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ABSTRACT

In this paper, we study holomorphic and algebraic dynamics on complex manifolds. It

consists of two parts: one that discusses Kummer rigidity on hyperkähler manifolds, and

another that discusses tropicalized actions of algebraic dynamics.

In the part on Kummer rigidity, based on the fundamental structures that any hyperkähler

manifold carries, we generalize some classical works done for complex surfaces. In particular,

motivated by the study of Green currents on K3 surfaces, we have establised ‘Green-like

currents’ extracted from a singular metric under the assumption that the Green measure

equals to the volume. By doing so, we have shown that the only such projective manifolds

and dynamics should be constructed from linear actions on (complex) tori.

In the part on tropical dynamics, we discuss the family of Markov cubics, which is a

family of degree 3 affine surfaces that lives in the character variety of spheres with four

punctures. By defining this family over a non-archimedean field, we define tropicalizations

of a natural family of algebraic involutions: the Vieta involutions. These involutions, after

tropicalization, exhibit a structure that resembles the hyperbolic plane with three indepen-

dent reflections. By that we split the system in two parts: one that corresponds to hyperbolic

reflections, and another that mimics the Euclidean algorithm on pairs of integers. We also

include some introduction to the machinary used to perform the analysis.
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Part I

Hyperkähler Kummer Rigidity



CHAPTER 1

INTRODUCTION

The first part of this work is devoted to the analytic study of holomorphic automorphisms

on hyperkähler manifolds, with certain assumptions on the Green currents.

Some initial use of currents in the study of complex dynamical systems can be seen in

Bedford et al. [1993] for C2 and Cantat [2001] for K3 surfaces, and the name Green currents

are used since then. The idea has been further expanded by Dinh and Sibony [2010]De Thélin

and Dinh [2012] and others to deal with holomorphic automorphisms on complex manifolds

of dimensions greater than one.

Green currents are differential geometric encodings of stable and unstable distributions.

Their power can be understood through various methods to study them, such as pluripoten-

tials, cohomologies, and so forth.

One interesting result in this vein is the Kummer rigidity on projective or K3 surfaces

Cantat and Dupont [2020]Filip and Tosatti [2021]. There, one studies holomorphic auto-

morphisms f : X → X where X is a projective or K3 surface, and f has positive topological

entropy. If one wedges Green currents and has the measure of maximal entropy in the volume

class, then f must be Kummer: that is, X must be a Kummer K3 surface and f is induced

from a linear map on the torus used to build X.

An analogous result can be established for hyperkähler manifolds, a higher-dimensional

analogue of K3 surfaces. In particular, we prove the following

Theorem 1.1. Let X be a projective hyperkähler manifold. Let f : X → X be a holomor-

phic automorphism that has positive topological entropy. Suppose the volume form is an

f -invariant measure of maximal entropy. Then the underlying hyperkähler manifold X is a

normalization of a torus quotient, and f is induced from a hyperbolic affine-linear transfor-

mation on that torus quotient.
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That is, if dimCX = 2n, there exists a complex torus T = C2n/Λ and a finite group

of toral isomorphisms Γ in which X normalizes T/Γ, and f is induced from a hyperbolic

affine-linear transformation A : T/Γ→ T/Γ.

The proof is essentially analogous to the case of surfaces Cantat and Dupont [2020]Filip

and Tosatti [2021], but some modifications are required to generalize things for higher di-

mensions.

Outline of the Part In chapter 2, we introduce the notion of hyperkähler manifolds and

discuss their known dynamical properties. Additionally, analogous to the K3 surface case

[Filip and Tosatti, 2021, §2.1.7], we have a singular Ricci-flat metric ω0 on X. In chapter

3, assuming that the volume measure is the measure of maximal entropy, we establish that

the singular metric ω0 behaves well with the dynamics. In chapter 4, we show that the

singular metric defines stable and unstable distributions, thus giving a holomorphic foliation

of stable and unstable manifolds. Some flatness follows from this. In chapter 5, we use the

observations made so far and prove Theorem 1.1, the claimed Kummer rigidity.

3



CHAPTER 2

HYPERKÄHLER MANIFOLDS AND THEIR DYNAMICAL

STRUCTURES

In this chapter, we introduce the notion of hyperkähler manifolds, which are one of the high-

er-dimensional analogue of K3 surfaces. Hyperkähler manifolds are rich in structures, and in

this chapter we present various notions and notations, along with a list of basic facts needed

to study them.

2.1 Hyperkähler Structures

Definition 2.1 (Hyperkähler Manifolds). Suppose (X,ω) is a simply connected compact

Kähler manifold and let Ω be a nondegenerate holomorphic (2, 0)-form on X that generates

the Hodge group H2,0(X,C). Then we say a triple (X,ω,Ω) a hyperkähler manifold. We

call the form Ω a holomorphic symplectic form on X.

Another name for this manifold in literatures is an irreducible holomorphic symplectic

manifold [Gross et al., 2003, Def 21.1]. That ω is hyperkähler may be understood that the

tensor Ω is flat with respect to ω. For n = 1, this X is nothing but a K3 surface.

This Ω generates the (2, 0)-Hodge group: H2,0(X,C) = C.Ω [Gross et al., 2003, Propo-

sition 23.3]. Moreover, we declare the volume form vol = (Ω ∧ Ω)n associated to the holo-

morphic symplectic form; we normalize Ω so that vol(X) = 1. This volume form is same as

that of the Riemannian geometry on X. That is, ω2n = c · vol for some constant c > 0.

A hyperkähler manifold has the natural quadratic form on H2 that generalizes the inter-

section form of K3 surfaces. This is called the Beauville–Bogomolov–Fujiki quadratic form

q [Gross et al., 2003, Definition 22.8] and is defined as follows. Suppose α ∈ H2(X,C) =

H2,0(X)⊕H1,1(X)⊕H0,2(X) is decomposed as α = c1Ω + β + c2Ω, where c1, c2 ∈ C and

4



β ∈ H1,1(X). Then, the number q(α) is defined as

q(α) := c1c2 +
n

2

∫
X
β2(Ω ∧ Ω)n−1. (2.1.1)

We will abuse the notation and denote q(α, α′) for the symmetric bilinear form from the

quadratic form q. The form q, if restricted to H1,1(X,R), has signature (1, h1,1 − 1) by

[Gross et al., 2003, Corollary 23.11]. One may view this as the Hodge Index Theorem for

hyperkähler manifolds.

The Beauville–Bogomolov–Fujiki quadratic form q, together with the Beauville–Fujiki

relation [Gross et al., 2003, Proposition 23.14], gives the following formula. Given a Ricci-

flat Kähler metric ω′ on X, we have

(ω′)2n = q(ω′)n
(

2n

n

)
· (Ω ∧ Ω)n, (2.1.2)

as differential forms.

2.2 Invariance

Given a hyperkähler manifold (X,ω,Ω), let f : X → X be a holomorphic automorphism that

has positive topological entropy htop(f) > 0. Various structures of X are preserved under

f .

Obviously, as a holomorphic map, f preserves the complex structure I. Therefore we

preserve the holomorphic sheaves Ω
p
X , Hodge groups Hp,q(X), etc. by f . We also note that

f preserves the Kähler cone.

Although the hyperkähler metric ω is seldom invariant under f , but the holomorphic

symplectic form Ω is almost invariant, in the following sense.

Lemma 2.2. There exists a constant kf , with modulus 1, such that f∗Ω = kfΩ.

5



Proof. By Dolbault isomorphism, we can identify the groupH2,0(X) = C.Ω withH0(X,Ω2
X) =

C.Ω. This tells that, any holomorphic section of the vector bundle Ω2
X on X is proportional

to Ω: X → Ω2
X .

Now f induces another holomorphic section of Ω2
X , by f∗Ω: X

f−→ X
Ω−→ Ω2

X . This has

to be proportional to Ω: X → Ω2
X , thus we have f∗Ω = kfΩ for some kf ∈ C. Because f

preserves the volume (Ω ∧ Ω)n, |kf | = 1 follows.

Now recall that Beauville–Bogomolov–Fujiki form is defined only with the form Ω. Be-

cause of that, it is natural to guess the

Lemma 2.3. The Beauville–Bogomolov–Fujiki form q is preserved under f . That is, q(f∗α) =

q(α) for any closed 2-form α.

Proof. First we note that f∗(ΩΩ) = |kf |2ΩΩ = ΩΩ. Thus f∗ acts on H4n(X) = C.(ΩΩ)n

trivially, which gives the identity
∫
X f∗γ =

∫
X γ for any 4n-form γ.

Write α = c1Ω + β + c2Ω, where c1, c2 ∈ C and β ∈ H1,1(X). Then f∗α = c1(f∗Ω) +

(f∗β) + c2(f∗Ω) = c1kfΩ + (f∗β) + c2kfΩ. By (2.1.1),

q(f∗α) = (c1kf )(c2kf ) +
n

2

∫
X

(f∗β)2(ΩΩ)n−1

= c1c2|kf |2 +
n

2

∫
X

(f∗β)2(f∗(ΩΩ))n−1

= c1c2 +
n

2

∫
X
f∗[β2(ΩΩ)n−1]

= c1c2 +
n

2

∫
X
β2(ΩΩ)n−1 = q(α),

the equation demanded.

2.3 The Eigenclasses

Lemma 2.3 readily implies that f∗ is an isometry of the hyperbolic space HX , the connected

component of the hyperboloid {x ∈ H1,1(X,R) | q(x) = 1} that contains a Kähler class. We
6



equip the metric q to make HX a Riemannian manifold.

The isometry f∗ is loxodromic in the sense of [Cantat, 2014b, §2.3.2], if htop(f) > 0.

This is a consequence of the following estimate of the first dynamical degree, by Oguiso.

Theorem ([Oguiso, 2009, Thm. 1.1]). Let X be a hyperkähler manifold of dimension 2n and

f be a holomorphic automorphism of X. If di(f) is the i-th dynamical degree of f , i.e., the

spectral radius of f∗ on Hi,i(X,R), then we have d2n−i(f) = di(f) = d1(f)i for 0 ≤ i ≤ n.

Moreover, the topological entropy htop(f) is n log d1(f).

We note that htop(f) = n log d1(f) is iterating the Gromov–Yomdin theorem Yomdin

[1987]Gromov [2003] for topological entropies of holomorphic automorphisms on compact

Kähler manifolds.

Thus if htop(f) > 0, then log d1(f) > 0 as well. Define the numbers

h := log d1(f), λ := d1(f). (2.3.1)

(A caveat is that the entropy is htop(f) = nh, not h as the notation may suggest.) Thus we

have an exponential estimate ‖(f∗)N‖ = O(λN ), so f∗ must be loxodromic.

Because f∗ is loxodromic, we can find eigenclasses [η+], [η−] ∈ H1,1(X,R) with real single

eigenvalues λ, λ−1 respectively (cf. [Oguiso, 2007, Theorem 1]). They are isotropic vectors,

and has the following further properties.

Proposition 2.4. The eigenclasses [η+], [η−] ∈ H1,1(X,R) satisfy the followings.

(a) Isotropy: q([η+]) = q([η−]) = 0.

(b) Nilpontent: [η+]n+1 = [η−]n+1 = 0.

(c) Big and Nef: [η+] + [η−] is a big and nef class.
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(d) Spectral convergence: for any Kähler class α ∈ H1,1(X,R) we have, as n→∞,

λ−n(f∗)nα→ q(α, [η−])

q([η+], [η−])
[η+],

λ−n(f∗)−nα→ q(α, [η+])

q([η+], [η−])
[η−].

Proof. The isotropy property is obvious: q([η±]) = q(f∗[η±]) = q(λ±1[η±]) = λ±2q([η±])

and λ > 1 gives the result.

The nilpotence follows from [Gross et al., 2003, Proposition 24.1][Verbitsky, 1995, Theo-

rem 15.1]: for any α ∈ H2(X,C), αn+1 = 0 iff q(α) = 0.

Classes [η±] are nef in the following reasons. Because HX contains a Kähler class [ω], we

see that [η±] are found as limits of classes λ−n(f∗)±n[ω], n→ +∞.

We claim that the nef class [η+] + [η−] is big. Note the Beauville–Fujiki relation q(α)n =(2n
n

)−1 ∫
X α2n [Gross et al., 2003, Proposition 23.14]. If [η+] + [η−] is not big,

∫
X(η+ +

η−)2n = 0, then we have q([η+] + [η−]) = 0. But then q([η+], [η−]) = 0 follows, so q(c1[η+] +

c2[η−]) = 0 for all c1, c2 ∈ R. This contradicts with that the cone {q = 0} cannot contain a

linear space of dimension > 1.

The spectral convergence is in general the case whenever q(α) > 0: see [Cantat, 2014b,

§2.3.2].

We notice that [η+] and [η−] can be rescaled arbitrary, as long as they satisfy the prop-

erties listed in Proposition 2.4. For sake of pinning down a class that [η±] represents, we

impose a normalization ∫
X

(η+ + η−)2n = 1. (2.3.2)

By this, we have q([η+] + [η−]) = 2q([η+], [η−]) =
(2n
n

)−1/n
.

8



2.4 Null Locus and Metric Approximations

Even though the class [η+] + [η−] is big and nef, the sum is very unlikely to be a Kähler

class. Because of that, we introduce the obstructions studied in Collins and Tosatti [2015]

for a big and nef class to be Kähler.

For sake of introducing an obstruction, one introduces the null locus E ⊂ X of the class

[η+] + [η−], which is the union of all subvarieties V ⊂ X such that
∫
V (η+ + η−)dimV = 0

Collins and Tosatti [2015].

Proposition 2.5. The null locus is f -invariant.

Proof. We check that it satisfies f(E) ⊂ E. Recall that E is defined as the union of

subvarieties V in which
∫
V (η+ +η−)dimV = 0. Because [η+] and [η−] are nef classes, thanks

to [Demailly and Paun, 2004, Theorem 4.5] and approximation of [η±] by Kähler classes,

we have
∫
V (η+)a(η−)b ≥ 0 whenever a + b = dimV . Hence if

∫
V (η+ + η−)dimV = 0, we

have
∫
V (η+)a(η−)b = 0. Because f∗[η±] = λ±1[η±], this implies

∫
f(V )(η+)a(η−)b = 0 as

well, now integrating on f(V ). Collecting them we have
∫
f(V )(η+ + η−)dimV = 0, verifying

f(V ) ⊂ E.

Although the following is an immediate appliation of [Collins and Tosatti, 2015, Theorem

1.6], we state this as a lemma, to introduce some notations for later use.

Lemma 2.6. There exists a smooth, incomplete Ricci-flat Kähler metric ω0 on X \ E, and

a sequence (ωk) of complete, smooth Ricci-flat hyperkähler metrics on X that converges to

ω0 in the following senses: (i) [ωk] → [η+] + [η−] in H1,1(X,R), and (ii) ωk → ω0 in

C∞loc(X \ E).

Moreover, ωk’s may be set to have the unit volume. That is, ω2n
k = vol.

Proof. [Collins and Tosatti, 2015, Theorem 1.6] tells the existence of a smooth, incomplete

Ricci-flat Kähler metric ω0 on X \ E in which, for any sequence [αk] → [η+] + [η−] in

H1,1(X), and the Ricci-flat metric ωk ∈ [αk], ωk’s converge to ω0 in C∞loc(X \ E) topology.
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For hyperkähler X, each Kähler class [αk] contains a unique hyperkähler metric in it

[Gross et al., 2003, Theorem 23.5]. Such a metric is necessarily Ricci-flat [Gross et al.,

2003, Proposition 4.5]. By the uniqueness of Ricci-flat metric in a Kähler class, ωk must be

hyperkähler as well.

Because [αk]’s are converging to [η+] + [η−], a big and nef class, the volume [αk]2n by

ωk, also converges to a positive number. Thus one can normalize ωk’s so that they have

unit volume, i.e., [αk]2n = 1 for all k. Consequently, as each ωk is Ricci-flat, we have

ω2n
k = (Ω ∧ Ω)2n = vol, due to (2.1.2). (Note that this normalization is compatible with

(2.3.2).)

2.5 Ergodicity and Lyapunov Exponents

As a consequence of bigness (Proposition 2.4) of [η+] + [η−], we have the following

Proposition 2.7. (a) There exists closed positive (1, 1)-currents S+ and S− with Hölder

continuous potentials, that are in classes [η+] and [η−] respectively, and satisfy f∗S+ =

λS+ and f∗S− = λ−1S−.

(b) The wedge (S+)n ∧ (S−)n in the sense of Bedford–Taylor Bedford and Taylor [1982] is

the unique measure µ of maximal entropy, which is mixing.

The currents S± mentioned above are called Green currents of order 1, according to

[Dinh and Sibony, 2010, §4.2]. We will call S+ an unstable Green (1, 1)-current and S− a

stable Green (1, 1)-current.

Proof. Note that R.[η+] ⊂ H1,1(X,R) is a strictly dominant space for f∗ : H1,1(X,R) �, in

the sense of [Dinh and Sibony, 2010, Theorem 4.2.1]. Then we have a closed (1, 1)-current S+

in the class [η+] that has Hölder continuous potentials and satisfies f∗S+ = λS+. (Recall

that λ = d1(f).) We may set this S+ to be positive, because [η+] itself is a nef class.
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Likewise, by considering f−1, we have a closed positive (1, 1)-current S− in the class [η−]

with the required properties. This shows (a).

Because potentials of S± are locally bounded, the Bedford–Taylor theory applies and

defines (S±)n as a closed positive (n, n)-currents. Denote T+ = (S+)n and T− = (S−)n.

Note that each current is in class [η+]n and [η−]n, respectively.

Let V+ = R.[η+]n ⊂ Hn,n(X,R). Then f∗ acts as multiplying λn on V+, and we have

λn = dn(f) > λn−1 = dn−1(f). Thus the hypotheses of [Dinh and Sibony, 2010, Theorem

4.3.1] are met, and T+ is the unique closed positive (n, n)-current in the class [η+]n. We

argue likewise with V− = R.[η−]n ⊂ Hn,n(X,R) and (f−1)∗, to have that T− is the unique

closed positive (n, n)-current in the class [η−]n.

It turns out that T+ and T− are Green currents of f and f−1 respectively, of order n.

We claim that T+ ∧ T− is a positive nonzero measure. To have so, note first that T+ ∧ T−

is cohomologous to ηn+ ∧ ηn− (as currents), where η± are any smooth representative of the

class [η±]. Then we have

∫
X
T+ ∧ T− =

∫
X
ηn+ ∧ ηn−

=

(
2n

n

)−1 ∫
X

(η+ + η−)n

= q([η+] + [η−]) = 1,

by the normalization (2.3.2). As T+ ∧T− is already a positive (2n, 2n)-current, this suffices

to show that T+∧T− is a positive nonzero measure. By [Dinh and Sibony, 2010, Proposition

4.4.1], this tells that the eigenvalues λ±n of f∗ on Hn,n(X,C) have multiplicities 1.

Now we apply [De Thélin and Dinh, 2012, Theorem 1.2]. We remark that the proof of the

theorem only requires f to be ‘simple on
⊕2n

p=0H
p,p(X,C),’ i.e., admits a unique, multiplicity

1 eigenvalue of modulus dn(f), at the subring
⊕2n

p=0H
p,p(X,C) of the cohomology ring.

Because f∗ on other Hp,p groups have spectral radius strictly less than dn(f), we see that
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the multiplicity of dn(f) on the subring is precisely that on the group Hn,n(X,C). This was

observed to be multiplicity 1 above.

Thus the theorem applies, and the Green measure µ = T+ ∧ T− is the unique invariant

measure of maximal entropy. By [Dinh and Sibony, 2010, Theorem 4.4.2], we furthermore

know that µ is mixing.

We also claim that, if the Green measure µ is in the volume class, i.e., absolutely contin-

uous with repsect to the volume measure vol = ω2n, then the Lyapunov exponents are very

simple.

Lemma 2.8. If the Green measure µ = (S+)n∧ (S−)n is in the volume class, the Lyapunov

exponents are ±h/2 with multiplicity 2n each.

Proof. Let χ1 ≥ · · · ≥ χ2n be the Lyapunov exponents of µ for the cocyle Df on the

complexified tangent bundle TCX, listed with multiplicities (cf. [Filip, 2019a, Theorem

2.2.6][Ruelle, 1979, Theorem 1.6]), which are µ-a.e. constant due to ergodicity. As f is

invertible, we have a symmetry χi + χ2n+1−i = 0; in particular, the first n exponents are

nonnegative and the last n exponents are nonpositive.

Because the measure µ is in the volume class, by Ledrappier–Young formula [Ledrappier

and Young, 1985b, Corollary G], the entropy hµ(f) equals

hµ(f) = nh = χ1 + · · ·+ χn. (2.5.1)

Here, hµ(f) = nh follows from hµ(f) = htop(f) = nh.

Thanks to Oguiso [Oguiso, 2009, Theorem 1.1], we have an increasing-decreasing relation

1 = d0(f) < d1(f) < · · · < dn−1(f) < dn(f) > dn+1(f) > · · · > d2n(f) = 1

of dynamical degrees. The bounds of Lyapunov exponents by Thélin [de Thélin, 2008,
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Corollaire 3] then yields,

χ1 ≥ · · · ≥ χn ≥
1

2
log

dn(f)

dn−1(f)
=
h

2
(> 0). (2.5.2)

Combining (2.5.1) and (2.5.2), we have χ1 = · · · = χn = h/2. By the symmetry χi +

χ2n+1−i = 0, we in addition have χn+1 = · · · = χ2n = −h/2.

2.6 Examples

We finish this chapter by mentioning the examples that we can keep in mind while following

the arguments. These examples are brought from [Lo Bianco, 2017, §3.3-3.4], and we seek

for whether each example

• is actually a (hyperkähler) Kummer example, and

• has the volume as a measure of maximal entropy.

Throughout this section, following [Lo Bianco, 2017, §3], we denote T as a 2-dimensional

complex torus, fT : T → T a hyperbolic automorphism on it; by hyperbolic we mean by

h := htop(fT ) > 0 (cf. [Lo Bianco, 2017, Corollary 1.23]). Let f×nT = (fT , · · · , fT ) : Tn →

Tn be the product of n copies of fT . From [Lo Bianco, 2017, Lemma 3.1], it is known that

f×nT has unstable and stable foliations F+ and F−, obtained by making the n-product of

those for (T, fT ). The topological entropy of (Tn, f×nT ) is nh; cf. [Katok and Hasselblatt,

1995, Proposition 3.1.7(4)].

Moreover, combining [Lo Bianco, 2017, Proposition 1.12] and a theorem of Gromov–

Yomdin [Lo Bianco, 2017, Theorem 1.10], a Kummer example (X, f) with associated toral

automorphism (T, A) has the same topological entropies htop(X, f) = htop(T, A).
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2.6.1 Generalized Kummer Variety

Denote Kn(T ) for the 2n-dimensional generalized Kummer variety, the notation following

[Gross et al., 2003, §21.2].

Following [Lo Bianco, 2017, §3.4], fT induces an automorphism Kn(fT ) : Kn(T ) →

Kn(T ). By [Lo Bianco, 2017, Lemma 3.12], the pair (X, f) = (Kn(T ), Kn(fT )) is a Kummer

example, by the following data:

• (Y, f̃) = (Tn/Sn+1, f
×n
T /Sn+1),

• (T, A) = (Tn, f×nT ), and

• the quotient map q : T → Y , which is birationally equivalent to a generically finite

meromorphic map π : T 99K X. (That birational equivalence φ : X → Y may be

defined on whole X.)

Here, Sn+1 is the symmetry group of (n+ 1) letters, acting on Tn by restricting the natural

action Sn+1 y Tn+1 on

Tn = {(t0, t1, · · · , tn) ∈ Tn+1 | t0 + t1 + · · ·+ tn = 0}.

Therefore (X, f) is a Kummer example, with its associated toral automorphism (Tn, f×nT ).

By loc.cit., induced from foliations F+ and F− on Tn, we have foliations F+
X and F−X

on X, called unstable and stable foliations respectively. (Here F±X may have singular loci.)

By the action of f×nT , each vector tangent to the foliations F+ and F− on Tn are dilated

by eh/2 and e−h/2 respectively. The same rates apply for F+
X and F−X on X \ Sing(F±X).

This gives that the Lyapunov exponents of (X, f) under the volume is ±h/2, with multi-

plicity n each. The Ledrappier–Young formula [Ledrappier and Young, 1985b, Corollary G]

then yields hvol(X, f) = nh. Now since (X, f) is a Kummer example, its topological entropy

is also nh, as that of (Tn, f×nT ) is nh. Hence the volume measure is a measure of maximal
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entropy.

2.6.2 Hilbert Scheme of a Kummer Surface

Denote K1(T ) for the Kummer surface of the 2-dimensional complex torus T . Then one has

the Hilbert scheme X := K1(T )[n] of n points and induced map f := K1(fT )[n] : X → X,

from fT : T → T (cf. [Lo Bianco, 2017, Proposition 3.10]).

The hyperkähler manifold X = K1(T )[n] is obtained by normalizing Tn/Γ, where Γ is

generated by

- an involution θ : Tn → Tn, θ(t1, t2, · · · , tn) = (−t1, t2, · · · , tn), and

- the symmetry group Sn y Tn on coordinates.

(The group Γ, generated by involutions, forms the Weyl group of the Lie algebra Bn.) The

map (fT , · · · , fT ) commutes with Γ, thus induces a map f̃ : Tn/Γ → Tn/Γ. The map

f = K1(fT )[n] then satisfies, with the normalization map φ : X → Tn/Γ, f̃ ◦φ = φ◦f . Thus

(X, f) is a Kummer example, with associated toral automorphism (Tn, f×nT ).

The foliations F± on Tn are Γ-invariant, hence carrying this to the regular locus of

Tn/Γ and inducing (singular) foliations on X, we obtain unstable and stable foliations F+
X

and F−X . Arguing as in §2.6.1, we see that for (X, f), the volume measure is a measure of

maximal entropy.

Remark. So far we have seen that both of the examples required some extra structures

(stable/unstable holomorphic foliations) to make sure that the volume is an invariant measure

of maximal entropy. A partial converse of this will be shown in this paper (Proposition 4.2): if

the volume is an invariant measure of maximal entropy, the unstable and stable holomorphic

foliations are defined, and they dilate by some factors eh/2 and e−h/2. (This converse is

partial because the singularities have codimension ≥ 1.) We note that this converse does

not require projectivity assumption.
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For a general hyperkähler Kummer example (X, f), we have a restriction on the eigen-

values of its associated toral automorphism (T, A). That is, the matrix part of A has n

eigenvalues of modulus eh/2 and n eigenvalues of modulus e−h/2, counted with multiplici-

ties. The proof of this fact is based on comparing the dynamical degrees of (X, f) found by

two distinct means, [Lo Bianco, 2017, Proposition 1.12] and [Oguiso, 2009, Theorem 1.1].
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CHAPTER 3

ANALYSIS ON APPROXIMATE METRICS

Starting from this chapter, we now aim to prove Theorem 1.1. In the sequels we let X to be

a projective hyperkähler manifold of dimension dimCX = 2n, f : X → X a holomorphic au-

tomorphism with positive topological entropy htop(f) = nh > 0, whose measure of maximal

entropy µ = (S+)n ∧ (S−)n is same as the (normalized) volume measure vol = ω2n.

We initiate the study looking at metrics ωk’s defined in Lemma 2.6 above. Ultimately

we show that, for the limit metric ω0 and each x ∈ X \ E, we have n-dimensional complex

subspaces E±N,x ⊂ T
1,0
x X (where T 1,0X is the holomorphic tangent space) so that, applying

(fN )∗ to ω0,x|E±N,x, we rescale it by λ = eNh (Corollary 3.7).

3.1 Local Setups

As claimed in Lemma 2.6, we pick up hyperkähler metrics ωk that converges to ω0 in C∞loc(X\

E) topology.

Fix N ∈ Z>0. Along the dynamics, we declare the quantitites
(
σ

(k)
i (x,Nh)

)2n

i=1
, to be

called log-singular values of (fN )∗ωk relative to ωk, as follows. At a point x ∈ X, one can

write

ωk =

√
−1

2

2n∑
i=1

dzi ∧ dzi, (3.1.1)

with an appropriate holomorphic coordinate (z1, · · · , z2n) of X at x. Moreover, for

h
(k)
ij = (fN )∗ωk(

∂

∂zi
,
∂

∂zj
), (3.1.2)

we have a self-adjoint matrix
(
h

(k)
ij

)
, thus one can adjust the holomorphic basis vectors

∂

∂z1
, · · · , ∂

∂z2n
unitarily, to keep the form (3.1.1) of ωk, yet make the matrix

(
h

(k)
ij

)
diagonal.
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This enables us to write (fN )∗ωk at x ∈ X as

(fN )∗ωk =

√
−1

2

2n∑
i=1

exp
(
σ

(k)
i (x,Nh)

)
dzi ∧ dzi. (3.1.3)

We moreover choose the base index i so that the numbers σ(k)
1 , · · · , σ(k)

2n are in the decreasing

order, i.e.,

σ
(k)
1 (x,Nh) ≥ σ

(k)
2 (x,Nh) ≥ · · · ≥ σ

(k)
2n (x,Nh). (3.1.4)

These quantities exhibit the following symmetry. The assumption that ωk is hyperkähler, is

crucial here.

Lemma 3.1. Log-singular values σ(k)
i ’s exhibit symmetry at 0. That is, for all x and i =

1, 2, · · · , n,

σ
(k)
i (x,Nh) + σ

(k)
2n+1−i(x,Nh) = 0.

Proof. Replacing f to fN if necessary, we may assume that N = 1. Also, for notational

simplicity, denote ω := ωk.

As ω is a hyperkähler metric, for each point x ∈ X one has a holomorphic coordinate

(z1, · · · , z2n) that enables representations (valid only at x)

ω =
2n∑
i=1

dzi ∧ dzi,

Ω =
n∑
µ=1

dzµ ∧ dzn+µ.

Denote (w1, · · · , w2n) for another holomorphic coordinate near f(x) with analogous ex-

pressions of ω and Ω, at f(x). By this coordinate, describe the map Dxf : TxX → Tf(x)X
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as a matrix A =
(
aij
)
, where aij ’s are determined by the relation

Dxf

(
∂

∂zi

)
=

2n∑
j=1

aij
∂

∂wj
.

Now Lemma 2.2, f∗Ω = kfΩ, implies

2n∑
k,`=1

aikΩk`aj` = kfΩij

(where Ωij = Ω

(
∂

∂zi
,
∂

∂zj

)
; in other words, (Ωij) =

 0 In

−In 0

), which entails AΩA> =

kfΩ. This gives k−1/2
f A> ∈ Sp(2n,C), which implies AA† ∈ Sp(2n,C).

We then describe how f∗ω is represented at x. Since

f∗ω
(
∂

∂zi
,
∂

∂zj

)
=

2n∑
k,`=1

ω

(
aik

∂

∂wk
, aj`

∂

∂w`

)

=
∑
k,`=1

aikaj`ω

(
∂

∂wk
,
∂

∂w`

)

=
2n∑
k=1

aikajk = (AA†)ij ,

we have f∗ω =
√
−1
2

∑2n
i,j=1(AA†)ij dzi ∧ dzj at x. Thus σ(k)

i consists of log of eigenvalues

of AA†. An exercise, say [de Gosson, 2011, Problem 22], yields that a self-adjoint positive-

definite symplectic matrix like AA† has eigenvalues that are (multiplicatively) symmetric at

1. If this fact is translated to the list σ(k)
1 , · · · , σ(k)

2n , we get the desired symmetry.
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3.2 Local computations

Based on the setups established in the previous section 3.1, we now compute the forms ω2n
k

and ω2n−1
k ∧ (fN )∗ωk, at x, and compare them.

ω2n
k =

(√
−1

2

)2n

(2n)!(dz1 ∧ dz1 ∧ · · · ∧ dz2n ∧ dz2n), (3.2.1)

ω2n−1
k ∧ (fN )∗ωk =

(√
−1

2

)2n
(

2n∑
i=1

dzi ∧ dzi

)2n−1
 2n∑
j=1

e
σ
(k)
j (x,Nh)

dzj ∧ dzj


=

(√
−1

2

)2n
 2n∑
j=1

e
σ
(k)
j (x,Nh)

 (2n− 1)!(dz1 ∧ dz1 ∧ · · · ∧ dz2n ∧ dz2n).

(3.2.2)

Now applying (3.2.1),

=

 2n∑
j=1

e
σ
(k)
j (x,Nh)

 (2n− 1)!

(2n)!
ω2n
k , (3.2.3)

and applying Lemma 3.1, we can ‘fold’ the sum of exponentials as

=

 n∑
j=1

2 cosh(σ
(k)
j (x,Nh))

 ω2n
k

2n
,

and obtain the following

Proposition 3.2. As differential forms,

ω2n−1
k ∧ (fN )∗ωk =

 1

n

n∑
j=1

cosh
(
σ

(k)
j (x,Nh)

)ω2n
k .
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3.3 Cohomological Analysis

The form ω2n−1
k ∧ (fN )∗ωk can also be understood cohomologically, but with some approx-

imations. Think of the integral of the form, represented as a cup product of cohomology

classes: ∫
X
ω2n−1
k ∧ (fN )∗ωk = [ωk]2n−1.(fN )∗[ωk].

Denote [ω0] := [η+] + [η−]. Then, by Lemma 2.6, we have that [ωk]→ [ω0] as k →∞. Thus

it leads us to consider the product [ω0]2n−1.(fN )∗[ω0], which is evaluated as in the following

Proposition 3.3. We have the following equation in cohomology:

[ω0]2n−1.(fN )∗[ω0] = cosh(Nh) · [ω0]2n.

Proof. The proof is a manual computation with [ω0] = [η+] + [η−] and Corollary 2.4.

[ω0]2n = ([η+] + [η−])2n =
2n∑
k=0

(
2n

k

)
[η+]k[η−]2n−k

=

(
2n

n

)
[η+]n[η−]n. (3.3.1)

[ω0]2n−1.(fN )∗[ω0] = ([η+] + [η−])2n−1.(eNh[η+] + e−Nh[η−])

=

[
2n−1∑
k=0

(
2n

k

)
[η+]k[η−]2n−1−k

]
.(eNh[η+] + e−Nh[η−])

=

[(
2n− 1

n− 1

)
[η+]n−1[η−]n +

(
2n− 1

n

)
[η+]n[η−]n−1

]
.(eNh[η+] + e−Nh[η−])

=

(
2n− 1

n− 1

)
eNh[η+]n[η−]n +

(
2n− 1

n

)
e−Nh[η+]n[η−]n, (3.3.2)
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and because
(2n−1
n−1

)
=
(2n−1

n

)
= 1

2

(2n
n

)
, we have

=
1

2

(
2n

n

)
(eNh + e−Nh)[η+]n[η−]n. (3.3.3)

(3.3.1) then applies to give

=
1

2
(eNh + e−Nh)[ω0]2n = cosh(Nh)[ω0]2n. (3.3.4)

We continue our discussion, now for [ωk]’s. Because [ωk]’s converge to [ω0] in coho-

mology, we see that [ωk]2n and [ωk]2n−1.(fN )∗[ωk] respectively converge to [ω0]2n and

[ω0]2n−1.(fN )∗[ω0]. That is, we have the following limit:

lim
k→∞

[ωk]2n−1.(fN )∗[ωk]− cosh(Nh)[ωk]2n = [ω0]2n−1.(fN )∗[ω0]− cosh(Nh)[ω0]2n

= 0,

where the last zero is the result of Proposition 3.3. If this is rewritten in the integral form,

and combined with the local computation in Proposition 3.2, we have

∫
X

 1

n

n∑
j=1

cosh
(
σ

(k)
j (x,Nh)

)ω2n
k − cosh(Nh)

∫
X
ω2n
k

k→∞−−−−→ 0. (3.3.5)

By Lemma 2.6, as we have ω2n
k = vol, (3.3.5) is equivalently written as

∫
X

 1

n

n∑
j=1

cosh
(
σ

(k)
j (x,Nh)

) dvol(x)
k→∞−−−−→ cosh(Nh). (3.3.6)
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3.4 Relation with Lyapunov Exponents

Although log-singular values σ(k)
i (x,Nh) come from analytic interests on forms (fN )∗ωk,

these quantities are closely related with Lyapunov exponents (cf. Lemma 2.8). In particular,

we have the following

Proposition 3.4. The log-singular values σ(k)
i (x,Nh)’s in (3.1.3) satisfy

1

N

n∑
j=1

∫
X
σ

(k)
j (x,Nh) dvol(x) ≥ 2

n∑
i=1

χi = nh. (3.4.1)

Consequently, we have

∫
X

 1

n

n∑
j=1

σ
(k)
j (x,Nh)

 dvol(x) ≥ Nh. (3.4.2)

We start by establish the following computational lemma to clear the potential confusion

caused by the definition of log-singular values.

Lemma 3.5. Endow the holomorphic tangent bundle T 1,0X with the metric ωk. Then

log
∥∥∥(Dxf

N )∧n
∥∥∥
op

=
1

2

(
σ

(k)
1 (x,Nh) + · · ·+ σ

(k)
n (x,Nh)

)
,

where the wedge is taken over C.

Proof. Fix a local coordinate (z1, . . . , z2n) as in (3.1.1) and (3.1.3). Denote

∂i :=
∂

∂zi
, ∂i :=

∂

∂zi
,

so that ∂i’s form a C-basis of T 1,0
x X. Let ‖·‖k,j be the norm notation for the metric (f j)∗ωk.
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Then one evaluates the operator norm as

‖(DxfN )∧n‖op = sup
v∈
∧n T 1,0

x X
v 6=0

‖(DxfN )∧n(v)‖k
‖v‖k

= sup
v∈
∧n T 1,0

x X
v 6=0

‖v‖k,N
‖v‖k,0

. (3.4.3)

By (3.1.3), we have

‖∂i‖k,N = eσ
(k)
i (x,Nh)/2, (3.4.4)

and by (3.1.1), we have ‖∂i‖k,0 = 1. Note also that the vectors ∂i’s are orthogonal at x,

with respect to the metrics ωk and (fN )∗ωk. Because σ(k)
i is decreasing in i, we see that

v = ∂1 ∧ · · · ∧ ∂n maximizes the fraction in (3.4.3). Hence we evaluate

‖(DxfN )∧n‖op =
‖∂1 ∧ · · · ∧ ∂n‖k,N
‖∂1 ∧ · · · ∧ ∂n‖k,0

=
exp

(
1
2

∑n
i=1 σ

(k)
i (x,Nh)

)
1

,

so taking the logarithm we have our claim.

Now we prove Proposition 3.4.

Proof. The quantity log
∥∥∥(Dxf

N )∧n
∥∥∥
op

gains the interest because of its relation with Lya-

punov exponents [Ruelle, 1979, §2.1]:

lim
N→∞

1

N
log ‖(DxfN )∧2n‖op = χ1 + · · ·+ χn =

nh

2
, (3.4.5)

for µ-a.e. x. Now setting

IN :=

∫
X

log ‖(DxfN )∧2n‖op dvol(x), (3.4.6)
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via Proposition 3.5, we have

IN =
1

2

∫
X

(σ
(k)
1 (x,Nh) + · · ·+ σ

(k)
n (x,Nh)) dvol(x). (3.4.7)

The intergrals 1
N IN ’s are having nonnegative integrands. Fatou’s Lemma

∫
lim inf fn ≤

lim inf
∫
fn thus applies, which induces the following from (3.4.5):

lim
N→∞

1

N
IN ≥

∫
X

lim
N→∞

1

N
log ‖(DxfN )∧2n‖op dvol(x)

=
nh

2
. (3.4.8)

Now the inequality ‖(DxfN+M )∧2n‖op ≤ ‖(DxfN )∧2n‖op · ‖(DfN (x)f
M )∧2n‖op induces

subadditivity IN+M ≤ IN + IM ; by Fekete’s Lemma Fekete [1923],

inf
N≥1

1

N
IN = lim

N→∞
1

N
IN , (3.4.9)

thus for any N , we have
1

N
IN ≥ lim

N→∞
1

N
IN ≥

nh

2
. (3.4.10)

This finishes the proof, thanks to (3.4.7).

3.5 Jensen’s Inequality and Log-singular Values at the Limit

Metric

Now we demonstrate how to combine (3.3.6) and Proposition 3.4. The trick is to use Jensen’s

inequality, combined with the (strong) convexity of the cosh function.

The upshot of this combination is a result on the log-singular values of the ‘limit metrics’

(fN )∗ω0, relative to ω0 (Corollary 3.7). By this, we get a simple local representations of

these metrics.
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Let B be a probability space, whose underlying space is (X \E)×{1, · · · , n}, and whose

probability measure is vol× ( 1
n#), where # is the counting measure. For (x, j) ∈ B, define

a random variable Σ(k) as Σ(k)(x, j) = σ
(k)
j (x,Nh).

Then (3.3.6) can be rewritten as

E[cosh(Σ(k))]− cosh(Nh)
k→∞−−−−→ 0, (3.5.1)

and (3.4.2) following Proposition 3.4 can be rewritten as

E[Σ(k)] ≥ Nh. (3.5.2)

To motivate what follows, we note that Jensen’s inequality applied to the convex func-

tion cosh gives: E[cosh(Σ(k))] ≥ cosh(E[Σ(k)]) ≥ cosh(Nh). Then (3.5.1) implies that the

inequality asymptotically collapses as k →∞. This observation is the root of the following

Proposition 3.6. As k →∞, the variance of Σ(k) is converging to 0, and the expected value

of Σ(k) is converging to Nh. That is,

∫
X

1

n

n∑
j=1

(
σ

(k)
j (x,Nh)−Nh

)2
dvol(x)

k→∞−−−−→ 0.

Proof. We start with an elementary inequality, which holds for any x, a ∈ R:

cosh(x) ≥ cosh(a) + sinh(a) · (x− a) +
1

2
(x− a)2. (3.5.3)

Apply x = Σ(k) and a = Nh into (3.5.3). Taking the average, we then get

E[cosh(Σ(k))] ≥ cosh(Nh) + sinh(Nh) ·
(
E[Σ(k)]−Nh

)
︸ ︷︷ ︸
≥0 by (3.5.2)

+
1

2
E[(Σ(k) −Nh)2]
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≥ cosh(Nh) +
1

2
E[(Σ(k) −Nh)2].

This implies

0 ≤ E[(Σ(k) −Nh)2] ≤ 2 ·
(
E[cosh(Σ(k))]− cosh(Nh)

)
k→∞−−−−→ 0,

where we have used the limit fact (3.5.1). This implies E[(Σ(k)−Nh)2]→ 0. Our proposition

restates this limit fact.

Passing to a subsequence of (ωk) if necessary, we further have that σ(k)
j (x,Nh) → Nh,

for vol-a.e. x.

The implication of Proposition 3.6 to the metric ω0, the Kähler metric onX\E introduced

in Lemma 2.6, is the following

Corollary 3.7. For each x ∈ X \ E, the log-singular values of (fN )∗ω0 relative to ω0 are

Nh and −Nh, counted n times respectively.

That is, for each x ∈ X \E, one can find a holomorphic coordinate (z1, · · · , z2n) in which

the following expressions hold in the tangent space at x.

ω0 =

√
−1

2

2n∑
i=1

dzi ∧ dzi, (3.5.4)

(fN )∗ω0 =

√
−1

2

n∑
µ=1

eNh dzµ ∧ dzµ + e−Nh dzn+µ ∧ dzn+µ. (3.5.5)

Proof. First, fix x ∈ X \ E in which σ(k)
j (x,Nh)→ Nh as k →∞.

As (ωk) → ω0 in C∞loc(X \ E) topology, focusing on the compact set {x, fN (x)}, we see

that the matrices
(
h

(k)
ij

)
(3.1.1) at x converge to the analogous matrix

(
hij
)
for ω0, at x.

As eigenvalues behave continuously with perturbing matrix [Kato, 1995, Theorem II.5.1],

this implies that the numbers exp
(
σ

(k)
j (x,Nh)

)
’s approximate eigenvalues of

(
hij
)
as well.
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Thanks to our assumption on x, this implies that
(
hij
)
has eigenvalues eNh and e−Nh,

counted n times for each.

Now to claim this for all x ∈ X \E, we note that ω0 is smooth; thus the matrices
(
hij
)

also vary smoothly with respect to x. As eigenvalues thus behaves continuously, we still have

the constant eigenvalues for all x ∈ X \ E.
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CHAPTER 4

STABLE AND UNSTABLE MANIFOLDS

The local expressions of (fN )∗ω0 and ω0 (Corollary 3.7) vividly shows that fN is expanding

and contracting along certain directions in a uniform rate. Technically, these directions

are dependent on the time N , but one can show that these directions are actually time

independent (Lemma 4.1). By this, we establish the uniform hyperbolicity (Proposition

4.2).

This is perhaps one of the rarest moment where one can describe Oseledets splitting (cf.

[Filip, 2019a, Theorem 2.2.6][Ruelle, 1979, Theorem 1.6]) without limits and thus can verify

that it is smooth. But we have a better trait: the distributions define holomorphic foliations

(Proposition 4.3). One can establish this using upper and lower estimates on the growth rate

of fN along stable or unstable distributions, which is typically more than what we know

even with uniformly hyperbolic settings.

4.1 Stable and Unstable Distributions

Corollary 3.7 tells that, for every point x ∈ X and N ∈ Z, there exists n-subspaces

E+
N,x, E

−
N,x ⊂ T

1,0
x X such that every v ∈ E±N,x has ((fN )∗ω0)x(v, v) = e±Nhω0,x(v, v).

We first show that these subspaces E±N,x are not dependent on N . This is essentially due

to that log-singular values of (fN )∗ω0 uniformly cumulates by ±h as we proceed N ; to have

the ‘optimal cumulation,’ we find that the directions that expands eNh in (fN )∗ω0 should

be also expanding e(N+1)h in (fN+1)∗ω0, and simliarly for contracting directions.

Lemma 4.1. Denote ‖·‖j for the norm associated to the metric (f j)∗ω0. For any x ∈ X \E

and N ∈ Z>0, define the following subsets E+N
x , E−Nx and subspaces F+N

x , F−Nx in the
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holomorphic tangent space T 1,0
x X:

E±Nx = {v ∈ T 1,0
x X : ‖v‖N = e±Nh/2‖v‖0}, (4.1.1)

F±Nx = {v ∈ T 1,0
x X : (fN )∗ω0(v, w) = e±Nhω0(v, w) ∀w ∈ TxX}. (4.1.2)

Then we have E+N
x = F+N

x = E+1
x = F+1

x and E−Nx = F−Nx = E−1
x = F−1

x for all N > 0

and x ∈ X \E. Furthermore, the distributions E±1 defined in these fashion are f -invariant,

i.e., Dxf(E±1
x ) = E±1

f(x)
, and have complex dimension n.

Proof. Fix N > 0. Fix a holomorphic coordinate (z1, · · · , z2n) at x that appears in the

conclusion of the Corollary 3.7. The corresponding holomorphic vectors will have shorthand

notations
∂

∂zi
=: ∂i.

Denote G+N
x for the (complex) span of the vectors ∂1, . . . , ∂n, and G−Nx for the span of the

vectors ∂n+1, . . . , ∂2n.

We first claim that E+N
x = F+N

x = G+N
x and E−Nx = F−Nx = G−Nx . We show F+N

x ⊂

E+N
x ⊂ G+N

x ⊂ F+N
x to establish the former; the latter can be dealt similarly.

• Let v ∈ F+N
x . In the identity (fN )∗ω0(v, w) = eNhω0(v, w), we plug in w = v. By

that we obtain ‖v‖2N = eNh‖v‖20, so v ∈ E
+N
x .

• Let v ∈ E+N
x . Decompose v = v+ +v− where v± ∈ G±Nx . Since both ω0 and (fN )∗ω0

view that G±Nx are orthogonal, we have

‖v‖2N = ‖v+‖2N + ‖v−‖2N .

By (3.5.5), we can directly evaluate ‖v±‖2N relative to ‖v±‖20 and obtain

= eNh‖v+‖20 + e−Nh‖v−‖20
30



= eNh‖v‖20 + (e−Nh − eNh)‖v−‖20. (4.1.3)

Thus if we have ‖v‖N = eNh/2‖v‖0, we necessarily have ‖v−‖0 = 0. Hence v = v+ ∈

G+N
x .

• Let v ∈ G+N
x . Then for any w+ ∈ G+N

x , we have

(fN )∗ω0(v, w+) = eNhω0(v, w+)

(by (3.5.5)). On the other hand, for any w− ∈ G−Nx , as this is orthogonal to G+N
x , we

have

(fN )∗ω0(v, w−) = 0 = eNhω0(v, w−).

These implies v ∈ F+N
x .

We note that, as G±Nx have dimensions n, so are E±Nx . Furthermore, by the equation

(4.1.3), we have an inequality

‖v‖N ≤ eNh/2‖v‖0, (4.1.4)

with equality holding if and only if v ∈ E+N
x .

It remains to show that E+N
x = E+1

x , for N > 1. Let v ∈ E+N
x . Then,

Nh

2
= log

‖v‖N
‖v‖0

= log
‖v‖N
‖v‖1

+ log
‖v‖1
‖v‖0

= log
‖f∗v‖N−1

‖f∗v‖0
+ log

‖v‖1
‖v‖0

≤ (N − 1)h

2
+
h

2
=
Nh

2
. (4.1.5)

In (4.1.5), we have used the inequality (4.1.4). Comparing two sides, we find that we have

the equality for (4.1.5). But then the equality condition of (4.1.4) tells that (a) v ∈ E+1
x and

(b) f∗v = Dxf(v) ∈ E+(N−1)
f(x)

. Therefore (a′) E+N
x ⊂ E+1

x and (b′) Dxf(E+N
x ) ⊂ E

+(N−1)
f(x)
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hold, which turn out to be equalities thanks to dimension comparisons. This establishes both

E+N
x = E+1

x for all N > 1 and the f -invariance.

That E−Nx = E−1
x and their f -invariance are shown in a similar way, but we need to

change (4.1.4) to ‖v‖0 ≤ eNh/2‖v‖N , with equality iff v ∈ E−Nx . A further change is

required for (4.1.5), this time focusing on Nh/2 = log(‖v‖0/‖v‖N ) whenever v ∈ E−Nx .

Denote E+, E− for distriutions E+1, E−1 in the above Lemma, respectively. They then

serve as unstable and stable distributions, respectively.

Proposition 4.2. We have the following operator norms, with respect to ω0:

‖DfN |E±‖op = e±Nh/2, and ‖Df−N |E±‖op = e∓Nh/2,

applied for any integer N ∈ Z. In particular, f is uniformly hyperbolic on X \ E, and E+,

E− respectively denotes unstable and stable distributions on X \ E.

Proof. We have shown that ‖DfN |E±‖op = e±Nh/2 in Lemma 4.1, for N > 0. It remains

to show the same identity for N < 0. As usual, for j ∈ Z, we denote ‖ · ‖j by the norm

associated to the metric (f j)∗ω0.

Fix N > 0. To estimate ‖Df−N |E±‖op, we pick up v ∈ E±x and estimate ‖v‖−N/‖v‖0.

Here, by definition of (f−N )∗ω0, we have

‖v‖−N
‖v‖0

=
‖f−N∗ v‖0
‖f−N∗ v‖N

=
1

e±Nh/2
= e∓Nh/2,

since f−N∗ v ∈ E±
f−N (x)

as well. This shows the claim.

The expression (4.1.2) shows that, E± are characterized by C∞ conditions (essentially

because ω0 is smooth). Therefore they are C∞ distributions. One can appropriately multiply

matrices for f∗ω0 and ω−1
0 to find explicit descriptions for C∞ vector field generators of them.
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4.2 Holomorphicity of the Stable Foliation

So far we have studied about the stable and unstable distributions, and concluded that they

are defined in a C∞ manner. What can be claimed furthermore is that, stable and unstable

foliations are actually holomorphic.

As shown in [Ghys, 1995, Lemma 2.1], each leaf of the foliations W± generated by E±

(respectively), are holomorphic manifolds. In particular, unstable vector fields are holomor-

phic along the unstable manifolds, and it thus remains to show its holomorphicity along the

transverse direction. (Similar claim may be made for stable vector fields.)

The trick is to use the Poincaré map, as described in [Mañé, 1987, §III.3]. For a generic

Poincaré map φ between local holomorphic unstable manifolds, we consider the commutator

[Dφ, I]:

[Dφ, I]x = Dxφ ◦ Ix − Iφ(x) ◦Dxφ.

If [Dφ, I] = 0 can be shown, then it shows that Poincaré maps are holomorphic, showing the

desired claim.

This goal setup is encoded in the following

Proposition 4.3. Let U,U ′ be unstable local manifolds, not intersecting with one another,

and close enough to induce a Poincaré map φ : U → U ′. Then [Dφ, I]x = 0, for all x ∈ U .

4.2.1 On a Foliated Chart

Fix a foliated chart (V,x), for both E±. This is possible because E± are both generated

by some C∞ vector fields. Now suppose x and φ(x) are in V . Then a neighborhood of

x ∈ U and φ(x) ∈ U ′ are laid along the coordinate directions for E−, and hence φ near x is

described as a coordinate shift. This concludes, Dφ is represented as an identity matrix on

(V,x).

The complex structure I is understood as a family of linear maps on real tangent spaces
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TR,yX → TR,yX. So if we fix coordinates, say the foliated coordinates on V , we have a

matrix representation Iy ∈ GL(4n,R) for each y ∈ V . Collecting these remarks, we conclude

as follows.

Lemma 4.4. Let U,U ′ be unstable local manifolds as in Proposition 4.3, and suppose x ∈ U

is such that x, φ(x) ∈ V . For the matrix representation {Iy}y∈V of the complex structure I

on V , we then have

[Dφ, I]x = Ix − Iφ(x). (4.2.1)

Furthermore, shrinking V if necessary, we assume that the family {Iy}y∈V satisfies the

Lipschitz condition, i.e.,

‖Ip − Iq‖ ≤ C · dist(p, q). (4.2.2)

4.2.2 From Ergodicity

Apparently, (V,x) is set on an arbitrary place of X, thus it is hard to expect x, φ(x) ∈ V

in most cases. We have shown that, in Proposition 2.7, the volume measure (which is the

Green measure) is ergodic with respect to f : X → X. We then claim the following.

Lemma 4.5. Let U,U ′ be unstable local manifolds as in Proposition 4.3. Then for vol-a.e.

x, there are infinitely many N such that fN (x), fNφ(x) ∈ V .

Proof. Let V ′ b V be a nonempty precompact open subset. Let ε = infy∈V ′ dist(y, ∂V ), a

positive number.

By the uniform contraction of E− along f , we have

distE−(fN (x), fNφ(x)) ≤ C(U,U ′, V ) · e−Nh/2distE−(x, φ(x)), (4.2.3)

where distE− is the distance measured along the stable leaves, and C(U,U ′, V ) > 0 is a

constant depending on U,U ′ and V . As dist(p, q) ≤ distE−(p, q), this implies that we have
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dist(fN (x), fNφ(x)) < ε for sufficiently large N ≥ N0. In particular, if fN (x) ∈ V ′,

N ≥ N0, then fN (x), fNφ(x) ∈ V .

Now because V ′ is a nonempty open set, it has a nonzero volume. Thanks to Birkhoff

ergodicity, we thus conclude that there are infinitely many N such that fN (x) ∈ V ′, for

vol-a.e. x. The lemma then follows.

4.2.3 Future Estimates

To show Proposition 4.3, we use the trick of ‘sending to the future,’ as commonly seen in

[Ghys, 1995, Theorem 2.2] and [Mañé, 1987, Theorem III.3.1]. The trick starts from the

following split:

[Dφ, I]x = DfNφ(x)f
−N ◦ [D(fNφf−N ), I]fN (x) ◦Dxf

N . (4.2.4)

We then estimate each factor: (Df−N |TfN (U ′)) = Df−N |E+, (DfN |TU) = DfN |E+,

and [D(fNφf−N ), I]. (Below, C1, C2 > 0 are constants that only depend on the Poincaré

map φ.)

• For Df−N |E+, we recall that Df−1 is (under ω0) uniformly contracting E+ with the

rate e−h/2. Applying such, we get

‖Df−N |E+‖ ≤ C1 · e−Nh/2. (4.2.5)

• For DfN |E+, we recall that Df is (under ω0) uniformly expanding E+ with the rate

eh/2. Applying such, we get

‖DfN |E+‖ ≤ C2 · eNh/2. (4.2.6)

• Finally, for [D(fNφf−N ), I], we pick N such that fN (x), fNφ(x) ∈ V , by Lemma 4.5.
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(Note that this may be done only for vol-a.e. x.)

Note that fNφf−N is a Poincaré map fN (U)→ fN (U ′). Thus Lemma 4.4 applies to

give,

∥∥∥[D(fNφf−N ), I]fN (x)

∥∥∥ =
∥∥∥IfN (x) − IfNφ(x)

∥∥∥
≤ C · dist(fN (x), fNφ(x)).

Via (4.2.3), we further estimate,

≤ C · distE−(fN (x), fNφ(x))

≤ C · e−Nh/2distE−(x, φ(x)). (4.2.7)

Combining all three estimates (4.2.5), (4.2.6), and (4.2.7), we obtain, in (4.2.4),

‖[Dφ, I]x‖ ≤ C1C2C · e−Nh/2distE−(x, φ(x)),

whenever N satisfies fN (x), fNφ(x) ∈ V . For vol-a.e. x, there are infinitely many such

N ’s; sending N → ∞, we have [Dφ, I]x = 0, vol-a.e. x. Appealing to the continuity of

x 7→ [Dφ, I]x, we prove the Proposition 4.3.

4.3 Flatness

Thanks to the holomorphicity of stable and unstable foliations, we have the following flatness

result. This serves as a key ingredient to infer that the initial manifold X is induced from a

torus.

We note here that the proof below can be applied to shorten some known arguments for

K3 surfaces, e.g., [Filip and Tosatti, 2021, Proposition 3.2.1].
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Proposition 4.6. The metric ω0 on X \ E is flat.

Proof. Because E+, and by a likewise proof with time sent backwards, E−, are all holomor-

phic, a standard differential geometry trick builds a holomorphic coordinate (w1, · · · , w2n)

such that

• E+ =
⋂n
i=1 ker(dwi), and

• E− =
⋂2n
j=n+1 ker(dwj).

Moreover, it is easy to check that E− and E+ are orthogonal under ω0, as follows. For

v ∈ E− and w ∈ E+, we get

e−hω0(v, w) = f∗ω0(v, w) = −f∗ω0(w, v) = −ehω0(w, v) = ehω0(v, w),

and thus ω0(v, w) = 0. Therefore, one can re-write ω0 as

ω0 =

√
−1

2

 n∑
i,j=1

aij dwi ∧ dwj +
2n∑

k,`=n+1

bk` dwk ∧ dw`

 ,
with some positive-definite matrix-valued functions (aij) and (bk`).

That dω0 = 0 then implies, wn+1, wn+1, · · · , w2n, w2n-derivatives of aij shall vanish and

w1, w1, · · · , wn, wn-derivatives of bk` shall vanish. Consequently, ω0 is split completely into:

ω0 =

√
−1

2
ω−0 (w1, · · · , wn) +

√
−1

2
ω+

0 (wn+1, · · · , w2n).

In short, the metric ω0 decomposes as ω0 = ω−0 × ω
+
0 (locally). Now consider the Levi-

Civita connection ∇ of the metric ω0. This connection satisfies the followings:

1. ∇Ω = 0. As ωk’s satisfy this, and ∇Ω = 0 is expressed with Christoffel symbols of the

metric, that ωk → ω0 in C∞loc certifies this for ω0 as well.
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2. ∇E+ ⊂ E+ and ∇E− ⊂ E−. This follows from the local product structure of ω0 =

ω−0 × ω
+
0 , where each ω±0 is supported on E±, respectively.

3. For vector fields Z+ on E+ and Z− on E−, the following holds:

∇Z−Z
+ = p+([Z−, Z+]),

∇Z+Z− = p−([Z+, Z−]),

where p± denotes the parallel projections E− ⊕ E+ → E±. This follows from the

torsion-free property [Z−, Z+] = ∇Z−Z+ − ∇Z+Z−, as well as ∇E± ⊂ E± verified

above.

According to [Benoist et al., 1992, Lemme 3.4.4], connections satisfying all three above

are unique. Now by the proof of [Benoist et al., 1992, Lemme 2.2.3(b)], we get that ∇ is a

flat connection, i.e., ω0 itself is flat on X \ E. (The cited theorems are all local, thus the

non-compact nature of X \ E does not matter here.)
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CHAPTER 5

THE KUMMER RIGIDITY

In this chapter, we prove Theorem 1.1, collecting the ingredients that we have collected so

far. At Proposition 4.6, we have shown that for a singular metric ω0 on X, it is flat on its

non-singular locus. Thus if we can contract the singular locus and view X as a flat manifold

with some singularities, perhaps this will let us to say that X is a torus, or at least something

close to that.

It is the contraction construction that have required projectivity assumption. If we have

X projective, then there is an algebro-geometric construction which admits us to contract

the null locus E. Then the contracted X gives rise to a variety Y which is flat outside its

singularity, which must be a torus quotient (cf. [Greb et al., 2016, Corollary 1.16][Claudon

et al., 2020, Theorem D]). By that we show that X is desingularization of Y and f : X → X

is induced from a linear map.

5.1 Normal Varieties which are Torus Quotients

The following is a consequence of [Greb et al., 2016, Corollary 1.16].

Theorem 5.1. Suppose Y is a normal complex projective variety that has klt singularities.

If T |Yreg is a flat (in the analytic sense), then Y is a quotient of a complex torus by a finite

group acting freely in codimension one.

Proof. Apply [Greb et al., 2016, Corollary 1.16] to the klt pair (Y,∅). As Y is projective,

there exists an abelian variety T and a finite Galois morphism π : T → Y that is étale in

codimension 1. That is, there exsits a finite group Γ ⊂ Aut(T) such that π is the quotient

morphism T→ T/Γ = Y (cf. [Greb et al., 2016, Definition 3.6]).

In the followings, we introduce the normal space Y to plug in the above Theorem 5.1.

Morally, it is constructed by contracting E ⊂ X by a contraction φ : X → Y , and the
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construction of this requires X to be projective (which is also the only place that we use

projectivity).

Remark. A recent result [Claudon et al., 2020, Theorem D] gives rise to a generalization

of [Greb et al., 2016, Corollary 1.16], applicable for compact Kähler normal complex spaces

with klt singluarities (i.e., drops the projectivity assumption). Thus Theorem 5.1 may be

extended to the case of a non-projective Y . Nonetheless, we still need X to be projective

for constructing Y , in this paper.

5.2 Construction of the Contraction

This section is aimed to prove the following

Proposition 5.2. There exists a contraction φ : X → Y in which Y is a normal projec-

tive variety, and its regular locus Yreg is the image of X \ E. Moreover, Y has canonical

singularities, and has a Kähler current φ∗ω0 on Yreg that is a flat metric on Yreg.

The proof of this fact extensively uses the fact that X is projective. As a preparation,

we first show that the eigenclasses [η+] and [η−] are in fact (1, 1)-classes of nef Cartier R-

divisors. Appealing to the projectivity of X, fix an ample class [A]. Then by Proposition

2.4(d), as n→∞,

λ−n

2q([A], [η−])
(fn)∗[A]→ [η+];

λ−n

2q([A], [η+])
(f−n)∗[A]→ [η−].

Therefore, α = [η+] + [η−] is also (the class of) a Cartier R-divisor, which is big and

nef. Note that α is not ample; otherwise, then its null locus E = ∅, and by Proposition

4.6, we have X a compact flat manifold. The only such manifolds are tori Bieberbach

[1911]Bieberbach [1912], which contradicts to that X is simply connected.

The first step of proving Proposition 5.2 is to construct the contraction φ. This is
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essentially done by [Boucksom et al., 2014, Theorem A], but generalized to R-Cartier classes.

We present it in the following

Lemma 5.3. Let α be the (1, 1)-class of a big and nef Cartier R-divisor, and E be its null

locus Collins and Tosatti [2015]. Then one can construct a contraction φ : X → Y in which

X \E is the maximal Zariski open subset in which φ maps it isomorphically onto its image.

(That is, E = Exc(φ).)

Proof. Denote Amp(X) and Big(X) for the cone of (1, 1)-classes of ample and big Cartier

R-divisors, respectively. By Kawamata’s Rational Polyhedral Theorem [Kawamata, 1988,

Theorem 5.7], the face F of the cone Big(X) ∩ Amp(X) in which α lies on, is represented

by a rational linear equation. Consequently, one can write α =
∑

finite aic1(Li) where each

ci > 0 and each Li is a big and nef line bundle in which c1(Li) ∈ F .

Because each Li is big and nef, by basepoint-free theorems [Birkar et al., 2010, Theorem

3.9.1][Kawamata, 1988, Theorem 1.3], it is semiample. Because all Li’s lie on the same face

of the big and nef cone Big(X) ∩ Amp(X), the images of the morphism

ΦmLi : X → PH0(X,mLi)

are isomorphic to each other, when m� 0 (cf. [Kawamata et al., 1987, Definition 3-2-3]).

For each Li, denote its augmented base loci as Ei, denote the image of ΦmLi as Yi, and

the restriction φi := ΦmLi |Yi.

We claim that Ei = Ej . Fix an isomorphism ψ : Yi → Yj in which ψ ◦ φi = φj . By

[Boucksom et al., 2014, Theorem A], the complement X \ Ei of the locus is characterized

as the maximal Zariski open subset in which ΦmLi isomorphically sends the subset into its

image. Composing ψ to ΦmLi , we thus see that X \Ei is sent isomorphically into its image

via ΦmLj . Consequently, X \ Ei ⊂ X \ Ej . Arguing symmetrically, we have the claim.

Fix a bundle Li and denote φ := φi. An upshot of the above paragraph is, φ is a contrac-
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tion in which X \ Ei is the maximal Zariski open subset in which φ maps it isomorphically

onto its image.

We claim that E = Ei. Let L =
∑
Li. Denote E′ for the augmented base locus of L.

Then we have (i) E′ = Ei, by the same token of showing Ei = Ej , and (ii) E′ ⊂ E ⊂ Ei, by

the followings. (By [Collins and Tosatti, 2015, Corollary 1.2], it suffices to compare the null

loci.)

(E ⊂ Ei) Fix any subvariety V ⊂ X in which
∫
V α

dimV = 0. By α =
∑
aic1(Li) and as

the multinomial theorem gives nonnegative terms, we obtain
∫
V c1(Li)

dimV = 0. Thus

V ⊂ Ei, and E ⊂ Ei follows.

(E′ ⊂ E) For any subvariety V ⊂ X in which
∫
V (
∑
c1(Li))

dimV = 0, expand it with

the multinomial theorem with nonnegative terms, to have
∫
V

∏
c1(Li)

ei = 0, when-

ever
∑
ei = dimV . As α =

∑
aic1(Li), again by multinomial theorem, we have∫

V α
dimV = 0. This shows E′ ⊂ E.

Combining (i) and (ii) we have E = Ei, as required.

Define the exceptional set Exc(φ) as the minimal Zariski closed subset E′ ⊂ X in which

X \ E′ is mapped isomorphically onto its image by φ. By what is stated in Lemma 5.3,

E = Exc(φ) is thus just the definition. This set is, by inverse function theorem, same as the

set of x ∈ X in which Dxφ is invertible.

Proof of Proposition 5.2. Construct the contraction map φ : X → Y by Lemma 5.3, for

α = [η+] + [η−]. Then Yreg = φ(X \ Exc(φ)) = φ(X \ E) follows.

Recall that there is a flat metric ω0 on X \ E (Proposition 5.1). Pushforwarding this to

Yreg, we have a Kähler current φ∗ω0 which is also a flat metric, on Yreg.

To see why Y has canonical singularities, we use the remark in [Wierzba, 2003, Remark

1]. As φ is a hyperkähler resolution, φ is crepant, i.e., φ∗KY = KX .
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5.3 Proof of the Kummer Rigidity

What was claimed about Y in Proposition 5.2 additionally yields that T |Yreg is flat, hence

the hypotheses of the Theorem 5.1 above are met. Indeed, the metric φ∗ω0|Yreg produces a

flat connection on T |Yreg.

Therefore Y is a torus quotient; that is, there exists a complex torus T = C2n/Λ and a

finite group of toral isomorphisms Γ in which Y = T/Γ.

To show that f is induced from a hyperbolic linear transform, recall that φ isomorphically

sends X \ E to Yreg. Conjugating f |X\E via φ, we then have a map f̃ : Yreg → Y . This f̃

lifts to a rational map T 99K T, defined in codimension 1. The only such map is affine-linear

[Lo Bianco, 2017, Lemma 1.25], and this descends down to a morphism f̃ : Y → Y . This

verifies the desired classification of f , and finishes the proof of Theorem 1.1.
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Part II

Vieta Involutions on Tropical Markov

Cubics



CHAPTER 6

INTRODUCTION

The second part of this thesis will be devoted to a study of algebraic dynamics on Markov

cubic surfaces. The focus will be on the family of affine surfaces

SABCD : X2
1 +X2

2 +X2
3 +X1X2X3 = AX1 +BX2 + CX3 +D,

where A,B,C and D are fixed parameters. In particular, the case where these surfaces are

defined over a non-archimedean field K will be of interest, so that our parameters A,B,C

and D are in K.

One context in which these (algebraic) surfaces arise naturally is in the character varieties

of 1-punctured torus or 4-punctured sphere, which are (real) surfaces whose fundamental

group is a free group of rank two or three. The geometric background of this is discussed in

Goldman Goldman [2003], Cantat & Loray Cantat and Loray [2009] (see also [Cantat, 2009,

§2]), and Rebelo & Roeder [Rebelo and Roeder, 2021, §2.3]. The works listed above also

discuss the complex dynamical aspect of algebraic automorphisms on Markov cubics.

Markov surfaces SABCD, viewed as character varieties, have a natural PGL2(Z)-action.

Moreover, for the ‘congruence subgroup of level 2’ Γ = ker(PGL2(Z) � PGL2(Z/2Z)) ≤

PGL2(Z), one can easily describe the algebraic action by Γ concretely. If one looks closely at

the formula of the surface SABCD in question, one can see that they are written as quadratic

equations for each variable X1, X2, and X3. Thus, it is natural to think of involutions that

interchange the roots of each quadratic equations (after fixing the other variables). These

generators can be called Vieta involutions, as they come from Vieta relations. The group

they generate can be called the Vieta group. This group is, as abstract groups, isomorphic to

the 3-fold free product (Z/2Z)∗3 of the group of order 2, by a theorem of Èl′-Huti Èl′-Huti

[1974].
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The results of Spalding & Veselov Spalding and Veselov [2020] and Filip Filip [2019b]

put the Vieta group action in a tropical perspective. Specifically, they compare the Vieta

group action on the Cayley cubic S0004 to the toral linear actions of Γ (the congruence

subgroup mentioned above). It is interesting to note that the matrices seen in the toral

linear action [Filip, 2019b, Proposition 6.1.2] are the same matrices that Γ ≤ PGL2(Z) acts

on the character variety [Cantat, 2009, §2.4]. Additionally, another work by Spalding &

Veselov Spalding and Veselov [2017] describes the Lyapunov spectrum of the Vieta group

action on the Cayley cubic S0004, relating the infinite walk in Γ to a corresponding continued

fraction.

In this part, we will extend the tropical perspective and analyze the actions of Vieta

involutions on a surface SABCD defined over a non-archimedean field. If at least one of the

parameters has a negative valuation, then this action will be found to have a dense open

invariant set that conjugates to the hyperbolic reflection group on the hyperbolic plane H2.

Otherwise, after some radial projections, we still have a trace of hyperbolic reflections but on

the boundary ∂H2 of the hyperbolic plane. The goal of this part is to establish the results,

with further information that helps us to understand how the conjugacy above works on the

tropicalization of the surface SABCD.

Outline of the Part This part consists of the following chapters. Chapter 7 introduces

the origin of the Markov cubics SABCD in the study of character varieties and introduces the

Vieta involutions of it. Chapter 8 lists some preliminary knowledge on the tropicalization.

Chapter 9 discusses the ‘skeleton’ of the surface SABCD, which is a subset of the tropi-

calization that is canonically determined by the variety. Chapter 10 then starts a detailed

description of the Vieta involution on a single skeleton. Chapter 11 discusses the two modes

of Vieta involutions on skeleta, which are determined by the valuations of the parameters.

This is a chapter that establishes the main comparison results. Chapter 12 discusses what

happens to the complement of the open set that corresponds to the hyperbolic plane; this
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turns out to be a countable union of rays in the skeleton.
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CHAPTER 7

MARKOV CUBIC SURFACE

In this chapter, we introduce the Markov cubic surface

SABCD : X2
1 +X2

2 +X2
3 +X1X2X3 = AX1 +BX2 + CX3 +D,

in the context of character varieties of the 4-punctured 2-sphere. We then study the poly-

nomial automorphisms on this variety, which is virtually generated by Vieta involutions.

7.1 Character Variety of the 4-punctured 2-sphere

We follow Cantat [2009] for this and the next section. Let S2
4 be the four punctured sphere,

whose fundamental group is a free group of rank 3,

π = π1(S2
4) = 〈α, β, γ, δ | αβγδ = 1〉.

Here, the homotopy classes α, . . . , δ correspond to loops around the puncture. Let Rep(S2
4)

be the set of representations of π into SL2(C), which can be identified with Cartesian product

of three SL2(C)’s, thus an algebraic variety.

Associated to each ρ ∈ Rep(S2
4), we consider the following traces:

a = tr(ρ(α)) ; b = tr(ρ(β)) ; c = tr(ρ(γ)) ; d = tr(ρ(δ))

x = tr(ρ(αβ)) ; y = tr(ρ(βγ)) ; z = tr(ρ(γα)).

These traces define a polynomial map χ : Rep(S2
4) → C7 by χ(ρ) = (a, b, c, d, x, y, z). By

postcomposing a SL2(C)-conjugation ig(x) = gxg−1 : SL2(C) �, we find χ is conjugate

invariant, i.e., χ(ig ◦ ρ) = χ(ρ).
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It turns out that the algebra of polynomial functions on Rep(S2
4) invariant under SL2(C)-

conjugations is generated by components of χ, i.e., by variables a, b, c, d, x, y, z. These vari-

ables are not algebraically independent but rather satisfies a quartic relation

x2 + y2 + z2 + xyz = Ax+By + Cz +D,

where
A = ab+ cd, B = ad+ bc, C = ac+ bd,

D = 4− a2 − b2 − c2 − d2 − abcd.

We thus observe that SABCD is the equation for the algebraic quotient Rep(S2
4)//SL2(C),

denoted χ(S2
4), of Rep(S2

4) modulo the SL2(C)-conjugacy action. This quotient is called the

character variety of S2
4.

7.2 Mapping Class Group Actions

Next, we consider the (extended) mapping class group Mod±(S2
4) of S2

4. That is, we think

the group Homeo±(S2
4) of homeomorphismsi on the sphere S2 that preserves 4 puncture

points (but may permute the points within), and consider Mod±(S2
4) = π0(Homeo±(S2

4)) the

group of isotopy classes of such homeomorphisms. Because S2
4 is a K(π, 1)-space, one has

a natural homomorphism Mod±(S2
4)→ Out(π) which is an isomorphism, by Dehn–Nielson–

Baer theorem [Farb and Margalit, 2012, §8.1].

This extended mapping class group Mod±(S2
4) acts on the character variety χ(S2

4). Al-

gebraically speaking, this is induced from precomposing group automorphisms Aut(π), i.e.,

g.ρ = ρ ◦ g−1. However, as

ρ(ηxη−1) = (iρ(η) ◦ ρ)(x),

we factor out inner automorphisms and hence obtain the (left) action of the outer automor-

i. possibly orientation-reserving
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phism group Out(π) = Aut(π)/Inn(π) on χ(S2
4).

There is no reason for Out(π) to preserve the fibers of the projection (a, b, c, d, x, y, z) 7→

(a, b, c, d), i.e., the individual surface SABCD. However, one can find a subgroup Γ of Out(π)

whose action preserves each fiber, i.e., each SABCD.

To describe the copy, we first find a copy of PGL2(Z) within Out(π). Recall the antipodal

map σ : T = R2/Z2 �, σ(x, y) = (−x,−y) and its quotient T/σ = S2(2, 2, 2, 2). Removing

the ramified points we obtain the surface S2
4. The natural GL2(Z)-action on T then induces

the natural PGL2(Z)-action on T/σ which preserves the set of ramified points. Hence each

element of PGL2(Z) defines a mapping class in S2
4, in fact injectively.

Let Γ be the kernel of the projection PGL2(Z) � PGL2(Z/2Z). On the torus, this Γ

fixes each fixed point of σ. Consequently, Γ preserves the fibers, i.e., individual surfaces

SABCD through the action Out(π) y χ(S2
4).

7.3 Vieta Involutions

Although the description of Γ y SABCD was rather topological, one can describe this action

algebraically by the following Vieta involutions.

If one observes the formula of SABCD, one observes that it is a monoic quadratic equation

of each Xi’s. For instance, in X1, we rewrite

X2
1 + (X2X3 − A)X1 + (X2

2 +X2
3 −BX2 − CX3 −D) = 0

to describe the surface SABCD. If we consider flipping the quadratic roots X1 = . . . of this

polynoimal equation, we obtain an involution

s1(X1, X2, X3) = (−X1 −X2X3 + A,X2, X3)

=

(
X2

2 +X2
3 −BX2 − CX3 −D

X1
, X2, X3

)
.
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Likewise, we can write involutions corresponding to variables X2 and X3 as follows:

s2(X1, X2, X3) = (X1,−X2 −X1X3 +B,X3)

=

(
X1,

X2
1 +X2

3 − AX1 − CX3 −D
X2

, X3

)
,

s3(X1, X2, X3) = (X1, X2,−X3 −X1X2 + C)

=

(
X1, X2,

X2
1 +X2

2 − AX1 −BX2 −D
X3

)
.

These algebraic automorphisms on SABCD will be called the Vieta involutions.

By [Cantat and Loray, 2009, §2], one can explicitly find elements of Γ that corresponds

to each Vieta involution. So s1, s2, s3 ∈ Γ are written as

s1 =

−1 2

0 1

 , s2 =

1 0

2 −1

 , s3 =

1 0

0 −1

 .
Furthermore, the group Γ is generated by s1, s2, s3 and forms a finite-index ≤ 24 subgroup of

algebraic automorphisms Aut(SABCD) [Cantat and Loray, 2009, Theorem 3.1]. Furthermore,

as an abstract group, Γ is isomorphic to the free product (Z/2Z)∗3 (loc. cit.).

Hence studying the Vieta group Γ = 〈s1, s2, s3〉 action on SABCD virtually gives infor-

mation (i.e., gives a finite-indexed information) on all algebraic actions of SABCD. This

describes our primary object of study.
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CHAPTER 8

TROPICALIZATION

This chapter is to provide a minimal information required to understand the tropicalization

trick. Because of that nature, the introduction here is by no means capturing all the essential

theory; one should consult to standard texts like Maclagan and Sturmfels [2015] or Brugallé

et al. [2015] for further information.

The tropicalization convention that we will use here is the ‘minimum’ convention, follow-

ing Maclagan and Sturmfels [2015]. This means we are using tropical semiring operations

x⊕ y = min(x, y),

x⊗ y = x+ y

in the discussions below.

8.1 The Idea of Tropicalizations

One way to describe the idea of tropicalization is to find points of a complex (algebraic) vari-

ety in an approximate way. To elaborate, suppose V = V (F ) ⊂ Ad is an affine hypersurface

over C, given by an polynomial equation F (X1, . . . , Xd) = 0. Write F (X) =
∑
α cαX

α to

get an access to the coefficients of F .

Instead of finding C-points of V precisely, we rather model the asymptotics of a C-point

(X1, . . . , Xd) ∈ V (C) as Xi = txi , where 0 < t < 1. Likewise, we model the coefficients as

cα = tvα . (Morally, the exponents xi’s and vα’s are complex numbers. But as we are only

interested in the asymptotics, only real parts of them are gaining attention; so we abuse the

notations to denote xi, vα for the real parts of xi, vα, etc.) We then seek for a necessary

condition for F (X) = 0 to hold under this model.

52



By X = txi and cα = tvα , we have F (X) =
∑
α t

vα+α·x, where α ·x = α1x1 + · · ·+αdxd.

As 0 < t < 1, |F (X)| is O(tη), where η = minα(vα + α · x). We see if this upper bound also

works as a lower bound.

Suppose α0 is one of the index α such that η = vα+α ·x. If α0 is the only index enjoying

the property, then by triangle inequality we have

|F (X)| ≥ tη −
∑
α 6=α0

tvα+α·x

≥ tη − (N − 1) · tµ,

where µ = minα 6=α0(vα + α · x) and N is the number of nonzero terms that F has. Since

η < µ, for t � 1 sufficiently small we have tη − (N − 1)tµ > 0, concluding that F (X) 6= 0

for t small enough.

By this we observe that, under our asymptotic setups, F (X) = 0 implies that the mini-

mum minα(vα + α · x) is attained by two or more indices α. Define

V (trop(F )) = {x ∈ Rd : min
α

(vα + α · x) is attained by two or more indices α}.

Then what we have observed suggests the following. For any C-point (X1, . . . , Xd) ∈ V (C)

set (x1, . . . , xd) = (logt |x1|, . . . , logt |xd|). Then we have (x1, . . . , xd) in a small neighbor-

hood of V (trop(F )), which will shirnk to V (trop(F )) as t → 0+. Given this necessary

condition, we see that V (trop(F )) is an encoding of the scales of C-points, possibly with

some extranous points.

What is stated below is to rigorously establish the sketch above. With the language to be

introduced below, what we have done is to find the set of valuations of K = C((t∗))-points

in a hypersurface F = 0 defined over K. It turns out that, by Kapranov’s Theorem 8.12,

the closure of such valuations coincides with V (trop(F )) defined above.
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8.2 Non-Archimedean Field

Definition 8.1 (Non-archimedean field). By a valued field, we mean a pair (K, val) of a

field K and a function val : K → R ∪ {+∞}, called a valuation, that satisfies the following

axioms.

(i) For all x ∈ K, val(x) = +∞ if and only if x = 0.

(ii) For all x, y ∈ K, val(xy) = val(x) + val(y).

(iii) For all x, y ∈ K, val(x+ y) ≥ min(val(x), val(y)).

(iv) If val(x) 6= val(y), then val(x+ y) = min(val(x), val(y)).i

We say the valued field (K, val) is nontrivially valued or non-archimedean if there exists

t ∈ K such that val(t) 6= 0,+∞.

We conventionally use just K when its valuation val is clear. Now given a valued field

(K, val) and a real q > 1, we define the absolute value by val as |x| = q− val(x) (note the

sign in the exponent). This absolute value satisfies |x| = 0 iff x = 0, |xy| = |x| · |y|, but

also |x + y| ≤ max(|x|, |y|). The latter inequality is called the ultrametric inequality and

distinguishes K with other fields with absolute values, e.g., R or C.

For a non-archimedean field K, that | ± 1| = 1 is immediate from multiplicativity. But

by the ultrametric inequality, for any positive integer n ∈ Z>0 we have

|n| = |1 + 1 + · · ·+ 1|︸ ︷︷ ︸
n 1’s

≤ max(|1|, . . . , |1|) = 1.

Therefore the field K satisfies |n| ≤ 1 for all integer n. This gives us an exact opposite to

the archimedean properties on R or C, justifying the name ‘non-archimedean.’

i. It is known that this axiom follows from other three axioms (see, e.g., [Perez-Garcia and Schikhof,
2010, p. 3]). However, we mention this as an axiom, as it will be frequently used in computations.
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Example 8.2 (Trivial valuation). Let K be any field, perhaps with positive characteristic.

The valuation

val0(x) =


0 (x 6= 0),

+∞ (x = 0)

satisfies all the axioms in Definition 8.1 and hence makes (K, val) a valued field.

This means that the usual archimedean fields like R can be viewed as a valued field. So

to avoid potential confusions, we restrict non-archimedean fields (K, val) to have a valuation

val which is not the trivial one val0. This setup turns out to be more useful in the study of

tropicalizations.

There are two examples of non-archimedean fields that we will keep in mind throughout.

Example 8.3 (p-adic fields). Consider the absolute valuation valp on Q given as follows.

(i) For zero, set valp(0) := +∞.

(ii) For a positive integer n ∈ Z>0, v = valp(n) ∈ Z≥0 is a nonnegative integer such that

pv divides n but pv+1 does not.

(iii) For any rational number a/b ∈ Q in a reduced form, we define valp(a/b) = valp(|a|)−

valp(|b|).

This well-defines a function valp : Q → Z ∪ {+∞}, called the p-adic valuation of Q. The

induced norm |x|p = p− valp(x) is called the p-adic norm on Q.

By the p-adic valuation, we have (Q, valp) already a non-archimedean field, which is not

metric complete with respect to the p-adic norm. But interestingly, if we make a metric

completion on Q then we have the field of p-adic numbers Qp which still gives a non-

archimedean field.

One can further extend this p-adic valuation to the algebraic closure Qp of Qp. The

closure is, however, not complete with respect to the p-adic norm, which makes us to consider
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the further metric completion Q̂p =: Cp. This field Cp is still algebraically closed, giving our

first example of a non-archimedean field (Cp, valp) which is algebraically closed and metric

complete. See [Koblitz, 1984, §III.3-4] for further details.

Example 8.4 (Formal/Convergent Puiseux series). Recall the field C((t)) of formal Laurent

series over C. For an element f(t) =
∑
j≥j0 cjt

j ∈ C((t)), we define its valuation val(f(t))

as

val(f(t)) = inf{j ≥ j0 : cj 6= 0},

i.e., the least exponent with nonzero coefficients. Here, we conventionally think inf ∅ = +∞

to have val(0) = +∞. Then (C((t)), val) is a non-archimedean field.

Although the non-archimedean field C((t)) is metric complete, it is not algebraically

closed; even the simplest equation xn − t = 0 does not have a solution in C((t)). But if we

adjoin the solutions and build a field K =
⋃
n≥1 C((t1/n)), then we have an algebraically

closed field [Serre, 1979, §IV.2, Proposition 8][Maclagan and Sturmfels, 2015, Theorem 2.1.5].

This field K is called the field of (formal) Puiseux series in t, denoted C((t∗)) (following

Ruiz [1993]). Elements of C((t∗)) are formal series of the form g(t) =
∑
m≥m0

cmt
m/n. The

valuation val(g(t)) is defined to be

val(g(t)) = inf{m/n : cm 6= 0},

which gives a non-archimedean field (C((t∗)), val). Unfortunately, the field C((t∗)) is not

metric complete.

The field of Puiseux series has an interesting subfield, the field of convergent Puiseux

series. Say a Puiseux series f(t) =
∑
m≥m0

cmt
m/n ∈ C((t∗)) is convergent if the ordinary

power series
∑
m≥0 cmz

m has a positive radius of convergence (equivalently, lim sup
m→∞

|cm|1/m <

∞). Denote the field of convergent Puiseux series as C({t∗}) ⊂ C((t∗)). Then this field is

non-archimedean and algebraically closed [Ruiz, 1993, §III, Proposition 4.4]. This field can
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be also viewed as the algebraic closure of the field of germs of meromorphic functions at

t = 0, giving a bridge to complex analysis.

8.3 Value Group

Definition 8.5 (Value group). The additive subgroup Γval = val(K×) ⊂ R is called the

value group of (K, val).

Notice that Γval = {0} if and only if v is a trivial valuation on K.

Remark. A more abstract account to valued field requires the valuations to be a group ho-

momorphism val : (K×, ·)→ (Γ,+), where (Γ,+) is an ordered abelian group. Nonetheless,

as long as Γ has cardinality at most the continuum 2ℵ0 , one can find an order-preserving

group monomorphism (Γ,+) ↪→ (R,+) [Rudin, 1962, Theorem 8.1.2]. So practically, setting

Γ ⊂ R is sufficient for our purpose.

Proposition 8.6. Suppose a valued field (K, val) is algebraically closed. Then the value

group Γval is divisible. That is, for every g ∈ Γval and n ∈ Z>0 we have h ∈ Γval such that

n.h = g.

Proof. Let g = val(x) for some x ∈ K×. For a solution y ∈ K of yn = x, we clearly have

n. val(y) = val(x) = g. Set h = val(y).

In particular, Γval must have a copy of Q if Γval 6= {0}. This derives the following

Corollary 8.7. An algebraicaly closed non-archimedean field (K, val) has a dense value

group Γval ⊂ R.

8.4 Tropicalization of a Hypersurface

Let (K, val) be an algebraically closed non-archimedean field. Suppose F (X1, . . . , Xd) ∈

K[X±1
1 , . . . , X±1

d ] is a Laurent polynomial. Write, in multiindex notations, F (X1, . . . , Xd) =
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∑
α cαX

α, where α = (α1, . . . , αd) ∈ Zd, Xα = Xα1
1 · · ·X

αd
d , and cα = 0 for all but finitely

many α ∈ Zd’s.

Consider the hypersurface V ⊂ Gdm in the algebraic torus Gdm defined by the equation

F (X1, . . . , Xd) = 0. We assume that V is not void, i.e., there is a K-point (Z1, . . . , Zd) ∈

V (K) such that Zi 6= 0 for all i = 1, . . . , d. (Equivalently, F (X) is not a monomial.) Given

a hypersurface, or more generally a variety, in the algebraic torus defined by a Laurent

polynomial, there are some ways to define the tropicalization of V .

8.4.1 Tropicalization by Values

Definition 8.8 (Value Tropicalization). Let V ⊂ Gdm be a variety in the algebraic torus.

Consider the subset

val(V (K)) = {(val(Z1), . . . , val(Zd)) ∈ Rd : (Z1, . . . , Zd) ∈ V (K) ∩ (K×)d}

of Rd. We will call its (Euclidean) closure val(V (K)) =: Trop(V ) the value tropicalization

of V .

That is, Trop(V ) collects valuation vectors ∈ Γdval ⊂ Rd for K-points of V , together with

limit points of these vectors. Taking closure would be a natural decision to make, because

Γdval ⊂ Rd is dense.

Remark. The term ‘value tropicalization’ is not standard and meant to be a temporal term

to introduce distinct ways to tropicalize a variety.

8.4.2 Tropicalization by that of Polynomials

Definition 8.9 (Tropicalization of a Laurent Polynomial). Suppose F (X) =
∑
α cαX

d ∈

K[X±1
1 , . . . , X±1

d ] is a nonzero Laurent polynomial. Define its tropicalization as a function
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trop(F ) : Rd → R,

trop(F )(x1, . . . , xd) = min
α

(val(cα) + α · (x1, . . . , xd))

= min
α

val(cα) +
d∑
i=1

αixi

 .

Note that cα = 0 for all but finitely many α, so val(cα) = +∞ for all but finitely many

α. Consequently, trop(F ) find the minimum over a finite set.

The expression val(cα) + α · x is called the tropical monomial of cαXα. As tropical

monomials are linear functions on x, a tropical polynomial is a piecewise linear concave

function which is differentiable except possibly on a (d−1)-dimensional (simplicial) complex

in Rd. This exceptional set also defines a tropicalization of the variety V (F ) : F (X) = 0.

Definition 8.10 (Tropical Variety). Given a tropical polynomial trop(F )(x), define its trop-

ical variety as

V (trop(F )) = {x ∈ Rd : trop(F )(x) is not differentiable at x}.

Although the definition is based on non-differentiability, the actual computation of the

tropical variety V (trop(F )) is done by asking whether two or more tropical monomial attains

the minimum defining trop(F ).

Proposition 8.11. For x ∈ Rd, we have x ∈ V (trop(F )) if and only if there are distinct

α 6= β such that val(cα) + α · x = val(cβ) + β · x = trop(F )(x).

Proof. Suppose there are distinct α 6= β such that two tropical monomials val(cα) + α · x

and val(cβ) + β · x attains trop(F )(x), but trop(F ) is differentiable at x. Because trop(F )

is a concave function differentiable at x, it has the unique supporting hyperplane at x. But

as val(cα) + α · (−) and val(cβ) + β · (−) are two distinct supporting hyperplanes at x, it

contradicts.
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Suppose there is a unique α such that trop(F )(x) = val(cα) + α · x. Then trop(F ) is

locally same as the tropical monomial val(cα) + α · (−), thus differentiable at x.

A consequence of Proposition 8.11 is that V (trop(F )) ⊂ Rd is a closed subset.

8.4.3 Kapranov’s Theorem

By far we have discussed two tropicalizations of a hypersurface V = V (F ) in an algebraic

torus:

• by value tropicalizations, Trop(V (F )), or

• by tropical varieties, V (trop(F )).

Kapranov’s Theorem Einsiedler et al. [2006][Maclagan and Sturmfels, 2015, Theorem 3.1.3]

states that two tropicalizations coincide, for algebraically closed base fields.

Theorem 8.12 (Kapranov’s Theorem). Let (K, val) be an algebraically closed non-archimedean

field. For a nonzero Laurent polynomial F (X) which is not a monomial, we have

Trop(V (F )) = V (trop(F )).

Although we have only discussed about hypersurfaces up to this point, one can generalize

Kapranov’s theorem for higher codimensions, producing a theorem known as the fundamental

theorem of tropical algebraic geometry [Maclagan and Sturmfels, 2015, Theorem 3.2.3].

Theorem 8.13 (Fundamental Theorem of Tropical Algebraic Geometry). Let (K, val) be

an algebraically closed non-archimedean field. Let I be an ideal in K[X±1
1 , . . . , X±1

d ], and let

X = V (I) be its variety in the algebraic torus Gdm. Then the value tropicalization Trop(X)

equals to the tropical variety
⋂
F∈I V (trop(F )). That is,

Trop(V (I)) =
⋂
F∈I

V (trop(F )).
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Figure 8.1: Describing min(y, 0) on xy-plane

x
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0x

Figure 8.2: Describing min(y, 0, x) on xy-plane

If K is algebraically closed and X is a variety in the algebraic torus, we simply say the

tropicalization of X as the set Trop(X) =
⋂
F∈I(X) V (trop(F )).

8.5 Examples

8.5.1 Planar Curves

Example 8.14 (Line). Perhaps the easiest example is the line F (X, Y ) = X + Y − 1.

Because the tropicalization of F is

trop(F )(x, y) = min(x, y, 0),

one divides the plane by regions in which trop(F )(x, y) is attained by x, y, and 0 respectively.

This is easily done by first sketching min(y, 0) (Figure 8.1) and extending the picture to

min(y, 0, x) (Figure 8.2). (Here, the order of monoimals does not matter and is chosen

randomly for this demo.)
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x∗

y∗

3y∗

03x∗

Figure 8.3: Describing min(3x∗, 3y∗, 0) on x∗y∗-plane

Example 8.15 (Elliptic Curves). Consider the following Hessian model of elliptic curves

Hesse [1844]Smart [2001]:

ED : X3 + Y 3 + Z3 = D ·XY Z.

The equation is written as a projective variety, so we first boil this down to an affine curve:

ED : x3 + y3 + 1 = Dxy.

Tropicalizing F (x, y) = x3 + y3 + 1−Dxy, we have

trop(F )(x∗, y∗) = min(3x∗, 3y∗, 0, val(D) + x∗ + y∗).

Here, we use x∗ = val(x) and y∗ = val(y) to avoid abuse of notations.

To study the tropical variety V (trop(F )) = Trop(ED), we first sketch the regions indi-

cating which monomial dominated min(3x∗, 3y∗, 0) (Figure 8.3) and then adjoining val(D)+

x∗+y∗ into it (Figure 8.4). It turns out that the triangle in the middle appears if val(D) < 0

and disappears if val(D) ≥ 0. It is known that the picture with the middle triangle reflects

the fact that ED compactifies to give a genus 1 curve.
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val(D) + x∗ + y∗

val(D) < 0
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y∗

3y∗

03x∗

val(D) + x∗ + y∗

val(D) ≥ 0

Figure 8.4: Describing min(3x∗, 3y∗, 0, val(D) + x∗ + y∗) on x∗y∗-plane

8.5.2 Markov Cubic

As we are interested in Markov cubic surfaces, defined over a non-archimedean field,

SABCD : X2
1 +X2

2 +X2
3 +X1X2X3 = AX1 +BX2 + CX3 +D,

we are to find non-differentiable points of the tropicalization

f(x) = min

 2x1, 2x2, 2x3, x1 + x2 + x3,

a+ x1, b+ x2, c+ x3, d

 ,

where a, b, c, d are val(A), val(B), val(C), val(D), respectively. It turns out that sketching the

tropical variety V (f) = Trop(SABCD) is in general a hard task to do in hand, so we rather

introduce some computer sketches of this tropicalization. See Figures 8.5 and 8.6.
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Figure 8.5: Trop(SABCD) with (a, b, c, d) = (∞,∞,−1.5,−2).
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Figure 8.6: Trop(SABCD) with (a, b, c, d) = (−1.3,∞,−1.5,−2.3).
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CHAPTER 9

THE SKELETON OF MARKOV CUBICS

Although one can compute and sketch the tropicalization of the Markov cubic SABCD on R3,

not all points of the tropicalization is involved in the tropicalized Vieta dynamics. (Recall,

from Chapter 7, the most interesting dynamics on SABCD is the one generated by Vieta

involutions.)

The goal of this chapter is to introduce the skeleton subset Sk(a, b, c, d) of the tropicalized

surface Trop(SABCD) and study their invariance properties with respect to the dynamics.

Furthermore, we introduce a foliation of R3 by skeleta, which happens to give a family of

dynamical systems that SABCD carry.

Throughout this chapter and after, we assume that SABCD is defined over a fixed non-

archimedean field K, so that our parameters A,B,C and D are now in K.

9.1 Tropical Vieta Involutions and the Skeleton

Recall the Vieta involutions

s1(X1, X2, X3) = (−X1 −X2X3 + A,X2, X3)

=

(
X2

2 +X2
3 −BX2 − CX3 −D

X1
, X2, X3

)
,

s2(X1, X2, X3) = (X1,−X2 −X1X3 +B,X3)

=

(
X1,

X2
1 +X2

3 − AX1 − CX3 −D
X2

, X3

)
,

s3(X1, X2, X3) = (X1, X2,−X3 −X1X2 + C)

=

(
X1, X2,

X2
1 +X2

2 − AX1 −BX2 −D
X3

)
.
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While tropicalizing these involutions, we use the multiplicative expression of each and obtain

trop(s1)(x1, x2, x3) = (min(2x2, 2x3, b+ x2, c+ x3, d)− x1, x2, x3), (9.1.1)

trop(s2)(x1, x2, x3) = (x1,min(2x1, 2x3, a+ x1, c+ x3, d)− x2, x3), (9.1.2)

trop(s3)(x1, x2, x3) = (x1, x2,min(2x1, 2x2, a+ x1, b+ x2, d)− x3). (9.1.3)

These maps are in general not well-defined on all of Trop(SABCD). Nonetheless, there

is a subset of the tropicalization Trop(SABCD) which is invariant under the tropicalized

involutions. This subset is analogous to the Kontsevich–Soibelman skeleton [Kontsevich and

Soibelman, 2006, §6.6] of a smooth proper algebraic variety over a non-archimedean field,

hence we call it the skeleton subset.

Denote the defining equation of SABCD as F (X1, X2, X3) = 0 and let f be the tropical-

ization of F . That is,

f(x1, x2, x3) = min (2x1, 2x2, 2x3, x1 + x2 + x3, a+ x1, b+ x2, c+ x3, d) . (9.1.4)

Definition 9.1. Consider the subset of Trop(SABCD) defined as

{(x1, x2, x3) ∈ Trop(SABCD) : x1 + x2 + x3 = f(x1, x2, x3)}, (9.1.5)

where f is the tropical polynomial (9.1.4). Call this subset the skeleton of SABCD, and

denote it Sk(a, b, c, d), where a = val(A), b = val(B), c = val(C), and d = val(D).

As a subset of R3, the skeleton subset is only dependent on the valuations a, b, c, d of

parameters A,B,C,D, so the notation Sk(a, b, c, d). Technically, these numbers a, b, c, d

are in Γval ∪ {∞}, but because the set is defined purely in the language of the semiring

(R ∪ {∞},min,+), we abuse the notation and sometimes let a, b, c, d to be real numbers or

∞. Note that, however, Γval-valued points are dense in Sk(a, b, c, d) for some limited cases,
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e.g., when a, b, c, d ∈ Γval ∪ {∞}.

One can describe Sk(a, b, c, d) without referencing the tropicalization Trop(SABCD).

Consider a variant of f that drops x1 + x2 + x3 among the minimands:

min(2x1, 2x2, 2x3, a+ x1, b+ x2, c+ x3, d).

If this minimum equals to x1 + x2 + x3, then (a) we automatically have x1 + x2 + x3 =

f(x1, x2, x3), and (b) the minimum for f is attained by at least two tropical monomials.

Therefore we have x ∈ Sk(a, b, c, d). But instead of formulating it by a comparison of two

functions, it is more convenient to just take the difference

f0(x1, x2, x3) = min(2x1, 2x2, 2x3, a+ x1, b+ x2, c+ x3, d)− x1 − x2 − x3, (9.1.6)

and view Sk(a, b, c, d) as the level set {f0 = 0}.

Remark. It is not a surprise that the other level sets {f0 = w} appear as a skeleton,

especially when w is in the value group Γval. To see so, suppose w ∈ Γval and let tw ∈ K×

has the value val(tw) = w. Consider the surfaceXw = StwA,twB,twC,t2wD and the polynomial

map

Φ: Xw → A3,

(X1, X2, X3) 7→ (t−wX1, t
−wX2, t

−wX3).

Then the image Φ(Xw) is an affine surface given by the equation

Φ(Xw) : X2
1 +X2

2 +X2
3 + twX1X2X3 = AX1 +BX2 + CX3 +D.
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If one thinks the ‘skeleton’ of Φ(Xw), one can describe the set by the equation

w + x1 + x2 + x3 = min(2x1, 2x2, 2x3, a+ x1, b+ x2, c+ x3, d)

= f0(x1, x2, x3) + (x1 + x2 + x3),

i.e., the level set {f0 = w}. Since Xw = StwA,twB,twC,t2wD itself has the skeleton Sk(a +

w, b+ w, c+ w, d+ 2w), we get a formula relating two:

{f0(x1, x2, x3) = w} = Sk(a+ w, b+ w, c+ w, d+ 2w)− (w,w,w) , (9.2.12)

where the right hand side is the Minkowski sum A− p = {a− p : a ∈ A}.

We will later show, in Corollary 9.4, that (9.2.12) holds even for w ∈ R, and the tropi-

calized involutions on {f0 = w} and Sk(a+w, b+w, c+w, d+ 2w) conjugates via the map

φ = trop(Φ): x 7→ x− (w,w,w).

We then aim to show that Sk(a, b, c, d) is invariant under Vieta involutions (see Proposi-

tion 9.3 below). But to have this in elementary means, we need to observe some more facts

about the skeleton.

9.2 Inequality Description of the Skeleton

Recall that Sk(a, b, c, d) = {f0 = 0}, with f0 in (9.1.6). One way to characterize the function

w = f0(x1, x2, x3) is to let f0 to be the supremum of w’s satisfying the inequalities

w + x1 + x2 + x3 ≤ 2x1, (9.2.1)

w + x1 + x2 + x3 ≤ 2x2, (9.2.2)

w + x1 + x2 + x3 ≤ 2x3, (9.2.3)

w + x1 + x2 + x3 ≤ a+ x1, (9.2.4)
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w + x1 + x2 + x3 ≤ b+ x2, (9.2.5)

w + x1 + x2 + x3 ≤ c+ x3, (9.2.6)

w + x1 + x2 + x3 ≤ d. (9.2.7)

Equivalently, to have w = f0(x1, x2, x3), we demand inequalities (9.2.1)–(9.2.7) to hold, and

at least one of them holding as an equality.

One immediate corollary to these inequalities is this.

Corollary 9.2. If f0(x1, x2, x3) = w, then we have w + x1 ≤ −|x2 − x3|, and similarly for

w + x2 and w + x3. In particular, whenever w ≥ 0, any point in the level set {f0 = w} has

nonpositive coordinates.

Proof. From inequalities (9.2.2) and (9.2.3), we obtain

w + x1 ≤ x2 − x3,

w + x1 ≤ x3 − x2.

It remains to use min(x2−x3, x3−x2) = −|x2−x3| to conclude w+x1 ≤ −|x2−x3|. Same

arguments apply for other coordinates. Furthermore, if w ≥ 0, then x1 ≤ −|x2 − x3| − w ≤

−w ≤ 0, etc., so the second claim follows.

Furthermore, we can make use of the inequality description to prove a

Proposition 9.3. The level set {f0 = w} is invariant under tropicalized involutions trop(si)’s,

(9.1.1)–(9.1.3), viewed as an involution R3 → R3.

Proof. We focus on trop(s1). The other two involutions are dealt similarly.

Denote f1 = f1(x2, x3) = min(2x2, 2x3, b + x2, c + x3, d), so that trop(s1)(x1, x2, x3) =

(f1−x1, x2, x3). With this f1, we see that the conjunction (i.e., ‘and’) of inequalities (9.2.2),
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(9.2.3), (9.2.5), (9.2.6) and (9.2.7) reads as

w + x1 + x2 + x3 ≤ f1(x2, x3). (9.2.8)

We recall the other two inequalities for reference:

w + x1 + x2 + x3 ≤ 2x1, (9.2.1)

w + x1 + x2 + x3 ≤ a+ x1. (9.2.4)

Then the level set {f0 = w} is characterized by inequalities (9.2.1), (9.2.4), and (9.2.8) but

at least one of them holding as an equality.

Let x′1 = f1 − x1. Then it turns out that

(9.2.1)⇐⇒ w + x′1 + x2 + x3 ≤ f1(x2, x3), (9.2.9)

(9.2.4)⇐⇒ w + x′1 + x2 + x3 ≤ a+ x′1, (9.2.10)

(9.2.8)⇐⇒ w + x′1 + x2 + x3 ≤ 2x′1, (9.2.11)

and the equivalences of corresponding equalities as well. This proves that (x′1, x2, x3) =

trop(s1)(x1, x2, x3) ∈ {f0 = w} whenever f0(x1, x2, x3) = w.

An immediate corollary is that Sk(a, b, c, d) = {f0 = 0} is invariant under the Vieta

involutions, letting us to focus on the dynamics on the skeleton.

Remark. The inequality trick applies for other subsets of Trop(SABCD) to show that

it is not invariant under the involutions. For instance, if we think the subset {2x2 =

f(x1, x2, x3)} ⊂ Trop(SABCD) (cf. (9.1.5) for f), then the analogous step showing the

equivalence (9.2.9) gets stuck, causing trop(s1) to be not well-defined on there.

Since we now know that the level sets {f0 = w} and skeleta Sk(a+w, b+w, c+w, d+2w)
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are invariant under the Vieta involutions, we can state the following

Corollary 9.4. For w ∈ R, let φw : R3 → R3 be φw(x1, x2, x3) = (x1 + w, x2 + w, x3 + w).

Then we have

{f0(x1, x2, x3) = w} = Sk(a+ w, b+ w, c+ w, d+ 2w)− (w,w,w) (9.2.12)

= φ−w(Sk(a+ w, b+ w, c+ w, d+ 2w)).

Furthermore, let trop(s′i) be the tropicalized Vieta involution on Sk = Sk(a + w, b + w, c +

w, d+ 2w). Then we have the following commutative diagram, for i = 1, 2, 3.

{f0 = w} {f0 = w}

Sk Sk

trop(si)

φw φw

trop(s′i)

Proof. If we add 2w on both sides of the inequalities (9.2.1)–(9.2.7), we have

(x1 + w) + (x2 + w) + (x3 + w) ≤ 2(x1 + w),

(x1 + w) + (x2 + w) + (x3 + w) ≤ 2(x2 + w),

(x1 + w) + (x2 + w) + (x3 + w) ≤ 2(x3 + w),

(x1 + w) + (x2 + w) + (x3 + w) ≤ (a+ w) + (x1 + w),

(x1 + w) + (x2 + w) + (x3 + w) ≤ (b+ w) + (x2 + w),

(x1 + w) + (x2 + w) + (x3 + w) ≤ (c+ w) + (x3 + w),

(x1 + w) + (x2 + w) + (x3 + w) ≤ d+ 2w,

with at least one of them holding as an equality. Equivalently, (x1 + w, x2 + w, x3 + w) =

φw(x1, x2, x3) ∈ Sk(a+ w, b+ w, c+ w, d+ 2w). This proves (9.2.12).

For the conjugation part, we simply compare trop(s′i) ◦ φ
w and φw ◦ trop(si). Say for
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i = 1:

trop(s′1) ◦ φw(x1, x2, x3) = trop(s′1)(x1 + w, x2 + w, x3 + w)

= (min


2(x2 + w), 2(x3 + w),

(b+ w) + (x2 + w), (c+ w) + (x3 + w),

d+ 2w

− (x1 + w),

x2 + w, x3 + w)

= (min(2x2, 2x3, b+ x2, c+ x3, d)− x1 + w, x2 + w, x3 + w)

= φw ◦ trop(s1)(x1, x2, x3).

Similar algebra works for i = 2, 3.

9.3 Foliating the space by Level sets of Partial Tropical

Polynomials

One interesting aspect of the level sets {f0 = w} is that it ‘foliates’ R3 in the following sense.

Proposition 9.5. Let Π = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0} be a plane in R3, and

v : R3 → Π be the orthogonal projection onto that plane, i.e.,

v = (v1, v2, v3) =

(
2x1 − x2 − x3

3
,
−x1 + 2x2 − x3

3
,
−x1 − x2 + 2x3

3

)
.

Then the product map f0 × v : R3 → R× Π is a piecewise-linear homeomorphism.

Proof. Let α = 1
3(x1 + x2 + x3). Then the map α× v : R3 → R×Π is a linear isomorphism,

with the inverse x = (x1, x2, x3) = (α + v1, α + v2, α + v3).

We describe the inverse (f0 × v)−1 by describing (α × v) ◦ (f0 × v)−1 instead. That

is, we suggest how to recover α from w ∈ R and v ∈ Π given. Plug in (x1, x2, x3) =
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(α + v1, α + v2, α + v3) into inequalities (9.2.1)–(9.2.7) and get

w + 3α ≤ 2α + 2v1, w + 3α ≤ a+ α + v1,

w + 3α ≤ 2α + 2v2, w + 3α ≤ b+ α + v2,

w + 3α ≤ 2α + 2v3, w + 3α ≤ c+ α + v3,

w + 3α ≤ d,

with at least one of them holding as an equality. Solving these inequalities in α, we obtain

α ≤ 2v1 − w, α ≤ 1

2
(a+ v1 − w),

α ≤ 2v2 − w, α ≤ 1

2
(b+ v2 − w),

α ≤ 2v3 − w, α ≤ 1

2
(c+ v3 − w),

α ≤ 1

3
(d− w),

with at least one of them holding as an equality. This is equivalent to

α = min


2v1 − w, 2v2 − w, 2v3 − w,
1
2(a+ v1 − w), 1

2(b+ v2 − w), 1
2(c+ v3 − w),

1
3(d− w)

 , (9.3.1)

which solves the inverse map required.

Corollary 9.6. The orthogonal projection map v : R3 → Π restricted to a skeleton,

v|Sk(a, b, c, d)→ Π,

is a piecewise-linear homeomorphism.
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9.4 Transversality of Fixed Sets

By the description of tropicalized Vieta involutions (9.1.1)–(9.1.3), as a map R3 → R3, the

fixed sets of trop(s1), trop(s2), trop(s3) appear as

Fix(trop(s1)) : 2x1 = min(2x2, 2x3, b+ x2, c+ x3, d),

Fix(trop(s2)) : 2x2 = min(2x1, 2x3, a+ x1, c+ x3, d),

Fix(trop(s3)) : 2x3 = min(2x1, 2x2, a+ x1, b+ x2, d).

Hence these fixed sets appear as graphs of some piecewise-linear functions R2 → R, thus

piecewise-linear homeomorphic to R2.

It turns out that by the foliation f0×v : R3 → R×Π described in Proposition 9.5 above,

the fixed sets are ‘transverse’ to each level set {f0 = w} in the following sense.

Proposition 9.7. There is a coordinate (w; v1, u1) of R × Π such that the image of the

fixed set Fix(trop(s1)) ⊂ R3 under the map f0 × v : R3 → R × Π is represented as a graph

v1 = G(w, u1) of a piecewise-linear continuous function.

Proof. Specifically, we put u1 = v2−v3 = x2−x3 in our claim. We recall v1 = 1
3(2x1−x2−x3)

from Proposition 9.5 above. Then (w; v1, u1) forms a coordinate of R × Π. Because w and

u1 are invariant under trop(s1), by intermediate value theorem, there must be a unique

v1 = G(w, u1) in which (w; v1, u1) represents a point in Fix(trop(s1)). So we focus on

showing that G is piecewise-linear continuous.

Recall the function f1(x2, x3) = min(2x2, 2x3, b + x2, c + x3, d). Then one can describe

f0(x1, x2, x3) = min(2x1, a+ x1, f1(x2, x3))− (x1 + x2 + x3). If (x1, x2, x3) ∈ Fix(trop(s1)),

then f1(x2, x3) = 2x1, so we have

f0(x1, x2, x3) = min(2x1, a+ x1, 2x1)− (x1 + x2 + x3)

= min(x1, a)− (x2 + x3).
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For a point (x1, x2, x3) ∈ Fix(trop(s1)), suppose (w; v1, u1) = (w;G(w, u1), u1) represent

the point. Because f0(x1, x2, x3) = min(x1, a) − (x2 + x3) = w, we have w + x2 + x3 =

min(x1, a). So we have

x1 =
1

2
f1(x2, x3)

= min(x2, x3,
b+ x2

2
,
c+ x3

2
,
d

2
), (9.4.1)

w + x2 + x3 = min(x1, a). (9.4.2)

Plug in (9.4.1) into (9.4.2). Then we have

w + x2 + x3 = min(x2, x3,
b+ x2

2
,
c+ x3

2
,
d

2
, a).

Set ṽ1 = x2 + x3. With u1 = x2 − x3, we simplify

2ṽ1 + 2w = min(ṽ1 + u1, ṽ1 − u1, b+
1

2
(ṽ1 + u1), c+

1

2
(ṽ − u1), d, 2a).

This equality can be expanded as a list of inequalities, with at least one of them holding as

an equality. Solving the inequalities in ṽ1, one then obtains

ṽ1 = min


u1 − 2w,−u1 − 2w,

1
3(2b− 4w + u1), 1

3(2c− 4w − u1),

1
2d− w, a− w

 .

This represents ṽ1 in w and u1. From this, we represent x2 = 1
2(ṽ1 +u1) and x3 = 1

2(ṽ1−u1)

in w and u1. By (9.4.1), we represent x1 in w and u1, therefore representing v1 = 1
3(2x1 −

x2 − x3) in w and u1. All these representations are piecewise-linear and continuous, hence

the function G(w, u1) in question is piecewise-linear and continuous.
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In particular, if we intersect a fixed set Fix(trop(si)) with a level set {f0 = w} we get a

piecewise-linear image of R. Later, we will verify that on a level set {f0 = w}, the tropicalized

Vieta involutions are proper and each is topologically conjugate to a line reflection on a plane.

By (9.2.12), we turn this claim to an analogous claim on a skeleton. This motivates us to

take a closer look at the actions on each skeleton.
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CHAPTER 10

VIETA INVOLUTIONS ON A SKELETON

In this chapter, we consider the group Γ = 〈s1, s2, s3〉 generated by Vieta involutions, and

analyze its action

Γ y Sk(a, b, c, d)

on a skeleton. A central tool for this analysis is to view Vieta involutions on Sk(a, b, c, d)

as line reflections, and see how these reflections act on Sk(a, b, c, d). Proposition 10.7 is the

summary of all these analysis, which will be a starting point of all subsequent discussions.

10.1 Cells

Recall that the equation f0 = 0, i.e.,

min(2x1, 2x2, 2x3, a+ x1, b+ x2, c+ x3, d) = x1 + x2 + x3

characterizes the skeleton Sk(a, b, c, d). Hence it is natural to decompose the skeleton into

subsets, depending on which tropical monomial among 2x1, 2x2, 2x3, a+ x1, b+ x2, c+ x3,

or d does the tropical monomial x1 + x2 + x3 equals to. Formally, we define such subsets as

follows.

Definition 10.1 (Cells). Let m(X) ∈ {X2
1 , X

2
2 , X

2
3 , AX1, BX2, CX3, D} be a monomial.

Define the cell C(m(X)) as a subset of the skeleton Sk = Sk(a, b, c, d) defined as

C(m(X)) = {x ∈ Sk : trop(X1X2X3)(x) = trop(m(X))(x)}.

It is clear that

Sk(a, b, c, d) =
⋃
{C(m(X)) : m(X) = X2

1 , X
2
2 , X

2
3 , AX1, BX2, CX3, D}.
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By the light of (9.2.12), we also define cells C(m(X)) on each level set {f0 = w}. One can

explicitly describe these cells as

C(m(X)) = {x ∈ {f0 = w} : w + trop(X1X2X3)(x) = trop(m(X))(x).}

Some more immediate facts follow.

Lemma 10.2. For cells in a skeleton Sk(a, b, c, d), we have the followings.

(a) Each cell C(m(X)) sits in a plane in R3 and forms a closed convex subset.

(b) The (planar) interior C(m(X))◦ is precisely the set of points x ∈ C(m(X)) that does not

belong to any other cells.

(c) If x = (x1, x2, x3) ∈ Sk(a, b, c, d) has x1 + x2 + x3 < min(2a, 2b, 2c, d), then x ∈ C(X2
i )

for some i = 1, 2, 3.

(d) In particular, the interiors of quadratic cells, C(X2
i )◦ with i = 1, 2, 3, are nonempty.

Proof. (a) Say, for instance, if m(X) = X2
1 , then we have (x1, x2, x3) ∈ C(X2

1 ) if and only if

(i) x1 + x2 + x3 = 2x1 and (ii) 2x1 − (x1 + x2 + x3) = f0(x1, x2, x3). It follows that C(X2
1 )

lies on the plane (i). Additionally, one can rewrite (ii) as

2x1 ≤ min(2x2, 2x3, a+ x1, b+ x2, c+ x3, d). (10.1.1)

This inequality can be viewed as an inequality of the form 0 ≤ H for some concave function

H on R3. As a superlevel set of a concave function, (10.1.1) defines a convex set. The cell

C(X2
1 ) is the intersection of a plane (i) with a closed convex set 0 ≤ H, thus closed convex.

(b) Observe that the concave function H above is the minimum of various affine-linear

functions, none of them being a constant. Hence the interior of the set {0 ≤ H} is {0 < H}.

Therefore the strict inequality for (10.1.1) characterizes the (planar) interior of C(X2
1 ). But
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then, by (i), we have x1 + x2 + x3 < min(2x2, 2x3, a+ x1, b+ x2, c+ x3, d). So any interior

point x ∈ C(X2
1 ) cannot belong to any other cells. All the above steps were equivalent

formulations, so the converse is also the case.

Similar argument applies for other monomials to show (a) and (b).

(c) We show the contrapositive. That is, assume that x ∈ C(AX1)∪C(BX2)∪C(CX3)∪

C(D) and show that x1 + x2 + x3 ≥ min(2a, 2b, 2c, d).

If x ∈ C(AX1), we have x1 + x2 + x3 = a+ x1 ≤ 2x1, so x2 + x3 = a and x1 ≥ a. Thus

x1 + x2 + x3 ≥ a + a = 2a ≥ min(2a, 2b, 2c, d) follows. If x ∈ C(BX2) or x ∈ C(CX3), we

argue analogously. If x ∈ C(D), we have x1 + x2 + x3 = d ≥ min(2a, 2b, 2c, d).

(d) Let M = −1 + min(0, 2a, 2b, 2c, d) < 0. Then (−2M,−M,−M), (−M,−2M,−M),

and (−M,−M,−2M) are points that respectively lie on C(X2
1 )◦, C(X2

2 )◦, and C(X2
3 )◦.

There are two (mutually exclusive) cases for the skeleton Sk(a, b, c, d).

Holomorphic Parameters It consists of quadratic cells, i.e., Sk(a, b, c, d) = C(X2
1 ) ∪

C(X2
2 ) ∪ C(X2

3 ).

Meromorphic Parameters At least one of the non-quadratic cells, C(AX1), C(BX2),

C(CX3), or C(D), has nonempty interior.

The dynamics on each case are quite different. However, there is a simple numerical criterion

distinguishing the two: whether min(a, b, c, d) ≥ 0 or not.

Remark. Taking this criterion as granted, we coin the terms ‘holomorphic/meromorphic

parameter’ in reference to the convergent Puiseux field C({t∗}) (see Example 8.4 for nota-

tions). If min(a, b, c, d) ≥ 0, then all parameters A,B,C,D are holomorphic (in some t1/n).

Otherwise, at least one of them is meromorphic (in some t1/n).

Proposition 10.3. Let a, b, c, d ∈ R be parameters. The followings are equivalent.

(a) We have Sk(a, b, c, d) = C(X2
1 ) ∪ C(X2

2 ) ∪ C(X2
3 ).
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(b) The origin (0, 0, 0) is in Sk(a, b, c, d).

(c) We have min(a, b, c, d) ≥ 0.

Proof. We show this by showing (a)⇒(b), (b)⇔(c), and (c)⇒(a).

((a)⇒(b)) We know that, if x ∈ Sk(a, b, c, d), we have the equality for (9.2.1), (9.2.2),

and (9.2.3) (with w = 0) if and only if x ∈ C(X2
1 ), x ∈ C(X2

2 ), and x ∈ C(X2
3 ), respectively.

Thus, (a) is equivalent to that Sk(a, b, c, d) equals to the boundary of the region

S = {x1 + x2 + x3 ≤ 2x1} ∩ {x1 + x2 + x3 ≤ 2x2} ∩ {x1 + x2 + x3 ≤ 2x3}. (10.1.2)

So if (a) holds, that (0, 0, 0) ∈ ∂S gives (b).

((b)⇔(c)) Suppose (0, 0, 0) ∈ Sk(a, b, c, d). This means f0(0, 0, 0) = 0 (cf. (9.1.6)).

Because f0(0, 0, 0) = min(0, a, b, c, d), this is zero iff min(a, b, c, d) ≥ 0.

((c)⇒(a)) In general, we find the set Sk(a, b, c, d) by intersecting S (10.1.2) with more

regions Ij ’s defined by inequalities

I1 : x1 + x2 + x3 ≤ a+ x1,

I2 : x1 + x2 + x3 ≤ b+ x2,

I3 : x1 + x2 + x3 ≤ c+ x3,

I4 : x1 + x2 + x3 ≤ d.

Call a, b, c, d the parameters of I1, I2, I3, I4 respectively. We claim, S is a subset of the region

Ij if and only if the parameter of Ij is nonnegative.

Note that all inequalities Ij can be written in the form ε1x1 + ε2x2 + ε3x3 ≤ kj , where

εi = 0, 1 and kj is the parameter of Ij . (For instance, I1 iff 0 · x1 + 1 · x2 + 1 · x3 ≤ a.)

If the parameter kj of Ij is ≥ 0, then as any element of S has nonpositive coordinates

(cf. Corollary 9.2), we have ε1x1 + ε2x2 + ε3x3 ≤ 0 ≤ kj . So S ⊂ Ij .
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If the parameter kj of Ij is < 0, then (0, 0, 0) ∈ S does not satisfy the inequality Ij , as

ε1 · 0 + ε2 · 0 + ε3 · 0 = 0 > kj . Hence S 6⊂ Ij .

Hence if min(a, b, c, d) ≥ 0, then S ⊂ Ij for all j = 1, 2, 3, 4. Thus Sk(a, b, c, d) is the

boundary of S ∩
⋂4
j=1 Ij = S, giving (a).

Corollary 10.4. The followings are equivalent.

(a) We have w ≥ −min(a, b, c, 1
2d).

(b) The level set {f0 = w} is the union of cells C(X2
1 ) ∪ C(X2

2 ) ∪ C(X2
3 ).

(c) The level set {f0 = w} is a translate of Sk(∞,∞,∞,∞).

Proof. ((a)⇔(b)) Note that min(a, b, c, d) ≥ 0 iff min(a, b, c, 1
2d) ≥ 0. The skeleton Sk(a +

w, b + w, c + w, d + 2w) is the union of cells C(X2
i )’s, i = 1, 2, 3, iff min(a + w, b + w, c +

w, 1
2(d+ 2w)) = w + min(a, b, c, 1

2d) ≥ 0. This shows the equivalence.

((b)⇔(c)) As observed in the proof of Proposition 10.3, we have (b) if and only if the

corresponding skeleton is the boundary of the region S in (10.1.2). This is equivalent to

that we can ‘standardize’ {f0 = w} + (w,w,w) = Sk(a + w, b + w, c + w, d + 2w) = ∂S =

Sk(∞,∞,∞,∞).

10.2 Reflections

Given the language of cells, we now can claim the followings. Suppose x is a point in the

skeleton x ∈ Sk(a, b, c, d) = {f0 = 0}.

• We have

– equality for (9.2.1) iff x ∈ C(X2
1 ),

– equality for (9.2.4) iff x ∈ C(AX1),

– equality for (9.2.8) iff x ∈ C(X2
2 ) ∪ C(X2

3 ) ∪ C(BX2) ∪ C(CX3) ∪ C(D).
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• The equivalence (9.2.10) tells, for x′ = trop(s1)(x), x ∈ C(AX1) iff x′ ∈ C(AX1).

• The equivalences (9.2.9) and (9.2.11) tell, for x′ = trop(s1)(x), x ∈ C(X2
1 ) iff x′ ∈

C(X2
2 ) ∪ C(X2

3 ) ∪ C(BX2) ∪ C(CX3) ∪ C(D), and vice versa.

We summarize the above observation below.

Proposition 10.5. The tropicalized Vieta involution trop(s1) leaves C(AX1) invariant, and

sends C(X2
1 ) onto the union C(X2

2 ) ∪ C(X2
3 ) ∪ C(BX2) ∪ C(CX3) ∪ C(D).

Next, we show that trop(si)’s are plane reflections on each level set {f0 = w} ∼= Π. To

have so, we first need a

Lemma 10.6. The tropicalized involutions (9.1.1)–(9.1.3) are proper on each level set {f0 =

w}. Hence they extend to an involution on the 1-point compactification {f0 = w}∪{∞} ∼= S2,

and each involution topologically conjugates to the reflection by a great circle on the sphere.

Proof. By Corollary 9.4, it suffices to show this on a skeleton Sk(a, b, c, d), with a, b, c, d ∈ R

any. Fix the parameters a, b, c, d and let Sk = Sk(a, b, c, d).

One way to show properness of trop(si) is to think a sequence (xn)∞n=1 in Sk that goes to

infinity (i.e., exits any compact subset of Sk eventually), and claim that (trop(si)(x
n))∞n=1

also goes to infinity. Let i = 1, for simplicity.

Write xn = (xn1 , x
n
2 , x

n
3 ). Denote the norm ‖xn‖ = |xn1 |+ |x

n
2 |+ |x

n
3 | = −(xn1 + xn2 + xn3 )

(cf. Corollary 9.2) on Sk.

By Lemma 10.2(c), for n � 0 we have xn ∈ C(X2
j ) for some j. If j = 1, then as

xn2 + xn3 = xn1 ≤ min(xn2 , x
n
3 ),

‖trop(s1)(xn)‖ = −min(2xn2 , 2x
n
3 ) + xn1 − x

n
2 − x

n
3

= −2 min(xn2 , x
n
3 )

≥ −2xn1 = −(xn1 + xn2 + xn3 ) = ‖xn‖.
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If j = 2, then as xn1 + xn3 = xn2 ≤ min(xn1 , x
n
3 ),

‖trop(s1)(xn)‖ = −2xn2 + xn1 − x
n
2 − x

n
3

= −2xn2 − 2xn3 ≥ −x
n
1 − x

n
2 − 2xn3

≥ −xn1 − x
n
2 − x

n
3 = ‖xn‖.

Similar argument gives ‖trop(s1)(xn)‖ ≥ ‖xn‖ for j = 3, with the roles of indices 2 and 3

interchanged. In all cases, we see that ‖trop(s1)(xn)‖ is no less than ‖xn‖ and thus goes to

infinity if (xn)∞n=1 does.

Now we have trop(si)’s extended to a sphere homeomorphism Sk∪{∞} → Sk∪{∞}. By

Kerékjártó’s theorem Kerékjártó [1941]Kolev [2006], {1, trop(si)} form a compact subgroup

of sphere homeomorphisms, so it conjugates to a closed subgroup of the orthogonal group

O(3). Now there are three kinds of order 2 subgroups in O(3): one generated by the antipodal

map, one generated by rotating π along an axis, and one generated by the reflection on a

great circle. We can classify it according to the number of fixed points of the map. For

trop(si), say i = 1, points (−t,−t, 0) with t � 0 are fixed by trop(s1) and hence we have

infinitely many fixed points. Therefore trop(si) topologically conjugates with the reflection

by a great circle, which fixes infinity as well.

Proposition 10.7. Denote A1, A2, A3 for A,B,C respectively.

Each tropicalized Vieta involution trop(si) on {f0 = w} is topologically conjugate to a

line reflection. There exists a topological (open) half-space Di ⊂ {f0 = w} such that

(i) trop(si) sends Di onto {f0 = w} \Di,

(ii) the boundary ∂Di is same as the fixed set of trop(si), and

(iii) each Di can be set as a subset of C(X2
i ) ∪ C(AiXi).
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Consequently, the domains D1, D2, D3 are mutually disjoint. The closures Di’s union to

give all of {f0 = w} if and only if w ≥ −min(a, b, c, 1
2d).

Proof. On {f0 = w}, each tropicalized involution trop(si) is topologically conjugate to a

line reflection on a plane. Thus the fixed set of trop(si) ∼= R splits {f0 = w} ∼= Π into two

pieces, Di and {f0 = w} \Di and interchanges them. This shows (i) and (ii).

For (iii), note that trop(si) maps C(X2
i ) onto a union of cells and leaves C(AiXi) invariant

(Proposition 10.5). Hence C(X2
i )∪C(AiXi) and its image under trop(si) covers all of {f0 =

w}. Thus one can choose Di to be an open subset of C(X2
i ) ∪ C(AiXi).

By (iii), we can set Di’s so that

D1 ⊂ C(X2
1 ) ∪ C(AX1),

D2 ⊂ C(X2
2 ) ∪ C(BX2),

D3 ⊂ C(X2
3 ) ∪ C(CX3).

As the cells only intersect at their boundaries, the open subsets Di’s must be mutually

disjoint.

Furthermore, we have
3⋃
i=1

C(X2
i ) ⊂

3⋃
i=1

Di.

Thus if {f0 = w} equals to the union
⋃3
i=1 C(X2

i ), or equivalently w ≥ −min(a, b, c, 1
2d),

then we have {f0 = w} =
⋃3
i=1Di. Otherwise, we have two cases.

1. The cell C(D) has nonempty interior.

2. One of the cells C(AiXi) has nonempty interior.

For the first case, the interior C(D)◦ does not intersect any of Di’s, so {f0 = w} 6=
⋃3
i=1Di.

For the second case, suppose C(AX1) has nonempty interior. Then as trop(s1) leaves this
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cell invariant, C(AX1) is not a subset of D1, i.e., C(AX1) \ D1 is nonempty. This verifies

{f0 = w} 6=
⋃3
i=1Di for this case.
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CHAPTER 11

TWO MODES OF VIETA INVOLUTIONS ON SKELETA

By a theorem of Èl′-Huti Èl′-Huti [1974] (see also [Cantat and Loray, 2009, Theorem 3.1]),

the group Γ = 〈s1, s2, s3〉 generated by Vieta involutions (acting on SABCD, defined over

C) has a presentation

Γ = 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = 1〉.

The ping-pong lemma for this group Γ is read as follows. (cf. [de la Harpe, 2000, §II.B

Lemma 24])

Theorem (Ping-pong Lemma). Suppose Γ acts on a set X, and there exist disjoint nonempty

subsets X1, X2, X3 ⊂ X such that sj .Xi ⊂ Xj whenever i 6= j. Then Γ acts faithfully on X.

Although this lemma is usually used to determine whether a group is a free product of

its subgroups, we may use this in a ‘reverse’ fashion and use it to compare two Γ-spaces

(topological spaces admitting continuous Γ-actions). The trick is to compare two Γ-spaces

with ‘ping-pong structures’ by comparing the complements X \
⋃3
i=1Xi. By that we can

establish the followings.

• Formeromorphic parameters (min(a, b, c, d) < 0), there exists a Γ-invariant open subset

U ⊂ Sk(a, b, c, d) such that U ∼= H2 as Γ-spaces (Corollary 11.19).

• For holomorphic parameters (min(a, b, c, d) ≥ 0), there exists a Γ-equivariant surjection

Sk(a, b, c, d) \ {(0, 0, 0)} → ∂H2 (Theorem 11.21).

11.1 Ping-pong Theory

Let

Σ = 〈σ1, σ2, σ3 | σ2
1 = σ2

2 = σ2
3 = 1〉
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be a group modeling the free product (Z/2Z)∗3. If one considers the group Γ = 〈s1, s2, s3〉

of Vieta involutions on complex Markov surface SABCD(C), then groups Γ and Σ are iso-

morphic, by Èl′-Huti [1974][Cantat and Loray, 2009, Theorem 3.1].

We claim that the same model group works for algebraically closed non-archimedean

fields (K, val), by looking at tropicalizations. To establish this, we recall the Ping-Pong

Lemma, a key topological tool for this study.

Theorem 11.1 (Ping-pong Lemma). Suppose Σ acts on a set X, and there exist disjoint

nonempty subsets X1, X2, X3 ⊂ X such that σj .Xi ⊂ Xj whenever i 6= j. Then Σ acts

faithfully on X.

Remark. Although the statement is almost the same as the conventional Ping-Pong Lemma

(e.g., [de la Harpe, 2000, §II.B Lemma 24]), the conventional lemma requires additional

criterion that one of the groups involved in the free product has order ≥ 3. This is because

of the counterexample 〈σ1, σ2 | σ2
1 = σ2

2 = 1〉y {1, 2}, where both σ1, σ2 acts by flipping 1

and 2. Setting X1 = {1} and X2 = {2} gives σ1.X2 = X1 and σ2.X1 = X2, but clearly the

group does not act faithfully.

Such an issue is no longer the case when there are more than two free factors, like our Σ.

The proof below thus demonstrates that the conventional ping-pong lemma still holds for Σ.

Proof. Let w ∈ Σ be any nontrivial reduced word, so that w = σi(n)σi(n−1) · · ·σi(1), where

each i(j) ∈ {1, 2, 3} and i(j + 1) 6= i(j) for j = 1, . . . , n − 1. If n > 1 and i(n) = i(1) then

conjugate w by σi(1) to trim σi(n) and σi(1) out from the word. By this we may assume

n = 1 or σi(n) 6= σi(1).

If n = 1 then we may assume w = σ1 (i.e., i(1) = 1). If w acts on any point x ∈ X2 then

we have w.x ∈ X1, which is clearly 6= x. Thus w acts nontrivially.

Suppose n > 1. Reindexing the indices if necessary, we may assume that i(n) = 2 and

i(1) = 1. Pick any point x ∈ X3. Then one can inductively show that σi(j)σi(j−1) · · ·σi(1).x ∈
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Xi(j). In particular,

w.x = σi(n)σi(n−1) · · ·σi(1).x ∈ Xi(n) = X2,

so w.x 6= x and thus w acts nontrivially.

Corollary 11.2. Suppose X is a topological space and Σ y X acts continuously. Suppose

further that σi maps Xi onto X \Xi. Then for a reduced word σi(n) · · ·σi(1) ∈ Σ, we have

σi(n) · · · σi(1).(X \Xi(1)) ⊂ Xi(n), (11.1.1)

σi(n) · · · σi(1).(X \Xi(1)) ⊂ Xi(n). (11.1.2)

Proof. This follows from σi.(X \Xi) = Xi, σi.(X \Xi) = Xi, σj .Xi ⊂ Xj , and σj .Xi ⊂ Xj ,

together with some induction.

Corollary 11.3. Suppose Σ y Sk(a, b, c, d) by tropicalized actions, i.e., σi acts as trop(si),

i = 1, 2, 3. Then this action is faithful.

Proof. By Proposition 10.7, we have disjoint nonempty subsets D1, D2, D3 ⊂ Sk(a, b, c, d)

such that σj .Di ⊂ σj .(Sk \Dj) = Dj whenever i 6= j. The ping-pong lemma applies.

Therefore the group Γ = 〈s1, s2, s3〉 generated by Vieta involutions is isomorphic to

Σ = (Z/2Z)∗3, when it acts on a Markov cubic defined over an algebraically closed non-

archimedean field.

Now we illuminate the ping-pong lemma on other perspective, especially as a way to

compare two Σ-spaces (topological space that admits a continuous Σ-action). Unfortunately,

we do not have a uniform viewpoint for this and we ended up presenting two approaches on

comparing Σ-spaces.
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11.1.1 The Ping-pong Structure

Definition 11.4 (Ping-pong structure). Let X be a Σ-space. Suppose we have disjoint open

subsets X1, X2, X3 ⊂ X such that

(i) σj .Xi ⊂ Xj whenever i 6= j,

(ii) σi fixes the boundary ∂Xi, pointwise, and

(iii) σi sends Xi onto X \Xi.

Then we say the triple (X1, X2, X3) the ping-pong structure on X.

In general, the boundaries ∂Xi may have points with complicated stabilizers. Comparing

them is essential when we compare two Σ-spaces with ping-pong structures.

Definition 11.5 (Fat, Thin). Let (X1, X2, X3) be a ping-pong structure on Σ y X. Define

Li = ∂Xi \
⋃
j 6=iXj and X0 = (X \

⋃3
i=1Xi)∪

⋃3
i=1 Li. We say the ping-pong structure is

fat if X0 has a nonempty interior. Otherwise, we say the structure is thin.

For fat ping-pong structures, we say X0 is the ping-pong table and sets Li’s are ping-pong

nets. We may denote a fat ping-pong structure with its table, as (X1, X2, X3;X0).

Note that for fat ping-pong structures, we can recover the nets Li by Li = X0 ∩Xi. So

it is not necessary to indicate the nets in the description of a fat ping-pong space.

Fat ping-pong structures are much easier to study, because only looking at the tables we

are done with all the major comparisons. We will also study thin ping-pong structures, but

only for some limited cases.

Figure 11.1 sketches a fat ping-pong structure. Figure 11.2 sketches a thin ping-pong

structure on a circle.
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X2

σ3

σ1

σ2

Figure 11.1: A sketch of a fat ping-pong structure.

p2

p3

p1

X1

X2

X3

σ1

σ2

σ3

Figure 11.2: A sketch of a thin ping-pong structure.
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11.1.2 Comparing Fat Ping-pong Structures

Theorem 11.6 (Comparing Fat Ping-pong Structures). Let X, Y be Σ-spaces with fat

ping-pong strutures (X1, X2, X3;X0) and (Y1, Y2, Y3;Y0) respectively. Any continuous map

ψ : X0 → Y0 that respects the ping-pong nets, i.e., that ψ(X0 ∩ Xi) ⊂ Y0 ∩ Y i, extends

Σ-equivariantly to a map Ψ: Σ.X0 → Σ.Y0.

Lemma 11.7. Suppose X is a Σ-space with a fat ping-pong structure (X1, X2, X3;X0). Any

point of X0 has the stabilizer group which is either trivial or one of 〈σi〉. The subset X0∩∂Xi

is precisely the set of points ∈ X0 that have the stabilizer 〈σi〉.

Proof. Suppose x ∈ X0 \
⋃3
i=1 ∂Xi. Then for any nontrivial g = σi(n) · · ·σi(1) ∈ Σ, we have

x ∈ X \Xi(1), thus g.x ∈ Xi(n) by (11.1.2). Hence g.x /∈ X0, so g cannot stabilize x.

Suppose x ∈ X0 ∩ ∂Xi. We may assume that i = 1. Suppose g = σi(n) · · ·σi(1) ∈ Σ is

nontrivial and i(1) 6= 1. Then we have x ∈ X \Xi(1), thus g.x ∈ Xi(n) ⊂ X \X0 by (11.1.2).

So g cannot stabilize x unless i(1) = 1. But even if i(1) = 1, unless g = σi(1), gσ
−1
i(1)

.x /∈ X0

by the same reason above. Thus the stabilizer of x is 〈σ1〉.

Lemma 11.8. Suppose X is a Σ-space with a fat ping-pong structure (X1, X2, X3;X0). The

set X0 ∪ σi.X0 is a neighborhood of the ping-pong net Li = X0 ∩Xi.

Proof. Let i = 1, without loss of generality. We know that X \
⋃3
i=1Xi is the interior of

X0, and we denote that set X◦0 . The set G = X1 ∪ L1 ∪X◦0 then equals to X \ (X2 ∪X3)

and is thus an open neighborhood of L1.

Next, the set F = X1 \σ1.X
◦
0 is a closed subset of X1 which is a subset of σ1.(X2 ∪X3).

Since σ1.L1 = L1 is disjoint with σ1.(X2 ∪X3), the set G \ F is an open neighborhood of

L1. We evaluate

G \ F = (X1 ∪ L1 ∪X◦0 ) \ (X1 \ σ1.X
◦
0 )

= L1 ∪X◦0 ∪ σ1.X
◦
0 ,
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and we see that this is a subset of X0 ∪ σ1.X0. The claim is shown.

Lemma 11.9. Suppose X is a Σ-space with a fat ping-pong structure (X1, X2, X3;X0). The

action map A : Σ×X0 → Σ.X0. is a quotient map.

Proof. Suppose U ⊂ Σ.X0 is a subset whose preimage A−1(U) ⊂ Σ ×X0 is open. We aim

to show that U ⊂ Σ.X0 is open.

Note that X0 \
⋃3
i=1 ∂Xi is precisely the interior X◦0 of X0. By Lemma 11.7, if we

restrict A to Σ×X◦0 , then the action map is a homeomorphism onto the image Σ.X◦0 . Thus

if U ⊂ Σ.X◦0 , A
−1(U) is open iff U is open.

Suppose U intersects Σ.(X0 \ X◦0 ) at g.x0. Switching to g−1.U if necessary, we may

assume g = 1. From X0 \X◦0 =
⋃3
i=1 ∂Xi, we may assume x0 ∈ ∂X1. We aim to show that

U is a neighborhood of x0 (in Σ.X0).

Because A−1(x0) = {(1, x0), (σ1, x0)} by Lemma 11.7, we see that the open set A−1(U)

is a neighborhood of this preimage. Thus there is a neighborhood U ′ of x0 in X0 such that

{1, σ1} × U ′ ⊂ A−1(U). As A is surjective, U ′ ∪ σ1.U
′ ⊂ U follows. Hence it suffices to see

if U ′ ∪ σ1.U
′ is a neighborhood of x0 in Σ.X0 (to prove that U itself is open).

Suppose otherwise. Recall that X0 ∪ σ1.X0 is a neighborhood of x0 in X and in Σ.X0

(Lemma 11.8). For every neighborhood V ⊂ X0 ∪ σ1.X0 of x0 in Σ.X0, σ1.V is also

a neighborhood of x0. Thus V ∩ σ1.V is a neighborhood of x0 as well. Because x0 is

not on the interior of U ′ ∪ σ1.U
′ in Σ.X0 we have an element yV ∈ V ∩ σ1.V such that

yV /∈ U ′ ∪ σ1.U
′. Here, we may set yV ∈ X0, by replacing yV ← σ1.yV if necessary. But as

U ′ is a neighborhood of x0 in X0, yV ∈ U ′ if V gets small enough. This contradicts.

We now prove Theorem 11.6.

Proof. Denote the action maps A : Σ × X0 → Σ.X0 and A′ : Σ × Y0 → Σ.Y0, which are

quotient maps. We aim to build a map Ψ: Σ.X0 → Σ.Y0 which fits into the following
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commutative diagram:
Σ×X0 Σ.X0

Σ× Y0 Σ.Y0

Id×ψ

A

∃!Ψ
A′

Because A is a quotient map, if we know

A(g, x0) = A(g′, x1) implies A′(g, ψ(x0)) = A′(g′, ψ(x1)),

then the map Ψ is constructed by the universal property. Suppose A(g, x0) = A(g′, x1), i.e.,

g.x0 = g′.x1. By Lemma 11.7, we have x0 = x1 and (g′)−1g stabilizes x0. Because ψ respects

‘ping-pong nets,’ (g′)−1g also fixes ψ(x0). Therefore A′(g, ψ(x0)) = A′(g′, ψ(x1)).

11.1.3 Comparing Ping-pong Structures on Circles

Suppose X = S1 is a circle, which is a Σ-space that has a ping-pong structure (X1, X2, X3).

For sake of our potential applications, we restrict the ping-pong structure to satisfy the

followings.

Definition 11.10. Call the ping-pong structure (X1, X2, X3) adapted to the circle X = S1

if we have the followings.

(i) Each open set Xi is an interval.

(ii) The complement X \
⋃3
i=1Xi has three points.

(iii) The boundary ∂Xi is precisely the fixed locus of σi.

(iv) Each σi sends Xi onto X \Xi.

In this case, the open sets Xi’s and intersections {p1} = X2 ∩ X3, {p2} = X1 ∩ X3,

and {p3} = X1 ∩ X3 exhaust X, so the structure must be thin. Nonetheless, we will call
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each pi a ping-pong net. See Figure 11.2 to see how intervals Xi’s and nets pi’s are typically

configured.

Note that the indexing convention of pi’s implies ∂X1 = {p2, p3}, ∂X2 = {p1, p3}, and

∂X3 = {p1, p2}. By this convention, one can describe the stabilizer of pi as the subgroup

generated by {σ1, σ2, σ3} \ {σi}. Furthermore, ping-pong nets pi are not in the orbit of

another.

Lemma 11.11. If w.pi = pj, then i = j and w is in the stabilizer of pi.

Proof. Write w in the reduced word, w = σi(n) · · ·σi(1). If i(1) 6= i, then as σi(1) stabilizes

pi, we reduce the letter and get a shorter w. Continue on, until we reach to w = 1 (thus the

conclusion) or we have w 6= 1 with the rightmost letter σi(1) = σi.

Because pi ∈ X \Xi, we have σi.pi ∈ Xi. Together with σj .Xi ⊂ Xj if i 6= j, we have

w.pi ∈ Xi(n). But as pj /∈ Xi(n), we have a contradiction.

To compare ping-pong structures (X1, X2, X3), (Y1, Y2, Y3) adapted to circles X, Y , we

first correspond ping-pong nets (p1, p2, p3) 7→ (q1, q2, q3) and extend it to the whole space

X → Y , Σ-equivariantly. To make this sketch work, we first need to understand the orbit

Σ.{p1, p2, p3} of ping-pong nets.

Denote | · | for the word length of the group Σ with respect to the generators σ1, σ2, σ3.

Denote Σ≤n for the set of words w ∈ Σ with word length |w| ≤ n. We say w′ is a left (right)

subword of w if we have w = w′w′′ (w = w′′w′) for some reduced word w′′ with length

|w| − |w′|.

We fix an orientation of X and for a, b ∈ X, denote [a, b] ((a, b)) for the closed (open)

interval obtained by starting from a, go along the orientation, and end at b. In particular,

we have [a, b] ∪ [b, a] = X unless a = b. For a finite subset S = {s1, . . . , sn} ⊂ X, we say

si is adjacent to sj if one of the open intervals (si, sj) or (sj , si) does not contain any other

point in S. Because each σi acts as reflections, it preserves intervals (flipping the endpoints)
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and adjacency (on σi.S). As σi filps endpoints, we introduce a notation −[a, b] = [b, a] for

flipping an interval.

Consider the partial orbit Pn = Σ≤n.{p1, p2, p3} of ping-pong nets. This is a finite set

of points in X that “partitions” X by closed intervals. We will call these intervals partition

intervals by Pn.

Proposition 11.12. Let n ∈ Z>0.

(a) There are 3 · 2n points in Pn.

(b) Let w′.pj , w′′.pk ∈ Pn be adjacent points, where rightmost letters of w′, w′′ are σj , σk

respectively. Then either w′ is a left subword of w′′ or vice versa. If w′ is a subword of

w′′, then (w′)−1w′′ stabilizes pj.

(c) Any partition interval by Pn has an endpoint in Pn \ Pn−1 and another in Pn−1.

That is, the partitions by Pn strictly refines that of Pn−1, for n = 1, 2, 3, . . ., and each

partition interval by Pn−1 contains a unique point in Pn \ Pn−1.

Proof. First, note that partition intervals of P0 = {p1, p2, p3} are precisely X1, X2, X3 and

each interval has endpoints in P0.

We induct on n. For n = 1, we observe that σi.pi ∈ Xi for i = 1, 2, 3. In particular, each

σi.pi cuts the interval Xi into two pieces. Hence P1 adds three more points from P0, any

adjacent points in P1 must have a form pj and σk.pk with k 6= j, and any partition interval

has endpoints from P1 \ P0 and P0.

Suppose we have the claims (a)–(c) for all n ≤ m. For any w.pi ∈ Pm \ Pm−1, write

w = σi(m) · · ·σi(1) with i(1) = i. Then we have two choices of σj with j 6= i(m). We claim

that σjw.pi /∈ Pm.

If otherwise, we have σjw.pi = w′.pk for some w′ ∈ Σ≤m. By Lemma 11.11, we must

have k = i and w−1σjw
′ is in the stabilizer of pi. But if the leftmost letter of w−1σjw

′ is
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still σi(1) = σi, then the word cannot stabilize pi; so σjw′ must cancel all letters of w−1.

Since j 6= i(m), σj must cancel the leftmost letter of w′. But then |σjw′| < m and we have

w.pi = σjw
′.pi ∈ Pm−1, which contradicts.

Hence we obtain two new points for each element of Pm\Pm−1. As |Pm\Pm−1| = 3·2m−1,

we obtain 3 · 2m new points in Pm+1, proving (a).

Now we prove (b). Let w′.pj , w′′.pk ∈ Pm+1 be adjacent, and rightmost letters of w′, w′′

are σj , σk respectively. If any of w′ or w′′ is trivial, then we are done. Suppose w′, w′′ 6= 1

and the leftmost letter of w′ and w′′ are distinct, say σ1 and σ2 respectively. Then we have

w′.pj ∈ X1 and w′′.pk ∈ X2. Because p3 or p1 is a point in Pm+1 that can lie between

these points, w′.pj and w′′.pk are not adjacent. Hence w′, w′′ share the leftmost letters, say

σ1. Then σ−1
1 w′.pj , σ

−1
1 w′′.pk ∈ Pm are adjacent, so we invoke the induction hypothesis to

prove (b).

We prove (c). Suppose [w′.pj , w′′.pk] is a partition interval by Pm+1. We may set the

rightmost letter of w′, w′′ are σj , σk respectively. By (b), we may assume that w′ is a left

subword of w′′, and (w′)−1w′′ stabilizes pj . Hence w′.pj = w′(w′)−1w′′.pj = w′′.pj follows.

Note that w′.pj and w′′.pk are adjacent in the subset w′′.Pm+1−|w′′|. Thus pj , pk are

adjacent in Pm+1−|w′′|. But then m + 1 − |w′′| must be 0; otherwise we can pick σi.pi

between pj , pk (where i 6= j, k). Thus |w′′| = m+ 1 and w′′.pk ∈ Pm+1 \Pm. Since w′ 6= w′′

(compare the rightmost letters), |w′| < |w′′| = m + 1 follows and w′.pj ∈ Pm. This proves

(c).

What was argued in the proof of (c) gives rise to a

Corollary 11.13. If ±[w′.pj , w′′.pk] is a partition interval by Pn with w′′.pk ∈ Pn \ Pn−1,

then for the 3rd index i 6= j, k, we have ±[w′.pj , w′′.pk] = w′′.Xi.

Furthermore, the interval ±[w′.pj , w′′.pk] has the unique intersection with Pn+1 \ Pn at

w′′σi.pi.

Proof. For the latter claim, we note that σi.pi ∈ Xi, so on the open interval±(w′.pj , w′′.pk) =
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w′′.Xi we have w′′σi.pi in that interval. So each partition interval by Pn has at least one

element of Pn+1 \ Pn. As there are 3 · 2n parititon intervals by Pn and 3 · 2n elements in

Pn+1 \ Pn, uniqueness follows from counting.

Recall that a metric dX on X = S1 is intrinsic if dX(x, x′) equals to the infimum of

lengths of all paths from x to x′. Then it is natural to define the total length LX of X, which

is the intrinsic length of the circle X. In that case, one can measure the length length(I) of

an interval I = [a, b] by either dX(a, b) or LX − dX(a, b), depending on the orientation.

In particular, the lengths of partition intervals of Pn’s sum to LX . Hence we have

δX(n) := inf{length(I) : I is a partition interval by Pn} ≤
LX

3 · 2n
. (11.1.3)

However, there might be some weird case where the maximal length of partition intervals by

Pn is kept long. To avoid so, we impose a condition on the ping-pong dynamics of Σ y X.

Definition 11.14 (Dense Net Orbits). Suppose X is a circle which has an adapted ping-

pong structure (X1, X2, X3). By X has dense net orbits, we mean that Σ.{p1, p2, p3} ⊂ X

is dense.

This criterion suffices to control the maximal length of partition intervals by Pn.

Proposition 11.15. If X is a circle with an adapted ping-pong structure that has dense

orbits, and Pn = Σ≤n.{p1, p2, p3} as usual, then the quantity

∆X(n) := sup{length(I) : I is a partition interval by Pn} (11.1.4)

has the limit 0 as n→∞.

Because partition intervals by Pn refines as we increase n, we see that ∆X(n) is a de-

creasing sequence in n. Hence we have limn→∞∆X(n) = infn≥0 ∆X(n).
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Proof. We show the contrapositive. That is, suppose we have c > 0 such that ∆X(n) ≥ c

for all n ≥ 0; we show that there is an open subset I ⊂ X that does not intersect any Pn.

For each n, pick a partition interval In by Pn that has length ≥ c. Let xn be the midpoint

of In, with respect to a fixed intrinsic metric dX on X.

Because X is compact, we have a limit point x ∈ X of (xn)’s and a subsequence (xnk)

converging to x. Suppose we pick a subsequence so that dX(xnk , x) < 1
4c for all k. Then

the distance from x to the boundary of Ink estimates dist(x, ∂Ink) > 1
4c. Thus there is an

interval I centered at x, radius 1
4c such that I is in the interior of all Ink .

Since the interior of Ink does not intersect Pnk , so it will not intersect Pn too whenever

n ≤ nk. Since I is a subset of interiors of Ink ’s, I does not intersect any Pn whenever n ≤ nk

for some k, i.e., any n ∈ Z≥0. This shows the claim.

We now state the comparison theorem.

Theorem 11.16 (Ping-pong Comparison on Circles). Suppose X, Y are circles that have

adapted ping-pong structures that has dense net orbits. Denote p1, p2, p3 and q1, q2, q3 for

ping-pong nets of X and Y , respectively.

Then there is a (pointed) homeomorphism f : (X, p1, p2, p3) → (Y, q1, q2, q3) which is

Σ-equivariant.

Proof. We first define a map f : Σ.{p1, p2, p3} → Σ.{q1, q2, q3} by f(w.pi) = w.qi. This map

is well-defined because the stabilizer of pi and f(pi) = qi coincide.

The map f preserves the cyclic order, in the following sense. Recall Pn = Σ≤n.{p1, p2, p3}.

If w′.pj and w′′.pk are adjacent points in Pn, then w′.qj and w′′.qk are also adjacent in

Qn = Σ≤n.{q1, q2, q3}.

We prove this claim, inductively on n. For n = 0, this is obvious. Assume the claim for

n ≥ 0. If w′.pj and w′′.pi are adjacent points in Pn+1, with w′′.pi ∈ Pn+1 \Pn, then there is

a word w in the stabilizer of pj such that (a) w′.pj and w′w.pk (where k 6= i, j) are adjacent

in Pn, and (b) w′′.pi = w′wσi.pi (cf. Corollary 11.13). By induction hypothesis and (a),
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w′.qj and w′w.qk are adjacent in Qn. By Corollary 11.13, w′wσi.qi = w′′.qi is adjacent to

w′.qj in Qn+1. This clears the induction step.

Next, we show that f is uniformly continuous (fix intrinsic metrics dX and dY for X, Y

respectively). Recall that Pn = Σ≤n.{p1, p2, p3}, and let δX(n) and ∆Y (n) be as in (11.1.3)

and (11.1.4), respectively.

Fix n > 0. We show that, whenever x, x′ ∈ Σ.{p1, p2, p3},

dX(x, x′) < δX(n) implies dY (f(x), f(x′)) ≤ 2∆Y (n). (11.1.5)

If dX(x, x′) < δX(n), we have adjacent points x0, x1, x2 ∈ Pn (in that cyclic order) such

that the parititon intervals [x0, x1] ∪ [x1, x2] contains both x, x′. Same property holds for

the intervals [f(x0), f(x1)] ∪ [f(x1), f(x2)] and points f(x), f(x′). Because ±[f(x), f(x′)] is

a subinterval of [f(x0), f(x2)], we estimate

dY (f(x), f(x′)) ≤ dY (f(x0), f(x2))

= dY (f(x0), f(x1)) + dY (f(x1), f(x2)) ≤ 2∆Y (n),

by (11.1.4). Now for any ε > 0, there is n in which ∆Y (n) < 1
2ε, by Proposition 11.15. Then

we choose δ = δX(n) to have

dX(x, x′) < δ implies dY (f(x), f(x′)) < ε,

fulfilling the uniform continuity of our interest.

Thanks to uniform continuity, we can extend f : Σ.{p1, p2, p3} = X → Σ.{q1, q2, q3} = Y .

For any x ∈ X and g ∈ Σ, fix a sequence (xn) in Σ.{p1, p2, p3} that converges to x. Then

f(g.x) := limn→∞ f(g.xn) = limn→∞ g.f(xn) = g.f(x) verifies that f is Σ-equivariant.

Because we can construct f−1 by the same way, we see that f is a homeomorphism.
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11.2 Meromorphic Parameters

We say a skeleton Sk(a, b, c, d) has meromorphic parameters if min(a, b, c, d) < 0. If we think

the original Markov cubic SABCD has parameters from the field of convergent Puiseux series

C({t∗}) (see Example 8.4 for notations), then negatively valued elements precisely correspond

to meromorphic functions in some t1/n. That is why we coin the term.

The ping-pong structure depicted in Proposition 10.7 can be compared with the (∞,∞,∞)-

triangle reflection action on the hyperbolic plane. To elaborate, let H2 = {z ∈ C : =z > 0}

be the upper half plane and define the maps r1, r2, r3 : H2 → H2 as

r1(z) = 2− z̄, r2(z) =
z̄

2z̄ − 1
, r3(z) = −z̄, (11.2.1)

where z̄ is the complex conjugate. Each defines an involution which is an isometry in

hyperbolic metrics, i.e., a hyperbolic reflection. The reflections r1, r2, r3 generate a group

isomorphic to Σ = (Z/2Z)∗3, thanks to the ping-pong structure they exhibit.

Proposition 11.17 (Hyperbolic ping-pong structure). Let Σ y H2 by σi.z = ri(z). This

action admits a ping-pong structure with

H1 = {z ∈ H2 : <z > 1},

H2 = {z ∈ H2 : |2z − 1| < 1},

H3 = {z ∈ H2 : <z < 0}.

The ping-pong table H0 is then topologically a closed disk minus three points on the boundary.

(See Figure 11.3.)

Proof. Computations.

To compare this with meromorphic parameter cases, we establish a
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0 1

H3 H1

H2

r1r3

r2

H0

Figure 11.3: The ping-pong structure described in Proposition 11.17.

Lemma 11.18 (Topological description of the Ping-pong table). Let Sk = Sk(a, b, c, d) be

a skeleton defined with parameters a, b, c, d with min(a, b, c, d) < 0. Let D1, D2, D3 be the

domains defined in Proposition 10.7. Then the domains define a fat ping-pong structure

(D1, D2, D3;D0) for the action Γ y Sk. Furthermore, D0 is topologically a closed disk

minus three points on the boundary.

Proof. Conclusions of Proposition 10.7 show that the definition of ping-pong structure is

met. To show the topological description of D0, note that the interior of D0 is simply

connected, as its complement plus infinity is connected (cf. [Ahlfors, 1978, §4.4.2 Def. 1,

§6.1.1 Theorem 1]). Furthermore, D0 is a topological disk.

So we ask how many points are in D0 \ D0. Such point corresponds to intersections

C(X2
i ) ∩ C(X2

j ), i 6= j, which is found as a ray in Sk. These rays start from the boundary

of D0 but does not intersect D0 (or, ‘got removed’ by the definition of D0). Hence D0 \D0

has 3 points, all found at the boundary. Thus the topological description.

Corollary 11.19 (One Model for the Meromorphic Parameters). In the skeleton Sk(a, b, c, d)

with min(a, b, c, d) < 0, the Γ-orbit U = Γ.D0 of the ping-pong table D0 is open. Further-

more, by the group isomorphism f : Γ → 〈r1, r2, r3〉, si 7→ ri, we have a f -equivariant

homeomorphism U → H2.

Proof. Because the ping-pong tables, D0 and H0, are homeomorphic, by Theorem 11.6,

we can extend this homeomorphism to U ∼= H2, Σ-equivariantly. (Recall that Γ ∼= Σ by
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Corollary 11.3, and so is 〈r1, r2, r3〉 ∼= Σ.) This is an open subset of the skeleton Sk(a, b, c, d)

because D′ = D0 ∪
⋃3
i=1 trop(si).D

◦
0 is open and U = Σ.D′.

The machinery developed above is by no means optimal, and we expect a room to improve

descriptions for models of Vieta actions. Some expected behaviors are stated as follows.

Question 11.20. 1. Does the Σ-space isomorphism U ∼= H2 extend to a semiconjugacy

Sk(a, b, c, d)→ H2 ∪ ∂H2?

2. Do we have a Σ-space isomorphism between level sets {f0 = w}, as long as w <

−min(a, b, c, 1
2d)?

The current machinery, especially Lemma 11.9, does not extend well in a way that will

readily resolve the above questions. It seems like we need a way to Σ-equivariantly compare

our skeleta with the space obtained by first adding rational boundary points QP1 ⊂ ∂H2 to

H2, then blowing up these points to rays (cf. Theorem 12.4 below).

11.3 Holomorphic Parameters

We say a skeleton Sk(a, b, c, d) has holomorphic parameters if min(a, b, c, d) ≥ 0. The reason

for the terminology is same as for the meromophic parameter cases: in the field of conver-

gent Puiseux series, elements of nonnegatively values precisely correspond to holomorphic

functions in some t1/n.

By Corollary 10.4, we know that Sk(a, b, c, d) is isomorphic to Sk∞ = Sk(∞,∞,∞,∞)

as Γ-spaces. Furthermore, the skeleton Sk∞ has an Γ-invariant point 0 = (0, 0, 0). Because

of that, we focus on Sk∞ \ {0} instead.

Note that Sk∞ \ {0} has the R>0-action induced from the scalar multiplication on R3.

Because of that, one can think the quotient (Sk∞ \ {0})/R>0
∼= S1. One can check that

the tropicalized action of Γ = 〈s1, s2, s3〉 on Sk∞ commutes with the R>0-action. Thus one

induces Γ y (Sk∞ \ {0})/R>0. It is then natural to ask a model of this action.
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Theorem 11.21 (Holomorphic Parameters). If min(a, b, c, d) ≥ 0, then Sk(a, b, c, d) is iso-

morphic to Sk∞ = Sk(∞,∞,∞,∞) as Γ-spaces.

Let S = (Sk∞\{0})/R>0 be the spherical projection of the punctured skeleton Sk∞\{0}.

The induced action Γ y S is isomorphic, as Γ-spaces, to the hyperbolic reflection action

Γ y ∂H2 on the boundary ∂H2 of the hyperbolic plane.

We will ultimately use Theorem 11.16 to establish this comparison. However, to see

how Γ y S admits a ping-pong structure adatped to the circle S, we need some detailed

understanding of the action Γ y Sk∞.

11.3.1 Cell Structures

Recall that the orthogonal projection v = (v1, v2, v3) : Sk∞ → Π is a piecewise-linear home-

omorphism (Corollary 9.6), and the skeleton Sk∞ is the union of quadratic cells C(X2
i ).

It is then reasonable to ask what are the images v(C(X2
i )) in Π. They have to be closed

convex unbounded subsets, as shown in Lemma 10.2. Not only that, the images span a

proper conei in Π.

To describe these cones, rather than using coordinates v1, v2, v3, it is more convenient to

use the coordinates

u1 = x1 − x3 = v1 − v3,

u2 = x2 − x3 = v2 − v3.

From (u1, u2), we recover the point (v1, v2, v3) ∈ Π by (v1, v2, v3) = (2
3u1 − 1

3u2,−1
3u1 +

2
3u2,−1

3(u1 + u2)).

Proposition 11.22. In (u1, u2)-coordinates of Π, the image of cells v(C(X2
i )) are described

i. By a proper cone we mean a closed convex cone that is full-dimensional and is salient, i.e., does not
contain nonzero antipodal vectors.
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as

v(C(X2
1 )) = {(u1, u2) : u1 ≤ u2, u1 ≤ 0}, (11.3.1)

v(C(X2
2 )) = {(u1, u2) : u2 ≤ u1, u2 ≤ 0}, (11.3.2)

v(C(X2
3 )) = {(u1, u2) : u1, u2 ≥ 0}. (11.3.3)

Proof. Recall the quantity α = 1
3(x1+x2+x3) and the formula xi = α+vi, i = 1, 2, 3. Recall

that, on Sk∞, x ∈ C(X2
i ) if and only if inequalities (9.2.1)–(9.2.3) hold and x1+x2+x3 = 2xi.

So if x ∈ C(X2
1 ) say, then 3α = 2x1 = 2α+ 2v1 gives α = 2v1. The other two inequalities

translate to 3α ≤ 2α + 2v2 and 3α ≤ 2α + 2v3. By α = 2v1, they simplify to v1 ≤ v2 and

v1 ≤ v3 respectively. Equivalently,

v1 ≤ v2 and v1 ≤ v3 ⇔ v1 − v3 ≤ v2 − v3 and v1 − v3 ≤ 0

⇔ u1 ≤ u2 and u1 ≤ 0.

The other two cells are dealt similarly.

Figure 11.4 sketches the regions that (11.3.1)–(11.3.3) describes.

11.3.2 Vieta Involutions

Now we evaluate Vieta involutions on each cell. On Sk∞ one can simplify tropicalized Vieta

involutions trop(si)’s as

trop(s1)(x1, x2, x3) = (min(2x2, 2x3)− x1, x2, x3),

trop(s2)(x1, x2, x3) = (x1,min(2x1, 2x3)− x2, x3),

trop(s3)(x1, x2, x3) = (x1, x2,min(2x1, 2x2)− x3).
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u1

u2

C(X2
3 )

C(X2
1 )

C(X2
2 )

Figure 11.4: Images of C(X2
i ) ⊂ Sk∞ on Π.

The minima above can be resolved if one thinks each trop(si) on a cell C(X2
j ), i 6= j. For

instance, trop(s1) on C(X2
2 ) appears as

trop(s1)(x1, x2, x3) = (2x2 − x1, x2, x3),

while on C(X2
3 ), we have

trop(s1)(x1, x2, x3) = (2x3 − x1, x2, x3).

If we conjugate this map by v : Sk∞ → Π, we have

v ◦ trop(s1) ◦ v−1

u1

u2

 =

−1 2

0 1


u1

u2

 on C(X2
2 ), (11.3.4)

and

v ◦ trop(s1) ◦ v−1

u1

u2

 =

−1 0

0 1


u1

u2

 on C(X2
3 ). (11.3.5)
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[
1 −2
0 −1

]

[
−1 0
−2 1

]

trop(s3)

[
1 0
0 −1

]
[
1 0
2 −1

]

trop(s2)

[
−1 0
0 1

]

[
−1 2
0 1

]
trop(s1)

Figure 11.5: Descriptions of trop(si) on Π = v(Sk∞).

Similar computations can be repeated to produce

v ◦ trop(s2) ◦ v−1

u1

u2

 =

1 0

2 −1


u1

u2

 on C(X2
1 ), (11.3.6)

v ◦ trop(s2) ◦ v−1

u1

u2

 =

1 0

0 −1


u1

u2

 on C(X2
3 ), (11.3.7)

v ◦ trop(s3) ◦ v−1

u1

u2

 =

−1 0

−2 1


u1

u2

 on C(X2
1 ), (11.3.8)

v ◦ trop(s3) ◦ v−1

u1

u2

 =

1 −2

0 −1


u1

u2

 on C(X2
2 ). (11.3.9)

Note that each 2× 2 matrix A involved in the descriptions has trace 0 and determinant −1,

so by Cayley–Hamilton theorem we have A2 = I, i.e., the matrices have order 2.

Figure 11.5 describes how the above transformations act on Π. Each trop(si) splits the

plane Π into two regions, with different matrices used on each region.

11.3.3 Comparison with Hyperbolic Reflections

We first demonstrate that the Vieta action 〈s1, s2, s3〉 y S and the induced hyperbolic

action 〈r1, r2, r3〉y ∂H2 both have ping-pong structures adapted to the circles.
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Example 11.23 (Vieta side). For the Vieta action 〈s1, s2, s3〉 y S = (Sk∞ \ {0})/R>0,

each cell C(X2
i ) projects to a closed interval in S. Taking their interiors and calling them

Si’s, we have (S1, S2, S3) a ping-pong structure adapted to the circle S.

Example 11.24 (Hyperbolic side). For the hyperbolc reflection 〈r1, r2, r3〉y ∂H2, let Bi be

the set of points x ∈ ∂H2 that admits a sequence (xn)∞n=1 in Hi (see Proposition 11.17) that

converges to x. Each Bi then defines a closed interval in ∂H2, so their interiors (B◦1 , B
◦
2 , B

◦
3)

form a ping-pong structure adapted to the circle ∂H2.

So to prove Theorem 11.21, it suffices to show that they have dense net orbits, thanks to

Theorem 11.16.

Example 11.25 (Vieta side). Consider the set of ‘rational rays’ SQ = (Q2 \{0})/Q>0 ⊂ S.

Fixed points of trop(si) are in the set {[(−1,−1)], [(1, 0)], [(0, 1)]} ⊂ SQ. Their length 1

orbits are listed [(1, 1)], [(−1, 0)], and [(0,−1)].

Now let [(p, q)] ∈ SQ be any point with p, q ∈ Z, both nonzero and coprime. We claim

that we can reduce its height, max(|p|, |q|), by some appropriate applications of trop(si)’s.

If |p| > |q|, apply trop(s1), trop(s3)◦trop(s1), or trop(s2) to ensure that p, q > 0 (and not

changing the height). Apply trop(s2) ◦ trop(s3). By this, if 2q ≤ p, then we get [(p− 2q, q)]

which, by 0 ≤ p−2q < p, strictly decreases the height. If 2q > p, then we get [(p−2q, 2p−3q)]

which, by −q < p− 2q < 0 and −q < 2p− 3q < q, strictly decreases the height.

If |p| < |q|, apply trop(s1), trop(s3)◦trop(s2), or trop(s2) to ensure that p, q > 0 (and not

changing the height). Apply trop(s1) ◦ trop(s3). By this, if q ≥ 2p, then we get [(p, q − 2p)]

which, by 0 ≤ q−2p < q, strictly decreases the height. if q < 2p, then we get [(2q−3p, q−2p)]

which, by −p < q − 2p < 0 and −p < 2q − 3p < p, strictly decreases the height.

If |p| = |q|, then applying trop(s1) or trop(s2), we reduce to [(1, 1)] or [(−1,−1)]. So

one can run the induction on heights to demonstrate that the ping-pong nets have orbits

containing all of SQ.
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Example 11.26 (Hyperbolic side). We claim that the 〈r1, r2, r3〉-orbit of {0, 1,∞} contains

all rational boundary points QP1 ⊂ ∂H2 = RP1. Given a rational p/q ∈ QP1, with p, q

coprime, define its height as max(|p|, |q|). As r3(1) = −1, we have all rational numbers of

height ≤ 1 in the 〈r1, r2, r3〉-orbit.

For general rational numbers, consider

r3r1(z) = z − 2, r2r3(z) =
z

2z + 1
.

Let p/q be any rational with height > 1; we may assume q > 0. Applying r3r1 or r1r3

sufficiently many times, we may also assume that −1 < p/q < 1 (so the height equals

q). If p < 0, apply r2r3 to have p/(2p + q); since −q < 2p + q < q, it has height ≤

max(|p|, |q| − 1) < q. If p > 0, apply r3r2 to have p/(q − 2p); since −q < q − 2p < q, it has

height ≤ max(|p|, |q| − 1) < q. Either way we strictly reduce the height. By induction on

height, we have the claim.

By above checks, Theorem 11.21 follows from the comparison theorem 11.16 applied for

systems 〈s1, s2, s3〉y S = (Sk∞ \ {0})/R>0 and 〈r1, r2, r3〉y ∂H2.

Remark. We know that, from our discussion on ping-pong structures on circles (§11.1.3),

the following ‘greedy algorithm’ works: given x ∈ Σ.{p1, p2, p3}, apply σi if x ∈ Xi. There

is no reason to not use this algorithm to show that rational points (SQ or QP1) reduce to

ping-pong nets. It turns out that the Euclidean algorithm for greatest common divisor works

to study the behavior of the reduction, cf. Proposition 12.9.

In the next chapter, we will discuss some theories suitable to see the connection of the

Euclidean algorithm to the skeletal Vieta action 〈s1, s2, s3〉 y Sk∞. A similar connection

can be made for rational boundary points QP1 ⊂ ∂H2 as well, but we will not discuss the

details here.
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CHAPTER 12

THE EXCEPTION SET

In the statement of Corollary 11.19, we have corresponded an open subset U = Γ.D0 of a

meromorphic skeleton Sk(a, b, c, d) and the upper half plane H2, but did not discussed about

the nature of U inside Sk(a, b, c, d)—say, how large is it in the skeleton. In this chapter we

discuss the exception set E = Sk(a, b, c, d) \ U and claim that E is a countable union of

half-rays (affine-linear copy of R≥0 = [0,∞)) in Sk(a, b, c, d).

In a special case—called punctured torus parameters—when a = b = c = ∞ but d < 0,

then we can explicitly describe this exception set as a superlevel set of an upper-semiconti-

nuous function, which generalizes gcd(p, q) over the integers. In that case, we can explicitly

describe the rays involved in exception sets.

12.1 The GCD Function

One way to analytically define the greatest common divisor (GCD) of integers is to introduce

a function on R that is designed to return “gcd(1, x).” This function will be called Thomae’s

function, following Beanland et al. [2009].

Definition 12.1 (Thomae’s Function). Let f : R → [0, 1] be a function defined as follows.

If x = p/q is a rational number with p, q ∈ Z coprime, then we define f(x) = 1/|q|. If x is

irrational, we define f(x) = 0.

This function f is called the Thomae’s function. We will denote this function as gcd(1, x).

We think that 0 is coprime with 1, but not with other nonnegative intergers. Thus we

declare gcd(1, 0) = 1. We also have the following classical fact.

Theorem 12.2. Thomae’s function is continuous at irrational numbers, and discontinuous

at rational numbers. More precisely, we have limx→c gcd(1, x) = 0 for all real c.
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Given Thomae’s function, one can define gcd(a, b) as

gcd(a, b) =


|a| · gcd(1, b/a) (a 6= 0),

|b| (a = 0).

(12.1.1)

This is compatible with the usual GCD of integers. To see why, we suppose a, b ∈ Z and

both are nonzero. If d > 0 is the GCD of a and b, then we can write a = ±pd and b = ±qd

for p, q ∈ Z>0 coprime. Thus |a| · gcd(1, b/a) = pd · gcd(1, q/p) = pd(1/p) = d follows.

Not only gcd(a, b) above generalizes GCD of integers, but for a, b reals, it measures how

two numbers are rationally linearly dependent. We list some interesting properties in this

vein, without proofs.

Proposition 12.3. (a) We have gcd(cx, cy) = |c| · gcd(x, y) for all c ∈ R.

(b) Suppose a, b are Q-linearly dependent with b 6= 0. If a/b = p/q with p, q ∈ Z coprime,

we have

gcd(a, b) =

∣∣∣∣ap
∣∣∣∣ =

∣∣∣∣ bq
∣∣∣∣ .

(c) If a, b are Q-linearly independent, then gcd(a, b) = 0.

(d) Whenever A =

α β

γ δ

 is in GL2(Z), we have gcd(αx+ βy, γx+ δy) = gcd(x, y).

From Theorem 12.2, one can show that lim(x,y)→(a,b) gcd(x, y) = 0 for all (a, b) ∈ R2. As

gcd(a, b) ≥ 0 by definition, this limit indicates that gcd is an upper-semicontinuous function.

In particular, the superlevel sets {(a, b) ∈ R2 : gcd(a, b) ≥ η} are closed. In fact, if η > 0, we

can explicitly describe this set as a family of rays
⋃

(p,q)=1 R≥1 · η · (p, q), where (p, q) runs

through all pairs of integers that are coprime.

Remark. The concept and notation of the gcd function is not original; it has previously

been encountered in a graphing software Software, where the function is denoted gcd(x, y).
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12.2 The Exception Set

We state a theorem to be established in this chapter.

Theorem 12.4. Suppose min(a, b, c, d) < 0 and let Sk = Sk(a, b, c, d). Then for the Γ =

〈s1, s2, s3〉-orbit U = Γ.D0 in Corollary 11.19, its complement Sk\U is in a countable union

of rays (affine-linear image of R≥0).

Observe that U contains the interior of the union of non-quadratic cells C(AX1) ∪

C(BX2) ∪ C(CX3) ∪ C(D). This is because the 1st-step orbit {1, s1, s2, s3}.D0 covers all

of the non-quadratic cells, modulo 3 points on the boundary which also lie on quadratic

cells. Denote S◦ for the interior of a subset S ⊂ Sk, and define

QC =

(
3⋃
i=1

C(X2
i )

)◦
∪
⋃
i 6=j

(
C(X2

i ) ∩ C(X2
j )
)
, (12.2.1)

the interior of quadratic cells plus three points. (Notation QC stands for ‘Quadratic Cells.’)

Thus the only interesting part (in the study of Sk \ U) comes from the set QC above.

There, we have the following dichotomy:

(i) If x ∈ QC has g ∈ Γ such that g.x /∈ QC, then x ∈ U .

(ii) If x ∈ QC is a point whose orbit Γ.x is a subset of QC, then x ∈ Sk \ U .

For the latter, this comes from that D0 and the interior of QC are disjoint.

To see how these cases distinguish, we intend to choose an “optimal path” from x ∈⋃3
i=1 C(X2

i ) to U . The choice is aimed to systematically reduce the `1-norm of x, |x1| +

|x2|+ |x3|. If no further reduction of `1-norm is possible, then we have a possibility to be in

the exception set.

The ‘optimal path’ can be described as follows. Given x ∈ C(X2
i ), we apply trop(si) to

it. Then either trop(si)(x) is in a non-quadratic cell (in which we have x ∈ U), or goes to
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another quadratic cell. For the latter, we keep apply trop(sj) which follows the index of the

current quadratic cell, and hope that we eventually fall into U or got ‘trapped’ in one of the

boundary rays C(X2
i ) ∩ C(X2

i+1).

Remark. This introduction of QC is required because D0 may intersect the quadratic cells.

The algorithm sketched above works for all x ∈
⋃3
i=1 C(X2

i ), but if a point reaches to

D0 ∩
⋃3
i=1 C(X2

i ), it becomes ambiguous whether we should stop or not by just looking its

position in
⋃3
i=1 C(X2

i ). If we restrict our attention in QC, we do not face such an issue

since already D0 ∩QC = ∅.

To implement the strategy, we first need to how one can describe trop(si) on C(X2
i ) in a

way independent to the index i.

12.3 On Quadratic Cells

Recall the discussions in §11.3, where we have defined coordinates

u1 = x1 − x3,

u2 = x2 − x3,

and described the image of cells v(C(X2
i ))’s in (u1, u2)-coordiantes of the plane Π = {x1 +

x2 +x3 = 0} in (11.3.1)–(11.3.3). Even for meromorphic parameters, the only change is that

we append some inequalities that represents (9.2.4)–(9.2.7). Hence in general, we have

v(C(X2
1 )) ⊂ {(u1, u2) ∈ Π : u1 ≤ u2, u1 ≤ 0},

v(C(X2
2 )) ⊂ {(u1, u2) ∈ Π : u2 ≤ u1, u2 ≤ 0},

v(C(X2
3 )) ⊂ {(u1, u2) ∈ Π : u1, u2 ≥ 0}.
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Furthermore, the descriptions of tropicalized Vieta involutions trop(si) in (11.3.4)–(11.3.9)

are also valid, as long as we start from
⋃3
i=1 C(X2

i ). A key success here is that trop(si) is

represented as a linear map.

12.3.1 Special Coordinates and Representations of Vieta Involutions

We further develop this idea and introduce coordinates u(i) = (u
(i)
1 , u

(i)
2 ) on Π as

u
(1)
1 = x2 − x1, u

(2)
1 = x3 − x2, u

(3)
1 = x1 − x3, (12.3.1)

u
(1)
2 = x3 − x1, u

(2)
2 = x1 − x2, u

(3)
2 = x2 − x3, (12.3.2)

(note that (u
(3)
1 , u

(3)
2 ) is our old (u1, u2) here) and depict the cells in the 1st quadrant:

u(1)(C(X2
1 )) ⊂ {(u(1)

1 , u
(1)
2 ) : u

(1)
1 , u

(1)
2 ≥ 0},

u(2)(C(X2
2 )) ⊂ {(u(2)

1 , u
(2)
2 ) : u

(2)
1 , u

(2)
2 ≥ 0},

u(3)(C(X2
3 )) ⊂ {(u(3)

1 , u
(3)
2 ) : u

(3)
1 , u

(3)
2 ≥ 0}.

Just as how we treated the projection v : Sk → Π, we treat u(i) as a linear function Sk → R2,

but u(i)
1 , u

(i)
2 as coordinates of R2.

These coordinates benefit in describing some tropicalzed Vieta involutions by a ‘uniform

expression,’ as sketched in the following

Proposition 12.5. Let i = 1, 2, 3. On u(i)(C(X2
i )∩ s−1

i .C(X2
i±1)), we describe the transfor-

mations u(i±1) ◦ trop(si) ◦ (u(i))−1 as follows.

(i) On u(i)(C(X2
i )∩ si.C(X2

i−1)), we have u(i)
1 ≥ u

(i)
2 , and we find the image of trop(si) in

u(i−1)(C(X2
i−1)) by the formula

u
(i−1)
1 = u

(i)
2 ,
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u
(i−1)
2 = u

(i)
1 − u

(i)
2 .

(ii) On u(i)(C(X2
i )∩ si.C(X2

i+1)), we have u(i)
1 ≤ u

(i)
2 , and we find the image of trop(si) in

u(i+1)(C(X2
i+1)) by the formula

u
(i+1)
1 = −u(i)

1 + u
(i)
2 ,

u
(i+1)
2 = u

(i)
1 .

Here, we understand indices vary mod 3, so that C(X2
0 ) = C(X2

3 ) or u(4)
2 = u

(1)
2 , etc.

Proof. Computations, just as in derivations of (11.3.4)–(11.3.9).

Observe that the formulae of trop(si) can be described with a uniform expression. Let

Q1 = {(u1, u2) ∈ R2 : u1, u2 ≥ 0} be the first quadrant and define f : Q1 → Q1 by

f(u1, u2) =


(u2, u1 − u2) (u1 ≥ u2),

(−u1 + u2, u1) (u1 < u2)

(12.3.3)

(note that f is discontinuous at the line u1 = u2). This f works as the ‘uniform expression’

mentioned.

12.3.2 Synchronous Index Sequence

We now establish how f can be used to represent the tropical dynamics on quadratic cells.

Recall the subset QC ⊂
⋃3
i=1 C(X2

i ) in (12.2.1).

Definition 12.6 (Synchronous Index Sequence). For x ∈ QC, define the synchronous index

sequence of x, i(1), i(2), . . . as follows.

(i) Let i(1) be an index i in which x ∈ C(X2
i ).
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(ii) For j > 1, if si(j−1) · · · si(1).x ∈ QC, then let i(j) be an index i in which si(j−1) · · · si(1).x ∈

C(X2
i ).

If otherwise, i.e., si(j−1) · · · si(1).x /∈ QC, terminate the sequence.

Note that both steps (i) and (ii) may have a multiple choice for i(j)’s. Choose any of the

possibility in that case.

We say a synchronous index sequence is unique if we do not face a multiple choice in

its construction; ambiguous if otherwise. If a synchronous index sequence terminates where

i(n) is the last defined term, we say it terminates at i(n).

Corollary 12.7. Suppose x ∈ QC. Let i(1), i(2), . . . be its synchronous index sequence. As

long as i(n+ 1) is defined, we have a formula

fn(u(i(1))(x)) = u(i(n+1))(si(n) · · · si(1).x), n ≥ 1.

If a synchronous index sequence of x terminates at i(n), then by g = si(n) · · · si(1) we

have g.x /∈ QC. Thus we have x ∈ U .

Remark. One can also define synchronous index sequence for points in x ∈
⋃3
i=1 C(X2

i ), by

continuing the sequence as long as si(j−1) · · · si(1).x ∈ C(X2
i(j)

). One drawback is that there

might be some points x ∈ U that does not have terminating synchronous index sequence: if

it falls into the intersection D0∩C(X2
i ), then we will continue i (unqiely!) forever. However,

we still have the conclusion of Corollary 12.7 true in this generalization.

If x ∈ U , then the synchronous index sequence of x is unique, as shown in the following

Lemma 12.8. (a) The map trop(sj) on C(X2
i ) maps into C(X2

j ), if j 6= i.

(b) Any point on intersections C(X2
i ) ∩ C(X2

i+1) has its Γ-orbit inside QC.

(c) If x ∈ U ∩QC, then its synchronous index sequence is unique.
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Proof. For (a), this follows from Proposition 10.5.

For (b), note that any point in Sk \ QC has the stabilizer either trivial or order 2. For

any a point x ∈ C(X2
i ) ∩ C(X2

i+1) and an element g ∈ Γ, g.x is the opposite: its stabilizer is

infinite and even isomorphic to the group (Z/2Z)∗2. Thus g.x /∈ Sk \QC.

For (c), we show the contrapositive. That is, suppose we have x′ = si(j−1) · · · si(1).x ∈

C(X2
i ) ∩ C(X2

i+1) for some j. Then by (b), we have x′ /∈ U , so x /∈ U .

We now study the iterates of f , to use Corollary 12.7 better.

Lemma 12.9. On the first quadrant Q1, define the norm ‖(u1, u2)‖ = |u1| + |u2|. Then

with function f : Q1 → Q1 in (12.3.3), for each nonzero (u1, u2) ∈ Q1, we have

lim
n→∞

‖fn(u1, u2)‖ = gcd(u1, u2),

where gcd is the function defined on (12.1.1). If the limit is nonzero, then fn eventually

oscillates between (0, gcd(u1, u2)) and (gcd(u1, u2), 0).

Proof. Note first that f decreases the norm in every iterates: indeed, we have ‖f(u1, u2)‖ =

max(u1, u2) ≤ ‖(u1, u2)‖. Also, f selectively operates the matrices

0 1

1 −1

 ,
−1 1

1 0

 ∈ GL2(Z)

on its input, whose selection is based on a linear inequality. So we have that f is homoge-

neous, i.e., f(tu1, tu2) = t · f(u1, u2) for t ≥ 0.

Suppose u1, u2 are rationally linearly dependent, so that for γ = gcd(u1, u2) > 0, we

have that p = u1/γ and q = u2/γ are coprime integers. Then we have

fn(u1, u2) = γ · fn(p, q).
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Iterating f over positive integers (p, q) means we are running the Euclidean algorithm for

GCD of the pair (p, q). So for p, q coprime we must reach to (1, 0) or (0, 1). In fact we

oscillate between these, as f(1, 0) = (0, 1) and f(0, 1) = (1, 0). The same phenomenon is

observed for fn(u1, u2), except that it reaches to (γ, 0) or (0, γ) this time.

Suppose u1, u2 are rationally linearly independent, so that the slope m = u2/u1 ∈ R

is an irrational number. Let C = u1 + u2 be the norm of (u1, u2) ∈ Q1. Then we can

re-coordinate (u1, u2) ∈ Q1 to [m,C], where we use square brackets [, ] to indicate that we

are using a new coordinate. Then we describe f as

f [m,C] =


[

1
m − 1, C

1+m

]
(m ≤ 1),[

1
m−1 ,

mC
1+m

]
(m > 1).

This lets us to think a transformation and a cocycle,

T (m) =


1
m − 1 (m ≤ 1),

1
m−1 (m > 1),

A(m) =


1/(1 +m) (m ≤ 1),

m/(1 +m) (m > 1),

so that fn[m,C] = [Tn(m), AnT (m)C], where AnT (m) = A(Tn−1(m)) · · ·A(T (m))A(m).

Let m = [a0; a1, a2, . . .] be the continued fraction expansion of m. Then one can show

that

T a0+···+ai−1(m) = [1; ai+1, ai+2, . . .] or [0; 1, ai+1, ai+2, . . .],

depending on the parity of the sum
∑i
j=0 aj . These numbers fall into the interval [1

2 , 2].

This helps, because we have A(m) ≤ 2/3 for m ∈ [1
2 , 2], and A(m) ≤ 1 for all m ∈ [0,∞].

Therefore we have AnT (m) decreasing in n and

Aa0+···+ai
T (m) ≤

(
2

3

)i
.

117



Since m is irrational, we see that AnT (m) can be arbitrarily small. Hence it follows that

‖fn(u1, u2)‖ = ‖(u1, u2)‖ · AnT

(
u2

u1

)
→ 0 = gcd(u1, u2),

when u2/u1 is irrational. This shows the claimed.

12.3.3 Exception Set as Countably many Rays

We now can prove Theorem 12.4 from what we have developed above.

Proof of Theorem 12.4. As remarked after Theorem 12.4, if x ∈ Sk\U then we have x ∈ QC.

If x has an ambiguous synchronous index sequence, then there is g ∈ Γ and j such that

g.x ∈ C(X2
j ) ∩ C(X2

j+1), so x lies on a (countable collection of) ray in that case.

Suppose x has the unique synchronous index sequence i(1), i(2), . . .. If the sequence

terminates then x ∈ U , contradiction. So the sequence does not terminate. Let wn =

si(n) · · · si(1). Denote ‖x‖Sk = |x1|+ |x2|+ |x3| for the `1-norm on the skeleton. Whenever

x ∈ C(X2
i ), we have ‖u(i)(x)‖ = 1

2‖x‖Sk, as may be verified as follows (demo with i = 1):

‖(u(1)
1 , u

(1)
2 )‖ = u

(1)
1 + u

(1)
2

= (x2 − x1) + (x3 − x1) = (x1 + x2 + x3)− 3x1

= (x1 + x2 + x3)− 3

2
(x1 + x2 + x3)

= −1

2
(x1 + x2 + x3) =

1

2
‖x‖Sk.

Hence we have ‖wn.x‖Sk = 2‖fn(u(i(1))(x))‖.

We claim that there is ε > 0 such that for any x ∈ Sk, that ‖x‖Sk < 2ε implies x ∈ U .

As we assume min(a, b, c, d) < 0, by Proposition 10.3, Sk ⊂ R3 is a closed subset that does

not contain the origin. Therefore we can set ε > 0 small enough to make the assumption

‖x‖Sk < 2ε to fail for every x ∈ Sk, proving the implication vacuously.

118



By this setup of ε, we have gcd(u(i(1))(x)) ≥ ε, since otherwise ‖wn.x‖Sk < 2ε for n large

enough, which implies wn.x ∈ U and x ∈ U , contradiction. But then u(i(1))(x) lies on a

union of rays in u(i(1))(C(X2
i(1)

)), as that is how the superlevel set gcd(x, y) ≥ ε on R2 is

sketched. Hence Sk \ U lies on a countable union of rays.

Remark. Of course, the family of rays found here is more than what we need for Sk \ U .

However, one can invoke our understanding of tropical dynamics on Sk(∞,∞,∞,∞) to

study the dynamics of these rays, and figure out which part of the ray is in U . This will

verify that Sk \ U is a family of rays (rather than a subset of it).

12.3.4 An Effective GCD Bound

We note that the bound gcd(u(i)(x)) ≥ ε is by no means meant to be effective. There, we

introduce an effective bound for a subset of Sk \U , as follows. Recall, from Lemma 10.2(c),

if ‖x‖Sk = |x1|+ |x2|+ |x3| > −min(2a, 2b, 2c, d) then x ∈ QC ⊂
⋃3
i=1 C(X2

i ).

Corollary 12.10. Suppose x ∈
⋃3
i=1 C(X2

i ), and let

R = {(x1, x2, x3) ∈ Sk : |x1|+ |x2|+ |x3| ≤ −min(2a, 2b, 2c, d)}. (12.3.4)

If

gcd(x1 − x3, x2 − x3) < −min(a, b, c,
1

2
d), (12.3.5)

there is g ∈ Γ such that g.x ∈ R. Otherwise, there is g ∈ Γ and i = 1, 2, 3 such that

g.x ∈ C(X2
i ) ∩ C(X2

i+1).

Proof. Note that, by GL2(Z)-invariance, we have

gcd(x2 − x1, x3 − x1) = gcd(x1 − x2, x3 − x2)

= gcd(x1 − x3, x2 − x3).
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Hence by coordinates (12.3.1)–(12.3.2), whenever (u1, u2) = u(i)(x) we have

gcd(u(i)(x)) = gcd(u1, u2) = gcd(x1 − x3, x2 − x3).

Suppose x ∈ C(X2
1 ). Let i(1) = 1, i(2), . . . be a synchronous index sequence of x. Let

gn = si(n) · · · si(1), γ = gcd(u(1)(x)), and TR = −min(a, b, c, 1
2d).

If γ < TR (i.e., (12.3.5)) then by Proposition 12.9, we have ‖fn(u(1)(x))‖ ≤ TR for n� 1.

So the norm ‖gn.x‖Sk cannot be ≥ 2TR for all n > 0, so ‖gm.x‖Sk ≤ −min(2a, 2b, 2c, d) for

some m.

If γ ≥ TR, then as γ > 0, fn(u(1)(x)) eventually becomes (0, γ) or (γ, 0). This concludes

that gn.x is a point on C(X2
i ) ∩ C(X2

i+1), so the claim follows.

It would be a good drill to actually describe the complement of (12.3.5) on Sk. Tracing

the inverses (u(i))−1 : u(i)(C(X2
i )) ⊂ Q1 → C(X2

i ), we have that

(x1, x2, x3) ∈
⋃
p,q≥0

gcd(p,q)=1

R≥1 · (−TR) · {(p+ q, q, p), (p, p+ q, q), (q, p, p+ q)} (12.3.6)

is the description of the complement of (12.3.5) in Sk. Here, TR = −min(a, b, c, 1
2d).

If the region R ⊂ U (modulo 3 points), then (12.3.6) will be a precise description of

Sk \ U . This is because we establish a further dichotomy (modulo Γ-orbit of 3 points) if

R ⊂ U , thanks to Corollary 12.10: either the Γ-orbit of x intersects R, or intersects one of

the rays C(X2
i ) ∩ C(X2

i+1).

12.4 Punctured Torus Parameters

Call the parameters a = b = c = ∞ and d < 0 a punctured torus parameter, following

Rebelo and Roeder [2021]. However, the condition a = b = c =∞ is more than enough and

it suffices to have a, b, c ≥ 1
2d and d < 0 for the discussions below.
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This is a special case when (12.3.6) is precisely the exception set Sk \U . This is because

R in (12.3.4), the cell C(D), and the ping-pong table D0 are all the same (modulo vertices).

Furthermore, we can describe U precisely as the open set gcd(x1 − x3, x2 − x3) < −1
2d, and

the exception set Sk \ U precisely as a union of rays (12.3.6) with TR = −1
2d.

It is also interesting to sketch the orbit of D0 directly. Figure 12.1 sketches images

u(i)(si.D) ⊂ u(i)(C(X2
i )). We denote j for sj on figures 12.1 to 12.3, for a better readibility.

Now applying s1 to sj .D0 ⊂ C(X2
j ), j = 2, 3, we append more triangles s1s2.D0 and

s1s3.D0 in C(X2
1 ), in addition to s1.D0. This is sketched in Figure 12.2, along with other

index combinations. Figure 12.3 is sketched by adding more triangles by further applying

the involutions.

The figures hint us that the rational rays should appear as the limit of these triangles.

For instance, the triangles (s1s2)n.D0 in C(X2
1 ) reaches to the line u(1)

1 = 0 which contains

the intersection C(X2
1 )∩C(X2

2 ). Another way to approach to the intersection is (s2s1)n.D0,

which approaches from the other side of the ray. This observation motivates us a further

discussion on the behavior of ‘infinite-length trajectories’ of D0, which will be saved for

further researches.
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