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Abstract

Thin elastic sheets buckle to form a wide variety of morphologies that can be broadly cate-

gorised into two groups: smoothly wrinkled shapes, and sharply faceted shapes. According

to common knowledge, the former is energetically dominated by external sources of work

(like a substrate or boundary tension), while the latter is dominated by sources of work

arising from the sheet’s intrinsic elasticity and geometry. In this thesis, we analyse a buckled

morphology that shows characteristics of both these aforementioned categories. We call this

intermediate category “faceted wrinkling”. Using numerical finite-element simulations, we

study a minimal two-dimensional system: a circular annulus contracted at the inner bound-

ary by fraction ∆, so that it buckles into a radial wrinkling pattern that shows sharp zig-zag

faceting at the inner boundary. In our first result, we argue that this morphology results from

the fact that the wrinkling is asymptotically isometric, i.e. its stretching energy approaches

zero relative to its bending energy. To this end, we compare our numerically generated so-

lutions to an Ansatz zero-thickness solution made up of alternating triangles and cones that

is developable, and hence isometric, by design. We find this isometric cone-triangle Ansatz

to agree with simulations over a wide range of values of system size, thickness, and wrinkle

wavenumber and amplitude. In our second result, we address the mechanism that selects the

wrinkle wavelength λ in such a pure-bending configuration. Usually, wavelength selection

in elastic wrinkling occurs through macroscopic competition between the sheet’s bending

energy and some external source of deformation work, like a (real or effective) substrate.

What could select λ in the absence of any competition to the bending energy? Using our

numerical simulations, we argue that competition between stretching and bending energies

at mesoscopic scales leads to the selection of a wavelength scale sensitive to both the width

w and thickness t of the sheet: λ∗ ∼ w2/3t1/3∆−1/6. This scale λ∗ corresponds to an arrest

criterion for wrinkle coarsening in the sheet starting from any wavelength finer than λ∗:

λ ≲ λ∗. However, the sheet can support coarser wavelengths, λ ≳ λ∗, since there is no

penalty to their existence. Since this wavelength selection mechanism depends on the initial

λ, it is path-dependent (or hysteretic).
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Preface

This thesis is an examination of the mechanics and pattern selection in the so-called “inner

Lamé” wrinkling deformation, using a combination of theory and simulation. The thesis

reproduces two papers: [1] and [2], that have been submitted to the journals PNAS (Pro-

ceedings of the National Academy of Sciences) and Soft Matter respectively. These papers

have been reformatted for inclusion in the thesis, but are otherwise unchanged. The two

papers are preceded by an introductory chapter that delineates (i) the larger scope of the

thesis – namely, pattern formation in thin elastic sheets and the key role played by isome-

tries in understanding them – and (ii) the principal features of thin sheet elasticity – viz. the

thickness-mediated competition between bending and stretching modes, and the role played

by intrinsic geometry. These topics are developed summarily, without many equations, and

only to the point necessary for understanding and appreciating the thesis. They are based on

inputs from textbooks and review papers, the informative commentary article by S. Venka-

tramani on elastic pattern formation [3], and on the detailed comments provided in the

referee report to [1], supplemented by my own knowledge.

Chapters II and III contain the contents of the two papers [1] and [2], dealing with two

almost-independent facets of this system: shape selection and wavelength selection. Chapter

II, based on [1], deals with the logically prior question of how the wrinkling morphology is

determined by macroscopic energy minimisation. The source paper [1] was co-authored by

myself, Luka Pocivavsek (LP) and Thomas Witten (TW). It was submitted to PNAS and

is currently in revision. In this work, I was responsible for selecting the system and guessing

its significance, performing simulations and measurements, and for creating the main text

and figures of the paper. LP was key in providing numerical support and in revising the

paper. TW’s contribution was to postulate the cone-triangle ansatz solution, to clarify many

aspects of the theory and its shortcomings, to help in interpreting numerical results, and to

revise and suggest text for the paper.
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Chapter III, based on [2], deals with the enigmatic question of how a wavelength is selected

in an unsupported sheet with only bending energy. Reference [2] was authored solely by

me and is almost entirely my own work, in particular, guessing the non-trivial wavelength

selection mechanism, and confirming it through simulations and measurements. Thomas

Witten played a mentor’s role in this process, acting as a sounding board, providing key

physical insights, and aiding in the revision of the paper, helping to make it clear and

cogent. It is currently under peer review.
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Chapter 1

Introduction and Overview

1.1 Thin elastic sheets: a model for soft matter self-

organisation

This thesis on thin elastic sheets is situated within the larger domain of soft condensed

matter (or ‘soft matter”), a relatively recent branch of physics that studies matter that

deforms significantly (hence the word ‘soft’).1 More specifically, it concerns “materials in

states of matter that are neither simple liquids nor crystalline solids of the type studied in

other branches of solid state physics” [2], i.e. in some way lie between the traditional fields of

solid state physics and fluids. Traditional soft matter systems live at micron scale or below

(≲ 10−6), though they can extend to the macroscopic scale as well (as we will see for thin

sheets). Thus, soft matter as a field studies things that we can see and touch, and which

even make up our bodies.

To a physicist, the interest of soft matter lies in the immense degree of complexity of the

systems under study, which include liquid crystals, polymers, gels, colloids, complex fluids,

etc. [2–4]. These systems are exemplars of what P.W. Anderson famously called “more is dif-

ferent”, i.e. where the large-scale, macroscopic behaviour of properties are highly non-trivial

functions of the constituent microscopic units, depending strongly on their geometry, dimen-

sionality, connectivity/topology and mutual interactions [2]. In fact, soft matter systems

even display what is known as ‘multi-scale physics’, in which interaction between micro-

scopic units (usually at the atomic, molecular or micron scales) leads to the spontaneous

creation of order and structure 2 – and new ‘emergent’ degrees of freedom – at intermediate

1This section, as well as Secs. 1.4 and 1.5, are inspired by S. Venkataramani’s excellent commentary
article [1].

2This is also known as ‘self-assembly’ or ‘self-organisation’
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‘mesoscopic’ scales. Often, one can get multiple iterations of this phenomenon, with emer-

gent degrees of freedom at some mesoscopic scale interacting between themselves to create

emergent structures at a larger mesoscopic scale, and so on hierarchically, before we finally

reach the macroscopic scale. Oftentimes, soft matter systems are also subject to random

thermal motion (hence, entropy), complicating things further. To get a good idea of exactly

how rich and complex soft matter systems can get, we refer the reader to the physics of

polymer systems [5, 6].

Among the many possible complex soft matter systems, thin elastic sheets or membranes

stand out for their simplicity. They display a rich diversity of physical morphologies, despite

having a very simple physical structure consisting of just a few ingredients. For example,

from the outset, elasticity theory is a coarse-grained, continuum mechanical theory that

ignores the existence of the constituent ‘particles’ of a material. All material particularities

are captured in a few numerical constants, viz. the elastic moduli/stiffnesses. Indeed, for a

uniform, isotropic, linearly elastic material, there are only two independent elastic moduli [7].

Next, in terms of spatial complexity, the possibility of having many length scales is limited.

3-dimensional (3d) bulk elasticity is particularly simple in this respect, since the entire

macroscopic system can be described using only one geometric length scale: the system size

L. As we reduce the dimensionality of the object to 2 or 1 dimensions (2d and 1d resp.), we

isolate another dimension, the thickness t ≪ L, which forms a new ‘microscopic’ or minimum

length scale in the system. Thus, slender elastic objects – viz. one-dimensional (1d) rods and

two-dimensional (2d) sheets – are characterised by only these two continuum length scales:

t and L (with t ≪ L). Finally, since there are no constituent microscopic particles involved,

there is no question of having temperature or entropy in this physics. Despite this simplicity

in description, thin elastic sheets 3 buckle and bend into a rich variety of highly deformed

shapes (see Fig. 1.1) with fascinating physical properties, all of which can be studied with

relatively simple tools from physics and geometry. Thus, thin elastic sheets may be viewed

as a model system to build universal intuition about the coarse-grained energy mechanisms 4

underlying pattern formation and self-organisation in disparate macroscopic and soft matter

physics systems.

3Thin one-dimensional rods, in comparison, are less rich and complex. We explain this in detail later.
4Coarse-graining, by its nature, emphasises universality.
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Figure 1.1: Example shapes and patterns formed through spontaneous bending of thin elastic
sheets under compression and confinement. (a) Everyday patterns: (clockwise from top-left)
a wrinkled t-shirt, a curly leaf, a crushed soda can, and a crumpled currency note. (b) shows
an example of elastic pattern formation resulting from geometric incompatibility between
objects. If we try to line a stiff, metallic baking pan with a flat sheet of parchment paper,
the result is the randomly crumpled and wrinkled pattern seen on the right.

1.2 Seeking isometries: a fundamental question in thin

sheet elasticity

The field of elasticity studies the deformations of solid objects, i.e. changes in shape through

stretching and bending. As explained in the previous section, in this thesis, we are concerned

with continuum elasticity, i.e. the study of continuous objects, generally understood to be

at the macroscopic, human level. In particular, because of their fascinating and exotic

behaviour, we are interested in two-dimensional (2d) elastic thin sheets.

A good, everyday example of an elastic sheet is a sheet of paper. A thin sheet, by virtue of

its thinness (explained later in Sec. 1.4), bends very easily, and thus forms three-dimensional

(3d) shapes 5. Such bending can be generated manually, as in the art of origami or paper-

folding, or can be generated spontaneously under some form compression/confinement, as in

the example patterns and morphologies shown in Fig. 1.1. A fundamental question one can

then ask is:

What are the shapes that a flat elastic sheet may form by bending?

As one might guess, one can not form any arbitrary shape with a flat sheet. To see this,

consider the following example (see Fig. 1.1b). When a baker is trying to line a stiff metallic

5Mathematically, these are known as embeddings of the sheet’s surface.
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bread pan with parchment paper, they are asking the question: can the flat sheet take the

shape of the bread pan? As soon becomes evident, the answer is no: the paper wrinkles

and crumples in many ways, but refuses to take on the shape of the pan. The reason this

happens is because the flatness of the sheet is fundamentally incompatible with the shape

of the bread pan. The intrinsic lengths in the two shapes are different: at some places,

there is more material between two adjacent points in the sheet as compared to two adjacent

points in the pan. This mismatch in lengths (or ‘geometric incompatibility’) means that the

parchment paper must compress in order to conform to the shape of the pan. However, as

we explain later, thin sheets are extremely ‘stiff’ or resistant to stretching. Thus, the paper

assumes a shape or configuration that is unstretched, but highly bent and conforming only

very roughly to the shape of the pan.

This example shows us that the fundamental question above needs to be modified to the

following:

What are the shapes that a flat elastic sheet may form by bending without stretch-

ing?

Rephrasing this in mathematical terms: what are the isometries (from ‘iso’=equal and

‘metric’=length) of a flat sheet?6 Some isometries readily come to mind, e.g. cylinders and

cones. But these are too simple, in the sense that they provide no route to describe the

variety of shapes observed in elastic pattern formation (c.f. Fig. 1.1), such as the baking pan

liner above. Thus, what we are really looking for are complex isometries of a flat sheet. This

is the question that animates the entirety of this work.

One may ask, why should one care about these isometries? The reasons are manifold. From

a fundamental physics point of view, such spontaneously bent shapes (see again Fig. 1.1)

represent vivid examples of self-organisation and pattern formation in nature under elastic

forces, and thus merit study on their own basis. But beyond that, isometries are also of

fundamental importance in natural and engineering design. Nature is known to use isometric

design principles, since they allow transition between a flat and a folded state at little energy

cost. This can be seen, e.g., in the bursting of pollen grains [11] and the infection of red

blood cells by malarial parasites [12]. Similar ideas have also been exploited by human

beings, for example, in the art of origami (literally, ‘paper folding’), which can be used to

make incredibly complex shapes [13, 14] as well as simple single-motion shapes such as large

solar panels that can self-deploy robustly in outer space [15].

6One may pose the same question of sheets that are intrinsically spherical [8] or hyperbolic [9, 10]. But
this work is only concerned with intrinsically flat sheets.
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1.3 The “inner Lamé” system

In this dissertation, we study such a shape selection problem in a seemingly very simple

system: a flat, unsupported circular annulus contracted radially at the inner boundary, so

that it buckles to form a pattern of repeating radial wrinkles (see Fig. 1.2b). We name this

the “inner Lamé” system [16]. While the ‘loading’ and overall geometry of the system are

indeed very simple and symmetric, we will proceed to show that the selection of the final

wrinkling pattern is a highly non-trivial processes, and consists of two separate processes:

1. Shape selection: the selection of the morphology of a single wrinkle (the ‘unit cell’),

and

2. Wavelength selection: the selection of the wrinkle length scale (equivalently, the num-

ber of wrinkles).

Using a combination of theory and numerical simulations, we will show that these two

questions can only be answered taking into account some subtle features of the physics

of thin sheets, in particular, i) their delicate interplay of stretching and bending energies,

and ii) their strong geometric constraints. We also show that scale plays a big role in

the answering of these two questions: the shape selection is determined by energetics at

a global/macroscopic scale, whereas wavelength selection is determined by local energetics

at a mesoscopic scale. Thus, this dissertation focuses mainly on the physical questions of

how and why the matter self-organises into this particular shape. We also discuss possible

applications of this physics in the design of deployable structures, and the possibilities of

generalisation of these self-organisation mechanisms to other geometries.

1.3.1 Organisation of dissertation

The rest of the chapter is dedicated to providing background and context for our exploration

of the physics of the inner Lamé system. In Sec. 1.4, we discuss the crucial interplay between

cheap bending energy and expensive stretching energy, mediated by the thickness, that marks

the physics of all slender elastic objects. In Sec. 1.5, we discuss the crucial role played by

geometry and dimensionality in the elasticity of thin two-dimensional (2d) sheets. Finally,

in Sec. 1.6, we focus back on the main theme of this thesis – the search for isometries of

thin, flat sheets – and use the knowledge from Secs. 1.4 and 1.5 to briefly describe the two

known categories of such isometries.

In Chapters II and III (and the appended articles [16] and [18] resp.), we discuss the orig-

inal research of this dissertation. Each chapter addresses one of the two principal questions

5



Figure 1.2: Geometry of the Inner Lamé radially wrinkled system. (a) A schematic diagram
of the flat annulus, showing its geometric parameters: radial distance r, width w and (in
cross-section) thickness t. We take the inner radius as unity. (b) An example of a deformed
configuration, generated through finite-element simulation, showing the displacement ∆ and
the wrinkle wavelength λ∗, measured at the outer boundary. The inner boundary shows
spontaneous zig-zag folding. This is reminiscent of the zig-zag folding found in Miura origami
[15], like in the paper example shown in (c) [17].

that we are concerned with, respectively, shape selection and wavelength selection. In Chap-

ter II, we argue that the geometry of the inner Lamé system allows it to assume a wrinkling

morphology that is developable, and hence isometric, independent of thickness and ampli-

tude. In other words, this wrinkling morphology is characterised by only the bending energy.

Thus, we have extreme “energy imbalance” at the macroscopic level. On the other hand,

in Chapter III, we claim that the selected wavelength (λ∗ in Fig. 1.2) for the inner Lamé

system emerges through “energy balance” at a mesoscopic level, by balancing stretching and

bending energies in transient Y-shaped structures called ‘wrinklons’ [19] not present in the

final shape. This leads to a special type of wavelength selection mechanism that is hysteretic.

1.4 Energy structure: the role of thickness

As stated in Section 1.2, slender elastic objects (both 1d rods and 2d sheets) are characterised

by only two length scales - the ‘microscopic’ thickness t and the ‘macroscopic’ system size

6



L. This simplicity in the length structure of thin sheets is reflected in the simplicity of its

deformation and energy structure as well. Deformations in slender objects an be categorised

into one of only two almost-independent modes: stretching and bending.7 Stretching refers

to in-plane deformations of the material, leading to changes in material length. It is measured

using dimensionless strain, i.e. the fractional change in length. Bending, on the other hand,

refers to deformations normal to the plane (‘out-of-plane’) of the material. It is measured

using the curvature, which has dimensions of 1/(length). While strain and curvature are

both (symmetric) tensor quantities, their most fundamental scaling behaviour can be inferred

considering only the relative magnitudes of these tensors. This suffices for our purposes.

Given the strain and curvature distributions, the total energy of elastic deformation

(Uelastic) of a slender object can then be written as the linear sum of two separate con-

tributions:

Uelastic = Ustrain + Ubend, (1.1)

where the global energies Ustrain and Ubend are defined as the integrals (over the mid-plane

of the material) of the local energy densities, which are proportional, respectively, to the

square of the local strain and curvature. That is, they have the form:

Ustrain ∼ Y

2

∫
(strain)2 (1.2)

Ubend ∼ B

2

∫
(curvature)2, (1.3)

involving integration over the length (in 1d) or area (in 2d). Here, the constants Y and B

are, respectively, the stretching and bending stiffnesses8, which capture all the dependence

of the energy on material properties, as well as the object thickness. As with the stiffness of

a single spring,9 the stiffness of a mode determines the energetic cost of a unit deformation

of the mode.

Ratios of stiffnesses and energies

Here and henceforth, we are interested in the equilibrium deformation or shape of an elastic

object. This is given by the minimisation of the elastic energy Uelastic. A key ingredient of

7We will discuss in the next section how these two modes are not fully independent. But this point is
only important in 2d.

8The stiffness is also referred to as the modulus or rigidity.
9Recall that for a single spring, we can write Uelastic = k

2 (l − l0)
2, where k is the spring’s stiffness, l0 is

its equilibrium length and l is its current length. Thus, for unit deformation: |l − l0| = 1, the energy is just
half the stiffness: Uelastic =

k
2 .

7



the remarkably rich physics of thin sheets is the partition of energy between the parts Ustrain

and Ubend. This, in turn, is controlled by the thickness-mediated “separation of magnitude

(or scale)” between the stretching and bending stiffnesses Y and B. For a slender object

(i.e. a 1d rod or 2d sheet) of thickness t [20], the ratio of the two stiffnesses obeys the scaling

relation:

B/Y ∼ t2, (1.4)

a result that emerges from the integration over the thin dimension(s) required to reduce the

3d theory to 2d or 1d (see, e.g., [21]), but which can also be guessed from dimensional analysis.

Eq. 1.4 implies that, if we consider two sheets of the same material having thicknesses t1

and t2 (t1 > t2), then the ratio B/Y for the thinner sheet is smaller than the B/Y for the

thicker sheet by a factor of (t2/t1)
2.

To see the consequence of this for the energy ratio Ustrain/Ubend, consider the following.

The shape of a sheet is defined independently of its thickness. If a given shape has a given

ratio Ustrain/Ubend at one thickness t1, then that ratio for that same shape is increased as

(t1/t2)
2 as the thickness decreases to t2. Thus, for a sufficiently thin sheet, any deformation

(i.e. change in shape) that reduces the strain energy can lower the total energy much more

strongly than a deformation that reduces the bending energy. Thus, such strain-reducing

deformations should be favoured over bending-reducing deformations in the thin sheet limit.

This argument tells us about the (relative) change in energies for a fixed shape. However,

it does not determine the final equilibrium shape, nor the balance of energies Ustrain/Ubend

in this state. We comment on these aspects next.

Equilibrium configuration and energy partition

The imbalance between the stretching stiffness Y and bending stiffness B (Eq. 1.4) can be

used to highly simplify the task of finding the equilibrium (i.e. energy minimising) configu-

ration, at least in simple systems like a 1d rod. For a thin rod, it suffices to directly take

the infinitely-thin limit and impose zero stretching energy (i.e., zero strain) as a constraint

while minimising only the bending energy.10 This was done by Euler in his Elastica (1744)

to accurately find the equilibrium shape of bent rods for a variety of boundary conditions

[22].

10This is called the inextensible limit.
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In 2d, however, things are more complicated due to the extra constraints placed by two-

dimensional geometry, which make it difficult for a sheet to assume configurations where

Ubend always dominates Ustrain. For example, in a crumpled sheet of paper, the elastic energy

is concentrated in singular structures called ‘stretching ridges’, where the stretching and

bending energies are found to be in balance even in the zero-thickness limit, obeying a finite

ratio: Ustrain/Ubend → 1/5 [23]. Thus, dimensionality and geometry add an extra ingredient

that makes the search for isometries – i.e. configurations where Ustrain/Ubend → 0 as t → 0 –

in 2d fundamentally more complex.11

In the next sub-section, we discuss why and how geometry plays such an important role

in two-dimensional (2d) thin sheet mechanics and pattern formation.

1.5 The role of geometry: 2d sheets vs. 1d rods

Figure 1.3: Illustrating the effect of geometry and dimensionality in the buckling of slender
structures (figure adapted from [1]). (a) We compare a thin elastic (1d) rod that is confined
by a ring in two dimensions and a thin elastic (2d) sheet that is confined by a sphere in three
dimensions. The rod simply “curls up” following the boundary shape. The sheet, however,
“crumples” into a ball-like shape with sharp, singular features. (b and c) A letter-size paper
with a 1/2 inch grid is held by three stacks of five quarters, placed 2 inches apart. (b) The
sheet is free to bend over the edge of the table without stretching since there is no curvature
in the transverse direction. (c) Two of the stacks of quarters are now supporting the sheet
from below to introduce a transverse curvature in the sheet. The sheet no longer bends over
the edge, implying that the transverse curvature (somehow) imparts an extra longitudinal
rigidity to the sheet.

11In other words, generalising Euler’s Elastica to 2d is not a trivial task.
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The discussions in the previous sections of this chapter have been mostly agnostic about

the dimensionality of the slender object, and unless specified, have been equally valid for one-

dimensional (1d) rods and two-dimensional (2d) sheets. That is because these discussions

have been dependent only on the thickness t, as encapsulated in Eq. 1.4. In this section,12 we

show that this ‘symmetry’ between 1d and 2d systems is broken by geometry, in particular by

Gauss’ famous Theorema Egregium. This theorem, and the ideas contained therein, impart

a new type of “geometric rigidity” to 2d sheets, rendering their pattern formation more

complex, and hence more interesting.

A priori, the deformation space of a two-dimensional material should just be a simple

product of two copies of the deformation space of a 1-dimensional material, i.e., a single

stretching and bending direction should be replaceable by two perpendicular stretching and

bending directions. Moreover, since stretching is an in-plane deformation, while bending is

out-of-plane, they should a priori be independent deformation modes. However, reality is

more complicated. In 1827, Carl Friedrich Gauss proved his famous geometric Theorema

Egregium, which stated that stretching and bending in 2d are not fully independent modes.

In other words, while the elastic energy can be expressed exactly as a sum of stretching

and bending energies, the strain and curvature deformations that determine these energies

cannot be independently varied in a real sheet. Thus, in general, a given shape and curvature

profile cannot be achieved without some specific conditions on the strain profile.

In particular, the Theorema implies the following result:

Simultaneous bending in two independent directions requires stretching.

Since, as we have already seen, stretching is energetically very expensive for thin sheets, this

means that double curvature in thin sheets is an expensive, and hence penalised, deformation.

Gauss’ Theorema Egregium thereby encodes an extra geometric constraint or rigidity in the

mechanics of thin 2d sheets – one penalising double curvature – that is absent for 1d rods.

This extra constraint is responsible for a complexity and diversity in the space of shapes

and patterns produced by the bending of thin sheets that cannot be matched by rods. An

illustrative example of this difference is provided in Fig. 1.3a. A thin rod confined inside a

ring in two dimensions merely ‘curls up’ touching the boundary (overlapping itself if needed).

However, a thin sheet confined inside a sphere in three dimensions cannot just conform to

its doubly-curved surface. Instead, it forms a very complex ‘crumpled’ structure with flat

facets and randomly distributed sharp ridges and points at scales much smaller than the

system size.

12This section is also inspired by S. Venkataramani’s opinion article [1].
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The singular and jagged topography of the crumpled ball of paper is illustrative of a con-

sequence of the geometric constraint encapsulated in Gauss’ Theorema (1.5). From Eq. 1.4,

we know stretching is expensive in a thin sheet. Then, considering the shape’s change un-

der a given confining geometry as the thickness goes to zero, any compound curvature in

a given region would incur an arbitrarily large stretching energy penalty. This penalty can

only avoided by eliminating compound curvature in the region. This property of having

zero compound/Gaussian curvature is known as developability [24]. Developable shapes are

characterised by the presence of straight lines in the material known as directors – corre-

sponding at each point to the local principal direction of zero curvature – that can span the

entire width of the material [25]. Such linear directors are what is responsible for the jagged

appearance of a crumpled ball of paper.

Moreover, the role of these geometric director lines is not just cosmetic, but also functional.

Since the straight directors cannot bend easily13, they act as a source of non-local rigidity

in the deformed sheet, strongly defining its shape as well as its mechanical response. This

is illustrated in Figs. 1.3b,c. Here, by giving transverse curvature to a thin paper sheet, we

generate straight directors in the longitudinal direction, which are rigid enough to support

the sheet’s weight. This is also known as the “pizza slice” example, since a similar tactic

of using transverse curvature can be used to hold a pizza slice with one hand, without it

flopping over at the far end.14 The same idea of imparting rigidity through curvature is also

used at the human scale, in building construction (e.g. with corrugated metal sheets) and in

architecture (e.g. with paraboloid and hyperboloid shell structures) [26, 27].

1.6 Known categories of isometries

In Sec. 1.2, we discussed how the fundamental question animating this dissertation is the

search for non-trivial isometries (or almost-isometries) of a flat sheet, i.e. deformations of

the sheet that are free (or almost free) of strain. In terms of energies, we wish to find

deformations of the flat sheet that have ratio Ustrain/Ubend → 0 as the sheet thickness t → 0

( with respect to the system size or some macroscopic scale). This question is equivalent to

finding a generalisation of Euler’s Elastica to 2d systems, and its complexity arises from the

intricate interplay of the two elastic energies discussed in Sec. 1.4, along with the geometric

constraints discussed in Sec. 1.5.

13Again, because this would generate double curvature and hence expensive stretching.
14This will work provided the pizza slice is not too heavy. Otherwise, gravity will overcome the rigidity of

the directors.
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The past decade in particular has seen a rich vein of research in this direction. According

to current understanding, such isometries can be classified into one of two broad categories.

In this section, we provide a brief summary15 of these two broad classes. The two cate-

gories of isometries can be separated not only visually – because of their strikingly different

morphologies (see Fig. 1.4) – but also energetically – in terms of both energy partition and

spatial distribution – and by the nature of their approach to the zero-thickness limit. This

discussion will provide the immediate context for the novel inner Lamé morphology studied

in this dissertation.16

1.6.1 Wrinkled “asymptotic isometries”

Following the discussion in Sec. 1.4, one evident approach to attaining isometry is simply to

take the t → 0 limit for some morphology. By this, we mean the following: we start with a

given configuration generated at given thickness t for some given loading or confinement, and

then gradually reduce the thickness to zero, holding the confinement fixed. Since this class

of isometries only exists in the limit of zero thickness,17 we refer to them as “asymptotic

isometries” [28, 29, 35–37].18 These asymptotic isometries are commonly seen in sheets

subject to compression in the presence of a (real or effective) substrate, so that they buckle

into wrinkled morphologies [28] – i.e. buckling into multiple smooth undulations with a

wavelength usually denoted λ.19

The top row of Fig. 1.4 shows three images of a radially wrinkled configuration – from

the same experiment – evolving as the sheet thickness is decreased. The experiment involves

poking a thin polystyrene film floating on a water bath [29–31]. Such poking in the presence

of radial surface tension generates compression in the azimuthal direction, which can be

relieved through wrinkling. From left to right, the images show sheets of thickness (a)

t = 157nm, (b) t = 113nm, and (c) t = 40nm, having approximately the same poking

depth δ. As t decreases, we can see the wrinkle wavelength λ becoming finer and finer.

Since a smaller λ implies stronger curvature and hence greater bending, this comparison

suggests that bending deformations increase as the thickness decreases (for fixed poking

15For more details, please read the references. In particular, we recommend the review article [28].
16The author would like to thank the anonymous referee to [16] for clarifying several aspects of the

discussion below.
17The t → 0 limit for 1d rods is relatively simple, and is the subject of Euler’s Elastica, as mentioned in

Sec. 1.4
18The class of ‘asymptotic isometries’ involves taking another limit as well, that of small tensile loading

[28]. This is essential to the definition, but inessential for the discussion here.
19Since the amplitude is determined by the wavelength λ in the thin, inextensible limit, a wrinkle defor-

mation is fully characterised by λ.
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Figure 1.4: Illustrative examples of the two broad categories of thin sheet isometries discussed
in Sec. 1.6. The top row shows photos (top views) of a radially wrinkled morphology that
becomes ‘asymptotically isometric’ as the thickness is decreased. Here, a thin disk-like sheet
floating on a water bath is poked with a metal rod [29, 30] (images modified from [31]).
From left to right, the sheets have thicknesses t of a) 157nm, b) 113nm, c) 40nm. The black
line is the shadow is of the poking rod. The poking depth is roughly the same in all three
photos. We can see the wrinkle wavelength becoming finer as t decreases. In contrast, the
bottom row shows examples of ‘developable isometries’, which show polygonal faceting. d)
An elastic ribbon when twisted (without any longitudinal tension) buckles into a pattern of
repeating triangular facets (image adapted from [32]). e) “Diamond buckling” in an axially
compressed cylinder. (left) An experimental mylar sheet cylinder (t ∼ 10µm) fitted onto a
mandrel core (image from [33]). (right) Yoshimura’s origami cylinder, created by folding a
flat sheet along prescribed hinge lines, before joining the edges (image from [34])
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distance). However, this does not tell us anything definitive about the energies. This point

is addressed in later theoretical work by Vella, Davidovitch and colleagues [29, 30, 35–37].

They predict the wavelength λ to vanish in the zero-thickness limit as
√

t/δ – consistent

with measurements – which implies that the energy ratio Ustrain/Ubend should also vanish in

this limit, as expected for an isometry.

We highlight some identifying characteristics of this class of “wrinkly” isometries:

• First and foremost is its behaviour as we decrease the thickness and approach the t → 0

limit. As the sheet gets thinner and thinner, the wrinkling wavelength λ becomes

smaller and smaller without bound. Thus, there is no single configuration to which the

sheet converges in the t → 0 limit.

• Second, since the wrinkle amplitude is proportional to the wavelength in the inexten-

sible thin-sheet regime, it also vanishes as t → 0. In other words, the wrinkles become

tinier and tinier in both height and width as the thickness decreases (for fixed loading

or confinement).

• Third, the elastic energy (both bending and strain) is smoothly distributed over the

entire sheet. This is in contrast to the “faceted isometries” of the next section, where

the energy is inhomogeneously distributed in spatially localised “boundary layers”.

Henceforth, we refer to this smoothly distributed energy as ‘macroscopic’ or ‘bulk’

energy, to differentiate it from these boundary layers.

1.6.2 Faceted “developable isometries”

The second category of isometries differs fundamentally from the first category in that there is

a specific target shape that the deformed sheet tends to as the sheet gets thinner and thinner.

This target shape is determined by the constraints of geometry in the t = 0 limit. In view of

the discussion in Sec. 1.5, the limiting isometric morphology must correspond to an “origami-

like” (piecewise) developable surface, i.e. one with zero Gaussian curvature (see Fig. 1.4d).

Thus, in contrast to the first ‘asymptotic’ category, this category of “developable isometries”

explicitly exploits the geometric properties of 2d surfaces (as discussed in Sec. 1.5).20

Such developable isometries are usually seen in unconstrained sheets [28], i.e., sheets with-

out any substrate or boundary tension or other external source of deformation work. Recall

that developability means that there is a straight material line through every point of the

20This category of isometric deformations is thus unavailable to 1d systems.
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surface, corresponding to the direction of zero principal curvature (see Sec. 1.5). Thus, these

isometries are characterised by the presence of flat, polygonal facets, i.e. piecewise flat mate-

rial regions, separated by sharp/jagged line-like or point-like singular features, respectively

known as ‘ridges’ [7, 23] and ‘d-cone tips’ [38–40] in the literature. The bottom row of

Fig. 1.4 presents examples of systems which buckle with spontaneously ordered faceting. In

particular, Fig. 1.4d contrasts an experimentally obtained ‘diamond buckling’ morphology

[33] with its putative geometric surface constructed through origami [34]. The crumpled ball

of paper shown in Fig. 1.3a is instead an example of disordered faceting.

A big difference between this class of developable isometries and the previous ‘wrinkly’

class lies in its behaviour as we decrease the thickness and approach the t → 0 limit. In terms

of morphology, while wrinkly isometries have no limiting shape because of their diverging

wavenumber, developable isometries show smooth convergence to the limiting shape given

by the geometric (i.e., zero-thickness) developable surface. The main divergence from the

t = 0 geometric surface, indeed, is restricted to narrow “boundary layers” concentrated at

the line-like ridges and point-like conical singularities, whose size decreases to zero with the

thickness (see the two images in Fig. 1.4d).

As a consequence, we can think of the sheet’s morphology as being decomposable into a

‘macroscopic’ (or ‘gross’ or ‘bulk’) part covering almost all of the sheet’s surface – which is

determined by some t = 0 developable surface – and a finite set of ‘mesoscopic’ spatially-

concentrated boundary layers, where the morphology differs from the t = 0 surface sig-

nificantly. Thus, a significant feature of developable isometries is that, in terms of gross

morphology, they show negligible change with changing thickness, and can thus be consid-

ered thickness-independent. On the other hand, because of the vanishing wavelength, the

gross morphology of the asymptotic isometries can be said to be thickness-dependent.

Thus, the main effect of thickness for developable isometries is restricted to the small-

scale boundary layers mentioned above. The sharp lines and points defined for the t = 0

geometric surface (see right image of Fig. 1.4d) have discontinuous curvature. At finite

thickness, i.e. for finite bending modulus, such discontinuities would cost infinite bending

energy. To avoid this, these discontinuities are “rounded off” at the expense of some non-

zero stretching energy, localised to these boundary layers.21 Thus, the boundary layers

in the sheet are not only zones of discrepancy with the t = 0 limiting configuration, but

21Thus, stretching can exist in an otherwise-isometric sheet in these localised boundary layers of finite
size.
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also zones of concentrated energy. Furthermore, the macroscopic morphology is composed

of flat and isometric facets, which have (comparatively) negligible stretching and bending

energies. Thus, for ‘faceted isometries’, we conclude that the net macroscopic or bulk energy

is effectively zero, and that all elastic energy effectively lives in these lower-dimensional line-

like and point-like boundary layers [7]. This is thus in stark contrast to the ‘asymptotic

isometry’ category, where the energy is uniformly distributed over the wrinkled surface.

The contrasting spatial distributions of energy strongly influence the qualitatively different

approaches to the zero-thickness limit for the two isometry categories.

“Wrinkly” isom-
etry

Faceted isome-
try

Faceted
wrinkling

Target shape
(as t → 0)

Not defined Defined Defined

Deformation ampli-
tude
(as t → 0)

Vanishes Negligible
change

Depends on
initial conditions

Gross morphology
(as t → 0)

Changes Negligible
change

Depends on
initial conditions

Bulk Ubend

(at finite t)
Finite Negligible Finite

Bulk Ustrain

(at finite t)
Finite Negligible Negligible

Table 1.1: Salient properties of the two known existing categories of isometries (left and
middle columns), and the new category proposed in this dissertation (right column).

1.6.3 The inner Lamé morphology: a new, intermediate category

of isometry?

The discussion in this section serves as the perfect point to dive into the subject of this

dissertation. In Chapter II, we will argue that the “faceted wrinkling” seen in our inner

Lamé radially contracted annulus (Fig. 1.2) is a novel kind of isometry that shows aspects

of both extant categories: it is developable and wrinkled at the same time. In particular,

we posit that the t = 0 limiting wrinkled morphology is given by a piecewise developable

surface made of alternating triangles and cones. Because of the presence of cones, the macro-

scopic/bulk energy consists of only bending energy and no stretching energy. Thus, we have

Ustrain/Ubend ≪ 1 even at non-zero thickness (provided the wavelength does not vanish). This

energy partition has strong consequences on the properties of the inner Lamé deformation.
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It favours the restriction of this deformation to a robust, bending-only (locally) minimum-

energy channel that avoids stretching, even up to very large amplitudes. This makes the

inner Lamé deformation akin to the robust and reversible single-mode deformations seen in

Miura-ori zig-zag pleated sheets [15], used as deployable structures.

However, wrinkling means that the sheet has also spontaneously selected some wavelength

λ. In particular, our simulations suggest that the wavelength λ → 0 as t → 0 (along with

the amplitude), much as for regular, smooth wrinkling. In the latter case, the wavelength

is selected by competition between bending and competing external sources of work, like a

(real or effective) substrate [30, 41–43]. But here, there is no such source of work present.

Thus, the question is, what mechanism could be responsible for selecting λ? In Chapter

III, we propose a mechanism in which energy balance between stretching and bending at

local boundary layer-like scales selects a wavelength λ. This mechanism is hysteretic in that

the final λ chosen depends on the initial conditions. Thus, the number of wrinkles m in the

configuration (m ∼ 1/λ) depends on the initial conditions and thickness t, but once this m is

selected, the approach to the zero-thickness morphology happens as with other developable

isometries.
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Chapter 2

The inner Lamé system: isometric

radial wrinkling

This chapter is a reproduction of the article “Faceted wrinkling by contracting a curved

boundary”, authored by Anshuman S. Pal, Luka Pocivavsek and Thomas A. Witten. The pre-

print is available at https://arxiv.org/abs/2206.03552. The article is currently under

peer review at the journal Proceedings of the National Academy of Sciences (PNAS). This

chapter reproduces a version of the article that has been significantly revised in response

to referee comments; further minor revisions have been made to adapt it to thesis format.

The paper also contains a significant Supplementary Information (SI) section, that has been

included here in Sec. 2.7. For the contributions of the co-authors to the article, please refer

to the Preface of this dissertation.

Abstract

Single-mode deformations of two-dimensional materials, such as the Miura-ori zig-zag fold,

are important to the design of deployable structures because of their robustness, but usually

require careful pre-patterning of the material. Here, we show that inward contraction of

a curved boundary produces a novel single-mode deformation without any pre-patterning.

Using finite-element representation of the contraction of a thin circular annular sheet, we

show that these sheets wrinkle into a structure with negligible stretching energy, in which the

contracted boundary forms spontaneous facets. We construct a strictly isometric wrinkled

surface formed of triangles and cones that matches geometric and energy features closely,
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suggesting that this class of partly-faceted wrinkled deformations is isometric. Isometry

favours the restriction of such deformations to a robust low-bending energy channel that

avoids stretching. This class of buckling also offers a novel way to manipulate sheet mor-

phology via boundary forces. Finally, it serves as a minimal model for illustrating the strong

constraints imposed by geometry in elastic pattern formation.

2.1 Introduction

The flourishing field of extreme mechanics [1–4] seeks ways in which large, spontaneous

material deformations yield robust, reproducible structures and motions. Many of these

structures exploit the selective deformations shown by thin sheets, which bend or fold eas-

ily but resist internal stretching strongly [5–16]. The large resistance to stretching creates

strong, non-local constraints that restrict the sheet to selected modes of deformation. A

classic example is the Miura-ori folding pattern [17–19]. This periodic pattern enables to

contract a spread-out flat sheet of paper into a compactly folded state with one single mode

of deformation dictated by the pattern (see Fig. 2.1a). Here we report similar robust defor-

mation of a flat sheet without the position-dependent processing needed for an origami fold.

Instead, we specify an initial annular shape and a simple mode of edge deformation: con-

tracting the inner boundary radially. The result is a strongly reproducible three-dimensional

pattern of high-amplitude wrinkles. We attribute the reproducibility to a qualitative feature

of the simulated, finite-element simulation—each wrinkle approaches an isometric shape,

with no stretching. This unstretched morphology is made possible by a distinct pattern of

flat, triangular facets alternating with smoothly-curving conical segments.

We consider a minimal form of radial contraction that we call “inner Lamé” contraction.

We displace the inner boundary of the annulus with no further constraints. As shown in

Fig. 2.1c, this contraction produces fine wrinkling like the conventional Lamé contraction of

Fig. 2.1b. However the two wrinkled states are radically different. The conventional Lamé

wrinkle wavelength is explained in terms of the applied tension [20]. However, in the inner

Lamé, the exterior tension of the Lamé state is absent, and so the established mechanism for

the wrinkle wavelength cannot apply. Indeed, our wrinkling contrasts with most wrinkled

systems, where the bending energy favoring longer wavelengths is countered by the energy

associated with some external forcing [9, 21]. The wrinkle wavelength then depends explicitly

on the strength of this constraint. The inner Lamé system has no such strength parameter.

Instead, the deformation is defined in terms of the geometric displacement of the inner edge

only.

Even among geometrically-defined forms of wrinkling, the inner-Lamé geometry is anoma-
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Figure 2.1: Geometry-controlled robust radial wrinkling. a) Miura-ori patterns guide a flat
sheet to contract into a folded state with a single, continuous motion (adapted from [19]).
b) Smooth radial (i.e., Lamé) wrinkling in an annulus under both inner and outer tension,
indicated by arrows (adapted from [20]). In this paper, we study Miura-ori like robust
deformation of an annulus in a radial Lamé setting. This deformation can be generated in
multiple ways. c) Finite-element calculated shape under uniform radial contraction of the
inner boundary, described inMethods (inset shows detail of emergent zigzag inner boundary).
d) Circular-cone-triangle geometric construction defined in Sec. 2.3, with triangles shown in
blue and cones in red. e) Ruff collar garment (source: internet) made by manually pleating
the inner boundary of an annular piece of cloth.

lous. It doesn’t conform to typical one-dimensional buckling treatable as an Euler elastica

system [22]. Other forms in which the constraint is applied at one boundary [14, 23] do not

give a well-defined wave number as we find.

We note that the forms of wrinkling mentioned above are explained as equilibrium ground-

states of the system. In our system the wrinkles emerge from a quasistatic deformation.

That is, the inner displacement is applied gradually, and the configuration is allowed to

relax at every stage. This procedure corresponds to how one would perform the deformation

experimentally. In this limit, the system follows a given energy minimum as the deformation

is imposed. It need not be an energy ground state.

In this paper we address the structure of the individual wrinkles resulting from this un-

usual mode of deformation. Understanding this structure seems prerequisite to accounting

for the wrinkle wavelength. We show that a strain-free isometric shape quantitatively ac-

counts for observed features of our simulated shape. Specifically, the simulated deformation
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matches an explicitly isometric deformation of the original annulus into a cone-triangle pat-

tern. We describe the robustness of the structure using a variety of initial and boundary

conditions for the contracted inner boundary. We argue that the observed robustness of the

cone-triangle structure is a natural consequence of its isometric property. We note how the

cone-triangle structure can be induced via different paths, as illustrated in Figs. 2.1c, d, and

e, and discuss generalisations to a broader range of structures. Using the findings of this

paper, we address the wavelength question in a separate work [24].

Sections 2.2 and 2.3 define the inner Lamé deformation that we simulate, and the iso-

metric model shape used for comparison. In Section 2.4, we show that the shape and energy

of the simulated sheet are consistent with the model. Finally, Section 2.5 addresses our

assumptions and discusses the value of such deformations for generating spontaneous struc-

tures.

2.2 Inner Lamé deformation

Given the circular annulus of Fig. 2.2a, we define the inner Lamé deformation as the equi-

librium shape induced by drawing the inner boundary inward by a distance ∆, so that it is

forced to live on a cylinder whose radius is reduced by ∆.1 We define the initial inner radius

as our unit of length. The pull distance ∆ thus acts as the sole loading parameter in the

system. The system can thus be conveniently defined using only three geometric parameters:

thickness t, the width w, and displacement ‘loading’ ∆. The internal forces determining the

shape arise from the bending modulus B, and the in-plane stretching modulus Y . In thin

sheets with thickness t much smaller than the inner radius and the width w, the sheet may

be taken as virtually unstretchable, and many features of the shape are independent of Y

[7, 20].

We may anticipate that this inner Lamé deformation is strictly isometric by using the

post-buckling far-from-threshold (FT) analysis of ref. [20] for the classic Lamé problem,

where tension is applied at both the inner and outer boundaries. In the FT regime, the

wrinkling slopes grow to the order of unity, and the associated azimuthal stress becomes

negligible compared to the pre-buckling stress. Only the bending azimuthal stress, owing

to wrinkling, proportional to the bending modulus and the curvature, remains. The same

is expected for our inner Lamé case: consider the radial stress in a narrow sector of the

annulus (see Fig. 2.2c). Equilibrium requires that the net radial force on the sector be zero.

In the unbuckled state, the inner tension driving the deformation is balanced by the net

1As discussed in Sec. 2.5, we constrain the inner boundary to move only parallel to the axis of the
cylinder.
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outward component of the azimuthal stresses on the sides of the sector. But in the FT

regime, this stress is negligible, as argued above. In addition, there is no radial tension at

the outer boundary. We conclude that the only forces to balance the inner tension are the

weak bending stresses.

The absence of any deformation stress except for bending stress would imply that the

deformed sheet deforms only by bending in the thin limit. That is, it is isometric to the

undeformed flat annulus. Such a limit can be attained by wrinkles of diverging fineness [6,

16]. But if a limiting shape of finite wavevector is to exist, then it must obey the geometrical

property of “developability”. That is, in view of Gauss’s Theorema Egregium [25] there

must be a straight generator line through each point of the surface that extends to the

boundary without curving in space [26] In the next sections, we show that the contracted

annulus is indeed consistent with a specific developable surface, suggested by the numerically

determined shape.

2.3 A developable cone-triangle model

The faceted inner Lamé morphology of Fig. 1 suggests a further hypothesis: that the

wrinkled morphology can be seen as a piecewise union of alternating flat triangles and curved

cones. We take this as the starting point for our geometric model. For a configuration with

wavenumber m, we consider a flat configuration (see Fig. 2.2b) where the inner boundary is

a 2m-sided polygon. Each segment of this boundary is the base of an isosceles triangle of

height w. To complete the annulus, the apexes of adjacent triangles are joined with an arc.

The constructed surface then consists of these triangles and the sectors joining them.

One may readily specify an isometric deformation that allows the inner boundary of

this structure to contract. We deform the initial surface by translating the base of each

triangle inward toward the centre, specifying that the triangles remain rigid. In order to

maintain their shape and connectivity, the triangles must tilt (i.e. rotate about their mid-

lines) increasingly as they are drawn inward; adjacent triangles tilt in opposite directions.

The sectors connecting two triangles must then also bend in order to remain connected to

their triangles. A ready isometric choice for this deformation is to bend the flat sectors into

circular conical arcs as the boundaries of each sector squeeze together. These arcs do not in

general join smoothly with their adjacent triangles, as further discussed in Sec. 2.32.4.3.
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2.4 Comparing simulated deformation with model

In this section, we test whether the isometric/developable cone-triangle construction is able

to predict the quantitative features of our simulated inner Lamé deformation from Sec. 2.2.

Our finite-element analysis (FEA) software Abaqus uses standard methods to represent the

deformed equilibrium shape as the inner boundary is gradually contracted inward. The inner

boundary is allowed to buckle by moving along the cylinder (see Methods). For simplicity we

restrict this motion to the axial direction, and allow no azimuthal motion of the boundary

points. We describe the effect of this restriction in Sec. 2.5.3. In comparing this calculation

to the cone-triangle construction, we must supply two free parameters: the boundary dis-

placement ∆, as well as the wavenumber m. Thus, we record the ∆ and m of the calculated

deformation, and then construct the corresponding geometric solution with the same ∆ and

m. The first comparison we make is purely qualitative – we superpose the two solutions

and observe how well they match up. Fig. 2.3 shows such a comparison, where we have

rotated the geometric solution about the z-axis to obtain the best superposition. As the

figure shows, one may align the two figures so that they overlay well over a significant part

of the annulus, with matching zigzags at the inner boundary and matching waves at the

outer boundary. Between the inner and outer boundaries, the surfaces match closely enough

that the two surfaces alternately hide each other.

The qualitative resemblance seen in the figure encourages a more quantitative comparison.

In particular, we propose that for a given wave number m, the shape of the sheet approaches

an isometric cone-triangle structure in the limit of zero thickness. Further, approximating

each cone as a circular cone sector that connects its neighboring triangles gives a useful match

to the shape and energy of the sheet. Accurate comparison is hindered by the variability

of the simulated wrinkles. Though regular in general, the wrinkle pattern is not strictly

periodic on the annulus. To optimise the comparison, we perturb the initial flat state of the

numerical sheet to promote periodicity. Specifically, we deform the initial state with a low-

amplitude, smooth, periodic wrinkle with a wavelength similar to the original simulations.
2

2.4.1 Inextensibility and bending strains

We first verify the anticipated isometry of the sheet as announced in the Introduction. To

this end, we measure changes in lengths of the material circles at the inner (r = 1) and outer

(r = 1 + w) boundaries.

2The initial wrinkle shape chosen is an eigenmode obtained from linear stability analysis performed using
the FEA software.
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First, we consider radial inextensibility. A material circle at radius r in the annulus has

fixed initial arc length L0(r) = 2πr. If this circle is displaced radially by an amount er(r),

then its horizontal projection must have length Lxy(r) = 2π(r+ er)
3. The fractional change

in the projected length Lxy is thus given by

Lxy/L0 = 1 + er/r. (2.1)

At the inner boundary (r = 1), er = −∆ because of the imposed boundary conditions. How-

ever, at the outer boundary (r = 1+w), er is free to assume any value. If it’s different from

−∆, this implies the presence of radial stretching. In Fig. 2.4a, we plot, for a representative

sample, the left side of Eq. 2.1 at both boundaries against ∆/r , as a function of changing ∆.

Lxy here is calculated by adding up the projected lengths of the straight segments comprising

the numerical boundary circles. We find that, to visible accuracy, the data points at both

boundaries line up perfectly with the line 1−∆/r, implying that er = −∆ also at r = 1+w.

By continuity and smoothness, we conclude that er(r) = const. = −∆ for the entire annulus,

and that the annulus is radially inextensible.

We may gauge azimuthal extensibility by measuring the full (not projected) change of

arc length for the circle at radius r. Here we consider only the outer boundary region. As

reported in Fig 2.4b there is a nonzero compression of these circles.

This compression reflects the Elastica bending stress of pure bending mentioned in Sec.

2.2. Specifically, bending at a scale λ produces a residual bending stress, σresid
θθ ∼ −B/λ2,

where B is the bending modulus. Thus, from wrinkling of wavenumber m, we expect the

outer boundary to have an azimuthal bending strain given by:

ϵresidθθ ∼ − 1

Y

B

λ2
∼ − m2t2

(1 + w)2
, (2.2)

where we have used λ = 2π(1 + w)/m and B/Y ∼ t2 (t is the thickness). The strain ϵresidθθ

is calculated for our numerical samples by directly measuring the change in azimuthal bond

lengths along a material circle slightly inside r = 1 + w 4, and then averaging. ϵresidθθ is

negative as expected; moreover, it is roughly independent of ∆ beyond a transient initial

phase. Fig. 2.4b shows a log-log plot of |ϵresidθθ | for multiple samples with differing values of m,

t and w. We see data collapse over the range of a decade, with the predicted slope of unity.

Based on the linear fit, the estimated pre-factor for Eq. 2.2 is 0.24. We note that this is

3Here we treat the radial lines in the material as nearly horizontal, as they are for large wavenumber m.
4This is done to avoid possible strain originating in Gaussian curvature boundary layers at the free outer

boundary of the annulus; see [27].
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roughly 50 times greater than the pre-factor calculated theoretically for purely rectangular

Elastica bending, which gives σresid = −2B/λ2 [6]. Such a larger value, however, is not

unexpected given the inherently two-dimensional nature of our conical Elastica arcs.

Figs. 2.4a and 2.4b together provide strong evidence for radial and azimuthal inextensibil-

ity of the numerical solutions. Such one-dimensional measurements of length conservation

serve as a valuable proxy for testing two-dimensional isometry of the solutions, which would

be far more cumbersome to measure.

2.4.2 Evolution of wrinkle amplitude

We now compare specific features of the wrinkle shape to the predictions of the cone-triangle

construction. In Fig. 2.4c, we consider the amplitude of the observed wrinkles. A dimen-

sionless way of measuring the amplitude is by determining the average slope angle α of the

wrinkles at the inner and outer boundaries. Though the cone-triangle construction can be

implemented for a wide range of wavenumbers m for any given ∆ and w, we considered only

the narrow range of m that appeared spontaneously in the unperturbed numerics, where

7 ⪅ m ⪅ 35.

We define the average slope angle α to be the slope angle of the line joining the zero-

crossing of the wrinkle with the adjacent maximum (illustrated in inset of Fig. 2.4a). For

angle αin at the inner boundary, the figure explicitly relates αin to Lxy/L. Using Eq. 2.1, we

have:

cosαin = 1−∆ ≡ 1− ∆̃(1). (2.3)

At the outer edge, Lxy/L is the ratio of the horizontal line to the arc length of the circular

sector (see inset of Fig. 2.4a). For our circular cone model, it is related to the slope angle

αout by

sin 2αout/(2αout) = Lxy/L ≡ 1− ∆̃(1 + w). (2.4)

In Fig. 2.4c, we compare these cone-triangle slope angles to the simulated ones as a function

of ∆̃(r) for both inner (r = 1) and outer (r = 1 + w) boundaries. The upper red curve and

data points compare αin. The agreement of the data points with the curve confirms that

each triangle segment tilts to preserve its length as it is drawn towards the axis. The solid

black curve gives the cone-triangle prediction of Eq. 2.4 for αout. The data points on and

beneath the curve represent annuli of different widths w and wavenumber m, coloured by

their splay: η ≡ π(1 + w)/(mw). In general, our circular cone model is consistent with the

prediction for narrowly-splayed wrinkles, but over-estimates the slopes for widely-splayed

ones. The pictures below the graph show the annulus shape for different amounts of splay
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η. They suggest the source of the over-estimated slopes: for the widely splayed example

with the greatest discrepancy, the boundary curve is significantly flatter than a circular arc.

Thus the simplifying assumptions of our circular-cone construction are not satisfied in this

widely-splayed regime.

2.4.3 Comparing energies

Perhaps the main significance of this isometric deformation is that its energy behaves so

differently from that of a generically deformed sheet. It is different in two respects. Firstly,

the energy depends only on the bending modulus B, and is independent of the stretching

modulus Y for given bending modulus. Secondly, the energy in this limit is qualitatively

smaller than for a generic deformation with comparable curvature and thickness. Below we

verify that the energy of the contracted annulus has these distinctive features.

The elastic energy is a sum of strain energy and bending energy:

Uelastic = Ustrain + Ubend

Thus, for a strain-free isometric configuration, we have Uelastic ≈ Ubend. For an arbitrary con-

ical deformation extending between lengths Lmin and Lmax along the cone axis, the bending

energy is given by:

U cone
bend =

B

2
log(

Lmax

Lmin

)

∫
ds κ2, (2.5)

where κ(s) is the normal curvature of the outermost arc of the cone, parameterised by the

arc length s. For a circular cone as in our model, κ(s) = const. = 1/ρc, where ρc is the

radius of the outermost circle. Then, adding up the contributions of 2m cones for a wrinkled

solution of wavenumber m (see SI for details), we get:

Umodel
elastic(∆) = Umodel

bend (∆) ≈ B log(
Lmax

Lmin

)
π(1 + w)w

ρ2c(∆)
, (2.6)

where the approximation is for large-m solutions. Here, the bending modulus B = Et3

12(1−ν2)

(with E the Young’s modulus, ν the Poisson ratio, and t the thickness) can be calculated

directly from the material properties of the finite-element model. Also, in order to avoid

high-curvature regions near the inner boundary, where the thin-sheet approximation κt ≪ 1

becomes questionable, we choose to compare energies for only the outer 3/4th part of the

annulus, so that log(Lmax

Lmin
) = log(4).

In Eq. (2.6) only the quantity ρc(∆) is not explicitly known. Our circular cone construc-

tion (see SI) permits us to get an expression for ρc(∆) in terms of the outer slope angle
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αout:

ρc(∆) ≈ π(1 + w)

4m

1

αout(∆)
. (2.7)

We recall that αout depends only on w and ∆, and not on m. Thus ρc ∼ 1/m, and so

Umodel
elastic ∼ m2, which is the quadratic scaling with wavenumber (at fixed amplitude) expected

for a bending energy.

Our primary subject of interest, however, is the scaling of Umodel
elastic with ∆ for fixed m.

Since αout(∆) ∼
√
∆ approximately (see Fig. 2.4c), we expect the squared curvature and

the bending energy to scale linearly with ∆: Umodel
elastic ∼ 1/ρ2c ∼ ∆. We note that this linear

form is the same as for the Elastica energy of a rod under weak Euler buckling [28], which

is expected since each transverse arc of the cone undergoes Euler buckling with this same ∆

dependence.

We many compare this isometric energy with that of conventional wrinkles [6] whose

height h(r, θ) has the separable form h = f(r) sin(mθ). As discussed in the SI, radial

wrinkles of this form have substantial strain ϵc of order of ϵc ≃ ∆/m2, much larger than the

bending strain of Eq. 2.2, viz. ≃ m2t2. Accordingly, for fixed ∆ and m the conventional

strain ϵc and its associated elastic energy are much larger than their bending counterparts

as t → 0.

In Fig. 2.5, we plot three energy curves for a typical sample. These curves compare

the simulated energy for a typical example, U sim
elastic(∆) ( lower curve), with two theoretical

estimates: Umodel
elastic(∆) ( upper curve; see Eq. 2.6) calculated from our cone-triangle model,

and U sim
⟨κ2⟩(∆) ( middle curve) calculated indirectly from the simulated solution through mea-

surement of the mean squared curvature at the outer boundary: ⟨κ2⟩out ≡ 1
2π(1+w)

∫
ds κ2,

and by using Eq. 2.5. The three curves are similar, differing by a roughly constant factor of

order unity. Notably, the full simulated energy including any strain energy, is smaller than

the model bending energies. This discrepancy is natural for the circular cone model, since

this circular anatz does not minimize the bending energy. The assumed uniform, circular

curvature does not minimize the energy of the cone shape needed in order to bridge between

the adjacent triangles. We expect that the system chooses a curvature profile κ(s) that

minimizes this energy. Thus, as expected, the use of the measured κ(s) improves the agree-

ment with the measured energy greatly. We have not settled the source of the remaining

discrepancy, discussed in the SI. Measurements of local curvature such as κ(s) on a finite-

element surface is prone to uncertainties. Moreover, we cannot rule out the possibility that

the directors fail to converge to a point; this failure would mean a loss of isostaticity and

would be expected to decrease as thickness decreases.

We conclude that the elastic energy of deformation for the wrinkles encountered in this
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study is strongly consistent with our claim of an isometric conical deformation. Further-

more, the explicit circular-cone-triangle construction gives a workable quantitative estimate

of the full elastic energy, provided we supply the observed wrinkle wavenumber m. This

approximation is least accurate when the splay parameter η is large.

2.5 Discussion

2.5.1 A developable wrinkling morphology

As shown above, our variant of the Lamé radial contraction system is qualitatively altered

by removing the outer tension from that system. The mechanics in our system is governed

instead by the constraints of isometric deformation, dictating a developable surface in the

limit of zero thickness. While developability has been hypothesised and used as tool to study

buckling in several contexts [5, 8, 12, 29, 30], in our favourable case, we have been able to

account for all the details of the structure with a simple periodic cone-triangle Ansatz.

To the best of our knowledge, such reconstruction of a wrinkled configuration through

fundamental developable building blocks is novel in the field of thin sheet elasticity. That an

a priori complicated wrinkled surface can be broken down into such a two-part macroscopic

unit cell is indicative of the strong geometric simplifications brought about by developability

and Gauss’ Theorema Egregium. Furthermore, unlike previously-known faceted structures –

which are composed of only flat facets [31–33] – faceted wrinkling has both flat triangles and

curved cones. This cone-triangle decomposition also provides an instructive example of a

buckled shape in a radially symmetric system that does not have the conventional separable

form – i.e. the buckling displacement is not a product of a radial factor and azimuthal factor.

The developability of the faceted wrinkling structure makes it fundamentally geometric,

so that it can be created easily on a computer. This provides a way to programmatically

construct smooth radially wrinkled patterns in materials using intrinsically flat components,

much in the spirit of origami and other designed materials [4].

In fact, a well-known real world example of such programmed radial wrinkling is the

Elizabethan ruff collar. One way of making a ruff is exactly using the inner Lamé boundary

conditions: we take a cloth annulus, and manually make pleats in it such that the inner

boundary of the annulus lives on a contracted radius. Figs. 2.1e and 2.1d show, respectively,

a ruff collar and its reconstruction using our circular-cone-triangle model; the visual similarity

between the two is striking. The conical outer solution seems to capture the ruff wrinkles,

in particular their radial straightness and their shape at the outer boundary.

We note that accounting for the wrinkles of Fig. 2.1c is not equivalent to finding a ground-
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state configuration consistent with the imposed boundary condition. Our deformation was

performed quasistatically, and the wrinkles appeared continuously without abrupt jumps.

Thus the system followed a single energy minimum as it deformed. This observed deformation

may well have significantly higher energy than the ground state has.

2.5.2 Nature of the thin-sheet limit

The wrinkles investigated here closely approximate the isometric cone-triangle structure,

as shown above. This leads us to ask what is the limiting structure as the thickness ap-

proaches zero. This limit has two aspects. On the one hand, we found that the wrinkle

wavelength decreases with decreasing thickness. On the other hand, our studies identified a

particular cone-triangular structure, definable independently of wrinkle wavelength, which

closely approximated the shape and energy of the numerical sheet. Since this structure is

by construction free of strain, we expected the numerical sheet to have little strain. Our

measurements of elastic energy in Fig. 2.5 confirmed this; no energy beyond the expected

bending energy was observed even up to our largest thickness of 2.7×10−2. The most signif-

icant strains appeared near the tips of the zigzags, as one expects near the vertex of a cone.

These findings suggest that the approach to this isometric structure with decreasing thick-

ness occurs independently of wavelength. Establishing this structure lays the groundwork

for understanding the selection of wavelength. A separate paper by one of us, under review

[24], addresses this wavelength selection question.

2.5.3 Approximations and limitations

Circular cone Ansatz

The key modelling assumption used in this paper is the circular Ansatz for the bent cones.

As we have shown, this Ansatz serves as a serviceable approximation to the true energy-

minimising Elastica solution, while being simple enough to allow for explicit calculation of

several key observables, namely, the slope αout and the energy Uelastic. Sec. 2.4 shows that

this approximation is accurate only for relatively narrow cones (small η) and large w. This

can be partially explained as follows. We expect the circular Ansatz to hold true only for

weak Euler buckling. “Weak” here means that the angular squeezing of the cones and the

resultant slope, are both small. In the SI, we show that this squeezing experienced by a

conical sector during deformation increases sharply with decreasing w, such that for our

narrowest annuli, it can be as high as 20% for our maximum ∆. At such large values, one

no longer expects the weak Euler regime to be valid, and the resultant shape manifests its
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non-linearity through the flattening apparent in Fig. 2.4c. We note, however, that even at

such large contractions, both the circular Ansatz and the numerical simulations give a linear

energy profile, although their slopes are no longer close.

Inner boundary approximation

Despite this strong resemblance between the simulated wrinkles and the cone-triangle struc-

ture, the match cannot be exact. Our construction of the cone-triangle shape in Sec 2.3

required that the inner boundary be a polygon. It is only a good approximation to the sim-

ulated circular annulus when the wavelength (i.e. 2π/m) is sufficiently small. In particular

it must be small in relation to the width w if the triangles are to resemble those of Fig. 2.1.

Details are provided in the SI, Sec. 2.7.3. The inexactness of the triangle construction at the

inner surface makes it clear that the construction is not a realistic representation of a circular

annulus contracted onto a cylinder for arbitrary wavenumber m. We demonstrated the iso-

metric shape for only a limited range of geometries; both the displacement ∆ and the width

w were confined to moderate ranges. For these moderate conditions the system appears to

choose wavelengths fine enough that the inaccuracies of the cone-triangle construction are

not important. For more extreme ranges, we expect that the cone-triangle picture shown

here will need modification and that the t → 0 limit will be more subtle. In particular,

the locally stable isometric structure observed here may give way to previously-identified

divergently fine wrinkling[6].

Finding the conditions in which the cone-triangle wrinkles occur is a fruitful subject for

future work.

Lateral constraint boundary condition

As noted in Methods, we prohibit any lateral movement of the nodes on the inner boundary,

in order to stabilise the faceted wrinkled regime against folding instabilities. However, even

if we do allow lateral movement, we see the same faceted wrinkling at early simulation times,

before azimuthal movement of the boundary eventually leads to folding. That is, the, excess

material concentrates at a single sector along the circumference. Our observations suggest

that faceting can be seen for initial buckling, even in the absence of lateral constraints. But

our evidence is still only suggestive and needs to be confirmed through physical experiments.

2.5.4 Application

The deformation geometry treated here amounts to a strategy for avoiding the typical fate

of deformed sheets. Such sheets adopt structures that require significant elastic energy

33



beyond the needed bending energy. Often these structures produce uncontrolled disorder,

e.g. as seen in a crumpled sheet. By contrast, the radial contraction used here guides the

sheet into a locally low-energy channel resulting in only bending energy. This low-energy

state is moreover attainable by continuous deformation from a flat reference state. Since

these deformations lack the additional deformation costs of competing structures, they are

intrinsically (locally) stable. They provide a general means to fold and compact a sheet

continuously and reversibly with minimal external guidance. We note that the curved inner

boundary appears important in stabilising this structure; straight boundaries with no radial

contraction [14] do not produce analogous regular wrinkling.

These guiding channels should appear more generally than in the simple circular geometry

studied here. The same principles control other inwardly curved boundaries, and other

directions of contraction, e.g. onto a constraining cone instead of a cylinder.

Conclusion

While the emergence of developability in wrinkled systems has been studied intensively

over the past decade, the simplicity and symmetry of the inner Lamé geometry makes it a

particularly clean realisation of such a phenomenon. This faceted morphology is qualitatively

different from previously known forms of two-dimensional wrinkling. Significantly, it creates

sharply dictated, strongly distorted features without stretching and without a separable

radial/azimuthal shape. Moreover, it has many variants to be explored, with real world

applications. Finally, this work sets the stage to explain the selection of the wavenumber m.

We address this in a separate work [24].

2.6 Methods

To investigate the wrinkling morphology of the inner Lamé system, we used the commercial

finite-element (FE) solver Abaqus 2018 (SIMULIA, Dassault Systèmes). Using both implicit

and explicit dynamic methods5 in a quasi-static regime, we performed simulations of the inner

Lamé system using its defining boundary conditions: radial displacement er(r = 1) = −∆

at the inner boundary, and the outer boundary at r = 1 + w free. The maximum value

of ∆ applied was ∆max = 0.267. To account for the possibility of high strains, the sheet

was initially modelled as a Neo-Hookean hyperelastic material with coefficients equivalent

to the linear moduli: Young’s modulus, E = 0.907125 MPa, and Poisson ratio, ν = 0.475

5‘Dynamic’ means through time integration of the equations of motion. ‘Implicit’ (using a modified
Newton-Raphson method) and ‘explicit’ refer to the method of integration.
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(c.f. Eq. 2.6), corresponding to a rubber-like material. To verify that results are independent

of the material model, we also re-performed several simulations with a linear material model

with these same moduli. Further details on our FEA methods are given in the SI.

To test the validity of our results over a range of parameters, we kept the inner radius

fixed and varied the other two parameters – width w and thickness t – over the range of a

decade. The width w of the annulus was varied between w = 0.33 (very narrow) to w = 1.67

(moderately wide) – a factor of almost 10. The thickness t was varied between t = 2.67×10−3

(thick) to t = 1.33 × 10−4 (very thin), a factor of 20. We performed consistency checks to

ensure that the final morphology was independent of the choice of any simulation parameters.

For data extraction, we used the software package Abaqus2Matlab [34].

We used two principal deformation protocols to ensure that the wrinkles we observed

were characteristic of the quasi-static limit. Our baseline protocol was done using explicit

dynamics, in which the finite elements are accelerated with a constant damping factor.

The other deformation protocol used an implicit scheme for integrating the forces, with the

damping factor automatically selected by the software to favour quasi-static behaviour. In

both cases, to avoid gross kinetic effects, we increased ∆ from 0 to ∆max at a rate slow

enough such that the kinetic energy of the system always remained ⪅ 5% of the elastic

energy. This is standard procedure for quasi-static analyses in finite-element simulations

(see SI for details).

Boundary conditions

The specifics of the wrinkling morphology depend on how the contracted boundary is con-

strained. For example, the clamped boundary studied by Mora and Boudaoud [11] leads to

a highly compressed boundary layer whose relation to the sheet is difficult to discern. The

other extreme is to allow each point on the boundary circle to lie anywhere on the confining

cylinder; such boundaries lead to wrinkling only in a transient regime, leading ultimately to

collapse into a fold. Here we study an intermediate constraint in which points on the bound-

ing circle may move only axially (i.e. vertically) on the bounding cylinder; azimuthal (θ)

motion is not allowed. Doing so automatically prohibits folding (since this requires lateral

motion), but without interfering with the wrinkling.
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2.7 Supplementary Information

2.7.1 SI: Construction of circular conical sections

In the main text, we describe how we divide the flat annulus into two regions – an inner region

composed of isosceles triangles, and an outer region composed of arc sectors. The main text

describes how the inner triangles can isometrically deform under an inner displacement (or

contraction) of length ∆ by tilting about the normal to the inner boundary – this gives an

inner ‘buckled’ solution. Here, we describe how to construct the outer solution whereby the

arc sectors isometrically bend into sections of right-circular cones. In other words, each arc

bends into a circular profile.

The requisite variables for our geometric construction are described in Fig. 2.6. In the flat

state, each arc sector, lying between two adjacent flat triangles, subtends an angle ϕf at the

common vertex of these two triangles. If the edges of the triangles have length Rf , then the

length of the largest arc is L = Rfϕf . On tilting, the edges of these same triangles approach

each other, so that they subtend a reduced angle ϕt (see SI Fig. 2.7a). This reduction in

angle (∆ϕ = ϕt − ϕf ≤ 0) constitutes the effective compressive strain ϵcone = ∆ϕ/ϕf for the

arc sector. SI Fig. 2.7a shows the evolution of ϵcone with boundary contraction ∆. We see

clearly that narrower sheets feel a greater ϵcone for the same ∆.

The excess material can be accommodated by bending the sector into a cone. The exact

shape of this cone can be determined by solving the Elastica equation with the appropriate

boundary conditions. However, for simplicity, in this paper we choose to approximate the

exact shape by a circular cone. The aim then is to find the circular cone that fits in between

the two adjacent triangles while exactly accommodating the excess angle ∆ϕ. Fig. 2.6b

shows all the variables needed for this operation. The isometrically bent conical section has

to fit inside the triangle △AOB (drawn in teal) defined by the apex 0 and the tilted edges

OA and OB (see also Fig. 2.3 in main text). The conical section itself is drawn in bold black.

Let the circular cone have angular extent ϕc, and let its maximum radius be ρc, centred at

point C. Then the conical shape can be determined from the following set of geometric

constraints.
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The first constraint is that of inextensibility, i.e. length conservation. This gives us:

L = ρcϕc = Rfϕf . (2.8)

The second constraint involves specifying the end-to-end distance L1 between points A and

B. Thus, using the blue triangle △AOB and the grey triangle △ACB in Fig. 2.6b, we have:

L1 = 2ρc sin(ϕc/2) = 2Rf sin(ϕt/2). (2.9)

Eqns. (2.8) and (2.9) constitute a set of simultaneous equations for the cone variables ρc

and ϕc, since Rf and ϕf are fixed by the flat geometry, while ϕt is set by the tilt of the

neighbouring angles. Finally, using basic trigonometry, we have for the cone’s apex angle:

sin β = ρc/Rf . (2.10)

In sum, we have three independent equations for three unknowns: ϕc, ρc and β (all positive-

definite), which fully specify the cone in space (including the centre C). SI Fig. 2.7b shows

a representative solution of such a constructed cone. SI Fig. 2.7c shows the evolution of this

construction with increasing ∆.

2.7.2 SI: Correcting for scalloped arc sectors

The flat arc sectors as defined above – circular arcs with their origin at the inner bound-

ary – lead to the creation of a flat shape that is in fact a scalloped annulus, whose outer

circumference 2mRfϕf is greater than the expected 2π(1 + w).

We can correct for this length discrepancy when constructing the bent cones, by changing

Rf → χRf in Eq. (2.8) where χ = π(1+w)
mRfϕf

≤ 1. Eq. (2.9) remains unchanged since it specifies

the end-to-end-distance, which is set by the neighbouring tilted triangles. We note that this

factor χ is smallest for samples with small w and m (wide splay η), and becomes ≈ 1 for

large w and m (narrow splay).

2.7.3 SI: Limits of the cone-triangle construction

To the best of our knowledge, the above conical construction works as long as the initial

(flat) angle ϕf < π, i.e. as long as the edges of two adjacent triangles define a triangle. The

value of ϕf depends on the width w and the wavenumber m, and increases as m decreases.

This defines a minimum wavenumber mcone
min (w) below which a conical solution is invalid. For

a sufficiently wide annulus, we find that mcone
min = 2, which is the minimum possible value
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for any wrinkled solution. However, for very narrow annuli, this value goes up. Thus, for

w = 0.2, we find mcone
min = 4. Fig. 2.8 shows two such contrasting geometries. mcone

min (w)

defines a geometric limit beyond which we expect our cone-triangle model to fail. However,

the main text shows that we already see significant deviations from our model for Abaqus

solutions with wavenumber m significantly higher than mcone
min (w).

2.7.4 SI: Calculating the conical strain ϵcone(∆)

Fig. 2.7a shows the evolution of the conical strain ϵcone with contraction ∆. The observations

(plotted with dots) show that ϵcone(∆) is linear, with the slope depending significantly on the

width w of the sheet, but independent of the wavenumber m. To understand this behaviour,

we analytically derive an expression for ϵcone(∆) = (ϕt − ϕf )/ϕf .

Since ϕf is fixed, to find ϵcone, we only need to calculate ϕt(∆). The angle ϕt(∆) can

be calculated given any one of the inner triangles, the flat arc angle ϕf , and the tilt angle

α. The geometric problem is defined in Fig. 2.9. Here, ϕt is the angle between the rotated

vector
−−→
QR′ and the vertical blue plane defined by

−→
RZ. Also, w is the annular width, and

h = π/m. Then our steps are as follows:

1. Find the 3-vector
−−→
OR′ = R−α ·

−→
OR, where Rα is the 2x2 rotation matrix of angle α

about the y-axis (viz.
−→
OQ).

2. Then
−−→
R′Q =

−→
OQ−

−−→
OR′ = (−h/2 cosα,w, h/2 sinα).

3. We only needs its orthogonal projection on to the x-y plane: the 2-vector
−−−→
R′Q⊥ =

(−h/2 cosα,w).

4. We need the vector angle between this and the vertical blue plane defined by
−→
RZ.

Here,
−→
RZ = R−ϕf/2 ·

−→
RQ, where

−→
RQ = (−h/2, w) .

Finally, we have ϕt = 2VectorAngle[
−−−→
R′Q⊥,

−→
RZ]. The final expression is complex and

composed of trigonometric functions. But using cosα = 1−∆ (recall that the inner radius

= 1), and expanding to linear order in ∆, we have:

∆ϕ ≡ ϕt − ϕf ≈ − h/w

(h/2w)2 + 1
∆+ . . . , (2.11)

where h/w = π
mw

≪ 1 for most of our samples. Finally, we also have ϕf ≈ π(1+w)
mw

, where
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1 + w is the outer radius. Therefore, we get for the dimensionless conical contraction:

ϵcone ≡
∆ϕ

ϕf

≈ h

wϕf

∆ ≈ − 1

1 + w
∆. (2.12)

The prediction of Eq. 2.12 is plotted alongside measurements in the inset of SI Fig. 2.7a.

The two are fully consistent. This explains why wider cones should feel less contraction for

a given ∆.

2.7.5 SI: Calculating bending energy for a cone

In this section, we continue with the variables introduced in section SI-I. A right-circular

cone is made up of a series of circles whose radii ρ increase linearly with distance (say, z)

along the cone axis, measured from the cone tip. For a cone of axial length Lc (see SI

Fig. 2.7a) and maximum radius ρc, we thus have: ρ(z) =
ρc
Lc
z. We can also write ρc

Lc
= tan β,

where β is the cone’s vertex angle.

Now, an infinitesimally wide circular band of radius ρ, angular extent ϕc, and width dz
cosβ

,

has bending energy = B
2

1
ρ2
× (ϕcρ)× dz

cosβ
, where B is the bending modulus. Integrating over

an entire conical sector, we get:

U cone
bend =

B

2

ϕc

cos β

∫ Lc

0

dz
1

ρ(z)
(2.13)

=
B

2
ϕc

1

cos β tan β

∫ Lc

0

dz

z
(2.14)

Any physical cone must have a finite bending energy, and thus must depart from the conical

shape near z = 0. Thus, the conical shape can only be realistic beyond a minimum axial

distance Lcore. For this outer region, the energy becomes:

U cone
bend =

B

2

ϕc

sin β
log(

Lc

Lcore

), (2.15)

where β = tan−1 ρc
Lc
. For small angle β (i.e. large ∆), Eq. (2.15) can be simplified to:

U cone
bend ≈ B

2
ϕc

Lc

ρc
log(

Lc

Lcore

), (2.16)

Here, ϕc, ρc and Lc are all functions of the contraction ∆. But ϕc and ρc are related through

the constraint: ϕcρc = L = π(1+w)
m

(see Eq. 2.8), and Lc ≈ w (the width of the annulus), so

U cone
bend can be reduced to a function of the single variable ρc. For the entire annulus, we need
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to multiply this by the number of cones 2m. Thus, we get:

U theory
bend ≈ B

π(1 + w)w

ρ2c
log(

w

Lcore

), (2.17)

More generally, for a cone extending between axial limits Lmin and Lmax, we have:

U theory
bend (∆) ≈ B

π(1 + w)w

ρ2c(∆)
log(

Lmax

Lmin

), (2.18)

This is the expression given in the main text.

While Eqs. (2.17) and (2.18) seem independent of m, it is not so. Eq. (2.7) in the main

text shows that ρc ∼ (1 + w)/m =⇒ U theory
bend ∼ m2, as expected of a bending energy.

We note that this ρc ∼ 1/m scaling could have been predicted in another way. In the

limit of maximum contraction (∆ → 1), the point C approaches the xy-plane, and so the

diameters of the 2m circles must approximately equal the reduced projected outer perimeter:

2π(1 + w −∆) → 2πw. This gives us: 4mρc → 2πw =⇒ ρc → πw
2m

(the dotted line in the

inset of SI Fig. 2.7c). Indeed, even if C is off the x-y plane (e.g. for smaller ∆), the diameters

of the 2m circles must still equal the reduced perimeter 2π(1 + w − ∆) up to some factor.

Thus, we have the scaling relation ρc ∼ 1/m as expected.

Finally, we note that the data presented in the paper represents the full expression 2.15,

without any approximation.

2.7.6 SI: Comparison with separable, sinusoidal wrinkling

The cone-triangle shape described in the main text sharply reduces the elastic strain and

energy relative to conventional wrinkling with height profile hc(r, θ) e.g. of the form [6]

hc(r, θ) = f(r) cos(mθ) (2.19)

as we now illustrate.

In the far-from-threshold regime, this hc profile must relax the azimuthal stress ϵθθ arising

from the inward displacement ur = −∆. In general this azimuthal stress has the form [20]:

ϵθθ =
ur

r
+

1

r
∂θuθ +

1

2r2
(∂θh

c)2 (2.20)

For purposes of comparison we may evaluate this ϵ at a zero of hc(r, θ) e.g. mθ = π/2. There
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by symmetry the azimuthal displacement uθ = 0 and ∂θuθ = 0. Thus the second term in

Eq. 2.20 vanishes. In the last term ∂θh
c = ±mf(r). We use this expression to estimate ϵθθ.

Choosing hc(r, θ) to make ϵθθ vanish implies

∆ ≃ 1

2r
m2f(r)2 (2.21)

So that f(r) ≃ 1
m

√
2r∆

This non-constant f(r) entails a radial strain ϵrr given by [20]

ϵrr = ∂rur +
1

2
(∂rh)

2 (2.22)

Here ur is constant as noted above and ∂rh ≃ ∂rf(r) ≃ 1
m

1
2

√
2∆/r, giving an estimated

conventional wrinkle strain ϵcrr of

ϵcrr ≃
1

4
m−2(∆/r) (2.23)

This radial strain of conventional wrinkling is to be compared to the bending strain ϵB

in the cone-triangle model. This strain arises from the bending stress σB
θθ [6]

|σB
θθ| ≃ 2B(m/2πr)2, (2.24)

where bending modulus B is related to the thickness t, the poisson ratio ν and the bulk

Young’s modulus E by [35] Sec.12

B = Et
t2

12(1− ν2)
. (2.25)

Using ϵ = (Et)σ, then Eq. 2.24 yields

ϵBθθ ≃ 2
t2

12(1− ν2)
(m/2πr)2 (2.26)

For the annuli simulated above the conventional wrinkles have much greater elastic strain

than the bending strain we report: their ratio is given by

ϵc

ϵB
≃ m−4(r∆/t2)

(
6(1− ν2)π2

)
(2.27)

Evidently for fixed m the ratio diverges as t → 0. For the specific annulus used for Fig 5 with

r = 1, ∆ = 0.2, ϵc/ϵB ≃ 50. By these estimates the sinusoidal wrinkling carries substantially
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larger strain and thence elastic energy relative to the isometric wrinkling we report.

2.7.7 SI: departures from conical shape

Here we gauge the impact of the stretched zigzag vertices on the total energy by examining

how the elastic energy varies with distance r − 1 from the inner rim. Fig. 2.10a shows this

energy for the right-most data points of Fig. 2.5. The red simulation point (lower curve) in

Fig. 2.5 is found by summing the energies in each azimuthal ring of finite elements over the

range of r indicated by the hashed region. The simulated ring energies for selected r are

shown as black rectangles.

The corresponding cone-triangle energy, i.e. the right-most point on the (yellow) middle

curve in Fig. 2.5, is found using the cone ring energy plotted as a solid curve, using Eq. 2.5.

This equation implies a ring energy varying as 1/(r− 1). Since the yellow point is found by

matching the simulated curvature at the outer boundary, the cone model gives a ring energy

that matches the simulated ring energy there, as Fig. 2.10a shows.

By comparing the simulated ring energies with the cone model, we can gain insight into

the difference in energies seen in Fig. 2.5. The inner simulation point shows the expected

large discrepancy with the model, which unrealistically diverges at the inner boundary. The

middle simulation point is at the inner boundary of the region treated in Fig. 2.5. This ring

energy is 40 percent smaller than the cone model prediction. This difference is consistent

with the 15 percent differences between the energies of Fig. 2.5. Any cone that would cure

this discrepancy would have to extrapolate to a vertex beyond the inner boundary.

The azimuthal strain profile shown in Fig. 2.10b also shows departures from the model.

The plot shows the azimuthal dependence of the azimuthal strain ϵθθ for a radial position

r equidistant between the inner and outer boundaries.. The plotted strain is maximal at

peaks and troughs of the wrinkles. Though the averaged strains,are consistent with bending

strains, as discussed in Sec. 2.42.4.1, there are strong oscillations adjacent to these peaks and

troughs with a period of two finite elements. This suggests that our simulations have limited

reliability for predicting these weak strains near the peaks or troughs. Away from the peaks

and troughs the strains vary smoothly. Of special interest is the point where the model cone

and its adjacent triangle would meet. These points, marked by dashed lines show no sign of

discontinuity.

These detailed features of Fig. 2.10 show shortcomings of the cone-triangle model. How-

ever they underscore the relevance of this model for understanding this form of buckling.
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2.7.8 SI: Finite-element method (FEM) simulation details

For our simulations, we used the commercial finite-element software Abaqus 2018 (Simulia,

Dassault-Systèmes, Providence, RI). This section describes the different steps for generat-

ing a typical simulation of our inner Lamé system, in the order typical of a finite-element

software.

The assembly consisted of only a single annulus, with inner radius fixed and taken to be

unity, and with varying width w and thickness t in order to test our system over a wide range

of system parameters. For width, we used values w = 0.20, 0.33, 0.67, 1.0, 1.67 (a factor of

almost 10, ranging from very narrow to moderately wide), and for thickness, we used values

t = 2.67×10−3, 1.33×10−3, 6.67×10−4, 2.67×10−4, 1.33×10−4 (a factor of 20, ranging from

moderately thick to very thin). While these thickness values vary over a decade, the values

still fall well within the thin sheet limit. The annular part was made of 2d shell quad (S4R)

elements [36]. This choice was made mainly to optimise speed, since we used a fine enough

mesh to ensure that doubling the linear mesh size change the energy by a negligible amount

(⪅ 1− 2%). For comparison, the coarsest mesh we used was for the w = 1.67 annulus, with

60 elements across the radius and 1400 elements across a circle, giving a maximum linear size

for an element ≈ 0.01. For consistency checks however, we also ran some simulations with

annuli made of 3d volume cubic (C3D8R) elements [36], which gave the same morphology

(with the same wavenumber), but which much longer running times.

When discussing the material properties, for concreteness, we will use SI units (and thus

take the inner radius to be 1 m). For the material properties, we mostly used a standard

neo-Hookean hyperelastic model [36] with coefficients C10 = 1.5375× 105 Pa, D1 = 3.2520×
10−7 Pa−1. These coefficients are related to the more well-known linear elasticity moduli by

the relations: C10 = G/2 (where G is the shear modulus), and D1 = 2/K (where K is the

material bulk modulus). The corresponding Poisson ratio is given by ν = 3/(C10D1)−2
6/(C10D1)+2

= 0.475.

The Young’s modulus can be obtained from either of the relations: E = 2G(1 + ν), or

E = 3K(1 − 2ν); we obtain E = 907, 377 Pa ≈ 0.9 MPa (corresponding to a rubber-like

material). As a test, we also performed several simulations with a linear material model with

these values of E and ν.

The elastic modulus can be used, along with the material density ρ and the average linear

mesh size le, to determine the average integration time scale (i.e. the ‘stable time increment’)

in the simulation, as follows. The elastic bulk modulus K and the density ρ determine the
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speed of sound in the material, cs =
√

K/ρ 6. The stable time increment in the simulation is

on the scale of the time required for elastic information to traverse an average mesh element:

∆t ∼ le/cs. For our values of K ∼ 105 Pa, ρ = 103 Kg/m3 and le ∼ 10−2 m, we get

∆t ∼ 10−3 s. This in turn determines the dimensionless number of iterations niter performed

by the solver in a simulation running over time period T : niter = T/∆t. Below, we discuss

the typical values of T used in our simulations, and how increasing T allows us to reach a

quasi-static limit in dynamic integration methods (i.e. where kinetic energy is present but

negligible compare to elastic energy).

For the radial displacement loading at the inner boundary, we applied velocity and dis-

placement boundary conditions (BCs) interchangeably. Typically, we applied velocity BCs

with a linear amplitude profile, and displacement BCs with a smooth-step profile [36], in

order to assure a smooth (i.e. zero velocity) pull at the beginning. These were applied so

that the maximum displacement amplitude ∆max = 0.267 is attained within a time period

T (defined in the same units as the ∆t given above). The value of T was chosen to be large

enough to ensure small kinetic energy and give a T -independent configuration, as defined

below. Typically, we used T = 20 for the thicker sheets, and T = 80 for the thinnest sheets.

For the simulation protocol, we employed both ‘dynamic explicit’ and ‘dynamic implicit’

[36] integration schemes in the quasi-static limit (as compared to a fully ‘static’ energy

minimisation scheme). The word ‘dynamic’ refers to the presence of inertia, while ‘explicit’

and ‘implicit’ refer to the solution scheme. ‘Explicit’ means explicit time-integration of

Newton’s second law, while ‘implicit’ refers to implicit integration (viz. through iterative

root-finding) of Newton’s law, using a modified Newton-Raphson method. The mixture of

these two methods was done partly as a consistency check, partly for convenience, and partly

by necessity. While the implicit method in the quasi-static limit was faster for most jobs, the

explicit solver was indispensable for the thinnest samples, where the static solver ran into

convergence problems. Ensuring the quasi-static limit is also easier for ‘dynamic implicit’

than for ‘dynamic explicit’. In dynamic implicit, the quasi-static option is in-built, but for

dynamic explicit, it has to be ensured manually by applying the loading slowly enough so

that further slowing has no effect on the final shape and energy.

For this, we need to look at the available energy modes. The energy balance equation in

Abaqus [36] is given by (ignoring possible terms coming from viscosity, friction, heat, contact

6Alternately, one can use the Young’s modulus E instead of the bulk modulus K in the definition of cs.
But this does not qualitatively alter our argument above.
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and constraint penalties, etc.), is:

EI + EKE − EW = 0 (2.28)

where EI is the internal energy, EKE is the kinetic energy, and EW is the work done by

externally applied loads. For us, the internal energy is just the elastic energy (by design,

there are no other energy modes). Thus, for quasi-static loading, one generally requires the

kinetic energy (EKE) to be < 10% of the elastic energy (EI). In practice, we kept the ratio

to ⪅ 5%. Since the elastic energy is thickness-dependent (always increasing with increasing

thickness), thinner sheets required slower applications of the loading. E.g., for the thinnest

samples (t = 1.33 × 10−4), this involved applying the contraction ∆ over a time period

T = 80 − 120, viz. using niter ∼ 105 solver iterations. As a result, the slowest simulations,

for the thinnest and widest sheets, lasted ≈ 150 core-hours; the average simulation however,

lasted between ≈ 30 core-hours. For reference, the validation case (described blow) of folding

a flat sheet into a cylinder, albeit with a much coarser mesh, was accomplished using ≈ 0.2

core-hours.

For data extraction, we used field output for the displacement variables, and history output

for the energy [36]. For the elastic energy, we used the “ALLIE” (internal energy) variable

[36], equivalent to the EI variable in Eq. 2.28. Since the simulations are done using a dynamic

time-integration scheme with inertia, there is an inherent noise in the energy values arising

from imprecision in finding the exact energy minimum (viz. due to inertial oscillations).

We cannot estimate this noise precisely, but a rule-of-thumb estimate is ⪅ 5%, i.e. of the

same order of magnitude as the ratio EKE/EI . However, in reality, it might well be less.

Significantly, this noise cannot account for the discrepancy between energy measurements

and model predictions in Fig. of the main text. Finally, post-processing was done using

Abaqus2Matlab [34].

2.7.9 SI: Testing the numerics for known cases

We used the above procedures (albeit with a static energy minimisation scheme) to calculate

an analytically solvable case, to verify that the shape and energy agreed with the known

results. The example was a rectangular sheet of width w = 1, length L = 2π, and thickness

t = 1× 10−3, in which we prescribed boundary conditions on position and orientation of the

short edges to make them curve up and in, to form a circular cylinder of unit radius.
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We verified the circularity of the cross-section by projecting onto the plane and measuring

the distance from the centre. We found that no point differed in its axial distance by more

than .001%. The measured elastic energy differed only slightly from the analytic result,

U cylinder
bend = Bπ ≈ 3.07 × 10−4 Joule, where B = Et3/12(1 − ν2) is the bending modulus,

obtained using the thickness t, Young modulus E and Poisson ratio ν quoted above. The

simulation gave an energy ≈ .01% larger than this. A discrepancy of this sign is expected

because the analytic form neglects the small strain energy owing to the nonzero thickness of

the sheet simulated.

—————————————————

46



References

1K. Krieger, “Extreme mechanics: buckling down”, Nature 488, 146–147 (2012).

2K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, “Flexible mechanical metama-

terials”, Nature Reviews Materials 2, 10.1038/natrevmats.2017.66 (2017).

3C. D. Santangelo, “Extreme mechanics: self-folding origami”, Annual Review of Condensed

Matter Physics 8, 165–183 (2017).

4S. J. Callens and A. A. Zadpoor, “From flat sheets to curved geometries: origami and

kirigami approaches”, Materials Today 21, 241–264 (2018).

5E. Cerda and L. Mahadevan, “Conical Surfaces and Crescent Singularities in Crumpled

Sheets”, Physical Review Letters 80, 2358–2361 (1998).

6B. Davidovitch, Y. Sun, and G. M. Grason, “Geometrically incompatible confinement of

solids”, Proceedings of the National Academy of Sciences 116, 1483–1488 (2019).

7J. D. Paulsen, “Wrapping liquids, solids, and gases in thin sheets”, Annual Review of

Condensed Matter Physics 10, 431–450 (2019).

8E. Efrati, L. Pocivavsek, R. Meza, K. Y. C. Lee, and T. A. Witten, “Confined disclinations:

exterior versus material constraints in developable thin elastic sheets”, Physical Review E

91, 022404 (2015).

9E. Cerda and L. Mahadevan, “Geometry and Physics of Wrinkling”, Physical Review Let-

ters 90, 074302 (2003).

10E. Cerda, L. Mahadevan, and J. M. Pasini, “The elements of draping”, Proceedings of the

National Academy of Sciences 101, 1806–1810 (2004).

11T. Mora and A. Boudaoud, “Buckling of swelling gels”, Eur. Phys. J. E 20, 119–124 (2006).

12M. M. Müller, M. B. Amar, and J. Guven, “Conical Defects in Growing Sheets”, Phys.

Rev. Lett. 101, 156104 (2008).

13Y. Klein, E. Efrati, and E. Sharon, “Shaping of elastic sheets by prescription of non-

euclidean metrics”, Science 315, 1116–1120 (2007).
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Figure 2.2: a) Sketch of the inner Lamé deformation of a horizontal annulus. (Top) Top
view showing the undeformed annulus, of inner radius 1 and width w. (Bottom) Vertical
cross-section of the deformed annulus through a line where the vertical displacement of the
wrinkle is maximal. The undeformed state is shown in light shading; the dark lines are a
section of the deformed annulus, contracted horizontally by a distance ∆. These lines are also
displaced upward and tilted downward. b) Sketch of the circular-cone-triangle construction
in its initial, flat state. Here, we choose wavenumber m = 6, hence it has 12 triangles (shown
in colour). The mid-line and height w of one triangle are indicated. The sectors bridging
the triangles are shown in white. When the bases of the triangles are moved inward, they
must tilt to retain their shape and connectivity. The bridging sectors are squeezed laterally
to form cones. A typical deformed example is shown in Fig. 2.1c. c) Top view of a narrow
sector of the sheet, with detail of an area element at the outer edge of Lamé sheet showing
radial (horizontal) and azimuthal (almost vertical) boundary forces. In the fully buckled
(FT) regime [20], the azimuthal forces nearly vanish (as indicated by the upper and lower
X’s). In the the present “inner Lamé” system, the outer radial force also vanishes, indicated
by the X at right. Thus, the inward radial force must also nearly vanish for force equilibrium.
All elements to the left of the pictured one are subject to the same argument. Thus except
for bending stresses, all radial stresses vanish.
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Figure 2.3: Qualitative comparison between simulation and our cone-triangle model for a
representative sample (w = 1.67, t = 1.33× 10−3). (Left) Given w, ∆ and the wavenumber
m from the numerical solution, we construct a model cone-triangle solution (cones in red,
triangles in blue) using the procedure described in Section 2.3. (Right) For a qualitative
comparison, we superpose the two solutions, with azimuthal rotation as the only degree
of freedom. We find close agreement between them; with this top-down view, areas with
colour indicate where the model solution is above the numerical solution, while those in grey
indicate the opposite. In particular, the zoomed-in boxed portion shows close matching at
both inner and outer boundaries. Zooming out to the whole annulus, we see that there is a
‘phase mismatch’ between the two solutions, with part of the solution in-phase (the boxed
region) and part of it out-of-phase. This is due to the non-uniform size of the wrinkles in
the numerical solution.
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Figure 2.4: Comparisons of geometric quantities between theory and simulations (using the
explicitly periodic initial conditions described at the beginning of Sec. 2.4). (a) Testing
radial inextensibility. The main graph shows the evolution of the fractional projected length
Lxy/L0 of the material circles with increasing ∆, measured at both inner (r = 1) and outer
(r = 1 + w) boundaries, for a representative sample (w = 0.33, m = 25, t = 2.67 × 10−4).
The x-axis is the reduced variable ∆̃ ≡ ∆/r. The measured values line up with the black
line: Lxy/L0 = 1− ∆̃. (inset) Sketches of the wrinkle profile at the two boundaries, showing
the definition of lengths L0 and Lxy, and slope angles αout and αin. The blue arrows indicate
the compression direction. (b) Testing azimuthal inextensibility at the outer boundary. The
magnitude of the residual azimuthal strain |ϵresidθθ | recorded slightly inside r = 1+w, plotted
logarithmically against the collective variable m2t2/(1 + w)2 at large ∆, for multiple values
of m, t and w. The black line shows the linear fit: |ϵresidθθ | ≈ 0.24 m2t2

(1+w)2
. (c) Wrinkle slope

angle vs. applied contraction ∆̃ (see Sec. 2.42.4.2). (Top row) We separately test Eq. (2.3)
for αin (in red) and Eq. (2.4) for αout (in black). The simulation data points are plotted
alongside the model predictions. Simulated samples of differing width w and wavenumber
m are coloured using the dimensionless cone splay parameter, η ≡ π(1+w)

mw
. The error bars

are standard deviations from averaging over all the wrinkles. Markers: w = 0.33 (circles),
w = 0.67 (squares), w = 1.0 (diamonds), w = 1.67 (triangles). (Bottom row) Example
wrinkle profiles for small and large η: (left) for η = 0.25 (w = 1.0, m = 25), and (right) for
η = 1.8 (w = 0.33, m = 7). Colouring denotes height.
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Figure 2.5: Comparing elastic energies (see Sec. 2.4.3) for a representative sample (w = 1.0,
m = 25, t = 6.67 × 10−4): U sim

elastic(∆) ( lower curve) ; see Methods) with Umodel
elastic(∆) ( upper

curve); Eq. 2.6) and U sim
⟨κ2⟩(∆) ( middle curve); Eq. 2.5). All three curves show Elastica-like

linear scaling (solid lines are fits), but the two theoretical curves overestimate the simulated
energy by roughly 15% and 30% respectively. Other w and m values also generally over-
estimated the energies, as discussed in Sec. 2.42.4.3. Energy units are defined in Methods.
(inset) Annulus, indicating the region where energies were compared (in red), omitting the
high-curvature regions near r = 1.

Figure 2.6: Isometrically constructing a sector of a cone from a flat arc sector. (a) The
flat configuration. (b) The curved configuration; the actual conical sector and its variables
are depicted in black, the triangle △AOB formed by the edges of the two adjacent tilted
triangles, along with its variables, is in blue, and the putative cone with its variables is in
grey.

53



Figure 2.7: Constructing a single cone (see Sec. 2.3 and SI for details). (a) Two adjacent
flat triangles (in yellow) subtending an angle ϕf , on tilting (in deep blue), subtend a smaller
angle ϕt. Thus, the region between the triangles (shown approximately as a violet triangle)
gets squeezed by an angle ∆ϕ = ϕt−ϕf . (inset) Evolution of the conical strain ϵcone = ∆ϕ/ϕf

with ∆ for three different widths w. Model measurements are plotted alongside the predicted
lines of slope = −1/(1 + w). (b) To fit within the contracted boundary defined by OA and
OB, the region must bend into a circular cone of radius ρc, angular extent ϕc, axial length
Lc and tilt angle β. The only ingredients needed for the construction are △AOB and the
contraction ∆. (c) The evolution of the conical solution with ∆ (here, 0.05 ≤ ∆ ≤ 0.6).
Greater opacity means larger ∆; the cones are translated with respect to each other for
viewing clarity. (inset) As ∆ increases, the radius of curvature ρc decreases, and for ∆ → 1,
attains an asymptotic value of ρc ≈ πw

2m
(dotted line).

Figure 2.8: Two different flat state geometries for w = 0.2. (Left) For m = 4, the flat angle
ϕf < π, which allows the conical construction described in Sec. 2.7.3. (Right) For m = 2,
the flat angle ϕf > π, which means that our conical construction is not valid here.
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Figure 2.9: Diagram describing the geometric problem for determining ϕt. (Left) Top view
of the flat isosceles triangle △PQR lying in the x-y plane, having height w and base h. OQ
is the perpendicular bisector of PR. ϕf is the angle between QR and the dotted (vertical)
blue plane. (Right) End view of the same triangle rotated clockwise by angle α about the
y-axis.

a

En
er

gy
 p

er
 ri

ng

Ring number20 80

0.06

5

4

3

2

1

b

Figure 2.10: a) Energy distributions for the annulus of Fig. 2.5. Horizontal axis is radial
distance from inner rim measured in finite element widths. Vertical axis is ring energy
described in the text. Hashed region shows the region treated in Fig. 2.5. Its area represents
the simulated energy with largest ∆ on the lower curve of Fig. 2.5. Black marks show
simulated ring energies at three selected radii. Solid curve shows the ring energy profile
calculated from cone-triangle model used for the middle curve in Fig. 2.5. b) Simulated
azimuthal strain ϵθθ (in red) as a function of azimuthal finite-element coordinate θ, for a
material circle located at the middle of an annulus with (w = 0.33, t = 1.33× 10−3, m = 10,
∆ = 0.27). Light curve in blue shows height profile. Region spanning one trough and peak
are shown. Variability of other troughs and peaks is similar. Vertical black lines indicate
the location of two consecutive cone-triangle boundaries.
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Chapter 3

The inner Lamé system: hysteretic

wavelength selection

This chapter is a reproduction of the article “Hysteretic wavelength selection in isometric,

unsupported radial wrinkling”, authored by Anshuman S. Pal. The pre-print is available

at https://arxiv.org/abs/2211.12736. The article is currently under peer review at the

journal Soft Matter. This chapter reproduces the version initially submitted to the journal,

with revisions responding to the initial referee reports. For the author’s contribution to the

paper, please refer to the Preface of this dissertation.

Abstract

In [Pal et al., arXiv:2206.03552], the authors discuss how an unsupported flat annulus con-

tracted at its inner boundary by fraction ∆, buckles into a radial wrinkling pattern that

is asymptotically isometric and tension-free. What selects the wavelength in such a pure-

bending configuration, in the absence of any competing sources of work? In this paper, with

the support of numerical simulations, we argue that competition between stretching and

bending energies at local, mesoscopic scales leads to the selection of a wavelength scale λ∗

sensitive to both the width w and thickness t of the sheet: λ∗ ∼ w2/3t1/3∆−1/6. This scale

λ∗ corresponds to an arrest criterion for wrinkle coarsening starting from any wavelength

λ ≲ λ∗, which can be interpreted in terms of both size and energetic barriers to further

coarsening. However, the sheet can support coarser wavelengths: λ ≳ λ∗, since there is no

penalty to their existence. Since this wavelength selection mechanism depends on the initial
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value of λ, it is path-dependent or hysteretic.

3.1 Introduction

Thin elastic sheets under confinement buckle and bend to form a multitude of shapes. Per-

haps the most ubiquitous of these forms of elastic pattern formation is wrinkling, viz. where

the excess material length gets collected in multiple undulations. A central concern in the

study of these structures is the determination of the wavelength λ of these undulations –

which constitutes an emergent intermediate length scale, much smaller than the system size

but much larger than the sheet thickness. Usually, this wavelength is selected [1] through

competition between the sheet’s bending stiffness and some external source of stiffness or

deformation work, like a substrate [2], a tension field [3, 4], inertia [5], or even extrinsic

curvature [6]. While the bending stiffness promotes larger λ in order to minimise wrinkle

curvature, the substrate or other source of work tends to penalise large λ since it leads to

large amplitude deformation. But how is wavelength determined in an unsupported sheet,

i.e. in the absence of such external sources of stiffness?

A priori, an unconstrained sheet under compression should spontaneously choose the

maximum wavelength possible – at the scale of the system size – in order to minimise

bending energy. Thus, the minimum ingredient for generating an intermediate wavelength

is the presence of some external constraint. Besides a substrate, another possible source of

constraints is clamping at the boundary. References [7–9] study such systems where relatively

coarse wrinkling in the bulk of the sheet gradually becomes refined in the proximity of a

clamped or pinned boundary, in order to minimise the wrinkling amplitude. Of particular

interest to us is Vandeparre et al. [9], which considers wrinkling in an unsupported rectangular

sheet contracted at one boundary. Here, the wrinkle wavelength in the bulk is determined by

the wavelength fixed (i.e. clamped) at the boundary, coarsening outward through a ‘wrinkle

hierarchy‘ (see Figs. 3.2b and 3.4a). But what if the sheet is unsupported and also unclamped?

In this paper, we address the question of wavelength determination in precisely such a

case, using the geometry reported in reference [10] 1. The system considered there is a variant

of the classic Lamé radial wrinkling deformation (see Figs. 3.1a and b), where we contract

the inner boundary of a circular annulus through a radial displacement ∆, keeping the outer

boundary free. We call this the “inner Lamé” system. Importantly, this inner boundary is

kept unclamped and unpinned, i.e., it is free to both displace and rotate out-of-plane. In

[10], we show that such boundary-induced contraction of the annulus generates a pattern of

1This reference is reproduced as Chapter 2 in this dissertation
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uniform radial wrinkling that becomes isometric (i.e., unstretched) as the thickness becomes

much smaller than the wavelength. Thus, in this limit, its radial tension field is negligible

as compared to that of a similarly deformed classical Lamé annulus [4]. However, even in

this isometric and “tension-free” limit, where there should be no dependence on thickness,

the wrinkling deformation selects a wavelength that is observed to depend on both the sheet

thickness t and width w (see Fig. 3.1d).

In this paper, we show that this wavelength is consistent with a similar coarsening mech-

anism as in Vandeparre et al. [9], but without any spatial hierarchy involved. Rather, the

coarsening takes place progressively over the course of the deformation (see Fig. 3.1c), and

is arrested due to the non-zero stretching energy associated with ‘wrinklons’ – Y-shaped

spatial features where two wrinkles merge into one – which constitute the basic unit of the

coarsening process. Thus, arrested coarsening determines the final wavenumber (i.e., the

number of wrinkles) m∗ in the sheet. However, if the sheet manages to attain a coarser

wavenumber m < m∗ by any means (e.g., manual setting by the experimenter), then it stays

there. Thus, the wavelength selection depends on initial conditions, and can be considered

hysteretic or path-dependent. These are the central results of this paper.

Below, we derive the discussed arrest criterion for the wavelength selection and demon-

strate its viability numerically. The paper is organised as follows. Section 3.2 defines the

inner Lamé deformation that we simulate, and the numerical methods we use to this end. In

Section 3.3, we state the main results of this paper, deriving a scaling law for the critical ar-

rest wavelength, λ∗ ∼ 1/m∗ ( the black line in Fig. 3.1d), and argue that it causes hysteretic

wavelength selection. Finally, Section 3.4 discusses the significance of these results.

3.2 Methods

The system under consideration here is sketched in Fig. 3.1a. We start with a flat circular

annulus of width w and thickness t, whose initial inner radius we take as our unit of length.

To deform this annulus, we pull the inner boundary radially inward by a distance ∆, so that it

is forced to live on a cylinder whose radius is reduced by ∆. This leads to a contraction of the

inner boundary by a factor of ∆, and the equilibrium shape of the sheet thus obtained is the

radial wrinkling shown in Fig. 3.1b. The system can thus be conveniently defined using only

three geometric parameters: thickness t, width w, and (dimensionless) radial contraction

∆. The internal forces determining the shape arise from the in-plane stretching modulus

Y = Et, and the bending modulus B = Et3(1 − ν2)/12, where E and ν are the material’s

Young’s modulus and Poisson ratio, resp. In thin sheets with thickness t much smaller than

the inner radius and the width w, the sheet may be taken as virtually unstretchable, and
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many features of the shape are independent of Y [4]. Indeed, in [10], we show that the radial

wrinkling morphology under study here (see Fig. 3.1b) is geometrically, i.e. developably,

isometric (as opposed to the class of asymptotic, non-developable isometries discussed in [1]

and references therein). The macroscopic energy thus lives purely in the bending mode.

3.2.1 Numerical methods

To investigate the wrinkling morphology of the inner Lamé system here, we use the same

numerical methods used in [10]. For our simulations, we used the commercial finite-element

(FE) solver Abaqus 2018 (SIMULIA, Dassault Systèmes). We used a protocol in which we

gradually displaced the boundary in time, allowing the system to relax quasi-statically, such

that the rate of motion of the boundary does not affect the emergent shape or its energy.

The forward time integration was done using one of two standard FE protocols – ‘dynamic,

explicit’ and ‘dynamic, implicit’ – both being found to give comparable results. Such dynamic

integration protocols introduce inertia into the simulation, which is essential for accurately

tracking local minima through instabilities and bifurcations, and thus finding reliable post-

buckling solutions [11]. In contrast, static (i.e., zero inertia) simulation protocols are known

to remain stuck in local minima near the initial conditions, and far away from the true

minimum [11]. However, to avoid gross kinetic effects in the presence of inertia, we made

sure to increase the contraction ∆ slowly enough such that the kinetic energy of the system

always remained ⪅ 5% of the elastic energy. This is standard procedure for quasi-static

analyses in finite-element simulations. The FE simulation details are given in depth in the

SI of [10]. Here, we give a brief overview.

To simulate the inner Lamé system, we used its defining boundary conditions: radial

displacement er(r = 1) = −∆ at the inner boundary, and the outer boundary at r = 1 + w

free. We chose to apply a maximum contraction of ∆max = 0.267 at the inner boundary. All

observed coarsening and selection in our simulations occurs for ∆ much smaller than this

maximum (see Fig. 3.1c); increasing ∆ further within this range only changes the amplitude

without affecting the wavenumber. We did not extend the range enough to observe the

anticipated weak dependence on ∆.

To account for the possibility of high strains at such large contractions, the sheet was

modelled as a Neo-Hookean hyperelastic material with coefficients equivalent to the linear

moduli: Young’s modulus, E = 0.907125 MPa, and Poisson ratio, ν = 0.475, corresponding

to a rubber-like material. To verify that results are independent of the material model, we

also re-performed several simulations with a linear material model with these same moduli.

To test the validity of our results over a range of parameters, we kept the inner radius
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fixed and varied the other two parameters – width w and thickness t – over the range of

a decade. For the width, we used values w = 0.20, 0.33, 0.67, 1.0, 1.67 (a factor of almost

10, ranging from very narrow to moderately wide), and for thickness, we used values t =

2.67 × 10−3, 1.33 × 10−3, 6.67 × 10−4, 2.67 × 10−4, 1.33 × 10−4 (a factor of 20, ranging from

moderately thick to very thin). We performed consistency checks to ensure that the final

morphology was independent of the choice of any simulation parameters.

3.2.2 Boundary conditions

As noted in the Introduction, the specifics of the wrinkling morphology depend strongly on

how the contracted boundary is constrained. Clamping the boundary leads to the wrinkling

hierarchy morphologies discussed in [9] (see also Figs. 3.2b and 3.4). The other extreme

is to allow each point on the boundary circle to lie anywhere on the confining cylinder;

such boundaries lead to wrinkling only in a transient regime, leading ultimately to collapse

into a macroscopic fold. Here we study an intermediate constraint in which points on the

bounding circle may displace only axially (i.e. vertically) on the bounding cylinder; azimuthal

(θ) motion is not allowed. Doing so automatically prohibits folding (since this requires lateral

motion), but without interfering with the wrinkling.

3.2.3 Obtaining sinusoidally-biased flat states

In Sec. 3.3.2, we use starting configurations with a pre-determined wavelength at the outer

boundary, λinit. To obtain these, we biased the initial flat state with linear perturbations (of

amplitude ∼ 10−4 − 10−3) of sinusoidal modes of known wavenumber m. These modes were

obtained using standard linear eigenmode analysis methods in Abaqus [12].

3.3 Results

The elastic energy of the wrinkled annulus, as found in [10], is dominated by bending.

Thus, it favours the coarsest possible wrinkling. However, from Fig. 3.1d, we see that the

observed wavenumber m∗ in the system becomes indefinitely large as we decrease thickness

t or width w. Thus, there exists some ‘constraint’ (generically speaking) that competes with

the bending energy to select the intermediate wavenumbers m∗. In this section, we consider

this selection mechanism.

In what follows, instead of simply counting the number of wrinkles m in the annulus,

we measure the continuous (in-plane) wavelength λ at the outer boundary, averaged over
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multiple wrinkles of the sample. 2 The standard deviation in λ then also gives a measure

of the non-uniformity of wrinkling, something which the integer m cannot capture. Thus,

in what follows, we aim to predict the continuous variable λ∗, related to the counted m∗ by

the approximate relationship: λ∗ ≈ 2π(1 + w)/m∗.

3.3.1 Wrinklons and arrested coarsening

We first note that the selection of the final wavenumber in a simulation is not an instan-

taneous process. Figs. 3.1c and 3.2b show that, as we apply the contraction ∆ > 0, the

flat annulus initially buckles to form fine-scale radial wrinkling. This then coarsens rapidly,

reducing the bending energy, but with the coarsening stopping at some final wavenumber

m∗ ∼ 1/λ∗. This suggests that there is a continuous ‘path’ from the initial fine value of λ to

the final value λ∗, but not beyond. Here, we argue that this path is blocked because a further

coarsening becomes energetically unfavourable. In other words, the coarsening process gets

energetically arrested.

The coarsening process is controlled by the Y-shaped spatial features named ‘wrinklons’

[9], which form every time two wrinkles merge into one. In what follows, we discuss the

energetics of wrinklons, approximating the wrinkles as being rectilinear (as in Fig. 3.2a),

and ignoring any radial splay. We discuss the accuracy of this assumption in Sec. 3.4. The

energetics of a wrinklon is closely associated to its shape. Fig. 3.2a shows the geometry of

a wrinklon using an origami model (adapted from [9]). Here, the paper sheet is creased to

have wavelength λ on the right and 2λ on the left. The transition zone is the wrinklon.

As can be seen from the cut in the sheet, this involves non-zero extension of the material:

to allow a trough in the λ wave on the right to rise up to the peak of the 2λ wave on the

left, a horizontal length L (see inset of Fig. 3.2d) must be stretched into the hypotenuse√
(2ζ)2 + L2, where ζ is the amplitude of the λ-wave. For small slope ζ/L, this generates a

strain of order (ζ/L)2. In the absence of a substrate or boundary tension, this contributes a

stretching energy density ∼ Y (ζ/L)4, where Y is the stretching modulus.

In [10], we show that the wrinkling under consideration is isometric. In this strain-free

limit, we can use the constraint of inextensibility (i.e., length conservation) to relate the

average slope ζ/λ of the wrinkled circles to the applied contraction ∆. Taking this latter to

be constant over the length of the wrinklon, for small slopes, we have: (ζ/λ)2 ∼ ∆. This is

popularly known in literature as the ‘slaving condition’ [1], since it shows that the amplitude

ζ and wavelength λ are co-dependent variables for inextensible wrinkling. Thus, removing ζ

2It also allows us to take measurements for only half or quarter of the annulus. This makes data extraction
faster.
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in favour of λ and ∆, the elastic energy of a wrinklon of area ∼ Lλ is given by:

Uwrinklon ∼ Y λ5L−3∆2. (3.1)

To see how such wrinklons can select the wavelength, consider the following picture of

kinetic arrest. Assume uniform wrinkling of wavelength λ over the entire width w of the

sheet. Then this wavelength can coarsen further if and only if a wrinklon can form. This will

happen if and only if there is a decrease in the net elastic energy during this process. Since

there is an energy gain from creating the wrinklon, as well as a bending energy decrease due

to wrinkle coarsening from λ → 2λ, the net change in energy δU is:

δU(λ) = Uwrinklon(λ)− δUbend(λ), (3.2)

where δUbend(λ) ∼ B∆wλ−1 for an area ∼ λw. Thus, a wrinklon will form, and the wave-

length will increase, only if δU(λ) < 0. Setting δU(λ) = 0 then gives us a critical minimum

scale L∗(λ) (using Eq. 3.1):

L∗(λ) ∼ t−2/3∆1/3w−1/3λ2, (3.3)

such that only wrinklons having length L > L∗(λ) are energetically feasible in the system,

i.e., they lower the net energy: δU(λ) < 0. Since the wrinklon has to be smaller than the

sheet’s width as well, we find that wrinklons can form as long as their size L obeys the

bounds: w > L > L∗(λ).

However, each round of coarsening, as λ increases, Eq. 3.3 shows us that L∗(λ) also

increases (rapidly). Thus, when L∗(λ) > w, there can be no wrinklon that reduces the

energy, so that no further coarsening can occur. This defines a critical wavelength scale λ∗

such that

L∗(λ)|λ∗ = w. (3.4)

Using Eq. 3.3, we get:

λ∗ ∼ w2/3t1/3∆−1/6. (3.5)

The conclusion is that all wavelengths λ with L∗(λ) < w, and thus λ ≲ λ∗, are susceptible to

wrinklon-mediated coarsening, and are hence unstable and should not be visible in the sheet.

Moreover, these finer wavelengths should get coarsened up to or right above the critical

wavelength λ∗; beyond this, coarsening is energetically unfeasible and gets arrested. This is

confirmed in Fig. 3.1d, where the best-fit λ∗ line is drawn in black (henceforth, we call this

the ‘wrinklon line’).

Eq, 3.5 is the central prediction of this paper. It emerges directly from Eq. 3.4, which
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represents an arrest criterion for wrinklon-mediated coarsening in the annulus. This shows

that transient wrinklons in the inner Lamé system can select a wavelength by a mechanism of

kinetic arrest. This wavelength is an emergent phenomenon depending on all three geometric

factors t, w and ∆, but independent of material constants E and ν. Eq. 3.5 predicts wider

and thicker sheets to display coarser wrinkling, and vice versa for narrower, thinner sheets.

On the other hand, the arrest argument above also suggests that wavelengths coarser than

λ∗ should remain stable since they are not subject to further coarsening via wrinklons. Our

next step is thus to confirm the possibility of the sheet supporting wavelengths λ ≳ λ∗.

3.3.2 Attaining coarser wavelengths by changing initial wavelength

The natural tendency of the wrinkled annulus is to minimise its bending energy and coarsen

as much as possible. The arrest argument above suggests that, using wrinklons, the wrinkling

cannot coarsen beyond λ∗. However, given an opportunity to bypass the wrinklon mechanism

and coarsen directly, the annulus should do so.

One way to test this hypothesis is to manually set a coarser wavelength in our simula-

tions. We do this by biasing the initial flat state with a sinusoidal perturbation of known

wavenumber (see Sec. 3.2.3). In Fig. 3.3a, we show the results of this method. The blue

and magenta dots are the same data points from Fig. 3.1c, obtained by contracting the

annulus from a flat state (which has λinit ≪ λ∗) or a state biased with sinusoidal modes

having λinit ≲ λ∗. They all lie on the black “wrinklon line”: λ = λ∗. On the other hand, the

new green dots are obtained by starting from a biased state whose wavelength at the outer

boundary obeys λinit ≳ λ∗. We find that, on average, these samples do not coarsen at all.

In other words, they are not susceptible to the wrinklon coarsening mechanism. Indeed, we

used this method in [10] to generate uniformly wrinkled patterns to provide clean geometric

data. Thus, Fig. 3.3a is fully consistent with the hysteretic picture posited at the end of

Sec. 3.3.1

An independent way of affirming this λ-dependent coarsening is by traversing the wrin-

klon line horizontally. We do this by fixing the initial wavelength λinit and width w, and

varying the thickness t. In Fig. 3.3b, we plot some representative data points, showing

both λinit (empty symbols) and the final wavelength λfinal (full symbols) for these samples.

We see that the leftmost (i.e. thinnest) samples, which start above the wrinklon line, do

not coarsen. However, as soon as we cross the wrinklon line horizontally (following the

dotted grey line), the samples start to coarsen, i.e., they move straight up. As expected,

the coarsening happens up to or above the wrinklon line, consistent with the discussion in

Sec. 3.3.1.
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3.3.3 λ∗ starting from wrinkle hierarchy

While the previous two sub-sections suffice to describe the central results of this paper, it is

instructive to see the selection of λ∗ from a different perspective, as emerging smoothly from

the modification of a more constrained version of the inner Lamé system. In this version, we

pin the inner boundary (r = 1), prohibiting any vertical, out-of-plane displacement. Apply-

ing contraction ∆ with such pinned boundary conditions (BCs) then leads to the creation

of a spatial wrinkle-hierarchy morphology (see Fig. 3.4b) – like the ones studied in [7–9] for

rectangular geometries – where fine-scale wrinkling at the pinned boundary coarsens pro-

gressively in space via multiple generations of wrinklons. Despite the qualitatively different

morphologies between the pinned and unpinned cases (see Fig. 3.4), we argue that one should

still expect the wavelengths at the outer boundary for the two cases to be the same. To see

this, consider the following.

We can think of the emergence of the unpinned morphology in Fig. 3.4a starting from

the pinned, wrinkle-hierarchy case in Fig. 3.4b. Eq. 3.1 tells us that wrinklons cost non-zero

elastic energy. Moreover, they separate a region of fine, higher-energy wrinkling (nearer

r = 1), from a region of coarser, lower-energy wrinkling (nearer r = 1 + w). Thus, allowing

the wrinklons to move right up to the inner boundary would eliminate not only the wrinklons

themselves but also the entire fine wrinkling region, leading to a net lowering of the sheet’s

energy.

Imagine gradually undoing the pinning at r = 1 in Fig. 3.4b, allowing the boundary

nodes to displace vertically within a maximum height ϵ. As ϵ increases, the boundary will

be able to support coarser wavelengths. Thus, as it reaches the approximate height of

the innermost generation of wrinklons, in order to minimise elastic energy, these wrinklons

should all migrate to the boundary and disappear, thereby increasing the wavelength at

r = 1 by a generation. Similarly, when ϵ reaches the height of the second (now innermost)

wrinklon generation, this generation should also vanish in a similar manner, decreasing the

energy and coarsening the wavelength by a further generation. As ϵ increases further, this

coarsening process may continue as long as there are wrinklons that can move into the inner

boundary. That is, as long as there are more inner wrinkles than outer ones. The end point

of this process is thus a state where the original outer wrinkles extend to the inner boundary.

Thus, we would reach the unpinned boundary conditions of the original inner Lamé system,

and anticipate the same morphology (i.e. Fig. 3.4a). This argument tells us that we should

expect:

λ∗ = λhierarchy(x = w), (3.6)

where λhierarchy(x) is the wavelength at distance x from the pinned boundary in the wrinkle
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hierarchy. Using the expression

λhierarchy(x) ∼ x2/3t1/3∆−1/6 (3.7)

given for rectangular geometries in Vandeparre et al. [9], we recover Eq. 3.5 for λ∗. To verify

the prediction of Eq. 3.6, we perform simulations of this pinned BC for our annular systems

to measure λhierarchy(x = w). We then compare λhierarchy(x = w) to λ∗ measured for the

unpinned case. We find that our measurements are fully consistent with Eq. 3.6. We can

already see this qualitatively in the bottom row of Fig. 3.4. Fig. 3.1d shows this quantita-

tively: λ∗ and λhierarchy(x = w) measured for a wide range of samples with varying w, t and

∆, collapse on to the same straight line given by Eqs. 3.5 and 3.7. The “unpinned-hierarchy”

argument for λ∗ described in this section thereby provides an independent confirmation of

the arrest criterion argument presented in Secs. 3.3.1 and 3.3.2.

3.3.4 Summary

The results presented in Sec. 3.3 together paint the following story. First, the radially-

contracted inner Lamé system, despite having its energy dominated by only bending, selects

a critical wavelength scale λ∗ much finer than the system size. This λ∗ is determined through

competition between stretching and bending energies at the scale of local features called wrin-

klons. Second, the selected λ∗ is a function of the single collective variable w2/3t1/3∆−1/6 ≡ x̃,

sensitive to both the smallest (thickness t) and largest (width w) dimensions of the sheet.

Third, the wavelength selection is hysteretic (i.e. path-dependent), since the final wave-

length λ selected by the annulus depends on its initial location in the λ− x̃ plane. As seen

in Fig. 3.3a, the critical wavelength λ∗ acts as a linear discriminant in this plane, separat-

ing it into two regions. Consistent with its desire to minimise bending energy, the sheet

can support wavelengths coarser than λ∗ but nothing finer than it. Thus, the wavelengths

supported by the sheet obey the inequality: λ ≳ λ∗.

3.4 Discussion

3.4.1 Significance

The mechanism of wrinklon-mediated arrested coarsening presented in this paper accounts

for all the qualitative and quantitative features of the wavelengths λ measured in our inner

Lamé samples. The novelty of this mechanism must be stressed. The hysteretic wavelength

selection paradigm presented here is very different from the traditional paradigms of wave-
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length selection in elastic wrinkling, which are based on global energy minimisation and

hence are path-independent. For example, consider the prototypical case of wrinkling in a

thin sheet of bending stiffness B attached to a substrate of stiffness K [3]3. Competition

between the bending of the sheet and the deformation of the substrate leads to the selection

of a wavelength λsubstrate ∼ (B/K)1/4 that minimises the global energy. λsubstrate here does

not depend on the initial value of the wavelength chosen. If we start with a putative wave-

length λ′ ≲ λsubstrate, then bending energy will force the wavelength to increase to λsubstrate.

Conversely, if we start with some λ′ ≳ λsubstrate, then the substrate energy will force the

wavelength to decrease to λsubstrate. Thus, on a plot of λ vs. (B/K)1/4, data points measured

from samples with different values B and K should all lie on a single straight line.

In contrast, in the inner Lamé system, the lack of a macroscopic force to compete with

the sheet’s bending energy means that there is no global energy minimum. Instead, the

wavelength is selected through local competition at wrinklon-scale between bending and

stretching, this latter being the only source of competition possible in an unsupported sheet.

The observed one-sided hysteresis is a direct consequence of this energy balance at scale

L∗. Bending energy wants to coarsen wavelengths as much as possible, but the size of the

sheet w acts as a fundamental barrier to this coarsening, through the “coarsening condition”:

L∗(λ) ≤ w. Conversely, the lack of a (real or effective) substrate means that there are no

penalties to wavelengths coarser than λ∗. Thus, on the λ− x̃ wavelength plane, there is an

entire range of wavelengths available to the sheet: λ ≳ λ∗.

Thus, in a fundamental but non-trivial way, the wavelength λ in the inner Lamé system is

selected by the sheet’s size w. This is similar and yet dissimilar to known cases of geometric

wavelength selection in isometrically buckled systems, where both macroscopic stretching and

bending are absent. A good example is the faceted twisted ribbon in [13]), which buckles into

a periodic pattern of triangular facets. Here, the wavelength is directly set by the ribbon’s

width w: λ = w [13]. Our hysteretic wavelength selection also involves the sheet width, but

through an inequality. In this sense, it is a weaker and less restrictive geometric selection

principle.

3.4.2 Generalisation

An expected consequence of such a simple size-based selection principle is that it should

generalise to other cases as well, provided wrinklons are the dominant wavelength-selection

mechanism. For example, consider wavelength selection in a common hanging curtain. A

curtain is not only rectangular, but also subject to a vertical tension field in the form

3In terms of the quantities already introduced in this paper, K has units of Y/(length)2 or B/(length)4.
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of gravity. Due to this weight-induced tension, we would expect L∗ in curtains to scale

differently [9] from our tension-free case (Eq. 3.3). However, irrespective of the scaling, [9]

shows that the outer wavelength in a hanging curtain is selected by wrinklons. Then our

size-based wavelength selection principle has the following implication. Let the curtain be

of height h, and its manually fixed wavelength at the top boundary be λ0. If λ0 is coarse

enough that L∗(λ0) > h, then there should be no wrinklons in the curtain, and we should

see a uniform wrinkling pattern with wavelength λ0. However, if we decrease λ0 gradually,

then we should find wrinklons forming as soon as L∗(λ0) ≈ h, with a consequent doubling

of the wavelength at the outer boundary. Such a concrete prediction for a crossover can be

easily verified through experiments.

We also note that the scaling law Eq. 3.5 for λ∗ accounts for all the parameters in our

inner Lamé system. Thus the ratio of λ∗ to x̃ is a pure number (estimated to be ≈ 2.2) that

should be the same even for more general cases of unsupported, inner boundary-contracted

annuli (with free outer boundary). In Sec. 3.3, we have shown Eq. 3.5 to hold for the case

of a pinned inner boundary, as well as an inner boundary that moves radially inwards. In

Sec. 3.2.2, we mention the case where the boundary is free to move even azimuthally along

the constraining cylinder, and shows folding. In this case, the persistence of the wrinkles

extends to the time scale where boundary points on the material can migrate azimuthally

over a finite fraction of the circumference. We would expect Eq. 3.5 to be valid in this

transient regime. Finally, we might expect Eq. 3.5 to hold even for cases where the inner

boundary is contracted in a different manner, e.g., when it is forced to live on a constraining

cone instead of a cylinder. However, the numerical pre-factor need not be the same in this

case.

3.4.3 Remarks

Certain features of our results in Sec. 3.3 deserve comment. First, we note that both deriva-

tions of the threshold λ∗ (viz., Eqs. 3.5 and 3.6) ignore any splay in the wrinkle structure

arising from the overall annular geometry of the system. The fact that our measurements

coincide with the prediction thus suggests that wrinkle splay is unimportant in the regime of

w, t and ∆ considered here. We would expect such splay to become important particularly

for large width w. Second, in Figs. 3.3a and b, we note that the data points which have

coarsened up to the wrinklon line λ∗ from below show considerable dispersion. The data

points reflect the mean outer λ, averaged over all wrinkles in an annulus; in Fig. 3.3b, we add

error bars to additionally depict the imprecision in λ for a sample. Such variability can be

explained partially by two factors. The first is that the real simulation wavenumber m must
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be an integer, and thus any wrinklon that migrates to the inner boundary must change m by

−1. This will correspond to jumps, and hence dispersion, in the measured outer wavelength

λ ∼ 1/m. The second factor to consider is the random nature of the coarsening events. All

wrinklons do not coarsen simultaneously (thereby changing m → m/2 directly). Instead,

wrinklons form randomly and wrinkle-pair-by-pair, with wrinkle pairs separated in space, a

priori, coarsening independently. This leads to m decreasing in smaller steps (see Fig. 3.1c),

and also to heterogeneity in the wrinkles and wrinklons (see Fig. 3.4b and the error bars in

Fig. 3.3b). The energetic inequality δU < 0 (see Eq. 3.2) only marks the feasibility regime

for such coarsening events to occur. Consequently, if coarsening is an equal probability event

for each wrinkle pair, then one should expect a larger drop in m, i.e. more coarsening, if

the configuration starts out with a larger initial m. We see that, among the coarsened data

points in Fig. 3.3b, the red dots (w = 0.33) show noticeably large coarsening. This discrep-

ancy might then be related to the fact that these samples started from biased states with

a relatively large initial wavenumber minit ≈ 25 − 35, compared to minit ≈ 15 − 20 for the

wider samples (green and teal symbols). We note, moreover, that the sign of the discrepancy

in Fig. 3.3b is generally such that the data points lie above λ∗. This is consistent with our

claim that λ∗ only acts as a lower threshold to the wavelengths observable in the system:

λ ≳ λ∗.

Finally, we recall that [10] shows the inner Lamé wrinkle configuration to be isometric,

i.e., to have only bending energy. On the other hand, in this paper, we use stretching energy

to explain the wavelength selection. This might seem paradoxical, but is so only at first

glance. The stretching energy of the wrinklon defines an energy barrier that would need to

be crossed in order to increase the wavelength beyond λ∗. It does not influence the energy

of the state for a given λ (equivalently, a given m), which as shown in [10] is unrelated to

this barrier.
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Figure 3.1: Geometry of the Inner Lamé radially wrinkled system, and selected wavelengths
in its numerical implementation. (a) A schematic diagram of the flat annulus, showing its
geometric parameters: radial distance r, width w and (in cross-section) thickness t. We
take the inner radius as unity. (b) An example of a deformed configuration, showing the
displacement ∆ and the wrinkle wavelength λ∗, measured at the outer boundary, which we
wish to predict. (c) shows representative data for the evolution of the wavenumber (i.e. the
number of wrinkles) against normalised contraction ∆/∆max, measured at both inner (r = 1)
and outer (r = 1+w) boundaries. m decreases until it saturates to a valuem∗ ≡ 2π(1+w)/λ∗.
(d) shows data collapse on a log-log scale of measured λ∗, along with λhierarchy for the pinned
version (see Sec. 3.3.3), onto the predicted scaling law given in Eq. 3.5. The data are for
multiple numerical annuli with varying w, t and ∆. The black line represents the best-fit
equation: y = 2.2x (log-log scale). Henceforth, we term this the “wrinklon line” and depict
it using λ∗.
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Figure 3.2: Wavelength coarsening and wrinklons (see Sec. 3.3.1). (a) An origami pa-
per model of a Y-shaped wrinklon joining, wavelength λ → 2λ (measured in-plane; half-
wavelengths shown), revealing the nature of its stretching (image modified from [9]; scale
bar is 5 cm). The gap in the shape shows that a continuous sheet requires longitudinal
stretching to accommodate the wrinklon (see Sec. 3.3B). (inset) A schematic diagram of
the mid-line of the sheet (in blue), showing its vertical amplitude ζ and length L, used in
Eq. 3.1. (b) An illustrative example of wavelength coarsening in the inner Lamé system (for
w = 0.33, t = 6.67×10−4). The three snapshots are for the bottom-right quadrant of the an-
nulus (coloured by height) taken at ∆ ≈ 0.07, 0.15, 0.23 resp. (c) To visualise the wrinkling
pattern with greater clarity, we ‘flatten’ the polar coordinates, so that the height profile can
be plotted in a rectangular matrix form (same colours, but different colour map). Here, the
top edge is the inner boundary. (d) A close-up of a wrinklon in (c), joining wavelengths
λ → 2λ, of longitudinal size L.
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Figure 3.3: Effect of varying the initial wavelength λinit. (a) The data points (in blue and
magenta) and best-fit ‘wrinklon line’ from Fig. 3.1c, having λinit ≤ λ∗, are overlaid with new
sample points (in green) that start from a biased flat state with a perturbation of wavelength
λinit ≥ λ∗. These biased samples show little to no coarsening. (b) We see the difference in
coarsening behaviour clearly by plotting both λinit ( empty symbols) and the final wavelength
λfinal ( solid symbols) for some selected samples. Here, we fix λinit and width w, and vary
the thickness t, thereby creating a horizontal row of empty symbols for given λinit. We
plot λinit and λfinal with the same w, t and ∆, so that any coarsening is noticeable by a
vertically upward shift of the solid symbol (some arrows drawn for indication). We see a
clear transition from non-coarsening to coarsening behaviour as we cross the black wrinklon
line. The error bars denote standard error from averaging over all the wrinkles.
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Figure 3.4: Contrasting wrinkled morphologies but similar outer wavelengths, for two dif-
ferent boundary conditions at the inner boundary (r = 1) (see Sec. 3.3.3). Data are for the
same representative sample used in Fig. 3.2b (w = 0.33, t = 6.67×10−4). The top row shows
the bottom-right quadrant of the deformed annulus in both cases (coloured by height). The
bottom row shows the same height profile, but flattened into a rectangular matrix form,
as in Fig. 3.2 above. (a) The “inner Lamé” boundary condition, the subject of this paper,
which allows free vertical displacement at r = 1. This leads to near-uniform radial wrinkling,
with wavelength λ∗ at the outer boundary (r = 1 + w). (b) A pinned boundary condition
that prohibits vertical displacement at r = 1. This leads to a spatial wrinkle hierarchy, that
terminates with the coarsest wavelength λhierarchy at r = 1 + w.
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