈ C256×256 with condition numbers from 234 to 253 as

described in Section 3.6.2. We set d = 5 and choose random b0, . . . , b5 ∈ (0, 1) uniformly.

We then evaluate p(X) using Algorithm 1, with Step 4 computed via (3.5.4), (3.5.5), and

(3.5.6). We measure accuracy in terms of the max norm relative forward error

∥p(X)− p̂(X)∥max

∥p(X)∥max
,

90

using Matlab symbolic toolbox for the exact value of p(X). The results presented in

Figure 3.4 again show that our new algorithm is nearly as accurate as the regular algorithm

and nearly as fast as Gauss’s algorithm. While our accuracy tests are again limited by our

capacity for symbolic computation (n = 256 is fine, n = 512 is beyond reach), our speed

tests can go far beyond (to around n = 4096), and they show a profile much like Figure 3.2.

3.6.4 Unitary transforms

Given a unitary matrix U ∈ Cn×n and a complex matrix X ∈ Cn×n, it may come as

a surprise to the reader that unless U happens to be some special transforms like FFT,

DCT, DWT, etc, or has already been factored into a product of Householder or Givens

matrices, there is no known special algorithm for forming UX that would take advantage of

the unitarity of U . Nevertheless, such unitary matrices with no additional special structure

are not uncommon. For instance, the matrix U could come from polar decompositions or

matrix sign functions [54, 56, 65], and computed via iterative methods [54, 56, 65] and thus

not in Householder- or Givens-factored form. Here we will explore the use of algorithms

(3.5.4), (3.5.5), (3.5.6) for unitary transforms X 7→ UX.

We generate the unitary matrix U ∈ C256×256 by QR factoring complex random matrices

with entries in U [0, 1] +U [0, 1]i. Note that a unitary matrix is always perfectly conditioned.

The matrix X ∈ C256×256 is generated randomly with condition numbers from 234 to 253 as

in Section 3.6.3. We compute the exact value E := UX symbolically as before and measure

the accuracy of our computed value Ê by

∥E − Ê∥max

∥U∥max∥X∥max
.

The results, presented in Figure 3.5, allow us to draw the same conclusion as in the Sec-

tion 3.6.3. Further speed tests up to n = 4096 again show a profile much like Figure 3.2.

91

10 11 12 13 14 15 16
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
10 -15

10 11 12 13 14 15 16
2.5

3

3.5

4

4.5

5
10 -3

Figure 3.5: The three algorithms applied to unitary transforms.

x1

x2

x3

x4

input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

hidden
layer 2

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
4

hidden
layer 3

h
(4)
1

h
(4)
2

h
(4)
3

h
(4)
4

hidden
layer 4

h
(5)
1

h
(5)
2

h
(5)
3

h
(5)
4

hidden
layer 5

ŷ1

ŷ2

ŷ3

ŷ4

output
layer

Figure 3.6: A constant width neural network with input dimension n = 4 and depth d = 6.
The edges between adjacent layers are weighted with weight matrices.

3.6.5 Complex-valued neural networks

Given the amount of recent attention it has received, a feedforward neural network probably

requires no introduction, and we will just limit ourselves to the obligatory Figure 3.6.

A complex-valued neural networks is simply a neural network with complex-valued

weights and is activated by a complex function. It has become increasingly important and is

widely used in signal processing and computer vision [1, 8, 26, 105, 117, 126]. For simplicity,

92

we consider a d-layer constant width version f : Cn → Cn given by

f(W1, . . . ,Wd, σ)(x) := Wdσ(Wd−1σ(· · ·W2σ(W1x) · · ·)),

with weight matrices W1, . . . ,Wd ∈ Cn×n and activation function σ : C → C applied

coordinatewise on Cn. Evaluating a trained complex-valued neural network on multiple

inputs x1, . . . , xm ∈ Cn is an indispensable task when we employ it to make new predictions.

Here we will compare the performance of the three algorithms (3.5.4), (3.5.5), (3.5.6) when

used for this purpose.

For concreteness, we choose a depth of d = 6 and use the complex ReLU activation

[8, 117]

σ(a+ bi) := max(a, 0) + max(b, 0)i.

We generate random weight matrices W1, . . . ,W6 ∈ Cn×n with n = 64 and 128, and

with condition numbers ranging from 234 to 253. We also generate random inputs X =

[x1, . . . , xm] ∈ Cn×m with entries drawn from U [−1
2 ,

1
2] + U [−1

2 ,
1
2]i, and with (m,n) =

(25, 64) or (50, 128). The task is then to evaluate

E := f(W1, . . . ,Wd, σ)(X) := Wdσ(Wd−1σ(· · ·W2σ(W1X) · · ·)).

Again we compute its exact value E symbolically, apply the three algorithms to obtain Ê

numerically, and measure accuracy in terms of the relative forward error

∥E − Ê∥max

∥E∥max
.

The results, shown in Figure 3.7, are fully consistent with those in Sections 3.6.3 and 3.6.4.

93

10 11 12 13 14 15 16
0.6

0.8

1

1.2

1.4

1.6

1.8

2
10 -15

10 11 12 13 14 15 16
2

3

4

5

6

7

8

9
10 -3

10 11 12 13 14 15 16
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
10 -15

10 11 12 13 14 15 16
0.01

0.012

0.014

0.016

0.018

0.02

0.022

Figure 3.7: The three algorithms applied to 6-layer complex neural networks with complex
ReLU activation and widths 64 and 128.

94

3.7 Conclusion

The notion of bilinear complexity started by Strassen has been a great motivator for more

than five decades of exciting developments in numerical linear algebra. Its success illustrates

the adage that “less is more”. Bilinear complexity does not capture every operation that

underlies the speed of an algorithm; but by focusing on a single operation (variable multi-

plications) and disregarding the rest (e.g., scalar multiplications, additions), it allows speed

to be measured by the number of terms in a decomposition of a 3-tensor and the fastest

algorithm to be given by a rank decomposition. This opens a door to other areas of mathe-

matics like algebraic geometry where such decompositions are studied independent of their

computational relevance.

We hope the notion of bilinear stability proposed in this article would do for the study

of numerical stability what bilinear complexity did for the study of time complexity. By

focusing on a single factor (growth) and disregarding other factors (e.g., cancellation errors)

that play a role in numerical stability, it allows stability to be measured by the growth

factor in a decomposition of a 3-tensor and the stablest algorithm to be given by a nuclear

decomposition. Just as tensor rank connects to algebraic geometry, tensor nuclear norm

connects to functional analysis [27, 29, 104]; thus bilinear stability could potentially open a

door to this rich area of mathematics.

A very recent development in bilinear complexity is the automated discovery of fast

algorithms using deep reinforcement learning. In [40], AlphaTensor found more than 14000

inequivalent 49-term decompositions for 4 × 4 matrix product. This is impressive. But

when one has that many different algorithms the question becomes which one to pick?

From the perspective of numerical linear algebra, numerical stability would be the most

natural secondary criteria. Since the 14000 algorithms are all given in the form of 49-term

decompositions, their growth factors are trivial to calculate and all one needs to do is to pick

the decomposition with the smallest growth factor.

95

CHAPTER 4

INVERTING A COMPLEX MATRIX

4.1 Introduction

We analyze a complex matrix inversion algorithm mentioned in [15, 32, 35, 72, 82, 106, 109,

116, 127]. Given a complex matrix A + iB ∈ Cn×n with A,B ∈ Rn×n, we compute its

inverse by

Z−1 =

(A+BA−1B)−1 − iA−1B(A+BA−1B)−1 if A is invertible,

B−1A(AB−1A+B)−1 − i(AB−1A+B)−1 if B is invertible.

We call this algorithm “Frobenius inversion”. Although this algorithm is known, its numerical

properties have not been studied, as far as we know. In this paper, we give a thorough

analysis of Frobenius inversion. We prove that Frobenius inversion is optimal in the sense of

least number of matrix multiplications and inversions over R. Then, we show that Frobenius

inversion is faster than MATLAB’s inversion algorithm. In addition, we provide several

applications where Frobenius inversion is more efficient than MATLAB’s inversion algorithm.

Matrix inversion is not preferred in most numerical linear algebra problems. For instance,

when solving a system of linear equations Ax = b, where A is an n by n invertible matrix,

we should not compute A−1 first and then multiplying it to b. Instead, we could use a

LU factorization approach. First, we compute a LU factorization of A = LU . Then, we

solve the systems Ly = b and Ux = y by forward substitution and backward substitution.

This approach is both faster and more accurate than the one using matrix inversion [58]. In

terms of speed, the LU factorization approach takes 2n3/3 flops while the matrix inversion

approach takes 2n3 flops [58]. To compare the accuracy, let x̂LU and x̂inv be the computed

values of x using LU factorization and matrix inversion respectively. Let L̂ and Û be the

96

computed LU factors of A. As shown in [58],

|b− Ax̂inv| ≤ n|A||A−1||b|u+O(u2) and |b− Ax̂LU | ≤ 3n|L̂||Û ||x̂LU |u+O(u2),

where u is the unit roundoff, n is the dimension of b, and | · | is applied componentwise.

Usually, ∥|L̂||Û |∥∞ ≈ ∥A∥∞ [58]. Thus, x̂LU is likely to be much more accurate than x̂inv

when ∥x∥∞ ≪ ∥|A−1||b|∥∞ [58].

Although matrix inversion is generally not preferred in numerical linear algebra, it is nec-

essary to do matrix inversion in certain circumstances. In some eigenvalue-related problems,

matrix inversion is necessary in iterations of certain algorithms [3, 22, 60, 102]. For instance,

Newton’s iteration of solving Sylvester equation has the following update rule [102]:

Xt+1 =
1

2
(Xt +X−1

t), t ∈ N,

where Xt is some matrix related to the inputs of Sylvester equation. We will discuss this

in detail in section 4.7. In superconductivity computations, matrix inversion is needed

in some numerical integrations [52]. Specifically, in the KKR-CPA algorithm, we need to

compute the KKR matrix inverse and then integrate it over the first Brillouin zone [52]. In

some MIMO radios, matrix inverse must be applied in hardware [31, 34, 115]. In statistics,

sometimes matrix inverse reveals important statistical properties [6, 85, 87]. For instance,

in linear regression, we want to learn a model Y = Xβ̂, where X is the design matrix,

Y are the observed values of the dependent variable, and β̂ are the coefficients of least

square regression [87]. Then, the covariance matrix of β̂ is σ2 · (XTX)−1, where σ2 is the

variance of the dependent variable [86]. Thus, we need to compute the inverse of XTX in

order to understand the statistical properties of β̂. Moreover, if we want to estimate the

accuracy of the prediction at a new point x, the variance of the predicted value xT β̂ is

σ2xT(XTX)−1x. In order to build a confidence interval for this new prediction, we need

97

to compute σ2xT(XTX)−1x. Since we are interested in predicting the value of Y at many

different points x, it is preferable to compute the inverse of XTX. In addition, by Cramer-

Rao lower bound [25, 99], the inverse of the Fisher information matrix is an asymptotic

lower bound for the covariance matrix of an unbiased estimator. In some Gaussian process,

this lower bound could be attained [67]. Thus, we need to compute the inverse of Fisher

information matrix in order to understand certain statistical problems. In this case, matrix

inversion is unavoidable since the final result is the inverse of some matrix. In graph theory,

the inverses of the adjacency matrix and forward adjacency matrix of a graph G reveal

important combinatorial properties of G [89, 92, 95, 124]. For instance, the inverse of the

adjacency matrix of G is the adjacency matrix of the inverse graph of G.

Furthermore, matrix inversion could even be beneficial in certain numerical linear algebra

tasks. We first reproduce an example in [30]. Consider the scenario where we want to solve a

sequence of linear systems Ax(k) = b(k), for k = 1, . . . , K, with the same coefficient matrix A.

Suppose that b(k+1) depends on b(k) so that we have to solve the linear systems one by one.

Then there are two natural approaches to solve this problem. One approach is to compute

A−1 first and then multiply it to b(k) one at a time. Another approach is to compute a LU

factorization of A = LU and then solve LUx(k) = b(k) by forward substitution and backward

substitution for each k = 1, . . . , K. When K ≫ n, both algorithms takes roughly the same

number of flops. However, the matrix inversion approach is faster than the LU factorization

approach in practice due to some data structure considerations [30]. In terms of accuracy, the

forward errors ∥x̂(k)inv− x(k)∥ and ∥x̂(k)LU − x(k)∥ are close to each other under mild conditions

[31], where x̂(k)inv and x̂
(k)
LU are solutions of Ax(k) = b(k) computed by matrix inversion and

LU factorization respectively for each k = 1, . . . , K. In addition, matrix inversion could also

be beneficial for rank-one updates. Suppose that we have computed B−1 for some matrix

B. Then, for any vectors u and v, we can compute the inverse of A = B + uvT by the

98

reinforcement method [37]:

A−1 = B−1 − 1

1 + vTB−1u
B−1uvTB−1,

assuming that 1 + vTB−1u ̸= 0. Besides this example, computing the inverse of a matrix A

could also be beneficial if A has special structures [42, 66, 70]. For instance, if A is block

circulant, then A is diagonalizable by some FFT type matrices, which makes it fast to

compute the inverse of A [42].

4.1.1 Related work

Frobenius inversion was first discovered by Frobenius and Schur [116]. It was then derived

from Frobenius-Schur’s relation in [35, pp. 217–219]. Frobenius inversion was also derived

in [82, pp. 137–138]. In [15], the authors proposed a way to invert A + iB by inverting

the real matrix

 A B

−B A

. In [32], the authors compared several ways to invert a complex

matrix using real matrix inversions with directly inverting a complex matrix in complex

arithmetic. They proposed that inverting a complex matrix in complex arithmetic is better

than inverting a complex matrix using real inversions. The methods they considered include

Frobenius inversion and the one proposed in [15]. However, in this paper, we show that

Frobenius inversion could actually be advantageous in certain circumstances. In [72], the

authors proposed a way to invert A + iB using real matrix inversions when both A and B

are singular. Their algorithm uses Frobenius inversion as an intermediate step. In [109],

the authors proposed another way to invert A + iB using real matrix inversions without

assuming A, B, A+B or A−B is invertible. In [106, 127], Frobenius inversion was derived

again.

99

4.2 Multiplications in Quadratic Field Extensions

Let k be a field and let F be a quadratic field extension of k. Thus there exists some monic

irreducible quadratic polynomial f(x) ∈ k[x] such that

F ≃ k[x]/(f(x)).

We explicitly write f(x) = x2 + βx + τ for some β, c ∈ k. Up to an isomorphism, we are

able to write f in a normal form:

• char(k) ̸= 2: β = 0 and −τ is not a complete square in k.

• char(k) = 2: either β = 0 and −τ is not a complete square in k, or β = 1 and x2+x+τ

has no solution in k.

Let ξ be a root of f(x) in k. We also have F ≃ k[ξ]. In particular, an element in F can be

written as a1 + a2ξ. The multiplicaiton on F is given by the lemma that follows.

Lemma 4.2.1. Let k, f, ξ be as above. Given two elements x1 + x2ξ, y1 + y2ξ in k[ξ], their

product is

(x1 + x2ξ)(y1 + y2ξ) =

(x1y1 − τx2y2) + (x1y2 + x2y1)ξ, if f(x) = x2 + τ,

(x1y1 − cx2y2) + (x1y2 + x2y1 − x2y2)ξ, if f(x) = x2 + x+ τ.

(4.2.1)

Proposition 4.2.2. Let k, f, τ, ξ be as above. There exists an algorithm for the multipli-

cation in k[ξ], which costs three multiplications in k. Moreover, the algorithm is optimal in

the sense of bilinear complexity, i.e., the minimum number of multiplications in k.

Proof. We first assume that f(x) = x2+τ . In this case, the multiplication (x1+x2ξ)(y1+y2ξ)

can be computed by three multiplications: M1 = (x1−x2)(y1+τy2),M2 = x1y2,M3 = x2y1,

100

since

x1y1 − τx2y2 =M1 − τM2 +M3, x1y2 + x2y1 =M2 +M3. (4.2.2)

Next we assume that f(x) = x2 + x + τ . We consider: M1 = x1y1, M2 = x2y2 and

M3 = (x1 − x2)(y1 − y2). It is straightforward to verify that

x1y1 − cx2y2 =M1 − cM2, x1y2 + x2y1 − x2y2 =M1 −M3. (4.2.3)

Now we assume that in both cases there exists an algorithm for the multiplication in k[ξ],

which costs two multiplications M ′
1 and M ′

2. Then we have

x1y1 − τx2y2, x1y2 + x2y1 − δx2y2 ∈ span{M ′
1,M

′
2},

where δ = 0 if f(x) = x2 + τ and δ = 1 if f(x) = x2 + x + τ . Clearly x1y1 − τx2y2 and

x1y2 + x2y1 − δx2y2 are not collinear, thus

M ′
1,M

′
2 ∈ span{x1y1 − τx2y2, x1y2 + x2y1 − δx2y2}.

Therefore, we may find constants a, b, d, e ∈ k such that

M ′
1 = a(x1y1 − τx2y2) + b(x1y2 + x2y1 − δx2y2)

= ax1y1 + bx1y2 + bx2y1 + (−τa− δb)x2y2,

M ′
2 = c(x1y1 − τx2y2) + d(x1y2 + x2y1 − δx2y2)

= cx1y1 + dx1y2 + dx2y1 + (−τc− δd)x2y2.

Clearly, ad − bc ̸= 0 and in particular, at least one of a, b, c, d is nonzero. We observe that

101

M ′
1 is a multiplication, thus it can be written as (rx1 + sx2)(uy1 + vy2). This implies that

a(−τa− δb) = b2, (4.2.4)

c(−τc− δd) = d2. (4.2.5)

If f(x) = x2 + τ , then (4.2.4) reduces to τa2 + b2 = 0. This implies that a = b = 0 since

−τ is not a complete square in k. Similarly, we also have c = d = 0. This contradicts the

assumption that at least one of a, b, c, d is nonzero.

If f(x) = x2+x+ τ then (4.2.4) is τa2+ ab+ b2 = 0. We remark that a ̸= 0. Otherwise,

we may derive b = 0 which contradicts the fact that ad − bc ̸= 0. By the substitution

b′ = b/a, we have b′2 + b′ + τ = 0. This contradicts to the assumption that the equation

x2 + x+ τ = 0 has no solution in k.

It is worthy to remark that we may regard the multiplication in k[ξ] as the bilinear map

m : k[ξ]× k[ξ] → k[ξ], (x1 + x2ξ, y1 + y2ξ) 7→ (x1 + x2ξ)(y1 + y2ξ).

A multiplication in k means the multiplication between two indeterminates from different

inputs. For example, we count x1y1 as one multiplication while we do not count τx1 as

a multiplication since τ is a constant. Moreover, we do not allow multiplications between

indeterminates from the same input, such as x1x2. In terms of tensor rank, Proposition 4.2.2

means the rank of the structure tensor ofm is exactly three. According to [46, 74], it is known

that every tensor in C2⊗C2⊗C2 has rank at most three. As a comparison, Proposition 4.2.2

deals with a particular tensor over an arbitrary field k. More importantly, it determines the

exact value of the rank of that tensor, together with a rank decomposition. An important

special case of Proposition 4.2.2 is k = R and f(x) = x2 + 1. In this case, ξ = i and

k[ξ] = C. The algorithm presented in (4.2.2) is the celebrated Gauss algorithm [69] for the

multiplication of complex numbers, whose optimality is proved in [90, 119].

102

4.3 Gauss Matrix Multiplication

Let n be a positive integer and let L be a field. We denote by Mn(L) the L-algebra consisting

of n× n matrices over L. We denote by GLn(L) the group of invertible n× n matrices over

L and we consider the multiplication map

mn,L : Mn(L)×Mn(L) → Mn(L), mn,L(Z,W) = ZW

and the inversion map

invn,L : GLn(L) → GLn(L), invn,L(Z) = Z−1.

Assume that F ≃ k[x]/(f(x)) ≃ k[ξ] is a quadratic field extension of k, where ξ is a root

of f ∈ k[x] in k. Here f(x) is either x2+τ or x2+x+τ . We notice that Mn(F) =Mn(k)⊗kF.

Thus an element in Z ∈ Mn(F) can be written as Z = A + ξB where A,B ∈ Mn(k). As a

consequence of Proposition 4.2.2, we have the following.

Proposition 4.3.1 (Gauss matrix multiplication). Let k,F, n, f, τ, ξ be as above. Suppose

that Z = A+ ξB and W = C + ξD are two elements in Mn(F) where A,B,C,D ∈ Mn(k).

If f(x) = x2 + τ , then one can compute the product ZW by

M1 = (A−B)(C + τD), M2 = AD, ,M3 = BC,

N1 =M1 − τM2 +M3, N2 =M2 +M3, (4.3.1)

ZW = N1 + ξN2.

103

If f(x) = x2 + x+ τ , then one can compute the product ZW by

M1 = AC, M2 = BD, M3 = (A−B)(C −D),

N1 =M1 − τM2, N2 =M1 −M3, (4.3.2)

ZW = N1 + ξN2.

Moreover, (4.3.1) and (4.3.2) are optimal in the sense of minimum number of multiplications

in Mn(k).

We remind the readers that if we denote by E the collection of algorithms for mn,F

using multiplications and additions of indeterminates, together with scalar multiplications in

Mn(k), then the algorithm presented in Proposition 4.3.1 is an minimal element with respect

to the partial ordering on E induced by the number of multiplications of indeterminates in

Mn(k).

Proof. It is straightforward to verify that algorithms in (4.3.1) and (4.3.2) indeed compute

ZW . To see the optimality, one may repeat the argument in the proof of Proposition 4.2.2.

4.4 Frobenius Matrix Inversion

In this section, we discuss the matrix inversion on Mn(F). To do that, we observe that for

Z = A + ξB,W = C + ξD ∈ GLn(F) where A,B,C,D ∈ Mn(k), W is the inverse of Z if

and only if

(A+ ξB)(C + ξD) = ZW = In. (4.4.1)

Thus we may have two equations for C and D. According to Lemma 4.2.1, the multiplication

formula in F thus in Mn(F) depends on the form of f . In the following, we separate our

discussions with respect to the two normal forms of f .

104

4.4.1 First case: f(x) = x2 + τ

We define

S1 := {Z = A+ ξB ∈ GLn(F) : A,A+ τBA−1B ∈ GLn(k)},

S2 := {Z = A+ ξB ∈ GLn(F) : B, τB + AB−1A ∈ GLn(k)}.

It is worth mentioning that the complement of S1∪S2 consists of n×n F-matrices Z = A+ξB

where det
(
A(A+ τBA−1B)

)
= det

(
B(τB + AB−1A)

)
= 0. Therefore, S1 ∪ S2 is an open

dense (in Zariski topology) subset of Fn×n ≃ k2×n×n. Thus with respect to any reasonable

probability measure on k2×n×n, a random complex matrix Z lies in S1∪S2 with probability

one. The restriction of invn,F on S1 and S2 can be easily expressed in terms of invn,k and

mn,k. Indeed, according to (4.4.1), we have

AC − τBD = In, AD +BC = 0.

Solving the equation for C and D, we obtain the lemma that follows.

Lemma 4.4.1 (Frobenius inversion I). Let F = k[x]/(f(x)) where f(x) = x2 + τ is an

irreducible polynomial over k. For each Z = A + ξB ∈ GLn(F), where A,B ∈ Mn(k), we

have

(a) If Z ∈ S1, then

Z−1 = (A+ τBA−1B)−1 − ξA−1B(A+ τBA−1B)−1. (4.4.2)

(b) If Z ∈ S2, then

Z−1 = B−1A(AB−1A+ τB)−1 − ξ(AB−1A+ τB)−1. (4.4.3)

105

In particular, invn,F on S1∪S2 can be evaluated by performing invn,k twice and mn,k thrice.

We remark that if k = R,F = C, then (4.4.2) and (4.4.3) are the well-known inversion

formulae for complex matrices first discovered by Frobenius [15, 32, 35, 72, 82, 106, 109, 116,

127]. It is easy to turn (4.4.2) and (4.4.3) into Algorithm 2. Note that Algorithm 2 reduces

Algorithm 2 Frobenius inversion I
Input Z = A+ ξB ∈ S1 ∪ S2
Output inverse of Z
1: if Z ∈ S1 then
2: set X = A, Y = B, τ1 = 1, τ2 = τ ;
3: else if Z ∈ S2 then
4: set X = B, Y = A, τ1 = τ, τ2 = 1;
5: end if
6: compute X−1;
7: compute X−1Y ;
8: compute Y X−1Y ;
9: compute τ1X + τ2Y X

−1Y ;
10: compute J = (τ1X + τ2Y X

−1Y)−1;
11: compute K = X−1Y (τ1X + τ2Y X

−1Y)−1;
12: if Z ∈ S1 then return Z−1 = J − ξK;
13: else if Z ∈ S2 then return Z−1 = K − ξJ ;
14: end if

to the algorithm in [21, p. 15] and [77] when n = 1, k = R and F = C.

One may expect that (4.4.2) and (4.4.3) are consequences of any of the

Sherman–Morrison–Woodbury (SMW) identities [49, 51, 53, 58, 101, 122, 123]:

(A+B)−1 = A−1 − A−1(B−1 + A−1)−1A−1

= A−1 − A−1
(
AB−1 + In

)−1

= A−1 −
(
A+ AB−1A

)−1

= A−1 − A−1B (A+B)−1 .

However, this is not the case since SMW identities all involve the inversion of a matrix over

F while (4.4.2) and (4.4.3) only require inversions of matrices over k.
106

From the algebraic perspective, invn,F is an operation on Mn(F), which is an Mn(k)-

bimodule. Hence it is natural to discuss the computational complexity of invn,F over Mn(k).

We observe that Algorithm 2 performsmn,k three times, invn,k twice and real matrix addition

once. In the following we prove the optimality of Algorithm 2.

Theorem 4.4.2 (optimality I). Let n ≥ 2 be a positive integer. Algorithm 2 is optimal in

the sense of least number of multiplications, inversions and additions in Mn(k).

Proof. It is clear that one matrix addition over k is necessary to compute invn,F. Let Γ be

a straight-line program computing Z−1 for Z ∈ S1 ∪S2 over the algebra Mn(k). We denote

by L(Γ) the total number of inversions and multiplications in Mn(k) performed by Γ. If we

denote by Γ0 the straight-line program for Algorithm 2, then it is clear that L(Γ0) = 5. We

assume that there exists some straight-line program Γ1 with L(Γ1) = 4 computing Z−1.

We first prove that Γ1 performs invn,k at least twice. Otherwise, Γ1 can compute Z−1

by only one k-matrix inversion. Without loss of generality, we may assume that Z ∈ S1 so

that (A + τBA−1B)−1 can be computed by at most one k-matrix inversion. Furthermore,

we may also assume that B is invertible. Now we have

A(A+ τBA−1B)−1 = (In + τ(BA−1)2)−1.

We consider the case where B = ΛA where Λ = diag(λ1, . . . , λn) is a diagonal matrix. Then

(In + τ(BA−1)2)−1 is the diagonal matrix whose diagonal elements are 1/(1 + τλ2j), j =

1, . . . , n. This indicates that Γ1 requires at least two inversions in Mn(k) to compute (In +

τ(BA−1)2)−1, since A,B are not necessarily commuting.

Next, we prove that Γ1 requires at least three k-matrix multiplications. Again, we assume

that Z = A+ ξB ∈ S1. Then the output of Γ1 is the pair

(
(A+ τBA−1B)−1, A−1B(A+ τBA−1B)−1

)
.

107

We proceed by contradiction. Suppose that Γ1 costs at most two k-matrix multiplications.

Since Γ1 is a straight-line program, we may assume without loss of generality, that Γ1 first

computes (A+ τBA−1B)−1 and then it computes A−1B(A+ τBA−1B)−1. We claim that

Γ1 already requires two k-matrix multiplications to compute (A + τBA−1B)−1. To that

end, we notice that

BA−1B = τ−1
((

(A+ τBA−1B)−1
)−1

− A

)
.

This implies that one can compute BA−1B using the same number of k-matrix multiplica-

tions as (A+τBA−1B)−1. However, it is clear that computing BA−1B by one multiplication

is impossible and this proves our claim. Thus Γ1 computes A−1B(A + τBA−1B)−1 as a

linear combination of (A + τBA−1B)−1 and intermediate outputs. However, this is not

possible. Indeed, we may again consider the case where B = ΛA and Λ = diag(λ1, . . . , λn)

is a diagonal matrix. Therefore, we have

(
(A+ τBA−1B)−1, A−1B(A+ τBA−1B)−1

)
= (A−1(In+ τΛ2)−1, A−1(In+ τΛ2)−1Λ).

Moreover, A−1(In+τΛ
2)−1(In−Λ) can be computed as a linear combination of intermediate

outputs. In particular, one can compute both A−1(In + τΛ2)−1 and A−1(In + τΛ2)−1Λ by

two multiplications in Mn(k), which is ridiculous.

4.4.2 Second case: f(x) = x2 + x+ τ

We define

T1 :=
{
Z = A+ ξB ∈Mn(F) : A,B ∈ k, A−B,A+ τB(A−B)−1B ∈ GLn(k)

}
,

T2 :=
{
Z = A+ ξB ∈Mn(F) : A,B ∈ k, B,AB−1A− A+ τB ∈ GLn(k)

}
.

108

Again, S1 ∪ S2 is an open dense subset of Fn×n ≃ k2×n×n in Zariski topology. According

to (4.4.1), we have

AC − τBD = In, AD +BC −BD = 0.

Solving the equation for C and D, we have the following

Lemma 4.4.3 (Frobenius inversion II). Let k be a field of characteristic 2 and let F =

k[x]/(f(x)) where f(x) = x2 + x + τ is an irreducible polynomial over k. For each Z =

A+ ξB ∈ GLn(F) where A,B ∈Mn(k), we have

(a) If Z ∈ T1, then

Z−1 = (A+ τB(A−B)−1B)−1 − ξ(A−B)−1B(A+ τB(A−B)−1B)−1. (4.4.4)

(b) If Z ∈ T2, then

Z−1 = (B−1A− In)(AB
−1A− A+ τB)−1 − ξ(AB−1A− A+ τB)−1. (4.4.5)

As a direct consequence of (4.4.4) and (4.4.5), we obtain Algorithm 3. It is straightfor-

ward to verify that Algorithm 3 costs two matrix inversions and three matrix multiplications

over k. In fact, by a similar argument for Theorem 4.4.2, we can prove that Algorithm 3 is

optimal.

Theorem 4.4.4 (optimality II). Let n ≥ 2 be a positive integer. Algorithm 3 is optimal in

the sense of least number of multiplications, inversions and additions in Mn(k).

109

Algorithm 3 Frobenius inversion II
Input Z = A+ ξB ∈ T1 ∪ T2
Output inverse of Z
1: if Z ∈ T1 then
2: compute X1 = (A−B)−1;
3: compute X2 = X1B;
4: compute X3 = A+ τBX2;
5: compute X4 = X−1

3 ;
6: compute X5 = X2X4; return Z−1 = X4 − ξX5
7: else if Z ∈ T2 then
8: compute X1 = B−1;
9: compute X2 = X1A;

10: compute X3 = AX2 − A+ τB;
11: compute X4 = X−1

3 ;
12: compute X5 = (X2 − In)X4; return Z−1 = X5 − ξX4
13: end if

4.4.3 An application

To conclude this section, we discuss an application of Algorithms 2 and 3. We consider a

tower of quadratic field extensions:

k = K0 ⊊ K1 ⊊ · · · ⊊ Km, (4.4.6)

where [Kj : Kj−1] = 2, j = 1, . . . ,m. For each j = 1, . . . ,m there exists some ξj ∈ Kj such

that Kj = Kj−1[ξj]. We denote by fj ∈ k[x] the minimal polynomial of ξj . Then fj is a

monic irreducible quadratic polynomial. We may also assume that fj is in the normal form:

fj(x) = x2 + τj or fj(x) = x2 + x+ τj , j = 1, . . . ,m.

It is obvious that [Km : k] = 2m and an element x in Km can be written as

x =
∑

α∈{0,1}m
cαξ

α,

110

where for each α = (α1, . . . , αm) ∈ {0, 1}m, ξα = ξα1
1 · · · ξαm

m and cα ∈ k. Moreover, we may

regard Km as a quotient ring of the polynomial ring in m variables, i.e.,

Km ≃ k[x1, . . . , xm]/(f1, . . . , fm) =
m⊗
j=1

(
k[x]/(fj)

)
. (4.4.7)

A particularly interesting example of Km is Q[S] where S = {√aj : aj ∈ Q, 1 ≤ j ≤ m}. It

is proved in [12] that

Q ⊊ Q[
√
a1] ⊊ Q[

√
a1,

√
a2] ⊊ · · · ⊊ Q[S]

is a tower of quadratic field extensions if the product of any nonempty subset of S is not in

Q. In this case, we have Kj = Q[
√
a1, . . . ,

√
aj] and fj(x) = x2 − aj , j = 1, . . . ,m. Another

commonly seen example of the tower (4.4.6) is

Q ⊊ Q[a
1
2] ⊊ · · · ⊊ Q[a

1
2m],

where a ∈ Q is not a complete square.

We also remark that (4.4.6) is analogous to the tower of multicomplex number systems

[98]:

R ⊊ C1 ⊊ · · · ⊊ Cm,

where Cj , 1 ≤ j ≤ m is defined inductively as

C1 = C,

Ck+1 = {a+ bik+1 : a, b ∈ Ck}, k ≥ 1

where i2k+1 = −1 and ikil = ilik for any k, l ≥ 1. However, since C1 = C is algebraic closed,

Cj is not even a field extension of C1 for j ≥ 2. We refer interested readers to [107, 98] for

111

detailed discussions of analytic properties of Cm.

We observe that Mn(Km) = Mn(k) ⊗k Km, which implies that a matrix Z ∈ Mn(Km)

can be written as

Z =
∑

α∈{0,1}m
Cαξ

α. (4.4.8)

On the other hand, we also have

Mn(k)⊗k Km =Mn(k)⊗k K1 ⊗K1
· · · ⊗Km−1

Km.

Thus Z ∈ Km can also be inductively constructed as follows:

Z = A0 + ξmA1,

Aβ = A0,β + ξm−jA1,β , β ∈ {0, 1}j , j = 1, . . . ,m− 1, (4.4.9)

where Aβ ∈ Mn(Km−|β|). We record in the next lemma the relation between the two

expressions of Z in (4.4.8) and (4.4.9).

Lemma 4.4.5. Let Cα and Aβ be as in (4.4.8) and (4.4.9) respectively, where α ∈ {0, 1}m

and β ∈
⋃m
j=1{0, 1}j . For each 1 ≤ j ≤ m,

Z =
∑

β∈{0,1}j
Aβξ

β1
m−j+1 · · · ξ

βj
m .

Moreover, for each β ∈ {0, 1}j , we have

Aβ =
∑

β′∈{0,1}m−j

Cβ′,βξ
β′1
1 · · · ξ

β′m−j

m−j , β′ ∈ {0, 1}m−j .

In particular, Cα = Aα.

Proof. We proceed by induction on j. Clearly the formula holds for j = 1 by (4.4.9). Assume
112

that the formula holds for j = s, i.e.,

Z =
∑

β∈{0,1}s
Aβξ

β1
m−s+1 · · · ξ

βs
m .

To prove the formula for j = s+ 1, we notice that Aβ = A0,β + ξm−sA1,β , thus

Z =
∑

β∈{0,1}s
(A0,β + ξm−sA1,β)ξ

β1
m−s+1 · · · ξ

βs
m =

∑
γ∈{0,1}s+1

Aγξ
γ1
m−s · · · ξ

γs+1
m

and this completes the induction. The moreover part follows easily by comparing (4.4.9)

with (4.4.8).

Lemma 4.4.5 provides us a method to compute the multiplication and inversion in

Mn(Km).

Proposition 4.4.6 (multiplication in Mn(Km)). There exists an algorithm for the multi-

plication in Mn(Km), which costs 3m multiplications in Mn(k).

Proof. Let Z,W ∈Mn(Km). According to (4.4.9), we may write

Z = A0 + ξmA1, W = B0 + ξmB1.

Thus one can compute ZW in terms of A0, A1, B0, B1 by three multiplications in Mn(Km−1)

by Proposition 4.3.1. Each multiplication in Mn(Km−1) costs three multiplications in

Mn(Km−2) again by Proposition 4.3.1. Repeat the above process until we arrive at multi-

plications in Mn(K0) =Mn(k). Thus the total cost of multiplications in Mn(k) is 3m.

According to (4.4.8), we can also write Z and W as Z =
∑

α∈{0,1}m Cαξ
α and W =∑

β∈{0,1}m Dβξ
α respectively. Here Cα, Dβ ∈ Mn(k) for α, β ∈ {0, 1}m. Thus one can

113

compute ZW via the formula

ZW =
∑

γ∈{0,2}m

∑

α+β=γ
α,β∈{0,1}m

CαDβ

 ξγ .

However, it is obvious that the above formula costs 4m multiplications in Mn(k). Hence the

algorithm presented in Proposition 4.4.6 reduces the complexity of evaluating mn,Km
over

Mn(k) from O(N2) to O(N log2 3), where N = 2m.

Due to Proposition 4.3.1, one can recognize the algorithm in Proposition 4.4.6 as an

analogue of the Karatsuba algorithm [64] for fast integer multiplication. By (4.4.7), we may

also regard the algorithm in Proposition 4.4.6 as an analogue of the multidimensional fast

Fourier transform [108].

We also remark that the algorithm presented in Proposition 4.4.6 relies on the technique

called divide and conquer, which is employed by Strassen to design the first algorithm [111]

for n×n matrix multiplication whose complexity is smaller than O(n3). In our case, however,

the size n of matrices is fixed, while the level m of the tower (4.4.6) varies.

Proposition 4.4.7 (inversion in Mn(Km)). There exists an algorithm for the inversion of

a generic element in Mn(Km), which costs 3(3m − 2m) multiplications and 2m inversions in

Mn(k).

Proof. For 1 ≤ j ≤ m and a generic Z ∈ Mn(Kj). We write Z = A0 + ξmA1 where

A0, A1 ∈ Mn(Kj−1). Since Z is generic, Algorithm 2 (resp. Algorithm 3) is applicable

for fj(x) = x2 + τj (resp. fj(x) = x2 + x + τj). This costs three multiplications and two

inversions in Mn(Kj−1). Thus we have

invn,Kj
= 3mn,Kj−1

+ 2 invn,Kj−1
, 1 ≤ j ≤ m.

114

Moreover, Proposition 4.3.1 implies mn,Kj
= 3mn,Kj−1

. Inductively, we may derive that

invn,Km
= 3(3m − 2m)mn,k + 2m invn,k .

4.5 General Matrix Inversion

In Section 4.4, we investigate properties of the Frobenius inversion from the symbolic per-

spective. In practice, the most important quadratic field extension is R ⊆ C. The rest of

this paper is devoted to the discussion of numerical properties of the Frobenius inversion.

To this end, we consider the case where k = R and F = C, which is probably the most

important quadratic field extension.

In this section, we compare the computational complexity of Algorithm 2 with the usual

complex matrix inversion algorithm based on LU decomposition, which is widely employed

in various main stream platforms for numerical computing such as MATLAB, Maple, Julia

and Python.

4.5.1 Frobenius inversion v.s. invertion via LU decomposition

To begin with, we first recall the algorithm for matrix inversion via LU decomposition [58],

which we reproduce in Algorithm 4 for ease of reference. We notice that the main idea

behind Algorithm 4 is that B = A−1 if and only if BA = In. It is obviously true that we

may replace BA = In by AB = In in the above. Accordingly, we obtain Algorithm 5 which

is slightly different from Algorithm 4.

Before we proceed, we fix some notations. Let A be an algorithm for real matrix multipli-

cation. We denote by TA
mult(n) the average running time of A on pairs of n×n real matrices.

In addition, we let TA
inv(n) be the average running time of Algorithm 4 on invertible n × n

115

Algorithm 4 matrix inversion via LU decomposition
Input A ∈ GLn(k)
Output inverse of A
1: compute LU factorization of A = LU ;
2: compute U−1;
3: solve for X from XL = U−1;
4: return X;

Algorithm 5 matrix inversion via LU decomposition
Input A ∈ GLn(k)
Output inverse of A
1: compute LU factorization of A = LU ;
2: compute L−1;
3: solve for X from UX = L−1;
4: return X;

real matrices, in which real matrix multiplications are computed by A. By symmetry, the

average running time of Algorithm 5 on invertible n× n real matrices is also TA
inv(n). Now

with these notations, we are ready to present our threshold theorem.

Theorem 4.5.1 (threshold). Let A be an algorithm for real matrix multiplication. Assume

that the running time of A on pairs of n×n matrices of which at least one is upper or lower

triangular is λTA
mult(n) for some 0 < λ ≤ 1. Then Algorithm 2 is asymptotically faster than

Algorithm 4 over C if and only if limn→∞
(
TA
inv(n)/T

A
mult(n)

)
> 1+λ/2. In particular, if A

is the usual matrix multiplication algorithm, then Algorithm 2 is asymptotically faster than

Algorithm 4 over C if and only if limn→∞
(
TA
inv(n)/T

A
mult(n)

)
> 5/4.

Proof. We first show that the running time of Algorithm 2 is dominated by 2TA
inv(n) +

5TA
mult(n)/2. In fact, we notice that the first two steps in Algorithm 2 (i.e., computing X−1

and X−1Y) can be combined into one step by solving for F from XF = Y . To that end, we

compute an LU- decomposition X = LU . After that, we compute L−1 and L−1Y . Finally,

we solve for F from UF = L−1Y . As a comparison, we note that the only step that is not

included in Algorithm 5 is the computation of L−1Y .

Since L−1 is lower triangular, multiplying L−1 with Y takes λTA
mult(n) operations. There-

116

fore, the first two steps in Algorithm 2 takes TA
inv(n) + λTA

mult(n) time. Then, computing

Y X−1Y requires one matrix multiplication, computing X + Y X−1Y requires one matrix

addition, computing J = (X + Y X−1Y)−1 requires one matrix inversion, and comput-

ing K = X−1Y J requires one matrix multiplication. Since matrix addition takes O(n2)

flops, it is not the dominant term in the computation time of Algorithm 2 and we can

omit that in this analysis. To sum up, the running time of Algorithm 2 is dominated by

2TA
inv(n) + (2 + λ)TA

mult(n).

Next, we consider the running time of Algorithm 4 for complex matrices. We prove

that the running time of Algorithm 4 is dominated by 4TA
inv(n). Note that the complex

addition takes 2 real flops and the complex multiplication takes 6 real flops. In Algorithm 4,

there are “roughly” the same number of additions and multiplications. Algorithm 4 contains

roughly three operations: computing LU factorization, computing forward substitution, and

computing the inverse of an upper triangular matrix. Computing LU factorization using

Gaussian Elimination requires roughly the same number of additions and multiplications.

Computing forward substitution also requires roughly the same number of additions and

multiplications. Finally, according to Method 1 in page 263 of [58], inverting a triangular

matrix can be done by a sequence of forward substitutions. Thus, inverting a triangular

matrix also requires roughly the same number of additions and multiplications. Therefore,

the running time of Algorithm 4 over C is dominated by 4TA
inv(n).

Now, Algorithm 2 is faster than Algorithm 4 if and only if for n sufficiently large,

4TA
inv(n) > 2TA

inv(n) + (2 + λ)TA
mult(n),

which is equivalent to

lim
n→∞

(
TA
inv(n)

TA
mult(n)

)
> 1 +

λ

2
.

It is remarkable that the inequality limn→∞
(
TA
inv(n)/T

A
mult(n)

)
> 5/4 holds in MAT-

117

LAB. In Section 4.7, we shall see by numerical examples that Algorithm 2 is indeed faster

than Algorithm 4 in MATLAB, which confirms Theorem 4.5.1. Moreover, according to

Theorem 4.5.1, for any A, Algorithm 2 is asymptotically faster than Algorithm 4 if

lim
n→∞

(
TA
inv(n)/T

A
mult(n)

)
> 3/2.

We conclude this subsection by a remark on solving systems of linear equations

(A+ iB)(x+ iy) = c+ id (4.5.1)

by the Frobenius inversion, where A,B ∈ Rn×n, and x, y, c, d ∈ Rn. Namely, we can first

compute (A+iB)−1 by Algorithm 2 and then compute (A+iB)−1(c+id). For a single linear

system (4.5.1), it is obviously more efficient to solve it by the LU decomposition together

with backward and forward substitutions. However, as pointed out in [30], it is common in

scientific computing that one needs to solve (4.5.1) repeatedly with the same (A + iB) but

different (c+ di). To be more precise, we have

(A+ iB)(x(k) + iy(k)) = c(k) + id(k), k = 1, . . . , K,

where K is much larger than n. In this scenario, inverting (A + iB)−1 by Algorithm 2 is

more favourable in the sense of computational efficiency.

4.5.2 Rounding error analysis

In this subsection, we provide a rounding error analysis for Algorithm 2. To do that, we

denote by u the unit roundoff. Given an n × n matrix X, we denote by LX (resp. UX)

the computed lower (resp. upper) triangular factor in the LU decomposition of X, i.e.,

X = LXUX . We also denote by |X| the matrix whose entries are absolute values of elements

118

of X.

Theorem 4.5.2. Let Z = A + iB ∈ S1 ∪ S2 be the input of Algorithm 2 and W be the

output of Algorithm 2. Let X = A and Y = B if Z ∈ S1 and let X = B and Y = A if

Z ∈ S2. Then we have

|Z−1 −W | ≤ O(n)
(
|X−1| · |LX | · |UX | · |X−1| · |Y | · |J |

+
(
|X−1Y |+ I

)
|J |
(
|X|+ |Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |

+ |LP | · |UP |
)
|J |
)
u,

where ≤ between matrices holds componentwise and P is the computed value of X+Y X−1Y

by Algorithm 2 and J = (X + Y X−1Y)−1.

The proof of Theorem 4.5.2 relies on the following lemma.

Lemma 4.5.3. Let A ∈ GLn(R) and B ∈ Rn×n be such that A + uB ∈ GLn(R), where u

is the unit roundoff. Then,

(A+ uB)−1 = A−1 − uA−1BA−1 +O(u2).

Proof. Note that

(A+ uB)−1 = (In + uA−1B)−1A−1

(a)
= (In − uA−1B + u2A−1B(In + uA−1B)−1A−1B)A−1

= A−1 − uA−1BA−1 +O(u2),

119

where (a) follows from the fact that

(In + uA−1B)(In − uA−1B + u2A−1B(In + uA−1B)−1A−1B)

= In − uA−1B + u2A−1B(In + uA−1B)−1A−1B + uA−1B − u2A−1BA−1B

+ u3A−1BA−1B(In + uA−1B)−1A−1B

= In + u2A−1B(In + uA−1B)−1A−1B − u2A−1BA−1B

+ u3A−1BA−1B(In + uA−1B)−1A−1B

= In + u2A−1B(In + uA−1B)−1A−1B − u2A−1B(In + uA−1B)(In + uA−1B)−1A−1B

+ u3A−1BA−1B(In + uA−1B)−1A−1B

= In + u2A−1B(In + uA−1B)−1A−1B − u2A−1B(In + uA−1B)−1A−1B

= In.

The proof of Theorem 4.5.2 also requires the following facts in [58]:

• Let A ∈ GLn(R) and let X̂ be the computed inverse of A by Algorithm 4. Then,

X̂ = A−1 +O(n)|X̂| · |L| · |U | · |A−1|u+O(u2)

= A−1 +O(n)|A−1| · |L| · |U | · |A−1|u+O(u2), (4.5.2)

where A = LU is the computed LU decomposition of A.

• Let A,B ∈ Rn×n and let Ĉ be the computed product of A and B. Then,

Ĉ = AB + n|A| · |B|u+O(u2). (4.5.3)

120

• Let a, b ∈ R and let ĉ be the computed sum of a and b. Then,

ĉ = (a+ b) + (|a|+ |b|)u+O(u2). (4.5.4)

• Let a, b ∈ R and let ĉ be the computed value of a− b. Then,

ĉ = (a− b) + (|a|+ |b|)u+O(u2). (4.5.5)

Now, we are able to prove Theorem 4.5.2. In the following, we denote by X̂ the the computed

value of a matrix X.

Proof of Theorem 4.5.2. Let LX and UX be the computed LU factors of X. Then according

to (4.5.2), we have

X̂−1 = X−1 +O(n)|X−1| · |LX | · |UX | · |X−1|u+O(u2).

Let H1 = X−1Y and let Ĥ1 be the computed value of H1. By (4.5.2) and (4.5.3), we

derive

Ĥ1 = X−1Y +O(n)|X−1| · |LX | · |UX | · |X−1| · |Y |u+O(n)|X−1| · |Y |u+O(u2)

= H1 +O(n)|X−1| · |LX | · |UX | · |X−1| · |Y |u+O(u2),

(4.5.6)

since |X−1| · |Y | = |In| · |X−1| · |Y | = O(|X−1LXUX | · |X−1||Y |) = O(|X−1| · |LX | · |UX | ·

|X−1| · |Y |).

Let H2 = Y X−1Y and Ĥ2 be the computed value of H2.Then (4.5.2) and (4.5.3) again

121

imply

Ĥ2 = Y X−1Y +O(n)|Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |u

+O(n)|Y | · |X−1| · |Y |u+O(u2)

= H2 +O(n)|Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |u+O(u2),

since |Y | · |X−1| · |Y | = |Y |O(|X−1| · |LX | · |UX | · |X−1| · |Y |) = O(|Y | · |X−1| · |LX | · |UX | ·

|X−1| · |Y |).

Let H3 = X + Y X−1Y and Ĥ3 be the computed value of H3. Then according to (4.5.2)

and (4.5.3), we have

Ĥ3 = H3 +O(n)(|X|+ |Y ||X−1| · |LX | · |UX | · |X−1| · |Y |)u+O(u2).

We recall that P is the computed value of X + Y X−1Y and J = (X + Y X−1Y)−1, thus

Lemma 4.5.3 indicates that

P̂−1 = H−1
3 −O(n)H−1

3 (|X|+ |Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |)H−1
3 u

+O(n)H−1
3 |LP | · |UP | · |H−1

3 |u+O(u2) (4.5.7)

= J +O(n)|H−1
3 |(|X|+ |Y | · |X−1| · |LX | · |UX | · |X−1| · |Y | (4.5.8)

+ |LP | · |UP |)|H−1
3 |u+O(u2)

= J +O(n)|J |(|X|+ |Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |+ |LP | · |UP |)|J |u+O(u2),

where LP and UP are the computed LU factors of P .

Let H4 = X−1Y P−1 and let Ĥ4 be the computed value of H4. By (4.5.6) and (4.5.7),

122

we have

Ĥ4 = X−1Y J +O(n)|X−1| · |LX | · |UX | · |X−1| · |Y | · |J |u

+O(n)|X−1Y | · |J |(|X|+ |Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |+ |LP | · |UP |)|J |u

+O(n)|X−1Y | · |J |u+O(u2)

(b)
= K +O(n)

(
|X−1| · |LX | · |UX | · |X−1| · |Y | · |J |

+|X−1Y | · |J |(|X|+ |Y | · |X−1| · |LX | · |UX | · |X−1| · |Y |+ |LP | · |UP |)|J |
)
u+O(u2),

(4.5.9)

where K = X−1Y P−1 and (b) follows from the fact that

|X−1Y | · |J | = O(|X−1| · |LX | · |UX | · |X−1| · |Y | · |J |).

The proof is complete by rearranging the terms in (4.5.9) and adding the error terms in

(4.5.9) and (4.5.7).

4.5.3 Randomized Frobenius inversion

Lemma 4.5.4. Let Z = A+iB ∈ Cn×n be an invertible complex matrix where A,B ∈ Rn×n.

There exist at most n values of µ ∈ R such that the real part of (1 + µi)Z is invertible.

Proof. The real part of (1 + µi)(A+ iB) is A− µB. We consider the matrix pencil D(t) :=

A+tB where t ∈ C. Since det
(
D(t)

)
is a polynomial in t of degree at most n and det

(
D(i)

)
=

det(Z) ̸= 0, D(t) is singular for at most n values of t ∈ C. In particular, A − µB must be

invertible for all but at most n values of µ ∈ R.

We remark that for an arbitrary pair (A,B) of matrices, it is possible that the pencil

D(t) = A+ tB is singular for all t ∈ C. The essential ingredient in the proof of Lemma 4.5.4

is that A (resp. B) is the real (resp. imaginary) part of an invertible complex matrix. Based

123

on Lemma 4.5.4, we obtain Algorithm 6, a randomized version of the Frobenius inversion

formula.

Algorithm 6 randomized Frobenius inversion
Input Z = A+ iB ∈ GLn(C)
Output inverse of Z
1: randomly generate a real number µ ∈ [0, 1];
2: compute X = A− µB and Y = µA+B;
3: compute W = (X + iY)−1; ▷ by Algorithm 2
4: set W1 = Re(W) and W2 = Im(W);
5: return Z−1 = (W1 − µW2) + i(µW1 +W2);

Proposition 4.5.5. The running time of Algorithm 6 is Tn + 8n2 where Tn denotes the

running time of the Frobenius inversion in Algorithm 2. If we sample µ ∈ [0, 1] with respect to

a non-atomic probability measure, then Algorithm 6 outputs Z−1 correctly, with probability

one.

Proof. The statement for the running time of Algorithm 6 is obvious since the running time

of Steps 2 and 4 is 4n2 respectively. It suffices to prove the almost sure correctness of

Algorithm 6. Since µ is randomly picked from [0, 1] with a non-atomic probability measure,

any finite subset of [0, 1] is a null set. According to Lemma 4.5.4, X = A− µB in Step 2 is

invertible with probability one. Thus Algorithm 2 is applicable to X + iY and we have

(W1−µW2)+i(µW1+W2) = (1+µi)W = (1+µi)(X+iY)−1 = (1+µi)
(
Z(1 + µi)

)−1
= Z−1.

It is clear that Z−1 = (MZ)−1M for any invertible matrix M ∈ Cn×n. By suitably

choosing M , we obtain variants of the Frobenius inversion formula [127, 36]. Unfortunately,

these variants are more computationally expensive. Indeed, if we multiply real matrices by

the usual method. Then the one given in [36] costs 6n3 multiplications and the one in [127]

costs 7n3 + 2n2 multiplications. As a comparison, the Frobenius formula only costs 5n3

124

multiplications. On the other side, the Frobenius inversion formula (and its variants) is not

applicable to Z in a subvariety of GLn(C). To resolve the issue, we may randomly generate

M so that the inversion formula is applicable to MZ with probability one. However, if M is

a dense matrix then computing MZ and (MZ)−1M costs n3 multiplications, respectively.

Thus the resulting randomized algorithm would cost 7n3 multiplications [127]. According to

Proposition 4.5.5, it is sufficient to take M = (1 + µi)In where µ is randomly picked from

[0, 1]. More importantly, such a choice of M reduces the number of multiplications from 7n3

to 5n3 + 8n2.

4.6 Hermitian Positive Definite Matrix Inversion

In this section, we consider a special class of matrices that occur frequently in practice. We

assume that Z = A+iB is Hermitian positive definite and Z ∈ S1 According to Algorithm 2,

we need to compute A−1B, BA−1B, (A + BA−1B)−1 and A−1B(A + BA−1B)−1. Since

Z is Hermitian positive definite, we claim that both A and A + BA−1B are symmetric

positive definite. Moreover, B is skew-symmetric. Therefore we may compute A−1B and

(A + BA−1B)−1 by Cholesky decomposition. Suppose that A = UTU is the Cholesky

decomposition of A. Then we have

A−1B = U−1(U−1)TB,

BA−1B = BU−1(U−1)TB = −
[
(U−1)TB

]T [
(U−1)TB

]
,

(A+BA−1B)−1 =

(
A−

[
(U−1)TB

]T [
(U−1)TB

])−1

= V −1(V −1)T,

A−1B(A+BA−1B)−1 = A−1BV −1(V −1)T,

(4.6.1)

where A+BA−1B = V TV is the Cholesky decomposition of A−
[
(U−1)TB

]T [
(U−1)TB

]
.

Lemma 4.6.1. Let Z = A + iB be an n × n Hermitian positive definite matrix where

125

A,B ∈ Rn×n. Then the following properties hold:

(a) A is symmetric positive definite and B is skew-symmetric.

(b) A+BA−1B is positive definite.

In particular, if we denote by H++
n the set of all n × n Hermitian positive definite matrix.

Then we must have

H++
n ⊆ S1 := {Z = A+ iB ∈ GLn(C) : A,A+BA−1B ∈ GLn(R)}.

Proof. We notice that A = (Z +Z)/2 and B = (Z −Z)/2i. Thus A (resp. B) is symmetric

(resp. skew-symmetric) since Z is Hermitian. For any x ∈ Rn, we have

xTAx =
x∗(Z + Z)x

2
=
x∗Zx
2

+

(
x∗Zx
2

)
= x∗Zx ≥ 0

and the equality holds if and only if x = 0. This proves the positive definiteness of A.

For each z ∈ Cn, we have

z∗Zz = z∗Zz ≥ 0,

and the equality holds if and only if z = 0 since Z is positive definite. This implies that Z

is Hermitian positive definite. We also observe that A−1
2ZA−1

2 = In+ iA−1
2BA−1

2 ≻ 0 and

moreover

A+BA−1B = A
1
2

(
In + (A−1

2BA−1
2)(A−1

2BA−1
2)

)
A

1
2 .

Therefore, it is sufficient to prove (b) for A = In. In this case, we have

In + iB ≻ 0, In − iB ≻ 0,

from which we may conclude that In +B2 ≻ 0 since

In +B2 = (In − iB)
1
2 (In + iB)(In − iB)

1
2 .

126

We remark that there is another way to see the positive definiteness of A + BA−1B if

we assume a priori it is invertible. Indeed, Lemma 4.4.1 impies that (A + BA−1B)−1 is

the real part of Z−1. By assumption, Z is positive definite, so are Z−1 and its real part

(A+BA−1B)−1. This implies that A+BA−1B must be positive definite as well.

We give two implementations of equation (4.6.1) which have the same time complexity.

Algorithm 7 First Variant of Frobenius inversion I
Input Z = A+ iB ∈ S1 ∪ S2
Output inverse of Z
1: if Z ∈ S1 then
2: set X = A, Y = B;
3: else if Z ∈ S2 then
4: set X = B, Y = A;
5: end if
6: compute Cholesky decomposition of X = UTU ;
7: compute K1 = (UT)−1Y ;
8: compute K2 = U−1K1;
9: compute K3 = KT

1K1;
10: compute K4 = X −K3;
11: compute Cholesky decomposition of K4 = V TV ;
12: compute K5 = V −1;
13: compute K6 = K5K

T
5 ;

14: compute K7 = K2K6;
15: if Z ∈ S1 then return Z−1 = K6 − iK7;
16: else if Z ∈ S2 then return Z−1 = K7 − iK6;
17: end if

Note that the only differences between these two implementations are line 12 and line

13. In the first implementation, computing K5 = V −1 takes Θ(n3) flops since V is upper

triangular and computing K6 = K5K
T
5 takes Θ(n3) flops since K5 is upper triangular. In

the second implementation, computing K5 = (V T)−1 takes Θ(n3) flops since V T is lower

triangular and computing K6 = V −1K5 takes Θ(n3) flops since solving the triangular system

V K6 = K5 takes n back substitutions, each of which takes Θ(n2) flops. Thus, Algorithm 7

and Algorithm 8 have the same flop count. In practice, Algorithm 7 is more efficient than

Algorithm 8 when implemented on Matlab.

127

Algorithm 8 Second Variant of Frobenius inversion I
Input Z = A+ iB ∈ S1 ∪ S2
Output inverse of Z
1: if Z ∈ S1 then
2: set X = A, Y = B;
3: else if Z ∈ S2 then
4: set X = B, Y = A;
5: end if
6: compute Cholesky decomposition of X = UTU ;
7: compute K1 = (UT)−1Y ;
8: compute K2 = U−1K1;
9: compute K3 = KT

1K1;
10: compute K4 = X −K3;
11: compute Cholesky decomposition of K4 = V TV ;
12: compute K5 = (V T)−1;
13: compute K6 = V −1K5;
14: compute K7 = K2K6;
15: if Z ∈ S1 then return Z−1 = K6 − iK7;
16: else if Z ∈ S2 then return Z−1 = K7 − iK6;
17: end if

4.6.1 Variant of Frobenius inversion vs matrix inversion via Cholesky

decomposition

In this section, we compare the variant of Frobenius inversion to matrix inversion algorithm

using Cholesky decomposition. When the input matrix Z is hermitian positive definite,

Matlab’s inversion function exploits Cholesky decomposition to compute Z−1. Similar to

what we did to the variant of Frobenius inversion, we give two implementations of Cholesky

decompositions that have the same time complexity.

Algorithm 9 First matrix inversion via Cholesky decomposition
Input A ∈ GLn(k)
Output inverse of A
1: compute Cholesky decomposition of A = UTU ;
2: compute K = U−1;
3: compute X = KKT;
4: return X;

128

Algorithm 10 Second matrix inversion via Cholesky decomposition
Input A ∈ GLn(k)
Output inverse of A
1: compute Cholesky decomposition of A = UTU ;
2: compute (UT)−1;
3: solve for X from UX = (UT)−1;
4: return X;

These two implementations have the same flop counts by the same reasoning as we

did in the variant of Frobenius inversion case. In practice, Algorithm 9 runs faster than

Algorithm 10.

For the sake of speed analysis, we will compare Algorithm 8 to Algorithm 10. However,

our results hold for Algorithm 7 versus Algorithm 9 as well since Algorithm 8 has the same

flop count as Algorithm 7 and Algorithm 10 has the same flop count as Algorithm 9. In order

to analyze the speed of Algorithm 8, we present an algorithm for Cholesky decomposition in

Algorithm 11 [110].

Algorithm 11 Cholesky decomposition
Input Z ∈ Cn is hermitian positive definite
Output inverse of Z
1: let Z be the upper triangular part of Z;
2: for k = 1 to n do
3: Z[1 : k, k] = (Z[1 : k − 1, 1 : k − 1]∗)−1Z[1 : k − 1, k];
4: Z[k, k] =

√
Z[k, k]− Z[1 : k − 1, k]∗Z[1 : k − 1, k];

5: end for
6: return Z;

Note that Algorithm 11 uses roughly the same number of additions and multiplications

since its main operation is forward substitution: solve for X in Z[1 : k − 1, 1 : k − 1]∗X =

Z[1 : k − 1, k], where Z[1 : k − 1, 1 : k − 1] is upper triangular since we take Z to be the

upper triangular part of Z in the first line of Algorithm 11.

Before we proceed, we fix some notations. Let A be an algorithm for real matrix multipli-

cation. We denote by TA
mult(n) the average running time of A on pairs of n×n real matrices.

129

In addition, we let TA
pinv(n) be the average running time of Algorithm 10 on invertible n×n

real symmetric positive definite matrices, in which real matrix multiplications are computed

by A. Now with these notations, we are ready to present our threshold theorem.

Theorem 4.6.2 (threshold). Let A be the usual algorithm for real matrix multiplication.

Then Algorithm 8 is asymptotically faster than Algorithm 10 over C if and only if

lim
n→∞

(
TA
pinv(n)/T

A
mult(n)

)
> 7/6.

Proof. We first show that the running time of Algorithm 8 is dominated by 2TA
pinv(n) +

7TA
mult(n)/3.

First, we show that the first three steps in Algorithm 8 take TA
pinv(n) + TA

mult(n)/3 time.

Recall that the first three steps in Algorithm 8 are computing the Cholesky decomposition of

X = UTU , computing K1 = (UT)−1Y, and computing K2 = U−1K1. In terms of speed, the

only difference between these three steps and Algorithm 10 is in step two, where Algorithm 10

solve for X in UTX = I whereas Algorithm 8 solve for X in UTX = Y . Solving for X in

UTX = I only takes Θ(n3/3) flops whereas solving for X in UTX = Y takes Θ(n3) flops if

Y does not have special structures. Thus, Algorithm 8 takes 2Θ(n3/3) more flops which is

TA
mult(n)/3 since the usual matrix multiplication algorithm takes Θ(2n3) flops.

Then, note that the running time of the rest of Algorithm 8 is dominated by two real

matrix multiplication and one real matrix inversion. Thus, the running time of Algorithm 8

is dominated by 2TA
pinv(n) + 7TA

mult(n)/3.

Next, we consider the running time of Algorithm 10 for complex matrices. We prove

that the running time of Algorithm 10 is dominated by 4TA
pinv(n). Note that the complex

addition takes 2 real flops and the complex multiplication takes 6 real flops. In Algorithm 10,

there are “roughly” the same number of additions and multiplications. Algorithm 10 contains

roughly three operations: computing Cholesky factorization, computing backward substitu-

tion, and computing the inverse of an lower triangular matrix. As we have observed in
130

Algorithm 11, computing Cholesky factorization requires roughly the same number of ad-

ditions and multiplications. Computing backward (or forward) substitution also requires

roughly the same number of additions and multiplications. Finally, according to Method

1 in page 263 of [58], inverting a triangular matrix can be done by a sequence of forward

substitutions. Thus, inverting a triangular matrix also requires roughly the same number

of additions and multiplications. Therefore, the running time of Algorithm 10 over C is

dominated by 4TA
pinv(n).

Now, Algorithm 8 is faster than Algorithm 10 if and only if for n sufficiently large,

4TA
inv(n) > 2TA

inv(n) + 7TA
mult(n)/3,

which is equivalent to

lim
n→∞

(
TA
inv(n)

TA
mult(n)

)
> 7/6.

4.6.2 Rounding error analysis

In this section, we give a rounding error analysis of Algorithm 7. Before giving the result,

we first introduce some notations. For each matrix X, we use X̂ to denote the computed

131

value of X. Let

∆′
1 = n|(ÛT)−1| · |ÛT| · |(ÛT)−1Y |u

∆′
2 = n|Û−1| · |Û | · |Û−1(ÛT)−1Y |u

∆′
3 = |Y TÛ−1|∆′

1 +∆′T
1 (ÛT)−1Y + n|Y TÛ−1| · |(ÛT)−1Y |u

∆′
4 = |Y TX−1∆XX−1Y |+∆′

3

∆′
5 = ∆′

4 + (|X|+ |Y TX−1Y |)u

∆′
6 = O(n)|V̂ T||V̂ |u

∆′
7 = O(n)|V̂ −1| · (|(V̂ −1)T| · |V̂ T|+ |V̂ | · |V̂ −1|+ In) · |(V̂ −1)T|u

∆′
8 = ∆′

5 +∆′
6

∆′
9 = |(X − Y TX−1Y)−1|∆′

8|(X − Y TX−1Y)−1|+∆′
7.

Theorem 4.6.3. Let Z = A+ iB ∈ S1 ∪ S2 be a hermitian positive definite matrix and W

be the computed inverse of Z using Algorithm 7. Let X = A and Y = B if Z ∈ S1 and let

X = B and Y = A if Z ∈ S2. Then we have

|Z−1 −W | ≤ (|K2|+ 1)∆′
9 +∆′

2|K6|+ n|K2||K6|u+O(u2). (4.6.2)

The proof of Theorem 4.6.3 relies on the following facts in [58]:

• Let A ∈ Rn×n be a symmetric positive definite matrix. Let R̂ be the computed

Cholesky factor of A. Then

R̂TR̂ = A+∆A, (4.6.3)

where |∆A| ≤ (n+ 1)|R̂T| · |R̂|u+O(u2).

• Let T ∈ Rn×n be a triangular matrix and b ∈ Rn. Let x̂ be the solution to Tx = b

132

obtained by forward/backward substitution. Then

(T +∆T)x̂ = b, (4.6.4)

where |∆T | ≤ n|T |u+O(u2).

• Let T be a triangular matrix. Let X̂ be the computed inverse of T . Then

|X̂ − T−1| ≤ O(n)|T−1| · |T | · |T−1|u+O(u2). (4.6.5)

Now, we are able to prove Theorem 4.6.3. In the following, we denote by X̂ the the

computed value of a matrix X.

proof of Theorem 4.6.3. We introduce some error terms ∆i in the proof such that |∆i| ≤

∆′
i +O(u2) for all i. Let Û be the computed Cholesky factor of X. By equation (4.6.3),

ÛTÛ = X +∆X, |∆X| ≤ O(n)|ÛT| · |Û |u+O(u2). (4.6.6)

Then, by equation (4.6.4),

(ÛT +∆ÛT)K̂1 = Y, |∆ÛT| ≤ n|ÛT|u+O(u2). (4.6.7)

This implies that

K̂1 = (ÛT +∆ÛT)−1Y

(a)
= (ÛT)−1Y − (ÛT)−1∆ÛT(ÛT)−1Y +O(u2)

= (ÛT)−1Y +∆1,

(4.6.8)

133

where (a) follows from Lemma 4.5.3 and ∆1 := −(ÛT)−1∆ÛT(ÛT)−1Y +O(u2). Note that

|∆1| ≤ n|(ÛT)−1| · |ÛT| · |(ÛT)−1Y |u+O(u2), (4.6.9)

by equation (4.6.7). Similarly,

(Û +∆Û)K̂2 = K̂1, |∆Û | ≤ n|Û |u+O(u2). (4.6.10)

This implies that

K̂2 = (Û +∆Û)−1K̂1

(b)
= Û−1K̂1 − Û−1∆Û Û−1K̂1 +O(u2)

(c)
= Û−1K̂1 − Û−1∆Û Û−1(ÛT)−1Y +O(u2)

= Û−1K̂1 +∆2,

(4.6.11)

where (b) follows from Lemma 4.5.3, (c) follows from equation (4.6.8), and

∆2 := −Û−1∆Û Û−1(ÛT)−1Y +O(u2).

Note that

|∆2| ≤ n|Û−1| · |Û | · |Û−1(ÛT)−1Y |u+O(u2) (4.6.12)

134

by equation (4.6.10). Then, by equation (4.5.3),

K̂3 = K̂T
1 K̂1 + n|K̂T

1 | · |K̂1|u+O(u2)

(d)
= Y TÛ−1(ÛT)−1Y + Y TÛ−1∆1 +∆T

1(Û
T)−1Y + n|Y TÛ−1| · |(ÛT)−1Y |u+O(u2)

= Y TÛ−1(ÛT)−1Y +∆3

(e)
= Y T(X +∆X)−1Y +∆3

(f)
= Y TX−1Y − Y TX−1∆XX−1Y +∆3

= Y TX−1Y +∆4,

(4.6.13)

where (d) follows from equation (4.6.8), (e) follows from equation (4.6.6), (f) follows from

Lemma 4.5.3,

∆3 := Y TÛ−1∆1 +∆T
1(Û

T)−1Y + n|Y TÛ−1| · |(ÛT)−1Y |u+O(u2)

and

∆4 := −Y TX−1∆XX−1Y +∆3.

Note that

|∆4|
(a)
≤ O(n)|Y TX−1| · |ÛT| · |Û | · |X−1Y |u+ n|Y TÛ−1| · |(ÛT)−1| · |ÛT| · |(ÛT)−1Y |u

+ n|Y TÛ−1| · |Û | · |Û−1| · |(ÛT)−1Y |u+ n|Y TÛ−1| · |(ÛT)−1Y |u+O(u2)

= O(n)(|Y TX−1| · |ÛT| · |Û | · |X−1Y |

+ |Y TÛ−1| · (|(ÛT)−1| · |ÛT|+ |Û | · |Û−1|+ In) · |(ÛT)−1Y |)u+O(u2),

(4.6.14)

135

where (a) follows from equation (4.6.6) and equation (4.6.9). Then, by equation (4.5.5),

K̂4 = X − Y TX−1Y +∆4 + (|X|+ |Y TX−1Y |)u+O(u2)

= X − Y TX−1Y +∆5,

(4.6.15)

where

∆5 := ∆4 + (|X|+ |Y TX−1Y |)u+O(u2). (4.6.16)

Let V̂ be the computed Cholesky factor of K̂4. By equation (4.6.3),

V̂ TV̂ = K̂4 +∆6, |∆6| ≤ O(n)|V̂ T||V̂ |u+O(u2). (4.6.17)

Then, by equation (4.6.5),

K̂5 = V̂ −1 +O(n)|V̂ −1| · |V̂ | · |V̂ −1|u+O(u2). (4.6.18)

Then, by equation (4.5.3),

K̂6 = V̂ −1(V̂ T)−1 +O(n)|V̂ −1| · |(V̂ −1)T| · |V̂ T| · |(V̂ −1)T|u

+O(n)|V̂ −1| · |V̂ | · |V̂ −1||(V̂ −1)T|u+ n|V̂ −1||(V̂ −1)T|u+O(u2)

= V̂ −1(V̂ T)−1 +O(n)|V̂ −1| · (|(V̂ −1)T| · |V̂ T|+ |V̂ | · |V̂ −1|+ In) · |(V̂ −1)T|u+O(u2)

= V̂ −1(V̂ T)−1 +∆7

(a)
= (K̂4 +∆6)

−1 +∆7

(b)
= (X − Y TX−1Y +∆8)

−1 +∆7

(c)
= (X − Y TX−1Y)−1 + (X − Y TX−1Y)−1∆8(X − Y TX−1Y)−1 +∆7 +O(u2)

= K6 +∆9,

(4.6.19)

136

where (a) follows from equation (4.6.17), (b) follows from equation (4.6.15), (c) follows from

Lemma 4.5.3, and

∆7 := O(n)|V̂ −1| · (|(V̂ −1)T| · |V̂ T|+ |V̂ | · |V̂ −1|+ In) · |(V̂ −1)T|u+O(u2)

∆8 := ∆5 +∆6

∆9 := (X − Y TX−1Y)−1∆8(X − Y TX−1Y)−1 +∆7 +O(u2)

Note that

|∆9| ≤ |K6| · |∆8| · |K6|+ |∆7|+O(u2)

≤ |K6| · (|∆5|+ |∆6|) · |K6|+ |∆7|+O(u2)

(a)
≤ |K6| · (|∆4|+ (|X|+ |Y TX−1Y |)u+O(n)|V̂ T| · |V̂ |u) · |K6|+ |∆7|+O(u2),

(4.6.20)

where (a) follows from equation (4.6.17) and equation (4.6.16). Then, by equation (4.5.3),

K̂7 = K̂2K̂6 + n|K̂2| · |K̂6|u+O(u2)

= (K2 +∆2)(K6 +∆9) + n|K2||K6|u+O(u2)

= K7 + |K2||∆9|+ |∆2||K6|+ n|K2||K6|u+O(u2).

(4.6.21)

The result then follows from equation (4.6.21) and equation (4.6.19).

4.7 Experiments

In this section, we conduct some experiments to compare the Frobenius inversion (Algo-

rithm 2) with the inversion via LU decomposition (Algorithm 4). We compare both the

speed and accuracy of the two methods by randomly generated examples. Moreover, we test

Algorithms 2 and 4 on matrix sign function, Sylvester equations, Lyapunov equations and

137

polar decomposition. These experiments show that the Frobenius inversion is more efficient

than the inversion via LU decomposition, confirming the threshold Theorem 4.5.1. It is also

clear from these experiments that the Frobenius inversion is a bit less accuracy than the

inversion via LU decomposition. However, comparing with the increase of efficiency, such

a decrease of accuracy is ignorable. Finally, we compare the variant of Frobenius inversion

(Algorithm 7) to matrix inversion using Cholesky decomposition (Algorithm 9) on hermitian

positive matrices. We show that the variant of Frobenius inversion is more efficient than ma-

trix inversion using Cholesky decomposition with little loss in accuracy. This in turn leads

to a more efficient procedure to process MIMO radios.

4.7.1 Efficiency

Let 3600 ≤ n ≤ 6000 be a positive integer. We first generate two real matrices A,B ∈ Rn×n

where elements of A and B are generated uniformly and randomly from (0, 1). Then we

take X = A + iB. For each dimension n, we generate 10 random matrices by the above

procedure.

For each randomly generated matrix X, we compute the inverse of X by Algorithm 2

and Algorithm 41 respectively. For each fixed n, we average the computation time for the

10 random instances. In Figure 4.1, we exhibit the computation time of the two algorithms

versus the logarithmic dimension of matrices. It is clear from Figure 4.1 that Frobenius

inversion is faster than the inversion algorithm via LU decomposition.

4.7.2 Accuracy

Next we compare the accuracy of the two algorithms. For any complex invertible matrix

X = A + iB, where A,B ∈ Rn×n, we let X̂ be the computed inverse of X. We assess the

1. In MATLAB, this is simply the command X\ eye(n).

138

3.55 3.6 3.65 3.7 3.75 3.8
10

15

20

25

30

35

40

45

50

55

60
Speed (General Matrices)

Figure 4.1: comparison of efficiency
.

accuracy of X̂ in terms of its left and right relative residual defined as

resL(X, X̂) :=
∥X̂X − I∥max

∥X∥max∥X̂∥max
and resR(X, X̂) :=

∥XX̂ − I∥max

∥X∥max∥X̂∥max
, (4.7.1)

where ∥·∥max is defined as

∥A+ iB∥max := max(∥A∥max, ∥B∥max) := max

(
max
i,j∈[n]

|aij |, max
i,j∈[n]

|bij |
)
, (4.7.2)

where aij and bij are the i, jth entries of A and B respectively. To avoid numerical issues,

we only test the two algorithms on well-conditioned matrices (i.e., matrices whose condition

number is 10) whose dimension goes from 2 to 4096. We generate a random matrices whose

condition number is κ by the procedure that follows. We first generate (n− 2) integers from

1 to (κ − 1) uniformly and randomly. Then, we consider the n by n diagonal matrix D

whose diagonal elements are the (n−2) integers we just generate together with 1 and κ. We

next multiply the Hadamard matrix H of order n to the left of D and the transpose of H

to the right of D to obtain HDHT. Lastly, we scale this matrix by some constant so that

139

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
10 -15 Left Residual (Well-conditioned Matrices)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
10 -15 Right Residual (Well-conditioned Matrices)

Figure 4.2: comparison of relative residuals

its Frobenius norm is one. Since the smallest and largest singular values of this matrix are

c and κc for some c ∈ R, the condition number of this matrix is κ. In our experiment, we

take κ = 10. We note that there is no specific sparsity patterns on the matrices we generate

so that our experiment is not biased toward a certain class of matrices with special sparsity

patterns.

In Figure 4.2, we compare the left and right relative residuals of X̂ computed by the two

algorithms. It is obvious from the right plot in Figure 4.2 that the Frobenius inversion is

slightly less accurate than the inversion via LU decomposition. However, the difference is so

small that one can ignore it for practical purposes.

4.7.3 Matrix sign function

In this subsection, we apply matrix inversion algorithms to compute the matrix sign function.

The matrix sign function can be used to solve a wide range of problems such as algebraic

Riccati equation [102], Sylvester equation [56, 102], polar decomposition [56], and spectral

decomposition [3, 4, 10, 61, 81]. We first recall the definition of the matrix sign function.

140

Given a matrix A ∈ Cn×n, we write A = ZJZ−1 where J =

J1 0

0 J2

 is the Jordan

canonical form of A such that eigenvalues of A in the diagonal of J1 (resp. J2) have negative

(resp. positive) real parts. The matrix sign function is defined to be

sign(A) = Z

−I 0

0 I

Z−1.

The matrix sign function sign(A) can be computed by Newton iterations [59, 102]

Xt+1 =
1

2
(Xt +X−1

t), t ∈ N,

with X0 = A. In each iteration, we compute X−1
t either by Frobenius inversion or by

inversion via LU decomposition. This gives us two computed value of sign(A) for each

matrix A. We measure the progress in each Newton iteration by the relative change in Xt:

δt :=
∥Xt −Xt−1∥max

∥Xt∥max
,

where ∥·∥max is defined in (4.7.2). We stop the Newton iterations when either δt ≤ 10−3 or

t ≥ 100 is achieved.

We compute sign function for random square matrices whose dimension n is an even

number between 2100 and 4000. To generate such a random matrix, we first generate an

n× n diagonal matrix J whose first n/2 diagonal elements have negative real parts and the

rest have positive real parts. Next we construct an n× n matrix Z such that imaginary and

real parts of elements of Z are uniformly and randomly taken from (0, 1). Then we take

A = ZJZ−1. Let Ŝ be the computed sign(A). We measure the accuracy by relative forward

141

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
0

50

100

150

200

250

300
Speed (Matrix Sign Function)

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
0

0.2

0.4

0.6

0.8

1

1.2
10 -4 Accuracy (Matrix Sign Function)

Figure 4.3: comparison on the matrix sign function

error

Errrelative(sign(A), Ŝ) :=
∥sign(A)− Ŝ∥max

∥sign(A)∥max
,

where ∥·∥max is defined in (4.7.2).

In Figure 4.3, we compare the efficiency and accuracy of Frobenius inversion and inversion

via LU decomposition. From the left plot in Figure 4.3, it is clear that the Frobenius inversion

is faster than inversion via LU decomposition. The right plot in Figure 4.3 indicates that

the Frobenius inversion is a bit less accurate than inversion via LU decomposition. However,

in practice, such a small loss of accuracy can be ignored.

4.7.4 Sylvester equation

In this subsection, we apply Algorithms 2 and 4 to solve the Sylvester equation:

AX +XB = C, (4.7.3)

142

where A ∈ Cm×m, B ∈ Cn×n, and C ∈ Cm×n are given. The goal is to solve for X. As

noted in [56, 102], given that sign(A) = Im and sign(B) = In, we have

sign

A −C

0 −B

 =

I −2X

0 −I

 .
This implies that the Sylvester equation can be solved by computing the matrix sign function.

Thus the Sylvester equation can be solved by Newton iterations as well. For simplicity, we

denote by Xt the variable in Newton iterations:

Xt+1 =
1

2
(Xt +X−1

t), t ∈ N,

with

X0 =

A −C

0 −B

 .

It is noticeable that Xt does not converge to X. Instead, Xt converges to

I −2X

0 −I

. In

each iteration, we compute X−1
t either by Frobenius inversion or by inversion via LU de-

composition. This gives us two computed values of X for each triple (A,B,C) of parameters

in the Sylvester (4.7.3). We measure the progress in Newton iteration by the relative change

in Xt:

δt :=
∥Xt −Xt−1∥max

∥Xt∥max
,

where ∥·∥max is defined in (4.7.2). We stop the Newton iteration when either δt ≤ 10−1

or t ≥ 100 is achieved. Let X̂ be the computed X. We measure the accuracy by relative

forward error

Errrelative(X, X̂) :=
∥X − X̂∥max

∥X∥max
,

143

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
0

20

40

60

80

100

120

140

160
Speed (Sylvester Equation)

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
1.5

2

2.5

3

3.5

4

4.5
10 -8 Accuracy (Sylvester Equation)

Figure 4.4: comparison on the Sylvester equation

where ∥·∥max is defined in (4.7.2).

We test and compare Algorithms 2 and 4 on the Sylvester equation (4.7.3) whose matrix

parameters A,B,C have dimension n between 1050 and 2000. We first generate an n × n

matrix Z such that the real and imaginary parts of its elements are taken uniformly and

randomly taken from (0, 1). Next we generate an n × n diagonal matrix J such that the

real and imaginary parts of its diagonal elements are taken uniformly and randomly from

the interval (9, 10). Here we do not use the interval (0, 1) since it generates matrices that

are close to singular, which makes the algorithms inaccurate. We take A = ZJZ−1 and we

generate B in the same way. Lastly, we generate a random complex n × n matrix X such

that the real and imaginary parts of each element of X are chosen uniformly and randomly

from (0, 1) and take C = AX +XB.

In Figure 4.4, we compare the efficiency and accuracy of Frobenius inversion and inver-

sion via LU decomposition on Sylvester equations whose parameters A,B,C are randomly

generated by the above procedure. One may easily see from Figure 4.4 that on Sylvester

equations, the Frobenius inversion is faster than inversion by LU decomposition and the loss

of accuracy is ignorable.

144

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
0

50

100

150
Speed (Lyapunov Equation)

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
2

4

6

8

10

12

14
10 -5 Accuracy (Lyapunov Equation)

Figure 4.5: comparison on the Lyapunov equation

Lyapunov equation

As an important special case of the Sylvester equation, the Lyapunov equation occurs in

control and system theory [58]. To obtain Lyapunov equation, we simply take B = A∗ in

(4.7.3):

AX +XA∗ = C, (4.7.4)

where A,C ∈ Cn×n are given. We apply Algorithms 2 and 4 to solve (4.7.4) in the same

way as what we do for Sylvester equations, except that we take B = A∗ after we generate

A.

From Figure 4.5, we see again that Frobenius inversion is faster than inversion via LU

decomposition with almost no loss of accuracy.

4.7.5 Polar decomposition

In this subsection, we apply Algorithms 2 and 4 to compute the polar decomposition. Given

a complex matrix A ∈ Cn×n, its polar decomposition is a matrix decomposition A = UH,

where U is unitary and H is hermitian positive semidefinite. The Polar decomposition of A

145

can be computed by the sign function of a block matrix [54, 56, 65]:

sign

 0 A

A∗ 0

 =

 0 U

U∗ 0

 ,
where U is the unitary factor of A in its polar decomposition. Once we obtain U , we can

compute H by H = U∗A. Therefore, we are able to compute the polar decomposition of a

matrix by Newton iterations [54, 56, 65]:

Xt+1 =
1

2
(Xt +X−∗

t), t ∈ N,

with X0 = A. Here X−∗
t denotes the conjugate transpose of the inverse of Xt. In each iter-

ation, we compute X−∗
t either by Frobenius inversion or by inversion via LU decomposition.

This gives us two computed polar decompositions of A. We measure the progress in Newton

iterations by the relative change in Xt:

δt :=
∥Xt −Xt−1∥max

∥Xt∥max
,

where ∥·∥max is defined in (4.7.2). We stop the Newton iterations when either δt ≤ 10−3 or

t ≥ 100 is achieved.

We test Algorithms 2 and 4 on Polar decompositions of matrices whose dimension n is

between 2100 and 4000. We generate a random complex n × n matrix A as follows. We

first generate two random complex matrices B,C such that the real and imaginary parts

of elements of B,C are uniformly and randomly taken from (0, 1). Then we compute the

QR-decomposition of B and let U be its unitary factor. Lastly, we compute H = C∗C and

let A = UH.

Let Û and Ĥ be the factors in the computed polar decomposition of A. We measure

146

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
50

100

150

200

250

300

350

400

450
Speed (Polar Decomposition)

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
0

0.5

1

1.5
10 -3 Accuracy of H (Polar Decomposition)

Figure 4.6: comparison on the polar decomposition

their accuracy by the relative forward error:

Errrelative(U, Û) :=
∥U − Û∥max

∥U∥max
, Errrelative(H, Ĥ) :=

∥H − Ĥ∥max

∥H∥max
,

where ∥·∥max is defined in (4.7.2).

From the left plot in Figure 4.6, we see that Frobenius inversion is faster than inversion via

LU decomposition. Moreover, the right plot in Figure 4.6 indicates that the two algorithms

on Polar decompositions have the same accuracy.

4.7.6 Hermitian positive matrices

In this section, we apply Algorithm 7, 9, 4, and 2 to compute the inverse of a hermitian

positive matrix X. Inverting hermitian positive matrices is an important task in practice.

For instance, in some MIMO radios, inversion of some hermitian positive matrices are needed

[115]. Thus, a faster algorithm for inverting hermitian positive matrices leads to a more

efficient procedure in processing MIMO radios.

Let 3600 ≤ n ≤ 6000 be a positive integer. We first generate two real matrices A,B ∈

Rn×n where elements of A and B are generated uniformly and randomly from (0, 1). Then

147

3.55 3.6 3.65 3.7 3.75 3.8
5

10

15

20

25

30

35

40

45

50
Speed (Positive Hermitian Matrices)

Figure 4.7: comparison of efficiency for positive matrices
.

we take X = (A + iB)(A + iB)∗ + 0.01I. For each dimension n, we generate 10 random

matrices by the above procedure.

For each randomly generated matrix X, we compute the inverse of X by Algorithm 7, 9,

4, and 2 respectively. For each fixed n, we average the computation time for the 10 random

instances. In Figure 4.7, we exhibit the computation time of the four algorithms versus the

logarithmic dimension of matrices. It is clear from Figure 4.7 that the variant of Frobenius

inversion is the fastest one.

Next, we compare the accuracy of the four algorithms. For any hermitian positive matrix

X, let X̂ be the computed inverse of X. We assess the accuracy of X̂ in terms of its left and

right relative residual defined in equation (4.7.1).

To avoid numerical issues, we only test the four algorithms on well-conditioned matrices

(i.e., matrices whose condition number is 10) whose dimension goes from 2 to 4096. We

generate a random matrix whose condition number is κ by the procedure that follows. We

first generate (n− 2) integers from 1 to (κ− 1) uniformly and randomly. Then, we consider

the n by n diagonal matrix D whose diagonal elements are the (n − 2) integers we just

generate together with 1 and κ. Then, we generate a random unitary matrix U as follows.

148

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
10 -15 Left Residual (Positive Well-conditioned Matrices)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
10 -15 Right Residual (Positive Well-conditioned Matrices)

Figure 4.8: comparison of relative residuals for positive matrices

We first generate a random matrix B such that the real and imaginary parts of elements of

B are uniformly and randomly taken from (0, 1). Then we compute the QR-decomposition

of B and let U be its unitary factor. We next multiply U to the left of D and the conjugate

transpose of U to the right of D to obtain UDU∗. Since the smallest and largest singular

values of this matrix are c and κc for some c ∈ R, the condition number of this matrix is

κ. In our experiment, we take κ = 10. We note that there is no specific sparsity patterns

on the matrices we generate so that our experiment is not biased toward a certain class of

matrices with special sparsity patterns.

In Figure 4.8, we compare the left and right relative residuals of X̂ computed by the

four algorithms. It is obvious from the left plot in Figure 4.8 that the variant of Frobenius

inversion is slightly less accurate than the other algorithms. However, the difference is so

small that one can ignore it for practical purposes.

4.8 Conclusion

In this work, we analyze the Frobenius inversion. We show that Frobenius inversion uses the

least number of real matrix multiplications and real matrix inversions among all complex

149

matrix inversion algorithms. Then, we show that it runs faster than the widely employed

inversion algorithm based on the LU decomposition, both theoretically and empirically.

Next, we give three applications of the Frobenius inversion: matrix sign function, Sylvester

equation, and polar decomposition. Finally, we give a variant of Frobenius inversion on

hermitian positive matrices. We show that this algorithm is faster than the widely used

inversion algorithm based on Cholesky decomposition, both theoretically and empirically.

This leads to a more efficient procedure to process MIMO radios.

150

CHAPTER 5

CONCLUSION

In this thesis, we discussed three problems in numerical linear algebra and nonconvex op-

timization. We studied computational complexity and numerical stability of these prob-

lems. In rank-constrained hyperbolic programming, we gave conditions under which rank-

constrained problems are NP-hard and efficient algorithms that give low rank solutions. In

inverting a complex matrix, we studied algorithms that are optimally fast in the sense of

algebraic complexity. We showed that the largely forgotten Frobenius inversion is faster than

the well-known LU based inversion algorithm and gave engineering applications of Frobenius

inversion. In numerical stability and tensor nuclear norm, we proposed a new measure of

accuracy on bilinear algorithms: growth factor. We showed that algorithms with smaller

growth factor tend to be more accurate. Using this fact, we designed an algorithm for

complex matrix multiplication that is both fast and accurate. A natural next step is to

understand the tradeoff between bilinear complexity and growth factor in matrix multiplica-

tion. It is known that the tensor nuclear norm of two by two matrix multiplication tensor is

8 and the tensor rank of it is 7. However, it is not known whether there is an algorithm for

two by two matrix multiplication that simultaneously attains the tensor nuclear norm and

the tensor rank. So a natural question to ask is: “what is the smallest growth factor of any

bilinear algorithm for two by two matrix multiplication whose bilinear complexity is 7?”.

151

REFERENCES

[1] I. Aizenberg. Complex-valued neural networks with multi-valued neurons, volume 353
of Studies in Computational Intelligence. Springer-Verlag, Berlin, 2011.

[2] M. F. Anjos and H. Wolkowicz. Geometry of semidefinite max-cut relaxations via
matrix ranks. volume 6, pages 237–270. 2002. New approaches for hard discrete
optimization (Waterloo, ON,2001).

[3] Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley. The spectral
decomposition of nonsymmetric matrices on distributed memory parallel computers.
SIAM J. Sci. Comput., 18(5):1446–1461, 1997.

[4] Z. Bai and J. W. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox.
University of Kentucky, Department of Mathematics, 1992.

[5] G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and O. Schwartz. Improving
the numerical stability of fast matrix multiplication. SIAM J. Matrix Anal. Appl.,
37(4):1382–1418, 2016.

[6] Y. Bard. Nonlinear parameter estimation. Academic Press [A subsidiary of Harcourt
Brace Jovanovich, Publishers], New York-London, 1974.

[7] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete Comput. Geom., 13(2):189–202, 1995.

[8] J. Bassey, L. Qian, and X. Li. A survey of complex-valued neural networks. arXiv
preprint arXiv:2101.12249, 2021.

[9] H. H. Bauschke, O. Güler, A. S. Lewis, and H. S. Sendov. Hyperbolic polynomials and
convex analysis. Canad. J. Math., 53(3):470–488, 2001.

[10] A. N. Beavers, Jr. and E. D. Denman. A computational method for eigenvalues and
eigenvectors of a matrix with real eigenvalues. Numer. Math., 21:389–396, 1973.

[11] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability—
towards tight results. In 36th Annual Symposium on Foundations of Computer Science
(Milwaukee, WI, 1995), pages 422–431. IEEE Comput. Soc. Press, Los Alamitos, CA,
1995.

[12] A. S. Besicovitch. On the linear independence of fractional powers of integers. J.
London Math. Soc., 15:3–6, 1940.

[13] D. Bini and G. Lotti. Stability of fast algorithms for matrix multiplication. Numer.
Math., 36(1):63–72, 1980/81.

[14] D. Bini, G. Lotti, and F. Romani. Approximate solutions for the bilinear form com-
putational problem. SIAM J. Comput., 9(4):692–697, 1980.

152

[15] E. Bodewig. Matrix calculus. North-Holland Publishing Co., Amsterdam; Interscience
Publishers, Inc., New York, enlarged edition, 1959.

[16] A. Borodin and I. Munro. The computational complexity of algebraic and numeric
problems. Elsevier Computer Science Library: Theory of Computation Series, No. 1.
American Elsevier Publishing Co., Inc., New York-London-Amsterdam, 1975.

[17] P. Brändén. Obstructions to determinantal representability. Adv. Math., 226(2):1202–
1212, 2011.

[18] R. P. Brent. Algorithms for matrix multiplication. March 1970. Report Stan-CS-70-
157, Stanford University.

[19] R. P. Brent. Error analysis of algorithms for matrix multiplication and triangular
decomposition using Winograd’s identity. Numer. Math., 16:145–156, 1970.

[20] R. P. Brent and P. Zimmermann. Modern computer arithmetic, volume 18 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge, 2011.

[21] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume
315 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collaboration of
Thomas Lickteig.

[22] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear
Algebra Appl., 85:267–279, 1987.

[23] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen,
die gegebene Werte nicht annehmen. Math. Ann., 64(1):95–115, 1907.

[24] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub. Approximating the logarithm
of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl., 22(4):1112–1125, 2001.

[25] H. Cramér. Mathematical Methods of Statistics. Princeton Mathematical Series, vol.
9. Princeton University Press, Princeton, N. J., 1946.

[26] B. N. Dash and N. Khare. Deep complex neural network applications in remote sensing:
an introductory review. In K. I. Ranney and A. M. Raynal, editors, Radar Sensor
Technology XXV, volume 11742, pages 34 – 44. International Society for Optics and
Photonics, SPIE, 2021.

[27] A. Defant and K. Floret. Tensor norms and operator ideals, volume 176 of North-
Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1993.

[28] H. Derksen. On the nuclear norm and the singular value decomposition of tensors.
Found. Comput. Math., 16(3):779–811, 2016.

153

[29] J. Diestel, J. H. Fourie, and J. Swart. The metric theory of tensor products. American
Mathematical Society, Providence, RI, 2008. Grothendieck’s résumé revisited.

[30] A. Ditkowski, G. Fibich, and N. Gavish. Efficient solution of Ax(k) = b(k) using A−1.
J. Sci. Comput., 32(1):29–44, 2007.

[31] A. Druinsky and S. Toledo. How accurate is inv(A)∗b? arXiv preprint arXiv:1201.6035,
2012.

[32] K. Dudeck. Solving complex systems using spreadsheets: A matrix decomposition
approach. In 2005 ASEE Annual Conference and Exposition, Conference Proceed-
ings, pages 12875–12880, 2005. 2005 ASEE Annual Conference and Exposition: The
Changing Landscape of Engineering and Technology Education in a Global World ;
Conference date: 12-06-2005 Through 15-06-2005.

[33] M. E.-Nagy, M. Laurent, and A. Varvitsiotis. Complexity of the positive semidefinite
matrix completion problem with a rank constraint. In Discrete geometry and opti-
mization, volume 69 of Fields Inst. Commun., pages 105–120. Springer, New York,
2013.

[34] S. Eberli, D. Cescato, and W. Fichtner. Divide-and-conquer matrix inversion for linear
mmse detection in sdr mimo receivers. In 2008 NORCHIP, pages 162–167. IEEE, 2008.

[35] L. W. Ehrlich. Complex matrix inversion versus real. Comm. ACM, 13:561–562, 1970.

[36] M. El-Hawary. Further comments on "a note on the inversion of complex matrices".
IEEE Transactions on Automatic Control, 20(2):279–280, 1975.

[37] D. K. Faddeev and V. N. Faddeeva. Computational methods of linear algebra. W. H.
Freeman and Co., San Francisco-London, 1963. Translated by Robert C. Williams.

[38] A. T. Fam. Efficient complex matrix multiplication. IEEE Trans. Comput., 37(7):877–
879, 1988.

[39] J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science
Publications.

[40] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain,
A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz, D. Silver, D. Hassabis, and
P. Kohli. Discovering faster matrix multiplication algorithms with reinforcement learn-
ing. Nature, 610(7930):47–53, 2022.

[41] L. Faybusovich. Jordan-algebraic approach to convexity theorems for quadratic map-
pings. SIAM J. Optim., 17(2):558–576, 2006.

[42] B. Fischer and J. Modersitzki. Fast inversion of matrices arising in image processing.
Numer. Algorithms, 22(1):1–11, 1999.

154

[43] S. Friedland and L.-H. Lim. Nuclear norm of higher-order tensors. Math. Comp.,
87(311):1255–1281, 2018.

[44] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[45] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoret. Comput. Sci., 1(3):237–267, 1976.

[46] D. Y. Grigoriev. Multiplicative complexity of a pair of bilinear forms and of the polyno-
mial multiplication. In J. Winkowski, editor, Mathematical Foundations of Computer
Science 1978, pages 250–256, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[47] H. Grötzsch. Ein dreifarbensatz fur dreikreisfreie netze auf der kugal. Math.- Natur-
wiss., (8):109–120, 1958.

[48] L. Gurvits. Combinatorial and algorithmic aspects of hyperbolic polynomials. arXiv
preprint math/0404474, 2004.

[49] L. Guttman. Enlargement methods for computing the inverse matrix. Ann. Math.
Statistics, 17:336–343, 1946.

[50] J. Hå stad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[51] W. W. Hager. Updating the inverse of a matrix. SIAM Rev., 31(2):221–239, 1989.

[52] M. T. Heath, G. A. Geist, and J. B. Drake. Early experience with the intel ipsc/860
at oak ridge national laboratory. The International Journal of Supercomputing Appli-
cations, 5(2):10–26, 1991.

[53] H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. SIAM
Rev., 23(1):53–60, 1981.

[54] N. J. Higham. Computing the polar decomposition—with applications. SIAM J. Sci.
Statist. Comput., 7(4):1160–1174, 1986.

[55] N. J. Higham. Stability of a method for multiplying complex matrices with three real
matrix multiplications. SIAM J. Matrix Anal. Appl., 13(3):681–687, 1992.

[56] N. J. Higham. The matrix sign decomposition and its relation to the polar decom-
position. In Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), volume
212/213, pages 3–20, 1994.

[57] N. J. Higham. Stable iterations for the matrix square root. Numer. Algorithms,
15(2):227–242, 1997.

[58] N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

155

[59] N. J. Higham. Functions of matrices. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2008. Theory and computation.

[60] N. J. Higham and P. Papadimitriou. A parallel algorithm for computing the polar
decomposition. Parallel Comput., 20(8):1161–1173, 1994.

[61] J. L. Howland. The sign matrix and the separation of matrix eigenvalues. Linear
Algebra Appl., 49:221–232, 1983.

[62] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput.,
7(4):413–423, 1978.

[63] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic
computers. Dokl. Akad. Nauk SSSR, 14(145):293–294, 1962.

[64] A. A. Karatsuba. The complexity of computations. Trudy Mat. Inst. Steklov., 211(Op-
tim. Upr. i Differ. Uravn.):186–202, 1995.

[65] C. Kenney and A. J. Laub. On scaling Newton’s method for polar decomposition and
the matrix sign function. SIAM J. Matrix Anal. Appl., 13(3):698–706, 1992.

[66] J. Kim and F. L. Teixeira. Parallel and explicit finite-element time-domain method for
Maxwell’s equations. IEEE Trans. Antennas and Propagation, 59(6, part 2):2350–2356,
2011.

[67] A. Klein and G. Mélard. Computation of the Fisher information matrix for time series
models. J. Comput. Appl. Math., 64(1-2):57–68, 1995.

[68] V. V. Kljuev and N. I. Kokovkin-Ščerbak. On the minimization of the number of
arithmetic operations for solving linear algebraic systems of equations. Ž. Vyčisl. Mat
i Mat. Fiz., 5:21–33, 1965.

[69] D. E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley, Reading,
MA, 1998. Seminumerical algorithms, Third edition.

[70] A. Kochnev and N. Savelov. Symmetric matrix inversion using modified gaussian
elimination. arXiv preprint arXiv:1504.06734, 2015.

[71] J.-C. Lafon. Base tensorielle des matrices de Hankel (ou de Toeplitz) applications.
Numer. Math., 23:349–361, 1975.

[72] C. Lanczos. Applied analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1956.

[73] J. M. Landsberg. The border rank of the multiplication of 2× 2 matrices is seven. J.
Amer. Math. Soc., 19(2):447–459, 2006.

[74] J. M. Landsberg. Tensors: geometry and applications, volume 128 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2012.

156

[75] J. M. Landsberg. Geometry and complexity theory, volume 169 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 2017.

[76] A. Lemon, A. M.-C. So, and Y. Ye. Low-rank Semidefinite Programming: Theory and
Applications. Foundations and Trends in Optimization, 2(1-2):1–156, 2015.

[77] T. Lickteig. The computational complexity of division in quadratic extension fields.
SIAM J. Comput., 16(2):278–311, 1987.

[78] D. Lijun and L. Lek-Heng. Higher-Order Cone Programming. arXiv:1811.05461, 2018.

[79] L.-H. Lim. Self-concordance is NP-hard. J. Global Optim., 68(2):357–366, 2017.

[80] L.-H. Lim. Tensors in computations. Acta Numer., 30:555–764, 2021.

[81] C.-c. Lin and E. Zmijewski. A parallel algorithm for computing the eigenvalues of an
unsymmetric matrix on an SIMD mesh of processors. University of California, Santa
Barbara, College of Engineering, Department . . . , 1991.

[82] K. Lo. Several numerical methods for matrix inversion. International Journal of
Electrical Engineering Education, 15(2):131–141, 1978.

[83] D. Luenberger and Y. Ye. Linear and nonlinear programming. Springer, 3rd edition,
2008.

[84] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang. Semidefinite relaxation of quadratic
optimization problems. IEEE Signal Processing Magazine, 27(3):20–34, 2010.

[85] J. H. Maindonald. Statistical computation. Wiley Series in Probability and Mathe-
matical Statistics: Applied Probability and Statistics. John Wiley & Sons, Inc., New
York, 1984.

[86] P. McCullagh. Generalized linear models. European Journal of Operational Research,
16(3):285–292, 1984.

[87] P. McCullagh and J. A. Nelder. Generalized linear models. Monographs on Statis-
tics and Applied Probability. Chapman & Hall, London, 1989. Second edition [of
MR0727836].

[88] C. Moore and S. Mertens. The nature of computation. Oxford University Press, Oxford,
2011.

[89] P. Mukherjee and L. Satish. On the inverse of forward adjacency matrix. arXiv preprint
arXiv:1711.09216, 2017.

[90] I. Munro. Some results concerning efficient and optimal algorithms. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 40–44,
New York, NY, USA, 1971. Association for Computing Machinery.

157

[91] M. Muramatsu and T. Suzuki. A new second-order cone programming relaxation for
MAX-CUT problems. J. Oper. Res. Soc. Japan, 46(2):164–177, 2003.

[92] S. K. Panda. Inverses of bicyclic graphs. Electron. J. Linear Algebra, 32:217–231, 2017.

[93] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multi-
plicity of optimal eigenvalues. Math. Oper. Res., 23(2):339–358, 1998.

[94] G. Pataki. The geometry of semidefinite programming. In Handbook of semidefinite
programming, pages 29–65. Springer, 2000.

[95] S. Pavlíková. A note on inverses of labeled graphs. Australas. J. Combin., 67:222–234,
2017.

[96] R. Peeters. Ranks and Structure of Graphs. dissertation, Tilburg University, 1995.

[97] R. Peeters. Orthogonal representations over finite fields and the chromatic number of
graphs. Combinatorica, 16(3):417–431, 1996.

[98] G. B. Price. An introduction to multicomplex spaces and functions, volume 140 of
Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc.,
New York, 1991. With a foreword by Olga Taussky Todd.

[99] C. Radhakrishna Rao. Information and the accuracy attainable in the estimation of
statistical parameters. Bull. Calcutta Math. Soc., 37:81–91, 1945.

[100] J. Renegar. Hyperbolic programs, and their derivative relaxations. Found. Comput.
Math., 6(1):59–79, 2006.

[101] K. S. Riedel. A Sherman-Morrison-Woodbury identity for rank augmenting matrices
with application to centering. SIAM J. Matrix Anal. Appl., 13(2):659–662, 1992.

[102] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function. Internat. J. Control, 32(4):677–687, 1980.

[103] S. Rudich. Complexity theory: from Gödel to Feynman. In Computational complex-
ity theory, volume 10 of IAS/Park City Math. Ser., pages 5–87. Amer. Math. Soc.,
Providence, RI, 2004.

[104] R. A. Ryan. Introduction to tensor products of Banach spaces. Springer Monographs
in Mathematics. Springer-Verlag London, Ltd., London, 2002.

[105] S. Scardapane, S. Van Vaerenbergh, A. Hussain, and A. Uncini. Complex-valued
neural networks with nonparametric activation functions. IEEE Trans. Emerg. Topics
Comput., 4(2):140–150, 2018.

[106] J. Schur. Über potenzreihen, die im innern des einheitskreises beschränkt sind. Journal
für die reine und angewandte Mathematik (Crelles Journal), 1918:122 – 145, 1918.

158

[107] C. Segre. Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math.
Ann., 40(3):413–467, 1892.

[108] W. W. Smith and J. Smith. Handbook of real-time fast Fourier transforms. IEEE New
York, 1995.

[109] W. W. Smith, Jr. and S. Erdman. A note on the inversion of complex matrices. IEEE
Trans. Automatic Contol, AC-19:64, 1974.

[110] G. W. Stewart. Matrix algorithms. Vol. I. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1998. Basic decompositions.

[111] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.

[112] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202, 1973.

[113] V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew.
Math., 375/376:406–443, 1987.

[114] V. Strassen. Algebraic complexity theory. In Handbook of theoretical computer science,
Vol. A, pages 633–672. Elsevier, Amsterdam, 1990.

[115] C. Studer, S. Fateh, and D. Seethaler. Asic implementation of soft-input soft-output
mimo detection using mmse parallel interference cancellation. IEEE Journal of Solid-
State Circuits, 46(7):1754–1765, 2011.

[116] L. Tornheim. Inversion of a complex matrix. Comm. ACM, 4:398, 1961.

[117] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. Santos, S. Mehri,
N. Rostamzadeh, Y. Bengio, and C. J. Pal. Deep complex networks. In International
Conference on Learning Representations, 2018.

[118] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets, approximation,
and linear programming. SIAM J. Comput., 29(6):2074–2097, 2000.

[119] S. Winograd. On the number of multiplications necessary to compute certain functions.
Comm. Pure Appl. Math., 23:165–179, 1970.

[120] S. Winograd. On multiplication of 2 × 2 matrices. Linear Algebra Appl., 4:381–388,
1971.

[121] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of semidefinite
programming, volume 27 of International Series in Operations Research & Management
Science. Kluwer Academic Publishers, Boston, MA, 2000. Theory, algorithms, and
applications.

[122] M. A. Woodbury. The Stability of Out-Input Matrices. Chicago, Ill., 1949.

159

[123] M. A. Woodbury. Inverting modified matrices. Princeton University, Princeton, N. J.,
1950. Statistical Research Group, Memo. Rep. no. 42,.

[124] D. Ye, Y. Yang, B. Mandal, and D. J. Klein. Graph invertibility and median eigenval-
ues. Linear Algebra Appl., 513:304–323, 2017.

[125] K. Ye and L.-H. Lim. Fast structured matrix computations: tensor rank and Cohn-
Umans method. Found. Comput. Math., 18(1):45–95, 2018.

[126] H. Zhang, M. Gu, X. Jiang, J. Thompson, H. Cai, S. Paesani, R. Santagati, A. Laing,
Y. Zhang, M. Yung, et al. An optical neural chip for implementing complex-valued
neural network. Nat. Commun., 12(1):1–11, 2021.

[127] A. Zielinski. On inversion of complex matrices. Internat. J. Numer. Methods Engrg.,
14(10):1563–1566, 1979.

160

	List of Figures
	Acknowledgments
	Abstract
	1 Introduction
	2 Rank-Constrained Hyperbolic Programming
	2.1 Introduction
	2.1.1 Further related works

	2.2 Rank-Constrained SDP
	2.2.1 Examples of rank-constrained SDP
	2.2.2 Complexity of rank-constrained SDP

	2.3 Sparsity-Constrained Problems
	2.3.1 QCQP sparsification
	2.3.2 SOCP sparsification

	2.4 Rank-Constrained Hyperbolic Programming
	2.4.1 Rank-Constrained SOCP
	2.4.2 Rank-Constrained QCQP

	2.5 Conclusion

	3 Numerical Stability and Tensor Nuclear Norm
	3.1 Introduction
	3.2 Bilinear Complexity
	3.3 Bilinear Stability
	3.4 Fast Matrix Multiplications
	3.4.1 Bilinear stability of Strassen multiplication
	3.4.2 Bilinear stability of Winograd multiplication
	3.4.3 Bilinear stability of conventional matrix multiplication
	3.4.4 Numerical experiments for fast matrix multiplications

	3.5 Complex Multiplication
	3.5.1 Bilinear stability of complex multiplication algorithms
	3.5.2 Error analysis of new algorithm applied to matrices

	3.6 Experiments for New Complex Matrix Multiplication Algorithm
	3.6.1 Speed of the algorithms
	3.6.2 Accuracy of the algorithms
	3.6.3 Matrix polynomial evaluations
	3.6.4 Unitary transforms
	3.6.5 Complex-valued neural networks

	3.7 Conclusion

	4 Inverting a Complex Matrix
	4.1 Introduction
	4.1.1 Related work

	4.2 Multiplications in Quadratic Field Extensions
	4.3 Gauss Matrix Multiplication
	4.4 Frobenius Matrix Inversion
	4.4.1
	4.4.2 Second case:
	4.4.3 An application

	4.5 General Matrix Inversion
	4.5.1 Frobenius inversion v.s. invertion via LU decomposition
	4.5.2 Rounding error analysis
	4.5.3 Randomized Frobenius inversion

	4.6 Hermitian Positive Definite Matrix Inversion
	4.6.1 Variant of Frobenius inversion vs matrix inversion via Cholesky decomposition
	4.6.2 Rounding error analysis

	4.7 Experiments
	4.7.1 Efficiency
	4.7.2 Accuracy
	4.7.3 Matrix sign function
	4.7.4 Sylvester equation
	4.7.5 Polar decomposition
	4.7.6 Hermitian positive matrices

	4.8 Conclusion

	5 Conclusion
	References

